xref: /linux/fs/ext4/page-io.c (revision 97884ca8c2925d14c32188e865069f21378b4b4f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35 
36 int __init ext4_init_pageio(void)
37 {
38 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 	if (io_end_cachep == NULL)
40 		return -ENOMEM;
41 
42 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 	if (io_end_vec_cachep == NULL) {
44 		kmem_cache_destroy(io_end_cachep);
45 		return -ENOMEM;
46 	}
47 	return 0;
48 }
49 
50 void ext4_exit_pageio(void)
51 {
52 	kmem_cache_destroy(io_end_cachep);
53 	kmem_cache_destroy(io_end_vec_cachep);
54 }
55 
56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 	struct ext4_io_end_vec *io_end_vec;
59 
60 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 	if (!io_end_vec)
62 		return ERR_PTR(-ENOMEM);
63 	INIT_LIST_HEAD(&io_end_vec->list);
64 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 	return io_end_vec;
66 }
67 
68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 	struct ext4_io_end_vec *io_end_vec, *tmp;
71 
72 	if (list_empty(&io_end->list_vec))
73 		return;
74 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 		list_del(&io_end_vec->list);
76 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 	}
78 }
79 
80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 	BUG_ON(list_empty(&io_end->list_vec));
83 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85 
86 /*
87  * Print an buffer I/O error compatible with the fs/buffer.c.  This
88  * provides compatibility with dmesg scrapers that look for a specific
89  * buffer I/O error message.  We really need a unified error reporting
90  * structure to userspace ala Digital Unix's uerf system, but it's
91  * probably not going to happen in my lifetime, due to LKML politics...
92  */
93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 		       bh->b_bdev,
97 			(unsigned long long)bh->b_blocknr);
98 }
99 
100 static void ext4_finish_bio(struct bio *bio)
101 {
102 	struct bio_vec *bvec;
103 	struct bvec_iter_all iter_all;
104 
105 	bio_for_each_segment_all(bvec, bio, iter_all) {
106 		struct page *page = bvec->bv_page;
107 		struct page *bounce_page = NULL;
108 		struct buffer_head *bh, *head;
109 		unsigned bio_start = bvec->bv_offset;
110 		unsigned bio_end = bio_start + bvec->bv_len;
111 		unsigned under_io = 0;
112 		unsigned long flags;
113 
114 		if (!page)
115 			continue;
116 
117 		if (fscrypt_is_bounce_page(page)) {
118 			bounce_page = page;
119 			page = fscrypt_pagecache_page(bounce_page);
120 		}
121 
122 		if (bio->bi_status) {
123 			SetPageError(page);
124 			mapping_set_error(page->mapping, -EIO);
125 		}
126 		bh = head = page_buffers(page);
127 		/*
128 		 * We check all buffers in the page under b_uptodate_lock
129 		 * to avoid races with other end io clearing async_write flags
130 		 */
131 		spin_lock_irqsave(&head->b_uptodate_lock, flags);
132 		do {
133 			if (bh_offset(bh) < bio_start ||
134 			    bh_offset(bh) + bh->b_size > bio_end) {
135 				if (buffer_async_write(bh))
136 					under_io++;
137 				continue;
138 			}
139 			clear_buffer_async_write(bh);
140 			if (bio->bi_status)
141 				buffer_io_error(bh);
142 		} while ((bh = bh->b_this_page) != head);
143 		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
144 		if (!under_io) {
145 			fscrypt_free_bounce_page(bounce_page);
146 			end_page_writeback(page);
147 		}
148 	}
149 }
150 
151 static void ext4_release_io_end(ext4_io_end_t *io_end)
152 {
153 	struct bio *bio, *next_bio;
154 
155 	BUG_ON(!list_empty(&io_end->list));
156 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
157 	WARN_ON(io_end->handle);
158 
159 	for (bio = io_end->bio; bio; bio = next_bio) {
160 		next_bio = bio->bi_private;
161 		ext4_finish_bio(bio);
162 		bio_put(bio);
163 	}
164 	ext4_free_io_end_vec(io_end);
165 	kmem_cache_free(io_end_cachep, io_end);
166 }
167 
168 /*
169  * Check a range of space and convert unwritten extents to written. Note that
170  * we are protected from truncate touching same part of extent tree by the
171  * fact that truncate code waits for all DIO to finish (thus exclusion from
172  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
173  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
174  * completed (happens from ext4_free_ioend()).
175  */
176 static int ext4_end_io_end(ext4_io_end_t *io_end)
177 {
178 	struct inode *inode = io_end->inode;
179 	handle_t *handle = io_end->handle;
180 	int ret = 0;
181 
182 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
183 		   "list->prev 0x%p\n",
184 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
185 
186 	io_end->handle = NULL;	/* Following call will use up the handle */
187 	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
188 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
189 		ext4_msg(inode->i_sb, KERN_EMERG,
190 			 "failed to convert unwritten extents to written "
191 			 "extents -- potential data loss!  "
192 			 "(inode %lu, error %d)", inode->i_ino, ret);
193 	}
194 	ext4_clear_io_unwritten_flag(io_end);
195 	ext4_release_io_end(io_end);
196 	return ret;
197 }
198 
199 static void dump_completed_IO(struct inode *inode, struct list_head *head)
200 {
201 #ifdef	EXT4FS_DEBUG
202 	struct list_head *cur, *before, *after;
203 	ext4_io_end_t *io_end, *io_end0, *io_end1;
204 
205 	if (list_empty(head))
206 		return;
207 
208 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
209 	list_for_each_entry(io_end, head, list) {
210 		cur = &io_end->list;
211 		before = cur->prev;
212 		io_end0 = container_of(before, ext4_io_end_t, list);
213 		after = cur->next;
214 		io_end1 = container_of(after, ext4_io_end_t, list);
215 
216 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
217 			    io_end, inode->i_ino, io_end0, io_end1);
218 	}
219 #endif
220 }
221 
222 /* Add the io_end to per-inode completed end_io list. */
223 static void ext4_add_complete_io(ext4_io_end_t *io_end)
224 {
225 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
226 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
227 	struct workqueue_struct *wq;
228 	unsigned long flags;
229 
230 	/* Only reserved conversions from writeback should enter here */
231 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
232 	WARN_ON(!io_end->handle && sbi->s_journal);
233 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
234 	wq = sbi->rsv_conversion_wq;
235 	if (list_empty(&ei->i_rsv_conversion_list))
236 		queue_work(wq, &ei->i_rsv_conversion_work);
237 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
238 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
239 }
240 
241 static int ext4_do_flush_completed_IO(struct inode *inode,
242 				      struct list_head *head)
243 {
244 	ext4_io_end_t *io_end;
245 	struct list_head unwritten;
246 	unsigned long flags;
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 	int err, ret = 0;
249 
250 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
251 	dump_completed_IO(inode, head);
252 	list_replace_init(head, &unwritten);
253 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
254 
255 	while (!list_empty(&unwritten)) {
256 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
257 		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
258 		list_del_init(&io_end->list);
259 
260 		err = ext4_end_io_end(io_end);
261 		if (unlikely(!ret && err))
262 			ret = err;
263 	}
264 	return ret;
265 }
266 
267 /*
268  * work on completed IO, to convert unwritten extents to extents
269  */
270 void ext4_end_io_rsv_work(struct work_struct *work)
271 {
272 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
273 						  i_rsv_conversion_work);
274 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
275 }
276 
277 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
278 {
279 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
280 
281 	if (io_end) {
282 		io_end->inode = inode;
283 		INIT_LIST_HEAD(&io_end->list);
284 		INIT_LIST_HEAD(&io_end->list_vec);
285 		atomic_set(&io_end->count, 1);
286 	}
287 	return io_end;
288 }
289 
290 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
291 {
292 	if (atomic_dec_and_test(&io_end->count)) {
293 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
294 				list_empty(&io_end->list_vec)) {
295 			ext4_release_io_end(io_end);
296 			return;
297 		}
298 		ext4_add_complete_io(io_end);
299 	}
300 }
301 
302 int ext4_put_io_end(ext4_io_end_t *io_end)
303 {
304 	int err = 0;
305 
306 	if (atomic_dec_and_test(&io_end->count)) {
307 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
308 			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
309 								io_end);
310 			io_end->handle = NULL;
311 			ext4_clear_io_unwritten_flag(io_end);
312 		}
313 		ext4_release_io_end(io_end);
314 	}
315 	return err;
316 }
317 
318 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
319 {
320 	atomic_inc(&io_end->count);
321 	return io_end;
322 }
323 
324 /* BIO completion function for page writeback */
325 static void ext4_end_bio(struct bio *bio)
326 {
327 	ext4_io_end_t *io_end = bio->bi_private;
328 	sector_t bi_sector = bio->bi_iter.bi_sector;
329 	char b[BDEVNAME_SIZE];
330 
331 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
332 		      bio_devname(bio, b),
333 		      (long long) bio->bi_iter.bi_sector,
334 		      (unsigned) bio_sectors(bio),
335 		      bio->bi_status)) {
336 		ext4_finish_bio(bio);
337 		bio_put(bio);
338 		return;
339 	}
340 	bio->bi_end_io = NULL;
341 
342 	if (bio->bi_status) {
343 		struct inode *inode = io_end->inode;
344 
345 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
346 			     "starting block %llu)",
347 			     bio->bi_status, inode->i_ino,
348 			     (unsigned long long)
349 			     bi_sector >> (inode->i_blkbits - 9));
350 		mapping_set_error(inode->i_mapping,
351 				blk_status_to_errno(bio->bi_status));
352 	}
353 
354 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
355 		/*
356 		 * Link bio into list hanging from io_end. We have to do it
357 		 * atomically as bio completions can be racing against each
358 		 * other.
359 		 */
360 		bio->bi_private = xchg(&io_end->bio, bio);
361 		ext4_put_io_end_defer(io_end);
362 	} else {
363 		/*
364 		 * Drop io_end reference early. Inode can get freed once
365 		 * we finish the bio.
366 		 */
367 		ext4_put_io_end_defer(io_end);
368 		ext4_finish_bio(bio);
369 		bio_put(bio);
370 	}
371 }
372 
373 void ext4_io_submit(struct ext4_io_submit *io)
374 {
375 	struct bio *bio = io->io_bio;
376 
377 	if (bio) {
378 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
379 				  REQ_SYNC : 0;
380 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
381 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
382 		submit_bio(io->io_bio);
383 	}
384 	io->io_bio = NULL;
385 }
386 
387 void ext4_io_submit_init(struct ext4_io_submit *io,
388 			 struct writeback_control *wbc)
389 {
390 	io->io_wbc = wbc;
391 	io->io_bio = NULL;
392 	io->io_end = NULL;
393 }
394 
395 static void io_submit_init_bio(struct ext4_io_submit *io,
396 			       struct buffer_head *bh)
397 {
398 	struct bio *bio;
399 
400 	/*
401 	 * bio_alloc will _always_ be able to allocate a bio if
402 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
403 	 */
404 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
405 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
406 	bio_set_dev(bio, bh->b_bdev);
407 	bio->bi_end_io = ext4_end_bio;
408 	bio->bi_private = ext4_get_io_end(io->io_end);
409 	io->io_bio = bio;
410 	io->io_next_block = bh->b_blocknr;
411 	wbc_init_bio(io->io_wbc, bio);
412 }
413 
414 static void io_submit_add_bh(struct ext4_io_submit *io,
415 			     struct inode *inode,
416 			     struct page *page,
417 			     struct buffer_head *bh)
418 {
419 	int ret;
420 
421 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
422 submit_and_retry:
423 		ext4_io_submit(io);
424 	}
425 	if (io->io_bio == NULL) {
426 		io_submit_init_bio(io, bh);
427 		io->io_bio->bi_write_hint = inode->i_write_hint;
428 	}
429 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
430 	if (ret != bh->b_size)
431 		goto submit_and_retry;
432 	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
433 	io->io_next_block++;
434 }
435 
436 int ext4_bio_write_page(struct ext4_io_submit *io,
437 			struct page *page,
438 			int len,
439 			struct writeback_control *wbc,
440 			bool keep_towrite)
441 {
442 	struct page *bounce_page = NULL;
443 	struct inode *inode = page->mapping->host;
444 	unsigned block_start;
445 	struct buffer_head *bh, *head;
446 	int ret = 0;
447 	int nr_submitted = 0;
448 	int nr_to_submit = 0;
449 
450 	BUG_ON(!PageLocked(page));
451 	BUG_ON(PageWriteback(page));
452 
453 	if (keep_towrite)
454 		set_page_writeback_keepwrite(page);
455 	else
456 		set_page_writeback(page);
457 	ClearPageError(page);
458 
459 	/*
460 	 * Comments copied from block_write_full_page:
461 	 *
462 	 * The page straddles i_size.  It must be zeroed out on each and every
463 	 * writepage invocation because it may be mmapped.  "A file is mapped
464 	 * in multiples of the page size.  For a file that is not a multiple of
465 	 * the page size, the remaining memory is zeroed when mapped, and
466 	 * writes to that region are not written out to the file."
467 	 */
468 	if (len < PAGE_SIZE)
469 		zero_user_segment(page, len, PAGE_SIZE);
470 	/*
471 	 * In the first loop we prepare and mark buffers to submit. We have to
472 	 * mark all buffers in the page before submitting so that
473 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
474 	 * on the first buffer finishes and we are still working on submitting
475 	 * the second buffer.
476 	 */
477 	bh = head = page_buffers(page);
478 	do {
479 		block_start = bh_offset(bh);
480 		if (block_start >= len) {
481 			clear_buffer_dirty(bh);
482 			set_buffer_uptodate(bh);
483 			continue;
484 		}
485 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
486 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
487 			/* A hole? We can safely clear the dirty bit */
488 			if (!buffer_mapped(bh))
489 				clear_buffer_dirty(bh);
490 			if (io->io_bio)
491 				ext4_io_submit(io);
492 			continue;
493 		}
494 		if (buffer_new(bh))
495 			clear_buffer_new(bh);
496 		set_buffer_async_write(bh);
497 		nr_to_submit++;
498 	} while ((bh = bh->b_this_page) != head);
499 
500 	bh = head = page_buffers(page);
501 
502 	/*
503 	 * If any blocks are being written to an encrypted file, encrypt them
504 	 * into a bounce page.  For simplicity, just encrypt until the last
505 	 * block which might be needed.  This may cause some unneeded blocks
506 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
507 	 * can't happen in the common case of blocksize == PAGE_SIZE.
508 	 */
509 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) {
510 		gfp_t gfp_flags = GFP_NOFS;
511 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
512 
513 		/*
514 		 * Since bounce page allocation uses a mempool, we can only use
515 		 * a waiting mask (i.e. request guaranteed allocation) on the
516 		 * first page of the bio.  Otherwise it can deadlock.
517 		 */
518 		if (io->io_bio)
519 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
520 	retry_encrypt:
521 		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
522 							       0, gfp_flags);
523 		if (IS_ERR(bounce_page)) {
524 			ret = PTR_ERR(bounce_page);
525 			if (ret == -ENOMEM &&
526 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
527 				gfp_flags = GFP_NOFS;
528 				if (io->io_bio)
529 					ext4_io_submit(io);
530 				else
531 					gfp_flags |= __GFP_NOFAIL;
532 				congestion_wait(BLK_RW_ASYNC, HZ/50);
533 				goto retry_encrypt;
534 			}
535 
536 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
537 			redirty_page_for_writepage(wbc, page);
538 			do {
539 				clear_buffer_async_write(bh);
540 				bh = bh->b_this_page;
541 			} while (bh != head);
542 			goto unlock;
543 		}
544 	}
545 
546 	/* Now submit buffers to write */
547 	do {
548 		if (!buffer_async_write(bh))
549 			continue;
550 		io_submit_add_bh(io, inode,
551 				 bounce_page ? bounce_page : page, bh);
552 		nr_submitted++;
553 		clear_buffer_dirty(bh);
554 	} while ((bh = bh->b_this_page) != head);
555 
556 unlock:
557 	unlock_page(page);
558 	/* Nothing submitted - we have to end page writeback */
559 	if (!nr_submitted)
560 		end_page_writeback(page);
561 	return ret;
562 }
563