xref: /linux/fs/ext4/page-io.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/sched/mm.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35 
36 int __init ext4_init_pageio(void)
37 {
38 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 	if (io_end_cachep == NULL)
40 		return -ENOMEM;
41 
42 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 	if (io_end_vec_cachep == NULL) {
44 		kmem_cache_destroy(io_end_cachep);
45 		return -ENOMEM;
46 	}
47 	return 0;
48 }
49 
50 void ext4_exit_pageio(void)
51 {
52 	kmem_cache_destroy(io_end_cachep);
53 	kmem_cache_destroy(io_end_vec_cachep);
54 }
55 
56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 	struct ext4_io_end_vec *io_end_vec;
59 
60 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 	if (!io_end_vec)
62 		return ERR_PTR(-ENOMEM);
63 	INIT_LIST_HEAD(&io_end_vec->list);
64 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 	return io_end_vec;
66 }
67 
68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 	struct ext4_io_end_vec *io_end_vec, *tmp;
71 
72 	if (list_empty(&io_end->list_vec))
73 		return;
74 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 		list_del(&io_end_vec->list);
76 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 	}
78 }
79 
80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 	BUG_ON(list_empty(&io_end->list_vec));
83 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85 
86 /*
87  * Print an buffer I/O error compatible with the fs/buffer.c.  This
88  * provides compatibility with dmesg scrapers that look for a specific
89  * buffer I/O error message.  We really need a unified error reporting
90  * structure to userspace ala Digital Unix's uerf system, but it's
91  * probably not going to happen in my lifetime, due to LKML politics...
92  */
93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 		       bh->b_bdev,
97 			(unsigned long long)bh->b_blocknr);
98 }
99 
100 static void ext4_finish_bio(struct bio *bio)
101 {
102 	struct folio_iter fi;
103 
104 	bio_for_each_folio_all(fi, bio) {
105 		struct folio *folio = fi.folio;
106 		struct folio *io_folio = NULL;
107 		struct buffer_head *bh, *head;
108 		size_t bio_start = fi.offset;
109 		size_t bio_end = bio_start + fi.length;
110 		unsigned under_io = 0;
111 		unsigned long flags;
112 
113 		if (fscrypt_is_bounce_folio(folio)) {
114 			io_folio = folio;
115 			folio = fscrypt_pagecache_folio(folio);
116 		}
117 
118 		if (bio->bi_status) {
119 			int err = blk_status_to_errno(bio->bi_status);
120 			mapping_set_error(folio->mapping, err);
121 		}
122 		bh = head = folio_buffers(folio);
123 		/*
124 		 * We check all buffers in the folio under b_uptodate_lock
125 		 * to avoid races with other end io clearing async_write flags
126 		 */
127 		spin_lock_irqsave(&head->b_uptodate_lock, flags);
128 		do {
129 			if (bh_offset(bh) < bio_start ||
130 			    bh_offset(bh) + bh->b_size > bio_end) {
131 				if (buffer_async_write(bh))
132 					under_io++;
133 				continue;
134 			}
135 			clear_buffer_async_write(bh);
136 			if (bio->bi_status) {
137 				set_buffer_write_io_error(bh);
138 				buffer_io_error(bh);
139 			}
140 		} while ((bh = bh->b_this_page) != head);
141 		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
142 		if (!under_io) {
143 			fscrypt_free_bounce_page(&io_folio->page);
144 			folio_end_writeback(folio);
145 		}
146 	}
147 }
148 
149 static void ext4_release_io_end(ext4_io_end_t *io_end)
150 {
151 	struct bio *bio, *next_bio;
152 
153 	BUG_ON(!list_empty(&io_end->list));
154 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
155 	WARN_ON(io_end->handle);
156 
157 	for (bio = io_end->bio; bio; bio = next_bio) {
158 		next_bio = bio->bi_private;
159 		ext4_finish_bio(bio);
160 		bio_put(bio);
161 	}
162 	ext4_free_io_end_vec(io_end);
163 	kmem_cache_free(io_end_cachep, io_end);
164 }
165 
166 /*
167  * Check a range of space and convert unwritten extents to written. Note that
168  * we are protected from truncate touching same part of extent tree by the
169  * fact that truncate code waits for all DIO to finish (thus exclusion from
170  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
171  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
172  * completed (happens from ext4_free_ioend()).
173  */
174 static int ext4_end_io_end(ext4_io_end_t *io_end)
175 {
176 	struct inode *inode = io_end->inode;
177 	handle_t *handle = io_end->handle;
178 	int ret = 0;
179 
180 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
181 		   "list->prev 0x%p\n",
182 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
183 
184 	io_end->handle = NULL;	/* Following call will use up the handle */
185 	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
186 	if (ret < 0 && !ext4_forced_shutdown(inode->i_sb)) {
187 		ext4_msg(inode->i_sb, KERN_EMERG,
188 			 "failed to convert unwritten extents to written "
189 			 "extents -- potential data loss!  "
190 			 "(inode %lu, error %d)", inode->i_ino, ret);
191 	}
192 	ext4_clear_io_unwritten_flag(io_end);
193 	ext4_release_io_end(io_end);
194 	return ret;
195 }
196 
197 static void dump_completed_IO(struct inode *inode, struct list_head *head)
198 {
199 #ifdef	EXT4FS_DEBUG
200 	struct list_head *cur, *before, *after;
201 	ext4_io_end_t *io_end, *io_end0, *io_end1;
202 
203 	if (list_empty(head))
204 		return;
205 
206 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
207 	list_for_each_entry(io_end, head, list) {
208 		cur = &io_end->list;
209 		before = cur->prev;
210 		io_end0 = container_of(before, ext4_io_end_t, list);
211 		after = cur->next;
212 		io_end1 = container_of(after, ext4_io_end_t, list);
213 
214 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
215 			    io_end, inode->i_ino, io_end0, io_end1);
216 	}
217 #endif
218 }
219 
220 /* Add the io_end to per-inode completed end_io list. */
221 static void ext4_add_complete_io(ext4_io_end_t *io_end)
222 {
223 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
224 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
225 	struct workqueue_struct *wq;
226 	unsigned long flags;
227 
228 	/* Only reserved conversions from writeback should enter here */
229 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
230 	WARN_ON(!io_end->handle && sbi->s_journal);
231 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
232 	wq = sbi->rsv_conversion_wq;
233 	if (list_empty(&ei->i_rsv_conversion_list))
234 		queue_work(wq, &ei->i_rsv_conversion_work);
235 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
236 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
237 }
238 
239 static int ext4_do_flush_completed_IO(struct inode *inode,
240 				      struct list_head *head)
241 {
242 	ext4_io_end_t *io_end;
243 	struct list_head unwritten;
244 	unsigned long flags;
245 	struct ext4_inode_info *ei = EXT4_I(inode);
246 	int err, ret = 0;
247 
248 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
249 	dump_completed_IO(inode, head);
250 	list_replace_init(head, &unwritten);
251 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
252 
253 	while (!list_empty(&unwritten)) {
254 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
255 		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
256 		list_del_init(&io_end->list);
257 
258 		err = ext4_end_io_end(io_end);
259 		if (unlikely(!ret && err))
260 			ret = err;
261 	}
262 	return ret;
263 }
264 
265 /*
266  * work on completed IO, to convert unwritten extents to extents
267  */
268 void ext4_end_io_rsv_work(struct work_struct *work)
269 {
270 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
271 						  i_rsv_conversion_work);
272 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
273 }
274 
275 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
276 {
277 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
278 
279 	if (io_end) {
280 		io_end->inode = inode;
281 		INIT_LIST_HEAD(&io_end->list);
282 		INIT_LIST_HEAD(&io_end->list_vec);
283 		refcount_set(&io_end->count, 1);
284 	}
285 	return io_end;
286 }
287 
288 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
289 {
290 	if (refcount_dec_and_test(&io_end->count)) {
291 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
292 				list_empty(&io_end->list_vec)) {
293 			ext4_release_io_end(io_end);
294 			return;
295 		}
296 		ext4_add_complete_io(io_end);
297 	}
298 }
299 
300 int ext4_put_io_end(ext4_io_end_t *io_end)
301 {
302 	int err = 0;
303 
304 	if (refcount_dec_and_test(&io_end->count)) {
305 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
306 			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
307 								io_end);
308 			io_end->handle = NULL;
309 			ext4_clear_io_unwritten_flag(io_end);
310 		}
311 		ext4_release_io_end(io_end);
312 	}
313 	return err;
314 }
315 
316 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
317 {
318 	refcount_inc(&io_end->count);
319 	return io_end;
320 }
321 
322 /* BIO completion function for page writeback */
323 static void ext4_end_bio(struct bio *bio)
324 {
325 	ext4_io_end_t *io_end = bio->bi_private;
326 	sector_t bi_sector = bio->bi_iter.bi_sector;
327 
328 	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
329 		      bio->bi_bdev,
330 		      (long long) bio->bi_iter.bi_sector,
331 		      (unsigned) bio_sectors(bio),
332 		      bio->bi_status)) {
333 		ext4_finish_bio(bio);
334 		bio_put(bio);
335 		return;
336 	}
337 	bio->bi_end_io = NULL;
338 
339 	if (bio->bi_status) {
340 		struct inode *inode = io_end->inode;
341 
342 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
343 			     "starting block %llu)",
344 			     bio->bi_status, inode->i_ino,
345 			     (unsigned long long)
346 			     bi_sector >> (inode->i_blkbits - 9));
347 		mapping_set_error(inode->i_mapping,
348 				blk_status_to_errno(bio->bi_status));
349 	}
350 
351 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
352 		/*
353 		 * Link bio into list hanging from io_end. We have to do it
354 		 * atomically as bio completions can be racing against each
355 		 * other.
356 		 */
357 		bio->bi_private = xchg(&io_end->bio, bio);
358 		ext4_put_io_end_defer(io_end);
359 	} else {
360 		/*
361 		 * Drop io_end reference early. Inode can get freed once
362 		 * we finish the bio.
363 		 */
364 		ext4_put_io_end_defer(io_end);
365 		ext4_finish_bio(bio);
366 		bio_put(bio);
367 	}
368 }
369 
370 void ext4_io_submit(struct ext4_io_submit *io)
371 {
372 	struct bio *bio = io->io_bio;
373 
374 	if (bio) {
375 		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
376 			io->io_bio->bi_opf |= REQ_SYNC;
377 		submit_bio(io->io_bio);
378 	}
379 	io->io_bio = NULL;
380 }
381 
382 void ext4_io_submit_init(struct ext4_io_submit *io,
383 			 struct writeback_control *wbc)
384 {
385 	io->io_wbc = wbc;
386 	io->io_bio = NULL;
387 	io->io_end = NULL;
388 }
389 
390 static void io_submit_init_bio(struct ext4_io_submit *io,
391 			       struct buffer_head *bh)
392 {
393 	struct bio *bio;
394 
395 	/*
396 	 * bio_alloc will _always_ be able to allocate a bio if
397 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
398 	 */
399 	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
400 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
401 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
402 	bio->bi_end_io = ext4_end_bio;
403 	bio->bi_private = ext4_get_io_end(io->io_end);
404 	io->io_bio = bio;
405 	io->io_next_block = bh->b_blocknr;
406 	wbc_init_bio(io->io_wbc, bio);
407 }
408 
409 static void io_submit_add_bh(struct ext4_io_submit *io,
410 			     struct inode *inode,
411 			     struct folio *folio,
412 			     struct folio *io_folio,
413 			     struct buffer_head *bh)
414 {
415 	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
416 			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
417 submit_and_retry:
418 		ext4_io_submit(io);
419 	}
420 	if (io->io_bio == NULL) {
421 		io_submit_init_bio(io, bh);
422 		io->io_bio->bi_write_hint = inode->i_write_hint;
423 	}
424 	if (!bio_add_folio(io->io_bio, io_folio, bh->b_size, bh_offset(bh)))
425 		goto submit_and_retry;
426 	wbc_account_cgroup_owner(io->io_wbc, folio, bh->b_size);
427 	io->io_next_block++;
428 }
429 
430 int ext4_bio_write_folio(struct ext4_io_submit *io, struct folio *folio,
431 		size_t len)
432 {
433 	struct folio *io_folio = folio;
434 	struct inode *inode = folio->mapping->host;
435 	unsigned block_start;
436 	struct buffer_head *bh, *head;
437 	int ret = 0;
438 	int nr_to_submit = 0;
439 	struct writeback_control *wbc = io->io_wbc;
440 	bool keep_towrite = false;
441 
442 	BUG_ON(!folio_test_locked(folio));
443 	BUG_ON(folio_test_writeback(folio));
444 
445 	/*
446 	 * Comments copied from block_write_full_folio:
447 	 *
448 	 * The folio straddles i_size.  It must be zeroed out on each and every
449 	 * writepage invocation because it may be mmapped.  "A file is mapped
450 	 * in multiples of the page size.  For a file that is not a multiple of
451 	 * the page size, the remaining memory is zeroed when mapped, and
452 	 * writes to that region are not written out to the file."
453 	 */
454 	if (len < folio_size(folio))
455 		folio_zero_segment(folio, len, folio_size(folio));
456 	/*
457 	 * In the first loop we prepare and mark buffers to submit. We have to
458 	 * mark all buffers in the folio before submitting so that
459 	 * folio_end_writeback() cannot be called from ext4_end_bio() when IO
460 	 * on the first buffer finishes and we are still working on submitting
461 	 * the second buffer.
462 	 */
463 	bh = head = folio_buffers(folio);
464 	do {
465 		block_start = bh_offset(bh);
466 		if (block_start >= len) {
467 			clear_buffer_dirty(bh);
468 			set_buffer_uptodate(bh);
469 			continue;
470 		}
471 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
472 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
473 			/* A hole? We can safely clear the dirty bit */
474 			if (!buffer_mapped(bh))
475 				clear_buffer_dirty(bh);
476 			/*
477 			 * Keeping dirty some buffer we cannot write? Make sure
478 			 * to redirty the folio and keep TOWRITE tag so that
479 			 * racing WB_SYNC_ALL writeback does not skip the folio.
480 			 * This happens e.g. when doing writeout for
481 			 * transaction commit or when journalled data is not
482 			 * yet committed.
483 			 */
484 			if (buffer_dirty(bh) ||
485 			    (buffer_jbd(bh) && buffer_jbddirty(bh))) {
486 				if (!folio_test_dirty(folio))
487 					folio_redirty_for_writepage(wbc, folio);
488 				keep_towrite = true;
489 			}
490 			continue;
491 		}
492 		if (buffer_new(bh))
493 			clear_buffer_new(bh);
494 		set_buffer_async_write(bh);
495 		clear_buffer_dirty(bh);
496 		nr_to_submit++;
497 	} while ((bh = bh->b_this_page) != head);
498 
499 	/* Nothing to submit? Just unlock the folio... */
500 	if (!nr_to_submit)
501 		return 0;
502 
503 	bh = head = folio_buffers(folio);
504 
505 	/*
506 	 * If any blocks are being written to an encrypted file, encrypt them
507 	 * into a bounce page.  For simplicity, just encrypt until the last
508 	 * block which might be needed.  This may cause some unneeded blocks
509 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
510 	 * can't happen in the common case of blocksize == PAGE_SIZE.
511 	 */
512 	if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
513 		gfp_t gfp_flags = GFP_NOFS;
514 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
515 		struct page *bounce_page;
516 
517 		/*
518 		 * Since bounce page allocation uses a mempool, we can only use
519 		 * a waiting mask (i.e. request guaranteed allocation) on the
520 		 * first page of the bio.  Otherwise it can deadlock.
521 		 */
522 		if (io->io_bio)
523 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
524 	retry_encrypt:
525 		bounce_page = fscrypt_encrypt_pagecache_blocks(&folio->page,
526 					enc_bytes, 0, gfp_flags);
527 		if (IS_ERR(bounce_page)) {
528 			ret = PTR_ERR(bounce_page);
529 			if (ret == -ENOMEM &&
530 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
531 				gfp_t new_gfp_flags = GFP_NOFS;
532 				if (io->io_bio)
533 					ext4_io_submit(io);
534 				else
535 					new_gfp_flags |= __GFP_NOFAIL;
536 				memalloc_retry_wait(gfp_flags);
537 				gfp_flags = new_gfp_flags;
538 				goto retry_encrypt;
539 			}
540 
541 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
542 			folio_redirty_for_writepage(wbc, folio);
543 			do {
544 				if (buffer_async_write(bh)) {
545 					clear_buffer_async_write(bh);
546 					set_buffer_dirty(bh);
547 				}
548 				bh = bh->b_this_page;
549 			} while (bh != head);
550 
551 			return ret;
552 		}
553 		io_folio = page_folio(bounce_page);
554 	}
555 
556 	__folio_start_writeback(folio, keep_towrite);
557 
558 	/* Now submit buffers to write */
559 	do {
560 		if (!buffer_async_write(bh))
561 			continue;
562 		io_submit_add_bh(io, inode, folio, io_folio, bh);
563 	} while ((bh = bh->b_this_page) != head);
564 
565 	return 0;
566 }
567