1 /* 2 * linux/fs/ext4/page-io.c 3 * 4 * This contains the new page_io functions for ext4 5 * 6 * Written by Theodore Ts'o, 2010. 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/time.h> 11 #include <linux/jbd2.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/aio.h> 22 #include <linux/uio.h> 23 #include <linux/bio.h> 24 #include <linux/workqueue.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 35 int __init ext4_init_pageio(void) 36 { 37 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 38 if (io_end_cachep == NULL) 39 return -ENOMEM; 40 return 0; 41 } 42 43 void ext4_exit_pageio(void) 44 { 45 kmem_cache_destroy(io_end_cachep); 46 } 47 48 /* 49 * This function is called by ext4_evict_inode() to make sure there is 50 * no more pending I/O completion work left to do. 51 */ 52 void ext4_ioend_shutdown(struct inode *inode) 53 { 54 wait_queue_head_t *wq = ext4_ioend_wq(inode); 55 56 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0)); 57 /* 58 * We need to make sure the work structure is finished being 59 * used before we let the inode get destroyed. 60 */ 61 if (work_pending(&EXT4_I(inode)->i_unwritten_work)) 62 cancel_work_sync(&EXT4_I(inode)->i_unwritten_work); 63 } 64 65 static void ext4_release_io_end(ext4_io_end_t *io_end) 66 { 67 BUG_ON(!list_empty(&io_end->list)); 68 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 69 70 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count)) 71 wake_up_all(ext4_ioend_wq(io_end->inode)); 72 if (io_end->flag & EXT4_IO_END_DIRECT) 73 inode_dio_done(io_end->inode); 74 if (io_end->iocb) 75 aio_complete(io_end->iocb, io_end->result, 0); 76 kmem_cache_free(io_end_cachep, io_end); 77 } 78 79 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end) 80 { 81 struct inode *inode = io_end->inode; 82 83 io_end->flag &= ~EXT4_IO_END_UNWRITTEN; 84 /* Wake up anyone waiting on unwritten extent conversion */ 85 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) 86 wake_up_all(ext4_ioend_wq(inode)); 87 } 88 89 /* check a range of space and convert unwritten extents to written. */ 90 static int ext4_end_io(ext4_io_end_t *io) 91 { 92 struct inode *inode = io->inode; 93 loff_t offset = io->offset; 94 ssize_t size = io->size; 95 int ret = 0; 96 97 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 98 "list->prev 0x%p\n", 99 io, inode->i_ino, io->list.next, io->list.prev); 100 101 ret = ext4_convert_unwritten_extents(inode, offset, size); 102 if (ret < 0) { 103 ext4_msg(inode->i_sb, KERN_EMERG, 104 "failed to convert unwritten extents to written " 105 "extents -- potential data loss! " 106 "(inode %lu, offset %llu, size %zd, error %d)", 107 inode->i_ino, offset, size, ret); 108 } 109 ext4_clear_io_unwritten_flag(io); 110 ext4_release_io_end(io); 111 return ret; 112 } 113 114 static void dump_completed_IO(struct inode *inode) 115 { 116 #ifdef EXT4FS_DEBUG 117 struct list_head *cur, *before, *after; 118 ext4_io_end_t *io, *io0, *io1; 119 120 if (list_empty(&EXT4_I(inode)->i_completed_io_list)) { 121 ext4_debug("inode %lu completed_io list is empty\n", 122 inode->i_ino); 123 return; 124 } 125 126 ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino); 127 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) { 128 cur = &io->list; 129 before = cur->prev; 130 io0 = container_of(before, ext4_io_end_t, list); 131 after = cur->next; 132 io1 = container_of(after, ext4_io_end_t, list); 133 134 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 135 io, inode->i_ino, io0, io1); 136 } 137 #endif 138 } 139 140 /* Add the io_end to per-inode completed end_io list. */ 141 static void ext4_add_complete_io(ext4_io_end_t *io_end) 142 { 143 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 144 struct workqueue_struct *wq; 145 unsigned long flags; 146 147 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 148 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 149 150 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 151 if (list_empty(&ei->i_completed_io_list)) 152 queue_work(wq, &ei->i_unwritten_work); 153 list_add_tail(&io_end->list, &ei->i_completed_io_list); 154 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 155 } 156 157 static int ext4_do_flush_completed_IO(struct inode *inode) 158 { 159 ext4_io_end_t *io; 160 struct list_head unwritten; 161 unsigned long flags; 162 struct ext4_inode_info *ei = EXT4_I(inode); 163 int err, ret = 0; 164 165 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 166 dump_completed_IO(inode); 167 list_replace_init(&ei->i_completed_io_list, &unwritten); 168 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 169 170 while (!list_empty(&unwritten)) { 171 io = list_entry(unwritten.next, ext4_io_end_t, list); 172 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); 173 list_del_init(&io->list); 174 175 err = ext4_end_io(io); 176 if (unlikely(!ret && err)) 177 ret = err; 178 } 179 return ret; 180 } 181 182 /* 183 * work on completed aio dio IO, to convert unwritten extents to extents 184 */ 185 void ext4_end_io_work(struct work_struct *work) 186 { 187 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 188 i_unwritten_work); 189 ext4_do_flush_completed_IO(&ei->vfs_inode); 190 } 191 192 int ext4_flush_unwritten_io(struct inode *inode) 193 { 194 int ret; 195 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) && 196 !(inode->i_state & I_FREEING)); 197 ret = ext4_do_flush_completed_IO(inode); 198 ext4_unwritten_wait(inode); 199 return ret; 200 } 201 202 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 203 { 204 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); 205 if (io) { 206 atomic_inc(&EXT4_I(inode)->i_ioend_count); 207 io->inode = inode; 208 INIT_LIST_HEAD(&io->list); 209 atomic_set(&io->count, 1); 210 } 211 return io; 212 } 213 214 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 215 { 216 if (atomic_dec_and_test(&io_end->count)) { 217 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) { 218 ext4_release_io_end(io_end); 219 return; 220 } 221 ext4_add_complete_io(io_end); 222 } 223 } 224 225 int ext4_put_io_end(ext4_io_end_t *io_end) 226 { 227 int err = 0; 228 229 if (atomic_dec_and_test(&io_end->count)) { 230 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 231 err = ext4_convert_unwritten_extents(io_end->inode, 232 io_end->offset, io_end->size); 233 ext4_clear_io_unwritten_flag(io_end); 234 } 235 ext4_release_io_end(io_end); 236 } 237 return err; 238 } 239 240 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 241 { 242 atomic_inc(&io_end->count); 243 return io_end; 244 } 245 246 /* 247 * Print an buffer I/O error compatible with the fs/buffer.c. This 248 * provides compatibility with dmesg scrapers that look for a specific 249 * buffer I/O error message. We really need a unified error reporting 250 * structure to userspace ala Digital Unix's uerf system, but it's 251 * probably not going to happen in my lifetime, due to LKML politics... 252 */ 253 static void buffer_io_error(struct buffer_head *bh) 254 { 255 char b[BDEVNAME_SIZE]; 256 printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", 257 bdevname(bh->b_bdev, b), 258 (unsigned long long)bh->b_blocknr); 259 } 260 261 static void ext4_end_bio(struct bio *bio, int error) 262 { 263 ext4_io_end_t *io_end = bio->bi_private; 264 struct inode *inode; 265 int i; 266 int blocksize; 267 sector_t bi_sector = bio->bi_sector; 268 269 BUG_ON(!io_end); 270 inode = io_end->inode; 271 blocksize = 1 << inode->i_blkbits; 272 bio->bi_private = NULL; 273 bio->bi_end_io = NULL; 274 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 275 error = 0; 276 for (i = 0; i < bio->bi_vcnt; i++) { 277 struct bio_vec *bvec = &bio->bi_io_vec[i]; 278 struct page *page = bvec->bv_page; 279 struct buffer_head *bh, *head; 280 unsigned bio_start = bvec->bv_offset; 281 unsigned bio_end = bio_start + bvec->bv_len; 282 unsigned under_io = 0; 283 unsigned long flags; 284 285 if (!page) 286 continue; 287 288 if (error) { 289 SetPageError(page); 290 set_bit(AS_EIO, &page->mapping->flags); 291 } 292 bh = head = page_buffers(page); 293 /* 294 * We check all buffers in the page under BH_Uptodate_Lock 295 * to avoid races with other end io clearing async_write flags 296 */ 297 local_irq_save(flags); 298 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 299 do { 300 if (bh_offset(bh) < bio_start || 301 bh_offset(bh) + blocksize > bio_end) { 302 if (buffer_async_write(bh)) 303 under_io++; 304 continue; 305 } 306 clear_buffer_async_write(bh); 307 if (error) 308 buffer_io_error(bh); 309 } while ((bh = bh->b_this_page) != head); 310 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 311 local_irq_restore(flags); 312 if (!under_io) 313 end_page_writeback(page); 314 } 315 bio_put(bio); 316 317 if (error) { 318 io_end->flag |= EXT4_IO_END_ERROR; 319 ext4_warning(inode->i_sb, "I/O error writing to inode %lu " 320 "(offset %llu size %ld starting block %llu)", 321 inode->i_ino, 322 (unsigned long long) io_end->offset, 323 (long) io_end->size, 324 (unsigned long long) 325 bi_sector >> (inode->i_blkbits - 9)); 326 } 327 328 ext4_put_io_end_defer(io_end); 329 } 330 331 void ext4_io_submit(struct ext4_io_submit *io) 332 { 333 struct bio *bio = io->io_bio; 334 335 if (bio) { 336 bio_get(io->io_bio); 337 submit_bio(io->io_op, io->io_bio); 338 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); 339 bio_put(io->io_bio); 340 } 341 io->io_bio = NULL; 342 } 343 344 void ext4_io_submit_init(struct ext4_io_submit *io, 345 struct writeback_control *wbc) 346 { 347 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 348 io->io_bio = NULL; 349 io->io_end = NULL; 350 } 351 352 static int io_submit_init_bio(struct ext4_io_submit *io, 353 struct buffer_head *bh) 354 { 355 int nvecs = bio_get_nr_vecs(bh->b_bdev); 356 struct bio *bio; 357 358 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES)); 359 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 360 bio->bi_bdev = bh->b_bdev; 361 bio->bi_end_io = ext4_end_bio; 362 bio->bi_private = ext4_get_io_end(io->io_end); 363 if (!io->io_end->size) 364 io->io_end->offset = (bh->b_page->index << PAGE_CACHE_SHIFT) 365 + bh_offset(bh); 366 io->io_bio = bio; 367 io->io_next_block = bh->b_blocknr; 368 return 0; 369 } 370 371 static int io_submit_add_bh(struct ext4_io_submit *io, 372 struct inode *inode, 373 struct buffer_head *bh) 374 { 375 ext4_io_end_t *io_end; 376 int ret; 377 378 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 379 submit_and_retry: 380 ext4_io_submit(io); 381 } 382 if (io->io_bio == NULL) { 383 ret = io_submit_init_bio(io, bh); 384 if (ret) 385 return ret; 386 } 387 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); 388 if (ret != bh->b_size) 389 goto submit_and_retry; 390 io_end = io->io_end; 391 if (test_clear_buffer_uninit(bh)) 392 ext4_set_io_unwritten_flag(inode, io_end); 393 io_end->size += bh->b_size; 394 io->io_next_block++; 395 return 0; 396 } 397 398 int ext4_bio_write_page(struct ext4_io_submit *io, 399 struct page *page, 400 int len, 401 struct writeback_control *wbc) 402 { 403 struct inode *inode = page->mapping->host; 404 unsigned block_start, blocksize; 405 struct buffer_head *bh, *head; 406 int ret = 0; 407 int nr_submitted = 0; 408 409 blocksize = 1 << inode->i_blkbits; 410 411 BUG_ON(!PageLocked(page)); 412 BUG_ON(PageWriteback(page)); 413 414 set_page_writeback(page); 415 ClearPageError(page); 416 417 /* 418 * In the first loop we prepare and mark buffers to submit. We have to 419 * mark all buffers in the page before submitting so that 420 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 421 * on the first buffer finishes and we are still working on submitting 422 * the second buffer. 423 */ 424 bh = head = page_buffers(page); 425 do { 426 block_start = bh_offset(bh); 427 if (block_start >= len) { 428 /* 429 * Comments copied from block_write_full_page_endio: 430 * 431 * The page straddles i_size. It must be zeroed out on 432 * each and every writepage invocation because it may 433 * be mmapped. "A file is mapped in multiples of the 434 * page size. For a file that is not a multiple of 435 * the page size, the remaining memory is zeroed when 436 * mapped, and writes to that region are not written 437 * out to the file." 438 */ 439 zero_user_segment(page, block_start, 440 block_start + blocksize); 441 clear_buffer_dirty(bh); 442 set_buffer_uptodate(bh); 443 continue; 444 } 445 if (!buffer_dirty(bh) || buffer_delay(bh) || 446 !buffer_mapped(bh) || buffer_unwritten(bh)) { 447 /* A hole? We can safely clear the dirty bit */ 448 if (!buffer_mapped(bh)) 449 clear_buffer_dirty(bh); 450 if (io->io_bio) 451 ext4_io_submit(io); 452 continue; 453 } 454 if (buffer_new(bh)) { 455 clear_buffer_new(bh); 456 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 457 } 458 set_buffer_async_write(bh); 459 } while ((bh = bh->b_this_page) != head); 460 461 /* Now submit buffers to write */ 462 bh = head = page_buffers(page); 463 do { 464 if (!buffer_async_write(bh)) 465 continue; 466 ret = io_submit_add_bh(io, inode, bh); 467 if (ret) { 468 /* 469 * We only get here on ENOMEM. Not much else 470 * we can do but mark the page as dirty, and 471 * better luck next time. 472 */ 473 redirty_page_for_writepage(wbc, page); 474 break; 475 } 476 nr_submitted++; 477 clear_buffer_dirty(bh); 478 } while ((bh = bh->b_this_page) != head); 479 480 /* Error stopped previous loop? Clean up buffers... */ 481 if (ret) { 482 do { 483 clear_buffer_async_write(bh); 484 bh = bh->b_this_page; 485 } while (bh != head); 486 } 487 unlock_page(page); 488 /* Nothing submitted - we have to end page writeback */ 489 if (!nr_submitted) 490 end_page_writeback(page); 491 return ret; 492 } 493