xref: /linux/fs/ext4/page-io.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/sched/mm.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35 
36 int __init ext4_init_pageio(void)
37 {
38 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 	if (io_end_cachep == NULL)
40 		return -ENOMEM;
41 
42 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 	if (io_end_vec_cachep == NULL) {
44 		kmem_cache_destroy(io_end_cachep);
45 		return -ENOMEM;
46 	}
47 	return 0;
48 }
49 
50 void ext4_exit_pageio(void)
51 {
52 	kmem_cache_destroy(io_end_cachep);
53 	kmem_cache_destroy(io_end_vec_cachep);
54 }
55 
56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 	struct ext4_io_end_vec *io_end_vec;
59 
60 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 	if (!io_end_vec)
62 		return ERR_PTR(-ENOMEM);
63 	INIT_LIST_HEAD(&io_end_vec->list);
64 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 	return io_end_vec;
66 }
67 
68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 	struct ext4_io_end_vec *io_end_vec, *tmp;
71 
72 	if (list_empty(&io_end->list_vec))
73 		return;
74 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 		list_del(&io_end_vec->list);
76 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 	}
78 }
79 
80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 	BUG_ON(list_empty(&io_end->list_vec));
83 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85 
86 /*
87  * Print an buffer I/O error compatible with the fs/buffer.c.  This
88  * provides compatibility with dmesg scrapers that look for a specific
89  * buffer I/O error message.  We really need a unified error reporting
90  * structure to userspace ala Digital Unix's uerf system, but it's
91  * probably not going to happen in my lifetime, due to LKML politics...
92  */
93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 		       bh->b_bdev,
97 			(unsigned long long)bh->b_blocknr);
98 }
99 
100 static void ext4_finish_bio(struct bio *bio)
101 {
102 	struct bio_vec *bvec;
103 	struct bvec_iter_all iter_all;
104 
105 	bio_for_each_segment_all(bvec, bio, iter_all) {
106 		struct page *page = bvec->bv_page;
107 		struct page *bounce_page = NULL;
108 		struct buffer_head *bh, *head;
109 		unsigned bio_start = bvec->bv_offset;
110 		unsigned bio_end = bio_start + bvec->bv_len;
111 		unsigned under_io = 0;
112 		unsigned long flags;
113 
114 		if (fscrypt_is_bounce_page(page)) {
115 			bounce_page = page;
116 			page = fscrypt_pagecache_page(bounce_page);
117 		}
118 
119 		if (bio->bi_status) {
120 			SetPageError(page);
121 			mapping_set_error(page->mapping, -EIO);
122 		}
123 		bh = head = page_buffers(page);
124 		/*
125 		 * We check all buffers in the page under b_uptodate_lock
126 		 * to avoid races with other end io clearing async_write flags
127 		 */
128 		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129 		do {
130 			if (bh_offset(bh) < bio_start ||
131 			    bh_offset(bh) + bh->b_size > bio_end) {
132 				if (buffer_async_write(bh))
133 					under_io++;
134 				continue;
135 			}
136 			clear_buffer_async_write(bh);
137 			if (bio->bi_status)
138 				buffer_io_error(bh);
139 		} while ((bh = bh->b_this_page) != head);
140 		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
141 		if (!under_io) {
142 			fscrypt_free_bounce_page(bounce_page);
143 			end_page_writeback(page);
144 		}
145 	}
146 }
147 
148 static void ext4_release_io_end(ext4_io_end_t *io_end)
149 {
150 	struct bio *bio, *next_bio;
151 
152 	BUG_ON(!list_empty(&io_end->list));
153 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
154 	WARN_ON(io_end->handle);
155 
156 	for (bio = io_end->bio; bio; bio = next_bio) {
157 		next_bio = bio->bi_private;
158 		ext4_finish_bio(bio);
159 		bio_put(bio);
160 	}
161 	ext4_free_io_end_vec(io_end);
162 	kmem_cache_free(io_end_cachep, io_end);
163 }
164 
165 /*
166  * Check a range of space and convert unwritten extents to written. Note that
167  * we are protected from truncate touching same part of extent tree by the
168  * fact that truncate code waits for all DIO to finish (thus exclusion from
169  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
170  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
171  * completed (happens from ext4_free_ioend()).
172  */
173 static int ext4_end_io_end(ext4_io_end_t *io_end)
174 {
175 	struct inode *inode = io_end->inode;
176 	handle_t *handle = io_end->handle;
177 	int ret = 0;
178 
179 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
180 		   "list->prev 0x%p\n",
181 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
182 
183 	io_end->handle = NULL;	/* Following call will use up the handle */
184 	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
185 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
186 		ext4_msg(inode->i_sb, KERN_EMERG,
187 			 "failed to convert unwritten extents to written "
188 			 "extents -- potential data loss!  "
189 			 "(inode %lu, error %d)", inode->i_ino, ret);
190 	}
191 	ext4_clear_io_unwritten_flag(io_end);
192 	ext4_release_io_end(io_end);
193 	return ret;
194 }
195 
196 static void dump_completed_IO(struct inode *inode, struct list_head *head)
197 {
198 #ifdef	EXT4FS_DEBUG
199 	struct list_head *cur, *before, *after;
200 	ext4_io_end_t *io_end, *io_end0, *io_end1;
201 
202 	if (list_empty(head))
203 		return;
204 
205 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
206 	list_for_each_entry(io_end, head, list) {
207 		cur = &io_end->list;
208 		before = cur->prev;
209 		io_end0 = container_of(before, ext4_io_end_t, list);
210 		after = cur->next;
211 		io_end1 = container_of(after, ext4_io_end_t, list);
212 
213 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
214 			    io_end, inode->i_ino, io_end0, io_end1);
215 	}
216 #endif
217 }
218 
219 /* Add the io_end to per-inode completed end_io list. */
220 static void ext4_add_complete_io(ext4_io_end_t *io_end)
221 {
222 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
223 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
224 	struct workqueue_struct *wq;
225 	unsigned long flags;
226 
227 	/* Only reserved conversions from writeback should enter here */
228 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
229 	WARN_ON(!io_end->handle && sbi->s_journal);
230 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
231 	wq = sbi->rsv_conversion_wq;
232 	if (list_empty(&ei->i_rsv_conversion_list))
233 		queue_work(wq, &ei->i_rsv_conversion_work);
234 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
235 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
236 }
237 
238 static int ext4_do_flush_completed_IO(struct inode *inode,
239 				      struct list_head *head)
240 {
241 	ext4_io_end_t *io_end;
242 	struct list_head unwritten;
243 	unsigned long flags;
244 	struct ext4_inode_info *ei = EXT4_I(inode);
245 	int err, ret = 0;
246 
247 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
248 	dump_completed_IO(inode, head);
249 	list_replace_init(head, &unwritten);
250 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
251 
252 	while (!list_empty(&unwritten)) {
253 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
254 		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
255 		list_del_init(&io_end->list);
256 
257 		err = ext4_end_io_end(io_end);
258 		if (unlikely(!ret && err))
259 			ret = err;
260 	}
261 	return ret;
262 }
263 
264 /*
265  * work on completed IO, to convert unwritten extents to extents
266  */
267 void ext4_end_io_rsv_work(struct work_struct *work)
268 {
269 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
270 						  i_rsv_conversion_work);
271 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
272 }
273 
274 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
275 {
276 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
277 
278 	if (io_end) {
279 		io_end->inode = inode;
280 		INIT_LIST_HEAD(&io_end->list);
281 		INIT_LIST_HEAD(&io_end->list_vec);
282 		refcount_set(&io_end->count, 1);
283 	}
284 	return io_end;
285 }
286 
287 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
288 {
289 	if (refcount_dec_and_test(&io_end->count)) {
290 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
291 				list_empty(&io_end->list_vec)) {
292 			ext4_release_io_end(io_end);
293 			return;
294 		}
295 		ext4_add_complete_io(io_end);
296 	}
297 }
298 
299 int ext4_put_io_end(ext4_io_end_t *io_end)
300 {
301 	int err = 0;
302 
303 	if (refcount_dec_and_test(&io_end->count)) {
304 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
305 			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
306 								io_end);
307 			io_end->handle = NULL;
308 			ext4_clear_io_unwritten_flag(io_end);
309 		}
310 		ext4_release_io_end(io_end);
311 	}
312 	return err;
313 }
314 
315 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
316 {
317 	refcount_inc(&io_end->count);
318 	return io_end;
319 }
320 
321 /* BIO completion function for page writeback */
322 static void ext4_end_bio(struct bio *bio)
323 {
324 	ext4_io_end_t *io_end = bio->bi_private;
325 	sector_t bi_sector = bio->bi_iter.bi_sector;
326 	char b[BDEVNAME_SIZE];
327 
328 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
329 		      bio_devname(bio, b),
330 		      (long long) bio->bi_iter.bi_sector,
331 		      (unsigned) bio_sectors(bio),
332 		      bio->bi_status)) {
333 		ext4_finish_bio(bio);
334 		bio_put(bio);
335 		return;
336 	}
337 	bio->bi_end_io = NULL;
338 
339 	if (bio->bi_status) {
340 		struct inode *inode = io_end->inode;
341 
342 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
343 			     "starting block %llu)",
344 			     bio->bi_status, inode->i_ino,
345 			     (unsigned long long)
346 			     bi_sector >> (inode->i_blkbits - 9));
347 		mapping_set_error(inode->i_mapping,
348 				blk_status_to_errno(bio->bi_status));
349 	}
350 
351 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
352 		/*
353 		 * Link bio into list hanging from io_end. We have to do it
354 		 * atomically as bio completions can be racing against each
355 		 * other.
356 		 */
357 		bio->bi_private = xchg(&io_end->bio, bio);
358 		ext4_put_io_end_defer(io_end);
359 	} else {
360 		/*
361 		 * Drop io_end reference early. Inode can get freed once
362 		 * we finish the bio.
363 		 */
364 		ext4_put_io_end_defer(io_end);
365 		ext4_finish_bio(bio);
366 		bio_put(bio);
367 	}
368 }
369 
370 void ext4_io_submit(struct ext4_io_submit *io)
371 {
372 	struct bio *bio = io->io_bio;
373 
374 	if (bio) {
375 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
376 				  REQ_SYNC : 0;
377 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
378 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
379 		submit_bio(io->io_bio);
380 	}
381 	io->io_bio = NULL;
382 }
383 
384 void ext4_io_submit_init(struct ext4_io_submit *io,
385 			 struct writeback_control *wbc)
386 {
387 	io->io_wbc = wbc;
388 	io->io_bio = NULL;
389 	io->io_end = NULL;
390 }
391 
392 static void io_submit_init_bio(struct ext4_io_submit *io,
393 			       struct buffer_head *bh)
394 {
395 	struct bio *bio;
396 
397 	/*
398 	 * bio_alloc will _always_ be able to allocate a bio if
399 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
400 	 */
401 	bio = bio_alloc(GFP_NOIO, BIO_MAX_VECS);
402 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
403 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
404 	bio_set_dev(bio, bh->b_bdev);
405 	bio->bi_end_io = ext4_end_bio;
406 	bio->bi_private = ext4_get_io_end(io->io_end);
407 	io->io_bio = bio;
408 	io->io_next_block = bh->b_blocknr;
409 	wbc_init_bio(io->io_wbc, bio);
410 }
411 
412 static void io_submit_add_bh(struct ext4_io_submit *io,
413 			     struct inode *inode,
414 			     struct page *page,
415 			     struct buffer_head *bh)
416 {
417 	int ret;
418 
419 	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
420 			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
421 submit_and_retry:
422 		ext4_io_submit(io);
423 	}
424 	if (io->io_bio == NULL) {
425 		io_submit_init_bio(io, bh);
426 		io->io_bio->bi_write_hint = inode->i_write_hint;
427 	}
428 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
429 	if (ret != bh->b_size)
430 		goto submit_and_retry;
431 	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
432 	io->io_next_block++;
433 }
434 
435 int ext4_bio_write_page(struct ext4_io_submit *io,
436 			struct page *page,
437 			int len,
438 			bool keep_towrite)
439 {
440 	struct page *bounce_page = NULL;
441 	struct inode *inode = page->mapping->host;
442 	unsigned block_start;
443 	struct buffer_head *bh, *head;
444 	int ret = 0;
445 	int nr_submitted = 0;
446 	int nr_to_submit = 0;
447 	struct writeback_control *wbc = io->io_wbc;
448 
449 	BUG_ON(!PageLocked(page));
450 	BUG_ON(PageWriteback(page));
451 
452 	if (keep_towrite)
453 		set_page_writeback_keepwrite(page);
454 	else
455 		set_page_writeback(page);
456 	ClearPageError(page);
457 
458 	/*
459 	 * Comments copied from block_write_full_page:
460 	 *
461 	 * The page straddles i_size.  It must be zeroed out on each and every
462 	 * writepage invocation because it may be mmapped.  "A file is mapped
463 	 * in multiples of the page size.  For a file that is not a multiple of
464 	 * the page size, the remaining memory is zeroed when mapped, and
465 	 * writes to that region are not written out to the file."
466 	 */
467 	if (len < PAGE_SIZE)
468 		zero_user_segment(page, len, PAGE_SIZE);
469 	/*
470 	 * In the first loop we prepare and mark buffers to submit. We have to
471 	 * mark all buffers in the page before submitting so that
472 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
473 	 * on the first buffer finishes and we are still working on submitting
474 	 * the second buffer.
475 	 */
476 	bh = head = page_buffers(page);
477 	do {
478 		block_start = bh_offset(bh);
479 		if (block_start >= len) {
480 			clear_buffer_dirty(bh);
481 			set_buffer_uptodate(bh);
482 			continue;
483 		}
484 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
485 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
486 			/* A hole? We can safely clear the dirty bit */
487 			if (!buffer_mapped(bh))
488 				clear_buffer_dirty(bh);
489 			if (io->io_bio)
490 				ext4_io_submit(io);
491 			continue;
492 		}
493 		if (buffer_new(bh))
494 			clear_buffer_new(bh);
495 		set_buffer_async_write(bh);
496 		nr_to_submit++;
497 	} while ((bh = bh->b_this_page) != head);
498 
499 	bh = head = page_buffers(page);
500 
501 	/*
502 	 * If any blocks are being written to an encrypted file, encrypt them
503 	 * into a bounce page.  For simplicity, just encrypt until the last
504 	 * block which might be needed.  This may cause some unneeded blocks
505 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
506 	 * can't happen in the common case of blocksize == PAGE_SIZE.
507 	 */
508 	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
509 		gfp_t gfp_flags = GFP_NOFS;
510 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
511 
512 		/*
513 		 * Since bounce page allocation uses a mempool, we can only use
514 		 * a waiting mask (i.e. request guaranteed allocation) on the
515 		 * first page of the bio.  Otherwise it can deadlock.
516 		 */
517 		if (io->io_bio)
518 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
519 	retry_encrypt:
520 		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
521 							       0, gfp_flags);
522 		if (IS_ERR(bounce_page)) {
523 			ret = PTR_ERR(bounce_page);
524 			if (ret == -ENOMEM &&
525 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
526 				gfp_t new_gfp_flags = GFP_NOFS;
527 				if (io->io_bio)
528 					ext4_io_submit(io);
529 				else
530 					new_gfp_flags |= __GFP_NOFAIL;
531 				memalloc_retry_wait(gfp_flags);
532 				gfp_flags = new_gfp_flags;
533 				goto retry_encrypt;
534 			}
535 
536 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
537 			redirty_page_for_writepage(wbc, page);
538 			do {
539 				clear_buffer_async_write(bh);
540 				bh = bh->b_this_page;
541 			} while (bh != head);
542 			goto unlock;
543 		}
544 	}
545 
546 	/* Now submit buffers to write */
547 	do {
548 		if (!buffer_async_write(bh))
549 			continue;
550 		io_submit_add_bh(io, inode,
551 				 bounce_page ? bounce_page : page, bh);
552 		nr_submitted++;
553 		clear_buffer_dirty(bh);
554 	} while ((bh = bh->b_this_page) != head);
555 
556 unlock:
557 	unlock_page(page);
558 	/* Nothing submitted - we have to end page writeback */
559 	if (!nr_submitted)
560 		end_page_writeback(page);
561 	return ret;
562 }
563