1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/page-io.c 4 * 5 * This contains the new page_io functions for ext4 6 * 7 * Written by Theodore Ts'o, 2010. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/time.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/backing-dev.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 static struct kmem_cache *io_end_vec_cachep; 35 36 int __init ext4_init_pageio(void) 37 { 38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 39 if (io_end_cachep == NULL) 40 return -ENOMEM; 41 42 io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0); 43 if (io_end_vec_cachep == NULL) { 44 kmem_cache_destroy(io_end_cachep); 45 return -ENOMEM; 46 } 47 return 0; 48 } 49 50 void ext4_exit_pageio(void) 51 { 52 kmem_cache_destroy(io_end_cachep); 53 kmem_cache_destroy(io_end_vec_cachep); 54 } 55 56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end) 57 { 58 struct ext4_io_end_vec *io_end_vec; 59 60 io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS); 61 if (!io_end_vec) 62 return ERR_PTR(-ENOMEM); 63 INIT_LIST_HEAD(&io_end_vec->list); 64 list_add_tail(&io_end_vec->list, &io_end->list_vec); 65 return io_end_vec; 66 } 67 68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end) 69 { 70 struct ext4_io_end_vec *io_end_vec, *tmp; 71 72 if (list_empty(&io_end->list_vec)) 73 return; 74 list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) { 75 list_del(&io_end_vec->list); 76 kmem_cache_free(io_end_vec_cachep, io_end_vec); 77 } 78 } 79 80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end) 81 { 82 BUG_ON(list_empty(&io_end->list_vec)); 83 return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list); 84 } 85 86 /* 87 * Print an buffer I/O error compatible with the fs/buffer.c. This 88 * provides compatibility with dmesg scrapers that look for a specific 89 * buffer I/O error message. We really need a unified error reporting 90 * structure to userspace ala Digital Unix's uerf system, but it's 91 * probably not going to happen in my lifetime, due to LKML politics... 92 */ 93 static void buffer_io_error(struct buffer_head *bh) 94 { 95 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n", 96 bh->b_bdev, 97 (unsigned long long)bh->b_blocknr); 98 } 99 100 static void ext4_finish_bio(struct bio *bio) 101 { 102 struct bio_vec *bvec; 103 struct bvec_iter_all iter_all; 104 105 bio_for_each_segment_all(bvec, bio, iter_all) { 106 struct page *page = bvec->bv_page; 107 struct page *bounce_page = NULL; 108 struct buffer_head *bh, *head; 109 unsigned bio_start = bvec->bv_offset; 110 unsigned bio_end = bio_start + bvec->bv_len; 111 unsigned under_io = 0; 112 unsigned long flags; 113 114 if (fscrypt_is_bounce_page(page)) { 115 bounce_page = page; 116 page = fscrypt_pagecache_page(bounce_page); 117 } 118 119 if (bio->bi_status) { 120 SetPageError(page); 121 mapping_set_error(page->mapping, -EIO); 122 } 123 bh = head = page_buffers(page); 124 /* 125 * We check all buffers in the page under b_uptodate_lock 126 * to avoid races with other end io clearing async_write flags 127 */ 128 spin_lock_irqsave(&head->b_uptodate_lock, flags); 129 do { 130 if (bh_offset(bh) < bio_start || 131 bh_offset(bh) + bh->b_size > bio_end) { 132 if (buffer_async_write(bh)) 133 under_io++; 134 continue; 135 } 136 clear_buffer_async_write(bh); 137 if (bio->bi_status) 138 buffer_io_error(bh); 139 } while ((bh = bh->b_this_page) != head); 140 spin_unlock_irqrestore(&head->b_uptodate_lock, flags); 141 if (!under_io) { 142 fscrypt_free_bounce_page(bounce_page); 143 end_page_writeback(page); 144 } 145 } 146 } 147 148 static void ext4_release_io_end(ext4_io_end_t *io_end) 149 { 150 struct bio *bio, *next_bio; 151 152 BUG_ON(!list_empty(&io_end->list)); 153 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 154 WARN_ON(io_end->handle); 155 156 for (bio = io_end->bio; bio; bio = next_bio) { 157 next_bio = bio->bi_private; 158 ext4_finish_bio(bio); 159 bio_put(bio); 160 } 161 ext4_free_io_end_vec(io_end); 162 kmem_cache_free(io_end_cachep, io_end); 163 } 164 165 /* 166 * Check a range of space and convert unwritten extents to written. Note that 167 * we are protected from truncate touching same part of extent tree by the 168 * fact that truncate code waits for all DIO to finish (thus exclusion from 169 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 170 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 171 * completed (happens from ext4_free_ioend()). 172 */ 173 static int ext4_end_io_end(ext4_io_end_t *io_end) 174 { 175 struct inode *inode = io_end->inode; 176 handle_t *handle = io_end->handle; 177 int ret = 0; 178 179 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p," 180 "list->prev 0x%p\n", 181 io_end, inode->i_ino, io_end->list.next, io_end->list.prev); 182 183 io_end->handle = NULL; /* Following call will use up the handle */ 184 ret = ext4_convert_unwritten_io_end_vec(handle, io_end); 185 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) { 186 ext4_msg(inode->i_sb, KERN_EMERG, 187 "failed to convert unwritten extents to written " 188 "extents -- potential data loss! " 189 "(inode %lu, error %d)", inode->i_ino, ret); 190 } 191 ext4_clear_io_unwritten_flag(io_end); 192 ext4_release_io_end(io_end); 193 return ret; 194 } 195 196 static void dump_completed_IO(struct inode *inode, struct list_head *head) 197 { 198 #ifdef EXT4FS_DEBUG 199 struct list_head *cur, *before, *after; 200 ext4_io_end_t *io_end, *io_end0, *io_end1; 201 202 if (list_empty(head)) 203 return; 204 205 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 206 list_for_each_entry(io_end, head, list) { 207 cur = &io_end->list; 208 before = cur->prev; 209 io_end0 = container_of(before, ext4_io_end_t, list); 210 after = cur->next; 211 io_end1 = container_of(after, ext4_io_end_t, list); 212 213 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 214 io_end, inode->i_ino, io_end0, io_end1); 215 } 216 #endif 217 } 218 219 /* Add the io_end to per-inode completed end_io list. */ 220 static void ext4_add_complete_io(ext4_io_end_t *io_end) 221 { 222 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 223 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb); 224 struct workqueue_struct *wq; 225 unsigned long flags; 226 227 /* Only reserved conversions from writeback should enter here */ 228 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 229 WARN_ON(!io_end->handle && sbi->s_journal); 230 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 231 wq = sbi->rsv_conversion_wq; 232 if (list_empty(&ei->i_rsv_conversion_list)) 233 queue_work(wq, &ei->i_rsv_conversion_work); 234 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 235 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 236 } 237 238 static int ext4_do_flush_completed_IO(struct inode *inode, 239 struct list_head *head) 240 { 241 ext4_io_end_t *io_end; 242 struct list_head unwritten; 243 unsigned long flags; 244 struct ext4_inode_info *ei = EXT4_I(inode); 245 int err, ret = 0; 246 247 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 248 dump_completed_IO(inode, head); 249 list_replace_init(head, &unwritten); 250 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 251 252 while (!list_empty(&unwritten)) { 253 io_end = list_entry(unwritten.next, ext4_io_end_t, list); 254 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 255 list_del_init(&io_end->list); 256 257 err = ext4_end_io_end(io_end); 258 if (unlikely(!ret && err)) 259 ret = err; 260 } 261 return ret; 262 } 263 264 /* 265 * work on completed IO, to convert unwritten extents to extents 266 */ 267 void ext4_end_io_rsv_work(struct work_struct *work) 268 { 269 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 270 i_rsv_conversion_work); 271 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 272 } 273 274 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 275 { 276 ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags); 277 278 if (io_end) { 279 io_end->inode = inode; 280 INIT_LIST_HEAD(&io_end->list); 281 INIT_LIST_HEAD(&io_end->list_vec); 282 atomic_set(&io_end->count, 1); 283 } 284 return io_end; 285 } 286 287 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 288 { 289 if (atomic_dec_and_test(&io_end->count)) { 290 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || 291 list_empty(&io_end->list_vec)) { 292 ext4_release_io_end(io_end); 293 return; 294 } 295 ext4_add_complete_io(io_end); 296 } 297 } 298 299 int ext4_put_io_end(ext4_io_end_t *io_end) 300 { 301 int err = 0; 302 303 if (atomic_dec_and_test(&io_end->count)) { 304 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 305 err = ext4_convert_unwritten_io_end_vec(io_end->handle, 306 io_end); 307 io_end->handle = NULL; 308 ext4_clear_io_unwritten_flag(io_end); 309 } 310 ext4_release_io_end(io_end); 311 } 312 return err; 313 } 314 315 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 316 { 317 atomic_inc(&io_end->count); 318 return io_end; 319 } 320 321 /* BIO completion function for page writeback */ 322 static void ext4_end_bio(struct bio *bio) 323 { 324 ext4_io_end_t *io_end = bio->bi_private; 325 sector_t bi_sector = bio->bi_iter.bi_sector; 326 char b[BDEVNAME_SIZE]; 327 328 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n", 329 bio_devname(bio, b), 330 (long long) bio->bi_iter.bi_sector, 331 (unsigned) bio_sectors(bio), 332 bio->bi_status)) { 333 ext4_finish_bio(bio); 334 bio_put(bio); 335 return; 336 } 337 bio->bi_end_io = NULL; 338 339 if (bio->bi_status) { 340 struct inode *inode = io_end->inode; 341 342 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu " 343 "starting block %llu)", 344 bio->bi_status, inode->i_ino, 345 (unsigned long long) 346 bi_sector >> (inode->i_blkbits - 9)); 347 mapping_set_error(inode->i_mapping, 348 blk_status_to_errno(bio->bi_status)); 349 } 350 351 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 352 /* 353 * Link bio into list hanging from io_end. We have to do it 354 * atomically as bio completions can be racing against each 355 * other. 356 */ 357 bio->bi_private = xchg(&io_end->bio, bio); 358 ext4_put_io_end_defer(io_end); 359 } else { 360 /* 361 * Drop io_end reference early. Inode can get freed once 362 * we finish the bio. 363 */ 364 ext4_put_io_end_defer(io_end); 365 ext4_finish_bio(bio); 366 bio_put(bio); 367 } 368 } 369 370 void ext4_io_submit(struct ext4_io_submit *io) 371 { 372 struct bio *bio = io->io_bio; 373 374 if (bio) { 375 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ? 376 REQ_SYNC : 0; 377 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint; 378 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags); 379 submit_bio(io->io_bio); 380 } 381 io->io_bio = NULL; 382 } 383 384 void ext4_io_submit_init(struct ext4_io_submit *io, 385 struct writeback_control *wbc) 386 { 387 io->io_wbc = wbc; 388 io->io_bio = NULL; 389 io->io_end = NULL; 390 } 391 392 static void io_submit_init_bio(struct ext4_io_submit *io, 393 struct buffer_head *bh) 394 { 395 struct bio *bio; 396 397 /* 398 * bio_alloc will _always_ be able to allocate a bio if 399 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset(). 400 */ 401 bio = bio_alloc(GFP_NOIO, BIO_MAX_VECS); 402 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 403 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 404 bio_set_dev(bio, bh->b_bdev); 405 bio->bi_end_io = ext4_end_bio; 406 bio->bi_private = ext4_get_io_end(io->io_end); 407 io->io_bio = bio; 408 io->io_next_block = bh->b_blocknr; 409 wbc_init_bio(io->io_wbc, bio); 410 } 411 412 static void io_submit_add_bh(struct ext4_io_submit *io, 413 struct inode *inode, 414 struct page *page, 415 struct buffer_head *bh) 416 { 417 int ret; 418 419 if (io->io_bio && (bh->b_blocknr != io->io_next_block || 420 !fscrypt_mergeable_bio_bh(io->io_bio, bh))) { 421 submit_and_retry: 422 ext4_io_submit(io); 423 } 424 if (io->io_bio == NULL) { 425 io_submit_init_bio(io, bh); 426 io->io_bio->bi_write_hint = inode->i_write_hint; 427 } 428 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh)); 429 if (ret != bh->b_size) 430 goto submit_and_retry; 431 wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size); 432 io->io_next_block++; 433 } 434 435 int ext4_bio_write_page(struct ext4_io_submit *io, 436 struct page *page, 437 int len, 438 bool keep_towrite) 439 { 440 struct page *bounce_page = NULL; 441 struct inode *inode = page->mapping->host; 442 unsigned block_start; 443 struct buffer_head *bh, *head; 444 int ret = 0; 445 int nr_submitted = 0; 446 int nr_to_submit = 0; 447 struct writeback_control *wbc = io->io_wbc; 448 449 BUG_ON(!PageLocked(page)); 450 BUG_ON(PageWriteback(page)); 451 452 if (keep_towrite) 453 set_page_writeback_keepwrite(page); 454 else 455 set_page_writeback(page); 456 ClearPageError(page); 457 458 /* 459 * Comments copied from block_write_full_page: 460 * 461 * The page straddles i_size. It must be zeroed out on each and every 462 * writepage invocation because it may be mmapped. "A file is mapped 463 * in multiples of the page size. For a file that is not a multiple of 464 * the page size, the remaining memory is zeroed when mapped, and 465 * writes to that region are not written out to the file." 466 */ 467 if (len < PAGE_SIZE) 468 zero_user_segment(page, len, PAGE_SIZE); 469 /* 470 * In the first loop we prepare and mark buffers to submit. We have to 471 * mark all buffers in the page before submitting so that 472 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 473 * on the first buffer finishes and we are still working on submitting 474 * the second buffer. 475 */ 476 bh = head = page_buffers(page); 477 do { 478 block_start = bh_offset(bh); 479 if (block_start >= len) { 480 clear_buffer_dirty(bh); 481 set_buffer_uptodate(bh); 482 continue; 483 } 484 if (!buffer_dirty(bh) || buffer_delay(bh) || 485 !buffer_mapped(bh) || buffer_unwritten(bh)) { 486 /* A hole? We can safely clear the dirty bit */ 487 if (!buffer_mapped(bh)) 488 clear_buffer_dirty(bh); 489 if (io->io_bio) 490 ext4_io_submit(io); 491 continue; 492 } 493 if (buffer_new(bh)) 494 clear_buffer_new(bh); 495 set_buffer_async_write(bh); 496 nr_to_submit++; 497 } while ((bh = bh->b_this_page) != head); 498 499 bh = head = page_buffers(page); 500 501 /* 502 * If any blocks are being written to an encrypted file, encrypt them 503 * into a bounce page. For simplicity, just encrypt until the last 504 * block which might be needed. This may cause some unneeded blocks 505 * (e.g. holes) to be unnecessarily encrypted, but this is rare and 506 * can't happen in the common case of blocksize == PAGE_SIZE. 507 */ 508 if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) { 509 gfp_t gfp_flags = GFP_NOFS; 510 unsigned int enc_bytes = round_up(len, i_blocksize(inode)); 511 512 /* 513 * Since bounce page allocation uses a mempool, we can only use 514 * a waiting mask (i.e. request guaranteed allocation) on the 515 * first page of the bio. Otherwise it can deadlock. 516 */ 517 if (io->io_bio) 518 gfp_flags = GFP_NOWAIT | __GFP_NOWARN; 519 retry_encrypt: 520 bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes, 521 0, gfp_flags); 522 if (IS_ERR(bounce_page)) { 523 ret = PTR_ERR(bounce_page); 524 if (ret == -ENOMEM && 525 (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) { 526 gfp_flags = GFP_NOFS; 527 if (io->io_bio) 528 ext4_io_submit(io); 529 else 530 gfp_flags |= __GFP_NOFAIL; 531 congestion_wait(BLK_RW_ASYNC, HZ/50); 532 goto retry_encrypt; 533 } 534 535 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret); 536 redirty_page_for_writepage(wbc, page); 537 do { 538 clear_buffer_async_write(bh); 539 bh = bh->b_this_page; 540 } while (bh != head); 541 goto unlock; 542 } 543 } 544 545 /* Now submit buffers to write */ 546 do { 547 if (!buffer_async_write(bh)) 548 continue; 549 io_submit_add_bh(io, inode, 550 bounce_page ? bounce_page : page, bh); 551 nr_submitted++; 552 clear_buffer_dirty(bh); 553 } while ((bh = bh->b_this_page) != head); 554 555 unlock: 556 unlock_page(page); 557 /* Nothing submitted - we have to end page writeback */ 558 if (!nr_submitted) 559 end_page_writeback(page); 560 return ret; 561 } 562