xref: /linux/fs/ext4/page-io.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35 
36 int __init ext4_init_pageio(void)
37 {
38 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 	if (io_end_cachep == NULL)
40 		return -ENOMEM;
41 
42 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 	if (io_end_vec_cachep == NULL) {
44 		kmem_cache_destroy(io_end_cachep);
45 		return -ENOMEM;
46 	}
47 	return 0;
48 }
49 
50 void ext4_exit_pageio(void)
51 {
52 	kmem_cache_destroy(io_end_cachep);
53 	kmem_cache_destroy(io_end_vec_cachep);
54 }
55 
56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 	struct ext4_io_end_vec *io_end_vec;
59 
60 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 	if (!io_end_vec)
62 		return ERR_PTR(-ENOMEM);
63 	INIT_LIST_HEAD(&io_end_vec->list);
64 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 	return io_end_vec;
66 }
67 
68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 	struct ext4_io_end_vec *io_end_vec, *tmp;
71 
72 	if (list_empty(&io_end->list_vec))
73 		return;
74 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 		list_del(&io_end_vec->list);
76 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 	}
78 }
79 
80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 	BUG_ON(list_empty(&io_end->list_vec));
83 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85 
86 /*
87  * Print an buffer I/O error compatible with the fs/buffer.c.  This
88  * provides compatibility with dmesg scrapers that look for a specific
89  * buffer I/O error message.  We really need a unified error reporting
90  * structure to userspace ala Digital Unix's uerf system, but it's
91  * probably not going to happen in my lifetime, due to LKML politics...
92  */
93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 		       bh->b_bdev,
97 			(unsigned long long)bh->b_blocknr);
98 }
99 
100 static void ext4_finish_bio(struct bio *bio)
101 {
102 	struct bio_vec *bvec;
103 	struct bvec_iter_all iter_all;
104 
105 	bio_for_each_segment_all(bvec, bio, iter_all) {
106 		struct page *page = bvec->bv_page;
107 		struct page *bounce_page = NULL;
108 		struct buffer_head *bh, *head;
109 		unsigned bio_start = bvec->bv_offset;
110 		unsigned bio_end = bio_start + bvec->bv_len;
111 		unsigned under_io = 0;
112 		unsigned long flags;
113 
114 		if (!page)
115 			continue;
116 
117 		if (fscrypt_is_bounce_page(page)) {
118 			bounce_page = page;
119 			page = fscrypt_pagecache_page(bounce_page);
120 		}
121 
122 		if (bio->bi_status) {
123 			SetPageError(page);
124 			mapping_set_error(page->mapping, -EIO);
125 		}
126 		bh = head = page_buffers(page);
127 		/*
128 		 * We check all buffers in the page under BH_Uptodate_Lock
129 		 * to avoid races with other end io clearing async_write flags
130 		 */
131 		local_irq_save(flags);
132 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
133 		do {
134 			if (bh_offset(bh) < bio_start ||
135 			    bh_offset(bh) + bh->b_size > bio_end) {
136 				if (buffer_async_write(bh))
137 					under_io++;
138 				continue;
139 			}
140 			clear_buffer_async_write(bh);
141 			if (bio->bi_status)
142 				buffer_io_error(bh);
143 		} while ((bh = bh->b_this_page) != head);
144 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
145 		local_irq_restore(flags);
146 		if (!under_io) {
147 			fscrypt_free_bounce_page(bounce_page);
148 			end_page_writeback(page);
149 		}
150 	}
151 }
152 
153 static void ext4_release_io_end(ext4_io_end_t *io_end)
154 {
155 	struct bio *bio, *next_bio;
156 
157 	BUG_ON(!list_empty(&io_end->list));
158 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
159 	WARN_ON(io_end->handle);
160 
161 	for (bio = io_end->bio; bio; bio = next_bio) {
162 		next_bio = bio->bi_private;
163 		ext4_finish_bio(bio);
164 		bio_put(bio);
165 	}
166 	ext4_free_io_end_vec(io_end);
167 	kmem_cache_free(io_end_cachep, io_end);
168 }
169 
170 /*
171  * Check a range of space and convert unwritten extents to written. Note that
172  * we are protected from truncate touching same part of extent tree by the
173  * fact that truncate code waits for all DIO to finish (thus exclusion from
174  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
175  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
176  * completed (happens from ext4_free_ioend()).
177  */
178 static int ext4_end_io_end(ext4_io_end_t *io_end)
179 {
180 	struct inode *inode = io_end->inode;
181 	handle_t *handle = io_end->handle;
182 	int ret = 0;
183 
184 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
185 		   "list->prev 0x%p\n",
186 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
187 
188 	io_end->handle = NULL;	/* Following call will use up the handle */
189 	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
190 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
191 		ext4_msg(inode->i_sb, KERN_EMERG,
192 			 "failed to convert unwritten extents to written "
193 			 "extents -- potential data loss!  "
194 			 "(inode %lu, error %d)", inode->i_ino, ret);
195 	}
196 	ext4_clear_io_unwritten_flag(io_end);
197 	ext4_release_io_end(io_end);
198 	return ret;
199 }
200 
201 static void dump_completed_IO(struct inode *inode, struct list_head *head)
202 {
203 #ifdef	EXT4FS_DEBUG
204 	struct list_head *cur, *before, *after;
205 	ext4_io_end_t *io_end, *io_end0, *io_end1;
206 
207 	if (list_empty(head))
208 		return;
209 
210 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
211 	list_for_each_entry(io_end, head, list) {
212 		cur = &io_end->list;
213 		before = cur->prev;
214 		io_end0 = container_of(before, ext4_io_end_t, list);
215 		after = cur->next;
216 		io_end1 = container_of(after, ext4_io_end_t, list);
217 
218 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
219 			    io_end, inode->i_ino, io_end0, io_end1);
220 	}
221 #endif
222 }
223 
224 /* Add the io_end to per-inode completed end_io list. */
225 static void ext4_add_complete_io(ext4_io_end_t *io_end)
226 {
227 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
228 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
229 	struct workqueue_struct *wq;
230 	unsigned long flags;
231 
232 	/* Only reserved conversions from writeback should enter here */
233 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
234 	WARN_ON(!io_end->handle && sbi->s_journal);
235 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
236 	wq = sbi->rsv_conversion_wq;
237 	if (list_empty(&ei->i_rsv_conversion_list))
238 		queue_work(wq, &ei->i_rsv_conversion_work);
239 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
240 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
241 }
242 
243 static int ext4_do_flush_completed_IO(struct inode *inode,
244 				      struct list_head *head)
245 {
246 	ext4_io_end_t *io_end;
247 	struct list_head unwritten;
248 	unsigned long flags;
249 	struct ext4_inode_info *ei = EXT4_I(inode);
250 	int err, ret = 0;
251 
252 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
253 	dump_completed_IO(inode, head);
254 	list_replace_init(head, &unwritten);
255 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
256 
257 	while (!list_empty(&unwritten)) {
258 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
259 		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
260 		list_del_init(&io_end->list);
261 
262 		err = ext4_end_io_end(io_end);
263 		if (unlikely(!ret && err))
264 			ret = err;
265 	}
266 	return ret;
267 }
268 
269 /*
270  * work on completed IO, to convert unwritten extents to extents
271  */
272 void ext4_end_io_rsv_work(struct work_struct *work)
273 {
274 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
275 						  i_rsv_conversion_work);
276 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
277 }
278 
279 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
280 {
281 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
282 
283 	if (io_end) {
284 		io_end->inode = inode;
285 		INIT_LIST_HEAD(&io_end->list);
286 		INIT_LIST_HEAD(&io_end->list_vec);
287 		atomic_set(&io_end->count, 1);
288 	}
289 	return io_end;
290 }
291 
292 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
293 {
294 	if (atomic_dec_and_test(&io_end->count)) {
295 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
296 				list_empty(&io_end->list_vec)) {
297 			ext4_release_io_end(io_end);
298 			return;
299 		}
300 		ext4_add_complete_io(io_end);
301 	}
302 }
303 
304 int ext4_put_io_end(ext4_io_end_t *io_end)
305 {
306 	int err = 0;
307 
308 	if (atomic_dec_and_test(&io_end->count)) {
309 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
310 			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
311 								io_end);
312 			io_end->handle = NULL;
313 			ext4_clear_io_unwritten_flag(io_end);
314 		}
315 		ext4_release_io_end(io_end);
316 	}
317 	return err;
318 }
319 
320 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
321 {
322 	atomic_inc(&io_end->count);
323 	return io_end;
324 }
325 
326 /* BIO completion function for page writeback */
327 static void ext4_end_bio(struct bio *bio)
328 {
329 	ext4_io_end_t *io_end = bio->bi_private;
330 	sector_t bi_sector = bio->bi_iter.bi_sector;
331 	char b[BDEVNAME_SIZE];
332 
333 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
334 		      bio_devname(bio, b),
335 		      (long long) bio->bi_iter.bi_sector,
336 		      (unsigned) bio_sectors(bio),
337 		      bio->bi_status)) {
338 		ext4_finish_bio(bio);
339 		bio_put(bio);
340 		return;
341 	}
342 	bio->bi_end_io = NULL;
343 
344 	if (bio->bi_status) {
345 		struct inode *inode = io_end->inode;
346 
347 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
348 			     "starting block %llu)",
349 			     bio->bi_status, inode->i_ino,
350 			     (unsigned long long)
351 			     bi_sector >> (inode->i_blkbits - 9));
352 		mapping_set_error(inode->i_mapping,
353 				blk_status_to_errno(bio->bi_status));
354 	}
355 
356 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
357 		/*
358 		 * Link bio into list hanging from io_end. We have to do it
359 		 * atomically as bio completions can be racing against each
360 		 * other.
361 		 */
362 		bio->bi_private = xchg(&io_end->bio, bio);
363 		ext4_put_io_end_defer(io_end);
364 	} else {
365 		/*
366 		 * Drop io_end reference early. Inode can get freed once
367 		 * we finish the bio.
368 		 */
369 		ext4_put_io_end_defer(io_end);
370 		ext4_finish_bio(bio);
371 		bio_put(bio);
372 	}
373 }
374 
375 void ext4_io_submit(struct ext4_io_submit *io)
376 {
377 	struct bio *bio = io->io_bio;
378 
379 	if (bio) {
380 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
381 				  REQ_SYNC : 0;
382 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
383 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
384 		submit_bio(io->io_bio);
385 	}
386 	io->io_bio = NULL;
387 }
388 
389 void ext4_io_submit_init(struct ext4_io_submit *io,
390 			 struct writeback_control *wbc)
391 {
392 	io->io_wbc = wbc;
393 	io->io_bio = NULL;
394 	io->io_end = NULL;
395 }
396 
397 static void io_submit_init_bio(struct ext4_io_submit *io,
398 			       struct buffer_head *bh)
399 {
400 	struct bio *bio;
401 
402 	/*
403 	 * bio_alloc will _always_ be able to allocate a bio if
404 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
405 	 */
406 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
407 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
408 	bio_set_dev(bio, bh->b_bdev);
409 	bio->bi_end_io = ext4_end_bio;
410 	bio->bi_private = ext4_get_io_end(io->io_end);
411 	io->io_bio = bio;
412 	io->io_next_block = bh->b_blocknr;
413 	wbc_init_bio(io->io_wbc, bio);
414 }
415 
416 static void io_submit_add_bh(struct ext4_io_submit *io,
417 			     struct inode *inode,
418 			     struct page *page,
419 			     struct buffer_head *bh)
420 {
421 	int ret;
422 
423 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
424 submit_and_retry:
425 		ext4_io_submit(io);
426 	}
427 	if (io->io_bio == NULL) {
428 		io_submit_init_bio(io, bh);
429 		io->io_bio->bi_write_hint = inode->i_write_hint;
430 	}
431 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
432 	if (ret != bh->b_size)
433 		goto submit_and_retry;
434 	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
435 	io->io_next_block++;
436 }
437 
438 int ext4_bio_write_page(struct ext4_io_submit *io,
439 			struct page *page,
440 			int len,
441 			struct writeback_control *wbc,
442 			bool keep_towrite)
443 {
444 	struct page *bounce_page = NULL;
445 	struct inode *inode = page->mapping->host;
446 	unsigned block_start;
447 	struct buffer_head *bh, *head;
448 	int ret = 0;
449 	int nr_submitted = 0;
450 	int nr_to_submit = 0;
451 
452 	BUG_ON(!PageLocked(page));
453 	BUG_ON(PageWriteback(page));
454 
455 	if (keep_towrite)
456 		set_page_writeback_keepwrite(page);
457 	else
458 		set_page_writeback(page);
459 	ClearPageError(page);
460 
461 	/*
462 	 * Comments copied from block_write_full_page:
463 	 *
464 	 * The page straddles i_size.  It must be zeroed out on each and every
465 	 * writepage invocation because it may be mmapped.  "A file is mapped
466 	 * in multiples of the page size.  For a file that is not a multiple of
467 	 * the page size, the remaining memory is zeroed when mapped, and
468 	 * writes to that region are not written out to the file."
469 	 */
470 	if (len < PAGE_SIZE)
471 		zero_user_segment(page, len, PAGE_SIZE);
472 	/*
473 	 * In the first loop we prepare and mark buffers to submit. We have to
474 	 * mark all buffers in the page before submitting so that
475 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
476 	 * on the first buffer finishes and we are still working on submitting
477 	 * the second buffer.
478 	 */
479 	bh = head = page_buffers(page);
480 	do {
481 		block_start = bh_offset(bh);
482 		if (block_start >= len) {
483 			clear_buffer_dirty(bh);
484 			set_buffer_uptodate(bh);
485 			continue;
486 		}
487 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
488 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
489 			/* A hole? We can safely clear the dirty bit */
490 			if (!buffer_mapped(bh))
491 				clear_buffer_dirty(bh);
492 			if (io->io_bio)
493 				ext4_io_submit(io);
494 			continue;
495 		}
496 		if (buffer_new(bh))
497 			clear_buffer_new(bh);
498 		set_buffer_async_write(bh);
499 		nr_to_submit++;
500 	} while ((bh = bh->b_this_page) != head);
501 
502 	bh = head = page_buffers(page);
503 
504 	/*
505 	 * If any blocks are being written to an encrypted file, encrypt them
506 	 * into a bounce page.  For simplicity, just encrypt until the last
507 	 * block which might be needed.  This may cause some unneeded blocks
508 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
509 	 * can't happen in the common case of blocksize == PAGE_SIZE.
510 	 */
511 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) {
512 		gfp_t gfp_flags = GFP_NOFS;
513 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
514 
515 		/*
516 		 * Since bounce page allocation uses a mempool, we can only use
517 		 * a waiting mask (i.e. request guaranteed allocation) on the
518 		 * first page of the bio.  Otherwise it can deadlock.
519 		 */
520 		if (io->io_bio)
521 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
522 	retry_encrypt:
523 		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
524 							       0, gfp_flags);
525 		if (IS_ERR(bounce_page)) {
526 			ret = PTR_ERR(bounce_page);
527 			if (ret == -ENOMEM &&
528 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
529 				gfp_flags = GFP_NOFS;
530 				if (io->io_bio)
531 					ext4_io_submit(io);
532 				else
533 					gfp_flags |= __GFP_NOFAIL;
534 				congestion_wait(BLK_RW_ASYNC, HZ/50);
535 				goto retry_encrypt;
536 			}
537 
538 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
539 			redirty_page_for_writepage(wbc, page);
540 			do {
541 				clear_buffer_async_write(bh);
542 				bh = bh->b_this_page;
543 			} while (bh != head);
544 			goto unlock;
545 		}
546 	}
547 
548 	/* Now submit buffers to write */
549 	do {
550 		if (!buffer_async_write(bh))
551 			continue;
552 		io_submit_add_bh(io, inode,
553 				 bounce_page ? bounce_page : page, bh);
554 		nr_submitted++;
555 		clear_buffer_dirty(bh);
556 	} while ((bh = bh->b_this_page) != head);
557 
558 unlock:
559 	unlock_page(page);
560 	/* Nothing submitted - we have to end page writeback */
561 	if (!nr_submitted)
562 		end_page_writeback(page);
563 	return ret;
564 }
565