1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/namei.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/namei.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 * Directory entry file type support and forward compatibility hooks 19 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998 20 * Hash Tree Directory indexing (c) 21 * Daniel Phillips, 2001 22 * Hash Tree Directory indexing porting 23 * Christopher Li, 2002 24 * Hash Tree Directory indexing cleanup 25 * Theodore Ts'o, 2002 26 */ 27 28 #include <linux/fs.h> 29 #include <linux/pagemap.h> 30 #include <linux/time.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/string.h> 34 #include <linux/quotaops.h> 35 #include <linux/buffer_head.h> 36 #include <linux/bio.h> 37 #include <linux/iversion.h> 38 #include <linux/unicode.h> 39 #include "ext4.h" 40 #include "ext4_jbd2.h" 41 42 #include "xattr.h" 43 #include "acl.h" 44 45 #include <trace/events/ext4.h> 46 /* 47 * define how far ahead to read directories while searching them. 48 */ 49 #define NAMEI_RA_CHUNKS 2 50 #define NAMEI_RA_BLOCKS 4 51 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS) 52 53 static struct buffer_head *ext4_append(handle_t *handle, 54 struct inode *inode, 55 ext4_lblk_t *block) 56 { 57 struct buffer_head *bh; 58 int err; 59 60 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb && 61 ((inode->i_size >> 10) >= 62 EXT4_SB(inode->i_sb)->s_max_dir_size_kb))) 63 return ERR_PTR(-ENOSPC); 64 65 *block = inode->i_size >> inode->i_sb->s_blocksize_bits; 66 67 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE); 68 if (IS_ERR(bh)) 69 return bh; 70 inode->i_size += inode->i_sb->s_blocksize; 71 EXT4_I(inode)->i_disksize = inode->i_size; 72 BUFFER_TRACE(bh, "get_write_access"); 73 err = ext4_journal_get_write_access(handle, bh); 74 if (err) { 75 brelse(bh); 76 ext4_std_error(inode->i_sb, err); 77 return ERR_PTR(err); 78 } 79 return bh; 80 } 81 82 static int ext4_dx_csum_verify(struct inode *inode, 83 struct ext4_dir_entry *dirent); 84 85 /* 86 * Hints to ext4_read_dirblock regarding whether we expect a directory 87 * block being read to be an index block, or a block containing 88 * directory entries (and if the latter, whether it was found via a 89 * logical block in an htree index block). This is used to control 90 * what sort of sanity checkinig ext4_read_dirblock() will do on the 91 * directory block read from the storage device. EITHER will means 92 * the caller doesn't know what kind of directory block will be read, 93 * so no specific verification will be done. 94 */ 95 typedef enum { 96 EITHER, INDEX, DIRENT, DIRENT_HTREE 97 } dirblock_type_t; 98 99 #define ext4_read_dirblock(inode, block, type) \ 100 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__) 101 102 static struct buffer_head *__ext4_read_dirblock(struct inode *inode, 103 ext4_lblk_t block, 104 dirblock_type_t type, 105 const char *func, 106 unsigned int line) 107 { 108 struct buffer_head *bh; 109 struct ext4_dir_entry *dirent; 110 int is_dx_block = 0; 111 112 if (ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_EIO)) 113 bh = ERR_PTR(-EIO); 114 else 115 bh = ext4_bread(NULL, inode, block, 0); 116 if (IS_ERR(bh)) { 117 __ext4_warning(inode->i_sb, func, line, 118 "inode #%lu: lblock %lu: comm %s: " 119 "error %ld reading directory block", 120 inode->i_ino, (unsigned long)block, 121 current->comm, PTR_ERR(bh)); 122 123 return bh; 124 } 125 if (!bh && (type == INDEX || type == DIRENT_HTREE)) { 126 ext4_error_inode(inode, func, line, block, 127 "Directory hole found for htree %s block", 128 (type == INDEX) ? "index" : "leaf"); 129 return ERR_PTR(-EFSCORRUPTED); 130 } 131 if (!bh) 132 return NULL; 133 dirent = (struct ext4_dir_entry *) bh->b_data; 134 /* Determine whether or not we have an index block */ 135 if (is_dx(inode)) { 136 if (block == 0) 137 is_dx_block = 1; 138 else if (ext4_rec_len_from_disk(dirent->rec_len, 139 inode->i_sb->s_blocksize) == 140 inode->i_sb->s_blocksize) 141 is_dx_block = 1; 142 } 143 if (!is_dx_block && type == INDEX) { 144 ext4_error_inode(inode, func, line, block, 145 "directory leaf block found instead of index block"); 146 brelse(bh); 147 return ERR_PTR(-EFSCORRUPTED); 148 } 149 if (!ext4_has_metadata_csum(inode->i_sb) || 150 buffer_verified(bh)) 151 return bh; 152 153 /* 154 * An empty leaf block can get mistaken for a index block; for 155 * this reason, we can only check the index checksum when the 156 * caller is sure it should be an index block. 157 */ 158 if (is_dx_block && type == INDEX) { 159 if (ext4_dx_csum_verify(inode, dirent) && 160 !ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC)) 161 set_buffer_verified(bh); 162 else { 163 ext4_error_inode_err(inode, func, line, block, 164 EFSBADCRC, 165 "Directory index failed checksum"); 166 brelse(bh); 167 return ERR_PTR(-EFSBADCRC); 168 } 169 } 170 if (!is_dx_block) { 171 if (ext4_dirblock_csum_verify(inode, bh) && 172 !ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC)) 173 set_buffer_verified(bh); 174 else { 175 ext4_error_inode_err(inode, func, line, block, 176 EFSBADCRC, 177 "Directory block failed checksum"); 178 brelse(bh); 179 return ERR_PTR(-EFSBADCRC); 180 } 181 } 182 return bh; 183 } 184 185 #ifdef DX_DEBUG 186 #define dxtrace(command) command 187 #else 188 #define dxtrace(command) 189 #endif 190 191 struct fake_dirent 192 { 193 __le32 inode; 194 __le16 rec_len; 195 u8 name_len; 196 u8 file_type; 197 }; 198 199 struct dx_countlimit 200 { 201 __le16 limit; 202 __le16 count; 203 }; 204 205 struct dx_entry 206 { 207 __le32 hash; 208 __le32 block; 209 }; 210 211 /* 212 * dx_root_info is laid out so that if it should somehow get overlaid by a 213 * dirent the two low bits of the hash version will be zero. Therefore, the 214 * hash version mod 4 should never be 0. Sincerely, the paranoia department. 215 */ 216 217 struct dx_root 218 { 219 struct fake_dirent dot; 220 char dot_name[4]; 221 struct fake_dirent dotdot; 222 char dotdot_name[4]; 223 struct dx_root_info 224 { 225 __le32 reserved_zero; 226 u8 hash_version; 227 u8 info_length; /* 8 */ 228 u8 indirect_levels; 229 u8 unused_flags; 230 } 231 info; 232 struct dx_entry entries[]; 233 }; 234 235 struct dx_node 236 { 237 struct fake_dirent fake; 238 struct dx_entry entries[]; 239 }; 240 241 242 struct dx_frame 243 { 244 struct buffer_head *bh; 245 struct dx_entry *entries; 246 struct dx_entry *at; 247 }; 248 249 struct dx_map_entry 250 { 251 u32 hash; 252 u16 offs; 253 u16 size; 254 }; 255 256 /* 257 * This goes at the end of each htree block. 258 */ 259 struct dx_tail { 260 u32 dt_reserved; 261 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */ 262 }; 263 264 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry); 265 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value); 266 static inline unsigned dx_get_hash(struct dx_entry *entry); 267 static void dx_set_hash(struct dx_entry *entry, unsigned value); 268 static unsigned dx_get_count(struct dx_entry *entries); 269 static unsigned dx_get_limit(struct dx_entry *entries); 270 static void dx_set_count(struct dx_entry *entries, unsigned value); 271 static void dx_set_limit(struct dx_entry *entries, unsigned value); 272 static unsigned dx_root_limit(struct inode *dir, unsigned infosize); 273 static unsigned dx_node_limit(struct inode *dir); 274 static struct dx_frame *dx_probe(struct ext4_filename *fname, 275 struct inode *dir, 276 struct dx_hash_info *hinfo, 277 struct dx_frame *frame); 278 static void dx_release(struct dx_frame *frames); 279 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 280 unsigned blocksize, struct dx_hash_info *hinfo, 281 struct dx_map_entry map[]); 282 static void dx_sort_map(struct dx_map_entry *map, unsigned count); 283 static struct ext4_dir_entry_2 *dx_move_dirents(struct inode *dir, char *from, 284 char *to, struct dx_map_entry *offsets, 285 int count, unsigned int blocksize); 286 static struct ext4_dir_entry_2 *dx_pack_dirents(struct inode *dir, char *base, 287 unsigned int blocksize); 288 static void dx_insert_block(struct dx_frame *frame, 289 u32 hash, ext4_lblk_t block); 290 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 291 struct dx_frame *frame, 292 struct dx_frame *frames, 293 __u32 *start_hash); 294 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 295 struct ext4_filename *fname, 296 struct ext4_dir_entry_2 **res_dir); 297 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 298 struct inode *dir, struct inode *inode); 299 300 /* checksumming functions */ 301 void ext4_initialize_dirent_tail(struct buffer_head *bh, 302 unsigned int blocksize) 303 { 304 struct ext4_dir_entry_tail *t = EXT4_DIRENT_TAIL(bh->b_data, blocksize); 305 306 memset(t, 0, sizeof(struct ext4_dir_entry_tail)); 307 t->det_rec_len = ext4_rec_len_to_disk( 308 sizeof(struct ext4_dir_entry_tail), blocksize); 309 t->det_reserved_ft = EXT4_FT_DIR_CSUM; 310 } 311 312 /* Walk through a dirent block to find a checksum "dirent" at the tail */ 313 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode, 314 struct buffer_head *bh) 315 { 316 struct ext4_dir_entry_tail *t; 317 318 #ifdef PARANOID 319 struct ext4_dir_entry *d, *top; 320 321 d = (struct ext4_dir_entry *)bh->b_data; 322 top = (struct ext4_dir_entry *)(bh->b_data + 323 (EXT4_BLOCK_SIZE(inode->i_sb) - 324 sizeof(struct ext4_dir_entry_tail))); 325 while (d < top && d->rec_len) 326 d = (struct ext4_dir_entry *)(((void *)d) + 327 le16_to_cpu(d->rec_len)); 328 329 if (d != top) 330 return NULL; 331 332 t = (struct ext4_dir_entry_tail *)d; 333 #else 334 t = EXT4_DIRENT_TAIL(bh->b_data, EXT4_BLOCK_SIZE(inode->i_sb)); 335 #endif 336 337 if (t->det_reserved_zero1 || 338 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) || 339 t->det_reserved_zero2 || 340 t->det_reserved_ft != EXT4_FT_DIR_CSUM) 341 return NULL; 342 343 return t; 344 } 345 346 static __le32 ext4_dirblock_csum(struct inode *inode, void *dirent, int size) 347 { 348 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 349 struct ext4_inode_info *ei = EXT4_I(inode); 350 __u32 csum; 351 352 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 353 return cpu_to_le32(csum); 354 } 355 356 #define warn_no_space_for_csum(inode) \ 357 __warn_no_space_for_csum((inode), __func__, __LINE__) 358 359 static void __warn_no_space_for_csum(struct inode *inode, const char *func, 360 unsigned int line) 361 { 362 __ext4_warning_inode(inode, func, line, 363 "No space for directory leaf checksum. Please run e2fsck -D."); 364 } 365 366 int ext4_dirblock_csum_verify(struct inode *inode, struct buffer_head *bh) 367 { 368 struct ext4_dir_entry_tail *t; 369 370 if (!ext4_has_metadata_csum(inode->i_sb)) 371 return 1; 372 373 t = get_dirent_tail(inode, bh); 374 if (!t) { 375 warn_no_space_for_csum(inode); 376 return 0; 377 } 378 379 if (t->det_checksum != ext4_dirblock_csum(inode, bh->b_data, 380 (char *)t - bh->b_data)) 381 return 0; 382 383 return 1; 384 } 385 386 static void ext4_dirblock_csum_set(struct inode *inode, 387 struct buffer_head *bh) 388 { 389 struct ext4_dir_entry_tail *t; 390 391 if (!ext4_has_metadata_csum(inode->i_sb)) 392 return; 393 394 t = get_dirent_tail(inode, bh); 395 if (!t) { 396 warn_no_space_for_csum(inode); 397 return; 398 } 399 400 t->det_checksum = ext4_dirblock_csum(inode, bh->b_data, 401 (char *)t - bh->b_data); 402 } 403 404 int ext4_handle_dirty_dirblock(handle_t *handle, 405 struct inode *inode, 406 struct buffer_head *bh) 407 { 408 ext4_dirblock_csum_set(inode, bh); 409 return ext4_handle_dirty_metadata(handle, inode, bh); 410 } 411 412 static struct dx_countlimit *get_dx_countlimit(struct inode *inode, 413 struct ext4_dir_entry *dirent, 414 int *offset) 415 { 416 struct ext4_dir_entry *dp; 417 struct dx_root_info *root; 418 int count_offset; 419 420 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb)) 421 count_offset = 8; 422 else if (le16_to_cpu(dirent->rec_len) == 12) { 423 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12); 424 if (le16_to_cpu(dp->rec_len) != 425 EXT4_BLOCK_SIZE(inode->i_sb) - 12) 426 return NULL; 427 root = (struct dx_root_info *)(((void *)dp + 12)); 428 if (root->reserved_zero || 429 root->info_length != sizeof(struct dx_root_info)) 430 return NULL; 431 count_offset = 32; 432 } else 433 return NULL; 434 435 if (offset) 436 *offset = count_offset; 437 return (struct dx_countlimit *)(((void *)dirent) + count_offset); 438 } 439 440 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent, 441 int count_offset, int count, struct dx_tail *t) 442 { 443 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 444 struct ext4_inode_info *ei = EXT4_I(inode); 445 __u32 csum; 446 int size; 447 __u32 dummy_csum = 0; 448 int offset = offsetof(struct dx_tail, dt_checksum); 449 450 size = count_offset + (count * sizeof(struct dx_entry)); 451 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 452 csum = ext4_chksum(sbi, csum, (__u8 *)t, offset); 453 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum)); 454 455 return cpu_to_le32(csum); 456 } 457 458 static int ext4_dx_csum_verify(struct inode *inode, 459 struct ext4_dir_entry *dirent) 460 { 461 struct dx_countlimit *c; 462 struct dx_tail *t; 463 int count_offset, limit, count; 464 465 if (!ext4_has_metadata_csum(inode->i_sb)) 466 return 1; 467 468 c = get_dx_countlimit(inode, dirent, &count_offset); 469 if (!c) { 470 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 471 return 0; 472 } 473 limit = le16_to_cpu(c->limit); 474 count = le16_to_cpu(c->count); 475 if (count_offset + (limit * sizeof(struct dx_entry)) > 476 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 477 warn_no_space_for_csum(inode); 478 return 0; 479 } 480 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 481 482 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset, 483 count, t)) 484 return 0; 485 return 1; 486 } 487 488 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent) 489 { 490 struct dx_countlimit *c; 491 struct dx_tail *t; 492 int count_offset, limit, count; 493 494 if (!ext4_has_metadata_csum(inode->i_sb)) 495 return; 496 497 c = get_dx_countlimit(inode, dirent, &count_offset); 498 if (!c) { 499 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 500 return; 501 } 502 limit = le16_to_cpu(c->limit); 503 count = le16_to_cpu(c->count); 504 if (count_offset + (limit * sizeof(struct dx_entry)) > 505 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 506 warn_no_space_for_csum(inode); 507 return; 508 } 509 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 510 511 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t); 512 } 513 514 static inline int ext4_handle_dirty_dx_node(handle_t *handle, 515 struct inode *inode, 516 struct buffer_head *bh) 517 { 518 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 519 return ext4_handle_dirty_metadata(handle, inode, bh); 520 } 521 522 /* 523 * p is at least 6 bytes before the end of page 524 */ 525 static inline struct ext4_dir_entry_2 * 526 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize) 527 { 528 return (struct ext4_dir_entry_2 *)((char *)p + 529 ext4_rec_len_from_disk(p->rec_len, blocksize)); 530 } 531 532 /* 533 * Future: use high four bits of block for coalesce-on-delete flags 534 * Mask them off for now. 535 */ 536 537 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry) 538 { 539 return le32_to_cpu(entry->block) & 0x0fffffff; 540 } 541 542 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value) 543 { 544 entry->block = cpu_to_le32(value); 545 } 546 547 static inline unsigned dx_get_hash(struct dx_entry *entry) 548 { 549 return le32_to_cpu(entry->hash); 550 } 551 552 static inline void dx_set_hash(struct dx_entry *entry, unsigned value) 553 { 554 entry->hash = cpu_to_le32(value); 555 } 556 557 static inline unsigned dx_get_count(struct dx_entry *entries) 558 { 559 return le16_to_cpu(((struct dx_countlimit *) entries)->count); 560 } 561 562 static inline unsigned dx_get_limit(struct dx_entry *entries) 563 { 564 return le16_to_cpu(((struct dx_countlimit *) entries)->limit); 565 } 566 567 static inline void dx_set_count(struct dx_entry *entries, unsigned value) 568 { 569 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value); 570 } 571 572 static inline void dx_set_limit(struct dx_entry *entries, unsigned value) 573 { 574 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value); 575 } 576 577 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize) 578 { 579 unsigned int entry_space = dir->i_sb->s_blocksize - 580 ext4_dir_rec_len(1, NULL) - 581 ext4_dir_rec_len(2, NULL) - infosize; 582 583 if (ext4_has_metadata_csum(dir->i_sb)) 584 entry_space -= sizeof(struct dx_tail); 585 return entry_space / sizeof(struct dx_entry); 586 } 587 588 static inline unsigned dx_node_limit(struct inode *dir) 589 { 590 unsigned int entry_space = dir->i_sb->s_blocksize - 591 ext4_dir_rec_len(0, dir); 592 593 if (ext4_has_metadata_csum(dir->i_sb)) 594 entry_space -= sizeof(struct dx_tail); 595 return entry_space / sizeof(struct dx_entry); 596 } 597 598 /* 599 * Debug 600 */ 601 #ifdef DX_DEBUG 602 static void dx_show_index(char * label, struct dx_entry *entries) 603 { 604 int i, n = dx_get_count (entries); 605 printk(KERN_DEBUG "%s index", label); 606 for (i = 0; i < n; i++) { 607 printk(KERN_CONT " %x->%lu", 608 i ? dx_get_hash(entries + i) : 0, 609 (unsigned long)dx_get_block(entries + i)); 610 } 611 printk(KERN_CONT "\n"); 612 } 613 614 struct stats 615 { 616 unsigned names; 617 unsigned space; 618 unsigned bcount; 619 }; 620 621 static struct stats dx_show_leaf(struct inode *dir, 622 struct dx_hash_info *hinfo, 623 struct ext4_dir_entry_2 *de, 624 int size, int show_names) 625 { 626 unsigned names = 0, space = 0; 627 char *base = (char *) de; 628 struct dx_hash_info h = *hinfo; 629 630 printk("names: "); 631 while ((char *) de < base + size) 632 { 633 if (de->inode) 634 { 635 if (show_names) 636 { 637 #ifdef CONFIG_FS_ENCRYPTION 638 int len; 639 char *name; 640 struct fscrypt_str fname_crypto_str = 641 FSTR_INIT(NULL, 0); 642 int res = 0; 643 644 name = de->name; 645 len = de->name_len; 646 if (!IS_ENCRYPTED(dir)) { 647 /* Directory is not encrypted */ 648 ext4fs_dirhash(dir, de->name, 649 de->name_len, &h); 650 printk("%*.s:(U)%x.%u ", len, 651 name, h.hash, 652 (unsigned) ((char *) de 653 - base)); 654 } else { 655 struct fscrypt_str de_name = 656 FSTR_INIT(name, len); 657 658 /* Directory is encrypted */ 659 res = fscrypt_fname_alloc_buffer( 660 len, &fname_crypto_str); 661 if (res) 662 printk(KERN_WARNING "Error " 663 "allocating crypto " 664 "buffer--skipping " 665 "crypto\n"); 666 res = fscrypt_fname_disk_to_usr(dir, 667 0, 0, &de_name, 668 &fname_crypto_str); 669 if (res) { 670 printk(KERN_WARNING "Error " 671 "converting filename " 672 "from disk to usr" 673 "\n"); 674 name = "??"; 675 len = 2; 676 } else { 677 name = fname_crypto_str.name; 678 len = fname_crypto_str.len; 679 } 680 if (IS_CASEFOLDED(dir)) 681 h.hash = EXT4_DIRENT_HASH(de); 682 else 683 ext4fs_dirhash(dir, de->name, 684 de->name_len, &h); 685 printk("%*.s:(E)%x.%u ", len, name, 686 h.hash, (unsigned) ((char *) de 687 - base)); 688 fscrypt_fname_free_buffer( 689 &fname_crypto_str); 690 } 691 #else 692 int len = de->name_len; 693 char *name = de->name; 694 ext4fs_dirhash(dir, de->name, de->name_len, &h); 695 printk("%*.s:%x.%u ", len, name, h.hash, 696 (unsigned) ((char *) de - base)); 697 #endif 698 } 699 space += ext4_dir_rec_len(de->name_len, dir); 700 names++; 701 } 702 de = ext4_next_entry(de, size); 703 } 704 printk(KERN_CONT "(%i)\n", names); 705 return (struct stats) { names, space, 1 }; 706 } 707 708 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir, 709 struct dx_entry *entries, int levels) 710 { 711 unsigned blocksize = dir->i_sb->s_blocksize; 712 unsigned count = dx_get_count(entries), names = 0, space = 0, i; 713 unsigned bcount = 0; 714 struct buffer_head *bh; 715 printk("%i indexed blocks...\n", count); 716 for (i = 0; i < count; i++, entries++) 717 { 718 ext4_lblk_t block = dx_get_block(entries); 719 ext4_lblk_t hash = i ? dx_get_hash(entries): 0; 720 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash; 721 struct stats stats; 722 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range); 723 bh = ext4_bread(NULL,dir, block, 0); 724 if (!bh || IS_ERR(bh)) 725 continue; 726 stats = levels? 727 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1): 728 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) 729 bh->b_data, blocksize, 0); 730 names += stats.names; 731 space += stats.space; 732 bcount += stats.bcount; 733 brelse(bh); 734 } 735 if (bcount) 736 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n", 737 levels ? "" : " ", names, space/bcount, 738 (space/bcount)*100/blocksize); 739 return (struct stats) { names, space, bcount}; 740 } 741 742 /* 743 * Linear search cross check 744 */ 745 static inline void htree_rep_invariant_check(struct dx_entry *at, 746 struct dx_entry *target, 747 u32 hash, unsigned int n) 748 { 749 while (n--) { 750 dxtrace(printk(KERN_CONT ",")); 751 if (dx_get_hash(++at) > hash) { 752 at--; 753 break; 754 } 755 } 756 ASSERT(at == target - 1); 757 } 758 #else /* DX_DEBUG */ 759 static inline void htree_rep_invariant_check(struct dx_entry *at, 760 struct dx_entry *target, 761 u32 hash, unsigned int n) 762 { 763 } 764 #endif /* DX_DEBUG */ 765 766 /* 767 * Probe for a directory leaf block to search. 768 * 769 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format 770 * error in the directory index, and the caller should fall back to 771 * searching the directory normally. The callers of dx_probe **MUST** 772 * check for this error code, and make sure it never gets reflected 773 * back to userspace. 774 */ 775 static struct dx_frame * 776 dx_probe(struct ext4_filename *fname, struct inode *dir, 777 struct dx_hash_info *hinfo, struct dx_frame *frame_in) 778 { 779 unsigned count, indirect; 780 struct dx_entry *at, *entries, *p, *q, *m; 781 struct dx_root *root; 782 struct dx_frame *frame = frame_in; 783 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR); 784 u32 hash; 785 786 memset(frame_in, 0, EXT4_HTREE_LEVEL * sizeof(frame_in[0])); 787 frame->bh = ext4_read_dirblock(dir, 0, INDEX); 788 if (IS_ERR(frame->bh)) 789 return (struct dx_frame *) frame->bh; 790 791 root = (struct dx_root *) frame->bh->b_data; 792 if (root->info.hash_version != DX_HASH_TEA && 793 root->info.hash_version != DX_HASH_HALF_MD4 && 794 root->info.hash_version != DX_HASH_LEGACY && 795 root->info.hash_version != DX_HASH_SIPHASH) { 796 ext4_warning_inode(dir, "Unrecognised inode hash code %u", 797 root->info.hash_version); 798 goto fail; 799 } 800 if (ext4_hash_in_dirent(dir)) { 801 if (root->info.hash_version != DX_HASH_SIPHASH) { 802 ext4_warning_inode(dir, 803 "Hash in dirent, but hash is not SIPHASH"); 804 goto fail; 805 } 806 } else { 807 if (root->info.hash_version == DX_HASH_SIPHASH) { 808 ext4_warning_inode(dir, 809 "Hash code is SIPHASH, but hash not in dirent"); 810 goto fail; 811 } 812 } 813 if (fname) 814 hinfo = &fname->hinfo; 815 hinfo->hash_version = root->info.hash_version; 816 if (hinfo->hash_version <= DX_HASH_TEA) 817 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 818 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed; 819 /* hash is already computed for encrypted casefolded directory */ 820 if (fname && fname_name(fname) && 821 !(IS_ENCRYPTED(dir) && IS_CASEFOLDED(dir))) 822 ext4fs_dirhash(dir, fname_name(fname), fname_len(fname), hinfo); 823 hash = hinfo->hash; 824 825 if (root->info.unused_flags & 1) { 826 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x", 827 root->info.unused_flags); 828 goto fail; 829 } 830 831 indirect = root->info.indirect_levels; 832 if (indirect >= ext4_dir_htree_level(dir->i_sb)) { 833 ext4_warning(dir->i_sb, 834 "Directory (ino: %lu) htree depth %#06x exceed" 835 "supported value", dir->i_ino, 836 ext4_dir_htree_level(dir->i_sb)); 837 if (ext4_dir_htree_level(dir->i_sb) < EXT4_HTREE_LEVEL) { 838 ext4_warning(dir->i_sb, "Enable large directory " 839 "feature to access it"); 840 } 841 goto fail; 842 } 843 844 entries = (struct dx_entry *)(((char *)&root->info) + 845 root->info.info_length); 846 847 if (dx_get_limit(entries) != dx_root_limit(dir, 848 root->info.info_length)) { 849 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u", 850 dx_get_limit(entries), 851 dx_root_limit(dir, root->info.info_length)); 852 goto fail; 853 } 854 855 dxtrace(printk("Look up %x", hash)); 856 while (1) { 857 count = dx_get_count(entries); 858 if (!count || count > dx_get_limit(entries)) { 859 ext4_warning_inode(dir, 860 "dx entry: count %u beyond limit %u", 861 count, dx_get_limit(entries)); 862 goto fail; 863 } 864 865 p = entries + 1; 866 q = entries + count - 1; 867 while (p <= q) { 868 m = p + (q - p) / 2; 869 dxtrace(printk(KERN_CONT ".")); 870 if (dx_get_hash(m) > hash) 871 q = m - 1; 872 else 873 p = m + 1; 874 } 875 876 htree_rep_invariant_check(entries, p, hash, count - 1); 877 878 at = p - 1; 879 dxtrace(printk(KERN_CONT " %x->%u\n", 880 at == entries ? 0 : dx_get_hash(at), 881 dx_get_block(at))); 882 frame->entries = entries; 883 frame->at = at; 884 if (!indirect--) 885 return frame; 886 frame++; 887 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX); 888 if (IS_ERR(frame->bh)) { 889 ret_err = (struct dx_frame *) frame->bh; 890 frame->bh = NULL; 891 goto fail; 892 } 893 entries = ((struct dx_node *) frame->bh->b_data)->entries; 894 895 if (dx_get_limit(entries) != dx_node_limit(dir)) { 896 ext4_warning_inode(dir, 897 "dx entry: limit %u != node limit %u", 898 dx_get_limit(entries), dx_node_limit(dir)); 899 goto fail; 900 } 901 } 902 fail: 903 while (frame >= frame_in) { 904 brelse(frame->bh); 905 frame--; 906 } 907 908 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR)) 909 ext4_warning_inode(dir, 910 "Corrupt directory, running e2fsck is recommended"); 911 return ret_err; 912 } 913 914 static void dx_release(struct dx_frame *frames) 915 { 916 struct dx_root_info *info; 917 int i; 918 unsigned int indirect_levels; 919 920 if (frames[0].bh == NULL) 921 return; 922 923 info = &((struct dx_root *)frames[0].bh->b_data)->info; 924 /* save local copy, "info" may be freed after brelse() */ 925 indirect_levels = info->indirect_levels; 926 for (i = 0; i <= indirect_levels; i++) { 927 if (frames[i].bh == NULL) 928 break; 929 brelse(frames[i].bh); 930 frames[i].bh = NULL; 931 } 932 } 933 934 /* 935 * This function increments the frame pointer to search the next leaf 936 * block, and reads in the necessary intervening nodes if the search 937 * should be necessary. Whether or not the search is necessary is 938 * controlled by the hash parameter. If the hash value is even, then 939 * the search is only continued if the next block starts with that 940 * hash value. This is used if we are searching for a specific file. 941 * 942 * If the hash value is HASH_NB_ALWAYS, then always go to the next block. 943 * 944 * This function returns 1 if the caller should continue to search, 945 * or 0 if it should not. If there is an error reading one of the 946 * index blocks, it will a negative error code. 947 * 948 * If start_hash is non-null, it will be filled in with the starting 949 * hash of the next page. 950 */ 951 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 952 struct dx_frame *frame, 953 struct dx_frame *frames, 954 __u32 *start_hash) 955 { 956 struct dx_frame *p; 957 struct buffer_head *bh; 958 int num_frames = 0; 959 __u32 bhash; 960 961 p = frame; 962 /* 963 * Find the next leaf page by incrementing the frame pointer. 964 * If we run out of entries in the interior node, loop around and 965 * increment pointer in the parent node. When we break out of 966 * this loop, num_frames indicates the number of interior 967 * nodes need to be read. 968 */ 969 while (1) { 970 if (++(p->at) < p->entries + dx_get_count(p->entries)) 971 break; 972 if (p == frames) 973 return 0; 974 num_frames++; 975 p--; 976 } 977 978 /* 979 * If the hash is 1, then continue only if the next page has a 980 * continuation hash of any value. This is used for readdir 981 * handling. Otherwise, check to see if the hash matches the 982 * desired continuation hash. If it doesn't, return since 983 * there's no point to read in the successive index pages. 984 */ 985 bhash = dx_get_hash(p->at); 986 if (start_hash) 987 *start_hash = bhash; 988 if ((hash & 1) == 0) { 989 if ((bhash & ~1) != hash) 990 return 0; 991 } 992 /* 993 * If the hash is HASH_NB_ALWAYS, we always go to the next 994 * block so no check is necessary 995 */ 996 while (num_frames--) { 997 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX); 998 if (IS_ERR(bh)) 999 return PTR_ERR(bh); 1000 p++; 1001 brelse(p->bh); 1002 p->bh = bh; 1003 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries; 1004 } 1005 return 1; 1006 } 1007 1008 1009 /* 1010 * This function fills a red-black tree with information from a 1011 * directory block. It returns the number directory entries loaded 1012 * into the tree. If there is an error it is returned in err. 1013 */ 1014 static int htree_dirblock_to_tree(struct file *dir_file, 1015 struct inode *dir, ext4_lblk_t block, 1016 struct dx_hash_info *hinfo, 1017 __u32 start_hash, __u32 start_minor_hash) 1018 { 1019 struct buffer_head *bh; 1020 struct ext4_dir_entry_2 *de, *top; 1021 int err = 0, count = 0; 1022 struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str; 1023 int csum = ext4_has_metadata_csum(dir->i_sb); 1024 1025 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n", 1026 (unsigned long)block)); 1027 bh = ext4_read_dirblock(dir, block, DIRENT_HTREE); 1028 if (IS_ERR(bh)) 1029 return PTR_ERR(bh); 1030 1031 de = (struct ext4_dir_entry_2 *) bh->b_data; 1032 /* csum entries are not larger in the casefolded encrypted case */ 1033 top = (struct ext4_dir_entry_2 *) ((char *) de + 1034 dir->i_sb->s_blocksize - 1035 ext4_dir_rec_len(0, 1036 csum ? NULL : dir)); 1037 /* Check if the directory is encrypted */ 1038 if (IS_ENCRYPTED(dir)) { 1039 err = fscrypt_prepare_readdir(dir); 1040 if (err < 0) { 1041 brelse(bh); 1042 return err; 1043 } 1044 err = fscrypt_fname_alloc_buffer(EXT4_NAME_LEN, 1045 &fname_crypto_str); 1046 if (err < 0) { 1047 brelse(bh); 1048 return err; 1049 } 1050 } 1051 1052 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) { 1053 if (ext4_check_dir_entry(dir, NULL, de, bh, 1054 bh->b_data, bh->b_size, 1055 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb)) 1056 + ((char *)de - bh->b_data))) { 1057 /* silently ignore the rest of the block */ 1058 break; 1059 } 1060 if (ext4_hash_in_dirent(dir)) { 1061 if (de->name_len && de->inode) { 1062 hinfo->hash = EXT4_DIRENT_HASH(de); 1063 hinfo->minor_hash = EXT4_DIRENT_MINOR_HASH(de); 1064 } else { 1065 hinfo->hash = 0; 1066 hinfo->minor_hash = 0; 1067 } 1068 } else { 1069 ext4fs_dirhash(dir, de->name, de->name_len, hinfo); 1070 } 1071 if ((hinfo->hash < start_hash) || 1072 ((hinfo->hash == start_hash) && 1073 (hinfo->minor_hash < start_minor_hash))) 1074 continue; 1075 if (de->inode == 0) 1076 continue; 1077 if (!IS_ENCRYPTED(dir)) { 1078 tmp_str.name = de->name; 1079 tmp_str.len = de->name_len; 1080 err = ext4_htree_store_dirent(dir_file, 1081 hinfo->hash, hinfo->minor_hash, de, 1082 &tmp_str); 1083 } else { 1084 int save_len = fname_crypto_str.len; 1085 struct fscrypt_str de_name = FSTR_INIT(de->name, 1086 de->name_len); 1087 1088 /* Directory is encrypted */ 1089 err = fscrypt_fname_disk_to_usr(dir, hinfo->hash, 1090 hinfo->minor_hash, &de_name, 1091 &fname_crypto_str); 1092 if (err) { 1093 count = err; 1094 goto errout; 1095 } 1096 err = ext4_htree_store_dirent(dir_file, 1097 hinfo->hash, hinfo->minor_hash, de, 1098 &fname_crypto_str); 1099 fname_crypto_str.len = save_len; 1100 } 1101 if (err != 0) { 1102 count = err; 1103 goto errout; 1104 } 1105 count++; 1106 } 1107 errout: 1108 brelse(bh); 1109 fscrypt_fname_free_buffer(&fname_crypto_str); 1110 return count; 1111 } 1112 1113 1114 /* 1115 * This function fills a red-black tree with information from a 1116 * directory. We start scanning the directory in hash order, starting 1117 * at start_hash and start_minor_hash. 1118 * 1119 * This function returns the number of entries inserted into the tree, 1120 * or a negative error code. 1121 */ 1122 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash, 1123 __u32 start_minor_hash, __u32 *next_hash) 1124 { 1125 struct dx_hash_info hinfo; 1126 struct ext4_dir_entry_2 *de; 1127 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 1128 struct inode *dir; 1129 ext4_lblk_t block; 1130 int count = 0; 1131 int ret, err; 1132 __u32 hashval; 1133 struct fscrypt_str tmp_str; 1134 1135 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n", 1136 start_hash, start_minor_hash)); 1137 dir = file_inode(dir_file); 1138 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) { 1139 if (ext4_hash_in_dirent(dir)) 1140 hinfo.hash_version = DX_HASH_SIPHASH; 1141 else 1142 hinfo.hash_version = 1143 EXT4_SB(dir->i_sb)->s_def_hash_version; 1144 if (hinfo.hash_version <= DX_HASH_TEA) 1145 hinfo.hash_version += 1146 EXT4_SB(dir->i_sb)->s_hash_unsigned; 1147 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 1148 if (ext4_has_inline_data(dir)) { 1149 int has_inline_data = 1; 1150 count = ext4_inlinedir_to_tree(dir_file, dir, 0, 1151 &hinfo, start_hash, 1152 start_minor_hash, 1153 &has_inline_data); 1154 if (has_inline_data) { 1155 *next_hash = ~0; 1156 return count; 1157 } 1158 } 1159 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo, 1160 start_hash, start_minor_hash); 1161 *next_hash = ~0; 1162 return count; 1163 } 1164 hinfo.hash = start_hash; 1165 hinfo.minor_hash = 0; 1166 frame = dx_probe(NULL, dir, &hinfo, frames); 1167 if (IS_ERR(frame)) 1168 return PTR_ERR(frame); 1169 1170 /* Add '.' and '..' from the htree header */ 1171 if (!start_hash && !start_minor_hash) { 1172 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1173 tmp_str.name = de->name; 1174 tmp_str.len = de->name_len; 1175 err = ext4_htree_store_dirent(dir_file, 0, 0, 1176 de, &tmp_str); 1177 if (err != 0) 1178 goto errout; 1179 count++; 1180 } 1181 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) { 1182 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1183 de = ext4_next_entry(de, dir->i_sb->s_blocksize); 1184 tmp_str.name = de->name; 1185 tmp_str.len = de->name_len; 1186 err = ext4_htree_store_dirent(dir_file, 2, 0, 1187 de, &tmp_str); 1188 if (err != 0) 1189 goto errout; 1190 count++; 1191 } 1192 1193 while (1) { 1194 if (fatal_signal_pending(current)) { 1195 err = -ERESTARTSYS; 1196 goto errout; 1197 } 1198 cond_resched(); 1199 block = dx_get_block(frame->at); 1200 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo, 1201 start_hash, start_minor_hash); 1202 if (ret < 0) { 1203 err = ret; 1204 goto errout; 1205 } 1206 count += ret; 1207 hashval = ~0; 1208 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS, 1209 frame, frames, &hashval); 1210 *next_hash = hashval; 1211 if (ret < 0) { 1212 err = ret; 1213 goto errout; 1214 } 1215 /* 1216 * Stop if: (a) there are no more entries, or 1217 * (b) we have inserted at least one entry and the 1218 * next hash value is not a continuation 1219 */ 1220 if ((ret == 0) || 1221 (count && ((hashval & 1) == 0))) 1222 break; 1223 } 1224 dx_release(frames); 1225 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, " 1226 "next hash: %x\n", count, *next_hash)); 1227 return count; 1228 errout: 1229 dx_release(frames); 1230 return (err); 1231 } 1232 1233 static inline int search_dirblock(struct buffer_head *bh, 1234 struct inode *dir, 1235 struct ext4_filename *fname, 1236 unsigned int offset, 1237 struct ext4_dir_entry_2 **res_dir) 1238 { 1239 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir, 1240 fname, offset, res_dir); 1241 } 1242 1243 /* 1244 * Directory block splitting, compacting 1245 */ 1246 1247 /* 1248 * Create map of hash values, offsets, and sizes, stored at end of block. 1249 * Returns number of entries mapped. 1250 */ 1251 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 1252 unsigned blocksize, struct dx_hash_info *hinfo, 1253 struct dx_map_entry *map_tail) 1254 { 1255 int count = 0; 1256 char *base = (char *) de; 1257 struct dx_hash_info h = *hinfo; 1258 1259 while ((char *) de < base + blocksize) { 1260 if (de->name_len && de->inode) { 1261 if (ext4_hash_in_dirent(dir)) 1262 h.hash = EXT4_DIRENT_HASH(de); 1263 else 1264 ext4fs_dirhash(dir, de->name, de->name_len, &h); 1265 map_tail--; 1266 map_tail->hash = h.hash; 1267 map_tail->offs = ((char *) de - base)>>2; 1268 map_tail->size = le16_to_cpu(de->rec_len); 1269 count++; 1270 cond_resched(); 1271 } 1272 /* XXX: do we need to check rec_len == 0 case? -Chris */ 1273 de = ext4_next_entry(de, blocksize); 1274 } 1275 return count; 1276 } 1277 1278 /* Sort map by hash value */ 1279 static void dx_sort_map (struct dx_map_entry *map, unsigned count) 1280 { 1281 struct dx_map_entry *p, *q, *top = map + count - 1; 1282 int more; 1283 /* Combsort until bubble sort doesn't suck */ 1284 while (count > 2) { 1285 count = count*10/13; 1286 if (count - 9 < 2) /* 9, 10 -> 11 */ 1287 count = 11; 1288 for (p = top, q = p - count; q >= map; p--, q--) 1289 if (p->hash < q->hash) 1290 swap(*p, *q); 1291 } 1292 /* Garden variety bubble sort */ 1293 do { 1294 more = 0; 1295 q = top; 1296 while (q-- > map) { 1297 if (q[1].hash >= q[0].hash) 1298 continue; 1299 swap(*(q+1), *q); 1300 more = 1; 1301 } 1302 } while(more); 1303 } 1304 1305 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block) 1306 { 1307 struct dx_entry *entries = frame->entries; 1308 struct dx_entry *old = frame->at, *new = old + 1; 1309 int count = dx_get_count(entries); 1310 1311 ASSERT(count < dx_get_limit(entries)); 1312 ASSERT(old < entries + count); 1313 memmove(new + 1, new, (char *)(entries + count) - (char *)(new)); 1314 dx_set_hash(new, hash); 1315 dx_set_block(new, block); 1316 dx_set_count(entries, count + 1); 1317 } 1318 1319 #ifdef CONFIG_UNICODE 1320 /* 1321 * Test whether a case-insensitive directory entry matches the filename 1322 * being searched for. If quick is set, assume the name being looked up 1323 * is already in the casefolded form. 1324 * 1325 * Returns: 0 if the directory entry matches, more than 0 if it 1326 * doesn't match or less than zero on error. 1327 */ 1328 static int ext4_ci_compare(const struct inode *parent, const struct qstr *name, 1329 u8 *de_name, size_t de_name_len, bool quick) 1330 { 1331 const struct super_block *sb = parent->i_sb; 1332 const struct unicode_map *um = sb->s_encoding; 1333 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len); 1334 struct qstr entry = QSTR_INIT(de_name, de_name_len); 1335 int ret; 1336 1337 if (IS_ENCRYPTED(parent)) { 1338 const struct fscrypt_str encrypted_name = 1339 FSTR_INIT(de_name, de_name_len); 1340 1341 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL); 1342 if (!decrypted_name.name) 1343 return -ENOMEM; 1344 ret = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name, 1345 &decrypted_name); 1346 if (ret < 0) 1347 goto out; 1348 entry.name = decrypted_name.name; 1349 entry.len = decrypted_name.len; 1350 } 1351 1352 if (quick) 1353 ret = utf8_strncasecmp_folded(um, name, &entry); 1354 else 1355 ret = utf8_strncasecmp(um, name, &entry); 1356 if (ret < 0) { 1357 /* Handle invalid character sequence as either an error 1358 * or as an opaque byte sequence. 1359 */ 1360 if (sb_has_strict_encoding(sb)) 1361 ret = -EINVAL; 1362 else if (name->len != entry.len) 1363 ret = 1; 1364 else 1365 ret = !!memcmp(name->name, entry.name, entry.len); 1366 } 1367 out: 1368 kfree(decrypted_name.name); 1369 return ret; 1370 } 1371 1372 int ext4_fname_setup_ci_filename(struct inode *dir, const struct qstr *iname, 1373 struct ext4_filename *name) 1374 { 1375 struct fscrypt_str *cf_name = &name->cf_name; 1376 struct dx_hash_info *hinfo = &name->hinfo; 1377 int len; 1378 1379 if (!IS_CASEFOLDED(dir) || !dir->i_sb->s_encoding || 1380 (IS_ENCRYPTED(dir) && !fscrypt_has_encryption_key(dir))) { 1381 cf_name->name = NULL; 1382 return 0; 1383 } 1384 1385 cf_name->name = kmalloc(EXT4_NAME_LEN, GFP_NOFS); 1386 if (!cf_name->name) 1387 return -ENOMEM; 1388 1389 len = utf8_casefold(dir->i_sb->s_encoding, 1390 iname, cf_name->name, 1391 EXT4_NAME_LEN); 1392 if (len <= 0) { 1393 kfree(cf_name->name); 1394 cf_name->name = NULL; 1395 } 1396 cf_name->len = (unsigned) len; 1397 if (!IS_ENCRYPTED(dir)) 1398 return 0; 1399 1400 hinfo->hash_version = DX_HASH_SIPHASH; 1401 hinfo->seed = NULL; 1402 if (cf_name->name) 1403 ext4fs_dirhash(dir, cf_name->name, cf_name->len, hinfo); 1404 else 1405 ext4fs_dirhash(dir, iname->name, iname->len, hinfo); 1406 return 0; 1407 } 1408 #endif 1409 1410 /* 1411 * Test whether a directory entry matches the filename being searched for. 1412 * 1413 * Return: %true if the directory entry matches, otherwise %false. 1414 */ 1415 static bool ext4_match(struct inode *parent, 1416 const struct ext4_filename *fname, 1417 struct ext4_dir_entry_2 *de) 1418 { 1419 struct fscrypt_name f; 1420 1421 if (!de->inode) 1422 return false; 1423 1424 f.usr_fname = fname->usr_fname; 1425 f.disk_name = fname->disk_name; 1426 #ifdef CONFIG_FS_ENCRYPTION 1427 f.crypto_buf = fname->crypto_buf; 1428 #endif 1429 1430 #ifdef CONFIG_UNICODE 1431 if (parent->i_sb->s_encoding && IS_CASEFOLDED(parent) && 1432 (!IS_ENCRYPTED(parent) || fscrypt_has_encryption_key(parent))) { 1433 if (fname->cf_name.name) { 1434 struct qstr cf = {.name = fname->cf_name.name, 1435 .len = fname->cf_name.len}; 1436 if (IS_ENCRYPTED(parent)) { 1437 if (fname->hinfo.hash != EXT4_DIRENT_HASH(de) || 1438 fname->hinfo.minor_hash != 1439 EXT4_DIRENT_MINOR_HASH(de)) { 1440 1441 return 0; 1442 } 1443 } 1444 return !ext4_ci_compare(parent, &cf, de->name, 1445 de->name_len, true); 1446 } 1447 return !ext4_ci_compare(parent, fname->usr_fname, de->name, 1448 de->name_len, false); 1449 } 1450 #endif 1451 1452 return fscrypt_match_name(&f, de->name, de->name_len); 1453 } 1454 1455 /* 1456 * Returns 0 if not found, -1 on failure, and 1 on success 1457 */ 1458 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size, 1459 struct inode *dir, struct ext4_filename *fname, 1460 unsigned int offset, struct ext4_dir_entry_2 **res_dir) 1461 { 1462 struct ext4_dir_entry_2 * de; 1463 char * dlimit; 1464 int de_len; 1465 1466 de = (struct ext4_dir_entry_2 *)search_buf; 1467 dlimit = search_buf + buf_size; 1468 while ((char *) de < dlimit) { 1469 /* this code is executed quadratically often */ 1470 /* do minimal checking `by hand' */ 1471 if ((char *) de + de->name_len <= dlimit && 1472 ext4_match(dir, fname, de)) { 1473 /* found a match - just to be sure, do 1474 * a full check */ 1475 if (ext4_check_dir_entry(dir, NULL, de, bh, search_buf, 1476 buf_size, offset)) 1477 return -1; 1478 *res_dir = de; 1479 return 1; 1480 } 1481 /* prevent looping on a bad block */ 1482 de_len = ext4_rec_len_from_disk(de->rec_len, 1483 dir->i_sb->s_blocksize); 1484 if (de_len <= 0) 1485 return -1; 1486 offset += de_len; 1487 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); 1488 } 1489 return 0; 1490 } 1491 1492 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block, 1493 struct ext4_dir_entry *de) 1494 { 1495 struct super_block *sb = dir->i_sb; 1496 1497 if (!is_dx(dir)) 1498 return 0; 1499 if (block == 0) 1500 return 1; 1501 if (de->inode == 0 && 1502 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) == 1503 sb->s_blocksize) 1504 return 1; 1505 return 0; 1506 } 1507 1508 /* 1509 * __ext4_find_entry() 1510 * 1511 * finds an entry in the specified directory with the wanted name. It 1512 * returns the cache buffer in which the entry was found, and the entry 1513 * itself (as a parameter - res_dir). It does NOT read the inode of the 1514 * entry - you'll have to do that yourself if you want to. 1515 * 1516 * The returned buffer_head has ->b_count elevated. The caller is expected 1517 * to brelse() it when appropriate. 1518 */ 1519 static struct buffer_head *__ext4_find_entry(struct inode *dir, 1520 struct ext4_filename *fname, 1521 struct ext4_dir_entry_2 **res_dir, 1522 int *inlined) 1523 { 1524 struct super_block *sb; 1525 struct buffer_head *bh_use[NAMEI_RA_SIZE]; 1526 struct buffer_head *bh, *ret = NULL; 1527 ext4_lblk_t start, block; 1528 const u8 *name = fname->usr_fname->name; 1529 size_t ra_max = 0; /* Number of bh's in the readahead 1530 buffer, bh_use[] */ 1531 size_t ra_ptr = 0; /* Current index into readahead 1532 buffer */ 1533 ext4_lblk_t nblocks; 1534 int i, namelen, retval; 1535 1536 *res_dir = NULL; 1537 sb = dir->i_sb; 1538 namelen = fname->usr_fname->len; 1539 if (namelen > EXT4_NAME_LEN) 1540 return NULL; 1541 1542 if (ext4_has_inline_data(dir)) { 1543 int has_inline_data = 1; 1544 ret = ext4_find_inline_entry(dir, fname, res_dir, 1545 &has_inline_data); 1546 if (has_inline_data) { 1547 if (inlined) 1548 *inlined = 1; 1549 goto cleanup_and_exit; 1550 } 1551 } 1552 1553 if ((namelen <= 2) && (name[0] == '.') && 1554 (name[1] == '.' || name[1] == '\0')) { 1555 /* 1556 * "." or ".." will only be in the first block 1557 * NFS may look up ".."; "." should be handled by the VFS 1558 */ 1559 block = start = 0; 1560 nblocks = 1; 1561 goto restart; 1562 } 1563 if (is_dx(dir)) { 1564 ret = ext4_dx_find_entry(dir, fname, res_dir); 1565 /* 1566 * On success, or if the error was file not found, 1567 * return. Otherwise, fall back to doing a search the 1568 * old fashioned way. 1569 */ 1570 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR) 1571 goto cleanup_and_exit; 1572 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, " 1573 "falling back\n")); 1574 ret = NULL; 1575 } 1576 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1577 if (!nblocks) { 1578 ret = NULL; 1579 goto cleanup_and_exit; 1580 } 1581 start = EXT4_I(dir)->i_dir_start_lookup; 1582 if (start >= nblocks) 1583 start = 0; 1584 block = start; 1585 restart: 1586 do { 1587 /* 1588 * We deal with the read-ahead logic here. 1589 */ 1590 cond_resched(); 1591 if (ra_ptr >= ra_max) { 1592 /* Refill the readahead buffer */ 1593 ra_ptr = 0; 1594 if (block < start) 1595 ra_max = start - block; 1596 else 1597 ra_max = nblocks - block; 1598 ra_max = min(ra_max, ARRAY_SIZE(bh_use)); 1599 retval = ext4_bread_batch(dir, block, ra_max, 1600 false /* wait */, bh_use); 1601 if (retval) { 1602 ret = ERR_PTR(retval); 1603 ra_max = 0; 1604 goto cleanup_and_exit; 1605 } 1606 } 1607 if ((bh = bh_use[ra_ptr++]) == NULL) 1608 goto next; 1609 wait_on_buffer(bh); 1610 if (!buffer_uptodate(bh)) { 1611 EXT4_ERROR_INODE_ERR(dir, EIO, 1612 "reading directory lblock %lu", 1613 (unsigned long) block); 1614 brelse(bh); 1615 ret = ERR_PTR(-EIO); 1616 goto cleanup_and_exit; 1617 } 1618 if (!buffer_verified(bh) && 1619 !is_dx_internal_node(dir, block, 1620 (struct ext4_dir_entry *)bh->b_data) && 1621 !ext4_dirblock_csum_verify(dir, bh)) { 1622 EXT4_ERROR_INODE_ERR(dir, EFSBADCRC, 1623 "checksumming directory " 1624 "block %lu", (unsigned long)block); 1625 brelse(bh); 1626 ret = ERR_PTR(-EFSBADCRC); 1627 goto cleanup_and_exit; 1628 } 1629 set_buffer_verified(bh); 1630 i = search_dirblock(bh, dir, fname, 1631 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir); 1632 if (i == 1) { 1633 EXT4_I(dir)->i_dir_start_lookup = block; 1634 ret = bh; 1635 goto cleanup_and_exit; 1636 } else { 1637 brelse(bh); 1638 if (i < 0) 1639 goto cleanup_and_exit; 1640 } 1641 next: 1642 if (++block >= nblocks) 1643 block = 0; 1644 } while (block != start); 1645 1646 /* 1647 * If the directory has grown while we were searching, then 1648 * search the last part of the directory before giving up. 1649 */ 1650 block = nblocks; 1651 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1652 if (block < nblocks) { 1653 start = 0; 1654 goto restart; 1655 } 1656 1657 cleanup_and_exit: 1658 /* Clean up the read-ahead blocks */ 1659 for (; ra_ptr < ra_max; ra_ptr++) 1660 brelse(bh_use[ra_ptr]); 1661 return ret; 1662 } 1663 1664 static struct buffer_head *ext4_find_entry(struct inode *dir, 1665 const struct qstr *d_name, 1666 struct ext4_dir_entry_2 **res_dir, 1667 int *inlined) 1668 { 1669 int err; 1670 struct ext4_filename fname; 1671 struct buffer_head *bh; 1672 1673 err = ext4_fname_setup_filename(dir, d_name, 1, &fname); 1674 if (err == -ENOENT) 1675 return NULL; 1676 if (err) 1677 return ERR_PTR(err); 1678 1679 bh = __ext4_find_entry(dir, &fname, res_dir, inlined); 1680 1681 ext4_fname_free_filename(&fname); 1682 return bh; 1683 } 1684 1685 static struct buffer_head *ext4_lookup_entry(struct inode *dir, 1686 struct dentry *dentry, 1687 struct ext4_dir_entry_2 **res_dir) 1688 { 1689 int err; 1690 struct ext4_filename fname; 1691 struct buffer_head *bh; 1692 1693 err = ext4_fname_prepare_lookup(dir, dentry, &fname); 1694 generic_set_encrypted_ci_d_ops(dentry); 1695 if (err == -ENOENT) 1696 return NULL; 1697 if (err) 1698 return ERR_PTR(err); 1699 1700 bh = __ext4_find_entry(dir, &fname, res_dir, NULL); 1701 1702 ext4_fname_free_filename(&fname); 1703 return bh; 1704 } 1705 1706 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 1707 struct ext4_filename *fname, 1708 struct ext4_dir_entry_2 **res_dir) 1709 { 1710 struct super_block * sb = dir->i_sb; 1711 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 1712 struct buffer_head *bh; 1713 ext4_lblk_t block; 1714 int retval; 1715 1716 #ifdef CONFIG_FS_ENCRYPTION 1717 *res_dir = NULL; 1718 #endif 1719 frame = dx_probe(fname, dir, NULL, frames); 1720 if (IS_ERR(frame)) 1721 return (struct buffer_head *) frame; 1722 do { 1723 block = dx_get_block(frame->at); 1724 bh = ext4_read_dirblock(dir, block, DIRENT_HTREE); 1725 if (IS_ERR(bh)) 1726 goto errout; 1727 1728 retval = search_dirblock(bh, dir, fname, 1729 block << EXT4_BLOCK_SIZE_BITS(sb), 1730 res_dir); 1731 if (retval == 1) 1732 goto success; 1733 brelse(bh); 1734 if (retval == -1) { 1735 bh = ERR_PTR(ERR_BAD_DX_DIR); 1736 goto errout; 1737 } 1738 1739 /* Check to see if we should continue to search */ 1740 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame, 1741 frames, NULL); 1742 if (retval < 0) { 1743 ext4_warning_inode(dir, 1744 "error %d reading directory index block", 1745 retval); 1746 bh = ERR_PTR(retval); 1747 goto errout; 1748 } 1749 } while (retval == 1); 1750 1751 bh = NULL; 1752 errout: 1753 dxtrace(printk(KERN_DEBUG "%s not found\n", fname->usr_fname->name)); 1754 success: 1755 dx_release(frames); 1756 return bh; 1757 } 1758 1759 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1760 { 1761 struct inode *inode; 1762 struct ext4_dir_entry_2 *de; 1763 struct buffer_head *bh; 1764 1765 if (dentry->d_name.len > EXT4_NAME_LEN) 1766 return ERR_PTR(-ENAMETOOLONG); 1767 1768 bh = ext4_lookup_entry(dir, dentry, &de); 1769 if (IS_ERR(bh)) 1770 return ERR_CAST(bh); 1771 inode = NULL; 1772 if (bh) { 1773 __u32 ino = le32_to_cpu(de->inode); 1774 brelse(bh); 1775 if (!ext4_valid_inum(dir->i_sb, ino)) { 1776 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino); 1777 return ERR_PTR(-EFSCORRUPTED); 1778 } 1779 if (unlikely(ino == dir->i_ino)) { 1780 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir", 1781 dentry); 1782 return ERR_PTR(-EFSCORRUPTED); 1783 } 1784 inode = ext4_iget(dir->i_sb, ino, EXT4_IGET_NORMAL); 1785 if (inode == ERR_PTR(-ESTALE)) { 1786 EXT4_ERROR_INODE(dir, 1787 "deleted inode referenced: %u", 1788 ino); 1789 return ERR_PTR(-EFSCORRUPTED); 1790 } 1791 if (!IS_ERR(inode) && IS_ENCRYPTED(dir) && 1792 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && 1793 !fscrypt_has_permitted_context(dir, inode)) { 1794 ext4_warning(inode->i_sb, 1795 "Inconsistent encryption contexts: %lu/%lu", 1796 dir->i_ino, inode->i_ino); 1797 iput(inode); 1798 return ERR_PTR(-EPERM); 1799 } 1800 } 1801 1802 #ifdef CONFIG_UNICODE 1803 if (!inode && IS_CASEFOLDED(dir)) { 1804 /* Eventually we want to call d_add_ci(dentry, NULL) 1805 * for negative dentries in the encoding case as 1806 * well. For now, prevent the negative dentry 1807 * from being cached. 1808 */ 1809 return NULL; 1810 } 1811 #endif 1812 return d_splice_alias(inode, dentry); 1813 } 1814 1815 1816 struct dentry *ext4_get_parent(struct dentry *child) 1817 { 1818 __u32 ino; 1819 struct ext4_dir_entry_2 * de; 1820 struct buffer_head *bh; 1821 1822 bh = ext4_find_entry(d_inode(child), &dotdot_name, &de, NULL); 1823 if (IS_ERR(bh)) 1824 return ERR_CAST(bh); 1825 if (!bh) 1826 return ERR_PTR(-ENOENT); 1827 ino = le32_to_cpu(de->inode); 1828 brelse(bh); 1829 1830 if (!ext4_valid_inum(child->d_sb, ino)) { 1831 EXT4_ERROR_INODE(d_inode(child), 1832 "bad parent inode number: %u", ino); 1833 return ERR_PTR(-EFSCORRUPTED); 1834 } 1835 1836 return d_obtain_alias(ext4_iget(child->d_sb, ino, EXT4_IGET_NORMAL)); 1837 } 1838 1839 /* 1840 * Move count entries from end of map between two memory locations. 1841 * Returns pointer to last entry moved. 1842 */ 1843 static struct ext4_dir_entry_2 * 1844 dx_move_dirents(struct inode *dir, char *from, char *to, 1845 struct dx_map_entry *map, int count, 1846 unsigned blocksize) 1847 { 1848 unsigned rec_len = 0; 1849 1850 while (count--) { 1851 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *) 1852 (from + (map->offs<<2)); 1853 rec_len = ext4_dir_rec_len(de->name_len, dir); 1854 1855 memcpy (to, de, rec_len); 1856 ((struct ext4_dir_entry_2 *) to)->rec_len = 1857 ext4_rec_len_to_disk(rec_len, blocksize); 1858 1859 /* wipe dir_entry excluding the rec_len field */ 1860 de->inode = 0; 1861 memset(&de->name_len, 0, ext4_rec_len_from_disk(de->rec_len, 1862 blocksize) - 1863 offsetof(struct ext4_dir_entry_2, 1864 name_len)); 1865 1866 map++; 1867 to += rec_len; 1868 } 1869 return (struct ext4_dir_entry_2 *) (to - rec_len); 1870 } 1871 1872 /* 1873 * Compact each dir entry in the range to the minimal rec_len. 1874 * Returns pointer to last entry in range. 1875 */ 1876 static struct ext4_dir_entry_2 *dx_pack_dirents(struct inode *dir, char *base, 1877 unsigned int blocksize) 1878 { 1879 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base; 1880 unsigned rec_len = 0; 1881 1882 prev = to = de; 1883 while ((char*)de < base + blocksize) { 1884 next = ext4_next_entry(de, blocksize); 1885 if (de->inode && de->name_len) { 1886 rec_len = ext4_dir_rec_len(de->name_len, dir); 1887 if (de > to) 1888 memmove(to, de, rec_len); 1889 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize); 1890 prev = to; 1891 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len); 1892 } 1893 de = next; 1894 } 1895 return prev; 1896 } 1897 1898 /* 1899 * Split a full leaf block to make room for a new dir entry. 1900 * Allocate a new block, and move entries so that they are approx. equally full. 1901 * Returns pointer to de in block into which the new entry will be inserted. 1902 */ 1903 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir, 1904 struct buffer_head **bh,struct dx_frame *frame, 1905 struct dx_hash_info *hinfo) 1906 { 1907 unsigned blocksize = dir->i_sb->s_blocksize; 1908 unsigned count, continued; 1909 struct buffer_head *bh2; 1910 ext4_lblk_t newblock; 1911 u32 hash2; 1912 struct dx_map_entry *map; 1913 char *data1 = (*bh)->b_data, *data2; 1914 unsigned split, move, size; 1915 struct ext4_dir_entry_2 *de = NULL, *de2; 1916 int csum_size = 0; 1917 int err = 0, i; 1918 1919 if (ext4_has_metadata_csum(dir->i_sb)) 1920 csum_size = sizeof(struct ext4_dir_entry_tail); 1921 1922 bh2 = ext4_append(handle, dir, &newblock); 1923 if (IS_ERR(bh2)) { 1924 brelse(*bh); 1925 *bh = NULL; 1926 return (struct ext4_dir_entry_2 *) bh2; 1927 } 1928 1929 BUFFER_TRACE(*bh, "get_write_access"); 1930 err = ext4_journal_get_write_access(handle, *bh); 1931 if (err) 1932 goto journal_error; 1933 1934 BUFFER_TRACE(frame->bh, "get_write_access"); 1935 err = ext4_journal_get_write_access(handle, frame->bh); 1936 if (err) 1937 goto journal_error; 1938 1939 data2 = bh2->b_data; 1940 1941 /* create map in the end of data2 block */ 1942 map = (struct dx_map_entry *) (data2 + blocksize); 1943 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1, 1944 blocksize, hinfo, map); 1945 map -= count; 1946 dx_sort_map(map, count); 1947 /* Ensure that neither split block is over half full */ 1948 size = 0; 1949 move = 0; 1950 for (i = count-1; i >= 0; i--) { 1951 /* is more than half of this entry in 2nd half of the block? */ 1952 if (size + map[i].size/2 > blocksize/2) 1953 break; 1954 size += map[i].size; 1955 move++; 1956 } 1957 /* 1958 * map index at which we will split 1959 * 1960 * If the sum of active entries didn't exceed half the block size, just 1961 * split it in half by count; each resulting block will have at least 1962 * half the space free. 1963 */ 1964 if (i > 0) 1965 split = count - move; 1966 else 1967 split = count/2; 1968 1969 hash2 = map[split].hash; 1970 continued = hash2 == map[split - 1].hash; 1971 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n", 1972 (unsigned long)dx_get_block(frame->at), 1973 hash2, split, count-split)); 1974 1975 /* Fancy dance to stay within two buffers */ 1976 de2 = dx_move_dirents(dir, data1, data2, map + split, count - split, 1977 blocksize); 1978 de = dx_pack_dirents(dir, data1, blocksize); 1979 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 1980 (char *) de, 1981 blocksize); 1982 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) - 1983 (char *) de2, 1984 blocksize); 1985 if (csum_size) { 1986 ext4_initialize_dirent_tail(*bh, blocksize); 1987 ext4_initialize_dirent_tail(bh2, blocksize); 1988 } 1989 1990 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1, 1991 blocksize, 1)); 1992 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2, 1993 blocksize, 1)); 1994 1995 /* Which block gets the new entry? */ 1996 if (hinfo->hash >= hash2) { 1997 swap(*bh, bh2); 1998 de = de2; 1999 } 2000 dx_insert_block(frame, hash2 + continued, newblock); 2001 err = ext4_handle_dirty_dirblock(handle, dir, bh2); 2002 if (err) 2003 goto journal_error; 2004 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 2005 if (err) 2006 goto journal_error; 2007 brelse(bh2); 2008 dxtrace(dx_show_index("frame", frame->entries)); 2009 return de; 2010 2011 journal_error: 2012 brelse(*bh); 2013 brelse(bh2); 2014 *bh = NULL; 2015 ext4_std_error(dir->i_sb, err); 2016 return ERR_PTR(err); 2017 } 2018 2019 int ext4_find_dest_de(struct inode *dir, struct inode *inode, 2020 struct buffer_head *bh, 2021 void *buf, int buf_size, 2022 struct ext4_filename *fname, 2023 struct ext4_dir_entry_2 **dest_de) 2024 { 2025 struct ext4_dir_entry_2 *de; 2026 unsigned short reclen = ext4_dir_rec_len(fname_len(fname), dir); 2027 int nlen, rlen; 2028 unsigned int offset = 0; 2029 char *top; 2030 2031 de = (struct ext4_dir_entry_2 *)buf; 2032 top = buf + buf_size - reclen; 2033 while ((char *) de <= top) { 2034 if (ext4_check_dir_entry(dir, NULL, de, bh, 2035 buf, buf_size, offset)) 2036 return -EFSCORRUPTED; 2037 if (ext4_match(dir, fname, de)) 2038 return -EEXIST; 2039 nlen = ext4_dir_rec_len(de->name_len, dir); 2040 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 2041 if ((de->inode ? rlen - nlen : rlen) >= reclen) 2042 break; 2043 de = (struct ext4_dir_entry_2 *)((char *)de + rlen); 2044 offset += rlen; 2045 } 2046 if ((char *) de > top) 2047 return -ENOSPC; 2048 2049 *dest_de = de; 2050 return 0; 2051 } 2052 2053 void ext4_insert_dentry(struct inode *dir, 2054 struct inode *inode, 2055 struct ext4_dir_entry_2 *de, 2056 int buf_size, 2057 struct ext4_filename *fname) 2058 { 2059 2060 int nlen, rlen; 2061 2062 nlen = ext4_dir_rec_len(de->name_len, dir); 2063 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 2064 if (de->inode) { 2065 struct ext4_dir_entry_2 *de1 = 2066 (struct ext4_dir_entry_2 *)((char *)de + nlen); 2067 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size); 2068 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size); 2069 de = de1; 2070 } 2071 de->file_type = EXT4_FT_UNKNOWN; 2072 de->inode = cpu_to_le32(inode->i_ino); 2073 ext4_set_de_type(inode->i_sb, de, inode->i_mode); 2074 de->name_len = fname_len(fname); 2075 memcpy(de->name, fname_name(fname), fname_len(fname)); 2076 if (ext4_hash_in_dirent(dir)) { 2077 struct dx_hash_info *hinfo = &fname->hinfo; 2078 2079 EXT4_DIRENT_HASHES(de)->hash = cpu_to_le32(hinfo->hash); 2080 EXT4_DIRENT_HASHES(de)->minor_hash = 2081 cpu_to_le32(hinfo->minor_hash); 2082 } 2083 } 2084 2085 /* 2086 * Add a new entry into a directory (leaf) block. If de is non-NULL, 2087 * it points to a directory entry which is guaranteed to be large 2088 * enough for new directory entry. If de is NULL, then 2089 * add_dirent_to_buf will attempt search the directory block for 2090 * space. It will return -ENOSPC if no space is available, and -EIO 2091 * and -EEXIST if directory entry already exists. 2092 */ 2093 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname, 2094 struct inode *dir, 2095 struct inode *inode, struct ext4_dir_entry_2 *de, 2096 struct buffer_head *bh) 2097 { 2098 unsigned int blocksize = dir->i_sb->s_blocksize; 2099 int csum_size = 0; 2100 int err, err2; 2101 2102 if (ext4_has_metadata_csum(inode->i_sb)) 2103 csum_size = sizeof(struct ext4_dir_entry_tail); 2104 2105 if (!de) { 2106 err = ext4_find_dest_de(dir, inode, bh, bh->b_data, 2107 blocksize - csum_size, fname, &de); 2108 if (err) 2109 return err; 2110 } 2111 BUFFER_TRACE(bh, "get_write_access"); 2112 err = ext4_journal_get_write_access(handle, bh); 2113 if (err) { 2114 ext4_std_error(dir->i_sb, err); 2115 return err; 2116 } 2117 2118 /* By now the buffer is marked for journaling */ 2119 ext4_insert_dentry(dir, inode, de, blocksize, fname); 2120 2121 /* 2122 * XXX shouldn't update any times until successful 2123 * completion of syscall, but too many callers depend 2124 * on this. 2125 * 2126 * XXX similarly, too many callers depend on 2127 * ext4_new_inode() setting the times, but error 2128 * recovery deletes the inode, so the worst that can 2129 * happen is that the times are slightly out of date 2130 * and/or different from the directory change time. 2131 */ 2132 dir->i_mtime = dir->i_ctime = current_time(dir); 2133 ext4_update_dx_flag(dir); 2134 inode_inc_iversion(dir); 2135 err2 = ext4_mark_inode_dirty(handle, dir); 2136 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 2137 err = ext4_handle_dirty_dirblock(handle, dir, bh); 2138 if (err) 2139 ext4_std_error(dir->i_sb, err); 2140 return err ? err : err2; 2141 } 2142 2143 /* 2144 * This converts a one block unindexed directory to a 3 block indexed 2145 * directory, and adds the dentry to the indexed directory. 2146 */ 2147 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname, 2148 struct inode *dir, 2149 struct inode *inode, struct buffer_head *bh) 2150 { 2151 struct buffer_head *bh2; 2152 struct dx_root *root; 2153 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 2154 struct dx_entry *entries; 2155 struct ext4_dir_entry_2 *de, *de2; 2156 char *data2, *top; 2157 unsigned len; 2158 int retval; 2159 unsigned blocksize; 2160 ext4_lblk_t block; 2161 struct fake_dirent *fde; 2162 int csum_size = 0; 2163 2164 if (ext4_has_metadata_csum(inode->i_sb)) 2165 csum_size = sizeof(struct ext4_dir_entry_tail); 2166 2167 blocksize = dir->i_sb->s_blocksize; 2168 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino)); 2169 BUFFER_TRACE(bh, "get_write_access"); 2170 retval = ext4_journal_get_write_access(handle, bh); 2171 if (retval) { 2172 ext4_std_error(dir->i_sb, retval); 2173 brelse(bh); 2174 return retval; 2175 } 2176 root = (struct dx_root *) bh->b_data; 2177 2178 /* The 0th block becomes the root, move the dirents out */ 2179 fde = &root->dotdot; 2180 de = (struct ext4_dir_entry_2 *)((char *)fde + 2181 ext4_rec_len_from_disk(fde->rec_len, blocksize)); 2182 if ((char *) de >= (((char *) root) + blocksize)) { 2183 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'"); 2184 brelse(bh); 2185 return -EFSCORRUPTED; 2186 } 2187 len = ((char *) root) + (blocksize - csum_size) - (char *) de; 2188 2189 /* Allocate new block for the 0th block's dirents */ 2190 bh2 = ext4_append(handle, dir, &block); 2191 if (IS_ERR(bh2)) { 2192 brelse(bh); 2193 return PTR_ERR(bh2); 2194 } 2195 ext4_set_inode_flag(dir, EXT4_INODE_INDEX); 2196 data2 = bh2->b_data; 2197 2198 memcpy(data2, de, len); 2199 memset(de, 0, len); /* wipe old data */ 2200 de = (struct ext4_dir_entry_2 *) data2; 2201 top = data2 + len; 2202 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top) 2203 de = de2; 2204 de->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) - 2205 (char *) de, blocksize); 2206 2207 if (csum_size) 2208 ext4_initialize_dirent_tail(bh2, blocksize); 2209 2210 /* Initialize the root; the dot dirents already exist */ 2211 de = (struct ext4_dir_entry_2 *) (&root->dotdot); 2212 de->rec_len = ext4_rec_len_to_disk( 2213 blocksize - ext4_dir_rec_len(2, NULL), blocksize); 2214 memset (&root->info, 0, sizeof(root->info)); 2215 root->info.info_length = sizeof(root->info); 2216 if (ext4_hash_in_dirent(dir)) 2217 root->info.hash_version = DX_HASH_SIPHASH; 2218 else 2219 root->info.hash_version = 2220 EXT4_SB(dir->i_sb)->s_def_hash_version; 2221 2222 entries = root->entries; 2223 dx_set_block(entries, 1); 2224 dx_set_count(entries, 1); 2225 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info))); 2226 2227 /* Initialize as for dx_probe */ 2228 fname->hinfo.hash_version = root->info.hash_version; 2229 if (fname->hinfo.hash_version <= DX_HASH_TEA) 2230 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 2231 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 2232 2233 /* casefolded encrypted hashes are computed on fname setup */ 2234 if (!ext4_hash_in_dirent(dir)) 2235 ext4fs_dirhash(dir, fname_name(fname), 2236 fname_len(fname), &fname->hinfo); 2237 2238 memset(frames, 0, sizeof(frames)); 2239 frame = frames; 2240 frame->entries = entries; 2241 frame->at = entries; 2242 frame->bh = bh; 2243 2244 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 2245 if (retval) 2246 goto out_frames; 2247 retval = ext4_handle_dirty_dirblock(handle, dir, bh2); 2248 if (retval) 2249 goto out_frames; 2250 2251 de = do_split(handle,dir, &bh2, frame, &fname->hinfo); 2252 if (IS_ERR(de)) { 2253 retval = PTR_ERR(de); 2254 goto out_frames; 2255 } 2256 2257 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2); 2258 out_frames: 2259 /* 2260 * Even if the block split failed, we have to properly write 2261 * out all the changes we did so far. Otherwise we can end up 2262 * with corrupted filesystem. 2263 */ 2264 if (retval) 2265 ext4_mark_inode_dirty(handle, dir); 2266 dx_release(frames); 2267 brelse(bh2); 2268 return retval; 2269 } 2270 2271 /* 2272 * ext4_add_entry() 2273 * 2274 * adds a file entry to the specified directory, using the same 2275 * semantics as ext4_find_entry(). It returns NULL if it failed. 2276 * 2277 * NOTE!! The inode part of 'de' is left at 0 - which means you 2278 * may not sleep between calling this and putting something into 2279 * the entry, as someone else might have used it while you slept. 2280 */ 2281 static int ext4_add_entry(handle_t *handle, struct dentry *dentry, 2282 struct inode *inode) 2283 { 2284 struct inode *dir = d_inode(dentry->d_parent); 2285 struct buffer_head *bh = NULL; 2286 struct ext4_dir_entry_2 *de; 2287 struct super_block *sb; 2288 struct ext4_filename fname; 2289 int retval; 2290 int dx_fallback=0; 2291 unsigned blocksize; 2292 ext4_lblk_t block, blocks; 2293 int csum_size = 0; 2294 2295 if (ext4_has_metadata_csum(inode->i_sb)) 2296 csum_size = sizeof(struct ext4_dir_entry_tail); 2297 2298 sb = dir->i_sb; 2299 blocksize = sb->s_blocksize; 2300 if (!dentry->d_name.len) 2301 return -EINVAL; 2302 2303 if (fscrypt_is_nokey_name(dentry)) 2304 return -ENOKEY; 2305 2306 #ifdef CONFIG_UNICODE 2307 if (sb_has_strict_encoding(sb) && IS_CASEFOLDED(dir) && 2308 sb->s_encoding && utf8_validate(sb->s_encoding, &dentry->d_name)) 2309 return -EINVAL; 2310 #endif 2311 2312 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname); 2313 if (retval) 2314 return retval; 2315 2316 if (ext4_has_inline_data(dir)) { 2317 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode); 2318 if (retval < 0) 2319 goto out; 2320 if (retval == 1) { 2321 retval = 0; 2322 goto out; 2323 } 2324 } 2325 2326 if (is_dx(dir)) { 2327 retval = ext4_dx_add_entry(handle, &fname, dir, inode); 2328 if (!retval || (retval != ERR_BAD_DX_DIR)) 2329 goto out; 2330 /* Can we just ignore htree data? */ 2331 if (ext4_has_metadata_csum(sb)) { 2332 EXT4_ERROR_INODE(dir, 2333 "Directory has corrupted htree index."); 2334 retval = -EFSCORRUPTED; 2335 goto out; 2336 } 2337 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX); 2338 dx_fallback++; 2339 retval = ext4_mark_inode_dirty(handle, dir); 2340 if (unlikely(retval)) 2341 goto out; 2342 } 2343 blocks = dir->i_size >> sb->s_blocksize_bits; 2344 for (block = 0; block < blocks; block++) { 2345 bh = ext4_read_dirblock(dir, block, DIRENT); 2346 if (bh == NULL) { 2347 bh = ext4_bread(handle, dir, block, 2348 EXT4_GET_BLOCKS_CREATE); 2349 goto add_to_new_block; 2350 } 2351 if (IS_ERR(bh)) { 2352 retval = PTR_ERR(bh); 2353 bh = NULL; 2354 goto out; 2355 } 2356 retval = add_dirent_to_buf(handle, &fname, dir, inode, 2357 NULL, bh); 2358 if (retval != -ENOSPC) 2359 goto out; 2360 2361 if (blocks == 1 && !dx_fallback && 2362 ext4_has_feature_dir_index(sb)) { 2363 retval = make_indexed_dir(handle, &fname, dir, 2364 inode, bh); 2365 bh = NULL; /* make_indexed_dir releases bh */ 2366 goto out; 2367 } 2368 brelse(bh); 2369 } 2370 bh = ext4_append(handle, dir, &block); 2371 add_to_new_block: 2372 if (IS_ERR(bh)) { 2373 retval = PTR_ERR(bh); 2374 bh = NULL; 2375 goto out; 2376 } 2377 de = (struct ext4_dir_entry_2 *) bh->b_data; 2378 de->inode = 0; 2379 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize); 2380 2381 if (csum_size) 2382 ext4_initialize_dirent_tail(bh, blocksize); 2383 2384 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh); 2385 out: 2386 ext4_fname_free_filename(&fname); 2387 brelse(bh); 2388 if (retval == 0) 2389 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY); 2390 return retval; 2391 } 2392 2393 /* 2394 * Returns 0 for success, or a negative error value 2395 */ 2396 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 2397 struct inode *dir, struct inode *inode) 2398 { 2399 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 2400 struct dx_entry *entries, *at; 2401 struct buffer_head *bh; 2402 struct super_block *sb = dir->i_sb; 2403 struct ext4_dir_entry_2 *de; 2404 int restart; 2405 int err; 2406 2407 again: 2408 restart = 0; 2409 frame = dx_probe(fname, dir, NULL, frames); 2410 if (IS_ERR(frame)) 2411 return PTR_ERR(frame); 2412 entries = frame->entries; 2413 at = frame->at; 2414 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT_HTREE); 2415 if (IS_ERR(bh)) { 2416 err = PTR_ERR(bh); 2417 bh = NULL; 2418 goto cleanup; 2419 } 2420 2421 BUFFER_TRACE(bh, "get_write_access"); 2422 err = ext4_journal_get_write_access(handle, bh); 2423 if (err) 2424 goto journal_error; 2425 2426 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh); 2427 if (err != -ENOSPC) 2428 goto cleanup; 2429 2430 err = 0; 2431 /* Block full, should compress but for now just split */ 2432 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n", 2433 dx_get_count(entries), dx_get_limit(entries))); 2434 /* Need to split index? */ 2435 if (dx_get_count(entries) == dx_get_limit(entries)) { 2436 ext4_lblk_t newblock; 2437 int levels = frame - frames + 1; 2438 unsigned int icount; 2439 int add_level = 1; 2440 struct dx_entry *entries2; 2441 struct dx_node *node2; 2442 struct buffer_head *bh2; 2443 2444 while (frame > frames) { 2445 if (dx_get_count((frame - 1)->entries) < 2446 dx_get_limit((frame - 1)->entries)) { 2447 add_level = 0; 2448 break; 2449 } 2450 frame--; /* split higher index block */ 2451 at = frame->at; 2452 entries = frame->entries; 2453 restart = 1; 2454 } 2455 if (add_level && levels == ext4_dir_htree_level(sb)) { 2456 ext4_warning(sb, "Directory (ino: %lu) index full, " 2457 "reach max htree level :%d", 2458 dir->i_ino, levels); 2459 if (ext4_dir_htree_level(sb) < EXT4_HTREE_LEVEL) { 2460 ext4_warning(sb, "Large directory feature is " 2461 "not enabled on this " 2462 "filesystem"); 2463 } 2464 err = -ENOSPC; 2465 goto cleanup; 2466 } 2467 icount = dx_get_count(entries); 2468 bh2 = ext4_append(handle, dir, &newblock); 2469 if (IS_ERR(bh2)) { 2470 err = PTR_ERR(bh2); 2471 goto cleanup; 2472 } 2473 node2 = (struct dx_node *)(bh2->b_data); 2474 entries2 = node2->entries; 2475 memset(&node2->fake, 0, sizeof(struct fake_dirent)); 2476 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize, 2477 sb->s_blocksize); 2478 BUFFER_TRACE(frame->bh, "get_write_access"); 2479 err = ext4_journal_get_write_access(handle, frame->bh); 2480 if (err) 2481 goto journal_error; 2482 if (!add_level) { 2483 unsigned icount1 = icount/2, icount2 = icount - icount1; 2484 unsigned hash2 = dx_get_hash(entries + icount1); 2485 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n", 2486 icount1, icount2)); 2487 2488 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */ 2489 err = ext4_journal_get_write_access(handle, 2490 (frame - 1)->bh); 2491 if (err) 2492 goto journal_error; 2493 2494 memcpy((char *) entries2, (char *) (entries + icount1), 2495 icount2 * sizeof(struct dx_entry)); 2496 dx_set_count(entries, icount1); 2497 dx_set_count(entries2, icount2); 2498 dx_set_limit(entries2, dx_node_limit(dir)); 2499 2500 /* Which index block gets the new entry? */ 2501 if (at - entries >= icount1) { 2502 frame->at = at - entries - icount1 + entries2; 2503 frame->entries = entries = entries2; 2504 swap(frame->bh, bh2); 2505 } 2506 dx_insert_block((frame - 1), hash2, newblock); 2507 dxtrace(dx_show_index("node", frame->entries)); 2508 dxtrace(dx_show_index("node", 2509 ((struct dx_node *) bh2->b_data)->entries)); 2510 err = ext4_handle_dirty_dx_node(handle, dir, bh2); 2511 if (err) 2512 goto journal_error; 2513 brelse (bh2); 2514 err = ext4_handle_dirty_dx_node(handle, dir, 2515 (frame - 1)->bh); 2516 if (err) 2517 goto journal_error; 2518 err = ext4_handle_dirty_dx_node(handle, dir, 2519 frame->bh); 2520 if (err) 2521 goto journal_error; 2522 } else { 2523 struct dx_root *dxroot; 2524 memcpy((char *) entries2, (char *) entries, 2525 icount * sizeof(struct dx_entry)); 2526 dx_set_limit(entries2, dx_node_limit(dir)); 2527 2528 /* Set up root */ 2529 dx_set_count(entries, 1); 2530 dx_set_block(entries + 0, newblock); 2531 dxroot = (struct dx_root *)frames[0].bh->b_data; 2532 dxroot->info.indirect_levels += 1; 2533 dxtrace(printk(KERN_DEBUG 2534 "Creating %d level index...\n", 2535 dxroot->info.indirect_levels)); 2536 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 2537 if (err) 2538 goto journal_error; 2539 err = ext4_handle_dirty_dx_node(handle, dir, bh2); 2540 brelse(bh2); 2541 restart = 1; 2542 goto journal_error; 2543 } 2544 } 2545 de = do_split(handle, dir, &bh, frame, &fname->hinfo); 2546 if (IS_ERR(de)) { 2547 err = PTR_ERR(de); 2548 goto cleanup; 2549 } 2550 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh); 2551 goto cleanup; 2552 2553 journal_error: 2554 ext4_std_error(dir->i_sb, err); /* this is a no-op if err == 0 */ 2555 cleanup: 2556 brelse(bh); 2557 dx_release(frames); 2558 /* @restart is true means htree-path has been changed, we need to 2559 * repeat dx_probe() to find out valid htree-path 2560 */ 2561 if (restart && err == 0) 2562 goto again; 2563 return err; 2564 } 2565 2566 /* 2567 * ext4_generic_delete_entry deletes a directory entry by merging it 2568 * with the previous entry 2569 */ 2570 int ext4_generic_delete_entry(struct inode *dir, 2571 struct ext4_dir_entry_2 *de_del, 2572 struct buffer_head *bh, 2573 void *entry_buf, 2574 int buf_size, 2575 int csum_size) 2576 { 2577 struct ext4_dir_entry_2 *de, *pde; 2578 unsigned int blocksize = dir->i_sb->s_blocksize; 2579 int i; 2580 2581 i = 0; 2582 pde = NULL; 2583 de = (struct ext4_dir_entry_2 *)entry_buf; 2584 while (i < buf_size - csum_size) { 2585 if (ext4_check_dir_entry(dir, NULL, de, bh, 2586 entry_buf, buf_size, i)) 2587 return -EFSCORRUPTED; 2588 if (de == de_del) { 2589 if (pde) { 2590 pde->rec_len = ext4_rec_len_to_disk( 2591 ext4_rec_len_from_disk(pde->rec_len, 2592 blocksize) + 2593 ext4_rec_len_from_disk(de->rec_len, 2594 blocksize), 2595 blocksize); 2596 2597 /* wipe entire dir_entry */ 2598 memset(de, 0, ext4_rec_len_from_disk(de->rec_len, 2599 blocksize)); 2600 } else { 2601 /* wipe dir_entry excluding the rec_len field */ 2602 de->inode = 0; 2603 memset(&de->name_len, 0, 2604 ext4_rec_len_from_disk(de->rec_len, 2605 blocksize) - 2606 offsetof(struct ext4_dir_entry_2, 2607 name_len)); 2608 } 2609 2610 inode_inc_iversion(dir); 2611 return 0; 2612 } 2613 i += ext4_rec_len_from_disk(de->rec_len, blocksize); 2614 pde = de; 2615 de = ext4_next_entry(de, blocksize); 2616 } 2617 return -ENOENT; 2618 } 2619 2620 static int ext4_delete_entry(handle_t *handle, 2621 struct inode *dir, 2622 struct ext4_dir_entry_2 *de_del, 2623 struct buffer_head *bh) 2624 { 2625 int err, csum_size = 0; 2626 2627 if (ext4_has_inline_data(dir)) { 2628 int has_inline_data = 1; 2629 err = ext4_delete_inline_entry(handle, dir, de_del, bh, 2630 &has_inline_data); 2631 if (has_inline_data) 2632 return err; 2633 } 2634 2635 if (ext4_has_metadata_csum(dir->i_sb)) 2636 csum_size = sizeof(struct ext4_dir_entry_tail); 2637 2638 BUFFER_TRACE(bh, "get_write_access"); 2639 err = ext4_journal_get_write_access(handle, bh); 2640 if (unlikely(err)) 2641 goto out; 2642 2643 err = ext4_generic_delete_entry(dir, de_del, bh, bh->b_data, 2644 dir->i_sb->s_blocksize, csum_size); 2645 if (err) 2646 goto out; 2647 2648 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 2649 err = ext4_handle_dirty_dirblock(handle, dir, bh); 2650 if (unlikely(err)) 2651 goto out; 2652 2653 return 0; 2654 out: 2655 if (err != -ENOENT) 2656 ext4_std_error(dir->i_sb, err); 2657 return err; 2658 } 2659 2660 /* 2661 * Set directory link count to 1 if nlinks > EXT4_LINK_MAX, or if nlinks == 2 2662 * since this indicates that nlinks count was previously 1 to avoid overflowing 2663 * the 16-bit i_links_count field on disk. Directories with i_nlink == 1 mean 2664 * that subdirectory link counts are not being maintained accurately. 2665 * 2666 * The caller has already checked for i_nlink overflow in case the DIR_LINK 2667 * feature is not enabled and returned -EMLINK. The is_dx() check is a proxy 2668 * for checking S_ISDIR(inode) (since the INODE_INDEX feature will not be set 2669 * on regular files) and to avoid creating huge/slow non-HTREE directories. 2670 */ 2671 static void ext4_inc_count(struct inode *inode) 2672 { 2673 inc_nlink(inode); 2674 if (is_dx(inode) && 2675 (inode->i_nlink > EXT4_LINK_MAX || inode->i_nlink == 2)) 2676 set_nlink(inode, 1); 2677 } 2678 2679 /* 2680 * If a directory had nlink == 1, then we should let it be 1. This indicates 2681 * directory has >EXT4_LINK_MAX subdirs. 2682 */ 2683 static void ext4_dec_count(struct inode *inode) 2684 { 2685 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2) 2686 drop_nlink(inode); 2687 } 2688 2689 2690 /* 2691 * Add non-directory inode to a directory. On success, the inode reference is 2692 * consumed by dentry is instantiation. This is also indicated by clearing of 2693 * *inodep pointer. On failure, the caller is responsible for dropping the 2694 * inode reference in the safe context. 2695 */ 2696 static int ext4_add_nondir(handle_t *handle, 2697 struct dentry *dentry, struct inode **inodep) 2698 { 2699 struct inode *dir = d_inode(dentry->d_parent); 2700 struct inode *inode = *inodep; 2701 int err = ext4_add_entry(handle, dentry, inode); 2702 if (!err) { 2703 err = ext4_mark_inode_dirty(handle, inode); 2704 if (IS_DIRSYNC(dir)) 2705 ext4_handle_sync(handle); 2706 d_instantiate_new(dentry, inode); 2707 *inodep = NULL; 2708 return err; 2709 } 2710 drop_nlink(inode); 2711 ext4_orphan_add(handle, inode); 2712 unlock_new_inode(inode); 2713 return err; 2714 } 2715 2716 /* 2717 * By the time this is called, we already have created 2718 * the directory cache entry for the new file, but it 2719 * is so far negative - it has no inode. 2720 * 2721 * If the create succeeds, we fill in the inode information 2722 * with d_instantiate(). 2723 */ 2724 static int ext4_create(struct user_namespace *mnt_userns, struct inode *dir, 2725 struct dentry *dentry, umode_t mode, bool excl) 2726 { 2727 handle_t *handle; 2728 struct inode *inode; 2729 int err, credits, retries = 0; 2730 2731 err = dquot_initialize(dir); 2732 if (err) 2733 return err; 2734 2735 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2736 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2737 retry: 2738 inode = ext4_new_inode_start_handle(mnt_userns, dir, mode, &dentry->d_name, 2739 0, NULL, EXT4_HT_DIR, credits); 2740 handle = ext4_journal_current_handle(); 2741 err = PTR_ERR(inode); 2742 if (!IS_ERR(inode)) { 2743 inode->i_op = &ext4_file_inode_operations; 2744 inode->i_fop = &ext4_file_operations; 2745 ext4_set_aops(inode); 2746 err = ext4_add_nondir(handle, dentry, &inode); 2747 if (!err) 2748 ext4_fc_track_create(handle, dentry); 2749 } 2750 if (handle) 2751 ext4_journal_stop(handle); 2752 if (!IS_ERR_OR_NULL(inode)) 2753 iput(inode); 2754 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2755 goto retry; 2756 return err; 2757 } 2758 2759 static int ext4_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2760 struct dentry *dentry, umode_t mode, dev_t rdev) 2761 { 2762 handle_t *handle; 2763 struct inode *inode; 2764 int err, credits, retries = 0; 2765 2766 err = dquot_initialize(dir); 2767 if (err) 2768 return err; 2769 2770 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2771 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2772 retry: 2773 inode = ext4_new_inode_start_handle(mnt_userns, dir, mode, &dentry->d_name, 2774 0, NULL, EXT4_HT_DIR, credits); 2775 handle = ext4_journal_current_handle(); 2776 err = PTR_ERR(inode); 2777 if (!IS_ERR(inode)) { 2778 init_special_inode(inode, inode->i_mode, rdev); 2779 inode->i_op = &ext4_special_inode_operations; 2780 err = ext4_add_nondir(handle, dentry, &inode); 2781 if (!err) 2782 ext4_fc_track_create(handle, dentry); 2783 } 2784 if (handle) 2785 ext4_journal_stop(handle); 2786 if (!IS_ERR_OR_NULL(inode)) 2787 iput(inode); 2788 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2789 goto retry; 2790 return err; 2791 } 2792 2793 static int ext4_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2794 struct dentry *dentry, umode_t mode) 2795 { 2796 handle_t *handle; 2797 struct inode *inode; 2798 int err, retries = 0; 2799 2800 err = dquot_initialize(dir); 2801 if (err) 2802 return err; 2803 2804 retry: 2805 inode = ext4_new_inode_start_handle(mnt_userns, dir, mode, 2806 NULL, 0, NULL, 2807 EXT4_HT_DIR, 2808 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 2809 4 + EXT4_XATTR_TRANS_BLOCKS); 2810 handle = ext4_journal_current_handle(); 2811 err = PTR_ERR(inode); 2812 if (!IS_ERR(inode)) { 2813 inode->i_op = &ext4_file_inode_operations; 2814 inode->i_fop = &ext4_file_operations; 2815 ext4_set_aops(inode); 2816 d_tmpfile(dentry, inode); 2817 err = ext4_orphan_add(handle, inode); 2818 if (err) 2819 goto err_unlock_inode; 2820 mark_inode_dirty(inode); 2821 unlock_new_inode(inode); 2822 } 2823 if (handle) 2824 ext4_journal_stop(handle); 2825 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2826 goto retry; 2827 return err; 2828 err_unlock_inode: 2829 ext4_journal_stop(handle); 2830 unlock_new_inode(inode); 2831 return err; 2832 } 2833 2834 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode, 2835 struct ext4_dir_entry_2 *de, 2836 int blocksize, int csum_size, 2837 unsigned int parent_ino, int dotdot_real_len) 2838 { 2839 de->inode = cpu_to_le32(inode->i_ino); 2840 de->name_len = 1; 2841 de->rec_len = ext4_rec_len_to_disk(ext4_dir_rec_len(de->name_len, NULL), 2842 blocksize); 2843 strcpy(de->name, "."); 2844 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2845 2846 de = ext4_next_entry(de, blocksize); 2847 de->inode = cpu_to_le32(parent_ino); 2848 de->name_len = 2; 2849 if (!dotdot_real_len) 2850 de->rec_len = ext4_rec_len_to_disk(blocksize - 2851 (csum_size + ext4_dir_rec_len(1, NULL)), 2852 blocksize); 2853 else 2854 de->rec_len = ext4_rec_len_to_disk( 2855 ext4_dir_rec_len(de->name_len, NULL), 2856 blocksize); 2857 strcpy(de->name, ".."); 2858 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2859 2860 return ext4_next_entry(de, blocksize); 2861 } 2862 2863 int ext4_init_new_dir(handle_t *handle, struct inode *dir, 2864 struct inode *inode) 2865 { 2866 struct buffer_head *dir_block = NULL; 2867 struct ext4_dir_entry_2 *de; 2868 ext4_lblk_t block = 0; 2869 unsigned int blocksize = dir->i_sb->s_blocksize; 2870 int csum_size = 0; 2871 int err; 2872 2873 if (ext4_has_metadata_csum(dir->i_sb)) 2874 csum_size = sizeof(struct ext4_dir_entry_tail); 2875 2876 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2877 err = ext4_try_create_inline_dir(handle, dir, inode); 2878 if (err < 0 && err != -ENOSPC) 2879 goto out; 2880 if (!err) 2881 goto out; 2882 } 2883 2884 inode->i_size = 0; 2885 dir_block = ext4_append(handle, inode, &block); 2886 if (IS_ERR(dir_block)) 2887 return PTR_ERR(dir_block); 2888 de = (struct ext4_dir_entry_2 *)dir_block->b_data; 2889 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0); 2890 set_nlink(inode, 2); 2891 if (csum_size) 2892 ext4_initialize_dirent_tail(dir_block, blocksize); 2893 2894 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata"); 2895 err = ext4_handle_dirty_dirblock(handle, inode, dir_block); 2896 if (err) 2897 goto out; 2898 set_buffer_verified(dir_block); 2899 out: 2900 brelse(dir_block); 2901 return err; 2902 } 2903 2904 static int ext4_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2905 struct dentry *dentry, umode_t mode) 2906 { 2907 handle_t *handle; 2908 struct inode *inode; 2909 int err, err2 = 0, credits, retries = 0; 2910 2911 if (EXT4_DIR_LINK_MAX(dir)) 2912 return -EMLINK; 2913 2914 err = dquot_initialize(dir); 2915 if (err) 2916 return err; 2917 2918 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2919 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2920 retry: 2921 inode = ext4_new_inode_start_handle(mnt_userns, dir, S_IFDIR | mode, 2922 &dentry->d_name, 2923 0, NULL, EXT4_HT_DIR, credits); 2924 handle = ext4_journal_current_handle(); 2925 err = PTR_ERR(inode); 2926 if (IS_ERR(inode)) 2927 goto out_stop; 2928 2929 inode->i_op = &ext4_dir_inode_operations; 2930 inode->i_fop = &ext4_dir_operations; 2931 err = ext4_init_new_dir(handle, dir, inode); 2932 if (err) 2933 goto out_clear_inode; 2934 err = ext4_mark_inode_dirty(handle, inode); 2935 if (!err) 2936 err = ext4_add_entry(handle, dentry, inode); 2937 if (err) { 2938 out_clear_inode: 2939 clear_nlink(inode); 2940 ext4_orphan_add(handle, inode); 2941 unlock_new_inode(inode); 2942 err2 = ext4_mark_inode_dirty(handle, inode); 2943 if (unlikely(err2)) 2944 err = err2; 2945 ext4_journal_stop(handle); 2946 iput(inode); 2947 goto out_retry; 2948 } 2949 ext4_inc_count(dir); 2950 2951 ext4_update_dx_flag(dir); 2952 err = ext4_mark_inode_dirty(handle, dir); 2953 if (err) 2954 goto out_clear_inode; 2955 d_instantiate_new(dentry, inode); 2956 ext4_fc_track_create(handle, dentry); 2957 if (IS_DIRSYNC(dir)) 2958 ext4_handle_sync(handle); 2959 2960 out_stop: 2961 if (handle) 2962 ext4_journal_stop(handle); 2963 out_retry: 2964 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2965 goto retry; 2966 return err; 2967 } 2968 2969 /* 2970 * routine to check that the specified directory is empty (for rmdir) 2971 */ 2972 bool ext4_empty_dir(struct inode *inode) 2973 { 2974 unsigned int offset; 2975 struct buffer_head *bh; 2976 struct ext4_dir_entry_2 *de; 2977 struct super_block *sb; 2978 2979 if (ext4_has_inline_data(inode)) { 2980 int has_inline_data = 1; 2981 int ret; 2982 2983 ret = empty_inline_dir(inode, &has_inline_data); 2984 if (has_inline_data) 2985 return ret; 2986 } 2987 2988 sb = inode->i_sb; 2989 if (inode->i_size < ext4_dir_rec_len(1, NULL) + 2990 ext4_dir_rec_len(2, NULL)) { 2991 EXT4_ERROR_INODE(inode, "invalid size"); 2992 return true; 2993 } 2994 /* The first directory block must not be a hole, 2995 * so treat it as DIRENT_HTREE 2996 */ 2997 bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); 2998 if (IS_ERR(bh)) 2999 return true; 3000 3001 de = (struct ext4_dir_entry_2 *) bh->b_data; 3002 if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size, 3003 0) || 3004 le32_to_cpu(de->inode) != inode->i_ino || strcmp(".", de->name)) { 3005 ext4_warning_inode(inode, "directory missing '.'"); 3006 brelse(bh); 3007 return true; 3008 } 3009 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 3010 de = ext4_next_entry(de, sb->s_blocksize); 3011 if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size, 3012 offset) || 3013 le32_to_cpu(de->inode) == 0 || strcmp("..", de->name)) { 3014 ext4_warning_inode(inode, "directory missing '..'"); 3015 brelse(bh); 3016 return true; 3017 } 3018 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 3019 while (offset < inode->i_size) { 3020 if (!(offset & (sb->s_blocksize - 1))) { 3021 unsigned int lblock; 3022 brelse(bh); 3023 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb); 3024 bh = ext4_read_dirblock(inode, lblock, EITHER); 3025 if (bh == NULL) { 3026 offset += sb->s_blocksize; 3027 continue; 3028 } 3029 if (IS_ERR(bh)) 3030 return true; 3031 } 3032 de = (struct ext4_dir_entry_2 *) (bh->b_data + 3033 (offset & (sb->s_blocksize - 1))); 3034 if (ext4_check_dir_entry(inode, NULL, de, bh, 3035 bh->b_data, bh->b_size, offset)) { 3036 offset = (offset | (sb->s_blocksize - 1)) + 1; 3037 continue; 3038 } 3039 if (le32_to_cpu(de->inode)) { 3040 brelse(bh); 3041 return false; 3042 } 3043 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 3044 } 3045 brelse(bh); 3046 return true; 3047 } 3048 3049 /* 3050 * ext4_orphan_add() links an unlinked or truncated inode into a list of 3051 * such inodes, starting at the superblock, in case we crash before the 3052 * file is closed/deleted, or in case the inode truncate spans multiple 3053 * transactions and the last transaction is not recovered after a crash. 3054 * 3055 * At filesystem recovery time, we walk this list deleting unlinked 3056 * inodes and truncating linked inodes in ext4_orphan_cleanup(). 3057 * 3058 * Orphan list manipulation functions must be called under i_mutex unless 3059 * we are just creating the inode or deleting it. 3060 */ 3061 int ext4_orphan_add(handle_t *handle, struct inode *inode) 3062 { 3063 struct super_block *sb = inode->i_sb; 3064 struct ext4_sb_info *sbi = EXT4_SB(sb); 3065 struct ext4_iloc iloc; 3066 int err = 0, rc; 3067 bool dirty = false; 3068 3069 if (!sbi->s_journal || is_bad_inode(inode)) 3070 return 0; 3071 3072 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 3073 !inode_is_locked(inode)); 3074 /* 3075 * Exit early if inode already is on orphan list. This is a big speedup 3076 * since we don't have to contend on the global s_orphan_lock. 3077 */ 3078 if (!list_empty(&EXT4_I(inode)->i_orphan)) 3079 return 0; 3080 3081 /* 3082 * Orphan handling is only valid for files with data blocks 3083 * being truncated, or files being unlinked. Note that we either 3084 * hold i_mutex, or the inode can not be referenced from outside, 3085 * so i_nlink should not be bumped due to race 3086 */ 3087 ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3088 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0); 3089 3090 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 3091 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 3092 if (err) 3093 goto out; 3094 3095 err = ext4_reserve_inode_write(handle, inode, &iloc); 3096 if (err) 3097 goto out; 3098 3099 mutex_lock(&sbi->s_orphan_lock); 3100 /* 3101 * Due to previous errors inode may be already a part of on-disk 3102 * orphan list. If so skip on-disk list modification. 3103 */ 3104 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) > 3105 (le32_to_cpu(sbi->s_es->s_inodes_count))) { 3106 /* Insert this inode at the head of the on-disk orphan list */ 3107 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan); 3108 lock_buffer(sbi->s_sbh); 3109 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino); 3110 ext4_superblock_csum_set(sb); 3111 unlock_buffer(sbi->s_sbh); 3112 dirty = true; 3113 } 3114 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan); 3115 mutex_unlock(&sbi->s_orphan_lock); 3116 3117 if (dirty) { 3118 err = ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); 3119 rc = ext4_mark_iloc_dirty(handle, inode, &iloc); 3120 if (!err) 3121 err = rc; 3122 if (err) { 3123 /* 3124 * We have to remove inode from in-memory list if 3125 * addition to on disk orphan list failed. Stray orphan 3126 * list entries can cause panics at unmount time. 3127 */ 3128 mutex_lock(&sbi->s_orphan_lock); 3129 list_del_init(&EXT4_I(inode)->i_orphan); 3130 mutex_unlock(&sbi->s_orphan_lock); 3131 } 3132 } else 3133 brelse(iloc.bh); 3134 3135 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino); 3136 jbd_debug(4, "orphan inode %lu will point to %d\n", 3137 inode->i_ino, NEXT_ORPHAN(inode)); 3138 out: 3139 ext4_std_error(sb, err); 3140 return err; 3141 } 3142 3143 /* 3144 * ext4_orphan_del() removes an unlinked or truncated inode from the list 3145 * of such inodes stored on disk, because it is finally being cleaned up. 3146 */ 3147 int ext4_orphan_del(handle_t *handle, struct inode *inode) 3148 { 3149 struct list_head *prev; 3150 struct ext4_inode_info *ei = EXT4_I(inode); 3151 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3152 __u32 ino_next; 3153 struct ext4_iloc iloc; 3154 int err = 0; 3155 3156 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS)) 3157 return 0; 3158 3159 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 3160 !inode_is_locked(inode)); 3161 /* Do this quick check before taking global s_orphan_lock. */ 3162 if (list_empty(&ei->i_orphan)) 3163 return 0; 3164 3165 if (handle) { 3166 /* Grab inode buffer early before taking global s_orphan_lock */ 3167 err = ext4_reserve_inode_write(handle, inode, &iloc); 3168 } 3169 3170 mutex_lock(&sbi->s_orphan_lock); 3171 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino); 3172 3173 prev = ei->i_orphan.prev; 3174 list_del_init(&ei->i_orphan); 3175 3176 /* If we're on an error path, we may not have a valid 3177 * transaction handle with which to update the orphan list on 3178 * disk, but we still need to remove the inode from the linked 3179 * list in memory. */ 3180 if (!handle || err) { 3181 mutex_unlock(&sbi->s_orphan_lock); 3182 goto out_err; 3183 } 3184 3185 ino_next = NEXT_ORPHAN(inode); 3186 if (prev == &sbi->s_orphan) { 3187 jbd_debug(4, "superblock will point to %u\n", ino_next); 3188 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 3189 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 3190 if (err) { 3191 mutex_unlock(&sbi->s_orphan_lock); 3192 goto out_brelse; 3193 } 3194 lock_buffer(sbi->s_sbh); 3195 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next); 3196 ext4_superblock_csum_set(inode->i_sb); 3197 unlock_buffer(sbi->s_sbh); 3198 mutex_unlock(&sbi->s_orphan_lock); 3199 err = ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); 3200 } else { 3201 struct ext4_iloc iloc2; 3202 struct inode *i_prev = 3203 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode; 3204 3205 jbd_debug(4, "orphan inode %lu will point to %u\n", 3206 i_prev->i_ino, ino_next); 3207 err = ext4_reserve_inode_write(handle, i_prev, &iloc2); 3208 if (err) { 3209 mutex_unlock(&sbi->s_orphan_lock); 3210 goto out_brelse; 3211 } 3212 NEXT_ORPHAN(i_prev) = ino_next; 3213 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2); 3214 mutex_unlock(&sbi->s_orphan_lock); 3215 } 3216 if (err) 3217 goto out_brelse; 3218 NEXT_ORPHAN(inode) = 0; 3219 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3220 out_err: 3221 ext4_std_error(inode->i_sb, err); 3222 return err; 3223 3224 out_brelse: 3225 brelse(iloc.bh); 3226 goto out_err; 3227 } 3228 3229 static int ext4_rmdir(struct inode *dir, struct dentry *dentry) 3230 { 3231 int retval; 3232 struct inode *inode; 3233 struct buffer_head *bh; 3234 struct ext4_dir_entry_2 *de; 3235 handle_t *handle = NULL; 3236 3237 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3238 return -EIO; 3239 3240 /* Initialize quotas before so that eventual writes go in 3241 * separate transaction */ 3242 retval = dquot_initialize(dir); 3243 if (retval) 3244 return retval; 3245 retval = dquot_initialize(d_inode(dentry)); 3246 if (retval) 3247 return retval; 3248 3249 retval = -ENOENT; 3250 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 3251 if (IS_ERR(bh)) 3252 return PTR_ERR(bh); 3253 if (!bh) 3254 goto end_rmdir; 3255 3256 inode = d_inode(dentry); 3257 3258 retval = -EFSCORRUPTED; 3259 if (le32_to_cpu(de->inode) != inode->i_ino) 3260 goto end_rmdir; 3261 3262 retval = -ENOTEMPTY; 3263 if (!ext4_empty_dir(inode)) 3264 goto end_rmdir; 3265 3266 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3267 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 3268 if (IS_ERR(handle)) { 3269 retval = PTR_ERR(handle); 3270 handle = NULL; 3271 goto end_rmdir; 3272 } 3273 3274 if (IS_DIRSYNC(dir)) 3275 ext4_handle_sync(handle); 3276 3277 retval = ext4_delete_entry(handle, dir, de, bh); 3278 if (retval) 3279 goto end_rmdir; 3280 if (!EXT4_DIR_LINK_EMPTY(inode)) 3281 ext4_warning_inode(inode, 3282 "empty directory '%.*s' has too many links (%u)", 3283 dentry->d_name.len, dentry->d_name.name, 3284 inode->i_nlink); 3285 inode_inc_iversion(inode); 3286 clear_nlink(inode); 3287 /* There's no need to set i_disksize: the fact that i_nlink is 3288 * zero will ensure that the right thing happens during any 3289 * recovery. */ 3290 inode->i_size = 0; 3291 ext4_orphan_add(handle, inode); 3292 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3293 retval = ext4_mark_inode_dirty(handle, inode); 3294 if (retval) 3295 goto end_rmdir; 3296 ext4_dec_count(dir); 3297 ext4_update_dx_flag(dir); 3298 ext4_fc_track_unlink(handle, dentry); 3299 retval = ext4_mark_inode_dirty(handle, dir); 3300 3301 #ifdef CONFIG_UNICODE 3302 /* VFS negative dentries are incompatible with Encoding and 3303 * Case-insensitiveness. Eventually we'll want avoid 3304 * invalidating the dentries here, alongside with returning the 3305 * negative dentries at ext4_lookup(), when it is better 3306 * supported by the VFS for the CI case. 3307 */ 3308 if (IS_CASEFOLDED(dir)) 3309 d_invalidate(dentry); 3310 #endif 3311 3312 end_rmdir: 3313 brelse(bh); 3314 if (handle) 3315 ext4_journal_stop(handle); 3316 return retval; 3317 } 3318 3319 int __ext4_unlink(handle_t *handle, struct inode *dir, const struct qstr *d_name, 3320 struct inode *inode) 3321 { 3322 int retval = -ENOENT; 3323 struct buffer_head *bh; 3324 struct ext4_dir_entry_2 *de; 3325 int skip_remove_dentry = 0; 3326 3327 bh = ext4_find_entry(dir, d_name, &de, NULL); 3328 if (IS_ERR(bh)) 3329 return PTR_ERR(bh); 3330 3331 if (!bh) 3332 return -ENOENT; 3333 3334 if (le32_to_cpu(de->inode) != inode->i_ino) { 3335 /* 3336 * It's okay if we find dont find dentry which matches 3337 * the inode. That's because it might have gotten 3338 * renamed to a different inode number 3339 */ 3340 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 3341 skip_remove_dentry = 1; 3342 else 3343 goto out; 3344 } 3345 3346 if (IS_DIRSYNC(dir)) 3347 ext4_handle_sync(handle); 3348 3349 if (!skip_remove_dentry) { 3350 retval = ext4_delete_entry(handle, dir, de, bh); 3351 if (retval) 3352 goto out; 3353 dir->i_ctime = dir->i_mtime = current_time(dir); 3354 ext4_update_dx_flag(dir); 3355 retval = ext4_mark_inode_dirty(handle, dir); 3356 if (retval) 3357 goto out; 3358 } else { 3359 retval = 0; 3360 } 3361 if (inode->i_nlink == 0) 3362 ext4_warning_inode(inode, "Deleting file '%.*s' with no links", 3363 d_name->len, d_name->name); 3364 else 3365 drop_nlink(inode); 3366 if (!inode->i_nlink) 3367 ext4_orphan_add(handle, inode); 3368 inode->i_ctime = current_time(inode); 3369 retval = ext4_mark_inode_dirty(handle, inode); 3370 3371 out: 3372 brelse(bh); 3373 return retval; 3374 } 3375 3376 static int ext4_unlink(struct inode *dir, struct dentry *dentry) 3377 { 3378 handle_t *handle; 3379 int retval; 3380 3381 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3382 return -EIO; 3383 3384 trace_ext4_unlink_enter(dir, dentry); 3385 /* 3386 * Initialize quotas before so that eventual writes go 3387 * in separate transaction 3388 */ 3389 retval = dquot_initialize(dir); 3390 if (retval) 3391 goto out_trace; 3392 retval = dquot_initialize(d_inode(dentry)); 3393 if (retval) 3394 goto out_trace; 3395 3396 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3397 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 3398 if (IS_ERR(handle)) { 3399 retval = PTR_ERR(handle); 3400 goto out_trace; 3401 } 3402 3403 retval = __ext4_unlink(handle, dir, &dentry->d_name, d_inode(dentry)); 3404 if (!retval) 3405 ext4_fc_track_unlink(handle, dentry); 3406 #ifdef CONFIG_UNICODE 3407 /* VFS negative dentries are incompatible with Encoding and 3408 * Case-insensitiveness. Eventually we'll want avoid 3409 * invalidating the dentries here, alongside with returning the 3410 * negative dentries at ext4_lookup(), when it is better 3411 * supported by the VFS for the CI case. 3412 */ 3413 if (IS_CASEFOLDED(dir)) 3414 d_invalidate(dentry); 3415 #endif 3416 if (handle) 3417 ext4_journal_stop(handle); 3418 3419 out_trace: 3420 trace_ext4_unlink_exit(dentry, retval); 3421 return retval; 3422 } 3423 3424 static int ext4_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3425 struct dentry *dentry, const char *symname) 3426 { 3427 handle_t *handle; 3428 struct inode *inode; 3429 int err, len = strlen(symname); 3430 int credits; 3431 struct fscrypt_str disk_link; 3432 3433 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3434 return -EIO; 3435 3436 err = fscrypt_prepare_symlink(dir, symname, len, dir->i_sb->s_blocksize, 3437 &disk_link); 3438 if (err) 3439 return err; 3440 3441 err = dquot_initialize(dir); 3442 if (err) 3443 return err; 3444 3445 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3446 /* 3447 * For non-fast symlinks, we just allocate inode and put it on 3448 * orphan list in the first transaction => we need bitmap, 3449 * group descriptor, sb, inode block, quota blocks, and 3450 * possibly selinux xattr blocks. 3451 */ 3452 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 3453 EXT4_XATTR_TRANS_BLOCKS; 3454 } else { 3455 /* 3456 * Fast symlink. We have to add entry to directory 3457 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS), 3458 * allocate new inode (bitmap, group descriptor, inode block, 3459 * quota blocks, sb is already counted in previous macros). 3460 */ 3461 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3462 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3; 3463 } 3464 3465 inode = ext4_new_inode_start_handle(mnt_userns, dir, S_IFLNK|S_IRWXUGO, 3466 &dentry->d_name, 0, NULL, 3467 EXT4_HT_DIR, credits); 3468 handle = ext4_journal_current_handle(); 3469 if (IS_ERR(inode)) { 3470 if (handle) 3471 ext4_journal_stop(handle); 3472 return PTR_ERR(inode); 3473 } 3474 3475 if (IS_ENCRYPTED(inode)) { 3476 err = fscrypt_encrypt_symlink(inode, symname, len, &disk_link); 3477 if (err) 3478 goto err_drop_inode; 3479 inode->i_op = &ext4_encrypted_symlink_inode_operations; 3480 } 3481 3482 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3483 if (!IS_ENCRYPTED(inode)) 3484 inode->i_op = &ext4_symlink_inode_operations; 3485 inode_nohighmem(inode); 3486 ext4_set_aops(inode); 3487 /* 3488 * We cannot call page_symlink() with transaction started 3489 * because it calls into ext4_write_begin() which can wait 3490 * for transaction commit if we are running out of space 3491 * and thus we deadlock. So we have to stop transaction now 3492 * and restart it when symlink contents is written. 3493 * 3494 * To keep fs consistent in case of crash, we have to put inode 3495 * to orphan list in the mean time. 3496 */ 3497 drop_nlink(inode); 3498 err = ext4_orphan_add(handle, inode); 3499 if (handle) 3500 ext4_journal_stop(handle); 3501 handle = NULL; 3502 if (err) 3503 goto err_drop_inode; 3504 err = __page_symlink(inode, disk_link.name, disk_link.len, 1); 3505 if (err) 3506 goto err_drop_inode; 3507 /* 3508 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS 3509 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified 3510 */ 3511 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3512 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3513 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1); 3514 if (IS_ERR(handle)) { 3515 err = PTR_ERR(handle); 3516 handle = NULL; 3517 goto err_drop_inode; 3518 } 3519 set_nlink(inode, 1); 3520 err = ext4_orphan_del(handle, inode); 3521 if (err) 3522 goto err_drop_inode; 3523 } else { 3524 /* clear the extent format for fast symlink */ 3525 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); 3526 if (!IS_ENCRYPTED(inode)) { 3527 inode->i_op = &ext4_fast_symlink_inode_operations; 3528 inode->i_link = (char *)&EXT4_I(inode)->i_data; 3529 } 3530 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name, 3531 disk_link.len); 3532 inode->i_size = disk_link.len - 1; 3533 } 3534 EXT4_I(inode)->i_disksize = inode->i_size; 3535 err = ext4_add_nondir(handle, dentry, &inode); 3536 if (handle) 3537 ext4_journal_stop(handle); 3538 if (inode) 3539 iput(inode); 3540 goto out_free_encrypted_link; 3541 3542 err_drop_inode: 3543 if (handle) 3544 ext4_journal_stop(handle); 3545 clear_nlink(inode); 3546 unlock_new_inode(inode); 3547 iput(inode); 3548 out_free_encrypted_link: 3549 if (disk_link.name != (unsigned char *)symname) 3550 kfree(disk_link.name); 3551 return err; 3552 } 3553 3554 int __ext4_link(struct inode *dir, struct inode *inode, struct dentry *dentry) 3555 { 3556 handle_t *handle; 3557 int err, retries = 0; 3558 retry: 3559 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3560 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3561 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1); 3562 if (IS_ERR(handle)) 3563 return PTR_ERR(handle); 3564 3565 if (IS_DIRSYNC(dir)) 3566 ext4_handle_sync(handle); 3567 3568 inode->i_ctime = current_time(inode); 3569 ext4_inc_count(inode); 3570 ihold(inode); 3571 3572 err = ext4_add_entry(handle, dentry, inode); 3573 if (!err) { 3574 err = ext4_mark_inode_dirty(handle, inode); 3575 /* this can happen only for tmpfile being 3576 * linked the first time 3577 */ 3578 if (inode->i_nlink == 1) 3579 ext4_orphan_del(handle, inode); 3580 d_instantiate(dentry, inode); 3581 ext4_fc_track_link(handle, dentry); 3582 } else { 3583 drop_nlink(inode); 3584 iput(inode); 3585 } 3586 ext4_journal_stop(handle); 3587 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 3588 goto retry; 3589 return err; 3590 } 3591 3592 static int ext4_link(struct dentry *old_dentry, 3593 struct inode *dir, struct dentry *dentry) 3594 { 3595 struct inode *inode = d_inode(old_dentry); 3596 int err; 3597 3598 if (inode->i_nlink >= EXT4_LINK_MAX) 3599 return -EMLINK; 3600 3601 err = fscrypt_prepare_link(old_dentry, dir, dentry); 3602 if (err) 3603 return err; 3604 3605 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) && 3606 (!projid_eq(EXT4_I(dir)->i_projid, 3607 EXT4_I(old_dentry->d_inode)->i_projid))) 3608 return -EXDEV; 3609 3610 err = dquot_initialize(dir); 3611 if (err) 3612 return err; 3613 return __ext4_link(dir, inode, dentry); 3614 } 3615 3616 /* 3617 * Try to find buffer head where contains the parent block. 3618 * It should be the inode block if it is inlined or the 1st block 3619 * if it is a normal dir. 3620 */ 3621 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle, 3622 struct inode *inode, 3623 int *retval, 3624 struct ext4_dir_entry_2 **parent_de, 3625 int *inlined) 3626 { 3627 struct buffer_head *bh; 3628 3629 if (!ext4_has_inline_data(inode)) { 3630 /* The first directory block must not be a hole, so 3631 * treat it as DIRENT_HTREE 3632 */ 3633 bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); 3634 if (IS_ERR(bh)) { 3635 *retval = PTR_ERR(bh); 3636 return NULL; 3637 } 3638 *parent_de = ext4_next_entry( 3639 (struct ext4_dir_entry_2 *)bh->b_data, 3640 inode->i_sb->s_blocksize); 3641 return bh; 3642 } 3643 3644 *inlined = 1; 3645 return ext4_get_first_inline_block(inode, parent_de, retval); 3646 } 3647 3648 struct ext4_renament { 3649 struct inode *dir; 3650 struct dentry *dentry; 3651 struct inode *inode; 3652 bool is_dir; 3653 int dir_nlink_delta; 3654 3655 /* entry for "dentry" */ 3656 struct buffer_head *bh; 3657 struct ext4_dir_entry_2 *de; 3658 int inlined; 3659 3660 /* entry for ".." in inode if it's a directory */ 3661 struct buffer_head *dir_bh; 3662 struct ext4_dir_entry_2 *parent_de; 3663 int dir_inlined; 3664 }; 3665 3666 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent) 3667 { 3668 int retval; 3669 3670 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode, 3671 &retval, &ent->parent_de, 3672 &ent->dir_inlined); 3673 if (!ent->dir_bh) 3674 return retval; 3675 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino) 3676 return -EFSCORRUPTED; 3677 BUFFER_TRACE(ent->dir_bh, "get_write_access"); 3678 return ext4_journal_get_write_access(handle, ent->dir_bh); 3679 } 3680 3681 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent, 3682 unsigned dir_ino) 3683 { 3684 int retval; 3685 3686 ent->parent_de->inode = cpu_to_le32(dir_ino); 3687 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata"); 3688 if (!ent->dir_inlined) { 3689 if (is_dx(ent->inode)) { 3690 retval = ext4_handle_dirty_dx_node(handle, 3691 ent->inode, 3692 ent->dir_bh); 3693 } else { 3694 retval = ext4_handle_dirty_dirblock(handle, ent->inode, 3695 ent->dir_bh); 3696 } 3697 } else { 3698 retval = ext4_mark_inode_dirty(handle, ent->inode); 3699 } 3700 if (retval) { 3701 ext4_std_error(ent->dir->i_sb, retval); 3702 return retval; 3703 } 3704 return 0; 3705 } 3706 3707 static int ext4_setent(handle_t *handle, struct ext4_renament *ent, 3708 unsigned ino, unsigned file_type) 3709 { 3710 int retval, retval2; 3711 3712 BUFFER_TRACE(ent->bh, "get write access"); 3713 retval = ext4_journal_get_write_access(handle, ent->bh); 3714 if (retval) 3715 return retval; 3716 ent->de->inode = cpu_to_le32(ino); 3717 if (ext4_has_feature_filetype(ent->dir->i_sb)) 3718 ent->de->file_type = file_type; 3719 inode_inc_iversion(ent->dir); 3720 ent->dir->i_ctime = ent->dir->i_mtime = 3721 current_time(ent->dir); 3722 retval = ext4_mark_inode_dirty(handle, ent->dir); 3723 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata"); 3724 if (!ent->inlined) { 3725 retval2 = ext4_handle_dirty_dirblock(handle, ent->dir, ent->bh); 3726 if (unlikely(retval2)) { 3727 ext4_std_error(ent->dir->i_sb, retval2); 3728 return retval2; 3729 } 3730 } 3731 return retval; 3732 } 3733 3734 static void ext4_resetent(handle_t *handle, struct ext4_renament *ent, 3735 unsigned ino, unsigned file_type) 3736 { 3737 struct ext4_renament old = *ent; 3738 int retval = 0; 3739 3740 /* 3741 * old->de could have moved from under us during make indexed dir, 3742 * so the old->de may no longer valid and need to find it again 3743 * before reset old inode info. 3744 */ 3745 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL); 3746 if (IS_ERR(old.bh)) 3747 retval = PTR_ERR(old.bh); 3748 if (!old.bh) 3749 retval = -ENOENT; 3750 if (retval) { 3751 ext4_std_error(old.dir->i_sb, retval); 3752 return; 3753 } 3754 3755 ext4_setent(handle, &old, ino, file_type); 3756 brelse(old.bh); 3757 } 3758 3759 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir, 3760 const struct qstr *d_name) 3761 { 3762 int retval = -ENOENT; 3763 struct buffer_head *bh; 3764 struct ext4_dir_entry_2 *de; 3765 3766 bh = ext4_find_entry(dir, d_name, &de, NULL); 3767 if (IS_ERR(bh)) 3768 return PTR_ERR(bh); 3769 if (bh) { 3770 retval = ext4_delete_entry(handle, dir, de, bh); 3771 brelse(bh); 3772 } 3773 return retval; 3774 } 3775 3776 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent, 3777 int force_reread) 3778 { 3779 int retval; 3780 /* 3781 * ent->de could have moved from under us during htree split, so make 3782 * sure that we are deleting the right entry. We might also be pointing 3783 * to a stale entry in the unused part of ent->bh so just checking inum 3784 * and the name isn't enough. 3785 */ 3786 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino || 3787 ent->de->name_len != ent->dentry->d_name.len || 3788 strncmp(ent->de->name, ent->dentry->d_name.name, 3789 ent->de->name_len) || 3790 force_reread) { 3791 retval = ext4_find_delete_entry(handle, ent->dir, 3792 &ent->dentry->d_name); 3793 } else { 3794 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh); 3795 if (retval == -ENOENT) { 3796 retval = ext4_find_delete_entry(handle, ent->dir, 3797 &ent->dentry->d_name); 3798 } 3799 } 3800 3801 if (retval) { 3802 ext4_warning_inode(ent->dir, 3803 "Deleting old file: nlink %d, error=%d", 3804 ent->dir->i_nlink, retval); 3805 } 3806 } 3807 3808 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent) 3809 { 3810 if (ent->dir_nlink_delta) { 3811 if (ent->dir_nlink_delta == -1) 3812 ext4_dec_count(ent->dir); 3813 else 3814 ext4_inc_count(ent->dir); 3815 ext4_mark_inode_dirty(handle, ent->dir); 3816 } 3817 } 3818 3819 static struct inode *ext4_whiteout_for_rename(struct user_namespace *mnt_userns, 3820 struct ext4_renament *ent, 3821 int credits, handle_t **h) 3822 { 3823 struct inode *wh; 3824 handle_t *handle; 3825 int retries = 0; 3826 3827 /* 3828 * for inode block, sb block, group summaries, 3829 * and inode bitmap 3830 */ 3831 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) + 3832 EXT4_XATTR_TRANS_BLOCKS + 4); 3833 retry: 3834 wh = ext4_new_inode_start_handle(mnt_userns, ent->dir, 3835 S_IFCHR | WHITEOUT_MODE, 3836 &ent->dentry->d_name, 0, NULL, 3837 EXT4_HT_DIR, credits); 3838 3839 handle = ext4_journal_current_handle(); 3840 if (IS_ERR(wh)) { 3841 if (handle) 3842 ext4_journal_stop(handle); 3843 if (PTR_ERR(wh) == -ENOSPC && 3844 ext4_should_retry_alloc(ent->dir->i_sb, &retries)) 3845 goto retry; 3846 } else { 3847 *h = handle; 3848 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV); 3849 wh->i_op = &ext4_special_inode_operations; 3850 } 3851 return wh; 3852 } 3853 3854 /* 3855 * Anybody can rename anything with this: the permission checks are left to the 3856 * higher-level routines. 3857 * 3858 * n.b. old_{dentry,inode) refers to the source dentry/inode 3859 * while new_{dentry,inode) refers to the destination dentry/inode 3860 * This comes from rename(const char *oldpath, const char *newpath) 3861 */ 3862 static int ext4_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 3863 struct dentry *old_dentry, struct inode *new_dir, 3864 struct dentry *new_dentry, unsigned int flags) 3865 { 3866 handle_t *handle = NULL; 3867 struct ext4_renament old = { 3868 .dir = old_dir, 3869 .dentry = old_dentry, 3870 .inode = d_inode(old_dentry), 3871 }; 3872 struct ext4_renament new = { 3873 .dir = new_dir, 3874 .dentry = new_dentry, 3875 .inode = d_inode(new_dentry), 3876 }; 3877 int force_reread; 3878 int retval; 3879 struct inode *whiteout = NULL; 3880 int credits; 3881 u8 old_file_type; 3882 3883 if (new.inode && new.inode->i_nlink == 0) { 3884 EXT4_ERROR_INODE(new.inode, 3885 "target of rename is already freed"); 3886 return -EFSCORRUPTED; 3887 } 3888 3889 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) && 3890 (!projid_eq(EXT4_I(new_dir)->i_projid, 3891 EXT4_I(old_dentry->d_inode)->i_projid))) 3892 return -EXDEV; 3893 3894 retval = dquot_initialize(old.dir); 3895 if (retval) 3896 return retval; 3897 retval = dquot_initialize(new.dir); 3898 if (retval) 3899 return retval; 3900 3901 /* Initialize quotas before so that eventual writes go 3902 * in separate transaction */ 3903 if (new.inode) { 3904 retval = dquot_initialize(new.inode); 3905 if (retval) 3906 return retval; 3907 } 3908 3909 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL); 3910 if (IS_ERR(old.bh)) 3911 return PTR_ERR(old.bh); 3912 /* 3913 * Check for inode number is _not_ due to possible IO errors. 3914 * We might rmdir the source, keep it as pwd of some process 3915 * and merrily kill the link to whatever was created under the 3916 * same name. Goodbye sticky bit ;-< 3917 */ 3918 retval = -ENOENT; 3919 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3920 goto release_bh; 3921 3922 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3923 &new.de, &new.inlined); 3924 if (IS_ERR(new.bh)) { 3925 retval = PTR_ERR(new.bh); 3926 new.bh = NULL; 3927 goto release_bh; 3928 } 3929 if (new.bh) { 3930 if (!new.inode) { 3931 brelse(new.bh); 3932 new.bh = NULL; 3933 } 3934 } 3935 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC)) 3936 ext4_alloc_da_blocks(old.inode); 3937 3938 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3939 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2); 3940 if (!(flags & RENAME_WHITEOUT)) { 3941 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits); 3942 if (IS_ERR(handle)) { 3943 retval = PTR_ERR(handle); 3944 goto release_bh; 3945 } 3946 } else { 3947 whiteout = ext4_whiteout_for_rename(mnt_userns, &old, credits, &handle); 3948 if (IS_ERR(whiteout)) { 3949 retval = PTR_ERR(whiteout); 3950 goto release_bh; 3951 } 3952 } 3953 3954 old_file_type = old.de->file_type; 3955 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3956 ext4_handle_sync(handle); 3957 3958 if (S_ISDIR(old.inode->i_mode)) { 3959 if (new.inode) { 3960 retval = -ENOTEMPTY; 3961 if (!ext4_empty_dir(new.inode)) 3962 goto end_rename; 3963 } else { 3964 retval = -EMLINK; 3965 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir)) 3966 goto end_rename; 3967 } 3968 retval = ext4_rename_dir_prepare(handle, &old); 3969 if (retval) 3970 goto end_rename; 3971 } 3972 /* 3973 * If we're renaming a file within an inline_data dir and adding or 3974 * setting the new dirent causes a conversion from inline_data to 3975 * extents/blockmap, we need to force the dirent delete code to 3976 * re-read the directory, or else we end up trying to delete a dirent 3977 * from what is now the extent tree root (or a block map). 3978 */ 3979 force_reread = (new.dir->i_ino == old.dir->i_ino && 3980 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA)); 3981 3982 if (whiteout) { 3983 /* 3984 * Do this before adding a new entry, so the old entry is sure 3985 * to be still pointing to the valid old entry. 3986 */ 3987 retval = ext4_setent(handle, &old, whiteout->i_ino, 3988 EXT4_FT_CHRDEV); 3989 if (retval) 3990 goto end_rename; 3991 retval = ext4_mark_inode_dirty(handle, whiteout); 3992 if (unlikely(retval)) 3993 goto end_rename; 3994 3995 } 3996 if (!new.bh) { 3997 retval = ext4_add_entry(handle, new.dentry, old.inode); 3998 if (retval) 3999 goto end_rename; 4000 } else { 4001 retval = ext4_setent(handle, &new, 4002 old.inode->i_ino, old_file_type); 4003 if (retval) 4004 goto end_rename; 4005 } 4006 if (force_reread) 4007 force_reread = !ext4_test_inode_flag(new.dir, 4008 EXT4_INODE_INLINE_DATA); 4009 4010 /* 4011 * Like most other Unix systems, set the ctime for inodes on a 4012 * rename. 4013 */ 4014 old.inode->i_ctime = current_time(old.inode); 4015 retval = ext4_mark_inode_dirty(handle, old.inode); 4016 if (unlikely(retval)) 4017 goto end_rename; 4018 4019 if (!whiteout) { 4020 /* 4021 * ok, that's it 4022 */ 4023 ext4_rename_delete(handle, &old, force_reread); 4024 } 4025 4026 if (new.inode) { 4027 ext4_dec_count(new.inode); 4028 new.inode->i_ctime = current_time(new.inode); 4029 } 4030 old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir); 4031 ext4_update_dx_flag(old.dir); 4032 if (old.dir_bh) { 4033 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 4034 if (retval) 4035 goto end_rename; 4036 4037 ext4_dec_count(old.dir); 4038 if (new.inode) { 4039 /* checked ext4_empty_dir above, can't have another 4040 * parent, ext4_dec_count() won't work for many-linked 4041 * dirs */ 4042 clear_nlink(new.inode); 4043 } else { 4044 ext4_inc_count(new.dir); 4045 ext4_update_dx_flag(new.dir); 4046 retval = ext4_mark_inode_dirty(handle, new.dir); 4047 if (unlikely(retval)) 4048 goto end_rename; 4049 } 4050 } 4051 retval = ext4_mark_inode_dirty(handle, old.dir); 4052 if (unlikely(retval)) 4053 goto end_rename; 4054 4055 if (S_ISDIR(old.inode->i_mode)) { 4056 /* 4057 * We disable fast commits here that's because the 4058 * replay code is not yet capable of changing dot dot 4059 * dirents in directories. 4060 */ 4061 ext4_fc_mark_ineligible(old.inode->i_sb, 4062 EXT4_FC_REASON_RENAME_DIR); 4063 } else { 4064 if (new.inode) 4065 ext4_fc_track_unlink(handle, new.dentry); 4066 __ext4_fc_track_link(handle, old.inode, new.dentry); 4067 __ext4_fc_track_unlink(handle, old.inode, old.dentry); 4068 if (whiteout) 4069 __ext4_fc_track_create(handle, whiteout, old.dentry); 4070 } 4071 4072 if (new.inode) { 4073 retval = ext4_mark_inode_dirty(handle, new.inode); 4074 if (unlikely(retval)) 4075 goto end_rename; 4076 if (!new.inode->i_nlink) 4077 ext4_orphan_add(handle, new.inode); 4078 } 4079 retval = 0; 4080 4081 end_rename: 4082 if (whiteout) { 4083 if (retval) { 4084 ext4_resetent(handle, &old, 4085 old.inode->i_ino, old_file_type); 4086 drop_nlink(whiteout); 4087 ext4_orphan_add(handle, whiteout); 4088 } 4089 unlock_new_inode(whiteout); 4090 ext4_journal_stop(handle); 4091 iput(whiteout); 4092 } else { 4093 ext4_journal_stop(handle); 4094 } 4095 release_bh: 4096 brelse(old.dir_bh); 4097 brelse(old.bh); 4098 brelse(new.bh); 4099 return retval; 4100 } 4101 4102 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry, 4103 struct inode *new_dir, struct dentry *new_dentry) 4104 { 4105 handle_t *handle = NULL; 4106 struct ext4_renament old = { 4107 .dir = old_dir, 4108 .dentry = old_dentry, 4109 .inode = d_inode(old_dentry), 4110 }; 4111 struct ext4_renament new = { 4112 .dir = new_dir, 4113 .dentry = new_dentry, 4114 .inode = d_inode(new_dentry), 4115 }; 4116 u8 new_file_type; 4117 int retval; 4118 struct timespec64 ctime; 4119 4120 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) && 4121 !projid_eq(EXT4_I(new_dir)->i_projid, 4122 EXT4_I(old_dentry->d_inode)->i_projid)) || 4123 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) && 4124 !projid_eq(EXT4_I(old_dir)->i_projid, 4125 EXT4_I(new_dentry->d_inode)->i_projid))) 4126 return -EXDEV; 4127 4128 retval = dquot_initialize(old.dir); 4129 if (retval) 4130 return retval; 4131 retval = dquot_initialize(new.dir); 4132 if (retval) 4133 return retval; 4134 4135 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, 4136 &old.de, &old.inlined); 4137 if (IS_ERR(old.bh)) 4138 return PTR_ERR(old.bh); 4139 /* 4140 * Check for inode number is _not_ due to possible IO errors. 4141 * We might rmdir the source, keep it as pwd of some process 4142 * and merrily kill the link to whatever was created under the 4143 * same name. Goodbye sticky bit ;-< 4144 */ 4145 retval = -ENOENT; 4146 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 4147 goto end_rename; 4148 4149 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 4150 &new.de, &new.inlined); 4151 if (IS_ERR(new.bh)) { 4152 retval = PTR_ERR(new.bh); 4153 new.bh = NULL; 4154 goto end_rename; 4155 } 4156 4157 /* RENAME_EXCHANGE case: old *and* new must both exist */ 4158 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino) 4159 goto end_rename; 4160 4161 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, 4162 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 4163 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2)); 4164 if (IS_ERR(handle)) { 4165 retval = PTR_ERR(handle); 4166 handle = NULL; 4167 goto end_rename; 4168 } 4169 4170 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 4171 ext4_handle_sync(handle); 4172 4173 if (S_ISDIR(old.inode->i_mode)) { 4174 old.is_dir = true; 4175 retval = ext4_rename_dir_prepare(handle, &old); 4176 if (retval) 4177 goto end_rename; 4178 } 4179 if (S_ISDIR(new.inode->i_mode)) { 4180 new.is_dir = true; 4181 retval = ext4_rename_dir_prepare(handle, &new); 4182 if (retval) 4183 goto end_rename; 4184 } 4185 4186 /* 4187 * Other than the special case of overwriting a directory, parents' 4188 * nlink only needs to be modified if this is a cross directory rename. 4189 */ 4190 if (old.dir != new.dir && old.is_dir != new.is_dir) { 4191 old.dir_nlink_delta = old.is_dir ? -1 : 1; 4192 new.dir_nlink_delta = -old.dir_nlink_delta; 4193 retval = -EMLINK; 4194 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) || 4195 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir))) 4196 goto end_rename; 4197 } 4198 4199 new_file_type = new.de->file_type; 4200 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type); 4201 if (retval) 4202 goto end_rename; 4203 4204 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type); 4205 if (retval) 4206 goto end_rename; 4207 4208 /* 4209 * Like most other Unix systems, set the ctime for inodes on a 4210 * rename. 4211 */ 4212 ctime = current_time(old.inode); 4213 old.inode->i_ctime = ctime; 4214 new.inode->i_ctime = ctime; 4215 retval = ext4_mark_inode_dirty(handle, old.inode); 4216 if (unlikely(retval)) 4217 goto end_rename; 4218 retval = ext4_mark_inode_dirty(handle, new.inode); 4219 if (unlikely(retval)) 4220 goto end_rename; 4221 ext4_fc_mark_ineligible(new.inode->i_sb, 4222 EXT4_FC_REASON_CROSS_RENAME); 4223 if (old.dir_bh) { 4224 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 4225 if (retval) 4226 goto end_rename; 4227 } 4228 if (new.dir_bh) { 4229 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino); 4230 if (retval) 4231 goto end_rename; 4232 } 4233 ext4_update_dir_count(handle, &old); 4234 ext4_update_dir_count(handle, &new); 4235 retval = 0; 4236 4237 end_rename: 4238 brelse(old.dir_bh); 4239 brelse(new.dir_bh); 4240 brelse(old.bh); 4241 brelse(new.bh); 4242 if (handle) 4243 ext4_journal_stop(handle); 4244 return retval; 4245 } 4246 4247 static int ext4_rename2(struct user_namespace *mnt_userns, 4248 struct inode *old_dir, struct dentry *old_dentry, 4249 struct inode *new_dir, struct dentry *new_dentry, 4250 unsigned int flags) 4251 { 4252 int err; 4253 4254 if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb)))) 4255 return -EIO; 4256 4257 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4258 return -EINVAL; 4259 4260 err = fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry, 4261 flags); 4262 if (err) 4263 return err; 4264 4265 if (flags & RENAME_EXCHANGE) { 4266 return ext4_cross_rename(old_dir, old_dentry, 4267 new_dir, new_dentry); 4268 } 4269 4270 return ext4_rename(mnt_userns, old_dir, old_dentry, new_dir, new_dentry, flags); 4271 } 4272 4273 /* 4274 * directories can handle most operations... 4275 */ 4276 const struct inode_operations ext4_dir_inode_operations = { 4277 .create = ext4_create, 4278 .lookup = ext4_lookup, 4279 .link = ext4_link, 4280 .unlink = ext4_unlink, 4281 .symlink = ext4_symlink, 4282 .mkdir = ext4_mkdir, 4283 .rmdir = ext4_rmdir, 4284 .mknod = ext4_mknod, 4285 .tmpfile = ext4_tmpfile, 4286 .rename = ext4_rename2, 4287 .setattr = ext4_setattr, 4288 .getattr = ext4_getattr, 4289 .listxattr = ext4_listxattr, 4290 .get_acl = ext4_get_acl, 4291 .set_acl = ext4_set_acl, 4292 .fiemap = ext4_fiemap, 4293 .fileattr_get = ext4_fileattr_get, 4294 .fileattr_set = ext4_fileattr_set, 4295 }; 4296 4297 const struct inode_operations ext4_special_inode_operations = { 4298 .setattr = ext4_setattr, 4299 .getattr = ext4_getattr, 4300 .listxattr = ext4_listxattr, 4301 .get_acl = ext4_get_acl, 4302 .set_acl = ext4_set_acl, 4303 }; 4304