1 /* 2 * linux/fs/ext4/namei.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/namei.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 * Directory entry file type support and forward compatibility hooks 18 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998 19 * Hash Tree Directory indexing (c) 20 * Daniel Phillips, 2001 21 * Hash Tree Directory indexing porting 22 * Christopher Li, 2002 23 * Hash Tree Directory indexing cleanup 24 * Theodore Ts'o, 2002 25 */ 26 27 #include <linux/fs.h> 28 #include <linux/pagemap.h> 29 #include <linux/time.h> 30 #include <linux/fcntl.h> 31 #include <linux/stat.h> 32 #include <linux/string.h> 33 #include <linux/quotaops.h> 34 #include <linux/buffer_head.h> 35 #include <linux/bio.h> 36 #include "ext4.h" 37 #include "ext4_jbd2.h" 38 39 #include "xattr.h" 40 #include "acl.h" 41 42 #include <trace/events/ext4.h> 43 /* 44 * define how far ahead to read directories while searching them. 45 */ 46 #define NAMEI_RA_CHUNKS 2 47 #define NAMEI_RA_BLOCKS 4 48 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS) 49 50 static struct buffer_head *ext4_append(handle_t *handle, 51 struct inode *inode, 52 ext4_lblk_t *block) 53 { 54 struct buffer_head *bh; 55 int err; 56 57 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb && 58 ((inode->i_size >> 10) >= 59 EXT4_SB(inode->i_sb)->s_max_dir_size_kb))) 60 return ERR_PTR(-ENOSPC); 61 62 *block = inode->i_size >> inode->i_sb->s_blocksize_bits; 63 64 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE); 65 if (IS_ERR(bh)) 66 return bh; 67 inode->i_size += inode->i_sb->s_blocksize; 68 EXT4_I(inode)->i_disksize = inode->i_size; 69 BUFFER_TRACE(bh, "get_write_access"); 70 err = ext4_journal_get_write_access(handle, bh); 71 if (err) { 72 brelse(bh); 73 ext4_std_error(inode->i_sb, err); 74 return ERR_PTR(err); 75 } 76 return bh; 77 } 78 79 static int ext4_dx_csum_verify(struct inode *inode, 80 struct ext4_dir_entry *dirent); 81 82 typedef enum { 83 EITHER, INDEX, DIRENT 84 } dirblock_type_t; 85 86 #define ext4_read_dirblock(inode, block, type) \ 87 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__) 88 89 static struct buffer_head *__ext4_read_dirblock(struct inode *inode, 90 ext4_lblk_t block, 91 dirblock_type_t type, 92 const char *func, 93 unsigned int line) 94 { 95 struct buffer_head *bh; 96 struct ext4_dir_entry *dirent; 97 int is_dx_block = 0; 98 99 bh = ext4_bread(NULL, inode, block, 0); 100 if (IS_ERR(bh)) { 101 __ext4_warning(inode->i_sb, func, line, 102 "inode #%lu: lblock %lu: comm %s: " 103 "error %ld reading directory block", 104 inode->i_ino, (unsigned long)block, 105 current->comm, PTR_ERR(bh)); 106 107 return bh; 108 } 109 if (!bh) { 110 ext4_error_inode(inode, func, line, block, 111 "Directory hole found"); 112 return ERR_PTR(-EFSCORRUPTED); 113 } 114 dirent = (struct ext4_dir_entry *) bh->b_data; 115 /* Determine whether or not we have an index block */ 116 if (is_dx(inode)) { 117 if (block == 0) 118 is_dx_block = 1; 119 else if (ext4_rec_len_from_disk(dirent->rec_len, 120 inode->i_sb->s_blocksize) == 121 inode->i_sb->s_blocksize) 122 is_dx_block = 1; 123 } 124 if (!is_dx_block && type == INDEX) { 125 ext4_error_inode(inode, func, line, block, 126 "directory leaf block found instead of index block"); 127 return ERR_PTR(-EFSCORRUPTED); 128 } 129 if (!ext4_has_metadata_csum(inode->i_sb) || 130 buffer_verified(bh)) 131 return bh; 132 133 /* 134 * An empty leaf block can get mistaken for a index block; for 135 * this reason, we can only check the index checksum when the 136 * caller is sure it should be an index block. 137 */ 138 if (is_dx_block && type == INDEX) { 139 if (ext4_dx_csum_verify(inode, dirent)) 140 set_buffer_verified(bh); 141 else { 142 ext4_error_inode(inode, func, line, block, 143 "Directory index failed checksum"); 144 brelse(bh); 145 return ERR_PTR(-EFSBADCRC); 146 } 147 } 148 if (!is_dx_block) { 149 if (ext4_dirent_csum_verify(inode, dirent)) 150 set_buffer_verified(bh); 151 else { 152 ext4_error_inode(inode, func, line, block, 153 "Directory block failed checksum"); 154 brelse(bh); 155 return ERR_PTR(-EFSBADCRC); 156 } 157 } 158 return bh; 159 } 160 161 #ifndef assert 162 #define assert(test) J_ASSERT(test) 163 #endif 164 165 #ifdef DX_DEBUG 166 #define dxtrace(command) command 167 #else 168 #define dxtrace(command) 169 #endif 170 171 struct fake_dirent 172 { 173 __le32 inode; 174 __le16 rec_len; 175 u8 name_len; 176 u8 file_type; 177 }; 178 179 struct dx_countlimit 180 { 181 __le16 limit; 182 __le16 count; 183 }; 184 185 struct dx_entry 186 { 187 __le32 hash; 188 __le32 block; 189 }; 190 191 /* 192 * dx_root_info is laid out so that if it should somehow get overlaid by a 193 * dirent the two low bits of the hash version will be zero. Therefore, the 194 * hash version mod 4 should never be 0. Sincerely, the paranoia department. 195 */ 196 197 struct dx_root 198 { 199 struct fake_dirent dot; 200 char dot_name[4]; 201 struct fake_dirent dotdot; 202 char dotdot_name[4]; 203 struct dx_root_info 204 { 205 __le32 reserved_zero; 206 u8 hash_version; 207 u8 info_length; /* 8 */ 208 u8 indirect_levels; 209 u8 unused_flags; 210 } 211 info; 212 struct dx_entry entries[0]; 213 }; 214 215 struct dx_node 216 { 217 struct fake_dirent fake; 218 struct dx_entry entries[0]; 219 }; 220 221 222 struct dx_frame 223 { 224 struct buffer_head *bh; 225 struct dx_entry *entries; 226 struct dx_entry *at; 227 }; 228 229 struct dx_map_entry 230 { 231 u32 hash; 232 u16 offs; 233 u16 size; 234 }; 235 236 /* 237 * This goes at the end of each htree block. 238 */ 239 struct dx_tail { 240 u32 dt_reserved; 241 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */ 242 }; 243 244 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry); 245 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value); 246 static inline unsigned dx_get_hash(struct dx_entry *entry); 247 static void dx_set_hash(struct dx_entry *entry, unsigned value); 248 static unsigned dx_get_count(struct dx_entry *entries); 249 static unsigned dx_get_limit(struct dx_entry *entries); 250 static void dx_set_count(struct dx_entry *entries, unsigned value); 251 static void dx_set_limit(struct dx_entry *entries, unsigned value); 252 static unsigned dx_root_limit(struct inode *dir, unsigned infosize); 253 static unsigned dx_node_limit(struct inode *dir); 254 static struct dx_frame *dx_probe(struct ext4_filename *fname, 255 struct inode *dir, 256 struct dx_hash_info *hinfo, 257 struct dx_frame *frame); 258 static void dx_release(struct dx_frame *frames); 259 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 260 unsigned blocksize, struct dx_hash_info *hinfo, 261 struct dx_map_entry map[]); 262 static void dx_sort_map(struct dx_map_entry *map, unsigned count); 263 static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to, 264 struct dx_map_entry *offsets, int count, unsigned blocksize); 265 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize); 266 static void dx_insert_block(struct dx_frame *frame, 267 u32 hash, ext4_lblk_t block); 268 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 269 struct dx_frame *frame, 270 struct dx_frame *frames, 271 __u32 *start_hash); 272 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 273 struct ext4_filename *fname, 274 struct ext4_dir_entry_2 **res_dir); 275 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 276 struct inode *dir, struct inode *inode); 277 278 /* checksumming functions */ 279 void initialize_dirent_tail(struct ext4_dir_entry_tail *t, 280 unsigned int blocksize) 281 { 282 memset(t, 0, sizeof(struct ext4_dir_entry_tail)); 283 t->det_rec_len = ext4_rec_len_to_disk( 284 sizeof(struct ext4_dir_entry_tail), blocksize); 285 t->det_reserved_ft = EXT4_FT_DIR_CSUM; 286 } 287 288 /* Walk through a dirent block to find a checksum "dirent" at the tail */ 289 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode, 290 struct ext4_dir_entry *de) 291 { 292 struct ext4_dir_entry_tail *t; 293 294 #ifdef PARANOID 295 struct ext4_dir_entry *d, *top; 296 297 d = de; 298 top = (struct ext4_dir_entry *)(((void *)de) + 299 (EXT4_BLOCK_SIZE(inode->i_sb) - 300 sizeof(struct ext4_dir_entry_tail))); 301 while (d < top && d->rec_len) 302 d = (struct ext4_dir_entry *)(((void *)d) + 303 le16_to_cpu(d->rec_len)); 304 305 if (d != top) 306 return NULL; 307 308 t = (struct ext4_dir_entry_tail *)d; 309 #else 310 t = EXT4_DIRENT_TAIL(de, EXT4_BLOCK_SIZE(inode->i_sb)); 311 #endif 312 313 if (t->det_reserved_zero1 || 314 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) || 315 t->det_reserved_zero2 || 316 t->det_reserved_ft != EXT4_FT_DIR_CSUM) 317 return NULL; 318 319 return t; 320 } 321 322 static __le32 ext4_dirent_csum(struct inode *inode, 323 struct ext4_dir_entry *dirent, int size) 324 { 325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 326 struct ext4_inode_info *ei = EXT4_I(inode); 327 __u32 csum; 328 329 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 330 return cpu_to_le32(csum); 331 } 332 333 #define warn_no_space_for_csum(inode) \ 334 __warn_no_space_for_csum((inode), __func__, __LINE__) 335 336 static void __warn_no_space_for_csum(struct inode *inode, const char *func, 337 unsigned int line) 338 { 339 __ext4_warning_inode(inode, func, line, 340 "No space for directory leaf checksum. Please run e2fsck -D."); 341 } 342 343 int ext4_dirent_csum_verify(struct inode *inode, struct ext4_dir_entry *dirent) 344 { 345 struct ext4_dir_entry_tail *t; 346 347 if (!ext4_has_metadata_csum(inode->i_sb)) 348 return 1; 349 350 t = get_dirent_tail(inode, dirent); 351 if (!t) { 352 warn_no_space_for_csum(inode); 353 return 0; 354 } 355 356 if (t->det_checksum != ext4_dirent_csum(inode, dirent, 357 (void *)t - (void *)dirent)) 358 return 0; 359 360 return 1; 361 } 362 363 static void ext4_dirent_csum_set(struct inode *inode, 364 struct ext4_dir_entry *dirent) 365 { 366 struct ext4_dir_entry_tail *t; 367 368 if (!ext4_has_metadata_csum(inode->i_sb)) 369 return; 370 371 t = get_dirent_tail(inode, dirent); 372 if (!t) { 373 warn_no_space_for_csum(inode); 374 return; 375 } 376 377 t->det_checksum = ext4_dirent_csum(inode, dirent, 378 (void *)t - (void *)dirent); 379 } 380 381 int ext4_handle_dirty_dirent_node(handle_t *handle, 382 struct inode *inode, 383 struct buffer_head *bh) 384 { 385 ext4_dirent_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 386 return ext4_handle_dirty_metadata(handle, inode, bh); 387 } 388 389 static struct dx_countlimit *get_dx_countlimit(struct inode *inode, 390 struct ext4_dir_entry *dirent, 391 int *offset) 392 { 393 struct ext4_dir_entry *dp; 394 struct dx_root_info *root; 395 int count_offset; 396 397 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb)) 398 count_offset = 8; 399 else if (le16_to_cpu(dirent->rec_len) == 12) { 400 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12); 401 if (le16_to_cpu(dp->rec_len) != 402 EXT4_BLOCK_SIZE(inode->i_sb) - 12) 403 return NULL; 404 root = (struct dx_root_info *)(((void *)dp + 12)); 405 if (root->reserved_zero || 406 root->info_length != sizeof(struct dx_root_info)) 407 return NULL; 408 count_offset = 32; 409 } else 410 return NULL; 411 412 if (offset) 413 *offset = count_offset; 414 return (struct dx_countlimit *)(((void *)dirent) + count_offset); 415 } 416 417 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent, 418 int count_offset, int count, struct dx_tail *t) 419 { 420 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 421 struct ext4_inode_info *ei = EXT4_I(inode); 422 __u32 csum; 423 __le32 save_csum; 424 int size; 425 426 size = count_offset + (count * sizeof(struct dx_entry)); 427 save_csum = t->dt_checksum; 428 t->dt_checksum = 0; 429 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 430 csum = ext4_chksum(sbi, csum, (__u8 *)t, sizeof(struct dx_tail)); 431 t->dt_checksum = save_csum; 432 433 return cpu_to_le32(csum); 434 } 435 436 static int ext4_dx_csum_verify(struct inode *inode, 437 struct ext4_dir_entry *dirent) 438 { 439 struct dx_countlimit *c; 440 struct dx_tail *t; 441 int count_offset, limit, count; 442 443 if (!ext4_has_metadata_csum(inode->i_sb)) 444 return 1; 445 446 c = get_dx_countlimit(inode, dirent, &count_offset); 447 if (!c) { 448 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 449 return 1; 450 } 451 limit = le16_to_cpu(c->limit); 452 count = le16_to_cpu(c->count); 453 if (count_offset + (limit * sizeof(struct dx_entry)) > 454 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 455 warn_no_space_for_csum(inode); 456 return 1; 457 } 458 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 459 460 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset, 461 count, t)) 462 return 0; 463 return 1; 464 } 465 466 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent) 467 { 468 struct dx_countlimit *c; 469 struct dx_tail *t; 470 int count_offset, limit, count; 471 472 if (!ext4_has_metadata_csum(inode->i_sb)) 473 return; 474 475 c = get_dx_countlimit(inode, dirent, &count_offset); 476 if (!c) { 477 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 478 return; 479 } 480 limit = le16_to_cpu(c->limit); 481 count = le16_to_cpu(c->count); 482 if (count_offset + (limit * sizeof(struct dx_entry)) > 483 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 484 warn_no_space_for_csum(inode); 485 return; 486 } 487 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 488 489 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t); 490 } 491 492 static inline int ext4_handle_dirty_dx_node(handle_t *handle, 493 struct inode *inode, 494 struct buffer_head *bh) 495 { 496 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 497 return ext4_handle_dirty_metadata(handle, inode, bh); 498 } 499 500 /* 501 * p is at least 6 bytes before the end of page 502 */ 503 static inline struct ext4_dir_entry_2 * 504 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize) 505 { 506 return (struct ext4_dir_entry_2 *)((char *)p + 507 ext4_rec_len_from_disk(p->rec_len, blocksize)); 508 } 509 510 /* 511 * Future: use high four bits of block for coalesce-on-delete flags 512 * Mask them off for now. 513 */ 514 515 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry) 516 { 517 return le32_to_cpu(entry->block) & 0x00ffffff; 518 } 519 520 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value) 521 { 522 entry->block = cpu_to_le32(value); 523 } 524 525 static inline unsigned dx_get_hash(struct dx_entry *entry) 526 { 527 return le32_to_cpu(entry->hash); 528 } 529 530 static inline void dx_set_hash(struct dx_entry *entry, unsigned value) 531 { 532 entry->hash = cpu_to_le32(value); 533 } 534 535 static inline unsigned dx_get_count(struct dx_entry *entries) 536 { 537 return le16_to_cpu(((struct dx_countlimit *) entries)->count); 538 } 539 540 static inline unsigned dx_get_limit(struct dx_entry *entries) 541 { 542 return le16_to_cpu(((struct dx_countlimit *) entries)->limit); 543 } 544 545 static inline void dx_set_count(struct dx_entry *entries, unsigned value) 546 { 547 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value); 548 } 549 550 static inline void dx_set_limit(struct dx_entry *entries, unsigned value) 551 { 552 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value); 553 } 554 555 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize) 556 { 557 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) - 558 EXT4_DIR_REC_LEN(2) - infosize; 559 560 if (ext4_has_metadata_csum(dir->i_sb)) 561 entry_space -= sizeof(struct dx_tail); 562 return entry_space / sizeof(struct dx_entry); 563 } 564 565 static inline unsigned dx_node_limit(struct inode *dir) 566 { 567 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0); 568 569 if (ext4_has_metadata_csum(dir->i_sb)) 570 entry_space -= sizeof(struct dx_tail); 571 return entry_space / sizeof(struct dx_entry); 572 } 573 574 /* 575 * Debug 576 */ 577 #ifdef DX_DEBUG 578 static void dx_show_index(char * label, struct dx_entry *entries) 579 { 580 int i, n = dx_get_count (entries); 581 printk(KERN_DEBUG "%s index ", label); 582 for (i = 0; i < n; i++) { 583 printk("%x->%lu ", i ? dx_get_hash(entries + i) : 584 0, (unsigned long)dx_get_block(entries + i)); 585 } 586 printk("\n"); 587 } 588 589 struct stats 590 { 591 unsigned names; 592 unsigned space; 593 unsigned bcount; 594 }; 595 596 static struct stats dx_show_leaf(struct inode *dir, 597 struct dx_hash_info *hinfo, 598 struct ext4_dir_entry_2 *de, 599 int size, int show_names) 600 { 601 unsigned names = 0, space = 0; 602 char *base = (char *) de; 603 struct dx_hash_info h = *hinfo; 604 605 printk("names: "); 606 while ((char *) de < base + size) 607 { 608 if (de->inode) 609 { 610 if (show_names) 611 { 612 #ifdef CONFIG_EXT4_FS_ENCRYPTION 613 int len; 614 char *name; 615 struct ext4_str fname_crypto_str 616 = {.name = NULL, .len = 0}; 617 int res = 0; 618 619 name = de->name; 620 len = de->name_len; 621 if (ext4_encrypted_inode(inode)) 622 res = ext4_get_encryption_info(dir); 623 if (res) { 624 printk(KERN_WARNING "Error setting up" 625 " fname crypto: %d\n", res); 626 } 627 if (ctx == NULL) { 628 /* Directory is not encrypted */ 629 ext4fs_dirhash(de->name, 630 de->name_len, &h); 631 printk("%*.s:(U)%x.%u ", len, 632 name, h.hash, 633 (unsigned) ((char *) de 634 - base)); 635 } else { 636 /* Directory is encrypted */ 637 res = ext4_fname_crypto_alloc_buffer( 638 ctx, de->name_len, 639 &fname_crypto_str); 640 if (res < 0) { 641 printk(KERN_WARNING "Error " 642 "allocating crypto " 643 "buffer--skipping " 644 "crypto\n"); 645 ctx = NULL; 646 } 647 res = ext4_fname_disk_to_usr(ctx, NULL, de, 648 &fname_crypto_str); 649 if (res < 0) { 650 printk(KERN_WARNING "Error " 651 "converting filename " 652 "from disk to usr" 653 "\n"); 654 name = "??"; 655 len = 2; 656 } else { 657 name = fname_crypto_str.name; 658 len = fname_crypto_str.len; 659 } 660 ext4fs_dirhash(de->name, de->name_len, 661 &h); 662 printk("%*.s:(E)%x.%u ", len, name, 663 h.hash, (unsigned) ((char *) de 664 - base)); 665 ext4_fname_crypto_free_buffer( 666 &fname_crypto_str); 667 } 668 #else 669 int len = de->name_len; 670 char *name = de->name; 671 ext4fs_dirhash(de->name, de->name_len, &h); 672 printk("%*.s:%x.%u ", len, name, h.hash, 673 (unsigned) ((char *) de - base)); 674 #endif 675 } 676 space += EXT4_DIR_REC_LEN(de->name_len); 677 names++; 678 } 679 de = ext4_next_entry(de, size); 680 } 681 printk("(%i)\n", names); 682 return (struct stats) { names, space, 1 }; 683 } 684 685 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir, 686 struct dx_entry *entries, int levels) 687 { 688 unsigned blocksize = dir->i_sb->s_blocksize; 689 unsigned count = dx_get_count(entries), names = 0, space = 0, i; 690 unsigned bcount = 0; 691 struct buffer_head *bh; 692 printk("%i indexed blocks...\n", count); 693 for (i = 0; i < count; i++, entries++) 694 { 695 ext4_lblk_t block = dx_get_block(entries); 696 ext4_lblk_t hash = i ? dx_get_hash(entries): 0; 697 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash; 698 struct stats stats; 699 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range); 700 bh = ext4_bread(NULL,dir, block, 0); 701 if (!bh || IS_ERR(bh)) 702 continue; 703 stats = levels? 704 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1): 705 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) 706 bh->b_data, blocksize, 0); 707 names += stats.names; 708 space += stats.space; 709 bcount += stats.bcount; 710 brelse(bh); 711 } 712 if (bcount) 713 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n", 714 levels ? "" : " ", names, space/bcount, 715 (space/bcount)*100/blocksize); 716 return (struct stats) { names, space, bcount}; 717 } 718 #endif /* DX_DEBUG */ 719 720 /* 721 * Probe for a directory leaf block to search. 722 * 723 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format 724 * error in the directory index, and the caller should fall back to 725 * searching the directory normally. The callers of dx_probe **MUST** 726 * check for this error code, and make sure it never gets reflected 727 * back to userspace. 728 */ 729 static struct dx_frame * 730 dx_probe(struct ext4_filename *fname, struct inode *dir, 731 struct dx_hash_info *hinfo, struct dx_frame *frame_in) 732 { 733 unsigned count, indirect; 734 struct dx_entry *at, *entries, *p, *q, *m; 735 struct dx_root *root; 736 struct dx_frame *frame = frame_in; 737 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR); 738 u32 hash; 739 740 frame->bh = ext4_read_dirblock(dir, 0, INDEX); 741 if (IS_ERR(frame->bh)) 742 return (struct dx_frame *) frame->bh; 743 744 root = (struct dx_root *) frame->bh->b_data; 745 if (root->info.hash_version != DX_HASH_TEA && 746 root->info.hash_version != DX_HASH_HALF_MD4 && 747 root->info.hash_version != DX_HASH_LEGACY) { 748 ext4_warning_inode(dir, "Unrecognised inode hash code %u", 749 root->info.hash_version); 750 goto fail; 751 } 752 if (fname) 753 hinfo = &fname->hinfo; 754 hinfo->hash_version = root->info.hash_version; 755 if (hinfo->hash_version <= DX_HASH_TEA) 756 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 757 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed; 758 if (fname && fname_name(fname)) 759 ext4fs_dirhash(fname_name(fname), fname_len(fname), hinfo); 760 hash = hinfo->hash; 761 762 if (root->info.unused_flags & 1) { 763 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x", 764 root->info.unused_flags); 765 goto fail; 766 } 767 768 indirect = root->info.indirect_levels; 769 if (indirect > 1) { 770 ext4_warning_inode(dir, "Unimplemented hash depth: %#06x", 771 root->info.indirect_levels); 772 goto fail; 773 } 774 775 entries = (struct dx_entry *)(((char *)&root->info) + 776 root->info.info_length); 777 778 if (dx_get_limit(entries) != dx_root_limit(dir, 779 root->info.info_length)) { 780 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u", 781 dx_get_limit(entries), 782 dx_root_limit(dir, root->info.info_length)); 783 goto fail; 784 } 785 786 dxtrace(printk("Look up %x", hash)); 787 while (1) { 788 count = dx_get_count(entries); 789 if (!count || count > dx_get_limit(entries)) { 790 ext4_warning_inode(dir, 791 "dx entry: count %u beyond limit %u", 792 count, dx_get_limit(entries)); 793 goto fail; 794 } 795 796 p = entries + 1; 797 q = entries + count - 1; 798 while (p <= q) { 799 m = p + (q - p) / 2; 800 dxtrace(printk(".")); 801 if (dx_get_hash(m) > hash) 802 q = m - 1; 803 else 804 p = m + 1; 805 } 806 807 if (0) { // linear search cross check 808 unsigned n = count - 1; 809 at = entries; 810 while (n--) 811 { 812 dxtrace(printk(",")); 813 if (dx_get_hash(++at) > hash) 814 { 815 at--; 816 break; 817 } 818 } 819 assert (at == p - 1); 820 } 821 822 at = p - 1; 823 dxtrace(printk(" %x->%u\n", at == entries ? 0 : dx_get_hash(at), 824 dx_get_block(at))); 825 frame->entries = entries; 826 frame->at = at; 827 if (!indirect--) 828 return frame; 829 frame++; 830 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX); 831 if (IS_ERR(frame->bh)) { 832 ret_err = (struct dx_frame *) frame->bh; 833 frame->bh = NULL; 834 goto fail; 835 } 836 entries = ((struct dx_node *) frame->bh->b_data)->entries; 837 838 if (dx_get_limit(entries) != dx_node_limit(dir)) { 839 ext4_warning_inode(dir, 840 "dx entry: limit %u != node limit %u", 841 dx_get_limit(entries), dx_node_limit(dir)); 842 goto fail; 843 } 844 } 845 fail: 846 while (frame >= frame_in) { 847 brelse(frame->bh); 848 frame--; 849 } 850 851 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR)) 852 ext4_warning_inode(dir, 853 "Corrupt directory, running e2fsck is recommended"); 854 return ret_err; 855 } 856 857 static void dx_release(struct dx_frame *frames) 858 { 859 if (frames[0].bh == NULL) 860 return; 861 862 if (((struct dx_root *)frames[0].bh->b_data)->info.indirect_levels) 863 brelse(frames[1].bh); 864 brelse(frames[0].bh); 865 } 866 867 /* 868 * This function increments the frame pointer to search the next leaf 869 * block, and reads in the necessary intervening nodes if the search 870 * should be necessary. Whether or not the search is necessary is 871 * controlled by the hash parameter. If the hash value is even, then 872 * the search is only continued if the next block starts with that 873 * hash value. This is used if we are searching for a specific file. 874 * 875 * If the hash value is HASH_NB_ALWAYS, then always go to the next block. 876 * 877 * This function returns 1 if the caller should continue to search, 878 * or 0 if it should not. If there is an error reading one of the 879 * index blocks, it will a negative error code. 880 * 881 * If start_hash is non-null, it will be filled in with the starting 882 * hash of the next page. 883 */ 884 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 885 struct dx_frame *frame, 886 struct dx_frame *frames, 887 __u32 *start_hash) 888 { 889 struct dx_frame *p; 890 struct buffer_head *bh; 891 int num_frames = 0; 892 __u32 bhash; 893 894 p = frame; 895 /* 896 * Find the next leaf page by incrementing the frame pointer. 897 * If we run out of entries in the interior node, loop around and 898 * increment pointer in the parent node. When we break out of 899 * this loop, num_frames indicates the number of interior 900 * nodes need to be read. 901 */ 902 while (1) { 903 if (++(p->at) < p->entries + dx_get_count(p->entries)) 904 break; 905 if (p == frames) 906 return 0; 907 num_frames++; 908 p--; 909 } 910 911 /* 912 * If the hash is 1, then continue only if the next page has a 913 * continuation hash of any value. This is used for readdir 914 * handling. Otherwise, check to see if the hash matches the 915 * desired contiuation hash. If it doesn't, return since 916 * there's no point to read in the successive index pages. 917 */ 918 bhash = dx_get_hash(p->at); 919 if (start_hash) 920 *start_hash = bhash; 921 if ((hash & 1) == 0) { 922 if ((bhash & ~1) != hash) 923 return 0; 924 } 925 /* 926 * If the hash is HASH_NB_ALWAYS, we always go to the next 927 * block so no check is necessary 928 */ 929 while (num_frames--) { 930 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX); 931 if (IS_ERR(bh)) 932 return PTR_ERR(bh); 933 p++; 934 brelse(p->bh); 935 p->bh = bh; 936 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries; 937 } 938 return 1; 939 } 940 941 942 /* 943 * This function fills a red-black tree with information from a 944 * directory block. It returns the number directory entries loaded 945 * into the tree. If there is an error it is returned in err. 946 */ 947 static int htree_dirblock_to_tree(struct file *dir_file, 948 struct inode *dir, ext4_lblk_t block, 949 struct dx_hash_info *hinfo, 950 __u32 start_hash, __u32 start_minor_hash) 951 { 952 struct buffer_head *bh; 953 struct ext4_dir_entry_2 *de, *top; 954 int err = 0, count = 0; 955 struct ext4_str fname_crypto_str = {.name = NULL, .len = 0}, tmp_str; 956 957 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n", 958 (unsigned long)block)); 959 bh = ext4_read_dirblock(dir, block, DIRENT); 960 if (IS_ERR(bh)) 961 return PTR_ERR(bh); 962 963 de = (struct ext4_dir_entry_2 *) bh->b_data; 964 top = (struct ext4_dir_entry_2 *) ((char *) de + 965 dir->i_sb->s_blocksize - 966 EXT4_DIR_REC_LEN(0)); 967 #ifdef CONFIG_EXT4_FS_ENCRYPTION 968 /* Check if the directory is encrypted */ 969 if (ext4_encrypted_inode(dir)) { 970 err = ext4_get_encryption_info(dir); 971 if (err < 0) { 972 brelse(bh); 973 return err; 974 } 975 err = ext4_fname_crypto_alloc_buffer(dir, EXT4_NAME_LEN, 976 &fname_crypto_str); 977 if (err < 0) { 978 brelse(bh); 979 return err; 980 } 981 } 982 #endif 983 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) { 984 if (ext4_check_dir_entry(dir, NULL, de, bh, 985 bh->b_data, bh->b_size, 986 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb)) 987 + ((char *)de - bh->b_data))) { 988 /* silently ignore the rest of the block */ 989 break; 990 } 991 ext4fs_dirhash(de->name, de->name_len, hinfo); 992 if ((hinfo->hash < start_hash) || 993 ((hinfo->hash == start_hash) && 994 (hinfo->minor_hash < start_minor_hash))) 995 continue; 996 if (de->inode == 0) 997 continue; 998 if (!ext4_encrypted_inode(dir)) { 999 tmp_str.name = de->name; 1000 tmp_str.len = de->name_len; 1001 err = ext4_htree_store_dirent(dir_file, 1002 hinfo->hash, hinfo->minor_hash, de, 1003 &tmp_str); 1004 } else { 1005 int save_len = fname_crypto_str.len; 1006 1007 /* Directory is encrypted */ 1008 err = ext4_fname_disk_to_usr(dir, hinfo, de, 1009 &fname_crypto_str); 1010 if (err < 0) { 1011 count = err; 1012 goto errout; 1013 } 1014 err = ext4_htree_store_dirent(dir_file, 1015 hinfo->hash, hinfo->minor_hash, de, 1016 &fname_crypto_str); 1017 fname_crypto_str.len = save_len; 1018 } 1019 if (err != 0) { 1020 count = err; 1021 goto errout; 1022 } 1023 count++; 1024 } 1025 errout: 1026 brelse(bh); 1027 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1028 ext4_fname_crypto_free_buffer(&fname_crypto_str); 1029 #endif 1030 return count; 1031 } 1032 1033 1034 /* 1035 * This function fills a red-black tree with information from a 1036 * directory. We start scanning the directory in hash order, starting 1037 * at start_hash and start_minor_hash. 1038 * 1039 * This function returns the number of entries inserted into the tree, 1040 * or a negative error code. 1041 */ 1042 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash, 1043 __u32 start_minor_hash, __u32 *next_hash) 1044 { 1045 struct dx_hash_info hinfo; 1046 struct ext4_dir_entry_2 *de; 1047 struct dx_frame frames[2], *frame; 1048 struct inode *dir; 1049 ext4_lblk_t block; 1050 int count = 0; 1051 int ret, err; 1052 __u32 hashval; 1053 struct ext4_str tmp_str; 1054 1055 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n", 1056 start_hash, start_minor_hash)); 1057 dir = file_inode(dir_file); 1058 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) { 1059 hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 1060 if (hinfo.hash_version <= DX_HASH_TEA) 1061 hinfo.hash_version += 1062 EXT4_SB(dir->i_sb)->s_hash_unsigned; 1063 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 1064 if (ext4_has_inline_data(dir)) { 1065 int has_inline_data = 1; 1066 count = htree_inlinedir_to_tree(dir_file, dir, 0, 1067 &hinfo, start_hash, 1068 start_minor_hash, 1069 &has_inline_data); 1070 if (has_inline_data) { 1071 *next_hash = ~0; 1072 return count; 1073 } 1074 } 1075 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo, 1076 start_hash, start_minor_hash); 1077 *next_hash = ~0; 1078 return count; 1079 } 1080 hinfo.hash = start_hash; 1081 hinfo.minor_hash = 0; 1082 frame = dx_probe(NULL, dir, &hinfo, frames); 1083 if (IS_ERR(frame)) 1084 return PTR_ERR(frame); 1085 1086 /* Add '.' and '..' from the htree header */ 1087 if (!start_hash && !start_minor_hash) { 1088 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1089 tmp_str.name = de->name; 1090 tmp_str.len = de->name_len; 1091 err = ext4_htree_store_dirent(dir_file, 0, 0, 1092 de, &tmp_str); 1093 if (err != 0) 1094 goto errout; 1095 count++; 1096 } 1097 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) { 1098 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1099 de = ext4_next_entry(de, dir->i_sb->s_blocksize); 1100 tmp_str.name = de->name; 1101 tmp_str.len = de->name_len; 1102 err = ext4_htree_store_dirent(dir_file, 2, 0, 1103 de, &tmp_str); 1104 if (err != 0) 1105 goto errout; 1106 count++; 1107 } 1108 1109 while (1) { 1110 if (fatal_signal_pending(current)) { 1111 err = -ERESTARTSYS; 1112 goto errout; 1113 } 1114 cond_resched(); 1115 block = dx_get_block(frame->at); 1116 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo, 1117 start_hash, start_minor_hash); 1118 if (ret < 0) { 1119 err = ret; 1120 goto errout; 1121 } 1122 count += ret; 1123 hashval = ~0; 1124 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS, 1125 frame, frames, &hashval); 1126 *next_hash = hashval; 1127 if (ret < 0) { 1128 err = ret; 1129 goto errout; 1130 } 1131 /* 1132 * Stop if: (a) there are no more entries, or 1133 * (b) we have inserted at least one entry and the 1134 * next hash value is not a continuation 1135 */ 1136 if ((ret == 0) || 1137 (count && ((hashval & 1) == 0))) 1138 break; 1139 } 1140 dx_release(frames); 1141 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, " 1142 "next hash: %x\n", count, *next_hash)); 1143 return count; 1144 errout: 1145 dx_release(frames); 1146 return (err); 1147 } 1148 1149 static inline int search_dirblock(struct buffer_head *bh, 1150 struct inode *dir, 1151 struct ext4_filename *fname, 1152 const struct qstr *d_name, 1153 unsigned int offset, 1154 struct ext4_dir_entry_2 **res_dir) 1155 { 1156 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir, 1157 fname, d_name, offset, res_dir); 1158 } 1159 1160 /* 1161 * Directory block splitting, compacting 1162 */ 1163 1164 /* 1165 * Create map of hash values, offsets, and sizes, stored at end of block. 1166 * Returns number of entries mapped. 1167 */ 1168 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 1169 unsigned blocksize, struct dx_hash_info *hinfo, 1170 struct dx_map_entry *map_tail) 1171 { 1172 int count = 0; 1173 char *base = (char *) de; 1174 struct dx_hash_info h = *hinfo; 1175 1176 while ((char *) de < base + blocksize) { 1177 if (de->name_len && de->inode) { 1178 ext4fs_dirhash(de->name, de->name_len, &h); 1179 map_tail--; 1180 map_tail->hash = h.hash; 1181 map_tail->offs = ((char *) de - base)>>2; 1182 map_tail->size = le16_to_cpu(de->rec_len); 1183 count++; 1184 cond_resched(); 1185 } 1186 /* XXX: do we need to check rec_len == 0 case? -Chris */ 1187 de = ext4_next_entry(de, blocksize); 1188 } 1189 return count; 1190 } 1191 1192 /* Sort map by hash value */ 1193 static void dx_sort_map (struct dx_map_entry *map, unsigned count) 1194 { 1195 struct dx_map_entry *p, *q, *top = map + count - 1; 1196 int more; 1197 /* Combsort until bubble sort doesn't suck */ 1198 while (count > 2) { 1199 count = count*10/13; 1200 if (count - 9 < 2) /* 9, 10 -> 11 */ 1201 count = 11; 1202 for (p = top, q = p - count; q >= map; p--, q--) 1203 if (p->hash < q->hash) 1204 swap(*p, *q); 1205 } 1206 /* Garden variety bubble sort */ 1207 do { 1208 more = 0; 1209 q = top; 1210 while (q-- > map) { 1211 if (q[1].hash >= q[0].hash) 1212 continue; 1213 swap(*(q+1), *q); 1214 more = 1; 1215 } 1216 } while(more); 1217 } 1218 1219 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block) 1220 { 1221 struct dx_entry *entries = frame->entries; 1222 struct dx_entry *old = frame->at, *new = old + 1; 1223 int count = dx_get_count(entries); 1224 1225 assert(count < dx_get_limit(entries)); 1226 assert(old < entries + count); 1227 memmove(new + 1, new, (char *)(entries + count) - (char *)(new)); 1228 dx_set_hash(new, hash); 1229 dx_set_block(new, block); 1230 dx_set_count(entries, count + 1); 1231 } 1232 1233 /* 1234 * NOTE! unlike strncmp, ext4_match returns 1 for success, 0 for failure. 1235 * 1236 * `len <= EXT4_NAME_LEN' is guaranteed by caller. 1237 * `de != NULL' is guaranteed by caller. 1238 */ 1239 static inline int ext4_match(struct ext4_filename *fname, 1240 struct ext4_dir_entry_2 *de) 1241 { 1242 const void *name = fname_name(fname); 1243 u32 len = fname_len(fname); 1244 1245 if (!de->inode) 1246 return 0; 1247 1248 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1249 if (unlikely(!name)) { 1250 if (fname->usr_fname->name[0] == '_') { 1251 int ret; 1252 if (de->name_len < 16) 1253 return 0; 1254 ret = memcmp(de->name + de->name_len - 16, 1255 fname->crypto_buf.name + 8, 16); 1256 return (ret == 0) ? 1 : 0; 1257 } 1258 name = fname->crypto_buf.name; 1259 len = fname->crypto_buf.len; 1260 } 1261 #endif 1262 if (de->name_len != len) 1263 return 0; 1264 return (memcmp(de->name, name, len) == 0) ? 1 : 0; 1265 } 1266 1267 /* 1268 * Returns 0 if not found, -1 on failure, and 1 on success 1269 */ 1270 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size, 1271 struct inode *dir, struct ext4_filename *fname, 1272 const struct qstr *d_name, 1273 unsigned int offset, struct ext4_dir_entry_2 **res_dir) 1274 { 1275 struct ext4_dir_entry_2 * de; 1276 char * dlimit; 1277 int de_len; 1278 int res; 1279 1280 de = (struct ext4_dir_entry_2 *)search_buf; 1281 dlimit = search_buf + buf_size; 1282 while ((char *) de < dlimit) { 1283 /* this code is executed quadratically often */ 1284 /* do minimal checking `by hand' */ 1285 if ((char *) de + de->name_len <= dlimit) { 1286 res = ext4_match(fname, de); 1287 if (res < 0) { 1288 res = -1; 1289 goto return_result; 1290 } 1291 if (res > 0) { 1292 /* found a match - just to be sure, do 1293 * a full check */ 1294 if (ext4_check_dir_entry(dir, NULL, de, bh, 1295 bh->b_data, 1296 bh->b_size, offset)) { 1297 res = -1; 1298 goto return_result; 1299 } 1300 *res_dir = de; 1301 res = 1; 1302 goto return_result; 1303 } 1304 1305 } 1306 /* prevent looping on a bad block */ 1307 de_len = ext4_rec_len_from_disk(de->rec_len, 1308 dir->i_sb->s_blocksize); 1309 if (de_len <= 0) { 1310 res = -1; 1311 goto return_result; 1312 } 1313 offset += de_len; 1314 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); 1315 } 1316 1317 res = 0; 1318 return_result: 1319 return res; 1320 } 1321 1322 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block, 1323 struct ext4_dir_entry *de) 1324 { 1325 struct super_block *sb = dir->i_sb; 1326 1327 if (!is_dx(dir)) 1328 return 0; 1329 if (block == 0) 1330 return 1; 1331 if (de->inode == 0 && 1332 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) == 1333 sb->s_blocksize) 1334 return 1; 1335 return 0; 1336 } 1337 1338 /* 1339 * ext4_find_entry() 1340 * 1341 * finds an entry in the specified directory with the wanted name. It 1342 * returns the cache buffer in which the entry was found, and the entry 1343 * itself (as a parameter - res_dir). It does NOT read the inode of the 1344 * entry - you'll have to do that yourself if you want to. 1345 * 1346 * The returned buffer_head has ->b_count elevated. The caller is expected 1347 * to brelse() it when appropriate. 1348 */ 1349 static struct buffer_head * ext4_find_entry (struct inode *dir, 1350 const struct qstr *d_name, 1351 struct ext4_dir_entry_2 **res_dir, 1352 int *inlined) 1353 { 1354 struct super_block *sb; 1355 struct buffer_head *bh_use[NAMEI_RA_SIZE]; 1356 struct buffer_head *bh, *ret = NULL; 1357 ext4_lblk_t start, block, b; 1358 const u8 *name = d_name->name; 1359 int ra_max = 0; /* Number of bh's in the readahead 1360 buffer, bh_use[] */ 1361 int ra_ptr = 0; /* Current index into readahead 1362 buffer */ 1363 int num = 0; 1364 ext4_lblk_t nblocks; 1365 int i, namelen, retval; 1366 struct ext4_filename fname; 1367 1368 *res_dir = NULL; 1369 sb = dir->i_sb; 1370 namelen = d_name->len; 1371 if (namelen > EXT4_NAME_LEN) 1372 return NULL; 1373 1374 retval = ext4_fname_setup_filename(dir, d_name, 1, &fname); 1375 if (retval) 1376 return ERR_PTR(retval); 1377 1378 if (ext4_has_inline_data(dir)) { 1379 int has_inline_data = 1; 1380 ret = ext4_find_inline_entry(dir, &fname, d_name, res_dir, 1381 &has_inline_data); 1382 if (has_inline_data) { 1383 if (inlined) 1384 *inlined = 1; 1385 goto cleanup_and_exit; 1386 } 1387 } 1388 1389 if ((namelen <= 2) && (name[0] == '.') && 1390 (name[1] == '.' || name[1] == '\0')) { 1391 /* 1392 * "." or ".." will only be in the first block 1393 * NFS may look up ".."; "." should be handled by the VFS 1394 */ 1395 block = start = 0; 1396 nblocks = 1; 1397 goto restart; 1398 } 1399 if (is_dx(dir)) { 1400 ret = ext4_dx_find_entry(dir, &fname, res_dir); 1401 /* 1402 * On success, or if the error was file not found, 1403 * return. Otherwise, fall back to doing a search the 1404 * old fashioned way. 1405 */ 1406 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR) 1407 goto cleanup_and_exit; 1408 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, " 1409 "falling back\n")); 1410 } 1411 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1412 start = EXT4_I(dir)->i_dir_start_lookup; 1413 if (start >= nblocks) 1414 start = 0; 1415 block = start; 1416 restart: 1417 do { 1418 /* 1419 * We deal with the read-ahead logic here. 1420 */ 1421 if (ra_ptr >= ra_max) { 1422 /* Refill the readahead buffer */ 1423 ra_ptr = 0; 1424 b = block; 1425 for (ra_max = 0; ra_max < NAMEI_RA_SIZE; ra_max++) { 1426 /* 1427 * Terminate if we reach the end of the 1428 * directory and must wrap, or if our 1429 * search has finished at this block. 1430 */ 1431 if (b >= nblocks || (num && block == start)) { 1432 bh_use[ra_max] = NULL; 1433 break; 1434 } 1435 num++; 1436 bh = ext4_getblk(NULL, dir, b++, 0); 1437 if (IS_ERR(bh)) { 1438 if (ra_max == 0) { 1439 ret = bh; 1440 goto cleanup_and_exit; 1441 } 1442 break; 1443 } 1444 bh_use[ra_max] = bh; 1445 if (bh) 1446 ll_rw_block(READ | REQ_META | REQ_PRIO, 1447 1, &bh); 1448 } 1449 } 1450 if ((bh = bh_use[ra_ptr++]) == NULL) 1451 goto next; 1452 wait_on_buffer(bh); 1453 if (!buffer_uptodate(bh)) { 1454 /* read error, skip block & hope for the best */ 1455 EXT4_ERROR_INODE(dir, "reading directory lblock %lu", 1456 (unsigned long) block); 1457 brelse(bh); 1458 goto next; 1459 } 1460 if (!buffer_verified(bh) && 1461 !is_dx_internal_node(dir, block, 1462 (struct ext4_dir_entry *)bh->b_data) && 1463 !ext4_dirent_csum_verify(dir, 1464 (struct ext4_dir_entry *)bh->b_data)) { 1465 EXT4_ERROR_INODE(dir, "checksumming directory " 1466 "block %lu", (unsigned long)block); 1467 brelse(bh); 1468 goto next; 1469 } 1470 set_buffer_verified(bh); 1471 i = search_dirblock(bh, dir, &fname, d_name, 1472 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir); 1473 if (i == 1) { 1474 EXT4_I(dir)->i_dir_start_lookup = block; 1475 ret = bh; 1476 goto cleanup_and_exit; 1477 } else { 1478 brelse(bh); 1479 if (i < 0) 1480 goto cleanup_and_exit; 1481 } 1482 next: 1483 if (++block >= nblocks) 1484 block = 0; 1485 } while (block != start); 1486 1487 /* 1488 * If the directory has grown while we were searching, then 1489 * search the last part of the directory before giving up. 1490 */ 1491 block = nblocks; 1492 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1493 if (block < nblocks) { 1494 start = 0; 1495 goto restart; 1496 } 1497 1498 cleanup_and_exit: 1499 /* Clean up the read-ahead blocks */ 1500 for (; ra_ptr < ra_max; ra_ptr++) 1501 brelse(bh_use[ra_ptr]); 1502 ext4_fname_free_filename(&fname); 1503 return ret; 1504 } 1505 1506 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 1507 struct ext4_filename *fname, 1508 struct ext4_dir_entry_2 **res_dir) 1509 { 1510 struct super_block * sb = dir->i_sb; 1511 struct dx_frame frames[2], *frame; 1512 const struct qstr *d_name = fname->usr_fname; 1513 struct buffer_head *bh; 1514 ext4_lblk_t block; 1515 int retval; 1516 1517 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1518 *res_dir = NULL; 1519 #endif 1520 frame = dx_probe(fname, dir, NULL, frames); 1521 if (IS_ERR(frame)) 1522 return (struct buffer_head *) frame; 1523 do { 1524 block = dx_get_block(frame->at); 1525 bh = ext4_read_dirblock(dir, block, DIRENT); 1526 if (IS_ERR(bh)) 1527 goto errout; 1528 1529 retval = search_dirblock(bh, dir, fname, d_name, 1530 block << EXT4_BLOCK_SIZE_BITS(sb), 1531 res_dir); 1532 if (retval == 1) 1533 goto success; 1534 brelse(bh); 1535 if (retval == -1) { 1536 bh = ERR_PTR(ERR_BAD_DX_DIR); 1537 goto errout; 1538 } 1539 1540 /* Check to see if we should continue to search */ 1541 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame, 1542 frames, NULL); 1543 if (retval < 0) { 1544 ext4_warning_inode(dir, 1545 "error %d reading directory index block", 1546 retval); 1547 bh = ERR_PTR(retval); 1548 goto errout; 1549 } 1550 } while (retval == 1); 1551 1552 bh = NULL; 1553 errout: 1554 dxtrace(printk(KERN_DEBUG "%s not found\n", d_name->name)); 1555 success: 1556 dx_release(frames); 1557 return bh; 1558 } 1559 1560 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1561 { 1562 struct inode *inode; 1563 struct ext4_dir_entry_2 *de; 1564 struct buffer_head *bh; 1565 1566 if (ext4_encrypted_inode(dir)) { 1567 int res = ext4_get_encryption_info(dir); 1568 1569 /* 1570 * This should be a properly defined flag for 1571 * dentry->d_flags when we uplift this to the VFS. 1572 * d_fsdata is set to (void *) 1 if if the dentry is 1573 * created while the directory was encrypted and we 1574 * don't have access to the key. 1575 */ 1576 dentry->d_fsdata = NULL; 1577 if (ext4_encryption_info(dir)) 1578 dentry->d_fsdata = (void *) 1; 1579 d_set_d_op(dentry, &ext4_encrypted_d_ops); 1580 if (res && res != -ENOKEY) 1581 return ERR_PTR(res); 1582 } 1583 1584 if (dentry->d_name.len > EXT4_NAME_LEN) 1585 return ERR_PTR(-ENAMETOOLONG); 1586 1587 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 1588 if (IS_ERR(bh)) 1589 return (struct dentry *) bh; 1590 inode = NULL; 1591 if (bh) { 1592 __u32 ino = le32_to_cpu(de->inode); 1593 brelse(bh); 1594 if (!ext4_valid_inum(dir->i_sb, ino)) { 1595 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino); 1596 return ERR_PTR(-EFSCORRUPTED); 1597 } 1598 if (unlikely(ino == dir->i_ino)) { 1599 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir", 1600 dentry); 1601 return ERR_PTR(-EFSCORRUPTED); 1602 } 1603 inode = ext4_iget_normal(dir->i_sb, ino); 1604 if (inode == ERR_PTR(-ESTALE)) { 1605 EXT4_ERROR_INODE(dir, 1606 "deleted inode referenced: %u", 1607 ino); 1608 return ERR_PTR(-EFSCORRUPTED); 1609 } 1610 if (!IS_ERR(inode) && ext4_encrypted_inode(dir) && 1611 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && 1612 !ext4_is_child_context_consistent_with_parent(dir, 1613 inode)) { 1614 int nokey = ext4_encrypted_inode(inode) && 1615 !ext4_encryption_info(inode); 1616 1617 iput(inode); 1618 if (nokey) 1619 return ERR_PTR(-ENOKEY); 1620 ext4_warning(inode->i_sb, 1621 "Inconsistent encryption contexts: %lu/%lu", 1622 (unsigned long) dir->i_ino, 1623 (unsigned long) inode->i_ino); 1624 return ERR_PTR(-EPERM); 1625 } 1626 } 1627 return d_splice_alias(inode, dentry); 1628 } 1629 1630 1631 struct dentry *ext4_get_parent(struct dentry *child) 1632 { 1633 __u32 ino; 1634 static const struct qstr dotdot = QSTR_INIT("..", 2); 1635 struct ext4_dir_entry_2 * de; 1636 struct buffer_head *bh; 1637 1638 bh = ext4_find_entry(d_inode(child), &dotdot, &de, NULL); 1639 if (IS_ERR(bh)) 1640 return (struct dentry *) bh; 1641 if (!bh) 1642 return ERR_PTR(-ENOENT); 1643 ino = le32_to_cpu(de->inode); 1644 brelse(bh); 1645 1646 if (!ext4_valid_inum(child->d_sb, ino)) { 1647 EXT4_ERROR_INODE(d_inode(child), 1648 "bad parent inode number: %u", ino); 1649 return ERR_PTR(-EFSCORRUPTED); 1650 } 1651 1652 return d_obtain_alias(ext4_iget_normal(child->d_sb, ino)); 1653 } 1654 1655 /* 1656 * Move count entries from end of map between two memory locations. 1657 * Returns pointer to last entry moved. 1658 */ 1659 static struct ext4_dir_entry_2 * 1660 dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count, 1661 unsigned blocksize) 1662 { 1663 unsigned rec_len = 0; 1664 1665 while (count--) { 1666 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *) 1667 (from + (map->offs<<2)); 1668 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1669 memcpy (to, de, rec_len); 1670 ((struct ext4_dir_entry_2 *) to)->rec_len = 1671 ext4_rec_len_to_disk(rec_len, blocksize); 1672 de->inode = 0; 1673 map++; 1674 to += rec_len; 1675 } 1676 return (struct ext4_dir_entry_2 *) (to - rec_len); 1677 } 1678 1679 /* 1680 * Compact each dir entry in the range to the minimal rec_len. 1681 * Returns pointer to last entry in range. 1682 */ 1683 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize) 1684 { 1685 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base; 1686 unsigned rec_len = 0; 1687 1688 prev = to = de; 1689 while ((char*)de < base + blocksize) { 1690 next = ext4_next_entry(de, blocksize); 1691 if (de->inode && de->name_len) { 1692 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1693 if (de > to) 1694 memmove(to, de, rec_len); 1695 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize); 1696 prev = to; 1697 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len); 1698 } 1699 de = next; 1700 } 1701 return prev; 1702 } 1703 1704 /* 1705 * Split a full leaf block to make room for a new dir entry. 1706 * Allocate a new block, and move entries so that they are approx. equally full. 1707 * Returns pointer to de in block into which the new entry will be inserted. 1708 */ 1709 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir, 1710 struct buffer_head **bh,struct dx_frame *frame, 1711 struct dx_hash_info *hinfo) 1712 { 1713 unsigned blocksize = dir->i_sb->s_blocksize; 1714 unsigned count, continued; 1715 struct buffer_head *bh2; 1716 ext4_lblk_t newblock; 1717 u32 hash2; 1718 struct dx_map_entry *map; 1719 char *data1 = (*bh)->b_data, *data2; 1720 unsigned split, move, size; 1721 struct ext4_dir_entry_2 *de = NULL, *de2; 1722 struct ext4_dir_entry_tail *t; 1723 int csum_size = 0; 1724 int err = 0, i; 1725 1726 if (ext4_has_metadata_csum(dir->i_sb)) 1727 csum_size = sizeof(struct ext4_dir_entry_tail); 1728 1729 bh2 = ext4_append(handle, dir, &newblock); 1730 if (IS_ERR(bh2)) { 1731 brelse(*bh); 1732 *bh = NULL; 1733 return (struct ext4_dir_entry_2 *) bh2; 1734 } 1735 1736 BUFFER_TRACE(*bh, "get_write_access"); 1737 err = ext4_journal_get_write_access(handle, *bh); 1738 if (err) 1739 goto journal_error; 1740 1741 BUFFER_TRACE(frame->bh, "get_write_access"); 1742 err = ext4_journal_get_write_access(handle, frame->bh); 1743 if (err) 1744 goto journal_error; 1745 1746 data2 = bh2->b_data; 1747 1748 /* create map in the end of data2 block */ 1749 map = (struct dx_map_entry *) (data2 + blocksize); 1750 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1, 1751 blocksize, hinfo, map); 1752 map -= count; 1753 dx_sort_map(map, count); 1754 /* Split the existing block in the middle, size-wise */ 1755 size = 0; 1756 move = 0; 1757 for (i = count-1; i >= 0; i--) { 1758 /* is more than half of this entry in 2nd half of the block? */ 1759 if (size + map[i].size/2 > blocksize/2) 1760 break; 1761 size += map[i].size; 1762 move++; 1763 } 1764 /* map index at which we will split */ 1765 split = count - move; 1766 hash2 = map[split].hash; 1767 continued = hash2 == map[split - 1].hash; 1768 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n", 1769 (unsigned long)dx_get_block(frame->at), 1770 hash2, split, count-split)); 1771 1772 /* Fancy dance to stay within two buffers */ 1773 de2 = dx_move_dirents(data1, data2, map + split, count - split, 1774 blocksize); 1775 de = dx_pack_dirents(data1, blocksize); 1776 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 1777 (char *) de, 1778 blocksize); 1779 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) - 1780 (char *) de2, 1781 blocksize); 1782 if (csum_size) { 1783 t = EXT4_DIRENT_TAIL(data2, blocksize); 1784 initialize_dirent_tail(t, blocksize); 1785 1786 t = EXT4_DIRENT_TAIL(data1, blocksize); 1787 initialize_dirent_tail(t, blocksize); 1788 } 1789 1790 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1, 1791 blocksize, 1)); 1792 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2, 1793 blocksize, 1)); 1794 1795 /* Which block gets the new entry? */ 1796 if (hinfo->hash >= hash2) { 1797 swap(*bh, bh2); 1798 de = de2; 1799 } 1800 dx_insert_block(frame, hash2 + continued, newblock); 1801 err = ext4_handle_dirty_dirent_node(handle, dir, bh2); 1802 if (err) 1803 goto journal_error; 1804 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 1805 if (err) 1806 goto journal_error; 1807 brelse(bh2); 1808 dxtrace(dx_show_index("frame", frame->entries)); 1809 return de; 1810 1811 journal_error: 1812 brelse(*bh); 1813 brelse(bh2); 1814 *bh = NULL; 1815 ext4_std_error(dir->i_sb, err); 1816 return ERR_PTR(err); 1817 } 1818 1819 int ext4_find_dest_de(struct inode *dir, struct inode *inode, 1820 struct buffer_head *bh, 1821 void *buf, int buf_size, 1822 struct ext4_filename *fname, 1823 struct ext4_dir_entry_2 **dest_de) 1824 { 1825 struct ext4_dir_entry_2 *de; 1826 unsigned short reclen = EXT4_DIR_REC_LEN(fname_len(fname)); 1827 int nlen, rlen; 1828 unsigned int offset = 0; 1829 char *top; 1830 int res; 1831 1832 de = (struct ext4_dir_entry_2 *)buf; 1833 top = buf + buf_size - reclen; 1834 while ((char *) de <= top) { 1835 if (ext4_check_dir_entry(dir, NULL, de, bh, 1836 buf, buf_size, offset)) { 1837 res = -EFSCORRUPTED; 1838 goto return_result; 1839 } 1840 /* Provide crypto context and crypto buffer to ext4 match */ 1841 res = ext4_match(fname, de); 1842 if (res < 0) 1843 goto return_result; 1844 if (res > 0) { 1845 res = -EEXIST; 1846 goto return_result; 1847 } 1848 nlen = EXT4_DIR_REC_LEN(de->name_len); 1849 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1850 if ((de->inode ? rlen - nlen : rlen) >= reclen) 1851 break; 1852 de = (struct ext4_dir_entry_2 *)((char *)de + rlen); 1853 offset += rlen; 1854 } 1855 1856 if ((char *) de > top) 1857 res = -ENOSPC; 1858 else { 1859 *dest_de = de; 1860 res = 0; 1861 } 1862 return_result: 1863 return res; 1864 } 1865 1866 int ext4_insert_dentry(struct inode *dir, 1867 struct inode *inode, 1868 struct ext4_dir_entry_2 *de, 1869 int buf_size, 1870 struct ext4_filename *fname) 1871 { 1872 1873 int nlen, rlen; 1874 1875 nlen = EXT4_DIR_REC_LEN(de->name_len); 1876 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1877 if (de->inode) { 1878 struct ext4_dir_entry_2 *de1 = 1879 (struct ext4_dir_entry_2 *)((char *)de + nlen); 1880 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size); 1881 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size); 1882 de = de1; 1883 } 1884 de->file_type = EXT4_FT_UNKNOWN; 1885 de->inode = cpu_to_le32(inode->i_ino); 1886 ext4_set_de_type(inode->i_sb, de, inode->i_mode); 1887 de->name_len = fname_len(fname); 1888 memcpy(de->name, fname_name(fname), fname_len(fname)); 1889 return 0; 1890 } 1891 1892 /* 1893 * Add a new entry into a directory (leaf) block. If de is non-NULL, 1894 * it points to a directory entry which is guaranteed to be large 1895 * enough for new directory entry. If de is NULL, then 1896 * add_dirent_to_buf will attempt search the directory block for 1897 * space. It will return -ENOSPC if no space is available, and -EIO 1898 * and -EEXIST if directory entry already exists. 1899 */ 1900 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname, 1901 struct inode *dir, 1902 struct inode *inode, struct ext4_dir_entry_2 *de, 1903 struct buffer_head *bh) 1904 { 1905 unsigned int blocksize = dir->i_sb->s_blocksize; 1906 int csum_size = 0; 1907 int err; 1908 1909 if (ext4_has_metadata_csum(inode->i_sb)) 1910 csum_size = sizeof(struct ext4_dir_entry_tail); 1911 1912 if (!de) { 1913 err = ext4_find_dest_de(dir, inode, bh, bh->b_data, 1914 blocksize - csum_size, fname, &de); 1915 if (err) 1916 return err; 1917 } 1918 BUFFER_TRACE(bh, "get_write_access"); 1919 err = ext4_journal_get_write_access(handle, bh); 1920 if (err) { 1921 ext4_std_error(dir->i_sb, err); 1922 return err; 1923 } 1924 1925 /* By now the buffer is marked for journaling. Due to crypto operations, 1926 * the following function call may fail */ 1927 err = ext4_insert_dentry(dir, inode, de, blocksize, fname); 1928 if (err < 0) 1929 return err; 1930 1931 /* 1932 * XXX shouldn't update any times until successful 1933 * completion of syscall, but too many callers depend 1934 * on this. 1935 * 1936 * XXX similarly, too many callers depend on 1937 * ext4_new_inode() setting the times, but error 1938 * recovery deletes the inode, so the worst that can 1939 * happen is that the times are slightly out of date 1940 * and/or different from the directory change time. 1941 */ 1942 dir->i_mtime = dir->i_ctime = ext4_current_time(dir); 1943 ext4_update_dx_flag(dir); 1944 dir->i_version++; 1945 ext4_mark_inode_dirty(handle, dir); 1946 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1947 err = ext4_handle_dirty_dirent_node(handle, dir, bh); 1948 if (err) 1949 ext4_std_error(dir->i_sb, err); 1950 return 0; 1951 } 1952 1953 /* 1954 * This converts a one block unindexed directory to a 3 block indexed 1955 * directory, and adds the dentry to the indexed directory. 1956 */ 1957 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname, 1958 struct inode *dir, 1959 struct inode *inode, struct buffer_head *bh) 1960 { 1961 struct buffer_head *bh2; 1962 struct dx_root *root; 1963 struct dx_frame frames[2], *frame; 1964 struct dx_entry *entries; 1965 struct ext4_dir_entry_2 *de, *de2; 1966 struct ext4_dir_entry_tail *t; 1967 char *data1, *top; 1968 unsigned len; 1969 int retval; 1970 unsigned blocksize; 1971 ext4_lblk_t block; 1972 struct fake_dirent *fde; 1973 int csum_size = 0; 1974 1975 if (ext4_has_metadata_csum(inode->i_sb)) 1976 csum_size = sizeof(struct ext4_dir_entry_tail); 1977 1978 blocksize = dir->i_sb->s_blocksize; 1979 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino)); 1980 BUFFER_TRACE(bh, "get_write_access"); 1981 retval = ext4_journal_get_write_access(handle, bh); 1982 if (retval) { 1983 ext4_std_error(dir->i_sb, retval); 1984 brelse(bh); 1985 return retval; 1986 } 1987 root = (struct dx_root *) bh->b_data; 1988 1989 /* The 0th block becomes the root, move the dirents out */ 1990 fde = &root->dotdot; 1991 de = (struct ext4_dir_entry_2 *)((char *)fde + 1992 ext4_rec_len_from_disk(fde->rec_len, blocksize)); 1993 if ((char *) de >= (((char *) root) + blocksize)) { 1994 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'"); 1995 brelse(bh); 1996 return -EFSCORRUPTED; 1997 } 1998 len = ((char *) root) + (blocksize - csum_size) - (char *) de; 1999 2000 /* Allocate new block for the 0th block's dirents */ 2001 bh2 = ext4_append(handle, dir, &block); 2002 if (IS_ERR(bh2)) { 2003 brelse(bh); 2004 return PTR_ERR(bh2); 2005 } 2006 ext4_set_inode_flag(dir, EXT4_INODE_INDEX); 2007 data1 = bh2->b_data; 2008 2009 memcpy (data1, de, len); 2010 de = (struct ext4_dir_entry_2 *) data1; 2011 top = data1 + len; 2012 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top) 2013 de = de2; 2014 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 2015 (char *) de, 2016 blocksize); 2017 2018 if (csum_size) { 2019 t = EXT4_DIRENT_TAIL(data1, blocksize); 2020 initialize_dirent_tail(t, blocksize); 2021 } 2022 2023 /* Initialize the root; the dot dirents already exist */ 2024 de = (struct ext4_dir_entry_2 *) (&root->dotdot); 2025 de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2), 2026 blocksize); 2027 memset (&root->info, 0, sizeof(root->info)); 2028 root->info.info_length = sizeof(root->info); 2029 root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 2030 entries = root->entries; 2031 dx_set_block(entries, 1); 2032 dx_set_count(entries, 1); 2033 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info))); 2034 2035 /* Initialize as for dx_probe */ 2036 fname->hinfo.hash_version = root->info.hash_version; 2037 if (fname->hinfo.hash_version <= DX_HASH_TEA) 2038 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 2039 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 2040 ext4fs_dirhash(fname_name(fname), fname_len(fname), &fname->hinfo); 2041 2042 memset(frames, 0, sizeof(frames)); 2043 frame = frames; 2044 frame->entries = entries; 2045 frame->at = entries; 2046 frame->bh = bh; 2047 bh = bh2; 2048 2049 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 2050 if (retval) 2051 goto out_frames; 2052 retval = ext4_handle_dirty_dirent_node(handle, dir, bh); 2053 if (retval) 2054 goto out_frames; 2055 2056 de = do_split(handle,dir, &bh, frame, &fname->hinfo); 2057 if (IS_ERR(de)) { 2058 retval = PTR_ERR(de); 2059 goto out_frames; 2060 } 2061 dx_release(frames); 2062 2063 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh); 2064 brelse(bh); 2065 return retval; 2066 out_frames: 2067 /* 2068 * Even if the block split failed, we have to properly write 2069 * out all the changes we did so far. Otherwise we can end up 2070 * with corrupted filesystem. 2071 */ 2072 ext4_mark_inode_dirty(handle, dir); 2073 dx_release(frames); 2074 return retval; 2075 } 2076 2077 /* 2078 * ext4_add_entry() 2079 * 2080 * adds a file entry to the specified directory, using the same 2081 * semantics as ext4_find_entry(). It returns NULL if it failed. 2082 * 2083 * NOTE!! The inode part of 'de' is left at 0 - which means you 2084 * may not sleep between calling this and putting something into 2085 * the entry, as someone else might have used it while you slept. 2086 */ 2087 static int ext4_add_entry(handle_t *handle, struct dentry *dentry, 2088 struct inode *inode) 2089 { 2090 struct inode *dir = d_inode(dentry->d_parent); 2091 struct buffer_head *bh = NULL; 2092 struct ext4_dir_entry_2 *de; 2093 struct ext4_dir_entry_tail *t; 2094 struct super_block *sb; 2095 struct ext4_filename fname; 2096 int retval; 2097 int dx_fallback=0; 2098 unsigned blocksize; 2099 ext4_lblk_t block, blocks; 2100 int csum_size = 0; 2101 2102 if (ext4_has_metadata_csum(inode->i_sb)) 2103 csum_size = sizeof(struct ext4_dir_entry_tail); 2104 2105 sb = dir->i_sb; 2106 blocksize = sb->s_blocksize; 2107 if (!dentry->d_name.len) 2108 return -EINVAL; 2109 2110 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname); 2111 if (retval) 2112 return retval; 2113 2114 if (ext4_has_inline_data(dir)) { 2115 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode); 2116 if (retval < 0) 2117 goto out; 2118 if (retval == 1) { 2119 retval = 0; 2120 goto out; 2121 } 2122 } 2123 2124 if (is_dx(dir)) { 2125 retval = ext4_dx_add_entry(handle, &fname, dir, inode); 2126 if (!retval || (retval != ERR_BAD_DX_DIR)) 2127 goto out; 2128 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX); 2129 dx_fallback++; 2130 ext4_mark_inode_dirty(handle, dir); 2131 } 2132 blocks = dir->i_size >> sb->s_blocksize_bits; 2133 for (block = 0; block < blocks; block++) { 2134 bh = ext4_read_dirblock(dir, block, DIRENT); 2135 if (IS_ERR(bh)) { 2136 retval = PTR_ERR(bh); 2137 bh = NULL; 2138 goto out; 2139 } 2140 retval = add_dirent_to_buf(handle, &fname, dir, inode, 2141 NULL, bh); 2142 if (retval != -ENOSPC) 2143 goto out; 2144 2145 if (blocks == 1 && !dx_fallback && 2146 ext4_has_feature_dir_index(sb)) { 2147 retval = make_indexed_dir(handle, &fname, dir, 2148 inode, bh); 2149 bh = NULL; /* make_indexed_dir releases bh */ 2150 goto out; 2151 } 2152 brelse(bh); 2153 } 2154 bh = ext4_append(handle, dir, &block); 2155 if (IS_ERR(bh)) { 2156 retval = PTR_ERR(bh); 2157 bh = NULL; 2158 goto out; 2159 } 2160 de = (struct ext4_dir_entry_2 *) bh->b_data; 2161 de->inode = 0; 2162 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize); 2163 2164 if (csum_size) { 2165 t = EXT4_DIRENT_TAIL(bh->b_data, blocksize); 2166 initialize_dirent_tail(t, blocksize); 2167 } 2168 2169 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh); 2170 out: 2171 ext4_fname_free_filename(&fname); 2172 brelse(bh); 2173 if (retval == 0) 2174 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY); 2175 return retval; 2176 } 2177 2178 /* 2179 * Returns 0 for success, or a negative error value 2180 */ 2181 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 2182 struct inode *dir, struct inode *inode) 2183 { 2184 struct dx_frame frames[2], *frame; 2185 struct dx_entry *entries, *at; 2186 struct buffer_head *bh; 2187 struct super_block *sb = dir->i_sb; 2188 struct ext4_dir_entry_2 *de; 2189 int err; 2190 2191 frame = dx_probe(fname, dir, NULL, frames); 2192 if (IS_ERR(frame)) 2193 return PTR_ERR(frame); 2194 entries = frame->entries; 2195 at = frame->at; 2196 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT); 2197 if (IS_ERR(bh)) { 2198 err = PTR_ERR(bh); 2199 bh = NULL; 2200 goto cleanup; 2201 } 2202 2203 BUFFER_TRACE(bh, "get_write_access"); 2204 err = ext4_journal_get_write_access(handle, bh); 2205 if (err) 2206 goto journal_error; 2207 2208 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh); 2209 if (err != -ENOSPC) 2210 goto cleanup; 2211 2212 /* Block full, should compress but for now just split */ 2213 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n", 2214 dx_get_count(entries), dx_get_limit(entries))); 2215 /* Need to split index? */ 2216 if (dx_get_count(entries) == dx_get_limit(entries)) { 2217 ext4_lblk_t newblock; 2218 unsigned icount = dx_get_count(entries); 2219 int levels = frame - frames; 2220 struct dx_entry *entries2; 2221 struct dx_node *node2; 2222 struct buffer_head *bh2; 2223 2224 if (levels && (dx_get_count(frames->entries) == 2225 dx_get_limit(frames->entries))) { 2226 ext4_warning_inode(dir, "Directory index full!"); 2227 err = -ENOSPC; 2228 goto cleanup; 2229 } 2230 bh2 = ext4_append(handle, dir, &newblock); 2231 if (IS_ERR(bh2)) { 2232 err = PTR_ERR(bh2); 2233 goto cleanup; 2234 } 2235 node2 = (struct dx_node *)(bh2->b_data); 2236 entries2 = node2->entries; 2237 memset(&node2->fake, 0, sizeof(struct fake_dirent)); 2238 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize, 2239 sb->s_blocksize); 2240 BUFFER_TRACE(frame->bh, "get_write_access"); 2241 err = ext4_journal_get_write_access(handle, frame->bh); 2242 if (err) 2243 goto journal_error; 2244 if (levels) { 2245 unsigned icount1 = icount/2, icount2 = icount - icount1; 2246 unsigned hash2 = dx_get_hash(entries + icount1); 2247 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n", 2248 icount1, icount2)); 2249 2250 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */ 2251 err = ext4_journal_get_write_access(handle, 2252 frames[0].bh); 2253 if (err) 2254 goto journal_error; 2255 2256 memcpy((char *) entries2, (char *) (entries + icount1), 2257 icount2 * sizeof(struct dx_entry)); 2258 dx_set_count(entries, icount1); 2259 dx_set_count(entries2, icount2); 2260 dx_set_limit(entries2, dx_node_limit(dir)); 2261 2262 /* Which index block gets the new entry? */ 2263 if (at - entries >= icount1) { 2264 frame->at = at = at - entries - icount1 + entries2; 2265 frame->entries = entries = entries2; 2266 swap(frame->bh, bh2); 2267 } 2268 dx_insert_block(frames + 0, hash2, newblock); 2269 dxtrace(dx_show_index("node", frames[1].entries)); 2270 dxtrace(dx_show_index("node", 2271 ((struct dx_node *) bh2->b_data)->entries)); 2272 err = ext4_handle_dirty_dx_node(handle, dir, bh2); 2273 if (err) 2274 goto journal_error; 2275 brelse (bh2); 2276 } else { 2277 dxtrace(printk(KERN_DEBUG 2278 "Creating second level index...\n")); 2279 memcpy((char *) entries2, (char *) entries, 2280 icount * sizeof(struct dx_entry)); 2281 dx_set_limit(entries2, dx_node_limit(dir)); 2282 2283 /* Set up root */ 2284 dx_set_count(entries, 1); 2285 dx_set_block(entries + 0, newblock); 2286 ((struct dx_root *) frames[0].bh->b_data)->info.indirect_levels = 1; 2287 2288 /* Add new access path frame */ 2289 frame = frames + 1; 2290 frame->at = at = at - entries + entries2; 2291 frame->entries = entries = entries2; 2292 frame->bh = bh2; 2293 err = ext4_journal_get_write_access(handle, 2294 frame->bh); 2295 if (err) 2296 goto journal_error; 2297 } 2298 err = ext4_handle_dirty_dx_node(handle, dir, frames[0].bh); 2299 if (err) { 2300 ext4_std_error(inode->i_sb, err); 2301 goto cleanup; 2302 } 2303 } 2304 de = do_split(handle, dir, &bh, frame, &fname->hinfo); 2305 if (IS_ERR(de)) { 2306 err = PTR_ERR(de); 2307 goto cleanup; 2308 } 2309 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh); 2310 goto cleanup; 2311 2312 journal_error: 2313 ext4_std_error(dir->i_sb, err); 2314 cleanup: 2315 brelse(bh); 2316 dx_release(frames); 2317 return err; 2318 } 2319 2320 /* 2321 * ext4_generic_delete_entry deletes a directory entry by merging it 2322 * with the previous entry 2323 */ 2324 int ext4_generic_delete_entry(handle_t *handle, 2325 struct inode *dir, 2326 struct ext4_dir_entry_2 *de_del, 2327 struct buffer_head *bh, 2328 void *entry_buf, 2329 int buf_size, 2330 int csum_size) 2331 { 2332 struct ext4_dir_entry_2 *de, *pde; 2333 unsigned int blocksize = dir->i_sb->s_blocksize; 2334 int i; 2335 2336 i = 0; 2337 pde = NULL; 2338 de = (struct ext4_dir_entry_2 *)entry_buf; 2339 while (i < buf_size - csum_size) { 2340 if (ext4_check_dir_entry(dir, NULL, de, bh, 2341 bh->b_data, bh->b_size, i)) 2342 return -EFSCORRUPTED; 2343 if (de == de_del) { 2344 if (pde) 2345 pde->rec_len = ext4_rec_len_to_disk( 2346 ext4_rec_len_from_disk(pde->rec_len, 2347 blocksize) + 2348 ext4_rec_len_from_disk(de->rec_len, 2349 blocksize), 2350 blocksize); 2351 else 2352 de->inode = 0; 2353 dir->i_version++; 2354 return 0; 2355 } 2356 i += ext4_rec_len_from_disk(de->rec_len, blocksize); 2357 pde = de; 2358 de = ext4_next_entry(de, blocksize); 2359 } 2360 return -ENOENT; 2361 } 2362 2363 static int ext4_delete_entry(handle_t *handle, 2364 struct inode *dir, 2365 struct ext4_dir_entry_2 *de_del, 2366 struct buffer_head *bh) 2367 { 2368 int err, csum_size = 0; 2369 2370 if (ext4_has_inline_data(dir)) { 2371 int has_inline_data = 1; 2372 err = ext4_delete_inline_entry(handle, dir, de_del, bh, 2373 &has_inline_data); 2374 if (has_inline_data) 2375 return err; 2376 } 2377 2378 if (ext4_has_metadata_csum(dir->i_sb)) 2379 csum_size = sizeof(struct ext4_dir_entry_tail); 2380 2381 BUFFER_TRACE(bh, "get_write_access"); 2382 err = ext4_journal_get_write_access(handle, bh); 2383 if (unlikely(err)) 2384 goto out; 2385 2386 err = ext4_generic_delete_entry(handle, dir, de_del, 2387 bh, bh->b_data, 2388 dir->i_sb->s_blocksize, csum_size); 2389 if (err) 2390 goto out; 2391 2392 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 2393 err = ext4_handle_dirty_dirent_node(handle, dir, bh); 2394 if (unlikely(err)) 2395 goto out; 2396 2397 return 0; 2398 out: 2399 if (err != -ENOENT) 2400 ext4_std_error(dir->i_sb, err); 2401 return err; 2402 } 2403 2404 /* 2405 * DIR_NLINK feature is set if 1) nlinks > EXT4_LINK_MAX or 2) nlinks == 2, 2406 * since this indicates that nlinks count was previously 1. 2407 */ 2408 static void ext4_inc_count(handle_t *handle, struct inode *inode) 2409 { 2410 inc_nlink(inode); 2411 if (is_dx(inode) && inode->i_nlink > 1) { 2412 /* limit is 16-bit i_links_count */ 2413 if (inode->i_nlink >= EXT4_LINK_MAX || inode->i_nlink == 2) { 2414 set_nlink(inode, 1); 2415 ext4_set_feature_dir_nlink(inode->i_sb); 2416 } 2417 } 2418 } 2419 2420 /* 2421 * If a directory had nlink == 1, then we should let it be 1. This indicates 2422 * directory has >EXT4_LINK_MAX subdirs. 2423 */ 2424 static void ext4_dec_count(handle_t *handle, struct inode *inode) 2425 { 2426 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2) 2427 drop_nlink(inode); 2428 } 2429 2430 2431 static int ext4_add_nondir(handle_t *handle, 2432 struct dentry *dentry, struct inode *inode) 2433 { 2434 int err = ext4_add_entry(handle, dentry, inode); 2435 if (!err) { 2436 ext4_mark_inode_dirty(handle, inode); 2437 unlock_new_inode(inode); 2438 d_instantiate(dentry, inode); 2439 return 0; 2440 } 2441 drop_nlink(inode); 2442 unlock_new_inode(inode); 2443 iput(inode); 2444 return err; 2445 } 2446 2447 /* 2448 * By the time this is called, we already have created 2449 * the directory cache entry for the new file, but it 2450 * is so far negative - it has no inode. 2451 * 2452 * If the create succeeds, we fill in the inode information 2453 * with d_instantiate(). 2454 */ 2455 static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2456 bool excl) 2457 { 2458 handle_t *handle; 2459 struct inode *inode; 2460 int err, credits, retries = 0; 2461 2462 err = dquot_initialize(dir); 2463 if (err) 2464 return err; 2465 2466 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2467 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2468 retry: 2469 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2470 NULL, EXT4_HT_DIR, credits); 2471 handle = ext4_journal_current_handle(); 2472 err = PTR_ERR(inode); 2473 if (!IS_ERR(inode)) { 2474 inode->i_op = &ext4_file_inode_operations; 2475 inode->i_fop = &ext4_file_operations; 2476 ext4_set_aops(inode); 2477 err = ext4_add_nondir(handle, dentry, inode); 2478 if (!err && IS_DIRSYNC(dir)) 2479 ext4_handle_sync(handle); 2480 } 2481 if (handle) 2482 ext4_journal_stop(handle); 2483 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2484 goto retry; 2485 return err; 2486 } 2487 2488 static int ext4_mknod(struct inode *dir, struct dentry *dentry, 2489 umode_t mode, dev_t rdev) 2490 { 2491 handle_t *handle; 2492 struct inode *inode; 2493 int err, credits, retries = 0; 2494 2495 err = dquot_initialize(dir); 2496 if (err) 2497 return err; 2498 2499 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2500 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2501 retry: 2502 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2503 NULL, EXT4_HT_DIR, credits); 2504 handle = ext4_journal_current_handle(); 2505 err = PTR_ERR(inode); 2506 if (!IS_ERR(inode)) { 2507 init_special_inode(inode, inode->i_mode, rdev); 2508 inode->i_op = &ext4_special_inode_operations; 2509 err = ext4_add_nondir(handle, dentry, inode); 2510 if (!err && IS_DIRSYNC(dir)) 2511 ext4_handle_sync(handle); 2512 } 2513 if (handle) 2514 ext4_journal_stop(handle); 2515 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2516 goto retry; 2517 return err; 2518 } 2519 2520 static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2521 { 2522 handle_t *handle; 2523 struct inode *inode; 2524 int err, retries = 0; 2525 2526 err = dquot_initialize(dir); 2527 if (err) 2528 return err; 2529 2530 retry: 2531 inode = ext4_new_inode_start_handle(dir, mode, 2532 NULL, 0, NULL, 2533 EXT4_HT_DIR, 2534 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 2535 4 + EXT4_XATTR_TRANS_BLOCKS); 2536 handle = ext4_journal_current_handle(); 2537 err = PTR_ERR(inode); 2538 if (!IS_ERR(inode)) { 2539 inode->i_op = &ext4_file_inode_operations; 2540 inode->i_fop = &ext4_file_operations; 2541 ext4_set_aops(inode); 2542 d_tmpfile(dentry, inode); 2543 err = ext4_orphan_add(handle, inode); 2544 if (err) 2545 goto err_unlock_inode; 2546 mark_inode_dirty(inode); 2547 unlock_new_inode(inode); 2548 } 2549 if (handle) 2550 ext4_journal_stop(handle); 2551 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2552 goto retry; 2553 return err; 2554 err_unlock_inode: 2555 ext4_journal_stop(handle); 2556 unlock_new_inode(inode); 2557 return err; 2558 } 2559 2560 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode, 2561 struct ext4_dir_entry_2 *de, 2562 int blocksize, int csum_size, 2563 unsigned int parent_ino, int dotdot_real_len) 2564 { 2565 de->inode = cpu_to_le32(inode->i_ino); 2566 de->name_len = 1; 2567 de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len), 2568 blocksize); 2569 strcpy(de->name, "."); 2570 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2571 2572 de = ext4_next_entry(de, blocksize); 2573 de->inode = cpu_to_le32(parent_ino); 2574 de->name_len = 2; 2575 if (!dotdot_real_len) 2576 de->rec_len = ext4_rec_len_to_disk(blocksize - 2577 (csum_size + EXT4_DIR_REC_LEN(1)), 2578 blocksize); 2579 else 2580 de->rec_len = ext4_rec_len_to_disk( 2581 EXT4_DIR_REC_LEN(de->name_len), blocksize); 2582 strcpy(de->name, ".."); 2583 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2584 2585 return ext4_next_entry(de, blocksize); 2586 } 2587 2588 static int ext4_init_new_dir(handle_t *handle, struct inode *dir, 2589 struct inode *inode) 2590 { 2591 struct buffer_head *dir_block = NULL; 2592 struct ext4_dir_entry_2 *de; 2593 struct ext4_dir_entry_tail *t; 2594 ext4_lblk_t block = 0; 2595 unsigned int blocksize = dir->i_sb->s_blocksize; 2596 int csum_size = 0; 2597 int err; 2598 2599 if (ext4_has_metadata_csum(dir->i_sb)) 2600 csum_size = sizeof(struct ext4_dir_entry_tail); 2601 2602 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2603 err = ext4_try_create_inline_dir(handle, dir, inode); 2604 if (err < 0 && err != -ENOSPC) 2605 goto out; 2606 if (!err) 2607 goto out; 2608 } 2609 2610 inode->i_size = 0; 2611 dir_block = ext4_append(handle, inode, &block); 2612 if (IS_ERR(dir_block)) 2613 return PTR_ERR(dir_block); 2614 de = (struct ext4_dir_entry_2 *)dir_block->b_data; 2615 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0); 2616 set_nlink(inode, 2); 2617 if (csum_size) { 2618 t = EXT4_DIRENT_TAIL(dir_block->b_data, blocksize); 2619 initialize_dirent_tail(t, blocksize); 2620 } 2621 2622 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata"); 2623 err = ext4_handle_dirty_dirent_node(handle, inode, dir_block); 2624 if (err) 2625 goto out; 2626 set_buffer_verified(dir_block); 2627 out: 2628 brelse(dir_block); 2629 return err; 2630 } 2631 2632 static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2633 { 2634 handle_t *handle; 2635 struct inode *inode; 2636 int err, credits, retries = 0; 2637 2638 if (EXT4_DIR_LINK_MAX(dir)) 2639 return -EMLINK; 2640 2641 err = dquot_initialize(dir); 2642 if (err) 2643 return err; 2644 2645 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2646 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2647 retry: 2648 inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode, 2649 &dentry->d_name, 2650 0, NULL, EXT4_HT_DIR, credits); 2651 handle = ext4_journal_current_handle(); 2652 err = PTR_ERR(inode); 2653 if (IS_ERR(inode)) 2654 goto out_stop; 2655 2656 inode->i_op = &ext4_dir_inode_operations; 2657 inode->i_fop = &ext4_dir_operations; 2658 err = ext4_init_new_dir(handle, dir, inode); 2659 if (err) 2660 goto out_clear_inode; 2661 err = ext4_mark_inode_dirty(handle, inode); 2662 if (!err) 2663 err = ext4_add_entry(handle, dentry, inode); 2664 if (err) { 2665 out_clear_inode: 2666 clear_nlink(inode); 2667 unlock_new_inode(inode); 2668 ext4_mark_inode_dirty(handle, inode); 2669 iput(inode); 2670 goto out_stop; 2671 } 2672 ext4_inc_count(handle, dir); 2673 ext4_update_dx_flag(dir); 2674 err = ext4_mark_inode_dirty(handle, dir); 2675 if (err) 2676 goto out_clear_inode; 2677 unlock_new_inode(inode); 2678 d_instantiate(dentry, inode); 2679 if (IS_DIRSYNC(dir)) 2680 ext4_handle_sync(handle); 2681 2682 out_stop: 2683 if (handle) 2684 ext4_journal_stop(handle); 2685 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2686 goto retry; 2687 return err; 2688 } 2689 2690 /* 2691 * routine to check that the specified directory is empty (for rmdir) 2692 */ 2693 int ext4_empty_dir(struct inode *inode) 2694 { 2695 unsigned int offset; 2696 struct buffer_head *bh; 2697 struct ext4_dir_entry_2 *de, *de1; 2698 struct super_block *sb; 2699 int err = 0; 2700 2701 if (ext4_has_inline_data(inode)) { 2702 int has_inline_data = 1; 2703 2704 err = empty_inline_dir(inode, &has_inline_data); 2705 if (has_inline_data) 2706 return err; 2707 } 2708 2709 sb = inode->i_sb; 2710 if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) { 2711 EXT4_ERROR_INODE(inode, "invalid size"); 2712 return 1; 2713 } 2714 bh = ext4_read_dirblock(inode, 0, EITHER); 2715 if (IS_ERR(bh)) 2716 return 1; 2717 2718 de = (struct ext4_dir_entry_2 *) bh->b_data; 2719 de1 = ext4_next_entry(de, sb->s_blocksize); 2720 if (le32_to_cpu(de->inode) != inode->i_ino || 2721 le32_to_cpu(de1->inode) == 0 || 2722 strcmp(".", de->name) || strcmp("..", de1->name)) { 2723 ext4_warning_inode(inode, "directory missing '.' and/or '..'"); 2724 brelse(bh); 2725 return 1; 2726 } 2727 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) + 2728 ext4_rec_len_from_disk(de1->rec_len, sb->s_blocksize); 2729 de = ext4_next_entry(de1, sb->s_blocksize); 2730 while (offset < inode->i_size) { 2731 if ((void *) de >= (void *) (bh->b_data+sb->s_blocksize)) { 2732 unsigned int lblock; 2733 err = 0; 2734 brelse(bh); 2735 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb); 2736 bh = ext4_read_dirblock(inode, lblock, EITHER); 2737 if (IS_ERR(bh)) 2738 return 1; 2739 de = (struct ext4_dir_entry_2 *) bh->b_data; 2740 } 2741 if (ext4_check_dir_entry(inode, NULL, de, bh, 2742 bh->b_data, bh->b_size, offset)) { 2743 de = (struct ext4_dir_entry_2 *)(bh->b_data + 2744 sb->s_blocksize); 2745 offset = (offset | (sb->s_blocksize - 1)) + 1; 2746 continue; 2747 } 2748 if (le32_to_cpu(de->inode)) { 2749 brelse(bh); 2750 return 0; 2751 } 2752 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 2753 de = ext4_next_entry(de, sb->s_blocksize); 2754 } 2755 brelse(bh); 2756 return 1; 2757 } 2758 2759 /* 2760 * ext4_orphan_add() links an unlinked or truncated inode into a list of 2761 * such inodes, starting at the superblock, in case we crash before the 2762 * file is closed/deleted, or in case the inode truncate spans multiple 2763 * transactions and the last transaction is not recovered after a crash. 2764 * 2765 * At filesystem recovery time, we walk this list deleting unlinked 2766 * inodes and truncating linked inodes in ext4_orphan_cleanup(). 2767 * 2768 * Orphan list manipulation functions must be called under i_mutex unless 2769 * we are just creating the inode or deleting it. 2770 */ 2771 int ext4_orphan_add(handle_t *handle, struct inode *inode) 2772 { 2773 struct super_block *sb = inode->i_sb; 2774 struct ext4_sb_info *sbi = EXT4_SB(sb); 2775 struct ext4_iloc iloc; 2776 int err = 0, rc; 2777 bool dirty = false; 2778 2779 if (!sbi->s_journal || is_bad_inode(inode)) 2780 return 0; 2781 2782 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 2783 !inode_is_locked(inode)); 2784 /* 2785 * Exit early if inode already is on orphan list. This is a big speedup 2786 * since we don't have to contend on the global s_orphan_lock. 2787 */ 2788 if (!list_empty(&EXT4_I(inode)->i_orphan)) 2789 return 0; 2790 2791 /* 2792 * Orphan handling is only valid for files with data blocks 2793 * being truncated, or files being unlinked. Note that we either 2794 * hold i_mutex, or the inode can not be referenced from outside, 2795 * so i_nlink should not be bumped due to race 2796 */ 2797 J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2798 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0); 2799 2800 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 2801 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 2802 if (err) 2803 goto out; 2804 2805 err = ext4_reserve_inode_write(handle, inode, &iloc); 2806 if (err) 2807 goto out; 2808 2809 mutex_lock(&sbi->s_orphan_lock); 2810 /* 2811 * Due to previous errors inode may be already a part of on-disk 2812 * orphan list. If so skip on-disk list modification. 2813 */ 2814 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) > 2815 (le32_to_cpu(sbi->s_es->s_inodes_count))) { 2816 /* Insert this inode at the head of the on-disk orphan list */ 2817 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan); 2818 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino); 2819 dirty = true; 2820 } 2821 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan); 2822 mutex_unlock(&sbi->s_orphan_lock); 2823 2824 if (dirty) { 2825 err = ext4_handle_dirty_super(handle, sb); 2826 rc = ext4_mark_iloc_dirty(handle, inode, &iloc); 2827 if (!err) 2828 err = rc; 2829 if (err) { 2830 /* 2831 * We have to remove inode from in-memory list if 2832 * addition to on disk orphan list failed. Stray orphan 2833 * list entries can cause panics at unmount time. 2834 */ 2835 mutex_lock(&sbi->s_orphan_lock); 2836 list_del_init(&EXT4_I(inode)->i_orphan); 2837 mutex_unlock(&sbi->s_orphan_lock); 2838 } 2839 } 2840 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino); 2841 jbd_debug(4, "orphan inode %lu will point to %d\n", 2842 inode->i_ino, NEXT_ORPHAN(inode)); 2843 out: 2844 ext4_std_error(sb, err); 2845 return err; 2846 } 2847 2848 /* 2849 * ext4_orphan_del() removes an unlinked or truncated inode from the list 2850 * of such inodes stored on disk, because it is finally being cleaned up. 2851 */ 2852 int ext4_orphan_del(handle_t *handle, struct inode *inode) 2853 { 2854 struct list_head *prev; 2855 struct ext4_inode_info *ei = EXT4_I(inode); 2856 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2857 __u32 ino_next; 2858 struct ext4_iloc iloc; 2859 int err = 0; 2860 2861 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS)) 2862 return 0; 2863 2864 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 2865 !inode_is_locked(inode)); 2866 /* Do this quick check before taking global s_orphan_lock. */ 2867 if (list_empty(&ei->i_orphan)) 2868 return 0; 2869 2870 if (handle) { 2871 /* Grab inode buffer early before taking global s_orphan_lock */ 2872 err = ext4_reserve_inode_write(handle, inode, &iloc); 2873 } 2874 2875 mutex_lock(&sbi->s_orphan_lock); 2876 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino); 2877 2878 prev = ei->i_orphan.prev; 2879 list_del_init(&ei->i_orphan); 2880 2881 /* If we're on an error path, we may not have a valid 2882 * transaction handle with which to update the orphan list on 2883 * disk, but we still need to remove the inode from the linked 2884 * list in memory. */ 2885 if (!handle || err) { 2886 mutex_unlock(&sbi->s_orphan_lock); 2887 goto out_err; 2888 } 2889 2890 ino_next = NEXT_ORPHAN(inode); 2891 if (prev == &sbi->s_orphan) { 2892 jbd_debug(4, "superblock will point to %u\n", ino_next); 2893 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 2894 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 2895 if (err) { 2896 mutex_unlock(&sbi->s_orphan_lock); 2897 goto out_brelse; 2898 } 2899 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next); 2900 mutex_unlock(&sbi->s_orphan_lock); 2901 err = ext4_handle_dirty_super(handle, inode->i_sb); 2902 } else { 2903 struct ext4_iloc iloc2; 2904 struct inode *i_prev = 2905 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode; 2906 2907 jbd_debug(4, "orphan inode %lu will point to %u\n", 2908 i_prev->i_ino, ino_next); 2909 err = ext4_reserve_inode_write(handle, i_prev, &iloc2); 2910 if (err) { 2911 mutex_unlock(&sbi->s_orphan_lock); 2912 goto out_brelse; 2913 } 2914 NEXT_ORPHAN(i_prev) = ino_next; 2915 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2); 2916 mutex_unlock(&sbi->s_orphan_lock); 2917 } 2918 if (err) 2919 goto out_brelse; 2920 NEXT_ORPHAN(inode) = 0; 2921 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 2922 out_err: 2923 ext4_std_error(inode->i_sb, err); 2924 return err; 2925 2926 out_brelse: 2927 brelse(iloc.bh); 2928 goto out_err; 2929 } 2930 2931 static int ext4_rmdir(struct inode *dir, struct dentry *dentry) 2932 { 2933 int retval; 2934 struct inode *inode; 2935 struct buffer_head *bh; 2936 struct ext4_dir_entry_2 *de; 2937 handle_t *handle = NULL; 2938 2939 /* Initialize quotas before so that eventual writes go in 2940 * separate transaction */ 2941 retval = dquot_initialize(dir); 2942 if (retval) 2943 return retval; 2944 retval = dquot_initialize(d_inode(dentry)); 2945 if (retval) 2946 return retval; 2947 2948 retval = -ENOENT; 2949 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 2950 if (IS_ERR(bh)) 2951 return PTR_ERR(bh); 2952 if (!bh) 2953 goto end_rmdir; 2954 2955 inode = d_inode(dentry); 2956 2957 retval = -EFSCORRUPTED; 2958 if (le32_to_cpu(de->inode) != inode->i_ino) 2959 goto end_rmdir; 2960 2961 retval = -ENOTEMPTY; 2962 if (!ext4_empty_dir(inode)) 2963 goto end_rmdir; 2964 2965 handle = ext4_journal_start(dir, EXT4_HT_DIR, 2966 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 2967 if (IS_ERR(handle)) { 2968 retval = PTR_ERR(handle); 2969 handle = NULL; 2970 goto end_rmdir; 2971 } 2972 2973 if (IS_DIRSYNC(dir)) 2974 ext4_handle_sync(handle); 2975 2976 retval = ext4_delete_entry(handle, dir, de, bh); 2977 if (retval) 2978 goto end_rmdir; 2979 if (!EXT4_DIR_LINK_EMPTY(inode)) 2980 ext4_warning_inode(inode, 2981 "empty directory '%.*s' has too many links (%u)", 2982 dentry->d_name.len, dentry->d_name.name, 2983 inode->i_nlink); 2984 inode->i_version++; 2985 clear_nlink(inode); 2986 /* There's no need to set i_disksize: the fact that i_nlink is 2987 * zero will ensure that the right thing happens during any 2988 * recovery. */ 2989 inode->i_size = 0; 2990 ext4_orphan_add(handle, inode); 2991 inode->i_ctime = dir->i_ctime = dir->i_mtime = ext4_current_time(inode); 2992 ext4_mark_inode_dirty(handle, inode); 2993 ext4_dec_count(handle, dir); 2994 ext4_update_dx_flag(dir); 2995 ext4_mark_inode_dirty(handle, dir); 2996 2997 end_rmdir: 2998 brelse(bh); 2999 if (handle) 3000 ext4_journal_stop(handle); 3001 return retval; 3002 } 3003 3004 static int ext4_unlink(struct inode *dir, struct dentry *dentry) 3005 { 3006 int retval; 3007 struct inode *inode; 3008 struct buffer_head *bh; 3009 struct ext4_dir_entry_2 *de; 3010 handle_t *handle = NULL; 3011 3012 trace_ext4_unlink_enter(dir, dentry); 3013 /* Initialize quotas before so that eventual writes go 3014 * in separate transaction */ 3015 retval = dquot_initialize(dir); 3016 if (retval) 3017 return retval; 3018 retval = dquot_initialize(d_inode(dentry)); 3019 if (retval) 3020 return retval; 3021 3022 retval = -ENOENT; 3023 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 3024 if (IS_ERR(bh)) 3025 return PTR_ERR(bh); 3026 if (!bh) 3027 goto end_unlink; 3028 3029 inode = d_inode(dentry); 3030 3031 retval = -EFSCORRUPTED; 3032 if (le32_to_cpu(de->inode) != inode->i_ino) 3033 goto end_unlink; 3034 3035 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3036 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 3037 if (IS_ERR(handle)) { 3038 retval = PTR_ERR(handle); 3039 handle = NULL; 3040 goto end_unlink; 3041 } 3042 3043 if (IS_DIRSYNC(dir)) 3044 ext4_handle_sync(handle); 3045 3046 if (inode->i_nlink == 0) { 3047 ext4_warning_inode(inode, "Deleting file '%.*s' with no links", 3048 dentry->d_name.len, dentry->d_name.name); 3049 set_nlink(inode, 1); 3050 } 3051 retval = ext4_delete_entry(handle, dir, de, bh); 3052 if (retval) 3053 goto end_unlink; 3054 dir->i_ctime = dir->i_mtime = ext4_current_time(dir); 3055 ext4_update_dx_flag(dir); 3056 ext4_mark_inode_dirty(handle, dir); 3057 drop_nlink(inode); 3058 if (!inode->i_nlink) 3059 ext4_orphan_add(handle, inode); 3060 inode->i_ctime = ext4_current_time(inode); 3061 ext4_mark_inode_dirty(handle, inode); 3062 3063 end_unlink: 3064 brelse(bh); 3065 if (handle) 3066 ext4_journal_stop(handle); 3067 trace_ext4_unlink_exit(dentry, retval); 3068 return retval; 3069 } 3070 3071 static int ext4_symlink(struct inode *dir, 3072 struct dentry *dentry, const char *symname) 3073 { 3074 handle_t *handle; 3075 struct inode *inode; 3076 int err, len = strlen(symname); 3077 int credits; 3078 bool encryption_required; 3079 struct ext4_str disk_link; 3080 struct ext4_encrypted_symlink_data *sd = NULL; 3081 3082 disk_link.len = len + 1; 3083 disk_link.name = (char *) symname; 3084 3085 encryption_required = (ext4_encrypted_inode(dir) || 3086 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))); 3087 if (encryption_required) { 3088 err = ext4_get_encryption_info(dir); 3089 if (err) 3090 return err; 3091 if (ext4_encryption_info(dir) == NULL) 3092 return -EPERM; 3093 disk_link.len = (ext4_fname_encrypted_size(dir, len) + 3094 sizeof(struct ext4_encrypted_symlink_data)); 3095 sd = kzalloc(disk_link.len, GFP_KERNEL); 3096 if (!sd) 3097 return -ENOMEM; 3098 } 3099 3100 if (disk_link.len > dir->i_sb->s_blocksize) { 3101 err = -ENAMETOOLONG; 3102 goto err_free_sd; 3103 } 3104 3105 err = dquot_initialize(dir); 3106 if (err) 3107 goto err_free_sd; 3108 3109 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3110 /* 3111 * For non-fast symlinks, we just allocate inode and put it on 3112 * orphan list in the first transaction => we need bitmap, 3113 * group descriptor, sb, inode block, quota blocks, and 3114 * possibly selinux xattr blocks. 3115 */ 3116 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 3117 EXT4_XATTR_TRANS_BLOCKS; 3118 } else { 3119 /* 3120 * Fast symlink. We have to add entry to directory 3121 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS), 3122 * allocate new inode (bitmap, group descriptor, inode block, 3123 * quota blocks, sb is already counted in previous macros). 3124 */ 3125 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3126 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3; 3127 } 3128 3129 inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO, 3130 &dentry->d_name, 0, NULL, 3131 EXT4_HT_DIR, credits); 3132 handle = ext4_journal_current_handle(); 3133 if (IS_ERR(inode)) { 3134 if (handle) 3135 ext4_journal_stop(handle); 3136 err = PTR_ERR(inode); 3137 goto err_free_sd; 3138 } 3139 3140 if (encryption_required) { 3141 struct qstr istr; 3142 struct ext4_str ostr; 3143 3144 istr.name = (const unsigned char *) symname; 3145 istr.len = len; 3146 ostr.name = sd->encrypted_path; 3147 ostr.len = disk_link.len; 3148 err = ext4_fname_usr_to_disk(inode, &istr, &ostr); 3149 if (err < 0) 3150 goto err_drop_inode; 3151 sd->len = cpu_to_le16(ostr.len); 3152 disk_link.name = (char *) sd; 3153 inode->i_op = &ext4_encrypted_symlink_inode_operations; 3154 } 3155 3156 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3157 if (!encryption_required) 3158 inode->i_op = &ext4_symlink_inode_operations; 3159 inode_nohighmem(inode); 3160 ext4_set_aops(inode); 3161 /* 3162 * We cannot call page_symlink() with transaction started 3163 * because it calls into ext4_write_begin() which can wait 3164 * for transaction commit if we are running out of space 3165 * and thus we deadlock. So we have to stop transaction now 3166 * and restart it when symlink contents is written. 3167 * 3168 * To keep fs consistent in case of crash, we have to put inode 3169 * to orphan list in the mean time. 3170 */ 3171 drop_nlink(inode); 3172 err = ext4_orphan_add(handle, inode); 3173 ext4_journal_stop(handle); 3174 handle = NULL; 3175 if (err) 3176 goto err_drop_inode; 3177 err = __page_symlink(inode, disk_link.name, disk_link.len, 1); 3178 if (err) 3179 goto err_drop_inode; 3180 /* 3181 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS 3182 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified 3183 */ 3184 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3185 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3186 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1); 3187 if (IS_ERR(handle)) { 3188 err = PTR_ERR(handle); 3189 handle = NULL; 3190 goto err_drop_inode; 3191 } 3192 set_nlink(inode, 1); 3193 err = ext4_orphan_del(handle, inode); 3194 if (err) 3195 goto err_drop_inode; 3196 } else { 3197 /* clear the extent format for fast symlink */ 3198 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); 3199 if (!encryption_required) { 3200 inode->i_op = &ext4_fast_symlink_inode_operations; 3201 inode->i_link = (char *)&EXT4_I(inode)->i_data; 3202 } 3203 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name, 3204 disk_link.len); 3205 inode->i_size = disk_link.len - 1; 3206 } 3207 EXT4_I(inode)->i_disksize = inode->i_size; 3208 err = ext4_add_nondir(handle, dentry, inode); 3209 if (!err && IS_DIRSYNC(dir)) 3210 ext4_handle_sync(handle); 3211 3212 if (handle) 3213 ext4_journal_stop(handle); 3214 kfree(sd); 3215 return err; 3216 err_drop_inode: 3217 if (handle) 3218 ext4_journal_stop(handle); 3219 clear_nlink(inode); 3220 unlock_new_inode(inode); 3221 iput(inode); 3222 err_free_sd: 3223 kfree(sd); 3224 return err; 3225 } 3226 3227 static int ext4_link(struct dentry *old_dentry, 3228 struct inode *dir, struct dentry *dentry) 3229 { 3230 handle_t *handle; 3231 struct inode *inode = d_inode(old_dentry); 3232 int err, retries = 0; 3233 3234 if (inode->i_nlink >= EXT4_LINK_MAX) 3235 return -EMLINK; 3236 if (ext4_encrypted_inode(dir) && 3237 !ext4_is_child_context_consistent_with_parent(dir, inode)) 3238 return -EPERM; 3239 3240 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) && 3241 (!projid_eq(EXT4_I(dir)->i_projid, 3242 EXT4_I(old_dentry->d_inode)->i_projid))) 3243 return -EXDEV; 3244 3245 err = dquot_initialize(dir); 3246 if (err) 3247 return err; 3248 3249 retry: 3250 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3251 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3252 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1); 3253 if (IS_ERR(handle)) 3254 return PTR_ERR(handle); 3255 3256 if (IS_DIRSYNC(dir)) 3257 ext4_handle_sync(handle); 3258 3259 inode->i_ctime = ext4_current_time(inode); 3260 ext4_inc_count(handle, inode); 3261 ihold(inode); 3262 3263 err = ext4_add_entry(handle, dentry, inode); 3264 if (!err) { 3265 ext4_mark_inode_dirty(handle, inode); 3266 /* this can happen only for tmpfile being 3267 * linked the first time 3268 */ 3269 if (inode->i_nlink == 1) 3270 ext4_orphan_del(handle, inode); 3271 d_instantiate(dentry, inode); 3272 } else { 3273 drop_nlink(inode); 3274 iput(inode); 3275 } 3276 ext4_journal_stop(handle); 3277 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 3278 goto retry; 3279 return err; 3280 } 3281 3282 3283 /* 3284 * Try to find buffer head where contains the parent block. 3285 * It should be the inode block if it is inlined or the 1st block 3286 * if it is a normal dir. 3287 */ 3288 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle, 3289 struct inode *inode, 3290 int *retval, 3291 struct ext4_dir_entry_2 **parent_de, 3292 int *inlined) 3293 { 3294 struct buffer_head *bh; 3295 3296 if (!ext4_has_inline_data(inode)) { 3297 bh = ext4_read_dirblock(inode, 0, EITHER); 3298 if (IS_ERR(bh)) { 3299 *retval = PTR_ERR(bh); 3300 return NULL; 3301 } 3302 *parent_de = ext4_next_entry( 3303 (struct ext4_dir_entry_2 *)bh->b_data, 3304 inode->i_sb->s_blocksize); 3305 return bh; 3306 } 3307 3308 *inlined = 1; 3309 return ext4_get_first_inline_block(inode, parent_de, retval); 3310 } 3311 3312 struct ext4_renament { 3313 struct inode *dir; 3314 struct dentry *dentry; 3315 struct inode *inode; 3316 bool is_dir; 3317 int dir_nlink_delta; 3318 3319 /* entry for "dentry" */ 3320 struct buffer_head *bh; 3321 struct ext4_dir_entry_2 *de; 3322 int inlined; 3323 3324 /* entry for ".." in inode if it's a directory */ 3325 struct buffer_head *dir_bh; 3326 struct ext4_dir_entry_2 *parent_de; 3327 int dir_inlined; 3328 }; 3329 3330 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent) 3331 { 3332 int retval; 3333 3334 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode, 3335 &retval, &ent->parent_de, 3336 &ent->dir_inlined); 3337 if (!ent->dir_bh) 3338 return retval; 3339 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino) 3340 return -EFSCORRUPTED; 3341 BUFFER_TRACE(ent->dir_bh, "get_write_access"); 3342 return ext4_journal_get_write_access(handle, ent->dir_bh); 3343 } 3344 3345 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent, 3346 unsigned dir_ino) 3347 { 3348 int retval; 3349 3350 ent->parent_de->inode = cpu_to_le32(dir_ino); 3351 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata"); 3352 if (!ent->dir_inlined) { 3353 if (is_dx(ent->inode)) { 3354 retval = ext4_handle_dirty_dx_node(handle, 3355 ent->inode, 3356 ent->dir_bh); 3357 } else { 3358 retval = ext4_handle_dirty_dirent_node(handle, 3359 ent->inode, 3360 ent->dir_bh); 3361 } 3362 } else { 3363 retval = ext4_mark_inode_dirty(handle, ent->inode); 3364 } 3365 if (retval) { 3366 ext4_std_error(ent->dir->i_sb, retval); 3367 return retval; 3368 } 3369 return 0; 3370 } 3371 3372 static int ext4_setent(handle_t *handle, struct ext4_renament *ent, 3373 unsigned ino, unsigned file_type) 3374 { 3375 int retval; 3376 3377 BUFFER_TRACE(ent->bh, "get write access"); 3378 retval = ext4_journal_get_write_access(handle, ent->bh); 3379 if (retval) 3380 return retval; 3381 ent->de->inode = cpu_to_le32(ino); 3382 if (ext4_has_feature_filetype(ent->dir->i_sb)) 3383 ent->de->file_type = file_type; 3384 ent->dir->i_version++; 3385 ent->dir->i_ctime = ent->dir->i_mtime = 3386 ext4_current_time(ent->dir); 3387 ext4_mark_inode_dirty(handle, ent->dir); 3388 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata"); 3389 if (!ent->inlined) { 3390 retval = ext4_handle_dirty_dirent_node(handle, 3391 ent->dir, ent->bh); 3392 if (unlikely(retval)) { 3393 ext4_std_error(ent->dir->i_sb, retval); 3394 return retval; 3395 } 3396 } 3397 brelse(ent->bh); 3398 ent->bh = NULL; 3399 3400 return 0; 3401 } 3402 3403 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir, 3404 const struct qstr *d_name) 3405 { 3406 int retval = -ENOENT; 3407 struct buffer_head *bh; 3408 struct ext4_dir_entry_2 *de; 3409 3410 bh = ext4_find_entry(dir, d_name, &de, NULL); 3411 if (IS_ERR(bh)) 3412 return PTR_ERR(bh); 3413 if (bh) { 3414 retval = ext4_delete_entry(handle, dir, de, bh); 3415 brelse(bh); 3416 } 3417 return retval; 3418 } 3419 3420 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent, 3421 int force_reread) 3422 { 3423 int retval; 3424 /* 3425 * ent->de could have moved from under us during htree split, so make 3426 * sure that we are deleting the right entry. We might also be pointing 3427 * to a stale entry in the unused part of ent->bh so just checking inum 3428 * and the name isn't enough. 3429 */ 3430 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino || 3431 ent->de->name_len != ent->dentry->d_name.len || 3432 strncmp(ent->de->name, ent->dentry->d_name.name, 3433 ent->de->name_len) || 3434 force_reread) { 3435 retval = ext4_find_delete_entry(handle, ent->dir, 3436 &ent->dentry->d_name); 3437 } else { 3438 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh); 3439 if (retval == -ENOENT) { 3440 retval = ext4_find_delete_entry(handle, ent->dir, 3441 &ent->dentry->d_name); 3442 } 3443 } 3444 3445 if (retval) { 3446 ext4_warning_inode(ent->dir, 3447 "Deleting old file: nlink %d, error=%d", 3448 ent->dir->i_nlink, retval); 3449 } 3450 } 3451 3452 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent) 3453 { 3454 if (ent->dir_nlink_delta) { 3455 if (ent->dir_nlink_delta == -1) 3456 ext4_dec_count(handle, ent->dir); 3457 else 3458 ext4_inc_count(handle, ent->dir); 3459 ext4_mark_inode_dirty(handle, ent->dir); 3460 } 3461 } 3462 3463 static struct inode *ext4_whiteout_for_rename(struct ext4_renament *ent, 3464 int credits, handle_t **h) 3465 { 3466 struct inode *wh; 3467 handle_t *handle; 3468 int retries = 0; 3469 3470 /* 3471 * for inode block, sb block, group summaries, 3472 * and inode bitmap 3473 */ 3474 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) + 3475 EXT4_XATTR_TRANS_BLOCKS + 4); 3476 retry: 3477 wh = ext4_new_inode_start_handle(ent->dir, S_IFCHR | WHITEOUT_MODE, 3478 &ent->dentry->d_name, 0, NULL, 3479 EXT4_HT_DIR, credits); 3480 3481 handle = ext4_journal_current_handle(); 3482 if (IS_ERR(wh)) { 3483 if (handle) 3484 ext4_journal_stop(handle); 3485 if (PTR_ERR(wh) == -ENOSPC && 3486 ext4_should_retry_alloc(ent->dir->i_sb, &retries)) 3487 goto retry; 3488 } else { 3489 *h = handle; 3490 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV); 3491 wh->i_op = &ext4_special_inode_operations; 3492 } 3493 return wh; 3494 } 3495 3496 /* 3497 * Anybody can rename anything with this: the permission checks are left to the 3498 * higher-level routines. 3499 * 3500 * n.b. old_{dentry,inode) refers to the source dentry/inode 3501 * while new_{dentry,inode) refers to the destination dentry/inode 3502 * This comes from rename(const char *oldpath, const char *newpath) 3503 */ 3504 static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry, 3505 struct inode *new_dir, struct dentry *new_dentry, 3506 unsigned int flags) 3507 { 3508 handle_t *handle = NULL; 3509 struct ext4_renament old = { 3510 .dir = old_dir, 3511 .dentry = old_dentry, 3512 .inode = d_inode(old_dentry), 3513 }; 3514 struct ext4_renament new = { 3515 .dir = new_dir, 3516 .dentry = new_dentry, 3517 .inode = d_inode(new_dentry), 3518 }; 3519 int force_reread; 3520 int retval; 3521 struct inode *whiteout = NULL; 3522 int credits; 3523 u8 old_file_type; 3524 3525 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) && 3526 (!projid_eq(EXT4_I(new_dir)->i_projid, 3527 EXT4_I(old_dentry->d_inode)->i_projid))) 3528 return -EXDEV; 3529 3530 retval = dquot_initialize(old.dir); 3531 if (retval) 3532 return retval; 3533 retval = dquot_initialize(new.dir); 3534 if (retval) 3535 return retval; 3536 3537 /* Initialize quotas before so that eventual writes go 3538 * in separate transaction */ 3539 if (new.inode) { 3540 retval = dquot_initialize(new.inode); 3541 if (retval) 3542 return retval; 3543 } 3544 3545 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL); 3546 if (IS_ERR(old.bh)) 3547 return PTR_ERR(old.bh); 3548 /* 3549 * Check for inode number is _not_ due to possible IO errors. 3550 * We might rmdir the source, keep it as pwd of some process 3551 * and merrily kill the link to whatever was created under the 3552 * same name. Goodbye sticky bit ;-< 3553 */ 3554 retval = -ENOENT; 3555 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3556 goto end_rename; 3557 3558 if ((old.dir != new.dir) && 3559 ext4_encrypted_inode(new.dir) && 3560 !ext4_is_child_context_consistent_with_parent(new.dir, 3561 old.inode)) { 3562 retval = -EPERM; 3563 goto end_rename; 3564 } 3565 3566 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3567 &new.de, &new.inlined); 3568 if (IS_ERR(new.bh)) { 3569 retval = PTR_ERR(new.bh); 3570 new.bh = NULL; 3571 goto end_rename; 3572 } 3573 if (new.bh) { 3574 if (!new.inode) { 3575 brelse(new.bh); 3576 new.bh = NULL; 3577 } 3578 } 3579 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC)) 3580 ext4_alloc_da_blocks(old.inode); 3581 3582 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3583 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2); 3584 if (!(flags & RENAME_WHITEOUT)) { 3585 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits); 3586 if (IS_ERR(handle)) { 3587 retval = PTR_ERR(handle); 3588 handle = NULL; 3589 goto end_rename; 3590 } 3591 } else { 3592 whiteout = ext4_whiteout_for_rename(&old, credits, &handle); 3593 if (IS_ERR(whiteout)) { 3594 retval = PTR_ERR(whiteout); 3595 whiteout = NULL; 3596 goto end_rename; 3597 } 3598 } 3599 3600 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3601 ext4_handle_sync(handle); 3602 3603 if (S_ISDIR(old.inode->i_mode)) { 3604 if (new.inode) { 3605 retval = -ENOTEMPTY; 3606 if (!ext4_empty_dir(new.inode)) 3607 goto end_rename; 3608 } else { 3609 retval = -EMLINK; 3610 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir)) 3611 goto end_rename; 3612 } 3613 retval = ext4_rename_dir_prepare(handle, &old); 3614 if (retval) 3615 goto end_rename; 3616 } 3617 /* 3618 * If we're renaming a file within an inline_data dir and adding or 3619 * setting the new dirent causes a conversion from inline_data to 3620 * extents/blockmap, we need to force the dirent delete code to 3621 * re-read the directory, or else we end up trying to delete a dirent 3622 * from what is now the extent tree root (or a block map). 3623 */ 3624 force_reread = (new.dir->i_ino == old.dir->i_ino && 3625 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA)); 3626 3627 old_file_type = old.de->file_type; 3628 if (whiteout) { 3629 /* 3630 * Do this before adding a new entry, so the old entry is sure 3631 * to be still pointing to the valid old entry. 3632 */ 3633 retval = ext4_setent(handle, &old, whiteout->i_ino, 3634 EXT4_FT_CHRDEV); 3635 if (retval) 3636 goto end_rename; 3637 ext4_mark_inode_dirty(handle, whiteout); 3638 } 3639 if (!new.bh) { 3640 retval = ext4_add_entry(handle, new.dentry, old.inode); 3641 if (retval) 3642 goto end_rename; 3643 } else { 3644 retval = ext4_setent(handle, &new, 3645 old.inode->i_ino, old_file_type); 3646 if (retval) 3647 goto end_rename; 3648 } 3649 if (force_reread) 3650 force_reread = !ext4_test_inode_flag(new.dir, 3651 EXT4_INODE_INLINE_DATA); 3652 3653 /* 3654 * Like most other Unix systems, set the ctime for inodes on a 3655 * rename. 3656 */ 3657 old.inode->i_ctime = ext4_current_time(old.inode); 3658 ext4_mark_inode_dirty(handle, old.inode); 3659 3660 if (!whiteout) { 3661 /* 3662 * ok, that's it 3663 */ 3664 ext4_rename_delete(handle, &old, force_reread); 3665 } 3666 3667 if (new.inode) { 3668 ext4_dec_count(handle, new.inode); 3669 new.inode->i_ctime = ext4_current_time(new.inode); 3670 } 3671 old.dir->i_ctime = old.dir->i_mtime = ext4_current_time(old.dir); 3672 ext4_update_dx_flag(old.dir); 3673 if (old.dir_bh) { 3674 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 3675 if (retval) 3676 goto end_rename; 3677 3678 ext4_dec_count(handle, old.dir); 3679 if (new.inode) { 3680 /* checked ext4_empty_dir above, can't have another 3681 * parent, ext4_dec_count() won't work for many-linked 3682 * dirs */ 3683 clear_nlink(new.inode); 3684 } else { 3685 ext4_inc_count(handle, new.dir); 3686 ext4_update_dx_flag(new.dir); 3687 ext4_mark_inode_dirty(handle, new.dir); 3688 } 3689 } 3690 ext4_mark_inode_dirty(handle, old.dir); 3691 if (new.inode) { 3692 ext4_mark_inode_dirty(handle, new.inode); 3693 if (!new.inode->i_nlink) 3694 ext4_orphan_add(handle, new.inode); 3695 } 3696 retval = 0; 3697 3698 end_rename: 3699 brelse(old.dir_bh); 3700 brelse(old.bh); 3701 brelse(new.bh); 3702 if (whiteout) { 3703 if (retval) 3704 drop_nlink(whiteout); 3705 unlock_new_inode(whiteout); 3706 iput(whiteout); 3707 } 3708 if (handle) 3709 ext4_journal_stop(handle); 3710 return retval; 3711 } 3712 3713 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry, 3714 struct inode *new_dir, struct dentry *new_dentry) 3715 { 3716 handle_t *handle = NULL; 3717 struct ext4_renament old = { 3718 .dir = old_dir, 3719 .dentry = old_dentry, 3720 .inode = d_inode(old_dentry), 3721 }; 3722 struct ext4_renament new = { 3723 .dir = new_dir, 3724 .dentry = new_dentry, 3725 .inode = d_inode(new_dentry), 3726 }; 3727 u8 new_file_type; 3728 int retval; 3729 3730 if ((ext4_encrypted_inode(old_dir) || 3731 ext4_encrypted_inode(new_dir)) && 3732 (old_dir != new_dir) && 3733 (!ext4_is_child_context_consistent_with_parent(new_dir, 3734 old.inode) || 3735 !ext4_is_child_context_consistent_with_parent(old_dir, 3736 new.inode))) 3737 return -EPERM; 3738 3739 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) && 3740 !projid_eq(EXT4_I(new_dir)->i_projid, 3741 EXT4_I(old_dentry->d_inode)->i_projid)) || 3742 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) && 3743 !projid_eq(EXT4_I(old_dir)->i_projid, 3744 EXT4_I(new_dentry->d_inode)->i_projid))) 3745 return -EXDEV; 3746 3747 retval = dquot_initialize(old.dir); 3748 if (retval) 3749 return retval; 3750 retval = dquot_initialize(new.dir); 3751 if (retval) 3752 return retval; 3753 3754 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, 3755 &old.de, &old.inlined); 3756 if (IS_ERR(old.bh)) 3757 return PTR_ERR(old.bh); 3758 /* 3759 * Check for inode number is _not_ due to possible IO errors. 3760 * We might rmdir the source, keep it as pwd of some process 3761 * and merrily kill the link to whatever was created under the 3762 * same name. Goodbye sticky bit ;-< 3763 */ 3764 retval = -ENOENT; 3765 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3766 goto end_rename; 3767 3768 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3769 &new.de, &new.inlined); 3770 if (IS_ERR(new.bh)) { 3771 retval = PTR_ERR(new.bh); 3772 new.bh = NULL; 3773 goto end_rename; 3774 } 3775 3776 /* RENAME_EXCHANGE case: old *and* new must both exist */ 3777 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino) 3778 goto end_rename; 3779 3780 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, 3781 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3782 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2)); 3783 if (IS_ERR(handle)) { 3784 retval = PTR_ERR(handle); 3785 handle = NULL; 3786 goto end_rename; 3787 } 3788 3789 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3790 ext4_handle_sync(handle); 3791 3792 if (S_ISDIR(old.inode->i_mode)) { 3793 old.is_dir = true; 3794 retval = ext4_rename_dir_prepare(handle, &old); 3795 if (retval) 3796 goto end_rename; 3797 } 3798 if (S_ISDIR(new.inode->i_mode)) { 3799 new.is_dir = true; 3800 retval = ext4_rename_dir_prepare(handle, &new); 3801 if (retval) 3802 goto end_rename; 3803 } 3804 3805 /* 3806 * Other than the special case of overwriting a directory, parents' 3807 * nlink only needs to be modified if this is a cross directory rename. 3808 */ 3809 if (old.dir != new.dir && old.is_dir != new.is_dir) { 3810 old.dir_nlink_delta = old.is_dir ? -1 : 1; 3811 new.dir_nlink_delta = -old.dir_nlink_delta; 3812 retval = -EMLINK; 3813 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) || 3814 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir))) 3815 goto end_rename; 3816 } 3817 3818 new_file_type = new.de->file_type; 3819 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type); 3820 if (retval) 3821 goto end_rename; 3822 3823 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type); 3824 if (retval) 3825 goto end_rename; 3826 3827 /* 3828 * Like most other Unix systems, set the ctime for inodes on a 3829 * rename. 3830 */ 3831 old.inode->i_ctime = ext4_current_time(old.inode); 3832 new.inode->i_ctime = ext4_current_time(new.inode); 3833 ext4_mark_inode_dirty(handle, old.inode); 3834 ext4_mark_inode_dirty(handle, new.inode); 3835 3836 if (old.dir_bh) { 3837 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 3838 if (retval) 3839 goto end_rename; 3840 } 3841 if (new.dir_bh) { 3842 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino); 3843 if (retval) 3844 goto end_rename; 3845 } 3846 ext4_update_dir_count(handle, &old); 3847 ext4_update_dir_count(handle, &new); 3848 retval = 0; 3849 3850 end_rename: 3851 brelse(old.dir_bh); 3852 brelse(new.dir_bh); 3853 brelse(old.bh); 3854 brelse(new.bh); 3855 if (handle) 3856 ext4_journal_stop(handle); 3857 return retval; 3858 } 3859 3860 static int ext4_rename2(struct inode *old_dir, struct dentry *old_dentry, 3861 struct inode *new_dir, struct dentry *new_dentry, 3862 unsigned int flags) 3863 { 3864 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3865 return -EINVAL; 3866 3867 if (flags & RENAME_EXCHANGE) { 3868 return ext4_cross_rename(old_dir, old_dentry, 3869 new_dir, new_dentry); 3870 } 3871 3872 return ext4_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 3873 } 3874 3875 /* 3876 * directories can handle most operations... 3877 */ 3878 const struct inode_operations ext4_dir_inode_operations = { 3879 .create = ext4_create, 3880 .lookup = ext4_lookup, 3881 .link = ext4_link, 3882 .unlink = ext4_unlink, 3883 .symlink = ext4_symlink, 3884 .mkdir = ext4_mkdir, 3885 .rmdir = ext4_rmdir, 3886 .mknod = ext4_mknod, 3887 .tmpfile = ext4_tmpfile, 3888 .rename2 = ext4_rename2, 3889 .setattr = ext4_setattr, 3890 .setxattr = generic_setxattr, 3891 .getxattr = generic_getxattr, 3892 .listxattr = ext4_listxattr, 3893 .removexattr = generic_removexattr, 3894 .get_acl = ext4_get_acl, 3895 .set_acl = ext4_set_acl, 3896 .fiemap = ext4_fiemap, 3897 }; 3898 3899 const struct inode_operations ext4_special_inode_operations = { 3900 .setattr = ext4_setattr, 3901 .setxattr = generic_setxattr, 3902 .getxattr = generic_getxattr, 3903 .listxattr = ext4_listxattr, 3904 .removexattr = generic_removexattr, 3905 .get_acl = ext4_get_acl, 3906 .set_acl = ext4_set_acl, 3907 }; 3908