xref: /linux/fs/ext4/mballoc.c (revision f898c16a0624e7f2dcb0b1cda6916c9be6489197)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22 
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42 
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223 
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:			buddy = on-disk + PAs
262  *  - new PA:				buddy += N; PA = N
263  *  - use inode PA:			on-disk += N; PA -= N
264  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA		on-disk += N; PA -= N
266  *  - discard locality group PA		buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328 
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360 
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group	(group)
366  *  - object (inode/locality)	(object)
367  *  - per-pa lock		(pa)
368  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406 
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412 
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418 
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 					ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 			       ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 		struct ext4_buddy *e4b, ext4_grpblk_t start,
428 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 	int __cpu;
452 	u64 __seq = 0;
453 
454 	for_each_possible_cpu(__cpu)
455 		__seq += per_cpu(discard_pa_seq, __cpu);
456 	return __seq;
457 }
458 
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 	*bit += ((unsigned long) addr & 7UL) << 3;
463 	addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 	*bit += ((unsigned long) addr & 3UL) << 3;
466 	addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 	return addr;
471 }
472 
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 	/*
476 	 * ext4_test_bit on architecture like powerpc
477 	 * needs unsigned long aligned address
478 	 */
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	return ext4_test_bit(bit, addr);
481 }
482 
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	ext4_set_bit(bit, addr);
487 }
488 
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 	addr = mb_correct_addr_and_bit(&bit, addr);
492 	ext4_clear_bit(bit, addr);
493 }
494 
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 	addr = mb_correct_addr_and_bit(&bit, addr);
498 	return ext4_test_and_clear_bit(bit, addr);
499 }
500 
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 	int fix = 0, ret, tmpmax;
504 	addr = mb_correct_addr_and_bit(&fix, addr);
505 	tmpmax = max + fix;
506 	start += fix;
507 
508 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 	if (ret > max)
510 		return max;
511 	return ret;
512 }
513 
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 	int fix = 0, ret, tmpmax;
517 	addr = mb_correct_addr_and_bit(&fix, addr);
518 	tmpmax = max + fix;
519 	start += fix;
520 
521 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 	if (ret > max)
523 		return max;
524 	return ret;
525 }
526 
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 	char *bb;
530 
531 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 	BUG_ON(max == NULL);
533 
534 	if (order > e4b->bd_blkbits + 1) {
535 		*max = 0;
536 		return NULL;
537 	}
538 
539 	/* at order 0 we see each particular block */
540 	if (order == 0) {
541 		*max = 1 << (e4b->bd_blkbits + 3);
542 		return e4b->bd_bitmap;
543 	}
544 
545 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548 	return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 			   int first, int count)
554 {
555 	int i;
556 	struct super_block *sb = e4b->bd_sb;
557 
558 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 		return;
560 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 	for (i = 0; i < count; i++) {
562 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 			ext4_fsblk_t blocknr;
564 
565 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 			ext4_grp_locked_error(sb, e4b->bd_group,
570 					      inode ? inode->i_ino : 0,
571 					      blocknr,
572 					      "freeing block already freed "
573 					      "(bit %u)",
574 					      first + i);
575 		}
576 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 	}
578 }
579 
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 	int i;
583 
584 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 		return;
586 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 	for (i = 0; i < count; i++) {
588 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 	}
591 }
592 
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 		return;
597 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 		unsigned char *b1, *b2;
599 		int i;
600 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 		b2 = (unsigned char *) bitmap;
602 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 			if (b1[i] != b2[i]) {
604 				ext4_msg(e4b->bd_sb, KERN_ERR,
605 					 "corruption in group %u "
606 					 "at byte %u(%u): %x in copy != %x "
607 					 "on disk/prealloc",
608 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 				BUG();
610 			}
611 		}
612 	}
613 }
614 
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 			struct ext4_group_info *grp, ext4_group_t group)
617 {
618 	struct buffer_head *bh;
619 
620 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 	if (!grp->bb_bitmap)
622 		return;
623 
624 	bh = ext4_read_block_bitmap(sb, group);
625 	if (IS_ERR_OR_NULL(bh)) {
626 		kfree(grp->bb_bitmap);
627 		grp->bb_bitmap = NULL;
628 		return;
629 	}
630 
631 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 	put_bh(bh);
633 }
634 
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 	kfree(grp->bb_bitmap);
638 }
639 
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642 				struct ext4_buddy *e4b, int first, int count)
643 {
644 	return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 						int first, int count)
648 {
649 	return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 	return;
654 }
655 
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 			struct ext4_group_info *grp, ext4_group_t group)
658 {
659 	return;
660 }
661 
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 	return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)						\
671 do {									\
672 	if (!(assert)) {						\
673 		printk(KERN_EMERG					\
674 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
675 			function, file, line, # assert);		\
676 		BUG();							\
677 	}								\
678 } while (0)
679 
680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 				const char *function, int line)
682 {
683 	struct super_block *sb = e4b->bd_sb;
684 	int order = e4b->bd_blkbits + 1;
685 	int max;
686 	int max2;
687 	int i;
688 	int j;
689 	int k;
690 	int count;
691 	struct ext4_group_info *grp;
692 	int fragments = 0;
693 	int fstart;
694 	struct list_head *cur;
695 	void *buddy;
696 	void *buddy2;
697 
698 	if (e4b->bd_info->bb_check_counter++ % 10)
699 		return;
700 
701 	while (order > 1) {
702 		buddy = mb_find_buddy(e4b, order, &max);
703 		MB_CHECK_ASSERT(buddy);
704 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 		MB_CHECK_ASSERT(buddy2);
706 		MB_CHECK_ASSERT(buddy != buddy2);
707 		MB_CHECK_ASSERT(max * 2 == max2);
708 
709 		count = 0;
710 		for (i = 0; i < max; i++) {
711 
712 			if (mb_test_bit(i, buddy)) {
713 				/* only single bit in buddy2 may be 0 */
714 				if (!mb_test_bit(i << 1, buddy2)) {
715 					MB_CHECK_ASSERT(
716 						mb_test_bit((i<<1)+1, buddy2));
717 				}
718 				continue;
719 			}
720 
721 			/* both bits in buddy2 must be 1 */
722 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725 			for (j = 0; j < (1 << order); j++) {
726 				k = (i * (1 << order)) + j;
727 				MB_CHECK_ASSERT(
728 					!mb_test_bit(k, e4b->bd_bitmap));
729 			}
730 			count++;
731 		}
732 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 		order--;
734 	}
735 
736 	fstart = -1;
737 	buddy = mb_find_buddy(e4b, 0, &max);
738 	for (i = 0; i < max; i++) {
739 		if (!mb_test_bit(i, buddy)) {
740 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 			if (fstart == -1) {
742 				fragments++;
743 				fstart = i;
744 			}
745 			continue;
746 		}
747 		fstart = -1;
748 		/* check used bits only */
749 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 			buddy2 = mb_find_buddy(e4b, j, &max2);
751 			k = i >> j;
752 			MB_CHECK_ASSERT(k < max2);
753 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 		}
755 	}
756 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759 	grp = ext4_get_group_info(sb, e4b->bd_group);
760 	if (!grp)
761 		return;
762 	list_for_each(cur, &grp->bb_prealloc_list) {
763 		ext4_group_t groupnr;
764 		struct ext4_prealloc_space *pa;
765 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 		for (i = 0; i < pa->pa_len; i++)
769 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 	}
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
774 					__FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778 
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 					struct ext4_group_info *grp)
788 {
789 	struct ext4_sb_info *sbi = EXT4_SB(sb);
790 	ext4_grpblk_t min;
791 	ext4_grpblk_t max;
792 	ext4_grpblk_t chunk;
793 	unsigned int border;
794 
795 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796 
797 	border = 2 << sb->s_blocksize_bits;
798 
799 	while (len > 0) {
800 		/* find how many blocks can be covered since this position */
801 		max = ffs(first | border) - 1;
802 
803 		/* find how many blocks of power 2 we need to mark */
804 		min = fls(len) - 1;
805 
806 		if (max < min)
807 			min = max;
808 		chunk = 1 << min;
809 
810 		/* mark multiblock chunks only */
811 		grp->bb_counters[min]++;
812 		if (min > 0)
813 			mb_clear_bit(first >> min,
814 				     buddy + sbi->s_mb_offsets[min]);
815 
816 		len -= chunk;
817 		first += chunk;
818 	}
819 }
820 
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823 	int order;
824 
825 	/*
826 	 * We don't bother with a special lists groups with only 1 block free
827 	 * extents and for completely empty groups.
828 	 */
829 	order = fls(len) - 2;
830 	if (order < 0)
831 		return 0;
832 	if (order == MB_NUM_ORDERS(sb))
833 		order--;
834 	if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
835 		order = MB_NUM_ORDERS(sb) - 1;
836 	return order;
837 }
838 
839 /* Move group to appropriate avg_fragment_size list */
840 static void
841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842 {
843 	struct ext4_sb_info *sbi = EXT4_SB(sb);
844 	int new_order;
845 
846 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
847 		return;
848 
849 	new_order = mb_avg_fragment_size_order(sb,
850 					grp->bb_free / grp->bb_fragments);
851 	if (new_order == grp->bb_avg_fragment_size_order)
852 		return;
853 
854 	if (grp->bb_avg_fragment_size_order != -1) {
855 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
856 					grp->bb_avg_fragment_size_order]);
857 		list_del(&grp->bb_avg_fragment_size_node);
858 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
859 					grp->bb_avg_fragment_size_order]);
860 	}
861 	grp->bb_avg_fragment_size_order = new_order;
862 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
863 					grp->bb_avg_fragment_size_order]);
864 	list_add_tail(&grp->bb_avg_fragment_size_node,
865 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
866 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
867 					grp->bb_avg_fragment_size_order]);
868 }
869 
870 /*
871  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872  * cr level needs an update.
873  */
874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875 			enum criteria *new_cr, ext4_group_t *group)
876 {
877 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878 	struct ext4_group_info *iter;
879 	int i;
880 
881 	if (ac->ac_status == AC_STATUS_FOUND)
882 		return;
883 
884 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886 
887 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 			continue;
890 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 			continue;
894 		}
895 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896 				    bb_largest_free_order_node) {
897 			if (sbi->s_mb_stats)
898 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900 				*group = iter->bb_group;
901 				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902 				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903 				return;
904 			}
905 		}
906 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
907 	}
908 
909 	/* Increment cr and search again if no group is found */
910 	*new_cr = CR_GOAL_LEN_FAST;
911 }
912 
913 /*
914  * Find a suitable group of given order from the average fragments list.
915  */
916 static struct ext4_group_info *
917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918 {
919 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922 	struct ext4_group_info *grp = NULL, *iter;
923 	enum criteria cr = ac->ac_criteria;
924 
925 	if (list_empty(frag_list))
926 		return NULL;
927 	read_lock(frag_list_lock);
928 	if (list_empty(frag_list)) {
929 		read_unlock(frag_list_lock);
930 		return NULL;
931 	}
932 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933 		if (sbi->s_mb_stats)
934 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
936 			grp = iter;
937 			break;
938 		}
939 	}
940 	read_unlock(frag_list_lock);
941 	return grp;
942 }
943 
944 /*
945  * Choose next group by traversing average fragment size list of suitable
946  * order. Updates *new_cr if cr level needs an update.
947  */
948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949 		enum criteria *new_cr, ext4_group_t *group)
950 {
951 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952 	struct ext4_group_info *grp = NULL;
953 	int i;
954 
955 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956 		if (sbi->s_mb_stats)
957 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
958 	}
959 
960 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963 		if (grp) {
964 			*group = grp->bb_group;
965 			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
966 			return;
967 		}
968 	}
969 
970 	/*
971 	 * CR_BEST_AVAIL_LEN works based on the concept that we have
972 	 * a larger normalized goal len request which can be trimmed to
973 	 * a smaller goal len such that it can still satisfy original
974 	 * request len. However, allocation request for non-regular
975 	 * files never gets normalized.
976 	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977 	 */
978 	if (ac->ac_flags & EXT4_MB_HINT_DATA)
979 		*new_cr = CR_BEST_AVAIL_LEN;
980 	else
981 		*new_cr = CR_GOAL_LEN_SLOW;
982 }
983 
984 /*
985  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986  * order we have and proactively trim the goal request length to that order to
987  * find a suitable group faster.
988  *
989  * This optimizes allocation speed at the cost of slightly reduced
990  * preallocations. However, we make sure that we don't trim the request too
991  * much and fall to CR_GOAL_LEN_SLOW in that case.
992  */
993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994 		enum criteria *new_cr, ext4_group_t *group)
995 {
996 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997 	struct ext4_group_info *grp = NULL;
998 	int i, order, min_order;
999 	unsigned long num_stripe_clusters = 0;
1000 
1001 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002 		if (sbi->s_mb_stats)
1003 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1004 	}
1005 
1006 	/*
1007 	 * mb_avg_fragment_size_order() returns order in a way that makes
1008 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1009 	 * fls() instead since we need to know the actual length while modifying
1010 	 * goal length.
1011 	 */
1012 	order = fls(ac->ac_g_ex.fe_len) - 1;
1013 	if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1014 		order = MB_NUM_ORDERS(ac->ac_sb);
1015 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1016 	if (min_order < 0)
1017 		min_order = 0;
1018 
1019 	if (sbi->s_stripe > 0) {
1020 		/*
1021 		 * We are assuming that stripe size is always a multiple of
1022 		 * cluster ratio otherwise __ext4_fill_super exists early.
1023 		 */
1024 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1025 		if (1 << min_order < num_stripe_clusters)
1026 			/*
1027 			 * We consider 1 order less because later we round
1028 			 * up the goal len to num_stripe_clusters
1029 			 */
1030 			min_order = fls(num_stripe_clusters) - 1;
1031 	}
1032 
1033 	if (1 << min_order < ac->ac_o_ex.fe_len)
1034 		min_order = fls(ac->ac_o_ex.fe_len);
1035 
1036 	for (i = order; i >= min_order; i--) {
1037 		int frag_order;
1038 		/*
1039 		 * Scale down goal len to make sure we find something
1040 		 * in the free fragments list. Basically, reduce
1041 		 * preallocations.
1042 		 */
1043 		ac->ac_g_ex.fe_len = 1 << i;
1044 
1045 		if (num_stripe_clusters > 0) {
1046 			/*
1047 			 * Try to round up the adjusted goal length to
1048 			 * stripe size (in cluster units) multiple for
1049 			 * efficiency.
1050 			 */
1051 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1052 						     num_stripe_clusters);
1053 		}
1054 
1055 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1056 							ac->ac_g_ex.fe_len);
1057 
1058 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1059 		if (grp) {
1060 			*group = grp->bb_group;
1061 			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1062 			return;
1063 		}
1064 	}
1065 
1066 	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1067 	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1068 	*new_cr = CR_GOAL_LEN_SLOW;
1069 }
1070 
1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1072 {
1073 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1074 		return 0;
1075 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1076 		return 0;
1077 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1078 		return 0;
1079 	return 1;
1080 }
1081 
1082 /*
1083  * Return next linear group for allocation.
1084  */
1085 static ext4_group_t
1086 next_linear_group(ext4_group_t group, ext4_group_t ngroups)
1087 {
1088 	/*
1089 	 * Artificially restricted ngroups for non-extent
1090 	 * files makes group > ngroups possible on first loop.
1091 	 */
1092 	return group + 1 >= ngroups ? 0 : group + 1;
1093 }
1094 
1095 /*
1096  * ext4_mb_choose_next_group: choose next group for allocation.
1097  *
1098  * @ac        Allocation Context
1099  * @new_cr    This is an output parameter. If the there is no good group
1100  *            available at current CR level, this field is updated to indicate
1101  *            the new cr level that should be used.
1102  * @group     This is an input / output parameter. As an input it indicates the
1103  *            next group that the allocator intends to use for allocation. As
1104  *            output, this field indicates the next group that should be used as
1105  *            determined by the optimization functions.
1106  * @ngroups   Total number of groups
1107  */
1108 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1109 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1110 {
1111 	*new_cr = ac->ac_criteria;
1112 
1113 	if (!should_optimize_scan(ac)) {
1114 		*group = next_linear_group(*group, ngroups);
1115 		return;
1116 	}
1117 
1118 	/*
1119 	 * Optimized scanning can return non adjacent groups which can cause
1120 	 * seek overhead for rotational disks. So try few linear groups before
1121 	 * trying optimized scan.
1122 	 */
1123 	if (ac->ac_groups_linear_remaining) {
1124 		*group = next_linear_group(*group, ngroups);
1125 		ac->ac_groups_linear_remaining--;
1126 		return;
1127 	}
1128 
1129 	if (*new_cr == CR_POWER2_ALIGNED) {
1130 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1131 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1132 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1133 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1134 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1135 	} else {
1136 		/*
1137 		 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1138 		 * rb tree sorted by bb_free. But until that happens, we should
1139 		 * never come here.
1140 		 */
1141 		WARN_ON(1);
1142 	}
1143 }
1144 
1145 /*
1146  * Cache the order of the largest free extent we have available in this block
1147  * group.
1148  */
1149 static void
1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1151 {
1152 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1153 	int i;
1154 
1155 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1156 		if (grp->bb_counters[i] > 0)
1157 			break;
1158 	/* No need to move between order lists? */
1159 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1160 	    i == grp->bb_largest_free_order) {
1161 		grp->bb_largest_free_order = i;
1162 		return;
1163 	}
1164 
1165 	if (grp->bb_largest_free_order >= 0) {
1166 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1167 					      grp->bb_largest_free_order]);
1168 		list_del_init(&grp->bb_largest_free_order_node);
1169 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1170 					      grp->bb_largest_free_order]);
1171 	}
1172 	grp->bb_largest_free_order = i;
1173 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1174 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1175 					      grp->bb_largest_free_order]);
1176 		list_add_tail(&grp->bb_largest_free_order_node,
1177 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1178 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1179 					      grp->bb_largest_free_order]);
1180 	}
1181 }
1182 
1183 static noinline_for_stack
1184 void ext4_mb_generate_buddy(struct super_block *sb,
1185 			    void *buddy, void *bitmap, ext4_group_t group,
1186 			    struct ext4_group_info *grp)
1187 {
1188 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1190 	ext4_grpblk_t i = 0;
1191 	ext4_grpblk_t first;
1192 	ext4_grpblk_t len;
1193 	unsigned free = 0;
1194 	unsigned fragments = 0;
1195 	unsigned long long period = get_cycles();
1196 
1197 	/* initialize buddy from bitmap which is aggregation
1198 	 * of on-disk bitmap and preallocations */
1199 	i = mb_find_next_zero_bit(bitmap, max, 0);
1200 	grp->bb_first_free = i;
1201 	while (i < max) {
1202 		fragments++;
1203 		first = i;
1204 		i = mb_find_next_bit(bitmap, max, i);
1205 		len = i - first;
1206 		free += len;
1207 		if (len > 1)
1208 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1209 		else
1210 			grp->bb_counters[0]++;
1211 		if (i < max)
1212 			i = mb_find_next_zero_bit(bitmap, max, i);
1213 	}
1214 	grp->bb_fragments = fragments;
1215 
1216 	if (free != grp->bb_free) {
1217 		ext4_grp_locked_error(sb, group, 0, 0,
1218 				      "block bitmap and bg descriptor "
1219 				      "inconsistent: %u vs %u free clusters",
1220 				      free, grp->bb_free);
1221 		/*
1222 		 * If we intend to continue, we consider group descriptor
1223 		 * corrupt and update bb_free using bitmap value
1224 		 */
1225 		grp->bb_free = free;
1226 		ext4_mark_group_bitmap_corrupted(sb, group,
1227 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1228 	}
1229 	mb_set_largest_free_order(sb, grp);
1230 	mb_update_avg_fragment_size(sb, grp);
1231 
1232 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1233 
1234 	period = get_cycles() - period;
1235 	atomic_inc(&sbi->s_mb_buddies_generated);
1236 	atomic64_add(period, &sbi->s_mb_generation_time);
1237 }
1238 
1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1240 {
1241 	int count;
1242 	int order = 1;
1243 	void *buddy;
1244 
1245 	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1246 		mb_set_bits(buddy, 0, count);
1247 
1248 	e4b->bd_info->bb_fragments = 0;
1249 	memset(e4b->bd_info->bb_counters, 0,
1250 		sizeof(*e4b->bd_info->bb_counters) *
1251 		(e4b->bd_sb->s_blocksize_bits + 2));
1252 
1253 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1254 		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1255 }
1256 
1257 /* The buddy information is attached the buddy cache inode
1258  * for convenience. The information regarding each group
1259  * is loaded via ext4_mb_load_buddy. The information involve
1260  * block bitmap and buddy information. The information are
1261  * stored in the inode as
1262  *
1263  * {                        page                        }
1264  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1265  *
1266  *
1267  * one block each for bitmap and buddy information.
1268  * So for each group we take up 2 blocks. A page can
1269  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1270  * So it can have information regarding groups_per_page which
1271  * is blocks_per_page/2
1272  *
1273  * Locking note:  This routine takes the block group lock of all groups
1274  * for this page; do not hold this lock when calling this routine!
1275  */
1276 
1277 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1278 {
1279 	ext4_group_t ngroups;
1280 	unsigned int blocksize;
1281 	int blocks_per_page;
1282 	int groups_per_page;
1283 	int err = 0;
1284 	int i;
1285 	ext4_group_t first_group, group;
1286 	int first_block;
1287 	struct super_block *sb;
1288 	struct buffer_head *bhs;
1289 	struct buffer_head **bh = NULL;
1290 	struct inode *inode;
1291 	char *data;
1292 	char *bitmap;
1293 	struct ext4_group_info *grinfo;
1294 
1295 	inode = folio->mapping->host;
1296 	sb = inode->i_sb;
1297 	ngroups = ext4_get_groups_count(sb);
1298 	blocksize = i_blocksize(inode);
1299 	blocks_per_page = PAGE_SIZE / blocksize;
1300 
1301 	mb_debug(sb, "init folio %lu\n", folio->index);
1302 
1303 	groups_per_page = blocks_per_page >> 1;
1304 	if (groups_per_page == 0)
1305 		groups_per_page = 1;
1306 
1307 	/* allocate buffer_heads to read bitmaps */
1308 	if (groups_per_page > 1) {
1309 		i = sizeof(struct buffer_head *) * groups_per_page;
1310 		bh = kzalloc(i, gfp);
1311 		if (bh == NULL)
1312 			return -ENOMEM;
1313 	} else
1314 		bh = &bhs;
1315 
1316 	first_group = folio->index * blocks_per_page / 2;
1317 
1318 	/* read all groups the folio covers into the cache */
1319 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1320 		if (group >= ngroups)
1321 			break;
1322 
1323 		grinfo = ext4_get_group_info(sb, group);
1324 		if (!grinfo)
1325 			continue;
1326 		/*
1327 		 * If page is uptodate then we came here after online resize
1328 		 * which added some new uninitialized group info structs, so
1329 		 * we must skip all initialized uptodate buddies on the folio,
1330 		 * which may be currently in use by an allocating task.
1331 		 */
1332 		if (folio_test_uptodate(folio) &&
1333 				!EXT4_MB_GRP_NEED_INIT(grinfo)) {
1334 			bh[i] = NULL;
1335 			continue;
1336 		}
1337 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1338 		if (IS_ERR(bh[i])) {
1339 			err = PTR_ERR(bh[i]);
1340 			bh[i] = NULL;
1341 			goto out;
1342 		}
1343 		mb_debug(sb, "read bitmap for group %u\n", group);
1344 	}
1345 
1346 	/* wait for I/O completion */
1347 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1348 		int err2;
1349 
1350 		if (!bh[i])
1351 			continue;
1352 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1353 		if (!err)
1354 			err = err2;
1355 	}
1356 
1357 	first_block = folio->index * blocks_per_page;
1358 	for (i = 0; i < blocks_per_page; i++) {
1359 		group = (first_block + i) >> 1;
1360 		if (group >= ngroups)
1361 			break;
1362 
1363 		if (!bh[group - first_group])
1364 			/* skip initialized uptodate buddy */
1365 			continue;
1366 
1367 		if (!buffer_verified(bh[group - first_group]))
1368 			/* Skip faulty bitmaps */
1369 			continue;
1370 		err = 0;
1371 
1372 		/*
1373 		 * data carry information regarding this
1374 		 * particular group in the format specified
1375 		 * above
1376 		 *
1377 		 */
1378 		data = folio_address(folio) + (i * blocksize);
1379 		bitmap = bh[group - first_group]->b_data;
1380 
1381 		/*
1382 		 * We place the buddy block and bitmap block
1383 		 * close together
1384 		 */
1385 		grinfo = ext4_get_group_info(sb, group);
1386 		if (!grinfo) {
1387 			err = -EFSCORRUPTED;
1388 		        goto out;
1389 		}
1390 		if ((first_block + i) & 1) {
1391 			/* this is block of buddy */
1392 			BUG_ON(incore == NULL);
1393 			mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1394 				group, folio->index, i * blocksize);
1395 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1396 			grinfo->bb_fragments = 0;
1397 			memset(grinfo->bb_counters, 0,
1398 			       sizeof(*grinfo->bb_counters) *
1399 			       (MB_NUM_ORDERS(sb)));
1400 			/*
1401 			 * incore got set to the group block bitmap below
1402 			 */
1403 			ext4_lock_group(sb, group);
1404 			/* init the buddy */
1405 			memset(data, 0xff, blocksize);
1406 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1407 			ext4_unlock_group(sb, group);
1408 			incore = NULL;
1409 		} else {
1410 			/* this is block of bitmap */
1411 			BUG_ON(incore != NULL);
1412 			mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1413 				group, folio->index, i * blocksize);
1414 			trace_ext4_mb_bitmap_load(sb, group);
1415 
1416 			/* see comments in ext4_mb_put_pa() */
1417 			ext4_lock_group(sb, group);
1418 			memcpy(data, bitmap, blocksize);
1419 
1420 			/* mark all preallocated blks used in in-core bitmap */
1421 			ext4_mb_generate_from_pa(sb, data, group);
1422 			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1423 			ext4_unlock_group(sb, group);
1424 
1425 			/* set incore so that the buddy information can be
1426 			 * generated using this
1427 			 */
1428 			incore = data;
1429 		}
1430 	}
1431 	folio_mark_uptodate(folio);
1432 
1433 out:
1434 	if (bh) {
1435 		for (i = 0; i < groups_per_page; i++)
1436 			brelse(bh[i]);
1437 		if (bh != &bhs)
1438 			kfree(bh);
1439 	}
1440 	return err;
1441 }
1442 
1443 /*
1444  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1445  * on the same buddy page doesn't happen whild holding the buddy page lock.
1446  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1447  * are on the same page e4b->bd_buddy_folio is NULL and return value is 0.
1448  */
1449 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1450 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1451 {
1452 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1453 	int block, pnum, poff;
1454 	int blocks_per_page;
1455 	struct folio *folio;
1456 
1457 	e4b->bd_buddy_folio = NULL;
1458 	e4b->bd_bitmap_folio = NULL;
1459 
1460 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1461 	/*
1462 	 * the buddy cache inode stores the block bitmap
1463 	 * and buddy information in consecutive blocks.
1464 	 * So for each group we need two blocks.
1465 	 */
1466 	block = group * 2;
1467 	pnum = block / blocks_per_page;
1468 	poff = block % blocks_per_page;
1469 	folio = __filemap_get_folio(inode->i_mapping, pnum,
1470 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1471 	if (IS_ERR(folio))
1472 		return PTR_ERR(folio);
1473 	BUG_ON(folio->mapping != inode->i_mapping);
1474 	e4b->bd_bitmap_folio = folio;
1475 	e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1476 
1477 	if (blocks_per_page >= 2) {
1478 		/* buddy and bitmap are on the same page */
1479 		return 0;
1480 	}
1481 
1482 	/* blocks_per_page == 1, hence we need another page for the buddy */
1483 	folio = __filemap_get_folio(inode->i_mapping, block + 1,
1484 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1485 	if (IS_ERR(folio))
1486 		return PTR_ERR(folio);
1487 	BUG_ON(folio->mapping != inode->i_mapping);
1488 	e4b->bd_buddy_folio = folio;
1489 	return 0;
1490 }
1491 
1492 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1493 {
1494 	if (e4b->bd_bitmap_folio) {
1495 		folio_unlock(e4b->bd_bitmap_folio);
1496 		folio_put(e4b->bd_bitmap_folio);
1497 	}
1498 	if (e4b->bd_buddy_folio) {
1499 		folio_unlock(e4b->bd_buddy_folio);
1500 		folio_put(e4b->bd_buddy_folio);
1501 	}
1502 }
1503 
1504 /*
1505  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1506  * block group lock of all groups for this page; do not hold the BG lock when
1507  * calling this routine!
1508  */
1509 static noinline_for_stack
1510 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1511 {
1512 
1513 	struct ext4_group_info *this_grp;
1514 	struct ext4_buddy e4b;
1515 	struct folio *folio;
1516 	int ret = 0;
1517 
1518 	might_sleep();
1519 	mb_debug(sb, "init group %u\n", group);
1520 	this_grp = ext4_get_group_info(sb, group);
1521 	if (!this_grp)
1522 		return -EFSCORRUPTED;
1523 
1524 	/*
1525 	 * This ensures that we don't reinit the buddy cache
1526 	 * page which map to the group from which we are already
1527 	 * allocating. If we are looking at the buddy cache we would
1528 	 * have taken a reference using ext4_mb_load_buddy and that
1529 	 * would have pinned buddy page to page cache.
1530 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1531 	 * page accessed.
1532 	 */
1533 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1534 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1535 		/*
1536 		 * somebody initialized the group
1537 		 * return without doing anything
1538 		 */
1539 		goto err;
1540 	}
1541 
1542 	folio = e4b.bd_bitmap_folio;
1543 	ret = ext4_mb_init_cache(folio, NULL, gfp);
1544 	if (ret)
1545 		goto err;
1546 	if (!folio_test_uptodate(folio)) {
1547 		ret = -EIO;
1548 		goto err;
1549 	}
1550 
1551 	if (e4b.bd_buddy_folio == NULL) {
1552 		/*
1553 		 * If both the bitmap and buddy are in
1554 		 * the same page we don't need to force
1555 		 * init the buddy
1556 		 */
1557 		ret = 0;
1558 		goto err;
1559 	}
1560 	/* init buddy cache */
1561 	folio = e4b.bd_buddy_folio;
1562 	ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1563 	if (ret)
1564 		goto err;
1565 	if (!folio_test_uptodate(folio)) {
1566 		ret = -EIO;
1567 		goto err;
1568 	}
1569 err:
1570 	ext4_mb_put_buddy_page_lock(&e4b);
1571 	return ret;
1572 }
1573 
1574 /*
1575  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1576  * block group lock of all groups for this page; do not hold the BG lock when
1577  * calling this routine!
1578  */
1579 static noinline_for_stack int
1580 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1581 		       struct ext4_buddy *e4b, gfp_t gfp)
1582 {
1583 	int blocks_per_page;
1584 	int block;
1585 	int pnum;
1586 	int poff;
1587 	struct folio *folio;
1588 	int ret;
1589 	struct ext4_group_info *grp;
1590 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 	struct inode *inode = sbi->s_buddy_cache;
1592 
1593 	might_sleep();
1594 	mb_debug(sb, "load group %u\n", group);
1595 
1596 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1597 	grp = ext4_get_group_info(sb, group);
1598 	if (!grp)
1599 		return -EFSCORRUPTED;
1600 
1601 	e4b->bd_blkbits = sb->s_blocksize_bits;
1602 	e4b->bd_info = grp;
1603 	e4b->bd_sb = sb;
1604 	e4b->bd_group = group;
1605 	e4b->bd_buddy_folio = NULL;
1606 	e4b->bd_bitmap_folio = NULL;
1607 
1608 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1609 		/*
1610 		 * we need full data about the group
1611 		 * to make a good selection
1612 		 */
1613 		ret = ext4_mb_init_group(sb, group, gfp);
1614 		if (ret)
1615 			return ret;
1616 	}
1617 
1618 	/*
1619 	 * the buddy cache inode stores the block bitmap
1620 	 * and buddy information in consecutive blocks.
1621 	 * So for each group we need two blocks.
1622 	 */
1623 	block = group * 2;
1624 	pnum = block / blocks_per_page;
1625 	poff = block % blocks_per_page;
1626 
1627 	/* Avoid locking the folio in the fast path ... */
1628 	folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1629 	if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1630 		if (!IS_ERR(folio))
1631 			/*
1632 			 * drop the folio reference and try
1633 			 * to get the folio with lock. If we
1634 			 * are not uptodate that implies
1635 			 * somebody just created the folio but
1636 			 * is yet to initialize it. So
1637 			 * wait for it to initialize.
1638 			 */
1639 			folio_put(folio);
1640 		folio = __filemap_get_folio(inode->i_mapping, pnum,
1641 				FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1642 		if (!IS_ERR(folio)) {
1643 			if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1644 	"ext4: bitmap's mapping != inode->i_mapping\n")) {
1645 				/* should never happen */
1646 				folio_unlock(folio);
1647 				ret = -EINVAL;
1648 				goto err;
1649 			}
1650 			if (!folio_test_uptodate(folio)) {
1651 				ret = ext4_mb_init_cache(folio, NULL, gfp);
1652 				if (ret) {
1653 					folio_unlock(folio);
1654 					goto err;
1655 				}
1656 				mb_cmp_bitmaps(e4b, folio_address(folio) +
1657 					       (poff * sb->s_blocksize));
1658 			}
1659 			folio_unlock(folio);
1660 		}
1661 	}
1662 	if (IS_ERR(folio)) {
1663 		ret = PTR_ERR(folio);
1664 		goto err;
1665 	}
1666 	if (!folio_test_uptodate(folio)) {
1667 		ret = -EIO;
1668 		goto err;
1669 	}
1670 
1671 	/* Folios marked accessed already */
1672 	e4b->bd_bitmap_folio = folio;
1673 	e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1674 
1675 	block++;
1676 	pnum = block / blocks_per_page;
1677 	poff = block % blocks_per_page;
1678 
1679 	folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1680 	if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1681 		if (!IS_ERR(folio))
1682 			folio_put(folio);
1683 		folio = __filemap_get_folio(inode->i_mapping, pnum,
1684 				FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1685 		if (!IS_ERR(folio)) {
1686 			if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1687 	"ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1688 				/* should never happen */
1689 				folio_unlock(folio);
1690 				ret = -EINVAL;
1691 				goto err;
1692 			}
1693 			if (!folio_test_uptodate(folio)) {
1694 				ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1695 							 gfp);
1696 				if (ret) {
1697 					folio_unlock(folio);
1698 					goto err;
1699 				}
1700 			}
1701 			folio_unlock(folio);
1702 		}
1703 	}
1704 	if (IS_ERR(folio)) {
1705 		ret = PTR_ERR(folio);
1706 		goto err;
1707 	}
1708 	if (!folio_test_uptodate(folio)) {
1709 		ret = -EIO;
1710 		goto err;
1711 	}
1712 
1713 	/* Folios marked accessed already */
1714 	e4b->bd_buddy_folio = folio;
1715 	e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize);
1716 
1717 	return 0;
1718 
1719 err:
1720 	if (!IS_ERR_OR_NULL(folio))
1721 		folio_put(folio);
1722 	if (e4b->bd_bitmap_folio)
1723 		folio_put(e4b->bd_bitmap_folio);
1724 
1725 	e4b->bd_buddy = NULL;
1726 	e4b->bd_bitmap = NULL;
1727 	return ret;
1728 }
1729 
1730 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1731 			      struct ext4_buddy *e4b)
1732 {
1733 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1734 }
1735 
1736 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1737 {
1738 	if (e4b->bd_bitmap_folio)
1739 		folio_put(e4b->bd_bitmap_folio);
1740 	if (e4b->bd_buddy_folio)
1741 		folio_put(e4b->bd_buddy_folio);
1742 }
1743 
1744 
1745 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1746 {
1747 	int order = 1, max;
1748 	void *bb;
1749 
1750 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1751 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1752 
1753 	while (order <= e4b->bd_blkbits + 1) {
1754 		bb = mb_find_buddy(e4b, order, &max);
1755 		if (!mb_test_bit(block >> order, bb)) {
1756 			/* this block is part of buddy of order 'order' */
1757 			return order;
1758 		}
1759 		order++;
1760 	}
1761 	return 0;
1762 }
1763 
1764 static void mb_clear_bits(void *bm, int cur, int len)
1765 {
1766 	__u32 *addr;
1767 
1768 	len = cur + len;
1769 	while (cur < len) {
1770 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1771 			/* fast path: clear whole word at once */
1772 			addr = bm + (cur >> 3);
1773 			*addr = 0;
1774 			cur += 32;
1775 			continue;
1776 		}
1777 		mb_clear_bit(cur, bm);
1778 		cur++;
1779 	}
1780 }
1781 
1782 /* clear bits in given range
1783  * will return first found zero bit if any, -1 otherwise
1784  */
1785 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1786 {
1787 	__u32 *addr;
1788 	int zero_bit = -1;
1789 
1790 	len = cur + len;
1791 	while (cur < len) {
1792 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1793 			/* fast path: clear whole word at once */
1794 			addr = bm + (cur >> 3);
1795 			if (*addr != (__u32)(-1) && zero_bit == -1)
1796 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1797 			*addr = 0;
1798 			cur += 32;
1799 			continue;
1800 		}
1801 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1802 			zero_bit = cur;
1803 		cur++;
1804 	}
1805 
1806 	return zero_bit;
1807 }
1808 
1809 void mb_set_bits(void *bm, int cur, int len)
1810 {
1811 	__u32 *addr;
1812 
1813 	len = cur + len;
1814 	while (cur < len) {
1815 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1816 			/* fast path: set whole word at once */
1817 			addr = bm + (cur >> 3);
1818 			*addr = 0xffffffff;
1819 			cur += 32;
1820 			continue;
1821 		}
1822 		mb_set_bit(cur, bm);
1823 		cur++;
1824 	}
1825 }
1826 
1827 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1828 {
1829 	if (mb_test_bit(*bit + side, bitmap)) {
1830 		mb_clear_bit(*bit, bitmap);
1831 		(*bit) -= side;
1832 		return 1;
1833 	}
1834 	else {
1835 		(*bit) += side;
1836 		mb_set_bit(*bit, bitmap);
1837 		return -1;
1838 	}
1839 }
1840 
1841 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1842 {
1843 	int max;
1844 	int order = 1;
1845 	void *buddy = mb_find_buddy(e4b, order, &max);
1846 
1847 	while (buddy) {
1848 		void *buddy2;
1849 
1850 		/* Bits in range [first; last] are known to be set since
1851 		 * corresponding blocks were allocated. Bits in range
1852 		 * (first; last) will stay set because they form buddies on
1853 		 * upper layer. We just deal with borders if they don't
1854 		 * align with upper layer and then go up.
1855 		 * Releasing entire group is all about clearing
1856 		 * single bit of highest order buddy.
1857 		 */
1858 
1859 		/* Example:
1860 		 * ---------------------------------
1861 		 * |   1   |   1   |   1   |   1   |
1862 		 * ---------------------------------
1863 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1864 		 * ---------------------------------
1865 		 *   0   1   2   3   4   5   6   7
1866 		 *      \_____________________/
1867 		 *
1868 		 * Neither [1] nor [6] is aligned to above layer.
1869 		 * Left neighbour [0] is free, so mark it busy,
1870 		 * decrease bb_counters and extend range to
1871 		 * [0; 6]
1872 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1873 		 * mark [6] free, increase bb_counters and shrink range to
1874 		 * [0; 5].
1875 		 * Then shift range to [0; 2], go up and do the same.
1876 		 */
1877 
1878 
1879 		if (first & 1)
1880 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1881 		if (!(last & 1))
1882 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1883 		if (first > last)
1884 			break;
1885 		order++;
1886 
1887 		buddy2 = mb_find_buddy(e4b, order, &max);
1888 		if (!buddy2) {
1889 			mb_clear_bits(buddy, first, last - first + 1);
1890 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1891 			break;
1892 		}
1893 		first >>= 1;
1894 		last >>= 1;
1895 		buddy = buddy2;
1896 	}
1897 }
1898 
1899 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1900 			   int first, int count)
1901 {
1902 	int left_is_free = 0;
1903 	int right_is_free = 0;
1904 	int block;
1905 	int last = first + count - 1;
1906 	struct super_block *sb = e4b->bd_sb;
1907 
1908 	if (WARN_ON(count == 0))
1909 		return;
1910 	BUG_ON(last >= (sb->s_blocksize << 3));
1911 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1912 	/* Don't bother if the block group is corrupt. */
1913 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1914 		return;
1915 
1916 	mb_check_buddy(e4b);
1917 	mb_free_blocks_double(inode, e4b, first, count);
1918 
1919 	/* access memory sequentially: check left neighbour,
1920 	 * clear range and then check right neighbour
1921 	 */
1922 	if (first != 0)
1923 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1924 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1925 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1926 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1927 
1928 	if (unlikely(block != -1)) {
1929 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1930 		ext4_fsblk_t blocknr;
1931 
1932 		/*
1933 		 * Fastcommit replay can free already freed blocks which
1934 		 * corrupts allocation info. Regenerate it.
1935 		 */
1936 		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1937 			mb_regenerate_buddy(e4b);
1938 			goto check;
1939 		}
1940 
1941 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1942 		blocknr += EXT4_C2B(sbi, block);
1943 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1944 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1945 		ext4_grp_locked_error(sb, e4b->bd_group,
1946 				      inode ? inode->i_ino : 0, blocknr,
1947 				      "freeing already freed block (bit %u); block bitmap corrupt.",
1948 				      block);
1949 		return;
1950 	}
1951 
1952 	this_cpu_inc(discard_pa_seq);
1953 	e4b->bd_info->bb_free += count;
1954 	if (first < e4b->bd_info->bb_first_free)
1955 		e4b->bd_info->bb_first_free = first;
1956 
1957 	/* let's maintain fragments counter */
1958 	if (left_is_free && right_is_free)
1959 		e4b->bd_info->bb_fragments--;
1960 	else if (!left_is_free && !right_is_free)
1961 		e4b->bd_info->bb_fragments++;
1962 
1963 	/* buddy[0] == bd_bitmap is a special case, so handle
1964 	 * it right away and let mb_buddy_mark_free stay free of
1965 	 * zero order checks.
1966 	 * Check if neighbours are to be coaleasced,
1967 	 * adjust bitmap bb_counters and borders appropriately.
1968 	 */
1969 	if (first & 1) {
1970 		first += !left_is_free;
1971 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1972 	}
1973 	if (!(last & 1)) {
1974 		last -= !right_is_free;
1975 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1976 	}
1977 
1978 	if (first <= last)
1979 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1980 
1981 	mb_set_largest_free_order(sb, e4b->bd_info);
1982 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1983 check:
1984 	mb_check_buddy(e4b);
1985 }
1986 
1987 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1988 				int needed, struct ext4_free_extent *ex)
1989 {
1990 	int max, order, next;
1991 	void *buddy;
1992 
1993 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1994 	BUG_ON(ex == NULL);
1995 
1996 	buddy = mb_find_buddy(e4b, 0, &max);
1997 	BUG_ON(buddy == NULL);
1998 	BUG_ON(block >= max);
1999 	if (mb_test_bit(block, buddy)) {
2000 		ex->fe_len = 0;
2001 		ex->fe_start = 0;
2002 		ex->fe_group = 0;
2003 		return 0;
2004 	}
2005 
2006 	/* find actual order */
2007 	order = mb_find_order_for_block(e4b, block);
2008 
2009 	ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2010 	ex->fe_start = block;
2011 	ex->fe_group = e4b->bd_group;
2012 
2013 	block = block >> order;
2014 
2015 	while (needed > ex->fe_len &&
2016 	       mb_find_buddy(e4b, order, &max)) {
2017 
2018 		if (block + 1 >= max)
2019 			break;
2020 
2021 		next = (block + 1) * (1 << order);
2022 		if (mb_test_bit(next, e4b->bd_bitmap))
2023 			break;
2024 
2025 		order = mb_find_order_for_block(e4b, next);
2026 
2027 		block = next >> order;
2028 		ex->fe_len += 1 << order;
2029 	}
2030 
2031 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2032 		/* Should never happen! (but apparently sometimes does?!?) */
2033 		WARN_ON(1);
2034 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2035 			"corruption or bug in mb_find_extent "
2036 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2037 			block, order, needed, ex->fe_group, ex->fe_start,
2038 			ex->fe_len, ex->fe_logical);
2039 		ex->fe_len = 0;
2040 		ex->fe_start = 0;
2041 		ex->fe_group = 0;
2042 	}
2043 	return ex->fe_len;
2044 }
2045 
2046 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2047 {
2048 	int ord;
2049 	int mlen = 0;
2050 	int max = 0;
2051 	int start = ex->fe_start;
2052 	int len = ex->fe_len;
2053 	unsigned ret = 0;
2054 	int len0 = len;
2055 	void *buddy;
2056 	int ord_start, ord_end;
2057 
2058 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2059 	BUG_ON(e4b->bd_group != ex->fe_group);
2060 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2061 	mb_check_buddy(e4b);
2062 	mb_mark_used_double(e4b, start, len);
2063 
2064 	this_cpu_inc(discard_pa_seq);
2065 	e4b->bd_info->bb_free -= len;
2066 	if (e4b->bd_info->bb_first_free == start)
2067 		e4b->bd_info->bb_first_free += len;
2068 
2069 	/* let's maintain fragments counter */
2070 	if (start != 0)
2071 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2072 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2073 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2074 	if (mlen && max)
2075 		e4b->bd_info->bb_fragments++;
2076 	else if (!mlen && !max)
2077 		e4b->bd_info->bb_fragments--;
2078 
2079 	/* let's maintain buddy itself */
2080 	while (len) {
2081 		ord = mb_find_order_for_block(e4b, start);
2082 
2083 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2084 			/* the whole chunk may be allocated at once! */
2085 			mlen = 1 << ord;
2086 			buddy = mb_find_buddy(e4b, ord, &max);
2087 			BUG_ON((start >> ord) >= max);
2088 			mb_set_bit(start >> ord, buddy);
2089 			e4b->bd_info->bb_counters[ord]--;
2090 			start += mlen;
2091 			len -= mlen;
2092 			BUG_ON(len < 0);
2093 			continue;
2094 		}
2095 
2096 		/* store for history */
2097 		if (ret == 0)
2098 			ret = len | (ord << 16);
2099 
2100 		BUG_ON(ord <= 0);
2101 		buddy = mb_find_buddy(e4b, ord, &max);
2102 		mb_set_bit(start >> ord, buddy);
2103 		e4b->bd_info->bb_counters[ord]--;
2104 
2105 		ord_start = (start >> ord) << ord;
2106 		ord_end = ord_start + (1 << ord);
2107 		/* first chunk */
2108 		if (start > ord_start)
2109 			ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2110 						 ord_start, start - ord_start,
2111 						 e4b->bd_info);
2112 
2113 		/* last chunk */
2114 		if (start + len < ord_end) {
2115 			ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2116 						 start + len,
2117 						 ord_end - (start + len),
2118 						 e4b->bd_info);
2119 			break;
2120 		}
2121 		len = start + len - ord_end;
2122 		start = ord_end;
2123 	}
2124 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2125 
2126 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2127 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2128 	mb_check_buddy(e4b);
2129 
2130 	return ret;
2131 }
2132 
2133 /*
2134  * Must be called under group lock!
2135  */
2136 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2137 					struct ext4_buddy *e4b)
2138 {
2139 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2140 	int ret;
2141 
2142 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2143 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2144 
2145 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2146 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2147 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2148 
2149 	/* preallocation can change ac_b_ex, thus we store actually
2150 	 * allocated blocks for history */
2151 	ac->ac_f_ex = ac->ac_b_ex;
2152 
2153 	ac->ac_status = AC_STATUS_FOUND;
2154 	ac->ac_tail = ret & 0xffff;
2155 	ac->ac_buddy = ret >> 16;
2156 
2157 	/*
2158 	 * take the page reference. We want the page to be pinned
2159 	 * so that we don't get a ext4_mb_init_cache_call for this
2160 	 * group until we update the bitmap. That would mean we
2161 	 * double allocate blocks. The reference is dropped
2162 	 * in ext4_mb_release_context
2163 	 */
2164 	ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2165 	folio_get(ac->ac_bitmap_folio);
2166 	ac->ac_buddy_folio = e4b->bd_buddy_folio;
2167 	folio_get(ac->ac_buddy_folio);
2168 	/* store last allocated for subsequent stream allocation */
2169 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2170 		spin_lock(&sbi->s_md_lock);
2171 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2172 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2173 		spin_unlock(&sbi->s_md_lock);
2174 	}
2175 	/*
2176 	 * As we've just preallocated more space than
2177 	 * user requested originally, we store allocated
2178 	 * space in a special descriptor.
2179 	 */
2180 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2181 		ext4_mb_new_preallocation(ac);
2182 
2183 }
2184 
2185 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2186 					struct ext4_buddy *e4b,
2187 					int finish_group)
2188 {
2189 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2190 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2191 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2192 
2193 	if (ac->ac_status == AC_STATUS_FOUND)
2194 		return;
2195 	/*
2196 	 * We don't want to scan for a whole year
2197 	 */
2198 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2199 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2200 		ac->ac_status = AC_STATUS_BREAK;
2201 		return;
2202 	}
2203 
2204 	/*
2205 	 * Haven't found good chunk so far, let's continue
2206 	 */
2207 	if (bex->fe_len < gex->fe_len)
2208 		return;
2209 
2210 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2211 		ext4_mb_use_best_found(ac, e4b);
2212 }
2213 
2214 /*
2215  * The routine checks whether found extent is good enough. If it is,
2216  * then the extent gets marked used and flag is set to the context
2217  * to stop scanning. Otherwise, the extent is compared with the
2218  * previous found extent and if new one is better, then it's stored
2219  * in the context. Later, the best found extent will be used, if
2220  * mballoc can't find good enough extent.
2221  *
2222  * The algorithm used is roughly as follows:
2223  *
2224  * * If free extent found is exactly as big as goal, then
2225  *   stop the scan and use it immediately
2226  *
2227  * * If free extent found is smaller than goal, then keep retrying
2228  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2229  *   that stop scanning and use whatever we have.
2230  *
2231  * * If free extent found is bigger than goal, then keep retrying
2232  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2233  *   stopping the scan and using the extent.
2234  *
2235  *
2236  * FIXME: real allocation policy is to be designed yet!
2237  */
2238 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2239 					struct ext4_free_extent *ex,
2240 					struct ext4_buddy *e4b)
2241 {
2242 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2243 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2244 
2245 	BUG_ON(ex->fe_len <= 0);
2246 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2247 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2248 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2249 
2250 	ac->ac_found++;
2251 	ac->ac_cX_found[ac->ac_criteria]++;
2252 
2253 	/*
2254 	 * The special case - take what you catch first
2255 	 */
2256 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2257 		*bex = *ex;
2258 		ext4_mb_use_best_found(ac, e4b);
2259 		return;
2260 	}
2261 
2262 	/*
2263 	 * Let's check whether the chuck is good enough
2264 	 */
2265 	if (ex->fe_len == gex->fe_len) {
2266 		*bex = *ex;
2267 		ext4_mb_use_best_found(ac, e4b);
2268 		return;
2269 	}
2270 
2271 	/*
2272 	 * If this is first found extent, just store it in the context
2273 	 */
2274 	if (bex->fe_len == 0) {
2275 		*bex = *ex;
2276 		return;
2277 	}
2278 
2279 	/*
2280 	 * If new found extent is better, store it in the context
2281 	 */
2282 	if (bex->fe_len < gex->fe_len) {
2283 		/* if the request isn't satisfied, any found extent
2284 		 * larger than previous best one is better */
2285 		if (ex->fe_len > bex->fe_len)
2286 			*bex = *ex;
2287 	} else if (ex->fe_len > gex->fe_len) {
2288 		/* if the request is satisfied, then we try to find
2289 		 * an extent that still satisfy the request, but is
2290 		 * smaller than previous one */
2291 		if (ex->fe_len < bex->fe_len)
2292 			*bex = *ex;
2293 	}
2294 
2295 	ext4_mb_check_limits(ac, e4b, 0);
2296 }
2297 
2298 static noinline_for_stack
2299 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2300 					struct ext4_buddy *e4b)
2301 {
2302 	struct ext4_free_extent ex = ac->ac_b_ex;
2303 	ext4_group_t group = ex.fe_group;
2304 	int max;
2305 	int err;
2306 
2307 	BUG_ON(ex.fe_len <= 0);
2308 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2309 	if (err)
2310 		return;
2311 
2312 	ext4_lock_group(ac->ac_sb, group);
2313 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2314 		goto out;
2315 
2316 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2317 
2318 	if (max > 0) {
2319 		ac->ac_b_ex = ex;
2320 		ext4_mb_use_best_found(ac, e4b);
2321 	}
2322 
2323 out:
2324 	ext4_unlock_group(ac->ac_sb, group);
2325 	ext4_mb_unload_buddy(e4b);
2326 }
2327 
2328 static noinline_for_stack
2329 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2330 				struct ext4_buddy *e4b)
2331 {
2332 	ext4_group_t group = ac->ac_g_ex.fe_group;
2333 	int max;
2334 	int err;
2335 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2336 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2337 	struct ext4_free_extent ex;
2338 
2339 	if (!grp)
2340 		return -EFSCORRUPTED;
2341 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2342 		return 0;
2343 	if (grp->bb_free == 0)
2344 		return 0;
2345 
2346 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2347 	if (err)
2348 		return err;
2349 
2350 	ext4_lock_group(ac->ac_sb, group);
2351 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2352 		goto out;
2353 
2354 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2355 			     ac->ac_g_ex.fe_len, &ex);
2356 	ex.fe_logical = 0xDEADFA11; /* debug value */
2357 
2358 	if (max >= ac->ac_g_ex.fe_len &&
2359 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2360 		ext4_fsblk_t start;
2361 
2362 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2363 		/* use do_div to get remainder (would be 64-bit modulo) */
2364 		if (do_div(start, sbi->s_stripe) == 0) {
2365 			ac->ac_found++;
2366 			ac->ac_b_ex = ex;
2367 			ext4_mb_use_best_found(ac, e4b);
2368 		}
2369 	} else if (max >= ac->ac_g_ex.fe_len) {
2370 		BUG_ON(ex.fe_len <= 0);
2371 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2372 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2373 		ac->ac_found++;
2374 		ac->ac_b_ex = ex;
2375 		ext4_mb_use_best_found(ac, e4b);
2376 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2377 		/* Sometimes, caller may want to merge even small
2378 		 * number of blocks to an existing extent */
2379 		BUG_ON(ex.fe_len <= 0);
2380 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2381 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2382 		ac->ac_found++;
2383 		ac->ac_b_ex = ex;
2384 		ext4_mb_use_best_found(ac, e4b);
2385 	}
2386 out:
2387 	ext4_unlock_group(ac->ac_sb, group);
2388 	ext4_mb_unload_buddy(e4b);
2389 
2390 	return 0;
2391 }
2392 
2393 /*
2394  * The routine scans buddy structures (not bitmap!) from given order
2395  * to max order and tries to find big enough chunk to satisfy the req
2396  */
2397 static noinline_for_stack
2398 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2399 					struct ext4_buddy *e4b)
2400 {
2401 	struct super_block *sb = ac->ac_sb;
2402 	struct ext4_group_info *grp = e4b->bd_info;
2403 	void *buddy;
2404 	int i;
2405 	int k;
2406 	int max;
2407 
2408 	BUG_ON(ac->ac_2order <= 0);
2409 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2410 		if (grp->bb_counters[i] == 0)
2411 			continue;
2412 
2413 		buddy = mb_find_buddy(e4b, i, &max);
2414 		if (WARN_RATELIMIT(buddy == NULL,
2415 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2416 			continue;
2417 
2418 		k = mb_find_next_zero_bit(buddy, max, 0);
2419 		if (k >= max) {
2420 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2421 					e4b->bd_group,
2422 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2423 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2424 				"%d free clusters of order %d. But found 0",
2425 				grp->bb_counters[i], i);
2426 			break;
2427 		}
2428 		ac->ac_found++;
2429 		ac->ac_cX_found[ac->ac_criteria]++;
2430 
2431 		ac->ac_b_ex.fe_len = 1 << i;
2432 		ac->ac_b_ex.fe_start = k << i;
2433 		ac->ac_b_ex.fe_group = e4b->bd_group;
2434 
2435 		ext4_mb_use_best_found(ac, e4b);
2436 
2437 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2438 
2439 		if (EXT4_SB(sb)->s_mb_stats)
2440 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2441 
2442 		break;
2443 	}
2444 }
2445 
2446 /*
2447  * The routine scans the group and measures all found extents.
2448  * In order to optimize scanning, caller must pass number of
2449  * free blocks in the group, so the routine can know upper limit.
2450  */
2451 static noinline_for_stack
2452 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2453 					struct ext4_buddy *e4b)
2454 {
2455 	struct super_block *sb = ac->ac_sb;
2456 	void *bitmap = e4b->bd_bitmap;
2457 	struct ext4_free_extent ex;
2458 	int i, j, freelen;
2459 	int free;
2460 
2461 	free = e4b->bd_info->bb_free;
2462 	if (WARN_ON(free <= 0))
2463 		return;
2464 
2465 	i = e4b->bd_info->bb_first_free;
2466 
2467 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2468 		i = mb_find_next_zero_bit(bitmap,
2469 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2470 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2471 			/*
2472 			 * IF we have corrupt bitmap, we won't find any
2473 			 * free blocks even though group info says we
2474 			 * have free blocks
2475 			 */
2476 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2477 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2478 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2479 					"%d free clusters as per "
2480 					"group info. But bitmap says 0",
2481 					free);
2482 			break;
2483 		}
2484 
2485 		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2486 			/*
2487 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2488 			 * sure that this group will have a large enough
2489 			 * continuous free extent, so skip over the smaller free
2490 			 * extents
2491 			 */
2492 			j = mb_find_next_bit(bitmap,
2493 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2494 			freelen = j - i;
2495 
2496 			if (freelen < ac->ac_g_ex.fe_len) {
2497 				i = j;
2498 				free -= freelen;
2499 				continue;
2500 			}
2501 		}
2502 
2503 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2504 		if (WARN_ON(ex.fe_len <= 0))
2505 			break;
2506 		if (free < ex.fe_len) {
2507 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2508 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2509 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2510 					"%d free clusters as per "
2511 					"group info. But got %d blocks",
2512 					free, ex.fe_len);
2513 			/*
2514 			 * The number of free blocks differs. This mostly
2515 			 * indicate that the bitmap is corrupt. So exit
2516 			 * without claiming the space.
2517 			 */
2518 			break;
2519 		}
2520 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2521 		ext4_mb_measure_extent(ac, &ex, e4b);
2522 
2523 		i += ex.fe_len;
2524 		free -= ex.fe_len;
2525 	}
2526 
2527 	ext4_mb_check_limits(ac, e4b, 1);
2528 }
2529 
2530 /*
2531  * This is a special case for storages like raid5
2532  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2533  */
2534 static noinline_for_stack
2535 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2536 				 struct ext4_buddy *e4b)
2537 {
2538 	struct super_block *sb = ac->ac_sb;
2539 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2540 	void *bitmap = e4b->bd_bitmap;
2541 	struct ext4_free_extent ex;
2542 	ext4_fsblk_t first_group_block;
2543 	ext4_fsblk_t a;
2544 	ext4_grpblk_t i, stripe;
2545 	int max;
2546 
2547 	BUG_ON(sbi->s_stripe == 0);
2548 
2549 	/* find first stripe-aligned block in group */
2550 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2551 
2552 	a = first_group_block + sbi->s_stripe - 1;
2553 	do_div(a, sbi->s_stripe);
2554 	i = (a * sbi->s_stripe) - first_group_block;
2555 
2556 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2557 	i = EXT4_B2C(sbi, i);
2558 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2559 		if (!mb_test_bit(i, bitmap)) {
2560 			max = mb_find_extent(e4b, i, stripe, &ex);
2561 			if (max >= stripe) {
2562 				ac->ac_found++;
2563 				ac->ac_cX_found[ac->ac_criteria]++;
2564 				ex.fe_logical = 0xDEADF00D; /* debug value */
2565 				ac->ac_b_ex = ex;
2566 				ext4_mb_use_best_found(ac, e4b);
2567 				break;
2568 			}
2569 		}
2570 		i += stripe;
2571 	}
2572 }
2573 
2574 /*
2575  * This is also called BEFORE we load the buddy bitmap.
2576  * Returns either 1 or 0 indicating that the group is either suitable
2577  * for the allocation or not.
2578  */
2579 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2580 				ext4_group_t group, enum criteria cr)
2581 {
2582 	ext4_grpblk_t free, fragments;
2583 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2584 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2585 
2586 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2587 
2588 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2589 		return false;
2590 
2591 	free = grp->bb_free;
2592 	if (free == 0)
2593 		return false;
2594 
2595 	fragments = grp->bb_fragments;
2596 	if (fragments == 0)
2597 		return false;
2598 
2599 	switch (cr) {
2600 	case CR_POWER2_ALIGNED:
2601 		BUG_ON(ac->ac_2order == 0);
2602 
2603 		/* Avoid using the first bg of a flexgroup for data files */
2604 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2605 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2606 		    ((group % flex_size) == 0))
2607 			return false;
2608 
2609 		if (free < ac->ac_g_ex.fe_len)
2610 			return false;
2611 
2612 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2613 			return true;
2614 
2615 		if (grp->bb_largest_free_order < ac->ac_2order)
2616 			return false;
2617 
2618 		return true;
2619 	case CR_GOAL_LEN_FAST:
2620 	case CR_BEST_AVAIL_LEN:
2621 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2622 			return true;
2623 		break;
2624 	case CR_GOAL_LEN_SLOW:
2625 		if (free >= ac->ac_g_ex.fe_len)
2626 			return true;
2627 		break;
2628 	case CR_ANY_FREE:
2629 		return true;
2630 	default:
2631 		BUG();
2632 	}
2633 
2634 	return false;
2635 }
2636 
2637 /*
2638  * This could return negative error code if something goes wrong
2639  * during ext4_mb_init_group(). This should not be called with
2640  * ext4_lock_group() held.
2641  *
2642  * Note: because we are conditionally operating with the group lock in
2643  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2644  * function using __acquire and __release.  This means we need to be
2645  * super careful before messing with the error path handling via "goto
2646  * out"!
2647  */
2648 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2649 				     ext4_group_t group, enum criteria cr)
2650 {
2651 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2652 	struct super_block *sb = ac->ac_sb;
2653 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2654 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2655 	ext4_grpblk_t free;
2656 	int ret = 0;
2657 
2658 	if (!grp)
2659 		return -EFSCORRUPTED;
2660 	if (sbi->s_mb_stats)
2661 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2662 	if (should_lock) {
2663 		ext4_lock_group(sb, group);
2664 		__release(ext4_group_lock_ptr(sb, group));
2665 	}
2666 	free = grp->bb_free;
2667 	if (free == 0)
2668 		goto out;
2669 	/*
2670 	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2671 	 * can't possibly satisfy the full goal request due to insufficient
2672 	 * free blocks.
2673 	 */
2674 	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2675 		goto out;
2676 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2677 		goto out;
2678 	if (should_lock) {
2679 		__acquire(ext4_group_lock_ptr(sb, group));
2680 		ext4_unlock_group(sb, group);
2681 	}
2682 
2683 	/* We only do this if the grp has never been initialized */
2684 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2685 		struct ext4_group_desc *gdp =
2686 			ext4_get_group_desc(sb, group, NULL);
2687 		int ret;
2688 
2689 		/*
2690 		 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2691 		 * search to find large good chunks almost for free. If buddy
2692 		 * data is not ready, then this optimization makes no sense. But
2693 		 * we never skip the first block group in a flex_bg, since this
2694 		 * gets used for metadata block allocation, and we want to make
2695 		 * sure we locate metadata blocks in the first block group in
2696 		 * the flex_bg if possible.
2697 		 */
2698 		if (!ext4_mb_cr_expensive(cr) &&
2699 		    (!sbi->s_log_groups_per_flex ||
2700 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2701 		    !(ext4_has_group_desc_csum(sb) &&
2702 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2703 			return 0;
2704 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2705 		if (ret)
2706 			return ret;
2707 	}
2708 
2709 	if (should_lock) {
2710 		ext4_lock_group(sb, group);
2711 		__release(ext4_group_lock_ptr(sb, group));
2712 	}
2713 	ret = ext4_mb_good_group(ac, group, cr);
2714 out:
2715 	if (should_lock) {
2716 		__acquire(ext4_group_lock_ptr(sb, group));
2717 		ext4_unlock_group(sb, group);
2718 	}
2719 	return ret;
2720 }
2721 
2722 /*
2723  * Start prefetching @nr block bitmaps starting at @group.
2724  * Return the next group which needs to be prefetched.
2725  */
2726 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2727 			      unsigned int nr, int *cnt)
2728 {
2729 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2730 	struct buffer_head *bh;
2731 	struct blk_plug plug;
2732 
2733 	blk_start_plug(&plug);
2734 	while (nr-- > 0) {
2735 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2736 								  NULL);
2737 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2738 
2739 		/*
2740 		 * Prefetch block groups with free blocks; but don't
2741 		 * bother if it is marked uninitialized on disk, since
2742 		 * it won't require I/O to read.  Also only try to
2743 		 * prefetch once, so we avoid getblk() call, which can
2744 		 * be expensive.
2745 		 */
2746 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2747 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2748 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2749 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2750 			if (bh && !IS_ERR(bh)) {
2751 				if (!buffer_uptodate(bh) && cnt)
2752 					(*cnt)++;
2753 				brelse(bh);
2754 			}
2755 		}
2756 		if (++group >= ngroups)
2757 			group = 0;
2758 	}
2759 	blk_finish_plug(&plug);
2760 	return group;
2761 }
2762 
2763 /*
2764  * Prefetching reads the block bitmap into the buffer cache; but we
2765  * need to make sure that the buddy bitmap in the page cache has been
2766  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2767  * is not yet completed, or indeed if it was not initiated by
2768  * ext4_mb_prefetch did not start the I/O.
2769  *
2770  * TODO: We should actually kick off the buddy bitmap setup in a work
2771  * queue when the buffer I/O is completed, so that we don't block
2772  * waiting for the block allocation bitmap read to finish when
2773  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2774  */
2775 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2776 			   unsigned int nr)
2777 {
2778 	struct ext4_group_desc *gdp;
2779 	struct ext4_group_info *grp;
2780 
2781 	while (nr-- > 0) {
2782 		if (!group)
2783 			group = ext4_get_groups_count(sb);
2784 		group--;
2785 		gdp = ext4_get_group_desc(sb, group, NULL);
2786 		grp = ext4_get_group_info(sb, group);
2787 
2788 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2789 		    ext4_free_group_clusters(sb, gdp) > 0) {
2790 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2791 				break;
2792 		}
2793 	}
2794 }
2795 
2796 static noinline_for_stack int
2797 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2798 {
2799 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2800 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2801 	int err = 0, first_err = 0;
2802 	unsigned int nr = 0, prefetch_ios = 0;
2803 	struct ext4_sb_info *sbi;
2804 	struct super_block *sb;
2805 	struct ext4_buddy e4b;
2806 	int lost;
2807 
2808 	sb = ac->ac_sb;
2809 	sbi = EXT4_SB(sb);
2810 	ngroups = ext4_get_groups_count(sb);
2811 	/* non-extent files are limited to low blocks/groups */
2812 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2813 		ngroups = sbi->s_blockfile_groups;
2814 
2815 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2816 
2817 	/* first, try the goal */
2818 	err = ext4_mb_find_by_goal(ac, &e4b);
2819 	if (err || ac->ac_status == AC_STATUS_FOUND)
2820 		goto out;
2821 
2822 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2823 		goto out;
2824 
2825 	/*
2826 	 * ac->ac_2order is set only if the fe_len is a power of 2
2827 	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2828 	 * so that we try exact allocation using buddy.
2829 	 */
2830 	i = fls(ac->ac_g_ex.fe_len);
2831 	ac->ac_2order = 0;
2832 	/*
2833 	 * We search using buddy data only if the order of the request
2834 	 * is greater than equal to the sbi_s_mb_order2_reqs
2835 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2836 	 * We also support searching for power-of-two requests only for
2837 	 * requests upto maximum buddy size we have constructed.
2838 	 */
2839 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2840 		if (is_power_of_2(ac->ac_g_ex.fe_len))
2841 			ac->ac_2order = array_index_nospec(i - 1,
2842 							   MB_NUM_ORDERS(sb));
2843 	}
2844 
2845 	/* if stream allocation is enabled, use global goal */
2846 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2847 		/* TBD: may be hot point */
2848 		spin_lock(&sbi->s_md_lock);
2849 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2850 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2851 		spin_unlock(&sbi->s_md_lock);
2852 	}
2853 
2854 	/*
2855 	 * Let's just scan groups to find more-less suitable blocks We
2856 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2857 	 * aligned, in which case let's do that faster approach first.
2858 	 */
2859 	if (ac->ac_2order)
2860 		cr = CR_POWER2_ALIGNED;
2861 repeat:
2862 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2863 		ac->ac_criteria = cr;
2864 		/*
2865 		 * searching for the right group start
2866 		 * from the goal value specified
2867 		 */
2868 		group = ac->ac_g_ex.fe_group;
2869 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2870 		prefetch_grp = group;
2871 		nr = 0;
2872 
2873 		for (i = 0, new_cr = cr; i < ngroups; i++,
2874 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2875 			int ret = 0;
2876 
2877 			cond_resched();
2878 			if (new_cr != cr) {
2879 				cr = new_cr;
2880 				goto repeat;
2881 			}
2882 
2883 			/*
2884 			 * Batch reads of the block allocation bitmaps
2885 			 * to get multiple READs in flight; limit
2886 			 * prefetching at inexpensive CR, otherwise mballoc
2887 			 * can spend a lot of time loading imperfect groups
2888 			 */
2889 			if ((prefetch_grp == group) &&
2890 			    (ext4_mb_cr_expensive(cr) ||
2891 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2892 				nr = sbi->s_mb_prefetch;
2893 				if (ext4_has_feature_flex_bg(sb)) {
2894 					nr = 1 << sbi->s_log_groups_per_flex;
2895 					nr -= group & (nr - 1);
2896 					nr = min(nr, sbi->s_mb_prefetch);
2897 				}
2898 				prefetch_grp = ext4_mb_prefetch(sb, group,
2899 							nr, &prefetch_ios);
2900 			}
2901 
2902 			/* This now checks without needing the buddy page */
2903 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2904 			if (ret <= 0) {
2905 				if (!first_err)
2906 					first_err = ret;
2907 				continue;
2908 			}
2909 
2910 			err = ext4_mb_load_buddy(sb, group, &e4b);
2911 			if (err)
2912 				goto out;
2913 
2914 			ext4_lock_group(sb, group);
2915 
2916 			/*
2917 			 * We need to check again after locking the
2918 			 * block group
2919 			 */
2920 			ret = ext4_mb_good_group(ac, group, cr);
2921 			if (ret == 0) {
2922 				ext4_unlock_group(sb, group);
2923 				ext4_mb_unload_buddy(&e4b);
2924 				continue;
2925 			}
2926 
2927 			ac->ac_groups_scanned++;
2928 			if (cr == CR_POWER2_ALIGNED)
2929 				ext4_mb_simple_scan_group(ac, &e4b);
2930 			else {
2931 				bool is_stripe_aligned = sbi->s_stripe &&
2932 					!(ac->ac_g_ex.fe_len %
2933 					  EXT4_B2C(sbi, sbi->s_stripe));
2934 
2935 				if ((cr == CR_GOAL_LEN_FAST ||
2936 				     cr == CR_BEST_AVAIL_LEN) &&
2937 				    is_stripe_aligned)
2938 					ext4_mb_scan_aligned(ac, &e4b);
2939 
2940 				if (ac->ac_status == AC_STATUS_CONTINUE)
2941 					ext4_mb_complex_scan_group(ac, &e4b);
2942 			}
2943 
2944 			ext4_unlock_group(sb, group);
2945 			ext4_mb_unload_buddy(&e4b);
2946 
2947 			if (ac->ac_status != AC_STATUS_CONTINUE)
2948 				break;
2949 		}
2950 		/* Processed all groups and haven't found blocks */
2951 		if (sbi->s_mb_stats && i == ngroups)
2952 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2953 
2954 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2955 			/* Reset goal length to original goal length before
2956 			 * falling into CR_GOAL_LEN_SLOW */
2957 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2958 	}
2959 
2960 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2961 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2962 		/*
2963 		 * We've been searching too long. Let's try to allocate
2964 		 * the best chunk we've found so far
2965 		 */
2966 		ext4_mb_try_best_found(ac, &e4b);
2967 		if (ac->ac_status != AC_STATUS_FOUND) {
2968 			/*
2969 			 * Someone more lucky has already allocated it.
2970 			 * The only thing we can do is just take first
2971 			 * found block(s)
2972 			 */
2973 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2974 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2975 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2976 				 ac->ac_b_ex.fe_len, lost);
2977 
2978 			ac->ac_b_ex.fe_group = 0;
2979 			ac->ac_b_ex.fe_start = 0;
2980 			ac->ac_b_ex.fe_len = 0;
2981 			ac->ac_status = AC_STATUS_CONTINUE;
2982 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2983 			cr = CR_ANY_FREE;
2984 			goto repeat;
2985 		}
2986 	}
2987 
2988 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2989 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2990 out:
2991 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2992 		err = first_err;
2993 
2994 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2995 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2996 		 ac->ac_flags, cr, err);
2997 
2998 	if (nr)
2999 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
3000 
3001 	return err;
3002 }
3003 
3004 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3005 {
3006 	struct super_block *sb = pde_data(file_inode(seq->file));
3007 	ext4_group_t group;
3008 
3009 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3010 		return NULL;
3011 	group = *pos + 1;
3012 	return (void *) ((unsigned long) group);
3013 }
3014 
3015 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3016 {
3017 	struct super_block *sb = pde_data(file_inode(seq->file));
3018 	ext4_group_t group;
3019 
3020 	++*pos;
3021 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3022 		return NULL;
3023 	group = *pos + 1;
3024 	return (void *) ((unsigned long) group);
3025 }
3026 
3027 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3028 {
3029 	struct super_block *sb = pde_data(file_inode(seq->file));
3030 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3031 	int i, err;
3032 	char nbuf[16];
3033 	struct ext4_buddy e4b;
3034 	struct ext4_group_info *grinfo;
3035 	unsigned char blocksize_bits = min_t(unsigned char,
3036 					     sb->s_blocksize_bits,
3037 					     EXT4_MAX_BLOCK_LOG_SIZE);
3038 	struct sg {
3039 		struct ext4_group_info info;
3040 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3041 	} sg;
3042 
3043 	group--;
3044 	if (group == 0)
3045 		seq_puts(seq, "#group: free  frags first ["
3046 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3047 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3048 
3049 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3050 		sizeof(struct ext4_group_info);
3051 
3052 	grinfo = ext4_get_group_info(sb, group);
3053 	if (!grinfo)
3054 		return 0;
3055 	/* Load the group info in memory only if not already loaded. */
3056 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3057 		err = ext4_mb_load_buddy(sb, group, &e4b);
3058 		if (err) {
3059 			seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3060 			return 0;
3061 		}
3062 		ext4_mb_unload_buddy(&e4b);
3063 	}
3064 
3065 	/*
3066 	 * We care only about free space counters in the group info and
3067 	 * these are safe to access even after the buddy has been unloaded
3068 	 */
3069 	memcpy(&sg, grinfo, i);
3070 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3071 			sg.info.bb_fragments, sg.info.bb_first_free);
3072 	for (i = 0; i <= 13; i++)
3073 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3074 				sg.info.bb_counters[i] : 0);
3075 	seq_puts(seq, " ]");
3076 	if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3077 		seq_puts(seq, " Block bitmap corrupted!");
3078 	seq_puts(seq, "\n");
3079 
3080 	return 0;
3081 }
3082 
3083 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3084 {
3085 }
3086 
3087 const struct seq_operations ext4_mb_seq_groups_ops = {
3088 	.start  = ext4_mb_seq_groups_start,
3089 	.next   = ext4_mb_seq_groups_next,
3090 	.stop   = ext4_mb_seq_groups_stop,
3091 	.show   = ext4_mb_seq_groups_show,
3092 };
3093 
3094 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3095 {
3096 	struct super_block *sb = seq->private;
3097 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3098 
3099 	seq_puts(seq, "mballoc:\n");
3100 	if (!sbi->s_mb_stats) {
3101 		seq_puts(seq, "\tmb stats collection turned off.\n");
3102 		seq_puts(
3103 			seq,
3104 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3105 		return 0;
3106 	}
3107 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3108 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3109 
3110 	seq_printf(seq, "\tgroups_scanned: %u\n",
3111 		   atomic_read(&sbi->s_bal_groups_scanned));
3112 
3113 	/* CR_POWER2_ALIGNED stats */
3114 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3115 	seq_printf(seq, "\t\thits: %llu\n",
3116 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3117 	seq_printf(
3118 		seq, "\t\tgroups_considered: %llu\n",
3119 		atomic64_read(
3120 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3121 	seq_printf(seq, "\t\textents_scanned: %u\n",
3122 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3123 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3124 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3125 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3126 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3127 
3128 	/* CR_GOAL_LEN_FAST stats */
3129 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3130 	seq_printf(seq, "\t\thits: %llu\n",
3131 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3132 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3133 		   atomic64_read(
3134 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3135 	seq_printf(seq, "\t\textents_scanned: %u\n",
3136 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3137 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3138 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3139 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3140 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3141 
3142 	/* CR_BEST_AVAIL_LEN stats */
3143 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3144 	seq_printf(seq, "\t\thits: %llu\n",
3145 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3146 	seq_printf(
3147 		seq, "\t\tgroups_considered: %llu\n",
3148 		atomic64_read(
3149 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3150 	seq_printf(seq, "\t\textents_scanned: %u\n",
3151 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3152 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3153 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3154 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3155 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3156 
3157 	/* CR_GOAL_LEN_SLOW stats */
3158 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3159 	seq_printf(seq, "\t\thits: %llu\n",
3160 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3161 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3162 		   atomic64_read(
3163 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3164 	seq_printf(seq, "\t\textents_scanned: %u\n",
3165 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3166 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3167 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3168 
3169 	/* CR_ANY_FREE stats */
3170 	seq_puts(seq, "\tcr_any_free_stats:\n");
3171 	seq_printf(seq, "\t\thits: %llu\n",
3172 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3173 	seq_printf(
3174 		seq, "\t\tgroups_considered: %llu\n",
3175 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3176 	seq_printf(seq, "\t\textents_scanned: %u\n",
3177 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3178 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3179 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3180 
3181 	/* Aggregates */
3182 	seq_printf(seq, "\textents_scanned: %u\n",
3183 		   atomic_read(&sbi->s_bal_ex_scanned));
3184 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3185 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3186 		   atomic_read(&sbi->s_bal_len_goals));
3187 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3188 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3189 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3190 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3191 		   atomic_read(&sbi->s_mb_buddies_generated),
3192 		   ext4_get_groups_count(sb));
3193 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3194 		   atomic64_read(&sbi->s_mb_generation_time));
3195 	seq_printf(seq, "\tpreallocated: %u\n",
3196 		   atomic_read(&sbi->s_mb_preallocated));
3197 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3198 	return 0;
3199 }
3200 
3201 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3202 {
3203 	struct super_block *sb = pde_data(file_inode(seq->file));
3204 	unsigned long position;
3205 
3206 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3207 		return NULL;
3208 	position = *pos + 1;
3209 	return (void *) ((unsigned long) position);
3210 }
3211 
3212 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3213 {
3214 	struct super_block *sb = pde_data(file_inode(seq->file));
3215 	unsigned long position;
3216 
3217 	++*pos;
3218 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3219 		return NULL;
3220 	position = *pos + 1;
3221 	return (void *) ((unsigned long) position);
3222 }
3223 
3224 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3225 {
3226 	struct super_block *sb = pde_data(file_inode(seq->file));
3227 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3228 	unsigned long position = ((unsigned long) v);
3229 	struct ext4_group_info *grp;
3230 	unsigned int count;
3231 
3232 	position--;
3233 	if (position >= MB_NUM_ORDERS(sb)) {
3234 		position -= MB_NUM_ORDERS(sb);
3235 		if (position == 0)
3236 			seq_puts(seq, "avg_fragment_size_lists:\n");
3237 
3238 		count = 0;
3239 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3240 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3241 				    bb_avg_fragment_size_node)
3242 			count++;
3243 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3244 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3245 					(unsigned int)position, count);
3246 		return 0;
3247 	}
3248 
3249 	if (position == 0) {
3250 		seq_printf(seq, "optimize_scan: %d\n",
3251 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3252 		seq_puts(seq, "max_free_order_lists:\n");
3253 	}
3254 	count = 0;
3255 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3256 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3257 			    bb_largest_free_order_node)
3258 		count++;
3259 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3260 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3261 		   (unsigned int)position, count);
3262 
3263 	return 0;
3264 }
3265 
3266 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3267 {
3268 }
3269 
3270 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3271 	.start  = ext4_mb_seq_structs_summary_start,
3272 	.next   = ext4_mb_seq_structs_summary_next,
3273 	.stop   = ext4_mb_seq_structs_summary_stop,
3274 	.show   = ext4_mb_seq_structs_summary_show,
3275 };
3276 
3277 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3278 {
3279 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3280 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3281 
3282 	BUG_ON(!cachep);
3283 	return cachep;
3284 }
3285 
3286 /*
3287  * Allocate the top-level s_group_info array for the specified number
3288  * of groups
3289  */
3290 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3291 {
3292 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3293 	unsigned size;
3294 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3295 
3296 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3297 		EXT4_DESC_PER_BLOCK_BITS(sb);
3298 	if (size <= sbi->s_group_info_size)
3299 		return 0;
3300 
3301 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3302 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3303 	if (!new_groupinfo) {
3304 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3305 		return -ENOMEM;
3306 	}
3307 	rcu_read_lock();
3308 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3309 	if (old_groupinfo)
3310 		memcpy(new_groupinfo, old_groupinfo,
3311 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3312 	rcu_read_unlock();
3313 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3314 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3315 	if (old_groupinfo)
3316 		ext4_kvfree_array_rcu(old_groupinfo);
3317 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3318 		   sbi->s_group_info_size);
3319 	return 0;
3320 }
3321 
3322 /* Create and initialize ext4_group_info data for the given group. */
3323 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3324 			  struct ext4_group_desc *desc)
3325 {
3326 	int i;
3327 	int metalen = 0;
3328 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3329 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3330 	struct ext4_group_info **meta_group_info;
3331 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3332 
3333 	/*
3334 	 * First check if this group is the first of a reserved block.
3335 	 * If it's true, we have to allocate a new table of pointers
3336 	 * to ext4_group_info structures
3337 	 */
3338 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3339 		metalen = sizeof(*meta_group_info) <<
3340 			EXT4_DESC_PER_BLOCK_BITS(sb);
3341 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3342 		if (meta_group_info == NULL) {
3343 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3344 				 "for a buddy group");
3345 			return -ENOMEM;
3346 		}
3347 		rcu_read_lock();
3348 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3349 		rcu_read_unlock();
3350 	}
3351 
3352 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3353 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3354 
3355 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3356 	if (meta_group_info[i] == NULL) {
3357 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3358 		goto exit_group_info;
3359 	}
3360 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3361 		&(meta_group_info[i]->bb_state));
3362 
3363 	/*
3364 	 * initialize bb_free to be able to skip
3365 	 * empty groups without initialization
3366 	 */
3367 	if (ext4_has_group_desc_csum(sb) &&
3368 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3369 		meta_group_info[i]->bb_free =
3370 			ext4_free_clusters_after_init(sb, group, desc);
3371 	} else {
3372 		meta_group_info[i]->bb_free =
3373 			ext4_free_group_clusters(sb, desc);
3374 	}
3375 
3376 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3377 	init_rwsem(&meta_group_info[i]->alloc_sem);
3378 	meta_group_info[i]->bb_free_root = RB_ROOT;
3379 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3380 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3381 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3382 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3383 	meta_group_info[i]->bb_group = group;
3384 
3385 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3386 	return 0;
3387 
3388 exit_group_info:
3389 	/* If a meta_group_info table has been allocated, release it now */
3390 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3391 		struct ext4_group_info ***group_info;
3392 
3393 		rcu_read_lock();
3394 		group_info = rcu_dereference(sbi->s_group_info);
3395 		kfree(group_info[idx]);
3396 		group_info[idx] = NULL;
3397 		rcu_read_unlock();
3398 	}
3399 	return -ENOMEM;
3400 } /* ext4_mb_add_groupinfo */
3401 
3402 static int ext4_mb_init_backend(struct super_block *sb)
3403 {
3404 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3405 	ext4_group_t i;
3406 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3407 	int err;
3408 	struct ext4_group_desc *desc;
3409 	struct ext4_group_info ***group_info;
3410 	struct kmem_cache *cachep;
3411 
3412 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3413 	if (err)
3414 		return err;
3415 
3416 	sbi->s_buddy_cache = new_inode(sb);
3417 	if (sbi->s_buddy_cache == NULL) {
3418 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3419 		goto err_freesgi;
3420 	}
3421 	/* To avoid potentially colliding with an valid on-disk inode number,
3422 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3423 	 * not in the inode hash, so it should never be found by iget(), but
3424 	 * this will avoid confusion if it ever shows up during debugging. */
3425 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3426 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3427 	for (i = 0; i < ngroups; i++) {
3428 		cond_resched();
3429 		desc = ext4_get_group_desc(sb, i, NULL);
3430 		if (desc == NULL) {
3431 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3432 			goto err_freebuddy;
3433 		}
3434 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3435 			goto err_freebuddy;
3436 	}
3437 
3438 	if (ext4_has_feature_flex_bg(sb)) {
3439 		/* a single flex group is supposed to be read by a single IO.
3440 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3441 		 * unsigned integer, so the maximum shift is 32.
3442 		 */
3443 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3444 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3445 			goto err_freebuddy;
3446 		}
3447 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3448 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3449 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3450 	} else {
3451 		sbi->s_mb_prefetch = 32;
3452 	}
3453 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3454 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3455 	/*
3456 	 * now many real IOs to prefetch within a single allocation at
3457 	 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3458 	 * optimization we shouldn't try to load too many groups, at some point
3459 	 * we should start to use what we've got in memory.
3460 	 * with an average random access time 5ms, it'd take a second to get
3461 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3462 	 */
3463 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3464 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3465 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3466 
3467 	return 0;
3468 
3469 err_freebuddy:
3470 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3471 	while (i-- > 0) {
3472 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3473 
3474 		if (grp)
3475 			kmem_cache_free(cachep, grp);
3476 	}
3477 	i = sbi->s_group_info_size;
3478 	rcu_read_lock();
3479 	group_info = rcu_dereference(sbi->s_group_info);
3480 	while (i-- > 0)
3481 		kfree(group_info[i]);
3482 	rcu_read_unlock();
3483 	iput(sbi->s_buddy_cache);
3484 err_freesgi:
3485 	rcu_read_lock();
3486 	kvfree(rcu_dereference(sbi->s_group_info));
3487 	rcu_read_unlock();
3488 	return -ENOMEM;
3489 }
3490 
3491 static void ext4_groupinfo_destroy_slabs(void)
3492 {
3493 	int i;
3494 
3495 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3496 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3497 		ext4_groupinfo_caches[i] = NULL;
3498 	}
3499 }
3500 
3501 static int ext4_groupinfo_create_slab(size_t size)
3502 {
3503 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3504 	int slab_size;
3505 	int blocksize_bits = order_base_2(size);
3506 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3507 	struct kmem_cache *cachep;
3508 
3509 	if (cache_index >= NR_GRPINFO_CACHES)
3510 		return -EINVAL;
3511 
3512 	if (unlikely(cache_index < 0))
3513 		cache_index = 0;
3514 
3515 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3516 	if (ext4_groupinfo_caches[cache_index]) {
3517 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3518 		return 0;	/* Already created */
3519 	}
3520 
3521 	slab_size = offsetof(struct ext4_group_info,
3522 				bb_counters[blocksize_bits + 2]);
3523 
3524 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3525 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3526 					NULL);
3527 
3528 	ext4_groupinfo_caches[cache_index] = cachep;
3529 
3530 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3531 	if (!cachep) {
3532 		printk(KERN_EMERG
3533 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3534 		return -ENOMEM;
3535 	}
3536 
3537 	return 0;
3538 }
3539 
3540 static void ext4_discard_work(struct work_struct *work)
3541 {
3542 	struct ext4_sb_info *sbi = container_of(work,
3543 			struct ext4_sb_info, s_discard_work);
3544 	struct super_block *sb = sbi->s_sb;
3545 	struct ext4_free_data *fd, *nfd;
3546 	struct ext4_buddy e4b;
3547 	LIST_HEAD(discard_list);
3548 	ext4_group_t grp, load_grp;
3549 	int err = 0;
3550 
3551 	spin_lock(&sbi->s_md_lock);
3552 	list_splice_init(&sbi->s_discard_list, &discard_list);
3553 	spin_unlock(&sbi->s_md_lock);
3554 
3555 	load_grp = UINT_MAX;
3556 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3557 		/*
3558 		 * If filesystem is umounting or no memory or suffering
3559 		 * from no space, give up the discard
3560 		 */
3561 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3562 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3563 			grp = fd->efd_group;
3564 			if (grp != load_grp) {
3565 				if (load_grp != UINT_MAX)
3566 					ext4_mb_unload_buddy(&e4b);
3567 
3568 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3569 				if (err) {
3570 					kmem_cache_free(ext4_free_data_cachep, fd);
3571 					load_grp = UINT_MAX;
3572 					continue;
3573 				} else {
3574 					load_grp = grp;
3575 				}
3576 			}
3577 
3578 			ext4_lock_group(sb, grp);
3579 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3580 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3581 			ext4_unlock_group(sb, grp);
3582 		}
3583 		kmem_cache_free(ext4_free_data_cachep, fd);
3584 	}
3585 
3586 	if (load_grp != UINT_MAX)
3587 		ext4_mb_unload_buddy(&e4b);
3588 }
3589 
3590 int ext4_mb_init(struct super_block *sb)
3591 {
3592 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3593 	unsigned i, j;
3594 	unsigned offset, offset_incr;
3595 	unsigned max;
3596 	int ret;
3597 
3598 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3599 
3600 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3601 	if (sbi->s_mb_offsets == NULL) {
3602 		ret = -ENOMEM;
3603 		goto out;
3604 	}
3605 
3606 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3607 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3608 	if (sbi->s_mb_maxs == NULL) {
3609 		ret = -ENOMEM;
3610 		goto out;
3611 	}
3612 
3613 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3614 	if (ret < 0)
3615 		goto out;
3616 
3617 	/* order 0 is regular bitmap */
3618 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3619 	sbi->s_mb_offsets[0] = 0;
3620 
3621 	i = 1;
3622 	offset = 0;
3623 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3624 	max = sb->s_blocksize << 2;
3625 	do {
3626 		sbi->s_mb_offsets[i] = offset;
3627 		sbi->s_mb_maxs[i] = max;
3628 		offset += offset_incr;
3629 		offset_incr = offset_incr >> 1;
3630 		max = max >> 1;
3631 		i++;
3632 	} while (i < MB_NUM_ORDERS(sb));
3633 
3634 	sbi->s_mb_avg_fragment_size =
3635 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3636 			GFP_KERNEL);
3637 	if (!sbi->s_mb_avg_fragment_size) {
3638 		ret = -ENOMEM;
3639 		goto out;
3640 	}
3641 	sbi->s_mb_avg_fragment_size_locks =
3642 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3643 			GFP_KERNEL);
3644 	if (!sbi->s_mb_avg_fragment_size_locks) {
3645 		ret = -ENOMEM;
3646 		goto out;
3647 	}
3648 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3649 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3650 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3651 	}
3652 	sbi->s_mb_largest_free_orders =
3653 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3654 			GFP_KERNEL);
3655 	if (!sbi->s_mb_largest_free_orders) {
3656 		ret = -ENOMEM;
3657 		goto out;
3658 	}
3659 	sbi->s_mb_largest_free_orders_locks =
3660 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3661 			GFP_KERNEL);
3662 	if (!sbi->s_mb_largest_free_orders_locks) {
3663 		ret = -ENOMEM;
3664 		goto out;
3665 	}
3666 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3667 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3668 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3669 	}
3670 
3671 	spin_lock_init(&sbi->s_md_lock);
3672 	sbi->s_mb_free_pending = 0;
3673 	INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3674 	INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3675 	INIT_LIST_HEAD(&sbi->s_discard_list);
3676 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3677 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3678 
3679 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3680 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3681 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3682 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3683 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3684 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3685 
3686 	/*
3687 	 * The default group preallocation is 512, which for 4k block
3688 	 * sizes translates to 2 megabytes.  However for bigalloc file
3689 	 * systems, this is probably too big (i.e, if the cluster size
3690 	 * is 1 megabyte, then group preallocation size becomes half a
3691 	 * gigabyte!).  As a default, we will keep a two megabyte
3692 	 * group pralloc size for cluster sizes up to 64k, and after
3693 	 * that, we will force a minimum group preallocation size of
3694 	 * 32 clusters.  This translates to 8 megs when the cluster
3695 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3696 	 * which seems reasonable as a default.
3697 	 */
3698 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3699 				       sbi->s_cluster_bits, 32);
3700 	/*
3701 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3702 	 * to the lowest multiple of s_stripe which is bigger than
3703 	 * the s_mb_group_prealloc as determined above. We want
3704 	 * the preallocation size to be an exact multiple of the
3705 	 * RAID stripe size so that preallocations don't fragment
3706 	 * the stripes.
3707 	 */
3708 	if (sbi->s_stripe > 1) {
3709 		sbi->s_mb_group_prealloc = roundup(
3710 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3711 	}
3712 
3713 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3714 	if (sbi->s_locality_groups == NULL) {
3715 		ret = -ENOMEM;
3716 		goto out;
3717 	}
3718 	for_each_possible_cpu(i) {
3719 		struct ext4_locality_group *lg;
3720 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3721 		mutex_init(&lg->lg_mutex);
3722 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3723 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3724 		spin_lock_init(&lg->lg_prealloc_lock);
3725 	}
3726 
3727 	if (bdev_nonrot(sb->s_bdev))
3728 		sbi->s_mb_max_linear_groups = 0;
3729 	else
3730 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3731 	/* init file for buddy data */
3732 	ret = ext4_mb_init_backend(sb);
3733 	if (ret != 0)
3734 		goto out_free_locality_groups;
3735 
3736 	return 0;
3737 
3738 out_free_locality_groups:
3739 	free_percpu(sbi->s_locality_groups);
3740 	sbi->s_locality_groups = NULL;
3741 out:
3742 	kfree(sbi->s_mb_avg_fragment_size);
3743 	kfree(sbi->s_mb_avg_fragment_size_locks);
3744 	kfree(sbi->s_mb_largest_free_orders);
3745 	kfree(sbi->s_mb_largest_free_orders_locks);
3746 	kfree(sbi->s_mb_offsets);
3747 	sbi->s_mb_offsets = NULL;
3748 	kfree(sbi->s_mb_maxs);
3749 	sbi->s_mb_maxs = NULL;
3750 	return ret;
3751 }
3752 
3753 /* need to called with the ext4 group lock held */
3754 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3755 {
3756 	struct ext4_prealloc_space *pa;
3757 	struct list_head *cur, *tmp;
3758 	int count = 0;
3759 
3760 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3761 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3762 		list_del(&pa->pa_group_list);
3763 		count++;
3764 		kmem_cache_free(ext4_pspace_cachep, pa);
3765 	}
3766 	return count;
3767 }
3768 
3769 void ext4_mb_release(struct super_block *sb)
3770 {
3771 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3772 	ext4_group_t i;
3773 	int num_meta_group_infos;
3774 	struct ext4_group_info *grinfo, ***group_info;
3775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3776 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3777 	int count;
3778 
3779 	if (test_opt(sb, DISCARD)) {
3780 		/*
3781 		 * wait the discard work to drain all of ext4_free_data
3782 		 */
3783 		flush_work(&sbi->s_discard_work);
3784 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3785 	}
3786 
3787 	if (sbi->s_group_info) {
3788 		for (i = 0; i < ngroups; i++) {
3789 			cond_resched();
3790 			grinfo = ext4_get_group_info(sb, i);
3791 			if (!grinfo)
3792 				continue;
3793 			mb_group_bb_bitmap_free(grinfo);
3794 			ext4_lock_group(sb, i);
3795 			count = ext4_mb_cleanup_pa(grinfo);
3796 			if (count)
3797 				mb_debug(sb, "mballoc: %d PAs left\n",
3798 					 count);
3799 			ext4_unlock_group(sb, i);
3800 			kmem_cache_free(cachep, grinfo);
3801 		}
3802 		num_meta_group_infos = (ngroups +
3803 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3804 			EXT4_DESC_PER_BLOCK_BITS(sb);
3805 		rcu_read_lock();
3806 		group_info = rcu_dereference(sbi->s_group_info);
3807 		for (i = 0; i < num_meta_group_infos; i++)
3808 			kfree(group_info[i]);
3809 		kvfree(group_info);
3810 		rcu_read_unlock();
3811 	}
3812 	kfree(sbi->s_mb_avg_fragment_size);
3813 	kfree(sbi->s_mb_avg_fragment_size_locks);
3814 	kfree(sbi->s_mb_largest_free_orders);
3815 	kfree(sbi->s_mb_largest_free_orders_locks);
3816 	kfree(sbi->s_mb_offsets);
3817 	kfree(sbi->s_mb_maxs);
3818 	iput(sbi->s_buddy_cache);
3819 	if (sbi->s_mb_stats) {
3820 		ext4_msg(sb, KERN_INFO,
3821 		       "mballoc: %u blocks %u reqs (%u success)",
3822 				atomic_read(&sbi->s_bal_allocated),
3823 				atomic_read(&sbi->s_bal_reqs),
3824 				atomic_read(&sbi->s_bal_success));
3825 		ext4_msg(sb, KERN_INFO,
3826 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3827 				"%u 2^N hits, %u breaks, %u lost",
3828 				atomic_read(&sbi->s_bal_ex_scanned),
3829 				atomic_read(&sbi->s_bal_groups_scanned),
3830 				atomic_read(&sbi->s_bal_goals),
3831 				atomic_read(&sbi->s_bal_2orders),
3832 				atomic_read(&sbi->s_bal_breaks),
3833 				atomic_read(&sbi->s_mb_lost_chunks));
3834 		ext4_msg(sb, KERN_INFO,
3835 		       "mballoc: %u generated and it took %llu",
3836 				atomic_read(&sbi->s_mb_buddies_generated),
3837 				atomic64_read(&sbi->s_mb_generation_time));
3838 		ext4_msg(sb, KERN_INFO,
3839 		       "mballoc: %u preallocated, %u discarded",
3840 				atomic_read(&sbi->s_mb_preallocated),
3841 				atomic_read(&sbi->s_mb_discarded));
3842 	}
3843 
3844 	free_percpu(sbi->s_locality_groups);
3845 }
3846 
3847 static inline int ext4_issue_discard(struct super_block *sb,
3848 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3849 {
3850 	ext4_fsblk_t discard_block;
3851 
3852 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3853 			 ext4_group_first_block_no(sb, block_group));
3854 	count = EXT4_C2B(EXT4_SB(sb), count);
3855 	trace_ext4_discard_blocks(sb,
3856 			(unsigned long long) discard_block, count);
3857 
3858 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3859 }
3860 
3861 static void ext4_free_data_in_buddy(struct super_block *sb,
3862 				    struct ext4_free_data *entry)
3863 {
3864 	struct ext4_buddy e4b;
3865 	struct ext4_group_info *db;
3866 	int err, count = 0;
3867 
3868 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3869 		 entry->efd_count, entry->efd_group, entry);
3870 
3871 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3872 	/* we expect to find existing buddy because it's pinned */
3873 	BUG_ON(err != 0);
3874 
3875 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3876 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3877 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3878 
3879 	db = e4b.bd_info;
3880 	/* there are blocks to put in buddy to make them really free */
3881 	count += entry->efd_count;
3882 	ext4_lock_group(sb, entry->efd_group);
3883 	/* Take it out of per group rb tree */
3884 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3885 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3886 
3887 	/*
3888 	 * Clear the trimmed flag for the group so that the next
3889 	 * ext4_trim_fs can trim it.
3890 	 * If the volume is mounted with -o discard, online discard
3891 	 * is supported and the free blocks will be trimmed online.
3892 	 */
3893 	if (!test_opt(sb, DISCARD))
3894 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3895 
3896 	if (!db->bb_free_root.rb_node) {
3897 		/* No more items in the per group rb tree
3898 		 * balance refcounts from ext4_mb_free_metadata()
3899 		 */
3900 		folio_put(e4b.bd_buddy_folio);
3901 		folio_put(e4b.bd_bitmap_folio);
3902 	}
3903 	ext4_unlock_group(sb, entry->efd_group);
3904 	ext4_mb_unload_buddy(&e4b);
3905 
3906 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3907 }
3908 
3909 /*
3910  * This function is called by the jbd2 layer once the commit has finished,
3911  * so we know we can free the blocks that were released with that commit.
3912  */
3913 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3914 {
3915 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3916 	struct ext4_free_data *entry, *tmp;
3917 	LIST_HEAD(freed_data_list);
3918 	struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3919 	bool wake;
3920 
3921 	list_replace_init(s_freed_head, &freed_data_list);
3922 
3923 	list_for_each_entry(entry, &freed_data_list, efd_list)
3924 		ext4_free_data_in_buddy(sb, entry);
3925 
3926 	if (test_opt(sb, DISCARD)) {
3927 		spin_lock(&sbi->s_md_lock);
3928 		wake = list_empty(&sbi->s_discard_list);
3929 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3930 		spin_unlock(&sbi->s_md_lock);
3931 		if (wake)
3932 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3933 	} else {
3934 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3935 			kmem_cache_free(ext4_free_data_cachep, entry);
3936 	}
3937 }
3938 
3939 int __init ext4_init_mballoc(void)
3940 {
3941 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3942 					SLAB_RECLAIM_ACCOUNT);
3943 	if (ext4_pspace_cachep == NULL)
3944 		goto out;
3945 
3946 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3947 				    SLAB_RECLAIM_ACCOUNT);
3948 	if (ext4_ac_cachep == NULL)
3949 		goto out_pa_free;
3950 
3951 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3952 					   SLAB_RECLAIM_ACCOUNT);
3953 	if (ext4_free_data_cachep == NULL)
3954 		goto out_ac_free;
3955 
3956 	return 0;
3957 
3958 out_ac_free:
3959 	kmem_cache_destroy(ext4_ac_cachep);
3960 out_pa_free:
3961 	kmem_cache_destroy(ext4_pspace_cachep);
3962 out:
3963 	return -ENOMEM;
3964 }
3965 
3966 void ext4_exit_mballoc(void)
3967 {
3968 	/*
3969 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3970 	 * before destroying the slab cache.
3971 	 */
3972 	rcu_barrier();
3973 	kmem_cache_destroy(ext4_pspace_cachep);
3974 	kmem_cache_destroy(ext4_ac_cachep);
3975 	kmem_cache_destroy(ext4_free_data_cachep);
3976 	ext4_groupinfo_destroy_slabs();
3977 }
3978 
3979 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3980 #define EXT4_MB_SYNC_UPDATE 0x0002
3981 static int
3982 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3983 		     ext4_group_t group, ext4_grpblk_t blkoff,
3984 		     ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3985 {
3986 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3987 	struct buffer_head *bitmap_bh = NULL;
3988 	struct ext4_group_desc *gdp;
3989 	struct buffer_head *gdp_bh;
3990 	int err;
3991 	unsigned int i, already, changed = len;
3992 
3993 	KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3994 				   handle, sb, state, group, blkoff, len,
3995 				   flags, ret_changed);
3996 
3997 	if (ret_changed)
3998 		*ret_changed = 0;
3999 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4000 	if (IS_ERR(bitmap_bh))
4001 		return PTR_ERR(bitmap_bh);
4002 
4003 	if (handle) {
4004 		BUFFER_TRACE(bitmap_bh, "getting write access");
4005 		err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4006 						    EXT4_JTR_NONE);
4007 		if (err)
4008 			goto out_err;
4009 	}
4010 
4011 	err = -EIO;
4012 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4013 	if (!gdp)
4014 		goto out_err;
4015 
4016 	if (handle) {
4017 		BUFFER_TRACE(gdp_bh, "get_write_access");
4018 		err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4019 						    EXT4_JTR_NONE);
4020 		if (err)
4021 			goto out_err;
4022 	}
4023 
4024 	ext4_lock_group(sb, group);
4025 	if (ext4_has_group_desc_csum(sb) &&
4026 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4027 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4028 		ext4_free_group_clusters_set(sb, gdp,
4029 			ext4_free_clusters_after_init(sb, group, gdp));
4030 	}
4031 
4032 	if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4033 		already = 0;
4034 		for (i = 0; i < len; i++)
4035 			if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4036 					state)
4037 				already++;
4038 		changed = len - already;
4039 	}
4040 
4041 	if (state) {
4042 		mb_set_bits(bitmap_bh->b_data, blkoff, len);
4043 		ext4_free_group_clusters_set(sb, gdp,
4044 			ext4_free_group_clusters(sb, gdp) - changed);
4045 	} else {
4046 		mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4047 		ext4_free_group_clusters_set(sb, gdp,
4048 			ext4_free_group_clusters(sb, gdp) + changed);
4049 	}
4050 
4051 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4052 	ext4_group_desc_csum_set(sb, group, gdp);
4053 	ext4_unlock_group(sb, group);
4054 	if (ret_changed)
4055 		*ret_changed = changed;
4056 
4057 	if (sbi->s_log_groups_per_flex) {
4058 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
4059 		struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4060 					   s_flex_groups, flex_group);
4061 
4062 		if (state)
4063 			atomic64_sub(changed, &fg->free_clusters);
4064 		else
4065 			atomic64_add(changed, &fg->free_clusters);
4066 	}
4067 
4068 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4069 	if (err)
4070 		goto out_err;
4071 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4072 	if (err)
4073 		goto out_err;
4074 
4075 	if (flags & EXT4_MB_SYNC_UPDATE) {
4076 		sync_dirty_buffer(bitmap_bh);
4077 		sync_dirty_buffer(gdp_bh);
4078 	}
4079 
4080 out_err:
4081 	brelse(bitmap_bh);
4082 	return err;
4083 }
4084 
4085 /*
4086  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4087  * Returns 0 if success or error code
4088  */
4089 static noinline_for_stack int
4090 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4091 				handle_t *handle, unsigned int reserv_clstrs)
4092 {
4093 	struct ext4_group_desc *gdp;
4094 	struct ext4_sb_info *sbi;
4095 	struct super_block *sb;
4096 	ext4_fsblk_t block;
4097 	int err, len;
4098 	int flags = 0;
4099 	ext4_grpblk_t changed;
4100 
4101 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4102 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4103 
4104 	sb = ac->ac_sb;
4105 	sbi = EXT4_SB(sb);
4106 
4107 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4108 	if (!gdp)
4109 		return -EIO;
4110 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4111 			ext4_free_group_clusters(sb, gdp));
4112 
4113 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4114 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4115 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4116 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4117 			   "fs metadata", block, block+len);
4118 		/* File system mounted not to panic on error
4119 		 * Fix the bitmap and return EFSCORRUPTED
4120 		 * We leak some of the blocks here.
4121 		 */
4122 		err = ext4_mb_mark_context(handle, sb, true,
4123 					   ac->ac_b_ex.fe_group,
4124 					   ac->ac_b_ex.fe_start,
4125 					   ac->ac_b_ex.fe_len,
4126 					   0, NULL);
4127 		if (!err)
4128 			err = -EFSCORRUPTED;
4129 		return err;
4130 	}
4131 
4132 #ifdef AGGRESSIVE_CHECK
4133 	flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4134 #endif
4135 	err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4136 				   ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4137 				   flags, &changed);
4138 
4139 	if (err && changed == 0)
4140 		return err;
4141 
4142 #ifdef AGGRESSIVE_CHECK
4143 	BUG_ON(changed != ac->ac_b_ex.fe_len);
4144 #endif
4145 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4146 	/*
4147 	 * Now reduce the dirty block count also. Should not go negative
4148 	 */
4149 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4150 		/* release all the reserved blocks if non delalloc */
4151 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4152 				   reserv_clstrs);
4153 
4154 	return err;
4155 }
4156 
4157 /*
4158  * Idempotent helper for Ext4 fast commit replay path to set the state of
4159  * blocks in bitmaps and update counters.
4160  */
4161 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4162 		     int len, bool state)
4163 {
4164 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4165 	ext4_group_t group;
4166 	ext4_grpblk_t blkoff;
4167 	int err = 0;
4168 	unsigned int clen, thisgrp_len;
4169 
4170 	while (len > 0) {
4171 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4172 
4173 		/*
4174 		 * Check to see if we are freeing blocks across a group
4175 		 * boundary.
4176 		 * In case of flex_bg, this can happen that (block, len) may
4177 		 * span across more than one group. In that case we need to
4178 		 * get the corresponding group metadata to work with.
4179 		 * For this we have goto again loop.
4180 		 */
4181 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4182 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4183 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4184 
4185 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4186 			ext4_error(sb, "Marking blocks in system zone - "
4187 				   "Block = %llu, len = %u",
4188 				   block, thisgrp_len);
4189 			break;
4190 		}
4191 
4192 		err = ext4_mb_mark_context(NULL, sb, state,
4193 					   group, blkoff, clen,
4194 					   EXT4_MB_BITMAP_MARKED_CHECK |
4195 					   EXT4_MB_SYNC_UPDATE,
4196 					   NULL);
4197 		if (err)
4198 			break;
4199 
4200 		block += thisgrp_len;
4201 		len -= thisgrp_len;
4202 		BUG_ON(len < 0);
4203 	}
4204 }
4205 
4206 /*
4207  * here we normalize request for locality group
4208  * Group request are normalized to s_mb_group_prealloc, which goes to
4209  * s_strip if we set the same via mount option.
4210  * s_mb_group_prealloc can be configured via
4211  * /sys/fs/ext4/<partition>/mb_group_prealloc
4212  *
4213  * XXX: should we try to preallocate more than the group has now?
4214  */
4215 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4216 {
4217 	struct super_block *sb = ac->ac_sb;
4218 	struct ext4_locality_group *lg = ac->ac_lg;
4219 
4220 	BUG_ON(lg == NULL);
4221 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4222 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4223 }
4224 
4225 /*
4226  * This function returns the next element to look at during inode
4227  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4228  * (ei->i_prealloc_lock)
4229  *
4230  * new_start	The start of the range we want to compare
4231  * cur_start	The existing start that we are comparing against
4232  * node	The node of the rb_tree
4233  */
4234 static inline struct rb_node*
4235 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4236 {
4237 	if (new_start < cur_start)
4238 		return node->rb_left;
4239 	else
4240 		return node->rb_right;
4241 }
4242 
4243 static inline void
4244 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4245 			  ext4_lblk_t start, loff_t end)
4246 {
4247 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4248 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4249 	struct ext4_prealloc_space *tmp_pa;
4250 	ext4_lblk_t tmp_pa_start;
4251 	loff_t tmp_pa_end;
4252 	struct rb_node *iter;
4253 
4254 	read_lock(&ei->i_prealloc_lock);
4255 	for (iter = ei->i_prealloc_node.rb_node; iter;
4256 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4257 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4258 				  pa_node.inode_node);
4259 		tmp_pa_start = tmp_pa->pa_lstart;
4260 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4261 
4262 		spin_lock(&tmp_pa->pa_lock);
4263 		if (tmp_pa->pa_deleted == 0)
4264 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4265 		spin_unlock(&tmp_pa->pa_lock);
4266 	}
4267 	read_unlock(&ei->i_prealloc_lock);
4268 }
4269 
4270 /*
4271  * Given an allocation context "ac" and a range "start", "end", check
4272  * and adjust boundaries if the range overlaps with any of the existing
4273  * preallocatoins stored in the corresponding inode of the allocation context.
4274  *
4275  * Parameters:
4276  *	ac			allocation context
4277  *	start			start of the new range
4278  *	end			end of the new range
4279  */
4280 static inline void
4281 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4282 			  ext4_lblk_t *start, loff_t *end)
4283 {
4284 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4285 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4286 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4287 	struct rb_node *iter;
4288 	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4289 	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4290 
4291 	new_start = *start;
4292 	new_end = *end;
4293 
4294 	/*
4295 	 * Adjust the normalized range so that it doesn't overlap with any
4296 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4297 	 * so it doesn't change underneath us.
4298 	 */
4299 	read_lock(&ei->i_prealloc_lock);
4300 
4301 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4302 	for (iter = ei->i_prealloc_node.rb_node; iter;
4303 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4304 					    tmp_pa_start, iter)) {
4305 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4306 				  pa_node.inode_node);
4307 		tmp_pa_start = tmp_pa->pa_lstart;
4308 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4309 
4310 		/* PA must not overlap original request */
4311 		spin_lock(&tmp_pa->pa_lock);
4312 		if (tmp_pa->pa_deleted == 0)
4313 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4314 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4315 		spin_unlock(&tmp_pa->pa_lock);
4316 	}
4317 
4318 	/*
4319 	 * Step 2: check if the found PA is left or right neighbor and
4320 	 * get the other neighbor
4321 	 */
4322 	if (tmp_pa) {
4323 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4324 			struct rb_node *tmp;
4325 
4326 			left_pa = tmp_pa;
4327 			tmp = rb_next(&left_pa->pa_node.inode_node);
4328 			if (tmp) {
4329 				right_pa = rb_entry(tmp,
4330 						    struct ext4_prealloc_space,
4331 						    pa_node.inode_node);
4332 			}
4333 		} else {
4334 			struct rb_node *tmp;
4335 
4336 			right_pa = tmp_pa;
4337 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4338 			if (tmp) {
4339 				left_pa = rb_entry(tmp,
4340 						   struct ext4_prealloc_space,
4341 						   pa_node.inode_node);
4342 			}
4343 		}
4344 	}
4345 
4346 	/* Step 3: get the non deleted neighbors */
4347 	if (left_pa) {
4348 		for (iter = &left_pa->pa_node.inode_node;;
4349 		     iter = rb_prev(iter)) {
4350 			if (!iter) {
4351 				left_pa = NULL;
4352 				break;
4353 			}
4354 
4355 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4356 					  pa_node.inode_node);
4357 			left_pa = tmp_pa;
4358 			spin_lock(&tmp_pa->pa_lock);
4359 			if (tmp_pa->pa_deleted == 0) {
4360 				spin_unlock(&tmp_pa->pa_lock);
4361 				break;
4362 			}
4363 			spin_unlock(&tmp_pa->pa_lock);
4364 		}
4365 	}
4366 
4367 	if (right_pa) {
4368 		for (iter = &right_pa->pa_node.inode_node;;
4369 		     iter = rb_next(iter)) {
4370 			if (!iter) {
4371 				right_pa = NULL;
4372 				break;
4373 			}
4374 
4375 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4376 					  pa_node.inode_node);
4377 			right_pa = tmp_pa;
4378 			spin_lock(&tmp_pa->pa_lock);
4379 			if (tmp_pa->pa_deleted == 0) {
4380 				spin_unlock(&tmp_pa->pa_lock);
4381 				break;
4382 			}
4383 			spin_unlock(&tmp_pa->pa_lock);
4384 		}
4385 	}
4386 
4387 	if (left_pa) {
4388 		left_pa_end = pa_logical_end(sbi, left_pa);
4389 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4390 	}
4391 
4392 	if (right_pa) {
4393 		right_pa_start = right_pa->pa_lstart;
4394 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4395 	}
4396 
4397 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4398 	if (left_pa) {
4399 		if (left_pa_end > new_start)
4400 			new_start = left_pa_end;
4401 	}
4402 
4403 	if (right_pa) {
4404 		if (right_pa_start < new_end)
4405 			new_end = right_pa_start;
4406 	}
4407 	read_unlock(&ei->i_prealloc_lock);
4408 
4409 	/* XXX: extra loop to check we really don't overlap preallocations */
4410 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4411 
4412 	*start = new_start;
4413 	*end = new_end;
4414 }
4415 
4416 /*
4417  * Normalization means making request better in terms of
4418  * size and alignment
4419  */
4420 static noinline_for_stack void
4421 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4422 				struct ext4_allocation_request *ar)
4423 {
4424 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4425 	struct ext4_super_block *es = sbi->s_es;
4426 	int bsbits, max;
4427 	loff_t size, start_off, end;
4428 	loff_t orig_size __maybe_unused;
4429 	ext4_lblk_t start;
4430 
4431 	/* do normalize only data requests, metadata requests
4432 	   do not need preallocation */
4433 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4434 		return;
4435 
4436 	/* sometime caller may want exact blocks */
4437 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4438 		return;
4439 
4440 	/* caller may indicate that preallocation isn't
4441 	 * required (it's a tail, for example) */
4442 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4443 		return;
4444 
4445 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4446 		ext4_mb_normalize_group_request(ac);
4447 		return ;
4448 	}
4449 
4450 	bsbits = ac->ac_sb->s_blocksize_bits;
4451 
4452 	/* first, let's learn actual file size
4453 	 * given current request is allocated */
4454 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4455 	size = size << bsbits;
4456 	if (size < i_size_read(ac->ac_inode))
4457 		size = i_size_read(ac->ac_inode);
4458 	orig_size = size;
4459 
4460 	/* max size of free chunks */
4461 	max = 2 << bsbits;
4462 
4463 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4464 		(req <= (size) || max <= (chunk_size))
4465 
4466 	/* first, try to predict filesize */
4467 	/* XXX: should this table be tunable? */
4468 	start_off = 0;
4469 	if (size <= 16 * 1024) {
4470 		size = 16 * 1024;
4471 	} else if (size <= 32 * 1024) {
4472 		size = 32 * 1024;
4473 	} else if (size <= 64 * 1024) {
4474 		size = 64 * 1024;
4475 	} else if (size <= 128 * 1024) {
4476 		size = 128 * 1024;
4477 	} else if (size <= 256 * 1024) {
4478 		size = 256 * 1024;
4479 	} else if (size <= 512 * 1024) {
4480 		size = 512 * 1024;
4481 	} else if (size <= 1024 * 1024) {
4482 		size = 1024 * 1024;
4483 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4484 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4485 						(21 - bsbits)) << 21;
4486 		size = 2 * 1024 * 1024;
4487 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4488 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4489 							(22 - bsbits)) << 22;
4490 		size = 4 * 1024 * 1024;
4491 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4492 					(8<<20)>>bsbits, max, 8 * 1024)) {
4493 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4494 							(23 - bsbits)) << 23;
4495 		size = 8 * 1024 * 1024;
4496 	} else {
4497 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4498 		size	  = (loff_t) EXT4_C2B(sbi,
4499 					      ac->ac_o_ex.fe_len) << bsbits;
4500 	}
4501 	size = size >> bsbits;
4502 	start = start_off >> bsbits;
4503 
4504 	/*
4505 	 * For tiny groups (smaller than 8MB) the chosen allocation
4506 	 * alignment may be larger than group size. Make sure the
4507 	 * alignment does not move allocation to a different group which
4508 	 * makes mballoc fail assertions later.
4509 	 */
4510 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4511 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4512 
4513 	/* avoid unnecessary preallocation that may trigger assertions */
4514 	if (start + size > EXT_MAX_BLOCKS)
4515 		size = EXT_MAX_BLOCKS - start;
4516 
4517 	/* don't cover already allocated blocks in selected range */
4518 	if (ar->pleft && start <= ar->lleft) {
4519 		size -= ar->lleft + 1 - start;
4520 		start = ar->lleft + 1;
4521 	}
4522 	if (ar->pright && start + size - 1 >= ar->lright)
4523 		size -= start + size - ar->lright;
4524 
4525 	/*
4526 	 * Trim allocation request for filesystems with artificially small
4527 	 * groups.
4528 	 */
4529 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4530 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4531 
4532 	end = start + size;
4533 
4534 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4535 
4536 	size = end - start;
4537 
4538 	/*
4539 	 * In this function "start" and "size" are normalized for better
4540 	 * alignment and length such that we could preallocate more blocks.
4541 	 * This normalization is done such that original request of
4542 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4543 	 * "size" boundaries.
4544 	 * (Note fe_len can be relaxed since FS block allocation API does not
4545 	 * provide gurantee on number of contiguous blocks allocation since that
4546 	 * depends upon free space left, etc).
4547 	 * In case of inode pa, later we use the allocated blocks
4548 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4549 	 * range of goal/best blocks [start, size] to put it at the
4550 	 * ac_o_ex.fe_logical extent of this inode.
4551 	 * (See ext4_mb_use_inode_pa() for more details)
4552 	 */
4553 	if (start + size <= ac->ac_o_ex.fe_logical ||
4554 			start > ac->ac_o_ex.fe_logical) {
4555 		ext4_msg(ac->ac_sb, KERN_ERR,
4556 			 "start %lu, size %lu, fe_logical %lu",
4557 			 (unsigned long) start, (unsigned long) size,
4558 			 (unsigned long) ac->ac_o_ex.fe_logical);
4559 		BUG();
4560 	}
4561 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4562 
4563 	/* now prepare goal request */
4564 
4565 	/* XXX: is it better to align blocks WRT to logical
4566 	 * placement or satisfy big request as is */
4567 	ac->ac_g_ex.fe_logical = start;
4568 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4569 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4570 
4571 	/* define goal start in order to merge */
4572 	if (ar->pright && (ar->lright == (start + size)) &&
4573 	    ar->pright >= size &&
4574 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4575 		/* merge to the right */
4576 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4577 						&ac->ac_g_ex.fe_group,
4578 						&ac->ac_g_ex.fe_start);
4579 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4580 	}
4581 	if (ar->pleft && (ar->lleft + 1 == start) &&
4582 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4583 		/* merge to the left */
4584 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4585 						&ac->ac_g_ex.fe_group,
4586 						&ac->ac_g_ex.fe_start);
4587 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4588 	}
4589 
4590 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4591 		 orig_size, start);
4592 }
4593 
4594 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4595 {
4596 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4597 
4598 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4599 		atomic_inc(&sbi->s_bal_reqs);
4600 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4601 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4602 			atomic_inc(&sbi->s_bal_success);
4603 
4604 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4605 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4606 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4607 		}
4608 
4609 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4610 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4611 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4612 			atomic_inc(&sbi->s_bal_goals);
4613 		/* did we allocate as much as normalizer originally wanted? */
4614 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4615 			atomic_inc(&sbi->s_bal_len_goals);
4616 
4617 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4618 			atomic_inc(&sbi->s_bal_breaks);
4619 	}
4620 
4621 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4622 		trace_ext4_mballoc_alloc(ac);
4623 	else
4624 		trace_ext4_mballoc_prealloc(ac);
4625 }
4626 
4627 /*
4628  * Called on failure; free up any blocks from the inode PA for this
4629  * context.  We don't need this for MB_GROUP_PA because we only change
4630  * pa_free in ext4_mb_release_context(), but on failure, we've already
4631  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4632  */
4633 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4634 {
4635 	struct ext4_prealloc_space *pa = ac->ac_pa;
4636 	struct ext4_buddy e4b;
4637 	int err;
4638 
4639 	if (pa == NULL) {
4640 		if (ac->ac_f_ex.fe_len == 0)
4641 			return;
4642 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4643 		if (WARN_RATELIMIT(err,
4644 				   "ext4: mb_load_buddy failed (%d)", err))
4645 			/*
4646 			 * This should never happen since we pin the
4647 			 * pages in the ext4_allocation_context so
4648 			 * ext4_mb_load_buddy() should never fail.
4649 			 */
4650 			return;
4651 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4652 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4653 			       ac->ac_f_ex.fe_len);
4654 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4655 		ext4_mb_unload_buddy(&e4b);
4656 		return;
4657 	}
4658 	if (pa->pa_type == MB_INODE_PA) {
4659 		spin_lock(&pa->pa_lock);
4660 		pa->pa_free += ac->ac_b_ex.fe_len;
4661 		spin_unlock(&pa->pa_lock);
4662 	}
4663 }
4664 
4665 /*
4666  * use blocks preallocated to inode
4667  */
4668 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4669 				struct ext4_prealloc_space *pa)
4670 {
4671 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4672 	ext4_fsblk_t start;
4673 	ext4_fsblk_t end;
4674 	int len;
4675 
4676 	/* found preallocated blocks, use them */
4677 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4678 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4679 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4680 	len = EXT4_NUM_B2C(sbi, end - start);
4681 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4682 					&ac->ac_b_ex.fe_start);
4683 	ac->ac_b_ex.fe_len = len;
4684 	ac->ac_status = AC_STATUS_FOUND;
4685 	ac->ac_pa = pa;
4686 
4687 	BUG_ON(start < pa->pa_pstart);
4688 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4689 	BUG_ON(pa->pa_free < len);
4690 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4691 	pa->pa_free -= len;
4692 
4693 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4694 }
4695 
4696 /*
4697  * use blocks preallocated to locality group
4698  */
4699 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4700 				struct ext4_prealloc_space *pa)
4701 {
4702 	unsigned int len = ac->ac_o_ex.fe_len;
4703 
4704 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4705 					&ac->ac_b_ex.fe_group,
4706 					&ac->ac_b_ex.fe_start);
4707 	ac->ac_b_ex.fe_len = len;
4708 	ac->ac_status = AC_STATUS_FOUND;
4709 	ac->ac_pa = pa;
4710 
4711 	/* we don't correct pa_pstart or pa_len here to avoid
4712 	 * possible race when the group is being loaded concurrently
4713 	 * instead we correct pa later, after blocks are marked
4714 	 * in on-disk bitmap -- see ext4_mb_release_context()
4715 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4716 	 */
4717 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4718 		 pa->pa_lstart, len, pa);
4719 }
4720 
4721 /*
4722  * Return the prealloc space that have minimal distance
4723  * from the goal block. @cpa is the prealloc
4724  * space that is having currently known minimal distance
4725  * from the goal block.
4726  */
4727 static struct ext4_prealloc_space *
4728 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4729 			struct ext4_prealloc_space *pa,
4730 			struct ext4_prealloc_space *cpa)
4731 {
4732 	ext4_fsblk_t cur_distance, new_distance;
4733 
4734 	if (cpa == NULL) {
4735 		atomic_inc(&pa->pa_count);
4736 		return pa;
4737 	}
4738 	cur_distance = abs(goal_block - cpa->pa_pstart);
4739 	new_distance = abs(goal_block - pa->pa_pstart);
4740 
4741 	if (cur_distance <= new_distance)
4742 		return cpa;
4743 
4744 	/* drop the previous reference */
4745 	atomic_dec(&cpa->pa_count);
4746 	atomic_inc(&pa->pa_count);
4747 	return pa;
4748 }
4749 
4750 /*
4751  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4752  */
4753 static bool
4754 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4755 		      struct ext4_prealloc_space *pa)
4756 {
4757 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4758 	ext4_fsblk_t start;
4759 
4760 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4761 		return true;
4762 
4763 	/*
4764 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4765 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4766 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4767 	 * consistent with ext4_mb_find_by_goal.
4768 	 */
4769 	start = pa->pa_pstart +
4770 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4771 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4772 		return false;
4773 
4774 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4775 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4776 		return false;
4777 
4778 	return true;
4779 }
4780 
4781 /*
4782  * search goal blocks in preallocated space
4783  */
4784 static noinline_for_stack bool
4785 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4786 {
4787 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4788 	int order, i;
4789 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4790 	struct ext4_locality_group *lg;
4791 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4792 	struct rb_node *iter;
4793 	ext4_fsblk_t goal_block;
4794 
4795 	/* only data can be preallocated */
4796 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4797 		return false;
4798 
4799 	/*
4800 	 * first, try per-file preallocation by searching the inode pa rbtree.
4801 	 *
4802 	 * Here, we can't do a direct traversal of the tree because
4803 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4804 	 * deleted and that can cause direct traversal to skip some entries.
4805 	 */
4806 	read_lock(&ei->i_prealloc_lock);
4807 
4808 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4809 		goto try_group_pa;
4810 	}
4811 
4812 	/*
4813 	 * Step 1: Find a pa with logical start immediately adjacent to the
4814 	 * original logical start. This could be on the left or right.
4815 	 *
4816 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4817 	 */
4818 	for (iter = ei->i_prealloc_node.rb_node; iter;
4819 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4820 					    tmp_pa->pa_lstart, iter)) {
4821 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4822 				  pa_node.inode_node);
4823 	}
4824 
4825 	/*
4826 	 * Step 2: The adjacent pa might be to the right of logical start, find
4827 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4828 	 * logical start is towards the left of original request's logical start
4829 	 */
4830 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4831 		struct rb_node *tmp;
4832 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4833 
4834 		if (tmp) {
4835 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4836 					    pa_node.inode_node);
4837 		} else {
4838 			/*
4839 			 * If there is no adjacent pa to the left then finding
4840 			 * an overlapping pa is not possible hence stop searching
4841 			 * inode pa tree
4842 			 */
4843 			goto try_group_pa;
4844 		}
4845 	}
4846 
4847 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4848 
4849 	/*
4850 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4851 	 * the first non deleted adjacent pa. After this step we should have a
4852 	 * valid tmp_pa which is guaranteed to be non deleted.
4853 	 */
4854 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4855 		if (!iter) {
4856 			/*
4857 			 * no non deleted left adjacent pa, so stop searching
4858 			 * inode pa tree
4859 			 */
4860 			goto try_group_pa;
4861 		}
4862 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4863 				  pa_node.inode_node);
4864 		spin_lock(&tmp_pa->pa_lock);
4865 		if (tmp_pa->pa_deleted == 0) {
4866 			/*
4867 			 * We will keep holding the pa_lock from
4868 			 * this point on because we don't want group discard
4869 			 * to delete this pa underneath us. Since group
4870 			 * discard is anyways an ENOSPC operation it
4871 			 * should be okay for it to wait a few more cycles.
4872 			 */
4873 			break;
4874 		} else {
4875 			spin_unlock(&tmp_pa->pa_lock);
4876 		}
4877 	}
4878 
4879 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4880 	BUG_ON(tmp_pa->pa_deleted == 1);
4881 
4882 	/*
4883 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4884 	 * pa can possibly satisfy the request hence check if it overlaps
4885 	 * original logical start and stop searching if it doesn't.
4886 	 */
4887 	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4888 		spin_unlock(&tmp_pa->pa_lock);
4889 		goto try_group_pa;
4890 	}
4891 
4892 	/* non-extent files can't have physical blocks past 2^32 */
4893 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4894 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4895 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4896 		/*
4897 		 * Since PAs don't overlap, we won't find any other PA to
4898 		 * satisfy this.
4899 		 */
4900 		spin_unlock(&tmp_pa->pa_lock);
4901 		goto try_group_pa;
4902 	}
4903 
4904 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4905 		atomic_inc(&tmp_pa->pa_count);
4906 		ext4_mb_use_inode_pa(ac, tmp_pa);
4907 		spin_unlock(&tmp_pa->pa_lock);
4908 		read_unlock(&ei->i_prealloc_lock);
4909 		return true;
4910 	} else {
4911 		/*
4912 		 * We found a valid overlapping pa but couldn't use it because
4913 		 * it had no free blocks. This should ideally never happen
4914 		 * because:
4915 		 *
4916 		 * 1. When a new inode pa is added to rbtree it must have
4917 		 *    pa_free > 0 since otherwise we won't actually need
4918 		 *    preallocation.
4919 		 *
4920 		 * 2. An inode pa that is in the rbtree can only have it's
4921 		 *    pa_free become zero when another thread calls:
4922 		 *      ext4_mb_new_blocks
4923 		 *       ext4_mb_use_preallocated
4924 		 *        ext4_mb_use_inode_pa
4925 		 *
4926 		 * 3. Further, after the above calls make pa_free == 0, we will
4927 		 *    immediately remove it from the rbtree in:
4928 		 *      ext4_mb_new_blocks
4929 		 *       ext4_mb_release_context
4930 		 *        ext4_mb_put_pa
4931 		 *
4932 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4933 		 * from tree both happen in ext4_mb_new_blocks, which is always
4934 		 * called with i_data_sem held for data allocations, we can be
4935 		 * sure that another process will never see a pa in rbtree with
4936 		 * pa_free == 0.
4937 		 */
4938 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4939 	}
4940 	spin_unlock(&tmp_pa->pa_lock);
4941 try_group_pa:
4942 	read_unlock(&ei->i_prealloc_lock);
4943 
4944 	/* can we use group allocation? */
4945 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4946 		return false;
4947 
4948 	/* inode may have no locality group for some reason */
4949 	lg = ac->ac_lg;
4950 	if (lg == NULL)
4951 		return false;
4952 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4953 	if (order > PREALLOC_TB_SIZE - 1)
4954 		/* The max size of hash table is PREALLOC_TB_SIZE */
4955 		order = PREALLOC_TB_SIZE - 1;
4956 
4957 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4958 	/*
4959 	 * search for the prealloc space that is having
4960 	 * minimal distance from the goal block.
4961 	 */
4962 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4963 		rcu_read_lock();
4964 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4965 					pa_node.lg_list) {
4966 			spin_lock(&tmp_pa->pa_lock);
4967 			if (tmp_pa->pa_deleted == 0 &&
4968 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4969 
4970 				cpa = ext4_mb_check_group_pa(goal_block,
4971 								tmp_pa, cpa);
4972 			}
4973 			spin_unlock(&tmp_pa->pa_lock);
4974 		}
4975 		rcu_read_unlock();
4976 	}
4977 	if (cpa) {
4978 		ext4_mb_use_group_pa(ac, cpa);
4979 		return true;
4980 	}
4981 	return false;
4982 }
4983 
4984 /*
4985  * the function goes through all preallocation in this group and marks them
4986  * used in in-core bitmap. buddy must be generated from this bitmap
4987  * Need to be called with ext4 group lock held
4988  */
4989 static noinline_for_stack
4990 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4991 					ext4_group_t group)
4992 {
4993 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4994 	struct ext4_prealloc_space *pa;
4995 	struct list_head *cur;
4996 	ext4_group_t groupnr;
4997 	ext4_grpblk_t start;
4998 	int preallocated = 0;
4999 	int len;
5000 
5001 	if (!grp)
5002 		return;
5003 
5004 	/* all form of preallocation discards first load group,
5005 	 * so the only competing code is preallocation use.
5006 	 * we don't need any locking here
5007 	 * notice we do NOT ignore preallocations with pa_deleted
5008 	 * otherwise we could leave used blocks available for
5009 	 * allocation in buddy when concurrent ext4_mb_put_pa()
5010 	 * is dropping preallocation
5011 	 */
5012 	list_for_each(cur, &grp->bb_prealloc_list) {
5013 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5014 		spin_lock(&pa->pa_lock);
5015 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5016 					     &groupnr, &start);
5017 		len = pa->pa_len;
5018 		spin_unlock(&pa->pa_lock);
5019 		if (unlikely(len == 0))
5020 			continue;
5021 		BUG_ON(groupnr != group);
5022 		mb_set_bits(bitmap, start, len);
5023 		preallocated += len;
5024 	}
5025 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5026 }
5027 
5028 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5029 				    struct ext4_prealloc_space *pa)
5030 {
5031 	struct ext4_inode_info *ei;
5032 
5033 	if (pa->pa_deleted) {
5034 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5035 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5036 			     pa->pa_len);
5037 		return;
5038 	}
5039 
5040 	pa->pa_deleted = 1;
5041 
5042 	if (pa->pa_type == MB_INODE_PA) {
5043 		ei = EXT4_I(pa->pa_inode);
5044 		atomic_dec(&ei->i_prealloc_active);
5045 	}
5046 }
5047 
5048 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5049 {
5050 	BUG_ON(!pa);
5051 	BUG_ON(atomic_read(&pa->pa_count));
5052 	BUG_ON(pa->pa_deleted == 0);
5053 	kmem_cache_free(ext4_pspace_cachep, pa);
5054 }
5055 
5056 static void ext4_mb_pa_callback(struct rcu_head *head)
5057 {
5058 	struct ext4_prealloc_space *pa;
5059 
5060 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5061 	ext4_mb_pa_free(pa);
5062 }
5063 
5064 /*
5065  * drops a reference to preallocated space descriptor
5066  * if this was the last reference and the space is consumed
5067  */
5068 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5069 			struct super_block *sb, struct ext4_prealloc_space *pa)
5070 {
5071 	ext4_group_t grp;
5072 	ext4_fsblk_t grp_blk;
5073 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5074 
5075 	/* in this short window concurrent discard can set pa_deleted */
5076 	spin_lock(&pa->pa_lock);
5077 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5078 		spin_unlock(&pa->pa_lock);
5079 		return;
5080 	}
5081 
5082 	if (pa->pa_deleted == 1) {
5083 		spin_unlock(&pa->pa_lock);
5084 		return;
5085 	}
5086 
5087 	ext4_mb_mark_pa_deleted(sb, pa);
5088 	spin_unlock(&pa->pa_lock);
5089 
5090 	grp_blk = pa->pa_pstart;
5091 	/*
5092 	 * If doing group-based preallocation, pa_pstart may be in the
5093 	 * next group when pa is used up
5094 	 */
5095 	if (pa->pa_type == MB_GROUP_PA)
5096 		grp_blk--;
5097 
5098 	grp = ext4_get_group_number(sb, grp_blk);
5099 
5100 	/*
5101 	 * possible race:
5102 	 *
5103 	 *  P1 (buddy init)			P2 (regular allocation)
5104 	 *					find block B in PA
5105 	 *  copy on-disk bitmap to buddy
5106 	 *  					mark B in on-disk bitmap
5107 	 *					drop PA from group
5108 	 *  mark all PAs in buddy
5109 	 *
5110 	 * thus, P1 initializes buddy with B available. to prevent this
5111 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5112 	 * against that pair
5113 	 */
5114 	ext4_lock_group(sb, grp);
5115 	list_del(&pa->pa_group_list);
5116 	ext4_unlock_group(sb, grp);
5117 
5118 	if (pa->pa_type == MB_INODE_PA) {
5119 		write_lock(pa->pa_node_lock.inode_lock);
5120 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5121 		write_unlock(pa->pa_node_lock.inode_lock);
5122 		ext4_mb_pa_free(pa);
5123 	} else {
5124 		spin_lock(pa->pa_node_lock.lg_lock);
5125 		list_del_rcu(&pa->pa_node.lg_list);
5126 		spin_unlock(pa->pa_node_lock.lg_lock);
5127 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5128 	}
5129 }
5130 
5131 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5132 {
5133 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5134 	struct ext4_prealloc_space *iter_pa, *new_pa;
5135 	ext4_lblk_t iter_start, new_start;
5136 
5137 	while (*iter) {
5138 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5139 				   pa_node.inode_node);
5140 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5141 				   pa_node.inode_node);
5142 		iter_start = iter_pa->pa_lstart;
5143 		new_start = new_pa->pa_lstart;
5144 
5145 		parent = *iter;
5146 		if (new_start < iter_start)
5147 			iter = &((*iter)->rb_left);
5148 		else
5149 			iter = &((*iter)->rb_right);
5150 	}
5151 
5152 	rb_link_node(new, parent, iter);
5153 	rb_insert_color(new, root);
5154 }
5155 
5156 /*
5157  * creates new preallocated space for given inode
5158  */
5159 static noinline_for_stack void
5160 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5161 {
5162 	struct super_block *sb = ac->ac_sb;
5163 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5164 	struct ext4_prealloc_space *pa;
5165 	struct ext4_group_info *grp;
5166 	struct ext4_inode_info *ei;
5167 
5168 	/* preallocate only when found space is larger then requested */
5169 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5170 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5171 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5172 	BUG_ON(ac->ac_pa == NULL);
5173 
5174 	pa = ac->ac_pa;
5175 
5176 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5177 		struct ext4_free_extent ex = {
5178 			.fe_logical = ac->ac_g_ex.fe_logical,
5179 			.fe_len = ac->ac_orig_goal_len,
5180 		};
5181 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5182 		loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5183 
5184 		/*
5185 		 * We can't allocate as much as normalizer wants, so we try
5186 		 * to get proper lstart to cover the original request, except
5187 		 * when the goal doesn't cover the original request as below:
5188 		 *
5189 		 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5190 		 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5191 		 */
5192 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5193 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5194 
5195 		/*
5196 		 * Use the below logic for adjusting best extent as it keeps
5197 		 * fragmentation in check while ensuring logical range of best
5198 		 * extent doesn't overflow out of goal extent:
5199 		 *
5200 		 * 1. Check if best ex can be kept at end of goal (before
5201 		 *    cr_best_avail trimmed it) and still cover original start
5202 		 * 2. Else, check if best ex can be kept at start of goal and
5203 		 *    still cover original end
5204 		 * 3. Else, keep the best ex at start of original request.
5205 		 */
5206 		ex.fe_len = ac->ac_b_ex.fe_len;
5207 
5208 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5209 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5210 			goto adjust_bex;
5211 
5212 		ex.fe_logical = ac->ac_g_ex.fe_logical;
5213 		if (o_ex_end <= extent_logical_end(sbi, &ex))
5214 			goto adjust_bex;
5215 
5216 		ex.fe_logical = ac->ac_o_ex.fe_logical;
5217 adjust_bex:
5218 		ac->ac_b_ex.fe_logical = ex.fe_logical;
5219 
5220 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5221 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5222 	}
5223 
5224 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5225 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5226 	pa->pa_len = ac->ac_b_ex.fe_len;
5227 	pa->pa_free = pa->pa_len;
5228 	spin_lock_init(&pa->pa_lock);
5229 	INIT_LIST_HEAD(&pa->pa_group_list);
5230 	pa->pa_deleted = 0;
5231 	pa->pa_type = MB_INODE_PA;
5232 
5233 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5234 		 pa->pa_len, pa->pa_lstart);
5235 	trace_ext4_mb_new_inode_pa(ac, pa);
5236 
5237 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5238 	ext4_mb_use_inode_pa(ac, pa);
5239 
5240 	ei = EXT4_I(ac->ac_inode);
5241 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5242 	if (!grp)
5243 		return;
5244 
5245 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5246 	pa->pa_inode = ac->ac_inode;
5247 
5248 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5249 
5250 	write_lock(pa->pa_node_lock.inode_lock);
5251 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5252 	write_unlock(pa->pa_node_lock.inode_lock);
5253 	atomic_inc(&ei->i_prealloc_active);
5254 }
5255 
5256 /*
5257  * creates new preallocated space for locality group inodes belongs to
5258  */
5259 static noinline_for_stack void
5260 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5261 {
5262 	struct super_block *sb = ac->ac_sb;
5263 	struct ext4_locality_group *lg;
5264 	struct ext4_prealloc_space *pa;
5265 	struct ext4_group_info *grp;
5266 
5267 	/* preallocate only when found space is larger then requested */
5268 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5269 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5270 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5271 	BUG_ON(ac->ac_pa == NULL);
5272 
5273 	pa = ac->ac_pa;
5274 
5275 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5276 	pa->pa_lstart = pa->pa_pstart;
5277 	pa->pa_len = ac->ac_b_ex.fe_len;
5278 	pa->pa_free = pa->pa_len;
5279 	spin_lock_init(&pa->pa_lock);
5280 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5281 	INIT_LIST_HEAD(&pa->pa_group_list);
5282 	pa->pa_deleted = 0;
5283 	pa->pa_type = MB_GROUP_PA;
5284 
5285 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5286 		 pa->pa_len, pa->pa_lstart);
5287 	trace_ext4_mb_new_group_pa(ac, pa);
5288 
5289 	ext4_mb_use_group_pa(ac, pa);
5290 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5291 
5292 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5293 	if (!grp)
5294 		return;
5295 	lg = ac->ac_lg;
5296 	BUG_ON(lg == NULL);
5297 
5298 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5299 	pa->pa_inode = NULL;
5300 
5301 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5302 
5303 	/*
5304 	 * We will later add the new pa to the right bucket
5305 	 * after updating the pa_free in ext4_mb_release_context
5306 	 */
5307 }
5308 
5309 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5310 {
5311 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5312 		ext4_mb_new_group_pa(ac);
5313 	else
5314 		ext4_mb_new_inode_pa(ac);
5315 }
5316 
5317 /*
5318  * finds all unused blocks in on-disk bitmap, frees them in
5319  * in-core bitmap and buddy.
5320  * @pa must be unlinked from inode and group lists, so that
5321  * nobody else can find/use it.
5322  * the caller MUST hold group/inode locks.
5323  * TODO: optimize the case when there are no in-core structures yet
5324  */
5325 static noinline_for_stack void
5326 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5327 			struct ext4_prealloc_space *pa)
5328 {
5329 	struct super_block *sb = e4b->bd_sb;
5330 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5331 	unsigned int end;
5332 	unsigned int next;
5333 	ext4_group_t group;
5334 	ext4_grpblk_t bit;
5335 	unsigned long long grp_blk_start;
5336 	int free = 0;
5337 
5338 	BUG_ON(pa->pa_deleted == 0);
5339 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5340 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5341 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5342 	end = bit + pa->pa_len;
5343 
5344 	while (bit < end) {
5345 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5346 		if (bit >= end)
5347 			break;
5348 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5349 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5350 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5351 			 (unsigned) next - bit, (unsigned) group);
5352 		free += next - bit;
5353 
5354 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5355 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5356 						    EXT4_C2B(sbi, bit)),
5357 					       next - bit);
5358 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5359 		bit = next + 1;
5360 	}
5361 	if (free != pa->pa_free) {
5362 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5363 			 "pa %p: logic %lu, phys. %lu, len %d",
5364 			 pa, (unsigned long) pa->pa_lstart,
5365 			 (unsigned long) pa->pa_pstart,
5366 			 pa->pa_len);
5367 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5368 					free, pa->pa_free);
5369 		/*
5370 		 * pa is already deleted so we use the value obtained
5371 		 * from the bitmap and continue.
5372 		 */
5373 	}
5374 	atomic_add(free, &sbi->s_mb_discarded);
5375 }
5376 
5377 static noinline_for_stack void
5378 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5379 				struct ext4_prealloc_space *pa)
5380 {
5381 	struct super_block *sb = e4b->bd_sb;
5382 	ext4_group_t group;
5383 	ext4_grpblk_t bit;
5384 
5385 	trace_ext4_mb_release_group_pa(sb, pa);
5386 	BUG_ON(pa->pa_deleted == 0);
5387 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5388 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5389 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5390 			     e4b->bd_group, group, pa->pa_pstart);
5391 		return;
5392 	}
5393 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5394 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5395 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5396 }
5397 
5398 /*
5399  * releases all preallocations in given group
5400  *
5401  * first, we need to decide discard policy:
5402  * - when do we discard
5403  *   1) ENOSPC
5404  * - how many do we discard
5405  *   1) how many requested
5406  */
5407 static noinline_for_stack int
5408 ext4_mb_discard_group_preallocations(struct super_block *sb,
5409 				     ext4_group_t group, int *busy)
5410 {
5411 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5412 	struct buffer_head *bitmap_bh = NULL;
5413 	struct ext4_prealloc_space *pa, *tmp;
5414 	LIST_HEAD(list);
5415 	struct ext4_buddy e4b;
5416 	struct ext4_inode_info *ei;
5417 	int err;
5418 	int free = 0;
5419 
5420 	if (!grp)
5421 		return 0;
5422 	mb_debug(sb, "discard preallocation for group %u\n", group);
5423 	if (list_empty(&grp->bb_prealloc_list))
5424 		goto out_dbg;
5425 
5426 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5427 	if (IS_ERR(bitmap_bh)) {
5428 		err = PTR_ERR(bitmap_bh);
5429 		ext4_error_err(sb, -err,
5430 			       "Error %d reading block bitmap for %u",
5431 			       err, group);
5432 		goto out_dbg;
5433 	}
5434 
5435 	err = ext4_mb_load_buddy(sb, group, &e4b);
5436 	if (err) {
5437 		ext4_warning(sb, "Error %d loading buddy information for %u",
5438 			     err, group);
5439 		put_bh(bitmap_bh);
5440 		goto out_dbg;
5441 	}
5442 
5443 	ext4_lock_group(sb, group);
5444 	list_for_each_entry_safe(pa, tmp,
5445 				&grp->bb_prealloc_list, pa_group_list) {
5446 		spin_lock(&pa->pa_lock);
5447 		if (atomic_read(&pa->pa_count)) {
5448 			spin_unlock(&pa->pa_lock);
5449 			*busy = 1;
5450 			continue;
5451 		}
5452 		if (pa->pa_deleted) {
5453 			spin_unlock(&pa->pa_lock);
5454 			continue;
5455 		}
5456 
5457 		/* seems this one can be freed ... */
5458 		ext4_mb_mark_pa_deleted(sb, pa);
5459 
5460 		if (!free)
5461 			this_cpu_inc(discard_pa_seq);
5462 
5463 		/* we can trust pa_free ... */
5464 		free += pa->pa_free;
5465 
5466 		spin_unlock(&pa->pa_lock);
5467 
5468 		list_del(&pa->pa_group_list);
5469 		list_add(&pa->u.pa_tmp_list, &list);
5470 	}
5471 
5472 	/* now free all selected PAs */
5473 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5474 
5475 		/* remove from object (inode or locality group) */
5476 		if (pa->pa_type == MB_GROUP_PA) {
5477 			spin_lock(pa->pa_node_lock.lg_lock);
5478 			list_del_rcu(&pa->pa_node.lg_list);
5479 			spin_unlock(pa->pa_node_lock.lg_lock);
5480 		} else {
5481 			write_lock(pa->pa_node_lock.inode_lock);
5482 			ei = EXT4_I(pa->pa_inode);
5483 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5484 			write_unlock(pa->pa_node_lock.inode_lock);
5485 		}
5486 
5487 		list_del(&pa->u.pa_tmp_list);
5488 
5489 		if (pa->pa_type == MB_GROUP_PA) {
5490 			ext4_mb_release_group_pa(&e4b, pa);
5491 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5492 		} else {
5493 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5494 			ext4_mb_pa_free(pa);
5495 		}
5496 	}
5497 
5498 	ext4_unlock_group(sb, group);
5499 	ext4_mb_unload_buddy(&e4b);
5500 	put_bh(bitmap_bh);
5501 out_dbg:
5502 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5503 		 free, group, grp->bb_free);
5504 	return free;
5505 }
5506 
5507 /*
5508  * releases all non-used preallocated blocks for given inode
5509  *
5510  * It's important to discard preallocations under i_data_sem
5511  * We don't want another block to be served from the prealloc
5512  * space when we are discarding the inode prealloc space.
5513  *
5514  * FIXME!! Make sure it is valid at all the call sites
5515  */
5516 void ext4_discard_preallocations(struct inode *inode)
5517 {
5518 	struct ext4_inode_info *ei = EXT4_I(inode);
5519 	struct super_block *sb = inode->i_sb;
5520 	struct buffer_head *bitmap_bh = NULL;
5521 	struct ext4_prealloc_space *pa, *tmp;
5522 	ext4_group_t group = 0;
5523 	LIST_HEAD(list);
5524 	struct ext4_buddy e4b;
5525 	struct rb_node *iter;
5526 	int err;
5527 
5528 	if (!S_ISREG(inode->i_mode))
5529 		return;
5530 
5531 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5532 		return;
5533 
5534 	mb_debug(sb, "discard preallocation for inode %lu\n",
5535 		 inode->i_ino);
5536 	trace_ext4_discard_preallocations(inode,
5537 			atomic_read(&ei->i_prealloc_active));
5538 
5539 repeat:
5540 	/* first, collect all pa's in the inode */
5541 	write_lock(&ei->i_prealloc_lock);
5542 	for (iter = rb_first(&ei->i_prealloc_node); iter;
5543 	     iter = rb_next(iter)) {
5544 		pa = rb_entry(iter, struct ext4_prealloc_space,
5545 			      pa_node.inode_node);
5546 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5547 
5548 		spin_lock(&pa->pa_lock);
5549 		if (atomic_read(&pa->pa_count)) {
5550 			/* this shouldn't happen often - nobody should
5551 			 * use preallocation while we're discarding it */
5552 			spin_unlock(&pa->pa_lock);
5553 			write_unlock(&ei->i_prealloc_lock);
5554 			ext4_msg(sb, KERN_ERR,
5555 				 "uh-oh! used pa while discarding");
5556 			WARN_ON(1);
5557 			schedule_timeout_uninterruptible(HZ);
5558 			goto repeat;
5559 
5560 		}
5561 		if (pa->pa_deleted == 0) {
5562 			ext4_mb_mark_pa_deleted(sb, pa);
5563 			spin_unlock(&pa->pa_lock);
5564 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5565 			list_add(&pa->u.pa_tmp_list, &list);
5566 			continue;
5567 		}
5568 
5569 		/* someone is deleting pa right now */
5570 		spin_unlock(&pa->pa_lock);
5571 		write_unlock(&ei->i_prealloc_lock);
5572 
5573 		/* we have to wait here because pa_deleted
5574 		 * doesn't mean pa is already unlinked from
5575 		 * the list. as we might be called from
5576 		 * ->clear_inode() the inode will get freed
5577 		 * and concurrent thread which is unlinking
5578 		 * pa from inode's list may access already
5579 		 * freed memory, bad-bad-bad */
5580 
5581 		/* XXX: if this happens too often, we can
5582 		 * add a flag to force wait only in case
5583 		 * of ->clear_inode(), but not in case of
5584 		 * regular truncate */
5585 		schedule_timeout_uninterruptible(HZ);
5586 		goto repeat;
5587 	}
5588 	write_unlock(&ei->i_prealloc_lock);
5589 
5590 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5591 		BUG_ON(pa->pa_type != MB_INODE_PA);
5592 		group = ext4_get_group_number(sb, pa->pa_pstart);
5593 
5594 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5595 					     GFP_NOFS|__GFP_NOFAIL);
5596 		if (err) {
5597 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5598 				       err, group);
5599 			continue;
5600 		}
5601 
5602 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5603 		if (IS_ERR(bitmap_bh)) {
5604 			err = PTR_ERR(bitmap_bh);
5605 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5606 				       err, group);
5607 			ext4_mb_unload_buddy(&e4b);
5608 			continue;
5609 		}
5610 
5611 		ext4_lock_group(sb, group);
5612 		list_del(&pa->pa_group_list);
5613 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5614 		ext4_unlock_group(sb, group);
5615 
5616 		ext4_mb_unload_buddy(&e4b);
5617 		put_bh(bitmap_bh);
5618 
5619 		list_del(&pa->u.pa_tmp_list);
5620 		ext4_mb_pa_free(pa);
5621 	}
5622 }
5623 
5624 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5625 {
5626 	struct ext4_prealloc_space *pa;
5627 
5628 	BUG_ON(ext4_pspace_cachep == NULL);
5629 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5630 	if (!pa)
5631 		return -ENOMEM;
5632 	atomic_set(&pa->pa_count, 1);
5633 	ac->ac_pa = pa;
5634 	return 0;
5635 }
5636 
5637 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5638 {
5639 	struct ext4_prealloc_space *pa = ac->ac_pa;
5640 
5641 	BUG_ON(!pa);
5642 	ac->ac_pa = NULL;
5643 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5644 	/*
5645 	 * current function is only called due to an error or due to
5646 	 * len of found blocks < len of requested blocks hence the PA has not
5647 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5648 	 */
5649 	pa->pa_deleted = 1;
5650 	ext4_mb_pa_free(pa);
5651 }
5652 
5653 #ifdef CONFIG_EXT4_DEBUG
5654 static inline void ext4_mb_show_pa(struct super_block *sb)
5655 {
5656 	ext4_group_t i, ngroups;
5657 
5658 	if (ext4_forced_shutdown(sb))
5659 		return;
5660 
5661 	ngroups = ext4_get_groups_count(sb);
5662 	mb_debug(sb, "groups: ");
5663 	for (i = 0; i < ngroups; i++) {
5664 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5665 		struct ext4_prealloc_space *pa;
5666 		ext4_grpblk_t start;
5667 		struct list_head *cur;
5668 
5669 		if (!grp)
5670 			continue;
5671 		ext4_lock_group(sb, i);
5672 		list_for_each(cur, &grp->bb_prealloc_list) {
5673 			pa = list_entry(cur, struct ext4_prealloc_space,
5674 					pa_group_list);
5675 			spin_lock(&pa->pa_lock);
5676 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5677 						     NULL, &start);
5678 			spin_unlock(&pa->pa_lock);
5679 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5680 				 pa->pa_len);
5681 		}
5682 		ext4_unlock_group(sb, i);
5683 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5684 			 grp->bb_fragments);
5685 	}
5686 }
5687 
5688 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5689 {
5690 	struct super_block *sb = ac->ac_sb;
5691 
5692 	if (ext4_forced_shutdown(sb))
5693 		return;
5694 
5695 	mb_debug(sb, "Can't allocate:"
5696 			" Allocation context details:");
5697 	mb_debug(sb, "status %u flags 0x%x",
5698 			ac->ac_status, ac->ac_flags);
5699 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5700 			"goal %lu/%lu/%lu@%lu, "
5701 			"best %lu/%lu/%lu@%lu cr %d",
5702 			(unsigned long)ac->ac_o_ex.fe_group,
5703 			(unsigned long)ac->ac_o_ex.fe_start,
5704 			(unsigned long)ac->ac_o_ex.fe_len,
5705 			(unsigned long)ac->ac_o_ex.fe_logical,
5706 			(unsigned long)ac->ac_g_ex.fe_group,
5707 			(unsigned long)ac->ac_g_ex.fe_start,
5708 			(unsigned long)ac->ac_g_ex.fe_len,
5709 			(unsigned long)ac->ac_g_ex.fe_logical,
5710 			(unsigned long)ac->ac_b_ex.fe_group,
5711 			(unsigned long)ac->ac_b_ex.fe_start,
5712 			(unsigned long)ac->ac_b_ex.fe_len,
5713 			(unsigned long)ac->ac_b_ex.fe_logical,
5714 			(int)ac->ac_criteria);
5715 	mb_debug(sb, "%u found", ac->ac_found);
5716 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5717 	if (ac->ac_pa)
5718 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5719 			 "group pa" : "inode pa");
5720 	ext4_mb_show_pa(sb);
5721 }
5722 #else
5723 static inline void ext4_mb_show_pa(struct super_block *sb)
5724 {
5725 }
5726 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5727 {
5728 	ext4_mb_show_pa(ac->ac_sb);
5729 }
5730 #endif
5731 
5732 /*
5733  * We use locality group preallocation for small size file. The size of the
5734  * file is determined by the current size or the resulting size after
5735  * allocation which ever is larger
5736  *
5737  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5738  */
5739 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5740 {
5741 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5742 	int bsbits = ac->ac_sb->s_blocksize_bits;
5743 	loff_t size, isize;
5744 	bool inode_pa_eligible, group_pa_eligible;
5745 
5746 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5747 		return;
5748 
5749 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5750 		return;
5751 
5752 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5753 	inode_pa_eligible = true;
5754 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5755 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5756 		>> bsbits;
5757 
5758 	/* No point in using inode preallocation for closed files */
5759 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5760 	    !inode_is_open_for_write(ac->ac_inode))
5761 		inode_pa_eligible = false;
5762 
5763 	size = max(size, isize);
5764 	/* Don't use group allocation for large files */
5765 	if (size > sbi->s_mb_stream_request)
5766 		group_pa_eligible = false;
5767 
5768 	if (!group_pa_eligible) {
5769 		if (inode_pa_eligible)
5770 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5771 		else
5772 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5773 		return;
5774 	}
5775 
5776 	BUG_ON(ac->ac_lg != NULL);
5777 	/*
5778 	 * locality group prealloc space are per cpu. The reason for having
5779 	 * per cpu locality group is to reduce the contention between block
5780 	 * request from multiple CPUs.
5781 	 */
5782 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5783 
5784 	/* we're going to use group allocation */
5785 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5786 
5787 	/* serialize all allocations in the group */
5788 	mutex_lock(&ac->ac_lg->lg_mutex);
5789 }
5790 
5791 static noinline_for_stack void
5792 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5793 				struct ext4_allocation_request *ar)
5794 {
5795 	struct super_block *sb = ar->inode->i_sb;
5796 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5797 	struct ext4_super_block *es = sbi->s_es;
5798 	ext4_group_t group;
5799 	unsigned int len;
5800 	ext4_fsblk_t goal;
5801 	ext4_grpblk_t block;
5802 
5803 	/* we can't allocate > group size */
5804 	len = ar->len;
5805 
5806 	/* just a dirty hack to filter too big requests  */
5807 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5808 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5809 
5810 	/* start searching from the goal */
5811 	goal = ar->goal;
5812 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5813 			goal >= ext4_blocks_count(es))
5814 		goal = le32_to_cpu(es->s_first_data_block);
5815 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5816 
5817 	/* set up allocation goals */
5818 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5819 	ac->ac_status = AC_STATUS_CONTINUE;
5820 	ac->ac_sb = sb;
5821 	ac->ac_inode = ar->inode;
5822 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5823 	ac->ac_o_ex.fe_group = group;
5824 	ac->ac_o_ex.fe_start = block;
5825 	ac->ac_o_ex.fe_len = len;
5826 	ac->ac_g_ex = ac->ac_o_ex;
5827 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5828 	ac->ac_flags = ar->flags;
5829 
5830 	/* we have to define context: we'll work with a file or
5831 	 * locality group. this is a policy, actually */
5832 	ext4_mb_group_or_file(ac);
5833 
5834 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5835 			"left: %u/%u, right %u/%u to %swritable\n",
5836 			(unsigned) ar->len, (unsigned) ar->logical,
5837 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5838 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5839 			(unsigned) ar->lright, (unsigned) ar->pright,
5840 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5841 }
5842 
5843 static noinline_for_stack void
5844 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5845 					struct ext4_locality_group *lg,
5846 					int order, int total_entries)
5847 {
5848 	ext4_group_t group = 0;
5849 	struct ext4_buddy e4b;
5850 	LIST_HEAD(discard_list);
5851 	struct ext4_prealloc_space *pa, *tmp;
5852 
5853 	mb_debug(sb, "discard locality group preallocation\n");
5854 
5855 	spin_lock(&lg->lg_prealloc_lock);
5856 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5857 				pa_node.lg_list,
5858 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5859 		spin_lock(&pa->pa_lock);
5860 		if (atomic_read(&pa->pa_count)) {
5861 			/*
5862 			 * This is the pa that we just used
5863 			 * for block allocation. So don't
5864 			 * free that
5865 			 */
5866 			spin_unlock(&pa->pa_lock);
5867 			continue;
5868 		}
5869 		if (pa->pa_deleted) {
5870 			spin_unlock(&pa->pa_lock);
5871 			continue;
5872 		}
5873 		/* only lg prealloc space */
5874 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5875 
5876 		/* seems this one can be freed ... */
5877 		ext4_mb_mark_pa_deleted(sb, pa);
5878 		spin_unlock(&pa->pa_lock);
5879 
5880 		list_del_rcu(&pa->pa_node.lg_list);
5881 		list_add(&pa->u.pa_tmp_list, &discard_list);
5882 
5883 		total_entries--;
5884 		if (total_entries <= 5) {
5885 			/*
5886 			 * we want to keep only 5 entries
5887 			 * allowing it to grow to 8. This
5888 			 * mak sure we don't call discard
5889 			 * soon for this list.
5890 			 */
5891 			break;
5892 		}
5893 	}
5894 	spin_unlock(&lg->lg_prealloc_lock);
5895 
5896 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5897 		int err;
5898 
5899 		group = ext4_get_group_number(sb, pa->pa_pstart);
5900 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5901 					     GFP_NOFS|__GFP_NOFAIL);
5902 		if (err) {
5903 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5904 				       err, group);
5905 			continue;
5906 		}
5907 		ext4_lock_group(sb, group);
5908 		list_del(&pa->pa_group_list);
5909 		ext4_mb_release_group_pa(&e4b, pa);
5910 		ext4_unlock_group(sb, group);
5911 
5912 		ext4_mb_unload_buddy(&e4b);
5913 		list_del(&pa->u.pa_tmp_list);
5914 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5915 	}
5916 }
5917 
5918 /*
5919  * We have incremented pa_count. So it cannot be freed at this
5920  * point. Also we hold lg_mutex. So no parallel allocation is
5921  * possible from this lg. That means pa_free cannot be updated.
5922  *
5923  * A parallel ext4_mb_discard_group_preallocations is possible.
5924  * which can cause the lg_prealloc_list to be updated.
5925  */
5926 
5927 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5928 {
5929 	int order, added = 0, lg_prealloc_count = 1;
5930 	struct super_block *sb = ac->ac_sb;
5931 	struct ext4_locality_group *lg = ac->ac_lg;
5932 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5933 
5934 	order = fls(pa->pa_free) - 1;
5935 	if (order > PREALLOC_TB_SIZE - 1)
5936 		/* The max size of hash table is PREALLOC_TB_SIZE */
5937 		order = PREALLOC_TB_SIZE - 1;
5938 	/* Add the prealloc space to lg */
5939 	spin_lock(&lg->lg_prealloc_lock);
5940 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5941 				pa_node.lg_list,
5942 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5943 		spin_lock(&tmp_pa->pa_lock);
5944 		if (tmp_pa->pa_deleted) {
5945 			spin_unlock(&tmp_pa->pa_lock);
5946 			continue;
5947 		}
5948 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5949 			/* Add to the tail of the previous entry */
5950 			list_add_tail_rcu(&pa->pa_node.lg_list,
5951 						&tmp_pa->pa_node.lg_list);
5952 			added = 1;
5953 			/*
5954 			 * we want to count the total
5955 			 * number of entries in the list
5956 			 */
5957 		}
5958 		spin_unlock(&tmp_pa->pa_lock);
5959 		lg_prealloc_count++;
5960 	}
5961 	if (!added)
5962 		list_add_tail_rcu(&pa->pa_node.lg_list,
5963 					&lg->lg_prealloc_list[order]);
5964 	spin_unlock(&lg->lg_prealloc_lock);
5965 
5966 	/* Now trim the list to be not more than 8 elements */
5967 	if (lg_prealloc_count > 8)
5968 		ext4_mb_discard_lg_preallocations(sb, lg,
5969 						  order, lg_prealloc_count);
5970 }
5971 
5972 /*
5973  * release all resource we used in allocation
5974  */
5975 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5976 {
5977 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5978 	struct ext4_prealloc_space *pa = ac->ac_pa;
5979 	if (pa) {
5980 		if (pa->pa_type == MB_GROUP_PA) {
5981 			/* see comment in ext4_mb_use_group_pa() */
5982 			spin_lock(&pa->pa_lock);
5983 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5984 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5985 			pa->pa_free -= ac->ac_b_ex.fe_len;
5986 			pa->pa_len -= ac->ac_b_ex.fe_len;
5987 			spin_unlock(&pa->pa_lock);
5988 
5989 			/*
5990 			 * We want to add the pa to the right bucket.
5991 			 * Remove it from the list and while adding
5992 			 * make sure the list to which we are adding
5993 			 * doesn't grow big.
5994 			 */
5995 			if (likely(pa->pa_free)) {
5996 				spin_lock(pa->pa_node_lock.lg_lock);
5997 				list_del_rcu(&pa->pa_node.lg_list);
5998 				spin_unlock(pa->pa_node_lock.lg_lock);
5999 				ext4_mb_add_n_trim(ac);
6000 			}
6001 		}
6002 
6003 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
6004 	}
6005 	if (ac->ac_bitmap_folio)
6006 		folio_put(ac->ac_bitmap_folio);
6007 	if (ac->ac_buddy_folio)
6008 		folio_put(ac->ac_buddy_folio);
6009 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6010 		mutex_unlock(&ac->ac_lg->lg_mutex);
6011 	ext4_mb_collect_stats(ac);
6012 }
6013 
6014 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6015 {
6016 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6017 	int ret;
6018 	int freed = 0, busy = 0;
6019 	int retry = 0;
6020 
6021 	trace_ext4_mb_discard_preallocations(sb, needed);
6022 
6023 	if (needed == 0)
6024 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6025  repeat:
6026 	for (i = 0; i < ngroups && needed > 0; i++) {
6027 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6028 		freed += ret;
6029 		needed -= ret;
6030 		cond_resched();
6031 	}
6032 
6033 	if (needed > 0 && busy && ++retry < 3) {
6034 		busy = 0;
6035 		goto repeat;
6036 	}
6037 
6038 	return freed;
6039 }
6040 
6041 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6042 			struct ext4_allocation_context *ac, u64 *seq)
6043 {
6044 	int freed;
6045 	u64 seq_retry = 0;
6046 	bool ret = false;
6047 
6048 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6049 	if (freed) {
6050 		ret = true;
6051 		goto out_dbg;
6052 	}
6053 	seq_retry = ext4_get_discard_pa_seq_sum();
6054 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6055 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6056 		*seq = seq_retry;
6057 		ret = true;
6058 	}
6059 
6060 out_dbg:
6061 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6062 	return ret;
6063 }
6064 
6065 /*
6066  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6067  * linearly starting at the goal block and also excludes the blocks which
6068  * are going to be in use after fast commit replay.
6069  */
6070 static ext4_fsblk_t
6071 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6072 {
6073 	struct buffer_head *bitmap_bh;
6074 	struct super_block *sb = ar->inode->i_sb;
6075 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6076 	ext4_group_t group, nr;
6077 	ext4_grpblk_t blkoff;
6078 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6079 	ext4_grpblk_t i = 0;
6080 	ext4_fsblk_t goal, block;
6081 	struct ext4_super_block *es = sbi->s_es;
6082 
6083 	goal = ar->goal;
6084 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6085 			goal >= ext4_blocks_count(es))
6086 		goal = le32_to_cpu(es->s_first_data_block);
6087 
6088 	ar->len = 0;
6089 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6090 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6091 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6092 		if (IS_ERR(bitmap_bh)) {
6093 			*errp = PTR_ERR(bitmap_bh);
6094 			pr_warn("Failed to read block bitmap\n");
6095 			return 0;
6096 		}
6097 
6098 		while (1) {
6099 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6100 						blkoff);
6101 			if (i >= max)
6102 				break;
6103 			if (ext4_fc_replay_check_excluded(sb,
6104 				ext4_group_first_block_no(sb, group) +
6105 				EXT4_C2B(sbi, i))) {
6106 				blkoff = i + 1;
6107 			} else
6108 				break;
6109 		}
6110 		brelse(bitmap_bh);
6111 		if (i < max)
6112 			break;
6113 
6114 		if (++group >= ext4_get_groups_count(sb))
6115 			group = 0;
6116 
6117 		blkoff = 0;
6118 	}
6119 
6120 	if (i >= max) {
6121 		*errp = -ENOSPC;
6122 		return 0;
6123 	}
6124 
6125 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6126 	ext4_mb_mark_bb(sb, block, 1, true);
6127 	ar->len = 1;
6128 
6129 	*errp = 0;
6130 	return block;
6131 }
6132 
6133 /*
6134  * Main entry point into mballoc to allocate blocks
6135  * it tries to use preallocation first, then falls back
6136  * to usual allocation
6137  */
6138 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6139 				struct ext4_allocation_request *ar, int *errp)
6140 {
6141 	struct ext4_allocation_context *ac = NULL;
6142 	struct ext4_sb_info *sbi;
6143 	struct super_block *sb;
6144 	ext4_fsblk_t block = 0;
6145 	unsigned int inquota = 0;
6146 	unsigned int reserv_clstrs = 0;
6147 	int retries = 0;
6148 	u64 seq;
6149 
6150 	might_sleep();
6151 	sb = ar->inode->i_sb;
6152 	sbi = EXT4_SB(sb);
6153 
6154 	trace_ext4_request_blocks(ar);
6155 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6156 		return ext4_mb_new_blocks_simple(ar, errp);
6157 
6158 	/* Allow to use superuser reservation for quota file */
6159 	if (ext4_is_quota_file(ar->inode))
6160 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6161 
6162 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6163 		/* Without delayed allocation we need to verify
6164 		 * there is enough free blocks to do block allocation
6165 		 * and verify allocation doesn't exceed the quota limits.
6166 		 */
6167 		while (ar->len &&
6168 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6169 
6170 			/* let others to free the space */
6171 			cond_resched();
6172 			ar->len = ar->len >> 1;
6173 		}
6174 		if (!ar->len) {
6175 			ext4_mb_show_pa(sb);
6176 			*errp = -ENOSPC;
6177 			return 0;
6178 		}
6179 		reserv_clstrs = ar->len;
6180 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6181 			dquot_alloc_block_nofail(ar->inode,
6182 						 EXT4_C2B(sbi, ar->len));
6183 		} else {
6184 			while (ar->len &&
6185 				dquot_alloc_block(ar->inode,
6186 						  EXT4_C2B(sbi, ar->len))) {
6187 
6188 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6189 				ar->len--;
6190 			}
6191 		}
6192 		inquota = ar->len;
6193 		if (ar->len == 0) {
6194 			*errp = -EDQUOT;
6195 			goto out;
6196 		}
6197 	}
6198 
6199 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6200 	if (!ac) {
6201 		ar->len = 0;
6202 		*errp = -ENOMEM;
6203 		goto out;
6204 	}
6205 
6206 	ext4_mb_initialize_context(ac, ar);
6207 
6208 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6209 	seq = this_cpu_read(discard_pa_seq);
6210 	if (!ext4_mb_use_preallocated(ac)) {
6211 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6212 		ext4_mb_normalize_request(ac, ar);
6213 
6214 		*errp = ext4_mb_pa_alloc(ac);
6215 		if (*errp)
6216 			goto errout;
6217 repeat:
6218 		/* allocate space in core */
6219 		*errp = ext4_mb_regular_allocator(ac);
6220 		/*
6221 		 * pa allocated above is added to grp->bb_prealloc_list only
6222 		 * when we were able to allocate some block i.e. when
6223 		 * ac->ac_status == AC_STATUS_FOUND.
6224 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6225 		 * So we have to free this pa here itself.
6226 		 */
6227 		if (*errp) {
6228 			ext4_mb_pa_put_free(ac);
6229 			ext4_discard_allocated_blocks(ac);
6230 			goto errout;
6231 		}
6232 		if (ac->ac_status == AC_STATUS_FOUND &&
6233 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6234 			ext4_mb_pa_put_free(ac);
6235 	}
6236 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6237 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6238 		if (*errp) {
6239 			ext4_discard_allocated_blocks(ac);
6240 			goto errout;
6241 		} else {
6242 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6243 			ar->len = ac->ac_b_ex.fe_len;
6244 		}
6245 	} else {
6246 		if (++retries < 3 &&
6247 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6248 			goto repeat;
6249 		/*
6250 		 * If block allocation fails then the pa allocated above
6251 		 * needs to be freed here itself.
6252 		 */
6253 		ext4_mb_pa_put_free(ac);
6254 		*errp = -ENOSPC;
6255 	}
6256 
6257 	if (*errp) {
6258 errout:
6259 		ac->ac_b_ex.fe_len = 0;
6260 		ar->len = 0;
6261 		ext4_mb_show_ac(ac);
6262 	}
6263 	ext4_mb_release_context(ac);
6264 	kmem_cache_free(ext4_ac_cachep, ac);
6265 out:
6266 	if (inquota && ar->len < inquota)
6267 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6268 	if (!ar->len) {
6269 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6270 			/* release all the reserved blocks if non delalloc */
6271 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6272 						reserv_clstrs);
6273 	}
6274 
6275 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6276 
6277 	return block;
6278 }
6279 
6280 /*
6281  * We can merge two free data extents only if the physical blocks
6282  * are contiguous, AND the extents were freed by the same transaction,
6283  * AND the blocks are associated with the same group.
6284  */
6285 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6286 					struct ext4_free_data *entry,
6287 					struct ext4_free_data *new_entry,
6288 					struct rb_root *entry_rb_root)
6289 {
6290 	if ((entry->efd_tid != new_entry->efd_tid) ||
6291 	    (entry->efd_group != new_entry->efd_group))
6292 		return;
6293 	if (entry->efd_start_cluster + entry->efd_count ==
6294 	    new_entry->efd_start_cluster) {
6295 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6296 		new_entry->efd_count += entry->efd_count;
6297 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6298 		   entry->efd_start_cluster) {
6299 		new_entry->efd_count += entry->efd_count;
6300 	} else
6301 		return;
6302 	spin_lock(&sbi->s_md_lock);
6303 	list_del(&entry->efd_list);
6304 	spin_unlock(&sbi->s_md_lock);
6305 	rb_erase(&entry->efd_node, entry_rb_root);
6306 	kmem_cache_free(ext4_free_data_cachep, entry);
6307 }
6308 
6309 static noinline_for_stack void
6310 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6311 		      struct ext4_free_data *new_entry)
6312 {
6313 	ext4_group_t group = e4b->bd_group;
6314 	ext4_grpblk_t cluster;
6315 	ext4_grpblk_t clusters = new_entry->efd_count;
6316 	struct ext4_free_data *entry;
6317 	struct ext4_group_info *db = e4b->bd_info;
6318 	struct super_block *sb = e4b->bd_sb;
6319 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6320 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6321 	struct rb_node *parent = NULL, *new_node;
6322 
6323 	BUG_ON(!ext4_handle_valid(handle));
6324 	BUG_ON(e4b->bd_bitmap_folio == NULL);
6325 	BUG_ON(e4b->bd_buddy_folio == NULL);
6326 
6327 	new_node = &new_entry->efd_node;
6328 	cluster = new_entry->efd_start_cluster;
6329 
6330 	if (!*n) {
6331 		/* first free block exent. We need to
6332 		   protect buddy cache from being freed,
6333 		 * otherwise we'll refresh it from
6334 		 * on-disk bitmap and lose not-yet-available
6335 		 * blocks */
6336 		folio_get(e4b->bd_buddy_folio);
6337 		folio_get(e4b->bd_bitmap_folio);
6338 	}
6339 	while (*n) {
6340 		parent = *n;
6341 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6342 		if (cluster < entry->efd_start_cluster)
6343 			n = &(*n)->rb_left;
6344 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6345 			n = &(*n)->rb_right;
6346 		else {
6347 			ext4_grp_locked_error(sb, group, 0,
6348 				ext4_group_first_block_no(sb, group) +
6349 				EXT4_C2B(sbi, cluster),
6350 				"Block already on to-be-freed list");
6351 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6352 			return;
6353 		}
6354 	}
6355 
6356 	rb_link_node(new_node, parent, n);
6357 	rb_insert_color(new_node, &db->bb_free_root);
6358 
6359 	/* Now try to see the extent can be merged to left and right */
6360 	node = rb_prev(new_node);
6361 	if (node) {
6362 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6363 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6364 					    &(db->bb_free_root));
6365 	}
6366 
6367 	node = rb_next(new_node);
6368 	if (node) {
6369 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6370 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6371 					    &(db->bb_free_root));
6372 	}
6373 
6374 	spin_lock(&sbi->s_md_lock);
6375 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6376 	sbi->s_mb_free_pending += clusters;
6377 	spin_unlock(&sbi->s_md_lock);
6378 }
6379 
6380 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6381 					unsigned long count)
6382 {
6383 	struct super_block *sb = inode->i_sb;
6384 	ext4_group_t group;
6385 	ext4_grpblk_t blkoff;
6386 
6387 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6388 	ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6389 			     EXT4_MB_BITMAP_MARKED_CHECK |
6390 			     EXT4_MB_SYNC_UPDATE,
6391 			     NULL);
6392 }
6393 
6394 /**
6395  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6396  *			Used by ext4_free_blocks()
6397  * @handle:		handle for this transaction
6398  * @inode:		inode
6399  * @block:		starting physical block to be freed
6400  * @count:		number of blocks to be freed
6401  * @flags:		flags used by ext4_free_blocks
6402  */
6403 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6404 			       ext4_fsblk_t block, unsigned long count,
6405 			       int flags)
6406 {
6407 	struct super_block *sb = inode->i_sb;
6408 	struct ext4_group_info *grp;
6409 	unsigned int overflow;
6410 	ext4_grpblk_t bit;
6411 	ext4_group_t block_group;
6412 	struct ext4_sb_info *sbi;
6413 	struct ext4_buddy e4b;
6414 	unsigned int count_clusters;
6415 	int err = 0;
6416 	int mark_flags = 0;
6417 	ext4_grpblk_t changed;
6418 
6419 	sbi = EXT4_SB(sb);
6420 
6421 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6422 	    !ext4_inode_block_valid(inode, block, count)) {
6423 		ext4_error(sb, "Freeing blocks in system zone - "
6424 			   "Block = %llu, count = %lu", block, count);
6425 		/* err = 0. ext4_std_error should be a no op */
6426 		goto error_out;
6427 	}
6428 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6429 
6430 do_more:
6431 	overflow = 0;
6432 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6433 
6434 	grp = ext4_get_group_info(sb, block_group);
6435 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6436 		return;
6437 
6438 	/*
6439 	 * Check to see if we are freeing blocks across a group
6440 	 * boundary.
6441 	 */
6442 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6443 		overflow = EXT4_C2B(sbi, bit) + count -
6444 			EXT4_BLOCKS_PER_GROUP(sb);
6445 		count -= overflow;
6446 		/* The range changed so it's no longer validated */
6447 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6448 	}
6449 	count_clusters = EXT4_NUM_B2C(sbi, count);
6450 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6451 
6452 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6453 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6454 				     GFP_NOFS|__GFP_NOFAIL);
6455 	if (err)
6456 		goto error_out;
6457 
6458 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6459 	    !ext4_inode_block_valid(inode, block, count)) {
6460 		ext4_error(sb, "Freeing blocks in system zone - "
6461 			   "Block = %llu, count = %lu", block, count);
6462 		/* err = 0. ext4_std_error should be a no op */
6463 		goto error_clean;
6464 	}
6465 
6466 #ifdef AGGRESSIVE_CHECK
6467 	mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6468 #endif
6469 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6470 				   count_clusters, mark_flags, &changed);
6471 
6472 
6473 	if (err && changed == 0)
6474 		goto error_clean;
6475 
6476 #ifdef AGGRESSIVE_CHECK
6477 	BUG_ON(changed != count_clusters);
6478 #endif
6479 
6480 	/*
6481 	 * We need to make sure we don't reuse the freed block until after the
6482 	 * transaction is committed. We make an exception if the inode is to be
6483 	 * written in writeback mode since writeback mode has weak data
6484 	 * consistency guarantees.
6485 	 */
6486 	if (ext4_handle_valid(handle) &&
6487 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6488 	     !ext4_should_writeback_data(inode))) {
6489 		struct ext4_free_data *new_entry;
6490 		/*
6491 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6492 		 * to fail.
6493 		 */
6494 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6495 				GFP_NOFS|__GFP_NOFAIL);
6496 		new_entry->efd_start_cluster = bit;
6497 		new_entry->efd_group = block_group;
6498 		new_entry->efd_count = count_clusters;
6499 		new_entry->efd_tid = handle->h_transaction->t_tid;
6500 
6501 		ext4_lock_group(sb, block_group);
6502 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6503 	} else {
6504 		if (test_opt(sb, DISCARD)) {
6505 			err = ext4_issue_discard(sb, block_group, bit,
6506 						 count_clusters);
6507 			/*
6508 			 * Ignore EOPNOTSUPP error. This is consistent with
6509 			 * what happens when using journal.
6510 			 */
6511 			if (err == -EOPNOTSUPP)
6512 				err = 0;
6513 			if (err)
6514 				ext4_msg(sb, KERN_WARNING, "discard request in"
6515 					 " group:%u block:%d count:%lu failed"
6516 					 " with %d", block_group, bit, count,
6517 					 err);
6518 		} else
6519 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6520 
6521 		ext4_lock_group(sb, block_group);
6522 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6523 	}
6524 
6525 	ext4_unlock_group(sb, block_group);
6526 
6527 	/*
6528 	 * on a bigalloc file system, defer the s_freeclusters_counter
6529 	 * update to the caller (ext4_remove_space and friends) so they
6530 	 * can determine if a cluster freed here should be rereserved
6531 	 */
6532 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6533 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6534 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6535 		percpu_counter_add(&sbi->s_freeclusters_counter,
6536 				   count_clusters);
6537 	}
6538 
6539 	if (overflow && !err) {
6540 		block += count;
6541 		count = overflow;
6542 		ext4_mb_unload_buddy(&e4b);
6543 		/* The range changed so it's no longer validated */
6544 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6545 		goto do_more;
6546 	}
6547 
6548 error_clean:
6549 	ext4_mb_unload_buddy(&e4b);
6550 error_out:
6551 	ext4_std_error(sb, err);
6552 }
6553 
6554 /**
6555  * ext4_free_blocks() -- Free given blocks and update quota
6556  * @handle:		handle for this transaction
6557  * @inode:		inode
6558  * @bh:			optional buffer of the block to be freed
6559  * @block:		starting physical block to be freed
6560  * @count:		number of blocks to be freed
6561  * @flags:		flags used by ext4_free_blocks
6562  */
6563 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6564 		      struct buffer_head *bh, ext4_fsblk_t block,
6565 		      unsigned long count, int flags)
6566 {
6567 	struct super_block *sb = inode->i_sb;
6568 	unsigned int overflow;
6569 	struct ext4_sb_info *sbi;
6570 
6571 	sbi = EXT4_SB(sb);
6572 
6573 	if (bh) {
6574 		if (block)
6575 			BUG_ON(block != bh->b_blocknr);
6576 		else
6577 			block = bh->b_blocknr;
6578 	}
6579 
6580 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6581 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6582 		return;
6583 	}
6584 
6585 	might_sleep();
6586 
6587 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6588 	    !ext4_inode_block_valid(inode, block, count)) {
6589 		ext4_error(sb, "Freeing blocks not in datazone - "
6590 			   "block = %llu, count = %lu", block, count);
6591 		return;
6592 	}
6593 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6594 
6595 	ext4_debug("freeing block %llu\n", block);
6596 	trace_ext4_free_blocks(inode, block, count, flags);
6597 
6598 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6599 		BUG_ON(count > 1);
6600 
6601 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6602 			    inode, bh, block);
6603 	}
6604 
6605 	/*
6606 	 * If the extent to be freed does not begin on a cluster
6607 	 * boundary, we need to deal with partial clusters at the
6608 	 * beginning and end of the extent.  Normally we will free
6609 	 * blocks at the beginning or the end unless we are explicitly
6610 	 * requested to avoid doing so.
6611 	 */
6612 	overflow = EXT4_PBLK_COFF(sbi, block);
6613 	if (overflow) {
6614 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6615 			overflow = sbi->s_cluster_ratio - overflow;
6616 			block += overflow;
6617 			if (count > overflow)
6618 				count -= overflow;
6619 			else
6620 				return;
6621 		} else {
6622 			block -= overflow;
6623 			count += overflow;
6624 		}
6625 		/* The range changed so it's no longer validated */
6626 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6627 	}
6628 	overflow = EXT4_LBLK_COFF(sbi, count);
6629 	if (overflow) {
6630 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6631 			if (count > overflow)
6632 				count -= overflow;
6633 			else
6634 				return;
6635 		} else
6636 			count += sbi->s_cluster_ratio - overflow;
6637 		/* The range changed so it's no longer validated */
6638 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6639 	}
6640 
6641 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6642 		int i;
6643 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6644 
6645 		for (i = 0; i < count; i++) {
6646 			cond_resched();
6647 			if (is_metadata)
6648 				bh = sb_find_get_block(inode->i_sb, block + i);
6649 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6650 		}
6651 	}
6652 
6653 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6654 }
6655 
6656 /**
6657  * ext4_group_add_blocks() -- Add given blocks to an existing group
6658  * @handle:			handle to this transaction
6659  * @sb:				super block
6660  * @block:			start physical block to add to the block group
6661  * @count:			number of blocks to free
6662  *
6663  * This marks the blocks as free in the bitmap and buddy.
6664  */
6665 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6666 			 ext4_fsblk_t block, unsigned long count)
6667 {
6668 	ext4_group_t block_group;
6669 	ext4_grpblk_t bit;
6670 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6671 	struct ext4_buddy e4b;
6672 	int err = 0;
6673 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6674 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6675 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6676 	ext4_grpblk_t changed;
6677 
6678 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6679 
6680 	if (cluster_count == 0)
6681 		return 0;
6682 
6683 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6684 	/*
6685 	 * Check to see if we are freeing blocks across a group
6686 	 * boundary.
6687 	 */
6688 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6689 		ext4_warning(sb, "too many blocks added to group %u",
6690 			     block_group);
6691 		err = -EINVAL;
6692 		goto error_out;
6693 	}
6694 
6695 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6696 	if (err)
6697 		goto error_out;
6698 
6699 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6700 		ext4_error(sb, "Adding blocks in system zones - "
6701 			   "Block = %llu, count = %lu",
6702 			   block, count);
6703 		err = -EINVAL;
6704 		goto error_clean;
6705 	}
6706 
6707 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6708 				   cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6709 				   &changed);
6710 	if (err && changed == 0)
6711 		goto error_clean;
6712 
6713 	if (changed != cluster_count)
6714 		ext4_error(sb, "bit already cleared in group %u", block_group);
6715 
6716 	ext4_lock_group(sb, block_group);
6717 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6718 	ext4_unlock_group(sb, block_group);
6719 	percpu_counter_add(&sbi->s_freeclusters_counter,
6720 			   changed);
6721 
6722 error_clean:
6723 	ext4_mb_unload_buddy(&e4b);
6724 error_out:
6725 	ext4_std_error(sb, err);
6726 	return err;
6727 }
6728 
6729 /**
6730  * ext4_trim_extent -- function to TRIM one single free extent in the group
6731  * @sb:		super block for the file system
6732  * @start:	starting block of the free extent in the alloc. group
6733  * @count:	number of blocks to TRIM
6734  * @e4b:	ext4 buddy for the group
6735  *
6736  * Trim "count" blocks starting at "start" in the "group". To assure that no
6737  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6738  * be called with under the group lock.
6739  */
6740 static int ext4_trim_extent(struct super_block *sb,
6741 		int start, int count, struct ext4_buddy *e4b)
6742 __releases(bitlock)
6743 __acquires(bitlock)
6744 {
6745 	struct ext4_free_extent ex;
6746 	ext4_group_t group = e4b->bd_group;
6747 	int ret = 0;
6748 
6749 	trace_ext4_trim_extent(sb, group, start, count);
6750 
6751 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6752 
6753 	ex.fe_start = start;
6754 	ex.fe_group = group;
6755 	ex.fe_len = count;
6756 
6757 	/*
6758 	 * Mark blocks used, so no one can reuse them while
6759 	 * being trimmed.
6760 	 */
6761 	mb_mark_used(e4b, &ex);
6762 	ext4_unlock_group(sb, group);
6763 	ret = ext4_issue_discard(sb, group, start, count);
6764 	ext4_lock_group(sb, group);
6765 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6766 	return ret;
6767 }
6768 
6769 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6770 					   ext4_group_t grp)
6771 {
6772 	unsigned long nr_clusters_in_group;
6773 
6774 	if (grp < (ext4_get_groups_count(sb) - 1))
6775 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6776 	else
6777 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6778 					ext4_group_first_block_no(sb, grp))
6779 				       >> EXT4_CLUSTER_BITS(sb);
6780 
6781 	return nr_clusters_in_group - 1;
6782 }
6783 
6784 static bool ext4_trim_interrupted(void)
6785 {
6786 	return fatal_signal_pending(current) || freezing(current);
6787 }
6788 
6789 static int ext4_try_to_trim_range(struct super_block *sb,
6790 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6791 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6792 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6793 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6794 {
6795 	ext4_grpblk_t next, count, free_count, last, origin_start;
6796 	bool set_trimmed = false;
6797 	void *bitmap;
6798 
6799 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6800 		return 0;
6801 
6802 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6803 	bitmap = e4b->bd_bitmap;
6804 	if (start == 0 && max >= last)
6805 		set_trimmed = true;
6806 	origin_start = start;
6807 	start = max(e4b->bd_info->bb_first_free, start);
6808 	count = 0;
6809 	free_count = 0;
6810 
6811 	while (start <= max) {
6812 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6813 		if (start > max)
6814 			break;
6815 
6816 		next = mb_find_next_bit(bitmap, last + 1, start);
6817 		if (origin_start == 0 && next >= last)
6818 			set_trimmed = true;
6819 
6820 		if ((next - start) >= minblocks) {
6821 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6822 
6823 			if (ret && ret != -EOPNOTSUPP)
6824 				return count;
6825 			count += next - start;
6826 		}
6827 		free_count += next - start;
6828 		start = next + 1;
6829 
6830 		if (ext4_trim_interrupted())
6831 			return count;
6832 
6833 		if (need_resched()) {
6834 			ext4_unlock_group(sb, e4b->bd_group);
6835 			cond_resched();
6836 			ext4_lock_group(sb, e4b->bd_group);
6837 		}
6838 
6839 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6840 			break;
6841 	}
6842 
6843 	if (set_trimmed)
6844 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6845 
6846 	return count;
6847 }
6848 
6849 /**
6850  * ext4_trim_all_free -- function to trim all free space in alloc. group
6851  * @sb:			super block for file system
6852  * @group:		group to be trimmed
6853  * @start:		first group block to examine
6854  * @max:		last group block to examine
6855  * @minblocks:		minimum extent block count
6856  *
6857  * ext4_trim_all_free walks through group's block bitmap searching for free
6858  * extents. When the free extent is found, mark it as used in group buddy
6859  * bitmap. Then issue a TRIM command on this extent and free the extent in
6860  * the group buddy bitmap.
6861  */
6862 static ext4_grpblk_t
6863 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6864 		   ext4_grpblk_t start, ext4_grpblk_t max,
6865 		   ext4_grpblk_t minblocks)
6866 {
6867 	struct ext4_buddy e4b;
6868 	int ret;
6869 
6870 	trace_ext4_trim_all_free(sb, group, start, max);
6871 
6872 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6873 	if (ret) {
6874 		ext4_warning(sb, "Error %d loading buddy information for %u",
6875 			     ret, group);
6876 		return ret;
6877 	}
6878 
6879 	ext4_lock_group(sb, group);
6880 
6881 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6882 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6883 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6884 	else
6885 		ret = 0;
6886 
6887 	ext4_unlock_group(sb, group);
6888 	ext4_mb_unload_buddy(&e4b);
6889 
6890 	ext4_debug("trimmed %d blocks in the group %d\n",
6891 		ret, group);
6892 
6893 	return ret;
6894 }
6895 
6896 /**
6897  * ext4_trim_fs() -- trim ioctl handle function
6898  * @sb:			superblock for filesystem
6899  * @range:		fstrim_range structure
6900  *
6901  * start:	First Byte to trim
6902  * len:		number of Bytes to trim from start
6903  * minlen:	minimum extent length in Bytes
6904  * ext4_trim_fs goes through all allocation groups containing Bytes from
6905  * start to start+len. For each such a group ext4_trim_all_free function
6906  * is invoked to trim all free space.
6907  */
6908 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6909 {
6910 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6911 	struct ext4_group_info *grp;
6912 	ext4_group_t group, first_group, last_group;
6913 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6914 	uint64_t start, end, minlen, trimmed = 0;
6915 	ext4_fsblk_t first_data_blk =
6916 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6917 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6918 	int ret = 0;
6919 
6920 	start = range->start >> sb->s_blocksize_bits;
6921 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6922 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6923 			      range->minlen >> sb->s_blocksize_bits);
6924 
6925 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6926 	    start >= max_blks ||
6927 	    range->len < sb->s_blocksize)
6928 		return -EINVAL;
6929 	/* No point to try to trim less than discard granularity */
6930 	if (range->minlen < discard_granularity) {
6931 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6932 				discard_granularity >> sb->s_blocksize_bits);
6933 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6934 			goto out;
6935 	}
6936 	if (end >= max_blks - 1)
6937 		end = max_blks - 1;
6938 	if (end <= first_data_blk)
6939 		goto out;
6940 	if (start < first_data_blk)
6941 		start = first_data_blk;
6942 
6943 	/* Determine first and last group to examine based on start and end */
6944 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6945 				     &first_group, &first_cluster);
6946 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6947 				     &last_group, &last_cluster);
6948 
6949 	/* end now represents the last cluster to discard in this group */
6950 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6951 
6952 	for (group = first_group; group <= last_group; group++) {
6953 		if (ext4_trim_interrupted())
6954 			break;
6955 		grp = ext4_get_group_info(sb, group);
6956 		if (!grp)
6957 			continue;
6958 		/* We only do this if the grp has never been initialized */
6959 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6960 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6961 			if (ret)
6962 				break;
6963 		}
6964 
6965 		/*
6966 		 * For all the groups except the last one, last cluster will
6967 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6968 		 * change it for the last group, note that last_cluster is
6969 		 * already computed earlier by ext4_get_group_no_and_offset()
6970 		 */
6971 		if (group == last_group)
6972 			end = last_cluster;
6973 		if (grp->bb_free >= minlen) {
6974 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6975 						 end, minlen);
6976 			if (cnt < 0) {
6977 				ret = cnt;
6978 				break;
6979 			}
6980 			trimmed += cnt;
6981 		}
6982 
6983 		/*
6984 		 * For every group except the first one, we are sure
6985 		 * that the first cluster to discard will be cluster #0.
6986 		 */
6987 		first_cluster = 0;
6988 	}
6989 
6990 	if (!ret)
6991 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6992 
6993 out:
6994 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6995 	return ret;
6996 }
6997 
6998 /* Iterate all the free extents in the group. */
6999 int
7000 ext4_mballoc_query_range(
7001 	struct super_block		*sb,
7002 	ext4_group_t			group,
7003 	ext4_grpblk_t			start,
7004 	ext4_grpblk_t			end,
7005 	ext4_mballoc_query_range_fn	formatter,
7006 	void				*priv)
7007 {
7008 	void				*bitmap;
7009 	ext4_grpblk_t			next;
7010 	struct ext4_buddy		e4b;
7011 	int				error;
7012 
7013 	error = ext4_mb_load_buddy(sb, group, &e4b);
7014 	if (error)
7015 		return error;
7016 	bitmap = e4b.bd_bitmap;
7017 
7018 	ext4_lock_group(sb, group);
7019 
7020 	start = max(e4b.bd_info->bb_first_free, start);
7021 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7022 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7023 
7024 	while (start <= end) {
7025 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7026 		if (start > end)
7027 			break;
7028 		next = mb_find_next_bit(bitmap, end + 1, start);
7029 
7030 		ext4_unlock_group(sb, group);
7031 		error = formatter(sb, group, start, next - start, priv);
7032 		if (error)
7033 			goto out_unload;
7034 		ext4_lock_group(sb, group);
7035 
7036 		start = next + 1;
7037 	}
7038 
7039 	ext4_unlock_group(sb, group);
7040 out_unload:
7041 	ext4_mb_unload_buddy(&e4b);
7042 
7043 	return error;
7044 }
7045 
7046 #ifdef CONFIG_EXT4_KUNIT_TESTS
7047 #include "mballoc-test.c"
7048 #endif
7049