1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 131 * structures in two data structures: 132 * 133 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 134 * 135 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 136 * 137 * This is an array of lists where the index in the array represents the 138 * largest free order in the buddy bitmap of the participating group infos of 139 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 140 * number of buddy bitmap orders possible) number of lists. Group-infos are 141 * placed in appropriate lists. 142 * 143 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 144 * 145 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 146 * 147 * This is an array of lists where in the i-th list there are groups with 148 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 149 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 150 * Note that we don't bother with a special list for completely empty groups 151 * so we only have MB_NUM_ORDERS(sb) lists. 152 * 153 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 154 * structures to decide the order in which groups are to be traversed for 155 * fulfilling an allocation request. 156 * 157 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 158 * >= the order of the request. We directly look at the largest free order list 159 * in the data structure (1) above where largest_free_order = order of the 160 * request. If that list is empty, we look at remaining list in the increasing 161 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 162 * lookup in O(1) time. 163 * 164 * At CR_GOAL_LEN_FAST, we only consider groups where 165 * average fragment size > request size. So, we lookup a group which has average 166 * fragment size just above or equal to request size using our average fragment 167 * size group lists (data structure 2) in O(1) time. 168 * 169 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 170 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 171 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 172 * fragment size > goal length. So before falling to the slower 173 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 174 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 175 * enough average fragment size. This increases the chances of finding a 176 * suitable block group in O(1) time and results in faster allocation at the 177 * cost of reduced size of allocation. 178 * 179 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 180 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 181 * CR_GOAL_LEN_FAST phase. 182 * 183 * The regular allocator (using the buddy cache) supports a few tunables. 184 * 185 * /sys/fs/ext4/<partition>/mb_min_to_scan 186 * /sys/fs/ext4/<partition>/mb_max_to_scan 187 * /sys/fs/ext4/<partition>/mb_order2_req 188 * /sys/fs/ext4/<partition>/mb_linear_limit 189 * 190 * The regular allocator uses buddy scan only if the request len is power of 191 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 192 * value of s_mb_order2_reqs can be tuned via 193 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 194 * stripe size (sbi->s_stripe), we try to search for contiguous block in 195 * stripe size. This should result in better allocation on RAID setups. If 196 * not, we search in the specific group using bitmap for best extents. The 197 * tunable min_to_scan and max_to_scan control the behaviour here. 198 * min_to_scan indicate how long the mballoc __must__ look for a best 199 * extent and max_to_scan indicates how long the mballoc __can__ look for a 200 * best extent in the found extents. Searching for the blocks starts with 201 * the group specified as the goal value in allocation context via 202 * ac_g_ex. Each group is first checked based on the criteria whether it 203 * can be used for allocation. ext4_mb_good_group explains how the groups are 204 * checked. 205 * 206 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 207 * get traversed linearly. That may result in subsequent allocations being not 208 * close to each other. And so, the underlying device may get filled up in a 209 * non-linear fashion. While that may not matter on non-rotational devices, for 210 * rotational devices that may result in higher seek times. "mb_linear_limit" 211 * tells mballoc how many groups mballoc should search linearly before 212 * performing consulting above data structures for more efficient lookups. For 213 * non rotational devices, this value defaults to 0 and for rotational devices 214 * this is set to MB_DEFAULT_LINEAR_LIMIT. 215 * 216 * Both the prealloc space are getting populated as above. So for the first 217 * request we will hit the buddy cache which will result in this prealloc 218 * space getting filled. The prealloc space is then later used for the 219 * subsequent request. 220 */ 221 222 /* 223 * mballoc operates on the following data: 224 * - on-disk bitmap 225 * - in-core buddy (actually includes buddy and bitmap) 226 * - preallocation descriptors (PAs) 227 * 228 * there are two types of preallocations: 229 * - inode 230 * assiged to specific inode and can be used for this inode only. 231 * it describes part of inode's space preallocated to specific 232 * physical blocks. any block from that preallocated can be used 233 * independent. the descriptor just tracks number of blocks left 234 * unused. so, before taking some block from descriptor, one must 235 * make sure corresponded logical block isn't allocated yet. this 236 * also means that freeing any block within descriptor's range 237 * must discard all preallocated blocks. 238 * - locality group 239 * assigned to specific locality group which does not translate to 240 * permanent set of inodes: inode can join and leave group. space 241 * from this type of preallocation can be used for any inode. thus 242 * it's consumed from the beginning to the end. 243 * 244 * relation between them can be expressed as: 245 * in-core buddy = on-disk bitmap + preallocation descriptors 246 * 247 * this mean blocks mballoc considers used are: 248 * - allocated blocks (persistent) 249 * - preallocated blocks (non-persistent) 250 * 251 * consistency in mballoc world means that at any time a block is either 252 * free or used in ALL structures. notice: "any time" should not be read 253 * literally -- time is discrete and delimited by locks. 254 * 255 * to keep it simple, we don't use block numbers, instead we count number of 256 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 257 * 258 * all operations can be expressed as: 259 * - init buddy: buddy = on-disk + PAs 260 * - new PA: buddy += N; PA = N 261 * - use inode PA: on-disk += N; PA -= N 262 * - discard inode PA buddy -= on-disk - PA; PA = 0 263 * - use locality group PA on-disk += N; PA -= N 264 * - discard locality group PA buddy -= PA; PA = 0 265 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 266 * is used in real operation because we can't know actual used 267 * bits from PA, only from on-disk bitmap 268 * 269 * if we follow this strict logic, then all operations above should be atomic. 270 * given some of them can block, we'd have to use something like semaphores 271 * killing performance on high-end SMP hardware. let's try to relax it using 272 * the following knowledge: 273 * 1) if buddy is referenced, it's already initialized 274 * 2) while block is used in buddy and the buddy is referenced, 275 * nobody can re-allocate that block 276 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 277 * bit set and PA claims same block, it's OK. IOW, one can set bit in 278 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 279 * block 280 * 281 * so, now we're building a concurrency table: 282 * - init buddy vs. 283 * - new PA 284 * blocks for PA are allocated in the buddy, buddy must be referenced 285 * until PA is linked to allocation group to avoid concurrent buddy init 286 * - use inode PA 287 * we need to make sure that either on-disk bitmap or PA has uptodate data 288 * given (3) we care that PA-=N operation doesn't interfere with init 289 * - discard inode PA 290 * the simplest way would be to have buddy initialized by the discard 291 * - use locality group PA 292 * again PA-=N must be serialized with init 293 * - discard locality group PA 294 * the simplest way would be to have buddy initialized by the discard 295 * - new PA vs. 296 * - use inode PA 297 * i_data_sem serializes them 298 * - discard inode PA 299 * discard process must wait until PA isn't used by another process 300 * - use locality group PA 301 * some mutex should serialize them 302 * - discard locality group PA 303 * discard process must wait until PA isn't used by another process 304 * - use inode PA 305 * - use inode PA 306 * i_data_sem or another mutex should serializes them 307 * - discard inode PA 308 * discard process must wait until PA isn't used by another process 309 * - use locality group PA 310 * nothing wrong here -- they're different PAs covering different blocks 311 * - discard locality group PA 312 * discard process must wait until PA isn't used by another process 313 * 314 * now we're ready to make few consequences: 315 * - PA is referenced and while it is no discard is possible 316 * - PA is referenced until block isn't marked in on-disk bitmap 317 * - PA changes only after on-disk bitmap 318 * - discard must not compete with init. either init is done before 319 * any discard or they're serialized somehow 320 * - buddy init as sum of on-disk bitmap and PAs is done atomically 321 * 322 * a special case when we've used PA to emptiness. no need to modify buddy 323 * in this case, but we should care about concurrent init 324 * 325 */ 326 327 /* 328 * Logic in few words: 329 * 330 * - allocation: 331 * load group 332 * find blocks 333 * mark bits in on-disk bitmap 334 * release group 335 * 336 * - use preallocation: 337 * find proper PA (per-inode or group) 338 * load group 339 * mark bits in on-disk bitmap 340 * release group 341 * release PA 342 * 343 * - free: 344 * load group 345 * mark bits in on-disk bitmap 346 * release group 347 * 348 * - discard preallocations in group: 349 * mark PAs deleted 350 * move them onto local list 351 * load on-disk bitmap 352 * load group 353 * remove PA from object (inode or locality group) 354 * mark free blocks in-core 355 * 356 * - discard inode's preallocations: 357 */ 358 359 /* 360 * Locking rules 361 * 362 * Locks: 363 * - bitlock on a group (group) 364 * - object (inode/locality) (object) 365 * - per-pa lock (pa) 366 * - cr_power2_aligned lists lock (cr_power2_aligned) 367 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 368 * 369 * Paths: 370 * - new pa 371 * object 372 * group 373 * 374 * - find and use pa: 375 * pa 376 * 377 * - release consumed pa: 378 * pa 379 * group 380 * object 381 * 382 * - generate in-core bitmap: 383 * group 384 * pa 385 * 386 * - discard all for given object (inode, locality group): 387 * object 388 * pa 389 * group 390 * 391 * - discard all for given group: 392 * group 393 * pa 394 * group 395 * object 396 * 397 * - allocation path (ext4_mb_regular_allocator) 398 * group 399 * cr_power2_aligned/cr_goal_len_fast 400 */ 401 static struct kmem_cache *ext4_pspace_cachep; 402 static struct kmem_cache *ext4_ac_cachep; 403 static struct kmem_cache *ext4_free_data_cachep; 404 405 /* We create slab caches for groupinfo data structures based on the 406 * superblock block size. There will be one per mounted filesystem for 407 * each unique s_blocksize_bits */ 408 #define NR_GRPINFO_CACHES 8 409 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 410 411 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 412 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 413 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 414 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 415 }; 416 417 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 418 ext4_group_t group); 419 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 420 ext4_group_t group); 421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 422 423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 424 ext4_group_t group, enum criteria cr); 425 426 static int ext4_try_to_trim_range(struct super_block *sb, 427 struct ext4_buddy *e4b, ext4_grpblk_t start, 428 ext4_grpblk_t max, ext4_grpblk_t minblocks); 429 430 /* 431 * The algorithm using this percpu seq counter goes below: 432 * 1. We sample the percpu discard_pa_seq counter before trying for block 433 * allocation in ext4_mb_new_blocks(). 434 * 2. We increment this percpu discard_pa_seq counter when we either allocate 435 * or free these blocks i.e. while marking those blocks as used/free in 436 * mb_mark_used()/mb_free_blocks(). 437 * 3. We also increment this percpu seq counter when we successfully identify 438 * that the bb_prealloc_list is not empty and hence proceed for discarding 439 * of those PAs inside ext4_mb_discard_group_preallocations(). 440 * 441 * Now to make sure that the regular fast path of block allocation is not 442 * affected, as a small optimization we only sample the percpu seq counter 443 * on that cpu. Only when the block allocation fails and when freed blocks 444 * found were 0, that is when we sample percpu seq counter for all cpus using 445 * below function ext4_get_discard_pa_seq_sum(). This happens after making 446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 447 */ 448 static DEFINE_PER_CPU(u64, discard_pa_seq); 449 static inline u64 ext4_get_discard_pa_seq_sum(void) 450 { 451 int __cpu; 452 u64 __seq = 0; 453 454 for_each_possible_cpu(__cpu) 455 __seq += per_cpu(discard_pa_seq, __cpu); 456 return __seq; 457 } 458 459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 460 { 461 #if BITS_PER_LONG == 64 462 *bit += ((unsigned long) addr & 7UL) << 3; 463 addr = (void *) ((unsigned long) addr & ~7UL); 464 #elif BITS_PER_LONG == 32 465 *bit += ((unsigned long) addr & 3UL) << 3; 466 addr = (void *) ((unsigned long) addr & ~3UL); 467 #else 468 #error "how many bits you are?!" 469 #endif 470 return addr; 471 } 472 473 static inline int mb_test_bit(int bit, void *addr) 474 { 475 /* 476 * ext4_test_bit on architecture like powerpc 477 * needs unsigned long aligned address 478 */ 479 addr = mb_correct_addr_and_bit(&bit, addr); 480 return ext4_test_bit(bit, addr); 481 } 482 483 static inline void mb_set_bit(int bit, void *addr) 484 { 485 addr = mb_correct_addr_and_bit(&bit, addr); 486 ext4_set_bit(bit, addr); 487 } 488 489 static inline void mb_clear_bit(int bit, void *addr) 490 { 491 addr = mb_correct_addr_and_bit(&bit, addr); 492 ext4_clear_bit(bit, addr); 493 } 494 495 static inline int mb_test_and_clear_bit(int bit, void *addr) 496 { 497 addr = mb_correct_addr_and_bit(&bit, addr); 498 return ext4_test_and_clear_bit(bit, addr); 499 } 500 501 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 502 { 503 int fix = 0, ret, tmpmax; 504 addr = mb_correct_addr_and_bit(&fix, addr); 505 tmpmax = max + fix; 506 start += fix; 507 508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 509 if (ret > max) 510 return max; 511 return ret; 512 } 513 514 static inline int mb_find_next_bit(void *addr, int max, int start) 515 { 516 int fix = 0, ret, tmpmax; 517 addr = mb_correct_addr_and_bit(&fix, addr); 518 tmpmax = max + fix; 519 start += fix; 520 521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 522 if (ret > max) 523 return max; 524 return ret; 525 } 526 527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 528 { 529 char *bb; 530 531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 532 BUG_ON(max == NULL); 533 534 if (order > e4b->bd_blkbits + 1) { 535 *max = 0; 536 return NULL; 537 } 538 539 /* at order 0 we see each particular block */ 540 if (order == 0) { 541 *max = 1 << (e4b->bd_blkbits + 3); 542 return e4b->bd_bitmap; 543 } 544 545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 547 548 return bb; 549 } 550 551 #ifdef DOUBLE_CHECK 552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 553 int first, int count) 554 { 555 int i; 556 struct super_block *sb = e4b->bd_sb; 557 558 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 559 return; 560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 561 for (i = 0; i < count; i++) { 562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 563 ext4_fsblk_t blocknr; 564 565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 567 ext4_grp_locked_error(sb, e4b->bd_group, 568 inode ? inode->i_ino : 0, 569 blocknr, 570 "freeing block already freed " 571 "(bit %u)", 572 first + i); 573 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 574 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 575 } 576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 577 } 578 } 579 580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 581 { 582 int i; 583 584 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 585 return; 586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 587 for (i = 0; i < count; i++) { 588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 590 } 591 } 592 593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 594 { 595 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 596 return; 597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 598 unsigned char *b1, *b2; 599 int i; 600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 601 b2 = (unsigned char *) bitmap; 602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 603 if (b1[i] != b2[i]) { 604 ext4_msg(e4b->bd_sb, KERN_ERR, 605 "corruption in group %u " 606 "at byte %u(%u): %x in copy != %x " 607 "on disk/prealloc", 608 e4b->bd_group, i, i * 8, b1[i], b2[i]); 609 BUG(); 610 } 611 } 612 } 613 } 614 615 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 616 struct ext4_group_info *grp, ext4_group_t group) 617 { 618 struct buffer_head *bh; 619 620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 621 if (!grp->bb_bitmap) 622 return; 623 624 bh = ext4_read_block_bitmap(sb, group); 625 if (IS_ERR_OR_NULL(bh)) { 626 kfree(grp->bb_bitmap); 627 grp->bb_bitmap = NULL; 628 return; 629 } 630 631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 632 put_bh(bh); 633 } 634 635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 636 { 637 kfree(grp->bb_bitmap); 638 } 639 640 #else 641 static inline void mb_free_blocks_double(struct inode *inode, 642 struct ext4_buddy *e4b, int first, int count) 643 { 644 return; 645 } 646 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 647 int first, int count) 648 { 649 return; 650 } 651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 652 { 653 return; 654 } 655 656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 657 struct ext4_group_info *grp, ext4_group_t group) 658 { 659 return; 660 } 661 662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 663 { 664 return; 665 } 666 #endif 667 668 #ifdef AGGRESSIVE_CHECK 669 670 #define MB_CHECK_ASSERT(assert) \ 671 do { \ 672 if (!(assert)) { \ 673 printk(KERN_EMERG \ 674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 675 function, file, line, # assert); \ 676 BUG(); \ 677 } \ 678 } while (0) 679 680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 681 const char *function, int line) 682 { 683 struct super_block *sb = e4b->bd_sb; 684 int order = e4b->bd_blkbits + 1; 685 int max; 686 int max2; 687 int i; 688 int j; 689 int k; 690 int count; 691 struct ext4_group_info *grp; 692 int fragments = 0; 693 int fstart; 694 struct list_head *cur; 695 void *buddy; 696 void *buddy2; 697 698 if (e4b->bd_info->bb_check_counter++ % 10) 699 return 0; 700 701 while (order > 1) { 702 buddy = mb_find_buddy(e4b, order, &max); 703 MB_CHECK_ASSERT(buddy); 704 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 705 MB_CHECK_ASSERT(buddy2); 706 MB_CHECK_ASSERT(buddy != buddy2); 707 MB_CHECK_ASSERT(max * 2 == max2); 708 709 count = 0; 710 for (i = 0; i < max; i++) { 711 712 if (mb_test_bit(i, buddy)) { 713 /* only single bit in buddy2 may be 0 */ 714 if (!mb_test_bit(i << 1, buddy2)) { 715 MB_CHECK_ASSERT( 716 mb_test_bit((i<<1)+1, buddy2)); 717 } 718 continue; 719 } 720 721 /* both bits in buddy2 must be 1 */ 722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 724 725 for (j = 0; j < (1 << order); j++) { 726 k = (i * (1 << order)) + j; 727 MB_CHECK_ASSERT( 728 !mb_test_bit(k, e4b->bd_bitmap)); 729 } 730 count++; 731 } 732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 733 order--; 734 } 735 736 fstart = -1; 737 buddy = mb_find_buddy(e4b, 0, &max); 738 for (i = 0; i < max; i++) { 739 if (!mb_test_bit(i, buddy)) { 740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 741 if (fstart == -1) { 742 fragments++; 743 fstart = i; 744 } 745 continue; 746 } 747 fstart = -1; 748 /* check used bits only */ 749 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 750 buddy2 = mb_find_buddy(e4b, j, &max2); 751 k = i >> j; 752 MB_CHECK_ASSERT(k < max2); 753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 754 } 755 } 756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 758 759 grp = ext4_get_group_info(sb, e4b->bd_group); 760 if (!grp) 761 return NULL; 762 list_for_each(cur, &grp->bb_prealloc_list) { 763 ext4_group_t groupnr; 764 struct ext4_prealloc_space *pa; 765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 767 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 768 for (i = 0; i < pa->pa_len; i++) 769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 770 } 771 return 0; 772 } 773 #undef MB_CHECK_ASSERT 774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 775 __FILE__, __func__, __LINE__) 776 #else 777 #define mb_check_buddy(e4b) 778 #endif 779 780 /* 781 * Divide blocks started from @first with length @len into 782 * smaller chunks with power of 2 blocks. 783 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 784 * then increase bb_counters[] for corresponded chunk size. 785 */ 786 static void ext4_mb_mark_free_simple(struct super_block *sb, 787 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 788 struct ext4_group_info *grp) 789 { 790 struct ext4_sb_info *sbi = EXT4_SB(sb); 791 ext4_grpblk_t min; 792 ext4_grpblk_t max; 793 ext4_grpblk_t chunk; 794 unsigned int border; 795 796 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 797 798 border = 2 << sb->s_blocksize_bits; 799 800 while (len > 0) { 801 /* find how many blocks can be covered since this position */ 802 max = ffs(first | border) - 1; 803 804 /* find how many blocks of power 2 we need to mark */ 805 min = fls(len) - 1; 806 807 if (max < min) 808 min = max; 809 chunk = 1 << min; 810 811 /* mark multiblock chunks only */ 812 grp->bb_counters[min]++; 813 if (min > 0) 814 mb_clear_bit(first >> min, 815 buddy + sbi->s_mb_offsets[min]); 816 817 len -= chunk; 818 first += chunk; 819 } 820 } 821 822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 823 { 824 int order; 825 826 /* 827 * We don't bother with a special lists groups with only 1 block free 828 * extents and for completely empty groups. 829 */ 830 order = fls(len) - 2; 831 if (order < 0) 832 return 0; 833 if (order == MB_NUM_ORDERS(sb)) 834 order--; 835 return order; 836 } 837 838 /* Move group to appropriate avg_fragment_size list */ 839 static void 840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 841 { 842 struct ext4_sb_info *sbi = EXT4_SB(sb); 843 int new_order; 844 845 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 846 return; 847 848 new_order = mb_avg_fragment_size_order(sb, 849 grp->bb_free / grp->bb_fragments); 850 if (new_order == grp->bb_avg_fragment_size_order) 851 return; 852 853 if (grp->bb_avg_fragment_size_order != -1) { 854 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 855 grp->bb_avg_fragment_size_order]); 856 list_del(&grp->bb_avg_fragment_size_node); 857 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 858 grp->bb_avg_fragment_size_order]); 859 } 860 grp->bb_avg_fragment_size_order = new_order; 861 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 862 grp->bb_avg_fragment_size_order]); 863 list_add_tail(&grp->bb_avg_fragment_size_node, 864 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 865 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 866 grp->bb_avg_fragment_size_order]); 867 } 868 869 /* 870 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 871 * cr level needs an update. 872 */ 873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 874 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 875 { 876 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 877 struct ext4_group_info *iter; 878 int i; 879 880 if (ac->ac_status == AC_STATUS_FOUND) 881 return; 882 883 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 884 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 885 886 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 887 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 888 continue; 889 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 890 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 891 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 892 continue; 893 } 894 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 895 bb_largest_free_order_node) { 896 if (sbi->s_mb_stats) 897 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 898 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 899 *group = iter->bb_group; 900 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 901 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 902 return; 903 } 904 } 905 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 906 } 907 908 /* Increment cr and search again if no group is found */ 909 *new_cr = CR_GOAL_LEN_FAST; 910 } 911 912 /* 913 * Find a suitable group of given order from the average fragments list. 914 */ 915 static struct ext4_group_info * 916 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 917 { 918 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 919 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 920 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 921 struct ext4_group_info *grp = NULL, *iter; 922 enum criteria cr = ac->ac_criteria; 923 924 if (list_empty(frag_list)) 925 return NULL; 926 read_lock(frag_list_lock); 927 if (list_empty(frag_list)) { 928 read_unlock(frag_list_lock); 929 return NULL; 930 } 931 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 932 if (sbi->s_mb_stats) 933 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 934 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 935 grp = iter; 936 break; 937 } 938 } 939 read_unlock(frag_list_lock); 940 return grp; 941 } 942 943 /* 944 * Choose next group by traversing average fragment size list of suitable 945 * order. Updates *new_cr if cr level needs an update. 946 */ 947 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 948 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 949 { 950 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 951 struct ext4_group_info *grp = NULL; 952 int i; 953 954 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 955 if (sbi->s_mb_stats) 956 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 957 } 958 959 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 960 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 961 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 962 if (grp) { 963 *group = grp->bb_group; 964 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 965 return; 966 } 967 } 968 969 /* 970 * CR_BEST_AVAIL_LEN works based on the concept that we have 971 * a larger normalized goal len request which can be trimmed to 972 * a smaller goal len such that it can still satisfy original 973 * request len. However, allocation request for non-regular 974 * files never gets normalized. 975 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 976 */ 977 if (ac->ac_flags & EXT4_MB_HINT_DATA) 978 *new_cr = CR_BEST_AVAIL_LEN; 979 else 980 *new_cr = CR_GOAL_LEN_SLOW; 981 } 982 983 /* 984 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 985 * order we have and proactively trim the goal request length to that order to 986 * find a suitable group faster. 987 * 988 * This optimizes allocation speed at the cost of slightly reduced 989 * preallocations. However, we make sure that we don't trim the request too 990 * much and fall to CR_GOAL_LEN_SLOW in that case. 991 */ 992 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 993 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 994 { 995 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 996 struct ext4_group_info *grp = NULL; 997 int i, order, min_order; 998 unsigned long num_stripe_clusters = 0; 999 1000 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1001 if (sbi->s_mb_stats) 1002 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1003 } 1004 1005 /* 1006 * mb_avg_fragment_size_order() returns order in a way that makes 1007 * retrieving back the length using (1 << order) inaccurate. Hence, use 1008 * fls() instead since we need to know the actual length while modifying 1009 * goal length. 1010 */ 1011 order = fls(ac->ac_g_ex.fe_len) - 1; 1012 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1013 if (min_order < 0) 1014 min_order = 0; 1015 1016 if (sbi->s_stripe > 0) { 1017 /* 1018 * We are assuming that stripe size is always a multiple of 1019 * cluster ratio otherwise __ext4_fill_super exists early. 1020 */ 1021 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1022 if (1 << min_order < num_stripe_clusters) 1023 /* 1024 * We consider 1 order less because later we round 1025 * up the goal len to num_stripe_clusters 1026 */ 1027 min_order = fls(num_stripe_clusters) - 1; 1028 } 1029 1030 if (1 << min_order < ac->ac_o_ex.fe_len) 1031 min_order = fls(ac->ac_o_ex.fe_len); 1032 1033 for (i = order; i >= min_order; i--) { 1034 int frag_order; 1035 /* 1036 * Scale down goal len to make sure we find something 1037 * in the free fragments list. Basically, reduce 1038 * preallocations. 1039 */ 1040 ac->ac_g_ex.fe_len = 1 << i; 1041 1042 if (num_stripe_clusters > 0) { 1043 /* 1044 * Try to round up the adjusted goal length to 1045 * stripe size (in cluster units) multiple for 1046 * efficiency. 1047 */ 1048 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1049 num_stripe_clusters); 1050 } 1051 1052 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1053 ac->ac_g_ex.fe_len); 1054 1055 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1056 if (grp) { 1057 *group = grp->bb_group; 1058 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1059 return; 1060 } 1061 } 1062 1063 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1064 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1065 *new_cr = CR_GOAL_LEN_SLOW; 1066 } 1067 1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1069 { 1070 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1071 return 0; 1072 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1073 return 0; 1074 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1075 return 0; 1076 return 1; 1077 } 1078 1079 /* 1080 * Return next linear group for allocation. If linear traversal should not be 1081 * performed, this function just returns the same group 1082 */ 1083 static ext4_group_t 1084 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1085 ext4_group_t ngroups) 1086 { 1087 if (!should_optimize_scan(ac)) 1088 goto inc_and_return; 1089 1090 if (ac->ac_groups_linear_remaining) { 1091 ac->ac_groups_linear_remaining--; 1092 goto inc_and_return; 1093 } 1094 1095 return group; 1096 inc_and_return: 1097 /* 1098 * Artificially restricted ngroups for non-extent 1099 * files makes group > ngroups possible on first loop. 1100 */ 1101 return group + 1 >= ngroups ? 0 : group + 1; 1102 } 1103 1104 /* 1105 * ext4_mb_choose_next_group: choose next group for allocation. 1106 * 1107 * @ac Allocation Context 1108 * @new_cr This is an output parameter. If the there is no good group 1109 * available at current CR level, this field is updated to indicate 1110 * the new cr level that should be used. 1111 * @group This is an input / output parameter. As an input it indicates the 1112 * next group that the allocator intends to use for allocation. As 1113 * output, this field indicates the next group that should be used as 1114 * determined by the optimization functions. 1115 * @ngroups Total number of groups 1116 */ 1117 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1118 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1119 { 1120 *new_cr = ac->ac_criteria; 1121 1122 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1123 *group = next_linear_group(ac, *group, ngroups); 1124 return; 1125 } 1126 1127 if (*new_cr == CR_POWER2_ALIGNED) { 1128 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1129 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1130 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1131 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1132 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1133 } else { 1134 /* 1135 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1136 * bb_free. But until that happens, we should never come here. 1137 */ 1138 WARN_ON(1); 1139 } 1140 } 1141 1142 /* 1143 * Cache the order of the largest free extent we have available in this block 1144 * group. 1145 */ 1146 static void 1147 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1148 { 1149 struct ext4_sb_info *sbi = EXT4_SB(sb); 1150 int i; 1151 1152 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1153 if (grp->bb_counters[i] > 0) 1154 break; 1155 /* No need to move between order lists? */ 1156 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1157 i == grp->bb_largest_free_order) { 1158 grp->bb_largest_free_order = i; 1159 return; 1160 } 1161 1162 if (grp->bb_largest_free_order >= 0) { 1163 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1164 grp->bb_largest_free_order]); 1165 list_del_init(&grp->bb_largest_free_order_node); 1166 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1167 grp->bb_largest_free_order]); 1168 } 1169 grp->bb_largest_free_order = i; 1170 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1171 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1172 grp->bb_largest_free_order]); 1173 list_add_tail(&grp->bb_largest_free_order_node, 1174 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1175 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1176 grp->bb_largest_free_order]); 1177 } 1178 } 1179 1180 static noinline_for_stack 1181 void ext4_mb_generate_buddy(struct super_block *sb, 1182 void *buddy, void *bitmap, ext4_group_t group, 1183 struct ext4_group_info *grp) 1184 { 1185 struct ext4_sb_info *sbi = EXT4_SB(sb); 1186 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1187 ext4_grpblk_t i = 0; 1188 ext4_grpblk_t first; 1189 ext4_grpblk_t len; 1190 unsigned free = 0; 1191 unsigned fragments = 0; 1192 unsigned long long period = get_cycles(); 1193 1194 /* initialize buddy from bitmap which is aggregation 1195 * of on-disk bitmap and preallocations */ 1196 i = mb_find_next_zero_bit(bitmap, max, 0); 1197 grp->bb_first_free = i; 1198 while (i < max) { 1199 fragments++; 1200 first = i; 1201 i = mb_find_next_bit(bitmap, max, i); 1202 len = i - first; 1203 free += len; 1204 if (len > 1) 1205 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1206 else 1207 grp->bb_counters[0]++; 1208 if (i < max) 1209 i = mb_find_next_zero_bit(bitmap, max, i); 1210 } 1211 grp->bb_fragments = fragments; 1212 1213 if (free != grp->bb_free) { 1214 ext4_grp_locked_error(sb, group, 0, 0, 1215 "block bitmap and bg descriptor " 1216 "inconsistent: %u vs %u free clusters", 1217 free, grp->bb_free); 1218 /* 1219 * If we intend to continue, we consider group descriptor 1220 * corrupt and update bb_free using bitmap value 1221 */ 1222 grp->bb_free = free; 1223 ext4_mark_group_bitmap_corrupted(sb, group, 1224 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1225 } 1226 mb_set_largest_free_order(sb, grp); 1227 mb_update_avg_fragment_size(sb, grp); 1228 1229 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1230 1231 period = get_cycles() - period; 1232 atomic_inc(&sbi->s_mb_buddies_generated); 1233 atomic64_add(period, &sbi->s_mb_generation_time); 1234 } 1235 1236 /* The buddy information is attached the buddy cache inode 1237 * for convenience. The information regarding each group 1238 * is loaded via ext4_mb_load_buddy. The information involve 1239 * block bitmap and buddy information. The information are 1240 * stored in the inode as 1241 * 1242 * { page } 1243 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1244 * 1245 * 1246 * one block each for bitmap and buddy information. 1247 * So for each group we take up 2 blocks. A page can 1248 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1249 * So it can have information regarding groups_per_page which 1250 * is blocks_per_page/2 1251 * 1252 * Locking note: This routine takes the block group lock of all groups 1253 * for this page; do not hold this lock when calling this routine! 1254 */ 1255 1256 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1257 { 1258 ext4_group_t ngroups; 1259 unsigned int blocksize; 1260 int blocks_per_page; 1261 int groups_per_page; 1262 int err = 0; 1263 int i; 1264 ext4_group_t first_group, group; 1265 int first_block; 1266 struct super_block *sb; 1267 struct buffer_head *bhs; 1268 struct buffer_head **bh = NULL; 1269 struct inode *inode; 1270 char *data; 1271 char *bitmap; 1272 struct ext4_group_info *grinfo; 1273 1274 inode = page->mapping->host; 1275 sb = inode->i_sb; 1276 ngroups = ext4_get_groups_count(sb); 1277 blocksize = i_blocksize(inode); 1278 blocks_per_page = PAGE_SIZE / blocksize; 1279 1280 mb_debug(sb, "init page %lu\n", page->index); 1281 1282 groups_per_page = blocks_per_page >> 1; 1283 if (groups_per_page == 0) 1284 groups_per_page = 1; 1285 1286 /* allocate buffer_heads to read bitmaps */ 1287 if (groups_per_page > 1) { 1288 i = sizeof(struct buffer_head *) * groups_per_page; 1289 bh = kzalloc(i, gfp); 1290 if (bh == NULL) 1291 return -ENOMEM; 1292 } else 1293 bh = &bhs; 1294 1295 first_group = page->index * blocks_per_page / 2; 1296 1297 /* read all groups the page covers into the cache */ 1298 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1299 if (group >= ngroups) 1300 break; 1301 1302 grinfo = ext4_get_group_info(sb, group); 1303 if (!grinfo) 1304 continue; 1305 /* 1306 * If page is uptodate then we came here after online resize 1307 * which added some new uninitialized group info structs, so 1308 * we must skip all initialized uptodate buddies on the page, 1309 * which may be currently in use by an allocating task. 1310 */ 1311 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1312 bh[i] = NULL; 1313 continue; 1314 } 1315 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1316 if (IS_ERR(bh[i])) { 1317 err = PTR_ERR(bh[i]); 1318 bh[i] = NULL; 1319 goto out; 1320 } 1321 mb_debug(sb, "read bitmap for group %u\n", group); 1322 } 1323 1324 /* wait for I/O completion */ 1325 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1326 int err2; 1327 1328 if (!bh[i]) 1329 continue; 1330 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1331 if (!err) 1332 err = err2; 1333 } 1334 1335 first_block = page->index * blocks_per_page; 1336 for (i = 0; i < blocks_per_page; i++) { 1337 group = (first_block + i) >> 1; 1338 if (group >= ngroups) 1339 break; 1340 1341 if (!bh[group - first_group]) 1342 /* skip initialized uptodate buddy */ 1343 continue; 1344 1345 if (!buffer_verified(bh[group - first_group])) 1346 /* Skip faulty bitmaps */ 1347 continue; 1348 err = 0; 1349 1350 /* 1351 * data carry information regarding this 1352 * particular group in the format specified 1353 * above 1354 * 1355 */ 1356 data = page_address(page) + (i * blocksize); 1357 bitmap = bh[group - first_group]->b_data; 1358 1359 /* 1360 * We place the buddy block and bitmap block 1361 * close together 1362 */ 1363 if ((first_block + i) & 1) { 1364 /* this is block of buddy */ 1365 BUG_ON(incore == NULL); 1366 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1367 group, page->index, i * blocksize); 1368 trace_ext4_mb_buddy_bitmap_load(sb, group); 1369 grinfo = ext4_get_group_info(sb, group); 1370 if (!grinfo) { 1371 err = -EFSCORRUPTED; 1372 goto out; 1373 } 1374 grinfo->bb_fragments = 0; 1375 memset(grinfo->bb_counters, 0, 1376 sizeof(*grinfo->bb_counters) * 1377 (MB_NUM_ORDERS(sb))); 1378 /* 1379 * incore got set to the group block bitmap below 1380 */ 1381 ext4_lock_group(sb, group); 1382 /* init the buddy */ 1383 memset(data, 0xff, blocksize); 1384 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1385 ext4_unlock_group(sb, group); 1386 incore = NULL; 1387 } else { 1388 /* this is block of bitmap */ 1389 BUG_ON(incore != NULL); 1390 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1391 group, page->index, i * blocksize); 1392 trace_ext4_mb_bitmap_load(sb, group); 1393 1394 /* see comments in ext4_mb_put_pa() */ 1395 ext4_lock_group(sb, group); 1396 memcpy(data, bitmap, blocksize); 1397 1398 /* mark all preallocated blks used in in-core bitmap */ 1399 ext4_mb_generate_from_pa(sb, data, group); 1400 ext4_mb_generate_from_freelist(sb, data, group); 1401 ext4_unlock_group(sb, group); 1402 1403 /* set incore so that the buddy information can be 1404 * generated using this 1405 */ 1406 incore = data; 1407 } 1408 } 1409 SetPageUptodate(page); 1410 1411 out: 1412 if (bh) { 1413 for (i = 0; i < groups_per_page; i++) 1414 brelse(bh[i]); 1415 if (bh != &bhs) 1416 kfree(bh); 1417 } 1418 return err; 1419 } 1420 1421 /* 1422 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1423 * on the same buddy page doesn't happen whild holding the buddy page lock. 1424 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1425 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1426 */ 1427 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1428 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1429 { 1430 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1431 int block, pnum, poff; 1432 int blocks_per_page; 1433 struct page *page; 1434 1435 e4b->bd_buddy_page = NULL; 1436 e4b->bd_bitmap_page = NULL; 1437 1438 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1439 /* 1440 * the buddy cache inode stores the block bitmap 1441 * and buddy information in consecutive blocks. 1442 * So for each group we need two blocks. 1443 */ 1444 block = group * 2; 1445 pnum = block / blocks_per_page; 1446 poff = block % blocks_per_page; 1447 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1448 if (!page) 1449 return -ENOMEM; 1450 BUG_ON(page->mapping != inode->i_mapping); 1451 e4b->bd_bitmap_page = page; 1452 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1453 1454 if (blocks_per_page >= 2) { 1455 /* buddy and bitmap are on the same page */ 1456 return 0; 1457 } 1458 1459 block++; 1460 pnum = block / blocks_per_page; 1461 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1462 if (!page) 1463 return -ENOMEM; 1464 BUG_ON(page->mapping != inode->i_mapping); 1465 e4b->bd_buddy_page = page; 1466 return 0; 1467 } 1468 1469 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1470 { 1471 if (e4b->bd_bitmap_page) { 1472 unlock_page(e4b->bd_bitmap_page); 1473 put_page(e4b->bd_bitmap_page); 1474 } 1475 if (e4b->bd_buddy_page) { 1476 unlock_page(e4b->bd_buddy_page); 1477 put_page(e4b->bd_buddy_page); 1478 } 1479 } 1480 1481 /* 1482 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1483 * block group lock of all groups for this page; do not hold the BG lock when 1484 * calling this routine! 1485 */ 1486 static noinline_for_stack 1487 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1488 { 1489 1490 struct ext4_group_info *this_grp; 1491 struct ext4_buddy e4b; 1492 struct page *page; 1493 int ret = 0; 1494 1495 might_sleep(); 1496 mb_debug(sb, "init group %u\n", group); 1497 this_grp = ext4_get_group_info(sb, group); 1498 if (!this_grp) 1499 return -EFSCORRUPTED; 1500 1501 /* 1502 * This ensures that we don't reinit the buddy cache 1503 * page which map to the group from which we are already 1504 * allocating. If we are looking at the buddy cache we would 1505 * have taken a reference using ext4_mb_load_buddy and that 1506 * would have pinned buddy page to page cache. 1507 * The call to ext4_mb_get_buddy_page_lock will mark the 1508 * page accessed. 1509 */ 1510 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1511 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1512 /* 1513 * somebody initialized the group 1514 * return without doing anything 1515 */ 1516 goto err; 1517 } 1518 1519 page = e4b.bd_bitmap_page; 1520 ret = ext4_mb_init_cache(page, NULL, gfp); 1521 if (ret) 1522 goto err; 1523 if (!PageUptodate(page)) { 1524 ret = -EIO; 1525 goto err; 1526 } 1527 1528 if (e4b.bd_buddy_page == NULL) { 1529 /* 1530 * If both the bitmap and buddy are in 1531 * the same page we don't need to force 1532 * init the buddy 1533 */ 1534 ret = 0; 1535 goto err; 1536 } 1537 /* init buddy cache */ 1538 page = e4b.bd_buddy_page; 1539 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1540 if (ret) 1541 goto err; 1542 if (!PageUptodate(page)) { 1543 ret = -EIO; 1544 goto err; 1545 } 1546 err: 1547 ext4_mb_put_buddy_page_lock(&e4b); 1548 return ret; 1549 } 1550 1551 /* 1552 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1553 * block group lock of all groups for this page; do not hold the BG lock when 1554 * calling this routine! 1555 */ 1556 static noinline_for_stack int 1557 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1558 struct ext4_buddy *e4b, gfp_t gfp) 1559 { 1560 int blocks_per_page; 1561 int block; 1562 int pnum; 1563 int poff; 1564 struct page *page; 1565 int ret; 1566 struct ext4_group_info *grp; 1567 struct ext4_sb_info *sbi = EXT4_SB(sb); 1568 struct inode *inode = sbi->s_buddy_cache; 1569 1570 might_sleep(); 1571 mb_debug(sb, "load group %u\n", group); 1572 1573 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1574 grp = ext4_get_group_info(sb, group); 1575 if (!grp) 1576 return -EFSCORRUPTED; 1577 1578 e4b->bd_blkbits = sb->s_blocksize_bits; 1579 e4b->bd_info = grp; 1580 e4b->bd_sb = sb; 1581 e4b->bd_group = group; 1582 e4b->bd_buddy_page = NULL; 1583 e4b->bd_bitmap_page = NULL; 1584 1585 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1586 /* 1587 * we need full data about the group 1588 * to make a good selection 1589 */ 1590 ret = ext4_mb_init_group(sb, group, gfp); 1591 if (ret) 1592 return ret; 1593 } 1594 1595 /* 1596 * the buddy cache inode stores the block bitmap 1597 * and buddy information in consecutive blocks. 1598 * So for each group we need two blocks. 1599 */ 1600 block = group * 2; 1601 pnum = block / blocks_per_page; 1602 poff = block % blocks_per_page; 1603 1604 /* we could use find_or_create_page(), but it locks page 1605 * what we'd like to avoid in fast path ... */ 1606 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1607 if (page == NULL || !PageUptodate(page)) { 1608 if (page) 1609 /* 1610 * drop the page reference and try 1611 * to get the page with lock. If we 1612 * are not uptodate that implies 1613 * somebody just created the page but 1614 * is yet to initialize the same. So 1615 * wait for it to initialize. 1616 */ 1617 put_page(page); 1618 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1619 if (page) { 1620 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1621 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1622 /* should never happen */ 1623 unlock_page(page); 1624 ret = -EINVAL; 1625 goto err; 1626 } 1627 if (!PageUptodate(page)) { 1628 ret = ext4_mb_init_cache(page, NULL, gfp); 1629 if (ret) { 1630 unlock_page(page); 1631 goto err; 1632 } 1633 mb_cmp_bitmaps(e4b, page_address(page) + 1634 (poff * sb->s_blocksize)); 1635 } 1636 unlock_page(page); 1637 } 1638 } 1639 if (page == NULL) { 1640 ret = -ENOMEM; 1641 goto err; 1642 } 1643 if (!PageUptodate(page)) { 1644 ret = -EIO; 1645 goto err; 1646 } 1647 1648 /* Pages marked accessed already */ 1649 e4b->bd_bitmap_page = page; 1650 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1651 1652 block++; 1653 pnum = block / blocks_per_page; 1654 poff = block % blocks_per_page; 1655 1656 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1657 if (page == NULL || !PageUptodate(page)) { 1658 if (page) 1659 put_page(page); 1660 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1661 if (page) { 1662 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1663 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1664 /* should never happen */ 1665 unlock_page(page); 1666 ret = -EINVAL; 1667 goto err; 1668 } 1669 if (!PageUptodate(page)) { 1670 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1671 gfp); 1672 if (ret) { 1673 unlock_page(page); 1674 goto err; 1675 } 1676 } 1677 unlock_page(page); 1678 } 1679 } 1680 if (page == NULL) { 1681 ret = -ENOMEM; 1682 goto err; 1683 } 1684 if (!PageUptodate(page)) { 1685 ret = -EIO; 1686 goto err; 1687 } 1688 1689 /* Pages marked accessed already */ 1690 e4b->bd_buddy_page = page; 1691 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1692 1693 return 0; 1694 1695 err: 1696 if (page) 1697 put_page(page); 1698 if (e4b->bd_bitmap_page) 1699 put_page(e4b->bd_bitmap_page); 1700 1701 e4b->bd_buddy = NULL; 1702 e4b->bd_bitmap = NULL; 1703 return ret; 1704 } 1705 1706 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1707 struct ext4_buddy *e4b) 1708 { 1709 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1710 } 1711 1712 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1713 { 1714 if (e4b->bd_bitmap_page) 1715 put_page(e4b->bd_bitmap_page); 1716 if (e4b->bd_buddy_page) 1717 put_page(e4b->bd_buddy_page); 1718 } 1719 1720 1721 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1722 { 1723 int order = 1, max; 1724 void *bb; 1725 1726 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1727 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1728 1729 while (order <= e4b->bd_blkbits + 1) { 1730 bb = mb_find_buddy(e4b, order, &max); 1731 if (!mb_test_bit(block >> order, bb)) { 1732 /* this block is part of buddy of order 'order' */ 1733 return order; 1734 } 1735 order++; 1736 } 1737 return 0; 1738 } 1739 1740 static void mb_clear_bits(void *bm, int cur, int len) 1741 { 1742 __u32 *addr; 1743 1744 len = cur + len; 1745 while (cur < len) { 1746 if ((cur & 31) == 0 && (len - cur) >= 32) { 1747 /* fast path: clear whole word at once */ 1748 addr = bm + (cur >> 3); 1749 *addr = 0; 1750 cur += 32; 1751 continue; 1752 } 1753 mb_clear_bit(cur, bm); 1754 cur++; 1755 } 1756 } 1757 1758 /* clear bits in given range 1759 * will return first found zero bit if any, -1 otherwise 1760 */ 1761 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1762 { 1763 __u32 *addr; 1764 int zero_bit = -1; 1765 1766 len = cur + len; 1767 while (cur < len) { 1768 if ((cur & 31) == 0 && (len - cur) >= 32) { 1769 /* fast path: clear whole word at once */ 1770 addr = bm + (cur >> 3); 1771 if (*addr != (__u32)(-1) && zero_bit == -1) 1772 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1773 *addr = 0; 1774 cur += 32; 1775 continue; 1776 } 1777 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1778 zero_bit = cur; 1779 cur++; 1780 } 1781 1782 return zero_bit; 1783 } 1784 1785 void mb_set_bits(void *bm, int cur, int len) 1786 { 1787 __u32 *addr; 1788 1789 len = cur + len; 1790 while (cur < len) { 1791 if ((cur & 31) == 0 && (len - cur) >= 32) { 1792 /* fast path: set whole word at once */ 1793 addr = bm + (cur >> 3); 1794 *addr = 0xffffffff; 1795 cur += 32; 1796 continue; 1797 } 1798 mb_set_bit(cur, bm); 1799 cur++; 1800 } 1801 } 1802 1803 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1804 { 1805 if (mb_test_bit(*bit + side, bitmap)) { 1806 mb_clear_bit(*bit, bitmap); 1807 (*bit) -= side; 1808 return 1; 1809 } 1810 else { 1811 (*bit) += side; 1812 mb_set_bit(*bit, bitmap); 1813 return -1; 1814 } 1815 } 1816 1817 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1818 { 1819 int max; 1820 int order = 1; 1821 void *buddy = mb_find_buddy(e4b, order, &max); 1822 1823 while (buddy) { 1824 void *buddy2; 1825 1826 /* Bits in range [first; last] are known to be set since 1827 * corresponding blocks were allocated. Bits in range 1828 * (first; last) will stay set because they form buddies on 1829 * upper layer. We just deal with borders if they don't 1830 * align with upper layer and then go up. 1831 * Releasing entire group is all about clearing 1832 * single bit of highest order buddy. 1833 */ 1834 1835 /* Example: 1836 * --------------------------------- 1837 * | 1 | 1 | 1 | 1 | 1838 * --------------------------------- 1839 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1840 * --------------------------------- 1841 * 0 1 2 3 4 5 6 7 1842 * \_____________________/ 1843 * 1844 * Neither [1] nor [6] is aligned to above layer. 1845 * Left neighbour [0] is free, so mark it busy, 1846 * decrease bb_counters and extend range to 1847 * [0; 6] 1848 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1849 * mark [6] free, increase bb_counters and shrink range to 1850 * [0; 5]. 1851 * Then shift range to [0; 2], go up and do the same. 1852 */ 1853 1854 1855 if (first & 1) 1856 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1857 if (!(last & 1)) 1858 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1859 if (first > last) 1860 break; 1861 order++; 1862 1863 buddy2 = mb_find_buddy(e4b, order, &max); 1864 if (!buddy2) { 1865 mb_clear_bits(buddy, first, last - first + 1); 1866 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1867 break; 1868 } 1869 first >>= 1; 1870 last >>= 1; 1871 buddy = buddy2; 1872 } 1873 } 1874 1875 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1876 int first, int count) 1877 { 1878 int left_is_free = 0; 1879 int right_is_free = 0; 1880 int block; 1881 int last = first + count - 1; 1882 struct super_block *sb = e4b->bd_sb; 1883 1884 if (WARN_ON(count == 0)) 1885 return; 1886 BUG_ON(last >= (sb->s_blocksize << 3)); 1887 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1888 /* Don't bother if the block group is corrupt. */ 1889 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1890 return; 1891 1892 mb_check_buddy(e4b); 1893 mb_free_blocks_double(inode, e4b, first, count); 1894 1895 this_cpu_inc(discard_pa_seq); 1896 e4b->bd_info->bb_free += count; 1897 if (first < e4b->bd_info->bb_first_free) 1898 e4b->bd_info->bb_first_free = first; 1899 1900 /* access memory sequentially: check left neighbour, 1901 * clear range and then check right neighbour 1902 */ 1903 if (first != 0) 1904 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1905 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1906 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1907 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1908 1909 if (unlikely(block != -1)) { 1910 struct ext4_sb_info *sbi = EXT4_SB(sb); 1911 ext4_fsblk_t blocknr; 1912 1913 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1914 blocknr += EXT4_C2B(sbi, block); 1915 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1916 ext4_grp_locked_error(sb, e4b->bd_group, 1917 inode ? inode->i_ino : 0, 1918 blocknr, 1919 "freeing already freed block (bit %u); block bitmap corrupt.", 1920 block); 1921 ext4_mark_group_bitmap_corrupted( 1922 sb, e4b->bd_group, 1923 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1924 } 1925 goto done; 1926 } 1927 1928 /* let's maintain fragments counter */ 1929 if (left_is_free && right_is_free) 1930 e4b->bd_info->bb_fragments--; 1931 else if (!left_is_free && !right_is_free) 1932 e4b->bd_info->bb_fragments++; 1933 1934 /* buddy[0] == bd_bitmap is a special case, so handle 1935 * it right away and let mb_buddy_mark_free stay free of 1936 * zero order checks. 1937 * Check if neighbours are to be coaleasced, 1938 * adjust bitmap bb_counters and borders appropriately. 1939 */ 1940 if (first & 1) { 1941 first += !left_is_free; 1942 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1943 } 1944 if (!(last & 1)) { 1945 last -= !right_is_free; 1946 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1947 } 1948 1949 if (first <= last) 1950 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1951 1952 done: 1953 mb_set_largest_free_order(sb, e4b->bd_info); 1954 mb_update_avg_fragment_size(sb, e4b->bd_info); 1955 mb_check_buddy(e4b); 1956 } 1957 1958 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1959 int needed, struct ext4_free_extent *ex) 1960 { 1961 int next = block; 1962 int max, order; 1963 void *buddy; 1964 1965 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1966 BUG_ON(ex == NULL); 1967 1968 buddy = mb_find_buddy(e4b, 0, &max); 1969 BUG_ON(buddy == NULL); 1970 BUG_ON(block >= max); 1971 if (mb_test_bit(block, buddy)) { 1972 ex->fe_len = 0; 1973 ex->fe_start = 0; 1974 ex->fe_group = 0; 1975 return 0; 1976 } 1977 1978 /* find actual order */ 1979 order = mb_find_order_for_block(e4b, block); 1980 block = block >> order; 1981 1982 ex->fe_len = 1 << order; 1983 ex->fe_start = block << order; 1984 ex->fe_group = e4b->bd_group; 1985 1986 /* calc difference from given start */ 1987 next = next - ex->fe_start; 1988 ex->fe_len -= next; 1989 ex->fe_start += next; 1990 1991 while (needed > ex->fe_len && 1992 mb_find_buddy(e4b, order, &max)) { 1993 1994 if (block + 1 >= max) 1995 break; 1996 1997 next = (block + 1) * (1 << order); 1998 if (mb_test_bit(next, e4b->bd_bitmap)) 1999 break; 2000 2001 order = mb_find_order_for_block(e4b, next); 2002 2003 block = next >> order; 2004 ex->fe_len += 1 << order; 2005 } 2006 2007 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2008 /* Should never happen! (but apparently sometimes does?!?) */ 2009 WARN_ON(1); 2010 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2011 "corruption or bug in mb_find_extent " 2012 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2013 block, order, needed, ex->fe_group, ex->fe_start, 2014 ex->fe_len, ex->fe_logical); 2015 ex->fe_len = 0; 2016 ex->fe_start = 0; 2017 ex->fe_group = 0; 2018 } 2019 return ex->fe_len; 2020 } 2021 2022 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2023 { 2024 int ord; 2025 int mlen = 0; 2026 int max = 0; 2027 int cur; 2028 int start = ex->fe_start; 2029 int len = ex->fe_len; 2030 unsigned ret = 0; 2031 int len0 = len; 2032 void *buddy; 2033 bool split = false; 2034 2035 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2036 BUG_ON(e4b->bd_group != ex->fe_group); 2037 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2038 mb_check_buddy(e4b); 2039 mb_mark_used_double(e4b, start, len); 2040 2041 this_cpu_inc(discard_pa_seq); 2042 e4b->bd_info->bb_free -= len; 2043 if (e4b->bd_info->bb_first_free == start) 2044 e4b->bd_info->bb_first_free += len; 2045 2046 /* let's maintain fragments counter */ 2047 if (start != 0) 2048 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2049 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2050 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2051 if (mlen && max) 2052 e4b->bd_info->bb_fragments++; 2053 else if (!mlen && !max) 2054 e4b->bd_info->bb_fragments--; 2055 2056 /* let's maintain buddy itself */ 2057 while (len) { 2058 if (!split) 2059 ord = mb_find_order_for_block(e4b, start); 2060 2061 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2062 /* the whole chunk may be allocated at once! */ 2063 mlen = 1 << ord; 2064 if (!split) 2065 buddy = mb_find_buddy(e4b, ord, &max); 2066 else 2067 split = false; 2068 BUG_ON((start >> ord) >= max); 2069 mb_set_bit(start >> ord, buddy); 2070 e4b->bd_info->bb_counters[ord]--; 2071 start += mlen; 2072 len -= mlen; 2073 BUG_ON(len < 0); 2074 continue; 2075 } 2076 2077 /* store for history */ 2078 if (ret == 0) 2079 ret = len | (ord << 16); 2080 2081 /* we have to split large buddy */ 2082 BUG_ON(ord <= 0); 2083 buddy = mb_find_buddy(e4b, ord, &max); 2084 mb_set_bit(start >> ord, buddy); 2085 e4b->bd_info->bb_counters[ord]--; 2086 2087 ord--; 2088 cur = (start >> ord) & ~1U; 2089 buddy = mb_find_buddy(e4b, ord, &max); 2090 mb_clear_bit(cur, buddy); 2091 mb_clear_bit(cur + 1, buddy); 2092 e4b->bd_info->bb_counters[ord]++; 2093 e4b->bd_info->bb_counters[ord]++; 2094 split = true; 2095 } 2096 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2097 2098 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2099 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2100 mb_check_buddy(e4b); 2101 2102 return ret; 2103 } 2104 2105 /* 2106 * Must be called under group lock! 2107 */ 2108 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2109 struct ext4_buddy *e4b) 2110 { 2111 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2112 int ret; 2113 2114 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2115 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2116 2117 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2118 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2119 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2120 2121 /* preallocation can change ac_b_ex, thus we store actually 2122 * allocated blocks for history */ 2123 ac->ac_f_ex = ac->ac_b_ex; 2124 2125 ac->ac_status = AC_STATUS_FOUND; 2126 ac->ac_tail = ret & 0xffff; 2127 ac->ac_buddy = ret >> 16; 2128 2129 /* 2130 * take the page reference. We want the page to be pinned 2131 * so that we don't get a ext4_mb_init_cache_call for this 2132 * group until we update the bitmap. That would mean we 2133 * double allocate blocks. The reference is dropped 2134 * in ext4_mb_release_context 2135 */ 2136 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2137 get_page(ac->ac_bitmap_page); 2138 ac->ac_buddy_page = e4b->bd_buddy_page; 2139 get_page(ac->ac_buddy_page); 2140 /* store last allocated for subsequent stream allocation */ 2141 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2142 spin_lock(&sbi->s_md_lock); 2143 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2144 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2145 spin_unlock(&sbi->s_md_lock); 2146 } 2147 /* 2148 * As we've just preallocated more space than 2149 * user requested originally, we store allocated 2150 * space in a special descriptor. 2151 */ 2152 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2153 ext4_mb_new_preallocation(ac); 2154 2155 } 2156 2157 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2158 struct ext4_buddy *e4b, 2159 int finish_group) 2160 { 2161 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2162 struct ext4_free_extent *bex = &ac->ac_b_ex; 2163 struct ext4_free_extent *gex = &ac->ac_g_ex; 2164 2165 if (ac->ac_status == AC_STATUS_FOUND) 2166 return; 2167 /* 2168 * We don't want to scan for a whole year 2169 */ 2170 if (ac->ac_found > sbi->s_mb_max_to_scan && 2171 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2172 ac->ac_status = AC_STATUS_BREAK; 2173 return; 2174 } 2175 2176 /* 2177 * Haven't found good chunk so far, let's continue 2178 */ 2179 if (bex->fe_len < gex->fe_len) 2180 return; 2181 2182 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2183 ext4_mb_use_best_found(ac, e4b); 2184 } 2185 2186 /* 2187 * The routine checks whether found extent is good enough. If it is, 2188 * then the extent gets marked used and flag is set to the context 2189 * to stop scanning. Otherwise, the extent is compared with the 2190 * previous found extent and if new one is better, then it's stored 2191 * in the context. Later, the best found extent will be used, if 2192 * mballoc can't find good enough extent. 2193 * 2194 * The algorithm used is roughly as follows: 2195 * 2196 * * If free extent found is exactly as big as goal, then 2197 * stop the scan and use it immediately 2198 * 2199 * * If free extent found is smaller than goal, then keep retrying 2200 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2201 * that stop scanning and use whatever we have. 2202 * 2203 * * If free extent found is bigger than goal, then keep retrying 2204 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2205 * stopping the scan and using the extent. 2206 * 2207 * 2208 * FIXME: real allocation policy is to be designed yet! 2209 */ 2210 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2211 struct ext4_free_extent *ex, 2212 struct ext4_buddy *e4b) 2213 { 2214 struct ext4_free_extent *bex = &ac->ac_b_ex; 2215 struct ext4_free_extent *gex = &ac->ac_g_ex; 2216 2217 BUG_ON(ex->fe_len <= 0); 2218 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2219 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2220 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2221 2222 ac->ac_found++; 2223 ac->ac_cX_found[ac->ac_criteria]++; 2224 2225 /* 2226 * The special case - take what you catch first 2227 */ 2228 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2229 *bex = *ex; 2230 ext4_mb_use_best_found(ac, e4b); 2231 return; 2232 } 2233 2234 /* 2235 * Let's check whether the chuck is good enough 2236 */ 2237 if (ex->fe_len == gex->fe_len) { 2238 *bex = *ex; 2239 ext4_mb_use_best_found(ac, e4b); 2240 return; 2241 } 2242 2243 /* 2244 * If this is first found extent, just store it in the context 2245 */ 2246 if (bex->fe_len == 0) { 2247 *bex = *ex; 2248 return; 2249 } 2250 2251 /* 2252 * If new found extent is better, store it in the context 2253 */ 2254 if (bex->fe_len < gex->fe_len) { 2255 /* if the request isn't satisfied, any found extent 2256 * larger than previous best one is better */ 2257 if (ex->fe_len > bex->fe_len) 2258 *bex = *ex; 2259 } else if (ex->fe_len > gex->fe_len) { 2260 /* if the request is satisfied, then we try to find 2261 * an extent that still satisfy the request, but is 2262 * smaller than previous one */ 2263 if (ex->fe_len < bex->fe_len) 2264 *bex = *ex; 2265 } 2266 2267 ext4_mb_check_limits(ac, e4b, 0); 2268 } 2269 2270 static noinline_for_stack 2271 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2272 struct ext4_buddy *e4b) 2273 { 2274 struct ext4_free_extent ex = ac->ac_b_ex; 2275 ext4_group_t group = ex.fe_group; 2276 int max; 2277 int err; 2278 2279 BUG_ON(ex.fe_len <= 0); 2280 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2281 if (err) 2282 return; 2283 2284 ext4_lock_group(ac->ac_sb, group); 2285 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2286 2287 if (max > 0) { 2288 ac->ac_b_ex = ex; 2289 ext4_mb_use_best_found(ac, e4b); 2290 } 2291 2292 ext4_unlock_group(ac->ac_sb, group); 2293 ext4_mb_unload_buddy(e4b); 2294 } 2295 2296 static noinline_for_stack 2297 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2298 struct ext4_buddy *e4b) 2299 { 2300 ext4_group_t group = ac->ac_g_ex.fe_group; 2301 int max; 2302 int err; 2303 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2304 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2305 struct ext4_free_extent ex; 2306 2307 if (!grp) 2308 return -EFSCORRUPTED; 2309 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2310 return 0; 2311 if (grp->bb_free == 0) 2312 return 0; 2313 2314 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2315 if (err) 2316 return err; 2317 2318 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2319 ext4_mb_unload_buddy(e4b); 2320 return 0; 2321 } 2322 2323 ext4_lock_group(ac->ac_sb, group); 2324 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2325 ac->ac_g_ex.fe_len, &ex); 2326 ex.fe_logical = 0xDEADFA11; /* debug value */ 2327 2328 if (max >= ac->ac_g_ex.fe_len && 2329 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2330 ext4_fsblk_t start; 2331 2332 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2333 /* use do_div to get remainder (would be 64-bit modulo) */ 2334 if (do_div(start, sbi->s_stripe) == 0) { 2335 ac->ac_found++; 2336 ac->ac_b_ex = ex; 2337 ext4_mb_use_best_found(ac, e4b); 2338 } 2339 } else if (max >= ac->ac_g_ex.fe_len) { 2340 BUG_ON(ex.fe_len <= 0); 2341 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2342 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2343 ac->ac_found++; 2344 ac->ac_b_ex = ex; 2345 ext4_mb_use_best_found(ac, e4b); 2346 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2347 /* Sometimes, caller may want to merge even small 2348 * number of blocks to an existing extent */ 2349 BUG_ON(ex.fe_len <= 0); 2350 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2351 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2352 ac->ac_found++; 2353 ac->ac_b_ex = ex; 2354 ext4_mb_use_best_found(ac, e4b); 2355 } 2356 ext4_unlock_group(ac->ac_sb, group); 2357 ext4_mb_unload_buddy(e4b); 2358 2359 return 0; 2360 } 2361 2362 /* 2363 * The routine scans buddy structures (not bitmap!) from given order 2364 * to max order and tries to find big enough chunk to satisfy the req 2365 */ 2366 static noinline_for_stack 2367 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2368 struct ext4_buddy *e4b) 2369 { 2370 struct super_block *sb = ac->ac_sb; 2371 struct ext4_group_info *grp = e4b->bd_info; 2372 void *buddy; 2373 int i; 2374 int k; 2375 int max; 2376 2377 BUG_ON(ac->ac_2order <= 0); 2378 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2379 if (grp->bb_counters[i] == 0) 2380 continue; 2381 2382 buddy = mb_find_buddy(e4b, i, &max); 2383 if (WARN_RATELIMIT(buddy == NULL, 2384 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2385 continue; 2386 2387 k = mb_find_next_zero_bit(buddy, max, 0); 2388 if (k >= max) { 2389 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2390 "%d free clusters of order %d. But found 0", 2391 grp->bb_counters[i], i); 2392 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2393 e4b->bd_group, 2394 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2395 break; 2396 } 2397 ac->ac_found++; 2398 ac->ac_cX_found[ac->ac_criteria]++; 2399 2400 ac->ac_b_ex.fe_len = 1 << i; 2401 ac->ac_b_ex.fe_start = k << i; 2402 ac->ac_b_ex.fe_group = e4b->bd_group; 2403 2404 ext4_mb_use_best_found(ac, e4b); 2405 2406 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2407 2408 if (EXT4_SB(sb)->s_mb_stats) 2409 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2410 2411 break; 2412 } 2413 } 2414 2415 /* 2416 * The routine scans the group and measures all found extents. 2417 * In order to optimize scanning, caller must pass number of 2418 * free blocks in the group, so the routine can know upper limit. 2419 */ 2420 static noinline_for_stack 2421 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2422 struct ext4_buddy *e4b) 2423 { 2424 struct super_block *sb = ac->ac_sb; 2425 void *bitmap = e4b->bd_bitmap; 2426 struct ext4_free_extent ex; 2427 int i, j, freelen; 2428 int free; 2429 2430 free = e4b->bd_info->bb_free; 2431 if (WARN_ON(free <= 0)) 2432 return; 2433 2434 i = e4b->bd_info->bb_first_free; 2435 2436 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2437 i = mb_find_next_zero_bit(bitmap, 2438 EXT4_CLUSTERS_PER_GROUP(sb), i); 2439 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2440 /* 2441 * IF we have corrupt bitmap, we won't find any 2442 * free blocks even though group info says we 2443 * have free blocks 2444 */ 2445 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2446 "%d free clusters as per " 2447 "group info. But bitmap says 0", 2448 free); 2449 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2450 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2451 break; 2452 } 2453 2454 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2455 /* 2456 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2457 * sure that this group will have a large enough 2458 * continuous free extent, so skip over the smaller free 2459 * extents 2460 */ 2461 j = mb_find_next_bit(bitmap, 2462 EXT4_CLUSTERS_PER_GROUP(sb), i); 2463 freelen = j - i; 2464 2465 if (freelen < ac->ac_g_ex.fe_len) { 2466 i = j; 2467 free -= freelen; 2468 continue; 2469 } 2470 } 2471 2472 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2473 if (WARN_ON(ex.fe_len <= 0)) 2474 break; 2475 if (free < ex.fe_len) { 2476 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2477 "%d free clusters as per " 2478 "group info. But got %d blocks", 2479 free, ex.fe_len); 2480 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2481 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2482 /* 2483 * The number of free blocks differs. This mostly 2484 * indicate that the bitmap is corrupt. So exit 2485 * without claiming the space. 2486 */ 2487 break; 2488 } 2489 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2490 ext4_mb_measure_extent(ac, &ex, e4b); 2491 2492 i += ex.fe_len; 2493 free -= ex.fe_len; 2494 } 2495 2496 ext4_mb_check_limits(ac, e4b, 1); 2497 } 2498 2499 /* 2500 * This is a special case for storages like raid5 2501 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2502 */ 2503 static noinline_for_stack 2504 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2505 struct ext4_buddy *e4b) 2506 { 2507 struct super_block *sb = ac->ac_sb; 2508 struct ext4_sb_info *sbi = EXT4_SB(sb); 2509 void *bitmap = e4b->bd_bitmap; 2510 struct ext4_free_extent ex; 2511 ext4_fsblk_t first_group_block; 2512 ext4_fsblk_t a; 2513 ext4_grpblk_t i, stripe; 2514 int max; 2515 2516 BUG_ON(sbi->s_stripe == 0); 2517 2518 /* find first stripe-aligned block in group */ 2519 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2520 2521 a = first_group_block + sbi->s_stripe - 1; 2522 do_div(a, sbi->s_stripe); 2523 i = (a * sbi->s_stripe) - first_group_block; 2524 2525 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2526 i = EXT4_B2C(sbi, i); 2527 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2528 if (!mb_test_bit(i, bitmap)) { 2529 max = mb_find_extent(e4b, i, stripe, &ex); 2530 if (max >= stripe) { 2531 ac->ac_found++; 2532 ac->ac_cX_found[ac->ac_criteria]++; 2533 ex.fe_logical = 0xDEADF00D; /* debug value */ 2534 ac->ac_b_ex = ex; 2535 ext4_mb_use_best_found(ac, e4b); 2536 break; 2537 } 2538 } 2539 i += stripe; 2540 } 2541 } 2542 2543 /* 2544 * This is also called BEFORE we load the buddy bitmap. 2545 * Returns either 1 or 0 indicating that the group is either suitable 2546 * for the allocation or not. 2547 */ 2548 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2549 ext4_group_t group, enum criteria cr) 2550 { 2551 ext4_grpblk_t free, fragments; 2552 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2553 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2554 2555 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2556 2557 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2558 return false; 2559 2560 free = grp->bb_free; 2561 if (free == 0) 2562 return false; 2563 2564 fragments = grp->bb_fragments; 2565 if (fragments == 0) 2566 return false; 2567 2568 switch (cr) { 2569 case CR_POWER2_ALIGNED: 2570 BUG_ON(ac->ac_2order == 0); 2571 2572 /* Avoid using the first bg of a flexgroup for data files */ 2573 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2574 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2575 ((group % flex_size) == 0)) 2576 return false; 2577 2578 if (free < ac->ac_g_ex.fe_len) 2579 return false; 2580 2581 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2582 return true; 2583 2584 if (grp->bb_largest_free_order < ac->ac_2order) 2585 return false; 2586 2587 return true; 2588 case CR_GOAL_LEN_FAST: 2589 case CR_BEST_AVAIL_LEN: 2590 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2591 return true; 2592 break; 2593 case CR_GOAL_LEN_SLOW: 2594 if (free >= ac->ac_g_ex.fe_len) 2595 return true; 2596 break; 2597 case CR_ANY_FREE: 2598 return true; 2599 default: 2600 BUG(); 2601 } 2602 2603 return false; 2604 } 2605 2606 /* 2607 * This could return negative error code if something goes wrong 2608 * during ext4_mb_init_group(). This should not be called with 2609 * ext4_lock_group() held. 2610 * 2611 * Note: because we are conditionally operating with the group lock in 2612 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2613 * function using __acquire and __release. This means we need to be 2614 * super careful before messing with the error path handling via "goto 2615 * out"! 2616 */ 2617 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2618 ext4_group_t group, enum criteria cr) 2619 { 2620 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2621 struct super_block *sb = ac->ac_sb; 2622 struct ext4_sb_info *sbi = EXT4_SB(sb); 2623 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2624 ext4_grpblk_t free; 2625 int ret = 0; 2626 2627 if (!grp) 2628 return -EFSCORRUPTED; 2629 if (sbi->s_mb_stats) 2630 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2631 if (should_lock) { 2632 ext4_lock_group(sb, group); 2633 __release(ext4_group_lock_ptr(sb, group)); 2634 } 2635 free = grp->bb_free; 2636 if (free == 0) 2637 goto out; 2638 /* 2639 * In all criterias except CR_ANY_FREE we try to avoid groups that 2640 * can't possibly satisfy the full goal request due to insufficient 2641 * free blocks. 2642 */ 2643 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2644 goto out; 2645 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2646 goto out; 2647 if (should_lock) { 2648 __acquire(ext4_group_lock_ptr(sb, group)); 2649 ext4_unlock_group(sb, group); 2650 } 2651 2652 /* We only do this if the grp has never been initialized */ 2653 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2654 struct ext4_group_desc *gdp = 2655 ext4_get_group_desc(sb, group, NULL); 2656 int ret; 2657 2658 /* 2659 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2660 * search to find large good chunks almost for free. If buddy 2661 * data is not ready, then this optimization makes no sense. But 2662 * we never skip the first block group in a flex_bg, since this 2663 * gets used for metadata block allocation, and we want to make 2664 * sure we locate metadata blocks in the first block group in 2665 * the flex_bg if possible. 2666 */ 2667 if (!ext4_mb_cr_expensive(cr) && 2668 (!sbi->s_log_groups_per_flex || 2669 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2670 !(ext4_has_group_desc_csum(sb) && 2671 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2672 return 0; 2673 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2674 if (ret) 2675 return ret; 2676 } 2677 2678 if (should_lock) { 2679 ext4_lock_group(sb, group); 2680 __release(ext4_group_lock_ptr(sb, group)); 2681 } 2682 ret = ext4_mb_good_group(ac, group, cr); 2683 out: 2684 if (should_lock) { 2685 __acquire(ext4_group_lock_ptr(sb, group)); 2686 ext4_unlock_group(sb, group); 2687 } 2688 return ret; 2689 } 2690 2691 /* 2692 * Start prefetching @nr block bitmaps starting at @group. 2693 * Return the next group which needs to be prefetched. 2694 */ 2695 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2696 unsigned int nr, int *cnt) 2697 { 2698 ext4_group_t ngroups = ext4_get_groups_count(sb); 2699 struct buffer_head *bh; 2700 struct blk_plug plug; 2701 2702 blk_start_plug(&plug); 2703 while (nr-- > 0) { 2704 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2705 NULL); 2706 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2707 2708 /* 2709 * Prefetch block groups with free blocks; but don't 2710 * bother if it is marked uninitialized on disk, since 2711 * it won't require I/O to read. Also only try to 2712 * prefetch once, so we avoid getblk() call, which can 2713 * be expensive. 2714 */ 2715 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2716 EXT4_MB_GRP_NEED_INIT(grp) && 2717 ext4_free_group_clusters(sb, gdp) > 0 ) { 2718 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2719 if (bh && !IS_ERR(bh)) { 2720 if (!buffer_uptodate(bh) && cnt) 2721 (*cnt)++; 2722 brelse(bh); 2723 } 2724 } 2725 if (++group >= ngroups) 2726 group = 0; 2727 } 2728 blk_finish_plug(&plug); 2729 return group; 2730 } 2731 2732 /* 2733 * Prefetching reads the block bitmap into the buffer cache; but we 2734 * need to make sure that the buddy bitmap in the page cache has been 2735 * initialized. Note that ext4_mb_init_group() will block if the I/O 2736 * is not yet completed, or indeed if it was not initiated by 2737 * ext4_mb_prefetch did not start the I/O. 2738 * 2739 * TODO: We should actually kick off the buddy bitmap setup in a work 2740 * queue when the buffer I/O is completed, so that we don't block 2741 * waiting for the block allocation bitmap read to finish when 2742 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2743 */ 2744 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2745 unsigned int nr) 2746 { 2747 struct ext4_group_desc *gdp; 2748 struct ext4_group_info *grp; 2749 2750 while (nr-- > 0) { 2751 if (!group) 2752 group = ext4_get_groups_count(sb); 2753 group--; 2754 gdp = ext4_get_group_desc(sb, group, NULL); 2755 grp = ext4_get_group_info(sb, group); 2756 2757 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2758 ext4_free_group_clusters(sb, gdp) > 0) { 2759 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2760 break; 2761 } 2762 } 2763 } 2764 2765 static noinline_for_stack int 2766 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2767 { 2768 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2769 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2770 int err = 0, first_err = 0; 2771 unsigned int nr = 0, prefetch_ios = 0; 2772 struct ext4_sb_info *sbi; 2773 struct super_block *sb; 2774 struct ext4_buddy e4b; 2775 int lost; 2776 2777 sb = ac->ac_sb; 2778 sbi = EXT4_SB(sb); 2779 ngroups = ext4_get_groups_count(sb); 2780 /* non-extent files are limited to low blocks/groups */ 2781 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2782 ngroups = sbi->s_blockfile_groups; 2783 2784 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2785 2786 /* first, try the goal */ 2787 err = ext4_mb_find_by_goal(ac, &e4b); 2788 if (err || ac->ac_status == AC_STATUS_FOUND) 2789 goto out; 2790 2791 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2792 goto out; 2793 2794 /* 2795 * ac->ac_2order is set only if the fe_len is a power of 2 2796 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2797 * so that we try exact allocation using buddy. 2798 */ 2799 i = fls(ac->ac_g_ex.fe_len); 2800 ac->ac_2order = 0; 2801 /* 2802 * We search using buddy data only if the order of the request 2803 * is greater than equal to the sbi_s_mb_order2_reqs 2804 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2805 * We also support searching for power-of-two requests only for 2806 * requests upto maximum buddy size we have constructed. 2807 */ 2808 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2809 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2810 ac->ac_2order = array_index_nospec(i - 1, 2811 MB_NUM_ORDERS(sb)); 2812 } 2813 2814 /* if stream allocation is enabled, use global goal */ 2815 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2816 /* TBD: may be hot point */ 2817 spin_lock(&sbi->s_md_lock); 2818 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2819 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2820 spin_unlock(&sbi->s_md_lock); 2821 } 2822 2823 /* 2824 * Let's just scan groups to find more-less suitable blocks We 2825 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2826 * aligned, in which case let's do that faster approach first. 2827 */ 2828 if (ac->ac_2order) 2829 cr = CR_POWER2_ALIGNED; 2830 repeat: 2831 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2832 ac->ac_criteria = cr; 2833 /* 2834 * searching for the right group start 2835 * from the goal value specified 2836 */ 2837 group = ac->ac_g_ex.fe_group; 2838 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2839 prefetch_grp = group; 2840 2841 for (i = 0, new_cr = cr; i < ngroups; i++, 2842 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2843 int ret = 0; 2844 2845 cond_resched(); 2846 if (new_cr != cr) { 2847 cr = new_cr; 2848 goto repeat; 2849 } 2850 2851 /* 2852 * Batch reads of the block allocation bitmaps 2853 * to get multiple READs in flight; limit 2854 * prefetching at inexpensive CR, otherwise mballoc 2855 * can spend a lot of time loading imperfect groups 2856 */ 2857 if ((prefetch_grp == group) && 2858 (ext4_mb_cr_expensive(cr) || 2859 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2860 nr = sbi->s_mb_prefetch; 2861 if (ext4_has_feature_flex_bg(sb)) { 2862 nr = 1 << sbi->s_log_groups_per_flex; 2863 nr -= group & (nr - 1); 2864 nr = min(nr, sbi->s_mb_prefetch); 2865 } 2866 prefetch_grp = ext4_mb_prefetch(sb, group, 2867 nr, &prefetch_ios); 2868 } 2869 2870 /* This now checks without needing the buddy page */ 2871 ret = ext4_mb_good_group_nolock(ac, group, cr); 2872 if (ret <= 0) { 2873 if (!first_err) 2874 first_err = ret; 2875 continue; 2876 } 2877 2878 err = ext4_mb_load_buddy(sb, group, &e4b); 2879 if (err) 2880 goto out; 2881 2882 ext4_lock_group(sb, group); 2883 2884 /* 2885 * We need to check again after locking the 2886 * block group 2887 */ 2888 ret = ext4_mb_good_group(ac, group, cr); 2889 if (ret == 0) { 2890 ext4_unlock_group(sb, group); 2891 ext4_mb_unload_buddy(&e4b); 2892 continue; 2893 } 2894 2895 ac->ac_groups_scanned++; 2896 if (cr == CR_POWER2_ALIGNED) 2897 ext4_mb_simple_scan_group(ac, &e4b); 2898 else if ((cr == CR_GOAL_LEN_FAST || 2899 cr == CR_BEST_AVAIL_LEN) && 2900 sbi->s_stripe && 2901 !(ac->ac_g_ex.fe_len % 2902 EXT4_B2C(sbi, sbi->s_stripe))) 2903 ext4_mb_scan_aligned(ac, &e4b); 2904 else 2905 ext4_mb_complex_scan_group(ac, &e4b); 2906 2907 ext4_unlock_group(sb, group); 2908 ext4_mb_unload_buddy(&e4b); 2909 2910 if (ac->ac_status != AC_STATUS_CONTINUE) 2911 break; 2912 } 2913 /* Processed all groups and haven't found blocks */ 2914 if (sbi->s_mb_stats && i == ngroups) 2915 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2916 2917 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2918 /* Reset goal length to original goal length before 2919 * falling into CR_GOAL_LEN_SLOW */ 2920 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2921 } 2922 2923 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2924 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2925 /* 2926 * We've been searching too long. Let's try to allocate 2927 * the best chunk we've found so far 2928 */ 2929 ext4_mb_try_best_found(ac, &e4b); 2930 if (ac->ac_status != AC_STATUS_FOUND) { 2931 /* 2932 * Someone more lucky has already allocated it. 2933 * The only thing we can do is just take first 2934 * found block(s) 2935 */ 2936 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2937 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2938 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2939 ac->ac_b_ex.fe_len, lost); 2940 2941 ac->ac_b_ex.fe_group = 0; 2942 ac->ac_b_ex.fe_start = 0; 2943 ac->ac_b_ex.fe_len = 0; 2944 ac->ac_status = AC_STATUS_CONTINUE; 2945 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2946 cr = CR_ANY_FREE; 2947 goto repeat; 2948 } 2949 } 2950 2951 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2952 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2953 out: 2954 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2955 err = first_err; 2956 2957 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2958 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2959 ac->ac_flags, cr, err); 2960 2961 if (nr) 2962 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2963 2964 return err; 2965 } 2966 2967 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2968 { 2969 struct super_block *sb = pde_data(file_inode(seq->file)); 2970 ext4_group_t group; 2971 2972 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2973 return NULL; 2974 group = *pos + 1; 2975 return (void *) ((unsigned long) group); 2976 } 2977 2978 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2979 { 2980 struct super_block *sb = pde_data(file_inode(seq->file)); 2981 ext4_group_t group; 2982 2983 ++*pos; 2984 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2985 return NULL; 2986 group = *pos + 1; 2987 return (void *) ((unsigned long) group); 2988 } 2989 2990 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2991 { 2992 struct super_block *sb = pde_data(file_inode(seq->file)); 2993 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2994 int i; 2995 int err, buddy_loaded = 0; 2996 struct ext4_buddy e4b; 2997 struct ext4_group_info *grinfo; 2998 unsigned char blocksize_bits = min_t(unsigned char, 2999 sb->s_blocksize_bits, 3000 EXT4_MAX_BLOCK_LOG_SIZE); 3001 struct sg { 3002 struct ext4_group_info info; 3003 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3004 } sg; 3005 3006 group--; 3007 if (group == 0) 3008 seq_puts(seq, "#group: free frags first [" 3009 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3010 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3011 3012 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3013 sizeof(struct ext4_group_info); 3014 3015 grinfo = ext4_get_group_info(sb, group); 3016 if (!grinfo) 3017 return 0; 3018 /* Load the group info in memory only if not already loaded. */ 3019 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3020 err = ext4_mb_load_buddy(sb, group, &e4b); 3021 if (err) { 3022 seq_printf(seq, "#%-5u: I/O error\n", group); 3023 return 0; 3024 } 3025 buddy_loaded = 1; 3026 } 3027 3028 memcpy(&sg, grinfo, i); 3029 3030 if (buddy_loaded) 3031 ext4_mb_unload_buddy(&e4b); 3032 3033 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3034 sg.info.bb_fragments, sg.info.bb_first_free); 3035 for (i = 0; i <= 13; i++) 3036 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3037 sg.info.bb_counters[i] : 0); 3038 seq_puts(seq, " ]\n"); 3039 3040 return 0; 3041 } 3042 3043 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3044 { 3045 } 3046 3047 const struct seq_operations ext4_mb_seq_groups_ops = { 3048 .start = ext4_mb_seq_groups_start, 3049 .next = ext4_mb_seq_groups_next, 3050 .stop = ext4_mb_seq_groups_stop, 3051 .show = ext4_mb_seq_groups_show, 3052 }; 3053 3054 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3055 { 3056 struct super_block *sb = seq->private; 3057 struct ext4_sb_info *sbi = EXT4_SB(sb); 3058 3059 seq_puts(seq, "mballoc:\n"); 3060 if (!sbi->s_mb_stats) { 3061 seq_puts(seq, "\tmb stats collection turned off.\n"); 3062 seq_puts( 3063 seq, 3064 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3065 return 0; 3066 } 3067 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3068 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3069 3070 seq_printf(seq, "\tgroups_scanned: %u\n", 3071 atomic_read(&sbi->s_bal_groups_scanned)); 3072 3073 /* CR_POWER2_ALIGNED stats */ 3074 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3075 seq_printf(seq, "\t\thits: %llu\n", 3076 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3077 seq_printf( 3078 seq, "\t\tgroups_considered: %llu\n", 3079 atomic64_read( 3080 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3081 seq_printf(seq, "\t\textents_scanned: %u\n", 3082 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3083 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3084 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3085 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3086 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3087 3088 /* CR_GOAL_LEN_FAST stats */ 3089 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3090 seq_printf(seq, "\t\thits: %llu\n", 3091 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3092 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3093 atomic64_read( 3094 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3095 seq_printf(seq, "\t\textents_scanned: %u\n", 3096 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3097 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3098 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3099 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3100 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3101 3102 /* CR_BEST_AVAIL_LEN stats */ 3103 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3104 seq_printf(seq, "\t\thits: %llu\n", 3105 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3106 seq_printf( 3107 seq, "\t\tgroups_considered: %llu\n", 3108 atomic64_read( 3109 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3110 seq_printf(seq, "\t\textents_scanned: %u\n", 3111 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3112 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3113 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3114 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3115 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3116 3117 /* CR_GOAL_LEN_SLOW stats */ 3118 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3119 seq_printf(seq, "\t\thits: %llu\n", 3120 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3121 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3122 atomic64_read( 3123 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3124 seq_printf(seq, "\t\textents_scanned: %u\n", 3125 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3126 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3127 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3128 3129 /* CR_ANY_FREE stats */ 3130 seq_puts(seq, "\tcr_any_free_stats:\n"); 3131 seq_printf(seq, "\t\thits: %llu\n", 3132 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3133 seq_printf( 3134 seq, "\t\tgroups_considered: %llu\n", 3135 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3136 seq_printf(seq, "\t\textents_scanned: %u\n", 3137 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3138 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3139 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3140 3141 /* Aggregates */ 3142 seq_printf(seq, "\textents_scanned: %u\n", 3143 atomic_read(&sbi->s_bal_ex_scanned)); 3144 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3145 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3146 atomic_read(&sbi->s_bal_len_goals)); 3147 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3148 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3149 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3150 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3151 atomic_read(&sbi->s_mb_buddies_generated), 3152 ext4_get_groups_count(sb)); 3153 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3154 atomic64_read(&sbi->s_mb_generation_time)); 3155 seq_printf(seq, "\tpreallocated: %u\n", 3156 atomic_read(&sbi->s_mb_preallocated)); 3157 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3158 return 0; 3159 } 3160 3161 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3162 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3163 { 3164 struct super_block *sb = pde_data(file_inode(seq->file)); 3165 unsigned long position; 3166 3167 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3168 return NULL; 3169 position = *pos + 1; 3170 return (void *) ((unsigned long) position); 3171 } 3172 3173 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3174 { 3175 struct super_block *sb = pde_data(file_inode(seq->file)); 3176 unsigned long position; 3177 3178 ++*pos; 3179 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3180 return NULL; 3181 position = *pos + 1; 3182 return (void *) ((unsigned long) position); 3183 } 3184 3185 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3186 { 3187 struct super_block *sb = pde_data(file_inode(seq->file)); 3188 struct ext4_sb_info *sbi = EXT4_SB(sb); 3189 unsigned long position = ((unsigned long) v); 3190 struct ext4_group_info *grp; 3191 unsigned int count; 3192 3193 position--; 3194 if (position >= MB_NUM_ORDERS(sb)) { 3195 position -= MB_NUM_ORDERS(sb); 3196 if (position == 0) 3197 seq_puts(seq, "avg_fragment_size_lists:\n"); 3198 3199 count = 0; 3200 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3201 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3202 bb_avg_fragment_size_node) 3203 count++; 3204 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3205 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3206 (unsigned int)position, count); 3207 return 0; 3208 } 3209 3210 if (position == 0) { 3211 seq_printf(seq, "optimize_scan: %d\n", 3212 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3213 seq_puts(seq, "max_free_order_lists:\n"); 3214 } 3215 count = 0; 3216 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3217 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3218 bb_largest_free_order_node) 3219 count++; 3220 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3221 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3222 (unsigned int)position, count); 3223 3224 return 0; 3225 } 3226 3227 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3228 { 3229 } 3230 3231 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3232 .start = ext4_mb_seq_structs_summary_start, 3233 .next = ext4_mb_seq_structs_summary_next, 3234 .stop = ext4_mb_seq_structs_summary_stop, 3235 .show = ext4_mb_seq_structs_summary_show, 3236 }; 3237 3238 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3239 { 3240 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3241 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3242 3243 BUG_ON(!cachep); 3244 return cachep; 3245 } 3246 3247 /* 3248 * Allocate the top-level s_group_info array for the specified number 3249 * of groups 3250 */ 3251 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3252 { 3253 struct ext4_sb_info *sbi = EXT4_SB(sb); 3254 unsigned size; 3255 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3256 3257 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3258 EXT4_DESC_PER_BLOCK_BITS(sb); 3259 if (size <= sbi->s_group_info_size) 3260 return 0; 3261 3262 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3263 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3264 if (!new_groupinfo) { 3265 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3266 return -ENOMEM; 3267 } 3268 rcu_read_lock(); 3269 old_groupinfo = rcu_dereference(sbi->s_group_info); 3270 if (old_groupinfo) 3271 memcpy(new_groupinfo, old_groupinfo, 3272 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3273 rcu_read_unlock(); 3274 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3275 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3276 if (old_groupinfo) 3277 ext4_kvfree_array_rcu(old_groupinfo); 3278 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3279 sbi->s_group_info_size); 3280 return 0; 3281 } 3282 3283 /* Create and initialize ext4_group_info data for the given group. */ 3284 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3285 struct ext4_group_desc *desc) 3286 { 3287 int i; 3288 int metalen = 0; 3289 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3290 struct ext4_sb_info *sbi = EXT4_SB(sb); 3291 struct ext4_group_info **meta_group_info; 3292 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3293 3294 /* 3295 * First check if this group is the first of a reserved block. 3296 * If it's true, we have to allocate a new table of pointers 3297 * to ext4_group_info structures 3298 */ 3299 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3300 metalen = sizeof(*meta_group_info) << 3301 EXT4_DESC_PER_BLOCK_BITS(sb); 3302 meta_group_info = kmalloc(metalen, GFP_NOFS); 3303 if (meta_group_info == NULL) { 3304 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3305 "for a buddy group"); 3306 return -ENOMEM; 3307 } 3308 rcu_read_lock(); 3309 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3310 rcu_read_unlock(); 3311 } 3312 3313 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3314 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3315 3316 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3317 if (meta_group_info[i] == NULL) { 3318 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3319 goto exit_group_info; 3320 } 3321 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3322 &(meta_group_info[i]->bb_state)); 3323 3324 /* 3325 * initialize bb_free to be able to skip 3326 * empty groups without initialization 3327 */ 3328 if (ext4_has_group_desc_csum(sb) && 3329 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3330 meta_group_info[i]->bb_free = 3331 ext4_free_clusters_after_init(sb, group, desc); 3332 } else { 3333 meta_group_info[i]->bb_free = 3334 ext4_free_group_clusters(sb, desc); 3335 } 3336 3337 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3338 init_rwsem(&meta_group_info[i]->alloc_sem); 3339 meta_group_info[i]->bb_free_root = RB_ROOT; 3340 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3341 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3342 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3343 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3344 meta_group_info[i]->bb_group = group; 3345 3346 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3347 return 0; 3348 3349 exit_group_info: 3350 /* If a meta_group_info table has been allocated, release it now */ 3351 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3352 struct ext4_group_info ***group_info; 3353 3354 rcu_read_lock(); 3355 group_info = rcu_dereference(sbi->s_group_info); 3356 kfree(group_info[idx]); 3357 group_info[idx] = NULL; 3358 rcu_read_unlock(); 3359 } 3360 return -ENOMEM; 3361 } /* ext4_mb_add_groupinfo */ 3362 3363 static int ext4_mb_init_backend(struct super_block *sb) 3364 { 3365 ext4_group_t ngroups = ext4_get_groups_count(sb); 3366 ext4_group_t i; 3367 struct ext4_sb_info *sbi = EXT4_SB(sb); 3368 int err; 3369 struct ext4_group_desc *desc; 3370 struct ext4_group_info ***group_info; 3371 struct kmem_cache *cachep; 3372 3373 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3374 if (err) 3375 return err; 3376 3377 sbi->s_buddy_cache = new_inode(sb); 3378 if (sbi->s_buddy_cache == NULL) { 3379 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3380 goto err_freesgi; 3381 } 3382 /* To avoid potentially colliding with an valid on-disk inode number, 3383 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3384 * not in the inode hash, so it should never be found by iget(), but 3385 * this will avoid confusion if it ever shows up during debugging. */ 3386 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3387 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3388 for (i = 0; i < ngroups; i++) { 3389 cond_resched(); 3390 desc = ext4_get_group_desc(sb, i, NULL); 3391 if (desc == NULL) { 3392 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3393 goto err_freebuddy; 3394 } 3395 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3396 goto err_freebuddy; 3397 } 3398 3399 if (ext4_has_feature_flex_bg(sb)) { 3400 /* a single flex group is supposed to be read by a single IO. 3401 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3402 * unsigned integer, so the maximum shift is 32. 3403 */ 3404 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3405 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3406 goto err_freebuddy; 3407 } 3408 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3409 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3410 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3411 } else { 3412 sbi->s_mb_prefetch = 32; 3413 } 3414 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3415 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3416 /* now many real IOs to prefetch within a single allocation at cr=0 3417 * given cr=0 is an CPU-related optimization we shouldn't try to 3418 * load too many groups, at some point we should start to use what 3419 * we've got in memory. 3420 * with an average random access time 5ms, it'd take a second to get 3421 * 200 groups (* N with flex_bg), so let's make this limit 4 3422 */ 3423 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3424 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3425 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3426 3427 return 0; 3428 3429 err_freebuddy: 3430 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3431 while (i-- > 0) { 3432 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3433 3434 if (grp) 3435 kmem_cache_free(cachep, grp); 3436 } 3437 i = sbi->s_group_info_size; 3438 rcu_read_lock(); 3439 group_info = rcu_dereference(sbi->s_group_info); 3440 while (i-- > 0) 3441 kfree(group_info[i]); 3442 rcu_read_unlock(); 3443 iput(sbi->s_buddy_cache); 3444 err_freesgi: 3445 rcu_read_lock(); 3446 kvfree(rcu_dereference(sbi->s_group_info)); 3447 rcu_read_unlock(); 3448 return -ENOMEM; 3449 } 3450 3451 static void ext4_groupinfo_destroy_slabs(void) 3452 { 3453 int i; 3454 3455 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3456 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3457 ext4_groupinfo_caches[i] = NULL; 3458 } 3459 } 3460 3461 static int ext4_groupinfo_create_slab(size_t size) 3462 { 3463 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3464 int slab_size; 3465 int blocksize_bits = order_base_2(size); 3466 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3467 struct kmem_cache *cachep; 3468 3469 if (cache_index >= NR_GRPINFO_CACHES) 3470 return -EINVAL; 3471 3472 if (unlikely(cache_index < 0)) 3473 cache_index = 0; 3474 3475 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3476 if (ext4_groupinfo_caches[cache_index]) { 3477 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3478 return 0; /* Already created */ 3479 } 3480 3481 slab_size = offsetof(struct ext4_group_info, 3482 bb_counters[blocksize_bits + 2]); 3483 3484 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3485 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3486 NULL); 3487 3488 ext4_groupinfo_caches[cache_index] = cachep; 3489 3490 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3491 if (!cachep) { 3492 printk(KERN_EMERG 3493 "EXT4-fs: no memory for groupinfo slab cache\n"); 3494 return -ENOMEM; 3495 } 3496 3497 return 0; 3498 } 3499 3500 static void ext4_discard_work(struct work_struct *work) 3501 { 3502 struct ext4_sb_info *sbi = container_of(work, 3503 struct ext4_sb_info, s_discard_work); 3504 struct super_block *sb = sbi->s_sb; 3505 struct ext4_free_data *fd, *nfd; 3506 struct ext4_buddy e4b; 3507 LIST_HEAD(discard_list); 3508 ext4_group_t grp, load_grp; 3509 int err = 0; 3510 3511 spin_lock(&sbi->s_md_lock); 3512 list_splice_init(&sbi->s_discard_list, &discard_list); 3513 spin_unlock(&sbi->s_md_lock); 3514 3515 load_grp = UINT_MAX; 3516 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3517 /* 3518 * If filesystem is umounting or no memory or suffering 3519 * from no space, give up the discard 3520 */ 3521 if ((sb->s_flags & SB_ACTIVE) && !err && 3522 !atomic_read(&sbi->s_retry_alloc_pending)) { 3523 grp = fd->efd_group; 3524 if (grp != load_grp) { 3525 if (load_grp != UINT_MAX) 3526 ext4_mb_unload_buddy(&e4b); 3527 3528 err = ext4_mb_load_buddy(sb, grp, &e4b); 3529 if (err) { 3530 kmem_cache_free(ext4_free_data_cachep, fd); 3531 load_grp = UINT_MAX; 3532 continue; 3533 } else { 3534 load_grp = grp; 3535 } 3536 } 3537 3538 ext4_lock_group(sb, grp); 3539 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3540 fd->efd_start_cluster + fd->efd_count - 1, 1); 3541 ext4_unlock_group(sb, grp); 3542 } 3543 kmem_cache_free(ext4_free_data_cachep, fd); 3544 } 3545 3546 if (load_grp != UINT_MAX) 3547 ext4_mb_unload_buddy(&e4b); 3548 } 3549 3550 int ext4_mb_init(struct super_block *sb) 3551 { 3552 struct ext4_sb_info *sbi = EXT4_SB(sb); 3553 unsigned i, j; 3554 unsigned offset, offset_incr; 3555 unsigned max; 3556 int ret; 3557 3558 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3559 3560 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3561 if (sbi->s_mb_offsets == NULL) { 3562 ret = -ENOMEM; 3563 goto out; 3564 } 3565 3566 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3567 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3568 if (sbi->s_mb_maxs == NULL) { 3569 ret = -ENOMEM; 3570 goto out; 3571 } 3572 3573 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3574 if (ret < 0) 3575 goto out; 3576 3577 /* order 0 is regular bitmap */ 3578 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3579 sbi->s_mb_offsets[0] = 0; 3580 3581 i = 1; 3582 offset = 0; 3583 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3584 max = sb->s_blocksize << 2; 3585 do { 3586 sbi->s_mb_offsets[i] = offset; 3587 sbi->s_mb_maxs[i] = max; 3588 offset += offset_incr; 3589 offset_incr = offset_incr >> 1; 3590 max = max >> 1; 3591 i++; 3592 } while (i < MB_NUM_ORDERS(sb)); 3593 3594 sbi->s_mb_avg_fragment_size = 3595 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3596 GFP_KERNEL); 3597 if (!sbi->s_mb_avg_fragment_size) { 3598 ret = -ENOMEM; 3599 goto out; 3600 } 3601 sbi->s_mb_avg_fragment_size_locks = 3602 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3603 GFP_KERNEL); 3604 if (!sbi->s_mb_avg_fragment_size_locks) { 3605 ret = -ENOMEM; 3606 goto out; 3607 } 3608 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3609 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3610 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3611 } 3612 sbi->s_mb_largest_free_orders = 3613 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3614 GFP_KERNEL); 3615 if (!sbi->s_mb_largest_free_orders) { 3616 ret = -ENOMEM; 3617 goto out; 3618 } 3619 sbi->s_mb_largest_free_orders_locks = 3620 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3621 GFP_KERNEL); 3622 if (!sbi->s_mb_largest_free_orders_locks) { 3623 ret = -ENOMEM; 3624 goto out; 3625 } 3626 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3627 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3628 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3629 } 3630 3631 spin_lock_init(&sbi->s_md_lock); 3632 sbi->s_mb_free_pending = 0; 3633 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3634 INIT_LIST_HEAD(&sbi->s_discard_list); 3635 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3636 atomic_set(&sbi->s_retry_alloc_pending, 0); 3637 3638 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3639 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3640 sbi->s_mb_stats = MB_DEFAULT_STATS; 3641 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3642 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3643 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3644 3645 /* 3646 * The default group preallocation is 512, which for 4k block 3647 * sizes translates to 2 megabytes. However for bigalloc file 3648 * systems, this is probably too big (i.e, if the cluster size 3649 * is 1 megabyte, then group preallocation size becomes half a 3650 * gigabyte!). As a default, we will keep a two megabyte 3651 * group pralloc size for cluster sizes up to 64k, and after 3652 * that, we will force a minimum group preallocation size of 3653 * 32 clusters. This translates to 8 megs when the cluster 3654 * size is 256k, and 32 megs when the cluster size is 1 meg, 3655 * which seems reasonable as a default. 3656 */ 3657 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3658 sbi->s_cluster_bits, 32); 3659 /* 3660 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3661 * to the lowest multiple of s_stripe which is bigger than 3662 * the s_mb_group_prealloc as determined above. We want 3663 * the preallocation size to be an exact multiple of the 3664 * RAID stripe size so that preallocations don't fragment 3665 * the stripes. 3666 */ 3667 if (sbi->s_stripe > 1) { 3668 sbi->s_mb_group_prealloc = roundup( 3669 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3670 } 3671 3672 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3673 if (sbi->s_locality_groups == NULL) { 3674 ret = -ENOMEM; 3675 goto out; 3676 } 3677 for_each_possible_cpu(i) { 3678 struct ext4_locality_group *lg; 3679 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3680 mutex_init(&lg->lg_mutex); 3681 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3682 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3683 spin_lock_init(&lg->lg_prealloc_lock); 3684 } 3685 3686 if (bdev_nonrot(sb->s_bdev)) 3687 sbi->s_mb_max_linear_groups = 0; 3688 else 3689 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3690 /* init file for buddy data */ 3691 ret = ext4_mb_init_backend(sb); 3692 if (ret != 0) 3693 goto out_free_locality_groups; 3694 3695 return 0; 3696 3697 out_free_locality_groups: 3698 free_percpu(sbi->s_locality_groups); 3699 sbi->s_locality_groups = NULL; 3700 out: 3701 kfree(sbi->s_mb_avg_fragment_size); 3702 kfree(sbi->s_mb_avg_fragment_size_locks); 3703 kfree(sbi->s_mb_largest_free_orders); 3704 kfree(sbi->s_mb_largest_free_orders_locks); 3705 kfree(sbi->s_mb_offsets); 3706 sbi->s_mb_offsets = NULL; 3707 kfree(sbi->s_mb_maxs); 3708 sbi->s_mb_maxs = NULL; 3709 return ret; 3710 } 3711 3712 /* need to called with the ext4 group lock held */ 3713 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3714 { 3715 struct ext4_prealloc_space *pa; 3716 struct list_head *cur, *tmp; 3717 int count = 0; 3718 3719 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3720 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3721 list_del(&pa->pa_group_list); 3722 count++; 3723 kmem_cache_free(ext4_pspace_cachep, pa); 3724 } 3725 return count; 3726 } 3727 3728 int ext4_mb_release(struct super_block *sb) 3729 { 3730 ext4_group_t ngroups = ext4_get_groups_count(sb); 3731 ext4_group_t i; 3732 int num_meta_group_infos; 3733 struct ext4_group_info *grinfo, ***group_info; 3734 struct ext4_sb_info *sbi = EXT4_SB(sb); 3735 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3736 int count; 3737 3738 if (test_opt(sb, DISCARD)) { 3739 /* 3740 * wait the discard work to drain all of ext4_free_data 3741 */ 3742 flush_work(&sbi->s_discard_work); 3743 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3744 } 3745 3746 if (sbi->s_group_info) { 3747 for (i = 0; i < ngroups; i++) { 3748 cond_resched(); 3749 grinfo = ext4_get_group_info(sb, i); 3750 if (!grinfo) 3751 continue; 3752 mb_group_bb_bitmap_free(grinfo); 3753 ext4_lock_group(sb, i); 3754 count = ext4_mb_cleanup_pa(grinfo); 3755 if (count) 3756 mb_debug(sb, "mballoc: %d PAs left\n", 3757 count); 3758 ext4_unlock_group(sb, i); 3759 kmem_cache_free(cachep, grinfo); 3760 } 3761 num_meta_group_infos = (ngroups + 3762 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3763 EXT4_DESC_PER_BLOCK_BITS(sb); 3764 rcu_read_lock(); 3765 group_info = rcu_dereference(sbi->s_group_info); 3766 for (i = 0; i < num_meta_group_infos; i++) 3767 kfree(group_info[i]); 3768 kvfree(group_info); 3769 rcu_read_unlock(); 3770 } 3771 kfree(sbi->s_mb_avg_fragment_size); 3772 kfree(sbi->s_mb_avg_fragment_size_locks); 3773 kfree(sbi->s_mb_largest_free_orders); 3774 kfree(sbi->s_mb_largest_free_orders_locks); 3775 kfree(sbi->s_mb_offsets); 3776 kfree(sbi->s_mb_maxs); 3777 iput(sbi->s_buddy_cache); 3778 if (sbi->s_mb_stats) { 3779 ext4_msg(sb, KERN_INFO, 3780 "mballoc: %u blocks %u reqs (%u success)", 3781 atomic_read(&sbi->s_bal_allocated), 3782 atomic_read(&sbi->s_bal_reqs), 3783 atomic_read(&sbi->s_bal_success)); 3784 ext4_msg(sb, KERN_INFO, 3785 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3786 "%u 2^N hits, %u breaks, %u lost", 3787 atomic_read(&sbi->s_bal_ex_scanned), 3788 atomic_read(&sbi->s_bal_groups_scanned), 3789 atomic_read(&sbi->s_bal_goals), 3790 atomic_read(&sbi->s_bal_2orders), 3791 atomic_read(&sbi->s_bal_breaks), 3792 atomic_read(&sbi->s_mb_lost_chunks)); 3793 ext4_msg(sb, KERN_INFO, 3794 "mballoc: %u generated and it took %llu", 3795 atomic_read(&sbi->s_mb_buddies_generated), 3796 atomic64_read(&sbi->s_mb_generation_time)); 3797 ext4_msg(sb, KERN_INFO, 3798 "mballoc: %u preallocated, %u discarded", 3799 atomic_read(&sbi->s_mb_preallocated), 3800 atomic_read(&sbi->s_mb_discarded)); 3801 } 3802 3803 free_percpu(sbi->s_locality_groups); 3804 3805 return 0; 3806 } 3807 3808 static inline int ext4_issue_discard(struct super_block *sb, 3809 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3810 struct bio **biop) 3811 { 3812 ext4_fsblk_t discard_block; 3813 3814 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3815 ext4_group_first_block_no(sb, block_group)); 3816 count = EXT4_C2B(EXT4_SB(sb), count); 3817 trace_ext4_discard_blocks(sb, 3818 (unsigned long long) discard_block, count); 3819 if (biop) { 3820 return __blkdev_issue_discard(sb->s_bdev, 3821 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3822 (sector_t)count << (sb->s_blocksize_bits - 9), 3823 GFP_NOFS, biop); 3824 } else 3825 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3826 } 3827 3828 static void ext4_free_data_in_buddy(struct super_block *sb, 3829 struct ext4_free_data *entry) 3830 { 3831 struct ext4_buddy e4b; 3832 struct ext4_group_info *db; 3833 int err, count = 0; 3834 3835 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3836 entry->efd_count, entry->efd_group, entry); 3837 3838 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3839 /* we expect to find existing buddy because it's pinned */ 3840 BUG_ON(err != 0); 3841 3842 spin_lock(&EXT4_SB(sb)->s_md_lock); 3843 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3844 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3845 3846 db = e4b.bd_info; 3847 /* there are blocks to put in buddy to make them really free */ 3848 count += entry->efd_count; 3849 ext4_lock_group(sb, entry->efd_group); 3850 /* Take it out of per group rb tree */ 3851 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3852 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3853 3854 /* 3855 * Clear the trimmed flag for the group so that the next 3856 * ext4_trim_fs can trim it. 3857 * If the volume is mounted with -o discard, online discard 3858 * is supported and the free blocks will be trimmed online. 3859 */ 3860 if (!test_opt(sb, DISCARD)) 3861 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3862 3863 if (!db->bb_free_root.rb_node) { 3864 /* No more items in the per group rb tree 3865 * balance refcounts from ext4_mb_free_metadata() 3866 */ 3867 put_page(e4b.bd_buddy_page); 3868 put_page(e4b.bd_bitmap_page); 3869 } 3870 ext4_unlock_group(sb, entry->efd_group); 3871 ext4_mb_unload_buddy(&e4b); 3872 3873 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3874 } 3875 3876 /* 3877 * This function is called by the jbd2 layer once the commit has finished, 3878 * so we know we can free the blocks that were released with that commit. 3879 */ 3880 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3881 { 3882 struct ext4_sb_info *sbi = EXT4_SB(sb); 3883 struct ext4_free_data *entry, *tmp; 3884 LIST_HEAD(freed_data_list); 3885 struct list_head *cut_pos = NULL; 3886 bool wake; 3887 3888 spin_lock(&sbi->s_md_lock); 3889 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3890 if (entry->efd_tid != commit_tid) 3891 break; 3892 cut_pos = &entry->efd_list; 3893 } 3894 if (cut_pos) 3895 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3896 cut_pos); 3897 spin_unlock(&sbi->s_md_lock); 3898 3899 list_for_each_entry(entry, &freed_data_list, efd_list) 3900 ext4_free_data_in_buddy(sb, entry); 3901 3902 if (test_opt(sb, DISCARD)) { 3903 spin_lock(&sbi->s_md_lock); 3904 wake = list_empty(&sbi->s_discard_list); 3905 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3906 spin_unlock(&sbi->s_md_lock); 3907 if (wake) 3908 queue_work(system_unbound_wq, &sbi->s_discard_work); 3909 } else { 3910 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3911 kmem_cache_free(ext4_free_data_cachep, entry); 3912 } 3913 } 3914 3915 int __init ext4_init_mballoc(void) 3916 { 3917 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3918 SLAB_RECLAIM_ACCOUNT); 3919 if (ext4_pspace_cachep == NULL) 3920 goto out; 3921 3922 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3923 SLAB_RECLAIM_ACCOUNT); 3924 if (ext4_ac_cachep == NULL) 3925 goto out_pa_free; 3926 3927 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3928 SLAB_RECLAIM_ACCOUNT); 3929 if (ext4_free_data_cachep == NULL) 3930 goto out_ac_free; 3931 3932 return 0; 3933 3934 out_ac_free: 3935 kmem_cache_destroy(ext4_ac_cachep); 3936 out_pa_free: 3937 kmem_cache_destroy(ext4_pspace_cachep); 3938 out: 3939 return -ENOMEM; 3940 } 3941 3942 void ext4_exit_mballoc(void) 3943 { 3944 /* 3945 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3946 * before destroying the slab cache. 3947 */ 3948 rcu_barrier(); 3949 kmem_cache_destroy(ext4_pspace_cachep); 3950 kmem_cache_destroy(ext4_ac_cachep); 3951 kmem_cache_destroy(ext4_free_data_cachep); 3952 ext4_groupinfo_destroy_slabs(); 3953 } 3954 3955 3956 /* 3957 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3958 * Returns 0 if success or error code 3959 */ 3960 static noinline_for_stack int 3961 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3962 handle_t *handle, unsigned int reserv_clstrs) 3963 { 3964 struct buffer_head *bitmap_bh = NULL; 3965 struct ext4_group_desc *gdp; 3966 struct buffer_head *gdp_bh; 3967 struct ext4_sb_info *sbi; 3968 struct super_block *sb; 3969 ext4_fsblk_t block; 3970 int err, len; 3971 3972 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3973 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3974 3975 sb = ac->ac_sb; 3976 sbi = EXT4_SB(sb); 3977 3978 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3979 if (IS_ERR(bitmap_bh)) { 3980 return PTR_ERR(bitmap_bh); 3981 } 3982 3983 BUFFER_TRACE(bitmap_bh, "getting write access"); 3984 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3985 EXT4_JTR_NONE); 3986 if (err) 3987 goto out_err; 3988 3989 err = -EIO; 3990 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3991 if (!gdp) 3992 goto out_err; 3993 3994 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3995 ext4_free_group_clusters(sb, gdp)); 3996 3997 BUFFER_TRACE(gdp_bh, "get_write_access"); 3998 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 3999 if (err) 4000 goto out_err; 4001 4002 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4003 4004 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4005 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4006 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4007 "fs metadata", block, block+len); 4008 /* File system mounted not to panic on error 4009 * Fix the bitmap and return EFSCORRUPTED 4010 * We leak some of the blocks here. 4011 */ 4012 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4013 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4014 ac->ac_b_ex.fe_len); 4015 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4016 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4017 if (!err) 4018 err = -EFSCORRUPTED; 4019 goto out_err; 4020 } 4021 4022 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4023 #ifdef AGGRESSIVE_CHECK 4024 { 4025 int i; 4026 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4027 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4028 bitmap_bh->b_data)); 4029 } 4030 } 4031 #endif 4032 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4033 ac->ac_b_ex.fe_len); 4034 if (ext4_has_group_desc_csum(sb) && 4035 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4036 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4037 ext4_free_group_clusters_set(sb, gdp, 4038 ext4_free_clusters_after_init(sb, 4039 ac->ac_b_ex.fe_group, gdp)); 4040 } 4041 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4042 ext4_free_group_clusters_set(sb, gdp, len); 4043 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4044 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4045 4046 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4047 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4048 /* 4049 * Now reduce the dirty block count also. Should not go negative 4050 */ 4051 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4052 /* release all the reserved blocks if non delalloc */ 4053 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4054 reserv_clstrs); 4055 4056 if (sbi->s_log_groups_per_flex) { 4057 ext4_group_t flex_group = ext4_flex_group(sbi, 4058 ac->ac_b_ex.fe_group); 4059 atomic64_sub(ac->ac_b_ex.fe_len, 4060 &sbi_array_rcu_deref(sbi, s_flex_groups, 4061 flex_group)->free_clusters); 4062 } 4063 4064 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4065 if (err) 4066 goto out_err; 4067 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4068 4069 out_err: 4070 brelse(bitmap_bh); 4071 return err; 4072 } 4073 4074 /* 4075 * Idempotent helper for Ext4 fast commit replay path to set the state of 4076 * blocks in bitmaps and update counters. 4077 */ 4078 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4079 int len, int state) 4080 { 4081 struct buffer_head *bitmap_bh = NULL; 4082 struct ext4_group_desc *gdp; 4083 struct buffer_head *gdp_bh; 4084 struct ext4_sb_info *sbi = EXT4_SB(sb); 4085 ext4_group_t group; 4086 ext4_grpblk_t blkoff; 4087 int i, err = 0; 4088 int already; 4089 unsigned int clen, clen_changed, thisgrp_len; 4090 4091 while (len > 0) { 4092 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4093 4094 /* 4095 * Check to see if we are freeing blocks across a group 4096 * boundary. 4097 * In case of flex_bg, this can happen that (block, len) may 4098 * span across more than one group. In that case we need to 4099 * get the corresponding group metadata to work with. 4100 * For this we have goto again loop. 4101 */ 4102 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4103 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4104 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4105 4106 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4107 ext4_error(sb, "Marking blocks in system zone - " 4108 "Block = %llu, len = %u", 4109 block, thisgrp_len); 4110 bitmap_bh = NULL; 4111 break; 4112 } 4113 4114 bitmap_bh = ext4_read_block_bitmap(sb, group); 4115 if (IS_ERR(bitmap_bh)) { 4116 err = PTR_ERR(bitmap_bh); 4117 bitmap_bh = NULL; 4118 break; 4119 } 4120 4121 err = -EIO; 4122 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4123 if (!gdp) 4124 break; 4125 4126 ext4_lock_group(sb, group); 4127 already = 0; 4128 for (i = 0; i < clen; i++) 4129 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4130 !state) 4131 already++; 4132 4133 clen_changed = clen - already; 4134 if (state) 4135 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4136 else 4137 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4138 if (ext4_has_group_desc_csum(sb) && 4139 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4140 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4141 ext4_free_group_clusters_set(sb, gdp, 4142 ext4_free_clusters_after_init(sb, group, gdp)); 4143 } 4144 if (state) 4145 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4146 else 4147 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4148 4149 ext4_free_group_clusters_set(sb, gdp, clen); 4150 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4151 ext4_group_desc_csum_set(sb, group, gdp); 4152 4153 ext4_unlock_group(sb, group); 4154 4155 if (sbi->s_log_groups_per_flex) { 4156 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4157 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4158 s_flex_groups, flex_group); 4159 4160 if (state) 4161 atomic64_sub(clen_changed, &fg->free_clusters); 4162 else 4163 atomic64_add(clen_changed, &fg->free_clusters); 4164 4165 } 4166 4167 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4168 if (err) 4169 break; 4170 sync_dirty_buffer(bitmap_bh); 4171 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4172 sync_dirty_buffer(gdp_bh); 4173 if (err) 4174 break; 4175 4176 block += thisgrp_len; 4177 len -= thisgrp_len; 4178 brelse(bitmap_bh); 4179 BUG_ON(len < 0); 4180 } 4181 4182 if (err) 4183 brelse(bitmap_bh); 4184 } 4185 4186 /* 4187 * here we normalize request for locality group 4188 * Group request are normalized to s_mb_group_prealloc, which goes to 4189 * s_strip if we set the same via mount option. 4190 * s_mb_group_prealloc can be configured via 4191 * /sys/fs/ext4/<partition>/mb_group_prealloc 4192 * 4193 * XXX: should we try to preallocate more than the group has now? 4194 */ 4195 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4196 { 4197 struct super_block *sb = ac->ac_sb; 4198 struct ext4_locality_group *lg = ac->ac_lg; 4199 4200 BUG_ON(lg == NULL); 4201 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4202 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4203 } 4204 4205 /* 4206 * This function returns the next element to look at during inode 4207 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4208 * (ei->i_prealloc_lock) 4209 * 4210 * new_start The start of the range we want to compare 4211 * cur_start The existing start that we are comparing against 4212 * node The node of the rb_tree 4213 */ 4214 static inline struct rb_node* 4215 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4216 { 4217 if (new_start < cur_start) 4218 return node->rb_left; 4219 else 4220 return node->rb_right; 4221 } 4222 4223 static inline void 4224 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4225 ext4_lblk_t start, loff_t end) 4226 { 4227 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4228 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4229 struct ext4_prealloc_space *tmp_pa; 4230 ext4_lblk_t tmp_pa_start; 4231 loff_t tmp_pa_end; 4232 struct rb_node *iter; 4233 4234 read_lock(&ei->i_prealloc_lock); 4235 for (iter = ei->i_prealloc_node.rb_node; iter; 4236 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4237 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4238 pa_node.inode_node); 4239 tmp_pa_start = tmp_pa->pa_lstart; 4240 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4241 4242 spin_lock(&tmp_pa->pa_lock); 4243 if (tmp_pa->pa_deleted == 0) 4244 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4245 spin_unlock(&tmp_pa->pa_lock); 4246 } 4247 read_unlock(&ei->i_prealloc_lock); 4248 } 4249 4250 /* 4251 * Given an allocation context "ac" and a range "start", "end", check 4252 * and adjust boundaries if the range overlaps with any of the existing 4253 * preallocatoins stored in the corresponding inode of the allocation context. 4254 * 4255 * Parameters: 4256 * ac allocation context 4257 * start start of the new range 4258 * end end of the new range 4259 */ 4260 static inline void 4261 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4262 ext4_lblk_t *start, loff_t *end) 4263 { 4264 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4265 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4266 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4267 struct rb_node *iter; 4268 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4269 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4270 4271 new_start = *start; 4272 new_end = *end; 4273 4274 /* 4275 * Adjust the normalized range so that it doesn't overlap with any 4276 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4277 * so it doesn't change underneath us. 4278 */ 4279 read_lock(&ei->i_prealloc_lock); 4280 4281 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4282 for (iter = ei->i_prealloc_node.rb_node; iter; 4283 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4284 tmp_pa_start, iter)) { 4285 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4286 pa_node.inode_node); 4287 tmp_pa_start = tmp_pa->pa_lstart; 4288 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4289 4290 /* PA must not overlap original request */ 4291 spin_lock(&tmp_pa->pa_lock); 4292 if (tmp_pa->pa_deleted == 0) 4293 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4294 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4295 spin_unlock(&tmp_pa->pa_lock); 4296 } 4297 4298 /* 4299 * Step 2: check if the found PA is left or right neighbor and 4300 * get the other neighbor 4301 */ 4302 if (tmp_pa) { 4303 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4304 struct rb_node *tmp; 4305 4306 left_pa = tmp_pa; 4307 tmp = rb_next(&left_pa->pa_node.inode_node); 4308 if (tmp) { 4309 right_pa = rb_entry(tmp, 4310 struct ext4_prealloc_space, 4311 pa_node.inode_node); 4312 } 4313 } else { 4314 struct rb_node *tmp; 4315 4316 right_pa = tmp_pa; 4317 tmp = rb_prev(&right_pa->pa_node.inode_node); 4318 if (tmp) { 4319 left_pa = rb_entry(tmp, 4320 struct ext4_prealloc_space, 4321 pa_node.inode_node); 4322 } 4323 } 4324 } 4325 4326 /* Step 3: get the non deleted neighbors */ 4327 if (left_pa) { 4328 for (iter = &left_pa->pa_node.inode_node;; 4329 iter = rb_prev(iter)) { 4330 if (!iter) { 4331 left_pa = NULL; 4332 break; 4333 } 4334 4335 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4336 pa_node.inode_node); 4337 left_pa = tmp_pa; 4338 spin_lock(&tmp_pa->pa_lock); 4339 if (tmp_pa->pa_deleted == 0) { 4340 spin_unlock(&tmp_pa->pa_lock); 4341 break; 4342 } 4343 spin_unlock(&tmp_pa->pa_lock); 4344 } 4345 } 4346 4347 if (right_pa) { 4348 for (iter = &right_pa->pa_node.inode_node;; 4349 iter = rb_next(iter)) { 4350 if (!iter) { 4351 right_pa = NULL; 4352 break; 4353 } 4354 4355 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4356 pa_node.inode_node); 4357 right_pa = tmp_pa; 4358 spin_lock(&tmp_pa->pa_lock); 4359 if (tmp_pa->pa_deleted == 0) { 4360 spin_unlock(&tmp_pa->pa_lock); 4361 break; 4362 } 4363 spin_unlock(&tmp_pa->pa_lock); 4364 } 4365 } 4366 4367 if (left_pa) { 4368 left_pa_end = pa_logical_end(sbi, left_pa); 4369 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4370 } 4371 4372 if (right_pa) { 4373 right_pa_start = right_pa->pa_lstart; 4374 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4375 } 4376 4377 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4378 if (left_pa) { 4379 if (left_pa_end > new_start) 4380 new_start = left_pa_end; 4381 } 4382 4383 if (right_pa) { 4384 if (right_pa_start < new_end) 4385 new_end = right_pa_start; 4386 } 4387 read_unlock(&ei->i_prealloc_lock); 4388 4389 /* XXX: extra loop to check we really don't overlap preallocations */ 4390 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4391 4392 *start = new_start; 4393 *end = new_end; 4394 } 4395 4396 /* 4397 * Normalization means making request better in terms of 4398 * size and alignment 4399 */ 4400 static noinline_for_stack void 4401 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4402 struct ext4_allocation_request *ar) 4403 { 4404 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4405 struct ext4_super_block *es = sbi->s_es; 4406 int bsbits, max; 4407 loff_t size, start_off, end; 4408 loff_t orig_size __maybe_unused; 4409 ext4_lblk_t start; 4410 4411 /* do normalize only data requests, metadata requests 4412 do not need preallocation */ 4413 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4414 return; 4415 4416 /* sometime caller may want exact blocks */ 4417 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4418 return; 4419 4420 /* caller may indicate that preallocation isn't 4421 * required (it's a tail, for example) */ 4422 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4423 return; 4424 4425 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4426 ext4_mb_normalize_group_request(ac); 4427 return ; 4428 } 4429 4430 bsbits = ac->ac_sb->s_blocksize_bits; 4431 4432 /* first, let's learn actual file size 4433 * given current request is allocated */ 4434 size = extent_logical_end(sbi, &ac->ac_o_ex); 4435 size = size << bsbits; 4436 if (size < i_size_read(ac->ac_inode)) 4437 size = i_size_read(ac->ac_inode); 4438 orig_size = size; 4439 4440 /* max size of free chunks */ 4441 max = 2 << bsbits; 4442 4443 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4444 (req <= (size) || max <= (chunk_size)) 4445 4446 /* first, try to predict filesize */ 4447 /* XXX: should this table be tunable? */ 4448 start_off = 0; 4449 if (size <= 16 * 1024) { 4450 size = 16 * 1024; 4451 } else if (size <= 32 * 1024) { 4452 size = 32 * 1024; 4453 } else if (size <= 64 * 1024) { 4454 size = 64 * 1024; 4455 } else if (size <= 128 * 1024) { 4456 size = 128 * 1024; 4457 } else if (size <= 256 * 1024) { 4458 size = 256 * 1024; 4459 } else if (size <= 512 * 1024) { 4460 size = 512 * 1024; 4461 } else if (size <= 1024 * 1024) { 4462 size = 1024 * 1024; 4463 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4464 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4465 (21 - bsbits)) << 21; 4466 size = 2 * 1024 * 1024; 4467 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4468 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4469 (22 - bsbits)) << 22; 4470 size = 4 * 1024 * 1024; 4471 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4472 (8<<20)>>bsbits, max, 8 * 1024)) { 4473 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4474 (23 - bsbits)) << 23; 4475 size = 8 * 1024 * 1024; 4476 } else { 4477 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4478 size = (loff_t) EXT4_C2B(sbi, 4479 ac->ac_o_ex.fe_len) << bsbits; 4480 } 4481 size = size >> bsbits; 4482 start = start_off >> bsbits; 4483 4484 /* 4485 * For tiny groups (smaller than 8MB) the chosen allocation 4486 * alignment may be larger than group size. Make sure the 4487 * alignment does not move allocation to a different group which 4488 * makes mballoc fail assertions later. 4489 */ 4490 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4491 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4492 4493 /* don't cover already allocated blocks in selected range */ 4494 if (ar->pleft && start <= ar->lleft) { 4495 size -= ar->lleft + 1 - start; 4496 start = ar->lleft + 1; 4497 } 4498 if (ar->pright && start + size - 1 >= ar->lright) 4499 size -= start + size - ar->lright; 4500 4501 /* 4502 * Trim allocation request for filesystems with artificially small 4503 * groups. 4504 */ 4505 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4506 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4507 4508 end = start + size; 4509 4510 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4511 4512 size = end - start; 4513 4514 /* 4515 * In this function "start" and "size" are normalized for better 4516 * alignment and length such that we could preallocate more blocks. 4517 * This normalization is done such that original request of 4518 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4519 * "size" boundaries. 4520 * (Note fe_len can be relaxed since FS block allocation API does not 4521 * provide gurantee on number of contiguous blocks allocation since that 4522 * depends upon free space left, etc). 4523 * In case of inode pa, later we use the allocated blocks 4524 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4525 * range of goal/best blocks [start, size] to put it at the 4526 * ac_o_ex.fe_logical extent of this inode. 4527 * (See ext4_mb_use_inode_pa() for more details) 4528 */ 4529 if (start + size <= ac->ac_o_ex.fe_logical || 4530 start > ac->ac_o_ex.fe_logical) { 4531 ext4_msg(ac->ac_sb, KERN_ERR, 4532 "start %lu, size %lu, fe_logical %lu", 4533 (unsigned long) start, (unsigned long) size, 4534 (unsigned long) ac->ac_o_ex.fe_logical); 4535 BUG(); 4536 } 4537 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4538 4539 /* now prepare goal request */ 4540 4541 /* XXX: is it better to align blocks WRT to logical 4542 * placement or satisfy big request as is */ 4543 ac->ac_g_ex.fe_logical = start; 4544 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4545 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4546 4547 /* define goal start in order to merge */ 4548 if (ar->pright && (ar->lright == (start + size)) && 4549 ar->pright >= size && 4550 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4551 /* merge to the right */ 4552 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4553 &ac->ac_g_ex.fe_group, 4554 &ac->ac_g_ex.fe_start); 4555 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4556 } 4557 if (ar->pleft && (ar->lleft + 1 == start) && 4558 ar->pleft + 1 < ext4_blocks_count(es)) { 4559 /* merge to the left */ 4560 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4561 &ac->ac_g_ex.fe_group, 4562 &ac->ac_g_ex.fe_start); 4563 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4564 } 4565 4566 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4567 orig_size, start); 4568 } 4569 4570 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4571 { 4572 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4573 4574 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4575 atomic_inc(&sbi->s_bal_reqs); 4576 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4577 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4578 atomic_inc(&sbi->s_bal_success); 4579 4580 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4581 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4582 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4583 } 4584 4585 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4586 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4587 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4588 atomic_inc(&sbi->s_bal_goals); 4589 /* did we allocate as much as normalizer originally wanted? */ 4590 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4591 atomic_inc(&sbi->s_bal_len_goals); 4592 4593 if (ac->ac_found > sbi->s_mb_max_to_scan) 4594 atomic_inc(&sbi->s_bal_breaks); 4595 } 4596 4597 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4598 trace_ext4_mballoc_alloc(ac); 4599 else 4600 trace_ext4_mballoc_prealloc(ac); 4601 } 4602 4603 /* 4604 * Called on failure; free up any blocks from the inode PA for this 4605 * context. We don't need this for MB_GROUP_PA because we only change 4606 * pa_free in ext4_mb_release_context(), but on failure, we've already 4607 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4608 */ 4609 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4610 { 4611 struct ext4_prealloc_space *pa = ac->ac_pa; 4612 struct ext4_buddy e4b; 4613 int err; 4614 4615 if (pa == NULL) { 4616 if (ac->ac_f_ex.fe_len == 0) 4617 return; 4618 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4619 if (WARN_RATELIMIT(err, 4620 "ext4: mb_load_buddy failed (%d)", err)) 4621 /* 4622 * This should never happen since we pin the 4623 * pages in the ext4_allocation_context so 4624 * ext4_mb_load_buddy() should never fail. 4625 */ 4626 return; 4627 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4628 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4629 ac->ac_f_ex.fe_len); 4630 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4631 ext4_mb_unload_buddy(&e4b); 4632 return; 4633 } 4634 if (pa->pa_type == MB_INODE_PA) { 4635 spin_lock(&pa->pa_lock); 4636 pa->pa_free += ac->ac_b_ex.fe_len; 4637 spin_unlock(&pa->pa_lock); 4638 } 4639 } 4640 4641 /* 4642 * use blocks preallocated to inode 4643 */ 4644 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4645 struct ext4_prealloc_space *pa) 4646 { 4647 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4648 ext4_fsblk_t start; 4649 ext4_fsblk_t end; 4650 int len; 4651 4652 /* found preallocated blocks, use them */ 4653 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4654 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4655 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4656 len = EXT4_NUM_B2C(sbi, end - start); 4657 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4658 &ac->ac_b_ex.fe_start); 4659 ac->ac_b_ex.fe_len = len; 4660 ac->ac_status = AC_STATUS_FOUND; 4661 ac->ac_pa = pa; 4662 4663 BUG_ON(start < pa->pa_pstart); 4664 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4665 BUG_ON(pa->pa_free < len); 4666 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4667 pa->pa_free -= len; 4668 4669 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4670 } 4671 4672 /* 4673 * use blocks preallocated to locality group 4674 */ 4675 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4676 struct ext4_prealloc_space *pa) 4677 { 4678 unsigned int len = ac->ac_o_ex.fe_len; 4679 4680 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4681 &ac->ac_b_ex.fe_group, 4682 &ac->ac_b_ex.fe_start); 4683 ac->ac_b_ex.fe_len = len; 4684 ac->ac_status = AC_STATUS_FOUND; 4685 ac->ac_pa = pa; 4686 4687 /* we don't correct pa_pstart or pa_len here to avoid 4688 * possible race when the group is being loaded concurrently 4689 * instead we correct pa later, after blocks are marked 4690 * in on-disk bitmap -- see ext4_mb_release_context() 4691 * Other CPUs are prevented from allocating from this pa by lg_mutex 4692 */ 4693 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4694 pa->pa_lstart, len, pa); 4695 } 4696 4697 /* 4698 * Return the prealloc space that have minimal distance 4699 * from the goal block. @cpa is the prealloc 4700 * space that is having currently known minimal distance 4701 * from the goal block. 4702 */ 4703 static struct ext4_prealloc_space * 4704 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4705 struct ext4_prealloc_space *pa, 4706 struct ext4_prealloc_space *cpa) 4707 { 4708 ext4_fsblk_t cur_distance, new_distance; 4709 4710 if (cpa == NULL) { 4711 atomic_inc(&pa->pa_count); 4712 return pa; 4713 } 4714 cur_distance = abs(goal_block - cpa->pa_pstart); 4715 new_distance = abs(goal_block - pa->pa_pstart); 4716 4717 if (cur_distance <= new_distance) 4718 return cpa; 4719 4720 /* drop the previous reference */ 4721 atomic_dec(&cpa->pa_count); 4722 atomic_inc(&pa->pa_count); 4723 return pa; 4724 } 4725 4726 /* 4727 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4728 */ 4729 static bool 4730 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4731 struct ext4_prealloc_space *pa) 4732 { 4733 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4734 ext4_fsblk_t start; 4735 4736 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4737 return true; 4738 4739 /* 4740 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4741 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4742 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4743 * consistent with ext4_mb_find_by_goal. 4744 */ 4745 start = pa->pa_pstart + 4746 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4747 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4748 return false; 4749 4750 if (ac->ac_g_ex.fe_len > pa->pa_len - 4751 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4752 return false; 4753 4754 return true; 4755 } 4756 4757 /* 4758 * search goal blocks in preallocated space 4759 */ 4760 static noinline_for_stack bool 4761 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4762 { 4763 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4764 int order, i; 4765 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4766 struct ext4_locality_group *lg; 4767 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4768 struct rb_node *iter; 4769 ext4_fsblk_t goal_block; 4770 4771 /* only data can be preallocated */ 4772 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4773 return false; 4774 4775 /* 4776 * first, try per-file preallocation by searching the inode pa rbtree. 4777 * 4778 * Here, we can't do a direct traversal of the tree because 4779 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4780 * deleted and that can cause direct traversal to skip some entries. 4781 */ 4782 read_lock(&ei->i_prealloc_lock); 4783 4784 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4785 goto try_group_pa; 4786 } 4787 4788 /* 4789 * Step 1: Find a pa with logical start immediately adjacent to the 4790 * original logical start. This could be on the left or right. 4791 * 4792 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4793 */ 4794 for (iter = ei->i_prealloc_node.rb_node; iter; 4795 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4796 tmp_pa->pa_lstart, iter)) { 4797 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4798 pa_node.inode_node); 4799 } 4800 4801 /* 4802 * Step 2: The adjacent pa might be to the right of logical start, find 4803 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4804 * logical start is towards the left of original request's logical start 4805 */ 4806 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4807 struct rb_node *tmp; 4808 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4809 4810 if (tmp) { 4811 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4812 pa_node.inode_node); 4813 } else { 4814 /* 4815 * If there is no adjacent pa to the left then finding 4816 * an overlapping pa is not possible hence stop searching 4817 * inode pa tree 4818 */ 4819 goto try_group_pa; 4820 } 4821 } 4822 4823 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4824 4825 /* 4826 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4827 * the first non deleted adjacent pa. After this step we should have a 4828 * valid tmp_pa which is guaranteed to be non deleted. 4829 */ 4830 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4831 if (!iter) { 4832 /* 4833 * no non deleted left adjacent pa, so stop searching 4834 * inode pa tree 4835 */ 4836 goto try_group_pa; 4837 } 4838 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4839 pa_node.inode_node); 4840 spin_lock(&tmp_pa->pa_lock); 4841 if (tmp_pa->pa_deleted == 0) { 4842 /* 4843 * We will keep holding the pa_lock from 4844 * this point on because we don't want group discard 4845 * to delete this pa underneath us. Since group 4846 * discard is anyways an ENOSPC operation it 4847 * should be okay for it to wait a few more cycles. 4848 */ 4849 break; 4850 } else { 4851 spin_unlock(&tmp_pa->pa_lock); 4852 } 4853 } 4854 4855 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4856 BUG_ON(tmp_pa->pa_deleted == 1); 4857 4858 /* 4859 * Step 4: We now have the non deleted left adjacent pa. Only this 4860 * pa can possibly satisfy the request hence check if it overlaps 4861 * original logical start and stop searching if it doesn't. 4862 */ 4863 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4864 spin_unlock(&tmp_pa->pa_lock); 4865 goto try_group_pa; 4866 } 4867 4868 /* non-extent files can't have physical blocks past 2^32 */ 4869 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4870 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4871 EXT4_MAX_BLOCK_FILE_PHYS)) { 4872 /* 4873 * Since PAs don't overlap, we won't find any other PA to 4874 * satisfy this. 4875 */ 4876 spin_unlock(&tmp_pa->pa_lock); 4877 goto try_group_pa; 4878 } 4879 4880 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4881 atomic_inc(&tmp_pa->pa_count); 4882 ext4_mb_use_inode_pa(ac, tmp_pa); 4883 spin_unlock(&tmp_pa->pa_lock); 4884 read_unlock(&ei->i_prealloc_lock); 4885 return true; 4886 } else { 4887 /* 4888 * We found a valid overlapping pa but couldn't use it because 4889 * it had no free blocks. This should ideally never happen 4890 * because: 4891 * 4892 * 1. When a new inode pa is added to rbtree it must have 4893 * pa_free > 0 since otherwise we won't actually need 4894 * preallocation. 4895 * 4896 * 2. An inode pa that is in the rbtree can only have it's 4897 * pa_free become zero when another thread calls: 4898 * ext4_mb_new_blocks 4899 * ext4_mb_use_preallocated 4900 * ext4_mb_use_inode_pa 4901 * 4902 * 3. Further, after the above calls make pa_free == 0, we will 4903 * immediately remove it from the rbtree in: 4904 * ext4_mb_new_blocks 4905 * ext4_mb_release_context 4906 * ext4_mb_put_pa 4907 * 4908 * 4. Since the pa_free becoming 0 and pa_free getting removed 4909 * from tree both happen in ext4_mb_new_blocks, which is always 4910 * called with i_data_sem held for data allocations, we can be 4911 * sure that another process will never see a pa in rbtree with 4912 * pa_free == 0. 4913 */ 4914 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4915 } 4916 spin_unlock(&tmp_pa->pa_lock); 4917 try_group_pa: 4918 read_unlock(&ei->i_prealloc_lock); 4919 4920 /* can we use group allocation? */ 4921 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4922 return false; 4923 4924 /* inode may have no locality group for some reason */ 4925 lg = ac->ac_lg; 4926 if (lg == NULL) 4927 return false; 4928 order = fls(ac->ac_o_ex.fe_len) - 1; 4929 if (order > PREALLOC_TB_SIZE - 1) 4930 /* The max size of hash table is PREALLOC_TB_SIZE */ 4931 order = PREALLOC_TB_SIZE - 1; 4932 4933 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4934 /* 4935 * search for the prealloc space that is having 4936 * minimal distance from the goal block. 4937 */ 4938 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4939 rcu_read_lock(); 4940 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4941 pa_node.lg_list) { 4942 spin_lock(&tmp_pa->pa_lock); 4943 if (tmp_pa->pa_deleted == 0 && 4944 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4945 4946 cpa = ext4_mb_check_group_pa(goal_block, 4947 tmp_pa, cpa); 4948 } 4949 spin_unlock(&tmp_pa->pa_lock); 4950 } 4951 rcu_read_unlock(); 4952 } 4953 if (cpa) { 4954 ext4_mb_use_group_pa(ac, cpa); 4955 return true; 4956 } 4957 return false; 4958 } 4959 4960 /* 4961 * the function goes through all block freed in the group 4962 * but not yet committed and marks them used in in-core bitmap. 4963 * buddy must be generated from this bitmap 4964 * Need to be called with the ext4 group lock held 4965 */ 4966 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 4967 ext4_group_t group) 4968 { 4969 struct rb_node *n; 4970 struct ext4_group_info *grp; 4971 struct ext4_free_data *entry; 4972 4973 grp = ext4_get_group_info(sb, group); 4974 if (!grp) 4975 return; 4976 n = rb_first(&(grp->bb_free_root)); 4977 4978 while (n) { 4979 entry = rb_entry(n, struct ext4_free_data, efd_node); 4980 mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 4981 n = rb_next(n); 4982 } 4983 } 4984 4985 /* 4986 * the function goes through all preallocation in this group and marks them 4987 * used in in-core bitmap. buddy must be generated from this bitmap 4988 * Need to be called with ext4 group lock held 4989 */ 4990 static noinline_for_stack 4991 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4992 ext4_group_t group) 4993 { 4994 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4995 struct ext4_prealloc_space *pa; 4996 struct list_head *cur; 4997 ext4_group_t groupnr; 4998 ext4_grpblk_t start; 4999 int preallocated = 0; 5000 int len; 5001 5002 if (!grp) 5003 return; 5004 5005 /* all form of preallocation discards first load group, 5006 * so the only competing code is preallocation use. 5007 * we don't need any locking here 5008 * notice we do NOT ignore preallocations with pa_deleted 5009 * otherwise we could leave used blocks available for 5010 * allocation in buddy when concurrent ext4_mb_put_pa() 5011 * is dropping preallocation 5012 */ 5013 list_for_each(cur, &grp->bb_prealloc_list) { 5014 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5015 spin_lock(&pa->pa_lock); 5016 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5017 &groupnr, &start); 5018 len = pa->pa_len; 5019 spin_unlock(&pa->pa_lock); 5020 if (unlikely(len == 0)) 5021 continue; 5022 BUG_ON(groupnr != group); 5023 mb_set_bits(bitmap, start, len); 5024 preallocated += len; 5025 } 5026 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5027 } 5028 5029 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5030 struct ext4_prealloc_space *pa) 5031 { 5032 struct ext4_inode_info *ei; 5033 5034 if (pa->pa_deleted) { 5035 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5036 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5037 pa->pa_len); 5038 return; 5039 } 5040 5041 pa->pa_deleted = 1; 5042 5043 if (pa->pa_type == MB_INODE_PA) { 5044 ei = EXT4_I(pa->pa_inode); 5045 atomic_dec(&ei->i_prealloc_active); 5046 } 5047 } 5048 5049 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5050 { 5051 BUG_ON(!pa); 5052 BUG_ON(atomic_read(&pa->pa_count)); 5053 BUG_ON(pa->pa_deleted == 0); 5054 kmem_cache_free(ext4_pspace_cachep, pa); 5055 } 5056 5057 static void ext4_mb_pa_callback(struct rcu_head *head) 5058 { 5059 struct ext4_prealloc_space *pa; 5060 5061 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5062 ext4_mb_pa_free(pa); 5063 } 5064 5065 /* 5066 * drops a reference to preallocated space descriptor 5067 * if this was the last reference and the space is consumed 5068 */ 5069 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5070 struct super_block *sb, struct ext4_prealloc_space *pa) 5071 { 5072 ext4_group_t grp; 5073 ext4_fsblk_t grp_blk; 5074 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5075 5076 /* in this short window concurrent discard can set pa_deleted */ 5077 spin_lock(&pa->pa_lock); 5078 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5079 spin_unlock(&pa->pa_lock); 5080 return; 5081 } 5082 5083 if (pa->pa_deleted == 1) { 5084 spin_unlock(&pa->pa_lock); 5085 return; 5086 } 5087 5088 ext4_mb_mark_pa_deleted(sb, pa); 5089 spin_unlock(&pa->pa_lock); 5090 5091 grp_blk = pa->pa_pstart; 5092 /* 5093 * If doing group-based preallocation, pa_pstart may be in the 5094 * next group when pa is used up 5095 */ 5096 if (pa->pa_type == MB_GROUP_PA) 5097 grp_blk--; 5098 5099 grp = ext4_get_group_number(sb, grp_blk); 5100 5101 /* 5102 * possible race: 5103 * 5104 * P1 (buddy init) P2 (regular allocation) 5105 * find block B in PA 5106 * copy on-disk bitmap to buddy 5107 * mark B in on-disk bitmap 5108 * drop PA from group 5109 * mark all PAs in buddy 5110 * 5111 * thus, P1 initializes buddy with B available. to prevent this 5112 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5113 * against that pair 5114 */ 5115 ext4_lock_group(sb, grp); 5116 list_del(&pa->pa_group_list); 5117 ext4_unlock_group(sb, grp); 5118 5119 if (pa->pa_type == MB_INODE_PA) { 5120 write_lock(pa->pa_node_lock.inode_lock); 5121 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5122 write_unlock(pa->pa_node_lock.inode_lock); 5123 ext4_mb_pa_free(pa); 5124 } else { 5125 spin_lock(pa->pa_node_lock.lg_lock); 5126 list_del_rcu(&pa->pa_node.lg_list); 5127 spin_unlock(pa->pa_node_lock.lg_lock); 5128 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5129 } 5130 } 5131 5132 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5133 { 5134 struct rb_node **iter = &root->rb_node, *parent = NULL; 5135 struct ext4_prealloc_space *iter_pa, *new_pa; 5136 ext4_lblk_t iter_start, new_start; 5137 5138 while (*iter) { 5139 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5140 pa_node.inode_node); 5141 new_pa = rb_entry(new, struct ext4_prealloc_space, 5142 pa_node.inode_node); 5143 iter_start = iter_pa->pa_lstart; 5144 new_start = new_pa->pa_lstart; 5145 5146 parent = *iter; 5147 if (new_start < iter_start) 5148 iter = &((*iter)->rb_left); 5149 else 5150 iter = &((*iter)->rb_right); 5151 } 5152 5153 rb_link_node(new, parent, iter); 5154 rb_insert_color(new, root); 5155 } 5156 5157 /* 5158 * creates new preallocated space for given inode 5159 */ 5160 static noinline_for_stack void 5161 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5162 { 5163 struct super_block *sb = ac->ac_sb; 5164 struct ext4_sb_info *sbi = EXT4_SB(sb); 5165 struct ext4_prealloc_space *pa; 5166 struct ext4_group_info *grp; 5167 struct ext4_inode_info *ei; 5168 5169 /* preallocate only when found space is larger then requested */ 5170 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5171 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5172 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5173 BUG_ON(ac->ac_pa == NULL); 5174 5175 pa = ac->ac_pa; 5176 5177 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5178 struct ext4_free_extent ex = { 5179 .fe_logical = ac->ac_g_ex.fe_logical, 5180 .fe_len = ac->ac_orig_goal_len, 5181 }; 5182 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5183 5184 /* we can't allocate as much as normalizer wants. 5185 * so, found space must get proper lstart 5186 * to cover original request */ 5187 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5188 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5189 5190 /* 5191 * Use the below logic for adjusting best extent as it keeps 5192 * fragmentation in check while ensuring logical range of best 5193 * extent doesn't overflow out of goal extent: 5194 * 5195 * 1. Check if best ex can be kept at end of goal (before 5196 * cr_best_avail trimmed it) and still cover original start 5197 * 2. Else, check if best ex can be kept at start of goal and 5198 * still cover original start 5199 * 3. Else, keep the best ex at start of original request. 5200 */ 5201 ex.fe_len = ac->ac_b_ex.fe_len; 5202 5203 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5204 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5205 goto adjust_bex; 5206 5207 ex.fe_logical = ac->ac_g_ex.fe_logical; 5208 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) 5209 goto adjust_bex; 5210 5211 ex.fe_logical = ac->ac_o_ex.fe_logical; 5212 adjust_bex: 5213 ac->ac_b_ex.fe_logical = ex.fe_logical; 5214 5215 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5216 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 5217 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5218 } 5219 5220 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5221 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5222 pa->pa_len = ac->ac_b_ex.fe_len; 5223 pa->pa_free = pa->pa_len; 5224 spin_lock_init(&pa->pa_lock); 5225 INIT_LIST_HEAD(&pa->pa_group_list); 5226 pa->pa_deleted = 0; 5227 pa->pa_type = MB_INODE_PA; 5228 5229 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5230 pa->pa_len, pa->pa_lstart); 5231 trace_ext4_mb_new_inode_pa(ac, pa); 5232 5233 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5234 ext4_mb_use_inode_pa(ac, pa); 5235 5236 ei = EXT4_I(ac->ac_inode); 5237 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5238 if (!grp) 5239 return; 5240 5241 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5242 pa->pa_inode = ac->ac_inode; 5243 5244 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5245 5246 write_lock(pa->pa_node_lock.inode_lock); 5247 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5248 write_unlock(pa->pa_node_lock.inode_lock); 5249 atomic_inc(&ei->i_prealloc_active); 5250 } 5251 5252 /* 5253 * creates new preallocated space for locality group inodes belongs to 5254 */ 5255 static noinline_for_stack void 5256 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5257 { 5258 struct super_block *sb = ac->ac_sb; 5259 struct ext4_locality_group *lg; 5260 struct ext4_prealloc_space *pa; 5261 struct ext4_group_info *grp; 5262 5263 /* preallocate only when found space is larger then requested */ 5264 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5265 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5266 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5267 BUG_ON(ac->ac_pa == NULL); 5268 5269 pa = ac->ac_pa; 5270 5271 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5272 pa->pa_lstart = pa->pa_pstart; 5273 pa->pa_len = ac->ac_b_ex.fe_len; 5274 pa->pa_free = pa->pa_len; 5275 spin_lock_init(&pa->pa_lock); 5276 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5277 INIT_LIST_HEAD(&pa->pa_group_list); 5278 pa->pa_deleted = 0; 5279 pa->pa_type = MB_GROUP_PA; 5280 5281 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5282 pa->pa_len, pa->pa_lstart); 5283 trace_ext4_mb_new_group_pa(ac, pa); 5284 5285 ext4_mb_use_group_pa(ac, pa); 5286 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5287 5288 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5289 if (!grp) 5290 return; 5291 lg = ac->ac_lg; 5292 BUG_ON(lg == NULL); 5293 5294 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5295 pa->pa_inode = NULL; 5296 5297 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5298 5299 /* 5300 * We will later add the new pa to the right bucket 5301 * after updating the pa_free in ext4_mb_release_context 5302 */ 5303 } 5304 5305 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5306 { 5307 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5308 ext4_mb_new_group_pa(ac); 5309 else 5310 ext4_mb_new_inode_pa(ac); 5311 } 5312 5313 /* 5314 * finds all unused blocks in on-disk bitmap, frees them in 5315 * in-core bitmap and buddy. 5316 * @pa must be unlinked from inode and group lists, so that 5317 * nobody else can find/use it. 5318 * the caller MUST hold group/inode locks. 5319 * TODO: optimize the case when there are no in-core structures yet 5320 */ 5321 static noinline_for_stack int 5322 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5323 struct ext4_prealloc_space *pa) 5324 { 5325 struct super_block *sb = e4b->bd_sb; 5326 struct ext4_sb_info *sbi = EXT4_SB(sb); 5327 unsigned int end; 5328 unsigned int next; 5329 ext4_group_t group; 5330 ext4_grpblk_t bit; 5331 unsigned long long grp_blk_start; 5332 int free = 0; 5333 5334 BUG_ON(pa->pa_deleted == 0); 5335 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5336 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5337 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5338 end = bit + pa->pa_len; 5339 5340 while (bit < end) { 5341 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5342 if (bit >= end) 5343 break; 5344 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5345 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5346 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5347 (unsigned) next - bit, (unsigned) group); 5348 free += next - bit; 5349 5350 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5351 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5352 EXT4_C2B(sbi, bit)), 5353 next - bit); 5354 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5355 bit = next + 1; 5356 } 5357 if (free != pa->pa_free) { 5358 ext4_msg(e4b->bd_sb, KERN_CRIT, 5359 "pa %p: logic %lu, phys. %lu, len %d", 5360 pa, (unsigned long) pa->pa_lstart, 5361 (unsigned long) pa->pa_pstart, 5362 pa->pa_len); 5363 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5364 free, pa->pa_free); 5365 /* 5366 * pa is already deleted so we use the value obtained 5367 * from the bitmap and continue. 5368 */ 5369 } 5370 atomic_add(free, &sbi->s_mb_discarded); 5371 5372 return 0; 5373 } 5374 5375 static noinline_for_stack int 5376 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5377 struct ext4_prealloc_space *pa) 5378 { 5379 struct super_block *sb = e4b->bd_sb; 5380 ext4_group_t group; 5381 ext4_grpblk_t bit; 5382 5383 trace_ext4_mb_release_group_pa(sb, pa); 5384 BUG_ON(pa->pa_deleted == 0); 5385 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5386 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5387 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5388 e4b->bd_group, group, pa->pa_pstart); 5389 return 0; 5390 } 5391 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5392 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5393 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5394 5395 return 0; 5396 } 5397 5398 /* 5399 * releases all preallocations in given group 5400 * 5401 * first, we need to decide discard policy: 5402 * - when do we discard 5403 * 1) ENOSPC 5404 * - how many do we discard 5405 * 1) how many requested 5406 */ 5407 static noinline_for_stack int 5408 ext4_mb_discard_group_preallocations(struct super_block *sb, 5409 ext4_group_t group, int *busy) 5410 { 5411 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5412 struct buffer_head *bitmap_bh = NULL; 5413 struct ext4_prealloc_space *pa, *tmp; 5414 LIST_HEAD(list); 5415 struct ext4_buddy e4b; 5416 struct ext4_inode_info *ei; 5417 int err; 5418 int free = 0; 5419 5420 if (!grp) 5421 return 0; 5422 mb_debug(sb, "discard preallocation for group %u\n", group); 5423 if (list_empty(&grp->bb_prealloc_list)) 5424 goto out_dbg; 5425 5426 bitmap_bh = ext4_read_block_bitmap(sb, group); 5427 if (IS_ERR(bitmap_bh)) { 5428 err = PTR_ERR(bitmap_bh); 5429 ext4_error_err(sb, -err, 5430 "Error %d reading block bitmap for %u", 5431 err, group); 5432 goto out_dbg; 5433 } 5434 5435 err = ext4_mb_load_buddy(sb, group, &e4b); 5436 if (err) { 5437 ext4_warning(sb, "Error %d loading buddy information for %u", 5438 err, group); 5439 put_bh(bitmap_bh); 5440 goto out_dbg; 5441 } 5442 5443 ext4_lock_group(sb, group); 5444 list_for_each_entry_safe(pa, tmp, 5445 &grp->bb_prealloc_list, pa_group_list) { 5446 spin_lock(&pa->pa_lock); 5447 if (atomic_read(&pa->pa_count)) { 5448 spin_unlock(&pa->pa_lock); 5449 *busy = 1; 5450 continue; 5451 } 5452 if (pa->pa_deleted) { 5453 spin_unlock(&pa->pa_lock); 5454 continue; 5455 } 5456 5457 /* seems this one can be freed ... */ 5458 ext4_mb_mark_pa_deleted(sb, pa); 5459 5460 if (!free) 5461 this_cpu_inc(discard_pa_seq); 5462 5463 /* we can trust pa_free ... */ 5464 free += pa->pa_free; 5465 5466 spin_unlock(&pa->pa_lock); 5467 5468 list_del(&pa->pa_group_list); 5469 list_add(&pa->u.pa_tmp_list, &list); 5470 } 5471 5472 /* now free all selected PAs */ 5473 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5474 5475 /* remove from object (inode or locality group) */ 5476 if (pa->pa_type == MB_GROUP_PA) { 5477 spin_lock(pa->pa_node_lock.lg_lock); 5478 list_del_rcu(&pa->pa_node.lg_list); 5479 spin_unlock(pa->pa_node_lock.lg_lock); 5480 } else { 5481 write_lock(pa->pa_node_lock.inode_lock); 5482 ei = EXT4_I(pa->pa_inode); 5483 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5484 write_unlock(pa->pa_node_lock.inode_lock); 5485 } 5486 5487 list_del(&pa->u.pa_tmp_list); 5488 5489 if (pa->pa_type == MB_GROUP_PA) { 5490 ext4_mb_release_group_pa(&e4b, pa); 5491 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5492 } else { 5493 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5494 ext4_mb_pa_free(pa); 5495 } 5496 } 5497 5498 ext4_unlock_group(sb, group); 5499 ext4_mb_unload_buddy(&e4b); 5500 put_bh(bitmap_bh); 5501 out_dbg: 5502 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5503 free, group, grp->bb_free); 5504 return free; 5505 } 5506 5507 /* 5508 * releases all non-used preallocated blocks for given inode 5509 * 5510 * It's important to discard preallocations under i_data_sem 5511 * We don't want another block to be served from the prealloc 5512 * space when we are discarding the inode prealloc space. 5513 * 5514 * FIXME!! Make sure it is valid at all the call sites 5515 */ 5516 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5517 { 5518 struct ext4_inode_info *ei = EXT4_I(inode); 5519 struct super_block *sb = inode->i_sb; 5520 struct buffer_head *bitmap_bh = NULL; 5521 struct ext4_prealloc_space *pa, *tmp; 5522 ext4_group_t group = 0; 5523 LIST_HEAD(list); 5524 struct ext4_buddy e4b; 5525 struct rb_node *iter; 5526 int err; 5527 5528 if (!S_ISREG(inode->i_mode)) { 5529 return; 5530 } 5531 5532 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5533 return; 5534 5535 mb_debug(sb, "discard preallocation for inode %lu\n", 5536 inode->i_ino); 5537 trace_ext4_discard_preallocations(inode, 5538 atomic_read(&ei->i_prealloc_active), needed); 5539 5540 if (needed == 0) 5541 needed = UINT_MAX; 5542 5543 repeat: 5544 /* first, collect all pa's in the inode */ 5545 write_lock(&ei->i_prealloc_lock); 5546 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5547 iter = rb_next(iter)) { 5548 pa = rb_entry(iter, struct ext4_prealloc_space, 5549 pa_node.inode_node); 5550 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5551 5552 spin_lock(&pa->pa_lock); 5553 if (atomic_read(&pa->pa_count)) { 5554 /* this shouldn't happen often - nobody should 5555 * use preallocation while we're discarding it */ 5556 spin_unlock(&pa->pa_lock); 5557 write_unlock(&ei->i_prealloc_lock); 5558 ext4_msg(sb, KERN_ERR, 5559 "uh-oh! used pa while discarding"); 5560 WARN_ON(1); 5561 schedule_timeout_uninterruptible(HZ); 5562 goto repeat; 5563 5564 } 5565 if (pa->pa_deleted == 0) { 5566 ext4_mb_mark_pa_deleted(sb, pa); 5567 spin_unlock(&pa->pa_lock); 5568 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5569 list_add(&pa->u.pa_tmp_list, &list); 5570 needed--; 5571 continue; 5572 } 5573 5574 /* someone is deleting pa right now */ 5575 spin_unlock(&pa->pa_lock); 5576 write_unlock(&ei->i_prealloc_lock); 5577 5578 /* we have to wait here because pa_deleted 5579 * doesn't mean pa is already unlinked from 5580 * the list. as we might be called from 5581 * ->clear_inode() the inode will get freed 5582 * and concurrent thread which is unlinking 5583 * pa from inode's list may access already 5584 * freed memory, bad-bad-bad */ 5585 5586 /* XXX: if this happens too often, we can 5587 * add a flag to force wait only in case 5588 * of ->clear_inode(), but not in case of 5589 * regular truncate */ 5590 schedule_timeout_uninterruptible(HZ); 5591 goto repeat; 5592 } 5593 write_unlock(&ei->i_prealloc_lock); 5594 5595 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5596 BUG_ON(pa->pa_type != MB_INODE_PA); 5597 group = ext4_get_group_number(sb, pa->pa_pstart); 5598 5599 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5600 GFP_NOFS|__GFP_NOFAIL); 5601 if (err) { 5602 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5603 err, group); 5604 continue; 5605 } 5606 5607 bitmap_bh = ext4_read_block_bitmap(sb, group); 5608 if (IS_ERR(bitmap_bh)) { 5609 err = PTR_ERR(bitmap_bh); 5610 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5611 err, group); 5612 ext4_mb_unload_buddy(&e4b); 5613 continue; 5614 } 5615 5616 ext4_lock_group(sb, group); 5617 list_del(&pa->pa_group_list); 5618 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5619 ext4_unlock_group(sb, group); 5620 5621 ext4_mb_unload_buddy(&e4b); 5622 put_bh(bitmap_bh); 5623 5624 list_del(&pa->u.pa_tmp_list); 5625 ext4_mb_pa_free(pa); 5626 } 5627 } 5628 5629 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5630 { 5631 struct ext4_prealloc_space *pa; 5632 5633 BUG_ON(ext4_pspace_cachep == NULL); 5634 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5635 if (!pa) 5636 return -ENOMEM; 5637 atomic_set(&pa->pa_count, 1); 5638 ac->ac_pa = pa; 5639 return 0; 5640 } 5641 5642 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5643 { 5644 struct ext4_prealloc_space *pa = ac->ac_pa; 5645 5646 BUG_ON(!pa); 5647 ac->ac_pa = NULL; 5648 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5649 /* 5650 * current function is only called due to an error or due to 5651 * len of found blocks < len of requested blocks hence the PA has not 5652 * been added to grp->bb_prealloc_list. So we don't need to lock it 5653 */ 5654 pa->pa_deleted = 1; 5655 ext4_mb_pa_free(pa); 5656 } 5657 5658 #ifdef CONFIG_EXT4_DEBUG 5659 static inline void ext4_mb_show_pa(struct super_block *sb) 5660 { 5661 ext4_group_t i, ngroups; 5662 5663 if (ext4_forced_shutdown(sb)) 5664 return; 5665 5666 ngroups = ext4_get_groups_count(sb); 5667 mb_debug(sb, "groups: "); 5668 for (i = 0; i < ngroups; i++) { 5669 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5670 struct ext4_prealloc_space *pa; 5671 ext4_grpblk_t start; 5672 struct list_head *cur; 5673 5674 if (!grp) 5675 continue; 5676 ext4_lock_group(sb, i); 5677 list_for_each(cur, &grp->bb_prealloc_list) { 5678 pa = list_entry(cur, struct ext4_prealloc_space, 5679 pa_group_list); 5680 spin_lock(&pa->pa_lock); 5681 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5682 NULL, &start); 5683 spin_unlock(&pa->pa_lock); 5684 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5685 pa->pa_len); 5686 } 5687 ext4_unlock_group(sb, i); 5688 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5689 grp->bb_fragments); 5690 } 5691 } 5692 5693 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5694 { 5695 struct super_block *sb = ac->ac_sb; 5696 5697 if (ext4_forced_shutdown(sb)) 5698 return; 5699 5700 mb_debug(sb, "Can't allocate:" 5701 " Allocation context details:"); 5702 mb_debug(sb, "status %u flags 0x%x", 5703 ac->ac_status, ac->ac_flags); 5704 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5705 "goal %lu/%lu/%lu@%lu, " 5706 "best %lu/%lu/%lu@%lu cr %d", 5707 (unsigned long)ac->ac_o_ex.fe_group, 5708 (unsigned long)ac->ac_o_ex.fe_start, 5709 (unsigned long)ac->ac_o_ex.fe_len, 5710 (unsigned long)ac->ac_o_ex.fe_logical, 5711 (unsigned long)ac->ac_g_ex.fe_group, 5712 (unsigned long)ac->ac_g_ex.fe_start, 5713 (unsigned long)ac->ac_g_ex.fe_len, 5714 (unsigned long)ac->ac_g_ex.fe_logical, 5715 (unsigned long)ac->ac_b_ex.fe_group, 5716 (unsigned long)ac->ac_b_ex.fe_start, 5717 (unsigned long)ac->ac_b_ex.fe_len, 5718 (unsigned long)ac->ac_b_ex.fe_logical, 5719 (int)ac->ac_criteria); 5720 mb_debug(sb, "%u found", ac->ac_found); 5721 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5722 if (ac->ac_pa) 5723 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5724 "group pa" : "inode pa"); 5725 ext4_mb_show_pa(sb); 5726 } 5727 #else 5728 static inline void ext4_mb_show_pa(struct super_block *sb) 5729 { 5730 } 5731 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5732 { 5733 ext4_mb_show_pa(ac->ac_sb); 5734 } 5735 #endif 5736 5737 /* 5738 * We use locality group preallocation for small size file. The size of the 5739 * file is determined by the current size or the resulting size after 5740 * allocation which ever is larger 5741 * 5742 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5743 */ 5744 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5745 { 5746 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5747 int bsbits = ac->ac_sb->s_blocksize_bits; 5748 loff_t size, isize; 5749 bool inode_pa_eligible, group_pa_eligible; 5750 5751 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5752 return; 5753 5754 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5755 return; 5756 5757 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5758 inode_pa_eligible = true; 5759 size = extent_logical_end(sbi, &ac->ac_o_ex); 5760 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5761 >> bsbits; 5762 5763 /* No point in using inode preallocation for closed files */ 5764 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5765 !inode_is_open_for_write(ac->ac_inode)) 5766 inode_pa_eligible = false; 5767 5768 size = max(size, isize); 5769 /* Don't use group allocation for large files */ 5770 if (size > sbi->s_mb_stream_request) 5771 group_pa_eligible = false; 5772 5773 if (!group_pa_eligible) { 5774 if (inode_pa_eligible) 5775 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5776 else 5777 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5778 return; 5779 } 5780 5781 BUG_ON(ac->ac_lg != NULL); 5782 /* 5783 * locality group prealloc space are per cpu. The reason for having 5784 * per cpu locality group is to reduce the contention between block 5785 * request from multiple CPUs. 5786 */ 5787 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5788 5789 /* we're going to use group allocation */ 5790 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5791 5792 /* serialize all allocations in the group */ 5793 mutex_lock(&ac->ac_lg->lg_mutex); 5794 } 5795 5796 static noinline_for_stack void 5797 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5798 struct ext4_allocation_request *ar) 5799 { 5800 struct super_block *sb = ar->inode->i_sb; 5801 struct ext4_sb_info *sbi = EXT4_SB(sb); 5802 struct ext4_super_block *es = sbi->s_es; 5803 ext4_group_t group; 5804 unsigned int len; 5805 ext4_fsblk_t goal; 5806 ext4_grpblk_t block; 5807 5808 /* we can't allocate > group size */ 5809 len = ar->len; 5810 5811 /* just a dirty hack to filter too big requests */ 5812 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5813 len = EXT4_CLUSTERS_PER_GROUP(sb); 5814 5815 /* start searching from the goal */ 5816 goal = ar->goal; 5817 if (goal < le32_to_cpu(es->s_first_data_block) || 5818 goal >= ext4_blocks_count(es)) 5819 goal = le32_to_cpu(es->s_first_data_block); 5820 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5821 5822 /* set up allocation goals */ 5823 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5824 ac->ac_status = AC_STATUS_CONTINUE; 5825 ac->ac_sb = sb; 5826 ac->ac_inode = ar->inode; 5827 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5828 ac->ac_o_ex.fe_group = group; 5829 ac->ac_o_ex.fe_start = block; 5830 ac->ac_o_ex.fe_len = len; 5831 ac->ac_g_ex = ac->ac_o_ex; 5832 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5833 ac->ac_flags = ar->flags; 5834 5835 /* we have to define context: we'll work with a file or 5836 * locality group. this is a policy, actually */ 5837 ext4_mb_group_or_file(ac); 5838 5839 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5840 "left: %u/%u, right %u/%u to %swritable\n", 5841 (unsigned) ar->len, (unsigned) ar->logical, 5842 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5843 (unsigned) ar->lleft, (unsigned) ar->pleft, 5844 (unsigned) ar->lright, (unsigned) ar->pright, 5845 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5846 } 5847 5848 static noinline_for_stack void 5849 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5850 struct ext4_locality_group *lg, 5851 int order, int total_entries) 5852 { 5853 ext4_group_t group = 0; 5854 struct ext4_buddy e4b; 5855 LIST_HEAD(discard_list); 5856 struct ext4_prealloc_space *pa, *tmp; 5857 5858 mb_debug(sb, "discard locality group preallocation\n"); 5859 5860 spin_lock(&lg->lg_prealloc_lock); 5861 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5862 pa_node.lg_list, 5863 lockdep_is_held(&lg->lg_prealloc_lock)) { 5864 spin_lock(&pa->pa_lock); 5865 if (atomic_read(&pa->pa_count)) { 5866 /* 5867 * This is the pa that we just used 5868 * for block allocation. So don't 5869 * free that 5870 */ 5871 spin_unlock(&pa->pa_lock); 5872 continue; 5873 } 5874 if (pa->pa_deleted) { 5875 spin_unlock(&pa->pa_lock); 5876 continue; 5877 } 5878 /* only lg prealloc space */ 5879 BUG_ON(pa->pa_type != MB_GROUP_PA); 5880 5881 /* seems this one can be freed ... */ 5882 ext4_mb_mark_pa_deleted(sb, pa); 5883 spin_unlock(&pa->pa_lock); 5884 5885 list_del_rcu(&pa->pa_node.lg_list); 5886 list_add(&pa->u.pa_tmp_list, &discard_list); 5887 5888 total_entries--; 5889 if (total_entries <= 5) { 5890 /* 5891 * we want to keep only 5 entries 5892 * allowing it to grow to 8. This 5893 * mak sure we don't call discard 5894 * soon for this list. 5895 */ 5896 break; 5897 } 5898 } 5899 spin_unlock(&lg->lg_prealloc_lock); 5900 5901 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5902 int err; 5903 5904 group = ext4_get_group_number(sb, pa->pa_pstart); 5905 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5906 GFP_NOFS|__GFP_NOFAIL); 5907 if (err) { 5908 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5909 err, group); 5910 continue; 5911 } 5912 ext4_lock_group(sb, group); 5913 list_del(&pa->pa_group_list); 5914 ext4_mb_release_group_pa(&e4b, pa); 5915 ext4_unlock_group(sb, group); 5916 5917 ext4_mb_unload_buddy(&e4b); 5918 list_del(&pa->u.pa_tmp_list); 5919 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5920 } 5921 } 5922 5923 /* 5924 * We have incremented pa_count. So it cannot be freed at this 5925 * point. Also we hold lg_mutex. So no parallel allocation is 5926 * possible from this lg. That means pa_free cannot be updated. 5927 * 5928 * A parallel ext4_mb_discard_group_preallocations is possible. 5929 * which can cause the lg_prealloc_list to be updated. 5930 */ 5931 5932 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5933 { 5934 int order, added = 0, lg_prealloc_count = 1; 5935 struct super_block *sb = ac->ac_sb; 5936 struct ext4_locality_group *lg = ac->ac_lg; 5937 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5938 5939 order = fls(pa->pa_free) - 1; 5940 if (order > PREALLOC_TB_SIZE - 1) 5941 /* The max size of hash table is PREALLOC_TB_SIZE */ 5942 order = PREALLOC_TB_SIZE - 1; 5943 /* Add the prealloc space to lg */ 5944 spin_lock(&lg->lg_prealloc_lock); 5945 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5946 pa_node.lg_list, 5947 lockdep_is_held(&lg->lg_prealloc_lock)) { 5948 spin_lock(&tmp_pa->pa_lock); 5949 if (tmp_pa->pa_deleted) { 5950 spin_unlock(&tmp_pa->pa_lock); 5951 continue; 5952 } 5953 if (!added && pa->pa_free < tmp_pa->pa_free) { 5954 /* Add to the tail of the previous entry */ 5955 list_add_tail_rcu(&pa->pa_node.lg_list, 5956 &tmp_pa->pa_node.lg_list); 5957 added = 1; 5958 /* 5959 * we want to count the total 5960 * number of entries in the list 5961 */ 5962 } 5963 spin_unlock(&tmp_pa->pa_lock); 5964 lg_prealloc_count++; 5965 } 5966 if (!added) 5967 list_add_tail_rcu(&pa->pa_node.lg_list, 5968 &lg->lg_prealloc_list[order]); 5969 spin_unlock(&lg->lg_prealloc_lock); 5970 5971 /* Now trim the list to be not more than 8 elements */ 5972 if (lg_prealloc_count > 8) 5973 ext4_mb_discard_lg_preallocations(sb, lg, 5974 order, lg_prealloc_count); 5975 } 5976 5977 /* 5978 * release all resource we used in allocation 5979 */ 5980 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5981 { 5982 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5983 struct ext4_prealloc_space *pa = ac->ac_pa; 5984 if (pa) { 5985 if (pa->pa_type == MB_GROUP_PA) { 5986 /* see comment in ext4_mb_use_group_pa() */ 5987 spin_lock(&pa->pa_lock); 5988 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5989 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5990 pa->pa_free -= ac->ac_b_ex.fe_len; 5991 pa->pa_len -= ac->ac_b_ex.fe_len; 5992 spin_unlock(&pa->pa_lock); 5993 5994 /* 5995 * We want to add the pa to the right bucket. 5996 * Remove it from the list and while adding 5997 * make sure the list to which we are adding 5998 * doesn't grow big. 5999 */ 6000 if (likely(pa->pa_free)) { 6001 spin_lock(pa->pa_node_lock.lg_lock); 6002 list_del_rcu(&pa->pa_node.lg_list); 6003 spin_unlock(pa->pa_node_lock.lg_lock); 6004 ext4_mb_add_n_trim(ac); 6005 } 6006 } 6007 6008 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6009 } 6010 if (ac->ac_bitmap_page) 6011 put_page(ac->ac_bitmap_page); 6012 if (ac->ac_buddy_page) 6013 put_page(ac->ac_buddy_page); 6014 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6015 mutex_unlock(&ac->ac_lg->lg_mutex); 6016 ext4_mb_collect_stats(ac); 6017 return 0; 6018 } 6019 6020 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6021 { 6022 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6023 int ret; 6024 int freed = 0, busy = 0; 6025 int retry = 0; 6026 6027 trace_ext4_mb_discard_preallocations(sb, needed); 6028 6029 if (needed == 0) 6030 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6031 repeat: 6032 for (i = 0; i < ngroups && needed > 0; i++) { 6033 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6034 freed += ret; 6035 needed -= ret; 6036 cond_resched(); 6037 } 6038 6039 if (needed > 0 && busy && ++retry < 3) { 6040 busy = 0; 6041 goto repeat; 6042 } 6043 6044 return freed; 6045 } 6046 6047 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6048 struct ext4_allocation_context *ac, u64 *seq) 6049 { 6050 int freed; 6051 u64 seq_retry = 0; 6052 bool ret = false; 6053 6054 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6055 if (freed) { 6056 ret = true; 6057 goto out_dbg; 6058 } 6059 seq_retry = ext4_get_discard_pa_seq_sum(); 6060 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6061 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6062 *seq = seq_retry; 6063 ret = true; 6064 } 6065 6066 out_dbg: 6067 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6068 return ret; 6069 } 6070 6071 /* 6072 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6073 * linearly starting at the goal block and also excludes the blocks which 6074 * are going to be in use after fast commit replay. 6075 */ 6076 static ext4_fsblk_t 6077 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6078 { 6079 struct buffer_head *bitmap_bh; 6080 struct super_block *sb = ar->inode->i_sb; 6081 struct ext4_sb_info *sbi = EXT4_SB(sb); 6082 ext4_group_t group, nr; 6083 ext4_grpblk_t blkoff; 6084 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6085 ext4_grpblk_t i = 0; 6086 ext4_fsblk_t goal, block; 6087 struct ext4_super_block *es = sbi->s_es; 6088 6089 goal = ar->goal; 6090 if (goal < le32_to_cpu(es->s_first_data_block) || 6091 goal >= ext4_blocks_count(es)) 6092 goal = le32_to_cpu(es->s_first_data_block); 6093 6094 ar->len = 0; 6095 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6096 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6097 bitmap_bh = ext4_read_block_bitmap(sb, group); 6098 if (IS_ERR(bitmap_bh)) { 6099 *errp = PTR_ERR(bitmap_bh); 6100 pr_warn("Failed to read block bitmap\n"); 6101 return 0; 6102 } 6103 6104 while (1) { 6105 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6106 blkoff); 6107 if (i >= max) 6108 break; 6109 if (ext4_fc_replay_check_excluded(sb, 6110 ext4_group_first_block_no(sb, group) + 6111 EXT4_C2B(sbi, i))) { 6112 blkoff = i + 1; 6113 } else 6114 break; 6115 } 6116 brelse(bitmap_bh); 6117 if (i < max) 6118 break; 6119 6120 if (++group >= ext4_get_groups_count(sb)) 6121 group = 0; 6122 6123 blkoff = 0; 6124 } 6125 6126 if (i >= max) { 6127 *errp = -ENOSPC; 6128 return 0; 6129 } 6130 6131 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6132 ext4_mb_mark_bb(sb, block, 1, 1); 6133 ar->len = 1; 6134 6135 return block; 6136 } 6137 6138 /* 6139 * Main entry point into mballoc to allocate blocks 6140 * it tries to use preallocation first, then falls back 6141 * to usual allocation 6142 */ 6143 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6144 struct ext4_allocation_request *ar, int *errp) 6145 { 6146 struct ext4_allocation_context *ac = NULL; 6147 struct ext4_sb_info *sbi; 6148 struct super_block *sb; 6149 ext4_fsblk_t block = 0; 6150 unsigned int inquota = 0; 6151 unsigned int reserv_clstrs = 0; 6152 int retries = 0; 6153 u64 seq; 6154 6155 might_sleep(); 6156 sb = ar->inode->i_sb; 6157 sbi = EXT4_SB(sb); 6158 6159 trace_ext4_request_blocks(ar); 6160 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6161 return ext4_mb_new_blocks_simple(ar, errp); 6162 6163 /* Allow to use superuser reservation for quota file */ 6164 if (ext4_is_quota_file(ar->inode)) 6165 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6166 6167 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6168 /* Without delayed allocation we need to verify 6169 * there is enough free blocks to do block allocation 6170 * and verify allocation doesn't exceed the quota limits. 6171 */ 6172 while (ar->len && 6173 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6174 6175 /* let others to free the space */ 6176 cond_resched(); 6177 ar->len = ar->len >> 1; 6178 } 6179 if (!ar->len) { 6180 ext4_mb_show_pa(sb); 6181 *errp = -ENOSPC; 6182 return 0; 6183 } 6184 reserv_clstrs = ar->len; 6185 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6186 dquot_alloc_block_nofail(ar->inode, 6187 EXT4_C2B(sbi, ar->len)); 6188 } else { 6189 while (ar->len && 6190 dquot_alloc_block(ar->inode, 6191 EXT4_C2B(sbi, ar->len))) { 6192 6193 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6194 ar->len--; 6195 } 6196 } 6197 inquota = ar->len; 6198 if (ar->len == 0) { 6199 *errp = -EDQUOT; 6200 goto out; 6201 } 6202 } 6203 6204 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6205 if (!ac) { 6206 ar->len = 0; 6207 *errp = -ENOMEM; 6208 goto out; 6209 } 6210 6211 ext4_mb_initialize_context(ac, ar); 6212 6213 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6214 seq = this_cpu_read(discard_pa_seq); 6215 if (!ext4_mb_use_preallocated(ac)) { 6216 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6217 ext4_mb_normalize_request(ac, ar); 6218 6219 *errp = ext4_mb_pa_alloc(ac); 6220 if (*errp) 6221 goto errout; 6222 repeat: 6223 /* allocate space in core */ 6224 *errp = ext4_mb_regular_allocator(ac); 6225 /* 6226 * pa allocated above is added to grp->bb_prealloc_list only 6227 * when we were able to allocate some block i.e. when 6228 * ac->ac_status == AC_STATUS_FOUND. 6229 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6230 * So we have to free this pa here itself. 6231 */ 6232 if (*errp) { 6233 ext4_mb_pa_put_free(ac); 6234 ext4_discard_allocated_blocks(ac); 6235 goto errout; 6236 } 6237 if (ac->ac_status == AC_STATUS_FOUND && 6238 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6239 ext4_mb_pa_put_free(ac); 6240 } 6241 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6242 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6243 if (*errp) { 6244 ext4_discard_allocated_blocks(ac); 6245 goto errout; 6246 } else { 6247 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6248 ar->len = ac->ac_b_ex.fe_len; 6249 } 6250 } else { 6251 if (++retries < 3 && 6252 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6253 goto repeat; 6254 /* 6255 * If block allocation fails then the pa allocated above 6256 * needs to be freed here itself. 6257 */ 6258 ext4_mb_pa_put_free(ac); 6259 *errp = -ENOSPC; 6260 } 6261 6262 if (*errp) { 6263 errout: 6264 ac->ac_b_ex.fe_len = 0; 6265 ar->len = 0; 6266 ext4_mb_show_ac(ac); 6267 } 6268 ext4_mb_release_context(ac); 6269 kmem_cache_free(ext4_ac_cachep, ac); 6270 out: 6271 if (inquota && ar->len < inquota) 6272 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6273 if (!ar->len) { 6274 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6275 /* release all the reserved blocks if non delalloc */ 6276 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6277 reserv_clstrs); 6278 } 6279 6280 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6281 6282 return block; 6283 } 6284 6285 /* 6286 * We can merge two free data extents only if the physical blocks 6287 * are contiguous, AND the extents were freed by the same transaction, 6288 * AND the blocks are associated with the same group. 6289 */ 6290 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6291 struct ext4_free_data *entry, 6292 struct ext4_free_data *new_entry, 6293 struct rb_root *entry_rb_root) 6294 { 6295 if ((entry->efd_tid != new_entry->efd_tid) || 6296 (entry->efd_group != new_entry->efd_group)) 6297 return; 6298 if (entry->efd_start_cluster + entry->efd_count == 6299 new_entry->efd_start_cluster) { 6300 new_entry->efd_start_cluster = entry->efd_start_cluster; 6301 new_entry->efd_count += entry->efd_count; 6302 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6303 entry->efd_start_cluster) { 6304 new_entry->efd_count += entry->efd_count; 6305 } else 6306 return; 6307 spin_lock(&sbi->s_md_lock); 6308 list_del(&entry->efd_list); 6309 spin_unlock(&sbi->s_md_lock); 6310 rb_erase(&entry->efd_node, entry_rb_root); 6311 kmem_cache_free(ext4_free_data_cachep, entry); 6312 } 6313 6314 static noinline_for_stack void 6315 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6316 struct ext4_free_data *new_entry) 6317 { 6318 ext4_group_t group = e4b->bd_group; 6319 ext4_grpblk_t cluster; 6320 ext4_grpblk_t clusters = new_entry->efd_count; 6321 struct ext4_free_data *entry; 6322 struct ext4_group_info *db = e4b->bd_info; 6323 struct super_block *sb = e4b->bd_sb; 6324 struct ext4_sb_info *sbi = EXT4_SB(sb); 6325 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6326 struct rb_node *parent = NULL, *new_node; 6327 6328 BUG_ON(!ext4_handle_valid(handle)); 6329 BUG_ON(e4b->bd_bitmap_page == NULL); 6330 BUG_ON(e4b->bd_buddy_page == NULL); 6331 6332 new_node = &new_entry->efd_node; 6333 cluster = new_entry->efd_start_cluster; 6334 6335 if (!*n) { 6336 /* first free block exent. We need to 6337 protect buddy cache from being freed, 6338 * otherwise we'll refresh it from 6339 * on-disk bitmap and lose not-yet-available 6340 * blocks */ 6341 get_page(e4b->bd_buddy_page); 6342 get_page(e4b->bd_bitmap_page); 6343 } 6344 while (*n) { 6345 parent = *n; 6346 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6347 if (cluster < entry->efd_start_cluster) 6348 n = &(*n)->rb_left; 6349 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6350 n = &(*n)->rb_right; 6351 else { 6352 ext4_grp_locked_error(sb, group, 0, 6353 ext4_group_first_block_no(sb, group) + 6354 EXT4_C2B(sbi, cluster), 6355 "Block already on to-be-freed list"); 6356 kmem_cache_free(ext4_free_data_cachep, new_entry); 6357 return; 6358 } 6359 } 6360 6361 rb_link_node(new_node, parent, n); 6362 rb_insert_color(new_node, &db->bb_free_root); 6363 6364 /* Now try to see the extent can be merged to left and right */ 6365 node = rb_prev(new_node); 6366 if (node) { 6367 entry = rb_entry(node, struct ext4_free_data, efd_node); 6368 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6369 &(db->bb_free_root)); 6370 } 6371 6372 node = rb_next(new_node); 6373 if (node) { 6374 entry = rb_entry(node, struct ext4_free_data, efd_node); 6375 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6376 &(db->bb_free_root)); 6377 } 6378 6379 spin_lock(&sbi->s_md_lock); 6380 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6381 sbi->s_mb_free_pending += clusters; 6382 spin_unlock(&sbi->s_md_lock); 6383 } 6384 6385 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6386 unsigned long count) 6387 { 6388 struct buffer_head *bitmap_bh; 6389 struct super_block *sb = inode->i_sb; 6390 struct ext4_group_desc *gdp; 6391 struct buffer_head *gdp_bh; 6392 ext4_group_t group; 6393 ext4_grpblk_t blkoff; 6394 int already_freed = 0, err, i; 6395 6396 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6397 bitmap_bh = ext4_read_block_bitmap(sb, group); 6398 if (IS_ERR(bitmap_bh)) { 6399 pr_warn("Failed to read block bitmap\n"); 6400 return; 6401 } 6402 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6403 if (!gdp) 6404 goto err_out; 6405 6406 for (i = 0; i < count; i++) { 6407 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6408 already_freed++; 6409 } 6410 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6411 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6412 if (err) 6413 goto err_out; 6414 ext4_free_group_clusters_set( 6415 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6416 count - already_freed); 6417 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6418 ext4_group_desc_csum_set(sb, group, gdp); 6419 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6420 sync_dirty_buffer(bitmap_bh); 6421 sync_dirty_buffer(gdp_bh); 6422 6423 err_out: 6424 brelse(bitmap_bh); 6425 } 6426 6427 /** 6428 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6429 * Used by ext4_free_blocks() 6430 * @handle: handle for this transaction 6431 * @inode: inode 6432 * @block: starting physical block to be freed 6433 * @count: number of blocks to be freed 6434 * @flags: flags used by ext4_free_blocks 6435 */ 6436 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6437 ext4_fsblk_t block, unsigned long count, 6438 int flags) 6439 { 6440 struct buffer_head *bitmap_bh = NULL; 6441 struct super_block *sb = inode->i_sb; 6442 struct ext4_group_desc *gdp; 6443 struct ext4_group_info *grp; 6444 unsigned int overflow; 6445 ext4_grpblk_t bit; 6446 struct buffer_head *gd_bh; 6447 ext4_group_t block_group; 6448 struct ext4_sb_info *sbi; 6449 struct ext4_buddy e4b; 6450 unsigned int count_clusters; 6451 int err = 0; 6452 int ret; 6453 6454 sbi = EXT4_SB(sb); 6455 6456 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6457 !ext4_inode_block_valid(inode, block, count)) { 6458 ext4_error(sb, "Freeing blocks in system zone - " 6459 "Block = %llu, count = %lu", block, count); 6460 /* err = 0. ext4_std_error should be a no op */ 6461 goto error_return; 6462 } 6463 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6464 6465 do_more: 6466 overflow = 0; 6467 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6468 6469 grp = ext4_get_group_info(sb, block_group); 6470 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6471 return; 6472 6473 /* 6474 * Check to see if we are freeing blocks across a group 6475 * boundary. 6476 */ 6477 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6478 overflow = EXT4_C2B(sbi, bit) + count - 6479 EXT4_BLOCKS_PER_GROUP(sb); 6480 count -= overflow; 6481 /* The range changed so it's no longer validated */ 6482 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6483 } 6484 count_clusters = EXT4_NUM_B2C(sbi, count); 6485 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6486 if (IS_ERR(bitmap_bh)) { 6487 err = PTR_ERR(bitmap_bh); 6488 bitmap_bh = NULL; 6489 goto error_return; 6490 } 6491 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6492 if (!gdp) { 6493 err = -EIO; 6494 goto error_return; 6495 } 6496 6497 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6498 !ext4_inode_block_valid(inode, block, count)) { 6499 ext4_error(sb, "Freeing blocks in system zone - " 6500 "Block = %llu, count = %lu", block, count); 6501 /* err = 0. ext4_std_error should be a no op */ 6502 goto error_return; 6503 } 6504 6505 BUFFER_TRACE(bitmap_bh, "getting write access"); 6506 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6507 EXT4_JTR_NONE); 6508 if (err) 6509 goto error_return; 6510 6511 /* 6512 * We are about to modify some metadata. Call the journal APIs 6513 * to unshare ->b_data if a currently-committing transaction is 6514 * using it 6515 */ 6516 BUFFER_TRACE(gd_bh, "get_write_access"); 6517 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6518 if (err) 6519 goto error_return; 6520 #ifdef AGGRESSIVE_CHECK 6521 { 6522 int i; 6523 for (i = 0; i < count_clusters; i++) 6524 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6525 } 6526 #endif 6527 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6528 6529 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6530 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6531 GFP_NOFS|__GFP_NOFAIL); 6532 if (err) 6533 goto error_return; 6534 6535 /* 6536 * We need to make sure we don't reuse the freed block until after the 6537 * transaction is committed. We make an exception if the inode is to be 6538 * written in writeback mode since writeback mode has weak data 6539 * consistency guarantees. 6540 */ 6541 if (ext4_handle_valid(handle) && 6542 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6543 !ext4_should_writeback_data(inode))) { 6544 struct ext4_free_data *new_entry; 6545 /* 6546 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6547 * to fail. 6548 */ 6549 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6550 GFP_NOFS|__GFP_NOFAIL); 6551 new_entry->efd_start_cluster = bit; 6552 new_entry->efd_group = block_group; 6553 new_entry->efd_count = count_clusters; 6554 new_entry->efd_tid = handle->h_transaction->t_tid; 6555 6556 ext4_lock_group(sb, block_group); 6557 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6558 ext4_mb_free_metadata(handle, &e4b, new_entry); 6559 } else { 6560 /* need to update group_info->bb_free and bitmap 6561 * with group lock held. generate_buddy look at 6562 * them with group lock_held 6563 */ 6564 if (test_opt(sb, DISCARD)) { 6565 err = ext4_issue_discard(sb, block_group, bit, 6566 count_clusters, NULL); 6567 if (err && err != -EOPNOTSUPP) 6568 ext4_msg(sb, KERN_WARNING, "discard request in" 6569 " group:%u block:%d count:%lu failed" 6570 " with %d", block_group, bit, count, 6571 err); 6572 } else 6573 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6574 6575 ext4_lock_group(sb, block_group); 6576 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6577 mb_free_blocks(inode, &e4b, bit, count_clusters); 6578 } 6579 6580 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6581 ext4_free_group_clusters_set(sb, gdp, ret); 6582 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6583 ext4_group_desc_csum_set(sb, block_group, gdp); 6584 ext4_unlock_group(sb, block_group); 6585 6586 if (sbi->s_log_groups_per_flex) { 6587 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6588 atomic64_add(count_clusters, 6589 &sbi_array_rcu_deref(sbi, s_flex_groups, 6590 flex_group)->free_clusters); 6591 } 6592 6593 /* 6594 * on a bigalloc file system, defer the s_freeclusters_counter 6595 * update to the caller (ext4_remove_space and friends) so they 6596 * can determine if a cluster freed here should be rereserved 6597 */ 6598 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6599 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6600 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6601 percpu_counter_add(&sbi->s_freeclusters_counter, 6602 count_clusters); 6603 } 6604 6605 ext4_mb_unload_buddy(&e4b); 6606 6607 /* We dirtied the bitmap block */ 6608 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6609 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6610 6611 /* And the group descriptor block */ 6612 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6613 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6614 if (!err) 6615 err = ret; 6616 6617 if (overflow && !err) { 6618 block += count; 6619 count = overflow; 6620 put_bh(bitmap_bh); 6621 /* The range changed so it's no longer validated */ 6622 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6623 goto do_more; 6624 } 6625 error_return: 6626 brelse(bitmap_bh); 6627 ext4_std_error(sb, err); 6628 } 6629 6630 /** 6631 * ext4_free_blocks() -- Free given blocks and update quota 6632 * @handle: handle for this transaction 6633 * @inode: inode 6634 * @bh: optional buffer of the block to be freed 6635 * @block: starting physical block to be freed 6636 * @count: number of blocks to be freed 6637 * @flags: flags used by ext4_free_blocks 6638 */ 6639 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6640 struct buffer_head *bh, ext4_fsblk_t block, 6641 unsigned long count, int flags) 6642 { 6643 struct super_block *sb = inode->i_sb; 6644 unsigned int overflow; 6645 struct ext4_sb_info *sbi; 6646 6647 sbi = EXT4_SB(sb); 6648 6649 if (bh) { 6650 if (block) 6651 BUG_ON(block != bh->b_blocknr); 6652 else 6653 block = bh->b_blocknr; 6654 } 6655 6656 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6657 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6658 return; 6659 } 6660 6661 might_sleep(); 6662 6663 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6664 !ext4_inode_block_valid(inode, block, count)) { 6665 ext4_error(sb, "Freeing blocks not in datazone - " 6666 "block = %llu, count = %lu", block, count); 6667 return; 6668 } 6669 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6670 6671 ext4_debug("freeing block %llu\n", block); 6672 trace_ext4_free_blocks(inode, block, count, flags); 6673 6674 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6675 BUG_ON(count > 1); 6676 6677 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6678 inode, bh, block); 6679 } 6680 6681 /* 6682 * If the extent to be freed does not begin on a cluster 6683 * boundary, we need to deal with partial clusters at the 6684 * beginning and end of the extent. Normally we will free 6685 * blocks at the beginning or the end unless we are explicitly 6686 * requested to avoid doing so. 6687 */ 6688 overflow = EXT4_PBLK_COFF(sbi, block); 6689 if (overflow) { 6690 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6691 overflow = sbi->s_cluster_ratio - overflow; 6692 block += overflow; 6693 if (count > overflow) 6694 count -= overflow; 6695 else 6696 return; 6697 } else { 6698 block -= overflow; 6699 count += overflow; 6700 } 6701 /* The range changed so it's no longer validated */ 6702 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6703 } 6704 overflow = EXT4_LBLK_COFF(sbi, count); 6705 if (overflow) { 6706 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6707 if (count > overflow) 6708 count -= overflow; 6709 else 6710 return; 6711 } else 6712 count += sbi->s_cluster_ratio - overflow; 6713 /* The range changed so it's no longer validated */ 6714 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6715 } 6716 6717 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6718 int i; 6719 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6720 6721 for (i = 0; i < count; i++) { 6722 cond_resched(); 6723 if (is_metadata) 6724 bh = sb_find_get_block(inode->i_sb, block + i); 6725 ext4_forget(handle, is_metadata, inode, bh, block + i); 6726 } 6727 } 6728 6729 ext4_mb_clear_bb(handle, inode, block, count, flags); 6730 } 6731 6732 /** 6733 * ext4_group_add_blocks() -- Add given blocks to an existing group 6734 * @handle: handle to this transaction 6735 * @sb: super block 6736 * @block: start physical block to add to the block group 6737 * @count: number of blocks to free 6738 * 6739 * This marks the blocks as free in the bitmap and buddy. 6740 */ 6741 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6742 ext4_fsblk_t block, unsigned long count) 6743 { 6744 struct buffer_head *bitmap_bh = NULL; 6745 struct buffer_head *gd_bh; 6746 ext4_group_t block_group; 6747 ext4_grpblk_t bit; 6748 unsigned int i; 6749 struct ext4_group_desc *desc; 6750 struct ext4_sb_info *sbi = EXT4_SB(sb); 6751 struct ext4_buddy e4b; 6752 int err = 0, ret, free_clusters_count; 6753 ext4_grpblk_t clusters_freed; 6754 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6755 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6756 unsigned long cluster_count = last_cluster - first_cluster + 1; 6757 6758 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6759 6760 if (count == 0) 6761 return 0; 6762 6763 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6764 /* 6765 * Check to see if we are freeing blocks across a group 6766 * boundary. 6767 */ 6768 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6769 ext4_warning(sb, "too many blocks added to group %u", 6770 block_group); 6771 err = -EINVAL; 6772 goto error_return; 6773 } 6774 6775 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6776 if (IS_ERR(bitmap_bh)) { 6777 err = PTR_ERR(bitmap_bh); 6778 bitmap_bh = NULL; 6779 goto error_return; 6780 } 6781 6782 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6783 if (!desc) { 6784 err = -EIO; 6785 goto error_return; 6786 } 6787 6788 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6789 ext4_error(sb, "Adding blocks in system zones - " 6790 "Block = %llu, count = %lu", 6791 block, count); 6792 err = -EINVAL; 6793 goto error_return; 6794 } 6795 6796 BUFFER_TRACE(bitmap_bh, "getting write access"); 6797 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6798 EXT4_JTR_NONE); 6799 if (err) 6800 goto error_return; 6801 6802 /* 6803 * We are about to modify some metadata. Call the journal APIs 6804 * to unshare ->b_data if a currently-committing transaction is 6805 * using it 6806 */ 6807 BUFFER_TRACE(gd_bh, "get_write_access"); 6808 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6809 if (err) 6810 goto error_return; 6811 6812 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6813 BUFFER_TRACE(bitmap_bh, "clear bit"); 6814 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6815 ext4_error(sb, "bit already cleared for block %llu", 6816 (ext4_fsblk_t)(block + i)); 6817 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6818 } else { 6819 clusters_freed++; 6820 } 6821 } 6822 6823 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6824 if (err) 6825 goto error_return; 6826 6827 /* 6828 * need to update group_info->bb_free and bitmap 6829 * with group lock held. generate_buddy look at 6830 * them with group lock_held 6831 */ 6832 ext4_lock_group(sb, block_group); 6833 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6834 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6835 free_clusters_count = clusters_freed + 6836 ext4_free_group_clusters(sb, desc); 6837 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6838 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6839 ext4_group_desc_csum_set(sb, block_group, desc); 6840 ext4_unlock_group(sb, block_group); 6841 percpu_counter_add(&sbi->s_freeclusters_counter, 6842 clusters_freed); 6843 6844 if (sbi->s_log_groups_per_flex) { 6845 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6846 atomic64_add(clusters_freed, 6847 &sbi_array_rcu_deref(sbi, s_flex_groups, 6848 flex_group)->free_clusters); 6849 } 6850 6851 ext4_mb_unload_buddy(&e4b); 6852 6853 /* We dirtied the bitmap block */ 6854 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6855 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6856 6857 /* And the group descriptor block */ 6858 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6859 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6860 if (!err) 6861 err = ret; 6862 6863 error_return: 6864 brelse(bitmap_bh); 6865 ext4_std_error(sb, err); 6866 return err; 6867 } 6868 6869 /** 6870 * ext4_trim_extent -- function to TRIM one single free extent in the group 6871 * @sb: super block for the file system 6872 * @start: starting block of the free extent in the alloc. group 6873 * @count: number of blocks to TRIM 6874 * @e4b: ext4 buddy for the group 6875 * 6876 * Trim "count" blocks starting at "start" in the "group". To assure that no 6877 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6878 * be called with under the group lock. 6879 */ 6880 static int ext4_trim_extent(struct super_block *sb, 6881 int start, int count, struct ext4_buddy *e4b) 6882 __releases(bitlock) 6883 __acquires(bitlock) 6884 { 6885 struct ext4_free_extent ex; 6886 ext4_group_t group = e4b->bd_group; 6887 int ret = 0; 6888 6889 trace_ext4_trim_extent(sb, group, start, count); 6890 6891 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6892 6893 ex.fe_start = start; 6894 ex.fe_group = group; 6895 ex.fe_len = count; 6896 6897 /* 6898 * Mark blocks used, so no one can reuse them while 6899 * being trimmed. 6900 */ 6901 mb_mark_used(e4b, &ex); 6902 ext4_unlock_group(sb, group); 6903 ret = ext4_issue_discard(sb, group, start, count, NULL); 6904 ext4_lock_group(sb, group); 6905 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6906 return ret; 6907 } 6908 6909 static int ext4_try_to_trim_range(struct super_block *sb, 6910 struct ext4_buddy *e4b, ext4_grpblk_t start, 6911 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6912 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6913 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6914 { 6915 ext4_grpblk_t next, count, free_count; 6916 void *bitmap; 6917 6918 bitmap = e4b->bd_bitmap; 6919 start = max(e4b->bd_info->bb_first_free, start); 6920 count = 0; 6921 free_count = 0; 6922 6923 while (start <= max) { 6924 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6925 if (start > max) 6926 break; 6927 next = mb_find_next_bit(bitmap, max + 1, start); 6928 6929 if ((next - start) >= minblocks) { 6930 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6931 6932 if (ret && ret != -EOPNOTSUPP) 6933 break; 6934 count += next - start; 6935 } 6936 free_count += next - start; 6937 start = next + 1; 6938 6939 if (fatal_signal_pending(current)) { 6940 count = -ERESTARTSYS; 6941 break; 6942 } 6943 6944 if (need_resched()) { 6945 ext4_unlock_group(sb, e4b->bd_group); 6946 cond_resched(); 6947 ext4_lock_group(sb, e4b->bd_group); 6948 } 6949 6950 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6951 break; 6952 } 6953 6954 return count; 6955 } 6956 6957 /** 6958 * ext4_trim_all_free -- function to trim all free space in alloc. group 6959 * @sb: super block for file system 6960 * @group: group to be trimmed 6961 * @start: first group block to examine 6962 * @max: last group block to examine 6963 * @minblocks: minimum extent block count 6964 * @set_trimmed: set the trimmed flag if at least one block is trimmed 6965 * 6966 * ext4_trim_all_free walks through group's block bitmap searching for free 6967 * extents. When the free extent is found, mark it as used in group buddy 6968 * bitmap. Then issue a TRIM command on this extent and free the extent in 6969 * the group buddy bitmap. 6970 */ 6971 static ext4_grpblk_t 6972 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6973 ext4_grpblk_t start, ext4_grpblk_t max, 6974 ext4_grpblk_t minblocks, bool set_trimmed) 6975 { 6976 struct ext4_buddy e4b; 6977 int ret; 6978 6979 trace_ext4_trim_all_free(sb, group, start, max); 6980 6981 ret = ext4_mb_load_buddy(sb, group, &e4b); 6982 if (ret) { 6983 ext4_warning(sb, "Error %d loading buddy information for %u", 6984 ret, group); 6985 return ret; 6986 } 6987 6988 ext4_lock_group(sb, group); 6989 6990 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6991 minblocks < EXT4_SB(sb)->s_last_trim_minblks) { 6992 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6993 if (ret >= 0 && set_trimmed) 6994 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 6995 } else { 6996 ret = 0; 6997 } 6998 6999 ext4_unlock_group(sb, group); 7000 ext4_mb_unload_buddy(&e4b); 7001 7002 ext4_debug("trimmed %d blocks in the group %d\n", 7003 ret, group); 7004 7005 return ret; 7006 } 7007 7008 /** 7009 * ext4_trim_fs() -- trim ioctl handle function 7010 * @sb: superblock for filesystem 7011 * @range: fstrim_range structure 7012 * 7013 * start: First Byte to trim 7014 * len: number of Bytes to trim from start 7015 * minlen: minimum extent length in Bytes 7016 * ext4_trim_fs goes through all allocation groups containing Bytes from 7017 * start to start+len. For each such a group ext4_trim_all_free function 7018 * is invoked to trim all free space. 7019 */ 7020 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7021 { 7022 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7023 struct ext4_group_info *grp; 7024 ext4_group_t group, first_group, last_group; 7025 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7026 uint64_t start, end, minlen, trimmed = 0; 7027 ext4_fsblk_t first_data_blk = 7028 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7029 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7030 bool whole_group, eof = false; 7031 int ret = 0; 7032 7033 start = range->start >> sb->s_blocksize_bits; 7034 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7035 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7036 range->minlen >> sb->s_blocksize_bits); 7037 7038 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7039 start >= max_blks || 7040 range->len < sb->s_blocksize) 7041 return -EINVAL; 7042 /* No point to try to trim less than discard granularity */ 7043 if (range->minlen < discard_granularity) { 7044 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7045 discard_granularity >> sb->s_blocksize_bits); 7046 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7047 goto out; 7048 } 7049 if (end >= max_blks - 1) { 7050 end = max_blks - 1; 7051 eof = true; 7052 } 7053 if (end <= first_data_blk) 7054 goto out; 7055 if (start < first_data_blk) 7056 start = first_data_blk; 7057 7058 /* Determine first and last group to examine based on start and end */ 7059 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7060 &first_group, &first_cluster); 7061 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7062 &last_group, &last_cluster); 7063 7064 /* end now represents the last cluster to discard in this group */ 7065 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7066 whole_group = true; 7067 7068 for (group = first_group; group <= last_group; group++) { 7069 grp = ext4_get_group_info(sb, group); 7070 if (!grp) 7071 continue; 7072 /* We only do this if the grp has never been initialized */ 7073 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7074 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7075 if (ret) 7076 break; 7077 } 7078 7079 /* 7080 * For all the groups except the last one, last cluster will 7081 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7082 * change it for the last group, note that last_cluster is 7083 * already computed earlier by ext4_get_group_no_and_offset() 7084 */ 7085 if (group == last_group) { 7086 end = last_cluster; 7087 whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7088 } 7089 if (grp->bb_free >= minlen) { 7090 cnt = ext4_trim_all_free(sb, group, first_cluster, 7091 end, minlen, whole_group); 7092 if (cnt < 0) { 7093 ret = cnt; 7094 break; 7095 } 7096 trimmed += cnt; 7097 } 7098 7099 /* 7100 * For every group except the first one, we are sure 7101 * that the first cluster to discard will be cluster #0. 7102 */ 7103 first_cluster = 0; 7104 } 7105 7106 if (!ret) 7107 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7108 7109 out: 7110 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7111 return ret; 7112 } 7113 7114 /* Iterate all the free extents in the group. */ 7115 int 7116 ext4_mballoc_query_range( 7117 struct super_block *sb, 7118 ext4_group_t group, 7119 ext4_grpblk_t start, 7120 ext4_grpblk_t end, 7121 ext4_mballoc_query_range_fn formatter, 7122 void *priv) 7123 { 7124 void *bitmap; 7125 ext4_grpblk_t next; 7126 struct ext4_buddy e4b; 7127 int error; 7128 7129 error = ext4_mb_load_buddy(sb, group, &e4b); 7130 if (error) 7131 return error; 7132 bitmap = e4b.bd_bitmap; 7133 7134 ext4_lock_group(sb, group); 7135 7136 start = max(e4b.bd_info->bb_first_free, start); 7137 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7138 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7139 7140 while (start <= end) { 7141 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7142 if (start > end) 7143 break; 7144 next = mb_find_next_bit(bitmap, end + 1, start); 7145 7146 ext4_unlock_group(sb, group); 7147 error = formatter(sb, group, start, next - start, priv); 7148 if (error) 7149 goto out_unload; 7150 ext4_lock_group(sb, group); 7151 7152 start = next + 1; 7153 } 7154 7155 ext4_unlock_group(sb, group); 7156 out_unload: 7157 ext4_mb_unload_buddy(&e4b); 7158 7159 return error; 7160 } 7161