xref: /linux/fs/ext4/mballoc.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 #include <trace/events/ext4.h>
26 
27 /*
28  * MUSTDO:
29  *   - test ext4_ext_search_left() and ext4_ext_search_right()
30  *   - search for metadata in few groups
31  *
32  * TODO v4:
33  *   - normalization should take into account whether file is still open
34  *   - discard preallocations if no free space left (policy?)
35  *   - don't normalize tails
36  *   - quota
37  *   - reservation for superuser
38  *
39  * TODO v3:
40  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
41  *   - track min/max extents in each group for better group selection
42  *   - mb_mark_used() may allocate chunk right after splitting buddy
43  *   - tree of groups sorted by number of free blocks
44  *   - error handling
45  */
46 
47 /*
48  * The allocation request involve request for multiple number of blocks
49  * near to the goal(block) value specified.
50  *
51  * During initialization phase of the allocator we decide to use the
52  * group preallocation or inode preallocation depending on the size of
53  * the file. The size of the file could be the resulting file size we
54  * would have after allocation, or the current file size, which ever
55  * is larger. If the size is less than sbi->s_mb_stream_request we
56  * select to use the group preallocation. The default value of
57  * s_mb_stream_request is 16 blocks. This can also be tuned via
58  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
59  * terms of number of blocks.
60  *
61  * The main motivation for having small file use group preallocation is to
62  * ensure that we have small files closer together on the disk.
63  *
64  * First stage the allocator looks at the inode prealloc list,
65  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
66  * spaces for this particular inode. The inode prealloc space is
67  * represented as:
68  *
69  * pa_lstart -> the logical start block for this prealloc space
70  * pa_pstart -> the physical start block for this prealloc space
71  * pa_len    -> lenght for this prealloc space
72  * pa_free   ->  free space available in this prealloc space
73  *
74  * The inode preallocation space is used looking at the _logical_ start
75  * block. If only the logical file block falls within the range of prealloc
76  * space we will consume the particular prealloc space. This make sure that
77  * that the we have contiguous physical blocks representing the file blocks
78  *
79  * The important thing to be noted in case of inode prealloc space is that
80  * we don't modify the values associated to inode prealloc space except
81  * pa_free.
82  *
83  * If we are not able to find blocks in the inode prealloc space and if we
84  * have the group allocation flag set then we look at the locality group
85  * prealloc space. These are per CPU prealloc list repreasented as
86  *
87  * ext4_sb_info.s_locality_groups[smp_processor_id()]
88  *
89  * The reason for having a per cpu locality group is to reduce the contention
90  * between CPUs. It is possible to get scheduled at this point.
91  *
92  * The locality group prealloc space is used looking at whether we have
93  * enough free space (pa_free) withing the prealloc space.
94  *
95  * If we can't allocate blocks via inode prealloc or/and locality group
96  * prealloc then we look at the buddy cache. The buddy cache is represented
97  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
98  * mapped to the buddy and bitmap information regarding different
99  * groups. The buddy information is attached to buddy cache inode so that
100  * we can access them through the page cache. The information regarding
101  * each group is loaded via ext4_mb_load_buddy.  The information involve
102  * block bitmap and buddy information. The information are stored in the
103  * inode as:
104  *
105  *  {                        page                        }
106  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
107  *
108  *
109  * one block each for bitmap and buddy information.  So for each group we
110  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
111  * blocksize) blocks.  So it can have information regarding groups_per_page
112  * which is blocks_per_page/2
113  *
114  * The buddy cache inode is not stored on disk. The inode is thrown
115  * away when the filesystem is unmounted.
116  *
117  * We look for count number of blocks in the buddy cache. If we were able
118  * to locate that many free blocks we return with additional information
119  * regarding rest of the contiguous physical block available
120  *
121  * Before allocating blocks via buddy cache we normalize the request
122  * blocks. This ensure we ask for more blocks that we needed. The extra
123  * blocks that we get after allocation is added to the respective prealloc
124  * list. In case of inode preallocation we follow a list of heuristics
125  * based on file size. This can be found in ext4_mb_normalize_request. If
126  * we are doing a group prealloc we try to normalize the request to
127  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
128  * 512 blocks. This can be tuned via
129  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
130  * terms of number of blocks. If we have mounted the file system with -O
131  * stripe=<value> option the group prealloc request is normalized to the
132  * stripe value (sbi->s_stripe)
133  *
134  * The regular allocator(using the buddy cache) supports few tunables.
135  *
136  * /sys/fs/ext4/<partition>/mb_min_to_scan
137  * /sys/fs/ext4/<partition>/mb_max_to_scan
138  * /sys/fs/ext4/<partition>/mb_order2_req
139  *
140  * The regular allocator uses buddy scan only if the request len is power of
141  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
142  * value of s_mb_order2_reqs can be tuned via
143  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
144  * stripe size (sbi->s_stripe), we try to search for contigous block in
145  * stripe size. This should result in better allocation on RAID setups. If
146  * not, we search in the specific group using bitmap for best extents. The
147  * tunable min_to_scan and max_to_scan control the behaviour here.
148  * min_to_scan indicate how long the mballoc __must__ look for a best
149  * extent and max_to_scan indicates how long the mballoc __can__ look for a
150  * best extent in the found extents. Searching for the blocks starts with
151  * the group specified as the goal value in allocation context via
152  * ac_g_ex. Each group is first checked based on the criteria whether it
153  * can used for allocation. ext4_mb_good_group explains how the groups are
154  * checked.
155  *
156  * Both the prealloc space are getting populated as above. So for the first
157  * request we will hit the buddy cache which will result in this prealloc
158  * space getting filled. The prealloc space is then later used for the
159  * subsequent request.
160  */
161 
162 /*
163  * mballoc operates on the following data:
164  *  - on-disk bitmap
165  *  - in-core buddy (actually includes buddy and bitmap)
166  *  - preallocation descriptors (PAs)
167  *
168  * there are two types of preallocations:
169  *  - inode
170  *    assiged to specific inode and can be used for this inode only.
171  *    it describes part of inode's space preallocated to specific
172  *    physical blocks. any block from that preallocated can be used
173  *    independent. the descriptor just tracks number of blocks left
174  *    unused. so, before taking some block from descriptor, one must
175  *    make sure corresponded logical block isn't allocated yet. this
176  *    also means that freeing any block within descriptor's range
177  *    must discard all preallocated blocks.
178  *  - locality group
179  *    assigned to specific locality group which does not translate to
180  *    permanent set of inodes: inode can join and leave group. space
181  *    from this type of preallocation can be used for any inode. thus
182  *    it's consumed from the beginning to the end.
183  *
184  * relation between them can be expressed as:
185  *    in-core buddy = on-disk bitmap + preallocation descriptors
186  *
187  * this mean blocks mballoc considers used are:
188  *  - allocated blocks (persistent)
189  *  - preallocated blocks (non-persistent)
190  *
191  * consistency in mballoc world means that at any time a block is either
192  * free or used in ALL structures. notice: "any time" should not be read
193  * literally -- time is discrete and delimited by locks.
194  *
195  *  to keep it simple, we don't use block numbers, instead we count number of
196  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
197  *
198  * all operations can be expressed as:
199  *  - init buddy:			buddy = on-disk + PAs
200  *  - new PA:				buddy += N; PA = N
201  *  - use inode PA:			on-disk += N; PA -= N
202  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
203  *  - use locality group PA		on-disk += N; PA -= N
204  *  - discard locality group PA		buddy -= PA; PA = 0
205  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
206  *        is used in real operation because we can't know actual used
207  *        bits from PA, only from on-disk bitmap
208  *
209  * if we follow this strict logic, then all operations above should be atomic.
210  * given some of them can block, we'd have to use something like semaphores
211  * killing performance on high-end SMP hardware. let's try to relax it using
212  * the following knowledge:
213  *  1) if buddy is referenced, it's already initialized
214  *  2) while block is used in buddy and the buddy is referenced,
215  *     nobody can re-allocate that block
216  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
217  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
218  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
219  *     block
220  *
221  * so, now we're building a concurrency table:
222  *  - init buddy vs.
223  *    - new PA
224  *      blocks for PA are allocated in the buddy, buddy must be referenced
225  *      until PA is linked to allocation group to avoid concurrent buddy init
226  *    - use inode PA
227  *      we need to make sure that either on-disk bitmap or PA has uptodate data
228  *      given (3) we care that PA-=N operation doesn't interfere with init
229  *    - discard inode PA
230  *      the simplest way would be to have buddy initialized by the discard
231  *    - use locality group PA
232  *      again PA-=N must be serialized with init
233  *    - discard locality group PA
234  *      the simplest way would be to have buddy initialized by the discard
235  *  - new PA vs.
236  *    - use inode PA
237  *      i_data_sem serializes them
238  *    - discard inode PA
239  *      discard process must wait until PA isn't used by another process
240  *    - use locality group PA
241  *      some mutex should serialize them
242  *    - discard locality group PA
243  *      discard process must wait until PA isn't used by another process
244  *  - use inode PA
245  *    - use inode PA
246  *      i_data_sem or another mutex should serializes them
247  *    - discard inode PA
248  *      discard process must wait until PA isn't used by another process
249  *    - use locality group PA
250  *      nothing wrong here -- they're different PAs covering different blocks
251  *    - discard locality group PA
252  *      discard process must wait until PA isn't used by another process
253  *
254  * now we're ready to make few consequences:
255  *  - PA is referenced and while it is no discard is possible
256  *  - PA is referenced until block isn't marked in on-disk bitmap
257  *  - PA changes only after on-disk bitmap
258  *  - discard must not compete with init. either init is done before
259  *    any discard or they're serialized somehow
260  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
261  *
262  * a special case when we've used PA to emptiness. no need to modify buddy
263  * in this case, but we should care about concurrent init
264  *
265  */
266 
267  /*
268  * Logic in few words:
269  *
270  *  - allocation:
271  *    load group
272  *    find blocks
273  *    mark bits in on-disk bitmap
274  *    release group
275  *
276  *  - use preallocation:
277  *    find proper PA (per-inode or group)
278  *    load group
279  *    mark bits in on-disk bitmap
280  *    release group
281  *    release PA
282  *
283  *  - free:
284  *    load group
285  *    mark bits in on-disk bitmap
286  *    release group
287  *
288  *  - discard preallocations in group:
289  *    mark PAs deleted
290  *    move them onto local list
291  *    load on-disk bitmap
292  *    load group
293  *    remove PA from object (inode or locality group)
294  *    mark free blocks in-core
295  *
296  *  - discard inode's preallocations:
297  */
298 
299 /*
300  * Locking rules
301  *
302  * Locks:
303  *  - bitlock on a group	(group)
304  *  - object (inode/locality)	(object)
305  *  - per-pa lock		(pa)
306  *
307  * Paths:
308  *  - new pa
309  *    object
310  *    group
311  *
312  *  - find and use pa:
313  *    pa
314  *
315  *  - release consumed pa:
316  *    pa
317  *    group
318  *    object
319  *
320  *  - generate in-core bitmap:
321  *    group
322  *        pa
323  *
324  *  - discard all for given object (inode, locality group):
325  *    object
326  *        pa
327  *    group
328  *
329  *  - discard all for given group:
330  *    group
331  *        pa
332  *    group
333  *        object
334  *
335  */
336 static struct kmem_cache *ext4_pspace_cachep;
337 static struct kmem_cache *ext4_ac_cachep;
338 static struct kmem_cache *ext4_free_ext_cachep;
339 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
340 					ext4_group_t group);
341 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
342 						ext4_group_t group);
343 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
344 
345 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
346 {
347 #if BITS_PER_LONG == 64
348 	*bit += ((unsigned long) addr & 7UL) << 3;
349 	addr = (void *) ((unsigned long) addr & ~7UL);
350 #elif BITS_PER_LONG == 32
351 	*bit += ((unsigned long) addr & 3UL) << 3;
352 	addr = (void *) ((unsigned long) addr & ~3UL);
353 #else
354 #error "how many bits you are?!"
355 #endif
356 	return addr;
357 }
358 
359 static inline int mb_test_bit(int bit, void *addr)
360 {
361 	/*
362 	 * ext4_test_bit on architecture like powerpc
363 	 * needs unsigned long aligned address
364 	 */
365 	addr = mb_correct_addr_and_bit(&bit, addr);
366 	return ext4_test_bit(bit, addr);
367 }
368 
369 static inline void mb_set_bit(int bit, void *addr)
370 {
371 	addr = mb_correct_addr_and_bit(&bit, addr);
372 	ext4_set_bit(bit, addr);
373 }
374 
375 static inline void mb_clear_bit(int bit, void *addr)
376 {
377 	addr = mb_correct_addr_and_bit(&bit, addr);
378 	ext4_clear_bit(bit, addr);
379 }
380 
381 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
382 {
383 	int fix = 0, ret, tmpmax;
384 	addr = mb_correct_addr_and_bit(&fix, addr);
385 	tmpmax = max + fix;
386 	start += fix;
387 
388 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
389 	if (ret > max)
390 		return max;
391 	return ret;
392 }
393 
394 static inline int mb_find_next_bit(void *addr, int max, int start)
395 {
396 	int fix = 0, ret, tmpmax;
397 	addr = mb_correct_addr_and_bit(&fix, addr);
398 	tmpmax = max + fix;
399 	start += fix;
400 
401 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
402 	if (ret > max)
403 		return max;
404 	return ret;
405 }
406 
407 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
408 {
409 	char *bb;
410 
411 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
412 	BUG_ON(max == NULL);
413 
414 	if (order > e4b->bd_blkbits + 1) {
415 		*max = 0;
416 		return NULL;
417 	}
418 
419 	/* at order 0 we see each particular block */
420 	*max = 1 << (e4b->bd_blkbits + 3);
421 	if (order == 0)
422 		return EXT4_MB_BITMAP(e4b);
423 
424 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
425 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
426 
427 	return bb;
428 }
429 
430 #ifdef DOUBLE_CHECK
431 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
432 			   int first, int count)
433 {
434 	int i;
435 	struct super_block *sb = e4b->bd_sb;
436 
437 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
438 		return;
439 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
440 	for (i = 0; i < count; i++) {
441 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
442 			ext4_fsblk_t blocknr;
443 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
444 			blocknr += first + i;
445 			blocknr +=
446 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
447 			ext4_grp_locked_error(sb, e4b->bd_group,
448 				   __func__, "double-free of inode"
449 				   " %lu's block %llu(bit %u in group %u)",
450 				   inode ? inode->i_ino : 0, blocknr,
451 				   first + i, e4b->bd_group);
452 		}
453 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
454 	}
455 }
456 
457 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
458 {
459 	int i;
460 
461 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
462 		return;
463 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
464 	for (i = 0; i < count; i++) {
465 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
466 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
467 	}
468 }
469 
470 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
471 {
472 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
473 		unsigned char *b1, *b2;
474 		int i;
475 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
476 		b2 = (unsigned char *) bitmap;
477 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
478 			if (b1[i] != b2[i]) {
479 				printk(KERN_ERR "corruption in group %u "
480 				       "at byte %u(%u): %x in copy != %x "
481 				       "on disk/prealloc\n",
482 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
483 				BUG();
484 			}
485 		}
486 	}
487 }
488 
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491 				struct ext4_buddy *e4b, int first, int count)
492 {
493 	return;
494 }
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496 						int first, int count)
497 {
498 	return;
499 }
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
501 {
502 	return;
503 }
504 #endif
505 
506 #ifdef AGGRESSIVE_CHECK
507 
508 #define MB_CHECK_ASSERT(assert)						\
509 do {									\
510 	if (!(assert)) {						\
511 		printk(KERN_EMERG					\
512 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
513 			function, file, line, # assert);		\
514 		BUG();							\
515 	}								\
516 } while (0)
517 
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519 				const char *function, int line)
520 {
521 	struct super_block *sb = e4b->bd_sb;
522 	int order = e4b->bd_blkbits + 1;
523 	int max;
524 	int max2;
525 	int i;
526 	int j;
527 	int k;
528 	int count;
529 	struct ext4_group_info *grp;
530 	int fragments = 0;
531 	int fstart;
532 	struct list_head *cur;
533 	void *buddy;
534 	void *buddy2;
535 
536 	{
537 		static int mb_check_counter;
538 		if (mb_check_counter++ % 100 != 0)
539 			return 0;
540 	}
541 
542 	while (order > 1) {
543 		buddy = mb_find_buddy(e4b, order, &max);
544 		MB_CHECK_ASSERT(buddy);
545 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
546 		MB_CHECK_ASSERT(buddy2);
547 		MB_CHECK_ASSERT(buddy != buddy2);
548 		MB_CHECK_ASSERT(max * 2 == max2);
549 
550 		count = 0;
551 		for (i = 0; i < max; i++) {
552 
553 			if (mb_test_bit(i, buddy)) {
554 				/* only single bit in buddy2 may be 1 */
555 				if (!mb_test_bit(i << 1, buddy2)) {
556 					MB_CHECK_ASSERT(
557 						mb_test_bit((i<<1)+1, buddy2));
558 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
559 					MB_CHECK_ASSERT(
560 						mb_test_bit(i << 1, buddy2));
561 				}
562 				continue;
563 			}
564 
565 			/* both bits in buddy2 must be 0 */
566 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
567 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
568 
569 			for (j = 0; j < (1 << order); j++) {
570 				k = (i * (1 << order)) + j;
571 				MB_CHECK_ASSERT(
572 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
573 			}
574 			count++;
575 		}
576 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
577 		order--;
578 	}
579 
580 	fstart = -1;
581 	buddy = mb_find_buddy(e4b, 0, &max);
582 	for (i = 0; i < max; i++) {
583 		if (!mb_test_bit(i, buddy)) {
584 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
585 			if (fstart == -1) {
586 				fragments++;
587 				fstart = i;
588 			}
589 			continue;
590 		}
591 		fstart = -1;
592 		/* check used bits only */
593 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
594 			buddy2 = mb_find_buddy(e4b, j, &max2);
595 			k = i >> j;
596 			MB_CHECK_ASSERT(k < max2);
597 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
598 		}
599 	}
600 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
601 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
602 
603 	grp = ext4_get_group_info(sb, e4b->bd_group);
604 	buddy = mb_find_buddy(e4b, 0, &max);
605 	list_for_each(cur, &grp->bb_prealloc_list) {
606 		ext4_group_t groupnr;
607 		struct ext4_prealloc_space *pa;
608 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
609 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
610 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
611 		for (i = 0; i < pa->pa_len; i++)
612 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
613 	}
614 	return 0;
615 }
616 #undef MB_CHECK_ASSERT
617 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
618 					__FILE__, __func__, __LINE__)
619 #else
620 #define mb_check_buddy(e4b)
621 #endif
622 
623 /* FIXME!! need more doc */
624 static void ext4_mb_mark_free_simple(struct super_block *sb,
625 				void *buddy, unsigned first, int len,
626 					struct ext4_group_info *grp)
627 {
628 	struct ext4_sb_info *sbi = EXT4_SB(sb);
629 	unsigned short min;
630 	unsigned short max;
631 	unsigned short chunk;
632 	unsigned short border;
633 
634 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
635 
636 	border = 2 << sb->s_blocksize_bits;
637 
638 	while (len > 0) {
639 		/* find how many blocks can be covered since this position */
640 		max = ffs(first | border) - 1;
641 
642 		/* find how many blocks of power 2 we need to mark */
643 		min = fls(len) - 1;
644 
645 		if (max < min)
646 			min = max;
647 		chunk = 1 << min;
648 
649 		/* mark multiblock chunks only */
650 		grp->bb_counters[min]++;
651 		if (min > 0)
652 			mb_clear_bit(first >> min,
653 				     buddy + sbi->s_mb_offsets[min]);
654 
655 		len -= chunk;
656 		first += chunk;
657 	}
658 }
659 
660 static noinline_for_stack
661 void ext4_mb_generate_buddy(struct super_block *sb,
662 				void *buddy, void *bitmap, ext4_group_t group)
663 {
664 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
665 	unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
666 	unsigned short i = 0;
667 	unsigned short first;
668 	unsigned short len;
669 	unsigned free = 0;
670 	unsigned fragments = 0;
671 	unsigned long long period = get_cycles();
672 
673 	/* initialize buddy from bitmap which is aggregation
674 	 * of on-disk bitmap and preallocations */
675 	i = mb_find_next_zero_bit(bitmap, max, 0);
676 	grp->bb_first_free = i;
677 	while (i < max) {
678 		fragments++;
679 		first = i;
680 		i = mb_find_next_bit(bitmap, max, i);
681 		len = i - first;
682 		free += len;
683 		if (len > 1)
684 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
685 		else
686 			grp->bb_counters[0]++;
687 		if (i < max)
688 			i = mb_find_next_zero_bit(bitmap, max, i);
689 	}
690 	grp->bb_fragments = fragments;
691 
692 	if (free != grp->bb_free) {
693 		ext4_grp_locked_error(sb, group,  __func__,
694 			"EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
695 			group, free, grp->bb_free);
696 		/*
697 		 * If we intent to continue, we consider group descritor
698 		 * corrupt and update bb_free using bitmap value
699 		 */
700 		grp->bb_free = free;
701 	}
702 
703 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
704 
705 	period = get_cycles() - period;
706 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
707 	EXT4_SB(sb)->s_mb_buddies_generated++;
708 	EXT4_SB(sb)->s_mb_generation_time += period;
709 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
710 }
711 
712 /* The buddy information is attached the buddy cache inode
713  * for convenience. The information regarding each group
714  * is loaded via ext4_mb_load_buddy. The information involve
715  * block bitmap and buddy information. The information are
716  * stored in the inode as
717  *
718  * {                        page                        }
719  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
720  *
721  *
722  * one block each for bitmap and buddy information.
723  * So for each group we take up 2 blocks. A page can
724  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
725  * So it can have information regarding groups_per_page which
726  * is blocks_per_page/2
727  */
728 
729 static int ext4_mb_init_cache(struct page *page, char *incore)
730 {
731 	ext4_group_t ngroups;
732 	int blocksize;
733 	int blocks_per_page;
734 	int groups_per_page;
735 	int err = 0;
736 	int i;
737 	ext4_group_t first_group;
738 	int first_block;
739 	struct super_block *sb;
740 	struct buffer_head *bhs;
741 	struct buffer_head **bh;
742 	struct inode *inode;
743 	char *data;
744 	char *bitmap;
745 
746 	mb_debug("init page %lu\n", page->index);
747 
748 	inode = page->mapping->host;
749 	sb = inode->i_sb;
750 	ngroups = ext4_get_groups_count(sb);
751 	blocksize = 1 << inode->i_blkbits;
752 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
753 
754 	groups_per_page = blocks_per_page >> 1;
755 	if (groups_per_page == 0)
756 		groups_per_page = 1;
757 
758 	/* allocate buffer_heads to read bitmaps */
759 	if (groups_per_page > 1) {
760 		err = -ENOMEM;
761 		i = sizeof(struct buffer_head *) * groups_per_page;
762 		bh = kzalloc(i, GFP_NOFS);
763 		if (bh == NULL)
764 			goto out;
765 	} else
766 		bh = &bhs;
767 
768 	first_group = page->index * blocks_per_page / 2;
769 
770 	/* read all groups the page covers into the cache */
771 	for (i = 0; i < groups_per_page; i++) {
772 		struct ext4_group_desc *desc;
773 
774 		if (first_group + i >= ngroups)
775 			break;
776 
777 		err = -EIO;
778 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
779 		if (desc == NULL)
780 			goto out;
781 
782 		err = -ENOMEM;
783 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
784 		if (bh[i] == NULL)
785 			goto out;
786 
787 		if (bitmap_uptodate(bh[i]))
788 			continue;
789 
790 		lock_buffer(bh[i]);
791 		if (bitmap_uptodate(bh[i])) {
792 			unlock_buffer(bh[i]);
793 			continue;
794 		}
795 		ext4_lock_group(sb, first_group + i);
796 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
797 			ext4_init_block_bitmap(sb, bh[i],
798 						first_group + i, desc);
799 			set_bitmap_uptodate(bh[i]);
800 			set_buffer_uptodate(bh[i]);
801 			ext4_unlock_group(sb, first_group + i);
802 			unlock_buffer(bh[i]);
803 			continue;
804 		}
805 		ext4_unlock_group(sb, first_group + i);
806 		if (buffer_uptodate(bh[i])) {
807 			/*
808 			 * if not uninit if bh is uptodate,
809 			 * bitmap is also uptodate
810 			 */
811 			set_bitmap_uptodate(bh[i]);
812 			unlock_buffer(bh[i]);
813 			continue;
814 		}
815 		get_bh(bh[i]);
816 		/*
817 		 * submit the buffer_head for read. We can
818 		 * safely mark the bitmap as uptodate now.
819 		 * We do it here so the bitmap uptodate bit
820 		 * get set with buffer lock held.
821 		 */
822 		set_bitmap_uptodate(bh[i]);
823 		bh[i]->b_end_io = end_buffer_read_sync;
824 		submit_bh(READ, bh[i]);
825 		mb_debug("read bitmap for group %u\n", first_group + i);
826 	}
827 
828 	/* wait for I/O completion */
829 	for (i = 0; i < groups_per_page && bh[i]; i++)
830 		wait_on_buffer(bh[i]);
831 
832 	err = -EIO;
833 	for (i = 0; i < groups_per_page && bh[i]; i++)
834 		if (!buffer_uptodate(bh[i]))
835 			goto out;
836 
837 	err = 0;
838 	first_block = page->index * blocks_per_page;
839 	/* init the page  */
840 	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
841 	for (i = 0; i < blocks_per_page; i++) {
842 		int group;
843 		struct ext4_group_info *grinfo;
844 
845 		group = (first_block + i) >> 1;
846 		if (group >= ngroups)
847 			break;
848 
849 		/*
850 		 * data carry information regarding this
851 		 * particular group in the format specified
852 		 * above
853 		 *
854 		 */
855 		data = page_address(page) + (i * blocksize);
856 		bitmap = bh[group - first_group]->b_data;
857 
858 		/*
859 		 * We place the buddy block and bitmap block
860 		 * close together
861 		 */
862 		if ((first_block + i) & 1) {
863 			/* this is block of buddy */
864 			BUG_ON(incore == NULL);
865 			mb_debug("put buddy for group %u in page %lu/%x\n",
866 				group, page->index, i * blocksize);
867 			grinfo = ext4_get_group_info(sb, group);
868 			grinfo->bb_fragments = 0;
869 			memset(grinfo->bb_counters, 0,
870 			       sizeof(unsigned short)*(sb->s_blocksize_bits+2));
871 			/*
872 			 * incore got set to the group block bitmap below
873 			 */
874 			ext4_lock_group(sb, group);
875 			ext4_mb_generate_buddy(sb, data, incore, group);
876 			ext4_unlock_group(sb, group);
877 			incore = NULL;
878 		} else {
879 			/* this is block of bitmap */
880 			BUG_ON(incore != NULL);
881 			mb_debug("put bitmap for group %u in page %lu/%x\n",
882 				group, page->index, i * blocksize);
883 
884 			/* see comments in ext4_mb_put_pa() */
885 			ext4_lock_group(sb, group);
886 			memcpy(data, bitmap, blocksize);
887 
888 			/* mark all preallocated blks used in in-core bitmap */
889 			ext4_mb_generate_from_pa(sb, data, group);
890 			ext4_mb_generate_from_freelist(sb, data, group);
891 			ext4_unlock_group(sb, group);
892 
893 			/* set incore so that the buddy information can be
894 			 * generated using this
895 			 */
896 			incore = data;
897 		}
898 	}
899 	SetPageUptodate(page);
900 
901 out:
902 	if (bh) {
903 		for (i = 0; i < groups_per_page && bh[i]; i++)
904 			brelse(bh[i]);
905 		if (bh != &bhs)
906 			kfree(bh);
907 	}
908 	return err;
909 }
910 
911 static noinline_for_stack int
912 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
913 					struct ext4_buddy *e4b)
914 {
915 	int blocks_per_page;
916 	int block;
917 	int pnum;
918 	int poff;
919 	struct page *page;
920 	int ret;
921 	struct ext4_group_info *grp;
922 	struct ext4_sb_info *sbi = EXT4_SB(sb);
923 	struct inode *inode = sbi->s_buddy_cache;
924 
925 	mb_debug("load group %u\n", group);
926 
927 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
928 	grp = ext4_get_group_info(sb, group);
929 
930 	e4b->bd_blkbits = sb->s_blocksize_bits;
931 	e4b->bd_info = ext4_get_group_info(sb, group);
932 	e4b->bd_sb = sb;
933 	e4b->bd_group = group;
934 	e4b->bd_buddy_page = NULL;
935 	e4b->bd_bitmap_page = NULL;
936 	e4b->alloc_semp = &grp->alloc_sem;
937 
938 	/* Take the read lock on the group alloc
939 	 * sem. This would make sure a parallel
940 	 * ext4_mb_init_group happening on other
941 	 * groups mapped by the page is blocked
942 	 * till we are done with allocation
943 	 */
944 	down_read(e4b->alloc_semp);
945 
946 	/*
947 	 * the buddy cache inode stores the block bitmap
948 	 * and buddy information in consecutive blocks.
949 	 * So for each group we need two blocks.
950 	 */
951 	block = group * 2;
952 	pnum = block / blocks_per_page;
953 	poff = block % blocks_per_page;
954 
955 	/* we could use find_or_create_page(), but it locks page
956 	 * what we'd like to avoid in fast path ... */
957 	page = find_get_page(inode->i_mapping, pnum);
958 	if (page == NULL || !PageUptodate(page)) {
959 		if (page)
960 			/*
961 			 * drop the page reference and try
962 			 * to get the page with lock. If we
963 			 * are not uptodate that implies
964 			 * somebody just created the page but
965 			 * is yet to initialize the same. So
966 			 * wait for it to initialize.
967 			 */
968 			page_cache_release(page);
969 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
970 		if (page) {
971 			BUG_ON(page->mapping != inode->i_mapping);
972 			if (!PageUptodate(page)) {
973 				ret = ext4_mb_init_cache(page, NULL);
974 				if (ret) {
975 					unlock_page(page);
976 					goto err;
977 				}
978 				mb_cmp_bitmaps(e4b, page_address(page) +
979 					       (poff * sb->s_blocksize));
980 			}
981 			unlock_page(page);
982 		}
983 	}
984 	if (page == NULL || !PageUptodate(page)) {
985 		ret = -EIO;
986 		goto err;
987 	}
988 	e4b->bd_bitmap_page = page;
989 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
990 	mark_page_accessed(page);
991 
992 	block++;
993 	pnum = block / blocks_per_page;
994 	poff = block % blocks_per_page;
995 
996 	page = find_get_page(inode->i_mapping, pnum);
997 	if (page == NULL || !PageUptodate(page)) {
998 		if (page)
999 			page_cache_release(page);
1000 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1001 		if (page) {
1002 			BUG_ON(page->mapping != inode->i_mapping);
1003 			if (!PageUptodate(page)) {
1004 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1005 				if (ret) {
1006 					unlock_page(page);
1007 					goto err;
1008 				}
1009 			}
1010 			unlock_page(page);
1011 		}
1012 	}
1013 	if (page == NULL || !PageUptodate(page)) {
1014 		ret = -EIO;
1015 		goto err;
1016 	}
1017 	e4b->bd_buddy_page = page;
1018 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1019 	mark_page_accessed(page);
1020 
1021 	BUG_ON(e4b->bd_bitmap_page == NULL);
1022 	BUG_ON(e4b->bd_buddy_page == NULL);
1023 
1024 	return 0;
1025 
1026 err:
1027 	if (e4b->bd_bitmap_page)
1028 		page_cache_release(e4b->bd_bitmap_page);
1029 	if (e4b->bd_buddy_page)
1030 		page_cache_release(e4b->bd_buddy_page);
1031 	e4b->bd_buddy = NULL;
1032 	e4b->bd_bitmap = NULL;
1033 
1034 	/* Done with the buddy cache */
1035 	up_read(e4b->alloc_semp);
1036 	return ret;
1037 }
1038 
1039 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1040 {
1041 	if (e4b->bd_bitmap_page)
1042 		page_cache_release(e4b->bd_bitmap_page);
1043 	if (e4b->bd_buddy_page)
1044 		page_cache_release(e4b->bd_buddy_page);
1045 	/* Done with the buddy cache */
1046 	if (e4b->alloc_semp)
1047 		up_read(e4b->alloc_semp);
1048 }
1049 
1050 
1051 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1052 {
1053 	int order = 1;
1054 	void *bb;
1055 
1056 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1057 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1058 
1059 	bb = EXT4_MB_BUDDY(e4b);
1060 	while (order <= e4b->bd_blkbits + 1) {
1061 		block = block >> 1;
1062 		if (!mb_test_bit(block, bb)) {
1063 			/* this block is part of buddy of order 'order' */
1064 			return order;
1065 		}
1066 		bb += 1 << (e4b->bd_blkbits - order);
1067 		order++;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static void mb_clear_bits(void *bm, int cur, int len)
1073 {
1074 	__u32 *addr;
1075 
1076 	len = cur + len;
1077 	while (cur < len) {
1078 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1079 			/* fast path: clear whole word at once */
1080 			addr = bm + (cur >> 3);
1081 			*addr = 0;
1082 			cur += 32;
1083 			continue;
1084 		}
1085 		mb_clear_bit(cur, bm);
1086 		cur++;
1087 	}
1088 }
1089 
1090 static void mb_set_bits(void *bm, int cur, int len)
1091 {
1092 	__u32 *addr;
1093 
1094 	len = cur + len;
1095 	while (cur < len) {
1096 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1097 			/* fast path: set whole word at once */
1098 			addr = bm + (cur >> 3);
1099 			*addr = 0xffffffff;
1100 			cur += 32;
1101 			continue;
1102 		}
1103 		mb_set_bit(cur, bm);
1104 		cur++;
1105 	}
1106 }
1107 
1108 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1109 			  int first, int count)
1110 {
1111 	int block = 0;
1112 	int max = 0;
1113 	int order;
1114 	void *buddy;
1115 	void *buddy2;
1116 	struct super_block *sb = e4b->bd_sb;
1117 
1118 	BUG_ON(first + count > (sb->s_blocksize << 3));
1119 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1120 	mb_check_buddy(e4b);
1121 	mb_free_blocks_double(inode, e4b, first, count);
1122 
1123 	e4b->bd_info->bb_free += count;
1124 	if (first < e4b->bd_info->bb_first_free)
1125 		e4b->bd_info->bb_first_free = first;
1126 
1127 	/* let's maintain fragments counter */
1128 	if (first != 0)
1129 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1130 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1131 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1132 	if (block && max)
1133 		e4b->bd_info->bb_fragments--;
1134 	else if (!block && !max)
1135 		e4b->bd_info->bb_fragments++;
1136 
1137 	/* let's maintain buddy itself */
1138 	while (count-- > 0) {
1139 		block = first++;
1140 		order = 0;
1141 
1142 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1143 			ext4_fsblk_t blocknr;
1144 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1145 			blocknr += block;
1146 			blocknr +=
1147 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1148 			ext4_grp_locked_error(sb, e4b->bd_group,
1149 				   __func__, "double-free of inode"
1150 				   " %lu's block %llu(bit %u in group %u)",
1151 				   inode ? inode->i_ino : 0, blocknr, block,
1152 				   e4b->bd_group);
1153 		}
1154 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1155 		e4b->bd_info->bb_counters[order]++;
1156 
1157 		/* start of the buddy */
1158 		buddy = mb_find_buddy(e4b, order, &max);
1159 
1160 		do {
1161 			block &= ~1UL;
1162 			if (mb_test_bit(block, buddy) ||
1163 					mb_test_bit(block + 1, buddy))
1164 				break;
1165 
1166 			/* both the buddies are free, try to coalesce them */
1167 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1168 
1169 			if (!buddy2)
1170 				break;
1171 
1172 			if (order > 0) {
1173 				/* for special purposes, we don't set
1174 				 * free bits in bitmap */
1175 				mb_set_bit(block, buddy);
1176 				mb_set_bit(block + 1, buddy);
1177 			}
1178 			e4b->bd_info->bb_counters[order]--;
1179 			e4b->bd_info->bb_counters[order]--;
1180 
1181 			block = block >> 1;
1182 			order++;
1183 			e4b->bd_info->bb_counters[order]++;
1184 
1185 			mb_clear_bit(block, buddy2);
1186 			buddy = buddy2;
1187 		} while (1);
1188 	}
1189 	mb_check_buddy(e4b);
1190 }
1191 
1192 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1193 				int needed, struct ext4_free_extent *ex)
1194 {
1195 	int next = block;
1196 	int max;
1197 	int ord;
1198 	void *buddy;
1199 
1200 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1201 	BUG_ON(ex == NULL);
1202 
1203 	buddy = mb_find_buddy(e4b, order, &max);
1204 	BUG_ON(buddy == NULL);
1205 	BUG_ON(block >= max);
1206 	if (mb_test_bit(block, buddy)) {
1207 		ex->fe_len = 0;
1208 		ex->fe_start = 0;
1209 		ex->fe_group = 0;
1210 		return 0;
1211 	}
1212 
1213 	/* FIXME dorp order completely ? */
1214 	if (likely(order == 0)) {
1215 		/* find actual order */
1216 		order = mb_find_order_for_block(e4b, block);
1217 		block = block >> order;
1218 	}
1219 
1220 	ex->fe_len = 1 << order;
1221 	ex->fe_start = block << order;
1222 	ex->fe_group = e4b->bd_group;
1223 
1224 	/* calc difference from given start */
1225 	next = next - ex->fe_start;
1226 	ex->fe_len -= next;
1227 	ex->fe_start += next;
1228 
1229 	while (needed > ex->fe_len &&
1230 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1231 
1232 		if (block + 1 >= max)
1233 			break;
1234 
1235 		next = (block + 1) * (1 << order);
1236 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1237 			break;
1238 
1239 		ord = mb_find_order_for_block(e4b, next);
1240 
1241 		order = ord;
1242 		block = next >> order;
1243 		ex->fe_len += 1 << order;
1244 	}
1245 
1246 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1247 	return ex->fe_len;
1248 }
1249 
1250 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1251 {
1252 	int ord;
1253 	int mlen = 0;
1254 	int max = 0;
1255 	int cur;
1256 	int start = ex->fe_start;
1257 	int len = ex->fe_len;
1258 	unsigned ret = 0;
1259 	int len0 = len;
1260 	void *buddy;
1261 
1262 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1263 	BUG_ON(e4b->bd_group != ex->fe_group);
1264 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1265 	mb_check_buddy(e4b);
1266 	mb_mark_used_double(e4b, start, len);
1267 
1268 	e4b->bd_info->bb_free -= len;
1269 	if (e4b->bd_info->bb_first_free == start)
1270 		e4b->bd_info->bb_first_free += len;
1271 
1272 	/* let's maintain fragments counter */
1273 	if (start != 0)
1274 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1275 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1276 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1277 	if (mlen && max)
1278 		e4b->bd_info->bb_fragments++;
1279 	else if (!mlen && !max)
1280 		e4b->bd_info->bb_fragments--;
1281 
1282 	/* let's maintain buddy itself */
1283 	while (len) {
1284 		ord = mb_find_order_for_block(e4b, start);
1285 
1286 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1287 			/* the whole chunk may be allocated at once! */
1288 			mlen = 1 << ord;
1289 			buddy = mb_find_buddy(e4b, ord, &max);
1290 			BUG_ON((start >> ord) >= max);
1291 			mb_set_bit(start >> ord, buddy);
1292 			e4b->bd_info->bb_counters[ord]--;
1293 			start += mlen;
1294 			len -= mlen;
1295 			BUG_ON(len < 0);
1296 			continue;
1297 		}
1298 
1299 		/* store for history */
1300 		if (ret == 0)
1301 			ret = len | (ord << 16);
1302 
1303 		/* we have to split large buddy */
1304 		BUG_ON(ord <= 0);
1305 		buddy = mb_find_buddy(e4b, ord, &max);
1306 		mb_set_bit(start >> ord, buddy);
1307 		e4b->bd_info->bb_counters[ord]--;
1308 
1309 		ord--;
1310 		cur = (start >> ord) & ~1U;
1311 		buddy = mb_find_buddy(e4b, ord, &max);
1312 		mb_clear_bit(cur, buddy);
1313 		mb_clear_bit(cur + 1, buddy);
1314 		e4b->bd_info->bb_counters[ord]++;
1315 		e4b->bd_info->bb_counters[ord]++;
1316 	}
1317 
1318 	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1319 	mb_check_buddy(e4b);
1320 
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Must be called under group lock!
1326  */
1327 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1328 					struct ext4_buddy *e4b)
1329 {
1330 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1331 	int ret;
1332 
1333 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1334 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1335 
1336 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1337 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1338 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1339 
1340 	/* preallocation can change ac_b_ex, thus we store actually
1341 	 * allocated blocks for history */
1342 	ac->ac_f_ex = ac->ac_b_ex;
1343 
1344 	ac->ac_status = AC_STATUS_FOUND;
1345 	ac->ac_tail = ret & 0xffff;
1346 	ac->ac_buddy = ret >> 16;
1347 
1348 	/*
1349 	 * take the page reference. We want the page to be pinned
1350 	 * so that we don't get a ext4_mb_init_cache_call for this
1351 	 * group until we update the bitmap. That would mean we
1352 	 * double allocate blocks. The reference is dropped
1353 	 * in ext4_mb_release_context
1354 	 */
1355 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1356 	get_page(ac->ac_bitmap_page);
1357 	ac->ac_buddy_page = e4b->bd_buddy_page;
1358 	get_page(ac->ac_buddy_page);
1359 	/* on allocation we use ac to track the held semaphore */
1360 	ac->alloc_semp =  e4b->alloc_semp;
1361 	e4b->alloc_semp = NULL;
1362 	/* store last allocated for subsequent stream allocation */
1363 	if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1364 		spin_lock(&sbi->s_md_lock);
1365 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1366 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1367 		spin_unlock(&sbi->s_md_lock);
1368 	}
1369 }
1370 
1371 /*
1372  * regular allocator, for general purposes allocation
1373  */
1374 
1375 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1376 					struct ext4_buddy *e4b,
1377 					int finish_group)
1378 {
1379 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1380 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1381 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1382 	struct ext4_free_extent ex;
1383 	int max;
1384 
1385 	if (ac->ac_status == AC_STATUS_FOUND)
1386 		return;
1387 	/*
1388 	 * We don't want to scan for a whole year
1389 	 */
1390 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1391 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1392 		ac->ac_status = AC_STATUS_BREAK;
1393 		return;
1394 	}
1395 
1396 	/*
1397 	 * Haven't found good chunk so far, let's continue
1398 	 */
1399 	if (bex->fe_len < gex->fe_len)
1400 		return;
1401 
1402 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1403 			&& bex->fe_group == e4b->bd_group) {
1404 		/* recheck chunk's availability - we don't know
1405 		 * when it was found (within this lock-unlock
1406 		 * period or not) */
1407 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1408 		if (max >= gex->fe_len) {
1409 			ext4_mb_use_best_found(ac, e4b);
1410 			return;
1411 		}
1412 	}
1413 }
1414 
1415 /*
1416  * The routine checks whether found extent is good enough. If it is,
1417  * then the extent gets marked used and flag is set to the context
1418  * to stop scanning. Otherwise, the extent is compared with the
1419  * previous found extent and if new one is better, then it's stored
1420  * in the context. Later, the best found extent will be used, if
1421  * mballoc can't find good enough extent.
1422  *
1423  * FIXME: real allocation policy is to be designed yet!
1424  */
1425 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1426 					struct ext4_free_extent *ex,
1427 					struct ext4_buddy *e4b)
1428 {
1429 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1430 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1431 
1432 	BUG_ON(ex->fe_len <= 0);
1433 	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1434 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1435 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1436 
1437 	ac->ac_found++;
1438 
1439 	/*
1440 	 * The special case - take what you catch first
1441 	 */
1442 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1443 		*bex = *ex;
1444 		ext4_mb_use_best_found(ac, e4b);
1445 		return;
1446 	}
1447 
1448 	/*
1449 	 * Let's check whether the chuck is good enough
1450 	 */
1451 	if (ex->fe_len == gex->fe_len) {
1452 		*bex = *ex;
1453 		ext4_mb_use_best_found(ac, e4b);
1454 		return;
1455 	}
1456 
1457 	/*
1458 	 * If this is first found extent, just store it in the context
1459 	 */
1460 	if (bex->fe_len == 0) {
1461 		*bex = *ex;
1462 		return;
1463 	}
1464 
1465 	/*
1466 	 * If new found extent is better, store it in the context
1467 	 */
1468 	if (bex->fe_len < gex->fe_len) {
1469 		/* if the request isn't satisfied, any found extent
1470 		 * larger than previous best one is better */
1471 		if (ex->fe_len > bex->fe_len)
1472 			*bex = *ex;
1473 	} else if (ex->fe_len > gex->fe_len) {
1474 		/* if the request is satisfied, then we try to find
1475 		 * an extent that still satisfy the request, but is
1476 		 * smaller than previous one */
1477 		if (ex->fe_len < bex->fe_len)
1478 			*bex = *ex;
1479 	}
1480 
1481 	ext4_mb_check_limits(ac, e4b, 0);
1482 }
1483 
1484 static noinline_for_stack
1485 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1486 					struct ext4_buddy *e4b)
1487 {
1488 	struct ext4_free_extent ex = ac->ac_b_ex;
1489 	ext4_group_t group = ex.fe_group;
1490 	int max;
1491 	int err;
1492 
1493 	BUG_ON(ex.fe_len <= 0);
1494 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1495 	if (err)
1496 		return err;
1497 
1498 	ext4_lock_group(ac->ac_sb, group);
1499 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1500 
1501 	if (max > 0) {
1502 		ac->ac_b_ex = ex;
1503 		ext4_mb_use_best_found(ac, e4b);
1504 	}
1505 
1506 	ext4_unlock_group(ac->ac_sb, group);
1507 	ext4_mb_release_desc(e4b);
1508 
1509 	return 0;
1510 }
1511 
1512 static noinline_for_stack
1513 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1514 				struct ext4_buddy *e4b)
1515 {
1516 	ext4_group_t group = ac->ac_g_ex.fe_group;
1517 	int max;
1518 	int err;
1519 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1520 	struct ext4_super_block *es = sbi->s_es;
1521 	struct ext4_free_extent ex;
1522 
1523 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1524 		return 0;
1525 
1526 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1527 	if (err)
1528 		return err;
1529 
1530 	ext4_lock_group(ac->ac_sb, group);
1531 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1532 			     ac->ac_g_ex.fe_len, &ex);
1533 
1534 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1535 		ext4_fsblk_t start;
1536 
1537 		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1538 			ex.fe_start + le32_to_cpu(es->s_first_data_block);
1539 		/* use do_div to get remainder (would be 64-bit modulo) */
1540 		if (do_div(start, sbi->s_stripe) == 0) {
1541 			ac->ac_found++;
1542 			ac->ac_b_ex = ex;
1543 			ext4_mb_use_best_found(ac, e4b);
1544 		}
1545 	} else if (max >= ac->ac_g_ex.fe_len) {
1546 		BUG_ON(ex.fe_len <= 0);
1547 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1548 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1549 		ac->ac_found++;
1550 		ac->ac_b_ex = ex;
1551 		ext4_mb_use_best_found(ac, e4b);
1552 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1553 		/* Sometimes, caller may want to merge even small
1554 		 * number of blocks to an existing extent */
1555 		BUG_ON(ex.fe_len <= 0);
1556 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1557 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1558 		ac->ac_found++;
1559 		ac->ac_b_ex = ex;
1560 		ext4_mb_use_best_found(ac, e4b);
1561 	}
1562 	ext4_unlock_group(ac->ac_sb, group);
1563 	ext4_mb_release_desc(e4b);
1564 
1565 	return 0;
1566 }
1567 
1568 /*
1569  * The routine scans buddy structures (not bitmap!) from given order
1570  * to max order and tries to find big enough chunk to satisfy the req
1571  */
1572 static noinline_for_stack
1573 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1574 					struct ext4_buddy *e4b)
1575 {
1576 	struct super_block *sb = ac->ac_sb;
1577 	struct ext4_group_info *grp = e4b->bd_info;
1578 	void *buddy;
1579 	int i;
1580 	int k;
1581 	int max;
1582 
1583 	BUG_ON(ac->ac_2order <= 0);
1584 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1585 		if (grp->bb_counters[i] == 0)
1586 			continue;
1587 
1588 		buddy = mb_find_buddy(e4b, i, &max);
1589 		BUG_ON(buddy == NULL);
1590 
1591 		k = mb_find_next_zero_bit(buddy, max, 0);
1592 		BUG_ON(k >= max);
1593 
1594 		ac->ac_found++;
1595 
1596 		ac->ac_b_ex.fe_len = 1 << i;
1597 		ac->ac_b_ex.fe_start = k << i;
1598 		ac->ac_b_ex.fe_group = e4b->bd_group;
1599 
1600 		ext4_mb_use_best_found(ac, e4b);
1601 
1602 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1603 
1604 		if (EXT4_SB(sb)->s_mb_stats)
1605 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1606 
1607 		break;
1608 	}
1609 }
1610 
1611 /*
1612  * The routine scans the group and measures all found extents.
1613  * In order to optimize scanning, caller must pass number of
1614  * free blocks in the group, so the routine can know upper limit.
1615  */
1616 static noinline_for_stack
1617 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1618 					struct ext4_buddy *e4b)
1619 {
1620 	struct super_block *sb = ac->ac_sb;
1621 	void *bitmap = EXT4_MB_BITMAP(e4b);
1622 	struct ext4_free_extent ex;
1623 	int i;
1624 	int free;
1625 
1626 	free = e4b->bd_info->bb_free;
1627 	BUG_ON(free <= 0);
1628 
1629 	i = e4b->bd_info->bb_first_free;
1630 
1631 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1632 		i = mb_find_next_zero_bit(bitmap,
1633 						EXT4_BLOCKS_PER_GROUP(sb), i);
1634 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1635 			/*
1636 			 * IF we have corrupt bitmap, we won't find any
1637 			 * free blocks even though group info says we
1638 			 * we have free blocks
1639 			 */
1640 			ext4_grp_locked_error(sb, e4b->bd_group,
1641 					__func__, "%d free blocks as per "
1642 					"group info. But bitmap says 0",
1643 					free);
1644 			break;
1645 		}
1646 
1647 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1648 		BUG_ON(ex.fe_len <= 0);
1649 		if (free < ex.fe_len) {
1650 			ext4_grp_locked_error(sb, e4b->bd_group,
1651 					__func__, "%d free blocks as per "
1652 					"group info. But got %d blocks",
1653 					free, ex.fe_len);
1654 			/*
1655 			 * The number of free blocks differs. This mostly
1656 			 * indicate that the bitmap is corrupt. So exit
1657 			 * without claiming the space.
1658 			 */
1659 			break;
1660 		}
1661 
1662 		ext4_mb_measure_extent(ac, &ex, e4b);
1663 
1664 		i += ex.fe_len;
1665 		free -= ex.fe_len;
1666 	}
1667 
1668 	ext4_mb_check_limits(ac, e4b, 1);
1669 }
1670 
1671 /*
1672  * This is a special case for storages like raid5
1673  * we try to find stripe-aligned chunks for stripe-size requests
1674  * XXX should do so at least for multiples of stripe size as well
1675  */
1676 static noinline_for_stack
1677 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1678 				 struct ext4_buddy *e4b)
1679 {
1680 	struct super_block *sb = ac->ac_sb;
1681 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1682 	void *bitmap = EXT4_MB_BITMAP(e4b);
1683 	struct ext4_free_extent ex;
1684 	ext4_fsblk_t first_group_block;
1685 	ext4_fsblk_t a;
1686 	ext4_grpblk_t i;
1687 	int max;
1688 
1689 	BUG_ON(sbi->s_stripe == 0);
1690 
1691 	/* find first stripe-aligned block in group */
1692 	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1693 		+ le32_to_cpu(sbi->s_es->s_first_data_block);
1694 	a = first_group_block + sbi->s_stripe - 1;
1695 	do_div(a, sbi->s_stripe);
1696 	i = (a * sbi->s_stripe) - first_group_block;
1697 
1698 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1699 		if (!mb_test_bit(i, bitmap)) {
1700 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1701 			if (max >= sbi->s_stripe) {
1702 				ac->ac_found++;
1703 				ac->ac_b_ex = ex;
1704 				ext4_mb_use_best_found(ac, e4b);
1705 				break;
1706 			}
1707 		}
1708 		i += sbi->s_stripe;
1709 	}
1710 }
1711 
1712 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1713 				ext4_group_t group, int cr)
1714 {
1715 	unsigned free, fragments;
1716 	unsigned i, bits;
1717 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1718 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1719 
1720 	BUG_ON(cr < 0 || cr >= 4);
1721 	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1722 
1723 	free = grp->bb_free;
1724 	fragments = grp->bb_fragments;
1725 	if (free == 0)
1726 		return 0;
1727 	if (fragments == 0)
1728 		return 0;
1729 
1730 	switch (cr) {
1731 	case 0:
1732 		BUG_ON(ac->ac_2order == 0);
1733 
1734 		/* Avoid using the first bg of a flexgroup for data files */
1735 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1736 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1737 		    ((group % flex_size) == 0))
1738 			return 0;
1739 
1740 		bits = ac->ac_sb->s_blocksize_bits + 1;
1741 		for (i = ac->ac_2order; i <= bits; i++)
1742 			if (grp->bb_counters[i] > 0)
1743 				return 1;
1744 		break;
1745 	case 1:
1746 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1747 			return 1;
1748 		break;
1749 	case 2:
1750 		if (free >= ac->ac_g_ex.fe_len)
1751 			return 1;
1752 		break;
1753 	case 3:
1754 		return 1;
1755 	default:
1756 		BUG();
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 /*
1763  * lock the group_info alloc_sem of all the groups
1764  * belonging to the same buddy cache page. This
1765  * make sure other parallel operation on the buddy
1766  * cache doesn't happen  whild holding the buddy cache
1767  * lock
1768  */
1769 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1770 {
1771 	int i;
1772 	int block, pnum;
1773 	int blocks_per_page;
1774 	int groups_per_page;
1775 	ext4_group_t ngroups = ext4_get_groups_count(sb);
1776 	ext4_group_t first_group;
1777 	struct ext4_group_info *grp;
1778 
1779 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1780 	/*
1781 	 * the buddy cache inode stores the block bitmap
1782 	 * and buddy information in consecutive blocks.
1783 	 * So for each group we need two blocks.
1784 	 */
1785 	block = group * 2;
1786 	pnum = block / blocks_per_page;
1787 	first_group = pnum * blocks_per_page / 2;
1788 
1789 	groups_per_page = blocks_per_page >> 1;
1790 	if (groups_per_page == 0)
1791 		groups_per_page = 1;
1792 	/* read all groups the page covers into the cache */
1793 	for (i = 0; i < groups_per_page; i++) {
1794 
1795 		if ((first_group + i) >= ngroups)
1796 			break;
1797 		grp = ext4_get_group_info(sb, first_group + i);
1798 		/* take all groups write allocation
1799 		 * semaphore. This make sure there is
1800 		 * no block allocation going on in any
1801 		 * of that groups
1802 		 */
1803 		down_write_nested(&grp->alloc_sem, i);
1804 	}
1805 	return i;
1806 }
1807 
1808 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1809 					ext4_group_t group, int locked_group)
1810 {
1811 	int i;
1812 	int block, pnum;
1813 	int blocks_per_page;
1814 	ext4_group_t first_group;
1815 	struct ext4_group_info *grp;
1816 
1817 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1818 	/*
1819 	 * the buddy cache inode stores the block bitmap
1820 	 * and buddy information in consecutive blocks.
1821 	 * So for each group we need two blocks.
1822 	 */
1823 	block = group * 2;
1824 	pnum = block / blocks_per_page;
1825 	first_group = pnum * blocks_per_page / 2;
1826 	/* release locks on all the groups */
1827 	for (i = 0; i < locked_group; i++) {
1828 
1829 		grp = ext4_get_group_info(sb, first_group + i);
1830 		/* take all groups write allocation
1831 		 * semaphore. This make sure there is
1832 		 * no block allocation going on in any
1833 		 * of that groups
1834 		 */
1835 		up_write(&grp->alloc_sem);
1836 	}
1837 
1838 }
1839 
1840 static noinline_for_stack
1841 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1842 {
1843 
1844 	int ret;
1845 	void *bitmap;
1846 	int blocks_per_page;
1847 	int block, pnum, poff;
1848 	int num_grp_locked = 0;
1849 	struct ext4_group_info *this_grp;
1850 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1851 	struct inode *inode = sbi->s_buddy_cache;
1852 	struct page *page = NULL, *bitmap_page = NULL;
1853 
1854 	mb_debug("init group %lu\n", group);
1855 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1856 	this_grp = ext4_get_group_info(sb, group);
1857 	/*
1858 	 * This ensures we don't add group
1859 	 * to this buddy cache via resize
1860 	 */
1861 	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
1862 	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1863 		/*
1864 		 * somebody initialized the group
1865 		 * return without doing anything
1866 		 */
1867 		ret = 0;
1868 		goto err;
1869 	}
1870 	/*
1871 	 * the buddy cache inode stores the block bitmap
1872 	 * and buddy information in consecutive blocks.
1873 	 * So for each group we need two blocks.
1874 	 */
1875 	block = group * 2;
1876 	pnum = block / blocks_per_page;
1877 	poff = block % blocks_per_page;
1878 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1879 	if (page) {
1880 		BUG_ON(page->mapping != inode->i_mapping);
1881 		ret = ext4_mb_init_cache(page, NULL);
1882 		if (ret) {
1883 			unlock_page(page);
1884 			goto err;
1885 		}
1886 		unlock_page(page);
1887 	}
1888 	if (page == NULL || !PageUptodate(page)) {
1889 		ret = -EIO;
1890 		goto err;
1891 	}
1892 	mark_page_accessed(page);
1893 	bitmap_page = page;
1894 	bitmap = page_address(page) + (poff * sb->s_blocksize);
1895 
1896 	/* init buddy cache */
1897 	block++;
1898 	pnum = block / blocks_per_page;
1899 	poff = block % blocks_per_page;
1900 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1901 	if (page == bitmap_page) {
1902 		/*
1903 		 * If both the bitmap and buddy are in
1904 		 * the same page we don't need to force
1905 		 * init the buddy
1906 		 */
1907 		unlock_page(page);
1908 	} else if (page) {
1909 		BUG_ON(page->mapping != inode->i_mapping);
1910 		ret = ext4_mb_init_cache(page, bitmap);
1911 		if (ret) {
1912 			unlock_page(page);
1913 			goto err;
1914 		}
1915 		unlock_page(page);
1916 	}
1917 	if (page == NULL || !PageUptodate(page)) {
1918 		ret = -EIO;
1919 		goto err;
1920 	}
1921 	mark_page_accessed(page);
1922 err:
1923 	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1924 	if (bitmap_page)
1925 		page_cache_release(bitmap_page);
1926 	if (page)
1927 		page_cache_release(page);
1928 	return ret;
1929 }
1930 
1931 static noinline_for_stack int
1932 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1933 {
1934 	ext4_group_t ngroups, group, i;
1935 	int cr;
1936 	int err = 0;
1937 	int bsbits;
1938 	struct ext4_sb_info *sbi;
1939 	struct super_block *sb;
1940 	struct ext4_buddy e4b;
1941 	loff_t size, isize;
1942 
1943 	sb = ac->ac_sb;
1944 	sbi = EXT4_SB(sb);
1945 	ngroups = ext4_get_groups_count(sb);
1946 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1947 
1948 	/* first, try the goal */
1949 	err = ext4_mb_find_by_goal(ac, &e4b);
1950 	if (err || ac->ac_status == AC_STATUS_FOUND)
1951 		goto out;
1952 
1953 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1954 		goto out;
1955 
1956 	/*
1957 	 * ac->ac2_order is set only if the fe_len is a power of 2
1958 	 * if ac2_order is set we also set criteria to 0 so that we
1959 	 * try exact allocation using buddy.
1960 	 */
1961 	i = fls(ac->ac_g_ex.fe_len);
1962 	ac->ac_2order = 0;
1963 	/*
1964 	 * We search using buddy data only if the order of the request
1965 	 * is greater than equal to the sbi_s_mb_order2_reqs
1966 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1967 	 */
1968 	if (i >= sbi->s_mb_order2_reqs) {
1969 		/*
1970 		 * This should tell if fe_len is exactly power of 2
1971 		 */
1972 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1973 			ac->ac_2order = i - 1;
1974 	}
1975 
1976 	bsbits = ac->ac_sb->s_blocksize_bits;
1977 	/* if stream allocation is enabled, use global goal */
1978 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1979 	isize = i_size_read(ac->ac_inode) >> bsbits;
1980 	if (size < isize)
1981 		size = isize;
1982 
1983 	if (size < sbi->s_mb_stream_request &&
1984 			(ac->ac_flags & EXT4_MB_HINT_DATA)) {
1985 		/* TBD: may be hot point */
1986 		spin_lock(&sbi->s_md_lock);
1987 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1988 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1989 		spin_unlock(&sbi->s_md_lock);
1990 	}
1991 	/* Let's just scan groups to find more-less suitable blocks */
1992 	cr = ac->ac_2order ? 0 : 1;
1993 	/*
1994 	 * cr == 0 try to get exact allocation,
1995 	 * cr == 3  try to get anything
1996 	 */
1997 repeat:
1998 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1999 		ac->ac_criteria = cr;
2000 		/*
2001 		 * searching for the right group start
2002 		 * from the goal value specified
2003 		 */
2004 		group = ac->ac_g_ex.fe_group;
2005 
2006 		for (i = 0; i < ngroups; group++, i++) {
2007 			struct ext4_group_info *grp;
2008 			struct ext4_group_desc *desc;
2009 
2010 			if (group == ngroups)
2011 				group = 0;
2012 
2013 			/* quick check to skip empty groups */
2014 			grp = ext4_get_group_info(sb, group);
2015 			if (grp->bb_free == 0)
2016 				continue;
2017 
2018 			/*
2019 			 * if the group is already init we check whether it is
2020 			 * a good group and if not we don't load the buddy
2021 			 */
2022 			if (EXT4_MB_GRP_NEED_INIT(grp)) {
2023 				/*
2024 				 * we need full data about the group
2025 				 * to make a good selection
2026 				 */
2027 				err = ext4_mb_init_group(sb, group);
2028 				if (err)
2029 					goto out;
2030 			}
2031 
2032 			/*
2033 			 * If the particular group doesn't satisfy our
2034 			 * criteria we continue with the next group
2035 			 */
2036 			if (!ext4_mb_good_group(ac, group, cr))
2037 				continue;
2038 
2039 			err = ext4_mb_load_buddy(sb, group, &e4b);
2040 			if (err)
2041 				goto out;
2042 
2043 			ext4_lock_group(sb, group);
2044 			if (!ext4_mb_good_group(ac, group, cr)) {
2045 				/* someone did allocation from this group */
2046 				ext4_unlock_group(sb, group);
2047 				ext4_mb_release_desc(&e4b);
2048 				continue;
2049 			}
2050 
2051 			ac->ac_groups_scanned++;
2052 			desc = ext4_get_group_desc(sb, group, NULL);
2053 			if (cr == 0)
2054 				ext4_mb_simple_scan_group(ac, &e4b);
2055 			else if (cr == 1 &&
2056 					ac->ac_g_ex.fe_len == sbi->s_stripe)
2057 				ext4_mb_scan_aligned(ac, &e4b);
2058 			else
2059 				ext4_mb_complex_scan_group(ac, &e4b);
2060 
2061 			ext4_unlock_group(sb, group);
2062 			ext4_mb_release_desc(&e4b);
2063 
2064 			if (ac->ac_status != AC_STATUS_CONTINUE)
2065 				break;
2066 		}
2067 	}
2068 
2069 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2070 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2071 		/*
2072 		 * We've been searching too long. Let's try to allocate
2073 		 * the best chunk we've found so far
2074 		 */
2075 
2076 		ext4_mb_try_best_found(ac, &e4b);
2077 		if (ac->ac_status != AC_STATUS_FOUND) {
2078 			/*
2079 			 * Someone more lucky has already allocated it.
2080 			 * The only thing we can do is just take first
2081 			 * found block(s)
2082 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2083 			 */
2084 			ac->ac_b_ex.fe_group = 0;
2085 			ac->ac_b_ex.fe_start = 0;
2086 			ac->ac_b_ex.fe_len = 0;
2087 			ac->ac_status = AC_STATUS_CONTINUE;
2088 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2089 			cr = 3;
2090 			atomic_inc(&sbi->s_mb_lost_chunks);
2091 			goto repeat;
2092 		}
2093 	}
2094 out:
2095 	return err;
2096 }
2097 
2098 #ifdef EXT4_MB_HISTORY
2099 struct ext4_mb_proc_session {
2100 	struct ext4_mb_history *history;
2101 	struct super_block *sb;
2102 	int start;
2103 	int max;
2104 };
2105 
2106 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2107 					struct ext4_mb_history *hs,
2108 					int first)
2109 {
2110 	if (hs == s->history + s->max)
2111 		hs = s->history;
2112 	if (!first && hs == s->history + s->start)
2113 		return NULL;
2114 	while (hs->orig.fe_len == 0) {
2115 		hs++;
2116 		if (hs == s->history + s->max)
2117 			hs = s->history;
2118 		if (hs == s->history + s->start)
2119 			return NULL;
2120 	}
2121 	return hs;
2122 }
2123 
2124 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2125 {
2126 	struct ext4_mb_proc_session *s = seq->private;
2127 	struct ext4_mb_history *hs;
2128 	int l = *pos;
2129 
2130 	if (l == 0)
2131 		return SEQ_START_TOKEN;
2132 	hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2133 	if (!hs)
2134 		return NULL;
2135 	while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2136 	return hs;
2137 }
2138 
2139 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2140 				      loff_t *pos)
2141 {
2142 	struct ext4_mb_proc_session *s = seq->private;
2143 	struct ext4_mb_history *hs = v;
2144 
2145 	++*pos;
2146 	if (v == SEQ_START_TOKEN)
2147 		return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2148 	else
2149 		return ext4_mb_history_skip_empty(s, ++hs, 0);
2150 }
2151 
2152 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2153 {
2154 	char buf[25], buf2[25], buf3[25], *fmt;
2155 	struct ext4_mb_history *hs = v;
2156 
2157 	if (v == SEQ_START_TOKEN) {
2158 		seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2159 				"%-5s %-2s %-5s %-5s %-5s %-6s\n",
2160 			  "pid", "inode", "original", "goal", "result", "found",
2161 			   "grps", "cr", "flags", "merge", "tail", "broken");
2162 		return 0;
2163 	}
2164 
2165 	if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2166 		fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2167 			"%-5u %-5s %-5u %-6u\n";
2168 		sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2169 			hs->result.fe_start, hs->result.fe_len,
2170 			hs->result.fe_logical);
2171 		sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2172 			hs->orig.fe_start, hs->orig.fe_len,
2173 			hs->orig.fe_logical);
2174 		sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2175 			hs->goal.fe_start, hs->goal.fe_len,
2176 			hs->goal.fe_logical);
2177 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2178 				hs->found, hs->groups, hs->cr, hs->flags,
2179 				hs->merged ? "M" : "", hs->tail,
2180 				hs->buddy ? 1 << hs->buddy : 0);
2181 	} else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2182 		fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2183 		sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2184 			hs->result.fe_start, hs->result.fe_len,
2185 			hs->result.fe_logical);
2186 		sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2187 			hs->orig.fe_start, hs->orig.fe_len,
2188 			hs->orig.fe_logical);
2189 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2190 	} else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2191 		sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2192 			hs->result.fe_start, hs->result.fe_len);
2193 		seq_printf(seq, "%-5u %-8u %-23s discard\n",
2194 				hs->pid, hs->ino, buf2);
2195 	} else if (hs->op == EXT4_MB_HISTORY_FREE) {
2196 		sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2197 			hs->result.fe_start, hs->result.fe_len);
2198 		seq_printf(seq, "%-5u %-8u %-23s free\n",
2199 				hs->pid, hs->ino, buf2);
2200 	}
2201 	return 0;
2202 }
2203 
2204 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2205 {
2206 }
2207 
2208 static struct seq_operations ext4_mb_seq_history_ops = {
2209 	.start  = ext4_mb_seq_history_start,
2210 	.next   = ext4_mb_seq_history_next,
2211 	.stop   = ext4_mb_seq_history_stop,
2212 	.show   = ext4_mb_seq_history_show,
2213 };
2214 
2215 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2216 {
2217 	struct super_block *sb = PDE(inode)->data;
2218 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2219 	struct ext4_mb_proc_session *s;
2220 	int rc;
2221 	int size;
2222 
2223 	if (unlikely(sbi->s_mb_history == NULL))
2224 		return -ENOMEM;
2225 	s = kmalloc(sizeof(*s), GFP_KERNEL);
2226 	if (s == NULL)
2227 		return -ENOMEM;
2228 	s->sb = sb;
2229 	size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2230 	s->history = kmalloc(size, GFP_KERNEL);
2231 	if (s->history == NULL) {
2232 		kfree(s);
2233 		return -ENOMEM;
2234 	}
2235 
2236 	spin_lock(&sbi->s_mb_history_lock);
2237 	memcpy(s->history, sbi->s_mb_history, size);
2238 	s->max = sbi->s_mb_history_max;
2239 	s->start = sbi->s_mb_history_cur % s->max;
2240 	spin_unlock(&sbi->s_mb_history_lock);
2241 
2242 	rc = seq_open(file, &ext4_mb_seq_history_ops);
2243 	if (rc == 0) {
2244 		struct seq_file *m = (struct seq_file *)file->private_data;
2245 		m->private = s;
2246 	} else {
2247 		kfree(s->history);
2248 		kfree(s);
2249 	}
2250 	return rc;
2251 
2252 }
2253 
2254 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2255 {
2256 	struct seq_file *seq = (struct seq_file *)file->private_data;
2257 	struct ext4_mb_proc_session *s = seq->private;
2258 	kfree(s->history);
2259 	kfree(s);
2260 	return seq_release(inode, file);
2261 }
2262 
2263 static ssize_t ext4_mb_seq_history_write(struct file *file,
2264 				const char __user *buffer,
2265 				size_t count, loff_t *ppos)
2266 {
2267 	struct seq_file *seq = (struct seq_file *)file->private_data;
2268 	struct ext4_mb_proc_session *s = seq->private;
2269 	struct super_block *sb = s->sb;
2270 	char str[32];
2271 	int value;
2272 
2273 	if (count >= sizeof(str)) {
2274 		printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2275 				"mb_history", (int)sizeof(str));
2276 		return -EOVERFLOW;
2277 	}
2278 
2279 	if (copy_from_user(str, buffer, count))
2280 		return -EFAULT;
2281 
2282 	value = simple_strtol(str, NULL, 0);
2283 	if (value < 0)
2284 		return -ERANGE;
2285 	EXT4_SB(sb)->s_mb_history_filter = value;
2286 
2287 	return count;
2288 }
2289 
2290 static struct file_operations ext4_mb_seq_history_fops = {
2291 	.owner		= THIS_MODULE,
2292 	.open		= ext4_mb_seq_history_open,
2293 	.read		= seq_read,
2294 	.write		= ext4_mb_seq_history_write,
2295 	.llseek		= seq_lseek,
2296 	.release	= ext4_mb_seq_history_release,
2297 };
2298 
2299 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2300 {
2301 	struct super_block *sb = seq->private;
2302 	ext4_group_t group;
2303 
2304 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2305 		return NULL;
2306 	group = *pos + 1;
2307 	return (void *) ((unsigned long) group);
2308 }
2309 
2310 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2311 {
2312 	struct super_block *sb = seq->private;
2313 	ext4_group_t group;
2314 
2315 	++*pos;
2316 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2317 		return NULL;
2318 	group = *pos + 1;
2319 	return (void *) ((unsigned long) group);
2320 }
2321 
2322 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2323 {
2324 	struct super_block *sb = seq->private;
2325 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2326 	int i;
2327 	int err;
2328 	struct ext4_buddy e4b;
2329 	struct sg {
2330 		struct ext4_group_info info;
2331 		unsigned short counters[16];
2332 	} sg;
2333 
2334 	group--;
2335 	if (group == 0)
2336 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2337 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2338 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2339 			   "group", "free", "frags", "first",
2340 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2341 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2342 
2343 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2344 		sizeof(struct ext4_group_info);
2345 	err = ext4_mb_load_buddy(sb, group, &e4b);
2346 	if (err) {
2347 		seq_printf(seq, "#%-5u: I/O error\n", group);
2348 		return 0;
2349 	}
2350 	ext4_lock_group(sb, group);
2351 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2352 	ext4_unlock_group(sb, group);
2353 	ext4_mb_release_desc(&e4b);
2354 
2355 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2356 			sg.info.bb_fragments, sg.info.bb_first_free);
2357 	for (i = 0; i <= 13; i++)
2358 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2359 				sg.info.bb_counters[i] : 0);
2360 	seq_printf(seq, " ]\n");
2361 
2362 	return 0;
2363 }
2364 
2365 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2366 {
2367 }
2368 
2369 static struct seq_operations ext4_mb_seq_groups_ops = {
2370 	.start  = ext4_mb_seq_groups_start,
2371 	.next   = ext4_mb_seq_groups_next,
2372 	.stop   = ext4_mb_seq_groups_stop,
2373 	.show   = ext4_mb_seq_groups_show,
2374 };
2375 
2376 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2377 {
2378 	struct super_block *sb = PDE(inode)->data;
2379 	int rc;
2380 
2381 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2382 	if (rc == 0) {
2383 		struct seq_file *m = (struct seq_file *)file->private_data;
2384 		m->private = sb;
2385 	}
2386 	return rc;
2387 
2388 }
2389 
2390 static struct file_operations ext4_mb_seq_groups_fops = {
2391 	.owner		= THIS_MODULE,
2392 	.open		= ext4_mb_seq_groups_open,
2393 	.read		= seq_read,
2394 	.llseek		= seq_lseek,
2395 	.release	= seq_release,
2396 };
2397 
2398 static void ext4_mb_history_release(struct super_block *sb)
2399 {
2400 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2401 
2402 	if (sbi->s_proc != NULL) {
2403 		remove_proc_entry("mb_groups", sbi->s_proc);
2404 		if (sbi->s_mb_history_max)
2405 			remove_proc_entry("mb_history", sbi->s_proc);
2406 	}
2407 	kfree(sbi->s_mb_history);
2408 }
2409 
2410 static void ext4_mb_history_init(struct super_block *sb)
2411 {
2412 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2413 	int i;
2414 
2415 	if (sbi->s_proc != NULL) {
2416 		if (sbi->s_mb_history_max)
2417 			proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2418 					 &ext4_mb_seq_history_fops, sb);
2419 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2420 				 &ext4_mb_seq_groups_fops, sb);
2421 	}
2422 
2423 	sbi->s_mb_history_cur = 0;
2424 	spin_lock_init(&sbi->s_mb_history_lock);
2425 	i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2426 	sbi->s_mb_history = i ? kzalloc(i, GFP_KERNEL) : NULL;
2427 	/* if we can't allocate history, then we simple won't use it */
2428 }
2429 
2430 static noinline_for_stack void
2431 ext4_mb_store_history(struct ext4_allocation_context *ac)
2432 {
2433 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2434 	struct ext4_mb_history h;
2435 
2436 	if (sbi->s_mb_history == NULL)
2437 		return;
2438 
2439 	if (!(ac->ac_op & sbi->s_mb_history_filter))
2440 		return;
2441 
2442 	h.op = ac->ac_op;
2443 	h.pid = current->pid;
2444 	h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2445 	h.orig = ac->ac_o_ex;
2446 	h.result = ac->ac_b_ex;
2447 	h.flags = ac->ac_flags;
2448 	h.found = ac->ac_found;
2449 	h.groups = ac->ac_groups_scanned;
2450 	h.cr = ac->ac_criteria;
2451 	h.tail = ac->ac_tail;
2452 	h.buddy = ac->ac_buddy;
2453 	h.merged = 0;
2454 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2455 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2456 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2457 			h.merged = 1;
2458 		h.goal = ac->ac_g_ex;
2459 		h.result = ac->ac_f_ex;
2460 	}
2461 
2462 	spin_lock(&sbi->s_mb_history_lock);
2463 	memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2464 	if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2465 		sbi->s_mb_history_cur = 0;
2466 	spin_unlock(&sbi->s_mb_history_lock);
2467 }
2468 
2469 #else
2470 #define ext4_mb_history_release(sb)
2471 #define ext4_mb_history_init(sb)
2472 #endif
2473 
2474 
2475 /* Create and initialize ext4_group_info data for the given group. */
2476 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2477 			  struct ext4_group_desc *desc)
2478 {
2479 	int i, len;
2480 	int metalen = 0;
2481 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2482 	struct ext4_group_info **meta_group_info;
2483 
2484 	/*
2485 	 * First check if this group is the first of a reserved block.
2486 	 * If it's true, we have to allocate a new table of pointers
2487 	 * to ext4_group_info structures
2488 	 */
2489 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2490 		metalen = sizeof(*meta_group_info) <<
2491 			EXT4_DESC_PER_BLOCK_BITS(sb);
2492 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2493 		if (meta_group_info == NULL) {
2494 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2495 			       "buddy group\n");
2496 			goto exit_meta_group_info;
2497 		}
2498 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2499 			meta_group_info;
2500 	}
2501 
2502 	/*
2503 	 * calculate needed size. if change bb_counters size,
2504 	 * don't forget about ext4_mb_generate_buddy()
2505 	 */
2506 	len = offsetof(typeof(**meta_group_info),
2507 		       bb_counters[sb->s_blocksize_bits + 2]);
2508 
2509 	meta_group_info =
2510 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2511 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2512 
2513 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2514 	if (meta_group_info[i] == NULL) {
2515 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2516 		goto exit_group_info;
2517 	}
2518 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2519 		&(meta_group_info[i]->bb_state));
2520 
2521 	/*
2522 	 * initialize bb_free to be able to skip
2523 	 * empty groups without initialization
2524 	 */
2525 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2526 		meta_group_info[i]->bb_free =
2527 			ext4_free_blocks_after_init(sb, group, desc);
2528 	} else {
2529 		meta_group_info[i]->bb_free =
2530 			ext4_free_blks_count(sb, desc);
2531 	}
2532 
2533 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2534 	init_rwsem(&meta_group_info[i]->alloc_sem);
2535 	meta_group_info[i]->bb_free_root.rb_node = NULL;;
2536 
2537 #ifdef DOUBLE_CHECK
2538 	{
2539 		struct buffer_head *bh;
2540 		meta_group_info[i]->bb_bitmap =
2541 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2542 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2543 		bh = ext4_read_block_bitmap(sb, group);
2544 		BUG_ON(bh == NULL);
2545 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2546 			sb->s_blocksize);
2547 		put_bh(bh);
2548 	}
2549 #endif
2550 
2551 	return 0;
2552 
2553 exit_group_info:
2554 	/* If a meta_group_info table has been allocated, release it now */
2555 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2556 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2557 exit_meta_group_info:
2558 	return -ENOMEM;
2559 } /* ext4_mb_add_groupinfo */
2560 
2561 /*
2562  * Update an existing group.
2563  * This function is used for online resize
2564  */
2565 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2566 {
2567 	grp->bb_free += add;
2568 }
2569 
2570 static int ext4_mb_init_backend(struct super_block *sb)
2571 {
2572 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2573 	ext4_group_t i;
2574 	int metalen;
2575 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2576 	struct ext4_super_block *es = sbi->s_es;
2577 	int num_meta_group_infos;
2578 	int num_meta_group_infos_max;
2579 	int array_size;
2580 	struct ext4_group_info **meta_group_info;
2581 	struct ext4_group_desc *desc;
2582 
2583 	/* This is the number of blocks used by GDT */
2584 	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2585 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2586 
2587 	/*
2588 	 * This is the total number of blocks used by GDT including
2589 	 * the number of reserved blocks for GDT.
2590 	 * The s_group_info array is allocated with this value
2591 	 * to allow a clean online resize without a complex
2592 	 * manipulation of pointer.
2593 	 * The drawback is the unused memory when no resize
2594 	 * occurs but it's very low in terms of pages
2595 	 * (see comments below)
2596 	 * Need to handle this properly when META_BG resizing is allowed
2597 	 */
2598 	num_meta_group_infos_max = num_meta_group_infos +
2599 				le16_to_cpu(es->s_reserved_gdt_blocks);
2600 
2601 	/*
2602 	 * array_size is the size of s_group_info array. We round it
2603 	 * to the next power of two because this approximation is done
2604 	 * internally by kmalloc so we can have some more memory
2605 	 * for free here (e.g. may be used for META_BG resize).
2606 	 */
2607 	array_size = 1;
2608 	while (array_size < sizeof(*sbi->s_group_info) *
2609 	       num_meta_group_infos_max)
2610 		array_size = array_size << 1;
2611 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2612 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2613 	 * So a two level scheme suffices for now. */
2614 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2615 	if (sbi->s_group_info == NULL) {
2616 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2617 		return -ENOMEM;
2618 	}
2619 	sbi->s_buddy_cache = new_inode(sb);
2620 	if (sbi->s_buddy_cache == NULL) {
2621 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2622 		goto err_freesgi;
2623 	}
2624 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2625 
2626 	metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2627 	for (i = 0; i < num_meta_group_infos; i++) {
2628 		if ((i + 1) == num_meta_group_infos)
2629 			metalen = sizeof(*meta_group_info) *
2630 				(ngroups -
2631 					(i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2632 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2633 		if (meta_group_info == NULL) {
2634 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2635 			       "buddy group\n");
2636 			goto err_freemeta;
2637 		}
2638 		sbi->s_group_info[i] = meta_group_info;
2639 	}
2640 
2641 	for (i = 0; i < ngroups; i++) {
2642 		desc = ext4_get_group_desc(sb, i, NULL);
2643 		if (desc == NULL) {
2644 			printk(KERN_ERR
2645 				"EXT4-fs: can't read descriptor %u\n", i);
2646 			goto err_freebuddy;
2647 		}
2648 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2649 			goto err_freebuddy;
2650 	}
2651 
2652 	return 0;
2653 
2654 err_freebuddy:
2655 	while (i-- > 0)
2656 		kfree(ext4_get_group_info(sb, i));
2657 	i = num_meta_group_infos;
2658 err_freemeta:
2659 	while (i-- > 0)
2660 		kfree(sbi->s_group_info[i]);
2661 	iput(sbi->s_buddy_cache);
2662 err_freesgi:
2663 	kfree(sbi->s_group_info);
2664 	return -ENOMEM;
2665 }
2666 
2667 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2668 {
2669 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2670 	unsigned i, j;
2671 	unsigned offset;
2672 	unsigned max;
2673 	int ret;
2674 
2675 	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2676 
2677 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2678 	if (sbi->s_mb_offsets == NULL) {
2679 		return -ENOMEM;
2680 	}
2681 
2682 	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2683 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2684 	if (sbi->s_mb_maxs == NULL) {
2685 		kfree(sbi->s_mb_offsets);
2686 		return -ENOMEM;
2687 	}
2688 
2689 	/* order 0 is regular bitmap */
2690 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2691 	sbi->s_mb_offsets[0] = 0;
2692 
2693 	i = 1;
2694 	offset = 0;
2695 	max = sb->s_blocksize << 2;
2696 	do {
2697 		sbi->s_mb_offsets[i] = offset;
2698 		sbi->s_mb_maxs[i] = max;
2699 		offset += 1 << (sb->s_blocksize_bits - i);
2700 		max = max >> 1;
2701 		i++;
2702 	} while (i <= sb->s_blocksize_bits + 1);
2703 
2704 	/* init file for buddy data */
2705 	ret = ext4_mb_init_backend(sb);
2706 	if (ret != 0) {
2707 		kfree(sbi->s_mb_offsets);
2708 		kfree(sbi->s_mb_maxs);
2709 		return ret;
2710 	}
2711 
2712 	spin_lock_init(&sbi->s_md_lock);
2713 	spin_lock_init(&sbi->s_bal_lock);
2714 
2715 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2716 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2717 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2718 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2719 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2720 	sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2721 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2722 
2723 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2724 	if (sbi->s_locality_groups == NULL) {
2725 		kfree(sbi->s_mb_offsets);
2726 		kfree(sbi->s_mb_maxs);
2727 		return -ENOMEM;
2728 	}
2729 	for_each_possible_cpu(i) {
2730 		struct ext4_locality_group *lg;
2731 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2732 		mutex_init(&lg->lg_mutex);
2733 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2734 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2735 		spin_lock_init(&lg->lg_prealloc_lock);
2736 	}
2737 
2738 	ext4_mb_history_init(sb);
2739 
2740 	if (sbi->s_journal)
2741 		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2742 
2743 	printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2744 	return 0;
2745 }
2746 
2747 /* need to called with the ext4 group lock held */
2748 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2749 {
2750 	struct ext4_prealloc_space *pa;
2751 	struct list_head *cur, *tmp;
2752 	int count = 0;
2753 
2754 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2755 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2756 		list_del(&pa->pa_group_list);
2757 		count++;
2758 		kmem_cache_free(ext4_pspace_cachep, pa);
2759 	}
2760 	if (count)
2761 		mb_debug("mballoc: %u PAs left\n", count);
2762 
2763 }
2764 
2765 int ext4_mb_release(struct super_block *sb)
2766 {
2767 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2768 	ext4_group_t i;
2769 	int num_meta_group_infos;
2770 	struct ext4_group_info *grinfo;
2771 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2772 
2773 	if (sbi->s_group_info) {
2774 		for (i = 0; i < ngroups; i++) {
2775 			grinfo = ext4_get_group_info(sb, i);
2776 #ifdef DOUBLE_CHECK
2777 			kfree(grinfo->bb_bitmap);
2778 #endif
2779 			ext4_lock_group(sb, i);
2780 			ext4_mb_cleanup_pa(grinfo);
2781 			ext4_unlock_group(sb, i);
2782 			kfree(grinfo);
2783 		}
2784 		num_meta_group_infos = (ngroups +
2785 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2786 			EXT4_DESC_PER_BLOCK_BITS(sb);
2787 		for (i = 0; i < num_meta_group_infos; i++)
2788 			kfree(sbi->s_group_info[i]);
2789 		kfree(sbi->s_group_info);
2790 	}
2791 	kfree(sbi->s_mb_offsets);
2792 	kfree(sbi->s_mb_maxs);
2793 	if (sbi->s_buddy_cache)
2794 		iput(sbi->s_buddy_cache);
2795 	if (sbi->s_mb_stats) {
2796 		printk(KERN_INFO
2797 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2798 				atomic_read(&sbi->s_bal_allocated),
2799 				atomic_read(&sbi->s_bal_reqs),
2800 				atomic_read(&sbi->s_bal_success));
2801 		printk(KERN_INFO
2802 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2803 				"%u 2^N hits, %u breaks, %u lost\n",
2804 				atomic_read(&sbi->s_bal_ex_scanned),
2805 				atomic_read(&sbi->s_bal_goals),
2806 				atomic_read(&sbi->s_bal_2orders),
2807 				atomic_read(&sbi->s_bal_breaks),
2808 				atomic_read(&sbi->s_mb_lost_chunks));
2809 		printk(KERN_INFO
2810 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2811 				sbi->s_mb_buddies_generated++,
2812 				sbi->s_mb_generation_time);
2813 		printk(KERN_INFO
2814 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2815 				atomic_read(&sbi->s_mb_preallocated),
2816 				atomic_read(&sbi->s_mb_discarded));
2817 	}
2818 
2819 	free_percpu(sbi->s_locality_groups);
2820 	ext4_mb_history_release(sb);
2821 
2822 	return 0;
2823 }
2824 
2825 /*
2826  * This function is called by the jbd2 layer once the commit has finished,
2827  * so we know we can free the blocks that were released with that commit.
2828  */
2829 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2830 {
2831 	struct super_block *sb = journal->j_private;
2832 	struct ext4_buddy e4b;
2833 	struct ext4_group_info *db;
2834 	int err, count = 0, count2 = 0;
2835 	struct ext4_free_data *entry;
2836 	ext4_fsblk_t discard_block;
2837 	struct list_head *l, *ltmp;
2838 
2839 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
2840 		entry = list_entry(l, struct ext4_free_data, list);
2841 
2842 		mb_debug("gonna free %u blocks in group %u (0x%p):",
2843 			 entry->count, entry->group, entry);
2844 
2845 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2846 		/* we expect to find existing buddy because it's pinned */
2847 		BUG_ON(err != 0);
2848 
2849 		db = e4b.bd_info;
2850 		/* there are blocks to put in buddy to make them really free */
2851 		count += entry->count;
2852 		count2++;
2853 		ext4_lock_group(sb, entry->group);
2854 		/* Take it out of per group rb tree */
2855 		rb_erase(&entry->node, &(db->bb_free_root));
2856 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2857 
2858 		if (!db->bb_free_root.rb_node) {
2859 			/* No more items in the per group rb tree
2860 			 * balance refcounts from ext4_mb_free_metadata()
2861 			 */
2862 			page_cache_release(e4b.bd_buddy_page);
2863 			page_cache_release(e4b.bd_bitmap_page);
2864 		}
2865 		ext4_unlock_group(sb, entry->group);
2866 		discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2867 			+ entry->start_blk
2868 			+ le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2869 		trace_ext4_discard_blocks(sb, (unsigned long long)discard_block,
2870 					  entry->count);
2871 		sb_issue_discard(sb, discard_block, entry->count);
2872 
2873 		kmem_cache_free(ext4_free_ext_cachep, entry);
2874 		ext4_mb_release_desc(&e4b);
2875 	}
2876 
2877 	mb_debug("freed %u blocks in %u structures\n", count, count2);
2878 }
2879 
2880 int __init init_ext4_mballoc(void)
2881 {
2882 	ext4_pspace_cachep =
2883 		kmem_cache_create("ext4_prealloc_space",
2884 				     sizeof(struct ext4_prealloc_space),
2885 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2886 	if (ext4_pspace_cachep == NULL)
2887 		return -ENOMEM;
2888 
2889 	ext4_ac_cachep =
2890 		kmem_cache_create("ext4_alloc_context",
2891 				     sizeof(struct ext4_allocation_context),
2892 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2893 	if (ext4_ac_cachep == NULL) {
2894 		kmem_cache_destroy(ext4_pspace_cachep);
2895 		return -ENOMEM;
2896 	}
2897 
2898 	ext4_free_ext_cachep =
2899 		kmem_cache_create("ext4_free_block_extents",
2900 				     sizeof(struct ext4_free_data),
2901 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2902 	if (ext4_free_ext_cachep == NULL) {
2903 		kmem_cache_destroy(ext4_pspace_cachep);
2904 		kmem_cache_destroy(ext4_ac_cachep);
2905 		return -ENOMEM;
2906 	}
2907 	return 0;
2908 }
2909 
2910 void exit_ext4_mballoc(void)
2911 {
2912 	/*
2913 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2914 	 * before destroying the slab cache.
2915 	 */
2916 	rcu_barrier();
2917 	kmem_cache_destroy(ext4_pspace_cachep);
2918 	kmem_cache_destroy(ext4_ac_cachep);
2919 	kmem_cache_destroy(ext4_free_ext_cachep);
2920 }
2921 
2922 
2923 /*
2924  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2925  * Returns 0 if success or error code
2926  */
2927 static noinline_for_stack int
2928 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2929 				handle_t *handle, unsigned int reserv_blks)
2930 {
2931 	struct buffer_head *bitmap_bh = NULL;
2932 	struct ext4_super_block *es;
2933 	struct ext4_group_desc *gdp;
2934 	struct buffer_head *gdp_bh;
2935 	struct ext4_sb_info *sbi;
2936 	struct super_block *sb;
2937 	ext4_fsblk_t block;
2938 	int err, len;
2939 
2940 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2941 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2942 
2943 	sb = ac->ac_sb;
2944 	sbi = EXT4_SB(sb);
2945 	es = sbi->s_es;
2946 
2947 
2948 	err = -EIO;
2949 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2950 	if (!bitmap_bh)
2951 		goto out_err;
2952 
2953 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2954 	if (err)
2955 		goto out_err;
2956 
2957 	err = -EIO;
2958 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2959 	if (!gdp)
2960 		goto out_err;
2961 
2962 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2963 			ext4_free_blks_count(sb, gdp));
2964 
2965 	err = ext4_journal_get_write_access(handle, gdp_bh);
2966 	if (err)
2967 		goto out_err;
2968 
2969 	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2970 		+ ac->ac_b_ex.fe_start
2971 		+ le32_to_cpu(es->s_first_data_block);
2972 
2973 	len = ac->ac_b_ex.fe_len;
2974 	if (!ext4_data_block_valid(sbi, block, len)) {
2975 		ext4_error(sb, __func__,
2976 			   "Allocating blocks %llu-%llu which overlap "
2977 			   "fs metadata\n", block, block+len);
2978 		/* File system mounted not to panic on error
2979 		 * Fix the bitmap and repeat the block allocation
2980 		 * We leak some of the blocks here.
2981 		 */
2982 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2983 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2984 			    ac->ac_b_ex.fe_len);
2985 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2986 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2987 		if (!err)
2988 			err = -EAGAIN;
2989 		goto out_err;
2990 	}
2991 
2992 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2993 #ifdef AGGRESSIVE_CHECK
2994 	{
2995 		int i;
2996 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2997 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2998 						bitmap_bh->b_data));
2999 		}
3000 	}
3001 #endif
3002 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
3003 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3004 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3005 		ext4_free_blks_set(sb, gdp,
3006 					ext4_free_blocks_after_init(sb,
3007 					ac->ac_b_ex.fe_group, gdp));
3008 	}
3009 	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3010 	ext4_free_blks_set(sb, gdp, len);
3011 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3012 
3013 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3014 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3015 	/*
3016 	 * Now reduce the dirty block count also. Should not go negative
3017 	 */
3018 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3019 		/* release all the reserved blocks if non delalloc */
3020 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3021 	else {
3022 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3023 						ac->ac_b_ex.fe_len);
3024 		/* convert reserved quota blocks to real quota blocks */
3025 		vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3026 	}
3027 
3028 	if (sbi->s_log_groups_per_flex) {
3029 		ext4_group_t flex_group = ext4_flex_group(sbi,
3030 							  ac->ac_b_ex.fe_group);
3031 		atomic_sub(ac->ac_b_ex.fe_len,
3032 			   &sbi->s_flex_groups[flex_group].free_blocks);
3033 	}
3034 
3035 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3036 	if (err)
3037 		goto out_err;
3038 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3039 
3040 out_err:
3041 	sb->s_dirt = 1;
3042 	brelse(bitmap_bh);
3043 	return err;
3044 }
3045 
3046 /*
3047  * here we normalize request for locality group
3048  * Group request are normalized to s_strip size if we set the same via mount
3049  * option. If not we set it to s_mb_group_prealloc which can be configured via
3050  * /sys/fs/ext4/<partition>/mb_group_prealloc
3051  *
3052  * XXX: should we try to preallocate more than the group has now?
3053  */
3054 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3055 {
3056 	struct super_block *sb = ac->ac_sb;
3057 	struct ext4_locality_group *lg = ac->ac_lg;
3058 
3059 	BUG_ON(lg == NULL);
3060 	if (EXT4_SB(sb)->s_stripe)
3061 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3062 	else
3063 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3064 	mb_debug("#%u: goal %u blocks for locality group\n",
3065 		current->pid, ac->ac_g_ex.fe_len);
3066 }
3067 
3068 /*
3069  * Normalization means making request better in terms of
3070  * size and alignment
3071  */
3072 static noinline_for_stack void
3073 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3074 				struct ext4_allocation_request *ar)
3075 {
3076 	int bsbits, max;
3077 	ext4_lblk_t end;
3078 	loff_t size, orig_size, start_off;
3079 	ext4_lblk_t start, orig_start;
3080 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3081 	struct ext4_prealloc_space *pa;
3082 
3083 	/* do normalize only data requests, metadata requests
3084 	   do not need preallocation */
3085 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3086 		return;
3087 
3088 	/* sometime caller may want exact blocks */
3089 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3090 		return;
3091 
3092 	/* caller may indicate that preallocation isn't
3093 	 * required (it's a tail, for example) */
3094 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3095 		return;
3096 
3097 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3098 		ext4_mb_normalize_group_request(ac);
3099 		return ;
3100 	}
3101 
3102 	bsbits = ac->ac_sb->s_blocksize_bits;
3103 
3104 	/* first, let's learn actual file size
3105 	 * given current request is allocated */
3106 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3107 	size = size << bsbits;
3108 	if (size < i_size_read(ac->ac_inode))
3109 		size = i_size_read(ac->ac_inode);
3110 
3111 	/* max size of free chunks */
3112 	max = 2 << bsbits;
3113 
3114 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3115 		(req <= (size) || max <= (chunk_size))
3116 
3117 	/* first, try to predict filesize */
3118 	/* XXX: should this table be tunable? */
3119 	start_off = 0;
3120 	if (size <= 16 * 1024) {
3121 		size = 16 * 1024;
3122 	} else if (size <= 32 * 1024) {
3123 		size = 32 * 1024;
3124 	} else if (size <= 64 * 1024) {
3125 		size = 64 * 1024;
3126 	} else if (size <= 128 * 1024) {
3127 		size = 128 * 1024;
3128 	} else if (size <= 256 * 1024) {
3129 		size = 256 * 1024;
3130 	} else if (size <= 512 * 1024) {
3131 		size = 512 * 1024;
3132 	} else if (size <= 1024 * 1024) {
3133 		size = 1024 * 1024;
3134 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3135 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3136 						(21 - bsbits)) << 21;
3137 		size = 2 * 1024 * 1024;
3138 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3139 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3140 							(22 - bsbits)) << 22;
3141 		size = 4 * 1024 * 1024;
3142 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3143 					(8<<20)>>bsbits, max, 8 * 1024)) {
3144 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3145 							(23 - bsbits)) << 23;
3146 		size = 8 * 1024 * 1024;
3147 	} else {
3148 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3149 		size	  = ac->ac_o_ex.fe_len << bsbits;
3150 	}
3151 	orig_size = size = size >> bsbits;
3152 	orig_start = start = start_off >> bsbits;
3153 
3154 	/* don't cover already allocated blocks in selected range */
3155 	if (ar->pleft && start <= ar->lleft) {
3156 		size -= ar->lleft + 1 - start;
3157 		start = ar->lleft + 1;
3158 	}
3159 	if (ar->pright && start + size - 1 >= ar->lright)
3160 		size -= start + size - ar->lright;
3161 
3162 	end = start + size;
3163 
3164 	/* check we don't cross already preallocated blocks */
3165 	rcu_read_lock();
3166 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3167 		ext4_lblk_t pa_end;
3168 
3169 		if (pa->pa_deleted)
3170 			continue;
3171 		spin_lock(&pa->pa_lock);
3172 		if (pa->pa_deleted) {
3173 			spin_unlock(&pa->pa_lock);
3174 			continue;
3175 		}
3176 
3177 		pa_end = pa->pa_lstart + pa->pa_len;
3178 
3179 		/* PA must not overlap original request */
3180 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3181 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3182 
3183 		/* skip PA normalized request doesn't overlap with */
3184 		if (pa->pa_lstart >= end) {
3185 			spin_unlock(&pa->pa_lock);
3186 			continue;
3187 		}
3188 		if (pa_end <= start) {
3189 			spin_unlock(&pa->pa_lock);
3190 			continue;
3191 		}
3192 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3193 
3194 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3195 			BUG_ON(pa_end < start);
3196 			start = pa_end;
3197 		}
3198 
3199 		if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3200 			BUG_ON(pa->pa_lstart > end);
3201 			end = pa->pa_lstart;
3202 		}
3203 		spin_unlock(&pa->pa_lock);
3204 	}
3205 	rcu_read_unlock();
3206 	size = end - start;
3207 
3208 	/* XXX: extra loop to check we really don't overlap preallocations */
3209 	rcu_read_lock();
3210 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3211 		ext4_lblk_t pa_end;
3212 		spin_lock(&pa->pa_lock);
3213 		if (pa->pa_deleted == 0) {
3214 			pa_end = pa->pa_lstart + pa->pa_len;
3215 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3216 		}
3217 		spin_unlock(&pa->pa_lock);
3218 	}
3219 	rcu_read_unlock();
3220 
3221 	if (start + size <= ac->ac_o_ex.fe_logical &&
3222 			start > ac->ac_o_ex.fe_logical) {
3223 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3224 			(unsigned long) start, (unsigned long) size,
3225 			(unsigned long) ac->ac_o_ex.fe_logical);
3226 	}
3227 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3228 			start > ac->ac_o_ex.fe_logical);
3229 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3230 
3231 	/* now prepare goal request */
3232 
3233 	/* XXX: is it better to align blocks WRT to logical
3234 	 * placement or satisfy big request as is */
3235 	ac->ac_g_ex.fe_logical = start;
3236 	ac->ac_g_ex.fe_len = size;
3237 
3238 	/* define goal start in order to merge */
3239 	if (ar->pright && (ar->lright == (start + size))) {
3240 		/* merge to the right */
3241 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3242 						&ac->ac_f_ex.fe_group,
3243 						&ac->ac_f_ex.fe_start);
3244 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3245 	}
3246 	if (ar->pleft && (ar->lleft + 1 == start)) {
3247 		/* merge to the left */
3248 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3249 						&ac->ac_f_ex.fe_group,
3250 						&ac->ac_f_ex.fe_start);
3251 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3252 	}
3253 
3254 	mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3255 		(unsigned) orig_size, (unsigned) start);
3256 }
3257 
3258 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3259 {
3260 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3261 
3262 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3263 		atomic_inc(&sbi->s_bal_reqs);
3264 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3265 		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3266 			atomic_inc(&sbi->s_bal_success);
3267 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3268 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3269 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3270 			atomic_inc(&sbi->s_bal_goals);
3271 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3272 			atomic_inc(&sbi->s_bal_breaks);
3273 	}
3274 
3275 	ext4_mb_store_history(ac);
3276 }
3277 
3278 /*
3279  * use blocks preallocated to inode
3280  */
3281 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3282 				struct ext4_prealloc_space *pa)
3283 {
3284 	ext4_fsblk_t start;
3285 	ext4_fsblk_t end;
3286 	int len;
3287 
3288 	/* found preallocated blocks, use them */
3289 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3290 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3291 	len = end - start;
3292 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3293 					&ac->ac_b_ex.fe_start);
3294 	ac->ac_b_ex.fe_len = len;
3295 	ac->ac_status = AC_STATUS_FOUND;
3296 	ac->ac_pa = pa;
3297 
3298 	BUG_ON(start < pa->pa_pstart);
3299 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3300 	BUG_ON(pa->pa_free < len);
3301 	pa->pa_free -= len;
3302 
3303 	mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3304 }
3305 
3306 /*
3307  * use blocks preallocated to locality group
3308  */
3309 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3310 				struct ext4_prealloc_space *pa)
3311 {
3312 	unsigned int len = ac->ac_o_ex.fe_len;
3313 
3314 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3315 					&ac->ac_b_ex.fe_group,
3316 					&ac->ac_b_ex.fe_start);
3317 	ac->ac_b_ex.fe_len = len;
3318 	ac->ac_status = AC_STATUS_FOUND;
3319 	ac->ac_pa = pa;
3320 
3321 	/* we don't correct pa_pstart or pa_plen here to avoid
3322 	 * possible race when the group is being loaded concurrently
3323 	 * instead we correct pa later, after blocks are marked
3324 	 * in on-disk bitmap -- see ext4_mb_release_context()
3325 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3326 	 */
3327 	mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3328 }
3329 
3330 /*
3331  * Return the prealloc space that have minimal distance
3332  * from the goal block. @cpa is the prealloc
3333  * space that is having currently known minimal distance
3334  * from the goal block.
3335  */
3336 static struct ext4_prealloc_space *
3337 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3338 			struct ext4_prealloc_space *pa,
3339 			struct ext4_prealloc_space *cpa)
3340 {
3341 	ext4_fsblk_t cur_distance, new_distance;
3342 
3343 	if (cpa == NULL) {
3344 		atomic_inc(&pa->pa_count);
3345 		return pa;
3346 	}
3347 	cur_distance = abs(goal_block - cpa->pa_pstart);
3348 	new_distance = abs(goal_block - pa->pa_pstart);
3349 
3350 	if (cur_distance < new_distance)
3351 		return cpa;
3352 
3353 	/* drop the previous reference */
3354 	atomic_dec(&cpa->pa_count);
3355 	atomic_inc(&pa->pa_count);
3356 	return pa;
3357 }
3358 
3359 /*
3360  * search goal blocks in preallocated space
3361  */
3362 static noinline_for_stack int
3363 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3364 {
3365 	int order, i;
3366 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3367 	struct ext4_locality_group *lg;
3368 	struct ext4_prealloc_space *pa, *cpa = NULL;
3369 	ext4_fsblk_t goal_block;
3370 
3371 	/* only data can be preallocated */
3372 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3373 		return 0;
3374 
3375 	/* first, try per-file preallocation */
3376 	rcu_read_lock();
3377 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3378 
3379 		/* all fields in this condition don't change,
3380 		 * so we can skip locking for them */
3381 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3382 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3383 			continue;
3384 
3385 		/* found preallocated blocks, use them */
3386 		spin_lock(&pa->pa_lock);
3387 		if (pa->pa_deleted == 0 && pa->pa_free) {
3388 			atomic_inc(&pa->pa_count);
3389 			ext4_mb_use_inode_pa(ac, pa);
3390 			spin_unlock(&pa->pa_lock);
3391 			ac->ac_criteria = 10;
3392 			rcu_read_unlock();
3393 			return 1;
3394 		}
3395 		spin_unlock(&pa->pa_lock);
3396 	}
3397 	rcu_read_unlock();
3398 
3399 	/* can we use group allocation? */
3400 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3401 		return 0;
3402 
3403 	/* inode may have no locality group for some reason */
3404 	lg = ac->ac_lg;
3405 	if (lg == NULL)
3406 		return 0;
3407 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3408 	if (order > PREALLOC_TB_SIZE - 1)
3409 		/* The max size of hash table is PREALLOC_TB_SIZE */
3410 		order = PREALLOC_TB_SIZE - 1;
3411 
3412 	goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3413 		     ac->ac_g_ex.fe_start +
3414 		     le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3415 	/*
3416 	 * search for the prealloc space that is having
3417 	 * minimal distance from the goal block.
3418 	 */
3419 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3420 		rcu_read_lock();
3421 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3422 					pa_inode_list) {
3423 			spin_lock(&pa->pa_lock);
3424 			if (pa->pa_deleted == 0 &&
3425 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3426 
3427 				cpa = ext4_mb_check_group_pa(goal_block,
3428 								pa, cpa);
3429 			}
3430 			spin_unlock(&pa->pa_lock);
3431 		}
3432 		rcu_read_unlock();
3433 	}
3434 	if (cpa) {
3435 		ext4_mb_use_group_pa(ac, cpa);
3436 		ac->ac_criteria = 20;
3437 		return 1;
3438 	}
3439 	return 0;
3440 }
3441 
3442 /*
3443  * the function goes through all block freed in the group
3444  * but not yet committed and marks them used in in-core bitmap.
3445  * buddy must be generated from this bitmap
3446  * Need to be called with the ext4 group lock held
3447  */
3448 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3449 						ext4_group_t group)
3450 {
3451 	struct rb_node *n;
3452 	struct ext4_group_info *grp;
3453 	struct ext4_free_data *entry;
3454 
3455 	grp = ext4_get_group_info(sb, group);
3456 	n = rb_first(&(grp->bb_free_root));
3457 
3458 	while (n) {
3459 		entry = rb_entry(n, struct ext4_free_data, node);
3460 		mb_set_bits(bitmap, entry->start_blk, entry->count);
3461 		n = rb_next(n);
3462 	}
3463 	return;
3464 }
3465 
3466 /*
3467  * the function goes through all preallocation in this group and marks them
3468  * used in in-core bitmap. buddy must be generated from this bitmap
3469  * Need to be called with ext4 group lock held
3470  */
3471 static noinline_for_stack
3472 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3473 					ext4_group_t group)
3474 {
3475 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3476 	struct ext4_prealloc_space *pa;
3477 	struct list_head *cur;
3478 	ext4_group_t groupnr;
3479 	ext4_grpblk_t start;
3480 	int preallocated = 0;
3481 	int count = 0;
3482 	int len;
3483 
3484 	/* all form of preallocation discards first load group,
3485 	 * so the only competing code is preallocation use.
3486 	 * we don't need any locking here
3487 	 * notice we do NOT ignore preallocations with pa_deleted
3488 	 * otherwise we could leave used blocks available for
3489 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3490 	 * is dropping preallocation
3491 	 */
3492 	list_for_each(cur, &grp->bb_prealloc_list) {
3493 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3494 		spin_lock(&pa->pa_lock);
3495 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3496 					     &groupnr, &start);
3497 		len = pa->pa_len;
3498 		spin_unlock(&pa->pa_lock);
3499 		if (unlikely(len == 0))
3500 			continue;
3501 		BUG_ON(groupnr != group);
3502 		mb_set_bits(bitmap, start, len);
3503 		preallocated += len;
3504 		count++;
3505 	}
3506 	mb_debug("prellocated %u for group %u\n", preallocated, group);
3507 }
3508 
3509 static void ext4_mb_pa_callback(struct rcu_head *head)
3510 {
3511 	struct ext4_prealloc_space *pa;
3512 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3513 	kmem_cache_free(ext4_pspace_cachep, pa);
3514 }
3515 
3516 /*
3517  * drops a reference to preallocated space descriptor
3518  * if this was the last reference and the space is consumed
3519  */
3520 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3521 			struct super_block *sb, struct ext4_prealloc_space *pa)
3522 {
3523 	ext4_group_t grp;
3524 	ext4_fsblk_t grp_blk;
3525 
3526 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3527 		return;
3528 
3529 	/* in this short window concurrent discard can set pa_deleted */
3530 	spin_lock(&pa->pa_lock);
3531 	if (pa->pa_deleted == 1) {
3532 		spin_unlock(&pa->pa_lock);
3533 		return;
3534 	}
3535 
3536 	pa->pa_deleted = 1;
3537 	spin_unlock(&pa->pa_lock);
3538 
3539 	grp_blk = pa->pa_pstart;
3540 	/*
3541 	 * If doing group-based preallocation, pa_pstart may be in the
3542 	 * next group when pa is used up
3543 	 */
3544 	if (pa->pa_type == MB_GROUP_PA)
3545 		grp_blk--;
3546 
3547 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3548 
3549 	/*
3550 	 * possible race:
3551 	 *
3552 	 *  P1 (buddy init)			P2 (regular allocation)
3553 	 *					find block B in PA
3554 	 *  copy on-disk bitmap to buddy
3555 	 *  					mark B in on-disk bitmap
3556 	 *					drop PA from group
3557 	 *  mark all PAs in buddy
3558 	 *
3559 	 * thus, P1 initializes buddy with B available. to prevent this
3560 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3561 	 * against that pair
3562 	 */
3563 	ext4_lock_group(sb, grp);
3564 	list_del(&pa->pa_group_list);
3565 	ext4_unlock_group(sb, grp);
3566 
3567 	spin_lock(pa->pa_obj_lock);
3568 	list_del_rcu(&pa->pa_inode_list);
3569 	spin_unlock(pa->pa_obj_lock);
3570 
3571 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3572 }
3573 
3574 /*
3575  * creates new preallocated space for given inode
3576  */
3577 static noinline_for_stack int
3578 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3579 {
3580 	struct super_block *sb = ac->ac_sb;
3581 	struct ext4_prealloc_space *pa;
3582 	struct ext4_group_info *grp;
3583 	struct ext4_inode_info *ei;
3584 
3585 	/* preallocate only when found space is larger then requested */
3586 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3587 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3588 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3589 
3590 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3591 	if (pa == NULL)
3592 		return -ENOMEM;
3593 
3594 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3595 		int winl;
3596 		int wins;
3597 		int win;
3598 		int offs;
3599 
3600 		/* we can't allocate as much as normalizer wants.
3601 		 * so, found space must get proper lstart
3602 		 * to cover original request */
3603 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3604 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3605 
3606 		/* we're limited by original request in that
3607 		 * logical block must be covered any way
3608 		 * winl is window we can move our chunk within */
3609 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3610 
3611 		/* also, we should cover whole original request */
3612 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3613 
3614 		/* the smallest one defines real window */
3615 		win = min(winl, wins);
3616 
3617 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3618 		if (offs && offs < win)
3619 			win = offs;
3620 
3621 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3622 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3623 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3624 	}
3625 
3626 	/* preallocation can change ac_b_ex, thus we store actually
3627 	 * allocated blocks for history */
3628 	ac->ac_f_ex = ac->ac_b_ex;
3629 
3630 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3631 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3632 	pa->pa_len = ac->ac_b_ex.fe_len;
3633 	pa->pa_free = pa->pa_len;
3634 	atomic_set(&pa->pa_count, 1);
3635 	spin_lock_init(&pa->pa_lock);
3636 	INIT_LIST_HEAD(&pa->pa_inode_list);
3637 	INIT_LIST_HEAD(&pa->pa_group_list);
3638 	pa->pa_deleted = 0;
3639 	pa->pa_type = MB_INODE_PA;
3640 
3641 	mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3642 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3643 	trace_ext4_mb_new_inode_pa(ac, pa);
3644 
3645 	ext4_mb_use_inode_pa(ac, pa);
3646 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3647 
3648 	ei = EXT4_I(ac->ac_inode);
3649 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3650 
3651 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3652 	pa->pa_inode = ac->ac_inode;
3653 
3654 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3655 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3656 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3657 
3658 	spin_lock(pa->pa_obj_lock);
3659 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3660 	spin_unlock(pa->pa_obj_lock);
3661 
3662 	return 0;
3663 }
3664 
3665 /*
3666  * creates new preallocated space for locality group inodes belongs to
3667  */
3668 static noinline_for_stack int
3669 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3670 {
3671 	struct super_block *sb = ac->ac_sb;
3672 	struct ext4_locality_group *lg;
3673 	struct ext4_prealloc_space *pa;
3674 	struct ext4_group_info *grp;
3675 
3676 	/* preallocate only when found space is larger then requested */
3677 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3678 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3679 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3680 
3681 	BUG_ON(ext4_pspace_cachep == NULL);
3682 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3683 	if (pa == NULL)
3684 		return -ENOMEM;
3685 
3686 	/* preallocation can change ac_b_ex, thus we store actually
3687 	 * allocated blocks for history */
3688 	ac->ac_f_ex = ac->ac_b_ex;
3689 
3690 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3691 	pa->pa_lstart = pa->pa_pstart;
3692 	pa->pa_len = ac->ac_b_ex.fe_len;
3693 	pa->pa_free = pa->pa_len;
3694 	atomic_set(&pa->pa_count, 1);
3695 	spin_lock_init(&pa->pa_lock);
3696 	INIT_LIST_HEAD(&pa->pa_inode_list);
3697 	INIT_LIST_HEAD(&pa->pa_group_list);
3698 	pa->pa_deleted = 0;
3699 	pa->pa_type = MB_GROUP_PA;
3700 
3701 	mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3702 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3703 	trace_ext4_mb_new_group_pa(ac, pa);
3704 
3705 	ext4_mb_use_group_pa(ac, pa);
3706 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3707 
3708 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3709 	lg = ac->ac_lg;
3710 	BUG_ON(lg == NULL);
3711 
3712 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3713 	pa->pa_inode = NULL;
3714 
3715 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3716 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3717 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3718 
3719 	/*
3720 	 * We will later add the new pa to the right bucket
3721 	 * after updating the pa_free in ext4_mb_release_context
3722 	 */
3723 	return 0;
3724 }
3725 
3726 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3727 {
3728 	int err;
3729 
3730 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3731 		err = ext4_mb_new_group_pa(ac);
3732 	else
3733 		err = ext4_mb_new_inode_pa(ac);
3734 	return err;
3735 }
3736 
3737 /*
3738  * finds all unused blocks in on-disk bitmap, frees them in
3739  * in-core bitmap and buddy.
3740  * @pa must be unlinked from inode and group lists, so that
3741  * nobody else can find/use it.
3742  * the caller MUST hold group/inode locks.
3743  * TODO: optimize the case when there are no in-core structures yet
3744  */
3745 static noinline_for_stack int
3746 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3747 			struct ext4_prealloc_space *pa,
3748 			struct ext4_allocation_context *ac)
3749 {
3750 	struct super_block *sb = e4b->bd_sb;
3751 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3752 	unsigned int end;
3753 	unsigned int next;
3754 	ext4_group_t group;
3755 	ext4_grpblk_t bit;
3756 	unsigned long long grp_blk_start;
3757 	sector_t start;
3758 	int err = 0;
3759 	int free = 0;
3760 
3761 	BUG_ON(pa->pa_deleted == 0);
3762 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3763 	grp_blk_start = pa->pa_pstart - bit;
3764 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3765 	end = bit + pa->pa_len;
3766 
3767 	if (ac) {
3768 		ac->ac_sb = sb;
3769 		ac->ac_inode = pa->pa_inode;
3770 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3771 	}
3772 
3773 	while (bit < end) {
3774 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3775 		if (bit >= end)
3776 			break;
3777 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3778 		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3779 				le32_to_cpu(sbi->s_es->s_first_data_block);
3780 		mb_debug("    free preallocated %u/%u in group %u\n",
3781 				(unsigned) start, (unsigned) next - bit,
3782 				(unsigned) group);
3783 		free += next - bit;
3784 
3785 		if (ac) {
3786 			ac->ac_b_ex.fe_group = group;
3787 			ac->ac_b_ex.fe_start = bit;
3788 			ac->ac_b_ex.fe_len = next - bit;
3789 			ac->ac_b_ex.fe_logical = 0;
3790 			ext4_mb_store_history(ac);
3791 		}
3792 
3793 		trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3794 					       next - bit);
3795 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3796 		bit = next + 1;
3797 	}
3798 	if (free != pa->pa_free) {
3799 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3800 			pa, (unsigned long) pa->pa_lstart,
3801 			(unsigned long) pa->pa_pstart,
3802 			(unsigned long) pa->pa_len);
3803 		ext4_grp_locked_error(sb, group,
3804 					__func__, "free %u, pa_free %u",
3805 					free, pa->pa_free);
3806 		/*
3807 		 * pa is already deleted so we use the value obtained
3808 		 * from the bitmap and continue.
3809 		 */
3810 	}
3811 	atomic_add(free, &sbi->s_mb_discarded);
3812 
3813 	return err;
3814 }
3815 
3816 static noinline_for_stack int
3817 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3818 				struct ext4_prealloc_space *pa,
3819 				struct ext4_allocation_context *ac)
3820 {
3821 	struct super_block *sb = e4b->bd_sb;
3822 	ext4_group_t group;
3823 	ext4_grpblk_t bit;
3824 
3825 	if (ac)
3826 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3827 
3828 	trace_ext4_mb_release_group_pa(ac, pa);
3829 	BUG_ON(pa->pa_deleted == 0);
3830 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3831 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3832 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3833 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3834 
3835 	if (ac) {
3836 		ac->ac_sb = sb;
3837 		ac->ac_inode = NULL;
3838 		ac->ac_b_ex.fe_group = group;
3839 		ac->ac_b_ex.fe_start = bit;
3840 		ac->ac_b_ex.fe_len = pa->pa_len;
3841 		ac->ac_b_ex.fe_logical = 0;
3842 		ext4_mb_store_history(ac);
3843 	}
3844 
3845 	return 0;
3846 }
3847 
3848 /*
3849  * releases all preallocations in given group
3850  *
3851  * first, we need to decide discard policy:
3852  * - when do we discard
3853  *   1) ENOSPC
3854  * - how many do we discard
3855  *   1) how many requested
3856  */
3857 static noinline_for_stack int
3858 ext4_mb_discard_group_preallocations(struct super_block *sb,
3859 					ext4_group_t group, int needed)
3860 {
3861 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3862 	struct buffer_head *bitmap_bh = NULL;
3863 	struct ext4_prealloc_space *pa, *tmp;
3864 	struct ext4_allocation_context *ac;
3865 	struct list_head list;
3866 	struct ext4_buddy e4b;
3867 	int err;
3868 	int busy = 0;
3869 	int free = 0;
3870 
3871 	mb_debug("discard preallocation for group %u\n", group);
3872 
3873 	if (list_empty(&grp->bb_prealloc_list))
3874 		return 0;
3875 
3876 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3877 	if (bitmap_bh == NULL) {
3878 		ext4_error(sb, __func__, "Error in reading block "
3879 				"bitmap for %u", group);
3880 		return 0;
3881 	}
3882 
3883 	err = ext4_mb_load_buddy(sb, group, &e4b);
3884 	if (err) {
3885 		ext4_error(sb, __func__, "Error in loading buddy "
3886 				"information for %u", group);
3887 		put_bh(bitmap_bh);
3888 		return 0;
3889 	}
3890 
3891 	if (needed == 0)
3892 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3893 
3894 	INIT_LIST_HEAD(&list);
3895 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3896 	if (ac)
3897 		ac->ac_sb = sb;
3898 repeat:
3899 	ext4_lock_group(sb, group);
3900 	list_for_each_entry_safe(pa, tmp,
3901 				&grp->bb_prealloc_list, pa_group_list) {
3902 		spin_lock(&pa->pa_lock);
3903 		if (atomic_read(&pa->pa_count)) {
3904 			spin_unlock(&pa->pa_lock);
3905 			busy = 1;
3906 			continue;
3907 		}
3908 		if (pa->pa_deleted) {
3909 			spin_unlock(&pa->pa_lock);
3910 			continue;
3911 		}
3912 
3913 		/* seems this one can be freed ... */
3914 		pa->pa_deleted = 1;
3915 
3916 		/* we can trust pa_free ... */
3917 		free += pa->pa_free;
3918 
3919 		spin_unlock(&pa->pa_lock);
3920 
3921 		list_del(&pa->pa_group_list);
3922 		list_add(&pa->u.pa_tmp_list, &list);
3923 	}
3924 
3925 	/* if we still need more blocks and some PAs were used, try again */
3926 	if (free < needed && busy) {
3927 		busy = 0;
3928 		ext4_unlock_group(sb, group);
3929 		/*
3930 		 * Yield the CPU here so that we don't get soft lockup
3931 		 * in non preempt case.
3932 		 */
3933 		yield();
3934 		goto repeat;
3935 	}
3936 
3937 	/* found anything to free? */
3938 	if (list_empty(&list)) {
3939 		BUG_ON(free != 0);
3940 		goto out;
3941 	}
3942 
3943 	/* now free all selected PAs */
3944 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3945 
3946 		/* remove from object (inode or locality group) */
3947 		spin_lock(pa->pa_obj_lock);
3948 		list_del_rcu(&pa->pa_inode_list);
3949 		spin_unlock(pa->pa_obj_lock);
3950 
3951 		if (pa->pa_type == MB_GROUP_PA)
3952 			ext4_mb_release_group_pa(&e4b, pa, ac);
3953 		else
3954 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3955 
3956 		list_del(&pa->u.pa_tmp_list);
3957 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3958 	}
3959 
3960 out:
3961 	ext4_unlock_group(sb, group);
3962 	if (ac)
3963 		kmem_cache_free(ext4_ac_cachep, ac);
3964 	ext4_mb_release_desc(&e4b);
3965 	put_bh(bitmap_bh);
3966 	return free;
3967 }
3968 
3969 /*
3970  * releases all non-used preallocated blocks for given inode
3971  *
3972  * It's important to discard preallocations under i_data_sem
3973  * We don't want another block to be served from the prealloc
3974  * space when we are discarding the inode prealloc space.
3975  *
3976  * FIXME!! Make sure it is valid at all the call sites
3977  */
3978 void ext4_discard_preallocations(struct inode *inode)
3979 {
3980 	struct ext4_inode_info *ei = EXT4_I(inode);
3981 	struct super_block *sb = inode->i_sb;
3982 	struct buffer_head *bitmap_bh = NULL;
3983 	struct ext4_prealloc_space *pa, *tmp;
3984 	struct ext4_allocation_context *ac;
3985 	ext4_group_t group = 0;
3986 	struct list_head list;
3987 	struct ext4_buddy e4b;
3988 	int err;
3989 
3990 	if (!S_ISREG(inode->i_mode)) {
3991 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3992 		return;
3993 	}
3994 
3995 	mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3996 	trace_ext4_discard_preallocations(inode);
3997 
3998 	INIT_LIST_HEAD(&list);
3999 
4000 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4001 	if (ac) {
4002 		ac->ac_sb = sb;
4003 		ac->ac_inode = inode;
4004 	}
4005 repeat:
4006 	/* first, collect all pa's in the inode */
4007 	spin_lock(&ei->i_prealloc_lock);
4008 	while (!list_empty(&ei->i_prealloc_list)) {
4009 		pa = list_entry(ei->i_prealloc_list.next,
4010 				struct ext4_prealloc_space, pa_inode_list);
4011 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4012 		spin_lock(&pa->pa_lock);
4013 		if (atomic_read(&pa->pa_count)) {
4014 			/* this shouldn't happen often - nobody should
4015 			 * use preallocation while we're discarding it */
4016 			spin_unlock(&pa->pa_lock);
4017 			spin_unlock(&ei->i_prealloc_lock);
4018 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
4019 			WARN_ON(1);
4020 			schedule_timeout_uninterruptible(HZ);
4021 			goto repeat;
4022 
4023 		}
4024 		if (pa->pa_deleted == 0) {
4025 			pa->pa_deleted = 1;
4026 			spin_unlock(&pa->pa_lock);
4027 			list_del_rcu(&pa->pa_inode_list);
4028 			list_add(&pa->u.pa_tmp_list, &list);
4029 			continue;
4030 		}
4031 
4032 		/* someone is deleting pa right now */
4033 		spin_unlock(&pa->pa_lock);
4034 		spin_unlock(&ei->i_prealloc_lock);
4035 
4036 		/* we have to wait here because pa_deleted
4037 		 * doesn't mean pa is already unlinked from
4038 		 * the list. as we might be called from
4039 		 * ->clear_inode() the inode will get freed
4040 		 * and concurrent thread which is unlinking
4041 		 * pa from inode's list may access already
4042 		 * freed memory, bad-bad-bad */
4043 
4044 		/* XXX: if this happens too often, we can
4045 		 * add a flag to force wait only in case
4046 		 * of ->clear_inode(), but not in case of
4047 		 * regular truncate */
4048 		schedule_timeout_uninterruptible(HZ);
4049 		goto repeat;
4050 	}
4051 	spin_unlock(&ei->i_prealloc_lock);
4052 
4053 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4054 		BUG_ON(pa->pa_type != MB_INODE_PA);
4055 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4056 
4057 		err = ext4_mb_load_buddy(sb, group, &e4b);
4058 		if (err) {
4059 			ext4_error(sb, __func__, "Error in loading buddy "
4060 					"information for %u", group);
4061 			continue;
4062 		}
4063 
4064 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4065 		if (bitmap_bh == NULL) {
4066 			ext4_error(sb, __func__, "Error in reading block "
4067 					"bitmap for %u", group);
4068 			ext4_mb_release_desc(&e4b);
4069 			continue;
4070 		}
4071 
4072 		ext4_lock_group(sb, group);
4073 		list_del(&pa->pa_group_list);
4074 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4075 		ext4_unlock_group(sb, group);
4076 
4077 		ext4_mb_release_desc(&e4b);
4078 		put_bh(bitmap_bh);
4079 
4080 		list_del(&pa->u.pa_tmp_list);
4081 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4082 	}
4083 	if (ac)
4084 		kmem_cache_free(ext4_ac_cachep, ac);
4085 }
4086 
4087 /*
4088  * finds all preallocated spaces and return blocks being freed to them
4089  * if preallocated space becomes full (no block is used from the space)
4090  * then the function frees space in buddy
4091  * XXX: at the moment, truncate (which is the only way to free blocks)
4092  * discards all preallocations
4093  */
4094 static void ext4_mb_return_to_preallocation(struct inode *inode,
4095 					struct ext4_buddy *e4b,
4096 					sector_t block, int count)
4097 {
4098 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4099 }
4100 #ifdef MB_DEBUG
4101 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4102 {
4103 	struct super_block *sb = ac->ac_sb;
4104 	ext4_group_t ngroups, i;
4105 
4106 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
4107 			" Allocation context details:\n");
4108 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4109 			ac->ac_status, ac->ac_flags);
4110 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4111 			"best %lu/%lu/%lu@%lu cr %d\n",
4112 			(unsigned long)ac->ac_o_ex.fe_group,
4113 			(unsigned long)ac->ac_o_ex.fe_start,
4114 			(unsigned long)ac->ac_o_ex.fe_len,
4115 			(unsigned long)ac->ac_o_ex.fe_logical,
4116 			(unsigned long)ac->ac_g_ex.fe_group,
4117 			(unsigned long)ac->ac_g_ex.fe_start,
4118 			(unsigned long)ac->ac_g_ex.fe_len,
4119 			(unsigned long)ac->ac_g_ex.fe_logical,
4120 			(unsigned long)ac->ac_b_ex.fe_group,
4121 			(unsigned long)ac->ac_b_ex.fe_start,
4122 			(unsigned long)ac->ac_b_ex.fe_len,
4123 			(unsigned long)ac->ac_b_ex.fe_logical,
4124 			(int)ac->ac_criteria);
4125 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4126 		ac->ac_found);
4127 	printk(KERN_ERR "EXT4-fs: groups: \n");
4128 	ngroups = ext4_get_groups_count(sb);
4129 	for (i = 0; i < ngroups; i++) {
4130 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4131 		struct ext4_prealloc_space *pa;
4132 		ext4_grpblk_t start;
4133 		struct list_head *cur;
4134 		ext4_lock_group(sb, i);
4135 		list_for_each(cur, &grp->bb_prealloc_list) {
4136 			pa = list_entry(cur, struct ext4_prealloc_space,
4137 					pa_group_list);
4138 			spin_lock(&pa->pa_lock);
4139 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4140 						     NULL, &start);
4141 			spin_unlock(&pa->pa_lock);
4142 			printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4143 							start, pa->pa_len);
4144 		}
4145 		ext4_unlock_group(sb, i);
4146 
4147 		if (grp->bb_free == 0)
4148 			continue;
4149 		printk(KERN_ERR "%lu: %d/%d \n",
4150 		       i, grp->bb_free, grp->bb_fragments);
4151 	}
4152 	printk(KERN_ERR "\n");
4153 }
4154 #else
4155 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4156 {
4157 	return;
4158 }
4159 #endif
4160 
4161 /*
4162  * We use locality group preallocation for small size file. The size of the
4163  * file is determined by the current size or the resulting size after
4164  * allocation which ever is larger
4165  *
4166  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4167  */
4168 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4169 {
4170 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4171 	int bsbits = ac->ac_sb->s_blocksize_bits;
4172 	loff_t size, isize;
4173 
4174 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4175 		return;
4176 
4177 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4178 	isize = i_size_read(ac->ac_inode) >> bsbits;
4179 	size = max(size, isize);
4180 
4181 	/* don't use group allocation for large files */
4182 	if (size >= sbi->s_mb_stream_request)
4183 		return;
4184 
4185 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4186 		return;
4187 
4188 	BUG_ON(ac->ac_lg != NULL);
4189 	/*
4190 	 * locality group prealloc space are per cpu. The reason for having
4191 	 * per cpu locality group is to reduce the contention between block
4192 	 * request from multiple CPUs.
4193 	 */
4194 	ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4195 
4196 	/* we're going to use group allocation */
4197 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4198 
4199 	/* serialize all allocations in the group */
4200 	mutex_lock(&ac->ac_lg->lg_mutex);
4201 }
4202 
4203 static noinline_for_stack int
4204 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4205 				struct ext4_allocation_request *ar)
4206 {
4207 	struct super_block *sb = ar->inode->i_sb;
4208 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4209 	struct ext4_super_block *es = sbi->s_es;
4210 	ext4_group_t group;
4211 	unsigned int len;
4212 	ext4_fsblk_t goal;
4213 	ext4_grpblk_t block;
4214 
4215 	/* we can't allocate > group size */
4216 	len = ar->len;
4217 
4218 	/* just a dirty hack to filter too big requests  */
4219 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4220 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4221 
4222 	/* start searching from the goal */
4223 	goal = ar->goal;
4224 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4225 			goal >= ext4_blocks_count(es))
4226 		goal = le32_to_cpu(es->s_first_data_block);
4227 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4228 
4229 	/* set up allocation goals */
4230 	memset(ac, 0, sizeof(struct ext4_allocation_context));
4231 	ac->ac_b_ex.fe_logical = ar->logical;
4232 	ac->ac_status = AC_STATUS_CONTINUE;
4233 	ac->ac_sb = sb;
4234 	ac->ac_inode = ar->inode;
4235 	ac->ac_o_ex.fe_logical = ar->logical;
4236 	ac->ac_o_ex.fe_group = group;
4237 	ac->ac_o_ex.fe_start = block;
4238 	ac->ac_o_ex.fe_len = len;
4239 	ac->ac_g_ex.fe_logical = ar->logical;
4240 	ac->ac_g_ex.fe_group = group;
4241 	ac->ac_g_ex.fe_start = block;
4242 	ac->ac_g_ex.fe_len = len;
4243 	ac->ac_flags = ar->flags;
4244 
4245 	/* we have to define context: we'll we work with a file or
4246 	 * locality group. this is a policy, actually */
4247 	ext4_mb_group_or_file(ac);
4248 
4249 	mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4250 			"left: %u/%u, right %u/%u to %swritable\n",
4251 			(unsigned) ar->len, (unsigned) ar->logical,
4252 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4253 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4254 			(unsigned) ar->lright, (unsigned) ar->pright,
4255 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4256 	return 0;
4257 
4258 }
4259 
4260 static noinline_for_stack void
4261 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4262 					struct ext4_locality_group *lg,
4263 					int order, int total_entries)
4264 {
4265 	ext4_group_t group = 0;
4266 	struct ext4_buddy e4b;
4267 	struct list_head discard_list;
4268 	struct ext4_prealloc_space *pa, *tmp;
4269 	struct ext4_allocation_context *ac;
4270 
4271 	mb_debug("discard locality group preallocation\n");
4272 
4273 	INIT_LIST_HEAD(&discard_list);
4274 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4275 	if (ac)
4276 		ac->ac_sb = sb;
4277 
4278 	spin_lock(&lg->lg_prealloc_lock);
4279 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4280 						pa_inode_list) {
4281 		spin_lock(&pa->pa_lock);
4282 		if (atomic_read(&pa->pa_count)) {
4283 			/*
4284 			 * This is the pa that we just used
4285 			 * for block allocation. So don't
4286 			 * free that
4287 			 */
4288 			spin_unlock(&pa->pa_lock);
4289 			continue;
4290 		}
4291 		if (pa->pa_deleted) {
4292 			spin_unlock(&pa->pa_lock);
4293 			continue;
4294 		}
4295 		/* only lg prealloc space */
4296 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4297 
4298 		/* seems this one can be freed ... */
4299 		pa->pa_deleted = 1;
4300 		spin_unlock(&pa->pa_lock);
4301 
4302 		list_del_rcu(&pa->pa_inode_list);
4303 		list_add(&pa->u.pa_tmp_list, &discard_list);
4304 
4305 		total_entries--;
4306 		if (total_entries <= 5) {
4307 			/*
4308 			 * we want to keep only 5 entries
4309 			 * allowing it to grow to 8. This
4310 			 * mak sure we don't call discard
4311 			 * soon for this list.
4312 			 */
4313 			break;
4314 		}
4315 	}
4316 	spin_unlock(&lg->lg_prealloc_lock);
4317 
4318 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4319 
4320 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4321 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4322 			ext4_error(sb, __func__, "Error in loading buddy "
4323 					"information for %u", group);
4324 			continue;
4325 		}
4326 		ext4_lock_group(sb, group);
4327 		list_del(&pa->pa_group_list);
4328 		ext4_mb_release_group_pa(&e4b, pa, ac);
4329 		ext4_unlock_group(sb, group);
4330 
4331 		ext4_mb_release_desc(&e4b);
4332 		list_del(&pa->u.pa_tmp_list);
4333 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4334 	}
4335 	if (ac)
4336 		kmem_cache_free(ext4_ac_cachep, ac);
4337 }
4338 
4339 /*
4340  * We have incremented pa_count. So it cannot be freed at this
4341  * point. Also we hold lg_mutex. So no parallel allocation is
4342  * possible from this lg. That means pa_free cannot be updated.
4343  *
4344  * A parallel ext4_mb_discard_group_preallocations is possible.
4345  * which can cause the lg_prealloc_list to be updated.
4346  */
4347 
4348 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4349 {
4350 	int order, added = 0, lg_prealloc_count = 1;
4351 	struct super_block *sb = ac->ac_sb;
4352 	struct ext4_locality_group *lg = ac->ac_lg;
4353 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4354 
4355 	order = fls(pa->pa_free) - 1;
4356 	if (order > PREALLOC_TB_SIZE - 1)
4357 		/* The max size of hash table is PREALLOC_TB_SIZE */
4358 		order = PREALLOC_TB_SIZE - 1;
4359 	/* Add the prealloc space to lg */
4360 	rcu_read_lock();
4361 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4362 						pa_inode_list) {
4363 		spin_lock(&tmp_pa->pa_lock);
4364 		if (tmp_pa->pa_deleted) {
4365 			spin_unlock(&tmp_pa->pa_lock);
4366 			continue;
4367 		}
4368 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4369 			/* Add to the tail of the previous entry */
4370 			list_add_tail_rcu(&pa->pa_inode_list,
4371 						&tmp_pa->pa_inode_list);
4372 			added = 1;
4373 			/*
4374 			 * we want to count the total
4375 			 * number of entries in the list
4376 			 */
4377 		}
4378 		spin_unlock(&tmp_pa->pa_lock);
4379 		lg_prealloc_count++;
4380 	}
4381 	if (!added)
4382 		list_add_tail_rcu(&pa->pa_inode_list,
4383 					&lg->lg_prealloc_list[order]);
4384 	rcu_read_unlock();
4385 
4386 	/* Now trim the list to be not more than 8 elements */
4387 	if (lg_prealloc_count > 8) {
4388 		ext4_mb_discard_lg_preallocations(sb, lg,
4389 						order, lg_prealloc_count);
4390 		return;
4391 	}
4392 	return ;
4393 }
4394 
4395 /*
4396  * release all resource we used in allocation
4397  */
4398 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4399 {
4400 	struct ext4_prealloc_space *pa = ac->ac_pa;
4401 	if (pa) {
4402 		if (pa->pa_type == MB_GROUP_PA) {
4403 			/* see comment in ext4_mb_use_group_pa() */
4404 			spin_lock(&pa->pa_lock);
4405 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4406 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4407 			pa->pa_free -= ac->ac_b_ex.fe_len;
4408 			pa->pa_len -= ac->ac_b_ex.fe_len;
4409 			spin_unlock(&pa->pa_lock);
4410 		}
4411 	}
4412 	if (ac->alloc_semp)
4413 		up_read(ac->alloc_semp);
4414 	if (pa) {
4415 		/*
4416 		 * We want to add the pa to the right bucket.
4417 		 * Remove it from the list and while adding
4418 		 * make sure the list to which we are adding
4419 		 * doesn't grow big.  We need to release
4420 		 * alloc_semp before calling ext4_mb_add_n_trim()
4421 		 */
4422 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4423 			spin_lock(pa->pa_obj_lock);
4424 			list_del_rcu(&pa->pa_inode_list);
4425 			spin_unlock(pa->pa_obj_lock);
4426 			ext4_mb_add_n_trim(ac);
4427 		}
4428 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4429 	}
4430 	if (ac->ac_bitmap_page)
4431 		page_cache_release(ac->ac_bitmap_page);
4432 	if (ac->ac_buddy_page)
4433 		page_cache_release(ac->ac_buddy_page);
4434 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4435 		mutex_unlock(&ac->ac_lg->lg_mutex);
4436 	ext4_mb_collect_stats(ac);
4437 	return 0;
4438 }
4439 
4440 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4441 {
4442 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4443 	int ret;
4444 	int freed = 0;
4445 
4446 	trace_ext4_mb_discard_preallocations(sb, needed);
4447 	for (i = 0; i < ngroups && needed > 0; i++) {
4448 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4449 		freed += ret;
4450 		needed -= ret;
4451 	}
4452 
4453 	return freed;
4454 }
4455 
4456 /*
4457  * Main entry point into mballoc to allocate blocks
4458  * it tries to use preallocation first, then falls back
4459  * to usual allocation
4460  */
4461 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4462 				 struct ext4_allocation_request *ar, int *errp)
4463 {
4464 	int freed;
4465 	struct ext4_allocation_context *ac = NULL;
4466 	struct ext4_sb_info *sbi;
4467 	struct super_block *sb;
4468 	ext4_fsblk_t block = 0;
4469 	unsigned int inquota = 0;
4470 	unsigned int reserv_blks = 0;
4471 
4472 	sb = ar->inode->i_sb;
4473 	sbi = EXT4_SB(sb);
4474 
4475 	trace_ext4_request_blocks(ar);
4476 
4477 	/*
4478 	 * For delayed allocation, we could skip the ENOSPC and
4479 	 * EDQUOT check, as blocks and quotas have been already
4480 	 * reserved when data being copied into pagecache.
4481 	 */
4482 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4483 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4484 	else {
4485 		/* Without delayed allocation we need to verify
4486 		 * there is enough free blocks to do block allocation
4487 		 * and verify allocation doesn't exceed the quota limits.
4488 		 */
4489 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4490 			/* let others to free the space */
4491 			yield();
4492 			ar->len = ar->len >> 1;
4493 		}
4494 		if (!ar->len) {
4495 			*errp = -ENOSPC;
4496 			return 0;
4497 		}
4498 		reserv_blks = ar->len;
4499 		while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4500 			ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4501 			ar->len--;
4502 		}
4503 		inquota = ar->len;
4504 		if (ar->len == 0) {
4505 			*errp = -EDQUOT;
4506 			goto out3;
4507 		}
4508 	}
4509 
4510 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4511 	if (!ac) {
4512 		ar->len = 0;
4513 		*errp = -ENOMEM;
4514 		goto out1;
4515 	}
4516 
4517 	*errp = ext4_mb_initialize_context(ac, ar);
4518 	if (*errp) {
4519 		ar->len = 0;
4520 		goto out2;
4521 	}
4522 
4523 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4524 	if (!ext4_mb_use_preallocated(ac)) {
4525 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4526 		ext4_mb_normalize_request(ac, ar);
4527 repeat:
4528 		/* allocate space in core */
4529 		ext4_mb_regular_allocator(ac);
4530 
4531 		/* as we've just preallocated more space than
4532 		 * user requested orinally, we store allocated
4533 		 * space in a special descriptor */
4534 		if (ac->ac_status == AC_STATUS_FOUND &&
4535 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4536 			ext4_mb_new_preallocation(ac);
4537 	}
4538 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4539 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4540 		if (*errp ==  -EAGAIN) {
4541 			/*
4542 			 * drop the reference that we took
4543 			 * in ext4_mb_use_best_found
4544 			 */
4545 			ext4_mb_release_context(ac);
4546 			ac->ac_b_ex.fe_group = 0;
4547 			ac->ac_b_ex.fe_start = 0;
4548 			ac->ac_b_ex.fe_len = 0;
4549 			ac->ac_status = AC_STATUS_CONTINUE;
4550 			goto repeat;
4551 		} else if (*errp) {
4552 			ac->ac_b_ex.fe_len = 0;
4553 			ar->len = 0;
4554 			ext4_mb_show_ac(ac);
4555 		} else {
4556 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4557 			ar->len = ac->ac_b_ex.fe_len;
4558 		}
4559 	} else {
4560 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4561 		if (freed)
4562 			goto repeat;
4563 		*errp = -ENOSPC;
4564 		ac->ac_b_ex.fe_len = 0;
4565 		ar->len = 0;
4566 		ext4_mb_show_ac(ac);
4567 	}
4568 
4569 	ext4_mb_release_context(ac);
4570 
4571 out2:
4572 	kmem_cache_free(ext4_ac_cachep, ac);
4573 out1:
4574 	if (inquota && ar->len < inquota)
4575 		vfs_dq_free_block(ar->inode, inquota - ar->len);
4576 out3:
4577 	if (!ar->len) {
4578 		if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4579 			/* release all the reserved blocks if non delalloc */
4580 			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4581 						reserv_blks);
4582 	}
4583 
4584 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4585 
4586 	return block;
4587 }
4588 
4589 /*
4590  * We can merge two free data extents only if the physical blocks
4591  * are contiguous, AND the extents were freed by the same transaction,
4592  * AND the blocks are associated with the same group.
4593  */
4594 static int can_merge(struct ext4_free_data *entry1,
4595 			struct ext4_free_data *entry2)
4596 {
4597 	if ((entry1->t_tid == entry2->t_tid) &&
4598 	    (entry1->group == entry2->group) &&
4599 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
4600 		return 1;
4601 	return 0;
4602 }
4603 
4604 static noinline_for_stack int
4605 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4606 		      struct ext4_free_data *new_entry)
4607 {
4608 	ext4_grpblk_t block;
4609 	struct ext4_free_data *entry;
4610 	struct ext4_group_info *db = e4b->bd_info;
4611 	struct super_block *sb = e4b->bd_sb;
4612 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4613 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4614 	struct rb_node *parent = NULL, *new_node;
4615 
4616 	BUG_ON(!ext4_handle_valid(handle));
4617 	BUG_ON(e4b->bd_bitmap_page == NULL);
4618 	BUG_ON(e4b->bd_buddy_page == NULL);
4619 
4620 	new_node = &new_entry->node;
4621 	block = new_entry->start_blk;
4622 
4623 	if (!*n) {
4624 		/* first free block exent. We need to
4625 		   protect buddy cache from being freed,
4626 		 * otherwise we'll refresh it from
4627 		 * on-disk bitmap and lose not-yet-available
4628 		 * blocks */
4629 		page_cache_get(e4b->bd_buddy_page);
4630 		page_cache_get(e4b->bd_bitmap_page);
4631 	}
4632 	while (*n) {
4633 		parent = *n;
4634 		entry = rb_entry(parent, struct ext4_free_data, node);
4635 		if (block < entry->start_blk)
4636 			n = &(*n)->rb_left;
4637 		else if (block >= (entry->start_blk + entry->count))
4638 			n = &(*n)->rb_right;
4639 		else {
4640 			ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4641 					"Double free of blocks %d (%d %d)",
4642 					block, entry->start_blk, entry->count);
4643 			return 0;
4644 		}
4645 	}
4646 
4647 	rb_link_node(new_node, parent, n);
4648 	rb_insert_color(new_node, &db->bb_free_root);
4649 
4650 	/* Now try to see the extent can be merged to left and right */
4651 	node = rb_prev(new_node);
4652 	if (node) {
4653 		entry = rb_entry(node, struct ext4_free_data, node);
4654 		if (can_merge(entry, new_entry)) {
4655 			new_entry->start_blk = entry->start_blk;
4656 			new_entry->count += entry->count;
4657 			rb_erase(node, &(db->bb_free_root));
4658 			spin_lock(&sbi->s_md_lock);
4659 			list_del(&entry->list);
4660 			spin_unlock(&sbi->s_md_lock);
4661 			kmem_cache_free(ext4_free_ext_cachep, entry);
4662 		}
4663 	}
4664 
4665 	node = rb_next(new_node);
4666 	if (node) {
4667 		entry = rb_entry(node, struct ext4_free_data, node);
4668 		if (can_merge(new_entry, entry)) {
4669 			new_entry->count += entry->count;
4670 			rb_erase(node, &(db->bb_free_root));
4671 			spin_lock(&sbi->s_md_lock);
4672 			list_del(&entry->list);
4673 			spin_unlock(&sbi->s_md_lock);
4674 			kmem_cache_free(ext4_free_ext_cachep, entry);
4675 		}
4676 	}
4677 	/* Add the extent to transaction's private list */
4678 	spin_lock(&sbi->s_md_lock);
4679 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4680 	spin_unlock(&sbi->s_md_lock);
4681 	return 0;
4682 }
4683 
4684 /*
4685  * Main entry point into mballoc to free blocks
4686  */
4687 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4688 			ext4_fsblk_t block, unsigned long count,
4689 			int metadata, unsigned long *freed)
4690 {
4691 	struct buffer_head *bitmap_bh = NULL;
4692 	struct super_block *sb = inode->i_sb;
4693 	struct ext4_allocation_context *ac = NULL;
4694 	struct ext4_group_desc *gdp;
4695 	struct ext4_super_block *es;
4696 	unsigned int overflow;
4697 	ext4_grpblk_t bit;
4698 	struct buffer_head *gd_bh;
4699 	ext4_group_t block_group;
4700 	struct ext4_sb_info *sbi;
4701 	struct ext4_buddy e4b;
4702 	int err = 0;
4703 	int ret;
4704 
4705 	*freed = 0;
4706 
4707 	sbi = EXT4_SB(sb);
4708 	es = EXT4_SB(sb)->s_es;
4709 	if (block < le32_to_cpu(es->s_first_data_block) ||
4710 	    block + count < block ||
4711 	    block + count > ext4_blocks_count(es)) {
4712 		ext4_error(sb, __func__,
4713 			    "Freeing blocks not in datazone - "
4714 			    "block = %llu, count = %lu", block, count);
4715 		goto error_return;
4716 	}
4717 
4718 	ext4_debug("freeing block %llu\n", block);
4719 	trace_ext4_free_blocks(inode, block, count, metadata);
4720 
4721 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4722 	if (ac) {
4723 		ac->ac_op = EXT4_MB_HISTORY_FREE;
4724 		ac->ac_inode = inode;
4725 		ac->ac_sb = sb;
4726 	}
4727 
4728 do_more:
4729 	overflow = 0;
4730 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4731 
4732 	/*
4733 	 * Check to see if we are freeing blocks across a group
4734 	 * boundary.
4735 	 */
4736 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4737 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4738 		count -= overflow;
4739 	}
4740 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4741 	if (!bitmap_bh) {
4742 		err = -EIO;
4743 		goto error_return;
4744 	}
4745 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4746 	if (!gdp) {
4747 		err = -EIO;
4748 		goto error_return;
4749 	}
4750 
4751 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4752 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4753 	    in_range(block, ext4_inode_table(sb, gdp),
4754 		      EXT4_SB(sb)->s_itb_per_group) ||
4755 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4756 		      EXT4_SB(sb)->s_itb_per_group)) {
4757 
4758 		ext4_error(sb, __func__,
4759 			   "Freeing blocks in system zone - "
4760 			   "Block = %llu, count = %lu", block, count);
4761 		/* err = 0. ext4_std_error should be a no op */
4762 		goto error_return;
4763 	}
4764 
4765 	BUFFER_TRACE(bitmap_bh, "getting write access");
4766 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4767 	if (err)
4768 		goto error_return;
4769 
4770 	/*
4771 	 * We are about to modify some metadata.  Call the journal APIs
4772 	 * to unshare ->b_data if a currently-committing transaction is
4773 	 * using it
4774 	 */
4775 	BUFFER_TRACE(gd_bh, "get_write_access");
4776 	err = ext4_journal_get_write_access(handle, gd_bh);
4777 	if (err)
4778 		goto error_return;
4779 #ifdef AGGRESSIVE_CHECK
4780 	{
4781 		int i;
4782 		for (i = 0; i < count; i++)
4783 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4784 	}
4785 #endif
4786 	if (ac) {
4787 		ac->ac_b_ex.fe_group = block_group;
4788 		ac->ac_b_ex.fe_start = bit;
4789 		ac->ac_b_ex.fe_len = count;
4790 		ext4_mb_store_history(ac);
4791 	}
4792 
4793 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4794 	if (err)
4795 		goto error_return;
4796 	if (metadata && ext4_handle_valid(handle)) {
4797 		struct ext4_free_data *new_entry;
4798 		/*
4799 		 * blocks being freed are metadata. these blocks shouldn't
4800 		 * be used until this transaction is committed
4801 		 */
4802 		new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4803 		new_entry->start_blk = bit;
4804 		new_entry->group  = block_group;
4805 		new_entry->count = count;
4806 		new_entry->t_tid = handle->h_transaction->t_tid;
4807 
4808 		ext4_lock_group(sb, block_group);
4809 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4810 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4811 	} else {
4812 		/* need to update group_info->bb_free and bitmap
4813 		 * with group lock held. generate_buddy look at
4814 		 * them with group lock_held
4815 		 */
4816 		ext4_lock_group(sb, block_group);
4817 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4818 		mb_free_blocks(inode, &e4b, bit, count);
4819 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4820 	}
4821 
4822 	ret = ext4_free_blks_count(sb, gdp) + count;
4823 	ext4_free_blks_set(sb, gdp, ret);
4824 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4825 	ext4_unlock_group(sb, block_group);
4826 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4827 
4828 	if (sbi->s_log_groups_per_flex) {
4829 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4830 		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4831 	}
4832 
4833 	ext4_mb_release_desc(&e4b);
4834 
4835 	*freed += count;
4836 
4837 	/* We dirtied the bitmap block */
4838 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4839 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4840 
4841 	/* And the group descriptor block */
4842 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4843 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4844 	if (!err)
4845 		err = ret;
4846 
4847 	if (overflow && !err) {
4848 		block += count;
4849 		count = overflow;
4850 		put_bh(bitmap_bh);
4851 		goto do_more;
4852 	}
4853 	sb->s_dirt = 1;
4854 error_return:
4855 	brelse(bitmap_bh);
4856 	ext4_std_error(sb, err);
4857 	if (ac)
4858 		kmem_cache_free(ext4_ac_cachep, ac);
4859 	return;
4860 }
4861