xref: /linux/fs/ext4/mballoc.c (revision de5109898a8a0cb001abcb6916bef4efa32bf39b)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 	ext4_grpblk_t i = 0;
727 	ext4_grpblk_t first;
728 	ext4_grpblk_t len;
729 	unsigned free = 0;
730 	unsigned fragments = 0;
731 	unsigned long long period = get_cycles();
732 
733 	/* initialize buddy from bitmap which is aggregation
734 	 * of on-disk bitmap and preallocations */
735 	i = mb_find_next_zero_bit(bitmap, max, 0);
736 	grp->bb_first_free = i;
737 	while (i < max) {
738 		fragments++;
739 		first = i;
740 		i = mb_find_next_bit(bitmap, max, i);
741 		len = i - first;
742 		free += len;
743 		if (len > 1)
744 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 		else
746 			grp->bb_counters[0]++;
747 		if (i < max)
748 			i = mb_find_next_zero_bit(bitmap, max, i);
749 	}
750 	grp->bb_fragments = fragments;
751 
752 	if (free != grp->bb_free) {
753 		ext4_grp_locked_error(sb, group, 0, 0,
754 				      "%u clusters in bitmap, %u in gd; "
755 				      "block bitmap corrupt.",
756 				      free, grp->bb_free);
757 		/*
758 		 * If we intend to continue, we consider group descriptor
759 		 * corrupt and update bb_free using bitmap value
760 		 */
761 		grp->bb_free = free;
762 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
763 	}
764 	mb_set_largest_free_order(sb, grp);
765 
766 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
767 
768 	period = get_cycles() - period;
769 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
770 	EXT4_SB(sb)->s_mb_buddies_generated++;
771 	EXT4_SB(sb)->s_mb_generation_time += period;
772 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
773 }
774 
775 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
776 {
777 	int count;
778 	int order = 1;
779 	void *buddy;
780 
781 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
782 		ext4_set_bits(buddy, 0, count);
783 	}
784 	e4b->bd_info->bb_fragments = 0;
785 	memset(e4b->bd_info->bb_counters, 0,
786 		sizeof(*e4b->bd_info->bb_counters) *
787 		(e4b->bd_sb->s_blocksize_bits + 2));
788 
789 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
790 		e4b->bd_bitmap, e4b->bd_group);
791 }
792 
793 /* The buddy information is attached the buddy cache inode
794  * for convenience. The information regarding each group
795  * is loaded via ext4_mb_load_buddy. The information involve
796  * block bitmap and buddy information. The information are
797  * stored in the inode as
798  *
799  * {                        page                        }
800  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
801  *
802  *
803  * one block each for bitmap and buddy information.
804  * So for each group we take up 2 blocks. A page can
805  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
806  * So it can have information regarding groups_per_page which
807  * is blocks_per_page/2
808  *
809  * Locking note:  This routine takes the block group lock of all groups
810  * for this page; do not hold this lock when calling this routine!
811  */
812 
813 static int ext4_mb_init_cache(struct page *page, char *incore)
814 {
815 	ext4_group_t ngroups;
816 	int blocksize;
817 	int blocks_per_page;
818 	int groups_per_page;
819 	int err = 0;
820 	int i;
821 	ext4_group_t first_group, group;
822 	int first_block;
823 	struct super_block *sb;
824 	struct buffer_head *bhs;
825 	struct buffer_head **bh = NULL;
826 	struct inode *inode;
827 	char *data;
828 	char *bitmap;
829 	struct ext4_group_info *grinfo;
830 
831 	mb_debug(1, "init page %lu\n", page->index);
832 
833 	inode = page->mapping->host;
834 	sb = inode->i_sb;
835 	ngroups = ext4_get_groups_count(sb);
836 	blocksize = 1 << inode->i_blkbits;
837 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
838 
839 	groups_per_page = blocks_per_page >> 1;
840 	if (groups_per_page == 0)
841 		groups_per_page = 1;
842 
843 	/* allocate buffer_heads to read bitmaps */
844 	if (groups_per_page > 1) {
845 		i = sizeof(struct buffer_head *) * groups_per_page;
846 		bh = kzalloc(i, GFP_NOFS);
847 		if (bh == NULL) {
848 			err = -ENOMEM;
849 			goto out;
850 		}
851 	} else
852 		bh = &bhs;
853 
854 	first_group = page->index * blocks_per_page / 2;
855 
856 	/* read all groups the page covers into the cache */
857 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
858 		if (group >= ngroups)
859 			break;
860 
861 		grinfo = ext4_get_group_info(sb, group);
862 		/*
863 		 * If page is uptodate then we came here after online resize
864 		 * which added some new uninitialized group info structs, so
865 		 * we must skip all initialized uptodate buddies on the page,
866 		 * which may be currently in use by an allocating task.
867 		 */
868 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
869 			bh[i] = NULL;
870 			continue;
871 		}
872 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
873 			err = -ENOMEM;
874 			goto out;
875 		}
876 		mb_debug(1, "read bitmap for group %u\n", group);
877 	}
878 
879 	/* wait for I/O completion */
880 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
881 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
882 			err = -EIO;
883 			goto out;
884 		}
885 	}
886 
887 	first_block = page->index * blocks_per_page;
888 	for (i = 0; i < blocks_per_page; i++) {
889 		group = (first_block + i) >> 1;
890 		if (group >= ngroups)
891 			break;
892 
893 		if (!bh[group - first_group])
894 			/* skip initialized uptodate buddy */
895 			continue;
896 
897 		/*
898 		 * data carry information regarding this
899 		 * particular group in the format specified
900 		 * above
901 		 *
902 		 */
903 		data = page_address(page) + (i * blocksize);
904 		bitmap = bh[group - first_group]->b_data;
905 
906 		/*
907 		 * We place the buddy block and bitmap block
908 		 * close together
909 		 */
910 		if ((first_block + i) & 1) {
911 			/* this is block of buddy */
912 			BUG_ON(incore == NULL);
913 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
914 				group, page->index, i * blocksize);
915 			trace_ext4_mb_buddy_bitmap_load(sb, group);
916 			grinfo = ext4_get_group_info(sb, group);
917 			grinfo->bb_fragments = 0;
918 			memset(grinfo->bb_counters, 0,
919 			       sizeof(*grinfo->bb_counters) *
920 				(sb->s_blocksize_bits+2));
921 			/*
922 			 * incore got set to the group block bitmap below
923 			 */
924 			ext4_lock_group(sb, group);
925 			/* init the buddy */
926 			memset(data, 0xff, blocksize);
927 			ext4_mb_generate_buddy(sb, data, incore, group);
928 			ext4_unlock_group(sb, group);
929 			incore = NULL;
930 		} else {
931 			/* this is block of bitmap */
932 			BUG_ON(incore != NULL);
933 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
934 				group, page->index, i * blocksize);
935 			trace_ext4_mb_bitmap_load(sb, group);
936 
937 			/* see comments in ext4_mb_put_pa() */
938 			ext4_lock_group(sb, group);
939 			memcpy(data, bitmap, blocksize);
940 
941 			/* mark all preallocated blks used in in-core bitmap */
942 			ext4_mb_generate_from_pa(sb, data, group);
943 			ext4_mb_generate_from_freelist(sb, data, group);
944 			ext4_unlock_group(sb, group);
945 
946 			/* set incore so that the buddy information can be
947 			 * generated using this
948 			 */
949 			incore = data;
950 		}
951 	}
952 	SetPageUptodate(page);
953 
954 out:
955 	if (bh) {
956 		for (i = 0; i < groups_per_page; i++)
957 			brelse(bh[i]);
958 		if (bh != &bhs)
959 			kfree(bh);
960 	}
961 	return err;
962 }
963 
964 /*
965  * Lock the buddy and bitmap pages. This make sure other parallel init_group
966  * on the same buddy page doesn't happen whild holding the buddy page lock.
967  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
968  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
969  */
970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
971 		ext4_group_t group, struct ext4_buddy *e4b)
972 {
973 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
974 	int block, pnum, poff;
975 	int blocks_per_page;
976 	struct page *page;
977 
978 	e4b->bd_buddy_page = NULL;
979 	e4b->bd_bitmap_page = NULL;
980 
981 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
982 	/*
983 	 * the buddy cache inode stores the block bitmap
984 	 * and buddy information in consecutive blocks.
985 	 * So for each group we need two blocks.
986 	 */
987 	block = group * 2;
988 	pnum = block / blocks_per_page;
989 	poff = block % blocks_per_page;
990 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
991 	if (!page)
992 		return -ENOMEM;
993 	BUG_ON(page->mapping != inode->i_mapping);
994 	e4b->bd_bitmap_page = page;
995 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
996 
997 	if (blocks_per_page >= 2) {
998 		/* buddy and bitmap are on the same page */
999 		return 0;
1000 	}
1001 
1002 	block++;
1003 	pnum = block / blocks_per_page;
1004 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 	if (!page)
1006 		return -ENOMEM;
1007 	BUG_ON(page->mapping != inode->i_mapping);
1008 	e4b->bd_buddy_page = page;
1009 	return 0;
1010 }
1011 
1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1013 {
1014 	if (e4b->bd_bitmap_page) {
1015 		unlock_page(e4b->bd_bitmap_page);
1016 		page_cache_release(e4b->bd_bitmap_page);
1017 	}
1018 	if (e4b->bd_buddy_page) {
1019 		unlock_page(e4b->bd_buddy_page);
1020 		page_cache_release(e4b->bd_buddy_page);
1021 	}
1022 }
1023 
1024 /*
1025  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1026  * block group lock of all groups for this page; do not hold the BG lock when
1027  * calling this routine!
1028  */
1029 static noinline_for_stack
1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1031 {
1032 
1033 	struct ext4_group_info *this_grp;
1034 	struct ext4_buddy e4b;
1035 	struct page *page;
1036 	int ret = 0;
1037 
1038 	might_sleep();
1039 	mb_debug(1, "init group %u\n", group);
1040 	this_grp = ext4_get_group_info(sb, group);
1041 	/*
1042 	 * This ensures that we don't reinit the buddy cache
1043 	 * page which map to the group from which we are already
1044 	 * allocating. If we are looking at the buddy cache we would
1045 	 * have taken a reference using ext4_mb_load_buddy and that
1046 	 * would have pinned buddy page to page cache.
1047 	 */
1048 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1049 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1050 		/*
1051 		 * somebody initialized the group
1052 		 * return without doing anything
1053 		 */
1054 		goto err;
1055 	}
1056 
1057 	page = e4b.bd_bitmap_page;
1058 	ret = ext4_mb_init_cache(page, NULL);
1059 	if (ret)
1060 		goto err;
1061 	if (!PageUptodate(page)) {
1062 		ret = -EIO;
1063 		goto err;
1064 	}
1065 	mark_page_accessed(page);
1066 
1067 	if (e4b.bd_buddy_page == NULL) {
1068 		/*
1069 		 * If both the bitmap and buddy are in
1070 		 * the same page we don't need to force
1071 		 * init the buddy
1072 		 */
1073 		ret = 0;
1074 		goto err;
1075 	}
1076 	/* init buddy cache */
1077 	page = e4b.bd_buddy_page;
1078 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1079 	if (ret)
1080 		goto err;
1081 	if (!PageUptodate(page)) {
1082 		ret = -EIO;
1083 		goto err;
1084 	}
1085 	mark_page_accessed(page);
1086 err:
1087 	ext4_mb_put_buddy_page_lock(&e4b);
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1093  * block group lock of all groups for this page; do not hold the BG lock when
1094  * calling this routine!
1095  */
1096 static noinline_for_stack int
1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1098 					struct ext4_buddy *e4b)
1099 {
1100 	int blocks_per_page;
1101 	int block;
1102 	int pnum;
1103 	int poff;
1104 	struct page *page;
1105 	int ret;
1106 	struct ext4_group_info *grp;
1107 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 	struct inode *inode = sbi->s_buddy_cache;
1109 
1110 	might_sleep();
1111 	mb_debug(1, "load group %u\n", group);
1112 
1113 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1114 	grp = ext4_get_group_info(sb, group);
1115 
1116 	e4b->bd_blkbits = sb->s_blocksize_bits;
1117 	e4b->bd_info = grp;
1118 	e4b->bd_sb = sb;
1119 	e4b->bd_group = group;
1120 	e4b->bd_buddy_page = NULL;
1121 	e4b->bd_bitmap_page = NULL;
1122 
1123 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1124 		/*
1125 		 * we need full data about the group
1126 		 * to make a good selection
1127 		 */
1128 		ret = ext4_mb_init_group(sb, group);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	/*
1134 	 * the buddy cache inode stores the block bitmap
1135 	 * and buddy information in consecutive blocks.
1136 	 * So for each group we need two blocks.
1137 	 */
1138 	block = group * 2;
1139 	pnum = block / blocks_per_page;
1140 	poff = block % blocks_per_page;
1141 
1142 	/* we could use find_or_create_page(), but it locks page
1143 	 * what we'd like to avoid in fast path ... */
1144 	page = find_get_page(inode->i_mapping, pnum);
1145 	if (page == NULL || !PageUptodate(page)) {
1146 		if (page)
1147 			/*
1148 			 * drop the page reference and try
1149 			 * to get the page with lock. If we
1150 			 * are not uptodate that implies
1151 			 * somebody just created the page but
1152 			 * is yet to initialize the same. So
1153 			 * wait for it to initialize.
1154 			 */
1155 			page_cache_release(page);
1156 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1157 		if (page) {
1158 			BUG_ON(page->mapping != inode->i_mapping);
1159 			if (!PageUptodate(page)) {
1160 				ret = ext4_mb_init_cache(page, NULL);
1161 				if (ret) {
1162 					unlock_page(page);
1163 					goto err;
1164 				}
1165 				mb_cmp_bitmaps(e4b, page_address(page) +
1166 					       (poff * sb->s_blocksize));
1167 			}
1168 			unlock_page(page);
1169 		}
1170 	}
1171 	if (page == NULL) {
1172 		ret = -ENOMEM;
1173 		goto err;
1174 	}
1175 	if (!PageUptodate(page)) {
1176 		ret = -EIO;
1177 		goto err;
1178 	}
1179 	e4b->bd_bitmap_page = page;
1180 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1181 	mark_page_accessed(page);
1182 
1183 	block++;
1184 	pnum = block / blocks_per_page;
1185 	poff = block % blocks_per_page;
1186 
1187 	page = find_get_page(inode->i_mapping, pnum);
1188 	if (page == NULL || !PageUptodate(page)) {
1189 		if (page)
1190 			page_cache_release(page);
1191 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1192 		if (page) {
1193 			BUG_ON(page->mapping != inode->i_mapping);
1194 			if (!PageUptodate(page)) {
1195 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1196 				if (ret) {
1197 					unlock_page(page);
1198 					goto err;
1199 				}
1200 			}
1201 			unlock_page(page);
1202 		}
1203 	}
1204 	if (page == NULL) {
1205 		ret = -ENOMEM;
1206 		goto err;
1207 	}
1208 	if (!PageUptodate(page)) {
1209 		ret = -EIO;
1210 		goto err;
1211 	}
1212 	e4b->bd_buddy_page = page;
1213 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1214 	mark_page_accessed(page);
1215 
1216 	BUG_ON(e4b->bd_bitmap_page == NULL);
1217 	BUG_ON(e4b->bd_buddy_page == NULL);
1218 
1219 	return 0;
1220 
1221 err:
1222 	if (page)
1223 		page_cache_release(page);
1224 	if (e4b->bd_bitmap_page)
1225 		page_cache_release(e4b->bd_bitmap_page);
1226 	if (e4b->bd_buddy_page)
1227 		page_cache_release(e4b->bd_buddy_page);
1228 	e4b->bd_buddy = NULL;
1229 	e4b->bd_bitmap = NULL;
1230 	return ret;
1231 }
1232 
1233 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1234 {
1235 	if (e4b->bd_bitmap_page)
1236 		page_cache_release(e4b->bd_bitmap_page);
1237 	if (e4b->bd_buddy_page)
1238 		page_cache_release(e4b->bd_buddy_page);
1239 }
1240 
1241 
1242 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1243 {
1244 	int order = 1;
1245 	void *bb;
1246 
1247 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1248 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1249 
1250 	bb = e4b->bd_buddy;
1251 	while (order <= e4b->bd_blkbits + 1) {
1252 		block = block >> 1;
1253 		if (!mb_test_bit(block, bb)) {
1254 			/* this block is part of buddy of order 'order' */
1255 			return order;
1256 		}
1257 		bb += 1 << (e4b->bd_blkbits - order);
1258 		order++;
1259 	}
1260 	return 0;
1261 }
1262 
1263 static void mb_clear_bits(void *bm, int cur, int len)
1264 {
1265 	__u32 *addr;
1266 
1267 	len = cur + len;
1268 	while (cur < len) {
1269 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1270 			/* fast path: clear whole word at once */
1271 			addr = bm + (cur >> 3);
1272 			*addr = 0;
1273 			cur += 32;
1274 			continue;
1275 		}
1276 		mb_clear_bit(cur, bm);
1277 		cur++;
1278 	}
1279 }
1280 
1281 /* clear bits in given range
1282  * will return first found zero bit if any, -1 otherwise
1283  */
1284 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1285 {
1286 	__u32 *addr;
1287 	int zero_bit = -1;
1288 
1289 	len = cur + len;
1290 	while (cur < len) {
1291 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1292 			/* fast path: clear whole word at once */
1293 			addr = bm + (cur >> 3);
1294 			if (*addr != (__u32)(-1) && zero_bit == -1)
1295 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1296 			*addr = 0;
1297 			cur += 32;
1298 			continue;
1299 		}
1300 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1301 			zero_bit = cur;
1302 		cur++;
1303 	}
1304 
1305 	return zero_bit;
1306 }
1307 
1308 void ext4_set_bits(void *bm, int cur, int len)
1309 {
1310 	__u32 *addr;
1311 
1312 	len = cur + len;
1313 	while (cur < len) {
1314 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1315 			/* fast path: set whole word at once */
1316 			addr = bm + (cur >> 3);
1317 			*addr = 0xffffffff;
1318 			cur += 32;
1319 			continue;
1320 		}
1321 		mb_set_bit(cur, bm);
1322 		cur++;
1323 	}
1324 }
1325 
1326 /*
1327  * _________________________________________________________________ */
1328 
1329 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1330 {
1331 	if (mb_test_bit(*bit + side, bitmap)) {
1332 		mb_clear_bit(*bit, bitmap);
1333 		(*bit) -= side;
1334 		return 1;
1335 	}
1336 	else {
1337 		(*bit) += side;
1338 		mb_set_bit(*bit, bitmap);
1339 		return -1;
1340 	}
1341 }
1342 
1343 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1344 {
1345 	int max;
1346 	int order = 1;
1347 	void *buddy = mb_find_buddy(e4b, order, &max);
1348 
1349 	while (buddy) {
1350 		void *buddy2;
1351 
1352 		/* Bits in range [first; last] are known to be set since
1353 		 * corresponding blocks were allocated. Bits in range
1354 		 * (first; last) will stay set because they form buddies on
1355 		 * upper layer. We just deal with borders if they don't
1356 		 * align with upper layer and then go up.
1357 		 * Releasing entire group is all about clearing
1358 		 * single bit of highest order buddy.
1359 		 */
1360 
1361 		/* Example:
1362 		 * ---------------------------------
1363 		 * |   1   |   1   |   1   |   1   |
1364 		 * ---------------------------------
1365 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1366 		 * ---------------------------------
1367 		 *   0   1   2   3   4   5   6   7
1368 		 *      \_____________________/
1369 		 *
1370 		 * Neither [1] nor [6] is aligned to above layer.
1371 		 * Left neighbour [0] is free, so mark it busy,
1372 		 * decrease bb_counters and extend range to
1373 		 * [0; 6]
1374 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1375 		 * mark [6] free, increase bb_counters and shrink range to
1376 		 * [0; 5].
1377 		 * Then shift range to [0; 2], go up and do the same.
1378 		 */
1379 
1380 
1381 		if (first & 1)
1382 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1383 		if (!(last & 1))
1384 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1385 		if (first > last)
1386 			break;
1387 		order++;
1388 
1389 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1390 			mb_clear_bits(buddy, first, last - first + 1);
1391 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1392 			break;
1393 		}
1394 		first >>= 1;
1395 		last >>= 1;
1396 		buddy = buddy2;
1397 	}
1398 }
1399 
1400 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1401 			   int first, int count)
1402 {
1403 	int left_is_free = 0;
1404 	int right_is_free = 0;
1405 	int block;
1406 	int last = first + count - 1;
1407 	struct super_block *sb = e4b->bd_sb;
1408 
1409 	BUG_ON(last >= (sb->s_blocksize << 3));
1410 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1411 	/* Don't bother if the block group is corrupt. */
1412 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1413 		return;
1414 
1415 	mb_check_buddy(e4b);
1416 	mb_free_blocks_double(inode, e4b, first, count);
1417 
1418 	e4b->bd_info->bb_free += count;
1419 	if (first < e4b->bd_info->bb_first_free)
1420 		e4b->bd_info->bb_first_free = first;
1421 
1422 	/* access memory sequentially: check left neighbour,
1423 	 * clear range and then check right neighbour
1424 	 */
1425 	if (first != 0)
1426 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1427 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1428 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1429 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1430 
1431 	if (unlikely(block != -1)) {
1432 		ext4_fsblk_t blocknr;
1433 
1434 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1435 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1436 		ext4_grp_locked_error(sb, e4b->bd_group,
1437 				      inode ? inode->i_ino : 0,
1438 				      blocknr,
1439 				      "freeing already freed block "
1440 				      "(bit %u); block bitmap corrupt.",
1441 				      block);
1442 		/* Mark the block group as corrupt. */
1443 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1444 			&e4b->bd_info->bb_state);
1445 		mb_regenerate_buddy(e4b);
1446 		goto done;
1447 	}
1448 
1449 	/* let's maintain fragments counter */
1450 	if (left_is_free && right_is_free)
1451 		e4b->bd_info->bb_fragments--;
1452 	else if (!left_is_free && !right_is_free)
1453 		e4b->bd_info->bb_fragments++;
1454 
1455 	/* buddy[0] == bd_bitmap is a special case, so handle
1456 	 * it right away and let mb_buddy_mark_free stay free of
1457 	 * zero order checks.
1458 	 * Check if neighbours are to be coaleasced,
1459 	 * adjust bitmap bb_counters and borders appropriately.
1460 	 */
1461 	if (first & 1) {
1462 		first += !left_is_free;
1463 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1464 	}
1465 	if (!(last & 1)) {
1466 		last -= !right_is_free;
1467 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1468 	}
1469 
1470 	if (first <= last)
1471 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1472 
1473 done:
1474 	mb_set_largest_free_order(sb, e4b->bd_info);
1475 	mb_check_buddy(e4b);
1476 }
1477 
1478 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1479 				int needed, struct ext4_free_extent *ex)
1480 {
1481 	int next = block;
1482 	int max, order;
1483 	void *buddy;
1484 
1485 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1486 	BUG_ON(ex == NULL);
1487 
1488 	buddy = mb_find_buddy(e4b, 0, &max);
1489 	BUG_ON(buddy == NULL);
1490 	BUG_ON(block >= max);
1491 	if (mb_test_bit(block, buddy)) {
1492 		ex->fe_len = 0;
1493 		ex->fe_start = 0;
1494 		ex->fe_group = 0;
1495 		return 0;
1496 	}
1497 
1498 	/* find actual order */
1499 	order = mb_find_order_for_block(e4b, block);
1500 	block = block >> order;
1501 
1502 	ex->fe_len = 1 << order;
1503 	ex->fe_start = block << order;
1504 	ex->fe_group = e4b->bd_group;
1505 
1506 	/* calc difference from given start */
1507 	next = next - ex->fe_start;
1508 	ex->fe_len -= next;
1509 	ex->fe_start += next;
1510 
1511 	while (needed > ex->fe_len &&
1512 	       mb_find_buddy(e4b, order, &max)) {
1513 
1514 		if (block + 1 >= max)
1515 			break;
1516 
1517 		next = (block + 1) * (1 << order);
1518 		if (mb_test_bit(next, e4b->bd_bitmap))
1519 			break;
1520 
1521 		order = mb_find_order_for_block(e4b, next);
1522 
1523 		block = next >> order;
1524 		ex->fe_len += 1 << order;
1525 	}
1526 
1527 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1528 	return ex->fe_len;
1529 }
1530 
1531 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1532 {
1533 	int ord;
1534 	int mlen = 0;
1535 	int max = 0;
1536 	int cur;
1537 	int start = ex->fe_start;
1538 	int len = ex->fe_len;
1539 	unsigned ret = 0;
1540 	int len0 = len;
1541 	void *buddy;
1542 
1543 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1544 	BUG_ON(e4b->bd_group != ex->fe_group);
1545 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1546 	mb_check_buddy(e4b);
1547 	mb_mark_used_double(e4b, start, len);
1548 
1549 	e4b->bd_info->bb_free -= len;
1550 	if (e4b->bd_info->bb_first_free == start)
1551 		e4b->bd_info->bb_first_free += len;
1552 
1553 	/* let's maintain fragments counter */
1554 	if (start != 0)
1555 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1556 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1557 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1558 	if (mlen && max)
1559 		e4b->bd_info->bb_fragments++;
1560 	else if (!mlen && !max)
1561 		e4b->bd_info->bb_fragments--;
1562 
1563 	/* let's maintain buddy itself */
1564 	while (len) {
1565 		ord = mb_find_order_for_block(e4b, start);
1566 
1567 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1568 			/* the whole chunk may be allocated at once! */
1569 			mlen = 1 << ord;
1570 			buddy = mb_find_buddy(e4b, ord, &max);
1571 			BUG_ON((start >> ord) >= max);
1572 			mb_set_bit(start >> ord, buddy);
1573 			e4b->bd_info->bb_counters[ord]--;
1574 			start += mlen;
1575 			len -= mlen;
1576 			BUG_ON(len < 0);
1577 			continue;
1578 		}
1579 
1580 		/* store for history */
1581 		if (ret == 0)
1582 			ret = len | (ord << 16);
1583 
1584 		/* we have to split large buddy */
1585 		BUG_ON(ord <= 0);
1586 		buddy = mb_find_buddy(e4b, ord, &max);
1587 		mb_set_bit(start >> ord, buddy);
1588 		e4b->bd_info->bb_counters[ord]--;
1589 
1590 		ord--;
1591 		cur = (start >> ord) & ~1U;
1592 		buddy = mb_find_buddy(e4b, ord, &max);
1593 		mb_clear_bit(cur, buddy);
1594 		mb_clear_bit(cur + 1, buddy);
1595 		e4b->bd_info->bb_counters[ord]++;
1596 		e4b->bd_info->bb_counters[ord]++;
1597 	}
1598 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1599 
1600 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1601 	mb_check_buddy(e4b);
1602 
1603 	return ret;
1604 }
1605 
1606 /*
1607  * Must be called under group lock!
1608  */
1609 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1610 					struct ext4_buddy *e4b)
1611 {
1612 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1613 	int ret;
1614 
1615 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1616 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1617 
1618 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1619 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1620 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1621 
1622 	/* preallocation can change ac_b_ex, thus we store actually
1623 	 * allocated blocks for history */
1624 	ac->ac_f_ex = ac->ac_b_ex;
1625 
1626 	ac->ac_status = AC_STATUS_FOUND;
1627 	ac->ac_tail = ret & 0xffff;
1628 	ac->ac_buddy = ret >> 16;
1629 
1630 	/*
1631 	 * take the page reference. We want the page to be pinned
1632 	 * so that we don't get a ext4_mb_init_cache_call for this
1633 	 * group until we update the bitmap. That would mean we
1634 	 * double allocate blocks. The reference is dropped
1635 	 * in ext4_mb_release_context
1636 	 */
1637 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1638 	get_page(ac->ac_bitmap_page);
1639 	ac->ac_buddy_page = e4b->bd_buddy_page;
1640 	get_page(ac->ac_buddy_page);
1641 	/* store last allocated for subsequent stream allocation */
1642 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1643 		spin_lock(&sbi->s_md_lock);
1644 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1645 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1646 		spin_unlock(&sbi->s_md_lock);
1647 	}
1648 }
1649 
1650 /*
1651  * regular allocator, for general purposes allocation
1652  */
1653 
1654 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1655 					struct ext4_buddy *e4b,
1656 					int finish_group)
1657 {
1658 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1659 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1660 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1661 	struct ext4_free_extent ex;
1662 	int max;
1663 
1664 	if (ac->ac_status == AC_STATUS_FOUND)
1665 		return;
1666 	/*
1667 	 * We don't want to scan for a whole year
1668 	 */
1669 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1670 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1671 		ac->ac_status = AC_STATUS_BREAK;
1672 		return;
1673 	}
1674 
1675 	/*
1676 	 * Haven't found good chunk so far, let's continue
1677 	 */
1678 	if (bex->fe_len < gex->fe_len)
1679 		return;
1680 
1681 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1682 			&& bex->fe_group == e4b->bd_group) {
1683 		/* recheck chunk's availability - we don't know
1684 		 * when it was found (within this lock-unlock
1685 		 * period or not) */
1686 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1687 		if (max >= gex->fe_len) {
1688 			ext4_mb_use_best_found(ac, e4b);
1689 			return;
1690 		}
1691 	}
1692 }
1693 
1694 /*
1695  * The routine checks whether found extent is good enough. If it is,
1696  * then the extent gets marked used and flag is set to the context
1697  * to stop scanning. Otherwise, the extent is compared with the
1698  * previous found extent and if new one is better, then it's stored
1699  * in the context. Later, the best found extent will be used, if
1700  * mballoc can't find good enough extent.
1701  *
1702  * FIXME: real allocation policy is to be designed yet!
1703  */
1704 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1705 					struct ext4_free_extent *ex,
1706 					struct ext4_buddy *e4b)
1707 {
1708 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1709 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1710 
1711 	BUG_ON(ex->fe_len <= 0);
1712 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1713 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1714 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1715 
1716 	ac->ac_found++;
1717 
1718 	/*
1719 	 * The special case - take what you catch first
1720 	 */
1721 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1722 		*bex = *ex;
1723 		ext4_mb_use_best_found(ac, e4b);
1724 		return;
1725 	}
1726 
1727 	/*
1728 	 * Let's check whether the chuck is good enough
1729 	 */
1730 	if (ex->fe_len == gex->fe_len) {
1731 		*bex = *ex;
1732 		ext4_mb_use_best_found(ac, e4b);
1733 		return;
1734 	}
1735 
1736 	/*
1737 	 * If this is first found extent, just store it in the context
1738 	 */
1739 	if (bex->fe_len == 0) {
1740 		*bex = *ex;
1741 		return;
1742 	}
1743 
1744 	/*
1745 	 * If new found extent is better, store it in the context
1746 	 */
1747 	if (bex->fe_len < gex->fe_len) {
1748 		/* if the request isn't satisfied, any found extent
1749 		 * larger than previous best one is better */
1750 		if (ex->fe_len > bex->fe_len)
1751 			*bex = *ex;
1752 	} else if (ex->fe_len > gex->fe_len) {
1753 		/* if the request is satisfied, then we try to find
1754 		 * an extent that still satisfy the request, but is
1755 		 * smaller than previous one */
1756 		if (ex->fe_len < bex->fe_len)
1757 			*bex = *ex;
1758 	}
1759 
1760 	ext4_mb_check_limits(ac, e4b, 0);
1761 }
1762 
1763 static noinline_for_stack
1764 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1765 					struct ext4_buddy *e4b)
1766 {
1767 	struct ext4_free_extent ex = ac->ac_b_ex;
1768 	ext4_group_t group = ex.fe_group;
1769 	int max;
1770 	int err;
1771 
1772 	BUG_ON(ex.fe_len <= 0);
1773 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1774 	if (err)
1775 		return err;
1776 
1777 	ext4_lock_group(ac->ac_sb, group);
1778 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1779 
1780 	if (max > 0) {
1781 		ac->ac_b_ex = ex;
1782 		ext4_mb_use_best_found(ac, e4b);
1783 	}
1784 
1785 	ext4_unlock_group(ac->ac_sb, group);
1786 	ext4_mb_unload_buddy(e4b);
1787 
1788 	return 0;
1789 }
1790 
1791 static noinline_for_stack
1792 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1793 				struct ext4_buddy *e4b)
1794 {
1795 	ext4_group_t group = ac->ac_g_ex.fe_group;
1796 	int max;
1797 	int err;
1798 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1799 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1800 	struct ext4_free_extent ex;
1801 
1802 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1803 		return 0;
1804 	if (grp->bb_free == 0)
1805 		return 0;
1806 
1807 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1808 	if (err)
1809 		return err;
1810 
1811 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1812 		ext4_mb_unload_buddy(e4b);
1813 		return 0;
1814 	}
1815 
1816 	ext4_lock_group(ac->ac_sb, group);
1817 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1818 			     ac->ac_g_ex.fe_len, &ex);
1819 	ex.fe_logical = 0xDEADFA11; /* debug value */
1820 
1821 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1822 		ext4_fsblk_t start;
1823 
1824 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1825 			ex.fe_start;
1826 		/* use do_div to get remainder (would be 64-bit modulo) */
1827 		if (do_div(start, sbi->s_stripe) == 0) {
1828 			ac->ac_found++;
1829 			ac->ac_b_ex = ex;
1830 			ext4_mb_use_best_found(ac, e4b);
1831 		}
1832 	} else if (max >= ac->ac_g_ex.fe_len) {
1833 		BUG_ON(ex.fe_len <= 0);
1834 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1835 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1836 		ac->ac_found++;
1837 		ac->ac_b_ex = ex;
1838 		ext4_mb_use_best_found(ac, e4b);
1839 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1840 		/* Sometimes, caller may want to merge even small
1841 		 * number of blocks to an existing extent */
1842 		BUG_ON(ex.fe_len <= 0);
1843 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1844 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1845 		ac->ac_found++;
1846 		ac->ac_b_ex = ex;
1847 		ext4_mb_use_best_found(ac, e4b);
1848 	}
1849 	ext4_unlock_group(ac->ac_sb, group);
1850 	ext4_mb_unload_buddy(e4b);
1851 
1852 	return 0;
1853 }
1854 
1855 /*
1856  * The routine scans buddy structures (not bitmap!) from given order
1857  * to max order and tries to find big enough chunk to satisfy the req
1858  */
1859 static noinline_for_stack
1860 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1861 					struct ext4_buddy *e4b)
1862 {
1863 	struct super_block *sb = ac->ac_sb;
1864 	struct ext4_group_info *grp = e4b->bd_info;
1865 	void *buddy;
1866 	int i;
1867 	int k;
1868 	int max;
1869 
1870 	BUG_ON(ac->ac_2order <= 0);
1871 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1872 		if (grp->bb_counters[i] == 0)
1873 			continue;
1874 
1875 		buddy = mb_find_buddy(e4b, i, &max);
1876 		BUG_ON(buddy == NULL);
1877 
1878 		k = mb_find_next_zero_bit(buddy, max, 0);
1879 		BUG_ON(k >= max);
1880 
1881 		ac->ac_found++;
1882 
1883 		ac->ac_b_ex.fe_len = 1 << i;
1884 		ac->ac_b_ex.fe_start = k << i;
1885 		ac->ac_b_ex.fe_group = e4b->bd_group;
1886 
1887 		ext4_mb_use_best_found(ac, e4b);
1888 
1889 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1890 
1891 		if (EXT4_SB(sb)->s_mb_stats)
1892 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1893 
1894 		break;
1895 	}
1896 }
1897 
1898 /*
1899  * The routine scans the group and measures all found extents.
1900  * In order to optimize scanning, caller must pass number of
1901  * free blocks in the group, so the routine can know upper limit.
1902  */
1903 static noinline_for_stack
1904 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1905 					struct ext4_buddy *e4b)
1906 {
1907 	struct super_block *sb = ac->ac_sb;
1908 	void *bitmap = e4b->bd_bitmap;
1909 	struct ext4_free_extent ex;
1910 	int i;
1911 	int free;
1912 
1913 	free = e4b->bd_info->bb_free;
1914 	BUG_ON(free <= 0);
1915 
1916 	i = e4b->bd_info->bb_first_free;
1917 
1918 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1919 		i = mb_find_next_zero_bit(bitmap,
1920 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1921 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1922 			/*
1923 			 * IF we have corrupt bitmap, we won't find any
1924 			 * free blocks even though group info says we
1925 			 * we have free blocks
1926 			 */
1927 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1928 					"%d free clusters as per "
1929 					"group info. But bitmap says 0",
1930 					free);
1931 			break;
1932 		}
1933 
1934 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1935 		BUG_ON(ex.fe_len <= 0);
1936 		if (free < ex.fe_len) {
1937 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1938 					"%d free clusters as per "
1939 					"group info. But got %d blocks",
1940 					free, ex.fe_len);
1941 			/*
1942 			 * The number of free blocks differs. This mostly
1943 			 * indicate that the bitmap is corrupt. So exit
1944 			 * without claiming the space.
1945 			 */
1946 			break;
1947 		}
1948 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1949 		ext4_mb_measure_extent(ac, &ex, e4b);
1950 
1951 		i += ex.fe_len;
1952 		free -= ex.fe_len;
1953 	}
1954 
1955 	ext4_mb_check_limits(ac, e4b, 1);
1956 }
1957 
1958 /*
1959  * This is a special case for storages like raid5
1960  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1961  */
1962 static noinline_for_stack
1963 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1964 				 struct ext4_buddy *e4b)
1965 {
1966 	struct super_block *sb = ac->ac_sb;
1967 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1968 	void *bitmap = e4b->bd_bitmap;
1969 	struct ext4_free_extent ex;
1970 	ext4_fsblk_t first_group_block;
1971 	ext4_fsblk_t a;
1972 	ext4_grpblk_t i;
1973 	int max;
1974 
1975 	BUG_ON(sbi->s_stripe == 0);
1976 
1977 	/* find first stripe-aligned block in group */
1978 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1979 
1980 	a = first_group_block + sbi->s_stripe - 1;
1981 	do_div(a, sbi->s_stripe);
1982 	i = (a * sbi->s_stripe) - first_group_block;
1983 
1984 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1985 		if (!mb_test_bit(i, bitmap)) {
1986 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1987 			if (max >= sbi->s_stripe) {
1988 				ac->ac_found++;
1989 				ex.fe_logical = 0xDEADF00D; /* debug value */
1990 				ac->ac_b_ex = ex;
1991 				ext4_mb_use_best_found(ac, e4b);
1992 				break;
1993 			}
1994 		}
1995 		i += sbi->s_stripe;
1996 	}
1997 }
1998 
1999 /* This is now called BEFORE we load the buddy bitmap. */
2000 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2001 				ext4_group_t group, int cr)
2002 {
2003 	unsigned free, fragments;
2004 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2005 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2006 
2007 	BUG_ON(cr < 0 || cr >= 4);
2008 
2009 	free = grp->bb_free;
2010 	if (free == 0)
2011 		return 0;
2012 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2013 		return 0;
2014 
2015 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2016 		return 0;
2017 
2018 	/* We only do this if the grp has never been initialized */
2019 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2020 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2021 		if (ret)
2022 			return 0;
2023 	}
2024 
2025 	fragments = grp->bb_fragments;
2026 	if (fragments == 0)
2027 		return 0;
2028 
2029 	switch (cr) {
2030 	case 0:
2031 		BUG_ON(ac->ac_2order == 0);
2032 
2033 		/* Avoid using the first bg of a flexgroup for data files */
2034 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2035 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2036 		    ((group % flex_size) == 0))
2037 			return 0;
2038 
2039 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2040 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2041 			return 1;
2042 
2043 		if (grp->bb_largest_free_order < ac->ac_2order)
2044 			return 0;
2045 
2046 		return 1;
2047 	case 1:
2048 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2049 			return 1;
2050 		break;
2051 	case 2:
2052 		if (free >= ac->ac_g_ex.fe_len)
2053 			return 1;
2054 		break;
2055 	case 3:
2056 		return 1;
2057 	default:
2058 		BUG();
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static noinline_for_stack int
2065 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2066 {
2067 	ext4_group_t ngroups, group, i;
2068 	int cr;
2069 	int err = 0;
2070 	struct ext4_sb_info *sbi;
2071 	struct super_block *sb;
2072 	struct ext4_buddy e4b;
2073 
2074 	sb = ac->ac_sb;
2075 	sbi = EXT4_SB(sb);
2076 	ngroups = ext4_get_groups_count(sb);
2077 	/* non-extent files are limited to low blocks/groups */
2078 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2079 		ngroups = sbi->s_blockfile_groups;
2080 
2081 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2082 
2083 	/* first, try the goal */
2084 	err = ext4_mb_find_by_goal(ac, &e4b);
2085 	if (err || ac->ac_status == AC_STATUS_FOUND)
2086 		goto out;
2087 
2088 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2089 		goto out;
2090 
2091 	/*
2092 	 * ac->ac2_order is set only if the fe_len is a power of 2
2093 	 * if ac2_order is set we also set criteria to 0 so that we
2094 	 * try exact allocation using buddy.
2095 	 */
2096 	i = fls(ac->ac_g_ex.fe_len);
2097 	ac->ac_2order = 0;
2098 	/*
2099 	 * We search using buddy data only if the order of the request
2100 	 * is greater than equal to the sbi_s_mb_order2_reqs
2101 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2102 	 */
2103 	if (i >= sbi->s_mb_order2_reqs) {
2104 		/*
2105 		 * This should tell if fe_len is exactly power of 2
2106 		 */
2107 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2108 			ac->ac_2order = i - 1;
2109 	}
2110 
2111 	/* if stream allocation is enabled, use global goal */
2112 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2113 		/* TBD: may be hot point */
2114 		spin_lock(&sbi->s_md_lock);
2115 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2116 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2117 		spin_unlock(&sbi->s_md_lock);
2118 	}
2119 
2120 	/* Let's just scan groups to find more-less suitable blocks */
2121 	cr = ac->ac_2order ? 0 : 1;
2122 	/*
2123 	 * cr == 0 try to get exact allocation,
2124 	 * cr == 3  try to get anything
2125 	 */
2126 repeat:
2127 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2128 		ac->ac_criteria = cr;
2129 		/*
2130 		 * searching for the right group start
2131 		 * from the goal value specified
2132 		 */
2133 		group = ac->ac_g_ex.fe_group;
2134 
2135 		for (i = 0; i < ngroups; group++, i++) {
2136 			cond_resched();
2137 			/*
2138 			 * Artificially restricted ngroups for non-extent
2139 			 * files makes group > ngroups possible on first loop.
2140 			 */
2141 			if (group >= ngroups)
2142 				group = 0;
2143 
2144 			/* This now checks without needing the buddy page */
2145 			if (!ext4_mb_good_group(ac, group, cr))
2146 				continue;
2147 
2148 			err = ext4_mb_load_buddy(sb, group, &e4b);
2149 			if (err)
2150 				goto out;
2151 
2152 			ext4_lock_group(sb, group);
2153 
2154 			/*
2155 			 * We need to check again after locking the
2156 			 * block group
2157 			 */
2158 			if (!ext4_mb_good_group(ac, group, cr)) {
2159 				ext4_unlock_group(sb, group);
2160 				ext4_mb_unload_buddy(&e4b);
2161 				continue;
2162 			}
2163 
2164 			ac->ac_groups_scanned++;
2165 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2166 				ext4_mb_simple_scan_group(ac, &e4b);
2167 			else if (cr == 1 && sbi->s_stripe &&
2168 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2169 				ext4_mb_scan_aligned(ac, &e4b);
2170 			else
2171 				ext4_mb_complex_scan_group(ac, &e4b);
2172 
2173 			ext4_unlock_group(sb, group);
2174 			ext4_mb_unload_buddy(&e4b);
2175 
2176 			if (ac->ac_status != AC_STATUS_CONTINUE)
2177 				break;
2178 		}
2179 	}
2180 
2181 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2182 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2183 		/*
2184 		 * We've been searching too long. Let's try to allocate
2185 		 * the best chunk we've found so far
2186 		 */
2187 
2188 		ext4_mb_try_best_found(ac, &e4b);
2189 		if (ac->ac_status != AC_STATUS_FOUND) {
2190 			/*
2191 			 * Someone more lucky has already allocated it.
2192 			 * The only thing we can do is just take first
2193 			 * found block(s)
2194 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2195 			 */
2196 			ac->ac_b_ex.fe_group = 0;
2197 			ac->ac_b_ex.fe_start = 0;
2198 			ac->ac_b_ex.fe_len = 0;
2199 			ac->ac_status = AC_STATUS_CONTINUE;
2200 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2201 			cr = 3;
2202 			atomic_inc(&sbi->s_mb_lost_chunks);
2203 			goto repeat;
2204 		}
2205 	}
2206 out:
2207 	return err;
2208 }
2209 
2210 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2211 {
2212 	struct super_block *sb = seq->private;
2213 	ext4_group_t group;
2214 
2215 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2216 		return NULL;
2217 	group = *pos + 1;
2218 	return (void *) ((unsigned long) group);
2219 }
2220 
2221 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2222 {
2223 	struct super_block *sb = seq->private;
2224 	ext4_group_t group;
2225 
2226 	++*pos;
2227 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2228 		return NULL;
2229 	group = *pos + 1;
2230 	return (void *) ((unsigned long) group);
2231 }
2232 
2233 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2234 {
2235 	struct super_block *sb = seq->private;
2236 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2237 	int i;
2238 	int err, buddy_loaded = 0;
2239 	struct ext4_buddy e4b;
2240 	struct ext4_group_info *grinfo;
2241 	struct sg {
2242 		struct ext4_group_info info;
2243 		ext4_grpblk_t counters[16];
2244 	} sg;
2245 
2246 	group--;
2247 	if (group == 0)
2248 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2249 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2250 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2251 			   "group", "free", "frags", "first",
2252 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2253 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2254 
2255 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2256 		sizeof(struct ext4_group_info);
2257 	grinfo = ext4_get_group_info(sb, group);
2258 	/* Load the group info in memory only if not already loaded. */
2259 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2260 		err = ext4_mb_load_buddy(sb, group, &e4b);
2261 		if (err) {
2262 			seq_printf(seq, "#%-5u: I/O error\n", group);
2263 			return 0;
2264 		}
2265 		buddy_loaded = 1;
2266 	}
2267 
2268 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2269 
2270 	if (buddy_loaded)
2271 		ext4_mb_unload_buddy(&e4b);
2272 
2273 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2274 			sg.info.bb_fragments, sg.info.bb_first_free);
2275 	for (i = 0; i <= 13; i++)
2276 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2277 				sg.info.bb_counters[i] : 0);
2278 	seq_printf(seq, " ]\n");
2279 
2280 	return 0;
2281 }
2282 
2283 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2284 {
2285 }
2286 
2287 static const struct seq_operations ext4_mb_seq_groups_ops = {
2288 	.start  = ext4_mb_seq_groups_start,
2289 	.next   = ext4_mb_seq_groups_next,
2290 	.stop   = ext4_mb_seq_groups_stop,
2291 	.show   = ext4_mb_seq_groups_show,
2292 };
2293 
2294 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2295 {
2296 	struct super_block *sb = PDE_DATA(inode);
2297 	int rc;
2298 
2299 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2300 	if (rc == 0) {
2301 		struct seq_file *m = file->private_data;
2302 		m->private = sb;
2303 	}
2304 	return rc;
2305 
2306 }
2307 
2308 static const struct file_operations ext4_mb_seq_groups_fops = {
2309 	.owner		= THIS_MODULE,
2310 	.open		= ext4_mb_seq_groups_open,
2311 	.read		= seq_read,
2312 	.llseek		= seq_lseek,
2313 	.release	= seq_release,
2314 };
2315 
2316 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2317 {
2318 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2319 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2320 
2321 	BUG_ON(!cachep);
2322 	return cachep;
2323 }
2324 
2325 /*
2326  * Allocate the top-level s_group_info array for the specified number
2327  * of groups
2328  */
2329 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2330 {
2331 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 	unsigned size;
2333 	struct ext4_group_info ***new_groupinfo;
2334 
2335 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2336 		EXT4_DESC_PER_BLOCK_BITS(sb);
2337 	if (size <= sbi->s_group_info_size)
2338 		return 0;
2339 
2340 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2341 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2342 	if (!new_groupinfo) {
2343 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2344 		return -ENOMEM;
2345 	}
2346 	if (sbi->s_group_info) {
2347 		memcpy(new_groupinfo, sbi->s_group_info,
2348 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2349 		ext4_kvfree(sbi->s_group_info);
2350 	}
2351 	sbi->s_group_info = new_groupinfo;
2352 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2353 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2354 		   sbi->s_group_info_size);
2355 	return 0;
2356 }
2357 
2358 /* Create and initialize ext4_group_info data for the given group. */
2359 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2360 			  struct ext4_group_desc *desc)
2361 {
2362 	int i;
2363 	int metalen = 0;
2364 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2365 	struct ext4_group_info **meta_group_info;
2366 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2367 
2368 	/*
2369 	 * First check if this group is the first of a reserved block.
2370 	 * If it's true, we have to allocate a new table of pointers
2371 	 * to ext4_group_info structures
2372 	 */
2373 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2374 		metalen = sizeof(*meta_group_info) <<
2375 			EXT4_DESC_PER_BLOCK_BITS(sb);
2376 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2377 		if (meta_group_info == NULL) {
2378 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2379 				 "for a buddy group");
2380 			goto exit_meta_group_info;
2381 		}
2382 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2383 			meta_group_info;
2384 	}
2385 
2386 	meta_group_info =
2387 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2388 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2389 
2390 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2391 	if (meta_group_info[i] == NULL) {
2392 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2393 		goto exit_group_info;
2394 	}
2395 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2396 		&(meta_group_info[i]->bb_state));
2397 
2398 	/*
2399 	 * initialize bb_free to be able to skip
2400 	 * empty groups without initialization
2401 	 */
2402 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2403 		meta_group_info[i]->bb_free =
2404 			ext4_free_clusters_after_init(sb, group, desc);
2405 	} else {
2406 		meta_group_info[i]->bb_free =
2407 			ext4_free_group_clusters(sb, desc);
2408 	}
2409 
2410 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2411 	init_rwsem(&meta_group_info[i]->alloc_sem);
2412 	meta_group_info[i]->bb_free_root = RB_ROOT;
2413 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2414 
2415 #ifdef DOUBLE_CHECK
2416 	{
2417 		struct buffer_head *bh;
2418 		meta_group_info[i]->bb_bitmap =
2419 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2420 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2421 		bh = ext4_read_block_bitmap(sb, group);
2422 		BUG_ON(bh == NULL);
2423 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2424 			sb->s_blocksize);
2425 		put_bh(bh);
2426 	}
2427 #endif
2428 
2429 	return 0;
2430 
2431 exit_group_info:
2432 	/* If a meta_group_info table has been allocated, release it now */
2433 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2434 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2435 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2436 	}
2437 exit_meta_group_info:
2438 	return -ENOMEM;
2439 } /* ext4_mb_add_groupinfo */
2440 
2441 static int ext4_mb_init_backend(struct super_block *sb)
2442 {
2443 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2444 	ext4_group_t i;
2445 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2446 	int err;
2447 	struct ext4_group_desc *desc;
2448 	struct kmem_cache *cachep;
2449 
2450 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2451 	if (err)
2452 		return err;
2453 
2454 	sbi->s_buddy_cache = new_inode(sb);
2455 	if (sbi->s_buddy_cache == NULL) {
2456 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2457 		goto err_freesgi;
2458 	}
2459 	/* To avoid potentially colliding with an valid on-disk inode number,
2460 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2461 	 * not in the inode hash, so it should never be found by iget(), but
2462 	 * this will avoid confusion if it ever shows up during debugging. */
2463 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2464 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2465 	for (i = 0; i < ngroups; i++) {
2466 		desc = ext4_get_group_desc(sb, i, NULL);
2467 		if (desc == NULL) {
2468 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2469 			goto err_freebuddy;
2470 		}
2471 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2472 			goto err_freebuddy;
2473 	}
2474 
2475 	return 0;
2476 
2477 err_freebuddy:
2478 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2479 	while (i-- > 0)
2480 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2481 	i = sbi->s_group_info_size;
2482 	while (i-- > 0)
2483 		kfree(sbi->s_group_info[i]);
2484 	iput(sbi->s_buddy_cache);
2485 err_freesgi:
2486 	ext4_kvfree(sbi->s_group_info);
2487 	return -ENOMEM;
2488 }
2489 
2490 static void ext4_groupinfo_destroy_slabs(void)
2491 {
2492 	int i;
2493 
2494 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2495 		if (ext4_groupinfo_caches[i])
2496 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2497 		ext4_groupinfo_caches[i] = NULL;
2498 	}
2499 }
2500 
2501 static int ext4_groupinfo_create_slab(size_t size)
2502 {
2503 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2504 	int slab_size;
2505 	int blocksize_bits = order_base_2(size);
2506 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2507 	struct kmem_cache *cachep;
2508 
2509 	if (cache_index >= NR_GRPINFO_CACHES)
2510 		return -EINVAL;
2511 
2512 	if (unlikely(cache_index < 0))
2513 		cache_index = 0;
2514 
2515 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2516 	if (ext4_groupinfo_caches[cache_index]) {
2517 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2518 		return 0;	/* Already created */
2519 	}
2520 
2521 	slab_size = offsetof(struct ext4_group_info,
2522 				bb_counters[blocksize_bits + 2]);
2523 
2524 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2525 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2526 					NULL);
2527 
2528 	ext4_groupinfo_caches[cache_index] = cachep;
2529 
2530 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2531 	if (!cachep) {
2532 		printk(KERN_EMERG
2533 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2534 		return -ENOMEM;
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 int ext4_mb_init(struct super_block *sb)
2541 {
2542 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2543 	unsigned i, j;
2544 	unsigned offset;
2545 	unsigned max;
2546 	int ret;
2547 
2548 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2549 
2550 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2551 	if (sbi->s_mb_offsets == NULL) {
2552 		ret = -ENOMEM;
2553 		goto out;
2554 	}
2555 
2556 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2557 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2558 	if (sbi->s_mb_maxs == NULL) {
2559 		ret = -ENOMEM;
2560 		goto out;
2561 	}
2562 
2563 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2564 	if (ret < 0)
2565 		goto out;
2566 
2567 	/* order 0 is regular bitmap */
2568 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2569 	sbi->s_mb_offsets[0] = 0;
2570 
2571 	i = 1;
2572 	offset = 0;
2573 	max = sb->s_blocksize << 2;
2574 	do {
2575 		sbi->s_mb_offsets[i] = offset;
2576 		sbi->s_mb_maxs[i] = max;
2577 		offset += 1 << (sb->s_blocksize_bits - i);
2578 		max = max >> 1;
2579 		i++;
2580 	} while (i <= sb->s_blocksize_bits + 1);
2581 
2582 	spin_lock_init(&sbi->s_md_lock);
2583 	spin_lock_init(&sbi->s_bal_lock);
2584 
2585 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2586 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2587 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2588 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2589 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2590 	/*
2591 	 * The default group preallocation is 512, which for 4k block
2592 	 * sizes translates to 2 megabytes.  However for bigalloc file
2593 	 * systems, this is probably too big (i.e, if the cluster size
2594 	 * is 1 megabyte, then group preallocation size becomes half a
2595 	 * gigabyte!).  As a default, we will keep a two megabyte
2596 	 * group pralloc size for cluster sizes up to 64k, and after
2597 	 * that, we will force a minimum group preallocation size of
2598 	 * 32 clusters.  This translates to 8 megs when the cluster
2599 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2600 	 * which seems reasonable as a default.
2601 	 */
2602 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2603 				       sbi->s_cluster_bits, 32);
2604 	/*
2605 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2606 	 * to the lowest multiple of s_stripe which is bigger than
2607 	 * the s_mb_group_prealloc as determined above. We want
2608 	 * the preallocation size to be an exact multiple of the
2609 	 * RAID stripe size so that preallocations don't fragment
2610 	 * the stripes.
2611 	 */
2612 	if (sbi->s_stripe > 1) {
2613 		sbi->s_mb_group_prealloc = roundup(
2614 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2615 	}
2616 
2617 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2618 	if (sbi->s_locality_groups == NULL) {
2619 		ret = -ENOMEM;
2620 		goto out_free_groupinfo_slab;
2621 	}
2622 	for_each_possible_cpu(i) {
2623 		struct ext4_locality_group *lg;
2624 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2625 		mutex_init(&lg->lg_mutex);
2626 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2627 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2628 		spin_lock_init(&lg->lg_prealloc_lock);
2629 	}
2630 
2631 	/* init file for buddy data */
2632 	ret = ext4_mb_init_backend(sb);
2633 	if (ret != 0)
2634 		goto out_free_locality_groups;
2635 
2636 	if (sbi->s_proc)
2637 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2638 				 &ext4_mb_seq_groups_fops, sb);
2639 
2640 	return 0;
2641 
2642 out_free_locality_groups:
2643 	free_percpu(sbi->s_locality_groups);
2644 	sbi->s_locality_groups = NULL;
2645 out_free_groupinfo_slab:
2646 	ext4_groupinfo_destroy_slabs();
2647 out:
2648 	kfree(sbi->s_mb_offsets);
2649 	sbi->s_mb_offsets = NULL;
2650 	kfree(sbi->s_mb_maxs);
2651 	sbi->s_mb_maxs = NULL;
2652 	return ret;
2653 }
2654 
2655 /* need to called with the ext4 group lock held */
2656 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2657 {
2658 	struct ext4_prealloc_space *pa;
2659 	struct list_head *cur, *tmp;
2660 	int count = 0;
2661 
2662 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2663 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2664 		list_del(&pa->pa_group_list);
2665 		count++;
2666 		kmem_cache_free(ext4_pspace_cachep, pa);
2667 	}
2668 	if (count)
2669 		mb_debug(1, "mballoc: %u PAs left\n", count);
2670 
2671 }
2672 
2673 int ext4_mb_release(struct super_block *sb)
2674 {
2675 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2676 	ext4_group_t i;
2677 	int num_meta_group_infos;
2678 	struct ext4_group_info *grinfo;
2679 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2681 
2682 	if (sbi->s_proc)
2683 		remove_proc_entry("mb_groups", sbi->s_proc);
2684 
2685 	if (sbi->s_group_info) {
2686 		for (i = 0; i < ngroups; i++) {
2687 			grinfo = ext4_get_group_info(sb, i);
2688 #ifdef DOUBLE_CHECK
2689 			kfree(grinfo->bb_bitmap);
2690 #endif
2691 			ext4_lock_group(sb, i);
2692 			ext4_mb_cleanup_pa(grinfo);
2693 			ext4_unlock_group(sb, i);
2694 			kmem_cache_free(cachep, grinfo);
2695 		}
2696 		num_meta_group_infos = (ngroups +
2697 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2698 			EXT4_DESC_PER_BLOCK_BITS(sb);
2699 		for (i = 0; i < num_meta_group_infos; i++)
2700 			kfree(sbi->s_group_info[i]);
2701 		ext4_kvfree(sbi->s_group_info);
2702 	}
2703 	kfree(sbi->s_mb_offsets);
2704 	kfree(sbi->s_mb_maxs);
2705 	if (sbi->s_buddy_cache)
2706 		iput(sbi->s_buddy_cache);
2707 	if (sbi->s_mb_stats) {
2708 		ext4_msg(sb, KERN_INFO,
2709 		       "mballoc: %u blocks %u reqs (%u success)",
2710 				atomic_read(&sbi->s_bal_allocated),
2711 				atomic_read(&sbi->s_bal_reqs),
2712 				atomic_read(&sbi->s_bal_success));
2713 		ext4_msg(sb, KERN_INFO,
2714 		      "mballoc: %u extents scanned, %u goal hits, "
2715 				"%u 2^N hits, %u breaks, %u lost",
2716 				atomic_read(&sbi->s_bal_ex_scanned),
2717 				atomic_read(&sbi->s_bal_goals),
2718 				atomic_read(&sbi->s_bal_2orders),
2719 				atomic_read(&sbi->s_bal_breaks),
2720 				atomic_read(&sbi->s_mb_lost_chunks));
2721 		ext4_msg(sb, KERN_INFO,
2722 		       "mballoc: %lu generated and it took %Lu",
2723 				sbi->s_mb_buddies_generated,
2724 				sbi->s_mb_generation_time);
2725 		ext4_msg(sb, KERN_INFO,
2726 		       "mballoc: %u preallocated, %u discarded",
2727 				atomic_read(&sbi->s_mb_preallocated),
2728 				atomic_read(&sbi->s_mb_discarded));
2729 	}
2730 
2731 	free_percpu(sbi->s_locality_groups);
2732 
2733 	return 0;
2734 }
2735 
2736 static inline int ext4_issue_discard(struct super_block *sb,
2737 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2738 {
2739 	ext4_fsblk_t discard_block;
2740 
2741 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2742 			 ext4_group_first_block_no(sb, block_group));
2743 	count = EXT4_C2B(EXT4_SB(sb), count);
2744 	trace_ext4_discard_blocks(sb,
2745 			(unsigned long long) discard_block, count);
2746 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2747 }
2748 
2749 /*
2750  * This function is called by the jbd2 layer once the commit has finished,
2751  * so we know we can free the blocks that were released with that commit.
2752  */
2753 static void ext4_free_data_callback(struct super_block *sb,
2754 				    struct ext4_journal_cb_entry *jce,
2755 				    int rc)
2756 {
2757 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2758 	struct ext4_buddy e4b;
2759 	struct ext4_group_info *db;
2760 	int err, count = 0, count2 = 0;
2761 
2762 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2763 		 entry->efd_count, entry->efd_group, entry);
2764 
2765 	if (test_opt(sb, DISCARD)) {
2766 		err = ext4_issue_discard(sb, entry->efd_group,
2767 					 entry->efd_start_cluster,
2768 					 entry->efd_count);
2769 		if (err && err != -EOPNOTSUPP)
2770 			ext4_msg(sb, KERN_WARNING, "discard request in"
2771 				 " group:%d block:%d count:%d failed"
2772 				 " with %d", entry->efd_group,
2773 				 entry->efd_start_cluster,
2774 				 entry->efd_count, err);
2775 	}
2776 
2777 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2778 	/* we expect to find existing buddy because it's pinned */
2779 	BUG_ON(err != 0);
2780 
2781 
2782 	db = e4b.bd_info;
2783 	/* there are blocks to put in buddy to make them really free */
2784 	count += entry->efd_count;
2785 	count2++;
2786 	ext4_lock_group(sb, entry->efd_group);
2787 	/* Take it out of per group rb tree */
2788 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2789 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2790 
2791 	/*
2792 	 * Clear the trimmed flag for the group so that the next
2793 	 * ext4_trim_fs can trim it.
2794 	 * If the volume is mounted with -o discard, online discard
2795 	 * is supported and the free blocks will be trimmed online.
2796 	 */
2797 	if (!test_opt(sb, DISCARD))
2798 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2799 
2800 	if (!db->bb_free_root.rb_node) {
2801 		/* No more items in the per group rb tree
2802 		 * balance refcounts from ext4_mb_free_metadata()
2803 		 */
2804 		page_cache_release(e4b.bd_buddy_page);
2805 		page_cache_release(e4b.bd_bitmap_page);
2806 	}
2807 	ext4_unlock_group(sb, entry->efd_group);
2808 	kmem_cache_free(ext4_free_data_cachep, entry);
2809 	ext4_mb_unload_buddy(&e4b);
2810 
2811 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2812 }
2813 
2814 int __init ext4_init_mballoc(void)
2815 {
2816 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2817 					SLAB_RECLAIM_ACCOUNT);
2818 	if (ext4_pspace_cachep == NULL)
2819 		return -ENOMEM;
2820 
2821 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2822 				    SLAB_RECLAIM_ACCOUNT);
2823 	if (ext4_ac_cachep == NULL) {
2824 		kmem_cache_destroy(ext4_pspace_cachep);
2825 		return -ENOMEM;
2826 	}
2827 
2828 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2829 					   SLAB_RECLAIM_ACCOUNT);
2830 	if (ext4_free_data_cachep == NULL) {
2831 		kmem_cache_destroy(ext4_pspace_cachep);
2832 		kmem_cache_destroy(ext4_ac_cachep);
2833 		return -ENOMEM;
2834 	}
2835 	return 0;
2836 }
2837 
2838 void ext4_exit_mballoc(void)
2839 {
2840 	/*
2841 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2842 	 * before destroying the slab cache.
2843 	 */
2844 	rcu_barrier();
2845 	kmem_cache_destroy(ext4_pspace_cachep);
2846 	kmem_cache_destroy(ext4_ac_cachep);
2847 	kmem_cache_destroy(ext4_free_data_cachep);
2848 	ext4_groupinfo_destroy_slabs();
2849 }
2850 
2851 
2852 /*
2853  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2854  * Returns 0 if success or error code
2855  */
2856 static noinline_for_stack int
2857 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2858 				handle_t *handle, unsigned int reserv_clstrs)
2859 {
2860 	struct buffer_head *bitmap_bh = NULL;
2861 	struct ext4_group_desc *gdp;
2862 	struct buffer_head *gdp_bh;
2863 	struct ext4_sb_info *sbi;
2864 	struct super_block *sb;
2865 	ext4_fsblk_t block;
2866 	int err, len;
2867 
2868 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2869 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2870 
2871 	sb = ac->ac_sb;
2872 	sbi = EXT4_SB(sb);
2873 
2874 	err = -EIO;
2875 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2876 	if (!bitmap_bh)
2877 		goto out_err;
2878 
2879 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2880 	if (err)
2881 		goto out_err;
2882 
2883 	err = -EIO;
2884 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2885 	if (!gdp)
2886 		goto out_err;
2887 
2888 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2889 			ext4_free_group_clusters(sb, gdp));
2890 
2891 	err = ext4_journal_get_write_access(handle, gdp_bh);
2892 	if (err)
2893 		goto out_err;
2894 
2895 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2896 
2897 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2898 	if (!ext4_data_block_valid(sbi, block, len)) {
2899 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2900 			   "fs metadata", block, block+len);
2901 		/* File system mounted not to panic on error
2902 		 * Fix the bitmap and repeat the block allocation
2903 		 * We leak some of the blocks here.
2904 		 */
2905 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2906 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2907 			      ac->ac_b_ex.fe_len);
2908 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2909 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2910 		if (!err)
2911 			err = -EAGAIN;
2912 		goto out_err;
2913 	}
2914 
2915 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2916 #ifdef AGGRESSIVE_CHECK
2917 	{
2918 		int i;
2919 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2920 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2921 						bitmap_bh->b_data));
2922 		}
2923 	}
2924 #endif
2925 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2926 		      ac->ac_b_ex.fe_len);
2927 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2928 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2929 		ext4_free_group_clusters_set(sb, gdp,
2930 					     ext4_free_clusters_after_init(sb,
2931 						ac->ac_b_ex.fe_group, gdp));
2932 	}
2933 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2934 	ext4_free_group_clusters_set(sb, gdp, len);
2935 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2936 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2937 
2938 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2939 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2940 	/*
2941 	 * Now reduce the dirty block count also. Should not go negative
2942 	 */
2943 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2944 		/* release all the reserved blocks if non delalloc */
2945 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2946 				   reserv_clstrs);
2947 
2948 	if (sbi->s_log_groups_per_flex) {
2949 		ext4_group_t flex_group = ext4_flex_group(sbi,
2950 							  ac->ac_b_ex.fe_group);
2951 		atomic64_sub(ac->ac_b_ex.fe_len,
2952 			     &sbi->s_flex_groups[flex_group].free_clusters);
2953 	}
2954 
2955 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2956 	if (err)
2957 		goto out_err;
2958 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2959 
2960 out_err:
2961 	brelse(bitmap_bh);
2962 	return err;
2963 }
2964 
2965 /*
2966  * here we normalize request for locality group
2967  * Group request are normalized to s_mb_group_prealloc, which goes to
2968  * s_strip if we set the same via mount option.
2969  * s_mb_group_prealloc can be configured via
2970  * /sys/fs/ext4/<partition>/mb_group_prealloc
2971  *
2972  * XXX: should we try to preallocate more than the group has now?
2973  */
2974 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2975 {
2976 	struct super_block *sb = ac->ac_sb;
2977 	struct ext4_locality_group *lg = ac->ac_lg;
2978 
2979 	BUG_ON(lg == NULL);
2980 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2981 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2982 		current->pid, ac->ac_g_ex.fe_len);
2983 }
2984 
2985 /*
2986  * Normalization means making request better in terms of
2987  * size and alignment
2988  */
2989 static noinline_for_stack void
2990 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2991 				struct ext4_allocation_request *ar)
2992 {
2993 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2994 	int bsbits, max;
2995 	ext4_lblk_t end;
2996 	loff_t size, start_off;
2997 	loff_t orig_size __maybe_unused;
2998 	ext4_lblk_t start;
2999 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3000 	struct ext4_prealloc_space *pa;
3001 
3002 	/* do normalize only data requests, metadata requests
3003 	   do not need preallocation */
3004 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3005 		return;
3006 
3007 	/* sometime caller may want exact blocks */
3008 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3009 		return;
3010 
3011 	/* caller may indicate that preallocation isn't
3012 	 * required (it's a tail, for example) */
3013 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3014 		return;
3015 
3016 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3017 		ext4_mb_normalize_group_request(ac);
3018 		return ;
3019 	}
3020 
3021 	bsbits = ac->ac_sb->s_blocksize_bits;
3022 
3023 	/* first, let's learn actual file size
3024 	 * given current request is allocated */
3025 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3026 	size = size << bsbits;
3027 	if (size < i_size_read(ac->ac_inode))
3028 		size = i_size_read(ac->ac_inode);
3029 	orig_size = size;
3030 
3031 	/* max size of free chunks */
3032 	max = 2 << bsbits;
3033 
3034 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3035 		(req <= (size) || max <= (chunk_size))
3036 
3037 	/* first, try to predict filesize */
3038 	/* XXX: should this table be tunable? */
3039 	start_off = 0;
3040 	if (size <= 16 * 1024) {
3041 		size = 16 * 1024;
3042 	} else if (size <= 32 * 1024) {
3043 		size = 32 * 1024;
3044 	} else if (size <= 64 * 1024) {
3045 		size = 64 * 1024;
3046 	} else if (size <= 128 * 1024) {
3047 		size = 128 * 1024;
3048 	} else if (size <= 256 * 1024) {
3049 		size = 256 * 1024;
3050 	} else if (size <= 512 * 1024) {
3051 		size = 512 * 1024;
3052 	} else if (size <= 1024 * 1024) {
3053 		size = 1024 * 1024;
3054 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3055 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3056 						(21 - bsbits)) << 21;
3057 		size = 2 * 1024 * 1024;
3058 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3059 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3060 							(22 - bsbits)) << 22;
3061 		size = 4 * 1024 * 1024;
3062 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3063 					(8<<20)>>bsbits, max, 8 * 1024)) {
3064 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3065 							(23 - bsbits)) << 23;
3066 		size = 8 * 1024 * 1024;
3067 	} else {
3068 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3069 		size	  = ac->ac_o_ex.fe_len << bsbits;
3070 	}
3071 	size = size >> bsbits;
3072 	start = start_off >> bsbits;
3073 
3074 	/* don't cover already allocated blocks in selected range */
3075 	if (ar->pleft && start <= ar->lleft) {
3076 		size -= ar->lleft + 1 - start;
3077 		start = ar->lleft + 1;
3078 	}
3079 	if (ar->pright && start + size - 1 >= ar->lright)
3080 		size -= start + size - ar->lright;
3081 
3082 	end = start + size;
3083 
3084 	/* check we don't cross already preallocated blocks */
3085 	rcu_read_lock();
3086 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3087 		ext4_lblk_t pa_end;
3088 
3089 		if (pa->pa_deleted)
3090 			continue;
3091 		spin_lock(&pa->pa_lock);
3092 		if (pa->pa_deleted) {
3093 			spin_unlock(&pa->pa_lock);
3094 			continue;
3095 		}
3096 
3097 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3098 						  pa->pa_len);
3099 
3100 		/* PA must not overlap original request */
3101 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3102 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3103 
3104 		/* skip PAs this normalized request doesn't overlap with */
3105 		if (pa->pa_lstart >= end || pa_end <= start) {
3106 			spin_unlock(&pa->pa_lock);
3107 			continue;
3108 		}
3109 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3110 
3111 		/* adjust start or end to be adjacent to this pa */
3112 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3113 			BUG_ON(pa_end < start);
3114 			start = pa_end;
3115 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3116 			BUG_ON(pa->pa_lstart > end);
3117 			end = pa->pa_lstart;
3118 		}
3119 		spin_unlock(&pa->pa_lock);
3120 	}
3121 	rcu_read_unlock();
3122 	size = end - start;
3123 
3124 	/* XXX: extra loop to check we really don't overlap preallocations */
3125 	rcu_read_lock();
3126 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3127 		ext4_lblk_t pa_end;
3128 
3129 		spin_lock(&pa->pa_lock);
3130 		if (pa->pa_deleted == 0) {
3131 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3132 							  pa->pa_len);
3133 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3134 		}
3135 		spin_unlock(&pa->pa_lock);
3136 	}
3137 	rcu_read_unlock();
3138 
3139 	if (start + size <= ac->ac_o_ex.fe_logical &&
3140 			start > ac->ac_o_ex.fe_logical) {
3141 		ext4_msg(ac->ac_sb, KERN_ERR,
3142 			 "start %lu, size %lu, fe_logical %lu",
3143 			 (unsigned long) start, (unsigned long) size,
3144 			 (unsigned long) ac->ac_o_ex.fe_logical);
3145 	}
3146 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3147 			start > ac->ac_o_ex.fe_logical);
3148 	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3149 
3150 	/* now prepare goal request */
3151 
3152 	/* XXX: is it better to align blocks WRT to logical
3153 	 * placement or satisfy big request as is */
3154 	ac->ac_g_ex.fe_logical = start;
3155 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3156 
3157 	/* define goal start in order to merge */
3158 	if (ar->pright && (ar->lright == (start + size))) {
3159 		/* merge to the right */
3160 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3161 						&ac->ac_f_ex.fe_group,
3162 						&ac->ac_f_ex.fe_start);
3163 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3164 	}
3165 	if (ar->pleft && (ar->lleft + 1 == start)) {
3166 		/* merge to the left */
3167 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3168 						&ac->ac_f_ex.fe_group,
3169 						&ac->ac_f_ex.fe_start);
3170 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3171 	}
3172 
3173 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3174 		(unsigned) orig_size, (unsigned) start);
3175 }
3176 
3177 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3178 {
3179 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3180 
3181 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3182 		atomic_inc(&sbi->s_bal_reqs);
3183 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3184 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3185 			atomic_inc(&sbi->s_bal_success);
3186 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3187 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3188 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3189 			atomic_inc(&sbi->s_bal_goals);
3190 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3191 			atomic_inc(&sbi->s_bal_breaks);
3192 	}
3193 
3194 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3195 		trace_ext4_mballoc_alloc(ac);
3196 	else
3197 		trace_ext4_mballoc_prealloc(ac);
3198 }
3199 
3200 /*
3201  * Called on failure; free up any blocks from the inode PA for this
3202  * context.  We don't need this for MB_GROUP_PA because we only change
3203  * pa_free in ext4_mb_release_context(), but on failure, we've already
3204  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3205  */
3206 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3207 {
3208 	struct ext4_prealloc_space *pa = ac->ac_pa;
3209 
3210 	if (pa && pa->pa_type == MB_INODE_PA)
3211 		pa->pa_free += ac->ac_b_ex.fe_len;
3212 }
3213 
3214 /*
3215  * use blocks preallocated to inode
3216  */
3217 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3218 				struct ext4_prealloc_space *pa)
3219 {
3220 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3221 	ext4_fsblk_t start;
3222 	ext4_fsblk_t end;
3223 	int len;
3224 
3225 	/* found preallocated blocks, use them */
3226 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3227 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3228 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3229 	len = EXT4_NUM_B2C(sbi, end - start);
3230 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3231 					&ac->ac_b_ex.fe_start);
3232 	ac->ac_b_ex.fe_len = len;
3233 	ac->ac_status = AC_STATUS_FOUND;
3234 	ac->ac_pa = pa;
3235 
3236 	BUG_ON(start < pa->pa_pstart);
3237 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3238 	BUG_ON(pa->pa_free < len);
3239 	pa->pa_free -= len;
3240 
3241 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3242 }
3243 
3244 /*
3245  * use blocks preallocated to locality group
3246  */
3247 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3248 				struct ext4_prealloc_space *pa)
3249 {
3250 	unsigned int len = ac->ac_o_ex.fe_len;
3251 
3252 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3253 					&ac->ac_b_ex.fe_group,
3254 					&ac->ac_b_ex.fe_start);
3255 	ac->ac_b_ex.fe_len = len;
3256 	ac->ac_status = AC_STATUS_FOUND;
3257 	ac->ac_pa = pa;
3258 
3259 	/* we don't correct pa_pstart or pa_plen here to avoid
3260 	 * possible race when the group is being loaded concurrently
3261 	 * instead we correct pa later, after blocks are marked
3262 	 * in on-disk bitmap -- see ext4_mb_release_context()
3263 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3264 	 */
3265 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3266 }
3267 
3268 /*
3269  * Return the prealloc space that have minimal distance
3270  * from the goal block. @cpa is the prealloc
3271  * space that is having currently known minimal distance
3272  * from the goal block.
3273  */
3274 static struct ext4_prealloc_space *
3275 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3276 			struct ext4_prealloc_space *pa,
3277 			struct ext4_prealloc_space *cpa)
3278 {
3279 	ext4_fsblk_t cur_distance, new_distance;
3280 
3281 	if (cpa == NULL) {
3282 		atomic_inc(&pa->pa_count);
3283 		return pa;
3284 	}
3285 	cur_distance = abs(goal_block - cpa->pa_pstart);
3286 	new_distance = abs(goal_block - pa->pa_pstart);
3287 
3288 	if (cur_distance <= new_distance)
3289 		return cpa;
3290 
3291 	/* drop the previous reference */
3292 	atomic_dec(&cpa->pa_count);
3293 	atomic_inc(&pa->pa_count);
3294 	return pa;
3295 }
3296 
3297 /*
3298  * search goal blocks in preallocated space
3299  */
3300 static noinline_for_stack int
3301 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3302 {
3303 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3304 	int order, i;
3305 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3306 	struct ext4_locality_group *lg;
3307 	struct ext4_prealloc_space *pa, *cpa = NULL;
3308 	ext4_fsblk_t goal_block;
3309 
3310 	/* only data can be preallocated */
3311 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3312 		return 0;
3313 
3314 	/* first, try per-file preallocation */
3315 	rcu_read_lock();
3316 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3317 
3318 		/* all fields in this condition don't change,
3319 		 * so we can skip locking for them */
3320 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3321 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3322 					       EXT4_C2B(sbi, pa->pa_len)))
3323 			continue;
3324 
3325 		/* non-extent files can't have physical blocks past 2^32 */
3326 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3327 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3328 		     EXT4_MAX_BLOCK_FILE_PHYS))
3329 			continue;
3330 
3331 		/* found preallocated blocks, use them */
3332 		spin_lock(&pa->pa_lock);
3333 		if (pa->pa_deleted == 0 && pa->pa_free) {
3334 			atomic_inc(&pa->pa_count);
3335 			ext4_mb_use_inode_pa(ac, pa);
3336 			spin_unlock(&pa->pa_lock);
3337 			ac->ac_criteria = 10;
3338 			rcu_read_unlock();
3339 			return 1;
3340 		}
3341 		spin_unlock(&pa->pa_lock);
3342 	}
3343 	rcu_read_unlock();
3344 
3345 	/* can we use group allocation? */
3346 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3347 		return 0;
3348 
3349 	/* inode may have no locality group for some reason */
3350 	lg = ac->ac_lg;
3351 	if (lg == NULL)
3352 		return 0;
3353 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3354 	if (order > PREALLOC_TB_SIZE - 1)
3355 		/* The max size of hash table is PREALLOC_TB_SIZE */
3356 		order = PREALLOC_TB_SIZE - 1;
3357 
3358 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3359 	/*
3360 	 * search for the prealloc space that is having
3361 	 * minimal distance from the goal block.
3362 	 */
3363 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3364 		rcu_read_lock();
3365 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3366 					pa_inode_list) {
3367 			spin_lock(&pa->pa_lock);
3368 			if (pa->pa_deleted == 0 &&
3369 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3370 
3371 				cpa = ext4_mb_check_group_pa(goal_block,
3372 								pa, cpa);
3373 			}
3374 			spin_unlock(&pa->pa_lock);
3375 		}
3376 		rcu_read_unlock();
3377 	}
3378 	if (cpa) {
3379 		ext4_mb_use_group_pa(ac, cpa);
3380 		ac->ac_criteria = 20;
3381 		return 1;
3382 	}
3383 	return 0;
3384 }
3385 
3386 /*
3387  * the function goes through all block freed in the group
3388  * but not yet committed and marks them used in in-core bitmap.
3389  * buddy must be generated from this bitmap
3390  * Need to be called with the ext4 group lock held
3391  */
3392 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3393 						ext4_group_t group)
3394 {
3395 	struct rb_node *n;
3396 	struct ext4_group_info *grp;
3397 	struct ext4_free_data *entry;
3398 
3399 	grp = ext4_get_group_info(sb, group);
3400 	n = rb_first(&(grp->bb_free_root));
3401 
3402 	while (n) {
3403 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3404 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3405 		n = rb_next(n);
3406 	}
3407 	return;
3408 }
3409 
3410 /*
3411  * the function goes through all preallocation in this group and marks them
3412  * used in in-core bitmap. buddy must be generated from this bitmap
3413  * Need to be called with ext4 group lock held
3414  */
3415 static noinline_for_stack
3416 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3417 					ext4_group_t group)
3418 {
3419 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3420 	struct ext4_prealloc_space *pa;
3421 	struct list_head *cur;
3422 	ext4_group_t groupnr;
3423 	ext4_grpblk_t start;
3424 	int preallocated = 0;
3425 	int len;
3426 
3427 	/* all form of preallocation discards first load group,
3428 	 * so the only competing code is preallocation use.
3429 	 * we don't need any locking here
3430 	 * notice we do NOT ignore preallocations with pa_deleted
3431 	 * otherwise we could leave used blocks available for
3432 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3433 	 * is dropping preallocation
3434 	 */
3435 	list_for_each(cur, &grp->bb_prealloc_list) {
3436 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3437 		spin_lock(&pa->pa_lock);
3438 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3439 					     &groupnr, &start);
3440 		len = pa->pa_len;
3441 		spin_unlock(&pa->pa_lock);
3442 		if (unlikely(len == 0))
3443 			continue;
3444 		BUG_ON(groupnr != group);
3445 		ext4_set_bits(bitmap, start, len);
3446 		preallocated += len;
3447 	}
3448 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3449 }
3450 
3451 static void ext4_mb_pa_callback(struct rcu_head *head)
3452 {
3453 	struct ext4_prealloc_space *pa;
3454 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3455 
3456 	BUG_ON(atomic_read(&pa->pa_count));
3457 	BUG_ON(pa->pa_deleted == 0);
3458 	kmem_cache_free(ext4_pspace_cachep, pa);
3459 }
3460 
3461 /*
3462  * drops a reference to preallocated space descriptor
3463  * if this was the last reference and the space is consumed
3464  */
3465 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3466 			struct super_block *sb, struct ext4_prealloc_space *pa)
3467 {
3468 	ext4_group_t grp;
3469 	ext4_fsblk_t grp_blk;
3470 
3471 	/* in this short window concurrent discard can set pa_deleted */
3472 	spin_lock(&pa->pa_lock);
3473 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3474 		spin_unlock(&pa->pa_lock);
3475 		return;
3476 	}
3477 
3478 	if (pa->pa_deleted == 1) {
3479 		spin_unlock(&pa->pa_lock);
3480 		return;
3481 	}
3482 
3483 	pa->pa_deleted = 1;
3484 	spin_unlock(&pa->pa_lock);
3485 
3486 	grp_blk = pa->pa_pstart;
3487 	/*
3488 	 * If doing group-based preallocation, pa_pstart may be in the
3489 	 * next group when pa is used up
3490 	 */
3491 	if (pa->pa_type == MB_GROUP_PA)
3492 		grp_blk--;
3493 
3494 	grp = ext4_get_group_number(sb, grp_blk);
3495 
3496 	/*
3497 	 * possible race:
3498 	 *
3499 	 *  P1 (buddy init)			P2 (regular allocation)
3500 	 *					find block B in PA
3501 	 *  copy on-disk bitmap to buddy
3502 	 *  					mark B in on-disk bitmap
3503 	 *					drop PA from group
3504 	 *  mark all PAs in buddy
3505 	 *
3506 	 * thus, P1 initializes buddy with B available. to prevent this
3507 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3508 	 * against that pair
3509 	 */
3510 	ext4_lock_group(sb, grp);
3511 	list_del(&pa->pa_group_list);
3512 	ext4_unlock_group(sb, grp);
3513 
3514 	spin_lock(pa->pa_obj_lock);
3515 	list_del_rcu(&pa->pa_inode_list);
3516 	spin_unlock(pa->pa_obj_lock);
3517 
3518 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3519 }
3520 
3521 /*
3522  * creates new preallocated space for given inode
3523  */
3524 static noinline_for_stack int
3525 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3526 {
3527 	struct super_block *sb = ac->ac_sb;
3528 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3529 	struct ext4_prealloc_space *pa;
3530 	struct ext4_group_info *grp;
3531 	struct ext4_inode_info *ei;
3532 
3533 	/* preallocate only when found space is larger then requested */
3534 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3535 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3536 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3537 
3538 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3539 	if (pa == NULL)
3540 		return -ENOMEM;
3541 
3542 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3543 		int winl;
3544 		int wins;
3545 		int win;
3546 		int offs;
3547 
3548 		/* we can't allocate as much as normalizer wants.
3549 		 * so, found space must get proper lstart
3550 		 * to cover original request */
3551 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3552 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3553 
3554 		/* we're limited by original request in that
3555 		 * logical block must be covered any way
3556 		 * winl is window we can move our chunk within */
3557 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3558 
3559 		/* also, we should cover whole original request */
3560 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3561 
3562 		/* the smallest one defines real window */
3563 		win = min(winl, wins);
3564 
3565 		offs = ac->ac_o_ex.fe_logical %
3566 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3567 		if (offs && offs < win)
3568 			win = offs;
3569 
3570 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3571 			EXT4_NUM_B2C(sbi, win);
3572 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3573 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3574 	}
3575 
3576 	/* preallocation can change ac_b_ex, thus we store actually
3577 	 * allocated blocks for history */
3578 	ac->ac_f_ex = ac->ac_b_ex;
3579 
3580 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3581 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3582 	pa->pa_len = ac->ac_b_ex.fe_len;
3583 	pa->pa_free = pa->pa_len;
3584 	atomic_set(&pa->pa_count, 1);
3585 	spin_lock_init(&pa->pa_lock);
3586 	INIT_LIST_HEAD(&pa->pa_inode_list);
3587 	INIT_LIST_HEAD(&pa->pa_group_list);
3588 	pa->pa_deleted = 0;
3589 	pa->pa_type = MB_INODE_PA;
3590 
3591 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3592 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3593 	trace_ext4_mb_new_inode_pa(ac, pa);
3594 
3595 	ext4_mb_use_inode_pa(ac, pa);
3596 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3597 
3598 	ei = EXT4_I(ac->ac_inode);
3599 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3600 
3601 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3602 	pa->pa_inode = ac->ac_inode;
3603 
3604 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3605 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3606 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3607 
3608 	spin_lock(pa->pa_obj_lock);
3609 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3610 	spin_unlock(pa->pa_obj_lock);
3611 
3612 	return 0;
3613 }
3614 
3615 /*
3616  * creates new preallocated space for locality group inodes belongs to
3617  */
3618 static noinline_for_stack int
3619 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3620 {
3621 	struct super_block *sb = ac->ac_sb;
3622 	struct ext4_locality_group *lg;
3623 	struct ext4_prealloc_space *pa;
3624 	struct ext4_group_info *grp;
3625 
3626 	/* preallocate only when found space is larger then requested */
3627 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3628 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3629 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3630 
3631 	BUG_ON(ext4_pspace_cachep == NULL);
3632 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3633 	if (pa == NULL)
3634 		return -ENOMEM;
3635 
3636 	/* preallocation can change ac_b_ex, thus we store actually
3637 	 * allocated blocks for history */
3638 	ac->ac_f_ex = ac->ac_b_ex;
3639 
3640 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3641 	pa->pa_lstart = pa->pa_pstart;
3642 	pa->pa_len = ac->ac_b_ex.fe_len;
3643 	pa->pa_free = pa->pa_len;
3644 	atomic_set(&pa->pa_count, 1);
3645 	spin_lock_init(&pa->pa_lock);
3646 	INIT_LIST_HEAD(&pa->pa_inode_list);
3647 	INIT_LIST_HEAD(&pa->pa_group_list);
3648 	pa->pa_deleted = 0;
3649 	pa->pa_type = MB_GROUP_PA;
3650 
3651 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3652 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3653 	trace_ext4_mb_new_group_pa(ac, pa);
3654 
3655 	ext4_mb_use_group_pa(ac, pa);
3656 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3657 
3658 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3659 	lg = ac->ac_lg;
3660 	BUG_ON(lg == NULL);
3661 
3662 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3663 	pa->pa_inode = NULL;
3664 
3665 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3666 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3667 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3668 
3669 	/*
3670 	 * We will later add the new pa to the right bucket
3671 	 * after updating the pa_free in ext4_mb_release_context
3672 	 */
3673 	return 0;
3674 }
3675 
3676 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3677 {
3678 	int err;
3679 
3680 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3681 		err = ext4_mb_new_group_pa(ac);
3682 	else
3683 		err = ext4_mb_new_inode_pa(ac);
3684 	return err;
3685 }
3686 
3687 /*
3688  * finds all unused blocks in on-disk bitmap, frees them in
3689  * in-core bitmap and buddy.
3690  * @pa must be unlinked from inode and group lists, so that
3691  * nobody else can find/use it.
3692  * the caller MUST hold group/inode locks.
3693  * TODO: optimize the case when there are no in-core structures yet
3694  */
3695 static noinline_for_stack int
3696 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3697 			struct ext4_prealloc_space *pa)
3698 {
3699 	struct super_block *sb = e4b->bd_sb;
3700 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3701 	unsigned int end;
3702 	unsigned int next;
3703 	ext4_group_t group;
3704 	ext4_grpblk_t bit;
3705 	unsigned long long grp_blk_start;
3706 	int err = 0;
3707 	int free = 0;
3708 
3709 	BUG_ON(pa->pa_deleted == 0);
3710 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3711 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3712 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3713 	end = bit + pa->pa_len;
3714 
3715 	while (bit < end) {
3716 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3717 		if (bit >= end)
3718 			break;
3719 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3720 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3721 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3722 			 (unsigned) next - bit, (unsigned) group);
3723 		free += next - bit;
3724 
3725 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3726 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3727 						    EXT4_C2B(sbi, bit)),
3728 					       next - bit);
3729 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3730 		bit = next + 1;
3731 	}
3732 	if (free != pa->pa_free) {
3733 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3734 			 "pa %p: logic %lu, phys. %lu, len %lu",
3735 			 pa, (unsigned long) pa->pa_lstart,
3736 			 (unsigned long) pa->pa_pstart,
3737 			 (unsigned long) pa->pa_len);
3738 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3739 					free, pa->pa_free);
3740 		/*
3741 		 * pa is already deleted so we use the value obtained
3742 		 * from the bitmap and continue.
3743 		 */
3744 	}
3745 	atomic_add(free, &sbi->s_mb_discarded);
3746 
3747 	return err;
3748 }
3749 
3750 static noinline_for_stack int
3751 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3752 				struct ext4_prealloc_space *pa)
3753 {
3754 	struct super_block *sb = e4b->bd_sb;
3755 	ext4_group_t group;
3756 	ext4_grpblk_t bit;
3757 
3758 	trace_ext4_mb_release_group_pa(sb, pa);
3759 	BUG_ON(pa->pa_deleted == 0);
3760 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3761 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3762 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3763 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3764 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3765 
3766 	return 0;
3767 }
3768 
3769 /*
3770  * releases all preallocations in given group
3771  *
3772  * first, we need to decide discard policy:
3773  * - when do we discard
3774  *   1) ENOSPC
3775  * - how many do we discard
3776  *   1) how many requested
3777  */
3778 static noinline_for_stack int
3779 ext4_mb_discard_group_preallocations(struct super_block *sb,
3780 					ext4_group_t group, int needed)
3781 {
3782 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3783 	struct buffer_head *bitmap_bh = NULL;
3784 	struct ext4_prealloc_space *pa, *tmp;
3785 	struct list_head list;
3786 	struct ext4_buddy e4b;
3787 	int err;
3788 	int busy = 0;
3789 	int free = 0;
3790 
3791 	mb_debug(1, "discard preallocation for group %u\n", group);
3792 
3793 	if (list_empty(&grp->bb_prealloc_list))
3794 		return 0;
3795 
3796 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3797 	if (bitmap_bh == NULL) {
3798 		ext4_error(sb, "Error reading block bitmap for %u", group);
3799 		return 0;
3800 	}
3801 
3802 	err = ext4_mb_load_buddy(sb, group, &e4b);
3803 	if (err) {
3804 		ext4_error(sb, "Error loading buddy information for %u", group);
3805 		put_bh(bitmap_bh);
3806 		return 0;
3807 	}
3808 
3809 	if (needed == 0)
3810 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3811 
3812 	INIT_LIST_HEAD(&list);
3813 repeat:
3814 	ext4_lock_group(sb, group);
3815 	list_for_each_entry_safe(pa, tmp,
3816 				&grp->bb_prealloc_list, pa_group_list) {
3817 		spin_lock(&pa->pa_lock);
3818 		if (atomic_read(&pa->pa_count)) {
3819 			spin_unlock(&pa->pa_lock);
3820 			busy = 1;
3821 			continue;
3822 		}
3823 		if (pa->pa_deleted) {
3824 			spin_unlock(&pa->pa_lock);
3825 			continue;
3826 		}
3827 
3828 		/* seems this one can be freed ... */
3829 		pa->pa_deleted = 1;
3830 
3831 		/* we can trust pa_free ... */
3832 		free += pa->pa_free;
3833 
3834 		spin_unlock(&pa->pa_lock);
3835 
3836 		list_del(&pa->pa_group_list);
3837 		list_add(&pa->u.pa_tmp_list, &list);
3838 	}
3839 
3840 	/* if we still need more blocks and some PAs were used, try again */
3841 	if (free < needed && busy) {
3842 		busy = 0;
3843 		ext4_unlock_group(sb, group);
3844 		cond_resched();
3845 		goto repeat;
3846 	}
3847 
3848 	/* found anything to free? */
3849 	if (list_empty(&list)) {
3850 		BUG_ON(free != 0);
3851 		goto out;
3852 	}
3853 
3854 	/* now free all selected PAs */
3855 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3856 
3857 		/* remove from object (inode or locality group) */
3858 		spin_lock(pa->pa_obj_lock);
3859 		list_del_rcu(&pa->pa_inode_list);
3860 		spin_unlock(pa->pa_obj_lock);
3861 
3862 		if (pa->pa_type == MB_GROUP_PA)
3863 			ext4_mb_release_group_pa(&e4b, pa);
3864 		else
3865 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3866 
3867 		list_del(&pa->u.pa_tmp_list);
3868 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3869 	}
3870 
3871 out:
3872 	ext4_unlock_group(sb, group);
3873 	ext4_mb_unload_buddy(&e4b);
3874 	put_bh(bitmap_bh);
3875 	return free;
3876 }
3877 
3878 /*
3879  * releases all non-used preallocated blocks for given inode
3880  *
3881  * It's important to discard preallocations under i_data_sem
3882  * We don't want another block to be served from the prealloc
3883  * space when we are discarding the inode prealloc space.
3884  *
3885  * FIXME!! Make sure it is valid at all the call sites
3886  */
3887 void ext4_discard_preallocations(struct inode *inode)
3888 {
3889 	struct ext4_inode_info *ei = EXT4_I(inode);
3890 	struct super_block *sb = inode->i_sb;
3891 	struct buffer_head *bitmap_bh = NULL;
3892 	struct ext4_prealloc_space *pa, *tmp;
3893 	ext4_group_t group = 0;
3894 	struct list_head list;
3895 	struct ext4_buddy e4b;
3896 	int err;
3897 
3898 	if (!S_ISREG(inode->i_mode)) {
3899 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3900 		return;
3901 	}
3902 
3903 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3904 	trace_ext4_discard_preallocations(inode);
3905 
3906 	INIT_LIST_HEAD(&list);
3907 
3908 repeat:
3909 	/* first, collect all pa's in the inode */
3910 	spin_lock(&ei->i_prealloc_lock);
3911 	while (!list_empty(&ei->i_prealloc_list)) {
3912 		pa = list_entry(ei->i_prealloc_list.next,
3913 				struct ext4_prealloc_space, pa_inode_list);
3914 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3915 		spin_lock(&pa->pa_lock);
3916 		if (atomic_read(&pa->pa_count)) {
3917 			/* this shouldn't happen often - nobody should
3918 			 * use preallocation while we're discarding it */
3919 			spin_unlock(&pa->pa_lock);
3920 			spin_unlock(&ei->i_prealloc_lock);
3921 			ext4_msg(sb, KERN_ERR,
3922 				 "uh-oh! used pa while discarding");
3923 			WARN_ON(1);
3924 			schedule_timeout_uninterruptible(HZ);
3925 			goto repeat;
3926 
3927 		}
3928 		if (pa->pa_deleted == 0) {
3929 			pa->pa_deleted = 1;
3930 			spin_unlock(&pa->pa_lock);
3931 			list_del_rcu(&pa->pa_inode_list);
3932 			list_add(&pa->u.pa_tmp_list, &list);
3933 			continue;
3934 		}
3935 
3936 		/* someone is deleting pa right now */
3937 		spin_unlock(&pa->pa_lock);
3938 		spin_unlock(&ei->i_prealloc_lock);
3939 
3940 		/* we have to wait here because pa_deleted
3941 		 * doesn't mean pa is already unlinked from
3942 		 * the list. as we might be called from
3943 		 * ->clear_inode() the inode will get freed
3944 		 * and concurrent thread which is unlinking
3945 		 * pa from inode's list may access already
3946 		 * freed memory, bad-bad-bad */
3947 
3948 		/* XXX: if this happens too often, we can
3949 		 * add a flag to force wait only in case
3950 		 * of ->clear_inode(), but not in case of
3951 		 * regular truncate */
3952 		schedule_timeout_uninterruptible(HZ);
3953 		goto repeat;
3954 	}
3955 	spin_unlock(&ei->i_prealloc_lock);
3956 
3957 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3958 		BUG_ON(pa->pa_type != MB_INODE_PA);
3959 		group = ext4_get_group_number(sb, pa->pa_pstart);
3960 
3961 		err = ext4_mb_load_buddy(sb, group, &e4b);
3962 		if (err) {
3963 			ext4_error(sb, "Error loading buddy information for %u",
3964 					group);
3965 			continue;
3966 		}
3967 
3968 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3969 		if (bitmap_bh == NULL) {
3970 			ext4_error(sb, "Error reading block bitmap for %u",
3971 					group);
3972 			ext4_mb_unload_buddy(&e4b);
3973 			continue;
3974 		}
3975 
3976 		ext4_lock_group(sb, group);
3977 		list_del(&pa->pa_group_list);
3978 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3979 		ext4_unlock_group(sb, group);
3980 
3981 		ext4_mb_unload_buddy(&e4b);
3982 		put_bh(bitmap_bh);
3983 
3984 		list_del(&pa->u.pa_tmp_list);
3985 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3986 	}
3987 }
3988 
3989 #ifdef CONFIG_EXT4_DEBUG
3990 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3991 {
3992 	struct super_block *sb = ac->ac_sb;
3993 	ext4_group_t ngroups, i;
3994 
3995 	if (!ext4_mballoc_debug ||
3996 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3997 		return;
3998 
3999 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4000 			" Allocation context details:");
4001 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4002 			ac->ac_status, ac->ac_flags);
4003 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4004 		 	"goal %lu/%lu/%lu@%lu, "
4005 			"best %lu/%lu/%lu@%lu cr %d",
4006 			(unsigned long)ac->ac_o_ex.fe_group,
4007 			(unsigned long)ac->ac_o_ex.fe_start,
4008 			(unsigned long)ac->ac_o_ex.fe_len,
4009 			(unsigned long)ac->ac_o_ex.fe_logical,
4010 			(unsigned long)ac->ac_g_ex.fe_group,
4011 			(unsigned long)ac->ac_g_ex.fe_start,
4012 			(unsigned long)ac->ac_g_ex.fe_len,
4013 			(unsigned long)ac->ac_g_ex.fe_logical,
4014 			(unsigned long)ac->ac_b_ex.fe_group,
4015 			(unsigned long)ac->ac_b_ex.fe_start,
4016 			(unsigned long)ac->ac_b_ex.fe_len,
4017 			(unsigned long)ac->ac_b_ex.fe_logical,
4018 			(int)ac->ac_criteria);
4019 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4020 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4021 	ngroups = ext4_get_groups_count(sb);
4022 	for (i = 0; i < ngroups; i++) {
4023 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4024 		struct ext4_prealloc_space *pa;
4025 		ext4_grpblk_t start;
4026 		struct list_head *cur;
4027 		ext4_lock_group(sb, i);
4028 		list_for_each(cur, &grp->bb_prealloc_list) {
4029 			pa = list_entry(cur, struct ext4_prealloc_space,
4030 					pa_group_list);
4031 			spin_lock(&pa->pa_lock);
4032 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4033 						     NULL, &start);
4034 			spin_unlock(&pa->pa_lock);
4035 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4036 			       start, pa->pa_len);
4037 		}
4038 		ext4_unlock_group(sb, i);
4039 
4040 		if (grp->bb_free == 0)
4041 			continue;
4042 		printk(KERN_ERR "%u: %d/%d \n",
4043 		       i, grp->bb_free, grp->bb_fragments);
4044 	}
4045 	printk(KERN_ERR "\n");
4046 }
4047 #else
4048 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4049 {
4050 	return;
4051 }
4052 #endif
4053 
4054 /*
4055  * We use locality group preallocation for small size file. The size of the
4056  * file is determined by the current size or the resulting size after
4057  * allocation which ever is larger
4058  *
4059  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4060  */
4061 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4062 {
4063 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4064 	int bsbits = ac->ac_sb->s_blocksize_bits;
4065 	loff_t size, isize;
4066 
4067 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4068 		return;
4069 
4070 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4071 		return;
4072 
4073 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4074 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4075 		>> bsbits;
4076 
4077 	if ((size == isize) &&
4078 	    !ext4_fs_is_busy(sbi) &&
4079 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4080 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4081 		return;
4082 	}
4083 
4084 	if (sbi->s_mb_group_prealloc <= 0) {
4085 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4086 		return;
4087 	}
4088 
4089 	/* don't use group allocation for large files */
4090 	size = max(size, isize);
4091 	if (size > sbi->s_mb_stream_request) {
4092 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4093 		return;
4094 	}
4095 
4096 	BUG_ON(ac->ac_lg != NULL);
4097 	/*
4098 	 * locality group prealloc space are per cpu. The reason for having
4099 	 * per cpu locality group is to reduce the contention between block
4100 	 * request from multiple CPUs.
4101 	 */
4102 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4103 
4104 	/* we're going to use group allocation */
4105 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4106 
4107 	/* serialize all allocations in the group */
4108 	mutex_lock(&ac->ac_lg->lg_mutex);
4109 }
4110 
4111 static noinline_for_stack int
4112 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4113 				struct ext4_allocation_request *ar)
4114 {
4115 	struct super_block *sb = ar->inode->i_sb;
4116 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4117 	struct ext4_super_block *es = sbi->s_es;
4118 	ext4_group_t group;
4119 	unsigned int len;
4120 	ext4_fsblk_t goal;
4121 	ext4_grpblk_t block;
4122 
4123 	/* we can't allocate > group size */
4124 	len = ar->len;
4125 
4126 	/* just a dirty hack to filter too big requests  */
4127 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4128 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4129 
4130 	/* start searching from the goal */
4131 	goal = ar->goal;
4132 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4133 			goal >= ext4_blocks_count(es))
4134 		goal = le32_to_cpu(es->s_first_data_block);
4135 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4136 
4137 	/* set up allocation goals */
4138 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4139 	ac->ac_status = AC_STATUS_CONTINUE;
4140 	ac->ac_sb = sb;
4141 	ac->ac_inode = ar->inode;
4142 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4143 	ac->ac_o_ex.fe_group = group;
4144 	ac->ac_o_ex.fe_start = block;
4145 	ac->ac_o_ex.fe_len = len;
4146 	ac->ac_g_ex = ac->ac_o_ex;
4147 	ac->ac_flags = ar->flags;
4148 
4149 	/* we have to define context: we'll we work with a file or
4150 	 * locality group. this is a policy, actually */
4151 	ext4_mb_group_or_file(ac);
4152 
4153 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4154 			"left: %u/%u, right %u/%u to %swritable\n",
4155 			(unsigned) ar->len, (unsigned) ar->logical,
4156 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4157 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4158 			(unsigned) ar->lright, (unsigned) ar->pright,
4159 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4160 	return 0;
4161 
4162 }
4163 
4164 static noinline_for_stack void
4165 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4166 					struct ext4_locality_group *lg,
4167 					int order, int total_entries)
4168 {
4169 	ext4_group_t group = 0;
4170 	struct ext4_buddy e4b;
4171 	struct list_head discard_list;
4172 	struct ext4_prealloc_space *pa, *tmp;
4173 
4174 	mb_debug(1, "discard locality group preallocation\n");
4175 
4176 	INIT_LIST_HEAD(&discard_list);
4177 
4178 	spin_lock(&lg->lg_prealloc_lock);
4179 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4180 						pa_inode_list) {
4181 		spin_lock(&pa->pa_lock);
4182 		if (atomic_read(&pa->pa_count)) {
4183 			/*
4184 			 * This is the pa that we just used
4185 			 * for block allocation. So don't
4186 			 * free that
4187 			 */
4188 			spin_unlock(&pa->pa_lock);
4189 			continue;
4190 		}
4191 		if (pa->pa_deleted) {
4192 			spin_unlock(&pa->pa_lock);
4193 			continue;
4194 		}
4195 		/* only lg prealloc space */
4196 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4197 
4198 		/* seems this one can be freed ... */
4199 		pa->pa_deleted = 1;
4200 		spin_unlock(&pa->pa_lock);
4201 
4202 		list_del_rcu(&pa->pa_inode_list);
4203 		list_add(&pa->u.pa_tmp_list, &discard_list);
4204 
4205 		total_entries--;
4206 		if (total_entries <= 5) {
4207 			/*
4208 			 * we want to keep only 5 entries
4209 			 * allowing it to grow to 8. This
4210 			 * mak sure we don't call discard
4211 			 * soon for this list.
4212 			 */
4213 			break;
4214 		}
4215 	}
4216 	spin_unlock(&lg->lg_prealloc_lock);
4217 
4218 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4219 
4220 		group = ext4_get_group_number(sb, pa->pa_pstart);
4221 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4222 			ext4_error(sb, "Error loading buddy information for %u",
4223 					group);
4224 			continue;
4225 		}
4226 		ext4_lock_group(sb, group);
4227 		list_del(&pa->pa_group_list);
4228 		ext4_mb_release_group_pa(&e4b, pa);
4229 		ext4_unlock_group(sb, group);
4230 
4231 		ext4_mb_unload_buddy(&e4b);
4232 		list_del(&pa->u.pa_tmp_list);
4233 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4234 	}
4235 }
4236 
4237 /*
4238  * We have incremented pa_count. So it cannot be freed at this
4239  * point. Also we hold lg_mutex. So no parallel allocation is
4240  * possible from this lg. That means pa_free cannot be updated.
4241  *
4242  * A parallel ext4_mb_discard_group_preallocations is possible.
4243  * which can cause the lg_prealloc_list to be updated.
4244  */
4245 
4246 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4247 {
4248 	int order, added = 0, lg_prealloc_count = 1;
4249 	struct super_block *sb = ac->ac_sb;
4250 	struct ext4_locality_group *lg = ac->ac_lg;
4251 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4252 
4253 	order = fls(pa->pa_free) - 1;
4254 	if (order > PREALLOC_TB_SIZE - 1)
4255 		/* The max size of hash table is PREALLOC_TB_SIZE */
4256 		order = PREALLOC_TB_SIZE - 1;
4257 	/* Add the prealloc space to lg */
4258 	spin_lock(&lg->lg_prealloc_lock);
4259 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4260 						pa_inode_list) {
4261 		spin_lock(&tmp_pa->pa_lock);
4262 		if (tmp_pa->pa_deleted) {
4263 			spin_unlock(&tmp_pa->pa_lock);
4264 			continue;
4265 		}
4266 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4267 			/* Add to the tail of the previous entry */
4268 			list_add_tail_rcu(&pa->pa_inode_list,
4269 						&tmp_pa->pa_inode_list);
4270 			added = 1;
4271 			/*
4272 			 * we want to count the total
4273 			 * number of entries in the list
4274 			 */
4275 		}
4276 		spin_unlock(&tmp_pa->pa_lock);
4277 		lg_prealloc_count++;
4278 	}
4279 	if (!added)
4280 		list_add_tail_rcu(&pa->pa_inode_list,
4281 					&lg->lg_prealloc_list[order]);
4282 	spin_unlock(&lg->lg_prealloc_lock);
4283 
4284 	/* Now trim the list to be not more than 8 elements */
4285 	if (lg_prealloc_count > 8) {
4286 		ext4_mb_discard_lg_preallocations(sb, lg,
4287 						  order, lg_prealloc_count);
4288 		return;
4289 	}
4290 	return ;
4291 }
4292 
4293 /*
4294  * release all resource we used in allocation
4295  */
4296 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4297 {
4298 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4299 	struct ext4_prealloc_space *pa = ac->ac_pa;
4300 	if (pa) {
4301 		if (pa->pa_type == MB_GROUP_PA) {
4302 			/* see comment in ext4_mb_use_group_pa() */
4303 			spin_lock(&pa->pa_lock);
4304 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4305 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4306 			pa->pa_free -= ac->ac_b_ex.fe_len;
4307 			pa->pa_len -= ac->ac_b_ex.fe_len;
4308 			spin_unlock(&pa->pa_lock);
4309 		}
4310 	}
4311 	if (pa) {
4312 		/*
4313 		 * We want to add the pa to the right bucket.
4314 		 * Remove it from the list and while adding
4315 		 * make sure the list to which we are adding
4316 		 * doesn't grow big.
4317 		 */
4318 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4319 			spin_lock(pa->pa_obj_lock);
4320 			list_del_rcu(&pa->pa_inode_list);
4321 			spin_unlock(pa->pa_obj_lock);
4322 			ext4_mb_add_n_trim(ac);
4323 		}
4324 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4325 	}
4326 	if (ac->ac_bitmap_page)
4327 		page_cache_release(ac->ac_bitmap_page);
4328 	if (ac->ac_buddy_page)
4329 		page_cache_release(ac->ac_buddy_page);
4330 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4331 		mutex_unlock(&ac->ac_lg->lg_mutex);
4332 	ext4_mb_collect_stats(ac);
4333 	return 0;
4334 }
4335 
4336 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4337 {
4338 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4339 	int ret;
4340 	int freed = 0;
4341 
4342 	trace_ext4_mb_discard_preallocations(sb, needed);
4343 	for (i = 0; i < ngroups && needed > 0; i++) {
4344 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4345 		freed += ret;
4346 		needed -= ret;
4347 	}
4348 
4349 	return freed;
4350 }
4351 
4352 /*
4353  * Main entry point into mballoc to allocate blocks
4354  * it tries to use preallocation first, then falls back
4355  * to usual allocation
4356  */
4357 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4358 				struct ext4_allocation_request *ar, int *errp)
4359 {
4360 	int freed;
4361 	struct ext4_allocation_context *ac = NULL;
4362 	struct ext4_sb_info *sbi;
4363 	struct super_block *sb;
4364 	ext4_fsblk_t block = 0;
4365 	unsigned int inquota = 0;
4366 	unsigned int reserv_clstrs = 0;
4367 
4368 	might_sleep();
4369 	sb = ar->inode->i_sb;
4370 	sbi = EXT4_SB(sb);
4371 
4372 	trace_ext4_request_blocks(ar);
4373 
4374 	/* Allow to use superuser reservation for quota file */
4375 	if (IS_NOQUOTA(ar->inode))
4376 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4377 
4378 	/*
4379 	 * For delayed allocation, we could skip the ENOSPC and
4380 	 * EDQUOT check, as blocks and quotas have been already
4381 	 * reserved when data being copied into pagecache.
4382 	 */
4383 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4384 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4385 	else {
4386 		/* Without delayed allocation we need to verify
4387 		 * there is enough free blocks to do block allocation
4388 		 * and verify allocation doesn't exceed the quota limits.
4389 		 */
4390 		while (ar->len &&
4391 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4392 
4393 			/* let others to free the space */
4394 			cond_resched();
4395 			ar->len = ar->len >> 1;
4396 		}
4397 		if (!ar->len) {
4398 			*errp = -ENOSPC;
4399 			return 0;
4400 		}
4401 		reserv_clstrs = ar->len;
4402 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4403 			dquot_alloc_block_nofail(ar->inode,
4404 						 EXT4_C2B(sbi, ar->len));
4405 		} else {
4406 			while (ar->len &&
4407 				dquot_alloc_block(ar->inode,
4408 						  EXT4_C2B(sbi, ar->len))) {
4409 
4410 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4411 				ar->len--;
4412 			}
4413 		}
4414 		inquota = ar->len;
4415 		if (ar->len == 0) {
4416 			*errp = -EDQUOT;
4417 			goto out;
4418 		}
4419 	}
4420 
4421 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4422 	if (!ac) {
4423 		ar->len = 0;
4424 		*errp = -ENOMEM;
4425 		goto out;
4426 	}
4427 
4428 	*errp = ext4_mb_initialize_context(ac, ar);
4429 	if (*errp) {
4430 		ar->len = 0;
4431 		goto out;
4432 	}
4433 
4434 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4435 	if (!ext4_mb_use_preallocated(ac)) {
4436 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4437 		ext4_mb_normalize_request(ac, ar);
4438 repeat:
4439 		/* allocate space in core */
4440 		*errp = ext4_mb_regular_allocator(ac);
4441 		if (*errp)
4442 			goto discard_and_exit;
4443 
4444 		/* as we've just preallocated more space than
4445 		 * user requested originally, we store allocated
4446 		 * space in a special descriptor */
4447 		if (ac->ac_status == AC_STATUS_FOUND &&
4448 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4449 			*errp = ext4_mb_new_preallocation(ac);
4450 		if (*errp) {
4451 		discard_and_exit:
4452 			ext4_discard_allocated_blocks(ac);
4453 			goto errout;
4454 		}
4455 	}
4456 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4457 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4458 		if (*errp == -EAGAIN) {
4459 			/*
4460 			 * drop the reference that we took
4461 			 * in ext4_mb_use_best_found
4462 			 */
4463 			ext4_mb_release_context(ac);
4464 			ac->ac_b_ex.fe_group = 0;
4465 			ac->ac_b_ex.fe_start = 0;
4466 			ac->ac_b_ex.fe_len = 0;
4467 			ac->ac_status = AC_STATUS_CONTINUE;
4468 			goto repeat;
4469 		} else if (*errp) {
4470 			ext4_discard_allocated_blocks(ac);
4471 			goto errout;
4472 		} else {
4473 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4474 			ar->len = ac->ac_b_ex.fe_len;
4475 		}
4476 	} else {
4477 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4478 		if (freed)
4479 			goto repeat;
4480 		*errp = -ENOSPC;
4481 	}
4482 
4483 errout:
4484 	if (*errp) {
4485 		ac->ac_b_ex.fe_len = 0;
4486 		ar->len = 0;
4487 		ext4_mb_show_ac(ac);
4488 	}
4489 	ext4_mb_release_context(ac);
4490 out:
4491 	if (ac)
4492 		kmem_cache_free(ext4_ac_cachep, ac);
4493 	if (inquota && ar->len < inquota)
4494 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4495 	if (!ar->len) {
4496 		if (!ext4_test_inode_state(ar->inode,
4497 					   EXT4_STATE_DELALLOC_RESERVED))
4498 			/* release all the reserved blocks if non delalloc */
4499 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4500 						reserv_clstrs);
4501 	}
4502 
4503 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4504 
4505 	return block;
4506 }
4507 
4508 /*
4509  * We can merge two free data extents only if the physical blocks
4510  * are contiguous, AND the extents were freed by the same transaction,
4511  * AND the blocks are associated with the same group.
4512  */
4513 static int can_merge(struct ext4_free_data *entry1,
4514 			struct ext4_free_data *entry2)
4515 {
4516 	if ((entry1->efd_tid == entry2->efd_tid) &&
4517 	    (entry1->efd_group == entry2->efd_group) &&
4518 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4519 		return 1;
4520 	return 0;
4521 }
4522 
4523 static noinline_for_stack int
4524 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4525 		      struct ext4_free_data *new_entry)
4526 {
4527 	ext4_group_t group = e4b->bd_group;
4528 	ext4_grpblk_t cluster;
4529 	struct ext4_free_data *entry;
4530 	struct ext4_group_info *db = e4b->bd_info;
4531 	struct super_block *sb = e4b->bd_sb;
4532 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4533 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4534 	struct rb_node *parent = NULL, *new_node;
4535 
4536 	BUG_ON(!ext4_handle_valid(handle));
4537 	BUG_ON(e4b->bd_bitmap_page == NULL);
4538 	BUG_ON(e4b->bd_buddy_page == NULL);
4539 
4540 	new_node = &new_entry->efd_node;
4541 	cluster = new_entry->efd_start_cluster;
4542 
4543 	if (!*n) {
4544 		/* first free block exent. We need to
4545 		   protect buddy cache from being freed,
4546 		 * otherwise we'll refresh it from
4547 		 * on-disk bitmap and lose not-yet-available
4548 		 * blocks */
4549 		page_cache_get(e4b->bd_buddy_page);
4550 		page_cache_get(e4b->bd_bitmap_page);
4551 	}
4552 	while (*n) {
4553 		parent = *n;
4554 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4555 		if (cluster < entry->efd_start_cluster)
4556 			n = &(*n)->rb_left;
4557 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4558 			n = &(*n)->rb_right;
4559 		else {
4560 			ext4_grp_locked_error(sb, group, 0,
4561 				ext4_group_first_block_no(sb, group) +
4562 				EXT4_C2B(sbi, cluster),
4563 				"Block already on to-be-freed list");
4564 			return 0;
4565 		}
4566 	}
4567 
4568 	rb_link_node(new_node, parent, n);
4569 	rb_insert_color(new_node, &db->bb_free_root);
4570 
4571 	/* Now try to see the extent can be merged to left and right */
4572 	node = rb_prev(new_node);
4573 	if (node) {
4574 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4575 		if (can_merge(entry, new_entry) &&
4576 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4577 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4578 			new_entry->efd_count += entry->efd_count;
4579 			rb_erase(node, &(db->bb_free_root));
4580 			kmem_cache_free(ext4_free_data_cachep, entry);
4581 		}
4582 	}
4583 
4584 	node = rb_next(new_node);
4585 	if (node) {
4586 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4587 		if (can_merge(new_entry, entry) &&
4588 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4589 			new_entry->efd_count += entry->efd_count;
4590 			rb_erase(node, &(db->bb_free_root));
4591 			kmem_cache_free(ext4_free_data_cachep, entry);
4592 		}
4593 	}
4594 	/* Add the extent to transaction's private list */
4595 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4596 				  &new_entry->efd_jce);
4597 	return 0;
4598 }
4599 
4600 /**
4601  * ext4_free_blocks() -- Free given blocks and update quota
4602  * @handle:		handle for this transaction
4603  * @inode:		inode
4604  * @block:		start physical block to free
4605  * @count:		number of blocks to count
4606  * @flags:		flags used by ext4_free_blocks
4607  */
4608 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4609 		      struct buffer_head *bh, ext4_fsblk_t block,
4610 		      unsigned long count, int flags)
4611 {
4612 	struct buffer_head *bitmap_bh = NULL;
4613 	struct super_block *sb = inode->i_sb;
4614 	struct ext4_group_desc *gdp;
4615 	unsigned int overflow;
4616 	ext4_grpblk_t bit;
4617 	struct buffer_head *gd_bh;
4618 	ext4_group_t block_group;
4619 	struct ext4_sb_info *sbi;
4620 	struct ext4_inode_info *ei = EXT4_I(inode);
4621 	struct ext4_buddy e4b;
4622 	unsigned int count_clusters;
4623 	int err = 0;
4624 	int ret;
4625 
4626 	might_sleep();
4627 	if (bh) {
4628 		if (block)
4629 			BUG_ON(block != bh->b_blocknr);
4630 		else
4631 			block = bh->b_blocknr;
4632 	}
4633 
4634 	sbi = EXT4_SB(sb);
4635 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4636 	    !ext4_data_block_valid(sbi, block, count)) {
4637 		ext4_error(sb, "Freeing blocks not in datazone - "
4638 			   "block = %llu, count = %lu", block, count);
4639 		goto error_return;
4640 	}
4641 
4642 	ext4_debug("freeing block %llu\n", block);
4643 	trace_ext4_free_blocks(inode, block, count, flags);
4644 
4645 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4646 		struct buffer_head *tbh = bh;
4647 		int i;
4648 
4649 		BUG_ON(bh && (count > 1));
4650 
4651 		for (i = 0; i < count; i++) {
4652 			cond_resched();
4653 			if (!bh)
4654 				tbh = sb_find_get_block(inode->i_sb,
4655 							block + i);
4656 			if (!tbh)
4657 				continue;
4658 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4659 				    inode, tbh, block + i);
4660 		}
4661 	}
4662 
4663 	/*
4664 	 * We need to make sure we don't reuse the freed block until
4665 	 * after the transaction is committed, which we can do by
4666 	 * treating the block as metadata, below.  We make an
4667 	 * exception if the inode is to be written in writeback mode
4668 	 * since writeback mode has weak data consistency guarantees.
4669 	 */
4670 	if (!ext4_should_writeback_data(inode))
4671 		flags |= EXT4_FREE_BLOCKS_METADATA;
4672 
4673 	/*
4674 	 * If the extent to be freed does not begin on a cluster
4675 	 * boundary, we need to deal with partial clusters at the
4676 	 * beginning and end of the extent.  Normally we will free
4677 	 * blocks at the beginning or the end unless we are explicitly
4678 	 * requested to avoid doing so.
4679 	 */
4680 	overflow = EXT4_PBLK_COFF(sbi, block);
4681 	if (overflow) {
4682 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4683 			overflow = sbi->s_cluster_ratio - overflow;
4684 			block += overflow;
4685 			if (count > overflow)
4686 				count -= overflow;
4687 			else
4688 				return;
4689 		} else {
4690 			block -= overflow;
4691 			count += overflow;
4692 		}
4693 	}
4694 	overflow = EXT4_LBLK_COFF(sbi, count);
4695 	if (overflow) {
4696 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4697 			if (count > overflow)
4698 				count -= overflow;
4699 			else
4700 				return;
4701 		} else
4702 			count += sbi->s_cluster_ratio - overflow;
4703 	}
4704 
4705 do_more:
4706 	overflow = 0;
4707 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4708 
4709 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4710 			ext4_get_group_info(sb, block_group))))
4711 		return;
4712 
4713 	/*
4714 	 * Check to see if we are freeing blocks across a group
4715 	 * boundary.
4716 	 */
4717 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4718 		overflow = EXT4_C2B(sbi, bit) + count -
4719 			EXT4_BLOCKS_PER_GROUP(sb);
4720 		count -= overflow;
4721 	}
4722 	count_clusters = EXT4_NUM_B2C(sbi, count);
4723 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4724 	if (!bitmap_bh) {
4725 		err = -EIO;
4726 		goto error_return;
4727 	}
4728 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4729 	if (!gdp) {
4730 		err = -EIO;
4731 		goto error_return;
4732 	}
4733 
4734 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4735 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4736 	    in_range(block, ext4_inode_table(sb, gdp),
4737 		     EXT4_SB(sb)->s_itb_per_group) ||
4738 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4739 		     EXT4_SB(sb)->s_itb_per_group)) {
4740 
4741 		ext4_error(sb, "Freeing blocks in system zone - "
4742 			   "Block = %llu, count = %lu", block, count);
4743 		/* err = 0. ext4_std_error should be a no op */
4744 		goto error_return;
4745 	}
4746 
4747 	BUFFER_TRACE(bitmap_bh, "getting write access");
4748 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4749 	if (err)
4750 		goto error_return;
4751 
4752 	/*
4753 	 * We are about to modify some metadata.  Call the journal APIs
4754 	 * to unshare ->b_data if a currently-committing transaction is
4755 	 * using it
4756 	 */
4757 	BUFFER_TRACE(gd_bh, "get_write_access");
4758 	err = ext4_journal_get_write_access(handle, gd_bh);
4759 	if (err)
4760 		goto error_return;
4761 #ifdef AGGRESSIVE_CHECK
4762 	{
4763 		int i;
4764 		for (i = 0; i < count_clusters; i++)
4765 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4766 	}
4767 #endif
4768 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4769 
4770 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4771 	if (err)
4772 		goto error_return;
4773 
4774 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4775 		struct ext4_free_data *new_entry;
4776 		/*
4777 		 * blocks being freed are metadata. these blocks shouldn't
4778 		 * be used until this transaction is committed
4779 		 */
4780 	retry:
4781 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4782 		if (!new_entry) {
4783 			/*
4784 			 * We use a retry loop because
4785 			 * ext4_free_blocks() is not allowed to fail.
4786 			 */
4787 			cond_resched();
4788 			congestion_wait(BLK_RW_ASYNC, HZ/50);
4789 			goto retry;
4790 		}
4791 		new_entry->efd_start_cluster = bit;
4792 		new_entry->efd_group = block_group;
4793 		new_entry->efd_count = count_clusters;
4794 		new_entry->efd_tid = handle->h_transaction->t_tid;
4795 
4796 		ext4_lock_group(sb, block_group);
4797 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4798 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4799 	} else {
4800 		/* need to update group_info->bb_free and bitmap
4801 		 * with group lock held. generate_buddy look at
4802 		 * them with group lock_held
4803 		 */
4804 		if (test_opt(sb, DISCARD)) {
4805 			err = ext4_issue_discard(sb, block_group, bit, count);
4806 			if (err && err != -EOPNOTSUPP)
4807 				ext4_msg(sb, KERN_WARNING, "discard request in"
4808 					 " group:%d block:%d count:%lu failed"
4809 					 " with %d", block_group, bit, count,
4810 					 err);
4811 		} else
4812 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4813 
4814 		ext4_lock_group(sb, block_group);
4815 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4816 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4817 	}
4818 
4819 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4820 	ext4_free_group_clusters_set(sb, gdp, ret);
4821 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4822 	ext4_group_desc_csum_set(sb, block_group, gdp);
4823 	ext4_unlock_group(sb, block_group);
4824 
4825 	if (sbi->s_log_groups_per_flex) {
4826 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4827 		atomic64_add(count_clusters,
4828 			     &sbi->s_flex_groups[flex_group].free_clusters);
4829 	}
4830 
4831 	if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4832 		percpu_counter_add(&sbi->s_dirtyclusters_counter,
4833 				   count_clusters);
4834 		spin_lock(&ei->i_block_reservation_lock);
4835 		if (flags & EXT4_FREE_BLOCKS_METADATA)
4836 			ei->i_reserved_meta_blocks += count_clusters;
4837 		else
4838 			ei->i_reserved_data_blocks += count_clusters;
4839 		spin_unlock(&ei->i_block_reservation_lock);
4840 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4841 			dquot_reclaim_block(inode,
4842 					EXT4_C2B(sbi, count_clusters));
4843 	} else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4844 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4845 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4846 
4847 	ext4_mb_unload_buddy(&e4b);
4848 
4849 	/* We dirtied the bitmap block */
4850 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4851 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4852 
4853 	/* And the group descriptor block */
4854 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4855 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4856 	if (!err)
4857 		err = ret;
4858 
4859 	if (overflow && !err) {
4860 		block += count;
4861 		count = overflow;
4862 		put_bh(bitmap_bh);
4863 		goto do_more;
4864 	}
4865 error_return:
4866 	brelse(bitmap_bh);
4867 	ext4_std_error(sb, err);
4868 	return;
4869 }
4870 
4871 /**
4872  * ext4_group_add_blocks() -- Add given blocks to an existing group
4873  * @handle:			handle to this transaction
4874  * @sb:				super block
4875  * @block:			start physical block to add to the block group
4876  * @count:			number of blocks to free
4877  *
4878  * This marks the blocks as free in the bitmap and buddy.
4879  */
4880 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4881 			 ext4_fsblk_t block, unsigned long count)
4882 {
4883 	struct buffer_head *bitmap_bh = NULL;
4884 	struct buffer_head *gd_bh;
4885 	ext4_group_t block_group;
4886 	ext4_grpblk_t bit;
4887 	unsigned int i;
4888 	struct ext4_group_desc *desc;
4889 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4890 	struct ext4_buddy e4b;
4891 	int err = 0, ret, blk_free_count;
4892 	ext4_grpblk_t blocks_freed;
4893 
4894 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4895 
4896 	if (count == 0)
4897 		return 0;
4898 
4899 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4900 	/*
4901 	 * Check to see if we are freeing blocks across a group
4902 	 * boundary.
4903 	 */
4904 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4905 		ext4_warning(sb, "too much blocks added to group %u\n",
4906 			     block_group);
4907 		err = -EINVAL;
4908 		goto error_return;
4909 	}
4910 
4911 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4912 	if (!bitmap_bh) {
4913 		err = -EIO;
4914 		goto error_return;
4915 	}
4916 
4917 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4918 	if (!desc) {
4919 		err = -EIO;
4920 		goto error_return;
4921 	}
4922 
4923 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4924 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4925 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4926 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4927 		     sbi->s_itb_per_group)) {
4928 		ext4_error(sb, "Adding blocks in system zones - "
4929 			   "Block = %llu, count = %lu",
4930 			   block, count);
4931 		err = -EINVAL;
4932 		goto error_return;
4933 	}
4934 
4935 	BUFFER_TRACE(bitmap_bh, "getting write access");
4936 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4937 	if (err)
4938 		goto error_return;
4939 
4940 	/*
4941 	 * We are about to modify some metadata.  Call the journal APIs
4942 	 * to unshare ->b_data if a currently-committing transaction is
4943 	 * using it
4944 	 */
4945 	BUFFER_TRACE(gd_bh, "get_write_access");
4946 	err = ext4_journal_get_write_access(handle, gd_bh);
4947 	if (err)
4948 		goto error_return;
4949 
4950 	for (i = 0, blocks_freed = 0; i < count; i++) {
4951 		BUFFER_TRACE(bitmap_bh, "clear bit");
4952 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4953 			ext4_error(sb, "bit already cleared for block %llu",
4954 				   (ext4_fsblk_t)(block + i));
4955 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4956 		} else {
4957 			blocks_freed++;
4958 		}
4959 	}
4960 
4961 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4962 	if (err)
4963 		goto error_return;
4964 
4965 	/*
4966 	 * need to update group_info->bb_free and bitmap
4967 	 * with group lock held. generate_buddy look at
4968 	 * them with group lock_held
4969 	 */
4970 	ext4_lock_group(sb, block_group);
4971 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4972 	mb_free_blocks(NULL, &e4b, bit, count);
4973 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4974 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4975 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4976 	ext4_group_desc_csum_set(sb, block_group, desc);
4977 	ext4_unlock_group(sb, block_group);
4978 	percpu_counter_add(&sbi->s_freeclusters_counter,
4979 			   EXT4_NUM_B2C(sbi, blocks_freed));
4980 
4981 	if (sbi->s_log_groups_per_flex) {
4982 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4983 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4984 			     &sbi->s_flex_groups[flex_group].free_clusters);
4985 	}
4986 
4987 	ext4_mb_unload_buddy(&e4b);
4988 
4989 	/* We dirtied the bitmap block */
4990 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4991 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4992 
4993 	/* And the group descriptor block */
4994 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4995 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4996 	if (!err)
4997 		err = ret;
4998 
4999 error_return:
5000 	brelse(bitmap_bh);
5001 	ext4_std_error(sb, err);
5002 	return err;
5003 }
5004 
5005 /**
5006  * ext4_trim_extent -- function to TRIM one single free extent in the group
5007  * @sb:		super block for the file system
5008  * @start:	starting block of the free extent in the alloc. group
5009  * @count:	number of blocks to TRIM
5010  * @group:	alloc. group we are working with
5011  * @e4b:	ext4 buddy for the group
5012  *
5013  * Trim "count" blocks starting at "start" in the "group". To assure that no
5014  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5015  * be called with under the group lock.
5016  */
5017 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5018 			     ext4_group_t group, struct ext4_buddy *e4b)
5019 __releases(bitlock)
5020 __acquires(bitlock)
5021 {
5022 	struct ext4_free_extent ex;
5023 	int ret = 0;
5024 
5025 	trace_ext4_trim_extent(sb, group, start, count);
5026 
5027 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5028 
5029 	ex.fe_start = start;
5030 	ex.fe_group = group;
5031 	ex.fe_len = count;
5032 
5033 	/*
5034 	 * Mark blocks used, so no one can reuse them while
5035 	 * being trimmed.
5036 	 */
5037 	mb_mark_used(e4b, &ex);
5038 	ext4_unlock_group(sb, group);
5039 	ret = ext4_issue_discard(sb, group, start, count);
5040 	ext4_lock_group(sb, group);
5041 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5042 	return ret;
5043 }
5044 
5045 /**
5046  * ext4_trim_all_free -- function to trim all free space in alloc. group
5047  * @sb:			super block for file system
5048  * @group:		group to be trimmed
5049  * @start:		first group block to examine
5050  * @max:		last group block to examine
5051  * @minblocks:		minimum extent block count
5052  *
5053  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5054  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5055  * the extent.
5056  *
5057  *
5058  * ext4_trim_all_free walks through group's block bitmap searching for free
5059  * extents. When the free extent is found, mark it as used in group buddy
5060  * bitmap. Then issue a TRIM command on this extent and free the extent in
5061  * the group buddy bitmap. This is done until whole group is scanned.
5062  */
5063 static ext4_grpblk_t
5064 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5065 		   ext4_grpblk_t start, ext4_grpblk_t max,
5066 		   ext4_grpblk_t minblocks)
5067 {
5068 	void *bitmap;
5069 	ext4_grpblk_t next, count = 0, free_count = 0;
5070 	struct ext4_buddy e4b;
5071 	int ret = 0;
5072 
5073 	trace_ext4_trim_all_free(sb, group, start, max);
5074 
5075 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5076 	if (ret) {
5077 		ext4_error(sb, "Error in loading buddy "
5078 				"information for %u", group);
5079 		return ret;
5080 	}
5081 	bitmap = e4b.bd_bitmap;
5082 
5083 	ext4_lock_group(sb, group);
5084 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5085 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5086 		goto out;
5087 
5088 	start = (e4b.bd_info->bb_first_free > start) ?
5089 		e4b.bd_info->bb_first_free : start;
5090 
5091 	while (start <= max) {
5092 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5093 		if (start > max)
5094 			break;
5095 		next = mb_find_next_bit(bitmap, max + 1, start);
5096 
5097 		if ((next - start) >= minblocks) {
5098 			ret = ext4_trim_extent(sb, start,
5099 					       next - start, group, &e4b);
5100 			if (ret && ret != -EOPNOTSUPP)
5101 				break;
5102 			ret = 0;
5103 			count += next - start;
5104 		}
5105 		free_count += next - start;
5106 		start = next + 1;
5107 
5108 		if (fatal_signal_pending(current)) {
5109 			count = -ERESTARTSYS;
5110 			break;
5111 		}
5112 
5113 		if (need_resched()) {
5114 			ext4_unlock_group(sb, group);
5115 			cond_resched();
5116 			ext4_lock_group(sb, group);
5117 		}
5118 
5119 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5120 			break;
5121 	}
5122 
5123 	if (!ret) {
5124 		ret = count;
5125 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5126 	}
5127 out:
5128 	ext4_unlock_group(sb, group);
5129 	ext4_mb_unload_buddy(&e4b);
5130 
5131 	ext4_debug("trimmed %d blocks in the group %d\n",
5132 		count, group);
5133 
5134 	return ret;
5135 }
5136 
5137 /**
5138  * ext4_trim_fs() -- trim ioctl handle function
5139  * @sb:			superblock for filesystem
5140  * @range:		fstrim_range structure
5141  *
5142  * start:	First Byte to trim
5143  * len:		number of Bytes to trim from start
5144  * minlen:	minimum extent length in Bytes
5145  * ext4_trim_fs goes through all allocation groups containing Bytes from
5146  * start to start+len. For each such a group ext4_trim_all_free function
5147  * is invoked to trim all free space.
5148  */
5149 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5150 {
5151 	struct ext4_group_info *grp;
5152 	ext4_group_t group, first_group, last_group;
5153 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5154 	uint64_t start, end, minlen, trimmed = 0;
5155 	ext4_fsblk_t first_data_blk =
5156 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5157 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5158 	int ret = 0;
5159 
5160 	start = range->start >> sb->s_blocksize_bits;
5161 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5162 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5163 			      range->minlen >> sb->s_blocksize_bits);
5164 
5165 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5166 	    start >= max_blks ||
5167 	    range->len < sb->s_blocksize)
5168 		return -EINVAL;
5169 	if (end >= max_blks)
5170 		end = max_blks - 1;
5171 	if (end <= first_data_blk)
5172 		goto out;
5173 	if (start < first_data_blk)
5174 		start = first_data_blk;
5175 
5176 	/* Determine first and last group to examine based on start and end */
5177 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5178 				     &first_group, &first_cluster);
5179 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5180 				     &last_group, &last_cluster);
5181 
5182 	/* end now represents the last cluster to discard in this group */
5183 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5184 
5185 	for (group = first_group; group <= last_group; group++) {
5186 		grp = ext4_get_group_info(sb, group);
5187 		/* We only do this if the grp has never been initialized */
5188 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5189 			ret = ext4_mb_init_group(sb, group);
5190 			if (ret)
5191 				break;
5192 		}
5193 
5194 		/*
5195 		 * For all the groups except the last one, last cluster will
5196 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5197 		 * change it for the last group, note that last_cluster is
5198 		 * already computed earlier by ext4_get_group_no_and_offset()
5199 		 */
5200 		if (group == last_group)
5201 			end = last_cluster;
5202 
5203 		if (grp->bb_free >= minlen) {
5204 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5205 						end, minlen);
5206 			if (cnt < 0) {
5207 				ret = cnt;
5208 				break;
5209 			}
5210 			trimmed += cnt;
5211 		}
5212 
5213 		/*
5214 		 * For every group except the first one, we are sure
5215 		 * that the first cluster to discard will be cluster #0.
5216 		 */
5217 		first_cluster = 0;
5218 	}
5219 
5220 	if (!ret)
5221 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5222 
5223 out:
5224 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5225 	return ret;
5226 }
5227