1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 #ifdef CONFIG_EXT4_DEBUG 32 ushort ext4_mballoc_debug __read_mostly; 33 34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 36 #endif 37 38 /* 39 * MUSTDO: 40 * - test ext4_ext_search_left() and ext4_ext_search_right() 41 * - search for metadata in few groups 42 * 43 * TODO v4: 44 * - normalization should take into account whether file is still open 45 * - discard preallocations if no free space left (policy?) 46 * - don't normalize tails 47 * - quota 48 * - reservation for superuser 49 * 50 * TODO v3: 51 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 52 * - track min/max extents in each group for better group selection 53 * - mb_mark_used() may allocate chunk right after splitting buddy 54 * - tree of groups sorted by number of free blocks 55 * - error handling 56 */ 57 58 /* 59 * The allocation request involve request for multiple number of blocks 60 * near to the goal(block) value specified. 61 * 62 * During initialization phase of the allocator we decide to use the 63 * group preallocation or inode preallocation depending on the size of 64 * the file. The size of the file could be the resulting file size we 65 * would have after allocation, or the current file size, which ever 66 * is larger. If the size is less than sbi->s_mb_stream_request we 67 * select to use the group preallocation. The default value of 68 * s_mb_stream_request is 16 blocks. This can also be tuned via 69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 70 * terms of number of blocks. 71 * 72 * The main motivation for having small file use group preallocation is to 73 * ensure that we have small files closer together on the disk. 74 * 75 * First stage the allocator looks at the inode prealloc list, 76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 77 * spaces for this particular inode. The inode prealloc space is 78 * represented as: 79 * 80 * pa_lstart -> the logical start block for this prealloc space 81 * pa_pstart -> the physical start block for this prealloc space 82 * pa_len -> length for this prealloc space (in clusters) 83 * pa_free -> free space available in this prealloc space (in clusters) 84 * 85 * The inode preallocation space is used looking at the _logical_ start 86 * block. If only the logical file block falls within the range of prealloc 87 * space we will consume the particular prealloc space. This makes sure that 88 * we have contiguous physical blocks representing the file blocks 89 * 90 * The important thing to be noted in case of inode prealloc space is that 91 * we don't modify the values associated to inode prealloc space except 92 * pa_free. 93 * 94 * If we are not able to find blocks in the inode prealloc space and if we 95 * have the group allocation flag set then we look at the locality group 96 * prealloc space. These are per CPU prealloc list represented as 97 * 98 * ext4_sb_info.s_locality_groups[smp_processor_id()] 99 * 100 * The reason for having a per cpu locality group is to reduce the contention 101 * between CPUs. It is possible to get scheduled at this point. 102 * 103 * The locality group prealloc space is used looking at whether we have 104 * enough free space (pa_free) within the prealloc space. 105 * 106 * If we can't allocate blocks via inode prealloc or/and locality group 107 * prealloc then we look at the buddy cache. The buddy cache is represented 108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 109 * mapped to the buddy and bitmap information regarding different 110 * groups. The buddy information is attached to buddy cache inode so that 111 * we can access them through the page cache. The information regarding 112 * each group is loaded via ext4_mb_load_buddy. The information involve 113 * block bitmap and buddy information. The information are stored in the 114 * inode as: 115 * 116 * { page } 117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 118 * 119 * 120 * one block each for bitmap and buddy information. So for each group we 121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 122 * blocksize) blocks. So it can have information regarding groups_per_page 123 * which is blocks_per_page/2 124 * 125 * The buddy cache inode is not stored on disk. The inode is thrown 126 * away when the filesystem is unmounted. 127 * 128 * We look for count number of blocks in the buddy cache. If we were able 129 * to locate that many free blocks we return with additional information 130 * regarding rest of the contiguous physical block available 131 * 132 * Before allocating blocks via buddy cache we normalize the request 133 * blocks. This ensure we ask for more blocks that we needed. The extra 134 * blocks that we get after allocation is added to the respective prealloc 135 * list. In case of inode preallocation we follow a list of heuristics 136 * based on file size. This can be found in ext4_mb_normalize_request. If 137 * we are doing a group prealloc we try to normalize the request to 138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 139 * dependent on the cluster size; for non-bigalloc file systems, it is 140 * 512 blocks. This can be tuned via 141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 142 * terms of number of blocks. If we have mounted the file system with -O 143 * stripe=<value> option the group prealloc request is normalized to the 144 * the smallest multiple of the stripe value (sbi->s_stripe) which is 145 * greater than the default mb_group_prealloc. 146 * 147 * The regular allocator (using the buddy cache) supports a few tunables. 148 * 149 * /sys/fs/ext4/<partition>/mb_min_to_scan 150 * /sys/fs/ext4/<partition>/mb_max_to_scan 151 * /sys/fs/ext4/<partition>/mb_order2_req 152 * 153 * The regular allocator uses buddy scan only if the request len is power of 154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 155 * value of s_mb_order2_reqs can be tuned via 156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 157 * stripe size (sbi->s_stripe), we try to search for contiguous block in 158 * stripe size. This should result in better allocation on RAID setups. If 159 * not, we search in the specific group using bitmap for best extents. The 160 * tunable min_to_scan and max_to_scan control the behaviour here. 161 * min_to_scan indicate how long the mballoc __must__ look for a best 162 * extent and max_to_scan indicates how long the mballoc __can__ look for a 163 * best extent in the found extents. Searching for the blocks starts with 164 * the group specified as the goal value in allocation context via 165 * ac_g_ex. Each group is first checked based on the criteria whether it 166 * can be used for allocation. ext4_mb_good_group explains how the groups are 167 * checked. 168 * 169 * Both the prealloc space are getting populated as above. So for the first 170 * request we will hit the buddy cache which will result in this prealloc 171 * space getting filled. The prealloc space is then later used for the 172 * subsequent request. 173 */ 174 175 /* 176 * mballoc operates on the following data: 177 * - on-disk bitmap 178 * - in-core buddy (actually includes buddy and bitmap) 179 * - preallocation descriptors (PAs) 180 * 181 * there are two types of preallocations: 182 * - inode 183 * assiged to specific inode and can be used for this inode only. 184 * it describes part of inode's space preallocated to specific 185 * physical blocks. any block from that preallocated can be used 186 * independent. the descriptor just tracks number of blocks left 187 * unused. so, before taking some block from descriptor, one must 188 * make sure corresponded logical block isn't allocated yet. this 189 * also means that freeing any block within descriptor's range 190 * must discard all preallocated blocks. 191 * - locality group 192 * assigned to specific locality group which does not translate to 193 * permanent set of inodes: inode can join and leave group. space 194 * from this type of preallocation can be used for any inode. thus 195 * it's consumed from the beginning to the end. 196 * 197 * relation between them can be expressed as: 198 * in-core buddy = on-disk bitmap + preallocation descriptors 199 * 200 * this mean blocks mballoc considers used are: 201 * - allocated blocks (persistent) 202 * - preallocated blocks (non-persistent) 203 * 204 * consistency in mballoc world means that at any time a block is either 205 * free or used in ALL structures. notice: "any time" should not be read 206 * literally -- time is discrete and delimited by locks. 207 * 208 * to keep it simple, we don't use block numbers, instead we count number of 209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 210 * 211 * all operations can be expressed as: 212 * - init buddy: buddy = on-disk + PAs 213 * - new PA: buddy += N; PA = N 214 * - use inode PA: on-disk += N; PA -= N 215 * - discard inode PA buddy -= on-disk - PA; PA = 0 216 * - use locality group PA on-disk += N; PA -= N 217 * - discard locality group PA buddy -= PA; PA = 0 218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 219 * is used in real operation because we can't know actual used 220 * bits from PA, only from on-disk bitmap 221 * 222 * if we follow this strict logic, then all operations above should be atomic. 223 * given some of them can block, we'd have to use something like semaphores 224 * killing performance on high-end SMP hardware. let's try to relax it using 225 * the following knowledge: 226 * 1) if buddy is referenced, it's already initialized 227 * 2) while block is used in buddy and the buddy is referenced, 228 * nobody can re-allocate that block 229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 230 * bit set and PA claims same block, it's OK. IOW, one can set bit in 231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 232 * block 233 * 234 * so, now we're building a concurrency table: 235 * - init buddy vs. 236 * - new PA 237 * blocks for PA are allocated in the buddy, buddy must be referenced 238 * until PA is linked to allocation group to avoid concurrent buddy init 239 * - use inode PA 240 * we need to make sure that either on-disk bitmap or PA has uptodate data 241 * given (3) we care that PA-=N operation doesn't interfere with init 242 * - discard inode PA 243 * the simplest way would be to have buddy initialized by the discard 244 * - use locality group PA 245 * again PA-=N must be serialized with init 246 * - discard locality group PA 247 * the simplest way would be to have buddy initialized by the discard 248 * - new PA vs. 249 * - use inode PA 250 * i_data_sem serializes them 251 * - discard inode PA 252 * discard process must wait until PA isn't used by another process 253 * - use locality group PA 254 * some mutex should serialize them 255 * - discard locality group PA 256 * discard process must wait until PA isn't used by another process 257 * - use inode PA 258 * - use inode PA 259 * i_data_sem or another mutex should serializes them 260 * - discard inode PA 261 * discard process must wait until PA isn't used by another process 262 * - use locality group PA 263 * nothing wrong here -- they're different PAs covering different blocks 264 * - discard locality group PA 265 * discard process must wait until PA isn't used by another process 266 * 267 * now we're ready to make few consequences: 268 * - PA is referenced and while it is no discard is possible 269 * - PA is referenced until block isn't marked in on-disk bitmap 270 * - PA changes only after on-disk bitmap 271 * - discard must not compete with init. either init is done before 272 * any discard or they're serialized somehow 273 * - buddy init as sum of on-disk bitmap and PAs is done atomically 274 * 275 * a special case when we've used PA to emptiness. no need to modify buddy 276 * in this case, but we should care about concurrent init 277 * 278 */ 279 280 /* 281 * Logic in few words: 282 * 283 * - allocation: 284 * load group 285 * find blocks 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - use preallocation: 290 * find proper PA (per-inode or group) 291 * load group 292 * mark bits in on-disk bitmap 293 * release group 294 * release PA 295 * 296 * - free: 297 * load group 298 * mark bits in on-disk bitmap 299 * release group 300 * 301 * - discard preallocations in group: 302 * mark PAs deleted 303 * move them onto local list 304 * load on-disk bitmap 305 * load group 306 * remove PA from object (inode or locality group) 307 * mark free blocks in-core 308 * 309 * - discard inode's preallocations: 310 */ 311 312 /* 313 * Locking rules 314 * 315 * Locks: 316 * - bitlock on a group (group) 317 * - object (inode/locality) (object) 318 * - per-pa lock (pa) 319 * 320 * Paths: 321 * - new pa 322 * object 323 * group 324 * 325 * - find and use pa: 326 * pa 327 * 328 * - release consumed pa: 329 * pa 330 * group 331 * object 332 * 333 * - generate in-core bitmap: 334 * group 335 * pa 336 * 337 * - discard all for given object (inode, locality group): 338 * object 339 * pa 340 * group 341 * 342 * - discard all for given group: 343 * group 344 * pa 345 * group 346 * object 347 * 348 */ 349 static struct kmem_cache *ext4_pspace_cachep; 350 static struct kmem_cache *ext4_ac_cachep; 351 static struct kmem_cache *ext4_free_data_cachep; 352 353 /* We create slab caches for groupinfo data structures based on the 354 * superblock block size. There will be one per mounted filesystem for 355 * each unique s_blocksize_bits */ 356 #define NR_GRPINFO_CACHES 8 357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 358 359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 362 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 363 }; 364 365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 366 ext4_group_t group); 367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369 static void ext4_free_data_callback(struct super_block *sb, 370 struct ext4_journal_cb_entry *jce, int rc); 371 372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 373 { 374 #if BITS_PER_LONG == 64 375 *bit += ((unsigned long) addr & 7UL) << 3; 376 addr = (void *) ((unsigned long) addr & ~7UL); 377 #elif BITS_PER_LONG == 32 378 *bit += ((unsigned long) addr & 3UL) << 3; 379 addr = (void *) ((unsigned long) addr & ~3UL); 380 #else 381 #error "how many bits you are?!" 382 #endif 383 return addr; 384 } 385 386 static inline int mb_test_bit(int bit, void *addr) 387 { 388 /* 389 * ext4_test_bit on architecture like powerpc 390 * needs unsigned long aligned address 391 */ 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 return ext4_test_bit(bit, addr); 394 } 395 396 static inline void mb_set_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 ext4_set_bit(bit, addr); 400 } 401 402 static inline void mb_clear_bit(int bit, void *addr) 403 { 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 ext4_clear_bit(bit, addr); 406 } 407 408 static inline int mb_test_and_clear_bit(int bit, void *addr) 409 { 410 addr = mb_correct_addr_and_bit(&bit, addr); 411 return ext4_test_and_clear_bit(bit, addr); 412 } 413 414 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static inline int mb_find_next_bit(void *addr, int max, int start) 428 { 429 int fix = 0, ret, tmpmax; 430 addr = mb_correct_addr_and_bit(&fix, addr); 431 tmpmax = max + fix; 432 start += fix; 433 434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 435 if (ret > max) 436 return max; 437 return ret; 438 } 439 440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 441 { 442 char *bb; 443 444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 445 BUG_ON(max == NULL); 446 447 if (order > e4b->bd_blkbits + 1) { 448 *max = 0; 449 return NULL; 450 } 451 452 /* at order 0 we see each particular block */ 453 if (order == 0) { 454 *max = 1 << (e4b->bd_blkbits + 3); 455 return e4b->bd_bitmap; 456 } 457 458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 460 461 return bb; 462 } 463 464 #ifdef DOUBLE_CHECK 465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 466 int first, int count) 467 { 468 int i; 469 struct super_block *sb = e4b->bd_sb; 470 471 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 472 return; 473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 474 for (i = 0; i < count; i++) { 475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 476 ext4_fsblk_t blocknr; 477 478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 480 ext4_grp_locked_error(sb, e4b->bd_group, 481 inode ? inode->i_ino : 0, 482 blocknr, 483 "freeing block already freed " 484 "(bit %u)", 485 first + i); 486 } 487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 492 { 493 int i; 494 495 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 496 return; 497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 498 for (i = 0; i < count; i++) { 499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 505 { 506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 507 unsigned char *b1, *b2; 508 int i; 509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 510 b2 = (unsigned char *) bitmap; 511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 512 if (b1[i] != b2[i]) { 513 ext4_msg(e4b->bd_sb, KERN_ERR, 514 "corruption in group %u " 515 "at byte %u(%u): %x in copy != %x " 516 "on disk/prealloc", 517 e4b->bd_group, i, i * 8, b1[i], b2[i]); 518 BUG(); 519 } 520 } 521 } 522 } 523 524 #else 525 static inline void mb_free_blocks_double(struct inode *inode, 526 struct ext4_buddy *e4b, int first, int count) 527 { 528 return; 529 } 530 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 531 int first, int count) 532 { 533 return; 534 } 535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 536 { 537 return; 538 } 539 #endif 540 541 #ifdef AGGRESSIVE_CHECK 542 543 #define MB_CHECK_ASSERT(assert) \ 544 do { \ 545 if (!(assert)) { \ 546 printk(KERN_EMERG \ 547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 548 function, file, line, # assert); \ 549 BUG(); \ 550 } \ 551 } while (0) 552 553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 554 const char *function, int line) 555 { 556 struct super_block *sb = e4b->bd_sb; 557 int order = e4b->bd_blkbits + 1; 558 int max; 559 int max2; 560 int i; 561 int j; 562 int k; 563 int count; 564 struct ext4_group_info *grp; 565 int fragments = 0; 566 int fstart; 567 struct list_head *cur; 568 void *buddy; 569 void *buddy2; 570 571 { 572 static int mb_check_counter; 573 if (mb_check_counter++ % 100 != 0) 574 return 0; 575 } 576 577 while (order > 1) { 578 buddy = mb_find_buddy(e4b, order, &max); 579 MB_CHECK_ASSERT(buddy); 580 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 581 MB_CHECK_ASSERT(buddy2); 582 MB_CHECK_ASSERT(buddy != buddy2); 583 MB_CHECK_ASSERT(max * 2 == max2); 584 585 count = 0; 586 for (i = 0; i < max; i++) { 587 588 if (mb_test_bit(i, buddy)) { 589 /* only single bit in buddy2 may be 1 */ 590 if (!mb_test_bit(i << 1, buddy2)) { 591 MB_CHECK_ASSERT( 592 mb_test_bit((i<<1)+1, buddy2)); 593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 594 MB_CHECK_ASSERT( 595 mb_test_bit(i << 1, buddy2)); 596 } 597 continue; 598 } 599 600 /* both bits in buddy2 must be 1 */ 601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 603 604 for (j = 0; j < (1 << order); j++) { 605 k = (i * (1 << order)) + j; 606 MB_CHECK_ASSERT( 607 !mb_test_bit(k, e4b->bd_bitmap)); 608 } 609 count++; 610 } 611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 612 order--; 613 } 614 615 fstart = -1; 616 buddy = mb_find_buddy(e4b, 0, &max); 617 for (i = 0; i < max; i++) { 618 if (!mb_test_bit(i, buddy)) { 619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 620 if (fstart == -1) { 621 fragments++; 622 fstart = i; 623 } 624 continue; 625 } 626 fstart = -1; 627 /* check used bits only */ 628 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 629 buddy2 = mb_find_buddy(e4b, j, &max2); 630 k = i >> j; 631 MB_CHECK_ASSERT(k < max2); 632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 633 } 634 } 635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 637 638 grp = ext4_get_group_info(sb, e4b->bd_group); 639 list_for_each(cur, &grp->bb_prealloc_list) { 640 ext4_group_t groupnr; 641 struct ext4_prealloc_space *pa; 642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 644 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 645 for (i = 0; i < pa->pa_len; i++) 646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 647 } 648 return 0; 649 } 650 #undef MB_CHECK_ASSERT 651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 652 __FILE__, __func__, __LINE__) 653 #else 654 #define mb_check_buddy(e4b) 655 #endif 656 657 /* 658 * Divide blocks started from @first with length @len into 659 * smaller chunks with power of 2 blocks. 660 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 661 * then increase bb_counters[] for corresponded chunk size. 662 */ 663 static void ext4_mb_mark_free_simple(struct super_block *sb, 664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 665 struct ext4_group_info *grp) 666 { 667 struct ext4_sb_info *sbi = EXT4_SB(sb); 668 ext4_grpblk_t min; 669 ext4_grpblk_t max; 670 ext4_grpblk_t chunk; 671 unsigned short border; 672 673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 674 675 border = 2 << sb->s_blocksize_bits; 676 677 while (len > 0) { 678 /* find how many blocks can be covered since this position */ 679 max = ffs(first | border) - 1; 680 681 /* find how many blocks of power 2 we need to mark */ 682 min = fls(len) - 1; 683 684 if (max < min) 685 min = max; 686 chunk = 1 << min; 687 688 /* mark multiblock chunks only */ 689 grp->bb_counters[min]++; 690 if (min > 0) 691 mb_clear_bit(first >> min, 692 buddy + sbi->s_mb_offsets[min]); 693 694 len -= chunk; 695 first += chunk; 696 } 697 } 698 699 /* 700 * Cache the order of the largest free extent we have available in this block 701 * group. 702 */ 703 static void 704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 705 { 706 int i; 707 int bits; 708 709 grp->bb_largest_free_order = -1; /* uninit */ 710 711 bits = sb->s_blocksize_bits + 1; 712 for (i = bits; i >= 0; i--) { 713 if (grp->bb_counters[i] > 0) { 714 grp->bb_largest_free_order = i; 715 break; 716 } 717 } 718 } 719 720 static noinline_for_stack 721 void ext4_mb_generate_buddy(struct super_block *sb, 722 void *buddy, void *bitmap, ext4_group_t group) 723 { 724 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 726 ext4_grpblk_t i = 0; 727 ext4_grpblk_t first; 728 ext4_grpblk_t len; 729 unsigned free = 0; 730 unsigned fragments = 0; 731 unsigned long long period = get_cycles(); 732 733 /* initialize buddy from bitmap which is aggregation 734 * of on-disk bitmap and preallocations */ 735 i = mb_find_next_zero_bit(bitmap, max, 0); 736 grp->bb_first_free = i; 737 while (i < max) { 738 fragments++; 739 first = i; 740 i = mb_find_next_bit(bitmap, max, i); 741 len = i - first; 742 free += len; 743 if (len > 1) 744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 745 else 746 grp->bb_counters[0]++; 747 if (i < max) 748 i = mb_find_next_zero_bit(bitmap, max, i); 749 } 750 grp->bb_fragments = fragments; 751 752 if (free != grp->bb_free) { 753 ext4_grp_locked_error(sb, group, 0, 0, 754 "%u clusters in bitmap, %u in gd; " 755 "block bitmap corrupt.", 756 free, grp->bb_free); 757 /* 758 * If we intend to continue, we consider group descriptor 759 * corrupt and update bb_free using bitmap value 760 */ 761 grp->bb_free = free; 762 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 763 } 764 mb_set_largest_free_order(sb, grp); 765 766 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 767 768 period = get_cycles() - period; 769 spin_lock(&EXT4_SB(sb)->s_bal_lock); 770 EXT4_SB(sb)->s_mb_buddies_generated++; 771 EXT4_SB(sb)->s_mb_generation_time += period; 772 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 773 } 774 775 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 776 { 777 int count; 778 int order = 1; 779 void *buddy; 780 781 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 782 ext4_set_bits(buddy, 0, count); 783 } 784 e4b->bd_info->bb_fragments = 0; 785 memset(e4b->bd_info->bb_counters, 0, 786 sizeof(*e4b->bd_info->bb_counters) * 787 (e4b->bd_sb->s_blocksize_bits + 2)); 788 789 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 790 e4b->bd_bitmap, e4b->bd_group); 791 } 792 793 /* The buddy information is attached the buddy cache inode 794 * for convenience. The information regarding each group 795 * is loaded via ext4_mb_load_buddy. The information involve 796 * block bitmap and buddy information. The information are 797 * stored in the inode as 798 * 799 * { page } 800 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 801 * 802 * 803 * one block each for bitmap and buddy information. 804 * So for each group we take up 2 blocks. A page can 805 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 806 * So it can have information regarding groups_per_page which 807 * is blocks_per_page/2 808 * 809 * Locking note: This routine takes the block group lock of all groups 810 * for this page; do not hold this lock when calling this routine! 811 */ 812 813 static int ext4_mb_init_cache(struct page *page, char *incore) 814 { 815 ext4_group_t ngroups; 816 int blocksize; 817 int blocks_per_page; 818 int groups_per_page; 819 int err = 0; 820 int i; 821 ext4_group_t first_group, group; 822 int first_block; 823 struct super_block *sb; 824 struct buffer_head *bhs; 825 struct buffer_head **bh = NULL; 826 struct inode *inode; 827 char *data; 828 char *bitmap; 829 struct ext4_group_info *grinfo; 830 831 mb_debug(1, "init page %lu\n", page->index); 832 833 inode = page->mapping->host; 834 sb = inode->i_sb; 835 ngroups = ext4_get_groups_count(sb); 836 blocksize = 1 << inode->i_blkbits; 837 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 838 839 groups_per_page = blocks_per_page >> 1; 840 if (groups_per_page == 0) 841 groups_per_page = 1; 842 843 /* allocate buffer_heads to read bitmaps */ 844 if (groups_per_page > 1) { 845 i = sizeof(struct buffer_head *) * groups_per_page; 846 bh = kzalloc(i, GFP_NOFS); 847 if (bh == NULL) { 848 err = -ENOMEM; 849 goto out; 850 } 851 } else 852 bh = &bhs; 853 854 first_group = page->index * blocks_per_page / 2; 855 856 /* read all groups the page covers into the cache */ 857 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 858 if (group >= ngroups) 859 break; 860 861 grinfo = ext4_get_group_info(sb, group); 862 /* 863 * If page is uptodate then we came here after online resize 864 * which added some new uninitialized group info structs, so 865 * we must skip all initialized uptodate buddies on the page, 866 * which may be currently in use by an allocating task. 867 */ 868 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 869 bh[i] = NULL; 870 continue; 871 } 872 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 873 err = -ENOMEM; 874 goto out; 875 } 876 mb_debug(1, "read bitmap for group %u\n", group); 877 } 878 879 /* wait for I/O completion */ 880 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 881 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 882 err = -EIO; 883 goto out; 884 } 885 } 886 887 first_block = page->index * blocks_per_page; 888 for (i = 0; i < blocks_per_page; i++) { 889 group = (first_block + i) >> 1; 890 if (group >= ngroups) 891 break; 892 893 if (!bh[group - first_group]) 894 /* skip initialized uptodate buddy */ 895 continue; 896 897 /* 898 * data carry information regarding this 899 * particular group in the format specified 900 * above 901 * 902 */ 903 data = page_address(page) + (i * blocksize); 904 bitmap = bh[group - first_group]->b_data; 905 906 /* 907 * We place the buddy block and bitmap block 908 * close together 909 */ 910 if ((first_block + i) & 1) { 911 /* this is block of buddy */ 912 BUG_ON(incore == NULL); 913 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 914 group, page->index, i * blocksize); 915 trace_ext4_mb_buddy_bitmap_load(sb, group); 916 grinfo = ext4_get_group_info(sb, group); 917 grinfo->bb_fragments = 0; 918 memset(grinfo->bb_counters, 0, 919 sizeof(*grinfo->bb_counters) * 920 (sb->s_blocksize_bits+2)); 921 /* 922 * incore got set to the group block bitmap below 923 */ 924 ext4_lock_group(sb, group); 925 /* init the buddy */ 926 memset(data, 0xff, blocksize); 927 ext4_mb_generate_buddy(sb, data, incore, group); 928 ext4_unlock_group(sb, group); 929 incore = NULL; 930 } else { 931 /* this is block of bitmap */ 932 BUG_ON(incore != NULL); 933 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 934 group, page->index, i * blocksize); 935 trace_ext4_mb_bitmap_load(sb, group); 936 937 /* see comments in ext4_mb_put_pa() */ 938 ext4_lock_group(sb, group); 939 memcpy(data, bitmap, blocksize); 940 941 /* mark all preallocated blks used in in-core bitmap */ 942 ext4_mb_generate_from_pa(sb, data, group); 943 ext4_mb_generate_from_freelist(sb, data, group); 944 ext4_unlock_group(sb, group); 945 946 /* set incore so that the buddy information can be 947 * generated using this 948 */ 949 incore = data; 950 } 951 } 952 SetPageUptodate(page); 953 954 out: 955 if (bh) { 956 for (i = 0; i < groups_per_page; i++) 957 brelse(bh[i]); 958 if (bh != &bhs) 959 kfree(bh); 960 } 961 return err; 962 } 963 964 /* 965 * Lock the buddy and bitmap pages. This make sure other parallel init_group 966 * on the same buddy page doesn't happen whild holding the buddy page lock. 967 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 968 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 969 */ 970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 971 ext4_group_t group, struct ext4_buddy *e4b) 972 { 973 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 974 int block, pnum, poff; 975 int blocks_per_page; 976 struct page *page; 977 978 e4b->bd_buddy_page = NULL; 979 e4b->bd_bitmap_page = NULL; 980 981 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 982 /* 983 * the buddy cache inode stores the block bitmap 984 * and buddy information in consecutive blocks. 985 * So for each group we need two blocks. 986 */ 987 block = group * 2; 988 pnum = block / blocks_per_page; 989 poff = block % blocks_per_page; 990 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 991 if (!page) 992 return -ENOMEM; 993 BUG_ON(page->mapping != inode->i_mapping); 994 e4b->bd_bitmap_page = page; 995 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 996 997 if (blocks_per_page >= 2) { 998 /* buddy and bitmap are on the same page */ 999 return 0; 1000 } 1001 1002 block++; 1003 pnum = block / blocks_per_page; 1004 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1005 if (!page) 1006 return -ENOMEM; 1007 BUG_ON(page->mapping != inode->i_mapping); 1008 e4b->bd_buddy_page = page; 1009 return 0; 1010 } 1011 1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1013 { 1014 if (e4b->bd_bitmap_page) { 1015 unlock_page(e4b->bd_bitmap_page); 1016 page_cache_release(e4b->bd_bitmap_page); 1017 } 1018 if (e4b->bd_buddy_page) { 1019 unlock_page(e4b->bd_buddy_page); 1020 page_cache_release(e4b->bd_buddy_page); 1021 } 1022 } 1023 1024 /* 1025 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1026 * block group lock of all groups for this page; do not hold the BG lock when 1027 * calling this routine! 1028 */ 1029 static noinline_for_stack 1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1031 { 1032 1033 struct ext4_group_info *this_grp; 1034 struct ext4_buddy e4b; 1035 struct page *page; 1036 int ret = 0; 1037 1038 might_sleep(); 1039 mb_debug(1, "init group %u\n", group); 1040 this_grp = ext4_get_group_info(sb, group); 1041 /* 1042 * This ensures that we don't reinit the buddy cache 1043 * page which map to the group from which we are already 1044 * allocating. If we are looking at the buddy cache we would 1045 * have taken a reference using ext4_mb_load_buddy and that 1046 * would have pinned buddy page to page cache. 1047 */ 1048 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1049 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1050 /* 1051 * somebody initialized the group 1052 * return without doing anything 1053 */ 1054 goto err; 1055 } 1056 1057 page = e4b.bd_bitmap_page; 1058 ret = ext4_mb_init_cache(page, NULL); 1059 if (ret) 1060 goto err; 1061 if (!PageUptodate(page)) { 1062 ret = -EIO; 1063 goto err; 1064 } 1065 mark_page_accessed(page); 1066 1067 if (e4b.bd_buddy_page == NULL) { 1068 /* 1069 * If both the bitmap and buddy are in 1070 * the same page we don't need to force 1071 * init the buddy 1072 */ 1073 ret = 0; 1074 goto err; 1075 } 1076 /* init buddy cache */ 1077 page = e4b.bd_buddy_page; 1078 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1079 if (ret) 1080 goto err; 1081 if (!PageUptodate(page)) { 1082 ret = -EIO; 1083 goto err; 1084 } 1085 mark_page_accessed(page); 1086 err: 1087 ext4_mb_put_buddy_page_lock(&e4b); 1088 return ret; 1089 } 1090 1091 /* 1092 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1093 * block group lock of all groups for this page; do not hold the BG lock when 1094 * calling this routine! 1095 */ 1096 static noinline_for_stack int 1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1098 struct ext4_buddy *e4b) 1099 { 1100 int blocks_per_page; 1101 int block; 1102 int pnum; 1103 int poff; 1104 struct page *page; 1105 int ret; 1106 struct ext4_group_info *grp; 1107 struct ext4_sb_info *sbi = EXT4_SB(sb); 1108 struct inode *inode = sbi->s_buddy_cache; 1109 1110 might_sleep(); 1111 mb_debug(1, "load group %u\n", group); 1112 1113 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1114 grp = ext4_get_group_info(sb, group); 1115 1116 e4b->bd_blkbits = sb->s_blocksize_bits; 1117 e4b->bd_info = grp; 1118 e4b->bd_sb = sb; 1119 e4b->bd_group = group; 1120 e4b->bd_buddy_page = NULL; 1121 e4b->bd_bitmap_page = NULL; 1122 1123 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1124 /* 1125 * we need full data about the group 1126 * to make a good selection 1127 */ 1128 ret = ext4_mb_init_group(sb, group); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 /* 1134 * the buddy cache inode stores the block bitmap 1135 * and buddy information in consecutive blocks. 1136 * So for each group we need two blocks. 1137 */ 1138 block = group * 2; 1139 pnum = block / blocks_per_page; 1140 poff = block % blocks_per_page; 1141 1142 /* we could use find_or_create_page(), but it locks page 1143 * what we'd like to avoid in fast path ... */ 1144 page = find_get_page(inode->i_mapping, pnum); 1145 if (page == NULL || !PageUptodate(page)) { 1146 if (page) 1147 /* 1148 * drop the page reference and try 1149 * to get the page with lock. If we 1150 * are not uptodate that implies 1151 * somebody just created the page but 1152 * is yet to initialize the same. So 1153 * wait for it to initialize. 1154 */ 1155 page_cache_release(page); 1156 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1157 if (page) { 1158 BUG_ON(page->mapping != inode->i_mapping); 1159 if (!PageUptodate(page)) { 1160 ret = ext4_mb_init_cache(page, NULL); 1161 if (ret) { 1162 unlock_page(page); 1163 goto err; 1164 } 1165 mb_cmp_bitmaps(e4b, page_address(page) + 1166 (poff * sb->s_blocksize)); 1167 } 1168 unlock_page(page); 1169 } 1170 } 1171 if (page == NULL) { 1172 ret = -ENOMEM; 1173 goto err; 1174 } 1175 if (!PageUptodate(page)) { 1176 ret = -EIO; 1177 goto err; 1178 } 1179 e4b->bd_bitmap_page = page; 1180 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1181 mark_page_accessed(page); 1182 1183 block++; 1184 pnum = block / blocks_per_page; 1185 poff = block % blocks_per_page; 1186 1187 page = find_get_page(inode->i_mapping, pnum); 1188 if (page == NULL || !PageUptodate(page)) { 1189 if (page) 1190 page_cache_release(page); 1191 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1192 if (page) { 1193 BUG_ON(page->mapping != inode->i_mapping); 1194 if (!PageUptodate(page)) { 1195 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1196 if (ret) { 1197 unlock_page(page); 1198 goto err; 1199 } 1200 } 1201 unlock_page(page); 1202 } 1203 } 1204 if (page == NULL) { 1205 ret = -ENOMEM; 1206 goto err; 1207 } 1208 if (!PageUptodate(page)) { 1209 ret = -EIO; 1210 goto err; 1211 } 1212 e4b->bd_buddy_page = page; 1213 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1214 mark_page_accessed(page); 1215 1216 BUG_ON(e4b->bd_bitmap_page == NULL); 1217 BUG_ON(e4b->bd_buddy_page == NULL); 1218 1219 return 0; 1220 1221 err: 1222 if (page) 1223 page_cache_release(page); 1224 if (e4b->bd_bitmap_page) 1225 page_cache_release(e4b->bd_bitmap_page); 1226 if (e4b->bd_buddy_page) 1227 page_cache_release(e4b->bd_buddy_page); 1228 e4b->bd_buddy = NULL; 1229 e4b->bd_bitmap = NULL; 1230 return ret; 1231 } 1232 1233 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1234 { 1235 if (e4b->bd_bitmap_page) 1236 page_cache_release(e4b->bd_bitmap_page); 1237 if (e4b->bd_buddy_page) 1238 page_cache_release(e4b->bd_buddy_page); 1239 } 1240 1241 1242 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1243 { 1244 int order = 1; 1245 void *bb; 1246 1247 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1248 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1249 1250 bb = e4b->bd_buddy; 1251 while (order <= e4b->bd_blkbits + 1) { 1252 block = block >> 1; 1253 if (!mb_test_bit(block, bb)) { 1254 /* this block is part of buddy of order 'order' */ 1255 return order; 1256 } 1257 bb += 1 << (e4b->bd_blkbits - order); 1258 order++; 1259 } 1260 return 0; 1261 } 1262 1263 static void mb_clear_bits(void *bm, int cur, int len) 1264 { 1265 __u32 *addr; 1266 1267 len = cur + len; 1268 while (cur < len) { 1269 if ((cur & 31) == 0 && (len - cur) >= 32) { 1270 /* fast path: clear whole word at once */ 1271 addr = bm + (cur >> 3); 1272 *addr = 0; 1273 cur += 32; 1274 continue; 1275 } 1276 mb_clear_bit(cur, bm); 1277 cur++; 1278 } 1279 } 1280 1281 /* clear bits in given range 1282 * will return first found zero bit if any, -1 otherwise 1283 */ 1284 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1285 { 1286 __u32 *addr; 1287 int zero_bit = -1; 1288 1289 len = cur + len; 1290 while (cur < len) { 1291 if ((cur & 31) == 0 && (len - cur) >= 32) { 1292 /* fast path: clear whole word at once */ 1293 addr = bm + (cur >> 3); 1294 if (*addr != (__u32)(-1) && zero_bit == -1) 1295 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1296 *addr = 0; 1297 cur += 32; 1298 continue; 1299 } 1300 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1301 zero_bit = cur; 1302 cur++; 1303 } 1304 1305 return zero_bit; 1306 } 1307 1308 void ext4_set_bits(void *bm, int cur, int len) 1309 { 1310 __u32 *addr; 1311 1312 len = cur + len; 1313 while (cur < len) { 1314 if ((cur & 31) == 0 && (len - cur) >= 32) { 1315 /* fast path: set whole word at once */ 1316 addr = bm + (cur >> 3); 1317 *addr = 0xffffffff; 1318 cur += 32; 1319 continue; 1320 } 1321 mb_set_bit(cur, bm); 1322 cur++; 1323 } 1324 } 1325 1326 /* 1327 * _________________________________________________________________ */ 1328 1329 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1330 { 1331 if (mb_test_bit(*bit + side, bitmap)) { 1332 mb_clear_bit(*bit, bitmap); 1333 (*bit) -= side; 1334 return 1; 1335 } 1336 else { 1337 (*bit) += side; 1338 mb_set_bit(*bit, bitmap); 1339 return -1; 1340 } 1341 } 1342 1343 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1344 { 1345 int max; 1346 int order = 1; 1347 void *buddy = mb_find_buddy(e4b, order, &max); 1348 1349 while (buddy) { 1350 void *buddy2; 1351 1352 /* Bits in range [first; last] are known to be set since 1353 * corresponding blocks were allocated. Bits in range 1354 * (first; last) will stay set because they form buddies on 1355 * upper layer. We just deal with borders if they don't 1356 * align with upper layer and then go up. 1357 * Releasing entire group is all about clearing 1358 * single bit of highest order buddy. 1359 */ 1360 1361 /* Example: 1362 * --------------------------------- 1363 * | 1 | 1 | 1 | 1 | 1364 * --------------------------------- 1365 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1366 * --------------------------------- 1367 * 0 1 2 3 4 5 6 7 1368 * \_____________________/ 1369 * 1370 * Neither [1] nor [6] is aligned to above layer. 1371 * Left neighbour [0] is free, so mark it busy, 1372 * decrease bb_counters and extend range to 1373 * [0; 6] 1374 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1375 * mark [6] free, increase bb_counters and shrink range to 1376 * [0; 5]. 1377 * Then shift range to [0; 2], go up and do the same. 1378 */ 1379 1380 1381 if (first & 1) 1382 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1383 if (!(last & 1)) 1384 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1385 if (first > last) 1386 break; 1387 order++; 1388 1389 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1390 mb_clear_bits(buddy, first, last - first + 1); 1391 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1392 break; 1393 } 1394 first >>= 1; 1395 last >>= 1; 1396 buddy = buddy2; 1397 } 1398 } 1399 1400 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1401 int first, int count) 1402 { 1403 int left_is_free = 0; 1404 int right_is_free = 0; 1405 int block; 1406 int last = first + count - 1; 1407 struct super_block *sb = e4b->bd_sb; 1408 1409 BUG_ON(last >= (sb->s_blocksize << 3)); 1410 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1411 /* Don't bother if the block group is corrupt. */ 1412 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1413 return; 1414 1415 mb_check_buddy(e4b); 1416 mb_free_blocks_double(inode, e4b, first, count); 1417 1418 e4b->bd_info->bb_free += count; 1419 if (first < e4b->bd_info->bb_first_free) 1420 e4b->bd_info->bb_first_free = first; 1421 1422 /* access memory sequentially: check left neighbour, 1423 * clear range and then check right neighbour 1424 */ 1425 if (first != 0) 1426 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1427 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1428 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1429 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1430 1431 if (unlikely(block != -1)) { 1432 ext4_fsblk_t blocknr; 1433 1434 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1435 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1436 ext4_grp_locked_error(sb, e4b->bd_group, 1437 inode ? inode->i_ino : 0, 1438 blocknr, 1439 "freeing already freed block " 1440 "(bit %u); block bitmap corrupt.", 1441 block); 1442 /* Mark the block group as corrupt. */ 1443 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1444 &e4b->bd_info->bb_state); 1445 mb_regenerate_buddy(e4b); 1446 goto done; 1447 } 1448 1449 /* let's maintain fragments counter */ 1450 if (left_is_free && right_is_free) 1451 e4b->bd_info->bb_fragments--; 1452 else if (!left_is_free && !right_is_free) 1453 e4b->bd_info->bb_fragments++; 1454 1455 /* buddy[0] == bd_bitmap is a special case, so handle 1456 * it right away and let mb_buddy_mark_free stay free of 1457 * zero order checks. 1458 * Check if neighbours are to be coaleasced, 1459 * adjust bitmap bb_counters and borders appropriately. 1460 */ 1461 if (first & 1) { 1462 first += !left_is_free; 1463 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1464 } 1465 if (!(last & 1)) { 1466 last -= !right_is_free; 1467 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1468 } 1469 1470 if (first <= last) 1471 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1472 1473 done: 1474 mb_set_largest_free_order(sb, e4b->bd_info); 1475 mb_check_buddy(e4b); 1476 } 1477 1478 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1479 int needed, struct ext4_free_extent *ex) 1480 { 1481 int next = block; 1482 int max, order; 1483 void *buddy; 1484 1485 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1486 BUG_ON(ex == NULL); 1487 1488 buddy = mb_find_buddy(e4b, 0, &max); 1489 BUG_ON(buddy == NULL); 1490 BUG_ON(block >= max); 1491 if (mb_test_bit(block, buddy)) { 1492 ex->fe_len = 0; 1493 ex->fe_start = 0; 1494 ex->fe_group = 0; 1495 return 0; 1496 } 1497 1498 /* find actual order */ 1499 order = mb_find_order_for_block(e4b, block); 1500 block = block >> order; 1501 1502 ex->fe_len = 1 << order; 1503 ex->fe_start = block << order; 1504 ex->fe_group = e4b->bd_group; 1505 1506 /* calc difference from given start */ 1507 next = next - ex->fe_start; 1508 ex->fe_len -= next; 1509 ex->fe_start += next; 1510 1511 while (needed > ex->fe_len && 1512 mb_find_buddy(e4b, order, &max)) { 1513 1514 if (block + 1 >= max) 1515 break; 1516 1517 next = (block + 1) * (1 << order); 1518 if (mb_test_bit(next, e4b->bd_bitmap)) 1519 break; 1520 1521 order = mb_find_order_for_block(e4b, next); 1522 1523 block = next >> order; 1524 ex->fe_len += 1 << order; 1525 } 1526 1527 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1528 return ex->fe_len; 1529 } 1530 1531 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1532 { 1533 int ord; 1534 int mlen = 0; 1535 int max = 0; 1536 int cur; 1537 int start = ex->fe_start; 1538 int len = ex->fe_len; 1539 unsigned ret = 0; 1540 int len0 = len; 1541 void *buddy; 1542 1543 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1544 BUG_ON(e4b->bd_group != ex->fe_group); 1545 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1546 mb_check_buddy(e4b); 1547 mb_mark_used_double(e4b, start, len); 1548 1549 e4b->bd_info->bb_free -= len; 1550 if (e4b->bd_info->bb_first_free == start) 1551 e4b->bd_info->bb_first_free += len; 1552 1553 /* let's maintain fragments counter */ 1554 if (start != 0) 1555 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1556 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1557 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1558 if (mlen && max) 1559 e4b->bd_info->bb_fragments++; 1560 else if (!mlen && !max) 1561 e4b->bd_info->bb_fragments--; 1562 1563 /* let's maintain buddy itself */ 1564 while (len) { 1565 ord = mb_find_order_for_block(e4b, start); 1566 1567 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1568 /* the whole chunk may be allocated at once! */ 1569 mlen = 1 << ord; 1570 buddy = mb_find_buddy(e4b, ord, &max); 1571 BUG_ON((start >> ord) >= max); 1572 mb_set_bit(start >> ord, buddy); 1573 e4b->bd_info->bb_counters[ord]--; 1574 start += mlen; 1575 len -= mlen; 1576 BUG_ON(len < 0); 1577 continue; 1578 } 1579 1580 /* store for history */ 1581 if (ret == 0) 1582 ret = len | (ord << 16); 1583 1584 /* we have to split large buddy */ 1585 BUG_ON(ord <= 0); 1586 buddy = mb_find_buddy(e4b, ord, &max); 1587 mb_set_bit(start >> ord, buddy); 1588 e4b->bd_info->bb_counters[ord]--; 1589 1590 ord--; 1591 cur = (start >> ord) & ~1U; 1592 buddy = mb_find_buddy(e4b, ord, &max); 1593 mb_clear_bit(cur, buddy); 1594 mb_clear_bit(cur + 1, buddy); 1595 e4b->bd_info->bb_counters[ord]++; 1596 e4b->bd_info->bb_counters[ord]++; 1597 } 1598 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1599 1600 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1601 mb_check_buddy(e4b); 1602 1603 return ret; 1604 } 1605 1606 /* 1607 * Must be called under group lock! 1608 */ 1609 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1610 struct ext4_buddy *e4b) 1611 { 1612 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1613 int ret; 1614 1615 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1616 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1617 1618 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1619 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1620 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1621 1622 /* preallocation can change ac_b_ex, thus we store actually 1623 * allocated blocks for history */ 1624 ac->ac_f_ex = ac->ac_b_ex; 1625 1626 ac->ac_status = AC_STATUS_FOUND; 1627 ac->ac_tail = ret & 0xffff; 1628 ac->ac_buddy = ret >> 16; 1629 1630 /* 1631 * take the page reference. We want the page to be pinned 1632 * so that we don't get a ext4_mb_init_cache_call for this 1633 * group until we update the bitmap. That would mean we 1634 * double allocate blocks. The reference is dropped 1635 * in ext4_mb_release_context 1636 */ 1637 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1638 get_page(ac->ac_bitmap_page); 1639 ac->ac_buddy_page = e4b->bd_buddy_page; 1640 get_page(ac->ac_buddy_page); 1641 /* store last allocated for subsequent stream allocation */ 1642 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1643 spin_lock(&sbi->s_md_lock); 1644 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1645 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1646 spin_unlock(&sbi->s_md_lock); 1647 } 1648 } 1649 1650 /* 1651 * regular allocator, for general purposes allocation 1652 */ 1653 1654 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1655 struct ext4_buddy *e4b, 1656 int finish_group) 1657 { 1658 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1659 struct ext4_free_extent *bex = &ac->ac_b_ex; 1660 struct ext4_free_extent *gex = &ac->ac_g_ex; 1661 struct ext4_free_extent ex; 1662 int max; 1663 1664 if (ac->ac_status == AC_STATUS_FOUND) 1665 return; 1666 /* 1667 * We don't want to scan for a whole year 1668 */ 1669 if (ac->ac_found > sbi->s_mb_max_to_scan && 1670 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1671 ac->ac_status = AC_STATUS_BREAK; 1672 return; 1673 } 1674 1675 /* 1676 * Haven't found good chunk so far, let's continue 1677 */ 1678 if (bex->fe_len < gex->fe_len) 1679 return; 1680 1681 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1682 && bex->fe_group == e4b->bd_group) { 1683 /* recheck chunk's availability - we don't know 1684 * when it was found (within this lock-unlock 1685 * period or not) */ 1686 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1687 if (max >= gex->fe_len) { 1688 ext4_mb_use_best_found(ac, e4b); 1689 return; 1690 } 1691 } 1692 } 1693 1694 /* 1695 * The routine checks whether found extent is good enough. If it is, 1696 * then the extent gets marked used and flag is set to the context 1697 * to stop scanning. Otherwise, the extent is compared with the 1698 * previous found extent and if new one is better, then it's stored 1699 * in the context. Later, the best found extent will be used, if 1700 * mballoc can't find good enough extent. 1701 * 1702 * FIXME: real allocation policy is to be designed yet! 1703 */ 1704 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1705 struct ext4_free_extent *ex, 1706 struct ext4_buddy *e4b) 1707 { 1708 struct ext4_free_extent *bex = &ac->ac_b_ex; 1709 struct ext4_free_extent *gex = &ac->ac_g_ex; 1710 1711 BUG_ON(ex->fe_len <= 0); 1712 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1713 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1714 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1715 1716 ac->ac_found++; 1717 1718 /* 1719 * The special case - take what you catch first 1720 */ 1721 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1722 *bex = *ex; 1723 ext4_mb_use_best_found(ac, e4b); 1724 return; 1725 } 1726 1727 /* 1728 * Let's check whether the chuck is good enough 1729 */ 1730 if (ex->fe_len == gex->fe_len) { 1731 *bex = *ex; 1732 ext4_mb_use_best_found(ac, e4b); 1733 return; 1734 } 1735 1736 /* 1737 * If this is first found extent, just store it in the context 1738 */ 1739 if (bex->fe_len == 0) { 1740 *bex = *ex; 1741 return; 1742 } 1743 1744 /* 1745 * If new found extent is better, store it in the context 1746 */ 1747 if (bex->fe_len < gex->fe_len) { 1748 /* if the request isn't satisfied, any found extent 1749 * larger than previous best one is better */ 1750 if (ex->fe_len > bex->fe_len) 1751 *bex = *ex; 1752 } else if (ex->fe_len > gex->fe_len) { 1753 /* if the request is satisfied, then we try to find 1754 * an extent that still satisfy the request, but is 1755 * smaller than previous one */ 1756 if (ex->fe_len < bex->fe_len) 1757 *bex = *ex; 1758 } 1759 1760 ext4_mb_check_limits(ac, e4b, 0); 1761 } 1762 1763 static noinline_for_stack 1764 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1765 struct ext4_buddy *e4b) 1766 { 1767 struct ext4_free_extent ex = ac->ac_b_ex; 1768 ext4_group_t group = ex.fe_group; 1769 int max; 1770 int err; 1771 1772 BUG_ON(ex.fe_len <= 0); 1773 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1774 if (err) 1775 return err; 1776 1777 ext4_lock_group(ac->ac_sb, group); 1778 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1779 1780 if (max > 0) { 1781 ac->ac_b_ex = ex; 1782 ext4_mb_use_best_found(ac, e4b); 1783 } 1784 1785 ext4_unlock_group(ac->ac_sb, group); 1786 ext4_mb_unload_buddy(e4b); 1787 1788 return 0; 1789 } 1790 1791 static noinline_for_stack 1792 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1793 struct ext4_buddy *e4b) 1794 { 1795 ext4_group_t group = ac->ac_g_ex.fe_group; 1796 int max; 1797 int err; 1798 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1799 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1800 struct ext4_free_extent ex; 1801 1802 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1803 return 0; 1804 if (grp->bb_free == 0) 1805 return 0; 1806 1807 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1808 if (err) 1809 return err; 1810 1811 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1812 ext4_mb_unload_buddy(e4b); 1813 return 0; 1814 } 1815 1816 ext4_lock_group(ac->ac_sb, group); 1817 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1818 ac->ac_g_ex.fe_len, &ex); 1819 ex.fe_logical = 0xDEADFA11; /* debug value */ 1820 1821 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1822 ext4_fsblk_t start; 1823 1824 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1825 ex.fe_start; 1826 /* use do_div to get remainder (would be 64-bit modulo) */ 1827 if (do_div(start, sbi->s_stripe) == 0) { 1828 ac->ac_found++; 1829 ac->ac_b_ex = ex; 1830 ext4_mb_use_best_found(ac, e4b); 1831 } 1832 } else if (max >= ac->ac_g_ex.fe_len) { 1833 BUG_ON(ex.fe_len <= 0); 1834 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1835 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1836 ac->ac_found++; 1837 ac->ac_b_ex = ex; 1838 ext4_mb_use_best_found(ac, e4b); 1839 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1840 /* Sometimes, caller may want to merge even small 1841 * number of blocks to an existing extent */ 1842 BUG_ON(ex.fe_len <= 0); 1843 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1844 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1845 ac->ac_found++; 1846 ac->ac_b_ex = ex; 1847 ext4_mb_use_best_found(ac, e4b); 1848 } 1849 ext4_unlock_group(ac->ac_sb, group); 1850 ext4_mb_unload_buddy(e4b); 1851 1852 return 0; 1853 } 1854 1855 /* 1856 * The routine scans buddy structures (not bitmap!) from given order 1857 * to max order and tries to find big enough chunk to satisfy the req 1858 */ 1859 static noinline_for_stack 1860 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1861 struct ext4_buddy *e4b) 1862 { 1863 struct super_block *sb = ac->ac_sb; 1864 struct ext4_group_info *grp = e4b->bd_info; 1865 void *buddy; 1866 int i; 1867 int k; 1868 int max; 1869 1870 BUG_ON(ac->ac_2order <= 0); 1871 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1872 if (grp->bb_counters[i] == 0) 1873 continue; 1874 1875 buddy = mb_find_buddy(e4b, i, &max); 1876 BUG_ON(buddy == NULL); 1877 1878 k = mb_find_next_zero_bit(buddy, max, 0); 1879 BUG_ON(k >= max); 1880 1881 ac->ac_found++; 1882 1883 ac->ac_b_ex.fe_len = 1 << i; 1884 ac->ac_b_ex.fe_start = k << i; 1885 ac->ac_b_ex.fe_group = e4b->bd_group; 1886 1887 ext4_mb_use_best_found(ac, e4b); 1888 1889 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1890 1891 if (EXT4_SB(sb)->s_mb_stats) 1892 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1893 1894 break; 1895 } 1896 } 1897 1898 /* 1899 * The routine scans the group and measures all found extents. 1900 * In order to optimize scanning, caller must pass number of 1901 * free blocks in the group, so the routine can know upper limit. 1902 */ 1903 static noinline_for_stack 1904 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1905 struct ext4_buddy *e4b) 1906 { 1907 struct super_block *sb = ac->ac_sb; 1908 void *bitmap = e4b->bd_bitmap; 1909 struct ext4_free_extent ex; 1910 int i; 1911 int free; 1912 1913 free = e4b->bd_info->bb_free; 1914 BUG_ON(free <= 0); 1915 1916 i = e4b->bd_info->bb_first_free; 1917 1918 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1919 i = mb_find_next_zero_bit(bitmap, 1920 EXT4_CLUSTERS_PER_GROUP(sb), i); 1921 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1922 /* 1923 * IF we have corrupt bitmap, we won't find any 1924 * free blocks even though group info says we 1925 * we have free blocks 1926 */ 1927 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1928 "%d free clusters as per " 1929 "group info. But bitmap says 0", 1930 free); 1931 break; 1932 } 1933 1934 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1935 BUG_ON(ex.fe_len <= 0); 1936 if (free < ex.fe_len) { 1937 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1938 "%d free clusters as per " 1939 "group info. But got %d blocks", 1940 free, ex.fe_len); 1941 /* 1942 * The number of free blocks differs. This mostly 1943 * indicate that the bitmap is corrupt. So exit 1944 * without claiming the space. 1945 */ 1946 break; 1947 } 1948 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1949 ext4_mb_measure_extent(ac, &ex, e4b); 1950 1951 i += ex.fe_len; 1952 free -= ex.fe_len; 1953 } 1954 1955 ext4_mb_check_limits(ac, e4b, 1); 1956 } 1957 1958 /* 1959 * This is a special case for storages like raid5 1960 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1961 */ 1962 static noinline_for_stack 1963 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1964 struct ext4_buddy *e4b) 1965 { 1966 struct super_block *sb = ac->ac_sb; 1967 struct ext4_sb_info *sbi = EXT4_SB(sb); 1968 void *bitmap = e4b->bd_bitmap; 1969 struct ext4_free_extent ex; 1970 ext4_fsblk_t first_group_block; 1971 ext4_fsblk_t a; 1972 ext4_grpblk_t i; 1973 int max; 1974 1975 BUG_ON(sbi->s_stripe == 0); 1976 1977 /* find first stripe-aligned block in group */ 1978 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1979 1980 a = first_group_block + sbi->s_stripe - 1; 1981 do_div(a, sbi->s_stripe); 1982 i = (a * sbi->s_stripe) - first_group_block; 1983 1984 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1985 if (!mb_test_bit(i, bitmap)) { 1986 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1987 if (max >= sbi->s_stripe) { 1988 ac->ac_found++; 1989 ex.fe_logical = 0xDEADF00D; /* debug value */ 1990 ac->ac_b_ex = ex; 1991 ext4_mb_use_best_found(ac, e4b); 1992 break; 1993 } 1994 } 1995 i += sbi->s_stripe; 1996 } 1997 } 1998 1999 /* This is now called BEFORE we load the buddy bitmap. */ 2000 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2001 ext4_group_t group, int cr) 2002 { 2003 unsigned free, fragments; 2004 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2005 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2006 2007 BUG_ON(cr < 0 || cr >= 4); 2008 2009 free = grp->bb_free; 2010 if (free == 0) 2011 return 0; 2012 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2013 return 0; 2014 2015 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2016 return 0; 2017 2018 /* We only do this if the grp has never been initialized */ 2019 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2020 int ret = ext4_mb_init_group(ac->ac_sb, group); 2021 if (ret) 2022 return 0; 2023 } 2024 2025 fragments = grp->bb_fragments; 2026 if (fragments == 0) 2027 return 0; 2028 2029 switch (cr) { 2030 case 0: 2031 BUG_ON(ac->ac_2order == 0); 2032 2033 /* Avoid using the first bg of a flexgroup for data files */ 2034 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2035 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2036 ((group % flex_size) == 0)) 2037 return 0; 2038 2039 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2040 (free / fragments) >= ac->ac_g_ex.fe_len) 2041 return 1; 2042 2043 if (grp->bb_largest_free_order < ac->ac_2order) 2044 return 0; 2045 2046 return 1; 2047 case 1: 2048 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2049 return 1; 2050 break; 2051 case 2: 2052 if (free >= ac->ac_g_ex.fe_len) 2053 return 1; 2054 break; 2055 case 3: 2056 return 1; 2057 default: 2058 BUG(); 2059 } 2060 2061 return 0; 2062 } 2063 2064 static noinline_for_stack int 2065 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2066 { 2067 ext4_group_t ngroups, group, i; 2068 int cr; 2069 int err = 0; 2070 struct ext4_sb_info *sbi; 2071 struct super_block *sb; 2072 struct ext4_buddy e4b; 2073 2074 sb = ac->ac_sb; 2075 sbi = EXT4_SB(sb); 2076 ngroups = ext4_get_groups_count(sb); 2077 /* non-extent files are limited to low blocks/groups */ 2078 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2079 ngroups = sbi->s_blockfile_groups; 2080 2081 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2082 2083 /* first, try the goal */ 2084 err = ext4_mb_find_by_goal(ac, &e4b); 2085 if (err || ac->ac_status == AC_STATUS_FOUND) 2086 goto out; 2087 2088 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2089 goto out; 2090 2091 /* 2092 * ac->ac2_order is set only if the fe_len is a power of 2 2093 * if ac2_order is set we also set criteria to 0 so that we 2094 * try exact allocation using buddy. 2095 */ 2096 i = fls(ac->ac_g_ex.fe_len); 2097 ac->ac_2order = 0; 2098 /* 2099 * We search using buddy data only if the order of the request 2100 * is greater than equal to the sbi_s_mb_order2_reqs 2101 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2102 */ 2103 if (i >= sbi->s_mb_order2_reqs) { 2104 /* 2105 * This should tell if fe_len is exactly power of 2 2106 */ 2107 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2108 ac->ac_2order = i - 1; 2109 } 2110 2111 /* if stream allocation is enabled, use global goal */ 2112 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2113 /* TBD: may be hot point */ 2114 spin_lock(&sbi->s_md_lock); 2115 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2116 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2117 spin_unlock(&sbi->s_md_lock); 2118 } 2119 2120 /* Let's just scan groups to find more-less suitable blocks */ 2121 cr = ac->ac_2order ? 0 : 1; 2122 /* 2123 * cr == 0 try to get exact allocation, 2124 * cr == 3 try to get anything 2125 */ 2126 repeat: 2127 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2128 ac->ac_criteria = cr; 2129 /* 2130 * searching for the right group start 2131 * from the goal value specified 2132 */ 2133 group = ac->ac_g_ex.fe_group; 2134 2135 for (i = 0; i < ngroups; group++, i++) { 2136 cond_resched(); 2137 /* 2138 * Artificially restricted ngroups for non-extent 2139 * files makes group > ngroups possible on first loop. 2140 */ 2141 if (group >= ngroups) 2142 group = 0; 2143 2144 /* This now checks without needing the buddy page */ 2145 if (!ext4_mb_good_group(ac, group, cr)) 2146 continue; 2147 2148 err = ext4_mb_load_buddy(sb, group, &e4b); 2149 if (err) 2150 goto out; 2151 2152 ext4_lock_group(sb, group); 2153 2154 /* 2155 * We need to check again after locking the 2156 * block group 2157 */ 2158 if (!ext4_mb_good_group(ac, group, cr)) { 2159 ext4_unlock_group(sb, group); 2160 ext4_mb_unload_buddy(&e4b); 2161 continue; 2162 } 2163 2164 ac->ac_groups_scanned++; 2165 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2166 ext4_mb_simple_scan_group(ac, &e4b); 2167 else if (cr == 1 && sbi->s_stripe && 2168 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2169 ext4_mb_scan_aligned(ac, &e4b); 2170 else 2171 ext4_mb_complex_scan_group(ac, &e4b); 2172 2173 ext4_unlock_group(sb, group); 2174 ext4_mb_unload_buddy(&e4b); 2175 2176 if (ac->ac_status != AC_STATUS_CONTINUE) 2177 break; 2178 } 2179 } 2180 2181 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2182 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2183 /* 2184 * We've been searching too long. Let's try to allocate 2185 * the best chunk we've found so far 2186 */ 2187 2188 ext4_mb_try_best_found(ac, &e4b); 2189 if (ac->ac_status != AC_STATUS_FOUND) { 2190 /* 2191 * Someone more lucky has already allocated it. 2192 * The only thing we can do is just take first 2193 * found block(s) 2194 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2195 */ 2196 ac->ac_b_ex.fe_group = 0; 2197 ac->ac_b_ex.fe_start = 0; 2198 ac->ac_b_ex.fe_len = 0; 2199 ac->ac_status = AC_STATUS_CONTINUE; 2200 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2201 cr = 3; 2202 atomic_inc(&sbi->s_mb_lost_chunks); 2203 goto repeat; 2204 } 2205 } 2206 out: 2207 return err; 2208 } 2209 2210 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2211 { 2212 struct super_block *sb = seq->private; 2213 ext4_group_t group; 2214 2215 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2216 return NULL; 2217 group = *pos + 1; 2218 return (void *) ((unsigned long) group); 2219 } 2220 2221 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2222 { 2223 struct super_block *sb = seq->private; 2224 ext4_group_t group; 2225 2226 ++*pos; 2227 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2228 return NULL; 2229 group = *pos + 1; 2230 return (void *) ((unsigned long) group); 2231 } 2232 2233 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2234 { 2235 struct super_block *sb = seq->private; 2236 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2237 int i; 2238 int err, buddy_loaded = 0; 2239 struct ext4_buddy e4b; 2240 struct ext4_group_info *grinfo; 2241 struct sg { 2242 struct ext4_group_info info; 2243 ext4_grpblk_t counters[16]; 2244 } sg; 2245 2246 group--; 2247 if (group == 0) 2248 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2249 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2250 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2251 "group", "free", "frags", "first", 2252 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2253 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2254 2255 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2256 sizeof(struct ext4_group_info); 2257 grinfo = ext4_get_group_info(sb, group); 2258 /* Load the group info in memory only if not already loaded. */ 2259 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2260 err = ext4_mb_load_buddy(sb, group, &e4b); 2261 if (err) { 2262 seq_printf(seq, "#%-5u: I/O error\n", group); 2263 return 0; 2264 } 2265 buddy_loaded = 1; 2266 } 2267 2268 memcpy(&sg, ext4_get_group_info(sb, group), i); 2269 2270 if (buddy_loaded) 2271 ext4_mb_unload_buddy(&e4b); 2272 2273 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2274 sg.info.bb_fragments, sg.info.bb_first_free); 2275 for (i = 0; i <= 13; i++) 2276 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2277 sg.info.bb_counters[i] : 0); 2278 seq_printf(seq, " ]\n"); 2279 2280 return 0; 2281 } 2282 2283 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2284 { 2285 } 2286 2287 static const struct seq_operations ext4_mb_seq_groups_ops = { 2288 .start = ext4_mb_seq_groups_start, 2289 .next = ext4_mb_seq_groups_next, 2290 .stop = ext4_mb_seq_groups_stop, 2291 .show = ext4_mb_seq_groups_show, 2292 }; 2293 2294 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2295 { 2296 struct super_block *sb = PDE_DATA(inode); 2297 int rc; 2298 2299 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2300 if (rc == 0) { 2301 struct seq_file *m = file->private_data; 2302 m->private = sb; 2303 } 2304 return rc; 2305 2306 } 2307 2308 static const struct file_operations ext4_mb_seq_groups_fops = { 2309 .owner = THIS_MODULE, 2310 .open = ext4_mb_seq_groups_open, 2311 .read = seq_read, 2312 .llseek = seq_lseek, 2313 .release = seq_release, 2314 }; 2315 2316 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2317 { 2318 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2319 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2320 2321 BUG_ON(!cachep); 2322 return cachep; 2323 } 2324 2325 /* 2326 * Allocate the top-level s_group_info array for the specified number 2327 * of groups 2328 */ 2329 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2330 { 2331 struct ext4_sb_info *sbi = EXT4_SB(sb); 2332 unsigned size; 2333 struct ext4_group_info ***new_groupinfo; 2334 2335 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2336 EXT4_DESC_PER_BLOCK_BITS(sb); 2337 if (size <= sbi->s_group_info_size) 2338 return 0; 2339 2340 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2341 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2342 if (!new_groupinfo) { 2343 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2344 return -ENOMEM; 2345 } 2346 if (sbi->s_group_info) { 2347 memcpy(new_groupinfo, sbi->s_group_info, 2348 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2349 ext4_kvfree(sbi->s_group_info); 2350 } 2351 sbi->s_group_info = new_groupinfo; 2352 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2353 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2354 sbi->s_group_info_size); 2355 return 0; 2356 } 2357 2358 /* Create and initialize ext4_group_info data for the given group. */ 2359 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2360 struct ext4_group_desc *desc) 2361 { 2362 int i; 2363 int metalen = 0; 2364 struct ext4_sb_info *sbi = EXT4_SB(sb); 2365 struct ext4_group_info **meta_group_info; 2366 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2367 2368 /* 2369 * First check if this group is the first of a reserved block. 2370 * If it's true, we have to allocate a new table of pointers 2371 * to ext4_group_info structures 2372 */ 2373 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2374 metalen = sizeof(*meta_group_info) << 2375 EXT4_DESC_PER_BLOCK_BITS(sb); 2376 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2377 if (meta_group_info == NULL) { 2378 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2379 "for a buddy group"); 2380 goto exit_meta_group_info; 2381 } 2382 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2383 meta_group_info; 2384 } 2385 2386 meta_group_info = 2387 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2388 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2389 2390 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2391 if (meta_group_info[i] == NULL) { 2392 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2393 goto exit_group_info; 2394 } 2395 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2396 &(meta_group_info[i]->bb_state)); 2397 2398 /* 2399 * initialize bb_free to be able to skip 2400 * empty groups without initialization 2401 */ 2402 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2403 meta_group_info[i]->bb_free = 2404 ext4_free_clusters_after_init(sb, group, desc); 2405 } else { 2406 meta_group_info[i]->bb_free = 2407 ext4_free_group_clusters(sb, desc); 2408 } 2409 2410 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2411 init_rwsem(&meta_group_info[i]->alloc_sem); 2412 meta_group_info[i]->bb_free_root = RB_ROOT; 2413 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2414 2415 #ifdef DOUBLE_CHECK 2416 { 2417 struct buffer_head *bh; 2418 meta_group_info[i]->bb_bitmap = 2419 kmalloc(sb->s_blocksize, GFP_KERNEL); 2420 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2421 bh = ext4_read_block_bitmap(sb, group); 2422 BUG_ON(bh == NULL); 2423 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2424 sb->s_blocksize); 2425 put_bh(bh); 2426 } 2427 #endif 2428 2429 return 0; 2430 2431 exit_group_info: 2432 /* If a meta_group_info table has been allocated, release it now */ 2433 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2434 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2435 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2436 } 2437 exit_meta_group_info: 2438 return -ENOMEM; 2439 } /* ext4_mb_add_groupinfo */ 2440 2441 static int ext4_mb_init_backend(struct super_block *sb) 2442 { 2443 ext4_group_t ngroups = ext4_get_groups_count(sb); 2444 ext4_group_t i; 2445 struct ext4_sb_info *sbi = EXT4_SB(sb); 2446 int err; 2447 struct ext4_group_desc *desc; 2448 struct kmem_cache *cachep; 2449 2450 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2451 if (err) 2452 return err; 2453 2454 sbi->s_buddy_cache = new_inode(sb); 2455 if (sbi->s_buddy_cache == NULL) { 2456 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2457 goto err_freesgi; 2458 } 2459 /* To avoid potentially colliding with an valid on-disk inode number, 2460 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2461 * not in the inode hash, so it should never be found by iget(), but 2462 * this will avoid confusion if it ever shows up during debugging. */ 2463 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2464 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2465 for (i = 0; i < ngroups; i++) { 2466 desc = ext4_get_group_desc(sb, i, NULL); 2467 if (desc == NULL) { 2468 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2469 goto err_freebuddy; 2470 } 2471 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2472 goto err_freebuddy; 2473 } 2474 2475 return 0; 2476 2477 err_freebuddy: 2478 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2479 while (i-- > 0) 2480 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2481 i = sbi->s_group_info_size; 2482 while (i-- > 0) 2483 kfree(sbi->s_group_info[i]); 2484 iput(sbi->s_buddy_cache); 2485 err_freesgi: 2486 ext4_kvfree(sbi->s_group_info); 2487 return -ENOMEM; 2488 } 2489 2490 static void ext4_groupinfo_destroy_slabs(void) 2491 { 2492 int i; 2493 2494 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2495 if (ext4_groupinfo_caches[i]) 2496 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2497 ext4_groupinfo_caches[i] = NULL; 2498 } 2499 } 2500 2501 static int ext4_groupinfo_create_slab(size_t size) 2502 { 2503 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2504 int slab_size; 2505 int blocksize_bits = order_base_2(size); 2506 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2507 struct kmem_cache *cachep; 2508 2509 if (cache_index >= NR_GRPINFO_CACHES) 2510 return -EINVAL; 2511 2512 if (unlikely(cache_index < 0)) 2513 cache_index = 0; 2514 2515 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2516 if (ext4_groupinfo_caches[cache_index]) { 2517 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2518 return 0; /* Already created */ 2519 } 2520 2521 slab_size = offsetof(struct ext4_group_info, 2522 bb_counters[blocksize_bits + 2]); 2523 2524 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2525 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2526 NULL); 2527 2528 ext4_groupinfo_caches[cache_index] = cachep; 2529 2530 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2531 if (!cachep) { 2532 printk(KERN_EMERG 2533 "EXT4-fs: no memory for groupinfo slab cache\n"); 2534 return -ENOMEM; 2535 } 2536 2537 return 0; 2538 } 2539 2540 int ext4_mb_init(struct super_block *sb) 2541 { 2542 struct ext4_sb_info *sbi = EXT4_SB(sb); 2543 unsigned i, j; 2544 unsigned offset; 2545 unsigned max; 2546 int ret; 2547 2548 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2549 2550 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2551 if (sbi->s_mb_offsets == NULL) { 2552 ret = -ENOMEM; 2553 goto out; 2554 } 2555 2556 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2557 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2558 if (sbi->s_mb_maxs == NULL) { 2559 ret = -ENOMEM; 2560 goto out; 2561 } 2562 2563 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2564 if (ret < 0) 2565 goto out; 2566 2567 /* order 0 is regular bitmap */ 2568 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2569 sbi->s_mb_offsets[0] = 0; 2570 2571 i = 1; 2572 offset = 0; 2573 max = sb->s_blocksize << 2; 2574 do { 2575 sbi->s_mb_offsets[i] = offset; 2576 sbi->s_mb_maxs[i] = max; 2577 offset += 1 << (sb->s_blocksize_bits - i); 2578 max = max >> 1; 2579 i++; 2580 } while (i <= sb->s_blocksize_bits + 1); 2581 2582 spin_lock_init(&sbi->s_md_lock); 2583 spin_lock_init(&sbi->s_bal_lock); 2584 2585 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2586 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2587 sbi->s_mb_stats = MB_DEFAULT_STATS; 2588 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2589 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2590 /* 2591 * The default group preallocation is 512, which for 4k block 2592 * sizes translates to 2 megabytes. However for bigalloc file 2593 * systems, this is probably too big (i.e, if the cluster size 2594 * is 1 megabyte, then group preallocation size becomes half a 2595 * gigabyte!). As a default, we will keep a two megabyte 2596 * group pralloc size for cluster sizes up to 64k, and after 2597 * that, we will force a minimum group preallocation size of 2598 * 32 clusters. This translates to 8 megs when the cluster 2599 * size is 256k, and 32 megs when the cluster size is 1 meg, 2600 * which seems reasonable as a default. 2601 */ 2602 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2603 sbi->s_cluster_bits, 32); 2604 /* 2605 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2606 * to the lowest multiple of s_stripe which is bigger than 2607 * the s_mb_group_prealloc as determined above. We want 2608 * the preallocation size to be an exact multiple of the 2609 * RAID stripe size so that preallocations don't fragment 2610 * the stripes. 2611 */ 2612 if (sbi->s_stripe > 1) { 2613 sbi->s_mb_group_prealloc = roundup( 2614 sbi->s_mb_group_prealloc, sbi->s_stripe); 2615 } 2616 2617 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2618 if (sbi->s_locality_groups == NULL) { 2619 ret = -ENOMEM; 2620 goto out_free_groupinfo_slab; 2621 } 2622 for_each_possible_cpu(i) { 2623 struct ext4_locality_group *lg; 2624 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2625 mutex_init(&lg->lg_mutex); 2626 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2627 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2628 spin_lock_init(&lg->lg_prealloc_lock); 2629 } 2630 2631 /* init file for buddy data */ 2632 ret = ext4_mb_init_backend(sb); 2633 if (ret != 0) 2634 goto out_free_locality_groups; 2635 2636 if (sbi->s_proc) 2637 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2638 &ext4_mb_seq_groups_fops, sb); 2639 2640 return 0; 2641 2642 out_free_locality_groups: 2643 free_percpu(sbi->s_locality_groups); 2644 sbi->s_locality_groups = NULL; 2645 out_free_groupinfo_slab: 2646 ext4_groupinfo_destroy_slabs(); 2647 out: 2648 kfree(sbi->s_mb_offsets); 2649 sbi->s_mb_offsets = NULL; 2650 kfree(sbi->s_mb_maxs); 2651 sbi->s_mb_maxs = NULL; 2652 return ret; 2653 } 2654 2655 /* need to called with the ext4 group lock held */ 2656 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2657 { 2658 struct ext4_prealloc_space *pa; 2659 struct list_head *cur, *tmp; 2660 int count = 0; 2661 2662 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2663 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2664 list_del(&pa->pa_group_list); 2665 count++; 2666 kmem_cache_free(ext4_pspace_cachep, pa); 2667 } 2668 if (count) 2669 mb_debug(1, "mballoc: %u PAs left\n", count); 2670 2671 } 2672 2673 int ext4_mb_release(struct super_block *sb) 2674 { 2675 ext4_group_t ngroups = ext4_get_groups_count(sb); 2676 ext4_group_t i; 2677 int num_meta_group_infos; 2678 struct ext4_group_info *grinfo; 2679 struct ext4_sb_info *sbi = EXT4_SB(sb); 2680 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2681 2682 if (sbi->s_proc) 2683 remove_proc_entry("mb_groups", sbi->s_proc); 2684 2685 if (sbi->s_group_info) { 2686 for (i = 0; i < ngroups; i++) { 2687 grinfo = ext4_get_group_info(sb, i); 2688 #ifdef DOUBLE_CHECK 2689 kfree(grinfo->bb_bitmap); 2690 #endif 2691 ext4_lock_group(sb, i); 2692 ext4_mb_cleanup_pa(grinfo); 2693 ext4_unlock_group(sb, i); 2694 kmem_cache_free(cachep, grinfo); 2695 } 2696 num_meta_group_infos = (ngroups + 2697 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2698 EXT4_DESC_PER_BLOCK_BITS(sb); 2699 for (i = 0; i < num_meta_group_infos; i++) 2700 kfree(sbi->s_group_info[i]); 2701 ext4_kvfree(sbi->s_group_info); 2702 } 2703 kfree(sbi->s_mb_offsets); 2704 kfree(sbi->s_mb_maxs); 2705 if (sbi->s_buddy_cache) 2706 iput(sbi->s_buddy_cache); 2707 if (sbi->s_mb_stats) { 2708 ext4_msg(sb, KERN_INFO, 2709 "mballoc: %u blocks %u reqs (%u success)", 2710 atomic_read(&sbi->s_bal_allocated), 2711 atomic_read(&sbi->s_bal_reqs), 2712 atomic_read(&sbi->s_bal_success)); 2713 ext4_msg(sb, KERN_INFO, 2714 "mballoc: %u extents scanned, %u goal hits, " 2715 "%u 2^N hits, %u breaks, %u lost", 2716 atomic_read(&sbi->s_bal_ex_scanned), 2717 atomic_read(&sbi->s_bal_goals), 2718 atomic_read(&sbi->s_bal_2orders), 2719 atomic_read(&sbi->s_bal_breaks), 2720 atomic_read(&sbi->s_mb_lost_chunks)); 2721 ext4_msg(sb, KERN_INFO, 2722 "mballoc: %lu generated and it took %Lu", 2723 sbi->s_mb_buddies_generated, 2724 sbi->s_mb_generation_time); 2725 ext4_msg(sb, KERN_INFO, 2726 "mballoc: %u preallocated, %u discarded", 2727 atomic_read(&sbi->s_mb_preallocated), 2728 atomic_read(&sbi->s_mb_discarded)); 2729 } 2730 2731 free_percpu(sbi->s_locality_groups); 2732 2733 return 0; 2734 } 2735 2736 static inline int ext4_issue_discard(struct super_block *sb, 2737 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2738 { 2739 ext4_fsblk_t discard_block; 2740 2741 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2742 ext4_group_first_block_no(sb, block_group)); 2743 count = EXT4_C2B(EXT4_SB(sb), count); 2744 trace_ext4_discard_blocks(sb, 2745 (unsigned long long) discard_block, count); 2746 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2747 } 2748 2749 /* 2750 * This function is called by the jbd2 layer once the commit has finished, 2751 * so we know we can free the blocks that were released with that commit. 2752 */ 2753 static void ext4_free_data_callback(struct super_block *sb, 2754 struct ext4_journal_cb_entry *jce, 2755 int rc) 2756 { 2757 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2758 struct ext4_buddy e4b; 2759 struct ext4_group_info *db; 2760 int err, count = 0, count2 = 0; 2761 2762 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2763 entry->efd_count, entry->efd_group, entry); 2764 2765 if (test_opt(sb, DISCARD)) { 2766 err = ext4_issue_discard(sb, entry->efd_group, 2767 entry->efd_start_cluster, 2768 entry->efd_count); 2769 if (err && err != -EOPNOTSUPP) 2770 ext4_msg(sb, KERN_WARNING, "discard request in" 2771 " group:%d block:%d count:%d failed" 2772 " with %d", entry->efd_group, 2773 entry->efd_start_cluster, 2774 entry->efd_count, err); 2775 } 2776 2777 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2778 /* we expect to find existing buddy because it's pinned */ 2779 BUG_ON(err != 0); 2780 2781 2782 db = e4b.bd_info; 2783 /* there are blocks to put in buddy to make them really free */ 2784 count += entry->efd_count; 2785 count2++; 2786 ext4_lock_group(sb, entry->efd_group); 2787 /* Take it out of per group rb tree */ 2788 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2789 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2790 2791 /* 2792 * Clear the trimmed flag for the group so that the next 2793 * ext4_trim_fs can trim it. 2794 * If the volume is mounted with -o discard, online discard 2795 * is supported and the free blocks will be trimmed online. 2796 */ 2797 if (!test_opt(sb, DISCARD)) 2798 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2799 2800 if (!db->bb_free_root.rb_node) { 2801 /* No more items in the per group rb tree 2802 * balance refcounts from ext4_mb_free_metadata() 2803 */ 2804 page_cache_release(e4b.bd_buddy_page); 2805 page_cache_release(e4b.bd_bitmap_page); 2806 } 2807 ext4_unlock_group(sb, entry->efd_group); 2808 kmem_cache_free(ext4_free_data_cachep, entry); 2809 ext4_mb_unload_buddy(&e4b); 2810 2811 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2812 } 2813 2814 int __init ext4_init_mballoc(void) 2815 { 2816 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2817 SLAB_RECLAIM_ACCOUNT); 2818 if (ext4_pspace_cachep == NULL) 2819 return -ENOMEM; 2820 2821 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2822 SLAB_RECLAIM_ACCOUNT); 2823 if (ext4_ac_cachep == NULL) { 2824 kmem_cache_destroy(ext4_pspace_cachep); 2825 return -ENOMEM; 2826 } 2827 2828 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2829 SLAB_RECLAIM_ACCOUNT); 2830 if (ext4_free_data_cachep == NULL) { 2831 kmem_cache_destroy(ext4_pspace_cachep); 2832 kmem_cache_destroy(ext4_ac_cachep); 2833 return -ENOMEM; 2834 } 2835 return 0; 2836 } 2837 2838 void ext4_exit_mballoc(void) 2839 { 2840 /* 2841 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2842 * before destroying the slab cache. 2843 */ 2844 rcu_barrier(); 2845 kmem_cache_destroy(ext4_pspace_cachep); 2846 kmem_cache_destroy(ext4_ac_cachep); 2847 kmem_cache_destroy(ext4_free_data_cachep); 2848 ext4_groupinfo_destroy_slabs(); 2849 } 2850 2851 2852 /* 2853 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2854 * Returns 0 if success or error code 2855 */ 2856 static noinline_for_stack int 2857 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2858 handle_t *handle, unsigned int reserv_clstrs) 2859 { 2860 struct buffer_head *bitmap_bh = NULL; 2861 struct ext4_group_desc *gdp; 2862 struct buffer_head *gdp_bh; 2863 struct ext4_sb_info *sbi; 2864 struct super_block *sb; 2865 ext4_fsblk_t block; 2866 int err, len; 2867 2868 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2869 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2870 2871 sb = ac->ac_sb; 2872 sbi = EXT4_SB(sb); 2873 2874 err = -EIO; 2875 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2876 if (!bitmap_bh) 2877 goto out_err; 2878 2879 err = ext4_journal_get_write_access(handle, bitmap_bh); 2880 if (err) 2881 goto out_err; 2882 2883 err = -EIO; 2884 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2885 if (!gdp) 2886 goto out_err; 2887 2888 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2889 ext4_free_group_clusters(sb, gdp)); 2890 2891 err = ext4_journal_get_write_access(handle, gdp_bh); 2892 if (err) 2893 goto out_err; 2894 2895 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2896 2897 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2898 if (!ext4_data_block_valid(sbi, block, len)) { 2899 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2900 "fs metadata", block, block+len); 2901 /* File system mounted not to panic on error 2902 * Fix the bitmap and repeat the block allocation 2903 * We leak some of the blocks here. 2904 */ 2905 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2906 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2907 ac->ac_b_ex.fe_len); 2908 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2909 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2910 if (!err) 2911 err = -EAGAIN; 2912 goto out_err; 2913 } 2914 2915 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2916 #ifdef AGGRESSIVE_CHECK 2917 { 2918 int i; 2919 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2920 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2921 bitmap_bh->b_data)); 2922 } 2923 } 2924 #endif 2925 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2926 ac->ac_b_ex.fe_len); 2927 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2928 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2929 ext4_free_group_clusters_set(sb, gdp, 2930 ext4_free_clusters_after_init(sb, 2931 ac->ac_b_ex.fe_group, gdp)); 2932 } 2933 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2934 ext4_free_group_clusters_set(sb, gdp, len); 2935 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2936 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2937 2938 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2939 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2940 /* 2941 * Now reduce the dirty block count also. Should not go negative 2942 */ 2943 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2944 /* release all the reserved blocks if non delalloc */ 2945 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2946 reserv_clstrs); 2947 2948 if (sbi->s_log_groups_per_flex) { 2949 ext4_group_t flex_group = ext4_flex_group(sbi, 2950 ac->ac_b_ex.fe_group); 2951 atomic64_sub(ac->ac_b_ex.fe_len, 2952 &sbi->s_flex_groups[flex_group].free_clusters); 2953 } 2954 2955 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2956 if (err) 2957 goto out_err; 2958 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2959 2960 out_err: 2961 brelse(bitmap_bh); 2962 return err; 2963 } 2964 2965 /* 2966 * here we normalize request for locality group 2967 * Group request are normalized to s_mb_group_prealloc, which goes to 2968 * s_strip if we set the same via mount option. 2969 * s_mb_group_prealloc can be configured via 2970 * /sys/fs/ext4/<partition>/mb_group_prealloc 2971 * 2972 * XXX: should we try to preallocate more than the group has now? 2973 */ 2974 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2975 { 2976 struct super_block *sb = ac->ac_sb; 2977 struct ext4_locality_group *lg = ac->ac_lg; 2978 2979 BUG_ON(lg == NULL); 2980 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2981 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2982 current->pid, ac->ac_g_ex.fe_len); 2983 } 2984 2985 /* 2986 * Normalization means making request better in terms of 2987 * size and alignment 2988 */ 2989 static noinline_for_stack void 2990 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2991 struct ext4_allocation_request *ar) 2992 { 2993 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2994 int bsbits, max; 2995 ext4_lblk_t end; 2996 loff_t size, start_off; 2997 loff_t orig_size __maybe_unused; 2998 ext4_lblk_t start; 2999 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3000 struct ext4_prealloc_space *pa; 3001 3002 /* do normalize only data requests, metadata requests 3003 do not need preallocation */ 3004 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3005 return; 3006 3007 /* sometime caller may want exact blocks */ 3008 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3009 return; 3010 3011 /* caller may indicate that preallocation isn't 3012 * required (it's a tail, for example) */ 3013 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3014 return; 3015 3016 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3017 ext4_mb_normalize_group_request(ac); 3018 return ; 3019 } 3020 3021 bsbits = ac->ac_sb->s_blocksize_bits; 3022 3023 /* first, let's learn actual file size 3024 * given current request is allocated */ 3025 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3026 size = size << bsbits; 3027 if (size < i_size_read(ac->ac_inode)) 3028 size = i_size_read(ac->ac_inode); 3029 orig_size = size; 3030 3031 /* max size of free chunks */ 3032 max = 2 << bsbits; 3033 3034 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3035 (req <= (size) || max <= (chunk_size)) 3036 3037 /* first, try to predict filesize */ 3038 /* XXX: should this table be tunable? */ 3039 start_off = 0; 3040 if (size <= 16 * 1024) { 3041 size = 16 * 1024; 3042 } else if (size <= 32 * 1024) { 3043 size = 32 * 1024; 3044 } else if (size <= 64 * 1024) { 3045 size = 64 * 1024; 3046 } else if (size <= 128 * 1024) { 3047 size = 128 * 1024; 3048 } else if (size <= 256 * 1024) { 3049 size = 256 * 1024; 3050 } else if (size <= 512 * 1024) { 3051 size = 512 * 1024; 3052 } else if (size <= 1024 * 1024) { 3053 size = 1024 * 1024; 3054 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3055 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3056 (21 - bsbits)) << 21; 3057 size = 2 * 1024 * 1024; 3058 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3059 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3060 (22 - bsbits)) << 22; 3061 size = 4 * 1024 * 1024; 3062 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3063 (8<<20)>>bsbits, max, 8 * 1024)) { 3064 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3065 (23 - bsbits)) << 23; 3066 size = 8 * 1024 * 1024; 3067 } else { 3068 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 3069 size = ac->ac_o_ex.fe_len << bsbits; 3070 } 3071 size = size >> bsbits; 3072 start = start_off >> bsbits; 3073 3074 /* don't cover already allocated blocks in selected range */ 3075 if (ar->pleft && start <= ar->lleft) { 3076 size -= ar->lleft + 1 - start; 3077 start = ar->lleft + 1; 3078 } 3079 if (ar->pright && start + size - 1 >= ar->lright) 3080 size -= start + size - ar->lright; 3081 3082 end = start + size; 3083 3084 /* check we don't cross already preallocated blocks */ 3085 rcu_read_lock(); 3086 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3087 ext4_lblk_t pa_end; 3088 3089 if (pa->pa_deleted) 3090 continue; 3091 spin_lock(&pa->pa_lock); 3092 if (pa->pa_deleted) { 3093 spin_unlock(&pa->pa_lock); 3094 continue; 3095 } 3096 3097 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3098 pa->pa_len); 3099 3100 /* PA must not overlap original request */ 3101 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3102 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3103 3104 /* skip PAs this normalized request doesn't overlap with */ 3105 if (pa->pa_lstart >= end || pa_end <= start) { 3106 spin_unlock(&pa->pa_lock); 3107 continue; 3108 } 3109 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3110 3111 /* adjust start or end to be adjacent to this pa */ 3112 if (pa_end <= ac->ac_o_ex.fe_logical) { 3113 BUG_ON(pa_end < start); 3114 start = pa_end; 3115 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3116 BUG_ON(pa->pa_lstart > end); 3117 end = pa->pa_lstart; 3118 } 3119 spin_unlock(&pa->pa_lock); 3120 } 3121 rcu_read_unlock(); 3122 size = end - start; 3123 3124 /* XXX: extra loop to check we really don't overlap preallocations */ 3125 rcu_read_lock(); 3126 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3127 ext4_lblk_t pa_end; 3128 3129 spin_lock(&pa->pa_lock); 3130 if (pa->pa_deleted == 0) { 3131 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3132 pa->pa_len); 3133 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3134 } 3135 spin_unlock(&pa->pa_lock); 3136 } 3137 rcu_read_unlock(); 3138 3139 if (start + size <= ac->ac_o_ex.fe_logical && 3140 start > ac->ac_o_ex.fe_logical) { 3141 ext4_msg(ac->ac_sb, KERN_ERR, 3142 "start %lu, size %lu, fe_logical %lu", 3143 (unsigned long) start, (unsigned long) size, 3144 (unsigned long) ac->ac_o_ex.fe_logical); 3145 } 3146 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3147 start > ac->ac_o_ex.fe_logical); 3148 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3149 3150 /* now prepare goal request */ 3151 3152 /* XXX: is it better to align blocks WRT to logical 3153 * placement or satisfy big request as is */ 3154 ac->ac_g_ex.fe_logical = start; 3155 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3156 3157 /* define goal start in order to merge */ 3158 if (ar->pright && (ar->lright == (start + size))) { 3159 /* merge to the right */ 3160 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3161 &ac->ac_f_ex.fe_group, 3162 &ac->ac_f_ex.fe_start); 3163 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3164 } 3165 if (ar->pleft && (ar->lleft + 1 == start)) { 3166 /* merge to the left */ 3167 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3168 &ac->ac_f_ex.fe_group, 3169 &ac->ac_f_ex.fe_start); 3170 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3171 } 3172 3173 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3174 (unsigned) orig_size, (unsigned) start); 3175 } 3176 3177 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3178 { 3179 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3180 3181 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3182 atomic_inc(&sbi->s_bal_reqs); 3183 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3184 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3185 atomic_inc(&sbi->s_bal_success); 3186 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3187 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3188 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3189 atomic_inc(&sbi->s_bal_goals); 3190 if (ac->ac_found > sbi->s_mb_max_to_scan) 3191 atomic_inc(&sbi->s_bal_breaks); 3192 } 3193 3194 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3195 trace_ext4_mballoc_alloc(ac); 3196 else 3197 trace_ext4_mballoc_prealloc(ac); 3198 } 3199 3200 /* 3201 * Called on failure; free up any blocks from the inode PA for this 3202 * context. We don't need this for MB_GROUP_PA because we only change 3203 * pa_free in ext4_mb_release_context(), but on failure, we've already 3204 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3205 */ 3206 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3207 { 3208 struct ext4_prealloc_space *pa = ac->ac_pa; 3209 3210 if (pa && pa->pa_type == MB_INODE_PA) 3211 pa->pa_free += ac->ac_b_ex.fe_len; 3212 } 3213 3214 /* 3215 * use blocks preallocated to inode 3216 */ 3217 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3218 struct ext4_prealloc_space *pa) 3219 { 3220 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3221 ext4_fsblk_t start; 3222 ext4_fsblk_t end; 3223 int len; 3224 3225 /* found preallocated blocks, use them */ 3226 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3227 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3228 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3229 len = EXT4_NUM_B2C(sbi, end - start); 3230 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3231 &ac->ac_b_ex.fe_start); 3232 ac->ac_b_ex.fe_len = len; 3233 ac->ac_status = AC_STATUS_FOUND; 3234 ac->ac_pa = pa; 3235 3236 BUG_ON(start < pa->pa_pstart); 3237 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3238 BUG_ON(pa->pa_free < len); 3239 pa->pa_free -= len; 3240 3241 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3242 } 3243 3244 /* 3245 * use blocks preallocated to locality group 3246 */ 3247 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3248 struct ext4_prealloc_space *pa) 3249 { 3250 unsigned int len = ac->ac_o_ex.fe_len; 3251 3252 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3253 &ac->ac_b_ex.fe_group, 3254 &ac->ac_b_ex.fe_start); 3255 ac->ac_b_ex.fe_len = len; 3256 ac->ac_status = AC_STATUS_FOUND; 3257 ac->ac_pa = pa; 3258 3259 /* we don't correct pa_pstart or pa_plen here to avoid 3260 * possible race when the group is being loaded concurrently 3261 * instead we correct pa later, after blocks are marked 3262 * in on-disk bitmap -- see ext4_mb_release_context() 3263 * Other CPUs are prevented from allocating from this pa by lg_mutex 3264 */ 3265 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3266 } 3267 3268 /* 3269 * Return the prealloc space that have minimal distance 3270 * from the goal block. @cpa is the prealloc 3271 * space that is having currently known minimal distance 3272 * from the goal block. 3273 */ 3274 static struct ext4_prealloc_space * 3275 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3276 struct ext4_prealloc_space *pa, 3277 struct ext4_prealloc_space *cpa) 3278 { 3279 ext4_fsblk_t cur_distance, new_distance; 3280 3281 if (cpa == NULL) { 3282 atomic_inc(&pa->pa_count); 3283 return pa; 3284 } 3285 cur_distance = abs(goal_block - cpa->pa_pstart); 3286 new_distance = abs(goal_block - pa->pa_pstart); 3287 3288 if (cur_distance <= new_distance) 3289 return cpa; 3290 3291 /* drop the previous reference */ 3292 atomic_dec(&cpa->pa_count); 3293 atomic_inc(&pa->pa_count); 3294 return pa; 3295 } 3296 3297 /* 3298 * search goal blocks in preallocated space 3299 */ 3300 static noinline_for_stack int 3301 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3302 { 3303 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3304 int order, i; 3305 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3306 struct ext4_locality_group *lg; 3307 struct ext4_prealloc_space *pa, *cpa = NULL; 3308 ext4_fsblk_t goal_block; 3309 3310 /* only data can be preallocated */ 3311 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3312 return 0; 3313 3314 /* first, try per-file preallocation */ 3315 rcu_read_lock(); 3316 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3317 3318 /* all fields in this condition don't change, 3319 * so we can skip locking for them */ 3320 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3321 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3322 EXT4_C2B(sbi, pa->pa_len))) 3323 continue; 3324 3325 /* non-extent files can't have physical blocks past 2^32 */ 3326 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3327 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3328 EXT4_MAX_BLOCK_FILE_PHYS)) 3329 continue; 3330 3331 /* found preallocated blocks, use them */ 3332 spin_lock(&pa->pa_lock); 3333 if (pa->pa_deleted == 0 && pa->pa_free) { 3334 atomic_inc(&pa->pa_count); 3335 ext4_mb_use_inode_pa(ac, pa); 3336 spin_unlock(&pa->pa_lock); 3337 ac->ac_criteria = 10; 3338 rcu_read_unlock(); 3339 return 1; 3340 } 3341 spin_unlock(&pa->pa_lock); 3342 } 3343 rcu_read_unlock(); 3344 3345 /* can we use group allocation? */ 3346 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3347 return 0; 3348 3349 /* inode may have no locality group for some reason */ 3350 lg = ac->ac_lg; 3351 if (lg == NULL) 3352 return 0; 3353 order = fls(ac->ac_o_ex.fe_len) - 1; 3354 if (order > PREALLOC_TB_SIZE - 1) 3355 /* The max size of hash table is PREALLOC_TB_SIZE */ 3356 order = PREALLOC_TB_SIZE - 1; 3357 3358 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3359 /* 3360 * search for the prealloc space that is having 3361 * minimal distance from the goal block. 3362 */ 3363 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3364 rcu_read_lock(); 3365 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3366 pa_inode_list) { 3367 spin_lock(&pa->pa_lock); 3368 if (pa->pa_deleted == 0 && 3369 pa->pa_free >= ac->ac_o_ex.fe_len) { 3370 3371 cpa = ext4_mb_check_group_pa(goal_block, 3372 pa, cpa); 3373 } 3374 spin_unlock(&pa->pa_lock); 3375 } 3376 rcu_read_unlock(); 3377 } 3378 if (cpa) { 3379 ext4_mb_use_group_pa(ac, cpa); 3380 ac->ac_criteria = 20; 3381 return 1; 3382 } 3383 return 0; 3384 } 3385 3386 /* 3387 * the function goes through all block freed in the group 3388 * but not yet committed and marks them used in in-core bitmap. 3389 * buddy must be generated from this bitmap 3390 * Need to be called with the ext4 group lock held 3391 */ 3392 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3393 ext4_group_t group) 3394 { 3395 struct rb_node *n; 3396 struct ext4_group_info *grp; 3397 struct ext4_free_data *entry; 3398 3399 grp = ext4_get_group_info(sb, group); 3400 n = rb_first(&(grp->bb_free_root)); 3401 3402 while (n) { 3403 entry = rb_entry(n, struct ext4_free_data, efd_node); 3404 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3405 n = rb_next(n); 3406 } 3407 return; 3408 } 3409 3410 /* 3411 * the function goes through all preallocation in this group and marks them 3412 * used in in-core bitmap. buddy must be generated from this bitmap 3413 * Need to be called with ext4 group lock held 3414 */ 3415 static noinline_for_stack 3416 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3417 ext4_group_t group) 3418 { 3419 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3420 struct ext4_prealloc_space *pa; 3421 struct list_head *cur; 3422 ext4_group_t groupnr; 3423 ext4_grpblk_t start; 3424 int preallocated = 0; 3425 int len; 3426 3427 /* all form of preallocation discards first load group, 3428 * so the only competing code is preallocation use. 3429 * we don't need any locking here 3430 * notice we do NOT ignore preallocations with pa_deleted 3431 * otherwise we could leave used blocks available for 3432 * allocation in buddy when concurrent ext4_mb_put_pa() 3433 * is dropping preallocation 3434 */ 3435 list_for_each(cur, &grp->bb_prealloc_list) { 3436 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3437 spin_lock(&pa->pa_lock); 3438 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3439 &groupnr, &start); 3440 len = pa->pa_len; 3441 spin_unlock(&pa->pa_lock); 3442 if (unlikely(len == 0)) 3443 continue; 3444 BUG_ON(groupnr != group); 3445 ext4_set_bits(bitmap, start, len); 3446 preallocated += len; 3447 } 3448 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3449 } 3450 3451 static void ext4_mb_pa_callback(struct rcu_head *head) 3452 { 3453 struct ext4_prealloc_space *pa; 3454 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3455 3456 BUG_ON(atomic_read(&pa->pa_count)); 3457 BUG_ON(pa->pa_deleted == 0); 3458 kmem_cache_free(ext4_pspace_cachep, pa); 3459 } 3460 3461 /* 3462 * drops a reference to preallocated space descriptor 3463 * if this was the last reference and the space is consumed 3464 */ 3465 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3466 struct super_block *sb, struct ext4_prealloc_space *pa) 3467 { 3468 ext4_group_t grp; 3469 ext4_fsblk_t grp_blk; 3470 3471 /* in this short window concurrent discard can set pa_deleted */ 3472 spin_lock(&pa->pa_lock); 3473 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3474 spin_unlock(&pa->pa_lock); 3475 return; 3476 } 3477 3478 if (pa->pa_deleted == 1) { 3479 spin_unlock(&pa->pa_lock); 3480 return; 3481 } 3482 3483 pa->pa_deleted = 1; 3484 spin_unlock(&pa->pa_lock); 3485 3486 grp_blk = pa->pa_pstart; 3487 /* 3488 * If doing group-based preallocation, pa_pstart may be in the 3489 * next group when pa is used up 3490 */ 3491 if (pa->pa_type == MB_GROUP_PA) 3492 grp_blk--; 3493 3494 grp = ext4_get_group_number(sb, grp_blk); 3495 3496 /* 3497 * possible race: 3498 * 3499 * P1 (buddy init) P2 (regular allocation) 3500 * find block B in PA 3501 * copy on-disk bitmap to buddy 3502 * mark B in on-disk bitmap 3503 * drop PA from group 3504 * mark all PAs in buddy 3505 * 3506 * thus, P1 initializes buddy with B available. to prevent this 3507 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3508 * against that pair 3509 */ 3510 ext4_lock_group(sb, grp); 3511 list_del(&pa->pa_group_list); 3512 ext4_unlock_group(sb, grp); 3513 3514 spin_lock(pa->pa_obj_lock); 3515 list_del_rcu(&pa->pa_inode_list); 3516 spin_unlock(pa->pa_obj_lock); 3517 3518 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3519 } 3520 3521 /* 3522 * creates new preallocated space for given inode 3523 */ 3524 static noinline_for_stack int 3525 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3526 { 3527 struct super_block *sb = ac->ac_sb; 3528 struct ext4_sb_info *sbi = EXT4_SB(sb); 3529 struct ext4_prealloc_space *pa; 3530 struct ext4_group_info *grp; 3531 struct ext4_inode_info *ei; 3532 3533 /* preallocate only when found space is larger then requested */ 3534 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3535 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3536 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3537 3538 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3539 if (pa == NULL) 3540 return -ENOMEM; 3541 3542 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3543 int winl; 3544 int wins; 3545 int win; 3546 int offs; 3547 3548 /* we can't allocate as much as normalizer wants. 3549 * so, found space must get proper lstart 3550 * to cover original request */ 3551 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3552 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3553 3554 /* we're limited by original request in that 3555 * logical block must be covered any way 3556 * winl is window we can move our chunk within */ 3557 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3558 3559 /* also, we should cover whole original request */ 3560 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3561 3562 /* the smallest one defines real window */ 3563 win = min(winl, wins); 3564 3565 offs = ac->ac_o_ex.fe_logical % 3566 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3567 if (offs && offs < win) 3568 win = offs; 3569 3570 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3571 EXT4_NUM_B2C(sbi, win); 3572 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3573 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3574 } 3575 3576 /* preallocation can change ac_b_ex, thus we store actually 3577 * allocated blocks for history */ 3578 ac->ac_f_ex = ac->ac_b_ex; 3579 3580 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3581 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3582 pa->pa_len = ac->ac_b_ex.fe_len; 3583 pa->pa_free = pa->pa_len; 3584 atomic_set(&pa->pa_count, 1); 3585 spin_lock_init(&pa->pa_lock); 3586 INIT_LIST_HEAD(&pa->pa_inode_list); 3587 INIT_LIST_HEAD(&pa->pa_group_list); 3588 pa->pa_deleted = 0; 3589 pa->pa_type = MB_INODE_PA; 3590 3591 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3592 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3593 trace_ext4_mb_new_inode_pa(ac, pa); 3594 3595 ext4_mb_use_inode_pa(ac, pa); 3596 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3597 3598 ei = EXT4_I(ac->ac_inode); 3599 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3600 3601 pa->pa_obj_lock = &ei->i_prealloc_lock; 3602 pa->pa_inode = ac->ac_inode; 3603 3604 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3605 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3606 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3607 3608 spin_lock(pa->pa_obj_lock); 3609 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3610 spin_unlock(pa->pa_obj_lock); 3611 3612 return 0; 3613 } 3614 3615 /* 3616 * creates new preallocated space for locality group inodes belongs to 3617 */ 3618 static noinline_for_stack int 3619 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3620 { 3621 struct super_block *sb = ac->ac_sb; 3622 struct ext4_locality_group *lg; 3623 struct ext4_prealloc_space *pa; 3624 struct ext4_group_info *grp; 3625 3626 /* preallocate only when found space is larger then requested */ 3627 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3628 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3629 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3630 3631 BUG_ON(ext4_pspace_cachep == NULL); 3632 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3633 if (pa == NULL) 3634 return -ENOMEM; 3635 3636 /* preallocation can change ac_b_ex, thus we store actually 3637 * allocated blocks for history */ 3638 ac->ac_f_ex = ac->ac_b_ex; 3639 3640 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3641 pa->pa_lstart = pa->pa_pstart; 3642 pa->pa_len = ac->ac_b_ex.fe_len; 3643 pa->pa_free = pa->pa_len; 3644 atomic_set(&pa->pa_count, 1); 3645 spin_lock_init(&pa->pa_lock); 3646 INIT_LIST_HEAD(&pa->pa_inode_list); 3647 INIT_LIST_HEAD(&pa->pa_group_list); 3648 pa->pa_deleted = 0; 3649 pa->pa_type = MB_GROUP_PA; 3650 3651 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3652 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3653 trace_ext4_mb_new_group_pa(ac, pa); 3654 3655 ext4_mb_use_group_pa(ac, pa); 3656 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3657 3658 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3659 lg = ac->ac_lg; 3660 BUG_ON(lg == NULL); 3661 3662 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3663 pa->pa_inode = NULL; 3664 3665 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3666 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3667 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3668 3669 /* 3670 * We will later add the new pa to the right bucket 3671 * after updating the pa_free in ext4_mb_release_context 3672 */ 3673 return 0; 3674 } 3675 3676 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3677 { 3678 int err; 3679 3680 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3681 err = ext4_mb_new_group_pa(ac); 3682 else 3683 err = ext4_mb_new_inode_pa(ac); 3684 return err; 3685 } 3686 3687 /* 3688 * finds all unused blocks in on-disk bitmap, frees them in 3689 * in-core bitmap and buddy. 3690 * @pa must be unlinked from inode and group lists, so that 3691 * nobody else can find/use it. 3692 * the caller MUST hold group/inode locks. 3693 * TODO: optimize the case when there are no in-core structures yet 3694 */ 3695 static noinline_for_stack int 3696 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3697 struct ext4_prealloc_space *pa) 3698 { 3699 struct super_block *sb = e4b->bd_sb; 3700 struct ext4_sb_info *sbi = EXT4_SB(sb); 3701 unsigned int end; 3702 unsigned int next; 3703 ext4_group_t group; 3704 ext4_grpblk_t bit; 3705 unsigned long long grp_blk_start; 3706 int err = 0; 3707 int free = 0; 3708 3709 BUG_ON(pa->pa_deleted == 0); 3710 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3711 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3712 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3713 end = bit + pa->pa_len; 3714 3715 while (bit < end) { 3716 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3717 if (bit >= end) 3718 break; 3719 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3720 mb_debug(1, " free preallocated %u/%u in group %u\n", 3721 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3722 (unsigned) next - bit, (unsigned) group); 3723 free += next - bit; 3724 3725 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3726 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3727 EXT4_C2B(sbi, bit)), 3728 next - bit); 3729 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3730 bit = next + 1; 3731 } 3732 if (free != pa->pa_free) { 3733 ext4_msg(e4b->bd_sb, KERN_CRIT, 3734 "pa %p: logic %lu, phys. %lu, len %lu", 3735 pa, (unsigned long) pa->pa_lstart, 3736 (unsigned long) pa->pa_pstart, 3737 (unsigned long) pa->pa_len); 3738 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3739 free, pa->pa_free); 3740 /* 3741 * pa is already deleted so we use the value obtained 3742 * from the bitmap and continue. 3743 */ 3744 } 3745 atomic_add(free, &sbi->s_mb_discarded); 3746 3747 return err; 3748 } 3749 3750 static noinline_for_stack int 3751 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3752 struct ext4_prealloc_space *pa) 3753 { 3754 struct super_block *sb = e4b->bd_sb; 3755 ext4_group_t group; 3756 ext4_grpblk_t bit; 3757 3758 trace_ext4_mb_release_group_pa(sb, pa); 3759 BUG_ON(pa->pa_deleted == 0); 3760 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3761 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3762 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3763 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3764 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3765 3766 return 0; 3767 } 3768 3769 /* 3770 * releases all preallocations in given group 3771 * 3772 * first, we need to decide discard policy: 3773 * - when do we discard 3774 * 1) ENOSPC 3775 * - how many do we discard 3776 * 1) how many requested 3777 */ 3778 static noinline_for_stack int 3779 ext4_mb_discard_group_preallocations(struct super_block *sb, 3780 ext4_group_t group, int needed) 3781 { 3782 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3783 struct buffer_head *bitmap_bh = NULL; 3784 struct ext4_prealloc_space *pa, *tmp; 3785 struct list_head list; 3786 struct ext4_buddy e4b; 3787 int err; 3788 int busy = 0; 3789 int free = 0; 3790 3791 mb_debug(1, "discard preallocation for group %u\n", group); 3792 3793 if (list_empty(&grp->bb_prealloc_list)) 3794 return 0; 3795 3796 bitmap_bh = ext4_read_block_bitmap(sb, group); 3797 if (bitmap_bh == NULL) { 3798 ext4_error(sb, "Error reading block bitmap for %u", group); 3799 return 0; 3800 } 3801 3802 err = ext4_mb_load_buddy(sb, group, &e4b); 3803 if (err) { 3804 ext4_error(sb, "Error loading buddy information for %u", group); 3805 put_bh(bitmap_bh); 3806 return 0; 3807 } 3808 3809 if (needed == 0) 3810 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3811 3812 INIT_LIST_HEAD(&list); 3813 repeat: 3814 ext4_lock_group(sb, group); 3815 list_for_each_entry_safe(pa, tmp, 3816 &grp->bb_prealloc_list, pa_group_list) { 3817 spin_lock(&pa->pa_lock); 3818 if (atomic_read(&pa->pa_count)) { 3819 spin_unlock(&pa->pa_lock); 3820 busy = 1; 3821 continue; 3822 } 3823 if (pa->pa_deleted) { 3824 spin_unlock(&pa->pa_lock); 3825 continue; 3826 } 3827 3828 /* seems this one can be freed ... */ 3829 pa->pa_deleted = 1; 3830 3831 /* we can trust pa_free ... */ 3832 free += pa->pa_free; 3833 3834 spin_unlock(&pa->pa_lock); 3835 3836 list_del(&pa->pa_group_list); 3837 list_add(&pa->u.pa_tmp_list, &list); 3838 } 3839 3840 /* if we still need more blocks and some PAs were used, try again */ 3841 if (free < needed && busy) { 3842 busy = 0; 3843 ext4_unlock_group(sb, group); 3844 cond_resched(); 3845 goto repeat; 3846 } 3847 3848 /* found anything to free? */ 3849 if (list_empty(&list)) { 3850 BUG_ON(free != 0); 3851 goto out; 3852 } 3853 3854 /* now free all selected PAs */ 3855 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3856 3857 /* remove from object (inode or locality group) */ 3858 spin_lock(pa->pa_obj_lock); 3859 list_del_rcu(&pa->pa_inode_list); 3860 spin_unlock(pa->pa_obj_lock); 3861 3862 if (pa->pa_type == MB_GROUP_PA) 3863 ext4_mb_release_group_pa(&e4b, pa); 3864 else 3865 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3866 3867 list_del(&pa->u.pa_tmp_list); 3868 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3869 } 3870 3871 out: 3872 ext4_unlock_group(sb, group); 3873 ext4_mb_unload_buddy(&e4b); 3874 put_bh(bitmap_bh); 3875 return free; 3876 } 3877 3878 /* 3879 * releases all non-used preallocated blocks for given inode 3880 * 3881 * It's important to discard preallocations under i_data_sem 3882 * We don't want another block to be served from the prealloc 3883 * space when we are discarding the inode prealloc space. 3884 * 3885 * FIXME!! Make sure it is valid at all the call sites 3886 */ 3887 void ext4_discard_preallocations(struct inode *inode) 3888 { 3889 struct ext4_inode_info *ei = EXT4_I(inode); 3890 struct super_block *sb = inode->i_sb; 3891 struct buffer_head *bitmap_bh = NULL; 3892 struct ext4_prealloc_space *pa, *tmp; 3893 ext4_group_t group = 0; 3894 struct list_head list; 3895 struct ext4_buddy e4b; 3896 int err; 3897 3898 if (!S_ISREG(inode->i_mode)) { 3899 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3900 return; 3901 } 3902 3903 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3904 trace_ext4_discard_preallocations(inode); 3905 3906 INIT_LIST_HEAD(&list); 3907 3908 repeat: 3909 /* first, collect all pa's in the inode */ 3910 spin_lock(&ei->i_prealloc_lock); 3911 while (!list_empty(&ei->i_prealloc_list)) { 3912 pa = list_entry(ei->i_prealloc_list.next, 3913 struct ext4_prealloc_space, pa_inode_list); 3914 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3915 spin_lock(&pa->pa_lock); 3916 if (atomic_read(&pa->pa_count)) { 3917 /* this shouldn't happen often - nobody should 3918 * use preallocation while we're discarding it */ 3919 spin_unlock(&pa->pa_lock); 3920 spin_unlock(&ei->i_prealloc_lock); 3921 ext4_msg(sb, KERN_ERR, 3922 "uh-oh! used pa while discarding"); 3923 WARN_ON(1); 3924 schedule_timeout_uninterruptible(HZ); 3925 goto repeat; 3926 3927 } 3928 if (pa->pa_deleted == 0) { 3929 pa->pa_deleted = 1; 3930 spin_unlock(&pa->pa_lock); 3931 list_del_rcu(&pa->pa_inode_list); 3932 list_add(&pa->u.pa_tmp_list, &list); 3933 continue; 3934 } 3935 3936 /* someone is deleting pa right now */ 3937 spin_unlock(&pa->pa_lock); 3938 spin_unlock(&ei->i_prealloc_lock); 3939 3940 /* we have to wait here because pa_deleted 3941 * doesn't mean pa is already unlinked from 3942 * the list. as we might be called from 3943 * ->clear_inode() the inode will get freed 3944 * and concurrent thread which is unlinking 3945 * pa from inode's list may access already 3946 * freed memory, bad-bad-bad */ 3947 3948 /* XXX: if this happens too often, we can 3949 * add a flag to force wait only in case 3950 * of ->clear_inode(), but not in case of 3951 * regular truncate */ 3952 schedule_timeout_uninterruptible(HZ); 3953 goto repeat; 3954 } 3955 spin_unlock(&ei->i_prealloc_lock); 3956 3957 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3958 BUG_ON(pa->pa_type != MB_INODE_PA); 3959 group = ext4_get_group_number(sb, pa->pa_pstart); 3960 3961 err = ext4_mb_load_buddy(sb, group, &e4b); 3962 if (err) { 3963 ext4_error(sb, "Error loading buddy information for %u", 3964 group); 3965 continue; 3966 } 3967 3968 bitmap_bh = ext4_read_block_bitmap(sb, group); 3969 if (bitmap_bh == NULL) { 3970 ext4_error(sb, "Error reading block bitmap for %u", 3971 group); 3972 ext4_mb_unload_buddy(&e4b); 3973 continue; 3974 } 3975 3976 ext4_lock_group(sb, group); 3977 list_del(&pa->pa_group_list); 3978 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3979 ext4_unlock_group(sb, group); 3980 3981 ext4_mb_unload_buddy(&e4b); 3982 put_bh(bitmap_bh); 3983 3984 list_del(&pa->u.pa_tmp_list); 3985 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3986 } 3987 } 3988 3989 #ifdef CONFIG_EXT4_DEBUG 3990 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3991 { 3992 struct super_block *sb = ac->ac_sb; 3993 ext4_group_t ngroups, i; 3994 3995 if (!ext4_mballoc_debug || 3996 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3997 return; 3998 3999 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4000 " Allocation context details:"); 4001 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4002 ac->ac_status, ac->ac_flags); 4003 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4004 "goal %lu/%lu/%lu@%lu, " 4005 "best %lu/%lu/%lu@%lu cr %d", 4006 (unsigned long)ac->ac_o_ex.fe_group, 4007 (unsigned long)ac->ac_o_ex.fe_start, 4008 (unsigned long)ac->ac_o_ex.fe_len, 4009 (unsigned long)ac->ac_o_ex.fe_logical, 4010 (unsigned long)ac->ac_g_ex.fe_group, 4011 (unsigned long)ac->ac_g_ex.fe_start, 4012 (unsigned long)ac->ac_g_ex.fe_len, 4013 (unsigned long)ac->ac_g_ex.fe_logical, 4014 (unsigned long)ac->ac_b_ex.fe_group, 4015 (unsigned long)ac->ac_b_ex.fe_start, 4016 (unsigned long)ac->ac_b_ex.fe_len, 4017 (unsigned long)ac->ac_b_ex.fe_logical, 4018 (int)ac->ac_criteria); 4019 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4020 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4021 ngroups = ext4_get_groups_count(sb); 4022 for (i = 0; i < ngroups; i++) { 4023 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4024 struct ext4_prealloc_space *pa; 4025 ext4_grpblk_t start; 4026 struct list_head *cur; 4027 ext4_lock_group(sb, i); 4028 list_for_each(cur, &grp->bb_prealloc_list) { 4029 pa = list_entry(cur, struct ext4_prealloc_space, 4030 pa_group_list); 4031 spin_lock(&pa->pa_lock); 4032 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4033 NULL, &start); 4034 spin_unlock(&pa->pa_lock); 4035 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4036 start, pa->pa_len); 4037 } 4038 ext4_unlock_group(sb, i); 4039 4040 if (grp->bb_free == 0) 4041 continue; 4042 printk(KERN_ERR "%u: %d/%d \n", 4043 i, grp->bb_free, grp->bb_fragments); 4044 } 4045 printk(KERN_ERR "\n"); 4046 } 4047 #else 4048 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4049 { 4050 return; 4051 } 4052 #endif 4053 4054 /* 4055 * We use locality group preallocation for small size file. The size of the 4056 * file is determined by the current size or the resulting size after 4057 * allocation which ever is larger 4058 * 4059 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4060 */ 4061 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4062 { 4063 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4064 int bsbits = ac->ac_sb->s_blocksize_bits; 4065 loff_t size, isize; 4066 4067 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4068 return; 4069 4070 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4071 return; 4072 4073 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4074 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4075 >> bsbits; 4076 4077 if ((size == isize) && 4078 !ext4_fs_is_busy(sbi) && 4079 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4080 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4081 return; 4082 } 4083 4084 if (sbi->s_mb_group_prealloc <= 0) { 4085 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4086 return; 4087 } 4088 4089 /* don't use group allocation for large files */ 4090 size = max(size, isize); 4091 if (size > sbi->s_mb_stream_request) { 4092 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4093 return; 4094 } 4095 4096 BUG_ON(ac->ac_lg != NULL); 4097 /* 4098 * locality group prealloc space are per cpu. The reason for having 4099 * per cpu locality group is to reduce the contention between block 4100 * request from multiple CPUs. 4101 */ 4102 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 4103 4104 /* we're going to use group allocation */ 4105 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4106 4107 /* serialize all allocations in the group */ 4108 mutex_lock(&ac->ac_lg->lg_mutex); 4109 } 4110 4111 static noinline_for_stack int 4112 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4113 struct ext4_allocation_request *ar) 4114 { 4115 struct super_block *sb = ar->inode->i_sb; 4116 struct ext4_sb_info *sbi = EXT4_SB(sb); 4117 struct ext4_super_block *es = sbi->s_es; 4118 ext4_group_t group; 4119 unsigned int len; 4120 ext4_fsblk_t goal; 4121 ext4_grpblk_t block; 4122 4123 /* we can't allocate > group size */ 4124 len = ar->len; 4125 4126 /* just a dirty hack to filter too big requests */ 4127 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4128 len = EXT4_CLUSTERS_PER_GROUP(sb); 4129 4130 /* start searching from the goal */ 4131 goal = ar->goal; 4132 if (goal < le32_to_cpu(es->s_first_data_block) || 4133 goal >= ext4_blocks_count(es)) 4134 goal = le32_to_cpu(es->s_first_data_block); 4135 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4136 4137 /* set up allocation goals */ 4138 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4139 ac->ac_status = AC_STATUS_CONTINUE; 4140 ac->ac_sb = sb; 4141 ac->ac_inode = ar->inode; 4142 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4143 ac->ac_o_ex.fe_group = group; 4144 ac->ac_o_ex.fe_start = block; 4145 ac->ac_o_ex.fe_len = len; 4146 ac->ac_g_ex = ac->ac_o_ex; 4147 ac->ac_flags = ar->flags; 4148 4149 /* we have to define context: we'll we work with a file or 4150 * locality group. this is a policy, actually */ 4151 ext4_mb_group_or_file(ac); 4152 4153 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4154 "left: %u/%u, right %u/%u to %swritable\n", 4155 (unsigned) ar->len, (unsigned) ar->logical, 4156 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4157 (unsigned) ar->lleft, (unsigned) ar->pleft, 4158 (unsigned) ar->lright, (unsigned) ar->pright, 4159 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4160 return 0; 4161 4162 } 4163 4164 static noinline_for_stack void 4165 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4166 struct ext4_locality_group *lg, 4167 int order, int total_entries) 4168 { 4169 ext4_group_t group = 0; 4170 struct ext4_buddy e4b; 4171 struct list_head discard_list; 4172 struct ext4_prealloc_space *pa, *tmp; 4173 4174 mb_debug(1, "discard locality group preallocation\n"); 4175 4176 INIT_LIST_HEAD(&discard_list); 4177 4178 spin_lock(&lg->lg_prealloc_lock); 4179 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4180 pa_inode_list) { 4181 spin_lock(&pa->pa_lock); 4182 if (atomic_read(&pa->pa_count)) { 4183 /* 4184 * This is the pa that we just used 4185 * for block allocation. So don't 4186 * free that 4187 */ 4188 spin_unlock(&pa->pa_lock); 4189 continue; 4190 } 4191 if (pa->pa_deleted) { 4192 spin_unlock(&pa->pa_lock); 4193 continue; 4194 } 4195 /* only lg prealloc space */ 4196 BUG_ON(pa->pa_type != MB_GROUP_PA); 4197 4198 /* seems this one can be freed ... */ 4199 pa->pa_deleted = 1; 4200 spin_unlock(&pa->pa_lock); 4201 4202 list_del_rcu(&pa->pa_inode_list); 4203 list_add(&pa->u.pa_tmp_list, &discard_list); 4204 4205 total_entries--; 4206 if (total_entries <= 5) { 4207 /* 4208 * we want to keep only 5 entries 4209 * allowing it to grow to 8. This 4210 * mak sure we don't call discard 4211 * soon for this list. 4212 */ 4213 break; 4214 } 4215 } 4216 spin_unlock(&lg->lg_prealloc_lock); 4217 4218 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4219 4220 group = ext4_get_group_number(sb, pa->pa_pstart); 4221 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4222 ext4_error(sb, "Error loading buddy information for %u", 4223 group); 4224 continue; 4225 } 4226 ext4_lock_group(sb, group); 4227 list_del(&pa->pa_group_list); 4228 ext4_mb_release_group_pa(&e4b, pa); 4229 ext4_unlock_group(sb, group); 4230 4231 ext4_mb_unload_buddy(&e4b); 4232 list_del(&pa->u.pa_tmp_list); 4233 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4234 } 4235 } 4236 4237 /* 4238 * We have incremented pa_count. So it cannot be freed at this 4239 * point. Also we hold lg_mutex. So no parallel allocation is 4240 * possible from this lg. That means pa_free cannot be updated. 4241 * 4242 * A parallel ext4_mb_discard_group_preallocations is possible. 4243 * which can cause the lg_prealloc_list to be updated. 4244 */ 4245 4246 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4247 { 4248 int order, added = 0, lg_prealloc_count = 1; 4249 struct super_block *sb = ac->ac_sb; 4250 struct ext4_locality_group *lg = ac->ac_lg; 4251 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4252 4253 order = fls(pa->pa_free) - 1; 4254 if (order > PREALLOC_TB_SIZE - 1) 4255 /* The max size of hash table is PREALLOC_TB_SIZE */ 4256 order = PREALLOC_TB_SIZE - 1; 4257 /* Add the prealloc space to lg */ 4258 spin_lock(&lg->lg_prealloc_lock); 4259 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4260 pa_inode_list) { 4261 spin_lock(&tmp_pa->pa_lock); 4262 if (tmp_pa->pa_deleted) { 4263 spin_unlock(&tmp_pa->pa_lock); 4264 continue; 4265 } 4266 if (!added && pa->pa_free < tmp_pa->pa_free) { 4267 /* Add to the tail of the previous entry */ 4268 list_add_tail_rcu(&pa->pa_inode_list, 4269 &tmp_pa->pa_inode_list); 4270 added = 1; 4271 /* 4272 * we want to count the total 4273 * number of entries in the list 4274 */ 4275 } 4276 spin_unlock(&tmp_pa->pa_lock); 4277 lg_prealloc_count++; 4278 } 4279 if (!added) 4280 list_add_tail_rcu(&pa->pa_inode_list, 4281 &lg->lg_prealloc_list[order]); 4282 spin_unlock(&lg->lg_prealloc_lock); 4283 4284 /* Now trim the list to be not more than 8 elements */ 4285 if (lg_prealloc_count > 8) { 4286 ext4_mb_discard_lg_preallocations(sb, lg, 4287 order, lg_prealloc_count); 4288 return; 4289 } 4290 return ; 4291 } 4292 4293 /* 4294 * release all resource we used in allocation 4295 */ 4296 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4297 { 4298 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4299 struct ext4_prealloc_space *pa = ac->ac_pa; 4300 if (pa) { 4301 if (pa->pa_type == MB_GROUP_PA) { 4302 /* see comment in ext4_mb_use_group_pa() */ 4303 spin_lock(&pa->pa_lock); 4304 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4305 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4306 pa->pa_free -= ac->ac_b_ex.fe_len; 4307 pa->pa_len -= ac->ac_b_ex.fe_len; 4308 spin_unlock(&pa->pa_lock); 4309 } 4310 } 4311 if (pa) { 4312 /* 4313 * We want to add the pa to the right bucket. 4314 * Remove it from the list and while adding 4315 * make sure the list to which we are adding 4316 * doesn't grow big. 4317 */ 4318 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4319 spin_lock(pa->pa_obj_lock); 4320 list_del_rcu(&pa->pa_inode_list); 4321 spin_unlock(pa->pa_obj_lock); 4322 ext4_mb_add_n_trim(ac); 4323 } 4324 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4325 } 4326 if (ac->ac_bitmap_page) 4327 page_cache_release(ac->ac_bitmap_page); 4328 if (ac->ac_buddy_page) 4329 page_cache_release(ac->ac_buddy_page); 4330 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4331 mutex_unlock(&ac->ac_lg->lg_mutex); 4332 ext4_mb_collect_stats(ac); 4333 return 0; 4334 } 4335 4336 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4337 { 4338 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4339 int ret; 4340 int freed = 0; 4341 4342 trace_ext4_mb_discard_preallocations(sb, needed); 4343 for (i = 0; i < ngroups && needed > 0; i++) { 4344 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4345 freed += ret; 4346 needed -= ret; 4347 } 4348 4349 return freed; 4350 } 4351 4352 /* 4353 * Main entry point into mballoc to allocate blocks 4354 * it tries to use preallocation first, then falls back 4355 * to usual allocation 4356 */ 4357 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4358 struct ext4_allocation_request *ar, int *errp) 4359 { 4360 int freed; 4361 struct ext4_allocation_context *ac = NULL; 4362 struct ext4_sb_info *sbi; 4363 struct super_block *sb; 4364 ext4_fsblk_t block = 0; 4365 unsigned int inquota = 0; 4366 unsigned int reserv_clstrs = 0; 4367 4368 might_sleep(); 4369 sb = ar->inode->i_sb; 4370 sbi = EXT4_SB(sb); 4371 4372 trace_ext4_request_blocks(ar); 4373 4374 /* Allow to use superuser reservation for quota file */ 4375 if (IS_NOQUOTA(ar->inode)) 4376 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4377 4378 /* 4379 * For delayed allocation, we could skip the ENOSPC and 4380 * EDQUOT check, as blocks and quotas have been already 4381 * reserved when data being copied into pagecache. 4382 */ 4383 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4384 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4385 else { 4386 /* Without delayed allocation we need to verify 4387 * there is enough free blocks to do block allocation 4388 * and verify allocation doesn't exceed the quota limits. 4389 */ 4390 while (ar->len && 4391 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4392 4393 /* let others to free the space */ 4394 cond_resched(); 4395 ar->len = ar->len >> 1; 4396 } 4397 if (!ar->len) { 4398 *errp = -ENOSPC; 4399 return 0; 4400 } 4401 reserv_clstrs = ar->len; 4402 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4403 dquot_alloc_block_nofail(ar->inode, 4404 EXT4_C2B(sbi, ar->len)); 4405 } else { 4406 while (ar->len && 4407 dquot_alloc_block(ar->inode, 4408 EXT4_C2B(sbi, ar->len))) { 4409 4410 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4411 ar->len--; 4412 } 4413 } 4414 inquota = ar->len; 4415 if (ar->len == 0) { 4416 *errp = -EDQUOT; 4417 goto out; 4418 } 4419 } 4420 4421 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4422 if (!ac) { 4423 ar->len = 0; 4424 *errp = -ENOMEM; 4425 goto out; 4426 } 4427 4428 *errp = ext4_mb_initialize_context(ac, ar); 4429 if (*errp) { 4430 ar->len = 0; 4431 goto out; 4432 } 4433 4434 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4435 if (!ext4_mb_use_preallocated(ac)) { 4436 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4437 ext4_mb_normalize_request(ac, ar); 4438 repeat: 4439 /* allocate space in core */ 4440 *errp = ext4_mb_regular_allocator(ac); 4441 if (*errp) 4442 goto discard_and_exit; 4443 4444 /* as we've just preallocated more space than 4445 * user requested originally, we store allocated 4446 * space in a special descriptor */ 4447 if (ac->ac_status == AC_STATUS_FOUND && 4448 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4449 *errp = ext4_mb_new_preallocation(ac); 4450 if (*errp) { 4451 discard_and_exit: 4452 ext4_discard_allocated_blocks(ac); 4453 goto errout; 4454 } 4455 } 4456 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4457 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4458 if (*errp == -EAGAIN) { 4459 /* 4460 * drop the reference that we took 4461 * in ext4_mb_use_best_found 4462 */ 4463 ext4_mb_release_context(ac); 4464 ac->ac_b_ex.fe_group = 0; 4465 ac->ac_b_ex.fe_start = 0; 4466 ac->ac_b_ex.fe_len = 0; 4467 ac->ac_status = AC_STATUS_CONTINUE; 4468 goto repeat; 4469 } else if (*errp) { 4470 ext4_discard_allocated_blocks(ac); 4471 goto errout; 4472 } else { 4473 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4474 ar->len = ac->ac_b_ex.fe_len; 4475 } 4476 } else { 4477 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4478 if (freed) 4479 goto repeat; 4480 *errp = -ENOSPC; 4481 } 4482 4483 errout: 4484 if (*errp) { 4485 ac->ac_b_ex.fe_len = 0; 4486 ar->len = 0; 4487 ext4_mb_show_ac(ac); 4488 } 4489 ext4_mb_release_context(ac); 4490 out: 4491 if (ac) 4492 kmem_cache_free(ext4_ac_cachep, ac); 4493 if (inquota && ar->len < inquota) 4494 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4495 if (!ar->len) { 4496 if (!ext4_test_inode_state(ar->inode, 4497 EXT4_STATE_DELALLOC_RESERVED)) 4498 /* release all the reserved blocks if non delalloc */ 4499 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4500 reserv_clstrs); 4501 } 4502 4503 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4504 4505 return block; 4506 } 4507 4508 /* 4509 * We can merge two free data extents only if the physical blocks 4510 * are contiguous, AND the extents were freed by the same transaction, 4511 * AND the blocks are associated with the same group. 4512 */ 4513 static int can_merge(struct ext4_free_data *entry1, 4514 struct ext4_free_data *entry2) 4515 { 4516 if ((entry1->efd_tid == entry2->efd_tid) && 4517 (entry1->efd_group == entry2->efd_group) && 4518 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4519 return 1; 4520 return 0; 4521 } 4522 4523 static noinline_for_stack int 4524 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4525 struct ext4_free_data *new_entry) 4526 { 4527 ext4_group_t group = e4b->bd_group; 4528 ext4_grpblk_t cluster; 4529 struct ext4_free_data *entry; 4530 struct ext4_group_info *db = e4b->bd_info; 4531 struct super_block *sb = e4b->bd_sb; 4532 struct ext4_sb_info *sbi = EXT4_SB(sb); 4533 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4534 struct rb_node *parent = NULL, *new_node; 4535 4536 BUG_ON(!ext4_handle_valid(handle)); 4537 BUG_ON(e4b->bd_bitmap_page == NULL); 4538 BUG_ON(e4b->bd_buddy_page == NULL); 4539 4540 new_node = &new_entry->efd_node; 4541 cluster = new_entry->efd_start_cluster; 4542 4543 if (!*n) { 4544 /* first free block exent. We need to 4545 protect buddy cache from being freed, 4546 * otherwise we'll refresh it from 4547 * on-disk bitmap and lose not-yet-available 4548 * blocks */ 4549 page_cache_get(e4b->bd_buddy_page); 4550 page_cache_get(e4b->bd_bitmap_page); 4551 } 4552 while (*n) { 4553 parent = *n; 4554 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4555 if (cluster < entry->efd_start_cluster) 4556 n = &(*n)->rb_left; 4557 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4558 n = &(*n)->rb_right; 4559 else { 4560 ext4_grp_locked_error(sb, group, 0, 4561 ext4_group_first_block_no(sb, group) + 4562 EXT4_C2B(sbi, cluster), 4563 "Block already on to-be-freed list"); 4564 return 0; 4565 } 4566 } 4567 4568 rb_link_node(new_node, parent, n); 4569 rb_insert_color(new_node, &db->bb_free_root); 4570 4571 /* Now try to see the extent can be merged to left and right */ 4572 node = rb_prev(new_node); 4573 if (node) { 4574 entry = rb_entry(node, struct ext4_free_data, efd_node); 4575 if (can_merge(entry, new_entry) && 4576 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4577 new_entry->efd_start_cluster = entry->efd_start_cluster; 4578 new_entry->efd_count += entry->efd_count; 4579 rb_erase(node, &(db->bb_free_root)); 4580 kmem_cache_free(ext4_free_data_cachep, entry); 4581 } 4582 } 4583 4584 node = rb_next(new_node); 4585 if (node) { 4586 entry = rb_entry(node, struct ext4_free_data, efd_node); 4587 if (can_merge(new_entry, entry) && 4588 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4589 new_entry->efd_count += entry->efd_count; 4590 rb_erase(node, &(db->bb_free_root)); 4591 kmem_cache_free(ext4_free_data_cachep, entry); 4592 } 4593 } 4594 /* Add the extent to transaction's private list */ 4595 ext4_journal_callback_add(handle, ext4_free_data_callback, 4596 &new_entry->efd_jce); 4597 return 0; 4598 } 4599 4600 /** 4601 * ext4_free_blocks() -- Free given blocks and update quota 4602 * @handle: handle for this transaction 4603 * @inode: inode 4604 * @block: start physical block to free 4605 * @count: number of blocks to count 4606 * @flags: flags used by ext4_free_blocks 4607 */ 4608 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4609 struct buffer_head *bh, ext4_fsblk_t block, 4610 unsigned long count, int flags) 4611 { 4612 struct buffer_head *bitmap_bh = NULL; 4613 struct super_block *sb = inode->i_sb; 4614 struct ext4_group_desc *gdp; 4615 unsigned int overflow; 4616 ext4_grpblk_t bit; 4617 struct buffer_head *gd_bh; 4618 ext4_group_t block_group; 4619 struct ext4_sb_info *sbi; 4620 struct ext4_inode_info *ei = EXT4_I(inode); 4621 struct ext4_buddy e4b; 4622 unsigned int count_clusters; 4623 int err = 0; 4624 int ret; 4625 4626 might_sleep(); 4627 if (bh) { 4628 if (block) 4629 BUG_ON(block != bh->b_blocknr); 4630 else 4631 block = bh->b_blocknr; 4632 } 4633 4634 sbi = EXT4_SB(sb); 4635 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4636 !ext4_data_block_valid(sbi, block, count)) { 4637 ext4_error(sb, "Freeing blocks not in datazone - " 4638 "block = %llu, count = %lu", block, count); 4639 goto error_return; 4640 } 4641 4642 ext4_debug("freeing block %llu\n", block); 4643 trace_ext4_free_blocks(inode, block, count, flags); 4644 4645 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4646 struct buffer_head *tbh = bh; 4647 int i; 4648 4649 BUG_ON(bh && (count > 1)); 4650 4651 for (i = 0; i < count; i++) { 4652 cond_resched(); 4653 if (!bh) 4654 tbh = sb_find_get_block(inode->i_sb, 4655 block + i); 4656 if (!tbh) 4657 continue; 4658 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4659 inode, tbh, block + i); 4660 } 4661 } 4662 4663 /* 4664 * We need to make sure we don't reuse the freed block until 4665 * after the transaction is committed, which we can do by 4666 * treating the block as metadata, below. We make an 4667 * exception if the inode is to be written in writeback mode 4668 * since writeback mode has weak data consistency guarantees. 4669 */ 4670 if (!ext4_should_writeback_data(inode)) 4671 flags |= EXT4_FREE_BLOCKS_METADATA; 4672 4673 /* 4674 * If the extent to be freed does not begin on a cluster 4675 * boundary, we need to deal with partial clusters at the 4676 * beginning and end of the extent. Normally we will free 4677 * blocks at the beginning or the end unless we are explicitly 4678 * requested to avoid doing so. 4679 */ 4680 overflow = EXT4_PBLK_COFF(sbi, block); 4681 if (overflow) { 4682 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4683 overflow = sbi->s_cluster_ratio - overflow; 4684 block += overflow; 4685 if (count > overflow) 4686 count -= overflow; 4687 else 4688 return; 4689 } else { 4690 block -= overflow; 4691 count += overflow; 4692 } 4693 } 4694 overflow = EXT4_LBLK_COFF(sbi, count); 4695 if (overflow) { 4696 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4697 if (count > overflow) 4698 count -= overflow; 4699 else 4700 return; 4701 } else 4702 count += sbi->s_cluster_ratio - overflow; 4703 } 4704 4705 do_more: 4706 overflow = 0; 4707 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4708 4709 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4710 ext4_get_group_info(sb, block_group)))) 4711 return; 4712 4713 /* 4714 * Check to see if we are freeing blocks across a group 4715 * boundary. 4716 */ 4717 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4718 overflow = EXT4_C2B(sbi, bit) + count - 4719 EXT4_BLOCKS_PER_GROUP(sb); 4720 count -= overflow; 4721 } 4722 count_clusters = EXT4_NUM_B2C(sbi, count); 4723 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4724 if (!bitmap_bh) { 4725 err = -EIO; 4726 goto error_return; 4727 } 4728 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4729 if (!gdp) { 4730 err = -EIO; 4731 goto error_return; 4732 } 4733 4734 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4735 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4736 in_range(block, ext4_inode_table(sb, gdp), 4737 EXT4_SB(sb)->s_itb_per_group) || 4738 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4739 EXT4_SB(sb)->s_itb_per_group)) { 4740 4741 ext4_error(sb, "Freeing blocks in system zone - " 4742 "Block = %llu, count = %lu", block, count); 4743 /* err = 0. ext4_std_error should be a no op */ 4744 goto error_return; 4745 } 4746 4747 BUFFER_TRACE(bitmap_bh, "getting write access"); 4748 err = ext4_journal_get_write_access(handle, bitmap_bh); 4749 if (err) 4750 goto error_return; 4751 4752 /* 4753 * We are about to modify some metadata. Call the journal APIs 4754 * to unshare ->b_data if a currently-committing transaction is 4755 * using it 4756 */ 4757 BUFFER_TRACE(gd_bh, "get_write_access"); 4758 err = ext4_journal_get_write_access(handle, gd_bh); 4759 if (err) 4760 goto error_return; 4761 #ifdef AGGRESSIVE_CHECK 4762 { 4763 int i; 4764 for (i = 0; i < count_clusters; i++) 4765 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4766 } 4767 #endif 4768 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4769 4770 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4771 if (err) 4772 goto error_return; 4773 4774 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4775 struct ext4_free_data *new_entry; 4776 /* 4777 * blocks being freed are metadata. these blocks shouldn't 4778 * be used until this transaction is committed 4779 */ 4780 retry: 4781 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4782 if (!new_entry) { 4783 /* 4784 * We use a retry loop because 4785 * ext4_free_blocks() is not allowed to fail. 4786 */ 4787 cond_resched(); 4788 congestion_wait(BLK_RW_ASYNC, HZ/50); 4789 goto retry; 4790 } 4791 new_entry->efd_start_cluster = bit; 4792 new_entry->efd_group = block_group; 4793 new_entry->efd_count = count_clusters; 4794 new_entry->efd_tid = handle->h_transaction->t_tid; 4795 4796 ext4_lock_group(sb, block_group); 4797 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4798 ext4_mb_free_metadata(handle, &e4b, new_entry); 4799 } else { 4800 /* need to update group_info->bb_free and bitmap 4801 * with group lock held. generate_buddy look at 4802 * them with group lock_held 4803 */ 4804 if (test_opt(sb, DISCARD)) { 4805 err = ext4_issue_discard(sb, block_group, bit, count); 4806 if (err && err != -EOPNOTSUPP) 4807 ext4_msg(sb, KERN_WARNING, "discard request in" 4808 " group:%d block:%d count:%lu failed" 4809 " with %d", block_group, bit, count, 4810 err); 4811 } else 4812 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4813 4814 ext4_lock_group(sb, block_group); 4815 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4816 mb_free_blocks(inode, &e4b, bit, count_clusters); 4817 } 4818 4819 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4820 ext4_free_group_clusters_set(sb, gdp, ret); 4821 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4822 ext4_group_desc_csum_set(sb, block_group, gdp); 4823 ext4_unlock_group(sb, block_group); 4824 4825 if (sbi->s_log_groups_per_flex) { 4826 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4827 atomic64_add(count_clusters, 4828 &sbi->s_flex_groups[flex_group].free_clusters); 4829 } 4830 4831 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) { 4832 percpu_counter_add(&sbi->s_dirtyclusters_counter, 4833 count_clusters); 4834 spin_lock(&ei->i_block_reservation_lock); 4835 if (flags & EXT4_FREE_BLOCKS_METADATA) 4836 ei->i_reserved_meta_blocks += count_clusters; 4837 else 4838 ei->i_reserved_data_blocks += count_clusters; 4839 spin_unlock(&ei->i_block_reservation_lock); 4840 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4841 dquot_reclaim_block(inode, 4842 EXT4_C2B(sbi, count_clusters)); 4843 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4844 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4845 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4846 4847 ext4_mb_unload_buddy(&e4b); 4848 4849 /* We dirtied the bitmap block */ 4850 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4851 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4852 4853 /* And the group descriptor block */ 4854 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4855 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4856 if (!err) 4857 err = ret; 4858 4859 if (overflow && !err) { 4860 block += count; 4861 count = overflow; 4862 put_bh(bitmap_bh); 4863 goto do_more; 4864 } 4865 error_return: 4866 brelse(bitmap_bh); 4867 ext4_std_error(sb, err); 4868 return; 4869 } 4870 4871 /** 4872 * ext4_group_add_blocks() -- Add given blocks to an existing group 4873 * @handle: handle to this transaction 4874 * @sb: super block 4875 * @block: start physical block to add to the block group 4876 * @count: number of blocks to free 4877 * 4878 * This marks the blocks as free in the bitmap and buddy. 4879 */ 4880 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4881 ext4_fsblk_t block, unsigned long count) 4882 { 4883 struct buffer_head *bitmap_bh = NULL; 4884 struct buffer_head *gd_bh; 4885 ext4_group_t block_group; 4886 ext4_grpblk_t bit; 4887 unsigned int i; 4888 struct ext4_group_desc *desc; 4889 struct ext4_sb_info *sbi = EXT4_SB(sb); 4890 struct ext4_buddy e4b; 4891 int err = 0, ret, blk_free_count; 4892 ext4_grpblk_t blocks_freed; 4893 4894 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4895 4896 if (count == 0) 4897 return 0; 4898 4899 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4900 /* 4901 * Check to see if we are freeing blocks across a group 4902 * boundary. 4903 */ 4904 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4905 ext4_warning(sb, "too much blocks added to group %u\n", 4906 block_group); 4907 err = -EINVAL; 4908 goto error_return; 4909 } 4910 4911 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4912 if (!bitmap_bh) { 4913 err = -EIO; 4914 goto error_return; 4915 } 4916 4917 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4918 if (!desc) { 4919 err = -EIO; 4920 goto error_return; 4921 } 4922 4923 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4924 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4925 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4926 in_range(block + count - 1, ext4_inode_table(sb, desc), 4927 sbi->s_itb_per_group)) { 4928 ext4_error(sb, "Adding blocks in system zones - " 4929 "Block = %llu, count = %lu", 4930 block, count); 4931 err = -EINVAL; 4932 goto error_return; 4933 } 4934 4935 BUFFER_TRACE(bitmap_bh, "getting write access"); 4936 err = ext4_journal_get_write_access(handle, bitmap_bh); 4937 if (err) 4938 goto error_return; 4939 4940 /* 4941 * We are about to modify some metadata. Call the journal APIs 4942 * to unshare ->b_data if a currently-committing transaction is 4943 * using it 4944 */ 4945 BUFFER_TRACE(gd_bh, "get_write_access"); 4946 err = ext4_journal_get_write_access(handle, gd_bh); 4947 if (err) 4948 goto error_return; 4949 4950 for (i = 0, blocks_freed = 0; i < count; i++) { 4951 BUFFER_TRACE(bitmap_bh, "clear bit"); 4952 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4953 ext4_error(sb, "bit already cleared for block %llu", 4954 (ext4_fsblk_t)(block + i)); 4955 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4956 } else { 4957 blocks_freed++; 4958 } 4959 } 4960 4961 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4962 if (err) 4963 goto error_return; 4964 4965 /* 4966 * need to update group_info->bb_free and bitmap 4967 * with group lock held. generate_buddy look at 4968 * them with group lock_held 4969 */ 4970 ext4_lock_group(sb, block_group); 4971 mb_clear_bits(bitmap_bh->b_data, bit, count); 4972 mb_free_blocks(NULL, &e4b, bit, count); 4973 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4974 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4975 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4976 ext4_group_desc_csum_set(sb, block_group, desc); 4977 ext4_unlock_group(sb, block_group); 4978 percpu_counter_add(&sbi->s_freeclusters_counter, 4979 EXT4_NUM_B2C(sbi, blocks_freed)); 4980 4981 if (sbi->s_log_groups_per_flex) { 4982 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4983 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 4984 &sbi->s_flex_groups[flex_group].free_clusters); 4985 } 4986 4987 ext4_mb_unload_buddy(&e4b); 4988 4989 /* We dirtied the bitmap block */ 4990 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4991 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4992 4993 /* And the group descriptor block */ 4994 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4995 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4996 if (!err) 4997 err = ret; 4998 4999 error_return: 5000 brelse(bitmap_bh); 5001 ext4_std_error(sb, err); 5002 return err; 5003 } 5004 5005 /** 5006 * ext4_trim_extent -- function to TRIM one single free extent in the group 5007 * @sb: super block for the file system 5008 * @start: starting block of the free extent in the alloc. group 5009 * @count: number of blocks to TRIM 5010 * @group: alloc. group we are working with 5011 * @e4b: ext4 buddy for the group 5012 * 5013 * Trim "count" blocks starting at "start" in the "group". To assure that no 5014 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5015 * be called with under the group lock. 5016 */ 5017 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5018 ext4_group_t group, struct ext4_buddy *e4b) 5019 __releases(bitlock) 5020 __acquires(bitlock) 5021 { 5022 struct ext4_free_extent ex; 5023 int ret = 0; 5024 5025 trace_ext4_trim_extent(sb, group, start, count); 5026 5027 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5028 5029 ex.fe_start = start; 5030 ex.fe_group = group; 5031 ex.fe_len = count; 5032 5033 /* 5034 * Mark blocks used, so no one can reuse them while 5035 * being trimmed. 5036 */ 5037 mb_mark_used(e4b, &ex); 5038 ext4_unlock_group(sb, group); 5039 ret = ext4_issue_discard(sb, group, start, count); 5040 ext4_lock_group(sb, group); 5041 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5042 return ret; 5043 } 5044 5045 /** 5046 * ext4_trim_all_free -- function to trim all free space in alloc. group 5047 * @sb: super block for file system 5048 * @group: group to be trimmed 5049 * @start: first group block to examine 5050 * @max: last group block to examine 5051 * @minblocks: minimum extent block count 5052 * 5053 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5054 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5055 * the extent. 5056 * 5057 * 5058 * ext4_trim_all_free walks through group's block bitmap searching for free 5059 * extents. When the free extent is found, mark it as used in group buddy 5060 * bitmap. Then issue a TRIM command on this extent and free the extent in 5061 * the group buddy bitmap. This is done until whole group is scanned. 5062 */ 5063 static ext4_grpblk_t 5064 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5065 ext4_grpblk_t start, ext4_grpblk_t max, 5066 ext4_grpblk_t minblocks) 5067 { 5068 void *bitmap; 5069 ext4_grpblk_t next, count = 0, free_count = 0; 5070 struct ext4_buddy e4b; 5071 int ret = 0; 5072 5073 trace_ext4_trim_all_free(sb, group, start, max); 5074 5075 ret = ext4_mb_load_buddy(sb, group, &e4b); 5076 if (ret) { 5077 ext4_error(sb, "Error in loading buddy " 5078 "information for %u", group); 5079 return ret; 5080 } 5081 bitmap = e4b.bd_bitmap; 5082 5083 ext4_lock_group(sb, group); 5084 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5085 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5086 goto out; 5087 5088 start = (e4b.bd_info->bb_first_free > start) ? 5089 e4b.bd_info->bb_first_free : start; 5090 5091 while (start <= max) { 5092 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5093 if (start > max) 5094 break; 5095 next = mb_find_next_bit(bitmap, max + 1, start); 5096 5097 if ((next - start) >= minblocks) { 5098 ret = ext4_trim_extent(sb, start, 5099 next - start, group, &e4b); 5100 if (ret && ret != -EOPNOTSUPP) 5101 break; 5102 ret = 0; 5103 count += next - start; 5104 } 5105 free_count += next - start; 5106 start = next + 1; 5107 5108 if (fatal_signal_pending(current)) { 5109 count = -ERESTARTSYS; 5110 break; 5111 } 5112 5113 if (need_resched()) { 5114 ext4_unlock_group(sb, group); 5115 cond_resched(); 5116 ext4_lock_group(sb, group); 5117 } 5118 5119 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5120 break; 5121 } 5122 5123 if (!ret) { 5124 ret = count; 5125 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5126 } 5127 out: 5128 ext4_unlock_group(sb, group); 5129 ext4_mb_unload_buddy(&e4b); 5130 5131 ext4_debug("trimmed %d blocks in the group %d\n", 5132 count, group); 5133 5134 return ret; 5135 } 5136 5137 /** 5138 * ext4_trim_fs() -- trim ioctl handle function 5139 * @sb: superblock for filesystem 5140 * @range: fstrim_range structure 5141 * 5142 * start: First Byte to trim 5143 * len: number of Bytes to trim from start 5144 * minlen: minimum extent length in Bytes 5145 * ext4_trim_fs goes through all allocation groups containing Bytes from 5146 * start to start+len. For each such a group ext4_trim_all_free function 5147 * is invoked to trim all free space. 5148 */ 5149 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5150 { 5151 struct ext4_group_info *grp; 5152 ext4_group_t group, first_group, last_group; 5153 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5154 uint64_t start, end, minlen, trimmed = 0; 5155 ext4_fsblk_t first_data_blk = 5156 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5157 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5158 int ret = 0; 5159 5160 start = range->start >> sb->s_blocksize_bits; 5161 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5162 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5163 range->minlen >> sb->s_blocksize_bits); 5164 5165 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5166 start >= max_blks || 5167 range->len < sb->s_blocksize) 5168 return -EINVAL; 5169 if (end >= max_blks) 5170 end = max_blks - 1; 5171 if (end <= first_data_blk) 5172 goto out; 5173 if (start < first_data_blk) 5174 start = first_data_blk; 5175 5176 /* Determine first and last group to examine based on start and end */ 5177 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5178 &first_group, &first_cluster); 5179 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5180 &last_group, &last_cluster); 5181 5182 /* end now represents the last cluster to discard in this group */ 5183 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5184 5185 for (group = first_group; group <= last_group; group++) { 5186 grp = ext4_get_group_info(sb, group); 5187 /* We only do this if the grp has never been initialized */ 5188 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5189 ret = ext4_mb_init_group(sb, group); 5190 if (ret) 5191 break; 5192 } 5193 5194 /* 5195 * For all the groups except the last one, last cluster will 5196 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5197 * change it for the last group, note that last_cluster is 5198 * already computed earlier by ext4_get_group_no_and_offset() 5199 */ 5200 if (group == last_group) 5201 end = last_cluster; 5202 5203 if (grp->bb_free >= minlen) { 5204 cnt = ext4_trim_all_free(sb, group, first_cluster, 5205 end, minlen); 5206 if (cnt < 0) { 5207 ret = cnt; 5208 break; 5209 } 5210 trimmed += cnt; 5211 } 5212 5213 /* 5214 * For every group except the first one, we are sure 5215 * that the first cluster to discard will be cluster #0. 5216 */ 5217 first_cluster = 0; 5218 } 5219 5220 if (!ret) 5221 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5222 5223 out: 5224 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5225 return ret; 5226 } 5227