xref: /linux/fs/ext4/mballoc.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
28 
29 /*
30  * MUSTDO:
31  *   - test ext4_ext_search_left() and ext4_ext_search_right()
32  *   - search for metadata in few groups
33  *
34  * TODO v4:
35  *   - normalization should take into account whether file is still open
36  *   - discard preallocations if no free space left (policy?)
37  *   - don't normalize tails
38  *   - quota
39  *   - reservation for superuser
40  *
41  * TODO v3:
42  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
43  *   - track min/max extents in each group for better group selection
44  *   - mb_mark_used() may allocate chunk right after splitting buddy
45  *   - tree of groups sorted by number of free blocks
46  *   - error handling
47  */
48 
49 /*
50  * The allocation request involve request for multiple number of blocks
51  * near to the goal(block) value specified.
52  *
53  * During initialization phase of the allocator we decide to use the
54  * group preallocation or inode preallocation depending on the size of
55  * the file. The size of the file could be the resulting file size we
56  * would have after allocation, or the current file size, which ever
57  * is larger. If the size is less than sbi->s_mb_stream_request we
58  * select to use the group preallocation. The default value of
59  * s_mb_stream_request is 16 blocks. This can also be tuned via
60  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61  * terms of number of blocks.
62  *
63  * The main motivation for having small file use group preallocation is to
64  * ensure that we have small files closer together on the disk.
65  *
66  * First stage the allocator looks at the inode prealloc list,
67  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68  * spaces for this particular inode. The inode prealloc space is
69  * represented as:
70  *
71  * pa_lstart -> the logical start block for this prealloc space
72  * pa_pstart -> the physical start block for this prealloc space
73  * pa_len    -> length for this prealloc space
74  * pa_free   ->  free space available in this prealloc space
75  *
76  * The inode preallocation space is used looking at the _logical_ start
77  * block. If only the logical file block falls within the range of prealloc
78  * space we will consume the particular prealloc space. This make sure that
79  * that the we have contiguous physical blocks representing the file blocks
80  *
81  * The important thing to be noted in case of inode prealloc space is that
82  * we don't modify the values associated to inode prealloc space except
83  * pa_free.
84  *
85  * If we are not able to find blocks in the inode prealloc space and if we
86  * have the group allocation flag set then we look at the locality group
87  * prealloc space. These are per CPU prealloc list repreasented as
88  *
89  * ext4_sb_info.s_locality_groups[smp_processor_id()]
90  *
91  * The reason for having a per cpu locality group is to reduce the contention
92  * between CPUs. It is possible to get scheduled at this point.
93  *
94  * The locality group prealloc space is used looking at whether we have
95  * enough free space (pa_free) withing the prealloc space.
96  *
97  * If we can't allocate blocks via inode prealloc or/and locality group
98  * prealloc then we look at the buddy cache. The buddy cache is represented
99  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100  * mapped to the buddy and bitmap information regarding different
101  * groups. The buddy information is attached to buddy cache inode so that
102  * we can access them through the page cache. The information regarding
103  * each group is loaded via ext4_mb_load_buddy.  The information involve
104  * block bitmap and buddy information. The information are stored in the
105  * inode as:
106  *
107  *  {                        page                        }
108  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109  *
110  *
111  * one block each for bitmap and buddy information.  So for each group we
112  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113  * blocksize) blocks.  So it can have information regarding groups_per_page
114  * which is blocks_per_page/2
115  *
116  * The buddy cache inode is not stored on disk. The inode is thrown
117  * away when the filesystem is unmounted.
118  *
119  * We look for count number of blocks in the buddy cache. If we were able
120  * to locate that many free blocks we return with additional information
121  * regarding rest of the contiguous physical block available
122  *
123  * Before allocating blocks via buddy cache we normalize the request
124  * blocks. This ensure we ask for more blocks that we needed. The extra
125  * blocks that we get after allocation is added to the respective prealloc
126  * list. In case of inode preallocation we follow a list of heuristics
127  * based on file size. This can be found in ext4_mb_normalize_request. If
128  * we are doing a group prealloc we try to normalize the request to
129  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130  * 512 blocks. This can be tuned via
131  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132  * terms of number of blocks. If we have mounted the file system with -O
133  * stripe=<value> option the group prealloc request is normalized to the
134  * stripe value (sbi->s_stripe)
135  *
136  * The regular allocator(using the buddy cache) supports few tunables.
137  *
138  * /sys/fs/ext4/<partition>/mb_min_to_scan
139  * /sys/fs/ext4/<partition>/mb_max_to_scan
140  * /sys/fs/ext4/<partition>/mb_order2_req
141  *
142  * The regular allocator uses buddy scan only if the request len is power of
143  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144  * value of s_mb_order2_reqs can be tuned via
145  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
146  * stripe size (sbi->s_stripe), we try to search for contiguous block in
147  * stripe size. This should result in better allocation on RAID setups. If
148  * not, we search in the specific group using bitmap for best extents. The
149  * tunable min_to_scan and max_to_scan control the behaviour here.
150  * min_to_scan indicate how long the mballoc __must__ look for a best
151  * extent and max_to_scan indicates how long the mballoc __can__ look for a
152  * best extent in the found extents. Searching for the blocks starts with
153  * the group specified as the goal value in allocation context via
154  * ac_g_ex. Each group is first checked based on the criteria whether it
155  * can used for allocation. ext4_mb_good_group explains how the groups are
156  * checked.
157  *
158  * Both the prealloc space are getting populated as above. So for the first
159  * request we will hit the buddy cache which will result in this prealloc
160  * space getting filled. The prealloc space is then later used for the
161  * subsequent request.
162  */
163 
164 /*
165  * mballoc operates on the following data:
166  *  - on-disk bitmap
167  *  - in-core buddy (actually includes buddy and bitmap)
168  *  - preallocation descriptors (PAs)
169  *
170  * there are two types of preallocations:
171  *  - inode
172  *    assiged to specific inode and can be used for this inode only.
173  *    it describes part of inode's space preallocated to specific
174  *    physical blocks. any block from that preallocated can be used
175  *    independent. the descriptor just tracks number of blocks left
176  *    unused. so, before taking some block from descriptor, one must
177  *    make sure corresponded logical block isn't allocated yet. this
178  *    also means that freeing any block within descriptor's range
179  *    must discard all preallocated blocks.
180  *  - locality group
181  *    assigned to specific locality group which does not translate to
182  *    permanent set of inodes: inode can join and leave group. space
183  *    from this type of preallocation can be used for any inode. thus
184  *    it's consumed from the beginning to the end.
185  *
186  * relation between them can be expressed as:
187  *    in-core buddy = on-disk bitmap + preallocation descriptors
188  *
189  * this mean blocks mballoc considers used are:
190  *  - allocated blocks (persistent)
191  *  - preallocated blocks (non-persistent)
192  *
193  * consistency in mballoc world means that at any time a block is either
194  * free or used in ALL structures. notice: "any time" should not be read
195  * literally -- time is discrete and delimited by locks.
196  *
197  *  to keep it simple, we don't use block numbers, instead we count number of
198  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199  *
200  * all operations can be expressed as:
201  *  - init buddy:			buddy = on-disk + PAs
202  *  - new PA:				buddy += N; PA = N
203  *  - use inode PA:			on-disk += N; PA -= N
204  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
205  *  - use locality group PA		on-disk += N; PA -= N
206  *  - discard locality group PA		buddy -= PA; PA = 0
207  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208  *        is used in real operation because we can't know actual used
209  *        bits from PA, only from on-disk bitmap
210  *
211  * if we follow this strict logic, then all operations above should be atomic.
212  * given some of them can block, we'd have to use something like semaphores
213  * killing performance on high-end SMP hardware. let's try to relax it using
214  * the following knowledge:
215  *  1) if buddy is referenced, it's already initialized
216  *  2) while block is used in buddy and the buddy is referenced,
217  *     nobody can re-allocate that block
218  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
220  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221  *     block
222  *
223  * so, now we're building a concurrency table:
224  *  - init buddy vs.
225  *    - new PA
226  *      blocks for PA are allocated in the buddy, buddy must be referenced
227  *      until PA is linked to allocation group to avoid concurrent buddy init
228  *    - use inode PA
229  *      we need to make sure that either on-disk bitmap or PA has uptodate data
230  *      given (3) we care that PA-=N operation doesn't interfere with init
231  *    - discard inode PA
232  *      the simplest way would be to have buddy initialized by the discard
233  *    - use locality group PA
234  *      again PA-=N must be serialized with init
235  *    - discard locality group PA
236  *      the simplest way would be to have buddy initialized by the discard
237  *  - new PA vs.
238  *    - use inode PA
239  *      i_data_sem serializes them
240  *    - discard inode PA
241  *      discard process must wait until PA isn't used by another process
242  *    - use locality group PA
243  *      some mutex should serialize them
244  *    - discard locality group PA
245  *      discard process must wait until PA isn't used by another process
246  *  - use inode PA
247  *    - use inode PA
248  *      i_data_sem or another mutex should serializes them
249  *    - discard inode PA
250  *      discard process must wait until PA isn't used by another process
251  *    - use locality group PA
252  *      nothing wrong here -- they're different PAs covering different blocks
253  *    - discard locality group PA
254  *      discard process must wait until PA isn't used by another process
255  *
256  * now we're ready to make few consequences:
257  *  - PA is referenced and while it is no discard is possible
258  *  - PA is referenced until block isn't marked in on-disk bitmap
259  *  - PA changes only after on-disk bitmap
260  *  - discard must not compete with init. either init is done before
261  *    any discard or they're serialized somehow
262  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
263  *
264  * a special case when we've used PA to emptiness. no need to modify buddy
265  * in this case, but we should care about concurrent init
266  *
267  */
268 
269  /*
270  * Logic in few words:
271  *
272  *  - allocation:
273  *    load group
274  *    find blocks
275  *    mark bits in on-disk bitmap
276  *    release group
277  *
278  *  - use preallocation:
279  *    find proper PA (per-inode or group)
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *    release PA
284  *
285  *  - free:
286  *    load group
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - discard preallocations in group:
291  *    mark PAs deleted
292  *    move them onto local list
293  *    load on-disk bitmap
294  *    load group
295  *    remove PA from object (inode or locality group)
296  *    mark free blocks in-core
297  *
298  *  - discard inode's preallocations:
299  */
300 
301 /*
302  * Locking rules
303  *
304  * Locks:
305  *  - bitlock on a group	(group)
306  *  - object (inode/locality)	(object)
307  *  - per-pa lock		(pa)
308  *
309  * Paths:
310  *  - new pa
311  *    object
312  *    group
313  *
314  *  - find and use pa:
315  *    pa
316  *
317  *  - release consumed pa:
318  *    pa
319  *    group
320  *    object
321  *
322  *  - generate in-core bitmap:
323  *    group
324  *        pa
325  *
326  *  - discard all for given object (inode, locality group):
327  *    object
328  *        pa
329  *    group
330  *
331  *  - discard all for given group:
332  *    group
333  *        pa
334  *    group
335  *        object
336  *
337  */
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_ext_cachep;
341 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
342 					ext4_group_t group);
343 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
344 						ext4_group_t group);
345 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
346 
347 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
348 {
349 #if BITS_PER_LONG == 64
350 	*bit += ((unsigned long) addr & 7UL) << 3;
351 	addr = (void *) ((unsigned long) addr & ~7UL);
352 #elif BITS_PER_LONG == 32
353 	*bit += ((unsigned long) addr & 3UL) << 3;
354 	addr = (void *) ((unsigned long) addr & ~3UL);
355 #else
356 #error "how many bits you are?!"
357 #endif
358 	return addr;
359 }
360 
361 static inline int mb_test_bit(int bit, void *addr)
362 {
363 	/*
364 	 * ext4_test_bit on architecture like powerpc
365 	 * needs unsigned long aligned address
366 	 */
367 	addr = mb_correct_addr_and_bit(&bit, addr);
368 	return ext4_test_bit(bit, addr);
369 }
370 
371 static inline void mb_set_bit(int bit, void *addr)
372 {
373 	addr = mb_correct_addr_and_bit(&bit, addr);
374 	ext4_set_bit(bit, addr);
375 }
376 
377 static inline void mb_clear_bit(int bit, void *addr)
378 {
379 	addr = mb_correct_addr_and_bit(&bit, addr);
380 	ext4_clear_bit(bit, addr);
381 }
382 
383 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
384 {
385 	int fix = 0, ret, tmpmax;
386 	addr = mb_correct_addr_and_bit(&fix, addr);
387 	tmpmax = max + fix;
388 	start += fix;
389 
390 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
391 	if (ret > max)
392 		return max;
393 	return ret;
394 }
395 
396 static inline int mb_find_next_bit(void *addr, int max, int start)
397 {
398 	int fix = 0, ret, tmpmax;
399 	addr = mb_correct_addr_and_bit(&fix, addr);
400 	tmpmax = max + fix;
401 	start += fix;
402 
403 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
404 	if (ret > max)
405 		return max;
406 	return ret;
407 }
408 
409 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
410 {
411 	char *bb;
412 
413 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
414 	BUG_ON(max == NULL);
415 
416 	if (order > e4b->bd_blkbits + 1) {
417 		*max = 0;
418 		return NULL;
419 	}
420 
421 	/* at order 0 we see each particular block */
422 	*max = 1 << (e4b->bd_blkbits + 3);
423 	if (order == 0)
424 		return EXT4_MB_BITMAP(e4b);
425 
426 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
427 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
428 
429 	return bb;
430 }
431 
432 #ifdef DOUBLE_CHECK
433 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
434 			   int first, int count)
435 {
436 	int i;
437 	struct super_block *sb = e4b->bd_sb;
438 
439 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
440 		return;
441 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
442 	for (i = 0; i < count; i++) {
443 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
444 			ext4_fsblk_t blocknr;
445 
446 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
447 			blocknr += first + i;
448 			ext4_grp_locked_error(sb, e4b->bd_group,
449 					      inode ? inode->i_ino : 0,
450 					      blocknr,
451 					      "freeing block already freed "
452 					      "(bit %u)",
453 					      first + i);
454 		}
455 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
456 	}
457 }
458 
459 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
460 {
461 	int i;
462 
463 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
464 		return;
465 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
466 	for (i = 0; i < count; i++) {
467 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
468 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
469 	}
470 }
471 
472 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
473 {
474 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
475 		unsigned char *b1, *b2;
476 		int i;
477 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
478 		b2 = (unsigned char *) bitmap;
479 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
480 			if (b1[i] != b2[i]) {
481 				printk(KERN_ERR "corruption in group %u "
482 				       "at byte %u(%u): %x in copy != %x "
483 				       "on disk/prealloc\n",
484 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
485 				BUG();
486 			}
487 		}
488 	}
489 }
490 
491 #else
492 static inline void mb_free_blocks_double(struct inode *inode,
493 				struct ext4_buddy *e4b, int first, int count)
494 {
495 	return;
496 }
497 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
498 						int first, int count)
499 {
500 	return;
501 }
502 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
503 {
504 	return;
505 }
506 #endif
507 
508 #ifdef AGGRESSIVE_CHECK
509 
510 #define MB_CHECK_ASSERT(assert)						\
511 do {									\
512 	if (!(assert)) {						\
513 		printk(KERN_EMERG					\
514 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
515 			function, file, line, # assert);		\
516 		BUG();							\
517 	}								\
518 } while (0)
519 
520 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
521 				const char *function, int line)
522 {
523 	struct super_block *sb = e4b->bd_sb;
524 	int order = e4b->bd_blkbits + 1;
525 	int max;
526 	int max2;
527 	int i;
528 	int j;
529 	int k;
530 	int count;
531 	struct ext4_group_info *grp;
532 	int fragments = 0;
533 	int fstart;
534 	struct list_head *cur;
535 	void *buddy;
536 	void *buddy2;
537 
538 	{
539 		static int mb_check_counter;
540 		if (mb_check_counter++ % 100 != 0)
541 			return 0;
542 	}
543 
544 	while (order > 1) {
545 		buddy = mb_find_buddy(e4b, order, &max);
546 		MB_CHECK_ASSERT(buddy);
547 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
548 		MB_CHECK_ASSERT(buddy2);
549 		MB_CHECK_ASSERT(buddy != buddy2);
550 		MB_CHECK_ASSERT(max * 2 == max2);
551 
552 		count = 0;
553 		for (i = 0; i < max; i++) {
554 
555 			if (mb_test_bit(i, buddy)) {
556 				/* only single bit in buddy2 may be 1 */
557 				if (!mb_test_bit(i << 1, buddy2)) {
558 					MB_CHECK_ASSERT(
559 						mb_test_bit((i<<1)+1, buddy2));
560 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
561 					MB_CHECK_ASSERT(
562 						mb_test_bit(i << 1, buddy2));
563 				}
564 				continue;
565 			}
566 
567 			/* both bits in buddy2 must be 0 */
568 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
569 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
570 
571 			for (j = 0; j < (1 << order); j++) {
572 				k = (i * (1 << order)) + j;
573 				MB_CHECK_ASSERT(
574 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
575 			}
576 			count++;
577 		}
578 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
579 		order--;
580 	}
581 
582 	fstart = -1;
583 	buddy = mb_find_buddy(e4b, 0, &max);
584 	for (i = 0; i < max; i++) {
585 		if (!mb_test_bit(i, buddy)) {
586 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
587 			if (fstart == -1) {
588 				fragments++;
589 				fstart = i;
590 			}
591 			continue;
592 		}
593 		fstart = -1;
594 		/* check used bits only */
595 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
596 			buddy2 = mb_find_buddy(e4b, j, &max2);
597 			k = i >> j;
598 			MB_CHECK_ASSERT(k < max2);
599 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
600 		}
601 	}
602 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
603 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
604 
605 	grp = ext4_get_group_info(sb, e4b->bd_group);
606 	buddy = mb_find_buddy(e4b, 0, &max);
607 	list_for_each(cur, &grp->bb_prealloc_list) {
608 		ext4_group_t groupnr;
609 		struct ext4_prealloc_space *pa;
610 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
611 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
612 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
613 		for (i = 0; i < pa->pa_len; i++)
614 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
615 	}
616 	return 0;
617 }
618 #undef MB_CHECK_ASSERT
619 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
620 					__FILE__, __func__, __LINE__)
621 #else
622 #define mb_check_buddy(e4b)
623 #endif
624 
625 /* FIXME!! need more doc */
626 static void ext4_mb_mark_free_simple(struct super_block *sb,
627 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
628 					struct ext4_group_info *grp)
629 {
630 	struct ext4_sb_info *sbi = EXT4_SB(sb);
631 	ext4_grpblk_t min;
632 	ext4_grpblk_t max;
633 	ext4_grpblk_t chunk;
634 	unsigned short border;
635 
636 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
637 
638 	border = 2 << sb->s_blocksize_bits;
639 
640 	while (len > 0) {
641 		/* find how many blocks can be covered since this position */
642 		max = ffs(first | border) - 1;
643 
644 		/* find how many blocks of power 2 we need to mark */
645 		min = fls(len) - 1;
646 
647 		if (max < min)
648 			min = max;
649 		chunk = 1 << min;
650 
651 		/* mark multiblock chunks only */
652 		grp->bb_counters[min]++;
653 		if (min > 0)
654 			mb_clear_bit(first >> min,
655 				     buddy + sbi->s_mb_offsets[min]);
656 
657 		len -= chunk;
658 		first += chunk;
659 	}
660 }
661 
662 /*
663  * Cache the order of the largest free extent we have available in this block
664  * group.
665  */
666 static void
667 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
668 {
669 	int i;
670 	int bits;
671 
672 	grp->bb_largest_free_order = -1; /* uninit */
673 
674 	bits = sb->s_blocksize_bits + 1;
675 	for (i = bits; i >= 0; i--) {
676 		if (grp->bb_counters[i] > 0) {
677 			grp->bb_largest_free_order = i;
678 			break;
679 		}
680 	}
681 }
682 
683 static noinline_for_stack
684 void ext4_mb_generate_buddy(struct super_block *sb,
685 				void *buddy, void *bitmap, ext4_group_t group)
686 {
687 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
688 	ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
689 	ext4_grpblk_t i = 0;
690 	ext4_grpblk_t first;
691 	ext4_grpblk_t len;
692 	unsigned free = 0;
693 	unsigned fragments = 0;
694 	unsigned long long period = get_cycles();
695 
696 	/* initialize buddy from bitmap which is aggregation
697 	 * of on-disk bitmap and preallocations */
698 	i = mb_find_next_zero_bit(bitmap, max, 0);
699 	grp->bb_first_free = i;
700 	while (i < max) {
701 		fragments++;
702 		first = i;
703 		i = mb_find_next_bit(bitmap, max, i);
704 		len = i - first;
705 		free += len;
706 		if (len > 1)
707 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
708 		else
709 			grp->bb_counters[0]++;
710 		if (i < max)
711 			i = mb_find_next_zero_bit(bitmap, max, i);
712 	}
713 	grp->bb_fragments = fragments;
714 
715 	if (free != grp->bb_free) {
716 		ext4_grp_locked_error(sb, group, 0, 0,
717 				      "%u blocks in bitmap, %u in gd",
718 				      free, grp->bb_free);
719 		/*
720 		 * If we intent to continue, we consider group descritor
721 		 * corrupt and update bb_free using bitmap value
722 		 */
723 		grp->bb_free = free;
724 	}
725 	mb_set_largest_free_order(sb, grp);
726 
727 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
728 
729 	period = get_cycles() - period;
730 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
731 	EXT4_SB(sb)->s_mb_buddies_generated++;
732 	EXT4_SB(sb)->s_mb_generation_time += period;
733 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
734 }
735 
736 /* The buddy information is attached the buddy cache inode
737  * for convenience. The information regarding each group
738  * is loaded via ext4_mb_load_buddy. The information involve
739  * block bitmap and buddy information. The information are
740  * stored in the inode as
741  *
742  * {                        page                        }
743  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
744  *
745  *
746  * one block each for bitmap and buddy information.
747  * So for each group we take up 2 blocks. A page can
748  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
749  * So it can have information regarding groups_per_page which
750  * is blocks_per_page/2
751  *
752  * Locking note:  This routine takes the block group lock of all groups
753  * for this page; do not hold this lock when calling this routine!
754  */
755 
756 static int ext4_mb_init_cache(struct page *page, char *incore)
757 {
758 	ext4_group_t ngroups;
759 	int blocksize;
760 	int blocks_per_page;
761 	int groups_per_page;
762 	int err = 0;
763 	int i;
764 	ext4_group_t first_group;
765 	int first_block;
766 	struct super_block *sb;
767 	struct buffer_head *bhs;
768 	struct buffer_head **bh;
769 	struct inode *inode;
770 	char *data;
771 	char *bitmap;
772 
773 	mb_debug(1, "init page %lu\n", page->index);
774 
775 	inode = page->mapping->host;
776 	sb = inode->i_sb;
777 	ngroups = ext4_get_groups_count(sb);
778 	blocksize = 1 << inode->i_blkbits;
779 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
780 
781 	groups_per_page = blocks_per_page >> 1;
782 	if (groups_per_page == 0)
783 		groups_per_page = 1;
784 
785 	/* allocate buffer_heads to read bitmaps */
786 	if (groups_per_page > 1) {
787 		err = -ENOMEM;
788 		i = sizeof(struct buffer_head *) * groups_per_page;
789 		bh = kzalloc(i, GFP_NOFS);
790 		if (bh == NULL)
791 			goto out;
792 	} else
793 		bh = &bhs;
794 
795 	first_group = page->index * blocks_per_page / 2;
796 
797 	/* read all groups the page covers into the cache */
798 	for (i = 0; i < groups_per_page; i++) {
799 		struct ext4_group_desc *desc;
800 
801 		if (first_group + i >= ngroups)
802 			break;
803 
804 		err = -EIO;
805 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
806 		if (desc == NULL)
807 			goto out;
808 
809 		err = -ENOMEM;
810 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
811 		if (bh[i] == NULL)
812 			goto out;
813 
814 		if (bitmap_uptodate(bh[i]))
815 			continue;
816 
817 		lock_buffer(bh[i]);
818 		if (bitmap_uptodate(bh[i])) {
819 			unlock_buffer(bh[i]);
820 			continue;
821 		}
822 		ext4_lock_group(sb, first_group + i);
823 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
824 			ext4_init_block_bitmap(sb, bh[i],
825 						first_group + i, desc);
826 			set_bitmap_uptodate(bh[i]);
827 			set_buffer_uptodate(bh[i]);
828 			ext4_unlock_group(sb, first_group + i);
829 			unlock_buffer(bh[i]);
830 			continue;
831 		}
832 		ext4_unlock_group(sb, first_group + i);
833 		if (buffer_uptodate(bh[i])) {
834 			/*
835 			 * if not uninit if bh is uptodate,
836 			 * bitmap is also uptodate
837 			 */
838 			set_bitmap_uptodate(bh[i]);
839 			unlock_buffer(bh[i]);
840 			continue;
841 		}
842 		get_bh(bh[i]);
843 		/*
844 		 * submit the buffer_head for read. We can
845 		 * safely mark the bitmap as uptodate now.
846 		 * We do it here so the bitmap uptodate bit
847 		 * get set with buffer lock held.
848 		 */
849 		set_bitmap_uptodate(bh[i]);
850 		bh[i]->b_end_io = end_buffer_read_sync;
851 		submit_bh(READ, bh[i]);
852 		mb_debug(1, "read bitmap for group %u\n", first_group + i);
853 	}
854 
855 	/* wait for I/O completion */
856 	for (i = 0; i < groups_per_page && bh[i]; i++)
857 		wait_on_buffer(bh[i]);
858 
859 	err = -EIO;
860 	for (i = 0; i < groups_per_page && bh[i]; i++)
861 		if (!buffer_uptodate(bh[i]))
862 			goto out;
863 
864 	err = 0;
865 	first_block = page->index * blocks_per_page;
866 	/* init the page  */
867 	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
868 	for (i = 0; i < blocks_per_page; i++) {
869 		int group;
870 		struct ext4_group_info *grinfo;
871 
872 		group = (first_block + i) >> 1;
873 		if (group >= ngroups)
874 			break;
875 
876 		/*
877 		 * data carry information regarding this
878 		 * particular group in the format specified
879 		 * above
880 		 *
881 		 */
882 		data = page_address(page) + (i * blocksize);
883 		bitmap = bh[group - first_group]->b_data;
884 
885 		/*
886 		 * We place the buddy block and bitmap block
887 		 * close together
888 		 */
889 		if ((first_block + i) & 1) {
890 			/* this is block of buddy */
891 			BUG_ON(incore == NULL);
892 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
893 				group, page->index, i * blocksize);
894 			trace_ext4_mb_buddy_bitmap_load(sb, group);
895 			grinfo = ext4_get_group_info(sb, group);
896 			grinfo->bb_fragments = 0;
897 			memset(grinfo->bb_counters, 0,
898 			       sizeof(*grinfo->bb_counters) *
899 				(sb->s_blocksize_bits+2));
900 			/*
901 			 * incore got set to the group block bitmap below
902 			 */
903 			ext4_lock_group(sb, group);
904 			ext4_mb_generate_buddy(sb, data, incore, group);
905 			ext4_unlock_group(sb, group);
906 			incore = NULL;
907 		} else {
908 			/* this is block of bitmap */
909 			BUG_ON(incore != NULL);
910 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
911 				group, page->index, i * blocksize);
912 			trace_ext4_mb_bitmap_load(sb, group);
913 
914 			/* see comments in ext4_mb_put_pa() */
915 			ext4_lock_group(sb, group);
916 			memcpy(data, bitmap, blocksize);
917 
918 			/* mark all preallocated blks used in in-core bitmap */
919 			ext4_mb_generate_from_pa(sb, data, group);
920 			ext4_mb_generate_from_freelist(sb, data, group);
921 			ext4_unlock_group(sb, group);
922 
923 			/* set incore so that the buddy information can be
924 			 * generated using this
925 			 */
926 			incore = data;
927 		}
928 	}
929 	SetPageUptodate(page);
930 
931 out:
932 	if (bh) {
933 		for (i = 0; i < groups_per_page && bh[i]; i++)
934 			brelse(bh[i]);
935 		if (bh != &bhs)
936 			kfree(bh);
937 	}
938 	return err;
939 }
940 
941 /*
942  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
943  * block group lock of all groups for this page; do not hold the BG lock when
944  * calling this routine!
945  */
946 static noinline_for_stack
947 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
948 {
949 
950 	int ret = 0;
951 	void *bitmap;
952 	int blocks_per_page;
953 	int block, pnum, poff;
954 	int num_grp_locked = 0;
955 	struct ext4_group_info *this_grp;
956 	struct ext4_sb_info *sbi = EXT4_SB(sb);
957 	struct inode *inode = sbi->s_buddy_cache;
958 	struct page *page = NULL, *bitmap_page = NULL;
959 
960 	mb_debug(1, "init group %u\n", group);
961 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
962 	this_grp = ext4_get_group_info(sb, group);
963 	/*
964 	 * This ensures that we don't reinit the buddy cache
965 	 * page which map to the group from which we are already
966 	 * allocating. If we are looking at the buddy cache we would
967 	 * have taken a reference using ext4_mb_load_buddy and that
968 	 * would have taken the alloc_sem lock.
969 	 */
970 	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
971 	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
972 		/*
973 		 * somebody initialized the group
974 		 * return without doing anything
975 		 */
976 		ret = 0;
977 		goto err;
978 	}
979 	/*
980 	 * the buddy cache inode stores the block bitmap
981 	 * and buddy information in consecutive blocks.
982 	 * So for each group we need two blocks.
983 	 */
984 	block = group * 2;
985 	pnum = block / blocks_per_page;
986 	poff = block % blocks_per_page;
987 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
988 	if (page) {
989 		BUG_ON(page->mapping != inode->i_mapping);
990 		ret = ext4_mb_init_cache(page, NULL);
991 		if (ret) {
992 			unlock_page(page);
993 			goto err;
994 		}
995 		unlock_page(page);
996 	}
997 	if (page == NULL || !PageUptodate(page)) {
998 		ret = -EIO;
999 		goto err;
1000 	}
1001 	mark_page_accessed(page);
1002 	bitmap_page = page;
1003 	bitmap = page_address(page) + (poff * sb->s_blocksize);
1004 
1005 	/* init buddy cache */
1006 	block++;
1007 	pnum = block / blocks_per_page;
1008 	poff = block % blocks_per_page;
1009 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1010 	if (page == bitmap_page) {
1011 		/*
1012 		 * If both the bitmap and buddy are in
1013 		 * the same page we don't need to force
1014 		 * init the buddy
1015 		 */
1016 		unlock_page(page);
1017 	} else if (page) {
1018 		BUG_ON(page->mapping != inode->i_mapping);
1019 		ret = ext4_mb_init_cache(page, bitmap);
1020 		if (ret) {
1021 			unlock_page(page);
1022 			goto err;
1023 		}
1024 		unlock_page(page);
1025 	}
1026 	if (page == NULL || !PageUptodate(page)) {
1027 		ret = -EIO;
1028 		goto err;
1029 	}
1030 	mark_page_accessed(page);
1031 err:
1032 	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1033 	if (bitmap_page)
1034 		page_cache_release(bitmap_page);
1035 	if (page)
1036 		page_cache_release(page);
1037 	return ret;
1038 }
1039 
1040 /*
1041  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1042  * block group lock of all groups for this page; do not hold the BG lock when
1043  * calling this routine!
1044  */
1045 static noinline_for_stack int
1046 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1047 					struct ext4_buddy *e4b)
1048 {
1049 	int blocks_per_page;
1050 	int block;
1051 	int pnum;
1052 	int poff;
1053 	struct page *page;
1054 	int ret;
1055 	struct ext4_group_info *grp;
1056 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1057 	struct inode *inode = sbi->s_buddy_cache;
1058 
1059 	mb_debug(1, "load group %u\n", group);
1060 
1061 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1062 	grp = ext4_get_group_info(sb, group);
1063 
1064 	e4b->bd_blkbits = sb->s_blocksize_bits;
1065 	e4b->bd_info = ext4_get_group_info(sb, group);
1066 	e4b->bd_sb = sb;
1067 	e4b->bd_group = group;
1068 	e4b->bd_buddy_page = NULL;
1069 	e4b->bd_bitmap_page = NULL;
1070 	e4b->alloc_semp = &grp->alloc_sem;
1071 
1072 	/* Take the read lock on the group alloc
1073 	 * sem. This would make sure a parallel
1074 	 * ext4_mb_init_group happening on other
1075 	 * groups mapped by the page is blocked
1076 	 * till we are done with allocation
1077 	 */
1078 repeat_load_buddy:
1079 	down_read(e4b->alloc_semp);
1080 
1081 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1082 		/* we need to check for group need init flag
1083 		 * with alloc_semp held so that we can be sure
1084 		 * that new blocks didn't get added to the group
1085 		 * when we are loading the buddy cache
1086 		 */
1087 		up_read(e4b->alloc_semp);
1088 		/*
1089 		 * we need full data about the group
1090 		 * to make a good selection
1091 		 */
1092 		ret = ext4_mb_init_group(sb, group);
1093 		if (ret)
1094 			return ret;
1095 		goto repeat_load_buddy;
1096 	}
1097 
1098 	/*
1099 	 * the buddy cache inode stores the block bitmap
1100 	 * and buddy information in consecutive blocks.
1101 	 * So for each group we need two blocks.
1102 	 */
1103 	block = group * 2;
1104 	pnum = block / blocks_per_page;
1105 	poff = block % blocks_per_page;
1106 
1107 	/* we could use find_or_create_page(), but it locks page
1108 	 * what we'd like to avoid in fast path ... */
1109 	page = find_get_page(inode->i_mapping, pnum);
1110 	if (page == NULL || !PageUptodate(page)) {
1111 		if (page)
1112 			/*
1113 			 * drop the page reference and try
1114 			 * to get the page with lock. If we
1115 			 * are not uptodate that implies
1116 			 * somebody just created the page but
1117 			 * is yet to initialize the same. So
1118 			 * wait for it to initialize.
1119 			 */
1120 			page_cache_release(page);
1121 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1122 		if (page) {
1123 			BUG_ON(page->mapping != inode->i_mapping);
1124 			if (!PageUptodate(page)) {
1125 				ret = ext4_mb_init_cache(page, NULL);
1126 				if (ret) {
1127 					unlock_page(page);
1128 					goto err;
1129 				}
1130 				mb_cmp_bitmaps(e4b, page_address(page) +
1131 					       (poff * sb->s_blocksize));
1132 			}
1133 			unlock_page(page);
1134 		}
1135 	}
1136 	if (page == NULL || !PageUptodate(page)) {
1137 		ret = -EIO;
1138 		goto err;
1139 	}
1140 	e4b->bd_bitmap_page = page;
1141 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1142 	mark_page_accessed(page);
1143 
1144 	block++;
1145 	pnum = block / blocks_per_page;
1146 	poff = block % blocks_per_page;
1147 
1148 	page = find_get_page(inode->i_mapping, pnum);
1149 	if (page == NULL || !PageUptodate(page)) {
1150 		if (page)
1151 			page_cache_release(page);
1152 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1153 		if (page) {
1154 			BUG_ON(page->mapping != inode->i_mapping);
1155 			if (!PageUptodate(page)) {
1156 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1157 				if (ret) {
1158 					unlock_page(page);
1159 					goto err;
1160 				}
1161 			}
1162 			unlock_page(page);
1163 		}
1164 	}
1165 	if (page == NULL || !PageUptodate(page)) {
1166 		ret = -EIO;
1167 		goto err;
1168 	}
1169 	e4b->bd_buddy_page = page;
1170 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1171 	mark_page_accessed(page);
1172 
1173 	BUG_ON(e4b->bd_bitmap_page == NULL);
1174 	BUG_ON(e4b->bd_buddy_page == NULL);
1175 
1176 	return 0;
1177 
1178 err:
1179 	if (e4b->bd_bitmap_page)
1180 		page_cache_release(e4b->bd_bitmap_page);
1181 	if (e4b->bd_buddy_page)
1182 		page_cache_release(e4b->bd_buddy_page);
1183 	e4b->bd_buddy = NULL;
1184 	e4b->bd_bitmap = NULL;
1185 
1186 	/* Done with the buddy cache */
1187 	up_read(e4b->alloc_semp);
1188 	return ret;
1189 }
1190 
1191 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1192 {
1193 	if (e4b->bd_bitmap_page)
1194 		page_cache_release(e4b->bd_bitmap_page);
1195 	if (e4b->bd_buddy_page)
1196 		page_cache_release(e4b->bd_buddy_page);
1197 	/* Done with the buddy cache */
1198 	if (e4b->alloc_semp)
1199 		up_read(e4b->alloc_semp);
1200 }
1201 
1202 
1203 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1204 {
1205 	int order = 1;
1206 	void *bb;
1207 
1208 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1209 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1210 
1211 	bb = EXT4_MB_BUDDY(e4b);
1212 	while (order <= e4b->bd_blkbits + 1) {
1213 		block = block >> 1;
1214 		if (!mb_test_bit(block, bb)) {
1215 			/* this block is part of buddy of order 'order' */
1216 			return order;
1217 		}
1218 		bb += 1 << (e4b->bd_blkbits - order);
1219 		order++;
1220 	}
1221 	return 0;
1222 }
1223 
1224 static void mb_clear_bits(void *bm, int cur, int len)
1225 {
1226 	__u32 *addr;
1227 
1228 	len = cur + len;
1229 	while (cur < len) {
1230 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1231 			/* fast path: clear whole word at once */
1232 			addr = bm + (cur >> 3);
1233 			*addr = 0;
1234 			cur += 32;
1235 			continue;
1236 		}
1237 		mb_clear_bit(cur, bm);
1238 		cur++;
1239 	}
1240 }
1241 
1242 static void mb_set_bits(void *bm, int cur, int len)
1243 {
1244 	__u32 *addr;
1245 
1246 	len = cur + len;
1247 	while (cur < len) {
1248 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1249 			/* fast path: set whole word at once */
1250 			addr = bm + (cur >> 3);
1251 			*addr = 0xffffffff;
1252 			cur += 32;
1253 			continue;
1254 		}
1255 		mb_set_bit(cur, bm);
1256 		cur++;
1257 	}
1258 }
1259 
1260 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1261 			  int first, int count)
1262 {
1263 	int block = 0;
1264 	int max = 0;
1265 	int order;
1266 	void *buddy;
1267 	void *buddy2;
1268 	struct super_block *sb = e4b->bd_sb;
1269 
1270 	BUG_ON(first + count > (sb->s_blocksize << 3));
1271 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1272 	mb_check_buddy(e4b);
1273 	mb_free_blocks_double(inode, e4b, first, count);
1274 
1275 	e4b->bd_info->bb_free += count;
1276 	if (first < e4b->bd_info->bb_first_free)
1277 		e4b->bd_info->bb_first_free = first;
1278 
1279 	/* let's maintain fragments counter */
1280 	if (first != 0)
1281 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1282 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1283 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1284 	if (block && max)
1285 		e4b->bd_info->bb_fragments--;
1286 	else if (!block && !max)
1287 		e4b->bd_info->bb_fragments++;
1288 
1289 	/* let's maintain buddy itself */
1290 	while (count-- > 0) {
1291 		block = first++;
1292 		order = 0;
1293 
1294 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1295 			ext4_fsblk_t blocknr;
1296 
1297 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1298 			blocknr += block;
1299 			ext4_grp_locked_error(sb, e4b->bd_group,
1300 					      inode ? inode->i_ino : 0,
1301 					      blocknr,
1302 					      "freeing already freed block "
1303 					      "(bit %u)", block);
1304 		}
1305 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1306 		e4b->bd_info->bb_counters[order]++;
1307 
1308 		/* start of the buddy */
1309 		buddy = mb_find_buddy(e4b, order, &max);
1310 
1311 		do {
1312 			block &= ~1UL;
1313 			if (mb_test_bit(block, buddy) ||
1314 					mb_test_bit(block + 1, buddy))
1315 				break;
1316 
1317 			/* both the buddies are free, try to coalesce them */
1318 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1319 
1320 			if (!buddy2)
1321 				break;
1322 
1323 			if (order > 0) {
1324 				/* for special purposes, we don't set
1325 				 * free bits in bitmap */
1326 				mb_set_bit(block, buddy);
1327 				mb_set_bit(block + 1, buddy);
1328 			}
1329 			e4b->bd_info->bb_counters[order]--;
1330 			e4b->bd_info->bb_counters[order]--;
1331 
1332 			block = block >> 1;
1333 			order++;
1334 			e4b->bd_info->bb_counters[order]++;
1335 
1336 			mb_clear_bit(block, buddy2);
1337 			buddy = buddy2;
1338 		} while (1);
1339 	}
1340 	mb_set_largest_free_order(sb, e4b->bd_info);
1341 	mb_check_buddy(e4b);
1342 }
1343 
1344 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1345 				int needed, struct ext4_free_extent *ex)
1346 {
1347 	int next = block;
1348 	int max;
1349 	int ord;
1350 	void *buddy;
1351 
1352 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1353 	BUG_ON(ex == NULL);
1354 
1355 	buddy = mb_find_buddy(e4b, order, &max);
1356 	BUG_ON(buddy == NULL);
1357 	BUG_ON(block >= max);
1358 	if (mb_test_bit(block, buddy)) {
1359 		ex->fe_len = 0;
1360 		ex->fe_start = 0;
1361 		ex->fe_group = 0;
1362 		return 0;
1363 	}
1364 
1365 	/* FIXME dorp order completely ? */
1366 	if (likely(order == 0)) {
1367 		/* find actual order */
1368 		order = mb_find_order_for_block(e4b, block);
1369 		block = block >> order;
1370 	}
1371 
1372 	ex->fe_len = 1 << order;
1373 	ex->fe_start = block << order;
1374 	ex->fe_group = e4b->bd_group;
1375 
1376 	/* calc difference from given start */
1377 	next = next - ex->fe_start;
1378 	ex->fe_len -= next;
1379 	ex->fe_start += next;
1380 
1381 	while (needed > ex->fe_len &&
1382 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1383 
1384 		if (block + 1 >= max)
1385 			break;
1386 
1387 		next = (block + 1) * (1 << order);
1388 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1389 			break;
1390 
1391 		ord = mb_find_order_for_block(e4b, next);
1392 
1393 		order = ord;
1394 		block = next >> order;
1395 		ex->fe_len += 1 << order;
1396 	}
1397 
1398 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1399 	return ex->fe_len;
1400 }
1401 
1402 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1403 {
1404 	int ord;
1405 	int mlen = 0;
1406 	int max = 0;
1407 	int cur;
1408 	int start = ex->fe_start;
1409 	int len = ex->fe_len;
1410 	unsigned ret = 0;
1411 	int len0 = len;
1412 	void *buddy;
1413 
1414 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1415 	BUG_ON(e4b->bd_group != ex->fe_group);
1416 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1417 	mb_check_buddy(e4b);
1418 	mb_mark_used_double(e4b, start, len);
1419 
1420 	e4b->bd_info->bb_free -= len;
1421 	if (e4b->bd_info->bb_first_free == start)
1422 		e4b->bd_info->bb_first_free += len;
1423 
1424 	/* let's maintain fragments counter */
1425 	if (start != 0)
1426 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1427 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1428 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1429 	if (mlen && max)
1430 		e4b->bd_info->bb_fragments++;
1431 	else if (!mlen && !max)
1432 		e4b->bd_info->bb_fragments--;
1433 
1434 	/* let's maintain buddy itself */
1435 	while (len) {
1436 		ord = mb_find_order_for_block(e4b, start);
1437 
1438 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1439 			/* the whole chunk may be allocated at once! */
1440 			mlen = 1 << ord;
1441 			buddy = mb_find_buddy(e4b, ord, &max);
1442 			BUG_ON((start >> ord) >= max);
1443 			mb_set_bit(start >> ord, buddy);
1444 			e4b->bd_info->bb_counters[ord]--;
1445 			start += mlen;
1446 			len -= mlen;
1447 			BUG_ON(len < 0);
1448 			continue;
1449 		}
1450 
1451 		/* store for history */
1452 		if (ret == 0)
1453 			ret = len | (ord << 16);
1454 
1455 		/* we have to split large buddy */
1456 		BUG_ON(ord <= 0);
1457 		buddy = mb_find_buddy(e4b, ord, &max);
1458 		mb_set_bit(start >> ord, buddy);
1459 		e4b->bd_info->bb_counters[ord]--;
1460 
1461 		ord--;
1462 		cur = (start >> ord) & ~1U;
1463 		buddy = mb_find_buddy(e4b, ord, &max);
1464 		mb_clear_bit(cur, buddy);
1465 		mb_clear_bit(cur + 1, buddy);
1466 		e4b->bd_info->bb_counters[ord]++;
1467 		e4b->bd_info->bb_counters[ord]++;
1468 	}
1469 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1470 
1471 	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1472 	mb_check_buddy(e4b);
1473 
1474 	return ret;
1475 }
1476 
1477 /*
1478  * Must be called under group lock!
1479  */
1480 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1481 					struct ext4_buddy *e4b)
1482 {
1483 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1484 	int ret;
1485 
1486 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1487 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1488 
1489 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1490 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1491 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1492 
1493 	/* preallocation can change ac_b_ex, thus we store actually
1494 	 * allocated blocks for history */
1495 	ac->ac_f_ex = ac->ac_b_ex;
1496 
1497 	ac->ac_status = AC_STATUS_FOUND;
1498 	ac->ac_tail = ret & 0xffff;
1499 	ac->ac_buddy = ret >> 16;
1500 
1501 	/*
1502 	 * take the page reference. We want the page to be pinned
1503 	 * so that we don't get a ext4_mb_init_cache_call for this
1504 	 * group until we update the bitmap. That would mean we
1505 	 * double allocate blocks. The reference is dropped
1506 	 * in ext4_mb_release_context
1507 	 */
1508 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1509 	get_page(ac->ac_bitmap_page);
1510 	ac->ac_buddy_page = e4b->bd_buddy_page;
1511 	get_page(ac->ac_buddy_page);
1512 	/* on allocation we use ac to track the held semaphore */
1513 	ac->alloc_semp =  e4b->alloc_semp;
1514 	e4b->alloc_semp = NULL;
1515 	/* store last allocated for subsequent stream allocation */
1516 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1517 		spin_lock(&sbi->s_md_lock);
1518 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1519 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1520 		spin_unlock(&sbi->s_md_lock);
1521 	}
1522 }
1523 
1524 /*
1525  * regular allocator, for general purposes allocation
1526  */
1527 
1528 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1529 					struct ext4_buddy *e4b,
1530 					int finish_group)
1531 {
1532 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1533 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1534 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1535 	struct ext4_free_extent ex;
1536 	int max;
1537 
1538 	if (ac->ac_status == AC_STATUS_FOUND)
1539 		return;
1540 	/*
1541 	 * We don't want to scan for a whole year
1542 	 */
1543 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1544 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1545 		ac->ac_status = AC_STATUS_BREAK;
1546 		return;
1547 	}
1548 
1549 	/*
1550 	 * Haven't found good chunk so far, let's continue
1551 	 */
1552 	if (bex->fe_len < gex->fe_len)
1553 		return;
1554 
1555 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1556 			&& bex->fe_group == e4b->bd_group) {
1557 		/* recheck chunk's availability - we don't know
1558 		 * when it was found (within this lock-unlock
1559 		 * period or not) */
1560 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1561 		if (max >= gex->fe_len) {
1562 			ext4_mb_use_best_found(ac, e4b);
1563 			return;
1564 		}
1565 	}
1566 }
1567 
1568 /*
1569  * The routine checks whether found extent is good enough. If it is,
1570  * then the extent gets marked used and flag is set to the context
1571  * to stop scanning. Otherwise, the extent is compared with the
1572  * previous found extent and if new one is better, then it's stored
1573  * in the context. Later, the best found extent will be used, if
1574  * mballoc can't find good enough extent.
1575  *
1576  * FIXME: real allocation policy is to be designed yet!
1577  */
1578 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1579 					struct ext4_free_extent *ex,
1580 					struct ext4_buddy *e4b)
1581 {
1582 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1583 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1584 
1585 	BUG_ON(ex->fe_len <= 0);
1586 	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1587 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1588 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1589 
1590 	ac->ac_found++;
1591 
1592 	/*
1593 	 * The special case - take what you catch first
1594 	 */
1595 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1596 		*bex = *ex;
1597 		ext4_mb_use_best_found(ac, e4b);
1598 		return;
1599 	}
1600 
1601 	/*
1602 	 * Let's check whether the chuck is good enough
1603 	 */
1604 	if (ex->fe_len == gex->fe_len) {
1605 		*bex = *ex;
1606 		ext4_mb_use_best_found(ac, e4b);
1607 		return;
1608 	}
1609 
1610 	/*
1611 	 * If this is first found extent, just store it in the context
1612 	 */
1613 	if (bex->fe_len == 0) {
1614 		*bex = *ex;
1615 		return;
1616 	}
1617 
1618 	/*
1619 	 * If new found extent is better, store it in the context
1620 	 */
1621 	if (bex->fe_len < gex->fe_len) {
1622 		/* if the request isn't satisfied, any found extent
1623 		 * larger than previous best one is better */
1624 		if (ex->fe_len > bex->fe_len)
1625 			*bex = *ex;
1626 	} else if (ex->fe_len > gex->fe_len) {
1627 		/* if the request is satisfied, then we try to find
1628 		 * an extent that still satisfy the request, but is
1629 		 * smaller than previous one */
1630 		if (ex->fe_len < bex->fe_len)
1631 			*bex = *ex;
1632 	}
1633 
1634 	ext4_mb_check_limits(ac, e4b, 0);
1635 }
1636 
1637 static noinline_for_stack
1638 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1639 					struct ext4_buddy *e4b)
1640 {
1641 	struct ext4_free_extent ex = ac->ac_b_ex;
1642 	ext4_group_t group = ex.fe_group;
1643 	int max;
1644 	int err;
1645 
1646 	BUG_ON(ex.fe_len <= 0);
1647 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1648 	if (err)
1649 		return err;
1650 
1651 	ext4_lock_group(ac->ac_sb, group);
1652 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1653 
1654 	if (max > 0) {
1655 		ac->ac_b_ex = ex;
1656 		ext4_mb_use_best_found(ac, e4b);
1657 	}
1658 
1659 	ext4_unlock_group(ac->ac_sb, group);
1660 	ext4_mb_unload_buddy(e4b);
1661 
1662 	return 0;
1663 }
1664 
1665 static noinline_for_stack
1666 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1667 				struct ext4_buddy *e4b)
1668 {
1669 	ext4_group_t group = ac->ac_g_ex.fe_group;
1670 	int max;
1671 	int err;
1672 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1673 	struct ext4_free_extent ex;
1674 
1675 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1676 		return 0;
1677 
1678 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1679 	if (err)
1680 		return err;
1681 
1682 	ext4_lock_group(ac->ac_sb, group);
1683 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1684 			     ac->ac_g_ex.fe_len, &ex);
1685 
1686 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1687 		ext4_fsblk_t start;
1688 
1689 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1690 			ex.fe_start;
1691 		/* use do_div to get remainder (would be 64-bit modulo) */
1692 		if (do_div(start, sbi->s_stripe) == 0) {
1693 			ac->ac_found++;
1694 			ac->ac_b_ex = ex;
1695 			ext4_mb_use_best_found(ac, e4b);
1696 		}
1697 	} else if (max >= ac->ac_g_ex.fe_len) {
1698 		BUG_ON(ex.fe_len <= 0);
1699 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1700 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1701 		ac->ac_found++;
1702 		ac->ac_b_ex = ex;
1703 		ext4_mb_use_best_found(ac, e4b);
1704 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1705 		/* Sometimes, caller may want to merge even small
1706 		 * number of blocks to an existing extent */
1707 		BUG_ON(ex.fe_len <= 0);
1708 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1709 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1710 		ac->ac_found++;
1711 		ac->ac_b_ex = ex;
1712 		ext4_mb_use_best_found(ac, e4b);
1713 	}
1714 	ext4_unlock_group(ac->ac_sb, group);
1715 	ext4_mb_unload_buddy(e4b);
1716 
1717 	return 0;
1718 }
1719 
1720 /*
1721  * The routine scans buddy structures (not bitmap!) from given order
1722  * to max order and tries to find big enough chunk to satisfy the req
1723  */
1724 static noinline_for_stack
1725 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1726 					struct ext4_buddy *e4b)
1727 {
1728 	struct super_block *sb = ac->ac_sb;
1729 	struct ext4_group_info *grp = e4b->bd_info;
1730 	void *buddy;
1731 	int i;
1732 	int k;
1733 	int max;
1734 
1735 	BUG_ON(ac->ac_2order <= 0);
1736 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1737 		if (grp->bb_counters[i] == 0)
1738 			continue;
1739 
1740 		buddy = mb_find_buddy(e4b, i, &max);
1741 		BUG_ON(buddy == NULL);
1742 
1743 		k = mb_find_next_zero_bit(buddy, max, 0);
1744 		BUG_ON(k >= max);
1745 
1746 		ac->ac_found++;
1747 
1748 		ac->ac_b_ex.fe_len = 1 << i;
1749 		ac->ac_b_ex.fe_start = k << i;
1750 		ac->ac_b_ex.fe_group = e4b->bd_group;
1751 
1752 		ext4_mb_use_best_found(ac, e4b);
1753 
1754 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1755 
1756 		if (EXT4_SB(sb)->s_mb_stats)
1757 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1758 
1759 		break;
1760 	}
1761 }
1762 
1763 /*
1764  * The routine scans the group and measures all found extents.
1765  * In order to optimize scanning, caller must pass number of
1766  * free blocks in the group, so the routine can know upper limit.
1767  */
1768 static noinline_for_stack
1769 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1770 					struct ext4_buddy *e4b)
1771 {
1772 	struct super_block *sb = ac->ac_sb;
1773 	void *bitmap = EXT4_MB_BITMAP(e4b);
1774 	struct ext4_free_extent ex;
1775 	int i;
1776 	int free;
1777 
1778 	free = e4b->bd_info->bb_free;
1779 	BUG_ON(free <= 0);
1780 
1781 	i = e4b->bd_info->bb_first_free;
1782 
1783 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1784 		i = mb_find_next_zero_bit(bitmap,
1785 						EXT4_BLOCKS_PER_GROUP(sb), i);
1786 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1787 			/*
1788 			 * IF we have corrupt bitmap, we won't find any
1789 			 * free blocks even though group info says we
1790 			 * we have free blocks
1791 			 */
1792 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1793 					"%d free blocks as per "
1794 					"group info. But bitmap says 0",
1795 					free);
1796 			break;
1797 		}
1798 
1799 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1800 		BUG_ON(ex.fe_len <= 0);
1801 		if (free < ex.fe_len) {
1802 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1803 					"%d free blocks as per "
1804 					"group info. But got %d blocks",
1805 					free, ex.fe_len);
1806 			/*
1807 			 * The number of free blocks differs. This mostly
1808 			 * indicate that the bitmap is corrupt. So exit
1809 			 * without claiming the space.
1810 			 */
1811 			break;
1812 		}
1813 
1814 		ext4_mb_measure_extent(ac, &ex, e4b);
1815 
1816 		i += ex.fe_len;
1817 		free -= ex.fe_len;
1818 	}
1819 
1820 	ext4_mb_check_limits(ac, e4b, 1);
1821 }
1822 
1823 /*
1824  * This is a special case for storages like raid5
1825  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1826  */
1827 static noinline_for_stack
1828 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1829 				 struct ext4_buddy *e4b)
1830 {
1831 	struct super_block *sb = ac->ac_sb;
1832 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1833 	void *bitmap = EXT4_MB_BITMAP(e4b);
1834 	struct ext4_free_extent ex;
1835 	ext4_fsblk_t first_group_block;
1836 	ext4_fsblk_t a;
1837 	ext4_grpblk_t i;
1838 	int max;
1839 
1840 	BUG_ON(sbi->s_stripe == 0);
1841 
1842 	/* find first stripe-aligned block in group */
1843 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1844 
1845 	a = first_group_block + sbi->s_stripe - 1;
1846 	do_div(a, sbi->s_stripe);
1847 	i = (a * sbi->s_stripe) - first_group_block;
1848 
1849 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1850 		if (!mb_test_bit(i, bitmap)) {
1851 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1852 			if (max >= sbi->s_stripe) {
1853 				ac->ac_found++;
1854 				ac->ac_b_ex = ex;
1855 				ext4_mb_use_best_found(ac, e4b);
1856 				break;
1857 			}
1858 		}
1859 		i += sbi->s_stripe;
1860 	}
1861 }
1862 
1863 /* This is now called BEFORE we load the buddy bitmap. */
1864 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1865 				ext4_group_t group, int cr)
1866 {
1867 	unsigned free, fragments;
1868 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1869 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1870 
1871 	BUG_ON(cr < 0 || cr >= 4);
1872 
1873 	/* We only do this if the grp has never been initialized */
1874 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1875 		int ret = ext4_mb_init_group(ac->ac_sb, group);
1876 		if (ret)
1877 			return 0;
1878 	}
1879 
1880 	free = grp->bb_free;
1881 	fragments = grp->bb_fragments;
1882 	if (free == 0)
1883 		return 0;
1884 	if (fragments == 0)
1885 		return 0;
1886 
1887 	switch (cr) {
1888 	case 0:
1889 		BUG_ON(ac->ac_2order == 0);
1890 
1891 		if (grp->bb_largest_free_order < ac->ac_2order)
1892 			return 0;
1893 
1894 		/* Avoid using the first bg of a flexgroup for data files */
1895 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1896 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1897 		    ((group % flex_size) == 0))
1898 			return 0;
1899 
1900 		return 1;
1901 	case 1:
1902 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1903 			return 1;
1904 		break;
1905 	case 2:
1906 		if (free >= ac->ac_g_ex.fe_len)
1907 			return 1;
1908 		break;
1909 	case 3:
1910 		return 1;
1911 	default:
1912 		BUG();
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 /*
1919  * lock the group_info alloc_sem of all the groups
1920  * belonging to the same buddy cache page. This
1921  * make sure other parallel operation on the buddy
1922  * cache doesn't happen  whild holding the buddy cache
1923  * lock
1924  */
1925 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1926 {
1927 	int i;
1928 	int block, pnum;
1929 	int blocks_per_page;
1930 	int groups_per_page;
1931 	ext4_group_t ngroups = ext4_get_groups_count(sb);
1932 	ext4_group_t first_group;
1933 	struct ext4_group_info *grp;
1934 
1935 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1936 	/*
1937 	 * the buddy cache inode stores the block bitmap
1938 	 * and buddy information in consecutive blocks.
1939 	 * So for each group we need two blocks.
1940 	 */
1941 	block = group * 2;
1942 	pnum = block / blocks_per_page;
1943 	first_group = pnum * blocks_per_page / 2;
1944 
1945 	groups_per_page = blocks_per_page >> 1;
1946 	if (groups_per_page == 0)
1947 		groups_per_page = 1;
1948 	/* read all groups the page covers into the cache */
1949 	for (i = 0; i < groups_per_page; i++) {
1950 
1951 		if ((first_group + i) >= ngroups)
1952 			break;
1953 		grp = ext4_get_group_info(sb, first_group + i);
1954 		/* take all groups write allocation
1955 		 * semaphore. This make sure there is
1956 		 * no block allocation going on in any
1957 		 * of that groups
1958 		 */
1959 		down_write_nested(&grp->alloc_sem, i);
1960 	}
1961 	return i;
1962 }
1963 
1964 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1965 					ext4_group_t group, int locked_group)
1966 {
1967 	int i;
1968 	int block, pnum;
1969 	int blocks_per_page;
1970 	ext4_group_t first_group;
1971 	struct ext4_group_info *grp;
1972 
1973 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1974 	/*
1975 	 * the buddy cache inode stores the block bitmap
1976 	 * and buddy information in consecutive blocks.
1977 	 * So for each group we need two blocks.
1978 	 */
1979 	block = group * 2;
1980 	pnum = block / blocks_per_page;
1981 	first_group = pnum * blocks_per_page / 2;
1982 	/* release locks on all the groups */
1983 	for (i = 0; i < locked_group; i++) {
1984 
1985 		grp = ext4_get_group_info(sb, first_group + i);
1986 		/* take all groups write allocation
1987 		 * semaphore. This make sure there is
1988 		 * no block allocation going on in any
1989 		 * of that groups
1990 		 */
1991 		up_write(&grp->alloc_sem);
1992 	}
1993 
1994 }
1995 
1996 static noinline_for_stack int
1997 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1998 {
1999 	ext4_group_t ngroups, group, i;
2000 	int cr;
2001 	int err = 0;
2002 	struct ext4_sb_info *sbi;
2003 	struct super_block *sb;
2004 	struct ext4_buddy e4b;
2005 
2006 	sb = ac->ac_sb;
2007 	sbi = EXT4_SB(sb);
2008 	ngroups = ext4_get_groups_count(sb);
2009 	/* non-extent files are limited to low blocks/groups */
2010 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2011 		ngroups = sbi->s_blockfile_groups;
2012 
2013 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2014 
2015 	/* first, try the goal */
2016 	err = ext4_mb_find_by_goal(ac, &e4b);
2017 	if (err || ac->ac_status == AC_STATUS_FOUND)
2018 		goto out;
2019 
2020 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2021 		goto out;
2022 
2023 	/*
2024 	 * ac->ac2_order is set only if the fe_len is a power of 2
2025 	 * if ac2_order is set we also set criteria to 0 so that we
2026 	 * try exact allocation using buddy.
2027 	 */
2028 	i = fls(ac->ac_g_ex.fe_len);
2029 	ac->ac_2order = 0;
2030 	/*
2031 	 * We search using buddy data only if the order of the request
2032 	 * is greater than equal to the sbi_s_mb_order2_reqs
2033 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2034 	 */
2035 	if (i >= sbi->s_mb_order2_reqs) {
2036 		/*
2037 		 * This should tell if fe_len is exactly power of 2
2038 		 */
2039 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2040 			ac->ac_2order = i - 1;
2041 	}
2042 
2043 	/* if stream allocation is enabled, use global goal */
2044 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2045 		/* TBD: may be hot point */
2046 		spin_lock(&sbi->s_md_lock);
2047 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2048 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2049 		spin_unlock(&sbi->s_md_lock);
2050 	}
2051 
2052 	/* Let's just scan groups to find more-less suitable blocks */
2053 	cr = ac->ac_2order ? 0 : 1;
2054 	/*
2055 	 * cr == 0 try to get exact allocation,
2056 	 * cr == 3  try to get anything
2057 	 */
2058 repeat:
2059 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2060 		ac->ac_criteria = cr;
2061 		/*
2062 		 * searching for the right group start
2063 		 * from the goal value specified
2064 		 */
2065 		group = ac->ac_g_ex.fe_group;
2066 
2067 		for (i = 0; i < ngroups; group++, i++) {
2068 			if (group == ngroups)
2069 				group = 0;
2070 
2071 			/* This now checks without needing the buddy page */
2072 			if (!ext4_mb_good_group(ac, group, cr))
2073 				continue;
2074 
2075 			err = ext4_mb_load_buddy(sb, group, &e4b);
2076 			if (err)
2077 				goto out;
2078 
2079 			ext4_lock_group(sb, group);
2080 
2081 			/*
2082 			 * We need to check again after locking the
2083 			 * block group
2084 			 */
2085 			if (!ext4_mb_good_group(ac, group, cr)) {
2086 				ext4_unlock_group(sb, group);
2087 				ext4_mb_unload_buddy(&e4b);
2088 				continue;
2089 			}
2090 
2091 			ac->ac_groups_scanned++;
2092 			if (cr == 0)
2093 				ext4_mb_simple_scan_group(ac, &e4b);
2094 			else if (cr == 1 && sbi->s_stripe &&
2095 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2096 				ext4_mb_scan_aligned(ac, &e4b);
2097 			else
2098 				ext4_mb_complex_scan_group(ac, &e4b);
2099 
2100 			ext4_unlock_group(sb, group);
2101 			ext4_mb_unload_buddy(&e4b);
2102 
2103 			if (ac->ac_status != AC_STATUS_CONTINUE)
2104 				break;
2105 		}
2106 	}
2107 
2108 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2109 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2110 		/*
2111 		 * We've been searching too long. Let's try to allocate
2112 		 * the best chunk we've found so far
2113 		 */
2114 
2115 		ext4_mb_try_best_found(ac, &e4b);
2116 		if (ac->ac_status != AC_STATUS_FOUND) {
2117 			/*
2118 			 * Someone more lucky has already allocated it.
2119 			 * The only thing we can do is just take first
2120 			 * found block(s)
2121 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2122 			 */
2123 			ac->ac_b_ex.fe_group = 0;
2124 			ac->ac_b_ex.fe_start = 0;
2125 			ac->ac_b_ex.fe_len = 0;
2126 			ac->ac_status = AC_STATUS_CONTINUE;
2127 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2128 			cr = 3;
2129 			atomic_inc(&sbi->s_mb_lost_chunks);
2130 			goto repeat;
2131 		}
2132 	}
2133 out:
2134 	return err;
2135 }
2136 
2137 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2138 {
2139 	struct super_block *sb = seq->private;
2140 	ext4_group_t group;
2141 
2142 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2143 		return NULL;
2144 	group = *pos + 1;
2145 	return (void *) ((unsigned long) group);
2146 }
2147 
2148 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2149 {
2150 	struct super_block *sb = seq->private;
2151 	ext4_group_t group;
2152 
2153 	++*pos;
2154 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2155 		return NULL;
2156 	group = *pos + 1;
2157 	return (void *) ((unsigned long) group);
2158 }
2159 
2160 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2161 {
2162 	struct super_block *sb = seq->private;
2163 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2164 	int i;
2165 	int err;
2166 	struct ext4_buddy e4b;
2167 	struct sg {
2168 		struct ext4_group_info info;
2169 		ext4_grpblk_t counters[16];
2170 	} sg;
2171 
2172 	group--;
2173 	if (group == 0)
2174 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2175 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2176 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2177 			   "group", "free", "frags", "first",
2178 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2179 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2180 
2181 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2182 		sizeof(struct ext4_group_info);
2183 	err = ext4_mb_load_buddy(sb, group, &e4b);
2184 	if (err) {
2185 		seq_printf(seq, "#%-5u: I/O error\n", group);
2186 		return 0;
2187 	}
2188 	ext4_lock_group(sb, group);
2189 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2190 	ext4_unlock_group(sb, group);
2191 	ext4_mb_unload_buddy(&e4b);
2192 
2193 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2194 			sg.info.bb_fragments, sg.info.bb_first_free);
2195 	for (i = 0; i <= 13; i++)
2196 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2197 				sg.info.bb_counters[i] : 0);
2198 	seq_printf(seq, " ]\n");
2199 
2200 	return 0;
2201 }
2202 
2203 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2204 {
2205 }
2206 
2207 static const struct seq_operations ext4_mb_seq_groups_ops = {
2208 	.start  = ext4_mb_seq_groups_start,
2209 	.next   = ext4_mb_seq_groups_next,
2210 	.stop   = ext4_mb_seq_groups_stop,
2211 	.show   = ext4_mb_seq_groups_show,
2212 };
2213 
2214 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2215 {
2216 	struct super_block *sb = PDE(inode)->data;
2217 	int rc;
2218 
2219 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2220 	if (rc == 0) {
2221 		struct seq_file *m = file->private_data;
2222 		m->private = sb;
2223 	}
2224 	return rc;
2225 
2226 }
2227 
2228 static const struct file_operations ext4_mb_seq_groups_fops = {
2229 	.owner		= THIS_MODULE,
2230 	.open		= ext4_mb_seq_groups_open,
2231 	.read		= seq_read,
2232 	.llseek		= seq_lseek,
2233 	.release	= seq_release,
2234 };
2235 
2236 
2237 /* Create and initialize ext4_group_info data for the given group. */
2238 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2239 			  struct ext4_group_desc *desc)
2240 {
2241 	int i, len;
2242 	int metalen = 0;
2243 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2244 	struct ext4_group_info **meta_group_info;
2245 
2246 	/*
2247 	 * First check if this group is the first of a reserved block.
2248 	 * If it's true, we have to allocate a new table of pointers
2249 	 * to ext4_group_info structures
2250 	 */
2251 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2252 		metalen = sizeof(*meta_group_info) <<
2253 			EXT4_DESC_PER_BLOCK_BITS(sb);
2254 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2255 		if (meta_group_info == NULL) {
2256 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2257 			       "buddy group\n");
2258 			goto exit_meta_group_info;
2259 		}
2260 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2261 			meta_group_info;
2262 	}
2263 
2264 	/*
2265 	 * calculate needed size. if change bb_counters size,
2266 	 * don't forget about ext4_mb_generate_buddy()
2267 	 */
2268 	len = offsetof(typeof(**meta_group_info),
2269 		       bb_counters[sb->s_blocksize_bits + 2]);
2270 
2271 	meta_group_info =
2272 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2273 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2274 
2275 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2276 	if (meta_group_info[i] == NULL) {
2277 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2278 		goto exit_group_info;
2279 	}
2280 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2281 		&(meta_group_info[i]->bb_state));
2282 
2283 	/*
2284 	 * initialize bb_free to be able to skip
2285 	 * empty groups without initialization
2286 	 */
2287 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2288 		meta_group_info[i]->bb_free =
2289 			ext4_free_blocks_after_init(sb, group, desc);
2290 	} else {
2291 		meta_group_info[i]->bb_free =
2292 			ext4_free_blks_count(sb, desc);
2293 	}
2294 
2295 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2296 	init_rwsem(&meta_group_info[i]->alloc_sem);
2297 	meta_group_info[i]->bb_free_root = RB_ROOT;
2298 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2299 
2300 #ifdef DOUBLE_CHECK
2301 	{
2302 		struct buffer_head *bh;
2303 		meta_group_info[i]->bb_bitmap =
2304 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2305 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2306 		bh = ext4_read_block_bitmap(sb, group);
2307 		BUG_ON(bh == NULL);
2308 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2309 			sb->s_blocksize);
2310 		put_bh(bh);
2311 	}
2312 #endif
2313 
2314 	return 0;
2315 
2316 exit_group_info:
2317 	/* If a meta_group_info table has been allocated, release it now */
2318 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2319 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2320 exit_meta_group_info:
2321 	return -ENOMEM;
2322 } /* ext4_mb_add_groupinfo */
2323 
2324 static int ext4_mb_init_backend(struct super_block *sb)
2325 {
2326 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2327 	ext4_group_t i;
2328 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2329 	struct ext4_super_block *es = sbi->s_es;
2330 	int num_meta_group_infos;
2331 	int num_meta_group_infos_max;
2332 	int array_size;
2333 	struct ext4_group_desc *desc;
2334 
2335 	/* This is the number of blocks used by GDT */
2336 	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2337 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2338 
2339 	/*
2340 	 * This is the total number of blocks used by GDT including
2341 	 * the number of reserved blocks for GDT.
2342 	 * The s_group_info array is allocated with this value
2343 	 * to allow a clean online resize without a complex
2344 	 * manipulation of pointer.
2345 	 * The drawback is the unused memory when no resize
2346 	 * occurs but it's very low in terms of pages
2347 	 * (see comments below)
2348 	 * Need to handle this properly when META_BG resizing is allowed
2349 	 */
2350 	num_meta_group_infos_max = num_meta_group_infos +
2351 				le16_to_cpu(es->s_reserved_gdt_blocks);
2352 
2353 	/*
2354 	 * array_size is the size of s_group_info array. We round it
2355 	 * to the next power of two because this approximation is done
2356 	 * internally by kmalloc so we can have some more memory
2357 	 * for free here (e.g. may be used for META_BG resize).
2358 	 */
2359 	array_size = 1;
2360 	while (array_size < sizeof(*sbi->s_group_info) *
2361 	       num_meta_group_infos_max)
2362 		array_size = array_size << 1;
2363 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2364 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2365 	 * So a two level scheme suffices for now. */
2366 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2367 	if (sbi->s_group_info == NULL) {
2368 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2369 		return -ENOMEM;
2370 	}
2371 	sbi->s_buddy_cache = new_inode(sb);
2372 	if (sbi->s_buddy_cache == NULL) {
2373 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2374 		goto err_freesgi;
2375 	}
2376 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2377 	for (i = 0; i < ngroups; i++) {
2378 		desc = ext4_get_group_desc(sb, i, NULL);
2379 		if (desc == NULL) {
2380 			printk(KERN_ERR
2381 				"EXT4-fs: can't read descriptor %u\n", i);
2382 			goto err_freebuddy;
2383 		}
2384 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2385 			goto err_freebuddy;
2386 	}
2387 
2388 	return 0;
2389 
2390 err_freebuddy:
2391 	while (i-- > 0)
2392 		kfree(ext4_get_group_info(sb, i));
2393 	i = num_meta_group_infos;
2394 	while (i-- > 0)
2395 		kfree(sbi->s_group_info[i]);
2396 	iput(sbi->s_buddy_cache);
2397 err_freesgi:
2398 	kfree(sbi->s_group_info);
2399 	return -ENOMEM;
2400 }
2401 
2402 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2403 {
2404 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2405 	unsigned i, j;
2406 	unsigned offset;
2407 	unsigned max;
2408 	int ret;
2409 
2410 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2411 
2412 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2413 	if (sbi->s_mb_offsets == NULL) {
2414 		return -ENOMEM;
2415 	}
2416 
2417 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2418 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2419 	if (sbi->s_mb_maxs == NULL) {
2420 		kfree(sbi->s_mb_offsets);
2421 		return -ENOMEM;
2422 	}
2423 
2424 	/* order 0 is regular bitmap */
2425 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2426 	sbi->s_mb_offsets[0] = 0;
2427 
2428 	i = 1;
2429 	offset = 0;
2430 	max = sb->s_blocksize << 2;
2431 	do {
2432 		sbi->s_mb_offsets[i] = offset;
2433 		sbi->s_mb_maxs[i] = max;
2434 		offset += 1 << (sb->s_blocksize_bits - i);
2435 		max = max >> 1;
2436 		i++;
2437 	} while (i <= sb->s_blocksize_bits + 1);
2438 
2439 	/* init file for buddy data */
2440 	ret = ext4_mb_init_backend(sb);
2441 	if (ret != 0) {
2442 		kfree(sbi->s_mb_offsets);
2443 		kfree(sbi->s_mb_maxs);
2444 		return ret;
2445 	}
2446 
2447 	spin_lock_init(&sbi->s_md_lock);
2448 	spin_lock_init(&sbi->s_bal_lock);
2449 
2450 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2451 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2452 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2453 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2454 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2455 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2456 
2457 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2458 	if (sbi->s_locality_groups == NULL) {
2459 		kfree(sbi->s_mb_offsets);
2460 		kfree(sbi->s_mb_maxs);
2461 		return -ENOMEM;
2462 	}
2463 	for_each_possible_cpu(i) {
2464 		struct ext4_locality_group *lg;
2465 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2466 		mutex_init(&lg->lg_mutex);
2467 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2468 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2469 		spin_lock_init(&lg->lg_prealloc_lock);
2470 	}
2471 
2472 	if (sbi->s_proc)
2473 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2474 				 &ext4_mb_seq_groups_fops, sb);
2475 
2476 	if (sbi->s_journal)
2477 		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2478 	return 0;
2479 }
2480 
2481 /* need to called with the ext4 group lock held */
2482 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2483 {
2484 	struct ext4_prealloc_space *pa;
2485 	struct list_head *cur, *tmp;
2486 	int count = 0;
2487 
2488 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2489 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2490 		list_del(&pa->pa_group_list);
2491 		count++;
2492 		kmem_cache_free(ext4_pspace_cachep, pa);
2493 	}
2494 	if (count)
2495 		mb_debug(1, "mballoc: %u PAs left\n", count);
2496 
2497 }
2498 
2499 int ext4_mb_release(struct super_block *sb)
2500 {
2501 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2502 	ext4_group_t i;
2503 	int num_meta_group_infos;
2504 	struct ext4_group_info *grinfo;
2505 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2506 
2507 	if (sbi->s_group_info) {
2508 		for (i = 0; i < ngroups; i++) {
2509 			grinfo = ext4_get_group_info(sb, i);
2510 #ifdef DOUBLE_CHECK
2511 			kfree(grinfo->bb_bitmap);
2512 #endif
2513 			ext4_lock_group(sb, i);
2514 			ext4_mb_cleanup_pa(grinfo);
2515 			ext4_unlock_group(sb, i);
2516 			kfree(grinfo);
2517 		}
2518 		num_meta_group_infos = (ngroups +
2519 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2520 			EXT4_DESC_PER_BLOCK_BITS(sb);
2521 		for (i = 0; i < num_meta_group_infos; i++)
2522 			kfree(sbi->s_group_info[i]);
2523 		kfree(sbi->s_group_info);
2524 	}
2525 	kfree(sbi->s_mb_offsets);
2526 	kfree(sbi->s_mb_maxs);
2527 	if (sbi->s_buddy_cache)
2528 		iput(sbi->s_buddy_cache);
2529 	if (sbi->s_mb_stats) {
2530 		printk(KERN_INFO
2531 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2532 				atomic_read(&sbi->s_bal_allocated),
2533 				atomic_read(&sbi->s_bal_reqs),
2534 				atomic_read(&sbi->s_bal_success));
2535 		printk(KERN_INFO
2536 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2537 				"%u 2^N hits, %u breaks, %u lost\n",
2538 				atomic_read(&sbi->s_bal_ex_scanned),
2539 				atomic_read(&sbi->s_bal_goals),
2540 				atomic_read(&sbi->s_bal_2orders),
2541 				atomic_read(&sbi->s_bal_breaks),
2542 				atomic_read(&sbi->s_mb_lost_chunks));
2543 		printk(KERN_INFO
2544 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2545 				sbi->s_mb_buddies_generated++,
2546 				sbi->s_mb_generation_time);
2547 		printk(KERN_INFO
2548 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2549 				atomic_read(&sbi->s_mb_preallocated),
2550 				atomic_read(&sbi->s_mb_discarded));
2551 	}
2552 
2553 	free_percpu(sbi->s_locality_groups);
2554 	if (sbi->s_proc)
2555 		remove_proc_entry("mb_groups", sbi->s_proc);
2556 
2557 	return 0;
2558 }
2559 
2560 static inline void ext4_issue_discard(struct super_block *sb,
2561 		ext4_group_t block_group, ext4_grpblk_t block, int count)
2562 {
2563 	int ret;
2564 	ext4_fsblk_t discard_block;
2565 
2566 	discard_block = block + ext4_group_first_block_no(sb, block_group);
2567 	trace_ext4_discard_blocks(sb,
2568 			(unsigned long long) discard_block, count);
2569 	ret = sb_issue_discard(sb, discard_block, count);
2570 	if (ret == EOPNOTSUPP) {
2571 		ext4_warning(sb, "discard not supported, disabling");
2572 		clear_opt(EXT4_SB(sb)->s_mount_opt, DISCARD);
2573 	}
2574 }
2575 
2576 /*
2577  * This function is called by the jbd2 layer once the commit has finished,
2578  * so we know we can free the blocks that were released with that commit.
2579  */
2580 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2581 {
2582 	struct super_block *sb = journal->j_private;
2583 	struct ext4_buddy e4b;
2584 	struct ext4_group_info *db;
2585 	int err, count = 0, count2 = 0;
2586 	struct ext4_free_data *entry;
2587 	struct list_head *l, *ltmp;
2588 
2589 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
2590 		entry = list_entry(l, struct ext4_free_data, list);
2591 
2592 		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2593 			 entry->count, entry->group, entry);
2594 
2595 		if (test_opt(sb, DISCARD))
2596 			ext4_issue_discard(sb, entry->group,
2597 					entry->start_blk, entry->count);
2598 
2599 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2600 		/* we expect to find existing buddy because it's pinned */
2601 		BUG_ON(err != 0);
2602 
2603 		db = e4b.bd_info;
2604 		/* there are blocks to put in buddy to make them really free */
2605 		count += entry->count;
2606 		count2++;
2607 		ext4_lock_group(sb, entry->group);
2608 		/* Take it out of per group rb tree */
2609 		rb_erase(&entry->node, &(db->bb_free_root));
2610 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2611 
2612 		if (!db->bb_free_root.rb_node) {
2613 			/* No more items in the per group rb tree
2614 			 * balance refcounts from ext4_mb_free_metadata()
2615 			 */
2616 			page_cache_release(e4b.bd_buddy_page);
2617 			page_cache_release(e4b.bd_bitmap_page);
2618 		}
2619 		ext4_unlock_group(sb, entry->group);
2620 		kmem_cache_free(ext4_free_ext_cachep, entry);
2621 		ext4_mb_unload_buddy(&e4b);
2622 	}
2623 
2624 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2625 }
2626 
2627 #ifdef CONFIG_EXT4_DEBUG
2628 u8 mb_enable_debug __read_mostly;
2629 
2630 static struct dentry *debugfs_dir;
2631 static struct dentry *debugfs_debug;
2632 
2633 static void __init ext4_create_debugfs_entry(void)
2634 {
2635 	debugfs_dir = debugfs_create_dir("ext4", NULL);
2636 	if (debugfs_dir)
2637 		debugfs_debug = debugfs_create_u8("mballoc-debug",
2638 						  S_IRUGO | S_IWUSR,
2639 						  debugfs_dir,
2640 						  &mb_enable_debug);
2641 }
2642 
2643 static void ext4_remove_debugfs_entry(void)
2644 {
2645 	debugfs_remove(debugfs_debug);
2646 	debugfs_remove(debugfs_dir);
2647 }
2648 
2649 #else
2650 
2651 static void __init ext4_create_debugfs_entry(void)
2652 {
2653 }
2654 
2655 static void ext4_remove_debugfs_entry(void)
2656 {
2657 }
2658 
2659 #endif
2660 
2661 int __init init_ext4_mballoc(void)
2662 {
2663 	ext4_pspace_cachep =
2664 		kmem_cache_create("ext4_prealloc_space",
2665 				     sizeof(struct ext4_prealloc_space),
2666 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2667 	if (ext4_pspace_cachep == NULL)
2668 		return -ENOMEM;
2669 
2670 	ext4_ac_cachep =
2671 		kmem_cache_create("ext4_alloc_context",
2672 				     sizeof(struct ext4_allocation_context),
2673 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2674 	if (ext4_ac_cachep == NULL) {
2675 		kmem_cache_destroy(ext4_pspace_cachep);
2676 		return -ENOMEM;
2677 	}
2678 
2679 	ext4_free_ext_cachep =
2680 		kmem_cache_create("ext4_free_block_extents",
2681 				     sizeof(struct ext4_free_data),
2682 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2683 	if (ext4_free_ext_cachep == NULL) {
2684 		kmem_cache_destroy(ext4_pspace_cachep);
2685 		kmem_cache_destroy(ext4_ac_cachep);
2686 		return -ENOMEM;
2687 	}
2688 	ext4_create_debugfs_entry();
2689 	return 0;
2690 }
2691 
2692 void exit_ext4_mballoc(void)
2693 {
2694 	/*
2695 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2696 	 * before destroying the slab cache.
2697 	 */
2698 	rcu_barrier();
2699 	kmem_cache_destroy(ext4_pspace_cachep);
2700 	kmem_cache_destroy(ext4_ac_cachep);
2701 	kmem_cache_destroy(ext4_free_ext_cachep);
2702 	ext4_remove_debugfs_entry();
2703 }
2704 
2705 
2706 /*
2707  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2708  * Returns 0 if success or error code
2709  */
2710 static noinline_for_stack int
2711 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2712 				handle_t *handle, unsigned int reserv_blks)
2713 {
2714 	struct buffer_head *bitmap_bh = NULL;
2715 	struct ext4_group_desc *gdp;
2716 	struct buffer_head *gdp_bh;
2717 	struct ext4_sb_info *sbi;
2718 	struct super_block *sb;
2719 	ext4_fsblk_t block;
2720 	int err, len;
2721 
2722 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2723 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2724 
2725 	sb = ac->ac_sb;
2726 	sbi = EXT4_SB(sb);
2727 
2728 	err = -EIO;
2729 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2730 	if (!bitmap_bh)
2731 		goto out_err;
2732 
2733 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2734 	if (err)
2735 		goto out_err;
2736 
2737 	err = -EIO;
2738 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2739 	if (!gdp)
2740 		goto out_err;
2741 
2742 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2743 			ext4_free_blks_count(sb, gdp));
2744 
2745 	err = ext4_journal_get_write_access(handle, gdp_bh);
2746 	if (err)
2747 		goto out_err;
2748 
2749 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2750 
2751 	len = ac->ac_b_ex.fe_len;
2752 	if (!ext4_data_block_valid(sbi, block, len)) {
2753 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2754 			   "fs metadata\n", block, block+len);
2755 		/* File system mounted not to panic on error
2756 		 * Fix the bitmap and repeat the block allocation
2757 		 * We leak some of the blocks here.
2758 		 */
2759 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2760 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2761 			    ac->ac_b_ex.fe_len);
2762 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2763 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2764 		if (!err)
2765 			err = -EAGAIN;
2766 		goto out_err;
2767 	}
2768 
2769 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2770 #ifdef AGGRESSIVE_CHECK
2771 	{
2772 		int i;
2773 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2774 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2775 						bitmap_bh->b_data));
2776 		}
2777 	}
2778 #endif
2779 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2780 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2781 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2782 		ext4_free_blks_set(sb, gdp,
2783 					ext4_free_blocks_after_init(sb,
2784 					ac->ac_b_ex.fe_group, gdp));
2785 	}
2786 	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2787 	ext4_free_blks_set(sb, gdp, len);
2788 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2789 
2790 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2791 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2792 	/*
2793 	 * Now reduce the dirty block count also. Should not go negative
2794 	 */
2795 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2796 		/* release all the reserved blocks if non delalloc */
2797 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2798 
2799 	if (sbi->s_log_groups_per_flex) {
2800 		ext4_group_t flex_group = ext4_flex_group(sbi,
2801 							  ac->ac_b_ex.fe_group);
2802 		atomic_sub(ac->ac_b_ex.fe_len,
2803 			   &sbi->s_flex_groups[flex_group].free_blocks);
2804 	}
2805 
2806 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2807 	if (err)
2808 		goto out_err;
2809 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2810 
2811 out_err:
2812 	ext4_mark_super_dirty(sb);
2813 	brelse(bitmap_bh);
2814 	return err;
2815 }
2816 
2817 /*
2818  * here we normalize request for locality group
2819  * Group request are normalized to s_strip size if we set the same via mount
2820  * option. If not we set it to s_mb_group_prealloc which can be configured via
2821  * /sys/fs/ext4/<partition>/mb_group_prealloc
2822  *
2823  * XXX: should we try to preallocate more than the group has now?
2824  */
2825 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2826 {
2827 	struct super_block *sb = ac->ac_sb;
2828 	struct ext4_locality_group *lg = ac->ac_lg;
2829 
2830 	BUG_ON(lg == NULL);
2831 	if (EXT4_SB(sb)->s_stripe)
2832 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2833 	else
2834 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2835 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2836 		current->pid, ac->ac_g_ex.fe_len);
2837 }
2838 
2839 /*
2840  * Normalization means making request better in terms of
2841  * size and alignment
2842  */
2843 static noinline_for_stack void
2844 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2845 				struct ext4_allocation_request *ar)
2846 {
2847 	int bsbits, max;
2848 	ext4_lblk_t end;
2849 	loff_t size, orig_size, start_off;
2850 	ext4_lblk_t start;
2851 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2852 	struct ext4_prealloc_space *pa;
2853 
2854 	/* do normalize only data requests, metadata requests
2855 	   do not need preallocation */
2856 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2857 		return;
2858 
2859 	/* sometime caller may want exact blocks */
2860 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2861 		return;
2862 
2863 	/* caller may indicate that preallocation isn't
2864 	 * required (it's a tail, for example) */
2865 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2866 		return;
2867 
2868 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2869 		ext4_mb_normalize_group_request(ac);
2870 		return ;
2871 	}
2872 
2873 	bsbits = ac->ac_sb->s_blocksize_bits;
2874 
2875 	/* first, let's learn actual file size
2876 	 * given current request is allocated */
2877 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2878 	size = size << bsbits;
2879 	if (size < i_size_read(ac->ac_inode))
2880 		size = i_size_read(ac->ac_inode);
2881 	orig_size = size;
2882 
2883 	/* max size of free chunks */
2884 	max = 2 << bsbits;
2885 
2886 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
2887 		(req <= (size) || max <= (chunk_size))
2888 
2889 	/* first, try to predict filesize */
2890 	/* XXX: should this table be tunable? */
2891 	start_off = 0;
2892 	if (size <= 16 * 1024) {
2893 		size = 16 * 1024;
2894 	} else if (size <= 32 * 1024) {
2895 		size = 32 * 1024;
2896 	} else if (size <= 64 * 1024) {
2897 		size = 64 * 1024;
2898 	} else if (size <= 128 * 1024) {
2899 		size = 128 * 1024;
2900 	} else if (size <= 256 * 1024) {
2901 		size = 256 * 1024;
2902 	} else if (size <= 512 * 1024) {
2903 		size = 512 * 1024;
2904 	} else if (size <= 1024 * 1024) {
2905 		size = 1024 * 1024;
2906 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2907 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2908 						(21 - bsbits)) << 21;
2909 		size = 2 * 1024 * 1024;
2910 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2911 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2912 							(22 - bsbits)) << 22;
2913 		size = 4 * 1024 * 1024;
2914 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2915 					(8<<20)>>bsbits, max, 8 * 1024)) {
2916 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2917 							(23 - bsbits)) << 23;
2918 		size = 8 * 1024 * 1024;
2919 	} else {
2920 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2921 		size	  = ac->ac_o_ex.fe_len << bsbits;
2922 	}
2923 	size = size >> bsbits;
2924 	start = start_off >> bsbits;
2925 
2926 	/* don't cover already allocated blocks in selected range */
2927 	if (ar->pleft && start <= ar->lleft) {
2928 		size -= ar->lleft + 1 - start;
2929 		start = ar->lleft + 1;
2930 	}
2931 	if (ar->pright && start + size - 1 >= ar->lright)
2932 		size -= start + size - ar->lright;
2933 
2934 	end = start + size;
2935 
2936 	/* check we don't cross already preallocated blocks */
2937 	rcu_read_lock();
2938 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2939 		ext4_lblk_t pa_end;
2940 
2941 		if (pa->pa_deleted)
2942 			continue;
2943 		spin_lock(&pa->pa_lock);
2944 		if (pa->pa_deleted) {
2945 			spin_unlock(&pa->pa_lock);
2946 			continue;
2947 		}
2948 
2949 		pa_end = pa->pa_lstart + pa->pa_len;
2950 
2951 		/* PA must not overlap original request */
2952 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2953 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
2954 
2955 		/* skip PAs this normalized request doesn't overlap with */
2956 		if (pa->pa_lstart >= end || pa_end <= start) {
2957 			spin_unlock(&pa->pa_lock);
2958 			continue;
2959 		}
2960 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2961 
2962 		/* adjust start or end to be adjacent to this pa */
2963 		if (pa_end <= ac->ac_o_ex.fe_logical) {
2964 			BUG_ON(pa_end < start);
2965 			start = pa_end;
2966 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2967 			BUG_ON(pa->pa_lstart > end);
2968 			end = pa->pa_lstart;
2969 		}
2970 		spin_unlock(&pa->pa_lock);
2971 	}
2972 	rcu_read_unlock();
2973 	size = end - start;
2974 
2975 	/* XXX: extra loop to check we really don't overlap preallocations */
2976 	rcu_read_lock();
2977 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2978 		ext4_lblk_t pa_end;
2979 		spin_lock(&pa->pa_lock);
2980 		if (pa->pa_deleted == 0) {
2981 			pa_end = pa->pa_lstart + pa->pa_len;
2982 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2983 		}
2984 		spin_unlock(&pa->pa_lock);
2985 	}
2986 	rcu_read_unlock();
2987 
2988 	if (start + size <= ac->ac_o_ex.fe_logical &&
2989 			start > ac->ac_o_ex.fe_logical) {
2990 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
2991 			(unsigned long) start, (unsigned long) size,
2992 			(unsigned long) ac->ac_o_ex.fe_logical);
2993 	}
2994 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
2995 			start > ac->ac_o_ex.fe_logical);
2996 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
2997 
2998 	/* now prepare goal request */
2999 
3000 	/* XXX: is it better to align blocks WRT to logical
3001 	 * placement or satisfy big request as is */
3002 	ac->ac_g_ex.fe_logical = start;
3003 	ac->ac_g_ex.fe_len = size;
3004 
3005 	/* define goal start in order to merge */
3006 	if (ar->pright && (ar->lright == (start + size))) {
3007 		/* merge to the right */
3008 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3009 						&ac->ac_f_ex.fe_group,
3010 						&ac->ac_f_ex.fe_start);
3011 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3012 	}
3013 	if (ar->pleft && (ar->lleft + 1 == start)) {
3014 		/* merge to the left */
3015 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3016 						&ac->ac_f_ex.fe_group,
3017 						&ac->ac_f_ex.fe_start);
3018 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3019 	}
3020 
3021 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3022 		(unsigned) orig_size, (unsigned) start);
3023 }
3024 
3025 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3026 {
3027 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3028 
3029 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3030 		atomic_inc(&sbi->s_bal_reqs);
3031 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3032 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3033 			atomic_inc(&sbi->s_bal_success);
3034 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3035 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3036 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3037 			atomic_inc(&sbi->s_bal_goals);
3038 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3039 			atomic_inc(&sbi->s_bal_breaks);
3040 	}
3041 
3042 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3043 		trace_ext4_mballoc_alloc(ac);
3044 	else
3045 		trace_ext4_mballoc_prealloc(ac);
3046 }
3047 
3048 /*
3049  * Called on failure; free up any blocks from the inode PA for this
3050  * context.  We don't need this for MB_GROUP_PA because we only change
3051  * pa_free in ext4_mb_release_context(), but on failure, we've already
3052  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3053  */
3054 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3055 {
3056 	struct ext4_prealloc_space *pa = ac->ac_pa;
3057 	int len;
3058 
3059 	if (pa && pa->pa_type == MB_INODE_PA) {
3060 		len = ac->ac_b_ex.fe_len;
3061 		pa->pa_free += len;
3062 	}
3063 
3064 }
3065 
3066 /*
3067  * use blocks preallocated to inode
3068  */
3069 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3070 				struct ext4_prealloc_space *pa)
3071 {
3072 	ext4_fsblk_t start;
3073 	ext4_fsblk_t end;
3074 	int len;
3075 
3076 	/* found preallocated blocks, use them */
3077 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3078 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3079 	len = end - start;
3080 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3081 					&ac->ac_b_ex.fe_start);
3082 	ac->ac_b_ex.fe_len = len;
3083 	ac->ac_status = AC_STATUS_FOUND;
3084 	ac->ac_pa = pa;
3085 
3086 	BUG_ON(start < pa->pa_pstart);
3087 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3088 	BUG_ON(pa->pa_free < len);
3089 	pa->pa_free -= len;
3090 
3091 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3092 }
3093 
3094 /*
3095  * use blocks preallocated to locality group
3096  */
3097 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3098 				struct ext4_prealloc_space *pa)
3099 {
3100 	unsigned int len = ac->ac_o_ex.fe_len;
3101 
3102 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3103 					&ac->ac_b_ex.fe_group,
3104 					&ac->ac_b_ex.fe_start);
3105 	ac->ac_b_ex.fe_len = len;
3106 	ac->ac_status = AC_STATUS_FOUND;
3107 	ac->ac_pa = pa;
3108 
3109 	/* we don't correct pa_pstart or pa_plen here to avoid
3110 	 * possible race when the group is being loaded concurrently
3111 	 * instead we correct pa later, after blocks are marked
3112 	 * in on-disk bitmap -- see ext4_mb_release_context()
3113 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3114 	 */
3115 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3116 }
3117 
3118 /*
3119  * Return the prealloc space that have minimal distance
3120  * from the goal block. @cpa is the prealloc
3121  * space that is having currently known minimal distance
3122  * from the goal block.
3123  */
3124 static struct ext4_prealloc_space *
3125 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3126 			struct ext4_prealloc_space *pa,
3127 			struct ext4_prealloc_space *cpa)
3128 {
3129 	ext4_fsblk_t cur_distance, new_distance;
3130 
3131 	if (cpa == NULL) {
3132 		atomic_inc(&pa->pa_count);
3133 		return pa;
3134 	}
3135 	cur_distance = abs(goal_block - cpa->pa_pstart);
3136 	new_distance = abs(goal_block - pa->pa_pstart);
3137 
3138 	if (cur_distance < new_distance)
3139 		return cpa;
3140 
3141 	/* drop the previous reference */
3142 	atomic_dec(&cpa->pa_count);
3143 	atomic_inc(&pa->pa_count);
3144 	return pa;
3145 }
3146 
3147 /*
3148  * search goal blocks in preallocated space
3149  */
3150 static noinline_for_stack int
3151 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3152 {
3153 	int order, i;
3154 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3155 	struct ext4_locality_group *lg;
3156 	struct ext4_prealloc_space *pa, *cpa = NULL;
3157 	ext4_fsblk_t goal_block;
3158 
3159 	/* only data can be preallocated */
3160 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3161 		return 0;
3162 
3163 	/* first, try per-file preallocation */
3164 	rcu_read_lock();
3165 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3166 
3167 		/* all fields in this condition don't change,
3168 		 * so we can skip locking for them */
3169 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3170 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3171 			continue;
3172 
3173 		/* non-extent files can't have physical blocks past 2^32 */
3174 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3175 			pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3176 			continue;
3177 
3178 		/* found preallocated blocks, use them */
3179 		spin_lock(&pa->pa_lock);
3180 		if (pa->pa_deleted == 0 && pa->pa_free) {
3181 			atomic_inc(&pa->pa_count);
3182 			ext4_mb_use_inode_pa(ac, pa);
3183 			spin_unlock(&pa->pa_lock);
3184 			ac->ac_criteria = 10;
3185 			rcu_read_unlock();
3186 			return 1;
3187 		}
3188 		spin_unlock(&pa->pa_lock);
3189 	}
3190 	rcu_read_unlock();
3191 
3192 	/* can we use group allocation? */
3193 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3194 		return 0;
3195 
3196 	/* inode may have no locality group for some reason */
3197 	lg = ac->ac_lg;
3198 	if (lg == NULL)
3199 		return 0;
3200 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3201 	if (order > PREALLOC_TB_SIZE - 1)
3202 		/* The max size of hash table is PREALLOC_TB_SIZE */
3203 		order = PREALLOC_TB_SIZE - 1;
3204 
3205 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3206 	/*
3207 	 * search for the prealloc space that is having
3208 	 * minimal distance from the goal block.
3209 	 */
3210 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3211 		rcu_read_lock();
3212 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3213 					pa_inode_list) {
3214 			spin_lock(&pa->pa_lock);
3215 			if (pa->pa_deleted == 0 &&
3216 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3217 
3218 				cpa = ext4_mb_check_group_pa(goal_block,
3219 								pa, cpa);
3220 			}
3221 			spin_unlock(&pa->pa_lock);
3222 		}
3223 		rcu_read_unlock();
3224 	}
3225 	if (cpa) {
3226 		ext4_mb_use_group_pa(ac, cpa);
3227 		ac->ac_criteria = 20;
3228 		return 1;
3229 	}
3230 	return 0;
3231 }
3232 
3233 /*
3234  * the function goes through all block freed in the group
3235  * but not yet committed and marks them used in in-core bitmap.
3236  * buddy must be generated from this bitmap
3237  * Need to be called with the ext4 group lock held
3238  */
3239 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3240 						ext4_group_t group)
3241 {
3242 	struct rb_node *n;
3243 	struct ext4_group_info *grp;
3244 	struct ext4_free_data *entry;
3245 
3246 	grp = ext4_get_group_info(sb, group);
3247 	n = rb_first(&(grp->bb_free_root));
3248 
3249 	while (n) {
3250 		entry = rb_entry(n, struct ext4_free_data, node);
3251 		mb_set_bits(bitmap, entry->start_blk, entry->count);
3252 		n = rb_next(n);
3253 	}
3254 	return;
3255 }
3256 
3257 /*
3258  * the function goes through all preallocation in this group and marks them
3259  * used in in-core bitmap. buddy must be generated from this bitmap
3260  * Need to be called with ext4 group lock held
3261  */
3262 static noinline_for_stack
3263 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3264 					ext4_group_t group)
3265 {
3266 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3267 	struct ext4_prealloc_space *pa;
3268 	struct list_head *cur;
3269 	ext4_group_t groupnr;
3270 	ext4_grpblk_t start;
3271 	int preallocated = 0;
3272 	int count = 0;
3273 	int len;
3274 
3275 	/* all form of preallocation discards first load group,
3276 	 * so the only competing code is preallocation use.
3277 	 * we don't need any locking here
3278 	 * notice we do NOT ignore preallocations with pa_deleted
3279 	 * otherwise we could leave used blocks available for
3280 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3281 	 * is dropping preallocation
3282 	 */
3283 	list_for_each(cur, &grp->bb_prealloc_list) {
3284 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3285 		spin_lock(&pa->pa_lock);
3286 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3287 					     &groupnr, &start);
3288 		len = pa->pa_len;
3289 		spin_unlock(&pa->pa_lock);
3290 		if (unlikely(len == 0))
3291 			continue;
3292 		BUG_ON(groupnr != group);
3293 		mb_set_bits(bitmap, start, len);
3294 		preallocated += len;
3295 		count++;
3296 	}
3297 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3298 }
3299 
3300 static void ext4_mb_pa_callback(struct rcu_head *head)
3301 {
3302 	struct ext4_prealloc_space *pa;
3303 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3304 	kmem_cache_free(ext4_pspace_cachep, pa);
3305 }
3306 
3307 /*
3308  * drops a reference to preallocated space descriptor
3309  * if this was the last reference and the space is consumed
3310  */
3311 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3312 			struct super_block *sb, struct ext4_prealloc_space *pa)
3313 {
3314 	ext4_group_t grp;
3315 	ext4_fsblk_t grp_blk;
3316 
3317 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3318 		return;
3319 
3320 	/* in this short window concurrent discard can set pa_deleted */
3321 	spin_lock(&pa->pa_lock);
3322 	if (pa->pa_deleted == 1) {
3323 		spin_unlock(&pa->pa_lock);
3324 		return;
3325 	}
3326 
3327 	pa->pa_deleted = 1;
3328 	spin_unlock(&pa->pa_lock);
3329 
3330 	grp_blk = pa->pa_pstart;
3331 	/*
3332 	 * If doing group-based preallocation, pa_pstart may be in the
3333 	 * next group when pa is used up
3334 	 */
3335 	if (pa->pa_type == MB_GROUP_PA)
3336 		grp_blk--;
3337 
3338 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3339 
3340 	/*
3341 	 * possible race:
3342 	 *
3343 	 *  P1 (buddy init)			P2 (regular allocation)
3344 	 *					find block B in PA
3345 	 *  copy on-disk bitmap to buddy
3346 	 *  					mark B in on-disk bitmap
3347 	 *					drop PA from group
3348 	 *  mark all PAs in buddy
3349 	 *
3350 	 * thus, P1 initializes buddy with B available. to prevent this
3351 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3352 	 * against that pair
3353 	 */
3354 	ext4_lock_group(sb, grp);
3355 	list_del(&pa->pa_group_list);
3356 	ext4_unlock_group(sb, grp);
3357 
3358 	spin_lock(pa->pa_obj_lock);
3359 	list_del_rcu(&pa->pa_inode_list);
3360 	spin_unlock(pa->pa_obj_lock);
3361 
3362 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3363 }
3364 
3365 /*
3366  * creates new preallocated space for given inode
3367  */
3368 static noinline_for_stack int
3369 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3370 {
3371 	struct super_block *sb = ac->ac_sb;
3372 	struct ext4_prealloc_space *pa;
3373 	struct ext4_group_info *grp;
3374 	struct ext4_inode_info *ei;
3375 
3376 	/* preallocate only when found space is larger then requested */
3377 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3378 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3379 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3380 
3381 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3382 	if (pa == NULL)
3383 		return -ENOMEM;
3384 
3385 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3386 		int winl;
3387 		int wins;
3388 		int win;
3389 		int offs;
3390 
3391 		/* we can't allocate as much as normalizer wants.
3392 		 * so, found space must get proper lstart
3393 		 * to cover original request */
3394 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3395 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3396 
3397 		/* we're limited by original request in that
3398 		 * logical block must be covered any way
3399 		 * winl is window we can move our chunk within */
3400 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3401 
3402 		/* also, we should cover whole original request */
3403 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3404 
3405 		/* the smallest one defines real window */
3406 		win = min(winl, wins);
3407 
3408 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3409 		if (offs && offs < win)
3410 			win = offs;
3411 
3412 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3413 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3414 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3415 	}
3416 
3417 	/* preallocation can change ac_b_ex, thus we store actually
3418 	 * allocated blocks for history */
3419 	ac->ac_f_ex = ac->ac_b_ex;
3420 
3421 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3422 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3423 	pa->pa_len = ac->ac_b_ex.fe_len;
3424 	pa->pa_free = pa->pa_len;
3425 	atomic_set(&pa->pa_count, 1);
3426 	spin_lock_init(&pa->pa_lock);
3427 	INIT_LIST_HEAD(&pa->pa_inode_list);
3428 	INIT_LIST_HEAD(&pa->pa_group_list);
3429 	pa->pa_deleted = 0;
3430 	pa->pa_type = MB_INODE_PA;
3431 
3432 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3433 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3434 	trace_ext4_mb_new_inode_pa(ac, pa);
3435 
3436 	ext4_mb_use_inode_pa(ac, pa);
3437 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3438 
3439 	ei = EXT4_I(ac->ac_inode);
3440 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3441 
3442 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3443 	pa->pa_inode = ac->ac_inode;
3444 
3445 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3446 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3447 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3448 
3449 	spin_lock(pa->pa_obj_lock);
3450 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3451 	spin_unlock(pa->pa_obj_lock);
3452 
3453 	return 0;
3454 }
3455 
3456 /*
3457  * creates new preallocated space for locality group inodes belongs to
3458  */
3459 static noinline_for_stack int
3460 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3461 {
3462 	struct super_block *sb = ac->ac_sb;
3463 	struct ext4_locality_group *lg;
3464 	struct ext4_prealloc_space *pa;
3465 	struct ext4_group_info *grp;
3466 
3467 	/* preallocate only when found space is larger then requested */
3468 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3469 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3470 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3471 
3472 	BUG_ON(ext4_pspace_cachep == NULL);
3473 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3474 	if (pa == NULL)
3475 		return -ENOMEM;
3476 
3477 	/* preallocation can change ac_b_ex, thus we store actually
3478 	 * allocated blocks for history */
3479 	ac->ac_f_ex = ac->ac_b_ex;
3480 
3481 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3482 	pa->pa_lstart = pa->pa_pstart;
3483 	pa->pa_len = ac->ac_b_ex.fe_len;
3484 	pa->pa_free = pa->pa_len;
3485 	atomic_set(&pa->pa_count, 1);
3486 	spin_lock_init(&pa->pa_lock);
3487 	INIT_LIST_HEAD(&pa->pa_inode_list);
3488 	INIT_LIST_HEAD(&pa->pa_group_list);
3489 	pa->pa_deleted = 0;
3490 	pa->pa_type = MB_GROUP_PA;
3491 
3492 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3493 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3494 	trace_ext4_mb_new_group_pa(ac, pa);
3495 
3496 	ext4_mb_use_group_pa(ac, pa);
3497 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3498 
3499 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3500 	lg = ac->ac_lg;
3501 	BUG_ON(lg == NULL);
3502 
3503 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3504 	pa->pa_inode = NULL;
3505 
3506 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3507 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3508 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3509 
3510 	/*
3511 	 * We will later add the new pa to the right bucket
3512 	 * after updating the pa_free in ext4_mb_release_context
3513 	 */
3514 	return 0;
3515 }
3516 
3517 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3518 {
3519 	int err;
3520 
3521 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3522 		err = ext4_mb_new_group_pa(ac);
3523 	else
3524 		err = ext4_mb_new_inode_pa(ac);
3525 	return err;
3526 }
3527 
3528 /*
3529  * finds all unused blocks in on-disk bitmap, frees them in
3530  * in-core bitmap and buddy.
3531  * @pa must be unlinked from inode and group lists, so that
3532  * nobody else can find/use it.
3533  * the caller MUST hold group/inode locks.
3534  * TODO: optimize the case when there are no in-core structures yet
3535  */
3536 static noinline_for_stack int
3537 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3538 			struct ext4_prealloc_space *pa,
3539 			struct ext4_allocation_context *ac)
3540 {
3541 	struct super_block *sb = e4b->bd_sb;
3542 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3543 	unsigned int end;
3544 	unsigned int next;
3545 	ext4_group_t group;
3546 	ext4_grpblk_t bit;
3547 	unsigned long long grp_blk_start;
3548 	int err = 0;
3549 	int free = 0;
3550 
3551 	BUG_ON(pa->pa_deleted == 0);
3552 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3553 	grp_blk_start = pa->pa_pstart - bit;
3554 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3555 	end = bit + pa->pa_len;
3556 
3557 	if (ac) {
3558 		ac->ac_sb = sb;
3559 		ac->ac_inode = pa->pa_inode;
3560 	}
3561 
3562 	while (bit < end) {
3563 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3564 		if (bit >= end)
3565 			break;
3566 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3567 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3568 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3569 			 (unsigned) next - bit, (unsigned) group);
3570 		free += next - bit;
3571 
3572 		if (ac) {
3573 			ac->ac_b_ex.fe_group = group;
3574 			ac->ac_b_ex.fe_start = bit;
3575 			ac->ac_b_ex.fe_len = next - bit;
3576 			ac->ac_b_ex.fe_logical = 0;
3577 			trace_ext4_mballoc_discard(ac);
3578 		}
3579 
3580 		trace_ext4_mb_release_inode_pa(sb, ac, pa, grp_blk_start + bit,
3581 					       next - bit);
3582 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3583 		bit = next + 1;
3584 	}
3585 	if (free != pa->pa_free) {
3586 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3587 			pa, (unsigned long) pa->pa_lstart,
3588 			(unsigned long) pa->pa_pstart,
3589 			(unsigned long) pa->pa_len);
3590 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3591 					free, pa->pa_free);
3592 		/*
3593 		 * pa is already deleted so we use the value obtained
3594 		 * from the bitmap and continue.
3595 		 */
3596 	}
3597 	atomic_add(free, &sbi->s_mb_discarded);
3598 
3599 	return err;
3600 }
3601 
3602 static noinline_for_stack int
3603 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3604 				struct ext4_prealloc_space *pa,
3605 				struct ext4_allocation_context *ac)
3606 {
3607 	struct super_block *sb = e4b->bd_sb;
3608 	ext4_group_t group;
3609 	ext4_grpblk_t bit;
3610 
3611 	trace_ext4_mb_release_group_pa(sb, ac, pa);
3612 	BUG_ON(pa->pa_deleted == 0);
3613 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3614 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3615 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3616 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3617 
3618 	if (ac) {
3619 		ac->ac_sb = sb;
3620 		ac->ac_inode = NULL;
3621 		ac->ac_b_ex.fe_group = group;
3622 		ac->ac_b_ex.fe_start = bit;
3623 		ac->ac_b_ex.fe_len = pa->pa_len;
3624 		ac->ac_b_ex.fe_logical = 0;
3625 		trace_ext4_mballoc_discard(ac);
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 /*
3632  * releases all preallocations in given group
3633  *
3634  * first, we need to decide discard policy:
3635  * - when do we discard
3636  *   1) ENOSPC
3637  * - how many do we discard
3638  *   1) how many requested
3639  */
3640 static noinline_for_stack int
3641 ext4_mb_discard_group_preallocations(struct super_block *sb,
3642 					ext4_group_t group, int needed)
3643 {
3644 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3645 	struct buffer_head *bitmap_bh = NULL;
3646 	struct ext4_prealloc_space *pa, *tmp;
3647 	struct ext4_allocation_context *ac;
3648 	struct list_head list;
3649 	struct ext4_buddy e4b;
3650 	int err;
3651 	int busy = 0;
3652 	int free = 0;
3653 
3654 	mb_debug(1, "discard preallocation for group %u\n", group);
3655 
3656 	if (list_empty(&grp->bb_prealloc_list))
3657 		return 0;
3658 
3659 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3660 	if (bitmap_bh == NULL) {
3661 		ext4_error(sb, "Error reading block bitmap for %u", group);
3662 		return 0;
3663 	}
3664 
3665 	err = ext4_mb_load_buddy(sb, group, &e4b);
3666 	if (err) {
3667 		ext4_error(sb, "Error loading buddy information for %u", group);
3668 		put_bh(bitmap_bh);
3669 		return 0;
3670 	}
3671 
3672 	if (needed == 0)
3673 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3674 
3675 	INIT_LIST_HEAD(&list);
3676 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3677 	if (ac)
3678 		ac->ac_sb = sb;
3679 repeat:
3680 	ext4_lock_group(sb, group);
3681 	list_for_each_entry_safe(pa, tmp,
3682 				&grp->bb_prealloc_list, pa_group_list) {
3683 		spin_lock(&pa->pa_lock);
3684 		if (atomic_read(&pa->pa_count)) {
3685 			spin_unlock(&pa->pa_lock);
3686 			busy = 1;
3687 			continue;
3688 		}
3689 		if (pa->pa_deleted) {
3690 			spin_unlock(&pa->pa_lock);
3691 			continue;
3692 		}
3693 
3694 		/* seems this one can be freed ... */
3695 		pa->pa_deleted = 1;
3696 
3697 		/* we can trust pa_free ... */
3698 		free += pa->pa_free;
3699 
3700 		spin_unlock(&pa->pa_lock);
3701 
3702 		list_del(&pa->pa_group_list);
3703 		list_add(&pa->u.pa_tmp_list, &list);
3704 	}
3705 
3706 	/* if we still need more blocks and some PAs were used, try again */
3707 	if (free < needed && busy) {
3708 		busy = 0;
3709 		ext4_unlock_group(sb, group);
3710 		/*
3711 		 * Yield the CPU here so that we don't get soft lockup
3712 		 * in non preempt case.
3713 		 */
3714 		yield();
3715 		goto repeat;
3716 	}
3717 
3718 	/* found anything to free? */
3719 	if (list_empty(&list)) {
3720 		BUG_ON(free != 0);
3721 		goto out;
3722 	}
3723 
3724 	/* now free all selected PAs */
3725 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3726 
3727 		/* remove from object (inode or locality group) */
3728 		spin_lock(pa->pa_obj_lock);
3729 		list_del_rcu(&pa->pa_inode_list);
3730 		spin_unlock(pa->pa_obj_lock);
3731 
3732 		if (pa->pa_type == MB_GROUP_PA)
3733 			ext4_mb_release_group_pa(&e4b, pa, ac);
3734 		else
3735 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3736 
3737 		list_del(&pa->u.pa_tmp_list);
3738 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3739 	}
3740 
3741 out:
3742 	ext4_unlock_group(sb, group);
3743 	if (ac)
3744 		kmem_cache_free(ext4_ac_cachep, ac);
3745 	ext4_mb_unload_buddy(&e4b);
3746 	put_bh(bitmap_bh);
3747 	return free;
3748 }
3749 
3750 /*
3751  * releases all non-used preallocated blocks for given inode
3752  *
3753  * It's important to discard preallocations under i_data_sem
3754  * We don't want another block to be served from the prealloc
3755  * space when we are discarding the inode prealloc space.
3756  *
3757  * FIXME!! Make sure it is valid at all the call sites
3758  */
3759 void ext4_discard_preallocations(struct inode *inode)
3760 {
3761 	struct ext4_inode_info *ei = EXT4_I(inode);
3762 	struct super_block *sb = inode->i_sb;
3763 	struct buffer_head *bitmap_bh = NULL;
3764 	struct ext4_prealloc_space *pa, *tmp;
3765 	struct ext4_allocation_context *ac;
3766 	ext4_group_t group = 0;
3767 	struct list_head list;
3768 	struct ext4_buddy e4b;
3769 	int err;
3770 
3771 	if (!S_ISREG(inode->i_mode)) {
3772 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3773 		return;
3774 	}
3775 
3776 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3777 	trace_ext4_discard_preallocations(inode);
3778 
3779 	INIT_LIST_HEAD(&list);
3780 
3781 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3782 	if (ac) {
3783 		ac->ac_sb = sb;
3784 		ac->ac_inode = inode;
3785 	}
3786 repeat:
3787 	/* first, collect all pa's in the inode */
3788 	spin_lock(&ei->i_prealloc_lock);
3789 	while (!list_empty(&ei->i_prealloc_list)) {
3790 		pa = list_entry(ei->i_prealloc_list.next,
3791 				struct ext4_prealloc_space, pa_inode_list);
3792 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3793 		spin_lock(&pa->pa_lock);
3794 		if (atomic_read(&pa->pa_count)) {
3795 			/* this shouldn't happen often - nobody should
3796 			 * use preallocation while we're discarding it */
3797 			spin_unlock(&pa->pa_lock);
3798 			spin_unlock(&ei->i_prealloc_lock);
3799 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
3800 			WARN_ON(1);
3801 			schedule_timeout_uninterruptible(HZ);
3802 			goto repeat;
3803 
3804 		}
3805 		if (pa->pa_deleted == 0) {
3806 			pa->pa_deleted = 1;
3807 			spin_unlock(&pa->pa_lock);
3808 			list_del_rcu(&pa->pa_inode_list);
3809 			list_add(&pa->u.pa_tmp_list, &list);
3810 			continue;
3811 		}
3812 
3813 		/* someone is deleting pa right now */
3814 		spin_unlock(&pa->pa_lock);
3815 		spin_unlock(&ei->i_prealloc_lock);
3816 
3817 		/* we have to wait here because pa_deleted
3818 		 * doesn't mean pa is already unlinked from
3819 		 * the list. as we might be called from
3820 		 * ->clear_inode() the inode will get freed
3821 		 * and concurrent thread which is unlinking
3822 		 * pa from inode's list may access already
3823 		 * freed memory, bad-bad-bad */
3824 
3825 		/* XXX: if this happens too often, we can
3826 		 * add a flag to force wait only in case
3827 		 * of ->clear_inode(), but not in case of
3828 		 * regular truncate */
3829 		schedule_timeout_uninterruptible(HZ);
3830 		goto repeat;
3831 	}
3832 	spin_unlock(&ei->i_prealloc_lock);
3833 
3834 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3835 		BUG_ON(pa->pa_type != MB_INODE_PA);
3836 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3837 
3838 		err = ext4_mb_load_buddy(sb, group, &e4b);
3839 		if (err) {
3840 			ext4_error(sb, "Error loading buddy information for %u",
3841 					group);
3842 			continue;
3843 		}
3844 
3845 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3846 		if (bitmap_bh == NULL) {
3847 			ext4_error(sb, "Error reading block bitmap for %u",
3848 					group);
3849 			ext4_mb_unload_buddy(&e4b);
3850 			continue;
3851 		}
3852 
3853 		ext4_lock_group(sb, group);
3854 		list_del(&pa->pa_group_list);
3855 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3856 		ext4_unlock_group(sb, group);
3857 
3858 		ext4_mb_unload_buddy(&e4b);
3859 		put_bh(bitmap_bh);
3860 
3861 		list_del(&pa->u.pa_tmp_list);
3862 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3863 	}
3864 	if (ac)
3865 		kmem_cache_free(ext4_ac_cachep, ac);
3866 }
3867 
3868 /*
3869  * finds all preallocated spaces and return blocks being freed to them
3870  * if preallocated space becomes full (no block is used from the space)
3871  * then the function frees space in buddy
3872  * XXX: at the moment, truncate (which is the only way to free blocks)
3873  * discards all preallocations
3874  */
3875 static void ext4_mb_return_to_preallocation(struct inode *inode,
3876 					struct ext4_buddy *e4b,
3877 					sector_t block, int count)
3878 {
3879 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3880 }
3881 #ifdef CONFIG_EXT4_DEBUG
3882 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3883 {
3884 	struct super_block *sb = ac->ac_sb;
3885 	ext4_group_t ngroups, i;
3886 
3887 	if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
3888 		return;
3889 
3890 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
3891 			" Allocation context details:\n");
3892 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3893 			ac->ac_status, ac->ac_flags);
3894 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3895 			"best %lu/%lu/%lu@%lu cr %d\n",
3896 			(unsigned long)ac->ac_o_ex.fe_group,
3897 			(unsigned long)ac->ac_o_ex.fe_start,
3898 			(unsigned long)ac->ac_o_ex.fe_len,
3899 			(unsigned long)ac->ac_o_ex.fe_logical,
3900 			(unsigned long)ac->ac_g_ex.fe_group,
3901 			(unsigned long)ac->ac_g_ex.fe_start,
3902 			(unsigned long)ac->ac_g_ex.fe_len,
3903 			(unsigned long)ac->ac_g_ex.fe_logical,
3904 			(unsigned long)ac->ac_b_ex.fe_group,
3905 			(unsigned long)ac->ac_b_ex.fe_start,
3906 			(unsigned long)ac->ac_b_ex.fe_len,
3907 			(unsigned long)ac->ac_b_ex.fe_logical,
3908 			(int)ac->ac_criteria);
3909 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3910 		ac->ac_found);
3911 	printk(KERN_ERR "EXT4-fs: groups: \n");
3912 	ngroups = ext4_get_groups_count(sb);
3913 	for (i = 0; i < ngroups; i++) {
3914 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3915 		struct ext4_prealloc_space *pa;
3916 		ext4_grpblk_t start;
3917 		struct list_head *cur;
3918 		ext4_lock_group(sb, i);
3919 		list_for_each(cur, &grp->bb_prealloc_list) {
3920 			pa = list_entry(cur, struct ext4_prealloc_space,
3921 					pa_group_list);
3922 			spin_lock(&pa->pa_lock);
3923 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3924 						     NULL, &start);
3925 			spin_unlock(&pa->pa_lock);
3926 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
3927 			       start, pa->pa_len);
3928 		}
3929 		ext4_unlock_group(sb, i);
3930 
3931 		if (grp->bb_free == 0)
3932 			continue;
3933 		printk(KERN_ERR "%u: %d/%d \n",
3934 		       i, grp->bb_free, grp->bb_fragments);
3935 	}
3936 	printk(KERN_ERR "\n");
3937 }
3938 #else
3939 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3940 {
3941 	return;
3942 }
3943 #endif
3944 
3945 /*
3946  * We use locality group preallocation for small size file. The size of the
3947  * file is determined by the current size or the resulting size after
3948  * allocation which ever is larger
3949  *
3950  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3951  */
3952 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3953 {
3954 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3955 	int bsbits = ac->ac_sb->s_blocksize_bits;
3956 	loff_t size, isize;
3957 
3958 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3959 		return;
3960 
3961 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3962 		return;
3963 
3964 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3965 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3966 		>> bsbits;
3967 
3968 	if ((size == isize) &&
3969 	    !ext4_fs_is_busy(sbi) &&
3970 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3971 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3972 		return;
3973 	}
3974 
3975 	/* don't use group allocation for large files */
3976 	size = max(size, isize);
3977 	if (size > sbi->s_mb_stream_request) {
3978 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3979 		return;
3980 	}
3981 
3982 	BUG_ON(ac->ac_lg != NULL);
3983 	/*
3984 	 * locality group prealloc space are per cpu. The reason for having
3985 	 * per cpu locality group is to reduce the contention between block
3986 	 * request from multiple CPUs.
3987 	 */
3988 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3989 
3990 	/* we're going to use group allocation */
3991 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3992 
3993 	/* serialize all allocations in the group */
3994 	mutex_lock(&ac->ac_lg->lg_mutex);
3995 }
3996 
3997 static noinline_for_stack int
3998 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3999 				struct ext4_allocation_request *ar)
4000 {
4001 	struct super_block *sb = ar->inode->i_sb;
4002 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4003 	struct ext4_super_block *es = sbi->s_es;
4004 	ext4_group_t group;
4005 	unsigned int len;
4006 	ext4_fsblk_t goal;
4007 	ext4_grpblk_t block;
4008 
4009 	/* we can't allocate > group size */
4010 	len = ar->len;
4011 
4012 	/* just a dirty hack to filter too big requests  */
4013 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4014 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4015 
4016 	/* start searching from the goal */
4017 	goal = ar->goal;
4018 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4019 			goal >= ext4_blocks_count(es))
4020 		goal = le32_to_cpu(es->s_first_data_block);
4021 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4022 
4023 	/* set up allocation goals */
4024 	memset(ac, 0, sizeof(struct ext4_allocation_context));
4025 	ac->ac_b_ex.fe_logical = ar->logical;
4026 	ac->ac_status = AC_STATUS_CONTINUE;
4027 	ac->ac_sb = sb;
4028 	ac->ac_inode = ar->inode;
4029 	ac->ac_o_ex.fe_logical = ar->logical;
4030 	ac->ac_o_ex.fe_group = group;
4031 	ac->ac_o_ex.fe_start = block;
4032 	ac->ac_o_ex.fe_len = len;
4033 	ac->ac_g_ex.fe_logical = ar->logical;
4034 	ac->ac_g_ex.fe_group = group;
4035 	ac->ac_g_ex.fe_start = block;
4036 	ac->ac_g_ex.fe_len = len;
4037 	ac->ac_flags = ar->flags;
4038 
4039 	/* we have to define context: we'll we work with a file or
4040 	 * locality group. this is a policy, actually */
4041 	ext4_mb_group_or_file(ac);
4042 
4043 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4044 			"left: %u/%u, right %u/%u to %swritable\n",
4045 			(unsigned) ar->len, (unsigned) ar->logical,
4046 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4047 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4048 			(unsigned) ar->lright, (unsigned) ar->pright,
4049 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4050 	return 0;
4051 
4052 }
4053 
4054 static noinline_for_stack void
4055 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4056 					struct ext4_locality_group *lg,
4057 					int order, int total_entries)
4058 {
4059 	ext4_group_t group = 0;
4060 	struct ext4_buddy e4b;
4061 	struct list_head discard_list;
4062 	struct ext4_prealloc_space *pa, *tmp;
4063 	struct ext4_allocation_context *ac;
4064 
4065 	mb_debug(1, "discard locality group preallocation\n");
4066 
4067 	INIT_LIST_HEAD(&discard_list);
4068 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4069 	if (ac)
4070 		ac->ac_sb = sb;
4071 
4072 	spin_lock(&lg->lg_prealloc_lock);
4073 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4074 						pa_inode_list) {
4075 		spin_lock(&pa->pa_lock);
4076 		if (atomic_read(&pa->pa_count)) {
4077 			/*
4078 			 * This is the pa that we just used
4079 			 * for block allocation. So don't
4080 			 * free that
4081 			 */
4082 			spin_unlock(&pa->pa_lock);
4083 			continue;
4084 		}
4085 		if (pa->pa_deleted) {
4086 			spin_unlock(&pa->pa_lock);
4087 			continue;
4088 		}
4089 		/* only lg prealloc space */
4090 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4091 
4092 		/* seems this one can be freed ... */
4093 		pa->pa_deleted = 1;
4094 		spin_unlock(&pa->pa_lock);
4095 
4096 		list_del_rcu(&pa->pa_inode_list);
4097 		list_add(&pa->u.pa_tmp_list, &discard_list);
4098 
4099 		total_entries--;
4100 		if (total_entries <= 5) {
4101 			/*
4102 			 * we want to keep only 5 entries
4103 			 * allowing it to grow to 8. This
4104 			 * mak sure we don't call discard
4105 			 * soon for this list.
4106 			 */
4107 			break;
4108 		}
4109 	}
4110 	spin_unlock(&lg->lg_prealloc_lock);
4111 
4112 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4113 
4114 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4115 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4116 			ext4_error(sb, "Error loading buddy information for %u",
4117 					group);
4118 			continue;
4119 		}
4120 		ext4_lock_group(sb, group);
4121 		list_del(&pa->pa_group_list);
4122 		ext4_mb_release_group_pa(&e4b, pa, ac);
4123 		ext4_unlock_group(sb, group);
4124 
4125 		ext4_mb_unload_buddy(&e4b);
4126 		list_del(&pa->u.pa_tmp_list);
4127 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4128 	}
4129 	if (ac)
4130 		kmem_cache_free(ext4_ac_cachep, ac);
4131 }
4132 
4133 /*
4134  * We have incremented pa_count. So it cannot be freed at this
4135  * point. Also we hold lg_mutex. So no parallel allocation is
4136  * possible from this lg. That means pa_free cannot be updated.
4137  *
4138  * A parallel ext4_mb_discard_group_preallocations is possible.
4139  * which can cause the lg_prealloc_list to be updated.
4140  */
4141 
4142 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4143 {
4144 	int order, added = 0, lg_prealloc_count = 1;
4145 	struct super_block *sb = ac->ac_sb;
4146 	struct ext4_locality_group *lg = ac->ac_lg;
4147 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4148 
4149 	order = fls(pa->pa_free) - 1;
4150 	if (order > PREALLOC_TB_SIZE - 1)
4151 		/* The max size of hash table is PREALLOC_TB_SIZE */
4152 		order = PREALLOC_TB_SIZE - 1;
4153 	/* Add the prealloc space to lg */
4154 	rcu_read_lock();
4155 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4156 						pa_inode_list) {
4157 		spin_lock(&tmp_pa->pa_lock);
4158 		if (tmp_pa->pa_deleted) {
4159 			spin_unlock(&tmp_pa->pa_lock);
4160 			continue;
4161 		}
4162 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4163 			/* Add to the tail of the previous entry */
4164 			list_add_tail_rcu(&pa->pa_inode_list,
4165 						&tmp_pa->pa_inode_list);
4166 			added = 1;
4167 			/*
4168 			 * we want to count the total
4169 			 * number of entries in the list
4170 			 */
4171 		}
4172 		spin_unlock(&tmp_pa->pa_lock);
4173 		lg_prealloc_count++;
4174 	}
4175 	if (!added)
4176 		list_add_tail_rcu(&pa->pa_inode_list,
4177 					&lg->lg_prealloc_list[order]);
4178 	rcu_read_unlock();
4179 
4180 	/* Now trim the list to be not more than 8 elements */
4181 	if (lg_prealloc_count > 8) {
4182 		ext4_mb_discard_lg_preallocations(sb, lg,
4183 						order, lg_prealloc_count);
4184 		return;
4185 	}
4186 	return ;
4187 }
4188 
4189 /*
4190  * release all resource we used in allocation
4191  */
4192 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4193 {
4194 	struct ext4_prealloc_space *pa = ac->ac_pa;
4195 	if (pa) {
4196 		if (pa->pa_type == MB_GROUP_PA) {
4197 			/* see comment in ext4_mb_use_group_pa() */
4198 			spin_lock(&pa->pa_lock);
4199 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4200 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4201 			pa->pa_free -= ac->ac_b_ex.fe_len;
4202 			pa->pa_len -= ac->ac_b_ex.fe_len;
4203 			spin_unlock(&pa->pa_lock);
4204 		}
4205 	}
4206 	if (ac->alloc_semp)
4207 		up_read(ac->alloc_semp);
4208 	if (pa) {
4209 		/*
4210 		 * We want to add the pa to the right bucket.
4211 		 * Remove it from the list and while adding
4212 		 * make sure the list to which we are adding
4213 		 * doesn't grow big.  We need to release
4214 		 * alloc_semp before calling ext4_mb_add_n_trim()
4215 		 */
4216 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4217 			spin_lock(pa->pa_obj_lock);
4218 			list_del_rcu(&pa->pa_inode_list);
4219 			spin_unlock(pa->pa_obj_lock);
4220 			ext4_mb_add_n_trim(ac);
4221 		}
4222 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4223 	}
4224 	if (ac->ac_bitmap_page)
4225 		page_cache_release(ac->ac_bitmap_page);
4226 	if (ac->ac_buddy_page)
4227 		page_cache_release(ac->ac_buddy_page);
4228 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4229 		mutex_unlock(&ac->ac_lg->lg_mutex);
4230 	ext4_mb_collect_stats(ac);
4231 	return 0;
4232 }
4233 
4234 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4235 {
4236 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4237 	int ret;
4238 	int freed = 0;
4239 
4240 	trace_ext4_mb_discard_preallocations(sb, needed);
4241 	for (i = 0; i < ngroups && needed > 0; i++) {
4242 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4243 		freed += ret;
4244 		needed -= ret;
4245 	}
4246 
4247 	return freed;
4248 }
4249 
4250 /*
4251  * Main entry point into mballoc to allocate blocks
4252  * it tries to use preallocation first, then falls back
4253  * to usual allocation
4254  */
4255 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4256 				struct ext4_allocation_request *ar, int *errp)
4257 {
4258 	int freed;
4259 	struct ext4_allocation_context *ac = NULL;
4260 	struct ext4_sb_info *sbi;
4261 	struct super_block *sb;
4262 	ext4_fsblk_t block = 0;
4263 	unsigned int inquota = 0;
4264 	unsigned int reserv_blks = 0;
4265 
4266 	sb = ar->inode->i_sb;
4267 	sbi = EXT4_SB(sb);
4268 
4269 	trace_ext4_request_blocks(ar);
4270 
4271 	/*
4272 	 * For delayed allocation, we could skip the ENOSPC and
4273 	 * EDQUOT check, as blocks and quotas have been already
4274 	 * reserved when data being copied into pagecache.
4275 	 */
4276 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4277 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4278 	else {
4279 		/* Without delayed allocation we need to verify
4280 		 * there is enough free blocks to do block allocation
4281 		 * and verify allocation doesn't exceed the quota limits.
4282 		 */
4283 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4284 			/* let others to free the space */
4285 			yield();
4286 			ar->len = ar->len >> 1;
4287 		}
4288 		if (!ar->len) {
4289 			*errp = -ENOSPC;
4290 			return 0;
4291 		}
4292 		reserv_blks = ar->len;
4293 		while (ar->len && dquot_alloc_block(ar->inode, ar->len)) {
4294 			ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4295 			ar->len--;
4296 		}
4297 		inquota = ar->len;
4298 		if (ar->len == 0) {
4299 			*errp = -EDQUOT;
4300 			goto out;
4301 		}
4302 	}
4303 
4304 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4305 	if (!ac) {
4306 		ar->len = 0;
4307 		*errp = -ENOMEM;
4308 		goto out;
4309 	}
4310 
4311 	*errp = ext4_mb_initialize_context(ac, ar);
4312 	if (*errp) {
4313 		ar->len = 0;
4314 		goto out;
4315 	}
4316 
4317 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4318 	if (!ext4_mb_use_preallocated(ac)) {
4319 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4320 		ext4_mb_normalize_request(ac, ar);
4321 repeat:
4322 		/* allocate space in core */
4323 		*errp = ext4_mb_regular_allocator(ac);
4324 		if (*errp)
4325 			goto errout;
4326 
4327 		/* as we've just preallocated more space than
4328 		 * user requested orinally, we store allocated
4329 		 * space in a special descriptor */
4330 		if (ac->ac_status == AC_STATUS_FOUND &&
4331 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4332 			ext4_mb_new_preallocation(ac);
4333 	}
4334 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4335 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4336 		if (*errp == -EAGAIN) {
4337 			/*
4338 			 * drop the reference that we took
4339 			 * in ext4_mb_use_best_found
4340 			 */
4341 			ext4_mb_release_context(ac);
4342 			ac->ac_b_ex.fe_group = 0;
4343 			ac->ac_b_ex.fe_start = 0;
4344 			ac->ac_b_ex.fe_len = 0;
4345 			ac->ac_status = AC_STATUS_CONTINUE;
4346 			goto repeat;
4347 		} else if (*errp)
4348 		errout:
4349 			ext4_discard_allocated_blocks(ac);
4350 		else {
4351 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4352 			ar->len = ac->ac_b_ex.fe_len;
4353 		}
4354 	} else {
4355 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4356 		if (freed)
4357 			goto repeat;
4358 		*errp = -ENOSPC;
4359 	}
4360 
4361 	if (*errp) {
4362 		ac->ac_b_ex.fe_len = 0;
4363 		ar->len = 0;
4364 		ext4_mb_show_ac(ac);
4365 	}
4366 	ext4_mb_release_context(ac);
4367 out:
4368 	if (ac)
4369 		kmem_cache_free(ext4_ac_cachep, ac);
4370 	if (inquota && ar->len < inquota)
4371 		dquot_free_block(ar->inode, inquota - ar->len);
4372 	if (!ar->len) {
4373 		if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4374 			/* release all the reserved blocks if non delalloc */
4375 			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4376 						reserv_blks);
4377 	}
4378 
4379 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4380 
4381 	return block;
4382 }
4383 
4384 /*
4385  * We can merge two free data extents only if the physical blocks
4386  * are contiguous, AND the extents were freed by the same transaction,
4387  * AND the blocks are associated with the same group.
4388  */
4389 static int can_merge(struct ext4_free_data *entry1,
4390 			struct ext4_free_data *entry2)
4391 {
4392 	if ((entry1->t_tid == entry2->t_tid) &&
4393 	    (entry1->group == entry2->group) &&
4394 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
4395 		return 1;
4396 	return 0;
4397 }
4398 
4399 static noinline_for_stack int
4400 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4401 		      struct ext4_free_data *new_entry)
4402 {
4403 	ext4_group_t group = e4b->bd_group;
4404 	ext4_grpblk_t block;
4405 	struct ext4_free_data *entry;
4406 	struct ext4_group_info *db = e4b->bd_info;
4407 	struct super_block *sb = e4b->bd_sb;
4408 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4409 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4410 	struct rb_node *parent = NULL, *new_node;
4411 
4412 	BUG_ON(!ext4_handle_valid(handle));
4413 	BUG_ON(e4b->bd_bitmap_page == NULL);
4414 	BUG_ON(e4b->bd_buddy_page == NULL);
4415 
4416 	new_node = &new_entry->node;
4417 	block = new_entry->start_blk;
4418 
4419 	if (!*n) {
4420 		/* first free block exent. We need to
4421 		   protect buddy cache from being freed,
4422 		 * otherwise we'll refresh it from
4423 		 * on-disk bitmap and lose not-yet-available
4424 		 * blocks */
4425 		page_cache_get(e4b->bd_buddy_page);
4426 		page_cache_get(e4b->bd_bitmap_page);
4427 	}
4428 	while (*n) {
4429 		parent = *n;
4430 		entry = rb_entry(parent, struct ext4_free_data, node);
4431 		if (block < entry->start_blk)
4432 			n = &(*n)->rb_left;
4433 		else if (block >= (entry->start_blk + entry->count))
4434 			n = &(*n)->rb_right;
4435 		else {
4436 			ext4_grp_locked_error(sb, group, 0,
4437 				ext4_group_first_block_no(sb, group) + block,
4438 				"Block already on to-be-freed list");
4439 			return 0;
4440 		}
4441 	}
4442 
4443 	rb_link_node(new_node, parent, n);
4444 	rb_insert_color(new_node, &db->bb_free_root);
4445 
4446 	/* Now try to see the extent can be merged to left and right */
4447 	node = rb_prev(new_node);
4448 	if (node) {
4449 		entry = rb_entry(node, struct ext4_free_data, node);
4450 		if (can_merge(entry, new_entry)) {
4451 			new_entry->start_blk = entry->start_blk;
4452 			new_entry->count += entry->count;
4453 			rb_erase(node, &(db->bb_free_root));
4454 			spin_lock(&sbi->s_md_lock);
4455 			list_del(&entry->list);
4456 			spin_unlock(&sbi->s_md_lock);
4457 			kmem_cache_free(ext4_free_ext_cachep, entry);
4458 		}
4459 	}
4460 
4461 	node = rb_next(new_node);
4462 	if (node) {
4463 		entry = rb_entry(node, struct ext4_free_data, node);
4464 		if (can_merge(new_entry, entry)) {
4465 			new_entry->count += entry->count;
4466 			rb_erase(node, &(db->bb_free_root));
4467 			spin_lock(&sbi->s_md_lock);
4468 			list_del(&entry->list);
4469 			spin_unlock(&sbi->s_md_lock);
4470 			kmem_cache_free(ext4_free_ext_cachep, entry);
4471 		}
4472 	}
4473 	/* Add the extent to transaction's private list */
4474 	spin_lock(&sbi->s_md_lock);
4475 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4476 	spin_unlock(&sbi->s_md_lock);
4477 	return 0;
4478 }
4479 
4480 /**
4481  * ext4_free_blocks() -- Free given blocks and update quota
4482  * @handle:		handle for this transaction
4483  * @inode:		inode
4484  * @block:		start physical block to free
4485  * @count:		number of blocks to count
4486  * @metadata: 		Are these metadata blocks
4487  */
4488 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4489 		      struct buffer_head *bh, ext4_fsblk_t block,
4490 		      unsigned long count, int flags)
4491 {
4492 	struct buffer_head *bitmap_bh = NULL;
4493 	struct super_block *sb = inode->i_sb;
4494 	struct ext4_allocation_context *ac = NULL;
4495 	struct ext4_group_desc *gdp;
4496 	unsigned long freed = 0;
4497 	unsigned int overflow;
4498 	ext4_grpblk_t bit;
4499 	struct buffer_head *gd_bh;
4500 	ext4_group_t block_group;
4501 	struct ext4_sb_info *sbi;
4502 	struct ext4_buddy e4b;
4503 	int err = 0;
4504 	int ret;
4505 
4506 	if (bh) {
4507 		if (block)
4508 			BUG_ON(block != bh->b_blocknr);
4509 		else
4510 			block = bh->b_blocknr;
4511 	}
4512 
4513 	sbi = EXT4_SB(sb);
4514 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4515 	    !ext4_data_block_valid(sbi, block, count)) {
4516 		ext4_error(sb, "Freeing blocks not in datazone - "
4517 			   "block = %llu, count = %lu", block, count);
4518 		goto error_return;
4519 	}
4520 
4521 	ext4_debug("freeing block %llu\n", block);
4522 	trace_ext4_free_blocks(inode, block, count, flags);
4523 
4524 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4525 		struct buffer_head *tbh = bh;
4526 		int i;
4527 
4528 		BUG_ON(bh && (count > 1));
4529 
4530 		for (i = 0; i < count; i++) {
4531 			if (!bh)
4532 				tbh = sb_find_get_block(inode->i_sb,
4533 							block + i);
4534 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4535 				    inode, tbh, block + i);
4536 		}
4537 	}
4538 
4539 	/*
4540 	 * We need to make sure we don't reuse the freed block until
4541 	 * after the transaction is committed, which we can do by
4542 	 * treating the block as metadata, below.  We make an
4543 	 * exception if the inode is to be written in writeback mode
4544 	 * since writeback mode has weak data consistency guarantees.
4545 	 */
4546 	if (!ext4_should_writeback_data(inode))
4547 		flags |= EXT4_FREE_BLOCKS_METADATA;
4548 
4549 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4550 	if (ac) {
4551 		ac->ac_inode = inode;
4552 		ac->ac_sb = sb;
4553 	}
4554 
4555 do_more:
4556 	overflow = 0;
4557 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4558 
4559 	/*
4560 	 * Check to see if we are freeing blocks across a group
4561 	 * boundary.
4562 	 */
4563 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4564 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4565 		count -= overflow;
4566 	}
4567 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4568 	if (!bitmap_bh) {
4569 		err = -EIO;
4570 		goto error_return;
4571 	}
4572 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4573 	if (!gdp) {
4574 		err = -EIO;
4575 		goto error_return;
4576 	}
4577 
4578 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4579 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4580 	    in_range(block, ext4_inode_table(sb, gdp),
4581 		      EXT4_SB(sb)->s_itb_per_group) ||
4582 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4583 		      EXT4_SB(sb)->s_itb_per_group)) {
4584 
4585 		ext4_error(sb, "Freeing blocks in system zone - "
4586 			   "Block = %llu, count = %lu", block, count);
4587 		/* err = 0. ext4_std_error should be a no op */
4588 		goto error_return;
4589 	}
4590 
4591 	BUFFER_TRACE(bitmap_bh, "getting write access");
4592 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4593 	if (err)
4594 		goto error_return;
4595 
4596 	/*
4597 	 * We are about to modify some metadata.  Call the journal APIs
4598 	 * to unshare ->b_data if a currently-committing transaction is
4599 	 * using it
4600 	 */
4601 	BUFFER_TRACE(gd_bh, "get_write_access");
4602 	err = ext4_journal_get_write_access(handle, gd_bh);
4603 	if (err)
4604 		goto error_return;
4605 #ifdef AGGRESSIVE_CHECK
4606 	{
4607 		int i;
4608 		for (i = 0; i < count; i++)
4609 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4610 	}
4611 #endif
4612 	if (ac) {
4613 		ac->ac_b_ex.fe_group = block_group;
4614 		ac->ac_b_ex.fe_start = bit;
4615 		ac->ac_b_ex.fe_len = count;
4616 		trace_ext4_mballoc_free(ac);
4617 	}
4618 
4619 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4620 	if (err)
4621 		goto error_return;
4622 
4623 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4624 		struct ext4_free_data *new_entry;
4625 		/*
4626 		 * blocks being freed are metadata. these blocks shouldn't
4627 		 * be used until this transaction is committed
4628 		 */
4629 		new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4630 		new_entry->start_blk = bit;
4631 		new_entry->group  = block_group;
4632 		new_entry->count = count;
4633 		new_entry->t_tid = handle->h_transaction->t_tid;
4634 
4635 		ext4_lock_group(sb, block_group);
4636 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4637 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4638 	} else {
4639 		/* need to update group_info->bb_free and bitmap
4640 		 * with group lock held. generate_buddy look at
4641 		 * them with group lock_held
4642 		 */
4643 		ext4_lock_group(sb, block_group);
4644 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4645 		mb_free_blocks(inode, &e4b, bit, count);
4646 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4647 		if (test_opt(sb, DISCARD))
4648 			ext4_issue_discard(sb, block_group, bit, count);
4649 	}
4650 
4651 	ret = ext4_free_blks_count(sb, gdp) + count;
4652 	ext4_free_blks_set(sb, gdp, ret);
4653 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4654 	ext4_unlock_group(sb, block_group);
4655 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4656 
4657 	if (sbi->s_log_groups_per_flex) {
4658 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4659 		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4660 	}
4661 
4662 	ext4_mb_unload_buddy(&e4b);
4663 
4664 	freed += count;
4665 
4666 	/* We dirtied the bitmap block */
4667 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4668 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4669 
4670 	/* And the group descriptor block */
4671 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4672 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4673 	if (!err)
4674 		err = ret;
4675 
4676 	if (overflow && !err) {
4677 		block += count;
4678 		count = overflow;
4679 		put_bh(bitmap_bh);
4680 		goto do_more;
4681 	}
4682 	ext4_mark_super_dirty(sb);
4683 error_return:
4684 	if (freed)
4685 		dquot_free_block(inode, freed);
4686 	brelse(bitmap_bh);
4687 	ext4_std_error(sb, err);
4688 	if (ac)
4689 		kmem_cache_free(ext4_ac_cachep, ac);
4690 	return;
4691 }
4692