xref: /linux/fs/ext4/mballoc.c (revision ccab211af3c2b90ed792eb5f33707d2f0d59fe50)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
158  * >= the order of the request. We directly look at the largest free order list
159  * in the data structure (1) above where largest_free_order = order of the
160  * request. If that list is empty, we look at remaining list in the increasing
161  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
162  * lookup in O(1) time.
163  *
164  * At CR_GOAL_LEN_FAST, we only consider groups where
165  * average fragment size > request size. So, we lookup a group which has average
166  * fragment size just above or equal to request size using our average fragment
167  * size group lists (data structure 2) in O(1) time.
168  *
169  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
170  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
171  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
172  * fragment size > goal length. So before falling to the slower
173  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
174  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
175  * enough average fragment size. This increases the chances of finding a
176  * suitable block group in O(1) time and results in faster allocation at the
177  * cost of reduced size of allocation.
178  *
179  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
180  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
181  * CR_GOAL_LEN_FAST phase.
182  *
183  * The regular allocator (using the buddy cache) supports a few tunables.
184  *
185  * /sys/fs/ext4/<partition>/mb_min_to_scan
186  * /sys/fs/ext4/<partition>/mb_max_to_scan
187  * /sys/fs/ext4/<partition>/mb_order2_req
188  * /sys/fs/ext4/<partition>/mb_linear_limit
189  *
190  * The regular allocator uses buddy scan only if the request len is power of
191  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
192  * value of s_mb_order2_reqs can be tuned via
193  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
194  * stripe size (sbi->s_stripe), we try to search for contiguous block in
195  * stripe size. This should result in better allocation on RAID setups. If
196  * not, we search in the specific group using bitmap for best extents. The
197  * tunable min_to_scan and max_to_scan control the behaviour here.
198  * min_to_scan indicate how long the mballoc __must__ look for a best
199  * extent and max_to_scan indicates how long the mballoc __can__ look for a
200  * best extent in the found extents. Searching for the blocks starts with
201  * the group specified as the goal value in allocation context via
202  * ac_g_ex. Each group is first checked based on the criteria whether it
203  * can be used for allocation. ext4_mb_good_group explains how the groups are
204  * checked.
205  *
206  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
207  * get traversed linearly. That may result in subsequent allocations being not
208  * close to each other. And so, the underlying device may get filled up in a
209  * non-linear fashion. While that may not matter on non-rotational devices, for
210  * rotational devices that may result in higher seek times. "mb_linear_limit"
211  * tells mballoc how many groups mballoc should search linearly before
212  * performing consulting above data structures for more efficient lookups. For
213  * non rotational devices, this value defaults to 0 and for rotational devices
214  * this is set to MB_DEFAULT_LINEAR_LIMIT.
215  *
216  * Both the prealloc space are getting populated as above. So for the first
217  * request we will hit the buddy cache which will result in this prealloc
218  * space getting filled. The prealloc space is then later used for the
219  * subsequent request.
220  */
221 
222 /*
223  * mballoc operates on the following data:
224  *  - on-disk bitmap
225  *  - in-core buddy (actually includes buddy and bitmap)
226  *  - preallocation descriptors (PAs)
227  *
228  * there are two types of preallocations:
229  *  - inode
230  *    assiged to specific inode and can be used for this inode only.
231  *    it describes part of inode's space preallocated to specific
232  *    physical blocks. any block from that preallocated can be used
233  *    independent. the descriptor just tracks number of blocks left
234  *    unused. so, before taking some block from descriptor, one must
235  *    make sure corresponded logical block isn't allocated yet. this
236  *    also means that freeing any block within descriptor's range
237  *    must discard all preallocated blocks.
238  *  - locality group
239  *    assigned to specific locality group which does not translate to
240  *    permanent set of inodes: inode can join and leave group. space
241  *    from this type of preallocation can be used for any inode. thus
242  *    it's consumed from the beginning to the end.
243  *
244  * relation between them can be expressed as:
245  *    in-core buddy = on-disk bitmap + preallocation descriptors
246  *
247  * this mean blocks mballoc considers used are:
248  *  - allocated blocks (persistent)
249  *  - preallocated blocks (non-persistent)
250  *
251  * consistency in mballoc world means that at any time a block is either
252  * free or used in ALL structures. notice: "any time" should not be read
253  * literally -- time is discrete and delimited by locks.
254  *
255  *  to keep it simple, we don't use block numbers, instead we count number of
256  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
257  *
258  * all operations can be expressed as:
259  *  - init buddy:			buddy = on-disk + PAs
260  *  - new PA:				buddy += N; PA = N
261  *  - use inode PA:			on-disk += N; PA -= N
262  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
263  *  - use locality group PA		on-disk += N; PA -= N
264  *  - discard locality group PA		buddy -= PA; PA = 0
265  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
266  *        is used in real operation because we can't know actual used
267  *        bits from PA, only from on-disk bitmap
268  *
269  * if we follow this strict logic, then all operations above should be atomic.
270  * given some of them can block, we'd have to use something like semaphores
271  * killing performance on high-end SMP hardware. let's try to relax it using
272  * the following knowledge:
273  *  1) if buddy is referenced, it's already initialized
274  *  2) while block is used in buddy and the buddy is referenced,
275  *     nobody can re-allocate that block
276  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
277  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
278  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
279  *     block
280  *
281  * so, now we're building a concurrency table:
282  *  - init buddy vs.
283  *    - new PA
284  *      blocks for PA are allocated in the buddy, buddy must be referenced
285  *      until PA is linked to allocation group to avoid concurrent buddy init
286  *    - use inode PA
287  *      we need to make sure that either on-disk bitmap or PA has uptodate data
288  *      given (3) we care that PA-=N operation doesn't interfere with init
289  *    - discard inode PA
290  *      the simplest way would be to have buddy initialized by the discard
291  *    - use locality group PA
292  *      again PA-=N must be serialized with init
293  *    - discard locality group PA
294  *      the simplest way would be to have buddy initialized by the discard
295  *  - new PA vs.
296  *    - use inode PA
297  *      i_data_sem serializes them
298  *    - discard inode PA
299  *      discard process must wait until PA isn't used by another process
300  *    - use locality group PA
301  *      some mutex should serialize them
302  *    - discard locality group PA
303  *      discard process must wait until PA isn't used by another process
304  *  - use inode PA
305  *    - use inode PA
306  *      i_data_sem or another mutex should serializes them
307  *    - discard inode PA
308  *      discard process must wait until PA isn't used by another process
309  *    - use locality group PA
310  *      nothing wrong here -- they're different PAs covering different blocks
311  *    - discard locality group PA
312  *      discard process must wait until PA isn't used by another process
313  *
314  * now we're ready to make few consequences:
315  *  - PA is referenced and while it is no discard is possible
316  *  - PA is referenced until block isn't marked in on-disk bitmap
317  *  - PA changes only after on-disk bitmap
318  *  - discard must not compete with init. either init is done before
319  *    any discard or they're serialized somehow
320  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
321  *
322  * a special case when we've used PA to emptiness. no need to modify buddy
323  * in this case, but we should care about concurrent init
324  *
325  */
326 
327  /*
328  * Logic in few words:
329  *
330  *  - allocation:
331  *    load group
332  *    find blocks
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - use preallocation:
337  *    find proper PA (per-inode or group)
338  *    load group
339  *    mark bits in on-disk bitmap
340  *    release group
341  *    release PA
342  *
343  *  - free:
344  *    load group
345  *    mark bits in on-disk bitmap
346  *    release group
347  *
348  *  - discard preallocations in group:
349  *    mark PAs deleted
350  *    move them onto local list
351  *    load on-disk bitmap
352  *    load group
353  *    remove PA from object (inode or locality group)
354  *    mark free blocks in-core
355  *
356  *  - discard inode's preallocations:
357  */
358 
359 /*
360  * Locking rules
361  *
362  * Locks:
363  *  - bitlock on a group	(group)
364  *  - object (inode/locality)	(object)
365  *  - per-pa lock		(pa)
366  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
367  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
368  *
369  * Paths:
370  *  - new pa
371  *    object
372  *    group
373  *
374  *  - find and use pa:
375  *    pa
376  *
377  *  - release consumed pa:
378  *    pa
379  *    group
380  *    object
381  *
382  *  - generate in-core bitmap:
383  *    group
384  *        pa
385  *
386  *  - discard all for given object (inode, locality group):
387  *    object
388  *        pa
389  *    group
390  *
391  *  - discard all for given group:
392  *    group
393  *        pa
394  *    group
395  *        object
396  *
397  *  - allocation path (ext4_mb_regular_allocator)
398  *    group
399  *    cr_power2_aligned/cr_goal_len_fast
400  */
401 static struct kmem_cache *ext4_pspace_cachep;
402 static struct kmem_cache *ext4_ac_cachep;
403 static struct kmem_cache *ext4_free_data_cachep;
404 
405 /* We create slab caches for groupinfo data structures based on the
406  * superblock block size.  There will be one per mounted filesystem for
407  * each unique s_blocksize_bits */
408 #define NR_GRPINFO_CACHES 8
409 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
410 
411 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
412 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
413 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
414 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
415 };
416 
417 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
418 					ext4_group_t group);
419 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
420 						ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 			       ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 		struct ext4_buddy *e4b, ext4_grpblk_t start,
428 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 	int __cpu;
452 	u64 __seq = 0;
453 
454 	for_each_possible_cpu(__cpu)
455 		__seq += per_cpu(discard_pa_seq, __cpu);
456 	return __seq;
457 }
458 
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 	*bit += ((unsigned long) addr & 7UL) << 3;
463 	addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 	*bit += ((unsigned long) addr & 3UL) << 3;
466 	addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 	return addr;
471 }
472 
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 	/*
476 	 * ext4_test_bit on architecture like powerpc
477 	 * needs unsigned long aligned address
478 	 */
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	return ext4_test_bit(bit, addr);
481 }
482 
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	ext4_set_bit(bit, addr);
487 }
488 
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 	addr = mb_correct_addr_and_bit(&bit, addr);
492 	ext4_clear_bit(bit, addr);
493 }
494 
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 	addr = mb_correct_addr_and_bit(&bit, addr);
498 	return ext4_test_and_clear_bit(bit, addr);
499 }
500 
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 	int fix = 0, ret, tmpmax;
504 	addr = mb_correct_addr_and_bit(&fix, addr);
505 	tmpmax = max + fix;
506 	start += fix;
507 
508 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 	if (ret > max)
510 		return max;
511 	return ret;
512 }
513 
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 	int fix = 0, ret, tmpmax;
517 	addr = mb_correct_addr_and_bit(&fix, addr);
518 	tmpmax = max + fix;
519 	start += fix;
520 
521 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 	if (ret > max)
523 		return max;
524 	return ret;
525 }
526 
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 	char *bb;
530 
531 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 	BUG_ON(max == NULL);
533 
534 	if (order > e4b->bd_blkbits + 1) {
535 		*max = 0;
536 		return NULL;
537 	}
538 
539 	/* at order 0 we see each particular block */
540 	if (order == 0) {
541 		*max = 1 << (e4b->bd_blkbits + 3);
542 		return e4b->bd_bitmap;
543 	}
544 
545 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548 	return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 			   int first, int count)
554 {
555 	int i;
556 	struct super_block *sb = e4b->bd_sb;
557 
558 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 		return;
560 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 	for (i = 0; i < count; i++) {
562 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 			ext4_fsblk_t blocknr;
564 
565 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 			ext4_grp_locked_error(sb, e4b->bd_group,
568 					      inode ? inode->i_ino : 0,
569 					      blocknr,
570 					      "freeing block already freed "
571 					      "(bit %u)",
572 					      first + i);
573 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
575 		}
576 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 	}
578 }
579 
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 	int i;
583 
584 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 		return;
586 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 	for (i = 0; i < count; i++) {
588 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 	}
591 }
592 
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 		return;
597 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 		unsigned char *b1, *b2;
599 		int i;
600 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 		b2 = (unsigned char *) bitmap;
602 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 			if (b1[i] != b2[i]) {
604 				ext4_msg(e4b->bd_sb, KERN_ERR,
605 					 "corruption in group %u "
606 					 "at byte %u(%u): %x in copy != %x "
607 					 "on disk/prealloc",
608 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 				BUG();
610 			}
611 		}
612 	}
613 }
614 
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 			struct ext4_group_info *grp, ext4_group_t group)
617 {
618 	struct buffer_head *bh;
619 
620 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 	if (!grp->bb_bitmap)
622 		return;
623 
624 	bh = ext4_read_block_bitmap(sb, group);
625 	if (IS_ERR_OR_NULL(bh)) {
626 		kfree(grp->bb_bitmap);
627 		grp->bb_bitmap = NULL;
628 		return;
629 	}
630 
631 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 	put_bh(bh);
633 }
634 
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 	kfree(grp->bb_bitmap);
638 }
639 
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642 				struct ext4_buddy *e4b, int first, int count)
643 {
644 	return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 						int first, int count)
648 {
649 	return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 	return;
654 }
655 
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 			struct ext4_group_info *grp, ext4_group_t group)
658 {
659 	return;
660 }
661 
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 	return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)						\
671 do {									\
672 	if (!(assert)) {						\
673 		printk(KERN_EMERG					\
674 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
675 			function, file, line, # assert);		\
676 		BUG();							\
677 	}								\
678 } while (0)
679 
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 				const char *function, int line)
682 {
683 	struct super_block *sb = e4b->bd_sb;
684 	int order = e4b->bd_blkbits + 1;
685 	int max;
686 	int max2;
687 	int i;
688 	int j;
689 	int k;
690 	int count;
691 	struct ext4_group_info *grp;
692 	int fragments = 0;
693 	int fstart;
694 	struct list_head *cur;
695 	void *buddy;
696 	void *buddy2;
697 
698 	if (e4b->bd_info->bb_check_counter++ % 10)
699 		return 0;
700 
701 	while (order > 1) {
702 		buddy = mb_find_buddy(e4b, order, &max);
703 		MB_CHECK_ASSERT(buddy);
704 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 		MB_CHECK_ASSERT(buddy2);
706 		MB_CHECK_ASSERT(buddy != buddy2);
707 		MB_CHECK_ASSERT(max * 2 == max2);
708 
709 		count = 0;
710 		for (i = 0; i < max; i++) {
711 
712 			if (mb_test_bit(i, buddy)) {
713 				/* only single bit in buddy2 may be 0 */
714 				if (!mb_test_bit(i << 1, buddy2)) {
715 					MB_CHECK_ASSERT(
716 						mb_test_bit((i<<1)+1, buddy2));
717 				}
718 				continue;
719 			}
720 
721 			/* both bits in buddy2 must be 1 */
722 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725 			for (j = 0; j < (1 << order); j++) {
726 				k = (i * (1 << order)) + j;
727 				MB_CHECK_ASSERT(
728 					!mb_test_bit(k, e4b->bd_bitmap));
729 			}
730 			count++;
731 		}
732 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 		order--;
734 	}
735 
736 	fstart = -1;
737 	buddy = mb_find_buddy(e4b, 0, &max);
738 	for (i = 0; i < max; i++) {
739 		if (!mb_test_bit(i, buddy)) {
740 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 			if (fstart == -1) {
742 				fragments++;
743 				fstart = i;
744 			}
745 			continue;
746 		}
747 		fstart = -1;
748 		/* check used bits only */
749 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 			buddy2 = mb_find_buddy(e4b, j, &max2);
751 			k = i >> j;
752 			MB_CHECK_ASSERT(k < max2);
753 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 		}
755 	}
756 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759 	grp = ext4_get_group_info(sb, e4b->bd_group);
760 	if (!grp)
761 		return NULL;
762 	list_for_each(cur, &grp->bb_prealloc_list) {
763 		ext4_group_t groupnr;
764 		struct ext4_prealloc_space *pa;
765 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 		for (i = 0; i < pa->pa_len; i++)
769 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 	}
771 	return 0;
772 }
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
775 					__FILE__, __func__, __LINE__)
776 #else
777 #define mb_check_buddy(e4b)
778 #endif
779 
780 /*
781  * Divide blocks started from @first with length @len into
782  * smaller chunks with power of 2 blocks.
783  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784  * then increase bb_counters[] for corresponded chunk size.
785  */
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788 					struct ext4_group_info *grp)
789 {
790 	struct ext4_sb_info *sbi = EXT4_SB(sb);
791 	ext4_grpblk_t min;
792 	ext4_grpblk_t max;
793 	ext4_grpblk_t chunk;
794 	unsigned int border;
795 
796 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797 
798 	border = 2 << sb->s_blocksize_bits;
799 
800 	while (len > 0) {
801 		/* find how many blocks can be covered since this position */
802 		max = ffs(first | border) - 1;
803 
804 		/* find how many blocks of power 2 we need to mark */
805 		min = fls(len) - 1;
806 
807 		if (max < min)
808 			min = max;
809 		chunk = 1 << min;
810 
811 		/* mark multiblock chunks only */
812 		grp->bb_counters[min]++;
813 		if (min > 0)
814 			mb_clear_bit(first >> min,
815 				     buddy + sbi->s_mb_offsets[min]);
816 
817 		len -= chunk;
818 		first += chunk;
819 	}
820 }
821 
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
823 {
824 	int order;
825 
826 	/*
827 	 * We don't bother with a special lists groups with only 1 block free
828 	 * extents and for completely empty groups.
829 	 */
830 	order = fls(len) - 2;
831 	if (order < 0)
832 		return 0;
833 	if (order == MB_NUM_ORDERS(sb))
834 		order--;
835 	return order;
836 }
837 
838 /* Move group to appropriate avg_fragment_size list */
839 static void
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
841 {
842 	struct ext4_sb_info *sbi = EXT4_SB(sb);
843 	int new_order;
844 
845 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
846 		return;
847 
848 	new_order = mb_avg_fragment_size_order(sb,
849 					grp->bb_free / grp->bb_fragments);
850 	if (new_order == grp->bb_avg_fragment_size_order)
851 		return;
852 
853 	if (grp->bb_avg_fragment_size_order != -1) {
854 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
855 					grp->bb_avg_fragment_size_order]);
856 		list_del(&grp->bb_avg_fragment_size_node);
857 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858 					grp->bb_avg_fragment_size_order]);
859 	}
860 	grp->bb_avg_fragment_size_order = new_order;
861 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
862 					grp->bb_avg_fragment_size_order]);
863 	list_add_tail(&grp->bb_avg_fragment_size_node,
864 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866 					grp->bb_avg_fragment_size_order]);
867 }
868 
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874 			enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877 	struct ext4_group_info *iter;
878 	int i;
879 
880 	if (ac->ac_status == AC_STATUS_FOUND)
881 		return;
882 
883 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
885 
886 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
887 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
888 			continue;
889 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
890 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
891 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
892 			continue;
893 		}
894 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
895 				    bb_largest_free_order_node) {
896 			if (sbi->s_mb_stats)
897 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
898 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
899 				*group = iter->bb_group;
900 				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
901 				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
902 				return;
903 			}
904 		}
905 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906 	}
907 
908 	/* Increment cr and search again if no group is found */
909 	*new_cr = CR_GOAL_LEN_FAST;
910 }
911 
912 /*
913  * Find a suitable group of given order from the average fragments list.
914  */
915 static struct ext4_group_info *
916 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
917 {
918 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
919 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
920 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
921 	struct ext4_group_info *grp = NULL, *iter;
922 	enum criteria cr = ac->ac_criteria;
923 
924 	if (list_empty(frag_list))
925 		return NULL;
926 	read_lock(frag_list_lock);
927 	if (list_empty(frag_list)) {
928 		read_unlock(frag_list_lock);
929 		return NULL;
930 	}
931 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
932 		if (sbi->s_mb_stats)
933 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
934 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
935 			grp = iter;
936 			break;
937 		}
938 	}
939 	read_unlock(frag_list_lock);
940 	return grp;
941 }
942 
943 /*
944  * Choose next group by traversing average fragment size list of suitable
945  * order. Updates *new_cr if cr level needs an update.
946  */
947 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
948 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
949 {
950 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
951 	struct ext4_group_info *grp = NULL;
952 	int i;
953 
954 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
955 		if (sbi->s_mb_stats)
956 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
957 	}
958 
959 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
960 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
961 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
962 		if (grp) {
963 			*group = grp->bb_group;
964 			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
965 			return;
966 		}
967 	}
968 
969 	/*
970 	 * CR_BEST_AVAIL_LEN works based on the concept that we have
971 	 * a larger normalized goal len request which can be trimmed to
972 	 * a smaller goal len such that it can still satisfy original
973 	 * request len. However, allocation request for non-regular
974 	 * files never gets normalized.
975 	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
976 	 */
977 	if (ac->ac_flags & EXT4_MB_HINT_DATA)
978 		*new_cr = CR_BEST_AVAIL_LEN;
979 	else
980 		*new_cr = CR_GOAL_LEN_SLOW;
981 }
982 
983 /*
984  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
985  * order we have and proactively trim the goal request length to that order to
986  * find a suitable group faster.
987  *
988  * This optimizes allocation speed at the cost of slightly reduced
989  * preallocations. However, we make sure that we don't trim the request too
990  * much and fall to CR_GOAL_LEN_SLOW in that case.
991  */
992 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
993 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
994 {
995 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
996 	struct ext4_group_info *grp = NULL;
997 	int i, order, min_order;
998 	unsigned long num_stripe_clusters = 0;
999 
1000 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1001 		if (sbi->s_mb_stats)
1002 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1003 	}
1004 
1005 	/*
1006 	 * mb_avg_fragment_size_order() returns order in a way that makes
1007 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1008 	 * fls() instead since we need to know the actual length while modifying
1009 	 * goal length.
1010 	 */
1011 	order = fls(ac->ac_g_ex.fe_len) - 1;
1012 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1013 	if (min_order < 0)
1014 		min_order = 0;
1015 
1016 	if (sbi->s_stripe > 0) {
1017 		/*
1018 		 * We are assuming that stripe size is always a multiple of
1019 		 * cluster ratio otherwise __ext4_fill_super exists early.
1020 		 */
1021 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1022 		if (1 << min_order < num_stripe_clusters)
1023 			/*
1024 			 * We consider 1 order less because later we round
1025 			 * up the goal len to num_stripe_clusters
1026 			 */
1027 			min_order = fls(num_stripe_clusters) - 1;
1028 	}
1029 
1030 	if (1 << min_order < ac->ac_o_ex.fe_len)
1031 		min_order = fls(ac->ac_o_ex.fe_len);
1032 
1033 	for (i = order; i >= min_order; i--) {
1034 		int frag_order;
1035 		/*
1036 		 * Scale down goal len to make sure we find something
1037 		 * in the free fragments list. Basically, reduce
1038 		 * preallocations.
1039 		 */
1040 		ac->ac_g_ex.fe_len = 1 << i;
1041 
1042 		if (num_stripe_clusters > 0) {
1043 			/*
1044 			 * Try to round up the adjusted goal length to
1045 			 * stripe size (in cluster units) multiple for
1046 			 * efficiency.
1047 			 */
1048 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1049 						     num_stripe_clusters);
1050 		}
1051 
1052 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1053 							ac->ac_g_ex.fe_len);
1054 
1055 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1056 		if (grp) {
1057 			*group = grp->bb_group;
1058 			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1059 			return;
1060 		}
1061 	}
1062 
1063 	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1064 	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1065 	*new_cr = CR_GOAL_LEN_SLOW;
1066 }
1067 
1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1069 {
1070 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1071 		return 0;
1072 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1073 		return 0;
1074 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1075 		return 0;
1076 	return 1;
1077 }
1078 
1079 /*
1080  * Return next linear group for allocation. If linear traversal should not be
1081  * performed, this function just returns the same group
1082  */
1083 static ext4_group_t
1084 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1085 		  ext4_group_t ngroups)
1086 {
1087 	if (!should_optimize_scan(ac))
1088 		goto inc_and_return;
1089 
1090 	if (ac->ac_groups_linear_remaining) {
1091 		ac->ac_groups_linear_remaining--;
1092 		goto inc_and_return;
1093 	}
1094 
1095 	return group;
1096 inc_and_return:
1097 	/*
1098 	 * Artificially restricted ngroups for non-extent
1099 	 * files makes group > ngroups possible on first loop.
1100 	 */
1101 	return group + 1 >= ngroups ? 0 : group + 1;
1102 }
1103 
1104 /*
1105  * ext4_mb_choose_next_group: choose next group for allocation.
1106  *
1107  * @ac        Allocation Context
1108  * @new_cr    This is an output parameter. If the there is no good group
1109  *            available at current CR level, this field is updated to indicate
1110  *            the new cr level that should be used.
1111  * @group     This is an input / output parameter. As an input it indicates the
1112  *            next group that the allocator intends to use for allocation. As
1113  *            output, this field indicates the next group that should be used as
1114  *            determined by the optimization functions.
1115  * @ngroups   Total number of groups
1116  */
1117 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1118 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1119 {
1120 	*new_cr = ac->ac_criteria;
1121 
1122 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1123 		*group = next_linear_group(ac, *group, ngroups);
1124 		return;
1125 	}
1126 
1127 	if (*new_cr == CR_POWER2_ALIGNED) {
1128 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1129 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1130 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1131 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1132 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1133 	} else {
1134 		/*
1135 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1136 		 * bb_free. But until that happens, we should never come here.
1137 		 */
1138 		WARN_ON(1);
1139 	}
1140 }
1141 
1142 /*
1143  * Cache the order of the largest free extent we have available in this block
1144  * group.
1145  */
1146 static void
1147 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1148 {
1149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1150 	int i;
1151 
1152 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1153 		if (grp->bb_counters[i] > 0)
1154 			break;
1155 	/* No need to move between order lists? */
1156 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1157 	    i == grp->bb_largest_free_order) {
1158 		grp->bb_largest_free_order = i;
1159 		return;
1160 	}
1161 
1162 	if (grp->bb_largest_free_order >= 0) {
1163 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1164 					      grp->bb_largest_free_order]);
1165 		list_del_init(&grp->bb_largest_free_order_node);
1166 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1167 					      grp->bb_largest_free_order]);
1168 	}
1169 	grp->bb_largest_free_order = i;
1170 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1171 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1172 					      grp->bb_largest_free_order]);
1173 		list_add_tail(&grp->bb_largest_free_order_node,
1174 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1175 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1176 					      grp->bb_largest_free_order]);
1177 	}
1178 }
1179 
1180 static noinline_for_stack
1181 void ext4_mb_generate_buddy(struct super_block *sb,
1182 			    void *buddy, void *bitmap, ext4_group_t group,
1183 			    struct ext4_group_info *grp)
1184 {
1185 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1186 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1187 	ext4_grpblk_t i = 0;
1188 	ext4_grpblk_t first;
1189 	ext4_grpblk_t len;
1190 	unsigned free = 0;
1191 	unsigned fragments = 0;
1192 	unsigned long long period = get_cycles();
1193 
1194 	/* initialize buddy from bitmap which is aggregation
1195 	 * of on-disk bitmap and preallocations */
1196 	i = mb_find_next_zero_bit(bitmap, max, 0);
1197 	grp->bb_first_free = i;
1198 	while (i < max) {
1199 		fragments++;
1200 		first = i;
1201 		i = mb_find_next_bit(bitmap, max, i);
1202 		len = i - first;
1203 		free += len;
1204 		if (len > 1)
1205 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1206 		else
1207 			grp->bb_counters[0]++;
1208 		if (i < max)
1209 			i = mb_find_next_zero_bit(bitmap, max, i);
1210 	}
1211 	grp->bb_fragments = fragments;
1212 
1213 	if (free != grp->bb_free) {
1214 		ext4_grp_locked_error(sb, group, 0, 0,
1215 				      "block bitmap and bg descriptor "
1216 				      "inconsistent: %u vs %u free clusters",
1217 				      free, grp->bb_free);
1218 		/*
1219 		 * If we intend to continue, we consider group descriptor
1220 		 * corrupt and update bb_free using bitmap value
1221 		 */
1222 		grp->bb_free = free;
1223 		ext4_mark_group_bitmap_corrupted(sb, group,
1224 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1225 	}
1226 	mb_set_largest_free_order(sb, grp);
1227 	mb_update_avg_fragment_size(sb, grp);
1228 
1229 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1230 
1231 	period = get_cycles() - period;
1232 	atomic_inc(&sbi->s_mb_buddies_generated);
1233 	atomic64_add(period, &sbi->s_mb_generation_time);
1234 }
1235 
1236 /* The buddy information is attached the buddy cache inode
1237  * for convenience. The information regarding each group
1238  * is loaded via ext4_mb_load_buddy. The information involve
1239  * block bitmap and buddy information. The information are
1240  * stored in the inode as
1241  *
1242  * {                        page                        }
1243  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1244  *
1245  *
1246  * one block each for bitmap and buddy information.
1247  * So for each group we take up 2 blocks. A page can
1248  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1249  * So it can have information regarding groups_per_page which
1250  * is blocks_per_page/2
1251  *
1252  * Locking note:  This routine takes the block group lock of all groups
1253  * for this page; do not hold this lock when calling this routine!
1254  */
1255 
1256 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1257 {
1258 	ext4_group_t ngroups;
1259 	unsigned int blocksize;
1260 	int blocks_per_page;
1261 	int groups_per_page;
1262 	int err = 0;
1263 	int i;
1264 	ext4_group_t first_group, group;
1265 	int first_block;
1266 	struct super_block *sb;
1267 	struct buffer_head *bhs;
1268 	struct buffer_head **bh = NULL;
1269 	struct inode *inode;
1270 	char *data;
1271 	char *bitmap;
1272 	struct ext4_group_info *grinfo;
1273 
1274 	inode = page->mapping->host;
1275 	sb = inode->i_sb;
1276 	ngroups = ext4_get_groups_count(sb);
1277 	blocksize = i_blocksize(inode);
1278 	blocks_per_page = PAGE_SIZE / blocksize;
1279 
1280 	mb_debug(sb, "init page %lu\n", page->index);
1281 
1282 	groups_per_page = blocks_per_page >> 1;
1283 	if (groups_per_page == 0)
1284 		groups_per_page = 1;
1285 
1286 	/* allocate buffer_heads to read bitmaps */
1287 	if (groups_per_page > 1) {
1288 		i = sizeof(struct buffer_head *) * groups_per_page;
1289 		bh = kzalloc(i, gfp);
1290 		if (bh == NULL)
1291 			return -ENOMEM;
1292 	} else
1293 		bh = &bhs;
1294 
1295 	first_group = page->index * blocks_per_page / 2;
1296 
1297 	/* read all groups the page covers into the cache */
1298 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1299 		if (group >= ngroups)
1300 			break;
1301 
1302 		grinfo = ext4_get_group_info(sb, group);
1303 		if (!grinfo)
1304 			continue;
1305 		/*
1306 		 * If page is uptodate then we came here after online resize
1307 		 * which added some new uninitialized group info structs, so
1308 		 * we must skip all initialized uptodate buddies on the page,
1309 		 * which may be currently in use by an allocating task.
1310 		 */
1311 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1312 			bh[i] = NULL;
1313 			continue;
1314 		}
1315 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1316 		if (IS_ERR(bh[i])) {
1317 			err = PTR_ERR(bh[i]);
1318 			bh[i] = NULL;
1319 			goto out;
1320 		}
1321 		mb_debug(sb, "read bitmap for group %u\n", group);
1322 	}
1323 
1324 	/* wait for I/O completion */
1325 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1326 		int err2;
1327 
1328 		if (!bh[i])
1329 			continue;
1330 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1331 		if (!err)
1332 			err = err2;
1333 	}
1334 
1335 	first_block = page->index * blocks_per_page;
1336 	for (i = 0; i < blocks_per_page; i++) {
1337 		group = (first_block + i) >> 1;
1338 		if (group >= ngroups)
1339 			break;
1340 
1341 		if (!bh[group - first_group])
1342 			/* skip initialized uptodate buddy */
1343 			continue;
1344 
1345 		if (!buffer_verified(bh[group - first_group]))
1346 			/* Skip faulty bitmaps */
1347 			continue;
1348 		err = 0;
1349 
1350 		/*
1351 		 * data carry information regarding this
1352 		 * particular group in the format specified
1353 		 * above
1354 		 *
1355 		 */
1356 		data = page_address(page) + (i * blocksize);
1357 		bitmap = bh[group - first_group]->b_data;
1358 
1359 		/*
1360 		 * We place the buddy block and bitmap block
1361 		 * close together
1362 		 */
1363 		if ((first_block + i) & 1) {
1364 			/* this is block of buddy */
1365 			BUG_ON(incore == NULL);
1366 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1367 				group, page->index, i * blocksize);
1368 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1369 			grinfo = ext4_get_group_info(sb, group);
1370 			if (!grinfo) {
1371 				err = -EFSCORRUPTED;
1372 				goto out;
1373 			}
1374 			grinfo->bb_fragments = 0;
1375 			memset(grinfo->bb_counters, 0,
1376 			       sizeof(*grinfo->bb_counters) *
1377 			       (MB_NUM_ORDERS(sb)));
1378 			/*
1379 			 * incore got set to the group block bitmap below
1380 			 */
1381 			ext4_lock_group(sb, group);
1382 			/* init the buddy */
1383 			memset(data, 0xff, blocksize);
1384 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1385 			ext4_unlock_group(sb, group);
1386 			incore = NULL;
1387 		} else {
1388 			/* this is block of bitmap */
1389 			BUG_ON(incore != NULL);
1390 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1391 				group, page->index, i * blocksize);
1392 			trace_ext4_mb_bitmap_load(sb, group);
1393 
1394 			/* see comments in ext4_mb_put_pa() */
1395 			ext4_lock_group(sb, group);
1396 			memcpy(data, bitmap, blocksize);
1397 
1398 			/* mark all preallocated blks used in in-core bitmap */
1399 			ext4_mb_generate_from_pa(sb, data, group);
1400 			ext4_mb_generate_from_freelist(sb, data, group);
1401 			ext4_unlock_group(sb, group);
1402 
1403 			/* set incore so that the buddy information can be
1404 			 * generated using this
1405 			 */
1406 			incore = data;
1407 		}
1408 	}
1409 	SetPageUptodate(page);
1410 
1411 out:
1412 	if (bh) {
1413 		for (i = 0; i < groups_per_page; i++)
1414 			brelse(bh[i]);
1415 		if (bh != &bhs)
1416 			kfree(bh);
1417 	}
1418 	return err;
1419 }
1420 
1421 /*
1422  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1423  * on the same buddy page doesn't happen whild holding the buddy page lock.
1424  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1425  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1426  */
1427 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1428 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1429 {
1430 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1431 	int block, pnum, poff;
1432 	int blocks_per_page;
1433 	struct page *page;
1434 
1435 	e4b->bd_buddy_page = NULL;
1436 	e4b->bd_bitmap_page = NULL;
1437 
1438 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1439 	/*
1440 	 * the buddy cache inode stores the block bitmap
1441 	 * and buddy information in consecutive blocks.
1442 	 * So for each group we need two blocks.
1443 	 */
1444 	block = group * 2;
1445 	pnum = block / blocks_per_page;
1446 	poff = block % blocks_per_page;
1447 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1448 	if (!page)
1449 		return -ENOMEM;
1450 	BUG_ON(page->mapping != inode->i_mapping);
1451 	e4b->bd_bitmap_page = page;
1452 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1453 
1454 	if (blocks_per_page >= 2) {
1455 		/* buddy and bitmap are on the same page */
1456 		return 0;
1457 	}
1458 
1459 	block++;
1460 	pnum = block / blocks_per_page;
1461 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1462 	if (!page)
1463 		return -ENOMEM;
1464 	BUG_ON(page->mapping != inode->i_mapping);
1465 	e4b->bd_buddy_page = page;
1466 	return 0;
1467 }
1468 
1469 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1470 {
1471 	if (e4b->bd_bitmap_page) {
1472 		unlock_page(e4b->bd_bitmap_page);
1473 		put_page(e4b->bd_bitmap_page);
1474 	}
1475 	if (e4b->bd_buddy_page) {
1476 		unlock_page(e4b->bd_buddy_page);
1477 		put_page(e4b->bd_buddy_page);
1478 	}
1479 }
1480 
1481 /*
1482  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1483  * block group lock of all groups for this page; do not hold the BG lock when
1484  * calling this routine!
1485  */
1486 static noinline_for_stack
1487 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1488 {
1489 
1490 	struct ext4_group_info *this_grp;
1491 	struct ext4_buddy e4b;
1492 	struct page *page;
1493 	int ret = 0;
1494 
1495 	might_sleep();
1496 	mb_debug(sb, "init group %u\n", group);
1497 	this_grp = ext4_get_group_info(sb, group);
1498 	if (!this_grp)
1499 		return -EFSCORRUPTED;
1500 
1501 	/*
1502 	 * This ensures that we don't reinit the buddy cache
1503 	 * page which map to the group from which we are already
1504 	 * allocating. If we are looking at the buddy cache we would
1505 	 * have taken a reference using ext4_mb_load_buddy and that
1506 	 * would have pinned buddy page to page cache.
1507 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1508 	 * page accessed.
1509 	 */
1510 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1511 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1512 		/*
1513 		 * somebody initialized the group
1514 		 * return without doing anything
1515 		 */
1516 		goto err;
1517 	}
1518 
1519 	page = e4b.bd_bitmap_page;
1520 	ret = ext4_mb_init_cache(page, NULL, gfp);
1521 	if (ret)
1522 		goto err;
1523 	if (!PageUptodate(page)) {
1524 		ret = -EIO;
1525 		goto err;
1526 	}
1527 
1528 	if (e4b.bd_buddy_page == NULL) {
1529 		/*
1530 		 * If both the bitmap and buddy are in
1531 		 * the same page we don't need to force
1532 		 * init the buddy
1533 		 */
1534 		ret = 0;
1535 		goto err;
1536 	}
1537 	/* init buddy cache */
1538 	page = e4b.bd_buddy_page;
1539 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1540 	if (ret)
1541 		goto err;
1542 	if (!PageUptodate(page)) {
1543 		ret = -EIO;
1544 		goto err;
1545 	}
1546 err:
1547 	ext4_mb_put_buddy_page_lock(&e4b);
1548 	return ret;
1549 }
1550 
1551 /*
1552  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1553  * block group lock of all groups for this page; do not hold the BG lock when
1554  * calling this routine!
1555  */
1556 static noinline_for_stack int
1557 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1558 		       struct ext4_buddy *e4b, gfp_t gfp)
1559 {
1560 	int blocks_per_page;
1561 	int block;
1562 	int pnum;
1563 	int poff;
1564 	struct page *page;
1565 	int ret;
1566 	struct ext4_group_info *grp;
1567 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1568 	struct inode *inode = sbi->s_buddy_cache;
1569 
1570 	might_sleep();
1571 	mb_debug(sb, "load group %u\n", group);
1572 
1573 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1574 	grp = ext4_get_group_info(sb, group);
1575 	if (!grp)
1576 		return -EFSCORRUPTED;
1577 
1578 	e4b->bd_blkbits = sb->s_blocksize_bits;
1579 	e4b->bd_info = grp;
1580 	e4b->bd_sb = sb;
1581 	e4b->bd_group = group;
1582 	e4b->bd_buddy_page = NULL;
1583 	e4b->bd_bitmap_page = NULL;
1584 
1585 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1586 		/*
1587 		 * we need full data about the group
1588 		 * to make a good selection
1589 		 */
1590 		ret = ext4_mb_init_group(sb, group, gfp);
1591 		if (ret)
1592 			return ret;
1593 	}
1594 
1595 	/*
1596 	 * the buddy cache inode stores the block bitmap
1597 	 * and buddy information in consecutive blocks.
1598 	 * So for each group we need two blocks.
1599 	 */
1600 	block = group * 2;
1601 	pnum = block / blocks_per_page;
1602 	poff = block % blocks_per_page;
1603 
1604 	/* we could use find_or_create_page(), but it locks page
1605 	 * what we'd like to avoid in fast path ... */
1606 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1607 	if (page == NULL || !PageUptodate(page)) {
1608 		if (page)
1609 			/*
1610 			 * drop the page reference and try
1611 			 * to get the page with lock. If we
1612 			 * are not uptodate that implies
1613 			 * somebody just created the page but
1614 			 * is yet to initialize the same. So
1615 			 * wait for it to initialize.
1616 			 */
1617 			put_page(page);
1618 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1619 		if (page) {
1620 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1621 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1622 				/* should never happen */
1623 				unlock_page(page);
1624 				ret = -EINVAL;
1625 				goto err;
1626 			}
1627 			if (!PageUptodate(page)) {
1628 				ret = ext4_mb_init_cache(page, NULL, gfp);
1629 				if (ret) {
1630 					unlock_page(page);
1631 					goto err;
1632 				}
1633 				mb_cmp_bitmaps(e4b, page_address(page) +
1634 					       (poff * sb->s_blocksize));
1635 			}
1636 			unlock_page(page);
1637 		}
1638 	}
1639 	if (page == NULL) {
1640 		ret = -ENOMEM;
1641 		goto err;
1642 	}
1643 	if (!PageUptodate(page)) {
1644 		ret = -EIO;
1645 		goto err;
1646 	}
1647 
1648 	/* Pages marked accessed already */
1649 	e4b->bd_bitmap_page = page;
1650 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1651 
1652 	block++;
1653 	pnum = block / blocks_per_page;
1654 	poff = block % blocks_per_page;
1655 
1656 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1657 	if (page == NULL || !PageUptodate(page)) {
1658 		if (page)
1659 			put_page(page);
1660 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1661 		if (page) {
1662 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1663 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1664 				/* should never happen */
1665 				unlock_page(page);
1666 				ret = -EINVAL;
1667 				goto err;
1668 			}
1669 			if (!PageUptodate(page)) {
1670 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1671 							 gfp);
1672 				if (ret) {
1673 					unlock_page(page);
1674 					goto err;
1675 				}
1676 			}
1677 			unlock_page(page);
1678 		}
1679 	}
1680 	if (page == NULL) {
1681 		ret = -ENOMEM;
1682 		goto err;
1683 	}
1684 	if (!PageUptodate(page)) {
1685 		ret = -EIO;
1686 		goto err;
1687 	}
1688 
1689 	/* Pages marked accessed already */
1690 	e4b->bd_buddy_page = page;
1691 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1692 
1693 	return 0;
1694 
1695 err:
1696 	if (page)
1697 		put_page(page);
1698 	if (e4b->bd_bitmap_page)
1699 		put_page(e4b->bd_bitmap_page);
1700 
1701 	e4b->bd_buddy = NULL;
1702 	e4b->bd_bitmap = NULL;
1703 	return ret;
1704 }
1705 
1706 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1707 			      struct ext4_buddy *e4b)
1708 {
1709 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1710 }
1711 
1712 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1713 {
1714 	if (e4b->bd_bitmap_page)
1715 		put_page(e4b->bd_bitmap_page);
1716 	if (e4b->bd_buddy_page)
1717 		put_page(e4b->bd_buddy_page);
1718 }
1719 
1720 
1721 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1722 {
1723 	int order = 1, max;
1724 	void *bb;
1725 
1726 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1727 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1728 
1729 	while (order <= e4b->bd_blkbits + 1) {
1730 		bb = mb_find_buddy(e4b, order, &max);
1731 		if (!mb_test_bit(block >> order, bb)) {
1732 			/* this block is part of buddy of order 'order' */
1733 			return order;
1734 		}
1735 		order++;
1736 	}
1737 	return 0;
1738 }
1739 
1740 static void mb_clear_bits(void *bm, int cur, int len)
1741 {
1742 	__u32 *addr;
1743 
1744 	len = cur + len;
1745 	while (cur < len) {
1746 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1747 			/* fast path: clear whole word at once */
1748 			addr = bm + (cur >> 3);
1749 			*addr = 0;
1750 			cur += 32;
1751 			continue;
1752 		}
1753 		mb_clear_bit(cur, bm);
1754 		cur++;
1755 	}
1756 }
1757 
1758 /* clear bits in given range
1759  * will return first found zero bit if any, -1 otherwise
1760  */
1761 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1762 {
1763 	__u32 *addr;
1764 	int zero_bit = -1;
1765 
1766 	len = cur + len;
1767 	while (cur < len) {
1768 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1769 			/* fast path: clear whole word at once */
1770 			addr = bm + (cur >> 3);
1771 			if (*addr != (__u32)(-1) && zero_bit == -1)
1772 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1773 			*addr = 0;
1774 			cur += 32;
1775 			continue;
1776 		}
1777 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1778 			zero_bit = cur;
1779 		cur++;
1780 	}
1781 
1782 	return zero_bit;
1783 }
1784 
1785 void mb_set_bits(void *bm, int cur, int len)
1786 {
1787 	__u32 *addr;
1788 
1789 	len = cur + len;
1790 	while (cur < len) {
1791 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1792 			/* fast path: set whole word at once */
1793 			addr = bm + (cur >> 3);
1794 			*addr = 0xffffffff;
1795 			cur += 32;
1796 			continue;
1797 		}
1798 		mb_set_bit(cur, bm);
1799 		cur++;
1800 	}
1801 }
1802 
1803 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1804 {
1805 	if (mb_test_bit(*bit + side, bitmap)) {
1806 		mb_clear_bit(*bit, bitmap);
1807 		(*bit) -= side;
1808 		return 1;
1809 	}
1810 	else {
1811 		(*bit) += side;
1812 		mb_set_bit(*bit, bitmap);
1813 		return -1;
1814 	}
1815 }
1816 
1817 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1818 {
1819 	int max;
1820 	int order = 1;
1821 	void *buddy = mb_find_buddy(e4b, order, &max);
1822 
1823 	while (buddy) {
1824 		void *buddy2;
1825 
1826 		/* Bits in range [first; last] are known to be set since
1827 		 * corresponding blocks were allocated. Bits in range
1828 		 * (first; last) will stay set because they form buddies on
1829 		 * upper layer. We just deal with borders if they don't
1830 		 * align with upper layer and then go up.
1831 		 * Releasing entire group is all about clearing
1832 		 * single bit of highest order buddy.
1833 		 */
1834 
1835 		/* Example:
1836 		 * ---------------------------------
1837 		 * |   1   |   1   |   1   |   1   |
1838 		 * ---------------------------------
1839 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1840 		 * ---------------------------------
1841 		 *   0   1   2   3   4   5   6   7
1842 		 *      \_____________________/
1843 		 *
1844 		 * Neither [1] nor [6] is aligned to above layer.
1845 		 * Left neighbour [0] is free, so mark it busy,
1846 		 * decrease bb_counters and extend range to
1847 		 * [0; 6]
1848 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1849 		 * mark [6] free, increase bb_counters and shrink range to
1850 		 * [0; 5].
1851 		 * Then shift range to [0; 2], go up and do the same.
1852 		 */
1853 
1854 
1855 		if (first & 1)
1856 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1857 		if (!(last & 1))
1858 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1859 		if (first > last)
1860 			break;
1861 		order++;
1862 
1863 		buddy2 = mb_find_buddy(e4b, order, &max);
1864 		if (!buddy2) {
1865 			mb_clear_bits(buddy, first, last - first + 1);
1866 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1867 			break;
1868 		}
1869 		first >>= 1;
1870 		last >>= 1;
1871 		buddy = buddy2;
1872 	}
1873 }
1874 
1875 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1876 			   int first, int count)
1877 {
1878 	int left_is_free = 0;
1879 	int right_is_free = 0;
1880 	int block;
1881 	int last = first + count - 1;
1882 	struct super_block *sb = e4b->bd_sb;
1883 
1884 	if (WARN_ON(count == 0))
1885 		return;
1886 	BUG_ON(last >= (sb->s_blocksize << 3));
1887 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1888 	/* Don't bother if the block group is corrupt. */
1889 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1890 		return;
1891 
1892 	mb_check_buddy(e4b);
1893 	mb_free_blocks_double(inode, e4b, first, count);
1894 
1895 	this_cpu_inc(discard_pa_seq);
1896 	e4b->bd_info->bb_free += count;
1897 	if (first < e4b->bd_info->bb_first_free)
1898 		e4b->bd_info->bb_first_free = first;
1899 
1900 	/* access memory sequentially: check left neighbour,
1901 	 * clear range and then check right neighbour
1902 	 */
1903 	if (first != 0)
1904 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1905 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1906 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1907 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1908 
1909 	if (unlikely(block != -1)) {
1910 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1911 		ext4_fsblk_t blocknr;
1912 
1913 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1914 		blocknr += EXT4_C2B(sbi, block);
1915 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1916 			ext4_grp_locked_error(sb, e4b->bd_group,
1917 					      inode ? inode->i_ino : 0,
1918 					      blocknr,
1919 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1920 					      block);
1921 			ext4_mark_group_bitmap_corrupted(
1922 				sb, e4b->bd_group,
1923 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1924 		}
1925 		goto done;
1926 	}
1927 
1928 	/* let's maintain fragments counter */
1929 	if (left_is_free && right_is_free)
1930 		e4b->bd_info->bb_fragments--;
1931 	else if (!left_is_free && !right_is_free)
1932 		e4b->bd_info->bb_fragments++;
1933 
1934 	/* buddy[0] == bd_bitmap is a special case, so handle
1935 	 * it right away and let mb_buddy_mark_free stay free of
1936 	 * zero order checks.
1937 	 * Check if neighbours are to be coaleasced,
1938 	 * adjust bitmap bb_counters and borders appropriately.
1939 	 */
1940 	if (first & 1) {
1941 		first += !left_is_free;
1942 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1943 	}
1944 	if (!(last & 1)) {
1945 		last -= !right_is_free;
1946 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1947 	}
1948 
1949 	if (first <= last)
1950 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1951 
1952 done:
1953 	mb_set_largest_free_order(sb, e4b->bd_info);
1954 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1955 	mb_check_buddy(e4b);
1956 }
1957 
1958 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1959 				int needed, struct ext4_free_extent *ex)
1960 {
1961 	int next = block;
1962 	int max, order;
1963 	void *buddy;
1964 
1965 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1966 	BUG_ON(ex == NULL);
1967 
1968 	buddy = mb_find_buddy(e4b, 0, &max);
1969 	BUG_ON(buddy == NULL);
1970 	BUG_ON(block >= max);
1971 	if (mb_test_bit(block, buddy)) {
1972 		ex->fe_len = 0;
1973 		ex->fe_start = 0;
1974 		ex->fe_group = 0;
1975 		return 0;
1976 	}
1977 
1978 	/* find actual order */
1979 	order = mb_find_order_for_block(e4b, block);
1980 	block = block >> order;
1981 
1982 	ex->fe_len = 1 << order;
1983 	ex->fe_start = block << order;
1984 	ex->fe_group = e4b->bd_group;
1985 
1986 	/* calc difference from given start */
1987 	next = next - ex->fe_start;
1988 	ex->fe_len -= next;
1989 	ex->fe_start += next;
1990 
1991 	while (needed > ex->fe_len &&
1992 	       mb_find_buddy(e4b, order, &max)) {
1993 
1994 		if (block + 1 >= max)
1995 			break;
1996 
1997 		next = (block + 1) * (1 << order);
1998 		if (mb_test_bit(next, e4b->bd_bitmap))
1999 			break;
2000 
2001 		order = mb_find_order_for_block(e4b, next);
2002 
2003 		block = next >> order;
2004 		ex->fe_len += 1 << order;
2005 	}
2006 
2007 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2008 		/* Should never happen! (but apparently sometimes does?!?) */
2009 		WARN_ON(1);
2010 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2011 			"corruption or bug in mb_find_extent "
2012 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2013 			block, order, needed, ex->fe_group, ex->fe_start,
2014 			ex->fe_len, ex->fe_logical);
2015 		ex->fe_len = 0;
2016 		ex->fe_start = 0;
2017 		ex->fe_group = 0;
2018 	}
2019 	return ex->fe_len;
2020 }
2021 
2022 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2023 {
2024 	int ord;
2025 	int mlen = 0;
2026 	int max = 0;
2027 	int cur;
2028 	int start = ex->fe_start;
2029 	int len = ex->fe_len;
2030 	unsigned ret = 0;
2031 	int len0 = len;
2032 	void *buddy;
2033 	bool split = false;
2034 
2035 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2036 	BUG_ON(e4b->bd_group != ex->fe_group);
2037 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2038 	mb_check_buddy(e4b);
2039 	mb_mark_used_double(e4b, start, len);
2040 
2041 	this_cpu_inc(discard_pa_seq);
2042 	e4b->bd_info->bb_free -= len;
2043 	if (e4b->bd_info->bb_first_free == start)
2044 		e4b->bd_info->bb_first_free += len;
2045 
2046 	/* let's maintain fragments counter */
2047 	if (start != 0)
2048 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2049 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2050 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2051 	if (mlen && max)
2052 		e4b->bd_info->bb_fragments++;
2053 	else if (!mlen && !max)
2054 		e4b->bd_info->bb_fragments--;
2055 
2056 	/* let's maintain buddy itself */
2057 	while (len) {
2058 		if (!split)
2059 			ord = mb_find_order_for_block(e4b, start);
2060 
2061 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2062 			/* the whole chunk may be allocated at once! */
2063 			mlen = 1 << ord;
2064 			if (!split)
2065 				buddy = mb_find_buddy(e4b, ord, &max);
2066 			else
2067 				split = false;
2068 			BUG_ON((start >> ord) >= max);
2069 			mb_set_bit(start >> ord, buddy);
2070 			e4b->bd_info->bb_counters[ord]--;
2071 			start += mlen;
2072 			len -= mlen;
2073 			BUG_ON(len < 0);
2074 			continue;
2075 		}
2076 
2077 		/* store for history */
2078 		if (ret == 0)
2079 			ret = len | (ord << 16);
2080 
2081 		/* we have to split large buddy */
2082 		BUG_ON(ord <= 0);
2083 		buddy = mb_find_buddy(e4b, ord, &max);
2084 		mb_set_bit(start >> ord, buddy);
2085 		e4b->bd_info->bb_counters[ord]--;
2086 
2087 		ord--;
2088 		cur = (start >> ord) & ~1U;
2089 		buddy = mb_find_buddy(e4b, ord, &max);
2090 		mb_clear_bit(cur, buddy);
2091 		mb_clear_bit(cur + 1, buddy);
2092 		e4b->bd_info->bb_counters[ord]++;
2093 		e4b->bd_info->bb_counters[ord]++;
2094 		split = true;
2095 	}
2096 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2097 
2098 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2099 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2100 	mb_check_buddy(e4b);
2101 
2102 	return ret;
2103 }
2104 
2105 /*
2106  * Must be called under group lock!
2107  */
2108 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2109 					struct ext4_buddy *e4b)
2110 {
2111 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2112 	int ret;
2113 
2114 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2115 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2116 
2117 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2118 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2119 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2120 
2121 	/* preallocation can change ac_b_ex, thus we store actually
2122 	 * allocated blocks for history */
2123 	ac->ac_f_ex = ac->ac_b_ex;
2124 
2125 	ac->ac_status = AC_STATUS_FOUND;
2126 	ac->ac_tail = ret & 0xffff;
2127 	ac->ac_buddy = ret >> 16;
2128 
2129 	/*
2130 	 * take the page reference. We want the page to be pinned
2131 	 * so that we don't get a ext4_mb_init_cache_call for this
2132 	 * group until we update the bitmap. That would mean we
2133 	 * double allocate blocks. The reference is dropped
2134 	 * in ext4_mb_release_context
2135 	 */
2136 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2137 	get_page(ac->ac_bitmap_page);
2138 	ac->ac_buddy_page = e4b->bd_buddy_page;
2139 	get_page(ac->ac_buddy_page);
2140 	/* store last allocated for subsequent stream allocation */
2141 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2142 		spin_lock(&sbi->s_md_lock);
2143 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2144 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2145 		spin_unlock(&sbi->s_md_lock);
2146 	}
2147 	/*
2148 	 * As we've just preallocated more space than
2149 	 * user requested originally, we store allocated
2150 	 * space in a special descriptor.
2151 	 */
2152 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2153 		ext4_mb_new_preallocation(ac);
2154 
2155 }
2156 
2157 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2158 					struct ext4_buddy *e4b,
2159 					int finish_group)
2160 {
2161 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2162 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2163 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2164 
2165 	if (ac->ac_status == AC_STATUS_FOUND)
2166 		return;
2167 	/*
2168 	 * We don't want to scan for a whole year
2169 	 */
2170 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2171 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2172 		ac->ac_status = AC_STATUS_BREAK;
2173 		return;
2174 	}
2175 
2176 	/*
2177 	 * Haven't found good chunk so far, let's continue
2178 	 */
2179 	if (bex->fe_len < gex->fe_len)
2180 		return;
2181 
2182 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2183 		ext4_mb_use_best_found(ac, e4b);
2184 }
2185 
2186 /*
2187  * The routine checks whether found extent is good enough. If it is,
2188  * then the extent gets marked used and flag is set to the context
2189  * to stop scanning. Otherwise, the extent is compared with the
2190  * previous found extent and if new one is better, then it's stored
2191  * in the context. Later, the best found extent will be used, if
2192  * mballoc can't find good enough extent.
2193  *
2194  * The algorithm used is roughly as follows:
2195  *
2196  * * If free extent found is exactly as big as goal, then
2197  *   stop the scan and use it immediately
2198  *
2199  * * If free extent found is smaller than goal, then keep retrying
2200  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2201  *   that stop scanning and use whatever we have.
2202  *
2203  * * If free extent found is bigger than goal, then keep retrying
2204  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2205  *   stopping the scan and using the extent.
2206  *
2207  *
2208  * FIXME: real allocation policy is to be designed yet!
2209  */
2210 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2211 					struct ext4_free_extent *ex,
2212 					struct ext4_buddy *e4b)
2213 {
2214 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2215 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2216 
2217 	BUG_ON(ex->fe_len <= 0);
2218 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2219 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2220 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2221 
2222 	ac->ac_found++;
2223 	ac->ac_cX_found[ac->ac_criteria]++;
2224 
2225 	/*
2226 	 * The special case - take what you catch first
2227 	 */
2228 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2229 		*bex = *ex;
2230 		ext4_mb_use_best_found(ac, e4b);
2231 		return;
2232 	}
2233 
2234 	/*
2235 	 * Let's check whether the chuck is good enough
2236 	 */
2237 	if (ex->fe_len == gex->fe_len) {
2238 		*bex = *ex;
2239 		ext4_mb_use_best_found(ac, e4b);
2240 		return;
2241 	}
2242 
2243 	/*
2244 	 * If this is first found extent, just store it in the context
2245 	 */
2246 	if (bex->fe_len == 0) {
2247 		*bex = *ex;
2248 		return;
2249 	}
2250 
2251 	/*
2252 	 * If new found extent is better, store it in the context
2253 	 */
2254 	if (bex->fe_len < gex->fe_len) {
2255 		/* if the request isn't satisfied, any found extent
2256 		 * larger than previous best one is better */
2257 		if (ex->fe_len > bex->fe_len)
2258 			*bex = *ex;
2259 	} else if (ex->fe_len > gex->fe_len) {
2260 		/* if the request is satisfied, then we try to find
2261 		 * an extent that still satisfy the request, but is
2262 		 * smaller than previous one */
2263 		if (ex->fe_len < bex->fe_len)
2264 			*bex = *ex;
2265 	}
2266 
2267 	ext4_mb_check_limits(ac, e4b, 0);
2268 }
2269 
2270 static noinline_for_stack
2271 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2272 					struct ext4_buddy *e4b)
2273 {
2274 	struct ext4_free_extent ex = ac->ac_b_ex;
2275 	ext4_group_t group = ex.fe_group;
2276 	int max;
2277 	int err;
2278 
2279 	BUG_ON(ex.fe_len <= 0);
2280 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2281 	if (err)
2282 		return;
2283 
2284 	ext4_lock_group(ac->ac_sb, group);
2285 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2286 
2287 	if (max > 0) {
2288 		ac->ac_b_ex = ex;
2289 		ext4_mb_use_best_found(ac, e4b);
2290 	}
2291 
2292 	ext4_unlock_group(ac->ac_sb, group);
2293 	ext4_mb_unload_buddy(e4b);
2294 }
2295 
2296 static noinline_for_stack
2297 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2298 				struct ext4_buddy *e4b)
2299 {
2300 	ext4_group_t group = ac->ac_g_ex.fe_group;
2301 	int max;
2302 	int err;
2303 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2304 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2305 	struct ext4_free_extent ex;
2306 
2307 	if (!grp)
2308 		return -EFSCORRUPTED;
2309 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2310 		return 0;
2311 	if (grp->bb_free == 0)
2312 		return 0;
2313 
2314 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2315 	if (err)
2316 		return err;
2317 
2318 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2319 		ext4_mb_unload_buddy(e4b);
2320 		return 0;
2321 	}
2322 
2323 	ext4_lock_group(ac->ac_sb, group);
2324 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2325 			     ac->ac_g_ex.fe_len, &ex);
2326 	ex.fe_logical = 0xDEADFA11; /* debug value */
2327 
2328 	if (max >= ac->ac_g_ex.fe_len &&
2329 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2330 		ext4_fsblk_t start;
2331 
2332 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2333 		/* use do_div to get remainder (would be 64-bit modulo) */
2334 		if (do_div(start, sbi->s_stripe) == 0) {
2335 			ac->ac_found++;
2336 			ac->ac_b_ex = ex;
2337 			ext4_mb_use_best_found(ac, e4b);
2338 		}
2339 	} else if (max >= ac->ac_g_ex.fe_len) {
2340 		BUG_ON(ex.fe_len <= 0);
2341 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2342 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2343 		ac->ac_found++;
2344 		ac->ac_b_ex = ex;
2345 		ext4_mb_use_best_found(ac, e4b);
2346 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2347 		/* Sometimes, caller may want to merge even small
2348 		 * number of blocks to an existing extent */
2349 		BUG_ON(ex.fe_len <= 0);
2350 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2351 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2352 		ac->ac_found++;
2353 		ac->ac_b_ex = ex;
2354 		ext4_mb_use_best_found(ac, e4b);
2355 	}
2356 	ext4_unlock_group(ac->ac_sb, group);
2357 	ext4_mb_unload_buddy(e4b);
2358 
2359 	return 0;
2360 }
2361 
2362 /*
2363  * The routine scans buddy structures (not bitmap!) from given order
2364  * to max order and tries to find big enough chunk to satisfy the req
2365  */
2366 static noinline_for_stack
2367 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2368 					struct ext4_buddy *e4b)
2369 {
2370 	struct super_block *sb = ac->ac_sb;
2371 	struct ext4_group_info *grp = e4b->bd_info;
2372 	void *buddy;
2373 	int i;
2374 	int k;
2375 	int max;
2376 
2377 	BUG_ON(ac->ac_2order <= 0);
2378 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2379 		if (grp->bb_counters[i] == 0)
2380 			continue;
2381 
2382 		buddy = mb_find_buddy(e4b, i, &max);
2383 		if (WARN_RATELIMIT(buddy == NULL,
2384 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2385 			continue;
2386 
2387 		k = mb_find_next_zero_bit(buddy, max, 0);
2388 		if (k >= max) {
2389 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2390 				"%d free clusters of order %d. But found 0",
2391 				grp->bb_counters[i], i);
2392 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2393 					 e4b->bd_group,
2394 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2395 			break;
2396 		}
2397 		ac->ac_found++;
2398 		ac->ac_cX_found[ac->ac_criteria]++;
2399 
2400 		ac->ac_b_ex.fe_len = 1 << i;
2401 		ac->ac_b_ex.fe_start = k << i;
2402 		ac->ac_b_ex.fe_group = e4b->bd_group;
2403 
2404 		ext4_mb_use_best_found(ac, e4b);
2405 
2406 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2407 
2408 		if (EXT4_SB(sb)->s_mb_stats)
2409 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2410 
2411 		break;
2412 	}
2413 }
2414 
2415 /*
2416  * The routine scans the group and measures all found extents.
2417  * In order to optimize scanning, caller must pass number of
2418  * free blocks in the group, so the routine can know upper limit.
2419  */
2420 static noinline_for_stack
2421 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2422 					struct ext4_buddy *e4b)
2423 {
2424 	struct super_block *sb = ac->ac_sb;
2425 	void *bitmap = e4b->bd_bitmap;
2426 	struct ext4_free_extent ex;
2427 	int i, j, freelen;
2428 	int free;
2429 
2430 	free = e4b->bd_info->bb_free;
2431 	if (WARN_ON(free <= 0))
2432 		return;
2433 
2434 	i = e4b->bd_info->bb_first_free;
2435 
2436 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2437 		i = mb_find_next_zero_bit(bitmap,
2438 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2439 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2440 			/*
2441 			 * IF we have corrupt bitmap, we won't find any
2442 			 * free blocks even though group info says we
2443 			 * have free blocks
2444 			 */
2445 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2446 					"%d free clusters as per "
2447 					"group info. But bitmap says 0",
2448 					free);
2449 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2450 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2451 			break;
2452 		}
2453 
2454 		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2455 			/*
2456 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2457 			 * sure that this group will have a large enough
2458 			 * continuous free extent, so skip over the smaller free
2459 			 * extents
2460 			 */
2461 			j = mb_find_next_bit(bitmap,
2462 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2463 			freelen = j - i;
2464 
2465 			if (freelen < ac->ac_g_ex.fe_len) {
2466 				i = j;
2467 				free -= freelen;
2468 				continue;
2469 			}
2470 		}
2471 
2472 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2473 		if (WARN_ON(ex.fe_len <= 0))
2474 			break;
2475 		if (free < ex.fe_len) {
2476 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2477 					"%d free clusters as per "
2478 					"group info. But got %d blocks",
2479 					free, ex.fe_len);
2480 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2481 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2482 			/*
2483 			 * The number of free blocks differs. This mostly
2484 			 * indicate that the bitmap is corrupt. So exit
2485 			 * without claiming the space.
2486 			 */
2487 			break;
2488 		}
2489 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2490 		ext4_mb_measure_extent(ac, &ex, e4b);
2491 
2492 		i += ex.fe_len;
2493 		free -= ex.fe_len;
2494 	}
2495 
2496 	ext4_mb_check_limits(ac, e4b, 1);
2497 }
2498 
2499 /*
2500  * This is a special case for storages like raid5
2501  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2502  */
2503 static noinline_for_stack
2504 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2505 				 struct ext4_buddy *e4b)
2506 {
2507 	struct super_block *sb = ac->ac_sb;
2508 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2509 	void *bitmap = e4b->bd_bitmap;
2510 	struct ext4_free_extent ex;
2511 	ext4_fsblk_t first_group_block;
2512 	ext4_fsblk_t a;
2513 	ext4_grpblk_t i, stripe;
2514 	int max;
2515 
2516 	BUG_ON(sbi->s_stripe == 0);
2517 
2518 	/* find first stripe-aligned block in group */
2519 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2520 
2521 	a = first_group_block + sbi->s_stripe - 1;
2522 	do_div(a, sbi->s_stripe);
2523 	i = (a * sbi->s_stripe) - first_group_block;
2524 
2525 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2526 	i = EXT4_B2C(sbi, i);
2527 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2528 		if (!mb_test_bit(i, bitmap)) {
2529 			max = mb_find_extent(e4b, i, stripe, &ex);
2530 			if (max >= stripe) {
2531 				ac->ac_found++;
2532 				ac->ac_cX_found[ac->ac_criteria]++;
2533 				ex.fe_logical = 0xDEADF00D; /* debug value */
2534 				ac->ac_b_ex = ex;
2535 				ext4_mb_use_best_found(ac, e4b);
2536 				break;
2537 			}
2538 		}
2539 		i += stripe;
2540 	}
2541 }
2542 
2543 /*
2544  * This is also called BEFORE we load the buddy bitmap.
2545  * Returns either 1 or 0 indicating that the group is either suitable
2546  * for the allocation or not.
2547  */
2548 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2549 				ext4_group_t group, enum criteria cr)
2550 {
2551 	ext4_grpblk_t free, fragments;
2552 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2553 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2554 
2555 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2556 
2557 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2558 		return false;
2559 
2560 	free = grp->bb_free;
2561 	if (free == 0)
2562 		return false;
2563 
2564 	fragments = grp->bb_fragments;
2565 	if (fragments == 0)
2566 		return false;
2567 
2568 	switch (cr) {
2569 	case CR_POWER2_ALIGNED:
2570 		BUG_ON(ac->ac_2order == 0);
2571 
2572 		/* Avoid using the first bg of a flexgroup for data files */
2573 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2574 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2575 		    ((group % flex_size) == 0))
2576 			return false;
2577 
2578 		if (free < ac->ac_g_ex.fe_len)
2579 			return false;
2580 
2581 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2582 			return true;
2583 
2584 		if (grp->bb_largest_free_order < ac->ac_2order)
2585 			return false;
2586 
2587 		return true;
2588 	case CR_GOAL_LEN_FAST:
2589 	case CR_BEST_AVAIL_LEN:
2590 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2591 			return true;
2592 		break;
2593 	case CR_GOAL_LEN_SLOW:
2594 		if (free >= ac->ac_g_ex.fe_len)
2595 			return true;
2596 		break;
2597 	case CR_ANY_FREE:
2598 		return true;
2599 	default:
2600 		BUG();
2601 	}
2602 
2603 	return false;
2604 }
2605 
2606 /*
2607  * This could return negative error code if something goes wrong
2608  * during ext4_mb_init_group(). This should not be called with
2609  * ext4_lock_group() held.
2610  *
2611  * Note: because we are conditionally operating with the group lock in
2612  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2613  * function using __acquire and __release.  This means we need to be
2614  * super careful before messing with the error path handling via "goto
2615  * out"!
2616  */
2617 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2618 				     ext4_group_t group, enum criteria cr)
2619 {
2620 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2621 	struct super_block *sb = ac->ac_sb;
2622 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2623 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2624 	ext4_grpblk_t free;
2625 	int ret = 0;
2626 
2627 	if (!grp)
2628 		return -EFSCORRUPTED;
2629 	if (sbi->s_mb_stats)
2630 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2631 	if (should_lock) {
2632 		ext4_lock_group(sb, group);
2633 		__release(ext4_group_lock_ptr(sb, group));
2634 	}
2635 	free = grp->bb_free;
2636 	if (free == 0)
2637 		goto out;
2638 	/*
2639 	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2640 	 * can't possibly satisfy the full goal request due to insufficient
2641 	 * free blocks.
2642 	 */
2643 	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2644 		goto out;
2645 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2646 		goto out;
2647 	if (should_lock) {
2648 		__acquire(ext4_group_lock_ptr(sb, group));
2649 		ext4_unlock_group(sb, group);
2650 	}
2651 
2652 	/* We only do this if the grp has never been initialized */
2653 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2654 		struct ext4_group_desc *gdp =
2655 			ext4_get_group_desc(sb, group, NULL);
2656 		int ret;
2657 
2658 		/*
2659 		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2660 		 * search to find large good chunks almost for free. If buddy
2661 		 * data is not ready, then this optimization makes no sense. But
2662 		 * we never skip the first block group in a flex_bg, since this
2663 		 * gets used for metadata block allocation, and we want to make
2664 		 * sure we locate metadata blocks in the first block group in
2665 		 * the flex_bg if possible.
2666 		 */
2667 		if (!ext4_mb_cr_expensive(cr) &&
2668 		    (!sbi->s_log_groups_per_flex ||
2669 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2670 		    !(ext4_has_group_desc_csum(sb) &&
2671 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2672 			return 0;
2673 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2674 		if (ret)
2675 			return ret;
2676 	}
2677 
2678 	if (should_lock) {
2679 		ext4_lock_group(sb, group);
2680 		__release(ext4_group_lock_ptr(sb, group));
2681 	}
2682 	ret = ext4_mb_good_group(ac, group, cr);
2683 out:
2684 	if (should_lock) {
2685 		__acquire(ext4_group_lock_ptr(sb, group));
2686 		ext4_unlock_group(sb, group);
2687 	}
2688 	return ret;
2689 }
2690 
2691 /*
2692  * Start prefetching @nr block bitmaps starting at @group.
2693  * Return the next group which needs to be prefetched.
2694  */
2695 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2696 			      unsigned int nr, int *cnt)
2697 {
2698 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2699 	struct buffer_head *bh;
2700 	struct blk_plug plug;
2701 
2702 	blk_start_plug(&plug);
2703 	while (nr-- > 0) {
2704 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2705 								  NULL);
2706 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2707 
2708 		/*
2709 		 * Prefetch block groups with free blocks; but don't
2710 		 * bother if it is marked uninitialized on disk, since
2711 		 * it won't require I/O to read.  Also only try to
2712 		 * prefetch once, so we avoid getblk() call, which can
2713 		 * be expensive.
2714 		 */
2715 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2716 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2717 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2718 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2719 			if (bh && !IS_ERR(bh)) {
2720 				if (!buffer_uptodate(bh) && cnt)
2721 					(*cnt)++;
2722 				brelse(bh);
2723 			}
2724 		}
2725 		if (++group >= ngroups)
2726 			group = 0;
2727 	}
2728 	blk_finish_plug(&plug);
2729 	return group;
2730 }
2731 
2732 /*
2733  * Prefetching reads the block bitmap into the buffer cache; but we
2734  * need to make sure that the buddy bitmap in the page cache has been
2735  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2736  * is not yet completed, or indeed if it was not initiated by
2737  * ext4_mb_prefetch did not start the I/O.
2738  *
2739  * TODO: We should actually kick off the buddy bitmap setup in a work
2740  * queue when the buffer I/O is completed, so that we don't block
2741  * waiting for the block allocation bitmap read to finish when
2742  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2743  */
2744 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2745 			   unsigned int nr)
2746 {
2747 	struct ext4_group_desc *gdp;
2748 	struct ext4_group_info *grp;
2749 
2750 	while (nr-- > 0) {
2751 		if (!group)
2752 			group = ext4_get_groups_count(sb);
2753 		group--;
2754 		gdp = ext4_get_group_desc(sb, group, NULL);
2755 		grp = ext4_get_group_info(sb, group);
2756 
2757 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2758 		    ext4_free_group_clusters(sb, gdp) > 0) {
2759 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2760 				break;
2761 		}
2762 	}
2763 }
2764 
2765 static noinline_for_stack int
2766 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2767 {
2768 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2769 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2770 	int err = 0, first_err = 0;
2771 	unsigned int nr = 0, prefetch_ios = 0;
2772 	struct ext4_sb_info *sbi;
2773 	struct super_block *sb;
2774 	struct ext4_buddy e4b;
2775 	int lost;
2776 
2777 	sb = ac->ac_sb;
2778 	sbi = EXT4_SB(sb);
2779 	ngroups = ext4_get_groups_count(sb);
2780 	/* non-extent files are limited to low blocks/groups */
2781 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2782 		ngroups = sbi->s_blockfile_groups;
2783 
2784 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2785 
2786 	/* first, try the goal */
2787 	err = ext4_mb_find_by_goal(ac, &e4b);
2788 	if (err || ac->ac_status == AC_STATUS_FOUND)
2789 		goto out;
2790 
2791 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2792 		goto out;
2793 
2794 	/*
2795 	 * ac->ac_2order is set only if the fe_len is a power of 2
2796 	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2797 	 * so that we try exact allocation using buddy.
2798 	 */
2799 	i = fls(ac->ac_g_ex.fe_len);
2800 	ac->ac_2order = 0;
2801 	/*
2802 	 * We search using buddy data only if the order of the request
2803 	 * is greater than equal to the sbi_s_mb_order2_reqs
2804 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2805 	 * We also support searching for power-of-two requests only for
2806 	 * requests upto maximum buddy size we have constructed.
2807 	 */
2808 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2809 		if (is_power_of_2(ac->ac_g_ex.fe_len))
2810 			ac->ac_2order = array_index_nospec(i - 1,
2811 							   MB_NUM_ORDERS(sb));
2812 	}
2813 
2814 	/* if stream allocation is enabled, use global goal */
2815 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2816 		/* TBD: may be hot point */
2817 		spin_lock(&sbi->s_md_lock);
2818 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2819 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2820 		spin_unlock(&sbi->s_md_lock);
2821 	}
2822 
2823 	/*
2824 	 * Let's just scan groups to find more-less suitable blocks We
2825 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2826 	 * aligned, in which case let's do that faster approach first.
2827 	 */
2828 	if (ac->ac_2order)
2829 		cr = CR_POWER2_ALIGNED;
2830 repeat:
2831 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2832 		ac->ac_criteria = cr;
2833 		/*
2834 		 * searching for the right group start
2835 		 * from the goal value specified
2836 		 */
2837 		group = ac->ac_g_ex.fe_group;
2838 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2839 		prefetch_grp = group;
2840 
2841 		for (i = 0, new_cr = cr; i < ngroups; i++,
2842 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2843 			int ret = 0;
2844 
2845 			cond_resched();
2846 			if (new_cr != cr) {
2847 				cr = new_cr;
2848 				goto repeat;
2849 			}
2850 
2851 			/*
2852 			 * Batch reads of the block allocation bitmaps
2853 			 * to get multiple READs in flight; limit
2854 			 * prefetching at inexpensive CR, otherwise mballoc
2855 			 * can spend a lot of time loading imperfect groups
2856 			 */
2857 			if ((prefetch_grp == group) &&
2858 			    (ext4_mb_cr_expensive(cr) ||
2859 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2860 				nr = sbi->s_mb_prefetch;
2861 				if (ext4_has_feature_flex_bg(sb)) {
2862 					nr = 1 << sbi->s_log_groups_per_flex;
2863 					nr -= group & (nr - 1);
2864 					nr = min(nr, sbi->s_mb_prefetch);
2865 				}
2866 				prefetch_grp = ext4_mb_prefetch(sb, group,
2867 							nr, &prefetch_ios);
2868 			}
2869 
2870 			/* This now checks without needing the buddy page */
2871 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2872 			if (ret <= 0) {
2873 				if (!first_err)
2874 					first_err = ret;
2875 				continue;
2876 			}
2877 
2878 			err = ext4_mb_load_buddy(sb, group, &e4b);
2879 			if (err)
2880 				goto out;
2881 
2882 			ext4_lock_group(sb, group);
2883 
2884 			/*
2885 			 * We need to check again after locking the
2886 			 * block group
2887 			 */
2888 			ret = ext4_mb_good_group(ac, group, cr);
2889 			if (ret == 0) {
2890 				ext4_unlock_group(sb, group);
2891 				ext4_mb_unload_buddy(&e4b);
2892 				continue;
2893 			}
2894 
2895 			ac->ac_groups_scanned++;
2896 			if (cr == CR_POWER2_ALIGNED)
2897 				ext4_mb_simple_scan_group(ac, &e4b);
2898 			else if ((cr == CR_GOAL_LEN_FAST ||
2899 				 cr == CR_BEST_AVAIL_LEN) &&
2900 				 sbi->s_stripe &&
2901 				 !(ac->ac_g_ex.fe_len %
2902 				 EXT4_B2C(sbi, sbi->s_stripe)))
2903 				ext4_mb_scan_aligned(ac, &e4b);
2904 			else
2905 				ext4_mb_complex_scan_group(ac, &e4b);
2906 
2907 			ext4_unlock_group(sb, group);
2908 			ext4_mb_unload_buddy(&e4b);
2909 
2910 			if (ac->ac_status != AC_STATUS_CONTINUE)
2911 				break;
2912 		}
2913 		/* Processed all groups and haven't found blocks */
2914 		if (sbi->s_mb_stats && i == ngroups)
2915 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2916 
2917 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2918 			/* Reset goal length to original goal length before
2919 			 * falling into CR_GOAL_LEN_SLOW */
2920 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2921 	}
2922 
2923 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2924 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2925 		/*
2926 		 * We've been searching too long. Let's try to allocate
2927 		 * the best chunk we've found so far
2928 		 */
2929 		ext4_mb_try_best_found(ac, &e4b);
2930 		if (ac->ac_status != AC_STATUS_FOUND) {
2931 			/*
2932 			 * Someone more lucky has already allocated it.
2933 			 * The only thing we can do is just take first
2934 			 * found block(s)
2935 			 */
2936 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2937 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2938 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2939 				 ac->ac_b_ex.fe_len, lost);
2940 
2941 			ac->ac_b_ex.fe_group = 0;
2942 			ac->ac_b_ex.fe_start = 0;
2943 			ac->ac_b_ex.fe_len = 0;
2944 			ac->ac_status = AC_STATUS_CONTINUE;
2945 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2946 			cr = CR_ANY_FREE;
2947 			goto repeat;
2948 		}
2949 	}
2950 
2951 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2952 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2953 out:
2954 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2955 		err = first_err;
2956 
2957 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2958 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2959 		 ac->ac_flags, cr, err);
2960 
2961 	if (nr)
2962 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2963 
2964 	return err;
2965 }
2966 
2967 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2968 {
2969 	struct super_block *sb = pde_data(file_inode(seq->file));
2970 	ext4_group_t group;
2971 
2972 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2973 		return NULL;
2974 	group = *pos + 1;
2975 	return (void *) ((unsigned long) group);
2976 }
2977 
2978 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2979 {
2980 	struct super_block *sb = pde_data(file_inode(seq->file));
2981 	ext4_group_t group;
2982 
2983 	++*pos;
2984 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2985 		return NULL;
2986 	group = *pos + 1;
2987 	return (void *) ((unsigned long) group);
2988 }
2989 
2990 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2991 {
2992 	struct super_block *sb = pde_data(file_inode(seq->file));
2993 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2994 	int i;
2995 	int err, buddy_loaded = 0;
2996 	struct ext4_buddy e4b;
2997 	struct ext4_group_info *grinfo;
2998 	unsigned char blocksize_bits = min_t(unsigned char,
2999 					     sb->s_blocksize_bits,
3000 					     EXT4_MAX_BLOCK_LOG_SIZE);
3001 	struct sg {
3002 		struct ext4_group_info info;
3003 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3004 	} sg;
3005 
3006 	group--;
3007 	if (group == 0)
3008 		seq_puts(seq, "#group: free  frags first ["
3009 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3010 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3011 
3012 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3013 		sizeof(struct ext4_group_info);
3014 
3015 	grinfo = ext4_get_group_info(sb, group);
3016 	if (!grinfo)
3017 		return 0;
3018 	/* Load the group info in memory only if not already loaded. */
3019 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3020 		err = ext4_mb_load_buddy(sb, group, &e4b);
3021 		if (err) {
3022 			seq_printf(seq, "#%-5u: I/O error\n", group);
3023 			return 0;
3024 		}
3025 		buddy_loaded = 1;
3026 	}
3027 
3028 	memcpy(&sg, grinfo, i);
3029 
3030 	if (buddy_loaded)
3031 		ext4_mb_unload_buddy(&e4b);
3032 
3033 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3034 			sg.info.bb_fragments, sg.info.bb_first_free);
3035 	for (i = 0; i <= 13; i++)
3036 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3037 				sg.info.bb_counters[i] : 0);
3038 	seq_puts(seq, " ]\n");
3039 
3040 	return 0;
3041 }
3042 
3043 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3044 {
3045 }
3046 
3047 const struct seq_operations ext4_mb_seq_groups_ops = {
3048 	.start  = ext4_mb_seq_groups_start,
3049 	.next   = ext4_mb_seq_groups_next,
3050 	.stop   = ext4_mb_seq_groups_stop,
3051 	.show   = ext4_mb_seq_groups_show,
3052 };
3053 
3054 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3055 {
3056 	struct super_block *sb = seq->private;
3057 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3058 
3059 	seq_puts(seq, "mballoc:\n");
3060 	if (!sbi->s_mb_stats) {
3061 		seq_puts(seq, "\tmb stats collection turned off.\n");
3062 		seq_puts(
3063 			seq,
3064 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3065 		return 0;
3066 	}
3067 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3068 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3069 
3070 	seq_printf(seq, "\tgroups_scanned: %u\n",
3071 		   atomic_read(&sbi->s_bal_groups_scanned));
3072 
3073 	/* CR_POWER2_ALIGNED stats */
3074 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3075 	seq_printf(seq, "\t\thits: %llu\n",
3076 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3077 	seq_printf(
3078 		seq, "\t\tgroups_considered: %llu\n",
3079 		atomic64_read(
3080 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3081 	seq_printf(seq, "\t\textents_scanned: %u\n",
3082 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3083 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3084 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3085 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3086 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3087 
3088 	/* CR_GOAL_LEN_FAST stats */
3089 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3090 	seq_printf(seq, "\t\thits: %llu\n",
3091 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3092 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3093 		   atomic64_read(
3094 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3095 	seq_printf(seq, "\t\textents_scanned: %u\n",
3096 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3097 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3098 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3099 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3100 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3101 
3102 	/* CR_BEST_AVAIL_LEN stats */
3103 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3104 	seq_printf(seq, "\t\thits: %llu\n",
3105 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3106 	seq_printf(
3107 		seq, "\t\tgroups_considered: %llu\n",
3108 		atomic64_read(
3109 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3110 	seq_printf(seq, "\t\textents_scanned: %u\n",
3111 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3112 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3113 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3114 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3115 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3116 
3117 	/* CR_GOAL_LEN_SLOW stats */
3118 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3119 	seq_printf(seq, "\t\thits: %llu\n",
3120 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3121 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3122 		   atomic64_read(
3123 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3124 	seq_printf(seq, "\t\textents_scanned: %u\n",
3125 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3126 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3127 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3128 
3129 	/* CR_ANY_FREE stats */
3130 	seq_puts(seq, "\tcr_any_free_stats:\n");
3131 	seq_printf(seq, "\t\thits: %llu\n",
3132 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3133 	seq_printf(
3134 		seq, "\t\tgroups_considered: %llu\n",
3135 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3136 	seq_printf(seq, "\t\textents_scanned: %u\n",
3137 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3138 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3139 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3140 
3141 	/* Aggregates */
3142 	seq_printf(seq, "\textents_scanned: %u\n",
3143 		   atomic_read(&sbi->s_bal_ex_scanned));
3144 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3145 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3146 		   atomic_read(&sbi->s_bal_len_goals));
3147 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3148 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3149 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3150 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3151 		   atomic_read(&sbi->s_mb_buddies_generated),
3152 		   ext4_get_groups_count(sb));
3153 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3154 		   atomic64_read(&sbi->s_mb_generation_time));
3155 	seq_printf(seq, "\tpreallocated: %u\n",
3156 		   atomic_read(&sbi->s_mb_preallocated));
3157 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3158 	return 0;
3159 }
3160 
3161 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3162 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3163 {
3164 	struct super_block *sb = pde_data(file_inode(seq->file));
3165 	unsigned long position;
3166 
3167 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3168 		return NULL;
3169 	position = *pos + 1;
3170 	return (void *) ((unsigned long) position);
3171 }
3172 
3173 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3174 {
3175 	struct super_block *sb = pde_data(file_inode(seq->file));
3176 	unsigned long position;
3177 
3178 	++*pos;
3179 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3180 		return NULL;
3181 	position = *pos + 1;
3182 	return (void *) ((unsigned long) position);
3183 }
3184 
3185 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3186 {
3187 	struct super_block *sb = pde_data(file_inode(seq->file));
3188 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3189 	unsigned long position = ((unsigned long) v);
3190 	struct ext4_group_info *grp;
3191 	unsigned int count;
3192 
3193 	position--;
3194 	if (position >= MB_NUM_ORDERS(sb)) {
3195 		position -= MB_NUM_ORDERS(sb);
3196 		if (position == 0)
3197 			seq_puts(seq, "avg_fragment_size_lists:\n");
3198 
3199 		count = 0;
3200 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3201 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3202 				    bb_avg_fragment_size_node)
3203 			count++;
3204 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3205 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3206 					(unsigned int)position, count);
3207 		return 0;
3208 	}
3209 
3210 	if (position == 0) {
3211 		seq_printf(seq, "optimize_scan: %d\n",
3212 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3213 		seq_puts(seq, "max_free_order_lists:\n");
3214 	}
3215 	count = 0;
3216 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3217 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3218 			    bb_largest_free_order_node)
3219 		count++;
3220 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3221 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3222 		   (unsigned int)position, count);
3223 
3224 	return 0;
3225 }
3226 
3227 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3228 {
3229 }
3230 
3231 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3232 	.start  = ext4_mb_seq_structs_summary_start,
3233 	.next   = ext4_mb_seq_structs_summary_next,
3234 	.stop   = ext4_mb_seq_structs_summary_stop,
3235 	.show   = ext4_mb_seq_structs_summary_show,
3236 };
3237 
3238 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3239 {
3240 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3241 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3242 
3243 	BUG_ON(!cachep);
3244 	return cachep;
3245 }
3246 
3247 /*
3248  * Allocate the top-level s_group_info array for the specified number
3249  * of groups
3250  */
3251 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3252 {
3253 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3254 	unsigned size;
3255 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3256 
3257 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3258 		EXT4_DESC_PER_BLOCK_BITS(sb);
3259 	if (size <= sbi->s_group_info_size)
3260 		return 0;
3261 
3262 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3263 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3264 	if (!new_groupinfo) {
3265 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3266 		return -ENOMEM;
3267 	}
3268 	rcu_read_lock();
3269 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3270 	if (old_groupinfo)
3271 		memcpy(new_groupinfo, old_groupinfo,
3272 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3273 	rcu_read_unlock();
3274 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3275 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3276 	if (old_groupinfo)
3277 		ext4_kvfree_array_rcu(old_groupinfo);
3278 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3279 		   sbi->s_group_info_size);
3280 	return 0;
3281 }
3282 
3283 /* Create and initialize ext4_group_info data for the given group. */
3284 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3285 			  struct ext4_group_desc *desc)
3286 {
3287 	int i;
3288 	int metalen = 0;
3289 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3290 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3291 	struct ext4_group_info **meta_group_info;
3292 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3293 
3294 	/*
3295 	 * First check if this group is the first of a reserved block.
3296 	 * If it's true, we have to allocate a new table of pointers
3297 	 * to ext4_group_info structures
3298 	 */
3299 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3300 		metalen = sizeof(*meta_group_info) <<
3301 			EXT4_DESC_PER_BLOCK_BITS(sb);
3302 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3303 		if (meta_group_info == NULL) {
3304 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3305 				 "for a buddy group");
3306 			return -ENOMEM;
3307 		}
3308 		rcu_read_lock();
3309 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3310 		rcu_read_unlock();
3311 	}
3312 
3313 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3314 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3315 
3316 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3317 	if (meta_group_info[i] == NULL) {
3318 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3319 		goto exit_group_info;
3320 	}
3321 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3322 		&(meta_group_info[i]->bb_state));
3323 
3324 	/*
3325 	 * initialize bb_free to be able to skip
3326 	 * empty groups without initialization
3327 	 */
3328 	if (ext4_has_group_desc_csum(sb) &&
3329 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3330 		meta_group_info[i]->bb_free =
3331 			ext4_free_clusters_after_init(sb, group, desc);
3332 	} else {
3333 		meta_group_info[i]->bb_free =
3334 			ext4_free_group_clusters(sb, desc);
3335 	}
3336 
3337 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3338 	init_rwsem(&meta_group_info[i]->alloc_sem);
3339 	meta_group_info[i]->bb_free_root = RB_ROOT;
3340 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3341 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3342 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3343 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3344 	meta_group_info[i]->bb_group = group;
3345 
3346 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3347 	return 0;
3348 
3349 exit_group_info:
3350 	/* If a meta_group_info table has been allocated, release it now */
3351 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3352 		struct ext4_group_info ***group_info;
3353 
3354 		rcu_read_lock();
3355 		group_info = rcu_dereference(sbi->s_group_info);
3356 		kfree(group_info[idx]);
3357 		group_info[idx] = NULL;
3358 		rcu_read_unlock();
3359 	}
3360 	return -ENOMEM;
3361 } /* ext4_mb_add_groupinfo */
3362 
3363 static int ext4_mb_init_backend(struct super_block *sb)
3364 {
3365 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3366 	ext4_group_t i;
3367 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3368 	int err;
3369 	struct ext4_group_desc *desc;
3370 	struct ext4_group_info ***group_info;
3371 	struct kmem_cache *cachep;
3372 
3373 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3374 	if (err)
3375 		return err;
3376 
3377 	sbi->s_buddy_cache = new_inode(sb);
3378 	if (sbi->s_buddy_cache == NULL) {
3379 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3380 		goto err_freesgi;
3381 	}
3382 	/* To avoid potentially colliding with an valid on-disk inode number,
3383 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3384 	 * not in the inode hash, so it should never be found by iget(), but
3385 	 * this will avoid confusion if it ever shows up during debugging. */
3386 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3387 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3388 	for (i = 0; i < ngroups; i++) {
3389 		cond_resched();
3390 		desc = ext4_get_group_desc(sb, i, NULL);
3391 		if (desc == NULL) {
3392 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3393 			goto err_freebuddy;
3394 		}
3395 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3396 			goto err_freebuddy;
3397 	}
3398 
3399 	if (ext4_has_feature_flex_bg(sb)) {
3400 		/* a single flex group is supposed to be read by a single IO.
3401 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3402 		 * unsigned integer, so the maximum shift is 32.
3403 		 */
3404 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3405 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3406 			goto err_freebuddy;
3407 		}
3408 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3409 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3410 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3411 	} else {
3412 		sbi->s_mb_prefetch = 32;
3413 	}
3414 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3415 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3416 	/* now many real IOs to prefetch within a single allocation at cr=0
3417 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3418 	 * load too many groups, at some point we should start to use what
3419 	 * we've got in memory.
3420 	 * with an average random access time 5ms, it'd take a second to get
3421 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3422 	 */
3423 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3424 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3425 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3426 
3427 	return 0;
3428 
3429 err_freebuddy:
3430 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3431 	while (i-- > 0) {
3432 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3433 
3434 		if (grp)
3435 			kmem_cache_free(cachep, grp);
3436 	}
3437 	i = sbi->s_group_info_size;
3438 	rcu_read_lock();
3439 	group_info = rcu_dereference(sbi->s_group_info);
3440 	while (i-- > 0)
3441 		kfree(group_info[i]);
3442 	rcu_read_unlock();
3443 	iput(sbi->s_buddy_cache);
3444 err_freesgi:
3445 	rcu_read_lock();
3446 	kvfree(rcu_dereference(sbi->s_group_info));
3447 	rcu_read_unlock();
3448 	return -ENOMEM;
3449 }
3450 
3451 static void ext4_groupinfo_destroy_slabs(void)
3452 {
3453 	int i;
3454 
3455 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3456 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3457 		ext4_groupinfo_caches[i] = NULL;
3458 	}
3459 }
3460 
3461 static int ext4_groupinfo_create_slab(size_t size)
3462 {
3463 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3464 	int slab_size;
3465 	int blocksize_bits = order_base_2(size);
3466 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3467 	struct kmem_cache *cachep;
3468 
3469 	if (cache_index >= NR_GRPINFO_CACHES)
3470 		return -EINVAL;
3471 
3472 	if (unlikely(cache_index < 0))
3473 		cache_index = 0;
3474 
3475 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3476 	if (ext4_groupinfo_caches[cache_index]) {
3477 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3478 		return 0;	/* Already created */
3479 	}
3480 
3481 	slab_size = offsetof(struct ext4_group_info,
3482 				bb_counters[blocksize_bits + 2]);
3483 
3484 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3485 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3486 					NULL);
3487 
3488 	ext4_groupinfo_caches[cache_index] = cachep;
3489 
3490 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3491 	if (!cachep) {
3492 		printk(KERN_EMERG
3493 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3494 		return -ENOMEM;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static void ext4_discard_work(struct work_struct *work)
3501 {
3502 	struct ext4_sb_info *sbi = container_of(work,
3503 			struct ext4_sb_info, s_discard_work);
3504 	struct super_block *sb = sbi->s_sb;
3505 	struct ext4_free_data *fd, *nfd;
3506 	struct ext4_buddy e4b;
3507 	LIST_HEAD(discard_list);
3508 	ext4_group_t grp, load_grp;
3509 	int err = 0;
3510 
3511 	spin_lock(&sbi->s_md_lock);
3512 	list_splice_init(&sbi->s_discard_list, &discard_list);
3513 	spin_unlock(&sbi->s_md_lock);
3514 
3515 	load_grp = UINT_MAX;
3516 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3517 		/*
3518 		 * If filesystem is umounting or no memory or suffering
3519 		 * from no space, give up the discard
3520 		 */
3521 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3522 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3523 			grp = fd->efd_group;
3524 			if (grp != load_grp) {
3525 				if (load_grp != UINT_MAX)
3526 					ext4_mb_unload_buddy(&e4b);
3527 
3528 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3529 				if (err) {
3530 					kmem_cache_free(ext4_free_data_cachep, fd);
3531 					load_grp = UINT_MAX;
3532 					continue;
3533 				} else {
3534 					load_grp = grp;
3535 				}
3536 			}
3537 
3538 			ext4_lock_group(sb, grp);
3539 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3540 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3541 			ext4_unlock_group(sb, grp);
3542 		}
3543 		kmem_cache_free(ext4_free_data_cachep, fd);
3544 	}
3545 
3546 	if (load_grp != UINT_MAX)
3547 		ext4_mb_unload_buddy(&e4b);
3548 }
3549 
3550 int ext4_mb_init(struct super_block *sb)
3551 {
3552 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3553 	unsigned i, j;
3554 	unsigned offset, offset_incr;
3555 	unsigned max;
3556 	int ret;
3557 
3558 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3559 
3560 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3561 	if (sbi->s_mb_offsets == NULL) {
3562 		ret = -ENOMEM;
3563 		goto out;
3564 	}
3565 
3566 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3567 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3568 	if (sbi->s_mb_maxs == NULL) {
3569 		ret = -ENOMEM;
3570 		goto out;
3571 	}
3572 
3573 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3574 	if (ret < 0)
3575 		goto out;
3576 
3577 	/* order 0 is regular bitmap */
3578 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3579 	sbi->s_mb_offsets[0] = 0;
3580 
3581 	i = 1;
3582 	offset = 0;
3583 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3584 	max = sb->s_blocksize << 2;
3585 	do {
3586 		sbi->s_mb_offsets[i] = offset;
3587 		sbi->s_mb_maxs[i] = max;
3588 		offset += offset_incr;
3589 		offset_incr = offset_incr >> 1;
3590 		max = max >> 1;
3591 		i++;
3592 	} while (i < MB_NUM_ORDERS(sb));
3593 
3594 	sbi->s_mb_avg_fragment_size =
3595 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3596 			GFP_KERNEL);
3597 	if (!sbi->s_mb_avg_fragment_size) {
3598 		ret = -ENOMEM;
3599 		goto out;
3600 	}
3601 	sbi->s_mb_avg_fragment_size_locks =
3602 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3603 			GFP_KERNEL);
3604 	if (!sbi->s_mb_avg_fragment_size_locks) {
3605 		ret = -ENOMEM;
3606 		goto out;
3607 	}
3608 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3609 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3610 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3611 	}
3612 	sbi->s_mb_largest_free_orders =
3613 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3614 			GFP_KERNEL);
3615 	if (!sbi->s_mb_largest_free_orders) {
3616 		ret = -ENOMEM;
3617 		goto out;
3618 	}
3619 	sbi->s_mb_largest_free_orders_locks =
3620 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3621 			GFP_KERNEL);
3622 	if (!sbi->s_mb_largest_free_orders_locks) {
3623 		ret = -ENOMEM;
3624 		goto out;
3625 	}
3626 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3627 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3628 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3629 	}
3630 
3631 	spin_lock_init(&sbi->s_md_lock);
3632 	sbi->s_mb_free_pending = 0;
3633 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3634 	INIT_LIST_HEAD(&sbi->s_discard_list);
3635 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3636 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3637 
3638 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3639 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3640 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3641 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3642 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3643 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3644 
3645 	/*
3646 	 * The default group preallocation is 512, which for 4k block
3647 	 * sizes translates to 2 megabytes.  However for bigalloc file
3648 	 * systems, this is probably too big (i.e, if the cluster size
3649 	 * is 1 megabyte, then group preallocation size becomes half a
3650 	 * gigabyte!).  As a default, we will keep a two megabyte
3651 	 * group pralloc size for cluster sizes up to 64k, and after
3652 	 * that, we will force a minimum group preallocation size of
3653 	 * 32 clusters.  This translates to 8 megs when the cluster
3654 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3655 	 * which seems reasonable as a default.
3656 	 */
3657 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3658 				       sbi->s_cluster_bits, 32);
3659 	/*
3660 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3661 	 * to the lowest multiple of s_stripe which is bigger than
3662 	 * the s_mb_group_prealloc as determined above. We want
3663 	 * the preallocation size to be an exact multiple of the
3664 	 * RAID stripe size so that preallocations don't fragment
3665 	 * the stripes.
3666 	 */
3667 	if (sbi->s_stripe > 1) {
3668 		sbi->s_mb_group_prealloc = roundup(
3669 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3670 	}
3671 
3672 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3673 	if (sbi->s_locality_groups == NULL) {
3674 		ret = -ENOMEM;
3675 		goto out;
3676 	}
3677 	for_each_possible_cpu(i) {
3678 		struct ext4_locality_group *lg;
3679 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3680 		mutex_init(&lg->lg_mutex);
3681 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3682 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3683 		spin_lock_init(&lg->lg_prealloc_lock);
3684 	}
3685 
3686 	if (bdev_nonrot(sb->s_bdev))
3687 		sbi->s_mb_max_linear_groups = 0;
3688 	else
3689 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3690 	/* init file for buddy data */
3691 	ret = ext4_mb_init_backend(sb);
3692 	if (ret != 0)
3693 		goto out_free_locality_groups;
3694 
3695 	return 0;
3696 
3697 out_free_locality_groups:
3698 	free_percpu(sbi->s_locality_groups);
3699 	sbi->s_locality_groups = NULL;
3700 out:
3701 	kfree(sbi->s_mb_avg_fragment_size);
3702 	kfree(sbi->s_mb_avg_fragment_size_locks);
3703 	kfree(sbi->s_mb_largest_free_orders);
3704 	kfree(sbi->s_mb_largest_free_orders_locks);
3705 	kfree(sbi->s_mb_offsets);
3706 	sbi->s_mb_offsets = NULL;
3707 	kfree(sbi->s_mb_maxs);
3708 	sbi->s_mb_maxs = NULL;
3709 	return ret;
3710 }
3711 
3712 /* need to called with the ext4 group lock held */
3713 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3714 {
3715 	struct ext4_prealloc_space *pa;
3716 	struct list_head *cur, *tmp;
3717 	int count = 0;
3718 
3719 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3720 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3721 		list_del(&pa->pa_group_list);
3722 		count++;
3723 		kmem_cache_free(ext4_pspace_cachep, pa);
3724 	}
3725 	return count;
3726 }
3727 
3728 int ext4_mb_release(struct super_block *sb)
3729 {
3730 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3731 	ext4_group_t i;
3732 	int num_meta_group_infos;
3733 	struct ext4_group_info *grinfo, ***group_info;
3734 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3735 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3736 	int count;
3737 
3738 	if (test_opt(sb, DISCARD)) {
3739 		/*
3740 		 * wait the discard work to drain all of ext4_free_data
3741 		 */
3742 		flush_work(&sbi->s_discard_work);
3743 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3744 	}
3745 
3746 	if (sbi->s_group_info) {
3747 		for (i = 0; i < ngroups; i++) {
3748 			cond_resched();
3749 			grinfo = ext4_get_group_info(sb, i);
3750 			if (!grinfo)
3751 				continue;
3752 			mb_group_bb_bitmap_free(grinfo);
3753 			ext4_lock_group(sb, i);
3754 			count = ext4_mb_cleanup_pa(grinfo);
3755 			if (count)
3756 				mb_debug(sb, "mballoc: %d PAs left\n",
3757 					 count);
3758 			ext4_unlock_group(sb, i);
3759 			kmem_cache_free(cachep, grinfo);
3760 		}
3761 		num_meta_group_infos = (ngroups +
3762 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3763 			EXT4_DESC_PER_BLOCK_BITS(sb);
3764 		rcu_read_lock();
3765 		group_info = rcu_dereference(sbi->s_group_info);
3766 		for (i = 0; i < num_meta_group_infos; i++)
3767 			kfree(group_info[i]);
3768 		kvfree(group_info);
3769 		rcu_read_unlock();
3770 	}
3771 	kfree(sbi->s_mb_avg_fragment_size);
3772 	kfree(sbi->s_mb_avg_fragment_size_locks);
3773 	kfree(sbi->s_mb_largest_free_orders);
3774 	kfree(sbi->s_mb_largest_free_orders_locks);
3775 	kfree(sbi->s_mb_offsets);
3776 	kfree(sbi->s_mb_maxs);
3777 	iput(sbi->s_buddy_cache);
3778 	if (sbi->s_mb_stats) {
3779 		ext4_msg(sb, KERN_INFO,
3780 		       "mballoc: %u blocks %u reqs (%u success)",
3781 				atomic_read(&sbi->s_bal_allocated),
3782 				atomic_read(&sbi->s_bal_reqs),
3783 				atomic_read(&sbi->s_bal_success));
3784 		ext4_msg(sb, KERN_INFO,
3785 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3786 				"%u 2^N hits, %u breaks, %u lost",
3787 				atomic_read(&sbi->s_bal_ex_scanned),
3788 				atomic_read(&sbi->s_bal_groups_scanned),
3789 				atomic_read(&sbi->s_bal_goals),
3790 				atomic_read(&sbi->s_bal_2orders),
3791 				atomic_read(&sbi->s_bal_breaks),
3792 				atomic_read(&sbi->s_mb_lost_chunks));
3793 		ext4_msg(sb, KERN_INFO,
3794 		       "mballoc: %u generated and it took %llu",
3795 				atomic_read(&sbi->s_mb_buddies_generated),
3796 				atomic64_read(&sbi->s_mb_generation_time));
3797 		ext4_msg(sb, KERN_INFO,
3798 		       "mballoc: %u preallocated, %u discarded",
3799 				atomic_read(&sbi->s_mb_preallocated),
3800 				atomic_read(&sbi->s_mb_discarded));
3801 	}
3802 
3803 	free_percpu(sbi->s_locality_groups);
3804 
3805 	return 0;
3806 }
3807 
3808 static inline int ext4_issue_discard(struct super_block *sb,
3809 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3810 		struct bio **biop)
3811 {
3812 	ext4_fsblk_t discard_block;
3813 
3814 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3815 			 ext4_group_first_block_no(sb, block_group));
3816 	count = EXT4_C2B(EXT4_SB(sb), count);
3817 	trace_ext4_discard_blocks(sb,
3818 			(unsigned long long) discard_block, count);
3819 	if (biop) {
3820 		return __blkdev_issue_discard(sb->s_bdev,
3821 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3822 			(sector_t)count << (sb->s_blocksize_bits - 9),
3823 			GFP_NOFS, biop);
3824 	} else
3825 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3826 }
3827 
3828 static void ext4_free_data_in_buddy(struct super_block *sb,
3829 				    struct ext4_free_data *entry)
3830 {
3831 	struct ext4_buddy e4b;
3832 	struct ext4_group_info *db;
3833 	int err, count = 0;
3834 
3835 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3836 		 entry->efd_count, entry->efd_group, entry);
3837 
3838 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3839 	/* we expect to find existing buddy because it's pinned */
3840 	BUG_ON(err != 0);
3841 
3842 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3843 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3844 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3845 
3846 	db = e4b.bd_info;
3847 	/* there are blocks to put in buddy to make them really free */
3848 	count += entry->efd_count;
3849 	ext4_lock_group(sb, entry->efd_group);
3850 	/* Take it out of per group rb tree */
3851 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3852 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3853 
3854 	/*
3855 	 * Clear the trimmed flag for the group so that the next
3856 	 * ext4_trim_fs can trim it.
3857 	 * If the volume is mounted with -o discard, online discard
3858 	 * is supported and the free blocks will be trimmed online.
3859 	 */
3860 	if (!test_opt(sb, DISCARD))
3861 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3862 
3863 	if (!db->bb_free_root.rb_node) {
3864 		/* No more items in the per group rb tree
3865 		 * balance refcounts from ext4_mb_free_metadata()
3866 		 */
3867 		put_page(e4b.bd_buddy_page);
3868 		put_page(e4b.bd_bitmap_page);
3869 	}
3870 	ext4_unlock_group(sb, entry->efd_group);
3871 	ext4_mb_unload_buddy(&e4b);
3872 
3873 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3874 }
3875 
3876 /*
3877  * This function is called by the jbd2 layer once the commit has finished,
3878  * so we know we can free the blocks that were released with that commit.
3879  */
3880 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3881 {
3882 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3883 	struct ext4_free_data *entry, *tmp;
3884 	LIST_HEAD(freed_data_list);
3885 	struct list_head *cut_pos = NULL;
3886 	bool wake;
3887 
3888 	spin_lock(&sbi->s_md_lock);
3889 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3890 		if (entry->efd_tid != commit_tid)
3891 			break;
3892 		cut_pos = &entry->efd_list;
3893 	}
3894 	if (cut_pos)
3895 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3896 				  cut_pos);
3897 	spin_unlock(&sbi->s_md_lock);
3898 
3899 	list_for_each_entry(entry, &freed_data_list, efd_list)
3900 		ext4_free_data_in_buddy(sb, entry);
3901 
3902 	if (test_opt(sb, DISCARD)) {
3903 		spin_lock(&sbi->s_md_lock);
3904 		wake = list_empty(&sbi->s_discard_list);
3905 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3906 		spin_unlock(&sbi->s_md_lock);
3907 		if (wake)
3908 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3909 	} else {
3910 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3911 			kmem_cache_free(ext4_free_data_cachep, entry);
3912 	}
3913 }
3914 
3915 int __init ext4_init_mballoc(void)
3916 {
3917 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3918 					SLAB_RECLAIM_ACCOUNT);
3919 	if (ext4_pspace_cachep == NULL)
3920 		goto out;
3921 
3922 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3923 				    SLAB_RECLAIM_ACCOUNT);
3924 	if (ext4_ac_cachep == NULL)
3925 		goto out_pa_free;
3926 
3927 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3928 					   SLAB_RECLAIM_ACCOUNT);
3929 	if (ext4_free_data_cachep == NULL)
3930 		goto out_ac_free;
3931 
3932 	return 0;
3933 
3934 out_ac_free:
3935 	kmem_cache_destroy(ext4_ac_cachep);
3936 out_pa_free:
3937 	kmem_cache_destroy(ext4_pspace_cachep);
3938 out:
3939 	return -ENOMEM;
3940 }
3941 
3942 void ext4_exit_mballoc(void)
3943 {
3944 	/*
3945 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3946 	 * before destroying the slab cache.
3947 	 */
3948 	rcu_barrier();
3949 	kmem_cache_destroy(ext4_pspace_cachep);
3950 	kmem_cache_destroy(ext4_ac_cachep);
3951 	kmem_cache_destroy(ext4_free_data_cachep);
3952 	ext4_groupinfo_destroy_slabs();
3953 }
3954 
3955 
3956 /*
3957  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3958  * Returns 0 if success or error code
3959  */
3960 static noinline_for_stack int
3961 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3962 				handle_t *handle, unsigned int reserv_clstrs)
3963 {
3964 	struct buffer_head *bitmap_bh = NULL;
3965 	struct ext4_group_desc *gdp;
3966 	struct buffer_head *gdp_bh;
3967 	struct ext4_sb_info *sbi;
3968 	struct super_block *sb;
3969 	ext4_fsblk_t block;
3970 	int err, len;
3971 
3972 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3973 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3974 
3975 	sb = ac->ac_sb;
3976 	sbi = EXT4_SB(sb);
3977 
3978 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3979 	if (IS_ERR(bitmap_bh)) {
3980 		return PTR_ERR(bitmap_bh);
3981 	}
3982 
3983 	BUFFER_TRACE(bitmap_bh, "getting write access");
3984 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3985 					    EXT4_JTR_NONE);
3986 	if (err)
3987 		goto out_err;
3988 
3989 	err = -EIO;
3990 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3991 	if (!gdp)
3992 		goto out_err;
3993 
3994 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3995 			ext4_free_group_clusters(sb, gdp));
3996 
3997 	BUFFER_TRACE(gdp_bh, "get_write_access");
3998 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3999 	if (err)
4000 		goto out_err;
4001 
4002 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4003 
4004 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4005 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4006 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4007 			   "fs metadata", block, block+len);
4008 		/* File system mounted not to panic on error
4009 		 * Fix the bitmap and return EFSCORRUPTED
4010 		 * We leak some of the blocks here.
4011 		 */
4012 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4013 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4014 			      ac->ac_b_ex.fe_len);
4015 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4016 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4017 		if (!err)
4018 			err = -EFSCORRUPTED;
4019 		goto out_err;
4020 	}
4021 
4022 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4023 #ifdef AGGRESSIVE_CHECK
4024 	{
4025 		int i;
4026 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4027 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4028 						bitmap_bh->b_data));
4029 		}
4030 	}
4031 #endif
4032 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4033 		      ac->ac_b_ex.fe_len);
4034 	if (ext4_has_group_desc_csum(sb) &&
4035 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4036 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4037 		ext4_free_group_clusters_set(sb, gdp,
4038 					     ext4_free_clusters_after_init(sb,
4039 						ac->ac_b_ex.fe_group, gdp));
4040 	}
4041 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4042 	ext4_free_group_clusters_set(sb, gdp, len);
4043 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4044 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4045 
4046 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4047 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4048 	/*
4049 	 * Now reduce the dirty block count also. Should not go negative
4050 	 */
4051 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4052 		/* release all the reserved blocks if non delalloc */
4053 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4054 				   reserv_clstrs);
4055 
4056 	if (sbi->s_log_groups_per_flex) {
4057 		ext4_group_t flex_group = ext4_flex_group(sbi,
4058 							  ac->ac_b_ex.fe_group);
4059 		atomic64_sub(ac->ac_b_ex.fe_len,
4060 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4061 						  flex_group)->free_clusters);
4062 	}
4063 
4064 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4065 	if (err)
4066 		goto out_err;
4067 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4068 
4069 out_err:
4070 	brelse(bitmap_bh);
4071 	return err;
4072 }
4073 
4074 /*
4075  * Idempotent helper for Ext4 fast commit replay path to set the state of
4076  * blocks in bitmaps and update counters.
4077  */
4078 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4079 			int len, int state)
4080 {
4081 	struct buffer_head *bitmap_bh = NULL;
4082 	struct ext4_group_desc *gdp;
4083 	struct buffer_head *gdp_bh;
4084 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4085 	ext4_group_t group;
4086 	ext4_grpblk_t blkoff;
4087 	int i, err = 0;
4088 	int already;
4089 	unsigned int clen, clen_changed, thisgrp_len;
4090 
4091 	while (len > 0) {
4092 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4093 
4094 		/*
4095 		 * Check to see if we are freeing blocks across a group
4096 		 * boundary.
4097 		 * In case of flex_bg, this can happen that (block, len) may
4098 		 * span across more than one group. In that case we need to
4099 		 * get the corresponding group metadata to work with.
4100 		 * For this we have goto again loop.
4101 		 */
4102 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4103 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4104 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4105 
4106 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4107 			ext4_error(sb, "Marking blocks in system zone - "
4108 				   "Block = %llu, len = %u",
4109 				   block, thisgrp_len);
4110 			bitmap_bh = NULL;
4111 			break;
4112 		}
4113 
4114 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4115 		if (IS_ERR(bitmap_bh)) {
4116 			err = PTR_ERR(bitmap_bh);
4117 			bitmap_bh = NULL;
4118 			break;
4119 		}
4120 
4121 		err = -EIO;
4122 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4123 		if (!gdp)
4124 			break;
4125 
4126 		ext4_lock_group(sb, group);
4127 		already = 0;
4128 		for (i = 0; i < clen; i++)
4129 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4130 					 !state)
4131 				already++;
4132 
4133 		clen_changed = clen - already;
4134 		if (state)
4135 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4136 		else
4137 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4138 		if (ext4_has_group_desc_csum(sb) &&
4139 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4140 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4141 			ext4_free_group_clusters_set(sb, gdp,
4142 			     ext4_free_clusters_after_init(sb, group, gdp));
4143 		}
4144 		if (state)
4145 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4146 		else
4147 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4148 
4149 		ext4_free_group_clusters_set(sb, gdp, clen);
4150 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4151 		ext4_group_desc_csum_set(sb, group, gdp);
4152 
4153 		ext4_unlock_group(sb, group);
4154 
4155 		if (sbi->s_log_groups_per_flex) {
4156 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
4157 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4158 						   s_flex_groups, flex_group);
4159 
4160 			if (state)
4161 				atomic64_sub(clen_changed, &fg->free_clusters);
4162 			else
4163 				atomic64_add(clen_changed, &fg->free_clusters);
4164 
4165 		}
4166 
4167 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4168 		if (err)
4169 			break;
4170 		sync_dirty_buffer(bitmap_bh);
4171 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4172 		sync_dirty_buffer(gdp_bh);
4173 		if (err)
4174 			break;
4175 
4176 		block += thisgrp_len;
4177 		len -= thisgrp_len;
4178 		brelse(bitmap_bh);
4179 		BUG_ON(len < 0);
4180 	}
4181 
4182 	if (err)
4183 		brelse(bitmap_bh);
4184 }
4185 
4186 /*
4187  * here we normalize request for locality group
4188  * Group request are normalized to s_mb_group_prealloc, which goes to
4189  * s_strip if we set the same via mount option.
4190  * s_mb_group_prealloc can be configured via
4191  * /sys/fs/ext4/<partition>/mb_group_prealloc
4192  *
4193  * XXX: should we try to preallocate more than the group has now?
4194  */
4195 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4196 {
4197 	struct super_block *sb = ac->ac_sb;
4198 	struct ext4_locality_group *lg = ac->ac_lg;
4199 
4200 	BUG_ON(lg == NULL);
4201 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4202 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4203 }
4204 
4205 /*
4206  * This function returns the next element to look at during inode
4207  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4208  * (ei->i_prealloc_lock)
4209  *
4210  * new_start	The start of the range we want to compare
4211  * cur_start	The existing start that we are comparing against
4212  * node	The node of the rb_tree
4213  */
4214 static inline struct rb_node*
4215 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4216 {
4217 	if (new_start < cur_start)
4218 		return node->rb_left;
4219 	else
4220 		return node->rb_right;
4221 }
4222 
4223 static inline void
4224 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4225 			  ext4_lblk_t start, loff_t end)
4226 {
4227 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4228 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4229 	struct ext4_prealloc_space *tmp_pa;
4230 	ext4_lblk_t tmp_pa_start;
4231 	loff_t tmp_pa_end;
4232 	struct rb_node *iter;
4233 
4234 	read_lock(&ei->i_prealloc_lock);
4235 	for (iter = ei->i_prealloc_node.rb_node; iter;
4236 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4237 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4238 				  pa_node.inode_node);
4239 		tmp_pa_start = tmp_pa->pa_lstart;
4240 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4241 
4242 		spin_lock(&tmp_pa->pa_lock);
4243 		if (tmp_pa->pa_deleted == 0)
4244 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4245 		spin_unlock(&tmp_pa->pa_lock);
4246 	}
4247 	read_unlock(&ei->i_prealloc_lock);
4248 }
4249 
4250 /*
4251  * Given an allocation context "ac" and a range "start", "end", check
4252  * and adjust boundaries if the range overlaps with any of the existing
4253  * preallocatoins stored in the corresponding inode of the allocation context.
4254  *
4255  * Parameters:
4256  *	ac			allocation context
4257  *	start			start of the new range
4258  *	end			end of the new range
4259  */
4260 static inline void
4261 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4262 			  ext4_lblk_t *start, loff_t *end)
4263 {
4264 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4265 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4266 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4267 	struct rb_node *iter;
4268 	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4269 	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4270 
4271 	new_start = *start;
4272 	new_end = *end;
4273 
4274 	/*
4275 	 * Adjust the normalized range so that it doesn't overlap with any
4276 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4277 	 * so it doesn't change underneath us.
4278 	 */
4279 	read_lock(&ei->i_prealloc_lock);
4280 
4281 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4282 	for (iter = ei->i_prealloc_node.rb_node; iter;
4283 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4284 					    tmp_pa_start, iter)) {
4285 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4286 				  pa_node.inode_node);
4287 		tmp_pa_start = tmp_pa->pa_lstart;
4288 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4289 
4290 		/* PA must not overlap original request */
4291 		spin_lock(&tmp_pa->pa_lock);
4292 		if (tmp_pa->pa_deleted == 0)
4293 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4294 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4295 		spin_unlock(&tmp_pa->pa_lock);
4296 	}
4297 
4298 	/*
4299 	 * Step 2: check if the found PA is left or right neighbor and
4300 	 * get the other neighbor
4301 	 */
4302 	if (tmp_pa) {
4303 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4304 			struct rb_node *tmp;
4305 
4306 			left_pa = tmp_pa;
4307 			tmp = rb_next(&left_pa->pa_node.inode_node);
4308 			if (tmp) {
4309 				right_pa = rb_entry(tmp,
4310 						    struct ext4_prealloc_space,
4311 						    pa_node.inode_node);
4312 			}
4313 		} else {
4314 			struct rb_node *tmp;
4315 
4316 			right_pa = tmp_pa;
4317 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4318 			if (tmp) {
4319 				left_pa = rb_entry(tmp,
4320 						   struct ext4_prealloc_space,
4321 						   pa_node.inode_node);
4322 			}
4323 		}
4324 	}
4325 
4326 	/* Step 3: get the non deleted neighbors */
4327 	if (left_pa) {
4328 		for (iter = &left_pa->pa_node.inode_node;;
4329 		     iter = rb_prev(iter)) {
4330 			if (!iter) {
4331 				left_pa = NULL;
4332 				break;
4333 			}
4334 
4335 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4336 					  pa_node.inode_node);
4337 			left_pa = tmp_pa;
4338 			spin_lock(&tmp_pa->pa_lock);
4339 			if (tmp_pa->pa_deleted == 0) {
4340 				spin_unlock(&tmp_pa->pa_lock);
4341 				break;
4342 			}
4343 			spin_unlock(&tmp_pa->pa_lock);
4344 		}
4345 	}
4346 
4347 	if (right_pa) {
4348 		for (iter = &right_pa->pa_node.inode_node;;
4349 		     iter = rb_next(iter)) {
4350 			if (!iter) {
4351 				right_pa = NULL;
4352 				break;
4353 			}
4354 
4355 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4356 					  pa_node.inode_node);
4357 			right_pa = tmp_pa;
4358 			spin_lock(&tmp_pa->pa_lock);
4359 			if (tmp_pa->pa_deleted == 0) {
4360 				spin_unlock(&tmp_pa->pa_lock);
4361 				break;
4362 			}
4363 			spin_unlock(&tmp_pa->pa_lock);
4364 		}
4365 	}
4366 
4367 	if (left_pa) {
4368 		left_pa_end = pa_logical_end(sbi, left_pa);
4369 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4370 	}
4371 
4372 	if (right_pa) {
4373 		right_pa_start = right_pa->pa_lstart;
4374 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4375 	}
4376 
4377 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4378 	if (left_pa) {
4379 		if (left_pa_end > new_start)
4380 			new_start = left_pa_end;
4381 	}
4382 
4383 	if (right_pa) {
4384 		if (right_pa_start < new_end)
4385 			new_end = right_pa_start;
4386 	}
4387 	read_unlock(&ei->i_prealloc_lock);
4388 
4389 	/* XXX: extra loop to check we really don't overlap preallocations */
4390 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4391 
4392 	*start = new_start;
4393 	*end = new_end;
4394 }
4395 
4396 /*
4397  * Normalization means making request better in terms of
4398  * size and alignment
4399  */
4400 static noinline_for_stack void
4401 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4402 				struct ext4_allocation_request *ar)
4403 {
4404 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4405 	struct ext4_super_block *es = sbi->s_es;
4406 	int bsbits, max;
4407 	loff_t size, start_off, end;
4408 	loff_t orig_size __maybe_unused;
4409 	ext4_lblk_t start;
4410 
4411 	/* do normalize only data requests, metadata requests
4412 	   do not need preallocation */
4413 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4414 		return;
4415 
4416 	/* sometime caller may want exact blocks */
4417 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4418 		return;
4419 
4420 	/* caller may indicate that preallocation isn't
4421 	 * required (it's a tail, for example) */
4422 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4423 		return;
4424 
4425 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4426 		ext4_mb_normalize_group_request(ac);
4427 		return ;
4428 	}
4429 
4430 	bsbits = ac->ac_sb->s_blocksize_bits;
4431 
4432 	/* first, let's learn actual file size
4433 	 * given current request is allocated */
4434 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4435 	size = size << bsbits;
4436 	if (size < i_size_read(ac->ac_inode))
4437 		size = i_size_read(ac->ac_inode);
4438 	orig_size = size;
4439 
4440 	/* max size of free chunks */
4441 	max = 2 << bsbits;
4442 
4443 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4444 		(req <= (size) || max <= (chunk_size))
4445 
4446 	/* first, try to predict filesize */
4447 	/* XXX: should this table be tunable? */
4448 	start_off = 0;
4449 	if (size <= 16 * 1024) {
4450 		size = 16 * 1024;
4451 	} else if (size <= 32 * 1024) {
4452 		size = 32 * 1024;
4453 	} else if (size <= 64 * 1024) {
4454 		size = 64 * 1024;
4455 	} else if (size <= 128 * 1024) {
4456 		size = 128 * 1024;
4457 	} else if (size <= 256 * 1024) {
4458 		size = 256 * 1024;
4459 	} else if (size <= 512 * 1024) {
4460 		size = 512 * 1024;
4461 	} else if (size <= 1024 * 1024) {
4462 		size = 1024 * 1024;
4463 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4464 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4465 						(21 - bsbits)) << 21;
4466 		size = 2 * 1024 * 1024;
4467 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4468 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4469 							(22 - bsbits)) << 22;
4470 		size = 4 * 1024 * 1024;
4471 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4472 					(8<<20)>>bsbits, max, 8 * 1024)) {
4473 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4474 							(23 - bsbits)) << 23;
4475 		size = 8 * 1024 * 1024;
4476 	} else {
4477 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4478 		size	  = (loff_t) EXT4_C2B(sbi,
4479 					      ac->ac_o_ex.fe_len) << bsbits;
4480 	}
4481 	size = size >> bsbits;
4482 	start = start_off >> bsbits;
4483 
4484 	/*
4485 	 * For tiny groups (smaller than 8MB) the chosen allocation
4486 	 * alignment may be larger than group size. Make sure the
4487 	 * alignment does not move allocation to a different group which
4488 	 * makes mballoc fail assertions later.
4489 	 */
4490 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4491 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4492 
4493 	/* don't cover already allocated blocks in selected range */
4494 	if (ar->pleft && start <= ar->lleft) {
4495 		size -= ar->lleft + 1 - start;
4496 		start = ar->lleft + 1;
4497 	}
4498 	if (ar->pright && start + size - 1 >= ar->lright)
4499 		size -= start + size - ar->lright;
4500 
4501 	/*
4502 	 * Trim allocation request for filesystems with artificially small
4503 	 * groups.
4504 	 */
4505 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4506 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4507 
4508 	end = start + size;
4509 
4510 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4511 
4512 	size = end - start;
4513 
4514 	/*
4515 	 * In this function "start" and "size" are normalized for better
4516 	 * alignment and length such that we could preallocate more blocks.
4517 	 * This normalization is done such that original request of
4518 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4519 	 * "size" boundaries.
4520 	 * (Note fe_len can be relaxed since FS block allocation API does not
4521 	 * provide gurantee on number of contiguous blocks allocation since that
4522 	 * depends upon free space left, etc).
4523 	 * In case of inode pa, later we use the allocated blocks
4524 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4525 	 * range of goal/best blocks [start, size] to put it at the
4526 	 * ac_o_ex.fe_logical extent of this inode.
4527 	 * (See ext4_mb_use_inode_pa() for more details)
4528 	 */
4529 	if (start + size <= ac->ac_o_ex.fe_logical ||
4530 			start > ac->ac_o_ex.fe_logical) {
4531 		ext4_msg(ac->ac_sb, KERN_ERR,
4532 			 "start %lu, size %lu, fe_logical %lu",
4533 			 (unsigned long) start, (unsigned long) size,
4534 			 (unsigned long) ac->ac_o_ex.fe_logical);
4535 		BUG();
4536 	}
4537 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4538 
4539 	/* now prepare goal request */
4540 
4541 	/* XXX: is it better to align blocks WRT to logical
4542 	 * placement or satisfy big request as is */
4543 	ac->ac_g_ex.fe_logical = start;
4544 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4545 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4546 
4547 	/* define goal start in order to merge */
4548 	if (ar->pright && (ar->lright == (start + size)) &&
4549 	    ar->pright >= size &&
4550 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4551 		/* merge to the right */
4552 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4553 						&ac->ac_g_ex.fe_group,
4554 						&ac->ac_g_ex.fe_start);
4555 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4556 	}
4557 	if (ar->pleft && (ar->lleft + 1 == start) &&
4558 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4559 		/* merge to the left */
4560 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4561 						&ac->ac_g_ex.fe_group,
4562 						&ac->ac_g_ex.fe_start);
4563 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4564 	}
4565 
4566 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4567 		 orig_size, start);
4568 }
4569 
4570 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4571 {
4572 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4573 
4574 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4575 		atomic_inc(&sbi->s_bal_reqs);
4576 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4577 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4578 			atomic_inc(&sbi->s_bal_success);
4579 
4580 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4581 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4582 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4583 		}
4584 
4585 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4586 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4587 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4588 			atomic_inc(&sbi->s_bal_goals);
4589 		/* did we allocate as much as normalizer originally wanted? */
4590 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4591 			atomic_inc(&sbi->s_bal_len_goals);
4592 
4593 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4594 			atomic_inc(&sbi->s_bal_breaks);
4595 	}
4596 
4597 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4598 		trace_ext4_mballoc_alloc(ac);
4599 	else
4600 		trace_ext4_mballoc_prealloc(ac);
4601 }
4602 
4603 /*
4604  * Called on failure; free up any blocks from the inode PA for this
4605  * context.  We don't need this for MB_GROUP_PA because we only change
4606  * pa_free in ext4_mb_release_context(), but on failure, we've already
4607  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4608  */
4609 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4610 {
4611 	struct ext4_prealloc_space *pa = ac->ac_pa;
4612 	struct ext4_buddy e4b;
4613 	int err;
4614 
4615 	if (pa == NULL) {
4616 		if (ac->ac_f_ex.fe_len == 0)
4617 			return;
4618 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4619 		if (WARN_RATELIMIT(err,
4620 				   "ext4: mb_load_buddy failed (%d)", err))
4621 			/*
4622 			 * This should never happen since we pin the
4623 			 * pages in the ext4_allocation_context so
4624 			 * ext4_mb_load_buddy() should never fail.
4625 			 */
4626 			return;
4627 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4628 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4629 			       ac->ac_f_ex.fe_len);
4630 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4631 		ext4_mb_unload_buddy(&e4b);
4632 		return;
4633 	}
4634 	if (pa->pa_type == MB_INODE_PA) {
4635 		spin_lock(&pa->pa_lock);
4636 		pa->pa_free += ac->ac_b_ex.fe_len;
4637 		spin_unlock(&pa->pa_lock);
4638 	}
4639 }
4640 
4641 /*
4642  * use blocks preallocated to inode
4643  */
4644 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4645 				struct ext4_prealloc_space *pa)
4646 {
4647 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4648 	ext4_fsblk_t start;
4649 	ext4_fsblk_t end;
4650 	int len;
4651 
4652 	/* found preallocated blocks, use them */
4653 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4654 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4655 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4656 	len = EXT4_NUM_B2C(sbi, end - start);
4657 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4658 					&ac->ac_b_ex.fe_start);
4659 	ac->ac_b_ex.fe_len = len;
4660 	ac->ac_status = AC_STATUS_FOUND;
4661 	ac->ac_pa = pa;
4662 
4663 	BUG_ON(start < pa->pa_pstart);
4664 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4665 	BUG_ON(pa->pa_free < len);
4666 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4667 	pa->pa_free -= len;
4668 
4669 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4670 }
4671 
4672 /*
4673  * use blocks preallocated to locality group
4674  */
4675 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4676 				struct ext4_prealloc_space *pa)
4677 {
4678 	unsigned int len = ac->ac_o_ex.fe_len;
4679 
4680 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4681 					&ac->ac_b_ex.fe_group,
4682 					&ac->ac_b_ex.fe_start);
4683 	ac->ac_b_ex.fe_len = len;
4684 	ac->ac_status = AC_STATUS_FOUND;
4685 	ac->ac_pa = pa;
4686 
4687 	/* we don't correct pa_pstart or pa_len here to avoid
4688 	 * possible race when the group is being loaded concurrently
4689 	 * instead we correct pa later, after blocks are marked
4690 	 * in on-disk bitmap -- see ext4_mb_release_context()
4691 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4692 	 */
4693 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4694 		 pa->pa_lstart, len, pa);
4695 }
4696 
4697 /*
4698  * Return the prealloc space that have minimal distance
4699  * from the goal block. @cpa is the prealloc
4700  * space that is having currently known minimal distance
4701  * from the goal block.
4702  */
4703 static struct ext4_prealloc_space *
4704 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4705 			struct ext4_prealloc_space *pa,
4706 			struct ext4_prealloc_space *cpa)
4707 {
4708 	ext4_fsblk_t cur_distance, new_distance;
4709 
4710 	if (cpa == NULL) {
4711 		atomic_inc(&pa->pa_count);
4712 		return pa;
4713 	}
4714 	cur_distance = abs(goal_block - cpa->pa_pstart);
4715 	new_distance = abs(goal_block - pa->pa_pstart);
4716 
4717 	if (cur_distance <= new_distance)
4718 		return cpa;
4719 
4720 	/* drop the previous reference */
4721 	atomic_dec(&cpa->pa_count);
4722 	atomic_inc(&pa->pa_count);
4723 	return pa;
4724 }
4725 
4726 /*
4727  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4728  */
4729 static bool
4730 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4731 		      struct ext4_prealloc_space *pa)
4732 {
4733 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4734 	ext4_fsblk_t start;
4735 
4736 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4737 		return true;
4738 
4739 	/*
4740 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4741 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4742 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4743 	 * consistent with ext4_mb_find_by_goal.
4744 	 */
4745 	start = pa->pa_pstart +
4746 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4747 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4748 		return false;
4749 
4750 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4751 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4752 		return false;
4753 
4754 	return true;
4755 }
4756 
4757 /*
4758  * search goal blocks in preallocated space
4759  */
4760 static noinline_for_stack bool
4761 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4762 {
4763 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4764 	int order, i;
4765 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4766 	struct ext4_locality_group *lg;
4767 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4768 	struct rb_node *iter;
4769 	ext4_fsblk_t goal_block;
4770 
4771 	/* only data can be preallocated */
4772 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4773 		return false;
4774 
4775 	/*
4776 	 * first, try per-file preallocation by searching the inode pa rbtree.
4777 	 *
4778 	 * Here, we can't do a direct traversal of the tree because
4779 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4780 	 * deleted and that can cause direct traversal to skip some entries.
4781 	 */
4782 	read_lock(&ei->i_prealloc_lock);
4783 
4784 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4785 		goto try_group_pa;
4786 	}
4787 
4788 	/*
4789 	 * Step 1: Find a pa with logical start immediately adjacent to the
4790 	 * original logical start. This could be on the left or right.
4791 	 *
4792 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4793 	 */
4794 	for (iter = ei->i_prealloc_node.rb_node; iter;
4795 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4796 					    tmp_pa->pa_lstart, iter)) {
4797 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4798 				  pa_node.inode_node);
4799 	}
4800 
4801 	/*
4802 	 * Step 2: The adjacent pa might be to the right of logical start, find
4803 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4804 	 * logical start is towards the left of original request's logical start
4805 	 */
4806 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4807 		struct rb_node *tmp;
4808 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4809 
4810 		if (tmp) {
4811 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4812 					    pa_node.inode_node);
4813 		} else {
4814 			/*
4815 			 * If there is no adjacent pa to the left then finding
4816 			 * an overlapping pa is not possible hence stop searching
4817 			 * inode pa tree
4818 			 */
4819 			goto try_group_pa;
4820 		}
4821 	}
4822 
4823 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4824 
4825 	/*
4826 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4827 	 * the first non deleted adjacent pa. After this step we should have a
4828 	 * valid tmp_pa which is guaranteed to be non deleted.
4829 	 */
4830 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4831 		if (!iter) {
4832 			/*
4833 			 * no non deleted left adjacent pa, so stop searching
4834 			 * inode pa tree
4835 			 */
4836 			goto try_group_pa;
4837 		}
4838 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4839 				  pa_node.inode_node);
4840 		spin_lock(&tmp_pa->pa_lock);
4841 		if (tmp_pa->pa_deleted == 0) {
4842 			/*
4843 			 * We will keep holding the pa_lock from
4844 			 * this point on because we don't want group discard
4845 			 * to delete this pa underneath us. Since group
4846 			 * discard is anyways an ENOSPC operation it
4847 			 * should be okay for it to wait a few more cycles.
4848 			 */
4849 			break;
4850 		} else {
4851 			spin_unlock(&tmp_pa->pa_lock);
4852 		}
4853 	}
4854 
4855 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4856 	BUG_ON(tmp_pa->pa_deleted == 1);
4857 
4858 	/*
4859 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4860 	 * pa can possibly satisfy the request hence check if it overlaps
4861 	 * original logical start and stop searching if it doesn't.
4862 	 */
4863 	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4864 		spin_unlock(&tmp_pa->pa_lock);
4865 		goto try_group_pa;
4866 	}
4867 
4868 	/* non-extent files can't have physical blocks past 2^32 */
4869 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4870 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4871 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4872 		/*
4873 		 * Since PAs don't overlap, we won't find any other PA to
4874 		 * satisfy this.
4875 		 */
4876 		spin_unlock(&tmp_pa->pa_lock);
4877 		goto try_group_pa;
4878 	}
4879 
4880 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4881 		atomic_inc(&tmp_pa->pa_count);
4882 		ext4_mb_use_inode_pa(ac, tmp_pa);
4883 		spin_unlock(&tmp_pa->pa_lock);
4884 		read_unlock(&ei->i_prealloc_lock);
4885 		return true;
4886 	} else {
4887 		/*
4888 		 * We found a valid overlapping pa but couldn't use it because
4889 		 * it had no free blocks. This should ideally never happen
4890 		 * because:
4891 		 *
4892 		 * 1. When a new inode pa is added to rbtree it must have
4893 		 *    pa_free > 0 since otherwise we won't actually need
4894 		 *    preallocation.
4895 		 *
4896 		 * 2. An inode pa that is in the rbtree can only have it's
4897 		 *    pa_free become zero when another thread calls:
4898 		 *      ext4_mb_new_blocks
4899 		 *       ext4_mb_use_preallocated
4900 		 *        ext4_mb_use_inode_pa
4901 		 *
4902 		 * 3. Further, after the above calls make pa_free == 0, we will
4903 		 *    immediately remove it from the rbtree in:
4904 		 *      ext4_mb_new_blocks
4905 		 *       ext4_mb_release_context
4906 		 *        ext4_mb_put_pa
4907 		 *
4908 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4909 		 * from tree both happen in ext4_mb_new_blocks, which is always
4910 		 * called with i_data_sem held for data allocations, we can be
4911 		 * sure that another process will never see a pa in rbtree with
4912 		 * pa_free == 0.
4913 		 */
4914 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4915 	}
4916 	spin_unlock(&tmp_pa->pa_lock);
4917 try_group_pa:
4918 	read_unlock(&ei->i_prealloc_lock);
4919 
4920 	/* can we use group allocation? */
4921 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4922 		return false;
4923 
4924 	/* inode may have no locality group for some reason */
4925 	lg = ac->ac_lg;
4926 	if (lg == NULL)
4927 		return false;
4928 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4929 	if (order > PREALLOC_TB_SIZE - 1)
4930 		/* The max size of hash table is PREALLOC_TB_SIZE */
4931 		order = PREALLOC_TB_SIZE - 1;
4932 
4933 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4934 	/*
4935 	 * search for the prealloc space that is having
4936 	 * minimal distance from the goal block.
4937 	 */
4938 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4939 		rcu_read_lock();
4940 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4941 					pa_node.lg_list) {
4942 			spin_lock(&tmp_pa->pa_lock);
4943 			if (tmp_pa->pa_deleted == 0 &&
4944 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4945 
4946 				cpa = ext4_mb_check_group_pa(goal_block,
4947 								tmp_pa, cpa);
4948 			}
4949 			spin_unlock(&tmp_pa->pa_lock);
4950 		}
4951 		rcu_read_unlock();
4952 	}
4953 	if (cpa) {
4954 		ext4_mb_use_group_pa(ac, cpa);
4955 		return true;
4956 	}
4957 	return false;
4958 }
4959 
4960 /*
4961  * the function goes through all block freed in the group
4962  * but not yet committed and marks them used in in-core bitmap.
4963  * buddy must be generated from this bitmap
4964  * Need to be called with the ext4 group lock held
4965  */
4966 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4967 						ext4_group_t group)
4968 {
4969 	struct rb_node *n;
4970 	struct ext4_group_info *grp;
4971 	struct ext4_free_data *entry;
4972 
4973 	grp = ext4_get_group_info(sb, group);
4974 	if (!grp)
4975 		return;
4976 	n = rb_first(&(grp->bb_free_root));
4977 
4978 	while (n) {
4979 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4980 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4981 		n = rb_next(n);
4982 	}
4983 }
4984 
4985 /*
4986  * the function goes through all preallocation in this group and marks them
4987  * used in in-core bitmap. buddy must be generated from this bitmap
4988  * Need to be called with ext4 group lock held
4989  */
4990 static noinline_for_stack
4991 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4992 					ext4_group_t group)
4993 {
4994 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4995 	struct ext4_prealloc_space *pa;
4996 	struct list_head *cur;
4997 	ext4_group_t groupnr;
4998 	ext4_grpblk_t start;
4999 	int preallocated = 0;
5000 	int len;
5001 
5002 	if (!grp)
5003 		return;
5004 
5005 	/* all form of preallocation discards first load group,
5006 	 * so the only competing code is preallocation use.
5007 	 * we don't need any locking here
5008 	 * notice we do NOT ignore preallocations with pa_deleted
5009 	 * otherwise we could leave used blocks available for
5010 	 * allocation in buddy when concurrent ext4_mb_put_pa()
5011 	 * is dropping preallocation
5012 	 */
5013 	list_for_each(cur, &grp->bb_prealloc_list) {
5014 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5015 		spin_lock(&pa->pa_lock);
5016 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5017 					     &groupnr, &start);
5018 		len = pa->pa_len;
5019 		spin_unlock(&pa->pa_lock);
5020 		if (unlikely(len == 0))
5021 			continue;
5022 		BUG_ON(groupnr != group);
5023 		mb_set_bits(bitmap, start, len);
5024 		preallocated += len;
5025 	}
5026 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5027 }
5028 
5029 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5030 				    struct ext4_prealloc_space *pa)
5031 {
5032 	struct ext4_inode_info *ei;
5033 
5034 	if (pa->pa_deleted) {
5035 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5036 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5037 			     pa->pa_len);
5038 		return;
5039 	}
5040 
5041 	pa->pa_deleted = 1;
5042 
5043 	if (pa->pa_type == MB_INODE_PA) {
5044 		ei = EXT4_I(pa->pa_inode);
5045 		atomic_dec(&ei->i_prealloc_active);
5046 	}
5047 }
5048 
5049 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5050 {
5051 	BUG_ON(!pa);
5052 	BUG_ON(atomic_read(&pa->pa_count));
5053 	BUG_ON(pa->pa_deleted == 0);
5054 	kmem_cache_free(ext4_pspace_cachep, pa);
5055 }
5056 
5057 static void ext4_mb_pa_callback(struct rcu_head *head)
5058 {
5059 	struct ext4_prealloc_space *pa;
5060 
5061 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5062 	ext4_mb_pa_free(pa);
5063 }
5064 
5065 /*
5066  * drops a reference to preallocated space descriptor
5067  * if this was the last reference and the space is consumed
5068  */
5069 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5070 			struct super_block *sb, struct ext4_prealloc_space *pa)
5071 {
5072 	ext4_group_t grp;
5073 	ext4_fsblk_t grp_blk;
5074 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5075 
5076 	/* in this short window concurrent discard can set pa_deleted */
5077 	spin_lock(&pa->pa_lock);
5078 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5079 		spin_unlock(&pa->pa_lock);
5080 		return;
5081 	}
5082 
5083 	if (pa->pa_deleted == 1) {
5084 		spin_unlock(&pa->pa_lock);
5085 		return;
5086 	}
5087 
5088 	ext4_mb_mark_pa_deleted(sb, pa);
5089 	spin_unlock(&pa->pa_lock);
5090 
5091 	grp_blk = pa->pa_pstart;
5092 	/*
5093 	 * If doing group-based preallocation, pa_pstart may be in the
5094 	 * next group when pa is used up
5095 	 */
5096 	if (pa->pa_type == MB_GROUP_PA)
5097 		grp_blk--;
5098 
5099 	grp = ext4_get_group_number(sb, grp_blk);
5100 
5101 	/*
5102 	 * possible race:
5103 	 *
5104 	 *  P1 (buddy init)			P2 (regular allocation)
5105 	 *					find block B in PA
5106 	 *  copy on-disk bitmap to buddy
5107 	 *  					mark B in on-disk bitmap
5108 	 *					drop PA from group
5109 	 *  mark all PAs in buddy
5110 	 *
5111 	 * thus, P1 initializes buddy with B available. to prevent this
5112 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5113 	 * against that pair
5114 	 */
5115 	ext4_lock_group(sb, grp);
5116 	list_del(&pa->pa_group_list);
5117 	ext4_unlock_group(sb, grp);
5118 
5119 	if (pa->pa_type == MB_INODE_PA) {
5120 		write_lock(pa->pa_node_lock.inode_lock);
5121 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5122 		write_unlock(pa->pa_node_lock.inode_lock);
5123 		ext4_mb_pa_free(pa);
5124 	} else {
5125 		spin_lock(pa->pa_node_lock.lg_lock);
5126 		list_del_rcu(&pa->pa_node.lg_list);
5127 		spin_unlock(pa->pa_node_lock.lg_lock);
5128 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5129 	}
5130 }
5131 
5132 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5133 {
5134 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5135 	struct ext4_prealloc_space *iter_pa, *new_pa;
5136 	ext4_lblk_t iter_start, new_start;
5137 
5138 	while (*iter) {
5139 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5140 				   pa_node.inode_node);
5141 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5142 				   pa_node.inode_node);
5143 		iter_start = iter_pa->pa_lstart;
5144 		new_start = new_pa->pa_lstart;
5145 
5146 		parent = *iter;
5147 		if (new_start < iter_start)
5148 			iter = &((*iter)->rb_left);
5149 		else
5150 			iter = &((*iter)->rb_right);
5151 	}
5152 
5153 	rb_link_node(new, parent, iter);
5154 	rb_insert_color(new, root);
5155 }
5156 
5157 /*
5158  * creates new preallocated space for given inode
5159  */
5160 static noinline_for_stack void
5161 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5162 {
5163 	struct super_block *sb = ac->ac_sb;
5164 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5165 	struct ext4_prealloc_space *pa;
5166 	struct ext4_group_info *grp;
5167 	struct ext4_inode_info *ei;
5168 
5169 	/* preallocate only when found space is larger then requested */
5170 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5171 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5172 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5173 	BUG_ON(ac->ac_pa == NULL);
5174 
5175 	pa = ac->ac_pa;
5176 
5177 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5178 		struct ext4_free_extent ex = {
5179 			.fe_logical = ac->ac_g_ex.fe_logical,
5180 			.fe_len = ac->ac_orig_goal_len,
5181 		};
5182 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5183 
5184 		/* we can't allocate as much as normalizer wants.
5185 		 * so, found space must get proper lstart
5186 		 * to cover original request */
5187 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5188 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5189 
5190 		/*
5191 		 * Use the below logic for adjusting best extent as it keeps
5192 		 * fragmentation in check while ensuring logical range of best
5193 		 * extent doesn't overflow out of goal extent:
5194 		 *
5195 		 * 1. Check if best ex can be kept at end of goal (before
5196 		 *    cr_best_avail trimmed it) and still cover original start
5197 		 * 2. Else, check if best ex can be kept at start of goal and
5198 		 *    still cover original start
5199 		 * 3. Else, keep the best ex at start of original request.
5200 		 */
5201 		ex.fe_len = ac->ac_b_ex.fe_len;
5202 
5203 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5204 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5205 			goto adjust_bex;
5206 
5207 		ex.fe_logical = ac->ac_g_ex.fe_logical;
5208 		if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5209 			goto adjust_bex;
5210 
5211 		ex.fe_logical = ac->ac_o_ex.fe_logical;
5212 adjust_bex:
5213 		ac->ac_b_ex.fe_logical = ex.fe_logical;
5214 
5215 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5216 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5217 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5218 	}
5219 
5220 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5221 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5222 	pa->pa_len = ac->ac_b_ex.fe_len;
5223 	pa->pa_free = pa->pa_len;
5224 	spin_lock_init(&pa->pa_lock);
5225 	INIT_LIST_HEAD(&pa->pa_group_list);
5226 	pa->pa_deleted = 0;
5227 	pa->pa_type = MB_INODE_PA;
5228 
5229 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5230 		 pa->pa_len, pa->pa_lstart);
5231 	trace_ext4_mb_new_inode_pa(ac, pa);
5232 
5233 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5234 	ext4_mb_use_inode_pa(ac, pa);
5235 
5236 	ei = EXT4_I(ac->ac_inode);
5237 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5238 	if (!grp)
5239 		return;
5240 
5241 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5242 	pa->pa_inode = ac->ac_inode;
5243 
5244 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5245 
5246 	write_lock(pa->pa_node_lock.inode_lock);
5247 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5248 	write_unlock(pa->pa_node_lock.inode_lock);
5249 	atomic_inc(&ei->i_prealloc_active);
5250 }
5251 
5252 /*
5253  * creates new preallocated space for locality group inodes belongs to
5254  */
5255 static noinline_for_stack void
5256 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5257 {
5258 	struct super_block *sb = ac->ac_sb;
5259 	struct ext4_locality_group *lg;
5260 	struct ext4_prealloc_space *pa;
5261 	struct ext4_group_info *grp;
5262 
5263 	/* preallocate only when found space is larger then requested */
5264 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5265 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5266 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5267 	BUG_ON(ac->ac_pa == NULL);
5268 
5269 	pa = ac->ac_pa;
5270 
5271 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5272 	pa->pa_lstart = pa->pa_pstart;
5273 	pa->pa_len = ac->ac_b_ex.fe_len;
5274 	pa->pa_free = pa->pa_len;
5275 	spin_lock_init(&pa->pa_lock);
5276 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5277 	INIT_LIST_HEAD(&pa->pa_group_list);
5278 	pa->pa_deleted = 0;
5279 	pa->pa_type = MB_GROUP_PA;
5280 
5281 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5282 		 pa->pa_len, pa->pa_lstart);
5283 	trace_ext4_mb_new_group_pa(ac, pa);
5284 
5285 	ext4_mb_use_group_pa(ac, pa);
5286 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5287 
5288 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5289 	if (!grp)
5290 		return;
5291 	lg = ac->ac_lg;
5292 	BUG_ON(lg == NULL);
5293 
5294 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5295 	pa->pa_inode = NULL;
5296 
5297 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5298 
5299 	/*
5300 	 * We will later add the new pa to the right bucket
5301 	 * after updating the pa_free in ext4_mb_release_context
5302 	 */
5303 }
5304 
5305 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5306 {
5307 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5308 		ext4_mb_new_group_pa(ac);
5309 	else
5310 		ext4_mb_new_inode_pa(ac);
5311 }
5312 
5313 /*
5314  * finds all unused blocks in on-disk bitmap, frees them in
5315  * in-core bitmap and buddy.
5316  * @pa must be unlinked from inode and group lists, so that
5317  * nobody else can find/use it.
5318  * the caller MUST hold group/inode locks.
5319  * TODO: optimize the case when there are no in-core structures yet
5320  */
5321 static noinline_for_stack int
5322 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5323 			struct ext4_prealloc_space *pa)
5324 {
5325 	struct super_block *sb = e4b->bd_sb;
5326 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5327 	unsigned int end;
5328 	unsigned int next;
5329 	ext4_group_t group;
5330 	ext4_grpblk_t bit;
5331 	unsigned long long grp_blk_start;
5332 	int free = 0;
5333 
5334 	BUG_ON(pa->pa_deleted == 0);
5335 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5336 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5337 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5338 	end = bit + pa->pa_len;
5339 
5340 	while (bit < end) {
5341 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5342 		if (bit >= end)
5343 			break;
5344 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5345 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5346 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5347 			 (unsigned) next - bit, (unsigned) group);
5348 		free += next - bit;
5349 
5350 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5351 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5352 						    EXT4_C2B(sbi, bit)),
5353 					       next - bit);
5354 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5355 		bit = next + 1;
5356 	}
5357 	if (free != pa->pa_free) {
5358 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5359 			 "pa %p: logic %lu, phys. %lu, len %d",
5360 			 pa, (unsigned long) pa->pa_lstart,
5361 			 (unsigned long) pa->pa_pstart,
5362 			 pa->pa_len);
5363 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5364 					free, pa->pa_free);
5365 		/*
5366 		 * pa is already deleted so we use the value obtained
5367 		 * from the bitmap and continue.
5368 		 */
5369 	}
5370 	atomic_add(free, &sbi->s_mb_discarded);
5371 
5372 	return 0;
5373 }
5374 
5375 static noinline_for_stack int
5376 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5377 				struct ext4_prealloc_space *pa)
5378 {
5379 	struct super_block *sb = e4b->bd_sb;
5380 	ext4_group_t group;
5381 	ext4_grpblk_t bit;
5382 
5383 	trace_ext4_mb_release_group_pa(sb, pa);
5384 	BUG_ON(pa->pa_deleted == 0);
5385 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5386 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5387 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5388 			     e4b->bd_group, group, pa->pa_pstart);
5389 		return 0;
5390 	}
5391 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5392 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5393 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5394 
5395 	return 0;
5396 }
5397 
5398 /*
5399  * releases all preallocations in given group
5400  *
5401  * first, we need to decide discard policy:
5402  * - when do we discard
5403  *   1) ENOSPC
5404  * - how many do we discard
5405  *   1) how many requested
5406  */
5407 static noinline_for_stack int
5408 ext4_mb_discard_group_preallocations(struct super_block *sb,
5409 				     ext4_group_t group, int *busy)
5410 {
5411 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5412 	struct buffer_head *bitmap_bh = NULL;
5413 	struct ext4_prealloc_space *pa, *tmp;
5414 	LIST_HEAD(list);
5415 	struct ext4_buddy e4b;
5416 	struct ext4_inode_info *ei;
5417 	int err;
5418 	int free = 0;
5419 
5420 	if (!grp)
5421 		return 0;
5422 	mb_debug(sb, "discard preallocation for group %u\n", group);
5423 	if (list_empty(&grp->bb_prealloc_list))
5424 		goto out_dbg;
5425 
5426 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5427 	if (IS_ERR(bitmap_bh)) {
5428 		err = PTR_ERR(bitmap_bh);
5429 		ext4_error_err(sb, -err,
5430 			       "Error %d reading block bitmap for %u",
5431 			       err, group);
5432 		goto out_dbg;
5433 	}
5434 
5435 	err = ext4_mb_load_buddy(sb, group, &e4b);
5436 	if (err) {
5437 		ext4_warning(sb, "Error %d loading buddy information for %u",
5438 			     err, group);
5439 		put_bh(bitmap_bh);
5440 		goto out_dbg;
5441 	}
5442 
5443 	ext4_lock_group(sb, group);
5444 	list_for_each_entry_safe(pa, tmp,
5445 				&grp->bb_prealloc_list, pa_group_list) {
5446 		spin_lock(&pa->pa_lock);
5447 		if (atomic_read(&pa->pa_count)) {
5448 			spin_unlock(&pa->pa_lock);
5449 			*busy = 1;
5450 			continue;
5451 		}
5452 		if (pa->pa_deleted) {
5453 			spin_unlock(&pa->pa_lock);
5454 			continue;
5455 		}
5456 
5457 		/* seems this one can be freed ... */
5458 		ext4_mb_mark_pa_deleted(sb, pa);
5459 
5460 		if (!free)
5461 			this_cpu_inc(discard_pa_seq);
5462 
5463 		/* we can trust pa_free ... */
5464 		free += pa->pa_free;
5465 
5466 		spin_unlock(&pa->pa_lock);
5467 
5468 		list_del(&pa->pa_group_list);
5469 		list_add(&pa->u.pa_tmp_list, &list);
5470 	}
5471 
5472 	/* now free all selected PAs */
5473 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5474 
5475 		/* remove from object (inode or locality group) */
5476 		if (pa->pa_type == MB_GROUP_PA) {
5477 			spin_lock(pa->pa_node_lock.lg_lock);
5478 			list_del_rcu(&pa->pa_node.lg_list);
5479 			spin_unlock(pa->pa_node_lock.lg_lock);
5480 		} else {
5481 			write_lock(pa->pa_node_lock.inode_lock);
5482 			ei = EXT4_I(pa->pa_inode);
5483 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5484 			write_unlock(pa->pa_node_lock.inode_lock);
5485 		}
5486 
5487 		list_del(&pa->u.pa_tmp_list);
5488 
5489 		if (pa->pa_type == MB_GROUP_PA) {
5490 			ext4_mb_release_group_pa(&e4b, pa);
5491 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5492 		} else {
5493 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5494 			ext4_mb_pa_free(pa);
5495 		}
5496 	}
5497 
5498 	ext4_unlock_group(sb, group);
5499 	ext4_mb_unload_buddy(&e4b);
5500 	put_bh(bitmap_bh);
5501 out_dbg:
5502 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5503 		 free, group, grp->bb_free);
5504 	return free;
5505 }
5506 
5507 /*
5508  * releases all non-used preallocated blocks for given inode
5509  *
5510  * It's important to discard preallocations under i_data_sem
5511  * We don't want another block to be served from the prealloc
5512  * space when we are discarding the inode prealloc space.
5513  *
5514  * FIXME!! Make sure it is valid at all the call sites
5515  */
5516 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5517 {
5518 	struct ext4_inode_info *ei = EXT4_I(inode);
5519 	struct super_block *sb = inode->i_sb;
5520 	struct buffer_head *bitmap_bh = NULL;
5521 	struct ext4_prealloc_space *pa, *tmp;
5522 	ext4_group_t group = 0;
5523 	LIST_HEAD(list);
5524 	struct ext4_buddy e4b;
5525 	struct rb_node *iter;
5526 	int err;
5527 
5528 	if (!S_ISREG(inode->i_mode)) {
5529 		return;
5530 	}
5531 
5532 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5533 		return;
5534 
5535 	mb_debug(sb, "discard preallocation for inode %lu\n",
5536 		 inode->i_ino);
5537 	trace_ext4_discard_preallocations(inode,
5538 			atomic_read(&ei->i_prealloc_active), needed);
5539 
5540 	if (needed == 0)
5541 		needed = UINT_MAX;
5542 
5543 repeat:
5544 	/* first, collect all pa's in the inode */
5545 	write_lock(&ei->i_prealloc_lock);
5546 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5547 	     iter = rb_next(iter)) {
5548 		pa = rb_entry(iter, struct ext4_prealloc_space,
5549 			      pa_node.inode_node);
5550 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5551 
5552 		spin_lock(&pa->pa_lock);
5553 		if (atomic_read(&pa->pa_count)) {
5554 			/* this shouldn't happen often - nobody should
5555 			 * use preallocation while we're discarding it */
5556 			spin_unlock(&pa->pa_lock);
5557 			write_unlock(&ei->i_prealloc_lock);
5558 			ext4_msg(sb, KERN_ERR,
5559 				 "uh-oh! used pa while discarding");
5560 			WARN_ON(1);
5561 			schedule_timeout_uninterruptible(HZ);
5562 			goto repeat;
5563 
5564 		}
5565 		if (pa->pa_deleted == 0) {
5566 			ext4_mb_mark_pa_deleted(sb, pa);
5567 			spin_unlock(&pa->pa_lock);
5568 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5569 			list_add(&pa->u.pa_tmp_list, &list);
5570 			needed--;
5571 			continue;
5572 		}
5573 
5574 		/* someone is deleting pa right now */
5575 		spin_unlock(&pa->pa_lock);
5576 		write_unlock(&ei->i_prealloc_lock);
5577 
5578 		/* we have to wait here because pa_deleted
5579 		 * doesn't mean pa is already unlinked from
5580 		 * the list. as we might be called from
5581 		 * ->clear_inode() the inode will get freed
5582 		 * and concurrent thread which is unlinking
5583 		 * pa from inode's list may access already
5584 		 * freed memory, bad-bad-bad */
5585 
5586 		/* XXX: if this happens too often, we can
5587 		 * add a flag to force wait only in case
5588 		 * of ->clear_inode(), but not in case of
5589 		 * regular truncate */
5590 		schedule_timeout_uninterruptible(HZ);
5591 		goto repeat;
5592 	}
5593 	write_unlock(&ei->i_prealloc_lock);
5594 
5595 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5596 		BUG_ON(pa->pa_type != MB_INODE_PA);
5597 		group = ext4_get_group_number(sb, pa->pa_pstart);
5598 
5599 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5600 					     GFP_NOFS|__GFP_NOFAIL);
5601 		if (err) {
5602 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5603 				       err, group);
5604 			continue;
5605 		}
5606 
5607 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5608 		if (IS_ERR(bitmap_bh)) {
5609 			err = PTR_ERR(bitmap_bh);
5610 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5611 				       err, group);
5612 			ext4_mb_unload_buddy(&e4b);
5613 			continue;
5614 		}
5615 
5616 		ext4_lock_group(sb, group);
5617 		list_del(&pa->pa_group_list);
5618 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5619 		ext4_unlock_group(sb, group);
5620 
5621 		ext4_mb_unload_buddy(&e4b);
5622 		put_bh(bitmap_bh);
5623 
5624 		list_del(&pa->u.pa_tmp_list);
5625 		ext4_mb_pa_free(pa);
5626 	}
5627 }
5628 
5629 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5630 {
5631 	struct ext4_prealloc_space *pa;
5632 
5633 	BUG_ON(ext4_pspace_cachep == NULL);
5634 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5635 	if (!pa)
5636 		return -ENOMEM;
5637 	atomic_set(&pa->pa_count, 1);
5638 	ac->ac_pa = pa;
5639 	return 0;
5640 }
5641 
5642 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5643 {
5644 	struct ext4_prealloc_space *pa = ac->ac_pa;
5645 
5646 	BUG_ON(!pa);
5647 	ac->ac_pa = NULL;
5648 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5649 	/*
5650 	 * current function is only called due to an error or due to
5651 	 * len of found blocks < len of requested blocks hence the PA has not
5652 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5653 	 */
5654 	pa->pa_deleted = 1;
5655 	ext4_mb_pa_free(pa);
5656 }
5657 
5658 #ifdef CONFIG_EXT4_DEBUG
5659 static inline void ext4_mb_show_pa(struct super_block *sb)
5660 {
5661 	ext4_group_t i, ngroups;
5662 
5663 	if (ext4_forced_shutdown(sb))
5664 		return;
5665 
5666 	ngroups = ext4_get_groups_count(sb);
5667 	mb_debug(sb, "groups: ");
5668 	for (i = 0; i < ngroups; i++) {
5669 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5670 		struct ext4_prealloc_space *pa;
5671 		ext4_grpblk_t start;
5672 		struct list_head *cur;
5673 
5674 		if (!grp)
5675 			continue;
5676 		ext4_lock_group(sb, i);
5677 		list_for_each(cur, &grp->bb_prealloc_list) {
5678 			pa = list_entry(cur, struct ext4_prealloc_space,
5679 					pa_group_list);
5680 			spin_lock(&pa->pa_lock);
5681 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5682 						     NULL, &start);
5683 			spin_unlock(&pa->pa_lock);
5684 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5685 				 pa->pa_len);
5686 		}
5687 		ext4_unlock_group(sb, i);
5688 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5689 			 grp->bb_fragments);
5690 	}
5691 }
5692 
5693 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5694 {
5695 	struct super_block *sb = ac->ac_sb;
5696 
5697 	if (ext4_forced_shutdown(sb))
5698 		return;
5699 
5700 	mb_debug(sb, "Can't allocate:"
5701 			" Allocation context details:");
5702 	mb_debug(sb, "status %u flags 0x%x",
5703 			ac->ac_status, ac->ac_flags);
5704 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5705 			"goal %lu/%lu/%lu@%lu, "
5706 			"best %lu/%lu/%lu@%lu cr %d",
5707 			(unsigned long)ac->ac_o_ex.fe_group,
5708 			(unsigned long)ac->ac_o_ex.fe_start,
5709 			(unsigned long)ac->ac_o_ex.fe_len,
5710 			(unsigned long)ac->ac_o_ex.fe_logical,
5711 			(unsigned long)ac->ac_g_ex.fe_group,
5712 			(unsigned long)ac->ac_g_ex.fe_start,
5713 			(unsigned long)ac->ac_g_ex.fe_len,
5714 			(unsigned long)ac->ac_g_ex.fe_logical,
5715 			(unsigned long)ac->ac_b_ex.fe_group,
5716 			(unsigned long)ac->ac_b_ex.fe_start,
5717 			(unsigned long)ac->ac_b_ex.fe_len,
5718 			(unsigned long)ac->ac_b_ex.fe_logical,
5719 			(int)ac->ac_criteria);
5720 	mb_debug(sb, "%u found", ac->ac_found);
5721 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5722 	if (ac->ac_pa)
5723 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5724 			 "group pa" : "inode pa");
5725 	ext4_mb_show_pa(sb);
5726 }
5727 #else
5728 static inline void ext4_mb_show_pa(struct super_block *sb)
5729 {
5730 }
5731 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5732 {
5733 	ext4_mb_show_pa(ac->ac_sb);
5734 }
5735 #endif
5736 
5737 /*
5738  * We use locality group preallocation for small size file. The size of the
5739  * file is determined by the current size or the resulting size after
5740  * allocation which ever is larger
5741  *
5742  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5743  */
5744 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5745 {
5746 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5747 	int bsbits = ac->ac_sb->s_blocksize_bits;
5748 	loff_t size, isize;
5749 	bool inode_pa_eligible, group_pa_eligible;
5750 
5751 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5752 		return;
5753 
5754 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5755 		return;
5756 
5757 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5758 	inode_pa_eligible = true;
5759 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5760 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5761 		>> bsbits;
5762 
5763 	/* No point in using inode preallocation for closed files */
5764 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5765 	    !inode_is_open_for_write(ac->ac_inode))
5766 		inode_pa_eligible = false;
5767 
5768 	size = max(size, isize);
5769 	/* Don't use group allocation for large files */
5770 	if (size > sbi->s_mb_stream_request)
5771 		group_pa_eligible = false;
5772 
5773 	if (!group_pa_eligible) {
5774 		if (inode_pa_eligible)
5775 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5776 		else
5777 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5778 		return;
5779 	}
5780 
5781 	BUG_ON(ac->ac_lg != NULL);
5782 	/*
5783 	 * locality group prealloc space are per cpu. The reason for having
5784 	 * per cpu locality group is to reduce the contention between block
5785 	 * request from multiple CPUs.
5786 	 */
5787 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5788 
5789 	/* we're going to use group allocation */
5790 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5791 
5792 	/* serialize all allocations in the group */
5793 	mutex_lock(&ac->ac_lg->lg_mutex);
5794 }
5795 
5796 static noinline_for_stack void
5797 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5798 				struct ext4_allocation_request *ar)
5799 {
5800 	struct super_block *sb = ar->inode->i_sb;
5801 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5802 	struct ext4_super_block *es = sbi->s_es;
5803 	ext4_group_t group;
5804 	unsigned int len;
5805 	ext4_fsblk_t goal;
5806 	ext4_grpblk_t block;
5807 
5808 	/* we can't allocate > group size */
5809 	len = ar->len;
5810 
5811 	/* just a dirty hack to filter too big requests  */
5812 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5813 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5814 
5815 	/* start searching from the goal */
5816 	goal = ar->goal;
5817 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5818 			goal >= ext4_blocks_count(es))
5819 		goal = le32_to_cpu(es->s_first_data_block);
5820 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5821 
5822 	/* set up allocation goals */
5823 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5824 	ac->ac_status = AC_STATUS_CONTINUE;
5825 	ac->ac_sb = sb;
5826 	ac->ac_inode = ar->inode;
5827 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5828 	ac->ac_o_ex.fe_group = group;
5829 	ac->ac_o_ex.fe_start = block;
5830 	ac->ac_o_ex.fe_len = len;
5831 	ac->ac_g_ex = ac->ac_o_ex;
5832 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5833 	ac->ac_flags = ar->flags;
5834 
5835 	/* we have to define context: we'll work with a file or
5836 	 * locality group. this is a policy, actually */
5837 	ext4_mb_group_or_file(ac);
5838 
5839 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5840 			"left: %u/%u, right %u/%u to %swritable\n",
5841 			(unsigned) ar->len, (unsigned) ar->logical,
5842 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5843 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5844 			(unsigned) ar->lright, (unsigned) ar->pright,
5845 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5846 }
5847 
5848 static noinline_for_stack void
5849 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5850 					struct ext4_locality_group *lg,
5851 					int order, int total_entries)
5852 {
5853 	ext4_group_t group = 0;
5854 	struct ext4_buddy e4b;
5855 	LIST_HEAD(discard_list);
5856 	struct ext4_prealloc_space *pa, *tmp;
5857 
5858 	mb_debug(sb, "discard locality group preallocation\n");
5859 
5860 	spin_lock(&lg->lg_prealloc_lock);
5861 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5862 				pa_node.lg_list,
5863 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5864 		spin_lock(&pa->pa_lock);
5865 		if (atomic_read(&pa->pa_count)) {
5866 			/*
5867 			 * This is the pa that we just used
5868 			 * for block allocation. So don't
5869 			 * free that
5870 			 */
5871 			spin_unlock(&pa->pa_lock);
5872 			continue;
5873 		}
5874 		if (pa->pa_deleted) {
5875 			spin_unlock(&pa->pa_lock);
5876 			continue;
5877 		}
5878 		/* only lg prealloc space */
5879 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5880 
5881 		/* seems this one can be freed ... */
5882 		ext4_mb_mark_pa_deleted(sb, pa);
5883 		spin_unlock(&pa->pa_lock);
5884 
5885 		list_del_rcu(&pa->pa_node.lg_list);
5886 		list_add(&pa->u.pa_tmp_list, &discard_list);
5887 
5888 		total_entries--;
5889 		if (total_entries <= 5) {
5890 			/*
5891 			 * we want to keep only 5 entries
5892 			 * allowing it to grow to 8. This
5893 			 * mak sure we don't call discard
5894 			 * soon for this list.
5895 			 */
5896 			break;
5897 		}
5898 	}
5899 	spin_unlock(&lg->lg_prealloc_lock);
5900 
5901 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5902 		int err;
5903 
5904 		group = ext4_get_group_number(sb, pa->pa_pstart);
5905 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5906 					     GFP_NOFS|__GFP_NOFAIL);
5907 		if (err) {
5908 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5909 				       err, group);
5910 			continue;
5911 		}
5912 		ext4_lock_group(sb, group);
5913 		list_del(&pa->pa_group_list);
5914 		ext4_mb_release_group_pa(&e4b, pa);
5915 		ext4_unlock_group(sb, group);
5916 
5917 		ext4_mb_unload_buddy(&e4b);
5918 		list_del(&pa->u.pa_tmp_list);
5919 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5920 	}
5921 }
5922 
5923 /*
5924  * We have incremented pa_count. So it cannot be freed at this
5925  * point. Also we hold lg_mutex. So no parallel allocation is
5926  * possible from this lg. That means pa_free cannot be updated.
5927  *
5928  * A parallel ext4_mb_discard_group_preallocations is possible.
5929  * which can cause the lg_prealloc_list to be updated.
5930  */
5931 
5932 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5933 {
5934 	int order, added = 0, lg_prealloc_count = 1;
5935 	struct super_block *sb = ac->ac_sb;
5936 	struct ext4_locality_group *lg = ac->ac_lg;
5937 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5938 
5939 	order = fls(pa->pa_free) - 1;
5940 	if (order > PREALLOC_TB_SIZE - 1)
5941 		/* The max size of hash table is PREALLOC_TB_SIZE */
5942 		order = PREALLOC_TB_SIZE - 1;
5943 	/* Add the prealloc space to lg */
5944 	spin_lock(&lg->lg_prealloc_lock);
5945 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5946 				pa_node.lg_list,
5947 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5948 		spin_lock(&tmp_pa->pa_lock);
5949 		if (tmp_pa->pa_deleted) {
5950 			spin_unlock(&tmp_pa->pa_lock);
5951 			continue;
5952 		}
5953 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5954 			/* Add to the tail of the previous entry */
5955 			list_add_tail_rcu(&pa->pa_node.lg_list,
5956 						&tmp_pa->pa_node.lg_list);
5957 			added = 1;
5958 			/*
5959 			 * we want to count the total
5960 			 * number of entries in the list
5961 			 */
5962 		}
5963 		spin_unlock(&tmp_pa->pa_lock);
5964 		lg_prealloc_count++;
5965 	}
5966 	if (!added)
5967 		list_add_tail_rcu(&pa->pa_node.lg_list,
5968 					&lg->lg_prealloc_list[order]);
5969 	spin_unlock(&lg->lg_prealloc_lock);
5970 
5971 	/* Now trim the list to be not more than 8 elements */
5972 	if (lg_prealloc_count > 8)
5973 		ext4_mb_discard_lg_preallocations(sb, lg,
5974 						  order, lg_prealloc_count);
5975 }
5976 
5977 /*
5978  * release all resource we used in allocation
5979  */
5980 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5981 {
5982 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5983 	struct ext4_prealloc_space *pa = ac->ac_pa;
5984 	if (pa) {
5985 		if (pa->pa_type == MB_GROUP_PA) {
5986 			/* see comment in ext4_mb_use_group_pa() */
5987 			spin_lock(&pa->pa_lock);
5988 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5989 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5990 			pa->pa_free -= ac->ac_b_ex.fe_len;
5991 			pa->pa_len -= ac->ac_b_ex.fe_len;
5992 			spin_unlock(&pa->pa_lock);
5993 
5994 			/*
5995 			 * We want to add the pa to the right bucket.
5996 			 * Remove it from the list and while adding
5997 			 * make sure the list to which we are adding
5998 			 * doesn't grow big.
5999 			 */
6000 			if (likely(pa->pa_free)) {
6001 				spin_lock(pa->pa_node_lock.lg_lock);
6002 				list_del_rcu(&pa->pa_node.lg_list);
6003 				spin_unlock(pa->pa_node_lock.lg_lock);
6004 				ext4_mb_add_n_trim(ac);
6005 			}
6006 		}
6007 
6008 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
6009 	}
6010 	if (ac->ac_bitmap_page)
6011 		put_page(ac->ac_bitmap_page);
6012 	if (ac->ac_buddy_page)
6013 		put_page(ac->ac_buddy_page);
6014 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6015 		mutex_unlock(&ac->ac_lg->lg_mutex);
6016 	ext4_mb_collect_stats(ac);
6017 	return 0;
6018 }
6019 
6020 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6021 {
6022 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6023 	int ret;
6024 	int freed = 0, busy = 0;
6025 	int retry = 0;
6026 
6027 	trace_ext4_mb_discard_preallocations(sb, needed);
6028 
6029 	if (needed == 0)
6030 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6031  repeat:
6032 	for (i = 0; i < ngroups && needed > 0; i++) {
6033 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6034 		freed += ret;
6035 		needed -= ret;
6036 		cond_resched();
6037 	}
6038 
6039 	if (needed > 0 && busy && ++retry < 3) {
6040 		busy = 0;
6041 		goto repeat;
6042 	}
6043 
6044 	return freed;
6045 }
6046 
6047 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6048 			struct ext4_allocation_context *ac, u64 *seq)
6049 {
6050 	int freed;
6051 	u64 seq_retry = 0;
6052 	bool ret = false;
6053 
6054 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6055 	if (freed) {
6056 		ret = true;
6057 		goto out_dbg;
6058 	}
6059 	seq_retry = ext4_get_discard_pa_seq_sum();
6060 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6061 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6062 		*seq = seq_retry;
6063 		ret = true;
6064 	}
6065 
6066 out_dbg:
6067 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6068 	return ret;
6069 }
6070 
6071 /*
6072  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6073  * linearly starting at the goal block and also excludes the blocks which
6074  * are going to be in use after fast commit replay.
6075  */
6076 static ext4_fsblk_t
6077 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6078 {
6079 	struct buffer_head *bitmap_bh;
6080 	struct super_block *sb = ar->inode->i_sb;
6081 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6082 	ext4_group_t group, nr;
6083 	ext4_grpblk_t blkoff;
6084 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6085 	ext4_grpblk_t i = 0;
6086 	ext4_fsblk_t goal, block;
6087 	struct ext4_super_block *es = sbi->s_es;
6088 
6089 	goal = ar->goal;
6090 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6091 			goal >= ext4_blocks_count(es))
6092 		goal = le32_to_cpu(es->s_first_data_block);
6093 
6094 	ar->len = 0;
6095 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6096 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6097 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6098 		if (IS_ERR(bitmap_bh)) {
6099 			*errp = PTR_ERR(bitmap_bh);
6100 			pr_warn("Failed to read block bitmap\n");
6101 			return 0;
6102 		}
6103 
6104 		while (1) {
6105 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6106 						blkoff);
6107 			if (i >= max)
6108 				break;
6109 			if (ext4_fc_replay_check_excluded(sb,
6110 				ext4_group_first_block_no(sb, group) +
6111 				EXT4_C2B(sbi, i))) {
6112 				blkoff = i + 1;
6113 			} else
6114 				break;
6115 		}
6116 		brelse(bitmap_bh);
6117 		if (i < max)
6118 			break;
6119 
6120 		if (++group >= ext4_get_groups_count(sb))
6121 			group = 0;
6122 
6123 		blkoff = 0;
6124 	}
6125 
6126 	if (i >= max) {
6127 		*errp = -ENOSPC;
6128 		return 0;
6129 	}
6130 
6131 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6132 	ext4_mb_mark_bb(sb, block, 1, 1);
6133 	ar->len = 1;
6134 
6135 	return block;
6136 }
6137 
6138 /*
6139  * Main entry point into mballoc to allocate blocks
6140  * it tries to use preallocation first, then falls back
6141  * to usual allocation
6142  */
6143 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6144 				struct ext4_allocation_request *ar, int *errp)
6145 {
6146 	struct ext4_allocation_context *ac = NULL;
6147 	struct ext4_sb_info *sbi;
6148 	struct super_block *sb;
6149 	ext4_fsblk_t block = 0;
6150 	unsigned int inquota = 0;
6151 	unsigned int reserv_clstrs = 0;
6152 	int retries = 0;
6153 	u64 seq;
6154 
6155 	might_sleep();
6156 	sb = ar->inode->i_sb;
6157 	sbi = EXT4_SB(sb);
6158 
6159 	trace_ext4_request_blocks(ar);
6160 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6161 		return ext4_mb_new_blocks_simple(ar, errp);
6162 
6163 	/* Allow to use superuser reservation for quota file */
6164 	if (ext4_is_quota_file(ar->inode))
6165 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6166 
6167 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6168 		/* Without delayed allocation we need to verify
6169 		 * there is enough free blocks to do block allocation
6170 		 * and verify allocation doesn't exceed the quota limits.
6171 		 */
6172 		while (ar->len &&
6173 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6174 
6175 			/* let others to free the space */
6176 			cond_resched();
6177 			ar->len = ar->len >> 1;
6178 		}
6179 		if (!ar->len) {
6180 			ext4_mb_show_pa(sb);
6181 			*errp = -ENOSPC;
6182 			return 0;
6183 		}
6184 		reserv_clstrs = ar->len;
6185 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6186 			dquot_alloc_block_nofail(ar->inode,
6187 						 EXT4_C2B(sbi, ar->len));
6188 		} else {
6189 			while (ar->len &&
6190 				dquot_alloc_block(ar->inode,
6191 						  EXT4_C2B(sbi, ar->len))) {
6192 
6193 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6194 				ar->len--;
6195 			}
6196 		}
6197 		inquota = ar->len;
6198 		if (ar->len == 0) {
6199 			*errp = -EDQUOT;
6200 			goto out;
6201 		}
6202 	}
6203 
6204 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6205 	if (!ac) {
6206 		ar->len = 0;
6207 		*errp = -ENOMEM;
6208 		goto out;
6209 	}
6210 
6211 	ext4_mb_initialize_context(ac, ar);
6212 
6213 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6214 	seq = this_cpu_read(discard_pa_seq);
6215 	if (!ext4_mb_use_preallocated(ac)) {
6216 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6217 		ext4_mb_normalize_request(ac, ar);
6218 
6219 		*errp = ext4_mb_pa_alloc(ac);
6220 		if (*errp)
6221 			goto errout;
6222 repeat:
6223 		/* allocate space in core */
6224 		*errp = ext4_mb_regular_allocator(ac);
6225 		/*
6226 		 * pa allocated above is added to grp->bb_prealloc_list only
6227 		 * when we were able to allocate some block i.e. when
6228 		 * ac->ac_status == AC_STATUS_FOUND.
6229 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6230 		 * So we have to free this pa here itself.
6231 		 */
6232 		if (*errp) {
6233 			ext4_mb_pa_put_free(ac);
6234 			ext4_discard_allocated_blocks(ac);
6235 			goto errout;
6236 		}
6237 		if (ac->ac_status == AC_STATUS_FOUND &&
6238 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6239 			ext4_mb_pa_put_free(ac);
6240 	}
6241 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6242 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6243 		if (*errp) {
6244 			ext4_discard_allocated_blocks(ac);
6245 			goto errout;
6246 		} else {
6247 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6248 			ar->len = ac->ac_b_ex.fe_len;
6249 		}
6250 	} else {
6251 		if (++retries < 3 &&
6252 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6253 			goto repeat;
6254 		/*
6255 		 * If block allocation fails then the pa allocated above
6256 		 * needs to be freed here itself.
6257 		 */
6258 		ext4_mb_pa_put_free(ac);
6259 		*errp = -ENOSPC;
6260 	}
6261 
6262 	if (*errp) {
6263 errout:
6264 		ac->ac_b_ex.fe_len = 0;
6265 		ar->len = 0;
6266 		ext4_mb_show_ac(ac);
6267 	}
6268 	ext4_mb_release_context(ac);
6269 	kmem_cache_free(ext4_ac_cachep, ac);
6270 out:
6271 	if (inquota && ar->len < inquota)
6272 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6273 	if (!ar->len) {
6274 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6275 			/* release all the reserved blocks if non delalloc */
6276 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6277 						reserv_clstrs);
6278 	}
6279 
6280 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6281 
6282 	return block;
6283 }
6284 
6285 /*
6286  * We can merge two free data extents only if the physical blocks
6287  * are contiguous, AND the extents were freed by the same transaction,
6288  * AND the blocks are associated with the same group.
6289  */
6290 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6291 					struct ext4_free_data *entry,
6292 					struct ext4_free_data *new_entry,
6293 					struct rb_root *entry_rb_root)
6294 {
6295 	if ((entry->efd_tid != new_entry->efd_tid) ||
6296 	    (entry->efd_group != new_entry->efd_group))
6297 		return;
6298 	if (entry->efd_start_cluster + entry->efd_count ==
6299 	    new_entry->efd_start_cluster) {
6300 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6301 		new_entry->efd_count += entry->efd_count;
6302 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6303 		   entry->efd_start_cluster) {
6304 		new_entry->efd_count += entry->efd_count;
6305 	} else
6306 		return;
6307 	spin_lock(&sbi->s_md_lock);
6308 	list_del(&entry->efd_list);
6309 	spin_unlock(&sbi->s_md_lock);
6310 	rb_erase(&entry->efd_node, entry_rb_root);
6311 	kmem_cache_free(ext4_free_data_cachep, entry);
6312 }
6313 
6314 static noinline_for_stack void
6315 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6316 		      struct ext4_free_data *new_entry)
6317 {
6318 	ext4_group_t group = e4b->bd_group;
6319 	ext4_grpblk_t cluster;
6320 	ext4_grpblk_t clusters = new_entry->efd_count;
6321 	struct ext4_free_data *entry;
6322 	struct ext4_group_info *db = e4b->bd_info;
6323 	struct super_block *sb = e4b->bd_sb;
6324 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6325 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6326 	struct rb_node *parent = NULL, *new_node;
6327 
6328 	BUG_ON(!ext4_handle_valid(handle));
6329 	BUG_ON(e4b->bd_bitmap_page == NULL);
6330 	BUG_ON(e4b->bd_buddy_page == NULL);
6331 
6332 	new_node = &new_entry->efd_node;
6333 	cluster = new_entry->efd_start_cluster;
6334 
6335 	if (!*n) {
6336 		/* first free block exent. We need to
6337 		   protect buddy cache from being freed,
6338 		 * otherwise we'll refresh it from
6339 		 * on-disk bitmap and lose not-yet-available
6340 		 * blocks */
6341 		get_page(e4b->bd_buddy_page);
6342 		get_page(e4b->bd_bitmap_page);
6343 	}
6344 	while (*n) {
6345 		parent = *n;
6346 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6347 		if (cluster < entry->efd_start_cluster)
6348 			n = &(*n)->rb_left;
6349 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6350 			n = &(*n)->rb_right;
6351 		else {
6352 			ext4_grp_locked_error(sb, group, 0,
6353 				ext4_group_first_block_no(sb, group) +
6354 				EXT4_C2B(sbi, cluster),
6355 				"Block already on to-be-freed list");
6356 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6357 			return;
6358 		}
6359 	}
6360 
6361 	rb_link_node(new_node, parent, n);
6362 	rb_insert_color(new_node, &db->bb_free_root);
6363 
6364 	/* Now try to see the extent can be merged to left and right */
6365 	node = rb_prev(new_node);
6366 	if (node) {
6367 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6368 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6369 					    &(db->bb_free_root));
6370 	}
6371 
6372 	node = rb_next(new_node);
6373 	if (node) {
6374 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6375 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6376 					    &(db->bb_free_root));
6377 	}
6378 
6379 	spin_lock(&sbi->s_md_lock);
6380 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6381 	sbi->s_mb_free_pending += clusters;
6382 	spin_unlock(&sbi->s_md_lock);
6383 }
6384 
6385 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6386 					unsigned long count)
6387 {
6388 	struct buffer_head *bitmap_bh;
6389 	struct super_block *sb = inode->i_sb;
6390 	struct ext4_group_desc *gdp;
6391 	struct buffer_head *gdp_bh;
6392 	ext4_group_t group;
6393 	ext4_grpblk_t blkoff;
6394 	int already_freed = 0, err, i;
6395 
6396 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6397 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6398 	if (IS_ERR(bitmap_bh)) {
6399 		pr_warn("Failed to read block bitmap\n");
6400 		return;
6401 	}
6402 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6403 	if (!gdp)
6404 		goto err_out;
6405 
6406 	for (i = 0; i < count; i++) {
6407 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6408 			already_freed++;
6409 	}
6410 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6411 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6412 	if (err)
6413 		goto err_out;
6414 	ext4_free_group_clusters_set(
6415 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6416 		count - already_freed);
6417 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6418 	ext4_group_desc_csum_set(sb, group, gdp);
6419 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6420 	sync_dirty_buffer(bitmap_bh);
6421 	sync_dirty_buffer(gdp_bh);
6422 
6423 err_out:
6424 	brelse(bitmap_bh);
6425 }
6426 
6427 /**
6428  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6429  *			Used by ext4_free_blocks()
6430  * @handle:		handle for this transaction
6431  * @inode:		inode
6432  * @block:		starting physical block to be freed
6433  * @count:		number of blocks to be freed
6434  * @flags:		flags used by ext4_free_blocks
6435  */
6436 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6437 			       ext4_fsblk_t block, unsigned long count,
6438 			       int flags)
6439 {
6440 	struct buffer_head *bitmap_bh = NULL;
6441 	struct super_block *sb = inode->i_sb;
6442 	struct ext4_group_desc *gdp;
6443 	struct ext4_group_info *grp;
6444 	unsigned int overflow;
6445 	ext4_grpblk_t bit;
6446 	struct buffer_head *gd_bh;
6447 	ext4_group_t block_group;
6448 	struct ext4_sb_info *sbi;
6449 	struct ext4_buddy e4b;
6450 	unsigned int count_clusters;
6451 	int err = 0;
6452 	int ret;
6453 
6454 	sbi = EXT4_SB(sb);
6455 
6456 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6457 	    !ext4_inode_block_valid(inode, block, count)) {
6458 		ext4_error(sb, "Freeing blocks in system zone - "
6459 			   "Block = %llu, count = %lu", block, count);
6460 		/* err = 0. ext4_std_error should be a no op */
6461 		goto error_return;
6462 	}
6463 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6464 
6465 do_more:
6466 	overflow = 0;
6467 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6468 
6469 	grp = ext4_get_group_info(sb, block_group);
6470 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6471 		return;
6472 
6473 	/*
6474 	 * Check to see if we are freeing blocks across a group
6475 	 * boundary.
6476 	 */
6477 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6478 		overflow = EXT4_C2B(sbi, bit) + count -
6479 			EXT4_BLOCKS_PER_GROUP(sb);
6480 		count -= overflow;
6481 		/* The range changed so it's no longer validated */
6482 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6483 	}
6484 	count_clusters = EXT4_NUM_B2C(sbi, count);
6485 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6486 	if (IS_ERR(bitmap_bh)) {
6487 		err = PTR_ERR(bitmap_bh);
6488 		bitmap_bh = NULL;
6489 		goto error_return;
6490 	}
6491 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6492 	if (!gdp) {
6493 		err = -EIO;
6494 		goto error_return;
6495 	}
6496 
6497 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6498 	    !ext4_inode_block_valid(inode, block, count)) {
6499 		ext4_error(sb, "Freeing blocks in system zone - "
6500 			   "Block = %llu, count = %lu", block, count);
6501 		/* err = 0. ext4_std_error should be a no op */
6502 		goto error_return;
6503 	}
6504 
6505 	BUFFER_TRACE(bitmap_bh, "getting write access");
6506 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6507 					    EXT4_JTR_NONE);
6508 	if (err)
6509 		goto error_return;
6510 
6511 	/*
6512 	 * We are about to modify some metadata.  Call the journal APIs
6513 	 * to unshare ->b_data if a currently-committing transaction is
6514 	 * using it
6515 	 */
6516 	BUFFER_TRACE(gd_bh, "get_write_access");
6517 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6518 	if (err)
6519 		goto error_return;
6520 #ifdef AGGRESSIVE_CHECK
6521 	{
6522 		int i;
6523 		for (i = 0; i < count_clusters; i++)
6524 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6525 	}
6526 #endif
6527 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6528 
6529 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6530 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6531 				     GFP_NOFS|__GFP_NOFAIL);
6532 	if (err)
6533 		goto error_return;
6534 
6535 	/*
6536 	 * We need to make sure we don't reuse the freed block until after the
6537 	 * transaction is committed. We make an exception if the inode is to be
6538 	 * written in writeback mode since writeback mode has weak data
6539 	 * consistency guarantees.
6540 	 */
6541 	if (ext4_handle_valid(handle) &&
6542 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6543 	     !ext4_should_writeback_data(inode))) {
6544 		struct ext4_free_data *new_entry;
6545 		/*
6546 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6547 		 * to fail.
6548 		 */
6549 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6550 				GFP_NOFS|__GFP_NOFAIL);
6551 		new_entry->efd_start_cluster = bit;
6552 		new_entry->efd_group = block_group;
6553 		new_entry->efd_count = count_clusters;
6554 		new_entry->efd_tid = handle->h_transaction->t_tid;
6555 
6556 		ext4_lock_group(sb, block_group);
6557 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6558 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6559 	} else {
6560 		/* need to update group_info->bb_free and bitmap
6561 		 * with group lock held. generate_buddy look at
6562 		 * them with group lock_held
6563 		 */
6564 		if (test_opt(sb, DISCARD)) {
6565 			err = ext4_issue_discard(sb, block_group, bit,
6566 						 count_clusters, NULL);
6567 			if (err && err != -EOPNOTSUPP)
6568 				ext4_msg(sb, KERN_WARNING, "discard request in"
6569 					 " group:%u block:%d count:%lu failed"
6570 					 " with %d", block_group, bit, count,
6571 					 err);
6572 		} else
6573 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6574 
6575 		ext4_lock_group(sb, block_group);
6576 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6577 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6578 	}
6579 
6580 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6581 	ext4_free_group_clusters_set(sb, gdp, ret);
6582 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6583 	ext4_group_desc_csum_set(sb, block_group, gdp);
6584 	ext4_unlock_group(sb, block_group);
6585 
6586 	if (sbi->s_log_groups_per_flex) {
6587 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6588 		atomic64_add(count_clusters,
6589 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6590 						  flex_group)->free_clusters);
6591 	}
6592 
6593 	/*
6594 	 * on a bigalloc file system, defer the s_freeclusters_counter
6595 	 * update to the caller (ext4_remove_space and friends) so they
6596 	 * can determine if a cluster freed here should be rereserved
6597 	 */
6598 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6599 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6600 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6601 		percpu_counter_add(&sbi->s_freeclusters_counter,
6602 				   count_clusters);
6603 	}
6604 
6605 	ext4_mb_unload_buddy(&e4b);
6606 
6607 	/* We dirtied the bitmap block */
6608 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6609 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6610 
6611 	/* And the group descriptor block */
6612 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6613 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6614 	if (!err)
6615 		err = ret;
6616 
6617 	if (overflow && !err) {
6618 		block += count;
6619 		count = overflow;
6620 		put_bh(bitmap_bh);
6621 		/* The range changed so it's no longer validated */
6622 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6623 		goto do_more;
6624 	}
6625 error_return:
6626 	brelse(bitmap_bh);
6627 	ext4_std_error(sb, err);
6628 }
6629 
6630 /**
6631  * ext4_free_blocks() -- Free given blocks and update quota
6632  * @handle:		handle for this transaction
6633  * @inode:		inode
6634  * @bh:			optional buffer of the block to be freed
6635  * @block:		starting physical block to be freed
6636  * @count:		number of blocks to be freed
6637  * @flags:		flags used by ext4_free_blocks
6638  */
6639 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6640 		      struct buffer_head *bh, ext4_fsblk_t block,
6641 		      unsigned long count, int flags)
6642 {
6643 	struct super_block *sb = inode->i_sb;
6644 	unsigned int overflow;
6645 	struct ext4_sb_info *sbi;
6646 
6647 	sbi = EXT4_SB(sb);
6648 
6649 	if (bh) {
6650 		if (block)
6651 			BUG_ON(block != bh->b_blocknr);
6652 		else
6653 			block = bh->b_blocknr;
6654 	}
6655 
6656 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6657 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6658 		return;
6659 	}
6660 
6661 	might_sleep();
6662 
6663 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6664 	    !ext4_inode_block_valid(inode, block, count)) {
6665 		ext4_error(sb, "Freeing blocks not in datazone - "
6666 			   "block = %llu, count = %lu", block, count);
6667 		return;
6668 	}
6669 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6670 
6671 	ext4_debug("freeing block %llu\n", block);
6672 	trace_ext4_free_blocks(inode, block, count, flags);
6673 
6674 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6675 		BUG_ON(count > 1);
6676 
6677 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6678 			    inode, bh, block);
6679 	}
6680 
6681 	/*
6682 	 * If the extent to be freed does not begin on a cluster
6683 	 * boundary, we need to deal with partial clusters at the
6684 	 * beginning and end of the extent.  Normally we will free
6685 	 * blocks at the beginning or the end unless we are explicitly
6686 	 * requested to avoid doing so.
6687 	 */
6688 	overflow = EXT4_PBLK_COFF(sbi, block);
6689 	if (overflow) {
6690 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6691 			overflow = sbi->s_cluster_ratio - overflow;
6692 			block += overflow;
6693 			if (count > overflow)
6694 				count -= overflow;
6695 			else
6696 				return;
6697 		} else {
6698 			block -= overflow;
6699 			count += overflow;
6700 		}
6701 		/* The range changed so it's no longer validated */
6702 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6703 	}
6704 	overflow = EXT4_LBLK_COFF(sbi, count);
6705 	if (overflow) {
6706 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6707 			if (count > overflow)
6708 				count -= overflow;
6709 			else
6710 				return;
6711 		} else
6712 			count += sbi->s_cluster_ratio - overflow;
6713 		/* The range changed so it's no longer validated */
6714 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6715 	}
6716 
6717 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6718 		int i;
6719 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6720 
6721 		for (i = 0; i < count; i++) {
6722 			cond_resched();
6723 			if (is_metadata)
6724 				bh = sb_find_get_block(inode->i_sb, block + i);
6725 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6726 		}
6727 	}
6728 
6729 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6730 }
6731 
6732 /**
6733  * ext4_group_add_blocks() -- Add given blocks to an existing group
6734  * @handle:			handle to this transaction
6735  * @sb:				super block
6736  * @block:			start physical block to add to the block group
6737  * @count:			number of blocks to free
6738  *
6739  * This marks the blocks as free in the bitmap and buddy.
6740  */
6741 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6742 			 ext4_fsblk_t block, unsigned long count)
6743 {
6744 	struct buffer_head *bitmap_bh = NULL;
6745 	struct buffer_head *gd_bh;
6746 	ext4_group_t block_group;
6747 	ext4_grpblk_t bit;
6748 	unsigned int i;
6749 	struct ext4_group_desc *desc;
6750 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6751 	struct ext4_buddy e4b;
6752 	int err = 0, ret, free_clusters_count;
6753 	ext4_grpblk_t clusters_freed;
6754 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6755 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6756 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6757 
6758 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6759 
6760 	if (count == 0)
6761 		return 0;
6762 
6763 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6764 	/*
6765 	 * Check to see if we are freeing blocks across a group
6766 	 * boundary.
6767 	 */
6768 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6769 		ext4_warning(sb, "too many blocks added to group %u",
6770 			     block_group);
6771 		err = -EINVAL;
6772 		goto error_return;
6773 	}
6774 
6775 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6776 	if (IS_ERR(bitmap_bh)) {
6777 		err = PTR_ERR(bitmap_bh);
6778 		bitmap_bh = NULL;
6779 		goto error_return;
6780 	}
6781 
6782 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6783 	if (!desc) {
6784 		err = -EIO;
6785 		goto error_return;
6786 	}
6787 
6788 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6789 		ext4_error(sb, "Adding blocks in system zones - "
6790 			   "Block = %llu, count = %lu",
6791 			   block, count);
6792 		err = -EINVAL;
6793 		goto error_return;
6794 	}
6795 
6796 	BUFFER_TRACE(bitmap_bh, "getting write access");
6797 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6798 					    EXT4_JTR_NONE);
6799 	if (err)
6800 		goto error_return;
6801 
6802 	/*
6803 	 * We are about to modify some metadata.  Call the journal APIs
6804 	 * to unshare ->b_data if a currently-committing transaction is
6805 	 * using it
6806 	 */
6807 	BUFFER_TRACE(gd_bh, "get_write_access");
6808 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6809 	if (err)
6810 		goto error_return;
6811 
6812 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6813 		BUFFER_TRACE(bitmap_bh, "clear bit");
6814 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6815 			ext4_error(sb, "bit already cleared for block %llu",
6816 				   (ext4_fsblk_t)(block + i));
6817 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6818 		} else {
6819 			clusters_freed++;
6820 		}
6821 	}
6822 
6823 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6824 	if (err)
6825 		goto error_return;
6826 
6827 	/*
6828 	 * need to update group_info->bb_free and bitmap
6829 	 * with group lock held. generate_buddy look at
6830 	 * them with group lock_held
6831 	 */
6832 	ext4_lock_group(sb, block_group);
6833 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6834 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6835 	free_clusters_count = clusters_freed +
6836 		ext4_free_group_clusters(sb, desc);
6837 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6838 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6839 	ext4_group_desc_csum_set(sb, block_group, desc);
6840 	ext4_unlock_group(sb, block_group);
6841 	percpu_counter_add(&sbi->s_freeclusters_counter,
6842 			   clusters_freed);
6843 
6844 	if (sbi->s_log_groups_per_flex) {
6845 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6846 		atomic64_add(clusters_freed,
6847 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6848 						  flex_group)->free_clusters);
6849 	}
6850 
6851 	ext4_mb_unload_buddy(&e4b);
6852 
6853 	/* We dirtied the bitmap block */
6854 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6855 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6856 
6857 	/* And the group descriptor block */
6858 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6859 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6860 	if (!err)
6861 		err = ret;
6862 
6863 error_return:
6864 	brelse(bitmap_bh);
6865 	ext4_std_error(sb, err);
6866 	return err;
6867 }
6868 
6869 /**
6870  * ext4_trim_extent -- function to TRIM one single free extent in the group
6871  * @sb:		super block for the file system
6872  * @start:	starting block of the free extent in the alloc. group
6873  * @count:	number of blocks to TRIM
6874  * @e4b:	ext4 buddy for the group
6875  *
6876  * Trim "count" blocks starting at "start" in the "group". To assure that no
6877  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6878  * be called with under the group lock.
6879  */
6880 static int ext4_trim_extent(struct super_block *sb,
6881 		int start, int count, struct ext4_buddy *e4b)
6882 __releases(bitlock)
6883 __acquires(bitlock)
6884 {
6885 	struct ext4_free_extent ex;
6886 	ext4_group_t group = e4b->bd_group;
6887 	int ret = 0;
6888 
6889 	trace_ext4_trim_extent(sb, group, start, count);
6890 
6891 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6892 
6893 	ex.fe_start = start;
6894 	ex.fe_group = group;
6895 	ex.fe_len = count;
6896 
6897 	/*
6898 	 * Mark blocks used, so no one can reuse them while
6899 	 * being trimmed.
6900 	 */
6901 	mb_mark_used(e4b, &ex);
6902 	ext4_unlock_group(sb, group);
6903 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6904 	ext4_lock_group(sb, group);
6905 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6906 	return ret;
6907 }
6908 
6909 static int ext4_try_to_trim_range(struct super_block *sb,
6910 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6911 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6912 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6913 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6914 {
6915 	ext4_grpblk_t next, count, free_count;
6916 	void *bitmap;
6917 
6918 	bitmap = e4b->bd_bitmap;
6919 	start = max(e4b->bd_info->bb_first_free, start);
6920 	count = 0;
6921 	free_count = 0;
6922 
6923 	while (start <= max) {
6924 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6925 		if (start > max)
6926 			break;
6927 		next = mb_find_next_bit(bitmap, max + 1, start);
6928 
6929 		if ((next - start) >= minblocks) {
6930 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6931 
6932 			if (ret && ret != -EOPNOTSUPP)
6933 				break;
6934 			count += next - start;
6935 		}
6936 		free_count += next - start;
6937 		start = next + 1;
6938 
6939 		if (fatal_signal_pending(current)) {
6940 			count = -ERESTARTSYS;
6941 			break;
6942 		}
6943 
6944 		if (need_resched()) {
6945 			ext4_unlock_group(sb, e4b->bd_group);
6946 			cond_resched();
6947 			ext4_lock_group(sb, e4b->bd_group);
6948 		}
6949 
6950 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6951 			break;
6952 	}
6953 
6954 	return count;
6955 }
6956 
6957 /**
6958  * ext4_trim_all_free -- function to trim all free space in alloc. group
6959  * @sb:			super block for file system
6960  * @group:		group to be trimmed
6961  * @start:		first group block to examine
6962  * @max:		last group block to examine
6963  * @minblocks:		minimum extent block count
6964  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6965  *
6966  * ext4_trim_all_free walks through group's block bitmap searching for free
6967  * extents. When the free extent is found, mark it as used in group buddy
6968  * bitmap. Then issue a TRIM command on this extent and free the extent in
6969  * the group buddy bitmap.
6970  */
6971 static ext4_grpblk_t
6972 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6973 		   ext4_grpblk_t start, ext4_grpblk_t max,
6974 		   ext4_grpblk_t minblocks, bool set_trimmed)
6975 {
6976 	struct ext4_buddy e4b;
6977 	int ret;
6978 
6979 	trace_ext4_trim_all_free(sb, group, start, max);
6980 
6981 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6982 	if (ret) {
6983 		ext4_warning(sb, "Error %d loading buddy information for %u",
6984 			     ret, group);
6985 		return ret;
6986 	}
6987 
6988 	ext4_lock_group(sb, group);
6989 
6990 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6991 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6992 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6993 		if (ret >= 0 && set_trimmed)
6994 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6995 	} else {
6996 		ret = 0;
6997 	}
6998 
6999 	ext4_unlock_group(sb, group);
7000 	ext4_mb_unload_buddy(&e4b);
7001 
7002 	ext4_debug("trimmed %d blocks in the group %d\n",
7003 		ret, group);
7004 
7005 	return ret;
7006 }
7007 
7008 /**
7009  * ext4_trim_fs() -- trim ioctl handle function
7010  * @sb:			superblock for filesystem
7011  * @range:		fstrim_range structure
7012  *
7013  * start:	First Byte to trim
7014  * len:		number of Bytes to trim from start
7015  * minlen:	minimum extent length in Bytes
7016  * ext4_trim_fs goes through all allocation groups containing Bytes from
7017  * start to start+len. For each such a group ext4_trim_all_free function
7018  * is invoked to trim all free space.
7019  */
7020 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7021 {
7022 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7023 	struct ext4_group_info *grp;
7024 	ext4_group_t group, first_group, last_group;
7025 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7026 	uint64_t start, end, minlen, trimmed = 0;
7027 	ext4_fsblk_t first_data_blk =
7028 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7029 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7030 	bool whole_group, eof = false;
7031 	int ret = 0;
7032 
7033 	start = range->start >> sb->s_blocksize_bits;
7034 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
7035 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7036 			      range->minlen >> sb->s_blocksize_bits);
7037 
7038 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7039 	    start >= max_blks ||
7040 	    range->len < sb->s_blocksize)
7041 		return -EINVAL;
7042 	/* No point to try to trim less than discard granularity */
7043 	if (range->minlen < discard_granularity) {
7044 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7045 				discard_granularity >> sb->s_blocksize_bits);
7046 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7047 			goto out;
7048 	}
7049 	if (end >= max_blks - 1) {
7050 		end = max_blks - 1;
7051 		eof = true;
7052 	}
7053 	if (end <= first_data_blk)
7054 		goto out;
7055 	if (start < first_data_blk)
7056 		start = first_data_blk;
7057 
7058 	/* Determine first and last group to examine based on start and end */
7059 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7060 				     &first_group, &first_cluster);
7061 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7062 				     &last_group, &last_cluster);
7063 
7064 	/* end now represents the last cluster to discard in this group */
7065 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7066 	whole_group = true;
7067 
7068 	for (group = first_group; group <= last_group; group++) {
7069 		grp = ext4_get_group_info(sb, group);
7070 		if (!grp)
7071 			continue;
7072 		/* We only do this if the grp has never been initialized */
7073 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7074 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7075 			if (ret)
7076 				break;
7077 		}
7078 
7079 		/*
7080 		 * For all the groups except the last one, last cluster will
7081 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7082 		 * change it for the last group, note that last_cluster is
7083 		 * already computed earlier by ext4_get_group_no_and_offset()
7084 		 */
7085 		if (group == last_group) {
7086 			end = last_cluster;
7087 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7088 		}
7089 		if (grp->bb_free >= minlen) {
7090 			cnt = ext4_trim_all_free(sb, group, first_cluster,
7091 						 end, minlen, whole_group);
7092 			if (cnt < 0) {
7093 				ret = cnt;
7094 				break;
7095 			}
7096 			trimmed += cnt;
7097 		}
7098 
7099 		/*
7100 		 * For every group except the first one, we are sure
7101 		 * that the first cluster to discard will be cluster #0.
7102 		 */
7103 		first_cluster = 0;
7104 	}
7105 
7106 	if (!ret)
7107 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
7108 
7109 out:
7110 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7111 	return ret;
7112 }
7113 
7114 /* Iterate all the free extents in the group. */
7115 int
7116 ext4_mballoc_query_range(
7117 	struct super_block		*sb,
7118 	ext4_group_t			group,
7119 	ext4_grpblk_t			start,
7120 	ext4_grpblk_t			end,
7121 	ext4_mballoc_query_range_fn	formatter,
7122 	void				*priv)
7123 {
7124 	void				*bitmap;
7125 	ext4_grpblk_t			next;
7126 	struct ext4_buddy		e4b;
7127 	int				error;
7128 
7129 	error = ext4_mb_load_buddy(sb, group, &e4b);
7130 	if (error)
7131 		return error;
7132 	bitmap = e4b.bd_bitmap;
7133 
7134 	ext4_lock_group(sb, group);
7135 
7136 	start = max(e4b.bd_info->bb_first_free, start);
7137 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7138 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7139 
7140 	while (start <= end) {
7141 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7142 		if (start > end)
7143 			break;
7144 		next = mb_find_next_bit(bitmap, end + 1, start);
7145 
7146 		ext4_unlock_group(sb, group);
7147 		error = formatter(sb, group, start, next - start, priv);
7148 		if (error)
7149 			goto out_unload;
7150 		ext4_lock_group(sb, group);
7151 
7152 		start = next + 1;
7153 	}
7154 
7155 	ext4_unlock_group(sb, group);
7156 out_unload:
7157 	ext4_mb_unload_buddy(&e4b);
7158 
7159 	return error;
7160 }
7161