xref: /linux/fs/ext4/mballoc.c (revision cc1e6315e83db0e517dd9279050b88adc83a7eba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 #ifdef CONFIG_EXT4_DEBUG
22 ushort ext4_mballoc_debug __read_mostly;
23 
24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
26 #endif
27 
28 /*
29  * MUSTDO:
30  *   - test ext4_ext_search_left() and ext4_ext_search_right()
31  *   - search for metadata in few groups
32  *
33  * TODO v4:
34  *   - normalization should take into account whether file is still open
35  *   - discard preallocations if no free space left (policy?)
36  *   - don't normalize tails
37  *   - quota
38  *   - reservation for superuser
39  *
40  * TODO v3:
41  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
42  *   - track min/max extents in each group for better group selection
43  *   - mb_mark_used() may allocate chunk right after splitting buddy
44  *   - tree of groups sorted by number of free blocks
45  *   - error handling
46  */
47 
48 /*
49  * The allocation request involve request for multiple number of blocks
50  * near to the goal(block) value specified.
51  *
52  * During initialization phase of the allocator we decide to use the
53  * group preallocation or inode preallocation depending on the size of
54  * the file. The size of the file could be the resulting file size we
55  * would have after allocation, or the current file size, which ever
56  * is larger. If the size is less than sbi->s_mb_stream_request we
57  * select to use the group preallocation. The default value of
58  * s_mb_stream_request is 16 blocks. This can also be tuned via
59  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60  * terms of number of blocks.
61  *
62  * The main motivation for having small file use group preallocation is to
63  * ensure that we have small files closer together on the disk.
64  *
65  * First stage the allocator looks at the inode prealloc list,
66  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67  * spaces for this particular inode. The inode prealloc space is
68  * represented as:
69  *
70  * pa_lstart -> the logical start block for this prealloc space
71  * pa_pstart -> the physical start block for this prealloc space
72  * pa_len    -> length for this prealloc space (in clusters)
73  * pa_free   ->  free space available in this prealloc space (in clusters)
74  *
75  * The inode preallocation space is used looking at the _logical_ start
76  * block. If only the logical file block falls within the range of prealloc
77  * space we will consume the particular prealloc space. This makes sure that
78  * we have contiguous physical blocks representing the file blocks
79  *
80  * The important thing to be noted in case of inode prealloc space is that
81  * we don't modify the values associated to inode prealloc space except
82  * pa_free.
83  *
84  * If we are not able to find blocks in the inode prealloc space and if we
85  * have the group allocation flag set then we look at the locality group
86  * prealloc space. These are per CPU prealloc list represented as
87  *
88  * ext4_sb_info.s_locality_groups[smp_processor_id()]
89  *
90  * The reason for having a per cpu locality group is to reduce the contention
91  * between CPUs. It is possible to get scheduled at this point.
92  *
93  * The locality group prealloc space is used looking at whether we have
94  * enough free space (pa_free) within the prealloc space.
95  *
96  * If we can't allocate blocks via inode prealloc or/and locality group
97  * prealloc then we look at the buddy cache. The buddy cache is represented
98  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99  * mapped to the buddy and bitmap information regarding different
100  * groups. The buddy information is attached to buddy cache inode so that
101  * we can access them through the page cache. The information regarding
102  * each group is loaded via ext4_mb_load_buddy.  The information involve
103  * block bitmap and buddy information. The information are stored in the
104  * inode as:
105  *
106  *  {                        page                        }
107  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
108  *
109  *
110  * one block each for bitmap and buddy information.  So for each group we
111  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
112  * blocksize) blocks.  So it can have information regarding groups_per_page
113  * which is blocks_per_page/2
114  *
115  * The buddy cache inode is not stored on disk. The inode is thrown
116  * away when the filesystem is unmounted.
117  *
118  * We look for count number of blocks in the buddy cache. If we were able
119  * to locate that many free blocks we return with additional information
120  * regarding rest of the contiguous physical block available
121  *
122  * Before allocating blocks via buddy cache we normalize the request
123  * blocks. This ensure we ask for more blocks that we needed. The extra
124  * blocks that we get after allocation is added to the respective prealloc
125  * list. In case of inode preallocation we follow a list of heuristics
126  * based on file size. This can be found in ext4_mb_normalize_request. If
127  * we are doing a group prealloc we try to normalize the request to
128  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
129  * dependent on the cluster size; for non-bigalloc file systems, it is
130  * 512 blocks. This can be tuned via
131  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132  * terms of number of blocks. If we have mounted the file system with -O
133  * stripe=<value> option the group prealloc request is normalized to the
134  * the smallest multiple of the stripe value (sbi->s_stripe) which is
135  * greater than the default mb_group_prealloc.
136  *
137  * The regular allocator (using the buddy cache) supports a few tunables.
138  *
139  * /sys/fs/ext4/<partition>/mb_min_to_scan
140  * /sys/fs/ext4/<partition>/mb_max_to_scan
141  * /sys/fs/ext4/<partition>/mb_order2_req
142  *
143  * The regular allocator uses buddy scan only if the request len is power of
144  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145  * value of s_mb_order2_reqs can be tuned via
146  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
147  * stripe size (sbi->s_stripe), we try to search for contiguous block in
148  * stripe size. This should result in better allocation on RAID setups. If
149  * not, we search in the specific group using bitmap for best extents. The
150  * tunable min_to_scan and max_to_scan control the behaviour here.
151  * min_to_scan indicate how long the mballoc __must__ look for a best
152  * extent and max_to_scan indicates how long the mballoc __can__ look for a
153  * best extent in the found extents. Searching for the blocks starts with
154  * the group specified as the goal value in allocation context via
155  * ac_g_ex. Each group is first checked based on the criteria whether it
156  * can be used for allocation. ext4_mb_good_group explains how the groups are
157  * checked.
158  *
159  * Both the prealloc space are getting populated as above. So for the first
160  * request we will hit the buddy cache which will result in this prealloc
161  * space getting filled. The prealloc space is then later used for the
162  * subsequent request.
163  */
164 
165 /*
166  * mballoc operates on the following data:
167  *  - on-disk bitmap
168  *  - in-core buddy (actually includes buddy and bitmap)
169  *  - preallocation descriptors (PAs)
170  *
171  * there are two types of preallocations:
172  *  - inode
173  *    assiged to specific inode and can be used for this inode only.
174  *    it describes part of inode's space preallocated to specific
175  *    physical blocks. any block from that preallocated can be used
176  *    independent. the descriptor just tracks number of blocks left
177  *    unused. so, before taking some block from descriptor, one must
178  *    make sure corresponded logical block isn't allocated yet. this
179  *    also means that freeing any block within descriptor's range
180  *    must discard all preallocated blocks.
181  *  - locality group
182  *    assigned to specific locality group which does not translate to
183  *    permanent set of inodes: inode can join and leave group. space
184  *    from this type of preallocation can be used for any inode. thus
185  *    it's consumed from the beginning to the end.
186  *
187  * relation between them can be expressed as:
188  *    in-core buddy = on-disk bitmap + preallocation descriptors
189  *
190  * this mean blocks mballoc considers used are:
191  *  - allocated blocks (persistent)
192  *  - preallocated blocks (non-persistent)
193  *
194  * consistency in mballoc world means that at any time a block is either
195  * free or used in ALL structures. notice: "any time" should not be read
196  * literally -- time is discrete and delimited by locks.
197  *
198  *  to keep it simple, we don't use block numbers, instead we count number of
199  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
200  *
201  * all operations can be expressed as:
202  *  - init buddy:			buddy = on-disk + PAs
203  *  - new PA:				buddy += N; PA = N
204  *  - use inode PA:			on-disk += N; PA -= N
205  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
206  *  - use locality group PA		on-disk += N; PA -= N
207  *  - discard locality group PA		buddy -= PA; PA = 0
208  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209  *        is used in real operation because we can't know actual used
210  *        bits from PA, only from on-disk bitmap
211  *
212  * if we follow this strict logic, then all operations above should be atomic.
213  * given some of them can block, we'd have to use something like semaphores
214  * killing performance on high-end SMP hardware. let's try to relax it using
215  * the following knowledge:
216  *  1) if buddy is referenced, it's already initialized
217  *  2) while block is used in buddy and the buddy is referenced,
218  *     nobody can re-allocate that block
219  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
221  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222  *     block
223  *
224  * so, now we're building a concurrency table:
225  *  - init buddy vs.
226  *    - new PA
227  *      blocks for PA are allocated in the buddy, buddy must be referenced
228  *      until PA is linked to allocation group to avoid concurrent buddy init
229  *    - use inode PA
230  *      we need to make sure that either on-disk bitmap or PA has uptodate data
231  *      given (3) we care that PA-=N operation doesn't interfere with init
232  *    - discard inode PA
233  *      the simplest way would be to have buddy initialized by the discard
234  *    - use locality group PA
235  *      again PA-=N must be serialized with init
236  *    - discard locality group PA
237  *      the simplest way would be to have buddy initialized by the discard
238  *  - new PA vs.
239  *    - use inode PA
240  *      i_data_sem serializes them
241  *    - discard inode PA
242  *      discard process must wait until PA isn't used by another process
243  *    - use locality group PA
244  *      some mutex should serialize them
245  *    - discard locality group PA
246  *      discard process must wait until PA isn't used by another process
247  *  - use inode PA
248  *    - use inode PA
249  *      i_data_sem or another mutex should serializes them
250  *    - discard inode PA
251  *      discard process must wait until PA isn't used by another process
252  *    - use locality group PA
253  *      nothing wrong here -- they're different PAs covering different blocks
254  *    - discard locality group PA
255  *      discard process must wait until PA isn't used by another process
256  *
257  * now we're ready to make few consequences:
258  *  - PA is referenced and while it is no discard is possible
259  *  - PA is referenced until block isn't marked in on-disk bitmap
260  *  - PA changes only after on-disk bitmap
261  *  - discard must not compete with init. either init is done before
262  *    any discard or they're serialized somehow
263  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
264  *
265  * a special case when we've used PA to emptiness. no need to modify buddy
266  * in this case, but we should care about concurrent init
267  *
268  */
269 
270  /*
271  * Logic in few words:
272  *
273  *  - allocation:
274  *    load group
275  *    find blocks
276  *    mark bits in on-disk bitmap
277  *    release group
278  *
279  *  - use preallocation:
280  *    find proper PA (per-inode or group)
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *    release PA
285  *
286  *  - free:
287  *    load group
288  *    mark bits in on-disk bitmap
289  *    release group
290  *
291  *  - discard preallocations in group:
292  *    mark PAs deleted
293  *    move them onto local list
294  *    load on-disk bitmap
295  *    load group
296  *    remove PA from object (inode or locality group)
297  *    mark free blocks in-core
298  *
299  *  - discard inode's preallocations:
300  */
301 
302 /*
303  * Locking rules
304  *
305  * Locks:
306  *  - bitlock on a group	(group)
307  *  - object (inode/locality)	(object)
308  *  - per-pa lock		(pa)
309  *
310  * Paths:
311  *  - new pa
312  *    object
313  *    group
314  *
315  *  - find and use pa:
316  *    pa
317  *
318  *  - release consumed pa:
319  *    pa
320  *    group
321  *    object
322  *
323  *  - generate in-core bitmap:
324  *    group
325  *        pa
326  *
327  *  - discard all for given object (inode, locality group):
328  *    object
329  *        pa
330  *    group
331  *
332  *  - discard all for given group:
333  *    group
334  *        pa
335  *    group
336  *        object
337  *
338  */
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_data_cachep;
342 
343 /* We create slab caches for groupinfo data structures based on the
344  * superblock block size.  There will be one per mounted filesystem for
345  * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
348 
349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
353 };
354 
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 					ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 						ext4_group_t group);
359 
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
361 {
362 #if BITS_PER_LONG == 64
363 	*bit += ((unsigned long) addr & 7UL) << 3;
364 	addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 	*bit += ((unsigned long) addr & 3UL) << 3;
367 	addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 	return addr;
372 }
373 
374 static inline int mb_test_bit(int bit, void *addr)
375 {
376 	/*
377 	 * ext4_test_bit on architecture like powerpc
378 	 * needs unsigned long aligned address
379 	 */
380 	addr = mb_correct_addr_and_bit(&bit, addr);
381 	return ext4_test_bit(bit, addr);
382 }
383 
384 static inline void mb_set_bit(int bit, void *addr)
385 {
386 	addr = mb_correct_addr_and_bit(&bit, addr);
387 	ext4_set_bit(bit, addr);
388 }
389 
390 static inline void mb_clear_bit(int bit, void *addr)
391 {
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	ext4_clear_bit(bit, addr);
394 }
395 
396 static inline int mb_test_and_clear_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	return ext4_test_and_clear_bit(bit, addr);
400 }
401 
402 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
403 {
404 	int fix = 0, ret, tmpmax;
405 	addr = mb_correct_addr_and_bit(&fix, addr);
406 	tmpmax = max + fix;
407 	start += fix;
408 
409 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
410 	if (ret > max)
411 		return max;
412 	return ret;
413 }
414 
415 static inline int mb_find_next_bit(void *addr, int max, int start)
416 {
417 	int fix = 0, ret, tmpmax;
418 	addr = mb_correct_addr_and_bit(&fix, addr);
419 	tmpmax = max + fix;
420 	start += fix;
421 
422 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
423 	if (ret > max)
424 		return max;
425 	return ret;
426 }
427 
428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
429 {
430 	char *bb;
431 
432 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
433 	BUG_ON(max == NULL);
434 
435 	if (order > e4b->bd_blkbits + 1) {
436 		*max = 0;
437 		return NULL;
438 	}
439 
440 	/* at order 0 we see each particular block */
441 	if (order == 0) {
442 		*max = 1 << (e4b->bd_blkbits + 3);
443 		return e4b->bd_bitmap;
444 	}
445 
446 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
447 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
448 
449 	return bb;
450 }
451 
452 #ifdef DOUBLE_CHECK
453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
454 			   int first, int count)
455 {
456 	int i;
457 	struct super_block *sb = e4b->bd_sb;
458 
459 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
460 		return;
461 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
462 	for (i = 0; i < count; i++) {
463 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
464 			ext4_fsblk_t blocknr;
465 
466 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
467 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
468 			ext4_grp_locked_error(sb, e4b->bd_group,
469 					      inode ? inode->i_ino : 0,
470 					      blocknr,
471 					      "freeing block already freed "
472 					      "(bit %u)",
473 					      first + i);
474 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
475 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
476 		}
477 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
478 	}
479 }
480 
481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
482 {
483 	int i;
484 
485 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
486 		return;
487 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
488 	for (i = 0; i < count; i++) {
489 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
490 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
491 	}
492 }
493 
494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
495 {
496 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
497 		unsigned char *b1, *b2;
498 		int i;
499 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
500 		b2 = (unsigned char *) bitmap;
501 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
502 			if (b1[i] != b2[i]) {
503 				ext4_msg(e4b->bd_sb, KERN_ERR,
504 					 "corruption in group %u "
505 					 "at byte %u(%u): %x in copy != %x "
506 					 "on disk/prealloc",
507 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
508 				BUG();
509 			}
510 		}
511 	}
512 }
513 
514 #else
515 static inline void mb_free_blocks_double(struct inode *inode,
516 				struct ext4_buddy *e4b, int first, int count)
517 {
518 	return;
519 }
520 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
521 						int first, int count)
522 {
523 	return;
524 }
525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
526 {
527 	return;
528 }
529 #endif
530 
531 #ifdef AGGRESSIVE_CHECK
532 
533 #define MB_CHECK_ASSERT(assert)						\
534 do {									\
535 	if (!(assert)) {						\
536 		printk(KERN_EMERG					\
537 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
538 			function, file, line, # assert);		\
539 		BUG();							\
540 	}								\
541 } while (0)
542 
543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
544 				const char *function, int line)
545 {
546 	struct super_block *sb = e4b->bd_sb;
547 	int order = e4b->bd_blkbits + 1;
548 	int max;
549 	int max2;
550 	int i;
551 	int j;
552 	int k;
553 	int count;
554 	struct ext4_group_info *grp;
555 	int fragments = 0;
556 	int fstart;
557 	struct list_head *cur;
558 	void *buddy;
559 	void *buddy2;
560 
561 	{
562 		static int mb_check_counter;
563 		if (mb_check_counter++ % 100 != 0)
564 			return 0;
565 	}
566 
567 	while (order > 1) {
568 		buddy = mb_find_buddy(e4b, order, &max);
569 		MB_CHECK_ASSERT(buddy);
570 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
571 		MB_CHECK_ASSERT(buddy2);
572 		MB_CHECK_ASSERT(buddy != buddy2);
573 		MB_CHECK_ASSERT(max * 2 == max2);
574 
575 		count = 0;
576 		for (i = 0; i < max; i++) {
577 
578 			if (mb_test_bit(i, buddy)) {
579 				/* only single bit in buddy2 may be 1 */
580 				if (!mb_test_bit(i << 1, buddy2)) {
581 					MB_CHECK_ASSERT(
582 						mb_test_bit((i<<1)+1, buddy2));
583 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
584 					MB_CHECK_ASSERT(
585 						mb_test_bit(i << 1, buddy2));
586 				}
587 				continue;
588 			}
589 
590 			/* both bits in buddy2 must be 1 */
591 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
592 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
593 
594 			for (j = 0; j < (1 << order); j++) {
595 				k = (i * (1 << order)) + j;
596 				MB_CHECK_ASSERT(
597 					!mb_test_bit(k, e4b->bd_bitmap));
598 			}
599 			count++;
600 		}
601 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
602 		order--;
603 	}
604 
605 	fstart = -1;
606 	buddy = mb_find_buddy(e4b, 0, &max);
607 	for (i = 0; i < max; i++) {
608 		if (!mb_test_bit(i, buddy)) {
609 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
610 			if (fstart == -1) {
611 				fragments++;
612 				fstart = i;
613 			}
614 			continue;
615 		}
616 		fstart = -1;
617 		/* check used bits only */
618 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
619 			buddy2 = mb_find_buddy(e4b, j, &max2);
620 			k = i >> j;
621 			MB_CHECK_ASSERT(k < max2);
622 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
623 		}
624 	}
625 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
626 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
627 
628 	grp = ext4_get_group_info(sb, e4b->bd_group);
629 	list_for_each(cur, &grp->bb_prealloc_list) {
630 		ext4_group_t groupnr;
631 		struct ext4_prealloc_space *pa;
632 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
633 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
634 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
635 		for (i = 0; i < pa->pa_len; i++)
636 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
637 	}
638 	return 0;
639 }
640 #undef MB_CHECK_ASSERT
641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
642 					__FILE__, __func__, __LINE__)
643 #else
644 #define mb_check_buddy(e4b)
645 #endif
646 
647 /*
648  * Divide blocks started from @first with length @len into
649  * smaller chunks with power of 2 blocks.
650  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
651  * then increase bb_counters[] for corresponded chunk size.
652  */
653 static void ext4_mb_mark_free_simple(struct super_block *sb,
654 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
655 					struct ext4_group_info *grp)
656 {
657 	struct ext4_sb_info *sbi = EXT4_SB(sb);
658 	ext4_grpblk_t min;
659 	ext4_grpblk_t max;
660 	ext4_grpblk_t chunk;
661 	unsigned int border;
662 
663 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
664 
665 	border = 2 << sb->s_blocksize_bits;
666 
667 	while (len > 0) {
668 		/* find how many blocks can be covered since this position */
669 		max = ffs(first | border) - 1;
670 
671 		/* find how many blocks of power 2 we need to mark */
672 		min = fls(len) - 1;
673 
674 		if (max < min)
675 			min = max;
676 		chunk = 1 << min;
677 
678 		/* mark multiblock chunks only */
679 		grp->bb_counters[min]++;
680 		if (min > 0)
681 			mb_clear_bit(first >> min,
682 				     buddy + sbi->s_mb_offsets[min]);
683 
684 		len -= chunk;
685 		first += chunk;
686 	}
687 }
688 
689 /*
690  * Cache the order of the largest free extent we have available in this block
691  * group.
692  */
693 static void
694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
695 {
696 	int i;
697 	int bits;
698 
699 	grp->bb_largest_free_order = -1; /* uninit */
700 
701 	bits = sb->s_blocksize_bits + 1;
702 	for (i = bits; i >= 0; i--) {
703 		if (grp->bb_counters[i] > 0) {
704 			grp->bb_largest_free_order = i;
705 			break;
706 		}
707 	}
708 }
709 
710 static noinline_for_stack
711 void ext4_mb_generate_buddy(struct super_block *sb,
712 				void *buddy, void *bitmap, ext4_group_t group)
713 {
714 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
715 	struct ext4_sb_info *sbi = EXT4_SB(sb);
716 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
717 	ext4_grpblk_t i = 0;
718 	ext4_grpblk_t first;
719 	ext4_grpblk_t len;
720 	unsigned free = 0;
721 	unsigned fragments = 0;
722 	unsigned long long period = get_cycles();
723 
724 	/* initialize buddy from bitmap which is aggregation
725 	 * of on-disk bitmap and preallocations */
726 	i = mb_find_next_zero_bit(bitmap, max, 0);
727 	grp->bb_first_free = i;
728 	while (i < max) {
729 		fragments++;
730 		first = i;
731 		i = mb_find_next_bit(bitmap, max, i);
732 		len = i - first;
733 		free += len;
734 		if (len > 1)
735 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
736 		else
737 			grp->bb_counters[0]++;
738 		if (i < max)
739 			i = mb_find_next_zero_bit(bitmap, max, i);
740 	}
741 	grp->bb_fragments = fragments;
742 
743 	if (free != grp->bb_free) {
744 		ext4_grp_locked_error(sb, group, 0, 0,
745 				      "block bitmap and bg descriptor "
746 				      "inconsistent: %u vs %u free clusters",
747 				      free, grp->bb_free);
748 		/*
749 		 * If we intend to continue, we consider group descriptor
750 		 * corrupt and update bb_free using bitmap value
751 		 */
752 		grp->bb_free = free;
753 		ext4_mark_group_bitmap_corrupted(sb, group,
754 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
755 	}
756 	mb_set_largest_free_order(sb, grp);
757 
758 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
759 
760 	period = get_cycles() - period;
761 	spin_lock(&sbi->s_bal_lock);
762 	sbi->s_mb_buddies_generated++;
763 	sbi->s_mb_generation_time += period;
764 	spin_unlock(&sbi->s_bal_lock);
765 }
766 
767 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
768 {
769 	int count;
770 	int order = 1;
771 	void *buddy;
772 
773 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
774 		ext4_set_bits(buddy, 0, count);
775 	}
776 	e4b->bd_info->bb_fragments = 0;
777 	memset(e4b->bd_info->bb_counters, 0,
778 		sizeof(*e4b->bd_info->bb_counters) *
779 		(e4b->bd_sb->s_blocksize_bits + 2));
780 
781 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
782 		e4b->bd_bitmap, e4b->bd_group);
783 }
784 
785 /* The buddy information is attached the buddy cache inode
786  * for convenience. The information regarding each group
787  * is loaded via ext4_mb_load_buddy. The information involve
788  * block bitmap and buddy information. The information are
789  * stored in the inode as
790  *
791  * {                        page                        }
792  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
793  *
794  *
795  * one block each for bitmap and buddy information.
796  * So for each group we take up 2 blocks. A page can
797  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
798  * So it can have information regarding groups_per_page which
799  * is blocks_per_page/2
800  *
801  * Locking note:  This routine takes the block group lock of all groups
802  * for this page; do not hold this lock when calling this routine!
803  */
804 
805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
806 {
807 	ext4_group_t ngroups;
808 	int blocksize;
809 	int blocks_per_page;
810 	int groups_per_page;
811 	int err = 0;
812 	int i;
813 	ext4_group_t first_group, group;
814 	int first_block;
815 	struct super_block *sb;
816 	struct buffer_head *bhs;
817 	struct buffer_head **bh = NULL;
818 	struct inode *inode;
819 	char *data;
820 	char *bitmap;
821 	struct ext4_group_info *grinfo;
822 
823 	mb_debug(1, "init page %lu\n", page->index);
824 
825 	inode = page->mapping->host;
826 	sb = inode->i_sb;
827 	ngroups = ext4_get_groups_count(sb);
828 	blocksize = i_blocksize(inode);
829 	blocks_per_page = PAGE_SIZE / blocksize;
830 
831 	groups_per_page = blocks_per_page >> 1;
832 	if (groups_per_page == 0)
833 		groups_per_page = 1;
834 
835 	/* allocate buffer_heads to read bitmaps */
836 	if (groups_per_page > 1) {
837 		i = sizeof(struct buffer_head *) * groups_per_page;
838 		bh = kzalloc(i, gfp);
839 		if (bh == NULL) {
840 			err = -ENOMEM;
841 			goto out;
842 		}
843 	} else
844 		bh = &bhs;
845 
846 	first_group = page->index * blocks_per_page / 2;
847 
848 	/* read all groups the page covers into the cache */
849 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
850 		if (group >= ngroups)
851 			break;
852 
853 		grinfo = ext4_get_group_info(sb, group);
854 		/*
855 		 * If page is uptodate then we came here after online resize
856 		 * which added some new uninitialized group info structs, so
857 		 * we must skip all initialized uptodate buddies on the page,
858 		 * which may be currently in use by an allocating task.
859 		 */
860 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
861 			bh[i] = NULL;
862 			continue;
863 		}
864 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
865 		if (IS_ERR(bh[i])) {
866 			err = PTR_ERR(bh[i]);
867 			bh[i] = NULL;
868 			goto out;
869 		}
870 		mb_debug(1, "read bitmap for group %u\n", group);
871 	}
872 
873 	/* wait for I/O completion */
874 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
875 		int err2;
876 
877 		if (!bh[i])
878 			continue;
879 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
880 		if (!err)
881 			err = err2;
882 	}
883 
884 	first_block = page->index * blocks_per_page;
885 	for (i = 0; i < blocks_per_page; i++) {
886 		group = (first_block + i) >> 1;
887 		if (group >= ngroups)
888 			break;
889 
890 		if (!bh[group - first_group])
891 			/* skip initialized uptodate buddy */
892 			continue;
893 
894 		if (!buffer_verified(bh[group - first_group]))
895 			/* Skip faulty bitmaps */
896 			continue;
897 		err = 0;
898 
899 		/*
900 		 * data carry information regarding this
901 		 * particular group in the format specified
902 		 * above
903 		 *
904 		 */
905 		data = page_address(page) + (i * blocksize);
906 		bitmap = bh[group - first_group]->b_data;
907 
908 		/*
909 		 * We place the buddy block and bitmap block
910 		 * close together
911 		 */
912 		if ((first_block + i) & 1) {
913 			/* this is block of buddy */
914 			BUG_ON(incore == NULL);
915 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
916 				group, page->index, i * blocksize);
917 			trace_ext4_mb_buddy_bitmap_load(sb, group);
918 			grinfo = ext4_get_group_info(sb, group);
919 			grinfo->bb_fragments = 0;
920 			memset(grinfo->bb_counters, 0,
921 			       sizeof(*grinfo->bb_counters) *
922 				(sb->s_blocksize_bits+2));
923 			/*
924 			 * incore got set to the group block bitmap below
925 			 */
926 			ext4_lock_group(sb, group);
927 			/* init the buddy */
928 			memset(data, 0xff, blocksize);
929 			ext4_mb_generate_buddy(sb, data, incore, group);
930 			ext4_unlock_group(sb, group);
931 			incore = NULL;
932 		} else {
933 			/* this is block of bitmap */
934 			BUG_ON(incore != NULL);
935 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
936 				group, page->index, i * blocksize);
937 			trace_ext4_mb_bitmap_load(sb, group);
938 
939 			/* see comments in ext4_mb_put_pa() */
940 			ext4_lock_group(sb, group);
941 			memcpy(data, bitmap, blocksize);
942 
943 			/* mark all preallocated blks used in in-core bitmap */
944 			ext4_mb_generate_from_pa(sb, data, group);
945 			ext4_mb_generate_from_freelist(sb, data, group);
946 			ext4_unlock_group(sb, group);
947 
948 			/* set incore so that the buddy information can be
949 			 * generated using this
950 			 */
951 			incore = data;
952 		}
953 	}
954 	SetPageUptodate(page);
955 
956 out:
957 	if (bh) {
958 		for (i = 0; i < groups_per_page; i++)
959 			brelse(bh[i]);
960 		if (bh != &bhs)
961 			kfree(bh);
962 	}
963 	return err;
964 }
965 
966 /*
967  * Lock the buddy and bitmap pages. This make sure other parallel init_group
968  * on the same buddy page doesn't happen whild holding the buddy page lock.
969  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
970  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
971  */
972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
973 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
974 {
975 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
976 	int block, pnum, poff;
977 	int blocks_per_page;
978 	struct page *page;
979 
980 	e4b->bd_buddy_page = NULL;
981 	e4b->bd_bitmap_page = NULL;
982 
983 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
984 	/*
985 	 * the buddy cache inode stores the block bitmap
986 	 * and buddy information in consecutive blocks.
987 	 * So for each group we need two blocks.
988 	 */
989 	block = group * 2;
990 	pnum = block / blocks_per_page;
991 	poff = block % blocks_per_page;
992 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
993 	if (!page)
994 		return -ENOMEM;
995 	BUG_ON(page->mapping != inode->i_mapping);
996 	e4b->bd_bitmap_page = page;
997 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
998 
999 	if (blocks_per_page >= 2) {
1000 		/* buddy and bitmap are on the same page */
1001 		return 0;
1002 	}
1003 
1004 	block++;
1005 	pnum = block / blocks_per_page;
1006 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007 	if (!page)
1008 		return -ENOMEM;
1009 	BUG_ON(page->mapping != inode->i_mapping);
1010 	e4b->bd_buddy_page = page;
1011 	return 0;
1012 }
1013 
1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1015 {
1016 	if (e4b->bd_bitmap_page) {
1017 		unlock_page(e4b->bd_bitmap_page);
1018 		put_page(e4b->bd_bitmap_page);
1019 	}
1020 	if (e4b->bd_buddy_page) {
1021 		unlock_page(e4b->bd_buddy_page);
1022 		put_page(e4b->bd_buddy_page);
1023 	}
1024 }
1025 
1026 /*
1027  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1028  * block group lock of all groups for this page; do not hold the BG lock when
1029  * calling this routine!
1030  */
1031 static noinline_for_stack
1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1033 {
1034 
1035 	struct ext4_group_info *this_grp;
1036 	struct ext4_buddy e4b;
1037 	struct page *page;
1038 	int ret = 0;
1039 
1040 	might_sleep();
1041 	mb_debug(1, "init group %u\n", group);
1042 	this_grp = ext4_get_group_info(sb, group);
1043 	/*
1044 	 * This ensures that we don't reinit the buddy cache
1045 	 * page which map to the group from which we are already
1046 	 * allocating. If we are looking at the buddy cache we would
1047 	 * have taken a reference using ext4_mb_load_buddy and that
1048 	 * would have pinned buddy page to page cache.
1049 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1050 	 * page accessed.
1051 	 */
1052 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1054 		/*
1055 		 * somebody initialized the group
1056 		 * return without doing anything
1057 		 */
1058 		goto err;
1059 	}
1060 
1061 	page = e4b.bd_bitmap_page;
1062 	ret = ext4_mb_init_cache(page, NULL, gfp);
1063 	if (ret)
1064 		goto err;
1065 	if (!PageUptodate(page)) {
1066 		ret = -EIO;
1067 		goto err;
1068 	}
1069 
1070 	if (e4b.bd_buddy_page == NULL) {
1071 		/*
1072 		 * If both the bitmap and buddy are in
1073 		 * the same page we don't need to force
1074 		 * init the buddy
1075 		 */
1076 		ret = 0;
1077 		goto err;
1078 	}
1079 	/* init buddy cache */
1080 	page = e4b.bd_buddy_page;
1081 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1082 	if (ret)
1083 		goto err;
1084 	if (!PageUptodate(page)) {
1085 		ret = -EIO;
1086 		goto err;
1087 	}
1088 err:
1089 	ext4_mb_put_buddy_page_lock(&e4b);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1095  * block group lock of all groups for this page; do not hold the BG lock when
1096  * calling this routine!
1097  */
1098 static noinline_for_stack int
1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100 		       struct ext4_buddy *e4b, gfp_t gfp)
1101 {
1102 	int blocks_per_page;
1103 	int block;
1104 	int pnum;
1105 	int poff;
1106 	struct page *page;
1107 	int ret;
1108 	struct ext4_group_info *grp;
1109 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 	struct inode *inode = sbi->s_buddy_cache;
1111 
1112 	might_sleep();
1113 	mb_debug(1, "load group %u\n", group);
1114 
1115 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116 	grp = ext4_get_group_info(sb, group);
1117 
1118 	e4b->bd_blkbits = sb->s_blocksize_bits;
1119 	e4b->bd_info = grp;
1120 	e4b->bd_sb = sb;
1121 	e4b->bd_group = group;
1122 	e4b->bd_buddy_page = NULL;
1123 	e4b->bd_bitmap_page = NULL;
1124 
1125 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1126 		/*
1127 		 * we need full data about the group
1128 		 * to make a good selection
1129 		 */
1130 		ret = ext4_mb_init_group(sb, group, gfp);
1131 		if (ret)
1132 			return ret;
1133 	}
1134 
1135 	/*
1136 	 * the buddy cache inode stores the block bitmap
1137 	 * and buddy information in consecutive blocks.
1138 	 * So for each group we need two blocks.
1139 	 */
1140 	block = group * 2;
1141 	pnum = block / blocks_per_page;
1142 	poff = block % blocks_per_page;
1143 
1144 	/* we could use find_or_create_page(), but it locks page
1145 	 * what we'd like to avoid in fast path ... */
1146 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147 	if (page == NULL || !PageUptodate(page)) {
1148 		if (page)
1149 			/*
1150 			 * drop the page reference and try
1151 			 * to get the page with lock. If we
1152 			 * are not uptodate that implies
1153 			 * somebody just created the page but
1154 			 * is yet to initialize the same. So
1155 			 * wait for it to initialize.
1156 			 */
1157 			put_page(page);
1158 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1159 		if (page) {
1160 			BUG_ON(page->mapping != inode->i_mapping);
1161 			if (!PageUptodate(page)) {
1162 				ret = ext4_mb_init_cache(page, NULL, gfp);
1163 				if (ret) {
1164 					unlock_page(page);
1165 					goto err;
1166 				}
1167 				mb_cmp_bitmaps(e4b, page_address(page) +
1168 					       (poff * sb->s_blocksize));
1169 			}
1170 			unlock_page(page);
1171 		}
1172 	}
1173 	if (page == NULL) {
1174 		ret = -ENOMEM;
1175 		goto err;
1176 	}
1177 	if (!PageUptodate(page)) {
1178 		ret = -EIO;
1179 		goto err;
1180 	}
1181 
1182 	/* Pages marked accessed already */
1183 	e4b->bd_bitmap_page = page;
1184 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1185 
1186 	block++;
1187 	pnum = block / blocks_per_page;
1188 	poff = block % blocks_per_page;
1189 
1190 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191 	if (page == NULL || !PageUptodate(page)) {
1192 		if (page)
1193 			put_page(page);
1194 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1195 		if (page) {
1196 			BUG_ON(page->mapping != inode->i_mapping);
1197 			if (!PageUptodate(page)) {
1198 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1199 							 gfp);
1200 				if (ret) {
1201 					unlock_page(page);
1202 					goto err;
1203 				}
1204 			}
1205 			unlock_page(page);
1206 		}
1207 	}
1208 	if (page == NULL) {
1209 		ret = -ENOMEM;
1210 		goto err;
1211 	}
1212 	if (!PageUptodate(page)) {
1213 		ret = -EIO;
1214 		goto err;
1215 	}
1216 
1217 	/* Pages marked accessed already */
1218 	e4b->bd_buddy_page = page;
1219 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1220 
1221 	BUG_ON(e4b->bd_bitmap_page == NULL);
1222 	BUG_ON(e4b->bd_buddy_page == NULL);
1223 
1224 	return 0;
1225 
1226 err:
1227 	if (page)
1228 		put_page(page);
1229 	if (e4b->bd_bitmap_page)
1230 		put_page(e4b->bd_bitmap_page);
1231 	if (e4b->bd_buddy_page)
1232 		put_page(e4b->bd_buddy_page);
1233 	e4b->bd_buddy = NULL;
1234 	e4b->bd_bitmap = NULL;
1235 	return ret;
1236 }
1237 
1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239 			      struct ext4_buddy *e4b)
1240 {
1241 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1242 }
1243 
1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1245 {
1246 	if (e4b->bd_bitmap_page)
1247 		put_page(e4b->bd_bitmap_page);
1248 	if (e4b->bd_buddy_page)
1249 		put_page(e4b->bd_buddy_page);
1250 }
1251 
1252 
1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1254 {
1255 	int order = 1;
1256 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1257 	void *bb;
1258 
1259 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1261 
1262 	bb = e4b->bd_buddy;
1263 	while (order <= e4b->bd_blkbits + 1) {
1264 		block = block >> 1;
1265 		if (!mb_test_bit(block, bb)) {
1266 			/* this block is part of buddy of order 'order' */
1267 			return order;
1268 		}
1269 		bb += bb_incr;
1270 		bb_incr >>= 1;
1271 		order++;
1272 	}
1273 	return 0;
1274 }
1275 
1276 static void mb_clear_bits(void *bm, int cur, int len)
1277 {
1278 	__u32 *addr;
1279 
1280 	len = cur + len;
1281 	while (cur < len) {
1282 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1283 			/* fast path: clear whole word at once */
1284 			addr = bm + (cur >> 3);
1285 			*addr = 0;
1286 			cur += 32;
1287 			continue;
1288 		}
1289 		mb_clear_bit(cur, bm);
1290 		cur++;
1291 	}
1292 }
1293 
1294 /* clear bits in given range
1295  * will return first found zero bit if any, -1 otherwise
1296  */
1297 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1298 {
1299 	__u32 *addr;
1300 	int zero_bit = -1;
1301 
1302 	len = cur + len;
1303 	while (cur < len) {
1304 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 			/* fast path: clear whole word at once */
1306 			addr = bm + (cur >> 3);
1307 			if (*addr != (__u32)(-1) && zero_bit == -1)
1308 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1309 			*addr = 0;
1310 			cur += 32;
1311 			continue;
1312 		}
1313 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1314 			zero_bit = cur;
1315 		cur++;
1316 	}
1317 
1318 	return zero_bit;
1319 }
1320 
1321 void ext4_set_bits(void *bm, int cur, int len)
1322 {
1323 	__u32 *addr;
1324 
1325 	len = cur + len;
1326 	while (cur < len) {
1327 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1328 			/* fast path: set whole word at once */
1329 			addr = bm + (cur >> 3);
1330 			*addr = 0xffffffff;
1331 			cur += 32;
1332 			continue;
1333 		}
1334 		mb_set_bit(cur, bm);
1335 		cur++;
1336 	}
1337 }
1338 
1339 /*
1340  * _________________________________________________________________ */
1341 
1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1343 {
1344 	if (mb_test_bit(*bit + side, bitmap)) {
1345 		mb_clear_bit(*bit, bitmap);
1346 		(*bit) -= side;
1347 		return 1;
1348 	}
1349 	else {
1350 		(*bit) += side;
1351 		mb_set_bit(*bit, bitmap);
1352 		return -1;
1353 	}
1354 }
1355 
1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1357 {
1358 	int max;
1359 	int order = 1;
1360 	void *buddy = mb_find_buddy(e4b, order, &max);
1361 
1362 	while (buddy) {
1363 		void *buddy2;
1364 
1365 		/* Bits in range [first; last] are known to be set since
1366 		 * corresponding blocks were allocated. Bits in range
1367 		 * (first; last) will stay set because they form buddies on
1368 		 * upper layer. We just deal with borders if they don't
1369 		 * align with upper layer and then go up.
1370 		 * Releasing entire group is all about clearing
1371 		 * single bit of highest order buddy.
1372 		 */
1373 
1374 		/* Example:
1375 		 * ---------------------------------
1376 		 * |   1   |   1   |   1   |   1   |
1377 		 * ---------------------------------
1378 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379 		 * ---------------------------------
1380 		 *   0   1   2   3   4   5   6   7
1381 		 *      \_____________________/
1382 		 *
1383 		 * Neither [1] nor [6] is aligned to above layer.
1384 		 * Left neighbour [0] is free, so mark it busy,
1385 		 * decrease bb_counters and extend range to
1386 		 * [0; 6]
1387 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388 		 * mark [6] free, increase bb_counters and shrink range to
1389 		 * [0; 5].
1390 		 * Then shift range to [0; 2], go up and do the same.
1391 		 */
1392 
1393 
1394 		if (first & 1)
1395 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1396 		if (!(last & 1))
1397 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1398 		if (first > last)
1399 			break;
1400 		order++;
1401 
1402 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403 			mb_clear_bits(buddy, first, last - first + 1);
1404 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1405 			break;
1406 		}
1407 		first >>= 1;
1408 		last >>= 1;
1409 		buddy = buddy2;
1410 	}
1411 }
1412 
1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414 			   int first, int count)
1415 {
1416 	int left_is_free = 0;
1417 	int right_is_free = 0;
1418 	int block;
1419 	int last = first + count - 1;
1420 	struct super_block *sb = e4b->bd_sb;
1421 
1422 	if (WARN_ON(count == 0))
1423 		return;
1424 	BUG_ON(last >= (sb->s_blocksize << 3));
1425 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426 	/* Don't bother if the block group is corrupt. */
1427 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1428 		return;
1429 
1430 	mb_check_buddy(e4b);
1431 	mb_free_blocks_double(inode, e4b, first, count);
1432 
1433 	e4b->bd_info->bb_free += count;
1434 	if (first < e4b->bd_info->bb_first_free)
1435 		e4b->bd_info->bb_first_free = first;
1436 
1437 	/* access memory sequentially: check left neighbour,
1438 	 * clear range and then check right neighbour
1439 	 */
1440 	if (first != 0)
1441 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1445 
1446 	if (unlikely(block != -1)) {
1447 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 		ext4_fsblk_t blocknr;
1449 
1450 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451 		blocknr += EXT4_C2B(sbi, block);
1452 		ext4_grp_locked_error(sb, e4b->bd_group,
1453 				      inode ? inode->i_ino : 0,
1454 				      blocknr,
1455 				      "freeing already freed block "
1456 				      "(bit %u); block bitmap corrupt.",
1457 				      block);
1458 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460 		mb_regenerate_buddy(e4b);
1461 		goto done;
1462 	}
1463 
1464 	/* let's maintain fragments counter */
1465 	if (left_is_free && right_is_free)
1466 		e4b->bd_info->bb_fragments--;
1467 	else if (!left_is_free && !right_is_free)
1468 		e4b->bd_info->bb_fragments++;
1469 
1470 	/* buddy[0] == bd_bitmap is a special case, so handle
1471 	 * it right away and let mb_buddy_mark_free stay free of
1472 	 * zero order checks.
1473 	 * Check if neighbours are to be coaleasced,
1474 	 * adjust bitmap bb_counters and borders appropriately.
1475 	 */
1476 	if (first & 1) {
1477 		first += !left_is_free;
1478 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1479 	}
1480 	if (!(last & 1)) {
1481 		last -= !right_is_free;
1482 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1483 	}
1484 
1485 	if (first <= last)
1486 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1487 
1488 done:
1489 	mb_set_largest_free_order(sb, e4b->bd_info);
1490 	mb_check_buddy(e4b);
1491 }
1492 
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 				int needed, struct ext4_free_extent *ex)
1495 {
1496 	int next = block;
1497 	int max, order;
1498 	void *buddy;
1499 
1500 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501 	BUG_ON(ex == NULL);
1502 
1503 	buddy = mb_find_buddy(e4b, 0, &max);
1504 	BUG_ON(buddy == NULL);
1505 	BUG_ON(block >= max);
1506 	if (mb_test_bit(block, buddy)) {
1507 		ex->fe_len = 0;
1508 		ex->fe_start = 0;
1509 		ex->fe_group = 0;
1510 		return 0;
1511 	}
1512 
1513 	/* find actual order */
1514 	order = mb_find_order_for_block(e4b, block);
1515 	block = block >> order;
1516 
1517 	ex->fe_len = 1 << order;
1518 	ex->fe_start = block << order;
1519 	ex->fe_group = e4b->bd_group;
1520 
1521 	/* calc difference from given start */
1522 	next = next - ex->fe_start;
1523 	ex->fe_len -= next;
1524 	ex->fe_start += next;
1525 
1526 	while (needed > ex->fe_len &&
1527 	       mb_find_buddy(e4b, order, &max)) {
1528 
1529 		if (block + 1 >= max)
1530 			break;
1531 
1532 		next = (block + 1) * (1 << order);
1533 		if (mb_test_bit(next, e4b->bd_bitmap))
1534 			break;
1535 
1536 		order = mb_find_order_for_block(e4b, next);
1537 
1538 		block = next >> order;
1539 		ex->fe_len += 1 << order;
1540 	}
1541 
1542 	if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1543 		/* Should never happen! (but apparently sometimes does?!?) */
1544 		WARN_ON(1);
1545 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1546 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1547 			   block, order, needed, ex->fe_group, ex->fe_start,
1548 			   ex->fe_len, ex->fe_logical);
1549 		ex->fe_len = 0;
1550 		ex->fe_start = 0;
1551 		ex->fe_group = 0;
1552 	}
1553 	return ex->fe_len;
1554 }
1555 
1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1557 {
1558 	int ord;
1559 	int mlen = 0;
1560 	int max = 0;
1561 	int cur;
1562 	int start = ex->fe_start;
1563 	int len = ex->fe_len;
1564 	unsigned ret = 0;
1565 	int len0 = len;
1566 	void *buddy;
1567 
1568 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569 	BUG_ON(e4b->bd_group != ex->fe_group);
1570 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571 	mb_check_buddy(e4b);
1572 	mb_mark_used_double(e4b, start, len);
1573 
1574 	e4b->bd_info->bb_free -= len;
1575 	if (e4b->bd_info->bb_first_free == start)
1576 		e4b->bd_info->bb_first_free += len;
1577 
1578 	/* let's maintain fragments counter */
1579 	if (start != 0)
1580 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583 	if (mlen && max)
1584 		e4b->bd_info->bb_fragments++;
1585 	else if (!mlen && !max)
1586 		e4b->bd_info->bb_fragments--;
1587 
1588 	/* let's maintain buddy itself */
1589 	while (len) {
1590 		ord = mb_find_order_for_block(e4b, start);
1591 
1592 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593 			/* the whole chunk may be allocated at once! */
1594 			mlen = 1 << ord;
1595 			buddy = mb_find_buddy(e4b, ord, &max);
1596 			BUG_ON((start >> ord) >= max);
1597 			mb_set_bit(start >> ord, buddy);
1598 			e4b->bd_info->bb_counters[ord]--;
1599 			start += mlen;
1600 			len -= mlen;
1601 			BUG_ON(len < 0);
1602 			continue;
1603 		}
1604 
1605 		/* store for history */
1606 		if (ret == 0)
1607 			ret = len | (ord << 16);
1608 
1609 		/* we have to split large buddy */
1610 		BUG_ON(ord <= 0);
1611 		buddy = mb_find_buddy(e4b, ord, &max);
1612 		mb_set_bit(start >> ord, buddy);
1613 		e4b->bd_info->bb_counters[ord]--;
1614 
1615 		ord--;
1616 		cur = (start >> ord) & ~1U;
1617 		buddy = mb_find_buddy(e4b, ord, &max);
1618 		mb_clear_bit(cur, buddy);
1619 		mb_clear_bit(cur + 1, buddy);
1620 		e4b->bd_info->bb_counters[ord]++;
1621 		e4b->bd_info->bb_counters[ord]++;
1622 	}
1623 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1624 
1625 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626 	mb_check_buddy(e4b);
1627 
1628 	return ret;
1629 }
1630 
1631 /*
1632  * Must be called under group lock!
1633  */
1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635 					struct ext4_buddy *e4b)
1636 {
1637 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638 	int ret;
1639 
1640 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1642 
1643 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1646 
1647 	/* preallocation can change ac_b_ex, thus we store actually
1648 	 * allocated blocks for history */
1649 	ac->ac_f_ex = ac->ac_b_ex;
1650 
1651 	ac->ac_status = AC_STATUS_FOUND;
1652 	ac->ac_tail = ret & 0xffff;
1653 	ac->ac_buddy = ret >> 16;
1654 
1655 	/*
1656 	 * take the page reference. We want the page to be pinned
1657 	 * so that we don't get a ext4_mb_init_cache_call for this
1658 	 * group until we update the bitmap. That would mean we
1659 	 * double allocate blocks. The reference is dropped
1660 	 * in ext4_mb_release_context
1661 	 */
1662 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663 	get_page(ac->ac_bitmap_page);
1664 	ac->ac_buddy_page = e4b->bd_buddy_page;
1665 	get_page(ac->ac_buddy_page);
1666 	/* store last allocated for subsequent stream allocation */
1667 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668 		spin_lock(&sbi->s_md_lock);
1669 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671 		spin_unlock(&sbi->s_md_lock);
1672 	}
1673 }
1674 
1675 /*
1676  * regular allocator, for general purposes allocation
1677  */
1678 
1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680 					struct ext4_buddy *e4b,
1681 					int finish_group)
1682 {
1683 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1685 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1686 	struct ext4_free_extent ex;
1687 	int max;
1688 
1689 	if (ac->ac_status == AC_STATUS_FOUND)
1690 		return;
1691 	/*
1692 	 * We don't want to scan for a whole year
1693 	 */
1694 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696 		ac->ac_status = AC_STATUS_BREAK;
1697 		return;
1698 	}
1699 
1700 	/*
1701 	 * Haven't found good chunk so far, let's continue
1702 	 */
1703 	if (bex->fe_len < gex->fe_len)
1704 		return;
1705 
1706 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707 			&& bex->fe_group == e4b->bd_group) {
1708 		/* recheck chunk's availability - we don't know
1709 		 * when it was found (within this lock-unlock
1710 		 * period or not) */
1711 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712 		if (max >= gex->fe_len) {
1713 			ext4_mb_use_best_found(ac, e4b);
1714 			return;
1715 		}
1716 	}
1717 }
1718 
1719 /*
1720  * The routine checks whether found extent is good enough. If it is,
1721  * then the extent gets marked used and flag is set to the context
1722  * to stop scanning. Otherwise, the extent is compared with the
1723  * previous found extent and if new one is better, then it's stored
1724  * in the context. Later, the best found extent will be used, if
1725  * mballoc can't find good enough extent.
1726  *
1727  * FIXME: real allocation policy is to be designed yet!
1728  */
1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730 					struct ext4_free_extent *ex,
1731 					struct ext4_buddy *e4b)
1732 {
1733 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1734 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1735 
1736 	BUG_ON(ex->fe_len <= 0);
1737 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1740 
1741 	ac->ac_found++;
1742 
1743 	/*
1744 	 * The special case - take what you catch first
1745 	 */
1746 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747 		*bex = *ex;
1748 		ext4_mb_use_best_found(ac, e4b);
1749 		return;
1750 	}
1751 
1752 	/*
1753 	 * Let's check whether the chuck is good enough
1754 	 */
1755 	if (ex->fe_len == gex->fe_len) {
1756 		*bex = *ex;
1757 		ext4_mb_use_best_found(ac, e4b);
1758 		return;
1759 	}
1760 
1761 	/*
1762 	 * If this is first found extent, just store it in the context
1763 	 */
1764 	if (bex->fe_len == 0) {
1765 		*bex = *ex;
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * If new found extent is better, store it in the context
1771 	 */
1772 	if (bex->fe_len < gex->fe_len) {
1773 		/* if the request isn't satisfied, any found extent
1774 		 * larger than previous best one is better */
1775 		if (ex->fe_len > bex->fe_len)
1776 			*bex = *ex;
1777 	} else if (ex->fe_len > gex->fe_len) {
1778 		/* if the request is satisfied, then we try to find
1779 		 * an extent that still satisfy the request, but is
1780 		 * smaller than previous one */
1781 		if (ex->fe_len < bex->fe_len)
1782 			*bex = *ex;
1783 	}
1784 
1785 	ext4_mb_check_limits(ac, e4b, 0);
1786 }
1787 
1788 static noinline_for_stack
1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790 					struct ext4_buddy *e4b)
1791 {
1792 	struct ext4_free_extent ex = ac->ac_b_ex;
1793 	ext4_group_t group = ex.fe_group;
1794 	int max;
1795 	int err;
1796 
1797 	BUG_ON(ex.fe_len <= 0);
1798 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799 	if (err)
1800 		return err;
1801 
1802 	ext4_lock_group(ac->ac_sb, group);
1803 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1804 
1805 	if (max > 0) {
1806 		ac->ac_b_ex = ex;
1807 		ext4_mb_use_best_found(ac, e4b);
1808 	}
1809 
1810 	ext4_unlock_group(ac->ac_sb, group);
1811 	ext4_mb_unload_buddy(e4b);
1812 
1813 	return 0;
1814 }
1815 
1816 static noinline_for_stack
1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818 				struct ext4_buddy *e4b)
1819 {
1820 	ext4_group_t group = ac->ac_g_ex.fe_group;
1821 	int max;
1822 	int err;
1823 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825 	struct ext4_free_extent ex;
1826 
1827 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828 		return 0;
1829 	if (grp->bb_free == 0)
1830 		return 0;
1831 
1832 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833 	if (err)
1834 		return err;
1835 
1836 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837 		ext4_mb_unload_buddy(e4b);
1838 		return 0;
1839 	}
1840 
1841 	ext4_lock_group(ac->ac_sb, group);
1842 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843 			     ac->ac_g_ex.fe_len, &ex);
1844 	ex.fe_logical = 0xDEADFA11; /* debug value */
1845 
1846 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847 		ext4_fsblk_t start;
1848 
1849 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850 			ex.fe_start;
1851 		/* use do_div to get remainder (would be 64-bit modulo) */
1852 		if (do_div(start, sbi->s_stripe) == 0) {
1853 			ac->ac_found++;
1854 			ac->ac_b_ex = ex;
1855 			ext4_mb_use_best_found(ac, e4b);
1856 		}
1857 	} else if (max >= ac->ac_g_ex.fe_len) {
1858 		BUG_ON(ex.fe_len <= 0);
1859 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861 		ac->ac_found++;
1862 		ac->ac_b_ex = ex;
1863 		ext4_mb_use_best_found(ac, e4b);
1864 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865 		/* Sometimes, caller may want to merge even small
1866 		 * number of blocks to an existing extent */
1867 		BUG_ON(ex.fe_len <= 0);
1868 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870 		ac->ac_found++;
1871 		ac->ac_b_ex = ex;
1872 		ext4_mb_use_best_found(ac, e4b);
1873 	}
1874 	ext4_unlock_group(ac->ac_sb, group);
1875 	ext4_mb_unload_buddy(e4b);
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * The routine scans buddy structures (not bitmap!) from given order
1882  * to max order and tries to find big enough chunk to satisfy the req
1883  */
1884 static noinline_for_stack
1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886 					struct ext4_buddy *e4b)
1887 {
1888 	struct super_block *sb = ac->ac_sb;
1889 	struct ext4_group_info *grp = e4b->bd_info;
1890 	void *buddy;
1891 	int i;
1892 	int k;
1893 	int max;
1894 
1895 	BUG_ON(ac->ac_2order <= 0);
1896 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897 		if (grp->bb_counters[i] == 0)
1898 			continue;
1899 
1900 		buddy = mb_find_buddy(e4b, i, &max);
1901 		BUG_ON(buddy == NULL);
1902 
1903 		k = mb_find_next_zero_bit(buddy, max, 0);
1904 		BUG_ON(k >= max);
1905 
1906 		ac->ac_found++;
1907 
1908 		ac->ac_b_ex.fe_len = 1 << i;
1909 		ac->ac_b_ex.fe_start = k << i;
1910 		ac->ac_b_ex.fe_group = e4b->bd_group;
1911 
1912 		ext4_mb_use_best_found(ac, e4b);
1913 
1914 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1915 
1916 		if (EXT4_SB(sb)->s_mb_stats)
1917 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1918 
1919 		break;
1920 	}
1921 }
1922 
1923 /*
1924  * The routine scans the group and measures all found extents.
1925  * In order to optimize scanning, caller must pass number of
1926  * free blocks in the group, so the routine can know upper limit.
1927  */
1928 static noinline_for_stack
1929 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1930 					struct ext4_buddy *e4b)
1931 {
1932 	struct super_block *sb = ac->ac_sb;
1933 	void *bitmap = e4b->bd_bitmap;
1934 	struct ext4_free_extent ex;
1935 	int i;
1936 	int free;
1937 
1938 	free = e4b->bd_info->bb_free;
1939 	BUG_ON(free <= 0);
1940 
1941 	i = e4b->bd_info->bb_first_free;
1942 
1943 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1944 		i = mb_find_next_zero_bit(bitmap,
1945 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1946 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1947 			/*
1948 			 * IF we have corrupt bitmap, we won't find any
1949 			 * free blocks even though group info says we
1950 			 * we have free blocks
1951 			 */
1952 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953 					"%d free clusters as per "
1954 					"group info. But bitmap says 0",
1955 					free);
1956 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1957 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1958 			break;
1959 		}
1960 
1961 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1962 		BUG_ON(ex.fe_len <= 0);
1963 		if (free < ex.fe_len) {
1964 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1965 					"%d free clusters as per "
1966 					"group info. But got %d blocks",
1967 					free, ex.fe_len);
1968 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1969 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1970 			/*
1971 			 * The number of free blocks differs. This mostly
1972 			 * indicate that the bitmap is corrupt. So exit
1973 			 * without claiming the space.
1974 			 */
1975 			break;
1976 		}
1977 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1978 		ext4_mb_measure_extent(ac, &ex, e4b);
1979 
1980 		i += ex.fe_len;
1981 		free -= ex.fe_len;
1982 	}
1983 
1984 	ext4_mb_check_limits(ac, e4b, 1);
1985 }
1986 
1987 /*
1988  * This is a special case for storages like raid5
1989  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1990  */
1991 static noinline_for_stack
1992 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1993 				 struct ext4_buddy *e4b)
1994 {
1995 	struct super_block *sb = ac->ac_sb;
1996 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1997 	void *bitmap = e4b->bd_bitmap;
1998 	struct ext4_free_extent ex;
1999 	ext4_fsblk_t first_group_block;
2000 	ext4_fsblk_t a;
2001 	ext4_grpblk_t i;
2002 	int max;
2003 
2004 	BUG_ON(sbi->s_stripe == 0);
2005 
2006 	/* find first stripe-aligned block in group */
2007 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2008 
2009 	a = first_group_block + sbi->s_stripe - 1;
2010 	do_div(a, sbi->s_stripe);
2011 	i = (a * sbi->s_stripe) - first_group_block;
2012 
2013 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2014 		if (!mb_test_bit(i, bitmap)) {
2015 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2016 			if (max >= sbi->s_stripe) {
2017 				ac->ac_found++;
2018 				ex.fe_logical = 0xDEADF00D; /* debug value */
2019 				ac->ac_b_ex = ex;
2020 				ext4_mb_use_best_found(ac, e4b);
2021 				break;
2022 			}
2023 		}
2024 		i += sbi->s_stripe;
2025 	}
2026 }
2027 
2028 /*
2029  * This is now called BEFORE we load the buddy bitmap.
2030  * Returns either 1 or 0 indicating that the group is either suitable
2031  * for the allocation or not. In addition it can also return negative
2032  * error code when something goes wrong.
2033  */
2034 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2035 				ext4_group_t group, int cr)
2036 {
2037 	unsigned free, fragments;
2038 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2039 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2040 
2041 	BUG_ON(cr < 0 || cr >= 4);
2042 
2043 	free = grp->bb_free;
2044 	if (free == 0)
2045 		return 0;
2046 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2047 		return 0;
2048 
2049 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2050 		return 0;
2051 
2052 	/* We only do this if the grp has never been initialized */
2053 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2054 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2055 		if (ret)
2056 			return ret;
2057 	}
2058 
2059 	fragments = grp->bb_fragments;
2060 	if (fragments == 0)
2061 		return 0;
2062 
2063 	switch (cr) {
2064 	case 0:
2065 		BUG_ON(ac->ac_2order == 0);
2066 
2067 		/* Avoid using the first bg of a flexgroup for data files */
2068 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2069 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2070 		    ((group % flex_size) == 0))
2071 			return 0;
2072 
2073 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2074 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2075 			return 1;
2076 
2077 		if (grp->bb_largest_free_order < ac->ac_2order)
2078 			return 0;
2079 
2080 		return 1;
2081 	case 1:
2082 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2083 			return 1;
2084 		break;
2085 	case 2:
2086 		if (free >= ac->ac_g_ex.fe_len)
2087 			return 1;
2088 		break;
2089 	case 3:
2090 		return 1;
2091 	default:
2092 		BUG();
2093 	}
2094 
2095 	return 0;
2096 }
2097 
2098 static noinline_for_stack int
2099 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2100 {
2101 	ext4_group_t ngroups, group, i;
2102 	int cr;
2103 	int err = 0, first_err = 0;
2104 	struct ext4_sb_info *sbi;
2105 	struct super_block *sb;
2106 	struct ext4_buddy e4b;
2107 
2108 	sb = ac->ac_sb;
2109 	sbi = EXT4_SB(sb);
2110 	ngroups = ext4_get_groups_count(sb);
2111 	/* non-extent files are limited to low blocks/groups */
2112 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2113 		ngroups = sbi->s_blockfile_groups;
2114 
2115 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2116 
2117 	/* first, try the goal */
2118 	err = ext4_mb_find_by_goal(ac, &e4b);
2119 	if (err || ac->ac_status == AC_STATUS_FOUND)
2120 		goto out;
2121 
2122 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2123 		goto out;
2124 
2125 	/*
2126 	 * ac->ac2_order is set only if the fe_len is a power of 2
2127 	 * if ac2_order is set we also set criteria to 0 so that we
2128 	 * try exact allocation using buddy.
2129 	 */
2130 	i = fls(ac->ac_g_ex.fe_len);
2131 	ac->ac_2order = 0;
2132 	/*
2133 	 * We search using buddy data only if the order of the request
2134 	 * is greater than equal to the sbi_s_mb_order2_reqs
2135 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2136 	 * We also support searching for power-of-two requests only for
2137 	 * requests upto maximum buddy size we have constructed.
2138 	 */
2139 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2140 		/*
2141 		 * This should tell if fe_len is exactly power of 2
2142 		 */
2143 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2144 			ac->ac_2order = array_index_nospec(i - 1,
2145 							   sb->s_blocksize_bits + 2);
2146 	}
2147 
2148 	/* if stream allocation is enabled, use global goal */
2149 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 		/* TBD: may be hot point */
2151 		spin_lock(&sbi->s_md_lock);
2152 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 		spin_unlock(&sbi->s_md_lock);
2155 	}
2156 
2157 	/* Let's just scan groups to find more-less suitable blocks */
2158 	cr = ac->ac_2order ? 0 : 1;
2159 	/*
2160 	 * cr == 0 try to get exact allocation,
2161 	 * cr == 3  try to get anything
2162 	 */
2163 repeat:
2164 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 		ac->ac_criteria = cr;
2166 		/*
2167 		 * searching for the right group start
2168 		 * from the goal value specified
2169 		 */
2170 		group = ac->ac_g_ex.fe_group;
2171 
2172 		for (i = 0; i < ngroups; group++, i++) {
2173 			int ret = 0;
2174 			cond_resched();
2175 			/*
2176 			 * Artificially restricted ngroups for non-extent
2177 			 * files makes group > ngroups possible on first loop.
2178 			 */
2179 			if (group >= ngroups)
2180 				group = 0;
2181 
2182 			/* This now checks without needing the buddy page */
2183 			ret = ext4_mb_good_group(ac, group, cr);
2184 			if (ret <= 0) {
2185 				if (!first_err)
2186 					first_err = ret;
2187 				continue;
2188 			}
2189 
2190 			err = ext4_mb_load_buddy(sb, group, &e4b);
2191 			if (err)
2192 				goto out;
2193 
2194 			ext4_lock_group(sb, group);
2195 
2196 			/*
2197 			 * We need to check again after locking the
2198 			 * block group
2199 			 */
2200 			ret = ext4_mb_good_group(ac, group, cr);
2201 			if (ret <= 0) {
2202 				ext4_unlock_group(sb, group);
2203 				ext4_mb_unload_buddy(&e4b);
2204 				if (!first_err)
2205 					first_err = ret;
2206 				continue;
2207 			}
2208 
2209 			ac->ac_groups_scanned++;
2210 			if (cr == 0)
2211 				ext4_mb_simple_scan_group(ac, &e4b);
2212 			else if (cr == 1 && sbi->s_stripe &&
2213 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 				ext4_mb_scan_aligned(ac, &e4b);
2215 			else
2216 				ext4_mb_complex_scan_group(ac, &e4b);
2217 
2218 			ext4_unlock_group(sb, group);
2219 			ext4_mb_unload_buddy(&e4b);
2220 
2221 			if (ac->ac_status != AC_STATUS_CONTINUE)
2222 				break;
2223 		}
2224 	}
2225 
2226 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228 		/*
2229 		 * We've been searching too long. Let's try to allocate
2230 		 * the best chunk we've found so far
2231 		 */
2232 
2233 		ext4_mb_try_best_found(ac, &e4b);
2234 		if (ac->ac_status != AC_STATUS_FOUND) {
2235 			/*
2236 			 * Someone more lucky has already allocated it.
2237 			 * The only thing we can do is just take first
2238 			 * found block(s)
2239 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2240 			 */
2241 			ac->ac_b_ex.fe_group = 0;
2242 			ac->ac_b_ex.fe_start = 0;
2243 			ac->ac_b_ex.fe_len = 0;
2244 			ac->ac_status = AC_STATUS_CONTINUE;
2245 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 			cr = 3;
2247 			atomic_inc(&sbi->s_mb_lost_chunks);
2248 			goto repeat;
2249 		}
2250 	}
2251 out:
2252 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 		err = first_err;
2254 	return err;
2255 }
2256 
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2260 	ext4_group_t group;
2261 
2262 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 		return NULL;
2264 	group = *pos + 1;
2265 	return (void *) ((unsigned long) group);
2266 }
2267 
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2271 	ext4_group_t group;
2272 
2273 	++*pos;
2274 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 		return NULL;
2276 	group = *pos + 1;
2277 	return (void *) ((unsigned long) group);
2278 }
2279 
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2281 {
2282 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2283 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 	int i;
2285 	int err, buddy_loaded = 0;
2286 	struct ext4_buddy e4b;
2287 	struct ext4_group_info *grinfo;
2288 	unsigned char blocksize_bits = min_t(unsigned char,
2289 					     sb->s_blocksize_bits,
2290 					     EXT4_MAX_BLOCK_LOG_SIZE);
2291 	struct sg {
2292 		struct ext4_group_info info;
2293 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2294 	} sg;
2295 
2296 	group--;
2297 	if (group == 0)
2298 		seq_puts(seq, "#group: free  frags first ["
2299 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2300 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2301 
2302 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2303 		sizeof(struct ext4_group_info);
2304 
2305 	grinfo = ext4_get_group_info(sb, group);
2306 	/* Load the group info in memory only if not already loaded. */
2307 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2308 		err = ext4_mb_load_buddy(sb, group, &e4b);
2309 		if (err) {
2310 			seq_printf(seq, "#%-5u: I/O error\n", group);
2311 			return 0;
2312 		}
2313 		buddy_loaded = 1;
2314 	}
2315 
2316 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2317 
2318 	if (buddy_loaded)
2319 		ext4_mb_unload_buddy(&e4b);
2320 
2321 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2322 			sg.info.bb_fragments, sg.info.bb_first_free);
2323 	for (i = 0; i <= 13; i++)
2324 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2325 				sg.info.bb_counters[i] : 0);
2326 	seq_printf(seq, " ]\n");
2327 
2328 	return 0;
2329 }
2330 
2331 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2332 {
2333 }
2334 
2335 const struct seq_operations ext4_mb_seq_groups_ops = {
2336 	.start  = ext4_mb_seq_groups_start,
2337 	.next   = ext4_mb_seq_groups_next,
2338 	.stop   = ext4_mb_seq_groups_stop,
2339 	.show   = ext4_mb_seq_groups_show,
2340 };
2341 
2342 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2343 {
2344 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2346 
2347 	BUG_ON(!cachep);
2348 	return cachep;
2349 }
2350 
2351 /*
2352  * Allocate the top-level s_group_info array for the specified number
2353  * of groups
2354  */
2355 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2356 {
2357 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2358 	unsigned size;
2359 	struct ext4_group_info ***new_groupinfo;
2360 
2361 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2362 		EXT4_DESC_PER_BLOCK_BITS(sb);
2363 	if (size <= sbi->s_group_info_size)
2364 		return 0;
2365 
2366 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2367 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2368 	if (!new_groupinfo) {
2369 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2370 		return -ENOMEM;
2371 	}
2372 	if (sbi->s_group_info) {
2373 		memcpy(new_groupinfo, sbi->s_group_info,
2374 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2375 		kvfree(sbi->s_group_info);
2376 	}
2377 	sbi->s_group_info = new_groupinfo;
2378 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2379 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2380 		   sbi->s_group_info_size);
2381 	return 0;
2382 }
2383 
2384 /* Create and initialize ext4_group_info data for the given group. */
2385 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2386 			  struct ext4_group_desc *desc)
2387 {
2388 	int i;
2389 	int metalen = 0;
2390 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2391 	struct ext4_group_info **meta_group_info;
2392 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2393 
2394 	/*
2395 	 * First check if this group is the first of a reserved block.
2396 	 * If it's true, we have to allocate a new table of pointers
2397 	 * to ext4_group_info structures
2398 	 */
2399 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2400 		metalen = sizeof(*meta_group_info) <<
2401 			EXT4_DESC_PER_BLOCK_BITS(sb);
2402 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2403 		if (meta_group_info == NULL) {
2404 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2405 				 "for a buddy group");
2406 			goto exit_meta_group_info;
2407 		}
2408 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2409 			meta_group_info;
2410 	}
2411 
2412 	meta_group_info =
2413 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2414 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2415 
2416 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2417 	if (meta_group_info[i] == NULL) {
2418 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2419 		goto exit_group_info;
2420 	}
2421 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2422 		&(meta_group_info[i]->bb_state));
2423 
2424 	/*
2425 	 * initialize bb_free to be able to skip
2426 	 * empty groups without initialization
2427 	 */
2428 	if (ext4_has_group_desc_csum(sb) &&
2429 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2430 		meta_group_info[i]->bb_free =
2431 			ext4_free_clusters_after_init(sb, group, desc);
2432 	} else {
2433 		meta_group_info[i]->bb_free =
2434 			ext4_free_group_clusters(sb, desc);
2435 	}
2436 
2437 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2438 	init_rwsem(&meta_group_info[i]->alloc_sem);
2439 	meta_group_info[i]->bb_free_root = RB_ROOT;
2440 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2441 
2442 #ifdef DOUBLE_CHECK
2443 	{
2444 		struct buffer_head *bh;
2445 		meta_group_info[i]->bb_bitmap =
2446 			kmalloc(sb->s_blocksize, GFP_NOFS);
2447 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2448 		bh = ext4_read_block_bitmap(sb, group);
2449 		BUG_ON(IS_ERR_OR_NULL(bh));
2450 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2451 			sb->s_blocksize);
2452 		put_bh(bh);
2453 	}
2454 #endif
2455 
2456 	return 0;
2457 
2458 exit_group_info:
2459 	/* If a meta_group_info table has been allocated, release it now */
2460 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2461 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2462 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2463 	}
2464 exit_meta_group_info:
2465 	return -ENOMEM;
2466 } /* ext4_mb_add_groupinfo */
2467 
2468 static int ext4_mb_init_backend(struct super_block *sb)
2469 {
2470 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2471 	ext4_group_t i;
2472 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2473 	int err;
2474 	struct ext4_group_desc *desc;
2475 	struct kmem_cache *cachep;
2476 
2477 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2478 	if (err)
2479 		return err;
2480 
2481 	sbi->s_buddy_cache = new_inode(sb);
2482 	if (sbi->s_buddy_cache == NULL) {
2483 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2484 		goto err_freesgi;
2485 	}
2486 	/* To avoid potentially colliding with an valid on-disk inode number,
2487 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2488 	 * not in the inode hash, so it should never be found by iget(), but
2489 	 * this will avoid confusion if it ever shows up during debugging. */
2490 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2491 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2492 	for (i = 0; i < ngroups; i++) {
2493 		desc = ext4_get_group_desc(sb, i, NULL);
2494 		if (desc == NULL) {
2495 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2496 			goto err_freebuddy;
2497 		}
2498 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2499 			goto err_freebuddy;
2500 	}
2501 
2502 	return 0;
2503 
2504 err_freebuddy:
2505 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2506 	while (i-- > 0)
2507 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2508 	i = sbi->s_group_info_size;
2509 	while (i-- > 0)
2510 		kfree(sbi->s_group_info[i]);
2511 	iput(sbi->s_buddy_cache);
2512 err_freesgi:
2513 	kvfree(sbi->s_group_info);
2514 	return -ENOMEM;
2515 }
2516 
2517 static void ext4_groupinfo_destroy_slabs(void)
2518 {
2519 	int i;
2520 
2521 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2522 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2523 		ext4_groupinfo_caches[i] = NULL;
2524 	}
2525 }
2526 
2527 static int ext4_groupinfo_create_slab(size_t size)
2528 {
2529 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2530 	int slab_size;
2531 	int blocksize_bits = order_base_2(size);
2532 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2533 	struct kmem_cache *cachep;
2534 
2535 	if (cache_index >= NR_GRPINFO_CACHES)
2536 		return -EINVAL;
2537 
2538 	if (unlikely(cache_index < 0))
2539 		cache_index = 0;
2540 
2541 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2542 	if (ext4_groupinfo_caches[cache_index]) {
2543 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2544 		return 0;	/* Already created */
2545 	}
2546 
2547 	slab_size = offsetof(struct ext4_group_info,
2548 				bb_counters[blocksize_bits + 2]);
2549 
2550 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2551 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2552 					NULL);
2553 
2554 	ext4_groupinfo_caches[cache_index] = cachep;
2555 
2556 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2557 	if (!cachep) {
2558 		printk(KERN_EMERG
2559 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2560 		return -ENOMEM;
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 int ext4_mb_init(struct super_block *sb)
2567 {
2568 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 	unsigned i, j;
2570 	unsigned offset, offset_incr;
2571 	unsigned max;
2572 	int ret;
2573 
2574 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2575 
2576 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2577 	if (sbi->s_mb_offsets == NULL) {
2578 		ret = -ENOMEM;
2579 		goto out;
2580 	}
2581 
2582 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2583 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2584 	if (sbi->s_mb_maxs == NULL) {
2585 		ret = -ENOMEM;
2586 		goto out;
2587 	}
2588 
2589 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2590 	if (ret < 0)
2591 		goto out;
2592 
2593 	/* order 0 is regular bitmap */
2594 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2595 	sbi->s_mb_offsets[0] = 0;
2596 
2597 	i = 1;
2598 	offset = 0;
2599 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2600 	max = sb->s_blocksize << 2;
2601 	do {
2602 		sbi->s_mb_offsets[i] = offset;
2603 		sbi->s_mb_maxs[i] = max;
2604 		offset += offset_incr;
2605 		offset_incr = offset_incr >> 1;
2606 		max = max >> 1;
2607 		i++;
2608 	} while (i <= sb->s_blocksize_bits + 1);
2609 
2610 	spin_lock_init(&sbi->s_md_lock);
2611 	spin_lock_init(&sbi->s_bal_lock);
2612 	sbi->s_mb_free_pending = 0;
2613 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2614 
2615 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2616 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2617 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2618 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2619 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2620 	/*
2621 	 * The default group preallocation is 512, which for 4k block
2622 	 * sizes translates to 2 megabytes.  However for bigalloc file
2623 	 * systems, this is probably too big (i.e, if the cluster size
2624 	 * is 1 megabyte, then group preallocation size becomes half a
2625 	 * gigabyte!).  As a default, we will keep a two megabyte
2626 	 * group pralloc size for cluster sizes up to 64k, and after
2627 	 * that, we will force a minimum group preallocation size of
2628 	 * 32 clusters.  This translates to 8 megs when the cluster
2629 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2630 	 * which seems reasonable as a default.
2631 	 */
2632 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2633 				       sbi->s_cluster_bits, 32);
2634 	/*
2635 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2636 	 * to the lowest multiple of s_stripe which is bigger than
2637 	 * the s_mb_group_prealloc as determined above. We want
2638 	 * the preallocation size to be an exact multiple of the
2639 	 * RAID stripe size so that preallocations don't fragment
2640 	 * the stripes.
2641 	 */
2642 	if (sbi->s_stripe > 1) {
2643 		sbi->s_mb_group_prealloc = roundup(
2644 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2645 	}
2646 
2647 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2648 	if (sbi->s_locality_groups == NULL) {
2649 		ret = -ENOMEM;
2650 		goto out;
2651 	}
2652 	for_each_possible_cpu(i) {
2653 		struct ext4_locality_group *lg;
2654 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2655 		mutex_init(&lg->lg_mutex);
2656 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2657 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2658 		spin_lock_init(&lg->lg_prealloc_lock);
2659 	}
2660 
2661 	/* init file for buddy data */
2662 	ret = ext4_mb_init_backend(sb);
2663 	if (ret != 0)
2664 		goto out_free_locality_groups;
2665 
2666 	return 0;
2667 
2668 out_free_locality_groups:
2669 	free_percpu(sbi->s_locality_groups);
2670 	sbi->s_locality_groups = NULL;
2671 out:
2672 	kfree(sbi->s_mb_offsets);
2673 	sbi->s_mb_offsets = NULL;
2674 	kfree(sbi->s_mb_maxs);
2675 	sbi->s_mb_maxs = NULL;
2676 	return ret;
2677 }
2678 
2679 /* need to called with the ext4 group lock held */
2680 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2681 {
2682 	struct ext4_prealloc_space *pa;
2683 	struct list_head *cur, *tmp;
2684 	int count = 0;
2685 
2686 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2687 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2688 		list_del(&pa->pa_group_list);
2689 		count++;
2690 		kmem_cache_free(ext4_pspace_cachep, pa);
2691 	}
2692 	if (count)
2693 		mb_debug(1, "mballoc: %u PAs left\n", count);
2694 
2695 }
2696 
2697 int ext4_mb_release(struct super_block *sb)
2698 {
2699 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2700 	ext4_group_t i;
2701 	int num_meta_group_infos;
2702 	struct ext4_group_info *grinfo;
2703 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2704 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2705 
2706 	if (sbi->s_group_info) {
2707 		for (i = 0; i < ngroups; i++) {
2708 			grinfo = ext4_get_group_info(sb, i);
2709 #ifdef DOUBLE_CHECK
2710 			kfree(grinfo->bb_bitmap);
2711 #endif
2712 			ext4_lock_group(sb, i);
2713 			ext4_mb_cleanup_pa(grinfo);
2714 			ext4_unlock_group(sb, i);
2715 			kmem_cache_free(cachep, grinfo);
2716 		}
2717 		num_meta_group_infos = (ngroups +
2718 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2719 			EXT4_DESC_PER_BLOCK_BITS(sb);
2720 		for (i = 0; i < num_meta_group_infos; i++)
2721 			kfree(sbi->s_group_info[i]);
2722 		kvfree(sbi->s_group_info);
2723 	}
2724 	kfree(sbi->s_mb_offsets);
2725 	kfree(sbi->s_mb_maxs);
2726 	iput(sbi->s_buddy_cache);
2727 	if (sbi->s_mb_stats) {
2728 		ext4_msg(sb, KERN_INFO,
2729 		       "mballoc: %u blocks %u reqs (%u success)",
2730 				atomic_read(&sbi->s_bal_allocated),
2731 				atomic_read(&sbi->s_bal_reqs),
2732 				atomic_read(&sbi->s_bal_success));
2733 		ext4_msg(sb, KERN_INFO,
2734 		      "mballoc: %u extents scanned, %u goal hits, "
2735 				"%u 2^N hits, %u breaks, %u lost",
2736 				atomic_read(&sbi->s_bal_ex_scanned),
2737 				atomic_read(&sbi->s_bal_goals),
2738 				atomic_read(&sbi->s_bal_2orders),
2739 				atomic_read(&sbi->s_bal_breaks),
2740 				atomic_read(&sbi->s_mb_lost_chunks));
2741 		ext4_msg(sb, KERN_INFO,
2742 		       "mballoc: %lu generated and it took %Lu",
2743 				sbi->s_mb_buddies_generated,
2744 				sbi->s_mb_generation_time);
2745 		ext4_msg(sb, KERN_INFO,
2746 		       "mballoc: %u preallocated, %u discarded",
2747 				atomic_read(&sbi->s_mb_preallocated),
2748 				atomic_read(&sbi->s_mb_discarded));
2749 	}
2750 
2751 	free_percpu(sbi->s_locality_groups);
2752 
2753 	return 0;
2754 }
2755 
2756 static inline int ext4_issue_discard(struct super_block *sb,
2757 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2758 		struct bio **biop)
2759 {
2760 	ext4_fsblk_t discard_block;
2761 
2762 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2763 			 ext4_group_first_block_no(sb, block_group));
2764 	count = EXT4_C2B(EXT4_SB(sb), count);
2765 	trace_ext4_discard_blocks(sb,
2766 			(unsigned long long) discard_block, count);
2767 	if (biop) {
2768 		return __blkdev_issue_discard(sb->s_bdev,
2769 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2770 			(sector_t)count << (sb->s_blocksize_bits - 9),
2771 			GFP_NOFS, 0, biop);
2772 	} else
2773 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2774 }
2775 
2776 static void ext4_free_data_in_buddy(struct super_block *sb,
2777 				    struct ext4_free_data *entry)
2778 {
2779 	struct ext4_buddy e4b;
2780 	struct ext4_group_info *db;
2781 	int err, count = 0, count2 = 0;
2782 
2783 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2784 		 entry->efd_count, entry->efd_group, entry);
2785 
2786 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2787 	/* we expect to find existing buddy because it's pinned */
2788 	BUG_ON(err != 0);
2789 
2790 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2791 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2792 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2793 
2794 	db = e4b.bd_info;
2795 	/* there are blocks to put in buddy to make them really free */
2796 	count += entry->efd_count;
2797 	count2++;
2798 	ext4_lock_group(sb, entry->efd_group);
2799 	/* Take it out of per group rb tree */
2800 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2801 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2802 
2803 	/*
2804 	 * Clear the trimmed flag for the group so that the next
2805 	 * ext4_trim_fs can trim it.
2806 	 * If the volume is mounted with -o discard, online discard
2807 	 * is supported and the free blocks will be trimmed online.
2808 	 */
2809 	if (!test_opt(sb, DISCARD))
2810 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2811 
2812 	if (!db->bb_free_root.rb_node) {
2813 		/* No more items in the per group rb tree
2814 		 * balance refcounts from ext4_mb_free_metadata()
2815 		 */
2816 		put_page(e4b.bd_buddy_page);
2817 		put_page(e4b.bd_bitmap_page);
2818 	}
2819 	ext4_unlock_group(sb, entry->efd_group);
2820 	kmem_cache_free(ext4_free_data_cachep, entry);
2821 	ext4_mb_unload_buddy(&e4b);
2822 
2823 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2824 }
2825 
2826 /*
2827  * This function is called by the jbd2 layer once the commit has finished,
2828  * so we know we can free the blocks that were released with that commit.
2829  */
2830 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2831 {
2832 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2833 	struct ext4_free_data *entry, *tmp;
2834 	struct bio *discard_bio = NULL;
2835 	struct list_head freed_data_list;
2836 	struct list_head *cut_pos = NULL;
2837 	int err;
2838 
2839 	INIT_LIST_HEAD(&freed_data_list);
2840 
2841 	spin_lock(&sbi->s_md_lock);
2842 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2843 		if (entry->efd_tid != commit_tid)
2844 			break;
2845 		cut_pos = &entry->efd_list;
2846 	}
2847 	if (cut_pos)
2848 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2849 				  cut_pos);
2850 	spin_unlock(&sbi->s_md_lock);
2851 
2852 	if (test_opt(sb, DISCARD)) {
2853 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2854 			err = ext4_issue_discard(sb, entry->efd_group,
2855 						 entry->efd_start_cluster,
2856 						 entry->efd_count,
2857 						 &discard_bio);
2858 			if (err && err != -EOPNOTSUPP) {
2859 				ext4_msg(sb, KERN_WARNING, "discard request in"
2860 					 " group:%d block:%d count:%d failed"
2861 					 " with %d", entry->efd_group,
2862 					 entry->efd_start_cluster,
2863 					 entry->efd_count, err);
2864 			} else if (err == -EOPNOTSUPP)
2865 				break;
2866 		}
2867 
2868 		if (discard_bio) {
2869 			submit_bio_wait(discard_bio);
2870 			bio_put(discard_bio);
2871 		}
2872 	}
2873 
2874 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2875 		ext4_free_data_in_buddy(sb, entry);
2876 }
2877 
2878 int __init ext4_init_mballoc(void)
2879 {
2880 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2881 					SLAB_RECLAIM_ACCOUNT);
2882 	if (ext4_pspace_cachep == NULL)
2883 		return -ENOMEM;
2884 
2885 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2886 				    SLAB_RECLAIM_ACCOUNT);
2887 	if (ext4_ac_cachep == NULL) {
2888 		kmem_cache_destroy(ext4_pspace_cachep);
2889 		return -ENOMEM;
2890 	}
2891 
2892 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2893 					   SLAB_RECLAIM_ACCOUNT);
2894 	if (ext4_free_data_cachep == NULL) {
2895 		kmem_cache_destroy(ext4_pspace_cachep);
2896 		kmem_cache_destroy(ext4_ac_cachep);
2897 		return -ENOMEM;
2898 	}
2899 	return 0;
2900 }
2901 
2902 void ext4_exit_mballoc(void)
2903 {
2904 	/*
2905 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2906 	 * before destroying the slab cache.
2907 	 */
2908 	rcu_barrier();
2909 	kmem_cache_destroy(ext4_pspace_cachep);
2910 	kmem_cache_destroy(ext4_ac_cachep);
2911 	kmem_cache_destroy(ext4_free_data_cachep);
2912 	ext4_groupinfo_destroy_slabs();
2913 }
2914 
2915 
2916 /*
2917  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2918  * Returns 0 if success or error code
2919  */
2920 static noinline_for_stack int
2921 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2922 				handle_t *handle, unsigned int reserv_clstrs)
2923 {
2924 	struct buffer_head *bitmap_bh = NULL;
2925 	struct ext4_group_desc *gdp;
2926 	struct buffer_head *gdp_bh;
2927 	struct ext4_sb_info *sbi;
2928 	struct super_block *sb;
2929 	ext4_fsblk_t block;
2930 	int err, len;
2931 
2932 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2933 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2934 
2935 	sb = ac->ac_sb;
2936 	sbi = EXT4_SB(sb);
2937 
2938 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2939 	if (IS_ERR(bitmap_bh)) {
2940 		err = PTR_ERR(bitmap_bh);
2941 		bitmap_bh = NULL;
2942 		goto out_err;
2943 	}
2944 
2945 	BUFFER_TRACE(bitmap_bh, "getting write access");
2946 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2947 	if (err)
2948 		goto out_err;
2949 
2950 	err = -EIO;
2951 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2952 	if (!gdp)
2953 		goto out_err;
2954 
2955 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2956 			ext4_free_group_clusters(sb, gdp));
2957 
2958 	BUFFER_TRACE(gdp_bh, "get_write_access");
2959 	err = ext4_journal_get_write_access(handle, gdp_bh);
2960 	if (err)
2961 		goto out_err;
2962 
2963 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2964 
2965 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2966 	if (!ext4_data_block_valid(sbi, block, len)) {
2967 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2968 			   "fs metadata", block, block+len);
2969 		/* File system mounted not to panic on error
2970 		 * Fix the bitmap and return EFSCORRUPTED
2971 		 * We leak some of the blocks here.
2972 		 */
2973 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2974 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2975 			      ac->ac_b_ex.fe_len);
2976 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2977 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2978 		if (!err)
2979 			err = -EFSCORRUPTED;
2980 		goto out_err;
2981 	}
2982 
2983 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2984 #ifdef AGGRESSIVE_CHECK
2985 	{
2986 		int i;
2987 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2988 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2989 						bitmap_bh->b_data));
2990 		}
2991 	}
2992 #endif
2993 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2994 		      ac->ac_b_ex.fe_len);
2995 	if (ext4_has_group_desc_csum(sb) &&
2996 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2997 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2998 		ext4_free_group_clusters_set(sb, gdp,
2999 					     ext4_free_clusters_after_init(sb,
3000 						ac->ac_b_ex.fe_group, gdp));
3001 	}
3002 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3003 	ext4_free_group_clusters_set(sb, gdp, len);
3004 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3005 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3006 
3007 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3008 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3009 	/*
3010 	 * Now reduce the dirty block count also. Should not go negative
3011 	 */
3012 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3013 		/* release all the reserved blocks if non delalloc */
3014 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3015 				   reserv_clstrs);
3016 
3017 	if (sbi->s_log_groups_per_flex) {
3018 		ext4_group_t flex_group = ext4_flex_group(sbi,
3019 							  ac->ac_b_ex.fe_group);
3020 		atomic64_sub(ac->ac_b_ex.fe_len,
3021 			     &sbi->s_flex_groups[flex_group].free_clusters);
3022 	}
3023 
3024 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3025 	if (err)
3026 		goto out_err;
3027 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3028 
3029 out_err:
3030 	brelse(bitmap_bh);
3031 	return err;
3032 }
3033 
3034 /*
3035  * here we normalize request for locality group
3036  * Group request are normalized to s_mb_group_prealloc, which goes to
3037  * s_strip if we set the same via mount option.
3038  * s_mb_group_prealloc can be configured via
3039  * /sys/fs/ext4/<partition>/mb_group_prealloc
3040  *
3041  * XXX: should we try to preallocate more than the group has now?
3042  */
3043 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3044 {
3045 	struct super_block *sb = ac->ac_sb;
3046 	struct ext4_locality_group *lg = ac->ac_lg;
3047 
3048 	BUG_ON(lg == NULL);
3049 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3050 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3051 		current->pid, ac->ac_g_ex.fe_len);
3052 }
3053 
3054 /*
3055  * Normalization means making request better in terms of
3056  * size and alignment
3057  */
3058 static noinline_for_stack void
3059 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3060 				struct ext4_allocation_request *ar)
3061 {
3062 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3063 	int bsbits, max;
3064 	ext4_lblk_t end;
3065 	loff_t size, start_off;
3066 	loff_t orig_size __maybe_unused;
3067 	ext4_lblk_t start;
3068 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3069 	struct ext4_prealloc_space *pa;
3070 
3071 	/* do normalize only data requests, metadata requests
3072 	   do not need preallocation */
3073 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3074 		return;
3075 
3076 	/* sometime caller may want exact blocks */
3077 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3078 		return;
3079 
3080 	/* caller may indicate that preallocation isn't
3081 	 * required (it's a tail, for example) */
3082 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3083 		return;
3084 
3085 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3086 		ext4_mb_normalize_group_request(ac);
3087 		return ;
3088 	}
3089 
3090 	bsbits = ac->ac_sb->s_blocksize_bits;
3091 
3092 	/* first, let's learn actual file size
3093 	 * given current request is allocated */
3094 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3095 	size = size << bsbits;
3096 	if (size < i_size_read(ac->ac_inode))
3097 		size = i_size_read(ac->ac_inode);
3098 	orig_size = size;
3099 
3100 	/* max size of free chunks */
3101 	max = 2 << bsbits;
3102 
3103 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3104 		(req <= (size) || max <= (chunk_size))
3105 
3106 	/* first, try to predict filesize */
3107 	/* XXX: should this table be tunable? */
3108 	start_off = 0;
3109 	if (size <= 16 * 1024) {
3110 		size = 16 * 1024;
3111 	} else if (size <= 32 * 1024) {
3112 		size = 32 * 1024;
3113 	} else if (size <= 64 * 1024) {
3114 		size = 64 * 1024;
3115 	} else if (size <= 128 * 1024) {
3116 		size = 128 * 1024;
3117 	} else if (size <= 256 * 1024) {
3118 		size = 256 * 1024;
3119 	} else if (size <= 512 * 1024) {
3120 		size = 512 * 1024;
3121 	} else if (size <= 1024 * 1024) {
3122 		size = 1024 * 1024;
3123 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3124 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3125 						(21 - bsbits)) << 21;
3126 		size = 2 * 1024 * 1024;
3127 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3128 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3129 							(22 - bsbits)) << 22;
3130 		size = 4 * 1024 * 1024;
3131 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3132 					(8<<20)>>bsbits, max, 8 * 1024)) {
3133 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3134 							(23 - bsbits)) << 23;
3135 		size = 8 * 1024 * 1024;
3136 	} else {
3137 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3138 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3139 					      ac->ac_o_ex.fe_len) << bsbits;
3140 	}
3141 	size = size >> bsbits;
3142 	start = start_off >> bsbits;
3143 
3144 	/* don't cover already allocated blocks in selected range */
3145 	if (ar->pleft && start <= ar->lleft) {
3146 		size -= ar->lleft + 1 - start;
3147 		start = ar->lleft + 1;
3148 	}
3149 	if (ar->pright && start + size - 1 >= ar->lright)
3150 		size -= start + size - ar->lright;
3151 
3152 	/*
3153 	 * Trim allocation request for filesystems with artificially small
3154 	 * groups.
3155 	 */
3156 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3157 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3158 
3159 	end = start + size;
3160 
3161 	/* check we don't cross already preallocated blocks */
3162 	rcu_read_lock();
3163 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3164 		ext4_lblk_t pa_end;
3165 
3166 		if (pa->pa_deleted)
3167 			continue;
3168 		spin_lock(&pa->pa_lock);
3169 		if (pa->pa_deleted) {
3170 			spin_unlock(&pa->pa_lock);
3171 			continue;
3172 		}
3173 
3174 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3175 						  pa->pa_len);
3176 
3177 		/* PA must not overlap original request */
3178 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3179 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3180 
3181 		/* skip PAs this normalized request doesn't overlap with */
3182 		if (pa->pa_lstart >= end || pa_end <= start) {
3183 			spin_unlock(&pa->pa_lock);
3184 			continue;
3185 		}
3186 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3187 
3188 		/* adjust start or end to be adjacent to this pa */
3189 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3190 			BUG_ON(pa_end < start);
3191 			start = pa_end;
3192 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3193 			BUG_ON(pa->pa_lstart > end);
3194 			end = pa->pa_lstart;
3195 		}
3196 		spin_unlock(&pa->pa_lock);
3197 	}
3198 	rcu_read_unlock();
3199 	size = end - start;
3200 
3201 	/* XXX: extra loop to check we really don't overlap preallocations */
3202 	rcu_read_lock();
3203 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3204 		ext4_lblk_t pa_end;
3205 
3206 		spin_lock(&pa->pa_lock);
3207 		if (pa->pa_deleted == 0) {
3208 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3209 							  pa->pa_len);
3210 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3211 		}
3212 		spin_unlock(&pa->pa_lock);
3213 	}
3214 	rcu_read_unlock();
3215 
3216 	if (start + size <= ac->ac_o_ex.fe_logical &&
3217 			start > ac->ac_o_ex.fe_logical) {
3218 		ext4_msg(ac->ac_sb, KERN_ERR,
3219 			 "start %lu, size %lu, fe_logical %lu",
3220 			 (unsigned long) start, (unsigned long) size,
3221 			 (unsigned long) ac->ac_o_ex.fe_logical);
3222 		BUG();
3223 	}
3224 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3225 
3226 	/* now prepare goal request */
3227 
3228 	/* XXX: is it better to align blocks WRT to logical
3229 	 * placement or satisfy big request as is */
3230 	ac->ac_g_ex.fe_logical = start;
3231 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3232 
3233 	/* define goal start in order to merge */
3234 	if (ar->pright && (ar->lright == (start + size))) {
3235 		/* merge to the right */
3236 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3237 						&ac->ac_f_ex.fe_group,
3238 						&ac->ac_f_ex.fe_start);
3239 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3240 	}
3241 	if (ar->pleft && (ar->lleft + 1 == start)) {
3242 		/* merge to the left */
3243 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3244 						&ac->ac_f_ex.fe_group,
3245 						&ac->ac_f_ex.fe_start);
3246 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3247 	}
3248 
3249 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3250 		(unsigned) orig_size, (unsigned) start);
3251 }
3252 
3253 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3254 {
3255 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3256 
3257 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3258 		atomic_inc(&sbi->s_bal_reqs);
3259 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3260 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3261 			atomic_inc(&sbi->s_bal_success);
3262 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3263 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3264 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3265 			atomic_inc(&sbi->s_bal_goals);
3266 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3267 			atomic_inc(&sbi->s_bal_breaks);
3268 	}
3269 
3270 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3271 		trace_ext4_mballoc_alloc(ac);
3272 	else
3273 		trace_ext4_mballoc_prealloc(ac);
3274 }
3275 
3276 /*
3277  * Called on failure; free up any blocks from the inode PA for this
3278  * context.  We don't need this for MB_GROUP_PA because we only change
3279  * pa_free in ext4_mb_release_context(), but on failure, we've already
3280  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3281  */
3282 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3283 {
3284 	struct ext4_prealloc_space *pa = ac->ac_pa;
3285 	struct ext4_buddy e4b;
3286 	int err;
3287 
3288 	if (pa == NULL) {
3289 		if (ac->ac_f_ex.fe_len == 0)
3290 			return;
3291 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3292 		if (err) {
3293 			/*
3294 			 * This should never happen since we pin the
3295 			 * pages in the ext4_allocation_context so
3296 			 * ext4_mb_load_buddy() should never fail.
3297 			 */
3298 			WARN(1, "mb_load_buddy failed (%d)", err);
3299 			return;
3300 		}
3301 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3302 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3303 			       ac->ac_f_ex.fe_len);
3304 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3305 		ext4_mb_unload_buddy(&e4b);
3306 		return;
3307 	}
3308 	if (pa->pa_type == MB_INODE_PA)
3309 		pa->pa_free += ac->ac_b_ex.fe_len;
3310 }
3311 
3312 /*
3313  * use blocks preallocated to inode
3314  */
3315 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3316 				struct ext4_prealloc_space *pa)
3317 {
3318 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3319 	ext4_fsblk_t start;
3320 	ext4_fsblk_t end;
3321 	int len;
3322 
3323 	/* found preallocated blocks, use them */
3324 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3325 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3326 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3327 	len = EXT4_NUM_B2C(sbi, end - start);
3328 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3329 					&ac->ac_b_ex.fe_start);
3330 	ac->ac_b_ex.fe_len = len;
3331 	ac->ac_status = AC_STATUS_FOUND;
3332 	ac->ac_pa = pa;
3333 
3334 	BUG_ON(start < pa->pa_pstart);
3335 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3336 	BUG_ON(pa->pa_free < len);
3337 	pa->pa_free -= len;
3338 
3339 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3340 }
3341 
3342 /*
3343  * use blocks preallocated to locality group
3344  */
3345 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3346 				struct ext4_prealloc_space *pa)
3347 {
3348 	unsigned int len = ac->ac_o_ex.fe_len;
3349 
3350 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3351 					&ac->ac_b_ex.fe_group,
3352 					&ac->ac_b_ex.fe_start);
3353 	ac->ac_b_ex.fe_len = len;
3354 	ac->ac_status = AC_STATUS_FOUND;
3355 	ac->ac_pa = pa;
3356 
3357 	/* we don't correct pa_pstart or pa_plen here to avoid
3358 	 * possible race when the group is being loaded concurrently
3359 	 * instead we correct pa later, after blocks are marked
3360 	 * in on-disk bitmap -- see ext4_mb_release_context()
3361 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3362 	 */
3363 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3364 }
3365 
3366 /*
3367  * Return the prealloc space that have minimal distance
3368  * from the goal block. @cpa is the prealloc
3369  * space that is having currently known minimal distance
3370  * from the goal block.
3371  */
3372 static struct ext4_prealloc_space *
3373 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3374 			struct ext4_prealloc_space *pa,
3375 			struct ext4_prealloc_space *cpa)
3376 {
3377 	ext4_fsblk_t cur_distance, new_distance;
3378 
3379 	if (cpa == NULL) {
3380 		atomic_inc(&pa->pa_count);
3381 		return pa;
3382 	}
3383 	cur_distance = abs(goal_block - cpa->pa_pstart);
3384 	new_distance = abs(goal_block - pa->pa_pstart);
3385 
3386 	if (cur_distance <= new_distance)
3387 		return cpa;
3388 
3389 	/* drop the previous reference */
3390 	atomic_dec(&cpa->pa_count);
3391 	atomic_inc(&pa->pa_count);
3392 	return pa;
3393 }
3394 
3395 /*
3396  * search goal blocks in preallocated space
3397  */
3398 static noinline_for_stack int
3399 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3400 {
3401 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3402 	int order, i;
3403 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3404 	struct ext4_locality_group *lg;
3405 	struct ext4_prealloc_space *pa, *cpa = NULL;
3406 	ext4_fsblk_t goal_block;
3407 
3408 	/* only data can be preallocated */
3409 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3410 		return 0;
3411 
3412 	/* first, try per-file preallocation */
3413 	rcu_read_lock();
3414 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3415 
3416 		/* all fields in this condition don't change,
3417 		 * so we can skip locking for them */
3418 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3419 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3420 					       EXT4_C2B(sbi, pa->pa_len)))
3421 			continue;
3422 
3423 		/* non-extent files can't have physical blocks past 2^32 */
3424 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3425 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3426 		     EXT4_MAX_BLOCK_FILE_PHYS))
3427 			continue;
3428 
3429 		/* found preallocated blocks, use them */
3430 		spin_lock(&pa->pa_lock);
3431 		if (pa->pa_deleted == 0 && pa->pa_free) {
3432 			atomic_inc(&pa->pa_count);
3433 			ext4_mb_use_inode_pa(ac, pa);
3434 			spin_unlock(&pa->pa_lock);
3435 			ac->ac_criteria = 10;
3436 			rcu_read_unlock();
3437 			return 1;
3438 		}
3439 		spin_unlock(&pa->pa_lock);
3440 	}
3441 	rcu_read_unlock();
3442 
3443 	/* can we use group allocation? */
3444 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3445 		return 0;
3446 
3447 	/* inode may have no locality group for some reason */
3448 	lg = ac->ac_lg;
3449 	if (lg == NULL)
3450 		return 0;
3451 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3452 	if (order > PREALLOC_TB_SIZE - 1)
3453 		/* The max size of hash table is PREALLOC_TB_SIZE */
3454 		order = PREALLOC_TB_SIZE - 1;
3455 
3456 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3457 	/*
3458 	 * search for the prealloc space that is having
3459 	 * minimal distance from the goal block.
3460 	 */
3461 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3462 		rcu_read_lock();
3463 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3464 					pa_inode_list) {
3465 			spin_lock(&pa->pa_lock);
3466 			if (pa->pa_deleted == 0 &&
3467 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3468 
3469 				cpa = ext4_mb_check_group_pa(goal_block,
3470 								pa, cpa);
3471 			}
3472 			spin_unlock(&pa->pa_lock);
3473 		}
3474 		rcu_read_unlock();
3475 	}
3476 	if (cpa) {
3477 		ext4_mb_use_group_pa(ac, cpa);
3478 		ac->ac_criteria = 20;
3479 		return 1;
3480 	}
3481 	return 0;
3482 }
3483 
3484 /*
3485  * the function goes through all block freed in the group
3486  * but not yet committed and marks them used in in-core bitmap.
3487  * buddy must be generated from this bitmap
3488  * Need to be called with the ext4 group lock held
3489  */
3490 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3491 						ext4_group_t group)
3492 {
3493 	struct rb_node *n;
3494 	struct ext4_group_info *grp;
3495 	struct ext4_free_data *entry;
3496 
3497 	grp = ext4_get_group_info(sb, group);
3498 	n = rb_first(&(grp->bb_free_root));
3499 
3500 	while (n) {
3501 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3502 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3503 		n = rb_next(n);
3504 	}
3505 	return;
3506 }
3507 
3508 /*
3509  * the function goes through all preallocation in this group and marks them
3510  * used in in-core bitmap. buddy must be generated from this bitmap
3511  * Need to be called with ext4 group lock held
3512  */
3513 static noinline_for_stack
3514 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3515 					ext4_group_t group)
3516 {
3517 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3518 	struct ext4_prealloc_space *pa;
3519 	struct list_head *cur;
3520 	ext4_group_t groupnr;
3521 	ext4_grpblk_t start;
3522 	int preallocated = 0;
3523 	int len;
3524 
3525 	/* all form of preallocation discards first load group,
3526 	 * so the only competing code is preallocation use.
3527 	 * we don't need any locking here
3528 	 * notice we do NOT ignore preallocations with pa_deleted
3529 	 * otherwise we could leave used blocks available for
3530 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3531 	 * is dropping preallocation
3532 	 */
3533 	list_for_each(cur, &grp->bb_prealloc_list) {
3534 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3535 		spin_lock(&pa->pa_lock);
3536 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3537 					     &groupnr, &start);
3538 		len = pa->pa_len;
3539 		spin_unlock(&pa->pa_lock);
3540 		if (unlikely(len == 0))
3541 			continue;
3542 		BUG_ON(groupnr != group);
3543 		ext4_set_bits(bitmap, start, len);
3544 		preallocated += len;
3545 	}
3546 	mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3547 }
3548 
3549 static void ext4_mb_pa_callback(struct rcu_head *head)
3550 {
3551 	struct ext4_prealloc_space *pa;
3552 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3553 
3554 	BUG_ON(atomic_read(&pa->pa_count));
3555 	BUG_ON(pa->pa_deleted == 0);
3556 	kmem_cache_free(ext4_pspace_cachep, pa);
3557 }
3558 
3559 /*
3560  * drops a reference to preallocated space descriptor
3561  * if this was the last reference and the space is consumed
3562  */
3563 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3564 			struct super_block *sb, struct ext4_prealloc_space *pa)
3565 {
3566 	ext4_group_t grp;
3567 	ext4_fsblk_t grp_blk;
3568 
3569 	/* in this short window concurrent discard can set pa_deleted */
3570 	spin_lock(&pa->pa_lock);
3571 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3572 		spin_unlock(&pa->pa_lock);
3573 		return;
3574 	}
3575 
3576 	if (pa->pa_deleted == 1) {
3577 		spin_unlock(&pa->pa_lock);
3578 		return;
3579 	}
3580 
3581 	pa->pa_deleted = 1;
3582 	spin_unlock(&pa->pa_lock);
3583 
3584 	grp_blk = pa->pa_pstart;
3585 	/*
3586 	 * If doing group-based preallocation, pa_pstart may be in the
3587 	 * next group when pa is used up
3588 	 */
3589 	if (pa->pa_type == MB_GROUP_PA)
3590 		grp_blk--;
3591 
3592 	grp = ext4_get_group_number(sb, grp_blk);
3593 
3594 	/*
3595 	 * possible race:
3596 	 *
3597 	 *  P1 (buddy init)			P2 (regular allocation)
3598 	 *					find block B in PA
3599 	 *  copy on-disk bitmap to buddy
3600 	 *  					mark B in on-disk bitmap
3601 	 *					drop PA from group
3602 	 *  mark all PAs in buddy
3603 	 *
3604 	 * thus, P1 initializes buddy with B available. to prevent this
3605 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3606 	 * against that pair
3607 	 */
3608 	ext4_lock_group(sb, grp);
3609 	list_del(&pa->pa_group_list);
3610 	ext4_unlock_group(sb, grp);
3611 
3612 	spin_lock(pa->pa_obj_lock);
3613 	list_del_rcu(&pa->pa_inode_list);
3614 	spin_unlock(pa->pa_obj_lock);
3615 
3616 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3617 }
3618 
3619 /*
3620  * creates new preallocated space for given inode
3621  */
3622 static noinline_for_stack int
3623 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3624 {
3625 	struct super_block *sb = ac->ac_sb;
3626 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3627 	struct ext4_prealloc_space *pa;
3628 	struct ext4_group_info *grp;
3629 	struct ext4_inode_info *ei;
3630 
3631 	/* preallocate only when found space is larger then requested */
3632 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3633 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3634 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3635 
3636 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3637 	if (pa == NULL)
3638 		return -ENOMEM;
3639 
3640 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3641 		int winl;
3642 		int wins;
3643 		int win;
3644 		int offs;
3645 
3646 		/* we can't allocate as much as normalizer wants.
3647 		 * so, found space must get proper lstart
3648 		 * to cover original request */
3649 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3650 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3651 
3652 		/* we're limited by original request in that
3653 		 * logical block must be covered any way
3654 		 * winl is window we can move our chunk within */
3655 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3656 
3657 		/* also, we should cover whole original request */
3658 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3659 
3660 		/* the smallest one defines real window */
3661 		win = min(winl, wins);
3662 
3663 		offs = ac->ac_o_ex.fe_logical %
3664 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3665 		if (offs && offs < win)
3666 			win = offs;
3667 
3668 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3669 			EXT4_NUM_B2C(sbi, win);
3670 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3671 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3672 	}
3673 
3674 	/* preallocation can change ac_b_ex, thus we store actually
3675 	 * allocated blocks for history */
3676 	ac->ac_f_ex = ac->ac_b_ex;
3677 
3678 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3679 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3680 	pa->pa_len = ac->ac_b_ex.fe_len;
3681 	pa->pa_free = pa->pa_len;
3682 	atomic_set(&pa->pa_count, 1);
3683 	spin_lock_init(&pa->pa_lock);
3684 	INIT_LIST_HEAD(&pa->pa_inode_list);
3685 	INIT_LIST_HEAD(&pa->pa_group_list);
3686 	pa->pa_deleted = 0;
3687 	pa->pa_type = MB_INODE_PA;
3688 
3689 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3690 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3691 	trace_ext4_mb_new_inode_pa(ac, pa);
3692 
3693 	ext4_mb_use_inode_pa(ac, pa);
3694 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3695 
3696 	ei = EXT4_I(ac->ac_inode);
3697 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3698 
3699 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3700 	pa->pa_inode = ac->ac_inode;
3701 
3702 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3703 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3704 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3705 
3706 	spin_lock(pa->pa_obj_lock);
3707 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3708 	spin_unlock(pa->pa_obj_lock);
3709 
3710 	return 0;
3711 }
3712 
3713 /*
3714  * creates new preallocated space for locality group inodes belongs to
3715  */
3716 static noinline_for_stack int
3717 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3718 {
3719 	struct super_block *sb = ac->ac_sb;
3720 	struct ext4_locality_group *lg;
3721 	struct ext4_prealloc_space *pa;
3722 	struct ext4_group_info *grp;
3723 
3724 	/* preallocate only when found space is larger then requested */
3725 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3726 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3727 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3728 
3729 	BUG_ON(ext4_pspace_cachep == NULL);
3730 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3731 	if (pa == NULL)
3732 		return -ENOMEM;
3733 
3734 	/* preallocation can change ac_b_ex, thus we store actually
3735 	 * allocated blocks for history */
3736 	ac->ac_f_ex = ac->ac_b_ex;
3737 
3738 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3739 	pa->pa_lstart = pa->pa_pstart;
3740 	pa->pa_len = ac->ac_b_ex.fe_len;
3741 	pa->pa_free = pa->pa_len;
3742 	atomic_set(&pa->pa_count, 1);
3743 	spin_lock_init(&pa->pa_lock);
3744 	INIT_LIST_HEAD(&pa->pa_inode_list);
3745 	INIT_LIST_HEAD(&pa->pa_group_list);
3746 	pa->pa_deleted = 0;
3747 	pa->pa_type = MB_GROUP_PA;
3748 
3749 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3750 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3751 	trace_ext4_mb_new_group_pa(ac, pa);
3752 
3753 	ext4_mb_use_group_pa(ac, pa);
3754 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3755 
3756 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3757 	lg = ac->ac_lg;
3758 	BUG_ON(lg == NULL);
3759 
3760 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3761 	pa->pa_inode = NULL;
3762 
3763 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3764 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3765 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3766 
3767 	/*
3768 	 * We will later add the new pa to the right bucket
3769 	 * after updating the pa_free in ext4_mb_release_context
3770 	 */
3771 	return 0;
3772 }
3773 
3774 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3775 {
3776 	int err;
3777 
3778 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3779 		err = ext4_mb_new_group_pa(ac);
3780 	else
3781 		err = ext4_mb_new_inode_pa(ac);
3782 	return err;
3783 }
3784 
3785 /*
3786  * finds all unused blocks in on-disk bitmap, frees them in
3787  * in-core bitmap and buddy.
3788  * @pa must be unlinked from inode and group lists, so that
3789  * nobody else can find/use it.
3790  * the caller MUST hold group/inode locks.
3791  * TODO: optimize the case when there are no in-core structures yet
3792  */
3793 static noinline_for_stack int
3794 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3795 			struct ext4_prealloc_space *pa)
3796 {
3797 	struct super_block *sb = e4b->bd_sb;
3798 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3799 	unsigned int end;
3800 	unsigned int next;
3801 	ext4_group_t group;
3802 	ext4_grpblk_t bit;
3803 	unsigned long long grp_blk_start;
3804 	int free = 0;
3805 
3806 	BUG_ON(pa->pa_deleted == 0);
3807 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3808 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3809 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3810 	end = bit + pa->pa_len;
3811 
3812 	while (bit < end) {
3813 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3814 		if (bit >= end)
3815 			break;
3816 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3817 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3818 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3819 			 (unsigned) next - bit, (unsigned) group);
3820 		free += next - bit;
3821 
3822 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3823 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3824 						    EXT4_C2B(sbi, bit)),
3825 					       next - bit);
3826 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3827 		bit = next + 1;
3828 	}
3829 	if (free != pa->pa_free) {
3830 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3831 			 "pa %p: logic %lu, phys. %lu, len %lu",
3832 			 pa, (unsigned long) pa->pa_lstart,
3833 			 (unsigned long) pa->pa_pstart,
3834 			 (unsigned long) pa->pa_len);
3835 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3836 					free, pa->pa_free);
3837 		/*
3838 		 * pa is already deleted so we use the value obtained
3839 		 * from the bitmap and continue.
3840 		 */
3841 	}
3842 	atomic_add(free, &sbi->s_mb_discarded);
3843 
3844 	return 0;
3845 }
3846 
3847 static noinline_for_stack int
3848 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3849 				struct ext4_prealloc_space *pa)
3850 {
3851 	struct super_block *sb = e4b->bd_sb;
3852 	ext4_group_t group;
3853 	ext4_grpblk_t bit;
3854 
3855 	trace_ext4_mb_release_group_pa(sb, pa);
3856 	BUG_ON(pa->pa_deleted == 0);
3857 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3858 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3859 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3860 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3861 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3862 
3863 	return 0;
3864 }
3865 
3866 /*
3867  * releases all preallocations in given group
3868  *
3869  * first, we need to decide discard policy:
3870  * - when do we discard
3871  *   1) ENOSPC
3872  * - how many do we discard
3873  *   1) how many requested
3874  */
3875 static noinline_for_stack int
3876 ext4_mb_discard_group_preallocations(struct super_block *sb,
3877 					ext4_group_t group, int needed)
3878 {
3879 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3880 	struct buffer_head *bitmap_bh = NULL;
3881 	struct ext4_prealloc_space *pa, *tmp;
3882 	struct list_head list;
3883 	struct ext4_buddy e4b;
3884 	int err;
3885 	int busy = 0;
3886 	int free = 0;
3887 
3888 	mb_debug(1, "discard preallocation for group %u\n", group);
3889 
3890 	if (list_empty(&grp->bb_prealloc_list))
3891 		return 0;
3892 
3893 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3894 	if (IS_ERR(bitmap_bh)) {
3895 		err = PTR_ERR(bitmap_bh);
3896 		ext4_error(sb, "Error %d reading block bitmap for %u",
3897 			   err, group);
3898 		return 0;
3899 	}
3900 
3901 	err = ext4_mb_load_buddy(sb, group, &e4b);
3902 	if (err) {
3903 		ext4_warning(sb, "Error %d loading buddy information for %u",
3904 			     err, group);
3905 		put_bh(bitmap_bh);
3906 		return 0;
3907 	}
3908 
3909 	if (needed == 0)
3910 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3911 
3912 	INIT_LIST_HEAD(&list);
3913 repeat:
3914 	ext4_lock_group(sb, group);
3915 	list_for_each_entry_safe(pa, tmp,
3916 				&grp->bb_prealloc_list, pa_group_list) {
3917 		spin_lock(&pa->pa_lock);
3918 		if (atomic_read(&pa->pa_count)) {
3919 			spin_unlock(&pa->pa_lock);
3920 			busy = 1;
3921 			continue;
3922 		}
3923 		if (pa->pa_deleted) {
3924 			spin_unlock(&pa->pa_lock);
3925 			continue;
3926 		}
3927 
3928 		/* seems this one can be freed ... */
3929 		pa->pa_deleted = 1;
3930 
3931 		/* we can trust pa_free ... */
3932 		free += pa->pa_free;
3933 
3934 		spin_unlock(&pa->pa_lock);
3935 
3936 		list_del(&pa->pa_group_list);
3937 		list_add(&pa->u.pa_tmp_list, &list);
3938 	}
3939 
3940 	/* if we still need more blocks and some PAs were used, try again */
3941 	if (free < needed && busy) {
3942 		busy = 0;
3943 		ext4_unlock_group(sb, group);
3944 		cond_resched();
3945 		goto repeat;
3946 	}
3947 
3948 	/* found anything to free? */
3949 	if (list_empty(&list)) {
3950 		BUG_ON(free != 0);
3951 		goto out;
3952 	}
3953 
3954 	/* now free all selected PAs */
3955 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3956 
3957 		/* remove from object (inode or locality group) */
3958 		spin_lock(pa->pa_obj_lock);
3959 		list_del_rcu(&pa->pa_inode_list);
3960 		spin_unlock(pa->pa_obj_lock);
3961 
3962 		if (pa->pa_type == MB_GROUP_PA)
3963 			ext4_mb_release_group_pa(&e4b, pa);
3964 		else
3965 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3966 
3967 		list_del(&pa->u.pa_tmp_list);
3968 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3969 	}
3970 
3971 out:
3972 	ext4_unlock_group(sb, group);
3973 	ext4_mb_unload_buddy(&e4b);
3974 	put_bh(bitmap_bh);
3975 	return free;
3976 }
3977 
3978 /*
3979  * releases all non-used preallocated blocks for given inode
3980  *
3981  * It's important to discard preallocations under i_data_sem
3982  * We don't want another block to be served from the prealloc
3983  * space when we are discarding the inode prealloc space.
3984  *
3985  * FIXME!! Make sure it is valid at all the call sites
3986  */
3987 void ext4_discard_preallocations(struct inode *inode)
3988 {
3989 	struct ext4_inode_info *ei = EXT4_I(inode);
3990 	struct super_block *sb = inode->i_sb;
3991 	struct buffer_head *bitmap_bh = NULL;
3992 	struct ext4_prealloc_space *pa, *tmp;
3993 	ext4_group_t group = 0;
3994 	struct list_head list;
3995 	struct ext4_buddy e4b;
3996 	int err;
3997 
3998 	if (!S_ISREG(inode->i_mode)) {
3999 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4000 		return;
4001 	}
4002 
4003 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4004 	trace_ext4_discard_preallocations(inode);
4005 
4006 	INIT_LIST_HEAD(&list);
4007 
4008 repeat:
4009 	/* first, collect all pa's in the inode */
4010 	spin_lock(&ei->i_prealloc_lock);
4011 	while (!list_empty(&ei->i_prealloc_list)) {
4012 		pa = list_entry(ei->i_prealloc_list.next,
4013 				struct ext4_prealloc_space, pa_inode_list);
4014 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4015 		spin_lock(&pa->pa_lock);
4016 		if (atomic_read(&pa->pa_count)) {
4017 			/* this shouldn't happen often - nobody should
4018 			 * use preallocation while we're discarding it */
4019 			spin_unlock(&pa->pa_lock);
4020 			spin_unlock(&ei->i_prealloc_lock);
4021 			ext4_msg(sb, KERN_ERR,
4022 				 "uh-oh! used pa while discarding");
4023 			WARN_ON(1);
4024 			schedule_timeout_uninterruptible(HZ);
4025 			goto repeat;
4026 
4027 		}
4028 		if (pa->pa_deleted == 0) {
4029 			pa->pa_deleted = 1;
4030 			spin_unlock(&pa->pa_lock);
4031 			list_del_rcu(&pa->pa_inode_list);
4032 			list_add(&pa->u.pa_tmp_list, &list);
4033 			continue;
4034 		}
4035 
4036 		/* someone is deleting pa right now */
4037 		spin_unlock(&pa->pa_lock);
4038 		spin_unlock(&ei->i_prealloc_lock);
4039 
4040 		/* we have to wait here because pa_deleted
4041 		 * doesn't mean pa is already unlinked from
4042 		 * the list. as we might be called from
4043 		 * ->clear_inode() the inode will get freed
4044 		 * and concurrent thread which is unlinking
4045 		 * pa from inode's list may access already
4046 		 * freed memory, bad-bad-bad */
4047 
4048 		/* XXX: if this happens too often, we can
4049 		 * add a flag to force wait only in case
4050 		 * of ->clear_inode(), but not in case of
4051 		 * regular truncate */
4052 		schedule_timeout_uninterruptible(HZ);
4053 		goto repeat;
4054 	}
4055 	spin_unlock(&ei->i_prealloc_lock);
4056 
4057 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4058 		BUG_ON(pa->pa_type != MB_INODE_PA);
4059 		group = ext4_get_group_number(sb, pa->pa_pstart);
4060 
4061 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4062 					     GFP_NOFS|__GFP_NOFAIL);
4063 		if (err) {
4064 			ext4_error(sb, "Error %d loading buddy information for %u",
4065 				   err, group);
4066 			continue;
4067 		}
4068 
4069 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4070 		if (IS_ERR(bitmap_bh)) {
4071 			err = PTR_ERR(bitmap_bh);
4072 			ext4_error(sb, "Error %d reading block bitmap for %u",
4073 					err, group);
4074 			ext4_mb_unload_buddy(&e4b);
4075 			continue;
4076 		}
4077 
4078 		ext4_lock_group(sb, group);
4079 		list_del(&pa->pa_group_list);
4080 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4081 		ext4_unlock_group(sb, group);
4082 
4083 		ext4_mb_unload_buddy(&e4b);
4084 		put_bh(bitmap_bh);
4085 
4086 		list_del(&pa->u.pa_tmp_list);
4087 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4088 	}
4089 }
4090 
4091 #ifdef CONFIG_EXT4_DEBUG
4092 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4093 {
4094 	struct super_block *sb = ac->ac_sb;
4095 	ext4_group_t ngroups, i;
4096 
4097 	if (!ext4_mballoc_debug ||
4098 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4099 		return;
4100 
4101 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4102 			" Allocation context details:");
4103 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4104 			ac->ac_status, ac->ac_flags);
4105 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4106 		 	"goal %lu/%lu/%lu@%lu, "
4107 			"best %lu/%lu/%lu@%lu cr %d",
4108 			(unsigned long)ac->ac_o_ex.fe_group,
4109 			(unsigned long)ac->ac_o_ex.fe_start,
4110 			(unsigned long)ac->ac_o_ex.fe_len,
4111 			(unsigned long)ac->ac_o_ex.fe_logical,
4112 			(unsigned long)ac->ac_g_ex.fe_group,
4113 			(unsigned long)ac->ac_g_ex.fe_start,
4114 			(unsigned long)ac->ac_g_ex.fe_len,
4115 			(unsigned long)ac->ac_g_ex.fe_logical,
4116 			(unsigned long)ac->ac_b_ex.fe_group,
4117 			(unsigned long)ac->ac_b_ex.fe_start,
4118 			(unsigned long)ac->ac_b_ex.fe_len,
4119 			(unsigned long)ac->ac_b_ex.fe_logical,
4120 			(int)ac->ac_criteria);
4121 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4122 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4123 	ngroups = ext4_get_groups_count(sb);
4124 	for (i = 0; i < ngroups; i++) {
4125 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4126 		struct ext4_prealloc_space *pa;
4127 		ext4_grpblk_t start;
4128 		struct list_head *cur;
4129 		ext4_lock_group(sb, i);
4130 		list_for_each(cur, &grp->bb_prealloc_list) {
4131 			pa = list_entry(cur, struct ext4_prealloc_space,
4132 					pa_group_list);
4133 			spin_lock(&pa->pa_lock);
4134 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4135 						     NULL, &start);
4136 			spin_unlock(&pa->pa_lock);
4137 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4138 			       start, pa->pa_len);
4139 		}
4140 		ext4_unlock_group(sb, i);
4141 
4142 		if (grp->bb_free == 0)
4143 			continue;
4144 		printk(KERN_ERR "%u: %d/%d \n",
4145 		       i, grp->bb_free, grp->bb_fragments);
4146 	}
4147 	printk(KERN_ERR "\n");
4148 }
4149 #else
4150 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4151 {
4152 	return;
4153 }
4154 #endif
4155 
4156 /*
4157  * We use locality group preallocation for small size file. The size of the
4158  * file is determined by the current size or the resulting size after
4159  * allocation which ever is larger
4160  *
4161  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4162  */
4163 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4164 {
4165 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4166 	int bsbits = ac->ac_sb->s_blocksize_bits;
4167 	loff_t size, isize;
4168 
4169 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4170 		return;
4171 
4172 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4173 		return;
4174 
4175 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4176 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4177 		>> bsbits;
4178 
4179 	if ((size == isize) &&
4180 	    !ext4_fs_is_busy(sbi) &&
4181 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4182 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4183 		return;
4184 	}
4185 
4186 	if (sbi->s_mb_group_prealloc <= 0) {
4187 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4188 		return;
4189 	}
4190 
4191 	/* don't use group allocation for large files */
4192 	size = max(size, isize);
4193 	if (size > sbi->s_mb_stream_request) {
4194 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4195 		return;
4196 	}
4197 
4198 	BUG_ON(ac->ac_lg != NULL);
4199 	/*
4200 	 * locality group prealloc space are per cpu. The reason for having
4201 	 * per cpu locality group is to reduce the contention between block
4202 	 * request from multiple CPUs.
4203 	 */
4204 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4205 
4206 	/* we're going to use group allocation */
4207 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4208 
4209 	/* serialize all allocations in the group */
4210 	mutex_lock(&ac->ac_lg->lg_mutex);
4211 }
4212 
4213 static noinline_for_stack int
4214 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4215 				struct ext4_allocation_request *ar)
4216 {
4217 	struct super_block *sb = ar->inode->i_sb;
4218 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4219 	struct ext4_super_block *es = sbi->s_es;
4220 	ext4_group_t group;
4221 	unsigned int len;
4222 	ext4_fsblk_t goal;
4223 	ext4_grpblk_t block;
4224 
4225 	/* we can't allocate > group size */
4226 	len = ar->len;
4227 
4228 	/* just a dirty hack to filter too big requests  */
4229 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4230 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4231 
4232 	/* start searching from the goal */
4233 	goal = ar->goal;
4234 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4235 			goal >= ext4_blocks_count(es))
4236 		goal = le32_to_cpu(es->s_first_data_block);
4237 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4238 
4239 	/* set up allocation goals */
4240 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4241 	ac->ac_status = AC_STATUS_CONTINUE;
4242 	ac->ac_sb = sb;
4243 	ac->ac_inode = ar->inode;
4244 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4245 	ac->ac_o_ex.fe_group = group;
4246 	ac->ac_o_ex.fe_start = block;
4247 	ac->ac_o_ex.fe_len = len;
4248 	ac->ac_g_ex = ac->ac_o_ex;
4249 	ac->ac_flags = ar->flags;
4250 
4251 	/* we have to define context: we'll we work with a file or
4252 	 * locality group. this is a policy, actually */
4253 	ext4_mb_group_or_file(ac);
4254 
4255 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4256 			"left: %u/%u, right %u/%u to %swritable\n",
4257 			(unsigned) ar->len, (unsigned) ar->logical,
4258 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4259 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4260 			(unsigned) ar->lright, (unsigned) ar->pright,
4261 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4262 	return 0;
4263 
4264 }
4265 
4266 static noinline_for_stack void
4267 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4268 					struct ext4_locality_group *lg,
4269 					int order, int total_entries)
4270 {
4271 	ext4_group_t group = 0;
4272 	struct ext4_buddy e4b;
4273 	struct list_head discard_list;
4274 	struct ext4_prealloc_space *pa, *tmp;
4275 
4276 	mb_debug(1, "discard locality group preallocation\n");
4277 
4278 	INIT_LIST_HEAD(&discard_list);
4279 
4280 	spin_lock(&lg->lg_prealloc_lock);
4281 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4282 						pa_inode_list) {
4283 		spin_lock(&pa->pa_lock);
4284 		if (atomic_read(&pa->pa_count)) {
4285 			/*
4286 			 * This is the pa that we just used
4287 			 * for block allocation. So don't
4288 			 * free that
4289 			 */
4290 			spin_unlock(&pa->pa_lock);
4291 			continue;
4292 		}
4293 		if (pa->pa_deleted) {
4294 			spin_unlock(&pa->pa_lock);
4295 			continue;
4296 		}
4297 		/* only lg prealloc space */
4298 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4299 
4300 		/* seems this one can be freed ... */
4301 		pa->pa_deleted = 1;
4302 		spin_unlock(&pa->pa_lock);
4303 
4304 		list_del_rcu(&pa->pa_inode_list);
4305 		list_add(&pa->u.pa_tmp_list, &discard_list);
4306 
4307 		total_entries--;
4308 		if (total_entries <= 5) {
4309 			/*
4310 			 * we want to keep only 5 entries
4311 			 * allowing it to grow to 8. This
4312 			 * mak sure we don't call discard
4313 			 * soon for this list.
4314 			 */
4315 			break;
4316 		}
4317 	}
4318 	spin_unlock(&lg->lg_prealloc_lock);
4319 
4320 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4321 		int err;
4322 
4323 		group = ext4_get_group_number(sb, pa->pa_pstart);
4324 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4325 					     GFP_NOFS|__GFP_NOFAIL);
4326 		if (err) {
4327 			ext4_error(sb, "Error %d loading buddy information for %u",
4328 				   err, group);
4329 			continue;
4330 		}
4331 		ext4_lock_group(sb, group);
4332 		list_del(&pa->pa_group_list);
4333 		ext4_mb_release_group_pa(&e4b, pa);
4334 		ext4_unlock_group(sb, group);
4335 
4336 		ext4_mb_unload_buddy(&e4b);
4337 		list_del(&pa->u.pa_tmp_list);
4338 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4339 	}
4340 }
4341 
4342 /*
4343  * We have incremented pa_count. So it cannot be freed at this
4344  * point. Also we hold lg_mutex. So no parallel allocation is
4345  * possible from this lg. That means pa_free cannot be updated.
4346  *
4347  * A parallel ext4_mb_discard_group_preallocations is possible.
4348  * which can cause the lg_prealloc_list to be updated.
4349  */
4350 
4351 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4352 {
4353 	int order, added = 0, lg_prealloc_count = 1;
4354 	struct super_block *sb = ac->ac_sb;
4355 	struct ext4_locality_group *lg = ac->ac_lg;
4356 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4357 
4358 	order = fls(pa->pa_free) - 1;
4359 	if (order > PREALLOC_TB_SIZE - 1)
4360 		/* The max size of hash table is PREALLOC_TB_SIZE */
4361 		order = PREALLOC_TB_SIZE - 1;
4362 	/* Add the prealloc space to lg */
4363 	spin_lock(&lg->lg_prealloc_lock);
4364 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4365 						pa_inode_list) {
4366 		spin_lock(&tmp_pa->pa_lock);
4367 		if (tmp_pa->pa_deleted) {
4368 			spin_unlock(&tmp_pa->pa_lock);
4369 			continue;
4370 		}
4371 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4372 			/* Add to the tail of the previous entry */
4373 			list_add_tail_rcu(&pa->pa_inode_list,
4374 						&tmp_pa->pa_inode_list);
4375 			added = 1;
4376 			/*
4377 			 * we want to count the total
4378 			 * number of entries in the list
4379 			 */
4380 		}
4381 		spin_unlock(&tmp_pa->pa_lock);
4382 		lg_prealloc_count++;
4383 	}
4384 	if (!added)
4385 		list_add_tail_rcu(&pa->pa_inode_list,
4386 					&lg->lg_prealloc_list[order]);
4387 	spin_unlock(&lg->lg_prealloc_lock);
4388 
4389 	/* Now trim the list to be not more than 8 elements */
4390 	if (lg_prealloc_count > 8) {
4391 		ext4_mb_discard_lg_preallocations(sb, lg,
4392 						  order, lg_prealloc_count);
4393 		return;
4394 	}
4395 	return ;
4396 }
4397 
4398 /*
4399  * release all resource we used in allocation
4400  */
4401 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4402 {
4403 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4404 	struct ext4_prealloc_space *pa = ac->ac_pa;
4405 	if (pa) {
4406 		if (pa->pa_type == MB_GROUP_PA) {
4407 			/* see comment in ext4_mb_use_group_pa() */
4408 			spin_lock(&pa->pa_lock);
4409 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4410 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4411 			pa->pa_free -= ac->ac_b_ex.fe_len;
4412 			pa->pa_len -= ac->ac_b_ex.fe_len;
4413 			spin_unlock(&pa->pa_lock);
4414 		}
4415 	}
4416 	if (pa) {
4417 		/*
4418 		 * We want to add the pa to the right bucket.
4419 		 * Remove it from the list and while adding
4420 		 * make sure the list to which we are adding
4421 		 * doesn't grow big.
4422 		 */
4423 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4424 			spin_lock(pa->pa_obj_lock);
4425 			list_del_rcu(&pa->pa_inode_list);
4426 			spin_unlock(pa->pa_obj_lock);
4427 			ext4_mb_add_n_trim(ac);
4428 		}
4429 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4430 	}
4431 	if (ac->ac_bitmap_page)
4432 		put_page(ac->ac_bitmap_page);
4433 	if (ac->ac_buddy_page)
4434 		put_page(ac->ac_buddy_page);
4435 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4436 		mutex_unlock(&ac->ac_lg->lg_mutex);
4437 	ext4_mb_collect_stats(ac);
4438 	return 0;
4439 }
4440 
4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4442 {
4443 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4444 	int ret;
4445 	int freed = 0;
4446 
4447 	trace_ext4_mb_discard_preallocations(sb, needed);
4448 	for (i = 0; i < ngroups && needed > 0; i++) {
4449 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4450 		freed += ret;
4451 		needed -= ret;
4452 	}
4453 
4454 	return freed;
4455 }
4456 
4457 /*
4458  * Main entry point into mballoc to allocate blocks
4459  * it tries to use preallocation first, then falls back
4460  * to usual allocation
4461  */
4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4463 				struct ext4_allocation_request *ar, int *errp)
4464 {
4465 	int freed;
4466 	struct ext4_allocation_context *ac = NULL;
4467 	struct ext4_sb_info *sbi;
4468 	struct super_block *sb;
4469 	ext4_fsblk_t block = 0;
4470 	unsigned int inquota = 0;
4471 	unsigned int reserv_clstrs = 0;
4472 
4473 	might_sleep();
4474 	sb = ar->inode->i_sb;
4475 	sbi = EXT4_SB(sb);
4476 
4477 	trace_ext4_request_blocks(ar);
4478 
4479 	/* Allow to use superuser reservation for quota file */
4480 	if (ext4_is_quota_file(ar->inode))
4481 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4482 
4483 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4484 		/* Without delayed allocation we need to verify
4485 		 * there is enough free blocks to do block allocation
4486 		 * and verify allocation doesn't exceed the quota limits.
4487 		 */
4488 		while (ar->len &&
4489 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4490 
4491 			/* let others to free the space */
4492 			cond_resched();
4493 			ar->len = ar->len >> 1;
4494 		}
4495 		if (!ar->len) {
4496 			*errp = -ENOSPC;
4497 			return 0;
4498 		}
4499 		reserv_clstrs = ar->len;
4500 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4501 			dquot_alloc_block_nofail(ar->inode,
4502 						 EXT4_C2B(sbi, ar->len));
4503 		} else {
4504 			while (ar->len &&
4505 				dquot_alloc_block(ar->inode,
4506 						  EXT4_C2B(sbi, ar->len))) {
4507 
4508 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4509 				ar->len--;
4510 			}
4511 		}
4512 		inquota = ar->len;
4513 		if (ar->len == 0) {
4514 			*errp = -EDQUOT;
4515 			goto out;
4516 		}
4517 	}
4518 
4519 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4520 	if (!ac) {
4521 		ar->len = 0;
4522 		*errp = -ENOMEM;
4523 		goto out;
4524 	}
4525 
4526 	*errp = ext4_mb_initialize_context(ac, ar);
4527 	if (*errp) {
4528 		ar->len = 0;
4529 		goto out;
4530 	}
4531 
4532 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4533 	if (!ext4_mb_use_preallocated(ac)) {
4534 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4535 		ext4_mb_normalize_request(ac, ar);
4536 repeat:
4537 		/* allocate space in core */
4538 		*errp = ext4_mb_regular_allocator(ac);
4539 		if (*errp)
4540 			goto discard_and_exit;
4541 
4542 		/* as we've just preallocated more space than
4543 		 * user requested originally, we store allocated
4544 		 * space in a special descriptor */
4545 		if (ac->ac_status == AC_STATUS_FOUND &&
4546 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4547 			*errp = ext4_mb_new_preallocation(ac);
4548 		if (*errp) {
4549 		discard_and_exit:
4550 			ext4_discard_allocated_blocks(ac);
4551 			goto errout;
4552 		}
4553 	}
4554 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4555 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4556 		if (*errp) {
4557 			ext4_discard_allocated_blocks(ac);
4558 			goto errout;
4559 		} else {
4560 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561 			ar->len = ac->ac_b_ex.fe_len;
4562 		}
4563 	} else {
4564 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4565 		if (freed)
4566 			goto repeat;
4567 		*errp = -ENOSPC;
4568 	}
4569 
4570 errout:
4571 	if (*errp) {
4572 		ac->ac_b_ex.fe_len = 0;
4573 		ar->len = 0;
4574 		ext4_mb_show_ac(ac);
4575 	}
4576 	ext4_mb_release_context(ac);
4577 out:
4578 	if (ac)
4579 		kmem_cache_free(ext4_ac_cachep, ac);
4580 	if (inquota && ar->len < inquota)
4581 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4582 	if (!ar->len) {
4583 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4584 			/* release all the reserved blocks if non delalloc */
4585 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4586 						reserv_clstrs);
4587 	}
4588 
4589 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4590 
4591 	return block;
4592 }
4593 
4594 /*
4595  * We can merge two free data extents only if the physical blocks
4596  * are contiguous, AND the extents were freed by the same transaction,
4597  * AND the blocks are associated with the same group.
4598  */
4599 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4600 					struct ext4_free_data *entry,
4601 					struct ext4_free_data *new_entry,
4602 					struct rb_root *entry_rb_root)
4603 {
4604 	if ((entry->efd_tid != new_entry->efd_tid) ||
4605 	    (entry->efd_group != new_entry->efd_group))
4606 		return;
4607 	if (entry->efd_start_cluster + entry->efd_count ==
4608 	    new_entry->efd_start_cluster) {
4609 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4610 		new_entry->efd_count += entry->efd_count;
4611 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4612 		   entry->efd_start_cluster) {
4613 		new_entry->efd_count += entry->efd_count;
4614 	} else
4615 		return;
4616 	spin_lock(&sbi->s_md_lock);
4617 	list_del(&entry->efd_list);
4618 	spin_unlock(&sbi->s_md_lock);
4619 	rb_erase(&entry->efd_node, entry_rb_root);
4620 	kmem_cache_free(ext4_free_data_cachep, entry);
4621 }
4622 
4623 static noinline_for_stack int
4624 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4625 		      struct ext4_free_data *new_entry)
4626 {
4627 	ext4_group_t group = e4b->bd_group;
4628 	ext4_grpblk_t cluster;
4629 	ext4_grpblk_t clusters = new_entry->efd_count;
4630 	struct ext4_free_data *entry;
4631 	struct ext4_group_info *db = e4b->bd_info;
4632 	struct super_block *sb = e4b->bd_sb;
4633 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4634 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4635 	struct rb_node *parent = NULL, *new_node;
4636 
4637 	BUG_ON(!ext4_handle_valid(handle));
4638 	BUG_ON(e4b->bd_bitmap_page == NULL);
4639 	BUG_ON(e4b->bd_buddy_page == NULL);
4640 
4641 	new_node = &new_entry->efd_node;
4642 	cluster = new_entry->efd_start_cluster;
4643 
4644 	if (!*n) {
4645 		/* first free block exent. We need to
4646 		   protect buddy cache from being freed,
4647 		 * otherwise we'll refresh it from
4648 		 * on-disk bitmap and lose not-yet-available
4649 		 * blocks */
4650 		get_page(e4b->bd_buddy_page);
4651 		get_page(e4b->bd_bitmap_page);
4652 	}
4653 	while (*n) {
4654 		parent = *n;
4655 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4656 		if (cluster < entry->efd_start_cluster)
4657 			n = &(*n)->rb_left;
4658 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4659 			n = &(*n)->rb_right;
4660 		else {
4661 			ext4_grp_locked_error(sb, group, 0,
4662 				ext4_group_first_block_no(sb, group) +
4663 				EXT4_C2B(sbi, cluster),
4664 				"Block already on to-be-freed list");
4665 			return 0;
4666 		}
4667 	}
4668 
4669 	rb_link_node(new_node, parent, n);
4670 	rb_insert_color(new_node, &db->bb_free_root);
4671 
4672 	/* Now try to see the extent can be merged to left and right */
4673 	node = rb_prev(new_node);
4674 	if (node) {
4675 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4676 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4677 					    &(db->bb_free_root));
4678 	}
4679 
4680 	node = rb_next(new_node);
4681 	if (node) {
4682 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4683 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4684 					    &(db->bb_free_root));
4685 	}
4686 
4687 	spin_lock(&sbi->s_md_lock);
4688 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4689 	sbi->s_mb_free_pending += clusters;
4690 	spin_unlock(&sbi->s_md_lock);
4691 	return 0;
4692 }
4693 
4694 /**
4695  * ext4_free_blocks() -- Free given blocks and update quota
4696  * @handle:		handle for this transaction
4697  * @inode:		inode
4698  * @block:		start physical block to free
4699  * @count:		number of blocks to count
4700  * @flags:		flags used by ext4_free_blocks
4701  */
4702 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4703 		      struct buffer_head *bh, ext4_fsblk_t block,
4704 		      unsigned long count, int flags)
4705 {
4706 	struct buffer_head *bitmap_bh = NULL;
4707 	struct super_block *sb = inode->i_sb;
4708 	struct ext4_group_desc *gdp;
4709 	unsigned int overflow;
4710 	ext4_grpblk_t bit;
4711 	struct buffer_head *gd_bh;
4712 	ext4_group_t block_group;
4713 	struct ext4_sb_info *sbi;
4714 	struct ext4_buddy e4b;
4715 	unsigned int count_clusters;
4716 	int err = 0;
4717 	int ret;
4718 
4719 	might_sleep();
4720 	if (bh) {
4721 		if (block)
4722 			BUG_ON(block != bh->b_blocknr);
4723 		else
4724 			block = bh->b_blocknr;
4725 	}
4726 
4727 	sbi = EXT4_SB(sb);
4728 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4729 	    !ext4_data_block_valid(sbi, block, count)) {
4730 		ext4_error(sb, "Freeing blocks not in datazone - "
4731 			   "block = %llu, count = %lu", block, count);
4732 		goto error_return;
4733 	}
4734 
4735 	ext4_debug("freeing block %llu\n", block);
4736 	trace_ext4_free_blocks(inode, block, count, flags);
4737 
4738 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4739 		BUG_ON(count > 1);
4740 
4741 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4742 			    inode, bh, block);
4743 	}
4744 
4745 	/*
4746 	 * If the extent to be freed does not begin on a cluster
4747 	 * boundary, we need to deal with partial clusters at the
4748 	 * beginning and end of the extent.  Normally we will free
4749 	 * blocks at the beginning or the end unless we are explicitly
4750 	 * requested to avoid doing so.
4751 	 */
4752 	overflow = EXT4_PBLK_COFF(sbi, block);
4753 	if (overflow) {
4754 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4755 			overflow = sbi->s_cluster_ratio - overflow;
4756 			block += overflow;
4757 			if (count > overflow)
4758 				count -= overflow;
4759 			else
4760 				return;
4761 		} else {
4762 			block -= overflow;
4763 			count += overflow;
4764 		}
4765 	}
4766 	overflow = EXT4_LBLK_COFF(sbi, count);
4767 	if (overflow) {
4768 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4769 			if (count > overflow)
4770 				count -= overflow;
4771 			else
4772 				return;
4773 		} else
4774 			count += sbi->s_cluster_ratio - overflow;
4775 	}
4776 
4777 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4778 		int i;
4779 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4780 
4781 		for (i = 0; i < count; i++) {
4782 			cond_resched();
4783 			if (is_metadata)
4784 				bh = sb_find_get_block(inode->i_sb, block + i);
4785 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4786 		}
4787 	}
4788 
4789 do_more:
4790 	overflow = 0;
4791 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4792 
4793 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4794 			ext4_get_group_info(sb, block_group))))
4795 		return;
4796 
4797 	/*
4798 	 * Check to see if we are freeing blocks across a group
4799 	 * boundary.
4800 	 */
4801 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4802 		overflow = EXT4_C2B(sbi, bit) + count -
4803 			EXT4_BLOCKS_PER_GROUP(sb);
4804 		count -= overflow;
4805 	}
4806 	count_clusters = EXT4_NUM_B2C(sbi, count);
4807 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4808 	if (IS_ERR(bitmap_bh)) {
4809 		err = PTR_ERR(bitmap_bh);
4810 		bitmap_bh = NULL;
4811 		goto error_return;
4812 	}
4813 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4814 	if (!gdp) {
4815 		err = -EIO;
4816 		goto error_return;
4817 	}
4818 
4819 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4820 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4821 	    in_range(block, ext4_inode_table(sb, gdp),
4822 		     sbi->s_itb_per_group) ||
4823 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4824 		     sbi->s_itb_per_group)) {
4825 
4826 		ext4_error(sb, "Freeing blocks in system zone - "
4827 			   "Block = %llu, count = %lu", block, count);
4828 		/* err = 0. ext4_std_error should be a no op */
4829 		goto error_return;
4830 	}
4831 
4832 	BUFFER_TRACE(bitmap_bh, "getting write access");
4833 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4834 	if (err)
4835 		goto error_return;
4836 
4837 	/*
4838 	 * We are about to modify some metadata.  Call the journal APIs
4839 	 * to unshare ->b_data if a currently-committing transaction is
4840 	 * using it
4841 	 */
4842 	BUFFER_TRACE(gd_bh, "get_write_access");
4843 	err = ext4_journal_get_write_access(handle, gd_bh);
4844 	if (err)
4845 		goto error_return;
4846 #ifdef AGGRESSIVE_CHECK
4847 	{
4848 		int i;
4849 		for (i = 0; i < count_clusters; i++)
4850 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4851 	}
4852 #endif
4853 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4854 
4855 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4856 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4857 				     GFP_NOFS|__GFP_NOFAIL);
4858 	if (err)
4859 		goto error_return;
4860 
4861 	/*
4862 	 * We need to make sure we don't reuse the freed block until after the
4863 	 * transaction is committed. We make an exception if the inode is to be
4864 	 * written in writeback mode since writeback mode has weak data
4865 	 * consistency guarantees.
4866 	 */
4867 	if (ext4_handle_valid(handle) &&
4868 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4869 	     !ext4_should_writeback_data(inode))) {
4870 		struct ext4_free_data *new_entry;
4871 		/*
4872 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4873 		 * to fail.
4874 		 */
4875 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4876 				GFP_NOFS|__GFP_NOFAIL);
4877 		new_entry->efd_start_cluster = bit;
4878 		new_entry->efd_group = block_group;
4879 		new_entry->efd_count = count_clusters;
4880 		new_entry->efd_tid = handle->h_transaction->t_tid;
4881 
4882 		ext4_lock_group(sb, block_group);
4883 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4884 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4885 	} else {
4886 		/* need to update group_info->bb_free and bitmap
4887 		 * with group lock held. generate_buddy look at
4888 		 * them with group lock_held
4889 		 */
4890 		if (test_opt(sb, DISCARD)) {
4891 			err = ext4_issue_discard(sb, block_group, bit, count,
4892 						 NULL);
4893 			if (err && err != -EOPNOTSUPP)
4894 				ext4_msg(sb, KERN_WARNING, "discard request in"
4895 					 " group:%d block:%d count:%lu failed"
4896 					 " with %d", block_group, bit, count,
4897 					 err);
4898 		} else
4899 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4900 
4901 		ext4_lock_group(sb, block_group);
4902 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4903 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4904 	}
4905 
4906 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4907 	ext4_free_group_clusters_set(sb, gdp, ret);
4908 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4909 	ext4_group_desc_csum_set(sb, block_group, gdp);
4910 	ext4_unlock_group(sb, block_group);
4911 
4912 	if (sbi->s_log_groups_per_flex) {
4913 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4914 		atomic64_add(count_clusters,
4915 			     &sbi->s_flex_groups[flex_group].free_clusters);
4916 	}
4917 
4918 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4919 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4920 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4921 
4922 	ext4_mb_unload_buddy(&e4b);
4923 
4924 	/* We dirtied the bitmap block */
4925 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4926 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4927 
4928 	/* And the group descriptor block */
4929 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4930 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4931 	if (!err)
4932 		err = ret;
4933 
4934 	if (overflow && !err) {
4935 		block += count;
4936 		count = overflow;
4937 		put_bh(bitmap_bh);
4938 		goto do_more;
4939 	}
4940 error_return:
4941 	brelse(bitmap_bh);
4942 	ext4_std_error(sb, err);
4943 	return;
4944 }
4945 
4946 /**
4947  * ext4_group_add_blocks() -- Add given blocks to an existing group
4948  * @handle:			handle to this transaction
4949  * @sb:				super block
4950  * @block:			start physical block to add to the block group
4951  * @count:			number of blocks to free
4952  *
4953  * This marks the blocks as free in the bitmap and buddy.
4954  */
4955 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4956 			 ext4_fsblk_t block, unsigned long count)
4957 {
4958 	struct buffer_head *bitmap_bh = NULL;
4959 	struct buffer_head *gd_bh;
4960 	ext4_group_t block_group;
4961 	ext4_grpblk_t bit;
4962 	unsigned int i;
4963 	struct ext4_group_desc *desc;
4964 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4965 	struct ext4_buddy e4b;
4966 	int err = 0, ret, free_clusters_count;
4967 	ext4_grpblk_t clusters_freed;
4968 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
4969 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
4970 	unsigned long cluster_count = last_cluster - first_cluster + 1;
4971 
4972 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4973 
4974 	if (count == 0)
4975 		return 0;
4976 
4977 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4978 	/*
4979 	 * Check to see if we are freeing blocks across a group
4980 	 * boundary.
4981 	 */
4982 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
4983 		ext4_warning(sb, "too many blocks added to group %u",
4984 			     block_group);
4985 		err = -EINVAL;
4986 		goto error_return;
4987 	}
4988 
4989 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4990 	if (IS_ERR(bitmap_bh)) {
4991 		err = PTR_ERR(bitmap_bh);
4992 		bitmap_bh = NULL;
4993 		goto error_return;
4994 	}
4995 
4996 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4997 	if (!desc) {
4998 		err = -EIO;
4999 		goto error_return;
5000 	}
5001 
5002 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5003 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5004 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5005 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5006 		     sbi->s_itb_per_group)) {
5007 		ext4_error(sb, "Adding blocks in system zones - "
5008 			   "Block = %llu, count = %lu",
5009 			   block, count);
5010 		err = -EINVAL;
5011 		goto error_return;
5012 	}
5013 
5014 	BUFFER_TRACE(bitmap_bh, "getting write access");
5015 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5016 	if (err)
5017 		goto error_return;
5018 
5019 	/*
5020 	 * We are about to modify some metadata.  Call the journal APIs
5021 	 * to unshare ->b_data if a currently-committing transaction is
5022 	 * using it
5023 	 */
5024 	BUFFER_TRACE(gd_bh, "get_write_access");
5025 	err = ext4_journal_get_write_access(handle, gd_bh);
5026 	if (err)
5027 		goto error_return;
5028 
5029 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5030 		BUFFER_TRACE(bitmap_bh, "clear bit");
5031 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5032 			ext4_error(sb, "bit already cleared for block %llu",
5033 				   (ext4_fsblk_t)(block + i));
5034 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5035 		} else {
5036 			clusters_freed++;
5037 		}
5038 	}
5039 
5040 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5041 	if (err)
5042 		goto error_return;
5043 
5044 	/*
5045 	 * need to update group_info->bb_free and bitmap
5046 	 * with group lock held. generate_buddy look at
5047 	 * them with group lock_held
5048 	 */
5049 	ext4_lock_group(sb, block_group);
5050 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5051 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5052 	free_clusters_count = clusters_freed +
5053 		ext4_free_group_clusters(sb, desc);
5054 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5055 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5056 	ext4_group_desc_csum_set(sb, block_group, desc);
5057 	ext4_unlock_group(sb, block_group);
5058 	percpu_counter_add(&sbi->s_freeclusters_counter,
5059 			   clusters_freed);
5060 
5061 	if (sbi->s_log_groups_per_flex) {
5062 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5063 		atomic64_add(clusters_freed,
5064 			     &sbi->s_flex_groups[flex_group].free_clusters);
5065 	}
5066 
5067 	ext4_mb_unload_buddy(&e4b);
5068 
5069 	/* We dirtied the bitmap block */
5070 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5071 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5072 
5073 	/* And the group descriptor block */
5074 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5075 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5076 	if (!err)
5077 		err = ret;
5078 
5079 error_return:
5080 	brelse(bitmap_bh);
5081 	ext4_std_error(sb, err);
5082 	return err;
5083 }
5084 
5085 /**
5086  * ext4_trim_extent -- function to TRIM one single free extent in the group
5087  * @sb:		super block for the file system
5088  * @start:	starting block of the free extent in the alloc. group
5089  * @count:	number of blocks to TRIM
5090  * @group:	alloc. group we are working with
5091  * @e4b:	ext4 buddy for the group
5092  *
5093  * Trim "count" blocks starting at "start" in the "group". To assure that no
5094  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5095  * be called with under the group lock.
5096  */
5097 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5098 			     ext4_group_t group, struct ext4_buddy *e4b)
5099 __releases(bitlock)
5100 __acquires(bitlock)
5101 {
5102 	struct ext4_free_extent ex;
5103 	int ret = 0;
5104 
5105 	trace_ext4_trim_extent(sb, group, start, count);
5106 
5107 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5108 
5109 	ex.fe_start = start;
5110 	ex.fe_group = group;
5111 	ex.fe_len = count;
5112 
5113 	/*
5114 	 * Mark blocks used, so no one can reuse them while
5115 	 * being trimmed.
5116 	 */
5117 	mb_mark_used(e4b, &ex);
5118 	ext4_unlock_group(sb, group);
5119 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5120 	ext4_lock_group(sb, group);
5121 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5122 	return ret;
5123 }
5124 
5125 /**
5126  * ext4_trim_all_free -- function to trim all free space in alloc. group
5127  * @sb:			super block for file system
5128  * @group:		group to be trimmed
5129  * @start:		first group block to examine
5130  * @max:		last group block to examine
5131  * @minblocks:		minimum extent block count
5132  *
5133  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5134  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5135  * the extent.
5136  *
5137  *
5138  * ext4_trim_all_free walks through group's block bitmap searching for free
5139  * extents. When the free extent is found, mark it as used in group buddy
5140  * bitmap. Then issue a TRIM command on this extent and free the extent in
5141  * the group buddy bitmap. This is done until whole group is scanned.
5142  */
5143 static ext4_grpblk_t
5144 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5145 		   ext4_grpblk_t start, ext4_grpblk_t max,
5146 		   ext4_grpblk_t minblocks)
5147 {
5148 	void *bitmap;
5149 	ext4_grpblk_t next, count = 0, free_count = 0;
5150 	struct ext4_buddy e4b;
5151 	int ret = 0;
5152 
5153 	trace_ext4_trim_all_free(sb, group, start, max);
5154 
5155 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5156 	if (ret) {
5157 		ext4_warning(sb, "Error %d loading buddy information for %u",
5158 			     ret, group);
5159 		return ret;
5160 	}
5161 	bitmap = e4b.bd_bitmap;
5162 
5163 	ext4_lock_group(sb, group);
5164 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5165 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5166 		goto out;
5167 
5168 	start = (e4b.bd_info->bb_first_free > start) ?
5169 		e4b.bd_info->bb_first_free : start;
5170 
5171 	while (start <= max) {
5172 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5173 		if (start > max)
5174 			break;
5175 		next = mb_find_next_bit(bitmap, max + 1, start);
5176 
5177 		if ((next - start) >= minblocks) {
5178 			ret = ext4_trim_extent(sb, start,
5179 					       next - start, group, &e4b);
5180 			if (ret && ret != -EOPNOTSUPP)
5181 				break;
5182 			ret = 0;
5183 			count += next - start;
5184 		}
5185 		free_count += next - start;
5186 		start = next + 1;
5187 
5188 		if (fatal_signal_pending(current)) {
5189 			count = -ERESTARTSYS;
5190 			break;
5191 		}
5192 
5193 		if (need_resched()) {
5194 			ext4_unlock_group(sb, group);
5195 			cond_resched();
5196 			ext4_lock_group(sb, group);
5197 		}
5198 
5199 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5200 			break;
5201 	}
5202 
5203 	if (!ret) {
5204 		ret = count;
5205 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5206 	}
5207 out:
5208 	ext4_unlock_group(sb, group);
5209 	ext4_mb_unload_buddy(&e4b);
5210 
5211 	ext4_debug("trimmed %d blocks in the group %d\n",
5212 		count, group);
5213 
5214 	return ret;
5215 }
5216 
5217 /**
5218  * ext4_trim_fs() -- trim ioctl handle function
5219  * @sb:			superblock for filesystem
5220  * @range:		fstrim_range structure
5221  *
5222  * start:	First Byte to trim
5223  * len:		number of Bytes to trim from start
5224  * minlen:	minimum extent length in Bytes
5225  * ext4_trim_fs goes through all allocation groups containing Bytes from
5226  * start to start+len. For each such a group ext4_trim_all_free function
5227  * is invoked to trim all free space.
5228  */
5229 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5230 {
5231 	struct ext4_group_info *grp;
5232 	ext4_group_t group, first_group, last_group;
5233 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5234 	uint64_t start, end, minlen, trimmed = 0;
5235 	ext4_fsblk_t first_data_blk =
5236 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5237 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5238 	int ret = 0;
5239 
5240 	start = range->start >> sb->s_blocksize_bits;
5241 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5242 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5243 			      range->minlen >> sb->s_blocksize_bits);
5244 
5245 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5246 	    start >= max_blks ||
5247 	    range->len < sb->s_blocksize)
5248 		return -EINVAL;
5249 	if (end >= max_blks)
5250 		end = max_blks - 1;
5251 	if (end <= first_data_blk)
5252 		goto out;
5253 	if (start < first_data_blk)
5254 		start = first_data_blk;
5255 
5256 	/* Determine first and last group to examine based on start and end */
5257 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5258 				     &first_group, &first_cluster);
5259 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5260 				     &last_group, &last_cluster);
5261 
5262 	/* end now represents the last cluster to discard in this group */
5263 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5264 
5265 	for (group = first_group; group <= last_group; group++) {
5266 		grp = ext4_get_group_info(sb, group);
5267 		/* We only do this if the grp has never been initialized */
5268 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5269 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5270 			if (ret)
5271 				break;
5272 		}
5273 
5274 		/*
5275 		 * For all the groups except the last one, last cluster will
5276 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5277 		 * change it for the last group, note that last_cluster is
5278 		 * already computed earlier by ext4_get_group_no_and_offset()
5279 		 */
5280 		if (group == last_group)
5281 			end = last_cluster;
5282 
5283 		if (grp->bb_free >= minlen) {
5284 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5285 						end, minlen);
5286 			if (cnt < 0) {
5287 				ret = cnt;
5288 				break;
5289 			}
5290 			trimmed += cnt;
5291 		}
5292 
5293 		/*
5294 		 * For every group except the first one, we are sure
5295 		 * that the first cluster to discard will be cluster #0.
5296 		 */
5297 		first_cluster = 0;
5298 	}
5299 
5300 	if (!ret)
5301 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5302 
5303 out:
5304 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5305 	return ret;
5306 }
5307 
5308 /* Iterate all the free extents in the group. */
5309 int
5310 ext4_mballoc_query_range(
5311 	struct super_block		*sb,
5312 	ext4_group_t			group,
5313 	ext4_grpblk_t			start,
5314 	ext4_grpblk_t			end,
5315 	ext4_mballoc_query_range_fn	formatter,
5316 	void				*priv)
5317 {
5318 	void				*bitmap;
5319 	ext4_grpblk_t			next;
5320 	struct ext4_buddy		e4b;
5321 	int				error;
5322 
5323 	error = ext4_mb_load_buddy(sb, group, &e4b);
5324 	if (error)
5325 		return error;
5326 	bitmap = e4b.bd_bitmap;
5327 
5328 	ext4_lock_group(sb, group);
5329 
5330 	start = (e4b.bd_info->bb_first_free > start) ?
5331 		e4b.bd_info->bb_first_free : start;
5332 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5333 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5334 
5335 	while (start <= end) {
5336 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5337 		if (start > end)
5338 			break;
5339 		next = mb_find_next_bit(bitmap, end + 1, start);
5340 
5341 		ext4_unlock_group(sb, group);
5342 		error = formatter(sb, group, start, next - start, priv);
5343 		if (error)
5344 			goto out_unload;
5345 		ext4_lock_group(sb, group);
5346 
5347 		start = next + 1;
5348 	}
5349 
5350 	ext4_unlock_group(sb, group);
5351 out_unload:
5352 	ext4_mb_unload_buddy(&e4b);
5353 
5354 	return error;
5355 }
5356