1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <linux/backing-dev.h> 30 #include <trace/events/ext4.h> 31 32 #ifdef CONFIG_EXT4_DEBUG 33 ushort ext4_mballoc_debug __read_mostly; 34 35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 37 #endif 38 39 /* 40 * MUSTDO: 41 * - test ext4_ext_search_left() and ext4_ext_search_right() 42 * - search for metadata in few groups 43 * 44 * TODO v4: 45 * - normalization should take into account whether file is still open 46 * - discard preallocations if no free space left (policy?) 47 * - don't normalize tails 48 * - quota 49 * - reservation for superuser 50 * 51 * TODO v3: 52 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 53 * - track min/max extents in each group for better group selection 54 * - mb_mark_used() may allocate chunk right after splitting buddy 55 * - tree of groups sorted by number of free blocks 56 * - error handling 57 */ 58 59 /* 60 * The allocation request involve request for multiple number of blocks 61 * near to the goal(block) value specified. 62 * 63 * During initialization phase of the allocator we decide to use the 64 * group preallocation or inode preallocation depending on the size of 65 * the file. The size of the file could be the resulting file size we 66 * would have after allocation, or the current file size, which ever 67 * is larger. If the size is less than sbi->s_mb_stream_request we 68 * select to use the group preallocation. The default value of 69 * s_mb_stream_request is 16 blocks. This can also be tuned via 70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 71 * terms of number of blocks. 72 * 73 * The main motivation for having small file use group preallocation is to 74 * ensure that we have small files closer together on the disk. 75 * 76 * First stage the allocator looks at the inode prealloc list, 77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 78 * spaces for this particular inode. The inode prealloc space is 79 * represented as: 80 * 81 * pa_lstart -> the logical start block for this prealloc space 82 * pa_pstart -> the physical start block for this prealloc space 83 * pa_len -> length for this prealloc space (in clusters) 84 * pa_free -> free space available in this prealloc space (in clusters) 85 * 86 * The inode preallocation space is used looking at the _logical_ start 87 * block. If only the logical file block falls within the range of prealloc 88 * space we will consume the particular prealloc space. This makes sure that 89 * we have contiguous physical blocks representing the file blocks 90 * 91 * The important thing to be noted in case of inode prealloc space is that 92 * we don't modify the values associated to inode prealloc space except 93 * pa_free. 94 * 95 * If we are not able to find blocks in the inode prealloc space and if we 96 * have the group allocation flag set then we look at the locality group 97 * prealloc space. These are per CPU prealloc list represented as 98 * 99 * ext4_sb_info.s_locality_groups[smp_processor_id()] 100 * 101 * The reason for having a per cpu locality group is to reduce the contention 102 * between CPUs. It is possible to get scheduled at this point. 103 * 104 * The locality group prealloc space is used looking at whether we have 105 * enough free space (pa_free) within the prealloc space. 106 * 107 * If we can't allocate blocks via inode prealloc or/and locality group 108 * prealloc then we look at the buddy cache. The buddy cache is represented 109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 110 * mapped to the buddy and bitmap information regarding different 111 * groups. The buddy information is attached to buddy cache inode so that 112 * we can access them through the page cache. The information regarding 113 * each group is loaded via ext4_mb_load_buddy. The information involve 114 * block bitmap and buddy information. The information are stored in the 115 * inode as: 116 * 117 * { page } 118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 119 * 120 * 121 * one block each for bitmap and buddy information. So for each group we 122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 123 * blocksize) blocks. So it can have information regarding groups_per_page 124 * which is blocks_per_page/2 125 * 126 * The buddy cache inode is not stored on disk. The inode is thrown 127 * away when the filesystem is unmounted. 128 * 129 * We look for count number of blocks in the buddy cache. If we were able 130 * to locate that many free blocks we return with additional information 131 * regarding rest of the contiguous physical block available 132 * 133 * Before allocating blocks via buddy cache we normalize the request 134 * blocks. This ensure we ask for more blocks that we needed. The extra 135 * blocks that we get after allocation is added to the respective prealloc 136 * list. In case of inode preallocation we follow a list of heuristics 137 * based on file size. This can be found in ext4_mb_normalize_request. If 138 * we are doing a group prealloc we try to normalize the request to 139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 140 * dependent on the cluster size; for non-bigalloc file systems, it is 141 * 512 blocks. This can be tuned via 142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 143 * terms of number of blocks. If we have mounted the file system with -O 144 * stripe=<value> option the group prealloc request is normalized to the 145 * the smallest multiple of the stripe value (sbi->s_stripe) which is 146 * greater than the default mb_group_prealloc. 147 * 148 * The regular allocator (using the buddy cache) supports a few tunables. 149 * 150 * /sys/fs/ext4/<partition>/mb_min_to_scan 151 * /sys/fs/ext4/<partition>/mb_max_to_scan 152 * /sys/fs/ext4/<partition>/mb_order2_req 153 * 154 * The regular allocator uses buddy scan only if the request len is power of 155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 156 * value of s_mb_order2_reqs can be tuned via 157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 158 * stripe size (sbi->s_stripe), we try to search for contiguous block in 159 * stripe size. This should result in better allocation on RAID setups. If 160 * not, we search in the specific group using bitmap for best extents. The 161 * tunable min_to_scan and max_to_scan control the behaviour here. 162 * min_to_scan indicate how long the mballoc __must__ look for a best 163 * extent and max_to_scan indicates how long the mballoc __can__ look for a 164 * best extent in the found extents. Searching for the blocks starts with 165 * the group specified as the goal value in allocation context via 166 * ac_g_ex. Each group is first checked based on the criteria whether it 167 * can be used for allocation. ext4_mb_good_group explains how the groups are 168 * checked. 169 * 170 * Both the prealloc space are getting populated as above. So for the first 171 * request we will hit the buddy cache which will result in this prealloc 172 * space getting filled. The prealloc space is then later used for the 173 * subsequent request. 174 */ 175 176 /* 177 * mballoc operates on the following data: 178 * - on-disk bitmap 179 * - in-core buddy (actually includes buddy and bitmap) 180 * - preallocation descriptors (PAs) 181 * 182 * there are two types of preallocations: 183 * - inode 184 * assiged to specific inode and can be used for this inode only. 185 * it describes part of inode's space preallocated to specific 186 * physical blocks. any block from that preallocated can be used 187 * independent. the descriptor just tracks number of blocks left 188 * unused. so, before taking some block from descriptor, one must 189 * make sure corresponded logical block isn't allocated yet. this 190 * also means that freeing any block within descriptor's range 191 * must discard all preallocated blocks. 192 * - locality group 193 * assigned to specific locality group which does not translate to 194 * permanent set of inodes: inode can join and leave group. space 195 * from this type of preallocation can be used for any inode. thus 196 * it's consumed from the beginning to the end. 197 * 198 * relation between them can be expressed as: 199 * in-core buddy = on-disk bitmap + preallocation descriptors 200 * 201 * this mean blocks mballoc considers used are: 202 * - allocated blocks (persistent) 203 * - preallocated blocks (non-persistent) 204 * 205 * consistency in mballoc world means that at any time a block is either 206 * free or used in ALL structures. notice: "any time" should not be read 207 * literally -- time is discrete and delimited by locks. 208 * 209 * to keep it simple, we don't use block numbers, instead we count number of 210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 211 * 212 * all operations can be expressed as: 213 * - init buddy: buddy = on-disk + PAs 214 * - new PA: buddy += N; PA = N 215 * - use inode PA: on-disk += N; PA -= N 216 * - discard inode PA buddy -= on-disk - PA; PA = 0 217 * - use locality group PA on-disk += N; PA -= N 218 * - discard locality group PA buddy -= PA; PA = 0 219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 220 * is used in real operation because we can't know actual used 221 * bits from PA, only from on-disk bitmap 222 * 223 * if we follow this strict logic, then all operations above should be atomic. 224 * given some of them can block, we'd have to use something like semaphores 225 * killing performance on high-end SMP hardware. let's try to relax it using 226 * the following knowledge: 227 * 1) if buddy is referenced, it's already initialized 228 * 2) while block is used in buddy and the buddy is referenced, 229 * nobody can re-allocate that block 230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 231 * bit set and PA claims same block, it's OK. IOW, one can set bit in 232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 233 * block 234 * 235 * so, now we're building a concurrency table: 236 * - init buddy vs. 237 * - new PA 238 * blocks for PA are allocated in the buddy, buddy must be referenced 239 * until PA is linked to allocation group to avoid concurrent buddy init 240 * - use inode PA 241 * we need to make sure that either on-disk bitmap or PA has uptodate data 242 * given (3) we care that PA-=N operation doesn't interfere with init 243 * - discard inode PA 244 * the simplest way would be to have buddy initialized by the discard 245 * - use locality group PA 246 * again PA-=N must be serialized with init 247 * - discard locality group PA 248 * the simplest way would be to have buddy initialized by the discard 249 * - new PA vs. 250 * - use inode PA 251 * i_data_sem serializes them 252 * - discard inode PA 253 * discard process must wait until PA isn't used by another process 254 * - use locality group PA 255 * some mutex should serialize them 256 * - discard locality group PA 257 * discard process must wait until PA isn't used by another process 258 * - use inode PA 259 * - use inode PA 260 * i_data_sem or another mutex should serializes them 261 * - discard inode PA 262 * discard process must wait until PA isn't used by another process 263 * - use locality group PA 264 * nothing wrong here -- they're different PAs covering different blocks 265 * - discard locality group PA 266 * discard process must wait until PA isn't used by another process 267 * 268 * now we're ready to make few consequences: 269 * - PA is referenced and while it is no discard is possible 270 * - PA is referenced until block isn't marked in on-disk bitmap 271 * - PA changes only after on-disk bitmap 272 * - discard must not compete with init. either init is done before 273 * any discard or they're serialized somehow 274 * - buddy init as sum of on-disk bitmap and PAs is done atomically 275 * 276 * a special case when we've used PA to emptiness. no need to modify buddy 277 * in this case, but we should care about concurrent init 278 * 279 */ 280 281 /* 282 * Logic in few words: 283 * 284 * - allocation: 285 * load group 286 * find blocks 287 * mark bits in on-disk bitmap 288 * release group 289 * 290 * - use preallocation: 291 * find proper PA (per-inode or group) 292 * load group 293 * mark bits in on-disk bitmap 294 * release group 295 * release PA 296 * 297 * - free: 298 * load group 299 * mark bits in on-disk bitmap 300 * release group 301 * 302 * - discard preallocations in group: 303 * mark PAs deleted 304 * move them onto local list 305 * load on-disk bitmap 306 * load group 307 * remove PA from object (inode or locality group) 308 * mark free blocks in-core 309 * 310 * - discard inode's preallocations: 311 */ 312 313 /* 314 * Locking rules 315 * 316 * Locks: 317 * - bitlock on a group (group) 318 * - object (inode/locality) (object) 319 * - per-pa lock (pa) 320 * 321 * Paths: 322 * - new pa 323 * object 324 * group 325 * 326 * - find and use pa: 327 * pa 328 * 329 * - release consumed pa: 330 * pa 331 * group 332 * object 333 * 334 * - generate in-core bitmap: 335 * group 336 * pa 337 * 338 * - discard all for given object (inode, locality group): 339 * object 340 * pa 341 * group 342 * 343 * - discard all for given group: 344 * group 345 * pa 346 * group 347 * object 348 * 349 */ 350 static struct kmem_cache *ext4_pspace_cachep; 351 static struct kmem_cache *ext4_ac_cachep; 352 static struct kmem_cache *ext4_free_data_cachep; 353 354 /* We create slab caches for groupinfo data structures based on the 355 * superblock block size. There will be one per mounted filesystem for 356 * each unique s_blocksize_bits */ 357 #define NR_GRPINFO_CACHES 8 358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 359 360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 363 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 364 }; 365 366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 367 ext4_group_t group); 368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 369 ext4_group_t group); 370 static void ext4_free_data_callback(struct super_block *sb, 371 struct ext4_journal_cb_entry *jce, int rc); 372 373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 374 { 375 #if BITS_PER_LONG == 64 376 *bit += ((unsigned long) addr & 7UL) << 3; 377 addr = (void *) ((unsigned long) addr & ~7UL); 378 #elif BITS_PER_LONG == 32 379 *bit += ((unsigned long) addr & 3UL) << 3; 380 addr = (void *) ((unsigned long) addr & ~3UL); 381 #else 382 #error "how many bits you are?!" 383 #endif 384 return addr; 385 } 386 387 static inline int mb_test_bit(int bit, void *addr) 388 { 389 /* 390 * ext4_test_bit on architecture like powerpc 391 * needs unsigned long aligned address 392 */ 393 addr = mb_correct_addr_and_bit(&bit, addr); 394 return ext4_test_bit(bit, addr); 395 } 396 397 static inline void mb_set_bit(int bit, void *addr) 398 { 399 addr = mb_correct_addr_and_bit(&bit, addr); 400 ext4_set_bit(bit, addr); 401 } 402 403 static inline void mb_clear_bit(int bit, void *addr) 404 { 405 addr = mb_correct_addr_and_bit(&bit, addr); 406 ext4_clear_bit(bit, addr); 407 } 408 409 static inline int mb_test_and_clear_bit(int bit, void *addr) 410 { 411 addr = mb_correct_addr_and_bit(&bit, addr); 412 return ext4_test_and_clear_bit(bit, addr); 413 } 414 415 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 416 { 417 int fix = 0, ret, tmpmax; 418 addr = mb_correct_addr_and_bit(&fix, addr); 419 tmpmax = max + fix; 420 start += fix; 421 422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 423 if (ret > max) 424 return max; 425 return ret; 426 } 427 428 static inline int mb_find_next_bit(void *addr, int max, int start) 429 { 430 int fix = 0, ret, tmpmax; 431 addr = mb_correct_addr_and_bit(&fix, addr); 432 tmpmax = max + fix; 433 start += fix; 434 435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 436 if (ret > max) 437 return max; 438 return ret; 439 } 440 441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 442 { 443 char *bb; 444 445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 446 BUG_ON(max == NULL); 447 448 if (order > e4b->bd_blkbits + 1) { 449 *max = 0; 450 return NULL; 451 } 452 453 /* at order 0 we see each particular block */ 454 if (order == 0) { 455 *max = 1 << (e4b->bd_blkbits + 3); 456 return e4b->bd_bitmap; 457 } 458 459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 461 462 return bb; 463 } 464 465 #ifdef DOUBLE_CHECK 466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 467 int first, int count) 468 { 469 int i; 470 struct super_block *sb = e4b->bd_sb; 471 472 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 473 return; 474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 475 for (i = 0; i < count; i++) { 476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 477 ext4_fsblk_t blocknr; 478 479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 481 ext4_grp_locked_error(sb, e4b->bd_group, 482 inode ? inode->i_ino : 0, 483 blocknr, 484 "freeing block already freed " 485 "(bit %u)", 486 first + i); 487 } 488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 489 } 490 } 491 492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 493 { 494 int i; 495 496 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 497 return; 498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 499 for (i = 0; i < count; i++) { 500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 502 } 503 } 504 505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 506 { 507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 508 unsigned char *b1, *b2; 509 int i; 510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 511 b2 = (unsigned char *) bitmap; 512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 513 if (b1[i] != b2[i]) { 514 ext4_msg(e4b->bd_sb, KERN_ERR, 515 "corruption in group %u " 516 "at byte %u(%u): %x in copy != %x " 517 "on disk/prealloc", 518 e4b->bd_group, i, i * 8, b1[i], b2[i]); 519 BUG(); 520 } 521 } 522 } 523 } 524 525 #else 526 static inline void mb_free_blocks_double(struct inode *inode, 527 struct ext4_buddy *e4b, int first, int count) 528 { 529 return; 530 } 531 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 532 int first, int count) 533 { 534 return; 535 } 536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 537 { 538 return; 539 } 540 #endif 541 542 #ifdef AGGRESSIVE_CHECK 543 544 #define MB_CHECK_ASSERT(assert) \ 545 do { \ 546 if (!(assert)) { \ 547 printk(KERN_EMERG \ 548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 549 function, file, line, # assert); \ 550 BUG(); \ 551 } \ 552 } while (0) 553 554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 555 const char *function, int line) 556 { 557 struct super_block *sb = e4b->bd_sb; 558 int order = e4b->bd_blkbits + 1; 559 int max; 560 int max2; 561 int i; 562 int j; 563 int k; 564 int count; 565 struct ext4_group_info *grp; 566 int fragments = 0; 567 int fstart; 568 struct list_head *cur; 569 void *buddy; 570 void *buddy2; 571 572 { 573 static int mb_check_counter; 574 if (mb_check_counter++ % 100 != 0) 575 return 0; 576 } 577 578 while (order > 1) { 579 buddy = mb_find_buddy(e4b, order, &max); 580 MB_CHECK_ASSERT(buddy); 581 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 582 MB_CHECK_ASSERT(buddy2); 583 MB_CHECK_ASSERT(buddy != buddy2); 584 MB_CHECK_ASSERT(max * 2 == max2); 585 586 count = 0; 587 for (i = 0; i < max; i++) { 588 589 if (mb_test_bit(i, buddy)) { 590 /* only single bit in buddy2 may be 1 */ 591 if (!mb_test_bit(i << 1, buddy2)) { 592 MB_CHECK_ASSERT( 593 mb_test_bit((i<<1)+1, buddy2)); 594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 595 MB_CHECK_ASSERT( 596 mb_test_bit(i << 1, buddy2)); 597 } 598 continue; 599 } 600 601 /* both bits in buddy2 must be 1 */ 602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 604 605 for (j = 0; j < (1 << order); j++) { 606 k = (i * (1 << order)) + j; 607 MB_CHECK_ASSERT( 608 !mb_test_bit(k, e4b->bd_bitmap)); 609 } 610 count++; 611 } 612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 613 order--; 614 } 615 616 fstart = -1; 617 buddy = mb_find_buddy(e4b, 0, &max); 618 for (i = 0; i < max; i++) { 619 if (!mb_test_bit(i, buddy)) { 620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 621 if (fstart == -1) { 622 fragments++; 623 fstart = i; 624 } 625 continue; 626 } 627 fstart = -1; 628 /* check used bits only */ 629 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 630 buddy2 = mb_find_buddy(e4b, j, &max2); 631 k = i >> j; 632 MB_CHECK_ASSERT(k < max2); 633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 634 } 635 } 636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 638 639 grp = ext4_get_group_info(sb, e4b->bd_group); 640 list_for_each(cur, &grp->bb_prealloc_list) { 641 ext4_group_t groupnr; 642 struct ext4_prealloc_space *pa; 643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 645 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 646 for (i = 0; i < pa->pa_len; i++) 647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 648 } 649 return 0; 650 } 651 #undef MB_CHECK_ASSERT 652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 653 __FILE__, __func__, __LINE__) 654 #else 655 #define mb_check_buddy(e4b) 656 #endif 657 658 /* 659 * Divide blocks started from @first with length @len into 660 * smaller chunks with power of 2 blocks. 661 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 662 * then increase bb_counters[] for corresponded chunk size. 663 */ 664 static void ext4_mb_mark_free_simple(struct super_block *sb, 665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 666 struct ext4_group_info *grp) 667 { 668 struct ext4_sb_info *sbi = EXT4_SB(sb); 669 ext4_grpblk_t min; 670 ext4_grpblk_t max; 671 ext4_grpblk_t chunk; 672 unsigned short border; 673 674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 675 676 border = 2 << sb->s_blocksize_bits; 677 678 while (len > 0) { 679 /* find how many blocks can be covered since this position */ 680 max = ffs(first | border) - 1; 681 682 /* find how many blocks of power 2 we need to mark */ 683 min = fls(len) - 1; 684 685 if (max < min) 686 min = max; 687 chunk = 1 << min; 688 689 /* mark multiblock chunks only */ 690 grp->bb_counters[min]++; 691 if (min > 0) 692 mb_clear_bit(first >> min, 693 buddy + sbi->s_mb_offsets[min]); 694 695 len -= chunk; 696 first += chunk; 697 } 698 } 699 700 /* 701 * Cache the order of the largest free extent we have available in this block 702 * group. 703 */ 704 static void 705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 706 { 707 int i; 708 int bits; 709 710 grp->bb_largest_free_order = -1; /* uninit */ 711 712 bits = sb->s_blocksize_bits + 1; 713 for (i = bits; i >= 0; i--) { 714 if (grp->bb_counters[i] > 0) { 715 grp->bb_largest_free_order = i; 716 break; 717 } 718 } 719 } 720 721 static noinline_for_stack 722 void ext4_mb_generate_buddy(struct super_block *sb, 723 void *buddy, void *bitmap, ext4_group_t group) 724 { 725 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 726 struct ext4_sb_info *sbi = EXT4_SB(sb); 727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 728 ext4_grpblk_t i = 0; 729 ext4_grpblk_t first; 730 ext4_grpblk_t len; 731 unsigned free = 0; 732 unsigned fragments = 0; 733 unsigned long long period = get_cycles(); 734 735 /* initialize buddy from bitmap which is aggregation 736 * of on-disk bitmap and preallocations */ 737 i = mb_find_next_zero_bit(bitmap, max, 0); 738 grp->bb_first_free = i; 739 while (i < max) { 740 fragments++; 741 first = i; 742 i = mb_find_next_bit(bitmap, max, i); 743 len = i - first; 744 free += len; 745 if (len > 1) 746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 747 else 748 grp->bb_counters[0]++; 749 if (i < max) 750 i = mb_find_next_zero_bit(bitmap, max, i); 751 } 752 grp->bb_fragments = fragments; 753 754 if (free != grp->bb_free) { 755 ext4_grp_locked_error(sb, group, 0, 0, 756 "block bitmap and bg descriptor " 757 "inconsistent: %u vs %u free clusters", 758 free, grp->bb_free); 759 /* 760 * If we intend to continue, we consider group descriptor 761 * corrupt and update bb_free using bitmap value 762 */ 763 grp->bb_free = free; 764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 765 percpu_counter_sub(&sbi->s_freeclusters_counter, 766 grp->bb_free); 767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 768 } 769 mb_set_largest_free_order(sb, grp); 770 771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 772 773 period = get_cycles() - period; 774 spin_lock(&EXT4_SB(sb)->s_bal_lock); 775 EXT4_SB(sb)->s_mb_buddies_generated++; 776 EXT4_SB(sb)->s_mb_generation_time += period; 777 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 778 } 779 780 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 781 { 782 int count; 783 int order = 1; 784 void *buddy; 785 786 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 787 ext4_set_bits(buddy, 0, count); 788 } 789 e4b->bd_info->bb_fragments = 0; 790 memset(e4b->bd_info->bb_counters, 0, 791 sizeof(*e4b->bd_info->bb_counters) * 792 (e4b->bd_sb->s_blocksize_bits + 2)); 793 794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 795 e4b->bd_bitmap, e4b->bd_group); 796 } 797 798 /* The buddy information is attached the buddy cache inode 799 * for convenience. The information regarding each group 800 * is loaded via ext4_mb_load_buddy. The information involve 801 * block bitmap and buddy information. The information are 802 * stored in the inode as 803 * 804 * { page } 805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 806 * 807 * 808 * one block each for bitmap and buddy information. 809 * So for each group we take up 2 blocks. A page can 810 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 811 * So it can have information regarding groups_per_page which 812 * is blocks_per_page/2 813 * 814 * Locking note: This routine takes the block group lock of all groups 815 * for this page; do not hold this lock when calling this routine! 816 */ 817 818 static int ext4_mb_init_cache(struct page *page, char *incore) 819 { 820 ext4_group_t ngroups; 821 int blocksize; 822 int blocks_per_page; 823 int groups_per_page; 824 int err = 0; 825 int i; 826 ext4_group_t first_group, group; 827 int first_block; 828 struct super_block *sb; 829 struct buffer_head *bhs; 830 struct buffer_head **bh = NULL; 831 struct inode *inode; 832 char *data; 833 char *bitmap; 834 struct ext4_group_info *grinfo; 835 836 mb_debug(1, "init page %lu\n", page->index); 837 838 inode = page->mapping->host; 839 sb = inode->i_sb; 840 ngroups = ext4_get_groups_count(sb); 841 blocksize = 1 << inode->i_blkbits; 842 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 843 844 groups_per_page = blocks_per_page >> 1; 845 if (groups_per_page == 0) 846 groups_per_page = 1; 847 848 /* allocate buffer_heads to read bitmaps */ 849 if (groups_per_page > 1) { 850 i = sizeof(struct buffer_head *) * groups_per_page; 851 bh = kzalloc(i, GFP_NOFS); 852 if (bh == NULL) { 853 err = -ENOMEM; 854 goto out; 855 } 856 } else 857 bh = &bhs; 858 859 first_group = page->index * blocks_per_page / 2; 860 861 /* read all groups the page covers into the cache */ 862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 863 if (group >= ngroups) 864 break; 865 866 grinfo = ext4_get_group_info(sb, group); 867 /* 868 * If page is uptodate then we came here after online resize 869 * which added some new uninitialized group info structs, so 870 * we must skip all initialized uptodate buddies on the page, 871 * which may be currently in use by an allocating task. 872 */ 873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 874 bh[i] = NULL; 875 continue; 876 } 877 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 878 err = -ENOMEM; 879 goto out; 880 } 881 mb_debug(1, "read bitmap for group %u\n", group); 882 } 883 884 /* wait for I/O completion */ 885 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 886 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) 887 err = -EIO; 888 } 889 890 first_block = page->index * blocks_per_page; 891 for (i = 0; i < blocks_per_page; i++) { 892 group = (first_block + i) >> 1; 893 if (group >= ngroups) 894 break; 895 896 if (!bh[group - first_group]) 897 /* skip initialized uptodate buddy */ 898 continue; 899 900 if (!buffer_verified(bh[group - first_group])) 901 /* Skip faulty bitmaps */ 902 continue; 903 err = 0; 904 905 /* 906 * data carry information regarding this 907 * particular group in the format specified 908 * above 909 * 910 */ 911 data = page_address(page) + (i * blocksize); 912 bitmap = bh[group - first_group]->b_data; 913 914 /* 915 * We place the buddy block and bitmap block 916 * close together 917 */ 918 if ((first_block + i) & 1) { 919 /* this is block of buddy */ 920 BUG_ON(incore == NULL); 921 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 922 group, page->index, i * blocksize); 923 trace_ext4_mb_buddy_bitmap_load(sb, group); 924 grinfo = ext4_get_group_info(sb, group); 925 grinfo->bb_fragments = 0; 926 memset(grinfo->bb_counters, 0, 927 sizeof(*grinfo->bb_counters) * 928 (sb->s_blocksize_bits+2)); 929 /* 930 * incore got set to the group block bitmap below 931 */ 932 ext4_lock_group(sb, group); 933 /* init the buddy */ 934 memset(data, 0xff, blocksize); 935 ext4_mb_generate_buddy(sb, data, incore, group); 936 ext4_unlock_group(sb, group); 937 incore = NULL; 938 } else { 939 /* this is block of bitmap */ 940 BUG_ON(incore != NULL); 941 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 942 group, page->index, i * blocksize); 943 trace_ext4_mb_bitmap_load(sb, group); 944 945 /* see comments in ext4_mb_put_pa() */ 946 ext4_lock_group(sb, group); 947 memcpy(data, bitmap, blocksize); 948 949 /* mark all preallocated blks used in in-core bitmap */ 950 ext4_mb_generate_from_pa(sb, data, group); 951 ext4_mb_generate_from_freelist(sb, data, group); 952 ext4_unlock_group(sb, group); 953 954 /* set incore so that the buddy information can be 955 * generated using this 956 */ 957 incore = data; 958 } 959 } 960 SetPageUptodate(page); 961 962 out: 963 if (bh) { 964 for (i = 0; i < groups_per_page; i++) 965 brelse(bh[i]); 966 if (bh != &bhs) 967 kfree(bh); 968 } 969 return err; 970 } 971 972 /* 973 * Lock the buddy and bitmap pages. This make sure other parallel init_group 974 * on the same buddy page doesn't happen whild holding the buddy page lock. 975 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 976 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 977 */ 978 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 979 ext4_group_t group, struct ext4_buddy *e4b) 980 { 981 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 982 int block, pnum, poff; 983 int blocks_per_page; 984 struct page *page; 985 986 e4b->bd_buddy_page = NULL; 987 e4b->bd_bitmap_page = NULL; 988 989 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 990 /* 991 * the buddy cache inode stores the block bitmap 992 * and buddy information in consecutive blocks. 993 * So for each group we need two blocks. 994 */ 995 block = group * 2; 996 pnum = block / blocks_per_page; 997 poff = block % blocks_per_page; 998 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 999 if (!page) 1000 return -ENOMEM; 1001 BUG_ON(page->mapping != inode->i_mapping); 1002 e4b->bd_bitmap_page = page; 1003 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1004 1005 if (blocks_per_page >= 2) { 1006 /* buddy and bitmap are on the same page */ 1007 return 0; 1008 } 1009 1010 block++; 1011 pnum = block / blocks_per_page; 1012 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1013 if (!page) 1014 return -ENOMEM; 1015 BUG_ON(page->mapping != inode->i_mapping); 1016 e4b->bd_buddy_page = page; 1017 return 0; 1018 } 1019 1020 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1021 { 1022 if (e4b->bd_bitmap_page) { 1023 unlock_page(e4b->bd_bitmap_page); 1024 page_cache_release(e4b->bd_bitmap_page); 1025 } 1026 if (e4b->bd_buddy_page) { 1027 unlock_page(e4b->bd_buddy_page); 1028 page_cache_release(e4b->bd_buddy_page); 1029 } 1030 } 1031 1032 /* 1033 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1034 * block group lock of all groups for this page; do not hold the BG lock when 1035 * calling this routine! 1036 */ 1037 static noinline_for_stack 1038 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1039 { 1040 1041 struct ext4_group_info *this_grp; 1042 struct ext4_buddy e4b; 1043 struct page *page; 1044 int ret = 0; 1045 1046 might_sleep(); 1047 mb_debug(1, "init group %u\n", group); 1048 this_grp = ext4_get_group_info(sb, group); 1049 /* 1050 * This ensures that we don't reinit the buddy cache 1051 * page which map to the group from which we are already 1052 * allocating. If we are looking at the buddy cache we would 1053 * have taken a reference using ext4_mb_load_buddy and that 1054 * would have pinned buddy page to page cache. 1055 * The call to ext4_mb_get_buddy_page_lock will mark the 1056 * page accessed. 1057 */ 1058 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1059 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1060 /* 1061 * somebody initialized the group 1062 * return without doing anything 1063 */ 1064 goto err; 1065 } 1066 1067 page = e4b.bd_bitmap_page; 1068 ret = ext4_mb_init_cache(page, NULL); 1069 if (ret) 1070 goto err; 1071 if (!PageUptodate(page)) { 1072 ret = -EIO; 1073 goto err; 1074 } 1075 1076 if (e4b.bd_buddy_page == NULL) { 1077 /* 1078 * If both the bitmap and buddy are in 1079 * the same page we don't need to force 1080 * init the buddy 1081 */ 1082 ret = 0; 1083 goto err; 1084 } 1085 /* init buddy cache */ 1086 page = e4b.bd_buddy_page; 1087 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1088 if (ret) 1089 goto err; 1090 if (!PageUptodate(page)) { 1091 ret = -EIO; 1092 goto err; 1093 } 1094 err: 1095 ext4_mb_put_buddy_page_lock(&e4b); 1096 return ret; 1097 } 1098 1099 /* 1100 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1101 * block group lock of all groups for this page; do not hold the BG lock when 1102 * calling this routine! 1103 */ 1104 static noinline_for_stack int 1105 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1106 struct ext4_buddy *e4b) 1107 { 1108 int blocks_per_page; 1109 int block; 1110 int pnum; 1111 int poff; 1112 struct page *page; 1113 int ret; 1114 struct ext4_group_info *grp; 1115 struct ext4_sb_info *sbi = EXT4_SB(sb); 1116 struct inode *inode = sbi->s_buddy_cache; 1117 1118 might_sleep(); 1119 mb_debug(1, "load group %u\n", group); 1120 1121 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1122 grp = ext4_get_group_info(sb, group); 1123 1124 e4b->bd_blkbits = sb->s_blocksize_bits; 1125 e4b->bd_info = grp; 1126 e4b->bd_sb = sb; 1127 e4b->bd_group = group; 1128 e4b->bd_buddy_page = NULL; 1129 e4b->bd_bitmap_page = NULL; 1130 1131 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1132 /* 1133 * we need full data about the group 1134 * to make a good selection 1135 */ 1136 ret = ext4_mb_init_group(sb, group); 1137 if (ret) 1138 return ret; 1139 } 1140 1141 /* 1142 * the buddy cache inode stores the block bitmap 1143 * and buddy information in consecutive blocks. 1144 * So for each group we need two blocks. 1145 */ 1146 block = group * 2; 1147 pnum = block / blocks_per_page; 1148 poff = block % blocks_per_page; 1149 1150 /* we could use find_or_create_page(), but it locks page 1151 * what we'd like to avoid in fast path ... */ 1152 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1153 if (page == NULL || !PageUptodate(page)) { 1154 if (page) 1155 /* 1156 * drop the page reference and try 1157 * to get the page with lock. If we 1158 * are not uptodate that implies 1159 * somebody just created the page but 1160 * is yet to initialize the same. So 1161 * wait for it to initialize. 1162 */ 1163 page_cache_release(page); 1164 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1165 if (page) { 1166 BUG_ON(page->mapping != inode->i_mapping); 1167 if (!PageUptodate(page)) { 1168 ret = ext4_mb_init_cache(page, NULL); 1169 if (ret) { 1170 unlock_page(page); 1171 goto err; 1172 } 1173 mb_cmp_bitmaps(e4b, page_address(page) + 1174 (poff * sb->s_blocksize)); 1175 } 1176 unlock_page(page); 1177 } 1178 } 1179 if (page == NULL) { 1180 ret = -ENOMEM; 1181 goto err; 1182 } 1183 if (!PageUptodate(page)) { 1184 ret = -EIO; 1185 goto err; 1186 } 1187 1188 /* Pages marked accessed already */ 1189 e4b->bd_bitmap_page = page; 1190 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1191 1192 block++; 1193 pnum = block / blocks_per_page; 1194 poff = block % blocks_per_page; 1195 1196 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1197 if (page == NULL || !PageUptodate(page)) { 1198 if (page) 1199 page_cache_release(page); 1200 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1201 if (page) { 1202 BUG_ON(page->mapping != inode->i_mapping); 1203 if (!PageUptodate(page)) { 1204 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1205 if (ret) { 1206 unlock_page(page); 1207 goto err; 1208 } 1209 } 1210 unlock_page(page); 1211 } 1212 } 1213 if (page == NULL) { 1214 ret = -ENOMEM; 1215 goto err; 1216 } 1217 if (!PageUptodate(page)) { 1218 ret = -EIO; 1219 goto err; 1220 } 1221 1222 /* Pages marked accessed already */ 1223 e4b->bd_buddy_page = page; 1224 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1225 1226 BUG_ON(e4b->bd_bitmap_page == NULL); 1227 BUG_ON(e4b->bd_buddy_page == NULL); 1228 1229 return 0; 1230 1231 err: 1232 if (page) 1233 page_cache_release(page); 1234 if (e4b->bd_bitmap_page) 1235 page_cache_release(e4b->bd_bitmap_page); 1236 if (e4b->bd_buddy_page) 1237 page_cache_release(e4b->bd_buddy_page); 1238 e4b->bd_buddy = NULL; 1239 e4b->bd_bitmap = NULL; 1240 return ret; 1241 } 1242 1243 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1244 { 1245 if (e4b->bd_bitmap_page) 1246 page_cache_release(e4b->bd_bitmap_page); 1247 if (e4b->bd_buddy_page) 1248 page_cache_release(e4b->bd_buddy_page); 1249 } 1250 1251 1252 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1253 { 1254 int order = 1; 1255 void *bb; 1256 1257 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1258 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1259 1260 bb = e4b->bd_buddy; 1261 while (order <= e4b->bd_blkbits + 1) { 1262 block = block >> 1; 1263 if (!mb_test_bit(block, bb)) { 1264 /* this block is part of buddy of order 'order' */ 1265 return order; 1266 } 1267 bb += 1 << (e4b->bd_blkbits - order); 1268 order++; 1269 } 1270 return 0; 1271 } 1272 1273 static void mb_clear_bits(void *bm, int cur, int len) 1274 { 1275 __u32 *addr; 1276 1277 len = cur + len; 1278 while (cur < len) { 1279 if ((cur & 31) == 0 && (len - cur) >= 32) { 1280 /* fast path: clear whole word at once */ 1281 addr = bm + (cur >> 3); 1282 *addr = 0; 1283 cur += 32; 1284 continue; 1285 } 1286 mb_clear_bit(cur, bm); 1287 cur++; 1288 } 1289 } 1290 1291 /* clear bits in given range 1292 * will return first found zero bit if any, -1 otherwise 1293 */ 1294 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1295 { 1296 __u32 *addr; 1297 int zero_bit = -1; 1298 1299 len = cur + len; 1300 while (cur < len) { 1301 if ((cur & 31) == 0 && (len - cur) >= 32) { 1302 /* fast path: clear whole word at once */ 1303 addr = bm + (cur >> 3); 1304 if (*addr != (__u32)(-1) && zero_bit == -1) 1305 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1306 *addr = 0; 1307 cur += 32; 1308 continue; 1309 } 1310 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1311 zero_bit = cur; 1312 cur++; 1313 } 1314 1315 return zero_bit; 1316 } 1317 1318 void ext4_set_bits(void *bm, int cur, int len) 1319 { 1320 __u32 *addr; 1321 1322 len = cur + len; 1323 while (cur < len) { 1324 if ((cur & 31) == 0 && (len - cur) >= 32) { 1325 /* fast path: set whole word at once */ 1326 addr = bm + (cur >> 3); 1327 *addr = 0xffffffff; 1328 cur += 32; 1329 continue; 1330 } 1331 mb_set_bit(cur, bm); 1332 cur++; 1333 } 1334 } 1335 1336 /* 1337 * _________________________________________________________________ */ 1338 1339 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1340 { 1341 if (mb_test_bit(*bit + side, bitmap)) { 1342 mb_clear_bit(*bit, bitmap); 1343 (*bit) -= side; 1344 return 1; 1345 } 1346 else { 1347 (*bit) += side; 1348 mb_set_bit(*bit, bitmap); 1349 return -1; 1350 } 1351 } 1352 1353 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1354 { 1355 int max; 1356 int order = 1; 1357 void *buddy = mb_find_buddy(e4b, order, &max); 1358 1359 while (buddy) { 1360 void *buddy2; 1361 1362 /* Bits in range [first; last] are known to be set since 1363 * corresponding blocks were allocated. Bits in range 1364 * (first; last) will stay set because they form buddies on 1365 * upper layer. We just deal with borders if they don't 1366 * align with upper layer and then go up. 1367 * Releasing entire group is all about clearing 1368 * single bit of highest order buddy. 1369 */ 1370 1371 /* Example: 1372 * --------------------------------- 1373 * | 1 | 1 | 1 | 1 | 1374 * --------------------------------- 1375 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1376 * --------------------------------- 1377 * 0 1 2 3 4 5 6 7 1378 * \_____________________/ 1379 * 1380 * Neither [1] nor [6] is aligned to above layer. 1381 * Left neighbour [0] is free, so mark it busy, 1382 * decrease bb_counters and extend range to 1383 * [0; 6] 1384 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1385 * mark [6] free, increase bb_counters and shrink range to 1386 * [0; 5]. 1387 * Then shift range to [0; 2], go up and do the same. 1388 */ 1389 1390 1391 if (first & 1) 1392 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1393 if (!(last & 1)) 1394 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1395 if (first > last) 1396 break; 1397 order++; 1398 1399 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1400 mb_clear_bits(buddy, first, last - first + 1); 1401 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1402 break; 1403 } 1404 first >>= 1; 1405 last >>= 1; 1406 buddy = buddy2; 1407 } 1408 } 1409 1410 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1411 int first, int count) 1412 { 1413 int left_is_free = 0; 1414 int right_is_free = 0; 1415 int block; 1416 int last = first + count - 1; 1417 struct super_block *sb = e4b->bd_sb; 1418 1419 if (WARN_ON(count == 0)) 1420 return; 1421 BUG_ON(last >= (sb->s_blocksize << 3)); 1422 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1423 /* Don't bother if the block group is corrupt. */ 1424 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1425 return; 1426 1427 mb_check_buddy(e4b); 1428 mb_free_blocks_double(inode, e4b, first, count); 1429 1430 e4b->bd_info->bb_free += count; 1431 if (first < e4b->bd_info->bb_first_free) 1432 e4b->bd_info->bb_first_free = first; 1433 1434 /* access memory sequentially: check left neighbour, 1435 * clear range and then check right neighbour 1436 */ 1437 if (first != 0) 1438 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1439 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1440 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1441 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1442 1443 if (unlikely(block != -1)) { 1444 struct ext4_sb_info *sbi = EXT4_SB(sb); 1445 ext4_fsblk_t blocknr; 1446 1447 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1448 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1449 ext4_grp_locked_error(sb, e4b->bd_group, 1450 inode ? inode->i_ino : 0, 1451 blocknr, 1452 "freeing already freed block " 1453 "(bit %u); block bitmap corrupt.", 1454 block); 1455 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)) 1456 percpu_counter_sub(&sbi->s_freeclusters_counter, 1457 e4b->bd_info->bb_free); 1458 /* Mark the block group as corrupt. */ 1459 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1460 &e4b->bd_info->bb_state); 1461 mb_regenerate_buddy(e4b); 1462 goto done; 1463 } 1464 1465 /* let's maintain fragments counter */ 1466 if (left_is_free && right_is_free) 1467 e4b->bd_info->bb_fragments--; 1468 else if (!left_is_free && !right_is_free) 1469 e4b->bd_info->bb_fragments++; 1470 1471 /* buddy[0] == bd_bitmap is a special case, so handle 1472 * it right away and let mb_buddy_mark_free stay free of 1473 * zero order checks. 1474 * Check if neighbours are to be coaleasced, 1475 * adjust bitmap bb_counters and borders appropriately. 1476 */ 1477 if (first & 1) { 1478 first += !left_is_free; 1479 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1480 } 1481 if (!(last & 1)) { 1482 last -= !right_is_free; 1483 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1484 } 1485 1486 if (first <= last) 1487 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1488 1489 done: 1490 mb_set_largest_free_order(sb, e4b->bd_info); 1491 mb_check_buddy(e4b); 1492 } 1493 1494 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1495 int needed, struct ext4_free_extent *ex) 1496 { 1497 int next = block; 1498 int max, order; 1499 void *buddy; 1500 1501 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1502 BUG_ON(ex == NULL); 1503 1504 buddy = mb_find_buddy(e4b, 0, &max); 1505 BUG_ON(buddy == NULL); 1506 BUG_ON(block >= max); 1507 if (mb_test_bit(block, buddy)) { 1508 ex->fe_len = 0; 1509 ex->fe_start = 0; 1510 ex->fe_group = 0; 1511 return 0; 1512 } 1513 1514 /* find actual order */ 1515 order = mb_find_order_for_block(e4b, block); 1516 block = block >> order; 1517 1518 ex->fe_len = 1 << order; 1519 ex->fe_start = block << order; 1520 ex->fe_group = e4b->bd_group; 1521 1522 /* calc difference from given start */ 1523 next = next - ex->fe_start; 1524 ex->fe_len -= next; 1525 ex->fe_start += next; 1526 1527 while (needed > ex->fe_len && 1528 mb_find_buddy(e4b, order, &max)) { 1529 1530 if (block + 1 >= max) 1531 break; 1532 1533 next = (block + 1) * (1 << order); 1534 if (mb_test_bit(next, e4b->bd_bitmap)) 1535 break; 1536 1537 order = mb_find_order_for_block(e4b, next); 1538 1539 block = next >> order; 1540 ex->fe_len += 1 << order; 1541 } 1542 1543 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1544 return ex->fe_len; 1545 } 1546 1547 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1548 { 1549 int ord; 1550 int mlen = 0; 1551 int max = 0; 1552 int cur; 1553 int start = ex->fe_start; 1554 int len = ex->fe_len; 1555 unsigned ret = 0; 1556 int len0 = len; 1557 void *buddy; 1558 1559 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1560 BUG_ON(e4b->bd_group != ex->fe_group); 1561 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1562 mb_check_buddy(e4b); 1563 mb_mark_used_double(e4b, start, len); 1564 1565 e4b->bd_info->bb_free -= len; 1566 if (e4b->bd_info->bb_first_free == start) 1567 e4b->bd_info->bb_first_free += len; 1568 1569 /* let's maintain fragments counter */ 1570 if (start != 0) 1571 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1572 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1573 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1574 if (mlen && max) 1575 e4b->bd_info->bb_fragments++; 1576 else if (!mlen && !max) 1577 e4b->bd_info->bb_fragments--; 1578 1579 /* let's maintain buddy itself */ 1580 while (len) { 1581 ord = mb_find_order_for_block(e4b, start); 1582 1583 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1584 /* the whole chunk may be allocated at once! */ 1585 mlen = 1 << ord; 1586 buddy = mb_find_buddy(e4b, ord, &max); 1587 BUG_ON((start >> ord) >= max); 1588 mb_set_bit(start >> ord, buddy); 1589 e4b->bd_info->bb_counters[ord]--; 1590 start += mlen; 1591 len -= mlen; 1592 BUG_ON(len < 0); 1593 continue; 1594 } 1595 1596 /* store for history */ 1597 if (ret == 0) 1598 ret = len | (ord << 16); 1599 1600 /* we have to split large buddy */ 1601 BUG_ON(ord <= 0); 1602 buddy = mb_find_buddy(e4b, ord, &max); 1603 mb_set_bit(start >> ord, buddy); 1604 e4b->bd_info->bb_counters[ord]--; 1605 1606 ord--; 1607 cur = (start >> ord) & ~1U; 1608 buddy = mb_find_buddy(e4b, ord, &max); 1609 mb_clear_bit(cur, buddy); 1610 mb_clear_bit(cur + 1, buddy); 1611 e4b->bd_info->bb_counters[ord]++; 1612 e4b->bd_info->bb_counters[ord]++; 1613 } 1614 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1615 1616 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1617 mb_check_buddy(e4b); 1618 1619 return ret; 1620 } 1621 1622 /* 1623 * Must be called under group lock! 1624 */ 1625 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1626 struct ext4_buddy *e4b) 1627 { 1628 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1629 int ret; 1630 1631 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1632 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1633 1634 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1635 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1636 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1637 1638 /* preallocation can change ac_b_ex, thus we store actually 1639 * allocated blocks for history */ 1640 ac->ac_f_ex = ac->ac_b_ex; 1641 1642 ac->ac_status = AC_STATUS_FOUND; 1643 ac->ac_tail = ret & 0xffff; 1644 ac->ac_buddy = ret >> 16; 1645 1646 /* 1647 * take the page reference. We want the page to be pinned 1648 * so that we don't get a ext4_mb_init_cache_call for this 1649 * group until we update the bitmap. That would mean we 1650 * double allocate blocks. The reference is dropped 1651 * in ext4_mb_release_context 1652 */ 1653 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1654 get_page(ac->ac_bitmap_page); 1655 ac->ac_buddy_page = e4b->bd_buddy_page; 1656 get_page(ac->ac_buddy_page); 1657 /* store last allocated for subsequent stream allocation */ 1658 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1659 spin_lock(&sbi->s_md_lock); 1660 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1661 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1662 spin_unlock(&sbi->s_md_lock); 1663 } 1664 } 1665 1666 /* 1667 * regular allocator, for general purposes allocation 1668 */ 1669 1670 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1671 struct ext4_buddy *e4b, 1672 int finish_group) 1673 { 1674 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1675 struct ext4_free_extent *bex = &ac->ac_b_ex; 1676 struct ext4_free_extent *gex = &ac->ac_g_ex; 1677 struct ext4_free_extent ex; 1678 int max; 1679 1680 if (ac->ac_status == AC_STATUS_FOUND) 1681 return; 1682 /* 1683 * We don't want to scan for a whole year 1684 */ 1685 if (ac->ac_found > sbi->s_mb_max_to_scan && 1686 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1687 ac->ac_status = AC_STATUS_BREAK; 1688 return; 1689 } 1690 1691 /* 1692 * Haven't found good chunk so far, let's continue 1693 */ 1694 if (bex->fe_len < gex->fe_len) 1695 return; 1696 1697 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1698 && bex->fe_group == e4b->bd_group) { 1699 /* recheck chunk's availability - we don't know 1700 * when it was found (within this lock-unlock 1701 * period or not) */ 1702 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1703 if (max >= gex->fe_len) { 1704 ext4_mb_use_best_found(ac, e4b); 1705 return; 1706 } 1707 } 1708 } 1709 1710 /* 1711 * The routine checks whether found extent is good enough. If it is, 1712 * then the extent gets marked used and flag is set to the context 1713 * to stop scanning. Otherwise, the extent is compared with the 1714 * previous found extent and if new one is better, then it's stored 1715 * in the context. Later, the best found extent will be used, if 1716 * mballoc can't find good enough extent. 1717 * 1718 * FIXME: real allocation policy is to be designed yet! 1719 */ 1720 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1721 struct ext4_free_extent *ex, 1722 struct ext4_buddy *e4b) 1723 { 1724 struct ext4_free_extent *bex = &ac->ac_b_ex; 1725 struct ext4_free_extent *gex = &ac->ac_g_ex; 1726 1727 BUG_ON(ex->fe_len <= 0); 1728 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1729 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1730 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1731 1732 ac->ac_found++; 1733 1734 /* 1735 * The special case - take what you catch first 1736 */ 1737 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1738 *bex = *ex; 1739 ext4_mb_use_best_found(ac, e4b); 1740 return; 1741 } 1742 1743 /* 1744 * Let's check whether the chuck is good enough 1745 */ 1746 if (ex->fe_len == gex->fe_len) { 1747 *bex = *ex; 1748 ext4_mb_use_best_found(ac, e4b); 1749 return; 1750 } 1751 1752 /* 1753 * If this is first found extent, just store it in the context 1754 */ 1755 if (bex->fe_len == 0) { 1756 *bex = *ex; 1757 return; 1758 } 1759 1760 /* 1761 * If new found extent is better, store it in the context 1762 */ 1763 if (bex->fe_len < gex->fe_len) { 1764 /* if the request isn't satisfied, any found extent 1765 * larger than previous best one is better */ 1766 if (ex->fe_len > bex->fe_len) 1767 *bex = *ex; 1768 } else if (ex->fe_len > gex->fe_len) { 1769 /* if the request is satisfied, then we try to find 1770 * an extent that still satisfy the request, but is 1771 * smaller than previous one */ 1772 if (ex->fe_len < bex->fe_len) 1773 *bex = *ex; 1774 } 1775 1776 ext4_mb_check_limits(ac, e4b, 0); 1777 } 1778 1779 static noinline_for_stack 1780 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1781 struct ext4_buddy *e4b) 1782 { 1783 struct ext4_free_extent ex = ac->ac_b_ex; 1784 ext4_group_t group = ex.fe_group; 1785 int max; 1786 int err; 1787 1788 BUG_ON(ex.fe_len <= 0); 1789 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1790 if (err) 1791 return err; 1792 1793 ext4_lock_group(ac->ac_sb, group); 1794 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1795 1796 if (max > 0) { 1797 ac->ac_b_ex = ex; 1798 ext4_mb_use_best_found(ac, e4b); 1799 } 1800 1801 ext4_unlock_group(ac->ac_sb, group); 1802 ext4_mb_unload_buddy(e4b); 1803 1804 return 0; 1805 } 1806 1807 static noinline_for_stack 1808 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1809 struct ext4_buddy *e4b) 1810 { 1811 ext4_group_t group = ac->ac_g_ex.fe_group; 1812 int max; 1813 int err; 1814 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1815 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1816 struct ext4_free_extent ex; 1817 1818 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1819 return 0; 1820 if (grp->bb_free == 0) 1821 return 0; 1822 1823 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1824 if (err) 1825 return err; 1826 1827 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1828 ext4_mb_unload_buddy(e4b); 1829 return 0; 1830 } 1831 1832 ext4_lock_group(ac->ac_sb, group); 1833 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1834 ac->ac_g_ex.fe_len, &ex); 1835 ex.fe_logical = 0xDEADFA11; /* debug value */ 1836 1837 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1838 ext4_fsblk_t start; 1839 1840 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1841 ex.fe_start; 1842 /* use do_div to get remainder (would be 64-bit modulo) */ 1843 if (do_div(start, sbi->s_stripe) == 0) { 1844 ac->ac_found++; 1845 ac->ac_b_ex = ex; 1846 ext4_mb_use_best_found(ac, e4b); 1847 } 1848 } else if (max >= ac->ac_g_ex.fe_len) { 1849 BUG_ON(ex.fe_len <= 0); 1850 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1851 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1852 ac->ac_found++; 1853 ac->ac_b_ex = ex; 1854 ext4_mb_use_best_found(ac, e4b); 1855 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1856 /* Sometimes, caller may want to merge even small 1857 * number of blocks to an existing extent */ 1858 BUG_ON(ex.fe_len <= 0); 1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1861 ac->ac_found++; 1862 ac->ac_b_ex = ex; 1863 ext4_mb_use_best_found(ac, e4b); 1864 } 1865 ext4_unlock_group(ac->ac_sb, group); 1866 ext4_mb_unload_buddy(e4b); 1867 1868 return 0; 1869 } 1870 1871 /* 1872 * The routine scans buddy structures (not bitmap!) from given order 1873 * to max order and tries to find big enough chunk to satisfy the req 1874 */ 1875 static noinline_for_stack 1876 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1877 struct ext4_buddy *e4b) 1878 { 1879 struct super_block *sb = ac->ac_sb; 1880 struct ext4_group_info *grp = e4b->bd_info; 1881 void *buddy; 1882 int i; 1883 int k; 1884 int max; 1885 1886 BUG_ON(ac->ac_2order <= 0); 1887 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1888 if (grp->bb_counters[i] == 0) 1889 continue; 1890 1891 buddy = mb_find_buddy(e4b, i, &max); 1892 BUG_ON(buddy == NULL); 1893 1894 k = mb_find_next_zero_bit(buddy, max, 0); 1895 BUG_ON(k >= max); 1896 1897 ac->ac_found++; 1898 1899 ac->ac_b_ex.fe_len = 1 << i; 1900 ac->ac_b_ex.fe_start = k << i; 1901 ac->ac_b_ex.fe_group = e4b->bd_group; 1902 1903 ext4_mb_use_best_found(ac, e4b); 1904 1905 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1906 1907 if (EXT4_SB(sb)->s_mb_stats) 1908 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1909 1910 break; 1911 } 1912 } 1913 1914 /* 1915 * The routine scans the group and measures all found extents. 1916 * In order to optimize scanning, caller must pass number of 1917 * free blocks in the group, so the routine can know upper limit. 1918 */ 1919 static noinline_for_stack 1920 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1921 struct ext4_buddy *e4b) 1922 { 1923 struct super_block *sb = ac->ac_sb; 1924 void *bitmap = e4b->bd_bitmap; 1925 struct ext4_free_extent ex; 1926 int i; 1927 int free; 1928 1929 free = e4b->bd_info->bb_free; 1930 BUG_ON(free <= 0); 1931 1932 i = e4b->bd_info->bb_first_free; 1933 1934 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1935 i = mb_find_next_zero_bit(bitmap, 1936 EXT4_CLUSTERS_PER_GROUP(sb), i); 1937 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1938 /* 1939 * IF we have corrupt bitmap, we won't find any 1940 * free blocks even though group info says we 1941 * we have free blocks 1942 */ 1943 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1944 "%d free clusters as per " 1945 "group info. But bitmap says 0", 1946 free); 1947 break; 1948 } 1949 1950 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1951 BUG_ON(ex.fe_len <= 0); 1952 if (free < ex.fe_len) { 1953 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1954 "%d free clusters as per " 1955 "group info. But got %d blocks", 1956 free, ex.fe_len); 1957 /* 1958 * The number of free blocks differs. This mostly 1959 * indicate that the bitmap is corrupt. So exit 1960 * without claiming the space. 1961 */ 1962 break; 1963 } 1964 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1965 ext4_mb_measure_extent(ac, &ex, e4b); 1966 1967 i += ex.fe_len; 1968 free -= ex.fe_len; 1969 } 1970 1971 ext4_mb_check_limits(ac, e4b, 1); 1972 } 1973 1974 /* 1975 * This is a special case for storages like raid5 1976 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1977 */ 1978 static noinline_for_stack 1979 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1980 struct ext4_buddy *e4b) 1981 { 1982 struct super_block *sb = ac->ac_sb; 1983 struct ext4_sb_info *sbi = EXT4_SB(sb); 1984 void *bitmap = e4b->bd_bitmap; 1985 struct ext4_free_extent ex; 1986 ext4_fsblk_t first_group_block; 1987 ext4_fsblk_t a; 1988 ext4_grpblk_t i; 1989 int max; 1990 1991 BUG_ON(sbi->s_stripe == 0); 1992 1993 /* find first stripe-aligned block in group */ 1994 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1995 1996 a = first_group_block + sbi->s_stripe - 1; 1997 do_div(a, sbi->s_stripe); 1998 i = (a * sbi->s_stripe) - first_group_block; 1999 2000 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2001 if (!mb_test_bit(i, bitmap)) { 2002 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2003 if (max >= sbi->s_stripe) { 2004 ac->ac_found++; 2005 ex.fe_logical = 0xDEADF00D; /* debug value */ 2006 ac->ac_b_ex = ex; 2007 ext4_mb_use_best_found(ac, e4b); 2008 break; 2009 } 2010 } 2011 i += sbi->s_stripe; 2012 } 2013 } 2014 2015 /* 2016 * This is now called BEFORE we load the buddy bitmap. 2017 * Returns either 1 or 0 indicating that the group is either suitable 2018 * for the allocation or not. In addition it can also return negative 2019 * error code when something goes wrong. 2020 */ 2021 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2022 ext4_group_t group, int cr) 2023 { 2024 unsigned free, fragments; 2025 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2026 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2027 2028 BUG_ON(cr < 0 || cr >= 4); 2029 2030 free = grp->bb_free; 2031 if (free == 0) 2032 return 0; 2033 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2034 return 0; 2035 2036 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2037 return 0; 2038 2039 /* We only do this if the grp has never been initialized */ 2040 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2041 int ret = ext4_mb_init_group(ac->ac_sb, group); 2042 if (ret) 2043 return ret; 2044 } 2045 2046 fragments = grp->bb_fragments; 2047 if (fragments == 0) 2048 return 0; 2049 2050 switch (cr) { 2051 case 0: 2052 BUG_ON(ac->ac_2order == 0); 2053 2054 /* Avoid using the first bg of a flexgroup for data files */ 2055 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2056 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2057 ((group % flex_size) == 0)) 2058 return 0; 2059 2060 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2061 (free / fragments) >= ac->ac_g_ex.fe_len) 2062 return 1; 2063 2064 if (grp->bb_largest_free_order < ac->ac_2order) 2065 return 0; 2066 2067 return 1; 2068 case 1: 2069 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2070 return 1; 2071 break; 2072 case 2: 2073 if (free >= ac->ac_g_ex.fe_len) 2074 return 1; 2075 break; 2076 case 3: 2077 return 1; 2078 default: 2079 BUG(); 2080 } 2081 2082 return 0; 2083 } 2084 2085 static noinline_for_stack int 2086 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2087 { 2088 ext4_group_t ngroups, group, i; 2089 int cr; 2090 int err = 0, first_err = 0; 2091 struct ext4_sb_info *sbi; 2092 struct super_block *sb; 2093 struct ext4_buddy e4b; 2094 2095 sb = ac->ac_sb; 2096 sbi = EXT4_SB(sb); 2097 ngroups = ext4_get_groups_count(sb); 2098 /* non-extent files are limited to low blocks/groups */ 2099 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2100 ngroups = sbi->s_blockfile_groups; 2101 2102 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2103 2104 /* first, try the goal */ 2105 err = ext4_mb_find_by_goal(ac, &e4b); 2106 if (err || ac->ac_status == AC_STATUS_FOUND) 2107 goto out; 2108 2109 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2110 goto out; 2111 2112 /* 2113 * ac->ac2_order is set only if the fe_len is a power of 2 2114 * if ac2_order is set we also set criteria to 0 so that we 2115 * try exact allocation using buddy. 2116 */ 2117 i = fls(ac->ac_g_ex.fe_len); 2118 ac->ac_2order = 0; 2119 /* 2120 * We search using buddy data only if the order of the request 2121 * is greater than equal to the sbi_s_mb_order2_reqs 2122 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2123 */ 2124 if (i >= sbi->s_mb_order2_reqs) { 2125 /* 2126 * This should tell if fe_len is exactly power of 2 2127 */ 2128 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2129 ac->ac_2order = i - 1; 2130 } 2131 2132 /* if stream allocation is enabled, use global goal */ 2133 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2134 /* TBD: may be hot point */ 2135 spin_lock(&sbi->s_md_lock); 2136 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2137 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2138 spin_unlock(&sbi->s_md_lock); 2139 } 2140 2141 /* Let's just scan groups to find more-less suitable blocks */ 2142 cr = ac->ac_2order ? 0 : 1; 2143 /* 2144 * cr == 0 try to get exact allocation, 2145 * cr == 3 try to get anything 2146 */ 2147 repeat: 2148 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2149 ac->ac_criteria = cr; 2150 /* 2151 * searching for the right group start 2152 * from the goal value specified 2153 */ 2154 group = ac->ac_g_ex.fe_group; 2155 2156 for (i = 0; i < ngroups; group++, i++) { 2157 int ret = 0; 2158 cond_resched(); 2159 /* 2160 * Artificially restricted ngroups for non-extent 2161 * files makes group > ngroups possible on first loop. 2162 */ 2163 if (group >= ngroups) 2164 group = 0; 2165 2166 /* This now checks without needing the buddy page */ 2167 ret = ext4_mb_good_group(ac, group, cr); 2168 if (ret <= 0) { 2169 if (!first_err) 2170 first_err = ret; 2171 continue; 2172 } 2173 2174 err = ext4_mb_load_buddy(sb, group, &e4b); 2175 if (err) 2176 goto out; 2177 2178 ext4_lock_group(sb, group); 2179 2180 /* 2181 * We need to check again after locking the 2182 * block group 2183 */ 2184 ret = ext4_mb_good_group(ac, group, cr); 2185 if (ret <= 0) { 2186 ext4_unlock_group(sb, group); 2187 ext4_mb_unload_buddy(&e4b); 2188 if (!first_err) 2189 first_err = ret; 2190 continue; 2191 } 2192 2193 ac->ac_groups_scanned++; 2194 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2195 ext4_mb_simple_scan_group(ac, &e4b); 2196 else if (cr == 1 && sbi->s_stripe && 2197 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2198 ext4_mb_scan_aligned(ac, &e4b); 2199 else 2200 ext4_mb_complex_scan_group(ac, &e4b); 2201 2202 ext4_unlock_group(sb, group); 2203 ext4_mb_unload_buddy(&e4b); 2204 2205 if (ac->ac_status != AC_STATUS_CONTINUE) 2206 break; 2207 } 2208 } 2209 2210 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2211 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2212 /* 2213 * We've been searching too long. Let's try to allocate 2214 * the best chunk we've found so far 2215 */ 2216 2217 ext4_mb_try_best_found(ac, &e4b); 2218 if (ac->ac_status != AC_STATUS_FOUND) { 2219 /* 2220 * Someone more lucky has already allocated it. 2221 * The only thing we can do is just take first 2222 * found block(s) 2223 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2224 */ 2225 ac->ac_b_ex.fe_group = 0; 2226 ac->ac_b_ex.fe_start = 0; 2227 ac->ac_b_ex.fe_len = 0; 2228 ac->ac_status = AC_STATUS_CONTINUE; 2229 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2230 cr = 3; 2231 atomic_inc(&sbi->s_mb_lost_chunks); 2232 goto repeat; 2233 } 2234 } 2235 out: 2236 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2237 err = first_err; 2238 return err; 2239 } 2240 2241 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2242 { 2243 struct super_block *sb = seq->private; 2244 ext4_group_t group; 2245 2246 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2247 return NULL; 2248 group = *pos + 1; 2249 return (void *) ((unsigned long) group); 2250 } 2251 2252 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2253 { 2254 struct super_block *sb = seq->private; 2255 ext4_group_t group; 2256 2257 ++*pos; 2258 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2259 return NULL; 2260 group = *pos + 1; 2261 return (void *) ((unsigned long) group); 2262 } 2263 2264 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2265 { 2266 struct super_block *sb = seq->private; 2267 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2268 int i; 2269 int err, buddy_loaded = 0; 2270 struct ext4_buddy e4b; 2271 struct ext4_group_info *grinfo; 2272 struct sg { 2273 struct ext4_group_info info; 2274 ext4_grpblk_t counters[16]; 2275 } sg; 2276 2277 group--; 2278 if (group == 0) 2279 seq_puts(seq, "#group: free frags first [" 2280 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2281 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]"); 2282 2283 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2284 sizeof(struct ext4_group_info); 2285 grinfo = ext4_get_group_info(sb, group); 2286 /* Load the group info in memory only if not already loaded. */ 2287 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2288 err = ext4_mb_load_buddy(sb, group, &e4b); 2289 if (err) { 2290 seq_printf(seq, "#%-5u: I/O error\n", group); 2291 return 0; 2292 } 2293 buddy_loaded = 1; 2294 } 2295 2296 memcpy(&sg, ext4_get_group_info(sb, group), i); 2297 2298 if (buddy_loaded) 2299 ext4_mb_unload_buddy(&e4b); 2300 2301 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2302 sg.info.bb_fragments, sg.info.bb_first_free); 2303 for (i = 0; i <= 13; i++) 2304 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2305 sg.info.bb_counters[i] : 0); 2306 seq_printf(seq, " ]\n"); 2307 2308 return 0; 2309 } 2310 2311 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2312 { 2313 } 2314 2315 static const struct seq_operations ext4_mb_seq_groups_ops = { 2316 .start = ext4_mb_seq_groups_start, 2317 .next = ext4_mb_seq_groups_next, 2318 .stop = ext4_mb_seq_groups_stop, 2319 .show = ext4_mb_seq_groups_show, 2320 }; 2321 2322 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2323 { 2324 struct super_block *sb = PDE_DATA(inode); 2325 int rc; 2326 2327 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2328 if (rc == 0) { 2329 struct seq_file *m = file->private_data; 2330 m->private = sb; 2331 } 2332 return rc; 2333 2334 } 2335 2336 static const struct file_operations ext4_mb_seq_groups_fops = { 2337 .owner = THIS_MODULE, 2338 .open = ext4_mb_seq_groups_open, 2339 .read = seq_read, 2340 .llseek = seq_lseek, 2341 .release = seq_release, 2342 }; 2343 2344 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2345 { 2346 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2347 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2348 2349 BUG_ON(!cachep); 2350 return cachep; 2351 } 2352 2353 /* 2354 * Allocate the top-level s_group_info array for the specified number 2355 * of groups 2356 */ 2357 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2358 { 2359 struct ext4_sb_info *sbi = EXT4_SB(sb); 2360 unsigned size; 2361 struct ext4_group_info ***new_groupinfo; 2362 2363 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2364 EXT4_DESC_PER_BLOCK_BITS(sb); 2365 if (size <= sbi->s_group_info_size) 2366 return 0; 2367 2368 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2369 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2370 if (!new_groupinfo) { 2371 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2372 return -ENOMEM; 2373 } 2374 if (sbi->s_group_info) { 2375 memcpy(new_groupinfo, sbi->s_group_info, 2376 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2377 kvfree(sbi->s_group_info); 2378 } 2379 sbi->s_group_info = new_groupinfo; 2380 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2381 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2382 sbi->s_group_info_size); 2383 return 0; 2384 } 2385 2386 /* Create and initialize ext4_group_info data for the given group. */ 2387 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2388 struct ext4_group_desc *desc) 2389 { 2390 int i; 2391 int metalen = 0; 2392 struct ext4_sb_info *sbi = EXT4_SB(sb); 2393 struct ext4_group_info **meta_group_info; 2394 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2395 2396 /* 2397 * First check if this group is the first of a reserved block. 2398 * If it's true, we have to allocate a new table of pointers 2399 * to ext4_group_info structures 2400 */ 2401 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2402 metalen = sizeof(*meta_group_info) << 2403 EXT4_DESC_PER_BLOCK_BITS(sb); 2404 meta_group_info = kmalloc(metalen, GFP_NOFS); 2405 if (meta_group_info == NULL) { 2406 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2407 "for a buddy group"); 2408 goto exit_meta_group_info; 2409 } 2410 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2411 meta_group_info; 2412 } 2413 2414 meta_group_info = 2415 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2416 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2417 2418 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2419 if (meta_group_info[i] == NULL) { 2420 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2421 goto exit_group_info; 2422 } 2423 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2424 &(meta_group_info[i]->bb_state)); 2425 2426 /* 2427 * initialize bb_free to be able to skip 2428 * empty groups without initialization 2429 */ 2430 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2431 meta_group_info[i]->bb_free = 2432 ext4_free_clusters_after_init(sb, group, desc); 2433 } else { 2434 meta_group_info[i]->bb_free = 2435 ext4_free_group_clusters(sb, desc); 2436 } 2437 2438 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2439 init_rwsem(&meta_group_info[i]->alloc_sem); 2440 meta_group_info[i]->bb_free_root = RB_ROOT; 2441 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2442 2443 #ifdef DOUBLE_CHECK 2444 { 2445 struct buffer_head *bh; 2446 meta_group_info[i]->bb_bitmap = 2447 kmalloc(sb->s_blocksize, GFP_NOFS); 2448 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2449 bh = ext4_read_block_bitmap(sb, group); 2450 BUG_ON(bh == NULL); 2451 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2452 sb->s_blocksize); 2453 put_bh(bh); 2454 } 2455 #endif 2456 2457 return 0; 2458 2459 exit_group_info: 2460 /* If a meta_group_info table has been allocated, release it now */ 2461 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2462 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2463 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2464 } 2465 exit_meta_group_info: 2466 return -ENOMEM; 2467 } /* ext4_mb_add_groupinfo */ 2468 2469 static int ext4_mb_init_backend(struct super_block *sb) 2470 { 2471 ext4_group_t ngroups = ext4_get_groups_count(sb); 2472 ext4_group_t i; 2473 struct ext4_sb_info *sbi = EXT4_SB(sb); 2474 int err; 2475 struct ext4_group_desc *desc; 2476 struct kmem_cache *cachep; 2477 2478 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2479 if (err) 2480 return err; 2481 2482 sbi->s_buddy_cache = new_inode(sb); 2483 if (sbi->s_buddy_cache == NULL) { 2484 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2485 goto err_freesgi; 2486 } 2487 /* To avoid potentially colliding with an valid on-disk inode number, 2488 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2489 * not in the inode hash, so it should never be found by iget(), but 2490 * this will avoid confusion if it ever shows up during debugging. */ 2491 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2492 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2493 for (i = 0; i < ngroups; i++) { 2494 desc = ext4_get_group_desc(sb, i, NULL); 2495 if (desc == NULL) { 2496 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2497 goto err_freebuddy; 2498 } 2499 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2500 goto err_freebuddy; 2501 } 2502 2503 return 0; 2504 2505 err_freebuddy: 2506 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2507 while (i-- > 0) 2508 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2509 i = sbi->s_group_info_size; 2510 while (i-- > 0) 2511 kfree(sbi->s_group_info[i]); 2512 iput(sbi->s_buddy_cache); 2513 err_freesgi: 2514 kvfree(sbi->s_group_info); 2515 return -ENOMEM; 2516 } 2517 2518 static void ext4_groupinfo_destroy_slabs(void) 2519 { 2520 int i; 2521 2522 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2523 if (ext4_groupinfo_caches[i]) 2524 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2525 ext4_groupinfo_caches[i] = NULL; 2526 } 2527 } 2528 2529 static int ext4_groupinfo_create_slab(size_t size) 2530 { 2531 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2532 int slab_size; 2533 int blocksize_bits = order_base_2(size); 2534 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2535 struct kmem_cache *cachep; 2536 2537 if (cache_index >= NR_GRPINFO_CACHES) 2538 return -EINVAL; 2539 2540 if (unlikely(cache_index < 0)) 2541 cache_index = 0; 2542 2543 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2544 if (ext4_groupinfo_caches[cache_index]) { 2545 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2546 return 0; /* Already created */ 2547 } 2548 2549 slab_size = offsetof(struct ext4_group_info, 2550 bb_counters[blocksize_bits + 2]); 2551 2552 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2553 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2554 NULL); 2555 2556 ext4_groupinfo_caches[cache_index] = cachep; 2557 2558 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2559 if (!cachep) { 2560 printk(KERN_EMERG 2561 "EXT4-fs: no memory for groupinfo slab cache\n"); 2562 return -ENOMEM; 2563 } 2564 2565 return 0; 2566 } 2567 2568 int ext4_mb_init(struct super_block *sb) 2569 { 2570 struct ext4_sb_info *sbi = EXT4_SB(sb); 2571 unsigned i, j; 2572 unsigned offset; 2573 unsigned max; 2574 int ret; 2575 2576 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2577 2578 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2579 if (sbi->s_mb_offsets == NULL) { 2580 ret = -ENOMEM; 2581 goto out; 2582 } 2583 2584 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2585 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2586 if (sbi->s_mb_maxs == NULL) { 2587 ret = -ENOMEM; 2588 goto out; 2589 } 2590 2591 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2592 if (ret < 0) 2593 goto out; 2594 2595 /* order 0 is regular bitmap */ 2596 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2597 sbi->s_mb_offsets[0] = 0; 2598 2599 i = 1; 2600 offset = 0; 2601 max = sb->s_blocksize << 2; 2602 do { 2603 sbi->s_mb_offsets[i] = offset; 2604 sbi->s_mb_maxs[i] = max; 2605 offset += 1 << (sb->s_blocksize_bits - i); 2606 max = max >> 1; 2607 i++; 2608 } while (i <= sb->s_blocksize_bits + 1); 2609 2610 spin_lock_init(&sbi->s_md_lock); 2611 spin_lock_init(&sbi->s_bal_lock); 2612 2613 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2614 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2615 sbi->s_mb_stats = MB_DEFAULT_STATS; 2616 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2617 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2618 /* 2619 * The default group preallocation is 512, which for 4k block 2620 * sizes translates to 2 megabytes. However for bigalloc file 2621 * systems, this is probably too big (i.e, if the cluster size 2622 * is 1 megabyte, then group preallocation size becomes half a 2623 * gigabyte!). As a default, we will keep a two megabyte 2624 * group pralloc size for cluster sizes up to 64k, and after 2625 * that, we will force a minimum group preallocation size of 2626 * 32 clusters. This translates to 8 megs when the cluster 2627 * size is 256k, and 32 megs when the cluster size is 1 meg, 2628 * which seems reasonable as a default. 2629 */ 2630 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2631 sbi->s_cluster_bits, 32); 2632 /* 2633 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2634 * to the lowest multiple of s_stripe which is bigger than 2635 * the s_mb_group_prealloc as determined above. We want 2636 * the preallocation size to be an exact multiple of the 2637 * RAID stripe size so that preallocations don't fragment 2638 * the stripes. 2639 */ 2640 if (sbi->s_stripe > 1) { 2641 sbi->s_mb_group_prealloc = roundup( 2642 sbi->s_mb_group_prealloc, sbi->s_stripe); 2643 } 2644 2645 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2646 if (sbi->s_locality_groups == NULL) { 2647 ret = -ENOMEM; 2648 goto out; 2649 } 2650 for_each_possible_cpu(i) { 2651 struct ext4_locality_group *lg; 2652 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2653 mutex_init(&lg->lg_mutex); 2654 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2655 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2656 spin_lock_init(&lg->lg_prealloc_lock); 2657 } 2658 2659 /* init file for buddy data */ 2660 ret = ext4_mb_init_backend(sb); 2661 if (ret != 0) 2662 goto out_free_locality_groups; 2663 2664 if (sbi->s_proc) 2665 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2666 &ext4_mb_seq_groups_fops, sb); 2667 2668 return 0; 2669 2670 out_free_locality_groups: 2671 free_percpu(sbi->s_locality_groups); 2672 sbi->s_locality_groups = NULL; 2673 out: 2674 kfree(sbi->s_mb_offsets); 2675 sbi->s_mb_offsets = NULL; 2676 kfree(sbi->s_mb_maxs); 2677 sbi->s_mb_maxs = NULL; 2678 return ret; 2679 } 2680 2681 /* need to called with the ext4 group lock held */ 2682 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2683 { 2684 struct ext4_prealloc_space *pa; 2685 struct list_head *cur, *tmp; 2686 int count = 0; 2687 2688 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2689 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2690 list_del(&pa->pa_group_list); 2691 count++; 2692 kmem_cache_free(ext4_pspace_cachep, pa); 2693 } 2694 if (count) 2695 mb_debug(1, "mballoc: %u PAs left\n", count); 2696 2697 } 2698 2699 int ext4_mb_release(struct super_block *sb) 2700 { 2701 ext4_group_t ngroups = ext4_get_groups_count(sb); 2702 ext4_group_t i; 2703 int num_meta_group_infos; 2704 struct ext4_group_info *grinfo; 2705 struct ext4_sb_info *sbi = EXT4_SB(sb); 2706 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2707 2708 if (sbi->s_proc) 2709 remove_proc_entry("mb_groups", sbi->s_proc); 2710 2711 if (sbi->s_group_info) { 2712 for (i = 0; i < ngroups; i++) { 2713 grinfo = ext4_get_group_info(sb, i); 2714 #ifdef DOUBLE_CHECK 2715 kfree(grinfo->bb_bitmap); 2716 #endif 2717 ext4_lock_group(sb, i); 2718 ext4_mb_cleanup_pa(grinfo); 2719 ext4_unlock_group(sb, i); 2720 kmem_cache_free(cachep, grinfo); 2721 } 2722 num_meta_group_infos = (ngroups + 2723 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2724 EXT4_DESC_PER_BLOCK_BITS(sb); 2725 for (i = 0; i < num_meta_group_infos; i++) 2726 kfree(sbi->s_group_info[i]); 2727 kvfree(sbi->s_group_info); 2728 } 2729 kfree(sbi->s_mb_offsets); 2730 kfree(sbi->s_mb_maxs); 2731 iput(sbi->s_buddy_cache); 2732 if (sbi->s_mb_stats) { 2733 ext4_msg(sb, KERN_INFO, 2734 "mballoc: %u blocks %u reqs (%u success)", 2735 atomic_read(&sbi->s_bal_allocated), 2736 atomic_read(&sbi->s_bal_reqs), 2737 atomic_read(&sbi->s_bal_success)); 2738 ext4_msg(sb, KERN_INFO, 2739 "mballoc: %u extents scanned, %u goal hits, " 2740 "%u 2^N hits, %u breaks, %u lost", 2741 atomic_read(&sbi->s_bal_ex_scanned), 2742 atomic_read(&sbi->s_bal_goals), 2743 atomic_read(&sbi->s_bal_2orders), 2744 atomic_read(&sbi->s_bal_breaks), 2745 atomic_read(&sbi->s_mb_lost_chunks)); 2746 ext4_msg(sb, KERN_INFO, 2747 "mballoc: %lu generated and it took %Lu", 2748 sbi->s_mb_buddies_generated, 2749 sbi->s_mb_generation_time); 2750 ext4_msg(sb, KERN_INFO, 2751 "mballoc: %u preallocated, %u discarded", 2752 atomic_read(&sbi->s_mb_preallocated), 2753 atomic_read(&sbi->s_mb_discarded)); 2754 } 2755 2756 free_percpu(sbi->s_locality_groups); 2757 2758 return 0; 2759 } 2760 2761 static inline int ext4_issue_discard(struct super_block *sb, 2762 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2763 { 2764 ext4_fsblk_t discard_block; 2765 2766 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2767 ext4_group_first_block_no(sb, block_group)); 2768 count = EXT4_C2B(EXT4_SB(sb), count); 2769 trace_ext4_discard_blocks(sb, 2770 (unsigned long long) discard_block, count); 2771 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2772 } 2773 2774 /* 2775 * This function is called by the jbd2 layer once the commit has finished, 2776 * so we know we can free the blocks that were released with that commit. 2777 */ 2778 static void ext4_free_data_callback(struct super_block *sb, 2779 struct ext4_journal_cb_entry *jce, 2780 int rc) 2781 { 2782 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2783 struct ext4_buddy e4b; 2784 struct ext4_group_info *db; 2785 int err, count = 0, count2 = 0; 2786 2787 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2788 entry->efd_count, entry->efd_group, entry); 2789 2790 if (test_opt(sb, DISCARD)) { 2791 err = ext4_issue_discard(sb, entry->efd_group, 2792 entry->efd_start_cluster, 2793 entry->efd_count); 2794 if (err && err != -EOPNOTSUPP) 2795 ext4_msg(sb, KERN_WARNING, "discard request in" 2796 " group:%d block:%d count:%d failed" 2797 " with %d", entry->efd_group, 2798 entry->efd_start_cluster, 2799 entry->efd_count, err); 2800 } 2801 2802 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2803 /* we expect to find existing buddy because it's pinned */ 2804 BUG_ON(err != 0); 2805 2806 2807 db = e4b.bd_info; 2808 /* there are blocks to put in buddy to make them really free */ 2809 count += entry->efd_count; 2810 count2++; 2811 ext4_lock_group(sb, entry->efd_group); 2812 /* Take it out of per group rb tree */ 2813 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2814 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2815 2816 /* 2817 * Clear the trimmed flag for the group so that the next 2818 * ext4_trim_fs can trim it. 2819 * If the volume is mounted with -o discard, online discard 2820 * is supported and the free blocks will be trimmed online. 2821 */ 2822 if (!test_opt(sb, DISCARD)) 2823 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2824 2825 if (!db->bb_free_root.rb_node) { 2826 /* No more items in the per group rb tree 2827 * balance refcounts from ext4_mb_free_metadata() 2828 */ 2829 page_cache_release(e4b.bd_buddy_page); 2830 page_cache_release(e4b.bd_bitmap_page); 2831 } 2832 ext4_unlock_group(sb, entry->efd_group); 2833 kmem_cache_free(ext4_free_data_cachep, entry); 2834 ext4_mb_unload_buddy(&e4b); 2835 2836 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2837 } 2838 2839 int __init ext4_init_mballoc(void) 2840 { 2841 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2842 SLAB_RECLAIM_ACCOUNT); 2843 if (ext4_pspace_cachep == NULL) 2844 return -ENOMEM; 2845 2846 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2847 SLAB_RECLAIM_ACCOUNT); 2848 if (ext4_ac_cachep == NULL) { 2849 kmem_cache_destroy(ext4_pspace_cachep); 2850 return -ENOMEM; 2851 } 2852 2853 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2854 SLAB_RECLAIM_ACCOUNT); 2855 if (ext4_free_data_cachep == NULL) { 2856 kmem_cache_destroy(ext4_pspace_cachep); 2857 kmem_cache_destroy(ext4_ac_cachep); 2858 return -ENOMEM; 2859 } 2860 return 0; 2861 } 2862 2863 void ext4_exit_mballoc(void) 2864 { 2865 /* 2866 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2867 * before destroying the slab cache. 2868 */ 2869 rcu_barrier(); 2870 kmem_cache_destroy(ext4_pspace_cachep); 2871 kmem_cache_destroy(ext4_ac_cachep); 2872 kmem_cache_destroy(ext4_free_data_cachep); 2873 ext4_groupinfo_destroy_slabs(); 2874 } 2875 2876 2877 /* 2878 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2879 * Returns 0 if success or error code 2880 */ 2881 static noinline_for_stack int 2882 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2883 handle_t *handle, unsigned int reserv_clstrs) 2884 { 2885 struct buffer_head *bitmap_bh = NULL; 2886 struct ext4_group_desc *gdp; 2887 struct buffer_head *gdp_bh; 2888 struct ext4_sb_info *sbi; 2889 struct super_block *sb; 2890 ext4_fsblk_t block; 2891 int err, len; 2892 2893 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2894 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2895 2896 sb = ac->ac_sb; 2897 sbi = EXT4_SB(sb); 2898 2899 err = -EIO; 2900 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2901 if (!bitmap_bh) 2902 goto out_err; 2903 2904 BUFFER_TRACE(bitmap_bh, "getting write access"); 2905 err = ext4_journal_get_write_access(handle, bitmap_bh); 2906 if (err) 2907 goto out_err; 2908 2909 err = -EIO; 2910 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2911 if (!gdp) 2912 goto out_err; 2913 2914 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2915 ext4_free_group_clusters(sb, gdp)); 2916 2917 BUFFER_TRACE(gdp_bh, "get_write_access"); 2918 err = ext4_journal_get_write_access(handle, gdp_bh); 2919 if (err) 2920 goto out_err; 2921 2922 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2923 2924 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2925 if (!ext4_data_block_valid(sbi, block, len)) { 2926 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2927 "fs metadata", block, block+len); 2928 /* File system mounted not to panic on error 2929 * Fix the bitmap and repeat the block allocation 2930 * We leak some of the blocks here. 2931 */ 2932 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2933 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2934 ac->ac_b_ex.fe_len); 2935 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2936 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2937 if (!err) 2938 err = -EAGAIN; 2939 goto out_err; 2940 } 2941 2942 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2943 #ifdef AGGRESSIVE_CHECK 2944 { 2945 int i; 2946 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2947 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2948 bitmap_bh->b_data)); 2949 } 2950 } 2951 #endif 2952 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2953 ac->ac_b_ex.fe_len); 2954 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2955 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2956 ext4_free_group_clusters_set(sb, gdp, 2957 ext4_free_clusters_after_init(sb, 2958 ac->ac_b_ex.fe_group, gdp)); 2959 } 2960 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2961 ext4_free_group_clusters_set(sb, gdp, len); 2962 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2963 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2964 2965 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2966 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2967 /* 2968 * Now reduce the dirty block count also. Should not go negative 2969 */ 2970 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2971 /* release all the reserved blocks if non delalloc */ 2972 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2973 reserv_clstrs); 2974 2975 if (sbi->s_log_groups_per_flex) { 2976 ext4_group_t flex_group = ext4_flex_group(sbi, 2977 ac->ac_b_ex.fe_group); 2978 atomic64_sub(ac->ac_b_ex.fe_len, 2979 &sbi->s_flex_groups[flex_group].free_clusters); 2980 } 2981 2982 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2983 if (err) 2984 goto out_err; 2985 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2986 2987 out_err: 2988 brelse(bitmap_bh); 2989 return err; 2990 } 2991 2992 /* 2993 * here we normalize request for locality group 2994 * Group request are normalized to s_mb_group_prealloc, which goes to 2995 * s_strip if we set the same via mount option. 2996 * s_mb_group_prealloc can be configured via 2997 * /sys/fs/ext4/<partition>/mb_group_prealloc 2998 * 2999 * XXX: should we try to preallocate more than the group has now? 3000 */ 3001 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3002 { 3003 struct super_block *sb = ac->ac_sb; 3004 struct ext4_locality_group *lg = ac->ac_lg; 3005 3006 BUG_ON(lg == NULL); 3007 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3008 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3009 current->pid, ac->ac_g_ex.fe_len); 3010 } 3011 3012 /* 3013 * Normalization means making request better in terms of 3014 * size and alignment 3015 */ 3016 static noinline_for_stack void 3017 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3018 struct ext4_allocation_request *ar) 3019 { 3020 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3021 int bsbits, max; 3022 ext4_lblk_t end; 3023 loff_t size, start_off; 3024 loff_t orig_size __maybe_unused; 3025 ext4_lblk_t start; 3026 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3027 struct ext4_prealloc_space *pa; 3028 3029 /* do normalize only data requests, metadata requests 3030 do not need preallocation */ 3031 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3032 return; 3033 3034 /* sometime caller may want exact blocks */ 3035 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3036 return; 3037 3038 /* caller may indicate that preallocation isn't 3039 * required (it's a tail, for example) */ 3040 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3041 return; 3042 3043 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3044 ext4_mb_normalize_group_request(ac); 3045 return ; 3046 } 3047 3048 bsbits = ac->ac_sb->s_blocksize_bits; 3049 3050 /* first, let's learn actual file size 3051 * given current request is allocated */ 3052 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3053 size = size << bsbits; 3054 if (size < i_size_read(ac->ac_inode)) 3055 size = i_size_read(ac->ac_inode); 3056 orig_size = size; 3057 3058 /* max size of free chunks */ 3059 max = 2 << bsbits; 3060 3061 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3062 (req <= (size) || max <= (chunk_size)) 3063 3064 /* first, try to predict filesize */ 3065 /* XXX: should this table be tunable? */ 3066 start_off = 0; 3067 if (size <= 16 * 1024) { 3068 size = 16 * 1024; 3069 } else if (size <= 32 * 1024) { 3070 size = 32 * 1024; 3071 } else if (size <= 64 * 1024) { 3072 size = 64 * 1024; 3073 } else if (size <= 128 * 1024) { 3074 size = 128 * 1024; 3075 } else if (size <= 256 * 1024) { 3076 size = 256 * 1024; 3077 } else if (size <= 512 * 1024) { 3078 size = 512 * 1024; 3079 } else if (size <= 1024 * 1024) { 3080 size = 1024 * 1024; 3081 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3082 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3083 (21 - bsbits)) << 21; 3084 size = 2 * 1024 * 1024; 3085 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3086 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3087 (22 - bsbits)) << 22; 3088 size = 4 * 1024 * 1024; 3089 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3090 (8<<20)>>bsbits, max, 8 * 1024)) { 3091 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3092 (23 - bsbits)) << 23; 3093 size = 8 * 1024 * 1024; 3094 } else { 3095 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3096 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3097 ac->ac_o_ex.fe_len) << bsbits; 3098 } 3099 size = size >> bsbits; 3100 start = start_off >> bsbits; 3101 3102 /* don't cover already allocated blocks in selected range */ 3103 if (ar->pleft && start <= ar->lleft) { 3104 size -= ar->lleft + 1 - start; 3105 start = ar->lleft + 1; 3106 } 3107 if (ar->pright && start + size - 1 >= ar->lright) 3108 size -= start + size - ar->lright; 3109 3110 end = start + size; 3111 3112 /* check we don't cross already preallocated blocks */ 3113 rcu_read_lock(); 3114 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3115 ext4_lblk_t pa_end; 3116 3117 if (pa->pa_deleted) 3118 continue; 3119 spin_lock(&pa->pa_lock); 3120 if (pa->pa_deleted) { 3121 spin_unlock(&pa->pa_lock); 3122 continue; 3123 } 3124 3125 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3126 pa->pa_len); 3127 3128 /* PA must not overlap original request */ 3129 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3130 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3131 3132 /* skip PAs this normalized request doesn't overlap with */ 3133 if (pa->pa_lstart >= end || pa_end <= start) { 3134 spin_unlock(&pa->pa_lock); 3135 continue; 3136 } 3137 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3138 3139 /* adjust start or end to be adjacent to this pa */ 3140 if (pa_end <= ac->ac_o_ex.fe_logical) { 3141 BUG_ON(pa_end < start); 3142 start = pa_end; 3143 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3144 BUG_ON(pa->pa_lstart > end); 3145 end = pa->pa_lstart; 3146 } 3147 spin_unlock(&pa->pa_lock); 3148 } 3149 rcu_read_unlock(); 3150 size = end - start; 3151 3152 /* XXX: extra loop to check we really don't overlap preallocations */ 3153 rcu_read_lock(); 3154 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3155 ext4_lblk_t pa_end; 3156 3157 spin_lock(&pa->pa_lock); 3158 if (pa->pa_deleted == 0) { 3159 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3160 pa->pa_len); 3161 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3162 } 3163 spin_unlock(&pa->pa_lock); 3164 } 3165 rcu_read_unlock(); 3166 3167 if (start + size <= ac->ac_o_ex.fe_logical && 3168 start > ac->ac_o_ex.fe_logical) { 3169 ext4_msg(ac->ac_sb, KERN_ERR, 3170 "start %lu, size %lu, fe_logical %lu", 3171 (unsigned long) start, (unsigned long) size, 3172 (unsigned long) ac->ac_o_ex.fe_logical); 3173 BUG(); 3174 } 3175 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3176 3177 /* now prepare goal request */ 3178 3179 /* XXX: is it better to align blocks WRT to logical 3180 * placement or satisfy big request as is */ 3181 ac->ac_g_ex.fe_logical = start; 3182 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3183 3184 /* define goal start in order to merge */ 3185 if (ar->pright && (ar->lright == (start + size))) { 3186 /* merge to the right */ 3187 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3188 &ac->ac_f_ex.fe_group, 3189 &ac->ac_f_ex.fe_start); 3190 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3191 } 3192 if (ar->pleft && (ar->lleft + 1 == start)) { 3193 /* merge to the left */ 3194 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3195 &ac->ac_f_ex.fe_group, 3196 &ac->ac_f_ex.fe_start); 3197 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3198 } 3199 3200 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3201 (unsigned) orig_size, (unsigned) start); 3202 } 3203 3204 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3205 { 3206 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3207 3208 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3209 atomic_inc(&sbi->s_bal_reqs); 3210 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3211 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3212 atomic_inc(&sbi->s_bal_success); 3213 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3214 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3215 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3216 atomic_inc(&sbi->s_bal_goals); 3217 if (ac->ac_found > sbi->s_mb_max_to_scan) 3218 atomic_inc(&sbi->s_bal_breaks); 3219 } 3220 3221 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3222 trace_ext4_mballoc_alloc(ac); 3223 else 3224 trace_ext4_mballoc_prealloc(ac); 3225 } 3226 3227 /* 3228 * Called on failure; free up any blocks from the inode PA for this 3229 * context. We don't need this for MB_GROUP_PA because we only change 3230 * pa_free in ext4_mb_release_context(), but on failure, we've already 3231 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3232 */ 3233 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3234 { 3235 struct ext4_prealloc_space *pa = ac->ac_pa; 3236 struct ext4_buddy e4b; 3237 int err; 3238 3239 if (pa == NULL) { 3240 if (ac->ac_f_ex.fe_len == 0) 3241 return; 3242 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3243 if (err) { 3244 /* 3245 * This should never happen since we pin the 3246 * pages in the ext4_allocation_context so 3247 * ext4_mb_load_buddy() should never fail. 3248 */ 3249 WARN(1, "mb_load_buddy failed (%d)", err); 3250 return; 3251 } 3252 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3253 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3254 ac->ac_f_ex.fe_len); 3255 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3256 ext4_mb_unload_buddy(&e4b); 3257 return; 3258 } 3259 if (pa->pa_type == MB_INODE_PA) 3260 pa->pa_free += ac->ac_b_ex.fe_len; 3261 } 3262 3263 /* 3264 * use blocks preallocated to inode 3265 */ 3266 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3267 struct ext4_prealloc_space *pa) 3268 { 3269 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3270 ext4_fsblk_t start; 3271 ext4_fsblk_t end; 3272 int len; 3273 3274 /* found preallocated blocks, use them */ 3275 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3276 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3277 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3278 len = EXT4_NUM_B2C(sbi, end - start); 3279 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3280 &ac->ac_b_ex.fe_start); 3281 ac->ac_b_ex.fe_len = len; 3282 ac->ac_status = AC_STATUS_FOUND; 3283 ac->ac_pa = pa; 3284 3285 BUG_ON(start < pa->pa_pstart); 3286 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3287 BUG_ON(pa->pa_free < len); 3288 pa->pa_free -= len; 3289 3290 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3291 } 3292 3293 /* 3294 * use blocks preallocated to locality group 3295 */ 3296 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3297 struct ext4_prealloc_space *pa) 3298 { 3299 unsigned int len = ac->ac_o_ex.fe_len; 3300 3301 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3302 &ac->ac_b_ex.fe_group, 3303 &ac->ac_b_ex.fe_start); 3304 ac->ac_b_ex.fe_len = len; 3305 ac->ac_status = AC_STATUS_FOUND; 3306 ac->ac_pa = pa; 3307 3308 /* we don't correct pa_pstart or pa_plen here to avoid 3309 * possible race when the group is being loaded concurrently 3310 * instead we correct pa later, after blocks are marked 3311 * in on-disk bitmap -- see ext4_mb_release_context() 3312 * Other CPUs are prevented from allocating from this pa by lg_mutex 3313 */ 3314 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3315 } 3316 3317 /* 3318 * Return the prealloc space that have minimal distance 3319 * from the goal block. @cpa is the prealloc 3320 * space that is having currently known minimal distance 3321 * from the goal block. 3322 */ 3323 static struct ext4_prealloc_space * 3324 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3325 struct ext4_prealloc_space *pa, 3326 struct ext4_prealloc_space *cpa) 3327 { 3328 ext4_fsblk_t cur_distance, new_distance; 3329 3330 if (cpa == NULL) { 3331 atomic_inc(&pa->pa_count); 3332 return pa; 3333 } 3334 cur_distance = abs(goal_block - cpa->pa_pstart); 3335 new_distance = abs(goal_block - pa->pa_pstart); 3336 3337 if (cur_distance <= new_distance) 3338 return cpa; 3339 3340 /* drop the previous reference */ 3341 atomic_dec(&cpa->pa_count); 3342 atomic_inc(&pa->pa_count); 3343 return pa; 3344 } 3345 3346 /* 3347 * search goal blocks in preallocated space 3348 */ 3349 static noinline_for_stack int 3350 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3351 { 3352 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3353 int order, i; 3354 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3355 struct ext4_locality_group *lg; 3356 struct ext4_prealloc_space *pa, *cpa = NULL; 3357 ext4_fsblk_t goal_block; 3358 3359 /* only data can be preallocated */ 3360 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3361 return 0; 3362 3363 /* first, try per-file preallocation */ 3364 rcu_read_lock(); 3365 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3366 3367 /* all fields in this condition don't change, 3368 * so we can skip locking for them */ 3369 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3370 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3371 EXT4_C2B(sbi, pa->pa_len))) 3372 continue; 3373 3374 /* non-extent files can't have physical blocks past 2^32 */ 3375 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3376 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3377 EXT4_MAX_BLOCK_FILE_PHYS)) 3378 continue; 3379 3380 /* found preallocated blocks, use them */ 3381 spin_lock(&pa->pa_lock); 3382 if (pa->pa_deleted == 0 && pa->pa_free) { 3383 atomic_inc(&pa->pa_count); 3384 ext4_mb_use_inode_pa(ac, pa); 3385 spin_unlock(&pa->pa_lock); 3386 ac->ac_criteria = 10; 3387 rcu_read_unlock(); 3388 return 1; 3389 } 3390 spin_unlock(&pa->pa_lock); 3391 } 3392 rcu_read_unlock(); 3393 3394 /* can we use group allocation? */ 3395 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3396 return 0; 3397 3398 /* inode may have no locality group for some reason */ 3399 lg = ac->ac_lg; 3400 if (lg == NULL) 3401 return 0; 3402 order = fls(ac->ac_o_ex.fe_len) - 1; 3403 if (order > PREALLOC_TB_SIZE - 1) 3404 /* The max size of hash table is PREALLOC_TB_SIZE */ 3405 order = PREALLOC_TB_SIZE - 1; 3406 3407 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3408 /* 3409 * search for the prealloc space that is having 3410 * minimal distance from the goal block. 3411 */ 3412 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3413 rcu_read_lock(); 3414 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3415 pa_inode_list) { 3416 spin_lock(&pa->pa_lock); 3417 if (pa->pa_deleted == 0 && 3418 pa->pa_free >= ac->ac_o_ex.fe_len) { 3419 3420 cpa = ext4_mb_check_group_pa(goal_block, 3421 pa, cpa); 3422 } 3423 spin_unlock(&pa->pa_lock); 3424 } 3425 rcu_read_unlock(); 3426 } 3427 if (cpa) { 3428 ext4_mb_use_group_pa(ac, cpa); 3429 ac->ac_criteria = 20; 3430 return 1; 3431 } 3432 return 0; 3433 } 3434 3435 /* 3436 * the function goes through all block freed in the group 3437 * but not yet committed and marks them used in in-core bitmap. 3438 * buddy must be generated from this bitmap 3439 * Need to be called with the ext4 group lock held 3440 */ 3441 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3442 ext4_group_t group) 3443 { 3444 struct rb_node *n; 3445 struct ext4_group_info *grp; 3446 struct ext4_free_data *entry; 3447 3448 grp = ext4_get_group_info(sb, group); 3449 n = rb_first(&(grp->bb_free_root)); 3450 3451 while (n) { 3452 entry = rb_entry(n, struct ext4_free_data, efd_node); 3453 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3454 n = rb_next(n); 3455 } 3456 return; 3457 } 3458 3459 /* 3460 * the function goes through all preallocation in this group and marks them 3461 * used in in-core bitmap. buddy must be generated from this bitmap 3462 * Need to be called with ext4 group lock held 3463 */ 3464 static noinline_for_stack 3465 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3466 ext4_group_t group) 3467 { 3468 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3469 struct ext4_prealloc_space *pa; 3470 struct list_head *cur; 3471 ext4_group_t groupnr; 3472 ext4_grpblk_t start; 3473 int preallocated = 0; 3474 int len; 3475 3476 /* all form of preallocation discards first load group, 3477 * so the only competing code is preallocation use. 3478 * we don't need any locking here 3479 * notice we do NOT ignore preallocations with pa_deleted 3480 * otherwise we could leave used blocks available for 3481 * allocation in buddy when concurrent ext4_mb_put_pa() 3482 * is dropping preallocation 3483 */ 3484 list_for_each(cur, &grp->bb_prealloc_list) { 3485 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3486 spin_lock(&pa->pa_lock); 3487 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3488 &groupnr, &start); 3489 len = pa->pa_len; 3490 spin_unlock(&pa->pa_lock); 3491 if (unlikely(len == 0)) 3492 continue; 3493 BUG_ON(groupnr != group); 3494 ext4_set_bits(bitmap, start, len); 3495 preallocated += len; 3496 } 3497 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3498 } 3499 3500 static void ext4_mb_pa_callback(struct rcu_head *head) 3501 { 3502 struct ext4_prealloc_space *pa; 3503 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3504 3505 BUG_ON(atomic_read(&pa->pa_count)); 3506 BUG_ON(pa->pa_deleted == 0); 3507 kmem_cache_free(ext4_pspace_cachep, pa); 3508 } 3509 3510 /* 3511 * drops a reference to preallocated space descriptor 3512 * if this was the last reference and the space is consumed 3513 */ 3514 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3515 struct super_block *sb, struct ext4_prealloc_space *pa) 3516 { 3517 ext4_group_t grp; 3518 ext4_fsblk_t grp_blk; 3519 3520 /* in this short window concurrent discard can set pa_deleted */ 3521 spin_lock(&pa->pa_lock); 3522 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3523 spin_unlock(&pa->pa_lock); 3524 return; 3525 } 3526 3527 if (pa->pa_deleted == 1) { 3528 spin_unlock(&pa->pa_lock); 3529 return; 3530 } 3531 3532 pa->pa_deleted = 1; 3533 spin_unlock(&pa->pa_lock); 3534 3535 grp_blk = pa->pa_pstart; 3536 /* 3537 * If doing group-based preallocation, pa_pstart may be in the 3538 * next group when pa is used up 3539 */ 3540 if (pa->pa_type == MB_GROUP_PA) 3541 grp_blk--; 3542 3543 grp = ext4_get_group_number(sb, grp_blk); 3544 3545 /* 3546 * possible race: 3547 * 3548 * P1 (buddy init) P2 (regular allocation) 3549 * find block B in PA 3550 * copy on-disk bitmap to buddy 3551 * mark B in on-disk bitmap 3552 * drop PA from group 3553 * mark all PAs in buddy 3554 * 3555 * thus, P1 initializes buddy with B available. to prevent this 3556 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3557 * against that pair 3558 */ 3559 ext4_lock_group(sb, grp); 3560 list_del(&pa->pa_group_list); 3561 ext4_unlock_group(sb, grp); 3562 3563 spin_lock(pa->pa_obj_lock); 3564 list_del_rcu(&pa->pa_inode_list); 3565 spin_unlock(pa->pa_obj_lock); 3566 3567 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3568 } 3569 3570 /* 3571 * creates new preallocated space for given inode 3572 */ 3573 static noinline_for_stack int 3574 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3575 { 3576 struct super_block *sb = ac->ac_sb; 3577 struct ext4_sb_info *sbi = EXT4_SB(sb); 3578 struct ext4_prealloc_space *pa; 3579 struct ext4_group_info *grp; 3580 struct ext4_inode_info *ei; 3581 3582 /* preallocate only when found space is larger then requested */ 3583 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3584 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3585 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3586 3587 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3588 if (pa == NULL) 3589 return -ENOMEM; 3590 3591 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3592 int winl; 3593 int wins; 3594 int win; 3595 int offs; 3596 3597 /* we can't allocate as much as normalizer wants. 3598 * so, found space must get proper lstart 3599 * to cover original request */ 3600 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3601 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3602 3603 /* we're limited by original request in that 3604 * logical block must be covered any way 3605 * winl is window we can move our chunk within */ 3606 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3607 3608 /* also, we should cover whole original request */ 3609 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3610 3611 /* the smallest one defines real window */ 3612 win = min(winl, wins); 3613 3614 offs = ac->ac_o_ex.fe_logical % 3615 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3616 if (offs && offs < win) 3617 win = offs; 3618 3619 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3620 EXT4_NUM_B2C(sbi, win); 3621 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3622 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3623 } 3624 3625 /* preallocation can change ac_b_ex, thus we store actually 3626 * allocated blocks for history */ 3627 ac->ac_f_ex = ac->ac_b_ex; 3628 3629 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3630 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3631 pa->pa_len = ac->ac_b_ex.fe_len; 3632 pa->pa_free = pa->pa_len; 3633 atomic_set(&pa->pa_count, 1); 3634 spin_lock_init(&pa->pa_lock); 3635 INIT_LIST_HEAD(&pa->pa_inode_list); 3636 INIT_LIST_HEAD(&pa->pa_group_list); 3637 pa->pa_deleted = 0; 3638 pa->pa_type = MB_INODE_PA; 3639 3640 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3641 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3642 trace_ext4_mb_new_inode_pa(ac, pa); 3643 3644 ext4_mb_use_inode_pa(ac, pa); 3645 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3646 3647 ei = EXT4_I(ac->ac_inode); 3648 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3649 3650 pa->pa_obj_lock = &ei->i_prealloc_lock; 3651 pa->pa_inode = ac->ac_inode; 3652 3653 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3654 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3655 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3656 3657 spin_lock(pa->pa_obj_lock); 3658 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3659 spin_unlock(pa->pa_obj_lock); 3660 3661 return 0; 3662 } 3663 3664 /* 3665 * creates new preallocated space for locality group inodes belongs to 3666 */ 3667 static noinline_for_stack int 3668 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3669 { 3670 struct super_block *sb = ac->ac_sb; 3671 struct ext4_locality_group *lg; 3672 struct ext4_prealloc_space *pa; 3673 struct ext4_group_info *grp; 3674 3675 /* preallocate only when found space is larger then requested */ 3676 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3677 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3678 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3679 3680 BUG_ON(ext4_pspace_cachep == NULL); 3681 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3682 if (pa == NULL) 3683 return -ENOMEM; 3684 3685 /* preallocation can change ac_b_ex, thus we store actually 3686 * allocated blocks for history */ 3687 ac->ac_f_ex = ac->ac_b_ex; 3688 3689 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3690 pa->pa_lstart = pa->pa_pstart; 3691 pa->pa_len = ac->ac_b_ex.fe_len; 3692 pa->pa_free = pa->pa_len; 3693 atomic_set(&pa->pa_count, 1); 3694 spin_lock_init(&pa->pa_lock); 3695 INIT_LIST_HEAD(&pa->pa_inode_list); 3696 INIT_LIST_HEAD(&pa->pa_group_list); 3697 pa->pa_deleted = 0; 3698 pa->pa_type = MB_GROUP_PA; 3699 3700 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3701 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3702 trace_ext4_mb_new_group_pa(ac, pa); 3703 3704 ext4_mb_use_group_pa(ac, pa); 3705 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3706 3707 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3708 lg = ac->ac_lg; 3709 BUG_ON(lg == NULL); 3710 3711 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3712 pa->pa_inode = NULL; 3713 3714 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3715 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3716 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3717 3718 /* 3719 * We will later add the new pa to the right bucket 3720 * after updating the pa_free in ext4_mb_release_context 3721 */ 3722 return 0; 3723 } 3724 3725 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3726 { 3727 int err; 3728 3729 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3730 err = ext4_mb_new_group_pa(ac); 3731 else 3732 err = ext4_mb_new_inode_pa(ac); 3733 return err; 3734 } 3735 3736 /* 3737 * finds all unused blocks in on-disk bitmap, frees them in 3738 * in-core bitmap and buddy. 3739 * @pa must be unlinked from inode and group lists, so that 3740 * nobody else can find/use it. 3741 * the caller MUST hold group/inode locks. 3742 * TODO: optimize the case when there are no in-core structures yet 3743 */ 3744 static noinline_for_stack int 3745 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3746 struct ext4_prealloc_space *pa) 3747 { 3748 struct super_block *sb = e4b->bd_sb; 3749 struct ext4_sb_info *sbi = EXT4_SB(sb); 3750 unsigned int end; 3751 unsigned int next; 3752 ext4_group_t group; 3753 ext4_grpblk_t bit; 3754 unsigned long long grp_blk_start; 3755 int err = 0; 3756 int free = 0; 3757 3758 BUG_ON(pa->pa_deleted == 0); 3759 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3760 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3761 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3762 end = bit + pa->pa_len; 3763 3764 while (bit < end) { 3765 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3766 if (bit >= end) 3767 break; 3768 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3769 mb_debug(1, " free preallocated %u/%u in group %u\n", 3770 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3771 (unsigned) next - bit, (unsigned) group); 3772 free += next - bit; 3773 3774 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3775 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3776 EXT4_C2B(sbi, bit)), 3777 next - bit); 3778 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3779 bit = next + 1; 3780 } 3781 if (free != pa->pa_free) { 3782 ext4_msg(e4b->bd_sb, KERN_CRIT, 3783 "pa %p: logic %lu, phys. %lu, len %lu", 3784 pa, (unsigned long) pa->pa_lstart, 3785 (unsigned long) pa->pa_pstart, 3786 (unsigned long) pa->pa_len); 3787 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3788 free, pa->pa_free); 3789 /* 3790 * pa is already deleted so we use the value obtained 3791 * from the bitmap and continue. 3792 */ 3793 } 3794 atomic_add(free, &sbi->s_mb_discarded); 3795 3796 return err; 3797 } 3798 3799 static noinline_for_stack int 3800 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3801 struct ext4_prealloc_space *pa) 3802 { 3803 struct super_block *sb = e4b->bd_sb; 3804 ext4_group_t group; 3805 ext4_grpblk_t bit; 3806 3807 trace_ext4_mb_release_group_pa(sb, pa); 3808 BUG_ON(pa->pa_deleted == 0); 3809 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3810 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3811 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3812 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3813 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3814 3815 return 0; 3816 } 3817 3818 /* 3819 * releases all preallocations in given group 3820 * 3821 * first, we need to decide discard policy: 3822 * - when do we discard 3823 * 1) ENOSPC 3824 * - how many do we discard 3825 * 1) how many requested 3826 */ 3827 static noinline_for_stack int 3828 ext4_mb_discard_group_preallocations(struct super_block *sb, 3829 ext4_group_t group, int needed) 3830 { 3831 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3832 struct buffer_head *bitmap_bh = NULL; 3833 struct ext4_prealloc_space *pa, *tmp; 3834 struct list_head list; 3835 struct ext4_buddy e4b; 3836 int err; 3837 int busy = 0; 3838 int free = 0; 3839 3840 mb_debug(1, "discard preallocation for group %u\n", group); 3841 3842 if (list_empty(&grp->bb_prealloc_list)) 3843 return 0; 3844 3845 bitmap_bh = ext4_read_block_bitmap(sb, group); 3846 if (bitmap_bh == NULL) { 3847 ext4_error(sb, "Error reading block bitmap for %u", group); 3848 return 0; 3849 } 3850 3851 err = ext4_mb_load_buddy(sb, group, &e4b); 3852 if (err) { 3853 ext4_error(sb, "Error loading buddy information for %u", group); 3854 put_bh(bitmap_bh); 3855 return 0; 3856 } 3857 3858 if (needed == 0) 3859 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3860 3861 INIT_LIST_HEAD(&list); 3862 repeat: 3863 ext4_lock_group(sb, group); 3864 list_for_each_entry_safe(pa, tmp, 3865 &grp->bb_prealloc_list, pa_group_list) { 3866 spin_lock(&pa->pa_lock); 3867 if (atomic_read(&pa->pa_count)) { 3868 spin_unlock(&pa->pa_lock); 3869 busy = 1; 3870 continue; 3871 } 3872 if (pa->pa_deleted) { 3873 spin_unlock(&pa->pa_lock); 3874 continue; 3875 } 3876 3877 /* seems this one can be freed ... */ 3878 pa->pa_deleted = 1; 3879 3880 /* we can trust pa_free ... */ 3881 free += pa->pa_free; 3882 3883 spin_unlock(&pa->pa_lock); 3884 3885 list_del(&pa->pa_group_list); 3886 list_add(&pa->u.pa_tmp_list, &list); 3887 } 3888 3889 /* if we still need more blocks and some PAs were used, try again */ 3890 if (free < needed && busy) { 3891 busy = 0; 3892 ext4_unlock_group(sb, group); 3893 cond_resched(); 3894 goto repeat; 3895 } 3896 3897 /* found anything to free? */ 3898 if (list_empty(&list)) { 3899 BUG_ON(free != 0); 3900 goto out; 3901 } 3902 3903 /* now free all selected PAs */ 3904 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3905 3906 /* remove from object (inode or locality group) */ 3907 spin_lock(pa->pa_obj_lock); 3908 list_del_rcu(&pa->pa_inode_list); 3909 spin_unlock(pa->pa_obj_lock); 3910 3911 if (pa->pa_type == MB_GROUP_PA) 3912 ext4_mb_release_group_pa(&e4b, pa); 3913 else 3914 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3915 3916 list_del(&pa->u.pa_tmp_list); 3917 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3918 } 3919 3920 out: 3921 ext4_unlock_group(sb, group); 3922 ext4_mb_unload_buddy(&e4b); 3923 put_bh(bitmap_bh); 3924 return free; 3925 } 3926 3927 /* 3928 * releases all non-used preallocated blocks for given inode 3929 * 3930 * It's important to discard preallocations under i_data_sem 3931 * We don't want another block to be served from the prealloc 3932 * space when we are discarding the inode prealloc space. 3933 * 3934 * FIXME!! Make sure it is valid at all the call sites 3935 */ 3936 void ext4_discard_preallocations(struct inode *inode) 3937 { 3938 struct ext4_inode_info *ei = EXT4_I(inode); 3939 struct super_block *sb = inode->i_sb; 3940 struct buffer_head *bitmap_bh = NULL; 3941 struct ext4_prealloc_space *pa, *tmp; 3942 ext4_group_t group = 0; 3943 struct list_head list; 3944 struct ext4_buddy e4b; 3945 int err; 3946 3947 if (!S_ISREG(inode->i_mode)) { 3948 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3949 return; 3950 } 3951 3952 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3953 trace_ext4_discard_preallocations(inode); 3954 3955 INIT_LIST_HEAD(&list); 3956 3957 repeat: 3958 /* first, collect all pa's in the inode */ 3959 spin_lock(&ei->i_prealloc_lock); 3960 while (!list_empty(&ei->i_prealloc_list)) { 3961 pa = list_entry(ei->i_prealloc_list.next, 3962 struct ext4_prealloc_space, pa_inode_list); 3963 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3964 spin_lock(&pa->pa_lock); 3965 if (atomic_read(&pa->pa_count)) { 3966 /* this shouldn't happen often - nobody should 3967 * use preallocation while we're discarding it */ 3968 spin_unlock(&pa->pa_lock); 3969 spin_unlock(&ei->i_prealloc_lock); 3970 ext4_msg(sb, KERN_ERR, 3971 "uh-oh! used pa while discarding"); 3972 WARN_ON(1); 3973 schedule_timeout_uninterruptible(HZ); 3974 goto repeat; 3975 3976 } 3977 if (pa->pa_deleted == 0) { 3978 pa->pa_deleted = 1; 3979 spin_unlock(&pa->pa_lock); 3980 list_del_rcu(&pa->pa_inode_list); 3981 list_add(&pa->u.pa_tmp_list, &list); 3982 continue; 3983 } 3984 3985 /* someone is deleting pa right now */ 3986 spin_unlock(&pa->pa_lock); 3987 spin_unlock(&ei->i_prealloc_lock); 3988 3989 /* we have to wait here because pa_deleted 3990 * doesn't mean pa is already unlinked from 3991 * the list. as we might be called from 3992 * ->clear_inode() the inode will get freed 3993 * and concurrent thread which is unlinking 3994 * pa from inode's list may access already 3995 * freed memory, bad-bad-bad */ 3996 3997 /* XXX: if this happens too often, we can 3998 * add a flag to force wait only in case 3999 * of ->clear_inode(), but not in case of 4000 * regular truncate */ 4001 schedule_timeout_uninterruptible(HZ); 4002 goto repeat; 4003 } 4004 spin_unlock(&ei->i_prealloc_lock); 4005 4006 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4007 BUG_ON(pa->pa_type != MB_INODE_PA); 4008 group = ext4_get_group_number(sb, pa->pa_pstart); 4009 4010 err = ext4_mb_load_buddy(sb, group, &e4b); 4011 if (err) { 4012 ext4_error(sb, "Error loading buddy information for %u", 4013 group); 4014 continue; 4015 } 4016 4017 bitmap_bh = ext4_read_block_bitmap(sb, group); 4018 if (bitmap_bh == NULL) { 4019 ext4_error(sb, "Error reading block bitmap for %u", 4020 group); 4021 ext4_mb_unload_buddy(&e4b); 4022 continue; 4023 } 4024 4025 ext4_lock_group(sb, group); 4026 list_del(&pa->pa_group_list); 4027 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4028 ext4_unlock_group(sb, group); 4029 4030 ext4_mb_unload_buddy(&e4b); 4031 put_bh(bitmap_bh); 4032 4033 list_del(&pa->u.pa_tmp_list); 4034 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4035 } 4036 } 4037 4038 #ifdef CONFIG_EXT4_DEBUG 4039 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4040 { 4041 struct super_block *sb = ac->ac_sb; 4042 ext4_group_t ngroups, i; 4043 4044 if (!ext4_mballoc_debug || 4045 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4046 return; 4047 4048 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4049 " Allocation context details:"); 4050 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4051 ac->ac_status, ac->ac_flags); 4052 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4053 "goal %lu/%lu/%lu@%lu, " 4054 "best %lu/%lu/%lu@%lu cr %d", 4055 (unsigned long)ac->ac_o_ex.fe_group, 4056 (unsigned long)ac->ac_o_ex.fe_start, 4057 (unsigned long)ac->ac_o_ex.fe_len, 4058 (unsigned long)ac->ac_o_ex.fe_logical, 4059 (unsigned long)ac->ac_g_ex.fe_group, 4060 (unsigned long)ac->ac_g_ex.fe_start, 4061 (unsigned long)ac->ac_g_ex.fe_len, 4062 (unsigned long)ac->ac_g_ex.fe_logical, 4063 (unsigned long)ac->ac_b_ex.fe_group, 4064 (unsigned long)ac->ac_b_ex.fe_start, 4065 (unsigned long)ac->ac_b_ex.fe_len, 4066 (unsigned long)ac->ac_b_ex.fe_logical, 4067 (int)ac->ac_criteria); 4068 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4069 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4070 ngroups = ext4_get_groups_count(sb); 4071 for (i = 0; i < ngroups; i++) { 4072 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4073 struct ext4_prealloc_space *pa; 4074 ext4_grpblk_t start; 4075 struct list_head *cur; 4076 ext4_lock_group(sb, i); 4077 list_for_each(cur, &grp->bb_prealloc_list) { 4078 pa = list_entry(cur, struct ext4_prealloc_space, 4079 pa_group_list); 4080 spin_lock(&pa->pa_lock); 4081 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4082 NULL, &start); 4083 spin_unlock(&pa->pa_lock); 4084 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4085 start, pa->pa_len); 4086 } 4087 ext4_unlock_group(sb, i); 4088 4089 if (grp->bb_free == 0) 4090 continue; 4091 printk(KERN_ERR "%u: %d/%d \n", 4092 i, grp->bb_free, grp->bb_fragments); 4093 } 4094 printk(KERN_ERR "\n"); 4095 } 4096 #else 4097 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4098 { 4099 return; 4100 } 4101 #endif 4102 4103 /* 4104 * We use locality group preallocation for small size file. The size of the 4105 * file is determined by the current size or the resulting size after 4106 * allocation which ever is larger 4107 * 4108 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4109 */ 4110 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4111 { 4112 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4113 int bsbits = ac->ac_sb->s_blocksize_bits; 4114 loff_t size, isize; 4115 4116 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4117 return; 4118 4119 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4120 return; 4121 4122 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4123 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4124 >> bsbits; 4125 4126 if ((size == isize) && 4127 !ext4_fs_is_busy(sbi) && 4128 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4129 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4130 return; 4131 } 4132 4133 if (sbi->s_mb_group_prealloc <= 0) { 4134 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4135 return; 4136 } 4137 4138 /* don't use group allocation for large files */ 4139 size = max(size, isize); 4140 if (size > sbi->s_mb_stream_request) { 4141 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4142 return; 4143 } 4144 4145 BUG_ON(ac->ac_lg != NULL); 4146 /* 4147 * locality group prealloc space are per cpu. The reason for having 4148 * per cpu locality group is to reduce the contention between block 4149 * request from multiple CPUs. 4150 */ 4151 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4152 4153 /* we're going to use group allocation */ 4154 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4155 4156 /* serialize all allocations in the group */ 4157 mutex_lock(&ac->ac_lg->lg_mutex); 4158 } 4159 4160 static noinline_for_stack int 4161 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4162 struct ext4_allocation_request *ar) 4163 { 4164 struct super_block *sb = ar->inode->i_sb; 4165 struct ext4_sb_info *sbi = EXT4_SB(sb); 4166 struct ext4_super_block *es = sbi->s_es; 4167 ext4_group_t group; 4168 unsigned int len; 4169 ext4_fsblk_t goal; 4170 ext4_grpblk_t block; 4171 4172 /* we can't allocate > group size */ 4173 len = ar->len; 4174 4175 /* just a dirty hack to filter too big requests */ 4176 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4177 len = EXT4_CLUSTERS_PER_GROUP(sb); 4178 4179 /* start searching from the goal */ 4180 goal = ar->goal; 4181 if (goal < le32_to_cpu(es->s_first_data_block) || 4182 goal >= ext4_blocks_count(es)) 4183 goal = le32_to_cpu(es->s_first_data_block); 4184 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4185 4186 /* set up allocation goals */ 4187 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4188 ac->ac_status = AC_STATUS_CONTINUE; 4189 ac->ac_sb = sb; 4190 ac->ac_inode = ar->inode; 4191 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4192 ac->ac_o_ex.fe_group = group; 4193 ac->ac_o_ex.fe_start = block; 4194 ac->ac_o_ex.fe_len = len; 4195 ac->ac_g_ex = ac->ac_o_ex; 4196 ac->ac_flags = ar->flags; 4197 4198 /* we have to define context: we'll we work with a file or 4199 * locality group. this is a policy, actually */ 4200 ext4_mb_group_or_file(ac); 4201 4202 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4203 "left: %u/%u, right %u/%u to %swritable\n", 4204 (unsigned) ar->len, (unsigned) ar->logical, 4205 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4206 (unsigned) ar->lleft, (unsigned) ar->pleft, 4207 (unsigned) ar->lright, (unsigned) ar->pright, 4208 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4209 return 0; 4210 4211 } 4212 4213 static noinline_for_stack void 4214 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4215 struct ext4_locality_group *lg, 4216 int order, int total_entries) 4217 { 4218 ext4_group_t group = 0; 4219 struct ext4_buddy e4b; 4220 struct list_head discard_list; 4221 struct ext4_prealloc_space *pa, *tmp; 4222 4223 mb_debug(1, "discard locality group preallocation\n"); 4224 4225 INIT_LIST_HEAD(&discard_list); 4226 4227 spin_lock(&lg->lg_prealloc_lock); 4228 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4229 pa_inode_list) { 4230 spin_lock(&pa->pa_lock); 4231 if (atomic_read(&pa->pa_count)) { 4232 /* 4233 * This is the pa that we just used 4234 * for block allocation. So don't 4235 * free that 4236 */ 4237 spin_unlock(&pa->pa_lock); 4238 continue; 4239 } 4240 if (pa->pa_deleted) { 4241 spin_unlock(&pa->pa_lock); 4242 continue; 4243 } 4244 /* only lg prealloc space */ 4245 BUG_ON(pa->pa_type != MB_GROUP_PA); 4246 4247 /* seems this one can be freed ... */ 4248 pa->pa_deleted = 1; 4249 spin_unlock(&pa->pa_lock); 4250 4251 list_del_rcu(&pa->pa_inode_list); 4252 list_add(&pa->u.pa_tmp_list, &discard_list); 4253 4254 total_entries--; 4255 if (total_entries <= 5) { 4256 /* 4257 * we want to keep only 5 entries 4258 * allowing it to grow to 8. This 4259 * mak sure we don't call discard 4260 * soon for this list. 4261 */ 4262 break; 4263 } 4264 } 4265 spin_unlock(&lg->lg_prealloc_lock); 4266 4267 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4268 4269 group = ext4_get_group_number(sb, pa->pa_pstart); 4270 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4271 ext4_error(sb, "Error loading buddy information for %u", 4272 group); 4273 continue; 4274 } 4275 ext4_lock_group(sb, group); 4276 list_del(&pa->pa_group_list); 4277 ext4_mb_release_group_pa(&e4b, pa); 4278 ext4_unlock_group(sb, group); 4279 4280 ext4_mb_unload_buddy(&e4b); 4281 list_del(&pa->u.pa_tmp_list); 4282 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4283 } 4284 } 4285 4286 /* 4287 * We have incremented pa_count. So it cannot be freed at this 4288 * point. Also we hold lg_mutex. So no parallel allocation is 4289 * possible from this lg. That means pa_free cannot be updated. 4290 * 4291 * A parallel ext4_mb_discard_group_preallocations is possible. 4292 * which can cause the lg_prealloc_list to be updated. 4293 */ 4294 4295 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4296 { 4297 int order, added = 0, lg_prealloc_count = 1; 4298 struct super_block *sb = ac->ac_sb; 4299 struct ext4_locality_group *lg = ac->ac_lg; 4300 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4301 4302 order = fls(pa->pa_free) - 1; 4303 if (order > PREALLOC_TB_SIZE - 1) 4304 /* The max size of hash table is PREALLOC_TB_SIZE */ 4305 order = PREALLOC_TB_SIZE - 1; 4306 /* Add the prealloc space to lg */ 4307 spin_lock(&lg->lg_prealloc_lock); 4308 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4309 pa_inode_list) { 4310 spin_lock(&tmp_pa->pa_lock); 4311 if (tmp_pa->pa_deleted) { 4312 spin_unlock(&tmp_pa->pa_lock); 4313 continue; 4314 } 4315 if (!added && pa->pa_free < tmp_pa->pa_free) { 4316 /* Add to the tail of the previous entry */ 4317 list_add_tail_rcu(&pa->pa_inode_list, 4318 &tmp_pa->pa_inode_list); 4319 added = 1; 4320 /* 4321 * we want to count the total 4322 * number of entries in the list 4323 */ 4324 } 4325 spin_unlock(&tmp_pa->pa_lock); 4326 lg_prealloc_count++; 4327 } 4328 if (!added) 4329 list_add_tail_rcu(&pa->pa_inode_list, 4330 &lg->lg_prealloc_list[order]); 4331 spin_unlock(&lg->lg_prealloc_lock); 4332 4333 /* Now trim the list to be not more than 8 elements */ 4334 if (lg_prealloc_count > 8) { 4335 ext4_mb_discard_lg_preallocations(sb, lg, 4336 order, lg_prealloc_count); 4337 return; 4338 } 4339 return ; 4340 } 4341 4342 /* 4343 * release all resource we used in allocation 4344 */ 4345 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4346 { 4347 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4348 struct ext4_prealloc_space *pa = ac->ac_pa; 4349 if (pa) { 4350 if (pa->pa_type == MB_GROUP_PA) { 4351 /* see comment in ext4_mb_use_group_pa() */ 4352 spin_lock(&pa->pa_lock); 4353 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4354 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4355 pa->pa_free -= ac->ac_b_ex.fe_len; 4356 pa->pa_len -= ac->ac_b_ex.fe_len; 4357 spin_unlock(&pa->pa_lock); 4358 } 4359 } 4360 if (pa) { 4361 /* 4362 * We want to add the pa to the right bucket. 4363 * Remove it from the list and while adding 4364 * make sure the list to which we are adding 4365 * doesn't grow big. 4366 */ 4367 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4368 spin_lock(pa->pa_obj_lock); 4369 list_del_rcu(&pa->pa_inode_list); 4370 spin_unlock(pa->pa_obj_lock); 4371 ext4_mb_add_n_trim(ac); 4372 } 4373 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4374 } 4375 if (ac->ac_bitmap_page) 4376 page_cache_release(ac->ac_bitmap_page); 4377 if (ac->ac_buddy_page) 4378 page_cache_release(ac->ac_buddy_page); 4379 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4380 mutex_unlock(&ac->ac_lg->lg_mutex); 4381 ext4_mb_collect_stats(ac); 4382 return 0; 4383 } 4384 4385 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4386 { 4387 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4388 int ret; 4389 int freed = 0; 4390 4391 trace_ext4_mb_discard_preallocations(sb, needed); 4392 for (i = 0; i < ngroups && needed > 0; i++) { 4393 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4394 freed += ret; 4395 needed -= ret; 4396 } 4397 4398 return freed; 4399 } 4400 4401 /* 4402 * Main entry point into mballoc to allocate blocks 4403 * it tries to use preallocation first, then falls back 4404 * to usual allocation 4405 */ 4406 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4407 struct ext4_allocation_request *ar, int *errp) 4408 { 4409 int freed; 4410 struct ext4_allocation_context *ac = NULL; 4411 struct ext4_sb_info *sbi; 4412 struct super_block *sb; 4413 ext4_fsblk_t block = 0; 4414 unsigned int inquota = 0; 4415 unsigned int reserv_clstrs = 0; 4416 4417 might_sleep(); 4418 sb = ar->inode->i_sb; 4419 sbi = EXT4_SB(sb); 4420 4421 trace_ext4_request_blocks(ar); 4422 4423 /* Allow to use superuser reservation for quota file */ 4424 if (IS_NOQUOTA(ar->inode)) 4425 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4426 4427 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4428 /* Without delayed allocation we need to verify 4429 * there is enough free blocks to do block allocation 4430 * and verify allocation doesn't exceed the quota limits. 4431 */ 4432 while (ar->len && 4433 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4434 4435 /* let others to free the space */ 4436 cond_resched(); 4437 ar->len = ar->len >> 1; 4438 } 4439 if (!ar->len) { 4440 *errp = -ENOSPC; 4441 return 0; 4442 } 4443 reserv_clstrs = ar->len; 4444 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4445 dquot_alloc_block_nofail(ar->inode, 4446 EXT4_C2B(sbi, ar->len)); 4447 } else { 4448 while (ar->len && 4449 dquot_alloc_block(ar->inode, 4450 EXT4_C2B(sbi, ar->len))) { 4451 4452 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4453 ar->len--; 4454 } 4455 } 4456 inquota = ar->len; 4457 if (ar->len == 0) { 4458 *errp = -EDQUOT; 4459 goto out; 4460 } 4461 } 4462 4463 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4464 if (!ac) { 4465 ar->len = 0; 4466 *errp = -ENOMEM; 4467 goto out; 4468 } 4469 4470 *errp = ext4_mb_initialize_context(ac, ar); 4471 if (*errp) { 4472 ar->len = 0; 4473 goto out; 4474 } 4475 4476 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4477 if (!ext4_mb_use_preallocated(ac)) { 4478 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4479 ext4_mb_normalize_request(ac, ar); 4480 repeat: 4481 /* allocate space in core */ 4482 *errp = ext4_mb_regular_allocator(ac); 4483 if (*errp) 4484 goto discard_and_exit; 4485 4486 /* as we've just preallocated more space than 4487 * user requested originally, we store allocated 4488 * space in a special descriptor */ 4489 if (ac->ac_status == AC_STATUS_FOUND && 4490 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4491 *errp = ext4_mb_new_preallocation(ac); 4492 if (*errp) { 4493 discard_and_exit: 4494 ext4_discard_allocated_blocks(ac); 4495 goto errout; 4496 } 4497 } 4498 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4499 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4500 if (*errp == -EAGAIN) { 4501 /* 4502 * drop the reference that we took 4503 * in ext4_mb_use_best_found 4504 */ 4505 ext4_mb_release_context(ac); 4506 ac->ac_b_ex.fe_group = 0; 4507 ac->ac_b_ex.fe_start = 0; 4508 ac->ac_b_ex.fe_len = 0; 4509 ac->ac_status = AC_STATUS_CONTINUE; 4510 goto repeat; 4511 } else if (*errp) { 4512 ext4_discard_allocated_blocks(ac); 4513 goto errout; 4514 } else { 4515 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4516 ar->len = ac->ac_b_ex.fe_len; 4517 } 4518 } else { 4519 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4520 if (freed) 4521 goto repeat; 4522 *errp = -ENOSPC; 4523 } 4524 4525 errout: 4526 if (*errp) { 4527 ac->ac_b_ex.fe_len = 0; 4528 ar->len = 0; 4529 ext4_mb_show_ac(ac); 4530 } 4531 ext4_mb_release_context(ac); 4532 out: 4533 if (ac) 4534 kmem_cache_free(ext4_ac_cachep, ac); 4535 if (inquota && ar->len < inquota) 4536 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4537 if (!ar->len) { 4538 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4539 /* release all the reserved blocks if non delalloc */ 4540 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4541 reserv_clstrs); 4542 } 4543 4544 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4545 4546 return block; 4547 } 4548 4549 /* 4550 * We can merge two free data extents only if the physical blocks 4551 * are contiguous, AND the extents were freed by the same transaction, 4552 * AND the blocks are associated with the same group. 4553 */ 4554 static int can_merge(struct ext4_free_data *entry1, 4555 struct ext4_free_data *entry2) 4556 { 4557 if ((entry1->efd_tid == entry2->efd_tid) && 4558 (entry1->efd_group == entry2->efd_group) && 4559 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4560 return 1; 4561 return 0; 4562 } 4563 4564 static noinline_for_stack int 4565 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4566 struct ext4_free_data *new_entry) 4567 { 4568 ext4_group_t group = e4b->bd_group; 4569 ext4_grpblk_t cluster; 4570 struct ext4_free_data *entry; 4571 struct ext4_group_info *db = e4b->bd_info; 4572 struct super_block *sb = e4b->bd_sb; 4573 struct ext4_sb_info *sbi = EXT4_SB(sb); 4574 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4575 struct rb_node *parent = NULL, *new_node; 4576 4577 BUG_ON(!ext4_handle_valid(handle)); 4578 BUG_ON(e4b->bd_bitmap_page == NULL); 4579 BUG_ON(e4b->bd_buddy_page == NULL); 4580 4581 new_node = &new_entry->efd_node; 4582 cluster = new_entry->efd_start_cluster; 4583 4584 if (!*n) { 4585 /* first free block exent. We need to 4586 protect buddy cache from being freed, 4587 * otherwise we'll refresh it from 4588 * on-disk bitmap and lose not-yet-available 4589 * blocks */ 4590 page_cache_get(e4b->bd_buddy_page); 4591 page_cache_get(e4b->bd_bitmap_page); 4592 } 4593 while (*n) { 4594 parent = *n; 4595 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4596 if (cluster < entry->efd_start_cluster) 4597 n = &(*n)->rb_left; 4598 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4599 n = &(*n)->rb_right; 4600 else { 4601 ext4_grp_locked_error(sb, group, 0, 4602 ext4_group_first_block_no(sb, group) + 4603 EXT4_C2B(sbi, cluster), 4604 "Block already on to-be-freed list"); 4605 return 0; 4606 } 4607 } 4608 4609 rb_link_node(new_node, parent, n); 4610 rb_insert_color(new_node, &db->bb_free_root); 4611 4612 /* Now try to see the extent can be merged to left and right */ 4613 node = rb_prev(new_node); 4614 if (node) { 4615 entry = rb_entry(node, struct ext4_free_data, efd_node); 4616 if (can_merge(entry, new_entry) && 4617 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4618 new_entry->efd_start_cluster = entry->efd_start_cluster; 4619 new_entry->efd_count += entry->efd_count; 4620 rb_erase(node, &(db->bb_free_root)); 4621 kmem_cache_free(ext4_free_data_cachep, entry); 4622 } 4623 } 4624 4625 node = rb_next(new_node); 4626 if (node) { 4627 entry = rb_entry(node, struct ext4_free_data, efd_node); 4628 if (can_merge(new_entry, entry) && 4629 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4630 new_entry->efd_count += entry->efd_count; 4631 rb_erase(node, &(db->bb_free_root)); 4632 kmem_cache_free(ext4_free_data_cachep, entry); 4633 } 4634 } 4635 /* Add the extent to transaction's private list */ 4636 ext4_journal_callback_add(handle, ext4_free_data_callback, 4637 &new_entry->efd_jce); 4638 return 0; 4639 } 4640 4641 /** 4642 * ext4_free_blocks() -- Free given blocks and update quota 4643 * @handle: handle for this transaction 4644 * @inode: inode 4645 * @block: start physical block to free 4646 * @count: number of blocks to count 4647 * @flags: flags used by ext4_free_blocks 4648 */ 4649 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4650 struct buffer_head *bh, ext4_fsblk_t block, 4651 unsigned long count, int flags) 4652 { 4653 struct buffer_head *bitmap_bh = NULL; 4654 struct super_block *sb = inode->i_sb; 4655 struct ext4_group_desc *gdp; 4656 unsigned int overflow; 4657 ext4_grpblk_t bit; 4658 struct buffer_head *gd_bh; 4659 ext4_group_t block_group; 4660 struct ext4_sb_info *sbi; 4661 struct ext4_buddy e4b; 4662 unsigned int count_clusters; 4663 int err = 0; 4664 int ret; 4665 4666 might_sleep(); 4667 if (bh) { 4668 if (block) 4669 BUG_ON(block != bh->b_blocknr); 4670 else 4671 block = bh->b_blocknr; 4672 } 4673 4674 sbi = EXT4_SB(sb); 4675 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4676 !ext4_data_block_valid(sbi, block, count)) { 4677 ext4_error(sb, "Freeing blocks not in datazone - " 4678 "block = %llu, count = %lu", block, count); 4679 goto error_return; 4680 } 4681 4682 ext4_debug("freeing block %llu\n", block); 4683 trace_ext4_free_blocks(inode, block, count, flags); 4684 4685 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4686 struct buffer_head *tbh = bh; 4687 int i; 4688 4689 BUG_ON(bh && (count > 1)); 4690 4691 for (i = 0; i < count; i++) { 4692 cond_resched(); 4693 if (!bh) 4694 tbh = sb_find_get_block(inode->i_sb, 4695 block + i); 4696 if (!tbh) 4697 continue; 4698 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4699 inode, tbh, block + i); 4700 } 4701 } 4702 4703 /* 4704 * We need to make sure we don't reuse the freed block until 4705 * after the transaction is committed, which we can do by 4706 * treating the block as metadata, below. We make an 4707 * exception if the inode is to be written in writeback mode 4708 * since writeback mode has weak data consistency guarantees. 4709 */ 4710 if (!ext4_should_writeback_data(inode)) 4711 flags |= EXT4_FREE_BLOCKS_METADATA; 4712 4713 /* 4714 * If the extent to be freed does not begin on a cluster 4715 * boundary, we need to deal with partial clusters at the 4716 * beginning and end of the extent. Normally we will free 4717 * blocks at the beginning or the end unless we are explicitly 4718 * requested to avoid doing so. 4719 */ 4720 overflow = EXT4_PBLK_COFF(sbi, block); 4721 if (overflow) { 4722 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4723 overflow = sbi->s_cluster_ratio - overflow; 4724 block += overflow; 4725 if (count > overflow) 4726 count -= overflow; 4727 else 4728 return; 4729 } else { 4730 block -= overflow; 4731 count += overflow; 4732 } 4733 } 4734 overflow = EXT4_LBLK_COFF(sbi, count); 4735 if (overflow) { 4736 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4737 if (count > overflow) 4738 count -= overflow; 4739 else 4740 return; 4741 } else 4742 count += sbi->s_cluster_ratio - overflow; 4743 } 4744 4745 do_more: 4746 overflow = 0; 4747 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4748 4749 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4750 ext4_get_group_info(sb, block_group)))) 4751 return; 4752 4753 /* 4754 * Check to see if we are freeing blocks across a group 4755 * boundary. 4756 */ 4757 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4758 overflow = EXT4_C2B(sbi, bit) + count - 4759 EXT4_BLOCKS_PER_GROUP(sb); 4760 count -= overflow; 4761 } 4762 count_clusters = EXT4_NUM_B2C(sbi, count); 4763 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4764 if (!bitmap_bh) { 4765 err = -EIO; 4766 goto error_return; 4767 } 4768 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4769 if (!gdp) { 4770 err = -EIO; 4771 goto error_return; 4772 } 4773 4774 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4775 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4776 in_range(block, ext4_inode_table(sb, gdp), 4777 EXT4_SB(sb)->s_itb_per_group) || 4778 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4779 EXT4_SB(sb)->s_itb_per_group)) { 4780 4781 ext4_error(sb, "Freeing blocks in system zone - " 4782 "Block = %llu, count = %lu", block, count); 4783 /* err = 0. ext4_std_error should be a no op */ 4784 goto error_return; 4785 } 4786 4787 BUFFER_TRACE(bitmap_bh, "getting write access"); 4788 err = ext4_journal_get_write_access(handle, bitmap_bh); 4789 if (err) 4790 goto error_return; 4791 4792 /* 4793 * We are about to modify some metadata. Call the journal APIs 4794 * to unshare ->b_data if a currently-committing transaction is 4795 * using it 4796 */ 4797 BUFFER_TRACE(gd_bh, "get_write_access"); 4798 err = ext4_journal_get_write_access(handle, gd_bh); 4799 if (err) 4800 goto error_return; 4801 #ifdef AGGRESSIVE_CHECK 4802 { 4803 int i; 4804 for (i = 0; i < count_clusters; i++) 4805 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4806 } 4807 #endif 4808 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4809 4810 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4811 if (err) 4812 goto error_return; 4813 4814 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4815 struct ext4_free_data *new_entry; 4816 /* 4817 * blocks being freed are metadata. these blocks shouldn't 4818 * be used until this transaction is committed 4819 * 4820 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4821 * to fail. 4822 */ 4823 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4824 GFP_NOFS|__GFP_NOFAIL); 4825 new_entry->efd_start_cluster = bit; 4826 new_entry->efd_group = block_group; 4827 new_entry->efd_count = count_clusters; 4828 new_entry->efd_tid = handle->h_transaction->t_tid; 4829 4830 ext4_lock_group(sb, block_group); 4831 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4832 ext4_mb_free_metadata(handle, &e4b, new_entry); 4833 } else { 4834 /* need to update group_info->bb_free and bitmap 4835 * with group lock held. generate_buddy look at 4836 * them with group lock_held 4837 */ 4838 if (test_opt(sb, DISCARD)) { 4839 err = ext4_issue_discard(sb, block_group, bit, count); 4840 if (err && err != -EOPNOTSUPP) 4841 ext4_msg(sb, KERN_WARNING, "discard request in" 4842 " group:%d block:%d count:%lu failed" 4843 " with %d", block_group, bit, count, 4844 err); 4845 } else 4846 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4847 4848 ext4_lock_group(sb, block_group); 4849 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4850 mb_free_blocks(inode, &e4b, bit, count_clusters); 4851 } 4852 4853 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4854 ext4_free_group_clusters_set(sb, gdp, ret); 4855 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4856 ext4_group_desc_csum_set(sb, block_group, gdp); 4857 ext4_unlock_group(sb, block_group); 4858 4859 if (sbi->s_log_groups_per_flex) { 4860 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4861 atomic64_add(count_clusters, 4862 &sbi->s_flex_groups[flex_group].free_clusters); 4863 } 4864 4865 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4866 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4867 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4868 4869 ext4_mb_unload_buddy(&e4b); 4870 4871 /* We dirtied the bitmap block */ 4872 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4873 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4874 4875 /* And the group descriptor block */ 4876 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4877 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4878 if (!err) 4879 err = ret; 4880 4881 if (overflow && !err) { 4882 block += count; 4883 count = overflow; 4884 put_bh(bitmap_bh); 4885 goto do_more; 4886 } 4887 error_return: 4888 brelse(bitmap_bh); 4889 ext4_std_error(sb, err); 4890 return; 4891 } 4892 4893 /** 4894 * ext4_group_add_blocks() -- Add given blocks to an existing group 4895 * @handle: handle to this transaction 4896 * @sb: super block 4897 * @block: start physical block to add to the block group 4898 * @count: number of blocks to free 4899 * 4900 * This marks the blocks as free in the bitmap and buddy. 4901 */ 4902 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4903 ext4_fsblk_t block, unsigned long count) 4904 { 4905 struct buffer_head *bitmap_bh = NULL; 4906 struct buffer_head *gd_bh; 4907 ext4_group_t block_group; 4908 ext4_grpblk_t bit; 4909 unsigned int i; 4910 struct ext4_group_desc *desc; 4911 struct ext4_sb_info *sbi = EXT4_SB(sb); 4912 struct ext4_buddy e4b; 4913 int err = 0, ret, blk_free_count; 4914 ext4_grpblk_t blocks_freed; 4915 4916 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4917 4918 if (count == 0) 4919 return 0; 4920 4921 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4922 /* 4923 * Check to see if we are freeing blocks across a group 4924 * boundary. 4925 */ 4926 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4927 ext4_warning(sb, "too much blocks added to group %u\n", 4928 block_group); 4929 err = -EINVAL; 4930 goto error_return; 4931 } 4932 4933 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4934 if (!bitmap_bh) { 4935 err = -EIO; 4936 goto error_return; 4937 } 4938 4939 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4940 if (!desc) { 4941 err = -EIO; 4942 goto error_return; 4943 } 4944 4945 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4946 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4947 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4948 in_range(block + count - 1, ext4_inode_table(sb, desc), 4949 sbi->s_itb_per_group)) { 4950 ext4_error(sb, "Adding blocks in system zones - " 4951 "Block = %llu, count = %lu", 4952 block, count); 4953 err = -EINVAL; 4954 goto error_return; 4955 } 4956 4957 BUFFER_TRACE(bitmap_bh, "getting write access"); 4958 err = ext4_journal_get_write_access(handle, bitmap_bh); 4959 if (err) 4960 goto error_return; 4961 4962 /* 4963 * We are about to modify some metadata. Call the journal APIs 4964 * to unshare ->b_data if a currently-committing transaction is 4965 * using it 4966 */ 4967 BUFFER_TRACE(gd_bh, "get_write_access"); 4968 err = ext4_journal_get_write_access(handle, gd_bh); 4969 if (err) 4970 goto error_return; 4971 4972 for (i = 0, blocks_freed = 0; i < count; i++) { 4973 BUFFER_TRACE(bitmap_bh, "clear bit"); 4974 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4975 ext4_error(sb, "bit already cleared for block %llu", 4976 (ext4_fsblk_t)(block + i)); 4977 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4978 } else { 4979 blocks_freed++; 4980 } 4981 } 4982 4983 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4984 if (err) 4985 goto error_return; 4986 4987 /* 4988 * need to update group_info->bb_free and bitmap 4989 * with group lock held. generate_buddy look at 4990 * them with group lock_held 4991 */ 4992 ext4_lock_group(sb, block_group); 4993 mb_clear_bits(bitmap_bh->b_data, bit, count); 4994 mb_free_blocks(NULL, &e4b, bit, count); 4995 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4996 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4997 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4998 ext4_group_desc_csum_set(sb, block_group, desc); 4999 ext4_unlock_group(sb, block_group); 5000 percpu_counter_add(&sbi->s_freeclusters_counter, 5001 EXT4_NUM_B2C(sbi, blocks_freed)); 5002 5003 if (sbi->s_log_groups_per_flex) { 5004 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5005 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 5006 &sbi->s_flex_groups[flex_group].free_clusters); 5007 } 5008 5009 ext4_mb_unload_buddy(&e4b); 5010 5011 /* We dirtied the bitmap block */ 5012 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5013 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5014 5015 /* And the group descriptor block */ 5016 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5017 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5018 if (!err) 5019 err = ret; 5020 5021 error_return: 5022 brelse(bitmap_bh); 5023 ext4_std_error(sb, err); 5024 return err; 5025 } 5026 5027 /** 5028 * ext4_trim_extent -- function to TRIM one single free extent in the group 5029 * @sb: super block for the file system 5030 * @start: starting block of the free extent in the alloc. group 5031 * @count: number of blocks to TRIM 5032 * @group: alloc. group we are working with 5033 * @e4b: ext4 buddy for the group 5034 * 5035 * Trim "count" blocks starting at "start" in the "group". To assure that no 5036 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5037 * be called with under the group lock. 5038 */ 5039 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5040 ext4_group_t group, struct ext4_buddy *e4b) 5041 __releases(bitlock) 5042 __acquires(bitlock) 5043 { 5044 struct ext4_free_extent ex; 5045 int ret = 0; 5046 5047 trace_ext4_trim_extent(sb, group, start, count); 5048 5049 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5050 5051 ex.fe_start = start; 5052 ex.fe_group = group; 5053 ex.fe_len = count; 5054 5055 /* 5056 * Mark blocks used, so no one can reuse them while 5057 * being trimmed. 5058 */ 5059 mb_mark_used(e4b, &ex); 5060 ext4_unlock_group(sb, group); 5061 ret = ext4_issue_discard(sb, group, start, count); 5062 ext4_lock_group(sb, group); 5063 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5064 return ret; 5065 } 5066 5067 /** 5068 * ext4_trim_all_free -- function to trim all free space in alloc. group 5069 * @sb: super block for file system 5070 * @group: group to be trimmed 5071 * @start: first group block to examine 5072 * @max: last group block to examine 5073 * @minblocks: minimum extent block count 5074 * 5075 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5076 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5077 * the extent. 5078 * 5079 * 5080 * ext4_trim_all_free walks through group's block bitmap searching for free 5081 * extents. When the free extent is found, mark it as used in group buddy 5082 * bitmap. Then issue a TRIM command on this extent and free the extent in 5083 * the group buddy bitmap. This is done until whole group is scanned. 5084 */ 5085 static ext4_grpblk_t 5086 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5087 ext4_grpblk_t start, ext4_grpblk_t max, 5088 ext4_grpblk_t minblocks) 5089 { 5090 void *bitmap; 5091 ext4_grpblk_t next, count = 0, free_count = 0; 5092 struct ext4_buddy e4b; 5093 int ret = 0; 5094 5095 trace_ext4_trim_all_free(sb, group, start, max); 5096 5097 ret = ext4_mb_load_buddy(sb, group, &e4b); 5098 if (ret) { 5099 ext4_error(sb, "Error in loading buddy " 5100 "information for %u", group); 5101 return ret; 5102 } 5103 bitmap = e4b.bd_bitmap; 5104 5105 ext4_lock_group(sb, group); 5106 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5107 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5108 goto out; 5109 5110 start = (e4b.bd_info->bb_first_free > start) ? 5111 e4b.bd_info->bb_first_free : start; 5112 5113 while (start <= max) { 5114 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5115 if (start > max) 5116 break; 5117 next = mb_find_next_bit(bitmap, max + 1, start); 5118 5119 if ((next - start) >= minblocks) { 5120 ret = ext4_trim_extent(sb, start, 5121 next - start, group, &e4b); 5122 if (ret && ret != -EOPNOTSUPP) 5123 break; 5124 ret = 0; 5125 count += next - start; 5126 } 5127 free_count += next - start; 5128 start = next + 1; 5129 5130 if (fatal_signal_pending(current)) { 5131 count = -ERESTARTSYS; 5132 break; 5133 } 5134 5135 if (need_resched()) { 5136 ext4_unlock_group(sb, group); 5137 cond_resched(); 5138 ext4_lock_group(sb, group); 5139 } 5140 5141 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5142 break; 5143 } 5144 5145 if (!ret) { 5146 ret = count; 5147 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5148 } 5149 out: 5150 ext4_unlock_group(sb, group); 5151 ext4_mb_unload_buddy(&e4b); 5152 5153 ext4_debug("trimmed %d blocks in the group %d\n", 5154 count, group); 5155 5156 return ret; 5157 } 5158 5159 /** 5160 * ext4_trim_fs() -- trim ioctl handle function 5161 * @sb: superblock for filesystem 5162 * @range: fstrim_range structure 5163 * 5164 * start: First Byte to trim 5165 * len: number of Bytes to trim from start 5166 * minlen: minimum extent length in Bytes 5167 * ext4_trim_fs goes through all allocation groups containing Bytes from 5168 * start to start+len. For each such a group ext4_trim_all_free function 5169 * is invoked to trim all free space. 5170 */ 5171 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5172 { 5173 struct ext4_group_info *grp; 5174 ext4_group_t group, first_group, last_group; 5175 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5176 uint64_t start, end, minlen, trimmed = 0; 5177 ext4_fsblk_t first_data_blk = 5178 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5179 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5180 int ret = 0; 5181 5182 start = range->start >> sb->s_blocksize_bits; 5183 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5184 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5185 range->minlen >> sb->s_blocksize_bits); 5186 5187 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5188 start >= max_blks || 5189 range->len < sb->s_blocksize) 5190 return -EINVAL; 5191 if (end >= max_blks) 5192 end = max_blks - 1; 5193 if (end <= first_data_blk) 5194 goto out; 5195 if (start < first_data_blk) 5196 start = first_data_blk; 5197 5198 /* Determine first and last group to examine based on start and end */ 5199 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5200 &first_group, &first_cluster); 5201 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5202 &last_group, &last_cluster); 5203 5204 /* end now represents the last cluster to discard in this group */ 5205 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5206 5207 for (group = first_group; group <= last_group; group++) { 5208 grp = ext4_get_group_info(sb, group); 5209 /* We only do this if the grp has never been initialized */ 5210 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5211 ret = ext4_mb_init_group(sb, group); 5212 if (ret) 5213 break; 5214 } 5215 5216 /* 5217 * For all the groups except the last one, last cluster will 5218 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5219 * change it for the last group, note that last_cluster is 5220 * already computed earlier by ext4_get_group_no_and_offset() 5221 */ 5222 if (group == last_group) 5223 end = last_cluster; 5224 5225 if (grp->bb_free >= minlen) { 5226 cnt = ext4_trim_all_free(sb, group, first_cluster, 5227 end, minlen); 5228 if (cnt < 0) { 5229 ret = cnt; 5230 break; 5231 } 5232 trimmed += cnt; 5233 } 5234 5235 /* 5236 * For every group except the first one, we are sure 5237 * that the first cluster to discard will be cluster #0. 5238 */ 5239 first_cluster = 0; 5240 } 5241 5242 if (!ret) 5243 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5244 5245 out: 5246 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5247 return ret; 5248 } 5249