xref: /linux/fs/ext4/mballoc.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * The regular allocator (using the buddy cache) supports a few tunables.
131  *
132  * /sys/fs/ext4/<partition>/mb_min_to_scan
133  * /sys/fs/ext4/<partition>/mb_max_to_scan
134  * /sys/fs/ext4/<partition>/mb_order2_req
135  *
136  * The regular allocator uses buddy scan only if the request len is power of
137  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138  * value of s_mb_order2_reqs can be tuned via
139  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
140  * stripe size (sbi->s_stripe), we try to search for contiguous block in
141  * stripe size. This should result in better allocation on RAID setups. If
142  * not, we search in the specific group using bitmap for best extents. The
143  * tunable min_to_scan and max_to_scan control the behaviour here.
144  * min_to_scan indicate how long the mballoc __must__ look for a best
145  * extent and max_to_scan indicates how long the mballoc __can__ look for a
146  * best extent in the found extents. Searching for the blocks starts with
147  * the group specified as the goal value in allocation context via
148  * ac_g_ex. Each group is first checked based on the criteria whether it
149  * can be used for allocation. ext4_mb_good_group explains how the groups are
150  * checked.
151  *
152  * Both the prealloc space are getting populated as above. So for the first
153  * request we will hit the buddy cache which will result in this prealloc
154  * space getting filled. The prealloc space is then later used for the
155  * subsequent request.
156  */
157 
158 /*
159  * mballoc operates on the following data:
160  *  - on-disk bitmap
161  *  - in-core buddy (actually includes buddy and bitmap)
162  *  - preallocation descriptors (PAs)
163  *
164  * there are two types of preallocations:
165  *  - inode
166  *    assiged to specific inode and can be used for this inode only.
167  *    it describes part of inode's space preallocated to specific
168  *    physical blocks. any block from that preallocated can be used
169  *    independent. the descriptor just tracks number of blocks left
170  *    unused. so, before taking some block from descriptor, one must
171  *    make sure corresponded logical block isn't allocated yet. this
172  *    also means that freeing any block within descriptor's range
173  *    must discard all preallocated blocks.
174  *  - locality group
175  *    assigned to specific locality group which does not translate to
176  *    permanent set of inodes: inode can join and leave group. space
177  *    from this type of preallocation can be used for any inode. thus
178  *    it's consumed from the beginning to the end.
179  *
180  * relation between them can be expressed as:
181  *    in-core buddy = on-disk bitmap + preallocation descriptors
182  *
183  * this mean blocks mballoc considers used are:
184  *  - allocated blocks (persistent)
185  *  - preallocated blocks (non-persistent)
186  *
187  * consistency in mballoc world means that at any time a block is either
188  * free or used in ALL structures. notice: "any time" should not be read
189  * literally -- time is discrete and delimited by locks.
190  *
191  *  to keep it simple, we don't use block numbers, instead we count number of
192  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
193  *
194  * all operations can be expressed as:
195  *  - init buddy:			buddy = on-disk + PAs
196  *  - new PA:				buddy += N; PA = N
197  *  - use inode PA:			on-disk += N; PA -= N
198  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
199  *  - use locality group PA		on-disk += N; PA -= N
200  *  - discard locality group PA		buddy -= PA; PA = 0
201  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202  *        is used in real operation because we can't know actual used
203  *        bits from PA, only from on-disk bitmap
204  *
205  * if we follow this strict logic, then all operations above should be atomic.
206  * given some of them can block, we'd have to use something like semaphores
207  * killing performance on high-end SMP hardware. let's try to relax it using
208  * the following knowledge:
209  *  1) if buddy is referenced, it's already initialized
210  *  2) while block is used in buddy and the buddy is referenced,
211  *     nobody can re-allocate that block
212  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
214  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215  *     block
216  *
217  * so, now we're building a concurrency table:
218  *  - init buddy vs.
219  *    - new PA
220  *      blocks for PA are allocated in the buddy, buddy must be referenced
221  *      until PA is linked to allocation group to avoid concurrent buddy init
222  *    - use inode PA
223  *      we need to make sure that either on-disk bitmap or PA has uptodate data
224  *      given (3) we care that PA-=N operation doesn't interfere with init
225  *    - discard inode PA
226  *      the simplest way would be to have buddy initialized by the discard
227  *    - use locality group PA
228  *      again PA-=N must be serialized with init
229  *    - discard locality group PA
230  *      the simplest way would be to have buddy initialized by the discard
231  *  - new PA vs.
232  *    - use inode PA
233  *      i_data_sem serializes them
234  *    - discard inode PA
235  *      discard process must wait until PA isn't used by another process
236  *    - use locality group PA
237  *      some mutex should serialize them
238  *    - discard locality group PA
239  *      discard process must wait until PA isn't used by another process
240  *  - use inode PA
241  *    - use inode PA
242  *      i_data_sem or another mutex should serializes them
243  *    - discard inode PA
244  *      discard process must wait until PA isn't used by another process
245  *    - use locality group PA
246  *      nothing wrong here -- they're different PAs covering different blocks
247  *    - discard locality group PA
248  *      discard process must wait until PA isn't used by another process
249  *
250  * now we're ready to make few consequences:
251  *  - PA is referenced and while it is no discard is possible
252  *  - PA is referenced until block isn't marked in on-disk bitmap
253  *  - PA changes only after on-disk bitmap
254  *  - discard must not compete with init. either init is done before
255  *    any discard or they're serialized somehow
256  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
257  *
258  * a special case when we've used PA to emptiness. no need to modify buddy
259  * in this case, but we should care about concurrent init
260  *
261  */
262 
263  /*
264  * Logic in few words:
265  *
266  *  - allocation:
267  *    load group
268  *    find blocks
269  *    mark bits in on-disk bitmap
270  *    release group
271  *
272  *  - use preallocation:
273  *    find proper PA (per-inode or group)
274  *    load group
275  *    mark bits in on-disk bitmap
276  *    release group
277  *    release PA
278  *
279  *  - free:
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *
284  *  - discard preallocations in group:
285  *    mark PAs deleted
286  *    move them onto local list
287  *    load on-disk bitmap
288  *    load group
289  *    remove PA from object (inode or locality group)
290  *    mark free blocks in-core
291  *
292  *  - discard inode's preallocations:
293  */
294 
295 /*
296  * Locking rules
297  *
298  * Locks:
299  *  - bitlock on a group	(group)
300  *  - object (inode/locality)	(object)
301  *  - per-pa lock		(pa)
302  *
303  * Paths:
304  *  - new pa
305  *    object
306  *    group
307  *
308  *  - find and use pa:
309  *    pa
310  *
311  *  - release consumed pa:
312  *    pa
313  *    group
314  *    object
315  *
316  *  - generate in-core bitmap:
317  *    group
318  *        pa
319  *
320  *  - discard all for given object (inode, locality group):
321  *    object
322  *        pa
323  *    group
324  *
325  *  - discard all for given group:
326  *    group
327  *        pa
328  *    group
329  *        object
330  *
331  */
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
335 
336 /* We create slab caches for groupinfo data structures based on the
337  * superblock block size.  There will be one per mounted filesystem for
338  * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
341 
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
346 };
347 
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 					ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 						ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
353 
354 /*
355  * The algorithm using this percpu seq counter goes below:
356  * 1. We sample the percpu discard_pa_seq counter before trying for block
357  *    allocation in ext4_mb_new_blocks().
358  * 2. We increment this percpu discard_pa_seq counter when we either allocate
359  *    or free these blocks i.e. while marking those blocks as used/free in
360  *    mb_mark_used()/mb_free_blocks().
361  * 3. We also increment this percpu seq counter when we successfully identify
362  *    that the bb_prealloc_list is not empty and hence proceed for discarding
363  *    of those PAs inside ext4_mb_discard_group_preallocations().
364  *
365  * Now to make sure that the regular fast path of block allocation is not
366  * affected, as a small optimization we only sample the percpu seq counter
367  * on that cpu. Only when the block allocation fails and when freed blocks
368  * found were 0, that is when we sample percpu seq counter for all cpus using
369  * below function ext4_get_discard_pa_seq_sum(). This happens after making
370  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
371  */
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
373 static inline u64 ext4_get_discard_pa_seq_sum(void)
374 {
375 	int __cpu;
376 	u64 __seq = 0;
377 
378 	for_each_possible_cpu(__cpu)
379 		__seq += per_cpu(discard_pa_seq, __cpu);
380 	return __seq;
381 }
382 
383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
384 {
385 #if BITS_PER_LONG == 64
386 	*bit += ((unsigned long) addr & 7UL) << 3;
387 	addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 	*bit += ((unsigned long) addr & 3UL) << 3;
390 	addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 	return addr;
395 }
396 
397 static inline int mb_test_bit(int bit, void *addr)
398 {
399 	/*
400 	 * ext4_test_bit on architecture like powerpc
401 	 * needs unsigned long aligned address
402 	 */
403 	addr = mb_correct_addr_and_bit(&bit, addr);
404 	return ext4_test_bit(bit, addr);
405 }
406 
407 static inline void mb_set_bit(int bit, void *addr)
408 {
409 	addr = mb_correct_addr_and_bit(&bit, addr);
410 	ext4_set_bit(bit, addr);
411 }
412 
413 static inline void mb_clear_bit(int bit, void *addr)
414 {
415 	addr = mb_correct_addr_and_bit(&bit, addr);
416 	ext4_clear_bit(bit, addr);
417 }
418 
419 static inline int mb_test_and_clear_bit(int bit, void *addr)
420 {
421 	addr = mb_correct_addr_and_bit(&bit, addr);
422 	return ext4_test_and_clear_bit(bit, addr);
423 }
424 
425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
426 {
427 	int fix = 0, ret, tmpmax;
428 	addr = mb_correct_addr_and_bit(&fix, addr);
429 	tmpmax = max + fix;
430 	start += fix;
431 
432 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 	if (ret > max)
434 		return max;
435 	return ret;
436 }
437 
438 static inline int mb_find_next_bit(void *addr, int max, int start)
439 {
440 	int fix = 0, ret, tmpmax;
441 	addr = mb_correct_addr_and_bit(&fix, addr);
442 	tmpmax = max + fix;
443 	start += fix;
444 
445 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 	if (ret > max)
447 		return max;
448 	return ret;
449 }
450 
451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
452 {
453 	char *bb;
454 
455 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 	BUG_ON(max == NULL);
457 
458 	if (order > e4b->bd_blkbits + 1) {
459 		*max = 0;
460 		return NULL;
461 	}
462 
463 	/* at order 0 we see each particular block */
464 	if (order == 0) {
465 		*max = 1 << (e4b->bd_blkbits + 3);
466 		return e4b->bd_bitmap;
467 	}
468 
469 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
471 
472 	return bb;
473 }
474 
475 #ifdef DOUBLE_CHECK
476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 			   int first, int count)
478 {
479 	int i;
480 	struct super_block *sb = e4b->bd_sb;
481 
482 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 		return;
484 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 	for (i = 0; i < count; i++) {
486 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 			ext4_fsblk_t blocknr;
488 
489 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 			ext4_grp_locked_error(sb, e4b->bd_group,
492 					      inode ? inode->i_ino : 0,
493 					      blocknr,
494 					      "freeing block already freed "
495 					      "(bit %u)",
496 					      first + i);
497 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
499 		}
500 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
505 {
506 	int i;
507 
508 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 		return;
510 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 	for (i = 0; i < count; i++) {
512 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
514 	}
515 }
516 
517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
518 {
519 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 		return;
521 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 		unsigned char *b1, *b2;
523 		int i;
524 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 		b2 = (unsigned char *) bitmap;
526 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 			if (b1[i] != b2[i]) {
528 				ext4_msg(e4b->bd_sb, KERN_ERR,
529 					 "corruption in group %u "
530 					 "at byte %u(%u): %x in copy != %x "
531 					 "on disk/prealloc",
532 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 				BUG();
534 			}
535 		}
536 	}
537 }
538 
539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 			struct ext4_group_info *grp, ext4_group_t group)
541 {
542 	struct buffer_head *bh;
543 
544 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 	if (!grp->bb_bitmap)
546 		return;
547 
548 	bh = ext4_read_block_bitmap(sb, group);
549 	if (IS_ERR_OR_NULL(bh)) {
550 		kfree(grp->bb_bitmap);
551 		grp->bb_bitmap = NULL;
552 		return;
553 	}
554 
555 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 	put_bh(bh);
557 }
558 
559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
560 {
561 	kfree(grp->bb_bitmap);
562 }
563 
564 #else
565 static inline void mb_free_blocks_double(struct inode *inode,
566 				struct ext4_buddy *e4b, int first, int count)
567 {
568 	return;
569 }
570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 						int first, int count)
572 {
573 	return;
574 }
575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
576 {
577 	return;
578 }
579 
580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 			struct ext4_group_info *grp, ext4_group_t group)
582 {
583 	return;
584 }
585 
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
587 {
588 	return;
589 }
590 #endif
591 
592 #ifdef AGGRESSIVE_CHECK
593 
594 #define MB_CHECK_ASSERT(assert)						\
595 do {									\
596 	if (!(assert)) {						\
597 		printk(KERN_EMERG					\
598 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
599 			function, file, line, # assert);		\
600 		BUG();							\
601 	}								\
602 } while (0)
603 
604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 				const char *function, int line)
606 {
607 	struct super_block *sb = e4b->bd_sb;
608 	int order = e4b->bd_blkbits + 1;
609 	int max;
610 	int max2;
611 	int i;
612 	int j;
613 	int k;
614 	int count;
615 	struct ext4_group_info *grp;
616 	int fragments = 0;
617 	int fstart;
618 	struct list_head *cur;
619 	void *buddy;
620 	void *buddy2;
621 
622 	if (e4b->bd_info->bb_check_counter++ % 10)
623 		return 0;
624 
625 	while (order > 1) {
626 		buddy = mb_find_buddy(e4b, order, &max);
627 		MB_CHECK_ASSERT(buddy);
628 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
629 		MB_CHECK_ASSERT(buddy2);
630 		MB_CHECK_ASSERT(buddy != buddy2);
631 		MB_CHECK_ASSERT(max * 2 == max2);
632 
633 		count = 0;
634 		for (i = 0; i < max; i++) {
635 
636 			if (mb_test_bit(i, buddy)) {
637 				/* only single bit in buddy2 may be 1 */
638 				if (!mb_test_bit(i << 1, buddy2)) {
639 					MB_CHECK_ASSERT(
640 						mb_test_bit((i<<1)+1, buddy2));
641 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
642 					MB_CHECK_ASSERT(
643 						mb_test_bit(i << 1, buddy2));
644 				}
645 				continue;
646 			}
647 
648 			/* both bits in buddy2 must be 1 */
649 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
650 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
651 
652 			for (j = 0; j < (1 << order); j++) {
653 				k = (i * (1 << order)) + j;
654 				MB_CHECK_ASSERT(
655 					!mb_test_bit(k, e4b->bd_bitmap));
656 			}
657 			count++;
658 		}
659 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
660 		order--;
661 	}
662 
663 	fstart = -1;
664 	buddy = mb_find_buddy(e4b, 0, &max);
665 	for (i = 0; i < max; i++) {
666 		if (!mb_test_bit(i, buddy)) {
667 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
668 			if (fstart == -1) {
669 				fragments++;
670 				fstart = i;
671 			}
672 			continue;
673 		}
674 		fstart = -1;
675 		/* check used bits only */
676 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
677 			buddy2 = mb_find_buddy(e4b, j, &max2);
678 			k = i >> j;
679 			MB_CHECK_ASSERT(k < max2);
680 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
681 		}
682 	}
683 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
684 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
685 
686 	grp = ext4_get_group_info(sb, e4b->bd_group);
687 	list_for_each(cur, &grp->bb_prealloc_list) {
688 		ext4_group_t groupnr;
689 		struct ext4_prealloc_space *pa;
690 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
691 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
692 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
693 		for (i = 0; i < pa->pa_len; i++)
694 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
695 	}
696 	return 0;
697 }
698 #undef MB_CHECK_ASSERT
699 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
700 					__FILE__, __func__, __LINE__)
701 #else
702 #define mb_check_buddy(e4b)
703 #endif
704 
705 /*
706  * Divide blocks started from @first with length @len into
707  * smaller chunks with power of 2 blocks.
708  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
709  * then increase bb_counters[] for corresponded chunk size.
710  */
711 static void ext4_mb_mark_free_simple(struct super_block *sb,
712 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
713 					struct ext4_group_info *grp)
714 {
715 	struct ext4_sb_info *sbi = EXT4_SB(sb);
716 	ext4_grpblk_t min;
717 	ext4_grpblk_t max;
718 	ext4_grpblk_t chunk;
719 	unsigned int border;
720 
721 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
722 
723 	border = 2 << sb->s_blocksize_bits;
724 
725 	while (len > 0) {
726 		/* find how many blocks can be covered since this position */
727 		max = ffs(first | border) - 1;
728 
729 		/* find how many blocks of power 2 we need to mark */
730 		min = fls(len) - 1;
731 
732 		if (max < min)
733 			min = max;
734 		chunk = 1 << min;
735 
736 		/* mark multiblock chunks only */
737 		grp->bb_counters[min]++;
738 		if (min > 0)
739 			mb_clear_bit(first >> min,
740 				     buddy + sbi->s_mb_offsets[min]);
741 
742 		len -= chunk;
743 		first += chunk;
744 	}
745 }
746 
747 /*
748  * Cache the order of the largest free extent we have available in this block
749  * group.
750  */
751 static void
752 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
753 {
754 	int i;
755 	int bits;
756 
757 	grp->bb_largest_free_order = -1; /* uninit */
758 
759 	bits = sb->s_blocksize_bits + 1;
760 	for (i = bits; i >= 0; i--) {
761 		if (grp->bb_counters[i] > 0) {
762 			grp->bb_largest_free_order = i;
763 			break;
764 		}
765 	}
766 }
767 
768 static noinline_for_stack
769 void ext4_mb_generate_buddy(struct super_block *sb,
770 				void *buddy, void *bitmap, ext4_group_t group)
771 {
772 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
774 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
775 	ext4_grpblk_t i = 0;
776 	ext4_grpblk_t first;
777 	ext4_grpblk_t len;
778 	unsigned free = 0;
779 	unsigned fragments = 0;
780 	unsigned long long period = get_cycles();
781 
782 	/* initialize buddy from bitmap which is aggregation
783 	 * of on-disk bitmap and preallocations */
784 	i = mb_find_next_zero_bit(bitmap, max, 0);
785 	grp->bb_first_free = i;
786 	while (i < max) {
787 		fragments++;
788 		first = i;
789 		i = mb_find_next_bit(bitmap, max, i);
790 		len = i - first;
791 		free += len;
792 		if (len > 1)
793 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
794 		else
795 			grp->bb_counters[0]++;
796 		if (i < max)
797 			i = mb_find_next_zero_bit(bitmap, max, i);
798 	}
799 	grp->bb_fragments = fragments;
800 
801 	if (free != grp->bb_free) {
802 		ext4_grp_locked_error(sb, group, 0, 0,
803 				      "block bitmap and bg descriptor "
804 				      "inconsistent: %u vs %u free clusters",
805 				      free, grp->bb_free);
806 		/*
807 		 * If we intend to continue, we consider group descriptor
808 		 * corrupt and update bb_free using bitmap value
809 		 */
810 		grp->bb_free = free;
811 		ext4_mark_group_bitmap_corrupted(sb, group,
812 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
813 	}
814 	mb_set_largest_free_order(sb, grp);
815 
816 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
817 
818 	period = get_cycles() - period;
819 	spin_lock(&sbi->s_bal_lock);
820 	sbi->s_mb_buddies_generated++;
821 	sbi->s_mb_generation_time += period;
822 	spin_unlock(&sbi->s_bal_lock);
823 }
824 
825 /* The buddy information is attached the buddy cache inode
826  * for convenience. The information regarding each group
827  * is loaded via ext4_mb_load_buddy. The information involve
828  * block bitmap and buddy information. The information are
829  * stored in the inode as
830  *
831  * {                        page                        }
832  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
833  *
834  *
835  * one block each for bitmap and buddy information.
836  * So for each group we take up 2 blocks. A page can
837  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
838  * So it can have information regarding groups_per_page which
839  * is blocks_per_page/2
840  *
841  * Locking note:  This routine takes the block group lock of all groups
842  * for this page; do not hold this lock when calling this routine!
843  */
844 
845 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
846 {
847 	ext4_group_t ngroups;
848 	int blocksize;
849 	int blocks_per_page;
850 	int groups_per_page;
851 	int err = 0;
852 	int i;
853 	ext4_group_t first_group, group;
854 	int first_block;
855 	struct super_block *sb;
856 	struct buffer_head *bhs;
857 	struct buffer_head **bh = NULL;
858 	struct inode *inode;
859 	char *data;
860 	char *bitmap;
861 	struct ext4_group_info *grinfo;
862 
863 	inode = page->mapping->host;
864 	sb = inode->i_sb;
865 	ngroups = ext4_get_groups_count(sb);
866 	blocksize = i_blocksize(inode);
867 	blocks_per_page = PAGE_SIZE / blocksize;
868 
869 	mb_debug(sb, "init page %lu\n", page->index);
870 
871 	groups_per_page = blocks_per_page >> 1;
872 	if (groups_per_page == 0)
873 		groups_per_page = 1;
874 
875 	/* allocate buffer_heads to read bitmaps */
876 	if (groups_per_page > 1) {
877 		i = sizeof(struct buffer_head *) * groups_per_page;
878 		bh = kzalloc(i, gfp);
879 		if (bh == NULL) {
880 			err = -ENOMEM;
881 			goto out;
882 		}
883 	} else
884 		bh = &bhs;
885 
886 	first_group = page->index * blocks_per_page / 2;
887 
888 	/* read all groups the page covers into the cache */
889 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
890 		if (group >= ngroups)
891 			break;
892 
893 		grinfo = ext4_get_group_info(sb, group);
894 		/*
895 		 * If page is uptodate then we came here after online resize
896 		 * which added some new uninitialized group info structs, so
897 		 * we must skip all initialized uptodate buddies on the page,
898 		 * which may be currently in use by an allocating task.
899 		 */
900 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
901 			bh[i] = NULL;
902 			continue;
903 		}
904 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
905 		if (IS_ERR(bh[i])) {
906 			err = PTR_ERR(bh[i]);
907 			bh[i] = NULL;
908 			goto out;
909 		}
910 		mb_debug(sb, "read bitmap for group %u\n", group);
911 	}
912 
913 	/* wait for I/O completion */
914 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
915 		int err2;
916 
917 		if (!bh[i])
918 			continue;
919 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
920 		if (!err)
921 			err = err2;
922 	}
923 
924 	first_block = page->index * blocks_per_page;
925 	for (i = 0; i < blocks_per_page; i++) {
926 		group = (first_block + i) >> 1;
927 		if (group >= ngroups)
928 			break;
929 
930 		if (!bh[group - first_group])
931 			/* skip initialized uptodate buddy */
932 			continue;
933 
934 		if (!buffer_verified(bh[group - first_group]))
935 			/* Skip faulty bitmaps */
936 			continue;
937 		err = 0;
938 
939 		/*
940 		 * data carry information regarding this
941 		 * particular group in the format specified
942 		 * above
943 		 *
944 		 */
945 		data = page_address(page) + (i * blocksize);
946 		bitmap = bh[group - first_group]->b_data;
947 
948 		/*
949 		 * We place the buddy block and bitmap block
950 		 * close together
951 		 */
952 		if ((first_block + i) & 1) {
953 			/* this is block of buddy */
954 			BUG_ON(incore == NULL);
955 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
956 				group, page->index, i * blocksize);
957 			trace_ext4_mb_buddy_bitmap_load(sb, group);
958 			grinfo = ext4_get_group_info(sb, group);
959 			grinfo->bb_fragments = 0;
960 			memset(grinfo->bb_counters, 0,
961 			       sizeof(*grinfo->bb_counters) *
962 				(sb->s_blocksize_bits+2));
963 			/*
964 			 * incore got set to the group block bitmap below
965 			 */
966 			ext4_lock_group(sb, group);
967 			/* init the buddy */
968 			memset(data, 0xff, blocksize);
969 			ext4_mb_generate_buddy(sb, data, incore, group);
970 			ext4_unlock_group(sb, group);
971 			incore = NULL;
972 		} else {
973 			/* this is block of bitmap */
974 			BUG_ON(incore != NULL);
975 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
976 				group, page->index, i * blocksize);
977 			trace_ext4_mb_bitmap_load(sb, group);
978 
979 			/* see comments in ext4_mb_put_pa() */
980 			ext4_lock_group(sb, group);
981 			memcpy(data, bitmap, blocksize);
982 
983 			/* mark all preallocated blks used in in-core bitmap */
984 			ext4_mb_generate_from_pa(sb, data, group);
985 			ext4_mb_generate_from_freelist(sb, data, group);
986 			ext4_unlock_group(sb, group);
987 
988 			/* set incore so that the buddy information can be
989 			 * generated using this
990 			 */
991 			incore = data;
992 		}
993 	}
994 	SetPageUptodate(page);
995 
996 out:
997 	if (bh) {
998 		for (i = 0; i < groups_per_page; i++)
999 			brelse(bh[i]);
1000 		if (bh != &bhs)
1001 			kfree(bh);
1002 	}
1003 	return err;
1004 }
1005 
1006 /*
1007  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1008  * on the same buddy page doesn't happen whild holding the buddy page lock.
1009  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1010  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1011  */
1012 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1013 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1014 {
1015 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1016 	int block, pnum, poff;
1017 	int blocks_per_page;
1018 	struct page *page;
1019 
1020 	e4b->bd_buddy_page = NULL;
1021 	e4b->bd_bitmap_page = NULL;
1022 
1023 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1024 	/*
1025 	 * the buddy cache inode stores the block bitmap
1026 	 * and buddy information in consecutive blocks.
1027 	 * So for each group we need two blocks.
1028 	 */
1029 	block = group * 2;
1030 	pnum = block / blocks_per_page;
1031 	poff = block % blocks_per_page;
1032 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1033 	if (!page)
1034 		return -ENOMEM;
1035 	BUG_ON(page->mapping != inode->i_mapping);
1036 	e4b->bd_bitmap_page = page;
1037 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1038 
1039 	if (blocks_per_page >= 2) {
1040 		/* buddy and bitmap are on the same page */
1041 		return 0;
1042 	}
1043 
1044 	block++;
1045 	pnum = block / blocks_per_page;
1046 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1047 	if (!page)
1048 		return -ENOMEM;
1049 	BUG_ON(page->mapping != inode->i_mapping);
1050 	e4b->bd_buddy_page = page;
1051 	return 0;
1052 }
1053 
1054 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1055 {
1056 	if (e4b->bd_bitmap_page) {
1057 		unlock_page(e4b->bd_bitmap_page);
1058 		put_page(e4b->bd_bitmap_page);
1059 	}
1060 	if (e4b->bd_buddy_page) {
1061 		unlock_page(e4b->bd_buddy_page);
1062 		put_page(e4b->bd_buddy_page);
1063 	}
1064 }
1065 
1066 /*
1067  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1068  * block group lock of all groups for this page; do not hold the BG lock when
1069  * calling this routine!
1070  */
1071 static noinline_for_stack
1072 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1073 {
1074 
1075 	struct ext4_group_info *this_grp;
1076 	struct ext4_buddy e4b;
1077 	struct page *page;
1078 	int ret = 0;
1079 
1080 	might_sleep();
1081 	mb_debug(sb, "init group %u\n", group);
1082 	this_grp = ext4_get_group_info(sb, group);
1083 	/*
1084 	 * This ensures that we don't reinit the buddy cache
1085 	 * page which map to the group from which we are already
1086 	 * allocating. If we are looking at the buddy cache we would
1087 	 * have taken a reference using ext4_mb_load_buddy and that
1088 	 * would have pinned buddy page to page cache.
1089 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1090 	 * page accessed.
1091 	 */
1092 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1093 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1094 		/*
1095 		 * somebody initialized the group
1096 		 * return without doing anything
1097 		 */
1098 		goto err;
1099 	}
1100 
1101 	page = e4b.bd_bitmap_page;
1102 	ret = ext4_mb_init_cache(page, NULL, gfp);
1103 	if (ret)
1104 		goto err;
1105 	if (!PageUptodate(page)) {
1106 		ret = -EIO;
1107 		goto err;
1108 	}
1109 
1110 	if (e4b.bd_buddy_page == NULL) {
1111 		/*
1112 		 * If both the bitmap and buddy are in
1113 		 * the same page we don't need to force
1114 		 * init the buddy
1115 		 */
1116 		ret = 0;
1117 		goto err;
1118 	}
1119 	/* init buddy cache */
1120 	page = e4b.bd_buddy_page;
1121 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1122 	if (ret)
1123 		goto err;
1124 	if (!PageUptodate(page)) {
1125 		ret = -EIO;
1126 		goto err;
1127 	}
1128 err:
1129 	ext4_mb_put_buddy_page_lock(&e4b);
1130 	return ret;
1131 }
1132 
1133 /*
1134  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1135  * block group lock of all groups for this page; do not hold the BG lock when
1136  * calling this routine!
1137  */
1138 static noinline_for_stack int
1139 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1140 		       struct ext4_buddy *e4b, gfp_t gfp)
1141 {
1142 	int blocks_per_page;
1143 	int block;
1144 	int pnum;
1145 	int poff;
1146 	struct page *page;
1147 	int ret;
1148 	struct ext4_group_info *grp;
1149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1150 	struct inode *inode = sbi->s_buddy_cache;
1151 
1152 	might_sleep();
1153 	mb_debug(sb, "load group %u\n", group);
1154 
1155 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1156 	grp = ext4_get_group_info(sb, group);
1157 
1158 	e4b->bd_blkbits = sb->s_blocksize_bits;
1159 	e4b->bd_info = grp;
1160 	e4b->bd_sb = sb;
1161 	e4b->bd_group = group;
1162 	e4b->bd_buddy_page = NULL;
1163 	e4b->bd_bitmap_page = NULL;
1164 
1165 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1166 		/*
1167 		 * we need full data about the group
1168 		 * to make a good selection
1169 		 */
1170 		ret = ext4_mb_init_group(sb, group, gfp);
1171 		if (ret)
1172 			return ret;
1173 	}
1174 
1175 	/*
1176 	 * the buddy cache inode stores the block bitmap
1177 	 * and buddy information in consecutive blocks.
1178 	 * So for each group we need two blocks.
1179 	 */
1180 	block = group * 2;
1181 	pnum = block / blocks_per_page;
1182 	poff = block % blocks_per_page;
1183 
1184 	/* we could use find_or_create_page(), but it locks page
1185 	 * what we'd like to avoid in fast path ... */
1186 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1187 	if (page == NULL || !PageUptodate(page)) {
1188 		if (page)
1189 			/*
1190 			 * drop the page reference and try
1191 			 * to get the page with lock. If we
1192 			 * are not uptodate that implies
1193 			 * somebody just created the page but
1194 			 * is yet to initialize the same. So
1195 			 * wait for it to initialize.
1196 			 */
1197 			put_page(page);
1198 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1199 		if (page) {
1200 			BUG_ON(page->mapping != inode->i_mapping);
1201 			if (!PageUptodate(page)) {
1202 				ret = ext4_mb_init_cache(page, NULL, gfp);
1203 				if (ret) {
1204 					unlock_page(page);
1205 					goto err;
1206 				}
1207 				mb_cmp_bitmaps(e4b, page_address(page) +
1208 					       (poff * sb->s_blocksize));
1209 			}
1210 			unlock_page(page);
1211 		}
1212 	}
1213 	if (page == NULL) {
1214 		ret = -ENOMEM;
1215 		goto err;
1216 	}
1217 	if (!PageUptodate(page)) {
1218 		ret = -EIO;
1219 		goto err;
1220 	}
1221 
1222 	/* Pages marked accessed already */
1223 	e4b->bd_bitmap_page = page;
1224 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1225 
1226 	block++;
1227 	pnum = block / blocks_per_page;
1228 	poff = block % blocks_per_page;
1229 
1230 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1231 	if (page == NULL || !PageUptodate(page)) {
1232 		if (page)
1233 			put_page(page);
1234 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1235 		if (page) {
1236 			BUG_ON(page->mapping != inode->i_mapping);
1237 			if (!PageUptodate(page)) {
1238 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1239 							 gfp);
1240 				if (ret) {
1241 					unlock_page(page);
1242 					goto err;
1243 				}
1244 			}
1245 			unlock_page(page);
1246 		}
1247 	}
1248 	if (page == NULL) {
1249 		ret = -ENOMEM;
1250 		goto err;
1251 	}
1252 	if (!PageUptodate(page)) {
1253 		ret = -EIO;
1254 		goto err;
1255 	}
1256 
1257 	/* Pages marked accessed already */
1258 	e4b->bd_buddy_page = page;
1259 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1260 
1261 	return 0;
1262 
1263 err:
1264 	if (page)
1265 		put_page(page);
1266 	if (e4b->bd_bitmap_page)
1267 		put_page(e4b->bd_bitmap_page);
1268 	if (e4b->bd_buddy_page)
1269 		put_page(e4b->bd_buddy_page);
1270 	e4b->bd_buddy = NULL;
1271 	e4b->bd_bitmap = NULL;
1272 	return ret;
1273 }
1274 
1275 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1276 			      struct ext4_buddy *e4b)
1277 {
1278 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1279 }
1280 
1281 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1282 {
1283 	if (e4b->bd_bitmap_page)
1284 		put_page(e4b->bd_bitmap_page);
1285 	if (e4b->bd_buddy_page)
1286 		put_page(e4b->bd_buddy_page);
1287 }
1288 
1289 
1290 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1291 {
1292 	int order = 1, max;
1293 	void *bb;
1294 
1295 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1296 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1297 
1298 	while (order <= e4b->bd_blkbits + 1) {
1299 		bb = mb_find_buddy(e4b, order, &max);
1300 		if (!mb_test_bit(block >> order, bb)) {
1301 			/* this block is part of buddy of order 'order' */
1302 			return order;
1303 		}
1304 		order++;
1305 	}
1306 	return 0;
1307 }
1308 
1309 static void mb_clear_bits(void *bm, int cur, int len)
1310 {
1311 	__u32 *addr;
1312 
1313 	len = cur + len;
1314 	while (cur < len) {
1315 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1316 			/* fast path: clear whole word at once */
1317 			addr = bm + (cur >> 3);
1318 			*addr = 0;
1319 			cur += 32;
1320 			continue;
1321 		}
1322 		mb_clear_bit(cur, bm);
1323 		cur++;
1324 	}
1325 }
1326 
1327 /* clear bits in given range
1328  * will return first found zero bit if any, -1 otherwise
1329  */
1330 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1331 {
1332 	__u32 *addr;
1333 	int zero_bit = -1;
1334 
1335 	len = cur + len;
1336 	while (cur < len) {
1337 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1338 			/* fast path: clear whole word at once */
1339 			addr = bm + (cur >> 3);
1340 			if (*addr != (__u32)(-1) && zero_bit == -1)
1341 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1342 			*addr = 0;
1343 			cur += 32;
1344 			continue;
1345 		}
1346 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1347 			zero_bit = cur;
1348 		cur++;
1349 	}
1350 
1351 	return zero_bit;
1352 }
1353 
1354 void ext4_set_bits(void *bm, int cur, int len)
1355 {
1356 	__u32 *addr;
1357 
1358 	len = cur + len;
1359 	while (cur < len) {
1360 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1361 			/* fast path: set whole word at once */
1362 			addr = bm + (cur >> 3);
1363 			*addr = 0xffffffff;
1364 			cur += 32;
1365 			continue;
1366 		}
1367 		mb_set_bit(cur, bm);
1368 		cur++;
1369 	}
1370 }
1371 
1372 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1373 {
1374 	if (mb_test_bit(*bit + side, bitmap)) {
1375 		mb_clear_bit(*bit, bitmap);
1376 		(*bit) -= side;
1377 		return 1;
1378 	}
1379 	else {
1380 		(*bit) += side;
1381 		mb_set_bit(*bit, bitmap);
1382 		return -1;
1383 	}
1384 }
1385 
1386 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1387 {
1388 	int max;
1389 	int order = 1;
1390 	void *buddy = mb_find_buddy(e4b, order, &max);
1391 
1392 	while (buddy) {
1393 		void *buddy2;
1394 
1395 		/* Bits in range [first; last] are known to be set since
1396 		 * corresponding blocks were allocated. Bits in range
1397 		 * (first; last) will stay set because they form buddies on
1398 		 * upper layer. We just deal with borders if they don't
1399 		 * align with upper layer and then go up.
1400 		 * Releasing entire group is all about clearing
1401 		 * single bit of highest order buddy.
1402 		 */
1403 
1404 		/* Example:
1405 		 * ---------------------------------
1406 		 * |   1   |   1   |   1   |   1   |
1407 		 * ---------------------------------
1408 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1409 		 * ---------------------------------
1410 		 *   0   1   2   3   4   5   6   7
1411 		 *      \_____________________/
1412 		 *
1413 		 * Neither [1] nor [6] is aligned to above layer.
1414 		 * Left neighbour [0] is free, so mark it busy,
1415 		 * decrease bb_counters and extend range to
1416 		 * [0; 6]
1417 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1418 		 * mark [6] free, increase bb_counters and shrink range to
1419 		 * [0; 5].
1420 		 * Then shift range to [0; 2], go up and do the same.
1421 		 */
1422 
1423 
1424 		if (first & 1)
1425 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1426 		if (!(last & 1))
1427 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1428 		if (first > last)
1429 			break;
1430 		order++;
1431 
1432 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1433 			mb_clear_bits(buddy, first, last - first + 1);
1434 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1435 			break;
1436 		}
1437 		first >>= 1;
1438 		last >>= 1;
1439 		buddy = buddy2;
1440 	}
1441 }
1442 
1443 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1444 			   int first, int count)
1445 {
1446 	int left_is_free = 0;
1447 	int right_is_free = 0;
1448 	int block;
1449 	int last = first + count - 1;
1450 	struct super_block *sb = e4b->bd_sb;
1451 
1452 	if (WARN_ON(count == 0))
1453 		return;
1454 	BUG_ON(last >= (sb->s_blocksize << 3));
1455 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1456 	/* Don't bother if the block group is corrupt. */
1457 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1458 		return;
1459 
1460 	mb_check_buddy(e4b);
1461 	mb_free_blocks_double(inode, e4b, first, count);
1462 
1463 	this_cpu_inc(discard_pa_seq);
1464 	e4b->bd_info->bb_free += count;
1465 	if (first < e4b->bd_info->bb_first_free)
1466 		e4b->bd_info->bb_first_free = first;
1467 
1468 	/* access memory sequentially: check left neighbour,
1469 	 * clear range and then check right neighbour
1470 	 */
1471 	if (first != 0)
1472 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1473 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1474 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1475 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1476 
1477 	if (unlikely(block != -1)) {
1478 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1479 		ext4_fsblk_t blocknr;
1480 
1481 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1482 		blocknr += EXT4_C2B(sbi, block);
1483 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1484 			ext4_grp_locked_error(sb, e4b->bd_group,
1485 					      inode ? inode->i_ino : 0,
1486 					      blocknr,
1487 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1488 					      block);
1489 			ext4_mark_group_bitmap_corrupted(
1490 				sb, e4b->bd_group,
1491 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1492 		}
1493 		goto done;
1494 	}
1495 
1496 	/* let's maintain fragments counter */
1497 	if (left_is_free && right_is_free)
1498 		e4b->bd_info->bb_fragments--;
1499 	else if (!left_is_free && !right_is_free)
1500 		e4b->bd_info->bb_fragments++;
1501 
1502 	/* buddy[0] == bd_bitmap is a special case, so handle
1503 	 * it right away and let mb_buddy_mark_free stay free of
1504 	 * zero order checks.
1505 	 * Check if neighbours are to be coaleasced,
1506 	 * adjust bitmap bb_counters and borders appropriately.
1507 	 */
1508 	if (first & 1) {
1509 		first += !left_is_free;
1510 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1511 	}
1512 	if (!(last & 1)) {
1513 		last -= !right_is_free;
1514 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1515 	}
1516 
1517 	if (first <= last)
1518 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1519 
1520 done:
1521 	mb_set_largest_free_order(sb, e4b->bd_info);
1522 	mb_check_buddy(e4b);
1523 }
1524 
1525 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1526 				int needed, struct ext4_free_extent *ex)
1527 {
1528 	int next = block;
1529 	int max, order;
1530 	void *buddy;
1531 
1532 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1533 	BUG_ON(ex == NULL);
1534 
1535 	buddy = mb_find_buddy(e4b, 0, &max);
1536 	BUG_ON(buddy == NULL);
1537 	BUG_ON(block >= max);
1538 	if (mb_test_bit(block, buddy)) {
1539 		ex->fe_len = 0;
1540 		ex->fe_start = 0;
1541 		ex->fe_group = 0;
1542 		return 0;
1543 	}
1544 
1545 	/* find actual order */
1546 	order = mb_find_order_for_block(e4b, block);
1547 	block = block >> order;
1548 
1549 	ex->fe_len = 1 << order;
1550 	ex->fe_start = block << order;
1551 	ex->fe_group = e4b->bd_group;
1552 
1553 	/* calc difference from given start */
1554 	next = next - ex->fe_start;
1555 	ex->fe_len -= next;
1556 	ex->fe_start += next;
1557 
1558 	while (needed > ex->fe_len &&
1559 	       mb_find_buddy(e4b, order, &max)) {
1560 
1561 		if (block + 1 >= max)
1562 			break;
1563 
1564 		next = (block + 1) * (1 << order);
1565 		if (mb_test_bit(next, e4b->bd_bitmap))
1566 			break;
1567 
1568 		order = mb_find_order_for_block(e4b, next);
1569 
1570 		block = next >> order;
1571 		ex->fe_len += 1 << order;
1572 	}
1573 
1574 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1575 		/* Should never happen! (but apparently sometimes does?!?) */
1576 		WARN_ON(1);
1577 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1578 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1579 			   block, order, needed, ex->fe_group, ex->fe_start,
1580 			   ex->fe_len, ex->fe_logical);
1581 		ex->fe_len = 0;
1582 		ex->fe_start = 0;
1583 		ex->fe_group = 0;
1584 	}
1585 	return ex->fe_len;
1586 }
1587 
1588 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1589 {
1590 	int ord;
1591 	int mlen = 0;
1592 	int max = 0;
1593 	int cur;
1594 	int start = ex->fe_start;
1595 	int len = ex->fe_len;
1596 	unsigned ret = 0;
1597 	int len0 = len;
1598 	void *buddy;
1599 
1600 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1601 	BUG_ON(e4b->bd_group != ex->fe_group);
1602 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1603 	mb_check_buddy(e4b);
1604 	mb_mark_used_double(e4b, start, len);
1605 
1606 	this_cpu_inc(discard_pa_seq);
1607 	e4b->bd_info->bb_free -= len;
1608 	if (e4b->bd_info->bb_first_free == start)
1609 		e4b->bd_info->bb_first_free += len;
1610 
1611 	/* let's maintain fragments counter */
1612 	if (start != 0)
1613 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1614 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1615 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1616 	if (mlen && max)
1617 		e4b->bd_info->bb_fragments++;
1618 	else if (!mlen && !max)
1619 		e4b->bd_info->bb_fragments--;
1620 
1621 	/* let's maintain buddy itself */
1622 	while (len) {
1623 		ord = mb_find_order_for_block(e4b, start);
1624 
1625 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1626 			/* the whole chunk may be allocated at once! */
1627 			mlen = 1 << ord;
1628 			buddy = mb_find_buddy(e4b, ord, &max);
1629 			BUG_ON((start >> ord) >= max);
1630 			mb_set_bit(start >> ord, buddy);
1631 			e4b->bd_info->bb_counters[ord]--;
1632 			start += mlen;
1633 			len -= mlen;
1634 			BUG_ON(len < 0);
1635 			continue;
1636 		}
1637 
1638 		/* store for history */
1639 		if (ret == 0)
1640 			ret = len | (ord << 16);
1641 
1642 		/* we have to split large buddy */
1643 		BUG_ON(ord <= 0);
1644 		buddy = mb_find_buddy(e4b, ord, &max);
1645 		mb_set_bit(start >> ord, buddy);
1646 		e4b->bd_info->bb_counters[ord]--;
1647 
1648 		ord--;
1649 		cur = (start >> ord) & ~1U;
1650 		buddy = mb_find_buddy(e4b, ord, &max);
1651 		mb_clear_bit(cur, buddy);
1652 		mb_clear_bit(cur + 1, buddy);
1653 		e4b->bd_info->bb_counters[ord]++;
1654 		e4b->bd_info->bb_counters[ord]++;
1655 	}
1656 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1657 
1658 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1659 	mb_check_buddy(e4b);
1660 
1661 	return ret;
1662 }
1663 
1664 /*
1665  * Must be called under group lock!
1666  */
1667 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1668 					struct ext4_buddy *e4b)
1669 {
1670 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1671 	int ret;
1672 
1673 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1674 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1675 
1676 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1677 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1678 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1679 
1680 	/* preallocation can change ac_b_ex, thus we store actually
1681 	 * allocated blocks for history */
1682 	ac->ac_f_ex = ac->ac_b_ex;
1683 
1684 	ac->ac_status = AC_STATUS_FOUND;
1685 	ac->ac_tail = ret & 0xffff;
1686 	ac->ac_buddy = ret >> 16;
1687 
1688 	/*
1689 	 * take the page reference. We want the page to be pinned
1690 	 * so that we don't get a ext4_mb_init_cache_call for this
1691 	 * group until we update the bitmap. That would mean we
1692 	 * double allocate blocks. The reference is dropped
1693 	 * in ext4_mb_release_context
1694 	 */
1695 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1696 	get_page(ac->ac_bitmap_page);
1697 	ac->ac_buddy_page = e4b->bd_buddy_page;
1698 	get_page(ac->ac_buddy_page);
1699 	/* store last allocated for subsequent stream allocation */
1700 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1701 		spin_lock(&sbi->s_md_lock);
1702 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1703 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1704 		spin_unlock(&sbi->s_md_lock);
1705 	}
1706 	/*
1707 	 * As we've just preallocated more space than
1708 	 * user requested originally, we store allocated
1709 	 * space in a special descriptor.
1710 	 */
1711 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1712 		ext4_mb_new_preallocation(ac);
1713 
1714 }
1715 
1716 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1717 					struct ext4_buddy *e4b,
1718 					int finish_group)
1719 {
1720 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1721 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1722 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1723 	struct ext4_free_extent ex;
1724 	int max;
1725 
1726 	if (ac->ac_status == AC_STATUS_FOUND)
1727 		return;
1728 	/*
1729 	 * We don't want to scan for a whole year
1730 	 */
1731 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1732 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1733 		ac->ac_status = AC_STATUS_BREAK;
1734 		return;
1735 	}
1736 
1737 	/*
1738 	 * Haven't found good chunk so far, let's continue
1739 	 */
1740 	if (bex->fe_len < gex->fe_len)
1741 		return;
1742 
1743 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1744 			&& bex->fe_group == e4b->bd_group) {
1745 		/* recheck chunk's availability - we don't know
1746 		 * when it was found (within this lock-unlock
1747 		 * period or not) */
1748 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1749 		if (max >= gex->fe_len) {
1750 			ext4_mb_use_best_found(ac, e4b);
1751 			return;
1752 		}
1753 	}
1754 }
1755 
1756 /*
1757  * The routine checks whether found extent is good enough. If it is,
1758  * then the extent gets marked used and flag is set to the context
1759  * to stop scanning. Otherwise, the extent is compared with the
1760  * previous found extent and if new one is better, then it's stored
1761  * in the context. Later, the best found extent will be used, if
1762  * mballoc can't find good enough extent.
1763  *
1764  * FIXME: real allocation policy is to be designed yet!
1765  */
1766 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1767 					struct ext4_free_extent *ex,
1768 					struct ext4_buddy *e4b)
1769 {
1770 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1771 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1772 
1773 	BUG_ON(ex->fe_len <= 0);
1774 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1775 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1776 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1777 
1778 	ac->ac_found++;
1779 
1780 	/*
1781 	 * The special case - take what you catch first
1782 	 */
1783 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1784 		*bex = *ex;
1785 		ext4_mb_use_best_found(ac, e4b);
1786 		return;
1787 	}
1788 
1789 	/*
1790 	 * Let's check whether the chuck is good enough
1791 	 */
1792 	if (ex->fe_len == gex->fe_len) {
1793 		*bex = *ex;
1794 		ext4_mb_use_best_found(ac, e4b);
1795 		return;
1796 	}
1797 
1798 	/*
1799 	 * If this is first found extent, just store it in the context
1800 	 */
1801 	if (bex->fe_len == 0) {
1802 		*bex = *ex;
1803 		return;
1804 	}
1805 
1806 	/*
1807 	 * If new found extent is better, store it in the context
1808 	 */
1809 	if (bex->fe_len < gex->fe_len) {
1810 		/* if the request isn't satisfied, any found extent
1811 		 * larger than previous best one is better */
1812 		if (ex->fe_len > bex->fe_len)
1813 			*bex = *ex;
1814 	} else if (ex->fe_len > gex->fe_len) {
1815 		/* if the request is satisfied, then we try to find
1816 		 * an extent that still satisfy the request, but is
1817 		 * smaller than previous one */
1818 		if (ex->fe_len < bex->fe_len)
1819 			*bex = *ex;
1820 	}
1821 
1822 	ext4_mb_check_limits(ac, e4b, 0);
1823 }
1824 
1825 static noinline_for_stack
1826 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1827 					struct ext4_buddy *e4b)
1828 {
1829 	struct ext4_free_extent ex = ac->ac_b_ex;
1830 	ext4_group_t group = ex.fe_group;
1831 	int max;
1832 	int err;
1833 
1834 	BUG_ON(ex.fe_len <= 0);
1835 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1836 	if (err)
1837 		return err;
1838 
1839 	ext4_lock_group(ac->ac_sb, group);
1840 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1841 
1842 	if (max > 0) {
1843 		ac->ac_b_ex = ex;
1844 		ext4_mb_use_best_found(ac, e4b);
1845 	}
1846 
1847 	ext4_unlock_group(ac->ac_sb, group);
1848 	ext4_mb_unload_buddy(e4b);
1849 
1850 	return 0;
1851 }
1852 
1853 static noinline_for_stack
1854 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1855 				struct ext4_buddy *e4b)
1856 {
1857 	ext4_group_t group = ac->ac_g_ex.fe_group;
1858 	int max;
1859 	int err;
1860 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1861 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1862 	struct ext4_free_extent ex;
1863 
1864 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1865 		return 0;
1866 	if (grp->bb_free == 0)
1867 		return 0;
1868 
1869 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1870 	if (err)
1871 		return err;
1872 
1873 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1874 		ext4_mb_unload_buddy(e4b);
1875 		return 0;
1876 	}
1877 
1878 	ext4_lock_group(ac->ac_sb, group);
1879 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1880 			     ac->ac_g_ex.fe_len, &ex);
1881 	ex.fe_logical = 0xDEADFA11; /* debug value */
1882 
1883 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1884 		ext4_fsblk_t start;
1885 
1886 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1887 			ex.fe_start;
1888 		/* use do_div to get remainder (would be 64-bit modulo) */
1889 		if (do_div(start, sbi->s_stripe) == 0) {
1890 			ac->ac_found++;
1891 			ac->ac_b_ex = ex;
1892 			ext4_mb_use_best_found(ac, e4b);
1893 		}
1894 	} else if (max >= ac->ac_g_ex.fe_len) {
1895 		BUG_ON(ex.fe_len <= 0);
1896 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1897 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1898 		ac->ac_found++;
1899 		ac->ac_b_ex = ex;
1900 		ext4_mb_use_best_found(ac, e4b);
1901 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1902 		/* Sometimes, caller may want to merge even small
1903 		 * number of blocks to an existing extent */
1904 		BUG_ON(ex.fe_len <= 0);
1905 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1906 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1907 		ac->ac_found++;
1908 		ac->ac_b_ex = ex;
1909 		ext4_mb_use_best_found(ac, e4b);
1910 	}
1911 	ext4_unlock_group(ac->ac_sb, group);
1912 	ext4_mb_unload_buddy(e4b);
1913 
1914 	return 0;
1915 }
1916 
1917 /*
1918  * The routine scans buddy structures (not bitmap!) from given order
1919  * to max order and tries to find big enough chunk to satisfy the req
1920  */
1921 static noinline_for_stack
1922 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1923 					struct ext4_buddy *e4b)
1924 {
1925 	struct super_block *sb = ac->ac_sb;
1926 	struct ext4_group_info *grp = e4b->bd_info;
1927 	void *buddy;
1928 	int i;
1929 	int k;
1930 	int max;
1931 
1932 	BUG_ON(ac->ac_2order <= 0);
1933 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1934 		if (grp->bb_counters[i] == 0)
1935 			continue;
1936 
1937 		buddy = mb_find_buddy(e4b, i, &max);
1938 		BUG_ON(buddy == NULL);
1939 
1940 		k = mb_find_next_zero_bit(buddy, max, 0);
1941 		if (k >= max) {
1942 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1943 				"%d free clusters of order %d. But found 0",
1944 				grp->bb_counters[i], i);
1945 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1946 					 e4b->bd_group,
1947 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1948 			break;
1949 		}
1950 		ac->ac_found++;
1951 
1952 		ac->ac_b_ex.fe_len = 1 << i;
1953 		ac->ac_b_ex.fe_start = k << i;
1954 		ac->ac_b_ex.fe_group = e4b->bd_group;
1955 
1956 		ext4_mb_use_best_found(ac, e4b);
1957 
1958 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1959 
1960 		if (EXT4_SB(sb)->s_mb_stats)
1961 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1962 
1963 		break;
1964 	}
1965 }
1966 
1967 /*
1968  * The routine scans the group and measures all found extents.
1969  * In order to optimize scanning, caller must pass number of
1970  * free blocks in the group, so the routine can know upper limit.
1971  */
1972 static noinline_for_stack
1973 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1974 					struct ext4_buddy *e4b)
1975 {
1976 	struct super_block *sb = ac->ac_sb;
1977 	void *bitmap = e4b->bd_bitmap;
1978 	struct ext4_free_extent ex;
1979 	int i;
1980 	int free;
1981 
1982 	free = e4b->bd_info->bb_free;
1983 	if (WARN_ON(free <= 0))
1984 		return;
1985 
1986 	i = e4b->bd_info->bb_first_free;
1987 
1988 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1989 		i = mb_find_next_zero_bit(bitmap,
1990 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1991 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1992 			/*
1993 			 * IF we have corrupt bitmap, we won't find any
1994 			 * free blocks even though group info says we
1995 			 * have free blocks
1996 			 */
1997 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1998 					"%d free clusters as per "
1999 					"group info. But bitmap says 0",
2000 					free);
2001 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2002 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2003 			break;
2004 		}
2005 
2006 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2007 		if (WARN_ON(ex.fe_len <= 0))
2008 			break;
2009 		if (free < ex.fe_len) {
2010 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2011 					"%d free clusters as per "
2012 					"group info. But got %d blocks",
2013 					free, ex.fe_len);
2014 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2015 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2016 			/*
2017 			 * The number of free blocks differs. This mostly
2018 			 * indicate that the bitmap is corrupt. So exit
2019 			 * without claiming the space.
2020 			 */
2021 			break;
2022 		}
2023 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2024 		ext4_mb_measure_extent(ac, &ex, e4b);
2025 
2026 		i += ex.fe_len;
2027 		free -= ex.fe_len;
2028 	}
2029 
2030 	ext4_mb_check_limits(ac, e4b, 1);
2031 }
2032 
2033 /*
2034  * This is a special case for storages like raid5
2035  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2036  */
2037 static noinline_for_stack
2038 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2039 				 struct ext4_buddy *e4b)
2040 {
2041 	struct super_block *sb = ac->ac_sb;
2042 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2043 	void *bitmap = e4b->bd_bitmap;
2044 	struct ext4_free_extent ex;
2045 	ext4_fsblk_t first_group_block;
2046 	ext4_fsblk_t a;
2047 	ext4_grpblk_t i;
2048 	int max;
2049 
2050 	BUG_ON(sbi->s_stripe == 0);
2051 
2052 	/* find first stripe-aligned block in group */
2053 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2054 
2055 	a = first_group_block + sbi->s_stripe - 1;
2056 	do_div(a, sbi->s_stripe);
2057 	i = (a * sbi->s_stripe) - first_group_block;
2058 
2059 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2060 		if (!mb_test_bit(i, bitmap)) {
2061 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2062 			if (max >= sbi->s_stripe) {
2063 				ac->ac_found++;
2064 				ex.fe_logical = 0xDEADF00D; /* debug value */
2065 				ac->ac_b_ex = ex;
2066 				ext4_mb_use_best_found(ac, e4b);
2067 				break;
2068 			}
2069 		}
2070 		i += sbi->s_stripe;
2071 	}
2072 }
2073 
2074 /*
2075  * This is also called BEFORE we load the buddy bitmap.
2076  * Returns either 1 or 0 indicating that the group is either suitable
2077  * for the allocation or not.
2078  */
2079 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2080 				ext4_group_t group, int cr)
2081 {
2082 	ext4_grpblk_t free, fragments;
2083 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2084 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2085 
2086 	BUG_ON(cr < 0 || cr >= 4);
2087 
2088 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2089 		return false;
2090 
2091 	free = grp->bb_free;
2092 	if (free == 0)
2093 		return false;
2094 
2095 	fragments = grp->bb_fragments;
2096 	if (fragments == 0)
2097 		return false;
2098 
2099 	switch (cr) {
2100 	case 0:
2101 		BUG_ON(ac->ac_2order == 0);
2102 
2103 		/* Avoid using the first bg of a flexgroup for data files */
2104 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2105 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2106 		    ((group % flex_size) == 0))
2107 			return false;
2108 
2109 		if (free < ac->ac_g_ex.fe_len)
2110 			return false;
2111 
2112 		if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
2113 			return true;
2114 
2115 		if (grp->bb_largest_free_order < ac->ac_2order)
2116 			return false;
2117 
2118 		return true;
2119 	case 1:
2120 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2121 			return true;
2122 		break;
2123 	case 2:
2124 		if (free >= ac->ac_g_ex.fe_len)
2125 			return true;
2126 		break;
2127 	case 3:
2128 		return true;
2129 	default:
2130 		BUG();
2131 	}
2132 
2133 	return false;
2134 }
2135 
2136 /*
2137  * This could return negative error code if something goes wrong
2138  * during ext4_mb_init_group(). This should not be called with
2139  * ext4_lock_group() held.
2140  */
2141 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2142 				     ext4_group_t group, int cr)
2143 {
2144 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2145 	struct super_block *sb = ac->ac_sb;
2146 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2147 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2148 	ext4_grpblk_t free;
2149 	int ret = 0;
2150 
2151 	if (should_lock)
2152 		ext4_lock_group(sb, group);
2153 	free = grp->bb_free;
2154 	if (free == 0)
2155 		goto out;
2156 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2157 		goto out;
2158 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2159 		goto out;
2160 	if (should_lock)
2161 		ext4_unlock_group(sb, group);
2162 
2163 	/* We only do this if the grp has never been initialized */
2164 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2165 		struct ext4_group_desc *gdp =
2166 			ext4_get_group_desc(sb, group, NULL);
2167 		int ret;
2168 
2169 		/* cr=0/1 is a very optimistic search to find large
2170 		 * good chunks almost for free.  If buddy data is not
2171 		 * ready, then this optimization makes no sense.  But
2172 		 * we never skip the first block group in a flex_bg,
2173 		 * since this gets used for metadata block allocation,
2174 		 * and we want to make sure we locate metadata blocks
2175 		 * in the first block group in the flex_bg if possible.
2176 		 */
2177 		if (cr < 2 &&
2178 		    (!sbi->s_log_groups_per_flex ||
2179 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2180 		    !(ext4_has_group_desc_csum(sb) &&
2181 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2182 			return 0;
2183 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2184 		if (ret)
2185 			return ret;
2186 	}
2187 
2188 	if (should_lock)
2189 		ext4_lock_group(sb, group);
2190 	ret = ext4_mb_good_group(ac, group, cr);
2191 out:
2192 	if (should_lock)
2193 		ext4_unlock_group(sb, group);
2194 	return ret;
2195 }
2196 
2197 /*
2198  * Start prefetching @nr block bitmaps starting at @group.
2199  * Return the next group which needs to be prefetched.
2200  */
2201 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2202 			      unsigned int nr, int *cnt)
2203 {
2204 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2205 	struct buffer_head *bh;
2206 	struct blk_plug plug;
2207 
2208 	blk_start_plug(&plug);
2209 	while (nr-- > 0) {
2210 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2211 								  NULL);
2212 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2213 
2214 		/*
2215 		 * Prefetch block groups with free blocks; but don't
2216 		 * bother if it is marked uninitialized on disk, since
2217 		 * it won't require I/O to read.  Also only try to
2218 		 * prefetch once, so we avoid getblk() call, which can
2219 		 * be expensive.
2220 		 */
2221 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2222 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2223 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2224 		    !(ext4_has_group_desc_csum(sb) &&
2225 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2226 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2227 			if (bh && !IS_ERR(bh)) {
2228 				if (!buffer_uptodate(bh) && cnt)
2229 					(*cnt)++;
2230 				brelse(bh);
2231 			}
2232 		}
2233 		if (++group >= ngroups)
2234 			group = 0;
2235 	}
2236 	blk_finish_plug(&plug);
2237 	return group;
2238 }
2239 
2240 /*
2241  * Prefetching reads the block bitmap into the buffer cache; but we
2242  * need to make sure that the buddy bitmap in the page cache has been
2243  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2244  * is not yet completed, or indeed if it was not initiated by
2245  * ext4_mb_prefetch did not start the I/O.
2246  *
2247  * TODO: We should actually kick off the buddy bitmap setup in a work
2248  * queue when the buffer I/O is completed, so that we don't block
2249  * waiting for the block allocation bitmap read to finish when
2250  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2251  */
2252 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2253 			   unsigned int nr)
2254 {
2255 	while (nr-- > 0) {
2256 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2257 								  NULL);
2258 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2259 
2260 		if (!group)
2261 			group = ext4_get_groups_count(sb);
2262 		group--;
2263 		grp = ext4_get_group_info(sb, group);
2264 
2265 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2266 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2267 		    !(ext4_has_group_desc_csum(sb) &&
2268 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2269 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2270 				break;
2271 		}
2272 	}
2273 }
2274 
2275 static noinline_for_stack int
2276 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2277 {
2278 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2279 	int cr = -1;
2280 	int err = 0, first_err = 0;
2281 	unsigned int nr = 0, prefetch_ios = 0;
2282 	struct ext4_sb_info *sbi;
2283 	struct super_block *sb;
2284 	struct ext4_buddy e4b;
2285 	int lost;
2286 
2287 	sb = ac->ac_sb;
2288 	sbi = EXT4_SB(sb);
2289 	ngroups = ext4_get_groups_count(sb);
2290 	/* non-extent files are limited to low blocks/groups */
2291 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2292 		ngroups = sbi->s_blockfile_groups;
2293 
2294 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2295 
2296 	/* first, try the goal */
2297 	err = ext4_mb_find_by_goal(ac, &e4b);
2298 	if (err || ac->ac_status == AC_STATUS_FOUND)
2299 		goto out;
2300 
2301 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2302 		goto out;
2303 
2304 	/*
2305 	 * ac->ac_2order is set only if the fe_len is a power of 2
2306 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2307 	 * try exact allocation using buddy.
2308 	 */
2309 	i = fls(ac->ac_g_ex.fe_len);
2310 	ac->ac_2order = 0;
2311 	/*
2312 	 * We search using buddy data only if the order of the request
2313 	 * is greater than equal to the sbi_s_mb_order2_reqs
2314 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2315 	 * We also support searching for power-of-two requests only for
2316 	 * requests upto maximum buddy size we have constructed.
2317 	 */
2318 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2319 		/*
2320 		 * This should tell if fe_len is exactly power of 2
2321 		 */
2322 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2323 			ac->ac_2order = array_index_nospec(i - 1,
2324 							   sb->s_blocksize_bits + 2);
2325 	}
2326 
2327 	/* if stream allocation is enabled, use global goal */
2328 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2329 		/* TBD: may be hot point */
2330 		spin_lock(&sbi->s_md_lock);
2331 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2332 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2333 		spin_unlock(&sbi->s_md_lock);
2334 	}
2335 
2336 	/* Let's just scan groups to find more-less suitable blocks */
2337 	cr = ac->ac_2order ? 0 : 1;
2338 	/*
2339 	 * cr == 0 try to get exact allocation,
2340 	 * cr == 3  try to get anything
2341 	 */
2342 repeat:
2343 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2344 		ac->ac_criteria = cr;
2345 		/*
2346 		 * searching for the right group start
2347 		 * from the goal value specified
2348 		 */
2349 		group = ac->ac_g_ex.fe_group;
2350 		prefetch_grp = group;
2351 
2352 		for (i = 0; i < ngroups; group++, i++) {
2353 			int ret = 0;
2354 			cond_resched();
2355 			/*
2356 			 * Artificially restricted ngroups for non-extent
2357 			 * files makes group > ngroups possible on first loop.
2358 			 */
2359 			if (group >= ngroups)
2360 				group = 0;
2361 
2362 			/*
2363 			 * Batch reads of the block allocation bitmaps
2364 			 * to get multiple READs in flight; limit
2365 			 * prefetching at cr=0/1, otherwise mballoc can
2366 			 * spend a lot of time loading imperfect groups
2367 			 */
2368 			if ((prefetch_grp == group) &&
2369 			    (cr > 1 ||
2370 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2371 				unsigned int curr_ios = prefetch_ios;
2372 
2373 				nr = sbi->s_mb_prefetch;
2374 				if (ext4_has_feature_flex_bg(sb)) {
2375 					nr = 1 << sbi->s_log_groups_per_flex;
2376 					nr -= group & (nr - 1);
2377 					nr = min(nr, sbi->s_mb_prefetch);
2378 				}
2379 				prefetch_grp = ext4_mb_prefetch(sb, group,
2380 							nr, &prefetch_ios);
2381 				if (prefetch_ios == curr_ios)
2382 					nr = 0;
2383 			}
2384 
2385 			/* This now checks without needing the buddy page */
2386 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2387 			if (ret <= 0) {
2388 				if (!first_err)
2389 					first_err = ret;
2390 				continue;
2391 			}
2392 
2393 			err = ext4_mb_load_buddy(sb, group, &e4b);
2394 			if (err)
2395 				goto out;
2396 
2397 			ext4_lock_group(sb, group);
2398 
2399 			/*
2400 			 * We need to check again after locking the
2401 			 * block group
2402 			 */
2403 			ret = ext4_mb_good_group(ac, group, cr);
2404 			if (ret == 0) {
2405 				ext4_unlock_group(sb, group);
2406 				ext4_mb_unload_buddy(&e4b);
2407 				continue;
2408 			}
2409 
2410 			ac->ac_groups_scanned++;
2411 			if (cr == 0)
2412 				ext4_mb_simple_scan_group(ac, &e4b);
2413 			else if (cr == 1 && sbi->s_stripe &&
2414 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2415 				ext4_mb_scan_aligned(ac, &e4b);
2416 			else
2417 				ext4_mb_complex_scan_group(ac, &e4b);
2418 
2419 			ext4_unlock_group(sb, group);
2420 			ext4_mb_unload_buddy(&e4b);
2421 
2422 			if (ac->ac_status != AC_STATUS_CONTINUE)
2423 				break;
2424 		}
2425 	}
2426 
2427 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2428 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2429 		/*
2430 		 * We've been searching too long. Let's try to allocate
2431 		 * the best chunk we've found so far
2432 		 */
2433 		ext4_mb_try_best_found(ac, &e4b);
2434 		if (ac->ac_status != AC_STATUS_FOUND) {
2435 			/*
2436 			 * Someone more lucky has already allocated it.
2437 			 * The only thing we can do is just take first
2438 			 * found block(s)
2439 			 */
2440 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2441 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2442 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2443 				 ac->ac_b_ex.fe_len, lost);
2444 
2445 			ac->ac_b_ex.fe_group = 0;
2446 			ac->ac_b_ex.fe_start = 0;
2447 			ac->ac_b_ex.fe_len = 0;
2448 			ac->ac_status = AC_STATUS_CONTINUE;
2449 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2450 			cr = 3;
2451 			goto repeat;
2452 		}
2453 	}
2454 out:
2455 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2456 		err = first_err;
2457 
2458 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2459 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2460 		 ac->ac_flags, cr, err);
2461 
2462 	if (nr)
2463 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2464 
2465 	return err;
2466 }
2467 
2468 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2469 {
2470 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2471 	ext4_group_t group;
2472 
2473 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2474 		return NULL;
2475 	group = *pos + 1;
2476 	return (void *) ((unsigned long) group);
2477 }
2478 
2479 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2480 {
2481 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2482 	ext4_group_t group;
2483 
2484 	++*pos;
2485 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2486 		return NULL;
2487 	group = *pos + 1;
2488 	return (void *) ((unsigned long) group);
2489 }
2490 
2491 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2492 {
2493 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2494 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2495 	int i;
2496 	int err, buddy_loaded = 0;
2497 	struct ext4_buddy e4b;
2498 	struct ext4_group_info *grinfo;
2499 	unsigned char blocksize_bits = min_t(unsigned char,
2500 					     sb->s_blocksize_bits,
2501 					     EXT4_MAX_BLOCK_LOG_SIZE);
2502 	struct sg {
2503 		struct ext4_group_info info;
2504 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2505 	} sg;
2506 
2507 	group--;
2508 	if (group == 0)
2509 		seq_puts(seq, "#group: free  frags first ["
2510 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2511 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2512 
2513 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2514 		sizeof(struct ext4_group_info);
2515 
2516 	grinfo = ext4_get_group_info(sb, group);
2517 	/* Load the group info in memory only if not already loaded. */
2518 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2519 		err = ext4_mb_load_buddy(sb, group, &e4b);
2520 		if (err) {
2521 			seq_printf(seq, "#%-5u: I/O error\n", group);
2522 			return 0;
2523 		}
2524 		buddy_loaded = 1;
2525 	}
2526 
2527 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2528 
2529 	if (buddy_loaded)
2530 		ext4_mb_unload_buddy(&e4b);
2531 
2532 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2533 			sg.info.bb_fragments, sg.info.bb_first_free);
2534 	for (i = 0; i <= 13; i++)
2535 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2536 				sg.info.bb_counters[i] : 0);
2537 	seq_puts(seq, " ]\n");
2538 
2539 	return 0;
2540 }
2541 
2542 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2543 {
2544 }
2545 
2546 const struct seq_operations ext4_mb_seq_groups_ops = {
2547 	.start  = ext4_mb_seq_groups_start,
2548 	.next   = ext4_mb_seq_groups_next,
2549 	.stop   = ext4_mb_seq_groups_stop,
2550 	.show   = ext4_mb_seq_groups_show,
2551 };
2552 
2553 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2554 {
2555 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2556 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2557 
2558 	BUG_ON(!cachep);
2559 	return cachep;
2560 }
2561 
2562 /*
2563  * Allocate the top-level s_group_info array for the specified number
2564  * of groups
2565  */
2566 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2567 {
2568 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 	unsigned size;
2570 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2571 
2572 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2573 		EXT4_DESC_PER_BLOCK_BITS(sb);
2574 	if (size <= sbi->s_group_info_size)
2575 		return 0;
2576 
2577 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2578 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2579 	if (!new_groupinfo) {
2580 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2581 		return -ENOMEM;
2582 	}
2583 	rcu_read_lock();
2584 	old_groupinfo = rcu_dereference(sbi->s_group_info);
2585 	if (old_groupinfo)
2586 		memcpy(new_groupinfo, old_groupinfo,
2587 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2588 	rcu_read_unlock();
2589 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2590 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2591 	if (old_groupinfo)
2592 		ext4_kvfree_array_rcu(old_groupinfo);
2593 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2594 		   sbi->s_group_info_size);
2595 	return 0;
2596 }
2597 
2598 /* Create and initialize ext4_group_info data for the given group. */
2599 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2600 			  struct ext4_group_desc *desc)
2601 {
2602 	int i;
2603 	int metalen = 0;
2604 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2605 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2606 	struct ext4_group_info **meta_group_info;
2607 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2608 
2609 	/*
2610 	 * First check if this group is the first of a reserved block.
2611 	 * If it's true, we have to allocate a new table of pointers
2612 	 * to ext4_group_info structures
2613 	 */
2614 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2615 		metalen = sizeof(*meta_group_info) <<
2616 			EXT4_DESC_PER_BLOCK_BITS(sb);
2617 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2618 		if (meta_group_info == NULL) {
2619 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2620 				 "for a buddy group");
2621 			goto exit_meta_group_info;
2622 		}
2623 		rcu_read_lock();
2624 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2625 		rcu_read_unlock();
2626 	}
2627 
2628 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2629 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2630 
2631 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2632 	if (meta_group_info[i] == NULL) {
2633 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2634 		goto exit_group_info;
2635 	}
2636 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2637 		&(meta_group_info[i]->bb_state));
2638 
2639 	/*
2640 	 * initialize bb_free to be able to skip
2641 	 * empty groups without initialization
2642 	 */
2643 	if (ext4_has_group_desc_csum(sb) &&
2644 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2645 		meta_group_info[i]->bb_free =
2646 			ext4_free_clusters_after_init(sb, group, desc);
2647 	} else {
2648 		meta_group_info[i]->bb_free =
2649 			ext4_free_group_clusters(sb, desc);
2650 	}
2651 
2652 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2653 	init_rwsem(&meta_group_info[i]->alloc_sem);
2654 	meta_group_info[i]->bb_free_root = RB_ROOT;
2655 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2656 
2657 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2658 	return 0;
2659 
2660 exit_group_info:
2661 	/* If a meta_group_info table has been allocated, release it now */
2662 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2663 		struct ext4_group_info ***group_info;
2664 
2665 		rcu_read_lock();
2666 		group_info = rcu_dereference(sbi->s_group_info);
2667 		kfree(group_info[idx]);
2668 		group_info[idx] = NULL;
2669 		rcu_read_unlock();
2670 	}
2671 exit_meta_group_info:
2672 	return -ENOMEM;
2673 } /* ext4_mb_add_groupinfo */
2674 
2675 static int ext4_mb_init_backend(struct super_block *sb)
2676 {
2677 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2678 	ext4_group_t i;
2679 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 	int err;
2681 	struct ext4_group_desc *desc;
2682 	struct ext4_group_info ***group_info;
2683 	struct kmem_cache *cachep;
2684 
2685 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2686 	if (err)
2687 		return err;
2688 
2689 	sbi->s_buddy_cache = new_inode(sb);
2690 	if (sbi->s_buddy_cache == NULL) {
2691 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2692 		goto err_freesgi;
2693 	}
2694 	/* To avoid potentially colliding with an valid on-disk inode number,
2695 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2696 	 * not in the inode hash, so it should never be found by iget(), but
2697 	 * this will avoid confusion if it ever shows up during debugging. */
2698 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2699 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2700 	for (i = 0; i < ngroups; i++) {
2701 		cond_resched();
2702 		desc = ext4_get_group_desc(sb, i, NULL);
2703 		if (desc == NULL) {
2704 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2705 			goto err_freebuddy;
2706 		}
2707 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2708 			goto err_freebuddy;
2709 	}
2710 
2711 	if (ext4_has_feature_flex_bg(sb)) {
2712 		/* a single flex group is supposed to be read by a single IO */
2713 		sbi->s_mb_prefetch = min(1 << sbi->s_es->s_log_groups_per_flex,
2714 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
2715 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
2716 	} else {
2717 		sbi->s_mb_prefetch = 32;
2718 	}
2719 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
2720 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
2721 	/* now many real IOs to prefetch within a single allocation at cr=0
2722 	 * given cr=0 is an CPU-related optimization we shouldn't try to
2723 	 * load too many groups, at some point we should start to use what
2724 	 * we've got in memory.
2725 	 * with an average random access time 5ms, it'd take a second to get
2726 	 * 200 groups (* N with flex_bg), so let's make this limit 4
2727 	 */
2728 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
2729 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
2730 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
2731 
2732 	return 0;
2733 
2734 err_freebuddy:
2735 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2736 	while (i-- > 0)
2737 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2738 	i = sbi->s_group_info_size;
2739 	rcu_read_lock();
2740 	group_info = rcu_dereference(sbi->s_group_info);
2741 	while (i-- > 0)
2742 		kfree(group_info[i]);
2743 	rcu_read_unlock();
2744 	iput(sbi->s_buddy_cache);
2745 err_freesgi:
2746 	rcu_read_lock();
2747 	kvfree(rcu_dereference(sbi->s_group_info));
2748 	rcu_read_unlock();
2749 	return -ENOMEM;
2750 }
2751 
2752 static void ext4_groupinfo_destroy_slabs(void)
2753 {
2754 	int i;
2755 
2756 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2757 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2758 		ext4_groupinfo_caches[i] = NULL;
2759 	}
2760 }
2761 
2762 static int ext4_groupinfo_create_slab(size_t size)
2763 {
2764 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2765 	int slab_size;
2766 	int blocksize_bits = order_base_2(size);
2767 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2768 	struct kmem_cache *cachep;
2769 
2770 	if (cache_index >= NR_GRPINFO_CACHES)
2771 		return -EINVAL;
2772 
2773 	if (unlikely(cache_index < 0))
2774 		cache_index = 0;
2775 
2776 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2777 	if (ext4_groupinfo_caches[cache_index]) {
2778 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2779 		return 0;	/* Already created */
2780 	}
2781 
2782 	slab_size = offsetof(struct ext4_group_info,
2783 				bb_counters[blocksize_bits + 2]);
2784 
2785 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2786 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2787 					NULL);
2788 
2789 	ext4_groupinfo_caches[cache_index] = cachep;
2790 
2791 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2792 	if (!cachep) {
2793 		printk(KERN_EMERG
2794 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2795 		return -ENOMEM;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 int ext4_mb_init(struct super_block *sb)
2802 {
2803 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2804 	unsigned i, j;
2805 	unsigned offset, offset_incr;
2806 	unsigned max;
2807 	int ret;
2808 
2809 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2810 
2811 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2812 	if (sbi->s_mb_offsets == NULL) {
2813 		ret = -ENOMEM;
2814 		goto out;
2815 	}
2816 
2817 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2818 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2819 	if (sbi->s_mb_maxs == NULL) {
2820 		ret = -ENOMEM;
2821 		goto out;
2822 	}
2823 
2824 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2825 	if (ret < 0)
2826 		goto out;
2827 
2828 	/* order 0 is regular bitmap */
2829 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2830 	sbi->s_mb_offsets[0] = 0;
2831 
2832 	i = 1;
2833 	offset = 0;
2834 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2835 	max = sb->s_blocksize << 2;
2836 	do {
2837 		sbi->s_mb_offsets[i] = offset;
2838 		sbi->s_mb_maxs[i] = max;
2839 		offset += offset_incr;
2840 		offset_incr = offset_incr >> 1;
2841 		max = max >> 1;
2842 		i++;
2843 	} while (i <= sb->s_blocksize_bits + 1);
2844 
2845 	spin_lock_init(&sbi->s_md_lock);
2846 	spin_lock_init(&sbi->s_bal_lock);
2847 	sbi->s_mb_free_pending = 0;
2848 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2849 
2850 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2851 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2852 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2853 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2854 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2855 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
2856 	/*
2857 	 * The default group preallocation is 512, which for 4k block
2858 	 * sizes translates to 2 megabytes.  However for bigalloc file
2859 	 * systems, this is probably too big (i.e, if the cluster size
2860 	 * is 1 megabyte, then group preallocation size becomes half a
2861 	 * gigabyte!).  As a default, we will keep a two megabyte
2862 	 * group pralloc size for cluster sizes up to 64k, and after
2863 	 * that, we will force a minimum group preallocation size of
2864 	 * 32 clusters.  This translates to 8 megs when the cluster
2865 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2866 	 * which seems reasonable as a default.
2867 	 */
2868 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2869 				       sbi->s_cluster_bits, 32);
2870 	/*
2871 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2872 	 * to the lowest multiple of s_stripe which is bigger than
2873 	 * the s_mb_group_prealloc as determined above. We want
2874 	 * the preallocation size to be an exact multiple of the
2875 	 * RAID stripe size so that preallocations don't fragment
2876 	 * the stripes.
2877 	 */
2878 	if (sbi->s_stripe > 1) {
2879 		sbi->s_mb_group_prealloc = roundup(
2880 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2881 	}
2882 
2883 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2884 	if (sbi->s_locality_groups == NULL) {
2885 		ret = -ENOMEM;
2886 		goto out;
2887 	}
2888 	for_each_possible_cpu(i) {
2889 		struct ext4_locality_group *lg;
2890 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2891 		mutex_init(&lg->lg_mutex);
2892 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2893 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2894 		spin_lock_init(&lg->lg_prealloc_lock);
2895 	}
2896 
2897 	/* init file for buddy data */
2898 	ret = ext4_mb_init_backend(sb);
2899 	if (ret != 0)
2900 		goto out_free_locality_groups;
2901 
2902 	return 0;
2903 
2904 out_free_locality_groups:
2905 	free_percpu(sbi->s_locality_groups);
2906 	sbi->s_locality_groups = NULL;
2907 out:
2908 	kfree(sbi->s_mb_offsets);
2909 	sbi->s_mb_offsets = NULL;
2910 	kfree(sbi->s_mb_maxs);
2911 	sbi->s_mb_maxs = NULL;
2912 	return ret;
2913 }
2914 
2915 /* need to called with the ext4 group lock held */
2916 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2917 {
2918 	struct ext4_prealloc_space *pa;
2919 	struct list_head *cur, *tmp;
2920 	int count = 0;
2921 
2922 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2923 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2924 		list_del(&pa->pa_group_list);
2925 		count++;
2926 		kmem_cache_free(ext4_pspace_cachep, pa);
2927 	}
2928 	return count;
2929 }
2930 
2931 int ext4_mb_release(struct super_block *sb)
2932 {
2933 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2934 	ext4_group_t i;
2935 	int num_meta_group_infos;
2936 	struct ext4_group_info *grinfo, ***group_info;
2937 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2938 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2939 	int count;
2940 
2941 	if (sbi->s_group_info) {
2942 		for (i = 0; i < ngroups; i++) {
2943 			cond_resched();
2944 			grinfo = ext4_get_group_info(sb, i);
2945 			mb_group_bb_bitmap_free(grinfo);
2946 			ext4_lock_group(sb, i);
2947 			count = ext4_mb_cleanup_pa(grinfo);
2948 			if (count)
2949 				mb_debug(sb, "mballoc: %d PAs left\n",
2950 					 count);
2951 			ext4_unlock_group(sb, i);
2952 			kmem_cache_free(cachep, grinfo);
2953 		}
2954 		num_meta_group_infos = (ngroups +
2955 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2956 			EXT4_DESC_PER_BLOCK_BITS(sb);
2957 		rcu_read_lock();
2958 		group_info = rcu_dereference(sbi->s_group_info);
2959 		for (i = 0; i < num_meta_group_infos; i++)
2960 			kfree(group_info[i]);
2961 		kvfree(group_info);
2962 		rcu_read_unlock();
2963 	}
2964 	kfree(sbi->s_mb_offsets);
2965 	kfree(sbi->s_mb_maxs);
2966 	iput(sbi->s_buddy_cache);
2967 	if (sbi->s_mb_stats) {
2968 		ext4_msg(sb, KERN_INFO,
2969 		       "mballoc: %u blocks %u reqs (%u success)",
2970 				atomic_read(&sbi->s_bal_allocated),
2971 				atomic_read(&sbi->s_bal_reqs),
2972 				atomic_read(&sbi->s_bal_success));
2973 		ext4_msg(sb, KERN_INFO,
2974 		      "mballoc: %u extents scanned, %u goal hits, "
2975 				"%u 2^N hits, %u breaks, %u lost",
2976 				atomic_read(&sbi->s_bal_ex_scanned),
2977 				atomic_read(&sbi->s_bal_goals),
2978 				atomic_read(&sbi->s_bal_2orders),
2979 				atomic_read(&sbi->s_bal_breaks),
2980 				atomic_read(&sbi->s_mb_lost_chunks));
2981 		ext4_msg(sb, KERN_INFO,
2982 		       "mballoc: %lu generated and it took %Lu",
2983 				sbi->s_mb_buddies_generated,
2984 				sbi->s_mb_generation_time);
2985 		ext4_msg(sb, KERN_INFO,
2986 		       "mballoc: %u preallocated, %u discarded",
2987 				atomic_read(&sbi->s_mb_preallocated),
2988 				atomic_read(&sbi->s_mb_discarded));
2989 	}
2990 
2991 	free_percpu(sbi->s_locality_groups);
2992 
2993 	return 0;
2994 }
2995 
2996 static inline int ext4_issue_discard(struct super_block *sb,
2997 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2998 		struct bio **biop)
2999 {
3000 	ext4_fsblk_t discard_block;
3001 
3002 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3003 			 ext4_group_first_block_no(sb, block_group));
3004 	count = EXT4_C2B(EXT4_SB(sb), count);
3005 	trace_ext4_discard_blocks(sb,
3006 			(unsigned long long) discard_block, count);
3007 	if (biop) {
3008 		return __blkdev_issue_discard(sb->s_bdev,
3009 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3010 			(sector_t)count << (sb->s_blocksize_bits - 9),
3011 			GFP_NOFS, 0, biop);
3012 	} else
3013 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3014 }
3015 
3016 static void ext4_free_data_in_buddy(struct super_block *sb,
3017 				    struct ext4_free_data *entry)
3018 {
3019 	struct ext4_buddy e4b;
3020 	struct ext4_group_info *db;
3021 	int err, count = 0, count2 = 0;
3022 
3023 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3024 		 entry->efd_count, entry->efd_group, entry);
3025 
3026 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3027 	/* we expect to find existing buddy because it's pinned */
3028 	BUG_ON(err != 0);
3029 
3030 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3031 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3032 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3033 
3034 	db = e4b.bd_info;
3035 	/* there are blocks to put in buddy to make them really free */
3036 	count += entry->efd_count;
3037 	count2++;
3038 	ext4_lock_group(sb, entry->efd_group);
3039 	/* Take it out of per group rb tree */
3040 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3041 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3042 
3043 	/*
3044 	 * Clear the trimmed flag for the group so that the next
3045 	 * ext4_trim_fs can trim it.
3046 	 * If the volume is mounted with -o discard, online discard
3047 	 * is supported and the free blocks will be trimmed online.
3048 	 */
3049 	if (!test_opt(sb, DISCARD))
3050 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3051 
3052 	if (!db->bb_free_root.rb_node) {
3053 		/* No more items in the per group rb tree
3054 		 * balance refcounts from ext4_mb_free_metadata()
3055 		 */
3056 		put_page(e4b.bd_buddy_page);
3057 		put_page(e4b.bd_bitmap_page);
3058 	}
3059 	ext4_unlock_group(sb, entry->efd_group);
3060 	kmem_cache_free(ext4_free_data_cachep, entry);
3061 	ext4_mb_unload_buddy(&e4b);
3062 
3063 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3064 		 count2);
3065 }
3066 
3067 /*
3068  * This function is called by the jbd2 layer once the commit has finished,
3069  * so we know we can free the blocks that were released with that commit.
3070  */
3071 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3072 {
3073 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 	struct ext4_free_data *entry, *tmp;
3075 	struct bio *discard_bio = NULL;
3076 	struct list_head freed_data_list;
3077 	struct list_head *cut_pos = NULL;
3078 	int err;
3079 
3080 	INIT_LIST_HEAD(&freed_data_list);
3081 
3082 	spin_lock(&sbi->s_md_lock);
3083 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3084 		if (entry->efd_tid != commit_tid)
3085 			break;
3086 		cut_pos = &entry->efd_list;
3087 	}
3088 	if (cut_pos)
3089 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3090 				  cut_pos);
3091 	spin_unlock(&sbi->s_md_lock);
3092 
3093 	if (test_opt(sb, DISCARD)) {
3094 		list_for_each_entry(entry, &freed_data_list, efd_list) {
3095 			err = ext4_issue_discard(sb, entry->efd_group,
3096 						 entry->efd_start_cluster,
3097 						 entry->efd_count,
3098 						 &discard_bio);
3099 			if (err && err != -EOPNOTSUPP) {
3100 				ext4_msg(sb, KERN_WARNING, "discard request in"
3101 					 " group:%d block:%d count:%d failed"
3102 					 " with %d", entry->efd_group,
3103 					 entry->efd_start_cluster,
3104 					 entry->efd_count, err);
3105 			} else if (err == -EOPNOTSUPP)
3106 				break;
3107 		}
3108 
3109 		if (discard_bio) {
3110 			submit_bio_wait(discard_bio);
3111 			bio_put(discard_bio);
3112 		}
3113 	}
3114 
3115 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3116 		ext4_free_data_in_buddy(sb, entry);
3117 }
3118 
3119 int __init ext4_init_mballoc(void)
3120 {
3121 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3122 					SLAB_RECLAIM_ACCOUNT);
3123 	if (ext4_pspace_cachep == NULL)
3124 		goto out;
3125 
3126 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3127 				    SLAB_RECLAIM_ACCOUNT);
3128 	if (ext4_ac_cachep == NULL)
3129 		goto out_pa_free;
3130 
3131 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3132 					   SLAB_RECLAIM_ACCOUNT);
3133 	if (ext4_free_data_cachep == NULL)
3134 		goto out_ac_free;
3135 
3136 	return 0;
3137 
3138 out_ac_free:
3139 	kmem_cache_destroy(ext4_ac_cachep);
3140 out_pa_free:
3141 	kmem_cache_destroy(ext4_pspace_cachep);
3142 out:
3143 	return -ENOMEM;
3144 }
3145 
3146 void ext4_exit_mballoc(void)
3147 {
3148 	/*
3149 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3150 	 * before destroying the slab cache.
3151 	 */
3152 	rcu_barrier();
3153 	kmem_cache_destroy(ext4_pspace_cachep);
3154 	kmem_cache_destroy(ext4_ac_cachep);
3155 	kmem_cache_destroy(ext4_free_data_cachep);
3156 	ext4_groupinfo_destroy_slabs();
3157 }
3158 
3159 
3160 /*
3161  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3162  * Returns 0 if success or error code
3163  */
3164 static noinline_for_stack int
3165 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3166 				handle_t *handle, unsigned int reserv_clstrs)
3167 {
3168 	struct buffer_head *bitmap_bh = NULL;
3169 	struct ext4_group_desc *gdp;
3170 	struct buffer_head *gdp_bh;
3171 	struct ext4_sb_info *sbi;
3172 	struct super_block *sb;
3173 	ext4_fsblk_t block;
3174 	int err, len;
3175 
3176 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3177 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3178 
3179 	sb = ac->ac_sb;
3180 	sbi = EXT4_SB(sb);
3181 
3182 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3183 	if (IS_ERR(bitmap_bh)) {
3184 		err = PTR_ERR(bitmap_bh);
3185 		bitmap_bh = NULL;
3186 		goto out_err;
3187 	}
3188 
3189 	BUFFER_TRACE(bitmap_bh, "getting write access");
3190 	err = ext4_journal_get_write_access(handle, bitmap_bh);
3191 	if (err)
3192 		goto out_err;
3193 
3194 	err = -EIO;
3195 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3196 	if (!gdp)
3197 		goto out_err;
3198 
3199 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3200 			ext4_free_group_clusters(sb, gdp));
3201 
3202 	BUFFER_TRACE(gdp_bh, "get_write_access");
3203 	err = ext4_journal_get_write_access(handle, gdp_bh);
3204 	if (err)
3205 		goto out_err;
3206 
3207 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3208 
3209 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3210 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3211 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3212 			   "fs metadata", block, block+len);
3213 		/* File system mounted not to panic on error
3214 		 * Fix the bitmap and return EFSCORRUPTED
3215 		 * We leak some of the blocks here.
3216 		 */
3217 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3218 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3219 			      ac->ac_b_ex.fe_len);
3220 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3221 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3222 		if (!err)
3223 			err = -EFSCORRUPTED;
3224 		goto out_err;
3225 	}
3226 
3227 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3228 #ifdef AGGRESSIVE_CHECK
3229 	{
3230 		int i;
3231 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3232 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3233 						bitmap_bh->b_data));
3234 		}
3235 	}
3236 #endif
3237 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3238 		      ac->ac_b_ex.fe_len);
3239 	if (ext4_has_group_desc_csum(sb) &&
3240 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3241 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3242 		ext4_free_group_clusters_set(sb, gdp,
3243 					     ext4_free_clusters_after_init(sb,
3244 						ac->ac_b_ex.fe_group, gdp));
3245 	}
3246 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3247 	ext4_free_group_clusters_set(sb, gdp, len);
3248 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3249 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3250 
3251 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3252 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3253 	/*
3254 	 * Now reduce the dirty block count also. Should not go negative
3255 	 */
3256 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3257 		/* release all the reserved blocks if non delalloc */
3258 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3259 				   reserv_clstrs);
3260 
3261 	if (sbi->s_log_groups_per_flex) {
3262 		ext4_group_t flex_group = ext4_flex_group(sbi,
3263 							  ac->ac_b_ex.fe_group);
3264 		atomic64_sub(ac->ac_b_ex.fe_len,
3265 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3266 						  flex_group)->free_clusters);
3267 	}
3268 
3269 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3270 	if (err)
3271 		goto out_err;
3272 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3273 
3274 out_err:
3275 	brelse(bitmap_bh);
3276 	return err;
3277 }
3278 
3279 /*
3280  * Idempotent helper for Ext4 fast commit replay path to set the state of
3281  * blocks in bitmaps and update counters.
3282  */
3283 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3284 			int len, int state)
3285 {
3286 	struct buffer_head *bitmap_bh = NULL;
3287 	struct ext4_group_desc *gdp;
3288 	struct buffer_head *gdp_bh;
3289 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3290 	ext4_group_t group;
3291 	ext4_grpblk_t blkoff;
3292 	int i, clen, err;
3293 	int already;
3294 
3295 	clen = EXT4_B2C(sbi, len);
3296 
3297 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3298 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3299 	if (IS_ERR(bitmap_bh)) {
3300 		err = PTR_ERR(bitmap_bh);
3301 		bitmap_bh = NULL;
3302 		goto out_err;
3303 	}
3304 
3305 	err = -EIO;
3306 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3307 	if (!gdp)
3308 		goto out_err;
3309 
3310 	ext4_lock_group(sb, group);
3311 	already = 0;
3312 	for (i = 0; i < clen; i++)
3313 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3314 			already++;
3315 
3316 	if (state)
3317 		ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3318 	else
3319 		mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3320 	if (ext4_has_group_desc_csum(sb) &&
3321 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3322 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3323 		ext4_free_group_clusters_set(sb, gdp,
3324 					     ext4_free_clusters_after_init(sb,
3325 						group, gdp));
3326 	}
3327 	if (state)
3328 		clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3329 	else
3330 		clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3331 
3332 	ext4_free_group_clusters_set(sb, gdp, clen);
3333 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3334 	ext4_group_desc_csum_set(sb, group, gdp);
3335 
3336 	ext4_unlock_group(sb, group);
3337 
3338 	if (sbi->s_log_groups_per_flex) {
3339 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
3340 
3341 		atomic64_sub(len,
3342 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3343 						  flex_group)->free_clusters);
3344 	}
3345 
3346 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3347 	if (err)
3348 		goto out_err;
3349 	sync_dirty_buffer(bitmap_bh);
3350 	err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3351 	sync_dirty_buffer(gdp_bh);
3352 
3353 out_err:
3354 	brelse(bitmap_bh);
3355 }
3356 
3357 /*
3358  * here we normalize request for locality group
3359  * Group request are normalized to s_mb_group_prealloc, which goes to
3360  * s_strip if we set the same via mount option.
3361  * s_mb_group_prealloc can be configured via
3362  * /sys/fs/ext4/<partition>/mb_group_prealloc
3363  *
3364  * XXX: should we try to preallocate more than the group has now?
3365  */
3366 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3367 {
3368 	struct super_block *sb = ac->ac_sb;
3369 	struct ext4_locality_group *lg = ac->ac_lg;
3370 
3371 	BUG_ON(lg == NULL);
3372 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3373 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3374 }
3375 
3376 /*
3377  * Normalization means making request better in terms of
3378  * size and alignment
3379  */
3380 static noinline_for_stack void
3381 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3382 				struct ext4_allocation_request *ar)
3383 {
3384 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3385 	int bsbits, max;
3386 	ext4_lblk_t end;
3387 	loff_t size, start_off;
3388 	loff_t orig_size __maybe_unused;
3389 	ext4_lblk_t start;
3390 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3391 	struct ext4_prealloc_space *pa;
3392 
3393 	/* do normalize only data requests, metadata requests
3394 	   do not need preallocation */
3395 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3396 		return;
3397 
3398 	/* sometime caller may want exact blocks */
3399 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3400 		return;
3401 
3402 	/* caller may indicate that preallocation isn't
3403 	 * required (it's a tail, for example) */
3404 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3405 		return;
3406 
3407 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3408 		ext4_mb_normalize_group_request(ac);
3409 		return ;
3410 	}
3411 
3412 	bsbits = ac->ac_sb->s_blocksize_bits;
3413 
3414 	/* first, let's learn actual file size
3415 	 * given current request is allocated */
3416 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3417 	size = size << bsbits;
3418 	if (size < i_size_read(ac->ac_inode))
3419 		size = i_size_read(ac->ac_inode);
3420 	orig_size = size;
3421 
3422 	/* max size of free chunks */
3423 	max = 2 << bsbits;
3424 
3425 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3426 		(req <= (size) || max <= (chunk_size))
3427 
3428 	/* first, try to predict filesize */
3429 	/* XXX: should this table be tunable? */
3430 	start_off = 0;
3431 	if (size <= 16 * 1024) {
3432 		size = 16 * 1024;
3433 	} else if (size <= 32 * 1024) {
3434 		size = 32 * 1024;
3435 	} else if (size <= 64 * 1024) {
3436 		size = 64 * 1024;
3437 	} else if (size <= 128 * 1024) {
3438 		size = 128 * 1024;
3439 	} else if (size <= 256 * 1024) {
3440 		size = 256 * 1024;
3441 	} else if (size <= 512 * 1024) {
3442 		size = 512 * 1024;
3443 	} else if (size <= 1024 * 1024) {
3444 		size = 1024 * 1024;
3445 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3446 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3447 						(21 - bsbits)) << 21;
3448 		size = 2 * 1024 * 1024;
3449 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3450 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3451 							(22 - bsbits)) << 22;
3452 		size = 4 * 1024 * 1024;
3453 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3454 					(8<<20)>>bsbits, max, 8 * 1024)) {
3455 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3456 							(23 - bsbits)) << 23;
3457 		size = 8 * 1024 * 1024;
3458 	} else {
3459 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3460 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3461 					      ac->ac_o_ex.fe_len) << bsbits;
3462 	}
3463 	size = size >> bsbits;
3464 	start = start_off >> bsbits;
3465 
3466 	/* don't cover already allocated blocks in selected range */
3467 	if (ar->pleft && start <= ar->lleft) {
3468 		size -= ar->lleft + 1 - start;
3469 		start = ar->lleft + 1;
3470 	}
3471 	if (ar->pright && start + size - 1 >= ar->lright)
3472 		size -= start + size - ar->lright;
3473 
3474 	/*
3475 	 * Trim allocation request for filesystems with artificially small
3476 	 * groups.
3477 	 */
3478 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3479 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3480 
3481 	end = start + size;
3482 
3483 	/* check we don't cross already preallocated blocks */
3484 	rcu_read_lock();
3485 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3486 		ext4_lblk_t pa_end;
3487 
3488 		if (pa->pa_deleted)
3489 			continue;
3490 		spin_lock(&pa->pa_lock);
3491 		if (pa->pa_deleted) {
3492 			spin_unlock(&pa->pa_lock);
3493 			continue;
3494 		}
3495 
3496 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3497 						  pa->pa_len);
3498 
3499 		/* PA must not overlap original request */
3500 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3501 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3502 
3503 		/* skip PAs this normalized request doesn't overlap with */
3504 		if (pa->pa_lstart >= end || pa_end <= start) {
3505 			spin_unlock(&pa->pa_lock);
3506 			continue;
3507 		}
3508 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3509 
3510 		/* adjust start or end to be adjacent to this pa */
3511 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3512 			BUG_ON(pa_end < start);
3513 			start = pa_end;
3514 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3515 			BUG_ON(pa->pa_lstart > end);
3516 			end = pa->pa_lstart;
3517 		}
3518 		spin_unlock(&pa->pa_lock);
3519 	}
3520 	rcu_read_unlock();
3521 	size = end - start;
3522 
3523 	/* XXX: extra loop to check we really don't overlap preallocations */
3524 	rcu_read_lock();
3525 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3526 		ext4_lblk_t pa_end;
3527 
3528 		spin_lock(&pa->pa_lock);
3529 		if (pa->pa_deleted == 0) {
3530 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3531 							  pa->pa_len);
3532 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3533 		}
3534 		spin_unlock(&pa->pa_lock);
3535 	}
3536 	rcu_read_unlock();
3537 
3538 	if (start + size <= ac->ac_o_ex.fe_logical &&
3539 			start > ac->ac_o_ex.fe_logical) {
3540 		ext4_msg(ac->ac_sb, KERN_ERR,
3541 			 "start %lu, size %lu, fe_logical %lu",
3542 			 (unsigned long) start, (unsigned long) size,
3543 			 (unsigned long) ac->ac_o_ex.fe_logical);
3544 		BUG();
3545 	}
3546 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3547 
3548 	/* now prepare goal request */
3549 
3550 	/* XXX: is it better to align blocks WRT to logical
3551 	 * placement or satisfy big request as is */
3552 	ac->ac_g_ex.fe_logical = start;
3553 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3554 
3555 	/* define goal start in order to merge */
3556 	if (ar->pright && (ar->lright == (start + size))) {
3557 		/* merge to the right */
3558 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3559 						&ac->ac_f_ex.fe_group,
3560 						&ac->ac_f_ex.fe_start);
3561 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3562 	}
3563 	if (ar->pleft && (ar->lleft + 1 == start)) {
3564 		/* merge to the left */
3565 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3566 						&ac->ac_f_ex.fe_group,
3567 						&ac->ac_f_ex.fe_start);
3568 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3569 	}
3570 
3571 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3572 		 orig_size, start);
3573 }
3574 
3575 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3576 {
3577 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3578 
3579 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3580 		atomic_inc(&sbi->s_bal_reqs);
3581 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3582 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3583 			atomic_inc(&sbi->s_bal_success);
3584 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3585 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3586 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3587 			atomic_inc(&sbi->s_bal_goals);
3588 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3589 			atomic_inc(&sbi->s_bal_breaks);
3590 	}
3591 
3592 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3593 		trace_ext4_mballoc_alloc(ac);
3594 	else
3595 		trace_ext4_mballoc_prealloc(ac);
3596 }
3597 
3598 /*
3599  * Called on failure; free up any blocks from the inode PA for this
3600  * context.  We don't need this for MB_GROUP_PA because we only change
3601  * pa_free in ext4_mb_release_context(), but on failure, we've already
3602  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3603  */
3604 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3605 {
3606 	struct ext4_prealloc_space *pa = ac->ac_pa;
3607 	struct ext4_buddy e4b;
3608 	int err;
3609 
3610 	if (pa == NULL) {
3611 		if (ac->ac_f_ex.fe_len == 0)
3612 			return;
3613 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3614 		if (err) {
3615 			/*
3616 			 * This should never happen since we pin the
3617 			 * pages in the ext4_allocation_context so
3618 			 * ext4_mb_load_buddy() should never fail.
3619 			 */
3620 			WARN(1, "mb_load_buddy failed (%d)", err);
3621 			return;
3622 		}
3623 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3624 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3625 			       ac->ac_f_ex.fe_len);
3626 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3627 		ext4_mb_unload_buddy(&e4b);
3628 		return;
3629 	}
3630 	if (pa->pa_type == MB_INODE_PA)
3631 		pa->pa_free += ac->ac_b_ex.fe_len;
3632 }
3633 
3634 /*
3635  * use blocks preallocated to inode
3636  */
3637 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3638 				struct ext4_prealloc_space *pa)
3639 {
3640 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3641 	ext4_fsblk_t start;
3642 	ext4_fsblk_t end;
3643 	int len;
3644 
3645 	/* found preallocated blocks, use them */
3646 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3647 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3648 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3649 	len = EXT4_NUM_B2C(sbi, end - start);
3650 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3651 					&ac->ac_b_ex.fe_start);
3652 	ac->ac_b_ex.fe_len = len;
3653 	ac->ac_status = AC_STATUS_FOUND;
3654 	ac->ac_pa = pa;
3655 
3656 	BUG_ON(start < pa->pa_pstart);
3657 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3658 	BUG_ON(pa->pa_free < len);
3659 	pa->pa_free -= len;
3660 
3661 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3662 }
3663 
3664 /*
3665  * use blocks preallocated to locality group
3666  */
3667 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3668 				struct ext4_prealloc_space *pa)
3669 {
3670 	unsigned int len = ac->ac_o_ex.fe_len;
3671 
3672 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3673 					&ac->ac_b_ex.fe_group,
3674 					&ac->ac_b_ex.fe_start);
3675 	ac->ac_b_ex.fe_len = len;
3676 	ac->ac_status = AC_STATUS_FOUND;
3677 	ac->ac_pa = pa;
3678 
3679 	/* we don't correct pa_pstart or pa_plen here to avoid
3680 	 * possible race when the group is being loaded concurrently
3681 	 * instead we correct pa later, after blocks are marked
3682 	 * in on-disk bitmap -- see ext4_mb_release_context()
3683 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3684 	 */
3685 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3686 		 pa->pa_lstart-len, len, pa);
3687 }
3688 
3689 /*
3690  * Return the prealloc space that have minimal distance
3691  * from the goal block. @cpa is the prealloc
3692  * space that is having currently known minimal distance
3693  * from the goal block.
3694  */
3695 static struct ext4_prealloc_space *
3696 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3697 			struct ext4_prealloc_space *pa,
3698 			struct ext4_prealloc_space *cpa)
3699 {
3700 	ext4_fsblk_t cur_distance, new_distance;
3701 
3702 	if (cpa == NULL) {
3703 		atomic_inc(&pa->pa_count);
3704 		return pa;
3705 	}
3706 	cur_distance = abs(goal_block - cpa->pa_pstart);
3707 	new_distance = abs(goal_block - pa->pa_pstart);
3708 
3709 	if (cur_distance <= new_distance)
3710 		return cpa;
3711 
3712 	/* drop the previous reference */
3713 	atomic_dec(&cpa->pa_count);
3714 	atomic_inc(&pa->pa_count);
3715 	return pa;
3716 }
3717 
3718 /*
3719  * search goal blocks in preallocated space
3720  */
3721 static noinline_for_stack bool
3722 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3723 {
3724 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3725 	int order, i;
3726 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3727 	struct ext4_locality_group *lg;
3728 	struct ext4_prealloc_space *pa, *cpa = NULL;
3729 	ext4_fsblk_t goal_block;
3730 
3731 	/* only data can be preallocated */
3732 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3733 		return false;
3734 
3735 	/* first, try per-file preallocation */
3736 	rcu_read_lock();
3737 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3738 
3739 		/* all fields in this condition don't change,
3740 		 * so we can skip locking for them */
3741 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3742 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3743 					       EXT4_C2B(sbi, pa->pa_len)))
3744 			continue;
3745 
3746 		/* non-extent files can't have physical blocks past 2^32 */
3747 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3748 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3749 		     EXT4_MAX_BLOCK_FILE_PHYS))
3750 			continue;
3751 
3752 		/* found preallocated blocks, use them */
3753 		spin_lock(&pa->pa_lock);
3754 		if (pa->pa_deleted == 0 && pa->pa_free) {
3755 			atomic_inc(&pa->pa_count);
3756 			ext4_mb_use_inode_pa(ac, pa);
3757 			spin_unlock(&pa->pa_lock);
3758 			ac->ac_criteria = 10;
3759 			rcu_read_unlock();
3760 			return true;
3761 		}
3762 		spin_unlock(&pa->pa_lock);
3763 	}
3764 	rcu_read_unlock();
3765 
3766 	/* can we use group allocation? */
3767 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3768 		return false;
3769 
3770 	/* inode may have no locality group for some reason */
3771 	lg = ac->ac_lg;
3772 	if (lg == NULL)
3773 		return false;
3774 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3775 	if (order > PREALLOC_TB_SIZE - 1)
3776 		/* The max size of hash table is PREALLOC_TB_SIZE */
3777 		order = PREALLOC_TB_SIZE - 1;
3778 
3779 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3780 	/*
3781 	 * search for the prealloc space that is having
3782 	 * minimal distance from the goal block.
3783 	 */
3784 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3785 		rcu_read_lock();
3786 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3787 					pa_inode_list) {
3788 			spin_lock(&pa->pa_lock);
3789 			if (pa->pa_deleted == 0 &&
3790 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3791 
3792 				cpa = ext4_mb_check_group_pa(goal_block,
3793 								pa, cpa);
3794 			}
3795 			spin_unlock(&pa->pa_lock);
3796 		}
3797 		rcu_read_unlock();
3798 	}
3799 	if (cpa) {
3800 		ext4_mb_use_group_pa(ac, cpa);
3801 		ac->ac_criteria = 20;
3802 		return true;
3803 	}
3804 	return false;
3805 }
3806 
3807 /*
3808  * the function goes through all block freed in the group
3809  * but not yet committed and marks them used in in-core bitmap.
3810  * buddy must be generated from this bitmap
3811  * Need to be called with the ext4 group lock held
3812  */
3813 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3814 						ext4_group_t group)
3815 {
3816 	struct rb_node *n;
3817 	struct ext4_group_info *grp;
3818 	struct ext4_free_data *entry;
3819 
3820 	grp = ext4_get_group_info(sb, group);
3821 	n = rb_first(&(grp->bb_free_root));
3822 
3823 	while (n) {
3824 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3825 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3826 		n = rb_next(n);
3827 	}
3828 	return;
3829 }
3830 
3831 /*
3832  * the function goes through all preallocation in this group and marks them
3833  * used in in-core bitmap. buddy must be generated from this bitmap
3834  * Need to be called with ext4 group lock held
3835  */
3836 static noinline_for_stack
3837 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3838 					ext4_group_t group)
3839 {
3840 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3841 	struct ext4_prealloc_space *pa;
3842 	struct list_head *cur;
3843 	ext4_group_t groupnr;
3844 	ext4_grpblk_t start;
3845 	int preallocated = 0;
3846 	int len;
3847 
3848 	/* all form of preallocation discards first load group,
3849 	 * so the only competing code is preallocation use.
3850 	 * we don't need any locking here
3851 	 * notice we do NOT ignore preallocations with pa_deleted
3852 	 * otherwise we could leave used blocks available for
3853 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3854 	 * is dropping preallocation
3855 	 */
3856 	list_for_each(cur, &grp->bb_prealloc_list) {
3857 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3858 		spin_lock(&pa->pa_lock);
3859 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3860 					     &groupnr, &start);
3861 		len = pa->pa_len;
3862 		spin_unlock(&pa->pa_lock);
3863 		if (unlikely(len == 0))
3864 			continue;
3865 		BUG_ON(groupnr != group);
3866 		ext4_set_bits(bitmap, start, len);
3867 		preallocated += len;
3868 	}
3869 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3870 }
3871 
3872 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
3873 				    struct ext4_prealloc_space *pa)
3874 {
3875 	struct ext4_inode_info *ei;
3876 
3877 	if (pa->pa_deleted) {
3878 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3879 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
3880 			     pa->pa_len);
3881 		return;
3882 	}
3883 
3884 	pa->pa_deleted = 1;
3885 
3886 	if (pa->pa_type == MB_INODE_PA) {
3887 		ei = EXT4_I(pa->pa_inode);
3888 		atomic_dec(&ei->i_prealloc_active);
3889 	}
3890 }
3891 
3892 static void ext4_mb_pa_callback(struct rcu_head *head)
3893 {
3894 	struct ext4_prealloc_space *pa;
3895 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3896 
3897 	BUG_ON(atomic_read(&pa->pa_count));
3898 	BUG_ON(pa->pa_deleted == 0);
3899 	kmem_cache_free(ext4_pspace_cachep, pa);
3900 }
3901 
3902 /*
3903  * drops a reference to preallocated space descriptor
3904  * if this was the last reference and the space is consumed
3905  */
3906 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3907 			struct super_block *sb, struct ext4_prealloc_space *pa)
3908 {
3909 	ext4_group_t grp;
3910 	ext4_fsblk_t grp_blk;
3911 
3912 	/* in this short window concurrent discard can set pa_deleted */
3913 	spin_lock(&pa->pa_lock);
3914 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3915 		spin_unlock(&pa->pa_lock);
3916 		return;
3917 	}
3918 
3919 	if (pa->pa_deleted == 1) {
3920 		spin_unlock(&pa->pa_lock);
3921 		return;
3922 	}
3923 
3924 	ext4_mb_mark_pa_deleted(sb, pa);
3925 	spin_unlock(&pa->pa_lock);
3926 
3927 	grp_blk = pa->pa_pstart;
3928 	/*
3929 	 * If doing group-based preallocation, pa_pstart may be in the
3930 	 * next group when pa is used up
3931 	 */
3932 	if (pa->pa_type == MB_GROUP_PA)
3933 		grp_blk--;
3934 
3935 	grp = ext4_get_group_number(sb, grp_blk);
3936 
3937 	/*
3938 	 * possible race:
3939 	 *
3940 	 *  P1 (buddy init)			P2 (regular allocation)
3941 	 *					find block B in PA
3942 	 *  copy on-disk bitmap to buddy
3943 	 *  					mark B in on-disk bitmap
3944 	 *					drop PA from group
3945 	 *  mark all PAs in buddy
3946 	 *
3947 	 * thus, P1 initializes buddy with B available. to prevent this
3948 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3949 	 * against that pair
3950 	 */
3951 	ext4_lock_group(sb, grp);
3952 	list_del(&pa->pa_group_list);
3953 	ext4_unlock_group(sb, grp);
3954 
3955 	spin_lock(pa->pa_obj_lock);
3956 	list_del_rcu(&pa->pa_inode_list);
3957 	spin_unlock(pa->pa_obj_lock);
3958 
3959 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3960 }
3961 
3962 /*
3963  * creates new preallocated space for given inode
3964  */
3965 static noinline_for_stack void
3966 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3967 {
3968 	struct super_block *sb = ac->ac_sb;
3969 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3970 	struct ext4_prealloc_space *pa;
3971 	struct ext4_group_info *grp;
3972 	struct ext4_inode_info *ei;
3973 
3974 	/* preallocate only when found space is larger then requested */
3975 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3976 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3977 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3978 	BUG_ON(ac->ac_pa == NULL);
3979 
3980 	pa = ac->ac_pa;
3981 
3982 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3983 		int winl;
3984 		int wins;
3985 		int win;
3986 		int offs;
3987 
3988 		/* we can't allocate as much as normalizer wants.
3989 		 * so, found space must get proper lstart
3990 		 * to cover original request */
3991 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3992 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3993 
3994 		/* we're limited by original request in that
3995 		 * logical block must be covered any way
3996 		 * winl is window we can move our chunk within */
3997 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3998 
3999 		/* also, we should cover whole original request */
4000 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4001 
4002 		/* the smallest one defines real window */
4003 		win = min(winl, wins);
4004 
4005 		offs = ac->ac_o_ex.fe_logical %
4006 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4007 		if (offs && offs < win)
4008 			win = offs;
4009 
4010 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4011 			EXT4_NUM_B2C(sbi, win);
4012 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4013 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4014 	}
4015 
4016 	/* preallocation can change ac_b_ex, thus we store actually
4017 	 * allocated blocks for history */
4018 	ac->ac_f_ex = ac->ac_b_ex;
4019 
4020 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4021 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4022 	pa->pa_len = ac->ac_b_ex.fe_len;
4023 	pa->pa_free = pa->pa_len;
4024 	spin_lock_init(&pa->pa_lock);
4025 	INIT_LIST_HEAD(&pa->pa_inode_list);
4026 	INIT_LIST_HEAD(&pa->pa_group_list);
4027 	pa->pa_deleted = 0;
4028 	pa->pa_type = MB_INODE_PA;
4029 
4030 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4031 		 pa->pa_len, pa->pa_lstart);
4032 	trace_ext4_mb_new_inode_pa(ac, pa);
4033 
4034 	ext4_mb_use_inode_pa(ac, pa);
4035 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4036 
4037 	ei = EXT4_I(ac->ac_inode);
4038 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4039 
4040 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4041 	pa->pa_inode = ac->ac_inode;
4042 
4043 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4044 
4045 	spin_lock(pa->pa_obj_lock);
4046 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4047 	spin_unlock(pa->pa_obj_lock);
4048 	atomic_inc(&ei->i_prealloc_active);
4049 }
4050 
4051 /*
4052  * creates new preallocated space for locality group inodes belongs to
4053  */
4054 static noinline_for_stack void
4055 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4056 {
4057 	struct super_block *sb = ac->ac_sb;
4058 	struct ext4_locality_group *lg;
4059 	struct ext4_prealloc_space *pa;
4060 	struct ext4_group_info *grp;
4061 
4062 	/* preallocate only when found space is larger then requested */
4063 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4064 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4065 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4066 	BUG_ON(ac->ac_pa == NULL);
4067 
4068 	pa = ac->ac_pa;
4069 
4070 	/* preallocation can change ac_b_ex, thus we store actually
4071 	 * allocated blocks for history */
4072 	ac->ac_f_ex = ac->ac_b_ex;
4073 
4074 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4075 	pa->pa_lstart = pa->pa_pstart;
4076 	pa->pa_len = ac->ac_b_ex.fe_len;
4077 	pa->pa_free = pa->pa_len;
4078 	spin_lock_init(&pa->pa_lock);
4079 	INIT_LIST_HEAD(&pa->pa_inode_list);
4080 	INIT_LIST_HEAD(&pa->pa_group_list);
4081 	pa->pa_deleted = 0;
4082 	pa->pa_type = MB_GROUP_PA;
4083 
4084 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4085 		 pa->pa_len, pa->pa_lstart);
4086 	trace_ext4_mb_new_group_pa(ac, pa);
4087 
4088 	ext4_mb_use_group_pa(ac, pa);
4089 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4090 
4091 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4092 	lg = ac->ac_lg;
4093 	BUG_ON(lg == NULL);
4094 
4095 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4096 	pa->pa_inode = NULL;
4097 
4098 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4099 
4100 	/*
4101 	 * We will later add the new pa to the right bucket
4102 	 * after updating the pa_free in ext4_mb_release_context
4103 	 */
4104 }
4105 
4106 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4107 {
4108 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4109 		ext4_mb_new_group_pa(ac);
4110 	else
4111 		ext4_mb_new_inode_pa(ac);
4112 }
4113 
4114 /*
4115  * finds all unused blocks in on-disk bitmap, frees them in
4116  * in-core bitmap and buddy.
4117  * @pa must be unlinked from inode and group lists, so that
4118  * nobody else can find/use it.
4119  * the caller MUST hold group/inode locks.
4120  * TODO: optimize the case when there are no in-core structures yet
4121  */
4122 static noinline_for_stack int
4123 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4124 			struct ext4_prealloc_space *pa)
4125 {
4126 	struct super_block *sb = e4b->bd_sb;
4127 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4128 	unsigned int end;
4129 	unsigned int next;
4130 	ext4_group_t group;
4131 	ext4_grpblk_t bit;
4132 	unsigned long long grp_blk_start;
4133 	int free = 0;
4134 
4135 	BUG_ON(pa->pa_deleted == 0);
4136 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4137 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4138 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4139 	end = bit + pa->pa_len;
4140 
4141 	while (bit < end) {
4142 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4143 		if (bit >= end)
4144 			break;
4145 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4146 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4147 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4148 			 (unsigned) next - bit, (unsigned) group);
4149 		free += next - bit;
4150 
4151 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4152 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4153 						    EXT4_C2B(sbi, bit)),
4154 					       next - bit);
4155 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4156 		bit = next + 1;
4157 	}
4158 	if (free != pa->pa_free) {
4159 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4160 			 "pa %p: logic %lu, phys. %lu, len %d",
4161 			 pa, (unsigned long) pa->pa_lstart,
4162 			 (unsigned long) pa->pa_pstart,
4163 			 pa->pa_len);
4164 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4165 					free, pa->pa_free);
4166 		/*
4167 		 * pa is already deleted so we use the value obtained
4168 		 * from the bitmap and continue.
4169 		 */
4170 	}
4171 	atomic_add(free, &sbi->s_mb_discarded);
4172 
4173 	return 0;
4174 }
4175 
4176 static noinline_for_stack int
4177 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4178 				struct ext4_prealloc_space *pa)
4179 {
4180 	struct super_block *sb = e4b->bd_sb;
4181 	ext4_group_t group;
4182 	ext4_grpblk_t bit;
4183 
4184 	trace_ext4_mb_release_group_pa(sb, pa);
4185 	BUG_ON(pa->pa_deleted == 0);
4186 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4187 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4188 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4189 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4190 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4191 
4192 	return 0;
4193 }
4194 
4195 /*
4196  * releases all preallocations in given group
4197  *
4198  * first, we need to decide discard policy:
4199  * - when do we discard
4200  *   1) ENOSPC
4201  * - how many do we discard
4202  *   1) how many requested
4203  */
4204 static noinline_for_stack int
4205 ext4_mb_discard_group_preallocations(struct super_block *sb,
4206 					ext4_group_t group, int needed)
4207 {
4208 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4209 	struct buffer_head *bitmap_bh = NULL;
4210 	struct ext4_prealloc_space *pa, *tmp;
4211 	struct list_head list;
4212 	struct ext4_buddy e4b;
4213 	int err;
4214 	int busy = 0;
4215 	int free, free_total = 0;
4216 
4217 	mb_debug(sb, "discard preallocation for group %u\n", group);
4218 	if (list_empty(&grp->bb_prealloc_list))
4219 		goto out_dbg;
4220 
4221 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4222 	if (IS_ERR(bitmap_bh)) {
4223 		err = PTR_ERR(bitmap_bh);
4224 		ext4_error_err(sb, -err,
4225 			       "Error %d reading block bitmap for %u",
4226 			       err, group);
4227 		goto out_dbg;
4228 	}
4229 
4230 	err = ext4_mb_load_buddy(sb, group, &e4b);
4231 	if (err) {
4232 		ext4_warning(sb, "Error %d loading buddy information for %u",
4233 			     err, group);
4234 		put_bh(bitmap_bh);
4235 		goto out_dbg;
4236 	}
4237 
4238 	if (needed == 0)
4239 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4240 
4241 	INIT_LIST_HEAD(&list);
4242 repeat:
4243 	free = 0;
4244 	ext4_lock_group(sb, group);
4245 	list_for_each_entry_safe(pa, tmp,
4246 				&grp->bb_prealloc_list, pa_group_list) {
4247 		spin_lock(&pa->pa_lock);
4248 		if (atomic_read(&pa->pa_count)) {
4249 			spin_unlock(&pa->pa_lock);
4250 			busy = 1;
4251 			continue;
4252 		}
4253 		if (pa->pa_deleted) {
4254 			spin_unlock(&pa->pa_lock);
4255 			continue;
4256 		}
4257 
4258 		/* seems this one can be freed ... */
4259 		ext4_mb_mark_pa_deleted(sb, pa);
4260 
4261 		if (!free)
4262 			this_cpu_inc(discard_pa_seq);
4263 
4264 		/* we can trust pa_free ... */
4265 		free += pa->pa_free;
4266 
4267 		spin_unlock(&pa->pa_lock);
4268 
4269 		list_del(&pa->pa_group_list);
4270 		list_add(&pa->u.pa_tmp_list, &list);
4271 	}
4272 
4273 	/* now free all selected PAs */
4274 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4275 
4276 		/* remove from object (inode or locality group) */
4277 		spin_lock(pa->pa_obj_lock);
4278 		list_del_rcu(&pa->pa_inode_list);
4279 		spin_unlock(pa->pa_obj_lock);
4280 
4281 		if (pa->pa_type == MB_GROUP_PA)
4282 			ext4_mb_release_group_pa(&e4b, pa);
4283 		else
4284 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4285 
4286 		list_del(&pa->u.pa_tmp_list);
4287 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4288 	}
4289 
4290 	free_total += free;
4291 
4292 	/* if we still need more blocks and some PAs were used, try again */
4293 	if (free_total < needed && busy) {
4294 		ext4_unlock_group(sb, group);
4295 		cond_resched();
4296 		busy = 0;
4297 		goto repeat;
4298 	}
4299 	ext4_unlock_group(sb, group);
4300 	ext4_mb_unload_buddy(&e4b);
4301 	put_bh(bitmap_bh);
4302 out_dbg:
4303 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4304 		 free_total, group, grp->bb_free);
4305 	return free_total;
4306 }
4307 
4308 /*
4309  * releases all non-used preallocated blocks for given inode
4310  *
4311  * It's important to discard preallocations under i_data_sem
4312  * We don't want another block to be served from the prealloc
4313  * space when we are discarding the inode prealloc space.
4314  *
4315  * FIXME!! Make sure it is valid at all the call sites
4316  */
4317 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4318 {
4319 	struct ext4_inode_info *ei = EXT4_I(inode);
4320 	struct super_block *sb = inode->i_sb;
4321 	struct buffer_head *bitmap_bh = NULL;
4322 	struct ext4_prealloc_space *pa, *tmp;
4323 	ext4_group_t group = 0;
4324 	struct list_head list;
4325 	struct ext4_buddy e4b;
4326 	int err;
4327 
4328 	if (!S_ISREG(inode->i_mode)) {
4329 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4330 		return;
4331 	}
4332 
4333 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4334 		return;
4335 
4336 	mb_debug(sb, "discard preallocation for inode %lu\n",
4337 		 inode->i_ino);
4338 	trace_ext4_discard_preallocations(inode,
4339 			atomic_read(&ei->i_prealloc_active), needed);
4340 
4341 	INIT_LIST_HEAD(&list);
4342 
4343 	if (needed == 0)
4344 		needed = UINT_MAX;
4345 
4346 repeat:
4347 	/* first, collect all pa's in the inode */
4348 	spin_lock(&ei->i_prealloc_lock);
4349 	while (!list_empty(&ei->i_prealloc_list) && needed) {
4350 		pa = list_entry(ei->i_prealloc_list.prev,
4351 				struct ext4_prealloc_space, pa_inode_list);
4352 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4353 		spin_lock(&pa->pa_lock);
4354 		if (atomic_read(&pa->pa_count)) {
4355 			/* this shouldn't happen often - nobody should
4356 			 * use preallocation while we're discarding it */
4357 			spin_unlock(&pa->pa_lock);
4358 			spin_unlock(&ei->i_prealloc_lock);
4359 			ext4_msg(sb, KERN_ERR,
4360 				 "uh-oh! used pa while discarding");
4361 			WARN_ON(1);
4362 			schedule_timeout_uninterruptible(HZ);
4363 			goto repeat;
4364 
4365 		}
4366 		if (pa->pa_deleted == 0) {
4367 			ext4_mb_mark_pa_deleted(sb, pa);
4368 			spin_unlock(&pa->pa_lock);
4369 			list_del_rcu(&pa->pa_inode_list);
4370 			list_add(&pa->u.pa_tmp_list, &list);
4371 			needed--;
4372 			continue;
4373 		}
4374 
4375 		/* someone is deleting pa right now */
4376 		spin_unlock(&pa->pa_lock);
4377 		spin_unlock(&ei->i_prealloc_lock);
4378 
4379 		/* we have to wait here because pa_deleted
4380 		 * doesn't mean pa is already unlinked from
4381 		 * the list. as we might be called from
4382 		 * ->clear_inode() the inode will get freed
4383 		 * and concurrent thread which is unlinking
4384 		 * pa from inode's list may access already
4385 		 * freed memory, bad-bad-bad */
4386 
4387 		/* XXX: if this happens too often, we can
4388 		 * add a flag to force wait only in case
4389 		 * of ->clear_inode(), but not in case of
4390 		 * regular truncate */
4391 		schedule_timeout_uninterruptible(HZ);
4392 		goto repeat;
4393 	}
4394 	spin_unlock(&ei->i_prealloc_lock);
4395 
4396 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4397 		BUG_ON(pa->pa_type != MB_INODE_PA);
4398 		group = ext4_get_group_number(sb, pa->pa_pstart);
4399 
4400 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4401 					     GFP_NOFS|__GFP_NOFAIL);
4402 		if (err) {
4403 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4404 				       err, group);
4405 			continue;
4406 		}
4407 
4408 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4409 		if (IS_ERR(bitmap_bh)) {
4410 			err = PTR_ERR(bitmap_bh);
4411 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4412 				       err, group);
4413 			ext4_mb_unload_buddy(&e4b);
4414 			continue;
4415 		}
4416 
4417 		ext4_lock_group(sb, group);
4418 		list_del(&pa->pa_group_list);
4419 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4420 		ext4_unlock_group(sb, group);
4421 
4422 		ext4_mb_unload_buddy(&e4b);
4423 		put_bh(bitmap_bh);
4424 
4425 		list_del(&pa->u.pa_tmp_list);
4426 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4427 	}
4428 }
4429 
4430 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4431 {
4432 	struct ext4_prealloc_space *pa;
4433 
4434 	BUG_ON(ext4_pspace_cachep == NULL);
4435 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4436 	if (!pa)
4437 		return -ENOMEM;
4438 	atomic_set(&pa->pa_count, 1);
4439 	ac->ac_pa = pa;
4440 	return 0;
4441 }
4442 
4443 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4444 {
4445 	struct ext4_prealloc_space *pa = ac->ac_pa;
4446 
4447 	BUG_ON(!pa);
4448 	ac->ac_pa = NULL;
4449 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4450 	kmem_cache_free(ext4_pspace_cachep, pa);
4451 }
4452 
4453 #ifdef CONFIG_EXT4_DEBUG
4454 static inline void ext4_mb_show_pa(struct super_block *sb)
4455 {
4456 	ext4_group_t i, ngroups;
4457 
4458 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4459 		return;
4460 
4461 	ngroups = ext4_get_groups_count(sb);
4462 	mb_debug(sb, "groups: ");
4463 	for (i = 0; i < ngroups; i++) {
4464 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4465 		struct ext4_prealloc_space *pa;
4466 		ext4_grpblk_t start;
4467 		struct list_head *cur;
4468 		ext4_lock_group(sb, i);
4469 		list_for_each(cur, &grp->bb_prealloc_list) {
4470 			pa = list_entry(cur, struct ext4_prealloc_space,
4471 					pa_group_list);
4472 			spin_lock(&pa->pa_lock);
4473 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4474 						     NULL, &start);
4475 			spin_unlock(&pa->pa_lock);
4476 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4477 				 pa->pa_len);
4478 		}
4479 		ext4_unlock_group(sb, i);
4480 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4481 			 grp->bb_fragments);
4482 	}
4483 }
4484 
4485 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4486 {
4487 	struct super_block *sb = ac->ac_sb;
4488 
4489 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4490 		return;
4491 
4492 	mb_debug(sb, "Can't allocate:"
4493 			" Allocation context details:");
4494 	mb_debug(sb, "status %u flags 0x%x",
4495 			ac->ac_status, ac->ac_flags);
4496 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4497 			"goal %lu/%lu/%lu@%lu, "
4498 			"best %lu/%lu/%lu@%lu cr %d",
4499 			(unsigned long)ac->ac_o_ex.fe_group,
4500 			(unsigned long)ac->ac_o_ex.fe_start,
4501 			(unsigned long)ac->ac_o_ex.fe_len,
4502 			(unsigned long)ac->ac_o_ex.fe_logical,
4503 			(unsigned long)ac->ac_g_ex.fe_group,
4504 			(unsigned long)ac->ac_g_ex.fe_start,
4505 			(unsigned long)ac->ac_g_ex.fe_len,
4506 			(unsigned long)ac->ac_g_ex.fe_logical,
4507 			(unsigned long)ac->ac_b_ex.fe_group,
4508 			(unsigned long)ac->ac_b_ex.fe_start,
4509 			(unsigned long)ac->ac_b_ex.fe_len,
4510 			(unsigned long)ac->ac_b_ex.fe_logical,
4511 			(int)ac->ac_criteria);
4512 	mb_debug(sb, "%u found", ac->ac_found);
4513 	ext4_mb_show_pa(sb);
4514 }
4515 #else
4516 static inline void ext4_mb_show_pa(struct super_block *sb)
4517 {
4518 	return;
4519 }
4520 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4521 {
4522 	ext4_mb_show_pa(ac->ac_sb);
4523 	return;
4524 }
4525 #endif
4526 
4527 /*
4528  * We use locality group preallocation for small size file. The size of the
4529  * file is determined by the current size or the resulting size after
4530  * allocation which ever is larger
4531  *
4532  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4533  */
4534 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4535 {
4536 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4537 	int bsbits = ac->ac_sb->s_blocksize_bits;
4538 	loff_t size, isize;
4539 
4540 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4541 		return;
4542 
4543 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4544 		return;
4545 
4546 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4547 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4548 		>> bsbits;
4549 
4550 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4551 	    !inode_is_open_for_write(ac->ac_inode)) {
4552 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4553 		return;
4554 	}
4555 
4556 	if (sbi->s_mb_group_prealloc <= 0) {
4557 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4558 		return;
4559 	}
4560 
4561 	/* don't use group allocation for large files */
4562 	size = max(size, isize);
4563 	if (size > sbi->s_mb_stream_request) {
4564 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4565 		return;
4566 	}
4567 
4568 	BUG_ON(ac->ac_lg != NULL);
4569 	/*
4570 	 * locality group prealloc space are per cpu. The reason for having
4571 	 * per cpu locality group is to reduce the contention between block
4572 	 * request from multiple CPUs.
4573 	 */
4574 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4575 
4576 	/* we're going to use group allocation */
4577 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4578 
4579 	/* serialize all allocations in the group */
4580 	mutex_lock(&ac->ac_lg->lg_mutex);
4581 }
4582 
4583 static noinline_for_stack int
4584 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4585 				struct ext4_allocation_request *ar)
4586 {
4587 	struct super_block *sb = ar->inode->i_sb;
4588 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4589 	struct ext4_super_block *es = sbi->s_es;
4590 	ext4_group_t group;
4591 	unsigned int len;
4592 	ext4_fsblk_t goal;
4593 	ext4_grpblk_t block;
4594 
4595 	/* we can't allocate > group size */
4596 	len = ar->len;
4597 
4598 	/* just a dirty hack to filter too big requests  */
4599 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4600 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4601 
4602 	/* start searching from the goal */
4603 	goal = ar->goal;
4604 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4605 			goal >= ext4_blocks_count(es))
4606 		goal = le32_to_cpu(es->s_first_data_block);
4607 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4608 
4609 	/* set up allocation goals */
4610 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4611 	ac->ac_status = AC_STATUS_CONTINUE;
4612 	ac->ac_sb = sb;
4613 	ac->ac_inode = ar->inode;
4614 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4615 	ac->ac_o_ex.fe_group = group;
4616 	ac->ac_o_ex.fe_start = block;
4617 	ac->ac_o_ex.fe_len = len;
4618 	ac->ac_g_ex = ac->ac_o_ex;
4619 	ac->ac_flags = ar->flags;
4620 
4621 	/* we have to define context: we'll work with a file or
4622 	 * locality group. this is a policy, actually */
4623 	ext4_mb_group_or_file(ac);
4624 
4625 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4626 			"left: %u/%u, right %u/%u to %swritable\n",
4627 			(unsigned) ar->len, (unsigned) ar->logical,
4628 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4629 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4630 			(unsigned) ar->lright, (unsigned) ar->pright,
4631 			inode_is_open_for_write(ar->inode) ? "" : "non-");
4632 	return 0;
4633 
4634 }
4635 
4636 static noinline_for_stack void
4637 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4638 					struct ext4_locality_group *lg,
4639 					int order, int total_entries)
4640 {
4641 	ext4_group_t group = 0;
4642 	struct ext4_buddy e4b;
4643 	struct list_head discard_list;
4644 	struct ext4_prealloc_space *pa, *tmp;
4645 
4646 	mb_debug(sb, "discard locality group preallocation\n");
4647 
4648 	INIT_LIST_HEAD(&discard_list);
4649 
4650 	spin_lock(&lg->lg_prealloc_lock);
4651 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4652 				pa_inode_list,
4653 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4654 		spin_lock(&pa->pa_lock);
4655 		if (atomic_read(&pa->pa_count)) {
4656 			/*
4657 			 * This is the pa that we just used
4658 			 * for block allocation. So don't
4659 			 * free that
4660 			 */
4661 			spin_unlock(&pa->pa_lock);
4662 			continue;
4663 		}
4664 		if (pa->pa_deleted) {
4665 			spin_unlock(&pa->pa_lock);
4666 			continue;
4667 		}
4668 		/* only lg prealloc space */
4669 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4670 
4671 		/* seems this one can be freed ... */
4672 		ext4_mb_mark_pa_deleted(sb, pa);
4673 		spin_unlock(&pa->pa_lock);
4674 
4675 		list_del_rcu(&pa->pa_inode_list);
4676 		list_add(&pa->u.pa_tmp_list, &discard_list);
4677 
4678 		total_entries--;
4679 		if (total_entries <= 5) {
4680 			/*
4681 			 * we want to keep only 5 entries
4682 			 * allowing it to grow to 8. This
4683 			 * mak sure we don't call discard
4684 			 * soon for this list.
4685 			 */
4686 			break;
4687 		}
4688 	}
4689 	spin_unlock(&lg->lg_prealloc_lock);
4690 
4691 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4692 		int err;
4693 
4694 		group = ext4_get_group_number(sb, pa->pa_pstart);
4695 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4696 					     GFP_NOFS|__GFP_NOFAIL);
4697 		if (err) {
4698 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4699 				       err, group);
4700 			continue;
4701 		}
4702 		ext4_lock_group(sb, group);
4703 		list_del(&pa->pa_group_list);
4704 		ext4_mb_release_group_pa(&e4b, pa);
4705 		ext4_unlock_group(sb, group);
4706 
4707 		ext4_mb_unload_buddy(&e4b);
4708 		list_del(&pa->u.pa_tmp_list);
4709 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4710 	}
4711 }
4712 
4713 /*
4714  * We have incremented pa_count. So it cannot be freed at this
4715  * point. Also we hold lg_mutex. So no parallel allocation is
4716  * possible from this lg. That means pa_free cannot be updated.
4717  *
4718  * A parallel ext4_mb_discard_group_preallocations is possible.
4719  * which can cause the lg_prealloc_list to be updated.
4720  */
4721 
4722 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4723 {
4724 	int order, added = 0, lg_prealloc_count = 1;
4725 	struct super_block *sb = ac->ac_sb;
4726 	struct ext4_locality_group *lg = ac->ac_lg;
4727 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4728 
4729 	order = fls(pa->pa_free) - 1;
4730 	if (order > PREALLOC_TB_SIZE - 1)
4731 		/* The max size of hash table is PREALLOC_TB_SIZE */
4732 		order = PREALLOC_TB_SIZE - 1;
4733 	/* Add the prealloc space to lg */
4734 	spin_lock(&lg->lg_prealloc_lock);
4735 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4736 				pa_inode_list,
4737 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4738 		spin_lock(&tmp_pa->pa_lock);
4739 		if (tmp_pa->pa_deleted) {
4740 			spin_unlock(&tmp_pa->pa_lock);
4741 			continue;
4742 		}
4743 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4744 			/* Add to the tail of the previous entry */
4745 			list_add_tail_rcu(&pa->pa_inode_list,
4746 						&tmp_pa->pa_inode_list);
4747 			added = 1;
4748 			/*
4749 			 * we want to count the total
4750 			 * number of entries in the list
4751 			 */
4752 		}
4753 		spin_unlock(&tmp_pa->pa_lock);
4754 		lg_prealloc_count++;
4755 	}
4756 	if (!added)
4757 		list_add_tail_rcu(&pa->pa_inode_list,
4758 					&lg->lg_prealloc_list[order]);
4759 	spin_unlock(&lg->lg_prealloc_lock);
4760 
4761 	/* Now trim the list to be not more than 8 elements */
4762 	if (lg_prealloc_count > 8) {
4763 		ext4_mb_discard_lg_preallocations(sb, lg,
4764 						  order, lg_prealloc_count);
4765 		return;
4766 	}
4767 	return ;
4768 }
4769 
4770 /*
4771  * if per-inode prealloc list is too long, trim some PA
4772  */
4773 static void ext4_mb_trim_inode_pa(struct inode *inode)
4774 {
4775 	struct ext4_inode_info *ei = EXT4_I(inode);
4776 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4777 	int count, delta;
4778 
4779 	count = atomic_read(&ei->i_prealloc_active);
4780 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
4781 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
4782 		count -= sbi->s_mb_max_inode_prealloc;
4783 		ext4_discard_preallocations(inode, count);
4784 	}
4785 }
4786 
4787 /*
4788  * release all resource we used in allocation
4789  */
4790 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4791 {
4792 	struct inode *inode = ac->ac_inode;
4793 	struct ext4_inode_info *ei = EXT4_I(inode);
4794 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4795 	struct ext4_prealloc_space *pa = ac->ac_pa;
4796 	if (pa) {
4797 		if (pa->pa_type == MB_GROUP_PA) {
4798 			/* see comment in ext4_mb_use_group_pa() */
4799 			spin_lock(&pa->pa_lock);
4800 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4801 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4802 			pa->pa_free -= ac->ac_b_ex.fe_len;
4803 			pa->pa_len -= ac->ac_b_ex.fe_len;
4804 			spin_unlock(&pa->pa_lock);
4805 
4806 			/*
4807 			 * We want to add the pa to the right bucket.
4808 			 * Remove it from the list and while adding
4809 			 * make sure the list to which we are adding
4810 			 * doesn't grow big.
4811 			 */
4812 			if (likely(pa->pa_free)) {
4813 				spin_lock(pa->pa_obj_lock);
4814 				list_del_rcu(&pa->pa_inode_list);
4815 				spin_unlock(pa->pa_obj_lock);
4816 				ext4_mb_add_n_trim(ac);
4817 			}
4818 		}
4819 
4820 		if (pa->pa_type == MB_INODE_PA) {
4821 			/*
4822 			 * treat per-inode prealloc list as a lru list, then try
4823 			 * to trim the least recently used PA.
4824 			 */
4825 			spin_lock(pa->pa_obj_lock);
4826 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
4827 			spin_unlock(pa->pa_obj_lock);
4828 		}
4829 
4830 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4831 	}
4832 	if (ac->ac_bitmap_page)
4833 		put_page(ac->ac_bitmap_page);
4834 	if (ac->ac_buddy_page)
4835 		put_page(ac->ac_buddy_page);
4836 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4837 		mutex_unlock(&ac->ac_lg->lg_mutex);
4838 	ext4_mb_collect_stats(ac);
4839 	ext4_mb_trim_inode_pa(inode);
4840 	return 0;
4841 }
4842 
4843 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4844 {
4845 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4846 	int ret;
4847 	int freed = 0;
4848 
4849 	trace_ext4_mb_discard_preallocations(sb, needed);
4850 	for (i = 0; i < ngroups && needed > 0; i++) {
4851 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4852 		freed += ret;
4853 		needed -= ret;
4854 	}
4855 
4856 	return freed;
4857 }
4858 
4859 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4860 			struct ext4_allocation_context *ac, u64 *seq)
4861 {
4862 	int freed;
4863 	u64 seq_retry = 0;
4864 	bool ret = false;
4865 
4866 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4867 	if (freed) {
4868 		ret = true;
4869 		goto out_dbg;
4870 	}
4871 	seq_retry = ext4_get_discard_pa_seq_sum();
4872 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4873 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4874 		*seq = seq_retry;
4875 		ret = true;
4876 	}
4877 
4878 out_dbg:
4879 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4880 	return ret;
4881 }
4882 
4883 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
4884 				struct ext4_allocation_request *ar, int *errp);
4885 
4886 /*
4887  * Main entry point into mballoc to allocate blocks
4888  * it tries to use preallocation first, then falls back
4889  * to usual allocation
4890  */
4891 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4892 				struct ext4_allocation_request *ar, int *errp)
4893 {
4894 	struct ext4_allocation_context *ac = NULL;
4895 	struct ext4_sb_info *sbi;
4896 	struct super_block *sb;
4897 	ext4_fsblk_t block = 0;
4898 	unsigned int inquota = 0;
4899 	unsigned int reserv_clstrs = 0;
4900 	u64 seq;
4901 
4902 	might_sleep();
4903 	sb = ar->inode->i_sb;
4904 	sbi = EXT4_SB(sb);
4905 
4906 	trace_ext4_request_blocks(ar);
4907 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
4908 		return ext4_mb_new_blocks_simple(handle, ar, errp);
4909 
4910 	/* Allow to use superuser reservation for quota file */
4911 	if (ext4_is_quota_file(ar->inode))
4912 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4913 
4914 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4915 		/* Without delayed allocation we need to verify
4916 		 * there is enough free blocks to do block allocation
4917 		 * and verify allocation doesn't exceed the quota limits.
4918 		 */
4919 		while (ar->len &&
4920 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4921 
4922 			/* let others to free the space */
4923 			cond_resched();
4924 			ar->len = ar->len >> 1;
4925 		}
4926 		if (!ar->len) {
4927 			ext4_mb_show_pa(sb);
4928 			*errp = -ENOSPC;
4929 			return 0;
4930 		}
4931 		reserv_clstrs = ar->len;
4932 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4933 			dquot_alloc_block_nofail(ar->inode,
4934 						 EXT4_C2B(sbi, ar->len));
4935 		} else {
4936 			while (ar->len &&
4937 				dquot_alloc_block(ar->inode,
4938 						  EXT4_C2B(sbi, ar->len))) {
4939 
4940 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4941 				ar->len--;
4942 			}
4943 		}
4944 		inquota = ar->len;
4945 		if (ar->len == 0) {
4946 			*errp = -EDQUOT;
4947 			goto out;
4948 		}
4949 	}
4950 
4951 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4952 	if (!ac) {
4953 		ar->len = 0;
4954 		*errp = -ENOMEM;
4955 		goto out;
4956 	}
4957 
4958 	*errp = ext4_mb_initialize_context(ac, ar);
4959 	if (*errp) {
4960 		ar->len = 0;
4961 		goto out;
4962 	}
4963 
4964 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4965 	seq = this_cpu_read(discard_pa_seq);
4966 	if (!ext4_mb_use_preallocated(ac)) {
4967 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4968 		ext4_mb_normalize_request(ac, ar);
4969 
4970 		*errp = ext4_mb_pa_alloc(ac);
4971 		if (*errp)
4972 			goto errout;
4973 repeat:
4974 		/* allocate space in core */
4975 		*errp = ext4_mb_regular_allocator(ac);
4976 		/*
4977 		 * pa allocated above is added to grp->bb_prealloc_list only
4978 		 * when we were able to allocate some block i.e. when
4979 		 * ac->ac_status == AC_STATUS_FOUND.
4980 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4981 		 * So we have to free this pa here itself.
4982 		 */
4983 		if (*errp) {
4984 			ext4_mb_pa_free(ac);
4985 			ext4_discard_allocated_blocks(ac);
4986 			goto errout;
4987 		}
4988 		if (ac->ac_status == AC_STATUS_FOUND &&
4989 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
4990 			ext4_mb_pa_free(ac);
4991 	}
4992 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4993 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4994 		if (*errp) {
4995 			ext4_discard_allocated_blocks(ac);
4996 			goto errout;
4997 		} else {
4998 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4999 			ar->len = ac->ac_b_ex.fe_len;
5000 		}
5001 	} else {
5002 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5003 			goto repeat;
5004 		/*
5005 		 * If block allocation fails then the pa allocated above
5006 		 * needs to be freed here itself.
5007 		 */
5008 		ext4_mb_pa_free(ac);
5009 		*errp = -ENOSPC;
5010 	}
5011 
5012 errout:
5013 	if (*errp) {
5014 		ac->ac_b_ex.fe_len = 0;
5015 		ar->len = 0;
5016 		ext4_mb_show_ac(ac);
5017 	}
5018 	ext4_mb_release_context(ac);
5019 out:
5020 	if (ac)
5021 		kmem_cache_free(ext4_ac_cachep, ac);
5022 	if (inquota && ar->len < inquota)
5023 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5024 	if (!ar->len) {
5025 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5026 			/* release all the reserved blocks if non delalloc */
5027 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5028 						reserv_clstrs);
5029 	}
5030 
5031 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5032 
5033 	return block;
5034 }
5035 
5036 /*
5037  * We can merge two free data extents only if the physical blocks
5038  * are contiguous, AND the extents were freed by the same transaction,
5039  * AND the blocks are associated with the same group.
5040  */
5041 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5042 					struct ext4_free_data *entry,
5043 					struct ext4_free_data *new_entry,
5044 					struct rb_root *entry_rb_root)
5045 {
5046 	if ((entry->efd_tid != new_entry->efd_tid) ||
5047 	    (entry->efd_group != new_entry->efd_group))
5048 		return;
5049 	if (entry->efd_start_cluster + entry->efd_count ==
5050 	    new_entry->efd_start_cluster) {
5051 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5052 		new_entry->efd_count += entry->efd_count;
5053 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5054 		   entry->efd_start_cluster) {
5055 		new_entry->efd_count += entry->efd_count;
5056 	} else
5057 		return;
5058 	spin_lock(&sbi->s_md_lock);
5059 	list_del(&entry->efd_list);
5060 	spin_unlock(&sbi->s_md_lock);
5061 	rb_erase(&entry->efd_node, entry_rb_root);
5062 	kmem_cache_free(ext4_free_data_cachep, entry);
5063 }
5064 
5065 static noinline_for_stack int
5066 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5067 		      struct ext4_free_data *new_entry)
5068 {
5069 	ext4_group_t group = e4b->bd_group;
5070 	ext4_grpblk_t cluster;
5071 	ext4_grpblk_t clusters = new_entry->efd_count;
5072 	struct ext4_free_data *entry;
5073 	struct ext4_group_info *db = e4b->bd_info;
5074 	struct super_block *sb = e4b->bd_sb;
5075 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5076 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5077 	struct rb_node *parent = NULL, *new_node;
5078 
5079 	BUG_ON(!ext4_handle_valid(handle));
5080 	BUG_ON(e4b->bd_bitmap_page == NULL);
5081 	BUG_ON(e4b->bd_buddy_page == NULL);
5082 
5083 	new_node = &new_entry->efd_node;
5084 	cluster = new_entry->efd_start_cluster;
5085 
5086 	if (!*n) {
5087 		/* first free block exent. We need to
5088 		   protect buddy cache from being freed,
5089 		 * otherwise we'll refresh it from
5090 		 * on-disk bitmap and lose not-yet-available
5091 		 * blocks */
5092 		get_page(e4b->bd_buddy_page);
5093 		get_page(e4b->bd_bitmap_page);
5094 	}
5095 	while (*n) {
5096 		parent = *n;
5097 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5098 		if (cluster < entry->efd_start_cluster)
5099 			n = &(*n)->rb_left;
5100 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5101 			n = &(*n)->rb_right;
5102 		else {
5103 			ext4_grp_locked_error(sb, group, 0,
5104 				ext4_group_first_block_no(sb, group) +
5105 				EXT4_C2B(sbi, cluster),
5106 				"Block already on to-be-freed list");
5107 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5108 			return 0;
5109 		}
5110 	}
5111 
5112 	rb_link_node(new_node, parent, n);
5113 	rb_insert_color(new_node, &db->bb_free_root);
5114 
5115 	/* Now try to see the extent can be merged to left and right */
5116 	node = rb_prev(new_node);
5117 	if (node) {
5118 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5119 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5120 					    &(db->bb_free_root));
5121 	}
5122 
5123 	node = rb_next(new_node);
5124 	if (node) {
5125 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5126 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5127 					    &(db->bb_free_root));
5128 	}
5129 
5130 	spin_lock(&sbi->s_md_lock);
5131 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5132 	sbi->s_mb_free_pending += clusters;
5133 	spin_unlock(&sbi->s_md_lock);
5134 	return 0;
5135 }
5136 
5137 /*
5138  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5139  * linearly starting at the goal block and also excludes the blocks which
5140  * are going to be in use after fast commit replay.
5141  */
5142 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5143 				struct ext4_allocation_request *ar, int *errp)
5144 {
5145 	struct buffer_head *bitmap_bh;
5146 	struct super_block *sb = ar->inode->i_sb;
5147 	ext4_group_t group;
5148 	ext4_grpblk_t blkoff;
5149 	int i = sb->s_blocksize;
5150 	ext4_fsblk_t goal, block;
5151 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5152 
5153 	goal = ar->goal;
5154 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5155 			goal >= ext4_blocks_count(es))
5156 		goal = le32_to_cpu(es->s_first_data_block);
5157 
5158 	ar->len = 0;
5159 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5160 	for (; group < ext4_get_groups_count(sb); group++) {
5161 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5162 		if (IS_ERR(bitmap_bh)) {
5163 			*errp = PTR_ERR(bitmap_bh);
5164 			pr_warn("Failed to read block bitmap\n");
5165 			return 0;
5166 		}
5167 
5168 		ext4_get_group_no_and_offset(sb,
5169 			max(ext4_group_first_block_no(sb, group), goal),
5170 			NULL, &blkoff);
5171 		i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
5172 						blkoff);
5173 		brelse(bitmap_bh);
5174 		if (i >= sb->s_blocksize)
5175 			continue;
5176 		if (ext4_fc_replay_check_excluded(sb,
5177 			ext4_group_first_block_no(sb, group) + i))
5178 			continue;
5179 		break;
5180 	}
5181 
5182 	if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
5183 		return 0;
5184 
5185 	block = ext4_group_first_block_no(sb, group) + i;
5186 	ext4_mb_mark_bb(sb, block, 1, 1);
5187 	ar->len = 1;
5188 
5189 	return block;
5190 }
5191 
5192 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5193 					unsigned long count)
5194 {
5195 	struct buffer_head *bitmap_bh;
5196 	struct super_block *sb = inode->i_sb;
5197 	struct ext4_group_desc *gdp;
5198 	struct buffer_head *gdp_bh;
5199 	ext4_group_t group;
5200 	ext4_grpblk_t blkoff;
5201 	int already_freed = 0, err, i;
5202 
5203 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5204 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5205 	if (IS_ERR(bitmap_bh)) {
5206 		err = PTR_ERR(bitmap_bh);
5207 		pr_warn("Failed to read block bitmap\n");
5208 		return;
5209 	}
5210 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5211 	if (!gdp)
5212 		return;
5213 
5214 	for (i = 0; i < count; i++) {
5215 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5216 			already_freed++;
5217 	}
5218 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5219 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5220 	if (err)
5221 		return;
5222 	ext4_free_group_clusters_set(
5223 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5224 		count - already_freed);
5225 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5226 	ext4_group_desc_csum_set(sb, group, gdp);
5227 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5228 	sync_dirty_buffer(bitmap_bh);
5229 	sync_dirty_buffer(gdp_bh);
5230 	brelse(bitmap_bh);
5231 }
5232 
5233 /**
5234  * ext4_free_blocks() -- Free given blocks and update quota
5235  * @handle:		handle for this transaction
5236  * @inode:		inode
5237  * @bh:			optional buffer of the block to be freed
5238  * @block:		starting physical block to be freed
5239  * @count:		number of blocks to be freed
5240  * @flags:		flags used by ext4_free_blocks
5241  */
5242 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5243 		      struct buffer_head *bh, ext4_fsblk_t block,
5244 		      unsigned long count, int flags)
5245 {
5246 	struct buffer_head *bitmap_bh = NULL;
5247 	struct super_block *sb = inode->i_sb;
5248 	struct ext4_group_desc *gdp;
5249 	unsigned int overflow;
5250 	ext4_grpblk_t bit;
5251 	struct buffer_head *gd_bh;
5252 	ext4_group_t block_group;
5253 	struct ext4_sb_info *sbi;
5254 	struct ext4_buddy e4b;
5255 	unsigned int count_clusters;
5256 	int err = 0;
5257 	int ret;
5258 
5259 	sbi = EXT4_SB(sb);
5260 
5261 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5262 		ext4_free_blocks_simple(inode, block, count);
5263 		return;
5264 	}
5265 
5266 	might_sleep();
5267 	if (bh) {
5268 		if (block)
5269 			BUG_ON(block != bh->b_blocknr);
5270 		else
5271 			block = bh->b_blocknr;
5272 	}
5273 
5274 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5275 	    !ext4_inode_block_valid(inode, block, count)) {
5276 		ext4_error(sb, "Freeing blocks not in datazone - "
5277 			   "block = %llu, count = %lu", block, count);
5278 		goto error_return;
5279 	}
5280 
5281 	ext4_debug("freeing block %llu\n", block);
5282 	trace_ext4_free_blocks(inode, block, count, flags);
5283 
5284 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5285 		BUG_ON(count > 1);
5286 
5287 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5288 			    inode, bh, block);
5289 	}
5290 
5291 	/*
5292 	 * If the extent to be freed does not begin on a cluster
5293 	 * boundary, we need to deal with partial clusters at the
5294 	 * beginning and end of the extent.  Normally we will free
5295 	 * blocks at the beginning or the end unless we are explicitly
5296 	 * requested to avoid doing so.
5297 	 */
5298 	overflow = EXT4_PBLK_COFF(sbi, block);
5299 	if (overflow) {
5300 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5301 			overflow = sbi->s_cluster_ratio - overflow;
5302 			block += overflow;
5303 			if (count > overflow)
5304 				count -= overflow;
5305 			else
5306 				return;
5307 		} else {
5308 			block -= overflow;
5309 			count += overflow;
5310 		}
5311 	}
5312 	overflow = EXT4_LBLK_COFF(sbi, count);
5313 	if (overflow) {
5314 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5315 			if (count > overflow)
5316 				count -= overflow;
5317 			else
5318 				return;
5319 		} else
5320 			count += sbi->s_cluster_ratio - overflow;
5321 	}
5322 
5323 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5324 		int i;
5325 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5326 
5327 		for (i = 0; i < count; i++) {
5328 			cond_resched();
5329 			if (is_metadata)
5330 				bh = sb_find_get_block(inode->i_sb, block + i);
5331 			ext4_forget(handle, is_metadata, inode, bh, block + i);
5332 		}
5333 	}
5334 
5335 do_more:
5336 	overflow = 0;
5337 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5338 
5339 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5340 			ext4_get_group_info(sb, block_group))))
5341 		return;
5342 
5343 	/*
5344 	 * Check to see if we are freeing blocks across a group
5345 	 * boundary.
5346 	 */
5347 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5348 		overflow = EXT4_C2B(sbi, bit) + count -
5349 			EXT4_BLOCKS_PER_GROUP(sb);
5350 		count -= overflow;
5351 	}
5352 	count_clusters = EXT4_NUM_B2C(sbi, count);
5353 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5354 	if (IS_ERR(bitmap_bh)) {
5355 		err = PTR_ERR(bitmap_bh);
5356 		bitmap_bh = NULL;
5357 		goto error_return;
5358 	}
5359 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5360 	if (!gdp) {
5361 		err = -EIO;
5362 		goto error_return;
5363 	}
5364 
5365 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5366 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5367 	    in_range(block, ext4_inode_table(sb, gdp),
5368 		     sbi->s_itb_per_group) ||
5369 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
5370 		     sbi->s_itb_per_group)) {
5371 
5372 		ext4_error(sb, "Freeing blocks in system zone - "
5373 			   "Block = %llu, count = %lu", block, count);
5374 		/* err = 0. ext4_std_error should be a no op */
5375 		goto error_return;
5376 	}
5377 
5378 	BUFFER_TRACE(bitmap_bh, "getting write access");
5379 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5380 	if (err)
5381 		goto error_return;
5382 
5383 	/*
5384 	 * We are about to modify some metadata.  Call the journal APIs
5385 	 * to unshare ->b_data if a currently-committing transaction is
5386 	 * using it
5387 	 */
5388 	BUFFER_TRACE(gd_bh, "get_write_access");
5389 	err = ext4_journal_get_write_access(handle, gd_bh);
5390 	if (err)
5391 		goto error_return;
5392 #ifdef AGGRESSIVE_CHECK
5393 	{
5394 		int i;
5395 		for (i = 0; i < count_clusters; i++)
5396 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5397 	}
5398 #endif
5399 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5400 
5401 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5402 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5403 				     GFP_NOFS|__GFP_NOFAIL);
5404 	if (err)
5405 		goto error_return;
5406 
5407 	/*
5408 	 * We need to make sure we don't reuse the freed block until after the
5409 	 * transaction is committed. We make an exception if the inode is to be
5410 	 * written in writeback mode since writeback mode has weak data
5411 	 * consistency guarantees.
5412 	 */
5413 	if (ext4_handle_valid(handle) &&
5414 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5415 	     !ext4_should_writeback_data(inode))) {
5416 		struct ext4_free_data *new_entry;
5417 		/*
5418 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5419 		 * to fail.
5420 		 */
5421 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5422 				GFP_NOFS|__GFP_NOFAIL);
5423 		new_entry->efd_start_cluster = bit;
5424 		new_entry->efd_group = block_group;
5425 		new_entry->efd_count = count_clusters;
5426 		new_entry->efd_tid = handle->h_transaction->t_tid;
5427 
5428 		ext4_lock_group(sb, block_group);
5429 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5430 		ext4_mb_free_metadata(handle, &e4b, new_entry);
5431 	} else {
5432 		/* need to update group_info->bb_free and bitmap
5433 		 * with group lock held. generate_buddy look at
5434 		 * them with group lock_held
5435 		 */
5436 		if (test_opt(sb, DISCARD)) {
5437 			err = ext4_issue_discard(sb, block_group, bit, count,
5438 						 NULL);
5439 			if (err && err != -EOPNOTSUPP)
5440 				ext4_msg(sb, KERN_WARNING, "discard request in"
5441 					 " group:%d block:%d count:%lu failed"
5442 					 " with %d", block_group, bit, count,
5443 					 err);
5444 		} else
5445 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5446 
5447 		ext4_lock_group(sb, block_group);
5448 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5449 		mb_free_blocks(inode, &e4b, bit, count_clusters);
5450 	}
5451 
5452 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5453 	ext4_free_group_clusters_set(sb, gdp, ret);
5454 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5455 	ext4_group_desc_csum_set(sb, block_group, gdp);
5456 	ext4_unlock_group(sb, block_group);
5457 
5458 	if (sbi->s_log_groups_per_flex) {
5459 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5460 		atomic64_add(count_clusters,
5461 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5462 						  flex_group)->free_clusters);
5463 	}
5464 
5465 	/*
5466 	 * on a bigalloc file system, defer the s_freeclusters_counter
5467 	 * update to the caller (ext4_remove_space and friends) so they
5468 	 * can determine if a cluster freed here should be rereserved
5469 	 */
5470 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5471 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5472 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5473 		percpu_counter_add(&sbi->s_freeclusters_counter,
5474 				   count_clusters);
5475 	}
5476 
5477 	ext4_mb_unload_buddy(&e4b);
5478 
5479 	/* We dirtied the bitmap block */
5480 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5481 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5482 
5483 	/* And the group descriptor block */
5484 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5485 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5486 	if (!err)
5487 		err = ret;
5488 
5489 	if (overflow && !err) {
5490 		block += count;
5491 		count = overflow;
5492 		put_bh(bitmap_bh);
5493 		goto do_more;
5494 	}
5495 error_return:
5496 	brelse(bitmap_bh);
5497 	ext4_std_error(sb, err);
5498 	return;
5499 }
5500 
5501 /**
5502  * ext4_group_add_blocks() -- Add given blocks to an existing group
5503  * @handle:			handle to this transaction
5504  * @sb:				super block
5505  * @block:			start physical block to add to the block group
5506  * @count:			number of blocks to free
5507  *
5508  * This marks the blocks as free in the bitmap and buddy.
5509  */
5510 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5511 			 ext4_fsblk_t block, unsigned long count)
5512 {
5513 	struct buffer_head *bitmap_bh = NULL;
5514 	struct buffer_head *gd_bh;
5515 	ext4_group_t block_group;
5516 	ext4_grpblk_t bit;
5517 	unsigned int i;
5518 	struct ext4_group_desc *desc;
5519 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5520 	struct ext4_buddy e4b;
5521 	int err = 0, ret, free_clusters_count;
5522 	ext4_grpblk_t clusters_freed;
5523 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5524 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5525 	unsigned long cluster_count = last_cluster - first_cluster + 1;
5526 
5527 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5528 
5529 	if (count == 0)
5530 		return 0;
5531 
5532 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5533 	/*
5534 	 * Check to see if we are freeing blocks across a group
5535 	 * boundary.
5536 	 */
5537 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5538 		ext4_warning(sb, "too many blocks added to group %u",
5539 			     block_group);
5540 		err = -EINVAL;
5541 		goto error_return;
5542 	}
5543 
5544 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5545 	if (IS_ERR(bitmap_bh)) {
5546 		err = PTR_ERR(bitmap_bh);
5547 		bitmap_bh = NULL;
5548 		goto error_return;
5549 	}
5550 
5551 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5552 	if (!desc) {
5553 		err = -EIO;
5554 		goto error_return;
5555 	}
5556 
5557 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5558 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5559 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5560 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5561 		     sbi->s_itb_per_group)) {
5562 		ext4_error(sb, "Adding blocks in system zones - "
5563 			   "Block = %llu, count = %lu",
5564 			   block, count);
5565 		err = -EINVAL;
5566 		goto error_return;
5567 	}
5568 
5569 	BUFFER_TRACE(bitmap_bh, "getting write access");
5570 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5571 	if (err)
5572 		goto error_return;
5573 
5574 	/*
5575 	 * We are about to modify some metadata.  Call the journal APIs
5576 	 * to unshare ->b_data if a currently-committing transaction is
5577 	 * using it
5578 	 */
5579 	BUFFER_TRACE(gd_bh, "get_write_access");
5580 	err = ext4_journal_get_write_access(handle, gd_bh);
5581 	if (err)
5582 		goto error_return;
5583 
5584 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5585 		BUFFER_TRACE(bitmap_bh, "clear bit");
5586 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5587 			ext4_error(sb, "bit already cleared for block %llu",
5588 				   (ext4_fsblk_t)(block + i));
5589 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5590 		} else {
5591 			clusters_freed++;
5592 		}
5593 	}
5594 
5595 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5596 	if (err)
5597 		goto error_return;
5598 
5599 	/*
5600 	 * need to update group_info->bb_free and bitmap
5601 	 * with group lock held. generate_buddy look at
5602 	 * them with group lock_held
5603 	 */
5604 	ext4_lock_group(sb, block_group);
5605 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5606 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5607 	free_clusters_count = clusters_freed +
5608 		ext4_free_group_clusters(sb, desc);
5609 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5610 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5611 	ext4_group_desc_csum_set(sb, block_group, desc);
5612 	ext4_unlock_group(sb, block_group);
5613 	percpu_counter_add(&sbi->s_freeclusters_counter,
5614 			   clusters_freed);
5615 
5616 	if (sbi->s_log_groups_per_flex) {
5617 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5618 		atomic64_add(clusters_freed,
5619 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5620 						  flex_group)->free_clusters);
5621 	}
5622 
5623 	ext4_mb_unload_buddy(&e4b);
5624 
5625 	/* We dirtied the bitmap block */
5626 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5627 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5628 
5629 	/* And the group descriptor block */
5630 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5631 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5632 	if (!err)
5633 		err = ret;
5634 
5635 error_return:
5636 	brelse(bitmap_bh);
5637 	ext4_std_error(sb, err);
5638 	return err;
5639 }
5640 
5641 /**
5642  * ext4_trim_extent -- function to TRIM one single free extent in the group
5643  * @sb:		super block for the file system
5644  * @start:	starting block of the free extent in the alloc. group
5645  * @count:	number of blocks to TRIM
5646  * @group:	alloc. group we are working with
5647  * @e4b:	ext4 buddy for the group
5648  *
5649  * Trim "count" blocks starting at "start" in the "group". To assure that no
5650  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5651  * be called with under the group lock.
5652  */
5653 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5654 			     ext4_group_t group, struct ext4_buddy *e4b)
5655 __releases(bitlock)
5656 __acquires(bitlock)
5657 {
5658 	struct ext4_free_extent ex;
5659 	int ret = 0;
5660 
5661 	trace_ext4_trim_extent(sb, group, start, count);
5662 
5663 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5664 
5665 	ex.fe_start = start;
5666 	ex.fe_group = group;
5667 	ex.fe_len = count;
5668 
5669 	/*
5670 	 * Mark blocks used, so no one can reuse them while
5671 	 * being trimmed.
5672 	 */
5673 	mb_mark_used(e4b, &ex);
5674 	ext4_unlock_group(sb, group);
5675 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5676 	ext4_lock_group(sb, group);
5677 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5678 	return ret;
5679 }
5680 
5681 /**
5682  * ext4_trim_all_free -- function to trim all free space in alloc. group
5683  * @sb:			super block for file system
5684  * @group:		group to be trimmed
5685  * @start:		first group block to examine
5686  * @max:		last group block to examine
5687  * @minblocks:		minimum extent block count
5688  *
5689  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5690  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5691  * the extent.
5692  *
5693  *
5694  * ext4_trim_all_free walks through group's block bitmap searching for free
5695  * extents. When the free extent is found, mark it as used in group buddy
5696  * bitmap. Then issue a TRIM command on this extent and free the extent in
5697  * the group buddy bitmap. This is done until whole group is scanned.
5698  */
5699 static ext4_grpblk_t
5700 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5701 		   ext4_grpblk_t start, ext4_grpblk_t max,
5702 		   ext4_grpblk_t minblocks)
5703 {
5704 	void *bitmap;
5705 	ext4_grpblk_t next, count = 0, free_count = 0;
5706 	struct ext4_buddy e4b;
5707 	int ret = 0;
5708 
5709 	trace_ext4_trim_all_free(sb, group, start, max);
5710 
5711 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5712 	if (ret) {
5713 		ext4_warning(sb, "Error %d loading buddy information for %u",
5714 			     ret, group);
5715 		return ret;
5716 	}
5717 	bitmap = e4b.bd_bitmap;
5718 
5719 	ext4_lock_group(sb, group);
5720 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5721 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5722 		goto out;
5723 
5724 	start = (e4b.bd_info->bb_first_free > start) ?
5725 		e4b.bd_info->bb_first_free : start;
5726 
5727 	while (start <= max) {
5728 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5729 		if (start > max)
5730 			break;
5731 		next = mb_find_next_bit(bitmap, max + 1, start);
5732 
5733 		if ((next - start) >= minblocks) {
5734 			ret = ext4_trim_extent(sb, start,
5735 					       next - start, group, &e4b);
5736 			if (ret && ret != -EOPNOTSUPP)
5737 				break;
5738 			ret = 0;
5739 			count += next - start;
5740 		}
5741 		free_count += next - start;
5742 		start = next + 1;
5743 
5744 		if (fatal_signal_pending(current)) {
5745 			count = -ERESTARTSYS;
5746 			break;
5747 		}
5748 
5749 		if (need_resched()) {
5750 			ext4_unlock_group(sb, group);
5751 			cond_resched();
5752 			ext4_lock_group(sb, group);
5753 		}
5754 
5755 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5756 			break;
5757 	}
5758 
5759 	if (!ret) {
5760 		ret = count;
5761 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5762 	}
5763 out:
5764 	ext4_unlock_group(sb, group);
5765 	ext4_mb_unload_buddy(&e4b);
5766 
5767 	ext4_debug("trimmed %d blocks in the group %d\n",
5768 		count, group);
5769 
5770 	return ret;
5771 }
5772 
5773 /**
5774  * ext4_trim_fs() -- trim ioctl handle function
5775  * @sb:			superblock for filesystem
5776  * @range:		fstrim_range structure
5777  *
5778  * start:	First Byte to trim
5779  * len:		number of Bytes to trim from start
5780  * minlen:	minimum extent length in Bytes
5781  * ext4_trim_fs goes through all allocation groups containing Bytes from
5782  * start to start+len. For each such a group ext4_trim_all_free function
5783  * is invoked to trim all free space.
5784  */
5785 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5786 {
5787 	struct ext4_group_info *grp;
5788 	ext4_group_t group, first_group, last_group;
5789 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5790 	uint64_t start, end, minlen, trimmed = 0;
5791 	ext4_fsblk_t first_data_blk =
5792 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5793 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5794 	int ret = 0;
5795 
5796 	start = range->start >> sb->s_blocksize_bits;
5797 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5798 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5799 			      range->minlen >> sb->s_blocksize_bits);
5800 
5801 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5802 	    start >= max_blks ||
5803 	    range->len < sb->s_blocksize)
5804 		return -EINVAL;
5805 	if (end >= max_blks)
5806 		end = max_blks - 1;
5807 	if (end <= first_data_blk)
5808 		goto out;
5809 	if (start < first_data_blk)
5810 		start = first_data_blk;
5811 
5812 	/* Determine first and last group to examine based on start and end */
5813 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5814 				     &first_group, &first_cluster);
5815 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5816 				     &last_group, &last_cluster);
5817 
5818 	/* end now represents the last cluster to discard in this group */
5819 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5820 
5821 	for (group = first_group; group <= last_group; group++) {
5822 		grp = ext4_get_group_info(sb, group);
5823 		/* We only do this if the grp has never been initialized */
5824 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5825 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5826 			if (ret)
5827 				break;
5828 		}
5829 
5830 		/*
5831 		 * For all the groups except the last one, last cluster will
5832 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5833 		 * change it for the last group, note that last_cluster is
5834 		 * already computed earlier by ext4_get_group_no_and_offset()
5835 		 */
5836 		if (group == last_group)
5837 			end = last_cluster;
5838 
5839 		if (grp->bb_free >= minlen) {
5840 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5841 						end, minlen);
5842 			if (cnt < 0) {
5843 				ret = cnt;
5844 				break;
5845 			}
5846 			trimmed += cnt;
5847 		}
5848 
5849 		/*
5850 		 * For every group except the first one, we are sure
5851 		 * that the first cluster to discard will be cluster #0.
5852 		 */
5853 		first_cluster = 0;
5854 	}
5855 
5856 	if (!ret)
5857 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5858 
5859 out:
5860 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5861 	return ret;
5862 }
5863 
5864 /* Iterate all the free extents in the group. */
5865 int
5866 ext4_mballoc_query_range(
5867 	struct super_block		*sb,
5868 	ext4_group_t			group,
5869 	ext4_grpblk_t			start,
5870 	ext4_grpblk_t			end,
5871 	ext4_mballoc_query_range_fn	formatter,
5872 	void				*priv)
5873 {
5874 	void				*bitmap;
5875 	ext4_grpblk_t			next;
5876 	struct ext4_buddy		e4b;
5877 	int				error;
5878 
5879 	error = ext4_mb_load_buddy(sb, group, &e4b);
5880 	if (error)
5881 		return error;
5882 	bitmap = e4b.bd_bitmap;
5883 
5884 	ext4_lock_group(sb, group);
5885 
5886 	start = (e4b.bd_info->bb_first_free > start) ?
5887 		e4b.bd_info->bb_first_free : start;
5888 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5889 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5890 
5891 	while (start <= end) {
5892 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5893 		if (start > end)
5894 			break;
5895 		next = mb_find_next_bit(bitmap, end + 1, start);
5896 
5897 		ext4_unlock_group(sb, group);
5898 		error = formatter(sb, group, start, next - start, priv);
5899 		if (error)
5900 			goto out_unload;
5901 		ext4_lock_group(sb, group);
5902 
5903 		start = next + 1;
5904 	}
5905 
5906 	ext4_unlock_group(sb, group);
5907 out_unload:
5908 	ext4_mb_unload_buddy(&e4b);
5909 
5910 	return error;
5911 }
5912