xref: /linux/fs/ext4/mballoc.c (revision b8cf18bc4eadf4522b4937b3185dfa331d039e70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
158  * >= the order of the request. We directly look at the largest free order list
159  * in the data structure (1) above where largest_free_order = order of the
160  * request. If that list is empty, we look at remaining list in the increasing
161  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
162  * lookup in O(1) time.
163  *
164  * At CR_GOAL_LEN_FAST, we only consider groups where
165  * average fragment size > request size. So, we lookup a group which has average
166  * fragment size just above or equal to request size using our average fragment
167  * size group lists (data structure 2) in O(1) time.
168  *
169  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
170  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
171  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
172  * fragment size > goal length. So before falling to the slower
173  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
174  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
175  * enough average fragment size. This increases the chances of finding a
176  * suitable block group in O(1) time and results in faster allocation at the
177  * cost of reduced size of allocation.
178  *
179  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
180  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
181  * CR_GOAL_LEN_FAST phase.
182  *
183  * The regular allocator (using the buddy cache) supports a few tunables.
184  *
185  * /sys/fs/ext4/<partition>/mb_min_to_scan
186  * /sys/fs/ext4/<partition>/mb_max_to_scan
187  * /sys/fs/ext4/<partition>/mb_order2_req
188  * /sys/fs/ext4/<partition>/mb_linear_limit
189  *
190  * The regular allocator uses buddy scan only if the request len is power of
191  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
192  * value of s_mb_order2_reqs can be tuned via
193  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
194  * stripe size (sbi->s_stripe), we try to search for contiguous block in
195  * stripe size. This should result in better allocation on RAID setups. If
196  * not, we search in the specific group using bitmap for best extents. The
197  * tunable min_to_scan and max_to_scan control the behaviour here.
198  * min_to_scan indicate how long the mballoc __must__ look for a best
199  * extent and max_to_scan indicates how long the mballoc __can__ look for a
200  * best extent in the found extents. Searching for the blocks starts with
201  * the group specified as the goal value in allocation context via
202  * ac_g_ex. Each group is first checked based on the criteria whether it
203  * can be used for allocation. ext4_mb_good_group explains how the groups are
204  * checked.
205  *
206  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
207  * get traversed linearly. That may result in subsequent allocations being not
208  * close to each other. And so, the underlying device may get filled up in a
209  * non-linear fashion. While that may not matter on non-rotational devices, for
210  * rotational devices that may result in higher seek times. "mb_linear_limit"
211  * tells mballoc how many groups mballoc should search linearly before
212  * performing consulting above data structures for more efficient lookups. For
213  * non rotational devices, this value defaults to 0 and for rotational devices
214  * this is set to MB_DEFAULT_LINEAR_LIMIT.
215  *
216  * Both the prealloc space are getting populated as above. So for the first
217  * request we will hit the buddy cache which will result in this prealloc
218  * space getting filled. The prealloc space is then later used for the
219  * subsequent request.
220  */
221 
222 /*
223  * mballoc operates on the following data:
224  *  - on-disk bitmap
225  *  - in-core buddy (actually includes buddy and bitmap)
226  *  - preallocation descriptors (PAs)
227  *
228  * there are two types of preallocations:
229  *  - inode
230  *    assiged to specific inode and can be used for this inode only.
231  *    it describes part of inode's space preallocated to specific
232  *    physical blocks. any block from that preallocated can be used
233  *    independent. the descriptor just tracks number of blocks left
234  *    unused. so, before taking some block from descriptor, one must
235  *    make sure corresponded logical block isn't allocated yet. this
236  *    also means that freeing any block within descriptor's range
237  *    must discard all preallocated blocks.
238  *  - locality group
239  *    assigned to specific locality group which does not translate to
240  *    permanent set of inodes: inode can join and leave group. space
241  *    from this type of preallocation can be used for any inode. thus
242  *    it's consumed from the beginning to the end.
243  *
244  * relation between them can be expressed as:
245  *    in-core buddy = on-disk bitmap + preallocation descriptors
246  *
247  * this mean blocks mballoc considers used are:
248  *  - allocated blocks (persistent)
249  *  - preallocated blocks (non-persistent)
250  *
251  * consistency in mballoc world means that at any time a block is either
252  * free or used in ALL structures. notice: "any time" should not be read
253  * literally -- time is discrete and delimited by locks.
254  *
255  *  to keep it simple, we don't use block numbers, instead we count number of
256  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
257  *
258  * all operations can be expressed as:
259  *  - init buddy:			buddy = on-disk + PAs
260  *  - new PA:				buddy += N; PA = N
261  *  - use inode PA:			on-disk += N; PA -= N
262  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
263  *  - use locality group PA		on-disk += N; PA -= N
264  *  - discard locality group PA		buddy -= PA; PA = 0
265  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
266  *        is used in real operation because we can't know actual used
267  *        bits from PA, only from on-disk bitmap
268  *
269  * if we follow this strict logic, then all operations above should be atomic.
270  * given some of them can block, we'd have to use something like semaphores
271  * killing performance on high-end SMP hardware. let's try to relax it using
272  * the following knowledge:
273  *  1) if buddy is referenced, it's already initialized
274  *  2) while block is used in buddy and the buddy is referenced,
275  *     nobody can re-allocate that block
276  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
277  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
278  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
279  *     block
280  *
281  * so, now we're building a concurrency table:
282  *  - init buddy vs.
283  *    - new PA
284  *      blocks for PA are allocated in the buddy, buddy must be referenced
285  *      until PA is linked to allocation group to avoid concurrent buddy init
286  *    - use inode PA
287  *      we need to make sure that either on-disk bitmap or PA has uptodate data
288  *      given (3) we care that PA-=N operation doesn't interfere with init
289  *    - discard inode PA
290  *      the simplest way would be to have buddy initialized by the discard
291  *    - use locality group PA
292  *      again PA-=N must be serialized with init
293  *    - discard locality group PA
294  *      the simplest way would be to have buddy initialized by the discard
295  *  - new PA vs.
296  *    - use inode PA
297  *      i_data_sem serializes them
298  *    - discard inode PA
299  *      discard process must wait until PA isn't used by another process
300  *    - use locality group PA
301  *      some mutex should serialize them
302  *    - discard locality group PA
303  *      discard process must wait until PA isn't used by another process
304  *  - use inode PA
305  *    - use inode PA
306  *      i_data_sem or another mutex should serializes them
307  *    - discard inode PA
308  *      discard process must wait until PA isn't used by another process
309  *    - use locality group PA
310  *      nothing wrong here -- they're different PAs covering different blocks
311  *    - discard locality group PA
312  *      discard process must wait until PA isn't used by another process
313  *
314  * now we're ready to make few consequences:
315  *  - PA is referenced and while it is no discard is possible
316  *  - PA is referenced until block isn't marked in on-disk bitmap
317  *  - PA changes only after on-disk bitmap
318  *  - discard must not compete with init. either init is done before
319  *    any discard or they're serialized somehow
320  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
321  *
322  * a special case when we've used PA to emptiness. no need to modify buddy
323  * in this case, but we should care about concurrent init
324  *
325  */
326 
327  /*
328  * Logic in few words:
329  *
330  *  - allocation:
331  *    load group
332  *    find blocks
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - use preallocation:
337  *    find proper PA (per-inode or group)
338  *    load group
339  *    mark bits in on-disk bitmap
340  *    release group
341  *    release PA
342  *
343  *  - free:
344  *    load group
345  *    mark bits in on-disk bitmap
346  *    release group
347  *
348  *  - discard preallocations in group:
349  *    mark PAs deleted
350  *    move them onto local list
351  *    load on-disk bitmap
352  *    load group
353  *    remove PA from object (inode or locality group)
354  *    mark free blocks in-core
355  *
356  *  - discard inode's preallocations:
357  */
358 
359 /*
360  * Locking rules
361  *
362  * Locks:
363  *  - bitlock on a group	(group)
364  *  - object (inode/locality)	(object)
365  *  - per-pa lock		(pa)
366  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
367  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
368  *
369  * Paths:
370  *  - new pa
371  *    object
372  *    group
373  *
374  *  - find and use pa:
375  *    pa
376  *
377  *  - release consumed pa:
378  *    pa
379  *    group
380  *    object
381  *
382  *  - generate in-core bitmap:
383  *    group
384  *        pa
385  *
386  *  - discard all for given object (inode, locality group):
387  *    object
388  *        pa
389  *    group
390  *
391  *  - discard all for given group:
392  *    group
393  *        pa
394  *    group
395  *        object
396  *
397  *  - allocation path (ext4_mb_regular_allocator)
398  *    group
399  *    cr_power2_aligned/cr_goal_len_fast
400  */
401 static struct kmem_cache *ext4_pspace_cachep;
402 static struct kmem_cache *ext4_ac_cachep;
403 static struct kmem_cache *ext4_free_data_cachep;
404 
405 /* We create slab caches for groupinfo data structures based on the
406  * superblock block size.  There will be one per mounted filesystem for
407  * each unique s_blocksize_bits */
408 #define NR_GRPINFO_CACHES 8
409 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
410 
411 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
412 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
413 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
414 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
415 };
416 
417 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
418 					ext4_group_t group);
419 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
420 						ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 			       ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 		struct ext4_buddy *e4b, ext4_grpblk_t start,
428 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 	int __cpu;
452 	u64 __seq = 0;
453 
454 	for_each_possible_cpu(__cpu)
455 		__seq += per_cpu(discard_pa_seq, __cpu);
456 	return __seq;
457 }
458 
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 	*bit += ((unsigned long) addr & 7UL) << 3;
463 	addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 	*bit += ((unsigned long) addr & 3UL) << 3;
466 	addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 	return addr;
471 }
472 
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 	/*
476 	 * ext4_test_bit on architecture like powerpc
477 	 * needs unsigned long aligned address
478 	 */
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	return ext4_test_bit(bit, addr);
481 }
482 
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	ext4_set_bit(bit, addr);
487 }
488 
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 	addr = mb_correct_addr_and_bit(&bit, addr);
492 	ext4_clear_bit(bit, addr);
493 }
494 
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 	addr = mb_correct_addr_and_bit(&bit, addr);
498 	return ext4_test_and_clear_bit(bit, addr);
499 }
500 
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 	int fix = 0, ret, tmpmax;
504 	addr = mb_correct_addr_and_bit(&fix, addr);
505 	tmpmax = max + fix;
506 	start += fix;
507 
508 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 	if (ret > max)
510 		return max;
511 	return ret;
512 }
513 
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 	int fix = 0, ret, tmpmax;
517 	addr = mb_correct_addr_and_bit(&fix, addr);
518 	tmpmax = max + fix;
519 	start += fix;
520 
521 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 	if (ret > max)
523 		return max;
524 	return ret;
525 }
526 
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 	char *bb;
530 
531 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 	BUG_ON(max == NULL);
533 
534 	if (order > e4b->bd_blkbits + 1) {
535 		*max = 0;
536 		return NULL;
537 	}
538 
539 	/* at order 0 we see each particular block */
540 	if (order == 0) {
541 		*max = 1 << (e4b->bd_blkbits + 3);
542 		return e4b->bd_bitmap;
543 	}
544 
545 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548 	return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 			   int first, int count)
554 {
555 	int i;
556 	struct super_block *sb = e4b->bd_sb;
557 
558 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 		return;
560 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 	for (i = 0; i < count; i++) {
562 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 			ext4_fsblk_t blocknr;
564 
565 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 			ext4_grp_locked_error(sb, e4b->bd_group,
568 					      inode ? inode->i_ino : 0,
569 					      blocknr,
570 					      "freeing block already freed "
571 					      "(bit %u)",
572 					      first + i);
573 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
575 		}
576 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 	}
578 }
579 
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 	int i;
583 
584 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 		return;
586 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 	for (i = 0; i < count; i++) {
588 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 	}
591 }
592 
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 		return;
597 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 		unsigned char *b1, *b2;
599 		int i;
600 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 		b2 = (unsigned char *) bitmap;
602 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 			if (b1[i] != b2[i]) {
604 				ext4_msg(e4b->bd_sb, KERN_ERR,
605 					 "corruption in group %u "
606 					 "at byte %u(%u): %x in copy != %x "
607 					 "on disk/prealloc",
608 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 				BUG();
610 			}
611 		}
612 	}
613 }
614 
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 			struct ext4_group_info *grp, ext4_group_t group)
617 {
618 	struct buffer_head *bh;
619 
620 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 	if (!grp->bb_bitmap)
622 		return;
623 
624 	bh = ext4_read_block_bitmap(sb, group);
625 	if (IS_ERR_OR_NULL(bh)) {
626 		kfree(grp->bb_bitmap);
627 		grp->bb_bitmap = NULL;
628 		return;
629 	}
630 
631 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 	put_bh(bh);
633 }
634 
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 	kfree(grp->bb_bitmap);
638 }
639 
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642 				struct ext4_buddy *e4b, int first, int count)
643 {
644 	return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 						int first, int count)
648 {
649 	return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 	return;
654 }
655 
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 			struct ext4_group_info *grp, ext4_group_t group)
658 {
659 	return;
660 }
661 
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 	return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)						\
671 do {									\
672 	if (!(assert)) {						\
673 		printk(KERN_EMERG					\
674 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
675 			function, file, line, # assert);		\
676 		BUG();							\
677 	}								\
678 } while (0)
679 
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 				const char *function, int line)
682 {
683 	struct super_block *sb = e4b->bd_sb;
684 	int order = e4b->bd_blkbits + 1;
685 	int max;
686 	int max2;
687 	int i;
688 	int j;
689 	int k;
690 	int count;
691 	struct ext4_group_info *grp;
692 	int fragments = 0;
693 	int fstart;
694 	struct list_head *cur;
695 	void *buddy;
696 	void *buddy2;
697 
698 	if (e4b->bd_info->bb_check_counter++ % 10)
699 		return 0;
700 
701 	while (order > 1) {
702 		buddy = mb_find_buddy(e4b, order, &max);
703 		MB_CHECK_ASSERT(buddy);
704 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 		MB_CHECK_ASSERT(buddy2);
706 		MB_CHECK_ASSERT(buddy != buddy2);
707 		MB_CHECK_ASSERT(max * 2 == max2);
708 
709 		count = 0;
710 		for (i = 0; i < max; i++) {
711 
712 			if (mb_test_bit(i, buddy)) {
713 				/* only single bit in buddy2 may be 0 */
714 				if (!mb_test_bit(i << 1, buddy2)) {
715 					MB_CHECK_ASSERT(
716 						mb_test_bit((i<<1)+1, buddy2));
717 				}
718 				continue;
719 			}
720 
721 			/* both bits in buddy2 must be 1 */
722 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725 			for (j = 0; j < (1 << order); j++) {
726 				k = (i * (1 << order)) + j;
727 				MB_CHECK_ASSERT(
728 					!mb_test_bit(k, e4b->bd_bitmap));
729 			}
730 			count++;
731 		}
732 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 		order--;
734 	}
735 
736 	fstart = -1;
737 	buddy = mb_find_buddy(e4b, 0, &max);
738 	for (i = 0; i < max; i++) {
739 		if (!mb_test_bit(i, buddy)) {
740 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 			if (fstart == -1) {
742 				fragments++;
743 				fstart = i;
744 			}
745 			continue;
746 		}
747 		fstart = -1;
748 		/* check used bits only */
749 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 			buddy2 = mb_find_buddy(e4b, j, &max2);
751 			k = i >> j;
752 			MB_CHECK_ASSERT(k < max2);
753 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 		}
755 	}
756 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759 	grp = ext4_get_group_info(sb, e4b->bd_group);
760 	if (!grp)
761 		return NULL;
762 	list_for_each(cur, &grp->bb_prealloc_list) {
763 		ext4_group_t groupnr;
764 		struct ext4_prealloc_space *pa;
765 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 		for (i = 0; i < pa->pa_len; i++)
769 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 	}
771 	return 0;
772 }
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
775 					__FILE__, __func__, __LINE__)
776 #else
777 #define mb_check_buddy(e4b)
778 #endif
779 
780 /*
781  * Divide blocks started from @first with length @len into
782  * smaller chunks with power of 2 blocks.
783  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784  * then increase bb_counters[] for corresponded chunk size.
785  */
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788 					struct ext4_group_info *grp)
789 {
790 	struct ext4_sb_info *sbi = EXT4_SB(sb);
791 	ext4_grpblk_t min;
792 	ext4_grpblk_t max;
793 	ext4_grpblk_t chunk;
794 	unsigned int border;
795 
796 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797 
798 	border = 2 << sb->s_blocksize_bits;
799 
800 	while (len > 0) {
801 		/* find how many blocks can be covered since this position */
802 		max = ffs(first | border) - 1;
803 
804 		/* find how many blocks of power 2 we need to mark */
805 		min = fls(len) - 1;
806 
807 		if (max < min)
808 			min = max;
809 		chunk = 1 << min;
810 
811 		/* mark multiblock chunks only */
812 		grp->bb_counters[min]++;
813 		if (min > 0)
814 			mb_clear_bit(first >> min,
815 				     buddy + sbi->s_mb_offsets[min]);
816 
817 		len -= chunk;
818 		first += chunk;
819 	}
820 }
821 
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
823 {
824 	int order;
825 
826 	/*
827 	 * We don't bother with a special lists groups with only 1 block free
828 	 * extents and for completely empty groups.
829 	 */
830 	order = fls(len) - 2;
831 	if (order < 0)
832 		return 0;
833 	if (order == MB_NUM_ORDERS(sb))
834 		order--;
835 	return order;
836 }
837 
838 /* Move group to appropriate avg_fragment_size list */
839 static void
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
841 {
842 	struct ext4_sb_info *sbi = EXT4_SB(sb);
843 	int new_order;
844 
845 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
846 		return;
847 
848 	new_order = mb_avg_fragment_size_order(sb,
849 					grp->bb_free / grp->bb_fragments);
850 	if (new_order == grp->bb_avg_fragment_size_order)
851 		return;
852 
853 	if (grp->bb_avg_fragment_size_order != -1) {
854 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
855 					grp->bb_avg_fragment_size_order]);
856 		list_del(&grp->bb_avg_fragment_size_node);
857 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858 					grp->bb_avg_fragment_size_order]);
859 	}
860 	grp->bb_avg_fragment_size_order = new_order;
861 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
862 					grp->bb_avg_fragment_size_order]);
863 	list_add_tail(&grp->bb_avg_fragment_size_node,
864 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866 					grp->bb_avg_fragment_size_order]);
867 }
868 
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874 			enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877 	struct ext4_group_info *iter, *grp;
878 	int i;
879 
880 	if (ac->ac_status == AC_STATUS_FOUND)
881 		return;
882 
883 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
885 
886 	grp = NULL;
887 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 			continue;
890 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 			continue;
894 		}
895 		grp = NULL;
896 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
897 				    bb_largest_free_order_node) {
898 			if (sbi->s_mb_stats)
899 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
900 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
901 				grp = iter;
902 				break;
903 			}
904 		}
905 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906 		if (grp)
907 			break;
908 	}
909 
910 	if (!grp) {
911 		/* Increment cr and search again */
912 		*new_cr = CR_GOAL_LEN_FAST;
913 	} else {
914 		*group = grp->bb_group;
915 		ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
916 	}
917 }
918 
919 /*
920  * Find a suitable group of given order from the average fragments list.
921  */
922 static struct ext4_group_info *
923 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
924 {
925 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
926 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
927 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
928 	struct ext4_group_info *grp = NULL, *iter;
929 	enum criteria cr = ac->ac_criteria;
930 
931 	if (list_empty(frag_list))
932 		return NULL;
933 	read_lock(frag_list_lock);
934 	if (list_empty(frag_list)) {
935 		read_unlock(frag_list_lock);
936 		return NULL;
937 	}
938 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
939 		if (sbi->s_mb_stats)
940 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
941 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
942 			grp = iter;
943 			break;
944 		}
945 	}
946 	read_unlock(frag_list_lock);
947 	return grp;
948 }
949 
950 /*
951  * Choose next group by traversing average fragment size list of suitable
952  * order. Updates *new_cr if cr level needs an update.
953  */
954 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
955 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
956 {
957 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
958 	struct ext4_group_info *grp = NULL;
959 	int i;
960 
961 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
962 		if (sbi->s_mb_stats)
963 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
964 	}
965 
966 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
967 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
968 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
969 		if (grp)
970 			break;
971 	}
972 
973 	if (grp) {
974 		*group = grp->bb_group;
975 		ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
976 	} else {
977 		*new_cr = CR_BEST_AVAIL_LEN;
978 	}
979 }
980 
981 /*
982  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
983  * order we have and proactively trim the goal request length to that order to
984  * find a suitable group faster.
985  *
986  * This optimizes allocation speed at the cost of slightly reduced
987  * preallocations. However, we make sure that we don't trim the request too
988  * much and fall to CR_GOAL_LEN_SLOW in that case.
989  */
990 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
991 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
992 {
993 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
994 	struct ext4_group_info *grp = NULL;
995 	int i, order, min_order;
996 	unsigned long num_stripe_clusters = 0;
997 
998 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
999 		if (sbi->s_mb_stats)
1000 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1001 	}
1002 
1003 	/*
1004 	 * mb_avg_fragment_size_order() returns order in a way that makes
1005 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1006 	 * fls() instead since we need to know the actual length while modifying
1007 	 * goal length.
1008 	 */
1009 	order = fls(ac->ac_g_ex.fe_len);
1010 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1011 	if (min_order < 0)
1012 		min_order = 0;
1013 
1014 	if (1 << min_order < ac->ac_o_ex.fe_len)
1015 		min_order = fls(ac->ac_o_ex.fe_len) + 1;
1016 
1017 	if (sbi->s_stripe > 0) {
1018 		/*
1019 		 * We are assuming that stripe size is always a multiple of
1020 		 * cluster ratio otherwise __ext4_fill_super exists early.
1021 		 */
1022 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1023 		if (1 << min_order < num_stripe_clusters)
1024 			min_order = fls(num_stripe_clusters);
1025 	}
1026 
1027 	for (i = order; i >= min_order; i--) {
1028 		int frag_order;
1029 		/*
1030 		 * Scale down goal len to make sure we find something
1031 		 * in the free fragments list. Basically, reduce
1032 		 * preallocations.
1033 		 */
1034 		ac->ac_g_ex.fe_len = 1 << i;
1035 
1036 		if (num_stripe_clusters > 0) {
1037 			/*
1038 			 * Try to round up the adjusted goal length to
1039 			 * stripe size (in cluster units) multiple for
1040 			 * efficiency.
1041 			 */
1042 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1043 						     num_stripe_clusters);
1044 		}
1045 
1046 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1047 							ac->ac_g_ex.fe_len);
1048 
1049 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1050 		if (grp)
1051 			break;
1052 	}
1053 
1054 	if (grp) {
1055 		*group = grp->bb_group;
1056 		ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1057 	} else {
1058 		/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1059 		ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1060 		*new_cr = CR_GOAL_LEN_SLOW;
1061 	}
1062 }
1063 
1064 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1065 {
1066 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1067 		return 0;
1068 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1069 		return 0;
1070 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1071 		return 0;
1072 	return 1;
1073 }
1074 
1075 /*
1076  * Return next linear group for allocation. If linear traversal should not be
1077  * performed, this function just returns the same group
1078  */
1079 static int
1080 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1081 {
1082 	if (!should_optimize_scan(ac))
1083 		goto inc_and_return;
1084 
1085 	if (ac->ac_groups_linear_remaining) {
1086 		ac->ac_groups_linear_remaining--;
1087 		goto inc_and_return;
1088 	}
1089 
1090 	return group;
1091 inc_and_return:
1092 	/*
1093 	 * Artificially restricted ngroups for non-extent
1094 	 * files makes group > ngroups possible on first loop.
1095 	 */
1096 	return group + 1 >= ngroups ? 0 : group + 1;
1097 }
1098 
1099 /*
1100  * ext4_mb_choose_next_group: choose next group for allocation.
1101  *
1102  * @ac        Allocation Context
1103  * @new_cr    This is an output parameter. If the there is no good group
1104  *            available at current CR level, this field is updated to indicate
1105  *            the new cr level that should be used.
1106  * @group     This is an input / output parameter. As an input it indicates the
1107  *            next group that the allocator intends to use for allocation. As
1108  *            output, this field indicates the next group that should be used as
1109  *            determined by the optimization functions.
1110  * @ngroups   Total number of groups
1111  */
1112 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1113 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1114 {
1115 	*new_cr = ac->ac_criteria;
1116 
1117 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1118 		*group = next_linear_group(ac, *group, ngroups);
1119 		return;
1120 	}
1121 
1122 	if (*new_cr == CR_POWER2_ALIGNED) {
1123 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1124 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1125 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1126 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1127 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1128 	} else {
1129 		/*
1130 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1131 		 * bb_free. But until that happens, we should never come here.
1132 		 */
1133 		WARN_ON(1);
1134 	}
1135 }
1136 
1137 /*
1138  * Cache the order of the largest free extent we have available in this block
1139  * group.
1140  */
1141 static void
1142 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1143 {
1144 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1145 	int i;
1146 
1147 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1148 		if (grp->bb_counters[i] > 0)
1149 			break;
1150 	/* No need to move between order lists? */
1151 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1152 	    i == grp->bb_largest_free_order) {
1153 		grp->bb_largest_free_order = i;
1154 		return;
1155 	}
1156 
1157 	if (grp->bb_largest_free_order >= 0) {
1158 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1159 					      grp->bb_largest_free_order]);
1160 		list_del_init(&grp->bb_largest_free_order_node);
1161 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1162 					      grp->bb_largest_free_order]);
1163 	}
1164 	grp->bb_largest_free_order = i;
1165 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1166 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1167 					      grp->bb_largest_free_order]);
1168 		list_add_tail(&grp->bb_largest_free_order_node,
1169 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1170 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1171 					      grp->bb_largest_free_order]);
1172 	}
1173 }
1174 
1175 static noinline_for_stack
1176 void ext4_mb_generate_buddy(struct super_block *sb,
1177 			    void *buddy, void *bitmap, ext4_group_t group,
1178 			    struct ext4_group_info *grp)
1179 {
1180 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1181 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1182 	ext4_grpblk_t i = 0;
1183 	ext4_grpblk_t first;
1184 	ext4_grpblk_t len;
1185 	unsigned free = 0;
1186 	unsigned fragments = 0;
1187 	unsigned long long period = get_cycles();
1188 
1189 	/* initialize buddy from bitmap which is aggregation
1190 	 * of on-disk bitmap and preallocations */
1191 	i = mb_find_next_zero_bit(bitmap, max, 0);
1192 	grp->bb_first_free = i;
1193 	while (i < max) {
1194 		fragments++;
1195 		first = i;
1196 		i = mb_find_next_bit(bitmap, max, i);
1197 		len = i - first;
1198 		free += len;
1199 		if (len > 1)
1200 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1201 		else
1202 			grp->bb_counters[0]++;
1203 		if (i < max)
1204 			i = mb_find_next_zero_bit(bitmap, max, i);
1205 	}
1206 	grp->bb_fragments = fragments;
1207 
1208 	if (free != grp->bb_free) {
1209 		ext4_grp_locked_error(sb, group, 0, 0,
1210 				      "block bitmap and bg descriptor "
1211 				      "inconsistent: %u vs %u free clusters",
1212 				      free, grp->bb_free);
1213 		/*
1214 		 * If we intend to continue, we consider group descriptor
1215 		 * corrupt and update bb_free using bitmap value
1216 		 */
1217 		grp->bb_free = free;
1218 		ext4_mark_group_bitmap_corrupted(sb, group,
1219 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1220 	}
1221 	mb_set_largest_free_order(sb, grp);
1222 	mb_update_avg_fragment_size(sb, grp);
1223 
1224 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1225 
1226 	period = get_cycles() - period;
1227 	atomic_inc(&sbi->s_mb_buddies_generated);
1228 	atomic64_add(period, &sbi->s_mb_generation_time);
1229 }
1230 
1231 /* The buddy information is attached the buddy cache inode
1232  * for convenience. The information regarding each group
1233  * is loaded via ext4_mb_load_buddy. The information involve
1234  * block bitmap and buddy information. The information are
1235  * stored in the inode as
1236  *
1237  * {                        page                        }
1238  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1239  *
1240  *
1241  * one block each for bitmap and buddy information.
1242  * So for each group we take up 2 blocks. A page can
1243  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1244  * So it can have information regarding groups_per_page which
1245  * is blocks_per_page/2
1246  *
1247  * Locking note:  This routine takes the block group lock of all groups
1248  * for this page; do not hold this lock when calling this routine!
1249  */
1250 
1251 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1252 {
1253 	ext4_group_t ngroups;
1254 	int blocksize;
1255 	int blocks_per_page;
1256 	int groups_per_page;
1257 	int err = 0;
1258 	int i;
1259 	ext4_group_t first_group, group;
1260 	int first_block;
1261 	struct super_block *sb;
1262 	struct buffer_head *bhs;
1263 	struct buffer_head **bh = NULL;
1264 	struct inode *inode;
1265 	char *data;
1266 	char *bitmap;
1267 	struct ext4_group_info *grinfo;
1268 
1269 	inode = page->mapping->host;
1270 	sb = inode->i_sb;
1271 	ngroups = ext4_get_groups_count(sb);
1272 	blocksize = i_blocksize(inode);
1273 	blocks_per_page = PAGE_SIZE / blocksize;
1274 
1275 	mb_debug(sb, "init page %lu\n", page->index);
1276 
1277 	groups_per_page = blocks_per_page >> 1;
1278 	if (groups_per_page == 0)
1279 		groups_per_page = 1;
1280 
1281 	/* allocate buffer_heads to read bitmaps */
1282 	if (groups_per_page > 1) {
1283 		i = sizeof(struct buffer_head *) * groups_per_page;
1284 		bh = kzalloc(i, gfp);
1285 		if (bh == NULL)
1286 			return -ENOMEM;
1287 	} else
1288 		bh = &bhs;
1289 
1290 	first_group = page->index * blocks_per_page / 2;
1291 
1292 	/* read all groups the page covers into the cache */
1293 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1294 		if (group >= ngroups)
1295 			break;
1296 
1297 		grinfo = ext4_get_group_info(sb, group);
1298 		if (!grinfo)
1299 			continue;
1300 		/*
1301 		 * If page is uptodate then we came here after online resize
1302 		 * which added some new uninitialized group info structs, so
1303 		 * we must skip all initialized uptodate buddies on the page,
1304 		 * which may be currently in use by an allocating task.
1305 		 */
1306 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1307 			bh[i] = NULL;
1308 			continue;
1309 		}
1310 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1311 		if (IS_ERR(bh[i])) {
1312 			err = PTR_ERR(bh[i]);
1313 			bh[i] = NULL;
1314 			goto out;
1315 		}
1316 		mb_debug(sb, "read bitmap for group %u\n", group);
1317 	}
1318 
1319 	/* wait for I/O completion */
1320 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1321 		int err2;
1322 
1323 		if (!bh[i])
1324 			continue;
1325 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1326 		if (!err)
1327 			err = err2;
1328 	}
1329 
1330 	first_block = page->index * blocks_per_page;
1331 	for (i = 0; i < blocks_per_page; i++) {
1332 		group = (first_block + i) >> 1;
1333 		if (group >= ngroups)
1334 			break;
1335 
1336 		if (!bh[group - first_group])
1337 			/* skip initialized uptodate buddy */
1338 			continue;
1339 
1340 		if (!buffer_verified(bh[group - first_group]))
1341 			/* Skip faulty bitmaps */
1342 			continue;
1343 		err = 0;
1344 
1345 		/*
1346 		 * data carry information regarding this
1347 		 * particular group in the format specified
1348 		 * above
1349 		 *
1350 		 */
1351 		data = page_address(page) + (i * blocksize);
1352 		bitmap = bh[group - first_group]->b_data;
1353 
1354 		/*
1355 		 * We place the buddy block and bitmap block
1356 		 * close together
1357 		 */
1358 		if ((first_block + i) & 1) {
1359 			/* this is block of buddy */
1360 			BUG_ON(incore == NULL);
1361 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1362 				group, page->index, i * blocksize);
1363 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1364 			grinfo = ext4_get_group_info(sb, group);
1365 			if (!grinfo) {
1366 				err = -EFSCORRUPTED;
1367 				goto out;
1368 			}
1369 			grinfo->bb_fragments = 0;
1370 			memset(grinfo->bb_counters, 0,
1371 			       sizeof(*grinfo->bb_counters) *
1372 			       (MB_NUM_ORDERS(sb)));
1373 			/*
1374 			 * incore got set to the group block bitmap below
1375 			 */
1376 			ext4_lock_group(sb, group);
1377 			/* init the buddy */
1378 			memset(data, 0xff, blocksize);
1379 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1380 			ext4_unlock_group(sb, group);
1381 			incore = NULL;
1382 		} else {
1383 			/* this is block of bitmap */
1384 			BUG_ON(incore != NULL);
1385 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1386 				group, page->index, i * blocksize);
1387 			trace_ext4_mb_bitmap_load(sb, group);
1388 
1389 			/* see comments in ext4_mb_put_pa() */
1390 			ext4_lock_group(sb, group);
1391 			memcpy(data, bitmap, blocksize);
1392 
1393 			/* mark all preallocated blks used in in-core bitmap */
1394 			ext4_mb_generate_from_pa(sb, data, group);
1395 			ext4_mb_generate_from_freelist(sb, data, group);
1396 			ext4_unlock_group(sb, group);
1397 
1398 			/* set incore so that the buddy information can be
1399 			 * generated using this
1400 			 */
1401 			incore = data;
1402 		}
1403 	}
1404 	SetPageUptodate(page);
1405 
1406 out:
1407 	if (bh) {
1408 		for (i = 0; i < groups_per_page; i++)
1409 			brelse(bh[i]);
1410 		if (bh != &bhs)
1411 			kfree(bh);
1412 	}
1413 	return err;
1414 }
1415 
1416 /*
1417  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1418  * on the same buddy page doesn't happen whild holding the buddy page lock.
1419  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1420  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1421  */
1422 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1423 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1424 {
1425 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1426 	int block, pnum, poff;
1427 	int blocks_per_page;
1428 	struct page *page;
1429 
1430 	e4b->bd_buddy_page = NULL;
1431 	e4b->bd_bitmap_page = NULL;
1432 
1433 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1434 	/*
1435 	 * the buddy cache inode stores the block bitmap
1436 	 * and buddy information in consecutive blocks.
1437 	 * So for each group we need two blocks.
1438 	 */
1439 	block = group * 2;
1440 	pnum = block / blocks_per_page;
1441 	poff = block % blocks_per_page;
1442 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1443 	if (!page)
1444 		return -ENOMEM;
1445 	BUG_ON(page->mapping != inode->i_mapping);
1446 	e4b->bd_bitmap_page = page;
1447 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1448 
1449 	if (blocks_per_page >= 2) {
1450 		/* buddy and bitmap are on the same page */
1451 		return 0;
1452 	}
1453 
1454 	block++;
1455 	pnum = block / blocks_per_page;
1456 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1457 	if (!page)
1458 		return -ENOMEM;
1459 	BUG_ON(page->mapping != inode->i_mapping);
1460 	e4b->bd_buddy_page = page;
1461 	return 0;
1462 }
1463 
1464 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1465 {
1466 	if (e4b->bd_bitmap_page) {
1467 		unlock_page(e4b->bd_bitmap_page);
1468 		put_page(e4b->bd_bitmap_page);
1469 	}
1470 	if (e4b->bd_buddy_page) {
1471 		unlock_page(e4b->bd_buddy_page);
1472 		put_page(e4b->bd_buddy_page);
1473 	}
1474 }
1475 
1476 /*
1477  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1478  * block group lock of all groups for this page; do not hold the BG lock when
1479  * calling this routine!
1480  */
1481 static noinline_for_stack
1482 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1483 {
1484 
1485 	struct ext4_group_info *this_grp;
1486 	struct ext4_buddy e4b;
1487 	struct page *page;
1488 	int ret = 0;
1489 
1490 	might_sleep();
1491 	mb_debug(sb, "init group %u\n", group);
1492 	this_grp = ext4_get_group_info(sb, group);
1493 	if (!this_grp)
1494 		return -EFSCORRUPTED;
1495 
1496 	/*
1497 	 * This ensures that we don't reinit the buddy cache
1498 	 * page which map to the group from which we are already
1499 	 * allocating. If we are looking at the buddy cache we would
1500 	 * have taken a reference using ext4_mb_load_buddy and that
1501 	 * would have pinned buddy page to page cache.
1502 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1503 	 * page accessed.
1504 	 */
1505 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1506 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1507 		/*
1508 		 * somebody initialized the group
1509 		 * return without doing anything
1510 		 */
1511 		goto err;
1512 	}
1513 
1514 	page = e4b.bd_bitmap_page;
1515 	ret = ext4_mb_init_cache(page, NULL, gfp);
1516 	if (ret)
1517 		goto err;
1518 	if (!PageUptodate(page)) {
1519 		ret = -EIO;
1520 		goto err;
1521 	}
1522 
1523 	if (e4b.bd_buddy_page == NULL) {
1524 		/*
1525 		 * If both the bitmap and buddy are in
1526 		 * the same page we don't need to force
1527 		 * init the buddy
1528 		 */
1529 		ret = 0;
1530 		goto err;
1531 	}
1532 	/* init buddy cache */
1533 	page = e4b.bd_buddy_page;
1534 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1535 	if (ret)
1536 		goto err;
1537 	if (!PageUptodate(page)) {
1538 		ret = -EIO;
1539 		goto err;
1540 	}
1541 err:
1542 	ext4_mb_put_buddy_page_lock(&e4b);
1543 	return ret;
1544 }
1545 
1546 /*
1547  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1548  * block group lock of all groups for this page; do not hold the BG lock when
1549  * calling this routine!
1550  */
1551 static noinline_for_stack int
1552 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1553 		       struct ext4_buddy *e4b, gfp_t gfp)
1554 {
1555 	int blocks_per_page;
1556 	int block;
1557 	int pnum;
1558 	int poff;
1559 	struct page *page;
1560 	int ret;
1561 	struct ext4_group_info *grp;
1562 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1563 	struct inode *inode = sbi->s_buddy_cache;
1564 
1565 	might_sleep();
1566 	mb_debug(sb, "load group %u\n", group);
1567 
1568 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1569 	grp = ext4_get_group_info(sb, group);
1570 	if (!grp)
1571 		return -EFSCORRUPTED;
1572 
1573 	e4b->bd_blkbits = sb->s_blocksize_bits;
1574 	e4b->bd_info = grp;
1575 	e4b->bd_sb = sb;
1576 	e4b->bd_group = group;
1577 	e4b->bd_buddy_page = NULL;
1578 	e4b->bd_bitmap_page = NULL;
1579 
1580 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1581 		/*
1582 		 * we need full data about the group
1583 		 * to make a good selection
1584 		 */
1585 		ret = ext4_mb_init_group(sb, group, gfp);
1586 		if (ret)
1587 			return ret;
1588 	}
1589 
1590 	/*
1591 	 * the buddy cache inode stores the block bitmap
1592 	 * and buddy information in consecutive blocks.
1593 	 * So for each group we need two blocks.
1594 	 */
1595 	block = group * 2;
1596 	pnum = block / blocks_per_page;
1597 	poff = block % blocks_per_page;
1598 
1599 	/* we could use find_or_create_page(), but it locks page
1600 	 * what we'd like to avoid in fast path ... */
1601 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1602 	if (page == NULL || !PageUptodate(page)) {
1603 		if (page)
1604 			/*
1605 			 * drop the page reference and try
1606 			 * to get the page with lock. If we
1607 			 * are not uptodate that implies
1608 			 * somebody just created the page but
1609 			 * is yet to initialize the same. So
1610 			 * wait for it to initialize.
1611 			 */
1612 			put_page(page);
1613 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1614 		if (page) {
1615 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1616 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1617 				/* should never happen */
1618 				unlock_page(page);
1619 				ret = -EINVAL;
1620 				goto err;
1621 			}
1622 			if (!PageUptodate(page)) {
1623 				ret = ext4_mb_init_cache(page, NULL, gfp);
1624 				if (ret) {
1625 					unlock_page(page);
1626 					goto err;
1627 				}
1628 				mb_cmp_bitmaps(e4b, page_address(page) +
1629 					       (poff * sb->s_blocksize));
1630 			}
1631 			unlock_page(page);
1632 		}
1633 	}
1634 	if (page == NULL) {
1635 		ret = -ENOMEM;
1636 		goto err;
1637 	}
1638 	if (!PageUptodate(page)) {
1639 		ret = -EIO;
1640 		goto err;
1641 	}
1642 
1643 	/* Pages marked accessed already */
1644 	e4b->bd_bitmap_page = page;
1645 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1646 
1647 	block++;
1648 	pnum = block / blocks_per_page;
1649 	poff = block % blocks_per_page;
1650 
1651 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1652 	if (page == NULL || !PageUptodate(page)) {
1653 		if (page)
1654 			put_page(page);
1655 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1656 		if (page) {
1657 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1658 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1659 				/* should never happen */
1660 				unlock_page(page);
1661 				ret = -EINVAL;
1662 				goto err;
1663 			}
1664 			if (!PageUptodate(page)) {
1665 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1666 							 gfp);
1667 				if (ret) {
1668 					unlock_page(page);
1669 					goto err;
1670 				}
1671 			}
1672 			unlock_page(page);
1673 		}
1674 	}
1675 	if (page == NULL) {
1676 		ret = -ENOMEM;
1677 		goto err;
1678 	}
1679 	if (!PageUptodate(page)) {
1680 		ret = -EIO;
1681 		goto err;
1682 	}
1683 
1684 	/* Pages marked accessed already */
1685 	e4b->bd_buddy_page = page;
1686 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1687 
1688 	return 0;
1689 
1690 err:
1691 	if (page)
1692 		put_page(page);
1693 	if (e4b->bd_bitmap_page)
1694 		put_page(e4b->bd_bitmap_page);
1695 
1696 	e4b->bd_buddy = NULL;
1697 	e4b->bd_bitmap = NULL;
1698 	return ret;
1699 }
1700 
1701 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1702 			      struct ext4_buddy *e4b)
1703 {
1704 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1705 }
1706 
1707 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1708 {
1709 	if (e4b->bd_bitmap_page)
1710 		put_page(e4b->bd_bitmap_page);
1711 	if (e4b->bd_buddy_page)
1712 		put_page(e4b->bd_buddy_page);
1713 }
1714 
1715 
1716 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1717 {
1718 	int order = 1, max;
1719 	void *bb;
1720 
1721 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1722 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1723 
1724 	while (order <= e4b->bd_blkbits + 1) {
1725 		bb = mb_find_buddy(e4b, order, &max);
1726 		if (!mb_test_bit(block >> order, bb)) {
1727 			/* this block is part of buddy of order 'order' */
1728 			return order;
1729 		}
1730 		order++;
1731 	}
1732 	return 0;
1733 }
1734 
1735 static void mb_clear_bits(void *bm, int cur, int len)
1736 {
1737 	__u32 *addr;
1738 
1739 	len = cur + len;
1740 	while (cur < len) {
1741 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1742 			/* fast path: clear whole word at once */
1743 			addr = bm + (cur >> 3);
1744 			*addr = 0;
1745 			cur += 32;
1746 			continue;
1747 		}
1748 		mb_clear_bit(cur, bm);
1749 		cur++;
1750 	}
1751 }
1752 
1753 /* clear bits in given range
1754  * will return first found zero bit if any, -1 otherwise
1755  */
1756 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1757 {
1758 	__u32 *addr;
1759 	int zero_bit = -1;
1760 
1761 	len = cur + len;
1762 	while (cur < len) {
1763 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1764 			/* fast path: clear whole word at once */
1765 			addr = bm + (cur >> 3);
1766 			if (*addr != (__u32)(-1) && zero_bit == -1)
1767 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1768 			*addr = 0;
1769 			cur += 32;
1770 			continue;
1771 		}
1772 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1773 			zero_bit = cur;
1774 		cur++;
1775 	}
1776 
1777 	return zero_bit;
1778 }
1779 
1780 void mb_set_bits(void *bm, int cur, int len)
1781 {
1782 	__u32 *addr;
1783 
1784 	len = cur + len;
1785 	while (cur < len) {
1786 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1787 			/* fast path: set whole word at once */
1788 			addr = bm + (cur >> 3);
1789 			*addr = 0xffffffff;
1790 			cur += 32;
1791 			continue;
1792 		}
1793 		mb_set_bit(cur, bm);
1794 		cur++;
1795 	}
1796 }
1797 
1798 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1799 {
1800 	if (mb_test_bit(*bit + side, bitmap)) {
1801 		mb_clear_bit(*bit, bitmap);
1802 		(*bit) -= side;
1803 		return 1;
1804 	}
1805 	else {
1806 		(*bit) += side;
1807 		mb_set_bit(*bit, bitmap);
1808 		return -1;
1809 	}
1810 }
1811 
1812 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1813 {
1814 	int max;
1815 	int order = 1;
1816 	void *buddy = mb_find_buddy(e4b, order, &max);
1817 
1818 	while (buddy) {
1819 		void *buddy2;
1820 
1821 		/* Bits in range [first; last] are known to be set since
1822 		 * corresponding blocks were allocated. Bits in range
1823 		 * (first; last) will stay set because they form buddies on
1824 		 * upper layer. We just deal with borders if they don't
1825 		 * align with upper layer and then go up.
1826 		 * Releasing entire group is all about clearing
1827 		 * single bit of highest order buddy.
1828 		 */
1829 
1830 		/* Example:
1831 		 * ---------------------------------
1832 		 * |   1   |   1   |   1   |   1   |
1833 		 * ---------------------------------
1834 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1835 		 * ---------------------------------
1836 		 *   0   1   2   3   4   5   6   7
1837 		 *      \_____________________/
1838 		 *
1839 		 * Neither [1] nor [6] is aligned to above layer.
1840 		 * Left neighbour [0] is free, so mark it busy,
1841 		 * decrease bb_counters and extend range to
1842 		 * [0; 6]
1843 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1844 		 * mark [6] free, increase bb_counters and shrink range to
1845 		 * [0; 5].
1846 		 * Then shift range to [0; 2], go up and do the same.
1847 		 */
1848 
1849 
1850 		if (first & 1)
1851 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1852 		if (!(last & 1))
1853 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1854 		if (first > last)
1855 			break;
1856 		order++;
1857 
1858 		buddy2 = mb_find_buddy(e4b, order, &max);
1859 		if (!buddy2) {
1860 			mb_clear_bits(buddy, first, last - first + 1);
1861 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1862 			break;
1863 		}
1864 		first >>= 1;
1865 		last >>= 1;
1866 		buddy = buddy2;
1867 	}
1868 }
1869 
1870 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1871 			   int first, int count)
1872 {
1873 	int left_is_free = 0;
1874 	int right_is_free = 0;
1875 	int block;
1876 	int last = first + count - 1;
1877 	struct super_block *sb = e4b->bd_sb;
1878 
1879 	if (WARN_ON(count == 0))
1880 		return;
1881 	BUG_ON(last >= (sb->s_blocksize << 3));
1882 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1883 	/* Don't bother if the block group is corrupt. */
1884 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1885 		return;
1886 
1887 	mb_check_buddy(e4b);
1888 	mb_free_blocks_double(inode, e4b, first, count);
1889 
1890 	this_cpu_inc(discard_pa_seq);
1891 	e4b->bd_info->bb_free += count;
1892 	if (first < e4b->bd_info->bb_first_free)
1893 		e4b->bd_info->bb_first_free = first;
1894 
1895 	/* access memory sequentially: check left neighbour,
1896 	 * clear range and then check right neighbour
1897 	 */
1898 	if (first != 0)
1899 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1900 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1901 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1902 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1903 
1904 	if (unlikely(block != -1)) {
1905 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1906 		ext4_fsblk_t blocknr;
1907 
1908 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1909 		blocknr += EXT4_C2B(sbi, block);
1910 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1911 			ext4_grp_locked_error(sb, e4b->bd_group,
1912 					      inode ? inode->i_ino : 0,
1913 					      blocknr,
1914 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1915 					      block);
1916 			ext4_mark_group_bitmap_corrupted(
1917 				sb, e4b->bd_group,
1918 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1919 		}
1920 		goto done;
1921 	}
1922 
1923 	/* let's maintain fragments counter */
1924 	if (left_is_free && right_is_free)
1925 		e4b->bd_info->bb_fragments--;
1926 	else if (!left_is_free && !right_is_free)
1927 		e4b->bd_info->bb_fragments++;
1928 
1929 	/* buddy[0] == bd_bitmap is a special case, so handle
1930 	 * it right away and let mb_buddy_mark_free stay free of
1931 	 * zero order checks.
1932 	 * Check if neighbours are to be coaleasced,
1933 	 * adjust bitmap bb_counters and borders appropriately.
1934 	 */
1935 	if (first & 1) {
1936 		first += !left_is_free;
1937 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1938 	}
1939 	if (!(last & 1)) {
1940 		last -= !right_is_free;
1941 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1942 	}
1943 
1944 	if (first <= last)
1945 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1946 
1947 done:
1948 	mb_set_largest_free_order(sb, e4b->bd_info);
1949 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1950 	mb_check_buddy(e4b);
1951 }
1952 
1953 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1954 				int needed, struct ext4_free_extent *ex)
1955 {
1956 	int next = block;
1957 	int max, order;
1958 	void *buddy;
1959 
1960 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1961 	BUG_ON(ex == NULL);
1962 
1963 	buddy = mb_find_buddy(e4b, 0, &max);
1964 	BUG_ON(buddy == NULL);
1965 	BUG_ON(block >= max);
1966 	if (mb_test_bit(block, buddy)) {
1967 		ex->fe_len = 0;
1968 		ex->fe_start = 0;
1969 		ex->fe_group = 0;
1970 		return 0;
1971 	}
1972 
1973 	/* find actual order */
1974 	order = mb_find_order_for_block(e4b, block);
1975 	block = block >> order;
1976 
1977 	ex->fe_len = 1 << order;
1978 	ex->fe_start = block << order;
1979 	ex->fe_group = e4b->bd_group;
1980 
1981 	/* calc difference from given start */
1982 	next = next - ex->fe_start;
1983 	ex->fe_len -= next;
1984 	ex->fe_start += next;
1985 
1986 	while (needed > ex->fe_len &&
1987 	       mb_find_buddy(e4b, order, &max)) {
1988 
1989 		if (block + 1 >= max)
1990 			break;
1991 
1992 		next = (block + 1) * (1 << order);
1993 		if (mb_test_bit(next, e4b->bd_bitmap))
1994 			break;
1995 
1996 		order = mb_find_order_for_block(e4b, next);
1997 
1998 		block = next >> order;
1999 		ex->fe_len += 1 << order;
2000 	}
2001 
2002 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2003 		/* Should never happen! (but apparently sometimes does?!?) */
2004 		WARN_ON(1);
2005 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2006 			"corruption or bug in mb_find_extent "
2007 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2008 			block, order, needed, ex->fe_group, ex->fe_start,
2009 			ex->fe_len, ex->fe_logical);
2010 		ex->fe_len = 0;
2011 		ex->fe_start = 0;
2012 		ex->fe_group = 0;
2013 	}
2014 	return ex->fe_len;
2015 }
2016 
2017 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2018 {
2019 	int ord;
2020 	int mlen = 0;
2021 	int max = 0;
2022 	int cur;
2023 	int start = ex->fe_start;
2024 	int len = ex->fe_len;
2025 	unsigned ret = 0;
2026 	int len0 = len;
2027 	void *buddy;
2028 	bool split = false;
2029 
2030 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2031 	BUG_ON(e4b->bd_group != ex->fe_group);
2032 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2033 	mb_check_buddy(e4b);
2034 	mb_mark_used_double(e4b, start, len);
2035 
2036 	this_cpu_inc(discard_pa_seq);
2037 	e4b->bd_info->bb_free -= len;
2038 	if (e4b->bd_info->bb_first_free == start)
2039 		e4b->bd_info->bb_first_free += len;
2040 
2041 	/* let's maintain fragments counter */
2042 	if (start != 0)
2043 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2044 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2045 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2046 	if (mlen && max)
2047 		e4b->bd_info->bb_fragments++;
2048 	else if (!mlen && !max)
2049 		e4b->bd_info->bb_fragments--;
2050 
2051 	/* let's maintain buddy itself */
2052 	while (len) {
2053 		if (!split)
2054 			ord = mb_find_order_for_block(e4b, start);
2055 
2056 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2057 			/* the whole chunk may be allocated at once! */
2058 			mlen = 1 << ord;
2059 			if (!split)
2060 				buddy = mb_find_buddy(e4b, ord, &max);
2061 			else
2062 				split = false;
2063 			BUG_ON((start >> ord) >= max);
2064 			mb_set_bit(start >> ord, buddy);
2065 			e4b->bd_info->bb_counters[ord]--;
2066 			start += mlen;
2067 			len -= mlen;
2068 			BUG_ON(len < 0);
2069 			continue;
2070 		}
2071 
2072 		/* store for history */
2073 		if (ret == 0)
2074 			ret = len | (ord << 16);
2075 
2076 		/* we have to split large buddy */
2077 		BUG_ON(ord <= 0);
2078 		buddy = mb_find_buddy(e4b, ord, &max);
2079 		mb_set_bit(start >> ord, buddy);
2080 		e4b->bd_info->bb_counters[ord]--;
2081 
2082 		ord--;
2083 		cur = (start >> ord) & ~1U;
2084 		buddy = mb_find_buddy(e4b, ord, &max);
2085 		mb_clear_bit(cur, buddy);
2086 		mb_clear_bit(cur + 1, buddy);
2087 		e4b->bd_info->bb_counters[ord]++;
2088 		e4b->bd_info->bb_counters[ord]++;
2089 		split = true;
2090 	}
2091 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2092 
2093 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2094 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2095 	mb_check_buddy(e4b);
2096 
2097 	return ret;
2098 }
2099 
2100 /*
2101  * Must be called under group lock!
2102  */
2103 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2104 					struct ext4_buddy *e4b)
2105 {
2106 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2107 	int ret;
2108 
2109 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2110 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2111 
2112 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2113 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2114 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2115 
2116 	/* preallocation can change ac_b_ex, thus we store actually
2117 	 * allocated blocks for history */
2118 	ac->ac_f_ex = ac->ac_b_ex;
2119 
2120 	ac->ac_status = AC_STATUS_FOUND;
2121 	ac->ac_tail = ret & 0xffff;
2122 	ac->ac_buddy = ret >> 16;
2123 
2124 	/*
2125 	 * take the page reference. We want the page to be pinned
2126 	 * so that we don't get a ext4_mb_init_cache_call for this
2127 	 * group until we update the bitmap. That would mean we
2128 	 * double allocate blocks. The reference is dropped
2129 	 * in ext4_mb_release_context
2130 	 */
2131 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2132 	get_page(ac->ac_bitmap_page);
2133 	ac->ac_buddy_page = e4b->bd_buddy_page;
2134 	get_page(ac->ac_buddy_page);
2135 	/* store last allocated for subsequent stream allocation */
2136 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2137 		spin_lock(&sbi->s_md_lock);
2138 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2139 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2140 		spin_unlock(&sbi->s_md_lock);
2141 	}
2142 	/*
2143 	 * As we've just preallocated more space than
2144 	 * user requested originally, we store allocated
2145 	 * space in a special descriptor.
2146 	 */
2147 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2148 		ext4_mb_new_preallocation(ac);
2149 
2150 }
2151 
2152 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2153 					struct ext4_buddy *e4b,
2154 					int finish_group)
2155 {
2156 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2157 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2158 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2159 
2160 	if (ac->ac_status == AC_STATUS_FOUND)
2161 		return;
2162 	/*
2163 	 * We don't want to scan for a whole year
2164 	 */
2165 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2166 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2167 		ac->ac_status = AC_STATUS_BREAK;
2168 		return;
2169 	}
2170 
2171 	/*
2172 	 * Haven't found good chunk so far, let's continue
2173 	 */
2174 	if (bex->fe_len < gex->fe_len)
2175 		return;
2176 
2177 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2178 		ext4_mb_use_best_found(ac, e4b);
2179 }
2180 
2181 /*
2182  * The routine checks whether found extent is good enough. If it is,
2183  * then the extent gets marked used and flag is set to the context
2184  * to stop scanning. Otherwise, the extent is compared with the
2185  * previous found extent and if new one is better, then it's stored
2186  * in the context. Later, the best found extent will be used, if
2187  * mballoc can't find good enough extent.
2188  *
2189  * The algorithm used is roughly as follows:
2190  *
2191  * * If free extent found is exactly as big as goal, then
2192  *   stop the scan and use it immediately
2193  *
2194  * * If free extent found is smaller than goal, then keep retrying
2195  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2196  *   that stop scanning and use whatever we have.
2197  *
2198  * * If free extent found is bigger than goal, then keep retrying
2199  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2200  *   stopping the scan and using the extent.
2201  *
2202  *
2203  * FIXME: real allocation policy is to be designed yet!
2204  */
2205 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2206 					struct ext4_free_extent *ex,
2207 					struct ext4_buddy *e4b)
2208 {
2209 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2210 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2211 
2212 	BUG_ON(ex->fe_len <= 0);
2213 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2214 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2215 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2216 
2217 	ac->ac_found++;
2218 	ac->ac_cX_found[ac->ac_criteria]++;
2219 
2220 	/*
2221 	 * The special case - take what you catch first
2222 	 */
2223 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2224 		*bex = *ex;
2225 		ext4_mb_use_best_found(ac, e4b);
2226 		return;
2227 	}
2228 
2229 	/*
2230 	 * Let's check whether the chuck is good enough
2231 	 */
2232 	if (ex->fe_len == gex->fe_len) {
2233 		*bex = *ex;
2234 		ext4_mb_use_best_found(ac, e4b);
2235 		return;
2236 	}
2237 
2238 	/*
2239 	 * If this is first found extent, just store it in the context
2240 	 */
2241 	if (bex->fe_len == 0) {
2242 		*bex = *ex;
2243 		return;
2244 	}
2245 
2246 	/*
2247 	 * If new found extent is better, store it in the context
2248 	 */
2249 	if (bex->fe_len < gex->fe_len) {
2250 		/* if the request isn't satisfied, any found extent
2251 		 * larger than previous best one is better */
2252 		if (ex->fe_len > bex->fe_len)
2253 			*bex = *ex;
2254 	} else if (ex->fe_len > gex->fe_len) {
2255 		/* if the request is satisfied, then we try to find
2256 		 * an extent that still satisfy the request, but is
2257 		 * smaller than previous one */
2258 		if (ex->fe_len < bex->fe_len)
2259 			*bex = *ex;
2260 	}
2261 
2262 	ext4_mb_check_limits(ac, e4b, 0);
2263 }
2264 
2265 static noinline_for_stack
2266 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2267 					struct ext4_buddy *e4b)
2268 {
2269 	struct ext4_free_extent ex = ac->ac_b_ex;
2270 	ext4_group_t group = ex.fe_group;
2271 	int max;
2272 	int err;
2273 
2274 	BUG_ON(ex.fe_len <= 0);
2275 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2276 	if (err)
2277 		return;
2278 
2279 	ext4_lock_group(ac->ac_sb, group);
2280 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2281 
2282 	if (max > 0) {
2283 		ac->ac_b_ex = ex;
2284 		ext4_mb_use_best_found(ac, e4b);
2285 	}
2286 
2287 	ext4_unlock_group(ac->ac_sb, group);
2288 	ext4_mb_unload_buddy(e4b);
2289 }
2290 
2291 static noinline_for_stack
2292 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2293 				struct ext4_buddy *e4b)
2294 {
2295 	ext4_group_t group = ac->ac_g_ex.fe_group;
2296 	int max;
2297 	int err;
2298 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2299 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2300 	struct ext4_free_extent ex;
2301 
2302 	if (!grp)
2303 		return -EFSCORRUPTED;
2304 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2305 		return 0;
2306 	if (grp->bb_free == 0)
2307 		return 0;
2308 
2309 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2310 	if (err)
2311 		return err;
2312 
2313 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2314 		ext4_mb_unload_buddy(e4b);
2315 		return 0;
2316 	}
2317 
2318 	ext4_lock_group(ac->ac_sb, group);
2319 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2320 			     ac->ac_g_ex.fe_len, &ex);
2321 	ex.fe_logical = 0xDEADFA11; /* debug value */
2322 
2323 	if (max >= ac->ac_g_ex.fe_len &&
2324 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2325 		ext4_fsblk_t start;
2326 
2327 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2328 		/* use do_div to get remainder (would be 64-bit modulo) */
2329 		if (do_div(start, sbi->s_stripe) == 0) {
2330 			ac->ac_found++;
2331 			ac->ac_b_ex = ex;
2332 			ext4_mb_use_best_found(ac, e4b);
2333 		}
2334 	} else if (max >= ac->ac_g_ex.fe_len) {
2335 		BUG_ON(ex.fe_len <= 0);
2336 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2337 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2338 		ac->ac_found++;
2339 		ac->ac_b_ex = ex;
2340 		ext4_mb_use_best_found(ac, e4b);
2341 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2342 		/* Sometimes, caller may want to merge even small
2343 		 * number of blocks to an existing extent */
2344 		BUG_ON(ex.fe_len <= 0);
2345 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2346 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2347 		ac->ac_found++;
2348 		ac->ac_b_ex = ex;
2349 		ext4_mb_use_best_found(ac, e4b);
2350 	}
2351 	ext4_unlock_group(ac->ac_sb, group);
2352 	ext4_mb_unload_buddy(e4b);
2353 
2354 	return 0;
2355 }
2356 
2357 /*
2358  * The routine scans buddy structures (not bitmap!) from given order
2359  * to max order and tries to find big enough chunk to satisfy the req
2360  */
2361 static noinline_for_stack
2362 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2363 					struct ext4_buddy *e4b)
2364 {
2365 	struct super_block *sb = ac->ac_sb;
2366 	struct ext4_group_info *grp = e4b->bd_info;
2367 	void *buddy;
2368 	int i;
2369 	int k;
2370 	int max;
2371 
2372 	BUG_ON(ac->ac_2order <= 0);
2373 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2374 		if (grp->bb_counters[i] == 0)
2375 			continue;
2376 
2377 		buddy = mb_find_buddy(e4b, i, &max);
2378 		if (WARN_RATELIMIT(buddy == NULL,
2379 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2380 			continue;
2381 
2382 		k = mb_find_next_zero_bit(buddy, max, 0);
2383 		if (k >= max) {
2384 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2385 				"%d free clusters of order %d. But found 0",
2386 				grp->bb_counters[i], i);
2387 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2388 					 e4b->bd_group,
2389 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2390 			break;
2391 		}
2392 		ac->ac_found++;
2393 		ac->ac_cX_found[ac->ac_criteria]++;
2394 
2395 		ac->ac_b_ex.fe_len = 1 << i;
2396 		ac->ac_b_ex.fe_start = k << i;
2397 		ac->ac_b_ex.fe_group = e4b->bd_group;
2398 
2399 		ext4_mb_use_best_found(ac, e4b);
2400 
2401 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2402 
2403 		if (EXT4_SB(sb)->s_mb_stats)
2404 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2405 
2406 		break;
2407 	}
2408 }
2409 
2410 /*
2411  * The routine scans the group and measures all found extents.
2412  * In order to optimize scanning, caller must pass number of
2413  * free blocks in the group, so the routine can know upper limit.
2414  */
2415 static noinline_for_stack
2416 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2417 					struct ext4_buddy *e4b)
2418 {
2419 	struct super_block *sb = ac->ac_sb;
2420 	void *bitmap = e4b->bd_bitmap;
2421 	struct ext4_free_extent ex;
2422 	int i, j, freelen;
2423 	int free;
2424 
2425 	free = e4b->bd_info->bb_free;
2426 	if (WARN_ON(free <= 0))
2427 		return;
2428 
2429 	i = e4b->bd_info->bb_first_free;
2430 
2431 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2432 		i = mb_find_next_zero_bit(bitmap,
2433 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2434 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2435 			/*
2436 			 * IF we have corrupt bitmap, we won't find any
2437 			 * free blocks even though group info says we
2438 			 * have free blocks
2439 			 */
2440 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2441 					"%d free clusters as per "
2442 					"group info. But bitmap says 0",
2443 					free);
2444 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2445 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2446 			break;
2447 		}
2448 
2449 		if (ac->ac_criteria < CR_FAST) {
2450 			/*
2451 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2452 			 * sure that this group will have a large enough
2453 			 * continuous free extent, so skip over the smaller free
2454 			 * extents
2455 			 */
2456 			j = mb_find_next_bit(bitmap,
2457 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2458 			freelen = j - i;
2459 
2460 			if (freelen < ac->ac_g_ex.fe_len) {
2461 				i = j;
2462 				free -= freelen;
2463 				continue;
2464 			}
2465 		}
2466 
2467 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2468 		if (WARN_ON(ex.fe_len <= 0))
2469 			break;
2470 		if (free < ex.fe_len) {
2471 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2472 					"%d free clusters as per "
2473 					"group info. But got %d blocks",
2474 					free, ex.fe_len);
2475 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2476 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2477 			/*
2478 			 * The number of free blocks differs. This mostly
2479 			 * indicate that the bitmap is corrupt. So exit
2480 			 * without claiming the space.
2481 			 */
2482 			break;
2483 		}
2484 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2485 		ext4_mb_measure_extent(ac, &ex, e4b);
2486 
2487 		i += ex.fe_len;
2488 		free -= ex.fe_len;
2489 	}
2490 
2491 	ext4_mb_check_limits(ac, e4b, 1);
2492 }
2493 
2494 /*
2495  * This is a special case for storages like raid5
2496  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2497  */
2498 static noinline_for_stack
2499 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2500 				 struct ext4_buddy *e4b)
2501 {
2502 	struct super_block *sb = ac->ac_sb;
2503 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2504 	void *bitmap = e4b->bd_bitmap;
2505 	struct ext4_free_extent ex;
2506 	ext4_fsblk_t first_group_block;
2507 	ext4_fsblk_t a;
2508 	ext4_grpblk_t i, stripe;
2509 	int max;
2510 
2511 	BUG_ON(sbi->s_stripe == 0);
2512 
2513 	/* find first stripe-aligned block in group */
2514 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2515 
2516 	a = first_group_block + sbi->s_stripe - 1;
2517 	do_div(a, sbi->s_stripe);
2518 	i = (a * sbi->s_stripe) - first_group_block;
2519 
2520 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2521 	i = EXT4_B2C(sbi, i);
2522 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2523 		if (!mb_test_bit(i, bitmap)) {
2524 			max = mb_find_extent(e4b, i, stripe, &ex);
2525 			if (max >= stripe) {
2526 				ac->ac_found++;
2527 				ac->ac_cX_found[ac->ac_criteria]++;
2528 				ex.fe_logical = 0xDEADF00D; /* debug value */
2529 				ac->ac_b_ex = ex;
2530 				ext4_mb_use_best_found(ac, e4b);
2531 				break;
2532 			}
2533 		}
2534 		i += stripe;
2535 	}
2536 }
2537 
2538 /*
2539  * This is also called BEFORE we load the buddy bitmap.
2540  * Returns either 1 or 0 indicating that the group is either suitable
2541  * for the allocation or not.
2542  */
2543 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2544 				ext4_group_t group, enum criteria cr)
2545 {
2546 	ext4_grpblk_t free, fragments;
2547 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2548 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2549 
2550 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2551 
2552 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp) || !grp))
2553 		return false;
2554 
2555 	free = grp->bb_free;
2556 	if (free == 0)
2557 		return false;
2558 
2559 	fragments = grp->bb_fragments;
2560 	if (fragments == 0)
2561 		return false;
2562 
2563 	switch (cr) {
2564 	case CR_POWER2_ALIGNED:
2565 		BUG_ON(ac->ac_2order == 0);
2566 
2567 		/* Avoid using the first bg of a flexgroup for data files */
2568 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2569 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2570 		    ((group % flex_size) == 0))
2571 			return false;
2572 
2573 		if (free < ac->ac_g_ex.fe_len)
2574 			return false;
2575 
2576 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2577 			return true;
2578 
2579 		if (grp->bb_largest_free_order < ac->ac_2order)
2580 			return false;
2581 
2582 		return true;
2583 	case CR_GOAL_LEN_FAST:
2584 	case CR_BEST_AVAIL_LEN:
2585 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2586 			return true;
2587 		break;
2588 	case CR_GOAL_LEN_SLOW:
2589 		if (free >= ac->ac_g_ex.fe_len)
2590 			return true;
2591 		break;
2592 	case CR_ANY_FREE:
2593 		return true;
2594 	default:
2595 		BUG();
2596 	}
2597 
2598 	return false;
2599 }
2600 
2601 /*
2602  * This could return negative error code if something goes wrong
2603  * during ext4_mb_init_group(). This should not be called with
2604  * ext4_lock_group() held.
2605  *
2606  * Note: because we are conditionally operating with the group lock in
2607  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2608  * function using __acquire and __release.  This means we need to be
2609  * super careful before messing with the error path handling via "goto
2610  * out"!
2611  */
2612 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2613 				     ext4_group_t group, enum criteria cr)
2614 {
2615 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2616 	struct super_block *sb = ac->ac_sb;
2617 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2618 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2619 	ext4_grpblk_t free;
2620 	int ret = 0;
2621 
2622 	if (!grp)
2623 		return -EFSCORRUPTED;
2624 	if (sbi->s_mb_stats)
2625 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2626 	if (should_lock) {
2627 		ext4_lock_group(sb, group);
2628 		__release(ext4_group_lock_ptr(sb, group));
2629 	}
2630 	free = grp->bb_free;
2631 	if (free == 0)
2632 		goto out;
2633 	if (cr <= CR_FAST && free < ac->ac_g_ex.fe_len)
2634 		goto out;
2635 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2636 		goto out;
2637 	if (should_lock) {
2638 		__acquire(ext4_group_lock_ptr(sb, group));
2639 		ext4_unlock_group(sb, group);
2640 	}
2641 
2642 	/* We only do this if the grp has never been initialized */
2643 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2644 		struct ext4_group_desc *gdp =
2645 			ext4_get_group_desc(sb, group, NULL);
2646 		int ret;
2647 
2648 		/*
2649 		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2650 		 * search to find large good chunks almost for free. If buddy
2651 		 * data is not ready, then this optimization makes no sense. But
2652 		 * we never skip the first block group in a flex_bg, since this
2653 		 * gets used for metadata block allocation, and we want to make
2654 		 * sure we locate metadata blocks in the first block group in
2655 		 * the flex_bg if possible.
2656 		 */
2657 		if (cr < CR_FAST &&
2658 		    (!sbi->s_log_groups_per_flex ||
2659 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2660 		    !(ext4_has_group_desc_csum(sb) &&
2661 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2662 			return 0;
2663 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2664 		if (ret)
2665 			return ret;
2666 	}
2667 
2668 	if (should_lock) {
2669 		ext4_lock_group(sb, group);
2670 		__release(ext4_group_lock_ptr(sb, group));
2671 	}
2672 	ret = ext4_mb_good_group(ac, group, cr);
2673 out:
2674 	if (should_lock) {
2675 		__acquire(ext4_group_lock_ptr(sb, group));
2676 		ext4_unlock_group(sb, group);
2677 	}
2678 	return ret;
2679 }
2680 
2681 /*
2682  * Start prefetching @nr block bitmaps starting at @group.
2683  * Return the next group which needs to be prefetched.
2684  */
2685 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2686 			      unsigned int nr, int *cnt)
2687 {
2688 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2689 	struct buffer_head *bh;
2690 	struct blk_plug plug;
2691 
2692 	blk_start_plug(&plug);
2693 	while (nr-- > 0) {
2694 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2695 								  NULL);
2696 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2697 
2698 		/*
2699 		 * Prefetch block groups with free blocks; but don't
2700 		 * bother if it is marked uninitialized on disk, since
2701 		 * it won't require I/O to read.  Also only try to
2702 		 * prefetch once, so we avoid getblk() call, which can
2703 		 * be expensive.
2704 		 */
2705 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2706 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2707 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2708 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2709 			if (bh && !IS_ERR(bh)) {
2710 				if (!buffer_uptodate(bh) && cnt)
2711 					(*cnt)++;
2712 				brelse(bh);
2713 			}
2714 		}
2715 		if (++group >= ngroups)
2716 			group = 0;
2717 	}
2718 	blk_finish_plug(&plug);
2719 	return group;
2720 }
2721 
2722 /*
2723  * Prefetching reads the block bitmap into the buffer cache; but we
2724  * need to make sure that the buddy bitmap in the page cache has been
2725  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2726  * is not yet completed, or indeed if it was not initiated by
2727  * ext4_mb_prefetch did not start the I/O.
2728  *
2729  * TODO: We should actually kick off the buddy bitmap setup in a work
2730  * queue when the buffer I/O is completed, so that we don't block
2731  * waiting for the block allocation bitmap read to finish when
2732  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2733  */
2734 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2735 			   unsigned int nr)
2736 {
2737 	struct ext4_group_desc *gdp;
2738 	struct ext4_group_info *grp;
2739 
2740 	while (nr-- > 0) {
2741 		if (!group)
2742 			group = ext4_get_groups_count(sb);
2743 		group--;
2744 		gdp = ext4_get_group_desc(sb, group, NULL);
2745 		grp = ext4_get_group_info(sb, group);
2746 
2747 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2748 		    ext4_free_group_clusters(sb, gdp) > 0) {
2749 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2750 				break;
2751 		}
2752 	}
2753 }
2754 
2755 static noinline_for_stack int
2756 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2757 {
2758 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2759 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2760 	int err = 0, first_err = 0;
2761 	unsigned int nr = 0, prefetch_ios = 0;
2762 	struct ext4_sb_info *sbi;
2763 	struct super_block *sb;
2764 	struct ext4_buddy e4b;
2765 	int lost;
2766 
2767 	sb = ac->ac_sb;
2768 	sbi = EXT4_SB(sb);
2769 	ngroups = ext4_get_groups_count(sb);
2770 	/* non-extent files are limited to low blocks/groups */
2771 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2772 		ngroups = sbi->s_blockfile_groups;
2773 
2774 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2775 
2776 	/* first, try the goal */
2777 	err = ext4_mb_find_by_goal(ac, &e4b);
2778 	if (err || ac->ac_status == AC_STATUS_FOUND)
2779 		goto out;
2780 
2781 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2782 		goto out;
2783 
2784 	/*
2785 	 * ac->ac_2order is set only if the fe_len is a power of 2
2786 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2787 	 * try exact allocation using buddy.
2788 	 */
2789 	i = fls(ac->ac_g_ex.fe_len);
2790 	ac->ac_2order = 0;
2791 	/*
2792 	 * We search using buddy data only if the order of the request
2793 	 * is greater than equal to the sbi_s_mb_order2_reqs
2794 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2795 	 * We also support searching for power-of-two requests only for
2796 	 * requests upto maximum buddy size we have constructed.
2797 	 */
2798 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2799 		/*
2800 		 * This should tell if fe_len is exactly power of 2
2801 		 */
2802 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2803 			ac->ac_2order = array_index_nospec(i - 1,
2804 							   MB_NUM_ORDERS(sb));
2805 	}
2806 
2807 	/* if stream allocation is enabled, use global goal */
2808 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2809 		/* TBD: may be hot point */
2810 		spin_lock(&sbi->s_md_lock);
2811 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2812 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2813 		spin_unlock(&sbi->s_md_lock);
2814 	}
2815 
2816 	/*
2817 	 * Let's just scan groups to find more-less suitable blocks We
2818 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2819 	 * aligned, in which case let's do that faster approach first.
2820 	 */
2821 	if (ac->ac_2order)
2822 		cr = CR_POWER2_ALIGNED;
2823 repeat:
2824 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2825 		ac->ac_criteria = cr;
2826 		/*
2827 		 * searching for the right group start
2828 		 * from the goal value specified
2829 		 */
2830 		group = ac->ac_g_ex.fe_group;
2831 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2832 		prefetch_grp = group;
2833 
2834 		for (i = 0, new_cr = cr; i < ngroups; i++,
2835 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2836 			int ret = 0;
2837 
2838 			cond_resched();
2839 			if (new_cr != cr) {
2840 				cr = new_cr;
2841 				goto repeat;
2842 			}
2843 
2844 			/*
2845 			 * Batch reads of the block allocation bitmaps
2846 			 * to get multiple READs in flight; limit
2847 			 * prefetching at cr=0/1, otherwise mballoc can
2848 			 * spend a lot of time loading imperfect groups
2849 			 */
2850 			if ((prefetch_grp == group) &&
2851 			    (cr >= CR_FAST ||
2852 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2853 				nr = sbi->s_mb_prefetch;
2854 				if (ext4_has_feature_flex_bg(sb)) {
2855 					nr = 1 << sbi->s_log_groups_per_flex;
2856 					nr -= group & (nr - 1);
2857 					nr = min(nr, sbi->s_mb_prefetch);
2858 				}
2859 				prefetch_grp = ext4_mb_prefetch(sb, group,
2860 							nr, &prefetch_ios);
2861 			}
2862 
2863 			/* This now checks without needing the buddy page */
2864 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2865 			if (ret <= 0) {
2866 				if (!first_err)
2867 					first_err = ret;
2868 				continue;
2869 			}
2870 
2871 			err = ext4_mb_load_buddy(sb, group, &e4b);
2872 			if (err)
2873 				goto out;
2874 
2875 			ext4_lock_group(sb, group);
2876 
2877 			/*
2878 			 * We need to check again after locking the
2879 			 * block group
2880 			 */
2881 			ret = ext4_mb_good_group(ac, group, cr);
2882 			if (ret == 0) {
2883 				ext4_unlock_group(sb, group);
2884 				ext4_mb_unload_buddy(&e4b);
2885 				continue;
2886 			}
2887 
2888 			ac->ac_groups_scanned++;
2889 			if (cr == CR_POWER2_ALIGNED)
2890 				ext4_mb_simple_scan_group(ac, &e4b);
2891 			else if ((cr == CR_GOAL_LEN_FAST ||
2892 				 cr == CR_BEST_AVAIL_LEN) &&
2893 				 sbi->s_stripe &&
2894 				 !(ac->ac_g_ex.fe_len %
2895 				 EXT4_B2C(sbi, sbi->s_stripe)))
2896 				ext4_mb_scan_aligned(ac, &e4b);
2897 			else
2898 				ext4_mb_complex_scan_group(ac, &e4b);
2899 
2900 			ext4_unlock_group(sb, group);
2901 			ext4_mb_unload_buddy(&e4b);
2902 
2903 			if (ac->ac_status != AC_STATUS_CONTINUE)
2904 				break;
2905 		}
2906 		/* Processed all groups and haven't found blocks */
2907 		if (sbi->s_mb_stats && i == ngroups)
2908 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2909 
2910 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2911 			/* Reset goal length to original goal length before
2912 			 * falling into CR_GOAL_LEN_SLOW */
2913 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2914 	}
2915 
2916 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2917 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2918 		/*
2919 		 * We've been searching too long. Let's try to allocate
2920 		 * the best chunk we've found so far
2921 		 */
2922 		ext4_mb_try_best_found(ac, &e4b);
2923 		if (ac->ac_status != AC_STATUS_FOUND) {
2924 			/*
2925 			 * Someone more lucky has already allocated it.
2926 			 * The only thing we can do is just take first
2927 			 * found block(s)
2928 			 */
2929 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2930 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2931 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2932 				 ac->ac_b_ex.fe_len, lost);
2933 
2934 			ac->ac_b_ex.fe_group = 0;
2935 			ac->ac_b_ex.fe_start = 0;
2936 			ac->ac_b_ex.fe_len = 0;
2937 			ac->ac_status = AC_STATUS_CONTINUE;
2938 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2939 			cr = CR_ANY_FREE;
2940 			goto repeat;
2941 		}
2942 	}
2943 
2944 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2945 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2946 out:
2947 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2948 		err = first_err;
2949 
2950 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2951 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2952 		 ac->ac_flags, cr, err);
2953 
2954 	if (nr)
2955 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2956 
2957 	return err;
2958 }
2959 
2960 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2961 {
2962 	struct super_block *sb = pde_data(file_inode(seq->file));
2963 	ext4_group_t group;
2964 
2965 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2966 		return NULL;
2967 	group = *pos + 1;
2968 	return (void *) ((unsigned long) group);
2969 }
2970 
2971 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2972 {
2973 	struct super_block *sb = pde_data(file_inode(seq->file));
2974 	ext4_group_t group;
2975 
2976 	++*pos;
2977 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2978 		return NULL;
2979 	group = *pos + 1;
2980 	return (void *) ((unsigned long) group);
2981 }
2982 
2983 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2984 {
2985 	struct super_block *sb = pde_data(file_inode(seq->file));
2986 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2987 	int i;
2988 	int err, buddy_loaded = 0;
2989 	struct ext4_buddy e4b;
2990 	struct ext4_group_info *grinfo;
2991 	unsigned char blocksize_bits = min_t(unsigned char,
2992 					     sb->s_blocksize_bits,
2993 					     EXT4_MAX_BLOCK_LOG_SIZE);
2994 	struct sg {
2995 		struct ext4_group_info info;
2996 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2997 	} sg;
2998 
2999 	group--;
3000 	if (group == 0)
3001 		seq_puts(seq, "#group: free  frags first ["
3002 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3003 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3004 
3005 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3006 		sizeof(struct ext4_group_info);
3007 
3008 	grinfo = ext4_get_group_info(sb, group);
3009 	if (!grinfo)
3010 		return 0;
3011 	/* Load the group info in memory only if not already loaded. */
3012 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3013 		err = ext4_mb_load_buddy(sb, group, &e4b);
3014 		if (err) {
3015 			seq_printf(seq, "#%-5u: I/O error\n", group);
3016 			return 0;
3017 		}
3018 		buddy_loaded = 1;
3019 	}
3020 
3021 	memcpy(&sg, grinfo, i);
3022 
3023 	if (buddy_loaded)
3024 		ext4_mb_unload_buddy(&e4b);
3025 
3026 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3027 			sg.info.bb_fragments, sg.info.bb_first_free);
3028 	for (i = 0; i <= 13; i++)
3029 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3030 				sg.info.bb_counters[i] : 0);
3031 	seq_puts(seq, " ]\n");
3032 
3033 	return 0;
3034 }
3035 
3036 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3037 {
3038 }
3039 
3040 const struct seq_operations ext4_mb_seq_groups_ops = {
3041 	.start  = ext4_mb_seq_groups_start,
3042 	.next   = ext4_mb_seq_groups_next,
3043 	.stop   = ext4_mb_seq_groups_stop,
3044 	.show   = ext4_mb_seq_groups_show,
3045 };
3046 
3047 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3048 {
3049 	struct super_block *sb = seq->private;
3050 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3051 
3052 	seq_puts(seq, "mballoc:\n");
3053 	if (!sbi->s_mb_stats) {
3054 		seq_puts(seq, "\tmb stats collection turned off.\n");
3055 		seq_puts(
3056 			seq,
3057 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3058 		return 0;
3059 	}
3060 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3061 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3062 
3063 	seq_printf(seq, "\tgroups_scanned: %u\n",
3064 		   atomic_read(&sbi->s_bal_groups_scanned));
3065 
3066 	/* CR_POWER2_ALIGNED stats */
3067 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3068 	seq_printf(seq, "\t\thits: %llu\n",
3069 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3070 	seq_printf(
3071 		seq, "\t\tgroups_considered: %llu\n",
3072 		atomic64_read(
3073 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3074 	seq_printf(seq, "\t\textents_scanned: %u\n",
3075 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3076 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3077 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3078 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3079 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3080 
3081 	/* CR_GOAL_LEN_FAST stats */
3082 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3083 	seq_printf(seq, "\t\thits: %llu\n",
3084 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3085 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3086 		   atomic64_read(
3087 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3088 	seq_printf(seq, "\t\textents_scanned: %u\n",
3089 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3090 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3091 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3092 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3093 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3094 
3095 	/* CR_BEST_AVAIL_LEN stats */
3096 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3097 	seq_printf(seq, "\t\thits: %llu\n",
3098 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3099 	seq_printf(
3100 		seq, "\t\tgroups_considered: %llu\n",
3101 		atomic64_read(
3102 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3103 	seq_printf(seq, "\t\textents_scanned: %u\n",
3104 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3105 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3106 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3107 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3108 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3109 
3110 	/* CR_GOAL_LEN_SLOW stats */
3111 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3112 	seq_printf(seq, "\t\thits: %llu\n",
3113 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3114 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3115 		   atomic64_read(
3116 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3117 	seq_printf(seq, "\t\textents_scanned: %u\n",
3118 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3119 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3120 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3121 
3122 	/* CR_ANY_FREE stats */
3123 	seq_puts(seq, "\tcr_any_free_stats:\n");
3124 	seq_printf(seq, "\t\thits: %llu\n",
3125 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3126 	seq_printf(
3127 		seq, "\t\tgroups_considered: %llu\n",
3128 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3129 	seq_printf(seq, "\t\textents_scanned: %u\n",
3130 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3131 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3132 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3133 
3134 	/* Aggregates */
3135 	seq_printf(seq, "\textents_scanned: %u\n",
3136 		   atomic_read(&sbi->s_bal_ex_scanned));
3137 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3138 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3139 		   atomic_read(&sbi->s_bal_len_goals));
3140 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3141 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3142 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3143 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3144 		   atomic_read(&sbi->s_mb_buddies_generated),
3145 		   ext4_get_groups_count(sb));
3146 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3147 		   atomic64_read(&sbi->s_mb_generation_time));
3148 	seq_printf(seq, "\tpreallocated: %u\n",
3149 		   atomic_read(&sbi->s_mb_preallocated));
3150 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3151 	return 0;
3152 }
3153 
3154 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3155 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3156 {
3157 	struct super_block *sb = pde_data(file_inode(seq->file));
3158 	unsigned long position;
3159 
3160 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3161 		return NULL;
3162 	position = *pos + 1;
3163 	return (void *) ((unsigned long) position);
3164 }
3165 
3166 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3167 {
3168 	struct super_block *sb = pde_data(file_inode(seq->file));
3169 	unsigned long position;
3170 
3171 	++*pos;
3172 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3173 		return NULL;
3174 	position = *pos + 1;
3175 	return (void *) ((unsigned long) position);
3176 }
3177 
3178 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3179 {
3180 	struct super_block *sb = pde_data(file_inode(seq->file));
3181 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3182 	unsigned long position = ((unsigned long) v);
3183 	struct ext4_group_info *grp;
3184 	unsigned int count;
3185 
3186 	position--;
3187 	if (position >= MB_NUM_ORDERS(sb)) {
3188 		position -= MB_NUM_ORDERS(sb);
3189 		if (position == 0)
3190 			seq_puts(seq, "avg_fragment_size_lists:\n");
3191 
3192 		count = 0;
3193 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3194 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3195 				    bb_avg_fragment_size_node)
3196 			count++;
3197 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3198 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3199 					(unsigned int)position, count);
3200 		return 0;
3201 	}
3202 
3203 	if (position == 0) {
3204 		seq_printf(seq, "optimize_scan: %d\n",
3205 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3206 		seq_puts(seq, "max_free_order_lists:\n");
3207 	}
3208 	count = 0;
3209 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3210 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3211 			    bb_largest_free_order_node)
3212 		count++;
3213 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3214 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3215 		   (unsigned int)position, count);
3216 
3217 	return 0;
3218 }
3219 
3220 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3221 {
3222 }
3223 
3224 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3225 	.start  = ext4_mb_seq_structs_summary_start,
3226 	.next   = ext4_mb_seq_structs_summary_next,
3227 	.stop   = ext4_mb_seq_structs_summary_stop,
3228 	.show   = ext4_mb_seq_structs_summary_show,
3229 };
3230 
3231 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3232 {
3233 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3234 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3235 
3236 	BUG_ON(!cachep);
3237 	return cachep;
3238 }
3239 
3240 /*
3241  * Allocate the top-level s_group_info array for the specified number
3242  * of groups
3243  */
3244 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3245 {
3246 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3247 	unsigned size;
3248 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3249 
3250 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3251 		EXT4_DESC_PER_BLOCK_BITS(sb);
3252 	if (size <= sbi->s_group_info_size)
3253 		return 0;
3254 
3255 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3256 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3257 	if (!new_groupinfo) {
3258 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3259 		return -ENOMEM;
3260 	}
3261 	rcu_read_lock();
3262 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3263 	if (old_groupinfo)
3264 		memcpy(new_groupinfo, old_groupinfo,
3265 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3266 	rcu_read_unlock();
3267 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3268 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3269 	if (old_groupinfo)
3270 		ext4_kvfree_array_rcu(old_groupinfo);
3271 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3272 		   sbi->s_group_info_size);
3273 	return 0;
3274 }
3275 
3276 /* Create and initialize ext4_group_info data for the given group. */
3277 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3278 			  struct ext4_group_desc *desc)
3279 {
3280 	int i;
3281 	int metalen = 0;
3282 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3283 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3284 	struct ext4_group_info **meta_group_info;
3285 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3286 
3287 	/*
3288 	 * First check if this group is the first of a reserved block.
3289 	 * If it's true, we have to allocate a new table of pointers
3290 	 * to ext4_group_info structures
3291 	 */
3292 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3293 		metalen = sizeof(*meta_group_info) <<
3294 			EXT4_DESC_PER_BLOCK_BITS(sb);
3295 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3296 		if (meta_group_info == NULL) {
3297 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3298 				 "for a buddy group");
3299 			return -ENOMEM;
3300 		}
3301 		rcu_read_lock();
3302 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3303 		rcu_read_unlock();
3304 	}
3305 
3306 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3307 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3308 
3309 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3310 	if (meta_group_info[i] == NULL) {
3311 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3312 		goto exit_group_info;
3313 	}
3314 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3315 		&(meta_group_info[i]->bb_state));
3316 
3317 	/*
3318 	 * initialize bb_free to be able to skip
3319 	 * empty groups without initialization
3320 	 */
3321 	if (ext4_has_group_desc_csum(sb) &&
3322 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3323 		meta_group_info[i]->bb_free =
3324 			ext4_free_clusters_after_init(sb, group, desc);
3325 	} else {
3326 		meta_group_info[i]->bb_free =
3327 			ext4_free_group_clusters(sb, desc);
3328 	}
3329 
3330 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3331 	init_rwsem(&meta_group_info[i]->alloc_sem);
3332 	meta_group_info[i]->bb_free_root = RB_ROOT;
3333 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3334 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3335 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3336 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3337 	meta_group_info[i]->bb_group = group;
3338 
3339 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3340 	return 0;
3341 
3342 exit_group_info:
3343 	/* If a meta_group_info table has been allocated, release it now */
3344 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3345 		struct ext4_group_info ***group_info;
3346 
3347 		rcu_read_lock();
3348 		group_info = rcu_dereference(sbi->s_group_info);
3349 		kfree(group_info[idx]);
3350 		group_info[idx] = NULL;
3351 		rcu_read_unlock();
3352 	}
3353 	return -ENOMEM;
3354 } /* ext4_mb_add_groupinfo */
3355 
3356 static int ext4_mb_init_backend(struct super_block *sb)
3357 {
3358 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3359 	ext4_group_t i;
3360 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3361 	int err;
3362 	struct ext4_group_desc *desc;
3363 	struct ext4_group_info ***group_info;
3364 	struct kmem_cache *cachep;
3365 
3366 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3367 	if (err)
3368 		return err;
3369 
3370 	sbi->s_buddy_cache = new_inode(sb);
3371 	if (sbi->s_buddy_cache == NULL) {
3372 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3373 		goto err_freesgi;
3374 	}
3375 	/* To avoid potentially colliding with an valid on-disk inode number,
3376 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3377 	 * not in the inode hash, so it should never be found by iget(), but
3378 	 * this will avoid confusion if it ever shows up during debugging. */
3379 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3380 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3381 	for (i = 0; i < ngroups; i++) {
3382 		cond_resched();
3383 		desc = ext4_get_group_desc(sb, i, NULL);
3384 		if (desc == NULL) {
3385 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3386 			goto err_freebuddy;
3387 		}
3388 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3389 			goto err_freebuddy;
3390 	}
3391 
3392 	if (ext4_has_feature_flex_bg(sb)) {
3393 		/* a single flex group is supposed to be read by a single IO.
3394 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3395 		 * unsigned integer, so the maximum shift is 32.
3396 		 */
3397 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3398 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3399 			goto err_freebuddy;
3400 		}
3401 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3402 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3403 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3404 	} else {
3405 		sbi->s_mb_prefetch = 32;
3406 	}
3407 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3408 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3409 	/* now many real IOs to prefetch within a single allocation at cr=0
3410 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3411 	 * load too many groups, at some point we should start to use what
3412 	 * we've got in memory.
3413 	 * with an average random access time 5ms, it'd take a second to get
3414 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3415 	 */
3416 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3417 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3418 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3419 
3420 	return 0;
3421 
3422 err_freebuddy:
3423 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3424 	while (i-- > 0) {
3425 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3426 
3427 		if (grp)
3428 			kmem_cache_free(cachep, grp);
3429 	}
3430 	i = sbi->s_group_info_size;
3431 	rcu_read_lock();
3432 	group_info = rcu_dereference(sbi->s_group_info);
3433 	while (i-- > 0)
3434 		kfree(group_info[i]);
3435 	rcu_read_unlock();
3436 	iput(sbi->s_buddy_cache);
3437 err_freesgi:
3438 	rcu_read_lock();
3439 	kvfree(rcu_dereference(sbi->s_group_info));
3440 	rcu_read_unlock();
3441 	return -ENOMEM;
3442 }
3443 
3444 static void ext4_groupinfo_destroy_slabs(void)
3445 {
3446 	int i;
3447 
3448 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3449 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3450 		ext4_groupinfo_caches[i] = NULL;
3451 	}
3452 }
3453 
3454 static int ext4_groupinfo_create_slab(size_t size)
3455 {
3456 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3457 	int slab_size;
3458 	int blocksize_bits = order_base_2(size);
3459 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3460 	struct kmem_cache *cachep;
3461 
3462 	if (cache_index >= NR_GRPINFO_CACHES)
3463 		return -EINVAL;
3464 
3465 	if (unlikely(cache_index < 0))
3466 		cache_index = 0;
3467 
3468 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3469 	if (ext4_groupinfo_caches[cache_index]) {
3470 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3471 		return 0;	/* Already created */
3472 	}
3473 
3474 	slab_size = offsetof(struct ext4_group_info,
3475 				bb_counters[blocksize_bits + 2]);
3476 
3477 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3478 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3479 					NULL);
3480 
3481 	ext4_groupinfo_caches[cache_index] = cachep;
3482 
3483 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3484 	if (!cachep) {
3485 		printk(KERN_EMERG
3486 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3487 		return -ENOMEM;
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 static void ext4_discard_work(struct work_struct *work)
3494 {
3495 	struct ext4_sb_info *sbi = container_of(work,
3496 			struct ext4_sb_info, s_discard_work);
3497 	struct super_block *sb = sbi->s_sb;
3498 	struct ext4_free_data *fd, *nfd;
3499 	struct ext4_buddy e4b;
3500 	struct list_head discard_list;
3501 	ext4_group_t grp, load_grp;
3502 	int err = 0;
3503 
3504 	INIT_LIST_HEAD(&discard_list);
3505 	spin_lock(&sbi->s_md_lock);
3506 	list_splice_init(&sbi->s_discard_list, &discard_list);
3507 	spin_unlock(&sbi->s_md_lock);
3508 
3509 	load_grp = UINT_MAX;
3510 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3511 		/*
3512 		 * If filesystem is umounting or no memory or suffering
3513 		 * from no space, give up the discard
3514 		 */
3515 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3516 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3517 			grp = fd->efd_group;
3518 			if (grp != load_grp) {
3519 				if (load_grp != UINT_MAX)
3520 					ext4_mb_unload_buddy(&e4b);
3521 
3522 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3523 				if (err) {
3524 					kmem_cache_free(ext4_free_data_cachep, fd);
3525 					load_grp = UINT_MAX;
3526 					continue;
3527 				} else {
3528 					load_grp = grp;
3529 				}
3530 			}
3531 
3532 			ext4_lock_group(sb, grp);
3533 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3534 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3535 			ext4_unlock_group(sb, grp);
3536 		}
3537 		kmem_cache_free(ext4_free_data_cachep, fd);
3538 	}
3539 
3540 	if (load_grp != UINT_MAX)
3541 		ext4_mb_unload_buddy(&e4b);
3542 }
3543 
3544 int ext4_mb_init(struct super_block *sb)
3545 {
3546 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3547 	unsigned i, j;
3548 	unsigned offset, offset_incr;
3549 	unsigned max;
3550 	int ret;
3551 
3552 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3553 
3554 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3555 	if (sbi->s_mb_offsets == NULL) {
3556 		ret = -ENOMEM;
3557 		goto out;
3558 	}
3559 
3560 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3561 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3562 	if (sbi->s_mb_maxs == NULL) {
3563 		ret = -ENOMEM;
3564 		goto out;
3565 	}
3566 
3567 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3568 	if (ret < 0)
3569 		goto out;
3570 
3571 	/* order 0 is regular bitmap */
3572 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3573 	sbi->s_mb_offsets[0] = 0;
3574 
3575 	i = 1;
3576 	offset = 0;
3577 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3578 	max = sb->s_blocksize << 2;
3579 	do {
3580 		sbi->s_mb_offsets[i] = offset;
3581 		sbi->s_mb_maxs[i] = max;
3582 		offset += offset_incr;
3583 		offset_incr = offset_incr >> 1;
3584 		max = max >> 1;
3585 		i++;
3586 	} while (i < MB_NUM_ORDERS(sb));
3587 
3588 	sbi->s_mb_avg_fragment_size =
3589 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3590 			GFP_KERNEL);
3591 	if (!sbi->s_mb_avg_fragment_size) {
3592 		ret = -ENOMEM;
3593 		goto out;
3594 	}
3595 	sbi->s_mb_avg_fragment_size_locks =
3596 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3597 			GFP_KERNEL);
3598 	if (!sbi->s_mb_avg_fragment_size_locks) {
3599 		ret = -ENOMEM;
3600 		goto out;
3601 	}
3602 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3603 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3604 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3605 	}
3606 	sbi->s_mb_largest_free_orders =
3607 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3608 			GFP_KERNEL);
3609 	if (!sbi->s_mb_largest_free_orders) {
3610 		ret = -ENOMEM;
3611 		goto out;
3612 	}
3613 	sbi->s_mb_largest_free_orders_locks =
3614 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3615 			GFP_KERNEL);
3616 	if (!sbi->s_mb_largest_free_orders_locks) {
3617 		ret = -ENOMEM;
3618 		goto out;
3619 	}
3620 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3621 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3622 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3623 	}
3624 
3625 	spin_lock_init(&sbi->s_md_lock);
3626 	sbi->s_mb_free_pending = 0;
3627 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3628 	INIT_LIST_HEAD(&sbi->s_discard_list);
3629 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3630 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3631 
3632 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3633 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3634 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3635 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3636 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3637 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3638 
3639 	/*
3640 	 * The default group preallocation is 512, which for 4k block
3641 	 * sizes translates to 2 megabytes.  However for bigalloc file
3642 	 * systems, this is probably too big (i.e, if the cluster size
3643 	 * is 1 megabyte, then group preallocation size becomes half a
3644 	 * gigabyte!).  As a default, we will keep a two megabyte
3645 	 * group pralloc size for cluster sizes up to 64k, and after
3646 	 * that, we will force a minimum group preallocation size of
3647 	 * 32 clusters.  This translates to 8 megs when the cluster
3648 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3649 	 * which seems reasonable as a default.
3650 	 */
3651 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3652 				       sbi->s_cluster_bits, 32);
3653 	/*
3654 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3655 	 * to the lowest multiple of s_stripe which is bigger than
3656 	 * the s_mb_group_prealloc as determined above. We want
3657 	 * the preallocation size to be an exact multiple of the
3658 	 * RAID stripe size so that preallocations don't fragment
3659 	 * the stripes.
3660 	 */
3661 	if (sbi->s_stripe > 1) {
3662 		sbi->s_mb_group_prealloc = roundup(
3663 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3664 	}
3665 
3666 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3667 	if (sbi->s_locality_groups == NULL) {
3668 		ret = -ENOMEM;
3669 		goto out;
3670 	}
3671 	for_each_possible_cpu(i) {
3672 		struct ext4_locality_group *lg;
3673 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3674 		mutex_init(&lg->lg_mutex);
3675 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3676 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3677 		spin_lock_init(&lg->lg_prealloc_lock);
3678 	}
3679 
3680 	if (bdev_nonrot(sb->s_bdev))
3681 		sbi->s_mb_max_linear_groups = 0;
3682 	else
3683 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3684 	/* init file for buddy data */
3685 	ret = ext4_mb_init_backend(sb);
3686 	if (ret != 0)
3687 		goto out_free_locality_groups;
3688 
3689 	return 0;
3690 
3691 out_free_locality_groups:
3692 	free_percpu(sbi->s_locality_groups);
3693 	sbi->s_locality_groups = NULL;
3694 out:
3695 	kfree(sbi->s_mb_avg_fragment_size);
3696 	kfree(sbi->s_mb_avg_fragment_size_locks);
3697 	kfree(sbi->s_mb_largest_free_orders);
3698 	kfree(sbi->s_mb_largest_free_orders_locks);
3699 	kfree(sbi->s_mb_offsets);
3700 	sbi->s_mb_offsets = NULL;
3701 	kfree(sbi->s_mb_maxs);
3702 	sbi->s_mb_maxs = NULL;
3703 	return ret;
3704 }
3705 
3706 /* need to called with the ext4 group lock held */
3707 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3708 {
3709 	struct ext4_prealloc_space *pa;
3710 	struct list_head *cur, *tmp;
3711 	int count = 0;
3712 
3713 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3714 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3715 		list_del(&pa->pa_group_list);
3716 		count++;
3717 		kmem_cache_free(ext4_pspace_cachep, pa);
3718 	}
3719 	return count;
3720 }
3721 
3722 int ext4_mb_release(struct super_block *sb)
3723 {
3724 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3725 	ext4_group_t i;
3726 	int num_meta_group_infos;
3727 	struct ext4_group_info *grinfo, ***group_info;
3728 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3729 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3730 	int count;
3731 
3732 	if (test_opt(sb, DISCARD)) {
3733 		/*
3734 		 * wait the discard work to drain all of ext4_free_data
3735 		 */
3736 		flush_work(&sbi->s_discard_work);
3737 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3738 	}
3739 
3740 	if (sbi->s_group_info) {
3741 		for (i = 0; i < ngroups; i++) {
3742 			cond_resched();
3743 			grinfo = ext4_get_group_info(sb, i);
3744 			if (!grinfo)
3745 				continue;
3746 			mb_group_bb_bitmap_free(grinfo);
3747 			ext4_lock_group(sb, i);
3748 			count = ext4_mb_cleanup_pa(grinfo);
3749 			if (count)
3750 				mb_debug(sb, "mballoc: %d PAs left\n",
3751 					 count);
3752 			ext4_unlock_group(sb, i);
3753 			kmem_cache_free(cachep, grinfo);
3754 		}
3755 		num_meta_group_infos = (ngroups +
3756 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3757 			EXT4_DESC_PER_BLOCK_BITS(sb);
3758 		rcu_read_lock();
3759 		group_info = rcu_dereference(sbi->s_group_info);
3760 		for (i = 0; i < num_meta_group_infos; i++)
3761 			kfree(group_info[i]);
3762 		kvfree(group_info);
3763 		rcu_read_unlock();
3764 	}
3765 	kfree(sbi->s_mb_avg_fragment_size);
3766 	kfree(sbi->s_mb_avg_fragment_size_locks);
3767 	kfree(sbi->s_mb_largest_free_orders);
3768 	kfree(sbi->s_mb_largest_free_orders_locks);
3769 	kfree(sbi->s_mb_offsets);
3770 	kfree(sbi->s_mb_maxs);
3771 	iput(sbi->s_buddy_cache);
3772 	if (sbi->s_mb_stats) {
3773 		ext4_msg(sb, KERN_INFO,
3774 		       "mballoc: %u blocks %u reqs (%u success)",
3775 				atomic_read(&sbi->s_bal_allocated),
3776 				atomic_read(&sbi->s_bal_reqs),
3777 				atomic_read(&sbi->s_bal_success));
3778 		ext4_msg(sb, KERN_INFO,
3779 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3780 				"%u 2^N hits, %u breaks, %u lost",
3781 				atomic_read(&sbi->s_bal_ex_scanned),
3782 				atomic_read(&sbi->s_bal_groups_scanned),
3783 				atomic_read(&sbi->s_bal_goals),
3784 				atomic_read(&sbi->s_bal_2orders),
3785 				atomic_read(&sbi->s_bal_breaks),
3786 				atomic_read(&sbi->s_mb_lost_chunks));
3787 		ext4_msg(sb, KERN_INFO,
3788 		       "mballoc: %u generated and it took %llu",
3789 				atomic_read(&sbi->s_mb_buddies_generated),
3790 				atomic64_read(&sbi->s_mb_generation_time));
3791 		ext4_msg(sb, KERN_INFO,
3792 		       "mballoc: %u preallocated, %u discarded",
3793 				atomic_read(&sbi->s_mb_preallocated),
3794 				atomic_read(&sbi->s_mb_discarded));
3795 	}
3796 
3797 	free_percpu(sbi->s_locality_groups);
3798 
3799 	return 0;
3800 }
3801 
3802 static inline int ext4_issue_discard(struct super_block *sb,
3803 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3804 		struct bio **biop)
3805 {
3806 	ext4_fsblk_t discard_block;
3807 
3808 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3809 			 ext4_group_first_block_no(sb, block_group));
3810 	count = EXT4_C2B(EXT4_SB(sb), count);
3811 	trace_ext4_discard_blocks(sb,
3812 			(unsigned long long) discard_block, count);
3813 	if (biop) {
3814 		return __blkdev_issue_discard(sb->s_bdev,
3815 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3816 			(sector_t)count << (sb->s_blocksize_bits - 9),
3817 			GFP_NOFS, biop);
3818 	} else
3819 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3820 }
3821 
3822 static void ext4_free_data_in_buddy(struct super_block *sb,
3823 				    struct ext4_free_data *entry)
3824 {
3825 	struct ext4_buddy e4b;
3826 	struct ext4_group_info *db;
3827 	int err, count = 0;
3828 
3829 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3830 		 entry->efd_count, entry->efd_group, entry);
3831 
3832 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3833 	/* we expect to find existing buddy because it's pinned */
3834 	BUG_ON(err != 0);
3835 
3836 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3837 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3838 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3839 
3840 	db = e4b.bd_info;
3841 	/* there are blocks to put in buddy to make them really free */
3842 	count += entry->efd_count;
3843 	ext4_lock_group(sb, entry->efd_group);
3844 	/* Take it out of per group rb tree */
3845 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3846 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3847 
3848 	/*
3849 	 * Clear the trimmed flag for the group so that the next
3850 	 * ext4_trim_fs can trim it.
3851 	 * If the volume is mounted with -o discard, online discard
3852 	 * is supported and the free blocks will be trimmed online.
3853 	 */
3854 	if (!test_opt(sb, DISCARD))
3855 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3856 
3857 	if (!db->bb_free_root.rb_node) {
3858 		/* No more items in the per group rb tree
3859 		 * balance refcounts from ext4_mb_free_metadata()
3860 		 */
3861 		put_page(e4b.bd_buddy_page);
3862 		put_page(e4b.bd_bitmap_page);
3863 	}
3864 	ext4_unlock_group(sb, entry->efd_group);
3865 	ext4_mb_unload_buddy(&e4b);
3866 
3867 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3868 }
3869 
3870 /*
3871  * This function is called by the jbd2 layer once the commit has finished,
3872  * so we know we can free the blocks that were released with that commit.
3873  */
3874 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3875 {
3876 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3877 	struct ext4_free_data *entry, *tmp;
3878 	struct list_head freed_data_list;
3879 	struct list_head *cut_pos = NULL;
3880 	bool wake;
3881 
3882 	INIT_LIST_HEAD(&freed_data_list);
3883 
3884 	spin_lock(&sbi->s_md_lock);
3885 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3886 		if (entry->efd_tid != commit_tid)
3887 			break;
3888 		cut_pos = &entry->efd_list;
3889 	}
3890 	if (cut_pos)
3891 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3892 				  cut_pos);
3893 	spin_unlock(&sbi->s_md_lock);
3894 
3895 	list_for_each_entry(entry, &freed_data_list, efd_list)
3896 		ext4_free_data_in_buddy(sb, entry);
3897 
3898 	if (test_opt(sb, DISCARD)) {
3899 		spin_lock(&sbi->s_md_lock);
3900 		wake = list_empty(&sbi->s_discard_list);
3901 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3902 		spin_unlock(&sbi->s_md_lock);
3903 		if (wake)
3904 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3905 	} else {
3906 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3907 			kmem_cache_free(ext4_free_data_cachep, entry);
3908 	}
3909 }
3910 
3911 int __init ext4_init_mballoc(void)
3912 {
3913 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3914 					SLAB_RECLAIM_ACCOUNT);
3915 	if (ext4_pspace_cachep == NULL)
3916 		goto out;
3917 
3918 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3919 				    SLAB_RECLAIM_ACCOUNT);
3920 	if (ext4_ac_cachep == NULL)
3921 		goto out_pa_free;
3922 
3923 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3924 					   SLAB_RECLAIM_ACCOUNT);
3925 	if (ext4_free_data_cachep == NULL)
3926 		goto out_ac_free;
3927 
3928 	return 0;
3929 
3930 out_ac_free:
3931 	kmem_cache_destroy(ext4_ac_cachep);
3932 out_pa_free:
3933 	kmem_cache_destroy(ext4_pspace_cachep);
3934 out:
3935 	return -ENOMEM;
3936 }
3937 
3938 void ext4_exit_mballoc(void)
3939 {
3940 	/*
3941 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3942 	 * before destroying the slab cache.
3943 	 */
3944 	rcu_barrier();
3945 	kmem_cache_destroy(ext4_pspace_cachep);
3946 	kmem_cache_destroy(ext4_ac_cachep);
3947 	kmem_cache_destroy(ext4_free_data_cachep);
3948 	ext4_groupinfo_destroy_slabs();
3949 }
3950 
3951 
3952 /*
3953  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3954  * Returns 0 if success or error code
3955  */
3956 static noinline_for_stack int
3957 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3958 				handle_t *handle, unsigned int reserv_clstrs)
3959 {
3960 	struct buffer_head *bitmap_bh = NULL;
3961 	struct ext4_group_desc *gdp;
3962 	struct buffer_head *gdp_bh;
3963 	struct ext4_sb_info *sbi;
3964 	struct super_block *sb;
3965 	ext4_fsblk_t block;
3966 	int err, len;
3967 
3968 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3969 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3970 
3971 	sb = ac->ac_sb;
3972 	sbi = EXT4_SB(sb);
3973 
3974 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3975 	if (IS_ERR(bitmap_bh)) {
3976 		return PTR_ERR(bitmap_bh);
3977 	}
3978 
3979 	BUFFER_TRACE(bitmap_bh, "getting write access");
3980 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3981 					    EXT4_JTR_NONE);
3982 	if (err)
3983 		goto out_err;
3984 
3985 	err = -EIO;
3986 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3987 	if (!gdp)
3988 		goto out_err;
3989 
3990 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3991 			ext4_free_group_clusters(sb, gdp));
3992 
3993 	BUFFER_TRACE(gdp_bh, "get_write_access");
3994 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3995 	if (err)
3996 		goto out_err;
3997 
3998 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3999 
4000 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4001 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4002 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4003 			   "fs metadata", block, block+len);
4004 		/* File system mounted not to panic on error
4005 		 * Fix the bitmap and return EFSCORRUPTED
4006 		 * We leak some of the blocks here.
4007 		 */
4008 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4009 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4010 			      ac->ac_b_ex.fe_len);
4011 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4012 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4013 		if (!err)
4014 			err = -EFSCORRUPTED;
4015 		goto out_err;
4016 	}
4017 
4018 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4019 #ifdef AGGRESSIVE_CHECK
4020 	{
4021 		int i;
4022 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4023 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4024 						bitmap_bh->b_data));
4025 		}
4026 	}
4027 #endif
4028 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4029 		      ac->ac_b_ex.fe_len);
4030 	if (ext4_has_group_desc_csum(sb) &&
4031 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4032 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4033 		ext4_free_group_clusters_set(sb, gdp,
4034 					     ext4_free_clusters_after_init(sb,
4035 						ac->ac_b_ex.fe_group, gdp));
4036 	}
4037 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4038 	ext4_free_group_clusters_set(sb, gdp, len);
4039 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4040 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4041 
4042 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4043 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4044 	/*
4045 	 * Now reduce the dirty block count also. Should not go negative
4046 	 */
4047 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4048 		/* release all the reserved blocks if non delalloc */
4049 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4050 				   reserv_clstrs);
4051 
4052 	if (sbi->s_log_groups_per_flex) {
4053 		ext4_group_t flex_group = ext4_flex_group(sbi,
4054 							  ac->ac_b_ex.fe_group);
4055 		atomic64_sub(ac->ac_b_ex.fe_len,
4056 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4057 						  flex_group)->free_clusters);
4058 	}
4059 
4060 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4061 	if (err)
4062 		goto out_err;
4063 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4064 
4065 out_err:
4066 	brelse(bitmap_bh);
4067 	return err;
4068 }
4069 
4070 /*
4071  * Idempotent helper for Ext4 fast commit replay path to set the state of
4072  * blocks in bitmaps and update counters.
4073  */
4074 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4075 			int len, int state)
4076 {
4077 	struct buffer_head *bitmap_bh = NULL;
4078 	struct ext4_group_desc *gdp;
4079 	struct buffer_head *gdp_bh;
4080 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4081 	ext4_group_t group;
4082 	ext4_grpblk_t blkoff;
4083 	int i, err;
4084 	int already;
4085 	unsigned int clen, clen_changed, thisgrp_len;
4086 
4087 	while (len > 0) {
4088 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4089 
4090 		/*
4091 		 * Check to see if we are freeing blocks across a group
4092 		 * boundary.
4093 		 * In case of flex_bg, this can happen that (block, len) may
4094 		 * span across more than one group. In that case we need to
4095 		 * get the corresponding group metadata to work with.
4096 		 * For this we have goto again loop.
4097 		 */
4098 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4099 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4100 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4101 
4102 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4103 			ext4_error(sb, "Marking blocks in system zone - "
4104 				   "Block = %llu, len = %u",
4105 				   block, thisgrp_len);
4106 			bitmap_bh = NULL;
4107 			break;
4108 		}
4109 
4110 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4111 		if (IS_ERR(bitmap_bh)) {
4112 			err = PTR_ERR(bitmap_bh);
4113 			bitmap_bh = NULL;
4114 			break;
4115 		}
4116 
4117 		err = -EIO;
4118 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4119 		if (!gdp)
4120 			break;
4121 
4122 		ext4_lock_group(sb, group);
4123 		already = 0;
4124 		for (i = 0; i < clen; i++)
4125 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4126 					 !state)
4127 				already++;
4128 
4129 		clen_changed = clen - already;
4130 		if (state)
4131 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4132 		else
4133 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4134 		if (ext4_has_group_desc_csum(sb) &&
4135 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4136 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4137 			ext4_free_group_clusters_set(sb, gdp,
4138 			     ext4_free_clusters_after_init(sb, group, gdp));
4139 		}
4140 		if (state)
4141 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4142 		else
4143 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4144 
4145 		ext4_free_group_clusters_set(sb, gdp, clen);
4146 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4147 		ext4_group_desc_csum_set(sb, group, gdp);
4148 
4149 		ext4_unlock_group(sb, group);
4150 
4151 		if (sbi->s_log_groups_per_flex) {
4152 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
4153 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4154 						   s_flex_groups, flex_group);
4155 
4156 			if (state)
4157 				atomic64_sub(clen_changed, &fg->free_clusters);
4158 			else
4159 				atomic64_add(clen_changed, &fg->free_clusters);
4160 
4161 		}
4162 
4163 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4164 		if (err)
4165 			break;
4166 		sync_dirty_buffer(bitmap_bh);
4167 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4168 		sync_dirty_buffer(gdp_bh);
4169 		if (err)
4170 			break;
4171 
4172 		block += thisgrp_len;
4173 		len -= thisgrp_len;
4174 		brelse(bitmap_bh);
4175 		BUG_ON(len < 0);
4176 	}
4177 
4178 	if (err)
4179 		brelse(bitmap_bh);
4180 }
4181 
4182 /*
4183  * here we normalize request for locality group
4184  * Group request are normalized to s_mb_group_prealloc, which goes to
4185  * s_strip if we set the same via mount option.
4186  * s_mb_group_prealloc can be configured via
4187  * /sys/fs/ext4/<partition>/mb_group_prealloc
4188  *
4189  * XXX: should we try to preallocate more than the group has now?
4190  */
4191 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4192 {
4193 	struct super_block *sb = ac->ac_sb;
4194 	struct ext4_locality_group *lg = ac->ac_lg;
4195 
4196 	BUG_ON(lg == NULL);
4197 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4198 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4199 }
4200 
4201 /*
4202  * This function returns the next element to look at during inode
4203  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4204  * (ei->i_prealloc_lock)
4205  *
4206  * new_start	The start of the range we want to compare
4207  * cur_start	The existing start that we are comparing against
4208  * node	The node of the rb_tree
4209  */
4210 static inline struct rb_node*
4211 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4212 {
4213 	if (new_start < cur_start)
4214 		return node->rb_left;
4215 	else
4216 		return node->rb_right;
4217 }
4218 
4219 static inline void
4220 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4221 			  ext4_lblk_t start, ext4_lblk_t end)
4222 {
4223 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4224 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4225 	struct ext4_prealloc_space *tmp_pa;
4226 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4227 	struct rb_node *iter;
4228 
4229 	read_lock(&ei->i_prealloc_lock);
4230 	for (iter = ei->i_prealloc_node.rb_node; iter;
4231 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4232 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4233 				  pa_node.inode_node);
4234 		tmp_pa_start = tmp_pa->pa_lstart;
4235 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4236 
4237 		spin_lock(&tmp_pa->pa_lock);
4238 		if (tmp_pa->pa_deleted == 0)
4239 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4240 		spin_unlock(&tmp_pa->pa_lock);
4241 	}
4242 	read_unlock(&ei->i_prealloc_lock);
4243 }
4244 
4245 /*
4246  * Given an allocation context "ac" and a range "start", "end", check
4247  * and adjust boundaries if the range overlaps with any of the existing
4248  * preallocatoins stored in the corresponding inode of the allocation context.
4249  *
4250  * Parameters:
4251  *	ac			allocation context
4252  *	start			start of the new range
4253  *	end			end of the new range
4254  */
4255 static inline void
4256 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4257 			  ext4_lblk_t *start, ext4_lblk_t *end)
4258 {
4259 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4260 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4261 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4262 	struct rb_node *iter;
4263 	ext4_lblk_t new_start, new_end;
4264 	ext4_lblk_t tmp_pa_start, tmp_pa_end, left_pa_end = -1, right_pa_start = -1;
4265 
4266 	new_start = *start;
4267 	new_end = *end;
4268 
4269 	/*
4270 	 * Adjust the normalized range so that it doesn't overlap with any
4271 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4272 	 * so it doesn't change underneath us.
4273 	 */
4274 	read_lock(&ei->i_prealloc_lock);
4275 
4276 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4277 	for (iter = ei->i_prealloc_node.rb_node; iter;
4278 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4279 					    tmp_pa_start, iter)) {
4280 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4281 				  pa_node.inode_node);
4282 		tmp_pa_start = tmp_pa->pa_lstart;
4283 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4284 
4285 		/* PA must not overlap original request */
4286 		spin_lock(&tmp_pa->pa_lock);
4287 		if (tmp_pa->pa_deleted == 0)
4288 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4289 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4290 		spin_unlock(&tmp_pa->pa_lock);
4291 	}
4292 
4293 	/*
4294 	 * Step 2: check if the found PA is left or right neighbor and
4295 	 * get the other neighbor
4296 	 */
4297 	if (tmp_pa) {
4298 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4299 			struct rb_node *tmp;
4300 
4301 			left_pa = tmp_pa;
4302 			tmp = rb_next(&left_pa->pa_node.inode_node);
4303 			if (tmp) {
4304 				right_pa = rb_entry(tmp,
4305 						    struct ext4_prealloc_space,
4306 						    pa_node.inode_node);
4307 			}
4308 		} else {
4309 			struct rb_node *tmp;
4310 
4311 			right_pa = tmp_pa;
4312 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4313 			if (tmp) {
4314 				left_pa = rb_entry(tmp,
4315 						   struct ext4_prealloc_space,
4316 						   pa_node.inode_node);
4317 			}
4318 		}
4319 	}
4320 
4321 	/* Step 3: get the non deleted neighbors */
4322 	if (left_pa) {
4323 		for (iter = &left_pa->pa_node.inode_node;;
4324 		     iter = rb_prev(iter)) {
4325 			if (!iter) {
4326 				left_pa = NULL;
4327 				break;
4328 			}
4329 
4330 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4331 					  pa_node.inode_node);
4332 			left_pa = tmp_pa;
4333 			spin_lock(&tmp_pa->pa_lock);
4334 			if (tmp_pa->pa_deleted == 0) {
4335 				spin_unlock(&tmp_pa->pa_lock);
4336 				break;
4337 			}
4338 			spin_unlock(&tmp_pa->pa_lock);
4339 		}
4340 	}
4341 
4342 	if (right_pa) {
4343 		for (iter = &right_pa->pa_node.inode_node;;
4344 		     iter = rb_next(iter)) {
4345 			if (!iter) {
4346 				right_pa = NULL;
4347 				break;
4348 			}
4349 
4350 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4351 					  pa_node.inode_node);
4352 			right_pa = tmp_pa;
4353 			spin_lock(&tmp_pa->pa_lock);
4354 			if (tmp_pa->pa_deleted == 0) {
4355 				spin_unlock(&tmp_pa->pa_lock);
4356 				break;
4357 			}
4358 			spin_unlock(&tmp_pa->pa_lock);
4359 		}
4360 	}
4361 
4362 	if (left_pa) {
4363 		left_pa_end =
4364 			left_pa->pa_lstart + EXT4_C2B(sbi, left_pa->pa_len);
4365 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4366 	}
4367 
4368 	if (right_pa) {
4369 		right_pa_start = right_pa->pa_lstart;
4370 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4371 	}
4372 
4373 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4374 	if (left_pa) {
4375 		if (left_pa_end > new_start)
4376 			new_start = left_pa_end;
4377 	}
4378 
4379 	if (right_pa) {
4380 		if (right_pa_start < new_end)
4381 			new_end = right_pa_start;
4382 	}
4383 	read_unlock(&ei->i_prealloc_lock);
4384 
4385 	/* XXX: extra loop to check we really don't overlap preallocations */
4386 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4387 
4388 	*start = new_start;
4389 	*end = new_end;
4390 }
4391 
4392 /*
4393  * Normalization means making request better in terms of
4394  * size and alignment
4395  */
4396 static noinline_for_stack void
4397 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4398 				struct ext4_allocation_request *ar)
4399 {
4400 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4401 	struct ext4_super_block *es = sbi->s_es;
4402 	int bsbits, max;
4403 	ext4_lblk_t end;
4404 	loff_t size, start_off;
4405 	loff_t orig_size __maybe_unused;
4406 	ext4_lblk_t start;
4407 
4408 	/* do normalize only data requests, metadata requests
4409 	   do not need preallocation */
4410 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4411 		return;
4412 
4413 	/* sometime caller may want exact blocks */
4414 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4415 		return;
4416 
4417 	/* caller may indicate that preallocation isn't
4418 	 * required (it's a tail, for example) */
4419 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4420 		return;
4421 
4422 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4423 		ext4_mb_normalize_group_request(ac);
4424 		return ;
4425 	}
4426 
4427 	bsbits = ac->ac_sb->s_blocksize_bits;
4428 
4429 	/* first, let's learn actual file size
4430 	 * given current request is allocated */
4431 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4432 	size = size << bsbits;
4433 	if (size < i_size_read(ac->ac_inode))
4434 		size = i_size_read(ac->ac_inode);
4435 	orig_size = size;
4436 
4437 	/* max size of free chunks */
4438 	max = 2 << bsbits;
4439 
4440 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4441 		(req <= (size) || max <= (chunk_size))
4442 
4443 	/* first, try to predict filesize */
4444 	/* XXX: should this table be tunable? */
4445 	start_off = 0;
4446 	if (size <= 16 * 1024) {
4447 		size = 16 * 1024;
4448 	} else if (size <= 32 * 1024) {
4449 		size = 32 * 1024;
4450 	} else if (size <= 64 * 1024) {
4451 		size = 64 * 1024;
4452 	} else if (size <= 128 * 1024) {
4453 		size = 128 * 1024;
4454 	} else if (size <= 256 * 1024) {
4455 		size = 256 * 1024;
4456 	} else if (size <= 512 * 1024) {
4457 		size = 512 * 1024;
4458 	} else if (size <= 1024 * 1024) {
4459 		size = 1024 * 1024;
4460 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4461 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4462 						(21 - bsbits)) << 21;
4463 		size = 2 * 1024 * 1024;
4464 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4465 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4466 							(22 - bsbits)) << 22;
4467 		size = 4 * 1024 * 1024;
4468 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4469 					(8<<20)>>bsbits, max, 8 * 1024)) {
4470 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4471 							(23 - bsbits)) << 23;
4472 		size = 8 * 1024 * 1024;
4473 	} else {
4474 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4475 		size	  = (loff_t) EXT4_C2B(sbi,
4476 					      ac->ac_o_ex.fe_len) << bsbits;
4477 	}
4478 	size = size >> bsbits;
4479 	start = start_off >> bsbits;
4480 
4481 	/*
4482 	 * For tiny groups (smaller than 8MB) the chosen allocation
4483 	 * alignment may be larger than group size. Make sure the
4484 	 * alignment does not move allocation to a different group which
4485 	 * makes mballoc fail assertions later.
4486 	 */
4487 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4488 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4489 
4490 	/* don't cover already allocated blocks in selected range */
4491 	if (ar->pleft && start <= ar->lleft) {
4492 		size -= ar->lleft + 1 - start;
4493 		start = ar->lleft + 1;
4494 	}
4495 	if (ar->pright && start + size - 1 >= ar->lright)
4496 		size -= start + size - ar->lright;
4497 
4498 	/*
4499 	 * Trim allocation request for filesystems with artificially small
4500 	 * groups.
4501 	 */
4502 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4503 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4504 
4505 	end = start + size;
4506 
4507 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4508 
4509 	size = end - start;
4510 
4511 	/*
4512 	 * In this function "start" and "size" are normalized for better
4513 	 * alignment and length such that we could preallocate more blocks.
4514 	 * This normalization is done such that original request of
4515 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4516 	 * "size" boundaries.
4517 	 * (Note fe_len can be relaxed since FS block allocation API does not
4518 	 * provide gurantee on number of contiguous blocks allocation since that
4519 	 * depends upon free space left, etc).
4520 	 * In case of inode pa, later we use the allocated blocks
4521 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4522 	 * range of goal/best blocks [start, size] to put it at the
4523 	 * ac_o_ex.fe_logical extent of this inode.
4524 	 * (See ext4_mb_use_inode_pa() for more details)
4525 	 */
4526 	if (start + size <= ac->ac_o_ex.fe_logical ||
4527 			start > ac->ac_o_ex.fe_logical) {
4528 		ext4_msg(ac->ac_sb, KERN_ERR,
4529 			 "start %lu, size %lu, fe_logical %lu",
4530 			 (unsigned long) start, (unsigned long) size,
4531 			 (unsigned long) ac->ac_o_ex.fe_logical);
4532 		BUG();
4533 	}
4534 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4535 
4536 	/* now prepare goal request */
4537 
4538 	/* XXX: is it better to align blocks WRT to logical
4539 	 * placement or satisfy big request as is */
4540 	ac->ac_g_ex.fe_logical = start;
4541 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4542 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4543 
4544 	/* define goal start in order to merge */
4545 	if (ar->pright && (ar->lright == (start + size)) &&
4546 	    ar->pright >= size &&
4547 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4548 		/* merge to the right */
4549 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4550 						&ac->ac_g_ex.fe_group,
4551 						&ac->ac_g_ex.fe_start);
4552 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4553 	}
4554 	if (ar->pleft && (ar->lleft + 1 == start) &&
4555 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4556 		/* merge to the left */
4557 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4558 						&ac->ac_g_ex.fe_group,
4559 						&ac->ac_g_ex.fe_start);
4560 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4561 	}
4562 
4563 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4564 		 orig_size, start);
4565 }
4566 
4567 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4568 {
4569 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4570 
4571 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4572 		atomic_inc(&sbi->s_bal_reqs);
4573 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4574 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4575 			atomic_inc(&sbi->s_bal_success);
4576 
4577 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4578 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4579 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4580 		}
4581 
4582 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4583 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4584 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4585 			atomic_inc(&sbi->s_bal_goals);
4586 		/* did we allocate as much as normalizer originally wanted? */
4587 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4588 			atomic_inc(&sbi->s_bal_len_goals);
4589 
4590 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4591 			atomic_inc(&sbi->s_bal_breaks);
4592 	}
4593 
4594 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4595 		trace_ext4_mballoc_alloc(ac);
4596 	else
4597 		trace_ext4_mballoc_prealloc(ac);
4598 }
4599 
4600 /*
4601  * Called on failure; free up any blocks from the inode PA for this
4602  * context.  We don't need this for MB_GROUP_PA because we only change
4603  * pa_free in ext4_mb_release_context(), but on failure, we've already
4604  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4605  */
4606 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4607 {
4608 	struct ext4_prealloc_space *pa = ac->ac_pa;
4609 	struct ext4_buddy e4b;
4610 	int err;
4611 
4612 	if (pa == NULL) {
4613 		if (ac->ac_f_ex.fe_len == 0)
4614 			return;
4615 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4616 		if (WARN_RATELIMIT(err,
4617 				   "ext4: mb_load_buddy failed (%d)", err))
4618 			/*
4619 			 * This should never happen since we pin the
4620 			 * pages in the ext4_allocation_context so
4621 			 * ext4_mb_load_buddy() should never fail.
4622 			 */
4623 			return;
4624 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4625 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4626 			       ac->ac_f_ex.fe_len);
4627 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4628 		ext4_mb_unload_buddy(&e4b);
4629 		return;
4630 	}
4631 	if (pa->pa_type == MB_INODE_PA) {
4632 		spin_lock(&pa->pa_lock);
4633 		pa->pa_free += ac->ac_b_ex.fe_len;
4634 		spin_unlock(&pa->pa_lock);
4635 	}
4636 }
4637 
4638 /*
4639  * use blocks preallocated to inode
4640  */
4641 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4642 				struct ext4_prealloc_space *pa)
4643 {
4644 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4645 	ext4_fsblk_t start;
4646 	ext4_fsblk_t end;
4647 	int len;
4648 
4649 	/* found preallocated blocks, use them */
4650 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4651 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4652 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4653 	len = EXT4_NUM_B2C(sbi, end - start);
4654 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4655 					&ac->ac_b_ex.fe_start);
4656 	ac->ac_b_ex.fe_len = len;
4657 	ac->ac_status = AC_STATUS_FOUND;
4658 	ac->ac_pa = pa;
4659 
4660 	BUG_ON(start < pa->pa_pstart);
4661 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4662 	BUG_ON(pa->pa_free < len);
4663 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4664 	pa->pa_free -= len;
4665 
4666 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4667 }
4668 
4669 /*
4670  * use blocks preallocated to locality group
4671  */
4672 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4673 				struct ext4_prealloc_space *pa)
4674 {
4675 	unsigned int len = ac->ac_o_ex.fe_len;
4676 
4677 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4678 					&ac->ac_b_ex.fe_group,
4679 					&ac->ac_b_ex.fe_start);
4680 	ac->ac_b_ex.fe_len = len;
4681 	ac->ac_status = AC_STATUS_FOUND;
4682 	ac->ac_pa = pa;
4683 
4684 	/* we don't correct pa_pstart or pa_len here to avoid
4685 	 * possible race when the group is being loaded concurrently
4686 	 * instead we correct pa later, after blocks are marked
4687 	 * in on-disk bitmap -- see ext4_mb_release_context()
4688 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4689 	 */
4690 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4691 		 pa->pa_lstart, len, pa);
4692 }
4693 
4694 /*
4695  * Return the prealloc space that have minimal distance
4696  * from the goal block. @cpa is the prealloc
4697  * space that is having currently known minimal distance
4698  * from the goal block.
4699  */
4700 static struct ext4_prealloc_space *
4701 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4702 			struct ext4_prealloc_space *pa,
4703 			struct ext4_prealloc_space *cpa)
4704 {
4705 	ext4_fsblk_t cur_distance, new_distance;
4706 
4707 	if (cpa == NULL) {
4708 		atomic_inc(&pa->pa_count);
4709 		return pa;
4710 	}
4711 	cur_distance = abs(goal_block - cpa->pa_pstart);
4712 	new_distance = abs(goal_block - pa->pa_pstart);
4713 
4714 	if (cur_distance <= new_distance)
4715 		return cpa;
4716 
4717 	/* drop the previous reference */
4718 	atomic_dec(&cpa->pa_count);
4719 	atomic_inc(&pa->pa_count);
4720 	return pa;
4721 }
4722 
4723 /*
4724  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4725  */
4726 static bool
4727 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4728 		      struct ext4_prealloc_space *pa)
4729 {
4730 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4731 	ext4_fsblk_t start;
4732 
4733 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4734 		return true;
4735 
4736 	/*
4737 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4738 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4739 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4740 	 * consistent with ext4_mb_find_by_goal.
4741 	 */
4742 	start = pa->pa_pstart +
4743 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4744 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4745 		return false;
4746 
4747 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4748 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4749 		return false;
4750 
4751 	return true;
4752 }
4753 
4754 /*
4755  * search goal blocks in preallocated space
4756  */
4757 static noinline_for_stack bool
4758 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4759 {
4760 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4761 	int order, i;
4762 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4763 	struct ext4_locality_group *lg;
4764 	struct ext4_prealloc_space *tmp_pa, *cpa = NULL;
4765 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4766 	struct rb_node *iter;
4767 	ext4_fsblk_t goal_block;
4768 
4769 	/* only data can be preallocated */
4770 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4771 		return false;
4772 
4773 	/* first, try per-file preallocation */
4774 	read_lock(&ei->i_prealloc_lock);
4775 	for (iter = ei->i_prealloc_node.rb_node; iter;
4776 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4777 					    tmp_pa_start, iter)) {
4778 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4779 				  pa_node.inode_node);
4780 
4781 		/* all fields in this condition don't change,
4782 		 * so we can skip locking for them */
4783 		tmp_pa_start = tmp_pa->pa_lstart;
4784 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4785 
4786 		/* original request start doesn't lie in this PA */
4787 		if (ac->ac_o_ex.fe_logical < tmp_pa_start ||
4788 		    ac->ac_o_ex.fe_logical >= tmp_pa_end)
4789 			continue;
4790 
4791 		/* non-extent files can't have physical blocks past 2^32 */
4792 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4793 		    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4794 		     EXT4_MAX_BLOCK_FILE_PHYS)) {
4795 			/*
4796 			 * Since PAs don't overlap, we won't find any
4797 			 * other PA to satisfy this.
4798 			 */
4799 			break;
4800 		}
4801 
4802 		/* found preallocated blocks, use them */
4803 		spin_lock(&tmp_pa->pa_lock);
4804 		if (tmp_pa->pa_deleted == 0 && tmp_pa->pa_free &&
4805 		    likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4806 			atomic_inc(&tmp_pa->pa_count);
4807 			ext4_mb_use_inode_pa(ac, tmp_pa);
4808 			spin_unlock(&tmp_pa->pa_lock);
4809 			read_unlock(&ei->i_prealloc_lock);
4810 			return true;
4811 		}
4812 		spin_unlock(&tmp_pa->pa_lock);
4813 	}
4814 	read_unlock(&ei->i_prealloc_lock);
4815 
4816 	/* can we use group allocation? */
4817 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4818 		return false;
4819 
4820 	/* inode may have no locality group for some reason */
4821 	lg = ac->ac_lg;
4822 	if (lg == NULL)
4823 		return false;
4824 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4825 	if (order > PREALLOC_TB_SIZE - 1)
4826 		/* The max size of hash table is PREALLOC_TB_SIZE */
4827 		order = PREALLOC_TB_SIZE - 1;
4828 
4829 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4830 	/*
4831 	 * search for the prealloc space that is having
4832 	 * minimal distance from the goal block.
4833 	 */
4834 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4835 		rcu_read_lock();
4836 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4837 					pa_node.lg_list) {
4838 			spin_lock(&tmp_pa->pa_lock);
4839 			if (tmp_pa->pa_deleted == 0 &&
4840 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4841 
4842 				cpa = ext4_mb_check_group_pa(goal_block,
4843 								tmp_pa, cpa);
4844 			}
4845 			spin_unlock(&tmp_pa->pa_lock);
4846 		}
4847 		rcu_read_unlock();
4848 	}
4849 	if (cpa) {
4850 		ext4_mb_use_group_pa(ac, cpa);
4851 		return true;
4852 	}
4853 	return false;
4854 }
4855 
4856 /*
4857  * the function goes through all block freed in the group
4858  * but not yet committed and marks them used in in-core bitmap.
4859  * buddy must be generated from this bitmap
4860  * Need to be called with the ext4 group lock held
4861  */
4862 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4863 						ext4_group_t group)
4864 {
4865 	struct rb_node *n;
4866 	struct ext4_group_info *grp;
4867 	struct ext4_free_data *entry;
4868 
4869 	grp = ext4_get_group_info(sb, group);
4870 	if (!grp)
4871 		return;
4872 	n = rb_first(&(grp->bb_free_root));
4873 
4874 	while (n) {
4875 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4876 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4877 		n = rb_next(n);
4878 	}
4879 	return;
4880 }
4881 
4882 /*
4883  * the function goes through all preallocation in this group and marks them
4884  * used in in-core bitmap. buddy must be generated from this bitmap
4885  * Need to be called with ext4 group lock held
4886  */
4887 static noinline_for_stack
4888 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4889 					ext4_group_t group)
4890 {
4891 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4892 	struct ext4_prealloc_space *pa;
4893 	struct list_head *cur;
4894 	ext4_group_t groupnr;
4895 	ext4_grpblk_t start;
4896 	int preallocated = 0;
4897 	int len;
4898 
4899 	if (!grp)
4900 		return;
4901 
4902 	/* all form of preallocation discards first load group,
4903 	 * so the only competing code is preallocation use.
4904 	 * we don't need any locking here
4905 	 * notice we do NOT ignore preallocations with pa_deleted
4906 	 * otherwise we could leave used blocks available for
4907 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4908 	 * is dropping preallocation
4909 	 */
4910 	list_for_each(cur, &grp->bb_prealloc_list) {
4911 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4912 		spin_lock(&pa->pa_lock);
4913 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4914 					     &groupnr, &start);
4915 		len = pa->pa_len;
4916 		spin_unlock(&pa->pa_lock);
4917 		if (unlikely(len == 0))
4918 			continue;
4919 		BUG_ON(groupnr != group);
4920 		mb_set_bits(bitmap, start, len);
4921 		preallocated += len;
4922 	}
4923 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4924 }
4925 
4926 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4927 				    struct ext4_prealloc_space *pa)
4928 {
4929 	struct ext4_inode_info *ei;
4930 
4931 	if (pa->pa_deleted) {
4932 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4933 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4934 			     pa->pa_len);
4935 		return;
4936 	}
4937 
4938 	pa->pa_deleted = 1;
4939 
4940 	if (pa->pa_type == MB_INODE_PA) {
4941 		ei = EXT4_I(pa->pa_inode);
4942 		atomic_dec(&ei->i_prealloc_active);
4943 	}
4944 }
4945 
4946 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
4947 {
4948 	BUG_ON(!pa);
4949 	BUG_ON(atomic_read(&pa->pa_count));
4950 	BUG_ON(pa->pa_deleted == 0);
4951 	kmem_cache_free(ext4_pspace_cachep, pa);
4952 }
4953 
4954 static void ext4_mb_pa_callback(struct rcu_head *head)
4955 {
4956 	struct ext4_prealloc_space *pa;
4957 
4958 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4959 	ext4_mb_pa_free(pa);
4960 }
4961 
4962 /*
4963  * drops a reference to preallocated space descriptor
4964  * if this was the last reference and the space is consumed
4965  */
4966 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4967 			struct super_block *sb, struct ext4_prealloc_space *pa)
4968 {
4969 	ext4_group_t grp;
4970 	ext4_fsblk_t grp_blk;
4971 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4972 
4973 	/* in this short window concurrent discard can set pa_deleted */
4974 	spin_lock(&pa->pa_lock);
4975 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4976 		spin_unlock(&pa->pa_lock);
4977 		return;
4978 	}
4979 
4980 	if (pa->pa_deleted == 1) {
4981 		spin_unlock(&pa->pa_lock);
4982 		return;
4983 	}
4984 
4985 	ext4_mb_mark_pa_deleted(sb, pa);
4986 	spin_unlock(&pa->pa_lock);
4987 
4988 	grp_blk = pa->pa_pstart;
4989 	/*
4990 	 * If doing group-based preallocation, pa_pstart may be in the
4991 	 * next group when pa is used up
4992 	 */
4993 	if (pa->pa_type == MB_GROUP_PA)
4994 		grp_blk--;
4995 
4996 	grp = ext4_get_group_number(sb, grp_blk);
4997 
4998 	/*
4999 	 * possible race:
5000 	 *
5001 	 *  P1 (buddy init)			P2 (regular allocation)
5002 	 *					find block B in PA
5003 	 *  copy on-disk bitmap to buddy
5004 	 *  					mark B in on-disk bitmap
5005 	 *					drop PA from group
5006 	 *  mark all PAs in buddy
5007 	 *
5008 	 * thus, P1 initializes buddy with B available. to prevent this
5009 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5010 	 * against that pair
5011 	 */
5012 	ext4_lock_group(sb, grp);
5013 	list_del(&pa->pa_group_list);
5014 	ext4_unlock_group(sb, grp);
5015 
5016 	if (pa->pa_type == MB_INODE_PA) {
5017 		write_lock(pa->pa_node_lock.inode_lock);
5018 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5019 		write_unlock(pa->pa_node_lock.inode_lock);
5020 		ext4_mb_pa_free(pa);
5021 	} else {
5022 		spin_lock(pa->pa_node_lock.lg_lock);
5023 		list_del_rcu(&pa->pa_node.lg_list);
5024 		spin_unlock(pa->pa_node_lock.lg_lock);
5025 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5026 	}
5027 }
5028 
5029 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5030 {
5031 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5032 	struct ext4_prealloc_space *iter_pa, *new_pa;
5033 	ext4_lblk_t iter_start, new_start;
5034 
5035 	while (*iter) {
5036 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5037 				   pa_node.inode_node);
5038 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5039 				   pa_node.inode_node);
5040 		iter_start = iter_pa->pa_lstart;
5041 		new_start = new_pa->pa_lstart;
5042 
5043 		parent = *iter;
5044 		if (new_start < iter_start)
5045 			iter = &((*iter)->rb_left);
5046 		else
5047 			iter = &((*iter)->rb_right);
5048 	}
5049 
5050 	rb_link_node(new, parent, iter);
5051 	rb_insert_color(new, root);
5052 }
5053 
5054 /*
5055  * creates new preallocated space for given inode
5056  */
5057 static noinline_for_stack void
5058 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5059 {
5060 	struct super_block *sb = ac->ac_sb;
5061 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5062 	struct ext4_prealloc_space *pa;
5063 	struct ext4_group_info *grp;
5064 	struct ext4_inode_info *ei;
5065 
5066 	/* preallocate only when found space is larger then requested */
5067 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5068 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5069 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5070 	BUG_ON(ac->ac_pa == NULL);
5071 
5072 	pa = ac->ac_pa;
5073 
5074 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5075 		int new_bex_start;
5076 		int new_bex_end;
5077 
5078 		/* we can't allocate as much as normalizer wants.
5079 		 * so, found space must get proper lstart
5080 		 * to cover original request */
5081 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5082 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5083 
5084 		/*
5085 		 * Use the below logic for adjusting best extent as it keeps
5086 		 * fragmentation in check while ensuring logical range of best
5087 		 * extent doesn't overflow out of goal extent:
5088 		 *
5089 		 * 1. Check if best ex can be kept at end of goal (before
5090 		 *    cr_best_avail trimmed it) and still cover original start
5091 		 * 2. Else, check if best ex can be kept at start of goal and
5092 		 *    still cover original start
5093 		 * 3. Else, keep the best ex at start of original request.
5094 		 */
5095 		new_bex_end = ac->ac_g_ex.fe_logical +
5096 			EXT4_C2B(sbi, ac->ac_orig_goal_len);
5097 		new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5098 		if (ac->ac_o_ex.fe_logical >= new_bex_start)
5099 			goto adjust_bex;
5100 
5101 		new_bex_start = ac->ac_g_ex.fe_logical;
5102 		new_bex_end =
5103 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5104 		if (ac->ac_o_ex.fe_logical < new_bex_end)
5105 			goto adjust_bex;
5106 
5107 		new_bex_start = ac->ac_o_ex.fe_logical;
5108 		new_bex_end =
5109 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5110 
5111 adjust_bex:
5112 		ac->ac_b_ex.fe_logical = new_bex_start;
5113 
5114 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5115 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5116 		BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
5117 				      EXT4_C2B(sbi, ac->ac_orig_goal_len)));
5118 	}
5119 
5120 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5121 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5122 	pa->pa_len = ac->ac_b_ex.fe_len;
5123 	pa->pa_free = pa->pa_len;
5124 	spin_lock_init(&pa->pa_lock);
5125 	INIT_LIST_HEAD(&pa->pa_group_list);
5126 	pa->pa_deleted = 0;
5127 	pa->pa_type = MB_INODE_PA;
5128 
5129 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5130 		 pa->pa_len, pa->pa_lstart);
5131 	trace_ext4_mb_new_inode_pa(ac, pa);
5132 
5133 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5134 	ext4_mb_use_inode_pa(ac, pa);
5135 
5136 	ei = EXT4_I(ac->ac_inode);
5137 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5138 	if (!grp)
5139 		return;
5140 
5141 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5142 	pa->pa_inode = ac->ac_inode;
5143 
5144 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5145 
5146 	write_lock(pa->pa_node_lock.inode_lock);
5147 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5148 	write_unlock(pa->pa_node_lock.inode_lock);
5149 	atomic_inc(&ei->i_prealloc_active);
5150 }
5151 
5152 /*
5153  * creates new preallocated space for locality group inodes belongs to
5154  */
5155 static noinline_for_stack void
5156 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5157 {
5158 	struct super_block *sb = ac->ac_sb;
5159 	struct ext4_locality_group *lg;
5160 	struct ext4_prealloc_space *pa;
5161 	struct ext4_group_info *grp;
5162 
5163 	/* preallocate only when found space is larger then requested */
5164 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5165 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5166 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5167 	BUG_ON(ac->ac_pa == NULL);
5168 
5169 	pa = ac->ac_pa;
5170 
5171 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5172 	pa->pa_lstart = pa->pa_pstart;
5173 	pa->pa_len = ac->ac_b_ex.fe_len;
5174 	pa->pa_free = pa->pa_len;
5175 	spin_lock_init(&pa->pa_lock);
5176 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5177 	INIT_LIST_HEAD(&pa->pa_group_list);
5178 	pa->pa_deleted = 0;
5179 	pa->pa_type = MB_GROUP_PA;
5180 
5181 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5182 		 pa->pa_len, pa->pa_lstart);
5183 	trace_ext4_mb_new_group_pa(ac, pa);
5184 
5185 	ext4_mb_use_group_pa(ac, pa);
5186 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5187 
5188 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5189 	if (!grp)
5190 		return;
5191 	lg = ac->ac_lg;
5192 	BUG_ON(lg == NULL);
5193 
5194 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5195 	pa->pa_inode = NULL;
5196 
5197 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5198 
5199 	/*
5200 	 * We will later add the new pa to the right bucket
5201 	 * after updating the pa_free in ext4_mb_release_context
5202 	 */
5203 }
5204 
5205 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5206 {
5207 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5208 		ext4_mb_new_group_pa(ac);
5209 	else
5210 		ext4_mb_new_inode_pa(ac);
5211 }
5212 
5213 /*
5214  * finds all unused blocks in on-disk bitmap, frees them in
5215  * in-core bitmap and buddy.
5216  * @pa must be unlinked from inode and group lists, so that
5217  * nobody else can find/use it.
5218  * the caller MUST hold group/inode locks.
5219  * TODO: optimize the case when there are no in-core structures yet
5220  */
5221 static noinline_for_stack int
5222 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5223 			struct ext4_prealloc_space *pa)
5224 {
5225 	struct super_block *sb = e4b->bd_sb;
5226 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5227 	unsigned int end;
5228 	unsigned int next;
5229 	ext4_group_t group;
5230 	ext4_grpblk_t bit;
5231 	unsigned long long grp_blk_start;
5232 	int free = 0;
5233 
5234 	BUG_ON(pa->pa_deleted == 0);
5235 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5236 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5237 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5238 	end = bit + pa->pa_len;
5239 
5240 	while (bit < end) {
5241 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5242 		if (bit >= end)
5243 			break;
5244 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5245 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5246 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5247 			 (unsigned) next - bit, (unsigned) group);
5248 		free += next - bit;
5249 
5250 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5251 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5252 						    EXT4_C2B(sbi, bit)),
5253 					       next - bit);
5254 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5255 		bit = next + 1;
5256 	}
5257 	if (free != pa->pa_free) {
5258 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5259 			 "pa %p: logic %lu, phys. %lu, len %d",
5260 			 pa, (unsigned long) pa->pa_lstart,
5261 			 (unsigned long) pa->pa_pstart,
5262 			 pa->pa_len);
5263 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5264 					free, pa->pa_free);
5265 		/*
5266 		 * pa is already deleted so we use the value obtained
5267 		 * from the bitmap and continue.
5268 		 */
5269 	}
5270 	atomic_add(free, &sbi->s_mb_discarded);
5271 
5272 	return 0;
5273 }
5274 
5275 static noinline_for_stack int
5276 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5277 				struct ext4_prealloc_space *pa)
5278 {
5279 	struct super_block *sb = e4b->bd_sb;
5280 	ext4_group_t group;
5281 	ext4_grpblk_t bit;
5282 
5283 	trace_ext4_mb_release_group_pa(sb, pa);
5284 	BUG_ON(pa->pa_deleted == 0);
5285 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5286 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5287 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5288 			     e4b->bd_group, group, pa->pa_pstart);
5289 		return 0;
5290 	}
5291 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5292 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5293 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5294 
5295 	return 0;
5296 }
5297 
5298 /*
5299  * releases all preallocations in given group
5300  *
5301  * first, we need to decide discard policy:
5302  * - when do we discard
5303  *   1) ENOSPC
5304  * - how many do we discard
5305  *   1) how many requested
5306  */
5307 static noinline_for_stack int
5308 ext4_mb_discard_group_preallocations(struct super_block *sb,
5309 				     ext4_group_t group, int *busy)
5310 {
5311 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5312 	struct buffer_head *bitmap_bh = NULL;
5313 	struct ext4_prealloc_space *pa, *tmp;
5314 	struct list_head list;
5315 	struct ext4_buddy e4b;
5316 	struct ext4_inode_info *ei;
5317 	int err;
5318 	int free = 0;
5319 
5320 	if (!grp)
5321 		return 0;
5322 	mb_debug(sb, "discard preallocation for group %u\n", group);
5323 	if (list_empty(&grp->bb_prealloc_list))
5324 		goto out_dbg;
5325 
5326 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5327 	if (IS_ERR(bitmap_bh)) {
5328 		err = PTR_ERR(bitmap_bh);
5329 		ext4_error_err(sb, -err,
5330 			       "Error %d reading block bitmap for %u",
5331 			       err, group);
5332 		goto out_dbg;
5333 	}
5334 
5335 	err = ext4_mb_load_buddy(sb, group, &e4b);
5336 	if (err) {
5337 		ext4_warning(sb, "Error %d loading buddy information for %u",
5338 			     err, group);
5339 		put_bh(bitmap_bh);
5340 		goto out_dbg;
5341 	}
5342 
5343 	INIT_LIST_HEAD(&list);
5344 	ext4_lock_group(sb, group);
5345 	list_for_each_entry_safe(pa, tmp,
5346 				&grp->bb_prealloc_list, pa_group_list) {
5347 		spin_lock(&pa->pa_lock);
5348 		if (atomic_read(&pa->pa_count)) {
5349 			spin_unlock(&pa->pa_lock);
5350 			*busy = 1;
5351 			continue;
5352 		}
5353 		if (pa->pa_deleted) {
5354 			spin_unlock(&pa->pa_lock);
5355 			continue;
5356 		}
5357 
5358 		/* seems this one can be freed ... */
5359 		ext4_mb_mark_pa_deleted(sb, pa);
5360 
5361 		if (!free)
5362 			this_cpu_inc(discard_pa_seq);
5363 
5364 		/* we can trust pa_free ... */
5365 		free += pa->pa_free;
5366 
5367 		spin_unlock(&pa->pa_lock);
5368 
5369 		list_del(&pa->pa_group_list);
5370 		list_add(&pa->u.pa_tmp_list, &list);
5371 	}
5372 
5373 	/* now free all selected PAs */
5374 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5375 
5376 		/* remove from object (inode or locality group) */
5377 		if (pa->pa_type == MB_GROUP_PA) {
5378 			spin_lock(pa->pa_node_lock.lg_lock);
5379 			list_del_rcu(&pa->pa_node.lg_list);
5380 			spin_unlock(pa->pa_node_lock.lg_lock);
5381 		} else {
5382 			write_lock(pa->pa_node_lock.inode_lock);
5383 			ei = EXT4_I(pa->pa_inode);
5384 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5385 			write_unlock(pa->pa_node_lock.inode_lock);
5386 		}
5387 
5388 		list_del(&pa->u.pa_tmp_list);
5389 
5390 		if (pa->pa_type == MB_GROUP_PA) {
5391 			ext4_mb_release_group_pa(&e4b, pa);
5392 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5393 		} else {
5394 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5395 			ext4_mb_pa_free(pa);
5396 		}
5397 	}
5398 
5399 	ext4_unlock_group(sb, group);
5400 	ext4_mb_unload_buddy(&e4b);
5401 	put_bh(bitmap_bh);
5402 out_dbg:
5403 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5404 		 free, group, grp->bb_free);
5405 	return free;
5406 }
5407 
5408 /*
5409  * releases all non-used preallocated blocks for given inode
5410  *
5411  * It's important to discard preallocations under i_data_sem
5412  * We don't want another block to be served from the prealloc
5413  * space when we are discarding the inode prealloc space.
5414  *
5415  * FIXME!! Make sure it is valid at all the call sites
5416  */
5417 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5418 {
5419 	struct ext4_inode_info *ei = EXT4_I(inode);
5420 	struct super_block *sb = inode->i_sb;
5421 	struct buffer_head *bitmap_bh = NULL;
5422 	struct ext4_prealloc_space *pa, *tmp;
5423 	ext4_group_t group = 0;
5424 	struct list_head list;
5425 	struct ext4_buddy e4b;
5426 	struct rb_node *iter;
5427 	int err;
5428 
5429 	if (!S_ISREG(inode->i_mode)) {
5430 		return;
5431 	}
5432 
5433 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5434 		return;
5435 
5436 	mb_debug(sb, "discard preallocation for inode %lu\n",
5437 		 inode->i_ino);
5438 	trace_ext4_discard_preallocations(inode,
5439 			atomic_read(&ei->i_prealloc_active), needed);
5440 
5441 	INIT_LIST_HEAD(&list);
5442 
5443 	if (needed == 0)
5444 		needed = UINT_MAX;
5445 
5446 repeat:
5447 	/* first, collect all pa's in the inode */
5448 	write_lock(&ei->i_prealloc_lock);
5449 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5450 	     iter = rb_next(iter)) {
5451 		pa = rb_entry(iter, struct ext4_prealloc_space,
5452 			      pa_node.inode_node);
5453 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5454 
5455 		spin_lock(&pa->pa_lock);
5456 		if (atomic_read(&pa->pa_count)) {
5457 			/* this shouldn't happen often - nobody should
5458 			 * use preallocation while we're discarding it */
5459 			spin_unlock(&pa->pa_lock);
5460 			write_unlock(&ei->i_prealloc_lock);
5461 			ext4_msg(sb, KERN_ERR,
5462 				 "uh-oh! used pa while discarding");
5463 			WARN_ON(1);
5464 			schedule_timeout_uninterruptible(HZ);
5465 			goto repeat;
5466 
5467 		}
5468 		if (pa->pa_deleted == 0) {
5469 			ext4_mb_mark_pa_deleted(sb, pa);
5470 			spin_unlock(&pa->pa_lock);
5471 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5472 			list_add(&pa->u.pa_tmp_list, &list);
5473 			needed--;
5474 			continue;
5475 		}
5476 
5477 		/* someone is deleting pa right now */
5478 		spin_unlock(&pa->pa_lock);
5479 		write_unlock(&ei->i_prealloc_lock);
5480 
5481 		/* we have to wait here because pa_deleted
5482 		 * doesn't mean pa is already unlinked from
5483 		 * the list. as we might be called from
5484 		 * ->clear_inode() the inode will get freed
5485 		 * and concurrent thread which is unlinking
5486 		 * pa from inode's list may access already
5487 		 * freed memory, bad-bad-bad */
5488 
5489 		/* XXX: if this happens too often, we can
5490 		 * add a flag to force wait only in case
5491 		 * of ->clear_inode(), but not in case of
5492 		 * regular truncate */
5493 		schedule_timeout_uninterruptible(HZ);
5494 		goto repeat;
5495 	}
5496 	write_unlock(&ei->i_prealloc_lock);
5497 
5498 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5499 		BUG_ON(pa->pa_type != MB_INODE_PA);
5500 		group = ext4_get_group_number(sb, pa->pa_pstart);
5501 
5502 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5503 					     GFP_NOFS|__GFP_NOFAIL);
5504 		if (err) {
5505 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5506 				       err, group);
5507 			continue;
5508 		}
5509 
5510 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5511 		if (IS_ERR(bitmap_bh)) {
5512 			err = PTR_ERR(bitmap_bh);
5513 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5514 				       err, group);
5515 			ext4_mb_unload_buddy(&e4b);
5516 			continue;
5517 		}
5518 
5519 		ext4_lock_group(sb, group);
5520 		list_del(&pa->pa_group_list);
5521 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5522 		ext4_unlock_group(sb, group);
5523 
5524 		ext4_mb_unload_buddy(&e4b);
5525 		put_bh(bitmap_bh);
5526 
5527 		list_del(&pa->u.pa_tmp_list);
5528 		ext4_mb_pa_free(pa);
5529 	}
5530 }
5531 
5532 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5533 {
5534 	struct ext4_prealloc_space *pa;
5535 
5536 	BUG_ON(ext4_pspace_cachep == NULL);
5537 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5538 	if (!pa)
5539 		return -ENOMEM;
5540 	atomic_set(&pa->pa_count, 1);
5541 	ac->ac_pa = pa;
5542 	return 0;
5543 }
5544 
5545 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5546 {
5547 	struct ext4_prealloc_space *pa = ac->ac_pa;
5548 
5549 	BUG_ON(!pa);
5550 	ac->ac_pa = NULL;
5551 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5552 	/*
5553 	 * current function is only called due to an error or due to
5554 	 * len of found blocks < len of requested blocks hence the PA has not
5555 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5556 	 */
5557 	pa->pa_deleted = 1;
5558 	ext4_mb_pa_free(pa);
5559 }
5560 
5561 #ifdef CONFIG_EXT4_DEBUG
5562 static inline void ext4_mb_show_pa(struct super_block *sb)
5563 {
5564 	ext4_group_t i, ngroups;
5565 
5566 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5567 		return;
5568 
5569 	ngroups = ext4_get_groups_count(sb);
5570 	mb_debug(sb, "groups: ");
5571 	for (i = 0; i < ngroups; i++) {
5572 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5573 		struct ext4_prealloc_space *pa;
5574 		ext4_grpblk_t start;
5575 		struct list_head *cur;
5576 
5577 		if (!grp)
5578 			continue;
5579 		ext4_lock_group(sb, i);
5580 		list_for_each(cur, &grp->bb_prealloc_list) {
5581 			pa = list_entry(cur, struct ext4_prealloc_space,
5582 					pa_group_list);
5583 			spin_lock(&pa->pa_lock);
5584 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5585 						     NULL, &start);
5586 			spin_unlock(&pa->pa_lock);
5587 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5588 				 pa->pa_len);
5589 		}
5590 		ext4_unlock_group(sb, i);
5591 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5592 			 grp->bb_fragments);
5593 	}
5594 }
5595 
5596 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5597 {
5598 	struct super_block *sb = ac->ac_sb;
5599 
5600 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5601 		return;
5602 
5603 	mb_debug(sb, "Can't allocate:"
5604 			" Allocation context details:");
5605 	mb_debug(sb, "status %u flags 0x%x",
5606 			ac->ac_status, ac->ac_flags);
5607 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5608 			"goal %lu/%lu/%lu@%lu, "
5609 			"best %lu/%lu/%lu@%lu cr %d",
5610 			(unsigned long)ac->ac_o_ex.fe_group,
5611 			(unsigned long)ac->ac_o_ex.fe_start,
5612 			(unsigned long)ac->ac_o_ex.fe_len,
5613 			(unsigned long)ac->ac_o_ex.fe_logical,
5614 			(unsigned long)ac->ac_g_ex.fe_group,
5615 			(unsigned long)ac->ac_g_ex.fe_start,
5616 			(unsigned long)ac->ac_g_ex.fe_len,
5617 			(unsigned long)ac->ac_g_ex.fe_logical,
5618 			(unsigned long)ac->ac_b_ex.fe_group,
5619 			(unsigned long)ac->ac_b_ex.fe_start,
5620 			(unsigned long)ac->ac_b_ex.fe_len,
5621 			(unsigned long)ac->ac_b_ex.fe_logical,
5622 			(int)ac->ac_criteria);
5623 	mb_debug(sb, "%u found", ac->ac_found);
5624 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5625 	if (ac->ac_pa)
5626 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5627 			 "group pa" : "inode pa");
5628 	ext4_mb_show_pa(sb);
5629 }
5630 #else
5631 static inline void ext4_mb_show_pa(struct super_block *sb)
5632 {
5633 	return;
5634 }
5635 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5636 {
5637 	ext4_mb_show_pa(ac->ac_sb);
5638 	return;
5639 }
5640 #endif
5641 
5642 /*
5643  * We use locality group preallocation for small size file. The size of the
5644  * file is determined by the current size or the resulting size after
5645  * allocation which ever is larger
5646  *
5647  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5648  */
5649 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5650 {
5651 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5652 	int bsbits = ac->ac_sb->s_blocksize_bits;
5653 	loff_t size, isize;
5654 	bool inode_pa_eligible, group_pa_eligible;
5655 
5656 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5657 		return;
5658 
5659 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5660 		return;
5661 
5662 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5663 	inode_pa_eligible = true;
5664 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5665 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5666 		>> bsbits;
5667 
5668 	/* No point in using inode preallocation for closed files */
5669 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5670 	    !inode_is_open_for_write(ac->ac_inode))
5671 		inode_pa_eligible = false;
5672 
5673 	size = max(size, isize);
5674 	/* Don't use group allocation for large files */
5675 	if (size > sbi->s_mb_stream_request)
5676 		group_pa_eligible = false;
5677 
5678 	if (!group_pa_eligible) {
5679 		if (inode_pa_eligible)
5680 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5681 		else
5682 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5683 		return;
5684 	}
5685 
5686 	BUG_ON(ac->ac_lg != NULL);
5687 	/*
5688 	 * locality group prealloc space are per cpu. The reason for having
5689 	 * per cpu locality group is to reduce the contention between block
5690 	 * request from multiple CPUs.
5691 	 */
5692 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5693 
5694 	/* we're going to use group allocation */
5695 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5696 
5697 	/* serialize all allocations in the group */
5698 	mutex_lock(&ac->ac_lg->lg_mutex);
5699 }
5700 
5701 static noinline_for_stack void
5702 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5703 				struct ext4_allocation_request *ar)
5704 {
5705 	struct super_block *sb = ar->inode->i_sb;
5706 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5707 	struct ext4_super_block *es = sbi->s_es;
5708 	ext4_group_t group;
5709 	unsigned int len;
5710 	ext4_fsblk_t goal;
5711 	ext4_grpblk_t block;
5712 
5713 	/* we can't allocate > group size */
5714 	len = ar->len;
5715 
5716 	/* just a dirty hack to filter too big requests  */
5717 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5718 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5719 
5720 	/* start searching from the goal */
5721 	goal = ar->goal;
5722 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5723 			goal >= ext4_blocks_count(es))
5724 		goal = le32_to_cpu(es->s_first_data_block);
5725 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5726 
5727 	/* set up allocation goals */
5728 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5729 	ac->ac_status = AC_STATUS_CONTINUE;
5730 	ac->ac_sb = sb;
5731 	ac->ac_inode = ar->inode;
5732 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5733 	ac->ac_o_ex.fe_group = group;
5734 	ac->ac_o_ex.fe_start = block;
5735 	ac->ac_o_ex.fe_len = len;
5736 	ac->ac_g_ex = ac->ac_o_ex;
5737 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5738 	ac->ac_flags = ar->flags;
5739 
5740 	/* we have to define context: we'll work with a file or
5741 	 * locality group. this is a policy, actually */
5742 	ext4_mb_group_or_file(ac);
5743 
5744 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5745 			"left: %u/%u, right %u/%u to %swritable\n",
5746 			(unsigned) ar->len, (unsigned) ar->logical,
5747 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5748 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5749 			(unsigned) ar->lright, (unsigned) ar->pright,
5750 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5751 }
5752 
5753 static noinline_for_stack void
5754 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5755 					struct ext4_locality_group *lg,
5756 					int order, int total_entries)
5757 {
5758 	ext4_group_t group = 0;
5759 	struct ext4_buddy e4b;
5760 	struct list_head discard_list;
5761 	struct ext4_prealloc_space *pa, *tmp;
5762 
5763 	mb_debug(sb, "discard locality group preallocation\n");
5764 
5765 	INIT_LIST_HEAD(&discard_list);
5766 
5767 	spin_lock(&lg->lg_prealloc_lock);
5768 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5769 				pa_node.lg_list,
5770 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5771 		spin_lock(&pa->pa_lock);
5772 		if (atomic_read(&pa->pa_count)) {
5773 			/*
5774 			 * This is the pa that we just used
5775 			 * for block allocation. So don't
5776 			 * free that
5777 			 */
5778 			spin_unlock(&pa->pa_lock);
5779 			continue;
5780 		}
5781 		if (pa->pa_deleted) {
5782 			spin_unlock(&pa->pa_lock);
5783 			continue;
5784 		}
5785 		/* only lg prealloc space */
5786 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5787 
5788 		/* seems this one can be freed ... */
5789 		ext4_mb_mark_pa_deleted(sb, pa);
5790 		spin_unlock(&pa->pa_lock);
5791 
5792 		list_del_rcu(&pa->pa_node.lg_list);
5793 		list_add(&pa->u.pa_tmp_list, &discard_list);
5794 
5795 		total_entries--;
5796 		if (total_entries <= 5) {
5797 			/*
5798 			 * we want to keep only 5 entries
5799 			 * allowing it to grow to 8. This
5800 			 * mak sure we don't call discard
5801 			 * soon for this list.
5802 			 */
5803 			break;
5804 		}
5805 	}
5806 	spin_unlock(&lg->lg_prealloc_lock);
5807 
5808 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5809 		int err;
5810 
5811 		group = ext4_get_group_number(sb, pa->pa_pstart);
5812 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5813 					     GFP_NOFS|__GFP_NOFAIL);
5814 		if (err) {
5815 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5816 				       err, group);
5817 			continue;
5818 		}
5819 		ext4_lock_group(sb, group);
5820 		list_del(&pa->pa_group_list);
5821 		ext4_mb_release_group_pa(&e4b, pa);
5822 		ext4_unlock_group(sb, group);
5823 
5824 		ext4_mb_unload_buddy(&e4b);
5825 		list_del(&pa->u.pa_tmp_list);
5826 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5827 	}
5828 }
5829 
5830 /*
5831  * We have incremented pa_count. So it cannot be freed at this
5832  * point. Also we hold lg_mutex. So no parallel allocation is
5833  * possible from this lg. That means pa_free cannot be updated.
5834  *
5835  * A parallel ext4_mb_discard_group_preallocations is possible.
5836  * which can cause the lg_prealloc_list to be updated.
5837  */
5838 
5839 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5840 {
5841 	int order, added = 0, lg_prealloc_count = 1;
5842 	struct super_block *sb = ac->ac_sb;
5843 	struct ext4_locality_group *lg = ac->ac_lg;
5844 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5845 
5846 	order = fls(pa->pa_free) - 1;
5847 	if (order > PREALLOC_TB_SIZE - 1)
5848 		/* The max size of hash table is PREALLOC_TB_SIZE */
5849 		order = PREALLOC_TB_SIZE - 1;
5850 	/* Add the prealloc space to lg */
5851 	spin_lock(&lg->lg_prealloc_lock);
5852 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5853 				pa_node.lg_list,
5854 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5855 		spin_lock(&tmp_pa->pa_lock);
5856 		if (tmp_pa->pa_deleted) {
5857 			spin_unlock(&tmp_pa->pa_lock);
5858 			continue;
5859 		}
5860 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5861 			/* Add to the tail of the previous entry */
5862 			list_add_tail_rcu(&pa->pa_node.lg_list,
5863 						&tmp_pa->pa_node.lg_list);
5864 			added = 1;
5865 			/*
5866 			 * we want to count the total
5867 			 * number of entries in the list
5868 			 */
5869 		}
5870 		spin_unlock(&tmp_pa->pa_lock);
5871 		lg_prealloc_count++;
5872 	}
5873 	if (!added)
5874 		list_add_tail_rcu(&pa->pa_node.lg_list,
5875 					&lg->lg_prealloc_list[order]);
5876 	spin_unlock(&lg->lg_prealloc_lock);
5877 
5878 	/* Now trim the list to be not more than 8 elements */
5879 	if (lg_prealloc_count > 8) {
5880 		ext4_mb_discard_lg_preallocations(sb, lg,
5881 						  order, lg_prealloc_count);
5882 		return;
5883 	}
5884 	return ;
5885 }
5886 
5887 /*
5888  * release all resource we used in allocation
5889  */
5890 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5891 {
5892 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5893 	struct ext4_prealloc_space *pa = ac->ac_pa;
5894 	if (pa) {
5895 		if (pa->pa_type == MB_GROUP_PA) {
5896 			/* see comment in ext4_mb_use_group_pa() */
5897 			spin_lock(&pa->pa_lock);
5898 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5899 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5900 			pa->pa_free -= ac->ac_b_ex.fe_len;
5901 			pa->pa_len -= ac->ac_b_ex.fe_len;
5902 			spin_unlock(&pa->pa_lock);
5903 
5904 			/*
5905 			 * We want to add the pa to the right bucket.
5906 			 * Remove it from the list and while adding
5907 			 * make sure the list to which we are adding
5908 			 * doesn't grow big.
5909 			 */
5910 			if (likely(pa->pa_free)) {
5911 				spin_lock(pa->pa_node_lock.lg_lock);
5912 				list_del_rcu(&pa->pa_node.lg_list);
5913 				spin_unlock(pa->pa_node_lock.lg_lock);
5914 				ext4_mb_add_n_trim(ac);
5915 			}
5916 		}
5917 
5918 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5919 	}
5920 	if (ac->ac_bitmap_page)
5921 		put_page(ac->ac_bitmap_page);
5922 	if (ac->ac_buddy_page)
5923 		put_page(ac->ac_buddy_page);
5924 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5925 		mutex_unlock(&ac->ac_lg->lg_mutex);
5926 	ext4_mb_collect_stats(ac);
5927 	return 0;
5928 }
5929 
5930 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5931 {
5932 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5933 	int ret;
5934 	int freed = 0, busy = 0;
5935 	int retry = 0;
5936 
5937 	trace_ext4_mb_discard_preallocations(sb, needed);
5938 
5939 	if (needed == 0)
5940 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5941  repeat:
5942 	for (i = 0; i < ngroups && needed > 0; i++) {
5943 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5944 		freed += ret;
5945 		needed -= ret;
5946 		cond_resched();
5947 	}
5948 
5949 	if (needed > 0 && busy && ++retry < 3) {
5950 		busy = 0;
5951 		goto repeat;
5952 	}
5953 
5954 	return freed;
5955 }
5956 
5957 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5958 			struct ext4_allocation_context *ac, u64 *seq)
5959 {
5960 	int freed;
5961 	u64 seq_retry = 0;
5962 	bool ret = false;
5963 
5964 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5965 	if (freed) {
5966 		ret = true;
5967 		goto out_dbg;
5968 	}
5969 	seq_retry = ext4_get_discard_pa_seq_sum();
5970 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5971 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5972 		*seq = seq_retry;
5973 		ret = true;
5974 	}
5975 
5976 out_dbg:
5977 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5978 	return ret;
5979 }
5980 
5981 /*
5982  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5983  * linearly starting at the goal block and also excludes the blocks which
5984  * are going to be in use after fast commit replay.
5985  */
5986 static ext4_fsblk_t
5987 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
5988 {
5989 	struct buffer_head *bitmap_bh;
5990 	struct super_block *sb = ar->inode->i_sb;
5991 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5992 	ext4_group_t group, nr;
5993 	ext4_grpblk_t blkoff;
5994 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
5995 	ext4_grpblk_t i = 0;
5996 	ext4_fsblk_t goal, block;
5997 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5998 
5999 	goal = ar->goal;
6000 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6001 			goal >= ext4_blocks_count(es))
6002 		goal = le32_to_cpu(es->s_first_data_block);
6003 
6004 	ar->len = 0;
6005 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6006 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6007 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6008 		if (IS_ERR(bitmap_bh)) {
6009 			*errp = PTR_ERR(bitmap_bh);
6010 			pr_warn("Failed to read block bitmap\n");
6011 			return 0;
6012 		}
6013 
6014 		while (1) {
6015 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6016 						blkoff);
6017 			if (i >= max)
6018 				break;
6019 			if (ext4_fc_replay_check_excluded(sb,
6020 				ext4_group_first_block_no(sb, group) +
6021 				EXT4_C2B(sbi, i))) {
6022 				blkoff = i + 1;
6023 			} else
6024 				break;
6025 		}
6026 		brelse(bitmap_bh);
6027 		if (i < max)
6028 			break;
6029 
6030 		if (++group >= ext4_get_groups_count(sb))
6031 			group = 0;
6032 
6033 		blkoff = 0;
6034 	}
6035 
6036 	if (i >= max) {
6037 		*errp = -ENOSPC;
6038 		return 0;
6039 	}
6040 
6041 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6042 	ext4_mb_mark_bb(sb, block, 1, 1);
6043 	ar->len = 1;
6044 
6045 	return block;
6046 }
6047 
6048 /*
6049  * Main entry point into mballoc to allocate blocks
6050  * it tries to use preallocation first, then falls back
6051  * to usual allocation
6052  */
6053 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6054 				struct ext4_allocation_request *ar, int *errp)
6055 {
6056 	struct ext4_allocation_context *ac = NULL;
6057 	struct ext4_sb_info *sbi;
6058 	struct super_block *sb;
6059 	ext4_fsblk_t block = 0;
6060 	unsigned int inquota = 0;
6061 	unsigned int reserv_clstrs = 0;
6062 	int retries = 0;
6063 	u64 seq;
6064 
6065 	might_sleep();
6066 	sb = ar->inode->i_sb;
6067 	sbi = EXT4_SB(sb);
6068 
6069 	trace_ext4_request_blocks(ar);
6070 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6071 		return ext4_mb_new_blocks_simple(ar, errp);
6072 
6073 	/* Allow to use superuser reservation for quota file */
6074 	if (ext4_is_quota_file(ar->inode))
6075 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6076 
6077 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6078 		/* Without delayed allocation we need to verify
6079 		 * there is enough free blocks to do block allocation
6080 		 * and verify allocation doesn't exceed the quota limits.
6081 		 */
6082 		while (ar->len &&
6083 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6084 
6085 			/* let others to free the space */
6086 			cond_resched();
6087 			ar->len = ar->len >> 1;
6088 		}
6089 		if (!ar->len) {
6090 			ext4_mb_show_pa(sb);
6091 			*errp = -ENOSPC;
6092 			return 0;
6093 		}
6094 		reserv_clstrs = ar->len;
6095 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6096 			dquot_alloc_block_nofail(ar->inode,
6097 						 EXT4_C2B(sbi, ar->len));
6098 		} else {
6099 			while (ar->len &&
6100 				dquot_alloc_block(ar->inode,
6101 						  EXT4_C2B(sbi, ar->len))) {
6102 
6103 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6104 				ar->len--;
6105 			}
6106 		}
6107 		inquota = ar->len;
6108 		if (ar->len == 0) {
6109 			*errp = -EDQUOT;
6110 			goto out;
6111 		}
6112 	}
6113 
6114 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6115 	if (!ac) {
6116 		ar->len = 0;
6117 		*errp = -ENOMEM;
6118 		goto out;
6119 	}
6120 
6121 	ext4_mb_initialize_context(ac, ar);
6122 
6123 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6124 	seq = this_cpu_read(discard_pa_seq);
6125 	if (!ext4_mb_use_preallocated(ac)) {
6126 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6127 		ext4_mb_normalize_request(ac, ar);
6128 
6129 		*errp = ext4_mb_pa_alloc(ac);
6130 		if (*errp)
6131 			goto errout;
6132 repeat:
6133 		/* allocate space in core */
6134 		*errp = ext4_mb_regular_allocator(ac);
6135 		/*
6136 		 * pa allocated above is added to grp->bb_prealloc_list only
6137 		 * when we were able to allocate some block i.e. when
6138 		 * ac->ac_status == AC_STATUS_FOUND.
6139 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6140 		 * So we have to free this pa here itself.
6141 		 */
6142 		if (*errp) {
6143 			ext4_mb_pa_put_free(ac);
6144 			ext4_discard_allocated_blocks(ac);
6145 			goto errout;
6146 		}
6147 		if (ac->ac_status == AC_STATUS_FOUND &&
6148 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6149 			ext4_mb_pa_put_free(ac);
6150 	}
6151 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6152 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6153 		if (*errp) {
6154 			ext4_discard_allocated_blocks(ac);
6155 			goto errout;
6156 		} else {
6157 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6158 			ar->len = ac->ac_b_ex.fe_len;
6159 		}
6160 	} else {
6161 		if (++retries < 3 &&
6162 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6163 			goto repeat;
6164 		/*
6165 		 * If block allocation fails then the pa allocated above
6166 		 * needs to be freed here itself.
6167 		 */
6168 		ext4_mb_pa_put_free(ac);
6169 		*errp = -ENOSPC;
6170 	}
6171 
6172 	if (*errp) {
6173 errout:
6174 		ac->ac_b_ex.fe_len = 0;
6175 		ar->len = 0;
6176 		ext4_mb_show_ac(ac);
6177 	}
6178 	ext4_mb_release_context(ac);
6179 	kmem_cache_free(ext4_ac_cachep, ac);
6180 out:
6181 	if (inquota && ar->len < inquota)
6182 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6183 	if (!ar->len) {
6184 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6185 			/* release all the reserved blocks if non delalloc */
6186 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6187 						reserv_clstrs);
6188 	}
6189 
6190 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6191 
6192 	return block;
6193 }
6194 
6195 /*
6196  * We can merge two free data extents only if the physical blocks
6197  * are contiguous, AND the extents were freed by the same transaction,
6198  * AND the blocks are associated with the same group.
6199  */
6200 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6201 					struct ext4_free_data *entry,
6202 					struct ext4_free_data *new_entry,
6203 					struct rb_root *entry_rb_root)
6204 {
6205 	if ((entry->efd_tid != new_entry->efd_tid) ||
6206 	    (entry->efd_group != new_entry->efd_group))
6207 		return;
6208 	if (entry->efd_start_cluster + entry->efd_count ==
6209 	    new_entry->efd_start_cluster) {
6210 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6211 		new_entry->efd_count += entry->efd_count;
6212 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6213 		   entry->efd_start_cluster) {
6214 		new_entry->efd_count += entry->efd_count;
6215 	} else
6216 		return;
6217 	spin_lock(&sbi->s_md_lock);
6218 	list_del(&entry->efd_list);
6219 	spin_unlock(&sbi->s_md_lock);
6220 	rb_erase(&entry->efd_node, entry_rb_root);
6221 	kmem_cache_free(ext4_free_data_cachep, entry);
6222 }
6223 
6224 static noinline_for_stack void
6225 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6226 		      struct ext4_free_data *new_entry)
6227 {
6228 	ext4_group_t group = e4b->bd_group;
6229 	ext4_grpblk_t cluster;
6230 	ext4_grpblk_t clusters = new_entry->efd_count;
6231 	struct ext4_free_data *entry;
6232 	struct ext4_group_info *db = e4b->bd_info;
6233 	struct super_block *sb = e4b->bd_sb;
6234 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6235 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6236 	struct rb_node *parent = NULL, *new_node;
6237 
6238 	BUG_ON(!ext4_handle_valid(handle));
6239 	BUG_ON(e4b->bd_bitmap_page == NULL);
6240 	BUG_ON(e4b->bd_buddy_page == NULL);
6241 
6242 	new_node = &new_entry->efd_node;
6243 	cluster = new_entry->efd_start_cluster;
6244 
6245 	if (!*n) {
6246 		/* first free block exent. We need to
6247 		   protect buddy cache from being freed,
6248 		 * otherwise we'll refresh it from
6249 		 * on-disk bitmap and lose not-yet-available
6250 		 * blocks */
6251 		get_page(e4b->bd_buddy_page);
6252 		get_page(e4b->bd_bitmap_page);
6253 	}
6254 	while (*n) {
6255 		parent = *n;
6256 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6257 		if (cluster < entry->efd_start_cluster)
6258 			n = &(*n)->rb_left;
6259 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6260 			n = &(*n)->rb_right;
6261 		else {
6262 			ext4_grp_locked_error(sb, group, 0,
6263 				ext4_group_first_block_no(sb, group) +
6264 				EXT4_C2B(sbi, cluster),
6265 				"Block already on to-be-freed list");
6266 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6267 			return;
6268 		}
6269 	}
6270 
6271 	rb_link_node(new_node, parent, n);
6272 	rb_insert_color(new_node, &db->bb_free_root);
6273 
6274 	/* Now try to see the extent can be merged to left and right */
6275 	node = rb_prev(new_node);
6276 	if (node) {
6277 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6278 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6279 					    &(db->bb_free_root));
6280 	}
6281 
6282 	node = rb_next(new_node);
6283 	if (node) {
6284 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6285 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6286 					    &(db->bb_free_root));
6287 	}
6288 
6289 	spin_lock(&sbi->s_md_lock);
6290 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6291 	sbi->s_mb_free_pending += clusters;
6292 	spin_unlock(&sbi->s_md_lock);
6293 }
6294 
6295 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6296 					unsigned long count)
6297 {
6298 	struct buffer_head *bitmap_bh;
6299 	struct super_block *sb = inode->i_sb;
6300 	struct ext4_group_desc *gdp;
6301 	struct buffer_head *gdp_bh;
6302 	ext4_group_t group;
6303 	ext4_grpblk_t blkoff;
6304 	int already_freed = 0, err, i;
6305 
6306 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6307 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6308 	if (IS_ERR(bitmap_bh)) {
6309 		pr_warn("Failed to read block bitmap\n");
6310 		return;
6311 	}
6312 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6313 	if (!gdp)
6314 		goto err_out;
6315 
6316 	for (i = 0; i < count; i++) {
6317 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6318 			already_freed++;
6319 	}
6320 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6321 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6322 	if (err)
6323 		goto err_out;
6324 	ext4_free_group_clusters_set(
6325 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6326 		count - already_freed);
6327 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6328 	ext4_group_desc_csum_set(sb, group, gdp);
6329 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6330 	sync_dirty_buffer(bitmap_bh);
6331 	sync_dirty_buffer(gdp_bh);
6332 
6333 err_out:
6334 	brelse(bitmap_bh);
6335 }
6336 
6337 /**
6338  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6339  *			Used by ext4_free_blocks()
6340  * @handle:		handle for this transaction
6341  * @inode:		inode
6342  * @block:		starting physical block to be freed
6343  * @count:		number of blocks to be freed
6344  * @flags:		flags used by ext4_free_blocks
6345  */
6346 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6347 			       ext4_fsblk_t block, unsigned long count,
6348 			       int flags)
6349 {
6350 	struct buffer_head *bitmap_bh = NULL;
6351 	struct super_block *sb = inode->i_sb;
6352 	struct ext4_group_desc *gdp;
6353 	struct ext4_group_info *grp;
6354 	unsigned int overflow;
6355 	ext4_grpblk_t bit;
6356 	struct buffer_head *gd_bh;
6357 	ext4_group_t block_group;
6358 	struct ext4_sb_info *sbi;
6359 	struct ext4_buddy e4b;
6360 	unsigned int count_clusters;
6361 	int err = 0;
6362 	int ret;
6363 
6364 	sbi = EXT4_SB(sb);
6365 
6366 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6367 	    !ext4_inode_block_valid(inode, block, count)) {
6368 		ext4_error(sb, "Freeing blocks in system zone - "
6369 			   "Block = %llu, count = %lu", block, count);
6370 		/* err = 0. ext4_std_error should be a no op */
6371 		goto error_return;
6372 	}
6373 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6374 
6375 do_more:
6376 	overflow = 0;
6377 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6378 
6379 	grp = ext4_get_group_info(sb, block_group);
6380 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6381 		return;
6382 
6383 	/*
6384 	 * Check to see if we are freeing blocks across a group
6385 	 * boundary.
6386 	 */
6387 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6388 		overflow = EXT4_C2B(sbi, bit) + count -
6389 			EXT4_BLOCKS_PER_GROUP(sb);
6390 		count -= overflow;
6391 		/* The range changed so it's no longer validated */
6392 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6393 	}
6394 	count_clusters = EXT4_NUM_B2C(sbi, count);
6395 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6396 	if (IS_ERR(bitmap_bh)) {
6397 		err = PTR_ERR(bitmap_bh);
6398 		bitmap_bh = NULL;
6399 		goto error_return;
6400 	}
6401 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6402 	if (!gdp) {
6403 		err = -EIO;
6404 		goto error_return;
6405 	}
6406 
6407 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6408 	    !ext4_inode_block_valid(inode, block, count)) {
6409 		ext4_error(sb, "Freeing blocks in system zone - "
6410 			   "Block = %llu, count = %lu", block, count);
6411 		/* err = 0. ext4_std_error should be a no op */
6412 		goto error_return;
6413 	}
6414 
6415 	BUFFER_TRACE(bitmap_bh, "getting write access");
6416 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6417 					    EXT4_JTR_NONE);
6418 	if (err)
6419 		goto error_return;
6420 
6421 	/*
6422 	 * We are about to modify some metadata.  Call the journal APIs
6423 	 * to unshare ->b_data if a currently-committing transaction is
6424 	 * using it
6425 	 */
6426 	BUFFER_TRACE(gd_bh, "get_write_access");
6427 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6428 	if (err)
6429 		goto error_return;
6430 #ifdef AGGRESSIVE_CHECK
6431 	{
6432 		int i;
6433 		for (i = 0; i < count_clusters; i++)
6434 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6435 	}
6436 #endif
6437 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6438 
6439 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6440 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6441 				     GFP_NOFS|__GFP_NOFAIL);
6442 	if (err)
6443 		goto error_return;
6444 
6445 	/*
6446 	 * We need to make sure we don't reuse the freed block until after the
6447 	 * transaction is committed. We make an exception if the inode is to be
6448 	 * written in writeback mode since writeback mode has weak data
6449 	 * consistency guarantees.
6450 	 */
6451 	if (ext4_handle_valid(handle) &&
6452 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6453 	     !ext4_should_writeback_data(inode))) {
6454 		struct ext4_free_data *new_entry;
6455 		/*
6456 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6457 		 * to fail.
6458 		 */
6459 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6460 				GFP_NOFS|__GFP_NOFAIL);
6461 		new_entry->efd_start_cluster = bit;
6462 		new_entry->efd_group = block_group;
6463 		new_entry->efd_count = count_clusters;
6464 		new_entry->efd_tid = handle->h_transaction->t_tid;
6465 
6466 		ext4_lock_group(sb, block_group);
6467 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6468 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6469 	} else {
6470 		/* need to update group_info->bb_free and bitmap
6471 		 * with group lock held. generate_buddy look at
6472 		 * them with group lock_held
6473 		 */
6474 		if (test_opt(sb, DISCARD)) {
6475 			err = ext4_issue_discard(sb, block_group, bit,
6476 						 count_clusters, NULL);
6477 			if (err && err != -EOPNOTSUPP)
6478 				ext4_msg(sb, KERN_WARNING, "discard request in"
6479 					 " group:%u block:%d count:%lu failed"
6480 					 " with %d", block_group, bit, count,
6481 					 err);
6482 		} else
6483 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6484 
6485 		ext4_lock_group(sb, block_group);
6486 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6487 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6488 	}
6489 
6490 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6491 	ext4_free_group_clusters_set(sb, gdp, ret);
6492 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6493 	ext4_group_desc_csum_set(sb, block_group, gdp);
6494 	ext4_unlock_group(sb, block_group);
6495 
6496 	if (sbi->s_log_groups_per_flex) {
6497 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6498 		atomic64_add(count_clusters,
6499 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6500 						  flex_group)->free_clusters);
6501 	}
6502 
6503 	/*
6504 	 * on a bigalloc file system, defer the s_freeclusters_counter
6505 	 * update to the caller (ext4_remove_space and friends) so they
6506 	 * can determine if a cluster freed here should be rereserved
6507 	 */
6508 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6509 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6510 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6511 		percpu_counter_add(&sbi->s_freeclusters_counter,
6512 				   count_clusters);
6513 	}
6514 
6515 	ext4_mb_unload_buddy(&e4b);
6516 
6517 	/* We dirtied the bitmap block */
6518 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6519 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6520 
6521 	/* And the group descriptor block */
6522 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6523 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6524 	if (!err)
6525 		err = ret;
6526 
6527 	if (overflow && !err) {
6528 		block += count;
6529 		count = overflow;
6530 		put_bh(bitmap_bh);
6531 		/* The range changed so it's no longer validated */
6532 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6533 		goto do_more;
6534 	}
6535 error_return:
6536 	brelse(bitmap_bh);
6537 	ext4_std_error(sb, err);
6538 	return;
6539 }
6540 
6541 /**
6542  * ext4_free_blocks() -- Free given blocks and update quota
6543  * @handle:		handle for this transaction
6544  * @inode:		inode
6545  * @bh:			optional buffer of the block to be freed
6546  * @block:		starting physical block to be freed
6547  * @count:		number of blocks to be freed
6548  * @flags:		flags used by ext4_free_blocks
6549  */
6550 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6551 		      struct buffer_head *bh, ext4_fsblk_t block,
6552 		      unsigned long count, int flags)
6553 {
6554 	struct super_block *sb = inode->i_sb;
6555 	unsigned int overflow;
6556 	struct ext4_sb_info *sbi;
6557 
6558 	sbi = EXT4_SB(sb);
6559 
6560 	if (bh) {
6561 		if (block)
6562 			BUG_ON(block != bh->b_blocknr);
6563 		else
6564 			block = bh->b_blocknr;
6565 	}
6566 
6567 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6568 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6569 		return;
6570 	}
6571 
6572 	might_sleep();
6573 
6574 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6575 	    !ext4_inode_block_valid(inode, block, count)) {
6576 		ext4_error(sb, "Freeing blocks not in datazone - "
6577 			   "block = %llu, count = %lu", block, count);
6578 		return;
6579 	}
6580 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6581 
6582 	ext4_debug("freeing block %llu\n", block);
6583 	trace_ext4_free_blocks(inode, block, count, flags);
6584 
6585 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6586 		BUG_ON(count > 1);
6587 
6588 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6589 			    inode, bh, block);
6590 	}
6591 
6592 	/*
6593 	 * If the extent to be freed does not begin on a cluster
6594 	 * boundary, we need to deal with partial clusters at the
6595 	 * beginning and end of the extent.  Normally we will free
6596 	 * blocks at the beginning or the end unless we are explicitly
6597 	 * requested to avoid doing so.
6598 	 */
6599 	overflow = EXT4_PBLK_COFF(sbi, block);
6600 	if (overflow) {
6601 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6602 			overflow = sbi->s_cluster_ratio - overflow;
6603 			block += overflow;
6604 			if (count > overflow)
6605 				count -= overflow;
6606 			else
6607 				return;
6608 		} else {
6609 			block -= overflow;
6610 			count += overflow;
6611 		}
6612 		/* The range changed so it's no longer validated */
6613 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6614 	}
6615 	overflow = EXT4_LBLK_COFF(sbi, count);
6616 	if (overflow) {
6617 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6618 			if (count > overflow)
6619 				count -= overflow;
6620 			else
6621 				return;
6622 		} else
6623 			count += sbi->s_cluster_ratio - overflow;
6624 		/* The range changed so it's no longer validated */
6625 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6626 	}
6627 
6628 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6629 		int i;
6630 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6631 
6632 		for (i = 0; i < count; i++) {
6633 			cond_resched();
6634 			if (is_metadata)
6635 				bh = sb_find_get_block(inode->i_sb, block + i);
6636 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6637 		}
6638 	}
6639 
6640 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6641 	return;
6642 }
6643 
6644 /**
6645  * ext4_group_add_blocks() -- Add given blocks to an existing group
6646  * @handle:			handle to this transaction
6647  * @sb:				super block
6648  * @block:			start physical block to add to the block group
6649  * @count:			number of blocks to free
6650  *
6651  * This marks the blocks as free in the bitmap and buddy.
6652  */
6653 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6654 			 ext4_fsblk_t block, unsigned long count)
6655 {
6656 	struct buffer_head *bitmap_bh = NULL;
6657 	struct buffer_head *gd_bh;
6658 	ext4_group_t block_group;
6659 	ext4_grpblk_t bit;
6660 	unsigned int i;
6661 	struct ext4_group_desc *desc;
6662 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6663 	struct ext4_buddy e4b;
6664 	int err = 0, ret, free_clusters_count;
6665 	ext4_grpblk_t clusters_freed;
6666 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6667 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6668 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6669 
6670 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6671 
6672 	if (count == 0)
6673 		return 0;
6674 
6675 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6676 	/*
6677 	 * Check to see if we are freeing blocks across a group
6678 	 * boundary.
6679 	 */
6680 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6681 		ext4_warning(sb, "too many blocks added to group %u",
6682 			     block_group);
6683 		err = -EINVAL;
6684 		goto error_return;
6685 	}
6686 
6687 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6688 	if (IS_ERR(bitmap_bh)) {
6689 		err = PTR_ERR(bitmap_bh);
6690 		bitmap_bh = NULL;
6691 		goto error_return;
6692 	}
6693 
6694 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6695 	if (!desc) {
6696 		err = -EIO;
6697 		goto error_return;
6698 	}
6699 
6700 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6701 		ext4_error(sb, "Adding blocks in system zones - "
6702 			   "Block = %llu, count = %lu",
6703 			   block, count);
6704 		err = -EINVAL;
6705 		goto error_return;
6706 	}
6707 
6708 	BUFFER_TRACE(bitmap_bh, "getting write access");
6709 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6710 					    EXT4_JTR_NONE);
6711 	if (err)
6712 		goto error_return;
6713 
6714 	/*
6715 	 * We are about to modify some metadata.  Call the journal APIs
6716 	 * to unshare ->b_data if a currently-committing transaction is
6717 	 * using it
6718 	 */
6719 	BUFFER_TRACE(gd_bh, "get_write_access");
6720 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6721 	if (err)
6722 		goto error_return;
6723 
6724 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6725 		BUFFER_TRACE(bitmap_bh, "clear bit");
6726 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6727 			ext4_error(sb, "bit already cleared for block %llu",
6728 				   (ext4_fsblk_t)(block + i));
6729 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6730 		} else {
6731 			clusters_freed++;
6732 		}
6733 	}
6734 
6735 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6736 	if (err)
6737 		goto error_return;
6738 
6739 	/*
6740 	 * need to update group_info->bb_free and bitmap
6741 	 * with group lock held. generate_buddy look at
6742 	 * them with group lock_held
6743 	 */
6744 	ext4_lock_group(sb, block_group);
6745 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6746 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6747 	free_clusters_count = clusters_freed +
6748 		ext4_free_group_clusters(sb, desc);
6749 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6750 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6751 	ext4_group_desc_csum_set(sb, block_group, desc);
6752 	ext4_unlock_group(sb, block_group);
6753 	percpu_counter_add(&sbi->s_freeclusters_counter,
6754 			   clusters_freed);
6755 
6756 	if (sbi->s_log_groups_per_flex) {
6757 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6758 		atomic64_add(clusters_freed,
6759 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6760 						  flex_group)->free_clusters);
6761 	}
6762 
6763 	ext4_mb_unload_buddy(&e4b);
6764 
6765 	/* We dirtied the bitmap block */
6766 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6767 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6768 
6769 	/* And the group descriptor block */
6770 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6771 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6772 	if (!err)
6773 		err = ret;
6774 
6775 error_return:
6776 	brelse(bitmap_bh);
6777 	ext4_std_error(sb, err);
6778 	return err;
6779 }
6780 
6781 /**
6782  * ext4_trim_extent -- function to TRIM one single free extent in the group
6783  * @sb:		super block for the file system
6784  * @start:	starting block of the free extent in the alloc. group
6785  * @count:	number of blocks to TRIM
6786  * @e4b:	ext4 buddy for the group
6787  *
6788  * Trim "count" blocks starting at "start" in the "group". To assure that no
6789  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6790  * be called with under the group lock.
6791  */
6792 static int ext4_trim_extent(struct super_block *sb,
6793 		int start, int count, struct ext4_buddy *e4b)
6794 __releases(bitlock)
6795 __acquires(bitlock)
6796 {
6797 	struct ext4_free_extent ex;
6798 	ext4_group_t group = e4b->bd_group;
6799 	int ret = 0;
6800 
6801 	trace_ext4_trim_extent(sb, group, start, count);
6802 
6803 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6804 
6805 	ex.fe_start = start;
6806 	ex.fe_group = group;
6807 	ex.fe_len = count;
6808 
6809 	/*
6810 	 * Mark blocks used, so no one can reuse them while
6811 	 * being trimmed.
6812 	 */
6813 	mb_mark_used(e4b, &ex);
6814 	ext4_unlock_group(sb, group);
6815 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6816 	ext4_lock_group(sb, group);
6817 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6818 	return ret;
6819 }
6820 
6821 static int ext4_try_to_trim_range(struct super_block *sb,
6822 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6823 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6824 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6825 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6826 {
6827 	ext4_grpblk_t next, count, free_count;
6828 	void *bitmap;
6829 
6830 	bitmap = e4b->bd_bitmap;
6831 	start = (e4b->bd_info->bb_first_free > start) ?
6832 		e4b->bd_info->bb_first_free : start;
6833 	count = 0;
6834 	free_count = 0;
6835 
6836 	while (start <= max) {
6837 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6838 		if (start > max)
6839 			break;
6840 		next = mb_find_next_bit(bitmap, max + 1, start);
6841 
6842 		if ((next - start) >= minblocks) {
6843 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6844 
6845 			if (ret && ret != -EOPNOTSUPP)
6846 				break;
6847 			count += next - start;
6848 		}
6849 		free_count += next - start;
6850 		start = next + 1;
6851 
6852 		if (fatal_signal_pending(current)) {
6853 			count = -ERESTARTSYS;
6854 			break;
6855 		}
6856 
6857 		if (need_resched()) {
6858 			ext4_unlock_group(sb, e4b->bd_group);
6859 			cond_resched();
6860 			ext4_lock_group(sb, e4b->bd_group);
6861 		}
6862 
6863 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6864 			break;
6865 	}
6866 
6867 	return count;
6868 }
6869 
6870 /**
6871  * ext4_trim_all_free -- function to trim all free space in alloc. group
6872  * @sb:			super block for file system
6873  * @group:		group to be trimmed
6874  * @start:		first group block to examine
6875  * @max:		last group block to examine
6876  * @minblocks:		minimum extent block count
6877  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6878  *
6879  * ext4_trim_all_free walks through group's block bitmap searching for free
6880  * extents. When the free extent is found, mark it as used in group buddy
6881  * bitmap. Then issue a TRIM command on this extent and free the extent in
6882  * the group buddy bitmap.
6883  */
6884 static ext4_grpblk_t
6885 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6886 		   ext4_grpblk_t start, ext4_grpblk_t max,
6887 		   ext4_grpblk_t minblocks, bool set_trimmed)
6888 {
6889 	struct ext4_buddy e4b;
6890 	int ret;
6891 
6892 	trace_ext4_trim_all_free(sb, group, start, max);
6893 
6894 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6895 	if (ret) {
6896 		ext4_warning(sb, "Error %d loading buddy information for %u",
6897 			     ret, group);
6898 		return ret;
6899 	}
6900 
6901 	ext4_lock_group(sb, group);
6902 
6903 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6904 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6905 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6906 		if (ret >= 0 && set_trimmed)
6907 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6908 	} else {
6909 		ret = 0;
6910 	}
6911 
6912 	ext4_unlock_group(sb, group);
6913 	ext4_mb_unload_buddy(&e4b);
6914 
6915 	ext4_debug("trimmed %d blocks in the group %d\n",
6916 		ret, group);
6917 
6918 	return ret;
6919 }
6920 
6921 /**
6922  * ext4_trim_fs() -- trim ioctl handle function
6923  * @sb:			superblock for filesystem
6924  * @range:		fstrim_range structure
6925  *
6926  * start:	First Byte to trim
6927  * len:		number of Bytes to trim from start
6928  * minlen:	minimum extent length in Bytes
6929  * ext4_trim_fs goes through all allocation groups containing Bytes from
6930  * start to start+len. For each such a group ext4_trim_all_free function
6931  * is invoked to trim all free space.
6932  */
6933 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6934 {
6935 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6936 	struct ext4_group_info *grp;
6937 	ext4_group_t group, first_group, last_group;
6938 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6939 	uint64_t start, end, minlen, trimmed = 0;
6940 	ext4_fsblk_t first_data_blk =
6941 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6942 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6943 	bool whole_group, eof = false;
6944 	int ret = 0;
6945 
6946 	start = range->start >> sb->s_blocksize_bits;
6947 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6948 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6949 			      range->minlen >> sb->s_blocksize_bits);
6950 
6951 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6952 	    start >= max_blks ||
6953 	    range->len < sb->s_blocksize)
6954 		return -EINVAL;
6955 	/* No point to try to trim less than discard granularity */
6956 	if (range->minlen < discard_granularity) {
6957 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6958 				discard_granularity >> sb->s_blocksize_bits);
6959 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6960 			goto out;
6961 	}
6962 	if (end >= max_blks - 1) {
6963 		end = max_blks - 1;
6964 		eof = true;
6965 	}
6966 	if (end <= first_data_blk)
6967 		goto out;
6968 	if (start < first_data_blk)
6969 		start = first_data_blk;
6970 
6971 	/* Determine first and last group to examine based on start and end */
6972 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6973 				     &first_group, &first_cluster);
6974 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6975 				     &last_group, &last_cluster);
6976 
6977 	/* end now represents the last cluster to discard in this group */
6978 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6979 	whole_group = true;
6980 
6981 	for (group = first_group; group <= last_group; group++) {
6982 		grp = ext4_get_group_info(sb, group);
6983 		if (!grp)
6984 			continue;
6985 		/* We only do this if the grp has never been initialized */
6986 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6987 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6988 			if (ret)
6989 				break;
6990 		}
6991 
6992 		/*
6993 		 * For all the groups except the last one, last cluster will
6994 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6995 		 * change it for the last group, note that last_cluster is
6996 		 * already computed earlier by ext4_get_group_no_and_offset()
6997 		 */
6998 		if (group == last_group) {
6999 			end = last_cluster;
7000 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7001 		}
7002 		if (grp->bb_free >= minlen) {
7003 			cnt = ext4_trim_all_free(sb, group, first_cluster,
7004 						 end, minlen, whole_group);
7005 			if (cnt < 0) {
7006 				ret = cnt;
7007 				break;
7008 			}
7009 			trimmed += cnt;
7010 		}
7011 
7012 		/*
7013 		 * For every group except the first one, we are sure
7014 		 * that the first cluster to discard will be cluster #0.
7015 		 */
7016 		first_cluster = 0;
7017 	}
7018 
7019 	if (!ret)
7020 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
7021 
7022 out:
7023 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7024 	return ret;
7025 }
7026 
7027 /* Iterate all the free extents in the group. */
7028 int
7029 ext4_mballoc_query_range(
7030 	struct super_block		*sb,
7031 	ext4_group_t			group,
7032 	ext4_grpblk_t			start,
7033 	ext4_grpblk_t			end,
7034 	ext4_mballoc_query_range_fn	formatter,
7035 	void				*priv)
7036 {
7037 	void				*bitmap;
7038 	ext4_grpblk_t			next;
7039 	struct ext4_buddy		e4b;
7040 	int				error;
7041 
7042 	error = ext4_mb_load_buddy(sb, group, &e4b);
7043 	if (error)
7044 		return error;
7045 	bitmap = e4b.bd_bitmap;
7046 
7047 	ext4_lock_group(sb, group);
7048 
7049 	start = (e4b.bd_info->bb_first_free > start) ?
7050 		e4b.bd_info->bb_first_free : start;
7051 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7052 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7053 
7054 	while (start <= end) {
7055 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7056 		if (start > end)
7057 			break;
7058 		next = mb_find_next_bit(bitmap, end + 1, start);
7059 
7060 		ext4_unlock_group(sb, group);
7061 		error = formatter(sb, group, start, next - start, priv);
7062 		if (error)
7063 			goto out_unload;
7064 		ext4_lock_group(sb, group);
7065 
7066 		start = next + 1;
7067 	}
7068 
7069 	ext4_unlock_group(sb, group);
7070 out_unload:
7071 	ext4_mb_unload_buddy(&e4b);
7072 
7073 	return error;
7074 }
7075