1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/backing-dev.h> 18 #include <trace/events/ext4.h> 19 20 #ifdef CONFIG_EXT4_DEBUG 21 ushort ext4_mballoc_debug __read_mostly; 22 23 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 24 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 25 #endif 26 27 /* 28 * MUSTDO: 29 * - test ext4_ext_search_left() and ext4_ext_search_right() 30 * - search for metadata in few groups 31 * 32 * TODO v4: 33 * - normalization should take into account whether file is still open 34 * - discard preallocations if no free space left (policy?) 35 * - don't normalize tails 36 * - quota 37 * - reservation for superuser 38 * 39 * TODO v3: 40 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 41 * - track min/max extents in each group for better group selection 42 * - mb_mark_used() may allocate chunk right after splitting buddy 43 * - tree of groups sorted by number of free blocks 44 * - error handling 45 */ 46 47 /* 48 * The allocation request involve request for multiple number of blocks 49 * near to the goal(block) value specified. 50 * 51 * During initialization phase of the allocator we decide to use the 52 * group preallocation or inode preallocation depending on the size of 53 * the file. The size of the file could be the resulting file size we 54 * would have after allocation, or the current file size, which ever 55 * is larger. If the size is less than sbi->s_mb_stream_request we 56 * select to use the group preallocation. The default value of 57 * s_mb_stream_request is 16 blocks. This can also be tuned via 58 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 59 * terms of number of blocks. 60 * 61 * The main motivation for having small file use group preallocation is to 62 * ensure that we have small files closer together on the disk. 63 * 64 * First stage the allocator looks at the inode prealloc list, 65 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 66 * spaces for this particular inode. The inode prealloc space is 67 * represented as: 68 * 69 * pa_lstart -> the logical start block for this prealloc space 70 * pa_pstart -> the physical start block for this prealloc space 71 * pa_len -> length for this prealloc space (in clusters) 72 * pa_free -> free space available in this prealloc space (in clusters) 73 * 74 * The inode preallocation space is used looking at the _logical_ start 75 * block. If only the logical file block falls within the range of prealloc 76 * space we will consume the particular prealloc space. This makes sure that 77 * we have contiguous physical blocks representing the file blocks 78 * 79 * The important thing to be noted in case of inode prealloc space is that 80 * we don't modify the values associated to inode prealloc space except 81 * pa_free. 82 * 83 * If we are not able to find blocks in the inode prealloc space and if we 84 * have the group allocation flag set then we look at the locality group 85 * prealloc space. These are per CPU prealloc list represented as 86 * 87 * ext4_sb_info.s_locality_groups[smp_processor_id()] 88 * 89 * The reason for having a per cpu locality group is to reduce the contention 90 * between CPUs. It is possible to get scheduled at this point. 91 * 92 * The locality group prealloc space is used looking at whether we have 93 * enough free space (pa_free) within the prealloc space. 94 * 95 * If we can't allocate blocks via inode prealloc or/and locality group 96 * prealloc then we look at the buddy cache. The buddy cache is represented 97 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 98 * mapped to the buddy and bitmap information regarding different 99 * groups. The buddy information is attached to buddy cache inode so that 100 * we can access them through the page cache. The information regarding 101 * each group is loaded via ext4_mb_load_buddy. The information involve 102 * block bitmap and buddy information. The information are stored in the 103 * inode as: 104 * 105 * { page } 106 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 107 * 108 * 109 * one block each for bitmap and buddy information. So for each group we 110 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 111 * blocksize) blocks. So it can have information regarding groups_per_page 112 * which is blocks_per_page/2 113 * 114 * The buddy cache inode is not stored on disk. The inode is thrown 115 * away when the filesystem is unmounted. 116 * 117 * We look for count number of blocks in the buddy cache. If we were able 118 * to locate that many free blocks we return with additional information 119 * regarding rest of the contiguous physical block available 120 * 121 * Before allocating blocks via buddy cache we normalize the request 122 * blocks. This ensure we ask for more blocks that we needed. The extra 123 * blocks that we get after allocation is added to the respective prealloc 124 * list. In case of inode preallocation we follow a list of heuristics 125 * based on file size. This can be found in ext4_mb_normalize_request. If 126 * we are doing a group prealloc we try to normalize the request to 127 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 128 * dependent on the cluster size; for non-bigalloc file systems, it is 129 * 512 blocks. This can be tuned via 130 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 131 * terms of number of blocks. If we have mounted the file system with -O 132 * stripe=<value> option the group prealloc request is normalized to the 133 * the smallest multiple of the stripe value (sbi->s_stripe) which is 134 * greater than the default mb_group_prealloc. 135 * 136 * The regular allocator (using the buddy cache) supports a few tunables. 137 * 138 * /sys/fs/ext4/<partition>/mb_min_to_scan 139 * /sys/fs/ext4/<partition>/mb_max_to_scan 140 * /sys/fs/ext4/<partition>/mb_order2_req 141 * 142 * The regular allocator uses buddy scan only if the request len is power of 143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 144 * value of s_mb_order2_reqs can be tuned via 145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 146 * stripe size (sbi->s_stripe), we try to search for contiguous block in 147 * stripe size. This should result in better allocation on RAID setups. If 148 * not, we search in the specific group using bitmap for best extents. The 149 * tunable min_to_scan and max_to_scan control the behaviour here. 150 * min_to_scan indicate how long the mballoc __must__ look for a best 151 * extent and max_to_scan indicates how long the mballoc __can__ look for a 152 * best extent in the found extents. Searching for the blocks starts with 153 * the group specified as the goal value in allocation context via 154 * ac_g_ex. Each group is first checked based on the criteria whether it 155 * can be used for allocation. ext4_mb_good_group explains how the groups are 156 * checked. 157 * 158 * Both the prealloc space are getting populated as above. So for the first 159 * request we will hit the buddy cache which will result in this prealloc 160 * space getting filled. The prealloc space is then later used for the 161 * subsequent request. 162 */ 163 164 /* 165 * mballoc operates on the following data: 166 * - on-disk bitmap 167 * - in-core buddy (actually includes buddy and bitmap) 168 * - preallocation descriptors (PAs) 169 * 170 * there are two types of preallocations: 171 * - inode 172 * assiged to specific inode and can be used for this inode only. 173 * it describes part of inode's space preallocated to specific 174 * physical blocks. any block from that preallocated can be used 175 * independent. the descriptor just tracks number of blocks left 176 * unused. so, before taking some block from descriptor, one must 177 * make sure corresponded logical block isn't allocated yet. this 178 * also means that freeing any block within descriptor's range 179 * must discard all preallocated blocks. 180 * - locality group 181 * assigned to specific locality group which does not translate to 182 * permanent set of inodes: inode can join and leave group. space 183 * from this type of preallocation can be used for any inode. thus 184 * it's consumed from the beginning to the end. 185 * 186 * relation between them can be expressed as: 187 * in-core buddy = on-disk bitmap + preallocation descriptors 188 * 189 * this mean blocks mballoc considers used are: 190 * - allocated blocks (persistent) 191 * - preallocated blocks (non-persistent) 192 * 193 * consistency in mballoc world means that at any time a block is either 194 * free or used in ALL structures. notice: "any time" should not be read 195 * literally -- time is discrete and delimited by locks. 196 * 197 * to keep it simple, we don't use block numbers, instead we count number of 198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 199 * 200 * all operations can be expressed as: 201 * - init buddy: buddy = on-disk + PAs 202 * - new PA: buddy += N; PA = N 203 * - use inode PA: on-disk += N; PA -= N 204 * - discard inode PA buddy -= on-disk - PA; PA = 0 205 * - use locality group PA on-disk += N; PA -= N 206 * - discard locality group PA buddy -= PA; PA = 0 207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 208 * is used in real operation because we can't know actual used 209 * bits from PA, only from on-disk bitmap 210 * 211 * if we follow this strict logic, then all operations above should be atomic. 212 * given some of them can block, we'd have to use something like semaphores 213 * killing performance on high-end SMP hardware. let's try to relax it using 214 * the following knowledge: 215 * 1) if buddy is referenced, it's already initialized 216 * 2) while block is used in buddy and the buddy is referenced, 217 * nobody can re-allocate that block 218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 219 * bit set and PA claims same block, it's OK. IOW, one can set bit in 220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 221 * block 222 * 223 * so, now we're building a concurrency table: 224 * - init buddy vs. 225 * - new PA 226 * blocks for PA are allocated in the buddy, buddy must be referenced 227 * until PA is linked to allocation group to avoid concurrent buddy init 228 * - use inode PA 229 * we need to make sure that either on-disk bitmap or PA has uptodate data 230 * given (3) we care that PA-=N operation doesn't interfere with init 231 * - discard inode PA 232 * the simplest way would be to have buddy initialized by the discard 233 * - use locality group PA 234 * again PA-=N must be serialized with init 235 * - discard locality group PA 236 * the simplest way would be to have buddy initialized by the discard 237 * - new PA vs. 238 * - use inode PA 239 * i_data_sem serializes them 240 * - discard inode PA 241 * discard process must wait until PA isn't used by another process 242 * - use locality group PA 243 * some mutex should serialize them 244 * - discard locality group PA 245 * discard process must wait until PA isn't used by another process 246 * - use inode PA 247 * - use inode PA 248 * i_data_sem or another mutex should serializes them 249 * - discard inode PA 250 * discard process must wait until PA isn't used by another process 251 * - use locality group PA 252 * nothing wrong here -- they're different PAs covering different blocks 253 * - discard locality group PA 254 * discard process must wait until PA isn't used by another process 255 * 256 * now we're ready to make few consequences: 257 * - PA is referenced and while it is no discard is possible 258 * - PA is referenced until block isn't marked in on-disk bitmap 259 * - PA changes only after on-disk bitmap 260 * - discard must not compete with init. either init is done before 261 * any discard or they're serialized somehow 262 * - buddy init as sum of on-disk bitmap and PAs is done atomically 263 * 264 * a special case when we've used PA to emptiness. no need to modify buddy 265 * in this case, but we should care about concurrent init 266 * 267 */ 268 269 /* 270 * Logic in few words: 271 * 272 * - allocation: 273 * load group 274 * find blocks 275 * mark bits in on-disk bitmap 276 * release group 277 * 278 * - use preallocation: 279 * find proper PA (per-inode or group) 280 * load group 281 * mark bits in on-disk bitmap 282 * release group 283 * release PA 284 * 285 * - free: 286 * load group 287 * mark bits in on-disk bitmap 288 * release group 289 * 290 * - discard preallocations in group: 291 * mark PAs deleted 292 * move them onto local list 293 * load on-disk bitmap 294 * load group 295 * remove PA from object (inode or locality group) 296 * mark free blocks in-core 297 * 298 * - discard inode's preallocations: 299 */ 300 301 /* 302 * Locking rules 303 * 304 * Locks: 305 * - bitlock on a group (group) 306 * - object (inode/locality) (object) 307 * - per-pa lock (pa) 308 * 309 * Paths: 310 * - new pa 311 * object 312 * group 313 * 314 * - find and use pa: 315 * pa 316 * 317 * - release consumed pa: 318 * pa 319 * group 320 * object 321 * 322 * - generate in-core bitmap: 323 * group 324 * pa 325 * 326 * - discard all for given object (inode, locality group): 327 * object 328 * pa 329 * group 330 * 331 * - discard all for given group: 332 * group 333 * pa 334 * group 335 * object 336 * 337 */ 338 static struct kmem_cache *ext4_pspace_cachep; 339 static struct kmem_cache *ext4_ac_cachep; 340 static struct kmem_cache *ext4_free_data_cachep; 341 342 /* We create slab caches for groupinfo data structures based on the 343 * superblock block size. There will be one per mounted filesystem for 344 * each unique s_blocksize_bits */ 345 #define NR_GRPINFO_CACHES 8 346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 347 348 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 349 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 350 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 351 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 352 }; 353 354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 355 ext4_group_t group); 356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 357 ext4_group_t group); 358 359 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 360 { 361 #if BITS_PER_LONG == 64 362 *bit += ((unsigned long) addr & 7UL) << 3; 363 addr = (void *) ((unsigned long) addr & ~7UL); 364 #elif BITS_PER_LONG == 32 365 *bit += ((unsigned long) addr & 3UL) << 3; 366 addr = (void *) ((unsigned long) addr & ~3UL); 367 #else 368 #error "how many bits you are?!" 369 #endif 370 return addr; 371 } 372 373 static inline int mb_test_bit(int bit, void *addr) 374 { 375 /* 376 * ext4_test_bit on architecture like powerpc 377 * needs unsigned long aligned address 378 */ 379 addr = mb_correct_addr_and_bit(&bit, addr); 380 return ext4_test_bit(bit, addr); 381 } 382 383 static inline void mb_set_bit(int bit, void *addr) 384 { 385 addr = mb_correct_addr_and_bit(&bit, addr); 386 ext4_set_bit(bit, addr); 387 } 388 389 static inline void mb_clear_bit(int bit, void *addr) 390 { 391 addr = mb_correct_addr_and_bit(&bit, addr); 392 ext4_clear_bit(bit, addr); 393 } 394 395 static inline int mb_test_and_clear_bit(int bit, void *addr) 396 { 397 addr = mb_correct_addr_and_bit(&bit, addr); 398 return ext4_test_and_clear_bit(bit, addr); 399 } 400 401 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 402 { 403 int fix = 0, ret, tmpmax; 404 addr = mb_correct_addr_and_bit(&fix, addr); 405 tmpmax = max + fix; 406 start += fix; 407 408 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 409 if (ret > max) 410 return max; 411 return ret; 412 } 413 414 static inline int mb_find_next_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 428 { 429 char *bb; 430 431 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 432 BUG_ON(max == NULL); 433 434 if (order > e4b->bd_blkbits + 1) { 435 *max = 0; 436 return NULL; 437 } 438 439 /* at order 0 we see each particular block */ 440 if (order == 0) { 441 *max = 1 << (e4b->bd_blkbits + 3); 442 return e4b->bd_bitmap; 443 } 444 445 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 446 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 447 448 return bb; 449 } 450 451 #ifdef DOUBLE_CHECK 452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 453 int first, int count) 454 { 455 int i; 456 struct super_block *sb = e4b->bd_sb; 457 458 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 459 return; 460 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 461 for (i = 0; i < count; i++) { 462 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 463 ext4_fsblk_t blocknr; 464 465 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 466 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 467 ext4_grp_locked_error(sb, e4b->bd_group, 468 inode ? inode->i_ino : 0, 469 blocknr, 470 "freeing block already freed " 471 "(bit %u)", 472 first + i); 473 } 474 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 475 } 476 } 477 478 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 479 { 480 int i; 481 482 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 483 return; 484 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 485 for (i = 0; i < count; i++) { 486 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 487 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 492 { 493 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 494 unsigned char *b1, *b2; 495 int i; 496 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 497 b2 = (unsigned char *) bitmap; 498 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 499 if (b1[i] != b2[i]) { 500 ext4_msg(e4b->bd_sb, KERN_ERR, 501 "corruption in group %u " 502 "at byte %u(%u): %x in copy != %x " 503 "on disk/prealloc", 504 e4b->bd_group, i, i * 8, b1[i], b2[i]); 505 BUG(); 506 } 507 } 508 } 509 } 510 511 #else 512 static inline void mb_free_blocks_double(struct inode *inode, 513 struct ext4_buddy *e4b, int first, int count) 514 { 515 return; 516 } 517 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 518 int first, int count) 519 { 520 return; 521 } 522 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 523 { 524 return; 525 } 526 #endif 527 528 #ifdef AGGRESSIVE_CHECK 529 530 #define MB_CHECK_ASSERT(assert) \ 531 do { \ 532 if (!(assert)) { \ 533 printk(KERN_EMERG \ 534 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 535 function, file, line, # assert); \ 536 BUG(); \ 537 } \ 538 } while (0) 539 540 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 541 const char *function, int line) 542 { 543 struct super_block *sb = e4b->bd_sb; 544 int order = e4b->bd_blkbits + 1; 545 int max; 546 int max2; 547 int i; 548 int j; 549 int k; 550 int count; 551 struct ext4_group_info *grp; 552 int fragments = 0; 553 int fstart; 554 struct list_head *cur; 555 void *buddy; 556 void *buddy2; 557 558 { 559 static int mb_check_counter; 560 if (mb_check_counter++ % 100 != 0) 561 return 0; 562 } 563 564 while (order > 1) { 565 buddy = mb_find_buddy(e4b, order, &max); 566 MB_CHECK_ASSERT(buddy); 567 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 568 MB_CHECK_ASSERT(buddy2); 569 MB_CHECK_ASSERT(buddy != buddy2); 570 MB_CHECK_ASSERT(max * 2 == max2); 571 572 count = 0; 573 for (i = 0; i < max; i++) { 574 575 if (mb_test_bit(i, buddy)) { 576 /* only single bit in buddy2 may be 1 */ 577 if (!mb_test_bit(i << 1, buddy2)) { 578 MB_CHECK_ASSERT( 579 mb_test_bit((i<<1)+1, buddy2)); 580 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit(i << 1, buddy2)); 583 } 584 continue; 585 } 586 587 /* both bits in buddy2 must be 1 */ 588 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 589 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 590 591 for (j = 0; j < (1 << order); j++) { 592 k = (i * (1 << order)) + j; 593 MB_CHECK_ASSERT( 594 !mb_test_bit(k, e4b->bd_bitmap)); 595 } 596 count++; 597 } 598 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 599 order--; 600 } 601 602 fstart = -1; 603 buddy = mb_find_buddy(e4b, 0, &max); 604 for (i = 0; i < max; i++) { 605 if (!mb_test_bit(i, buddy)) { 606 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 607 if (fstart == -1) { 608 fragments++; 609 fstart = i; 610 } 611 continue; 612 } 613 fstart = -1; 614 /* check used bits only */ 615 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 616 buddy2 = mb_find_buddy(e4b, j, &max2); 617 k = i >> j; 618 MB_CHECK_ASSERT(k < max2); 619 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 620 } 621 } 622 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 623 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 624 625 grp = ext4_get_group_info(sb, e4b->bd_group); 626 list_for_each(cur, &grp->bb_prealloc_list) { 627 ext4_group_t groupnr; 628 struct ext4_prealloc_space *pa; 629 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 630 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 631 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 632 for (i = 0; i < pa->pa_len; i++) 633 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 634 } 635 return 0; 636 } 637 #undef MB_CHECK_ASSERT 638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 639 __FILE__, __func__, __LINE__) 640 #else 641 #define mb_check_buddy(e4b) 642 #endif 643 644 /* 645 * Divide blocks started from @first with length @len into 646 * smaller chunks with power of 2 blocks. 647 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 648 * then increase bb_counters[] for corresponded chunk size. 649 */ 650 static void ext4_mb_mark_free_simple(struct super_block *sb, 651 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 652 struct ext4_group_info *grp) 653 { 654 struct ext4_sb_info *sbi = EXT4_SB(sb); 655 ext4_grpblk_t min; 656 ext4_grpblk_t max; 657 ext4_grpblk_t chunk; 658 unsigned int border; 659 660 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 661 662 border = 2 << sb->s_blocksize_bits; 663 664 while (len > 0) { 665 /* find how many blocks can be covered since this position */ 666 max = ffs(first | border) - 1; 667 668 /* find how many blocks of power 2 we need to mark */ 669 min = fls(len) - 1; 670 671 if (max < min) 672 min = max; 673 chunk = 1 << min; 674 675 /* mark multiblock chunks only */ 676 grp->bb_counters[min]++; 677 if (min > 0) 678 mb_clear_bit(first >> min, 679 buddy + sbi->s_mb_offsets[min]); 680 681 len -= chunk; 682 first += chunk; 683 } 684 } 685 686 /* 687 * Cache the order of the largest free extent we have available in this block 688 * group. 689 */ 690 static void 691 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 692 { 693 int i; 694 int bits; 695 696 grp->bb_largest_free_order = -1; /* uninit */ 697 698 bits = sb->s_blocksize_bits + 1; 699 for (i = bits; i >= 0; i--) { 700 if (grp->bb_counters[i] > 0) { 701 grp->bb_largest_free_order = i; 702 break; 703 } 704 } 705 } 706 707 static noinline_for_stack 708 void ext4_mb_generate_buddy(struct super_block *sb, 709 void *buddy, void *bitmap, ext4_group_t group) 710 { 711 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 712 struct ext4_sb_info *sbi = EXT4_SB(sb); 713 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 714 ext4_grpblk_t i = 0; 715 ext4_grpblk_t first; 716 ext4_grpblk_t len; 717 unsigned free = 0; 718 unsigned fragments = 0; 719 unsigned long long period = get_cycles(); 720 721 /* initialize buddy from bitmap which is aggregation 722 * of on-disk bitmap and preallocations */ 723 i = mb_find_next_zero_bit(bitmap, max, 0); 724 grp->bb_first_free = i; 725 while (i < max) { 726 fragments++; 727 first = i; 728 i = mb_find_next_bit(bitmap, max, i); 729 len = i - first; 730 free += len; 731 if (len > 1) 732 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 733 else 734 grp->bb_counters[0]++; 735 if (i < max) 736 i = mb_find_next_zero_bit(bitmap, max, i); 737 } 738 grp->bb_fragments = fragments; 739 740 if (free != grp->bb_free) { 741 ext4_grp_locked_error(sb, group, 0, 0, 742 "block bitmap and bg descriptor " 743 "inconsistent: %u vs %u free clusters", 744 free, grp->bb_free); 745 /* 746 * If we intend to continue, we consider group descriptor 747 * corrupt and update bb_free using bitmap value 748 */ 749 grp->bb_free = free; 750 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 751 percpu_counter_sub(&sbi->s_freeclusters_counter, 752 grp->bb_free); 753 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 754 } 755 mb_set_largest_free_order(sb, grp); 756 757 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 758 759 period = get_cycles() - period; 760 spin_lock(&sbi->s_bal_lock); 761 sbi->s_mb_buddies_generated++; 762 sbi->s_mb_generation_time += period; 763 spin_unlock(&sbi->s_bal_lock); 764 } 765 766 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 767 { 768 int count; 769 int order = 1; 770 void *buddy; 771 772 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 773 ext4_set_bits(buddy, 0, count); 774 } 775 e4b->bd_info->bb_fragments = 0; 776 memset(e4b->bd_info->bb_counters, 0, 777 sizeof(*e4b->bd_info->bb_counters) * 778 (e4b->bd_sb->s_blocksize_bits + 2)); 779 780 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 781 e4b->bd_bitmap, e4b->bd_group); 782 } 783 784 /* The buddy information is attached the buddy cache inode 785 * for convenience. The information regarding each group 786 * is loaded via ext4_mb_load_buddy. The information involve 787 * block bitmap and buddy information. The information are 788 * stored in the inode as 789 * 790 * { page } 791 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 792 * 793 * 794 * one block each for bitmap and buddy information. 795 * So for each group we take up 2 blocks. A page can 796 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 797 * So it can have information regarding groups_per_page which 798 * is blocks_per_page/2 799 * 800 * Locking note: This routine takes the block group lock of all groups 801 * for this page; do not hold this lock when calling this routine! 802 */ 803 804 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 805 { 806 ext4_group_t ngroups; 807 int blocksize; 808 int blocks_per_page; 809 int groups_per_page; 810 int err = 0; 811 int i; 812 ext4_group_t first_group, group; 813 int first_block; 814 struct super_block *sb; 815 struct buffer_head *bhs; 816 struct buffer_head **bh = NULL; 817 struct inode *inode; 818 char *data; 819 char *bitmap; 820 struct ext4_group_info *grinfo; 821 822 mb_debug(1, "init page %lu\n", page->index); 823 824 inode = page->mapping->host; 825 sb = inode->i_sb; 826 ngroups = ext4_get_groups_count(sb); 827 blocksize = i_blocksize(inode); 828 blocks_per_page = PAGE_SIZE / blocksize; 829 830 groups_per_page = blocks_per_page >> 1; 831 if (groups_per_page == 0) 832 groups_per_page = 1; 833 834 /* allocate buffer_heads to read bitmaps */ 835 if (groups_per_page > 1) { 836 i = sizeof(struct buffer_head *) * groups_per_page; 837 bh = kzalloc(i, gfp); 838 if (bh == NULL) { 839 err = -ENOMEM; 840 goto out; 841 } 842 } else 843 bh = &bhs; 844 845 first_group = page->index * blocks_per_page / 2; 846 847 /* read all groups the page covers into the cache */ 848 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 849 if (group >= ngroups) 850 break; 851 852 grinfo = ext4_get_group_info(sb, group); 853 /* 854 * If page is uptodate then we came here after online resize 855 * which added some new uninitialized group info structs, so 856 * we must skip all initialized uptodate buddies on the page, 857 * which may be currently in use by an allocating task. 858 */ 859 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 860 bh[i] = NULL; 861 continue; 862 } 863 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 864 if (IS_ERR(bh[i])) { 865 err = PTR_ERR(bh[i]); 866 bh[i] = NULL; 867 goto out; 868 } 869 mb_debug(1, "read bitmap for group %u\n", group); 870 } 871 872 /* wait for I/O completion */ 873 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 874 int err2; 875 876 if (!bh[i]) 877 continue; 878 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 879 if (!err) 880 err = err2; 881 } 882 883 first_block = page->index * blocks_per_page; 884 for (i = 0; i < blocks_per_page; i++) { 885 group = (first_block + i) >> 1; 886 if (group >= ngroups) 887 break; 888 889 if (!bh[group - first_group]) 890 /* skip initialized uptodate buddy */ 891 continue; 892 893 if (!buffer_verified(bh[group - first_group])) 894 /* Skip faulty bitmaps */ 895 continue; 896 err = 0; 897 898 /* 899 * data carry information regarding this 900 * particular group in the format specified 901 * above 902 * 903 */ 904 data = page_address(page) + (i * blocksize); 905 bitmap = bh[group - first_group]->b_data; 906 907 /* 908 * We place the buddy block and bitmap block 909 * close together 910 */ 911 if ((first_block + i) & 1) { 912 /* this is block of buddy */ 913 BUG_ON(incore == NULL); 914 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 915 group, page->index, i * blocksize); 916 trace_ext4_mb_buddy_bitmap_load(sb, group); 917 grinfo = ext4_get_group_info(sb, group); 918 grinfo->bb_fragments = 0; 919 memset(grinfo->bb_counters, 0, 920 sizeof(*grinfo->bb_counters) * 921 (sb->s_blocksize_bits+2)); 922 /* 923 * incore got set to the group block bitmap below 924 */ 925 ext4_lock_group(sb, group); 926 /* init the buddy */ 927 memset(data, 0xff, blocksize); 928 ext4_mb_generate_buddy(sb, data, incore, group); 929 ext4_unlock_group(sb, group); 930 incore = NULL; 931 } else { 932 /* this is block of bitmap */ 933 BUG_ON(incore != NULL); 934 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 935 group, page->index, i * blocksize); 936 trace_ext4_mb_bitmap_load(sb, group); 937 938 /* see comments in ext4_mb_put_pa() */ 939 ext4_lock_group(sb, group); 940 memcpy(data, bitmap, blocksize); 941 942 /* mark all preallocated blks used in in-core bitmap */ 943 ext4_mb_generate_from_pa(sb, data, group); 944 ext4_mb_generate_from_freelist(sb, data, group); 945 ext4_unlock_group(sb, group); 946 947 /* set incore so that the buddy information can be 948 * generated using this 949 */ 950 incore = data; 951 } 952 } 953 SetPageUptodate(page); 954 955 out: 956 if (bh) { 957 for (i = 0; i < groups_per_page; i++) 958 brelse(bh[i]); 959 if (bh != &bhs) 960 kfree(bh); 961 } 962 return err; 963 } 964 965 /* 966 * Lock the buddy and bitmap pages. This make sure other parallel init_group 967 * on the same buddy page doesn't happen whild holding the buddy page lock. 968 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 969 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 970 */ 971 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 972 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 973 { 974 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 975 int block, pnum, poff; 976 int blocks_per_page; 977 struct page *page; 978 979 e4b->bd_buddy_page = NULL; 980 e4b->bd_bitmap_page = NULL; 981 982 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 983 /* 984 * the buddy cache inode stores the block bitmap 985 * and buddy information in consecutive blocks. 986 * So for each group we need two blocks. 987 */ 988 block = group * 2; 989 pnum = block / blocks_per_page; 990 poff = block % blocks_per_page; 991 page = find_or_create_page(inode->i_mapping, pnum, gfp); 992 if (!page) 993 return -ENOMEM; 994 BUG_ON(page->mapping != inode->i_mapping); 995 e4b->bd_bitmap_page = page; 996 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 997 998 if (blocks_per_page >= 2) { 999 /* buddy and bitmap are on the same page */ 1000 return 0; 1001 } 1002 1003 block++; 1004 pnum = block / blocks_per_page; 1005 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1006 if (!page) 1007 return -ENOMEM; 1008 BUG_ON(page->mapping != inode->i_mapping); 1009 e4b->bd_buddy_page = page; 1010 return 0; 1011 } 1012 1013 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1014 { 1015 if (e4b->bd_bitmap_page) { 1016 unlock_page(e4b->bd_bitmap_page); 1017 put_page(e4b->bd_bitmap_page); 1018 } 1019 if (e4b->bd_buddy_page) { 1020 unlock_page(e4b->bd_buddy_page); 1021 put_page(e4b->bd_buddy_page); 1022 } 1023 } 1024 1025 /* 1026 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1027 * block group lock of all groups for this page; do not hold the BG lock when 1028 * calling this routine! 1029 */ 1030 static noinline_for_stack 1031 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1032 { 1033 1034 struct ext4_group_info *this_grp; 1035 struct ext4_buddy e4b; 1036 struct page *page; 1037 int ret = 0; 1038 1039 might_sleep(); 1040 mb_debug(1, "init group %u\n", group); 1041 this_grp = ext4_get_group_info(sb, group); 1042 /* 1043 * This ensures that we don't reinit the buddy cache 1044 * page which map to the group from which we are already 1045 * allocating. If we are looking at the buddy cache we would 1046 * have taken a reference using ext4_mb_load_buddy and that 1047 * would have pinned buddy page to page cache. 1048 * The call to ext4_mb_get_buddy_page_lock will mark the 1049 * page accessed. 1050 */ 1051 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1052 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1053 /* 1054 * somebody initialized the group 1055 * return without doing anything 1056 */ 1057 goto err; 1058 } 1059 1060 page = e4b.bd_bitmap_page; 1061 ret = ext4_mb_init_cache(page, NULL, gfp); 1062 if (ret) 1063 goto err; 1064 if (!PageUptodate(page)) { 1065 ret = -EIO; 1066 goto err; 1067 } 1068 1069 if (e4b.bd_buddy_page == NULL) { 1070 /* 1071 * If both the bitmap and buddy are in 1072 * the same page we don't need to force 1073 * init the buddy 1074 */ 1075 ret = 0; 1076 goto err; 1077 } 1078 /* init buddy cache */ 1079 page = e4b.bd_buddy_page; 1080 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1081 if (ret) 1082 goto err; 1083 if (!PageUptodate(page)) { 1084 ret = -EIO; 1085 goto err; 1086 } 1087 err: 1088 ext4_mb_put_buddy_page_lock(&e4b); 1089 return ret; 1090 } 1091 1092 /* 1093 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1094 * block group lock of all groups for this page; do not hold the BG lock when 1095 * calling this routine! 1096 */ 1097 static noinline_for_stack int 1098 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1099 struct ext4_buddy *e4b, gfp_t gfp) 1100 { 1101 int blocks_per_page; 1102 int block; 1103 int pnum; 1104 int poff; 1105 struct page *page; 1106 int ret; 1107 struct ext4_group_info *grp; 1108 struct ext4_sb_info *sbi = EXT4_SB(sb); 1109 struct inode *inode = sbi->s_buddy_cache; 1110 1111 might_sleep(); 1112 mb_debug(1, "load group %u\n", group); 1113 1114 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1115 grp = ext4_get_group_info(sb, group); 1116 1117 e4b->bd_blkbits = sb->s_blocksize_bits; 1118 e4b->bd_info = grp; 1119 e4b->bd_sb = sb; 1120 e4b->bd_group = group; 1121 e4b->bd_buddy_page = NULL; 1122 e4b->bd_bitmap_page = NULL; 1123 1124 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1125 /* 1126 * we need full data about the group 1127 * to make a good selection 1128 */ 1129 ret = ext4_mb_init_group(sb, group, gfp); 1130 if (ret) 1131 return ret; 1132 } 1133 1134 /* 1135 * the buddy cache inode stores the block bitmap 1136 * and buddy information in consecutive blocks. 1137 * So for each group we need two blocks. 1138 */ 1139 block = group * 2; 1140 pnum = block / blocks_per_page; 1141 poff = block % blocks_per_page; 1142 1143 /* we could use find_or_create_page(), but it locks page 1144 * what we'd like to avoid in fast path ... */ 1145 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1146 if (page == NULL || !PageUptodate(page)) { 1147 if (page) 1148 /* 1149 * drop the page reference and try 1150 * to get the page with lock. If we 1151 * are not uptodate that implies 1152 * somebody just created the page but 1153 * is yet to initialize the same. So 1154 * wait for it to initialize. 1155 */ 1156 put_page(page); 1157 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1158 if (page) { 1159 BUG_ON(page->mapping != inode->i_mapping); 1160 if (!PageUptodate(page)) { 1161 ret = ext4_mb_init_cache(page, NULL, gfp); 1162 if (ret) { 1163 unlock_page(page); 1164 goto err; 1165 } 1166 mb_cmp_bitmaps(e4b, page_address(page) + 1167 (poff * sb->s_blocksize)); 1168 } 1169 unlock_page(page); 1170 } 1171 } 1172 if (page == NULL) { 1173 ret = -ENOMEM; 1174 goto err; 1175 } 1176 if (!PageUptodate(page)) { 1177 ret = -EIO; 1178 goto err; 1179 } 1180 1181 /* Pages marked accessed already */ 1182 e4b->bd_bitmap_page = page; 1183 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1184 1185 block++; 1186 pnum = block / blocks_per_page; 1187 poff = block % blocks_per_page; 1188 1189 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1190 if (page == NULL || !PageUptodate(page)) { 1191 if (page) 1192 put_page(page); 1193 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1194 if (page) { 1195 BUG_ON(page->mapping != inode->i_mapping); 1196 if (!PageUptodate(page)) { 1197 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1198 gfp); 1199 if (ret) { 1200 unlock_page(page); 1201 goto err; 1202 } 1203 } 1204 unlock_page(page); 1205 } 1206 } 1207 if (page == NULL) { 1208 ret = -ENOMEM; 1209 goto err; 1210 } 1211 if (!PageUptodate(page)) { 1212 ret = -EIO; 1213 goto err; 1214 } 1215 1216 /* Pages marked accessed already */ 1217 e4b->bd_buddy_page = page; 1218 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1219 1220 BUG_ON(e4b->bd_bitmap_page == NULL); 1221 BUG_ON(e4b->bd_buddy_page == NULL); 1222 1223 return 0; 1224 1225 err: 1226 if (page) 1227 put_page(page); 1228 if (e4b->bd_bitmap_page) 1229 put_page(e4b->bd_bitmap_page); 1230 if (e4b->bd_buddy_page) 1231 put_page(e4b->bd_buddy_page); 1232 e4b->bd_buddy = NULL; 1233 e4b->bd_bitmap = NULL; 1234 return ret; 1235 } 1236 1237 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1238 struct ext4_buddy *e4b) 1239 { 1240 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1241 } 1242 1243 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1244 { 1245 if (e4b->bd_bitmap_page) 1246 put_page(e4b->bd_bitmap_page); 1247 if (e4b->bd_buddy_page) 1248 put_page(e4b->bd_buddy_page); 1249 } 1250 1251 1252 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1253 { 1254 int order = 1; 1255 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1256 void *bb; 1257 1258 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1259 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1260 1261 bb = e4b->bd_buddy; 1262 while (order <= e4b->bd_blkbits + 1) { 1263 block = block >> 1; 1264 if (!mb_test_bit(block, bb)) { 1265 /* this block is part of buddy of order 'order' */ 1266 return order; 1267 } 1268 bb += bb_incr; 1269 bb_incr >>= 1; 1270 order++; 1271 } 1272 return 0; 1273 } 1274 1275 static void mb_clear_bits(void *bm, int cur, int len) 1276 { 1277 __u32 *addr; 1278 1279 len = cur + len; 1280 while (cur < len) { 1281 if ((cur & 31) == 0 && (len - cur) >= 32) { 1282 /* fast path: clear whole word at once */ 1283 addr = bm + (cur >> 3); 1284 *addr = 0; 1285 cur += 32; 1286 continue; 1287 } 1288 mb_clear_bit(cur, bm); 1289 cur++; 1290 } 1291 } 1292 1293 /* clear bits in given range 1294 * will return first found zero bit if any, -1 otherwise 1295 */ 1296 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1297 { 1298 __u32 *addr; 1299 int zero_bit = -1; 1300 1301 len = cur + len; 1302 while (cur < len) { 1303 if ((cur & 31) == 0 && (len - cur) >= 32) { 1304 /* fast path: clear whole word at once */ 1305 addr = bm + (cur >> 3); 1306 if (*addr != (__u32)(-1) && zero_bit == -1) 1307 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1308 *addr = 0; 1309 cur += 32; 1310 continue; 1311 } 1312 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1313 zero_bit = cur; 1314 cur++; 1315 } 1316 1317 return zero_bit; 1318 } 1319 1320 void ext4_set_bits(void *bm, int cur, int len) 1321 { 1322 __u32 *addr; 1323 1324 len = cur + len; 1325 while (cur < len) { 1326 if ((cur & 31) == 0 && (len - cur) >= 32) { 1327 /* fast path: set whole word at once */ 1328 addr = bm + (cur >> 3); 1329 *addr = 0xffffffff; 1330 cur += 32; 1331 continue; 1332 } 1333 mb_set_bit(cur, bm); 1334 cur++; 1335 } 1336 } 1337 1338 /* 1339 * _________________________________________________________________ */ 1340 1341 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1342 { 1343 if (mb_test_bit(*bit + side, bitmap)) { 1344 mb_clear_bit(*bit, bitmap); 1345 (*bit) -= side; 1346 return 1; 1347 } 1348 else { 1349 (*bit) += side; 1350 mb_set_bit(*bit, bitmap); 1351 return -1; 1352 } 1353 } 1354 1355 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1356 { 1357 int max; 1358 int order = 1; 1359 void *buddy = mb_find_buddy(e4b, order, &max); 1360 1361 while (buddy) { 1362 void *buddy2; 1363 1364 /* Bits in range [first; last] are known to be set since 1365 * corresponding blocks were allocated. Bits in range 1366 * (first; last) will stay set because they form buddies on 1367 * upper layer. We just deal with borders if they don't 1368 * align with upper layer and then go up. 1369 * Releasing entire group is all about clearing 1370 * single bit of highest order buddy. 1371 */ 1372 1373 /* Example: 1374 * --------------------------------- 1375 * | 1 | 1 | 1 | 1 | 1376 * --------------------------------- 1377 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1378 * --------------------------------- 1379 * 0 1 2 3 4 5 6 7 1380 * \_____________________/ 1381 * 1382 * Neither [1] nor [6] is aligned to above layer. 1383 * Left neighbour [0] is free, so mark it busy, 1384 * decrease bb_counters and extend range to 1385 * [0; 6] 1386 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1387 * mark [6] free, increase bb_counters and shrink range to 1388 * [0; 5]. 1389 * Then shift range to [0; 2], go up and do the same. 1390 */ 1391 1392 1393 if (first & 1) 1394 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1395 if (!(last & 1)) 1396 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1397 if (first > last) 1398 break; 1399 order++; 1400 1401 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1402 mb_clear_bits(buddy, first, last - first + 1); 1403 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1404 break; 1405 } 1406 first >>= 1; 1407 last >>= 1; 1408 buddy = buddy2; 1409 } 1410 } 1411 1412 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1413 int first, int count) 1414 { 1415 int left_is_free = 0; 1416 int right_is_free = 0; 1417 int block; 1418 int last = first + count - 1; 1419 struct super_block *sb = e4b->bd_sb; 1420 1421 if (WARN_ON(count == 0)) 1422 return; 1423 BUG_ON(last >= (sb->s_blocksize << 3)); 1424 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1425 /* Don't bother if the block group is corrupt. */ 1426 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1427 return; 1428 1429 mb_check_buddy(e4b); 1430 mb_free_blocks_double(inode, e4b, first, count); 1431 1432 e4b->bd_info->bb_free += count; 1433 if (first < e4b->bd_info->bb_first_free) 1434 e4b->bd_info->bb_first_free = first; 1435 1436 /* access memory sequentially: check left neighbour, 1437 * clear range and then check right neighbour 1438 */ 1439 if (first != 0) 1440 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1441 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1442 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1443 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1444 1445 if (unlikely(block != -1)) { 1446 struct ext4_sb_info *sbi = EXT4_SB(sb); 1447 ext4_fsblk_t blocknr; 1448 1449 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1450 blocknr += EXT4_C2B(sbi, block); 1451 ext4_grp_locked_error(sb, e4b->bd_group, 1452 inode ? inode->i_ino : 0, 1453 blocknr, 1454 "freeing already freed block " 1455 "(bit %u); block bitmap corrupt.", 1456 block); 1457 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)) 1458 percpu_counter_sub(&sbi->s_freeclusters_counter, 1459 e4b->bd_info->bb_free); 1460 /* Mark the block group as corrupt. */ 1461 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1462 &e4b->bd_info->bb_state); 1463 mb_regenerate_buddy(e4b); 1464 goto done; 1465 } 1466 1467 /* let's maintain fragments counter */ 1468 if (left_is_free && right_is_free) 1469 e4b->bd_info->bb_fragments--; 1470 else if (!left_is_free && !right_is_free) 1471 e4b->bd_info->bb_fragments++; 1472 1473 /* buddy[0] == bd_bitmap is a special case, so handle 1474 * it right away and let mb_buddy_mark_free stay free of 1475 * zero order checks. 1476 * Check if neighbours are to be coaleasced, 1477 * adjust bitmap bb_counters and borders appropriately. 1478 */ 1479 if (first & 1) { 1480 first += !left_is_free; 1481 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1482 } 1483 if (!(last & 1)) { 1484 last -= !right_is_free; 1485 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1486 } 1487 1488 if (first <= last) 1489 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1490 1491 done: 1492 mb_set_largest_free_order(sb, e4b->bd_info); 1493 mb_check_buddy(e4b); 1494 } 1495 1496 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1497 int needed, struct ext4_free_extent *ex) 1498 { 1499 int next = block; 1500 int max, order; 1501 void *buddy; 1502 1503 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1504 BUG_ON(ex == NULL); 1505 1506 buddy = mb_find_buddy(e4b, 0, &max); 1507 BUG_ON(buddy == NULL); 1508 BUG_ON(block >= max); 1509 if (mb_test_bit(block, buddy)) { 1510 ex->fe_len = 0; 1511 ex->fe_start = 0; 1512 ex->fe_group = 0; 1513 return 0; 1514 } 1515 1516 /* find actual order */ 1517 order = mb_find_order_for_block(e4b, block); 1518 block = block >> order; 1519 1520 ex->fe_len = 1 << order; 1521 ex->fe_start = block << order; 1522 ex->fe_group = e4b->bd_group; 1523 1524 /* calc difference from given start */ 1525 next = next - ex->fe_start; 1526 ex->fe_len -= next; 1527 ex->fe_start += next; 1528 1529 while (needed > ex->fe_len && 1530 mb_find_buddy(e4b, order, &max)) { 1531 1532 if (block + 1 >= max) 1533 break; 1534 1535 next = (block + 1) * (1 << order); 1536 if (mb_test_bit(next, e4b->bd_bitmap)) 1537 break; 1538 1539 order = mb_find_order_for_block(e4b, next); 1540 1541 block = next >> order; 1542 ex->fe_len += 1 << order; 1543 } 1544 1545 if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) { 1546 /* Should never happen! (but apparently sometimes does?!?) */ 1547 WARN_ON(1); 1548 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1549 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1550 block, order, needed, ex->fe_group, ex->fe_start, 1551 ex->fe_len, ex->fe_logical); 1552 ex->fe_len = 0; 1553 ex->fe_start = 0; 1554 ex->fe_group = 0; 1555 } 1556 return ex->fe_len; 1557 } 1558 1559 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1560 { 1561 int ord; 1562 int mlen = 0; 1563 int max = 0; 1564 int cur; 1565 int start = ex->fe_start; 1566 int len = ex->fe_len; 1567 unsigned ret = 0; 1568 int len0 = len; 1569 void *buddy; 1570 1571 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1572 BUG_ON(e4b->bd_group != ex->fe_group); 1573 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1574 mb_check_buddy(e4b); 1575 mb_mark_used_double(e4b, start, len); 1576 1577 e4b->bd_info->bb_free -= len; 1578 if (e4b->bd_info->bb_first_free == start) 1579 e4b->bd_info->bb_first_free += len; 1580 1581 /* let's maintain fragments counter */ 1582 if (start != 0) 1583 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1584 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1585 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1586 if (mlen && max) 1587 e4b->bd_info->bb_fragments++; 1588 else if (!mlen && !max) 1589 e4b->bd_info->bb_fragments--; 1590 1591 /* let's maintain buddy itself */ 1592 while (len) { 1593 ord = mb_find_order_for_block(e4b, start); 1594 1595 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1596 /* the whole chunk may be allocated at once! */ 1597 mlen = 1 << ord; 1598 buddy = mb_find_buddy(e4b, ord, &max); 1599 BUG_ON((start >> ord) >= max); 1600 mb_set_bit(start >> ord, buddy); 1601 e4b->bd_info->bb_counters[ord]--; 1602 start += mlen; 1603 len -= mlen; 1604 BUG_ON(len < 0); 1605 continue; 1606 } 1607 1608 /* store for history */ 1609 if (ret == 0) 1610 ret = len | (ord << 16); 1611 1612 /* we have to split large buddy */ 1613 BUG_ON(ord <= 0); 1614 buddy = mb_find_buddy(e4b, ord, &max); 1615 mb_set_bit(start >> ord, buddy); 1616 e4b->bd_info->bb_counters[ord]--; 1617 1618 ord--; 1619 cur = (start >> ord) & ~1U; 1620 buddy = mb_find_buddy(e4b, ord, &max); 1621 mb_clear_bit(cur, buddy); 1622 mb_clear_bit(cur + 1, buddy); 1623 e4b->bd_info->bb_counters[ord]++; 1624 e4b->bd_info->bb_counters[ord]++; 1625 } 1626 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1627 1628 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1629 mb_check_buddy(e4b); 1630 1631 return ret; 1632 } 1633 1634 /* 1635 * Must be called under group lock! 1636 */ 1637 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1638 struct ext4_buddy *e4b) 1639 { 1640 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1641 int ret; 1642 1643 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1644 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1645 1646 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1647 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1648 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1649 1650 /* preallocation can change ac_b_ex, thus we store actually 1651 * allocated blocks for history */ 1652 ac->ac_f_ex = ac->ac_b_ex; 1653 1654 ac->ac_status = AC_STATUS_FOUND; 1655 ac->ac_tail = ret & 0xffff; 1656 ac->ac_buddy = ret >> 16; 1657 1658 /* 1659 * take the page reference. We want the page to be pinned 1660 * so that we don't get a ext4_mb_init_cache_call for this 1661 * group until we update the bitmap. That would mean we 1662 * double allocate blocks. The reference is dropped 1663 * in ext4_mb_release_context 1664 */ 1665 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1666 get_page(ac->ac_bitmap_page); 1667 ac->ac_buddy_page = e4b->bd_buddy_page; 1668 get_page(ac->ac_buddy_page); 1669 /* store last allocated for subsequent stream allocation */ 1670 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1671 spin_lock(&sbi->s_md_lock); 1672 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1673 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1674 spin_unlock(&sbi->s_md_lock); 1675 } 1676 } 1677 1678 /* 1679 * regular allocator, for general purposes allocation 1680 */ 1681 1682 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1683 struct ext4_buddy *e4b, 1684 int finish_group) 1685 { 1686 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1687 struct ext4_free_extent *bex = &ac->ac_b_ex; 1688 struct ext4_free_extent *gex = &ac->ac_g_ex; 1689 struct ext4_free_extent ex; 1690 int max; 1691 1692 if (ac->ac_status == AC_STATUS_FOUND) 1693 return; 1694 /* 1695 * We don't want to scan for a whole year 1696 */ 1697 if (ac->ac_found > sbi->s_mb_max_to_scan && 1698 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1699 ac->ac_status = AC_STATUS_BREAK; 1700 return; 1701 } 1702 1703 /* 1704 * Haven't found good chunk so far, let's continue 1705 */ 1706 if (bex->fe_len < gex->fe_len) 1707 return; 1708 1709 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1710 && bex->fe_group == e4b->bd_group) { 1711 /* recheck chunk's availability - we don't know 1712 * when it was found (within this lock-unlock 1713 * period or not) */ 1714 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1715 if (max >= gex->fe_len) { 1716 ext4_mb_use_best_found(ac, e4b); 1717 return; 1718 } 1719 } 1720 } 1721 1722 /* 1723 * The routine checks whether found extent is good enough. If it is, 1724 * then the extent gets marked used and flag is set to the context 1725 * to stop scanning. Otherwise, the extent is compared with the 1726 * previous found extent and if new one is better, then it's stored 1727 * in the context. Later, the best found extent will be used, if 1728 * mballoc can't find good enough extent. 1729 * 1730 * FIXME: real allocation policy is to be designed yet! 1731 */ 1732 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1733 struct ext4_free_extent *ex, 1734 struct ext4_buddy *e4b) 1735 { 1736 struct ext4_free_extent *bex = &ac->ac_b_ex; 1737 struct ext4_free_extent *gex = &ac->ac_g_ex; 1738 1739 BUG_ON(ex->fe_len <= 0); 1740 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1741 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1742 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1743 1744 ac->ac_found++; 1745 1746 /* 1747 * The special case - take what you catch first 1748 */ 1749 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1750 *bex = *ex; 1751 ext4_mb_use_best_found(ac, e4b); 1752 return; 1753 } 1754 1755 /* 1756 * Let's check whether the chuck is good enough 1757 */ 1758 if (ex->fe_len == gex->fe_len) { 1759 *bex = *ex; 1760 ext4_mb_use_best_found(ac, e4b); 1761 return; 1762 } 1763 1764 /* 1765 * If this is first found extent, just store it in the context 1766 */ 1767 if (bex->fe_len == 0) { 1768 *bex = *ex; 1769 return; 1770 } 1771 1772 /* 1773 * If new found extent is better, store it in the context 1774 */ 1775 if (bex->fe_len < gex->fe_len) { 1776 /* if the request isn't satisfied, any found extent 1777 * larger than previous best one is better */ 1778 if (ex->fe_len > bex->fe_len) 1779 *bex = *ex; 1780 } else if (ex->fe_len > gex->fe_len) { 1781 /* if the request is satisfied, then we try to find 1782 * an extent that still satisfy the request, but is 1783 * smaller than previous one */ 1784 if (ex->fe_len < bex->fe_len) 1785 *bex = *ex; 1786 } 1787 1788 ext4_mb_check_limits(ac, e4b, 0); 1789 } 1790 1791 static noinline_for_stack 1792 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1793 struct ext4_buddy *e4b) 1794 { 1795 struct ext4_free_extent ex = ac->ac_b_ex; 1796 ext4_group_t group = ex.fe_group; 1797 int max; 1798 int err; 1799 1800 BUG_ON(ex.fe_len <= 0); 1801 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1802 if (err) 1803 return err; 1804 1805 ext4_lock_group(ac->ac_sb, group); 1806 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1807 1808 if (max > 0) { 1809 ac->ac_b_ex = ex; 1810 ext4_mb_use_best_found(ac, e4b); 1811 } 1812 1813 ext4_unlock_group(ac->ac_sb, group); 1814 ext4_mb_unload_buddy(e4b); 1815 1816 return 0; 1817 } 1818 1819 static noinline_for_stack 1820 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1821 struct ext4_buddy *e4b) 1822 { 1823 ext4_group_t group = ac->ac_g_ex.fe_group; 1824 int max; 1825 int err; 1826 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1827 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1828 struct ext4_free_extent ex; 1829 1830 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1831 return 0; 1832 if (grp->bb_free == 0) 1833 return 0; 1834 1835 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1836 if (err) 1837 return err; 1838 1839 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1840 ext4_mb_unload_buddy(e4b); 1841 return 0; 1842 } 1843 1844 ext4_lock_group(ac->ac_sb, group); 1845 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1846 ac->ac_g_ex.fe_len, &ex); 1847 ex.fe_logical = 0xDEADFA11; /* debug value */ 1848 1849 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1850 ext4_fsblk_t start; 1851 1852 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1853 ex.fe_start; 1854 /* use do_div to get remainder (would be 64-bit modulo) */ 1855 if (do_div(start, sbi->s_stripe) == 0) { 1856 ac->ac_found++; 1857 ac->ac_b_ex = ex; 1858 ext4_mb_use_best_found(ac, e4b); 1859 } 1860 } else if (max >= ac->ac_g_ex.fe_len) { 1861 BUG_ON(ex.fe_len <= 0); 1862 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1863 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1864 ac->ac_found++; 1865 ac->ac_b_ex = ex; 1866 ext4_mb_use_best_found(ac, e4b); 1867 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1868 /* Sometimes, caller may want to merge even small 1869 * number of blocks to an existing extent */ 1870 BUG_ON(ex.fe_len <= 0); 1871 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1872 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1873 ac->ac_found++; 1874 ac->ac_b_ex = ex; 1875 ext4_mb_use_best_found(ac, e4b); 1876 } 1877 ext4_unlock_group(ac->ac_sb, group); 1878 ext4_mb_unload_buddy(e4b); 1879 1880 return 0; 1881 } 1882 1883 /* 1884 * The routine scans buddy structures (not bitmap!) from given order 1885 * to max order and tries to find big enough chunk to satisfy the req 1886 */ 1887 static noinline_for_stack 1888 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1889 struct ext4_buddy *e4b) 1890 { 1891 struct super_block *sb = ac->ac_sb; 1892 struct ext4_group_info *grp = e4b->bd_info; 1893 void *buddy; 1894 int i; 1895 int k; 1896 int max; 1897 1898 BUG_ON(ac->ac_2order <= 0); 1899 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1900 if (grp->bb_counters[i] == 0) 1901 continue; 1902 1903 buddy = mb_find_buddy(e4b, i, &max); 1904 BUG_ON(buddy == NULL); 1905 1906 k = mb_find_next_zero_bit(buddy, max, 0); 1907 BUG_ON(k >= max); 1908 1909 ac->ac_found++; 1910 1911 ac->ac_b_ex.fe_len = 1 << i; 1912 ac->ac_b_ex.fe_start = k << i; 1913 ac->ac_b_ex.fe_group = e4b->bd_group; 1914 1915 ext4_mb_use_best_found(ac, e4b); 1916 1917 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1918 1919 if (EXT4_SB(sb)->s_mb_stats) 1920 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1921 1922 break; 1923 } 1924 } 1925 1926 /* 1927 * The routine scans the group and measures all found extents. 1928 * In order to optimize scanning, caller must pass number of 1929 * free blocks in the group, so the routine can know upper limit. 1930 */ 1931 static noinline_for_stack 1932 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1933 struct ext4_buddy *e4b) 1934 { 1935 struct super_block *sb = ac->ac_sb; 1936 void *bitmap = e4b->bd_bitmap; 1937 struct ext4_free_extent ex; 1938 int i; 1939 int free; 1940 1941 free = e4b->bd_info->bb_free; 1942 BUG_ON(free <= 0); 1943 1944 i = e4b->bd_info->bb_first_free; 1945 1946 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1947 i = mb_find_next_zero_bit(bitmap, 1948 EXT4_CLUSTERS_PER_GROUP(sb), i); 1949 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1950 /* 1951 * IF we have corrupt bitmap, we won't find any 1952 * free blocks even though group info says we 1953 * we have free blocks 1954 */ 1955 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1956 "%d free clusters as per " 1957 "group info. But bitmap says 0", 1958 free); 1959 break; 1960 } 1961 1962 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1963 BUG_ON(ex.fe_len <= 0); 1964 if (free < ex.fe_len) { 1965 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1966 "%d free clusters as per " 1967 "group info. But got %d blocks", 1968 free, ex.fe_len); 1969 /* 1970 * The number of free blocks differs. This mostly 1971 * indicate that the bitmap is corrupt. So exit 1972 * without claiming the space. 1973 */ 1974 break; 1975 } 1976 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1977 ext4_mb_measure_extent(ac, &ex, e4b); 1978 1979 i += ex.fe_len; 1980 free -= ex.fe_len; 1981 } 1982 1983 ext4_mb_check_limits(ac, e4b, 1); 1984 } 1985 1986 /* 1987 * This is a special case for storages like raid5 1988 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1989 */ 1990 static noinline_for_stack 1991 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1992 struct ext4_buddy *e4b) 1993 { 1994 struct super_block *sb = ac->ac_sb; 1995 struct ext4_sb_info *sbi = EXT4_SB(sb); 1996 void *bitmap = e4b->bd_bitmap; 1997 struct ext4_free_extent ex; 1998 ext4_fsblk_t first_group_block; 1999 ext4_fsblk_t a; 2000 ext4_grpblk_t i; 2001 int max; 2002 2003 BUG_ON(sbi->s_stripe == 0); 2004 2005 /* find first stripe-aligned block in group */ 2006 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2007 2008 a = first_group_block + sbi->s_stripe - 1; 2009 do_div(a, sbi->s_stripe); 2010 i = (a * sbi->s_stripe) - first_group_block; 2011 2012 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2013 if (!mb_test_bit(i, bitmap)) { 2014 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2015 if (max >= sbi->s_stripe) { 2016 ac->ac_found++; 2017 ex.fe_logical = 0xDEADF00D; /* debug value */ 2018 ac->ac_b_ex = ex; 2019 ext4_mb_use_best_found(ac, e4b); 2020 break; 2021 } 2022 } 2023 i += sbi->s_stripe; 2024 } 2025 } 2026 2027 /* 2028 * This is now called BEFORE we load the buddy bitmap. 2029 * Returns either 1 or 0 indicating that the group is either suitable 2030 * for the allocation or not. In addition it can also return negative 2031 * error code when something goes wrong. 2032 */ 2033 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2034 ext4_group_t group, int cr) 2035 { 2036 unsigned free, fragments; 2037 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2038 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2039 2040 BUG_ON(cr < 0 || cr >= 4); 2041 2042 free = grp->bb_free; 2043 if (free == 0) 2044 return 0; 2045 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2046 return 0; 2047 2048 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2049 return 0; 2050 2051 /* We only do this if the grp has never been initialized */ 2052 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2053 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2054 if (ret) 2055 return ret; 2056 } 2057 2058 fragments = grp->bb_fragments; 2059 if (fragments == 0) 2060 return 0; 2061 2062 switch (cr) { 2063 case 0: 2064 BUG_ON(ac->ac_2order == 0); 2065 2066 /* Avoid using the first bg of a flexgroup for data files */ 2067 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2068 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2069 ((group % flex_size) == 0)) 2070 return 0; 2071 2072 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2073 (free / fragments) >= ac->ac_g_ex.fe_len) 2074 return 1; 2075 2076 if (grp->bb_largest_free_order < ac->ac_2order) 2077 return 0; 2078 2079 return 1; 2080 case 1: 2081 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2082 return 1; 2083 break; 2084 case 2: 2085 if (free >= ac->ac_g_ex.fe_len) 2086 return 1; 2087 break; 2088 case 3: 2089 return 1; 2090 default: 2091 BUG(); 2092 } 2093 2094 return 0; 2095 } 2096 2097 static noinline_for_stack int 2098 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2099 { 2100 ext4_group_t ngroups, group, i; 2101 int cr; 2102 int err = 0, first_err = 0; 2103 struct ext4_sb_info *sbi; 2104 struct super_block *sb; 2105 struct ext4_buddy e4b; 2106 2107 sb = ac->ac_sb; 2108 sbi = EXT4_SB(sb); 2109 ngroups = ext4_get_groups_count(sb); 2110 /* non-extent files are limited to low blocks/groups */ 2111 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2112 ngroups = sbi->s_blockfile_groups; 2113 2114 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2115 2116 /* first, try the goal */ 2117 err = ext4_mb_find_by_goal(ac, &e4b); 2118 if (err || ac->ac_status == AC_STATUS_FOUND) 2119 goto out; 2120 2121 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2122 goto out; 2123 2124 /* 2125 * ac->ac2_order is set only if the fe_len is a power of 2 2126 * if ac2_order is set we also set criteria to 0 so that we 2127 * try exact allocation using buddy. 2128 */ 2129 i = fls(ac->ac_g_ex.fe_len); 2130 ac->ac_2order = 0; 2131 /* 2132 * We search using buddy data only if the order of the request 2133 * is greater than equal to the sbi_s_mb_order2_reqs 2134 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2135 * We also support searching for power-of-two requests only for 2136 * requests upto maximum buddy size we have constructed. 2137 */ 2138 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2139 /* 2140 * This should tell if fe_len is exactly power of 2 2141 */ 2142 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2143 ac->ac_2order = i - 1; 2144 } 2145 2146 /* if stream allocation is enabled, use global goal */ 2147 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2148 /* TBD: may be hot point */ 2149 spin_lock(&sbi->s_md_lock); 2150 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2151 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2152 spin_unlock(&sbi->s_md_lock); 2153 } 2154 2155 /* Let's just scan groups to find more-less suitable blocks */ 2156 cr = ac->ac_2order ? 0 : 1; 2157 /* 2158 * cr == 0 try to get exact allocation, 2159 * cr == 3 try to get anything 2160 */ 2161 repeat: 2162 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2163 ac->ac_criteria = cr; 2164 /* 2165 * searching for the right group start 2166 * from the goal value specified 2167 */ 2168 group = ac->ac_g_ex.fe_group; 2169 2170 for (i = 0; i < ngroups; group++, i++) { 2171 int ret = 0; 2172 cond_resched(); 2173 /* 2174 * Artificially restricted ngroups for non-extent 2175 * files makes group > ngroups possible on first loop. 2176 */ 2177 if (group >= ngroups) 2178 group = 0; 2179 2180 /* This now checks without needing the buddy page */ 2181 ret = ext4_mb_good_group(ac, group, cr); 2182 if (ret <= 0) { 2183 if (!first_err) 2184 first_err = ret; 2185 continue; 2186 } 2187 2188 err = ext4_mb_load_buddy(sb, group, &e4b); 2189 if (err) 2190 goto out; 2191 2192 ext4_lock_group(sb, group); 2193 2194 /* 2195 * We need to check again after locking the 2196 * block group 2197 */ 2198 ret = ext4_mb_good_group(ac, group, cr); 2199 if (ret <= 0) { 2200 ext4_unlock_group(sb, group); 2201 ext4_mb_unload_buddy(&e4b); 2202 if (!first_err) 2203 first_err = ret; 2204 continue; 2205 } 2206 2207 ac->ac_groups_scanned++; 2208 if (cr == 0) 2209 ext4_mb_simple_scan_group(ac, &e4b); 2210 else if (cr == 1 && sbi->s_stripe && 2211 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2212 ext4_mb_scan_aligned(ac, &e4b); 2213 else 2214 ext4_mb_complex_scan_group(ac, &e4b); 2215 2216 ext4_unlock_group(sb, group); 2217 ext4_mb_unload_buddy(&e4b); 2218 2219 if (ac->ac_status != AC_STATUS_CONTINUE) 2220 break; 2221 } 2222 } 2223 2224 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2225 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2226 /* 2227 * We've been searching too long. Let's try to allocate 2228 * the best chunk we've found so far 2229 */ 2230 2231 ext4_mb_try_best_found(ac, &e4b); 2232 if (ac->ac_status != AC_STATUS_FOUND) { 2233 /* 2234 * Someone more lucky has already allocated it. 2235 * The only thing we can do is just take first 2236 * found block(s) 2237 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2238 */ 2239 ac->ac_b_ex.fe_group = 0; 2240 ac->ac_b_ex.fe_start = 0; 2241 ac->ac_b_ex.fe_len = 0; 2242 ac->ac_status = AC_STATUS_CONTINUE; 2243 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2244 cr = 3; 2245 atomic_inc(&sbi->s_mb_lost_chunks); 2246 goto repeat; 2247 } 2248 } 2249 out: 2250 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2251 err = first_err; 2252 return err; 2253 } 2254 2255 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2256 { 2257 struct super_block *sb = seq->private; 2258 ext4_group_t group; 2259 2260 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2261 return NULL; 2262 group = *pos + 1; 2263 return (void *) ((unsigned long) group); 2264 } 2265 2266 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2267 { 2268 struct super_block *sb = seq->private; 2269 ext4_group_t group; 2270 2271 ++*pos; 2272 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2273 return NULL; 2274 group = *pos + 1; 2275 return (void *) ((unsigned long) group); 2276 } 2277 2278 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2279 { 2280 struct super_block *sb = seq->private; 2281 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2282 int i; 2283 int err, buddy_loaded = 0; 2284 struct ext4_buddy e4b; 2285 struct ext4_group_info *grinfo; 2286 unsigned char blocksize_bits = min_t(unsigned char, 2287 sb->s_blocksize_bits, 2288 EXT4_MAX_BLOCK_LOG_SIZE); 2289 struct sg { 2290 struct ext4_group_info info; 2291 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2292 } sg; 2293 2294 group--; 2295 if (group == 0) 2296 seq_puts(seq, "#group: free frags first [" 2297 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2298 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2299 2300 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2301 sizeof(struct ext4_group_info); 2302 2303 grinfo = ext4_get_group_info(sb, group); 2304 /* Load the group info in memory only if not already loaded. */ 2305 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2306 err = ext4_mb_load_buddy(sb, group, &e4b); 2307 if (err) { 2308 seq_printf(seq, "#%-5u: I/O error\n", group); 2309 return 0; 2310 } 2311 buddy_loaded = 1; 2312 } 2313 2314 memcpy(&sg, ext4_get_group_info(sb, group), i); 2315 2316 if (buddy_loaded) 2317 ext4_mb_unload_buddy(&e4b); 2318 2319 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2320 sg.info.bb_fragments, sg.info.bb_first_free); 2321 for (i = 0; i <= 13; i++) 2322 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2323 sg.info.bb_counters[i] : 0); 2324 seq_printf(seq, " ]\n"); 2325 2326 return 0; 2327 } 2328 2329 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2330 { 2331 } 2332 2333 static const struct seq_operations ext4_mb_seq_groups_ops = { 2334 .start = ext4_mb_seq_groups_start, 2335 .next = ext4_mb_seq_groups_next, 2336 .stop = ext4_mb_seq_groups_stop, 2337 .show = ext4_mb_seq_groups_show, 2338 }; 2339 2340 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2341 { 2342 struct super_block *sb = PDE_DATA(inode); 2343 int rc; 2344 2345 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2346 if (rc == 0) { 2347 struct seq_file *m = file->private_data; 2348 m->private = sb; 2349 } 2350 return rc; 2351 2352 } 2353 2354 const struct file_operations ext4_seq_mb_groups_fops = { 2355 .open = ext4_mb_seq_groups_open, 2356 .read = seq_read, 2357 .llseek = seq_lseek, 2358 .release = seq_release, 2359 }; 2360 2361 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2362 { 2363 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2364 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2365 2366 BUG_ON(!cachep); 2367 return cachep; 2368 } 2369 2370 /* 2371 * Allocate the top-level s_group_info array for the specified number 2372 * of groups 2373 */ 2374 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2375 { 2376 struct ext4_sb_info *sbi = EXT4_SB(sb); 2377 unsigned size; 2378 struct ext4_group_info ***new_groupinfo; 2379 2380 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2381 EXT4_DESC_PER_BLOCK_BITS(sb); 2382 if (size <= sbi->s_group_info_size) 2383 return 0; 2384 2385 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2386 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2387 if (!new_groupinfo) { 2388 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2389 return -ENOMEM; 2390 } 2391 if (sbi->s_group_info) { 2392 memcpy(new_groupinfo, sbi->s_group_info, 2393 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2394 kvfree(sbi->s_group_info); 2395 } 2396 sbi->s_group_info = new_groupinfo; 2397 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2398 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2399 sbi->s_group_info_size); 2400 return 0; 2401 } 2402 2403 /* Create and initialize ext4_group_info data for the given group. */ 2404 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2405 struct ext4_group_desc *desc) 2406 { 2407 int i; 2408 int metalen = 0; 2409 struct ext4_sb_info *sbi = EXT4_SB(sb); 2410 struct ext4_group_info **meta_group_info; 2411 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2412 2413 /* 2414 * First check if this group is the first of a reserved block. 2415 * If it's true, we have to allocate a new table of pointers 2416 * to ext4_group_info structures 2417 */ 2418 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2419 metalen = sizeof(*meta_group_info) << 2420 EXT4_DESC_PER_BLOCK_BITS(sb); 2421 meta_group_info = kmalloc(metalen, GFP_NOFS); 2422 if (meta_group_info == NULL) { 2423 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2424 "for a buddy group"); 2425 goto exit_meta_group_info; 2426 } 2427 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2428 meta_group_info; 2429 } 2430 2431 meta_group_info = 2432 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2433 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2434 2435 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2436 if (meta_group_info[i] == NULL) { 2437 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2438 goto exit_group_info; 2439 } 2440 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2441 &(meta_group_info[i]->bb_state)); 2442 2443 /* 2444 * initialize bb_free to be able to skip 2445 * empty groups without initialization 2446 */ 2447 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2448 meta_group_info[i]->bb_free = 2449 ext4_free_clusters_after_init(sb, group, desc); 2450 } else { 2451 meta_group_info[i]->bb_free = 2452 ext4_free_group_clusters(sb, desc); 2453 } 2454 2455 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2456 init_rwsem(&meta_group_info[i]->alloc_sem); 2457 meta_group_info[i]->bb_free_root = RB_ROOT; 2458 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2459 2460 #ifdef DOUBLE_CHECK 2461 { 2462 struct buffer_head *bh; 2463 meta_group_info[i]->bb_bitmap = 2464 kmalloc(sb->s_blocksize, GFP_NOFS); 2465 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2466 bh = ext4_read_block_bitmap(sb, group); 2467 BUG_ON(IS_ERR_OR_NULL(bh)); 2468 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2469 sb->s_blocksize); 2470 put_bh(bh); 2471 } 2472 #endif 2473 2474 return 0; 2475 2476 exit_group_info: 2477 /* If a meta_group_info table has been allocated, release it now */ 2478 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2479 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2480 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2481 } 2482 exit_meta_group_info: 2483 return -ENOMEM; 2484 } /* ext4_mb_add_groupinfo */ 2485 2486 static int ext4_mb_init_backend(struct super_block *sb) 2487 { 2488 ext4_group_t ngroups = ext4_get_groups_count(sb); 2489 ext4_group_t i; 2490 struct ext4_sb_info *sbi = EXT4_SB(sb); 2491 int err; 2492 struct ext4_group_desc *desc; 2493 struct kmem_cache *cachep; 2494 2495 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2496 if (err) 2497 return err; 2498 2499 sbi->s_buddy_cache = new_inode(sb); 2500 if (sbi->s_buddy_cache == NULL) { 2501 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2502 goto err_freesgi; 2503 } 2504 /* To avoid potentially colliding with an valid on-disk inode number, 2505 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2506 * not in the inode hash, so it should never be found by iget(), but 2507 * this will avoid confusion if it ever shows up during debugging. */ 2508 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2509 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2510 for (i = 0; i < ngroups; i++) { 2511 desc = ext4_get_group_desc(sb, i, NULL); 2512 if (desc == NULL) { 2513 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2514 goto err_freebuddy; 2515 } 2516 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2517 goto err_freebuddy; 2518 } 2519 2520 return 0; 2521 2522 err_freebuddy: 2523 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2524 while (i-- > 0) 2525 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2526 i = sbi->s_group_info_size; 2527 while (i-- > 0) 2528 kfree(sbi->s_group_info[i]); 2529 iput(sbi->s_buddy_cache); 2530 err_freesgi: 2531 kvfree(sbi->s_group_info); 2532 return -ENOMEM; 2533 } 2534 2535 static void ext4_groupinfo_destroy_slabs(void) 2536 { 2537 int i; 2538 2539 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2540 if (ext4_groupinfo_caches[i]) 2541 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2542 ext4_groupinfo_caches[i] = NULL; 2543 } 2544 } 2545 2546 static int ext4_groupinfo_create_slab(size_t size) 2547 { 2548 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2549 int slab_size; 2550 int blocksize_bits = order_base_2(size); 2551 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2552 struct kmem_cache *cachep; 2553 2554 if (cache_index >= NR_GRPINFO_CACHES) 2555 return -EINVAL; 2556 2557 if (unlikely(cache_index < 0)) 2558 cache_index = 0; 2559 2560 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2561 if (ext4_groupinfo_caches[cache_index]) { 2562 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2563 return 0; /* Already created */ 2564 } 2565 2566 slab_size = offsetof(struct ext4_group_info, 2567 bb_counters[blocksize_bits + 2]); 2568 2569 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2570 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2571 NULL); 2572 2573 ext4_groupinfo_caches[cache_index] = cachep; 2574 2575 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2576 if (!cachep) { 2577 printk(KERN_EMERG 2578 "EXT4-fs: no memory for groupinfo slab cache\n"); 2579 return -ENOMEM; 2580 } 2581 2582 return 0; 2583 } 2584 2585 int ext4_mb_init(struct super_block *sb) 2586 { 2587 struct ext4_sb_info *sbi = EXT4_SB(sb); 2588 unsigned i, j; 2589 unsigned offset, offset_incr; 2590 unsigned max; 2591 int ret; 2592 2593 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2594 2595 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2596 if (sbi->s_mb_offsets == NULL) { 2597 ret = -ENOMEM; 2598 goto out; 2599 } 2600 2601 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2602 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2603 if (sbi->s_mb_maxs == NULL) { 2604 ret = -ENOMEM; 2605 goto out; 2606 } 2607 2608 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2609 if (ret < 0) 2610 goto out; 2611 2612 /* order 0 is regular bitmap */ 2613 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2614 sbi->s_mb_offsets[0] = 0; 2615 2616 i = 1; 2617 offset = 0; 2618 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2619 max = sb->s_blocksize << 2; 2620 do { 2621 sbi->s_mb_offsets[i] = offset; 2622 sbi->s_mb_maxs[i] = max; 2623 offset += offset_incr; 2624 offset_incr = offset_incr >> 1; 2625 max = max >> 1; 2626 i++; 2627 } while (i <= sb->s_blocksize_bits + 1); 2628 2629 spin_lock_init(&sbi->s_md_lock); 2630 spin_lock_init(&sbi->s_bal_lock); 2631 sbi->s_mb_free_pending = 0; 2632 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2633 2634 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2635 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2636 sbi->s_mb_stats = MB_DEFAULT_STATS; 2637 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2638 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2639 /* 2640 * The default group preallocation is 512, which for 4k block 2641 * sizes translates to 2 megabytes. However for bigalloc file 2642 * systems, this is probably too big (i.e, if the cluster size 2643 * is 1 megabyte, then group preallocation size becomes half a 2644 * gigabyte!). As a default, we will keep a two megabyte 2645 * group pralloc size for cluster sizes up to 64k, and after 2646 * that, we will force a minimum group preallocation size of 2647 * 32 clusters. This translates to 8 megs when the cluster 2648 * size is 256k, and 32 megs when the cluster size is 1 meg, 2649 * which seems reasonable as a default. 2650 */ 2651 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2652 sbi->s_cluster_bits, 32); 2653 /* 2654 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2655 * to the lowest multiple of s_stripe which is bigger than 2656 * the s_mb_group_prealloc as determined above. We want 2657 * the preallocation size to be an exact multiple of the 2658 * RAID stripe size so that preallocations don't fragment 2659 * the stripes. 2660 */ 2661 if (sbi->s_stripe > 1) { 2662 sbi->s_mb_group_prealloc = roundup( 2663 sbi->s_mb_group_prealloc, sbi->s_stripe); 2664 } 2665 2666 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2667 if (sbi->s_locality_groups == NULL) { 2668 ret = -ENOMEM; 2669 goto out; 2670 } 2671 for_each_possible_cpu(i) { 2672 struct ext4_locality_group *lg; 2673 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2674 mutex_init(&lg->lg_mutex); 2675 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2676 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2677 spin_lock_init(&lg->lg_prealloc_lock); 2678 } 2679 2680 /* init file for buddy data */ 2681 ret = ext4_mb_init_backend(sb); 2682 if (ret != 0) 2683 goto out_free_locality_groups; 2684 2685 return 0; 2686 2687 out_free_locality_groups: 2688 free_percpu(sbi->s_locality_groups); 2689 sbi->s_locality_groups = NULL; 2690 out: 2691 kfree(sbi->s_mb_offsets); 2692 sbi->s_mb_offsets = NULL; 2693 kfree(sbi->s_mb_maxs); 2694 sbi->s_mb_maxs = NULL; 2695 return ret; 2696 } 2697 2698 /* need to called with the ext4 group lock held */ 2699 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2700 { 2701 struct ext4_prealloc_space *pa; 2702 struct list_head *cur, *tmp; 2703 int count = 0; 2704 2705 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2706 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2707 list_del(&pa->pa_group_list); 2708 count++; 2709 kmem_cache_free(ext4_pspace_cachep, pa); 2710 } 2711 if (count) 2712 mb_debug(1, "mballoc: %u PAs left\n", count); 2713 2714 } 2715 2716 int ext4_mb_release(struct super_block *sb) 2717 { 2718 ext4_group_t ngroups = ext4_get_groups_count(sb); 2719 ext4_group_t i; 2720 int num_meta_group_infos; 2721 struct ext4_group_info *grinfo; 2722 struct ext4_sb_info *sbi = EXT4_SB(sb); 2723 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2724 2725 if (sbi->s_group_info) { 2726 for (i = 0; i < ngroups; i++) { 2727 grinfo = ext4_get_group_info(sb, i); 2728 #ifdef DOUBLE_CHECK 2729 kfree(grinfo->bb_bitmap); 2730 #endif 2731 ext4_lock_group(sb, i); 2732 ext4_mb_cleanup_pa(grinfo); 2733 ext4_unlock_group(sb, i); 2734 kmem_cache_free(cachep, grinfo); 2735 } 2736 num_meta_group_infos = (ngroups + 2737 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2738 EXT4_DESC_PER_BLOCK_BITS(sb); 2739 for (i = 0; i < num_meta_group_infos; i++) 2740 kfree(sbi->s_group_info[i]); 2741 kvfree(sbi->s_group_info); 2742 } 2743 kfree(sbi->s_mb_offsets); 2744 kfree(sbi->s_mb_maxs); 2745 iput(sbi->s_buddy_cache); 2746 if (sbi->s_mb_stats) { 2747 ext4_msg(sb, KERN_INFO, 2748 "mballoc: %u blocks %u reqs (%u success)", 2749 atomic_read(&sbi->s_bal_allocated), 2750 atomic_read(&sbi->s_bal_reqs), 2751 atomic_read(&sbi->s_bal_success)); 2752 ext4_msg(sb, KERN_INFO, 2753 "mballoc: %u extents scanned, %u goal hits, " 2754 "%u 2^N hits, %u breaks, %u lost", 2755 atomic_read(&sbi->s_bal_ex_scanned), 2756 atomic_read(&sbi->s_bal_goals), 2757 atomic_read(&sbi->s_bal_2orders), 2758 atomic_read(&sbi->s_bal_breaks), 2759 atomic_read(&sbi->s_mb_lost_chunks)); 2760 ext4_msg(sb, KERN_INFO, 2761 "mballoc: %lu generated and it took %Lu", 2762 sbi->s_mb_buddies_generated, 2763 sbi->s_mb_generation_time); 2764 ext4_msg(sb, KERN_INFO, 2765 "mballoc: %u preallocated, %u discarded", 2766 atomic_read(&sbi->s_mb_preallocated), 2767 atomic_read(&sbi->s_mb_discarded)); 2768 } 2769 2770 free_percpu(sbi->s_locality_groups); 2771 2772 return 0; 2773 } 2774 2775 static inline int ext4_issue_discard(struct super_block *sb, 2776 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2777 struct bio **biop) 2778 { 2779 ext4_fsblk_t discard_block; 2780 2781 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2782 ext4_group_first_block_no(sb, block_group)); 2783 count = EXT4_C2B(EXT4_SB(sb), count); 2784 trace_ext4_discard_blocks(sb, 2785 (unsigned long long) discard_block, count); 2786 if (biop) { 2787 return __blkdev_issue_discard(sb->s_bdev, 2788 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 2789 (sector_t)count << (sb->s_blocksize_bits - 9), 2790 GFP_NOFS, 0, biop); 2791 } else 2792 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2793 } 2794 2795 static void ext4_free_data_in_buddy(struct super_block *sb, 2796 struct ext4_free_data *entry) 2797 { 2798 struct ext4_buddy e4b; 2799 struct ext4_group_info *db; 2800 int err, count = 0, count2 = 0; 2801 2802 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2803 entry->efd_count, entry->efd_group, entry); 2804 2805 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2806 /* we expect to find existing buddy because it's pinned */ 2807 BUG_ON(err != 0); 2808 2809 spin_lock(&EXT4_SB(sb)->s_md_lock); 2810 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2811 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2812 2813 db = e4b.bd_info; 2814 /* there are blocks to put in buddy to make them really free */ 2815 count += entry->efd_count; 2816 count2++; 2817 ext4_lock_group(sb, entry->efd_group); 2818 /* Take it out of per group rb tree */ 2819 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2820 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2821 2822 /* 2823 * Clear the trimmed flag for the group so that the next 2824 * ext4_trim_fs can trim it. 2825 * If the volume is mounted with -o discard, online discard 2826 * is supported and the free blocks will be trimmed online. 2827 */ 2828 if (!test_opt(sb, DISCARD)) 2829 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2830 2831 if (!db->bb_free_root.rb_node) { 2832 /* No more items in the per group rb tree 2833 * balance refcounts from ext4_mb_free_metadata() 2834 */ 2835 put_page(e4b.bd_buddy_page); 2836 put_page(e4b.bd_bitmap_page); 2837 } 2838 ext4_unlock_group(sb, entry->efd_group); 2839 kmem_cache_free(ext4_free_data_cachep, entry); 2840 ext4_mb_unload_buddy(&e4b); 2841 2842 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2843 } 2844 2845 /* 2846 * This function is called by the jbd2 layer once the commit has finished, 2847 * so we know we can free the blocks that were released with that commit. 2848 */ 2849 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 2850 { 2851 struct ext4_sb_info *sbi = EXT4_SB(sb); 2852 struct ext4_free_data *entry, *tmp; 2853 struct bio *discard_bio = NULL; 2854 struct list_head freed_data_list; 2855 struct list_head *cut_pos = NULL; 2856 int err; 2857 2858 INIT_LIST_HEAD(&freed_data_list); 2859 2860 spin_lock(&sbi->s_md_lock); 2861 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 2862 if (entry->efd_tid != commit_tid) 2863 break; 2864 cut_pos = &entry->efd_list; 2865 } 2866 if (cut_pos) 2867 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 2868 cut_pos); 2869 spin_unlock(&sbi->s_md_lock); 2870 2871 if (test_opt(sb, DISCARD)) { 2872 list_for_each_entry(entry, &freed_data_list, efd_list) { 2873 err = ext4_issue_discard(sb, entry->efd_group, 2874 entry->efd_start_cluster, 2875 entry->efd_count, 2876 &discard_bio); 2877 if (err && err != -EOPNOTSUPP) { 2878 ext4_msg(sb, KERN_WARNING, "discard request in" 2879 " group:%d block:%d count:%d failed" 2880 " with %d", entry->efd_group, 2881 entry->efd_start_cluster, 2882 entry->efd_count, err); 2883 } else if (err == -EOPNOTSUPP) 2884 break; 2885 } 2886 2887 if (discard_bio) { 2888 submit_bio_wait(discard_bio); 2889 bio_put(discard_bio); 2890 } 2891 } 2892 2893 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 2894 ext4_free_data_in_buddy(sb, entry); 2895 } 2896 2897 int __init ext4_init_mballoc(void) 2898 { 2899 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2900 SLAB_RECLAIM_ACCOUNT); 2901 if (ext4_pspace_cachep == NULL) 2902 return -ENOMEM; 2903 2904 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2905 SLAB_RECLAIM_ACCOUNT); 2906 if (ext4_ac_cachep == NULL) { 2907 kmem_cache_destroy(ext4_pspace_cachep); 2908 return -ENOMEM; 2909 } 2910 2911 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2912 SLAB_RECLAIM_ACCOUNT); 2913 if (ext4_free_data_cachep == NULL) { 2914 kmem_cache_destroy(ext4_pspace_cachep); 2915 kmem_cache_destroy(ext4_ac_cachep); 2916 return -ENOMEM; 2917 } 2918 return 0; 2919 } 2920 2921 void ext4_exit_mballoc(void) 2922 { 2923 /* 2924 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2925 * before destroying the slab cache. 2926 */ 2927 rcu_barrier(); 2928 kmem_cache_destroy(ext4_pspace_cachep); 2929 kmem_cache_destroy(ext4_ac_cachep); 2930 kmem_cache_destroy(ext4_free_data_cachep); 2931 ext4_groupinfo_destroy_slabs(); 2932 } 2933 2934 2935 /* 2936 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2937 * Returns 0 if success or error code 2938 */ 2939 static noinline_for_stack int 2940 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2941 handle_t *handle, unsigned int reserv_clstrs) 2942 { 2943 struct buffer_head *bitmap_bh = NULL; 2944 struct ext4_group_desc *gdp; 2945 struct buffer_head *gdp_bh; 2946 struct ext4_sb_info *sbi; 2947 struct super_block *sb; 2948 ext4_fsblk_t block; 2949 int err, len; 2950 2951 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2952 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2953 2954 sb = ac->ac_sb; 2955 sbi = EXT4_SB(sb); 2956 2957 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2958 if (IS_ERR(bitmap_bh)) { 2959 err = PTR_ERR(bitmap_bh); 2960 bitmap_bh = NULL; 2961 goto out_err; 2962 } 2963 2964 BUFFER_TRACE(bitmap_bh, "getting write access"); 2965 err = ext4_journal_get_write_access(handle, bitmap_bh); 2966 if (err) 2967 goto out_err; 2968 2969 err = -EIO; 2970 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2971 if (!gdp) 2972 goto out_err; 2973 2974 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2975 ext4_free_group_clusters(sb, gdp)); 2976 2977 BUFFER_TRACE(gdp_bh, "get_write_access"); 2978 err = ext4_journal_get_write_access(handle, gdp_bh); 2979 if (err) 2980 goto out_err; 2981 2982 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2983 2984 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2985 if (!ext4_data_block_valid(sbi, block, len)) { 2986 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2987 "fs metadata", block, block+len); 2988 /* File system mounted not to panic on error 2989 * Fix the bitmap and return EFSCORRUPTED 2990 * We leak some of the blocks here. 2991 */ 2992 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2993 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2994 ac->ac_b_ex.fe_len); 2995 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2996 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2997 if (!err) 2998 err = -EFSCORRUPTED; 2999 goto out_err; 3000 } 3001 3002 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3003 #ifdef AGGRESSIVE_CHECK 3004 { 3005 int i; 3006 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3007 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3008 bitmap_bh->b_data)); 3009 } 3010 } 3011 #endif 3012 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3013 ac->ac_b_ex.fe_len); 3014 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 3015 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3016 ext4_free_group_clusters_set(sb, gdp, 3017 ext4_free_clusters_after_init(sb, 3018 ac->ac_b_ex.fe_group, gdp)); 3019 } 3020 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3021 ext4_free_group_clusters_set(sb, gdp, len); 3022 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3023 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3024 3025 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3026 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3027 /* 3028 * Now reduce the dirty block count also. Should not go negative 3029 */ 3030 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3031 /* release all the reserved blocks if non delalloc */ 3032 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3033 reserv_clstrs); 3034 3035 if (sbi->s_log_groups_per_flex) { 3036 ext4_group_t flex_group = ext4_flex_group(sbi, 3037 ac->ac_b_ex.fe_group); 3038 atomic64_sub(ac->ac_b_ex.fe_len, 3039 &sbi->s_flex_groups[flex_group].free_clusters); 3040 } 3041 3042 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3043 if (err) 3044 goto out_err; 3045 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3046 3047 out_err: 3048 brelse(bitmap_bh); 3049 return err; 3050 } 3051 3052 /* 3053 * here we normalize request for locality group 3054 * Group request are normalized to s_mb_group_prealloc, which goes to 3055 * s_strip if we set the same via mount option. 3056 * s_mb_group_prealloc can be configured via 3057 * /sys/fs/ext4/<partition>/mb_group_prealloc 3058 * 3059 * XXX: should we try to preallocate more than the group has now? 3060 */ 3061 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3062 { 3063 struct super_block *sb = ac->ac_sb; 3064 struct ext4_locality_group *lg = ac->ac_lg; 3065 3066 BUG_ON(lg == NULL); 3067 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3068 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3069 current->pid, ac->ac_g_ex.fe_len); 3070 } 3071 3072 /* 3073 * Normalization means making request better in terms of 3074 * size and alignment 3075 */ 3076 static noinline_for_stack void 3077 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3078 struct ext4_allocation_request *ar) 3079 { 3080 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3081 int bsbits, max; 3082 ext4_lblk_t end; 3083 loff_t size, start_off; 3084 loff_t orig_size __maybe_unused; 3085 ext4_lblk_t start; 3086 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3087 struct ext4_prealloc_space *pa; 3088 3089 /* do normalize only data requests, metadata requests 3090 do not need preallocation */ 3091 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3092 return; 3093 3094 /* sometime caller may want exact blocks */ 3095 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3096 return; 3097 3098 /* caller may indicate that preallocation isn't 3099 * required (it's a tail, for example) */ 3100 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3101 return; 3102 3103 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3104 ext4_mb_normalize_group_request(ac); 3105 return ; 3106 } 3107 3108 bsbits = ac->ac_sb->s_blocksize_bits; 3109 3110 /* first, let's learn actual file size 3111 * given current request is allocated */ 3112 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3113 size = size << bsbits; 3114 if (size < i_size_read(ac->ac_inode)) 3115 size = i_size_read(ac->ac_inode); 3116 orig_size = size; 3117 3118 /* max size of free chunks */ 3119 max = 2 << bsbits; 3120 3121 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3122 (req <= (size) || max <= (chunk_size)) 3123 3124 /* first, try to predict filesize */ 3125 /* XXX: should this table be tunable? */ 3126 start_off = 0; 3127 if (size <= 16 * 1024) { 3128 size = 16 * 1024; 3129 } else if (size <= 32 * 1024) { 3130 size = 32 * 1024; 3131 } else if (size <= 64 * 1024) { 3132 size = 64 * 1024; 3133 } else if (size <= 128 * 1024) { 3134 size = 128 * 1024; 3135 } else if (size <= 256 * 1024) { 3136 size = 256 * 1024; 3137 } else if (size <= 512 * 1024) { 3138 size = 512 * 1024; 3139 } else if (size <= 1024 * 1024) { 3140 size = 1024 * 1024; 3141 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3142 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3143 (21 - bsbits)) << 21; 3144 size = 2 * 1024 * 1024; 3145 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3146 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3147 (22 - bsbits)) << 22; 3148 size = 4 * 1024 * 1024; 3149 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3150 (8<<20)>>bsbits, max, 8 * 1024)) { 3151 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3152 (23 - bsbits)) << 23; 3153 size = 8 * 1024 * 1024; 3154 } else { 3155 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3156 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3157 ac->ac_o_ex.fe_len) << bsbits; 3158 } 3159 size = size >> bsbits; 3160 start = start_off >> bsbits; 3161 3162 /* don't cover already allocated blocks in selected range */ 3163 if (ar->pleft && start <= ar->lleft) { 3164 size -= ar->lleft + 1 - start; 3165 start = ar->lleft + 1; 3166 } 3167 if (ar->pright && start + size - 1 >= ar->lright) 3168 size -= start + size - ar->lright; 3169 3170 /* 3171 * Trim allocation request for filesystems with artificially small 3172 * groups. 3173 */ 3174 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3175 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3176 3177 end = start + size; 3178 3179 /* check we don't cross already preallocated blocks */ 3180 rcu_read_lock(); 3181 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3182 ext4_lblk_t pa_end; 3183 3184 if (pa->pa_deleted) 3185 continue; 3186 spin_lock(&pa->pa_lock); 3187 if (pa->pa_deleted) { 3188 spin_unlock(&pa->pa_lock); 3189 continue; 3190 } 3191 3192 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3193 pa->pa_len); 3194 3195 /* PA must not overlap original request */ 3196 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3197 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3198 3199 /* skip PAs this normalized request doesn't overlap with */ 3200 if (pa->pa_lstart >= end || pa_end <= start) { 3201 spin_unlock(&pa->pa_lock); 3202 continue; 3203 } 3204 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3205 3206 /* adjust start or end to be adjacent to this pa */ 3207 if (pa_end <= ac->ac_o_ex.fe_logical) { 3208 BUG_ON(pa_end < start); 3209 start = pa_end; 3210 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3211 BUG_ON(pa->pa_lstart > end); 3212 end = pa->pa_lstart; 3213 } 3214 spin_unlock(&pa->pa_lock); 3215 } 3216 rcu_read_unlock(); 3217 size = end - start; 3218 3219 /* XXX: extra loop to check we really don't overlap preallocations */ 3220 rcu_read_lock(); 3221 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3222 ext4_lblk_t pa_end; 3223 3224 spin_lock(&pa->pa_lock); 3225 if (pa->pa_deleted == 0) { 3226 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3227 pa->pa_len); 3228 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3229 } 3230 spin_unlock(&pa->pa_lock); 3231 } 3232 rcu_read_unlock(); 3233 3234 if (start + size <= ac->ac_o_ex.fe_logical && 3235 start > ac->ac_o_ex.fe_logical) { 3236 ext4_msg(ac->ac_sb, KERN_ERR, 3237 "start %lu, size %lu, fe_logical %lu", 3238 (unsigned long) start, (unsigned long) size, 3239 (unsigned long) ac->ac_o_ex.fe_logical); 3240 BUG(); 3241 } 3242 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3243 3244 /* now prepare goal request */ 3245 3246 /* XXX: is it better to align blocks WRT to logical 3247 * placement or satisfy big request as is */ 3248 ac->ac_g_ex.fe_logical = start; 3249 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3250 3251 /* define goal start in order to merge */ 3252 if (ar->pright && (ar->lright == (start + size))) { 3253 /* merge to the right */ 3254 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3255 &ac->ac_f_ex.fe_group, 3256 &ac->ac_f_ex.fe_start); 3257 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3258 } 3259 if (ar->pleft && (ar->lleft + 1 == start)) { 3260 /* merge to the left */ 3261 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3262 &ac->ac_f_ex.fe_group, 3263 &ac->ac_f_ex.fe_start); 3264 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3265 } 3266 3267 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3268 (unsigned) orig_size, (unsigned) start); 3269 } 3270 3271 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3272 { 3273 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3274 3275 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3276 atomic_inc(&sbi->s_bal_reqs); 3277 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3278 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3279 atomic_inc(&sbi->s_bal_success); 3280 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3281 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3282 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3283 atomic_inc(&sbi->s_bal_goals); 3284 if (ac->ac_found > sbi->s_mb_max_to_scan) 3285 atomic_inc(&sbi->s_bal_breaks); 3286 } 3287 3288 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3289 trace_ext4_mballoc_alloc(ac); 3290 else 3291 trace_ext4_mballoc_prealloc(ac); 3292 } 3293 3294 /* 3295 * Called on failure; free up any blocks from the inode PA for this 3296 * context. We don't need this for MB_GROUP_PA because we only change 3297 * pa_free in ext4_mb_release_context(), but on failure, we've already 3298 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3299 */ 3300 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3301 { 3302 struct ext4_prealloc_space *pa = ac->ac_pa; 3303 struct ext4_buddy e4b; 3304 int err; 3305 3306 if (pa == NULL) { 3307 if (ac->ac_f_ex.fe_len == 0) 3308 return; 3309 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3310 if (err) { 3311 /* 3312 * This should never happen since we pin the 3313 * pages in the ext4_allocation_context so 3314 * ext4_mb_load_buddy() should never fail. 3315 */ 3316 WARN(1, "mb_load_buddy failed (%d)", err); 3317 return; 3318 } 3319 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3320 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3321 ac->ac_f_ex.fe_len); 3322 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3323 ext4_mb_unload_buddy(&e4b); 3324 return; 3325 } 3326 if (pa->pa_type == MB_INODE_PA) 3327 pa->pa_free += ac->ac_b_ex.fe_len; 3328 } 3329 3330 /* 3331 * use blocks preallocated to inode 3332 */ 3333 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3334 struct ext4_prealloc_space *pa) 3335 { 3336 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3337 ext4_fsblk_t start; 3338 ext4_fsblk_t end; 3339 int len; 3340 3341 /* found preallocated blocks, use them */ 3342 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3343 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3344 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3345 len = EXT4_NUM_B2C(sbi, end - start); 3346 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3347 &ac->ac_b_ex.fe_start); 3348 ac->ac_b_ex.fe_len = len; 3349 ac->ac_status = AC_STATUS_FOUND; 3350 ac->ac_pa = pa; 3351 3352 BUG_ON(start < pa->pa_pstart); 3353 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3354 BUG_ON(pa->pa_free < len); 3355 pa->pa_free -= len; 3356 3357 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3358 } 3359 3360 /* 3361 * use blocks preallocated to locality group 3362 */ 3363 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3364 struct ext4_prealloc_space *pa) 3365 { 3366 unsigned int len = ac->ac_o_ex.fe_len; 3367 3368 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3369 &ac->ac_b_ex.fe_group, 3370 &ac->ac_b_ex.fe_start); 3371 ac->ac_b_ex.fe_len = len; 3372 ac->ac_status = AC_STATUS_FOUND; 3373 ac->ac_pa = pa; 3374 3375 /* we don't correct pa_pstart or pa_plen here to avoid 3376 * possible race when the group is being loaded concurrently 3377 * instead we correct pa later, after blocks are marked 3378 * in on-disk bitmap -- see ext4_mb_release_context() 3379 * Other CPUs are prevented from allocating from this pa by lg_mutex 3380 */ 3381 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3382 } 3383 3384 /* 3385 * Return the prealloc space that have minimal distance 3386 * from the goal block. @cpa is the prealloc 3387 * space that is having currently known minimal distance 3388 * from the goal block. 3389 */ 3390 static struct ext4_prealloc_space * 3391 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3392 struct ext4_prealloc_space *pa, 3393 struct ext4_prealloc_space *cpa) 3394 { 3395 ext4_fsblk_t cur_distance, new_distance; 3396 3397 if (cpa == NULL) { 3398 atomic_inc(&pa->pa_count); 3399 return pa; 3400 } 3401 cur_distance = abs(goal_block - cpa->pa_pstart); 3402 new_distance = abs(goal_block - pa->pa_pstart); 3403 3404 if (cur_distance <= new_distance) 3405 return cpa; 3406 3407 /* drop the previous reference */ 3408 atomic_dec(&cpa->pa_count); 3409 atomic_inc(&pa->pa_count); 3410 return pa; 3411 } 3412 3413 /* 3414 * search goal blocks in preallocated space 3415 */ 3416 static noinline_for_stack int 3417 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3418 { 3419 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3420 int order, i; 3421 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3422 struct ext4_locality_group *lg; 3423 struct ext4_prealloc_space *pa, *cpa = NULL; 3424 ext4_fsblk_t goal_block; 3425 3426 /* only data can be preallocated */ 3427 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3428 return 0; 3429 3430 /* first, try per-file preallocation */ 3431 rcu_read_lock(); 3432 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3433 3434 /* all fields in this condition don't change, 3435 * so we can skip locking for them */ 3436 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3437 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3438 EXT4_C2B(sbi, pa->pa_len))) 3439 continue; 3440 3441 /* non-extent files can't have physical blocks past 2^32 */ 3442 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3443 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3444 EXT4_MAX_BLOCK_FILE_PHYS)) 3445 continue; 3446 3447 /* found preallocated blocks, use them */ 3448 spin_lock(&pa->pa_lock); 3449 if (pa->pa_deleted == 0 && pa->pa_free) { 3450 atomic_inc(&pa->pa_count); 3451 ext4_mb_use_inode_pa(ac, pa); 3452 spin_unlock(&pa->pa_lock); 3453 ac->ac_criteria = 10; 3454 rcu_read_unlock(); 3455 return 1; 3456 } 3457 spin_unlock(&pa->pa_lock); 3458 } 3459 rcu_read_unlock(); 3460 3461 /* can we use group allocation? */ 3462 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3463 return 0; 3464 3465 /* inode may have no locality group for some reason */ 3466 lg = ac->ac_lg; 3467 if (lg == NULL) 3468 return 0; 3469 order = fls(ac->ac_o_ex.fe_len) - 1; 3470 if (order > PREALLOC_TB_SIZE - 1) 3471 /* The max size of hash table is PREALLOC_TB_SIZE */ 3472 order = PREALLOC_TB_SIZE - 1; 3473 3474 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3475 /* 3476 * search for the prealloc space that is having 3477 * minimal distance from the goal block. 3478 */ 3479 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3480 rcu_read_lock(); 3481 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3482 pa_inode_list) { 3483 spin_lock(&pa->pa_lock); 3484 if (pa->pa_deleted == 0 && 3485 pa->pa_free >= ac->ac_o_ex.fe_len) { 3486 3487 cpa = ext4_mb_check_group_pa(goal_block, 3488 pa, cpa); 3489 } 3490 spin_unlock(&pa->pa_lock); 3491 } 3492 rcu_read_unlock(); 3493 } 3494 if (cpa) { 3495 ext4_mb_use_group_pa(ac, cpa); 3496 ac->ac_criteria = 20; 3497 return 1; 3498 } 3499 return 0; 3500 } 3501 3502 /* 3503 * the function goes through all block freed in the group 3504 * but not yet committed and marks them used in in-core bitmap. 3505 * buddy must be generated from this bitmap 3506 * Need to be called with the ext4 group lock held 3507 */ 3508 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3509 ext4_group_t group) 3510 { 3511 struct rb_node *n; 3512 struct ext4_group_info *grp; 3513 struct ext4_free_data *entry; 3514 3515 grp = ext4_get_group_info(sb, group); 3516 n = rb_first(&(grp->bb_free_root)); 3517 3518 while (n) { 3519 entry = rb_entry(n, struct ext4_free_data, efd_node); 3520 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3521 n = rb_next(n); 3522 } 3523 return; 3524 } 3525 3526 /* 3527 * the function goes through all preallocation in this group and marks them 3528 * used in in-core bitmap. buddy must be generated from this bitmap 3529 * Need to be called with ext4 group lock held 3530 */ 3531 static noinline_for_stack 3532 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3533 ext4_group_t group) 3534 { 3535 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3536 struct ext4_prealloc_space *pa; 3537 struct list_head *cur; 3538 ext4_group_t groupnr; 3539 ext4_grpblk_t start; 3540 int preallocated = 0; 3541 int len; 3542 3543 /* all form of preallocation discards first load group, 3544 * so the only competing code is preallocation use. 3545 * we don't need any locking here 3546 * notice we do NOT ignore preallocations with pa_deleted 3547 * otherwise we could leave used blocks available for 3548 * allocation in buddy when concurrent ext4_mb_put_pa() 3549 * is dropping preallocation 3550 */ 3551 list_for_each(cur, &grp->bb_prealloc_list) { 3552 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3553 spin_lock(&pa->pa_lock); 3554 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3555 &groupnr, &start); 3556 len = pa->pa_len; 3557 spin_unlock(&pa->pa_lock); 3558 if (unlikely(len == 0)) 3559 continue; 3560 BUG_ON(groupnr != group); 3561 ext4_set_bits(bitmap, start, len); 3562 preallocated += len; 3563 } 3564 mb_debug(1, "preallocated %u for group %u\n", preallocated, group); 3565 } 3566 3567 static void ext4_mb_pa_callback(struct rcu_head *head) 3568 { 3569 struct ext4_prealloc_space *pa; 3570 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3571 3572 BUG_ON(atomic_read(&pa->pa_count)); 3573 BUG_ON(pa->pa_deleted == 0); 3574 kmem_cache_free(ext4_pspace_cachep, pa); 3575 } 3576 3577 /* 3578 * drops a reference to preallocated space descriptor 3579 * if this was the last reference and the space is consumed 3580 */ 3581 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3582 struct super_block *sb, struct ext4_prealloc_space *pa) 3583 { 3584 ext4_group_t grp; 3585 ext4_fsblk_t grp_blk; 3586 3587 /* in this short window concurrent discard can set pa_deleted */ 3588 spin_lock(&pa->pa_lock); 3589 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3590 spin_unlock(&pa->pa_lock); 3591 return; 3592 } 3593 3594 if (pa->pa_deleted == 1) { 3595 spin_unlock(&pa->pa_lock); 3596 return; 3597 } 3598 3599 pa->pa_deleted = 1; 3600 spin_unlock(&pa->pa_lock); 3601 3602 grp_blk = pa->pa_pstart; 3603 /* 3604 * If doing group-based preallocation, pa_pstart may be in the 3605 * next group when pa is used up 3606 */ 3607 if (pa->pa_type == MB_GROUP_PA) 3608 grp_blk--; 3609 3610 grp = ext4_get_group_number(sb, grp_blk); 3611 3612 /* 3613 * possible race: 3614 * 3615 * P1 (buddy init) P2 (regular allocation) 3616 * find block B in PA 3617 * copy on-disk bitmap to buddy 3618 * mark B in on-disk bitmap 3619 * drop PA from group 3620 * mark all PAs in buddy 3621 * 3622 * thus, P1 initializes buddy with B available. to prevent this 3623 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3624 * against that pair 3625 */ 3626 ext4_lock_group(sb, grp); 3627 list_del(&pa->pa_group_list); 3628 ext4_unlock_group(sb, grp); 3629 3630 spin_lock(pa->pa_obj_lock); 3631 list_del_rcu(&pa->pa_inode_list); 3632 spin_unlock(pa->pa_obj_lock); 3633 3634 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3635 } 3636 3637 /* 3638 * creates new preallocated space for given inode 3639 */ 3640 static noinline_for_stack int 3641 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3642 { 3643 struct super_block *sb = ac->ac_sb; 3644 struct ext4_sb_info *sbi = EXT4_SB(sb); 3645 struct ext4_prealloc_space *pa; 3646 struct ext4_group_info *grp; 3647 struct ext4_inode_info *ei; 3648 3649 /* preallocate only when found space is larger then requested */ 3650 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3651 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3652 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3653 3654 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3655 if (pa == NULL) 3656 return -ENOMEM; 3657 3658 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3659 int winl; 3660 int wins; 3661 int win; 3662 int offs; 3663 3664 /* we can't allocate as much as normalizer wants. 3665 * so, found space must get proper lstart 3666 * to cover original request */ 3667 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3668 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3669 3670 /* we're limited by original request in that 3671 * logical block must be covered any way 3672 * winl is window we can move our chunk within */ 3673 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3674 3675 /* also, we should cover whole original request */ 3676 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3677 3678 /* the smallest one defines real window */ 3679 win = min(winl, wins); 3680 3681 offs = ac->ac_o_ex.fe_logical % 3682 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3683 if (offs && offs < win) 3684 win = offs; 3685 3686 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3687 EXT4_NUM_B2C(sbi, win); 3688 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3689 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3690 } 3691 3692 /* preallocation can change ac_b_ex, thus we store actually 3693 * allocated blocks for history */ 3694 ac->ac_f_ex = ac->ac_b_ex; 3695 3696 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3697 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3698 pa->pa_len = ac->ac_b_ex.fe_len; 3699 pa->pa_free = pa->pa_len; 3700 atomic_set(&pa->pa_count, 1); 3701 spin_lock_init(&pa->pa_lock); 3702 INIT_LIST_HEAD(&pa->pa_inode_list); 3703 INIT_LIST_HEAD(&pa->pa_group_list); 3704 pa->pa_deleted = 0; 3705 pa->pa_type = MB_INODE_PA; 3706 3707 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3708 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3709 trace_ext4_mb_new_inode_pa(ac, pa); 3710 3711 ext4_mb_use_inode_pa(ac, pa); 3712 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3713 3714 ei = EXT4_I(ac->ac_inode); 3715 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3716 3717 pa->pa_obj_lock = &ei->i_prealloc_lock; 3718 pa->pa_inode = ac->ac_inode; 3719 3720 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3721 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3722 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3723 3724 spin_lock(pa->pa_obj_lock); 3725 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3726 spin_unlock(pa->pa_obj_lock); 3727 3728 return 0; 3729 } 3730 3731 /* 3732 * creates new preallocated space for locality group inodes belongs to 3733 */ 3734 static noinline_for_stack int 3735 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3736 { 3737 struct super_block *sb = ac->ac_sb; 3738 struct ext4_locality_group *lg; 3739 struct ext4_prealloc_space *pa; 3740 struct ext4_group_info *grp; 3741 3742 /* preallocate only when found space is larger then requested */ 3743 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3744 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3745 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3746 3747 BUG_ON(ext4_pspace_cachep == NULL); 3748 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3749 if (pa == NULL) 3750 return -ENOMEM; 3751 3752 /* preallocation can change ac_b_ex, thus we store actually 3753 * allocated blocks for history */ 3754 ac->ac_f_ex = ac->ac_b_ex; 3755 3756 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3757 pa->pa_lstart = pa->pa_pstart; 3758 pa->pa_len = ac->ac_b_ex.fe_len; 3759 pa->pa_free = pa->pa_len; 3760 atomic_set(&pa->pa_count, 1); 3761 spin_lock_init(&pa->pa_lock); 3762 INIT_LIST_HEAD(&pa->pa_inode_list); 3763 INIT_LIST_HEAD(&pa->pa_group_list); 3764 pa->pa_deleted = 0; 3765 pa->pa_type = MB_GROUP_PA; 3766 3767 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3768 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3769 trace_ext4_mb_new_group_pa(ac, pa); 3770 3771 ext4_mb_use_group_pa(ac, pa); 3772 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3773 3774 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3775 lg = ac->ac_lg; 3776 BUG_ON(lg == NULL); 3777 3778 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3779 pa->pa_inode = NULL; 3780 3781 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3782 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3783 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3784 3785 /* 3786 * We will later add the new pa to the right bucket 3787 * after updating the pa_free in ext4_mb_release_context 3788 */ 3789 return 0; 3790 } 3791 3792 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3793 { 3794 int err; 3795 3796 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3797 err = ext4_mb_new_group_pa(ac); 3798 else 3799 err = ext4_mb_new_inode_pa(ac); 3800 return err; 3801 } 3802 3803 /* 3804 * finds all unused blocks in on-disk bitmap, frees them in 3805 * in-core bitmap and buddy. 3806 * @pa must be unlinked from inode and group lists, so that 3807 * nobody else can find/use it. 3808 * the caller MUST hold group/inode locks. 3809 * TODO: optimize the case when there are no in-core structures yet 3810 */ 3811 static noinline_for_stack int 3812 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3813 struct ext4_prealloc_space *pa) 3814 { 3815 struct super_block *sb = e4b->bd_sb; 3816 struct ext4_sb_info *sbi = EXT4_SB(sb); 3817 unsigned int end; 3818 unsigned int next; 3819 ext4_group_t group; 3820 ext4_grpblk_t bit; 3821 unsigned long long grp_blk_start; 3822 int err = 0; 3823 int free = 0; 3824 3825 BUG_ON(pa->pa_deleted == 0); 3826 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3827 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3828 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3829 end = bit + pa->pa_len; 3830 3831 while (bit < end) { 3832 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3833 if (bit >= end) 3834 break; 3835 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3836 mb_debug(1, " free preallocated %u/%u in group %u\n", 3837 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3838 (unsigned) next - bit, (unsigned) group); 3839 free += next - bit; 3840 3841 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3842 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3843 EXT4_C2B(sbi, bit)), 3844 next - bit); 3845 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3846 bit = next + 1; 3847 } 3848 if (free != pa->pa_free) { 3849 ext4_msg(e4b->bd_sb, KERN_CRIT, 3850 "pa %p: logic %lu, phys. %lu, len %lu", 3851 pa, (unsigned long) pa->pa_lstart, 3852 (unsigned long) pa->pa_pstart, 3853 (unsigned long) pa->pa_len); 3854 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3855 free, pa->pa_free); 3856 /* 3857 * pa is already deleted so we use the value obtained 3858 * from the bitmap and continue. 3859 */ 3860 } 3861 atomic_add(free, &sbi->s_mb_discarded); 3862 3863 return err; 3864 } 3865 3866 static noinline_for_stack int 3867 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3868 struct ext4_prealloc_space *pa) 3869 { 3870 struct super_block *sb = e4b->bd_sb; 3871 ext4_group_t group; 3872 ext4_grpblk_t bit; 3873 3874 trace_ext4_mb_release_group_pa(sb, pa); 3875 BUG_ON(pa->pa_deleted == 0); 3876 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3877 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3878 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3879 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3880 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3881 3882 return 0; 3883 } 3884 3885 /* 3886 * releases all preallocations in given group 3887 * 3888 * first, we need to decide discard policy: 3889 * - when do we discard 3890 * 1) ENOSPC 3891 * - how many do we discard 3892 * 1) how many requested 3893 */ 3894 static noinline_for_stack int 3895 ext4_mb_discard_group_preallocations(struct super_block *sb, 3896 ext4_group_t group, int needed) 3897 { 3898 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3899 struct buffer_head *bitmap_bh = NULL; 3900 struct ext4_prealloc_space *pa, *tmp; 3901 struct list_head list; 3902 struct ext4_buddy e4b; 3903 int err; 3904 int busy = 0; 3905 int free = 0; 3906 3907 mb_debug(1, "discard preallocation for group %u\n", group); 3908 3909 if (list_empty(&grp->bb_prealloc_list)) 3910 return 0; 3911 3912 bitmap_bh = ext4_read_block_bitmap(sb, group); 3913 if (IS_ERR(bitmap_bh)) { 3914 err = PTR_ERR(bitmap_bh); 3915 ext4_error(sb, "Error %d reading block bitmap for %u", 3916 err, group); 3917 return 0; 3918 } 3919 3920 err = ext4_mb_load_buddy(sb, group, &e4b); 3921 if (err) { 3922 ext4_warning(sb, "Error %d loading buddy information for %u", 3923 err, group); 3924 put_bh(bitmap_bh); 3925 return 0; 3926 } 3927 3928 if (needed == 0) 3929 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3930 3931 INIT_LIST_HEAD(&list); 3932 repeat: 3933 ext4_lock_group(sb, group); 3934 list_for_each_entry_safe(pa, tmp, 3935 &grp->bb_prealloc_list, pa_group_list) { 3936 spin_lock(&pa->pa_lock); 3937 if (atomic_read(&pa->pa_count)) { 3938 spin_unlock(&pa->pa_lock); 3939 busy = 1; 3940 continue; 3941 } 3942 if (pa->pa_deleted) { 3943 spin_unlock(&pa->pa_lock); 3944 continue; 3945 } 3946 3947 /* seems this one can be freed ... */ 3948 pa->pa_deleted = 1; 3949 3950 /* we can trust pa_free ... */ 3951 free += pa->pa_free; 3952 3953 spin_unlock(&pa->pa_lock); 3954 3955 list_del(&pa->pa_group_list); 3956 list_add(&pa->u.pa_tmp_list, &list); 3957 } 3958 3959 /* if we still need more blocks and some PAs were used, try again */ 3960 if (free < needed && busy) { 3961 busy = 0; 3962 ext4_unlock_group(sb, group); 3963 cond_resched(); 3964 goto repeat; 3965 } 3966 3967 /* found anything to free? */ 3968 if (list_empty(&list)) { 3969 BUG_ON(free != 0); 3970 goto out; 3971 } 3972 3973 /* now free all selected PAs */ 3974 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3975 3976 /* remove from object (inode or locality group) */ 3977 spin_lock(pa->pa_obj_lock); 3978 list_del_rcu(&pa->pa_inode_list); 3979 spin_unlock(pa->pa_obj_lock); 3980 3981 if (pa->pa_type == MB_GROUP_PA) 3982 ext4_mb_release_group_pa(&e4b, pa); 3983 else 3984 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3985 3986 list_del(&pa->u.pa_tmp_list); 3987 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3988 } 3989 3990 out: 3991 ext4_unlock_group(sb, group); 3992 ext4_mb_unload_buddy(&e4b); 3993 put_bh(bitmap_bh); 3994 return free; 3995 } 3996 3997 /* 3998 * releases all non-used preallocated blocks for given inode 3999 * 4000 * It's important to discard preallocations under i_data_sem 4001 * We don't want another block to be served from the prealloc 4002 * space when we are discarding the inode prealloc space. 4003 * 4004 * FIXME!! Make sure it is valid at all the call sites 4005 */ 4006 void ext4_discard_preallocations(struct inode *inode) 4007 { 4008 struct ext4_inode_info *ei = EXT4_I(inode); 4009 struct super_block *sb = inode->i_sb; 4010 struct buffer_head *bitmap_bh = NULL; 4011 struct ext4_prealloc_space *pa, *tmp; 4012 ext4_group_t group = 0; 4013 struct list_head list; 4014 struct ext4_buddy e4b; 4015 int err; 4016 4017 if (!S_ISREG(inode->i_mode)) { 4018 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4019 return; 4020 } 4021 4022 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 4023 trace_ext4_discard_preallocations(inode); 4024 4025 INIT_LIST_HEAD(&list); 4026 4027 repeat: 4028 /* first, collect all pa's in the inode */ 4029 spin_lock(&ei->i_prealloc_lock); 4030 while (!list_empty(&ei->i_prealloc_list)) { 4031 pa = list_entry(ei->i_prealloc_list.next, 4032 struct ext4_prealloc_space, pa_inode_list); 4033 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4034 spin_lock(&pa->pa_lock); 4035 if (atomic_read(&pa->pa_count)) { 4036 /* this shouldn't happen often - nobody should 4037 * use preallocation while we're discarding it */ 4038 spin_unlock(&pa->pa_lock); 4039 spin_unlock(&ei->i_prealloc_lock); 4040 ext4_msg(sb, KERN_ERR, 4041 "uh-oh! used pa while discarding"); 4042 WARN_ON(1); 4043 schedule_timeout_uninterruptible(HZ); 4044 goto repeat; 4045 4046 } 4047 if (pa->pa_deleted == 0) { 4048 pa->pa_deleted = 1; 4049 spin_unlock(&pa->pa_lock); 4050 list_del_rcu(&pa->pa_inode_list); 4051 list_add(&pa->u.pa_tmp_list, &list); 4052 continue; 4053 } 4054 4055 /* someone is deleting pa right now */ 4056 spin_unlock(&pa->pa_lock); 4057 spin_unlock(&ei->i_prealloc_lock); 4058 4059 /* we have to wait here because pa_deleted 4060 * doesn't mean pa is already unlinked from 4061 * the list. as we might be called from 4062 * ->clear_inode() the inode will get freed 4063 * and concurrent thread which is unlinking 4064 * pa from inode's list may access already 4065 * freed memory, bad-bad-bad */ 4066 4067 /* XXX: if this happens too often, we can 4068 * add a flag to force wait only in case 4069 * of ->clear_inode(), but not in case of 4070 * regular truncate */ 4071 schedule_timeout_uninterruptible(HZ); 4072 goto repeat; 4073 } 4074 spin_unlock(&ei->i_prealloc_lock); 4075 4076 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4077 BUG_ON(pa->pa_type != MB_INODE_PA); 4078 group = ext4_get_group_number(sb, pa->pa_pstart); 4079 4080 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4081 GFP_NOFS|__GFP_NOFAIL); 4082 if (err) { 4083 ext4_error(sb, "Error %d loading buddy information for %u", 4084 err, group); 4085 continue; 4086 } 4087 4088 bitmap_bh = ext4_read_block_bitmap(sb, group); 4089 if (IS_ERR(bitmap_bh)) { 4090 err = PTR_ERR(bitmap_bh); 4091 ext4_error(sb, "Error %d reading block bitmap for %u", 4092 err, group); 4093 ext4_mb_unload_buddy(&e4b); 4094 continue; 4095 } 4096 4097 ext4_lock_group(sb, group); 4098 list_del(&pa->pa_group_list); 4099 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4100 ext4_unlock_group(sb, group); 4101 4102 ext4_mb_unload_buddy(&e4b); 4103 put_bh(bitmap_bh); 4104 4105 list_del(&pa->u.pa_tmp_list); 4106 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4107 } 4108 } 4109 4110 #ifdef CONFIG_EXT4_DEBUG 4111 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4112 { 4113 struct super_block *sb = ac->ac_sb; 4114 ext4_group_t ngroups, i; 4115 4116 if (!ext4_mballoc_debug || 4117 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4118 return; 4119 4120 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4121 " Allocation context details:"); 4122 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4123 ac->ac_status, ac->ac_flags); 4124 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4125 "goal %lu/%lu/%lu@%lu, " 4126 "best %lu/%lu/%lu@%lu cr %d", 4127 (unsigned long)ac->ac_o_ex.fe_group, 4128 (unsigned long)ac->ac_o_ex.fe_start, 4129 (unsigned long)ac->ac_o_ex.fe_len, 4130 (unsigned long)ac->ac_o_ex.fe_logical, 4131 (unsigned long)ac->ac_g_ex.fe_group, 4132 (unsigned long)ac->ac_g_ex.fe_start, 4133 (unsigned long)ac->ac_g_ex.fe_len, 4134 (unsigned long)ac->ac_g_ex.fe_logical, 4135 (unsigned long)ac->ac_b_ex.fe_group, 4136 (unsigned long)ac->ac_b_ex.fe_start, 4137 (unsigned long)ac->ac_b_ex.fe_len, 4138 (unsigned long)ac->ac_b_ex.fe_logical, 4139 (int)ac->ac_criteria); 4140 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4141 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4142 ngroups = ext4_get_groups_count(sb); 4143 for (i = 0; i < ngroups; i++) { 4144 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4145 struct ext4_prealloc_space *pa; 4146 ext4_grpblk_t start; 4147 struct list_head *cur; 4148 ext4_lock_group(sb, i); 4149 list_for_each(cur, &grp->bb_prealloc_list) { 4150 pa = list_entry(cur, struct ext4_prealloc_space, 4151 pa_group_list); 4152 spin_lock(&pa->pa_lock); 4153 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4154 NULL, &start); 4155 spin_unlock(&pa->pa_lock); 4156 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4157 start, pa->pa_len); 4158 } 4159 ext4_unlock_group(sb, i); 4160 4161 if (grp->bb_free == 0) 4162 continue; 4163 printk(KERN_ERR "%u: %d/%d \n", 4164 i, grp->bb_free, grp->bb_fragments); 4165 } 4166 printk(KERN_ERR "\n"); 4167 } 4168 #else 4169 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4170 { 4171 return; 4172 } 4173 #endif 4174 4175 /* 4176 * We use locality group preallocation for small size file. The size of the 4177 * file is determined by the current size or the resulting size after 4178 * allocation which ever is larger 4179 * 4180 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4181 */ 4182 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4183 { 4184 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4185 int bsbits = ac->ac_sb->s_blocksize_bits; 4186 loff_t size, isize; 4187 4188 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4189 return; 4190 4191 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4192 return; 4193 4194 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4195 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4196 >> bsbits; 4197 4198 if ((size == isize) && 4199 !ext4_fs_is_busy(sbi) && 4200 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4201 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4202 return; 4203 } 4204 4205 if (sbi->s_mb_group_prealloc <= 0) { 4206 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4207 return; 4208 } 4209 4210 /* don't use group allocation for large files */ 4211 size = max(size, isize); 4212 if (size > sbi->s_mb_stream_request) { 4213 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4214 return; 4215 } 4216 4217 BUG_ON(ac->ac_lg != NULL); 4218 /* 4219 * locality group prealloc space are per cpu. The reason for having 4220 * per cpu locality group is to reduce the contention between block 4221 * request from multiple CPUs. 4222 */ 4223 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4224 4225 /* we're going to use group allocation */ 4226 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4227 4228 /* serialize all allocations in the group */ 4229 mutex_lock(&ac->ac_lg->lg_mutex); 4230 } 4231 4232 static noinline_for_stack int 4233 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4234 struct ext4_allocation_request *ar) 4235 { 4236 struct super_block *sb = ar->inode->i_sb; 4237 struct ext4_sb_info *sbi = EXT4_SB(sb); 4238 struct ext4_super_block *es = sbi->s_es; 4239 ext4_group_t group; 4240 unsigned int len; 4241 ext4_fsblk_t goal; 4242 ext4_grpblk_t block; 4243 4244 /* we can't allocate > group size */ 4245 len = ar->len; 4246 4247 /* just a dirty hack to filter too big requests */ 4248 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4249 len = EXT4_CLUSTERS_PER_GROUP(sb); 4250 4251 /* start searching from the goal */ 4252 goal = ar->goal; 4253 if (goal < le32_to_cpu(es->s_first_data_block) || 4254 goal >= ext4_blocks_count(es)) 4255 goal = le32_to_cpu(es->s_first_data_block); 4256 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4257 4258 /* set up allocation goals */ 4259 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4260 ac->ac_status = AC_STATUS_CONTINUE; 4261 ac->ac_sb = sb; 4262 ac->ac_inode = ar->inode; 4263 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4264 ac->ac_o_ex.fe_group = group; 4265 ac->ac_o_ex.fe_start = block; 4266 ac->ac_o_ex.fe_len = len; 4267 ac->ac_g_ex = ac->ac_o_ex; 4268 ac->ac_flags = ar->flags; 4269 4270 /* we have to define context: we'll we work with a file or 4271 * locality group. this is a policy, actually */ 4272 ext4_mb_group_or_file(ac); 4273 4274 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4275 "left: %u/%u, right %u/%u to %swritable\n", 4276 (unsigned) ar->len, (unsigned) ar->logical, 4277 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4278 (unsigned) ar->lleft, (unsigned) ar->pleft, 4279 (unsigned) ar->lright, (unsigned) ar->pright, 4280 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4281 return 0; 4282 4283 } 4284 4285 static noinline_for_stack void 4286 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4287 struct ext4_locality_group *lg, 4288 int order, int total_entries) 4289 { 4290 ext4_group_t group = 0; 4291 struct ext4_buddy e4b; 4292 struct list_head discard_list; 4293 struct ext4_prealloc_space *pa, *tmp; 4294 4295 mb_debug(1, "discard locality group preallocation\n"); 4296 4297 INIT_LIST_HEAD(&discard_list); 4298 4299 spin_lock(&lg->lg_prealloc_lock); 4300 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4301 pa_inode_list) { 4302 spin_lock(&pa->pa_lock); 4303 if (atomic_read(&pa->pa_count)) { 4304 /* 4305 * This is the pa that we just used 4306 * for block allocation. So don't 4307 * free that 4308 */ 4309 spin_unlock(&pa->pa_lock); 4310 continue; 4311 } 4312 if (pa->pa_deleted) { 4313 spin_unlock(&pa->pa_lock); 4314 continue; 4315 } 4316 /* only lg prealloc space */ 4317 BUG_ON(pa->pa_type != MB_GROUP_PA); 4318 4319 /* seems this one can be freed ... */ 4320 pa->pa_deleted = 1; 4321 spin_unlock(&pa->pa_lock); 4322 4323 list_del_rcu(&pa->pa_inode_list); 4324 list_add(&pa->u.pa_tmp_list, &discard_list); 4325 4326 total_entries--; 4327 if (total_entries <= 5) { 4328 /* 4329 * we want to keep only 5 entries 4330 * allowing it to grow to 8. This 4331 * mak sure we don't call discard 4332 * soon for this list. 4333 */ 4334 break; 4335 } 4336 } 4337 spin_unlock(&lg->lg_prealloc_lock); 4338 4339 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4340 int err; 4341 4342 group = ext4_get_group_number(sb, pa->pa_pstart); 4343 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4344 GFP_NOFS|__GFP_NOFAIL); 4345 if (err) { 4346 ext4_error(sb, "Error %d loading buddy information for %u", 4347 err, group); 4348 continue; 4349 } 4350 ext4_lock_group(sb, group); 4351 list_del(&pa->pa_group_list); 4352 ext4_mb_release_group_pa(&e4b, pa); 4353 ext4_unlock_group(sb, group); 4354 4355 ext4_mb_unload_buddy(&e4b); 4356 list_del(&pa->u.pa_tmp_list); 4357 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4358 } 4359 } 4360 4361 /* 4362 * We have incremented pa_count. So it cannot be freed at this 4363 * point. Also we hold lg_mutex. So no parallel allocation is 4364 * possible from this lg. That means pa_free cannot be updated. 4365 * 4366 * A parallel ext4_mb_discard_group_preallocations is possible. 4367 * which can cause the lg_prealloc_list to be updated. 4368 */ 4369 4370 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4371 { 4372 int order, added = 0, lg_prealloc_count = 1; 4373 struct super_block *sb = ac->ac_sb; 4374 struct ext4_locality_group *lg = ac->ac_lg; 4375 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4376 4377 order = fls(pa->pa_free) - 1; 4378 if (order > PREALLOC_TB_SIZE - 1) 4379 /* The max size of hash table is PREALLOC_TB_SIZE */ 4380 order = PREALLOC_TB_SIZE - 1; 4381 /* Add the prealloc space to lg */ 4382 spin_lock(&lg->lg_prealloc_lock); 4383 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4384 pa_inode_list) { 4385 spin_lock(&tmp_pa->pa_lock); 4386 if (tmp_pa->pa_deleted) { 4387 spin_unlock(&tmp_pa->pa_lock); 4388 continue; 4389 } 4390 if (!added && pa->pa_free < tmp_pa->pa_free) { 4391 /* Add to the tail of the previous entry */ 4392 list_add_tail_rcu(&pa->pa_inode_list, 4393 &tmp_pa->pa_inode_list); 4394 added = 1; 4395 /* 4396 * we want to count the total 4397 * number of entries in the list 4398 */ 4399 } 4400 spin_unlock(&tmp_pa->pa_lock); 4401 lg_prealloc_count++; 4402 } 4403 if (!added) 4404 list_add_tail_rcu(&pa->pa_inode_list, 4405 &lg->lg_prealloc_list[order]); 4406 spin_unlock(&lg->lg_prealloc_lock); 4407 4408 /* Now trim the list to be not more than 8 elements */ 4409 if (lg_prealloc_count > 8) { 4410 ext4_mb_discard_lg_preallocations(sb, lg, 4411 order, lg_prealloc_count); 4412 return; 4413 } 4414 return ; 4415 } 4416 4417 /* 4418 * release all resource we used in allocation 4419 */ 4420 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4421 { 4422 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4423 struct ext4_prealloc_space *pa = ac->ac_pa; 4424 if (pa) { 4425 if (pa->pa_type == MB_GROUP_PA) { 4426 /* see comment in ext4_mb_use_group_pa() */ 4427 spin_lock(&pa->pa_lock); 4428 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4429 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4430 pa->pa_free -= ac->ac_b_ex.fe_len; 4431 pa->pa_len -= ac->ac_b_ex.fe_len; 4432 spin_unlock(&pa->pa_lock); 4433 } 4434 } 4435 if (pa) { 4436 /* 4437 * We want to add the pa to the right bucket. 4438 * Remove it from the list and while adding 4439 * make sure the list to which we are adding 4440 * doesn't grow big. 4441 */ 4442 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4443 spin_lock(pa->pa_obj_lock); 4444 list_del_rcu(&pa->pa_inode_list); 4445 spin_unlock(pa->pa_obj_lock); 4446 ext4_mb_add_n_trim(ac); 4447 } 4448 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4449 } 4450 if (ac->ac_bitmap_page) 4451 put_page(ac->ac_bitmap_page); 4452 if (ac->ac_buddy_page) 4453 put_page(ac->ac_buddy_page); 4454 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4455 mutex_unlock(&ac->ac_lg->lg_mutex); 4456 ext4_mb_collect_stats(ac); 4457 return 0; 4458 } 4459 4460 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4461 { 4462 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4463 int ret; 4464 int freed = 0; 4465 4466 trace_ext4_mb_discard_preallocations(sb, needed); 4467 for (i = 0; i < ngroups && needed > 0; i++) { 4468 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4469 freed += ret; 4470 needed -= ret; 4471 } 4472 4473 return freed; 4474 } 4475 4476 /* 4477 * Main entry point into mballoc to allocate blocks 4478 * it tries to use preallocation first, then falls back 4479 * to usual allocation 4480 */ 4481 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4482 struct ext4_allocation_request *ar, int *errp) 4483 { 4484 int freed; 4485 struct ext4_allocation_context *ac = NULL; 4486 struct ext4_sb_info *sbi; 4487 struct super_block *sb; 4488 ext4_fsblk_t block = 0; 4489 unsigned int inquota = 0; 4490 unsigned int reserv_clstrs = 0; 4491 4492 might_sleep(); 4493 sb = ar->inode->i_sb; 4494 sbi = EXT4_SB(sb); 4495 4496 trace_ext4_request_blocks(ar); 4497 4498 /* Allow to use superuser reservation for quota file */ 4499 if (ext4_is_quota_file(ar->inode)) 4500 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4501 4502 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4503 /* Without delayed allocation we need to verify 4504 * there is enough free blocks to do block allocation 4505 * and verify allocation doesn't exceed the quota limits. 4506 */ 4507 while (ar->len && 4508 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4509 4510 /* let others to free the space */ 4511 cond_resched(); 4512 ar->len = ar->len >> 1; 4513 } 4514 if (!ar->len) { 4515 *errp = -ENOSPC; 4516 return 0; 4517 } 4518 reserv_clstrs = ar->len; 4519 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4520 dquot_alloc_block_nofail(ar->inode, 4521 EXT4_C2B(sbi, ar->len)); 4522 } else { 4523 while (ar->len && 4524 dquot_alloc_block(ar->inode, 4525 EXT4_C2B(sbi, ar->len))) { 4526 4527 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4528 ar->len--; 4529 } 4530 } 4531 inquota = ar->len; 4532 if (ar->len == 0) { 4533 *errp = -EDQUOT; 4534 goto out; 4535 } 4536 } 4537 4538 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4539 if (!ac) { 4540 ar->len = 0; 4541 *errp = -ENOMEM; 4542 goto out; 4543 } 4544 4545 *errp = ext4_mb_initialize_context(ac, ar); 4546 if (*errp) { 4547 ar->len = 0; 4548 goto out; 4549 } 4550 4551 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4552 if (!ext4_mb_use_preallocated(ac)) { 4553 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4554 ext4_mb_normalize_request(ac, ar); 4555 repeat: 4556 /* allocate space in core */ 4557 *errp = ext4_mb_regular_allocator(ac); 4558 if (*errp) 4559 goto discard_and_exit; 4560 4561 /* as we've just preallocated more space than 4562 * user requested originally, we store allocated 4563 * space in a special descriptor */ 4564 if (ac->ac_status == AC_STATUS_FOUND && 4565 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4566 *errp = ext4_mb_new_preallocation(ac); 4567 if (*errp) { 4568 discard_and_exit: 4569 ext4_discard_allocated_blocks(ac); 4570 goto errout; 4571 } 4572 } 4573 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4574 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4575 if (*errp) { 4576 ext4_discard_allocated_blocks(ac); 4577 goto errout; 4578 } else { 4579 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4580 ar->len = ac->ac_b_ex.fe_len; 4581 } 4582 } else { 4583 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4584 if (freed) 4585 goto repeat; 4586 *errp = -ENOSPC; 4587 } 4588 4589 errout: 4590 if (*errp) { 4591 ac->ac_b_ex.fe_len = 0; 4592 ar->len = 0; 4593 ext4_mb_show_ac(ac); 4594 } 4595 ext4_mb_release_context(ac); 4596 out: 4597 if (ac) 4598 kmem_cache_free(ext4_ac_cachep, ac); 4599 if (inquota && ar->len < inquota) 4600 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4601 if (!ar->len) { 4602 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4603 /* release all the reserved blocks if non delalloc */ 4604 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4605 reserv_clstrs); 4606 } 4607 4608 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4609 4610 return block; 4611 } 4612 4613 /* 4614 * We can merge two free data extents only if the physical blocks 4615 * are contiguous, AND the extents were freed by the same transaction, 4616 * AND the blocks are associated with the same group. 4617 */ 4618 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4619 struct ext4_free_data *entry, 4620 struct ext4_free_data *new_entry, 4621 struct rb_root *entry_rb_root) 4622 { 4623 if ((entry->efd_tid != new_entry->efd_tid) || 4624 (entry->efd_group != new_entry->efd_group)) 4625 return; 4626 if (entry->efd_start_cluster + entry->efd_count == 4627 new_entry->efd_start_cluster) { 4628 new_entry->efd_start_cluster = entry->efd_start_cluster; 4629 new_entry->efd_count += entry->efd_count; 4630 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4631 entry->efd_start_cluster) { 4632 new_entry->efd_count += entry->efd_count; 4633 } else 4634 return; 4635 spin_lock(&sbi->s_md_lock); 4636 list_del(&entry->efd_list); 4637 spin_unlock(&sbi->s_md_lock); 4638 rb_erase(&entry->efd_node, entry_rb_root); 4639 kmem_cache_free(ext4_free_data_cachep, entry); 4640 } 4641 4642 static noinline_for_stack int 4643 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4644 struct ext4_free_data *new_entry) 4645 { 4646 ext4_group_t group = e4b->bd_group; 4647 ext4_grpblk_t cluster; 4648 ext4_grpblk_t clusters = new_entry->efd_count; 4649 struct ext4_free_data *entry; 4650 struct ext4_group_info *db = e4b->bd_info; 4651 struct super_block *sb = e4b->bd_sb; 4652 struct ext4_sb_info *sbi = EXT4_SB(sb); 4653 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4654 struct rb_node *parent = NULL, *new_node; 4655 4656 BUG_ON(!ext4_handle_valid(handle)); 4657 BUG_ON(e4b->bd_bitmap_page == NULL); 4658 BUG_ON(e4b->bd_buddy_page == NULL); 4659 4660 new_node = &new_entry->efd_node; 4661 cluster = new_entry->efd_start_cluster; 4662 4663 if (!*n) { 4664 /* first free block exent. We need to 4665 protect buddy cache from being freed, 4666 * otherwise we'll refresh it from 4667 * on-disk bitmap and lose not-yet-available 4668 * blocks */ 4669 get_page(e4b->bd_buddy_page); 4670 get_page(e4b->bd_bitmap_page); 4671 } 4672 while (*n) { 4673 parent = *n; 4674 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4675 if (cluster < entry->efd_start_cluster) 4676 n = &(*n)->rb_left; 4677 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4678 n = &(*n)->rb_right; 4679 else { 4680 ext4_grp_locked_error(sb, group, 0, 4681 ext4_group_first_block_no(sb, group) + 4682 EXT4_C2B(sbi, cluster), 4683 "Block already on to-be-freed list"); 4684 return 0; 4685 } 4686 } 4687 4688 rb_link_node(new_node, parent, n); 4689 rb_insert_color(new_node, &db->bb_free_root); 4690 4691 /* Now try to see the extent can be merged to left and right */ 4692 node = rb_prev(new_node); 4693 if (node) { 4694 entry = rb_entry(node, struct ext4_free_data, efd_node); 4695 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4696 &(db->bb_free_root)); 4697 } 4698 4699 node = rb_next(new_node); 4700 if (node) { 4701 entry = rb_entry(node, struct ext4_free_data, efd_node); 4702 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4703 &(db->bb_free_root)); 4704 } 4705 4706 spin_lock(&sbi->s_md_lock); 4707 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 4708 sbi->s_mb_free_pending += clusters; 4709 spin_unlock(&sbi->s_md_lock); 4710 return 0; 4711 } 4712 4713 /** 4714 * ext4_free_blocks() -- Free given blocks and update quota 4715 * @handle: handle for this transaction 4716 * @inode: inode 4717 * @block: start physical block to free 4718 * @count: number of blocks to count 4719 * @flags: flags used by ext4_free_blocks 4720 */ 4721 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4722 struct buffer_head *bh, ext4_fsblk_t block, 4723 unsigned long count, int flags) 4724 { 4725 struct buffer_head *bitmap_bh = NULL; 4726 struct super_block *sb = inode->i_sb; 4727 struct ext4_group_desc *gdp; 4728 unsigned int overflow; 4729 ext4_grpblk_t bit; 4730 struct buffer_head *gd_bh; 4731 ext4_group_t block_group; 4732 struct ext4_sb_info *sbi; 4733 struct ext4_buddy e4b; 4734 unsigned int count_clusters; 4735 int err = 0; 4736 int ret; 4737 4738 might_sleep(); 4739 if (bh) { 4740 if (block) 4741 BUG_ON(block != bh->b_blocknr); 4742 else 4743 block = bh->b_blocknr; 4744 } 4745 4746 sbi = EXT4_SB(sb); 4747 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4748 !ext4_data_block_valid(sbi, block, count)) { 4749 ext4_error(sb, "Freeing blocks not in datazone - " 4750 "block = %llu, count = %lu", block, count); 4751 goto error_return; 4752 } 4753 4754 ext4_debug("freeing block %llu\n", block); 4755 trace_ext4_free_blocks(inode, block, count, flags); 4756 4757 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4758 BUG_ON(count > 1); 4759 4760 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4761 inode, bh, block); 4762 } 4763 4764 /* 4765 * If the extent to be freed does not begin on a cluster 4766 * boundary, we need to deal with partial clusters at the 4767 * beginning and end of the extent. Normally we will free 4768 * blocks at the beginning or the end unless we are explicitly 4769 * requested to avoid doing so. 4770 */ 4771 overflow = EXT4_PBLK_COFF(sbi, block); 4772 if (overflow) { 4773 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4774 overflow = sbi->s_cluster_ratio - overflow; 4775 block += overflow; 4776 if (count > overflow) 4777 count -= overflow; 4778 else 4779 return; 4780 } else { 4781 block -= overflow; 4782 count += overflow; 4783 } 4784 } 4785 overflow = EXT4_LBLK_COFF(sbi, count); 4786 if (overflow) { 4787 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4788 if (count > overflow) 4789 count -= overflow; 4790 else 4791 return; 4792 } else 4793 count += sbi->s_cluster_ratio - overflow; 4794 } 4795 4796 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4797 int i; 4798 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4799 4800 for (i = 0; i < count; i++) { 4801 cond_resched(); 4802 if (is_metadata) 4803 bh = sb_find_get_block(inode->i_sb, block + i); 4804 ext4_forget(handle, is_metadata, inode, bh, block + i); 4805 } 4806 } 4807 4808 do_more: 4809 overflow = 0; 4810 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4811 4812 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4813 ext4_get_group_info(sb, block_group)))) 4814 return; 4815 4816 /* 4817 * Check to see if we are freeing blocks across a group 4818 * boundary. 4819 */ 4820 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4821 overflow = EXT4_C2B(sbi, bit) + count - 4822 EXT4_BLOCKS_PER_GROUP(sb); 4823 count -= overflow; 4824 } 4825 count_clusters = EXT4_NUM_B2C(sbi, count); 4826 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4827 if (IS_ERR(bitmap_bh)) { 4828 err = PTR_ERR(bitmap_bh); 4829 bitmap_bh = NULL; 4830 goto error_return; 4831 } 4832 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4833 if (!gdp) { 4834 err = -EIO; 4835 goto error_return; 4836 } 4837 4838 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4839 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4840 in_range(block, ext4_inode_table(sb, gdp), 4841 sbi->s_itb_per_group) || 4842 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4843 sbi->s_itb_per_group)) { 4844 4845 ext4_error(sb, "Freeing blocks in system zone - " 4846 "Block = %llu, count = %lu", block, count); 4847 /* err = 0. ext4_std_error should be a no op */ 4848 goto error_return; 4849 } 4850 4851 BUFFER_TRACE(bitmap_bh, "getting write access"); 4852 err = ext4_journal_get_write_access(handle, bitmap_bh); 4853 if (err) 4854 goto error_return; 4855 4856 /* 4857 * We are about to modify some metadata. Call the journal APIs 4858 * to unshare ->b_data if a currently-committing transaction is 4859 * using it 4860 */ 4861 BUFFER_TRACE(gd_bh, "get_write_access"); 4862 err = ext4_journal_get_write_access(handle, gd_bh); 4863 if (err) 4864 goto error_return; 4865 #ifdef AGGRESSIVE_CHECK 4866 { 4867 int i; 4868 for (i = 0; i < count_clusters; i++) 4869 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4870 } 4871 #endif 4872 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4873 4874 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4875 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4876 GFP_NOFS|__GFP_NOFAIL); 4877 if (err) 4878 goto error_return; 4879 4880 /* 4881 * We need to make sure we don't reuse the freed block until after the 4882 * transaction is committed. We make an exception if the inode is to be 4883 * written in writeback mode since writeback mode has weak data 4884 * consistency guarantees. 4885 */ 4886 if (ext4_handle_valid(handle) && 4887 ((flags & EXT4_FREE_BLOCKS_METADATA) || 4888 !ext4_should_writeback_data(inode))) { 4889 struct ext4_free_data *new_entry; 4890 /* 4891 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4892 * to fail. 4893 */ 4894 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4895 GFP_NOFS|__GFP_NOFAIL); 4896 new_entry->efd_start_cluster = bit; 4897 new_entry->efd_group = block_group; 4898 new_entry->efd_count = count_clusters; 4899 new_entry->efd_tid = handle->h_transaction->t_tid; 4900 4901 ext4_lock_group(sb, block_group); 4902 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4903 ext4_mb_free_metadata(handle, &e4b, new_entry); 4904 } else { 4905 /* need to update group_info->bb_free and bitmap 4906 * with group lock held. generate_buddy look at 4907 * them with group lock_held 4908 */ 4909 if (test_opt(sb, DISCARD)) { 4910 err = ext4_issue_discard(sb, block_group, bit, count, 4911 NULL); 4912 if (err && err != -EOPNOTSUPP) 4913 ext4_msg(sb, KERN_WARNING, "discard request in" 4914 " group:%d block:%d count:%lu failed" 4915 " with %d", block_group, bit, count, 4916 err); 4917 } else 4918 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4919 4920 ext4_lock_group(sb, block_group); 4921 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4922 mb_free_blocks(inode, &e4b, bit, count_clusters); 4923 } 4924 4925 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4926 ext4_free_group_clusters_set(sb, gdp, ret); 4927 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4928 ext4_group_desc_csum_set(sb, block_group, gdp); 4929 ext4_unlock_group(sb, block_group); 4930 4931 if (sbi->s_log_groups_per_flex) { 4932 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4933 atomic64_add(count_clusters, 4934 &sbi->s_flex_groups[flex_group].free_clusters); 4935 } 4936 4937 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4938 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4939 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4940 4941 ext4_mb_unload_buddy(&e4b); 4942 4943 /* We dirtied the bitmap block */ 4944 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4945 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4946 4947 /* And the group descriptor block */ 4948 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4949 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4950 if (!err) 4951 err = ret; 4952 4953 if (overflow && !err) { 4954 block += count; 4955 count = overflow; 4956 put_bh(bitmap_bh); 4957 goto do_more; 4958 } 4959 error_return: 4960 brelse(bitmap_bh); 4961 ext4_std_error(sb, err); 4962 return; 4963 } 4964 4965 /** 4966 * ext4_group_add_blocks() -- Add given blocks to an existing group 4967 * @handle: handle to this transaction 4968 * @sb: super block 4969 * @block: start physical block to add to the block group 4970 * @count: number of blocks to free 4971 * 4972 * This marks the blocks as free in the bitmap and buddy. 4973 */ 4974 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4975 ext4_fsblk_t block, unsigned long count) 4976 { 4977 struct buffer_head *bitmap_bh = NULL; 4978 struct buffer_head *gd_bh; 4979 ext4_group_t block_group; 4980 ext4_grpblk_t bit; 4981 unsigned int i; 4982 struct ext4_group_desc *desc; 4983 struct ext4_sb_info *sbi = EXT4_SB(sb); 4984 struct ext4_buddy e4b; 4985 int err = 0, ret, free_clusters_count; 4986 ext4_grpblk_t clusters_freed; 4987 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 4988 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 4989 unsigned long cluster_count = last_cluster - first_cluster + 1; 4990 4991 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4992 4993 if (count == 0) 4994 return 0; 4995 4996 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4997 /* 4998 * Check to see if we are freeing blocks across a group 4999 * boundary. 5000 */ 5001 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5002 ext4_warning(sb, "too many blocks added to group %u", 5003 block_group); 5004 err = -EINVAL; 5005 goto error_return; 5006 } 5007 5008 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5009 if (IS_ERR(bitmap_bh)) { 5010 err = PTR_ERR(bitmap_bh); 5011 bitmap_bh = NULL; 5012 goto error_return; 5013 } 5014 5015 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5016 if (!desc) { 5017 err = -EIO; 5018 goto error_return; 5019 } 5020 5021 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5022 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5023 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5024 in_range(block + count - 1, ext4_inode_table(sb, desc), 5025 sbi->s_itb_per_group)) { 5026 ext4_error(sb, "Adding blocks in system zones - " 5027 "Block = %llu, count = %lu", 5028 block, count); 5029 err = -EINVAL; 5030 goto error_return; 5031 } 5032 5033 BUFFER_TRACE(bitmap_bh, "getting write access"); 5034 err = ext4_journal_get_write_access(handle, bitmap_bh); 5035 if (err) 5036 goto error_return; 5037 5038 /* 5039 * We are about to modify some metadata. Call the journal APIs 5040 * to unshare ->b_data if a currently-committing transaction is 5041 * using it 5042 */ 5043 BUFFER_TRACE(gd_bh, "get_write_access"); 5044 err = ext4_journal_get_write_access(handle, gd_bh); 5045 if (err) 5046 goto error_return; 5047 5048 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5049 BUFFER_TRACE(bitmap_bh, "clear bit"); 5050 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5051 ext4_error(sb, "bit already cleared for block %llu", 5052 (ext4_fsblk_t)(block + i)); 5053 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5054 } else { 5055 clusters_freed++; 5056 } 5057 } 5058 5059 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5060 if (err) 5061 goto error_return; 5062 5063 /* 5064 * need to update group_info->bb_free and bitmap 5065 * with group lock held. generate_buddy look at 5066 * them with group lock_held 5067 */ 5068 ext4_lock_group(sb, block_group); 5069 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5070 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5071 free_clusters_count = clusters_freed + 5072 ext4_free_group_clusters(sb, desc); 5073 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5074 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5075 ext4_group_desc_csum_set(sb, block_group, desc); 5076 ext4_unlock_group(sb, block_group); 5077 percpu_counter_add(&sbi->s_freeclusters_counter, 5078 clusters_freed); 5079 5080 if (sbi->s_log_groups_per_flex) { 5081 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5082 atomic64_add(clusters_freed, 5083 &sbi->s_flex_groups[flex_group].free_clusters); 5084 } 5085 5086 ext4_mb_unload_buddy(&e4b); 5087 5088 /* We dirtied the bitmap block */ 5089 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5090 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5091 5092 /* And the group descriptor block */ 5093 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5094 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5095 if (!err) 5096 err = ret; 5097 5098 error_return: 5099 brelse(bitmap_bh); 5100 ext4_std_error(sb, err); 5101 return err; 5102 } 5103 5104 /** 5105 * ext4_trim_extent -- function to TRIM one single free extent in the group 5106 * @sb: super block for the file system 5107 * @start: starting block of the free extent in the alloc. group 5108 * @count: number of blocks to TRIM 5109 * @group: alloc. group we are working with 5110 * @e4b: ext4 buddy for the group 5111 * 5112 * Trim "count" blocks starting at "start" in the "group". To assure that no 5113 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5114 * be called with under the group lock. 5115 */ 5116 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5117 ext4_group_t group, struct ext4_buddy *e4b) 5118 __releases(bitlock) 5119 __acquires(bitlock) 5120 { 5121 struct ext4_free_extent ex; 5122 int ret = 0; 5123 5124 trace_ext4_trim_extent(sb, group, start, count); 5125 5126 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5127 5128 ex.fe_start = start; 5129 ex.fe_group = group; 5130 ex.fe_len = count; 5131 5132 /* 5133 * Mark blocks used, so no one can reuse them while 5134 * being trimmed. 5135 */ 5136 mb_mark_used(e4b, &ex); 5137 ext4_unlock_group(sb, group); 5138 ret = ext4_issue_discard(sb, group, start, count, NULL); 5139 ext4_lock_group(sb, group); 5140 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5141 return ret; 5142 } 5143 5144 /** 5145 * ext4_trim_all_free -- function to trim all free space in alloc. group 5146 * @sb: super block for file system 5147 * @group: group to be trimmed 5148 * @start: first group block to examine 5149 * @max: last group block to examine 5150 * @minblocks: minimum extent block count 5151 * 5152 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5153 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5154 * the extent. 5155 * 5156 * 5157 * ext4_trim_all_free walks through group's block bitmap searching for free 5158 * extents. When the free extent is found, mark it as used in group buddy 5159 * bitmap. Then issue a TRIM command on this extent and free the extent in 5160 * the group buddy bitmap. This is done until whole group is scanned. 5161 */ 5162 static ext4_grpblk_t 5163 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5164 ext4_grpblk_t start, ext4_grpblk_t max, 5165 ext4_grpblk_t minblocks) 5166 { 5167 void *bitmap; 5168 ext4_grpblk_t next, count = 0, free_count = 0; 5169 struct ext4_buddy e4b; 5170 int ret = 0; 5171 5172 trace_ext4_trim_all_free(sb, group, start, max); 5173 5174 ret = ext4_mb_load_buddy(sb, group, &e4b); 5175 if (ret) { 5176 ext4_warning(sb, "Error %d loading buddy information for %u", 5177 ret, group); 5178 return ret; 5179 } 5180 bitmap = e4b.bd_bitmap; 5181 5182 ext4_lock_group(sb, group); 5183 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5184 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5185 goto out; 5186 5187 start = (e4b.bd_info->bb_first_free > start) ? 5188 e4b.bd_info->bb_first_free : start; 5189 5190 while (start <= max) { 5191 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5192 if (start > max) 5193 break; 5194 next = mb_find_next_bit(bitmap, max + 1, start); 5195 5196 if ((next - start) >= minblocks) { 5197 ret = ext4_trim_extent(sb, start, 5198 next - start, group, &e4b); 5199 if (ret && ret != -EOPNOTSUPP) 5200 break; 5201 ret = 0; 5202 count += next - start; 5203 } 5204 free_count += next - start; 5205 start = next + 1; 5206 5207 if (fatal_signal_pending(current)) { 5208 count = -ERESTARTSYS; 5209 break; 5210 } 5211 5212 if (need_resched()) { 5213 ext4_unlock_group(sb, group); 5214 cond_resched(); 5215 ext4_lock_group(sb, group); 5216 } 5217 5218 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5219 break; 5220 } 5221 5222 if (!ret) { 5223 ret = count; 5224 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5225 } 5226 out: 5227 ext4_unlock_group(sb, group); 5228 ext4_mb_unload_buddy(&e4b); 5229 5230 ext4_debug("trimmed %d blocks in the group %d\n", 5231 count, group); 5232 5233 return ret; 5234 } 5235 5236 /** 5237 * ext4_trim_fs() -- trim ioctl handle function 5238 * @sb: superblock for filesystem 5239 * @range: fstrim_range structure 5240 * 5241 * start: First Byte to trim 5242 * len: number of Bytes to trim from start 5243 * minlen: minimum extent length in Bytes 5244 * ext4_trim_fs goes through all allocation groups containing Bytes from 5245 * start to start+len. For each such a group ext4_trim_all_free function 5246 * is invoked to trim all free space. 5247 */ 5248 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5249 { 5250 struct ext4_group_info *grp; 5251 ext4_group_t group, first_group, last_group; 5252 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5253 uint64_t start, end, minlen, trimmed = 0; 5254 ext4_fsblk_t first_data_blk = 5255 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5256 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5257 int ret = 0; 5258 5259 start = range->start >> sb->s_blocksize_bits; 5260 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5261 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5262 range->minlen >> sb->s_blocksize_bits); 5263 5264 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5265 start >= max_blks || 5266 range->len < sb->s_blocksize) 5267 return -EINVAL; 5268 if (end >= max_blks) 5269 end = max_blks - 1; 5270 if (end <= first_data_blk) 5271 goto out; 5272 if (start < first_data_blk) 5273 start = first_data_blk; 5274 5275 /* Determine first and last group to examine based on start and end */ 5276 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5277 &first_group, &first_cluster); 5278 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5279 &last_group, &last_cluster); 5280 5281 /* end now represents the last cluster to discard in this group */ 5282 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5283 5284 for (group = first_group; group <= last_group; group++) { 5285 grp = ext4_get_group_info(sb, group); 5286 /* We only do this if the grp has never been initialized */ 5287 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5288 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5289 if (ret) 5290 break; 5291 } 5292 5293 /* 5294 * For all the groups except the last one, last cluster will 5295 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5296 * change it for the last group, note that last_cluster is 5297 * already computed earlier by ext4_get_group_no_and_offset() 5298 */ 5299 if (group == last_group) 5300 end = last_cluster; 5301 5302 if (grp->bb_free >= minlen) { 5303 cnt = ext4_trim_all_free(sb, group, first_cluster, 5304 end, minlen); 5305 if (cnt < 0) { 5306 ret = cnt; 5307 break; 5308 } 5309 trimmed += cnt; 5310 } 5311 5312 /* 5313 * For every group except the first one, we are sure 5314 * that the first cluster to discard will be cluster #0. 5315 */ 5316 first_cluster = 0; 5317 } 5318 5319 if (!ret) 5320 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5321 5322 out: 5323 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5324 return ret; 5325 } 5326 5327 /* Iterate all the free extents in the group. */ 5328 int 5329 ext4_mballoc_query_range( 5330 struct super_block *sb, 5331 ext4_group_t group, 5332 ext4_grpblk_t start, 5333 ext4_grpblk_t end, 5334 ext4_mballoc_query_range_fn formatter, 5335 void *priv) 5336 { 5337 void *bitmap; 5338 ext4_grpblk_t next; 5339 struct ext4_buddy e4b; 5340 int error; 5341 5342 error = ext4_mb_load_buddy(sb, group, &e4b); 5343 if (error) 5344 return error; 5345 bitmap = e4b.bd_bitmap; 5346 5347 ext4_lock_group(sb, group); 5348 5349 start = (e4b.bd_info->bb_first_free > start) ? 5350 e4b.bd_info->bb_first_free : start; 5351 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5352 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5353 5354 while (start <= end) { 5355 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5356 if (start > end) 5357 break; 5358 next = mb_find_next_bit(bitmap, end + 1, start); 5359 5360 ext4_unlock_group(sb, group); 5361 error = formatter(sb, group, start, next - start, priv); 5362 if (error) 5363 goto out_unload; 5364 ext4_lock_group(sb, group); 5365 5366 start = next + 1; 5367 } 5368 5369 ext4_unlock_group(sb, group); 5370 out_unload: 5371 ext4_mb_unload_buddy(&e4b); 5372 5373 return error; 5374 } 5375