xref: /linux/fs/ext4/mballoc.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22 
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42 
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223 
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:			buddy = on-disk + PAs
262  *  - new PA:				buddy += N; PA = N
263  *  - use inode PA:			on-disk += N; PA -= N
264  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA		on-disk += N; PA -= N
266  *  - discard locality group PA		buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328 
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360 
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group	(group)
366  *  - object (inode/locality)	(object)
367  *  - per-pa lock		(pa)
368  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406 
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412 
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418 
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 					ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 			       ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 		struct ext4_buddy *e4b, ext4_grpblk_t start,
428 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 	int __cpu;
452 	u64 __seq = 0;
453 
454 	for_each_possible_cpu(__cpu)
455 		__seq += per_cpu(discard_pa_seq, __cpu);
456 	return __seq;
457 }
458 
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 	*bit += ((unsigned long) addr & 7UL) << 3;
463 	addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 	*bit += ((unsigned long) addr & 3UL) << 3;
466 	addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 	return addr;
471 }
472 
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 	/*
476 	 * ext4_test_bit on architecture like powerpc
477 	 * needs unsigned long aligned address
478 	 */
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	return ext4_test_bit(bit, addr);
481 }
482 
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	ext4_set_bit(bit, addr);
487 }
488 
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 	addr = mb_correct_addr_and_bit(&bit, addr);
492 	ext4_clear_bit(bit, addr);
493 }
494 
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 	addr = mb_correct_addr_and_bit(&bit, addr);
498 	return ext4_test_and_clear_bit(bit, addr);
499 }
500 
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 	int fix = 0, ret, tmpmax;
504 	addr = mb_correct_addr_and_bit(&fix, addr);
505 	tmpmax = max + fix;
506 	start += fix;
507 
508 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 	if (ret > max)
510 		return max;
511 	return ret;
512 }
513 
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 	int fix = 0, ret, tmpmax;
517 	addr = mb_correct_addr_and_bit(&fix, addr);
518 	tmpmax = max + fix;
519 	start += fix;
520 
521 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 	if (ret > max)
523 		return max;
524 	return ret;
525 }
526 
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 	char *bb;
530 
531 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 	BUG_ON(max == NULL);
533 
534 	if (order > e4b->bd_blkbits + 1) {
535 		*max = 0;
536 		return NULL;
537 	}
538 
539 	/* at order 0 we see each particular block */
540 	if (order == 0) {
541 		*max = 1 << (e4b->bd_blkbits + 3);
542 		return e4b->bd_bitmap;
543 	}
544 
545 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548 	return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 			   int first, int count)
554 {
555 	int i;
556 	struct super_block *sb = e4b->bd_sb;
557 
558 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 		return;
560 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 	for (i = 0; i < count; i++) {
562 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 			ext4_fsblk_t blocknr;
564 
565 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 			ext4_grp_locked_error(sb, e4b->bd_group,
570 					      inode ? inode->i_ino : 0,
571 					      blocknr,
572 					      "freeing block already freed "
573 					      "(bit %u)",
574 					      first + i);
575 		}
576 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 	}
578 }
579 
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 	int i;
583 
584 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 		return;
586 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 	for (i = 0; i < count; i++) {
588 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 	}
591 }
592 
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 		return;
597 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 		unsigned char *b1, *b2;
599 		int i;
600 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 		b2 = (unsigned char *) bitmap;
602 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 			if (b1[i] != b2[i]) {
604 				ext4_msg(e4b->bd_sb, KERN_ERR,
605 					 "corruption in group %u "
606 					 "at byte %u(%u): %x in copy != %x "
607 					 "on disk/prealloc",
608 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 				BUG();
610 			}
611 		}
612 	}
613 }
614 
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 			struct ext4_group_info *grp, ext4_group_t group)
617 {
618 	struct buffer_head *bh;
619 
620 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 	if (!grp->bb_bitmap)
622 		return;
623 
624 	bh = ext4_read_block_bitmap(sb, group);
625 	if (IS_ERR_OR_NULL(bh)) {
626 		kfree(grp->bb_bitmap);
627 		grp->bb_bitmap = NULL;
628 		return;
629 	}
630 
631 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 	put_bh(bh);
633 }
634 
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 	kfree(grp->bb_bitmap);
638 }
639 
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642 				struct ext4_buddy *e4b, int first, int count)
643 {
644 	return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 						int first, int count)
648 {
649 	return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 	return;
654 }
655 
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 			struct ext4_group_info *grp, ext4_group_t group)
658 {
659 	return;
660 }
661 
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 	return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)						\
671 do {									\
672 	if (!(assert)) {						\
673 		printk(KERN_EMERG					\
674 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
675 			function, file, line, # assert);		\
676 		BUG();							\
677 	}								\
678 } while (0)
679 
680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 				const char *function, int line)
682 {
683 	struct super_block *sb = e4b->bd_sb;
684 	int order = e4b->bd_blkbits + 1;
685 	int max;
686 	int max2;
687 	int i;
688 	int j;
689 	int k;
690 	int count;
691 	struct ext4_group_info *grp;
692 	int fragments = 0;
693 	int fstart;
694 	struct list_head *cur;
695 	void *buddy;
696 	void *buddy2;
697 
698 	if (e4b->bd_info->bb_check_counter++ % 10)
699 		return;
700 
701 	while (order > 1) {
702 		buddy = mb_find_buddy(e4b, order, &max);
703 		MB_CHECK_ASSERT(buddy);
704 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 		MB_CHECK_ASSERT(buddy2);
706 		MB_CHECK_ASSERT(buddy != buddy2);
707 		MB_CHECK_ASSERT(max * 2 == max2);
708 
709 		count = 0;
710 		for (i = 0; i < max; i++) {
711 
712 			if (mb_test_bit(i, buddy)) {
713 				/* only single bit in buddy2 may be 0 */
714 				if (!mb_test_bit(i << 1, buddy2)) {
715 					MB_CHECK_ASSERT(
716 						mb_test_bit((i<<1)+1, buddy2));
717 				}
718 				continue;
719 			}
720 
721 			/* both bits in buddy2 must be 1 */
722 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725 			for (j = 0; j < (1 << order); j++) {
726 				k = (i * (1 << order)) + j;
727 				MB_CHECK_ASSERT(
728 					!mb_test_bit(k, e4b->bd_bitmap));
729 			}
730 			count++;
731 		}
732 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 		order--;
734 	}
735 
736 	fstart = -1;
737 	buddy = mb_find_buddy(e4b, 0, &max);
738 	for (i = 0; i < max; i++) {
739 		if (!mb_test_bit(i, buddy)) {
740 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 			if (fstart == -1) {
742 				fragments++;
743 				fstart = i;
744 			}
745 			continue;
746 		}
747 		fstart = -1;
748 		/* check used bits only */
749 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 			buddy2 = mb_find_buddy(e4b, j, &max2);
751 			k = i >> j;
752 			MB_CHECK_ASSERT(k < max2);
753 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 		}
755 	}
756 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759 	grp = ext4_get_group_info(sb, e4b->bd_group);
760 	if (!grp)
761 		return;
762 	list_for_each(cur, &grp->bb_prealloc_list) {
763 		ext4_group_t groupnr;
764 		struct ext4_prealloc_space *pa;
765 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 		for (i = 0; i < pa->pa_len; i++)
769 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 	}
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
774 					__FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778 
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 					struct ext4_group_info *grp)
788 {
789 	struct ext4_sb_info *sbi = EXT4_SB(sb);
790 	ext4_grpblk_t min;
791 	ext4_grpblk_t max;
792 	ext4_grpblk_t chunk;
793 	unsigned int border;
794 
795 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796 
797 	border = 2 << sb->s_blocksize_bits;
798 
799 	while (len > 0) {
800 		/* find how many blocks can be covered since this position */
801 		max = ffs(first | border) - 1;
802 
803 		/* find how many blocks of power 2 we need to mark */
804 		min = fls(len) - 1;
805 
806 		if (max < min)
807 			min = max;
808 		chunk = 1 << min;
809 
810 		/* mark multiblock chunks only */
811 		grp->bb_counters[min]++;
812 		if (min > 0)
813 			mb_clear_bit(first >> min,
814 				     buddy + sbi->s_mb_offsets[min]);
815 
816 		len -= chunk;
817 		first += chunk;
818 	}
819 }
820 
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823 	int order;
824 
825 	/*
826 	 * We don't bother with a special lists groups with only 1 block free
827 	 * extents and for completely empty groups.
828 	 */
829 	order = fls(len) - 2;
830 	if (order < 0)
831 		return 0;
832 	if (order == MB_NUM_ORDERS(sb))
833 		order--;
834 	return order;
835 }
836 
837 /* Move group to appropriate avg_fragment_size list */
838 static void
839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840 {
841 	struct ext4_sb_info *sbi = EXT4_SB(sb);
842 	int new_order;
843 
844 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
845 		return;
846 
847 	new_order = mb_avg_fragment_size_order(sb,
848 					grp->bb_free / grp->bb_fragments);
849 	if (new_order == grp->bb_avg_fragment_size_order)
850 		return;
851 
852 	if (grp->bb_avg_fragment_size_order != -1) {
853 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
854 					grp->bb_avg_fragment_size_order]);
855 		list_del(&grp->bb_avg_fragment_size_node);
856 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857 					grp->bb_avg_fragment_size_order]);
858 	}
859 	grp->bb_avg_fragment_size_order = new_order;
860 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
861 					grp->bb_avg_fragment_size_order]);
862 	list_add_tail(&grp->bb_avg_fragment_size_node,
863 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865 					grp->bb_avg_fragment_size_order]);
866 }
867 
868 /*
869  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870  * cr level needs an update.
871  */
872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873 			enum criteria *new_cr, ext4_group_t *group)
874 {
875 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876 	struct ext4_group_info *iter;
877 	int i;
878 
879 	if (ac->ac_status == AC_STATUS_FOUND)
880 		return;
881 
882 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884 
885 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887 			continue;
888 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891 			continue;
892 		}
893 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894 				    bb_largest_free_order_node) {
895 			if (sbi->s_mb_stats)
896 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898 				*group = iter->bb_group;
899 				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900 				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901 				return;
902 			}
903 		}
904 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905 	}
906 
907 	/* Increment cr and search again if no group is found */
908 	*new_cr = CR_GOAL_LEN_FAST;
909 }
910 
911 /*
912  * Find a suitable group of given order from the average fragments list.
913  */
914 static struct ext4_group_info *
915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916 {
917 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920 	struct ext4_group_info *grp = NULL, *iter;
921 	enum criteria cr = ac->ac_criteria;
922 
923 	if (list_empty(frag_list))
924 		return NULL;
925 	read_lock(frag_list_lock);
926 	if (list_empty(frag_list)) {
927 		read_unlock(frag_list_lock);
928 		return NULL;
929 	}
930 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931 		if (sbi->s_mb_stats)
932 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934 			grp = iter;
935 			break;
936 		}
937 	}
938 	read_unlock(frag_list_lock);
939 	return grp;
940 }
941 
942 /*
943  * Choose next group by traversing average fragment size list of suitable
944  * order. Updates *new_cr if cr level needs an update.
945  */
946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947 		enum criteria *new_cr, ext4_group_t *group)
948 {
949 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950 	struct ext4_group_info *grp = NULL;
951 	int i;
952 
953 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954 		if (sbi->s_mb_stats)
955 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956 	}
957 
958 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961 		if (grp) {
962 			*group = grp->bb_group;
963 			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964 			return;
965 		}
966 	}
967 
968 	/*
969 	 * CR_BEST_AVAIL_LEN works based on the concept that we have
970 	 * a larger normalized goal len request which can be trimmed to
971 	 * a smaller goal len such that it can still satisfy original
972 	 * request len. However, allocation request for non-regular
973 	 * files never gets normalized.
974 	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975 	 */
976 	if (ac->ac_flags & EXT4_MB_HINT_DATA)
977 		*new_cr = CR_BEST_AVAIL_LEN;
978 	else
979 		*new_cr = CR_GOAL_LEN_SLOW;
980 }
981 
982 /*
983  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984  * order we have and proactively trim the goal request length to that order to
985  * find a suitable group faster.
986  *
987  * This optimizes allocation speed at the cost of slightly reduced
988  * preallocations. However, we make sure that we don't trim the request too
989  * much and fall to CR_GOAL_LEN_SLOW in that case.
990  */
991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992 		enum criteria *new_cr, ext4_group_t *group)
993 {
994 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995 	struct ext4_group_info *grp = NULL;
996 	int i, order, min_order;
997 	unsigned long num_stripe_clusters = 0;
998 
999 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000 		if (sbi->s_mb_stats)
1001 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002 	}
1003 
1004 	/*
1005 	 * mb_avg_fragment_size_order() returns order in a way that makes
1006 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1007 	 * fls() instead since we need to know the actual length while modifying
1008 	 * goal length.
1009 	 */
1010 	order = fls(ac->ac_g_ex.fe_len) - 1;
1011 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012 	if (min_order < 0)
1013 		min_order = 0;
1014 
1015 	if (sbi->s_stripe > 0) {
1016 		/*
1017 		 * We are assuming that stripe size is always a multiple of
1018 		 * cluster ratio otherwise __ext4_fill_super exists early.
1019 		 */
1020 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021 		if (1 << min_order < num_stripe_clusters)
1022 			/*
1023 			 * We consider 1 order less because later we round
1024 			 * up the goal len to num_stripe_clusters
1025 			 */
1026 			min_order = fls(num_stripe_clusters) - 1;
1027 	}
1028 
1029 	if (1 << min_order < ac->ac_o_ex.fe_len)
1030 		min_order = fls(ac->ac_o_ex.fe_len);
1031 
1032 	for (i = order; i >= min_order; i--) {
1033 		int frag_order;
1034 		/*
1035 		 * Scale down goal len to make sure we find something
1036 		 * in the free fragments list. Basically, reduce
1037 		 * preallocations.
1038 		 */
1039 		ac->ac_g_ex.fe_len = 1 << i;
1040 
1041 		if (num_stripe_clusters > 0) {
1042 			/*
1043 			 * Try to round up the adjusted goal length to
1044 			 * stripe size (in cluster units) multiple for
1045 			 * efficiency.
1046 			 */
1047 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048 						     num_stripe_clusters);
1049 		}
1050 
1051 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052 							ac->ac_g_ex.fe_len);
1053 
1054 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055 		if (grp) {
1056 			*group = grp->bb_group;
1057 			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058 			return;
1059 		}
1060 	}
1061 
1062 	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063 	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064 	*new_cr = CR_GOAL_LEN_SLOW;
1065 }
1066 
1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068 {
1069 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070 		return 0;
1071 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072 		return 0;
1073 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074 		return 0;
1075 	return 1;
1076 }
1077 
1078 /*
1079  * Return next linear group for allocation. If linear traversal should not be
1080  * performed, this function just returns the same group
1081  */
1082 static ext4_group_t
1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084 		  ext4_group_t ngroups)
1085 {
1086 	if (!should_optimize_scan(ac))
1087 		goto inc_and_return;
1088 
1089 	if (ac->ac_groups_linear_remaining) {
1090 		ac->ac_groups_linear_remaining--;
1091 		goto inc_and_return;
1092 	}
1093 
1094 	return group;
1095 inc_and_return:
1096 	/*
1097 	 * Artificially restricted ngroups for non-extent
1098 	 * files makes group > ngroups possible on first loop.
1099 	 */
1100 	return group + 1 >= ngroups ? 0 : group + 1;
1101 }
1102 
1103 /*
1104  * ext4_mb_choose_next_group: choose next group for allocation.
1105  *
1106  * @ac        Allocation Context
1107  * @new_cr    This is an output parameter. If the there is no good group
1108  *            available at current CR level, this field is updated to indicate
1109  *            the new cr level that should be used.
1110  * @group     This is an input / output parameter. As an input it indicates the
1111  *            next group that the allocator intends to use for allocation. As
1112  *            output, this field indicates the next group that should be used as
1113  *            determined by the optimization functions.
1114  * @ngroups   Total number of groups
1115  */
1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118 {
1119 	*new_cr = ac->ac_criteria;
1120 
1121 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122 		*group = next_linear_group(ac, *group, ngroups);
1123 		return;
1124 	}
1125 
1126 	if (*new_cr == CR_POWER2_ALIGNED) {
1127 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1128 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1129 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1130 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1132 	} else {
1133 		/*
1134 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135 		 * bb_free. But until that happens, we should never come here.
1136 		 */
1137 		WARN_ON(1);
1138 	}
1139 }
1140 
1141 /*
1142  * Cache the order of the largest free extent we have available in this block
1143  * group.
1144  */
1145 static void
1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147 {
1148 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1149 	int i;
1150 
1151 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152 		if (grp->bb_counters[i] > 0)
1153 			break;
1154 	/* No need to move between order lists? */
1155 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156 	    i == grp->bb_largest_free_order) {
1157 		grp->bb_largest_free_order = i;
1158 		return;
1159 	}
1160 
1161 	if (grp->bb_largest_free_order >= 0) {
1162 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1163 					      grp->bb_largest_free_order]);
1164 		list_del_init(&grp->bb_largest_free_order_node);
1165 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166 					      grp->bb_largest_free_order]);
1167 	}
1168 	grp->bb_largest_free_order = i;
1169 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1171 					      grp->bb_largest_free_order]);
1172 		list_add_tail(&grp->bb_largest_free_order_node,
1173 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175 					      grp->bb_largest_free_order]);
1176 	}
1177 }
1178 
1179 static noinline_for_stack
1180 void ext4_mb_generate_buddy(struct super_block *sb,
1181 			    void *buddy, void *bitmap, ext4_group_t group,
1182 			    struct ext4_group_info *grp)
1183 {
1184 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1185 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186 	ext4_grpblk_t i = 0;
1187 	ext4_grpblk_t first;
1188 	ext4_grpblk_t len;
1189 	unsigned free = 0;
1190 	unsigned fragments = 0;
1191 	unsigned long long period = get_cycles();
1192 
1193 	/* initialize buddy from bitmap which is aggregation
1194 	 * of on-disk bitmap and preallocations */
1195 	i = mb_find_next_zero_bit(bitmap, max, 0);
1196 	grp->bb_first_free = i;
1197 	while (i < max) {
1198 		fragments++;
1199 		first = i;
1200 		i = mb_find_next_bit(bitmap, max, i);
1201 		len = i - first;
1202 		free += len;
1203 		if (len > 1)
1204 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205 		else
1206 			grp->bb_counters[0]++;
1207 		if (i < max)
1208 			i = mb_find_next_zero_bit(bitmap, max, i);
1209 	}
1210 	grp->bb_fragments = fragments;
1211 
1212 	if (free != grp->bb_free) {
1213 		ext4_grp_locked_error(sb, group, 0, 0,
1214 				      "block bitmap and bg descriptor "
1215 				      "inconsistent: %u vs %u free clusters",
1216 				      free, grp->bb_free);
1217 		/*
1218 		 * If we intend to continue, we consider group descriptor
1219 		 * corrupt and update bb_free using bitmap value
1220 		 */
1221 		grp->bb_free = free;
1222 		ext4_mark_group_bitmap_corrupted(sb, group,
1223 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224 	}
1225 	mb_set_largest_free_order(sb, grp);
1226 	mb_update_avg_fragment_size(sb, grp);
1227 
1228 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229 
1230 	period = get_cycles() - period;
1231 	atomic_inc(&sbi->s_mb_buddies_generated);
1232 	atomic64_add(period, &sbi->s_mb_generation_time);
1233 }
1234 
1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236 {
1237 	int count;
1238 	int order = 1;
1239 	void *buddy;
1240 
1241 	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242 		mb_set_bits(buddy, 0, count);
1243 
1244 	e4b->bd_info->bb_fragments = 0;
1245 	memset(e4b->bd_info->bb_counters, 0,
1246 		sizeof(*e4b->bd_info->bb_counters) *
1247 		(e4b->bd_sb->s_blocksize_bits + 2));
1248 
1249 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250 		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251 }
1252 
1253 /* The buddy information is attached the buddy cache inode
1254  * for convenience. The information regarding each group
1255  * is loaded via ext4_mb_load_buddy. The information involve
1256  * block bitmap and buddy information. The information are
1257  * stored in the inode as
1258  *
1259  * {                        page                        }
1260  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261  *
1262  *
1263  * one block each for bitmap and buddy information.
1264  * So for each group we take up 2 blocks. A page can
1265  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1266  * So it can have information regarding groups_per_page which
1267  * is blocks_per_page/2
1268  *
1269  * Locking note:  This routine takes the block group lock of all groups
1270  * for this page; do not hold this lock when calling this routine!
1271  */
1272 
1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274 {
1275 	ext4_group_t ngroups;
1276 	unsigned int blocksize;
1277 	int blocks_per_page;
1278 	int groups_per_page;
1279 	int err = 0;
1280 	int i;
1281 	ext4_group_t first_group, group;
1282 	int first_block;
1283 	struct super_block *sb;
1284 	struct buffer_head *bhs;
1285 	struct buffer_head **bh = NULL;
1286 	struct inode *inode;
1287 	char *data;
1288 	char *bitmap;
1289 	struct ext4_group_info *grinfo;
1290 
1291 	inode = page->mapping->host;
1292 	sb = inode->i_sb;
1293 	ngroups = ext4_get_groups_count(sb);
1294 	blocksize = i_blocksize(inode);
1295 	blocks_per_page = PAGE_SIZE / blocksize;
1296 
1297 	mb_debug(sb, "init page %lu\n", page->index);
1298 
1299 	groups_per_page = blocks_per_page >> 1;
1300 	if (groups_per_page == 0)
1301 		groups_per_page = 1;
1302 
1303 	/* allocate buffer_heads to read bitmaps */
1304 	if (groups_per_page > 1) {
1305 		i = sizeof(struct buffer_head *) * groups_per_page;
1306 		bh = kzalloc(i, gfp);
1307 		if (bh == NULL)
1308 			return -ENOMEM;
1309 	} else
1310 		bh = &bhs;
1311 
1312 	first_group = page->index * blocks_per_page / 2;
1313 
1314 	/* read all groups the page covers into the cache */
1315 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316 		if (group >= ngroups)
1317 			break;
1318 
1319 		grinfo = ext4_get_group_info(sb, group);
1320 		if (!grinfo)
1321 			continue;
1322 		/*
1323 		 * If page is uptodate then we came here after online resize
1324 		 * which added some new uninitialized group info structs, so
1325 		 * we must skip all initialized uptodate buddies on the page,
1326 		 * which may be currently in use by an allocating task.
1327 		 */
1328 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329 			bh[i] = NULL;
1330 			continue;
1331 		}
1332 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333 		if (IS_ERR(bh[i])) {
1334 			err = PTR_ERR(bh[i]);
1335 			bh[i] = NULL;
1336 			goto out;
1337 		}
1338 		mb_debug(sb, "read bitmap for group %u\n", group);
1339 	}
1340 
1341 	/* wait for I/O completion */
1342 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343 		int err2;
1344 
1345 		if (!bh[i])
1346 			continue;
1347 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348 		if (!err)
1349 			err = err2;
1350 	}
1351 
1352 	first_block = page->index * blocks_per_page;
1353 	for (i = 0; i < blocks_per_page; i++) {
1354 		group = (first_block + i) >> 1;
1355 		if (group >= ngroups)
1356 			break;
1357 
1358 		if (!bh[group - first_group])
1359 			/* skip initialized uptodate buddy */
1360 			continue;
1361 
1362 		if (!buffer_verified(bh[group - first_group]))
1363 			/* Skip faulty bitmaps */
1364 			continue;
1365 		err = 0;
1366 
1367 		/*
1368 		 * data carry information regarding this
1369 		 * particular group in the format specified
1370 		 * above
1371 		 *
1372 		 */
1373 		data = page_address(page) + (i * blocksize);
1374 		bitmap = bh[group - first_group]->b_data;
1375 
1376 		/*
1377 		 * We place the buddy block and bitmap block
1378 		 * close together
1379 		 */
1380 		grinfo = ext4_get_group_info(sb, group);
1381 		if (!grinfo) {
1382 			err = -EFSCORRUPTED;
1383 		        goto out;
1384 		}
1385 		if ((first_block + i) & 1) {
1386 			/* this is block of buddy */
1387 			BUG_ON(incore == NULL);
1388 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389 				group, page->index, i * blocksize);
1390 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1391 			grinfo->bb_fragments = 0;
1392 			memset(grinfo->bb_counters, 0,
1393 			       sizeof(*grinfo->bb_counters) *
1394 			       (MB_NUM_ORDERS(sb)));
1395 			/*
1396 			 * incore got set to the group block bitmap below
1397 			 */
1398 			ext4_lock_group(sb, group);
1399 			/* init the buddy */
1400 			memset(data, 0xff, blocksize);
1401 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402 			ext4_unlock_group(sb, group);
1403 			incore = NULL;
1404 		} else {
1405 			/* this is block of bitmap */
1406 			BUG_ON(incore != NULL);
1407 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408 				group, page->index, i * blocksize);
1409 			trace_ext4_mb_bitmap_load(sb, group);
1410 
1411 			/* see comments in ext4_mb_put_pa() */
1412 			ext4_lock_group(sb, group);
1413 			memcpy(data, bitmap, blocksize);
1414 
1415 			/* mark all preallocated blks used in in-core bitmap */
1416 			ext4_mb_generate_from_pa(sb, data, group);
1417 			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418 			ext4_unlock_group(sb, group);
1419 
1420 			/* set incore so that the buddy information can be
1421 			 * generated using this
1422 			 */
1423 			incore = data;
1424 		}
1425 	}
1426 	SetPageUptodate(page);
1427 
1428 out:
1429 	if (bh) {
1430 		for (i = 0; i < groups_per_page; i++)
1431 			brelse(bh[i]);
1432 		if (bh != &bhs)
1433 			kfree(bh);
1434 	}
1435 	return err;
1436 }
1437 
1438 /*
1439  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440  * on the same buddy page doesn't happen whild holding the buddy page lock.
1441  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443  */
1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446 {
1447 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448 	int block, pnum, poff;
1449 	int blocks_per_page;
1450 	struct page *page;
1451 
1452 	e4b->bd_buddy_page = NULL;
1453 	e4b->bd_bitmap_page = NULL;
1454 
1455 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456 	/*
1457 	 * the buddy cache inode stores the block bitmap
1458 	 * and buddy information in consecutive blocks.
1459 	 * So for each group we need two blocks.
1460 	 */
1461 	block = group * 2;
1462 	pnum = block / blocks_per_page;
1463 	poff = block % blocks_per_page;
1464 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465 	if (!page)
1466 		return -ENOMEM;
1467 	BUG_ON(page->mapping != inode->i_mapping);
1468 	e4b->bd_bitmap_page = page;
1469 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470 
1471 	if (blocks_per_page >= 2) {
1472 		/* buddy and bitmap are on the same page */
1473 		return 0;
1474 	}
1475 
1476 	/* blocks_per_page == 1, hence we need another page for the buddy */
1477 	page = find_or_create_page(inode->i_mapping, block + 1, gfp);
1478 	if (!page)
1479 		return -ENOMEM;
1480 	BUG_ON(page->mapping != inode->i_mapping);
1481 	e4b->bd_buddy_page = page;
1482 	return 0;
1483 }
1484 
1485 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1486 {
1487 	if (e4b->bd_bitmap_page) {
1488 		unlock_page(e4b->bd_bitmap_page);
1489 		put_page(e4b->bd_bitmap_page);
1490 	}
1491 	if (e4b->bd_buddy_page) {
1492 		unlock_page(e4b->bd_buddy_page);
1493 		put_page(e4b->bd_buddy_page);
1494 	}
1495 }
1496 
1497 /*
1498  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1499  * block group lock of all groups for this page; do not hold the BG lock when
1500  * calling this routine!
1501  */
1502 static noinline_for_stack
1503 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1504 {
1505 
1506 	struct ext4_group_info *this_grp;
1507 	struct ext4_buddy e4b;
1508 	struct page *page;
1509 	int ret = 0;
1510 
1511 	might_sleep();
1512 	mb_debug(sb, "init group %u\n", group);
1513 	this_grp = ext4_get_group_info(sb, group);
1514 	if (!this_grp)
1515 		return -EFSCORRUPTED;
1516 
1517 	/*
1518 	 * This ensures that we don't reinit the buddy cache
1519 	 * page which map to the group from which we are already
1520 	 * allocating. If we are looking at the buddy cache we would
1521 	 * have taken a reference using ext4_mb_load_buddy and that
1522 	 * would have pinned buddy page to page cache.
1523 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1524 	 * page accessed.
1525 	 */
1526 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1527 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1528 		/*
1529 		 * somebody initialized the group
1530 		 * return without doing anything
1531 		 */
1532 		goto err;
1533 	}
1534 
1535 	page = e4b.bd_bitmap_page;
1536 	ret = ext4_mb_init_cache(page, NULL, gfp);
1537 	if (ret)
1538 		goto err;
1539 	if (!PageUptodate(page)) {
1540 		ret = -EIO;
1541 		goto err;
1542 	}
1543 
1544 	if (e4b.bd_buddy_page == NULL) {
1545 		/*
1546 		 * If both the bitmap and buddy are in
1547 		 * the same page we don't need to force
1548 		 * init the buddy
1549 		 */
1550 		ret = 0;
1551 		goto err;
1552 	}
1553 	/* init buddy cache */
1554 	page = e4b.bd_buddy_page;
1555 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1556 	if (ret)
1557 		goto err;
1558 	if (!PageUptodate(page)) {
1559 		ret = -EIO;
1560 		goto err;
1561 	}
1562 err:
1563 	ext4_mb_put_buddy_page_lock(&e4b);
1564 	return ret;
1565 }
1566 
1567 /*
1568  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1569  * block group lock of all groups for this page; do not hold the BG lock when
1570  * calling this routine!
1571  */
1572 static noinline_for_stack int
1573 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1574 		       struct ext4_buddy *e4b, gfp_t gfp)
1575 {
1576 	int blocks_per_page;
1577 	int block;
1578 	int pnum;
1579 	int poff;
1580 	struct page *page;
1581 	int ret;
1582 	struct ext4_group_info *grp;
1583 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1584 	struct inode *inode = sbi->s_buddy_cache;
1585 
1586 	might_sleep();
1587 	mb_debug(sb, "load group %u\n", group);
1588 
1589 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1590 	grp = ext4_get_group_info(sb, group);
1591 	if (!grp)
1592 		return -EFSCORRUPTED;
1593 
1594 	e4b->bd_blkbits = sb->s_blocksize_bits;
1595 	e4b->bd_info = grp;
1596 	e4b->bd_sb = sb;
1597 	e4b->bd_group = group;
1598 	e4b->bd_buddy_page = NULL;
1599 	e4b->bd_bitmap_page = NULL;
1600 
1601 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1602 		/*
1603 		 * we need full data about the group
1604 		 * to make a good selection
1605 		 */
1606 		ret = ext4_mb_init_group(sb, group, gfp);
1607 		if (ret)
1608 			return ret;
1609 	}
1610 
1611 	/*
1612 	 * the buddy cache inode stores the block bitmap
1613 	 * and buddy information in consecutive blocks.
1614 	 * So for each group we need two blocks.
1615 	 */
1616 	block = group * 2;
1617 	pnum = block / blocks_per_page;
1618 	poff = block % blocks_per_page;
1619 
1620 	/* we could use find_or_create_page(), but it locks page
1621 	 * what we'd like to avoid in fast path ... */
1622 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1623 	if (page == NULL || !PageUptodate(page)) {
1624 		if (page)
1625 			/*
1626 			 * drop the page reference and try
1627 			 * to get the page with lock. If we
1628 			 * are not uptodate that implies
1629 			 * somebody just created the page but
1630 			 * is yet to initialize the same. So
1631 			 * wait for it to initialize.
1632 			 */
1633 			put_page(page);
1634 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1635 		if (page) {
1636 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1637 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1638 				/* should never happen */
1639 				unlock_page(page);
1640 				ret = -EINVAL;
1641 				goto err;
1642 			}
1643 			if (!PageUptodate(page)) {
1644 				ret = ext4_mb_init_cache(page, NULL, gfp);
1645 				if (ret) {
1646 					unlock_page(page);
1647 					goto err;
1648 				}
1649 				mb_cmp_bitmaps(e4b, page_address(page) +
1650 					       (poff * sb->s_blocksize));
1651 			}
1652 			unlock_page(page);
1653 		}
1654 	}
1655 	if (page == NULL) {
1656 		ret = -ENOMEM;
1657 		goto err;
1658 	}
1659 	if (!PageUptodate(page)) {
1660 		ret = -EIO;
1661 		goto err;
1662 	}
1663 
1664 	/* Pages marked accessed already */
1665 	e4b->bd_bitmap_page = page;
1666 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1667 
1668 	block++;
1669 	pnum = block / blocks_per_page;
1670 	poff = block % blocks_per_page;
1671 
1672 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1673 	if (page == NULL || !PageUptodate(page)) {
1674 		if (page)
1675 			put_page(page);
1676 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1677 		if (page) {
1678 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1679 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1680 				/* should never happen */
1681 				unlock_page(page);
1682 				ret = -EINVAL;
1683 				goto err;
1684 			}
1685 			if (!PageUptodate(page)) {
1686 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1687 							 gfp);
1688 				if (ret) {
1689 					unlock_page(page);
1690 					goto err;
1691 				}
1692 			}
1693 			unlock_page(page);
1694 		}
1695 	}
1696 	if (page == NULL) {
1697 		ret = -ENOMEM;
1698 		goto err;
1699 	}
1700 	if (!PageUptodate(page)) {
1701 		ret = -EIO;
1702 		goto err;
1703 	}
1704 
1705 	/* Pages marked accessed already */
1706 	e4b->bd_buddy_page = page;
1707 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1708 
1709 	return 0;
1710 
1711 err:
1712 	if (page)
1713 		put_page(page);
1714 	if (e4b->bd_bitmap_page)
1715 		put_page(e4b->bd_bitmap_page);
1716 
1717 	e4b->bd_buddy = NULL;
1718 	e4b->bd_bitmap = NULL;
1719 	return ret;
1720 }
1721 
1722 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1723 			      struct ext4_buddy *e4b)
1724 {
1725 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1726 }
1727 
1728 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1729 {
1730 	if (e4b->bd_bitmap_page)
1731 		put_page(e4b->bd_bitmap_page);
1732 	if (e4b->bd_buddy_page)
1733 		put_page(e4b->bd_buddy_page);
1734 }
1735 
1736 
1737 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1738 {
1739 	int order = 1, max;
1740 	void *bb;
1741 
1742 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1743 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1744 
1745 	while (order <= e4b->bd_blkbits + 1) {
1746 		bb = mb_find_buddy(e4b, order, &max);
1747 		if (!mb_test_bit(block >> order, bb)) {
1748 			/* this block is part of buddy of order 'order' */
1749 			return order;
1750 		}
1751 		order++;
1752 	}
1753 	return 0;
1754 }
1755 
1756 static void mb_clear_bits(void *bm, int cur, int len)
1757 {
1758 	__u32 *addr;
1759 
1760 	len = cur + len;
1761 	while (cur < len) {
1762 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1763 			/* fast path: clear whole word at once */
1764 			addr = bm + (cur >> 3);
1765 			*addr = 0;
1766 			cur += 32;
1767 			continue;
1768 		}
1769 		mb_clear_bit(cur, bm);
1770 		cur++;
1771 	}
1772 }
1773 
1774 /* clear bits in given range
1775  * will return first found zero bit if any, -1 otherwise
1776  */
1777 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1778 {
1779 	__u32 *addr;
1780 	int zero_bit = -1;
1781 
1782 	len = cur + len;
1783 	while (cur < len) {
1784 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1785 			/* fast path: clear whole word at once */
1786 			addr = bm + (cur >> 3);
1787 			if (*addr != (__u32)(-1) && zero_bit == -1)
1788 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1789 			*addr = 0;
1790 			cur += 32;
1791 			continue;
1792 		}
1793 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1794 			zero_bit = cur;
1795 		cur++;
1796 	}
1797 
1798 	return zero_bit;
1799 }
1800 
1801 void mb_set_bits(void *bm, int cur, int len)
1802 {
1803 	__u32 *addr;
1804 
1805 	len = cur + len;
1806 	while (cur < len) {
1807 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1808 			/* fast path: set whole word at once */
1809 			addr = bm + (cur >> 3);
1810 			*addr = 0xffffffff;
1811 			cur += 32;
1812 			continue;
1813 		}
1814 		mb_set_bit(cur, bm);
1815 		cur++;
1816 	}
1817 }
1818 
1819 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1820 {
1821 	if (mb_test_bit(*bit + side, bitmap)) {
1822 		mb_clear_bit(*bit, bitmap);
1823 		(*bit) -= side;
1824 		return 1;
1825 	}
1826 	else {
1827 		(*bit) += side;
1828 		mb_set_bit(*bit, bitmap);
1829 		return -1;
1830 	}
1831 }
1832 
1833 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1834 {
1835 	int max;
1836 	int order = 1;
1837 	void *buddy = mb_find_buddy(e4b, order, &max);
1838 
1839 	while (buddy) {
1840 		void *buddy2;
1841 
1842 		/* Bits in range [first; last] are known to be set since
1843 		 * corresponding blocks were allocated. Bits in range
1844 		 * (first; last) will stay set because they form buddies on
1845 		 * upper layer. We just deal with borders if they don't
1846 		 * align with upper layer and then go up.
1847 		 * Releasing entire group is all about clearing
1848 		 * single bit of highest order buddy.
1849 		 */
1850 
1851 		/* Example:
1852 		 * ---------------------------------
1853 		 * |   1   |   1   |   1   |   1   |
1854 		 * ---------------------------------
1855 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1856 		 * ---------------------------------
1857 		 *   0   1   2   3   4   5   6   7
1858 		 *      \_____________________/
1859 		 *
1860 		 * Neither [1] nor [6] is aligned to above layer.
1861 		 * Left neighbour [0] is free, so mark it busy,
1862 		 * decrease bb_counters and extend range to
1863 		 * [0; 6]
1864 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1865 		 * mark [6] free, increase bb_counters and shrink range to
1866 		 * [0; 5].
1867 		 * Then shift range to [0; 2], go up and do the same.
1868 		 */
1869 
1870 
1871 		if (first & 1)
1872 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1873 		if (!(last & 1))
1874 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1875 		if (first > last)
1876 			break;
1877 		order++;
1878 
1879 		buddy2 = mb_find_buddy(e4b, order, &max);
1880 		if (!buddy2) {
1881 			mb_clear_bits(buddy, first, last - first + 1);
1882 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1883 			break;
1884 		}
1885 		first >>= 1;
1886 		last >>= 1;
1887 		buddy = buddy2;
1888 	}
1889 }
1890 
1891 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1892 			   int first, int count)
1893 {
1894 	int left_is_free = 0;
1895 	int right_is_free = 0;
1896 	int block;
1897 	int last = first + count - 1;
1898 	struct super_block *sb = e4b->bd_sb;
1899 
1900 	if (WARN_ON(count == 0))
1901 		return;
1902 	BUG_ON(last >= (sb->s_blocksize << 3));
1903 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1904 	/* Don't bother if the block group is corrupt. */
1905 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1906 		return;
1907 
1908 	mb_check_buddy(e4b);
1909 	mb_free_blocks_double(inode, e4b, first, count);
1910 
1911 	/* access memory sequentially: check left neighbour,
1912 	 * clear range and then check right neighbour
1913 	 */
1914 	if (first != 0)
1915 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1916 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1917 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1918 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1919 
1920 	if (unlikely(block != -1)) {
1921 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1922 		ext4_fsblk_t blocknr;
1923 
1924 		/*
1925 		 * Fastcommit replay can free already freed blocks which
1926 		 * corrupts allocation info. Regenerate it.
1927 		 */
1928 		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1929 			mb_regenerate_buddy(e4b);
1930 			goto check;
1931 		}
1932 
1933 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1934 		blocknr += EXT4_C2B(sbi, block);
1935 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1936 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1937 		ext4_grp_locked_error(sb, e4b->bd_group,
1938 				      inode ? inode->i_ino : 0, blocknr,
1939 				      "freeing already freed block (bit %u); block bitmap corrupt.",
1940 				      block);
1941 		return;
1942 	}
1943 
1944 	this_cpu_inc(discard_pa_seq);
1945 	e4b->bd_info->bb_free += count;
1946 	if (first < e4b->bd_info->bb_first_free)
1947 		e4b->bd_info->bb_first_free = first;
1948 
1949 	/* let's maintain fragments counter */
1950 	if (left_is_free && right_is_free)
1951 		e4b->bd_info->bb_fragments--;
1952 	else if (!left_is_free && !right_is_free)
1953 		e4b->bd_info->bb_fragments++;
1954 
1955 	/* buddy[0] == bd_bitmap is a special case, so handle
1956 	 * it right away and let mb_buddy_mark_free stay free of
1957 	 * zero order checks.
1958 	 * Check if neighbours are to be coaleasced,
1959 	 * adjust bitmap bb_counters and borders appropriately.
1960 	 */
1961 	if (first & 1) {
1962 		first += !left_is_free;
1963 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1964 	}
1965 	if (!(last & 1)) {
1966 		last -= !right_is_free;
1967 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1968 	}
1969 
1970 	if (first <= last)
1971 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1972 
1973 	mb_set_largest_free_order(sb, e4b->bd_info);
1974 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1975 check:
1976 	mb_check_buddy(e4b);
1977 }
1978 
1979 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1980 				int needed, struct ext4_free_extent *ex)
1981 {
1982 	int max, order, next;
1983 	void *buddy;
1984 
1985 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1986 	BUG_ON(ex == NULL);
1987 
1988 	buddy = mb_find_buddy(e4b, 0, &max);
1989 	BUG_ON(buddy == NULL);
1990 	BUG_ON(block >= max);
1991 	if (mb_test_bit(block, buddy)) {
1992 		ex->fe_len = 0;
1993 		ex->fe_start = 0;
1994 		ex->fe_group = 0;
1995 		return 0;
1996 	}
1997 
1998 	/* find actual order */
1999 	order = mb_find_order_for_block(e4b, block);
2000 
2001 	ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2002 	ex->fe_start = block;
2003 	ex->fe_group = e4b->bd_group;
2004 
2005 	block = block >> order;
2006 
2007 	while (needed > ex->fe_len &&
2008 	       mb_find_buddy(e4b, order, &max)) {
2009 
2010 		if (block + 1 >= max)
2011 			break;
2012 
2013 		next = (block + 1) * (1 << order);
2014 		if (mb_test_bit(next, e4b->bd_bitmap))
2015 			break;
2016 
2017 		order = mb_find_order_for_block(e4b, next);
2018 
2019 		block = next >> order;
2020 		ex->fe_len += 1 << order;
2021 	}
2022 
2023 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2024 		/* Should never happen! (but apparently sometimes does?!?) */
2025 		WARN_ON(1);
2026 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2027 			"corruption or bug in mb_find_extent "
2028 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2029 			block, order, needed, ex->fe_group, ex->fe_start,
2030 			ex->fe_len, ex->fe_logical);
2031 		ex->fe_len = 0;
2032 		ex->fe_start = 0;
2033 		ex->fe_group = 0;
2034 	}
2035 	return ex->fe_len;
2036 }
2037 
2038 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2039 {
2040 	int ord;
2041 	int mlen = 0;
2042 	int max = 0;
2043 	int cur;
2044 	int start = ex->fe_start;
2045 	int len = ex->fe_len;
2046 	unsigned ret = 0;
2047 	int len0 = len;
2048 	void *buddy;
2049 	bool split = false;
2050 
2051 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2052 	BUG_ON(e4b->bd_group != ex->fe_group);
2053 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2054 	mb_check_buddy(e4b);
2055 	mb_mark_used_double(e4b, start, len);
2056 
2057 	this_cpu_inc(discard_pa_seq);
2058 	e4b->bd_info->bb_free -= len;
2059 	if (e4b->bd_info->bb_first_free == start)
2060 		e4b->bd_info->bb_first_free += len;
2061 
2062 	/* let's maintain fragments counter */
2063 	if (start != 0)
2064 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2065 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2066 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2067 	if (mlen && max)
2068 		e4b->bd_info->bb_fragments++;
2069 	else if (!mlen && !max)
2070 		e4b->bd_info->bb_fragments--;
2071 
2072 	/* let's maintain buddy itself */
2073 	while (len) {
2074 		if (!split)
2075 			ord = mb_find_order_for_block(e4b, start);
2076 
2077 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2078 			/* the whole chunk may be allocated at once! */
2079 			mlen = 1 << ord;
2080 			if (!split)
2081 				buddy = mb_find_buddy(e4b, ord, &max);
2082 			else
2083 				split = false;
2084 			BUG_ON((start >> ord) >= max);
2085 			mb_set_bit(start >> ord, buddy);
2086 			e4b->bd_info->bb_counters[ord]--;
2087 			start += mlen;
2088 			len -= mlen;
2089 			BUG_ON(len < 0);
2090 			continue;
2091 		}
2092 
2093 		/* store for history */
2094 		if (ret == 0)
2095 			ret = len | (ord << 16);
2096 
2097 		/* we have to split large buddy */
2098 		BUG_ON(ord <= 0);
2099 		buddy = mb_find_buddy(e4b, ord, &max);
2100 		mb_set_bit(start >> ord, buddy);
2101 		e4b->bd_info->bb_counters[ord]--;
2102 
2103 		ord--;
2104 		cur = (start >> ord) & ~1U;
2105 		buddy = mb_find_buddy(e4b, ord, &max);
2106 		mb_clear_bit(cur, buddy);
2107 		mb_clear_bit(cur + 1, buddy);
2108 		e4b->bd_info->bb_counters[ord]++;
2109 		e4b->bd_info->bb_counters[ord]++;
2110 		split = true;
2111 	}
2112 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2113 
2114 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2115 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2116 	mb_check_buddy(e4b);
2117 
2118 	return ret;
2119 }
2120 
2121 /*
2122  * Must be called under group lock!
2123  */
2124 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2125 					struct ext4_buddy *e4b)
2126 {
2127 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2128 	int ret;
2129 
2130 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2131 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2132 
2133 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2134 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2135 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2136 
2137 	/* preallocation can change ac_b_ex, thus we store actually
2138 	 * allocated blocks for history */
2139 	ac->ac_f_ex = ac->ac_b_ex;
2140 
2141 	ac->ac_status = AC_STATUS_FOUND;
2142 	ac->ac_tail = ret & 0xffff;
2143 	ac->ac_buddy = ret >> 16;
2144 
2145 	/*
2146 	 * take the page reference. We want the page to be pinned
2147 	 * so that we don't get a ext4_mb_init_cache_call for this
2148 	 * group until we update the bitmap. That would mean we
2149 	 * double allocate blocks. The reference is dropped
2150 	 * in ext4_mb_release_context
2151 	 */
2152 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2153 	get_page(ac->ac_bitmap_page);
2154 	ac->ac_buddy_page = e4b->bd_buddy_page;
2155 	get_page(ac->ac_buddy_page);
2156 	/* store last allocated for subsequent stream allocation */
2157 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2158 		spin_lock(&sbi->s_md_lock);
2159 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2160 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2161 		spin_unlock(&sbi->s_md_lock);
2162 	}
2163 	/*
2164 	 * As we've just preallocated more space than
2165 	 * user requested originally, we store allocated
2166 	 * space in a special descriptor.
2167 	 */
2168 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2169 		ext4_mb_new_preallocation(ac);
2170 
2171 }
2172 
2173 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2174 					struct ext4_buddy *e4b,
2175 					int finish_group)
2176 {
2177 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2178 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2179 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2180 
2181 	if (ac->ac_status == AC_STATUS_FOUND)
2182 		return;
2183 	/*
2184 	 * We don't want to scan for a whole year
2185 	 */
2186 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2187 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2188 		ac->ac_status = AC_STATUS_BREAK;
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * Haven't found good chunk so far, let's continue
2194 	 */
2195 	if (bex->fe_len < gex->fe_len)
2196 		return;
2197 
2198 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2199 		ext4_mb_use_best_found(ac, e4b);
2200 }
2201 
2202 /*
2203  * The routine checks whether found extent is good enough. If it is,
2204  * then the extent gets marked used and flag is set to the context
2205  * to stop scanning. Otherwise, the extent is compared with the
2206  * previous found extent and if new one is better, then it's stored
2207  * in the context. Later, the best found extent will be used, if
2208  * mballoc can't find good enough extent.
2209  *
2210  * The algorithm used is roughly as follows:
2211  *
2212  * * If free extent found is exactly as big as goal, then
2213  *   stop the scan and use it immediately
2214  *
2215  * * If free extent found is smaller than goal, then keep retrying
2216  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2217  *   that stop scanning and use whatever we have.
2218  *
2219  * * If free extent found is bigger than goal, then keep retrying
2220  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2221  *   stopping the scan and using the extent.
2222  *
2223  *
2224  * FIXME: real allocation policy is to be designed yet!
2225  */
2226 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2227 					struct ext4_free_extent *ex,
2228 					struct ext4_buddy *e4b)
2229 {
2230 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2231 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2232 
2233 	BUG_ON(ex->fe_len <= 0);
2234 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2235 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2236 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2237 
2238 	ac->ac_found++;
2239 	ac->ac_cX_found[ac->ac_criteria]++;
2240 
2241 	/*
2242 	 * The special case - take what you catch first
2243 	 */
2244 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2245 		*bex = *ex;
2246 		ext4_mb_use_best_found(ac, e4b);
2247 		return;
2248 	}
2249 
2250 	/*
2251 	 * Let's check whether the chuck is good enough
2252 	 */
2253 	if (ex->fe_len == gex->fe_len) {
2254 		*bex = *ex;
2255 		ext4_mb_use_best_found(ac, e4b);
2256 		return;
2257 	}
2258 
2259 	/*
2260 	 * If this is first found extent, just store it in the context
2261 	 */
2262 	if (bex->fe_len == 0) {
2263 		*bex = *ex;
2264 		return;
2265 	}
2266 
2267 	/*
2268 	 * If new found extent is better, store it in the context
2269 	 */
2270 	if (bex->fe_len < gex->fe_len) {
2271 		/* if the request isn't satisfied, any found extent
2272 		 * larger than previous best one is better */
2273 		if (ex->fe_len > bex->fe_len)
2274 			*bex = *ex;
2275 	} else if (ex->fe_len > gex->fe_len) {
2276 		/* if the request is satisfied, then we try to find
2277 		 * an extent that still satisfy the request, but is
2278 		 * smaller than previous one */
2279 		if (ex->fe_len < bex->fe_len)
2280 			*bex = *ex;
2281 	}
2282 
2283 	ext4_mb_check_limits(ac, e4b, 0);
2284 }
2285 
2286 static noinline_for_stack
2287 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2288 					struct ext4_buddy *e4b)
2289 {
2290 	struct ext4_free_extent ex = ac->ac_b_ex;
2291 	ext4_group_t group = ex.fe_group;
2292 	int max;
2293 	int err;
2294 
2295 	BUG_ON(ex.fe_len <= 0);
2296 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2297 	if (err)
2298 		return;
2299 
2300 	ext4_lock_group(ac->ac_sb, group);
2301 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2302 		goto out;
2303 
2304 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2305 
2306 	if (max > 0) {
2307 		ac->ac_b_ex = ex;
2308 		ext4_mb_use_best_found(ac, e4b);
2309 	}
2310 
2311 out:
2312 	ext4_unlock_group(ac->ac_sb, group);
2313 	ext4_mb_unload_buddy(e4b);
2314 }
2315 
2316 static noinline_for_stack
2317 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2318 				struct ext4_buddy *e4b)
2319 {
2320 	ext4_group_t group = ac->ac_g_ex.fe_group;
2321 	int max;
2322 	int err;
2323 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2324 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2325 	struct ext4_free_extent ex;
2326 
2327 	if (!grp)
2328 		return -EFSCORRUPTED;
2329 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2330 		return 0;
2331 	if (grp->bb_free == 0)
2332 		return 0;
2333 
2334 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2335 	if (err)
2336 		return err;
2337 
2338 	ext4_lock_group(ac->ac_sb, group);
2339 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2340 		goto out;
2341 
2342 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2343 			     ac->ac_g_ex.fe_len, &ex);
2344 	ex.fe_logical = 0xDEADFA11; /* debug value */
2345 
2346 	if (max >= ac->ac_g_ex.fe_len &&
2347 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2348 		ext4_fsblk_t start;
2349 
2350 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2351 		/* use do_div to get remainder (would be 64-bit modulo) */
2352 		if (do_div(start, sbi->s_stripe) == 0) {
2353 			ac->ac_found++;
2354 			ac->ac_b_ex = ex;
2355 			ext4_mb_use_best_found(ac, e4b);
2356 		}
2357 	} else if (max >= ac->ac_g_ex.fe_len) {
2358 		BUG_ON(ex.fe_len <= 0);
2359 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2360 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2361 		ac->ac_found++;
2362 		ac->ac_b_ex = ex;
2363 		ext4_mb_use_best_found(ac, e4b);
2364 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2365 		/* Sometimes, caller may want to merge even small
2366 		 * number of blocks to an existing extent */
2367 		BUG_ON(ex.fe_len <= 0);
2368 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2369 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2370 		ac->ac_found++;
2371 		ac->ac_b_ex = ex;
2372 		ext4_mb_use_best_found(ac, e4b);
2373 	}
2374 out:
2375 	ext4_unlock_group(ac->ac_sb, group);
2376 	ext4_mb_unload_buddy(e4b);
2377 
2378 	return 0;
2379 }
2380 
2381 /*
2382  * The routine scans buddy structures (not bitmap!) from given order
2383  * to max order and tries to find big enough chunk to satisfy the req
2384  */
2385 static noinline_for_stack
2386 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2387 					struct ext4_buddy *e4b)
2388 {
2389 	struct super_block *sb = ac->ac_sb;
2390 	struct ext4_group_info *grp = e4b->bd_info;
2391 	void *buddy;
2392 	int i;
2393 	int k;
2394 	int max;
2395 
2396 	BUG_ON(ac->ac_2order <= 0);
2397 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2398 		if (grp->bb_counters[i] == 0)
2399 			continue;
2400 
2401 		buddy = mb_find_buddy(e4b, i, &max);
2402 		if (WARN_RATELIMIT(buddy == NULL,
2403 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2404 			continue;
2405 
2406 		k = mb_find_next_zero_bit(buddy, max, 0);
2407 		if (k >= max) {
2408 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2409 					e4b->bd_group,
2410 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2411 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2412 				"%d free clusters of order %d. But found 0",
2413 				grp->bb_counters[i], i);
2414 			break;
2415 		}
2416 		ac->ac_found++;
2417 		ac->ac_cX_found[ac->ac_criteria]++;
2418 
2419 		ac->ac_b_ex.fe_len = 1 << i;
2420 		ac->ac_b_ex.fe_start = k << i;
2421 		ac->ac_b_ex.fe_group = e4b->bd_group;
2422 
2423 		ext4_mb_use_best_found(ac, e4b);
2424 
2425 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2426 
2427 		if (EXT4_SB(sb)->s_mb_stats)
2428 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2429 
2430 		break;
2431 	}
2432 }
2433 
2434 /*
2435  * The routine scans the group and measures all found extents.
2436  * In order to optimize scanning, caller must pass number of
2437  * free blocks in the group, so the routine can know upper limit.
2438  */
2439 static noinline_for_stack
2440 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2441 					struct ext4_buddy *e4b)
2442 {
2443 	struct super_block *sb = ac->ac_sb;
2444 	void *bitmap = e4b->bd_bitmap;
2445 	struct ext4_free_extent ex;
2446 	int i, j, freelen;
2447 	int free;
2448 
2449 	free = e4b->bd_info->bb_free;
2450 	if (WARN_ON(free <= 0))
2451 		return;
2452 
2453 	i = e4b->bd_info->bb_first_free;
2454 
2455 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2456 		i = mb_find_next_zero_bit(bitmap,
2457 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2458 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2459 			/*
2460 			 * IF we have corrupt bitmap, we won't find any
2461 			 * free blocks even though group info says we
2462 			 * have free blocks
2463 			 */
2464 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2465 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2466 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2467 					"%d free clusters as per "
2468 					"group info. But bitmap says 0",
2469 					free);
2470 			break;
2471 		}
2472 
2473 		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2474 			/*
2475 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2476 			 * sure that this group will have a large enough
2477 			 * continuous free extent, so skip over the smaller free
2478 			 * extents
2479 			 */
2480 			j = mb_find_next_bit(bitmap,
2481 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2482 			freelen = j - i;
2483 
2484 			if (freelen < ac->ac_g_ex.fe_len) {
2485 				i = j;
2486 				free -= freelen;
2487 				continue;
2488 			}
2489 		}
2490 
2491 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2492 		if (WARN_ON(ex.fe_len <= 0))
2493 			break;
2494 		if (free < ex.fe_len) {
2495 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2496 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2497 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2498 					"%d free clusters as per "
2499 					"group info. But got %d blocks",
2500 					free, ex.fe_len);
2501 			/*
2502 			 * The number of free blocks differs. This mostly
2503 			 * indicate that the bitmap is corrupt. So exit
2504 			 * without claiming the space.
2505 			 */
2506 			break;
2507 		}
2508 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2509 		ext4_mb_measure_extent(ac, &ex, e4b);
2510 
2511 		i += ex.fe_len;
2512 		free -= ex.fe_len;
2513 	}
2514 
2515 	ext4_mb_check_limits(ac, e4b, 1);
2516 }
2517 
2518 /*
2519  * This is a special case for storages like raid5
2520  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2521  */
2522 static noinline_for_stack
2523 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2524 				 struct ext4_buddy *e4b)
2525 {
2526 	struct super_block *sb = ac->ac_sb;
2527 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2528 	void *bitmap = e4b->bd_bitmap;
2529 	struct ext4_free_extent ex;
2530 	ext4_fsblk_t first_group_block;
2531 	ext4_fsblk_t a;
2532 	ext4_grpblk_t i, stripe;
2533 	int max;
2534 
2535 	BUG_ON(sbi->s_stripe == 0);
2536 
2537 	/* find first stripe-aligned block in group */
2538 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2539 
2540 	a = first_group_block + sbi->s_stripe - 1;
2541 	do_div(a, sbi->s_stripe);
2542 	i = (a * sbi->s_stripe) - first_group_block;
2543 
2544 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2545 	i = EXT4_B2C(sbi, i);
2546 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2547 		if (!mb_test_bit(i, bitmap)) {
2548 			max = mb_find_extent(e4b, i, stripe, &ex);
2549 			if (max >= stripe) {
2550 				ac->ac_found++;
2551 				ac->ac_cX_found[ac->ac_criteria]++;
2552 				ex.fe_logical = 0xDEADF00D; /* debug value */
2553 				ac->ac_b_ex = ex;
2554 				ext4_mb_use_best_found(ac, e4b);
2555 				break;
2556 			}
2557 		}
2558 		i += stripe;
2559 	}
2560 }
2561 
2562 /*
2563  * This is also called BEFORE we load the buddy bitmap.
2564  * Returns either 1 or 0 indicating that the group is either suitable
2565  * for the allocation or not.
2566  */
2567 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2568 				ext4_group_t group, enum criteria cr)
2569 {
2570 	ext4_grpblk_t free, fragments;
2571 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2572 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2573 
2574 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2575 
2576 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2577 		return false;
2578 
2579 	free = grp->bb_free;
2580 	if (free == 0)
2581 		return false;
2582 
2583 	fragments = grp->bb_fragments;
2584 	if (fragments == 0)
2585 		return false;
2586 
2587 	switch (cr) {
2588 	case CR_POWER2_ALIGNED:
2589 		BUG_ON(ac->ac_2order == 0);
2590 
2591 		/* Avoid using the first bg of a flexgroup for data files */
2592 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2593 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2594 		    ((group % flex_size) == 0))
2595 			return false;
2596 
2597 		if (free < ac->ac_g_ex.fe_len)
2598 			return false;
2599 
2600 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2601 			return true;
2602 
2603 		if (grp->bb_largest_free_order < ac->ac_2order)
2604 			return false;
2605 
2606 		return true;
2607 	case CR_GOAL_LEN_FAST:
2608 	case CR_BEST_AVAIL_LEN:
2609 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2610 			return true;
2611 		break;
2612 	case CR_GOAL_LEN_SLOW:
2613 		if (free >= ac->ac_g_ex.fe_len)
2614 			return true;
2615 		break;
2616 	case CR_ANY_FREE:
2617 		return true;
2618 	default:
2619 		BUG();
2620 	}
2621 
2622 	return false;
2623 }
2624 
2625 /*
2626  * This could return negative error code if something goes wrong
2627  * during ext4_mb_init_group(). This should not be called with
2628  * ext4_lock_group() held.
2629  *
2630  * Note: because we are conditionally operating with the group lock in
2631  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2632  * function using __acquire and __release.  This means we need to be
2633  * super careful before messing with the error path handling via "goto
2634  * out"!
2635  */
2636 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2637 				     ext4_group_t group, enum criteria cr)
2638 {
2639 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2640 	struct super_block *sb = ac->ac_sb;
2641 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2642 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2643 	ext4_grpblk_t free;
2644 	int ret = 0;
2645 
2646 	if (!grp)
2647 		return -EFSCORRUPTED;
2648 	if (sbi->s_mb_stats)
2649 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2650 	if (should_lock) {
2651 		ext4_lock_group(sb, group);
2652 		__release(ext4_group_lock_ptr(sb, group));
2653 	}
2654 	free = grp->bb_free;
2655 	if (free == 0)
2656 		goto out;
2657 	/*
2658 	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2659 	 * can't possibly satisfy the full goal request due to insufficient
2660 	 * free blocks.
2661 	 */
2662 	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2663 		goto out;
2664 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2665 		goto out;
2666 	if (should_lock) {
2667 		__acquire(ext4_group_lock_ptr(sb, group));
2668 		ext4_unlock_group(sb, group);
2669 	}
2670 
2671 	/* We only do this if the grp has never been initialized */
2672 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2673 		struct ext4_group_desc *gdp =
2674 			ext4_get_group_desc(sb, group, NULL);
2675 		int ret;
2676 
2677 		/*
2678 		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2679 		 * search to find large good chunks almost for free. If buddy
2680 		 * data is not ready, then this optimization makes no sense. But
2681 		 * we never skip the first block group in a flex_bg, since this
2682 		 * gets used for metadata block allocation, and we want to make
2683 		 * sure we locate metadata blocks in the first block group in
2684 		 * the flex_bg if possible.
2685 		 */
2686 		if (!ext4_mb_cr_expensive(cr) &&
2687 		    (!sbi->s_log_groups_per_flex ||
2688 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2689 		    !(ext4_has_group_desc_csum(sb) &&
2690 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2691 			return 0;
2692 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2693 		if (ret)
2694 			return ret;
2695 	}
2696 
2697 	if (should_lock) {
2698 		ext4_lock_group(sb, group);
2699 		__release(ext4_group_lock_ptr(sb, group));
2700 	}
2701 	ret = ext4_mb_good_group(ac, group, cr);
2702 out:
2703 	if (should_lock) {
2704 		__acquire(ext4_group_lock_ptr(sb, group));
2705 		ext4_unlock_group(sb, group);
2706 	}
2707 	return ret;
2708 }
2709 
2710 /*
2711  * Start prefetching @nr block bitmaps starting at @group.
2712  * Return the next group which needs to be prefetched.
2713  */
2714 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2715 			      unsigned int nr, int *cnt)
2716 {
2717 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2718 	struct buffer_head *bh;
2719 	struct blk_plug plug;
2720 
2721 	blk_start_plug(&plug);
2722 	while (nr-- > 0) {
2723 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2724 								  NULL);
2725 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2726 
2727 		/*
2728 		 * Prefetch block groups with free blocks; but don't
2729 		 * bother if it is marked uninitialized on disk, since
2730 		 * it won't require I/O to read.  Also only try to
2731 		 * prefetch once, so we avoid getblk() call, which can
2732 		 * be expensive.
2733 		 */
2734 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2735 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2736 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2737 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2738 			if (bh && !IS_ERR(bh)) {
2739 				if (!buffer_uptodate(bh) && cnt)
2740 					(*cnt)++;
2741 				brelse(bh);
2742 			}
2743 		}
2744 		if (++group >= ngroups)
2745 			group = 0;
2746 	}
2747 	blk_finish_plug(&plug);
2748 	return group;
2749 }
2750 
2751 /*
2752  * Prefetching reads the block bitmap into the buffer cache; but we
2753  * need to make sure that the buddy bitmap in the page cache has been
2754  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2755  * is not yet completed, or indeed if it was not initiated by
2756  * ext4_mb_prefetch did not start the I/O.
2757  *
2758  * TODO: We should actually kick off the buddy bitmap setup in a work
2759  * queue when the buffer I/O is completed, so that we don't block
2760  * waiting for the block allocation bitmap read to finish when
2761  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2762  */
2763 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2764 			   unsigned int nr)
2765 {
2766 	struct ext4_group_desc *gdp;
2767 	struct ext4_group_info *grp;
2768 
2769 	while (nr-- > 0) {
2770 		if (!group)
2771 			group = ext4_get_groups_count(sb);
2772 		group--;
2773 		gdp = ext4_get_group_desc(sb, group, NULL);
2774 		grp = ext4_get_group_info(sb, group);
2775 
2776 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2777 		    ext4_free_group_clusters(sb, gdp) > 0) {
2778 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2779 				break;
2780 		}
2781 	}
2782 }
2783 
2784 static noinline_for_stack int
2785 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2786 {
2787 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2788 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2789 	int err = 0, first_err = 0;
2790 	unsigned int nr = 0, prefetch_ios = 0;
2791 	struct ext4_sb_info *sbi;
2792 	struct super_block *sb;
2793 	struct ext4_buddy e4b;
2794 	int lost;
2795 
2796 	sb = ac->ac_sb;
2797 	sbi = EXT4_SB(sb);
2798 	ngroups = ext4_get_groups_count(sb);
2799 	/* non-extent files are limited to low blocks/groups */
2800 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2801 		ngroups = sbi->s_blockfile_groups;
2802 
2803 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2804 
2805 	/* first, try the goal */
2806 	err = ext4_mb_find_by_goal(ac, &e4b);
2807 	if (err || ac->ac_status == AC_STATUS_FOUND)
2808 		goto out;
2809 
2810 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2811 		goto out;
2812 
2813 	/*
2814 	 * ac->ac_2order is set only if the fe_len is a power of 2
2815 	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2816 	 * so that we try exact allocation using buddy.
2817 	 */
2818 	i = fls(ac->ac_g_ex.fe_len);
2819 	ac->ac_2order = 0;
2820 	/*
2821 	 * We search using buddy data only if the order of the request
2822 	 * is greater than equal to the sbi_s_mb_order2_reqs
2823 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2824 	 * We also support searching for power-of-two requests only for
2825 	 * requests upto maximum buddy size we have constructed.
2826 	 */
2827 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2828 		if (is_power_of_2(ac->ac_g_ex.fe_len))
2829 			ac->ac_2order = array_index_nospec(i - 1,
2830 							   MB_NUM_ORDERS(sb));
2831 	}
2832 
2833 	/* if stream allocation is enabled, use global goal */
2834 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2835 		/* TBD: may be hot point */
2836 		spin_lock(&sbi->s_md_lock);
2837 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2838 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2839 		spin_unlock(&sbi->s_md_lock);
2840 	}
2841 
2842 	/*
2843 	 * Let's just scan groups to find more-less suitable blocks We
2844 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2845 	 * aligned, in which case let's do that faster approach first.
2846 	 */
2847 	if (ac->ac_2order)
2848 		cr = CR_POWER2_ALIGNED;
2849 repeat:
2850 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2851 		ac->ac_criteria = cr;
2852 		/*
2853 		 * searching for the right group start
2854 		 * from the goal value specified
2855 		 */
2856 		group = ac->ac_g_ex.fe_group;
2857 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2858 		prefetch_grp = group;
2859 
2860 		for (i = 0, new_cr = cr; i < ngroups; i++,
2861 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2862 			int ret = 0;
2863 
2864 			cond_resched();
2865 			if (new_cr != cr) {
2866 				cr = new_cr;
2867 				goto repeat;
2868 			}
2869 
2870 			/*
2871 			 * Batch reads of the block allocation bitmaps
2872 			 * to get multiple READs in flight; limit
2873 			 * prefetching at inexpensive CR, otherwise mballoc
2874 			 * can spend a lot of time loading imperfect groups
2875 			 */
2876 			if ((prefetch_grp == group) &&
2877 			    (ext4_mb_cr_expensive(cr) ||
2878 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2879 				nr = sbi->s_mb_prefetch;
2880 				if (ext4_has_feature_flex_bg(sb)) {
2881 					nr = 1 << sbi->s_log_groups_per_flex;
2882 					nr -= group & (nr - 1);
2883 					nr = min(nr, sbi->s_mb_prefetch);
2884 				}
2885 				prefetch_grp = ext4_mb_prefetch(sb, group,
2886 							nr, &prefetch_ios);
2887 			}
2888 
2889 			/* This now checks without needing the buddy page */
2890 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2891 			if (ret <= 0) {
2892 				if (!first_err)
2893 					first_err = ret;
2894 				continue;
2895 			}
2896 
2897 			err = ext4_mb_load_buddy(sb, group, &e4b);
2898 			if (err)
2899 				goto out;
2900 
2901 			ext4_lock_group(sb, group);
2902 
2903 			/*
2904 			 * We need to check again after locking the
2905 			 * block group
2906 			 */
2907 			ret = ext4_mb_good_group(ac, group, cr);
2908 			if (ret == 0) {
2909 				ext4_unlock_group(sb, group);
2910 				ext4_mb_unload_buddy(&e4b);
2911 				continue;
2912 			}
2913 
2914 			ac->ac_groups_scanned++;
2915 			if (cr == CR_POWER2_ALIGNED)
2916 				ext4_mb_simple_scan_group(ac, &e4b);
2917 			else {
2918 				bool is_stripe_aligned = sbi->s_stripe &&
2919 					!(ac->ac_g_ex.fe_len %
2920 					  EXT4_B2C(sbi, sbi->s_stripe));
2921 
2922 				if ((cr == CR_GOAL_LEN_FAST ||
2923 				     cr == CR_BEST_AVAIL_LEN) &&
2924 				    is_stripe_aligned)
2925 					ext4_mb_scan_aligned(ac, &e4b);
2926 
2927 				if (ac->ac_status == AC_STATUS_CONTINUE)
2928 					ext4_mb_complex_scan_group(ac, &e4b);
2929 			}
2930 
2931 			ext4_unlock_group(sb, group);
2932 			ext4_mb_unload_buddy(&e4b);
2933 
2934 			if (ac->ac_status != AC_STATUS_CONTINUE)
2935 				break;
2936 		}
2937 		/* Processed all groups and haven't found blocks */
2938 		if (sbi->s_mb_stats && i == ngroups)
2939 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2940 
2941 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2942 			/* Reset goal length to original goal length before
2943 			 * falling into CR_GOAL_LEN_SLOW */
2944 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2945 	}
2946 
2947 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2948 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2949 		/*
2950 		 * We've been searching too long. Let's try to allocate
2951 		 * the best chunk we've found so far
2952 		 */
2953 		ext4_mb_try_best_found(ac, &e4b);
2954 		if (ac->ac_status != AC_STATUS_FOUND) {
2955 			/*
2956 			 * Someone more lucky has already allocated it.
2957 			 * The only thing we can do is just take first
2958 			 * found block(s)
2959 			 */
2960 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2961 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2962 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2963 				 ac->ac_b_ex.fe_len, lost);
2964 
2965 			ac->ac_b_ex.fe_group = 0;
2966 			ac->ac_b_ex.fe_start = 0;
2967 			ac->ac_b_ex.fe_len = 0;
2968 			ac->ac_status = AC_STATUS_CONTINUE;
2969 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2970 			cr = CR_ANY_FREE;
2971 			goto repeat;
2972 		}
2973 	}
2974 
2975 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2976 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2977 out:
2978 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2979 		err = first_err;
2980 
2981 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2982 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2983 		 ac->ac_flags, cr, err);
2984 
2985 	if (nr)
2986 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2987 
2988 	return err;
2989 }
2990 
2991 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2992 {
2993 	struct super_block *sb = pde_data(file_inode(seq->file));
2994 	ext4_group_t group;
2995 
2996 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2997 		return NULL;
2998 	group = *pos + 1;
2999 	return (void *) ((unsigned long) group);
3000 }
3001 
3002 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3003 {
3004 	struct super_block *sb = pde_data(file_inode(seq->file));
3005 	ext4_group_t group;
3006 
3007 	++*pos;
3008 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3009 		return NULL;
3010 	group = *pos + 1;
3011 	return (void *) ((unsigned long) group);
3012 }
3013 
3014 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3015 {
3016 	struct super_block *sb = pde_data(file_inode(seq->file));
3017 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3018 	int i, err;
3019 	char nbuf[16];
3020 	struct ext4_buddy e4b;
3021 	struct ext4_group_info *grinfo;
3022 	unsigned char blocksize_bits = min_t(unsigned char,
3023 					     sb->s_blocksize_bits,
3024 					     EXT4_MAX_BLOCK_LOG_SIZE);
3025 	struct sg {
3026 		struct ext4_group_info info;
3027 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3028 	} sg;
3029 
3030 	group--;
3031 	if (group == 0)
3032 		seq_puts(seq, "#group: free  frags first ["
3033 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3034 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3035 
3036 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3037 		sizeof(struct ext4_group_info);
3038 
3039 	grinfo = ext4_get_group_info(sb, group);
3040 	if (!grinfo)
3041 		return 0;
3042 	/* Load the group info in memory only if not already loaded. */
3043 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3044 		err = ext4_mb_load_buddy(sb, group, &e4b);
3045 		if (err) {
3046 			seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3047 			return 0;
3048 		}
3049 		ext4_mb_unload_buddy(&e4b);
3050 	}
3051 
3052 	/*
3053 	 * We care only about free space counters in the group info and
3054 	 * these are safe to access even after the buddy has been unloaded
3055 	 */
3056 	memcpy(&sg, grinfo, i);
3057 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3058 			sg.info.bb_fragments, sg.info.bb_first_free);
3059 	for (i = 0; i <= 13; i++)
3060 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3061 				sg.info.bb_counters[i] : 0);
3062 	seq_puts(seq, " ]");
3063 	if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3064 		seq_puts(seq, " Block bitmap corrupted!");
3065 	seq_puts(seq, "\n");
3066 
3067 	return 0;
3068 }
3069 
3070 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3071 {
3072 }
3073 
3074 const struct seq_operations ext4_mb_seq_groups_ops = {
3075 	.start  = ext4_mb_seq_groups_start,
3076 	.next   = ext4_mb_seq_groups_next,
3077 	.stop   = ext4_mb_seq_groups_stop,
3078 	.show   = ext4_mb_seq_groups_show,
3079 };
3080 
3081 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3082 {
3083 	struct super_block *sb = seq->private;
3084 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3085 
3086 	seq_puts(seq, "mballoc:\n");
3087 	if (!sbi->s_mb_stats) {
3088 		seq_puts(seq, "\tmb stats collection turned off.\n");
3089 		seq_puts(
3090 			seq,
3091 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3092 		return 0;
3093 	}
3094 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3095 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3096 
3097 	seq_printf(seq, "\tgroups_scanned: %u\n",
3098 		   atomic_read(&sbi->s_bal_groups_scanned));
3099 
3100 	/* CR_POWER2_ALIGNED stats */
3101 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3102 	seq_printf(seq, "\t\thits: %llu\n",
3103 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3104 	seq_printf(
3105 		seq, "\t\tgroups_considered: %llu\n",
3106 		atomic64_read(
3107 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3108 	seq_printf(seq, "\t\textents_scanned: %u\n",
3109 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3110 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3111 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3112 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3113 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3114 
3115 	/* CR_GOAL_LEN_FAST stats */
3116 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3117 	seq_printf(seq, "\t\thits: %llu\n",
3118 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3119 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3120 		   atomic64_read(
3121 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3122 	seq_printf(seq, "\t\textents_scanned: %u\n",
3123 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3124 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3125 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3126 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3127 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3128 
3129 	/* CR_BEST_AVAIL_LEN stats */
3130 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3131 	seq_printf(seq, "\t\thits: %llu\n",
3132 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3133 	seq_printf(
3134 		seq, "\t\tgroups_considered: %llu\n",
3135 		atomic64_read(
3136 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3137 	seq_printf(seq, "\t\textents_scanned: %u\n",
3138 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3139 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3140 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3141 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3142 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3143 
3144 	/* CR_GOAL_LEN_SLOW stats */
3145 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3146 	seq_printf(seq, "\t\thits: %llu\n",
3147 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3148 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3149 		   atomic64_read(
3150 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3151 	seq_printf(seq, "\t\textents_scanned: %u\n",
3152 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3153 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3154 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3155 
3156 	/* CR_ANY_FREE stats */
3157 	seq_puts(seq, "\tcr_any_free_stats:\n");
3158 	seq_printf(seq, "\t\thits: %llu\n",
3159 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3160 	seq_printf(
3161 		seq, "\t\tgroups_considered: %llu\n",
3162 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3163 	seq_printf(seq, "\t\textents_scanned: %u\n",
3164 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3165 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3166 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3167 
3168 	/* Aggregates */
3169 	seq_printf(seq, "\textents_scanned: %u\n",
3170 		   atomic_read(&sbi->s_bal_ex_scanned));
3171 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3172 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3173 		   atomic_read(&sbi->s_bal_len_goals));
3174 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3175 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3176 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3177 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3178 		   atomic_read(&sbi->s_mb_buddies_generated),
3179 		   ext4_get_groups_count(sb));
3180 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3181 		   atomic64_read(&sbi->s_mb_generation_time));
3182 	seq_printf(seq, "\tpreallocated: %u\n",
3183 		   atomic_read(&sbi->s_mb_preallocated));
3184 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3185 	return 0;
3186 }
3187 
3188 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3189 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3190 {
3191 	struct super_block *sb = pde_data(file_inode(seq->file));
3192 	unsigned long position;
3193 
3194 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3195 		return NULL;
3196 	position = *pos + 1;
3197 	return (void *) ((unsigned long) position);
3198 }
3199 
3200 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3201 {
3202 	struct super_block *sb = pde_data(file_inode(seq->file));
3203 	unsigned long position;
3204 
3205 	++*pos;
3206 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3207 		return NULL;
3208 	position = *pos + 1;
3209 	return (void *) ((unsigned long) position);
3210 }
3211 
3212 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3213 {
3214 	struct super_block *sb = pde_data(file_inode(seq->file));
3215 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3216 	unsigned long position = ((unsigned long) v);
3217 	struct ext4_group_info *grp;
3218 	unsigned int count;
3219 
3220 	position--;
3221 	if (position >= MB_NUM_ORDERS(sb)) {
3222 		position -= MB_NUM_ORDERS(sb);
3223 		if (position == 0)
3224 			seq_puts(seq, "avg_fragment_size_lists:\n");
3225 
3226 		count = 0;
3227 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3228 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3229 				    bb_avg_fragment_size_node)
3230 			count++;
3231 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3232 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3233 					(unsigned int)position, count);
3234 		return 0;
3235 	}
3236 
3237 	if (position == 0) {
3238 		seq_printf(seq, "optimize_scan: %d\n",
3239 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3240 		seq_puts(seq, "max_free_order_lists:\n");
3241 	}
3242 	count = 0;
3243 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3244 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3245 			    bb_largest_free_order_node)
3246 		count++;
3247 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3248 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3249 		   (unsigned int)position, count);
3250 
3251 	return 0;
3252 }
3253 
3254 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3255 {
3256 }
3257 
3258 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3259 	.start  = ext4_mb_seq_structs_summary_start,
3260 	.next   = ext4_mb_seq_structs_summary_next,
3261 	.stop   = ext4_mb_seq_structs_summary_stop,
3262 	.show   = ext4_mb_seq_structs_summary_show,
3263 };
3264 
3265 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3266 {
3267 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3268 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3269 
3270 	BUG_ON(!cachep);
3271 	return cachep;
3272 }
3273 
3274 /*
3275  * Allocate the top-level s_group_info array for the specified number
3276  * of groups
3277  */
3278 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3279 {
3280 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3281 	unsigned size;
3282 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3283 
3284 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3285 		EXT4_DESC_PER_BLOCK_BITS(sb);
3286 	if (size <= sbi->s_group_info_size)
3287 		return 0;
3288 
3289 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3290 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3291 	if (!new_groupinfo) {
3292 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3293 		return -ENOMEM;
3294 	}
3295 	rcu_read_lock();
3296 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3297 	if (old_groupinfo)
3298 		memcpy(new_groupinfo, old_groupinfo,
3299 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3300 	rcu_read_unlock();
3301 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3302 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3303 	if (old_groupinfo)
3304 		ext4_kvfree_array_rcu(old_groupinfo);
3305 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3306 		   sbi->s_group_info_size);
3307 	return 0;
3308 }
3309 
3310 /* Create and initialize ext4_group_info data for the given group. */
3311 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3312 			  struct ext4_group_desc *desc)
3313 {
3314 	int i;
3315 	int metalen = 0;
3316 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3317 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3318 	struct ext4_group_info **meta_group_info;
3319 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3320 
3321 	/*
3322 	 * First check if this group is the first of a reserved block.
3323 	 * If it's true, we have to allocate a new table of pointers
3324 	 * to ext4_group_info structures
3325 	 */
3326 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3327 		metalen = sizeof(*meta_group_info) <<
3328 			EXT4_DESC_PER_BLOCK_BITS(sb);
3329 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3330 		if (meta_group_info == NULL) {
3331 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3332 				 "for a buddy group");
3333 			return -ENOMEM;
3334 		}
3335 		rcu_read_lock();
3336 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3337 		rcu_read_unlock();
3338 	}
3339 
3340 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3341 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3342 
3343 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3344 	if (meta_group_info[i] == NULL) {
3345 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3346 		goto exit_group_info;
3347 	}
3348 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3349 		&(meta_group_info[i]->bb_state));
3350 
3351 	/*
3352 	 * initialize bb_free to be able to skip
3353 	 * empty groups without initialization
3354 	 */
3355 	if (ext4_has_group_desc_csum(sb) &&
3356 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3357 		meta_group_info[i]->bb_free =
3358 			ext4_free_clusters_after_init(sb, group, desc);
3359 	} else {
3360 		meta_group_info[i]->bb_free =
3361 			ext4_free_group_clusters(sb, desc);
3362 	}
3363 
3364 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3365 	init_rwsem(&meta_group_info[i]->alloc_sem);
3366 	meta_group_info[i]->bb_free_root = RB_ROOT;
3367 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3368 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3369 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3370 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3371 	meta_group_info[i]->bb_group = group;
3372 
3373 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3374 	return 0;
3375 
3376 exit_group_info:
3377 	/* If a meta_group_info table has been allocated, release it now */
3378 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3379 		struct ext4_group_info ***group_info;
3380 
3381 		rcu_read_lock();
3382 		group_info = rcu_dereference(sbi->s_group_info);
3383 		kfree(group_info[idx]);
3384 		group_info[idx] = NULL;
3385 		rcu_read_unlock();
3386 	}
3387 	return -ENOMEM;
3388 } /* ext4_mb_add_groupinfo */
3389 
3390 static int ext4_mb_init_backend(struct super_block *sb)
3391 {
3392 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3393 	ext4_group_t i;
3394 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3395 	int err;
3396 	struct ext4_group_desc *desc;
3397 	struct ext4_group_info ***group_info;
3398 	struct kmem_cache *cachep;
3399 
3400 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3401 	if (err)
3402 		return err;
3403 
3404 	sbi->s_buddy_cache = new_inode(sb);
3405 	if (sbi->s_buddy_cache == NULL) {
3406 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3407 		goto err_freesgi;
3408 	}
3409 	/* To avoid potentially colliding with an valid on-disk inode number,
3410 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3411 	 * not in the inode hash, so it should never be found by iget(), but
3412 	 * this will avoid confusion if it ever shows up during debugging. */
3413 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3414 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3415 	for (i = 0; i < ngroups; i++) {
3416 		cond_resched();
3417 		desc = ext4_get_group_desc(sb, i, NULL);
3418 		if (desc == NULL) {
3419 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3420 			goto err_freebuddy;
3421 		}
3422 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3423 			goto err_freebuddy;
3424 	}
3425 
3426 	if (ext4_has_feature_flex_bg(sb)) {
3427 		/* a single flex group is supposed to be read by a single IO.
3428 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3429 		 * unsigned integer, so the maximum shift is 32.
3430 		 */
3431 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3432 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3433 			goto err_freebuddy;
3434 		}
3435 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3436 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3437 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3438 	} else {
3439 		sbi->s_mb_prefetch = 32;
3440 	}
3441 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3442 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3443 	/* now many real IOs to prefetch within a single allocation at cr=0
3444 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3445 	 * load too many groups, at some point we should start to use what
3446 	 * we've got in memory.
3447 	 * with an average random access time 5ms, it'd take a second to get
3448 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3449 	 */
3450 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3451 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3452 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3453 
3454 	return 0;
3455 
3456 err_freebuddy:
3457 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3458 	while (i-- > 0) {
3459 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3460 
3461 		if (grp)
3462 			kmem_cache_free(cachep, grp);
3463 	}
3464 	i = sbi->s_group_info_size;
3465 	rcu_read_lock();
3466 	group_info = rcu_dereference(sbi->s_group_info);
3467 	while (i-- > 0)
3468 		kfree(group_info[i]);
3469 	rcu_read_unlock();
3470 	iput(sbi->s_buddy_cache);
3471 err_freesgi:
3472 	rcu_read_lock();
3473 	kvfree(rcu_dereference(sbi->s_group_info));
3474 	rcu_read_unlock();
3475 	return -ENOMEM;
3476 }
3477 
3478 static void ext4_groupinfo_destroy_slabs(void)
3479 {
3480 	int i;
3481 
3482 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3483 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3484 		ext4_groupinfo_caches[i] = NULL;
3485 	}
3486 }
3487 
3488 static int ext4_groupinfo_create_slab(size_t size)
3489 {
3490 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3491 	int slab_size;
3492 	int blocksize_bits = order_base_2(size);
3493 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3494 	struct kmem_cache *cachep;
3495 
3496 	if (cache_index >= NR_GRPINFO_CACHES)
3497 		return -EINVAL;
3498 
3499 	if (unlikely(cache_index < 0))
3500 		cache_index = 0;
3501 
3502 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3503 	if (ext4_groupinfo_caches[cache_index]) {
3504 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3505 		return 0;	/* Already created */
3506 	}
3507 
3508 	slab_size = offsetof(struct ext4_group_info,
3509 				bb_counters[blocksize_bits + 2]);
3510 
3511 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3512 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3513 					NULL);
3514 
3515 	ext4_groupinfo_caches[cache_index] = cachep;
3516 
3517 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3518 	if (!cachep) {
3519 		printk(KERN_EMERG
3520 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3521 		return -ENOMEM;
3522 	}
3523 
3524 	return 0;
3525 }
3526 
3527 static void ext4_discard_work(struct work_struct *work)
3528 {
3529 	struct ext4_sb_info *sbi = container_of(work,
3530 			struct ext4_sb_info, s_discard_work);
3531 	struct super_block *sb = sbi->s_sb;
3532 	struct ext4_free_data *fd, *nfd;
3533 	struct ext4_buddy e4b;
3534 	LIST_HEAD(discard_list);
3535 	ext4_group_t grp, load_grp;
3536 	int err = 0;
3537 
3538 	spin_lock(&sbi->s_md_lock);
3539 	list_splice_init(&sbi->s_discard_list, &discard_list);
3540 	spin_unlock(&sbi->s_md_lock);
3541 
3542 	load_grp = UINT_MAX;
3543 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3544 		/*
3545 		 * If filesystem is umounting or no memory or suffering
3546 		 * from no space, give up the discard
3547 		 */
3548 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3549 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3550 			grp = fd->efd_group;
3551 			if (grp != load_grp) {
3552 				if (load_grp != UINT_MAX)
3553 					ext4_mb_unload_buddy(&e4b);
3554 
3555 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3556 				if (err) {
3557 					kmem_cache_free(ext4_free_data_cachep, fd);
3558 					load_grp = UINT_MAX;
3559 					continue;
3560 				} else {
3561 					load_grp = grp;
3562 				}
3563 			}
3564 
3565 			ext4_lock_group(sb, grp);
3566 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3567 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3568 			ext4_unlock_group(sb, grp);
3569 		}
3570 		kmem_cache_free(ext4_free_data_cachep, fd);
3571 	}
3572 
3573 	if (load_grp != UINT_MAX)
3574 		ext4_mb_unload_buddy(&e4b);
3575 }
3576 
3577 int ext4_mb_init(struct super_block *sb)
3578 {
3579 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3580 	unsigned i, j;
3581 	unsigned offset, offset_incr;
3582 	unsigned max;
3583 	int ret;
3584 
3585 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3586 
3587 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3588 	if (sbi->s_mb_offsets == NULL) {
3589 		ret = -ENOMEM;
3590 		goto out;
3591 	}
3592 
3593 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3594 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3595 	if (sbi->s_mb_maxs == NULL) {
3596 		ret = -ENOMEM;
3597 		goto out;
3598 	}
3599 
3600 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3601 	if (ret < 0)
3602 		goto out;
3603 
3604 	/* order 0 is regular bitmap */
3605 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3606 	sbi->s_mb_offsets[0] = 0;
3607 
3608 	i = 1;
3609 	offset = 0;
3610 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3611 	max = sb->s_blocksize << 2;
3612 	do {
3613 		sbi->s_mb_offsets[i] = offset;
3614 		sbi->s_mb_maxs[i] = max;
3615 		offset += offset_incr;
3616 		offset_incr = offset_incr >> 1;
3617 		max = max >> 1;
3618 		i++;
3619 	} while (i < MB_NUM_ORDERS(sb));
3620 
3621 	sbi->s_mb_avg_fragment_size =
3622 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3623 			GFP_KERNEL);
3624 	if (!sbi->s_mb_avg_fragment_size) {
3625 		ret = -ENOMEM;
3626 		goto out;
3627 	}
3628 	sbi->s_mb_avg_fragment_size_locks =
3629 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3630 			GFP_KERNEL);
3631 	if (!sbi->s_mb_avg_fragment_size_locks) {
3632 		ret = -ENOMEM;
3633 		goto out;
3634 	}
3635 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3636 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3637 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3638 	}
3639 	sbi->s_mb_largest_free_orders =
3640 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3641 			GFP_KERNEL);
3642 	if (!sbi->s_mb_largest_free_orders) {
3643 		ret = -ENOMEM;
3644 		goto out;
3645 	}
3646 	sbi->s_mb_largest_free_orders_locks =
3647 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3648 			GFP_KERNEL);
3649 	if (!sbi->s_mb_largest_free_orders_locks) {
3650 		ret = -ENOMEM;
3651 		goto out;
3652 	}
3653 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3654 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3655 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3656 	}
3657 
3658 	spin_lock_init(&sbi->s_md_lock);
3659 	sbi->s_mb_free_pending = 0;
3660 	INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3661 	INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3662 	INIT_LIST_HEAD(&sbi->s_discard_list);
3663 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3664 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3665 
3666 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3667 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3668 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3669 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3670 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3671 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3672 
3673 	/*
3674 	 * The default group preallocation is 512, which for 4k block
3675 	 * sizes translates to 2 megabytes.  However for bigalloc file
3676 	 * systems, this is probably too big (i.e, if the cluster size
3677 	 * is 1 megabyte, then group preallocation size becomes half a
3678 	 * gigabyte!).  As a default, we will keep a two megabyte
3679 	 * group pralloc size for cluster sizes up to 64k, and after
3680 	 * that, we will force a minimum group preallocation size of
3681 	 * 32 clusters.  This translates to 8 megs when the cluster
3682 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3683 	 * which seems reasonable as a default.
3684 	 */
3685 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3686 				       sbi->s_cluster_bits, 32);
3687 	/*
3688 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3689 	 * to the lowest multiple of s_stripe which is bigger than
3690 	 * the s_mb_group_prealloc as determined above. We want
3691 	 * the preallocation size to be an exact multiple of the
3692 	 * RAID stripe size so that preallocations don't fragment
3693 	 * the stripes.
3694 	 */
3695 	if (sbi->s_stripe > 1) {
3696 		sbi->s_mb_group_prealloc = roundup(
3697 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3698 	}
3699 
3700 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3701 	if (sbi->s_locality_groups == NULL) {
3702 		ret = -ENOMEM;
3703 		goto out;
3704 	}
3705 	for_each_possible_cpu(i) {
3706 		struct ext4_locality_group *lg;
3707 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3708 		mutex_init(&lg->lg_mutex);
3709 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3710 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3711 		spin_lock_init(&lg->lg_prealloc_lock);
3712 	}
3713 
3714 	if (bdev_nonrot(sb->s_bdev))
3715 		sbi->s_mb_max_linear_groups = 0;
3716 	else
3717 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3718 	/* init file for buddy data */
3719 	ret = ext4_mb_init_backend(sb);
3720 	if (ret != 0)
3721 		goto out_free_locality_groups;
3722 
3723 	return 0;
3724 
3725 out_free_locality_groups:
3726 	free_percpu(sbi->s_locality_groups);
3727 	sbi->s_locality_groups = NULL;
3728 out:
3729 	kfree(sbi->s_mb_avg_fragment_size);
3730 	kfree(sbi->s_mb_avg_fragment_size_locks);
3731 	kfree(sbi->s_mb_largest_free_orders);
3732 	kfree(sbi->s_mb_largest_free_orders_locks);
3733 	kfree(sbi->s_mb_offsets);
3734 	sbi->s_mb_offsets = NULL;
3735 	kfree(sbi->s_mb_maxs);
3736 	sbi->s_mb_maxs = NULL;
3737 	return ret;
3738 }
3739 
3740 /* need to called with the ext4 group lock held */
3741 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3742 {
3743 	struct ext4_prealloc_space *pa;
3744 	struct list_head *cur, *tmp;
3745 	int count = 0;
3746 
3747 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3748 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3749 		list_del(&pa->pa_group_list);
3750 		count++;
3751 		kmem_cache_free(ext4_pspace_cachep, pa);
3752 	}
3753 	return count;
3754 }
3755 
3756 void ext4_mb_release(struct super_block *sb)
3757 {
3758 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3759 	ext4_group_t i;
3760 	int num_meta_group_infos;
3761 	struct ext4_group_info *grinfo, ***group_info;
3762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3763 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3764 	int count;
3765 
3766 	if (test_opt(sb, DISCARD)) {
3767 		/*
3768 		 * wait the discard work to drain all of ext4_free_data
3769 		 */
3770 		flush_work(&sbi->s_discard_work);
3771 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3772 	}
3773 
3774 	if (sbi->s_group_info) {
3775 		for (i = 0; i < ngroups; i++) {
3776 			cond_resched();
3777 			grinfo = ext4_get_group_info(sb, i);
3778 			if (!grinfo)
3779 				continue;
3780 			mb_group_bb_bitmap_free(grinfo);
3781 			ext4_lock_group(sb, i);
3782 			count = ext4_mb_cleanup_pa(grinfo);
3783 			if (count)
3784 				mb_debug(sb, "mballoc: %d PAs left\n",
3785 					 count);
3786 			ext4_unlock_group(sb, i);
3787 			kmem_cache_free(cachep, grinfo);
3788 		}
3789 		num_meta_group_infos = (ngroups +
3790 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3791 			EXT4_DESC_PER_BLOCK_BITS(sb);
3792 		rcu_read_lock();
3793 		group_info = rcu_dereference(sbi->s_group_info);
3794 		for (i = 0; i < num_meta_group_infos; i++)
3795 			kfree(group_info[i]);
3796 		kvfree(group_info);
3797 		rcu_read_unlock();
3798 	}
3799 	kfree(sbi->s_mb_avg_fragment_size);
3800 	kfree(sbi->s_mb_avg_fragment_size_locks);
3801 	kfree(sbi->s_mb_largest_free_orders);
3802 	kfree(sbi->s_mb_largest_free_orders_locks);
3803 	kfree(sbi->s_mb_offsets);
3804 	kfree(sbi->s_mb_maxs);
3805 	iput(sbi->s_buddy_cache);
3806 	if (sbi->s_mb_stats) {
3807 		ext4_msg(sb, KERN_INFO,
3808 		       "mballoc: %u blocks %u reqs (%u success)",
3809 				atomic_read(&sbi->s_bal_allocated),
3810 				atomic_read(&sbi->s_bal_reqs),
3811 				atomic_read(&sbi->s_bal_success));
3812 		ext4_msg(sb, KERN_INFO,
3813 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3814 				"%u 2^N hits, %u breaks, %u lost",
3815 				atomic_read(&sbi->s_bal_ex_scanned),
3816 				atomic_read(&sbi->s_bal_groups_scanned),
3817 				atomic_read(&sbi->s_bal_goals),
3818 				atomic_read(&sbi->s_bal_2orders),
3819 				atomic_read(&sbi->s_bal_breaks),
3820 				atomic_read(&sbi->s_mb_lost_chunks));
3821 		ext4_msg(sb, KERN_INFO,
3822 		       "mballoc: %u generated and it took %llu",
3823 				atomic_read(&sbi->s_mb_buddies_generated),
3824 				atomic64_read(&sbi->s_mb_generation_time));
3825 		ext4_msg(sb, KERN_INFO,
3826 		       "mballoc: %u preallocated, %u discarded",
3827 				atomic_read(&sbi->s_mb_preallocated),
3828 				atomic_read(&sbi->s_mb_discarded));
3829 	}
3830 
3831 	free_percpu(sbi->s_locality_groups);
3832 }
3833 
3834 static inline int ext4_issue_discard(struct super_block *sb,
3835 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3836 {
3837 	ext4_fsblk_t discard_block;
3838 
3839 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3840 			 ext4_group_first_block_no(sb, block_group));
3841 	count = EXT4_C2B(EXT4_SB(sb), count);
3842 	trace_ext4_discard_blocks(sb,
3843 			(unsigned long long) discard_block, count);
3844 
3845 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3846 }
3847 
3848 static void ext4_free_data_in_buddy(struct super_block *sb,
3849 				    struct ext4_free_data *entry)
3850 {
3851 	struct ext4_buddy e4b;
3852 	struct ext4_group_info *db;
3853 	int err, count = 0;
3854 
3855 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3856 		 entry->efd_count, entry->efd_group, entry);
3857 
3858 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3859 	/* we expect to find existing buddy because it's pinned */
3860 	BUG_ON(err != 0);
3861 
3862 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3863 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3864 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3865 
3866 	db = e4b.bd_info;
3867 	/* there are blocks to put in buddy to make them really free */
3868 	count += entry->efd_count;
3869 	ext4_lock_group(sb, entry->efd_group);
3870 	/* Take it out of per group rb tree */
3871 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3872 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3873 
3874 	/*
3875 	 * Clear the trimmed flag for the group so that the next
3876 	 * ext4_trim_fs can trim it.
3877 	 * If the volume is mounted with -o discard, online discard
3878 	 * is supported and the free blocks will be trimmed online.
3879 	 */
3880 	if (!test_opt(sb, DISCARD))
3881 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3882 
3883 	if (!db->bb_free_root.rb_node) {
3884 		/* No more items in the per group rb tree
3885 		 * balance refcounts from ext4_mb_free_metadata()
3886 		 */
3887 		put_page(e4b.bd_buddy_page);
3888 		put_page(e4b.bd_bitmap_page);
3889 	}
3890 	ext4_unlock_group(sb, entry->efd_group);
3891 	ext4_mb_unload_buddy(&e4b);
3892 
3893 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3894 }
3895 
3896 /*
3897  * This function is called by the jbd2 layer once the commit has finished,
3898  * so we know we can free the blocks that were released with that commit.
3899  */
3900 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3901 {
3902 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3903 	struct ext4_free_data *entry, *tmp;
3904 	LIST_HEAD(freed_data_list);
3905 	struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3906 	bool wake;
3907 
3908 	list_replace_init(s_freed_head, &freed_data_list);
3909 
3910 	list_for_each_entry(entry, &freed_data_list, efd_list)
3911 		ext4_free_data_in_buddy(sb, entry);
3912 
3913 	if (test_opt(sb, DISCARD)) {
3914 		spin_lock(&sbi->s_md_lock);
3915 		wake = list_empty(&sbi->s_discard_list);
3916 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3917 		spin_unlock(&sbi->s_md_lock);
3918 		if (wake)
3919 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3920 	} else {
3921 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3922 			kmem_cache_free(ext4_free_data_cachep, entry);
3923 	}
3924 }
3925 
3926 int __init ext4_init_mballoc(void)
3927 {
3928 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3929 					SLAB_RECLAIM_ACCOUNT);
3930 	if (ext4_pspace_cachep == NULL)
3931 		goto out;
3932 
3933 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3934 				    SLAB_RECLAIM_ACCOUNT);
3935 	if (ext4_ac_cachep == NULL)
3936 		goto out_pa_free;
3937 
3938 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3939 					   SLAB_RECLAIM_ACCOUNT);
3940 	if (ext4_free_data_cachep == NULL)
3941 		goto out_ac_free;
3942 
3943 	return 0;
3944 
3945 out_ac_free:
3946 	kmem_cache_destroy(ext4_ac_cachep);
3947 out_pa_free:
3948 	kmem_cache_destroy(ext4_pspace_cachep);
3949 out:
3950 	return -ENOMEM;
3951 }
3952 
3953 void ext4_exit_mballoc(void)
3954 {
3955 	/*
3956 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3957 	 * before destroying the slab cache.
3958 	 */
3959 	rcu_barrier();
3960 	kmem_cache_destroy(ext4_pspace_cachep);
3961 	kmem_cache_destroy(ext4_ac_cachep);
3962 	kmem_cache_destroy(ext4_free_data_cachep);
3963 	ext4_groupinfo_destroy_slabs();
3964 }
3965 
3966 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3967 #define EXT4_MB_SYNC_UPDATE 0x0002
3968 static int
3969 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3970 		     ext4_group_t group, ext4_grpblk_t blkoff,
3971 		     ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3972 {
3973 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3974 	struct buffer_head *bitmap_bh = NULL;
3975 	struct ext4_group_desc *gdp;
3976 	struct buffer_head *gdp_bh;
3977 	int err;
3978 	unsigned int i, already, changed = len;
3979 
3980 	KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3981 				   handle, sb, state, group, blkoff, len,
3982 				   flags, ret_changed);
3983 
3984 	if (ret_changed)
3985 		*ret_changed = 0;
3986 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3987 	if (IS_ERR(bitmap_bh))
3988 		return PTR_ERR(bitmap_bh);
3989 
3990 	if (handle) {
3991 		BUFFER_TRACE(bitmap_bh, "getting write access");
3992 		err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3993 						    EXT4_JTR_NONE);
3994 		if (err)
3995 			goto out_err;
3996 	}
3997 
3998 	err = -EIO;
3999 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4000 	if (!gdp)
4001 		goto out_err;
4002 
4003 	if (handle) {
4004 		BUFFER_TRACE(gdp_bh, "get_write_access");
4005 		err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4006 						    EXT4_JTR_NONE);
4007 		if (err)
4008 			goto out_err;
4009 	}
4010 
4011 	ext4_lock_group(sb, group);
4012 	if (ext4_has_group_desc_csum(sb) &&
4013 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4014 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4015 		ext4_free_group_clusters_set(sb, gdp,
4016 			ext4_free_clusters_after_init(sb, group, gdp));
4017 	}
4018 
4019 	if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4020 		already = 0;
4021 		for (i = 0; i < len; i++)
4022 			if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4023 					state)
4024 				already++;
4025 		changed = len - already;
4026 	}
4027 
4028 	if (state) {
4029 		mb_set_bits(bitmap_bh->b_data, blkoff, len);
4030 		ext4_free_group_clusters_set(sb, gdp,
4031 			ext4_free_group_clusters(sb, gdp) - changed);
4032 	} else {
4033 		mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4034 		ext4_free_group_clusters_set(sb, gdp,
4035 			ext4_free_group_clusters(sb, gdp) + changed);
4036 	}
4037 
4038 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4039 	ext4_group_desc_csum_set(sb, group, gdp);
4040 	ext4_unlock_group(sb, group);
4041 	if (ret_changed)
4042 		*ret_changed = changed;
4043 
4044 	if (sbi->s_log_groups_per_flex) {
4045 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
4046 		struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4047 					   s_flex_groups, flex_group);
4048 
4049 		if (state)
4050 			atomic64_sub(changed, &fg->free_clusters);
4051 		else
4052 			atomic64_add(changed, &fg->free_clusters);
4053 	}
4054 
4055 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4056 	if (err)
4057 		goto out_err;
4058 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4059 	if (err)
4060 		goto out_err;
4061 
4062 	if (flags & EXT4_MB_SYNC_UPDATE) {
4063 		sync_dirty_buffer(bitmap_bh);
4064 		sync_dirty_buffer(gdp_bh);
4065 	}
4066 
4067 out_err:
4068 	brelse(bitmap_bh);
4069 	return err;
4070 }
4071 
4072 /*
4073  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4074  * Returns 0 if success or error code
4075  */
4076 static noinline_for_stack int
4077 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4078 				handle_t *handle, unsigned int reserv_clstrs)
4079 {
4080 	struct ext4_group_desc *gdp;
4081 	struct ext4_sb_info *sbi;
4082 	struct super_block *sb;
4083 	ext4_fsblk_t block;
4084 	int err, len;
4085 	int flags = 0;
4086 	ext4_grpblk_t changed;
4087 
4088 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4089 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4090 
4091 	sb = ac->ac_sb;
4092 	sbi = EXT4_SB(sb);
4093 
4094 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4095 	if (!gdp)
4096 		return -EIO;
4097 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4098 			ext4_free_group_clusters(sb, gdp));
4099 
4100 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4101 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4102 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4103 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4104 			   "fs metadata", block, block+len);
4105 		/* File system mounted not to panic on error
4106 		 * Fix the bitmap and return EFSCORRUPTED
4107 		 * We leak some of the blocks here.
4108 		 */
4109 		err = ext4_mb_mark_context(handle, sb, true,
4110 					   ac->ac_b_ex.fe_group,
4111 					   ac->ac_b_ex.fe_start,
4112 					   ac->ac_b_ex.fe_len,
4113 					   0, NULL);
4114 		if (!err)
4115 			err = -EFSCORRUPTED;
4116 		return err;
4117 	}
4118 
4119 #ifdef AGGRESSIVE_CHECK
4120 	flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4121 #endif
4122 	err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4123 				   ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4124 				   flags, &changed);
4125 
4126 	if (err && changed == 0)
4127 		return err;
4128 
4129 #ifdef AGGRESSIVE_CHECK
4130 	BUG_ON(changed != ac->ac_b_ex.fe_len);
4131 #endif
4132 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4133 	/*
4134 	 * Now reduce the dirty block count also. Should not go negative
4135 	 */
4136 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4137 		/* release all the reserved blocks if non delalloc */
4138 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4139 				   reserv_clstrs);
4140 
4141 	return err;
4142 }
4143 
4144 /*
4145  * Idempotent helper for Ext4 fast commit replay path to set the state of
4146  * blocks in bitmaps and update counters.
4147  */
4148 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4149 		     int len, bool state)
4150 {
4151 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4152 	ext4_group_t group;
4153 	ext4_grpblk_t blkoff;
4154 	int err = 0;
4155 	unsigned int clen, thisgrp_len;
4156 
4157 	while (len > 0) {
4158 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4159 
4160 		/*
4161 		 * Check to see if we are freeing blocks across a group
4162 		 * boundary.
4163 		 * In case of flex_bg, this can happen that (block, len) may
4164 		 * span across more than one group. In that case we need to
4165 		 * get the corresponding group metadata to work with.
4166 		 * For this we have goto again loop.
4167 		 */
4168 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4169 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4170 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4171 
4172 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4173 			ext4_error(sb, "Marking blocks in system zone - "
4174 				   "Block = %llu, len = %u",
4175 				   block, thisgrp_len);
4176 			break;
4177 		}
4178 
4179 		err = ext4_mb_mark_context(NULL, sb, state,
4180 					   group, blkoff, clen,
4181 					   EXT4_MB_BITMAP_MARKED_CHECK |
4182 					   EXT4_MB_SYNC_UPDATE,
4183 					   NULL);
4184 		if (err)
4185 			break;
4186 
4187 		block += thisgrp_len;
4188 		len -= thisgrp_len;
4189 		BUG_ON(len < 0);
4190 	}
4191 }
4192 
4193 /*
4194  * here we normalize request for locality group
4195  * Group request are normalized to s_mb_group_prealloc, which goes to
4196  * s_strip if we set the same via mount option.
4197  * s_mb_group_prealloc can be configured via
4198  * /sys/fs/ext4/<partition>/mb_group_prealloc
4199  *
4200  * XXX: should we try to preallocate more than the group has now?
4201  */
4202 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4203 {
4204 	struct super_block *sb = ac->ac_sb;
4205 	struct ext4_locality_group *lg = ac->ac_lg;
4206 
4207 	BUG_ON(lg == NULL);
4208 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4209 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4210 }
4211 
4212 /*
4213  * This function returns the next element to look at during inode
4214  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4215  * (ei->i_prealloc_lock)
4216  *
4217  * new_start	The start of the range we want to compare
4218  * cur_start	The existing start that we are comparing against
4219  * node	The node of the rb_tree
4220  */
4221 static inline struct rb_node*
4222 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4223 {
4224 	if (new_start < cur_start)
4225 		return node->rb_left;
4226 	else
4227 		return node->rb_right;
4228 }
4229 
4230 static inline void
4231 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4232 			  ext4_lblk_t start, loff_t end)
4233 {
4234 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4235 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4236 	struct ext4_prealloc_space *tmp_pa;
4237 	ext4_lblk_t tmp_pa_start;
4238 	loff_t tmp_pa_end;
4239 	struct rb_node *iter;
4240 
4241 	read_lock(&ei->i_prealloc_lock);
4242 	for (iter = ei->i_prealloc_node.rb_node; iter;
4243 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4244 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4245 				  pa_node.inode_node);
4246 		tmp_pa_start = tmp_pa->pa_lstart;
4247 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4248 
4249 		spin_lock(&tmp_pa->pa_lock);
4250 		if (tmp_pa->pa_deleted == 0)
4251 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4252 		spin_unlock(&tmp_pa->pa_lock);
4253 	}
4254 	read_unlock(&ei->i_prealloc_lock);
4255 }
4256 
4257 /*
4258  * Given an allocation context "ac" and a range "start", "end", check
4259  * and adjust boundaries if the range overlaps with any of the existing
4260  * preallocatoins stored in the corresponding inode of the allocation context.
4261  *
4262  * Parameters:
4263  *	ac			allocation context
4264  *	start			start of the new range
4265  *	end			end of the new range
4266  */
4267 static inline void
4268 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4269 			  ext4_lblk_t *start, loff_t *end)
4270 {
4271 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4272 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4273 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4274 	struct rb_node *iter;
4275 	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4276 	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4277 
4278 	new_start = *start;
4279 	new_end = *end;
4280 
4281 	/*
4282 	 * Adjust the normalized range so that it doesn't overlap with any
4283 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4284 	 * so it doesn't change underneath us.
4285 	 */
4286 	read_lock(&ei->i_prealloc_lock);
4287 
4288 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4289 	for (iter = ei->i_prealloc_node.rb_node; iter;
4290 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4291 					    tmp_pa_start, iter)) {
4292 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4293 				  pa_node.inode_node);
4294 		tmp_pa_start = tmp_pa->pa_lstart;
4295 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4296 
4297 		/* PA must not overlap original request */
4298 		spin_lock(&tmp_pa->pa_lock);
4299 		if (tmp_pa->pa_deleted == 0)
4300 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4301 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4302 		spin_unlock(&tmp_pa->pa_lock);
4303 	}
4304 
4305 	/*
4306 	 * Step 2: check if the found PA is left or right neighbor and
4307 	 * get the other neighbor
4308 	 */
4309 	if (tmp_pa) {
4310 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4311 			struct rb_node *tmp;
4312 
4313 			left_pa = tmp_pa;
4314 			tmp = rb_next(&left_pa->pa_node.inode_node);
4315 			if (tmp) {
4316 				right_pa = rb_entry(tmp,
4317 						    struct ext4_prealloc_space,
4318 						    pa_node.inode_node);
4319 			}
4320 		} else {
4321 			struct rb_node *tmp;
4322 
4323 			right_pa = tmp_pa;
4324 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4325 			if (tmp) {
4326 				left_pa = rb_entry(tmp,
4327 						   struct ext4_prealloc_space,
4328 						   pa_node.inode_node);
4329 			}
4330 		}
4331 	}
4332 
4333 	/* Step 3: get the non deleted neighbors */
4334 	if (left_pa) {
4335 		for (iter = &left_pa->pa_node.inode_node;;
4336 		     iter = rb_prev(iter)) {
4337 			if (!iter) {
4338 				left_pa = NULL;
4339 				break;
4340 			}
4341 
4342 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4343 					  pa_node.inode_node);
4344 			left_pa = tmp_pa;
4345 			spin_lock(&tmp_pa->pa_lock);
4346 			if (tmp_pa->pa_deleted == 0) {
4347 				spin_unlock(&tmp_pa->pa_lock);
4348 				break;
4349 			}
4350 			spin_unlock(&tmp_pa->pa_lock);
4351 		}
4352 	}
4353 
4354 	if (right_pa) {
4355 		for (iter = &right_pa->pa_node.inode_node;;
4356 		     iter = rb_next(iter)) {
4357 			if (!iter) {
4358 				right_pa = NULL;
4359 				break;
4360 			}
4361 
4362 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4363 					  pa_node.inode_node);
4364 			right_pa = tmp_pa;
4365 			spin_lock(&tmp_pa->pa_lock);
4366 			if (tmp_pa->pa_deleted == 0) {
4367 				spin_unlock(&tmp_pa->pa_lock);
4368 				break;
4369 			}
4370 			spin_unlock(&tmp_pa->pa_lock);
4371 		}
4372 	}
4373 
4374 	if (left_pa) {
4375 		left_pa_end = pa_logical_end(sbi, left_pa);
4376 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4377 	}
4378 
4379 	if (right_pa) {
4380 		right_pa_start = right_pa->pa_lstart;
4381 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4382 	}
4383 
4384 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4385 	if (left_pa) {
4386 		if (left_pa_end > new_start)
4387 			new_start = left_pa_end;
4388 	}
4389 
4390 	if (right_pa) {
4391 		if (right_pa_start < new_end)
4392 			new_end = right_pa_start;
4393 	}
4394 	read_unlock(&ei->i_prealloc_lock);
4395 
4396 	/* XXX: extra loop to check we really don't overlap preallocations */
4397 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4398 
4399 	*start = new_start;
4400 	*end = new_end;
4401 }
4402 
4403 /*
4404  * Normalization means making request better in terms of
4405  * size and alignment
4406  */
4407 static noinline_for_stack void
4408 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4409 				struct ext4_allocation_request *ar)
4410 {
4411 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4412 	struct ext4_super_block *es = sbi->s_es;
4413 	int bsbits, max;
4414 	loff_t size, start_off, end;
4415 	loff_t orig_size __maybe_unused;
4416 	ext4_lblk_t start;
4417 
4418 	/* do normalize only data requests, metadata requests
4419 	   do not need preallocation */
4420 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4421 		return;
4422 
4423 	/* sometime caller may want exact blocks */
4424 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4425 		return;
4426 
4427 	/* caller may indicate that preallocation isn't
4428 	 * required (it's a tail, for example) */
4429 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4430 		return;
4431 
4432 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4433 		ext4_mb_normalize_group_request(ac);
4434 		return ;
4435 	}
4436 
4437 	bsbits = ac->ac_sb->s_blocksize_bits;
4438 
4439 	/* first, let's learn actual file size
4440 	 * given current request is allocated */
4441 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4442 	size = size << bsbits;
4443 	if (size < i_size_read(ac->ac_inode))
4444 		size = i_size_read(ac->ac_inode);
4445 	orig_size = size;
4446 
4447 	/* max size of free chunks */
4448 	max = 2 << bsbits;
4449 
4450 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4451 		(req <= (size) || max <= (chunk_size))
4452 
4453 	/* first, try to predict filesize */
4454 	/* XXX: should this table be tunable? */
4455 	start_off = 0;
4456 	if (size <= 16 * 1024) {
4457 		size = 16 * 1024;
4458 	} else if (size <= 32 * 1024) {
4459 		size = 32 * 1024;
4460 	} else if (size <= 64 * 1024) {
4461 		size = 64 * 1024;
4462 	} else if (size <= 128 * 1024) {
4463 		size = 128 * 1024;
4464 	} else if (size <= 256 * 1024) {
4465 		size = 256 * 1024;
4466 	} else if (size <= 512 * 1024) {
4467 		size = 512 * 1024;
4468 	} else if (size <= 1024 * 1024) {
4469 		size = 1024 * 1024;
4470 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4471 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4472 						(21 - bsbits)) << 21;
4473 		size = 2 * 1024 * 1024;
4474 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4475 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4476 							(22 - bsbits)) << 22;
4477 		size = 4 * 1024 * 1024;
4478 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4479 					(8<<20)>>bsbits, max, 8 * 1024)) {
4480 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4481 							(23 - bsbits)) << 23;
4482 		size = 8 * 1024 * 1024;
4483 	} else {
4484 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4485 		size	  = (loff_t) EXT4_C2B(sbi,
4486 					      ac->ac_o_ex.fe_len) << bsbits;
4487 	}
4488 	size = size >> bsbits;
4489 	start = start_off >> bsbits;
4490 
4491 	/*
4492 	 * For tiny groups (smaller than 8MB) the chosen allocation
4493 	 * alignment may be larger than group size. Make sure the
4494 	 * alignment does not move allocation to a different group which
4495 	 * makes mballoc fail assertions later.
4496 	 */
4497 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4498 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4499 
4500 	/* avoid unnecessary preallocation that may trigger assertions */
4501 	if (start + size > EXT_MAX_BLOCKS)
4502 		size = EXT_MAX_BLOCKS - start;
4503 
4504 	/* don't cover already allocated blocks in selected range */
4505 	if (ar->pleft && start <= ar->lleft) {
4506 		size -= ar->lleft + 1 - start;
4507 		start = ar->lleft + 1;
4508 	}
4509 	if (ar->pright && start + size - 1 >= ar->lright)
4510 		size -= start + size - ar->lright;
4511 
4512 	/*
4513 	 * Trim allocation request for filesystems with artificially small
4514 	 * groups.
4515 	 */
4516 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4517 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4518 
4519 	end = start + size;
4520 
4521 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4522 
4523 	size = end - start;
4524 
4525 	/*
4526 	 * In this function "start" and "size" are normalized for better
4527 	 * alignment and length such that we could preallocate more blocks.
4528 	 * This normalization is done such that original request of
4529 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4530 	 * "size" boundaries.
4531 	 * (Note fe_len can be relaxed since FS block allocation API does not
4532 	 * provide gurantee on number of contiguous blocks allocation since that
4533 	 * depends upon free space left, etc).
4534 	 * In case of inode pa, later we use the allocated blocks
4535 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4536 	 * range of goal/best blocks [start, size] to put it at the
4537 	 * ac_o_ex.fe_logical extent of this inode.
4538 	 * (See ext4_mb_use_inode_pa() for more details)
4539 	 */
4540 	if (start + size <= ac->ac_o_ex.fe_logical ||
4541 			start > ac->ac_o_ex.fe_logical) {
4542 		ext4_msg(ac->ac_sb, KERN_ERR,
4543 			 "start %lu, size %lu, fe_logical %lu",
4544 			 (unsigned long) start, (unsigned long) size,
4545 			 (unsigned long) ac->ac_o_ex.fe_logical);
4546 		BUG();
4547 	}
4548 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4549 
4550 	/* now prepare goal request */
4551 
4552 	/* XXX: is it better to align blocks WRT to logical
4553 	 * placement or satisfy big request as is */
4554 	ac->ac_g_ex.fe_logical = start;
4555 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4556 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4557 
4558 	/* define goal start in order to merge */
4559 	if (ar->pright && (ar->lright == (start + size)) &&
4560 	    ar->pright >= size &&
4561 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4562 		/* merge to the right */
4563 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4564 						&ac->ac_g_ex.fe_group,
4565 						&ac->ac_g_ex.fe_start);
4566 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4567 	}
4568 	if (ar->pleft && (ar->lleft + 1 == start) &&
4569 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4570 		/* merge to the left */
4571 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4572 						&ac->ac_g_ex.fe_group,
4573 						&ac->ac_g_ex.fe_start);
4574 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4575 	}
4576 
4577 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4578 		 orig_size, start);
4579 }
4580 
4581 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4582 {
4583 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4584 
4585 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4586 		atomic_inc(&sbi->s_bal_reqs);
4587 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4588 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4589 			atomic_inc(&sbi->s_bal_success);
4590 
4591 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4592 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4593 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4594 		}
4595 
4596 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4597 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4598 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4599 			atomic_inc(&sbi->s_bal_goals);
4600 		/* did we allocate as much as normalizer originally wanted? */
4601 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4602 			atomic_inc(&sbi->s_bal_len_goals);
4603 
4604 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4605 			atomic_inc(&sbi->s_bal_breaks);
4606 	}
4607 
4608 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4609 		trace_ext4_mballoc_alloc(ac);
4610 	else
4611 		trace_ext4_mballoc_prealloc(ac);
4612 }
4613 
4614 /*
4615  * Called on failure; free up any blocks from the inode PA for this
4616  * context.  We don't need this for MB_GROUP_PA because we only change
4617  * pa_free in ext4_mb_release_context(), but on failure, we've already
4618  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4619  */
4620 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4621 {
4622 	struct ext4_prealloc_space *pa = ac->ac_pa;
4623 	struct ext4_buddy e4b;
4624 	int err;
4625 
4626 	if (pa == NULL) {
4627 		if (ac->ac_f_ex.fe_len == 0)
4628 			return;
4629 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4630 		if (WARN_RATELIMIT(err,
4631 				   "ext4: mb_load_buddy failed (%d)", err))
4632 			/*
4633 			 * This should never happen since we pin the
4634 			 * pages in the ext4_allocation_context so
4635 			 * ext4_mb_load_buddy() should never fail.
4636 			 */
4637 			return;
4638 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4639 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4640 			       ac->ac_f_ex.fe_len);
4641 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4642 		ext4_mb_unload_buddy(&e4b);
4643 		return;
4644 	}
4645 	if (pa->pa_type == MB_INODE_PA) {
4646 		spin_lock(&pa->pa_lock);
4647 		pa->pa_free += ac->ac_b_ex.fe_len;
4648 		spin_unlock(&pa->pa_lock);
4649 	}
4650 }
4651 
4652 /*
4653  * use blocks preallocated to inode
4654  */
4655 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4656 				struct ext4_prealloc_space *pa)
4657 {
4658 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4659 	ext4_fsblk_t start;
4660 	ext4_fsblk_t end;
4661 	int len;
4662 
4663 	/* found preallocated blocks, use them */
4664 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4665 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4666 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4667 	len = EXT4_NUM_B2C(sbi, end - start);
4668 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4669 					&ac->ac_b_ex.fe_start);
4670 	ac->ac_b_ex.fe_len = len;
4671 	ac->ac_status = AC_STATUS_FOUND;
4672 	ac->ac_pa = pa;
4673 
4674 	BUG_ON(start < pa->pa_pstart);
4675 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4676 	BUG_ON(pa->pa_free < len);
4677 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4678 	pa->pa_free -= len;
4679 
4680 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4681 }
4682 
4683 /*
4684  * use blocks preallocated to locality group
4685  */
4686 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4687 				struct ext4_prealloc_space *pa)
4688 {
4689 	unsigned int len = ac->ac_o_ex.fe_len;
4690 
4691 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4692 					&ac->ac_b_ex.fe_group,
4693 					&ac->ac_b_ex.fe_start);
4694 	ac->ac_b_ex.fe_len = len;
4695 	ac->ac_status = AC_STATUS_FOUND;
4696 	ac->ac_pa = pa;
4697 
4698 	/* we don't correct pa_pstart or pa_len here to avoid
4699 	 * possible race when the group is being loaded concurrently
4700 	 * instead we correct pa later, after blocks are marked
4701 	 * in on-disk bitmap -- see ext4_mb_release_context()
4702 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4703 	 */
4704 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4705 		 pa->pa_lstart, len, pa);
4706 }
4707 
4708 /*
4709  * Return the prealloc space that have minimal distance
4710  * from the goal block. @cpa is the prealloc
4711  * space that is having currently known minimal distance
4712  * from the goal block.
4713  */
4714 static struct ext4_prealloc_space *
4715 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4716 			struct ext4_prealloc_space *pa,
4717 			struct ext4_prealloc_space *cpa)
4718 {
4719 	ext4_fsblk_t cur_distance, new_distance;
4720 
4721 	if (cpa == NULL) {
4722 		atomic_inc(&pa->pa_count);
4723 		return pa;
4724 	}
4725 	cur_distance = abs(goal_block - cpa->pa_pstart);
4726 	new_distance = abs(goal_block - pa->pa_pstart);
4727 
4728 	if (cur_distance <= new_distance)
4729 		return cpa;
4730 
4731 	/* drop the previous reference */
4732 	atomic_dec(&cpa->pa_count);
4733 	atomic_inc(&pa->pa_count);
4734 	return pa;
4735 }
4736 
4737 /*
4738  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4739  */
4740 static bool
4741 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4742 		      struct ext4_prealloc_space *pa)
4743 {
4744 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4745 	ext4_fsblk_t start;
4746 
4747 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4748 		return true;
4749 
4750 	/*
4751 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4752 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4753 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4754 	 * consistent with ext4_mb_find_by_goal.
4755 	 */
4756 	start = pa->pa_pstart +
4757 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4758 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4759 		return false;
4760 
4761 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4762 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4763 		return false;
4764 
4765 	return true;
4766 }
4767 
4768 /*
4769  * search goal blocks in preallocated space
4770  */
4771 static noinline_for_stack bool
4772 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4773 {
4774 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4775 	int order, i;
4776 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4777 	struct ext4_locality_group *lg;
4778 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4779 	struct rb_node *iter;
4780 	ext4_fsblk_t goal_block;
4781 
4782 	/* only data can be preallocated */
4783 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4784 		return false;
4785 
4786 	/*
4787 	 * first, try per-file preallocation by searching the inode pa rbtree.
4788 	 *
4789 	 * Here, we can't do a direct traversal of the tree because
4790 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4791 	 * deleted and that can cause direct traversal to skip some entries.
4792 	 */
4793 	read_lock(&ei->i_prealloc_lock);
4794 
4795 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4796 		goto try_group_pa;
4797 	}
4798 
4799 	/*
4800 	 * Step 1: Find a pa with logical start immediately adjacent to the
4801 	 * original logical start. This could be on the left or right.
4802 	 *
4803 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4804 	 */
4805 	for (iter = ei->i_prealloc_node.rb_node; iter;
4806 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4807 					    tmp_pa->pa_lstart, iter)) {
4808 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4809 				  pa_node.inode_node);
4810 	}
4811 
4812 	/*
4813 	 * Step 2: The adjacent pa might be to the right of logical start, find
4814 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4815 	 * logical start is towards the left of original request's logical start
4816 	 */
4817 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4818 		struct rb_node *tmp;
4819 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4820 
4821 		if (tmp) {
4822 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4823 					    pa_node.inode_node);
4824 		} else {
4825 			/*
4826 			 * If there is no adjacent pa to the left then finding
4827 			 * an overlapping pa is not possible hence stop searching
4828 			 * inode pa tree
4829 			 */
4830 			goto try_group_pa;
4831 		}
4832 	}
4833 
4834 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4835 
4836 	/*
4837 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4838 	 * the first non deleted adjacent pa. After this step we should have a
4839 	 * valid tmp_pa which is guaranteed to be non deleted.
4840 	 */
4841 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4842 		if (!iter) {
4843 			/*
4844 			 * no non deleted left adjacent pa, so stop searching
4845 			 * inode pa tree
4846 			 */
4847 			goto try_group_pa;
4848 		}
4849 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4850 				  pa_node.inode_node);
4851 		spin_lock(&tmp_pa->pa_lock);
4852 		if (tmp_pa->pa_deleted == 0) {
4853 			/*
4854 			 * We will keep holding the pa_lock from
4855 			 * this point on because we don't want group discard
4856 			 * to delete this pa underneath us. Since group
4857 			 * discard is anyways an ENOSPC operation it
4858 			 * should be okay for it to wait a few more cycles.
4859 			 */
4860 			break;
4861 		} else {
4862 			spin_unlock(&tmp_pa->pa_lock);
4863 		}
4864 	}
4865 
4866 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4867 	BUG_ON(tmp_pa->pa_deleted == 1);
4868 
4869 	/*
4870 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4871 	 * pa can possibly satisfy the request hence check if it overlaps
4872 	 * original logical start and stop searching if it doesn't.
4873 	 */
4874 	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4875 		spin_unlock(&tmp_pa->pa_lock);
4876 		goto try_group_pa;
4877 	}
4878 
4879 	/* non-extent files can't have physical blocks past 2^32 */
4880 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4881 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4882 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4883 		/*
4884 		 * Since PAs don't overlap, we won't find any other PA to
4885 		 * satisfy this.
4886 		 */
4887 		spin_unlock(&tmp_pa->pa_lock);
4888 		goto try_group_pa;
4889 	}
4890 
4891 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4892 		atomic_inc(&tmp_pa->pa_count);
4893 		ext4_mb_use_inode_pa(ac, tmp_pa);
4894 		spin_unlock(&tmp_pa->pa_lock);
4895 		read_unlock(&ei->i_prealloc_lock);
4896 		return true;
4897 	} else {
4898 		/*
4899 		 * We found a valid overlapping pa but couldn't use it because
4900 		 * it had no free blocks. This should ideally never happen
4901 		 * because:
4902 		 *
4903 		 * 1. When a new inode pa is added to rbtree it must have
4904 		 *    pa_free > 0 since otherwise we won't actually need
4905 		 *    preallocation.
4906 		 *
4907 		 * 2. An inode pa that is in the rbtree can only have it's
4908 		 *    pa_free become zero when another thread calls:
4909 		 *      ext4_mb_new_blocks
4910 		 *       ext4_mb_use_preallocated
4911 		 *        ext4_mb_use_inode_pa
4912 		 *
4913 		 * 3. Further, after the above calls make pa_free == 0, we will
4914 		 *    immediately remove it from the rbtree in:
4915 		 *      ext4_mb_new_blocks
4916 		 *       ext4_mb_release_context
4917 		 *        ext4_mb_put_pa
4918 		 *
4919 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4920 		 * from tree both happen in ext4_mb_new_blocks, which is always
4921 		 * called with i_data_sem held for data allocations, we can be
4922 		 * sure that another process will never see a pa in rbtree with
4923 		 * pa_free == 0.
4924 		 */
4925 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4926 	}
4927 	spin_unlock(&tmp_pa->pa_lock);
4928 try_group_pa:
4929 	read_unlock(&ei->i_prealloc_lock);
4930 
4931 	/* can we use group allocation? */
4932 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4933 		return false;
4934 
4935 	/* inode may have no locality group for some reason */
4936 	lg = ac->ac_lg;
4937 	if (lg == NULL)
4938 		return false;
4939 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4940 	if (order > PREALLOC_TB_SIZE - 1)
4941 		/* The max size of hash table is PREALLOC_TB_SIZE */
4942 		order = PREALLOC_TB_SIZE - 1;
4943 
4944 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4945 	/*
4946 	 * search for the prealloc space that is having
4947 	 * minimal distance from the goal block.
4948 	 */
4949 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4950 		rcu_read_lock();
4951 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4952 					pa_node.lg_list) {
4953 			spin_lock(&tmp_pa->pa_lock);
4954 			if (tmp_pa->pa_deleted == 0 &&
4955 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4956 
4957 				cpa = ext4_mb_check_group_pa(goal_block,
4958 								tmp_pa, cpa);
4959 			}
4960 			spin_unlock(&tmp_pa->pa_lock);
4961 		}
4962 		rcu_read_unlock();
4963 	}
4964 	if (cpa) {
4965 		ext4_mb_use_group_pa(ac, cpa);
4966 		return true;
4967 	}
4968 	return false;
4969 }
4970 
4971 /*
4972  * the function goes through all preallocation in this group and marks them
4973  * used in in-core bitmap. buddy must be generated from this bitmap
4974  * Need to be called with ext4 group lock held
4975  */
4976 static noinline_for_stack
4977 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4978 					ext4_group_t group)
4979 {
4980 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4981 	struct ext4_prealloc_space *pa;
4982 	struct list_head *cur;
4983 	ext4_group_t groupnr;
4984 	ext4_grpblk_t start;
4985 	int preallocated = 0;
4986 	int len;
4987 
4988 	if (!grp)
4989 		return;
4990 
4991 	/* all form of preallocation discards first load group,
4992 	 * so the only competing code is preallocation use.
4993 	 * we don't need any locking here
4994 	 * notice we do NOT ignore preallocations with pa_deleted
4995 	 * otherwise we could leave used blocks available for
4996 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4997 	 * is dropping preallocation
4998 	 */
4999 	list_for_each(cur, &grp->bb_prealloc_list) {
5000 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5001 		spin_lock(&pa->pa_lock);
5002 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5003 					     &groupnr, &start);
5004 		len = pa->pa_len;
5005 		spin_unlock(&pa->pa_lock);
5006 		if (unlikely(len == 0))
5007 			continue;
5008 		BUG_ON(groupnr != group);
5009 		mb_set_bits(bitmap, start, len);
5010 		preallocated += len;
5011 	}
5012 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5013 }
5014 
5015 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5016 				    struct ext4_prealloc_space *pa)
5017 {
5018 	struct ext4_inode_info *ei;
5019 
5020 	if (pa->pa_deleted) {
5021 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5022 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5023 			     pa->pa_len);
5024 		return;
5025 	}
5026 
5027 	pa->pa_deleted = 1;
5028 
5029 	if (pa->pa_type == MB_INODE_PA) {
5030 		ei = EXT4_I(pa->pa_inode);
5031 		atomic_dec(&ei->i_prealloc_active);
5032 	}
5033 }
5034 
5035 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5036 {
5037 	BUG_ON(!pa);
5038 	BUG_ON(atomic_read(&pa->pa_count));
5039 	BUG_ON(pa->pa_deleted == 0);
5040 	kmem_cache_free(ext4_pspace_cachep, pa);
5041 }
5042 
5043 static void ext4_mb_pa_callback(struct rcu_head *head)
5044 {
5045 	struct ext4_prealloc_space *pa;
5046 
5047 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5048 	ext4_mb_pa_free(pa);
5049 }
5050 
5051 /*
5052  * drops a reference to preallocated space descriptor
5053  * if this was the last reference and the space is consumed
5054  */
5055 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5056 			struct super_block *sb, struct ext4_prealloc_space *pa)
5057 {
5058 	ext4_group_t grp;
5059 	ext4_fsblk_t grp_blk;
5060 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5061 
5062 	/* in this short window concurrent discard can set pa_deleted */
5063 	spin_lock(&pa->pa_lock);
5064 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5065 		spin_unlock(&pa->pa_lock);
5066 		return;
5067 	}
5068 
5069 	if (pa->pa_deleted == 1) {
5070 		spin_unlock(&pa->pa_lock);
5071 		return;
5072 	}
5073 
5074 	ext4_mb_mark_pa_deleted(sb, pa);
5075 	spin_unlock(&pa->pa_lock);
5076 
5077 	grp_blk = pa->pa_pstart;
5078 	/*
5079 	 * If doing group-based preallocation, pa_pstart may be in the
5080 	 * next group when pa is used up
5081 	 */
5082 	if (pa->pa_type == MB_GROUP_PA)
5083 		grp_blk--;
5084 
5085 	grp = ext4_get_group_number(sb, grp_blk);
5086 
5087 	/*
5088 	 * possible race:
5089 	 *
5090 	 *  P1 (buddy init)			P2 (regular allocation)
5091 	 *					find block B in PA
5092 	 *  copy on-disk bitmap to buddy
5093 	 *  					mark B in on-disk bitmap
5094 	 *					drop PA from group
5095 	 *  mark all PAs in buddy
5096 	 *
5097 	 * thus, P1 initializes buddy with B available. to prevent this
5098 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5099 	 * against that pair
5100 	 */
5101 	ext4_lock_group(sb, grp);
5102 	list_del(&pa->pa_group_list);
5103 	ext4_unlock_group(sb, grp);
5104 
5105 	if (pa->pa_type == MB_INODE_PA) {
5106 		write_lock(pa->pa_node_lock.inode_lock);
5107 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5108 		write_unlock(pa->pa_node_lock.inode_lock);
5109 		ext4_mb_pa_free(pa);
5110 	} else {
5111 		spin_lock(pa->pa_node_lock.lg_lock);
5112 		list_del_rcu(&pa->pa_node.lg_list);
5113 		spin_unlock(pa->pa_node_lock.lg_lock);
5114 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5115 	}
5116 }
5117 
5118 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5119 {
5120 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5121 	struct ext4_prealloc_space *iter_pa, *new_pa;
5122 	ext4_lblk_t iter_start, new_start;
5123 
5124 	while (*iter) {
5125 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5126 				   pa_node.inode_node);
5127 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5128 				   pa_node.inode_node);
5129 		iter_start = iter_pa->pa_lstart;
5130 		new_start = new_pa->pa_lstart;
5131 
5132 		parent = *iter;
5133 		if (new_start < iter_start)
5134 			iter = &((*iter)->rb_left);
5135 		else
5136 			iter = &((*iter)->rb_right);
5137 	}
5138 
5139 	rb_link_node(new, parent, iter);
5140 	rb_insert_color(new, root);
5141 }
5142 
5143 /*
5144  * creates new preallocated space for given inode
5145  */
5146 static noinline_for_stack void
5147 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5148 {
5149 	struct super_block *sb = ac->ac_sb;
5150 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5151 	struct ext4_prealloc_space *pa;
5152 	struct ext4_group_info *grp;
5153 	struct ext4_inode_info *ei;
5154 
5155 	/* preallocate only when found space is larger then requested */
5156 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5157 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5158 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5159 	BUG_ON(ac->ac_pa == NULL);
5160 
5161 	pa = ac->ac_pa;
5162 
5163 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5164 		struct ext4_free_extent ex = {
5165 			.fe_logical = ac->ac_g_ex.fe_logical,
5166 			.fe_len = ac->ac_orig_goal_len,
5167 		};
5168 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5169 		loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5170 
5171 		/*
5172 		 * We can't allocate as much as normalizer wants, so we try
5173 		 * to get proper lstart to cover the original request, except
5174 		 * when the goal doesn't cover the original request as below:
5175 		 *
5176 		 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5177 		 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5178 		 */
5179 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5180 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5181 
5182 		/*
5183 		 * Use the below logic for adjusting best extent as it keeps
5184 		 * fragmentation in check while ensuring logical range of best
5185 		 * extent doesn't overflow out of goal extent:
5186 		 *
5187 		 * 1. Check if best ex can be kept at end of goal (before
5188 		 *    cr_best_avail trimmed it) and still cover original start
5189 		 * 2. Else, check if best ex can be kept at start of goal and
5190 		 *    still cover original end
5191 		 * 3. Else, keep the best ex at start of original request.
5192 		 */
5193 		ex.fe_len = ac->ac_b_ex.fe_len;
5194 
5195 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5196 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5197 			goto adjust_bex;
5198 
5199 		ex.fe_logical = ac->ac_g_ex.fe_logical;
5200 		if (o_ex_end <= extent_logical_end(sbi, &ex))
5201 			goto adjust_bex;
5202 
5203 		ex.fe_logical = ac->ac_o_ex.fe_logical;
5204 adjust_bex:
5205 		ac->ac_b_ex.fe_logical = ex.fe_logical;
5206 
5207 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5208 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5209 	}
5210 
5211 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5212 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5213 	pa->pa_len = ac->ac_b_ex.fe_len;
5214 	pa->pa_free = pa->pa_len;
5215 	spin_lock_init(&pa->pa_lock);
5216 	INIT_LIST_HEAD(&pa->pa_group_list);
5217 	pa->pa_deleted = 0;
5218 	pa->pa_type = MB_INODE_PA;
5219 
5220 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5221 		 pa->pa_len, pa->pa_lstart);
5222 	trace_ext4_mb_new_inode_pa(ac, pa);
5223 
5224 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5225 	ext4_mb_use_inode_pa(ac, pa);
5226 
5227 	ei = EXT4_I(ac->ac_inode);
5228 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5229 	if (!grp)
5230 		return;
5231 
5232 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5233 	pa->pa_inode = ac->ac_inode;
5234 
5235 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5236 
5237 	write_lock(pa->pa_node_lock.inode_lock);
5238 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5239 	write_unlock(pa->pa_node_lock.inode_lock);
5240 	atomic_inc(&ei->i_prealloc_active);
5241 }
5242 
5243 /*
5244  * creates new preallocated space for locality group inodes belongs to
5245  */
5246 static noinline_for_stack void
5247 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5248 {
5249 	struct super_block *sb = ac->ac_sb;
5250 	struct ext4_locality_group *lg;
5251 	struct ext4_prealloc_space *pa;
5252 	struct ext4_group_info *grp;
5253 
5254 	/* preallocate only when found space is larger then requested */
5255 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5256 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5257 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5258 	BUG_ON(ac->ac_pa == NULL);
5259 
5260 	pa = ac->ac_pa;
5261 
5262 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5263 	pa->pa_lstart = pa->pa_pstart;
5264 	pa->pa_len = ac->ac_b_ex.fe_len;
5265 	pa->pa_free = pa->pa_len;
5266 	spin_lock_init(&pa->pa_lock);
5267 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5268 	INIT_LIST_HEAD(&pa->pa_group_list);
5269 	pa->pa_deleted = 0;
5270 	pa->pa_type = MB_GROUP_PA;
5271 
5272 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5273 		 pa->pa_len, pa->pa_lstart);
5274 	trace_ext4_mb_new_group_pa(ac, pa);
5275 
5276 	ext4_mb_use_group_pa(ac, pa);
5277 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5278 
5279 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5280 	if (!grp)
5281 		return;
5282 	lg = ac->ac_lg;
5283 	BUG_ON(lg == NULL);
5284 
5285 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5286 	pa->pa_inode = NULL;
5287 
5288 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5289 
5290 	/*
5291 	 * We will later add the new pa to the right bucket
5292 	 * after updating the pa_free in ext4_mb_release_context
5293 	 */
5294 }
5295 
5296 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5297 {
5298 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5299 		ext4_mb_new_group_pa(ac);
5300 	else
5301 		ext4_mb_new_inode_pa(ac);
5302 }
5303 
5304 /*
5305  * finds all unused blocks in on-disk bitmap, frees them in
5306  * in-core bitmap and buddy.
5307  * @pa must be unlinked from inode and group lists, so that
5308  * nobody else can find/use it.
5309  * the caller MUST hold group/inode locks.
5310  * TODO: optimize the case when there are no in-core structures yet
5311  */
5312 static noinline_for_stack void
5313 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5314 			struct ext4_prealloc_space *pa)
5315 {
5316 	struct super_block *sb = e4b->bd_sb;
5317 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5318 	unsigned int end;
5319 	unsigned int next;
5320 	ext4_group_t group;
5321 	ext4_grpblk_t bit;
5322 	unsigned long long grp_blk_start;
5323 	int free = 0;
5324 
5325 	BUG_ON(pa->pa_deleted == 0);
5326 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5327 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5328 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5329 	end = bit + pa->pa_len;
5330 
5331 	while (bit < end) {
5332 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5333 		if (bit >= end)
5334 			break;
5335 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5336 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5337 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5338 			 (unsigned) next - bit, (unsigned) group);
5339 		free += next - bit;
5340 
5341 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5342 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5343 						    EXT4_C2B(sbi, bit)),
5344 					       next - bit);
5345 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5346 		bit = next + 1;
5347 	}
5348 	if (free != pa->pa_free) {
5349 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5350 			 "pa %p: logic %lu, phys. %lu, len %d",
5351 			 pa, (unsigned long) pa->pa_lstart,
5352 			 (unsigned long) pa->pa_pstart,
5353 			 pa->pa_len);
5354 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5355 					free, pa->pa_free);
5356 		/*
5357 		 * pa is already deleted so we use the value obtained
5358 		 * from the bitmap and continue.
5359 		 */
5360 	}
5361 	atomic_add(free, &sbi->s_mb_discarded);
5362 }
5363 
5364 static noinline_for_stack void
5365 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5366 				struct ext4_prealloc_space *pa)
5367 {
5368 	struct super_block *sb = e4b->bd_sb;
5369 	ext4_group_t group;
5370 	ext4_grpblk_t bit;
5371 
5372 	trace_ext4_mb_release_group_pa(sb, pa);
5373 	BUG_ON(pa->pa_deleted == 0);
5374 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5375 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5376 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5377 			     e4b->bd_group, group, pa->pa_pstart);
5378 		return;
5379 	}
5380 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5381 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5382 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5383 }
5384 
5385 /*
5386  * releases all preallocations in given group
5387  *
5388  * first, we need to decide discard policy:
5389  * - when do we discard
5390  *   1) ENOSPC
5391  * - how many do we discard
5392  *   1) how many requested
5393  */
5394 static noinline_for_stack int
5395 ext4_mb_discard_group_preallocations(struct super_block *sb,
5396 				     ext4_group_t group, int *busy)
5397 {
5398 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5399 	struct buffer_head *bitmap_bh = NULL;
5400 	struct ext4_prealloc_space *pa, *tmp;
5401 	LIST_HEAD(list);
5402 	struct ext4_buddy e4b;
5403 	struct ext4_inode_info *ei;
5404 	int err;
5405 	int free = 0;
5406 
5407 	if (!grp)
5408 		return 0;
5409 	mb_debug(sb, "discard preallocation for group %u\n", group);
5410 	if (list_empty(&grp->bb_prealloc_list))
5411 		goto out_dbg;
5412 
5413 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5414 	if (IS_ERR(bitmap_bh)) {
5415 		err = PTR_ERR(bitmap_bh);
5416 		ext4_error_err(sb, -err,
5417 			       "Error %d reading block bitmap for %u",
5418 			       err, group);
5419 		goto out_dbg;
5420 	}
5421 
5422 	err = ext4_mb_load_buddy(sb, group, &e4b);
5423 	if (err) {
5424 		ext4_warning(sb, "Error %d loading buddy information for %u",
5425 			     err, group);
5426 		put_bh(bitmap_bh);
5427 		goto out_dbg;
5428 	}
5429 
5430 	ext4_lock_group(sb, group);
5431 	list_for_each_entry_safe(pa, tmp,
5432 				&grp->bb_prealloc_list, pa_group_list) {
5433 		spin_lock(&pa->pa_lock);
5434 		if (atomic_read(&pa->pa_count)) {
5435 			spin_unlock(&pa->pa_lock);
5436 			*busy = 1;
5437 			continue;
5438 		}
5439 		if (pa->pa_deleted) {
5440 			spin_unlock(&pa->pa_lock);
5441 			continue;
5442 		}
5443 
5444 		/* seems this one can be freed ... */
5445 		ext4_mb_mark_pa_deleted(sb, pa);
5446 
5447 		if (!free)
5448 			this_cpu_inc(discard_pa_seq);
5449 
5450 		/* we can trust pa_free ... */
5451 		free += pa->pa_free;
5452 
5453 		spin_unlock(&pa->pa_lock);
5454 
5455 		list_del(&pa->pa_group_list);
5456 		list_add(&pa->u.pa_tmp_list, &list);
5457 	}
5458 
5459 	/* now free all selected PAs */
5460 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5461 
5462 		/* remove from object (inode or locality group) */
5463 		if (pa->pa_type == MB_GROUP_PA) {
5464 			spin_lock(pa->pa_node_lock.lg_lock);
5465 			list_del_rcu(&pa->pa_node.lg_list);
5466 			spin_unlock(pa->pa_node_lock.lg_lock);
5467 		} else {
5468 			write_lock(pa->pa_node_lock.inode_lock);
5469 			ei = EXT4_I(pa->pa_inode);
5470 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5471 			write_unlock(pa->pa_node_lock.inode_lock);
5472 		}
5473 
5474 		list_del(&pa->u.pa_tmp_list);
5475 
5476 		if (pa->pa_type == MB_GROUP_PA) {
5477 			ext4_mb_release_group_pa(&e4b, pa);
5478 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5479 		} else {
5480 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5481 			ext4_mb_pa_free(pa);
5482 		}
5483 	}
5484 
5485 	ext4_unlock_group(sb, group);
5486 	ext4_mb_unload_buddy(&e4b);
5487 	put_bh(bitmap_bh);
5488 out_dbg:
5489 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5490 		 free, group, grp->bb_free);
5491 	return free;
5492 }
5493 
5494 /*
5495  * releases all non-used preallocated blocks for given inode
5496  *
5497  * It's important to discard preallocations under i_data_sem
5498  * We don't want another block to be served from the prealloc
5499  * space when we are discarding the inode prealloc space.
5500  *
5501  * FIXME!! Make sure it is valid at all the call sites
5502  */
5503 void ext4_discard_preallocations(struct inode *inode)
5504 {
5505 	struct ext4_inode_info *ei = EXT4_I(inode);
5506 	struct super_block *sb = inode->i_sb;
5507 	struct buffer_head *bitmap_bh = NULL;
5508 	struct ext4_prealloc_space *pa, *tmp;
5509 	ext4_group_t group = 0;
5510 	LIST_HEAD(list);
5511 	struct ext4_buddy e4b;
5512 	struct rb_node *iter;
5513 	int err;
5514 
5515 	if (!S_ISREG(inode->i_mode))
5516 		return;
5517 
5518 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5519 		return;
5520 
5521 	mb_debug(sb, "discard preallocation for inode %lu\n",
5522 		 inode->i_ino);
5523 	trace_ext4_discard_preallocations(inode,
5524 			atomic_read(&ei->i_prealloc_active));
5525 
5526 repeat:
5527 	/* first, collect all pa's in the inode */
5528 	write_lock(&ei->i_prealloc_lock);
5529 	for (iter = rb_first(&ei->i_prealloc_node); iter;
5530 	     iter = rb_next(iter)) {
5531 		pa = rb_entry(iter, struct ext4_prealloc_space,
5532 			      pa_node.inode_node);
5533 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5534 
5535 		spin_lock(&pa->pa_lock);
5536 		if (atomic_read(&pa->pa_count)) {
5537 			/* this shouldn't happen often - nobody should
5538 			 * use preallocation while we're discarding it */
5539 			spin_unlock(&pa->pa_lock);
5540 			write_unlock(&ei->i_prealloc_lock);
5541 			ext4_msg(sb, KERN_ERR,
5542 				 "uh-oh! used pa while discarding");
5543 			WARN_ON(1);
5544 			schedule_timeout_uninterruptible(HZ);
5545 			goto repeat;
5546 
5547 		}
5548 		if (pa->pa_deleted == 0) {
5549 			ext4_mb_mark_pa_deleted(sb, pa);
5550 			spin_unlock(&pa->pa_lock);
5551 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5552 			list_add(&pa->u.pa_tmp_list, &list);
5553 			continue;
5554 		}
5555 
5556 		/* someone is deleting pa right now */
5557 		spin_unlock(&pa->pa_lock);
5558 		write_unlock(&ei->i_prealloc_lock);
5559 
5560 		/* we have to wait here because pa_deleted
5561 		 * doesn't mean pa is already unlinked from
5562 		 * the list. as we might be called from
5563 		 * ->clear_inode() the inode will get freed
5564 		 * and concurrent thread which is unlinking
5565 		 * pa from inode's list may access already
5566 		 * freed memory, bad-bad-bad */
5567 
5568 		/* XXX: if this happens too often, we can
5569 		 * add a flag to force wait only in case
5570 		 * of ->clear_inode(), but not in case of
5571 		 * regular truncate */
5572 		schedule_timeout_uninterruptible(HZ);
5573 		goto repeat;
5574 	}
5575 	write_unlock(&ei->i_prealloc_lock);
5576 
5577 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5578 		BUG_ON(pa->pa_type != MB_INODE_PA);
5579 		group = ext4_get_group_number(sb, pa->pa_pstart);
5580 
5581 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5582 					     GFP_NOFS|__GFP_NOFAIL);
5583 		if (err) {
5584 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5585 				       err, group);
5586 			continue;
5587 		}
5588 
5589 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5590 		if (IS_ERR(bitmap_bh)) {
5591 			err = PTR_ERR(bitmap_bh);
5592 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5593 				       err, group);
5594 			ext4_mb_unload_buddy(&e4b);
5595 			continue;
5596 		}
5597 
5598 		ext4_lock_group(sb, group);
5599 		list_del(&pa->pa_group_list);
5600 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5601 		ext4_unlock_group(sb, group);
5602 
5603 		ext4_mb_unload_buddy(&e4b);
5604 		put_bh(bitmap_bh);
5605 
5606 		list_del(&pa->u.pa_tmp_list);
5607 		ext4_mb_pa_free(pa);
5608 	}
5609 }
5610 
5611 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5612 {
5613 	struct ext4_prealloc_space *pa;
5614 
5615 	BUG_ON(ext4_pspace_cachep == NULL);
5616 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5617 	if (!pa)
5618 		return -ENOMEM;
5619 	atomic_set(&pa->pa_count, 1);
5620 	ac->ac_pa = pa;
5621 	return 0;
5622 }
5623 
5624 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5625 {
5626 	struct ext4_prealloc_space *pa = ac->ac_pa;
5627 
5628 	BUG_ON(!pa);
5629 	ac->ac_pa = NULL;
5630 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5631 	/*
5632 	 * current function is only called due to an error or due to
5633 	 * len of found blocks < len of requested blocks hence the PA has not
5634 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5635 	 */
5636 	pa->pa_deleted = 1;
5637 	ext4_mb_pa_free(pa);
5638 }
5639 
5640 #ifdef CONFIG_EXT4_DEBUG
5641 static inline void ext4_mb_show_pa(struct super_block *sb)
5642 {
5643 	ext4_group_t i, ngroups;
5644 
5645 	if (ext4_forced_shutdown(sb))
5646 		return;
5647 
5648 	ngroups = ext4_get_groups_count(sb);
5649 	mb_debug(sb, "groups: ");
5650 	for (i = 0; i < ngroups; i++) {
5651 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5652 		struct ext4_prealloc_space *pa;
5653 		ext4_grpblk_t start;
5654 		struct list_head *cur;
5655 
5656 		if (!grp)
5657 			continue;
5658 		ext4_lock_group(sb, i);
5659 		list_for_each(cur, &grp->bb_prealloc_list) {
5660 			pa = list_entry(cur, struct ext4_prealloc_space,
5661 					pa_group_list);
5662 			spin_lock(&pa->pa_lock);
5663 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5664 						     NULL, &start);
5665 			spin_unlock(&pa->pa_lock);
5666 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5667 				 pa->pa_len);
5668 		}
5669 		ext4_unlock_group(sb, i);
5670 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5671 			 grp->bb_fragments);
5672 	}
5673 }
5674 
5675 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5676 {
5677 	struct super_block *sb = ac->ac_sb;
5678 
5679 	if (ext4_forced_shutdown(sb))
5680 		return;
5681 
5682 	mb_debug(sb, "Can't allocate:"
5683 			" Allocation context details:");
5684 	mb_debug(sb, "status %u flags 0x%x",
5685 			ac->ac_status, ac->ac_flags);
5686 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5687 			"goal %lu/%lu/%lu@%lu, "
5688 			"best %lu/%lu/%lu@%lu cr %d",
5689 			(unsigned long)ac->ac_o_ex.fe_group,
5690 			(unsigned long)ac->ac_o_ex.fe_start,
5691 			(unsigned long)ac->ac_o_ex.fe_len,
5692 			(unsigned long)ac->ac_o_ex.fe_logical,
5693 			(unsigned long)ac->ac_g_ex.fe_group,
5694 			(unsigned long)ac->ac_g_ex.fe_start,
5695 			(unsigned long)ac->ac_g_ex.fe_len,
5696 			(unsigned long)ac->ac_g_ex.fe_logical,
5697 			(unsigned long)ac->ac_b_ex.fe_group,
5698 			(unsigned long)ac->ac_b_ex.fe_start,
5699 			(unsigned long)ac->ac_b_ex.fe_len,
5700 			(unsigned long)ac->ac_b_ex.fe_logical,
5701 			(int)ac->ac_criteria);
5702 	mb_debug(sb, "%u found", ac->ac_found);
5703 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5704 	if (ac->ac_pa)
5705 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5706 			 "group pa" : "inode pa");
5707 	ext4_mb_show_pa(sb);
5708 }
5709 #else
5710 static inline void ext4_mb_show_pa(struct super_block *sb)
5711 {
5712 }
5713 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5714 {
5715 	ext4_mb_show_pa(ac->ac_sb);
5716 }
5717 #endif
5718 
5719 /*
5720  * We use locality group preallocation for small size file. The size of the
5721  * file is determined by the current size or the resulting size after
5722  * allocation which ever is larger
5723  *
5724  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5725  */
5726 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5727 {
5728 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5729 	int bsbits = ac->ac_sb->s_blocksize_bits;
5730 	loff_t size, isize;
5731 	bool inode_pa_eligible, group_pa_eligible;
5732 
5733 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5734 		return;
5735 
5736 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5737 		return;
5738 
5739 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5740 	inode_pa_eligible = true;
5741 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5742 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5743 		>> bsbits;
5744 
5745 	/* No point in using inode preallocation for closed files */
5746 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5747 	    !inode_is_open_for_write(ac->ac_inode))
5748 		inode_pa_eligible = false;
5749 
5750 	size = max(size, isize);
5751 	/* Don't use group allocation for large files */
5752 	if (size > sbi->s_mb_stream_request)
5753 		group_pa_eligible = false;
5754 
5755 	if (!group_pa_eligible) {
5756 		if (inode_pa_eligible)
5757 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5758 		else
5759 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5760 		return;
5761 	}
5762 
5763 	BUG_ON(ac->ac_lg != NULL);
5764 	/*
5765 	 * locality group prealloc space are per cpu. The reason for having
5766 	 * per cpu locality group is to reduce the contention between block
5767 	 * request from multiple CPUs.
5768 	 */
5769 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5770 
5771 	/* we're going to use group allocation */
5772 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5773 
5774 	/* serialize all allocations in the group */
5775 	mutex_lock(&ac->ac_lg->lg_mutex);
5776 }
5777 
5778 static noinline_for_stack void
5779 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5780 				struct ext4_allocation_request *ar)
5781 {
5782 	struct super_block *sb = ar->inode->i_sb;
5783 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5784 	struct ext4_super_block *es = sbi->s_es;
5785 	ext4_group_t group;
5786 	unsigned int len;
5787 	ext4_fsblk_t goal;
5788 	ext4_grpblk_t block;
5789 
5790 	/* we can't allocate > group size */
5791 	len = ar->len;
5792 
5793 	/* just a dirty hack to filter too big requests  */
5794 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5795 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5796 
5797 	/* start searching from the goal */
5798 	goal = ar->goal;
5799 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5800 			goal >= ext4_blocks_count(es))
5801 		goal = le32_to_cpu(es->s_first_data_block);
5802 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5803 
5804 	/* set up allocation goals */
5805 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5806 	ac->ac_status = AC_STATUS_CONTINUE;
5807 	ac->ac_sb = sb;
5808 	ac->ac_inode = ar->inode;
5809 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5810 	ac->ac_o_ex.fe_group = group;
5811 	ac->ac_o_ex.fe_start = block;
5812 	ac->ac_o_ex.fe_len = len;
5813 	ac->ac_g_ex = ac->ac_o_ex;
5814 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5815 	ac->ac_flags = ar->flags;
5816 
5817 	/* we have to define context: we'll work with a file or
5818 	 * locality group. this is a policy, actually */
5819 	ext4_mb_group_or_file(ac);
5820 
5821 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5822 			"left: %u/%u, right %u/%u to %swritable\n",
5823 			(unsigned) ar->len, (unsigned) ar->logical,
5824 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5825 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5826 			(unsigned) ar->lright, (unsigned) ar->pright,
5827 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5828 }
5829 
5830 static noinline_for_stack void
5831 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5832 					struct ext4_locality_group *lg,
5833 					int order, int total_entries)
5834 {
5835 	ext4_group_t group = 0;
5836 	struct ext4_buddy e4b;
5837 	LIST_HEAD(discard_list);
5838 	struct ext4_prealloc_space *pa, *tmp;
5839 
5840 	mb_debug(sb, "discard locality group preallocation\n");
5841 
5842 	spin_lock(&lg->lg_prealloc_lock);
5843 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5844 				pa_node.lg_list,
5845 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5846 		spin_lock(&pa->pa_lock);
5847 		if (atomic_read(&pa->pa_count)) {
5848 			/*
5849 			 * This is the pa that we just used
5850 			 * for block allocation. So don't
5851 			 * free that
5852 			 */
5853 			spin_unlock(&pa->pa_lock);
5854 			continue;
5855 		}
5856 		if (pa->pa_deleted) {
5857 			spin_unlock(&pa->pa_lock);
5858 			continue;
5859 		}
5860 		/* only lg prealloc space */
5861 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5862 
5863 		/* seems this one can be freed ... */
5864 		ext4_mb_mark_pa_deleted(sb, pa);
5865 		spin_unlock(&pa->pa_lock);
5866 
5867 		list_del_rcu(&pa->pa_node.lg_list);
5868 		list_add(&pa->u.pa_tmp_list, &discard_list);
5869 
5870 		total_entries--;
5871 		if (total_entries <= 5) {
5872 			/*
5873 			 * we want to keep only 5 entries
5874 			 * allowing it to grow to 8. This
5875 			 * mak sure we don't call discard
5876 			 * soon for this list.
5877 			 */
5878 			break;
5879 		}
5880 	}
5881 	spin_unlock(&lg->lg_prealloc_lock);
5882 
5883 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5884 		int err;
5885 
5886 		group = ext4_get_group_number(sb, pa->pa_pstart);
5887 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5888 					     GFP_NOFS|__GFP_NOFAIL);
5889 		if (err) {
5890 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5891 				       err, group);
5892 			continue;
5893 		}
5894 		ext4_lock_group(sb, group);
5895 		list_del(&pa->pa_group_list);
5896 		ext4_mb_release_group_pa(&e4b, pa);
5897 		ext4_unlock_group(sb, group);
5898 
5899 		ext4_mb_unload_buddy(&e4b);
5900 		list_del(&pa->u.pa_tmp_list);
5901 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5902 	}
5903 }
5904 
5905 /*
5906  * We have incremented pa_count. So it cannot be freed at this
5907  * point. Also we hold lg_mutex. So no parallel allocation is
5908  * possible from this lg. That means pa_free cannot be updated.
5909  *
5910  * A parallel ext4_mb_discard_group_preallocations is possible.
5911  * which can cause the lg_prealloc_list to be updated.
5912  */
5913 
5914 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5915 {
5916 	int order, added = 0, lg_prealloc_count = 1;
5917 	struct super_block *sb = ac->ac_sb;
5918 	struct ext4_locality_group *lg = ac->ac_lg;
5919 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5920 
5921 	order = fls(pa->pa_free) - 1;
5922 	if (order > PREALLOC_TB_SIZE - 1)
5923 		/* The max size of hash table is PREALLOC_TB_SIZE */
5924 		order = PREALLOC_TB_SIZE - 1;
5925 	/* Add the prealloc space to lg */
5926 	spin_lock(&lg->lg_prealloc_lock);
5927 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5928 				pa_node.lg_list,
5929 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5930 		spin_lock(&tmp_pa->pa_lock);
5931 		if (tmp_pa->pa_deleted) {
5932 			spin_unlock(&tmp_pa->pa_lock);
5933 			continue;
5934 		}
5935 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5936 			/* Add to the tail of the previous entry */
5937 			list_add_tail_rcu(&pa->pa_node.lg_list,
5938 						&tmp_pa->pa_node.lg_list);
5939 			added = 1;
5940 			/*
5941 			 * we want to count the total
5942 			 * number of entries in the list
5943 			 */
5944 		}
5945 		spin_unlock(&tmp_pa->pa_lock);
5946 		lg_prealloc_count++;
5947 	}
5948 	if (!added)
5949 		list_add_tail_rcu(&pa->pa_node.lg_list,
5950 					&lg->lg_prealloc_list[order]);
5951 	spin_unlock(&lg->lg_prealloc_lock);
5952 
5953 	/* Now trim the list to be not more than 8 elements */
5954 	if (lg_prealloc_count > 8)
5955 		ext4_mb_discard_lg_preallocations(sb, lg,
5956 						  order, lg_prealloc_count);
5957 }
5958 
5959 /*
5960  * release all resource we used in allocation
5961  */
5962 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5963 {
5964 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5965 	struct ext4_prealloc_space *pa = ac->ac_pa;
5966 	if (pa) {
5967 		if (pa->pa_type == MB_GROUP_PA) {
5968 			/* see comment in ext4_mb_use_group_pa() */
5969 			spin_lock(&pa->pa_lock);
5970 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5971 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5972 			pa->pa_free -= ac->ac_b_ex.fe_len;
5973 			pa->pa_len -= ac->ac_b_ex.fe_len;
5974 			spin_unlock(&pa->pa_lock);
5975 
5976 			/*
5977 			 * We want to add the pa to the right bucket.
5978 			 * Remove it from the list and while adding
5979 			 * make sure the list to which we are adding
5980 			 * doesn't grow big.
5981 			 */
5982 			if (likely(pa->pa_free)) {
5983 				spin_lock(pa->pa_node_lock.lg_lock);
5984 				list_del_rcu(&pa->pa_node.lg_list);
5985 				spin_unlock(pa->pa_node_lock.lg_lock);
5986 				ext4_mb_add_n_trim(ac);
5987 			}
5988 		}
5989 
5990 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5991 	}
5992 	if (ac->ac_bitmap_page)
5993 		put_page(ac->ac_bitmap_page);
5994 	if (ac->ac_buddy_page)
5995 		put_page(ac->ac_buddy_page);
5996 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5997 		mutex_unlock(&ac->ac_lg->lg_mutex);
5998 	ext4_mb_collect_stats(ac);
5999 }
6000 
6001 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6002 {
6003 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6004 	int ret;
6005 	int freed = 0, busy = 0;
6006 	int retry = 0;
6007 
6008 	trace_ext4_mb_discard_preallocations(sb, needed);
6009 
6010 	if (needed == 0)
6011 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6012  repeat:
6013 	for (i = 0; i < ngroups && needed > 0; i++) {
6014 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6015 		freed += ret;
6016 		needed -= ret;
6017 		cond_resched();
6018 	}
6019 
6020 	if (needed > 0 && busy && ++retry < 3) {
6021 		busy = 0;
6022 		goto repeat;
6023 	}
6024 
6025 	return freed;
6026 }
6027 
6028 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6029 			struct ext4_allocation_context *ac, u64 *seq)
6030 {
6031 	int freed;
6032 	u64 seq_retry = 0;
6033 	bool ret = false;
6034 
6035 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6036 	if (freed) {
6037 		ret = true;
6038 		goto out_dbg;
6039 	}
6040 	seq_retry = ext4_get_discard_pa_seq_sum();
6041 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6042 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6043 		*seq = seq_retry;
6044 		ret = true;
6045 	}
6046 
6047 out_dbg:
6048 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6049 	return ret;
6050 }
6051 
6052 /*
6053  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6054  * linearly starting at the goal block and also excludes the blocks which
6055  * are going to be in use after fast commit replay.
6056  */
6057 static ext4_fsblk_t
6058 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6059 {
6060 	struct buffer_head *bitmap_bh;
6061 	struct super_block *sb = ar->inode->i_sb;
6062 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6063 	ext4_group_t group, nr;
6064 	ext4_grpblk_t blkoff;
6065 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6066 	ext4_grpblk_t i = 0;
6067 	ext4_fsblk_t goal, block;
6068 	struct ext4_super_block *es = sbi->s_es;
6069 
6070 	goal = ar->goal;
6071 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6072 			goal >= ext4_blocks_count(es))
6073 		goal = le32_to_cpu(es->s_first_data_block);
6074 
6075 	ar->len = 0;
6076 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6077 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6078 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6079 		if (IS_ERR(bitmap_bh)) {
6080 			*errp = PTR_ERR(bitmap_bh);
6081 			pr_warn("Failed to read block bitmap\n");
6082 			return 0;
6083 		}
6084 
6085 		while (1) {
6086 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6087 						blkoff);
6088 			if (i >= max)
6089 				break;
6090 			if (ext4_fc_replay_check_excluded(sb,
6091 				ext4_group_first_block_no(sb, group) +
6092 				EXT4_C2B(sbi, i))) {
6093 				blkoff = i + 1;
6094 			} else
6095 				break;
6096 		}
6097 		brelse(bitmap_bh);
6098 		if (i < max)
6099 			break;
6100 
6101 		if (++group >= ext4_get_groups_count(sb))
6102 			group = 0;
6103 
6104 		blkoff = 0;
6105 	}
6106 
6107 	if (i >= max) {
6108 		*errp = -ENOSPC;
6109 		return 0;
6110 	}
6111 
6112 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6113 	ext4_mb_mark_bb(sb, block, 1, true);
6114 	ar->len = 1;
6115 
6116 	return block;
6117 }
6118 
6119 /*
6120  * Main entry point into mballoc to allocate blocks
6121  * it tries to use preallocation first, then falls back
6122  * to usual allocation
6123  */
6124 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6125 				struct ext4_allocation_request *ar, int *errp)
6126 {
6127 	struct ext4_allocation_context *ac = NULL;
6128 	struct ext4_sb_info *sbi;
6129 	struct super_block *sb;
6130 	ext4_fsblk_t block = 0;
6131 	unsigned int inquota = 0;
6132 	unsigned int reserv_clstrs = 0;
6133 	int retries = 0;
6134 	u64 seq;
6135 
6136 	might_sleep();
6137 	sb = ar->inode->i_sb;
6138 	sbi = EXT4_SB(sb);
6139 
6140 	trace_ext4_request_blocks(ar);
6141 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6142 		return ext4_mb_new_blocks_simple(ar, errp);
6143 
6144 	/* Allow to use superuser reservation for quota file */
6145 	if (ext4_is_quota_file(ar->inode))
6146 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6147 
6148 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6149 		/* Without delayed allocation we need to verify
6150 		 * there is enough free blocks to do block allocation
6151 		 * and verify allocation doesn't exceed the quota limits.
6152 		 */
6153 		while (ar->len &&
6154 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6155 
6156 			/* let others to free the space */
6157 			cond_resched();
6158 			ar->len = ar->len >> 1;
6159 		}
6160 		if (!ar->len) {
6161 			ext4_mb_show_pa(sb);
6162 			*errp = -ENOSPC;
6163 			return 0;
6164 		}
6165 		reserv_clstrs = ar->len;
6166 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6167 			dquot_alloc_block_nofail(ar->inode,
6168 						 EXT4_C2B(sbi, ar->len));
6169 		} else {
6170 			while (ar->len &&
6171 				dquot_alloc_block(ar->inode,
6172 						  EXT4_C2B(sbi, ar->len))) {
6173 
6174 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6175 				ar->len--;
6176 			}
6177 		}
6178 		inquota = ar->len;
6179 		if (ar->len == 0) {
6180 			*errp = -EDQUOT;
6181 			goto out;
6182 		}
6183 	}
6184 
6185 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6186 	if (!ac) {
6187 		ar->len = 0;
6188 		*errp = -ENOMEM;
6189 		goto out;
6190 	}
6191 
6192 	ext4_mb_initialize_context(ac, ar);
6193 
6194 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6195 	seq = this_cpu_read(discard_pa_seq);
6196 	if (!ext4_mb_use_preallocated(ac)) {
6197 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6198 		ext4_mb_normalize_request(ac, ar);
6199 
6200 		*errp = ext4_mb_pa_alloc(ac);
6201 		if (*errp)
6202 			goto errout;
6203 repeat:
6204 		/* allocate space in core */
6205 		*errp = ext4_mb_regular_allocator(ac);
6206 		/*
6207 		 * pa allocated above is added to grp->bb_prealloc_list only
6208 		 * when we were able to allocate some block i.e. when
6209 		 * ac->ac_status == AC_STATUS_FOUND.
6210 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6211 		 * So we have to free this pa here itself.
6212 		 */
6213 		if (*errp) {
6214 			ext4_mb_pa_put_free(ac);
6215 			ext4_discard_allocated_blocks(ac);
6216 			goto errout;
6217 		}
6218 		if (ac->ac_status == AC_STATUS_FOUND &&
6219 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6220 			ext4_mb_pa_put_free(ac);
6221 	}
6222 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6223 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6224 		if (*errp) {
6225 			ext4_discard_allocated_blocks(ac);
6226 			goto errout;
6227 		} else {
6228 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6229 			ar->len = ac->ac_b_ex.fe_len;
6230 		}
6231 	} else {
6232 		if (++retries < 3 &&
6233 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6234 			goto repeat;
6235 		/*
6236 		 * If block allocation fails then the pa allocated above
6237 		 * needs to be freed here itself.
6238 		 */
6239 		ext4_mb_pa_put_free(ac);
6240 		*errp = -ENOSPC;
6241 	}
6242 
6243 	if (*errp) {
6244 errout:
6245 		ac->ac_b_ex.fe_len = 0;
6246 		ar->len = 0;
6247 		ext4_mb_show_ac(ac);
6248 	}
6249 	ext4_mb_release_context(ac);
6250 	kmem_cache_free(ext4_ac_cachep, ac);
6251 out:
6252 	if (inquota && ar->len < inquota)
6253 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6254 	if (!ar->len) {
6255 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6256 			/* release all the reserved blocks if non delalloc */
6257 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6258 						reserv_clstrs);
6259 	}
6260 
6261 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6262 
6263 	return block;
6264 }
6265 
6266 /*
6267  * We can merge two free data extents only if the physical blocks
6268  * are contiguous, AND the extents were freed by the same transaction,
6269  * AND the blocks are associated with the same group.
6270  */
6271 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6272 					struct ext4_free_data *entry,
6273 					struct ext4_free_data *new_entry,
6274 					struct rb_root *entry_rb_root)
6275 {
6276 	if ((entry->efd_tid != new_entry->efd_tid) ||
6277 	    (entry->efd_group != new_entry->efd_group))
6278 		return;
6279 	if (entry->efd_start_cluster + entry->efd_count ==
6280 	    new_entry->efd_start_cluster) {
6281 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6282 		new_entry->efd_count += entry->efd_count;
6283 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6284 		   entry->efd_start_cluster) {
6285 		new_entry->efd_count += entry->efd_count;
6286 	} else
6287 		return;
6288 	spin_lock(&sbi->s_md_lock);
6289 	list_del(&entry->efd_list);
6290 	spin_unlock(&sbi->s_md_lock);
6291 	rb_erase(&entry->efd_node, entry_rb_root);
6292 	kmem_cache_free(ext4_free_data_cachep, entry);
6293 }
6294 
6295 static noinline_for_stack void
6296 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6297 		      struct ext4_free_data *new_entry)
6298 {
6299 	ext4_group_t group = e4b->bd_group;
6300 	ext4_grpblk_t cluster;
6301 	ext4_grpblk_t clusters = new_entry->efd_count;
6302 	struct ext4_free_data *entry;
6303 	struct ext4_group_info *db = e4b->bd_info;
6304 	struct super_block *sb = e4b->bd_sb;
6305 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6306 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6307 	struct rb_node *parent = NULL, *new_node;
6308 
6309 	BUG_ON(!ext4_handle_valid(handle));
6310 	BUG_ON(e4b->bd_bitmap_page == NULL);
6311 	BUG_ON(e4b->bd_buddy_page == NULL);
6312 
6313 	new_node = &new_entry->efd_node;
6314 	cluster = new_entry->efd_start_cluster;
6315 
6316 	if (!*n) {
6317 		/* first free block exent. We need to
6318 		   protect buddy cache from being freed,
6319 		 * otherwise we'll refresh it from
6320 		 * on-disk bitmap and lose not-yet-available
6321 		 * blocks */
6322 		get_page(e4b->bd_buddy_page);
6323 		get_page(e4b->bd_bitmap_page);
6324 	}
6325 	while (*n) {
6326 		parent = *n;
6327 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6328 		if (cluster < entry->efd_start_cluster)
6329 			n = &(*n)->rb_left;
6330 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6331 			n = &(*n)->rb_right;
6332 		else {
6333 			ext4_grp_locked_error(sb, group, 0,
6334 				ext4_group_first_block_no(sb, group) +
6335 				EXT4_C2B(sbi, cluster),
6336 				"Block already on to-be-freed list");
6337 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6338 			return;
6339 		}
6340 	}
6341 
6342 	rb_link_node(new_node, parent, n);
6343 	rb_insert_color(new_node, &db->bb_free_root);
6344 
6345 	/* Now try to see the extent can be merged to left and right */
6346 	node = rb_prev(new_node);
6347 	if (node) {
6348 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6349 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6350 					    &(db->bb_free_root));
6351 	}
6352 
6353 	node = rb_next(new_node);
6354 	if (node) {
6355 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6356 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6357 					    &(db->bb_free_root));
6358 	}
6359 
6360 	spin_lock(&sbi->s_md_lock);
6361 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6362 	sbi->s_mb_free_pending += clusters;
6363 	spin_unlock(&sbi->s_md_lock);
6364 }
6365 
6366 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6367 					unsigned long count)
6368 {
6369 	struct super_block *sb = inode->i_sb;
6370 	ext4_group_t group;
6371 	ext4_grpblk_t blkoff;
6372 
6373 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6374 	ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6375 			     EXT4_MB_BITMAP_MARKED_CHECK |
6376 			     EXT4_MB_SYNC_UPDATE,
6377 			     NULL);
6378 }
6379 
6380 /**
6381  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6382  *			Used by ext4_free_blocks()
6383  * @handle:		handle for this transaction
6384  * @inode:		inode
6385  * @block:		starting physical block to be freed
6386  * @count:		number of blocks to be freed
6387  * @flags:		flags used by ext4_free_blocks
6388  */
6389 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6390 			       ext4_fsblk_t block, unsigned long count,
6391 			       int flags)
6392 {
6393 	struct super_block *sb = inode->i_sb;
6394 	struct ext4_group_info *grp;
6395 	unsigned int overflow;
6396 	ext4_grpblk_t bit;
6397 	ext4_group_t block_group;
6398 	struct ext4_sb_info *sbi;
6399 	struct ext4_buddy e4b;
6400 	unsigned int count_clusters;
6401 	int err = 0;
6402 	int mark_flags = 0;
6403 	ext4_grpblk_t changed;
6404 
6405 	sbi = EXT4_SB(sb);
6406 
6407 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6408 	    !ext4_inode_block_valid(inode, block, count)) {
6409 		ext4_error(sb, "Freeing blocks in system zone - "
6410 			   "Block = %llu, count = %lu", block, count);
6411 		/* err = 0. ext4_std_error should be a no op */
6412 		goto error_out;
6413 	}
6414 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6415 
6416 do_more:
6417 	overflow = 0;
6418 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6419 
6420 	grp = ext4_get_group_info(sb, block_group);
6421 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6422 		return;
6423 
6424 	/*
6425 	 * Check to see if we are freeing blocks across a group
6426 	 * boundary.
6427 	 */
6428 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6429 		overflow = EXT4_C2B(sbi, bit) + count -
6430 			EXT4_BLOCKS_PER_GROUP(sb);
6431 		count -= overflow;
6432 		/* The range changed so it's no longer validated */
6433 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6434 	}
6435 	count_clusters = EXT4_NUM_B2C(sbi, count);
6436 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6437 
6438 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6439 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6440 				     GFP_NOFS|__GFP_NOFAIL);
6441 	if (err)
6442 		goto error_out;
6443 
6444 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6445 	    !ext4_inode_block_valid(inode, block, count)) {
6446 		ext4_error(sb, "Freeing blocks in system zone - "
6447 			   "Block = %llu, count = %lu", block, count);
6448 		/* err = 0. ext4_std_error should be a no op */
6449 		goto error_clean;
6450 	}
6451 
6452 #ifdef AGGRESSIVE_CHECK
6453 	mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6454 #endif
6455 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6456 				   count_clusters, mark_flags, &changed);
6457 
6458 
6459 	if (err && changed == 0)
6460 		goto error_clean;
6461 
6462 #ifdef AGGRESSIVE_CHECK
6463 	BUG_ON(changed != count_clusters);
6464 #endif
6465 
6466 	/*
6467 	 * We need to make sure we don't reuse the freed block until after the
6468 	 * transaction is committed. We make an exception if the inode is to be
6469 	 * written in writeback mode since writeback mode has weak data
6470 	 * consistency guarantees.
6471 	 */
6472 	if (ext4_handle_valid(handle) &&
6473 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6474 	     !ext4_should_writeback_data(inode))) {
6475 		struct ext4_free_data *new_entry;
6476 		/*
6477 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6478 		 * to fail.
6479 		 */
6480 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6481 				GFP_NOFS|__GFP_NOFAIL);
6482 		new_entry->efd_start_cluster = bit;
6483 		new_entry->efd_group = block_group;
6484 		new_entry->efd_count = count_clusters;
6485 		new_entry->efd_tid = handle->h_transaction->t_tid;
6486 
6487 		ext4_lock_group(sb, block_group);
6488 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6489 	} else {
6490 		if (test_opt(sb, DISCARD)) {
6491 			err = ext4_issue_discard(sb, block_group, bit,
6492 						 count_clusters);
6493 			/*
6494 			 * Ignore EOPNOTSUPP error. This is consistent with
6495 			 * what happens when using journal.
6496 			 */
6497 			if (err == -EOPNOTSUPP)
6498 				err = 0;
6499 			if (err)
6500 				ext4_msg(sb, KERN_WARNING, "discard request in"
6501 					 " group:%u block:%d count:%lu failed"
6502 					 " with %d", block_group, bit, count,
6503 					 err);
6504 		} else
6505 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6506 
6507 		ext4_lock_group(sb, block_group);
6508 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6509 	}
6510 
6511 	ext4_unlock_group(sb, block_group);
6512 
6513 	/*
6514 	 * on a bigalloc file system, defer the s_freeclusters_counter
6515 	 * update to the caller (ext4_remove_space and friends) so they
6516 	 * can determine if a cluster freed here should be rereserved
6517 	 */
6518 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6519 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6520 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6521 		percpu_counter_add(&sbi->s_freeclusters_counter,
6522 				   count_clusters);
6523 	}
6524 
6525 	if (overflow && !err) {
6526 		block += count;
6527 		count = overflow;
6528 		ext4_mb_unload_buddy(&e4b);
6529 		/* The range changed so it's no longer validated */
6530 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6531 		goto do_more;
6532 	}
6533 
6534 error_clean:
6535 	ext4_mb_unload_buddy(&e4b);
6536 error_out:
6537 	ext4_std_error(sb, err);
6538 }
6539 
6540 /**
6541  * ext4_free_blocks() -- Free given blocks and update quota
6542  * @handle:		handle for this transaction
6543  * @inode:		inode
6544  * @bh:			optional buffer of the block to be freed
6545  * @block:		starting physical block to be freed
6546  * @count:		number of blocks to be freed
6547  * @flags:		flags used by ext4_free_blocks
6548  */
6549 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6550 		      struct buffer_head *bh, ext4_fsblk_t block,
6551 		      unsigned long count, int flags)
6552 {
6553 	struct super_block *sb = inode->i_sb;
6554 	unsigned int overflow;
6555 	struct ext4_sb_info *sbi;
6556 
6557 	sbi = EXT4_SB(sb);
6558 
6559 	if (bh) {
6560 		if (block)
6561 			BUG_ON(block != bh->b_blocknr);
6562 		else
6563 			block = bh->b_blocknr;
6564 	}
6565 
6566 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6567 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6568 		return;
6569 	}
6570 
6571 	might_sleep();
6572 
6573 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6574 	    !ext4_inode_block_valid(inode, block, count)) {
6575 		ext4_error(sb, "Freeing blocks not in datazone - "
6576 			   "block = %llu, count = %lu", block, count);
6577 		return;
6578 	}
6579 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6580 
6581 	ext4_debug("freeing block %llu\n", block);
6582 	trace_ext4_free_blocks(inode, block, count, flags);
6583 
6584 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6585 		BUG_ON(count > 1);
6586 
6587 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6588 			    inode, bh, block);
6589 	}
6590 
6591 	/*
6592 	 * If the extent to be freed does not begin on a cluster
6593 	 * boundary, we need to deal with partial clusters at the
6594 	 * beginning and end of the extent.  Normally we will free
6595 	 * blocks at the beginning or the end unless we are explicitly
6596 	 * requested to avoid doing so.
6597 	 */
6598 	overflow = EXT4_PBLK_COFF(sbi, block);
6599 	if (overflow) {
6600 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6601 			overflow = sbi->s_cluster_ratio - overflow;
6602 			block += overflow;
6603 			if (count > overflow)
6604 				count -= overflow;
6605 			else
6606 				return;
6607 		} else {
6608 			block -= overflow;
6609 			count += overflow;
6610 		}
6611 		/* The range changed so it's no longer validated */
6612 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6613 	}
6614 	overflow = EXT4_LBLK_COFF(sbi, count);
6615 	if (overflow) {
6616 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6617 			if (count > overflow)
6618 				count -= overflow;
6619 			else
6620 				return;
6621 		} else
6622 			count += sbi->s_cluster_ratio - overflow;
6623 		/* The range changed so it's no longer validated */
6624 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6625 	}
6626 
6627 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6628 		int i;
6629 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6630 
6631 		for (i = 0; i < count; i++) {
6632 			cond_resched();
6633 			if (is_metadata)
6634 				bh = sb_find_get_block(inode->i_sb, block + i);
6635 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6636 		}
6637 	}
6638 
6639 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6640 }
6641 
6642 /**
6643  * ext4_group_add_blocks() -- Add given blocks to an existing group
6644  * @handle:			handle to this transaction
6645  * @sb:				super block
6646  * @block:			start physical block to add to the block group
6647  * @count:			number of blocks to free
6648  *
6649  * This marks the blocks as free in the bitmap and buddy.
6650  */
6651 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6652 			 ext4_fsblk_t block, unsigned long count)
6653 {
6654 	ext4_group_t block_group;
6655 	ext4_grpblk_t bit;
6656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6657 	struct ext4_buddy e4b;
6658 	int err = 0;
6659 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6660 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6661 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6662 	ext4_grpblk_t changed;
6663 
6664 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6665 
6666 	if (cluster_count == 0)
6667 		return 0;
6668 
6669 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6670 	/*
6671 	 * Check to see if we are freeing blocks across a group
6672 	 * boundary.
6673 	 */
6674 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6675 		ext4_warning(sb, "too many blocks added to group %u",
6676 			     block_group);
6677 		err = -EINVAL;
6678 		goto error_out;
6679 	}
6680 
6681 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6682 	if (err)
6683 		goto error_out;
6684 
6685 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6686 		ext4_error(sb, "Adding blocks in system zones - "
6687 			   "Block = %llu, count = %lu",
6688 			   block, count);
6689 		err = -EINVAL;
6690 		goto error_clean;
6691 	}
6692 
6693 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6694 				   cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6695 				   &changed);
6696 	if (err && changed == 0)
6697 		goto error_clean;
6698 
6699 	if (changed != cluster_count)
6700 		ext4_error(sb, "bit already cleared in group %u", block_group);
6701 
6702 	ext4_lock_group(sb, block_group);
6703 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6704 	ext4_unlock_group(sb, block_group);
6705 	percpu_counter_add(&sbi->s_freeclusters_counter,
6706 			   changed);
6707 
6708 error_clean:
6709 	ext4_mb_unload_buddy(&e4b);
6710 error_out:
6711 	ext4_std_error(sb, err);
6712 	return err;
6713 }
6714 
6715 /**
6716  * ext4_trim_extent -- function to TRIM one single free extent in the group
6717  * @sb:		super block for the file system
6718  * @start:	starting block of the free extent in the alloc. group
6719  * @count:	number of blocks to TRIM
6720  * @e4b:	ext4 buddy for the group
6721  *
6722  * Trim "count" blocks starting at "start" in the "group". To assure that no
6723  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6724  * be called with under the group lock.
6725  */
6726 static int ext4_trim_extent(struct super_block *sb,
6727 		int start, int count, struct ext4_buddy *e4b)
6728 __releases(bitlock)
6729 __acquires(bitlock)
6730 {
6731 	struct ext4_free_extent ex;
6732 	ext4_group_t group = e4b->bd_group;
6733 	int ret = 0;
6734 
6735 	trace_ext4_trim_extent(sb, group, start, count);
6736 
6737 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6738 
6739 	ex.fe_start = start;
6740 	ex.fe_group = group;
6741 	ex.fe_len = count;
6742 
6743 	/*
6744 	 * Mark blocks used, so no one can reuse them while
6745 	 * being trimmed.
6746 	 */
6747 	mb_mark_used(e4b, &ex);
6748 	ext4_unlock_group(sb, group);
6749 	ret = ext4_issue_discard(sb, group, start, count);
6750 	ext4_lock_group(sb, group);
6751 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6752 	return ret;
6753 }
6754 
6755 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6756 					   ext4_group_t grp)
6757 {
6758 	unsigned long nr_clusters_in_group;
6759 
6760 	if (grp < (ext4_get_groups_count(sb) - 1))
6761 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6762 	else
6763 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6764 					ext4_group_first_block_no(sb, grp))
6765 				       >> EXT4_CLUSTER_BITS(sb);
6766 
6767 	return nr_clusters_in_group - 1;
6768 }
6769 
6770 static bool ext4_trim_interrupted(void)
6771 {
6772 	return fatal_signal_pending(current) || freezing(current);
6773 }
6774 
6775 static int ext4_try_to_trim_range(struct super_block *sb,
6776 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6777 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6778 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6779 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6780 {
6781 	ext4_grpblk_t next, count, free_count, last, origin_start;
6782 	bool set_trimmed = false;
6783 	void *bitmap;
6784 
6785 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6786 		return 0;
6787 
6788 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6789 	bitmap = e4b->bd_bitmap;
6790 	if (start == 0 && max >= last)
6791 		set_trimmed = true;
6792 	origin_start = start;
6793 	start = max(e4b->bd_info->bb_first_free, start);
6794 	count = 0;
6795 	free_count = 0;
6796 
6797 	while (start <= max) {
6798 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6799 		if (start > max)
6800 			break;
6801 
6802 		next = mb_find_next_bit(bitmap, last + 1, start);
6803 		if (origin_start == 0 && next >= last)
6804 			set_trimmed = true;
6805 
6806 		if ((next - start) >= minblocks) {
6807 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6808 
6809 			if (ret && ret != -EOPNOTSUPP)
6810 				return count;
6811 			count += next - start;
6812 		}
6813 		free_count += next - start;
6814 		start = next + 1;
6815 
6816 		if (ext4_trim_interrupted())
6817 			return count;
6818 
6819 		if (need_resched()) {
6820 			ext4_unlock_group(sb, e4b->bd_group);
6821 			cond_resched();
6822 			ext4_lock_group(sb, e4b->bd_group);
6823 		}
6824 
6825 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6826 			break;
6827 	}
6828 
6829 	if (set_trimmed)
6830 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6831 
6832 	return count;
6833 }
6834 
6835 /**
6836  * ext4_trim_all_free -- function to trim all free space in alloc. group
6837  * @sb:			super block for file system
6838  * @group:		group to be trimmed
6839  * @start:		first group block to examine
6840  * @max:		last group block to examine
6841  * @minblocks:		minimum extent block count
6842  *
6843  * ext4_trim_all_free walks through group's block bitmap searching for free
6844  * extents. When the free extent is found, mark it as used in group buddy
6845  * bitmap. Then issue a TRIM command on this extent and free the extent in
6846  * the group buddy bitmap.
6847  */
6848 static ext4_grpblk_t
6849 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6850 		   ext4_grpblk_t start, ext4_grpblk_t max,
6851 		   ext4_grpblk_t minblocks)
6852 {
6853 	struct ext4_buddy e4b;
6854 	int ret;
6855 
6856 	trace_ext4_trim_all_free(sb, group, start, max);
6857 
6858 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6859 	if (ret) {
6860 		ext4_warning(sb, "Error %d loading buddy information for %u",
6861 			     ret, group);
6862 		return ret;
6863 	}
6864 
6865 	ext4_lock_group(sb, group);
6866 
6867 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6868 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6869 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6870 	else
6871 		ret = 0;
6872 
6873 	ext4_unlock_group(sb, group);
6874 	ext4_mb_unload_buddy(&e4b);
6875 
6876 	ext4_debug("trimmed %d blocks in the group %d\n",
6877 		ret, group);
6878 
6879 	return ret;
6880 }
6881 
6882 /**
6883  * ext4_trim_fs() -- trim ioctl handle function
6884  * @sb:			superblock for filesystem
6885  * @range:		fstrim_range structure
6886  *
6887  * start:	First Byte to trim
6888  * len:		number of Bytes to trim from start
6889  * minlen:	minimum extent length in Bytes
6890  * ext4_trim_fs goes through all allocation groups containing Bytes from
6891  * start to start+len. For each such a group ext4_trim_all_free function
6892  * is invoked to trim all free space.
6893  */
6894 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6895 {
6896 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6897 	struct ext4_group_info *grp;
6898 	ext4_group_t group, first_group, last_group;
6899 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6900 	uint64_t start, end, minlen, trimmed = 0;
6901 	ext4_fsblk_t first_data_blk =
6902 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6903 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6904 	int ret = 0;
6905 
6906 	start = range->start >> sb->s_blocksize_bits;
6907 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6908 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6909 			      range->minlen >> sb->s_blocksize_bits);
6910 
6911 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6912 	    start >= max_blks ||
6913 	    range->len < sb->s_blocksize)
6914 		return -EINVAL;
6915 	/* No point to try to trim less than discard granularity */
6916 	if (range->minlen < discard_granularity) {
6917 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6918 				discard_granularity >> sb->s_blocksize_bits);
6919 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6920 			goto out;
6921 	}
6922 	if (end >= max_blks - 1)
6923 		end = max_blks - 1;
6924 	if (end <= first_data_blk)
6925 		goto out;
6926 	if (start < first_data_blk)
6927 		start = first_data_blk;
6928 
6929 	/* Determine first and last group to examine based on start and end */
6930 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6931 				     &first_group, &first_cluster);
6932 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6933 				     &last_group, &last_cluster);
6934 
6935 	/* end now represents the last cluster to discard in this group */
6936 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6937 
6938 	for (group = first_group; group <= last_group; group++) {
6939 		if (ext4_trim_interrupted())
6940 			break;
6941 		grp = ext4_get_group_info(sb, group);
6942 		if (!grp)
6943 			continue;
6944 		/* We only do this if the grp has never been initialized */
6945 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6946 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6947 			if (ret)
6948 				break;
6949 		}
6950 
6951 		/*
6952 		 * For all the groups except the last one, last cluster will
6953 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6954 		 * change it for the last group, note that last_cluster is
6955 		 * already computed earlier by ext4_get_group_no_and_offset()
6956 		 */
6957 		if (group == last_group)
6958 			end = last_cluster;
6959 		if (grp->bb_free >= minlen) {
6960 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6961 						 end, minlen);
6962 			if (cnt < 0) {
6963 				ret = cnt;
6964 				break;
6965 			}
6966 			trimmed += cnt;
6967 		}
6968 
6969 		/*
6970 		 * For every group except the first one, we are sure
6971 		 * that the first cluster to discard will be cluster #0.
6972 		 */
6973 		first_cluster = 0;
6974 	}
6975 
6976 	if (!ret)
6977 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6978 
6979 out:
6980 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6981 	return ret;
6982 }
6983 
6984 /* Iterate all the free extents in the group. */
6985 int
6986 ext4_mballoc_query_range(
6987 	struct super_block		*sb,
6988 	ext4_group_t			group,
6989 	ext4_grpblk_t			start,
6990 	ext4_grpblk_t			end,
6991 	ext4_mballoc_query_range_fn	formatter,
6992 	void				*priv)
6993 {
6994 	void				*bitmap;
6995 	ext4_grpblk_t			next;
6996 	struct ext4_buddy		e4b;
6997 	int				error;
6998 
6999 	error = ext4_mb_load_buddy(sb, group, &e4b);
7000 	if (error)
7001 		return error;
7002 	bitmap = e4b.bd_bitmap;
7003 
7004 	ext4_lock_group(sb, group);
7005 
7006 	start = max(e4b.bd_info->bb_first_free, start);
7007 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7008 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7009 
7010 	while (start <= end) {
7011 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7012 		if (start > end)
7013 			break;
7014 		next = mb_find_next_bit(bitmap, end + 1, start);
7015 
7016 		ext4_unlock_group(sb, group);
7017 		error = formatter(sb, group, start, next - start, priv);
7018 		if (error)
7019 			goto out_unload;
7020 		ext4_lock_group(sb, group);
7021 
7022 		start = next + 1;
7023 	}
7024 
7025 	ext4_unlock_group(sb, group);
7026 out_unload:
7027 	ext4_mb_unload_buddy(&e4b);
7028 
7029 	return error;
7030 }
7031 
7032 #ifdef CONFIG_EXT4_KUNIT_TESTS
7033 #include "mballoc-test.c"
7034 #endif
7035