1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 #ifdef CONFIG_EXT4_DEBUG 32 ushort ext4_mballoc_debug __read_mostly; 33 34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 36 #endif 37 38 /* 39 * MUSTDO: 40 * - test ext4_ext_search_left() and ext4_ext_search_right() 41 * - search for metadata in few groups 42 * 43 * TODO v4: 44 * - normalization should take into account whether file is still open 45 * - discard preallocations if no free space left (policy?) 46 * - don't normalize tails 47 * - quota 48 * - reservation for superuser 49 * 50 * TODO v3: 51 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 52 * - track min/max extents in each group for better group selection 53 * - mb_mark_used() may allocate chunk right after splitting buddy 54 * - tree of groups sorted by number of free blocks 55 * - error handling 56 */ 57 58 /* 59 * The allocation request involve request for multiple number of blocks 60 * near to the goal(block) value specified. 61 * 62 * During initialization phase of the allocator we decide to use the 63 * group preallocation or inode preallocation depending on the size of 64 * the file. The size of the file could be the resulting file size we 65 * would have after allocation, or the current file size, which ever 66 * is larger. If the size is less than sbi->s_mb_stream_request we 67 * select to use the group preallocation. The default value of 68 * s_mb_stream_request is 16 blocks. This can also be tuned via 69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 70 * terms of number of blocks. 71 * 72 * The main motivation for having small file use group preallocation is to 73 * ensure that we have small files closer together on the disk. 74 * 75 * First stage the allocator looks at the inode prealloc list, 76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 77 * spaces for this particular inode. The inode prealloc space is 78 * represented as: 79 * 80 * pa_lstart -> the logical start block for this prealloc space 81 * pa_pstart -> the physical start block for this prealloc space 82 * pa_len -> length for this prealloc space (in clusters) 83 * pa_free -> free space available in this prealloc space (in clusters) 84 * 85 * The inode preallocation space is used looking at the _logical_ start 86 * block. If only the logical file block falls within the range of prealloc 87 * space we will consume the particular prealloc space. This makes sure that 88 * we have contiguous physical blocks representing the file blocks 89 * 90 * The important thing to be noted in case of inode prealloc space is that 91 * we don't modify the values associated to inode prealloc space except 92 * pa_free. 93 * 94 * If we are not able to find blocks in the inode prealloc space and if we 95 * have the group allocation flag set then we look at the locality group 96 * prealloc space. These are per CPU prealloc list represented as 97 * 98 * ext4_sb_info.s_locality_groups[smp_processor_id()] 99 * 100 * The reason for having a per cpu locality group is to reduce the contention 101 * between CPUs. It is possible to get scheduled at this point. 102 * 103 * The locality group prealloc space is used looking at whether we have 104 * enough free space (pa_free) within the prealloc space. 105 * 106 * If we can't allocate blocks via inode prealloc or/and locality group 107 * prealloc then we look at the buddy cache. The buddy cache is represented 108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 109 * mapped to the buddy and bitmap information regarding different 110 * groups. The buddy information is attached to buddy cache inode so that 111 * we can access them through the page cache. The information regarding 112 * each group is loaded via ext4_mb_load_buddy. The information involve 113 * block bitmap and buddy information. The information are stored in the 114 * inode as: 115 * 116 * { page } 117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 118 * 119 * 120 * one block each for bitmap and buddy information. So for each group we 121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 122 * blocksize) blocks. So it can have information regarding groups_per_page 123 * which is blocks_per_page/2 124 * 125 * The buddy cache inode is not stored on disk. The inode is thrown 126 * away when the filesystem is unmounted. 127 * 128 * We look for count number of blocks in the buddy cache. If we were able 129 * to locate that many free blocks we return with additional information 130 * regarding rest of the contiguous physical block available 131 * 132 * Before allocating blocks via buddy cache we normalize the request 133 * blocks. This ensure we ask for more blocks that we needed. The extra 134 * blocks that we get after allocation is added to the respective prealloc 135 * list. In case of inode preallocation we follow a list of heuristics 136 * based on file size. This can be found in ext4_mb_normalize_request. If 137 * we are doing a group prealloc we try to normalize the request to 138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 139 * dependent on the cluster size; for non-bigalloc file systems, it is 140 * 512 blocks. This can be tuned via 141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 142 * terms of number of blocks. If we have mounted the file system with -O 143 * stripe=<value> option the group prealloc request is normalized to the 144 * the smallest multiple of the stripe value (sbi->s_stripe) which is 145 * greater than the default mb_group_prealloc. 146 * 147 * The regular allocator (using the buddy cache) supports a few tunables. 148 * 149 * /sys/fs/ext4/<partition>/mb_min_to_scan 150 * /sys/fs/ext4/<partition>/mb_max_to_scan 151 * /sys/fs/ext4/<partition>/mb_order2_req 152 * 153 * The regular allocator uses buddy scan only if the request len is power of 154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 155 * value of s_mb_order2_reqs can be tuned via 156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 157 * stripe size (sbi->s_stripe), we try to search for contiguous block in 158 * stripe size. This should result in better allocation on RAID setups. If 159 * not, we search in the specific group using bitmap for best extents. The 160 * tunable min_to_scan and max_to_scan control the behaviour here. 161 * min_to_scan indicate how long the mballoc __must__ look for a best 162 * extent and max_to_scan indicates how long the mballoc __can__ look for a 163 * best extent in the found extents. Searching for the blocks starts with 164 * the group specified as the goal value in allocation context via 165 * ac_g_ex. Each group is first checked based on the criteria whether it 166 * can be used for allocation. ext4_mb_good_group explains how the groups are 167 * checked. 168 * 169 * Both the prealloc space are getting populated as above. So for the first 170 * request we will hit the buddy cache which will result in this prealloc 171 * space getting filled. The prealloc space is then later used for the 172 * subsequent request. 173 */ 174 175 /* 176 * mballoc operates on the following data: 177 * - on-disk bitmap 178 * - in-core buddy (actually includes buddy and bitmap) 179 * - preallocation descriptors (PAs) 180 * 181 * there are two types of preallocations: 182 * - inode 183 * assiged to specific inode and can be used for this inode only. 184 * it describes part of inode's space preallocated to specific 185 * physical blocks. any block from that preallocated can be used 186 * independent. the descriptor just tracks number of blocks left 187 * unused. so, before taking some block from descriptor, one must 188 * make sure corresponded logical block isn't allocated yet. this 189 * also means that freeing any block within descriptor's range 190 * must discard all preallocated blocks. 191 * - locality group 192 * assigned to specific locality group which does not translate to 193 * permanent set of inodes: inode can join and leave group. space 194 * from this type of preallocation can be used for any inode. thus 195 * it's consumed from the beginning to the end. 196 * 197 * relation between them can be expressed as: 198 * in-core buddy = on-disk bitmap + preallocation descriptors 199 * 200 * this mean blocks mballoc considers used are: 201 * - allocated blocks (persistent) 202 * - preallocated blocks (non-persistent) 203 * 204 * consistency in mballoc world means that at any time a block is either 205 * free or used in ALL structures. notice: "any time" should not be read 206 * literally -- time is discrete and delimited by locks. 207 * 208 * to keep it simple, we don't use block numbers, instead we count number of 209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 210 * 211 * all operations can be expressed as: 212 * - init buddy: buddy = on-disk + PAs 213 * - new PA: buddy += N; PA = N 214 * - use inode PA: on-disk += N; PA -= N 215 * - discard inode PA buddy -= on-disk - PA; PA = 0 216 * - use locality group PA on-disk += N; PA -= N 217 * - discard locality group PA buddy -= PA; PA = 0 218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 219 * is used in real operation because we can't know actual used 220 * bits from PA, only from on-disk bitmap 221 * 222 * if we follow this strict logic, then all operations above should be atomic. 223 * given some of them can block, we'd have to use something like semaphores 224 * killing performance on high-end SMP hardware. let's try to relax it using 225 * the following knowledge: 226 * 1) if buddy is referenced, it's already initialized 227 * 2) while block is used in buddy and the buddy is referenced, 228 * nobody can re-allocate that block 229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 230 * bit set and PA claims same block, it's OK. IOW, one can set bit in 231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 232 * block 233 * 234 * so, now we're building a concurrency table: 235 * - init buddy vs. 236 * - new PA 237 * blocks for PA are allocated in the buddy, buddy must be referenced 238 * until PA is linked to allocation group to avoid concurrent buddy init 239 * - use inode PA 240 * we need to make sure that either on-disk bitmap or PA has uptodate data 241 * given (3) we care that PA-=N operation doesn't interfere with init 242 * - discard inode PA 243 * the simplest way would be to have buddy initialized by the discard 244 * - use locality group PA 245 * again PA-=N must be serialized with init 246 * - discard locality group PA 247 * the simplest way would be to have buddy initialized by the discard 248 * - new PA vs. 249 * - use inode PA 250 * i_data_sem serializes them 251 * - discard inode PA 252 * discard process must wait until PA isn't used by another process 253 * - use locality group PA 254 * some mutex should serialize them 255 * - discard locality group PA 256 * discard process must wait until PA isn't used by another process 257 * - use inode PA 258 * - use inode PA 259 * i_data_sem or another mutex should serializes them 260 * - discard inode PA 261 * discard process must wait until PA isn't used by another process 262 * - use locality group PA 263 * nothing wrong here -- they're different PAs covering different blocks 264 * - discard locality group PA 265 * discard process must wait until PA isn't used by another process 266 * 267 * now we're ready to make few consequences: 268 * - PA is referenced and while it is no discard is possible 269 * - PA is referenced until block isn't marked in on-disk bitmap 270 * - PA changes only after on-disk bitmap 271 * - discard must not compete with init. either init is done before 272 * any discard or they're serialized somehow 273 * - buddy init as sum of on-disk bitmap and PAs is done atomically 274 * 275 * a special case when we've used PA to emptiness. no need to modify buddy 276 * in this case, but we should care about concurrent init 277 * 278 */ 279 280 /* 281 * Logic in few words: 282 * 283 * - allocation: 284 * load group 285 * find blocks 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - use preallocation: 290 * find proper PA (per-inode or group) 291 * load group 292 * mark bits in on-disk bitmap 293 * release group 294 * release PA 295 * 296 * - free: 297 * load group 298 * mark bits in on-disk bitmap 299 * release group 300 * 301 * - discard preallocations in group: 302 * mark PAs deleted 303 * move them onto local list 304 * load on-disk bitmap 305 * load group 306 * remove PA from object (inode or locality group) 307 * mark free blocks in-core 308 * 309 * - discard inode's preallocations: 310 */ 311 312 /* 313 * Locking rules 314 * 315 * Locks: 316 * - bitlock on a group (group) 317 * - object (inode/locality) (object) 318 * - per-pa lock (pa) 319 * 320 * Paths: 321 * - new pa 322 * object 323 * group 324 * 325 * - find and use pa: 326 * pa 327 * 328 * - release consumed pa: 329 * pa 330 * group 331 * object 332 * 333 * - generate in-core bitmap: 334 * group 335 * pa 336 * 337 * - discard all for given object (inode, locality group): 338 * object 339 * pa 340 * group 341 * 342 * - discard all for given group: 343 * group 344 * pa 345 * group 346 * object 347 * 348 */ 349 static struct kmem_cache *ext4_pspace_cachep; 350 static struct kmem_cache *ext4_ac_cachep; 351 static struct kmem_cache *ext4_free_data_cachep; 352 353 /* We create slab caches for groupinfo data structures based on the 354 * superblock block size. There will be one per mounted filesystem for 355 * each unique s_blocksize_bits */ 356 #define NR_GRPINFO_CACHES 8 357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 358 359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 362 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 363 }; 364 365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 366 ext4_group_t group); 367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369 static void ext4_free_data_callback(struct super_block *sb, 370 struct ext4_journal_cb_entry *jce, int rc); 371 372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 373 { 374 #if BITS_PER_LONG == 64 375 *bit += ((unsigned long) addr & 7UL) << 3; 376 addr = (void *) ((unsigned long) addr & ~7UL); 377 #elif BITS_PER_LONG == 32 378 *bit += ((unsigned long) addr & 3UL) << 3; 379 addr = (void *) ((unsigned long) addr & ~3UL); 380 #else 381 #error "how many bits you are?!" 382 #endif 383 return addr; 384 } 385 386 static inline int mb_test_bit(int bit, void *addr) 387 { 388 /* 389 * ext4_test_bit on architecture like powerpc 390 * needs unsigned long aligned address 391 */ 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 return ext4_test_bit(bit, addr); 394 } 395 396 static inline void mb_set_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 ext4_set_bit(bit, addr); 400 } 401 402 static inline void mb_clear_bit(int bit, void *addr) 403 { 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 ext4_clear_bit(bit, addr); 406 } 407 408 static inline int mb_test_and_clear_bit(int bit, void *addr) 409 { 410 addr = mb_correct_addr_and_bit(&bit, addr); 411 return ext4_test_and_clear_bit(bit, addr); 412 } 413 414 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static inline int mb_find_next_bit(void *addr, int max, int start) 428 { 429 int fix = 0, ret, tmpmax; 430 addr = mb_correct_addr_and_bit(&fix, addr); 431 tmpmax = max + fix; 432 start += fix; 433 434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 435 if (ret > max) 436 return max; 437 return ret; 438 } 439 440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 441 { 442 char *bb; 443 444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 445 BUG_ON(max == NULL); 446 447 if (order > e4b->bd_blkbits + 1) { 448 *max = 0; 449 return NULL; 450 } 451 452 /* at order 0 we see each particular block */ 453 if (order == 0) { 454 *max = 1 << (e4b->bd_blkbits + 3); 455 return e4b->bd_bitmap; 456 } 457 458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 460 461 return bb; 462 } 463 464 #ifdef DOUBLE_CHECK 465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 466 int first, int count) 467 { 468 int i; 469 struct super_block *sb = e4b->bd_sb; 470 471 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 472 return; 473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 474 for (i = 0; i < count; i++) { 475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 476 ext4_fsblk_t blocknr; 477 478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 480 ext4_grp_locked_error(sb, e4b->bd_group, 481 inode ? inode->i_ino : 0, 482 blocknr, 483 "freeing block already freed " 484 "(bit %u)", 485 first + i); 486 } 487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 492 { 493 int i; 494 495 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 496 return; 497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 498 for (i = 0; i < count; i++) { 499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 505 { 506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 507 unsigned char *b1, *b2; 508 int i; 509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 510 b2 = (unsigned char *) bitmap; 511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 512 if (b1[i] != b2[i]) { 513 ext4_msg(e4b->bd_sb, KERN_ERR, 514 "corruption in group %u " 515 "at byte %u(%u): %x in copy != %x " 516 "on disk/prealloc", 517 e4b->bd_group, i, i * 8, b1[i], b2[i]); 518 BUG(); 519 } 520 } 521 } 522 } 523 524 #else 525 static inline void mb_free_blocks_double(struct inode *inode, 526 struct ext4_buddy *e4b, int first, int count) 527 { 528 return; 529 } 530 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 531 int first, int count) 532 { 533 return; 534 } 535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 536 { 537 return; 538 } 539 #endif 540 541 #ifdef AGGRESSIVE_CHECK 542 543 #define MB_CHECK_ASSERT(assert) \ 544 do { \ 545 if (!(assert)) { \ 546 printk(KERN_EMERG \ 547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 548 function, file, line, # assert); \ 549 BUG(); \ 550 } \ 551 } while (0) 552 553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 554 const char *function, int line) 555 { 556 struct super_block *sb = e4b->bd_sb; 557 int order = e4b->bd_blkbits + 1; 558 int max; 559 int max2; 560 int i; 561 int j; 562 int k; 563 int count; 564 struct ext4_group_info *grp; 565 int fragments = 0; 566 int fstart; 567 struct list_head *cur; 568 void *buddy; 569 void *buddy2; 570 571 { 572 static int mb_check_counter; 573 if (mb_check_counter++ % 100 != 0) 574 return 0; 575 } 576 577 while (order > 1) { 578 buddy = mb_find_buddy(e4b, order, &max); 579 MB_CHECK_ASSERT(buddy); 580 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 581 MB_CHECK_ASSERT(buddy2); 582 MB_CHECK_ASSERT(buddy != buddy2); 583 MB_CHECK_ASSERT(max * 2 == max2); 584 585 count = 0; 586 for (i = 0; i < max; i++) { 587 588 if (mb_test_bit(i, buddy)) { 589 /* only single bit in buddy2 may be 1 */ 590 if (!mb_test_bit(i << 1, buddy2)) { 591 MB_CHECK_ASSERT( 592 mb_test_bit((i<<1)+1, buddy2)); 593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 594 MB_CHECK_ASSERT( 595 mb_test_bit(i << 1, buddy2)); 596 } 597 continue; 598 } 599 600 /* both bits in buddy2 must be 1 */ 601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 603 604 for (j = 0; j < (1 << order); j++) { 605 k = (i * (1 << order)) + j; 606 MB_CHECK_ASSERT( 607 !mb_test_bit(k, e4b->bd_bitmap)); 608 } 609 count++; 610 } 611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 612 order--; 613 } 614 615 fstart = -1; 616 buddy = mb_find_buddy(e4b, 0, &max); 617 for (i = 0; i < max; i++) { 618 if (!mb_test_bit(i, buddy)) { 619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 620 if (fstart == -1) { 621 fragments++; 622 fstart = i; 623 } 624 continue; 625 } 626 fstart = -1; 627 /* check used bits only */ 628 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 629 buddy2 = mb_find_buddy(e4b, j, &max2); 630 k = i >> j; 631 MB_CHECK_ASSERT(k < max2); 632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 633 } 634 } 635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 637 638 grp = ext4_get_group_info(sb, e4b->bd_group); 639 list_for_each(cur, &grp->bb_prealloc_list) { 640 ext4_group_t groupnr; 641 struct ext4_prealloc_space *pa; 642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 644 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 645 for (i = 0; i < pa->pa_len; i++) 646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 647 } 648 return 0; 649 } 650 #undef MB_CHECK_ASSERT 651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 652 __FILE__, __func__, __LINE__) 653 #else 654 #define mb_check_buddy(e4b) 655 #endif 656 657 /* 658 * Divide blocks started from @first with length @len into 659 * smaller chunks with power of 2 blocks. 660 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 661 * then increase bb_counters[] for corresponded chunk size. 662 */ 663 static void ext4_mb_mark_free_simple(struct super_block *sb, 664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 665 struct ext4_group_info *grp) 666 { 667 struct ext4_sb_info *sbi = EXT4_SB(sb); 668 ext4_grpblk_t min; 669 ext4_grpblk_t max; 670 ext4_grpblk_t chunk; 671 unsigned short border; 672 673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 674 675 border = 2 << sb->s_blocksize_bits; 676 677 while (len > 0) { 678 /* find how many blocks can be covered since this position */ 679 max = ffs(first | border) - 1; 680 681 /* find how many blocks of power 2 we need to mark */ 682 min = fls(len) - 1; 683 684 if (max < min) 685 min = max; 686 chunk = 1 << min; 687 688 /* mark multiblock chunks only */ 689 grp->bb_counters[min]++; 690 if (min > 0) 691 mb_clear_bit(first >> min, 692 buddy + sbi->s_mb_offsets[min]); 693 694 len -= chunk; 695 first += chunk; 696 } 697 } 698 699 /* 700 * Cache the order of the largest free extent we have available in this block 701 * group. 702 */ 703 static void 704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 705 { 706 int i; 707 int bits; 708 709 grp->bb_largest_free_order = -1; /* uninit */ 710 711 bits = sb->s_blocksize_bits + 1; 712 for (i = bits; i >= 0; i--) { 713 if (grp->bb_counters[i] > 0) { 714 grp->bb_largest_free_order = i; 715 break; 716 } 717 } 718 } 719 720 static noinline_for_stack 721 void ext4_mb_generate_buddy(struct super_block *sb, 722 void *buddy, void *bitmap, ext4_group_t group) 723 { 724 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 725 struct ext4_sb_info *sbi = EXT4_SB(sb); 726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 727 ext4_grpblk_t i = 0; 728 ext4_grpblk_t first; 729 ext4_grpblk_t len; 730 unsigned free = 0; 731 unsigned fragments = 0; 732 unsigned long long period = get_cycles(); 733 734 /* initialize buddy from bitmap which is aggregation 735 * of on-disk bitmap and preallocations */ 736 i = mb_find_next_zero_bit(bitmap, max, 0); 737 grp->bb_first_free = i; 738 while (i < max) { 739 fragments++; 740 first = i; 741 i = mb_find_next_bit(bitmap, max, i); 742 len = i - first; 743 free += len; 744 if (len > 1) 745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 746 else 747 grp->bb_counters[0]++; 748 if (i < max) 749 i = mb_find_next_zero_bit(bitmap, max, i); 750 } 751 grp->bb_fragments = fragments; 752 753 if (free != grp->bb_free) { 754 ext4_grp_locked_error(sb, group, 0, 0, 755 "block bitmap and bg descriptor " 756 "inconsistent: %u vs %u free clusters", 757 free, grp->bb_free); 758 /* 759 * If we intend to continue, we consider group descriptor 760 * corrupt and update bb_free using bitmap value 761 */ 762 grp->bb_free = free; 763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 764 percpu_counter_sub(&sbi->s_freeclusters_counter, 765 grp->bb_free); 766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 767 } 768 mb_set_largest_free_order(sb, grp); 769 770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 771 772 period = get_cycles() - period; 773 spin_lock(&EXT4_SB(sb)->s_bal_lock); 774 EXT4_SB(sb)->s_mb_buddies_generated++; 775 EXT4_SB(sb)->s_mb_generation_time += period; 776 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 777 } 778 779 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 780 { 781 int count; 782 int order = 1; 783 void *buddy; 784 785 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 786 ext4_set_bits(buddy, 0, count); 787 } 788 e4b->bd_info->bb_fragments = 0; 789 memset(e4b->bd_info->bb_counters, 0, 790 sizeof(*e4b->bd_info->bb_counters) * 791 (e4b->bd_sb->s_blocksize_bits + 2)); 792 793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 794 e4b->bd_bitmap, e4b->bd_group); 795 } 796 797 /* The buddy information is attached the buddy cache inode 798 * for convenience. The information regarding each group 799 * is loaded via ext4_mb_load_buddy. The information involve 800 * block bitmap and buddy information. The information are 801 * stored in the inode as 802 * 803 * { page } 804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 805 * 806 * 807 * one block each for bitmap and buddy information. 808 * So for each group we take up 2 blocks. A page can 809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 810 * So it can have information regarding groups_per_page which 811 * is blocks_per_page/2 812 * 813 * Locking note: This routine takes the block group lock of all groups 814 * for this page; do not hold this lock when calling this routine! 815 */ 816 817 static int ext4_mb_init_cache(struct page *page, char *incore) 818 { 819 ext4_group_t ngroups; 820 int blocksize; 821 int blocks_per_page; 822 int groups_per_page; 823 int err = 0; 824 int i; 825 ext4_group_t first_group, group; 826 int first_block; 827 struct super_block *sb; 828 struct buffer_head *bhs; 829 struct buffer_head **bh = NULL; 830 struct inode *inode; 831 char *data; 832 char *bitmap; 833 struct ext4_group_info *grinfo; 834 835 mb_debug(1, "init page %lu\n", page->index); 836 837 inode = page->mapping->host; 838 sb = inode->i_sb; 839 ngroups = ext4_get_groups_count(sb); 840 blocksize = 1 << inode->i_blkbits; 841 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 842 843 groups_per_page = blocks_per_page >> 1; 844 if (groups_per_page == 0) 845 groups_per_page = 1; 846 847 /* allocate buffer_heads to read bitmaps */ 848 if (groups_per_page > 1) { 849 i = sizeof(struct buffer_head *) * groups_per_page; 850 bh = kzalloc(i, GFP_NOFS); 851 if (bh == NULL) { 852 err = -ENOMEM; 853 goto out; 854 } 855 } else 856 bh = &bhs; 857 858 first_group = page->index * blocks_per_page / 2; 859 860 /* read all groups the page covers into the cache */ 861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 862 if (group >= ngroups) 863 break; 864 865 grinfo = ext4_get_group_info(sb, group); 866 /* 867 * If page is uptodate then we came here after online resize 868 * which added some new uninitialized group info structs, so 869 * we must skip all initialized uptodate buddies on the page, 870 * which may be currently in use by an allocating task. 871 */ 872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 873 bh[i] = NULL; 874 continue; 875 } 876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 877 err = -ENOMEM; 878 goto out; 879 } 880 mb_debug(1, "read bitmap for group %u\n", group); 881 } 882 883 /* wait for I/O completion */ 884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 886 err = -EIO; 887 goto out; 888 } 889 } 890 891 first_block = page->index * blocks_per_page; 892 for (i = 0; i < blocks_per_page; i++) { 893 group = (first_block + i) >> 1; 894 if (group >= ngroups) 895 break; 896 897 if (!bh[group - first_group]) 898 /* skip initialized uptodate buddy */ 899 continue; 900 901 /* 902 * data carry information regarding this 903 * particular group in the format specified 904 * above 905 * 906 */ 907 data = page_address(page) + (i * blocksize); 908 bitmap = bh[group - first_group]->b_data; 909 910 /* 911 * We place the buddy block and bitmap block 912 * close together 913 */ 914 if ((first_block + i) & 1) { 915 /* this is block of buddy */ 916 BUG_ON(incore == NULL); 917 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 918 group, page->index, i * blocksize); 919 trace_ext4_mb_buddy_bitmap_load(sb, group); 920 grinfo = ext4_get_group_info(sb, group); 921 grinfo->bb_fragments = 0; 922 memset(grinfo->bb_counters, 0, 923 sizeof(*grinfo->bb_counters) * 924 (sb->s_blocksize_bits+2)); 925 /* 926 * incore got set to the group block bitmap below 927 */ 928 ext4_lock_group(sb, group); 929 /* init the buddy */ 930 memset(data, 0xff, blocksize); 931 ext4_mb_generate_buddy(sb, data, incore, group); 932 ext4_unlock_group(sb, group); 933 incore = NULL; 934 } else { 935 /* this is block of bitmap */ 936 BUG_ON(incore != NULL); 937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 938 group, page->index, i * blocksize); 939 trace_ext4_mb_bitmap_load(sb, group); 940 941 /* see comments in ext4_mb_put_pa() */ 942 ext4_lock_group(sb, group); 943 memcpy(data, bitmap, blocksize); 944 945 /* mark all preallocated blks used in in-core bitmap */ 946 ext4_mb_generate_from_pa(sb, data, group); 947 ext4_mb_generate_from_freelist(sb, data, group); 948 ext4_unlock_group(sb, group); 949 950 /* set incore so that the buddy information can be 951 * generated using this 952 */ 953 incore = data; 954 } 955 } 956 SetPageUptodate(page); 957 958 out: 959 if (bh) { 960 for (i = 0; i < groups_per_page; i++) 961 brelse(bh[i]); 962 if (bh != &bhs) 963 kfree(bh); 964 } 965 return err; 966 } 967 968 /* 969 * Lock the buddy and bitmap pages. This make sure other parallel init_group 970 * on the same buddy page doesn't happen whild holding the buddy page lock. 971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 973 */ 974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 975 ext4_group_t group, struct ext4_buddy *e4b) 976 { 977 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 978 int block, pnum, poff; 979 int blocks_per_page; 980 struct page *page; 981 982 e4b->bd_buddy_page = NULL; 983 e4b->bd_bitmap_page = NULL; 984 985 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 986 /* 987 * the buddy cache inode stores the block bitmap 988 * and buddy information in consecutive blocks. 989 * So for each group we need two blocks. 990 */ 991 block = group * 2; 992 pnum = block / blocks_per_page; 993 poff = block % blocks_per_page; 994 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 995 if (!page) 996 return -ENOMEM; 997 BUG_ON(page->mapping != inode->i_mapping); 998 e4b->bd_bitmap_page = page; 999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1000 1001 if (blocks_per_page >= 2) { 1002 /* buddy and bitmap are on the same page */ 1003 return 0; 1004 } 1005 1006 block++; 1007 pnum = block / blocks_per_page; 1008 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1009 if (!page) 1010 return -ENOMEM; 1011 BUG_ON(page->mapping != inode->i_mapping); 1012 e4b->bd_buddy_page = page; 1013 return 0; 1014 } 1015 1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1017 { 1018 if (e4b->bd_bitmap_page) { 1019 unlock_page(e4b->bd_bitmap_page); 1020 page_cache_release(e4b->bd_bitmap_page); 1021 } 1022 if (e4b->bd_buddy_page) { 1023 unlock_page(e4b->bd_buddy_page); 1024 page_cache_release(e4b->bd_buddy_page); 1025 } 1026 } 1027 1028 /* 1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1030 * block group lock of all groups for this page; do not hold the BG lock when 1031 * calling this routine! 1032 */ 1033 static noinline_for_stack 1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1035 { 1036 1037 struct ext4_group_info *this_grp; 1038 struct ext4_buddy e4b; 1039 struct page *page; 1040 int ret = 0; 1041 1042 might_sleep(); 1043 mb_debug(1, "init group %u\n", group); 1044 this_grp = ext4_get_group_info(sb, group); 1045 /* 1046 * This ensures that we don't reinit the buddy cache 1047 * page which map to the group from which we are already 1048 * allocating. If we are looking at the buddy cache we would 1049 * have taken a reference using ext4_mb_load_buddy and that 1050 * would have pinned buddy page to page cache. 1051 * The call to ext4_mb_get_buddy_page_lock will mark the 1052 * page accessed. 1053 */ 1054 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1055 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1056 /* 1057 * somebody initialized the group 1058 * return without doing anything 1059 */ 1060 goto err; 1061 } 1062 1063 page = e4b.bd_bitmap_page; 1064 ret = ext4_mb_init_cache(page, NULL); 1065 if (ret) 1066 goto err; 1067 if (!PageUptodate(page)) { 1068 ret = -EIO; 1069 goto err; 1070 } 1071 1072 if (e4b.bd_buddy_page == NULL) { 1073 /* 1074 * If both the bitmap and buddy are in 1075 * the same page we don't need to force 1076 * init the buddy 1077 */ 1078 ret = 0; 1079 goto err; 1080 } 1081 /* init buddy cache */ 1082 page = e4b.bd_buddy_page; 1083 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1084 if (ret) 1085 goto err; 1086 if (!PageUptodate(page)) { 1087 ret = -EIO; 1088 goto err; 1089 } 1090 err: 1091 ext4_mb_put_buddy_page_lock(&e4b); 1092 return ret; 1093 } 1094 1095 /* 1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1097 * block group lock of all groups for this page; do not hold the BG lock when 1098 * calling this routine! 1099 */ 1100 static noinline_for_stack int 1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1102 struct ext4_buddy *e4b) 1103 { 1104 int blocks_per_page; 1105 int block; 1106 int pnum; 1107 int poff; 1108 struct page *page; 1109 int ret; 1110 struct ext4_group_info *grp; 1111 struct ext4_sb_info *sbi = EXT4_SB(sb); 1112 struct inode *inode = sbi->s_buddy_cache; 1113 1114 might_sleep(); 1115 mb_debug(1, "load group %u\n", group); 1116 1117 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1118 grp = ext4_get_group_info(sb, group); 1119 1120 e4b->bd_blkbits = sb->s_blocksize_bits; 1121 e4b->bd_info = grp; 1122 e4b->bd_sb = sb; 1123 e4b->bd_group = group; 1124 e4b->bd_buddy_page = NULL; 1125 e4b->bd_bitmap_page = NULL; 1126 1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1128 /* 1129 * we need full data about the group 1130 * to make a good selection 1131 */ 1132 ret = ext4_mb_init_group(sb, group); 1133 if (ret) 1134 return ret; 1135 } 1136 1137 /* 1138 * the buddy cache inode stores the block bitmap 1139 * and buddy information in consecutive blocks. 1140 * So for each group we need two blocks. 1141 */ 1142 block = group * 2; 1143 pnum = block / blocks_per_page; 1144 poff = block % blocks_per_page; 1145 1146 /* we could use find_or_create_page(), but it locks page 1147 * what we'd like to avoid in fast path ... */ 1148 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1149 if (page == NULL || !PageUptodate(page)) { 1150 if (page) 1151 /* 1152 * drop the page reference and try 1153 * to get the page with lock. If we 1154 * are not uptodate that implies 1155 * somebody just created the page but 1156 * is yet to initialize the same. So 1157 * wait for it to initialize. 1158 */ 1159 page_cache_release(page); 1160 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1161 if (page) { 1162 BUG_ON(page->mapping != inode->i_mapping); 1163 if (!PageUptodate(page)) { 1164 ret = ext4_mb_init_cache(page, NULL); 1165 if (ret) { 1166 unlock_page(page); 1167 goto err; 1168 } 1169 mb_cmp_bitmaps(e4b, page_address(page) + 1170 (poff * sb->s_blocksize)); 1171 } 1172 unlock_page(page); 1173 } 1174 } 1175 if (page == NULL) { 1176 ret = -ENOMEM; 1177 goto err; 1178 } 1179 if (!PageUptodate(page)) { 1180 ret = -EIO; 1181 goto err; 1182 } 1183 1184 /* Pages marked accessed already */ 1185 e4b->bd_bitmap_page = page; 1186 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1187 1188 block++; 1189 pnum = block / blocks_per_page; 1190 poff = block % blocks_per_page; 1191 1192 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1193 if (page == NULL || !PageUptodate(page)) { 1194 if (page) 1195 page_cache_release(page); 1196 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1197 if (page) { 1198 BUG_ON(page->mapping != inode->i_mapping); 1199 if (!PageUptodate(page)) { 1200 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1201 if (ret) { 1202 unlock_page(page); 1203 goto err; 1204 } 1205 } 1206 unlock_page(page); 1207 } 1208 } 1209 if (page == NULL) { 1210 ret = -ENOMEM; 1211 goto err; 1212 } 1213 if (!PageUptodate(page)) { 1214 ret = -EIO; 1215 goto err; 1216 } 1217 1218 /* Pages marked accessed already */ 1219 e4b->bd_buddy_page = page; 1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1221 1222 BUG_ON(e4b->bd_bitmap_page == NULL); 1223 BUG_ON(e4b->bd_buddy_page == NULL); 1224 1225 return 0; 1226 1227 err: 1228 if (page) 1229 page_cache_release(page); 1230 if (e4b->bd_bitmap_page) 1231 page_cache_release(e4b->bd_bitmap_page); 1232 if (e4b->bd_buddy_page) 1233 page_cache_release(e4b->bd_buddy_page); 1234 e4b->bd_buddy = NULL; 1235 e4b->bd_bitmap = NULL; 1236 return ret; 1237 } 1238 1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1240 { 1241 if (e4b->bd_bitmap_page) 1242 page_cache_release(e4b->bd_bitmap_page); 1243 if (e4b->bd_buddy_page) 1244 page_cache_release(e4b->bd_buddy_page); 1245 } 1246 1247 1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1249 { 1250 int order = 1; 1251 void *bb; 1252 1253 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1254 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1255 1256 bb = e4b->bd_buddy; 1257 while (order <= e4b->bd_blkbits + 1) { 1258 block = block >> 1; 1259 if (!mb_test_bit(block, bb)) { 1260 /* this block is part of buddy of order 'order' */ 1261 return order; 1262 } 1263 bb += 1 << (e4b->bd_blkbits - order); 1264 order++; 1265 } 1266 return 0; 1267 } 1268 1269 static void mb_clear_bits(void *bm, int cur, int len) 1270 { 1271 __u32 *addr; 1272 1273 len = cur + len; 1274 while (cur < len) { 1275 if ((cur & 31) == 0 && (len - cur) >= 32) { 1276 /* fast path: clear whole word at once */ 1277 addr = bm + (cur >> 3); 1278 *addr = 0; 1279 cur += 32; 1280 continue; 1281 } 1282 mb_clear_bit(cur, bm); 1283 cur++; 1284 } 1285 } 1286 1287 /* clear bits in given range 1288 * will return first found zero bit if any, -1 otherwise 1289 */ 1290 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1291 { 1292 __u32 *addr; 1293 int zero_bit = -1; 1294 1295 len = cur + len; 1296 while (cur < len) { 1297 if ((cur & 31) == 0 && (len - cur) >= 32) { 1298 /* fast path: clear whole word at once */ 1299 addr = bm + (cur >> 3); 1300 if (*addr != (__u32)(-1) && zero_bit == -1) 1301 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1302 *addr = 0; 1303 cur += 32; 1304 continue; 1305 } 1306 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1307 zero_bit = cur; 1308 cur++; 1309 } 1310 1311 return zero_bit; 1312 } 1313 1314 void ext4_set_bits(void *bm, int cur, int len) 1315 { 1316 __u32 *addr; 1317 1318 len = cur + len; 1319 while (cur < len) { 1320 if ((cur & 31) == 0 && (len - cur) >= 32) { 1321 /* fast path: set whole word at once */ 1322 addr = bm + (cur >> 3); 1323 *addr = 0xffffffff; 1324 cur += 32; 1325 continue; 1326 } 1327 mb_set_bit(cur, bm); 1328 cur++; 1329 } 1330 } 1331 1332 /* 1333 * _________________________________________________________________ */ 1334 1335 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1336 { 1337 if (mb_test_bit(*bit + side, bitmap)) { 1338 mb_clear_bit(*bit, bitmap); 1339 (*bit) -= side; 1340 return 1; 1341 } 1342 else { 1343 (*bit) += side; 1344 mb_set_bit(*bit, bitmap); 1345 return -1; 1346 } 1347 } 1348 1349 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1350 { 1351 int max; 1352 int order = 1; 1353 void *buddy = mb_find_buddy(e4b, order, &max); 1354 1355 while (buddy) { 1356 void *buddy2; 1357 1358 /* Bits in range [first; last] are known to be set since 1359 * corresponding blocks were allocated. Bits in range 1360 * (first; last) will stay set because they form buddies on 1361 * upper layer. We just deal with borders if they don't 1362 * align with upper layer and then go up. 1363 * Releasing entire group is all about clearing 1364 * single bit of highest order buddy. 1365 */ 1366 1367 /* Example: 1368 * --------------------------------- 1369 * | 1 | 1 | 1 | 1 | 1370 * --------------------------------- 1371 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1372 * --------------------------------- 1373 * 0 1 2 3 4 5 6 7 1374 * \_____________________/ 1375 * 1376 * Neither [1] nor [6] is aligned to above layer. 1377 * Left neighbour [0] is free, so mark it busy, 1378 * decrease bb_counters and extend range to 1379 * [0; 6] 1380 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1381 * mark [6] free, increase bb_counters and shrink range to 1382 * [0; 5]. 1383 * Then shift range to [0; 2], go up and do the same. 1384 */ 1385 1386 1387 if (first & 1) 1388 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1389 if (!(last & 1)) 1390 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1391 if (first > last) 1392 break; 1393 order++; 1394 1395 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1396 mb_clear_bits(buddy, first, last - first + 1); 1397 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1398 break; 1399 } 1400 first >>= 1; 1401 last >>= 1; 1402 buddy = buddy2; 1403 } 1404 } 1405 1406 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1407 int first, int count) 1408 { 1409 int left_is_free = 0; 1410 int right_is_free = 0; 1411 int block; 1412 int last = first + count - 1; 1413 struct super_block *sb = e4b->bd_sb; 1414 1415 if (WARN_ON(count == 0)) 1416 return; 1417 BUG_ON(last >= (sb->s_blocksize << 3)); 1418 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1419 /* Don't bother if the block group is corrupt. */ 1420 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1421 return; 1422 1423 mb_check_buddy(e4b); 1424 mb_free_blocks_double(inode, e4b, first, count); 1425 1426 e4b->bd_info->bb_free += count; 1427 if (first < e4b->bd_info->bb_first_free) 1428 e4b->bd_info->bb_first_free = first; 1429 1430 /* access memory sequentially: check left neighbour, 1431 * clear range and then check right neighbour 1432 */ 1433 if (first != 0) 1434 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1435 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1436 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1437 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1438 1439 if (unlikely(block != -1)) { 1440 struct ext4_sb_info *sbi = EXT4_SB(sb); 1441 ext4_fsblk_t blocknr; 1442 1443 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1444 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1445 ext4_grp_locked_error(sb, e4b->bd_group, 1446 inode ? inode->i_ino : 0, 1447 blocknr, 1448 "freeing already freed block " 1449 "(bit %u); block bitmap corrupt.", 1450 block); 1451 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)) 1452 percpu_counter_sub(&sbi->s_freeclusters_counter, 1453 e4b->bd_info->bb_free); 1454 /* Mark the block group as corrupt. */ 1455 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1456 &e4b->bd_info->bb_state); 1457 mb_regenerate_buddy(e4b); 1458 goto done; 1459 } 1460 1461 /* let's maintain fragments counter */ 1462 if (left_is_free && right_is_free) 1463 e4b->bd_info->bb_fragments--; 1464 else if (!left_is_free && !right_is_free) 1465 e4b->bd_info->bb_fragments++; 1466 1467 /* buddy[0] == bd_bitmap is a special case, so handle 1468 * it right away and let mb_buddy_mark_free stay free of 1469 * zero order checks. 1470 * Check if neighbours are to be coaleasced, 1471 * adjust bitmap bb_counters and borders appropriately. 1472 */ 1473 if (first & 1) { 1474 first += !left_is_free; 1475 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1476 } 1477 if (!(last & 1)) { 1478 last -= !right_is_free; 1479 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1480 } 1481 1482 if (first <= last) 1483 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1484 1485 done: 1486 mb_set_largest_free_order(sb, e4b->bd_info); 1487 mb_check_buddy(e4b); 1488 } 1489 1490 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1491 int needed, struct ext4_free_extent *ex) 1492 { 1493 int next = block; 1494 int max, order; 1495 void *buddy; 1496 1497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1498 BUG_ON(ex == NULL); 1499 1500 buddy = mb_find_buddy(e4b, 0, &max); 1501 BUG_ON(buddy == NULL); 1502 BUG_ON(block >= max); 1503 if (mb_test_bit(block, buddy)) { 1504 ex->fe_len = 0; 1505 ex->fe_start = 0; 1506 ex->fe_group = 0; 1507 return 0; 1508 } 1509 1510 /* find actual order */ 1511 order = mb_find_order_for_block(e4b, block); 1512 block = block >> order; 1513 1514 ex->fe_len = 1 << order; 1515 ex->fe_start = block << order; 1516 ex->fe_group = e4b->bd_group; 1517 1518 /* calc difference from given start */ 1519 next = next - ex->fe_start; 1520 ex->fe_len -= next; 1521 ex->fe_start += next; 1522 1523 while (needed > ex->fe_len && 1524 mb_find_buddy(e4b, order, &max)) { 1525 1526 if (block + 1 >= max) 1527 break; 1528 1529 next = (block + 1) * (1 << order); 1530 if (mb_test_bit(next, e4b->bd_bitmap)) 1531 break; 1532 1533 order = mb_find_order_for_block(e4b, next); 1534 1535 block = next >> order; 1536 ex->fe_len += 1 << order; 1537 } 1538 1539 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1540 return ex->fe_len; 1541 } 1542 1543 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1544 { 1545 int ord; 1546 int mlen = 0; 1547 int max = 0; 1548 int cur; 1549 int start = ex->fe_start; 1550 int len = ex->fe_len; 1551 unsigned ret = 0; 1552 int len0 = len; 1553 void *buddy; 1554 1555 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1556 BUG_ON(e4b->bd_group != ex->fe_group); 1557 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1558 mb_check_buddy(e4b); 1559 mb_mark_used_double(e4b, start, len); 1560 1561 e4b->bd_info->bb_free -= len; 1562 if (e4b->bd_info->bb_first_free == start) 1563 e4b->bd_info->bb_first_free += len; 1564 1565 /* let's maintain fragments counter */ 1566 if (start != 0) 1567 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1568 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1569 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1570 if (mlen && max) 1571 e4b->bd_info->bb_fragments++; 1572 else if (!mlen && !max) 1573 e4b->bd_info->bb_fragments--; 1574 1575 /* let's maintain buddy itself */ 1576 while (len) { 1577 ord = mb_find_order_for_block(e4b, start); 1578 1579 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1580 /* the whole chunk may be allocated at once! */ 1581 mlen = 1 << ord; 1582 buddy = mb_find_buddy(e4b, ord, &max); 1583 BUG_ON((start >> ord) >= max); 1584 mb_set_bit(start >> ord, buddy); 1585 e4b->bd_info->bb_counters[ord]--; 1586 start += mlen; 1587 len -= mlen; 1588 BUG_ON(len < 0); 1589 continue; 1590 } 1591 1592 /* store for history */ 1593 if (ret == 0) 1594 ret = len | (ord << 16); 1595 1596 /* we have to split large buddy */ 1597 BUG_ON(ord <= 0); 1598 buddy = mb_find_buddy(e4b, ord, &max); 1599 mb_set_bit(start >> ord, buddy); 1600 e4b->bd_info->bb_counters[ord]--; 1601 1602 ord--; 1603 cur = (start >> ord) & ~1U; 1604 buddy = mb_find_buddy(e4b, ord, &max); 1605 mb_clear_bit(cur, buddy); 1606 mb_clear_bit(cur + 1, buddy); 1607 e4b->bd_info->bb_counters[ord]++; 1608 e4b->bd_info->bb_counters[ord]++; 1609 } 1610 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1611 1612 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1613 mb_check_buddy(e4b); 1614 1615 return ret; 1616 } 1617 1618 /* 1619 * Must be called under group lock! 1620 */ 1621 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1622 struct ext4_buddy *e4b) 1623 { 1624 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1625 int ret; 1626 1627 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1628 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1629 1630 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1631 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1632 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1633 1634 /* preallocation can change ac_b_ex, thus we store actually 1635 * allocated blocks for history */ 1636 ac->ac_f_ex = ac->ac_b_ex; 1637 1638 ac->ac_status = AC_STATUS_FOUND; 1639 ac->ac_tail = ret & 0xffff; 1640 ac->ac_buddy = ret >> 16; 1641 1642 /* 1643 * take the page reference. We want the page to be pinned 1644 * so that we don't get a ext4_mb_init_cache_call for this 1645 * group until we update the bitmap. That would mean we 1646 * double allocate blocks. The reference is dropped 1647 * in ext4_mb_release_context 1648 */ 1649 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1650 get_page(ac->ac_bitmap_page); 1651 ac->ac_buddy_page = e4b->bd_buddy_page; 1652 get_page(ac->ac_buddy_page); 1653 /* store last allocated for subsequent stream allocation */ 1654 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1655 spin_lock(&sbi->s_md_lock); 1656 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1657 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1658 spin_unlock(&sbi->s_md_lock); 1659 } 1660 } 1661 1662 /* 1663 * regular allocator, for general purposes allocation 1664 */ 1665 1666 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1667 struct ext4_buddy *e4b, 1668 int finish_group) 1669 { 1670 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1671 struct ext4_free_extent *bex = &ac->ac_b_ex; 1672 struct ext4_free_extent *gex = &ac->ac_g_ex; 1673 struct ext4_free_extent ex; 1674 int max; 1675 1676 if (ac->ac_status == AC_STATUS_FOUND) 1677 return; 1678 /* 1679 * We don't want to scan for a whole year 1680 */ 1681 if (ac->ac_found > sbi->s_mb_max_to_scan && 1682 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1683 ac->ac_status = AC_STATUS_BREAK; 1684 return; 1685 } 1686 1687 /* 1688 * Haven't found good chunk so far, let's continue 1689 */ 1690 if (bex->fe_len < gex->fe_len) 1691 return; 1692 1693 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1694 && bex->fe_group == e4b->bd_group) { 1695 /* recheck chunk's availability - we don't know 1696 * when it was found (within this lock-unlock 1697 * period or not) */ 1698 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1699 if (max >= gex->fe_len) { 1700 ext4_mb_use_best_found(ac, e4b); 1701 return; 1702 } 1703 } 1704 } 1705 1706 /* 1707 * The routine checks whether found extent is good enough. If it is, 1708 * then the extent gets marked used and flag is set to the context 1709 * to stop scanning. Otherwise, the extent is compared with the 1710 * previous found extent and if new one is better, then it's stored 1711 * in the context. Later, the best found extent will be used, if 1712 * mballoc can't find good enough extent. 1713 * 1714 * FIXME: real allocation policy is to be designed yet! 1715 */ 1716 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1717 struct ext4_free_extent *ex, 1718 struct ext4_buddy *e4b) 1719 { 1720 struct ext4_free_extent *bex = &ac->ac_b_ex; 1721 struct ext4_free_extent *gex = &ac->ac_g_ex; 1722 1723 BUG_ON(ex->fe_len <= 0); 1724 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1725 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1726 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1727 1728 ac->ac_found++; 1729 1730 /* 1731 * The special case - take what you catch first 1732 */ 1733 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1734 *bex = *ex; 1735 ext4_mb_use_best_found(ac, e4b); 1736 return; 1737 } 1738 1739 /* 1740 * Let's check whether the chuck is good enough 1741 */ 1742 if (ex->fe_len == gex->fe_len) { 1743 *bex = *ex; 1744 ext4_mb_use_best_found(ac, e4b); 1745 return; 1746 } 1747 1748 /* 1749 * If this is first found extent, just store it in the context 1750 */ 1751 if (bex->fe_len == 0) { 1752 *bex = *ex; 1753 return; 1754 } 1755 1756 /* 1757 * If new found extent is better, store it in the context 1758 */ 1759 if (bex->fe_len < gex->fe_len) { 1760 /* if the request isn't satisfied, any found extent 1761 * larger than previous best one is better */ 1762 if (ex->fe_len > bex->fe_len) 1763 *bex = *ex; 1764 } else if (ex->fe_len > gex->fe_len) { 1765 /* if the request is satisfied, then we try to find 1766 * an extent that still satisfy the request, but is 1767 * smaller than previous one */ 1768 if (ex->fe_len < bex->fe_len) 1769 *bex = *ex; 1770 } 1771 1772 ext4_mb_check_limits(ac, e4b, 0); 1773 } 1774 1775 static noinline_for_stack 1776 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1777 struct ext4_buddy *e4b) 1778 { 1779 struct ext4_free_extent ex = ac->ac_b_ex; 1780 ext4_group_t group = ex.fe_group; 1781 int max; 1782 int err; 1783 1784 BUG_ON(ex.fe_len <= 0); 1785 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1786 if (err) 1787 return err; 1788 1789 ext4_lock_group(ac->ac_sb, group); 1790 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1791 1792 if (max > 0) { 1793 ac->ac_b_ex = ex; 1794 ext4_mb_use_best_found(ac, e4b); 1795 } 1796 1797 ext4_unlock_group(ac->ac_sb, group); 1798 ext4_mb_unload_buddy(e4b); 1799 1800 return 0; 1801 } 1802 1803 static noinline_for_stack 1804 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1805 struct ext4_buddy *e4b) 1806 { 1807 ext4_group_t group = ac->ac_g_ex.fe_group; 1808 int max; 1809 int err; 1810 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1811 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1812 struct ext4_free_extent ex; 1813 1814 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1815 return 0; 1816 if (grp->bb_free == 0) 1817 return 0; 1818 1819 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1820 if (err) 1821 return err; 1822 1823 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1824 ext4_mb_unload_buddy(e4b); 1825 return 0; 1826 } 1827 1828 ext4_lock_group(ac->ac_sb, group); 1829 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1830 ac->ac_g_ex.fe_len, &ex); 1831 ex.fe_logical = 0xDEADFA11; /* debug value */ 1832 1833 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1834 ext4_fsblk_t start; 1835 1836 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1837 ex.fe_start; 1838 /* use do_div to get remainder (would be 64-bit modulo) */ 1839 if (do_div(start, sbi->s_stripe) == 0) { 1840 ac->ac_found++; 1841 ac->ac_b_ex = ex; 1842 ext4_mb_use_best_found(ac, e4b); 1843 } 1844 } else if (max >= ac->ac_g_ex.fe_len) { 1845 BUG_ON(ex.fe_len <= 0); 1846 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1847 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1848 ac->ac_found++; 1849 ac->ac_b_ex = ex; 1850 ext4_mb_use_best_found(ac, e4b); 1851 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1852 /* Sometimes, caller may want to merge even small 1853 * number of blocks to an existing extent */ 1854 BUG_ON(ex.fe_len <= 0); 1855 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1856 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1857 ac->ac_found++; 1858 ac->ac_b_ex = ex; 1859 ext4_mb_use_best_found(ac, e4b); 1860 } 1861 ext4_unlock_group(ac->ac_sb, group); 1862 ext4_mb_unload_buddy(e4b); 1863 1864 return 0; 1865 } 1866 1867 /* 1868 * The routine scans buddy structures (not bitmap!) from given order 1869 * to max order and tries to find big enough chunk to satisfy the req 1870 */ 1871 static noinline_for_stack 1872 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1873 struct ext4_buddy *e4b) 1874 { 1875 struct super_block *sb = ac->ac_sb; 1876 struct ext4_group_info *grp = e4b->bd_info; 1877 void *buddy; 1878 int i; 1879 int k; 1880 int max; 1881 1882 BUG_ON(ac->ac_2order <= 0); 1883 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1884 if (grp->bb_counters[i] == 0) 1885 continue; 1886 1887 buddy = mb_find_buddy(e4b, i, &max); 1888 BUG_ON(buddy == NULL); 1889 1890 k = mb_find_next_zero_bit(buddy, max, 0); 1891 BUG_ON(k >= max); 1892 1893 ac->ac_found++; 1894 1895 ac->ac_b_ex.fe_len = 1 << i; 1896 ac->ac_b_ex.fe_start = k << i; 1897 ac->ac_b_ex.fe_group = e4b->bd_group; 1898 1899 ext4_mb_use_best_found(ac, e4b); 1900 1901 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1902 1903 if (EXT4_SB(sb)->s_mb_stats) 1904 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1905 1906 break; 1907 } 1908 } 1909 1910 /* 1911 * The routine scans the group and measures all found extents. 1912 * In order to optimize scanning, caller must pass number of 1913 * free blocks in the group, so the routine can know upper limit. 1914 */ 1915 static noinline_for_stack 1916 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1917 struct ext4_buddy *e4b) 1918 { 1919 struct super_block *sb = ac->ac_sb; 1920 void *bitmap = e4b->bd_bitmap; 1921 struct ext4_free_extent ex; 1922 int i; 1923 int free; 1924 1925 free = e4b->bd_info->bb_free; 1926 BUG_ON(free <= 0); 1927 1928 i = e4b->bd_info->bb_first_free; 1929 1930 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1931 i = mb_find_next_zero_bit(bitmap, 1932 EXT4_CLUSTERS_PER_GROUP(sb), i); 1933 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1934 /* 1935 * IF we have corrupt bitmap, we won't find any 1936 * free blocks even though group info says we 1937 * we have free blocks 1938 */ 1939 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1940 "%d free clusters as per " 1941 "group info. But bitmap says 0", 1942 free); 1943 break; 1944 } 1945 1946 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1947 BUG_ON(ex.fe_len <= 0); 1948 if (free < ex.fe_len) { 1949 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1950 "%d free clusters as per " 1951 "group info. But got %d blocks", 1952 free, ex.fe_len); 1953 /* 1954 * The number of free blocks differs. This mostly 1955 * indicate that the bitmap is corrupt. So exit 1956 * without claiming the space. 1957 */ 1958 break; 1959 } 1960 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1961 ext4_mb_measure_extent(ac, &ex, e4b); 1962 1963 i += ex.fe_len; 1964 free -= ex.fe_len; 1965 } 1966 1967 ext4_mb_check_limits(ac, e4b, 1); 1968 } 1969 1970 /* 1971 * This is a special case for storages like raid5 1972 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1973 */ 1974 static noinline_for_stack 1975 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1976 struct ext4_buddy *e4b) 1977 { 1978 struct super_block *sb = ac->ac_sb; 1979 struct ext4_sb_info *sbi = EXT4_SB(sb); 1980 void *bitmap = e4b->bd_bitmap; 1981 struct ext4_free_extent ex; 1982 ext4_fsblk_t first_group_block; 1983 ext4_fsblk_t a; 1984 ext4_grpblk_t i; 1985 int max; 1986 1987 BUG_ON(sbi->s_stripe == 0); 1988 1989 /* find first stripe-aligned block in group */ 1990 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1991 1992 a = first_group_block + sbi->s_stripe - 1; 1993 do_div(a, sbi->s_stripe); 1994 i = (a * sbi->s_stripe) - first_group_block; 1995 1996 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1997 if (!mb_test_bit(i, bitmap)) { 1998 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1999 if (max >= sbi->s_stripe) { 2000 ac->ac_found++; 2001 ex.fe_logical = 0xDEADF00D; /* debug value */ 2002 ac->ac_b_ex = ex; 2003 ext4_mb_use_best_found(ac, e4b); 2004 break; 2005 } 2006 } 2007 i += sbi->s_stripe; 2008 } 2009 } 2010 2011 /* This is now called BEFORE we load the buddy bitmap. */ 2012 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2013 ext4_group_t group, int cr) 2014 { 2015 unsigned free, fragments; 2016 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2017 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2018 2019 BUG_ON(cr < 0 || cr >= 4); 2020 2021 free = grp->bb_free; 2022 if (free == 0) 2023 return 0; 2024 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2025 return 0; 2026 2027 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2028 return 0; 2029 2030 /* We only do this if the grp has never been initialized */ 2031 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2032 int ret = ext4_mb_init_group(ac->ac_sb, group); 2033 if (ret) 2034 return 0; 2035 } 2036 2037 fragments = grp->bb_fragments; 2038 if (fragments == 0) 2039 return 0; 2040 2041 switch (cr) { 2042 case 0: 2043 BUG_ON(ac->ac_2order == 0); 2044 2045 /* Avoid using the first bg of a flexgroup for data files */ 2046 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2047 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2048 ((group % flex_size) == 0)) 2049 return 0; 2050 2051 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2052 (free / fragments) >= ac->ac_g_ex.fe_len) 2053 return 1; 2054 2055 if (grp->bb_largest_free_order < ac->ac_2order) 2056 return 0; 2057 2058 return 1; 2059 case 1: 2060 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2061 return 1; 2062 break; 2063 case 2: 2064 if (free >= ac->ac_g_ex.fe_len) 2065 return 1; 2066 break; 2067 case 3: 2068 return 1; 2069 default: 2070 BUG(); 2071 } 2072 2073 return 0; 2074 } 2075 2076 static noinline_for_stack int 2077 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2078 { 2079 ext4_group_t ngroups, group, i; 2080 int cr; 2081 int err = 0; 2082 struct ext4_sb_info *sbi; 2083 struct super_block *sb; 2084 struct ext4_buddy e4b; 2085 2086 sb = ac->ac_sb; 2087 sbi = EXT4_SB(sb); 2088 ngroups = ext4_get_groups_count(sb); 2089 /* non-extent files are limited to low blocks/groups */ 2090 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2091 ngroups = sbi->s_blockfile_groups; 2092 2093 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2094 2095 /* first, try the goal */ 2096 err = ext4_mb_find_by_goal(ac, &e4b); 2097 if (err || ac->ac_status == AC_STATUS_FOUND) 2098 goto out; 2099 2100 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2101 goto out; 2102 2103 /* 2104 * ac->ac2_order is set only if the fe_len is a power of 2 2105 * if ac2_order is set we also set criteria to 0 so that we 2106 * try exact allocation using buddy. 2107 */ 2108 i = fls(ac->ac_g_ex.fe_len); 2109 ac->ac_2order = 0; 2110 /* 2111 * We search using buddy data only if the order of the request 2112 * is greater than equal to the sbi_s_mb_order2_reqs 2113 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2114 */ 2115 if (i >= sbi->s_mb_order2_reqs) { 2116 /* 2117 * This should tell if fe_len is exactly power of 2 2118 */ 2119 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2120 ac->ac_2order = i - 1; 2121 } 2122 2123 /* if stream allocation is enabled, use global goal */ 2124 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2125 /* TBD: may be hot point */ 2126 spin_lock(&sbi->s_md_lock); 2127 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2128 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2129 spin_unlock(&sbi->s_md_lock); 2130 } 2131 2132 /* Let's just scan groups to find more-less suitable blocks */ 2133 cr = ac->ac_2order ? 0 : 1; 2134 /* 2135 * cr == 0 try to get exact allocation, 2136 * cr == 3 try to get anything 2137 */ 2138 repeat: 2139 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2140 ac->ac_criteria = cr; 2141 /* 2142 * searching for the right group start 2143 * from the goal value specified 2144 */ 2145 group = ac->ac_g_ex.fe_group; 2146 2147 for (i = 0; i < ngroups; group++, i++) { 2148 cond_resched(); 2149 /* 2150 * Artificially restricted ngroups for non-extent 2151 * files makes group > ngroups possible on first loop. 2152 */ 2153 if (group >= ngroups) 2154 group = 0; 2155 2156 /* This now checks without needing the buddy page */ 2157 if (!ext4_mb_good_group(ac, group, cr)) 2158 continue; 2159 2160 err = ext4_mb_load_buddy(sb, group, &e4b); 2161 if (err) 2162 goto out; 2163 2164 ext4_lock_group(sb, group); 2165 2166 /* 2167 * We need to check again after locking the 2168 * block group 2169 */ 2170 if (!ext4_mb_good_group(ac, group, cr)) { 2171 ext4_unlock_group(sb, group); 2172 ext4_mb_unload_buddy(&e4b); 2173 continue; 2174 } 2175 2176 ac->ac_groups_scanned++; 2177 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2178 ext4_mb_simple_scan_group(ac, &e4b); 2179 else if (cr == 1 && sbi->s_stripe && 2180 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2181 ext4_mb_scan_aligned(ac, &e4b); 2182 else 2183 ext4_mb_complex_scan_group(ac, &e4b); 2184 2185 ext4_unlock_group(sb, group); 2186 ext4_mb_unload_buddy(&e4b); 2187 2188 if (ac->ac_status != AC_STATUS_CONTINUE) 2189 break; 2190 } 2191 } 2192 2193 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2194 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2195 /* 2196 * We've been searching too long. Let's try to allocate 2197 * the best chunk we've found so far 2198 */ 2199 2200 ext4_mb_try_best_found(ac, &e4b); 2201 if (ac->ac_status != AC_STATUS_FOUND) { 2202 /* 2203 * Someone more lucky has already allocated it. 2204 * The only thing we can do is just take first 2205 * found block(s) 2206 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2207 */ 2208 ac->ac_b_ex.fe_group = 0; 2209 ac->ac_b_ex.fe_start = 0; 2210 ac->ac_b_ex.fe_len = 0; 2211 ac->ac_status = AC_STATUS_CONTINUE; 2212 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2213 cr = 3; 2214 atomic_inc(&sbi->s_mb_lost_chunks); 2215 goto repeat; 2216 } 2217 } 2218 out: 2219 return err; 2220 } 2221 2222 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2223 { 2224 struct super_block *sb = seq->private; 2225 ext4_group_t group; 2226 2227 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2228 return NULL; 2229 group = *pos + 1; 2230 return (void *) ((unsigned long) group); 2231 } 2232 2233 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2234 { 2235 struct super_block *sb = seq->private; 2236 ext4_group_t group; 2237 2238 ++*pos; 2239 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2240 return NULL; 2241 group = *pos + 1; 2242 return (void *) ((unsigned long) group); 2243 } 2244 2245 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2246 { 2247 struct super_block *sb = seq->private; 2248 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2249 int i; 2250 int err, buddy_loaded = 0; 2251 struct ext4_buddy e4b; 2252 struct ext4_group_info *grinfo; 2253 struct sg { 2254 struct ext4_group_info info; 2255 ext4_grpblk_t counters[16]; 2256 } sg; 2257 2258 group--; 2259 if (group == 0) 2260 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2261 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2262 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2263 "group", "free", "frags", "first", 2264 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2265 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2266 2267 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2268 sizeof(struct ext4_group_info); 2269 grinfo = ext4_get_group_info(sb, group); 2270 /* Load the group info in memory only if not already loaded. */ 2271 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2272 err = ext4_mb_load_buddy(sb, group, &e4b); 2273 if (err) { 2274 seq_printf(seq, "#%-5u: I/O error\n", group); 2275 return 0; 2276 } 2277 buddy_loaded = 1; 2278 } 2279 2280 memcpy(&sg, ext4_get_group_info(sb, group), i); 2281 2282 if (buddy_loaded) 2283 ext4_mb_unload_buddy(&e4b); 2284 2285 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2286 sg.info.bb_fragments, sg.info.bb_first_free); 2287 for (i = 0; i <= 13; i++) 2288 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2289 sg.info.bb_counters[i] : 0); 2290 seq_printf(seq, " ]\n"); 2291 2292 return 0; 2293 } 2294 2295 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2296 { 2297 } 2298 2299 static const struct seq_operations ext4_mb_seq_groups_ops = { 2300 .start = ext4_mb_seq_groups_start, 2301 .next = ext4_mb_seq_groups_next, 2302 .stop = ext4_mb_seq_groups_stop, 2303 .show = ext4_mb_seq_groups_show, 2304 }; 2305 2306 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2307 { 2308 struct super_block *sb = PDE_DATA(inode); 2309 int rc; 2310 2311 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2312 if (rc == 0) { 2313 struct seq_file *m = file->private_data; 2314 m->private = sb; 2315 } 2316 return rc; 2317 2318 } 2319 2320 static const struct file_operations ext4_mb_seq_groups_fops = { 2321 .owner = THIS_MODULE, 2322 .open = ext4_mb_seq_groups_open, 2323 .read = seq_read, 2324 .llseek = seq_lseek, 2325 .release = seq_release, 2326 }; 2327 2328 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2329 { 2330 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2331 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2332 2333 BUG_ON(!cachep); 2334 return cachep; 2335 } 2336 2337 /* 2338 * Allocate the top-level s_group_info array for the specified number 2339 * of groups 2340 */ 2341 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2342 { 2343 struct ext4_sb_info *sbi = EXT4_SB(sb); 2344 unsigned size; 2345 struct ext4_group_info ***new_groupinfo; 2346 2347 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2348 EXT4_DESC_PER_BLOCK_BITS(sb); 2349 if (size <= sbi->s_group_info_size) 2350 return 0; 2351 2352 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2353 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2354 if (!new_groupinfo) { 2355 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2356 return -ENOMEM; 2357 } 2358 if (sbi->s_group_info) { 2359 memcpy(new_groupinfo, sbi->s_group_info, 2360 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2361 kvfree(sbi->s_group_info); 2362 } 2363 sbi->s_group_info = new_groupinfo; 2364 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2365 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2366 sbi->s_group_info_size); 2367 return 0; 2368 } 2369 2370 /* Create and initialize ext4_group_info data for the given group. */ 2371 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2372 struct ext4_group_desc *desc) 2373 { 2374 int i; 2375 int metalen = 0; 2376 struct ext4_sb_info *sbi = EXT4_SB(sb); 2377 struct ext4_group_info **meta_group_info; 2378 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2379 2380 /* 2381 * First check if this group is the first of a reserved block. 2382 * If it's true, we have to allocate a new table of pointers 2383 * to ext4_group_info structures 2384 */ 2385 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2386 metalen = sizeof(*meta_group_info) << 2387 EXT4_DESC_PER_BLOCK_BITS(sb); 2388 meta_group_info = kmalloc(metalen, GFP_NOFS); 2389 if (meta_group_info == NULL) { 2390 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2391 "for a buddy group"); 2392 goto exit_meta_group_info; 2393 } 2394 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2395 meta_group_info; 2396 } 2397 2398 meta_group_info = 2399 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2400 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2401 2402 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2403 if (meta_group_info[i] == NULL) { 2404 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2405 goto exit_group_info; 2406 } 2407 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2408 &(meta_group_info[i]->bb_state)); 2409 2410 /* 2411 * initialize bb_free to be able to skip 2412 * empty groups without initialization 2413 */ 2414 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2415 meta_group_info[i]->bb_free = 2416 ext4_free_clusters_after_init(sb, group, desc); 2417 } else { 2418 meta_group_info[i]->bb_free = 2419 ext4_free_group_clusters(sb, desc); 2420 } 2421 2422 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2423 init_rwsem(&meta_group_info[i]->alloc_sem); 2424 meta_group_info[i]->bb_free_root = RB_ROOT; 2425 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2426 2427 #ifdef DOUBLE_CHECK 2428 { 2429 struct buffer_head *bh; 2430 meta_group_info[i]->bb_bitmap = 2431 kmalloc(sb->s_blocksize, GFP_NOFS); 2432 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2433 bh = ext4_read_block_bitmap(sb, group); 2434 BUG_ON(bh == NULL); 2435 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2436 sb->s_blocksize); 2437 put_bh(bh); 2438 } 2439 #endif 2440 2441 return 0; 2442 2443 exit_group_info: 2444 /* If a meta_group_info table has been allocated, release it now */ 2445 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2446 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2447 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2448 } 2449 exit_meta_group_info: 2450 return -ENOMEM; 2451 } /* ext4_mb_add_groupinfo */ 2452 2453 static int ext4_mb_init_backend(struct super_block *sb) 2454 { 2455 ext4_group_t ngroups = ext4_get_groups_count(sb); 2456 ext4_group_t i; 2457 struct ext4_sb_info *sbi = EXT4_SB(sb); 2458 int err; 2459 struct ext4_group_desc *desc; 2460 struct kmem_cache *cachep; 2461 2462 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2463 if (err) 2464 return err; 2465 2466 sbi->s_buddy_cache = new_inode(sb); 2467 if (sbi->s_buddy_cache == NULL) { 2468 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2469 goto err_freesgi; 2470 } 2471 /* To avoid potentially colliding with an valid on-disk inode number, 2472 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2473 * not in the inode hash, so it should never be found by iget(), but 2474 * this will avoid confusion if it ever shows up during debugging. */ 2475 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2476 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2477 for (i = 0; i < ngroups; i++) { 2478 desc = ext4_get_group_desc(sb, i, NULL); 2479 if (desc == NULL) { 2480 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2481 goto err_freebuddy; 2482 } 2483 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2484 goto err_freebuddy; 2485 } 2486 2487 return 0; 2488 2489 err_freebuddy: 2490 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2491 while (i-- > 0) 2492 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2493 i = sbi->s_group_info_size; 2494 while (i-- > 0) 2495 kfree(sbi->s_group_info[i]); 2496 iput(sbi->s_buddy_cache); 2497 err_freesgi: 2498 kvfree(sbi->s_group_info); 2499 return -ENOMEM; 2500 } 2501 2502 static void ext4_groupinfo_destroy_slabs(void) 2503 { 2504 int i; 2505 2506 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2507 if (ext4_groupinfo_caches[i]) 2508 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2509 ext4_groupinfo_caches[i] = NULL; 2510 } 2511 } 2512 2513 static int ext4_groupinfo_create_slab(size_t size) 2514 { 2515 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2516 int slab_size; 2517 int blocksize_bits = order_base_2(size); 2518 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2519 struct kmem_cache *cachep; 2520 2521 if (cache_index >= NR_GRPINFO_CACHES) 2522 return -EINVAL; 2523 2524 if (unlikely(cache_index < 0)) 2525 cache_index = 0; 2526 2527 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2528 if (ext4_groupinfo_caches[cache_index]) { 2529 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2530 return 0; /* Already created */ 2531 } 2532 2533 slab_size = offsetof(struct ext4_group_info, 2534 bb_counters[blocksize_bits + 2]); 2535 2536 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2537 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2538 NULL); 2539 2540 ext4_groupinfo_caches[cache_index] = cachep; 2541 2542 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2543 if (!cachep) { 2544 printk(KERN_EMERG 2545 "EXT4-fs: no memory for groupinfo slab cache\n"); 2546 return -ENOMEM; 2547 } 2548 2549 return 0; 2550 } 2551 2552 int ext4_mb_init(struct super_block *sb) 2553 { 2554 struct ext4_sb_info *sbi = EXT4_SB(sb); 2555 unsigned i, j; 2556 unsigned offset; 2557 unsigned max; 2558 int ret; 2559 2560 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2561 2562 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2563 if (sbi->s_mb_offsets == NULL) { 2564 ret = -ENOMEM; 2565 goto out; 2566 } 2567 2568 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2569 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2570 if (sbi->s_mb_maxs == NULL) { 2571 ret = -ENOMEM; 2572 goto out; 2573 } 2574 2575 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2576 if (ret < 0) 2577 goto out; 2578 2579 /* order 0 is regular bitmap */ 2580 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2581 sbi->s_mb_offsets[0] = 0; 2582 2583 i = 1; 2584 offset = 0; 2585 max = sb->s_blocksize << 2; 2586 do { 2587 sbi->s_mb_offsets[i] = offset; 2588 sbi->s_mb_maxs[i] = max; 2589 offset += 1 << (sb->s_blocksize_bits - i); 2590 max = max >> 1; 2591 i++; 2592 } while (i <= sb->s_blocksize_bits + 1); 2593 2594 spin_lock_init(&sbi->s_md_lock); 2595 spin_lock_init(&sbi->s_bal_lock); 2596 2597 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2598 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2599 sbi->s_mb_stats = MB_DEFAULT_STATS; 2600 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2601 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2602 /* 2603 * The default group preallocation is 512, which for 4k block 2604 * sizes translates to 2 megabytes. However for bigalloc file 2605 * systems, this is probably too big (i.e, if the cluster size 2606 * is 1 megabyte, then group preallocation size becomes half a 2607 * gigabyte!). As a default, we will keep a two megabyte 2608 * group pralloc size for cluster sizes up to 64k, and after 2609 * that, we will force a minimum group preallocation size of 2610 * 32 clusters. This translates to 8 megs when the cluster 2611 * size is 256k, and 32 megs when the cluster size is 1 meg, 2612 * which seems reasonable as a default. 2613 */ 2614 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2615 sbi->s_cluster_bits, 32); 2616 /* 2617 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2618 * to the lowest multiple of s_stripe which is bigger than 2619 * the s_mb_group_prealloc as determined above. We want 2620 * the preallocation size to be an exact multiple of the 2621 * RAID stripe size so that preallocations don't fragment 2622 * the stripes. 2623 */ 2624 if (sbi->s_stripe > 1) { 2625 sbi->s_mb_group_prealloc = roundup( 2626 sbi->s_mb_group_prealloc, sbi->s_stripe); 2627 } 2628 2629 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2630 if (sbi->s_locality_groups == NULL) { 2631 ret = -ENOMEM; 2632 goto out; 2633 } 2634 for_each_possible_cpu(i) { 2635 struct ext4_locality_group *lg; 2636 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2637 mutex_init(&lg->lg_mutex); 2638 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2639 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2640 spin_lock_init(&lg->lg_prealloc_lock); 2641 } 2642 2643 /* init file for buddy data */ 2644 ret = ext4_mb_init_backend(sb); 2645 if (ret != 0) 2646 goto out_free_locality_groups; 2647 2648 if (sbi->s_proc) 2649 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2650 &ext4_mb_seq_groups_fops, sb); 2651 2652 return 0; 2653 2654 out_free_locality_groups: 2655 free_percpu(sbi->s_locality_groups); 2656 sbi->s_locality_groups = NULL; 2657 out: 2658 kfree(sbi->s_mb_offsets); 2659 sbi->s_mb_offsets = NULL; 2660 kfree(sbi->s_mb_maxs); 2661 sbi->s_mb_maxs = NULL; 2662 return ret; 2663 } 2664 2665 /* need to called with the ext4 group lock held */ 2666 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2667 { 2668 struct ext4_prealloc_space *pa; 2669 struct list_head *cur, *tmp; 2670 int count = 0; 2671 2672 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2673 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2674 list_del(&pa->pa_group_list); 2675 count++; 2676 kmem_cache_free(ext4_pspace_cachep, pa); 2677 } 2678 if (count) 2679 mb_debug(1, "mballoc: %u PAs left\n", count); 2680 2681 } 2682 2683 int ext4_mb_release(struct super_block *sb) 2684 { 2685 ext4_group_t ngroups = ext4_get_groups_count(sb); 2686 ext4_group_t i; 2687 int num_meta_group_infos; 2688 struct ext4_group_info *grinfo; 2689 struct ext4_sb_info *sbi = EXT4_SB(sb); 2690 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2691 2692 if (sbi->s_proc) 2693 remove_proc_entry("mb_groups", sbi->s_proc); 2694 2695 if (sbi->s_group_info) { 2696 for (i = 0; i < ngroups; i++) { 2697 grinfo = ext4_get_group_info(sb, i); 2698 #ifdef DOUBLE_CHECK 2699 kfree(grinfo->bb_bitmap); 2700 #endif 2701 ext4_lock_group(sb, i); 2702 ext4_mb_cleanup_pa(grinfo); 2703 ext4_unlock_group(sb, i); 2704 kmem_cache_free(cachep, grinfo); 2705 } 2706 num_meta_group_infos = (ngroups + 2707 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2708 EXT4_DESC_PER_BLOCK_BITS(sb); 2709 for (i = 0; i < num_meta_group_infos; i++) 2710 kfree(sbi->s_group_info[i]); 2711 kvfree(sbi->s_group_info); 2712 } 2713 kfree(sbi->s_mb_offsets); 2714 kfree(sbi->s_mb_maxs); 2715 iput(sbi->s_buddy_cache); 2716 if (sbi->s_mb_stats) { 2717 ext4_msg(sb, KERN_INFO, 2718 "mballoc: %u blocks %u reqs (%u success)", 2719 atomic_read(&sbi->s_bal_allocated), 2720 atomic_read(&sbi->s_bal_reqs), 2721 atomic_read(&sbi->s_bal_success)); 2722 ext4_msg(sb, KERN_INFO, 2723 "mballoc: %u extents scanned, %u goal hits, " 2724 "%u 2^N hits, %u breaks, %u lost", 2725 atomic_read(&sbi->s_bal_ex_scanned), 2726 atomic_read(&sbi->s_bal_goals), 2727 atomic_read(&sbi->s_bal_2orders), 2728 atomic_read(&sbi->s_bal_breaks), 2729 atomic_read(&sbi->s_mb_lost_chunks)); 2730 ext4_msg(sb, KERN_INFO, 2731 "mballoc: %lu generated and it took %Lu", 2732 sbi->s_mb_buddies_generated, 2733 sbi->s_mb_generation_time); 2734 ext4_msg(sb, KERN_INFO, 2735 "mballoc: %u preallocated, %u discarded", 2736 atomic_read(&sbi->s_mb_preallocated), 2737 atomic_read(&sbi->s_mb_discarded)); 2738 } 2739 2740 free_percpu(sbi->s_locality_groups); 2741 2742 return 0; 2743 } 2744 2745 static inline int ext4_issue_discard(struct super_block *sb, 2746 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2747 { 2748 ext4_fsblk_t discard_block; 2749 2750 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2751 ext4_group_first_block_no(sb, block_group)); 2752 count = EXT4_C2B(EXT4_SB(sb), count); 2753 trace_ext4_discard_blocks(sb, 2754 (unsigned long long) discard_block, count); 2755 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2756 } 2757 2758 /* 2759 * This function is called by the jbd2 layer once the commit has finished, 2760 * so we know we can free the blocks that were released with that commit. 2761 */ 2762 static void ext4_free_data_callback(struct super_block *sb, 2763 struct ext4_journal_cb_entry *jce, 2764 int rc) 2765 { 2766 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2767 struct ext4_buddy e4b; 2768 struct ext4_group_info *db; 2769 int err, count = 0, count2 = 0; 2770 2771 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2772 entry->efd_count, entry->efd_group, entry); 2773 2774 if (test_opt(sb, DISCARD)) { 2775 err = ext4_issue_discard(sb, entry->efd_group, 2776 entry->efd_start_cluster, 2777 entry->efd_count); 2778 if (err && err != -EOPNOTSUPP) 2779 ext4_msg(sb, KERN_WARNING, "discard request in" 2780 " group:%d block:%d count:%d failed" 2781 " with %d", entry->efd_group, 2782 entry->efd_start_cluster, 2783 entry->efd_count, err); 2784 } 2785 2786 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2787 /* we expect to find existing buddy because it's pinned */ 2788 BUG_ON(err != 0); 2789 2790 2791 db = e4b.bd_info; 2792 /* there are blocks to put in buddy to make them really free */ 2793 count += entry->efd_count; 2794 count2++; 2795 ext4_lock_group(sb, entry->efd_group); 2796 /* Take it out of per group rb tree */ 2797 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2798 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2799 2800 /* 2801 * Clear the trimmed flag for the group so that the next 2802 * ext4_trim_fs can trim it. 2803 * If the volume is mounted with -o discard, online discard 2804 * is supported and the free blocks will be trimmed online. 2805 */ 2806 if (!test_opt(sb, DISCARD)) 2807 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2808 2809 if (!db->bb_free_root.rb_node) { 2810 /* No more items in the per group rb tree 2811 * balance refcounts from ext4_mb_free_metadata() 2812 */ 2813 page_cache_release(e4b.bd_buddy_page); 2814 page_cache_release(e4b.bd_bitmap_page); 2815 } 2816 ext4_unlock_group(sb, entry->efd_group); 2817 kmem_cache_free(ext4_free_data_cachep, entry); 2818 ext4_mb_unload_buddy(&e4b); 2819 2820 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2821 } 2822 2823 int __init ext4_init_mballoc(void) 2824 { 2825 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2826 SLAB_RECLAIM_ACCOUNT); 2827 if (ext4_pspace_cachep == NULL) 2828 return -ENOMEM; 2829 2830 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2831 SLAB_RECLAIM_ACCOUNT); 2832 if (ext4_ac_cachep == NULL) { 2833 kmem_cache_destroy(ext4_pspace_cachep); 2834 return -ENOMEM; 2835 } 2836 2837 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2838 SLAB_RECLAIM_ACCOUNT); 2839 if (ext4_free_data_cachep == NULL) { 2840 kmem_cache_destroy(ext4_pspace_cachep); 2841 kmem_cache_destroy(ext4_ac_cachep); 2842 return -ENOMEM; 2843 } 2844 return 0; 2845 } 2846 2847 void ext4_exit_mballoc(void) 2848 { 2849 /* 2850 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2851 * before destroying the slab cache. 2852 */ 2853 rcu_barrier(); 2854 kmem_cache_destroy(ext4_pspace_cachep); 2855 kmem_cache_destroy(ext4_ac_cachep); 2856 kmem_cache_destroy(ext4_free_data_cachep); 2857 ext4_groupinfo_destroy_slabs(); 2858 } 2859 2860 2861 /* 2862 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2863 * Returns 0 if success or error code 2864 */ 2865 static noinline_for_stack int 2866 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2867 handle_t *handle, unsigned int reserv_clstrs) 2868 { 2869 struct buffer_head *bitmap_bh = NULL; 2870 struct ext4_group_desc *gdp; 2871 struct buffer_head *gdp_bh; 2872 struct ext4_sb_info *sbi; 2873 struct super_block *sb; 2874 ext4_fsblk_t block; 2875 int err, len; 2876 2877 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2878 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2879 2880 sb = ac->ac_sb; 2881 sbi = EXT4_SB(sb); 2882 2883 err = -EIO; 2884 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2885 if (!bitmap_bh) 2886 goto out_err; 2887 2888 BUFFER_TRACE(bitmap_bh, "getting write access"); 2889 err = ext4_journal_get_write_access(handle, bitmap_bh); 2890 if (err) 2891 goto out_err; 2892 2893 err = -EIO; 2894 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2895 if (!gdp) 2896 goto out_err; 2897 2898 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2899 ext4_free_group_clusters(sb, gdp)); 2900 2901 BUFFER_TRACE(gdp_bh, "get_write_access"); 2902 err = ext4_journal_get_write_access(handle, gdp_bh); 2903 if (err) 2904 goto out_err; 2905 2906 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2907 2908 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2909 if (!ext4_data_block_valid(sbi, block, len)) { 2910 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2911 "fs metadata", block, block+len); 2912 /* File system mounted not to panic on error 2913 * Fix the bitmap and repeat the block allocation 2914 * We leak some of the blocks here. 2915 */ 2916 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2917 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2918 ac->ac_b_ex.fe_len); 2919 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2920 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2921 if (!err) 2922 err = -EAGAIN; 2923 goto out_err; 2924 } 2925 2926 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2927 #ifdef AGGRESSIVE_CHECK 2928 { 2929 int i; 2930 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2931 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2932 bitmap_bh->b_data)); 2933 } 2934 } 2935 #endif 2936 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2937 ac->ac_b_ex.fe_len); 2938 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2939 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2940 ext4_free_group_clusters_set(sb, gdp, 2941 ext4_free_clusters_after_init(sb, 2942 ac->ac_b_ex.fe_group, gdp)); 2943 } 2944 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2945 ext4_free_group_clusters_set(sb, gdp, len); 2946 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2947 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2948 2949 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2950 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2951 /* 2952 * Now reduce the dirty block count also. Should not go negative 2953 */ 2954 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2955 /* release all the reserved blocks if non delalloc */ 2956 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2957 reserv_clstrs); 2958 2959 if (sbi->s_log_groups_per_flex) { 2960 ext4_group_t flex_group = ext4_flex_group(sbi, 2961 ac->ac_b_ex.fe_group); 2962 atomic64_sub(ac->ac_b_ex.fe_len, 2963 &sbi->s_flex_groups[flex_group].free_clusters); 2964 } 2965 2966 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2967 if (err) 2968 goto out_err; 2969 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2970 2971 out_err: 2972 brelse(bitmap_bh); 2973 return err; 2974 } 2975 2976 /* 2977 * here we normalize request for locality group 2978 * Group request are normalized to s_mb_group_prealloc, which goes to 2979 * s_strip if we set the same via mount option. 2980 * s_mb_group_prealloc can be configured via 2981 * /sys/fs/ext4/<partition>/mb_group_prealloc 2982 * 2983 * XXX: should we try to preallocate more than the group has now? 2984 */ 2985 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2986 { 2987 struct super_block *sb = ac->ac_sb; 2988 struct ext4_locality_group *lg = ac->ac_lg; 2989 2990 BUG_ON(lg == NULL); 2991 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2992 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2993 current->pid, ac->ac_g_ex.fe_len); 2994 } 2995 2996 /* 2997 * Normalization means making request better in terms of 2998 * size and alignment 2999 */ 3000 static noinline_for_stack void 3001 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3002 struct ext4_allocation_request *ar) 3003 { 3004 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3005 int bsbits, max; 3006 ext4_lblk_t end; 3007 loff_t size, start_off; 3008 loff_t orig_size __maybe_unused; 3009 ext4_lblk_t start; 3010 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3011 struct ext4_prealloc_space *pa; 3012 3013 /* do normalize only data requests, metadata requests 3014 do not need preallocation */ 3015 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3016 return; 3017 3018 /* sometime caller may want exact blocks */ 3019 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3020 return; 3021 3022 /* caller may indicate that preallocation isn't 3023 * required (it's a tail, for example) */ 3024 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3025 return; 3026 3027 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3028 ext4_mb_normalize_group_request(ac); 3029 return ; 3030 } 3031 3032 bsbits = ac->ac_sb->s_blocksize_bits; 3033 3034 /* first, let's learn actual file size 3035 * given current request is allocated */ 3036 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3037 size = size << bsbits; 3038 if (size < i_size_read(ac->ac_inode)) 3039 size = i_size_read(ac->ac_inode); 3040 orig_size = size; 3041 3042 /* max size of free chunks */ 3043 max = 2 << bsbits; 3044 3045 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3046 (req <= (size) || max <= (chunk_size)) 3047 3048 /* first, try to predict filesize */ 3049 /* XXX: should this table be tunable? */ 3050 start_off = 0; 3051 if (size <= 16 * 1024) { 3052 size = 16 * 1024; 3053 } else if (size <= 32 * 1024) { 3054 size = 32 * 1024; 3055 } else if (size <= 64 * 1024) { 3056 size = 64 * 1024; 3057 } else if (size <= 128 * 1024) { 3058 size = 128 * 1024; 3059 } else if (size <= 256 * 1024) { 3060 size = 256 * 1024; 3061 } else if (size <= 512 * 1024) { 3062 size = 512 * 1024; 3063 } else if (size <= 1024 * 1024) { 3064 size = 1024 * 1024; 3065 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3066 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3067 (21 - bsbits)) << 21; 3068 size = 2 * 1024 * 1024; 3069 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3070 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3071 (22 - bsbits)) << 22; 3072 size = 4 * 1024 * 1024; 3073 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3074 (8<<20)>>bsbits, max, 8 * 1024)) { 3075 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3076 (23 - bsbits)) << 23; 3077 size = 8 * 1024 * 1024; 3078 } else { 3079 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3080 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3081 ac->ac_o_ex.fe_len) << bsbits; 3082 } 3083 size = size >> bsbits; 3084 start = start_off >> bsbits; 3085 3086 /* don't cover already allocated blocks in selected range */ 3087 if (ar->pleft && start <= ar->lleft) { 3088 size -= ar->lleft + 1 - start; 3089 start = ar->lleft + 1; 3090 } 3091 if (ar->pright && start + size - 1 >= ar->lright) 3092 size -= start + size - ar->lright; 3093 3094 end = start + size; 3095 3096 /* check we don't cross already preallocated blocks */ 3097 rcu_read_lock(); 3098 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3099 ext4_lblk_t pa_end; 3100 3101 if (pa->pa_deleted) 3102 continue; 3103 spin_lock(&pa->pa_lock); 3104 if (pa->pa_deleted) { 3105 spin_unlock(&pa->pa_lock); 3106 continue; 3107 } 3108 3109 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3110 pa->pa_len); 3111 3112 /* PA must not overlap original request */ 3113 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3114 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3115 3116 /* skip PAs this normalized request doesn't overlap with */ 3117 if (pa->pa_lstart >= end || pa_end <= start) { 3118 spin_unlock(&pa->pa_lock); 3119 continue; 3120 } 3121 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3122 3123 /* adjust start or end to be adjacent to this pa */ 3124 if (pa_end <= ac->ac_o_ex.fe_logical) { 3125 BUG_ON(pa_end < start); 3126 start = pa_end; 3127 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3128 BUG_ON(pa->pa_lstart > end); 3129 end = pa->pa_lstart; 3130 } 3131 spin_unlock(&pa->pa_lock); 3132 } 3133 rcu_read_unlock(); 3134 size = end - start; 3135 3136 /* XXX: extra loop to check we really don't overlap preallocations */ 3137 rcu_read_lock(); 3138 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3139 ext4_lblk_t pa_end; 3140 3141 spin_lock(&pa->pa_lock); 3142 if (pa->pa_deleted == 0) { 3143 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3144 pa->pa_len); 3145 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3146 } 3147 spin_unlock(&pa->pa_lock); 3148 } 3149 rcu_read_unlock(); 3150 3151 if (start + size <= ac->ac_o_ex.fe_logical && 3152 start > ac->ac_o_ex.fe_logical) { 3153 ext4_msg(ac->ac_sb, KERN_ERR, 3154 "start %lu, size %lu, fe_logical %lu", 3155 (unsigned long) start, (unsigned long) size, 3156 (unsigned long) ac->ac_o_ex.fe_logical); 3157 BUG(); 3158 } 3159 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3160 3161 /* now prepare goal request */ 3162 3163 /* XXX: is it better to align blocks WRT to logical 3164 * placement or satisfy big request as is */ 3165 ac->ac_g_ex.fe_logical = start; 3166 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3167 3168 /* define goal start in order to merge */ 3169 if (ar->pright && (ar->lright == (start + size))) { 3170 /* merge to the right */ 3171 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3172 &ac->ac_f_ex.fe_group, 3173 &ac->ac_f_ex.fe_start); 3174 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3175 } 3176 if (ar->pleft && (ar->lleft + 1 == start)) { 3177 /* merge to the left */ 3178 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3179 &ac->ac_f_ex.fe_group, 3180 &ac->ac_f_ex.fe_start); 3181 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3182 } 3183 3184 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3185 (unsigned) orig_size, (unsigned) start); 3186 } 3187 3188 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3189 { 3190 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3191 3192 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3193 atomic_inc(&sbi->s_bal_reqs); 3194 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3195 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3196 atomic_inc(&sbi->s_bal_success); 3197 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3198 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3199 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3200 atomic_inc(&sbi->s_bal_goals); 3201 if (ac->ac_found > sbi->s_mb_max_to_scan) 3202 atomic_inc(&sbi->s_bal_breaks); 3203 } 3204 3205 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3206 trace_ext4_mballoc_alloc(ac); 3207 else 3208 trace_ext4_mballoc_prealloc(ac); 3209 } 3210 3211 /* 3212 * Called on failure; free up any blocks from the inode PA for this 3213 * context. We don't need this for MB_GROUP_PA because we only change 3214 * pa_free in ext4_mb_release_context(), but on failure, we've already 3215 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3216 */ 3217 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3218 { 3219 struct ext4_prealloc_space *pa = ac->ac_pa; 3220 struct ext4_buddy e4b; 3221 int err; 3222 3223 if (pa == NULL) { 3224 if (ac->ac_f_ex.fe_len == 0) 3225 return; 3226 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3227 if (err) { 3228 /* 3229 * This should never happen since we pin the 3230 * pages in the ext4_allocation_context so 3231 * ext4_mb_load_buddy() should never fail. 3232 */ 3233 WARN(1, "mb_load_buddy failed (%d)", err); 3234 return; 3235 } 3236 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3237 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3238 ac->ac_f_ex.fe_len); 3239 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3240 ext4_mb_unload_buddy(&e4b); 3241 return; 3242 } 3243 if (pa->pa_type == MB_INODE_PA) 3244 pa->pa_free += ac->ac_b_ex.fe_len; 3245 } 3246 3247 /* 3248 * use blocks preallocated to inode 3249 */ 3250 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3251 struct ext4_prealloc_space *pa) 3252 { 3253 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3254 ext4_fsblk_t start; 3255 ext4_fsblk_t end; 3256 int len; 3257 3258 /* found preallocated blocks, use them */ 3259 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3260 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3261 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3262 len = EXT4_NUM_B2C(sbi, end - start); 3263 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3264 &ac->ac_b_ex.fe_start); 3265 ac->ac_b_ex.fe_len = len; 3266 ac->ac_status = AC_STATUS_FOUND; 3267 ac->ac_pa = pa; 3268 3269 BUG_ON(start < pa->pa_pstart); 3270 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3271 BUG_ON(pa->pa_free < len); 3272 pa->pa_free -= len; 3273 3274 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3275 } 3276 3277 /* 3278 * use blocks preallocated to locality group 3279 */ 3280 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3281 struct ext4_prealloc_space *pa) 3282 { 3283 unsigned int len = ac->ac_o_ex.fe_len; 3284 3285 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3286 &ac->ac_b_ex.fe_group, 3287 &ac->ac_b_ex.fe_start); 3288 ac->ac_b_ex.fe_len = len; 3289 ac->ac_status = AC_STATUS_FOUND; 3290 ac->ac_pa = pa; 3291 3292 /* we don't correct pa_pstart or pa_plen here to avoid 3293 * possible race when the group is being loaded concurrently 3294 * instead we correct pa later, after blocks are marked 3295 * in on-disk bitmap -- see ext4_mb_release_context() 3296 * Other CPUs are prevented from allocating from this pa by lg_mutex 3297 */ 3298 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3299 } 3300 3301 /* 3302 * Return the prealloc space that have minimal distance 3303 * from the goal block. @cpa is the prealloc 3304 * space that is having currently known minimal distance 3305 * from the goal block. 3306 */ 3307 static struct ext4_prealloc_space * 3308 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3309 struct ext4_prealloc_space *pa, 3310 struct ext4_prealloc_space *cpa) 3311 { 3312 ext4_fsblk_t cur_distance, new_distance; 3313 3314 if (cpa == NULL) { 3315 atomic_inc(&pa->pa_count); 3316 return pa; 3317 } 3318 cur_distance = abs(goal_block - cpa->pa_pstart); 3319 new_distance = abs(goal_block - pa->pa_pstart); 3320 3321 if (cur_distance <= new_distance) 3322 return cpa; 3323 3324 /* drop the previous reference */ 3325 atomic_dec(&cpa->pa_count); 3326 atomic_inc(&pa->pa_count); 3327 return pa; 3328 } 3329 3330 /* 3331 * search goal blocks in preallocated space 3332 */ 3333 static noinline_for_stack int 3334 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3335 { 3336 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3337 int order, i; 3338 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3339 struct ext4_locality_group *lg; 3340 struct ext4_prealloc_space *pa, *cpa = NULL; 3341 ext4_fsblk_t goal_block; 3342 3343 /* only data can be preallocated */ 3344 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3345 return 0; 3346 3347 /* first, try per-file preallocation */ 3348 rcu_read_lock(); 3349 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3350 3351 /* all fields in this condition don't change, 3352 * so we can skip locking for them */ 3353 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3354 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3355 EXT4_C2B(sbi, pa->pa_len))) 3356 continue; 3357 3358 /* non-extent files can't have physical blocks past 2^32 */ 3359 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3360 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3361 EXT4_MAX_BLOCK_FILE_PHYS)) 3362 continue; 3363 3364 /* found preallocated blocks, use them */ 3365 spin_lock(&pa->pa_lock); 3366 if (pa->pa_deleted == 0 && pa->pa_free) { 3367 atomic_inc(&pa->pa_count); 3368 ext4_mb_use_inode_pa(ac, pa); 3369 spin_unlock(&pa->pa_lock); 3370 ac->ac_criteria = 10; 3371 rcu_read_unlock(); 3372 return 1; 3373 } 3374 spin_unlock(&pa->pa_lock); 3375 } 3376 rcu_read_unlock(); 3377 3378 /* can we use group allocation? */ 3379 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3380 return 0; 3381 3382 /* inode may have no locality group for some reason */ 3383 lg = ac->ac_lg; 3384 if (lg == NULL) 3385 return 0; 3386 order = fls(ac->ac_o_ex.fe_len) - 1; 3387 if (order > PREALLOC_TB_SIZE - 1) 3388 /* The max size of hash table is PREALLOC_TB_SIZE */ 3389 order = PREALLOC_TB_SIZE - 1; 3390 3391 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3392 /* 3393 * search for the prealloc space that is having 3394 * minimal distance from the goal block. 3395 */ 3396 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3397 rcu_read_lock(); 3398 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3399 pa_inode_list) { 3400 spin_lock(&pa->pa_lock); 3401 if (pa->pa_deleted == 0 && 3402 pa->pa_free >= ac->ac_o_ex.fe_len) { 3403 3404 cpa = ext4_mb_check_group_pa(goal_block, 3405 pa, cpa); 3406 } 3407 spin_unlock(&pa->pa_lock); 3408 } 3409 rcu_read_unlock(); 3410 } 3411 if (cpa) { 3412 ext4_mb_use_group_pa(ac, cpa); 3413 ac->ac_criteria = 20; 3414 return 1; 3415 } 3416 return 0; 3417 } 3418 3419 /* 3420 * the function goes through all block freed in the group 3421 * but not yet committed and marks them used in in-core bitmap. 3422 * buddy must be generated from this bitmap 3423 * Need to be called with the ext4 group lock held 3424 */ 3425 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3426 ext4_group_t group) 3427 { 3428 struct rb_node *n; 3429 struct ext4_group_info *grp; 3430 struct ext4_free_data *entry; 3431 3432 grp = ext4_get_group_info(sb, group); 3433 n = rb_first(&(grp->bb_free_root)); 3434 3435 while (n) { 3436 entry = rb_entry(n, struct ext4_free_data, efd_node); 3437 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3438 n = rb_next(n); 3439 } 3440 return; 3441 } 3442 3443 /* 3444 * the function goes through all preallocation in this group and marks them 3445 * used in in-core bitmap. buddy must be generated from this bitmap 3446 * Need to be called with ext4 group lock held 3447 */ 3448 static noinline_for_stack 3449 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3450 ext4_group_t group) 3451 { 3452 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3453 struct ext4_prealloc_space *pa; 3454 struct list_head *cur; 3455 ext4_group_t groupnr; 3456 ext4_grpblk_t start; 3457 int preallocated = 0; 3458 int len; 3459 3460 /* all form of preallocation discards first load group, 3461 * so the only competing code is preallocation use. 3462 * we don't need any locking here 3463 * notice we do NOT ignore preallocations with pa_deleted 3464 * otherwise we could leave used blocks available for 3465 * allocation in buddy when concurrent ext4_mb_put_pa() 3466 * is dropping preallocation 3467 */ 3468 list_for_each(cur, &grp->bb_prealloc_list) { 3469 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3470 spin_lock(&pa->pa_lock); 3471 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3472 &groupnr, &start); 3473 len = pa->pa_len; 3474 spin_unlock(&pa->pa_lock); 3475 if (unlikely(len == 0)) 3476 continue; 3477 BUG_ON(groupnr != group); 3478 ext4_set_bits(bitmap, start, len); 3479 preallocated += len; 3480 } 3481 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3482 } 3483 3484 static void ext4_mb_pa_callback(struct rcu_head *head) 3485 { 3486 struct ext4_prealloc_space *pa; 3487 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3488 3489 BUG_ON(atomic_read(&pa->pa_count)); 3490 BUG_ON(pa->pa_deleted == 0); 3491 kmem_cache_free(ext4_pspace_cachep, pa); 3492 } 3493 3494 /* 3495 * drops a reference to preallocated space descriptor 3496 * if this was the last reference and the space is consumed 3497 */ 3498 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3499 struct super_block *sb, struct ext4_prealloc_space *pa) 3500 { 3501 ext4_group_t grp; 3502 ext4_fsblk_t grp_blk; 3503 3504 /* in this short window concurrent discard can set pa_deleted */ 3505 spin_lock(&pa->pa_lock); 3506 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3507 spin_unlock(&pa->pa_lock); 3508 return; 3509 } 3510 3511 if (pa->pa_deleted == 1) { 3512 spin_unlock(&pa->pa_lock); 3513 return; 3514 } 3515 3516 pa->pa_deleted = 1; 3517 spin_unlock(&pa->pa_lock); 3518 3519 grp_blk = pa->pa_pstart; 3520 /* 3521 * If doing group-based preallocation, pa_pstart may be in the 3522 * next group when pa is used up 3523 */ 3524 if (pa->pa_type == MB_GROUP_PA) 3525 grp_blk--; 3526 3527 grp = ext4_get_group_number(sb, grp_blk); 3528 3529 /* 3530 * possible race: 3531 * 3532 * P1 (buddy init) P2 (regular allocation) 3533 * find block B in PA 3534 * copy on-disk bitmap to buddy 3535 * mark B in on-disk bitmap 3536 * drop PA from group 3537 * mark all PAs in buddy 3538 * 3539 * thus, P1 initializes buddy with B available. to prevent this 3540 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3541 * against that pair 3542 */ 3543 ext4_lock_group(sb, grp); 3544 list_del(&pa->pa_group_list); 3545 ext4_unlock_group(sb, grp); 3546 3547 spin_lock(pa->pa_obj_lock); 3548 list_del_rcu(&pa->pa_inode_list); 3549 spin_unlock(pa->pa_obj_lock); 3550 3551 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3552 } 3553 3554 /* 3555 * creates new preallocated space for given inode 3556 */ 3557 static noinline_for_stack int 3558 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3559 { 3560 struct super_block *sb = ac->ac_sb; 3561 struct ext4_sb_info *sbi = EXT4_SB(sb); 3562 struct ext4_prealloc_space *pa; 3563 struct ext4_group_info *grp; 3564 struct ext4_inode_info *ei; 3565 3566 /* preallocate only when found space is larger then requested */ 3567 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3568 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3569 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3570 3571 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3572 if (pa == NULL) 3573 return -ENOMEM; 3574 3575 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3576 int winl; 3577 int wins; 3578 int win; 3579 int offs; 3580 3581 /* we can't allocate as much as normalizer wants. 3582 * so, found space must get proper lstart 3583 * to cover original request */ 3584 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3585 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3586 3587 /* we're limited by original request in that 3588 * logical block must be covered any way 3589 * winl is window we can move our chunk within */ 3590 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3591 3592 /* also, we should cover whole original request */ 3593 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3594 3595 /* the smallest one defines real window */ 3596 win = min(winl, wins); 3597 3598 offs = ac->ac_o_ex.fe_logical % 3599 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3600 if (offs && offs < win) 3601 win = offs; 3602 3603 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3604 EXT4_NUM_B2C(sbi, win); 3605 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3606 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3607 } 3608 3609 /* preallocation can change ac_b_ex, thus we store actually 3610 * allocated blocks for history */ 3611 ac->ac_f_ex = ac->ac_b_ex; 3612 3613 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3614 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3615 pa->pa_len = ac->ac_b_ex.fe_len; 3616 pa->pa_free = pa->pa_len; 3617 atomic_set(&pa->pa_count, 1); 3618 spin_lock_init(&pa->pa_lock); 3619 INIT_LIST_HEAD(&pa->pa_inode_list); 3620 INIT_LIST_HEAD(&pa->pa_group_list); 3621 pa->pa_deleted = 0; 3622 pa->pa_type = MB_INODE_PA; 3623 3624 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3625 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3626 trace_ext4_mb_new_inode_pa(ac, pa); 3627 3628 ext4_mb_use_inode_pa(ac, pa); 3629 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3630 3631 ei = EXT4_I(ac->ac_inode); 3632 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3633 3634 pa->pa_obj_lock = &ei->i_prealloc_lock; 3635 pa->pa_inode = ac->ac_inode; 3636 3637 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3638 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3639 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3640 3641 spin_lock(pa->pa_obj_lock); 3642 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3643 spin_unlock(pa->pa_obj_lock); 3644 3645 return 0; 3646 } 3647 3648 /* 3649 * creates new preallocated space for locality group inodes belongs to 3650 */ 3651 static noinline_for_stack int 3652 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3653 { 3654 struct super_block *sb = ac->ac_sb; 3655 struct ext4_locality_group *lg; 3656 struct ext4_prealloc_space *pa; 3657 struct ext4_group_info *grp; 3658 3659 /* preallocate only when found space is larger then requested */ 3660 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3661 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3662 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3663 3664 BUG_ON(ext4_pspace_cachep == NULL); 3665 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3666 if (pa == NULL) 3667 return -ENOMEM; 3668 3669 /* preallocation can change ac_b_ex, thus we store actually 3670 * allocated blocks for history */ 3671 ac->ac_f_ex = ac->ac_b_ex; 3672 3673 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3674 pa->pa_lstart = pa->pa_pstart; 3675 pa->pa_len = ac->ac_b_ex.fe_len; 3676 pa->pa_free = pa->pa_len; 3677 atomic_set(&pa->pa_count, 1); 3678 spin_lock_init(&pa->pa_lock); 3679 INIT_LIST_HEAD(&pa->pa_inode_list); 3680 INIT_LIST_HEAD(&pa->pa_group_list); 3681 pa->pa_deleted = 0; 3682 pa->pa_type = MB_GROUP_PA; 3683 3684 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3685 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3686 trace_ext4_mb_new_group_pa(ac, pa); 3687 3688 ext4_mb_use_group_pa(ac, pa); 3689 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3690 3691 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3692 lg = ac->ac_lg; 3693 BUG_ON(lg == NULL); 3694 3695 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3696 pa->pa_inode = NULL; 3697 3698 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3699 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3700 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3701 3702 /* 3703 * We will later add the new pa to the right bucket 3704 * after updating the pa_free in ext4_mb_release_context 3705 */ 3706 return 0; 3707 } 3708 3709 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3710 { 3711 int err; 3712 3713 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3714 err = ext4_mb_new_group_pa(ac); 3715 else 3716 err = ext4_mb_new_inode_pa(ac); 3717 return err; 3718 } 3719 3720 /* 3721 * finds all unused blocks in on-disk bitmap, frees them in 3722 * in-core bitmap and buddy. 3723 * @pa must be unlinked from inode and group lists, so that 3724 * nobody else can find/use it. 3725 * the caller MUST hold group/inode locks. 3726 * TODO: optimize the case when there are no in-core structures yet 3727 */ 3728 static noinline_for_stack int 3729 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3730 struct ext4_prealloc_space *pa) 3731 { 3732 struct super_block *sb = e4b->bd_sb; 3733 struct ext4_sb_info *sbi = EXT4_SB(sb); 3734 unsigned int end; 3735 unsigned int next; 3736 ext4_group_t group; 3737 ext4_grpblk_t bit; 3738 unsigned long long grp_blk_start; 3739 int err = 0; 3740 int free = 0; 3741 3742 BUG_ON(pa->pa_deleted == 0); 3743 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3744 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3745 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3746 end = bit + pa->pa_len; 3747 3748 while (bit < end) { 3749 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3750 if (bit >= end) 3751 break; 3752 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3753 mb_debug(1, " free preallocated %u/%u in group %u\n", 3754 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3755 (unsigned) next - bit, (unsigned) group); 3756 free += next - bit; 3757 3758 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3759 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3760 EXT4_C2B(sbi, bit)), 3761 next - bit); 3762 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3763 bit = next + 1; 3764 } 3765 if (free != pa->pa_free) { 3766 ext4_msg(e4b->bd_sb, KERN_CRIT, 3767 "pa %p: logic %lu, phys. %lu, len %lu", 3768 pa, (unsigned long) pa->pa_lstart, 3769 (unsigned long) pa->pa_pstart, 3770 (unsigned long) pa->pa_len); 3771 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3772 free, pa->pa_free); 3773 /* 3774 * pa is already deleted so we use the value obtained 3775 * from the bitmap and continue. 3776 */ 3777 } 3778 atomic_add(free, &sbi->s_mb_discarded); 3779 3780 return err; 3781 } 3782 3783 static noinline_for_stack int 3784 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3785 struct ext4_prealloc_space *pa) 3786 { 3787 struct super_block *sb = e4b->bd_sb; 3788 ext4_group_t group; 3789 ext4_grpblk_t bit; 3790 3791 trace_ext4_mb_release_group_pa(sb, pa); 3792 BUG_ON(pa->pa_deleted == 0); 3793 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3794 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3795 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3796 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3797 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3798 3799 return 0; 3800 } 3801 3802 /* 3803 * releases all preallocations in given group 3804 * 3805 * first, we need to decide discard policy: 3806 * - when do we discard 3807 * 1) ENOSPC 3808 * - how many do we discard 3809 * 1) how many requested 3810 */ 3811 static noinline_for_stack int 3812 ext4_mb_discard_group_preallocations(struct super_block *sb, 3813 ext4_group_t group, int needed) 3814 { 3815 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3816 struct buffer_head *bitmap_bh = NULL; 3817 struct ext4_prealloc_space *pa, *tmp; 3818 struct list_head list; 3819 struct ext4_buddy e4b; 3820 int err; 3821 int busy = 0; 3822 int free = 0; 3823 3824 mb_debug(1, "discard preallocation for group %u\n", group); 3825 3826 if (list_empty(&grp->bb_prealloc_list)) 3827 return 0; 3828 3829 bitmap_bh = ext4_read_block_bitmap(sb, group); 3830 if (bitmap_bh == NULL) { 3831 ext4_error(sb, "Error reading block bitmap for %u", group); 3832 return 0; 3833 } 3834 3835 err = ext4_mb_load_buddy(sb, group, &e4b); 3836 if (err) { 3837 ext4_error(sb, "Error loading buddy information for %u", group); 3838 put_bh(bitmap_bh); 3839 return 0; 3840 } 3841 3842 if (needed == 0) 3843 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3844 3845 INIT_LIST_HEAD(&list); 3846 repeat: 3847 ext4_lock_group(sb, group); 3848 list_for_each_entry_safe(pa, tmp, 3849 &grp->bb_prealloc_list, pa_group_list) { 3850 spin_lock(&pa->pa_lock); 3851 if (atomic_read(&pa->pa_count)) { 3852 spin_unlock(&pa->pa_lock); 3853 busy = 1; 3854 continue; 3855 } 3856 if (pa->pa_deleted) { 3857 spin_unlock(&pa->pa_lock); 3858 continue; 3859 } 3860 3861 /* seems this one can be freed ... */ 3862 pa->pa_deleted = 1; 3863 3864 /* we can trust pa_free ... */ 3865 free += pa->pa_free; 3866 3867 spin_unlock(&pa->pa_lock); 3868 3869 list_del(&pa->pa_group_list); 3870 list_add(&pa->u.pa_tmp_list, &list); 3871 } 3872 3873 /* if we still need more blocks and some PAs were used, try again */ 3874 if (free < needed && busy) { 3875 busy = 0; 3876 ext4_unlock_group(sb, group); 3877 cond_resched(); 3878 goto repeat; 3879 } 3880 3881 /* found anything to free? */ 3882 if (list_empty(&list)) { 3883 BUG_ON(free != 0); 3884 goto out; 3885 } 3886 3887 /* now free all selected PAs */ 3888 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3889 3890 /* remove from object (inode or locality group) */ 3891 spin_lock(pa->pa_obj_lock); 3892 list_del_rcu(&pa->pa_inode_list); 3893 spin_unlock(pa->pa_obj_lock); 3894 3895 if (pa->pa_type == MB_GROUP_PA) 3896 ext4_mb_release_group_pa(&e4b, pa); 3897 else 3898 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3899 3900 list_del(&pa->u.pa_tmp_list); 3901 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3902 } 3903 3904 out: 3905 ext4_unlock_group(sb, group); 3906 ext4_mb_unload_buddy(&e4b); 3907 put_bh(bitmap_bh); 3908 return free; 3909 } 3910 3911 /* 3912 * releases all non-used preallocated blocks for given inode 3913 * 3914 * It's important to discard preallocations under i_data_sem 3915 * We don't want another block to be served from the prealloc 3916 * space when we are discarding the inode prealloc space. 3917 * 3918 * FIXME!! Make sure it is valid at all the call sites 3919 */ 3920 void ext4_discard_preallocations(struct inode *inode) 3921 { 3922 struct ext4_inode_info *ei = EXT4_I(inode); 3923 struct super_block *sb = inode->i_sb; 3924 struct buffer_head *bitmap_bh = NULL; 3925 struct ext4_prealloc_space *pa, *tmp; 3926 ext4_group_t group = 0; 3927 struct list_head list; 3928 struct ext4_buddy e4b; 3929 int err; 3930 3931 if (!S_ISREG(inode->i_mode)) { 3932 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3933 return; 3934 } 3935 3936 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3937 trace_ext4_discard_preallocations(inode); 3938 3939 INIT_LIST_HEAD(&list); 3940 3941 repeat: 3942 /* first, collect all pa's in the inode */ 3943 spin_lock(&ei->i_prealloc_lock); 3944 while (!list_empty(&ei->i_prealloc_list)) { 3945 pa = list_entry(ei->i_prealloc_list.next, 3946 struct ext4_prealloc_space, pa_inode_list); 3947 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3948 spin_lock(&pa->pa_lock); 3949 if (atomic_read(&pa->pa_count)) { 3950 /* this shouldn't happen often - nobody should 3951 * use preallocation while we're discarding it */ 3952 spin_unlock(&pa->pa_lock); 3953 spin_unlock(&ei->i_prealloc_lock); 3954 ext4_msg(sb, KERN_ERR, 3955 "uh-oh! used pa while discarding"); 3956 WARN_ON(1); 3957 schedule_timeout_uninterruptible(HZ); 3958 goto repeat; 3959 3960 } 3961 if (pa->pa_deleted == 0) { 3962 pa->pa_deleted = 1; 3963 spin_unlock(&pa->pa_lock); 3964 list_del_rcu(&pa->pa_inode_list); 3965 list_add(&pa->u.pa_tmp_list, &list); 3966 continue; 3967 } 3968 3969 /* someone is deleting pa right now */ 3970 spin_unlock(&pa->pa_lock); 3971 spin_unlock(&ei->i_prealloc_lock); 3972 3973 /* we have to wait here because pa_deleted 3974 * doesn't mean pa is already unlinked from 3975 * the list. as we might be called from 3976 * ->clear_inode() the inode will get freed 3977 * and concurrent thread which is unlinking 3978 * pa from inode's list may access already 3979 * freed memory, bad-bad-bad */ 3980 3981 /* XXX: if this happens too often, we can 3982 * add a flag to force wait only in case 3983 * of ->clear_inode(), but not in case of 3984 * regular truncate */ 3985 schedule_timeout_uninterruptible(HZ); 3986 goto repeat; 3987 } 3988 spin_unlock(&ei->i_prealloc_lock); 3989 3990 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3991 BUG_ON(pa->pa_type != MB_INODE_PA); 3992 group = ext4_get_group_number(sb, pa->pa_pstart); 3993 3994 err = ext4_mb_load_buddy(sb, group, &e4b); 3995 if (err) { 3996 ext4_error(sb, "Error loading buddy information for %u", 3997 group); 3998 continue; 3999 } 4000 4001 bitmap_bh = ext4_read_block_bitmap(sb, group); 4002 if (bitmap_bh == NULL) { 4003 ext4_error(sb, "Error reading block bitmap for %u", 4004 group); 4005 ext4_mb_unload_buddy(&e4b); 4006 continue; 4007 } 4008 4009 ext4_lock_group(sb, group); 4010 list_del(&pa->pa_group_list); 4011 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4012 ext4_unlock_group(sb, group); 4013 4014 ext4_mb_unload_buddy(&e4b); 4015 put_bh(bitmap_bh); 4016 4017 list_del(&pa->u.pa_tmp_list); 4018 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4019 } 4020 } 4021 4022 #ifdef CONFIG_EXT4_DEBUG 4023 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4024 { 4025 struct super_block *sb = ac->ac_sb; 4026 ext4_group_t ngroups, i; 4027 4028 if (!ext4_mballoc_debug || 4029 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4030 return; 4031 4032 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4033 " Allocation context details:"); 4034 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4035 ac->ac_status, ac->ac_flags); 4036 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4037 "goal %lu/%lu/%lu@%lu, " 4038 "best %lu/%lu/%lu@%lu cr %d", 4039 (unsigned long)ac->ac_o_ex.fe_group, 4040 (unsigned long)ac->ac_o_ex.fe_start, 4041 (unsigned long)ac->ac_o_ex.fe_len, 4042 (unsigned long)ac->ac_o_ex.fe_logical, 4043 (unsigned long)ac->ac_g_ex.fe_group, 4044 (unsigned long)ac->ac_g_ex.fe_start, 4045 (unsigned long)ac->ac_g_ex.fe_len, 4046 (unsigned long)ac->ac_g_ex.fe_logical, 4047 (unsigned long)ac->ac_b_ex.fe_group, 4048 (unsigned long)ac->ac_b_ex.fe_start, 4049 (unsigned long)ac->ac_b_ex.fe_len, 4050 (unsigned long)ac->ac_b_ex.fe_logical, 4051 (int)ac->ac_criteria); 4052 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4053 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4054 ngroups = ext4_get_groups_count(sb); 4055 for (i = 0; i < ngroups; i++) { 4056 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4057 struct ext4_prealloc_space *pa; 4058 ext4_grpblk_t start; 4059 struct list_head *cur; 4060 ext4_lock_group(sb, i); 4061 list_for_each(cur, &grp->bb_prealloc_list) { 4062 pa = list_entry(cur, struct ext4_prealloc_space, 4063 pa_group_list); 4064 spin_lock(&pa->pa_lock); 4065 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4066 NULL, &start); 4067 spin_unlock(&pa->pa_lock); 4068 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4069 start, pa->pa_len); 4070 } 4071 ext4_unlock_group(sb, i); 4072 4073 if (grp->bb_free == 0) 4074 continue; 4075 printk(KERN_ERR "%u: %d/%d \n", 4076 i, grp->bb_free, grp->bb_fragments); 4077 } 4078 printk(KERN_ERR "\n"); 4079 } 4080 #else 4081 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4082 { 4083 return; 4084 } 4085 #endif 4086 4087 /* 4088 * We use locality group preallocation for small size file. The size of the 4089 * file is determined by the current size or the resulting size after 4090 * allocation which ever is larger 4091 * 4092 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4093 */ 4094 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4095 { 4096 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4097 int bsbits = ac->ac_sb->s_blocksize_bits; 4098 loff_t size, isize; 4099 4100 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4101 return; 4102 4103 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4104 return; 4105 4106 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4107 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4108 >> bsbits; 4109 4110 if ((size == isize) && 4111 !ext4_fs_is_busy(sbi) && 4112 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4113 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4114 return; 4115 } 4116 4117 if (sbi->s_mb_group_prealloc <= 0) { 4118 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4119 return; 4120 } 4121 4122 /* don't use group allocation for large files */ 4123 size = max(size, isize); 4124 if (size > sbi->s_mb_stream_request) { 4125 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4126 return; 4127 } 4128 4129 BUG_ON(ac->ac_lg != NULL); 4130 /* 4131 * locality group prealloc space are per cpu. The reason for having 4132 * per cpu locality group is to reduce the contention between block 4133 * request from multiple CPUs. 4134 */ 4135 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4136 4137 /* we're going to use group allocation */ 4138 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4139 4140 /* serialize all allocations in the group */ 4141 mutex_lock(&ac->ac_lg->lg_mutex); 4142 } 4143 4144 static noinline_for_stack int 4145 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4146 struct ext4_allocation_request *ar) 4147 { 4148 struct super_block *sb = ar->inode->i_sb; 4149 struct ext4_sb_info *sbi = EXT4_SB(sb); 4150 struct ext4_super_block *es = sbi->s_es; 4151 ext4_group_t group; 4152 unsigned int len; 4153 ext4_fsblk_t goal; 4154 ext4_grpblk_t block; 4155 4156 /* we can't allocate > group size */ 4157 len = ar->len; 4158 4159 /* just a dirty hack to filter too big requests */ 4160 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4161 len = EXT4_CLUSTERS_PER_GROUP(sb); 4162 4163 /* start searching from the goal */ 4164 goal = ar->goal; 4165 if (goal < le32_to_cpu(es->s_first_data_block) || 4166 goal >= ext4_blocks_count(es)) 4167 goal = le32_to_cpu(es->s_first_data_block); 4168 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4169 4170 /* set up allocation goals */ 4171 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4172 ac->ac_status = AC_STATUS_CONTINUE; 4173 ac->ac_sb = sb; 4174 ac->ac_inode = ar->inode; 4175 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4176 ac->ac_o_ex.fe_group = group; 4177 ac->ac_o_ex.fe_start = block; 4178 ac->ac_o_ex.fe_len = len; 4179 ac->ac_g_ex = ac->ac_o_ex; 4180 ac->ac_flags = ar->flags; 4181 4182 /* we have to define context: we'll we work with a file or 4183 * locality group. this is a policy, actually */ 4184 ext4_mb_group_or_file(ac); 4185 4186 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4187 "left: %u/%u, right %u/%u to %swritable\n", 4188 (unsigned) ar->len, (unsigned) ar->logical, 4189 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4190 (unsigned) ar->lleft, (unsigned) ar->pleft, 4191 (unsigned) ar->lright, (unsigned) ar->pright, 4192 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4193 return 0; 4194 4195 } 4196 4197 static noinline_for_stack void 4198 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4199 struct ext4_locality_group *lg, 4200 int order, int total_entries) 4201 { 4202 ext4_group_t group = 0; 4203 struct ext4_buddy e4b; 4204 struct list_head discard_list; 4205 struct ext4_prealloc_space *pa, *tmp; 4206 4207 mb_debug(1, "discard locality group preallocation\n"); 4208 4209 INIT_LIST_HEAD(&discard_list); 4210 4211 spin_lock(&lg->lg_prealloc_lock); 4212 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4213 pa_inode_list) { 4214 spin_lock(&pa->pa_lock); 4215 if (atomic_read(&pa->pa_count)) { 4216 /* 4217 * This is the pa that we just used 4218 * for block allocation. So don't 4219 * free that 4220 */ 4221 spin_unlock(&pa->pa_lock); 4222 continue; 4223 } 4224 if (pa->pa_deleted) { 4225 spin_unlock(&pa->pa_lock); 4226 continue; 4227 } 4228 /* only lg prealloc space */ 4229 BUG_ON(pa->pa_type != MB_GROUP_PA); 4230 4231 /* seems this one can be freed ... */ 4232 pa->pa_deleted = 1; 4233 spin_unlock(&pa->pa_lock); 4234 4235 list_del_rcu(&pa->pa_inode_list); 4236 list_add(&pa->u.pa_tmp_list, &discard_list); 4237 4238 total_entries--; 4239 if (total_entries <= 5) { 4240 /* 4241 * we want to keep only 5 entries 4242 * allowing it to grow to 8. This 4243 * mak sure we don't call discard 4244 * soon for this list. 4245 */ 4246 break; 4247 } 4248 } 4249 spin_unlock(&lg->lg_prealloc_lock); 4250 4251 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4252 4253 group = ext4_get_group_number(sb, pa->pa_pstart); 4254 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4255 ext4_error(sb, "Error loading buddy information for %u", 4256 group); 4257 continue; 4258 } 4259 ext4_lock_group(sb, group); 4260 list_del(&pa->pa_group_list); 4261 ext4_mb_release_group_pa(&e4b, pa); 4262 ext4_unlock_group(sb, group); 4263 4264 ext4_mb_unload_buddy(&e4b); 4265 list_del(&pa->u.pa_tmp_list); 4266 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4267 } 4268 } 4269 4270 /* 4271 * We have incremented pa_count. So it cannot be freed at this 4272 * point. Also we hold lg_mutex. So no parallel allocation is 4273 * possible from this lg. That means pa_free cannot be updated. 4274 * 4275 * A parallel ext4_mb_discard_group_preallocations is possible. 4276 * which can cause the lg_prealloc_list to be updated. 4277 */ 4278 4279 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4280 { 4281 int order, added = 0, lg_prealloc_count = 1; 4282 struct super_block *sb = ac->ac_sb; 4283 struct ext4_locality_group *lg = ac->ac_lg; 4284 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4285 4286 order = fls(pa->pa_free) - 1; 4287 if (order > PREALLOC_TB_SIZE - 1) 4288 /* The max size of hash table is PREALLOC_TB_SIZE */ 4289 order = PREALLOC_TB_SIZE - 1; 4290 /* Add the prealloc space to lg */ 4291 spin_lock(&lg->lg_prealloc_lock); 4292 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4293 pa_inode_list) { 4294 spin_lock(&tmp_pa->pa_lock); 4295 if (tmp_pa->pa_deleted) { 4296 spin_unlock(&tmp_pa->pa_lock); 4297 continue; 4298 } 4299 if (!added && pa->pa_free < tmp_pa->pa_free) { 4300 /* Add to the tail of the previous entry */ 4301 list_add_tail_rcu(&pa->pa_inode_list, 4302 &tmp_pa->pa_inode_list); 4303 added = 1; 4304 /* 4305 * we want to count the total 4306 * number of entries in the list 4307 */ 4308 } 4309 spin_unlock(&tmp_pa->pa_lock); 4310 lg_prealloc_count++; 4311 } 4312 if (!added) 4313 list_add_tail_rcu(&pa->pa_inode_list, 4314 &lg->lg_prealloc_list[order]); 4315 spin_unlock(&lg->lg_prealloc_lock); 4316 4317 /* Now trim the list to be not more than 8 elements */ 4318 if (lg_prealloc_count > 8) { 4319 ext4_mb_discard_lg_preallocations(sb, lg, 4320 order, lg_prealloc_count); 4321 return; 4322 } 4323 return ; 4324 } 4325 4326 /* 4327 * release all resource we used in allocation 4328 */ 4329 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4330 { 4331 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4332 struct ext4_prealloc_space *pa = ac->ac_pa; 4333 if (pa) { 4334 if (pa->pa_type == MB_GROUP_PA) { 4335 /* see comment in ext4_mb_use_group_pa() */ 4336 spin_lock(&pa->pa_lock); 4337 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4338 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4339 pa->pa_free -= ac->ac_b_ex.fe_len; 4340 pa->pa_len -= ac->ac_b_ex.fe_len; 4341 spin_unlock(&pa->pa_lock); 4342 } 4343 } 4344 if (pa) { 4345 /* 4346 * We want to add the pa to the right bucket. 4347 * Remove it from the list and while adding 4348 * make sure the list to which we are adding 4349 * doesn't grow big. 4350 */ 4351 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4352 spin_lock(pa->pa_obj_lock); 4353 list_del_rcu(&pa->pa_inode_list); 4354 spin_unlock(pa->pa_obj_lock); 4355 ext4_mb_add_n_trim(ac); 4356 } 4357 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4358 } 4359 if (ac->ac_bitmap_page) 4360 page_cache_release(ac->ac_bitmap_page); 4361 if (ac->ac_buddy_page) 4362 page_cache_release(ac->ac_buddy_page); 4363 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4364 mutex_unlock(&ac->ac_lg->lg_mutex); 4365 ext4_mb_collect_stats(ac); 4366 return 0; 4367 } 4368 4369 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4370 { 4371 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4372 int ret; 4373 int freed = 0; 4374 4375 trace_ext4_mb_discard_preallocations(sb, needed); 4376 for (i = 0; i < ngroups && needed > 0; i++) { 4377 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4378 freed += ret; 4379 needed -= ret; 4380 } 4381 4382 return freed; 4383 } 4384 4385 /* 4386 * Main entry point into mballoc to allocate blocks 4387 * it tries to use preallocation first, then falls back 4388 * to usual allocation 4389 */ 4390 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4391 struct ext4_allocation_request *ar, int *errp) 4392 { 4393 int freed; 4394 struct ext4_allocation_context *ac = NULL; 4395 struct ext4_sb_info *sbi; 4396 struct super_block *sb; 4397 ext4_fsblk_t block = 0; 4398 unsigned int inquota = 0; 4399 unsigned int reserv_clstrs = 0; 4400 4401 might_sleep(); 4402 sb = ar->inode->i_sb; 4403 sbi = EXT4_SB(sb); 4404 4405 trace_ext4_request_blocks(ar); 4406 4407 /* Allow to use superuser reservation for quota file */ 4408 if (IS_NOQUOTA(ar->inode)) 4409 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4410 4411 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4412 /* Without delayed allocation we need to verify 4413 * there is enough free blocks to do block allocation 4414 * and verify allocation doesn't exceed the quota limits. 4415 */ 4416 while (ar->len && 4417 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4418 4419 /* let others to free the space */ 4420 cond_resched(); 4421 ar->len = ar->len >> 1; 4422 } 4423 if (!ar->len) { 4424 *errp = -ENOSPC; 4425 return 0; 4426 } 4427 reserv_clstrs = ar->len; 4428 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4429 dquot_alloc_block_nofail(ar->inode, 4430 EXT4_C2B(sbi, ar->len)); 4431 } else { 4432 while (ar->len && 4433 dquot_alloc_block(ar->inode, 4434 EXT4_C2B(sbi, ar->len))) { 4435 4436 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4437 ar->len--; 4438 } 4439 } 4440 inquota = ar->len; 4441 if (ar->len == 0) { 4442 *errp = -EDQUOT; 4443 goto out; 4444 } 4445 } 4446 4447 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4448 if (!ac) { 4449 ar->len = 0; 4450 *errp = -ENOMEM; 4451 goto out; 4452 } 4453 4454 *errp = ext4_mb_initialize_context(ac, ar); 4455 if (*errp) { 4456 ar->len = 0; 4457 goto out; 4458 } 4459 4460 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4461 if (!ext4_mb_use_preallocated(ac)) { 4462 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4463 ext4_mb_normalize_request(ac, ar); 4464 repeat: 4465 /* allocate space in core */ 4466 *errp = ext4_mb_regular_allocator(ac); 4467 if (*errp) 4468 goto discard_and_exit; 4469 4470 /* as we've just preallocated more space than 4471 * user requested originally, we store allocated 4472 * space in a special descriptor */ 4473 if (ac->ac_status == AC_STATUS_FOUND && 4474 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4475 *errp = ext4_mb_new_preallocation(ac); 4476 if (*errp) { 4477 discard_and_exit: 4478 ext4_discard_allocated_blocks(ac); 4479 goto errout; 4480 } 4481 } 4482 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4483 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4484 if (*errp == -EAGAIN) { 4485 /* 4486 * drop the reference that we took 4487 * in ext4_mb_use_best_found 4488 */ 4489 ext4_mb_release_context(ac); 4490 ac->ac_b_ex.fe_group = 0; 4491 ac->ac_b_ex.fe_start = 0; 4492 ac->ac_b_ex.fe_len = 0; 4493 ac->ac_status = AC_STATUS_CONTINUE; 4494 goto repeat; 4495 } else if (*errp) { 4496 ext4_discard_allocated_blocks(ac); 4497 goto errout; 4498 } else { 4499 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4500 ar->len = ac->ac_b_ex.fe_len; 4501 } 4502 } else { 4503 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4504 if (freed) 4505 goto repeat; 4506 *errp = -ENOSPC; 4507 } 4508 4509 errout: 4510 if (*errp) { 4511 ac->ac_b_ex.fe_len = 0; 4512 ar->len = 0; 4513 ext4_mb_show_ac(ac); 4514 } 4515 ext4_mb_release_context(ac); 4516 out: 4517 if (ac) 4518 kmem_cache_free(ext4_ac_cachep, ac); 4519 if (inquota && ar->len < inquota) 4520 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4521 if (!ar->len) { 4522 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4523 /* release all the reserved blocks if non delalloc */ 4524 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4525 reserv_clstrs); 4526 } 4527 4528 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4529 4530 return block; 4531 } 4532 4533 /* 4534 * We can merge two free data extents only if the physical blocks 4535 * are contiguous, AND the extents were freed by the same transaction, 4536 * AND the blocks are associated with the same group. 4537 */ 4538 static int can_merge(struct ext4_free_data *entry1, 4539 struct ext4_free_data *entry2) 4540 { 4541 if ((entry1->efd_tid == entry2->efd_tid) && 4542 (entry1->efd_group == entry2->efd_group) && 4543 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4544 return 1; 4545 return 0; 4546 } 4547 4548 static noinline_for_stack int 4549 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4550 struct ext4_free_data *new_entry) 4551 { 4552 ext4_group_t group = e4b->bd_group; 4553 ext4_grpblk_t cluster; 4554 struct ext4_free_data *entry; 4555 struct ext4_group_info *db = e4b->bd_info; 4556 struct super_block *sb = e4b->bd_sb; 4557 struct ext4_sb_info *sbi = EXT4_SB(sb); 4558 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4559 struct rb_node *parent = NULL, *new_node; 4560 4561 BUG_ON(!ext4_handle_valid(handle)); 4562 BUG_ON(e4b->bd_bitmap_page == NULL); 4563 BUG_ON(e4b->bd_buddy_page == NULL); 4564 4565 new_node = &new_entry->efd_node; 4566 cluster = new_entry->efd_start_cluster; 4567 4568 if (!*n) { 4569 /* first free block exent. We need to 4570 protect buddy cache from being freed, 4571 * otherwise we'll refresh it from 4572 * on-disk bitmap and lose not-yet-available 4573 * blocks */ 4574 page_cache_get(e4b->bd_buddy_page); 4575 page_cache_get(e4b->bd_bitmap_page); 4576 } 4577 while (*n) { 4578 parent = *n; 4579 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4580 if (cluster < entry->efd_start_cluster) 4581 n = &(*n)->rb_left; 4582 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4583 n = &(*n)->rb_right; 4584 else { 4585 ext4_grp_locked_error(sb, group, 0, 4586 ext4_group_first_block_no(sb, group) + 4587 EXT4_C2B(sbi, cluster), 4588 "Block already on to-be-freed list"); 4589 return 0; 4590 } 4591 } 4592 4593 rb_link_node(new_node, parent, n); 4594 rb_insert_color(new_node, &db->bb_free_root); 4595 4596 /* Now try to see the extent can be merged to left and right */ 4597 node = rb_prev(new_node); 4598 if (node) { 4599 entry = rb_entry(node, struct ext4_free_data, efd_node); 4600 if (can_merge(entry, new_entry) && 4601 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4602 new_entry->efd_start_cluster = entry->efd_start_cluster; 4603 new_entry->efd_count += entry->efd_count; 4604 rb_erase(node, &(db->bb_free_root)); 4605 kmem_cache_free(ext4_free_data_cachep, entry); 4606 } 4607 } 4608 4609 node = rb_next(new_node); 4610 if (node) { 4611 entry = rb_entry(node, struct ext4_free_data, efd_node); 4612 if (can_merge(new_entry, entry) && 4613 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4614 new_entry->efd_count += entry->efd_count; 4615 rb_erase(node, &(db->bb_free_root)); 4616 kmem_cache_free(ext4_free_data_cachep, entry); 4617 } 4618 } 4619 /* Add the extent to transaction's private list */ 4620 ext4_journal_callback_add(handle, ext4_free_data_callback, 4621 &new_entry->efd_jce); 4622 return 0; 4623 } 4624 4625 /** 4626 * ext4_free_blocks() -- Free given blocks and update quota 4627 * @handle: handle for this transaction 4628 * @inode: inode 4629 * @block: start physical block to free 4630 * @count: number of blocks to count 4631 * @flags: flags used by ext4_free_blocks 4632 */ 4633 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4634 struct buffer_head *bh, ext4_fsblk_t block, 4635 unsigned long count, int flags) 4636 { 4637 struct buffer_head *bitmap_bh = NULL; 4638 struct super_block *sb = inode->i_sb; 4639 struct ext4_group_desc *gdp; 4640 unsigned int overflow; 4641 ext4_grpblk_t bit; 4642 struct buffer_head *gd_bh; 4643 ext4_group_t block_group; 4644 struct ext4_sb_info *sbi; 4645 struct ext4_buddy e4b; 4646 unsigned int count_clusters; 4647 int err = 0; 4648 int ret; 4649 4650 might_sleep(); 4651 if (bh) { 4652 if (block) 4653 BUG_ON(block != bh->b_blocknr); 4654 else 4655 block = bh->b_blocknr; 4656 } 4657 4658 sbi = EXT4_SB(sb); 4659 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4660 !ext4_data_block_valid(sbi, block, count)) { 4661 ext4_error(sb, "Freeing blocks not in datazone - " 4662 "block = %llu, count = %lu", block, count); 4663 goto error_return; 4664 } 4665 4666 ext4_debug("freeing block %llu\n", block); 4667 trace_ext4_free_blocks(inode, block, count, flags); 4668 4669 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4670 struct buffer_head *tbh = bh; 4671 int i; 4672 4673 BUG_ON(bh && (count > 1)); 4674 4675 for (i = 0; i < count; i++) { 4676 cond_resched(); 4677 if (!bh) 4678 tbh = sb_find_get_block(inode->i_sb, 4679 block + i); 4680 if (!tbh) 4681 continue; 4682 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4683 inode, tbh, block + i); 4684 } 4685 } 4686 4687 /* 4688 * We need to make sure we don't reuse the freed block until 4689 * after the transaction is committed, which we can do by 4690 * treating the block as metadata, below. We make an 4691 * exception if the inode is to be written in writeback mode 4692 * since writeback mode has weak data consistency guarantees. 4693 */ 4694 if (!ext4_should_writeback_data(inode)) 4695 flags |= EXT4_FREE_BLOCKS_METADATA; 4696 4697 /* 4698 * If the extent to be freed does not begin on a cluster 4699 * boundary, we need to deal with partial clusters at the 4700 * beginning and end of the extent. Normally we will free 4701 * blocks at the beginning or the end unless we are explicitly 4702 * requested to avoid doing so. 4703 */ 4704 overflow = EXT4_PBLK_COFF(sbi, block); 4705 if (overflow) { 4706 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4707 overflow = sbi->s_cluster_ratio - overflow; 4708 block += overflow; 4709 if (count > overflow) 4710 count -= overflow; 4711 else 4712 return; 4713 } else { 4714 block -= overflow; 4715 count += overflow; 4716 } 4717 } 4718 overflow = EXT4_LBLK_COFF(sbi, count); 4719 if (overflow) { 4720 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4721 if (count > overflow) 4722 count -= overflow; 4723 else 4724 return; 4725 } else 4726 count += sbi->s_cluster_ratio - overflow; 4727 } 4728 4729 do_more: 4730 overflow = 0; 4731 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4732 4733 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4734 ext4_get_group_info(sb, block_group)))) 4735 return; 4736 4737 /* 4738 * Check to see if we are freeing blocks across a group 4739 * boundary. 4740 */ 4741 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4742 overflow = EXT4_C2B(sbi, bit) + count - 4743 EXT4_BLOCKS_PER_GROUP(sb); 4744 count -= overflow; 4745 } 4746 count_clusters = EXT4_NUM_B2C(sbi, count); 4747 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4748 if (!bitmap_bh) { 4749 err = -EIO; 4750 goto error_return; 4751 } 4752 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4753 if (!gdp) { 4754 err = -EIO; 4755 goto error_return; 4756 } 4757 4758 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4759 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4760 in_range(block, ext4_inode_table(sb, gdp), 4761 EXT4_SB(sb)->s_itb_per_group) || 4762 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4763 EXT4_SB(sb)->s_itb_per_group)) { 4764 4765 ext4_error(sb, "Freeing blocks in system zone - " 4766 "Block = %llu, count = %lu", block, count); 4767 /* err = 0. ext4_std_error should be a no op */ 4768 goto error_return; 4769 } 4770 4771 BUFFER_TRACE(bitmap_bh, "getting write access"); 4772 err = ext4_journal_get_write_access(handle, bitmap_bh); 4773 if (err) 4774 goto error_return; 4775 4776 /* 4777 * We are about to modify some metadata. Call the journal APIs 4778 * to unshare ->b_data if a currently-committing transaction is 4779 * using it 4780 */ 4781 BUFFER_TRACE(gd_bh, "get_write_access"); 4782 err = ext4_journal_get_write_access(handle, gd_bh); 4783 if (err) 4784 goto error_return; 4785 #ifdef AGGRESSIVE_CHECK 4786 { 4787 int i; 4788 for (i = 0; i < count_clusters; i++) 4789 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4790 } 4791 #endif 4792 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4793 4794 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4795 if (err) 4796 goto error_return; 4797 4798 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4799 struct ext4_free_data *new_entry; 4800 /* 4801 * blocks being freed are metadata. these blocks shouldn't 4802 * be used until this transaction is committed 4803 */ 4804 retry: 4805 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4806 if (!new_entry) { 4807 /* 4808 * We use a retry loop because 4809 * ext4_free_blocks() is not allowed to fail. 4810 */ 4811 cond_resched(); 4812 congestion_wait(BLK_RW_ASYNC, HZ/50); 4813 goto retry; 4814 } 4815 new_entry->efd_start_cluster = bit; 4816 new_entry->efd_group = block_group; 4817 new_entry->efd_count = count_clusters; 4818 new_entry->efd_tid = handle->h_transaction->t_tid; 4819 4820 ext4_lock_group(sb, block_group); 4821 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4822 ext4_mb_free_metadata(handle, &e4b, new_entry); 4823 } else { 4824 /* need to update group_info->bb_free and bitmap 4825 * with group lock held. generate_buddy look at 4826 * them with group lock_held 4827 */ 4828 if (test_opt(sb, DISCARD)) { 4829 err = ext4_issue_discard(sb, block_group, bit, count); 4830 if (err && err != -EOPNOTSUPP) 4831 ext4_msg(sb, KERN_WARNING, "discard request in" 4832 " group:%d block:%d count:%lu failed" 4833 " with %d", block_group, bit, count, 4834 err); 4835 } else 4836 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4837 4838 ext4_lock_group(sb, block_group); 4839 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4840 mb_free_blocks(inode, &e4b, bit, count_clusters); 4841 } 4842 4843 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4844 ext4_free_group_clusters_set(sb, gdp, ret); 4845 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4846 ext4_group_desc_csum_set(sb, block_group, gdp); 4847 ext4_unlock_group(sb, block_group); 4848 4849 if (sbi->s_log_groups_per_flex) { 4850 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4851 atomic64_add(count_clusters, 4852 &sbi->s_flex_groups[flex_group].free_clusters); 4853 } 4854 4855 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4856 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4857 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4858 4859 ext4_mb_unload_buddy(&e4b); 4860 4861 /* We dirtied the bitmap block */ 4862 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4863 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4864 4865 /* And the group descriptor block */ 4866 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4867 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4868 if (!err) 4869 err = ret; 4870 4871 if (overflow && !err) { 4872 block += count; 4873 count = overflow; 4874 put_bh(bitmap_bh); 4875 goto do_more; 4876 } 4877 error_return: 4878 brelse(bitmap_bh); 4879 ext4_std_error(sb, err); 4880 return; 4881 } 4882 4883 /** 4884 * ext4_group_add_blocks() -- Add given blocks to an existing group 4885 * @handle: handle to this transaction 4886 * @sb: super block 4887 * @block: start physical block to add to the block group 4888 * @count: number of blocks to free 4889 * 4890 * This marks the blocks as free in the bitmap and buddy. 4891 */ 4892 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4893 ext4_fsblk_t block, unsigned long count) 4894 { 4895 struct buffer_head *bitmap_bh = NULL; 4896 struct buffer_head *gd_bh; 4897 ext4_group_t block_group; 4898 ext4_grpblk_t bit; 4899 unsigned int i; 4900 struct ext4_group_desc *desc; 4901 struct ext4_sb_info *sbi = EXT4_SB(sb); 4902 struct ext4_buddy e4b; 4903 int err = 0, ret, blk_free_count; 4904 ext4_grpblk_t blocks_freed; 4905 4906 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4907 4908 if (count == 0) 4909 return 0; 4910 4911 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4912 /* 4913 * Check to see if we are freeing blocks across a group 4914 * boundary. 4915 */ 4916 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4917 ext4_warning(sb, "too much blocks added to group %u\n", 4918 block_group); 4919 err = -EINVAL; 4920 goto error_return; 4921 } 4922 4923 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4924 if (!bitmap_bh) { 4925 err = -EIO; 4926 goto error_return; 4927 } 4928 4929 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4930 if (!desc) { 4931 err = -EIO; 4932 goto error_return; 4933 } 4934 4935 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4936 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4937 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4938 in_range(block + count - 1, ext4_inode_table(sb, desc), 4939 sbi->s_itb_per_group)) { 4940 ext4_error(sb, "Adding blocks in system zones - " 4941 "Block = %llu, count = %lu", 4942 block, count); 4943 err = -EINVAL; 4944 goto error_return; 4945 } 4946 4947 BUFFER_TRACE(bitmap_bh, "getting write access"); 4948 err = ext4_journal_get_write_access(handle, bitmap_bh); 4949 if (err) 4950 goto error_return; 4951 4952 /* 4953 * We are about to modify some metadata. Call the journal APIs 4954 * to unshare ->b_data if a currently-committing transaction is 4955 * using it 4956 */ 4957 BUFFER_TRACE(gd_bh, "get_write_access"); 4958 err = ext4_journal_get_write_access(handle, gd_bh); 4959 if (err) 4960 goto error_return; 4961 4962 for (i = 0, blocks_freed = 0; i < count; i++) { 4963 BUFFER_TRACE(bitmap_bh, "clear bit"); 4964 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4965 ext4_error(sb, "bit already cleared for block %llu", 4966 (ext4_fsblk_t)(block + i)); 4967 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4968 } else { 4969 blocks_freed++; 4970 } 4971 } 4972 4973 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4974 if (err) 4975 goto error_return; 4976 4977 /* 4978 * need to update group_info->bb_free and bitmap 4979 * with group lock held. generate_buddy look at 4980 * them with group lock_held 4981 */ 4982 ext4_lock_group(sb, block_group); 4983 mb_clear_bits(bitmap_bh->b_data, bit, count); 4984 mb_free_blocks(NULL, &e4b, bit, count); 4985 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4986 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4987 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4988 ext4_group_desc_csum_set(sb, block_group, desc); 4989 ext4_unlock_group(sb, block_group); 4990 percpu_counter_add(&sbi->s_freeclusters_counter, 4991 EXT4_NUM_B2C(sbi, blocks_freed)); 4992 4993 if (sbi->s_log_groups_per_flex) { 4994 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4995 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 4996 &sbi->s_flex_groups[flex_group].free_clusters); 4997 } 4998 4999 ext4_mb_unload_buddy(&e4b); 5000 5001 /* We dirtied the bitmap block */ 5002 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5003 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5004 5005 /* And the group descriptor block */ 5006 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5007 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5008 if (!err) 5009 err = ret; 5010 5011 error_return: 5012 brelse(bitmap_bh); 5013 ext4_std_error(sb, err); 5014 return err; 5015 } 5016 5017 /** 5018 * ext4_trim_extent -- function to TRIM one single free extent in the group 5019 * @sb: super block for the file system 5020 * @start: starting block of the free extent in the alloc. group 5021 * @count: number of blocks to TRIM 5022 * @group: alloc. group we are working with 5023 * @e4b: ext4 buddy for the group 5024 * 5025 * Trim "count" blocks starting at "start" in the "group". To assure that no 5026 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5027 * be called with under the group lock. 5028 */ 5029 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5030 ext4_group_t group, struct ext4_buddy *e4b) 5031 __releases(bitlock) 5032 __acquires(bitlock) 5033 { 5034 struct ext4_free_extent ex; 5035 int ret = 0; 5036 5037 trace_ext4_trim_extent(sb, group, start, count); 5038 5039 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5040 5041 ex.fe_start = start; 5042 ex.fe_group = group; 5043 ex.fe_len = count; 5044 5045 /* 5046 * Mark blocks used, so no one can reuse them while 5047 * being trimmed. 5048 */ 5049 mb_mark_used(e4b, &ex); 5050 ext4_unlock_group(sb, group); 5051 ret = ext4_issue_discard(sb, group, start, count); 5052 ext4_lock_group(sb, group); 5053 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5054 return ret; 5055 } 5056 5057 /** 5058 * ext4_trim_all_free -- function to trim all free space in alloc. group 5059 * @sb: super block for file system 5060 * @group: group to be trimmed 5061 * @start: first group block to examine 5062 * @max: last group block to examine 5063 * @minblocks: minimum extent block count 5064 * 5065 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5066 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5067 * the extent. 5068 * 5069 * 5070 * ext4_trim_all_free walks through group's block bitmap searching for free 5071 * extents. When the free extent is found, mark it as used in group buddy 5072 * bitmap. Then issue a TRIM command on this extent and free the extent in 5073 * the group buddy bitmap. This is done until whole group is scanned. 5074 */ 5075 static ext4_grpblk_t 5076 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5077 ext4_grpblk_t start, ext4_grpblk_t max, 5078 ext4_grpblk_t minblocks) 5079 { 5080 void *bitmap; 5081 ext4_grpblk_t next, count = 0, free_count = 0; 5082 struct ext4_buddy e4b; 5083 int ret = 0; 5084 5085 trace_ext4_trim_all_free(sb, group, start, max); 5086 5087 ret = ext4_mb_load_buddy(sb, group, &e4b); 5088 if (ret) { 5089 ext4_error(sb, "Error in loading buddy " 5090 "information for %u", group); 5091 return ret; 5092 } 5093 bitmap = e4b.bd_bitmap; 5094 5095 ext4_lock_group(sb, group); 5096 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5097 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5098 goto out; 5099 5100 start = (e4b.bd_info->bb_first_free > start) ? 5101 e4b.bd_info->bb_first_free : start; 5102 5103 while (start <= max) { 5104 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5105 if (start > max) 5106 break; 5107 next = mb_find_next_bit(bitmap, max + 1, start); 5108 5109 if ((next - start) >= minblocks) { 5110 ret = ext4_trim_extent(sb, start, 5111 next - start, group, &e4b); 5112 if (ret && ret != -EOPNOTSUPP) 5113 break; 5114 ret = 0; 5115 count += next - start; 5116 } 5117 free_count += next - start; 5118 start = next + 1; 5119 5120 if (fatal_signal_pending(current)) { 5121 count = -ERESTARTSYS; 5122 break; 5123 } 5124 5125 if (need_resched()) { 5126 ext4_unlock_group(sb, group); 5127 cond_resched(); 5128 ext4_lock_group(sb, group); 5129 } 5130 5131 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5132 break; 5133 } 5134 5135 if (!ret) { 5136 ret = count; 5137 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5138 } 5139 out: 5140 ext4_unlock_group(sb, group); 5141 ext4_mb_unload_buddy(&e4b); 5142 5143 ext4_debug("trimmed %d blocks in the group %d\n", 5144 count, group); 5145 5146 return ret; 5147 } 5148 5149 /** 5150 * ext4_trim_fs() -- trim ioctl handle function 5151 * @sb: superblock for filesystem 5152 * @range: fstrim_range structure 5153 * 5154 * start: First Byte to trim 5155 * len: number of Bytes to trim from start 5156 * minlen: minimum extent length in Bytes 5157 * ext4_trim_fs goes through all allocation groups containing Bytes from 5158 * start to start+len. For each such a group ext4_trim_all_free function 5159 * is invoked to trim all free space. 5160 */ 5161 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5162 { 5163 struct ext4_group_info *grp; 5164 ext4_group_t group, first_group, last_group; 5165 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5166 uint64_t start, end, minlen, trimmed = 0; 5167 ext4_fsblk_t first_data_blk = 5168 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5169 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5170 int ret = 0; 5171 5172 start = range->start >> sb->s_blocksize_bits; 5173 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5174 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5175 range->minlen >> sb->s_blocksize_bits); 5176 5177 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5178 start >= max_blks || 5179 range->len < sb->s_blocksize) 5180 return -EINVAL; 5181 if (end >= max_blks) 5182 end = max_blks - 1; 5183 if (end <= first_data_blk) 5184 goto out; 5185 if (start < first_data_blk) 5186 start = first_data_blk; 5187 5188 /* Determine first and last group to examine based on start and end */ 5189 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5190 &first_group, &first_cluster); 5191 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5192 &last_group, &last_cluster); 5193 5194 /* end now represents the last cluster to discard in this group */ 5195 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5196 5197 for (group = first_group; group <= last_group; group++) { 5198 grp = ext4_get_group_info(sb, group); 5199 /* We only do this if the grp has never been initialized */ 5200 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5201 ret = ext4_mb_init_group(sb, group); 5202 if (ret) 5203 break; 5204 } 5205 5206 /* 5207 * For all the groups except the last one, last cluster will 5208 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5209 * change it for the last group, note that last_cluster is 5210 * already computed earlier by ext4_get_group_no_and_offset() 5211 */ 5212 if (group == last_group) 5213 end = last_cluster; 5214 5215 if (grp->bb_free >= minlen) { 5216 cnt = ext4_trim_all_free(sb, group, first_cluster, 5217 end, minlen); 5218 if (cnt < 0) { 5219 ret = cnt; 5220 break; 5221 } 5222 trimmed += cnt; 5223 } 5224 5225 /* 5226 * For every group except the first one, we are sure 5227 * that the first cluster to discard will be cluster #0. 5228 */ 5229 first_cluster = 0; 5230 } 5231 5232 if (!ret) 5233 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5234 5235 out: 5236 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5237 return ret; 5238 } 5239