1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 #include <kunit/static_stub.h> 22 23 /* 24 * MUSTDO: 25 * - test ext4_ext_search_left() and ext4_ext_search_right() 26 * - search for metadata in few groups 27 * 28 * TODO v4: 29 * - normalization should take into account whether file is still open 30 * - discard preallocations if no free space left (policy?) 31 * - don't normalize tails 32 * - quota 33 * - reservation for superuser 34 * 35 * TODO v3: 36 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 37 * - track min/max extents in each group for better group selection 38 * - mb_mark_used() may allocate chunk right after splitting buddy 39 * - tree of groups sorted by number of free blocks 40 * - error handling 41 */ 42 43 /* 44 * The allocation request involve request for multiple number of blocks 45 * near to the goal(block) value specified. 46 * 47 * During initialization phase of the allocator we decide to use the 48 * group preallocation or inode preallocation depending on the size of 49 * the file. The size of the file could be the resulting file size we 50 * would have after allocation, or the current file size, which ever 51 * is larger. If the size is less than sbi->s_mb_stream_request we 52 * select to use the group preallocation. The default value of 53 * s_mb_stream_request is 16 blocks. This can also be tuned via 54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 55 * terms of number of blocks. 56 * 57 * The main motivation for having small file use group preallocation is to 58 * ensure that we have small files closer together on the disk. 59 * 60 * First stage the allocator looks at the inode prealloc list, 61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 62 * spaces for this particular inode. The inode prealloc space is 63 * represented as: 64 * 65 * pa_lstart -> the logical start block for this prealloc space 66 * pa_pstart -> the physical start block for this prealloc space 67 * pa_len -> length for this prealloc space (in clusters) 68 * pa_free -> free space available in this prealloc space (in clusters) 69 * 70 * The inode preallocation space is used looking at the _logical_ start 71 * block. If only the logical file block falls within the range of prealloc 72 * space we will consume the particular prealloc space. This makes sure that 73 * we have contiguous physical blocks representing the file blocks 74 * 75 * The important thing to be noted in case of inode prealloc space is that 76 * we don't modify the values associated to inode prealloc space except 77 * pa_free. 78 * 79 * If we are not able to find blocks in the inode prealloc space and if we 80 * have the group allocation flag set then we look at the locality group 81 * prealloc space. These are per CPU prealloc list represented as 82 * 83 * ext4_sb_info.s_locality_groups[smp_processor_id()] 84 * 85 * The reason for having a per cpu locality group is to reduce the contention 86 * between CPUs. It is possible to get scheduled at this point. 87 * 88 * The locality group prealloc space is used looking at whether we have 89 * enough free space (pa_free) within the prealloc space. 90 * 91 * If we can't allocate blocks via inode prealloc or/and locality group 92 * prealloc then we look at the buddy cache. The buddy cache is represented 93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 94 * mapped to the buddy and bitmap information regarding different 95 * groups. The buddy information is attached to buddy cache inode so that 96 * we can access them through the page cache. The information regarding 97 * each group is loaded via ext4_mb_load_buddy. The information involve 98 * block bitmap and buddy information. The information are stored in the 99 * inode as: 100 * 101 * { page } 102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 103 * 104 * 105 * one block each for bitmap and buddy information. So for each group we 106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 107 * blocksize) blocks. So it can have information regarding groups_per_page 108 * which is blocks_per_page/2 109 * 110 * The buddy cache inode is not stored on disk. The inode is thrown 111 * away when the filesystem is unmounted. 112 * 113 * We look for count number of blocks in the buddy cache. If we were able 114 * to locate that many free blocks we return with additional information 115 * regarding rest of the contiguous physical block available 116 * 117 * Before allocating blocks via buddy cache we normalize the request 118 * blocks. This ensure we ask for more blocks that we needed. The extra 119 * blocks that we get after allocation is added to the respective prealloc 120 * list. In case of inode preallocation we follow a list of heuristics 121 * based on file size. This can be found in ext4_mb_normalize_request. If 122 * we are doing a group prealloc we try to normalize the request to 123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 124 * dependent on the cluster size; for non-bigalloc file systems, it is 125 * 512 blocks. This can be tuned via 126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 127 * terms of number of blocks. If we have mounted the file system with -O 128 * stripe=<value> option the group prealloc request is normalized to the 129 * smallest multiple of the stripe value (sbi->s_stripe) which is 130 * greater than the default mb_group_prealloc. 131 * 132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 133 * structures in two data structures: 134 * 135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 136 * 137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 138 * 139 * This is an array of lists where the index in the array represents the 140 * largest free order in the buddy bitmap of the participating group infos of 141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 142 * number of buddy bitmap orders possible) number of lists. Group-infos are 143 * placed in appropriate lists. 144 * 145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 146 * 147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 148 * 149 * This is an array of lists where in the i-th list there are groups with 150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 152 * Note that we don't bother with a special list for completely empty groups 153 * so we only have MB_NUM_ORDERS(sb) lists. 154 * 155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 156 * structures to decide the order in which groups are to be traversed for 157 * fulfilling an allocation request. 158 * 159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 160 * >= the order of the request. We directly look at the largest free order list 161 * in the data structure (1) above where largest_free_order = order of the 162 * request. If that list is empty, we look at remaining list in the increasing 163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 164 * lookup in O(1) time. 165 * 166 * At CR_GOAL_LEN_FAST, we only consider groups where 167 * average fragment size > request size. So, we lookup a group which has average 168 * fragment size just above or equal to request size using our average fragment 169 * size group lists (data structure 2) in O(1) time. 170 * 171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 174 * fragment size > goal length. So before falling to the slower 175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 177 * enough average fragment size. This increases the chances of finding a 178 * suitable block group in O(1) time and results in faster allocation at the 179 * cost of reduced size of allocation. 180 * 181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 183 * CR_GOAL_LEN_FAST phase. 184 * 185 * The regular allocator (using the buddy cache) supports a few tunables. 186 * 187 * /sys/fs/ext4/<partition>/mb_min_to_scan 188 * /sys/fs/ext4/<partition>/mb_max_to_scan 189 * /sys/fs/ext4/<partition>/mb_order2_req 190 * /sys/fs/ext4/<partition>/mb_linear_limit 191 * 192 * The regular allocator uses buddy scan only if the request len is power of 193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 194 * value of s_mb_order2_reqs can be tuned via 195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 196 * stripe size (sbi->s_stripe), we try to search for contiguous block in 197 * stripe size. This should result in better allocation on RAID setups. If 198 * not, we search in the specific group using bitmap for best extents. The 199 * tunable min_to_scan and max_to_scan control the behaviour here. 200 * min_to_scan indicate how long the mballoc __must__ look for a best 201 * extent and max_to_scan indicates how long the mballoc __can__ look for a 202 * best extent in the found extents. Searching for the blocks starts with 203 * the group specified as the goal value in allocation context via 204 * ac_g_ex. Each group is first checked based on the criteria whether it 205 * can be used for allocation. ext4_mb_good_group explains how the groups are 206 * checked. 207 * 208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 209 * get traversed linearly. That may result in subsequent allocations being not 210 * close to each other. And so, the underlying device may get filled up in a 211 * non-linear fashion. While that may not matter on non-rotational devices, for 212 * rotational devices that may result in higher seek times. "mb_linear_limit" 213 * tells mballoc how many groups mballoc should search linearly before 214 * performing consulting above data structures for more efficient lookups. For 215 * non rotational devices, this value defaults to 0 and for rotational devices 216 * this is set to MB_DEFAULT_LINEAR_LIMIT. 217 * 218 * Both the prealloc space are getting populated as above. So for the first 219 * request we will hit the buddy cache which will result in this prealloc 220 * space getting filled. The prealloc space is then later used for the 221 * subsequent request. 222 */ 223 224 /* 225 * mballoc operates on the following data: 226 * - on-disk bitmap 227 * - in-core buddy (actually includes buddy and bitmap) 228 * - preallocation descriptors (PAs) 229 * 230 * there are two types of preallocations: 231 * - inode 232 * assiged to specific inode and can be used for this inode only. 233 * it describes part of inode's space preallocated to specific 234 * physical blocks. any block from that preallocated can be used 235 * independent. the descriptor just tracks number of blocks left 236 * unused. so, before taking some block from descriptor, one must 237 * make sure corresponded logical block isn't allocated yet. this 238 * also means that freeing any block within descriptor's range 239 * must discard all preallocated blocks. 240 * - locality group 241 * assigned to specific locality group which does not translate to 242 * permanent set of inodes: inode can join and leave group. space 243 * from this type of preallocation can be used for any inode. thus 244 * it's consumed from the beginning to the end. 245 * 246 * relation between them can be expressed as: 247 * in-core buddy = on-disk bitmap + preallocation descriptors 248 * 249 * this mean blocks mballoc considers used are: 250 * - allocated blocks (persistent) 251 * - preallocated blocks (non-persistent) 252 * 253 * consistency in mballoc world means that at any time a block is either 254 * free or used in ALL structures. notice: "any time" should not be read 255 * literally -- time is discrete and delimited by locks. 256 * 257 * to keep it simple, we don't use block numbers, instead we count number of 258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 259 * 260 * all operations can be expressed as: 261 * - init buddy: buddy = on-disk + PAs 262 * - new PA: buddy += N; PA = N 263 * - use inode PA: on-disk += N; PA -= N 264 * - discard inode PA buddy -= on-disk - PA; PA = 0 265 * - use locality group PA on-disk += N; PA -= N 266 * - discard locality group PA buddy -= PA; PA = 0 267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 268 * is used in real operation because we can't know actual used 269 * bits from PA, only from on-disk bitmap 270 * 271 * if we follow this strict logic, then all operations above should be atomic. 272 * given some of them can block, we'd have to use something like semaphores 273 * killing performance on high-end SMP hardware. let's try to relax it using 274 * the following knowledge: 275 * 1) if buddy is referenced, it's already initialized 276 * 2) while block is used in buddy and the buddy is referenced, 277 * nobody can re-allocate that block 278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 279 * bit set and PA claims same block, it's OK. IOW, one can set bit in 280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 281 * block 282 * 283 * so, now we're building a concurrency table: 284 * - init buddy vs. 285 * - new PA 286 * blocks for PA are allocated in the buddy, buddy must be referenced 287 * until PA is linked to allocation group to avoid concurrent buddy init 288 * - use inode PA 289 * we need to make sure that either on-disk bitmap or PA has uptodate data 290 * given (3) we care that PA-=N operation doesn't interfere with init 291 * - discard inode PA 292 * the simplest way would be to have buddy initialized by the discard 293 * - use locality group PA 294 * again PA-=N must be serialized with init 295 * - discard locality group PA 296 * the simplest way would be to have buddy initialized by the discard 297 * - new PA vs. 298 * - use inode PA 299 * i_data_sem serializes them 300 * - discard inode PA 301 * discard process must wait until PA isn't used by another process 302 * - use locality group PA 303 * some mutex should serialize them 304 * - discard locality group PA 305 * discard process must wait until PA isn't used by another process 306 * - use inode PA 307 * - use inode PA 308 * i_data_sem or another mutex should serializes them 309 * - discard inode PA 310 * discard process must wait until PA isn't used by another process 311 * - use locality group PA 312 * nothing wrong here -- they're different PAs covering different blocks 313 * - discard locality group PA 314 * discard process must wait until PA isn't used by another process 315 * 316 * now we're ready to make few consequences: 317 * - PA is referenced and while it is no discard is possible 318 * - PA is referenced until block isn't marked in on-disk bitmap 319 * - PA changes only after on-disk bitmap 320 * - discard must not compete with init. either init is done before 321 * any discard or they're serialized somehow 322 * - buddy init as sum of on-disk bitmap and PAs is done atomically 323 * 324 * a special case when we've used PA to emptiness. no need to modify buddy 325 * in this case, but we should care about concurrent init 326 * 327 */ 328 329 /* 330 * Logic in few words: 331 * 332 * - allocation: 333 * load group 334 * find blocks 335 * mark bits in on-disk bitmap 336 * release group 337 * 338 * - use preallocation: 339 * find proper PA (per-inode or group) 340 * load group 341 * mark bits in on-disk bitmap 342 * release group 343 * release PA 344 * 345 * - free: 346 * load group 347 * mark bits in on-disk bitmap 348 * release group 349 * 350 * - discard preallocations in group: 351 * mark PAs deleted 352 * move them onto local list 353 * load on-disk bitmap 354 * load group 355 * remove PA from object (inode or locality group) 356 * mark free blocks in-core 357 * 358 * - discard inode's preallocations: 359 */ 360 361 /* 362 * Locking rules 363 * 364 * Locks: 365 * - bitlock on a group (group) 366 * - object (inode/locality) (object) 367 * - per-pa lock (pa) 368 * - cr_power2_aligned lists lock (cr_power2_aligned) 369 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 370 * 371 * Paths: 372 * - new pa 373 * object 374 * group 375 * 376 * - find and use pa: 377 * pa 378 * 379 * - release consumed pa: 380 * pa 381 * group 382 * object 383 * 384 * - generate in-core bitmap: 385 * group 386 * pa 387 * 388 * - discard all for given object (inode, locality group): 389 * object 390 * pa 391 * group 392 * 393 * - discard all for given group: 394 * group 395 * pa 396 * group 397 * object 398 * 399 * - allocation path (ext4_mb_regular_allocator) 400 * group 401 * cr_power2_aligned/cr_goal_len_fast 402 */ 403 static struct kmem_cache *ext4_pspace_cachep; 404 static struct kmem_cache *ext4_ac_cachep; 405 static struct kmem_cache *ext4_free_data_cachep; 406 407 /* We create slab caches for groupinfo data structures based on the 408 * superblock block size. There will be one per mounted filesystem for 409 * each unique s_blocksize_bits */ 410 #define NR_GRPINFO_CACHES 8 411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 412 413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 416 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 417 }; 418 419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 420 ext4_group_t group); 421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 422 423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 424 ext4_group_t group, enum criteria cr); 425 426 static int ext4_try_to_trim_range(struct super_block *sb, 427 struct ext4_buddy *e4b, ext4_grpblk_t start, 428 ext4_grpblk_t max, ext4_grpblk_t minblocks); 429 430 /* 431 * The algorithm using this percpu seq counter goes below: 432 * 1. We sample the percpu discard_pa_seq counter before trying for block 433 * allocation in ext4_mb_new_blocks(). 434 * 2. We increment this percpu discard_pa_seq counter when we either allocate 435 * or free these blocks i.e. while marking those blocks as used/free in 436 * mb_mark_used()/mb_free_blocks(). 437 * 3. We also increment this percpu seq counter when we successfully identify 438 * that the bb_prealloc_list is not empty and hence proceed for discarding 439 * of those PAs inside ext4_mb_discard_group_preallocations(). 440 * 441 * Now to make sure that the regular fast path of block allocation is not 442 * affected, as a small optimization we only sample the percpu seq counter 443 * on that cpu. Only when the block allocation fails and when freed blocks 444 * found were 0, that is when we sample percpu seq counter for all cpus using 445 * below function ext4_get_discard_pa_seq_sum(). This happens after making 446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 447 */ 448 static DEFINE_PER_CPU(u64, discard_pa_seq); 449 static inline u64 ext4_get_discard_pa_seq_sum(void) 450 { 451 int __cpu; 452 u64 __seq = 0; 453 454 for_each_possible_cpu(__cpu) 455 __seq += per_cpu(discard_pa_seq, __cpu); 456 return __seq; 457 } 458 459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 460 { 461 #if BITS_PER_LONG == 64 462 *bit += ((unsigned long) addr & 7UL) << 3; 463 addr = (void *) ((unsigned long) addr & ~7UL); 464 #elif BITS_PER_LONG == 32 465 *bit += ((unsigned long) addr & 3UL) << 3; 466 addr = (void *) ((unsigned long) addr & ~3UL); 467 #else 468 #error "how many bits you are?!" 469 #endif 470 return addr; 471 } 472 473 static inline int mb_test_bit(int bit, void *addr) 474 { 475 /* 476 * ext4_test_bit on architecture like powerpc 477 * needs unsigned long aligned address 478 */ 479 addr = mb_correct_addr_and_bit(&bit, addr); 480 return ext4_test_bit(bit, addr); 481 } 482 483 static inline void mb_set_bit(int bit, void *addr) 484 { 485 addr = mb_correct_addr_and_bit(&bit, addr); 486 ext4_set_bit(bit, addr); 487 } 488 489 static inline void mb_clear_bit(int bit, void *addr) 490 { 491 addr = mb_correct_addr_and_bit(&bit, addr); 492 ext4_clear_bit(bit, addr); 493 } 494 495 static inline int mb_test_and_clear_bit(int bit, void *addr) 496 { 497 addr = mb_correct_addr_and_bit(&bit, addr); 498 return ext4_test_and_clear_bit(bit, addr); 499 } 500 501 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 502 { 503 int fix = 0, ret, tmpmax; 504 addr = mb_correct_addr_and_bit(&fix, addr); 505 tmpmax = max + fix; 506 start += fix; 507 508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 509 if (ret > max) 510 return max; 511 return ret; 512 } 513 514 static inline int mb_find_next_bit(void *addr, int max, int start) 515 { 516 int fix = 0, ret, tmpmax; 517 addr = mb_correct_addr_and_bit(&fix, addr); 518 tmpmax = max + fix; 519 start += fix; 520 521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 522 if (ret > max) 523 return max; 524 return ret; 525 } 526 527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 528 { 529 char *bb; 530 531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 532 BUG_ON(max == NULL); 533 534 if (order > e4b->bd_blkbits + 1) { 535 *max = 0; 536 return NULL; 537 } 538 539 /* at order 0 we see each particular block */ 540 if (order == 0) { 541 *max = 1 << (e4b->bd_blkbits + 3); 542 return e4b->bd_bitmap; 543 } 544 545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 547 548 return bb; 549 } 550 551 #ifdef DOUBLE_CHECK 552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 553 int first, int count) 554 { 555 int i; 556 struct super_block *sb = e4b->bd_sb; 557 558 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 559 return; 560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 561 for (i = 0; i < count; i++) { 562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 563 ext4_fsblk_t blocknr; 564 565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 567 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 568 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 569 ext4_grp_locked_error(sb, e4b->bd_group, 570 inode ? inode->i_ino : 0, 571 blocknr, 572 "freeing block already freed " 573 "(bit %u)", 574 first + i); 575 } 576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 577 } 578 } 579 580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 581 { 582 int i; 583 584 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 585 return; 586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 587 for (i = 0; i < count; i++) { 588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 590 } 591 } 592 593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 594 { 595 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 596 return; 597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 598 unsigned char *b1, *b2; 599 int i; 600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 601 b2 = (unsigned char *) bitmap; 602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 603 if (b1[i] != b2[i]) { 604 ext4_msg(e4b->bd_sb, KERN_ERR, 605 "corruption in group %u " 606 "at byte %u(%u): %x in copy != %x " 607 "on disk/prealloc", 608 e4b->bd_group, i, i * 8, b1[i], b2[i]); 609 BUG(); 610 } 611 } 612 } 613 } 614 615 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 616 struct ext4_group_info *grp, ext4_group_t group) 617 { 618 struct buffer_head *bh; 619 620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 621 if (!grp->bb_bitmap) 622 return; 623 624 bh = ext4_read_block_bitmap(sb, group); 625 if (IS_ERR_OR_NULL(bh)) { 626 kfree(grp->bb_bitmap); 627 grp->bb_bitmap = NULL; 628 return; 629 } 630 631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 632 put_bh(bh); 633 } 634 635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 636 { 637 kfree(grp->bb_bitmap); 638 } 639 640 #else 641 static inline void mb_free_blocks_double(struct inode *inode, 642 struct ext4_buddy *e4b, int first, int count) 643 { 644 return; 645 } 646 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 647 int first, int count) 648 { 649 return; 650 } 651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 652 { 653 return; 654 } 655 656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 657 struct ext4_group_info *grp, ext4_group_t group) 658 { 659 return; 660 } 661 662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 663 { 664 return; 665 } 666 #endif 667 668 #ifdef AGGRESSIVE_CHECK 669 670 #define MB_CHECK_ASSERT(assert) \ 671 do { \ 672 if (!(assert)) { \ 673 printk(KERN_EMERG \ 674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 675 function, file, line, # assert); \ 676 BUG(); \ 677 } \ 678 } while (0) 679 680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file, 681 const char *function, int line) 682 { 683 struct super_block *sb = e4b->bd_sb; 684 int order = e4b->bd_blkbits + 1; 685 int max; 686 int max2; 687 int i; 688 int j; 689 int k; 690 int count; 691 struct ext4_group_info *grp; 692 int fragments = 0; 693 int fstart; 694 struct list_head *cur; 695 void *buddy; 696 void *buddy2; 697 698 if (e4b->bd_info->bb_check_counter++ % 10) 699 return; 700 701 while (order > 1) { 702 buddy = mb_find_buddy(e4b, order, &max); 703 MB_CHECK_ASSERT(buddy); 704 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 705 MB_CHECK_ASSERT(buddy2); 706 MB_CHECK_ASSERT(buddy != buddy2); 707 MB_CHECK_ASSERT(max * 2 == max2); 708 709 count = 0; 710 for (i = 0; i < max; i++) { 711 712 if (mb_test_bit(i, buddy)) { 713 /* only single bit in buddy2 may be 0 */ 714 if (!mb_test_bit(i << 1, buddy2)) { 715 MB_CHECK_ASSERT( 716 mb_test_bit((i<<1)+1, buddy2)); 717 } 718 continue; 719 } 720 721 /* both bits in buddy2 must be 1 */ 722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 724 725 for (j = 0; j < (1 << order); j++) { 726 k = (i * (1 << order)) + j; 727 MB_CHECK_ASSERT( 728 !mb_test_bit(k, e4b->bd_bitmap)); 729 } 730 count++; 731 } 732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 733 order--; 734 } 735 736 fstart = -1; 737 buddy = mb_find_buddy(e4b, 0, &max); 738 for (i = 0; i < max; i++) { 739 if (!mb_test_bit(i, buddy)) { 740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 741 if (fstart == -1) { 742 fragments++; 743 fstart = i; 744 } 745 continue; 746 } 747 fstart = -1; 748 /* check used bits only */ 749 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 750 buddy2 = mb_find_buddy(e4b, j, &max2); 751 k = i >> j; 752 MB_CHECK_ASSERT(k < max2); 753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 754 } 755 } 756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 758 759 grp = ext4_get_group_info(sb, e4b->bd_group); 760 if (!grp) 761 return; 762 list_for_each(cur, &grp->bb_prealloc_list) { 763 ext4_group_t groupnr; 764 struct ext4_prealloc_space *pa; 765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 767 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 768 for (i = 0; i < pa->pa_len; i++) 769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 770 } 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb))) 835 order = MB_NUM_ORDERS(sb) - 1; 836 return order; 837 } 838 839 /* Move group to appropriate avg_fragment_size list */ 840 static void 841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 842 { 843 struct ext4_sb_info *sbi = EXT4_SB(sb); 844 int new_order; 845 846 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) 847 return; 848 849 new_order = mb_avg_fragment_size_order(sb, 850 grp->bb_free / grp->bb_fragments); 851 if (new_order == grp->bb_avg_fragment_size_order) 852 return; 853 854 if (grp->bb_avg_fragment_size_order != -1) { 855 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 856 grp->bb_avg_fragment_size_order]); 857 list_del(&grp->bb_avg_fragment_size_node); 858 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 859 grp->bb_avg_fragment_size_order]); 860 } 861 grp->bb_avg_fragment_size_order = new_order; 862 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 863 grp->bb_avg_fragment_size_order]); 864 list_add_tail(&grp->bb_avg_fragment_size_node, 865 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 866 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 867 grp->bb_avg_fragment_size_order]); 868 } 869 870 /* 871 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 872 * cr level needs an update. 873 */ 874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 875 enum criteria *new_cr, ext4_group_t *group) 876 { 877 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 878 struct ext4_group_info *iter; 879 int i; 880 881 if (ac->ac_status == AC_STATUS_FOUND) 882 return; 883 884 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 885 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 886 887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 888 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 889 continue; 890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 893 continue; 894 } 895 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 896 bb_largest_free_order_node) { 897 if (sbi->s_mb_stats) 898 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 899 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 900 *group = iter->bb_group; 901 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 903 return; 904 } 905 } 906 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 907 } 908 909 /* Increment cr and search again if no group is found */ 910 *new_cr = CR_GOAL_LEN_FAST; 911 } 912 913 /* 914 * Find a suitable group of given order from the average fragments list. 915 */ 916 static struct ext4_group_info * 917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 918 { 919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 920 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 921 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 922 struct ext4_group_info *grp = NULL, *iter; 923 enum criteria cr = ac->ac_criteria; 924 925 if (list_empty(frag_list)) 926 return NULL; 927 read_lock(frag_list_lock); 928 if (list_empty(frag_list)) { 929 read_unlock(frag_list_lock); 930 return NULL; 931 } 932 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 933 if (sbi->s_mb_stats) 934 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 935 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 936 grp = iter; 937 break; 938 } 939 } 940 read_unlock(frag_list_lock); 941 return grp; 942 } 943 944 /* 945 * Choose next group by traversing average fragment size list of suitable 946 * order. Updates *new_cr if cr level needs an update. 947 */ 948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 949 enum criteria *new_cr, ext4_group_t *group) 950 { 951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 952 struct ext4_group_info *grp = NULL; 953 int i; 954 955 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 956 if (sbi->s_mb_stats) 957 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 958 } 959 960 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 961 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 962 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 963 if (grp) { 964 *group = grp->bb_group; 965 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 966 return; 967 } 968 } 969 970 /* 971 * CR_BEST_AVAIL_LEN works based on the concept that we have 972 * a larger normalized goal len request which can be trimmed to 973 * a smaller goal len such that it can still satisfy original 974 * request len. However, allocation request for non-regular 975 * files never gets normalized. 976 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 977 */ 978 if (ac->ac_flags & EXT4_MB_HINT_DATA) 979 *new_cr = CR_BEST_AVAIL_LEN; 980 else 981 *new_cr = CR_GOAL_LEN_SLOW; 982 } 983 984 /* 985 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 986 * order we have and proactively trim the goal request length to that order to 987 * find a suitable group faster. 988 * 989 * This optimizes allocation speed at the cost of slightly reduced 990 * preallocations. However, we make sure that we don't trim the request too 991 * much and fall to CR_GOAL_LEN_SLOW in that case. 992 */ 993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 994 enum criteria *new_cr, ext4_group_t *group) 995 { 996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 997 struct ext4_group_info *grp = NULL; 998 int i, order, min_order; 999 unsigned long num_stripe_clusters = 0; 1000 1001 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1002 if (sbi->s_mb_stats) 1003 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1004 } 1005 1006 /* 1007 * mb_avg_fragment_size_order() returns order in a way that makes 1008 * retrieving back the length using (1 << order) inaccurate. Hence, use 1009 * fls() instead since we need to know the actual length while modifying 1010 * goal length. 1011 */ 1012 order = fls(ac->ac_g_ex.fe_len) - 1; 1013 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb))) 1014 order = MB_NUM_ORDERS(ac->ac_sb); 1015 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1016 if (min_order < 0) 1017 min_order = 0; 1018 1019 if (sbi->s_stripe > 0) { 1020 /* 1021 * We are assuming that stripe size is always a multiple of 1022 * cluster ratio otherwise __ext4_fill_super exists early. 1023 */ 1024 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1025 if (1 << min_order < num_stripe_clusters) 1026 /* 1027 * We consider 1 order less because later we round 1028 * up the goal len to num_stripe_clusters 1029 */ 1030 min_order = fls(num_stripe_clusters) - 1; 1031 } 1032 1033 if (1 << min_order < ac->ac_o_ex.fe_len) 1034 min_order = fls(ac->ac_o_ex.fe_len); 1035 1036 for (i = order; i >= min_order; i--) { 1037 int frag_order; 1038 /* 1039 * Scale down goal len to make sure we find something 1040 * in the free fragments list. Basically, reduce 1041 * preallocations. 1042 */ 1043 ac->ac_g_ex.fe_len = 1 << i; 1044 1045 if (num_stripe_clusters > 0) { 1046 /* 1047 * Try to round up the adjusted goal length to 1048 * stripe size (in cluster units) multiple for 1049 * efficiency. 1050 */ 1051 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1052 num_stripe_clusters); 1053 } 1054 1055 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1056 ac->ac_g_ex.fe_len); 1057 1058 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1059 if (grp) { 1060 *group = grp->bb_group; 1061 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1062 return; 1063 } 1064 } 1065 1066 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1067 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1068 *new_cr = CR_GOAL_LEN_SLOW; 1069 } 1070 1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1072 { 1073 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1074 return 0; 1075 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1076 return 0; 1077 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1078 return 0; 1079 return 1; 1080 } 1081 1082 /* 1083 * Return next linear group for allocation. 1084 */ 1085 static ext4_group_t 1086 next_linear_group(ext4_group_t group, ext4_group_t ngroups) 1087 { 1088 /* 1089 * Artificially restricted ngroups for non-extent 1090 * files makes group > ngroups possible on first loop. 1091 */ 1092 return group + 1 >= ngroups ? 0 : group + 1; 1093 } 1094 1095 /* 1096 * ext4_mb_choose_next_group: choose next group for allocation. 1097 * 1098 * @ac Allocation Context 1099 * @new_cr This is an output parameter. If the there is no good group 1100 * available at current CR level, this field is updated to indicate 1101 * the new cr level that should be used. 1102 * @group This is an input / output parameter. As an input it indicates the 1103 * next group that the allocator intends to use for allocation. As 1104 * output, this field indicates the next group that should be used as 1105 * determined by the optimization functions. 1106 * @ngroups Total number of groups 1107 */ 1108 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1109 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1110 { 1111 *new_cr = ac->ac_criteria; 1112 1113 if (!should_optimize_scan(ac)) { 1114 *group = next_linear_group(*group, ngroups); 1115 return; 1116 } 1117 1118 /* 1119 * Optimized scanning can return non adjacent groups which can cause 1120 * seek overhead for rotational disks. So try few linear groups before 1121 * trying optimized scan. 1122 */ 1123 if (ac->ac_groups_linear_remaining) { 1124 *group = next_linear_group(*group, ngroups); 1125 ac->ac_groups_linear_remaining--; 1126 return; 1127 } 1128 1129 if (*new_cr == CR_POWER2_ALIGNED) { 1130 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group); 1131 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1132 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group); 1133 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1134 ext4_mb_choose_next_group_best_avail(ac, new_cr, group); 1135 } else { 1136 /* 1137 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an 1138 * rb tree sorted by bb_free. But until that happens, we should 1139 * never come here. 1140 */ 1141 WARN_ON(1); 1142 } 1143 } 1144 1145 /* 1146 * Cache the order of the largest free extent we have available in this block 1147 * group. 1148 */ 1149 static void 1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1151 { 1152 struct ext4_sb_info *sbi = EXT4_SB(sb); 1153 int i; 1154 1155 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1156 if (grp->bb_counters[i] > 0) 1157 break; 1158 /* No need to move between order lists? */ 1159 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1160 i == grp->bb_largest_free_order) { 1161 grp->bb_largest_free_order = i; 1162 return; 1163 } 1164 1165 if (grp->bb_largest_free_order >= 0) { 1166 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1167 grp->bb_largest_free_order]); 1168 list_del_init(&grp->bb_largest_free_order_node); 1169 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1170 grp->bb_largest_free_order]); 1171 } 1172 grp->bb_largest_free_order = i; 1173 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1174 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 list_add_tail(&grp->bb_largest_free_order_node, 1177 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1178 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1179 grp->bb_largest_free_order]); 1180 } 1181 } 1182 1183 static noinline_for_stack 1184 void ext4_mb_generate_buddy(struct super_block *sb, 1185 void *buddy, void *bitmap, ext4_group_t group, 1186 struct ext4_group_info *grp) 1187 { 1188 struct ext4_sb_info *sbi = EXT4_SB(sb); 1189 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1190 ext4_grpblk_t i = 0; 1191 ext4_grpblk_t first; 1192 ext4_grpblk_t len; 1193 unsigned free = 0; 1194 unsigned fragments = 0; 1195 unsigned long long period = get_cycles(); 1196 1197 /* initialize buddy from bitmap which is aggregation 1198 * of on-disk bitmap and preallocations */ 1199 i = mb_find_next_zero_bit(bitmap, max, 0); 1200 grp->bb_first_free = i; 1201 while (i < max) { 1202 fragments++; 1203 first = i; 1204 i = mb_find_next_bit(bitmap, max, i); 1205 len = i - first; 1206 free += len; 1207 if (len > 1) 1208 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1209 else 1210 grp->bb_counters[0]++; 1211 if (i < max) 1212 i = mb_find_next_zero_bit(bitmap, max, i); 1213 } 1214 grp->bb_fragments = fragments; 1215 1216 if (free != grp->bb_free) { 1217 ext4_grp_locked_error(sb, group, 0, 0, 1218 "block bitmap and bg descriptor " 1219 "inconsistent: %u vs %u free clusters", 1220 free, grp->bb_free); 1221 /* 1222 * If we intend to continue, we consider group descriptor 1223 * corrupt and update bb_free using bitmap value 1224 */ 1225 grp->bb_free = free; 1226 ext4_mark_group_bitmap_corrupted(sb, group, 1227 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1228 } 1229 mb_set_largest_free_order(sb, grp); 1230 mb_update_avg_fragment_size(sb, grp); 1231 1232 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1233 1234 period = get_cycles() - period; 1235 atomic_inc(&sbi->s_mb_buddies_generated); 1236 atomic64_add(period, &sbi->s_mb_generation_time); 1237 } 1238 1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1240 { 1241 int count; 1242 int order = 1; 1243 void *buddy; 1244 1245 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1246 mb_set_bits(buddy, 0, count); 1247 1248 e4b->bd_info->bb_fragments = 0; 1249 memset(e4b->bd_info->bb_counters, 0, 1250 sizeof(*e4b->bd_info->bb_counters) * 1251 (e4b->bd_sb->s_blocksize_bits + 2)); 1252 1253 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1254 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1255 } 1256 1257 /* The buddy information is attached the buddy cache inode 1258 * for convenience. The information regarding each group 1259 * is loaded via ext4_mb_load_buddy. The information involve 1260 * block bitmap and buddy information. The information are 1261 * stored in the inode as 1262 * 1263 * { page } 1264 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1265 * 1266 * 1267 * one block each for bitmap and buddy information. 1268 * So for each group we take up 2 blocks. A page can 1269 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1270 * So it can have information regarding groups_per_page which 1271 * is blocks_per_page/2 1272 * 1273 * Locking note: This routine takes the block group lock of all groups 1274 * for this page; do not hold this lock when calling this routine! 1275 */ 1276 1277 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp) 1278 { 1279 ext4_group_t ngroups; 1280 unsigned int blocksize; 1281 int blocks_per_page; 1282 int groups_per_page; 1283 int err = 0; 1284 int i; 1285 ext4_group_t first_group, group; 1286 int first_block; 1287 struct super_block *sb; 1288 struct buffer_head *bhs; 1289 struct buffer_head **bh = NULL; 1290 struct inode *inode; 1291 char *data; 1292 char *bitmap; 1293 struct ext4_group_info *grinfo; 1294 1295 inode = folio->mapping->host; 1296 sb = inode->i_sb; 1297 ngroups = ext4_get_groups_count(sb); 1298 blocksize = i_blocksize(inode); 1299 blocks_per_page = PAGE_SIZE / blocksize; 1300 1301 mb_debug(sb, "init folio %lu\n", folio->index); 1302 1303 groups_per_page = blocks_per_page >> 1; 1304 if (groups_per_page == 0) 1305 groups_per_page = 1; 1306 1307 /* allocate buffer_heads to read bitmaps */ 1308 if (groups_per_page > 1) { 1309 i = sizeof(struct buffer_head *) * groups_per_page; 1310 bh = kzalloc(i, gfp); 1311 if (bh == NULL) 1312 return -ENOMEM; 1313 } else 1314 bh = &bhs; 1315 1316 first_group = folio->index * blocks_per_page / 2; 1317 1318 /* read all groups the folio covers into the cache */ 1319 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1320 if (group >= ngroups) 1321 break; 1322 1323 grinfo = ext4_get_group_info(sb, group); 1324 if (!grinfo) 1325 continue; 1326 /* 1327 * If page is uptodate then we came here after online resize 1328 * which added some new uninitialized group info structs, so 1329 * we must skip all initialized uptodate buddies on the folio, 1330 * which may be currently in use by an allocating task. 1331 */ 1332 if (folio_test_uptodate(folio) && 1333 !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1334 bh[i] = NULL; 1335 continue; 1336 } 1337 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1338 if (IS_ERR(bh[i])) { 1339 err = PTR_ERR(bh[i]); 1340 bh[i] = NULL; 1341 goto out; 1342 } 1343 mb_debug(sb, "read bitmap for group %u\n", group); 1344 } 1345 1346 /* wait for I/O completion */ 1347 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1348 int err2; 1349 1350 if (!bh[i]) 1351 continue; 1352 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1353 if (!err) 1354 err = err2; 1355 } 1356 1357 first_block = folio->index * blocks_per_page; 1358 for (i = 0; i < blocks_per_page; i++) { 1359 group = (first_block + i) >> 1; 1360 if (group >= ngroups) 1361 break; 1362 1363 if (!bh[group - first_group]) 1364 /* skip initialized uptodate buddy */ 1365 continue; 1366 1367 if (!buffer_verified(bh[group - first_group])) 1368 /* Skip faulty bitmaps */ 1369 continue; 1370 err = 0; 1371 1372 /* 1373 * data carry information regarding this 1374 * particular group in the format specified 1375 * above 1376 * 1377 */ 1378 data = folio_address(folio) + (i * blocksize); 1379 bitmap = bh[group - first_group]->b_data; 1380 1381 /* 1382 * We place the buddy block and bitmap block 1383 * close together 1384 */ 1385 grinfo = ext4_get_group_info(sb, group); 1386 if (!grinfo) { 1387 err = -EFSCORRUPTED; 1388 goto out; 1389 } 1390 if ((first_block + i) & 1) { 1391 /* this is block of buddy */ 1392 BUG_ON(incore == NULL); 1393 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n", 1394 group, folio->index, i * blocksize); 1395 trace_ext4_mb_buddy_bitmap_load(sb, group); 1396 grinfo->bb_fragments = 0; 1397 memset(grinfo->bb_counters, 0, 1398 sizeof(*grinfo->bb_counters) * 1399 (MB_NUM_ORDERS(sb))); 1400 /* 1401 * incore got set to the group block bitmap below 1402 */ 1403 ext4_lock_group(sb, group); 1404 /* init the buddy */ 1405 memset(data, 0xff, blocksize); 1406 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1407 ext4_unlock_group(sb, group); 1408 incore = NULL; 1409 } else { 1410 /* this is block of bitmap */ 1411 BUG_ON(incore != NULL); 1412 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n", 1413 group, folio->index, i * blocksize); 1414 trace_ext4_mb_bitmap_load(sb, group); 1415 1416 /* see comments in ext4_mb_put_pa() */ 1417 ext4_lock_group(sb, group); 1418 memcpy(data, bitmap, blocksize); 1419 1420 /* mark all preallocated blks used in in-core bitmap */ 1421 ext4_mb_generate_from_pa(sb, data, group); 1422 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1423 ext4_unlock_group(sb, group); 1424 1425 /* set incore so that the buddy information can be 1426 * generated using this 1427 */ 1428 incore = data; 1429 } 1430 } 1431 folio_mark_uptodate(folio); 1432 1433 out: 1434 if (bh) { 1435 for (i = 0; i < groups_per_page; i++) 1436 brelse(bh[i]); 1437 if (bh != &bhs) 1438 kfree(bh); 1439 } 1440 return err; 1441 } 1442 1443 /* 1444 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1445 * on the same buddy page doesn't happen whild holding the buddy page lock. 1446 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1447 * are on the same page e4b->bd_buddy_folio is NULL and return value is 0. 1448 */ 1449 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1450 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1451 { 1452 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1453 int block, pnum, poff; 1454 int blocks_per_page; 1455 struct folio *folio; 1456 1457 e4b->bd_buddy_folio = NULL; 1458 e4b->bd_bitmap_folio = NULL; 1459 1460 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1461 /* 1462 * the buddy cache inode stores the block bitmap 1463 * and buddy information in consecutive blocks. 1464 * So for each group we need two blocks. 1465 */ 1466 block = group * 2; 1467 pnum = block / blocks_per_page; 1468 poff = block % blocks_per_page; 1469 folio = __filemap_get_folio(inode->i_mapping, pnum, 1470 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1471 if (IS_ERR(folio)) 1472 return PTR_ERR(folio); 1473 BUG_ON(folio->mapping != inode->i_mapping); 1474 e4b->bd_bitmap_folio = folio; 1475 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); 1476 1477 if (blocks_per_page >= 2) { 1478 /* buddy and bitmap are on the same page */ 1479 return 0; 1480 } 1481 1482 /* blocks_per_page == 1, hence we need another page for the buddy */ 1483 folio = __filemap_get_folio(inode->i_mapping, block + 1, 1484 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1485 if (IS_ERR(folio)) 1486 return PTR_ERR(folio); 1487 BUG_ON(folio->mapping != inode->i_mapping); 1488 e4b->bd_buddy_folio = folio; 1489 return 0; 1490 } 1491 1492 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1493 { 1494 if (e4b->bd_bitmap_folio) { 1495 folio_unlock(e4b->bd_bitmap_folio); 1496 folio_put(e4b->bd_bitmap_folio); 1497 } 1498 if (e4b->bd_buddy_folio) { 1499 folio_unlock(e4b->bd_buddy_folio); 1500 folio_put(e4b->bd_buddy_folio); 1501 } 1502 } 1503 1504 /* 1505 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1506 * block group lock of all groups for this page; do not hold the BG lock when 1507 * calling this routine! 1508 */ 1509 static noinline_for_stack 1510 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1511 { 1512 1513 struct ext4_group_info *this_grp; 1514 struct ext4_buddy e4b; 1515 struct folio *folio; 1516 int ret = 0; 1517 1518 might_sleep(); 1519 mb_debug(sb, "init group %u\n", group); 1520 this_grp = ext4_get_group_info(sb, group); 1521 if (!this_grp) 1522 return -EFSCORRUPTED; 1523 1524 /* 1525 * This ensures that we don't reinit the buddy cache 1526 * page which map to the group from which we are already 1527 * allocating. If we are looking at the buddy cache we would 1528 * have taken a reference using ext4_mb_load_buddy and that 1529 * would have pinned buddy page to page cache. 1530 * The call to ext4_mb_get_buddy_page_lock will mark the 1531 * page accessed. 1532 */ 1533 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1534 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1535 /* 1536 * somebody initialized the group 1537 * return without doing anything 1538 */ 1539 goto err; 1540 } 1541 1542 folio = e4b.bd_bitmap_folio; 1543 ret = ext4_mb_init_cache(folio, NULL, gfp); 1544 if (ret) 1545 goto err; 1546 if (!folio_test_uptodate(folio)) { 1547 ret = -EIO; 1548 goto err; 1549 } 1550 1551 if (e4b.bd_buddy_folio == NULL) { 1552 /* 1553 * If both the bitmap and buddy are in 1554 * the same page we don't need to force 1555 * init the buddy 1556 */ 1557 ret = 0; 1558 goto err; 1559 } 1560 /* init buddy cache */ 1561 folio = e4b.bd_buddy_folio; 1562 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp); 1563 if (ret) 1564 goto err; 1565 if (!folio_test_uptodate(folio)) { 1566 ret = -EIO; 1567 goto err; 1568 } 1569 err: 1570 ext4_mb_put_buddy_page_lock(&e4b); 1571 return ret; 1572 } 1573 1574 /* 1575 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1576 * block group lock of all groups for this page; do not hold the BG lock when 1577 * calling this routine! 1578 */ 1579 static noinline_for_stack int 1580 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1581 struct ext4_buddy *e4b, gfp_t gfp) 1582 { 1583 int blocks_per_page; 1584 int block; 1585 int pnum; 1586 int poff; 1587 struct folio *folio; 1588 int ret; 1589 struct ext4_group_info *grp; 1590 struct ext4_sb_info *sbi = EXT4_SB(sb); 1591 struct inode *inode = sbi->s_buddy_cache; 1592 1593 might_sleep(); 1594 mb_debug(sb, "load group %u\n", group); 1595 1596 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1597 grp = ext4_get_group_info(sb, group); 1598 if (!grp) 1599 return -EFSCORRUPTED; 1600 1601 e4b->bd_blkbits = sb->s_blocksize_bits; 1602 e4b->bd_info = grp; 1603 e4b->bd_sb = sb; 1604 e4b->bd_group = group; 1605 e4b->bd_buddy_folio = NULL; 1606 e4b->bd_bitmap_folio = NULL; 1607 1608 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1609 /* 1610 * we need full data about the group 1611 * to make a good selection 1612 */ 1613 ret = ext4_mb_init_group(sb, group, gfp); 1614 if (ret) 1615 return ret; 1616 } 1617 1618 /* 1619 * the buddy cache inode stores the block bitmap 1620 * and buddy information in consecutive blocks. 1621 * So for each group we need two blocks. 1622 */ 1623 block = group * 2; 1624 pnum = block / blocks_per_page; 1625 poff = block % blocks_per_page; 1626 1627 /* Avoid locking the folio in the fast path ... */ 1628 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); 1629 if (IS_ERR(folio) || !folio_test_uptodate(folio)) { 1630 if (!IS_ERR(folio)) 1631 /* 1632 * drop the folio reference and try 1633 * to get the folio with lock. If we 1634 * are not uptodate that implies 1635 * somebody just created the folio but 1636 * is yet to initialize it. So 1637 * wait for it to initialize. 1638 */ 1639 folio_put(folio); 1640 folio = __filemap_get_folio(inode->i_mapping, pnum, 1641 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1642 if (!IS_ERR(folio)) { 1643 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, 1644 "ext4: bitmap's mapping != inode->i_mapping\n")) { 1645 /* should never happen */ 1646 folio_unlock(folio); 1647 ret = -EINVAL; 1648 goto err; 1649 } 1650 if (!folio_test_uptodate(folio)) { 1651 ret = ext4_mb_init_cache(folio, NULL, gfp); 1652 if (ret) { 1653 folio_unlock(folio); 1654 goto err; 1655 } 1656 mb_cmp_bitmaps(e4b, folio_address(folio) + 1657 (poff * sb->s_blocksize)); 1658 } 1659 folio_unlock(folio); 1660 } 1661 } 1662 if (IS_ERR(folio)) { 1663 ret = PTR_ERR(folio); 1664 goto err; 1665 } 1666 if (!folio_test_uptodate(folio)) { 1667 ret = -EIO; 1668 goto err; 1669 } 1670 1671 /* Folios marked accessed already */ 1672 e4b->bd_bitmap_folio = folio; 1673 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); 1674 1675 block++; 1676 pnum = block / blocks_per_page; 1677 poff = block % blocks_per_page; 1678 1679 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); 1680 if (IS_ERR(folio) || !folio_test_uptodate(folio)) { 1681 if (!IS_ERR(folio)) 1682 folio_put(folio); 1683 folio = __filemap_get_folio(inode->i_mapping, pnum, 1684 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1685 if (!IS_ERR(folio)) { 1686 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, 1687 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) { 1688 /* should never happen */ 1689 folio_unlock(folio); 1690 ret = -EINVAL; 1691 goto err; 1692 } 1693 if (!folio_test_uptodate(folio)) { 1694 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap, 1695 gfp); 1696 if (ret) { 1697 folio_unlock(folio); 1698 goto err; 1699 } 1700 } 1701 folio_unlock(folio); 1702 } 1703 } 1704 if (IS_ERR(folio)) { 1705 ret = PTR_ERR(folio); 1706 goto err; 1707 } 1708 if (!folio_test_uptodate(folio)) { 1709 ret = -EIO; 1710 goto err; 1711 } 1712 1713 /* Folios marked accessed already */ 1714 e4b->bd_buddy_folio = folio; 1715 e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize); 1716 1717 return 0; 1718 1719 err: 1720 if (!IS_ERR_OR_NULL(folio)) 1721 folio_put(folio); 1722 if (e4b->bd_bitmap_folio) 1723 folio_put(e4b->bd_bitmap_folio); 1724 1725 e4b->bd_buddy = NULL; 1726 e4b->bd_bitmap = NULL; 1727 return ret; 1728 } 1729 1730 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1731 struct ext4_buddy *e4b) 1732 { 1733 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1734 } 1735 1736 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1737 { 1738 if (e4b->bd_bitmap_folio) 1739 folio_put(e4b->bd_bitmap_folio); 1740 if (e4b->bd_buddy_folio) 1741 folio_put(e4b->bd_buddy_folio); 1742 } 1743 1744 1745 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1746 { 1747 int order = 1, max; 1748 void *bb; 1749 1750 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1751 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1752 1753 while (order <= e4b->bd_blkbits + 1) { 1754 bb = mb_find_buddy(e4b, order, &max); 1755 if (!mb_test_bit(block >> order, bb)) { 1756 /* this block is part of buddy of order 'order' */ 1757 return order; 1758 } 1759 order++; 1760 } 1761 return 0; 1762 } 1763 1764 static void mb_clear_bits(void *bm, int cur, int len) 1765 { 1766 __u32 *addr; 1767 1768 len = cur + len; 1769 while (cur < len) { 1770 if ((cur & 31) == 0 && (len - cur) >= 32) { 1771 /* fast path: clear whole word at once */ 1772 addr = bm + (cur >> 3); 1773 *addr = 0; 1774 cur += 32; 1775 continue; 1776 } 1777 mb_clear_bit(cur, bm); 1778 cur++; 1779 } 1780 } 1781 1782 /* clear bits in given range 1783 * will return first found zero bit if any, -1 otherwise 1784 */ 1785 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1786 { 1787 __u32 *addr; 1788 int zero_bit = -1; 1789 1790 len = cur + len; 1791 while (cur < len) { 1792 if ((cur & 31) == 0 && (len - cur) >= 32) { 1793 /* fast path: clear whole word at once */ 1794 addr = bm + (cur >> 3); 1795 if (*addr != (__u32)(-1) && zero_bit == -1) 1796 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1797 *addr = 0; 1798 cur += 32; 1799 continue; 1800 } 1801 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1802 zero_bit = cur; 1803 cur++; 1804 } 1805 1806 return zero_bit; 1807 } 1808 1809 void mb_set_bits(void *bm, int cur, int len) 1810 { 1811 __u32 *addr; 1812 1813 len = cur + len; 1814 while (cur < len) { 1815 if ((cur & 31) == 0 && (len - cur) >= 32) { 1816 /* fast path: set whole word at once */ 1817 addr = bm + (cur >> 3); 1818 *addr = 0xffffffff; 1819 cur += 32; 1820 continue; 1821 } 1822 mb_set_bit(cur, bm); 1823 cur++; 1824 } 1825 } 1826 1827 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1828 { 1829 if (mb_test_bit(*bit + side, bitmap)) { 1830 mb_clear_bit(*bit, bitmap); 1831 (*bit) -= side; 1832 return 1; 1833 } 1834 else { 1835 (*bit) += side; 1836 mb_set_bit(*bit, bitmap); 1837 return -1; 1838 } 1839 } 1840 1841 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1842 { 1843 int max; 1844 int order = 1; 1845 void *buddy = mb_find_buddy(e4b, order, &max); 1846 1847 while (buddy) { 1848 void *buddy2; 1849 1850 /* Bits in range [first; last] are known to be set since 1851 * corresponding blocks were allocated. Bits in range 1852 * (first; last) will stay set because they form buddies on 1853 * upper layer. We just deal with borders if they don't 1854 * align with upper layer and then go up. 1855 * Releasing entire group is all about clearing 1856 * single bit of highest order buddy. 1857 */ 1858 1859 /* Example: 1860 * --------------------------------- 1861 * | 1 | 1 | 1 | 1 | 1862 * --------------------------------- 1863 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1864 * --------------------------------- 1865 * 0 1 2 3 4 5 6 7 1866 * \_____________________/ 1867 * 1868 * Neither [1] nor [6] is aligned to above layer. 1869 * Left neighbour [0] is free, so mark it busy, 1870 * decrease bb_counters and extend range to 1871 * [0; 6] 1872 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1873 * mark [6] free, increase bb_counters and shrink range to 1874 * [0; 5]. 1875 * Then shift range to [0; 2], go up and do the same. 1876 */ 1877 1878 1879 if (first & 1) 1880 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1881 if (!(last & 1)) 1882 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1883 if (first > last) 1884 break; 1885 order++; 1886 1887 buddy2 = mb_find_buddy(e4b, order, &max); 1888 if (!buddy2) { 1889 mb_clear_bits(buddy, first, last - first + 1); 1890 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1891 break; 1892 } 1893 first >>= 1; 1894 last >>= 1; 1895 buddy = buddy2; 1896 } 1897 } 1898 1899 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1900 int first, int count) 1901 { 1902 int left_is_free = 0; 1903 int right_is_free = 0; 1904 int block; 1905 int last = first + count - 1; 1906 struct super_block *sb = e4b->bd_sb; 1907 1908 if (WARN_ON(count == 0)) 1909 return; 1910 BUG_ON(last >= (sb->s_blocksize << 3)); 1911 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1912 /* Don't bother if the block group is corrupt. */ 1913 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1914 return; 1915 1916 mb_check_buddy(e4b); 1917 mb_free_blocks_double(inode, e4b, first, count); 1918 1919 /* access memory sequentially: check left neighbour, 1920 * clear range and then check right neighbour 1921 */ 1922 if (first != 0) 1923 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1924 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1925 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1926 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1927 1928 if (unlikely(block != -1)) { 1929 struct ext4_sb_info *sbi = EXT4_SB(sb); 1930 ext4_fsblk_t blocknr; 1931 1932 /* 1933 * Fastcommit replay can free already freed blocks which 1934 * corrupts allocation info. Regenerate it. 1935 */ 1936 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 1937 mb_regenerate_buddy(e4b); 1938 goto check; 1939 } 1940 1941 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1942 blocknr += EXT4_C2B(sbi, block); 1943 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1944 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1945 ext4_grp_locked_error(sb, e4b->bd_group, 1946 inode ? inode->i_ino : 0, blocknr, 1947 "freeing already freed block (bit %u); block bitmap corrupt.", 1948 block); 1949 return; 1950 } 1951 1952 this_cpu_inc(discard_pa_seq); 1953 e4b->bd_info->bb_free += count; 1954 if (first < e4b->bd_info->bb_first_free) 1955 e4b->bd_info->bb_first_free = first; 1956 1957 /* let's maintain fragments counter */ 1958 if (left_is_free && right_is_free) 1959 e4b->bd_info->bb_fragments--; 1960 else if (!left_is_free && !right_is_free) 1961 e4b->bd_info->bb_fragments++; 1962 1963 /* buddy[0] == bd_bitmap is a special case, so handle 1964 * it right away and let mb_buddy_mark_free stay free of 1965 * zero order checks. 1966 * Check if neighbours are to be coaleasced, 1967 * adjust bitmap bb_counters and borders appropriately. 1968 */ 1969 if (first & 1) { 1970 first += !left_is_free; 1971 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1972 } 1973 if (!(last & 1)) { 1974 last -= !right_is_free; 1975 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1976 } 1977 1978 if (first <= last) 1979 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1980 1981 mb_set_largest_free_order(sb, e4b->bd_info); 1982 mb_update_avg_fragment_size(sb, e4b->bd_info); 1983 check: 1984 mb_check_buddy(e4b); 1985 } 1986 1987 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1988 int needed, struct ext4_free_extent *ex) 1989 { 1990 int max, order, next; 1991 void *buddy; 1992 1993 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1994 BUG_ON(ex == NULL); 1995 1996 buddy = mb_find_buddy(e4b, 0, &max); 1997 BUG_ON(buddy == NULL); 1998 BUG_ON(block >= max); 1999 if (mb_test_bit(block, buddy)) { 2000 ex->fe_len = 0; 2001 ex->fe_start = 0; 2002 ex->fe_group = 0; 2003 return 0; 2004 } 2005 2006 /* find actual order */ 2007 order = mb_find_order_for_block(e4b, block); 2008 2009 ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); 2010 ex->fe_start = block; 2011 ex->fe_group = e4b->bd_group; 2012 2013 block = block >> order; 2014 2015 while (needed > ex->fe_len && 2016 mb_find_buddy(e4b, order, &max)) { 2017 2018 if (block + 1 >= max) 2019 break; 2020 2021 next = (block + 1) * (1 << order); 2022 if (mb_test_bit(next, e4b->bd_bitmap)) 2023 break; 2024 2025 order = mb_find_order_for_block(e4b, next); 2026 2027 block = next >> order; 2028 ex->fe_len += 1 << order; 2029 } 2030 2031 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2032 /* Should never happen! (but apparently sometimes does?!?) */ 2033 WARN_ON(1); 2034 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2035 "corruption or bug in mb_find_extent " 2036 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2037 block, order, needed, ex->fe_group, ex->fe_start, 2038 ex->fe_len, ex->fe_logical); 2039 ex->fe_len = 0; 2040 ex->fe_start = 0; 2041 ex->fe_group = 0; 2042 } 2043 return ex->fe_len; 2044 } 2045 2046 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2047 { 2048 int ord; 2049 int mlen = 0; 2050 int max = 0; 2051 int start = ex->fe_start; 2052 int len = ex->fe_len; 2053 unsigned ret = 0; 2054 int len0 = len; 2055 void *buddy; 2056 int ord_start, ord_end; 2057 2058 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2059 BUG_ON(e4b->bd_group != ex->fe_group); 2060 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2061 mb_check_buddy(e4b); 2062 mb_mark_used_double(e4b, start, len); 2063 2064 this_cpu_inc(discard_pa_seq); 2065 e4b->bd_info->bb_free -= len; 2066 if (e4b->bd_info->bb_first_free == start) 2067 e4b->bd_info->bb_first_free += len; 2068 2069 /* let's maintain fragments counter */ 2070 if (start != 0) 2071 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2072 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2073 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2074 if (mlen && max) 2075 e4b->bd_info->bb_fragments++; 2076 else if (!mlen && !max) 2077 e4b->bd_info->bb_fragments--; 2078 2079 /* let's maintain buddy itself */ 2080 while (len) { 2081 ord = mb_find_order_for_block(e4b, start); 2082 2083 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2084 /* the whole chunk may be allocated at once! */ 2085 mlen = 1 << ord; 2086 buddy = mb_find_buddy(e4b, ord, &max); 2087 BUG_ON((start >> ord) >= max); 2088 mb_set_bit(start >> ord, buddy); 2089 e4b->bd_info->bb_counters[ord]--; 2090 start += mlen; 2091 len -= mlen; 2092 BUG_ON(len < 0); 2093 continue; 2094 } 2095 2096 /* store for history */ 2097 if (ret == 0) 2098 ret = len | (ord << 16); 2099 2100 BUG_ON(ord <= 0); 2101 buddy = mb_find_buddy(e4b, ord, &max); 2102 mb_set_bit(start >> ord, buddy); 2103 e4b->bd_info->bb_counters[ord]--; 2104 2105 ord_start = (start >> ord) << ord; 2106 ord_end = ord_start + (1 << ord); 2107 /* first chunk */ 2108 if (start > ord_start) 2109 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, 2110 ord_start, start - ord_start, 2111 e4b->bd_info); 2112 2113 /* last chunk */ 2114 if (start + len < ord_end) { 2115 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, 2116 start + len, 2117 ord_end - (start + len), 2118 e4b->bd_info); 2119 break; 2120 } 2121 len = start + len - ord_end; 2122 start = ord_end; 2123 } 2124 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2125 2126 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2127 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2128 mb_check_buddy(e4b); 2129 2130 return ret; 2131 } 2132 2133 /* 2134 * Must be called under group lock! 2135 */ 2136 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2137 struct ext4_buddy *e4b) 2138 { 2139 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2140 int ret; 2141 2142 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2143 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2144 2145 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2146 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2147 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2148 2149 /* preallocation can change ac_b_ex, thus we store actually 2150 * allocated blocks for history */ 2151 ac->ac_f_ex = ac->ac_b_ex; 2152 2153 ac->ac_status = AC_STATUS_FOUND; 2154 ac->ac_tail = ret & 0xffff; 2155 ac->ac_buddy = ret >> 16; 2156 2157 /* 2158 * take the page reference. We want the page to be pinned 2159 * so that we don't get a ext4_mb_init_cache_call for this 2160 * group until we update the bitmap. That would mean we 2161 * double allocate blocks. The reference is dropped 2162 * in ext4_mb_release_context 2163 */ 2164 ac->ac_bitmap_folio = e4b->bd_bitmap_folio; 2165 folio_get(ac->ac_bitmap_folio); 2166 ac->ac_buddy_folio = e4b->bd_buddy_folio; 2167 folio_get(ac->ac_buddy_folio); 2168 /* store last allocated for subsequent stream allocation */ 2169 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2170 spin_lock(&sbi->s_md_lock); 2171 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2172 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2173 spin_unlock(&sbi->s_md_lock); 2174 } 2175 /* 2176 * As we've just preallocated more space than 2177 * user requested originally, we store allocated 2178 * space in a special descriptor. 2179 */ 2180 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2181 ext4_mb_new_preallocation(ac); 2182 2183 } 2184 2185 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2186 struct ext4_buddy *e4b, 2187 int finish_group) 2188 { 2189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2190 struct ext4_free_extent *bex = &ac->ac_b_ex; 2191 struct ext4_free_extent *gex = &ac->ac_g_ex; 2192 2193 if (ac->ac_status == AC_STATUS_FOUND) 2194 return; 2195 /* 2196 * We don't want to scan for a whole year 2197 */ 2198 if (ac->ac_found > sbi->s_mb_max_to_scan && 2199 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2200 ac->ac_status = AC_STATUS_BREAK; 2201 return; 2202 } 2203 2204 /* 2205 * Haven't found good chunk so far, let's continue 2206 */ 2207 if (bex->fe_len < gex->fe_len) 2208 return; 2209 2210 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2211 ext4_mb_use_best_found(ac, e4b); 2212 } 2213 2214 /* 2215 * The routine checks whether found extent is good enough. If it is, 2216 * then the extent gets marked used and flag is set to the context 2217 * to stop scanning. Otherwise, the extent is compared with the 2218 * previous found extent and if new one is better, then it's stored 2219 * in the context. Later, the best found extent will be used, if 2220 * mballoc can't find good enough extent. 2221 * 2222 * The algorithm used is roughly as follows: 2223 * 2224 * * If free extent found is exactly as big as goal, then 2225 * stop the scan and use it immediately 2226 * 2227 * * If free extent found is smaller than goal, then keep retrying 2228 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2229 * that stop scanning and use whatever we have. 2230 * 2231 * * If free extent found is bigger than goal, then keep retrying 2232 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2233 * stopping the scan and using the extent. 2234 * 2235 * 2236 * FIXME: real allocation policy is to be designed yet! 2237 */ 2238 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2239 struct ext4_free_extent *ex, 2240 struct ext4_buddy *e4b) 2241 { 2242 struct ext4_free_extent *bex = &ac->ac_b_ex; 2243 struct ext4_free_extent *gex = &ac->ac_g_ex; 2244 2245 BUG_ON(ex->fe_len <= 0); 2246 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2247 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2248 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2249 2250 ac->ac_found++; 2251 ac->ac_cX_found[ac->ac_criteria]++; 2252 2253 /* 2254 * The special case - take what you catch first 2255 */ 2256 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2257 *bex = *ex; 2258 ext4_mb_use_best_found(ac, e4b); 2259 return; 2260 } 2261 2262 /* 2263 * Let's check whether the chuck is good enough 2264 */ 2265 if (ex->fe_len == gex->fe_len) { 2266 *bex = *ex; 2267 ext4_mb_use_best_found(ac, e4b); 2268 return; 2269 } 2270 2271 /* 2272 * If this is first found extent, just store it in the context 2273 */ 2274 if (bex->fe_len == 0) { 2275 *bex = *ex; 2276 return; 2277 } 2278 2279 /* 2280 * If new found extent is better, store it in the context 2281 */ 2282 if (bex->fe_len < gex->fe_len) { 2283 /* if the request isn't satisfied, any found extent 2284 * larger than previous best one is better */ 2285 if (ex->fe_len > bex->fe_len) 2286 *bex = *ex; 2287 } else if (ex->fe_len > gex->fe_len) { 2288 /* if the request is satisfied, then we try to find 2289 * an extent that still satisfy the request, but is 2290 * smaller than previous one */ 2291 if (ex->fe_len < bex->fe_len) 2292 *bex = *ex; 2293 } 2294 2295 ext4_mb_check_limits(ac, e4b, 0); 2296 } 2297 2298 static noinline_for_stack 2299 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2300 struct ext4_buddy *e4b) 2301 { 2302 struct ext4_free_extent ex = ac->ac_b_ex; 2303 ext4_group_t group = ex.fe_group; 2304 int max; 2305 int err; 2306 2307 BUG_ON(ex.fe_len <= 0); 2308 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2309 if (err) 2310 return; 2311 2312 ext4_lock_group(ac->ac_sb, group); 2313 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2314 goto out; 2315 2316 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2317 2318 if (max > 0) { 2319 ac->ac_b_ex = ex; 2320 ext4_mb_use_best_found(ac, e4b); 2321 } 2322 2323 out: 2324 ext4_unlock_group(ac->ac_sb, group); 2325 ext4_mb_unload_buddy(e4b); 2326 } 2327 2328 static noinline_for_stack 2329 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2330 struct ext4_buddy *e4b) 2331 { 2332 ext4_group_t group = ac->ac_g_ex.fe_group; 2333 int max; 2334 int err; 2335 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2336 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2337 struct ext4_free_extent ex; 2338 2339 if (!grp) 2340 return -EFSCORRUPTED; 2341 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2342 return 0; 2343 if (grp->bb_free == 0) 2344 return 0; 2345 2346 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2347 if (err) 2348 return err; 2349 2350 ext4_lock_group(ac->ac_sb, group); 2351 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2352 goto out; 2353 2354 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2355 ac->ac_g_ex.fe_len, &ex); 2356 ex.fe_logical = 0xDEADFA11; /* debug value */ 2357 2358 if (max >= ac->ac_g_ex.fe_len && 2359 ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) { 2360 ext4_fsblk_t start; 2361 2362 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2363 /* use do_div to get remainder (would be 64-bit modulo) */ 2364 if (do_div(start, sbi->s_stripe) == 0) { 2365 ac->ac_found++; 2366 ac->ac_b_ex = ex; 2367 ext4_mb_use_best_found(ac, e4b); 2368 } 2369 } else if (max >= ac->ac_g_ex.fe_len) { 2370 BUG_ON(ex.fe_len <= 0); 2371 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2372 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2373 ac->ac_found++; 2374 ac->ac_b_ex = ex; 2375 ext4_mb_use_best_found(ac, e4b); 2376 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2377 /* Sometimes, caller may want to merge even small 2378 * number of blocks to an existing extent */ 2379 BUG_ON(ex.fe_len <= 0); 2380 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2381 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2382 ac->ac_found++; 2383 ac->ac_b_ex = ex; 2384 ext4_mb_use_best_found(ac, e4b); 2385 } 2386 out: 2387 ext4_unlock_group(ac->ac_sb, group); 2388 ext4_mb_unload_buddy(e4b); 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * The routine scans buddy structures (not bitmap!) from given order 2395 * to max order and tries to find big enough chunk to satisfy the req 2396 */ 2397 static noinline_for_stack 2398 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2399 struct ext4_buddy *e4b) 2400 { 2401 struct super_block *sb = ac->ac_sb; 2402 struct ext4_group_info *grp = e4b->bd_info; 2403 void *buddy; 2404 int i; 2405 int k; 2406 int max; 2407 2408 BUG_ON(ac->ac_2order <= 0); 2409 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2410 if (grp->bb_counters[i] == 0) 2411 continue; 2412 2413 buddy = mb_find_buddy(e4b, i, &max); 2414 if (WARN_RATELIMIT(buddy == NULL, 2415 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2416 continue; 2417 2418 k = mb_find_next_zero_bit(buddy, max, 0); 2419 if (k >= max) { 2420 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2421 e4b->bd_group, 2422 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2423 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2424 "%d free clusters of order %d. But found 0", 2425 grp->bb_counters[i], i); 2426 break; 2427 } 2428 ac->ac_found++; 2429 ac->ac_cX_found[ac->ac_criteria]++; 2430 2431 ac->ac_b_ex.fe_len = 1 << i; 2432 ac->ac_b_ex.fe_start = k << i; 2433 ac->ac_b_ex.fe_group = e4b->bd_group; 2434 2435 ext4_mb_use_best_found(ac, e4b); 2436 2437 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2438 2439 if (EXT4_SB(sb)->s_mb_stats) 2440 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2441 2442 break; 2443 } 2444 } 2445 2446 /* 2447 * The routine scans the group and measures all found extents. 2448 * In order to optimize scanning, caller must pass number of 2449 * free blocks in the group, so the routine can know upper limit. 2450 */ 2451 static noinline_for_stack 2452 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2453 struct ext4_buddy *e4b) 2454 { 2455 struct super_block *sb = ac->ac_sb; 2456 void *bitmap = e4b->bd_bitmap; 2457 struct ext4_free_extent ex; 2458 int i, j, freelen; 2459 int free; 2460 2461 free = e4b->bd_info->bb_free; 2462 if (WARN_ON(free <= 0)) 2463 return; 2464 2465 i = e4b->bd_info->bb_first_free; 2466 2467 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2468 i = mb_find_next_zero_bit(bitmap, 2469 EXT4_CLUSTERS_PER_GROUP(sb), i); 2470 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2471 /* 2472 * IF we have corrupt bitmap, we won't find any 2473 * free blocks even though group info says we 2474 * have free blocks 2475 */ 2476 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2477 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2478 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2479 "%d free clusters as per " 2480 "group info. But bitmap says 0", 2481 free); 2482 break; 2483 } 2484 2485 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2486 /* 2487 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2488 * sure that this group will have a large enough 2489 * continuous free extent, so skip over the smaller free 2490 * extents 2491 */ 2492 j = mb_find_next_bit(bitmap, 2493 EXT4_CLUSTERS_PER_GROUP(sb), i); 2494 freelen = j - i; 2495 2496 if (freelen < ac->ac_g_ex.fe_len) { 2497 i = j; 2498 free -= freelen; 2499 continue; 2500 } 2501 } 2502 2503 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2504 if (WARN_ON(ex.fe_len <= 0)) 2505 break; 2506 if (free < ex.fe_len) { 2507 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2508 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2509 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2510 "%d free clusters as per " 2511 "group info. But got %d blocks", 2512 free, ex.fe_len); 2513 /* 2514 * The number of free blocks differs. This mostly 2515 * indicate that the bitmap is corrupt. So exit 2516 * without claiming the space. 2517 */ 2518 break; 2519 } 2520 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2521 ext4_mb_measure_extent(ac, &ex, e4b); 2522 2523 i += ex.fe_len; 2524 free -= ex.fe_len; 2525 } 2526 2527 ext4_mb_check_limits(ac, e4b, 1); 2528 } 2529 2530 /* 2531 * This is a special case for storages like raid5 2532 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2533 */ 2534 static noinline_for_stack 2535 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2536 struct ext4_buddy *e4b) 2537 { 2538 struct super_block *sb = ac->ac_sb; 2539 struct ext4_sb_info *sbi = EXT4_SB(sb); 2540 void *bitmap = e4b->bd_bitmap; 2541 struct ext4_free_extent ex; 2542 ext4_fsblk_t first_group_block; 2543 ext4_fsblk_t a; 2544 ext4_grpblk_t i, stripe; 2545 int max; 2546 2547 BUG_ON(sbi->s_stripe == 0); 2548 2549 /* find first stripe-aligned block in group */ 2550 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2551 2552 a = first_group_block + sbi->s_stripe - 1; 2553 do_div(a, sbi->s_stripe); 2554 i = (a * sbi->s_stripe) - first_group_block; 2555 2556 stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe); 2557 i = EXT4_B2C(sbi, i); 2558 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2559 if (!mb_test_bit(i, bitmap)) { 2560 max = mb_find_extent(e4b, i, stripe, &ex); 2561 if (max >= stripe) { 2562 ac->ac_found++; 2563 ac->ac_cX_found[ac->ac_criteria]++; 2564 ex.fe_logical = 0xDEADF00D; /* debug value */ 2565 ac->ac_b_ex = ex; 2566 ext4_mb_use_best_found(ac, e4b); 2567 break; 2568 } 2569 } 2570 i += stripe; 2571 } 2572 } 2573 2574 /* 2575 * This is also called BEFORE we load the buddy bitmap. 2576 * Returns either 1 or 0 indicating that the group is either suitable 2577 * for the allocation or not. 2578 */ 2579 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2580 ext4_group_t group, enum criteria cr) 2581 { 2582 ext4_grpblk_t free, fragments; 2583 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2584 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2585 2586 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2587 2588 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2589 return false; 2590 2591 free = grp->bb_free; 2592 if (free == 0) 2593 return false; 2594 2595 fragments = grp->bb_fragments; 2596 if (fragments == 0) 2597 return false; 2598 2599 switch (cr) { 2600 case CR_POWER2_ALIGNED: 2601 BUG_ON(ac->ac_2order == 0); 2602 2603 /* Avoid using the first bg of a flexgroup for data files */ 2604 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2605 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2606 ((group % flex_size) == 0)) 2607 return false; 2608 2609 if (free < ac->ac_g_ex.fe_len) 2610 return false; 2611 2612 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2613 return true; 2614 2615 if (grp->bb_largest_free_order < ac->ac_2order) 2616 return false; 2617 2618 return true; 2619 case CR_GOAL_LEN_FAST: 2620 case CR_BEST_AVAIL_LEN: 2621 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2622 return true; 2623 break; 2624 case CR_GOAL_LEN_SLOW: 2625 if (free >= ac->ac_g_ex.fe_len) 2626 return true; 2627 break; 2628 case CR_ANY_FREE: 2629 return true; 2630 default: 2631 BUG(); 2632 } 2633 2634 return false; 2635 } 2636 2637 /* 2638 * This could return negative error code if something goes wrong 2639 * during ext4_mb_init_group(). This should not be called with 2640 * ext4_lock_group() held. 2641 * 2642 * Note: because we are conditionally operating with the group lock in 2643 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2644 * function using __acquire and __release. This means we need to be 2645 * super careful before messing with the error path handling via "goto 2646 * out"! 2647 */ 2648 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2649 ext4_group_t group, enum criteria cr) 2650 { 2651 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2652 struct super_block *sb = ac->ac_sb; 2653 struct ext4_sb_info *sbi = EXT4_SB(sb); 2654 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2655 ext4_grpblk_t free; 2656 int ret = 0; 2657 2658 if (!grp) 2659 return -EFSCORRUPTED; 2660 if (sbi->s_mb_stats) 2661 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2662 if (should_lock) { 2663 ext4_lock_group(sb, group); 2664 __release(ext4_group_lock_ptr(sb, group)); 2665 } 2666 free = grp->bb_free; 2667 if (free == 0) 2668 goto out; 2669 /* 2670 * In all criterias except CR_ANY_FREE we try to avoid groups that 2671 * can't possibly satisfy the full goal request due to insufficient 2672 * free blocks. 2673 */ 2674 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2675 goto out; 2676 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2677 goto out; 2678 if (should_lock) { 2679 __acquire(ext4_group_lock_ptr(sb, group)); 2680 ext4_unlock_group(sb, group); 2681 } 2682 2683 /* We only do this if the grp has never been initialized */ 2684 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2685 struct ext4_group_desc *gdp = 2686 ext4_get_group_desc(sb, group, NULL); 2687 int ret; 2688 2689 /* 2690 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2691 * search to find large good chunks almost for free. If buddy 2692 * data is not ready, then this optimization makes no sense. But 2693 * we never skip the first block group in a flex_bg, since this 2694 * gets used for metadata block allocation, and we want to make 2695 * sure we locate metadata blocks in the first block group in 2696 * the flex_bg if possible. 2697 */ 2698 if (!ext4_mb_cr_expensive(cr) && 2699 (!sbi->s_log_groups_per_flex || 2700 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2701 !(ext4_has_group_desc_csum(sb) && 2702 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2703 return 0; 2704 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2705 if (ret) 2706 return ret; 2707 } 2708 2709 if (should_lock) { 2710 ext4_lock_group(sb, group); 2711 __release(ext4_group_lock_ptr(sb, group)); 2712 } 2713 ret = ext4_mb_good_group(ac, group, cr); 2714 out: 2715 if (should_lock) { 2716 __acquire(ext4_group_lock_ptr(sb, group)); 2717 ext4_unlock_group(sb, group); 2718 } 2719 return ret; 2720 } 2721 2722 /* 2723 * Start prefetching @nr block bitmaps starting at @group. 2724 * Return the next group which needs to be prefetched. 2725 */ 2726 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2727 unsigned int nr, int *cnt) 2728 { 2729 ext4_group_t ngroups = ext4_get_groups_count(sb); 2730 struct buffer_head *bh; 2731 struct blk_plug plug; 2732 2733 blk_start_plug(&plug); 2734 while (nr-- > 0) { 2735 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2736 NULL); 2737 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2738 2739 /* 2740 * Prefetch block groups with free blocks; but don't 2741 * bother if it is marked uninitialized on disk, since 2742 * it won't require I/O to read. Also only try to 2743 * prefetch once, so we avoid getblk() call, which can 2744 * be expensive. 2745 */ 2746 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2747 EXT4_MB_GRP_NEED_INIT(grp) && 2748 ext4_free_group_clusters(sb, gdp) > 0 ) { 2749 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2750 if (bh && !IS_ERR(bh)) { 2751 if (!buffer_uptodate(bh) && cnt) 2752 (*cnt)++; 2753 brelse(bh); 2754 } 2755 } 2756 if (++group >= ngroups) 2757 group = 0; 2758 } 2759 blk_finish_plug(&plug); 2760 return group; 2761 } 2762 2763 /* 2764 * Prefetching reads the block bitmap into the buffer cache; but we 2765 * need to make sure that the buddy bitmap in the page cache has been 2766 * initialized. Note that ext4_mb_init_group() will block if the I/O 2767 * is not yet completed, or indeed if it was not initiated by 2768 * ext4_mb_prefetch did not start the I/O. 2769 * 2770 * TODO: We should actually kick off the buddy bitmap setup in a work 2771 * queue when the buffer I/O is completed, so that we don't block 2772 * waiting for the block allocation bitmap read to finish when 2773 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2774 */ 2775 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2776 unsigned int nr) 2777 { 2778 struct ext4_group_desc *gdp; 2779 struct ext4_group_info *grp; 2780 2781 while (nr-- > 0) { 2782 if (!group) 2783 group = ext4_get_groups_count(sb); 2784 group--; 2785 gdp = ext4_get_group_desc(sb, group, NULL); 2786 grp = ext4_get_group_info(sb, group); 2787 2788 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2789 ext4_free_group_clusters(sb, gdp) > 0) { 2790 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2791 break; 2792 } 2793 } 2794 } 2795 2796 static noinline_for_stack int 2797 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2798 { 2799 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2800 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2801 int err = 0, first_err = 0; 2802 unsigned int nr = 0, prefetch_ios = 0; 2803 struct ext4_sb_info *sbi; 2804 struct super_block *sb; 2805 struct ext4_buddy e4b; 2806 int lost; 2807 2808 sb = ac->ac_sb; 2809 sbi = EXT4_SB(sb); 2810 ngroups = ext4_get_groups_count(sb); 2811 /* non-extent files are limited to low blocks/groups */ 2812 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2813 ngroups = sbi->s_blockfile_groups; 2814 2815 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2816 2817 /* first, try the goal */ 2818 err = ext4_mb_find_by_goal(ac, &e4b); 2819 if (err || ac->ac_status == AC_STATUS_FOUND) 2820 goto out; 2821 2822 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2823 goto out; 2824 2825 /* 2826 * ac->ac_2order is set only if the fe_len is a power of 2 2827 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2828 * so that we try exact allocation using buddy. 2829 */ 2830 i = fls(ac->ac_g_ex.fe_len); 2831 ac->ac_2order = 0; 2832 /* 2833 * We search using buddy data only if the order of the request 2834 * is greater than equal to the sbi_s_mb_order2_reqs 2835 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2836 * We also support searching for power-of-two requests only for 2837 * requests upto maximum buddy size we have constructed. 2838 */ 2839 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2840 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2841 ac->ac_2order = array_index_nospec(i - 1, 2842 MB_NUM_ORDERS(sb)); 2843 } 2844 2845 /* if stream allocation is enabled, use global goal */ 2846 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2847 /* TBD: may be hot point */ 2848 spin_lock(&sbi->s_md_lock); 2849 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2850 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2851 spin_unlock(&sbi->s_md_lock); 2852 } 2853 2854 /* 2855 * Let's just scan groups to find more-less suitable blocks We 2856 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2857 * aligned, in which case let's do that faster approach first. 2858 */ 2859 if (ac->ac_2order) 2860 cr = CR_POWER2_ALIGNED; 2861 repeat: 2862 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2863 ac->ac_criteria = cr; 2864 /* 2865 * searching for the right group start 2866 * from the goal value specified 2867 */ 2868 group = ac->ac_g_ex.fe_group; 2869 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2870 prefetch_grp = group; 2871 nr = 0; 2872 2873 for (i = 0, new_cr = cr; i < ngroups; i++, 2874 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2875 int ret = 0; 2876 2877 cond_resched(); 2878 if (new_cr != cr) { 2879 cr = new_cr; 2880 goto repeat; 2881 } 2882 2883 /* 2884 * Batch reads of the block allocation bitmaps 2885 * to get multiple READs in flight; limit 2886 * prefetching at inexpensive CR, otherwise mballoc 2887 * can spend a lot of time loading imperfect groups 2888 */ 2889 if ((prefetch_grp == group) && 2890 (ext4_mb_cr_expensive(cr) || 2891 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2892 nr = sbi->s_mb_prefetch; 2893 if (ext4_has_feature_flex_bg(sb)) { 2894 nr = 1 << sbi->s_log_groups_per_flex; 2895 nr -= group & (nr - 1); 2896 nr = min(nr, sbi->s_mb_prefetch); 2897 } 2898 prefetch_grp = ext4_mb_prefetch(sb, group, 2899 nr, &prefetch_ios); 2900 } 2901 2902 /* This now checks without needing the buddy page */ 2903 ret = ext4_mb_good_group_nolock(ac, group, cr); 2904 if (ret <= 0) { 2905 if (!first_err) 2906 first_err = ret; 2907 continue; 2908 } 2909 2910 err = ext4_mb_load_buddy(sb, group, &e4b); 2911 if (err) 2912 goto out; 2913 2914 ext4_lock_group(sb, group); 2915 2916 /* 2917 * We need to check again after locking the 2918 * block group 2919 */ 2920 ret = ext4_mb_good_group(ac, group, cr); 2921 if (ret == 0) { 2922 ext4_unlock_group(sb, group); 2923 ext4_mb_unload_buddy(&e4b); 2924 continue; 2925 } 2926 2927 ac->ac_groups_scanned++; 2928 if (cr == CR_POWER2_ALIGNED) 2929 ext4_mb_simple_scan_group(ac, &e4b); 2930 else { 2931 bool is_stripe_aligned = 2932 (sbi->s_stripe >= 2933 sbi->s_cluster_ratio) && 2934 !(ac->ac_g_ex.fe_len % 2935 EXT4_NUM_B2C(sbi, sbi->s_stripe)); 2936 2937 if ((cr == CR_GOAL_LEN_FAST || 2938 cr == CR_BEST_AVAIL_LEN) && 2939 is_stripe_aligned) 2940 ext4_mb_scan_aligned(ac, &e4b); 2941 2942 if (ac->ac_status == AC_STATUS_CONTINUE) 2943 ext4_mb_complex_scan_group(ac, &e4b); 2944 } 2945 2946 ext4_unlock_group(sb, group); 2947 ext4_mb_unload_buddy(&e4b); 2948 2949 if (ac->ac_status != AC_STATUS_CONTINUE) 2950 break; 2951 } 2952 /* Processed all groups and haven't found blocks */ 2953 if (sbi->s_mb_stats && i == ngroups) 2954 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2955 2956 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2957 /* Reset goal length to original goal length before 2958 * falling into CR_GOAL_LEN_SLOW */ 2959 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2960 } 2961 2962 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2963 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2964 /* 2965 * We've been searching too long. Let's try to allocate 2966 * the best chunk we've found so far 2967 */ 2968 ext4_mb_try_best_found(ac, &e4b); 2969 if (ac->ac_status != AC_STATUS_FOUND) { 2970 /* 2971 * Someone more lucky has already allocated it. 2972 * The only thing we can do is just take first 2973 * found block(s) 2974 */ 2975 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2976 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2977 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2978 ac->ac_b_ex.fe_len, lost); 2979 2980 ac->ac_b_ex.fe_group = 0; 2981 ac->ac_b_ex.fe_start = 0; 2982 ac->ac_b_ex.fe_len = 0; 2983 ac->ac_status = AC_STATUS_CONTINUE; 2984 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2985 cr = CR_ANY_FREE; 2986 goto repeat; 2987 } 2988 } 2989 2990 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2991 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2992 out: 2993 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2994 err = first_err; 2995 2996 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2997 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2998 ac->ac_flags, cr, err); 2999 3000 if (nr) 3001 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 3002 3003 return err; 3004 } 3005 3006 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 3007 { 3008 struct super_block *sb = pde_data(file_inode(seq->file)); 3009 ext4_group_t group; 3010 3011 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3012 return NULL; 3013 group = *pos + 1; 3014 return (void *) ((unsigned long) group); 3015 } 3016 3017 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3018 { 3019 struct super_block *sb = pde_data(file_inode(seq->file)); 3020 ext4_group_t group; 3021 3022 ++*pos; 3023 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3024 return NULL; 3025 group = *pos + 1; 3026 return (void *) ((unsigned long) group); 3027 } 3028 3029 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3030 { 3031 struct super_block *sb = pde_data(file_inode(seq->file)); 3032 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3033 int i, err; 3034 char nbuf[16]; 3035 struct ext4_buddy e4b; 3036 struct ext4_group_info *grinfo; 3037 unsigned char blocksize_bits = min_t(unsigned char, 3038 sb->s_blocksize_bits, 3039 EXT4_MAX_BLOCK_LOG_SIZE); 3040 struct sg { 3041 struct ext4_group_info info; 3042 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3043 } sg; 3044 3045 group--; 3046 if (group == 0) 3047 seq_puts(seq, "#group: free frags first [" 3048 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3049 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3050 3051 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3052 sizeof(struct ext4_group_info); 3053 3054 grinfo = ext4_get_group_info(sb, group); 3055 if (!grinfo) 3056 return 0; 3057 /* Load the group info in memory only if not already loaded. */ 3058 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3059 err = ext4_mb_load_buddy(sb, group, &e4b); 3060 if (err) { 3061 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf)); 3062 return 0; 3063 } 3064 ext4_mb_unload_buddy(&e4b); 3065 } 3066 3067 /* 3068 * We care only about free space counters in the group info and 3069 * these are safe to access even after the buddy has been unloaded 3070 */ 3071 memcpy(&sg, grinfo, i); 3072 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3073 sg.info.bb_fragments, sg.info.bb_first_free); 3074 for (i = 0; i <= 13; i++) 3075 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3076 sg.info.bb_counters[i] : 0); 3077 seq_puts(seq, " ]"); 3078 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info)) 3079 seq_puts(seq, " Block bitmap corrupted!"); 3080 seq_putc(seq, '\n'); 3081 return 0; 3082 } 3083 3084 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3085 { 3086 } 3087 3088 const struct seq_operations ext4_mb_seq_groups_ops = { 3089 .start = ext4_mb_seq_groups_start, 3090 .next = ext4_mb_seq_groups_next, 3091 .stop = ext4_mb_seq_groups_stop, 3092 .show = ext4_mb_seq_groups_show, 3093 }; 3094 3095 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3096 { 3097 struct super_block *sb = seq->private; 3098 struct ext4_sb_info *sbi = EXT4_SB(sb); 3099 3100 seq_puts(seq, "mballoc:\n"); 3101 if (!sbi->s_mb_stats) { 3102 seq_puts(seq, "\tmb stats collection turned off.\n"); 3103 seq_puts( 3104 seq, 3105 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3106 return 0; 3107 } 3108 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3109 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3110 3111 seq_printf(seq, "\tgroups_scanned: %u\n", 3112 atomic_read(&sbi->s_bal_groups_scanned)); 3113 3114 /* CR_POWER2_ALIGNED stats */ 3115 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3116 seq_printf(seq, "\t\thits: %llu\n", 3117 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3118 seq_printf( 3119 seq, "\t\tgroups_considered: %llu\n", 3120 atomic64_read( 3121 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3122 seq_printf(seq, "\t\textents_scanned: %u\n", 3123 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3124 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3125 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3126 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3127 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3128 3129 /* CR_GOAL_LEN_FAST stats */ 3130 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3131 seq_printf(seq, "\t\thits: %llu\n", 3132 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3133 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3134 atomic64_read( 3135 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3136 seq_printf(seq, "\t\textents_scanned: %u\n", 3137 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3138 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3139 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3140 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3141 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3142 3143 /* CR_BEST_AVAIL_LEN stats */ 3144 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3145 seq_printf(seq, "\t\thits: %llu\n", 3146 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3147 seq_printf( 3148 seq, "\t\tgroups_considered: %llu\n", 3149 atomic64_read( 3150 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3151 seq_printf(seq, "\t\textents_scanned: %u\n", 3152 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3153 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3154 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3155 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3156 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3157 3158 /* CR_GOAL_LEN_SLOW stats */ 3159 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3160 seq_printf(seq, "\t\thits: %llu\n", 3161 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3162 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3163 atomic64_read( 3164 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3165 seq_printf(seq, "\t\textents_scanned: %u\n", 3166 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3167 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3168 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3169 3170 /* CR_ANY_FREE stats */ 3171 seq_puts(seq, "\tcr_any_free_stats:\n"); 3172 seq_printf(seq, "\t\thits: %llu\n", 3173 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3174 seq_printf( 3175 seq, "\t\tgroups_considered: %llu\n", 3176 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3177 seq_printf(seq, "\t\textents_scanned: %u\n", 3178 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3179 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3180 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3181 3182 /* Aggregates */ 3183 seq_printf(seq, "\textents_scanned: %u\n", 3184 atomic_read(&sbi->s_bal_ex_scanned)); 3185 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3186 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3187 atomic_read(&sbi->s_bal_len_goals)); 3188 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3189 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3190 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3191 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3192 atomic_read(&sbi->s_mb_buddies_generated), 3193 ext4_get_groups_count(sb)); 3194 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3195 atomic64_read(&sbi->s_mb_generation_time)); 3196 seq_printf(seq, "\tpreallocated: %u\n", 3197 atomic_read(&sbi->s_mb_preallocated)); 3198 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3199 return 0; 3200 } 3201 3202 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3203 { 3204 struct super_block *sb = pde_data(file_inode(seq->file)); 3205 unsigned long position; 3206 3207 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3208 return NULL; 3209 position = *pos + 1; 3210 return (void *) ((unsigned long) position); 3211 } 3212 3213 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3214 { 3215 struct super_block *sb = pde_data(file_inode(seq->file)); 3216 unsigned long position; 3217 3218 ++*pos; 3219 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3220 return NULL; 3221 position = *pos + 1; 3222 return (void *) ((unsigned long) position); 3223 } 3224 3225 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3226 { 3227 struct super_block *sb = pde_data(file_inode(seq->file)); 3228 struct ext4_sb_info *sbi = EXT4_SB(sb); 3229 unsigned long position = ((unsigned long) v); 3230 struct ext4_group_info *grp; 3231 unsigned int count; 3232 3233 position--; 3234 if (position >= MB_NUM_ORDERS(sb)) { 3235 position -= MB_NUM_ORDERS(sb); 3236 if (position == 0) 3237 seq_puts(seq, "avg_fragment_size_lists:\n"); 3238 3239 count = 0; 3240 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3241 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3242 bb_avg_fragment_size_node) 3243 count++; 3244 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3245 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3246 (unsigned int)position, count); 3247 return 0; 3248 } 3249 3250 if (position == 0) { 3251 seq_printf(seq, "optimize_scan: %d\n", 3252 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3253 seq_puts(seq, "max_free_order_lists:\n"); 3254 } 3255 count = 0; 3256 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3257 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3258 bb_largest_free_order_node) 3259 count++; 3260 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3261 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3262 (unsigned int)position, count); 3263 3264 return 0; 3265 } 3266 3267 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3268 { 3269 } 3270 3271 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3272 .start = ext4_mb_seq_structs_summary_start, 3273 .next = ext4_mb_seq_structs_summary_next, 3274 .stop = ext4_mb_seq_structs_summary_stop, 3275 .show = ext4_mb_seq_structs_summary_show, 3276 }; 3277 3278 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3279 { 3280 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3281 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3282 3283 BUG_ON(!cachep); 3284 return cachep; 3285 } 3286 3287 /* 3288 * Allocate the top-level s_group_info array for the specified number 3289 * of groups 3290 */ 3291 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3292 { 3293 struct ext4_sb_info *sbi = EXT4_SB(sb); 3294 unsigned size; 3295 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3296 3297 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3298 EXT4_DESC_PER_BLOCK_BITS(sb); 3299 if (size <= sbi->s_group_info_size) 3300 return 0; 3301 3302 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3303 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3304 if (!new_groupinfo) { 3305 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3306 return -ENOMEM; 3307 } 3308 rcu_read_lock(); 3309 old_groupinfo = rcu_dereference(sbi->s_group_info); 3310 if (old_groupinfo) 3311 memcpy(new_groupinfo, old_groupinfo, 3312 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3313 rcu_read_unlock(); 3314 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3315 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3316 if (old_groupinfo) 3317 ext4_kvfree_array_rcu(old_groupinfo); 3318 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3319 sbi->s_group_info_size); 3320 return 0; 3321 } 3322 3323 /* Create and initialize ext4_group_info data for the given group. */ 3324 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3325 struct ext4_group_desc *desc) 3326 { 3327 int i; 3328 int metalen = 0; 3329 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3330 struct ext4_sb_info *sbi = EXT4_SB(sb); 3331 struct ext4_group_info **meta_group_info; 3332 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3333 3334 /* 3335 * First check if this group is the first of a reserved block. 3336 * If it's true, we have to allocate a new table of pointers 3337 * to ext4_group_info structures 3338 */ 3339 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3340 metalen = sizeof(*meta_group_info) << 3341 EXT4_DESC_PER_BLOCK_BITS(sb); 3342 meta_group_info = kmalloc(metalen, GFP_NOFS); 3343 if (meta_group_info == NULL) { 3344 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3345 "for a buddy group"); 3346 return -ENOMEM; 3347 } 3348 rcu_read_lock(); 3349 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3350 rcu_read_unlock(); 3351 } 3352 3353 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3354 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3355 3356 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3357 if (meta_group_info[i] == NULL) { 3358 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3359 goto exit_group_info; 3360 } 3361 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3362 &(meta_group_info[i]->bb_state)); 3363 3364 /* 3365 * initialize bb_free to be able to skip 3366 * empty groups without initialization 3367 */ 3368 if (ext4_has_group_desc_csum(sb) && 3369 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3370 meta_group_info[i]->bb_free = 3371 ext4_free_clusters_after_init(sb, group, desc); 3372 } else { 3373 meta_group_info[i]->bb_free = 3374 ext4_free_group_clusters(sb, desc); 3375 } 3376 3377 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3378 init_rwsem(&meta_group_info[i]->alloc_sem); 3379 meta_group_info[i]->bb_free_root = RB_ROOT; 3380 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3381 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3382 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3383 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3384 meta_group_info[i]->bb_group = group; 3385 3386 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3387 return 0; 3388 3389 exit_group_info: 3390 /* If a meta_group_info table has been allocated, release it now */ 3391 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3392 struct ext4_group_info ***group_info; 3393 3394 rcu_read_lock(); 3395 group_info = rcu_dereference(sbi->s_group_info); 3396 kfree(group_info[idx]); 3397 group_info[idx] = NULL; 3398 rcu_read_unlock(); 3399 } 3400 return -ENOMEM; 3401 } /* ext4_mb_add_groupinfo */ 3402 3403 static int ext4_mb_init_backend(struct super_block *sb) 3404 { 3405 ext4_group_t ngroups = ext4_get_groups_count(sb); 3406 ext4_group_t i; 3407 struct ext4_sb_info *sbi = EXT4_SB(sb); 3408 int err; 3409 struct ext4_group_desc *desc; 3410 struct ext4_group_info ***group_info; 3411 struct kmem_cache *cachep; 3412 3413 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3414 if (err) 3415 return err; 3416 3417 sbi->s_buddy_cache = new_inode(sb); 3418 if (sbi->s_buddy_cache == NULL) { 3419 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3420 goto err_freesgi; 3421 } 3422 /* To avoid potentially colliding with an valid on-disk inode number, 3423 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3424 * not in the inode hash, so it should never be found by iget(), but 3425 * this will avoid confusion if it ever shows up during debugging. */ 3426 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3427 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3428 for (i = 0; i < ngroups; i++) { 3429 cond_resched(); 3430 desc = ext4_get_group_desc(sb, i, NULL); 3431 if (desc == NULL) { 3432 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3433 goto err_freebuddy; 3434 } 3435 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3436 goto err_freebuddy; 3437 } 3438 3439 if (ext4_has_feature_flex_bg(sb)) { 3440 /* a single flex group is supposed to be read by a single IO. 3441 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3442 * unsigned integer, so the maximum shift is 32. 3443 */ 3444 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3445 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3446 goto err_freebuddy; 3447 } 3448 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3449 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3450 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3451 } else { 3452 sbi->s_mb_prefetch = 32; 3453 } 3454 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3455 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3456 /* 3457 * now many real IOs to prefetch within a single allocation at 3458 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related 3459 * optimization we shouldn't try to load too many groups, at some point 3460 * we should start to use what we've got in memory. 3461 * with an average random access time 5ms, it'd take a second to get 3462 * 200 groups (* N with flex_bg), so let's make this limit 4 3463 */ 3464 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3465 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3466 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3467 3468 return 0; 3469 3470 err_freebuddy: 3471 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3472 while (i-- > 0) { 3473 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3474 3475 if (grp) 3476 kmem_cache_free(cachep, grp); 3477 } 3478 i = sbi->s_group_info_size; 3479 rcu_read_lock(); 3480 group_info = rcu_dereference(sbi->s_group_info); 3481 while (i-- > 0) 3482 kfree(group_info[i]); 3483 rcu_read_unlock(); 3484 iput(sbi->s_buddy_cache); 3485 err_freesgi: 3486 rcu_read_lock(); 3487 kvfree(rcu_dereference(sbi->s_group_info)); 3488 rcu_read_unlock(); 3489 return -ENOMEM; 3490 } 3491 3492 static void ext4_groupinfo_destroy_slabs(void) 3493 { 3494 int i; 3495 3496 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3497 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3498 ext4_groupinfo_caches[i] = NULL; 3499 } 3500 } 3501 3502 static int ext4_groupinfo_create_slab(size_t size) 3503 { 3504 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3505 int slab_size; 3506 int blocksize_bits = order_base_2(size); 3507 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3508 struct kmem_cache *cachep; 3509 3510 if (cache_index >= NR_GRPINFO_CACHES) 3511 return -EINVAL; 3512 3513 if (unlikely(cache_index < 0)) 3514 cache_index = 0; 3515 3516 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3517 if (ext4_groupinfo_caches[cache_index]) { 3518 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3519 return 0; /* Already created */ 3520 } 3521 3522 slab_size = offsetof(struct ext4_group_info, 3523 bb_counters[blocksize_bits + 2]); 3524 3525 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3526 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3527 NULL); 3528 3529 ext4_groupinfo_caches[cache_index] = cachep; 3530 3531 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3532 if (!cachep) { 3533 printk(KERN_EMERG 3534 "EXT4-fs: no memory for groupinfo slab cache\n"); 3535 return -ENOMEM; 3536 } 3537 3538 return 0; 3539 } 3540 3541 static void ext4_discard_work(struct work_struct *work) 3542 { 3543 struct ext4_sb_info *sbi = container_of(work, 3544 struct ext4_sb_info, s_discard_work); 3545 struct super_block *sb = sbi->s_sb; 3546 struct ext4_free_data *fd, *nfd; 3547 struct ext4_buddy e4b; 3548 LIST_HEAD(discard_list); 3549 ext4_group_t grp, load_grp; 3550 int err = 0; 3551 3552 spin_lock(&sbi->s_md_lock); 3553 list_splice_init(&sbi->s_discard_list, &discard_list); 3554 spin_unlock(&sbi->s_md_lock); 3555 3556 load_grp = UINT_MAX; 3557 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3558 /* 3559 * If filesystem is umounting or no memory or suffering 3560 * from no space, give up the discard 3561 */ 3562 if ((sb->s_flags & SB_ACTIVE) && !err && 3563 !atomic_read(&sbi->s_retry_alloc_pending)) { 3564 grp = fd->efd_group; 3565 if (grp != load_grp) { 3566 if (load_grp != UINT_MAX) 3567 ext4_mb_unload_buddy(&e4b); 3568 3569 err = ext4_mb_load_buddy(sb, grp, &e4b); 3570 if (err) { 3571 kmem_cache_free(ext4_free_data_cachep, fd); 3572 load_grp = UINT_MAX; 3573 continue; 3574 } else { 3575 load_grp = grp; 3576 } 3577 } 3578 3579 ext4_lock_group(sb, grp); 3580 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3581 fd->efd_start_cluster + fd->efd_count - 1, 1); 3582 ext4_unlock_group(sb, grp); 3583 } 3584 kmem_cache_free(ext4_free_data_cachep, fd); 3585 } 3586 3587 if (load_grp != UINT_MAX) 3588 ext4_mb_unload_buddy(&e4b); 3589 } 3590 3591 int ext4_mb_init(struct super_block *sb) 3592 { 3593 struct ext4_sb_info *sbi = EXT4_SB(sb); 3594 unsigned i, j; 3595 unsigned offset, offset_incr; 3596 unsigned max; 3597 int ret; 3598 3599 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3600 3601 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3602 if (sbi->s_mb_offsets == NULL) { 3603 ret = -ENOMEM; 3604 goto out; 3605 } 3606 3607 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3608 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3609 if (sbi->s_mb_maxs == NULL) { 3610 ret = -ENOMEM; 3611 goto out; 3612 } 3613 3614 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3615 if (ret < 0) 3616 goto out; 3617 3618 /* order 0 is regular bitmap */ 3619 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3620 sbi->s_mb_offsets[0] = 0; 3621 3622 i = 1; 3623 offset = 0; 3624 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3625 max = sb->s_blocksize << 2; 3626 do { 3627 sbi->s_mb_offsets[i] = offset; 3628 sbi->s_mb_maxs[i] = max; 3629 offset += offset_incr; 3630 offset_incr = offset_incr >> 1; 3631 max = max >> 1; 3632 i++; 3633 } while (i < MB_NUM_ORDERS(sb)); 3634 3635 sbi->s_mb_avg_fragment_size = 3636 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3637 GFP_KERNEL); 3638 if (!sbi->s_mb_avg_fragment_size) { 3639 ret = -ENOMEM; 3640 goto out; 3641 } 3642 sbi->s_mb_avg_fragment_size_locks = 3643 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3644 GFP_KERNEL); 3645 if (!sbi->s_mb_avg_fragment_size_locks) { 3646 ret = -ENOMEM; 3647 goto out; 3648 } 3649 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3650 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3651 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3652 } 3653 sbi->s_mb_largest_free_orders = 3654 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3655 GFP_KERNEL); 3656 if (!sbi->s_mb_largest_free_orders) { 3657 ret = -ENOMEM; 3658 goto out; 3659 } 3660 sbi->s_mb_largest_free_orders_locks = 3661 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3662 GFP_KERNEL); 3663 if (!sbi->s_mb_largest_free_orders_locks) { 3664 ret = -ENOMEM; 3665 goto out; 3666 } 3667 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3668 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3669 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3670 } 3671 3672 spin_lock_init(&sbi->s_md_lock); 3673 sbi->s_mb_free_pending = 0; 3674 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]); 3675 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]); 3676 INIT_LIST_HEAD(&sbi->s_discard_list); 3677 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3678 atomic_set(&sbi->s_retry_alloc_pending, 0); 3679 3680 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3681 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3682 sbi->s_mb_stats = MB_DEFAULT_STATS; 3683 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3684 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3685 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3686 3687 /* 3688 * The default group preallocation is 512, which for 4k block 3689 * sizes translates to 2 megabytes. However for bigalloc file 3690 * systems, this is probably too big (i.e, if the cluster size 3691 * is 1 megabyte, then group preallocation size becomes half a 3692 * gigabyte!). As a default, we will keep a two megabyte 3693 * group pralloc size for cluster sizes up to 64k, and after 3694 * that, we will force a minimum group preallocation size of 3695 * 32 clusters. This translates to 8 megs when the cluster 3696 * size is 256k, and 32 megs when the cluster size is 1 meg, 3697 * which seems reasonable as a default. 3698 */ 3699 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3700 sbi->s_cluster_bits, 32); 3701 /* 3702 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3703 * to the lowest multiple of s_stripe which is bigger than 3704 * the s_mb_group_prealloc as determined above. We want 3705 * the preallocation size to be an exact multiple of the 3706 * RAID stripe size so that preallocations don't fragment 3707 * the stripes. 3708 */ 3709 if (sbi->s_stripe > 1) { 3710 sbi->s_mb_group_prealloc = roundup( 3711 sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe)); 3712 } 3713 3714 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3715 if (sbi->s_locality_groups == NULL) { 3716 ret = -ENOMEM; 3717 goto out; 3718 } 3719 for_each_possible_cpu(i) { 3720 struct ext4_locality_group *lg; 3721 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3722 mutex_init(&lg->lg_mutex); 3723 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3724 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3725 spin_lock_init(&lg->lg_prealloc_lock); 3726 } 3727 3728 if (bdev_nonrot(sb->s_bdev)) 3729 sbi->s_mb_max_linear_groups = 0; 3730 else 3731 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3732 /* init file for buddy data */ 3733 ret = ext4_mb_init_backend(sb); 3734 if (ret != 0) 3735 goto out_free_locality_groups; 3736 3737 return 0; 3738 3739 out_free_locality_groups: 3740 free_percpu(sbi->s_locality_groups); 3741 sbi->s_locality_groups = NULL; 3742 out: 3743 kfree(sbi->s_mb_avg_fragment_size); 3744 kfree(sbi->s_mb_avg_fragment_size_locks); 3745 kfree(sbi->s_mb_largest_free_orders); 3746 kfree(sbi->s_mb_largest_free_orders_locks); 3747 kfree(sbi->s_mb_offsets); 3748 sbi->s_mb_offsets = NULL; 3749 kfree(sbi->s_mb_maxs); 3750 sbi->s_mb_maxs = NULL; 3751 return ret; 3752 } 3753 3754 /* need to called with the ext4 group lock held */ 3755 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3756 { 3757 struct ext4_prealloc_space *pa; 3758 struct list_head *cur, *tmp; 3759 int count = 0; 3760 3761 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3762 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3763 list_del(&pa->pa_group_list); 3764 count++; 3765 kmem_cache_free(ext4_pspace_cachep, pa); 3766 } 3767 return count; 3768 } 3769 3770 void ext4_mb_release(struct super_block *sb) 3771 { 3772 ext4_group_t ngroups = ext4_get_groups_count(sb); 3773 ext4_group_t i; 3774 int num_meta_group_infos; 3775 struct ext4_group_info *grinfo, ***group_info; 3776 struct ext4_sb_info *sbi = EXT4_SB(sb); 3777 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3778 int count; 3779 3780 if (test_opt(sb, DISCARD)) { 3781 /* 3782 * wait the discard work to drain all of ext4_free_data 3783 */ 3784 flush_work(&sbi->s_discard_work); 3785 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3786 } 3787 3788 if (sbi->s_group_info) { 3789 for (i = 0; i < ngroups; i++) { 3790 cond_resched(); 3791 grinfo = ext4_get_group_info(sb, i); 3792 if (!grinfo) 3793 continue; 3794 mb_group_bb_bitmap_free(grinfo); 3795 ext4_lock_group(sb, i); 3796 count = ext4_mb_cleanup_pa(grinfo); 3797 if (count) 3798 mb_debug(sb, "mballoc: %d PAs left\n", 3799 count); 3800 ext4_unlock_group(sb, i); 3801 kmem_cache_free(cachep, grinfo); 3802 } 3803 num_meta_group_infos = (ngroups + 3804 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3805 EXT4_DESC_PER_BLOCK_BITS(sb); 3806 rcu_read_lock(); 3807 group_info = rcu_dereference(sbi->s_group_info); 3808 for (i = 0; i < num_meta_group_infos; i++) 3809 kfree(group_info[i]); 3810 kvfree(group_info); 3811 rcu_read_unlock(); 3812 } 3813 kfree(sbi->s_mb_avg_fragment_size); 3814 kfree(sbi->s_mb_avg_fragment_size_locks); 3815 kfree(sbi->s_mb_largest_free_orders); 3816 kfree(sbi->s_mb_largest_free_orders_locks); 3817 kfree(sbi->s_mb_offsets); 3818 kfree(sbi->s_mb_maxs); 3819 iput(sbi->s_buddy_cache); 3820 if (sbi->s_mb_stats) { 3821 ext4_msg(sb, KERN_INFO, 3822 "mballoc: %u blocks %u reqs (%u success)", 3823 atomic_read(&sbi->s_bal_allocated), 3824 atomic_read(&sbi->s_bal_reqs), 3825 atomic_read(&sbi->s_bal_success)); 3826 ext4_msg(sb, KERN_INFO, 3827 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3828 "%u 2^N hits, %u breaks, %u lost", 3829 atomic_read(&sbi->s_bal_ex_scanned), 3830 atomic_read(&sbi->s_bal_groups_scanned), 3831 atomic_read(&sbi->s_bal_goals), 3832 atomic_read(&sbi->s_bal_2orders), 3833 atomic_read(&sbi->s_bal_breaks), 3834 atomic_read(&sbi->s_mb_lost_chunks)); 3835 ext4_msg(sb, KERN_INFO, 3836 "mballoc: %u generated and it took %llu", 3837 atomic_read(&sbi->s_mb_buddies_generated), 3838 atomic64_read(&sbi->s_mb_generation_time)); 3839 ext4_msg(sb, KERN_INFO, 3840 "mballoc: %u preallocated, %u discarded", 3841 atomic_read(&sbi->s_mb_preallocated), 3842 atomic_read(&sbi->s_mb_discarded)); 3843 } 3844 3845 free_percpu(sbi->s_locality_groups); 3846 } 3847 3848 static inline int ext4_issue_discard(struct super_block *sb, 3849 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 3850 { 3851 ext4_fsblk_t discard_block; 3852 3853 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3854 ext4_group_first_block_no(sb, block_group)); 3855 count = EXT4_C2B(EXT4_SB(sb), count); 3856 trace_ext4_discard_blocks(sb, 3857 (unsigned long long) discard_block, count); 3858 3859 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3860 } 3861 3862 static void ext4_free_data_in_buddy(struct super_block *sb, 3863 struct ext4_free_data *entry) 3864 { 3865 struct ext4_buddy e4b; 3866 struct ext4_group_info *db; 3867 int err, count = 0; 3868 3869 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3870 entry->efd_count, entry->efd_group, entry); 3871 3872 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3873 /* we expect to find existing buddy because it's pinned */ 3874 BUG_ON(err != 0); 3875 3876 spin_lock(&EXT4_SB(sb)->s_md_lock); 3877 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3878 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3879 3880 db = e4b.bd_info; 3881 /* there are blocks to put in buddy to make them really free */ 3882 count += entry->efd_count; 3883 ext4_lock_group(sb, entry->efd_group); 3884 /* Take it out of per group rb tree */ 3885 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3886 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3887 3888 /* 3889 * Clear the trimmed flag for the group so that the next 3890 * ext4_trim_fs can trim it. 3891 */ 3892 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3893 3894 if (!db->bb_free_root.rb_node) { 3895 /* No more items in the per group rb tree 3896 * balance refcounts from ext4_mb_free_metadata() 3897 */ 3898 folio_put(e4b.bd_buddy_folio); 3899 folio_put(e4b.bd_bitmap_folio); 3900 } 3901 ext4_unlock_group(sb, entry->efd_group); 3902 ext4_mb_unload_buddy(&e4b); 3903 3904 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3905 } 3906 3907 /* 3908 * This function is called by the jbd2 layer once the commit has finished, 3909 * so we know we can free the blocks that were released with that commit. 3910 */ 3911 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3912 { 3913 struct ext4_sb_info *sbi = EXT4_SB(sb); 3914 struct ext4_free_data *entry, *tmp; 3915 LIST_HEAD(freed_data_list); 3916 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; 3917 bool wake; 3918 3919 list_replace_init(s_freed_head, &freed_data_list); 3920 3921 list_for_each_entry(entry, &freed_data_list, efd_list) 3922 ext4_free_data_in_buddy(sb, entry); 3923 3924 if (test_opt(sb, DISCARD)) { 3925 spin_lock(&sbi->s_md_lock); 3926 wake = list_empty(&sbi->s_discard_list); 3927 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3928 spin_unlock(&sbi->s_md_lock); 3929 if (wake) 3930 queue_work(system_unbound_wq, &sbi->s_discard_work); 3931 } else { 3932 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3933 kmem_cache_free(ext4_free_data_cachep, entry); 3934 } 3935 } 3936 3937 int __init ext4_init_mballoc(void) 3938 { 3939 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3940 SLAB_RECLAIM_ACCOUNT); 3941 if (ext4_pspace_cachep == NULL) 3942 goto out; 3943 3944 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3945 SLAB_RECLAIM_ACCOUNT); 3946 if (ext4_ac_cachep == NULL) 3947 goto out_pa_free; 3948 3949 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3950 SLAB_RECLAIM_ACCOUNT); 3951 if (ext4_free_data_cachep == NULL) 3952 goto out_ac_free; 3953 3954 return 0; 3955 3956 out_ac_free: 3957 kmem_cache_destroy(ext4_ac_cachep); 3958 out_pa_free: 3959 kmem_cache_destroy(ext4_pspace_cachep); 3960 out: 3961 return -ENOMEM; 3962 } 3963 3964 void ext4_exit_mballoc(void) 3965 { 3966 /* 3967 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3968 * before destroying the slab cache. 3969 */ 3970 rcu_barrier(); 3971 kmem_cache_destroy(ext4_pspace_cachep); 3972 kmem_cache_destroy(ext4_ac_cachep); 3973 kmem_cache_destroy(ext4_free_data_cachep); 3974 ext4_groupinfo_destroy_slabs(); 3975 } 3976 3977 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 3978 #define EXT4_MB_SYNC_UPDATE 0x0002 3979 static int 3980 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, 3981 ext4_group_t group, ext4_grpblk_t blkoff, 3982 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) 3983 { 3984 struct ext4_sb_info *sbi = EXT4_SB(sb); 3985 struct buffer_head *bitmap_bh = NULL; 3986 struct ext4_group_desc *gdp; 3987 struct buffer_head *gdp_bh; 3988 int err; 3989 unsigned int i, already, changed = len; 3990 3991 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, 3992 handle, sb, state, group, blkoff, len, 3993 flags, ret_changed); 3994 3995 if (ret_changed) 3996 *ret_changed = 0; 3997 bitmap_bh = ext4_read_block_bitmap(sb, group); 3998 if (IS_ERR(bitmap_bh)) 3999 return PTR_ERR(bitmap_bh); 4000 4001 if (handle) { 4002 BUFFER_TRACE(bitmap_bh, "getting write access"); 4003 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4004 EXT4_JTR_NONE); 4005 if (err) 4006 goto out_err; 4007 } 4008 4009 err = -EIO; 4010 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4011 if (!gdp) 4012 goto out_err; 4013 4014 if (handle) { 4015 BUFFER_TRACE(gdp_bh, "get_write_access"); 4016 err = ext4_journal_get_write_access(handle, sb, gdp_bh, 4017 EXT4_JTR_NONE); 4018 if (err) 4019 goto out_err; 4020 } 4021 4022 ext4_lock_group(sb, group); 4023 if (ext4_has_group_desc_csum(sb) && 4024 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4025 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4026 ext4_free_group_clusters_set(sb, gdp, 4027 ext4_free_clusters_after_init(sb, group, gdp)); 4028 } 4029 4030 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { 4031 already = 0; 4032 for (i = 0; i < len; i++) 4033 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4034 state) 4035 already++; 4036 changed = len - already; 4037 } 4038 4039 if (state) { 4040 mb_set_bits(bitmap_bh->b_data, blkoff, len); 4041 ext4_free_group_clusters_set(sb, gdp, 4042 ext4_free_group_clusters(sb, gdp) - changed); 4043 } else { 4044 mb_clear_bits(bitmap_bh->b_data, blkoff, len); 4045 ext4_free_group_clusters_set(sb, gdp, 4046 ext4_free_group_clusters(sb, gdp) + changed); 4047 } 4048 4049 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4050 ext4_group_desc_csum_set(sb, group, gdp); 4051 ext4_unlock_group(sb, group); 4052 if (ret_changed) 4053 *ret_changed = changed; 4054 4055 if (sbi->s_log_groups_per_flex) { 4056 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4057 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4058 s_flex_groups, flex_group); 4059 4060 if (state) 4061 atomic64_sub(changed, &fg->free_clusters); 4062 else 4063 atomic64_add(changed, &fg->free_clusters); 4064 } 4065 4066 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4067 if (err) 4068 goto out_err; 4069 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4070 if (err) 4071 goto out_err; 4072 4073 if (flags & EXT4_MB_SYNC_UPDATE) { 4074 sync_dirty_buffer(bitmap_bh); 4075 sync_dirty_buffer(gdp_bh); 4076 } 4077 4078 out_err: 4079 brelse(bitmap_bh); 4080 return err; 4081 } 4082 4083 /* 4084 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 4085 * Returns 0 if success or error code 4086 */ 4087 static noinline_for_stack int 4088 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 4089 handle_t *handle, unsigned int reserv_clstrs) 4090 { 4091 struct ext4_group_desc *gdp; 4092 struct ext4_sb_info *sbi; 4093 struct super_block *sb; 4094 ext4_fsblk_t block; 4095 int err, len; 4096 int flags = 0; 4097 ext4_grpblk_t changed; 4098 4099 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4100 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4101 4102 sb = ac->ac_sb; 4103 sbi = EXT4_SB(sb); 4104 4105 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL); 4106 if (!gdp) 4107 return -EIO; 4108 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4109 ext4_free_group_clusters(sb, gdp)); 4110 4111 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4112 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4113 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4114 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4115 "fs metadata", block, block+len); 4116 /* File system mounted not to panic on error 4117 * Fix the bitmap and return EFSCORRUPTED 4118 * We leak some of the blocks here. 4119 */ 4120 err = ext4_mb_mark_context(handle, sb, true, 4121 ac->ac_b_ex.fe_group, 4122 ac->ac_b_ex.fe_start, 4123 ac->ac_b_ex.fe_len, 4124 0, NULL); 4125 if (!err) 4126 err = -EFSCORRUPTED; 4127 return err; 4128 } 4129 4130 #ifdef AGGRESSIVE_CHECK 4131 flags |= EXT4_MB_BITMAP_MARKED_CHECK; 4132 #endif 4133 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, 4134 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, 4135 flags, &changed); 4136 4137 if (err && changed == 0) 4138 return err; 4139 4140 #ifdef AGGRESSIVE_CHECK 4141 BUG_ON(changed != ac->ac_b_ex.fe_len); 4142 #endif 4143 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4144 /* 4145 * Now reduce the dirty block count also. Should not go negative 4146 */ 4147 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4148 /* release all the reserved blocks if non delalloc */ 4149 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4150 reserv_clstrs); 4151 4152 return err; 4153 } 4154 4155 /* 4156 * Idempotent helper for Ext4 fast commit replay path to set the state of 4157 * blocks in bitmaps and update counters. 4158 */ 4159 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4160 int len, bool state) 4161 { 4162 struct ext4_sb_info *sbi = EXT4_SB(sb); 4163 ext4_group_t group; 4164 ext4_grpblk_t blkoff; 4165 int err = 0; 4166 unsigned int clen, thisgrp_len; 4167 4168 while (len > 0) { 4169 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4170 4171 /* 4172 * Check to see if we are freeing blocks across a group 4173 * boundary. 4174 * In case of flex_bg, this can happen that (block, len) may 4175 * span across more than one group. In that case we need to 4176 * get the corresponding group metadata to work with. 4177 * For this we have goto again loop. 4178 */ 4179 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4180 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4181 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4182 4183 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4184 ext4_error(sb, "Marking blocks in system zone - " 4185 "Block = %llu, len = %u", 4186 block, thisgrp_len); 4187 break; 4188 } 4189 4190 err = ext4_mb_mark_context(NULL, sb, state, 4191 group, blkoff, clen, 4192 EXT4_MB_BITMAP_MARKED_CHECK | 4193 EXT4_MB_SYNC_UPDATE, 4194 NULL); 4195 if (err) 4196 break; 4197 4198 block += thisgrp_len; 4199 len -= thisgrp_len; 4200 BUG_ON(len < 0); 4201 } 4202 } 4203 4204 /* 4205 * here we normalize request for locality group 4206 * Group request are normalized to s_mb_group_prealloc, which goes to 4207 * s_strip if we set the same via mount option. 4208 * s_mb_group_prealloc can be configured via 4209 * /sys/fs/ext4/<partition>/mb_group_prealloc 4210 * 4211 * XXX: should we try to preallocate more than the group has now? 4212 */ 4213 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4214 { 4215 struct super_block *sb = ac->ac_sb; 4216 struct ext4_locality_group *lg = ac->ac_lg; 4217 4218 BUG_ON(lg == NULL); 4219 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4220 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4221 } 4222 4223 /* 4224 * This function returns the next element to look at during inode 4225 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4226 * (ei->i_prealloc_lock) 4227 * 4228 * new_start The start of the range we want to compare 4229 * cur_start The existing start that we are comparing against 4230 * node The node of the rb_tree 4231 */ 4232 static inline struct rb_node* 4233 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4234 { 4235 if (new_start < cur_start) 4236 return node->rb_left; 4237 else 4238 return node->rb_right; 4239 } 4240 4241 static inline void 4242 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4243 ext4_lblk_t start, loff_t end) 4244 { 4245 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4246 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4247 struct ext4_prealloc_space *tmp_pa; 4248 ext4_lblk_t tmp_pa_start; 4249 loff_t tmp_pa_end; 4250 struct rb_node *iter; 4251 4252 read_lock(&ei->i_prealloc_lock); 4253 for (iter = ei->i_prealloc_node.rb_node; iter; 4254 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4255 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4256 pa_node.inode_node); 4257 tmp_pa_start = tmp_pa->pa_lstart; 4258 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4259 4260 spin_lock(&tmp_pa->pa_lock); 4261 if (tmp_pa->pa_deleted == 0) 4262 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4263 spin_unlock(&tmp_pa->pa_lock); 4264 } 4265 read_unlock(&ei->i_prealloc_lock); 4266 } 4267 4268 /* 4269 * Given an allocation context "ac" and a range "start", "end", check 4270 * and adjust boundaries if the range overlaps with any of the existing 4271 * preallocatoins stored in the corresponding inode of the allocation context. 4272 * 4273 * Parameters: 4274 * ac allocation context 4275 * start start of the new range 4276 * end end of the new range 4277 */ 4278 static inline void 4279 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4280 ext4_lblk_t *start, loff_t *end) 4281 { 4282 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4283 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4284 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4285 struct rb_node *iter; 4286 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4287 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4288 4289 new_start = *start; 4290 new_end = *end; 4291 4292 /* 4293 * Adjust the normalized range so that it doesn't overlap with any 4294 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4295 * so it doesn't change underneath us. 4296 */ 4297 read_lock(&ei->i_prealloc_lock); 4298 4299 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4300 for (iter = ei->i_prealloc_node.rb_node; iter; 4301 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4302 tmp_pa_start, iter)) { 4303 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4304 pa_node.inode_node); 4305 tmp_pa_start = tmp_pa->pa_lstart; 4306 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4307 4308 /* PA must not overlap original request */ 4309 spin_lock(&tmp_pa->pa_lock); 4310 if (tmp_pa->pa_deleted == 0) 4311 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4312 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4313 spin_unlock(&tmp_pa->pa_lock); 4314 } 4315 4316 /* 4317 * Step 2: check if the found PA is left or right neighbor and 4318 * get the other neighbor 4319 */ 4320 if (tmp_pa) { 4321 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4322 struct rb_node *tmp; 4323 4324 left_pa = tmp_pa; 4325 tmp = rb_next(&left_pa->pa_node.inode_node); 4326 if (tmp) { 4327 right_pa = rb_entry(tmp, 4328 struct ext4_prealloc_space, 4329 pa_node.inode_node); 4330 } 4331 } else { 4332 struct rb_node *tmp; 4333 4334 right_pa = tmp_pa; 4335 tmp = rb_prev(&right_pa->pa_node.inode_node); 4336 if (tmp) { 4337 left_pa = rb_entry(tmp, 4338 struct ext4_prealloc_space, 4339 pa_node.inode_node); 4340 } 4341 } 4342 } 4343 4344 /* Step 3: get the non deleted neighbors */ 4345 if (left_pa) { 4346 for (iter = &left_pa->pa_node.inode_node;; 4347 iter = rb_prev(iter)) { 4348 if (!iter) { 4349 left_pa = NULL; 4350 break; 4351 } 4352 4353 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4354 pa_node.inode_node); 4355 left_pa = tmp_pa; 4356 spin_lock(&tmp_pa->pa_lock); 4357 if (tmp_pa->pa_deleted == 0) { 4358 spin_unlock(&tmp_pa->pa_lock); 4359 break; 4360 } 4361 spin_unlock(&tmp_pa->pa_lock); 4362 } 4363 } 4364 4365 if (right_pa) { 4366 for (iter = &right_pa->pa_node.inode_node;; 4367 iter = rb_next(iter)) { 4368 if (!iter) { 4369 right_pa = NULL; 4370 break; 4371 } 4372 4373 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4374 pa_node.inode_node); 4375 right_pa = tmp_pa; 4376 spin_lock(&tmp_pa->pa_lock); 4377 if (tmp_pa->pa_deleted == 0) { 4378 spin_unlock(&tmp_pa->pa_lock); 4379 break; 4380 } 4381 spin_unlock(&tmp_pa->pa_lock); 4382 } 4383 } 4384 4385 if (left_pa) { 4386 left_pa_end = pa_logical_end(sbi, left_pa); 4387 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4388 } 4389 4390 if (right_pa) { 4391 right_pa_start = right_pa->pa_lstart; 4392 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4393 } 4394 4395 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4396 if (left_pa) { 4397 if (left_pa_end > new_start) 4398 new_start = left_pa_end; 4399 } 4400 4401 if (right_pa) { 4402 if (right_pa_start < new_end) 4403 new_end = right_pa_start; 4404 } 4405 read_unlock(&ei->i_prealloc_lock); 4406 4407 /* XXX: extra loop to check we really don't overlap preallocations */ 4408 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4409 4410 *start = new_start; 4411 *end = new_end; 4412 } 4413 4414 /* 4415 * Normalization means making request better in terms of 4416 * size and alignment 4417 */ 4418 static noinline_for_stack void 4419 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4420 struct ext4_allocation_request *ar) 4421 { 4422 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4423 struct ext4_super_block *es = sbi->s_es; 4424 int bsbits, max; 4425 loff_t size, start_off, end; 4426 loff_t orig_size __maybe_unused; 4427 ext4_lblk_t start; 4428 4429 /* do normalize only data requests, metadata requests 4430 do not need preallocation */ 4431 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4432 return; 4433 4434 /* sometime caller may want exact blocks */ 4435 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4436 return; 4437 4438 /* caller may indicate that preallocation isn't 4439 * required (it's a tail, for example) */ 4440 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4441 return; 4442 4443 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4444 ext4_mb_normalize_group_request(ac); 4445 return ; 4446 } 4447 4448 bsbits = ac->ac_sb->s_blocksize_bits; 4449 4450 /* first, let's learn actual file size 4451 * given current request is allocated */ 4452 size = extent_logical_end(sbi, &ac->ac_o_ex); 4453 size = size << bsbits; 4454 if (size < i_size_read(ac->ac_inode)) 4455 size = i_size_read(ac->ac_inode); 4456 orig_size = size; 4457 4458 /* max size of free chunks */ 4459 max = 2 << bsbits; 4460 4461 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4462 (req <= (size) || max <= (chunk_size)) 4463 4464 /* first, try to predict filesize */ 4465 /* XXX: should this table be tunable? */ 4466 start_off = 0; 4467 if (size <= 16 * 1024) { 4468 size = 16 * 1024; 4469 } else if (size <= 32 * 1024) { 4470 size = 32 * 1024; 4471 } else if (size <= 64 * 1024) { 4472 size = 64 * 1024; 4473 } else if (size <= 128 * 1024) { 4474 size = 128 * 1024; 4475 } else if (size <= 256 * 1024) { 4476 size = 256 * 1024; 4477 } else if (size <= 512 * 1024) { 4478 size = 512 * 1024; 4479 } else if (size <= 1024 * 1024) { 4480 size = 1024 * 1024; 4481 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4482 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4483 (21 - bsbits)) << 21; 4484 size = 2 * 1024 * 1024; 4485 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4486 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4487 (22 - bsbits)) << 22; 4488 size = 4 * 1024 * 1024; 4489 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4490 (8<<20)>>bsbits, max, 8 * 1024)) { 4491 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4492 (23 - bsbits)) << 23; 4493 size = 8 * 1024 * 1024; 4494 } else { 4495 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4496 size = (loff_t) EXT4_C2B(sbi, 4497 ac->ac_o_ex.fe_len) << bsbits; 4498 } 4499 size = size >> bsbits; 4500 start = start_off >> bsbits; 4501 4502 /* 4503 * For tiny groups (smaller than 8MB) the chosen allocation 4504 * alignment may be larger than group size. Make sure the 4505 * alignment does not move allocation to a different group which 4506 * makes mballoc fail assertions later. 4507 */ 4508 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4509 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4510 4511 /* avoid unnecessary preallocation that may trigger assertions */ 4512 if (start + size > EXT_MAX_BLOCKS) 4513 size = EXT_MAX_BLOCKS - start; 4514 4515 /* don't cover already allocated blocks in selected range */ 4516 if (ar->pleft && start <= ar->lleft) { 4517 size -= ar->lleft + 1 - start; 4518 start = ar->lleft + 1; 4519 } 4520 if (ar->pright && start + size - 1 >= ar->lright) 4521 size -= start + size - ar->lright; 4522 4523 /* 4524 * Trim allocation request for filesystems with artificially small 4525 * groups. 4526 */ 4527 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4528 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4529 4530 end = start + size; 4531 4532 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4533 4534 size = end - start; 4535 4536 /* 4537 * In this function "start" and "size" are normalized for better 4538 * alignment and length such that we could preallocate more blocks. 4539 * This normalization is done such that original request of 4540 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4541 * "size" boundaries. 4542 * (Note fe_len can be relaxed since FS block allocation API does not 4543 * provide gurantee on number of contiguous blocks allocation since that 4544 * depends upon free space left, etc). 4545 * In case of inode pa, later we use the allocated blocks 4546 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4547 * range of goal/best blocks [start, size] to put it at the 4548 * ac_o_ex.fe_logical extent of this inode. 4549 * (See ext4_mb_use_inode_pa() for more details) 4550 */ 4551 if (start + size <= ac->ac_o_ex.fe_logical || 4552 start > ac->ac_o_ex.fe_logical) { 4553 ext4_msg(ac->ac_sb, KERN_ERR, 4554 "start %lu, size %lu, fe_logical %lu", 4555 (unsigned long) start, (unsigned long) size, 4556 (unsigned long) ac->ac_o_ex.fe_logical); 4557 BUG(); 4558 } 4559 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4560 4561 /* now prepare goal request */ 4562 4563 /* XXX: is it better to align blocks WRT to logical 4564 * placement or satisfy big request as is */ 4565 ac->ac_g_ex.fe_logical = start; 4566 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4567 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4568 4569 /* define goal start in order to merge */ 4570 if (ar->pright && (ar->lright == (start + size)) && 4571 ar->pright >= size && 4572 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4573 /* merge to the right */ 4574 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4575 &ac->ac_g_ex.fe_group, 4576 &ac->ac_g_ex.fe_start); 4577 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4578 } 4579 if (ar->pleft && (ar->lleft + 1 == start) && 4580 ar->pleft + 1 < ext4_blocks_count(es)) { 4581 /* merge to the left */ 4582 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4583 &ac->ac_g_ex.fe_group, 4584 &ac->ac_g_ex.fe_start); 4585 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4586 } 4587 4588 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4589 orig_size, start); 4590 } 4591 4592 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4593 { 4594 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4595 4596 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4597 atomic_inc(&sbi->s_bal_reqs); 4598 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4599 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4600 atomic_inc(&sbi->s_bal_success); 4601 4602 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4603 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4604 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4605 } 4606 4607 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4608 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4609 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4610 atomic_inc(&sbi->s_bal_goals); 4611 /* did we allocate as much as normalizer originally wanted? */ 4612 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4613 atomic_inc(&sbi->s_bal_len_goals); 4614 4615 if (ac->ac_found > sbi->s_mb_max_to_scan) 4616 atomic_inc(&sbi->s_bal_breaks); 4617 } 4618 4619 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4620 trace_ext4_mballoc_alloc(ac); 4621 else 4622 trace_ext4_mballoc_prealloc(ac); 4623 } 4624 4625 /* 4626 * Called on failure; free up any blocks from the inode PA for this 4627 * context. We don't need this for MB_GROUP_PA because we only change 4628 * pa_free in ext4_mb_release_context(), but on failure, we've already 4629 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4630 */ 4631 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4632 { 4633 struct ext4_prealloc_space *pa = ac->ac_pa; 4634 struct ext4_buddy e4b; 4635 int err; 4636 4637 if (pa == NULL) { 4638 if (ac->ac_f_ex.fe_len == 0) 4639 return; 4640 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4641 if (WARN_RATELIMIT(err, 4642 "ext4: mb_load_buddy failed (%d)", err)) 4643 /* 4644 * This should never happen since we pin the 4645 * pages in the ext4_allocation_context so 4646 * ext4_mb_load_buddy() should never fail. 4647 */ 4648 return; 4649 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4650 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4651 ac->ac_f_ex.fe_len); 4652 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4653 ext4_mb_unload_buddy(&e4b); 4654 return; 4655 } 4656 if (pa->pa_type == MB_INODE_PA) { 4657 spin_lock(&pa->pa_lock); 4658 pa->pa_free += ac->ac_b_ex.fe_len; 4659 spin_unlock(&pa->pa_lock); 4660 } 4661 } 4662 4663 /* 4664 * use blocks preallocated to inode 4665 */ 4666 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4667 struct ext4_prealloc_space *pa) 4668 { 4669 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4670 ext4_fsblk_t start; 4671 ext4_fsblk_t end; 4672 int len; 4673 4674 /* found preallocated blocks, use them */ 4675 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4676 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4677 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4678 len = EXT4_NUM_B2C(sbi, end - start); 4679 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4680 &ac->ac_b_ex.fe_start); 4681 ac->ac_b_ex.fe_len = len; 4682 ac->ac_status = AC_STATUS_FOUND; 4683 ac->ac_pa = pa; 4684 4685 BUG_ON(start < pa->pa_pstart); 4686 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4687 BUG_ON(pa->pa_free < len); 4688 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4689 pa->pa_free -= len; 4690 4691 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4692 } 4693 4694 /* 4695 * use blocks preallocated to locality group 4696 */ 4697 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4698 struct ext4_prealloc_space *pa) 4699 { 4700 unsigned int len = ac->ac_o_ex.fe_len; 4701 4702 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4703 &ac->ac_b_ex.fe_group, 4704 &ac->ac_b_ex.fe_start); 4705 ac->ac_b_ex.fe_len = len; 4706 ac->ac_status = AC_STATUS_FOUND; 4707 ac->ac_pa = pa; 4708 4709 /* we don't correct pa_pstart or pa_len here to avoid 4710 * possible race when the group is being loaded concurrently 4711 * instead we correct pa later, after blocks are marked 4712 * in on-disk bitmap -- see ext4_mb_release_context() 4713 * Other CPUs are prevented from allocating from this pa by lg_mutex 4714 */ 4715 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4716 pa->pa_lstart, len, pa); 4717 } 4718 4719 /* 4720 * Return the prealloc space that have minimal distance 4721 * from the goal block. @cpa is the prealloc 4722 * space that is having currently known minimal distance 4723 * from the goal block. 4724 */ 4725 static struct ext4_prealloc_space * 4726 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4727 struct ext4_prealloc_space *pa, 4728 struct ext4_prealloc_space *cpa) 4729 { 4730 ext4_fsblk_t cur_distance, new_distance; 4731 4732 if (cpa == NULL) { 4733 atomic_inc(&pa->pa_count); 4734 return pa; 4735 } 4736 cur_distance = abs(goal_block - cpa->pa_pstart); 4737 new_distance = abs(goal_block - pa->pa_pstart); 4738 4739 if (cur_distance <= new_distance) 4740 return cpa; 4741 4742 /* drop the previous reference */ 4743 atomic_dec(&cpa->pa_count); 4744 atomic_inc(&pa->pa_count); 4745 return pa; 4746 } 4747 4748 /* 4749 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4750 */ 4751 static bool 4752 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4753 struct ext4_prealloc_space *pa) 4754 { 4755 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4756 ext4_fsblk_t start; 4757 4758 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4759 return true; 4760 4761 /* 4762 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4763 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4764 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4765 * consistent with ext4_mb_find_by_goal. 4766 */ 4767 start = pa->pa_pstart + 4768 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4769 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4770 return false; 4771 4772 if (ac->ac_g_ex.fe_len > pa->pa_len - 4773 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4774 return false; 4775 4776 return true; 4777 } 4778 4779 /* 4780 * search goal blocks in preallocated space 4781 */ 4782 static noinline_for_stack bool 4783 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4784 { 4785 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4786 int order, i; 4787 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4788 struct ext4_locality_group *lg; 4789 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4790 struct rb_node *iter; 4791 ext4_fsblk_t goal_block; 4792 4793 /* only data can be preallocated */ 4794 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4795 return false; 4796 4797 /* 4798 * first, try per-file preallocation by searching the inode pa rbtree. 4799 * 4800 * Here, we can't do a direct traversal of the tree because 4801 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4802 * deleted and that can cause direct traversal to skip some entries. 4803 */ 4804 read_lock(&ei->i_prealloc_lock); 4805 4806 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4807 goto try_group_pa; 4808 } 4809 4810 /* 4811 * Step 1: Find a pa with logical start immediately adjacent to the 4812 * original logical start. This could be on the left or right. 4813 * 4814 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4815 */ 4816 for (iter = ei->i_prealloc_node.rb_node; iter; 4817 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4818 tmp_pa->pa_lstart, iter)) { 4819 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4820 pa_node.inode_node); 4821 } 4822 4823 /* 4824 * Step 2: The adjacent pa might be to the right of logical start, find 4825 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4826 * logical start is towards the left of original request's logical start 4827 */ 4828 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4829 struct rb_node *tmp; 4830 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4831 4832 if (tmp) { 4833 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4834 pa_node.inode_node); 4835 } else { 4836 /* 4837 * If there is no adjacent pa to the left then finding 4838 * an overlapping pa is not possible hence stop searching 4839 * inode pa tree 4840 */ 4841 goto try_group_pa; 4842 } 4843 } 4844 4845 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4846 4847 /* 4848 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4849 * the first non deleted adjacent pa. After this step we should have a 4850 * valid tmp_pa which is guaranteed to be non deleted. 4851 */ 4852 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4853 if (!iter) { 4854 /* 4855 * no non deleted left adjacent pa, so stop searching 4856 * inode pa tree 4857 */ 4858 goto try_group_pa; 4859 } 4860 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4861 pa_node.inode_node); 4862 spin_lock(&tmp_pa->pa_lock); 4863 if (tmp_pa->pa_deleted == 0) { 4864 /* 4865 * We will keep holding the pa_lock from 4866 * this point on because we don't want group discard 4867 * to delete this pa underneath us. Since group 4868 * discard is anyways an ENOSPC operation it 4869 * should be okay for it to wait a few more cycles. 4870 */ 4871 break; 4872 } else { 4873 spin_unlock(&tmp_pa->pa_lock); 4874 } 4875 } 4876 4877 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4878 BUG_ON(tmp_pa->pa_deleted == 1); 4879 4880 /* 4881 * Step 4: We now have the non deleted left adjacent pa. Only this 4882 * pa can possibly satisfy the request hence check if it overlaps 4883 * original logical start and stop searching if it doesn't. 4884 */ 4885 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4886 spin_unlock(&tmp_pa->pa_lock); 4887 goto try_group_pa; 4888 } 4889 4890 /* non-extent files can't have physical blocks past 2^32 */ 4891 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4892 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4893 EXT4_MAX_BLOCK_FILE_PHYS)) { 4894 /* 4895 * Since PAs don't overlap, we won't find any other PA to 4896 * satisfy this. 4897 */ 4898 spin_unlock(&tmp_pa->pa_lock); 4899 goto try_group_pa; 4900 } 4901 4902 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4903 atomic_inc(&tmp_pa->pa_count); 4904 ext4_mb_use_inode_pa(ac, tmp_pa); 4905 spin_unlock(&tmp_pa->pa_lock); 4906 read_unlock(&ei->i_prealloc_lock); 4907 return true; 4908 } else { 4909 /* 4910 * We found a valid overlapping pa but couldn't use it because 4911 * it had no free blocks. This should ideally never happen 4912 * because: 4913 * 4914 * 1. When a new inode pa is added to rbtree it must have 4915 * pa_free > 0 since otherwise we won't actually need 4916 * preallocation. 4917 * 4918 * 2. An inode pa that is in the rbtree can only have it's 4919 * pa_free become zero when another thread calls: 4920 * ext4_mb_new_blocks 4921 * ext4_mb_use_preallocated 4922 * ext4_mb_use_inode_pa 4923 * 4924 * 3. Further, after the above calls make pa_free == 0, we will 4925 * immediately remove it from the rbtree in: 4926 * ext4_mb_new_blocks 4927 * ext4_mb_release_context 4928 * ext4_mb_put_pa 4929 * 4930 * 4. Since the pa_free becoming 0 and pa_free getting removed 4931 * from tree both happen in ext4_mb_new_blocks, which is always 4932 * called with i_data_sem held for data allocations, we can be 4933 * sure that another process will never see a pa in rbtree with 4934 * pa_free == 0. 4935 */ 4936 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4937 } 4938 spin_unlock(&tmp_pa->pa_lock); 4939 try_group_pa: 4940 read_unlock(&ei->i_prealloc_lock); 4941 4942 /* can we use group allocation? */ 4943 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4944 return false; 4945 4946 /* inode may have no locality group for some reason */ 4947 lg = ac->ac_lg; 4948 if (lg == NULL) 4949 return false; 4950 order = fls(ac->ac_o_ex.fe_len) - 1; 4951 if (order > PREALLOC_TB_SIZE - 1) 4952 /* The max size of hash table is PREALLOC_TB_SIZE */ 4953 order = PREALLOC_TB_SIZE - 1; 4954 4955 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4956 /* 4957 * search for the prealloc space that is having 4958 * minimal distance from the goal block. 4959 */ 4960 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4961 rcu_read_lock(); 4962 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4963 pa_node.lg_list) { 4964 spin_lock(&tmp_pa->pa_lock); 4965 if (tmp_pa->pa_deleted == 0 && 4966 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4967 4968 cpa = ext4_mb_check_group_pa(goal_block, 4969 tmp_pa, cpa); 4970 } 4971 spin_unlock(&tmp_pa->pa_lock); 4972 } 4973 rcu_read_unlock(); 4974 } 4975 if (cpa) { 4976 ext4_mb_use_group_pa(ac, cpa); 4977 return true; 4978 } 4979 return false; 4980 } 4981 4982 /* 4983 * the function goes through all preallocation in this group and marks them 4984 * used in in-core bitmap. buddy must be generated from this bitmap 4985 * Need to be called with ext4 group lock held 4986 */ 4987 static noinline_for_stack 4988 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4989 ext4_group_t group) 4990 { 4991 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4992 struct ext4_prealloc_space *pa; 4993 struct list_head *cur; 4994 ext4_group_t groupnr; 4995 ext4_grpblk_t start; 4996 int preallocated = 0; 4997 int len; 4998 4999 if (!grp) 5000 return; 5001 5002 /* all form of preallocation discards first load group, 5003 * so the only competing code is preallocation use. 5004 * we don't need any locking here 5005 * notice we do NOT ignore preallocations with pa_deleted 5006 * otherwise we could leave used blocks available for 5007 * allocation in buddy when concurrent ext4_mb_put_pa() 5008 * is dropping preallocation 5009 */ 5010 list_for_each(cur, &grp->bb_prealloc_list) { 5011 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5012 spin_lock(&pa->pa_lock); 5013 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5014 &groupnr, &start); 5015 len = pa->pa_len; 5016 spin_unlock(&pa->pa_lock); 5017 if (unlikely(len == 0)) 5018 continue; 5019 BUG_ON(groupnr != group); 5020 mb_set_bits(bitmap, start, len); 5021 preallocated += len; 5022 } 5023 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5024 } 5025 5026 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5027 struct ext4_prealloc_space *pa) 5028 { 5029 struct ext4_inode_info *ei; 5030 5031 if (pa->pa_deleted) { 5032 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5033 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5034 pa->pa_len); 5035 return; 5036 } 5037 5038 pa->pa_deleted = 1; 5039 5040 if (pa->pa_type == MB_INODE_PA) { 5041 ei = EXT4_I(pa->pa_inode); 5042 atomic_dec(&ei->i_prealloc_active); 5043 } 5044 } 5045 5046 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5047 { 5048 BUG_ON(!pa); 5049 BUG_ON(atomic_read(&pa->pa_count)); 5050 BUG_ON(pa->pa_deleted == 0); 5051 kmem_cache_free(ext4_pspace_cachep, pa); 5052 } 5053 5054 static void ext4_mb_pa_callback(struct rcu_head *head) 5055 { 5056 struct ext4_prealloc_space *pa; 5057 5058 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5059 ext4_mb_pa_free(pa); 5060 } 5061 5062 /* 5063 * drops a reference to preallocated space descriptor 5064 * if this was the last reference and the space is consumed 5065 */ 5066 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5067 struct super_block *sb, struct ext4_prealloc_space *pa) 5068 { 5069 ext4_group_t grp; 5070 ext4_fsblk_t grp_blk; 5071 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5072 5073 /* in this short window concurrent discard can set pa_deleted */ 5074 spin_lock(&pa->pa_lock); 5075 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5076 spin_unlock(&pa->pa_lock); 5077 return; 5078 } 5079 5080 if (pa->pa_deleted == 1) { 5081 spin_unlock(&pa->pa_lock); 5082 return; 5083 } 5084 5085 ext4_mb_mark_pa_deleted(sb, pa); 5086 spin_unlock(&pa->pa_lock); 5087 5088 grp_blk = pa->pa_pstart; 5089 /* 5090 * If doing group-based preallocation, pa_pstart may be in the 5091 * next group when pa is used up 5092 */ 5093 if (pa->pa_type == MB_GROUP_PA) 5094 grp_blk--; 5095 5096 grp = ext4_get_group_number(sb, grp_blk); 5097 5098 /* 5099 * possible race: 5100 * 5101 * P1 (buddy init) P2 (regular allocation) 5102 * find block B in PA 5103 * copy on-disk bitmap to buddy 5104 * mark B in on-disk bitmap 5105 * drop PA from group 5106 * mark all PAs in buddy 5107 * 5108 * thus, P1 initializes buddy with B available. to prevent this 5109 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5110 * against that pair 5111 */ 5112 ext4_lock_group(sb, grp); 5113 list_del(&pa->pa_group_list); 5114 ext4_unlock_group(sb, grp); 5115 5116 if (pa->pa_type == MB_INODE_PA) { 5117 write_lock(pa->pa_node_lock.inode_lock); 5118 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5119 write_unlock(pa->pa_node_lock.inode_lock); 5120 ext4_mb_pa_free(pa); 5121 } else { 5122 spin_lock(pa->pa_node_lock.lg_lock); 5123 list_del_rcu(&pa->pa_node.lg_list); 5124 spin_unlock(pa->pa_node_lock.lg_lock); 5125 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5126 } 5127 } 5128 5129 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5130 { 5131 struct rb_node **iter = &root->rb_node, *parent = NULL; 5132 struct ext4_prealloc_space *iter_pa, *new_pa; 5133 ext4_lblk_t iter_start, new_start; 5134 5135 while (*iter) { 5136 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5137 pa_node.inode_node); 5138 new_pa = rb_entry(new, struct ext4_prealloc_space, 5139 pa_node.inode_node); 5140 iter_start = iter_pa->pa_lstart; 5141 new_start = new_pa->pa_lstart; 5142 5143 parent = *iter; 5144 if (new_start < iter_start) 5145 iter = &((*iter)->rb_left); 5146 else 5147 iter = &((*iter)->rb_right); 5148 } 5149 5150 rb_link_node(new, parent, iter); 5151 rb_insert_color(new, root); 5152 } 5153 5154 /* 5155 * creates new preallocated space for given inode 5156 */ 5157 static noinline_for_stack void 5158 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5159 { 5160 struct super_block *sb = ac->ac_sb; 5161 struct ext4_sb_info *sbi = EXT4_SB(sb); 5162 struct ext4_prealloc_space *pa; 5163 struct ext4_group_info *grp; 5164 struct ext4_inode_info *ei; 5165 5166 /* preallocate only when found space is larger then requested */ 5167 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5168 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5169 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5170 BUG_ON(ac->ac_pa == NULL); 5171 5172 pa = ac->ac_pa; 5173 5174 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5175 struct ext4_free_extent ex = { 5176 .fe_logical = ac->ac_g_ex.fe_logical, 5177 .fe_len = ac->ac_orig_goal_len, 5178 }; 5179 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5180 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); 5181 5182 /* 5183 * We can't allocate as much as normalizer wants, so we try 5184 * to get proper lstart to cover the original request, except 5185 * when the goal doesn't cover the original request as below: 5186 * 5187 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 5188 * best_ex:0/200(200) -> adjusted: 1848/2048(200) 5189 */ 5190 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5191 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5192 5193 /* 5194 * Use the below logic for adjusting best extent as it keeps 5195 * fragmentation in check while ensuring logical range of best 5196 * extent doesn't overflow out of goal extent: 5197 * 5198 * 1. Check if best ex can be kept at end of goal (before 5199 * cr_best_avail trimmed it) and still cover original start 5200 * 2. Else, check if best ex can be kept at start of goal and 5201 * still cover original end 5202 * 3. Else, keep the best ex at start of original request. 5203 */ 5204 ex.fe_len = ac->ac_b_ex.fe_len; 5205 5206 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5207 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5208 goto adjust_bex; 5209 5210 ex.fe_logical = ac->ac_g_ex.fe_logical; 5211 if (o_ex_end <= extent_logical_end(sbi, &ex)) 5212 goto adjust_bex; 5213 5214 ex.fe_logical = ac->ac_o_ex.fe_logical; 5215 adjust_bex: 5216 ac->ac_b_ex.fe_logical = ex.fe_logical; 5217 5218 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5219 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5220 } 5221 5222 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5223 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5224 pa->pa_len = ac->ac_b_ex.fe_len; 5225 pa->pa_free = pa->pa_len; 5226 spin_lock_init(&pa->pa_lock); 5227 INIT_LIST_HEAD(&pa->pa_group_list); 5228 pa->pa_deleted = 0; 5229 pa->pa_type = MB_INODE_PA; 5230 5231 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5232 pa->pa_len, pa->pa_lstart); 5233 trace_ext4_mb_new_inode_pa(ac, pa); 5234 5235 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5236 ext4_mb_use_inode_pa(ac, pa); 5237 5238 ei = EXT4_I(ac->ac_inode); 5239 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5240 if (!grp) 5241 return; 5242 5243 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5244 pa->pa_inode = ac->ac_inode; 5245 5246 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5247 5248 write_lock(pa->pa_node_lock.inode_lock); 5249 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5250 write_unlock(pa->pa_node_lock.inode_lock); 5251 atomic_inc(&ei->i_prealloc_active); 5252 } 5253 5254 /* 5255 * creates new preallocated space for locality group inodes belongs to 5256 */ 5257 static noinline_for_stack void 5258 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5259 { 5260 struct super_block *sb = ac->ac_sb; 5261 struct ext4_locality_group *lg; 5262 struct ext4_prealloc_space *pa; 5263 struct ext4_group_info *grp; 5264 5265 /* preallocate only when found space is larger then requested */ 5266 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5267 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5268 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5269 BUG_ON(ac->ac_pa == NULL); 5270 5271 pa = ac->ac_pa; 5272 5273 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5274 pa->pa_lstart = pa->pa_pstart; 5275 pa->pa_len = ac->ac_b_ex.fe_len; 5276 pa->pa_free = pa->pa_len; 5277 spin_lock_init(&pa->pa_lock); 5278 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5279 INIT_LIST_HEAD(&pa->pa_group_list); 5280 pa->pa_deleted = 0; 5281 pa->pa_type = MB_GROUP_PA; 5282 5283 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5284 pa->pa_len, pa->pa_lstart); 5285 trace_ext4_mb_new_group_pa(ac, pa); 5286 5287 ext4_mb_use_group_pa(ac, pa); 5288 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5289 5290 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5291 if (!grp) 5292 return; 5293 lg = ac->ac_lg; 5294 BUG_ON(lg == NULL); 5295 5296 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5297 pa->pa_inode = NULL; 5298 5299 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5300 5301 /* 5302 * We will later add the new pa to the right bucket 5303 * after updating the pa_free in ext4_mb_release_context 5304 */ 5305 } 5306 5307 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5308 { 5309 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5310 ext4_mb_new_group_pa(ac); 5311 else 5312 ext4_mb_new_inode_pa(ac); 5313 } 5314 5315 /* 5316 * finds all unused blocks in on-disk bitmap, frees them in 5317 * in-core bitmap and buddy. 5318 * @pa must be unlinked from inode and group lists, so that 5319 * nobody else can find/use it. 5320 * the caller MUST hold group/inode locks. 5321 * TODO: optimize the case when there are no in-core structures yet 5322 */ 5323 static noinline_for_stack void 5324 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5325 struct ext4_prealloc_space *pa) 5326 { 5327 struct super_block *sb = e4b->bd_sb; 5328 struct ext4_sb_info *sbi = EXT4_SB(sb); 5329 unsigned int end; 5330 unsigned int next; 5331 ext4_group_t group; 5332 ext4_grpblk_t bit; 5333 unsigned long long grp_blk_start; 5334 int free = 0; 5335 5336 BUG_ON(pa->pa_deleted == 0); 5337 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5338 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5339 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5340 end = bit + pa->pa_len; 5341 5342 while (bit < end) { 5343 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5344 if (bit >= end) 5345 break; 5346 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5347 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5348 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5349 (unsigned) next - bit, (unsigned) group); 5350 free += next - bit; 5351 5352 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5353 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5354 EXT4_C2B(sbi, bit)), 5355 next - bit); 5356 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5357 bit = next + 1; 5358 } 5359 if (free != pa->pa_free) { 5360 ext4_msg(e4b->bd_sb, KERN_CRIT, 5361 "pa %p: logic %lu, phys. %lu, len %d", 5362 pa, (unsigned long) pa->pa_lstart, 5363 (unsigned long) pa->pa_pstart, 5364 pa->pa_len); 5365 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5366 free, pa->pa_free); 5367 /* 5368 * pa is already deleted so we use the value obtained 5369 * from the bitmap and continue. 5370 */ 5371 } 5372 atomic_add(free, &sbi->s_mb_discarded); 5373 } 5374 5375 static noinline_for_stack void 5376 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5377 struct ext4_prealloc_space *pa) 5378 { 5379 struct super_block *sb = e4b->bd_sb; 5380 ext4_group_t group; 5381 ext4_grpblk_t bit; 5382 5383 trace_ext4_mb_release_group_pa(sb, pa); 5384 BUG_ON(pa->pa_deleted == 0); 5385 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5386 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5387 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5388 e4b->bd_group, group, pa->pa_pstart); 5389 return; 5390 } 5391 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5392 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5393 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5394 } 5395 5396 /* 5397 * releases all preallocations in given group 5398 * 5399 * first, we need to decide discard policy: 5400 * - when do we discard 5401 * 1) ENOSPC 5402 * - how many do we discard 5403 * 1) how many requested 5404 */ 5405 static noinline_for_stack int 5406 ext4_mb_discard_group_preallocations(struct super_block *sb, 5407 ext4_group_t group, int *busy) 5408 { 5409 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5410 struct buffer_head *bitmap_bh = NULL; 5411 struct ext4_prealloc_space *pa, *tmp; 5412 LIST_HEAD(list); 5413 struct ext4_buddy e4b; 5414 struct ext4_inode_info *ei; 5415 int err; 5416 int free = 0; 5417 5418 if (!grp) 5419 return 0; 5420 mb_debug(sb, "discard preallocation for group %u\n", group); 5421 if (list_empty(&grp->bb_prealloc_list)) 5422 goto out_dbg; 5423 5424 bitmap_bh = ext4_read_block_bitmap(sb, group); 5425 if (IS_ERR(bitmap_bh)) { 5426 err = PTR_ERR(bitmap_bh); 5427 ext4_error_err(sb, -err, 5428 "Error %d reading block bitmap for %u", 5429 err, group); 5430 goto out_dbg; 5431 } 5432 5433 err = ext4_mb_load_buddy(sb, group, &e4b); 5434 if (err) { 5435 ext4_warning(sb, "Error %d loading buddy information for %u", 5436 err, group); 5437 put_bh(bitmap_bh); 5438 goto out_dbg; 5439 } 5440 5441 ext4_lock_group(sb, group); 5442 list_for_each_entry_safe(pa, tmp, 5443 &grp->bb_prealloc_list, pa_group_list) { 5444 spin_lock(&pa->pa_lock); 5445 if (atomic_read(&pa->pa_count)) { 5446 spin_unlock(&pa->pa_lock); 5447 *busy = 1; 5448 continue; 5449 } 5450 if (pa->pa_deleted) { 5451 spin_unlock(&pa->pa_lock); 5452 continue; 5453 } 5454 5455 /* seems this one can be freed ... */ 5456 ext4_mb_mark_pa_deleted(sb, pa); 5457 5458 if (!free) 5459 this_cpu_inc(discard_pa_seq); 5460 5461 /* we can trust pa_free ... */ 5462 free += pa->pa_free; 5463 5464 spin_unlock(&pa->pa_lock); 5465 5466 list_del(&pa->pa_group_list); 5467 list_add(&pa->u.pa_tmp_list, &list); 5468 } 5469 5470 /* now free all selected PAs */ 5471 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5472 5473 /* remove from object (inode or locality group) */ 5474 if (pa->pa_type == MB_GROUP_PA) { 5475 spin_lock(pa->pa_node_lock.lg_lock); 5476 list_del_rcu(&pa->pa_node.lg_list); 5477 spin_unlock(pa->pa_node_lock.lg_lock); 5478 } else { 5479 write_lock(pa->pa_node_lock.inode_lock); 5480 ei = EXT4_I(pa->pa_inode); 5481 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5482 write_unlock(pa->pa_node_lock.inode_lock); 5483 } 5484 5485 list_del(&pa->u.pa_tmp_list); 5486 5487 if (pa->pa_type == MB_GROUP_PA) { 5488 ext4_mb_release_group_pa(&e4b, pa); 5489 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5490 } else { 5491 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5492 ext4_mb_pa_free(pa); 5493 } 5494 } 5495 5496 ext4_unlock_group(sb, group); 5497 ext4_mb_unload_buddy(&e4b); 5498 put_bh(bitmap_bh); 5499 out_dbg: 5500 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5501 free, group, grp->bb_free); 5502 return free; 5503 } 5504 5505 /* 5506 * releases all non-used preallocated blocks for given inode 5507 * 5508 * It's important to discard preallocations under i_data_sem 5509 * We don't want another block to be served from the prealloc 5510 * space when we are discarding the inode prealloc space. 5511 * 5512 * FIXME!! Make sure it is valid at all the call sites 5513 */ 5514 void ext4_discard_preallocations(struct inode *inode) 5515 { 5516 struct ext4_inode_info *ei = EXT4_I(inode); 5517 struct super_block *sb = inode->i_sb; 5518 struct buffer_head *bitmap_bh = NULL; 5519 struct ext4_prealloc_space *pa, *tmp; 5520 ext4_group_t group = 0; 5521 LIST_HEAD(list); 5522 struct ext4_buddy e4b; 5523 struct rb_node *iter; 5524 int err; 5525 5526 if (!S_ISREG(inode->i_mode)) 5527 return; 5528 5529 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5530 return; 5531 5532 mb_debug(sb, "discard preallocation for inode %lu\n", 5533 inode->i_ino); 5534 trace_ext4_discard_preallocations(inode, 5535 atomic_read(&ei->i_prealloc_active)); 5536 5537 repeat: 5538 /* first, collect all pa's in the inode */ 5539 write_lock(&ei->i_prealloc_lock); 5540 for (iter = rb_first(&ei->i_prealloc_node); iter; 5541 iter = rb_next(iter)) { 5542 pa = rb_entry(iter, struct ext4_prealloc_space, 5543 pa_node.inode_node); 5544 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5545 5546 spin_lock(&pa->pa_lock); 5547 if (atomic_read(&pa->pa_count)) { 5548 /* this shouldn't happen often - nobody should 5549 * use preallocation while we're discarding it */ 5550 spin_unlock(&pa->pa_lock); 5551 write_unlock(&ei->i_prealloc_lock); 5552 ext4_msg(sb, KERN_ERR, 5553 "uh-oh! used pa while discarding"); 5554 WARN_ON(1); 5555 schedule_timeout_uninterruptible(HZ); 5556 goto repeat; 5557 5558 } 5559 if (pa->pa_deleted == 0) { 5560 ext4_mb_mark_pa_deleted(sb, pa); 5561 spin_unlock(&pa->pa_lock); 5562 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5563 list_add(&pa->u.pa_tmp_list, &list); 5564 continue; 5565 } 5566 5567 /* someone is deleting pa right now */ 5568 spin_unlock(&pa->pa_lock); 5569 write_unlock(&ei->i_prealloc_lock); 5570 5571 /* we have to wait here because pa_deleted 5572 * doesn't mean pa is already unlinked from 5573 * the list. as we might be called from 5574 * ->clear_inode() the inode will get freed 5575 * and concurrent thread which is unlinking 5576 * pa from inode's list may access already 5577 * freed memory, bad-bad-bad */ 5578 5579 /* XXX: if this happens too often, we can 5580 * add a flag to force wait only in case 5581 * of ->clear_inode(), but not in case of 5582 * regular truncate */ 5583 schedule_timeout_uninterruptible(HZ); 5584 goto repeat; 5585 } 5586 write_unlock(&ei->i_prealloc_lock); 5587 5588 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5589 BUG_ON(pa->pa_type != MB_INODE_PA); 5590 group = ext4_get_group_number(sb, pa->pa_pstart); 5591 5592 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5593 GFP_NOFS|__GFP_NOFAIL); 5594 if (err) { 5595 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5596 err, group); 5597 continue; 5598 } 5599 5600 bitmap_bh = ext4_read_block_bitmap(sb, group); 5601 if (IS_ERR(bitmap_bh)) { 5602 err = PTR_ERR(bitmap_bh); 5603 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5604 err, group); 5605 ext4_mb_unload_buddy(&e4b); 5606 continue; 5607 } 5608 5609 ext4_lock_group(sb, group); 5610 list_del(&pa->pa_group_list); 5611 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5612 ext4_unlock_group(sb, group); 5613 5614 ext4_mb_unload_buddy(&e4b); 5615 put_bh(bitmap_bh); 5616 5617 list_del(&pa->u.pa_tmp_list); 5618 ext4_mb_pa_free(pa); 5619 } 5620 } 5621 5622 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5623 { 5624 struct ext4_prealloc_space *pa; 5625 5626 BUG_ON(ext4_pspace_cachep == NULL); 5627 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5628 if (!pa) 5629 return -ENOMEM; 5630 atomic_set(&pa->pa_count, 1); 5631 ac->ac_pa = pa; 5632 return 0; 5633 } 5634 5635 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5636 { 5637 struct ext4_prealloc_space *pa = ac->ac_pa; 5638 5639 BUG_ON(!pa); 5640 ac->ac_pa = NULL; 5641 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5642 /* 5643 * current function is only called due to an error or due to 5644 * len of found blocks < len of requested blocks hence the PA has not 5645 * been added to grp->bb_prealloc_list. So we don't need to lock it 5646 */ 5647 pa->pa_deleted = 1; 5648 ext4_mb_pa_free(pa); 5649 } 5650 5651 #ifdef CONFIG_EXT4_DEBUG 5652 static inline void ext4_mb_show_pa(struct super_block *sb) 5653 { 5654 ext4_group_t i, ngroups; 5655 5656 if (ext4_forced_shutdown(sb)) 5657 return; 5658 5659 ngroups = ext4_get_groups_count(sb); 5660 mb_debug(sb, "groups: "); 5661 for (i = 0; i < ngroups; i++) { 5662 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5663 struct ext4_prealloc_space *pa; 5664 ext4_grpblk_t start; 5665 struct list_head *cur; 5666 5667 if (!grp) 5668 continue; 5669 ext4_lock_group(sb, i); 5670 list_for_each(cur, &grp->bb_prealloc_list) { 5671 pa = list_entry(cur, struct ext4_prealloc_space, 5672 pa_group_list); 5673 spin_lock(&pa->pa_lock); 5674 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5675 NULL, &start); 5676 spin_unlock(&pa->pa_lock); 5677 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5678 pa->pa_len); 5679 } 5680 ext4_unlock_group(sb, i); 5681 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5682 grp->bb_fragments); 5683 } 5684 } 5685 5686 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5687 { 5688 struct super_block *sb = ac->ac_sb; 5689 5690 if (ext4_forced_shutdown(sb)) 5691 return; 5692 5693 mb_debug(sb, "Can't allocate:" 5694 " Allocation context details:"); 5695 mb_debug(sb, "status %u flags 0x%x", 5696 ac->ac_status, ac->ac_flags); 5697 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5698 "goal %lu/%lu/%lu@%lu, " 5699 "best %lu/%lu/%lu@%lu cr %d", 5700 (unsigned long)ac->ac_o_ex.fe_group, 5701 (unsigned long)ac->ac_o_ex.fe_start, 5702 (unsigned long)ac->ac_o_ex.fe_len, 5703 (unsigned long)ac->ac_o_ex.fe_logical, 5704 (unsigned long)ac->ac_g_ex.fe_group, 5705 (unsigned long)ac->ac_g_ex.fe_start, 5706 (unsigned long)ac->ac_g_ex.fe_len, 5707 (unsigned long)ac->ac_g_ex.fe_logical, 5708 (unsigned long)ac->ac_b_ex.fe_group, 5709 (unsigned long)ac->ac_b_ex.fe_start, 5710 (unsigned long)ac->ac_b_ex.fe_len, 5711 (unsigned long)ac->ac_b_ex.fe_logical, 5712 (int)ac->ac_criteria); 5713 mb_debug(sb, "%u found", ac->ac_found); 5714 mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa)); 5715 if (ac->ac_pa) 5716 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5717 "group pa" : "inode pa"); 5718 ext4_mb_show_pa(sb); 5719 } 5720 #else 5721 static inline void ext4_mb_show_pa(struct super_block *sb) 5722 { 5723 } 5724 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5725 { 5726 ext4_mb_show_pa(ac->ac_sb); 5727 } 5728 #endif 5729 5730 /* 5731 * We use locality group preallocation for small size file. The size of the 5732 * file is determined by the current size or the resulting size after 5733 * allocation which ever is larger 5734 * 5735 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5736 */ 5737 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5738 { 5739 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5740 int bsbits = ac->ac_sb->s_blocksize_bits; 5741 loff_t size, isize; 5742 bool inode_pa_eligible, group_pa_eligible; 5743 5744 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5745 return; 5746 5747 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5748 return; 5749 5750 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5751 inode_pa_eligible = true; 5752 size = extent_logical_end(sbi, &ac->ac_o_ex); 5753 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5754 >> bsbits; 5755 5756 /* No point in using inode preallocation for closed files */ 5757 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5758 !inode_is_open_for_write(ac->ac_inode)) 5759 inode_pa_eligible = false; 5760 5761 size = max(size, isize); 5762 /* Don't use group allocation for large files */ 5763 if (size > sbi->s_mb_stream_request) 5764 group_pa_eligible = false; 5765 5766 if (!group_pa_eligible) { 5767 if (inode_pa_eligible) 5768 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5769 else 5770 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5771 return; 5772 } 5773 5774 BUG_ON(ac->ac_lg != NULL); 5775 /* 5776 * locality group prealloc space are per cpu. The reason for having 5777 * per cpu locality group is to reduce the contention between block 5778 * request from multiple CPUs. 5779 */ 5780 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5781 5782 /* we're going to use group allocation */ 5783 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5784 5785 /* serialize all allocations in the group */ 5786 mutex_lock(&ac->ac_lg->lg_mutex); 5787 } 5788 5789 static noinline_for_stack void 5790 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5791 struct ext4_allocation_request *ar) 5792 { 5793 struct super_block *sb = ar->inode->i_sb; 5794 struct ext4_sb_info *sbi = EXT4_SB(sb); 5795 struct ext4_super_block *es = sbi->s_es; 5796 ext4_group_t group; 5797 unsigned int len; 5798 ext4_fsblk_t goal; 5799 ext4_grpblk_t block; 5800 5801 /* we can't allocate > group size */ 5802 len = ar->len; 5803 5804 /* just a dirty hack to filter too big requests */ 5805 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5806 len = EXT4_CLUSTERS_PER_GROUP(sb); 5807 5808 /* start searching from the goal */ 5809 goal = ar->goal; 5810 if (goal < le32_to_cpu(es->s_first_data_block) || 5811 goal >= ext4_blocks_count(es)) 5812 goal = le32_to_cpu(es->s_first_data_block); 5813 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5814 5815 /* set up allocation goals */ 5816 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5817 ac->ac_status = AC_STATUS_CONTINUE; 5818 ac->ac_sb = sb; 5819 ac->ac_inode = ar->inode; 5820 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5821 ac->ac_o_ex.fe_group = group; 5822 ac->ac_o_ex.fe_start = block; 5823 ac->ac_o_ex.fe_len = len; 5824 ac->ac_g_ex = ac->ac_o_ex; 5825 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5826 ac->ac_flags = ar->flags; 5827 5828 /* we have to define context: we'll work with a file or 5829 * locality group. this is a policy, actually */ 5830 ext4_mb_group_or_file(ac); 5831 5832 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5833 "left: %u/%u, right %u/%u to %swritable\n", 5834 (unsigned) ar->len, (unsigned) ar->logical, 5835 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5836 (unsigned) ar->lleft, (unsigned) ar->pleft, 5837 (unsigned) ar->lright, (unsigned) ar->pright, 5838 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5839 } 5840 5841 static noinline_for_stack void 5842 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5843 struct ext4_locality_group *lg, 5844 int order, int total_entries) 5845 { 5846 ext4_group_t group = 0; 5847 struct ext4_buddy e4b; 5848 LIST_HEAD(discard_list); 5849 struct ext4_prealloc_space *pa, *tmp; 5850 5851 mb_debug(sb, "discard locality group preallocation\n"); 5852 5853 spin_lock(&lg->lg_prealloc_lock); 5854 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5855 pa_node.lg_list, 5856 lockdep_is_held(&lg->lg_prealloc_lock)) { 5857 spin_lock(&pa->pa_lock); 5858 if (atomic_read(&pa->pa_count)) { 5859 /* 5860 * This is the pa that we just used 5861 * for block allocation. So don't 5862 * free that 5863 */ 5864 spin_unlock(&pa->pa_lock); 5865 continue; 5866 } 5867 if (pa->pa_deleted) { 5868 spin_unlock(&pa->pa_lock); 5869 continue; 5870 } 5871 /* only lg prealloc space */ 5872 BUG_ON(pa->pa_type != MB_GROUP_PA); 5873 5874 /* seems this one can be freed ... */ 5875 ext4_mb_mark_pa_deleted(sb, pa); 5876 spin_unlock(&pa->pa_lock); 5877 5878 list_del_rcu(&pa->pa_node.lg_list); 5879 list_add(&pa->u.pa_tmp_list, &discard_list); 5880 5881 total_entries--; 5882 if (total_entries <= 5) { 5883 /* 5884 * we want to keep only 5 entries 5885 * allowing it to grow to 8. This 5886 * mak sure we don't call discard 5887 * soon for this list. 5888 */ 5889 break; 5890 } 5891 } 5892 spin_unlock(&lg->lg_prealloc_lock); 5893 5894 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5895 int err; 5896 5897 group = ext4_get_group_number(sb, pa->pa_pstart); 5898 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5899 GFP_NOFS|__GFP_NOFAIL); 5900 if (err) { 5901 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5902 err, group); 5903 continue; 5904 } 5905 ext4_lock_group(sb, group); 5906 list_del(&pa->pa_group_list); 5907 ext4_mb_release_group_pa(&e4b, pa); 5908 ext4_unlock_group(sb, group); 5909 5910 ext4_mb_unload_buddy(&e4b); 5911 list_del(&pa->u.pa_tmp_list); 5912 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5913 } 5914 } 5915 5916 /* 5917 * We have incremented pa_count. So it cannot be freed at this 5918 * point. Also we hold lg_mutex. So no parallel allocation is 5919 * possible from this lg. That means pa_free cannot be updated. 5920 * 5921 * A parallel ext4_mb_discard_group_preallocations is possible. 5922 * which can cause the lg_prealloc_list to be updated. 5923 */ 5924 5925 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5926 { 5927 int order, added = 0, lg_prealloc_count = 1; 5928 struct super_block *sb = ac->ac_sb; 5929 struct ext4_locality_group *lg = ac->ac_lg; 5930 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5931 5932 order = fls(pa->pa_free) - 1; 5933 if (order > PREALLOC_TB_SIZE - 1) 5934 /* The max size of hash table is PREALLOC_TB_SIZE */ 5935 order = PREALLOC_TB_SIZE - 1; 5936 /* Add the prealloc space to lg */ 5937 spin_lock(&lg->lg_prealloc_lock); 5938 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5939 pa_node.lg_list, 5940 lockdep_is_held(&lg->lg_prealloc_lock)) { 5941 spin_lock(&tmp_pa->pa_lock); 5942 if (tmp_pa->pa_deleted) { 5943 spin_unlock(&tmp_pa->pa_lock); 5944 continue; 5945 } 5946 if (!added && pa->pa_free < tmp_pa->pa_free) { 5947 /* Add to the tail of the previous entry */ 5948 list_add_tail_rcu(&pa->pa_node.lg_list, 5949 &tmp_pa->pa_node.lg_list); 5950 added = 1; 5951 /* 5952 * we want to count the total 5953 * number of entries in the list 5954 */ 5955 } 5956 spin_unlock(&tmp_pa->pa_lock); 5957 lg_prealloc_count++; 5958 } 5959 if (!added) 5960 list_add_tail_rcu(&pa->pa_node.lg_list, 5961 &lg->lg_prealloc_list[order]); 5962 spin_unlock(&lg->lg_prealloc_lock); 5963 5964 /* Now trim the list to be not more than 8 elements */ 5965 if (lg_prealloc_count > 8) 5966 ext4_mb_discard_lg_preallocations(sb, lg, 5967 order, lg_prealloc_count); 5968 } 5969 5970 /* 5971 * release all resource we used in allocation 5972 */ 5973 static void ext4_mb_release_context(struct ext4_allocation_context *ac) 5974 { 5975 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5976 struct ext4_prealloc_space *pa = ac->ac_pa; 5977 if (pa) { 5978 if (pa->pa_type == MB_GROUP_PA) { 5979 /* see comment in ext4_mb_use_group_pa() */ 5980 spin_lock(&pa->pa_lock); 5981 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5982 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5983 pa->pa_free -= ac->ac_b_ex.fe_len; 5984 pa->pa_len -= ac->ac_b_ex.fe_len; 5985 spin_unlock(&pa->pa_lock); 5986 5987 /* 5988 * We want to add the pa to the right bucket. 5989 * Remove it from the list and while adding 5990 * make sure the list to which we are adding 5991 * doesn't grow big. 5992 */ 5993 if (likely(pa->pa_free)) { 5994 spin_lock(pa->pa_node_lock.lg_lock); 5995 list_del_rcu(&pa->pa_node.lg_list); 5996 spin_unlock(pa->pa_node_lock.lg_lock); 5997 ext4_mb_add_n_trim(ac); 5998 } 5999 } 6000 6001 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6002 } 6003 if (ac->ac_bitmap_folio) 6004 folio_put(ac->ac_bitmap_folio); 6005 if (ac->ac_buddy_folio) 6006 folio_put(ac->ac_buddy_folio); 6007 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6008 mutex_unlock(&ac->ac_lg->lg_mutex); 6009 ext4_mb_collect_stats(ac); 6010 } 6011 6012 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6013 { 6014 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6015 int ret; 6016 int freed = 0, busy = 0; 6017 int retry = 0; 6018 6019 trace_ext4_mb_discard_preallocations(sb, needed); 6020 6021 if (needed == 0) 6022 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6023 repeat: 6024 for (i = 0; i < ngroups && needed > 0; i++) { 6025 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6026 freed += ret; 6027 needed -= ret; 6028 cond_resched(); 6029 } 6030 6031 if (needed > 0 && busy && ++retry < 3) { 6032 busy = 0; 6033 goto repeat; 6034 } 6035 6036 return freed; 6037 } 6038 6039 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6040 struct ext4_allocation_context *ac, u64 *seq) 6041 { 6042 int freed; 6043 u64 seq_retry = 0; 6044 bool ret = false; 6045 6046 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6047 if (freed) { 6048 ret = true; 6049 goto out_dbg; 6050 } 6051 seq_retry = ext4_get_discard_pa_seq_sum(); 6052 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6053 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6054 *seq = seq_retry; 6055 ret = true; 6056 } 6057 6058 out_dbg: 6059 mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret)); 6060 return ret; 6061 } 6062 6063 /* 6064 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6065 * linearly starting at the goal block and also excludes the blocks which 6066 * are going to be in use after fast commit replay. 6067 */ 6068 static ext4_fsblk_t 6069 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6070 { 6071 struct buffer_head *bitmap_bh; 6072 struct super_block *sb = ar->inode->i_sb; 6073 struct ext4_sb_info *sbi = EXT4_SB(sb); 6074 ext4_group_t group, nr; 6075 ext4_grpblk_t blkoff; 6076 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6077 ext4_grpblk_t i = 0; 6078 ext4_fsblk_t goal, block; 6079 struct ext4_super_block *es = sbi->s_es; 6080 6081 goal = ar->goal; 6082 if (goal < le32_to_cpu(es->s_first_data_block) || 6083 goal >= ext4_blocks_count(es)) 6084 goal = le32_to_cpu(es->s_first_data_block); 6085 6086 ar->len = 0; 6087 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6088 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6089 bitmap_bh = ext4_read_block_bitmap(sb, group); 6090 if (IS_ERR(bitmap_bh)) { 6091 *errp = PTR_ERR(bitmap_bh); 6092 pr_warn("Failed to read block bitmap\n"); 6093 return 0; 6094 } 6095 6096 while (1) { 6097 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6098 blkoff); 6099 if (i >= max) 6100 break; 6101 if (ext4_fc_replay_check_excluded(sb, 6102 ext4_group_first_block_no(sb, group) + 6103 EXT4_C2B(sbi, i))) { 6104 blkoff = i + 1; 6105 } else 6106 break; 6107 } 6108 brelse(bitmap_bh); 6109 if (i < max) 6110 break; 6111 6112 if (++group >= ext4_get_groups_count(sb)) 6113 group = 0; 6114 6115 blkoff = 0; 6116 } 6117 6118 if (i >= max) { 6119 *errp = -ENOSPC; 6120 return 0; 6121 } 6122 6123 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6124 ext4_mb_mark_bb(sb, block, 1, true); 6125 ar->len = 1; 6126 6127 *errp = 0; 6128 return block; 6129 } 6130 6131 /* 6132 * Main entry point into mballoc to allocate blocks 6133 * it tries to use preallocation first, then falls back 6134 * to usual allocation 6135 */ 6136 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6137 struct ext4_allocation_request *ar, int *errp) 6138 { 6139 struct ext4_allocation_context *ac = NULL; 6140 struct ext4_sb_info *sbi; 6141 struct super_block *sb; 6142 ext4_fsblk_t block = 0; 6143 unsigned int inquota = 0; 6144 unsigned int reserv_clstrs = 0; 6145 int retries = 0; 6146 u64 seq; 6147 6148 might_sleep(); 6149 sb = ar->inode->i_sb; 6150 sbi = EXT4_SB(sb); 6151 6152 trace_ext4_request_blocks(ar); 6153 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6154 return ext4_mb_new_blocks_simple(ar, errp); 6155 6156 /* Allow to use superuser reservation for quota file */ 6157 if (ext4_is_quota_file(ar->inode)) 6158 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6159 6160 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6161 /* Without delayed allocation we need to verify 6162 * there is enough free blocks to do block allocation 6163 * and verify allocation doesn't exceed the quota limits. 6164 */ 6165 while (ar->len && 6166 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6167 6168 /* let others to free the space */ 6169 cond_resched(); 6170 ar->len = ar->len >> 1; 6171 } 6172 if (!ar->len) { 6173 ext4_mb_show_pa(sb); 6174 *errp = -ENOSPC; 6175 return 0; 6176 } 6177 reserv_clstrs = ar->len; 6178 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6179 dquot_alloc_block_nofail(ar->inode, 6180 EXT4_C2B(sbi, ar->len)); 6181 } else { 6182 while (ar->len && 6183 dquot_alloc_block(ar->inode, 6184 EXT4_C2B(sbi, ar->len))) { 6185 6186 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6187 ar->len--; 6188 } 6189 } 6190 inquota = ar->len; 6191 if (ar->len == 0) { 6192 *errp = -EDQUOT; 6193 goto out; 6194 } 6195 } 6196 6197 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6198 if (!ac) { 6199 ar->len = 0; 6200 *errp = -ENOMEM; 6201 goto out; 6202 } 6203 6204 ext4_mb_initialize_context(ac, ar); 6205 6206 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6207 seq = this_cpu_read(discard_pa_seq); 6208 if (!ext4_mb_use_preallocated(ac)) { 6209 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6210 ext4_mb_normalize_request(ac, ar); 6211 6212 *errp = ext4_mb_pa_alloc(ac); 6213 if (*errp) 6214 goto errout; 6215 repeat: 6216 /* allocate space in core */ 6217 *errp = ext4_mb_regular_allocator(ac); 6218 /* 6219 * pa allocated above is added to grp->bb_prealloc_list only 6220 * when we were able to allocate some block i.e. when 6221 * ac->ac_status == AC_STATUS_FOUND. 6222 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6223 * So we have to free this pa here itself. 6224 */ 6225 if (*errp) { 6226 ext4_mb_pa_put_free(ac); 6227 ext4_discard_allocated_blocks(ac); 6228 goto errout; 6229 } 6230 if (ac->ac_status == AC_STATUS_FOUND && 6231 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6232 ext4_mb_pa_put_free(ac); 6233 } 6234 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6235 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6236 if (*errp) { 6237 ext4_discard_allocated_blocks(ac); 6238 goto errout; 6239 } else { 6240 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6241 ar->len = ac->ac_b_ex.fe_len; 6242 } 6243 } else { 6244 if (++retries < 3 && 6245 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6246 goto repeat; 6247 /* 6248 * If block allocation fails then the pa allocated above 6249 * needs to be freed here itself. 6250 */ 6251 ext4_mb_pa_put_free(ac); 6252 *errp = -ENOSPC; 6253 } 6254 6255 if (*errp) { 6256 errout: 6257 ac->ac_b_ex.fe_len = 0; 6258 ar->len = 0; 6259 ext4_mb_show_ac(ac); 6260 } 6261 ext4_mb_release_context(ac); 6262 kmem_cache_free(ext4_ac_cachep, ac); 6263 out: 6264 if (inquota && ar->len < inquota) 6265 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6266 if (!ar->len) { 6267 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6268 /* release all the reserved blocks if non delalloc */ 6269 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6270 reserv_clstrs); 6271 } 6272 6273 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6274 6275 return block; 6276 } 6277 6278 /* 6279 * We can merge two free data extents only if the physical blocks 6280 * are contiguous, AND the extents were freed by the same transaction, 6281 * AND the blocks are associated with the same group. 6282 */ 6283 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6284 struct ext4_free_data *entry, 6285 struct ext4_free_data *new_entry, 6286 struct rb_root *entry_rb_root) 6287 { 6288 if ((entry->efd_tid != new_entry->efd_tid) || 6289 (entry->efd_group != new_entry->efd_group)) 6290 return; 6291 if (entry->efd_start_cluster + entry->efd_count == 6292 new_entry->efd_start_cluster) { 6293 new_entry->efd_start_cluster = entry->efd_start_cluster; 6294 new_entry->efd_count += entry->efd_count; 6295 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6296 entry->efd_start_cluster) { 6297 new_entry->efd_count += entry->efd_count; 6298 } else 6299 return; 6300 spin_lock(&sbi->s_md_lock); 6301 list_del(&entry->efd_list); 6302 spin_unlock(&sbi->s_md_lock); 6303 rb_erase(&entry->efd_node, entry_rb_root); 6304 kmem_cache_free(ext4_free_data_cachep, entry); 6305 } 6306 6307 static noinline_for_stack void 6308 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6309 struct ext4_free_data *new_entry) 6310 { 6311 ext4_group_t group = e4b->bd_group; 6312 ext4_grpblk_t cluster; 6313 ext4_grpblk_t clusters = new_entry->efd_count; 6314 struct ext4_free_data *entry; 6315 struct ext4_group_info *db = e4b->bd_info; 6316 struct super_block *sb = e4b->bd_sb; 6317 struct ext4_sb_info *sbi = EXT4_SB(sb); 6318 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6319 struct rb_node *parent = NULL, *new_node; 6320 6321 BUG_ON(!ext4_handle_valid(handle)); 6322 BUG_ON(e4b->bd_bitmap_folio == NULL); 6323 BUG_ON(e4b->bd_buddy_folio == NULL); 6324 6325 new_node = &new_entry->efd_node; 6326 cluster = new_entry->efd_start_cluster; 6327 6328 if (!*n) { 6329 /* first free block exent. We need to 6330 protect buddy cache from being freed, 6331 * otherwise we'll refresh it from 6332 * on-disk bitmap and lose not-yet-available 6333 * blocks */ 6334 folio_get(e4b->bd_buddy_folio); 6335 folio_get(e4b->bd_bitmap_folio); 6336 } 6337 while (*n) { 6338 parent = *n; 6339 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6340 if (cluster < entry->efd_start_cluster) 6341 n = &(*n)->rb_left; 6342 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6343 n = &(*n)->rb_right; 6344 else { 6345 ext4_grp_locked_error(sb, group, 0, 6346 ext4_group_first_block_no(sb, group) + 6347 EXT4_C2B(sbi, cluster), 6348 "Block already on to-be-freed list"); 6349 kmem_cache_free(ext4_free_data_cachep, new_entry); 6350 return; 6351 } 6352 } 6353 6354 rb_link_node(new_node, parent, n); 6355 rb_insert_color(new_node, &db->bb_free_root); 6356 6357 /* Now try to see the extent can be merged to left and right */ 6358 node = rb_prev(new_node); 6359 if (node) { 6360 entry = rb_entry(node, struct ext4_free_data, efd_node); 6361 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6362 &(db->bb_free_root)); 6363 } 6364 6365 node = rb_next(new_node); 6366 if (node) { 6367 entry = rb_entry(node, struct ext4_free_data, efd_node); 6368 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6369 &(db->bb_free_root)); 6370 } 6371 6372 spin_lock(&sbi->s_md_lock); 6373 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]); 6374 sbi->s_mb_free_pending += clusters; 6375 spin_unlock(&sbi->s_md_lock); 6376 } 6377 6378 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6379 unsigned long count) 6380 { 6381 struct super_block *sb = inode->i_sb; 6382 ext4_group_t group; 6383 ext4_grpblk_t blkoff; 6384 6385 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6386 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count, 6387 EXT4_MB_BITMAP_MARKED_CHECK | 6388 EXT4_MB_SYNC_UPDATE, 6389 NULL); 6390 } 6391 6392 /** 6393 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6394 * Used by ext4_free_blocks() 6395 * @handle: handle for this transaction 6396 * @inode: inode 6397 * @block: starting physical block to be freed 6398 * @count: number of blocks to be freed 6399 * @flags: flags used by ext4_free_blocks 6400 */ 6401 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6402 ext4_fsblk_t block, unsigned long count, 6403 int flags) 6404 { 6405 struct super_block *sb = inode->i_sb; 6406 struct ext4_group_info *grp; 6407 unsigned int overflow; 6408 ext4_grpblk_t bit; 6409 ext4_group_t block_group; 6410 struct ext4_sb_info *sbi; 6411 struct ext4_buddy e4b; 6412 unsigned int count_clusters; 6413 int err = 0; 6414 int mark_flags = 0; 6415 ext4_grpblk_t changed; 6416 6417 sbi = EXT4_SB(sb); 6418 6419 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6420 !ext4_inode_block_valid(inode, block, count)) { 6421 ext4_error(sb, "Freeing blocks in system zone - " 6422 "Block = %llu, count = %lu", block, count); 6423 /* err = 0. ext4_std_error should be a no op */ 6424 goto error_out; 6425 } 6426 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6427 6428 do_more: 6429 overflow = 0; 6430 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6431 6432 grp = ext4_get_group_info(sb, block_group); 6433 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6434 return; 6435 6436 /* 6437 * Check to see if we are freeing blocks across a group 6438 * boundary. 6439 */ 6440 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6441 overflow = EXT4_C2B(sbi, bit) + count - 6442 EXT4_BLOCKS_PER_GROUP(sb); 6443 count -= overflow; 6444 /* The range changed so it's no longer validated */ 6445 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6446 } 6447 count_clusters = EXT4_NUM_B2C(sbi, count); 6448 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6449 6450 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6451 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6452 GFP_NOFS|__GFP_NOFAIL); 6453 if (err) 6454 goto error_out; 6455 6456 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6457 !ext4_inode_block_valid(inode, block, count)) { 6458 ext4_error(sb, "Freeing blocks in system zone - " 6459 "Block = %llu, count = %lu", block, count); 6460 /* err = 0. ext4_std_error should be a no op */ 6461 goto error_clean; 6462 } 6463 6464 #ifdef AGGRESSIVE_CHECK 6465 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; 6466 #endif 6467 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6468 count_clusters, mark_flags, &changed); 6469 6470 6471 if (err && changed == 0) 6472 goto error_clean; 6473 6474 #ifdef AGGRESSIVE_CHECK 6475 BUG_ON(changed != count_clusters); 6476 #endif 6477 6478 /* 6479 * We need to make sure we don't reuse the freed block until after the 6480 * transaction is committed. We make an exception if the inode is to be 6481 * written in writeback mode since writeback mode has weak data 6482 * consistency guarantees. 6483 */ 6484 if (ext4_handle_valid(handle) && 6485 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6486 !ext4_should_writeback_data(inode))) { 6487 struct ext4_free_data *new_entry; 6488 /* 6489 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6490 * to fail. 6491 */ 6492 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6493 GFP_NOFS|__GFP_NOFAIL); 6494 new_entry->efd_start_cluster = bit; 6495 new_entry->efd_group = block_group; 6496 new_entry->efd_count = count_clusters; 6497 new_entry->efd_tid = handle->h_transaction->t_tid; 6498 6499 ext4_lock_group(sb, block_group); 6500 ext4_mb_free_metadata(handle, &e4b, new_entry); 6501 } else { 6502 if (test_opt(sb, DISCARD)) { 6503 err = ext4_issue_discard(sb, block_group, bit, 6504 count_clusters); 6505 /* 6506 * Ignore EOPNOTSUPP error. This is consistent with 6507 * what happens when using journal. 6508 */ 6509 if (err == -EOPNOTSUPP) 6510 err = 0; 6511 if (err) 6512 ext4_msg(sb, KERN_WARNING, "discard request in" 6513 " group:%u block:%d count:%lu failed" 6514 " with %d", block_group, bit, count, 6515 err); 6516 } 6517 6518 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6519 6520 ext4_lock_group(sb, block_group); 6521 mb_free_blocks(inode, &e4b, bit, count_clusters); 6522 } 6523 6524 ext4_unlock_group(sb, block_group); 6525 6526 /* 6527 * on a bigalloc file system, defer the s_freeclusters_counter 6528 * update to the caller (ext4_remove_space and friends) so they 6529 * can determine if a cluster freed here should be rereserved 6530 */ 6531 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6532 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6533 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6534 percpu_counter_add(&sbi->s_freeclusters_counter, 6535 count_clusters); 6536 } 6537 6538 if (overflow && !err) { 6539 block += count; 6540 count = overflow; 6541 ext4_mb_unload_buddy(&e4b); 6542 /* The range changed so it's no longer validated */ 6543 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6544 goto do_more; 6545 } 6546 6547 error_clean: 6548 ext4_mb_unload_buddy(&e4b); 6549 error_out: 6550 ext4_std_error(sb, err); 6551 } 6552 6553 /** 6554 * ext4_free_blocks() -- Free given blocks and update quota 6555 * @handle: handle for this transaction 6556 * @inode: inode 6557 * @bh: optional buffer of the block to be freed 6558 * @block: starting physical block to be freed 6559 * @count: number of blocks to be freed 6560 * @flags: flags used by ext4_free_blocks 6561 */ 6562 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6563 struct buffer_head *bh, ext4_fsblk_t block, 6564 unsigned long count, int flags) 6565 { 6566 struct super_block *sb = inode->i_sb; 6567 unsigned int overflow; 6568 struct ext4_sb_info *sbi; 6569 6570 sbi = EXT4_SB(sb); 6571 6572 if (bh) { 6573 if (block) 6574 BUG_ON(block != bh->b_blocknr); 6575 else 6576 block = bh->b_blocknr; 6577 } 6578 6579 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6580 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6581 return; 6582 } 6583 6584 might_sleep(); 6585 6586 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6587 !ext4_inode_block_valid(inode, block, count)) { 6588 ext4_error(sb, "Freeing blocks not in datazone - " 6589 "block = %llu, count = %lu", block, count); 6590 return; 6591 } 6592 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6593 6594 ext4_debug("freeing block %llu\n", block); 6595 trace_ext4_free_blocks(inode, block, count, flags); 6596 6597 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6598 BUG_ON(count > 1); 6599 6600 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6601 inode, bh, block); 6602 } 6603 6604 /* 6605 * If the extent to be freed does not begin on a cluster 6606 * boundary, we need to deal with partial clusters at the 6607 * beginning and end of the extent. Normally we will free 6608 * blocks at the beginning or the end unless we are explicitly 6609 * requested to avoid doing so. 6610 */ 6611 overflow = EXT4_PBLK_COFF(sbi, block); 6612 if (overflow) { 6613 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6614 overflow = sbi->s_cluster_ratio - overflow; 6615 block += overflow; 6616 if (count > overflow) 6617 count -= overflow; 6618 else 6619 return; 6620 } else { 6621 block -= overflow; 6622 count += overflow; 6623 } 6624 /* The range changed so it's no longer validated */ 6625 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6626 } 6627 overflow = EXT4_LBLK_COFF(sbi, count); 6628 if (overflow) { 6629 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6630 if (count > overflow) 6631 count -= overflow; 6632 else 6633 return; 6634 } else 6635 count += sbi->s_cluster_ratio - overflow; 6636 /* The range changed so it's no longer validated */ 6637 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6638 } 6639 6640 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6641 int i; 6642 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6643 6644 for (i = 0; i < count; i++) { 6645 cond_resched(); 6646 if (is_metadata) 6647 bh = sb_find_get_block(inode->i_sb, block + i); 6648 ext4_forget(handle, is_metadata, inode, bh, block + i); 6649 } 6650 } 6651 6652 ext4_mb_clear_bb(handle, inode, block, count, flags); 6653 } 6654 6655 /** 6656 * ext4_group_add_blocks() -- Add given blocks to an existing group 6657 * @handle: handle to this transaction 6658 * @sb: super block 6659 * @block: start physical block to add to the block group 6660 * @count: number of blocks to free 6661 * 6662 * This marks the blocks as free in the bitmap and buddy. 6663 */ 6664 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6665 ext4_fsblk_t block, unsigned long count) 6666 { 6667 ext4_group_t block_group; 6668 ext4_grpblk_t bit; 6669 struct ext4_sb_info *sbi = EXT4_SB(sb); 6670 struct ext4_buddy e4b; 6671 int err = 0; 6672 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6673 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6674 unsigned long cluster_count = last_cluster - first_cluster + 1; 6675 ext4_grpblk_t changed; 6676 6677 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6678 6679 if (cluster_count == 0) 6680 return 0; 6681 6682 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6683 /* 6684 * Check to see if we are freeing blocks across a group 6685 * boundary. 6686 */ 6687 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6688 ext4_warning(sb, "too many blocks added to group %u", 6689 block_group); 6690 err = -EINVAL; 6691 goto error_out; 6692 } 6693 6694 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6695 if (err) 6696 goto error_out; 6697 6698 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6699 ext4_error(sb, "Adding blocks in system zones - " 6700 "Block = %llu, count = %lu", 6701 block, count); 6702 err = -EINVAL; 6703 goto error_clean; 6704 } 6705 6706 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6707 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, 6708 &changed); 6709 if (err && changed == 0) 6710 goto error_clean; 6711 6712 if (changed != cluster_count) 6713 ext4_error(sb, "bit already cleared in group %u", block_group); 6714 6715 ext4_lock_group(sb, block_group); 6716 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6717 ext4_unlock_group(sb, block_group); 6718 percpu_counter_add(&sbi->s_freeclusters_counter, 6719 changed); 6720 6721 error_clean: 6722 ext4_mb_unload_buddy(&e4b); 6723 error_out: 6724 ext4_std_error(sb, err); 6725 return err; 6726 } 6727 6728 /** 6729 * ext4_trim_extent -- function to TRIM one single free extent in the group 6730 * @sb: super block for the file system 6731 * @start: starting block of the free extent in the alloc. group 6732 * @count: number of blocks to TRIM 6733 * @e4b: ext4 buddy for the group 6734 * 6735 * Trim "count" blocks starting at "start" in the "group". To assure that no 6736 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6737 * be called with under the group lock. 6738 */ 6739 static int ext4_trim_extent(struct super_block *sb, 6740 int start, int count, struct ext4_buddy *e4b) 6741 __releases(bitlock) 6742 __acquires(bitlock) 6743 { 6744 struct ext4_free_extent ex; 6745 ext4_group_t group = e4b->bd_group; 6746 int ret = 0; 6747 6748 trace_ext4_trim_extent(sb, group, start, count); 6749 6750 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6751 6752 ex.fe_start = start; 6753 ex.fe_group = group; 6754 ex.fe_len = count; 6755 6756 /* 6757 * Mark blocks used, so no one can reuse them while 6758 * being trimmed. 6759 */ 6760 mb_mark_used(e4b, &ex); 6761 ext4_unlock_group(sb, group); 6762 ret = ext4_issue_discard(sb, group, start, count); 6763 ext4_lock_group(sb, group); 6764 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6765 return ret; 6766 } 6767 6768 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6769 ext4_group_t grp) 6770 { 6771 unsigned long nr_clusters_in_group; 6772 6773 if (grp < (ext4_get_groups_count(sb) - 1)) 6774 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6775 else 6776 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6777 ext4_group_first_block_no(sb, grp)) 6778 >> EXT4_CLUSTER_BITS(sb); 6779 6780 return nr_clusters_in_group - 1; 6781 } 6782 6783 static bool ext4_trim_interrupted(void) 6784 { 6785 return fatal_signal_pending(current) || freezing(current); 6786 } 6787 6788 static int ext4_try_to_trim_range(struct super_block *sb, 6789 struct ext4_buddy *e4b, ext4_grpblk_t start, 6790 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6791 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6792 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6793 { 6794 ext4_grpblk_t next, count, free_count, last, origin_start; 6795 bool set_trimmed = false; 6796 void *bitmap; 6797 6798 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 6799 return 0; 6800 6801 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6802 bitmap = e4b->bd_bitmap; 6803 if (start == 0 && max >= last) 6804 set_trimmed = true; 6805 origin_start = start; 6806 start = max(e4b->bd_info->bb_first_free, start); 6807 count = 0; 6808 free_count = 0; 6809 6810 while (start <= max) { 6811 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6812 if (start > max) 6813 break; 6814 6815 next = mb_find_next_bit(bitmap, last + 1, start); 6816 if (origin_start == 0 && next >= last) 6817 set_trimmed = true; 6818 6819 if ((next - start) >= minblocks) { 6820 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6821 6822 if (ret && ret != -EOPNOTSUPP) 6823 return count; 6824 count += next - start; 6825 } 6826 free_count += next - start; 6827 start = next + 1; 6828 6829 if (ext4_trim_interrupted()) 6830 return count; 6831 6832 if (need_resched()) { 6833 ext4_unlock_group(sb, e4b->bd_group); 6834 cond_resched(); 6835 ext4_lock_group(sb, e4b->bd_group); 6836 } 6837 6838 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6839 break; 6840 } 6841 6842 if (set_trimmed) 6843 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6844 6845 return count; 6846 } 6847 6848 /** 6849 * ext4_trim_all_free -- function to trim all free space in alloc. group 6850 * @sb: super block for file system 6851 * @group: group to be trimmed 6852 * @start: first group block to examine 6853 * @max: last group block to examine 6854 * @minblocks: minimum extent block count 6855 * 6856 * ext4_trim_all_free walks through group's block bitmap searching for free 6857 * extents. When the free extent is found, mark it as used in group buddy 6858 * bitmap. Then issue a TRIM command on this extent and free the extent in 6859 * the group buddy bitmap. 6860 */ 6861 static ext4_grpblk_t 6862 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6863 ext4_grpblk_t start, ext4_grpblk_t max, 6864 ext4_grpblk_t minblocks) 6865 { 6866 struct ext4_buddy e4b; 6867 int ret; 6868 6869 trace_ext4_trim_all_free(sb, group, start, max); 6870 6871 ret = ext4_mb_load_buddy(sb, group, &e4b); 6872 if (ret) { 6873 ext4_warning(sb, "Error %d loading buddy information for %u", 6874 ret, group); 6875 return ret; 6876 } 6877 6878 ext4_lock_group(sb, group); 6879 6880 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6881 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 6882 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6883 else 6884 ret = 0; 6885 6886 ext4_unlock_group(sb, group); 6887 ext4_mb_unload_buddy(&e4b); 6888 6889 ext4_debug("trimmed %d blocks in the group %d\n", 6890 ret, group); 6891 6892 return ret; 6893 } 6894 6895 /** 6896 * ext4_trim_fs() -- trim ioctl handle function 6897 * @sb: superblock for filesystem 6898 * @range: fstrim_range structure 6899 * 6900 * start: First Byte to trim 6901 * len: number of Bytes to trim from start 6902 * minlen: minimum extent length in Bytes 6903 * ext4_trim_fs goes through all allocation groups containing Bytes from 6904 * start to start+len. For each such a group ext4_trim_all_free function 6905 * is invoked to trim all free space. 6906 */ 6907 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6908 { 6909 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 6910 struct ext4_group_info *grp; 6911 ext4_group_t group, first_group, last_group; 6912 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6913 uint64_t start, end, minlen, trimmed = 0; 6914 ext4_fsblk_t first_data_blk = 6915 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6916 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6917 int ret = 0; 6918 6919 start = range->start >> sb->s_blocksize_bits; 6920 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6921 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6922 range->minlen >> sb->s_blocksize_bits); 6923 6924 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6925 start >= max_blks || 6926 range->len < sb->s_blocksize) 6927 return -EINVAL; 6928 /* No point to try to trim less than discard granularity */ 6929 if (range->minlen < discard_granularity) { 6930 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6931 discard_granularity >> sb->s_blocksize_bits); 6932 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 6933 goto out; 6934 } 6935 if (end >= max_blks - 1) 6936 end = max_blks - 1; 6937 if (end <= first_data_blk) 6938 goto out; 6939 if (start < first_data_blk) 6940 start = first_data_blk; 6941 6942 /* Determine first and last group to examine based on start and end */ 6943 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6944 &first_group, &first_cluster); 6945 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6946 &last_group, &last_cluster); 6947 6948 /* end now represents the last cluster to discard in this group */ 6949 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6950 6951 for (group = first_group; group <= last_group; group++) { 6952 if (ext4_trim_interrupted()) 6953 break; 6954 grp = ext4_get_group_info(sb, group); 6955 if (!grp) 6956 continue; 6957 /* We only do this if the grp has never been initialized */ 6958 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6959 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6960 if (ret) 6961 break; 6962 } 6963 6964 /* 6965 * For all the groups except the last one, last cluster will 6966 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6967 * change it for the last group, note that last_cluster is 6968 * already computed earlier by ext4_get_group_no_and_offset() 6969 */ 6970 if (group == last_group) 6971 end = last_cluster; 6972 if (grp->bb_free >= minlen) { 6973 cnt = ext4_trim_all_free(sb, group, first_cluster, 6974 end, minlen); 6975 if (cnt < 0) { 6976 ret = cnt; 6977 break; 6978 } 6979 trimmed += cnt; 6980 } 6981 6982 /* 6983 * For every group except the first one, we are sure 6984 * that the first cluster to discard will be cluster #0. 6985 */ 6986 first_cluster = 0; 6987 } 6988 6989 if (!ret) 6990 EXT4_SB(sb)->s_last_trim_minblks = minlen; 6991 6992 out: 6993 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6994 return ret; 6995 } 6996 6997 /* Iterate all the free extents in the group. */ 6998 int 6999 ext4_mballoc_query_range( 7000 struct super_block *sb, 7001 ext4_group_t group, 7002 ext4_grpblk_t first, 7003 ext4_grpblk_t end, 7004 ext4_mballoc_query_range_fn meta_formatter, 7005 ext4_mballoc_query_range_fn formatter, 7006 void *priv) 7007 { 7008 void *bitmap; 7009 ext4_grpblk_t start, next; 7010 struct ext4_buddy e4b; 7011 int error; 7012 7013 error = ext4_mb_load_buddy(sb, group, &e4b); 7014 if (error) 7015 return error; 7016 bitmap = e4b.bd_bitmap; 7017 7018 ext4_lock_group(sb, group); 7019 7020 start = max(e4b.bd_info->bb_first_free, first); 7021 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7022 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7023 if (meta_formatter && start != first) { 7024 if (start > end) 7025 start = end; 7026 ext4_unlock_group(sb, group); 7027 error = meta_formatter(sb, group, first, start - first, 7028 priv); 7029 if (error) 7030 goto out_unload; 7031 ext4_lock_group(sb, group); 7032 } 7033 while (start <= end) { 7034 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7035 if (start > end) 7036 break; 7037 next = mb_find_next_bit(bitmap, end + 1, start); 7038 7039 ext4_unlock_group(sb, group); 7040 error = formatter(sb, group, start, next - start, priv); 7041 if (error) 7042 goto out_unload; 7043 ext4_lock_group(sb, group); 7044 7045 start = next + 1; 7046 } 7047 7048 ext4_unlock_group(sb, group); 7049 out_unload: 7050 ext4_mb_unload_buddy(&e4b); 7051 7052 return error; 7053 } 7054 7055 #ifdef CONFIG_EXT4_KUNIT_TESTS 7056 #include "mballoc-test.c" 7057 #endif 7058