1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/debugfs.h> 27 #include <linux/log2.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 /* 32 * MUSTDO: 33 * - test ext4_ext_search_left() and ext4_ext_search_right() 34 * - search for metadata in few groups 35 * 36 * TODO v4: 37 * - normalization should take into account whether file is still open 38 * - discard preallocations if no free space left (policy?) 39 * - don't normalize tails 40 * - quota 41 * - reservation for superuser 42 * 43 * TODO v3: 44 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 45 * - track min/max extents in each group for better group selection 46 * - mb_mark_used() may allocate chunk right after splitting buddy 47 * - tree of groups sorted by number of free blocks 48 * - error handling 49 */ 50 51 /* 52 * The allocation request involve request for multiple number of blocks 53 * near to the goal(block) value specified. 54 * 55 * During initialization phase of the allocator we decide to use the 56 * group preallocation or inode preallocation depending on the size of 57 * the file. The size of the file could be the resulting file size we 58 * would have after allocation, or the current file size, which ever 59 * is larger. If the size is less than sbi->s_mb_stream_request we 60 * select to use the group preallocation. The default value of 61 * s_mb_stream_request is 16 blocks. This can also be tuned via 62 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 63 * terms of number of blocks. 64 * 65 * The main motivation for having small file use group preallocation is to 66 * ensure that we have small files closer together on the disk. 67 * 68 * First stage the allocator looks at the inode prealloc list, 69 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 70 * spaces for this particular inode. The inode prealloc space is 71 * represented as: 72 * 73 * pa_lstart -> the logical start block for this prealloc space 74 * pa_pstart -> the physical start block for this prealloc space 75 * pa_len -> length for this prealloc space (in clusters) 76 * pa_free -> free space available in this prealloc space (in clusters) 77 * 78 * The inode preallocation space is used looking at the _logical_ start 79 * block. If only the logical file block falls within the range of prealloc 80 * space we will consume the particular prealloc space. This makes sure that 81 * we have contiguous physical blocks representing the file blocks 82 * 83 * The important thing to be noted in case of inode prealloc space is that 84 * we don't modify the values associated to inode prealloc space except 85 * pa_free. 86 * 87 * If we are not able to find blocks in the inode prealloc space and if we 88 * have the group allocation flag set then we look at the locality group 89 * prealloc space. These are per CPU prealloc list represented as 90 * 91 * ext4_sb_info.s_locality_groups[smp_processor_id()] 92 * 93 * The reason for having a per cpu locality group is to reduce the contention 94 * between CPUs. It is possible to get scheduled at this point. 95 * 96 * The locality group prealloc space is used looking at whether we have 97 * enough free space (pa_free) within the prealloc space. 98 * 99 * If we can't allocate blocks via inode prealloc or/and locality group 100 * prealloc then we look at the buddy cache. The buddy cache is represented 101 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 102 * mapped to the buddy and bitmap information regarding different 103 * groups. The buddy information is attached to buddy cache inode so that 104 * we can access them through the page cache. The information regarding 105 * each group is loaded via ext4_mb_load_buddy. The information involve 106 * block bitmap and buddy information. The information are stored in the 107 * inode as: 108 * 109 * { page } 110 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 111 * 112 * 113 * one block each for bitmap and buddy information. So for each group we 114 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 115 * blocksize) blocks. So it can have information regarding groups_per_page 116 * which is blocks_per_page/2 117 * 118 * The buddy cache inode is not stored on disk. The inode is thrown 119 * away when the filesystem is unmounted. 120 * 121 * We look for count number of blocks in the buddy cache. If we were able 122 * to locate that many free blocks we return with additional information 123 * regarding rest of the contiguous physical block available 124 * 125 * Before allocating blocks via buddy cache we normalize the request 126 * blocks. This ensure we ask for more blocks that we needed. The extra 127 * blocks that we get after allocation is added to the respective prealloc 128 * list. In case of inode preallocation we follow a list of heuristics 129 * based on file size. This can be found in ext4_mb_normalize_request. If 130 * we are doing a group prealloc we try to normalize the request to 131 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 132 * dependent on the cluster size; for non-bigalloc file systems, it is 133 * 512 blocks. This can be tuned via 134 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 135 * terms of number of blocks. If we have mounted the file system with -O 136 * stripe=<value> option the group prealloc request is normalized to the 137 * the smallest multiple of the stripe value (sbi->s_stripe) which is 138 * greater than the default mb_group_prealloc. 139 * 140 * The regular allocator (using the buddy cache) supports a few tunables. 141 * 142 * /sys/fs/ext4/<partition>/mb_min_to_scan 143 * /sys/fs/ext4/<partition>/mb_max_to_scan 144 * /sys/fs/ext4/<partition>/mb_order2_req 145 * 146 * The regular allocator uses buddy scan only if the request len is power of 147 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 148 * value of s_mb_order2_reqs can be tuned via 149 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 150 * stripe size (sbi->s_stripe), we try to search for contiguous block in 151 * stripe size. This should result in better allocation on RAID setups. If 152 * not, we search in the specific group using bitmap for best extents. The 153 * tunable min_to_scan and max_to_scan control the behaviour here. 154 * min_to_scan indicate how long the mballoc __must__ look for a best 155 * extent and max_to_scan indicates how long the mballoc __can__ look for a 156 * best extent in the found extents. Searching for the blocks starts with 157 * the group specified as the goal value in allocation context via 158 * ac_g_ex. Each group is first checked based on the criteria whether it 159 * can be used for allocation. ext4_mb_good_group explains how the groups are 160 * checked. 161 * 162 * Both the prealloc space are getting populated as above. So for the first 163 * request we will hit the buddy cache which will result in this prealloc 164 * space getting filled. The prealloc space is then later used for the 165 * subsequent request. 166 */ 167 168 /* 169 * mballoc operates on the following data: 170 * - on-disk bitmap 171 * - in-core buddy (actually includes buddy and bitmap) 172 * - preallocation descriptors (PAs) 173 * 174 * there are two types of preallocations: 175 * - inode 176 * assiged to specific inode and can be used for this inode only. 177 * it describes part of inode's space preallocated to specific 178 * physical blocks. any block from that preallocated can be used 179 * independent. the descriptor just tracks number of blocks left 180 * unused. so, before taking some block from descriptor, one must 181 * make sure corresponded logical block isn't allocated yet. this 182 * also means that freeing any block within descriptor's range 183 * must discard all preallocated blocks. 184 * - locality group 185 * assigned to specific locality group which does not translate to 186 * permanent set of inodes: inode can join and leave group. space 187 * from this type of preallocation can be used for any inode. thus 188 * it's consumed from the beginning to the end. 189 * 190 * relation between them can be expressed as: 191 * in-core buddy = on-disk bitmap + preallocation descriptors 192 * 193 * this mean blocks mballoc considers used are: 194 * - allocated blocks (persistent) 195 * - preallocated blocks (non-persistent) 196 * 197 * consistency in mballoc world means that at any time a block is either 198 * free or used in ALL structures. notice: "any time" should not be read 199 * literally -- time is discrete and delimited by locks. 200 * 201 * to keep it simple, we don't use block numbers, instead we count number of 202 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 203 * 204 * all operations can be expressed as: 205 * - init buddy: buddy = on-disk + PAs 206 * - new PA: buddy += N; PA = N 207 * - use inode PA: on-disk += N; PA -= N 208 * - discard inode PA buddy -= on-disk - PA; PA = 0 209 * - use locality group PA on-disk += N; PA -= N 210 * - discard locality group PA buddy -= PA; PA = 0 211 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 212 * is used in real operation because we can't know actual used 213 * bits from PA, only from on-disk bitmap 214 * 215 * if we follow this strict logic, then all operations above should be atomic. 216 * given some of them can block, we'd have to use something like semaphores 217 * killing performance on high-end SMP hardware. let's try to relax it using 218 * the following knowledge: 219 * 1) if buddy is referenced, it's already initialized 220 * 2) while block is used in buddy and the buddy is referenced, 221 * nobody can re-allocate that block 222 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 223 * bit set and PA claims same block, it's OK. IOW, one can set bit in 224 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 225 * block 226 * 227 * so, now we're building a concurrency table: 228 * - init buddy vs. 229 * - new PA 230 * blocks for PA are allocated in the buddy, buddy must be referenced 231 * until PA is linked to allocation group to avoid concurrent buddy init 232 * - use inode PA 233 * we need to make sure that either on-disk bitmap or PA has uptodate data 234 * given (3) we care that PA-=N operation doesn't interfere with init 235 * - discard inode PA 236 * the simplest way would be to have buddy initialized by the discard 237 * - use locality group PA 238 * again PA-=N must be serialized with init 239 * - discard locality group PA 240 * the simplest way would be to have buddy initialized by the discard 241 * - new PA vs. 242 * - use inode PA 243 * i_data_sem serializes them 244 * - discard inode PA 245 * discard process must wait until PA isn't used by another process 246 * - use locality group PA 247 * some mutex should serialize them 248 * - discard locality group PA 249 * discard process must wait until PA isn't used by another process 250 * - use inode PA 251 * - use inode PA 252 * i_data_sem or another mutex should serializes them 253 * - discard inode PA 254 * discard process must wait until PA isn't used by another process 255 * - use locality group PA 256 * nothing wrong here -- they're different PAs covering different blocks 257 * - discard locality group PA 258 * discard process must wait until PA isn't used by another process 259 * 260 * now we're ready to make few consequences: 261 * - PA is referenced and while it is no discard is possible 262 * - PA is referenced until block isn't marked in on-disk bitmap 263 * - PA changes only after on-disk bitmap 264 * - discard must not compete with init. either init is done before 265 * any discard or they're serialized somehow 266 * - buddy init as sum of on-disk bitmap and PAs is done atomically 267 * 268 * a special case when we've used PA to emptiness. no need to modify buddy 269 * in this case, but we should care about concurrent init 270 * 271 */ 272 273 /* 274 * Logic in few words: 275 * 276 * - allocation: 277 * load group 278 * find blocks 279 * mark bits in on-disk bitmap 280 * release group 281 * 282 * - use preallocation: 283 * find proper PA (per-inode or group) 284 * load group 285 * mark bits in on-disk bitmap 286 * release group 287 * release PA 288 * 289 * - free: 290 * load group 291 * mark bits in on-disk bitmap 292 * release group 293 * 294 * - discard preallocations in group: 295 * mark PAs deleted 296 * move them onto local list 297 * load on-disk bitmap 298 * load group 299 * remove PA from object (inode or locality group) 300 * mark free blocks in-core 301 * 302 * - discard inode's preallocations: 303 */ 304 305 /* 306 * Locking rules 307 * 308 * Locks: 309 * - bitlock on a group (group) 310 * - object (inode/locality) (object) 311 * - per-pa lock (pa) 312 * 313 * Paths: 314 * - new pa 315 * object 316 * group 317 * 318 * - find and use pa: 319 * pa 320 * 321 * - release consumed pa: 322 * pa 323 * group 324 * object 325 * 326 * - generate in-core bitmap: 327 * group 328 * pa 329 * 330 * - discard all for given object (inode, locality group): 331 * object 332 * pa 333 * group 334 * 335 * - discard all for given group: 336 * group 337 * pa 338 * group 339 * object 340 * 341 */ 342 static struct kmem_cache *ext4_pspace_cachep; 343 static struct kmem_cache *ext4_ac_cachep; 344 static struct kmem_cache *ext4_free_data_cachep; 345 346 /* We create slab caches for groupinfo data structures based on the 347 * superblock block size. There will be one per mounted filesystem for 348 * each unique s_blocksize_bits */ 349 #define NR_GRPINFO_CACHES 8 350 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 351 352 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 353 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 354 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 355 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 356 }; 357 358 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 359 ext4_group_t group); 360 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 361 ext4_group_t group); 362 static void ext4_free_data_callback(struct super_block *sb, 363 struct ext4_journal_cb_entry *jce, int rc); 364 365 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 366 { 367 #if BITS_PER_LONG == 64 368 *bit += ((unsigned long) addr & 7UL) << 3; 369 addr = (void *) ((unsigned long) addr & ~7UL); 370 #elif BITS_PER_LONG == 32 371 *bit += ((unsigned long) addr & 3UL) << 3; 372 addr = (void *) ((unsigned long) addr & ~3UL); 373 #else 374 #error "how many bits you are?!" 375 #endif 376 return addr; 377 } 378 379 static inline int mb_test_bit(int bit, void *addr) 380 { 381 /* 382 * ext4_test_bit on architecture like powerpc 383 * needs unsigned long aligned address 384 */ 385 addr = mb_correct_addr_and_bit(&bit, addr); 386 return ext4_test_bit(bit, addr); 387 } 388 389 static inline void mb_set_bit(int bit, void *addr) 390 { 391 addr = mb_correct_addr_and_bit(&bit, addr); 392 ext4_set_bit(bit, addr); 393 } 394 395 static inline void mb_clear_bit(int bit, void *addr) 396 { 397 addr = mb_correct_addr_and_bit(&bit, addr); 398 ext4_clear_bit(bit, addr); 399 } 400 401 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 402 { 403 int fix = 0, ret, tmpmax; 404 addr = mb_correct_addr_and_bit(&fix, addr); 405 tmpmax = max + fix; 406 start += fix; 407 408 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 409 if (ret > max) 410 return max; 411 return ret; 412 } 413 414 static inline int mb_find_next_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 428 { 429 char *bb; 430 431 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 432 BUG_ON(max == NULL); 433 434 if (order > e4b->bd_blkbits + 1) { 435 *max = 0; 436 return NULL; 437 } 438 439 /* at order 0 we see each particular block */ 440 if (order == 0) { 441 *max = 1 << (e4b->bd_blkbits + 3); 442 return e4b->bd_bitmap; 443 } 444 445 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 446 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 447 448 return bb; 449 } 450 451 #ifdef DOUBLE_CHECK 452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 453 int first, int count) 454 { 455 int i; 456 struct super_block *sb = e4b->bd_sb; 457 458 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 459 return; 460 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 461 for (i = 0; i < count; i++) { 462 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 463 ext4_fsblk_t blocknr; 464 465 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 466 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 467 ext4_grp_locked_error(sb, e4b->bd_group, 468 inode ? inode->i_ino : 0, 469 blocknr, 470 "freeing block already freed " 471 "(bit %u)", 472 first + i); 473 } 474 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 475 } 476 } 477 478 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 479 { 480 int i; 481 482 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 483 return; 484 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 485 for (i = 0; i < count; i++) { 486 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 487 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 492 { 493 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 494 unsigned char *b1, *b2; 495 int i; 496 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 497 b2 = (unsigned char *) bitmap; 498 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 499 if (b1[i] != b2[i]) { 500 ext4_msg(e4b->bd_sb, KERN_ERR, 501 "corruption in group %u " 502 "at byte %u(%u): %x in copy != %x " 503 "on disk/prealloc", 504 e4b->bd_group, i, i * 8, b1[i], b2[i]); 505 BUG(); 506 } 507 } 508 } 509 } 510 511 #else 512 static inline void mb_free_blocks_double(struct inode *inode, 513 struct ext4_buddy *e4b, int first, int count) 514 { 515 return; 516 } 517 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 518 int first, int count) 519 { 520 return; 521 } 522 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 523 { 524 return; 525 } 526 #endif 527 528 #ifdef AGGRESSIVE_CHECK 529 530 #define MB_CHECK_ASSERT(assert) \ 531 do { \ 532 if (!(assert)) { \ 533 printk(KERN_EMERG \ 534 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 535 function, file, line, # assert); \ 536 BUG(); \ 537 } \ 538 } while (0) 539 540 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 541 const char *function, int line) 542 { 543 struct super_block *sb = e4b->bd_sb; 544 int order = e4b->bd_blkbits + 1; 545 int max; 546 int max2; 547 int i; 548 int j; 549 int k; 550 int count; 551 struct ext4_group_info *grp; 552 int fragments = 0; 553 int fstart; 554 struct list_head *cur; 555 void *buddy; 556 void *buddy2; 557 558 { 559 static int mb_check_counter; 560 if (mb_check_counter++ % 100 != 0) 561 return 0; 562 } 563 564 while (order > 1) { 565 buddy = mb_find_buddy(e4b, order, &max); 566 MB_CHECK_ASSERT(buddy); 567 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 568 MB_CHECK_ASSERT(buddy2); 569 MB_CHECK_ASSERT(buddy != buddy2); 570 MB_CHECK_ASSERT(max * 2 == max2); 571 572 count = 0; 573 for (i = 0; i < max; i++) { 574 575 if (mb_test_bit(i, buddy)) { 576 /* only single bit in buddy2 may be 1 */ 577 if (!mb_test_bit(i << 1, buddy2)) { 578 MB_CHECK_ASSERT( 579 mb_test_bit((i<<1)+1, buddy2)); 580 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit(i << 1, buddy2)); 583 } 584 continue; 585 } 586 587 /* both bits in buddy2 must be 1 */ 588 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 589 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 590 591 for (j = 0; j < (1 << order); j++) { 592 k = (i * (1 << order)) + j; 593 MB_CHECK_ASSERT( 594 !mb_test_bit(k, e4b->bd_bitmap)); 595 } 596 count++; 597 } 598 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 599 order--; 600 } 601 602 fstart = -1; 603 buddy = mb_find_buddy(e4b, 0, &max); 604 for (i = 0; i < max; i++) { 605 if (!mb_test_bit(i, buddy)) { 606 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 607 if (fstart == -1) { 608 fragments++; 609 fstart = i; 610 } 611 continue; 612 } 613 fstart = -1; 614 /* check used bits only */ 615 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 616 buddy2 = mb_find_buddy(e4b, j, &max2); 617 k = i >> j; 618 MB_CHECK_ASSERT(k < max2); 619 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 620 } 621 } 622 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 623 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 624 625 grp = ext4_get_group_info(sb, e4b->bd_group); 626 list_for_each(cur, &grp->bb_prealloc_list) { 627 ext4_group_t groupnr; 628 struct ext4_prealloc_space *pa; 629 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 630 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 631 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 632 for (i = 0; i < pa->pa_len; i++) 633 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 634 } 635 return 0; 636 } 637 #undef MB_CHECK_ASSERT 638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 639 __FILE__, __func__, __LINE__) 640 #else 641 #define mb_check_buddy(e4b) 642 #endif 643 644 /* 645 * Divide blocks started from @first with length @len into 646 * smaller chunks with power of 2 blocks. 647 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 648 * then increase bb_counters[] for corresponded chunk size. 649 */ 650 static void ext4_mb_mark_free_simple(struct super_block *sb, 651 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 652 struct ext4_group_info *grp) 653 { 654 struct ext4_sb_info *sbi = EXT4_SB(sb); 655 ext4_grpblk_t min; 656 ext4_grpblk_t max; 657 ext4_grpblk_t chunk; 658 unsigned short border; 659 660 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 661 662 border = 2 << sb->s_blocksize_bits; 663 664 while (len > 0) { 665 /* find how many blocks can be covered since this position */ 666 max = ffs(first | border) - 1; 667 668 /* find how many blocks of power 2 we need to mark */ 669 min = fls(len) - 1; 670 671 if (max < min) 672 min = max; 673 chunk = 1 << min; 674 675 /* mark multiblock chunks only */ 676 grp->bb_counters[min]++; 677 if (min > 0) 678 mb_clear_bit(first >> min, 679 buddy + sbi->s_mb_offsets[min]); 680 681 len -= chunk; 682 first += chunk; 683 } 684 } 685 686 /* 687 * Cache the order of the largest free extent we have available in this block 688 * group. 689 */ 690 static void 691 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 692 { 693 int i; 694 int bits; 695 696 grp->bb_largest_free_order = -1; /* uninit */ 697 698 bits = sb->s_blocksize_bits + 1; 699 for (i = bits; i >= 0; i--) { 700 if (grp->bb_counters[i] > 0) { 701 grp->bb_largest_free_order = i; 702 break; 703 } 704 } 705 } 706 707 static noinline_for_stack 708 void ext4_mb_generate_buddy(struct super_block *sb, 709 void *buddy, void *bitmap, ext4_group_t group) 710 { 711 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 712 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 713 ext4_grpblk_t i = 0; 714 ext4_grpblk_t first; 715 ext4_grpblk_t len; 716 unsigned free = 0; 717 unsigned fragments = 0; 718 unsigned long long period = get_cycles(); 719 720 /* initialize buddy from bitmap which is aggregation 721 * of on-disk bitmap and preallocations */ 722 i = mb_find_next_zero_bit(bitmap, max, 0); 723 grp->bb_first_free = i; 724 while (i < max) { 725 fragments++; 726 first = i; 727 i = mb_find_next_bit(bitmap, max, i); 728 len = i - first; 729 free += len; 730 if (len > 1) 731 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 732 else 733 grp->bb_counters[0]++; 734 if (i < max) 735 i = mb_find_next_zero_bit(bitmap, max, i); 736 } 737 grp->bb_fragments = fragments; 738 739 if (free != grp->bb_free) { 740 ext4_grp_locked_error(sb, group, 0, 0, 741 "%u clusters in bitmap, %u in gd", 742 free, grp->bb_free); 743 /* 744 * If we intent to continue, we consider group descritor 745 * corrupt and update bb_free using bitmap value 746 */ 747 grp->bb_free = free; 748 } 749 mb_set_largest_free_order(sb, grp); 750 751 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 752 753 period = get_cycles() - period; 754 spin_lock(&EXT4_SB(sb)->s_bal_lock); 755 EXT4_SB(sb)->s_mb_buddies_generated++; 756 EXT4_SB(sb)->s_mb_generation_time += period; 757 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 758 } 759 760 /* The buddy information is attached the buddy cache inode 761 * for convenience. The information regarding each group 762 * is loaded via ext4_mb_load_buddy. The information involve 763 * block bitmap and buddy information. The information are 764 * stored in the inode as 765 * 766 * { page } 767 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 768 * 769 * 770 * one block each for bitmap and buddy information. 771 * So for each group we take up 2 blocks. A page can 772 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 773 * So it can have information regarding groups_per_page which 774 * is blocks_per_page/2 775 * 776 * Locking note: This routine takes the block group lock of all groups 777 * for this page; do not hold this lock when calling this routine! 778 */ 779 780 static int ext4_mb_init_cache(struct page *page, char *incore) 781 { 782 ext4_group_t ngroups; 783 int blocksize; 784 int blocks_per_page; 785 int groups_per_page; 786 int err = 0; 787 int i; 788 ext4_group_t first_group, group; 789 int first_block; 790 struct super_block *sb; 791 struct buffer_head *bhs; 792 struct buffer_head **bh = NULL; 793 struct inode *inode; 794 char *data; 795 char *bitmap; 796 struct ext4_group_info *grinfo; 797 798 mb_debug(1, "init page %lu\n", page->index); 799 800 inode = page->mapping->host; 801 sb = inode->i_sb; 802 ngroups = ext4_get_groups_count(sb); 803 blocksize = 1 << inode->i_blkbits; 804 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 805 806 groups_per_page = blocks_per_page >> 1; 807 if (groups_per_page == 0) 808 groups_per_page = 1; 809 810 /* allocate buffer_heads to read bitmaps */ 811 if (groups_per_page > 1) { 812 i = sizeof(struct buffer_head *) * groups_per_page; 813 bh = kzalloc(i, GFP_NOFS); 814 if (bh == NULL) { 815 err = -ENOMEM; 816 goto out; 817 } 818 } else 819 bh = &bhs; 820 821 first_group = page->index * blocks_per_page / 2; 822 823 /* read all groups the page covers into the cache */ 824 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 825 if (group >= ngroups) 826 break; 827 828 grinfo = ext4_get_group_info(sb, group); 829 /* 830 * If page is uptodate then we came here after online resize 831 * which added some new uninitialized group info structs, so 832 * we must skip all initialized uptodate buddies on the page, 833 * which may be currently in use by an allocating task. 834 */ 835 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 836 bh[i] = NULL; 837 continue; 838 } 839 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 840 err = -ENOMEM; 841 goto out; 842 } 843 mb_debug(1, "read bitmap for group %u\n", group); 844 } 845 846 /* wait for I/O completion */ 847 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 848 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 849 err = -EIO; 850 goto out; 851 } 852 } 853 854 first_block = page->index * blocks_per_page; 855 for (i = 0; i < blocks_per_page; i++) { 856 int group; 857 858 group = (first_block + i) >> 1; 859 if (group >= ngroups) 860 break; 861 862 if (!bh[group - first_group]) 863 /* skip initialized uptodate buddy */ 864 continue; 865 866 /* 867 * data carry information regarding this 868 * particular group in the format specified 869 * above 870 * 871 */ 872 data = page_address(page) + (i * blocksize); 873 bitmap = bh[group - first_group]->b_data; 874 875 /* 876 * We place the buddy block and bitmap block 877 * close together 878 */ 879 if ((first_block + i) & 1) { 880 /* this is block of buddy */ 881 BUG_ON(incore == NULL); 882 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 883 group, page->index, i * blocksize); 884 trace_ext4_mb_buddy_bitmap_load(sb, group); 885 grinfo = ext4_get_group_info(sb, group); 886 grinfo->bb_fragments = 0; 887 memset(grinfo->bb_counters, 0, 888 sizeof(*grinfo->bb_counters) * 889 (sb->s_blocksize_bits+2)); 890 /* 891 * incore got set to the group block bitmap below 892 */ 893 ext4_lock_group(sb, group); 894 /* init the buddy */ 895 memset(data, 0xff, blocksize); 896 ext4_mb_generate_buddy(sb, data, incore, group); 897 ext4_unlock_group(sb, group); 898 incore = NULL; 899 } else { 900 /* this is block of bitmap */ 901 BUG_ON(incore != NULL); 902 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 903 group, page->index, i * blocksize); 904 trace_ext4_mb_bitmap_load(sb, group); 905 906 /* see comments in ext4_mb_put_pa() */ 907 ext4_lock_group(sb, group); 908 memcpy(data, bitmap, blocksize); 909 910 /* mark all preallocated blks used in in-core bitmap */ 911 ext4_mb_generate_from_pa(sb, data, group); 912 ext4_mb_generate_from_freelist(sb, data, group); 913 ext4_unlock_group(sb, group); 914 915 /* set incore so that the buddy information can be 916 * generated using this 917 */ 918 incore = data; 919 } 920 } 921 SetPageUptodate(page); 922 923 out: 924 if (bh) { 925 for (i = 0; i < groups_per_page; i++) 926 brelse(bh[i]); 927 if (bh != &bhs) 928 kfree(bh); 929 } 930 return err; 931 } 932 933 /* 934 * Lock the buddy and bitmap pages. This make sure other parallel init_group 935 * on the same buddy page doesn't happen whild holding the buddy page lock. 936 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 937 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 938 */ 939 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 940 ext4_group_t group, struct ext4_buddy *e4b) 941 { 942 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 943 int block, pnum, poff; 944 int blocks_per_page; 945 struct page *page; 946 947 e4b->bd_buddy_page = NULL; 948 e4b->bd_bitmap_page = NULL; 949 950 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 951 /* 952 * the buddy cache inode stores the block bitmap 953 * and buddy information in consecutive blocks. 954 * So for each group we need two blocks. 955 */ 956 block = group * 2; 957 pnum = block / blocks_per_page; 958 poff = block % blocks_per_page; 959 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 960 if (!page) 961 return -EIO; 962 BUG_ON(page->mapping != inode->i_mapping); 963 e4b->bd_bitmap_page = page; 964 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 965 966 if (blocks_per_page >= 2) { 967 /* buddy and bitmap are on the same page */ 968 return 0; 969 } 970 971 block++; 972 pnum = block / blocks_per_page; 973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 974 if (!page) 975 return -EIO; 976 BUG_ON(page->mapping != inode->i_mapping); 977 e4b->bd_buddy_page = page; 978 return 0; 979 } 980 981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 982 { 983 if (e4b->bd_bitmap_page) { 984 unlock_page(e4b->bd_bitmap_page); 985 page_cache_release(e4b->bd_bitmap_page); 986 } 987 if (e4b->bd_buddy_page) { 988 unlock_page(e4b->bd_buddy_page); 989 page_cache_release(e4b->bd_buddy_page); 990 } 991 } 992 993 /* 994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 995 * block group lock of all groups for this page; do not hold the BG lock when 996 * calling this routine! 997 */ 998 static noinline_for_stack 999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1000 { 1001 1002 struct ext4_group_info *this_grp; 1003 struct ext4_buddy e4b; 1004 struct page *page; 1005 int ret = 0; 1006 1007 mb_debug(1, "init group %u\n", group); 1008 this_grp = ext4_get_group_info(sb, group); 1009 /* 1010 * This ensures that we don't reinit the buddy cache 1011 * page which map to the group from which we are already 1012 * allocating. If we are looking at the buddy cache we would 1013 * have taken a reference using ext4_mb_load_buddy and that 1014 * would have pinned buddy page to page cache. 1015 */ 1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1018 /* 1019 * somebody initialized the group 1020 * return without doing anything 1021 */ 1022 goto err; 1023 } 1024 1025 page = e4b.bd_bitmap_page; 1026 ret = ext4_mb_init_cache(page, NULL); 1027 if (ret) 1028 goto err; 1029 if (!PageUptodate(page)) { 1030 ret = -EIO; 1031 goto err; 1032 } 1033 mark_page_accessed(page); 1034 1035 if (e4b.bd_buddy_page == NULL) { 1036 /* 1037 * If both the bitmap and buddy are in 1038 * the same page we don't need to force 1039 * init the buddy 1040 */ 1041 ret = 0; 1042 goto err; 1043 } 1044 /* init buddy cache */ 1045 page = e4b.bd_buddy_page; 1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1047 if (ret) 1048 goto err; 1049 if (!PageUptodate(page)) { 1050 ret = -EIO; 1051 goto err; 1052 } 1053 mark_page_accessed(page); 1054 err: 1055 ext4_mb_put_buddy_page_lock(&e4b); 1056 return ret; 1057 } 1058 1059 /* 1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1061 * block group lock of all groups for this page; do not hold the BG lock when 1062 * calling this routine! 1063 */ 1064 static noinline_for_stack int 1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1066 struct ext4_buddy *e4b) 1067 { 1068 int blocks_per_page; 1069 int block; 1070 int pnum; 1071 int poff; 1072 struct page *page; 1073 int ret; 1074 struct ext4_group_info *grp; 1075 struct ext4_sb_info *sbi = EXT4_SB(sb); 1076 struct inode *inode = sbi->s_buddy_cache; 1077 1078 mb_debug(1, "load group %u\n", group); 1079 1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1081 grp = ext4_get_group_info(sb, group); 1082 1083 e4b->bd_blkbits = sb->s_blocksize_bits; 1084 e4b->bd_info = grp; 1085 e4b->bd_sb = sb; 1086 e4b->bd_group = group; 1087 e4b->bd_buddy_page = NULL; 1088 e4b->bd_bitmap_page = NULL; 1089 1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1091 /* 1092 * we need full data about the group 1093 * to make a good selection 1094 */ 1095 ret = ext4_mb_init_group(sb, group); 1096 if (ret) 1097 return ret; 1098 } 1099 1100 /* 1101 * the buddy cache inode stores the block bitmap 1102 * and buddy information in consecutive blocks. 1103 * So for each group we need two blocks. 1104 */ 1105 block = group * 2; 1106 pnum = block / blocks_per_page; 1107 poff = block % blocks_per_page; 1108 1109 /* we could use find_or_create_page(), but it locks page 1110 * what we'd like to avoid in fast path ... */ 1111 page = find_get_page(inode->i_mapping, pnum); 1112 if (page == NULL || !PageUptodate(page)) { 1113 if (page) 1114 /* 1115 * drop the page reference and try 1116 * to get the page with lock. If we 1117 * are not uptodate that implies 1118 * somebody just created the page but 1119 * is yet to initialize the same. So 1120 * wait for it to initialize. 1121 */ 1122 page_cache_release(page); 1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1124 if (page) { 1125 BUG_ON(page->mapping != inode->i_mapping); 1126 if (!PageUptodate(page)) { 1127 ret = ext4_mb_init_cache(page, NULL); 1128 if (ret) { 1129 unlock_page(page); 1130 goto err; 1131 } 1132 mb_cmp_bitmaps(e4b, page_address(page) + 1133 (poff * sb->s_blocksize)); 1134 } 1135 unlock_page(page); 1136 } 1137 } 1138 if (page == NULL || !PageUptodate(page)) { 1139 ret = -EIO; 1140 goto err; 1141 } 1142 e4b->bd_bitmap_page = page; 1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1144 mark_page_accessed(page); 1145 1146 block++; 1147 pnum = block / blocks_per_page; 1148 poff = block % blocks_per_page; 1149 1150 page = find_get_page(inode->i_mapping, pnum); 1151 if (page == NULL || !PageUptodate(page)) { 1152 if (page) 1153 page_cache_release(page); 1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1155 if (page) { 1156 BUG_ON(page->mapping != inode->i_mapping); 1157 if (!PageUptodate(page)) { 1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1159 if (ret) { 1160 unlock_page(page); 1161 goto err; 1162 } 1163 } 1164 unlock_page(page); 1165 } 1166 } 1167 if (page == NULL || !PageUptodate(page)) { 1168 ret = -EIO; 1169 goto err; 1170 } 1171 e4b->bd_buddy_page = page; 1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1173 mark_page_accessed(page); 1174 1175 BUG_ON(e4b->bd_bitmap_page == NULL); 1176 BUG_ON(e4b->bd_buddy_page == NULL); 1177 1178 return 0; 1179 1180 err: 1181 if (page) 1182 page_cache_release(page); 1183 if (e4b->bd_bitmap_page) 1184 page_cache_release(e4b->bd_bitmap_page); 1185 if (e4b->bd_buddy_page) 1186 page_cache_release(e4b->bd_buddy_page); 1187 e4b->bd_buddy = NULL; 1188 e4b->bd_bitmap = NULL; 1189 return ret; 1190 } 1191 1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1193 { 1194 if (e4b->bd_bitmap_page) 1195 page_cache_release(e4b->bd_bitmap_page); 1196 if (e4b->bd_buddy_page) 1197 page_cache_release(e4b->bd_buddy_page); 1198 } 1199 1200 1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1202 { 1203 int order = 1; 1204 void *bb; 1205 1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1208 1209 bb = e4b->bd_buddy; 1210 while (order <= e4b->bd_blkbits + 1) { 1211 block = block >> 1; 1212 if (!mb_test_bit(block, bb)) { 1213 /* this block is part of buddy of order 'order' */ 1214 return order; 1215 } 1216 bb += 1 << (e4b->bd_blkbits - order); 1217 order++; 1218 } 1219 return 0; 1220 } 1221 1222 static void mb_clear_bits(void *bm, int cur, int len) 1223 { 1224 __u32 *addr; 1225 1226 len = cur + len; 1227 while (cur < len) { 1228 if ((cur & 31) == 0 && (len - cur) >= 32) { 1229 /* fast path: clear whole word at once */ 1230 addr = bm + (cur >> 3); 1231 *addr = 0; 1232 cur += 32; 1233 continue; 1234 } 1235 mb_clear_bit(cur, bm); 1236 cur++; 1237 } 1238 } 1239 1240 void ext4_set_bits(void *bm, int cur, int len) 1241 { 1242 __u32 *addr; 1243 1244 len = cur + len; 1245 while (cur < len) { 1246 if ((cur & 31) == 0 && (len - cur) >= 32) { 1247 /* fast path: set whole word at once */ 1248 addr = bm + (cur >> 3); 1249 *addr = 0xffffffff; 1250 cur += 32; 1251 continue; 1252 } 1253 mb_set_bit(cur, bm); 1254 cur++; 1255 } 1256 } 1257 1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1259 int first, int count) 1260 { 1261 int block = 0; 1262 int max = 0; 1263 int order; 1264 void *buddy; 1265 void *buddy2; 1266 struct super_block *sb = e4b->bd_sb; 1267 1268 BUG_ON(first + count > (sb->s_blocksize << 3)); 1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1270 mb_check_buddy(e4b); 1271 mb_free_blocks_double(inode, e4b, first, count); 1272 1273 e4b->bd_info->bb_free += count; 1274 if (first < e4b->bd_info->bb_first_free) 1275 e4b->bd_info->bb_first_free = first; 1276 1277 /* let's maintain fragments counter */ 1278 if (first != 0) 1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap); 1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1281 max = !mb_test_bit(first + count, e4b->bd_bitmap); 1282 if (block && max) 1283 e4b->bd_info->bb_fragments--; 1284 else if (!block && !max) 1285 e4b->bd_info->bb_fragments++; 1286 1287 /* let's maintain buddy itself */ 1288 while (count-- > 0) { 1289 block = first++; 1290 order = 0; 1291 1292 if (!mb_test_bit(block, e4b->bd_bitmap)) { 1293 ext4_fsblk_t blocknr; 1294 1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1296 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1297 ext4_grp_locked_error(sb, e4b->bd_group, 1298 inode ? inode->i_ino : 0, 1299 blocknr, 1300 "freeing already freed block " 1301 "(bit %u)", block); 1302 } 1303 mb_clear_bit(block, e4b->bd_bitmap); 1304 e4b->bd_info->bb_counters[order]++; 1305 1306 /* start of the buddy */ 1307 buddy = mb_find_buddy(e4b, order, &max); 1308 1309 do { 1310 block &= ~1UL; 1311 if (mb_test_bit(block, buddy) || 1312 mb_test_bit(block + 1, buddy)) 1313 break; 1314 1315 /* both the buddies are free, try to coalesce them */ 1316 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1317 1318 if (!buddy2) 1319 break; 1320 1321 if (order > 0) { 1322 /* for special purposes, we don't set 1323 * free bits in bitmap */ 1324 mb_set_bit(block, buddy); 1325 mb_set_bit(block + 1, buddy); 1326 } 1327 e4b->bd_info->bb_counters[order]--; 1328 e4b->bd_info->bb_counters[order]--; 1329 1330 block = block >> 1; 1331 order++; 1332 e4b->bd_info->bb_counters[order]++; 1333 1334 mb_clear_bit(block, buddy2); 1335 buddy = buddy2; 1336 } while (1); 1337 } 1338 mb_set_largest_free_order(sb, e4b->bd_info); 1339 mb_check_buddy(e4b); 1340 } 1341 1342 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1343 int needed, struct ext4_free_extent *ex) 1344 { 1345 int next = block; 1346 int max, order; 1347 void *buddy; 1348 1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1350 BUG_ON(ex == NULL); 1351 1352 buddy = mb_find_buddy(e4b, 0, &max); 1353 BUG_ON(buddy == NULL); 1354 BUG_ON(block >= max); 1355 if (mb_test_bit(block, buddy)) { 1356 ex->fe_len = 0; 1357 ex->fe_start = 0; 1358 ex->fe_group = 0; 1359 return 0; 1360 } 1361 1362 /* find actual order */ 1363 order = mb_find_order_for_block(e4b, block); 1364 block = block >> order; 1365 1366 ex->fe_len = 1 << order; 1367 ex->fe_start = block << order; 1368 ex->fe_group = e4b->bd_group; 1369 1370 /* calc difference from given start */ 1371 next = next - ex->fe_start; 1372 ex->fe_len -= next; 1373 ex->fe_start += next; 1374 1375 while (needed > ex->fe_len && 1376 (buddy = mb_find_buddy(e4b, order, &max))) { 1377 1378 if (block + 1 >= max) 1379 break; 1380 1381 next = (block + 1) * (1 << order); 1382 if (mb_test_bit(next, e4b->bd_bitmap)) 1383 break; 1384 1385 order = mb_find_order_for_block(e4b, next); 1386 1387 block = next >> order; 1388 ex->fe_len += 1 << order; 1389 } 1390 1391 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1392 return ex->fe_len; 1393 } 1394 1395 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1396 { 1397 int ord; 1398 int mlen = 0; 1399 int max = 0; 1400 int cur; 1401 int start = ex->fe_start; 1402 int len = ex->fe_len; 1403 unsigned ret = 0; 1404 int len0 = len; 1405 void *buddy; 1406 1407 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1408 BUG_ON(e4b->bd_group != ex->fe_group); 1409 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1410 mb_check_buddy(e4b); 1411 mb_mark_used_double(e4b, start, len); 1412 1413 e4b->bd_info->bb_free -= len; 1414 if (e4b->bd_info->bb_first_free == start) 1415 e4b->bd_info->bb_first_free += len; 1416 1417 /* let's maintain fragments counter */ 1418 if (start != 0) 1419 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1420 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1421 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1422 if (mlen && max) 1423 e4b->bd_info->bb_fragments++; 1424 else if (!mlen && !max) 1425 e4b->bd_info->bb_fragments--; 1426 1427 /* let's maintain buddy itself */ 1428 while (len) { 1429 ord = mb_find_order_for_block(e4b, start); 1430 1431 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1432 /* the whole chunk may be allocated at once! */ 1433 mlen = 1 << ord; 1434 buddy = mb_find_buddy(e4b, ord, &max); 1435 BUG_ON((start >> ord) >= max); 1436 mb_set_bit(start >> ord, buddy); 1437 e4b->bd_info->bb_counters[ord]--; 1438 start += mlen; 1439 len -= mlen; 1440 BUG_ON(len < 0); 1441 continue; 1442 } 1443 1444 /* store for history */ 1445 if (ret == 0) 1446 ret = len | (ord << 16); 1447 1448 /* we have to split large buddy */ 1449 BUG_ON(ord <= 0); 1450 buddy = mb_find_buddy(e4b, ord, &max); 1451 mb_set_bit(start >> ord, buddy); 1452 e4b->bd_info->bb_counters[ord]--; 1453 1454 ord--; 1455 cur = (start >> ord) & ~1U; 1456 buddy = mb_find_buddy(e4b, ord, &max); 1457 mb_clear_bit(cur, buddy); 1458 mb_clear_bit(cur + 1, buddy); 1459 e4b->bd_info->bb_counters[ord]++; 1460 e4b->bd_info->bb_counters[ord]++; 1461 } 1462 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1463 1464 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1465 mb_check_buddy(e4b); 1466 1467 return ret; 1468 } 1469 1470 /* 1471 * Must be called under group lock! 1472 */ 1473 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1474 struct ext4_buddy *e4b) 1475 { 1476 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1477 int ret; 1478 1479 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1480 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1481 1482 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1483 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1484 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1485 1486 /* preallocation can change ac_b_ex, thus we store actually 1487 * allocated blocks for history */ 1488 ac->ac_f_ex = ac->ac_b_ex; 1489 1490 ac->ac_status = AC_STATUS_FOUND; 1491 ac->ac_tail = ret & 0xffff; 1492 ac->ac_buddy = ret >> 16; 1493 1494 /* 1495 * take the page reference. We want the page to be pinned 1496 * so that we don't get a ext4_mb_init_cache_call for this 1497 * group until we update the bitmap. That would mean we 1498 * double allocate blocks. The reference is dropped 1499 * in ext4_mb_release_context 1500 */ 1501 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1502 get_page(ac->ac_bitmap_page); 1503 ac->ac_buddy_page = e4b->bd_buddy_page; 1504 get_page(ac->ac_buddy_page); 1505 /* store last allocated for subsequent stream allocation */ 1506 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1507 spin_lock(&sbi->s_md_lock); 1508 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1509 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1510 spin_unlock(&sbi->s_md_lock); 1511 } 1512 } 1513 1514 /* 1515 * regular allocator, for general purposes allocation 1516 */ 1517 1518 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1519 struct ext4_buddy *e4b, 1520 int finish_group) 1521 { 1522 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1523 struct ext4_free_extent *bex = &ac->ac_b_ex; 1524 struct ext4_free_extent *gex = &ac->ac_g_ex; 1525 struct ext4_free_extent ex; 1526 int max; 1527 1528 if (ac->ac_status == AC_STATUS_FOUND) 1529 return; 1530 /* 1531 * We don't want to scan for a whole year 1532 */ 1533 if (ac->ac_found > sbi->s_mb_max_to_scan && 1534 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1535 ac->ac_status = AC_STATUS_BREAK; 1536 return; 1537 } 1538 1539 /* 1540 * Haven't found good chunk so far, let's continue 1541 */ 1542 if (bex->fe_len < gex->fe_len) 1543 return; 1544 1545 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1546 && bex->fe_group == e4b->bd_group) { 1547 /* recheck chunk's availability - we don't know 1548 * when it was found (within this lock-unlock 1549 * period or not) */ 1550 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1551 if (max >= gex->fe_len) { 1552 ext4_mb_use_best_found(ac, e4b); 1553 return; 1554 } 1555 } 1556 } 1557 1558 /* 1559 * The routine checks whether found extent is good enough. If it is, 1560 * then the extent gets marked used and flag is set to the context 1561 * to stop scanning. Otherwise, the extent is compared with the 1562 * previous found extent and if new one is better, then it's stored 1563 * in the context. Later, the best found extent will be used, if 1564 * mballoc can't find good enough extent. 1565 * 1566 * FIXME: real allocation policy is to be designed yet! 1567 */ 1568 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1569 struct ext4_free_extent *ex, 1570 struct ext4_buddy *e4b) 1571 { 1572 struct ext4_free_extent *bex = &ac->ac_b_ex; 1573 struct ext4_free_extent *gex = &ac->ac_g_ex; 1574 1575 BUG_ON(ex->fe_len <= 0); 1576 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1577 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1578 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1579 1580 ac->ac_found++; 1581 1582 /* 1583 * The special case - take what you catch first 1584 */ 1585 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1586 *bex = *ex; 1587 ext4_mb_use_best_found(ac, e4b); 1588 return; 1589 } 1590 1591 /* 1592 * Let's check whether the chuck is good enough 1593 */ 1594 if (ex->fe_len == gex->fe_len) { 1595 *bex = *ex; 1596 ext4_mb_use_best_found(ac, e4b); 1597 return; 1598 } 1599 1600 /* 1601 * If this is first found extent, just store it in the context 1602 */ 1603 if (bex->fe_len == 0) { 1604 *bex = *ex; 1605 return; 1606 } 1607 1608 /* 1609 * If new found extent is better, store it in the context 1610 */ 1611 if (bex->fe_len < gex->fe_len) { 1612 /* if the request isn't satisfied, any found extent 1613 * larger than previous best one is better */ 1614 if (ex->fe_len > bex->fe_len) 1615 *bex = *ex; 1616 } else if (ex->fe_len > gex->fe_len) { 1617 /* if the request is satisfied, then we try to find 1618 * an extent that still satisfy the request, but is 1619 * smaller than previous one */ 1620 if (ex->fe_len < bex->fe_len) 1621 *bex = *ex; 1622 } 1623 1624 ext4_mb_check_limits(ac, e4b, 0); 1625 } 1626 1627 static noinline_for_stack 1628 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1629 struct ext4_buddy *e4b) 1630 { 1631 struct ext4_free_extent ex = ac->ac_b_ex; 1632 ext4_group_t group = ex.fe_group; 1633 int max; 1634 int err; 1635 1636 BUG_ON(ex.fe_len <= 0); 1637 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1638 if (err) 1639 return err; 1640 1641 ext4_lock_group(ac->ac_sb, group); 1642 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1643 1644 if (max > 0) { 1645 ac->ac_b_ex = ex; 1646 ext4_mb_use_best_found(ac, e4b); 1647 } 1648 1649 ext4_unlock_group(ac->ac_sb, group); 1650 ext4_mb_unload_buddy(e4b); 1651 1652 return 0; 1653 } 1654 1655 static noinline_for_stack 1656 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1657 struct ext4_buddy *e4b) 1658 { 1659 ext4_group_t group = ac->ac_g_ex.fe_group; 1660 int max; 1661 int err; 1662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1663 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1664 struct ext4_free_extent ex; 1665 1666 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1667 return 0; 1668 if (grp->bb_free == 0) 1669 return 0; 1670 1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1672 if (err) 1673 return err; 1674 1675 ext4_lock_group(ac->ac_sb, group); 1676 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1677 ac->ac_g_ex.fe_len, &ex); 1678 1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1680 ext4_fsblk_t start; 1681 1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1683 ex.fe_start; 1684 /* use do_div to get remainder (would be 64-bit modulo) */ 1685 if (do_div(start, sbi->s_stripe) == 0) { 1686 ac->ac_found++; 1687 ac->ac_b_ex = ex; 1688 ext4_mb_use_best_found(ac, e4b); 1689 } 1690 } else if (max >= ac->ac_g_ex.fe_len) { 1691 BUG_ON(ex.fe_len <= 0); 1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1694 ac->ac_found++; 1695 ac->ac_b_ex = ex; 1696 ext4_mb_use_best_found(ac, e4b); 1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1698 /* Sometimes, caller may want to merge even small 1699 * number of blocks to an existing extent */ 1700 BUG_ON(ex.fe_len <= 0); 1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1703 ac->ac_found++; 1704 ac->ac_b_ex = ex; 1705 ext4_mb_use_best_found(ac, e4b); 1706 } 1707 ext4_unlock_group(ac->ac_sb, group); 1708 ext4_mb_unload_buddy(e4b); 1709 1710 return 0; 1711 } 1712 1713 /* 1714 * The routine scans buddy structures (not bitmap!) from given order 1715 * to max order and tries to find big enough chunk to satisfy the req 1716 */ 1717 static noinline_for_stack 1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1719 struct ext4_buddy *e4b) 1720 { 1721 struct super_block *sb = ac->ac_sb; 1722 struct ext4_group_info *grp = e4b->bd_info; 1723 void *buddy; 1724 int i; 1725 int k; 1726 int max; 1727 1728 BUG_ON(ac->ac_2order <= 0); 1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1730 if (grp->bb_counters[i] == 0) 1731 continue; 1732 1733 buddy = mb_find_buddy(e4b, i, &max); 1734 BUG_ON(buddy == NULL); 1735 1736 k = mb_find_next_zero_bit(buddy, max, 0); 1737 BUG_ON(k >= max); 1738 1739 ac->ac_found++; 1740 1741 ac->ac_b_ex.fe_len = 1 << i; 1742 ac->ac_b_ex.fe_start = k << i; 1743 ac->ac_b_ex.fe_group = e4b->bd_group; 1744 1745 ext4_mb_use_best_found(ac, e4b); 1746 1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1748 1749 if (EXT4_SB(sb)->s_mb_stats) 1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1751 1752 break; 1753 } 1754 } 1755 1756 /* 1757 * The routine scans the group and measures all found extents. 1758 * In order to optimize scanning, caller must pass number of 1759 * free blocks in the group, so the routine can know upper limit. 1760 */ 1761 static noinline_for_stack 1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1763 struct ext4_buddy *e4b) 1764 { 1765 struct super_block *sb = ac->ac_sb; 1766 void *bitmap = e4b->bd_bitmap; 1767 struct ext4_free_extent ex; 1768 int i; 1769 int free; 1770 1771 free = e4b->bd_info->bb_free; 1772 BUG_ON(free <= 0); 1773 1774 i = e4b->bd_info->bb_first_free; 1775 1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1777 i = mb_find_next_zero_bit(bitmap, 1778 EXT4_CLUSTERS_PER_GROUP(sb), i); 1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1780 /* 1781 * IF we have corrupt bitmap, we won't find any 1782 * free blocks even though group info says we 1783 * we have free blocks 1784 */ 1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1786 "%d free clusters as per " 1787 "group info. But bitmap says 0", 1788 free); 1789 break; 1790 } 1791 1792 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1793 BUG_ON(ex.fe_len <= 0); 1794 if (free < ex.fe_len) { 1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1796 "%d free clusters as per " 1797 "group info. But got %d blocks", 1798 free, ex.fe_len); 1799 /* 1800 * The number of free blocks differs. This mostly 1801 * indicate that the bitmap is corrupt. So exit 1802 * without claiming the space. 1803 */ 1804 break; 1805 } 1806 1807 ext4_mb_measure_extent(ac, &ex, e4b); 1808 1809 i += ex.fe_len; 1810 free -= ex.fe_len; 1811 } 1812 1813 ext4_mb_check_limits(ac, e4b, 1); 1814 } 1815 1816 /* 1817 * This is a special case for storages like raid5 1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1819 */ 1820 static noinline_for_stack 1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1822 struct ext4_buddy *e4b) 1823 { 1824 struct super_block *sb = ac->ac_sb; 1825 struct ext4_sb_info *sbi = EXT4_SB(sb); 1826 void *bitmap = e4b->bd_bitmap; 1827 struct ext4_free_extent ex; 1828 ext4_fsblk_t first_group_block; 1829 ext4_fsblk_t a; 1830 ext4_grpblk_t i; 1831 int max; 1832 1833 BUG_ON(sbi->s_stripe == 0); 1834 1835 /* find first stripe-aligned block in group */ 1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1837 1838 a = first_group_block + sbi->s_stripe - 1; 1839 do_div(a, sbi->s_stripe); 1840 i = (a * sbi->s_stripe) - first_group_block; 1841 1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1843 if (!mb_test_bit(i, bitmap)) { 1844 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1845 if (max >= sbi->s_stripe) { 1846 ac->ac_found++; 1847 ac->ac_b_ex = ex; 1848 ext4_mb_use_best_found(ac, e4b); 1849 break; 1850 } 1851 } 1852 i += sbi->s_stripe; 1853 } 1854 } 1855 1856 /* This is now called BEFORE we load the buddy bitmap. */ 1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1858 ext4_group_t group, int cr) 1859 { 1860 unsigned free, fragments; 1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1863 1864 BUG_ON(cr < 0 || cr >= 4); 1865 1866 free = grp->bb_free; 1867 if (free == 0) 1868 return 0; 1869 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 1870 return 0; 1871 1872 /* We only do this if the grp has never been initialized */ 1873 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1874 int ret = ext4_mb_init_group(ac->ac_sb, group); 1875 if (ret) 1876 return 0; 1877 } 1878 1879 fragments = grp->bb_fragments; 1880 if (fragments == 0) 1881 return 0; 1882 1883 switch (cr) { 1884 case 0: 1885 BUG_ON(ac->ac_2order == 0); 1886 1887 if (grp->bb_largest_free_order < ac->ac_2order) 1888 return 0; 1889 1890 /* Avoid using the first bg of a flexgroup for data files */ 1891 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1892 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1893 ((group % flex_size) == 0)) 1894 return 0; 1895 1896 return 1; 1897 case 1: 1898 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1899 return 1; 1900 break; 1901 case 2: 1902 if (free >= ac->ac_g_ex.fe_len) 1903 return 1; 1904 break; 1905 case 3: 1906 return 1; 1907 default: 1908 BUG(); 1909 } 1910 1911 return 0; 1912 } 1913 1914 static noinline_for_stack int 1915 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1916 { 1917 ext4_group_t ngroups, group, i; 1918 int cr; 1919 int err = 0; 1920 struct ext4_sb_info *sbi; 1921 struct super_block *sb; 1922 struct ext4_buddy e4b; 1923 1924 sb = ac->ac_sb; 1925 sbi = EXT4_SB(sb); 1926 ngroups = ext4_get_groups_count(sb); 1927 /* non-extent files are limited to low blocks/groups */ 1928 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1929 ngroups = sbi->s_blockfile_groups; 1930 1931 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1932 1933 /* first, try the goal */ 1934 err = ext4_mb_find_by_goal(ac, &e4b); 1935 if (err || ac->ac_status == AC_STATUS_FOUND) 1936 goto out; 1937 1938 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1939 goto out; 1940 1941 /* 1942 * ac->ac2_order is set only if the fe_len is a power of 2 1943 * if ac2_order is set we also set criteria to 0 so that we 1944 * try exact allocation using buddy. 1945 */ 1946 i = fls(ac->ac_g_ex.fe_len); 1947 ac->ac_2order = 0; 1948 /* 1949 * We search using buddy data only if the order of the request 1950 * is greater than equal to the sbi_s_mb_order2_reqs 1951 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1952 */ 1953 if (i >= sbi->s_mb_order2_reqs) { 1954 /* 1955 * This should tell if fe_len is exactly power of 2 1956 */ 1957 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1958 ac->ac_2order = i - 1; 1959 } 1960 1961 /* if stream allocation is enabled, use global goal */ 1962 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1963 /* TBD: may be hot point */ 1964 spin_lock(&sbi->s_md_lock); 1965 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 1966 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 1967 spin_unlock(&sbi->s_md_lock); 1968 } 1969 1970 /* Let's just scan groups to find more-less suitable blocks */ 1971 cr = ac->ac_2order ? 0 : 1; 1972 /* 1973 * cr == 0 try to get exact allocation, 1974 * cr == 3 try to get anything 1975 */ 1976 repeat: 1977 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 1978 ac->ac_criteria = cr; 1979 /* 1980 * searching for the right group start 1981 * from the goal value specified 1982 */ 1983 group = ac->ac_g_ex.fe_group; 1984 1985 for (i = 0; i < ngroups; group++, i++) { 1986 if (group == ngroups) 1987 group = 0; 1988 1989 /* This now checks without needing the buddy page */ 1990 if (!ext4_mb_good_group(ac, group, cr)) 1991 continue; 1992 1993 err = ext4_mb_load_buddy(sb, group, &e4b); 1994 if (err) 1995 goto out; 1996 1997 ext4_lock_group(sb, group); 1998 1999 /* 2000 * We need to check again after locking the 2001 * block group 2002 */ 2003 if (!ext4_mb_good_group(ac, group, cr)) { 2004 ext4_unlock_group(sb, group); 2005 ext4_mb_unload_buddy(&e4b); 2006 continue; 2007 } 2008 2009 ac->ac_groups_scanned++; 2010 if (cr == 0) 2011 ext4_mb_simple_scan_group(ac, &e4b); 2012 else if (cr == 1 && sbi->s_stripe && 2013 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2014 ext4_mb_scan_aligned(ac, &e4b); 2015 else 2016 ext4_mb_complex_scan_group(ac, &e4b); 2017 2018 ext4_unlock_group(sb, group); 2019 ext4_mb_unload_buddy(&e4b); 2020 2021 if (ac->ac_status != AC_STATUS_CONTINUE) 2022 break; 2023 } 2024 } 2025 2026 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2027 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2028 /* 2029 * We've been searching too long. Let's try to allocate 2030 * the best chunk we've found so far 2031 */ 2032 2033 ext4_mb_try_best_found(ac, &e4b); 2034 if (ac->ac_status != AC_STATUS_FOUND) { 2035 /* 2036 * Someone more lucky has already allocated it. 2037 * The only thing we can do is just take first 2038 * found block(s) 2039 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2040 */ 2041 ac->ac_b_ex.fe_group = 0; 2042 ac->ac_b_ex.fe_start = 0; 2043 ac->ac_b_ex.fe_len = 0; 2044 ac->ac_status = AC_STATUS_CONTINUE; 2045 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2046 cr = 3; 2047 atomic_inc(&sbi->s_mb_lost_chunks); 2048 goto repeat; 2049 } 2050 } 2051 out: 2052 return err; 2053 } 2054 2055 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2056 { 2057 struct super_block *sb = seq->private; 2058 ext4_group_t group; 2059 2060 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2061 return NULL; 2062 group = *pos + 1; 2063 return (void *) ((unsigned long) group); 2064 } 2065 2066 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2067 { 2068 struct super_block *sb = seq->private; 2069 ext4_group_t group; 2070 2071 ++*pos; 2072 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2073 return NULL; 2074 group = *pos + 1; 2075 return (void *) ((unsigned long) group); 2076 } 2077 2078 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2079 { 2080 struct super_block *sb = seq->private; 2081 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2082 int i; 2083 int err, buddy_loaded = 0; 2084 struct ext4_buddy e4b; 2085 struct ext4_group_info *grinfo; 2086 struct sg { 2087 struct ext4_group_info info; 2088 ext4_grpblk_t counters[16]; 2089 } sg; 2090 2091 group--; 2092 if (group == 0) 2093 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2094 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2095 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2096 "group", "free", "frags", "first", 2097 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2098 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2099 2100 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2101 sizeof(struct ext4_group_info); 2102 grinfo = ext4_get_group_info(sb, group); 2103 /* Load the group info in memory only if not already loaded. */ 2104 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2105 err = ext4_mb_load_buddy(sb, group, &e4b); 2106 if (err) { 2107 seq_printf(seq, "#%-5u: I/O error\n", group); 2108 return 0; 2109 } 2110 buddy_loaded = 1; 2111 } 2112 2113 memcpy(&sg, ext4_get_group_info(sb, group), i); 2114 2115 if (buddy_loaded) 2116 ext4_mb_unload_buddy(&e4b); 2117 2118 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2119 sg.info.bb_fragments, sg.info.bb_first_free); 2120 for (i = 0; i <= 13; i++) 2121 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2122 sg.info.bb_counters[i] : 0); 2123 seq_printf(seq, " ]\n"); 2124 2125 return 0; 2126 } 2127 2128 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2129 { 2130 } 2131 2132 static const struct seq_operations ext4_mb_seq_groups_ops = { 2133 .start = ext4_mb_seq_groups_start, 2134 .next = ext4_mb_seq_groups_next, 2135 .stop = ext4_mb_seq_groups_stop, 2136 .show = ext4_mb_seq_groups_show, 2137 }; 2138 2139 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2140 { 2141 struct super_block *sb = PDE(inode)->data; 2142 int rc; 2143 2144 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2145 if (rc == 0) { 2146 struct seq_file *m = file->private_data; 2147 m->private = sb; 2148 } 2149 return rc; 2150 2151 } 2152 2153 static const struct file_operations ext4_mb_seq_groups_fops = { 2154 .owner = THIS_MODULE, 2155 .open = ext4_mb_seq_groups_open, 2156 .read = seq_read, 2157 .llseek = seq_lseek, 2158 .release = seq_release, 2159 }; 2160 2161 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2162 { 2163 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2164 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2165 2166 BUG_ON(!cachep); 2167 return cachep; 2168 } 2169 2170 /* 2171 * Allocate the top-level s_group_info array for the specified number 2172 * of groups 2173 */ 2174 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2175 { 2176 struct ext4_sb_info *sbi = EXT4_SB(sb); 2177 unsigned size; 2178 struct ext4_group_info ***new_groupinfo; 2179 2180 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2181 EXT4_DESC_PER_BLOCK_BITS(sb); 2182 if (size <= sbi->s_group_info_size) 2183 return 0; 2184 2185 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2186 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2187 if (!new_groupinfo) { 2188 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2189 return -ENOMEM; 2190 } 2191 if (sbi->s_group_info) { 2192 memcpy(new_groupinfo, sbi->s_group_info, 2193 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2194 ext4_kvfree(sbi->s_group_info); 2195 } 2196 sbi->s_group_info = new_groupinfo; 2197 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2198 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2199 sbi->s_group_info_size); 2200 return 0; 2201 } 2202 2203 /* Create and initialize ext4_group_info data for the given group. */ 2204 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2205 struct ext4_group_desc *desc) 2206 { 2207 int i; 2208 int metalen = 0; 2209 struct ext4_sb_info *sbi = EXT4_SB(sb); 2210 struct ext4_group_info **meta_group_info; 2211 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2212 2213 /* 2214 * First check if this group is the first of a reserved block. 2215 * If it's true, we have to allocate a new table of pointers 2216 * to ext4_group_info structures 2217 */ 2218 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2219 metalen = sizeof(*meta_group_info) << 2220 EXT4_DESC_PER_BLOCK_BITS(sb); 2221 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2222 if (meta_group_info == NULL) { 2223 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2224 "for a buddy group"); 2225 goto exit_meta_group_info; 2226 } 2227 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2228 meta_group_info; 2229 } 2230 2231 meta_group_info = 2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2233 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2234 2235 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2236 if (meta_group_info[i] == NULL) { 2237 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2238 goto exit_group_info; 2239 } 2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2241 &(meta_group_info[i]->bb_state)); 2242 2243 /* 2244 * initialize bb_free to be able to skip 2245 * empty groups without initialization 2246 */ 2247 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2248 meta_group_info[i]->bb_free = 2249 ext4_free_clusters_after_init(sb, group, desc); 2250 } else { 2251 meta_group_info[i]->bb_free = 2252 ext4_free_group_clusters(sb, desc); 2253 } 2254 2255 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2256 init_rwsem(&meta_group_info[i]->alloc_sem); 2257 meta_group_info[i]->bb_free_root = RB_ROOT; 2258 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2259 2260 #ifdef DOUBLE_CHECK 2261 { 2262 struct buffer_head *bh; 2263 meta_group_info[i]->bb_bitmap = 2264 kmalloc(sb->s_blocksize, GFP_KERNEL); 2265 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2266 bh = ext4_read_block_bitmap(sb, group); 2267 BUG_ON(bh == NULL); 2268 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2269 sb->s_blocksize); 2270 put_bh(bh); 2271 } 2272 #endif 2273 2274 return 0; 2275 2276 exit_group_info: 2277 /* If a meta_group_info table has been allocated, release it now */ 2278 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2279 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2280 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2281 } 2282 exit_meta_group_info: 2283 return -ENOMEM; 2284 } /* ext4_mb_add_groupinfo */ 2285 2286 static int ext4_mb_init_backend(struct super_block *sb) 2287 { 2288 ext4_group_t ngroups = ext4_get_groups_count(sb); 2289 ext4_group_t i; 2290 struct ext4_sb_info *sbi = EXT4_SB(sb); 2291 int err; 2292 struct ext4_group_desc *desc; 2293 struct kmem_cache *cachep; 2294 2295 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2296 if (err) 2297 return err; 2298 2299 sbi->s_buddy_cache = new_inode(sb); 2300 if (sbi->s_buddy_cache == NULL) { 2301 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2302 goto err_freesgi; 2303 } 2304 /* To avoid potentially colliding with an valid on-disk inode number, 2305 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2306 * not in the inode hash, so it should never be found by iget(), but 2307 * this will avoid confusion if it ever shows up during debugging. */ 2308 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2309 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2310 for (i = 0; i < ngroups; i++) { 2311 desc = ext4_get_group_desc(sb, i, NULL); 2312 if (desc == NULL) { 2313 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2314 goto err_freebuddy; 2315 } 2316 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2317 goto err_freebuddy; 2318 } 2319 2320 return 0; 2321 2322 err_freebuddy: 2323 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2324 while (i-- > 0) 2325 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2326 i = sbi->s_group_info_size; 2327 while (i-- > 0) 2328 kfree(sbi->s_group_info[i]); 2329 iput(sbi->s_buddy_cache); 2330 err_freesgi: 2331 ext4_kvfree(sbi->s_group_info); 2332 return -ENOMEM; 2333 } 2334 2335 static void ext4_groupinfo_destroy_slabs(void) 2336 { 2337 int i; 2338 2339 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2340 if (ext4_groupinfo_caches[i]) 2341 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2342 ext4_groupinfo_caches[i] = NULL; 2343 } 2344 } 2345 2346 static int ext4_groupinfo_create_slab(size_t size) 2347 { 2348 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2349 int slab_size; 2350 int blocksize_bits = order_base_2(size); 2351 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2352 struct kmem_cache *cachep; 2353 2354 if (cache_index >= NR_GRPINFO_CACHES) 2355 return -EINVAL; 2356 2357 if (unlikely(cache_index < 0)) 2358 cache_index = 0; 2359 2360 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2361 if (ext4_groupinfo_caches[cache_index]) { 2362 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2363 return 0; /* Already created */ 2364 } 2365 2366 slab_size = offsetof(struct ext4_group_info, 2367 bb_counters[blocksize_bits + 2]); 2368 2369 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2370 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2371 NULL); 2372 2373 ext4_groupinfo_caches[cache_index] = cachep; 2374 2375 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2376 if (!cachep) { 2377 printk(KERN_EMERG 2378 "EXT4-fs: no memory for groupinfo slab cache\n"); 2379 return -ENOMEM; 2380 } 2381 2382 return 0; 2383 } 2384 2385 int ext4_mb_init(struct super_block *sb) 2386 { 2387 struct ext4_sb_info *sbi = EXT4_SB(sb); 2388 unsigned i, j; 2389 unsigned offset; 2390 unsigned max; 2391 int ret; 2392 2393 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2394 2395 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2396 if (sbi->s_mb_offsets == NULL) { 2397 ret = -ENOMEM; 2398 goto out; 2399 } 2400 2401 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2402 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2403 if (sbi->s_mb_maxs == NULL) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 2408 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2409 if (ret < 0) 2410 goto out; 2411 2412 /* order 0 is regular bitmap */ 2413 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2414 sbi->s_mb_offsets[0] = 0; 2415 2416 i = 1; 2417 offset = 0; 2418 max = sb->s_blocksize << 2; 2419 do { 2420 sbi->s_mb_offsets[i] = offset; 2421 sbi->s_mb_maxs[i] = max; 2422 offset += 1 << (sb->s_blocksize_bits - i); 2423 max = max >> 1; 2424 i++; 2425 } while (i <= sb->s_blocksize_bits + 1); 2426 2427 spin_lock_init(&sbi->s_md_lock); 2428 spin_lock_init(&sbi->s_bal_lock); 2429 2430 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2431 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2432 sbi->s_mb_stats = MB_DEFAULT_STATS; 2433 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2434 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2435 /* 2436 * The default group preallocation is 512, which for 4k block 2437 * sizes translates to 2 megabytes. However for bigalloc file 2438 * systems, this is probably too big (i.e, if the cluster size 2439 * is 1 megabyte, then group preallocation size becomes half a 2440 * gigabyte!). As a default, we will keep a two megabyte 2441 * group pralloc size for cluster sizes up to 64k, and after 2442 * that, we will force a minimum group preallocation size of 2443 * 32 clusters. This translates to 8 megs when the cluster 2444 * size is 256k, and 32 megs when the cluster size is 1 meg, 2445 * which seems reasonable as a default. 2446 */ 2447 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2448 sbi->s_cluster_bits, 32); 2449 /* 2450 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2451 * to the lowest multiple of s_stripe which is bigger than 2452 * the s_mb_group_prealloc as determined above. We want 2453 * the preallocation size to be an exact multiple of the 2454 * RAID stripe size so that preallocations don't fragment 2455 * the stripes. 2456 */ 2457 if (sbi->s_stripe > 1) { 2458 sbi->s_mb_group_prealloc = roundup( 2459 sbi->s_mb_group_prealloc, sbi->s_stripe); 2460 } 2461 2462 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2463 if (sbi->s_locality_groups == NULL) { 2464 ret = -ENOMEM; 2465 goto out_free_groupinfo_slab; 2466 } 2467 for_each_possible_cpu(i) { 2468 struct ext4_locality_group *lg; 2469 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2470 mutex_init(&lg->lg_mutex); 2471 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2472 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2473 spin_lock_init(&lg->lg_prealloc_lock); 2474 } 2475 2476 /* init file for buddy data */ 2477 ret = ext4_mb_init_backend(sb); 2478 if (ret != 0) 2479 goto out_free_locality_groups; 2480 2481 if (sbi->s_proc) 2482 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2483 &ext4_mb_seq_groups_fops, sb); 2484 2485 return 0; 2486 2487 out_free_locality_groups: 2488 free_percpu(sbi->s_locality_groups); 2489 sbi->s_locality_groups = NULL; 2490 out_free_groupinfo_slab: 2491 ext4_groupinfo_destroy_slabs(); 2492 out: 2493 kfree(sbi->s_mb_offsets); 2494 sbi->s_mb_offsets = NULL; 2495 kfree(sbi->s_mb_maxs); 2496 sbi->s_mb_maxs = NULL; 2497 return ret; 2498 } 2499 2500 /* need to called with the ext4 group lock held */ 2501 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2502 { 2503 struct ext4_prealloc_space *pa; 2504 struct list_head *cur, *tmp; 2505 int count = 0; 2506 2507 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2508 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2509 list_del(&pa->pa_group_list); 2510 count++; 2511 kmem_cache_free(ext4_pspace_cachep, pa); 2512 } 2513 if (count) 2514 mb_debug(1, "mballoc: %u PAs left\n", count); 2515 2516 } 2517 2518 int ext4_mb_release(struct super_block *sb) 2519 { 2520 ext4_group_t ngroups = ext4_get_groups_count(sb); 2521 ext4_group_t i; 2522 int num_meta_group_infos; 2523 struct ext4_group_info *grinfo; 2524 struct ext4_sb_info *sbi = EXT4_SB(sb); 2525 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2526 2527 if (sbi->s_proc) 2528 remove_proc_entry("mb_groups", sbi->s_proc); 2529 2530 if (sbi->s_group_info) { 2531 for (i = 0; i < ngroups; i++) { 2532 grinfo = ext4_get_group_info(sb, i); 2533 #ifdef DOUBLE_CHECK 2534 kfree(grinfo->bb_bitmap); 2535 #endif 2536 ext4_lock_group(sb, i); 2537 ext4_mb_cleanup_pa(grinfo); 2538 ext4_unlock_group(sb, i); 2539 kmem_cache_free(cachep, grinfo); 2540 } 2541 num_meta_group_infos = (ngroups + 2542 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2543 EXT4_DESC_PER_BLOCK_BITS(sb); 2544 for (i = 0; i < num_meta_group_infos; i++) 2545 kfree(sbi->s_group_info[i]); 2546 ext4_kvfree(sbi->s_group_info); 2547 } 2548 kfree(sbi->s_mb_offsets); 2549 kfree(sbi->s_mb_maxs); 2550 if (sbi->s_buddy_cache) 2551 iput(sbi->s_buddy_cache); 2552 if (sbi->s_mb_stats) { 2553 ext4_msg(sb, KERN_INFO, 2554 "mballoc: %u blocks %u reqs (%u success)", 2555 atomic_read(&sbi->s_bal_allocated), 2556 atomic_read(&sbi->s_bal_reqs), 2557 atomic_read(&sbi->s_bal_success)); 2558 ext4_msg(sb, KERN_INFO, 2559 "mballoc: %u extents scanned, %u goal hits, " 2560 "%u 2^N hits, %u breaks, %u lost", 2561 atomic_read(&sbi->s_bal_ex_scanned), 2562 atomic_read(&sbi->s_bal_goals), 2563 atomic_read(&sbi->s_bal_2orders), 2564 atomic_read(&sbi->s_bal_breaks), 2565 atomic_read(&sbi->s_mb_lost_chunks)); 2566 ext4_msg(sb, KERN_INFO, 2567 "mballoc: %lu generated and it took %Lu", 2568 sbi->s_mb_buddies_generated, 2569 sbi->s_mb_generation_time); 2570 ext4_msg(sb, KERN_INFO, 2571 "mballoc: %u preallocated, %u discarded", 2572 atomic_read(&sbi->s_mb_preallocated), 2573 atomic_read(&sbi->s_mb_discarded)); 2574 } 2575 2576 free_percpu(sbi->s_locality_groups); 2577 2578 return 0; 2579 } 2580 2581 static inline int ext4_issue_discard(struct super_block *sb, 2582 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2583 { 2584 ext4_fsblk_t discard_block; 2585 2586 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2587 ext4_group_first_block_no(sb, block_group)); 2588 count = EXT4_C2B(EXT4_SB(sb), count); 2589 trace_ext4_discard_blocks(sb, 2590 (unsigned long long) discard_block, count); 2591 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2592 } 2593 2594 /* 2595 * This function is called by the jbd2 layer once the commit has finished, 2596 * so we know we can free the blocks that were released with that commit. 2597 */ 2598 static void ext4_free_data_callback(struct super_block *sb, 2599 struct ext4_journal_cb_entry *jce, 2600 int rc) 2601 { 2602 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2603 struct ext4_buddy e4b; 2604 struct ext4_group_info *db; 2605 int err, count = 0, count2 = 0; 2606 2607 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2608 entry->efd_count, entry->efd_group, entry); 2609 2610 if (test_opt(sb, DISCARD)) 2611 ext4_issue_discard(sb, entry->efd_group, 2612 entry->efd_start_cluster, entry->efd_count); 2613 2614 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2615 /* we expect to find existing buddy because it's pinned */ 2616 BUG_ON(err != 0); 2617 2618 2619 db = e4b.bd_info; 2620 /* there are blocks to put in buddy to make them really free */ 2621 count += entry->efd_count; 2622 count2++; 2623 ext4_lock_group(sb, entry->efd_group); 2624 /* Take it out of per group rb tree */ 2625 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2626 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2627 2628 /* 2629 * Clear the trimmed flag for the group so that the next 2630 * ext4_trim_fs can trim it. 2631 * If the volume is mounted with -o discard, online discard 2632 * is supported and the free blocks will be trimmed online. 2633 */ 2634 if (!test_opt(sb, DISCARD)) 2635 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2636 2637 if (!db->bb_free_root.rb_node) { 2638 /* No more items in the per group rb tree 2639 * balance refcounts from ext4_mb_free_metadata() 2640 */ 2641 page_cache_release(e4b.bd_buddy_page); 2642 page_cache_release(e4b.bd_bitmap_page); 2643 } 2644 ext4_unlock_group(sb, entry->efd_group); 2645 kmem_cache_free(ext4_free_data_cachep, entry); 2646 ext4_mb_unload_buddy(&e4b); 2647 2648 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2649 } 2650 2651 #ifdef CONFIG_EXT4_DEBUG 2652 u8 mb_enable_debug __read_mostly; 2653 2654 static struct dentry *debugfs_dir; 2655 static struct dentry *debugfs_debug; 2656 2657 static void __init ext4_create_debugfs_entry(void) 2658 { 2659 debugfs_dir = debugfs_create_dir("ext4", NULL); 2660 if (debugfs_dir) 2661 debugfs_debug = debugfs_create_u8("mballoc-debug", 2662 S_IRUGO | S_IWUSR, 2663 debugfs_dir, 2664 &mb_enable_debug); 2665 } 2666 2667 static void ext4_remove_debugfs_entry(void) 2668 { 2669 debugfs_remove(debugfs_debug); 2670 debugfs_remove(debugfs_dir); 2671 } 2672 2673 #else 2674 2675 static void __init ext4_create_debugfs_entry(void) 2676 { 2677 } 2678 2679 static void ext4_remove_debugfs_entry(void) 2680 { 2681 } 2682 2683 #endif 2684 2685 int __init ext4_init_mballoc(void) 2686 { 2687 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2688 SLAB_RECLAIM_ACCOUNT); 2689 if (ext4_pspace_cachep == NULL) 2690 return -ENOMEM; 2691 2692 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2693 SLAB_RECLAIM_ACCOUNT); 2694 if (ext4_ac_cachep == NULL) { 2695 kmem_cache_destroy(ext4_pspace_cachep); 2696 return -ENOMEM; 2697 } 2698 2699 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2700 SLAB_RECLAIM_ACCOUNT); 2701 if (ext4_free_data_cachep == NULL) { 2702 kmem_cache_destroy(ext4_pspace_cachep); 2703 kmem_cache_destroy(ext4_ac_cachep); 2704 return -ENOMEM; 2705 } 2706 ext4_create_debugfs_entry(); 2707 return 0; 2708 } 2709 2710 void ext4_exit_mballoc(void) 2711 { 2712 /* 2713 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2714 * before destroying the slab cache. 2715 */ 2716 rcu_barrier(); 2717 kmem_cache_destroy(ext4_pspace_cachep); 2718 kmem_cache_destroy(ext4_ac_cachep); 2719 kmem_cache_destroy(ext4_free_data_cachep); 2720 ext4_groupinfo_destroy_slabs(); 2721 ext4_remove_debugfs_entry(); 2722 } 2723 2724 2725 /* 2726 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2727 * Returns 0 if success or error code 2728 */ 2729 static noinline_for_stack int 2730 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2731 handle_t *handle, unsigned int reserv_clstrs) 2732 { 2733 struct buffer_head *bitmap_bh = NULL; 2734 struct ext4_group_desc *gdp; 2735 struct buffer_head *gdp_bh; 2736 struct ext4_sb_info *sbi; 2737 struct super_block *sb; 2738 ext4_fsblk_t block; 2739 int err, len; 2740 2741 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2742 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2743 2744 sb = ac->ac_sb; 2745 sbi = EXT4_SB(sb); 2746 2747 err = -EIO; 2748 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2749 if (!bitmap_bh) 2750 goto out_err; 2751 2752 err = ext4_journal_get_write_access(handle, bitmap_bh); 2753 if (err) 2754 goto out_err; 2755 2756 err = -EIO; 2757 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2758 if (!gdp) 2759 goto out_err; 2760 2761 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2762 ext4_free_group_clusters(sb, gdp)); 2763 2764 err = ext4_journal_get_write_access(handle, gdp_bh); 2765 if (err) 2766 goto out_err; 2767 2768 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2769 2770 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2771 if (!ext4_data_block_valid(sbi, block, len)) { 2772 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2773 "fs metadata", block, block+len); 2774 /* File system mounted not to panic on error 2775 * Fix the bitmap and repeat the block allocation 2776 * We leak some of the blocks here. 2777 */ 2778 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2779 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2780 ac->ac_b_ex.fe_len); 2781 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2782 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2783 if (!err) 2784 err = -EAGAIN; 2785 goto out_err; 2786 } 2787 2788 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2789 #ifdef AGGRESSIVE_CHECK 2790 { 2791 int i; 2792 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2793 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2794 bitmap_bh->b_data)); 2795 } 2796 } 2797 #endif 2798 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2799 ac->ac_b_ex.fe_len); 2800 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2801 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2802 ext4_free_group_clusters_set(sb, gdp, 2803 ext4_free_clusters_after_init(sb, 2804 ac->ac_b_ex.fe_group, gdp)); 2805 } 2806 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2807 ext4_free_group_clusters_set(sb, gdp, len); 2808 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh, 2809 EXT4_BLOCKS_PER_GROUP(sb) / 8); 2810 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2811 2812 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2813 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2814 /* 2815 * Now reduce the dirty block count also. Should not go negative 2816 */ 2817 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2818 /* release all the reserved blocks if non delalloc */ 2819 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2820 reserv_clstrs); 2821 2822 if (sbi->s_log_groups_per_flex) { 2823 ext4_group_t flex_group = ext4_flex_group(sbi, 2824 ac->ac_b_ex.fe_group); 2825 atomic_sub(ac->ac_b_ex.fe_len, 2826 &sbi->s_flex_groups[flex_group].free_clusters); 2827 } 2828 2829 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2830 if (err) 2831 goto out_err; 2832 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2833 2834 out_err: 2835 brelse(bitmap_bh); 2836 return err; 2837 } 2838 2839 /* 2840 * here we normalize request for locality group 2841 * Group request are normalized to s_mb_group_prealloc, which goes to 2842 * s_strip if we set the same via mount option. 2843 * s_mb_group_prealloc can be configured via 2844 * /sys/fs/ext4/<partition>/mb_group_prealloc 2845 * 2846 * XXX: should we try to preallocate more than the group has now? 2847 */ 2848 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2849 { 2850 struct super_block *sb = ac->ac_sb; 2851 struct ext4_locality_group *lg = ac->ac_lg; 2852 2853 BUG_ON(lg == NULL); 2854 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2855 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2856 current->pid, ac->ac_g_ex.fe_len); 2857 } 2858 2859 /* 2860 * Normalization means making request better in terms of 2861 * size and alignment 2862 */ 2863 static noinline_for_stack void 2864 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2865 struct ext4_allocation_request *ar) 2866 { 2867 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2868 int bsbits, max; 2869 ext4_lblk_t end; 2870 loff_t size, start_off; 2871 loff_t orig_size __maybe_unused; 2872 ext4_lblk_t start; 2873 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2874 struct ext4_prealloc_space *pa; 2875 2876 /* do normalize only data requests, metadata requests 2877 do not need preallocation */ 2878 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2879 return; 2880 2881 /* sometime caller may want exact blocks */ 2882 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2883 return; 2884 2885 /* caller may indicate that preallocation isn't 2886 * required (it's a tail, for example) */ 2887 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2888 return; 2889 2890 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2891 ext4_mb_normalize_group_request(ac); 2892 return ; 2893 } 2894 2895 bsbits = ac->ac_sb->s_blocksize_bits; 2896 2897 /* first, let's learn actual file size 2898 * given current request is allocated */ 2899 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2900 size = size << bsbits; 2901 if (size < i_size_read(ac->ac_inode)) 2902 size = i_size_read(ac->ac_inode); 2903 orig_size = size; 2904 2905 /* max size of free chunks */ 2906 max = 2 << bsbits; 2907 2908 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2909 (req <= (size) || max <= (chunk_size)) 2910 2911 /* first, try to predict filesize */ 2912 /* XXX: should this table be tunable? */ 2913 start_off = 0; 2914 if (size <= 16 * 1024) { 2915 size = 16 * 1024; 2916 } else if (size <= 32 * 1024) { 2917 size = 32 * 1024; 2918 } else if (size <= 64 * 1024) { 2919 size = 64 * 1024; 2920 } else if (size <= 128 * 1024) { 2921 size = 128 * 1024; 2922 } else if (size <= 256 * 1024) { 2923 size = 256 * 1024; 2924 } else if (size <= 512 * 1024) { 2925 size = 512 * 1024; 2926 } else if (size <= 1024 * 1024) { 2927 size = 1024 * 1024; 2928 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2929 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2930 (21 - bsbits)) << 21; 2931 size = 2 * 1024 * 1024; 2932 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2933 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2934 (22 - bsbits)) << 22; 2935 size = 4 * 1024 * 1024; 2936 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2937 (8<<20)>>bsbits, max, 8 * 1024)) { 2938 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2939 (23 - bsbits)) << 23; 2940 size = 8 * 1024 * 1024; 2941 } else { 2942 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2943 size = ac->ac_o_ex.fe_len << bsbits; 2944 } 2945 size = size >> bsbits; 2946 start = start_off >> bsbits; 2947 2948 /* don't cover already allocated blocks in selected range */ 2949 if (ar->pleft && start <= ar->lleft) { 2950 size -= ar->lleft + 1 - start; 2951 start = ar->lleft + 1; 2952 } 2953 if (ar->pright && start + size - 1 >= ar->lright) 2954 size -= start + size - ar->lright; 2955 2956 end = start + size; 2957 2958 /* check we don't cross already preallocated blocks */ 2959 rcu_read_lock(); 2960 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2961 ext4_lblk_t pa_end; 2962 2963 if (pa->pa_deleted) 2964 continue; 2965 spin_lock(&pa->pa_lock); 2966 if (pa->pa_deleted) { 2967 spin_unlock(&pa->pa_lock); 2968 continue; 2969 } 2970 2971 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2972 pa->pa_len); 2973 2974 /* PA must not overlap original request */ 2975 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2976 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2977 2978 /* skip PAs this normalized request doesn't overlap with */ 2979 if (pa->pa_lstart >= end || pa_end <= start) { 2980 spin_unlock(&pa->pa_lock); 2981 continue; 2982 } 2983 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2984 2985 /* adjust start or end to be adjacent to this pa */ 2986 if (pa_end <= ac->ac_o_ex.fe_logical) { 2987 BUG_ON(pa_end < start); 2988 start = pa_end; 2989 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2990 BUG_ON(pa->pa_lstart > end); 2991 end = pa->pa_lstart; 2992 } 2993 spin_unlock(&pa->pa_lock); 2994 } 2995 rcu_read_unlock(); 2996 size = end - start; 2997 2998 /* XXX: extra loop to check we really don't overlap preallocations */ 2999 rcu_read_lock(); 3000 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3001 ext4_lblk_t pa_end; 3002 3003 spin_lock(&pa->pa_lock); 3004 if (pa->pa_deleted == 0) { 3005 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3006 pa->pa_len); 3007 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3008 } 3009 spin_unlock(&pa->pa_lock); 3010 } 3011 rcu_read_unlock(); 3012 3013 if (start + size <= ac->ac_o_ex.fe_logical && 3014 start > ac->ac_o_ex.fe_logical) { 3015 ext4_msg(ac->ac_sb, KERN_ERR, 3016 "start %lu, size %lu, fe_logical %lu", 3017 (unsigned long) start, (unsigned long) size, 3018 (unsigned long) ac->ac_o_ex.fe_logical); 3019 } 3020 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3021 start > ac->ac_o_ex.fe_logical); 3022 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3023 3024 /* now prepare goal request */ 3025 3026 /* XXX: is it better to align blocks WRT to logical 3027 * placement or satisfy big request as is */ 3028 ac->ac_g_ex.fe_logical = start; 3029 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3030 3031 /* define goal start in order to merge */ 3032 if (ar->pright && (ar->lright == (start + size))) { 3033 /* merge to the right */ 3034 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3035 &ac->ac_f_ex.fe_group, 3036 &ac->ac_f_ex.fe_start); 3037 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3038 } 3039 if (ar->pleft && (ar->lleft + 1 == start)) { 3040 /* merge to the left */ 3041 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3042 &ac->ac_f_ex.fe_group, 3043 &ac->ac_f_ex.fe_start); 3044 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3045 } 3046 3047 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3048 (unsigned) orig_size, (unsigned) start); 3049 } 3050 3051 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3052 { 3053 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3054 3055 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3056 atomic_inc(&sbi->s_bal_reqs); 3057 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3058 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3059 atomic_inc(&sbi->s_bal_success); 3060 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3061 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3062 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3063 atomic_inc(&sbi->s_bal_goals); 3064 if (ac->ac_found > sbi->s_mb_max_to_scan) 3065 atomic_inc(&sbi->s_bal_breaks); 3066 } 3067 3068 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3069 trace_ext4_mballoc_alloc(ac); 3070 else 3071 trace_ext4_mballoc_prealloc(ac); 3072 } 3073 3074 /* 3075 * Called on failure; free up any blocks from the inode PA for this 3076 * context. We don't need this for MB_GROUP_PA because we only change 3077 * pa_free in ext4_mb_release_context(), but on failure, we've already 3078 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3079 */ 3080 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3081 { 3082 struct ext4_prealloc_space *pa = ac->ac_pa; 3083 3084 if (pa && pa->pa_type == MB_INODE_PA) 3085 pa->pa_free += ac->ac_b_ex.fe_len; 3086 } 3087 3088 /* 3089 * use blocks preallocated to inode 3090 */ 3091 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3092 struct ext4_prealloc_space *pa) 3093 { 3094 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3095 ext4_fsblk_t start; 3096 ext4_fsblk_t end; 3097 int len; 3098 3099 /* found preallocated blocks, use them */ 3100 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3101 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3102 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3103 len = EXT4_NUM_B2C(sbi, end - start); 3104 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3105 &ac->ac_b_ex.fe_start); 3106 ac->ac_b_ex.fe_len = len; 3107 ac->ac_status = AC_STATUS_FOUND; 3108 ac->ac_pa = pa; 3109 3110 BUG_ON(start < pa->pa_pstart); 3111 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3112 BUG_ON(pa->pa_free < len); 3113 pa->pa_free -= len; 3114 3115 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3116 } 3117 3118 /* 3119 * use blocks preallocated to locality group 3120 */ 3121 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3122 struct ext4_prealloc_space *pa) 3123 { 3124 unsigned int len = ac->ac_o_ex.fe_len; 3125 3126 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3127 &ac->ac_b_ex.fe_group, 3128 &ac->ac_b_ex.fe_start); 3129 ac->ac_b_ex.fe_len = len; 3130 ac->ac_status = AC_STATUS_FOUND; 3131 ac->ac_pa = pa; 3132 3133 /* we don't correct pa_pstart or pa_plen here to avoid 3134 * possible race when the group is being loaded concurrently 3135 * instead we correct pa later, after blocks are marked 3136 * in on-disk bitmap -- see ext4_mb_release_context() 3137 * Other CPUs are prevented from allocating from this pa by lg_mutex 3138 */ 3139 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3140 } 3141 3142 /* 3143 * Return the prealloc space that have minimal distance 3144 * from the goal block. @cpa is the prealloc 3145 * space that is having currently known minimal distance 3146 * from the goal block. 3147 */ 3148 static struct ext4_prealloc_space * 3149 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3150 struct ext4_prealloc_space *pa, 3151 struct ext4_prealloc_space *cpa) 3152 { 3153 ext4_fsblk_t cur_distance, new_distance; 3154 3155 if (cpa == NULL) { 3156 atomic_inc(&pa->pa_count); 3157 return pa; 3158 } 3159 cur_distance = abs(goal_block - cpa->pa_pstart); 3160 new_distance = abs(goal_block - pa->pa_pstart); 3161 3162 if (cur_distance <= new_distance) 3163 return cpa; 3164 3165 /* drop the previous reference */ 3166 atomic_dec(&cpa->pa_count); 3167 atomic_inc(&pa->pa_count); 3168 return pa; 3169 } 3170 3171 /* 3172 * search goal blocks in preallocated space 3173 */ 3174 static noinline_for_stack int 3175 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3176 { 3177 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3178 int order, i; 3179 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3180 struct ext4_locality_group *lg; 3181 struct ext4_prealloc_space *pa, *cpa = NULL; 3182 ext4_fsblk_t goal_block; 3183 3184 /* only data can be preallocated */ 3185 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3186 return 0; 3187 3188 /* first, try per-file preallocation */ 3189 rcu_read_lock(); 3190 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3191 3192 /* all fields in this condition don't change, 3193 * so we can skip locking for them */ 3194 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3195 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3196 EXT4_C2B(sbi, pa->pa_len))) 3197 continue; 3198 3199 /* non-extent files can't have physical blocks past 2^32 */ 3200 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3201 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3202 EXT4_MAX_BLOCK_FILE_PHYS)) 3203 continue; 3204 3205 /* found preallocated blocks, use them */ 3206 spin_lock(&pa->pa_lock); 3207 if (pa->pa_deleted == 0 && pa->pa_free) { 3208 atomic_inc(&pa->pa_count); 3209 ext4_mb_use_inode_pa(ac, pa); 3210 spin_unlock(&pa->pa_lock); 3211 ac->ac_criteria = 10; 3212 rcu_read_unlock(); 3213 return 1; 3214 } 3215 spin_unlock(&pa->pa_lock); 3216 } 3217 rcu_read_unlock(); 3218 3219 /* can we use group allocation? */ 3220 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3221 return 0; 3222 3223 /* inode may have no locality group for some reason */ 3224 lg = ac->ac_lg; 3225 if (lg == NULL) 3226 return 0; 3227 order = fls(ac->ac_o_ex.fe_len) - 1; 3228 if (order > PREALLOC_TB_SIZE - 1) 3229 /* The max size of hash table is PREALLOC_TB_SIZE */ 3230 order = PREALLOC_TB_SIZE - 1; 3231 3232 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3233 /* 3234 * search for the prealloc space that is having 3235 * minimal distance from the goal block. 3236 */ 3237 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3238 rcu_read_lock(); 3239 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3240 pa_inode_list) { 3241 spin_lock(&pa->pa_lock); 3242 if (pa->pa_deleted == 0 && 3243 pa->pa_free >= ac->ac_o_ex.fe_len) { 3244 3245 cpa = ext4_mb_check_group_pa(goal_block, 3246 pa, cpa); 3247 } 3248 spin_unlock(&pa->pa_lock); 3249 } 3250 rcu_read_unlock(); 3251 } 3252 if (cpa) { 3253 ext4_mb_use_group_pa(ac, cpa); 3254 ac->ac_criteria = 20; 3255 return 1; 3256 } 3257 return 0; 3258 } 3259 3260 /* 3261 * the function goes through all block freed in the group 3262 * but not yet committed and marks them used in in-core bitmap. 3263 * buddy must be generated from this bitmap 3264 * Need to be called with the ext4 group lock held 3265 */ 3266 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3267 ext4_group_t group) 3268 { 3269 struct rb_node *n; 3270 struct ext4_group_info *grp; 3271 struct ext4_free_data *entry; 3272 3273 grp = ext4_get_group_info(sb, group); 3274 n = rb_first(&(grp->bb_free_root)); 3275 3276 while (n) { 3277 entry = rb_entry(n, struct ext4_free_data, efd_node); 3278 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3279 n = rb_next(n); 3280 } 3281 return; 3282 } 3283 3284 /* 3285 * the function goes through all preallocation in this group and marks them 3286 * used in in-core bitmap. buddy must be generated from this bitmap 3287 * Need to be called with ext4 group lock held 3288 */ 3289 static noinline_for_stack 3290 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3291 ext4_group_t group) 3292 { 3293 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3294 struct ext4_prealloc_space *pa; 3295 struct list_head *cur; 3296 ext4_group_t groupnr; 3297 ext4_grpblk_t start; 3298 int preallocated = 0; 3299 int len; 3300 3301 /* all form of preallocation discards first load group, 3302 * so the only competing code is preallocation use. 3303 * we don't need any locking here 3304 * notice we do NOT ignore preallocations with pa_deleted 3305 * otherwise we could leave used blocks available for 3306 * allocation in buddy when concurrent ext4_mb_put_pa() 3307 * is dropping preallocation 3308 */ 3309 list_for_each(cur, &grp->bb_prealloc_list) { 3310 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3311 spin_lock(&pa->pa_lock); 3312 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3313 &groupnr, &start); 3314 len = pa->pa_len; 3315 spin_unlock(&pa->pa_lock); 3316 if (unlikely(len == 0)) 3317 continue; 3318 BUG_ON(groupnr != group); 3319 ext4_set_bits(bitmap, start, len); 3320 preallocated += len; 3321 } 3322 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3323 } 3324 3325 static void ext4_mb_pa_callback(struct rcu_head *head) 3326 { 3327 struct ext4_prealloc_space *pa; 3328 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3329 kmem_cache_free(ext4_pspace_cachep, pa); 3330 } 3331 3332 /* 3333 * drops a reference to preallocated space descriptor 3334 * if this was the last reference and the space is consumed 3335 */ 3336 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3337 struct super_block *sb, struct ext4_prealloc_space *pa) 3338 { 3339 ext4_group_t grp; 3340 ext4_fsblk_t grp_blk; 3341 3342 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3343 return; 3344 3345 /* in this short window concurrent discard can set pa_deleted */ 3346 spin_lock(&pa->pa_lock); 3347 if (pa->pa_deleted == 1) { 3348 spin_unlock(&pa->pa_lock); 3349 return; 3350 } 3351 3352 pa->pa_deleted = 1; 3353 spin_unlock(&pa->pa_lock); 3354 3355 grp_blk = pa->pa_pstart; 3356 /* 3357 * If doing group-based preallocation, pa_pstart may be in the 3358 * next group when pa is used up 3359 */ 3360 if (pa->pa_type == MB_GROUP_PA) 3361 grp_blk--; 3362 3363 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3364 3365 /* 3366 * possible race: 3367 * 3368 * P1 (buddy init) P2 (regular allocation) 3369 * find block B in PA 3370 * copy on-disk bitmap to buddy 3371 * mark B in on-disk bitmap 3372 * drop PA from group 3373 * mark all PAs in buddy 3374 * 3375 * thus, P1 initializes buddy with B available. to prevent this 3376 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3377 * against that pair 3378 */ 3379 ext4_lock_group(sb, grp); 3380 list_del(&pa->pa_group_list); 3381 ext4_unlock_group(sb, grp); 3382 3383 spin_lock(pa->pa_obj_lock); 3384 list_del_rcu(&pa->pa_inode_list); 3385 spin_unlock(pa->pa_obj_lock); 3386 3387 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3388 } 3389 3390 /* 3391 * creates new preallocated space for given inode 3392 */ 3393 static noinline_for_stack int 3394 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3395 { 3396 struct super_block *sb = ac->ac_sb; 3397 struct ext4_sb_info *sbi = EXT4_SB(sb); 3398 struct ext4_prealloc_space *pa; 3399 struct ext4_group_info *grp; 3400 struct ext4_inode_info *ei; 3401 3402 /* preallocate only when found space is larger then requested */ 3403 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3404 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3405 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3406 3407 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3408 if (pa == NULL) 3409 return -ENOMEM; 3410 3411 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3412 int winl; 3413 int wins; 3414 int win; 3415 int offs; 3416 3417 /* we can't allocate as much as normalizer wants. 3418 * so, found space must get proper lstart 3419 * to cover original request */ 3420 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3421 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3422 3423 /* we're limited by original request in that 3424 * logical block must be covered any way 3425 * winl is window we can move our chunk within */ 3426 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3427 3428 /* also, we should cover whole original request */ 3429 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3430 3431 /* the smallest one defines real window */ 3432 win = min(winl, wins); 3433 3434 offs = ac->ac_o_ex.fe_logical % 3435 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3436 if (offs && offs < win) 3437 win = offs; 3438 3439 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3440 EXT4_B2C(sbi, win); 3441 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3442 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3443 } 3444 3445 /* preallocation can change ac_b_ex, thus we store actually 3446 * allocated blocks for history */ 3447 ac->ac_f_ex = ac->ac_b_ex; 3448 3449 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3450 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3451 pa->pa_len = ac->ac_b_ex.fe_len; 3452 pa->pa_free = pa->pa_len; 3453 atomic_set(&pa->pa_count, 1); 3454 spin_lock_init(&pa->pa_lock); 3455 INIT_LIST_HEAD(&pa->pa_inode_list); 3456 INIT_LIST_HEAD(&pa->pa_group_list); 3457 pa->pa_deleted = 0; 3458 pa->pa_type = MB_INODE_PA; 3459 3460 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3461 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3462 trace_ext4_mb_new_inode_pa(ac, pa); 3463 3464 ext4_mb_use_inode_pa(ac, pa); 3465 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3466 3467 ei = EXT4_I(ac->ac_inode); 3468 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3469 3470 pa->pa_obj_lock = &ei->i_prealloc_lock; 3471 pa->pa_inode = ac->ac_inode; 3472 3473 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3474 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3475 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3476 3477 spin_lock(pa->pa_obj_lock); 3478 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3479 spin_unlock(pa->pa_obj_lock); 3480 3481 return 0; 3482 } 3483 3484 /* 3485 * creates new preallocated space for locality group inodes belongs to 3486 */ 3487 static noinline_for_stack int 3488 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3489 { 3490 struct super_block *sb = ac->ac_sb; 3491 struct ext4_locality_group *lg; 3492 struct ext4_prealloc_space *pa; 3493 struct ext4_group_info *grp; 3494 3495 /* preallocate only when found space is larger then requested */ 3496 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3497 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3498 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3499 3500 BUG_ON(ext4_pspace_cachep == NULL); 3501 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3502 if (pa == NULL) 3503 return -ENOMEM; 3504 3505 /* preallocation can change ac_b_ex, thus we store actually 3506 * allocated blocks for history */ 3507 ac->ac_f_ex = ac->ac_b_ex; 3508 3509 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3510 pa->pa_lstart = pa->pa_pstart; 3511 pa->pa_len = ac->ac_b_ex.fe_len; 3512 pa->pa_free = pa->pa_len; 3513 atomic_set(&pa->pa_count, 1); 3514 spin_lock_init(&pa->pa_lock); 3515 INIT_LIST_HEAD(&pa->pa_inode_list); 3516 INIT_LIST_HEAD(&pa->pa_group_list); 3517 pa->pa_deleted = 0; 3518 pa->pa_type = MB_GROUP_PA; 3519 3520 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3521 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3522 trace_ext4_mb_new_group_pa(ac, pa); 3523 3524 ext4_mb_use_group_pa(ac, pa); 3525 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3526 3527 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3528 lg = ac->ac_lg; 3529 BUG_ON(lg == NULL); 3530 3531 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3532 pa->pa_inode = NULL; 3533 3534 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3535 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3536 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3537 3538 /* 3539 * We will later add the new pa to the right bucket 3540 * after updating the pa_free in ext4_mb_release_context 3541 */ 3542 return 0; 3543 } 3544 3545 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3546 { 3547 int err; 3548 3549 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3550 err = ext4_mb_new_group_pa(ac); 3551 else 3552 err = ext4_mb_new_inode_pa(ac); 3553 return err; 3554 } 3555 3556 /* 3557 * finds all unused blocks in on-disk bitmap, frees them in 3558 * in-core bitmap and buddy. 3559 * @pa must be unlinked from inode and group lists, so that 3560 * nobody else can find/use it. 3561 * the caller MUST hold group/inode locks. 3562 * TODO: optimize the case when there are no in-core structures yet 3563 */ 3564 static noinline_for_stack int 3565 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3566 struct ext4_prealloc_space *pa) 3567 { 3568 struct super_block *sb = e4b->bd_sb; 3569 struct ext4_sb_info *sbi = EXT4_SB(sb); 3570 unsigned int end; 3571 unsigned int next; 3572 ext4_group_t group; 3573 ext4_grpblk_t bit; 3574 unsigned long long grp_blk_start; 3575 int err = 0; 3576 int free = 0; 3577 3578 BUG_ON(pa->pa_deleted == 0); 3579 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3580 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3581 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3582 end = bit + pa->pa_len; 3583 3584 while (bit < end) { 3585 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3586 if (bit >= end) 3587 break; 3588 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3589 mb_debug(1, " free preallocated %u/%u in group %u\n", 3590 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3591 (unsigned) next - bit, (unsigned) group); 3592 free += next - bit; 3593 3594 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3595 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3596 EXT4_C2B(sbi, bit)), 3597 next - bit); 3598 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3599 bit = next + 1; 3600 } 3601 if (free != pa->pa_free) { 3602 ext4_msg(e4b->bd_sb, KERN_CRIT, 3603 "pa %p: logic %lu, phys. %lu, len %lu", 3604 pa, (unsigned long) pa->pa_lstart, 3605 (unsigned long) pa->pa_pstart, 3606 (unsigned long) pa->pa_len); 3607 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3608 free, pa->pa_free); 3609 /* 3610 * pa is already deleted so we use the value obtained 3611 * from the bitmap and continue. 3612 */ 3613 } 3614 atomic_add(free, &sbi->s_mb_discarded); 3615 3616 return err; 3617 } 3618 3619 static noinline_for_stack int 3620 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3621 struct ext4_prealloc_space *pa) 3622 { 3623 struct super_block *sb = e4b->bd_sb; 3624 ext4_group_t group; 3625 ext4_grpblk_t bit; 3626 3627 trace_ext4_mb_release_group_pa(sb, pa); 3628 BUG_ON(pa->pa_deleted == 0); 3629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3630 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3631 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3632 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3633 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3634 3635 return 0; 3636 } 3637 3638 /* 3639 * releases all preallocations in given group 3640 * 3641 * first, we need to decide discard policy: 3642 * - when do we discard 3643 * 1) ENOSPC 3644 * - how many do we discard 3645 * 1) how many requested 3646 */ 3647 static noinline_for_stack int 3648 ext4_mb_discard_group_preallocations(struct super_block *sb, 3649 ext4_group_t group, int needed) 3650 { 3651 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3652 struct buffer_head *bitmap_bh = NULL; 3653 struct ext4_prealloc_space *pa, *tmp; 3654 struct list_head list; 3655 struct ext4_buddy e4b; 3656 int err; 3657 int busy = 0; 3658 int free = 0; 3659 3660 mb_debug(1, "discard preallocation for group %u\n", group); 3661 3662 if (list_empty(&grp->bb_prealloc_list)) 3663 return 0; 3664 3665 bitmap_bh = ext4_read_block_bitmap(sb, group); 3666 if (bitmap_bh == NULL) { 3667 ext4_error(sb, "Error reading block bitmap for %u", group); 3668 return 0; 3669 } 3670 3671 err = ext4_mb_load_buddy(sb, group, &e4b); 3672 if (err) { 3673 ext4_error(sb, "Error loading buddy information for %u", group); 3674 put_bh(bitmap_bh); 3675 return 0; 3676 } 3677 3678 if (needed == 0) 3679 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3680 3681 INIT_LIST_HEAD(&list); 3682 repeat: 3683 ext4_lock_group(sb, group); 3684 list_for_each_entry_safe(pa, tmp, 3685 &grp->bb_prealloc_list, pa_group_list) { 3686 spin_lock(&pa->pa_lock); 3687 if (atomic_read(&pa->pa_count)) { 3688 spin_unlock(&pa->pa_lock); 3689 busy = 1; 3690 continue; 3691 } 3692 if (pa->pa_deleted) { 3693 spin_unlock(&pa->pa_lock); 3694 continue; 3695 } 3696 3697 /* seems this one can be freed ... */ 3698 pa->pa_deleted = 1; 3699 3700 /* we can trust pa_free ... */ 3701 free += pa->pa_free; 3702 3703 spin_unlock(&pa->pa_lock); 3704 3705 list_del(&pa->pa_group_list); 3706 list_add(&pa->u.pa_tmp_list, &list); 3707 } 3708 3709 /* if we still need more blocks and some PAs were used, try again */ 3710 if (free < needed && busy) { 3711 busy = 0; 3712 ext4_unlock_group(sb, group); 3713 /* 3714 * Yield the CPU here so that we don't get soft lockup 3715 * in non preempt case. 3716 */ 3717 yield(); 3718 goto repeat; 3719 } 3720 3721 /* found anything to free? */ 3722 if (list_empty(&list)) { 3723 BUG_ON(free != 0); 3724 goto out; 3725 } 3726 3727 /* now free all selected PAs */ 3728 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3729 3730 /* remove from object (inode or locality group) */ 3731 spin_lock(pa->pa_obj_lock); 3732 list_del_rcu(&pa->pa_inode_list); 3733 spin_unlock(pa->pa_obj_lock); 3734 3735 if (pa->pa_type == MB_GROUP_PA) 3736 ext4_mb_release_group_pa(&e4b, pa); 3737 else 3738 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3739 3740 list_del(&pa->u.pa_tmp_list); 3741 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3742 } 3743 3744 out: 3745 ext4_unlock_group(sb, group); 3746 ext4_mb_unload_buddy(&e4b); 3747 put_bh(bitmap_bh); 3748 return free; 3749 } 3750 3751 /* 3752 * releases all non-used preallocated blocks for given inode 3753 * 3754 * It's important to discard preallocations under i_data_sem 3755 * We don't want another block to be served from the prealloc 3756 * space when we are discarding the inode prealloc space. 3757 * 3758 * FIXME!! Make sure it is valid at all the call sites 3759 */ 3760 void ext4_discard_preallocations(struct inode *inode) 3761 { 3762 struct ext4_inode_info *ei = EXT4_I(inode); 3763 struct super_block *sb = inode->i_sb; 3764 struct buffer_head *bitmap_bh = NULL; 3765 struct ext4_prealloc_space *pa, *tmp; 3766 ext4_group_t group = 0; 3767 struct list_head list; 3768 struct ext4_buddy e4b; 3769 int err; 3770 3771 if (!S_ISREG(inode->i_mode)) { 3772 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3773 return; 3774 } 3775 3776 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3777 trace_ext4_discard_preallocations(inode); 3778 3779 INIT_LIST_HEAD(&list); 3780 3781 repeat: 3782 /* first, collect all pa's in the inode */ 3783 spin_lock(&ei->i_prealloc_lock); 3784 while (!list_empty(&ei->i_prealloc_list)) { 3785 pa = list_entry(ei->i_prealloc_list.next, 3786 struct ext4_prealloc_space, pa_inode_list); 3787 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3788 spin_lock(&pa->pa_lock); 3789 if (atomic_read(&pa->pa_count)) { 3790 /* this shouldn't happen often - nobody should 3791 * use preallocation while we're discarding it */ 3792 spin_unlock(&pa->pa_lock); 3793 spin_unlock(&ei->i_prealloc_lock); 3794 ext4_msg(sb, KERN_ERR, 3795 "uh-oh! used pa while discarding"); 3796 WARN_ON(1); 3797 schedule_timeout_uninterruptible(HZ); 3798 goto repeat; 3799 3800 } 3801 if (pa->pa_deleted == 0) { 3802 pa->pa_deleted = 1; 3803 spin_unlock(&pa->pa_lock); 3804 list_del_rcu(&pa->pa_inode_list); 3805 list_add(&pa->u.pa_tmp_list, &list); 3806 continue; 3807 } 3808 3809 /* someone is deleting pa right now */ 3810 spin_unlock(&pa->pa_lock); 3811 spin_unlock(&ei->i_prealloc_lock); 3812 3813 /* we have to wait here because pa_deleted 3814 * doesn't mean pa is already unlinked from 3815 * the list. as we might be called from 3816 * ->clear_inode() the inode will get freed 3817 * and concurrent thread which is unlinking 3818 * pa from inode's list may access already 3819 * freed memory, bad-bad-bad */ 3820 3821 /* XXX: if this happens too often, we can 3822 * add a flag to force wait only in case 3823 * of ->clear_inode(), but not in case of 3824 * regular truncate */ 3825 schedule_timeout_uninterruptible(HZ); 3826 goto repeat; 3827 } 3828 spin_unlock(&ei->i_prealloc_lock); 3829 3830 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3831 BUG_ON(pa->pa_type != MB_INODE_PA); 3832 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3833 3834 err = ext4_mb_load_buddy(sb, group, &e4b); 3835 if (err) { 3836 ext4_error(sb, "Error loading buddy information for %u", 3837 group); 3838 continue; 3839 } 3840 3841 bitmap_bh = ext4_read_block_bitmap(sb, group); 3842 if (bitmap_bh == NULL) { 3843 ext4_error(sb, "Error reading block bitmap for %u", 3844 group); 3845 ext4_mb_unload_buddy(&e4b); 3846 continue; 3847 } 3848 3849 ext4_lock_group(sb, group); 3850 list_del(&pa->pa_group_list); 3851 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3852 ext4_unlock_group(sb, group); 3853 3854 ext4_mb_unload_buddy(&e4b); 3855 put_bh(bitmap_bh); 3856 3857 list_del(&pa->u.pa_tmp_list); 3858 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3859 } 3860 } 3861 3862 #ifdef CONFIG_EXT4_DEBUG 3863 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3864 { 3865 struct super_block *sb = ac->ac_sb; 3866 ext4_group_t ngroups, i; 3867 3868 if (!mb_enable_debug || 3869 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3870 return; 3871 3872 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3873 " Allocation context details:"); 3874 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3875 ac->ac_status, ac->ac_flags); 3876 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3877 "goal %lu/%lu/%lu@%lu, " 3878 "best %lu/%lu/%lu@%lu cr %d", 3879 (unsigned long)ac->ac_o_ex.fe_group, 3880 (unsigned long)ac->ac_o_ex.fe_start, 3881 (unsigned long)ac->ac_o_ex.fe_len, 3882 (unsigned long)ac->ac_o_ex.fe_logical, 3883 (unsigned long)ac->ac_g_ex.fe_group, 3884 (unsigned long)ac->ac_g_ex.fe_start, 3885 (unsigned long)ac->ac_g_ex.fe_len, 3886 (unsigned long)ac->ac_g_ex.fe_logical, 3887 (unsigned long)ac->ac_b_ex.fe_group, 3888 (unsigned long)ac->ac_b_ex.fe_start, 3889 (unsigned long)ac->ac_b_ex.fe_len, 3890 (unsigned long)ac->ac_b_ex.fe_logical, 3891 (int)ac->ac_criteria); 3892 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3893 ac->ac_ex_scanned, ac->ac_found); 3894 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3895 ngroups = ext4_get_groups_count(sb); 3896 for (i = 0; i < ngroups; i++) { 3897 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3898 struct ext4_prealloc_space *pa; 3899 ext4_grpblk_t start; 3900 struct list_head *cur; 3901 ext4_lock_group(sb, i); 3902 list_for_each(cur, &grp->bb_prealloc_list) { 3903 pa = list_entry(cur, struct ext4_prealloc_space, 3904 pa_group_list); 3905 spin_lock(&pa->pa_lock); 3906 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3907 NULL, &start); 3908 spin_unlock(&pa->pa_lock); 3909 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3910 start, pa->pa_len); 3911 } 3912 ext4_unlock_group(sb, i); 3913 3914 if (grp->bb_free == 0) 3915 continue; 3916 printk(KERN_ERR "%u: %d/%d \n", 3917 i, grp->bb_free, grp->bb_fragments); 3918 } 3919 printk(KERN_ERR "\n"); 3920 } 3921 #else 3922 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3923 { 3924 return; 3925 } 3926 #endif 3927 3928 /* 3929 * We use locality group preallocation for small size file. The size of the 3930 * file is determined by the current size or the resulting size after 3931 * allocation which ever is larger 3932 * 3933 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3934 */ 3935 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3936 { 3937 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3938 int bsbits = ac->ac_sb->s_blocksize_bits; 3939 loff_t size, isize; 3940 3941 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3942 return; 3943 3944 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3945 return; 3946 3947 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3948 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3949 >> bsbits; 3950 3951 if ((size == isize) && 3952 !ext4_fs_is_busy(sbi) && 3953 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3954 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3955 return; 3956 } 3957 3958 if (sbi->s_mb_group_prealloc <= 0) { 3959 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3960 return; 3961 } 3962 3963 /* don't use group allocation for large files */ 3964 size = max(size, isize); 3965 if (size > sbi->s_mb_stream_request) { 3966 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3967 return; 3968 } 3969 3970 BUG_ON(ac->ac_lg != NULL); 3971 /* 3972 * locality group prealloc space are per cpu. The reason for having 3973 * per cpu locality group is to reduce the contention between block 3974 * request from multiple CPUs. 3975 */ 3976 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 3977 3978 /* we're going to use group allocation */ 3979 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3980 3981 /* serialize all allocations in the group */ 3982 mutex_lock(&ac->ac_lg->lg_mutex); 3983 } 3984 3985 static noinline_for_stack int 3986 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3987 struct ext4_allocation_request *ar) 3988 { 3989 struct super_block *sb = ar->inode->i_sb; 3990 struct ext4_sb_info *sbi = EXT4_SB(sb); 3991 struct ext4_super_block *es = sbi->s_es; 3992 ext4_group_t group; 3993 unsigned int len; 3994 ext4_fsblk_t goal; 3995 ext4_grpblk_t block; 3996 3997 /* we can't allocate > group size */ 3998 len = ar->len; 3999 4000 /* just a dirty hack to filter too big requests */ 4001 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10) 4002 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10; 4003 4004 /* start searching from the goal */ 4005 goal = ar->goal; 4006 if (goal < le32_to_cpu(es->s_first_data_block) || 4007 goal >= ext4_blocks_count(es)) 4008 goal = le32_to_cpu(es->s_first_data_block); 4009 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4010 4011 /* set up allocation goals */ 4012 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4013 ac->ac_status = AC_STATUS_CONTINUE; 4014 ac->ac_sb = sb; 4015 ac->ac_inode = ar->inode; 4016 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4017 ac->ac_o_ex.fe_group = group; 4018 ac->ac_o_ex.fe_start = block; 4019 ac->ac_o_ex.fe_len = len; 4020 ac->ac_g_ex = ac->ac_o_ex; 4021 ac->ac_flags = ar->flags; 4022 4023 /* we have to define context: we'll we work with a file or 4024 * locality group. this is a policy, actually */ 4025 ext4_mb_group_or_file(ac); 4026 4027 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4028 "left: %u/%u, right %u/%u to %swritable\n", 4029 (unsigned) ar->len, (unsigned) ar->logical, 4030 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4031 (unsigned) ar->lleft, (unsigned) ar->pleft, 4032 (unsigned) ar->lright, (unsigned) ar->pright, 4033 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4034 return 0; 4035 4036 } 4037 4038 static noinline_for_stack void 4039 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4040 struct ext4_locality_group *lg, 4041 int order, int total_entries) 4042 { 4043 ext4_group_t group = 0; 4044 struct ext4_buddy e4b; 4045 struct list_head discard_list; 4046 struct ext4_prealloc_space *pa, *tmp; 4047 4048 mb_debug(1, "discard locality group preallocation\n"); 4049 4050 INIT_LIST_HEAD(&discard_list); 4051 4052 spin_lock(&lg->lg_prealloc_lock); 4053 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4054 pa_inode_list) { 4055 spin_lock(&pa->pa_lock); 4056 if (atomic_read(&pa->pa_count)) { 4057 /* 4058 * This is the pa that we just used 4059 * for block allocation. So don't 4060 * free that 4061 */ 4062 spin_unlock(&pa->pa_lock); 4063 continue; 4064 } 4065 if (pa->pa_deleted) { 4066 spin_unlock(&pa->pa_lock); 4067 continue; 4068 } 4069 /* only lg prealloc space */ 4070 BUG_ON(pa->pa_type != MB_GROUP_PA); 4071 4072 /* seems this one can be freed ... */ 4073 pa->pa_deleted = 1; 4074 spin_unlock(&pa->pa_lock); 4075 4076 list_del_rcu(&pa->pa_inode_list); 4077 list_add(&pa->u.pa_tmp_list, &discard_list); 4078 4079 total_entries--; 4080 if (total_entries <= 5) { 4081 /* 4082 * we want to keep only 5 entries 4083 * allowing it to grow to 8. This 4084 * mak sure we don't call discard 4085 * soon for this list. 4086 */ 4087 break; 4088 } 4089 } 4090 spin_unlock(&lg->lg_prealloc_lock); 4091 4092 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4093 4094 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4095 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4096 ext4_error(sb, "Error loading buddy information for %u", 4097 group); 4098 continue; 4099 } 4100 ext4_lock_group(sb, group); 4101 list_del(&pa->pa_group_list); 4102 ext4_mb_release_group_pa(&e4b, pa); 4103 ext4_unlock_group(sb, group); 4104 4105 ext4_mb_unload_buddy(&e4b); 4106 list_del(&pa->u.pa_tmp_list); 4107 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4108 } 4109 } 4110 4111 /* 4112 * We have incremented pa_count. So it cannot be freed at this 4113 * point. Also we hold lg_mutex. So no parallel allocation is 4114 * possible from this lg. That means pa_free cannot be updated. 4115 * 4116 * A parallel ext4_mb_discard_group_preallocations is possible. 4117 * which can cause the lg_prealloc_list to be updated. 4118 */ 4119 4120 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4121 { 4122 int order, added = 0, lg_prealloc_count = 1; 4123 struct super_block *sb = ac->ac_sb; 4124 struct ext4_locality_group *lg = ac->ac_lg; 4125 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4126 4127 order = fls(pa->pa_free) - 1; 4128 if (order > PREALLOC_TB_SIZE - 1) 4129 /* The max size of hash table is PREALLOC_TB_SIZE */ 4130 order = PREALLOC_TB_SIZE - 1; 4131 /* Add the prealloc space to lg */ 4132 rcu_read_lock(); 4133 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4134 pa_inode_list) { 4135 spin_lock(&tmp_pa->pa_lock); 4136 if (tmp_pa->pa_deleted) { 4137 spin_unlock(&tmp_pa->pa_lock); 4138 continue; 4139 } 4140 if (!added && pa->pa_free < tmp_pa->pa_free) { 4141 /* Add to the tail of the previous entry */ 4142 list_add_tail_rcu(&pa->pa_inode_list, 4143 &tmp_pa->pa_inode_list); 4144 added = 1; 4145 /* 4146 * we want to count the total 4147 * number of entries in the list 4148 */ 4149 } 4150 spin_unlock(&tmp_pa->pa_lock); 4151 lg_prealloc_count++; 4152 } 4153 if (!added) 4154 list_add_tail_rcu(&pa->pa_inode_list, 4155 &lg->lg_prealloc_list[order]); 4156 rcu_read_unlock(); 4157 4158 /* Now trim the list to be not more than 8 elements */ 4159 if (lg_prealloc_count > 8) { 4160 ext4_mb_discard_lg_preallocations(sb, lg, 4161 order, lg_prealloc_count); 4162 return; 4163 } 4164 return ; 4165 } 4166 4167 /* 4168 * release all resource we used in allocation 4169 */ 4170 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4171 { 4172 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4173 struct ext4_prealloc_space *pa = ac->ac_pa; 4174 if (pa) { 4175 if (pa->pa_type == MB_GROUP_PA) { 4176 /* see comment in ext4_mb_use_group_pa() */ 4177 spin_lock(&pa->pa_lock); 4178 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4179 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4180 pa->pa_free -= ac->ac_b_ex.fe_len; 4181 pa->pa_len -= ac->ac_b_ex.fe_len; 4182 spin_unlock(&pa->pa_lock); 4183 } 4184 } 4185 if (pa) { 4186 /* 4187 * We want to add the pa to the right bucket. 4188 * Remove it from the list and while adding 4189 * make sure the list to which we are adding 4190 * doesn't grow big. 4191 */ 4192 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4193 spin_lock(pa->pa_obj_lock); 4194 list_del_rcu(&pa->pa_inode_list); 4195 spin_unlock(pa->pa_obj_lock); 4196 ext4_mb_add_n_trim(ac); 4197 } 4198 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4199 } 4200 if (ac->ac_bitmap_page) 4201 page_cache_release(ac->ac_bitmap_page); 4202 if (ac->ac_buddy_page) 4203 page_cache_release(ac->ac_buddy_page); 4204 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4205 mutex_unlock(&ac->ac_lg->lg_mutex); 4206 ext4_mb_collect_stats(ac); 4207 return 0; 4208 } 4209 4210 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4211 { 4212 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4213 int ret; 4214 int freed = 0; 4215 4216 trace_ext4_mb_discard_preallocations(sb, needed); 4217 for (i = 0; i < ngroups && needed > 0; i++) { 4218 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4219 freed += ret; 4220 needed -= ret; 4221 } 4222 4223 return freed; 4224 } 4225 4226 /* 4227 * Main entry point into mballoc to allocate blocks 4228 * it tries to use preallocation first, then falls back 4229 * to usual allocation 4230 */ 4231 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4232 struct ext4_allocation_request *ar, int *errp) 4233 { 4234 int freed; 4235 struct ext4_allocation_context *ac = NULL; 4236 struct ext4_sb_info *sbi; 4237 struct super_block *sb; 4238 ext4_fsblk_t block = 0; 4239 unsigned int inquota = 0; 4240 unsigned int reserv_clstrs = 0; 4241 4242 sb = ar->inode->i_sb; 4243 sbi = EXT4_SB(sb); 4244 4245 trace_ext4_request_blocks(ar); 4246 4247 /* Allow to use superuser reservation for quota file */ 4248 if (IS_NOQUOTA(ar->inode)) 4249 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4250 4251 /* 4252 * For delayed allocation, we could skip the ENOSPC and 4253 * EDQUOT check, as blocks and quotas have been already 4254 * reserved when data being copied into pagecache. 4255 */ 4256 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4257 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4258 else { 4259 /* Without delayed allocation we need to verify 4260 * there is enough free blocks to do block allocation 4261 * and verify allocation doesn't exceed the quota limits. 4262 */ 4263 while (ar->len && 4264 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4265 4266 /* let others to free the space */ 4267 yield(); 4268 ar->len = ar->len >> 1; 4269 } 4270 if (!ar->len) { 4271 *errp = -ENOSPC; 4272 return 0; 4273 } 4274 reserv_clstrs = ar->len; 4275 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4276 dquot_alloc_block_nofail(ar->inode, 4277 EXT4_C2B(sbi, ar->len)); 4278 } else { 4279 while (ar->len && 4280 dquot_alloc_block(ar->inode, 4281 EXT4_C2B(sbi, ar->len))) { 4282 4283 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4284 ar->len--; 4285 } 4286 } 4287 inquota = ar->len; 4288 if (ar->len == 0) { 4289 *errp = -EDQUOT; 4290 goto out; 4291 } 4292 } 4293 4294 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4295 if (!ac) { 4296 ar->len = 0; 4297 *errp = -ENOMEM; 4298 goto out; 4299 } 4300 4301 *errp = ext4_mb_initialize_context(ac, ar); 4302 if (*errp) { 4303 ar->len = 0; 4304 goto out; 4305 } 4306 4307 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4308 if (!ext4_mb_use_preallocated(ac)) { 4309 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4310 ext4_mb_normalize_request(ac, ar); 4311 repeat: 4312 /* allocate space in core */ 4313 *errp = ext4_mb_regular_allocator(ac); 4314 if (*errp) 4315 goto errout; 4316 4317 /* as we've just preallocated more space than 4318 * user requested orinally, we store allocated 4319 * space in a special descriptor */ 4320 if (ac->ac_status == AC_STATUS_FOUND && 4321 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4322 ext4_mb_new_preallocation(ac); 4323 } 4324 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4325 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4326 if (*errp == -EAGAIN) { 4327 /* 4328 * drop the reference that we took 4329 * in ext4_mb_use_best_found 4330 */ 4331 ext4_mb_release_context(ac); 4332 ac->ac_b_ex.fe_group = 0; 4333 ac->ac_b_ex.fe_start = 0; 4334 ac->ac_b_ex.fe_len = 0; 4335 ac->ac_status = AC_STATUS_CONTINUE; 4336 goto repeat; 4337 } else if (*errp) 4338 errout: 4339 ext4_discard_allocated_blocks(ac); 4340 else { 4341 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4342 ar->len = ac->ac_b_ex.fe_len; 4343 } 4344 } else { 4345 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4346 if (freed) 4347 goto repeat; 4348 *errp = -ENOSPC; 4349 } 4350 4351 if (*errp) { 4352 ac->ac_b_ex.fe_len = 0; 4353 ar->len = 0; 4354 ext4_mb_show_ac(ac); 4355 } 4356 ext4_mb_release_context(ac); 4357 out: 4358 if (ac) 4359 kmem_cache_free(ext4_ac_cachep, ac); 4360 if (inquota && ar->len < inquota) 4361 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4362 if (!ar->len) { 4363 if (!ext4_test_inode_state(ar->inode, 4364 EXT4_STATE_DELALLOC_RESERVED)) 4365 /* release all the reserved blocks if non delalloc */ 4366 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4367 reserv_clstrs); 4368 } 4369 4370 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4371 4372 return block; 4373 } 4374 4375 /* 4376 * We can merge two free data extents only if the physical blocks 4377 * are contiguous, AND the extents were freed by the same transaction, 4378 * AND the blocks are associated with the same group. 4379 */ 4380 static int can_merge(struct ext4_free_data *entry1, 4381 struct ext4_free_data *entry2) 4382 { 4383 if ((entry1->efd_tid == entry2->efd_tid) && 4384 (entry1->efd_group == entry2->efd_group) && 4385 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4386 return 1; 4387 return 0; 4388 } 4389 4390 static noinline_for_stack int 4391 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4392 struct ext4_free_data *new_entry) 4393 { 4394 ext4_group_t group = e4b->bd_group; 4395 ext4_grpblk_t cluster; 4396 struct ext4_free_data *entry; 4397 struct ext4_group_info *db = e4b->bd_info; 4398 struct super_block *sb = e4b->bd_sb; 4399 struct ext4_sb_info *sbi = EXT4_SB(sb); 4400 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4401 struct rb_node *parent = NULL, *new_node; 4402 4403 BUG_ON(!ext4_handle_valid(handle)); 4404 BUG_ON(e4b->bd_bitmap_page == NULL); 4405 BUG_ON(e4b->bd_buddy_page == NULL); 4406 4407 new_node = &new_entry->efd_node; 4408 cluster = new_entry->efd_start_cluster; 4409 4410 if (!*n) { 4411 /* first free block exent. We need to 4412 protect buddy cache from being freed, 4413 * otherwise we'll refresh it from 4414 * on-disk bitmap and lose not-yet-available 4415 * blocks */ 4416 page_cache_get(e4b->bd_buddy_page); 4417 page_cache_get(e4b->bd_bitmap_page); 4418 } 4419 while (*n) { 4420 parent = *n; 4421 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4422 if (cluster < entry->efd_start_cluster) 4423 n = &(*n)->rb_left; 4424 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4425 n = &(*n)->rb_right; 4426 else { 4427 ext4_grp_locked_error(sb, group, 0, 4428 ext4_group_first_block_no(sb, group) + 4429 EXT4_C2B(sbi, cluster), 4430 "Block already on to-be-freed list"); 4431 return 0; 4432 } 4433 } 4434 4435 rb_link_node(new_node, parent, n); 4436 rb_insert_color(new_node, &db->bb_free_root); 4437 4438 /* Now try to see the extent can be merged to left and right */ 4439 node = rb_prev(new_node); 4440 if (node) { 4441 entry = rb_entry(node, struct ext4_free_data, efd_node); 4442 if (can_merge(entry, new_entry)) { 4443 new_entry->efd_start_cluster = entry->efd_start_cluster; 4444 new_entry->efd_count += entry->efd_count; 4445 rb_erase(node, &(db->bb_free_root)); 4446 ext4_journal_callback_del(handle, &entry->efd_jce); 4447 kmem_cache_free(ext4_free_data_cachep, entry); 4448 } 4449 } 4450 4451 node = rb_next(new_node); 4452 if (node) { 4453 entry = rb_entry(node, struct ext4_free_data, efd_node); 4454 if (can_merge(new_entry, entry)) { 4455 new_entry->efd_count += entry->efd_count; 4456 rb_erase(node, &(db->bb_free_root)); 4457 ext4_journal_callback_del(handle, &entry->efd_jce); 4458 kmem_cache_free(ext4_free_data_cachep, entry); 4459 } 4460 } 4461 /* Add the extent to transaction's private list */ 4462 ext4_journal_callback_add(handle, ext4_free_data_callback, 4463 &new_entry->efd_jce); 4464 return 0; 4465 } 4466 4467 /** 4468 * ext4_free_blocks() -- Free given blocks and update quota 4469 * @handle: handle for this transaction 4470 * @inode: inode 4471 * @block: start physical block to free 4472 * @count: number of blocks to count 4473 * @flags: flags used by ext4_free_blocks 4474 */ 4475 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4476 struct buffer_head *bh, ext4_fsblk_t block, 4477 unsigned long count, int flags) 4478 { 4479 struct buffer_head *bitmap_bh = NULL; 4480 struct super_block *sb = inode->i_sb; 4481 struct ext4_group_desc *gdp; 4482 unsigned long freed = 0; 4483 unsigned int overflow; 4484 ext4_grpblk_t bit; 4485 struct buffer_head *gd_bh; 4486 ext4_group_t block_group; 4487 struct ext4_sb_info *sbi; 4488 struct ext4_buddy e4b; 4489 unsigned int count_clusters; 4490 int err = 0; 4491 int ret; 4492 4493 if (bh) { 4494 if (block) 4495 BUG_ON(block != bh->b_blocknr); 4496 else 4497 block = bh->b_blocknr; 4498 } 4499 4500 sbi = EXT4_SB(sb); 4501 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4502 !ext4_data_block_valid(sbi, block, count)) { 4503 ext4_error(sb, "Freeing blocks not in datazone - " 4504 "block = %llu, count = %lu", block, count); 4505 goto error_return; 4506 } 4507 4508 ext4_debug("freeing block %llu\n", block); 4509 trace_ext4_free_blocks(inode, block, count, flags); 4510 4511 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4512 struct buffer_head *tbh = bh; 4513 int i; 4514 4515 BUG_ON(bh && (count > 1)); 4516 4517 for (i = 0; i < count; i++) { 4518 if (!bh) 4519 tbh = sb_find_get_block(inode->i_sb, 4520 block + i); 4521 if (unlikely(!tbh)) 4522 continue; 4523 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4524 inode, tbh, block + i); 4525 } 4526 } 4527 4528 /* 4529 * We need to make sure we don't reuse the freed block until 4530 * after the transaction is committed, which we can do by 4531 * treating the block as metadata, below. We make an 4532 * exception if the inode is to be written in writeback mode 4533 * since writeback mode has weak data consistency guarantees. 4534 */ 4535 if (!ext4_should_writeback_data(inode)) 4536 flags |= EXT4_FREE_BLOCKS_METADATA; 4537 4538 /* 4539 * If the extent to be freed does not begin on a cluster 4540 * boundary, we need to deal with partial clusters at the 4541 * beginning and end of the extent. Normally we will free 4542 * blocks at the beginning or the end unless we are explicitly 4543 * requested to avoid doing so. 4544 */ 4545 overflow = block & (sbi->s_cluster_ratio - 1); 4546 if (overflow) { 4547 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4548 overflow = sbi->s_cluster_ratio - overflow; 4549 block += overflow; 4550 if (count > overflow) 4551 count -= overflow; 4552 else 4553 return; 4554 } else { 4555 block -= overflow; 4556 count += overflow; 4557 } 4558 } 4559 overflow = count & (sbi->s_cluster_ratio - 1); 4560 if (overflow) { 4561 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4562 if (count > overflow) 4563 count -= overflow; 4564 else 4565 return; 4566 } else 4567 count += sbi->s_cluster_ratio - overflow; 4568 } 4569 4570 do_more: 4571 overflow = 0; 4572 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4573 4574 /* 4575 * Check to see if we are freeing blocks across a group 4576 * boundary. 4577 */ 4578 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4579 overflow = EXT4_C2B(sbi, bit) + count - 4580 EXT4_BLOCKS_PER_GROUP(sb); 4581 count -= overflow; 4582 } 4583 count_clusters = EXT4_B2C(sbi, count); 4584 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4585 if (!bitmap_bh) { 4586 err = -EIO; 4587 goto error_return; 4588 } 4589 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4590 if (!gdp) { 4591 err = -EIO; 4592 goto error_return; 4593 } 4594 4595 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4596 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4597 in_range(block, ext4_inode_table(sb, gdp), 4598 EXT4_SB(sb)->s_itb_per_group) || 4599 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4600 EXT4_SB(sb)->s_itb_per_group)) { 4601 4602 ext4_error(sb, "Freeing blocks in system zone - " 4603 "Block = %llu, count = %lu", block, count); 4604 /* err = 0. ext4_std_error should be a no op */ 4605 goto error_return; 4606 } 4607 4608 BUFFER_TRACE(bitmap_bh, "getting write access"); 4609 err = ext4_journal_get_write_access(handle, bitmap_bh); 4610 if (err) 4611 goto error_return; 4612 4613 /* 4614 * We are about to modify some metadata. Call the journal APIs 4615 * to unshare ->b_data if a currently-committing transaction is 4616 * using it 4617 */ 4618 BUFFER_TRACE(gd_bh, "get_write_access"); 4619 err = ext4_journal_get_write_access(handle, gd_bh); 4620 if (err) 4621 goto error_return; 4622 #ifdef AGGRESSIVE_CHECK 4623 { 4624 int i; 4625 for (i = 0; i < count_clusters; i++) 4626 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4627 } 4628 #endif 4629 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4630 4631 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4632 if (err) 4633 goto error_return; 4634 4635 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4636 struct ext4_free_data *new_entry; 4637 /* 4638 * blocks being freed are metadata. these blocks shouldn't 4639 * be used until this transaction is committed 4640 */ 4641 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4642 if (!new_entry) { 4643 ext4_mb_unload_buddy(&e4b); 4644 err = -ENOMEM; 4645 goto error_return; 4646 } 4647 new_entry->efd_start_cluster = bit; 4648 new_entry->efd_group = block_group; 4649 new_entry->efd_count = count_clusters; 4650 new_entry->efd_tid = handle->h_transaction->t_tid; 4651 4652 ext4_lock_group(sb, block_group); 4653 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4654 ext4_mb_free_metadata(handle, &e4b, new_entry); 4655 } else { 4656 /* need to update group_info->bb_free and bitmap 4657 * with group lock held. generate_buddy look at 4658 * them with group lock_held 4659 */ 4660 if (test_opt(sb, DISCARD)) 4661 ext4_issue_discard(sb, block_group, bit, count); 4662 ext4_lock_group(sb, block_group); 4663 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4664 mb_free_blocks(inode, &e4b, bit, count_clusters); 4665 } 4666 4667 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4668 ext4_free_group_clusters_set(sb, gdp, ret); 4669 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 4670 EXT4_BLOCKS_PER_GROUP(sb) / 8); 4671 ext4_group_desc_csum_set(sb, block_group, gdp); 4672 ext4_unlock_group(sb, block_group); 4673 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4674 4675 if (sbi->s_log_groups_per_flex) { 4676 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4677 atomic_add(count_clusters, 4678 &sbi->s_flex_groups[flex_group].free_clusters); 4679 } 4680 4681 ext4_mb_unload_buddy(&e4b); 4682 4683 freed += count; 4684 4685 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4686 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4687 4688 /* We dirtied the bitmap block */ 4689 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4690 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4691 4692 /* And the group descriptor block */ 4693 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4694 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4695 if (!err) 4696 err = ret; 4697 4698 if (overflow && !err) { 4699 block += count; 4700 count = overflow; 4701 put_bh(bitmap_bh); 4702 goto do_more; 4703 } 4704 error_return: 4705 brelse(bitmap_bh); 4706 ext4_std_error(sb, err); 4707 return; 4708 } 4709 4710 /** 4711 * ext4_group_add_blocks() -- Add given blocks to an existing group 4712 * @handle: handle to this transaction 4713 * @sb: super block 4714 * @block: start physical block to add to the block group 4715 * @count: number of blocks to free 4716 * 4717 * This marks the blocks as free in the bitmap and buddy. 4718 */ 4719 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4720 ext4_fsblk_t block, unsigned long count) 4721 { 4722 struct buffer_head *bitmap_bh = NULL; 4723 struct buffer_head *gd_bh; 4724 ext4_group_t block_group; 4725 ext4_grpblk_t bit; 4726 unsigned int i; 4727 struct ext4_group_desc *desc; 4728 struct ext4_sb_info *sbi = EXT4_SB(sb); 4729 struct ext4_buddy e4b; 4730 int err = 0, ret, blk_free_count; 4731 ext4_grpblk_t blocks_freed; 4732 4733 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4734 4735 if (count == 0) 4736 return 0; 4737 4738 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4739 /* 4740 * Check to see if we are freeing blocks across a group 4741 * boundary. 4742 */ 4743 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4744 ext4_warning(sb, "too much blocks added to group %u\n", 4745 block_group); 4746 err = -EINVAL; 4747 goto error_return; 4748 } 4749 4750 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4751 if (!bitmap_bh) { 4752 err = -EIO; 4753 goto error_return; 4754 } 4755 4756 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4757 if (!desc) { 4758 err = -EIO; 4759 goto error_return; 4760 } 4761 4762 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4763 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4764 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4765 in_range(block + count - 1, ext4_inode_table(sb, desc), 4766 sbi->s_itb_per_group)) { 4767 ext4_error(sb, "Adding blocks in system zones - " 4768 "Block = %llu, count = %lu", 4769 block, count); 4770 err = -EINVAL; 4771 goto error_return; 4772 } 4773 4774 BUFFER_TRACE(bitmap_bh, "getting write access"); 4775 err = ext4_journal_get_write_access(handle, bitmap_bh); 4776 if (err) 4777 goto error_return; 4778 4779 /* 4780 * We are about to modify some metadata. Call the journal APIs 4781 * to unshare ->b_data if a currently-committing transaction is 4782 * using it 4783 */ 4784 BUFFER_TRACE(gd_bh, "get_write_access"); 4785 err = ext4_journal_get_write_access(handle, gd_bh); 4786 if (err) 4787 goto error_return; 4788 4789 for (i = 0, blocks_freed = 0; i < count; i++) { 4790 BUFFER_TRACE(bitmap_bh, "clear bit"); 4791 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4792 ext4_error(sb, "bit already cleared for block %llu", 4793 (ext4_fsblk_t)(block + i)); 4794 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4795 } else { 4796 blocks_freed++; 4797 } 4798 } 4799 4800 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4801 if (err) 4802 goto error_return; 4803 4804 /* 4805 * need to update group_info->bb_free and bitmap 4806 * with group lock held. generate_buddy look at 4807 * them with group lock_held 4808 */ 4809 ext4_lock_group(sb, block_group); 4810 mb_clear_bits(bitmap_bh->b_data, bit, count); 4811 mb_free_blocks(NULL, &e4b, bit, count); 4812 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4813 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4814 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh, 4815 EXT4_BLOCKS_PER_GROUP(sb) / 8); 4816 ext4_group_desc_csum_set(sb, block_group, desc); 4817 ext4_unlock_group(sb, block_group); 4818 percpu_counter_add(&sbi->s_freeclusters_counter, 4819 EXT4_B2C(sbi, blocks_freed)); 4820 4821 if (sbi->s_log_groups_per_flex) { 4822 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4823 atomic_add(EXT4_B2C(sbi, blocks_freed), 4824 &sbi->s_flex_groups[flex_group].free_clusters); 4825 } 4826 4827 ext4_mb_unload_buddy(&e4b); 4828 4829 /* We dirtied the bitmap block */ 4830 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4831 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4832 4833 /* And the group descriptor block */ 4834 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4835 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4836 if (!err) 4837 err = ret; 4838 4839 error_return: 4840 brelse(bitmap_bh); 4841 ext4_std_error(sb, err); 4842 return err; 4843 } 4844 4845 /** 4846 * ext4_trim_extent -- function to TRIM one single free extent in the group 4847 * @sb: super block for the file system 4848 * @start: starting block of the free extent in the alloc. group 4849 * @count: number of blocks to TRIM 4850 * @group: alloc. group we are working with 4851 * @e4b: ext4 buddy for the group 4852 * 4853 * Trim "count" blocks starting at "start" in the "group". To assure that no 4854 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4855 * be called with under the group lock. 4856 */ 4857 static void ext4_trim_extent(struct super_block *sb, int start, int count, 4858 ext4_group_t group, struct ext4_buddy *e4b) 4859 { 4860 struct ext4_free_extent ex; 4861 4862 trace_ext4_trim_extent(sb, group, start, count); 4863 4864 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4865 4866 ex.fe_start = start; 4867 ex.fe_group = group; 4868 ex.fe_len = count; 4869 4870 /* 4871 * Mark blocks used, so no one can reuse them while 4872 * being trimmed. 4873 */ 4874 mb_mark_used(e4b, &ex); 4875 ext4_unlock_group(sb, group); 4876 ext4_issue_discard(sb, group, start, count); 4877 ext4_lock_group(sb, group); 4878 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4879 } 4880 4881 /** 4882 * ext4_trim_all_free -- function to trim all free space in alloc. group 4883 * @sb: super block for file system 4884 * @group: group to be trimmed 4885 * @start: first group block to examine 4886 * @max: last group block to examine 4887 * @minblocks: minimum extent block count 4888 * 4889 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4890 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4891 * the extent. 4892 * 4893 * 4894 * ext4_trim_all_free walks through group's block bitmap searching for free 4895 * extents. When the free extent is found, mark it as used in group buddy 4896 * bitmap. Then issue a TRIM command on this extent and free the extent in 4897 * the group buddy bitmap. This is done until whole group is scanned. 4898 */ 4899 static ext4_grpblk_t 4900 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 4901 ext4_grpblk_t start, ext4_grpblk_t max, 4902 ext4_grpblk_t minblocks) 4903 { 4904 void *bitmap; 4905 ext4_grpblk_t next, count = 0, free_count = 0; 4906 struct ext4_buddy e4b; 4907 int ret; 4908 4909 trace_ext4_trim_all_free(sb, group, start, max); 4910 4911 ret = ext4_mb_load_buddy(sb, group, &e4b); 4912 if (ret) { 4913 ext4_error(sb, "Error in loading buddy " 4914 "information for %u", group); 4915 return ret; 4916 } 4917 bitmap = e4b.bd_bitmap; 4918 4919 ext4_lock_group(sb, group); 4920 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 4921 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 4922 goto out; 4923 4924 start = (e4b.bd_info->bb_first_free > start) ? 4925 e4b.bd_info->bb_first_free : start; 4926 4927 while (start <= max) { 4928 start = mb_find_next_zero_bit(bitmap, max + 1, start); 4929 if (start > max) 4930 break; 4931 next = mb_find_next_bit(bitmap, max + 1, start); 4932 4933 if ((next - start) >= minblocks) { 4934 ext4_trim_extent(sb, start, 4935 next - start, group, &e4b); 4936 count += next - start; 4937 } 4938 free_count += next - start; 4939 start = next + 1; 4940 4941 if (fatal_signal_pending(current)) { 4942 count = -ERESTARTSYS; 4943 break; 4944 } 4945 4946 if (need_resched()) { 4947 ext4_unlock_group(sb, group); 4948 cond_resched(); 4949 ext4_lock_group(sb, group); 4950 } 4951 4952 if ((e4b.bd_info->bb_free - free_count) < minblocks) 4953 break; 4954 } 4955 4956 if (!ret) 4957 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 4958 out: 4959 ext4_unlock_group(sb, group); 4960 ext4_mb_unload_buddy(&e4b); 4961 4962 ext4_debug("trimmed %d blocks in the group %d\n", 4963 count, group); 4964 4965 return count; 4966 } 4967 4968 /** 4969 * ext4_trim_fs() -- trim ioctl handle function 4970 * @sb: superblock for filesystem 4971 * @range: fstrim_range structure 4972 * 4973 * start: First Byte to trim 4974 * len: number of Bytes to trim from start 4975 * minlen: minimum extent length in Bytes 4976 * ext4_trim_fs goes through all allocation groups containing Bytes from 4977 * start to start+len. For each such a group ext4_trim_all_free function 4978 * is invoked to trim all free space. 4979 */ 4980 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 4981 { 4982 struct ext4_group_info *grp; 4983 ext4_group_t group, first_group, last_group; 4984 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 4985 uint64_t start, end, minlen, trimmed = 0; 4986 ext4_fsblk_t first_data_blk = 4987 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 4988 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 4989 int ret = 0; 4990 4991 start = range->start >> sb->s_blocksize_bits; 4992 end = start + (range->len >> sb->s_blocksize_bits) - 1; 4993 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 4994 range->minlen >> sb->s_blocksize_bits); 4995 4996 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) || 4997 unlikely(start >= max_blks)) 4998 return -EINVAL; 4999 if (end >= max_blks) 5000 end = max_blks - 1; 5001 if (end <= first_data_blk) 5002 goto out; 5003 if (start < first_data_blk) 5004 start = first_data_blk; 5005 5006 /* Determine first and last group to examine based on start and end */ 5007 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5008 &first_group, &first_cluster); 5009 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5010 &last_group, &last_cluster); 5011 5012 /* end now represents the last cluster to discard in this group */ 5013 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5014 5015 for (group = first_group; group <= last_group; group++) { 5016 grp = ext4_get_group_info(sb, group); 5017 /* We only do this if the grp has never been initialized */ 5018 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5019 ret = ext4_mb_init_group(sb, group); 5020 if (ret) 5021 break; 5022 } 5023 5024 /* 5025 * For all the groups except the last one, last cluster will 5026 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5027 * change it for the last group, note that last_cluster is 5028 * already computed earlier by ext4_get_group_no_and_offset() 5029 */ 5030 if (group == last_group) 5031 end = last_cluster; 5032 5033 if (grp->bb_free >= minlen) { 5034 cnt = ext4_trim_all_free(sb, group, first_cluster, 5035 end, minlen); 5036 if (cnt < 0) { 5037 ret = cnt; 5038 break; 5039 } 5040 trimmed += cnt; 5041 } 5042 5043 /* 5044 * For every group except the first one, we are sure 5045 * that the first cluster to discard will be cluster #0. 5046 */ 5047 first_cluster = 0; 5048 } 5049 5050 if (!ret) 5051 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5052 5053 out: 5054 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5055 return ret; 5056 } 5057