xref: /linux/fs/ext4/mballoc.c (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 	ext4_grpblk_t i = 0;
727 	ext4_grpblk_t first;
728 	ext4_grpblk_t len;
729 	unsigned free = 0;
730 	unsigned fragments = 0;
731 	unsigned long long period = get_cycles();
732 
733 	/* initialize buddy from bitmap which is aggregation
734 	 * of on-disk bitmap and preallocations */
735 	i = mb_find_next_zero_bit(bitmap, max, 0);
736 	grp->bb_first_free = i;
737 	while (i < max) {
738 		fragments++;
739 		first = i;
740 		i = mb_find_next_bit(bitmap, max, i);
741 		len = i - first;
742 		free += len;
743 		if (len > 1)
744 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 		else
746 			grp->bb_counters[0]++;
747 		if (i < max)
748 			i = mb_find_next_zero_bit(bitmap, max, i);
749 	}
750 	grp->bb_fragments = fragments;
751 
752 	if (free != grp->bb_free) {
753 		ext4_grp_locked_error(sb, group, 0, 0,
754 				      "%u clusters in bitmap, %u in gd",
755 				      free, grp->bb_free);
756 		/*
757 		 * If we intent to continue, we consider group descritor
758 		 * corrupt and update bb_free using bitmap value
759 		 */
760 		grp->bb_free = free;
761 	}
762 	mb_set_largest_free_order(sb, grp);
763 
764 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
765 
766 	period = get_cycles() - period;
767 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
768 	EXT4_SB(sb)->s_mb_buddies_generated++;
769 	EXT4_SB(sb)->s_mb_generation_time += period;
770 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
771 }
772 
773 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
774 {
775 	int count;
776 	int order = 1;
777 	void *buddy;
778 
779 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
780 		ext4_set_bits(buddy, 0, count);
781 	}
782 	e4b->bd_info->bb_fragments = 0;
783 	memset(e4b->bd_info->bb_counters, 0,
784 		sizeof(*e4b->bd_info->bb_counters) *
785 		(e4b->bd_sb->s_blocksize_bits + 2));
786 
787 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
788 		e4b->bd_bitmap, e4b->bd_group);
789 }
790 
791 /* The buddy information is attached the buddy cache inode
792  * for convenience. The information regarding each group
793  * is loaded via ext4_mb_load_buddy. The information involve
794  * block bitmap and buddy information. The information are
795  * stored in the inode as
796  *
797  * {                        page                        }
798  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
799  *
800  *
801  * one block each for bitmap and buddy information.
802  * So for each group we take up 2 blocks. A page can
803  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
804  * So it can have information regarding groups_per_page which
805  * is blocks_per_page/2
806  *
807  * Locking note:  This routine takes the block group lock of all groups
808  * for this page; do not hold this lock when calling this routine!
809  */
810 
811 static int ext4_mb_init_cache(struct page *page, char *incore)
812 {
813 	ext4_group_t ngroups;
814 	int blocksize;
815 	int blocks_per_page;
816 	int groups_per_page;
817 	int err = 0;
818 	int i;
819 	ext4_group_t first_group, group;
820 	int first_block;
821 	struct super_block *sb;
822 	struct buffer_head *bhs;
823 	struct buffer_head **bh = NULL;
824 	struct inode *inode;
825 	char *data;
826 	char *bitmap;
827 	struct ext4_group_info *grinfo;
828 
829 	mb_debug(1, "init page %lu\n", page->index);
830 
831 	inode = page->mapping->host;
832 	sb = inode->i_sb;
833 	ngroups = ext4_get_groups_count(sb);
834 	blocksize = 1 << inode->i_blkbits;
835 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
836 
837 	groups_per_page = blocks_per_page >> 1;
838 	if (groups_per_page == 0)
839 		groups_per_page = 1;
840 
841 	/* allocate buffer_heads to read bitmaps */
842 	if (groups_per_page > 1) {
843 		i = sizeof(struct buffer_head *) * groups_per_page;
844 		bh = kzalloc(i, GFP_NOFS);
845 		if (bh == NULL) {
846 			err = -ENOMEM;
847 			goto out;
848 		}
849 	} else
850 		bh = &bhs;
851 
852 	first_group = page->index * blocks_per_page / 2;
853 
854 	/* read all groups the page covers into the cache */
855 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
856 		if (group >= ngroups)
857 			break;
858 
859 		grinfo = ext4_get_group_info(sb, group);
860 		/*
861 		 * If page is uptodate then we came here after online resize
862 		 * which added some new uninitialized group info structs, so
863 		 * we must skip all initialized uptodate buddies on the page,
864 		 * which may be currently in use by an allocating task.
865 		 */
866 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
867 			bh[i] = NULL;
868 			continue;
869 		}
870 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
871 			err = -ENOMEM;
872 			goto out;
873 		}
874 		mb_debug(1, "read bitmap for group %u\n", group);
875 	}
876 
877 	/* wait for I/O completion */
878 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
880 			err = -EIO;
881 			goto out;
882 		}
883 	}
884 
885 	first_block = page->index * blocks_per_page;
886 	for (i = 0; i < blocks_per_page; i++) {
887 		group = (first_block + i) >> 1;
888 		if (group >= ngroups)
889 			break;
890 
891 		if (!bh[group - first_group])
892 			/* skip initialized uptodate buddy */
893 			continue;
894 
895 		/*
896 		 * data carry information regarding this
897 		 * particular group in the format specified
898 		 * above
899 		 *
900 		 */
901 		data = page_address(page) + (i * blocksize);
902 		bitmap = bh[group - first_group]->b_data;
903 
904 		/*
905 		 * We place the buddy block and bitmap block
906 		 * close together
907 		 */
908 		if ((first_block + i) & 1) {
909 			/* this is block of buddy */
910 			BUG_ON(incore == NULL);
911 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
912 				group, page->index, i * blocksize);
913 			trace_ext4_mb_buddy_bitmap_load(sb, group);
914 			grinfo = ext4_get_group_info(sb, group);
915 			grinfo->bb_fragments = 0;
916 			memset(grinfo->bb_counters, 0,
917 			       sizeof(*grinfo->bb_counters) *
918 				(sb->s_blocksize_bits+2));
919 			/*
920 			 * incore got set to the group block bitmap below
921 			 */
922 			ext4_lock_group(sb, group);
923 			/* init the buddy */
924 			memset(data, 0xff, blocksize);
925 			ext4_mb_generate_buddy(sb, data, incore, group);
926 			ext4_unlock_group(sb, group);
927 			incore = NULL;
928 		} else {
929 			/* this is block of bitmap */
930 			BUG_ON(incore != NULL);
931 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
932 				group, page->index, i * blocksize);
933 			trace_ext4_mb_bitmap_load(sb, group);
934 
935 			/* see comments in ext4_mb_put_pa() */
936 			ext4_lock_group(sb, group);
937 			memcpy(data, bitmap, blocksize);
938 
939 			/* mark all preallocated blks used in in-core bitmap */
940 			ext4_mb_generate_from_pa(sb, data, group);
941 			ext4_mb_generate_from_freelist(sb, data, group);
942 			ext4_unlock_group(sb, group);
943 
944 			/* set incore so that the buddy information can be
945 			 * generated using this
946 			 */
947 			incore = data;
948 		}
949 	}
950 	SetPageUptodate(page);
951 
952 out:
953 	if (bh) {
954 		for (i = 0; i < groups_per_page; i++)
955 			brelse(bh[i]);
956 		if (bh != &bhs)
957 			kfree(bh);
958 	}
959 	return err;
960 }
961 
962 /*
963  * Lock the buddy and bitmap pages. This make sure other parallel init_group
964  * on the same buddy page doesn't happen whild holding the buddy page lock.
965  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
966  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
967  */
968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
969 		ext4_group_t group, struct ext4_buddy *e4b)
970 {
971 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
972 	int block, pnum, poff;
973 	int blocks_per_page;
974 	struct page *page;
975 
976 	e4b->bd_buddy_page = NULL;
977 	e4b->bd_bitmap_page = NULL;
978 
979 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
980 	/*
981 	 * the buddy cache inode stores the block bitmap
982 	 * and buddy information in consecutive blocks.
983 	 * So for each group we need two blocks.
984 	 */
985 	block = group * 2;
986 	pnum = block / blocks_per_page;
987 	poff = block % blocks_per_page;
988 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
989 	if (!page)
990 		return -EIO;
991 	BUG_ON(page->mapping != inode->i_mapping);
992 	e4b->bd_bitmap_page = page;
993 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
994 
995 	if (blocks_per_page >= 2) {
996 		/* buddy and bitmap are on the same page */
997 		return 0;
998 	}
999 
1000 	block++;
1001 	pnum = block / blocks_per_page;
1002 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1003 	if (!page)
1004 		return -EIO;
1005 	BUG_ON(page->mapping != inode->i_mapping);
1006 	e4b->bd_buddy_page = page;
1007 	return 0;
1008 }
1009 
1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1011 {
1012 	if (e4b->bd_bitmap_page) {
1013 		unlock_page(e4b->bd_bitmap_page);
1014 		page_cache_release(e4b->bd_bitmap_page);
1015 	}
1016 	if (e4b->bd_buddy_page) {
1017 		unlock_page(e4b->bd_buddy_page);
1018 		page_cache_release(e4b->bd_buddy_page);
1019 	}
1020 }
1021 
1022 /*
1023  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1024  * block group lock of all groups for this page; do not hold the BG lock when
1025  * calling this routine!
1026  */
1027 static noinline_for_stack
1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1029 {
1030 
1031 	struct ext4_group_info *this_grp;
1032 	struct ext4_buddy e4b;
1033 	struct page *page;
1034 	int ret = 0;
1035 
1036 	might_sleep();
1037 	mb_debug(1, "init group %u\n", group);
1038 	this_grp = ext4_get_group_info(sb, group);
1039 	/*
1040 	 * This ensures that we don't reinit the buddy cache
1041 	 * page which map to the group from which we are already
1042 	 * allocating. If we are looking at the buddy cache we would
1043 	 * have taken a reference using ext4_mb_load_buddy and that
1044 	 * would have pinned buddy page to page cache.
1045 	 */
1046 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1047 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1048 		/*
1049 		 * somebody initialized the group
1050 		 * return without doing anything
1051 		 */
1052 		goto err;
1053 	}
1054 
1055 	page = e4b.bd_bitmap_page;
1056 	ret = ext4_mb_init_cache(page, NULL);
1057 	if (ret)
1058 		goto err;
1059 	if (!PageUptodate(page)) {
1060 		ret = -EIO;
1061 		goto err;
1062 	}
1063 	mark_page_accessed(page);
1064 
1065 	if (e4b.bd_buddy_page == NULL) {
1066 		/*
1067 		 * If both the bitmap and buddy are in
1068 		 * the same page we don't need to force
1069 		 * init the buddy
1070 		 */
1071 		ret = 0;
1072 		goto err;
1073 	}
1074 	/* init buddy cache */
1075 	page = e4b.bd_buddy_page;
1076 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1077 	if (ret)
1078 		goto err;
1079 	if (!PageUptodate(page)) {
1080 		ret = -EIO;
1081 		goto err;
1082 	}
1083 	mark_page_accessed(page);
1084 err:
1085 	ext4_mb_put_buddy_page_lock(&e4b);
1086 	return ret;
1087 }
1088 
1089 /*
1090  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1091  * block group lock of all groups for this page; do not hold the BG lock when
1092  * calling this routine!
1093  */
1094 static noinline_for_stack int
1095 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1096 					struct ext4_buddy *e4b)
1097 {
1098 	int blocks_per_page;
1099 	int block;
1100 	int pnum;
1101 	int poff;
1102 	struct page *page;
1103 	int ret;
1104 	struct ext4_group_info *grp;
1105 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1106 	struct inode *inode = sbi->s_buddy_cache;
1107 
1108 	might_sleep();
1109 	mb_debug(1, "load group %u\n", group);
1110 
1111 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1112 	grp = ext4_get_group_info(sb, group);
1113 
1114 	e4b->bd_blkbits = sb->s_blocksize_bits;
1115 	e4b->bd_info = grp;
1116 	e4b->bd_sb = sb;
1117 	e4b->bd_group = group;
1118 	e4b->bd_buddy_page = NULL;
1119 	e4b->bd_bitmap_page = NULL;
1120 
1121 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1122 		/*
1123 		 * we need full data about the group
1124 		 * to make a good selection
1125 		 */
1126 		ret = ext4_mb_init_group(sb, group);
1127 		if (ret)
1128 			return ret;
1129 	}
1130 
1131 	/*
1132 	 * the buddy cache inode stores the block bitmap
1133 	 * and buddy information in consecutive blocks.
1134 	 * So for each group we need two blocks.
1135 	 */
1136 	block = group * 2;
1137 	pnum = block / blocks_per_page;
1138 	poff = block % blocks_per_page;
1139 
1140 	/* we could use find_or_create_page(), but it locks page
1141 	 * what we'd like to avoid in fast path ... */
1142 	page = find_get_page(inode->i_mapping, pnum);
1143 	if (page == NULL || !PageUptodate(page)) {
1144 		if (page)
1145 			/*
1146 			 * drop the page reference and try
1147 			 * to get the page with lock. If we
1148 			 * are not uptodate that implies
1149 			 * somebody just created the page but
1150 			 * is yet to initialize the same. So
1151 			 * wait for it to initialize.
1152 			 */
1153 			page_cache_release(page);
1154 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 		if (page) {
1156 			BUG_ON(page->mapping != inode->i_mapping);
1157 			if (!PageUptodate(page)) {
1158 				ret = ext4_mb_init_cache(page, NULL);
1159 				if (ret) {
1160 					unlock_page(page);
1161 					goto err;
1162 				}
1163 				mb_cmp_bitmaps(e4b, page_address(page) +
1164 					       (poff * sb->s_blocksize));
1165 			}
1166 			unlock_page(page);
1167 		}
1168 	}
1169 	if (page == NULL || !PageUptodate(page)) {
1170 		ret = -EIO;
1171 		goto err;
1172 	}
1173 	e4b->bd_bitmap_page = page;
1174 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1175 	mark_page_accessed(page);
1176 
1177 	block++;
1178 	pnum = block / blocks_per_page;
1179 	poff = block % blocks_per_page;
1180 
1181 	page = find_get_page(inode->i_mapping, pnum);
1182 	if (page == NULL || !PageUptodate(page)) {
1183 		if (page)
1184 			page_cache_release(page);
1185 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1186 		if (page) {
1187 			BUG_ON(page->mapping != inode->i_mapping);
1188 			if (!PageUptodate(page)) {
1189 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1190 				if (ret) {
1191 					unlock_page(page);
1192 					goto err;
1193 				}
1194 			}
1195 			unlock_page(page);
1196 		}
1197 	}
1198 	if (page == NULL || !PageUptodate(page)) {
1199 		ret = -EIO;
1200 		goto err;
1201 	}
1202 	e4b->bd_buddy_page = page;
1203 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1204 	mark_page_accessed(page);
1205 
1206 	BUG_ON(e4b->bd_bitmap_page == NULL);
1207 	BUG_ON(e4b->bd_buddy_page == NULL);
1208 
1209 	return 0;
1210 
1211 err:
1212 	if (page)
1213 		page_cache_release(page);
1214 	if (e4b->bd_bitmap_page)
1215 		page_cache_release(e4b->bd_bitmap_page);
1216 	if (e4b->bd_buddy_page)
1217 		page_cache_release(e4b->bd_buddy_page);
1218 	e4b->bd_buddy = NULL;
1219 	e4b->bd_bitmap = NULL;
1220 	return ret;
1221 }
1222 
1223 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1224 {
1225 	if (e4b->bd_bitmap_page)
1226 		page_cache_release(e4b->bd_bitmap_page);
1227 	if (e4b->bd_buddy_page)
1228 		page_cache_release(e4b->bd_buddy_page);
1229 }
1230 
1231 
1232 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1233 {
1234 	int order = 1;
1235 	void *bb;
1236 
1237 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1238 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1239 
1240 	bb = e4b->bd_buddy;
1241 	while (order <= e4b->bd_blkbits + 1) {
1242 		block = block >> 1;
1243 		if (!mb_test_bit(block, bb)) {
1244 			/* this block is part of buddy of order 'order' */
1245 			return order;
1246 		}
1247 		bb += 1 << (e4b->bd_blkbits - order);
1248 		order++;
1249 	}
1250 	return 0;
1251 }
1252 
1253 static void mb_clear_bits(void *bm, int cur, int len)
1254 {
1255 	__u32 *addr;
1256 
1257 	len = cur + len;
1258 	while (cur < len) {
1259 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1260 			/* fast path: clear whole word at once */
1261 			addr = bm + (cur >> 3);
1262 			*addr = 0;
1263 			cur += 32;
1264 			continue;
1265 		}
1266 		mb_clear_bit(cur, bm);
1267 		cur++;
1268 	}
1269 }
1270 
1271 /* clear bits in given range
1272  * will return first found zero bit if any, -1 otherwise
1273  */
1274 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1275 {
1276 	__u32 *addr;
1277 	int zero_bit = -1;
1278 
1279 	len = cur + len;
1280 	while (cur < len) {
1281 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1282 			/* fast path: clear whole word at once */
1283 			addr = bm + (cur >> 3);
1284 			if (*addr != (__u32)(-1) && zero_bit == -1)
1285 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1286 			*addr = 0;
1287 			cur += 32;
1288 			continue;
1289 		}
1290 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1291 			zero_bit = cur;
1292 		cur++;
1293 	}
1294 
1295 	return zero_bit;
1296 }
1297 
1298 void ext4_set_bits(void *bm, int cur, int len)
1299 {
1300 	__u32 *addr;
1301 
1302 	len = cur + len;
1303 	while (cur < len) {
1304 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 			/* fast path: set whole word at once */
1306 			addr = bm + (cur >> 3);
1307 			*addr = 0xffffffff;
1308 			cur += 32;
1309 			continue;
1310 		}
1311 		mb_set_bit(cur, bm);
1312 		cur++;
1313 	}
1314 }
1315 
1316 /*
1317  * _________________________________________________________________ */
1318 
1319 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1320 {
1321 	if (mb_test_bit(*bit + side, bitmap)) {
1322 		mb_clear_bit(*bit, bitmap);
1323 		(*bit) -= side;
1324 		return 1;
1325 	}
1326 	else {
1327 		(*bit) += side;
1328 		mb_set_bit(*bit, bitmap);
1329 		return -1;
1330 	}
1331 }
1332 
1333 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1334 {
1335 	int max;
1336 	int order = 1;
1337 	void *buddy = mb_find_buddy(e4b, order, &max);
1338 
1339 	while (buddy) {
1340 		void *buddy2;
1341 
1342 		/* Bits in range [first; last] are known to be set since
1343 		 * corresponding blocks were allocated. Bits in range
1344 		 * (first; last) will stay set because they form buddies on
1345 		 * upper layer. We just deal with borders if they don't
1346 		 * align with upper layer and then go up.
1347 		 * Releasing entire group is all about clearing
1348 		 * single bit of highest order buddy.
1349 		 */
1350 
1351 		/* Example:
1352 		 * ---------------------------------
1353 		 * |   1   |   1   |   1   |   1   |
1354 		 * ---------------------------------
1355 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1356 		 * ---------------------------------
1357 		 *   0   1   2   3   4   5   6   7
1358 		 *      \_____________________/
1359 		 *
1360 		 * Neither [1] nor [6] is aligned to above layer.
1361 		 * Left neighbour [0] is free, so mark it busy,
1362 		 * decrease bb_counters and extend range to
1363 		 * [0; 6]
1364 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1365 		 * mark [6] free, increase bb_counters and shrink range to
1366 		 * [0; 5].
1367 		 * Then shift range to [0; 2], go up and do the same.
1368 		 */
1369 
1370 
1371 		if (first & 1)
1372 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1373 		if (!(last & 1))
1374 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1375 		if (first > last)
1376 			break;
1377 		order++;
1378 
1379 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1380 			mb_clear_bits(buddy, first, last - first + 1);
1381 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1382 			break;
1383 		}
1384 		first >>= 1;
1385 		last >>= 1;
1386 		buddy = buddy2;
1387 	}
1388 }
1389 
1390 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1391 			   int first, int count)
1392 {
1393 	int left_is_free = 0;
1394 	int right_is_free = 0;
1395 	int block;
1396 	int last = first + count - 1;
1397 	struct super_block *sb = e4b->bd_sb;
1398 
1399 	BUG_ON(last >= (sb->s_blocksize << 3));
1400 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1401 	mb_check_buddy(e4b);
1402 	mb_free_blocks_double(inode, e4b, first, count);
1403 
1404 	e4b->bd_info->bb_free += count;
1405 	if (first < e4b->bd_info->bb_first_free)
1406 		e4b->bd_info->bb_first_free = first;
1407 
1408 	/* access memory sequentially: check left neighbour,
1409 	 * clear range and then check right neighbour
1410 	 */
1411 	if (first != 0)
1412 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1413 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1414 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1415 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1416 
1417 	if (unlikely(block != -1)) {
1418 		ext4_fsblk_t blocknr;
1419 
1420 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1421 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1422 		ext4_grp_locked_error(sb, e4b->bd_group,
1423 				      inode ? inode->i_ino : 0,
1424 				      blocknr,
1425 				      "freeing already freed block "
1426 				      "(bit %u)", block);
1427 		mb_regenerate_buddy(e4b);
1428 		goto done;
1429 	}
1430 
1431 	/* let's maintain fragments counter */
1432 	if (left_is_free && right_is_free)
1433 		e4b->bd_info->bb_fragments--;
1434 	else if (!left_is_free && !right_is_free)
1435 		e4b->bd_info->bb_fragments++;
1436 
1437 	/* buddy[0] == bd_bitmap is a special case, so handle
1438 	 * it right away and let mb_buddy_mark_free stay free of
1439 	 * zero order checks.
1440 	 * Check if neighbours are to be coaleasced,
1441 	 * adjust bitmap bb_counters and borders appropriately.
1442 	 */
1443 	if (first & 1) {
1444 		first += !left_is_free;
1445 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1446 	}
1447 	if (!(last & 1)) {
1448 		last -= !right_is_free;
1449 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1450 	}
1451 
1452 	if (first <= last)
1453 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1454 
1455 done:
1456 	mb_set_largest_free_order(sb, e4b->bd_info);
1457 	mb_check_buddy(e4b);
1458 }
1459 
1460 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1461 				int needed, struct ext4_free_extent *ex)
1462 {
1463 	int next = block;
1464 	int max, order;
1465 	void *buddy;
1466 
1467 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1468 	BUG_ON(ex == NULL);
1469 
1470 	buddy = mb_find_buddy(e4b, 0, &max);
1471 	BUG_ON(buddy == NULL);
1472 	BUG_ON(block >= max);
1473 	if (mb_test_bit(block, buddy)) {
1474 		ex->fe_len = 0;
1475 		ex->fe_start = 0;
1476 		ex->fe_group = 0;
1477 		return 0;
1478 	}
1479 
1480 	/* find actual order */
1481 	order = mb_find_order_for_block(e4b, block);
1482 	block = block >> order;
1483 
1484 	ex->fe_len = 1 << order;
1485 	ex->fe_start = block << order;
1486 	ex->fe_group = e4b->bd_group;
1487 
1488 	/* calc difference from given start */
1489 	next = next - ex->fe_start;
1490 	ex->fe_len -= next;
1491 	ex->fe_start += next;
1492 
1493 	while (needed > ex->fe_len &&
1494 	       mb_find_buddy(e4b, order, &max)) {
1495 
1496 		if (block + 1 >= max)
1497 			break;
1498 
1499 		next = (block + 1) * (1 << order);
1500 		if (mb_test_bit(next, e4b->bd_bitmap))
1501 			break;
1502 
1503 		order = mb_find_order_for_block(e4b, next);
1504 
1505 		block = next >> order;
1506 		ex->fe_len += 1 << order;
1507 	}
1508 
1509 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1510 	return ex->fe_len;
1511 }
1512 
1513 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1514 {
1515 	int ord;
1516 	int mlen = 0;
1517 	int max = 0;
1518 	int cur;
1519 	int start = ex->fe_start;
1520 	int len = ex->fe_len;
1521 	unsigned ret = 0;
1522 	int len0 = len;
1523 	void *buddy;
1524 
1525 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1526 	BUG_ON(e4b->bd_group != ex->fe_group);
1527 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1528 	mb_check_buddy(e4b);
1529 	mb_mark_used_double(e4b, start, len);
1530 
1531 	e4b->bd_info->bb_free -= len;
1532 	if (e4b->bd_info->bb_first_free == start)
1533 		e4b->bd_info->bb_first_free += len;
1534 
1535 	/* let's maintain fragments counter */
1536 	if (start != 0)
1537 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1538 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1539 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1540 	if (mlen && max)
1541 		e4b->bd_info->bb_fragments++;
1542 	else if (!mlen && !max)
1543 		e4b->bd_info->bb_fragments--;
1544 
1545 	/* let's maintain buddy itself */
1546 	while (len) {
1547 		ord = mb_find_order_for_block(e4b, start);
1548 
1549 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1550 			/* the whole chunk may be allocated at once! */
1551 			mlen = 1 << ord;
1552 			buddy = mb_find_buddy(e4b, ord, &max);
1553 			BUG_ON((start >> ord) >= max);
1554 			mb_set_bit(start >> ord, buddy);
1555 			e4b->bd_info->bb_counters[ord]--;
1556 			start += mlen;
1557 			len -= mlen;
1558 			BUG_ON(len < 0);
1559 			continue;
1560 		}
1561 
1562 		/* store for history */
1563 		if (ret == 0)
1564 			ret = len | (ord << 16);
1565 
1566 		/* we have to split large buddy */
1567 		BUG_ON(ord <= 0);
1568 		buddy = mb_find_buddy(e4b, ord, &max);
1569 		mb_set_bit(start >> ord, buddy);
1570 		e4b->bd_info->bb_counters[ord]--;
1571 
1572 		ord--;
1573 		cur = (start >> ord) & ~1U;
1574 		buddy = mb_find_buddy(e4b, ord, &max);
1575 		mb_clear_bit(cur, buddy);
1576 		mb_clear_bit(cur + 1, buddy);
1577 		e4b->bd_info->bb_counters[ord]++;
1578 		e4b->bd_info->bb_counters[ord]++;
1579 	}
1580 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1581 
1582 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1583 	mb_check_buddy(e4b);
1584 
1585 	return ret;
1586 }
1587 
1588 /*
1589  * Must be called under group lock!
1590  */
1591 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1592 					struct ext4_buddy *e4b)
1593 {
1594 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1595 	int ret;
1596 
1597 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1598 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1599 
1600 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1601 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1602 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1603 
1604 	/* preallocation can change ac_b_ex, thus we store actually
1605 	 * allocated blocks for history */
1606 	ac->ac_f_ex = ac->ac_b_ex;
1607 
1608 	ac->ac_status = AC_STATUS_FOUND;
1609 	ac->ac_tail = ret & 0xffff;
1610 	ac->ac_buddy = ret >> 16;
1611 
1612 	/*
1613 	 * take the page reference. We want the page to be pinned
1614 	 * so that we don't get a ext4_mb_init_cache_call for this
1615 	 * group until we update the bitmap. That would mean we
1616 	 * double allocate blocks. The reference is dropped
1617 	 * in ext4_mb_release_context
1618 	 */
1619 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1620 	get_page(ac->ac_bitmap_page);
1621 	ac->ac_buddy_page = e4b->bd_buddy_page;
1622 	get_page(ac->ac_buddy_page);
1623 	/* store last allocated for subsequent stream allocation */
1624 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1625 		spin_lock(&sbi->s_md_lock);
1626 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1627 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1628 		spin_unlock(&sbi->s_md_lock);
1629 	}
1630 }
1631 
1632 /*
1633  * regular allocator, for general purposes allocation
1634  */
1635 
1636 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1637 					struct ext4_buddy *e4b,
1638 					int finish_group)
1639 {
1640 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1641 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1642 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1643 	struct ext4_free_extent ex;
1644 	int max;
1645 
1646 	if (ac->ac_status == AC_STATUS_FOUND)
1647 		return;
1648 	/*
1649 	 * We don't want to scan for a whole year
1650 	 */
1651 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1652 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1653 		ac->ac_status = AC_STATUS_BREAK;
1654 		return;
1655 	}
1656 
1657 	/*
1658 	 * Haven't found good chunk so far, let's continue
1659 	 */
1660 	if (bex->fe_len < gex->fe_len)
1661 		return;
1662 
1663 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1664 			&& bex->fe_group == e4b->bd_group) {
1665 		/* recheck chunk's availability - we don't know
1666 		 * when it was found (within this lock-unlock
1667 		 * period or not) */
1668 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1669 		if (max >= gex->fe_len) {
1670 			ext4_mb_use_best_found(ac, e4b);
1671 			return;
1672 		}
1673 	}
1674 }
1675 
1676 /*
1677  * The routine checks whether found extent is good enough. If it is,
1678  * then the extent gets marked used and flag is set to the context
1679  * to stop scanning. Otherwise, the extent is compared with the
1680  * previous found extent and if new one is better, then it's stored
1681  * in the context. Later, the best found extent will be used, if
1682  * mballoc can't find good enough extent.
1683  *
1684  * FIXME: real allocation policy is to be designed yet!
1685  */
1686 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1687 					struct ext4_free_extent *ex,
1688 					struct ext4_buddy *e4b)
1689 {
1690 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1691 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1692 
1693 	BUG_ON(ex->fe_len <= 0);
1694 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1695 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1696 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1697 
1698 	ac->ac_found++;
1699 
1700 	/*
1701 	 * The special case - take what you catch first
1702 	 */
1703 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1704 		*bex = *ex;
1705 		ext4_mb_use_best_found(ac, e4b);
1706 		return;
1707 	}
1708 
1709 	/*
1710 	 * Let's check whether the chuck is good enough
1711 	 */
1712 	if (ex->fe_len == gex->fe_len) {
1713 		*bex = *ex;
1714 		ext4_mb_use_best_found(ac, e4b);
1715 		return;
1716 	}
1717 
1718 	/*
1719 	 * If this is first found extent, just store it in the context
1720 	 */
1721 	if (bex->fe_len == 0) {
1722 		*bex = *ex;
1723 		return;
1724 	}
1725 
1726 	/*
1727 	 * If new found extent is better, store it in the context
1728 	 */
1729 	if (bex->fe_len < gex->fe_len) {
1730 		/* if the request isn't satisfied, any found extent
1731 		 * larger than previous best one is better */
1732 		if (ex->fe_len > bex->fe_len)
1733 			*bex = *ex;
1734 	} else if (ex->fe_len > gex->fe_len) {
1735 		/* if the request is satisfied, then we try to find
1736 		 * an extent that still satisfy the request, but is
1737 		 * smaller than previous one */
1738 		if (ex->fe_len < bex->fe_len)
1739 			*bex = *ex;
1740 	}
1741 
1742 	ext4_mb_check_limits(ac, e4b, 0);
1743 }
1744 
1745 static noinline_for_stack
1746 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1747 					struct ext4_buddy *e4b)
1748 {
1749 	struct ext4_free_extent ex = ac->ac_b_ex;
1750 	ext4_group_t group = ex.fe_group;
1751 	int max;
1752 	int err;
1753 
1754 	BUG_ON(ex.fe_len <= 0);
1755 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1756 	if (err)
1757 		return err;
1758 
1759 	ext4_lock_group(ac->ac_sb, group);
1760 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1761 
1762 	if (max > 0) {
1763 		ac->ac_b_ex = ex;
1764 		ext4_mb_use_best_found(ac, e4b);
1765 	}
1766 
1767 	ext4_unlock_group(ac->ac_sb, group);
1768 	ext4_mb_unload_buddy(e4b);
1769 
1770 	return 0;
1771 }
1772 
1773 static noinline_for_stack
1774 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1775 				struct ext4_buddy *e4b)
1776 {
1777 	ext4_group_t group = ac->ac_g_ex.fe_group;
1778 	int max;
1779 	int err;
1780 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1781 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1782 	struct ext4_free_extent ex;
1783 
1784 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1785 		return 0;
1786 	if (grp->bb_free == 0)
1787 		return 0;
1788 
1789 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1790 	if (err)
1791 		return err;
1792 
1793 	ext4_lock_group(ac->ac_sb, group);
1794 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1795 			     ac->ac_g_ex.fe_len, &ex);
1796 
1797 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1798 		ext4_fsblk_t start;
1799 
1800 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1801 			ex.fe_start;
1802 		/* use do_div to get remainder (would be 64-bit modulo) */
1803 		if (do_div(start, sbi->s_stripe) == 0) {
1804 			ac->ac_found++;
1805 			ac->ac_b_ex = ex;
1806 			ext4_mb_use_best_found(ac, e4b);
1807 		}
1808 	} else if (max >= ac->ac_g_ex.fe_len) {
1809 		BUG_ON(ex.fe_len <= 0);
1810 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1811 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1812 		ac->ac_found++;
1813 		ac->ac_b_ex = ex;
1814 		ext4_mb_use_best_found(ac, e4b);
1815 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1816 		/* Sometimes, caller may want to merge even small
1817 		 * number of blocks to an existing extent */
1818 		BUG_ON(ex.fe_len <= 0);
1819 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1820 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1821 		ac->ac_found++;
1822 		ac->ac_b_ex = ex;
1823 		ext4_mb_use_best_found(ac, e4b);
1824 	}
1825 	ext4_unlock_group(ac->ac_sb, group);
1826 	ext4_mb_unload_buddy(e4b);
1827 
1828 	return 0;
1829 }
1830 
1831 /*
1832  * The routine scans buddy structures (not bitmap!) from given order
1833  * to max order and tries to find big enough chunk to satisfy the req
1834  */
1835 static noinline_for_stack
1836 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1837 					struct ext4_buddy *e4b)
1838 {
1839 	struct super_block *sb = ac->ac_sb;
1840 	struct ext4_group_info *grp = e4b->bd_info;
1841 	void *buddy;
1842 	int i;
1843 	int k;
1844 	int max;
1845 
1846 	BUG_ON(ac->ac_2order <= 0);
1847 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1848 		if (grp->bb_counters[i] == 0)
1849 			continue;
1850 
1851 		buddy = mb_find_buddy(e4b, i, &max);
1852 		BUG_ON(buddy == NULL);
1853 
1854 		k = mb_find_next_zero_bit(buddy, max, 0);
1855 		BUG_ON(k >= max);
1856 
1857 		ac->ac_found++;
1858 
1859 		ac->ac_b_ex.fe_len = 1 << i;
1860 		ac->ac_b_ex.fe_start = k << i;
1861 		ac->ac_b_ex.fe_group = e4b->bd_group;
1862 
1863 		ext4_mb_use_best_found(ac, e4b);
1864 
1865 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1866 
1867 		if (EXT4_SB(sb)->s_mb_stats)
1868 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1869 
1870 		break;
1871 	}
1872 }
1873 
1874 /*
1875  * The routine scans the group and measures all found extents.
1876  * In order to optimize scanning, caller must pass number of
1877  * free blocks in the group, so the routine can know upper limit.
1878  */
1879 static noinline_for_stack
1880 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1881 					struct ext4_buddy *e4b)
1882 {
1883 	struct super_block *sb = ac->ac_sb;
1884 	void *bitmap = e4b->bd_bitmap;
1885 	struct ext4_free_extent ex;
1886 	int i;
1887 	int free;
1888 
1889 	free = e4b->bd_info->bb_free;
1890 	BUG_ON(free <= 0);
1891 
1892 	i = e4b->bd_info->bb_first_free;
1893 
1894 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1895 		i = mb_find_next_zero_bit(bitmap,
1896 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1897 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1898 			/*
1899 			 * IF we have corrupt bitmap, we won't find any
1900 			 * free blocks even though group info says we
1901 			 * we have free blocks
1902 			 */
1903 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1904 					"%d free clusters as per "
1905 					"group info. But bitmap says 0",
1906 					free);
1907 			break;
1908 		}
1909 
1910 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1911 		BUG_ON(ex.fe_len <= 0);
1912 		if (free < ex.fe_len) {
1913 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1914 					"%d free clusters as per "
1915 					"group info. But got %d blocks",
1916 					free, ex.fe_len);
1917 			/*
1918 			 * The number of free blocks differs. This mostly
1919 			 * indicate that the bitmap is corrupt. So exit
1920 			 * without claiming the space.
1921 			 */
1922 			break;
1923 		}
1924 
1925 		ext4_mb_measure_extent(ac, &ex, e4b);
1926 
1927 		i += ex.fe_len;
1928 		free -= ex.fe_len;
1929 	}
1930 
1931 	ext4_mb_check_limits(ac, e4b, 1);
1932 }
1933 
1934 /*
1935  * This is a special case for storages like raid5
1936  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1937  */
1938 static noinline_for_stack
1939 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1940 				 struct ext4_buddy *e4b)
1941 {
1942 	struct super_block *sb = ac->ac_sb;
1943 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1944 	void *bitmap = e4b->bd_bitmap;
1945 	struct ext4_free_extent ex;
1946 	ext4_fsblk_t first_group_block;
1947 	ext4_fsblk_t a;
1948 	ext4_grpblk_t i;
1949 	int max;
1950 
1951 	BUG_ON(sbi->s_stripe == 0);
1952 
1953 	/* find first stripe-aligned block in group */
1954 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1955 
1956 	a = first_group_block + sbi->s_stripe - 1;
1957 	do_div(a, sbi->s_stripe);
1958 	i = (a * sbi->s_stripe) - first_group_block;
1959 
1960 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1961 		if (!mb_test_bit(i, bitmap)) {
1962 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1963 			if (max >= sbi->s_stripe) {
1964 				ac->ac_found++;
1965 				ac->ac_b_ex = ex;
1966 				ext4_mb_use_best_found(ac, e4b);
1967 				break;
1968 			}
1969 		}
1970 		i += sbi->s_stripe;
1971 	}
1972 }
1973 
1974 /* This is now called BEFORE we load the buddy bitmap. */
1975 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1976 				ext4_group_t group, int cr)
1977 {
1978 	unsigned free, fragments;
1979 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1980 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1981 
1982 	BUG_ON(cr < 0 || cr >= 4);
1983 
1984 	free = grp->bb_free;
1985 	if (free == 0)
1986 		return 0;
1987 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1988 		return 0;
1989 
1990 	/* We only do this if the grp has never been initialized */
1991 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1992 		int ret = ext4_mb_init_group(ac->ac_sb, group);
1993 		if (ret)
1994 			return 0;
1995 	}
1996 
1997 	fragments = grp->bb_fragments;
1998 	if (fragments == 0)
1999 		return 0;
2000 
2001 	switch (cr) {
2002 	case 0:
2003 		BUG_ON(ac->ac_2order == 0);
2004 
2005 		/* Avoid using the first bg of a flexgroup for data files */
2006 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2007 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2008 		    ((group % flex_size) == 0))
2009 			return 0;
2010 
2011 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2012 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2013 			return 1;
2014 
2015 		if (grp->bb_largest_free_order < ac->ac_2order)
2016 			return 0;
2017 
2018 		return 1;
2019 	case 1:
2020 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2021 			return 1;
2022 		break;
2023 	case 2:
2024 		if (free >= ac->ac_g_ex.fe_len)
2025 			return 1;
2026 		break;
2027 	case 3:
2028 		return 1;
2029 	default:
2030 		BUG();
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 static noinline_for_stack int
2037 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2038 {
2039 	ext4_group_t ngroups, group, i;
2040 	int cr;
2041 	int err = 0;
2042 	struct ext4_sb_info *sbi;
2043 	struct super_block *sb;
2044 	struct ext4_buddy e4b;
2045 
2046 	sb = ac->ac_sb;
2047 	sbi = EXT4_SB(sb);
2048 	ngroups = ext4_get_groups_count(sb);
2049 	/* non-extent files are limited to low blocks/groups */
2050 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2051 		ngroups = sbi->s_blockfile_groups;
2052 
2053 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2054 
2055 	/* first, try the goal */
2056 	err = ext4_mb_find_by_goal(ac, &e4b);
2057 	if (err || ac->ac_status == AC_STATUS_FOUND)
2058 		goto out;
2059 
2060 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2061 		goto out;
2062 
2063 	/*
2064 	 * ac->ac2_order is set only if the fe_len is a power of 2
2065 	 * if ac2_order is set we also set criteria to 0 so that we
2066 	 * try exact allocation using buddy.
2067 	 */
2068 	i = fls(ac->ac_g_ex.fe_len);
2069 	ac->ac_2order = 0;
2070 	/*
2071 	 * We search using buddy data only if the order of the request
2072 	 * is greater than equal to the sbi_s_mb_order2_reqs
2073 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2074 	 */
2075 	if (i >= sbi->s_mb_order2_reqs) {
2076 		/*
2077 		 * This should tell if fe_len is exactly power of 2
2078 		 */
2079 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2080 			ac->ac_2order = i - 1;
2081 	}
2082 
2083 	/* if stream allocation is enabled, use global goal */
2084 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2085 		/* TBD: may be hot point */
2086 		spin_lock(&sbi->s_md_lock);
2087 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2088 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2089 		spin_unlock(&sbi->s_md_lock);
2090 	}
2091 
2092 	/* Let's just scan groups to find more-less suitable blocks */
2093 	cr = ac->ac_2order ? 0 : 1;
2094 	/*
2095 	 * cr == 0 try to get exact allocation,
2096 	 * cr == 3  try to get anything
2097 	 */
2098 repeat:
2099 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2100 		ac->ac_criteria = cr;
2101 		/*
2102 		 * searching for the right group start
2103 		 * from the goal value specified
2104 		 */
2105 		group = ac->ac_g_ex.fe_group;
2106 
2107 		for (i = 0; i < ngroups; group++, i++) {
2108 			if (group == ngroups)
2109 				group = 0;
2110 
2111 			/* This now checks without needing the buddy page */
2112 			if (!ext4_mb_good_group(ac, group, cr))
2113 				continue;
2114 
2115 			err = ext4_mb_load_buddy(sb, group, &e4b);
2116 			if (err)
2117 				goto out;
2118 
2119 			ext4_lock_group(sb, group);
2120 
2121 			/*
2122 			 * We need to check again after locking the
2123 			 * block group
2124 			 */
2125 			if (!ext4_mb_good_group(ac, group, cr)) {
2126 				ext4_unlock_group(sb, group);
2127 				ext4_mb_unload_buddy(&e4b);
2128 				continue;
2129 			}
2130 
2131 			ac->ac_groups_scanned++;
2132 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2133 				ext4_mb_simple_scan_group(ac, &e4b);
2134 			else if (cr == 1 && sbi->s_stripe &&
2135 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2136 				ext4_mb_scan_aligned(ac, &e4b);
2137 			else
2138 				ext4_mb_complex_scan_group(ac, &e4b);
2139 
2140 			ext4_unlock_group(sb, group);
2141 			ext4_mb_unload_buddy(&e4b);
2142 
2143 			if (ac->ac_status != AC_STATUS_CONTINUE)
2144 				break;
2145 		}
2146 	}
2147 
2148 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2149 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2150 		/*
2151 		 * We've been searching too long. Let's try to allocate
2152 		 * the best chunk we've found so far
2153 		 */
2154 
2155 		ext4_mb_try_best_found(ac, &e4b);
2156 		if (ac->ac_status != AC_STATUS_FOUND) {
2157 			/*
2158 			 * Someone more lucky has already allocated it.
2159 			 * The only thing we can do is just take first
2160 			 * found block(s)
2161 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2162 			 */
2163 			ac->ac_b_ex.fe_group = 0;
2164 			ac->ac_b_ex.fe_start = 0;
2165 			ac->ac_b_ex.fe_len = 0;
2166 			ac->ac_status = AC_STATUS_CONTINUE;
2167 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2168 			cr = 3;
2169 			atomic_inc(&sbi->s_mb_lost_chunks);
2170 			goto repeat;
2171 		}
2172 	}
2173 out:
2174 	return err;
2175 }
2176 
2177 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2178 {
2179 	struct super_block *sb = seq->private;
2180 	ext4_group_t group;
2181 
2182 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2183 		return NULL;
2184 	group = *pos + 1;
2185 	return (void *) ((unsigned long) group);
2186 }
2187 
2188 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2189 {
2190 	struct super_block *sb = seq->private;
2191 	ext4_group_t group;
2192 
2193 	++*pos;
2194 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2195 		return NULL;
2196 	group = *pos + 1;
2197 	return (void *) ((unsigned long) group);
2198 }
2199 
2200 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2201 {
2202 	struct super_block *sb = seq->private;
2203 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2204 	int i;
2205 	int err, buddy_loaded = 0;
2206 	struct ext4_buddy e4b;
2207 	struct ext4_group_info *grinfo;
2208 	struct sg {
2209 		struct ext4_group_info info;
2210 		ext4_grpblk_t counters[16];
2211 	} sg;
2212 
2213 	group--;
2214 	if (group == 0)
2215 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2216 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2217 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2218 			   "group", "free", "frags", "first",
2219 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2220 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2221 
2222 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2223 		sizeof(struct ext4_group_info);
2224 	grinfo = ext4_get_group_info(sb, group);
2225 	/* Load the group info in memory only if not already loaded. */
2226 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2227 		err = ext4_mb_load_buddy(sb, group, &e4b);
2228 		if (err) {
2229 			seq_printf(seq, "#%-5u: I/O error\n", group);
2230 			return 0;
2231 		}
2232 		buddy_loaded = 1;
2233 	}
2234 
2235 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2236 
2237 	if (buddy_loaded)
2238 		ext4_mb_unload_buddy(&e4b);
2239 
2240 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2241 			sg.info.bb_fragments, sg.info.bb_first_free);
2242 	for (i = 0; i <= 13; i++)
2243 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2244 				sg.info.bb_counters[i] : 0);
2245 	seq_printf(seq, " ]\n");
2246 
2247 	return 0;
2248 }
2249 
2250 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2251 {
2252 }
2253 
2254 static const struct seq_operations ext4_mb_seq_groups_ops = {
2255 	.start  = ext4_mb_seq_groups_start,
2256 	.next   = ext4_mb_seq_groups_next,
2257 	.stop   = ext4_mb_seq_groups_stop,
2258 	.show   = ext4_mb_seq_groups_show,
2259 };
2260 
2261 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2262 {
2263 	struct super_block *sb = PDE_DATA(inode);
2264 	int rc;
2265 
2266 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2267 	if (rc == 0) {
2268 		struct seq_file *m = file->private_data;
2269 		m->private = sb;
2270 	}
2271 	return rc;
2272 
2273 }
2274 
2275 static const struct file_operations ext4_mb_seq_groups_fops = {
2276 	.owner		= THIS_MODULE,
2277 	.open		= ext4_mb_seq_groups_open,
2278 	.read		= seq_read,
2279 	.llseek		= seq_lseek,
2280 	.release	= seq_release,
2281 };
2282 
2283 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2284 {
2285 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2286 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2287 
2288 	BUG_ON(!cachep);
2289 	return cachep;
2290 }
2291 
2292 /*
2293  * Allocate the top-level s_group_info array for the specified number
2294  * of groups
2295  */
2296 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2297 {
2298 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2299 	unsigned size;
2300 	struct ext4_group_info ***new_groupinfo;
2301 
2302 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2303 		EXT4_DESC_PER_BLOCK_BITS(sb);
2304 	if (size <= sbi->s_group_info_size)
2305 		return 0;
2306 
2307 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2308 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2309 	if (!new_groupinfo) {
2310 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2311 		return -ENOMEM;
2312 	}
2313 	if (sbi->s_group_info) {
2314 		memcpy(new_groupinfo, sbi->s_group_info,
2315 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2316 		ext4_kvfree(sbi->s_group_info);
2317 	}
2318 	sbi->s_group_info = new_groupinfo;
2319 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2320 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2321 		   sbi->s_group_info_size);
2322 	return 0;
2323 }
2324 
2325 /* Create and initialize ext4_group_info data for the given group. */
2326 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2327 			  struct ext4_group_desc *desc)
2328 {
2329 	int i;
2330 	int metalen = 0;
2331 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 	struct ext4_group_info **meta_group_info;
2333 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2334 
2335 	/*
2336 	 * First check if this group is the first of a reserved block.
2337 	 * If it's true, we have to allocate a new table of pointers
2338 	 * to ext4_group_info structures
2339 	 */
2340 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2341 		metalen = sizeof(*meta_group_info) <<
2342 			EXT4_DESC_PER_BLOCK_BITS(sb);
2343 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2344 		if (meta_group_info == NULL) {
2345 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2346 				 "for a buddy group");
2347 			goto exit_meta_group_info;
2348 		}
2349 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2350 			meta_group_info;
2351 	}
2352 
2353 	meta_group_info =
2354 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2355 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2356 
2357 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2358 	if (meta_group_info[i] == NULL) {
2359 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2360 		goto exit_group_info;
2361 	}
2362 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2363 		&(meta_group_info[i]->bb_state));
2364 
2365 	/*
2366 	 * initialize bb_free to be able to skip
2367 	 * empty groups without initialization
2368 	 */
2369 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2370 		meta_group_info[i]->bb_free =
2371 			ext4_free_clusters_after_init(sb, group, desc);
2372 	} else {
2373 		meta_group_info[i]->bb_free =
2374 			ext4_free_group_clusters(sb, desc);
2375 	}
2376 
2377 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2378 	init_rwsem(&meta_group_info[i]->alloc_sem);
2379 	meta_group_info[i]->bb_free_root = RB_ROOT;
2380 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2381 
2382 #ifdef DOUBLE_CHECK
2383 	{
2384 		struct buffer_head *bh;
2385 		meta_group_info[i]->bb_bitmap =
2386 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2387 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2388 		bh = ext4_read_block_bitmap(sb, group);
2389 		BUG_ON(bh == NULL);
2390 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2391 			sb->s_blocksize);
2392 		put_bh(bh);
2393 	}
2394 #endif
2395 
2396 	return 0;
2397 
2398 exit_group_info:
2399 	/* If a meta_group_info table has been allocated, release it now */
2400 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2401 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2402 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2403 	}
2404 exit_meta_group_info:
2405 	return -ENOMEM;
2406 } /* ext4_mb_add_groupinfo */
2407 
2408 static int ext4_mb_init_backend(struct super_block *sb)
2409 {
2410 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2411 	ext4_group_t i;
2412 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2413 	int err;
2414 	struct ext4_group_desc *desc;
2415 	struct kmem_cache *cachep;
2416 
2417 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2418 	if (err)
2419 		return err;
2420 
2421 	sbi->s_buddy_cache = new_inode(sb);
2422 	if (sbi->s_buddy_cache == NULL) {
2423 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2424 		goto err_freesgi;
2425 	}
2426 	/* To avoid potentially colliding with an valid on-disk inode number,
2427 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2428 	 * not in the inode hash, so it should never be found by iget(), but
2429 	 * this will avoid confusion if it ever shows up during debugging. */
2430 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2431 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2432 	for (i = 0; i < ngroups; i++) {
2433 		desc = ext4_get_group_desc(sb, i, NULL);
2434 		if (desc == NULL) {
2435 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2436 			goto err_freebuddy;
2437 		}
2438 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2439 			goto err_freebuddy;
2440 	}
2441 
2442 	return 0;
2443 
2444 err_freebuddy:
2445 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2446 	while (i-- > 0)
2447 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2448 	i = sbi->s_group_info_size;
2449 	while (i-- > 0)
2450 		kfree(sbi->s_group_info[i]);
2451 	iput(sbi->s_buddy_cache);
2452 err_freesgi:
2453 	ext4_kvfree(sbi->s_group_info);
2454 	return -ENOMEM;
2455 }
2456 
2457 static void ext4_groupinfo_destroy_slabs(void)
2458 {
2459 	int i;
2460 
2461 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2462 		if (ext4_groupinfo_caches[i])
2463 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2464 		ext4_groupinfo_caches[i] = NULL;
2465 	}
2466 }
2467 
2468 static int ext4_groupinfo_create_slab(size_t size)
2469 {
2470 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2471 	int slab_size;
2472 	int blocksize_bits = order_base_2(size);
2473 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2474 	struct kmem_cache *cachep;
2475 
2476 	if (cache_index >= NR_GRPINFO_CACHES)
2477 		return -EINVAL;
2478 
2479 	if (unlikely(cache_index < 0))
2480 		cache_index = 0;
2481 
2482 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2483 	if (ext4_groupinfo_caches[cache_index]) {
2484 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2485 		return 0;	/* Already created */
2486 	}
2487 
2488 	slab_size = offsetof(struct ext4_group_info,
2489 				bb_counters[blocksize_bits + 2]);
2490 
2491 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2492 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2493 					NULL);
2494 
2495 	ext4_groupinfo_caches[cache_index] = cachep;
2496 
2497 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2498 	if (!cachep) {
2499 		printk(KERN_EMERG
2500 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2501 		return -ENOMEM;
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 int ext4_mb_init(struct super_block *sb)
2508 {
2509 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2510 	unsigned i, j;
2511 	unsigned offset;
2512 	unsigned max;
2513 	int ret;
2514 
2515 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2516 
2517 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2518 	if (sbi->s_mb_offsets == NULL) {
2519 		ret = -ENOMEM;
2520 		goto out;
2521 	}
2522 
2523 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2524 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2525 	if (sbi->s_mb_maxs == NULL) {
2526 		ret = -ENOMEM;
2527 		goto out;
2528 	}
2529 
2530 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2531 	if (ret < 0)
2532 		goto out;
2533 
2534 	/* order 0 is regular bitmap */
2535 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2536 	sbi->s_mb_offsets[0] = 0;
2537 
2538 	i = 1;
2539 	offset = 0;
2540 	max = sb->s_blocksize << 2;
2541 	do {
2542 		sbi->s_mb_offsets[i] = offset;
2543 		sbi->s_mb_maxs[i] = max;
2544 		offset += 1 << (sb->s_blocksize_bits - i);
2545 		max = max >> 1;
2546 		i++;
2547 	} while (i <= sb->s_blocksize_bits + 1);
2548 
2549 	spin_lock_init(&sbi->s_md_lock);
2550 	spin_lock_init(&sbi->s_bal_lock);
2551 
2552 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2553 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2554 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2555 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2556 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2557 	/*
2558 	 * The default group preallocation is 512, which for 4k block
2559 	 * sizes translates to 2 megabytes.  However for bigalloc file
2560 	 * systems, this is probably too big (i.e, if the cluster size
2561 	 * is 1 megabyte, then group preallocation size becomes half a
2562 	 * gigabyte!).  As a default, we will keep a two megabyte
2563 	 * group pralloc size for cluster sizes up to 64k, and after
2564 	 * that, we will force a minimum group preallocation size of
2565 	 * 32 clusters.  This translates to 8 megs when the cluster
2566 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2567 	 * which seems reasonable as a default.
2568 	 */
2569 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2570 				       sbi->s_cluster_bits, 32);
2571 	/*
2572 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2573 	 * to the lowest multiple of s_stripe which is bigger than
2574 	 * the s_mb_group_prealloc as determined above. We want
2575 	 * the preallocation size to be an exact multiple of the
2576 	 * RAID stripe size so that preallocations don't fragment
2577 	 * the stripes.
2578 	 */
2579 	if (sbi->s_stripe > 1) {
2580 		sbi->s_mb_group_prealloc = roundup(
2581 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2582 	}
2583 
2584 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2585 	if (sbi->s_locality_groups == NULL) {
2586 		ret = -ENOMEM;
2587 		goto out_free_groupinfo_slab;
2588 	}
2589 	for_each_possible_cpu(i) {
2590 		struct ext4_locality_group *lg;
2591 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2592 		mutex_init(&lg->lg_mutex);
2593 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2594 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2595 		spin_lock_init(&lg->lg_prealloc_lock);
2596 	}
2597 
2598 	/* init file for buddy data */
2599 	ret = ext4_mb_init_backend(sb);
2600 	if (ret != 0)
2601 		goto out_free_locality_groups;
2602 
2603 	if (sbi->s_proc)
2604 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2605 				 &ext4_mb_seq_groups_fops, sb);
2606 
2607 	return 0;
2608 
2609 out_free_locality_groups:
2610 	free_percpu(sbi->s_locality_groups);
2611 	sbi->s_locality_groups = NULL;
2612 out_free_groupinfo_slab:
2613 	ext4_groupinfo_destroy_slabs();
2614 out:
2615 	kfree(sbi->s_mb_offsets);
2616 	sbi->s_mb_offsets = NULL;
2617 	kfree(sbi->s_mb_maxs);
2618 	sbi->s_mb_maxs = NULL;
2619 	return ret;
2620 }
2621 
2622 /* need to called with the ext4 group lock held */
2623 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2624 {
2625 	struct ext4_prealloc_space *pa;
2626 	struct list_head *cur, *tmp;
2627 	int count = 0;
2628 
2629 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2630 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2631 		list_del(&pa->pa_group_list);
2632 		count++;
2633 		kmem_cache_free(ext4_pspace_cachep, pa);
2634 	}
2635 	if (count)
2636 		mb_debug(1, "mballoc: %u PAs left\n", count);
2637 
2638 }
2639 
2640 int ext4_mb_release(struct super_block *sb)
2641 {
2642 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2643 	ext4_group_t i;
2644 	int num_meta_group_infos;
2645 	struct ext4_group_info *grinfo;
2646 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2647 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2648 
2649 	if (sbi->s_proc)
2650 		remove_proc_entry("mb_groups", sbi->s_proc);
2651 
2652 	if (sbi->s_group_info) {
2653 		for (i = 0; i < ngroups; i++) {
2654 			grinfo = ext4_get_group_info(sb, i);
2655 #ifdef DOUBLE_CHECK
2656 			kfree(grinfo->bb_bitmap);
2657 #endif
2658 			ext4_lock_group(sb, i);
2659 			ext4_mb_cleanup_pa(grinfo);
2660 			ext4_unlock_group(sb, i);
2661 			kmem_cache_free(cachep, grinfo);
2662 		}
2663 		num_meta_group_infos = (ngroups +
2664 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2665 			EXT4_DESC_PER_BLOCK_BITS(sb);
2666 		for (i = 0; i < num_meta_group_infos; i++)
2667 			kfree(sbi->s_group_info[i]);
2668 		ext4_kvfree(sbi->s_group_info);
2669 	}
2670 	kfree(sbi->s_mb_offsets);
2671 	kfree(sbi->s_mb_maxs);
2672 	if (sbi->s_buddy_cache)
2673 		iput(sbi->s_buddy_cache);
2674 	if (sbi->s_mb_stats) {
2675 		ext4_msg(sb, KERN_INFO,
2676 		       "mballoc: %u blocks %u reqs (%u success)",
2677 				atomic_read(&sbi->s_bal_allocated),
2678 				atomic_read(&sbi->s_bal_reqs),
2679 				atomic_read(&sbi->s_bal_success));
2680 		ext4_msg(sb, KERN_INFO,
2681 		      "mballoc: %u extents scanned, %u goal hits, "
2682 				"%u 2^N hits, %u breaks, %u lost",
2683 				atomic_read(&sbi->s_bal_ex_scanned),
2684 				atomic_read(&sbi->s_bal_goals),
2685 				atomic_read(&sbi->s_bal_2orders),
2686 				atomic_read(&sbi->s_bal_breaks),
2687 				atomic_read(&sbi->s_mb_lost_chunks));
2688 		ext4_msg(sb, KERN_INFO,
2689 		       "mballoc: %lu generated and it took %Lu",
2690 				sbi->s_mb_buddies_generated,
2691 				sbi->s_mb_generation_time);
2692 		ext4_msg(sb, KERN_INFO,
2693 		       "mballoc: %u preallocated, %u discarded",
2694 				atomic_read(&sbi->s_mb_preallocated),
2695 				atomic_read(&sbi->s_mb_discarded));
2696 	}
2697 
2698 	free_percpu(sbi->s_locality_groups);
2699 
2700 	return 0;
2701 }
2702 
2703 static inline int ext4_issue_discard(struct super_block *sb,
2704 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2705 {
2706 	ext4_fsblk_t discard_block;
2707 
2708 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2709 			 ext4_group_first_block_no(sb, block_group));
2710 	count = EXT4_C2B(EXT4_SB(sb), count);
2711 	trace_ext4_discard_blocks(sb,
2712 			(unsigned long long) discard_block, count);
2713 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2714 }
2715 
2716 /*
2717  * This function is called by the jbd2 layer once the commit has finished,
2718  * so we know we can free the blocks that were released with that commit.
2719  */
2720 static void ext4_free_data_callback(struct super_block *sb,
2721 				    struct ext4_journal_cb_entry *jce,
2722 				    int rc)
2723 {
2724 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2725 	struct ext4_buddy e4b;
2726 	struct ext4_group_info *db;
2727 	int err, count = 0, count2 = 0;
2728 
2729 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2730 		 entry->efd_count, entry->efd_group, entry);
2731 
2732 	if (test_opt(sb, DISCARD)) {
2733 		err = ext4_issue_discard(sb, entry->efd_group,
2734 					 entry->efd_start_cluster,
2735 					 entry->efd_count);
2736 		if (err && err != -EOPNOTSUPP)
2737 			ext4_msg(sb, KERN_WARNING, "discard request in"
2738 				 " group:%d block:%d count:%d failed"
2739 				 " with %d", entry->efd_group,
2740 				 entry->efd_start_cluster,
2741 				 entry->efd_count, err);
2742 	}
2743 
2744 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2745 	/* we expect to find existing buddy because it's pinned */
2746 	BUG_ON(err != 0);
2747 
2748 
2749 	db = e4b.bd_info;
2750 	/* there are blocks to put in buddy to make them really free */
2751 	count += entry->efd_count;
2752 	count2++;
2753 	ext4_lock_group(sb, entry->efd_group);
2754 	/* Take it out of per group rb tree */
2755 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2756 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2757 
2758 	/*
2759 	 * Clear the trimmed flag for the group so that the next
2760 	 * ext4_trim_fs can trim it.
2761 	 * If the volume is mounted with -o discard, online discard
2762 	 * is supported and the free blocks will be trimmed online.
2763 	 */
2764 	if (!test_opt(sb, DISCARD))
2765 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2766 
2767 	if (!db->bb_free_root.rb_node) {
2768 		/* No more items in the per group rb tree
2769 		 * balance refcounts from ext4_mb_free_metadata()
2770 		 */
2771 		page_cache_release(e4b.bd_buddy_page);
2772 		page_cache_release(e4b.bd_bitmap_page);
2773 	}
2774 	ext4_unlock_group(sb, entry->efd_group);
2775 	kmem_cache_free(ext4_free_data_cachep, entry);
2776 	ext4_mb_unload_buddy(&e4b);
2777 
2778 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2779 }
2780 
2781 int __init ext4_init_mballoc(void)
2782 {
2783 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2784 					SLAB_RECLAIM_ACCOUNT);
2785 	if (ext4_pspace_cachep == NULL)
2786 		return -ENOMEM;
2787 
2788 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2789 				    SLAB_RECLAIM_ACCOUNT);
2790 	if (ext4_ac_cachep == NULL) {
2791 		kmem_cache_destroy(ext4_pspace_cachep);
2792 		return -ENOMEM;
2793 	}
2794 
2795 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2796 					   SLAB_RECLAIM_ACCOUNT);
2797 	if (ext4_free_data_cachep == NULL) {
2798 		kmem_cache_destroy(ext4_pspace_cachep);
2799 		kmem_cache_destroy(ext4_ac_cachep);
2800 		return -ENOMEM;
2801 	}
2802 	return 0;
2803 }
2804 
2805 void ext4_exit_mballoc(void)
2806 {
2807 	/*
2808 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2809 	 * before destroying the slab cache.
2810 	 */
2811 	rcu_barrier();
2812 	kmem_cache_destroy(ext4_pspace_cachep);
2813 	kmem_cache_destroy(ext4_ac_cachep);
2814 	kmem_cache_destroy(ext4_free_data_cachep);
2815 	ext4_groupinfo_destroy_slabs();
2816 }
2817 
2818 
2819 /*
2820  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2821  * Returns 0 if success or error code
2822  */
2823 static noinline_for_stack int
2824 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2825 				handle_t *handle, unsigned int reserv_clstrs)
2826 {
2827 	struct buffer_head *bitmap_bh = NULL;
2828 	struct ext4_group_desc *gdp;
2829 	struct buffer_head *gdp_bh;
2830 	struct ext4_sb_info *sbi;
2831 	struct super_block *sb;
2832 	ext4_fsblk_t block;
2833 	int err, len;
2834 
2835 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2836 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2837 
2838 	sb = ac->ac_sb;
2839 	sbi = EXT4_SB(sb);
2840 
2841 	err = -EIO;
2842 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2843 	if (!bitmap_bh)
2844 		goto out_err;
2845 
2846 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2847 	if (err)
2848 		goto out_err;
2849 
2850 	err = -EIO;
2851 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2852 	if (!gdp)
2853 		goto out_err;
2854 
2855 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2856 			ext4_free_group_clusters(sb, gdp));
2857 
2858 	err = ext4_journal_get_write_access(handle, gdp_bh);
2859 	if (err)
2860 		goto out_err;
2861 
2862 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2863 
2864 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2865 	if (!ext4_data_block_valid(sbi, block, len)) {
2866 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2867 			   "fs metadata", block, block+len);
2868 		/* File system mounted not to panic on error
2869 		 * Fix the bitmap and repeat the block allocation
2870 		 * We leak some of the blocks here.
2871 		 */
2872 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2873 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2874 			      ac->ac_b_ex.fe_len);
2875 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2876 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2877 		if (!err)
2878 			err = -EAGAIN;
2879 		goto out_err;
2880 	}
2881 
2882 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2883 #ifdef AGGRESSIVE_CHECK
2884 	{
2885 		int i;
2886 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2887 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2888 						bitmap_bh->b_data));
2889 		}
2890 	}
2891 #endif
2892 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2893 		      ac->ac_b_ex.fe_len);
2894 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2895 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2896 		ext4_free_group_clusters_set(sb, gdp,
2897 					     ext4_free_clusters_after_init(sb,
2898 						ac->ac_b_ex.fe_group, gdp));
2899 	}
2900 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2901 	ext4_free_group_clusters_set(sb, gdp, len);
2902 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2903 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2904 
2905 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2906 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2907 	/*
2908 	 * Now reduce the dirty block count also. Should not go negative
2909 	 */
2910 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2911 		/* release all the reserved blocks if non delalloc */
2912 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2913 				   reserv_clstrs);
2914 
2915 	if (sbi->s_log_groups_per_flex) {
2916 		ext4_group_t flex_group = ext4_flex_group(sbi,
2917 							  ac->ac_b_ex.fe_group);
2918 		atomic64_sub(ac->ac_b_ex.fe_len,
2919 			     &sbi->s_flex_groups[flex_group].free_clusters);
2920 	}
2921 
2922 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2923 	if (err)
2924 		goto out_err;
2925 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2926 
2927 out_err:
2928 	brelse(bitmap_bh);
2929 	return err;
2930 }
2931 
2932 /*
2933  * here we normalize request for locality group
2934  * Group request are normalized to s_mb_group_prealloc, which goes to
2935  * s_strip if we set the same via mount option.
2936  * s_mb_group_prealloc can be configured via
2937  * /sys/fs/ext4/<partition>/mb_group_prealloc
2938  *
2939  * XXX: should we try to preallocate more than the group has now?
2940  */
2941 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2942 {
2943 	struct super_block *sb = ac->ac_sb;
2944 	struct ext4_locality_group *lg = ac->ac_lg;
2945 
2946 	BUG_ON(lg == NULL);
2947 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2948 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2949 		current->pid, ac->ac_g_ex.fe_len);
2950 }
2951 
2952 /*
2953  * Normalization means making request better in terms of
2954  * size and alignment
2955  */
2956 static noinline_for_stack void
2957 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2958 				struct ext4_allocation_request *ar)
2959 {
2960 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2961 	int bsbits, max;
2962 	ext4_lblk_t end;
2963 	loff_t size, start_off;
2964 	loff_t orig_size __maybe_unused;
2965 	ext4_lblk_t start;
2966 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2967 	struct ext4_prealloc_space *pa;
2968 
2969 	/* do normalize only data requests, metadata requests
2970 	   do not need preallocation */
2971 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2972 		return;
2973 
2974 	/* sometime caller may want exact blocks */
2975 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2976 		return;
2977 
2978 	/* caller may indicate that preallocation isn't
2979 	 * required (it's a tail, for example) */
2980 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2981 		return;
2982 
2983 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2984 		ext4_mb_normalize_group_request(ac);
2985 		return ;
2986 	}
2987 
2988 	bsbits = ac->ac_sb->s_blocksize_bits;
2989 
2990 	/* first, let's learn actual file size
2991 	 * given current request is allocated */
2992 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2993 	size = size << bsbits;
2994 	if (size < i_size_read(ac->ac_inode))
2995 		size = i_size_read(ac->ac_inode);
2996 	orig_size = size;
2997 
2998 	/* max size of free chunks */
2999 	max = 2 << bsbits;
3000 
3001 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3002 		(req <= (size) || max <= (chunk_size))
3003 
3004 	/* first, try to predict filesize */
3005 	/* XXX: should this table be tunable? */
3006 	start_off = 0;
3007 	if (size <= 16 * 1024) {
3008 		size = 16 * 1024;
3009 	} else if (size <= 32 * 1024) {
3010 		size = 32 * 1024;
3011 	} else if (size <= 64 * 1024) {
3012 		size = 64 * 1024;
3013 	} else if (size <= 128 * 1024) {
3014 		size = 128 * 1024;
3015 	} else if (size <= 256 * 1024) {
3016 		size = 256 * 1024;
3017 	} else if (size <= 512 * 1024) {
3018 		size = 512 * 1024;
3019 	} else if (size <= 1024 * 1024) {
3020 		size = 1024 * 1024;
3021 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3022 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3023 						(21 - bsbits)) << 21;
3024 		size = 2 * 1024 * 1024;
3025 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3026 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3027 							(22 - bsbits)) << 22;
3028 		size = 4 * 1024 * 1024;
3029 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3030 					(8<<20)>>bsbits, max, 8 * 1024)) {
3031 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3032 							(23 - bsbits)) << 23;
3033 		size = 8 * 1024 * 1024;
3034 	} else {
3035 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3036 		size	  = ac->ac_o_ex.fe_len << bsbits;
3037 	}
3038 	size = size >> bsbits;
3039 	start = start_off >> bsbits;
3040 
3041 	/* don't cover already allocated blocks in selected range */
3042 	if (ar->pleft && start <= ar->lleft) {
3043 		size -= ar->lleft + 1 - start;
3044 		start = ar->lleft + 1;
3045 	}
3046 	if (ar->pright && start + size - 1 >= ar->lright)
3047 		size -= start + size - ar->lright;
3048 
3049 	end = start + size;
3050 
3051 	/* check we don't cross already preallocated blocks */
3052 	rcu_read_lock();
3053 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3054 		ext4_lblk_t pa_end;
3055 
3056 		if (pa->pa_deleted)
3057 			continue;
3058 		spin_lock(&pa->pa_lock);
3059 		if (pa->pa_deleted) {
3060 			spin_unlock(&pa->pa_lock);
3061 			continue;
3062 		}
3063 
3064 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3065 						  pa->pa_len);
3066 
3067 		/* PA must not overlap original request */
3068 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3069 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3070 
3071 		/* skip PAs this normalized request doesn't overlap with */
3072 		if (pa->pa_lstart >= end || pa_end <= start) {
3073 			spin_unlock(&pa->pa_lock);
3074 			continue;
3075 		}
3076 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3077 
3078 		/* adjust start or end to be adjacent to this pa */
3079 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3080 			BUG_ON(pa_end < start);
3081 			start = pa_end;
3082 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3083 			BUG_ON(pa->pa_lstart > end);
3084 			end = pa->pa_lstart;
3085 		}
3086 		spin_unlock(&pa->pa_lock);
3087 	}
3088 	rcu_read_unlock();
3089 	size = end - start;
3090 
3091 	/* XXX: extra loop to check we really don't overlap preallocations */
3092 	rcu_read_lock();
3093 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3094 		ext4_lblk_t pa_end;
3095 
3096 		spin_lock(&pa->pa_lock);
3097 		if (pa->pa_deleted == 0) {
3098 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3099 							  pa->pa_len);
3100 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3101 		}
3102 		spin_unlock(&pa->pa_lock);
3103 	}
3104 	rcu_read_unlock();
3105 
3106 	if (start + size <= ac->ac_o_ex.fe_logical &&
3107 			start > ac->ac_o_ex.fe_logical) {
3108 		ext4_msg(ac->ac_sb, KERN_ERR,
3109 			 "start %lu, size %lu, fe_logical %lu",
3110 			 (unsigned long) start, (unsigned long) size,
3111 			 (unsigned long) ac->ac_o_ex.fe_logical);
3112 	}
3113 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3114 			start > ac->ac_o_ex.fe_logical);
3115 	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3116 
3117 	/* now prepare goal request */
3118 
3119 	/* XXX: is it better to align blocks WRT to logical
3120 	 * placement or satisfy big request as is */
3121 	ac->ac_g_ex.fe_logical = start;
3122 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3123 
3124 	/* define goal start in order to merge */
3125 	if (ar->pright && (ar->lright == (start + size))) {
3126 		/* merge to the right */
3127 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3128 						&ac->ac_f_ex.fe_group,
3129 						&ac->ac_f_ex.fe_start);
3130 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3131 	}
3132 	if (ar->pleft && (ar->lleft + 1 == start)) {
3133 		/* merge to the left */
3134 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3135 						&ac->ac_f_ex.fe_group,
3136 						&ac->ac_f_ex.fe_start);
3137 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3138 	}
3139 
3140 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3141 		(unsigned) orig_size, (unsigned) start);
3142 }
3143 
3144 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3145 {
3146 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3147 
3148 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3149 		atomic_inc(&sbi->s_bal_reqs);
3150 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3151 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3152 			atomic_inc(&sbi->s_bal_success);
3153 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3154 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3155 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3156 			atomic_inc(&sbi->s_bal_goals);
3157 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3158 			atomic_inc(&sbi->s_bal_breaks);
3159 	}
3160 
3161 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3162 		trace_ext4_mballoc_alloc(ac);
3163 	else
3164 		trace_ext4_mballoc_prealloc(ac);
3165 }
3166 
3167 /*
3168  * Called on failure; free up any blocks from the inode PA for this
3169  * context.  We don't need this for MB_GROUP_PA because we only change
3170  * pa_free in ext4_mb_release_context(), but on failure, we've already
3171  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3172  */
3173 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3174 {
3175 	struct ext4_prealloc_space *pa = ac->ac_pa;
3176 
3177 	if (pa && pa->pa_type == MB_INODE_PA)
3178 		pa->pa_free += ac->ac_b_ex.fe_len;
3179 }
3180 
3181 /*
3182  * use blocks preallocated to inode
3183  */
3184 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3185 				struct ext4_prealloc_space *pa)
3186 {
3187 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3188 	ext4_fsblk_t start;
3189 	ext4_fsblk_t end;
3190 	int len;
3191 
3192 	/* found preallocated blocks, use them */
3193 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3194 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3195 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3196 	len = EXT4_NUM_B2C(sbi, end - start);
3197 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3198 					&ac->ac_b_ex.fe_start);
3199 	ac->ac_b_ex.fe_len = len;
3200 	ac->ac_status = AC_STATUS_FOUND;
3201 	ac->ac_pa = pa;
3202 
3203 	BUG_ON(start < pa->pa_pstart);
3204 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3205 	BUG_ON(pa->pa_free < len);
3206 	pa->pa_free -= len;
3207 
3208 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3209 }
3210 
3211 /*
3212  * use blocks preallocated to locality group
3213  */
3214 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3215 				struct ext4_prealloc_space *pa)
3216 {
3217 	unsigned int len = ac->ac_o_ex.fe_len;
3218 
3219 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3220 					&ac->ac_b_ex.fe_group,
3221 					&ac->ac_b_ex.fe_start);
3222 	ac->ac_b_ex.fe_len = len;
3223 	ac->ac_status = AC_STATUS_FOUND;
3224 	ac->ac_pa = pa;
3225 
3226 	/* we don't correct pa_pstart or pa_plen here to avoid
3227 	 * possible race when the group is being loaded concurrently
3228 	 * instead we correct pa later, after blocks are marked
3229 	 * in on-disk bitmap -- see ext4_mb_release_context()
3230 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3231 	 */
3232 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3233 }
3234 
3235 /*
3236  * Return the prealloc space that have minimal distance
3237  * from the goal block. @cpa is the prealloc
3238  * space that is having currently known minimal distance
3239  * from the goal block.
3240  */
3241 static struct ext4_prealloc_space *
3242 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3243 			struct ext4_prealloc_space *pa,
3244 			struct ext4_prealloc_space *cpa)
3245 {
3246 	ext4_fsblk_t cur_distance, new_distance;
3247 
3248 	if (cpa == NULL) {
3249 		atomic_inc(&pa->pa_count);
3250 		return pa;
3251 	}
3252 	cur_distance = abs(goal_block - cpa->pa_pstart);
3253 	new_distance = abs(goal_block - pa->pa_pstart);
3254 
3255 	if (cur_distance <= new_distance)
3256 		return cpa;
3257 
3258 	/* drop the previous reference */
3259 	atomic_dec(&cpa->pa_count);
3260 	atomic_inc(&pa->pa_count);
3261 	return pa;
3262 }
3263 
3264 /*
3265  * search goal blocks in preallocated space
3266  */
3267 static noinline_for_stack int
3268 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3269 {
3270 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3271 	int order, i;
3272 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3273 	struct ext4_locality_group *lg;
3274 	struct ext4_prealloc_space *pa, *cpa = NULL;
3275 	ext4_fsblk_t goal_block;
3276 
3277 	/* only data can be preallocated */
3278 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3279 		return 0;
3280 
3281 	/* first, try per-file preallocation */
3282 	rcu_read_lock();
3283 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3284 
3285 		/* all fields in this condition don't change,
3286 		 * so we can skip locking for them */
3287 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3288 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3289 					       EXT4_C2B(sbi, pa->pa_len)))
3290 			continue;
3291 
3292 		/* non-extent files can't have physical blocks past 2^32 */
3293 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3294 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3295 		     EXT4_MAX_BLOCK_FILE_PHYS))
3296 			continue;
3297 
3298 		/* found preallocated blocks, use them */
3299 		spin_lock(&pa->pa_lock);
3300 		if (pa->pa_deleted == 0 && pa->pa_free) {
3301 			atomic_inc(&pa->pa_count);
3302 			ext4_mb_use_inode_pa(ac, pa);
3303 			spin_unlock(&pa->pa_lock);
3304 			ac->ac_criteria = 10;
3305 			rcu_read_unlock();
3306 			return 1;
3307 		}
3308 		spin_unlock(&pa->pa_lock);
3309 	}
3310 	rcu_read_unlock();
3311 
3312 	/* can we use group allocation? */
3313 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3314 		return 0;
3315 
3316 	/* inode may have no locality group for some reason */
3317 	lg = ac->ac_lg;
3318 	if (lg == NULL)
3319 		return 0;
3320 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3321 	if (order > PREALLOC_TB_SIZE - 1)
3322 		/* The max size of hash table is PREALLOC_TB_SIZE */
3323 		order = PREALLOC_TB_SIZE - 1;
3324 
3325 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3326 	/*
3327 	 * search for the prealloc space that is having
3328 	 * minimal distance from the goal block.
3329 	 */
3330 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3331 		rcu_read_lock();
3332 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3333 					pa_inode_list) {
3334 			spin_lock(&pa->pa_lock);
3335 			if (pa->pa_deleted == 0 &&
3336 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3337 
3338 				cpa = ext4_mb_check_group_pa(goal_block,
3339 								pa, cpa);
3340 			}
3341 			spin_unlock(&pa->pa_lock);
3342 		}
3343 		rcu_read_unlock();
3344 	}
3345 	if (cpa) {
3346 		ext4_mb_use_group_pa(ac, cpa);
3347 		ac->ac_criteria = 20;
3348 		return 1;
3349 	}
3350 	return 0;
3351 }
3352 
3353 /*
3354  * the function goes through all block freed in the group
3355  * but not yet committed and marks them used in in-core bitmap.
3356  * buddy must be generated from this bitmap
3357  * Need to be called with the ext4 group lock held
3358  */
3359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3360 						ext4_group_t group)
3361 {
3362 	struct rb_node *n;
3363 	struct ext4_group_info *grp;
3364 	struct ext4_free_data *entry;
3365 
3366 	grp = ext4_get_group_info(sb, group);
3367 	n = rb_first(&(grp->bb_free_root));
3368 
3369 	while (n) {
3370 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3371 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3372 		n = rb_next(n);
3373 	}
3374 	return;
3375 }
3376 
3377 /*
3378  * the function goes through all preallocation in this group and marks them
3379  * used in in-core bitmap. buddy must be generated from this bitmap
3380  * Need to be called with ext4 group lock held
3381  */
3382 static noinline_for_stack
3383 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3384 					ext4_group_t group)
3385 {
3386 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3387 	struct ext4_prealloc_space *pa;
3388 	struct list_head *cur;
3389 	ext4_group_t groupnr;
3390 	ext4_grpblk_t start;
3391 	int preallocated = 0;
3392 	int len;
3393 
3394 	/* all form of preallocation discards first load group,
3395 	 * so the only competing code is preallocation use.
3396 	 * we don't need any locking here
3397 	 * notice we do NOT ignore preallocations with pa_deleted
3398 	 * otherwise we could leave used blocks available for
3399 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3400 	 * is dropping preallocation
3401 	 */
3402 	list_for_each(cur, &grp->bb_prealloc_list) {
3403 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3404 		spin_lock(&pa->pa_lock);
3405 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3406 					     &groupnr, &start);
3407 		len = pa->pa_len;
3408 		spin_unlock(&pa->pa_lock);
3409 		if (unlikely(len == 0))
3410 			continue;
3411 		BUG_ON(groupnr != group);
3412 		ext4_set_bits(bitmap, start, len);
3413 		preallocated += len;
3414 	}
3415 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3416 }
3417 
3418 static void ext4_mb_pa_callback(struct rcu_head *head)
3419 {
3420 	struct ext4_prealloc_space *pa;
3421 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3422 	kmem_cache_free(ext4_pspace_cachep, pa);
3423 }
3424 
3425 /*
3426  * drops a reference to preallocated space descriptor
3427  * if this was the last reference and the space is consumed
3428  */
3429 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3430 			struct super_block *sb, struct ext4_prealloc_space *pa)
3431 {
3432 	ext4_group_t grp;
3433 	ext4_fsblk_t grp_blk;
3434 
3435 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3436 		return;
3437 
3438 	/* in this short window concurrent discard can set pa_deleted */
3439 	spin_lock(&pa->pa_lock);
3440 	if (pa->pa_deleted == 1) {
3441 		spin_unlock(&pa->pa_lock);
3442 		return;
3443 	}
3444 
3445 	pa->pa_deleted = 1;
3446 	spin_unlock(&pa->pa_lock);
3447 
3448 	grp_blk = pa->pa_pstart;
3449 	/*
3450 	 * If doing group-based preallocation, pa_pstart may be in the
3451 	 * next group when pa is used up
3452 	 */
3453 	if (pa->pa_type == MB_GROUP_PA)
3454 		grp_blk--;
3455 
3456 	grp = ext4_get_group_number(sb, grp_blk);
3457 
3458 	/*
3459 	 * possible race:
3460 	 *
3461 	 *  P1 (buddy init)			P2 (regular allocation)
3462 	 *					find block B in PA
3463 	 *  copy on-disk bitmap to buddy
3464 	 *  					mark B in on-disk bitmap
3465 	 *					drop PA from group
3466 	 *  mark all PAs in buddy
3467 	 *
3468 	 * thus, P1 initializes buddy with B available. to prevent this
3469 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3470 	 * against that pair
3471 	 */
3472 	ext4_lock_group(sb, grp);
3473 	list_del(&pa->pa_group_list);
3474 	ext4_unlock_group(sb, grp);
3475 
3476 	spin_lock(pa->pa_obj_lock);
3477 	list_del_rcu(&pa->pa_inode_list);
3478 	spin_unlock(pa->pa_obj_lock);
3479 
3480 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3481 }
3482 
3483 /*
3484  * creates new preallocated space for given inode
3485  */
3486 static noinline_for_stack int
3487 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3488 {
3489 	struct super_block *sb = ac->ac_sb;
3490 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3491 	struct ext4_prealloc_space *pa;
3492 	struct ext4_group_info *grp;
3493 	struct ext4_inode_info *ei;
3494 
3495 	/* preallocate only when found space is larger then requested */
3496 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3497 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3498 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3499 
3500 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3501 	if (pa == NULL)
3502 		return -ENOMEM;
3503 
3504 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3505 		int winl;
3506 		int wins;
3507 		int win;
3508 		int offs;
3509 
3510 		/* we can't allocate as much as normalizer wants.
3511 		 * so, found space must get proper lstart
3512 		 * to cover original request */
3513 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3514 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3515 
3516 		/* we're limited by original request in that
3517 		 * logical block must be covered any way
3518 		 * winl is window we can move our chunk within */
3519 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3520 
3521 		/* also, we should cover whole original request */
3522 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3523 
3524 		/* the smallest one defines real window */
3525 		win = min(winl, wins);
3526 
3527 		offs = ac->ac_o_ex.fe_logical %
3528 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3529 		if (offs && offs < win)
3530 			win = offs;
3531 
3532 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3533 			EXT4_NUM_B2C(sbi, win);
3534 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3535 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3536 	}
3537 
3538 	/* preallocation can change ac_b_ex, thus we store actually
3539 	 * allocated blocks for history */
3540 	ac->ac_f_ex = ac->ac_b_ex;
3541 
3542 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3543 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3544 	pa->pa_len = ac->ac_b_ex.fe_len;
3545 	pa->pa_free = pa->pa_len;
3546 	atomic_set(&pa->pa_count, 1);
3547 	spin_lock_init(&pa->pa_lock);
3548 	INIT_LIST_HEAD(&pa->pa_inode_list);
3549 	INIT_LIST_HEAD(&pa->pa_group_list);
3550 	pa->pa_deleted = 0;
3551 	pa->pa_type = MB_INODE_PA;
3552 
3553 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3554 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3555 	trace_ext4_mb_new_inode_pa(ac, pa);
3556 
3557 	ext4_mb_use_inode_pa(ac, pa);
3558 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3559 
3560 	ei = EXT4_I(ac->ac_inode);
3561 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3562 
3563 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3564 	pa->pa_inode = ac->ac_inode;
3565 
3566 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3567 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3568 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3569 
3570 	spin_lock(pa->pa_obj_lock);
3571 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3572 	spin_unlock(pa->pa_obj_lock);
3573 
3574 	return 0;
3575 }
3576 
3577 /*
3578  * creates new preallocated space for locality group inodes belongs to
3579  */
3580 static noinline_for_stack int
3581 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3582 {
3583 	struct super_block *sb = ac->ac_sb;
3584 	struct ext4_locality_group *lg;
3585 	struct ext4_prealloc_space *pa;
3586 	struct ext4_group_info *grp;
3587 
3588 	/* preallocate only when found space is larger then requested */
3589 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3590 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3591 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3592 
3593 	BUG_ON(ext4_pspace_cachep == NULL);
3594 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3595 	if (pa == NULL)
3596 		return -ENOMEM;
3597 
3598 	/* preallocation can change ac_b_ex, thus we store actually
3599 	 * allocated blocks for history */
3600 	ac->ac_f_ex = ac->ac_b_ex;
3601 
3602 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3603 	pa->pa_lstart = pa->pa_pstart;
3604 	pa->pa_len = ac->ac_b_ex.fe_len;
3605 	pa->pa_free = pa->pa_len;
3606 	atomic_set(&pa->pa_count, 1);
3607 	spin_lock_init(&pa->pa_lock);
3608 	INIT_LIST_HEAD(&pa->pa_inode_list);
3609 	INIT_LIST_HEAD(&pa->pa_group_list);
3610 	pa->pa_deleted = 0;
3611 	pa->pa_type = MB_GROUP_PA;
3612 
3613 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3614 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3615 	trace_ext4_mb_new_group_pa(ac, pa);
3616 
3617 	ext4_mb_use_group_pa(ac, pa);
3618 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3619 
3620 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3621 	lg = ac->ac_lg;
3622 	BUG_ON(lg == NULL);
3623 
3624 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3625 	pa->pa_inode = NULL;
3626 
3627 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3628 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3629 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3630 
3631 	/*
3632 	 * We will later add the new pa to the right bucket
3633 	 * after updating the pa_free in ext4_mb_release_context
3634 	 */
3635 	return 0;
3636 }
3637 
3638 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3639 {
3640 	int err;
3641 
3642 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3643 		err = ext4_mb_new_group_pa(ac);
3644 	else
3645 		err = ext4_mb_new_inode_pa(ac);
3646 	return err;
3647 }
3648 
3649 /*
3650  * finds all unused blocks in on-disk bitmap, frees them in
3651  * in-core bitmap and buddy.
3652  * @pa must be unlinked from inode and group lists, so that
3653  * nobody else can find/use it.
3654  * the caller MUST hold group/inode locks.
3655  * TODO: optimize the case when there are no in-core structures yet
3656  */
3657 static noinline_for_stack int
3658 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3659 			struct ext4_prealloc_space *pa)
3660 {
3661 	struct super_block *sb = e4b->bd_sb;
3662 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3663 	unsigned int end;
3664 	unsigned int next;
3665 	ext4_group_t group;
3666 	ext4_grpblk_t bit;
3667 	unsigned long long grp_blk_start;
3668 	int err = 0;
3669 	int free = 0;
3670 
3671 	BUG_ON(pa->pa_deleted == 0);
3672 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3673 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3674 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3675 	end = bit + pa->pa_len;
3676 
3677 	while (bit < end) {
3678 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3679 		if (bit >= end)
3680 			break;
3681 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3682 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3683 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3684 			 (unsigned) next - bit, (unsigned) group);
3685 		free += next - bit;
3686 
3687 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3688 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3689 						    EXT4_C2B(sbi, bit)),
3690 					       next - bit);
3691 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3692 		bit = next + 1;
3693 	}
3694 	if (free != pa->pa_free) {
3695 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3696 			 "pa %p: logic %lu, phys. %lu, len %lu",
3697 			 pa, (unsigned long) pa->pa_lstart,
3698 			 (unsigned long) pa->pa_pstart,
3699 			 (unsigned long) pa->pa_len);
3700 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3701 					free, pa->pa_free);
3702 		/*
3703 		 * pa is already deleted so we use the value obtained
3704 		 * from the bitmap and continue.
3705 		 */
3706 	}
3707 	atomic_add(free, &sbi->s_mb_discarded);
3708 
3709 	return err;
3710 }
3711 
3712 static noinline_for_stack int
3713 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3714 				struct ext4_prealloc_space *pa)
3715 {
3716 	struct super_block *sb = e4b->bd_sb;
3717 	ext4_group_t group;
3718 	ext4_grpblk_t bit;
3719 
3720 	trace_ext4_mb_release_group_pa(sb, pa);
3721 	BUG_ON(pa->pa_deleted == 0);
3722 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3723 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3724 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3725 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3726 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3727 
3728 	return 0;
3729 }
3730 
3731 /*
3732  * releases all preallocations in given group
3733  *
3734  * first, we need to decide discard policy:
3735  * - when do we discard
3736  *   1) ENOSPC
3737  * - how many do we discard
3738  *   1) how many requested
3739  */
3740 static noinline_for_stack int
3741 ext4_mb_discard_group_preallocations(struct super_block *sb,
3742 					ext4_group_t group, int needed)
3743 {
3744 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3745 	struct buffer_head *bitmap_bh = NULL;
3746 	struct ext4_prealloc_space *pa, *tmp;
3747 	struct list_head list;
3748 	struct ext4_buddy e4b;
3749 	int err;
3750 	int busy = 0;
3751 	int free = 0;
3752 
3753 	mb_debug(1, "discard preallocation for group %u\n", group);
3754 
3755 	if (list_empty(&grp->bb_prealloc_list))
3756 		return 0;
3757 
3758 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3759 	if (bitmap_bh == NULL) {
3760 		ext4_error(sb, "Error reading block bitmap for %u", group);
3761 		return 0;
3762 	}
3763 
3764 	err = ext4_mb_load_buddy(sb, group, &e4b);
3765 	if (err) {
3766 		ext4_error(sb, "Error loading buddy information for %u", group);
3767 		put_bh(bitmap_bh);
3768 		return 0;
3769 	}
3770 
3771 	if (needed == 0)
3772 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3773 
3774 	INIT_LIST_HEAD(&list);
3775 repeat:
3776 	ext4_lock_group(sb, group);
3777 	list_for_each_entry_safe(pa, tmp,
3778 				&grp->bb_prealloc_list, pa_group_list) {
3779 		spin_lock(&pa->pa_lock);
3780 		if (atomic_read(&pa->pa_count)) {
3781 			spin_unlock(&pa->pa_lock);
3782 			busy = 1;
3783 			continue;
3784 		}
3785 		if (pa->pa_deleted) {
3786 			spin_unlock(&pa->pa_lock);
3787 			continue;
3788 		}
3789 
3790 		/* seems this one can be freed ... */
3791 		pa->pa_deleted = 1;
3792 
3793 		/* we can trust pa_free ... */
3794 		free += pa->pa_free;
3795 
3796 		spin_unlock(&pa->pa_lock);
3797 
3798 		list_del(&pa->pa_group_list);
3799 		list_add(&pa->u.pa_tmp_list, &list);
3800 	}
3801 
3802 	/* if we still need more blocks and some PAs were used, try again */
3803 	if (free < needed && busy) {
3804 		busy = 0;
3805 		ext4_unlock_group(sb, group);
3806 		cond_resched();
3807 		goto repeat;
3808 	}
3809 
3810 	/* found anything to free? */
3811 	if (list_empty(&list)) {
3812 		BUG_ON(free != 0);
3813 		goto out;
3814 	}
3815 
3816 	/* now free all selected PAs */
3817 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3818 
3819 		/* remove from object (inode or locality group) */
3820 		spin_lock(pa->pa_obj_lock);
3821 		list_del_rcu(&pa->pa_inode_list);
3822 		spin_unlock(pa->pa_obj_lock);
3823 
3824 		if (pa->pa_type == MB_GROUP_PA)
3825 			ext4_mb_release_group_pa(&e4b, pa);
3826 		else
3827 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3828 
3829 		list_del(&pa->u.pa_tmp_list);
3830 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3831 	}
3832 
3833 out:
3834 	ext4_unlock_group(sb, group);
3835 	ext4_mb_unload_buddy(&e4b);
3836 	put_bh(bitmap_bh);
3837 	return free;
3838 }
3839 
3840 /*
3841  * releases all non-used preallocated blocks for given inode
3842  *
3843  * It's important to discard preallocations under i_data_sem
3844  * We don't want another block to be served from the prealloc
3845  * space when we are discarding the inode prealloc space.
3846  *
3847  * FIXME!! Make sure it is valid at all the call sites
3848  */
3849 void ext4_discard_preallocations(struct inode *inode)
3850 {
3851 	struct ext4_inode_info *ei = EXT4_I(inode);
3852 	struct super_block *sb = inode->i_sb;
3853 	struct buffer_head *bitmap_bh = NULL;
3854 	struct ext4_prealloc_space *pa, *tmp;
3855 	ext4_group_t group = 0;
3856 	struct list_head list;
3857 	struct ext4_buddy e4b;
3858 	int err;
3859 
3860 	if (!S_ISREG(inode->i_mode)) {
3861 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3862 		return;
3863 	}
3864 
3865 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3866 	trace_ext4_discard_preallocations(inode);
3867 
3868 	INIT_LIST_HEAD(&list);
3869 
3870 repeat:
3871 	/* first, collect all pa's in the inode */
3872 	spin_lock(&ei->i_prealloc_lock);
3873 	while (!list_empty(&ei->i_prealloc_list)) {
3874 		pa = list_entry(ei->i_prealloc_list.next,
3875 				struct ext4_prealloc_space, pa_inode_list);
3876 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3877 		spin_lock(&pa->pa_lock);
3878 		if (atomic_read(&pa->pa_count)) {
3879 			/* this shouldn't happen often - nobody should
3880 			 * use preallocation while we're discarding it */
3881 			spin_unlock(&pa->pa_lock);
3882 			spin_unlock(&ei->i_prealloc_lock);
3883 			ext4_msg(sb, KERN_ERR,
3884 				 "uh-oh! used pa while discarding");
3885 			WARN_ON(1);
3886 			schedule_timeout_uninterruptible(HZ);
3887 			goto repeat;
3888 
3889 		}
3890 		if (pa->pa_deleted == 0) {
3891 			pa->pa_deleted = 1;
3892 			spin_unlock(&pa->pa_lock);
3893 			list_del_rcu(&pa->pa_inode_list);
3894 			list_add(&pa->u.pa_tmp_list, &list);
3895 			continue;
3896 		}
3897 
3898 		/* someone is deleting pa right now */
3899 		spin_unlock(&pa->pa_lock);
3900 		spin_unlock(&ei->i_prealloc_lock);
3901 
3902 		/* we have to wait here because pa_deleted
3903 		 * doesn't mean pa is already unlinked from
3904 		 * the list. as we might be called from
3905 		 * ->clear_inode() the inode will get freed
3906 		 * and concurrent thread which is unlinking
3907 		 * pa from inode's list may access already
3908 		 * freed memory, bad-bad-bad */
3909 
3910 		/* XXX: if this happens too often, we can
3911 		 * add a flag to force wait only in case
3912 		 * of ->clear_inode(), but not in case of
3913 		 * regular truncate */
3914 		schedule_timeout_uninterruptible(HZ);
3915 		goto repeat;
3916 	}
3917 	spin_unlock(&ei->i_prealloc_lock);
3918 
3919 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3920 		BUG_ON(pa->pa_type != MB_INODE_PA);
3921 		group = ext4_get_group_number(sb, pa->pa_pstart);
3922 
3923 		err = ext4_mb_load_buddy(sb, group, &e4b);
3924 		if (err) {
3925 			ext4_error(sb, "Error loading buddy information for %u",
3926 					group);
3927 			continue;
3928 		}
3929 
3930 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3931 		if (bitmap_bh == NULL) {
3932 			ext4_error(sb, "Error reading block bitmap for %u",
3933 					group);
3934 			ext4_mb_unload_buddy(&e4b);
3935 			continue;
3936 		}
3937 
3938 		ext4_lock_group(sb, group);
3939 		list_del(&pa->pa_group_list);
3940 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3941 		ext4_unlock_group(sb, group);
3942 
3943 		ext4_mb_unload_buddy(&e4b);
3944 		put_bh(bitmap_bh);
3945 
3946 		list_del(&pa->u.pa_tmp_list);
3947 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3948 	}
3949 }
3950 
3951 #ifdef CONFIG_EXT4_DEBUG
3952 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3953 {
3954 	struct super_block *sb = ac->ac_sb;
3955 	ext4_group_t ngroups, i;
3956 
3957 	if (!ext4_mballoc_debug ||
3958 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3959 		return;
3960 
3961 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3962 			" Allocation context details:");
3963 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3964 			ac->ac_status, ac->ac_flags);
3965 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3966 		 	"goal %lu/%lu/%lu@%lu, "
3967 			"best %lu/%lu/%lu@%lu cr %d",
3968 			(unsigned long)ac->ac_o_ex.fe_group,
3969 			(unsigned long)ac->ac_o_ex.fe_start,
3970 			(unsigned long)ac->ac_o_ex.fe_len,
3971 			(unsigned long)ac->ac_o_ex.fe_logical,
3972 			(unsigned long)ac->ac_g_ex.fe_group,
3973 			(unsigned long)ac->ac_g_ex.fe_start,
3974 			(unsigned long)ac->ac_g_ex.fe_len,
3975 			(unsigned long)ac->ac_g_ex.fe_logical,
3976 			(unsigned long)ac->ac_b_ex.fe_group,
3977 			(unsigned long)ac->ac_b_ex.fe_start,
3978 			(unsigned long)ac->ac_b_ex.fe_len,
3979 			(unsigned long)ac->ac_b_ex.fe_logical,
3980 			(int)ac->ac_criteria);
3981 	ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3982 		 ac->ac_ex_scanned, ac->ac_found);
3983 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3984 	ngroups = ext4_get_groups_count(sb);
3985 	for (i = 0; i < ngroups; i++) {
3986 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3987 		struct ext4_prealloc_space *pa;
3988 		ext4_grpblk_t start;
3989 		struct list_head *cur;
3990 		ext4_lock_group(sb, i);
3991 		list_for_each(cur, &grp->bb_prealloc_list) {
3992 			pa = list_entry(cur, struct ext4_prealloc_space,
3993 					pa_group_list);
3994 			spin_lock(&pa->pa_lock);
3995 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3996 						     NULL, &start);
3997 			spin_unlock(&pa->pa_lock);
3998 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
3999 			       start, pa->pa_len);
4000 		}
4001 		ext4_unlock_group(sb, i);
4002 
4003 		if (grp->bb_free == 0)
4004 			continue;
4005 		printk(KERN_ERR "%u: %d/%d \n",
4006 		       i, grp->bb_free, grp->bb_fragments);
4007 	}
4008 	printk(KERN_ERR "\n");
4009 }
4010 #else
4011 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4012 {
4013 	return;
4014 }
4015 #endif
4016 
4017 /*
4018  * We use locality group preallocation for small size file. The size of the
4019  * file is determined by the current size or the resulting size after
4020  * allocation which ever is larger
4021  *
4022  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4023  */
4024 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4025 {
4026 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4027 	int bsbits = ac->ac_sb->s_blocksize_bits;
4028 	loff_t size, isize;
4029 
4030 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4031 		return;
4032 
4033 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4034 		return;
4035 
4036 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4037 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4038 		>> bsbits;
4039 
4040 	if ((size == isize) &&
4041 	    !ext4_fs_is_busy(sbi) &&
4042 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4043 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4044 		return;
4045 	}
4046 
4047 	if (sbi->s_mb_group_prealloc <= 0) {
4048 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4049 		return;
4050 	}
4051 
4052 	/* don't use group allocation for large files */
4053 	size = max(size, isize);
4054 	if (size > sbi->s_mb_stream_request) {
4055 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4056 		return;
4057 	}
4058 
4059 	BUG_ON(ac->ac_lg != NULL);
4060 	/*
4061 	 * locality group prealloc space are per cpu. The reason for having
4062 	 * per cpu locality group is to reduce the contention between block
4063 	 * request from multiple CPUs.
4064 	 */
4065 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4066 
4067 	/* we're going to use group allocation */
4068 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4069 
4070 	/* serialize all allocations in the group */
4071 	mutex_lock(&ac->ac_lg->lg_mutex);
4072 }
4073 
4074 static noinline_for_stack int
4075 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4076 				struct ext4_allocation_request *ar)
4077 {
4078 	struct super_block *sb = ar->inode->i_sb;
4079 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4080 	struct ext4_super_block *es = sbi->s_es;
4081 	ext4_group_t group;
4082 	unsigned int len;
4083 	ext4_fsblk_t goal;
4084 	ext4_grpblk_t block;
4085 
4086 	/* we can't allocate > group size */
4087 	len = ar->len;
4088 
4089 	/* just a dirty hack to filter too big requests  */
4090 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4091 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4092 
4093 	/* start searching from the goal */
4094 	goal = ar->goal;
4095 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4096 			goal >= ext4_blocks_count(es))
4097 		goal = le32_to_cpu(es->s_first_data_block);
4098 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4099 
4100 	/* set up allocation goals */
4101 	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4102 	ac->ac_status = AC_STATUS_CONTINUE;
4103 	ac->ac_sb = sb;
4104 	ac->ac_inode = ar->inode;
4105 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4106 	ac->ac_o_ex.fe_group = group;
4107 	ac->ac_o_ex.fe_start = block;
4108 	ac->ac_o_ex.fe_len = len;
4109 	ac->ac_g_ex = ac->ac_o_ex;
4110 	ac->ac_flags = ar->flags;
4111 
4112 	/* we have to define context: we'll we work with a file or
4113 	 * locality group. this is a policy, actually */
4114 	ext4_mb_group_or_file(ac);
4115 
4116 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4117 			"left: %u/%u, right %u/%u to %swritable\n",
4118 			(unsigned) ar->len, (unsigned) ar->logical,
4119 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4120 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4121 			(unsigned) ar->lright, (unsigned) ar->pright,
4122 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4123 	return 0;
4124 
4125 }
4126 
4127 static noinline_for_stack void
4128 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4129 					struct ext4_locality_group *lg,
4130 					int order, int total_entries)
4131 {
4132 	ext4_group_t group = 0;
4133 	struct ext4_buddy e4b;
4134 	struct list_head discard_list;
4135 	struct ext4_prealloc_space *pa, *tmp;
4136 
4137 	mb_debug(1, "discard locality group preallocation\n");
4138 
4139 	INIT_LIST_HEAD(&discard_list);
4140 
4141 	spin_lock(&lg->lg_prealloc_lock);
4142 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4143 						pa_inode_list) {
4144 		spin_lock(&pa->pa_lock);
4145 		if (atomic_read(&pa->pa_count)) {
4146 			/*
4147 			 * This is the pa that we just used
4148 			 * for block allocation. So don't
4149 			 * free that
4150 			 */
4151 			spin_unlock(&pa->pa_lock);
4152 			continue;
4153 		}
4154 		if (pa->pa_deleted) {
4155 			spin_unlock(&pa->pa_lock);
4156 			continue;
4157 		}
4158 		/* only lg prealloc space */
4159 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4160 
4161 		/* seems this one can be freed ... */
4162 		pa->pa_deleted = 1;
4163 		spin_unlock(&pa->pa_lock);
4164 
4165 		list_del_rcu(&pa->pa_inode_list);
4166 		list_add(&pa->u.pa_tmp_list, &discard_list);
4167 
4168 		total_entries--;
4169 		if (total_entries <= 5) {
4170 			/*
4171 			 * we want to keep only 5 entries
4172 			 * allowing it to grow to 8. This
4173 			 * mak sure we don't call discard
4174 			 * soon for this list.
4175 			 */
4176 			break;
4177 		}
4178 	}
4179 	spin_unlock(&lg->lg_prealloc_lock);
4180 
4181 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4182 
4183 		group = ext4_get_group_number(sb, pa->pa_pstart);
4184 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4185 			ext4_error(sb, "Error loading buddy information for %u",
4186 					group);
4187 			continue;
4188 		}
4189 		ext4_lock_group(sb, group);
4190 		list_del(&pa->pa_group_list);
4191 		ext4_mb_release_group_pa(&e4b, pa);
4192 		ext4_unlock_group(sb, group);
4193 
4194 		ext4_mb_unload_buddy(&e4b);
4195 		list_del(&pa->u.pa_tmp_list);
4196 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4197 	}
4198 }
4199 
4200 /*
4201  * We have incremented pa_count. So it cannot be freed at this
4202  * point. Also we hold lg_mutex. So no parallel allocation is
4203  * possible from this lg. That means pa_free cannot be updated.
4204  *
4205  * A parallel ext4_mb_discard_group_preallocations is possible.
4206  * which can cause the lg_prealloc_list to be updated.
4207  */
4208 
4209 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4210 {
4211 	int order, added = 0, lg_prealloc_count = 1;
4212 	struct super_block *sb = ac->ac_sb;
4213 	struct ext4_locality_group *lg = ac->ac_lg;
4214 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4215 
4216 	order = fls(pa->pa_free) - 1;
4217 	if (order > PREALLOC_TB_SIZE - 1)
4218 		/* The max size of hash table is PREALLOC_TB_SIZE */
4219 		order = PREALLOC_TB_SIZE - 1;
4220 	/* Add the prealloc space to lg */
4221 	spin_lock(&lg->lg_prealloc_lock);
4222 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4223 						pa_inode_list) {
4224 		spin_lock(&tmp_pa->pa_lock);
4225 		if (tmp_pa->pa_deleted) {
4226 			spin_unlock(&tmp_pa->pa_lock);
4227 			continue;
4228 		}
4229 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4230 			/* Add to the tail of the previous entry */
4231 			list_add_tail_rcu(&pa->pa_inode_list,
4232 						&tmp_pa->pa_inode_list);
4233 			added = 1;
4234 			/*
4235 			 * we want to count the total
4236 			 * number of entries in the list
4237 			 */
4238 		}
4239 		spin_unlock(&tmp_pa->pa_lock);
4240 		lg_prealloc_count++;
4241 	}
4242 	if (!added)
4243 		list_add_tail_rcu(&pa->pa_inode_list,
4244 					&lg->lg_prealloc_list[order]);
4245 	spin_unlock(&lg->lg_prealloc_lock);
4246 
4247 	/* Now trim the list to be not more than 8 elements */
4248 	if (lg_prealloc_count > 8) {
4249 		ext4_mb_discard_lg_preallocations(sb, lg,
4250 						  order, lg_prealloc_count);
4251 		return;
4252 	}
4253 	return ;
4254 }
4255 
4256 /*
4257  * release all resource we used in allocation
4258  */
4259 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4260 {
4261 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4262 	struct ext4_prealloc_space *pa = ac->ac_pa;
4263 	if (pa) {
4264 		if (pa->pa_type == MB_GROUP_PA) {
4265 			/* see comment in ext4_mb_use_group_pa() */
4266 			spin_lock(&pa->pa_lock);
4267 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4268 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4269 			pa->pa_free -= ac->ac_b_ex.fe_len;
4270 			pa->pa_len -= ac->ac_b_ex.fe_len;
4271 			spin_unlock(&pa->pa_lock);
4272 		}
4273 	}
4274 	if (pa) {
4275 		/*
4276 		 * We want to add the pa to the right bucket.
4277 		 * Remove it from the list and while adding
4278 		 * make sure the list to which we are adding
4279 		 * doesn't grow big.
4280 		 */
4281 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4282 			spin_lock(pa->pa_obj_lock);
4283 			list_del_rcu(&pa->pa_inode_list);
4284 			spin_unlock(pa->pa_obj_lock);
4285 			ext4_mb_add_n_trim(ac);
4286 		}
4287 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4288 	}
4289 	if (ac->ac_bitmap_page)
4290 		page_cache_release(ac->ac_bitmap_page);
4291 	if (ac->ac_buddy_page)
4292 		page_cache_release(ac->ac_buddy_page);
4293 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4294 		mutex_unlock(&ac->ac_lg->lg_mutex);
4295 	ext4_mb_collect_stats(ac);
4296 	return 0;
4297 }
4298 
4299 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4300 {
4301 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4302 	int ret;
4303 	int freed = 0;
4304 
4305 	trace_ext4_mb_discard_preallocations(sb, needed);
4306 	for (i = 0; i < ngroups && needed > 0; i++) {
4307 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4308 		freed += ret;
4309 		needed -= ret;
4310 	}
4311 
4312 	return freed;
4313 }
4314 
4315 /*
4316  * Main entry point into mballoc to allocate blocks
4317  * it tries to use preallocation first, then falls back
4318  * to usual allocation
4319  */
4320 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4321 				struct ext4_allocation_request *ar, int *errp)
4322 {
4323 	int freed;
4324 	struct ext4_allocation_context *ac = NULL;
4325 	struct ext4_sb_info *sbi;
4326 	struct super_block *sb;
4327 	ext4_fsblk_t block = 0;
4328 	unsigned int inquota = 0;
4329 	unsigned int reserv_clstrs = 0;
4330 
4331 	might_sleep();
4332 	sb = ar->inode->i_sb;
4333 	sbi = EXT4_SB(sb);
4334 
4335 	trace_ext4_request_blocks(ar);
4336 
4337 	/* Allow to use superuser reservation for quota file */
4338 	if (IS_NOQUOTA(ar->inode))
4339 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4340 
4341 	/*
4342 	 * For delayed allocation, we could skip the ENOSPC and
4343 	 * EDQUOT check, as blocks and quotas have been already
4344 	 * reserved when data being copied into pagecache.
4345 	 */
4346 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4347 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4348 	else {
4349 		/* Without delayed allocation we need to verify
4350 		 * there is enough free blocks to do block allocation
4351 		 * and verify allocation doesn't exceed the quota limits.
4352 		 */
4353 		while (ar->len &&
4354 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4355 
4356 			/* let others to free the space */
4357 			cond_resched();
4358 			ar->len = ar->len >> 1;
4359 		}
4360 		if (!ar->len) {
4361 			*errp = -ENOSPC;
4362 			return 0;
4363 		}
4364 		reserv_clstrs = ar->len;
4365 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4366 			dquot_alloc_block_nofail(ar->inode,
4367 						 EXT4_C2B(sbi, ar->len));
4368 		} else {
4369 			while (ar->len &&
4370 				dquot_alloc_block(ar->inode,
4371 						  EXT4_C2B(sbi, ar->len))) {
4372 
4373 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4374 				ar->len--;
4375 			}
4376 		}
4377 		inquota = ar->len;
4378 		if (ar->len == 0) {
4379 			*errp = -EDQUOT;
4380 			goto out;
4381 		}
4382 	}
4383 
4384 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4385 	if (!ac) {
4386 		ar->len = 0;
4387 		*errp = -ENOMEM;
4388 		goto out;
4389 	}
4390 
4391 	*errp = ext4_mb_initialize_context(ac, ar);
4392 	if (*errp) {
4393 		ar->len = 0;
4394 		goto out;
4395 	}
4396 
4397 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4398 	if (!ext4_mb_use_preallocated(ac)) {
4399 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4400 		ext4_mb_normalize_request(ac, ar);
4401 repeat:
4402 		/* allocate space in core */
4403 		*errp = ext4_mb_regular_allocator(ac);
4404 		if (*errp) {
4405 			ext4_discard_allocated_blocks(ac);
4406 			goto errout;
4407 		}
4408 
4409 		/* as we've just preallocated more space than
4410 		 * user requested orinally, we store allocated
4411 		 * space in a special descriptor */
4412 		if (ac->ac_status == AC_STATUS_FOUND &&
4413 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4414 			ext4_mb_new_preallocation(ac);
4415 	}
4416 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4417 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4418 		if (*errp == -EAGAIN) {
4419 			/*
4420 			 * drop the reference that we took
4421 			 * in ext4_mb_use_best_found
4422 			 */
4423 			ext4_mb_release_context(ac);
4424 			ac->ac_b_ex.fe_group = 0;
4425 			ac->ac_b_ex.fe_start = 0;
4426 			ac->ac_b_ex.fe_len = 0;
4427 			ac->ac_status = AC_STATUS_CONTINUE;
4428 			goto repeat;
4429 		} else if (*errp) {
4430 			ext4_discard_allocated_blocks(ac);
4431 			goto errout;
4432 		} else {
4433 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4434 			ar->len = ac->ac_b_ex.fe_len;
4435 		}
4436 	} else {
4437 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4438 		if (freed)
4439 			goto repeat;
4440 		*errp = -ENOSPC;
4441 	}
4442 
4443 errout:
4444 	if (*errp) {
4445 		ac->ac_b_ex.fe_len = 0;
4446 		ar->len = 0;
4447 		ext4_mb_show_ac(ac);
4448 	}
4449 	ext4_mb_release_context(ac);
4450 out:
4451 	if (ac)
4452 		kmem_cache_free(ext4_ac_cachep, ac);
4453 	if (inquota && ar->len < inquota)
4454 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4455 	if (!ar->len) {
4456 		if (!ext4_test_inode_state(ar->inode,
4457 					   EXT4_STATE_DELALLOC_RESERVED))
4458 			/* release all the reserved blocks if non delalloc */
4459 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4460 						reserv_clstrs);
4461 	}
4462 
4463 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4464 
4465 	return block;
4466 }
4467 
4468 /*
4469  * We can merge two free data extents only if the physical blocks
4470  * are contiguous, AND the extents were freed by the same transaction,
4471  * AND the blocks are associated with the same group.
4472  */
4473 static int can_merge(struct ext4_free_data *entry1,
4474 			struct ext4_free_data *entry2)
4475 {
4476 	if ((entry1->efd_tid == entry2->efd_tid) &&
4477 	    (entry1->efd_group == entry2->efd_group) &&
4478 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4479 		return 1;
4480 	return 0;
4481 }
4482 
4483 static noinline_for_stack int
4484 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4485 		      struct ext4_free_data *new_entry)
4486 {
4487 	ext4_group_t group = e4b->bd_group;
4488 	ext4_grpblk_t cluster;
4489 	struct ext4_free_data *entry;
4490 	struct ext4_group_info *db = e4b->bd_info;
4491 	struct super_block *sb = e4b->bd_sb;
4492 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4493 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4494 	struct rb_node *parent = NULL, *new_node;
4495 
4496 	BUG_ON(!ext4_handle_valid(handle));
4497 	BUG_ON(e4b->bd_bitmap_page == NULL);
4498 	BUG_ON(e4b->bd_buddy_page == NULL);
4499 
4500 	new_node = &new_entry->efd_node;
4501 	cluster = new_entry->efd_start_cluster;
4502 
4503 	if (!*n) {
4504 		/* first free block exent. We need to
4505 		   protect buddy cache from being freed,
4506 		 * otherwise we'll refresh it from
4507 		 * on-disk bitmap and lose not-yet-available
4508 		 * blocks */
4509 		page_cache_get(e4b->bd_buddy_page);
4510 		page_cache_get(e4b->bd_bitmap_page);
4511 	}
4512 	while (*n) {
4513 		parent = *n;
4514 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4515 		if (cluster < entry->efd_start_cluster)
4516 			n = &(*n)->rb_left;
4517 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4518 			n = &(*n)->rb_right;
4519 		else {
4520 			ext4_grp_locked_error(sb, group, 0,
4521 				ext4_group_first_block_no(sb, group) +
4522 				EXT4_C2B(sbi, cluster),
4523 				"Block already on to-be-freed list");
4524 			return 0;
4525 		}
4526 	}
4527 
4528 	rb_link_node(new_node, parent, n);
4529 	rb_insert_color(new_node, &db->bb_free_root);
4530 
4531 	/* Now try to see the extent can be merged to left and right */
4532 	node = rb_prev(new_node);
4533 	if (node) {
4534 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4535 		if (can_merge(entry, new_entry) &&
4536 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4537 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4538 			new_entry->efd_count += entry->efd_count;
4539 			rb_erase(node, &(db->bb_free_root));
4540 			kmem_cache_free(ext4_free_data_cachep, entry);
4541 		}
4542 	}
4543 
4544 	node = rb_next(new_node);
4545 	if (node) {
4546 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4547 		if (can_merge(new_entry, entry) &&
4548 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4549 			new_entry->efd_count += entry->efd_count;
4550 			rb_erase(node, &(db->bb_free_root));
4551 			kmem_cache_free(ext4_free_data_cachep, entry);
4552 		}
4553 	}
4554 	/* Add the extent to transaction's private list */
4555 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4556 				  &new_entry->efd_jce);
4557 	return 0;
4558 }
4559 
4560 /**
4561  * ext4_free_blocks() -- Free given blocks and update quota
4562  * @handle:		handle for this transaction
4563  * @inode:		inode
4564  * @block:		start physical block to free
4565  * @count:		number of blocks to count
4566  * @flags:		flags used by ext4_free_blocks
4567  */
4568 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4569 		      struct buffer_head *bh, ext4_fsblk_t block,
4570 		      unsigned long count, int flags)
4571 {
4572 	struct buffer_head *bitmap_bh = NULL;
4573 	struct super_block *sb = inode->i_sb;
4574 	struct ext4_group_desc *gdp;
4575 	unsigned int overflow;
4576 	ext4_grpblk_t bit;
4577 	struct buffer_head *gd_bh;
4578 	ext4_group_t block_group;
4579 	struct ext4_sb_info *sbi;
4580 	struct ext4_buddy e4b;
4581 	unsigned int count_clusters;
4582 	int err = 0;
4583 	int ret;
4584 
4585 	might_sleep();
4586 	if (bh) {
4587 		if (block)
4588 			BUG_ON(block != bh->b_blocknr);
4589 		else
4590 			block = bh->b_blocknr;
4591 	}
4592 
4593 	sbi = EXT4_SB(sb);
4594 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4595 	    !ext4_data_block_valid(sbi, block, count)) {
4596 		ext4_error(sb, "Freeing blocks not in datazone - "
4597 			   "block = %llu, count = %lu", block, count);
4598 		goto error_return;
4599 	}
4600 
4601 	ext4_debug("freeing block %llu\n", block);
4602 	trace_ext4_free_blocks(inode, block, count, flags);
4603 
4604 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4605 		struct buffer_head *tbh = bh;
4606 		int i;
4607 
4608 		BUG_ON(bh && (count > 1));
4609 
4610 		for (i = 0; i < count; i++) {
4611 			if (!bh)
4612 				tbh = sb_find_get_block(inode->i_sb,
4613 							block + i);
4614 			if (unlikely(!tbh))
4615 				continue;
4616 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4617 				    inode, tbh, block + i);
4618 		}
4619 	}
4620 
4621 	/*
4622 	 * We need to make sure we don't reuse the freed block until
4623 	 * after the transaction is committed, which we can do by
4624 	 * treating the block as metadata, below.  We make an
4625 	 * exception if the inode is to be written in writeback mode
4626 	 * since writeback mode has weak data consistency guarantees.
4627 	 */
4628 	if (!ext4_should_writeback_data(inode))
4629 		flags |= EXT4_FREE_BLOCKS_METADATA;
4630 
4631 	/*
4632 	 * If the extent to be freed does not begin on a cluster
4633 	 * boundary, we need to deal with partial clusters at the
4634 	 * beginning and end of the extent.  Normally we will free
4635 	 * blocks at the beginning or the end unless we are explicitly
4636 	 * requested to avoid doing so.
4637 	 */
4638 	overflow = block & (sbi->s_cluster_ratio - 1);
4639 	if (overflow) {
4640 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4641 			overflow = sbi->s_cluster_ratio - overflow;
4642 			block += overflow;
4643 			if (count > overflow)
4644 				count -= overflow;
4645 			else
4646 				return;
4647 		} else {
4648 			block -= overflow;
4649 			count += overflow;
4650 		}
4651 	}
4652 	overflow = count & (sbi->s_cluster_ratio - 1);
4653 	if (overflow) {
4654 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4655 			if (count > overflow)
4656 				count -= overflow;
4657 			else
4658 				return;
4659 		} else
4660 			count += sbi->s_cluster_ratio - overflow;
4661 	}
4662 
4663 do_more:
4664 	overflow = 0;
4665 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4666 
4667 	/*
4668 	 * Check to see if we are freeing blocks across a group
4669 	 * boundary.
4670 	 */
4671 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4672 		overflow = EXT4_C2B(sbi, bit) + count -
4673 			EXT4_BLOCKS_PER_GROUP(sb);
4674 		count -= overflow;
4675 	}
4676 	count_clusters = EXT4_NUM_B2C(sbi, count);
4677 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4678 	if (!bitmap_bh) {
4679 		err = -EIO;
4680 		goto error_return;
4681 	}
4682 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4683 	if (!gdp) {
4684 		err = -EIO;
4685 		goto error_return;
4686 	}
4687 
4688 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4689 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4690 	    in_range(block, ext4_inode_table(sb, gdp),
4691 		     EXT4_SB(sb)->s_itb_per_group) ||
4692 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4693 		     EXT4_SB(sb)->s_itb_per_group)) {
4694 
4695 		ext4_error(sb, "Freeing blocks in system zone - "
4696 			   "Block = %llu, count = %lu", block, count);
4697 		/* err = 0. ext4_std_error should be a no op */
4698 		goto error_return;
4699 	}
4700 
4701 	BUFFER_TRACE(bitmap_bh, "getting write access");
4702 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4703 	if (err)
4704 		goto error_return;
4705 
4706 	/*
4707 	 * We are about to modify some metadata.  Call the journal APIs
4708 	 * to unshare ->b_data if a currently-committing transaction is
4709 	 * using it
4710 	 */
4711 	BUFFER_TRACE(gd_bh, "get_write_access");
4712 	err = ext4_journal_get_write_access(handle, gd_bh);
4713 	if (err)
4714 		goto error_return;
4715 #ifdef AGGRESSIVE_CHECK
4716 	{
4717 		int i;
4718 		for (i = 0; i < count_clusters; i++)
4719 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4720 	}
4721 #endif
4722 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4723 
4724 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4725 	if (err)
4726 		goto error_return;
4727 
4728 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4729 		struct ext4_free_data *new_entry;
4730 		/*
4731 		 * blocks being freed are metadata. these blocks shouldn't
4732 		 * be used until this transaction is committed
4733 		 */
4734 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4735 		if (!new_entry) {
4736 			ext4_mb_unload_buddy(&e4b);
4737 			err = -ENOMEM;
4738 			goto error_return;
4739 		}
4740 		new_entry->efd_start_cluster = bit;
4741 		new_entry->efd_group = block_group;
4742 		new_entry->efd_count = count_clusters;
4743 		new_entry->efd_tid = handle->h_transaction->t_tid;
4744 
4745 		ext4_lock_group(sb, block_group);
4746 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4747 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4748 	} else {
4749 		/* need to update group_info->bb_free and bitmap
4750 		 * with group lock held. generate_buddy look at
4751 		 * them with group lock_held
4752 		 */
4753 		if (test_opt(sb, DISCARD)) {
4754 			err = ext4_issue_discard(sb, block_group, bit, count);
4755 			if (err && err != -EOPNOTSUPP)
4756 				ext4_msg(sb, KERN_WARNING, "discard request in"
4757 					 " group:%d block:%d count:%lu failed"
4758 					 " with %d", block_group, bit, count,
4759 					 err);
4760 		}
4761 
4762 
4763 		ext4_lock_group(sb, block_group);
4764 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4765 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4766 	}
4767 
4768 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4769 	ext4_free_group_clusters_set(sb, gdp, ret);
4770 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4771 	ext4_group_desc_csum_set(sb, block_group, gdp);
4772 	ext4_unlock_group(sb, block_group);
4773 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4774 
4775 	if (sbi->s_log_groups_per_flex) {
4776 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4777 		atomic64_add(count_clusters,
4778 			     &sbi->s_flex_groups[flex_group].free_clusters);
4779 	}
4780 
4781 	ext4_mb_unload_buddy(&e4b);
4782 
4783 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4784 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4785 
4786 	/* We dirtied the bitmap block */
4787 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4788 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4789 
4790 	/* And the group descriptor block */
4791 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4792 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4793 	if (!err)
4794 		err = ret;
4795 
4796 	if (overflow && !err) {
4797 		block += count;
4798 		count = overflow;
4799 		put_bh(bitmap_bh);
4800 		goto do_more;
4801 	}
4802 error_return:
4803 	brelse(bitmap_bh);
4804 	ext4_std_error(sb, err);
4805 	return;
4806 }
4807 
4808 /**
4809  * ext4_group_add_blocks() -- Add given blocks to an existing group
4810  * @handle:			handle to this transaction
4811  * @sb:				super block
4812  * @block:			start physical block to add to the block group
4813  * @count:			number of blocks to free
4814  *
4815  * This marks the blocks as free in the bitmap and buddy.
4816  */
4817 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4818 			 ext4_fsblk_t block, unsigned long count)
4819 {
4820 	struct buffer_head *bitmap_bh = NULL;
4821 	struct buffer_head *gd_bh;
4822 	ext4_group_t block_group;
4823 	ext4_grpblk_t bit;
4824 	unsigned int i;
4825 	struct ext4_group_desc *desc;
4826 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4827 	struct ext4_buddy e4b;
4828 	int err = 0, ret, blk_free_count;
4829 	ext4_grpblk_t blocks_freed;
4830 
4831 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4832 
4833 	if (count == 0)
4834 		return 0;
4835 
4836 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4837 	/*
4838 	 * Check to see if we are freeing blocks across a group
4839 	 * boundary.
4840 	 */
4841 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4842 		ext4_warning(sb, "too much blocks added to group %u\n",
4843 			     block_group);
4844 		err = -EINVAL;
4845 		goto error_return;
4846 	}
4847 
4848 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4849 	if (!bitmap_bh) {
4850 		err = -EIO;
4851 		goto error_return;
4852 	}
4853 
4854 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4855 	if (!desc) {
4856 		err = -EIO;
4857 		goto error_return;
4858 	}
4859 
4860 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4861 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4862 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4863 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4864 		     sbi->s_itb_per_group)) {
4865 		ext4_error(sb, "Adding blocks in system zones - "
4866 			   "Block = %llu, count = %lu",
4867 			   block, count);
4868 		err = -EINVAL;
4869 		goto error_return;
4870 	}
4871 
4872 	BUFFER_TRACE(bitmap_bh, "getting write access");
4873 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4874 	if (err)
4875 		goto error_return;
4876 
4877 	/*
4878 	 * We are about to modify some metadata.  Call the journal APIs
4879 	 * to unshare ->b_data if a currently-committing transaction is
4880 	 * using it
4881 	 */
4882 	BUFFER_TRACE(gd_bh, "get_write_access");
4883 	err = ext4_journal_get_write_access(handle, gd_bh);
4884 	if (err)
4885 		goto error_return;
4886 
4887 	for (i = 0, blocks_freed = 0; i < count; i++) {
4888 		BUFFER_TRACE(bitmap_bh, "clear bit");
4889 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4890 			ext4_error(sb, "bit already cleared for block %llu",
4891 				   (ext4_fsblk_t)(block + i));
4892 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4893 		} else {
4894 			blocks_freed++;
4895 		}
4896 	}
4897 
4898 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4899 	if (err)
4900 		goto error_return;
4901 
4902 	/*
4903 	 * need to update group_info->bb_free and bitmap
4904 	 * with group lock held. generate_buddy look at
4905 	 * them with group lock_held
4906 	 */
4907 	ext4_lock_group(sb, block_group);
4908 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4909 	mb_free_blocks(NULL, &e4b, bit, count);
4910 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4911 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4912 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4913 	ext4_group_desc_csum_set(sb, block_group, desc);
4914 	ext4_unlock_group(sb, block_group);
4915 	percpu_counter_add(&sbi->s_freeclusters_counter,
4916 			   EXT4_NUM_B2C(sbi, blocks_freed));
4917 
4918 	if (sbi->s_log_groups_per_flex) {
4919 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4920 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4921 			     &sbi->s_flex_groups[flex_group].free_clusters);
4922 	}
4923 
4924 	ext4_mb_unload_buddy(&e4b);
4925 
4926 	/* We dirtied the bitmap block */
4927 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4928 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4929 
4930 	/* And the group descriptor block */
4931 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4932 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4933 	if (!err)
4934 		err = ret;
4935 
4936 error_return:
4937 	brelse(bitmap_bh);
4938 	ext4_std_error(sb, err);
4939 	return err;
4940 }
4941 
4942 /**
4943  * ext4_trim_extent -- function to TRIM one single free extent in the group
4944  * @sb:		super block for the file system
4945  * @start:	starting block of the free extent in the alloc. group
4946  * @count:	number of blocks to TRIM
4947  * @group:	alloc. group we are working with
4948  * @e4b:	ext4 buddy for the group
4949  *
4950  * Trim "count" blocks starting at "start" in the "group". To assure that no
4951  * one will allocate those blocks, mark it as used in buddy bitmap. This must
4952  * be called with under the group lock.
4953  */
4954 static int ext4_trim_extent(struct super_block *sb, int start, int count,
4955 			     ext4_group_t group, struct ext4_buddy *e4b)
4956 {
4957 	struct ext4_free_extent ex;
4958 	int ret = 0;
4959 
4960 	trace_ext4_trim_extent(sb, group, start, count);
4961 
4962 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
4963 
4964 	ex.fe_start = start;
4965 	ex.fe_group = group;
4966 	ex.fe_len = count;
4967 
4968 	/*
4969 	 * Mark blocks used, so no one can reuse them while
4970 	 * being trimmed.
4971 	 */
4972 	mb_mark_used(e4b, &ex);
4973 	ext4_unlock_group(sb, group);
4974 	ret = ext4_issue_discard(sb, group, start, count);
4975 	ext4_lock_group(sb, group);
4976 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
4977 	return ret;
4978 }
4979 
4980 /**
4981  * ext4_trim_all_free -- function to trim all free space in alloc. group
4982  * @sb:			super block for file system
4983  * @group:		group to be trimmed
4984  * @start:		first group block to examine
4985  * @max:		last group block to examine
4986  * @minblocks:		minimum extent block count
4987  *
4988  * ext4_trim_all_free walks through group's buddy bitmap searching for free
4989  * extents. When the free block is found, ext4_trim_extent is called to TRIM
4990  * the extent.
4991  *
4992  *
4993  * ext4_trim_all_free walks through group's block bitmap searching for free
4994  * extents. When the free extent is found, mark it as used in group buddy
4995  * bitmap. Then issue a TRIM command on this extent and free the extent in
4996  * the group buddy bitmap. This is done until whole group is scanned.
4997  */
4998 static ext4_grpblk_t
4999 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5000 		   ext4_grpblk_t start, ext4_grpblk_t max,
5001 		   ext4_grpblk_t minblocks)
5002 {
5003 	void *bitmap;
5004 	ext4_grpblk_t next, count = 0, free_count = 0;
5005 	struct ext4_buddy e4b;
5006 	int ret = 0;
5007 
5008 	trace_ext4_trim_all_free(sb, group, start, max);
5009 
5010 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5011 	if (ret) {
5012 		ext4_error(sb, "Error in loading buddy "
5013 				"information for %u", group);
5014 		return ret;
5015 	}
5016 	bitmap = e4b.bd_bitmap;
5017 
5018 	ext4_lock_group(sb, group);
5019 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5020 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5021 		goto out;
5022 
5023 	start = (e4b.bd_info->bb_first_free > start) ?
5024 		e4b.bd_info->bb_first_free : start;
5025 
5026 	while (start <= max) {
5027 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5028 		if (start > max)
5029 			break;
5030 		next = mb_find_next_bit(bitmap, max + 1, start);
5031 
5032 		if ((next - start) >= minblocks) {
5033 			ret = ext4_trim_extent(sb, start,
5034 					       next - start, group, &e4b);
5035 			if (ret && ret != -EOPNOTSUPP)
5036 				break;
5037 			ret = 0;
5038 			count += next - start;
5039 		}
5040 		free_count += next - start;
5041 		start = next + 1;
5042 
5043 		if (fatal_signal_pending(current)) {
5044 			count = -ERESTARTSYS;
5045 			break;
5046 		}
5047 
5048 		if (need_resched()) {
5049 			ext4_unlock_group(sb, group);
5050 			cond_resched();
5051 			ext4_lock_group(sb, group);
5052 		}
5053 
5054 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5055 			break;
5056 	}
5057 
5058 	if (!ret) {
5059 		ret = count;
5060 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5061 	}
5062 out:
5063 	ext4_unlock_group(sb, group);
5064 	ext4_mb_unload_buddy(&e4b);
5065 
5066 	ext4_debug("trimmed %d blocks in the group %d\n",
5067 		count, group);
5068 
5069 	return ret;
5070 }
5071 
5072 /**
5073  * ext4_trim_fs() -- trim ioctl handle function
5074  * @sb:			superblock for filesystem
5075  * @range:		fstrim_range structure
5076  *
5077  * start:	First Byte to trim
5078  * len:		number of Bytes to trim from start
5079  * minlen:	minimum extent length in Bytes
5080  * ext4_trim_fs goes through all allocation groups containing Bytes from
5081  * start to start+len. For each such a group ext4_trim_all_free function
5082  * is invoked to trim all free space.
5083  */
5084 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5085 {
5086 	struct ext4_group_info *grp;
5087 	ext4_group_t group, first_group, last_group;
5088 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5089 	uint64_t start, end, minlen, trimmed = 0;
5090 	ext4_fsblk_t first_data_blk =
5091 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5092 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5093 	int ret = 0;
5094 
5095 	start = range->start >> sb->s_blocksize_bits;
5096 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5097 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5098 			      range->minlen >> sb->s_blocksize_bits);
5099 
5100 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5101 	    start >= max_blks ||
5102 	    range->len < sb->s_blocksize)
5103 		return -EINVAL;
5104 	if (end >= max_blks)
5105 		end = max_blks - 1;
5106 	if (end <= first_data_blk)
5107 		goto out;
5108 	if (start < first_data_blk)
5109 		start = first_data_blk;
5110 
5111 	/* Determine first and last group to examine based on start and end */
5112 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5113 				     &first_group, &first_cluster);
5114 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5115 				     &last_group, &last_cluster);
5116 
5117 	/* end now represents the last cluster to discard in this group */
5118 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5119 
5120 	for (group = first_group; group <= last_group; group++) {
5121 		grp = ext4_get_group_info(sb, group);
5122 		/* We only do this if the grp has never been initialized */
5123 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5124 			ret = ext4_mb_init_group(sb, group);
5125 			if (ret)
5126 				break;
5127 		}
5128 
5129 		/*
5130 		 * For all the groups except the last one, last cluster will
5131 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5132 		 * change it for the last group, note that last_cluster is
5133 		 * already computed earlier by ext4_get_group_no_and_offset()
5134 		 */
5135 		if (group == last_group)
5136 			end = last_cluster;
5137 
5138 		if (grp->bb_free >= minlen) {
5139 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5140 						end, minlen);
5141 			if (cnt < 0) {
5142 				ret = cnt;
5143 				break;
5144 			}
5145 			trimmed += cnt;
5146 		}
5147 
5148 		/*
5149 		 * For every group except the first one, we are sure
5150 		 * that the first cluster to discard will be cluster #0.
5151 		 */
5152 		first_cluster = 0;
5153 	}
5154 
5155 	if (!ret)
5156 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5157 
5158 out:
5159 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5160 	return ret;
5161 }
5162