xref: /linux/fs/ext4/mballoc.c (revision 666ed8bfd1de3b091cf32ca03b651757dd86cfff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 #ifdef CONFIG_EXT4_DEBUG
22 ushort ext4_mballoc_debug __read_mostly;
23 
24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
26 #endif
27 
28 /*
29  * MUSTDO:
30  *   - test ext4_ext_search_left() and ext4_ext_search_right()
31  *   - search for metadata in few groups
32  *
33  * TODO v4:
34  *   - normalization should take into account whether file is still open
35  *   - discard preallocations if no free space left (policy?)
36  *   - don't normalize tails
37  *   - quota
38  *   - reservation for superuser
39  *
40  * TODO v3:
41  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
42  *   - track min/max extents in each group for better group selection
43  *   - mb_mark_used() may allocate chunk right after splitting buddy
44  *   - tree of groups sorted by number of free blocks
45  *   - error handling
46  */
47 
48 /*
49  * The allocation request involve request for multiple number of blocks
50  * near to the goal(block) value specified.
51  *
52  * During initialization phase of the allocator we decide to use the
53  * group preallocation or inode preallocation depending on the size of
54  * the file. The size of the file could be the resulting file size we
55  * would have after allocation, or the current file size, which ever
56  * is larger. If the size is less than sbi->s_mb_stream_request we
57  * select to use the group preallocation. The default value of
58  * s_mb_stream_request is 16 blocks. This can also be tuned via
59  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60  * terms of number of blocks.
61  *
62  * The main motivation for having small file use group preallocation is to
63  * ensure that we have small files closer together on the disk.
64  *
65  * First stage the allocator looks at the inode prealloc list,
66  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67  * spaces for this particular inode. The inode prealloc space is
68  * represented as:
69  *
70  * pa_lstart -> the logical start block for this prealloc space
71  * pa_pstart -> the physical start block for this prealloc space
72  * pa_len    -> length for this prealloc space (in clusters)
73  * pa_free   ->  free space available in this prealloc space (in clusters)
74  *
75  * The inode preallocation space is used looking at the _logical_ start
76  * block. If only the logical file block falls within the range of prealloc
77  * space we will consume the particular prealloc space. This makes sure that
78  * we have contiguous physical blocks representing the file blocks
79  *
80  * The important thing to be noted in case of inode prealloc space is that
81  * we don't modify the values associated to inode prealloc space except
82  * pa_free.
83  *
84  * If we are not able to find blocks in the inode prealloc space and if we
85  * have the group allocation flag set then we look at the locality group
86  * prealloc space. These are per CPU prealloc list represented as
87  *
88  * ext4_sb_info.s_locality_groups[smp_processor_id()]
89  *
90  * The reason for having a per cpu locality group is to reduce the contention
91  * between CPUs. It is possible to get scheduled at this point.
92  *
93  * The locality group prealloc space is used looking at whether we have
94  * enough free space (pa_free) within the prealloc space.
95  *
96  * If we can't allocate blocks via inode prealloc or/and locality group
97  * prealloc then we look at the buddy cache. The buddy cache is represented
98  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99  * mapped to the buddy and bitmap information regarding different
100  * groups. The buddy information is attached to buddy cache inode so that
101  * we can access them through the page cache. The information regarding
102  * each group is loaded via ext4_mb_load_buddy.  The information involve
103  * block bitmap and buddy information. The information are stored in the
104  * inode as:
105  *
106  *  {                        page                        }
107  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
108  *
109  *
110  * one block each for bitmap and buddy information.  So for each group we
111  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
112  * blocksize) blocks.  So it can have information regarding groups_per_page
113  * which is blocks_per_page/2
114  *
115  * The buddy cache inode is not stored on disk. The inode is thrown
116  * away when the filesystem is unmounted.
117  *
118  * We look for count number of blocks in the buddy cache. If we were able
119  * to locate that many free blocks we return with additional information
120  * regarding rest of the contiguous physical block available
121  *
122  * Before allocating blocks via buddy cache we normalize the request
123  * blocks. This ensure we ask for more blocks that we needed. The extra
124  * blocks that we get after allocation is added to the respective prealloc
125  * list. In case of inode preallocation we follow a list of heuristics
126  * based on file size. This can be found in ext4_mb_normalize_request. If
127  * we are doing a group prealloc we try to normalize the request to
128  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
129  * dependent on the cluster size; for non-bigalloc file systems, it is
130  * 512 blocks. This can be tuned via
131  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132  * terms of number of blocks. If we have mounted the file system with -O
133  * stripe=<value> option the group prealloc request is normalized to the
134  * the smallest multiple of the stripe value (sbi->s_stripe) which is
135  * greater than the default mb_group_prealloc.
136  *
137  * The regular allocator (using the buddy cache) supports a few tunables.
138  *
139  * /sys/fs/ext4/<partition>/mb_min_to_scan
140  * /sys/fs/ext4/<partition>/mb_max_to_scan
141  * /sys/fs/ext4/<partition>/mb_order2_req
142  *
143  * The regular allocator uses buddy scan only if the request len is power of
144  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145  * value of s_mb_order2_reqs can be tuned via
146  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
147  * stripe size (sbi->s_stripe), we try to search for contiguous block in
148  * stripe size. This should result in better allocation on RAID setups. If
149  * not, we search in the specific group using bitmap for best extents. The
150  * tunable min_to_scan and max_to_scan control the behaviour here.
151  * min_to_scan indicate how long the mballoc __must__ look for a best
152  * extent and max_to_scan indicates how long the mballoc __can__ look for a
153  * best extent in the found extents. Searching for the blocks starts with
154  * the group specified as the goal value in allocation context via
155  * ac_g_ex. Each group is first checked based on the criteria whether it
156  * can be used for allocation. ext4_mb_good_group explains how the groups are
157  * checked.
158  *
159  * Both the prealloc space are getting populated as above. So for the first
160  * request we will hit the buddy cache which will result in this prealloc
161  * space getting filled. The prealloc space is then later used for the
162  * subsequent request.
163  */
164 
165 /*
166  * mballoc operates on the following data:
167  *  - on-disk bitmap
168  *  - in-core buddy (actually includes buddy and bitmap)
169  *  - preallocation descriptors (PAs)
170  *
171  * there are two types of preallocations:
172  *  - inode
173  *    assiged to specific inode and can be used for this inode only.
174  *    it describes part of inode's space preallocated to specific
175  *    physical blocks. any block from that preallocated can be used
176  *    independent. the descriptor just tracks number of blocks left
177  *    unused. so, before taking some block from descriptor, one must
178  *    make sure corresponded logical block isn't allocated yet. this
179  *    also means that freeing any block within descriptor's range
180  *    must discard all preallocated blocks.
181  *  - locality group
182  *    assigned to specific locality group which does not translate to
183  *    permanent set of inodes: inode can join and leave group. space
184  *    from this type of preallocation can be used for any inode. thus
185  *    it's consumed from the beginning to the end.
186  *
187  * relation between them can be expressed as:
188  *    in-core buddy = on-disk bitmap + preallocation descriptors
189  *
190  * this mean blocks mballoc considers used are:
191  *  - allocated blocks (persistent)
192  *  - preallocated blocks (non-persistent)
193  *
194  * consistency in mballoc world means that at any time a block is either
195  * free or used in ALL structures. notice: "any time" should not be read
196  * literally -- time is discrete and delimited by locks.
197  *
198  *  to keep it simple, we don't use block numbers, instead we count number of
199  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
200  *
201  * all operations can be expressed as:
202  *  - init buddy:			buddy = on-disk + PAs
203  *  - new PA:				buddy += N; PA = N
204  *  - use inode PA:			on-disk += N; PA -= N
205  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
206  *  - use locality group PA		on-disk += N; PA -= N
207  *  - discard locality group PA		buddy -= PA; PA = 0
208  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209  *        is used in real operation because we can't know actual used
210  *        bits from PA, only from on-disk bitmap
211  *
212  * if we follow this strict logic, then all operations above should be atomic.
213  * given some of them can block, we'd have to use something like semaphores
214  * killing performance on high-end SMP hardware. let's try to relax it using
215  * the following knowledge:
216  *  1) if buddy is referenced, it's already initialized
217  *  2) while block is used in buddy and the buddy is referenced,
218  *     nobody can re-allocate that block
219  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
221  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222  *     block
223  *
224  * so, now we're building a concurrency table:
225  *  - init buddy vs.
226  *    - new PA
227  *      blocks for PA are allocated in the buddy, buddy must be referenced
228  *      until PA is linked to allocation group to avoid concurrent buddy init
229  *    - use inode PA
230  *      we need to make sure that either on-disk bitmap or PA has uptodate data
231  *      given (3) we care that PA-=N operation doesn't interfere with init
232  *    - discard inode PA
233  *      the simplest way would be to have buddy initialized by the discard
234  *    - use locality group PA
235  *      again PA-=N must be serialized with init
236  *    - discard locality group PA
237  *      the simplest way would be to have buddy initialized by the discard
238  *  - new PA vs.
239  *    - use inode PA
240  *      i_data_sem serializes them
241  *    - discard inode PA
242  *      discard process must wait until PA isn't used by another process
243  *    - use locality group PA
244  *      some mutex should serialize them
245  *    - discard locality group PA
246  *      discard process must wait until PA isn't used by another process
247  *  - use inode PA
248  *    - use inode PA
249  *      i_data_sem or another mutex should serializes them
250  *    - discard inode PA
251  *      discard process must wait until PA isn't used by another process
252  *    - use locality group PA
253  *      nothing wrong here -- they're different PAs covering different blocks
254  *    - discard locality group PA
255  *      discard process must wait until PA isn't used by another process
256  *
257  * now we're ready to make few consequences:
258  *  - PA is referenced and while it is no discard is possible
259  *  - PA is referenced until block isn't marked in on-disk bitmap
260  *  - PA changes only after on-disk bitmap
261  *  - discard must not compete with init. either init is done before
262  *    any discard or they're serialized somehow
263  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
264  *
265  * a special case when we've used PA to emptiness. no need to modify buddy
266  * in this case, but we should care about concurrent init
267  *
268  */
269 
270  /*
271  * Logic in few words:
272  *
273  *  - allocation:
274  *    load group
275  *    find blocks
276  *    mark bits in on-disk bitmap
277  *    release group
278  *
279  *  - use preallocation:
280  *    find proper PA (per-inode or group)
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *    release PA
285  *
286  *  - free:
287  *    load group
288  *    mark bits in on-disk bitmap
289  *    release group
290  *
291  *  - discard preallocations in group:
292  *    mark PAs deleted
293  *    move them onto local list
294  *    load on-disk bitmap
295  *    load group
296  *    remove PA from object (inode or locality group)
297  *    mark free blocks in-core
298  *
299  *  - discard inode's preallocations:
300  */
301 
302 /*
303  * Locking rules
304  *
305  * Locks:
306  *  - bitlock on a group	(group)
307  *  - object (inode/locality)	(object)
308  *  - per-pa lock		(pa)
309  *
310  * Paths:
311  *  - new pa
312  *    object
313  *    group
314  *
315  *  - find and use pa:
316  *    pa
317  *
318  *  - release consumed pa:
319  *    pa
320  *    group
321  *    object
322  *
323  *  - generate in-core bitmap:
324  *    group
325  *        pa
326  *
327  *  - discard all for given object (inode, locality group):
328  *    object
329  *        pa
330  *    group
331  *
332  *  - discard all for given group:
333  *    group
334  *        pa
335  *    group
336  *        object
337  *
338  */
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_data_cachep;
342 
343 /* We create slab caches for groupinfo data structures based on the
344  * superblock block size.  There will be one per mounted filesystem for
345  * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
348 
349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
353 };
354 
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 					ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 						ext4_group_t group);
359 
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
361 {
362 #if BITS_PER_LONG == 64
363 	*bit += ((unsigned long) addr & 7UL) << 3;
364 	addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 	*bit += ((unsigned long) addr & 3UL) << 3;
367 	addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 	return addr;
372 }
373 
374 static inline int mb_test_bit(int bit, void *addr)
375 {
376 	/*
377 	 * ext4_test_bit on architecture like powerpc
378 	 * needs unsigned long aligned address
379 	 */
380 	addr = mb_correct_addr_and_bit(&bit, addr);
381 	return ext4_test_bit(bit, addr);
382 }
383 
384 static inline void mb_set_bit(int bit, void *addr)
385 {
386 	addr = mb_correct_addr_and_bit(&bit, addr);
387 	ext4_set_bit(bit, addr);
388 }
389 
390 static inline void mb_clear_bit(int bit, void *addr)
391 {
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	ext4_clear_bit(bit, addr);
394 }
395 
396 static inline int mb_test_and_clear_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	return ext4_test_and_clear_bit(bit, addr);
400 }
401 
402 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
403 {
404 	int fix = 0, ret, tmpmax;
405 	addr = mb_correct_addr_and_bit(&fix, addr);
406 	tmpmax = max + fix;
407 	start += fix;
408 
409 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
410 	if (ret > max)
411 		return max;
412 	return ret;
413 }
414 
415 static inline int mb_find_next_bit(void *addr, int max, int start)
416 {
417 	int fix = 0, ret, tmpmax;
418 	addr = mb_correct_addr_and_bit(&fix, addr);
419 	tmpmax = max + fix;
420 	start += fix;
421 
422 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
423 	if (ret > max)
424 		return max;
425 	return ret;
426 }
427 
428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
429 {
430 	char *bb;
431 
432 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
433 	BUG_ON(max == NULL);
434 
435 	if (order > e4b->bd_blkbits + 1) {
436 		*max = 0;
437 		return NULL;
438 	}
439 
440 	/* at order 0 we see each particular block */
441 	if (order == 0) {
442 		*max = 1 << (e4b->bd_blkbits + 3);
443 		return e4b->bd_bitmap;
444 	}
445 
446 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
447 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
448 
449 	return bb;
450 }
451 
452 #ifdef DOUBLE_CHECK
453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
454 			   int first, int count)
455 {
456 	int i;
457 	struct super_block *sb = e4b->bd_sb;
458 
459 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
460 		return;
461 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
462 	for (i = 0; i < count; i++) {
463 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
464 			ext4_fsblk_t blocknr;
465 
466 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
467 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
468 			ext4_grp_locked_error(sb, e4b->bd_group,
469 					      inode ? inode->i_ino : 0,
470 					      blocknr,
471 					      "freeing block already freed "
472 					      "(bit %u)",
473 					      first + i);
474 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
475 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
476 		}
477 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
478 	}
479 }
480 
481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
482 {
483 	int i;
484 
485 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
486 		return;
487 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
488 	for (i = 0; i < count; i++) {
489 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
490 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
491 	}
492 }
493 
494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
495 {
496 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
497 		unsigned char *b1, *b2;
498 		int i;
499 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
500 		b2 = (unsigned char *) bitmap;
501 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
502 			if (b1[i] != b2[i]) {
503 				ext4_msg(e4b->bd_sb, KERN_ERR,
504 					 "corruption in group %u "
505 					 "at byte %u(%u): %x in copy != %x "
506 					 "on disk/prealloc",
507 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
508 				BUG();
509 			}
510 		}
511 	}
512 }
513 
514 #else
515 static inline void mb_free_blocks_double(struct inode *inode,
516 				struct ext4_buddy *e4b, int first, int count)
517 {
518 	return;
519 }
520 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
521 						int first, int count)
522 {
523 	return;
524 }
525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
526 {
527 	return;
528 }
529 #endif
530 
531 #ifdef AGGRESSIVE_CHECK
532 
533 #define MB_CHECK_ASSERT(assert)						\
534 do {									\
535 	if (!(assert)) {						\
536 		printk(KERN_EMERG					\
537 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
538 			function, file, line, # assert);		\
539 		BUG();							\
540 	}								\
541 } while (0)
542 
543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
544 				const char *function, int line)
545 {
546 	struct super_block *sb = e4b->bd_sb;
547 	int order = e4b->bd_blkbits + 1;
548 	int max;
549 	int max2;
550 	int i;
551 	int j;
552 	int k;
553 	int count;
554 	struct ext4_group_info *grp;
555 	int fragments = 0;
556 	int fstart;
557 	struct list_head *cur;
558 	void *buddy;
559 	void *buddy2;
560 
561 	{
562 		static int mb_check_counter;
563 		if (mb_check_counter++ % 100 != 0)
564 			return 0;
565 	}
566 
567 	while (order > 1) {
568 		buddy = mb_find_buddy(e4b, order, &max);
569 		MB_CHECK_ASSERT(buddy);
570 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
571 		MB_CHECK_ASSERT(buddy2);
572 		MB_CHECK_ASSERT(buddy != buddy2);
573 		MB_CHECK_ASSERT(max * 2 == max2);
574 
575 		count = 0;
576 		for (i = 0; i < max; i++) {
577 
578 			if (mb_test_bit(i, buddy)) {
579 				/* only single bit in buddy2 may be 1 */
580 				if (!mb_test_bit(i << 1, buddy2)) {
581 					MB_CHECK_ASSERT(
582 						mb_test_bit((i<<1)+1, buddy2));
583 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
584 					MB_CHECK_ASSERT(
585 						mb_test_bit(i << 1, buddy2));
586 				}
587 				continue;
588 			}
589 
590 			/* both bits in buddy2 must be 1 */
591 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
592 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
593 
594 			for (j = 0; j < (1 << order); j++) {
595 				k = (i * (1 << order)) + j;
596 				MB_CHECK_ASSERT(
597 					!mb_test_bit(k, e4b->bd_bitmap));
598 			}
599 			count++;
600 		}
601 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
602 		order--;
603 	}
604 
605 	fstart = -1;
606 	buddy = mb_find_buddy(e4b, 0, &max);
607 	for (i = 0; i < max; i++) {
608 		if (!mb_test_bit(i, buddy)) {
609 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
610 			if (fstart == -1) {
611 				fragments++;
612 				fstart = i;
613 			}
614 			continue;
615 		}
616 		fstart = -1;
617 		/* check used bits only */
618 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
619 			buddy2 = mb_find_buddy(e4b, j, &max2);
620 			k = i >> j;
621 			MB_CHECK_ASSERT(k < max2);
622 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
623 		}
624 	}
625 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
626 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
627 
628 	grp = ext4_get_group_info(sb, e4b->bd_group);
629 	list_for_each(cur, &grp->bb_prealloc_list) {
630 		ext4_group_t groupnr;
631 		struct ext4_prealloc_space *pa;
632 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
633 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
634 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
635 		for (i = 0; i < pa->pa_len; i++)
636 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
637 	}
638 	return 0;
639 }
640 #undef MB_CHECK_ASSERT
641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
642 					__FILE__, __func__, __LINE__)
643 #else
644 #define mb_check_buddy(e4b)
645 #endif
646 
647 /*
648  * Divide blocks started from @first with length @len into
649  * smaller chunks with power of 2 blocks.
650  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
651  * then increase bb_counters[] for corresponded chunk size.
652  */
653 static void ext4_mb_mark_free_simple(struct super_block *sb,
654 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
655 					struct ext4_group_info *grp)
656 {
657 	struct ext4_sb_info *sbi = EXT4_SB(sb);
658 	ext4_grpblk_t min;
659 	ext4_grpblk_t max;
660 	ext4_grpblk_t chunk;
661 	unsigned int border;
662 
663 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
664 
665 	border = 2 << sb->s_blocksize_bits;
666 
667 	while (len > 0) {
668 		/* find how many blocks can be covered since this position */
669 		max = ffs(first | border) - 1;
670 
671 		/* find how many blocks of power 2 we need to mark */
672 		min = fls(len) - 1;
673 
674 		if (max < min)
675 			min = max;
676 		chunk = 1 << min;
677 
678 		/* mark multiblock chunks only */
679 		grp->bb_counters[min]++;
680 		if (min > 0)
681 			mb_clear_bit(first >> min,
682 				     buddy + sbi->s_mb_offsets[min]);
683 
684 		len -= chunk;
685 		first += chunk;
686 	}
687 }
688 
689 /*
690  * Cache the order of the largest free extent we have available in this block
691  * group.
692  */
693 static void
694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
695 {
696 	int i;
697 	int bits;
698 
699 	grp->bb_largest_free_order = -1; /* uninit */
700 
701 	bits = sb->s_blocksize_bits + 1;
702 	for (i = bits; i >= 0; i--) {
703 		if (grp->bb_counters[i] > 0) {
704 			grp->bb_largest_free_order = i;
705 			break;
706 		}
707 	}
708 }
709 
710 static noinline_for_stack
711 void ext4_mb_generate_buddy(struct super_block *sb,
712 				void *buddy, void *bitmap, ext4_group_t group)
713 {
714 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
715 	struct ext4_sb_info *sbi = EXT4_SB(sb);
716 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
717 	ext4_grpblk_t i = 0;
718 	ext4_grpblk_t first;
719 	ext4_grpblk_t len;
720 	unsigned free = 0;
721 	unsigned fragments = 0;
722 	unsigned long long period = get_cycles();
723 
724 	/* initialize buddy from bitmap which is aggregation
725 	 * of on-disk bitmap and preallocations */
726 	i = mb_find_next_zero_bit(bitmap, max, 0);
727 	grp->bb_first_free = i;
728 	while (i < max) {
729 		fragments++;
730 		first = i;
731 		i = mb_find_next_bit(bitmap, max, i);
732 		len = i - first;
733 		free += len;
734 		if (len > 1)
735 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
736 		else
737 			grp->bb_counters[0]++;
738 		if (i < max)
739 			i = mb_find_next_zero_bit(bitmap, max, i);
740 	}
741 	grp->bb_fragments = fragments;
742 
743 	if (free != grp->bb_free) {
744 		ext4_grp_locked_error(sb, group, 0, 0,
745 				      "block bitmap and bg descriptor "
746 				      "inconsistent: %u vs %u free clusters",
747 				      free, grp->bb_free);
748 		/*
749 		 * If we intend to continue, we consider group descriptor
750 		 * corrupt and update bb_free using bitmap value
751 		 */
752 		grp->bb_free = free;
753 		ext4_mark_group_bitmap_corrupted(sb, group,
754 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
755 	}
756 	mb_set_largest_free_order(sb, grp);
757 
758 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
759 
760 	period = get_cycles() - period;
761 	spin_lock(&sbi->s_bal_lock);
762 	sbi->s_mb_buddies_generated++;
763 	sbi->s_mb_generation_time += period;
764 	spin_unlock(&sbi->s_bal_lock);
765 }
766 
767 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
768 {
769 	int count;
770 	int order = 1;
771 	void *buddy;
772 
773 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
774 		ext4_set_bits(buddy, 0, count);
775 	}
776 	e4b->bd_info->bb_fragments = 0;
777 	memset(e4b->bd_info->bb_counters, 0,
778 		sizeof(*e4b->bd_info->bb_counters) *
779 		(e4b->bd_sb->s_blocksize_bits + 2));
780 
781 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
782 		e4b->bd_bitmap, e4b->bd_group);
783 }
784 
785 /* The buddy information is attached the buddy cache inode
786  * for convenience. The information regarding each group
787  * is loaded via ext4_mb_load_buddy. The information involve
788  * block bitmap and buddy information. The information are
789  * stored in the inode as
790  *
791  * {                        page                        }
792  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
793  *
794  *
795  * one block each for bitmap and buddy information.
796  * So for each group we take up 2 blocks. A page can
797  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
798  * So it can have information regarding groups_per_page which
799  * is blocks_per_page/2
800  *
801  * Locking note:  This routine takes the block group lock of all groups
802  * for this page; do not hold this lock when calling this routine!
803  */
804 
805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
806 {
807 	ext4_group_t ngroups;
808 	int blocksize;
809 	int blocks_per_page;
810 	int groups_per_page;
811 	int err = 0;
812 	int i;
813 	ext4_group_t first_group, group;
814 	int first_block;
815 	struct super_block *sb;
816 	struct buffer_head *bhs;
817 	struct buffer_head **bh = NULL;
818 	struct inode *inode;
819 	char *data;
820 	char *bitmap;
821 	struct ext4_group_info *grinfo;
822 
823 	mb_debug(1, "init page %lu\n", page->index);
824 
825 	inode = page->mapping->host;
826 	sb = inode->i_sb;
827 	ngroups = ext4_get_groups_count(sb);
828 	blocksize = i_blocksize(inode);
829 	blocks_per_page = PAGE_SIZE / blocksize;
830 
831 	groups_per_page = blocks_per_page >> 1;
832 	if (groups_per_page == 0)
833 		groups_per_page = 1;
834 
835 	/* allocate buffer_heads to read bitmaps */
836 	if (groups_per_page > 1) {
837 		i = sizeof(struct buffer_head *) * groups_per_page;
838 		bh = kzalloc(i, gfp);
839 		if (bh == NULL) {
840 			err = -ENOMEM;
841 			goto out;
842 		}
843 	} else
844 		bh = &bhs;
845 
846 	first_group = page->index * blocks_per_page / 2;
847 
848 	/* read all groups the page covers into the cache */
849 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
850 		if (group >= ngroups)
851 			break;
852 
853 		grinfo = ext4_get_group_info(sb, group);
854 		/*
855 		 * If page is uptodate then we came here after online resize
856 		 * which added some new uninitialized group info structs, so
857 		 * we must skip all initialized uptodate buddies on the page,
858 		 * which may be currently in use by an allocating task.
859 		 */
860 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
861 			bh[i] = NULL;
862 			continue;
863 		}
864 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
865 		if (IS_ERR(bh[i])) {
866 			err = PTR_ERR(bh[i]);
867 			bh[i] = NULL;
868 			goto out;
869 		}
870 		mb_debug(1, "read bitmap for group %u\n", group);
871 	}
872 
873 	/* wait for I/O completion */
874 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
875 		int err2;
876 
877 		if (!bh[i])
878 			continue;
879 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
880 		if (!err)
881 			err = err2;
882 	}
883 
884 	first_block = page->index * blocks_per_page;
885 	for (i = 0; i < blocks_per_page; i++) {
886 		group = (first_block + i) >> 1;
887 		if (group >= ngroups)
888 			break;
889 
890 		if (!bh[group - first_group])
891 			/* skip initialized uptodate buddy */
892 			continue;
893 
894 		if (!buffer_verified(bh[group - first_group]))
895 			/* Skip faulty bitmaps */
896 			continue;
897 		err = 0;
898 
899 		/*
900 		 * data carry information regarding this
901 		 * particular group in the format specified
902 		 * above
903 		 *
904 		 */
905 		data = page_address(page) + (i * blocksize);
906 		bitmap = bh[group - first_group]->b_data;
907 
908 		/*
909 		 * We place the buddy block and bitmap block
910 		 * close together
911 		 */
912 		if ((first_block + i) & 1) {
913 			/* this is block of buddy */
914 			BUG_ON(incore == NULL);
915 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
916 				group, page->index, i * blocksize);
917 			trace_ext4_mb_buddy_bitmap_load(sb, group);
918 			grinfo = ext4_get_group_info(sb, group);
919 			grinfo->bb_fragments = 0;
920 			memset(grinfo->bb_counters, 0,
921 			       sizeof(*grinfo->bb_counters) *
922 				(sb->s_blocksize_bits+2));
923 			/*
924 			 * incore got set to the group block bitmap below
925 			 */
926 			ext4_lock_group(sb, group);
927 			/* init the buddy */
928 			memset(data, 0xff, blocksize);
929 			ext4_mb_generate_buddy(sb, data, incore, group);
930 			ext4_unlock_group(sb, group);
931 			incore = NULL;
932 		} else {
933 			/* this is block of bitmap */
934 			BUG_ON(incore != NULL);
935 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
936 				group, page->index, i * blocksize);
937 			trace_ext4_mb_bitmap_load(sb, group);
938 
939 			/* see comments in ext4_mb_put_pa() */
940 			ext4_lock_group(sb, group);
941 			memcpy(data, bitmap, blocksize);
942 
943 			/* mark all preallocated blks used in in-core bitmap */
944 			ext4_mb_generate_from_pa(sb, data, group);
945 			ext4_mb_generate_from_freelist(sb, data, group);
946 			ext4_unlock_group(sb, group);
947 
948 			/* set incore so that the buddy information can be
949 			 * generated using this
950 			 */
951 			incore = data;
952 		}
953 	}
954 	SetPageUptodate(page);
955 
956 out:
957 	if (bh) {
958 		for (i = 0; i < groups_per_page; i++)
959 			brelse(bh[i]);
960 		if (bh != &bhs)
961 			kfree(bh);
962 	}
963 	return err;
964 }
965 
966 /*
967  * Lock the buddy and bitmap pages. This make sure other parallel init_group
968  * on the same buddy page doesn't happen whild holding the buddy page lock.
969  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
970  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
971  */
972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
973 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
974 {
975 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
976 	int block, pnum, poff;
977 	int blocks_per_page;
978 	struct page *page;
979 
980 	e4b->bd_buddy_page = NULL;
981 	e4b->bd_bitmap_page = NULL;
982 
983 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
984 	/*
985 	 * the buddy cache inode stores the block bitmap
986 	 * and buddy information in consecutive blocks.
987 	 * So for each group we need two blocks.
988 	 */
989 	block = group * 2;
990 	pnum = block / blocks_per_page;
991 	poff = block % blocks_per_page;
992 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
993 	if (!page)
994 		return -ENOMEM;
995 	BUG_ON(page->mapping != inode->i_mapping);
996 	e4b->bd_bitmap_page = page;
997 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
998 
999 	if (blocks_per_page >= 2) {
1000 		/* buddy and bitmap are on the same page */
1001 		return 0;
1002 	}
1003 
1004 	block++;
1005 	pnum = block / blocks_per_page;
1006 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007 	if (!page)
1008 		return -ENOMEM;
1009 	BUG_ON(page->mapping != inode->i_mapping);
1010 	e4b->bd_buddy_page = page;
1011 	return 0;
1012 }
1013 
1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1015 {
1016 	if (e4b->bd_bitmap_page) {
1017 		unlock_page(e4b->bd_bitmap_page);
1018 		put_page(e4b->bd_bitmap_page);
1019 	}
1020 	if (e4b->bd_buddy_page) {
1021 		unlock_page(e4b->bd_buddy_page);
1022 		put_page(e4b->bd_buddy_page);
1023 	}
1024 }
1025 
1026 /*
1027  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1028  * block group lock of all groups for this page; do not hold the BG lock when
1029  * calling this routine!
1030  */
1031 static noinline_for_stack
1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1033 {
1034 
1035 	struct ext4_group_info *this_grp;
1036 	struct ext4_buddy e4b;
1037 	struct page *page;
1038 	int ret = 0;
1039 
1040 	might_sleep();
1041 	mb_debug(1, "init group %u\n", group);
1042 	this_grp = ext4_get_group_info(sb, group);
1043 	/*
1044 	 * This ensures that we don't reinit the buddy cache
1045 	 * page which map to the group from which we are already
1046 	 * allocating. If we are looking at the buddy cache we would
1047 	 * have taken a reference using ext4_mb_load_buddy and that
1048 	 * would have pinned buddy page to page cache.
1049 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1050 	 * page accessed.
1051 	 */
1052 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1054 		/*
1055 		 * somebody initialized the group
1056 		 * return without doing anything
1057 		 */
1058 		goto err;
1059 	}
1060 
1061 	page = e4b.bd_bitmap_page;
1062 	ret = ext4_mb_init_cache(page, NULL, gfp);
1063 	if (ret)
1064 		goto err;
1065 	if (!PageUptodate(page)) {
1066 		ret = -EIO;
1067 		goto err;
1068 	}
1069 
1070 	if (e4b.bd_buddy_page == NULL) {
1071 		/*
1072 		 * If both the bitmap and buddy are in
1073 		 * the same page we don't need to force
1074 		 * init the buddy
1075 		 */
1076 		ret = 0;
1077 		goto err;
1078 	}
1079 	/* init buddy cache */
1080 	page = e4b.bd_buddy_page;
1081 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1082 	if (ret)
1083 		goto err;
1084 	if (!PageUptodate(page)) {
1085 		ret = -EIO;
1086 		goto err;
1087 	}
1088 err:
1089 	ext4_mb_put_buddy_page_lock(&e4b);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1095  * block group lock of all groups for this page; do not hold the BG lock when
1096  * calling this routine!
1097  */
1098 static noinline_for_stack int
1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100 		       struct ext4_buddy *e4b, gfp_t gfp)
1101 {
1102 	int blocks_per_page;
1103 	int block;
1104 	int pnum;
1105 	int poff;
1106 	struct page *page;
1107 	int ret;
1108 	struct ext4_group_info *grp;
1109 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 	struct inode *inode = sbi->s_buddy_cache;
1111 
1112 	might_sleep();
1113 	mb_debug(1, "load group %u\n", group);
1114 
1115 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116 	grp = ext4_get_group_info(sb, group);
1117 
1118 	e4b->bd_blkbits = sb->s_blocksize_bits;
1119 	e4b->bd_info = grp;
1120 	e4b->bd_sb = sb;
1121 	e4b->bd_group = group;
1122 	e4b->bd_buddy_page = NULL;
1123 	e4b->bd_bitmap_page = NULL;
1124 
1125 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1126 		/*
1127 		 * we need full data about the group
1128 		 * to make a good selection
1129 		 */
1130 		ret = ext4_mb_init_group(sb, group, gfp);
1131 		if (ret)
1132 			return ret;
1133 	}
1134 
1135 	/*
1136 	 * the buddy cache inode stores the block bitmap
1137 	 * and buddy information in consecutive blocks.
1138 	 * So for each group we need two blocks.
1139 	 */
1140 	block = group * 2;
1141 	pnum = block / blocks_per_page;
1142 	poff = block % blocks_per_page;
1143 
1144 	/* we could use find_or_create_page(), but it locks page
1145 	 * what we'd like to avoid in fast path ... */
1146 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147 	if (page == NULL || !PageUptodate(page)) {
1148 		if (page)
1149 			/*
1150 			 * drop the page reference and try
1151 			 * to get the page with lock. If we
1152 			 * are not uptodate that implies
1153 			 * somebody just created the page but
1154 			 * is yet to initialize the same. So
1155 			 * wait for it to initialize.
1156 			 */
1157 			put_page(page);
1158 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1159 		if (page) {
1160 			BUG_ON(page->mapping != inode->i_mapping);
1161 			if (!PageUptodate(page)) {
1162 				ret = ext4_mb_init_cache(page, NULL, gfp);
1163 				if (ret) {
1164 					unlock_page(page);
1165 					goto err;
1166 				}
1167 				mb_cmp_bitmaps(e4b, page_address(page) +
1168 					       (poff * sb->s_blocksize));
1169 			}
1170 			unlock_page(page);
1171 		}
1172 	}
1173 	if (page == NULL) {
1174 		ret = -ENOMEM;
1175 		goto err;
1176 	}
1177 	if (!PageUptodate(page)) {
1178 		ret = -EIO;
1179 		goto err;
1180 	}
1181 
1182 	/* Pages marked accessed already */
1183 	e4b->bd_bitmap_page = page;
1184 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1185 
1186 	block++;
1187 	pnum = block / blocks_per_page;
1188 	poff = block % blocks_per_page;
1189 
1190 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191 	if (page == NULL || !PageUptodate(page)) {
1192 		if (page)
1193 			put_page(page);
1194 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1195 		if (page) {
1196 			BUG_ON(page->mapping != inode->i_mapping);
1197 			if (!PageUptodate(page)) {
1198 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1199 							 gfp);
1200 				if (ret) {
1201 					unlock_page(page);
1202 					goto err;
1203 				}
1204 			}
1205 			unlock_page(page);
1206 		}
1207 	}
1208 	if (page == NULL) {
1209 		ret = -ENOMEM;
1210 		goto err;
1211 	}
1212 	if (!PageUptodate(page)) {
1213 		ret = -EIO;
1214 		goto err;
1215 	}
1216 
1217 	/* Pages marked accessed already */
1218 	e4b->bd_buddy_page = page;
1219 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1220 
1221 	BUG_ON(e4b->bd_bitmap_page == NULL);
1222 	BUG_ON(e4b->bd_buddy_page == NULL);
1223 
1224 	return 0;
1225 
1226 err:
1227 	if (page)
1228 		put_page(page);
1229 	if (e4b->bd_bitmap_page)
1230 		put_page(e4b->bd_bitmap_page);
1231 	if (e4b->bd_buddy_page)
1232 		put_page(e4b->bd_buddy_page);
1233 	e4b->bd_buddy = NULL;
1234 	e4b->bd_bitmap = NULL;
1235 	return ret;
1236 }
1237 
1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239 			      struct ext4_buddy *e4b)
1240 {
1241 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1242 }
1243 
1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1245 {
1246 	if (e4b->bd_bitmap_page)
1247 		put_page(e4b->bd_bitmap_page);
1248 	if (e4b->bd_buddy_page)
1249 		put_page(e4b->bd_buddy_page);
1250 }
1251 
1252 
1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1254 {
1255 	int order = 1;
1256 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1257 	void *bb;
1258 
1259 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1261 
1262 	bb = e4b->bd_buddy;
1263 	while (order <= e4b->bd_blkbits + 1) {
1264 		block = block >> 1;
1265 		if (!mb_test_bit(block, bb)) {
1266 			/* this block is part of buddy of order 'order' */
1267 			return order;
1268 		}
1269 		bb += bb_incr;
1270 		bb_incr >>= 1;
1271 		order++;
1272 	}
1273 	return 0;
1274 }
1275 
1276 static void mb_clear_bits(void *bm, int cur, int len)
1277 {
1278 	__u32 *addr;
1279 
1280 	len = cur + len;
1281 	while (cur < len) {
1282 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1283 			/* fast path: clear whole word at once */
1284 			addr = bm + (cur >> 3);
1285 			*addr = 0;
1286 			cur += 32;
1287 			continue;
1288 		}
1289 		mb_clear_bit(cur, bm);
1290 		cur++;
1291 	}
1292 }
1293 
1294 /* clear bits in given range
1295  * will return first found zero bit if any, -1 otherwise
1296  */
1297 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1298 {
1299 	__u32 *addr;
1300 	int zero_bit = -1;
1301 
1302 	len = cur + len;
1303 	while (cur < len) {
1304 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 			/* fast path: clear whole word at once */
1306 			addr = bm + (cur >> 3);
1307 			if (*addr != (__u32)(-1) && zero_bit == -1)
1308 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1309 			*addr = 0;
1310 			cur += 32;
1311 			continue;
1312 		}
1313 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1314 			zero_bit = cur;
1315 		cur++;
1316 	}
1317 
1318 	return zero_bit;
1319 }
1320 
1321 void ext4_set_bits(void *bm, int cur, int len)
1322 {
1323 	__u32 *addr;
1324 
1325 	len = cur + len;
1326 	while (cur < len) {
1327 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1328 			/* fast path: set whole word at once */
1329 			addr = bm + (cur >> 3);
1330 			*addr = 0xffffffff;
1331 			cur += 32;
1332 			continue;
1333 		}
1334 		mb_set_bit(cur, bm);
1335 		cur++;
1336 	}
1337 }
1338 
1339 /*
1340  * _________________________________________________________________ */
1341 
1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1343 {
1344 	if (mb_test_bit(*bit + side, bitmap)) {
1345 		mb_clear_bit(*bit, bitmap);
1346 		(*bit) -= side;
1347 		return 1;
1348 	}
1349 	else {
1350 		(*bit) += side;
1351 		mb_set_bit(*bit, bitmap);
1352 		return -1;
1353 	}
1354 }
1355 
1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1357 {
1358 	int max;
1359 	int order = 1;
1360 	void *buddy = mb_find_buddy(e4b, order, &max);
1361 
1362 	while (buddy) {
1363 		void *buddy2;
1364 
1365 		/* Bits in range [first; last] are known to be set since
1366 		 * corresponding blocks were allocated. Bits in range
1367 		 * (first; last) will stay set because they form buddies on
1368 		 * upper layer. We just deal with borders if they don't
1369 		 * align with upper layer and then go up.
1370 		 * Releasing entire group is all about clearing
1371 		 * single bit of highest order buddy.
1372 		 */
1373 
1374 		/* Example:
1375 		 * ---------------------------------
1376 		 * |   1   |   1   |   1   |   1   |
1377 		 * ---------------------------------
1378 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379 		 * ---------------------------------
1380 		 *   0   1   2   3   4   5   6   7
1381 		 *      \_____________________/
1382 		 *
1383 		 * Neither [1] nor [6] is aligned to above layer.
1384 		 * Left neighbour [0] is free, so mark it busy,
1385 		 * decrease bb_counters and extend range to
1386 		 * [0; 6]
1387 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388 		 * mark [6] free, increase bb_counters and shrink range to
1389 		 * [0; 5].
1390 		 * Then shift range to [0; 2], go up and do the same.
1391 		 */
1392 
1393 
1394 		if (first & 1)
1395 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1396 		if (!(last & 1))
1397 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1398 		if (first > last)
1399 			break;
1400 		order++;
1401 
1402 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403 			mb_clear_bits(buddy, first, last - first + 1);
1404 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1405 			break;
1406 		}
1407 		first >>= 1;
1408 		last >>= 1;
1409 		buddy = buddy2;
1410 	}
1411 }
1412 
1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414 			   int first, int count)
1415 {
1416 	int left_is_free = 0;
1417 	int right_is_free = 0;
1418 	int block;
1419 	int last = first + count - 1;
1420 	struct super_block *sb = e4b->bd_sb;
1421 
1422 	if (WARN_ON(count == 0))
1423 		return;
1424 	BUG_ON(last >= (sb->s_blocksize << 3));
1425 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426 	/* Don't bother if the block group is corrupt. */
1427 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1428 		return;
1429 
1430 	mb_check_buddy(e4b);
1431 	mb_free_blocks_double(inode, e4b, first, count);
1432 
1433 	e4b->bd_info->bb_free += count;
1434 	if (first < e4b->bd_info->bb_first_free)
1435 		e4b->bd_info->bb_first_free = first;
1436 
1437 	/* access memory sequentially: check left neighbour,
1438 	 * clear range and then check right neighbour
1439 	 */
1440 	if (first != 0)
1441 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1445 
1446 	if (unlikely(block != -1)) {
1447 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 		ext4_fsblk_t blocknr;
1449 
1450 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451 		blocknr += EXT4_C2B(sbi, block);
1452 		ext4_grp_locked_error(sb, e4b->bd_group,
1453 				      inode ? inode->i_ino : 0,
1454 				      blocknr,
1455 				      "freeing already freed block "
1456 				      "(bit %u); block bitmap corrupt.",
1457 				      block);
1458 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460 		mb_regenerate_buddy(e4b);
1461 		goto done;
1462 	}
1463 
1464 	/* let's maintain fragments counter */
1465 	if (left_is_free && right_is_free)
1466 		e4b->bd_info->bb_fragments--;
1467 	else if (!left_is_free && !right_is_free)
1468 		e4b->bd_info->bb_fragments++;
1469 
1470 	/* buddy[0] == bd_bitmap is a special case, so handle
1471 	 * it right away and let mb_buddy_mark_free stay free of
1472 	 * zero order checks.
1473 	 * Check if neighbours are to be coaleasced,
1474 	 * adjust bitmap bb_counters and borders appropriately.
1475 	 */
1476 	if (first & 1) {
1477 		first += !left_is_free;
1478 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1479 	}
1480 	if (!(last & 1)) {
1481 		last -= !right_is_free;
1482 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1483 	}
1484 
1485 	if (first <= last)
1486 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1487 
1488 done:
1489 	mb_set_largest_free_order(sb, e4b->bd_info);
1490 	mb_check_buddy(e4b);
1491 }
1492 
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 				int needed, struct ext4_free_extent *ex)
1495 {
1496 	int next = block;
1497 	int max, order;
1498 	void *buddy;
1499 
1500 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501 	BUG_ON(ex == NULL);
1502 
1503 	buddy = mb_find_buddy(e4b, 0, &max);
1504 	BUG_ON(buddy == NULL);
1505 	BUG_ON(block >= max);
1506 	if (mb_test_bit(block, buddy)) {
1507 		ex->fe_len = 0;
1508 		ex->fe_start = 0;
1509 		ex->fe_group = 0;
1510 		return 0;
1511 	}
1512 
1513 	/* find actual order */
1514 	order = mb_find_order_for_block(e4b, block);
1515 	block = block >> order;
1516 
1517 	ex->fe_len = 1 << order;
1518 	ex->fe_start = block << order;
1519 	ex->fe_group = e4b->bd_group;
1520 
1521 	/* calc difference from given start */
1522 	next = next - ex->fe_start;
1523 	ex->fe_len -= next;
1524 	ex->fe_start += next;
1525 
1526 	while (needed > ex->fe_len &&
1527 	       mb_find_buddy(e4b, order, &max)) {
1528 
1529 		if (block + 1 >= max)
1530 			break;
1531 
1532 		next = (block + 1) * (1 << order);
1533 		if (mb_test_bit(next, e4b->bd_bitmap))
1534 			break;
1535 
1536 		order = mb_find_order_for_block(e4b, next);
1537 
1538 		block = next >> order;
1539 		ex->fe_len += 1 << order;
1540 	}
1541 
1542 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1543 		/* Should never happen! (but apparently sometimes does?!?) */
1544 		WARN_ON(1);
1545 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1546 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1547 			   block, order, needed, ex->fe_group, ex->fe_start,
1548 			   ex->fe_len, ex->fe_logical);
1549 		ex->fe_len = 0;
1550 		ex->fe_start = 0;
1551 		ex->fe_group = 0;
1552 	}
1553 	return ex->fe_len;
1554 }
1555 
1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1557 {
1558 	int ord;
1559 	int mlen = 0;
1560 	int max = 0;
1561 	int cur;
1562 	int start = ex->fe_start;
1563 	int len = ex->fe_len;
1564 	unsigned ret = 0;
1565 	int len0 = len;
1566 	void *buddy;
1567 
1568 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569 	BUG_ON(e4b->bd_group != ex->fe_group);
1570 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571 	mb_check_buddy(e4b);
1572 	mb_mark_used_double(e4b, start, len);
1573 
1574 	e4b->bd_info->bb_free -= len;
1575 	if (e4b->bd_info->bb_first_free == start)
1576 		e4b->bd_info->bb_first_free += len;
1577 
1578 	/* let's maintain fragments counter */
1579 	if (start != 0)
1580 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583 	if (mlen && max)
1584 		e4b->bd_info->bb_fragments++;
1585 	else if (!mlen && !max)
1586 		e4b->bd_info->bb_fragments--;
1587 
1588 	/* let's maintain buddy itself */
1589 	while (len) {
1590 		ord = mb_find_order_for_block(e4b, start);
1591 
1592 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593 			/* the whole chunk may be allocated at once! */
1594 			mlen = 1 << ord;
1595 			buddy = mb_find_buddy(e4b, ord, &max);
1596 			BUG_ON((start >> ord) >= max);
1597 			mb_set_bit(start >> ord, buddy);
1598 			e4b->bd_info->bb_counters[ord]--;
1599 			start += mlen;
1600 			len -= mlen;
1601 			BUG_ON(len < 0);
1602 			continue;
1603 		}
1604 
1605 		/* store for history */
1606 		if (ret == 0)
1607 			ret = len | (ord << 16);
1608 
1609 		/* we have to split large buddy */
1610 		BUG_ON(ord <= 0);
1611 		buddy = mb_find_buddy(e4b, ord, &max);
1612 		mb_set_bit(start >> ord, buddy);
1613 		e4b->bd_info->bb_counters[ord]--;
1614 
1615 		ord--;
1616 		cur = (start >> ord) & ~1U;
1617 		buddy = mb_find_buddy(e4b, ord, &max);
1618 		mb_clear_bit(cur, buddy);
1619 		mb_clear_bit(cur + 1, buddy);
1620 		e4b->bd_info->bb_counters[ord]++;
1621 		e4b->bd_info->bb_counters[ord]++;
1622 	}
1623 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1624 
1625 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626 	mb_check_buddy(e4b);
1627 
1628 	return ret;
1629 }
1630 
1631 /*
1632  * Must be called under group lock!
1633  */
1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635 					struct ext4_buddy *e4b)
1636 {
1637 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638 	int ret;
1639 
1640 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1642 
1643 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1646 
1647 	/* preallocation can change ac_b_ex, thus we store actually
1648 	 * allocated blocks for history */
1649 	ac->ac_f_ex = ac->ac_b_ex;
1650 
1651 	ac->ac_status = AC_STATUS_FOUND;
1652 	ac->ac_tail = ret & 0xffff;
1653 	ac->ac_buddy = ret >> 16;
1654 
1655 	/*
1656 	 * take the page reference. We want the page to be pinned
1657 	 * so that we don't get a ext4_mb_init_cache_call for this
1658 	 * group until we update the bitmap. That would mean we
1659 	 * double allocate blocks. The reference is dropped
1660 	 * in ext4_mb_release_context
1661 	 */
1662 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663 	get_page(ac->ac_bitmap_page);
1664 	ac->ac_buddy_page = e4b->bd_buddy_page;
1665 	get_page(ac->ac_buddy_page);
1666 	/* store last allocated for subsequent stream allocation */
1667 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668 		spin_lock(&sbi->s_md_lock);
1669 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671 		spin_unlock(&sbi->s_md_lock);
1672 	}
1673 }
1674 
1675 /*
1676  * regular allocator, for general purposes allocation
1677  */
1678 
1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680 					struct ext4_buddy *e4b,
1681 					int finish_group)
1682 {
1683 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1685 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1686 	struct ext4_free_extent ex;
1687 	int max;
1688 
1689 	if (ac->ac_status == AC_STATUS_FOUND)
1690 		return;
1691 	/*
1692 	 * We don't want to scan for a whole year
1693 	 */
1694 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696 		ac->ac_status = AC_STATUS_BREAK;
1697 		return;
1698 	}
1699 
1700 	/*
1701 	 * Haven't found good chunk so far, let's continue
1702 	 */
1703 	if (bex->fe_len < gex->fe_len)
1704 		return;
1705 
1706 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707 			&& bex->fe_group == e4b->bd_group) {
1708 		/* recheck chunk's availability - we don't know
1709 		 * when it was found (within this lock-unlock
1710 		 * period or not) */
1711 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712 		if (max >= gex->fe_len) {
1713 			ext4_mb_use_best_found(ac, e4b);
1714 			return;
1715 		}
1716 	}
1717 }
1718 
1719 /*
1720  * The routine checks whether found extent is good enough. If it is,
1721  * then the extent gets marked used and flag is set to the context
1722  * to stop scanning. Otherwise, the extent is compared with the
1723  * previous found extent and if new one is better, then it's stored
1724  * in the context. Later, the best found extent will be used, if
1725  * mballoc can't find good enough extent.
1726  *
1727  * FIXME: real allocation policy is to be designed yet!
1728  */
1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730 					struct ext4_free_extent *ex,
1731 					struct ext4_buddy *e4b)
1732 {
1733 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1734 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1735 
1736 	BUG_ON(ex->fe_len <= 0);
1737 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1740 
1741 	ac->ac_found++;
1742 
1743 	/*
1744 	 * The special case - take what you catch first
1745 	 */
1746 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747 		*bex = *ex;
1748 		ext4_mb_use_best_found(ac, e4b);
1749 		return;
1750 	}
1751 
1752 	/*
1753 	 * Let's check whether the chuck is good enough
1754 	 */
1755 	if (ex->fe_len == gex->fe_len) {
1756 		*bex = *ex;
1757 		ext4_mb_use_best_found(ac, e4b);
1758 		return;
1759 	}
1760 
1761 	/*
1762 	 * If this is first found extent, just store it in the context
1763 	 */
1764 	if (bex->fe_len == 0) {
1765 		*bex = *ex;
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * If new found extent is better, store it in the context
1771 	 */
1772 	if (bex->fe_len < gex->fe_len) {
1773 		/* if the request isn't satisfied, any found extent
1774 		 * larger than previous best one is better */
1775 		if (ex->fe_len > bex->fe_len)
1776 			*bex = *ex;
1777 	} else if (ex->fe_len > gex->fe_len) {
1778 		/* if the request is satisfied, then we try to find
1779 		 * an extent that still satisfy the request, but is
1780 		 * smaller than previous one */
1781 		if (ex->fe_len < bex->fe_len)
1782 			*bex = *ex;
1783 	}
1784 
1785 	ext4_mb_check_limits(ac, e4b, 0);
1786 }
1787 
1788 static noinline_for_stack
1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790 					struct ext4_buddy *e4b)
1791 {
1792 	struct ext4_free_extent ex = ac->ac_b_ex;
1793 	ext4_group_t group = ex.fe_group;
1794 	int max;
1795 	int err;
1796 
1797 	BUG_ON(ex.fe_len <= 0);
1798 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799 	if (err)
1800 		return err;
1801 
1802 	ext4_lock_group(ac->ac_sb, group);
1803 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1804 
1805 	if (max > 0) {
1806 		ac->ac_b_ex = ex;
1807 		ext4_mb_use_best_found(ac, e4b);
1808 	}
1809 
1810 	ext4_unlock_group(ac->ac_sb, group);
1811 	ext4_mb_unload_buddy(e4b);
1812 
1813 	return 0;
1814 }
1815 
1816 static noinline_for_stack
1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818 				struct ext4_buddy *e4b)
1819 {
1820 	ext4_group_t group = ac->ac_g_ex.fe_group;
1821 	int max;
1822 	int err;
1823 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825 	struct ext4_free_extent ex;
1826 
1827 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828 		return 0;
1829 	if (grp->bb_free == 0)
1830 		return 0;
1831 
1832 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833 	if (err)
1834 		return err;
1835 
1836 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837 		ext4_mb_unload_buddy(e4b);
1838 		return 0;
1839 	}
1840 
1841 	ext4_lock_group(ac->ac_sb, group);
1842 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843 			     ac->ac_g_ex.fe_len, &ex);
1844 	ex.fe_logical = 0xDEADFA11; /* debug value */
1845 
1846 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847 		ext4_fsblk_t start;
1848 
1849 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850 			ex.fe_start;
1851 		/* use do_div to get remainder (would be 64-bit modulo) */
1852 		if (do_div(start, sbi->s_stripe) == 0) {
1853 			ac->ac_found++;
1854 			ac->ac_b_ex = ex;
1855 			ext4_mb_use_best_found(ac, e4b);
1856 		}
1857 	} else if (max >= ac->ac_g_ex.fe_len) {
1858 		BUG_ON(ex.fe_len <= 0);
1859 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861 		ac->ac_found++;
1862 		ac->ac_b_ex = ex;
1863 		ext4_mb_use_best_found(ac, e4b);
1864 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865 		/* Sometimes, caller may want to merge even small
1866 		 * number of blocks to an existing extent */
1867 		BUG_ON(ex.fe_len <= 0);
1868 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870 		ac->ac_found++;
1871 		ac->ac_b_ex = ex;
1872 		ext4_mb_use_best_found(ac, e4b);
1873 	}
1874 	ext4_unlock_group(ac->ac_sb, group);
1875 	ext4_mb_unload_buddy(e4b);
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * The routine scans buddy structures (not bitmap!) from given order
1882  * to max order and tries to find big enough chunk to satisfy the req
1883  */
1884 static noinline_for_stack
1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886 					struct ext4_buddy *e4b)
1887 {
1888 	struct super_block *sb = ac->ac_sb;
1889 	struct ext4_group_info *grp = e4b->bd_info;
1890 	void *buddy;
1891 	int i;
1892 	int k;
1893 	int max;
1894 
1895 	BUG_ON(ac->ac_2order <= 0);
1896 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897 		if (grp->bb_counters[i] == 0)
1898 			continue;
1899 
1900 		buddy = mb_find_buddy(e4b, i, &max);
1901 		BUG_ON(buddy == NULL);
1902 
1903 		k = mb_find_next_zero_bit(buddy, max, 0);
1904 		if (k >= max) {
1905 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1906 				"%d free clusters of order %d. But found 0",
1907 				grp->bb_counters[i], i);
1908 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1909 					 e4b->bd_group,
1910 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1911 			break;
1912 		}
1913 		ac->ac_found++;
1914 
1915 		ac->ac_b_ex.fe_len = 1 << i;
1916 		ac->ac_b_ex.fe_start = k << i;
1917 		ac->ac_b_ex.fe_group = e4b->bd_group;
1918 
1919 		ext4_mb_use_best_found(ac, e4b);
1920 
1921 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922 
1923 		if (EXT4_SB(sb)->s_mb_stats)
1924 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925 
1926 		break;
1927 	}
1928 }
1929 
1930 /*
1931  * The routine scans the group and measures all found extents.
1932  * In order to optimize scanning, caller must pass number of
1933  * free blocks in the group, so the routine can know upper limit.
1934  */
1935 static noinline_for_stack
1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 					struct ext4_buddy *e4b)
1938 {
1939 	struct super_block *sb = ac->ac_sb;
1940 	void *bitmap = e4b->bd_bitmap;
1941 	struct ext4_free_extent ex;
1942 	int i;
1943 	int free;
1944 
1945 	free = e4b->bd_info->bb_free;
1946 	if (WARN_ON(free <= 0))
1947 		return;
1948 
1949 	i = e4b->bd_info->bb_first_free;
1950 
1951 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1952 		i = mb_find_next_zero_bit(bitmap,
1953 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1954 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1955 			/*
1956 			 * IF we have corrupt bitmap, we won't find any
1957 			 * free blocks even though group info says we
1958 			 * we have free blocks
1959 			 */
1960 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1961 					"%d free clusters as per "
1962 					"group info. But bitmap says 0",
1963 					free);
1964 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1965 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1966 			break;
1967 		}
1968 
1969 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1970 		if (WARN_ON(ex.fe_len <= 0))
1971 			break;
1972 		if (free < ex.fe_len) {
1973 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1974 					"%d free clusters as per "
1975 					"group info. But got %d blocks",
1976 					free, ex.fe_len);
1977 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1978 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1979 			/*
1980 			 * The number of free blocks differs. This mostly
1981 			 * indicate that the bitmap is corrupt. So exit
1982 			 * without claiming the space.
1983 			 */
1984 			break;
1985 		}
1986 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1987 		ext4_mb_measure_extent(ac, &ex, e4b);
1988 
1989 		i += ex.fe_len;
1990 		free -= ex.fe_len;
1991 	}
1992 
1993 	ext4_mb_check_limits(ac, e4b, 1);
1994 }
1995 
1996 /*
1997  * This is a special case for storages like raid5
1998  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1999  */
2000 static noinline_for_stack
2001 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2002 				 struct ext4_buddy *e4b)
2003 {
2004 	struct super_block *sb = ac->ac_sb;
2005 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2006 	void *bitmap = e4b->bd_bitmap;
2007 	struct ext4_free_extent ex;
2008 	ext4_fsblk_t first_group_block;
2009 	ext4_fsblk_t a;
2010 	ext4_grpblk_t i;
2011 	int max;
2012 
2013 	BUG_ON(sbi->s_stripe == 0);
2014 
2015 	/* find first stripe-aligned block in group */
2016 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2017 
2018 	a = first_group_block + sbi->s_stripe - 1;
2019 	do_div(a, sbi->s_stripe);
2020 	i = (a * sbi->s_stripe) - first_group_block;
2021 
2022 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2023 		if (!mb_test_bit(i, bitmap)) {
2024 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2025 			if (max >= sbi->s_stripe) {
2026 				ac->ac_found++;
2027 				ex.fe_logical = 0xDEADF00D; /* debug value */
2028 				ac->ac_b_ex = ex;
2029 				ext4_mb_use_best_found(ac, e4b);
2030 				break;
2031 			}
2032 		}
2033 		i += sbi->s_stripe;
2034 	}
2035 }
2036 
2037 /*
2038  * This is now called BEFORE we load the buddy bitmap.
2039  * Returns either 1 or 0 indicating that the group is either suitable
2040  * for the allocation or not. In addition it can also return negative
2041  * error code when something goes wrong.
2042  */
2043 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2044 				ext4_group_t group, int cr)
2045 {
2046 	unsigned free, fragments;
2047 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2048 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2049 
2050 	BUG_ON(cr < 0 || cr >= 4);
2051 
2052 	free = grp->bb_free;
2053 	if (free == 0)
2054 		return 0;
2055 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2056 		return 0;
2057 
2058 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2059 		return 0;
2060 
2061 	/* We only do this if the grp has never been initialized */
2062 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2063 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2064 		if (ret)
2065 			return ret;
2066 	}
2067 
2068 	fragments = grp->bb_fragments;
2069 	if (fragments == 0)
2070 		return 0;
2071 
2072 	switch (cr) {
2073 	case 0:
2074 		BUG_ON(ac->ac_2order == 0);
2075 
2076 		/* Avoid using the first bg of a flexgroup for data files */
2077 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2078 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2079 		    ((group % flex_size) == 0))
2080 			return 0;
2081 
2082 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2083 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2084 			return 1;
2085 
2086 		if (grp->bb_largest_free_order < ac->ac_2order)
2087 			return 0;
2088 
2089 		return 1;
2090 	case 1:
2091 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2092 			return 1;
2093 		break;
2094 	case 2:
2095 		if (free >= ac->ac_g_ex.fe_len)
2096 			return 1;
2097 		break;
2098 	case 3:
2099 		return 1;
2100 	default:
2101 		BUG();
2102 	}
2103 
2104 	return 0;
2105 }
2106 
2107 static noinline_for_stack int
2108 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2109 {
2110 	ext4_group_t ngroups, group, i;
2111 	int cr;
2112 	int err = 0, first_err = 0;
2113 	struct ext4_sb_info *sbi;
2114 	struct super_block *sb;
2115 	struct ext4_buddy e4b;
2116 
2117 	sb = ac->ac_sb;
2118 	sbi = EXT4_SB(sb);
2119 	ngroups = ext4_get_groups_count(sb);
2120 	/* non-extent files are limited to low blocks/groups */
2121 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2122 		ngroups = sbi->s_blockfile_groups;
2123 
2124 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2125 
2126 	/* first, try the goal */
2127 	err = ext4_mb_find_by_goal(ac, &e4b);
2128 	if (err || ac->ac_status == AC_STATUS_FOUND)
2129 		goto out;
2130 
2131 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2132 		goto out;
2133 
2134 	/*
2135 	 * ac->ac2_order is set only if the fe_len is a power of 2
2136 	 * if ac2_order is set we also set criteria to 0 so that we
2137 	 * try exact allocation using buddy.
2138 	 */
2139 	i = fls(ac->ac_g_ex.fe_len);
2140 	ac->ac_2order = 0;
2141 	/*
2142 	 * We search using buddy data only if the order of the request
2143 	 * is greater than equal to the sbi_s_mb_order2_reqs
2144 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2145 	 * We also support searching for power-of-two requests only for
2146 	 * requests upto maximum buddy size we have constructed.
2147 	 */
2148 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2149 		/*
2150 		 * This should tell if fe_len is exactly power of 2
2151 		 */
2152 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2153 			ac->ac_2order = array_index_nospec(i - 1,
2154 							   sb->s_blocksize_bits + 2);
2155 	}
2156 
2157 	/* if stream allocation is enabled, use global goal */
2158 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2159 		/* TBD: may be hot point */
2160 		spin_lock(&sbi->s_md_lock);
2161 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2162 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2163 		spin_unlock(&sbi->s_md_lock);
2164 	}
2165 
2166 	/* Let's just scan groups to find more-less suitable blocks */
2167 	cr = ac->ac_2order ? 0 : 1;
2168 	/*
2169 	 * cr == 0 try to get exact allocation,
2170 	 * cr == 3  try to get anything
2171 	 */
2172 repeat:
2173 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2174 		ac->ac_criteria = cr;
2175 		/*
2176 		 * searching for the right group start
2177 		 * from the goal value specified
2178 		 */
2179 		group = ac->ac_g_ex.fe_group;
2180 
2181 		for (i = 0; i < ngroups; group++, i++) {
2182 			int ret = 0;
2183 			cond_resched();
2184 			/*
2185 			 * Artificially restricted ngroups for non-extent
2186 			 * files makes group > ngroups possible on first loop.
2187 			 */
2188 			if (group >= ngroups)
2189 				group = 0;
2190 
2191 			/* This now checks without needing the buddy page */
2192 			ret = ext4_mb_good_group(ac, group, cr);
2193 			if (ret <= 0) {
2194 				if (!first_err)
2195 					first_err = ret;
2196 				continue;
2197 			}
2198 
2199 			err = ext4_mb_load_buddy(sb, group, &e4b);
2200 			if (err)
2201 				goto out;
2202 
2203 			ext4_lock_group(sb, group);
2204 
2205 			/*
2206 			 * We need to check again after locking the
2207 			 * block group
2208 			 */
2209 			ret = ext4_mb_good_group(ac, group, cr);
2210 			if (ret <= 0) {
2211 				ext4_unlock_group(sb, group);
2212 				ext4_mb_unload_buddy(&e4b);
2213 				if (!first_err)
2214 					first_err = ret;
2215 				continue;
2216 			}
2217 
2218 			ac->ac_groups_scanned++;
2219 			if (cr == 0)
2220 				ext4_mb_simple_scan_group(ac, &e4b);
2221 			else if (cr == 1 && sbi->s_stripe &&
2222 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2223 				ext4_mb_scan_aligned(ac, &e4b);
2224 			else
2225 				ext4_mb_complex_scan_group(ac, &e4b);
2226 
2227 			ext4_unlock_group(sb, group);
2228 			ext4_mb_unload_buddy(&e4b);
2229 
2230 			if (ac->ac_status != AC_STATUS_CONTINUE)
2231 				break;
2232 		}
2233 	}
2234 
2235 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2236 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2237 		/*
2238 		 * We've been searching too long. Let's try to allocate
2239 		 * the best chunk we've found so far
2240 		 */
2241 
2242 		ext4_mb_try_best_found(ac, &e4b);
2243 		if (ac->ac_status != AC_STATUS_FOUND) {
2244 			/*
2245 			 * Someone more lucky has already allocated it.
2246 			 * The only thing we can do is just take first
2247 			 * found block(s)
2248 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2249 			 */
2250 			ac->ac_b_ex.fe_group = 0;
2251 			ac->ac_b_ex.fe_start = 0;
2252 			ac->ac_b_ex.fe_len = 0;
2253 			ac->ac_status = AC_STATUS_CONTINUE;
2254 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2255 			cr = 3;
2256 			atomic_inc(&sbi->s_mb_lost_chunks);
2257 			goto repeat;
2258 		}
2259 	}
2260 out:
2261 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2262 		err = first_err;
2263 	return err;
2264 }
2265 
2266 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2267 {
2268 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2269 	ext4_group_t group;
2270 
2271 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2272 		return NULL;
2273 	group = *pos + 1;
2274 	return (void *) ((unsigned long) group);
2275 }
2276 
2277 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2278 {
2279 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2280 	ext4_group_t group;
2281 
2282 	++*pos;
2283 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2284 		return NULL;
2285 	group = *pos + 1;
2286 	return (void *) ((unsigned long) group);
2287 }
2288 
2289 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2290 {
2291 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2292 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2293 	int i;
2294 	int err, buddy_loaded = 0;
2295 	struct ext4_buddy e4b;
2296 	struct ext4_group_info *grinfo;
2297 	unsigned char blocksize_bits = min_t(unsigned char,
2298 					     sb->s_blocksize_bits,
2299 					     EXT4_MAX_BLOCK_LOG_SIZE);
2300 	struct sg {
2301 		struct ext4_group_info info;
2302 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2303 	} sg;
2304 
2305 	group--;
2306 	if (group == 0)
2307 		seq_puts(seq, "#group: free  frags first ["
2308 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2309 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2310 
2311 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2312 		sizeof(struct ext4_group_info);
2313 
2314 	grinfo = ext4_get_group_info(sb, group);
2315 	/* Load the group info in memory only if not already loaded. */
2316 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2317 		err = ext4_mb_load_buddy(sb, group, &e4b);
2318 		if (err) {
2319 			seq_printf(seq, "#%-5u: I/O error\n", group);
2320 			return 0;
2321 		}
2322 		buddy_loaded = 1;
2323 	}
2324 
2325 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2326 
2327 	if (buddy_loaded)
2328 		ext4_mb_unload_buddy(&e4b);
2329 
2330 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2331 			sg.info.bb_fragments, sg.info.bb_first_free);
2332 	for (i = 0; i <= 13; i++)
2333 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2334 				sg.info.bb_counters[i] : 0);
2335 	seq_printf(seq, " ]\n");
2336 
2337 	return 0;
2338 }
2339 
2340 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2341 {
2342 }
2343 
2344 const struct seq_operations ext4_mb_seq_groups_ops = {
2345 	.start  = ext4_mb_seq_groups_start,
2346 	.next   = ext4_mb_seq_groups_next,
2347 	.stop   = ext4_mb_seq_groups_stop,
2348 	.show   = ext4_mb_seq_groups_show,
2349 };
2350 
2351 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2352 {
2353 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2354 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2355 
2356 	BUG_ON(!cachep);
2357 	return cachep;
2358 }
2359 
2360 /*
2361  * Allocate the top-level s_group_info array for the specified number
2362  * of groups
2363  */
2364 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2365 {
2366 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2367 	unsigned size;
2368 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2369 
2370 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2371 		EXT4_DESC_PER_BLOCK_BITS(sb);
2372 	if (size <= sbi->s_group_info_size)
2373 		return 0;
2374 
2375 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2376 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2377 	if (!new_groupinfo) {
2378 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2379 		return -ENOMEM;
2380 	}
2381 	rcu_read_lock();
2382 	old_groupinfo = rcu_dereference(sbi->s_group_info);
2383 	if (old_groupinfo)
2384 		memcpy(new_groupinfo, old_groupinfo,
2385 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2386 	rcu_read_unlock();
2387 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2388 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2389 	if (old_groupinfo)
2390 		ext4_kvfree_array_rcu(old_groupinfo);
2391 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2392 		   sbi->s_group_info_size);
2393 	return 0;
2394 }
2395 
2396 /* Create and initialize ext4_group_info data for the given group. */
2397 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2398 			  struct ext4_group_desc *desc)
2399 {
2400 	int i;
2401 	int metalen = 0;
2402 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2403 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2404 	struct ext4_group_info **meta_group_info;
2405 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2406 
2407 	/*
2408 	 * First check if this group is the first of a reserved block.
2409 	 * If it's true, we have to allocate a new table of pointers
2410 	 * to ext4_group_info structures
2411 	 */
2412 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2413 		metalen = sizeof(*meta_group_info) <<
2414 			EXT4_DESC_PER_BLOCK_BITS(sb);
2415 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2416 		if (meta_group_info == NULL) {
2417 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2418 				 "for a buddy group");
2419 			goto exit_meta_group_info;
2420 		}
2421 		rcu_read_lock();
2422 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2423 		rcu_read_unlock();
2424 	}
2425 
2426 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2427 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2428 
2429 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2430 	if (meta_group_info[i] == NULL) {
2431 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2432 		goto exit_group_info;
2433 	}
2434 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2435 		&(meta_group_info[i]->bb_state));
2436 
2437 	/*
2438 	 * initialize bb_free to be able to skip
2439 	 * empty groups without initialization
2440 	 */
2441 	if (ext4_has_group_desc_csum(sb) &&
2442 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2443 		meta_group_info[i]->bb_free =
2444 			ext4_free_clusters_after_init(sb, group, desc);
2445 	} else {
2446 		meta_group_info[i]->bb_free =
2447 			ext4_free_group_clusters(sb, desc);
2448 	}
2449 
2450 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2451 	init_rwsem(&meta_group_info[i]->alloc_sem);
2452 	meta_group_info[i]->bb_free_root = RB_ROOT;
2453 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2454 
2455 #ifdef DOUBLE_CHECK
2456 	{
2457 		struct buffer_head *bh;
2458 		meta_group_info[i]->bb_bitmap =
2459 			kmalloc(sb->s_blocksize, GFP_NOFS);
2460 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2461 		bh = ext4_read_block_bitmap(sb, group);
2462 		BUG_ON(IS_ERR_OR_NULL(bh));
2463 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2464 			sb->s_blocksize);
2465 		put_bh(bh);
2466 	}
2467 #endif
2468 
2469 	return 0;
2470 
2471 exit_group_info:
2472 	/* If a meta_group_info table has been allocated, release it now */
2473 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2474 		struct ext4_group_info ***group_info;
2475 
2476 		rcu_read_lock();
2477 		group_info = rcu_dereference(sbi->s_group_info);
2478 		kfree(group_info[idx]);
2479 		group_info[idx] = NULL;
2480 		rcu_read_unlock();
2481 	}
2482 exit_meta_group_info:
2483 	return -ENOMEM;
2484 } /* ext4_mb_add_groupinfo */
2485 
2486 static int ext4_mb_init_backend(struct super_block *sb)
2487 {
2488 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2489 	ext4_group_t i;
2490 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2491 	int err;
2492 	struct ext4_group_desc *desc;
2493 	struct ext4_group_info ***group_info;
2494 	struct kmem_cache *cachep;
2495 
2496 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2497 	if (err)
2498 		return err;
2499 
2500 	sbi->s_buddy_cache = new_inode(sb);
2501 	if (sbi->s_buddy_cache == NULL) {
2502 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2503 		goto err_freesgi;
2504 	}
2505 	/* To avoid potentially colliding with an valid on-disk inode number,
2506 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2507 	 * not in the inode hash, so it should never be found by iget(), but
2508 	 * this will avoid confusion if it ever shows up during debugging. */
2509 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2510 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2511 	for (i = 0; i < ngroups; i++) {
2512 		cond_resched();
2513 		desc = ext4_get_group_desc(sb, i, NULL);
2514 		if (desc == NULL) {
2515 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2516 			goto err_freebuddy;
2517 		}
2518 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2519 			goto err_freebuddy;
2520 	}
2521 
2522 	return 0;
2523 
2524 err_freebuddy:
2525 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2526 	while (i-- > 0)
2527 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2528 	i = sbi->s_group_info_size;
2529 	rcu_read_lock();
2530 	group_info = rcu_dereference(sbi->s_group_info);
2531 	while (i-- > 0)
2532 		kfree(group_info[i]);
2533 	rcu_read_unlock();
2534 	iput(sbi->s_buddy_cache);
2535 err_freesgi:
2536 	rcu_read_lock();
2537 	kvfree(rcu_dereference(sbi->s_group_info));
2538 	rcu_read_unlock();
2539 	return -ENOMEM;
2540 }
2541 
2542 static void ext4_groupinfo_destroy_slabs(void)
2543 {
2544 	int i;
2545 
2546 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2547 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2548 		ext4_groupinfo_caches[i] = NULL;
2549 	}
2550 }
2551 
2552 static int ext4_groupinfo_create_slab(size_t size)
2553 {
2554 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2555 	int slab_size;
2556 	int blocksize_bits = order_base_2(size);
2557 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2558 	struct kmem_cache *cachep;
2559 
2560 	if (cache_index >= NR_GRPINFO_CACHES)
2561 		return -EINVAL;
2562 
2563 	if (unlikely(cache_index < 0))
2564 		cache_index = 0;
2565 
2566 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2567 	if (ext4_groupinfo_caches[cache_index]) {
2568 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2569 		return 0;	/* Already created */
2570 	}
2571 
2572 	slab_size = offsetof(struct ext4_group_info,
2573 				bb_counters[blocksize_bits + 2]);
2574 
2575 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2576 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2577 					NULL);
2578 
2579 	ext4_groupinfo_caches[cache_index] = cachep;
2580 
2581 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2582 	if (!cachep) {
2583 		printk(KERN_EMERG
2584 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2585 		return -ENOMEM;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 int ext4_mb_init(struct super_block *sb)
2592 {
2593 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2594 	unsigned i, j;
2595 	unsigned offset, offset_incr;
2596 	unsigned max;
2597 	int ret;
2598 
2599 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2600 
2601 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2602 	if (sbi->s_mb_offsets == NULL) {
2603 		ret = -ENOMEM;
2604 		goto out;
2605 	}
2606 
2607 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2608 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2609 	if (sbi->s_mb_maxs == NULL) {
2610 		ret = -ENOMEM;
2611 		goto out;
2612 	}
2613 
2614 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2615 	if (ret < 0)
2616 		goto out;
2617 
2618 	/* order 0 is regular bitmap */
2619 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2620 	sbi->s_mb_offsets[0] = 0;
2621 
2622 	i = 1;
2623 	offset = 0;
2624 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2625 	max = sb->s_blocksize << 2;
2626 	do {
2627 		sbi->s_mb_offsets[i] = offset;
2628 		sbi->s_mb_maxs[i] = max;
2629 		offset += offset_incr;
2630 		offset_incr = offset_incr >> 1;
2631 		max = max >> 1;
2632 		i++;
2633 	} while (i <= sb->s_blocksize_bits + 1);
2634 
2635 	spin_lock_init(&sbi->s_md_lock);
2636 	spin_lock_init(&sbi->s_bal_lock);
2637 	sbi->s_mb_free_pending = 0;
2638 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2639 
2640 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2641 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2642 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2643 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2644 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2645 	/*
2646 	 * The default group preallocation is 512, which for 4k block
2647 	 * sizes translates to 2 megabytes.  However for bigalloc file
2648 	 * systems, this is probably too big (i.e, if the cluster size
2649 	 * is 1 megabyte, then group preallocation size becomes half a
2650 	 * gigabyte!).  As a default, we will keep a two megabyte
2651 	 * group pralloc size for cluster sizes up to 64k, and after
2652 	 * that, we will force a minimum group preallocation size of
2653 	 * 32 clusters.  This translates to 8 megs when the cluster
2654 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2655 	 * which seems reasonable as a default.
2656 	 */
2657 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2658 				       sbi->s_cluster_bits, 32);
2659 	/*
2660 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2661 	 * to the lowest multiple of s_stripe which is bigger than
2662 	 * the s_mb_group_prealloc as determined above. We want
2663 	 * the preallocation size to be an exact multiple of the
2664 	 * RAID stripe size so that preallocations don't fragment
2665 	 * the stripes.
2666 	 */
2667 	if (sbi->s_stripe > 1) {
2668 		sbi->s_mb_group_prealloc = roundup(
2669 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2670 	}
2671 
2672 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2673 	if (sbi->s_locality_groups == NULL) {
2674 		ret = -ENOMEM;
2675 		goto out;
2676 	}
2677 	for_each_possible_cpu(i) {
2678 		struct ext4_locality_group *lg;
2679 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2680 		mutex_init(&lg->lg_mutex);
2681 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2682 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2683 		spin_lock_init(&lg->lg_prealloc_lock);
2684 	}
2685 
2686 	/* init file for buddy data */
2687 	ret = ext4_mb_init_backend(sb);
2688 	if (ret != 0)
2689 		goto out_free_locality_groups;
2690 
2691 	return 0;
2692 
2693 out_free_locality_groups:
2694 	free_percpu(sbi->s_locality_groups);
2695 	sbi->s_locality_groups = NULL;
2696 out:
2697 	kfree(sbi->s_mb_offsets);
2698 	sbi->s_mb_offsets = NULL;
2699 	kfree(sbi->s_mb_maxs);
2700 	sbi->s_mb_maxs = NULL;
2701 	return ret;
2702 }
2703 
2704 /* need to called with the ext4 group lock held */
2705 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2706 {
2707 	struct ext4_prealloc_space *pa;
2708 	struct list_head *cur, *tmp;
2709 	int count = 0;
2710 
2711 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2712 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2713 		list_del(&pa->pa_group_list);
2714 		count++;
2715 		kmem_cache_free(ext4_pspace_cachep, pa);
2716 	}
2717 	if (count)
2718 		mb_debug(1, "mballoc: %u PAs left\n", count);
2719 
2720 }
2721 
2722 int ext4_mb_release(struct super_block *sb)
2723 {
2724 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2725 	ext4_group_t i;
2726 	int num_meta_group_infos;
2727 	struct ext4_group_info *grinfo, ***group_info;
2728 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2729 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2730 
2731 	if (sbi->s_group_info) {
2732 		for (i = 0; i < ngroups; i++) {
2733 			cond_resched();
2734 			grinfo = ext4_get_group_info(sb, i);
2735 #ifdef DOUBLE_CHECK
2736 			kfree(grinfo->bb_bitmap);
2737 #endif
2738 			ext4_lock_group(sb, i);
2739 			ext4_mb_cleanup_pa(grinfo);
2740 			ext4_unlock_group(sb, i);
2741 			kmem_cache_free(cachep, grinfo);
2742 		}
2743 		num_meta_group_infos = (ngroups +
2744 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2745 			EXT4_DESC_PER_BLOCK_BITS(sb);
2746 		rcu_read_lock();
2747 		group_info = rcu_dereference(sbi->s_group_info);
2748 		for (i = 0; i < num_meta_group_infos; i++)
2749 			kfree(group_info[i]);
2750 		kvfree(group_info);
2751 		rcu_read_unlock();
2752 	}
2753 	kfree(sbi->s_mb_offsets);
2754 	kfree(sbi->s_mb_maxs);
2755 	iput(sbi->s_buddy_cache);
2756 	if (sbi->s_mb_stats) {
2757 		ext4_msg(sb, KERN_INFO,
2758 		       "mballoc: %u blocks %u reqs (%u success)",
2759 				atomic_read(&sbi->s_bal_allocated),
2760 				atomic_read(&sbi->s_bal_reqs),
2761 				atomic_read(&sbi->s_bal_success));
2762 		ext4_msg(sb, KERN_INFO,
2763 		      "mballoc: %u extents scanned, %u goal hits, "
2764 				"%u 2^N hits, %u breaks, %u lost",
2765 				atomic_read(&sbi->s_bal_ex_scanned),
2766 				atomic_read(&sbi->s_bal_goals),
2767 				atomic_read(&sbi->s_bal_2orders),
2768 				atomic_read(&sbi->s_bal_breaks),
2769 				atomic_read(&sbi->s_mb_lost_chunks));
2770 		ext4_msg(sb, KERN_INFO,
2771 		       "mballoc: %lu generated and it took %Lu",
2772 				sbi->s_mb_buddies_generated,
2773 				sbi->s_mb_generation_time);
2774 		ext4_msg(sb, KERN_INFO,
2775 		       "mballoc: %u preallocated, %u discarded",
2776 				atomic_read(&sbi->s_mb_preallocated),
2777 				atomic_read(&sbi->s_mb_discarded));
2778 	}
2779 
2780 	free_percpu(sbi->s_locality_groups);
2781 
2782 	return 0;
2783 }
2784 
2785 static inline int ext4_issue_discard(struct super_block *sb,
2786 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2787 		struct bio **biop)
2788 {
2789 	ext4_fsblk_t discard_block;
2790 
2791 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2792 			 ext4_group_first_block_no(sb, block_group));
2793 	count = EXT4_C2B(EXT4_SB(sb), count);
2794 	trace_ext4_discard_blocks(sb,
2795 			(unsigned long long) discard_block, count);
2796 	if (biop) {
2797 		return __blkdev_issue_discard(sb->s_bdev,
2798 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2799 			(sector_t)count << (sb->s_blocksize_bits - 9),
2800 			GFP_NOFS, 0, biop);
2801 	} else
2802 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2803 }
2804 
2805 static void ext4_free_data_in_buddy(struct super_block *sb,
2806 				    struct ext4_free_data *entry)
2807 {
2808 	struct ext4_buddy e4b;
2809 	struct ext4_group_info *db;
2810 	int err, count = 0, count2 = 0;
2811 
2812 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2813 		 entry->efd_count, entry->efd_group, entry);
2814 
2815 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2816 	/* we expect to find existing buddy because it's pinned */
2817 	BUG_ON(err != 0);
2818 
2819 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2820 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2821 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2822 
2823 	db = e4b.bd_info;
2824 	/* there are blocks to put in buddy to make them really free */
2825 	count += entry->efd_count;
2826 	count2++;
2827 	ext4_lock_group(sb, entry->efd_group);
2828 	/* Take it out of per group rb tree */
2829 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2830 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2831 
2832 	/*
2833 	 * Clear the trimmed flag for the group so that the next
2834 	 * ext4_trim_fs can trim it.
2835 	 * If the volume is mounted with -o discard, online discard
2836 	 * is supported and the free blocks will be trimmed online.
2837 	 */
2838 	if (!test_opt(sb, DISCARD))
2839 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2840 
2841 	if (!db->bb_free_root.rb_node) {
2842 		/* No more items in the per group rb tree
2843 		 * balance refcounts from ext4_mb_free_metadata()
2844 		 */
2845 		put_page(e4b.bd_buddy_page);
2846 		put_page(e4b.bd_bitmap_page);
2847 	}
2848 	ext4_unlock_group(sb, entry->efd_group);
2849 	kmem_cache_free(ext4_free_data_cachep, entry);
2850 	ext4_mb_unload_buddy(&e4b);
2851 
2852 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2853 }
2854 
2855 /*
2856  * This function is called by the jbd2 layer once the commit has finished,
2857  * so we know we can free the blocks that were released with that commit.
2858  */
2859 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2860 {
2861 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2862 	struct ext4_free_data *entry, *tmp;
2863 	struct bio *discard_bio = NULL;
2864 	struct list_head freed_data_list;
2865 	struct list_head *cut_pos = NULL;
2866 	int err;
2867 
2868 	INIT_LIST_HEAD(&freed_data_list);
2869 
2870 	spin_lock(&sbi->s_md_lock);
2871 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2872 		if (entry->efd_tid != commit_tid)
2873 			break;
2874 		cut_pos = &entry->efd_list;
2875 	}
2876 	if (cut_pos)
2877 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2878 				  cut_pos);
2879 	spin_unlock(&sbi->s_md_lock);
2880 
2881 	if (test_opt(sb, DISCARD)) {
2882 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2883 			err = ext4_issue_discard(sb, entry->efd_group,
2884 						 entry->efd_start_cluster,
2885 						 entry->efd_count,
2886 						 &discard_bio);
2887 			if (err && err != -EOPNOTSUPP) {
2888 				ext4_msg(sb, KERN_WARNING, "discard request in"
2889 					 " group:%d block:%d count:%d failed"
2890 					 " with %d", entry->efd_group,
2891 					 entry->efd_start_cluster,
2892 					 entry->efd_count, err);
2893 			} else if (err == -EOPNOTSUPP)
2894 				break;
2895 		}
2896 
2897 		if (discard_bio) {
2898 			submit_bio_wait(discard_bio);
2899 			bio_put(discard_bio);
2900 		}
2901 	}
2902 
2903 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2904 		ext4_free_data_in_buddy(sb, entry);
2905 }
2906 
2907 int __init ext4_init_mballoc(void)
2908 {
2909 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2910 					SLAB_RECLAIM_ACCOUNT);
2911 	if (ext4_pspace_cachep == NULL)
2912 		return -ENOMEM;
2913 
2914 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2915 				    SLAB_RECLAIM_ACCOUNT);
2916 	if (ext4_ac_cachep == NULL) {
2917 		kmem_cache_destroy(ext4_pspace_cachep);
2918 		return -ENOMEM;
2919 	}
2920 
2921 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2922 					   SLAB_RECLAIM_ACCOUNT);
2923 	if (ext4_free_data_cachep == NULL) {
2924 		kmem_cache_destroy(ext4_pspace_cachep);
2925 		kmem_cache_destroy(ext4_ac_cachep);
2926 		return -ENOMEM;
2927 	}
2928 	return 0;
2929 }
2930 
2931 void ext4_exit_mballoc(void)
2932 {
2933 	/*
2934 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2935 	 * before destroying the slab cache.
2936 	 */
2937 	rcu_barrier();
2938 	kmem_cache_destroy(ext4_pspace_cachep);
2939 	kmem_cache_destroy(ext4_ac_cachep);
2940 	kmem_cache_destroy(ext4_free_data_cachep);
2941 	ext4_groupinfo_destroy_slabs();
2942 }
2943 
2944 
2945 /*
2946  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2947  * Returns 0 if success or error code
2948  */
2949 static noinline_for_stack int
2950 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2951 				handle_t *handle, unsigned int reserv_clstrs)
2952 {
2953 	struct buffer_head *bitmap_bh = NULL;
2954 	struct ext4_group_desc *gdp;
2955 	struct buffer_head *gdp_bh;
2956 	struct ext4_sb_info *sbi;
2957 	struct super_block *sb;
2958 	ext4_fsblk_t block;
2959 	int err, len;
2960 
2961 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2962 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2963 
2964 	sb = ac->ac_sb;
2965 	sbi = EXT4_SB(sb);
2966 
2967 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2968 	if (IS_ERR(bitmap_bh)) {
2969 		err = PTR_ERR(bitmap_bh);
2970 		bitmap_bh = NULL;
2971 		goto out_err;
2972 	}
2973 
2974 	BUFFER_TRACE(bitmap_bh, "getting write access");
2975 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2976 	if (err)
2977 		goto out_err;
2978 
2979 	err = -EIO;
2980 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2981 	if (!gdp)
2982 		goto out_err;
2983 
2984 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2985 			ext4_free_group_clusters(sb, gdp));
2986 
2987 	BUFFER_TRACE(gdp_bh, "get_write_access");
2988 	err = ext4_journal_get_write_access(handle, gdp_bh);
2989 	if (err)
2990 		goto out_err;
2991 
2992 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2993 
2994 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2995 	if (!ext4_data_block_valid(sbi, block, len)) {
2996 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2997 			   "fs metadata", block, block+len);
2998 		/* File system mounted not to panic on error
2999 		 * Fix the bitmap and return EFSCORRUPTED
3000 		 * We leak some of the blocks here.
3001 		 */
3002 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3003 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3004 			      ac->ac_b_ex.fe_len);
3005 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3006 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3007 		if (!err)
3008 			err = -EFSCORRUPTED;
3009 		goto out_err;
3010 	}
3011 
3012 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3013 #ifdef AGGRESSIVE_CHECK
3014 	{
3015 		int i;
3016 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3017 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3018 						bitmap_bh->b_data));
3019 		}
3020 	}
3021 #endif
3022 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3023 		      ac->ac_b_ex.fe_len);
3024 	if (ext4_has_group_desc_csum(sb) &&
3025 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3026 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3027 		ext4_free_group_clusters_set(sb, gdp,
3028 					     ext4_free_clusters_after_init(sb,
3029 						ac->ac_b_ex.fe_group, gdp));
3030 	}
3031 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3032 	ext4_free_group_clusters_set(sb, gdp, len);
3033 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3034 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3035 
3036 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3037 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3038 	/*
3039 	 * Now reduce the dirty block count also. Should not go negative
3040 	 */
3041 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3042 		/* release all the reserved blocks if non delalloc */
3043 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3044 				   reserv_clstrs);
3045 
3046 	if (sbi->s_log_groups_per_flex) {
3047 		ext4_group_t flex_group = ext4_flex_group(sbi,
3048 							  ac->ac_b_ex.fe_group);
3049 		atomic64_sub(ac->ac_b_ex.fe_len,
3050 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3051 						  flex_group)->free_clusters);
3052 	}
3053 
3054 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3055 	if (err)
3056 		goto out_err;
3057 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3058 
3059 out_err:
3060 	brelse(bitmap_bh);
3061 	return err;
3062 }
3063 
3064 /*
3065  * here we normalize request for locality group
3066  * Group request are normalized to s_mb_group_prealloc, which goes to
3067  * s_strip if we set the same via mount option.
3068  * s_mb_group_prealloc can be configured via
3069  * /sys/fs/ext4/<partition>/mb_group_prealloc
3070  *
3071  * XXX: should we try to preallocate more than the group has now?
3072  */
3073 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3074 {
3075 	struct super_block *sb = ac->ac_sb;
3076 	struct ext4_locality_group *lg = ac->ac_lg;
3077 
3078 	BUG_ON(lg == NULL);
3079 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3080 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3081 		current->pid, ac->ac_g_ex.fe_len);
3082 }
3083 
3084 /*
3085  * Normalization means making request better in terms of
3086  * size and alignment
3087  */
3088 static noinline_for_stack void
3089 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3090 				struct ext4_allocation_request *ar)
3091 {
3092 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3093 	int bsbits, max;
3094 	ext4_lblk_t end;
3095 	loff_t size, start_off;
3096 	loff_t orig_size __maybe_unused;
3097 	ext4_lblk_t start;
3098 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3099 	struct ext4_prealloc_space *pa;
3100 
3101 	/* do normalize only data requests, metadata requests
3102 	   do not need preallocation */
3103 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3104 		return;
3105 
3106 	/* sometime caller may want exact blocks */
3107 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3108 		return;
3109 
3110 	/* caller may indicate that preallocation isn't
3111 	 * required (it's a tail, for example) */
3112 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3113 		return;
3114 
3115 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3116 		ext4_mb_normalize_group_request(ac);
3117 		return ;
3118 	}
3119 
3120 	bsbits = ac->ac_sb->s_blocksize_bits;
3121 
3122 	/* first, let's learn actual file size
3123 	 * given current request is allocated */
3124 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3125 	size = size << bsbits;
3126 	if (size < i_size_read(ac->ac_inode))
3127 		size = i_size_read(ac->ac_inode);
3128 	orig_size = size;
3129 
3130 	/* max size of free chunks */
3131 	max = 2 << bsbits;
3132 
3133 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3134 		(req <= (size) || max <= (chunk_size))
3135 
3136 	/* first, try to predict filesize */
3137 	/* XXX: should this table be tunable? */
3138 	start_off = 0;
3139 	if (size <= 16 * 1024) {
3140 		size = 16 * 1024;
3141 	} else if (size <= 32 * 1024) {
3142 		size = 32 * 1024;
3143 	} else if (size <= 64 * 1024) {
3144 		size = 64 * 1024;
3145 	} else if (size <= 128 * 1024) {
3146 		size = 128 * 1024;
3147 	} else if (size <= 256 * 1024) {
3148 		size = 256 * 1024;
3149 	} else if (size <= 512 * 1024) {
3150 		size = 512 * 1024;
3151 	} else if (size <= 1024 * 1024) {
3152 		size = 1024 * 1024;
3153 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3154 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3155 						(21 - bsbits)) << 21;
3156 		size = 2 * 1024 * 1024;
3157 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3158 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3159 							(22 - bsbits)) << 22;
3160 		size = 4 * 1024 * 1024;
3161 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3162 					(8<<20)>>bsbits, max, 8 * 1024)) {
3163 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3164 							(23 - bsbits)) << 23;
3165 		size = 8 * 1024 * 1024;
3166 	} else {
3167 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3168 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3169 					      ac->ac_o_ex.fe_len) << bsbits;
3170 	}
3171 	size = size >> bsbits;
3172 	start = start_off >> bsbits;
3173 
3174 	/* don't cover already allocated blocks in selected range */
3175 	if (ar->pleft && start <= ar->lleft) {
3176 		size -= ar->lleft + 1 - start;
3177 		start = ar->lleft + 1;
3178 	}
3179 	if (ar->pright && start + size - 1 >= ar->lright)
3180 		size -= start + size - ar->lright;
3181 
3182 	/*
3183 	 * Trim allocation request for filesystems with artificially small
3184 	 * groups.
3185 	 */
3186 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3187 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3188 
3189 	end = start + size;
3190 
3191 	/* check we don't cross already preallocated blocks */
3192 	rcu_read_lock();
3193 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3194 		ext4_lblk_t pa_end;
3195 
3196 		if (pa->pa_deleted)
3197 			continue;
3198 		spin_lock(&pa->pa_lock);
3199 		if (pa->pa_deleted) {
3200 			spin_unlock(&pa->pa_lock);
3201 			continue;
3202 		}
3203 
3204 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3205 						  pa->pa_len);
3206 
3207 		/* PA must not overlap original request */
3208 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3209 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3210 
3211 		/* skip PAs this normalized request doesn't overlap with */
3212 		if (pa->pa_lstart >= end || pa_end <= start) {
3213 			spin_unlock(&pa->pa_lock);
3214 			continue;
3215 		}
3216 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3217 
3218 		/* adjust start or end to be adjacent to this pa */
3219 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3220 			BUG_ON(pa_end < start);
3221 			start = pa_end;
3222 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3223 			BUG_ON(pa->pa_lstart > end);
3224 			end = pa->pa_lstart;
3225 		}
3226 		spin_unlock(&pa->pa_lock);
3227 	}
3228 	rcu_read_unlock();
3229 	size = end - start;
3230 
3231 	/* XXX: extra loop to check we really don't overlap preallocations */
3232 	rcu_read_lock();
3233 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3234 		ext4_lblk_t pa_end;
3235 
3236 		spin_lock(&pa->pa_lock);
3237 		if (pa->pa_deleted == 0) {
3238 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3239 							  pa->pa_len);
3240 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3241 		}
3242 		spin_unlock(&pa->pa_lock);
3243 	}
3244 	rcu_read_unlock();
3245 
3246 	if (start + size <= ac->ac_o_ex.fe_logical &&
3247 			start > ac->ac_o_ex.fe_logical) {
3248 		ext4_msg(ac->ac_sb, KERN_ERR,
3249 			 "start %lu, size %lu, fe_logical %lu",
3250 			 (unsigned long) start, (unsigned long) size,
3251 			 (unsigned long) ac->ac_o_ex.fe_logical);
3252 		BUG();
3253 	}
3254 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3255 
3256 	/* now prepare goal request */
3257 
3258 	/* XXX: is it better to align blocks WRT to logical
3259 	 * placement or satisfy big request as is */
3260 	ac->ac_g_ex.fe_logical = start;
3261 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3262 
3263 	/* define goal start in order to merge */
3264 	if (ar->pright && (ar->lright == (start + size))) {
3265 		/* merge to the right */
3266 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3267 						&ac->ac_f_ex.fe_group,
3268 						&ac->ac_f_ex.fe_start);
3269 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3270 	}
3271 	if (ar->pleft && (ar->lleft + 1 == start)) {
3272 		/* merge to the left */
3273 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3274 						&ac->ac_f_ex.fe_group,
3275 						&ac->ac_f_ex.fe_start);
3276 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3277 	}
3278 
3279 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3280 		(unsigned) orig_size, (unsigned) start);
3281 }
3282 
3283 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3284 {
3285 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3286 
3287 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3288 		atomic_inc(&sbi->s_bal_reqs);
3289 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3290 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3291 			atomic_inc(&sbi->s_bal_success);
3292 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3293 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3294 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3295 			atomic_inc(&sbi->s_bal_goals);
3296 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3297 			atomic_inc(&sbi->s_bal_breaks);
3298 	}
3299 
3300 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3301 		trace_ext4_mballoc_alloc(ac);
3302 	else
3303 		trace_ext4_mballoc_prealloc(ac);
3304 }
3305 
3306 /*
3307  * Called on failure; free up any blocks from the inode PA for this
3308  * context.  We don't need this for MB_GROUP_PA because we only change
3309  * pa_free in ext4_mb_release_context(), but on failure, we've already
3310  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3311  */
3312 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3313 {
3314 	struct ext4_prealloc_space *pa = ac->ac_pa;
3315 	struct ext4_buddy e4b;
3316 	int err;
3317 
3318 	if (pa == NULL) {
3319 		if (ac->ac_f_ex.fe_len == 0)
3320 			return;
3321 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3322 		if (err) {
3323 			/*
3324 			 * This should never happen since we pin the
3325 			 * pages in the ext4_allocation_context so
3326 			 * ext4_mb_load_buddy() should never fail.
3327 			 */
3328 			WARN(1, "mb_load_buddy failed (%d)", err);
3329 			return;
3330 		}
3331 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3332 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3333 			       ac->ac_f_ex.fe_len);
3334 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3335 		ext4_mb_unload_buddy(&e4b);
3336 		return;
3337 	}
3338 	if (pa->pa_type == MB_INODE_PA)
3339 		pa->pa_free += ac->ac_b_ex.fe_len;
3340 }
3341 
3342 /*
3343  * use blocks preallocated to inode
3344  */
3345 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3346 				struct ext4_prealloc_space *pa)
3347 {
3348 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3349 	ext4_fsblk_t start;
3350 	ext4_fsblk_t end;
3351 	int len;
3352 
3353 	/* found preallocated blocks, use them */
3354 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3355 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3356 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3357 	len = EXT4_NUM_B2C(sbi, end - start);
3358 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3359 					&ac->ac_b_ex.fe_start);
3360 	ac->ac_b_ex.fe_len = len;
3361 	ac->ac_status = AC_STATUS_FOUND;
3362 	ac->ac_pa = pa;
3363 
3364 	BUG_ON(start < pa->pa_pstart);
3365 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3366 	BUG_ON(pa->pa_free < len);
3367 	pa->pa_free -= len;
3368 
3369 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3370 }
3371 
3372 /*
3373  * use blocks preallocated to locality group
3374  */
3375 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3376 				struct ext4_prealloc_space *pa)
3377 {
3378 	unsigned int len = ac->ac_o_ex.fe_len;
3379 
3380 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3381 					&ac->ac_b_ex.fe_group,
3382 					&ac->ac_b_ex.fe_start);
3383 	ac->ac_b_ex.fe_len = len;
3384 	ac->ac_status = AC_STATUS_FOUND;
3385 	ac->ac_pa = pa;
3386 
3387 	/* we don't correct pa_pstart or pa_plen here to avoid
3388 	 * possible race when the group is being loaded concurrently
3389 	 * instead we correct pa later, after blocks are marked
3390 	 * in on-disk bitmap -- see ext4_mb_release_context()
3391 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3392 	 */
3393 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3394 }
3395 
3396 /*
3397  * Return the prealloc space that have minimal distance
3398  * from the goal block. @cpa is the prealloc
3399  * space that is having currently known minimal distance
3400  * from the goal block.
3401  */
3402 static struct ext4_prealloc_space *
3403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3404 			struct ext4_prealloc_space *pa,
3405 			struct ext4_prealloc_space *cpa)
3406 {
3407 	ext4_fsblk_t cur_distance, new_distance;
3408 
3409 	if (cpa == NULL) {
3410 		atomic_inc(&pa->pa_count);
3411 		return pa;
3412 	}
3413 	cur_distance = abs(goal_block - cpa->pa_pstart);
3414 	new_distance = abs(goal_block - pa->pa_pstart);
3415 
3416 	if (cur_distance <= new_distance)
3417 		return cpa;
3418 
3419 	/* drop the previous reference */
3420 	atomic_dec(&cpa->pa_count);
3421 	atomic_inc(&pa->pa_count);
3422 	return pa;
3423 }
3424 
3425 /*
3426  * search goal blocks in preallocated space
3427  */
3428 static noinline_for_stack int
3429 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3430 {
3431 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3432 	int order, i;
3433 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3434 	struct ext4_locality_group *lg;
3435 	struct ext4_prealloc_space *pa, *cpa = NULL;
3436 	ext4_fsblk_t goal_block;
3437 
3438 	/* only data can be preallocated */
3439 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3440 		return 0;
3441 
3442 	/* first, try per-file preallocation */
3443 	rcu_read_lock();
3444 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3445 
3446 		/* all fields in this condition don't change,
3447 		 * so we can skip locking for them */
3448 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3449 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3450 					       EXT4_C2B(sbi, pa->pa_len)))
3451 			continue;
3452 
3453 		/* non-extent files can't have physical blocks past 2^32 */
3454 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3455 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3456 		     EXT4_MAX_BLOCK_FILE_PHYS))
3457 			continue;
3458 
3459 		/* found preallocated blocks, use them */
3460 		spin_lock(&pa->pa_lock);
3461 		if (pa->pa_deleted == 0 && pa->pa_free) {
3462 			atomic_inc(&pa->pa_count);
3463 			ext4_mb_use_inode_pa(ac, pa);
3464 			spin_unlock(&pa->pa_lock);
3465 			ac->ac_criteria = 10;
3466 			rcu_read_unlock();
3467 			return 1;
3468 		}
3469 		spin_unlock(&pa->pa_lock);
3470 	}
3471 	rcu_read_unlock();
3472 
3473 	/* can we use group allocation? */
3474 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3475 		return 0;
3476 
3477 	/* inode may have no locality group for some reason */
3478 	lg = ac->ac_lg;
3479 	if (lg == NULL)
3480 		return 0;
3481 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3482 	if (order > PREALLOC_TB_SIZE - 1)
3483 		/* The max size of hash table is PREALLOC_TB_SIZE */
3484 		order = PREALLOC_TB_SIZE - 1;
3485 
3486 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3487 	/*
3488 	 * search for the prealloc space that is having
3489 	 * minimal distance from the goal block.
3490 	 */
3491 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3492 		rcu_read_lock();
3493 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3494 					pa_inode_list) {
3495 			spin_lock(&pa->pa_lock);
3496 			if (pa->pa_deleted == 0 &&
3497 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3498 
3499 				cpa = ext4_mb_check_group_pa(goal_block,
3500 								pa, cpa);
3501 			}
3502 			spin_unlock(&pa->pa_lock);
3503 		}
3504 		rcu_read_unlock();
3505 	}
3506 	if (cpa) {
3507 		ext4_mb_use_group_pa(ac, cpa);
3508 		ac->ac_criteria = 20;
3509 		return 1;
3510 	}
3511 	return 0;
3512 }
3513 
3514 /*
3515  * the function goes through all block freed in the group
3516  * but not yet committed and marks them used in in-core bitmap.
3517  * buddy must be generated from this bitmap
3518  * Need to be called with the ext4 group lock held
3519  */
3520 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3521 						ext4_group_t group)
3522 {
3523 	struct rb_node *n;
3524 	struct ext4_group_info *grp;
3525 	struct ext4_free_data *entry;
3526 
3527 	grp = ext4_get_group_info(sb, group);
3528 	n = rb_first(&(grp->bb_free_root));
3529 
3530 	while (n) {
3531 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3532 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3533 		n = rb_next(n);
3534 	}
3535 	return;
3536 }
3537 
3538 /*
3539  * the function goes through all preallocation in this group and marks them
3540  * used in in-core bitmap. buddy must be generated from this bitmap
3541  * Need to be called with ext4 group lock held
3542  */
3543 static noinline_for_stack
3544 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3545 					ext4_group_t group)
3546 {
3547 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3548 	struct ext4_prealloc_space *pa;
3549 	struct list_head *cur;
3550 	ext4_group_t groupnr;
3551 	ext4_grpblk_t start;
3552 	int preallocated = 0;
3553 	int len;
3554 
3555 	/* all form of preallocation discards first load group,
3556 	 * so the only competing code is preallocation use.
3557 	 * we don't need any locking here
3558 	 * notice we do NOT ignore preallocations with pa_deleted
3559 	 * otherwise we could leave used blocks available for
3560 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3561 	 * is dropping preallocation
3562 	 */
3563 	list_for_each(cur, &grp->bb_prealloc_list) {
3564 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3565 		spin_lock(&pa->pa_lock);
3566 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3567 					     &groupnr, &start);
3568 		len = pa->pa_len;
3569 		spin_unlock(&pa->pa_lock);
3570 		if (unlikely(len == 0))
3571 			continue;
3572 		BUG_ON(groupnr != group);
3573 		ext4_set_bits(bitmap, start, len);
3574 		preallocated += len;
3575 	}
3576 	mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3577 }
3578 
3579 static void ext4_mb_pa_callback(struct rcu_head *head)
3580 {
3581 	struct ext4_prealloc_space *pa;
3582 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3583 
3584 	BUG_ON(atomic_read(&pa->pa_count));
3585 	BUG_ON(pa->pa_deleted == 0);
3586 	kmem_cache_free(ext4_pspace_cachep, pa);
3587 }
3588 
3589 /*
3590  * drops a reference to preallocated space descriptor
3591  * if this was the last reference and the space is consumed
3592  */
3593 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3594 			struct super_block *sb, struct ext4_prealloc_space *pa)
3595 {
3596 	ext4_group_t grp;
3597 	ext4_fsblk_t grp_blk;
3598 
3599 	/* in this short window concurrent discard can set pa_deleted */
3600 	spin_lock(&pa->pa_lock);
3601 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3602 		spin_unlock(&pa->pa_lock);
3603 		return;
3604 	}
3605 
3606 	if (pa->pa_deleted == 1) {
3607 		spin_unlock(&pa->pa_lock);
3608 		return;
3609 	}
3610 
3611 	pa->pa_deleted = 1;
3612 	spin_unlock(&pa->pa_lock);
3613 
3614 	grp_blk = pa->pa_pstart;
3615 	/*
3616 	 * If doing group-based preallocation, pa_pstart may be in the
3617 	 * next group when pa is used up
3618 	 */
3619 	if (pa->pa_type == MB_GROUP_PA)
3620 		grp_blk--;
3621 
3622 	grp = ext4_get_group_number(sb, grp_blk);
3623 
3624 	/*
3625 	 * possible race:
3626 	 *
3627 	 *  P1 (buddy init)			P2 (regular allocation)
3628 	 *					find block B in PA
3629 	 *  copy on-disk bitmap to buddy
3630 	 *  					mark B in on-disk bitmap
3631 	 *					drop PA from group
3632 	 *  mark all PAs in buddy
3633 	 *
3634 	 * thus, P1 initializes buddy with B available. to prevent this
3635 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3636 	 * against that pair
3637 	 */
3638 	ext4_lock_group(sb, grp);
3639 	list_del(&pa->pa_group_list);
3640 	ext4_unlock_group(sb, grp);
3641 
3642 	spin_lock(pa->pa_obj_lock);
3643 	list_del_rcu(&pa->pa_inode_list);
3644 	spin_unlock(pa->pa_obj_lock);
3645 
3646 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3647 }
3648 
3649 /*
3650  * creates new preallocated space for given inode
3651  */
3652 static noinline_for_stack int
3653 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3654 {
3655 	struct super_block *sb = ac->ac_sb;
3656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3657 	struct ext4_prealloc_space *pa;
3658 	struct ext4_group_info *grp;
3659 	struct ext4_inode_info *ei;
3660 
3661 	/* preallocate only when found space is larger then requested */
3662 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3663 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3664 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3665 
3666 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3667 	if (pa == NULL)
3668 		return -ENOMEM;
3669 
3670 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3671 		int winl;
3672 		int wins;
3673 		int win;
3674 		int offs;
3675 
3676 		/* we can't allocate as much as normalizer wants.
3677 		 * so, found space must get proper lstart
3678 		 * to cover original request */
3679 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3680 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3681 
3682 		/* we're limited by original request in that
3683 		 * logical block must be covered any way
3684 		 * winl is window we can move our chunk within */
3685 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3686 
3687 		/* also, we should cover whole original request */
3688 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3689 
3690 		/* the smallest one defines real window */
3691 		win = min(winl, wins);
3692 
3693 		offs = ac->ac_o_ex.fe_logical %
3694 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3695 		if (offs && offs < win)
3696 			win = offs;
3697 
3698 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3699 			EXT4_NUM_B2C(sbi, win);
3700 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3701 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3702 	}
3703 
3704 	/* preallocation can change ac_b_ex, thus we store actually
3705 	 * allocated blocks for history */
3706 	ac->ac_f_ex = ac->ac_b_ex;
3707 
3708 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3709 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3710 	pa->pa_len = ac->ac_b_ex.fe_len;
3711 	pa->pa_free = pa->pa_len;
3712 	atomic_set(&pa->pa_count, 1);
3713 	spin_lock_init(&pa->pa_lock);
3714 	INIT_LIST_HEAD(&pa->pa_inode_list);
3715 	INIT_LIST_HEAD(&pa->pa_group_list);
3716 	pa->pa_deleted = 0;
3717 	pa->pa_type = MB_INODE_PA;
3718 
3719 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3720 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3721 	trace_ext4_mb_new_inode_pa(ac, pa);
3722 
3723 	ext4_mb_use_inode_pa(ac, pa);
3724 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3725 
3726 	ei = EXT4_I(ac->ac_inode);
3727 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3728 
3729 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3730 	pa->pa_inode = ac->ac_inode;
3731 
3732 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3733 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3734 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3735 
3736 	spin_lock(pa->pa_obj_lock);
3737 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3738 	spin_unlock(pa->pa_obj_lock);
3739 
3740 	return 0;
3741 }
3742 
3743 /*
3744  * creates new preallocated space for locality group inodes belongs to
3745  */
3746 static noinline_for_stack int
3747 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3748 {
3749 	struct super_block *sb = ac->ac_sb;
3750 	struct ext4_locality_group *lg;
3751 	struct ext4_prealloc_space *pa;
3752 	struct ext4_group_info *grp;
3753 
3754 	/* preallocate only when found space is larger then requested */
3755 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3756 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3757 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3758 
3759 	BUG_ON(ext4_pspace_cachep == NULL);
3760 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3761 	if (pa == NULL)
3762 		return -ENOMEM;
3763 
3764 	/* preallocation can change ac_b_ex, thus we store actually
3765 	 * allocated blocks for history */
3766 	ac->ac_f_ex = ac->ac_b_ex;
3767 
3768 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3769 	pa->pa_lstart = pa->pa_pstart;
3770 	pa->pa_len = ac->ac_b_ex.fe_len;
3771 	pa->pa_free = pa->pa_len;
3772 	atomic_set(&pa->pa_count, 1);
3773 	spin_lock_init(&pa->pa_lock);
3774 	INIT_LIST_HEAD(&pa->pa_inode_list);
3775 	INIT_LIST_HEAD(&pa->pa_group_list);
3776 	pa->pa_deleted = 0;
3777 	pa->pa_type = MB_GROUP_PA;
3778 
3779 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3780 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3781 	trace_ext4_mb_new_group_pa(ac, pa);
3782 
3783 	ext4_mb_use_group_pa(ac, pa);
3784 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3785 
3786 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3787 	lg = ac->ac_lg;
3788 	BUG_ON(lg == NULL);
3789 
3790 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3791 	pa->pa_inode = NULL;
3792 
3793 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3794 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3795 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3796 
3797 	/*
3798 	 * We will later add the new pa to the right bucket
3799 	 * after updating the pa_free in ext4_mb_release_context
3800 	 */
3801 	return 0;
3802 }
3803 
3804 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3805 {
3806 	int err;
3807 
3808 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3809 		err = ext4_mb_new_group_pa(ac);
3810 	else
3811 		err = ext4_mb_new_inode_pa(ac);
3812 	return err;
3813 }
3814 
3815 /*
3816  * finds all unused blocks in on-disk bitmap, frees them in
3817  * in-core bitmap and buddy.
3818  * @pa must be unlinked from inode and group lists, so that
3819  * nobody else can find/use it.
3820  * the caller MUST hold group/inode locks.
3821  * TODO: optimize the case when there are no in-core structures yet
3822  */
3823 static noinline_for_stack int
3824 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3825 			struct ext4_prealloc_space *pa)
3826 {
3827 	struct super_block *sb = e4b->bd_sb;
3828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3829 	unsigned int end;
3830 	unsigned int next;
3831 	ext4_group_t group;
3832 	ext4_grpblk_t bit;
3833 	unsigned long long grp_blk_start;
3834 	int free = 0;
3835 
3836 	BUG_ON(pa->pa_deleted == 0);
3837 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3838 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3839 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3840 	end = bit + pa->pa_len;
3841 
3842 	while (bit < end) {
3843 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3844 		if (bit >= end)
3845 			break;
3846 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3847 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3848 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3849 			 (unsigned) next - bit, (unsigned) group);
3850 		free += next - bit;
3851 
3852 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3853 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3854 						    EXT4_C2B(sbi, bit)),
3855 					       next - bit);
3856 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3857 		bit = next + 1;
3858 	}
3859 	if (free != pa->pa_free) {
3860 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3861 			 "pa %p: logic %lu, phys. %lu, len %lu",
3862 			 pa, (unsigned long) pa->pa_lstart,
3863 			 (unsigned long) pa->pa_pstart,
3864 			 (unsigned long) pa->pa_len);
3865 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3866 					free, pa->pa_free);
3867 		/*
3868 		 * pa is already deleted so we use the value obtained
3869 		 * from the bitmap and continue.
3870 		 */
3871 	}
3872 	atomic_add(free, &sbi->s_mb_discarded);
3873 
3874 	return 0;
3875 }
3876 
3877 static noinline_for_stack int
3878 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3879 				struct ext4_prealloc_space *pa)
3880 {
3881 	struct super_block *sb = e4b->bd_sb;
3882 	ext4_group_t group;
3883 	ext4_grpblk_t bit;
3884 
3885 	trace_ext4_mb_release_group_pa(sb, pa);
3886 	BUG_ON(pa->pa_deleted == 0);
3887 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3888 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3889 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3890 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3891 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3892 
3893 	return 0;
3894 }
3895 
3896 /*
3897  * releases all preallocations in given group
3898  *
3899  * first, we need to decide discard policy:
3900  * - when do we discard
3901  *   1) ENOSPC
3902  * - how many do we discard
3903  *   1) how many requested
3904  */
3905 static noinline_for_stack int
3906 ext4_mb_discard_group_preallocations(struct super_block *sb,
3907 					ext4_group_t group, int needed)
3908 {
3909 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3910 	struct buffer_head *bitmap_bh = NULL;
3911 	struct ext4_prealloc_space *pa, *tmp;
3912 	struct list_head list;
3913 	struct ext4_buddy e4b;
3914 	int err;
3915 	int busy = 0;
3916 	int free = 0;
3917 
3918 	mb_debug(1, "discard preallocation for group %u\n", group);
3919 
3920 	if (list_empty(&grp->bb_prealloc_list))
3921 		return 0;
3922 
3923 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3924 	if (IS_ERR(bitmap_bh)) {
3925 		err = PTR_ERR(bitmap_bh);
3926 		ext4_error_err(sb, -err,
3927 			       "Error %d reading block bitmap for %u",
3928 			       err, group);
3929 		return 0;
3930 	}
3931 
3932 	err = ext4_mb_load_buddy(sb, group, &e4b);
3933 	if (err) {
3934 		ext4_warning(sb, "Error %d loading buddy information for %u",
3935 			     err, group);
3936 		put_bh(bitmap_bh);
3937 		return 0;
3938 	}
3939 
3940 	if (needed == 0)
3941 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3942 
3943 	INIT_LIST_HEAD(&list);
3944 repeat:
3945 	ext4_lock_group(sb, group);
3946 	list_for_each_entry_safe(pa, tmp,
3947 				&grp->bb_prealloc_list, pa_group_list) {
3948 		spin_lock(&pa->pa_lock);
3949 		if (atomic_read(&pa->pa_count)) {
3950 			spin_unlock(&pa->pa_lock);
3951 			busy = 1;
3952 			continue;
3953 		}
3954 		if (pa->pa_deleted) {
3955 			spin_unlock(&pa->pa_lock);
3956 			continue;
3957 		}
3958 
3959 		/* seems this one can be freed ... */
3960 		pa->pa_deleted = 1;
3961 
3962 		/* we can trust pa_free ... */
3963 		free += pa->pa_free;
3964 
3965 		spin_unlock(&pa->pa_lock);
3966 
3967 		list_del(&pa->pa_group_list);
3968 		list_add(&pa->u.pa_tmp_list, &list);
3969 	}
3970 
3971 	/* if we still need more blocks and some PAs were used, try again */
3972 	if (free < needed && busy) {
3973 		busy = 0;
3974 		ext4_unlock_group(sb, group);
3975 		cond_resched();
3976 		goto repeat;
3977 	}
3978 
3979 	/* found anything to free? */
3980 	if (list_empty(&list)) {
3981 		BUG_ON(free != 0);
3982 		goto out;
3983 	}
3984 
3985 	/* now free all selected PAs */
3986 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3987 
3988 		/* remove from object (inode or locality group) */
3989 		spin_lock(pa->pa_obj_lock);
3990 		list_del_rcu(&pa->pa_inode_list);
3991 		spin_unlock(pa->pa_obj_lock);
3992 
3993 		if (pa->pa_type == MB_GROUP_PA)
3994 			ext4_mb_release_group_pa(&e4b, pa);
3995 		else
3996 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3997 
3998 		list_del(&pa->u.pa_tmp_list);
3999 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4000 	}
4001 
4002 out:
4003 	ext4_unlock_group(sb, group);
4004 	ext4_mb_unload_buddy(&e4b);
4005 	put_bh(bitmap_bh);
4006 	return free;
4007 }
4008 
4009 /*
4010  * releases all non-used preallocated blocks for given inode
4011  *
4012  * It's important to discard preallocations under i_data_sem
4013  * We don't want another block to be served from the prealloc
4014  * space when we are discarding the inode prealloc space.
4015  *
4016  * FIXME!! Make sure it is valid at all the call sites
4017  */
4018 void ext4_discard_preallocations(struct inode *inode)
4019 {
4020 	struct ext4_inode_info *ei = EXT4_I(inode);
4021 	struct super_block *sb = inode->i_sb;
4022 	struct buffer_head *bitmap_bh = NULL;
4023 	struct ext4_prealloc_space *pa, *tmp;
4024 	ext4_group_t group = 0;
4025 	struct list_head list;
4026 	struct ext4_buddy e4b;
4027 	int err;
4028 
4029 	if (!S_ISREG(inode->i_mode)) {
4030 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4031 		return;
4032 	}
4033 
4034 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4035 	trace_ext4_discard_preallocations(inode);
4036 
4037 	INIT_LIST_HEAD(&list);
4038 
4039 repeat:
4040 	/* first, collect all pa's in the inode */
4041 	spin_lock(&ei->i_prealloc_lock);
4042 	while (!list_empty(&ei->i_prealloc_list)) {
4043 		pa = list_entry(ei->i_prealloc_list.next,
4044 				struct ext4_prealloc_space, pa_inode_list);
4045 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4046 		spin_lock(&pa->pa_lock);
4047 		if (atomic_read(&pa->pa_count)) {
4048 			/* this shouldn't happen often - nobody should
4049 			 * use preallocation while we're discarding it */
4050 			spin_unlock(&pa->pa_lock);
4051 			spin_unlock(&ei->i_prealloc_lock);
4052 			ext4_msg(sb, KERN_ERR,
4053 				 "uh-oh! used pa while discarding");
4054 			WARN_ON(1);
4055 			schedule_timeout_uninterruptible(HZ);
4056 			goto repeat;
4057 
4058 		}
4059 		if (pa->pa_deleted == 0) {
4060 			pa->pa_deleted = 1;
4061 			spin_unlock(&pa->pa_lock);
4062 			list_del_rcu(&pa->pa_inode_list);
4063 			list_add(&pa->u.pa_tmp_list, &list);
4064 			continue;
4065 		}
4066 
4067 		/* someone is deleting pa right now */
4068 		spin_unlock(&pa->pa_lock);
4069 		spin_unlock(&ei->i_prealloc_lock);
4070 
4071 		/* we have to wait here because pa_deleted
4072 		 * doesn't mean pa is already unlinked from
4073 		 * the list. as we might be called from
4074 		 * ->clear_inode() the inode will get freed
4075 		 * and concurrent thread which is unlinking
4076 		 * pa from inode's list may access already
4077 		 * freed memory, bad-bad-bad */
4078 
4079 		/* XXX: if this happens too often, we can
4080 		 * add a flag to force wait only in case
4081 		 * of ->clear_inode(), but not in case of
4082 		 * regular truncate */
4083 		schedule_timeout_uninterruptible(HZ);
4084 		goto repeat;
4085 	}
4086 	spin_unlock(&ei->i_prealloc_lock);
4087 
4088 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4089 		BUG_ON(pa->pa_type != MB_INODE_PA);
4090 		group = ext4_get_group_number(sb, pa->pa_pstart);
4091 
4092 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4093 					     GFP_NOFS|__GFP_NOFAIL);
4094 		if (err) {
4095 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4096 				       err, group);
4097 			continue;
4098 		}
4099 
4100 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4101 		if (IS_ERR(bitmap_bh)) {
4102 			err = PTR_ERR(bitmap_bh);
4103 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4104 				       err, group);
4105 			ext4_mb_unload_buddy(&e4b);
4106 			continue;
4107 		}
4108 
4109 		ext4_lock_group(sb, group);
4110 		list_del(&pa->pa_group_list);
4111 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4112 		ext4_unlock_group(sb, group);
4113 
4114 		ext4_mb_unload_buddy(&e4b);
4115 		put_bh(bitmap_bh);
4116 
4117 		list_del(&pa->u.pa_tmp_list);
4118 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4119 	}
4120 }
4121 
4122 #ifdef CONFIG_EXT4_DEBUG
4123 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4124 {
4125 	struct super_block *sb = ac->ac_sb;
4126 	ext4_group_t ngroups, i;
4127 
4128 	if (!ext4_mballoc_debug ||
4129 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4130 		return;
4131 
4132 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4133 			" Allocation context details:");
4134 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4135 			ac->ac_status, ac->ac_flags);
4136 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4137 		 	"goal %lu/%lu/%lu@%lu, "
4138 			"best %lu/%lu/%lu@%lu cr %d",
4139 			(unsigned long)ac->ac_o_ex.fe_group,
4140 			(unsigned long)ac->ac_o_ex.fe_start,
4141 			(unsigned long)ac->ac_o_ex.fe_len,
4142 			(unsigned long)ac->ac_o_ex.fe_logical,
4143 			(unsigned long)ac->ac_g_ex.fe_group,
4144 			(unsigned long)ac->ac_g_ex.fe_start,
4145 			(unsigned long)ac->ac_g_ex.fe_len,
4146 			(unsigned long)ac->ac_g_ex.fe_logical,
4147 			(unsigned long)ac->ac_b_ex.fe_group,
4148 			(unsigned long)ac->ac_b_ex.fe_start,
4149 			(unsigned long)ac->ac_b_ex.fe_len,
4150 			(unsigned long)ac->ac_b_ex.fe_logical,
4151 			(int)ac->ac_criteria);
4152 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4153 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4154 	ngroups = ext4_get_groups_count(sb);
4155 	for (i = 0; i < ngroups; i++) {
4156 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4157 		struct ext4_prealloc_space *pa;
4158 		ext4_grpblk_t start;
4159 		struct list_head *cur;
4160 		ext4_lock_group(sb, i);
4161 		list_for_each(cur, &grp->bb_prealloc_list) {
4162 			pa = list_entry(cur, struct ext4_prealloc_space,
4163 					pa_group_list);
4164 			spin_lock(&pa->pa_lock);
4165 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4166 						     NULL, &start);
4167 			spin_unlock(&pa->pa_lock);
4168 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4169 			       start, pa->pa_len);
4170 		}
4171 		ext4_unlock_group(sb, i);
4172 
4173 		if (grp->bb_free == 0)
4174 			continue;
4175 		printk(KERN_ERR "%u: %d/%d \n",
4176 		       i, grp->bb_free, grp->bb_fragments);
4177 	}
4178 	printk(KERN_ERR "\n");
4179 }
4180 #else
4181 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4182 {
4183 	return;
4184 }
4185 #endif
4186 
4187 /*
4188  * We use locality group preallocation for small size file. The size of the
4189  * file is determined by the current size or the resulting size after
4190  * allocation which ever is larger
4191  *
4192  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4193  */
4194 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4195 {
4196 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4197 	int bsbits = ac->ac_sb->s_blocksize_bits;
4198 	loff_t size, isize;
4199 
4200 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4201 		return;
4202 
4203 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4204 		return;
4205 
4206 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4207 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4208 		>> bsbits;
4209 
4210 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4211 	    !inode_is_open_for_write(ac->ac_inode)) {
4212 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4213 		return;
4214 	}
4215 
4216 	if (sbi->s_mb_group_prealloc <= 0) {
4217 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4218 		return;
4219 	}
4220 
4221 	/* don't use group allocation for large files */
4222 	size = max(size, isize);
4223 	if (size > sbi->s_mb_stream_request) {
4224 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4225 		return;
4226 	}
4227 
4228 	BUG_ON(ac->ac_lg != NULL);
4229 	/*
4230 	 * locality group prealloc space are per cpu. The reason for having
4231 	 * per cpu locality group is to reduce the contention between block
4232 	 * request from multiple CPUs.
4233 	 */
4234 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4235 
4236 	/* we're going to use group allocation */
4237 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4238 
4239 	/* serialize all allocations in the group */
4240 	mutex_lock(&ac->ac_lg->lg_mutex);
4241 }
4242 
4243 static noinline_for_stack int
4244 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4245 				struct ext4_allocation_request *ar)
4246 {
4247 	struct super_block *sb = ar->inode->i_sb;
4248 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4249 	struct ext4_super_block *es = sbi->s_es;
4250 	ext4_group_t group;
4251 	unsigned int len;
4252 	ext4_fsblk_t goal;
4253 	ext4_grpblk_t block;
4254 
4255 	/* we can't allocate > group size */
4256 	len = ar->len;
4257 
4258 	/* just a dirty hack to filter too big requests  */
4259 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4260 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4261 
4262 	/* start searching from the goal */
4263 	goal = ar->goal;
4264 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4265 			goal >= ext4_blocks_count(es))
4266 		goal = le32_to_cpu(es->s_first_data_block);
4267 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4268 
4269 	/* set up allocation goals */
4270 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4271 	ac->ac_status = AC_STATUS_CONTINUE;
4272 	ac->ac_sb = sb;
4273 	ac->ac_inode = ar->inode;
4274 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4275 	ac->ac_o_ex.fe_group = group;
4276 	ac->ac_o_ex.fe_start = block;
4277 	ac->ac_o_ex.fe_len = len;
4278 	ac->ac_g_ex = ac->ac_o_ex;
4279 	ac->ac_flags = ar->flags;
4280 
4281 	/* we have to define context: we'll we work with a file or
4282 	 * locality group. this is a policy, actually */
4283 	ext4_mb_group_or_file(ac);
4284 
4285 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4286 			"left: %u/%u, right %u/%u to %swritable\n",
4287 			(unsigned) ar->len, (unsigned) ar->logical,
4288 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4289 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4290 			(unsigned) ar->lright, (unsigned) ar->pright,
4291 			inode_is_open_for_write(ar->inode) ? "" : "non-");
4292 	return 0;
4293 
4294 }
4295 
4296 static noinline_for_stack void
4297 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4298 					struct ext4_locality_group *lg,
4299 					int order, int total_entries)
4300 {
4301 	ext4_group_t group = 0;
4302 	struct ext4_buddy e4b;
4303 	struct list_head discard_list;
4304 	struct ext4_prealloc_space *pa, *tmp;
4305 
4306 	mb_debug(1, "discard locality group preallocation\n");
4307 
4308 	INIT_LIST_HEAD(&discard_list);
4309 
4310 	spin_lock(&lg->lg_prealloc_lock);
4311 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4312 				pa_inode_list,
4313 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4314 		spin_lock(&pa->pa_lock);
4315 		if (atomic_read(&pa->pa_count)) {
4316 			/*
4317 			 * This is the pa that we just used
4318 			 * for block allocation. So don't
4319 			 * free that
4320 			 */
4321 			spin_unlock(&pa->pa_lock);
4322 			continue;
4323 		}
4324 		if (pa->pa_deleted) {
4325 			spin_unlock(&pa->pa_lock);
4326 			continue;
4327 		}
4328 		/* only lg prealloc space */
4329 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4330 
4331 		/* seems this one can be freed ... */
4332 		pa->pa_deleted = 1;
4333 		spin_unlock(&pa->pa_lock);
4334 
4335 		list_del_rcu(&pa->pa_inode_list);
4336 		list_add(&pa->u.pa_tmp_list, &discard_list);
4337 
4338 		total_entries--;
4339 		if (total_entries <= 5) {
4340 			/*
4341 			 * we want to keep only 5 entries
4342 			 * allowing it to grow to 8. This
4343 			 * mak sure we don't call discard
4344 			 * soon for this list.
4345 			 */
4346 			break;
4347 		}
4348 	}
4349 	spin_unlock(&lg->lg_prealloc_lock);
4350 
4351 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4352 		int err;
4353 
4354 		group = ext4_get_group_number(sb, pa->pa_pstart);
4355 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4356 					     GFP_NOFS|__GFP_NOFAIL);
4357 		if (err) {
4358 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4359 				       err, group);
4360 			continue;
4361 		}
4362 		ext4_lock_group(sb, group);
4363 		list_del(&pa->pa_group_list);
4364 		ext4_mb_release_group_pa(&e4b, pa);
4365 		ext4_unlock_group(sb, group);
4366 
4367 		ext4_mb_unload_buddy(&e4b);
4368 		list_del(&pa->u.pa_tmp_list);
4369 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4370 	}
4371 }
4372 
4373 /*
4374  * We have incremented pa_count. So it cannot be freed at this
4375  * point. Also we hold lg_mutex. So no parallel allocation is
4376  * possible from this lg. That means pa_free cannot be updated.
4377  *
4378  * A parallel ext4_mb_discard_group_preallocations is possible.
4379  * which can cause the lg_prealloc_list to be updated.
4380  */
4381 
4382 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4383 {
4384 	int order, added = 0, lg_prealloc_count = 1;
4385 	struct super_block *sb = ac->ac_sb;
4386 	struct ext4_locality_group *lg = ac->ac_lg;
4387 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4388 
4389 	order = fls(pa->pa_free) - 1;
4390 	if (order > PREALLOC_TB_SIZE - 1)
4391 		/* The max size of hash table is PREALLOC_TB_SIZE */
4392 		order = PREALLOC_TB_SIZE - 1;
4393 	/* Add the prealloc space to lg */
4394 	spin_lock(&lg->lg_prealloc_lock);
4395 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4396 				pa_inode_list,
4397 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4398 		spin_lock(&tmp_pa->pa_lock);
4399 		if (tmp_pa->pa_deleted) {
4400 			spin_unlock(&tmp_pa->pa_lock);
4401 			continue;
4402 		}
4403 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4404 			/* Add to the tail of the previous entry */
4405 			list_add_tail_rcu(&pa->pa_inode_list,
4406 						&tmp_pa->pa_inode_list);
4407 			added = 1;
4408 			/*
4409 			 * we want to count the total
4410 			 * number of entries in the list
4411 			 */
4412 		}
4413 		spin_unlock(&tmp_pa->pa_lock);
4414 		lg_prealloc_count++;
4415 	}
4416 	if (!added)
4417 		list_add_tail_rcu(&pa->pa_inode_list,
4418 					&lg->lg_prealloc_list[order]);
4419 	spin_unlock(&lg->lg_prealloc_lock);
4420 
4421 	/* Now trim the list to be not more than 8 elements */
4422 	if (lg_prealloc_count > 8) {
4423 		ext4_mb_discard_lg_preallocations(sb, lg,
4424 						  order, lg_prealloc_count);
4425 		return;
4426 	}
4427 	return ;
4428 }
4429 
4430 /*
4431  * release all resource we used in allocation
4432  */
4433 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4434 {
4435 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4436 	struct ext4_prealloc_space *pa = ac->ac_pa;
4437 	if (pa) {
4438 		if (pa->pa_type == MB_GROUP_PA) {
4439 			/* see comment in ext4_mb_use_group_pa() */
4440 			spin_lock(&pa->pa_lock);
4441 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4442 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4443 			pa->pa_free -= ac->ac_b_ex.fe_len;
4444 			pa->pa_len -= ac->ac_b_ex.fe_len;
4445 			spin_unlock(&pa->pa_lock);
4446 		}
4447 	}
4448 	if (pa) {
4449 		/*
4450 		 * We want to add the pa to the right bucket.
4451 		 * Remove it from the list and while adding
4452 		 * make sure the list to which we are adding
4453 		 * doesn't grow big.
4454 		 */
4455 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4456 			spin_lock(pa->pa_obj_lock);
4457 			list_del_rcu(&pa->pa_inode_list);
4458 			spin_unlock(pa->pa_obj_lock);
4459 			ext4_mb_add_n_trim(ac);
4460 		}
4461 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4462 	}
4463 	if (ac->ac_bitmap_page)
4464 		put_page(ac->ac_bitmap_page);
4465 	if (ac->ac_buddy_page)
4466 		put_page(ac->ac_buddy_page);
4467 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4468 		mutex_unlock(&ac->ac_lg->lg_mutex);
4469 	ext4_mb_collect_stats(ac);
4470 	return 0;
4471 }
4472 
4473 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4474 {
4475 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4476 	int ret;
4477 	int freed = 0;
4478 
4479 	trace_ext4_mb_discard_preallocations(sb, needed);
4480 	for (i = 0; i < ngroups && needed > 0; i++) {
4481 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4482 		freed += ret;
4483 		needed -= ret;
4484 	}
4485 
4486 	return freed;
4487 }
4488 
4489 /*
4490  * Main entry point into mballoc to allocate blocks
4491  * it tries to use preallocation first, then falls back
4492  * to usual allocation
4493  */
4494 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4495 				struct ext4_allocation_request *ar, int *errp)
4496 {
4497 	int freed;
4498 	struct ext4_allocation_context *ac = NULL;
4499 	struct ext4_sb_info *sbi;
4500 	struct super_block *sb;
4501 	ext4_fsblk_t block = 0;
4502 	unsigned int inquota = 0;
4503 	unsigned int reserv_clstrs = 0;
4504 
4505 	might_sleep();
4506 	sb = ar->inode->i_sb;
4507 	sbi = EXT4_SB(sb);
4508 
4509 	trace_ext4_request_blocks(ar);
4510 
4511 	/* Allow to use superuser reservation for quota file */
4512 	if (ext4_is_quota_file(ar->inode))
4513 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4514 
4515 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4516 		/* Without delayed allocation we need to verify
4517 		 * there is enough free blocks to do block allocation
4518 		 * and verify allocation doesn't exceed the quota limits.
4519 		 */
4520 		while (ar->len &&
4521 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4522 
4523 			/* let others to free the space */
4524 			cond_resched();
4525 			ar->len = ar->len >> 1;
4526 		}
4527 		if (!ar->len) {
4528 			*errp = -ENOSPC;
4529 			return 0;
4530 		}
4531 		reserv_clstrs = ar->len;
4532 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4533 			dquot_alloc_block_nofail(ar->inode,
4534 						 EXT4_C2B(sbi, ar->len));
4535 		} else {
4536 			while (ar->len &&
4537 				dquot_alloc_block(ar->inode,
4538 						  EXT4_C2B(sbi, ar->len))) {
4539 
4540 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4541 				ar->len--;
4542 			}
4543 		}
4544 		inquota = ar->len;
4545 		if (ar->len == 0) {
4546 			*errp = -EDQUOT;
4547 			goto out;
4548 		}
4549 	}
4550 
4551 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4552 	if (!ac) {
4553 		ar->len = 0;
4554 		*errp = -ENOMEM;
4555 		goto out;
4556 	}
4557 
4558 	*errp = ext4_mb_initialize_context(ac, ar);
4559 	if (*errp) {
4560 		ar->len = 0;
4561 		goto out;
4562 	}
4563 
4564 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4565 	if (!ext4_mb_use_preallocated(ac)) {
4566 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4567 		ext4_mb_normalize_request(ac, ar);
4568 repeat:
4569 		/* allocate space in core */
4570 		*errp = ext4_mb_regular_allocator(ac);
4571 		if (*errp)
4572 			goto discard_and_exit;
4573 
4574 		/* as we've just preallocated more space than
4575 		 * user requested originally, we store allocated
4576 		 * space in a special descriptor */
4577 		if (ac->ac_status == AC_STATUS_FOUND &&
4578 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4579 			*errp = ext4_mb_new_preallocation(ac);
4580 		if (*errp) {
4581 		discard_and_exit:
4582 			ext4_discard_allocated_blocks(ac);
4583 			goto errout;
4584 		}
4585 	}
4586 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4587 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4588 		if (*errp) {
4589 			ext4_discard_allocated_blocks(ac);
4590 			goto errout;
4591 		} else {
4592 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4593 			ar->len = ac->ac_b_ex.fe_len;
4594 		}
4595 	} else {
4596 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4597 		if (freed)
4598 			goto repeat;
4599 		*errp = -ENOSPC;
4600 	}
4601 
4602 errout:
4603 	if (*errp) {
4604 		ac->ac_b_ex.fe_len = 0;
4605 		ar->len = 0;
4606 		ext4_mb_show_ac(ac);
4607 	}
4608 	ext4_mb_release_context(ac);
4609 out:
4610 	if (ac)
4611 		kmem_cache_free(ext4_ac_cachep, ac);
4612 	if (inquota && ar->len < inquota)
4613 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4614 	if (!ar->len) {
4615 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4616 			/* release all the reserved blocks if non delalloc */
4617 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4618 						reserv_clstrs);
4619 	}
4620 
4621 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4622 
4623 	return block;
4624 }
4625 
4626 /*
4627  * We can merge two free data extents only if the physical blocks
4628  * are contiguous, AND the extents were freed by the same transaction,
4629  * AND the blocks are associated with the same group.
4630  */
4631 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4632 					struct ext4_free_data *entry,
4633 					struct ext4_free_data *new_entry,
4634 					struct rb_root *entry_rb_root)
4635 {
4636 	if ((entry->efd_tid != new_entry->efd_tid) ||
4637 	    (entry->efd_group != new_entry->efd_group))
4638 		return;
4639 	if (entry->efd_start_cluster + entry->efd_count ==
4640 	    new_entry->efd_start_cluster) {
4641 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4642 		new_entry->efd_count += entry->efd_count;
4643 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4644 		   entry->efd_start_cluster) {
4645 		new_entry->efd_count += entry->efd_count;
4646 	} else
4647 		return;
4648 	spin_lock(&sbi->s_md_lock);
4649 	list_del(&entry->efd_list);
4650 	spin_unlock(&sbi->s_md_lock);
4651 	rb_erase(&entry->efd_node, entry_rb_root);
4652 	kmem_cache_free(ext4_free_data_cachep, entry);
4653 }
4654 
4655 static noinline_for_stack int
4656 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4657 		      struct ext4_free_data *new_entry)
4658 {
4659 	ext4_group_t group = e4b->bd_group;
4660 	ext4_grpblk_t cluster;
4661 	ext4_grpblk_t clusters = new_entry->efd_count;
4662 	struct ext4_free_data *entry;
4663 	struct ext4_group_info *db = e4b->bd_info;
4664 	struct super_block *sb = e4b->bd_sb;
4665 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4666 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4667 	struct rb_node *parent = NULL, *new_node;
4668 
4669 	BUG_ON(!ext4_handle_valid(handle));
4670 	BUG_ON(e4b->bd_bitmap_page == NULL);
4671 	BUG_ON(e4b->bd_buddy_page == NULL);
4672 
4673 	new_node = &new_entry->efd_node;
4674 	cluster = new_entry->efd_start_cluster;
4675 
4676 	if (!*n) {
4677 		/* first free block exent. We need to
4678 		   protect buddy cache from being freed,
4679 		 * otherwise we'll refresh it from
4680 		 * on-disk bitmap and lose not-yet-available
4681 		 * blocks */
4682 		get_page(e4b->bd_buddy_page);
4683 		get_page(e4b->bd_bitmap_page);
4684 	}
4685 	while (*n) {
4686 		parent = *n;
4687 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4688 		if (cluster < entry->efd_start_cluster)
4689 			n = &(*n)->rb_left;
4690 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4691 			n = &(*n)->rb_right;
4692 		else {
4693 			ext4_grp_locked_error(sb, group, 0,
4694 				ext4_group_first_block_no(sb, group) +
4695 				EXT4_C2B(sbi, cluster),
4696 				"Block already on to-be-freed list");
4697 			return 0;
4698 		}
4699 	}
4700 
4701 	rb_link_node(new_node, parent, n);
4702 	rb_insert_color(new_node, &db->bb_free_root);
4703 
4704 	/* Now try to see the extent can be merged to left and right */
4705 	node = rb_prev(new_node);
4706 	if (node) {
4707 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4708 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4709 					    &(db->bb_free_root));
4710 	}
4711 
4712 	node = rb_next(new_node);
4713 	if (node) {
4714 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4715 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4716 					    &(db->bb_free_root));
4717 	}
4718 
4719 	spin_lock(&sbi->s_md_lock);
4720 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4721 	sbi->s_mb_free_pending += clusters;
4722 	spin_unlock(&sbi->s_md_lock);
4723 	return 0;
4724 }
4725 
4726 /**
4727  * ext4_free_blocks() -- Free given blocks and update quota
4728  * @handle:		handle for this transaction
4729  * @inode:		inode
4730  * @bh:			optional buffer of the block to be freed
4731  * @block:		starting physical block to be freed
4732  * @count:		number of blocks to be freed
4733  * @flags:		flags used by ext4_free_blocks
4734  */
4735 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4736 		      struct buffer_head *bh, ext4_fsblk_t block,
4737 		      unsigned long count, int flags)
4738 {
4739 	struct buffer_head *bitmap_bh = NULL;
4740 	struct super_block *sb = inode->i_sb;
4741 	struct ext4_group_desc *gdp;
4742 	unsigned int overflow;
4743 	ext4_grpblk_t bit;
4744 	struct buffer_head *gd_bh;
4745 	ext4_group_t block_group;
4746 	struct ext4_sb_info *sbi;
4747 	struct ext4_buddy e4b;
4748 	unsigned int count_clusters;
4749 	int err = 0;
4750 	int ret;
4751 
4752 	might_sleep();
4753 	if (bh) {
4754 		if (block)
4755 			BUG_ON(block != bh->b_blocknr);
4756 		else
4757 			block = bh->b_blocknr;
4758 	}
4759 
4760 	sbi = EXT4_SB(sb);
4761 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4762 	    !ext4_data_block_valid(sbi, block, count)) {
4763 		ext4_error(sb, "Freeing blocks not in datazone - "
4764 			   "block = %llu, count = %lu", block, count);
4765 		goto error_return;
4766 	}
4767 
4768 	ext4_debug("freeing block %llu\n", block);
4769 	trace_ext4_free_blocks(inode, block, count, flags);
4770 
4771 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4772 		BUG_ON(count > 1);
4773 
4774 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4775 			    inode, bh, block);
4776 	}
4777 
4778 	/*
4779 	 * If the extent to be freed does not begin on a cluster
4780 	 * boundary, we need to deal with partial clusters at the
4781 	 * beginning and end of the extent.  Normally we will free
4782 	 * blocks at the beginning or the end unless we are explicitly
4783 	 * requested to avoid doing so.
4784 	 */
4785 	overflow = EXT4_PBLK_COFF(sbi, block);
4786 	if (overflow) {
4787 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4788 			overflow = sbi->s_cluster_ratio - overflow;
4789 			block += overflow;
4790 			if (count > overflow)
4791 				count -= overflow;
4792 			else
4793 				return;
4794 		} else {
4795 			block -= overflow;
4796 			count += overflow;
4797 		}
4798 	}
4799 	overflow = EXT4_LBLK_COFF(sbi, count);
4800 	if (overflow) {
4801 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4802 			if (count > overflow)
4803 				count -= overflow;
4804 			else
4805 				return;
4806 		} else
4807 			count += sbi->s_cluster_ratio - overflow;
4808 	}
4809 
4810 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4811 		int i;
4812 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4813 
4814 		for (i = 0; i < count; i++) {
4815 			cond_resched();
4816 			if (is_metadata)
4817 				bh = sb_find_get_block(inode->i_sb, block + i);
4818 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4819 		}
4820 	}
4821 
4822 do_more:
4823 	overflow = 0;
4824 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4825 
4826 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4827 			ext4_get_group_info(sb, block_group))))
4828 		return;
4829 
4830 	/*
4831 	 * Check to see if we are freeing blocks across a group
4832 	 * boundary.
4833 	 */
4834 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4835 		overflow = EXT4_C2B(sbi, bit) + count -
4836 			EXT4_BLOCKS_PER_GROUP(sb);
4837 		count -= overflow;
4838 	}
4839 	count_clusters = EXT4_NUM_B2C(sbi, count);
4840 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4841 	if (IS_ERR(bitmap_bh)) {
4842 		err = PTR_ERR(bitmap_bh);
4843 		bitmap_bh = NULL;
4844 		goto error_return;
4845 	}
4846 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4847 	if (!gdp) {
4848 		err = -EIO;
4849 		goto error_return;
4850 	}
4851 
4852 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4853 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4854 	    in_range(block, ext4_inode_table(sb, gdp),
4855 		     sbi->s_itb_per_group) ||
4856 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4857 		     sbi->s_itb_per_group)) {
4858 
4859 		ext4_error(sb, "Freeing blocks in system zone - "
4860 			   "Block = %llu, count = %lu", block, count);
4861 		/* err = 0. ext4_std_error should be a no op */
4862 		goto error_return;
4863 	}
4864 
4865 	BUFFER_TRACE(bitmap_bh, "getting write access");
4866 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4867 	if (err)
4868 		goto error_return;
4869 
4870 	/*
4871 	 * We are about to modify some metadata.  Call the journal APIs
4872 	 * to unshare ->b_data if a currently-committing transaction is
4873 	 * using it
4874 	 */
4875 	BUFFER_TRACE(gd_bh, "get_write_access");
4876 	err = ext4_journal_get_write_access(handle, gd_bh);
4877 	if (err)
4878 		goto error_return;
4879 #ifdef AGGRESSIVE_CHECK
4880 	{
4881 		int i;
4882 		for (i = 0; i < count_clusters; i++)
4883 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4884 	}
4885 #endif
4886 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4887 
4888 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4889 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4890 				     GFP_NOFS|__GFP_NOFAIL);
4891 	if (err)
4892 		goto error_return;
4893 
4894 	/*
4895 	 * We need to make sure we don't reuse the freed block until after the
4896 	 * transaction is committed. We make an exception if the inode is to be
4897 	 * written in writeback mode since writeback mode has weak data
4898 	 * consistency guarantees.
4899 	 */
4900 	if (ext4_handle_valid(handle) &&
4901 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4902 	     !ext4_should_writeback_data(inode))) {
4903 		struct ext4_free_data *new_entry;
4904 		/*
4905 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4906 		 * to fail.
4907 		 */
4908 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4909 				GFP_NOFS|__GFP_NOFAIL);
4910 		new_entry->efd_start_cluster = bit;
4911 		new_entry->efd_group = block_group;
4912 		new_entry->efd_count = count_clusters;
4913 		new_entry->efd_tid = handle->h_transaction->t_tid;
4914 
4915 		ext4_lock_group(sb, block_group);
4916 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4917 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4918 	} else {
4919 		/* need to update group_info->bb_free and bitmap
4920 		 * with group lock held. generate_buddy look at
4921 		 * them with group lock_held
4922 		 */
4923 		if (test_opt(sb, DISCARD)) {
4924 			err = ext4_issue_discard(sb, block_group, bit, count,
4925 						 NULL);
4926 			if (err && err != -EOPNOTSUPP)
4927 				ext4_msg(sb, KERN_WARNING, "discard request in"
4928 					 " group:%d block:%d count:%lu failed"
4929 					 " with %d", block_group, bit, count,
4930 					 err);
4931 		} else
4932 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4933 
4934 		ext4_lock_group(sb, block_group);
4935 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4936 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4937 	}
4938 
4939 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4940 	ext4_free_group_clusters_set(sb, gdp, ret);
4941 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4942 	ext4_group_desc_csum_set(sb, block_group, gdp);
4943 	ext4_unlock_group(sb, block_group);
4944 
4945 	if (sbi->s_log_groups_per_flex) {
4946 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4947 		atomic64_add(count_clusters,
4948 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4949 						  flex_group)->free_clusters);
4950 	}
4951 
4952 	/*
4953 	 * on a bigalloc file system, defer the s_freeclusters_counter
4954 	 * update to the caller (ext4_remove_space and friends) so they
4955 	 * can determine if a cluster freed here should be rereserved
4956 	 */
4957 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
4958 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4959 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4960 		percpu_counter_add(&sbi->s_freeclusters_counter,
4961 				   count_clusters);
4962 	}
4963 
4964 	ext4_mb_unload_buddy(&e4b);
4965 
4966 	/* We dirtied the bitmap block */
4967 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4968 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4969 
4970 	/* And the group descriptor block */
4971 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4972 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4973 	if (!err)
4974 		err = ret;
4975 
4976 	if (overflow && !err) {
4977 		block += count;
4978 		count = overflow;
4979 		put_bh(bitmap_bh);
4980 		goto do_more;
4981 	}
4982 error_return:
4983 	brelse(bitmap_bh);
4984 	ext4_std_error(sb, err);
4985 	return;
4986 }
4987 
4988 /**
4989  * ext4_group_add_blocks() -- Add given blocks to an existing group
4990  * @handle:			handle to this transaction
4991  * @sb:				super block
4992  * @block:			start physical block to add to the block group
4993  * @count:			number of blocks to free
4994  *
4995  * This marks the blocks as free in the bitmap and buddy.
4996  */
4997 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4998 			 ext4_fsblk_t block, unsigned long count)
4999 {
5000 	struct buffer_head *bitmap_bh = NULL;
5001 	struct buffer_head *gd_bh;
5002 	ext4_group_t block_group;
5003 	ext4_grpblk_t bit;
5004 	unsigned int i;
5005 	struct ext4_group_desc *desc;
5006 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5007 	struct ext4_buddy e4b;
5008 	int err = 0, ret, free_clusters_count;
5009 	ext4_grpblk_t clusters_freed;
5010 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5011 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5012 	unsigned long cluster_count = last_cluster - first_cluster + 1;
5013 
5014 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5015 
5016 	if (count == 0)
5017 		return 0;
5018 
5019 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5020 	/*
5021 	 * Check to see if we are freeing blocks across a group
5022 	 * boundary.
5023 	 */
5024 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5025 		ext4_warning(sb, "too many blocks added to group %u",
5026 			     block_group);
5027 		err = -EINVAL;
5028 		goto error_return;
5029 	}
5030 
5031 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5032 	if (IS_ERR(bitmap_bh)) {
5033 		err = PTR_ERR(bitmap_bh);
5034 		bitmap_bh = NULL;
5035 		goto error_return;
5036 	}
5037 
5038 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5039 	if (!desc) {
5040 		err = -EIO;
5041 		goto error_return;
5042 	}
5043 
5044 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5045 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5046 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5047 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5048 		     sbi->s_itb_per_group)) {
5049 		ext4_error(sb, "Adding blocks in system zones - "
5050 			   "Block = %llu, count = %lu",
5051 			   block, count);
5052 		err = -EINVAL;
5053 		goto error_return;
5054 	}
5055 
5056 	BUFFER_TRACE(bitmap_bh, "getting write access");
5057 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5058 	if (err)
5059 		goto error_return;
5060 
5061 	/*
5062 	 * We are about to modify some metadata.  Call the journal APIs
5063 	 * to unshare ->b_data if a currently-committing transaction is
5064 	 * using it
5065 	 */
5066 	BUFFER_TRACE(gd_bh, "get_write_access");
5067 	err = ext4_journal_get_write_access(handle, gd_bh);
5068 	if (err)
5069 		goto error_return;
5070 
5071 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5072 		BUFFER_TRACE(bitmap_bh, "clear bit");
5073 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5074 			ext4_error(sb, "bit already cleared for block %llu",
5075 				   (ext4_fsblk_t)(block + i));
5076 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5077 		} else {
5078 			clusters_freed++;
5079 		}
5080 	}
5081 
5082 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5083 	if (err)
5084 		goto error_return;
5085 
5086 	/*
5087 	 * need to update group_info->bb_free and bitmap
5088 	 * with group lock held. generate_buddy look at
5089 	 * them with group lock_held
5090 	 */
5091 	ext4_lock_group(sb, block_group);
5092 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5093 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5094 	free_clusters_count = clusters_freed +
5095 		ext4_free_group_clusters(sb, desc);
5096 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5097 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5098 	ext4_group_desc_csum_set(sb, block_group, desc);
5099 	ext4_unlock_group(sb, block_group);
5100 	percpu_counter_add(&sbi->s_freeclusters_counter,
5101 			   clusters_freed);
5102 
5103 	if (sbi->s_log_groups_per_flex) {
5104 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5105 		atomic64_add(clusters_freed,
5106 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5107 						  flex_group)->free_clusters);
5108 	}
5109 
5110 	ext4_mb_unload_buddy(&e4b);
5111 
5112 	/* We dirtied the bitmap block */
5113 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5114 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5115 
5116 	/* And the group descriptor block */
5117 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5118 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5119 	if (!err)
5120 		err = ret;
5121 
5122 error_return:
5123 	brelse(bitmap_bh);
5124 	ext4_std_error(sb, err);
5125 	return err;
5126 }
5127 
5128 /**
5129  * ext4_trim_extent -- function to TRIM one single free extent in the group
5130  * @sb:		super block for the file system
5131  * @start:	starting block of the free extent in the alloc. group
5132  * @count:	number of blocks to TRIM
5133  * @group:	alloc. group we are working with
5134  * @e4b:	ext4 buddy for the group
5135  *
5136  * Trim "count" blocks starting at "start" in the "group". To assure that no
5137  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5138  * be called with under the group lock.
5139  */
5140 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5141 			     ext4_group_t group, struct ext4_buddy *e4b)
5142 __releases(bitlock)
5143 __acquires(bitlock)
5144 {
5145 	struct ext4_free_extent ex;
5146 	int ret = 0;
5147 
5148 	trace_ext4_trim_extent(sb, group, start, count);
5149 
5150 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5151 
5152 	ex.fe_start = start;
5153 	ex.fe_group = group;
5154 	ex.fe_len = count;
5155 
5156 	/*
5157 	 * Mark blocks used, so no one can reuse them while
5158 	 * being trimmed.
5159 	 */
5160 	mb_mark_used(e4b, &ex);
5161 	ext4_unlock_group(sb, group);
5162 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5163 	ext4_lock_group(sb, group);
5164 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5165 	return ret;
5166 }
5167 
5168 /**
5169  * ext4_trim_all_free -- function to trim all free space in alloc. group
5170  * @sb:			super block for file system
5171  * @group:		group to be trimmed
5172  * @start:		first group block to examine
5173  * @max:		last group block to examine
5174  * @minblocks:		minimum extent block count
5175  *
5176  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5177  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5178  * the extent.
5179  *
5180  *
5181  * ext4_trim_all_free walks through group's block bitmap searching for free
5182  * extents. When the free extent is found, mark it as used in group buddy
5183  * bitmap. Then issue a TRIM command on this extent and free the extent in
5184  * the group buddy bitmap. This is done until whole group is scanned.
5185  */
5186 static ext4_grpblk_t
5187 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5188 		   ext4_grpblk_t start, ext4_grpblk_t max,
5189 		   ext4_grpblk_t minblocks)
5190 {
5191 	void *bitmap;
5192 	ext4_grpblk_t next, count = 0, free_count = 0;
5193 	struct ext4_buddy e4b;
5194 	int ret = 0;
5195 
5196 	trace_ext4_trim_all_free(sb, group, start, max);
5197 
5198 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5199 	if (ret) {
5200 		ext4_warning(sb, "Error %d loading buddy information for %u",
5201 			     ret, group);
5202 		return ret;
5203 	}
5204 	bitmap = e4b.bd_bitmap;
5205 
5206 	ext4_lock_group(sb, group);
5207 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5208 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5209 		goto out;
5210 
5211 	start = (e4b.bd_info->bb_first_free > start) ?
5212 		e4b.bd_info->bb_first_free : start;
5213 
5214 	while (start <= max) {
5215 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5216 		if (start > max)
5217 			break;
5218 		next = mb_find_next_bit(bitmap, max + 1, start);
5219 
5220 		if ((next - start) >= minblocks) {
5221 			ret = ext4_trim_extent(sb, start,
5222 					       next - start, group, &e4b);
5223 			if (ret && ret != -EOPNOTSUPP)
5224 				break;
5225 			ret = 0;
5226 			count += next - start;
5227 		}
5228 		free_count += next - start;
5229 		start = next + 1;
5230 
5231 		if (fatal_signal_pending(current)) {
5232 			count = -ERESTARTSYS;
5233 			break;
5234 		}
5235 
5236 		if (need_resched()) {
5237 			ext4_unlock_group(sb, group);
5238 			cond_resched();
5239 			ext4_lock_group(sb, group);
5240 		}
5241 
5242 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5243 			break;
5244 	}
5245 
5246 	if (!ret) {
5247 		ret = count;
5248 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5249 	}
5250 out:
5251 	ext4_unlock_group(sb, group);
5252 	ext4_mb_unload_buddy(&e4b);
5253 
5254 	ext4_debug("trimmed %d blocks in the group %d\n",
5255 		count, group);
5256 
5257 	return ret;
5258 }
5259 
5260 /**
5261  * ext4_trim_fs() -- trim ioctl handle function
5262  * @sb:			superblock for filesystem
5263  * @range:		fstrim_range structure
5264  *
5265  * start:	First Byte to trim
5266  * len:		number of Bytes to trim from start
5267  * minlen:	minimum extent length in Bytes
5268  * ext4_trim_fs goes through all allocation groups containing Bytes from
5269  * start to start+len. For each such a group ext4_trim_all_free function
5270  * is invoked to trim all free space.
5271  */
5272 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5273 {
5274 	struct ext4_group_info *grp;
5275 	ext4_group_t group, first_group, last_group;
5276 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5277 	uint64_t start, end, minlen, trimmed = 0;
5278 	ext4_fsblk_t first_data_blk =
5279 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5280 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5281 	int ret = 0;
5282 
5283 	start = range->start >> sb->s_blocksize_bits;
5284 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5285 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5286 			      range->minlen >> sb->s_blocksize_bits);
5287 
5288 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5289 	    start >= max_blks ||
5290 	    range->len < sb->s_blocksize)
5291 		return -EINVAL;
5292 	if (end >= max_blks)
5293 		end = max_blks - 1;
5294 	if (end <= first_data_blk)
5295 		goto out;
5296 	if (start < first_data_blk)
5297 		start = first_data_blk;
5298 
5299 	/* Determine first and last group to examine based on start and end */
5300 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5301 				     &first_group, &first_cluster);
5302 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5303 				     &last_group, &last_cluster);
5304 
5305 	/* end now represents the last cluster to discard in this group */
5306 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5307 
5308 	for (group = first_group; group <= last_group; group++) {
5309 		grp = ext4_get_group_info(sb, group);
5310 		/* We only do this if the grp has never been initialized */
5311 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5312 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5313 			if (ret)
5314 				break;
5315 		}
5316 
5317 		/*
5318 		 * For all the groups except the last one, last cluster will
5319 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5320 		 * change it for the last group, note that last_cluster is
5321 		 * already computed earlier by ext4_get_group_no_and_offset()
5322 		 */
5323 		if (group == last_group)
5324 			end = last_cluster;
5325 
5326 		if (grp->bb_free >= minlen) {
5327 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5328 						end, minlen);
5329 			if (cnt < 0) {
5330 				ret = cnt;
5331 				break;
5332 			}
5333 			trimmed += cnt;
5334 		}
5335 
5336 		/*
5337 		 * For every group except the first one, we are sure
5338 		 * that the first cluster to discard will be cluster #0.
5339 		 */
5340 		first_cluster = 0;
5341 	}
5342 
5343 	if (!ret)
5344 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5345 
5346 out:
5347 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5348 	return ret;
5349 }
5350 
5351 /* Iterate all the free extents in the group. */
5352 int
5353 ext4_mballoc_query_range(
5354 	struct super_block		*sb,
5355 	ext4_group_t			group,
5356 	ext4_grpblk_t			start,
5357 	ext4_grpblk_t			end,
5358 	ext4_mballoc_query_range_fn	formatter,
5359 	void				*priv)
5360 {
5361 	void				*bitmap;
5362 	ext4_grpblk_t			next;
5363 	struct ext4_buddy		e4b;
5364 	int				error;
5365 
5366 	error = ext4_mb_load_buddy(sb, group, &e4b);
5367 	if (error)
5368 		return error;
5369 	bitmap = e4b.bd_bitmap;
5370 
5371 	ext4_lock_group(sb, group);
5372 
5373 	start = (e4b.bd_info->bb_first_free > start) ?
5374 		e4b.bd_info->bb_first_free : start;
5375 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5376 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5377 
5378 	while (start <= end) {
5379 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5380 		if (start > end)
5381 			break;
5382 		next = mb_find_next_bit(bitmap, end + 1, start);
5383 
5384 		ext4_unlock_group(sb, group);
5385 		error = formatter(sb, group, start, next - start, priv);
5386 		if (error)
5387 			goto out_unload;
5388 		ext4_lock_group(sb, group);
5389 
5390 		start = next + 1;
5391 	}
5392 
5393 	ext4_unlock_group(sb, group);
5394 out_unload:
5395 	ext4_mb_unload_buddy(&e4b);
5396 
5397 	return error;
5398 }
5399