1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 #ifdef CONFIG_EXT4_DEBUG 22 ushort ext4_mballoc_debug __read_mostly; 23 24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 26 #endif 27 28 /* 29 * MUSTDO: 30 * - test ext4_ext_search_left() and ext4_ext_search_right() 31 * - search for metadata in few groups 32 * 33 * TODO v4: 34 * - normalization should take into account whether file is still open 35 * - discard preallocations if no free space left (policy?) 36 * - don't normalize tails 37 * - quota 38 * - reservation for superuser 39 * 40 * TODO v3: 41 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 42 * - track min/max extents in each group for better group selection 43 * - mb_mark_used() may allocate chunk right after splitting buddy 44 * - tree of groups sorted by number of free blocks 45 * - error handling 46 */ 47 48 /* 49 * The allocation request involve request for multiple number of blocks 50 * near to the goal(block) value specified. 51 * 52 * During initialization phase of the allocator we decide to use the 53 * group preallocation or inode preallocation depending on the size of 54 * the file. The size of the file could be the resulting file size we 55 * would have after allocation, or the current file size, which ever 56 * is larger. If the size is less than sbi->s_mb_stream_request we 57 * select to use the group preallocation. The default value of 58 * s_mb_stream_request is 16 blocks. This can also be tuned via 59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 60 * terms of number of blocks. 61 * 62 * The main motivation for having small file use group preallocation is to 63 * ensure that we have small files closer together on the disk. 64 * 65 * First stage the allocator looks at the inode prealloc list, 66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 67 * spaces for this particular inode. The inode prealloc space is 68 * represented as: 69 * 70 * pa_lstart -> the logical start block for this prealloc space 71 * pa_pstart -> the physical start block for this prealloc space 72 * pa_len -> length for this prealloc space (in clusters) 73 * pa_free -> free space available in this prealloc space (in clusters) 74 * 75 * The inode preallocation space is used looking at the _logical_ start 76 * block. If only the logical file block falls within the range of prealloc 77 * space we will consume the particular prealloc space. This makes sure that 78 * we have contiguous physical blocks representing the file blocks 79 * 80 * The important thing to be noted in case of inode prealloc space is that 81 * we don't modify the values associated to inode prealloc space except 82 * pa_free. 83 * 84 * If we are not able to find blocks in the inode prealloc space and if we 85 * have the group allocation flag set then we look at the locality group 86 * prealloc space. These are per CPU prealloc list represented as 87 * 88 * ext4_sb_info.s_locality_groups[smp_processor_id()] 89 * 90 * The reason for having a per cpu locality group is to reduce the contention 91 * between CPUs. It is possible to get scheduled at this point. 92 * 93 * The locality group prealloc space is used looking at whether we have 94 * enough free space (pa_free) within the prealloc space. 95 * 96 * If we can't allocate blocks via inode prealloc or/and locality group 97 * prealloc then we look at the buddy cache. The buddy cache is represented 98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 99 * mapped to the buddy and bitmap information regarding different 100 * groups. The buddy information is attached to buddy cache inode so that 101 * we can access them through the page cache. The information regarding 102 * each group is loaded via ext4_mb_load_buddy. The information involve 103 * block bitmap and buddy information. The information are stored in the 104 * inode as: 105 * 106 * { page } 107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 108 * 109 * 110 * one block each for bitmap and buddy information. So for each group we 111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 112 * blocksize) blocks. So it can have information regarding groups_per_page 113 * which is blocks_per_page/2 114 * 115 * The buddy cache inode is not stored on disk. The inode is thrown 116 * away when the filesystem is unmounted. 117 * 118 * We look for count number of blocks in the buddy cache. If we were able 119 * to locate that many free blocks we return with additional information 120 * regarding rest of the contiguous physical block available 121 * 122 * Before allocating blocks via buddy cache we normalize the request 123 * blocks. This ensure we ask for more blocks that we needed. The extra 124 * blocks that we get after allocation is added to the respective prealloc 125 * list. In case of inode preallocation we follow a list of heuristics 126 * based on file size. This can be found in ext4_mb_normalize_request. If 127 * we are doing a group prealloc we try to normalize the request to 128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 129 * dependent on the cluster size; for non-bigalloc file systems, it is 130 * 512 blocks. This can be tuned via 131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 132 * terms of number of blocks. If we have mounted the file system with -O 133 * stripe=<value> option the group prealloc request is normalized to the 134 * the smallest multiple of the stripe value (sbi->s_stripe) which is 135 * greater than the default mb_group_prealloc. 136 * 137 * The regular allocator (using the buddy cache) supports a few tunables. 138 * 139 * /sys/fs/ext4/<partition>/mb_min_to_scan 140 * /sys/fs/ext4/<partition>/mb_max_to_scan 141 * /sys/fs/ext4/<partition>/mb_order2_req 142 * 143 * The regular allocator uses buddy scan only if the request len is power of 144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 145 * value of s_mb_order2_reqs can be tuned via 146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 147 * stripe size (sbi->s_stripe), we try to search for contiguous block in 148 * stripe size. This should result in better allocation on RAID setups. If 149 * not, we search in the specific group using bitmap for best extents. The 150 * tunable min_to_scan and max_to_scan control the behaviour here. 151 * min_to_scan indicate how long the mballoc __must__ look for a best 152 * extent and max_to_scan indicates how long the mballoc __can__ look for a 153 * best extent in the found extents. Searching for the blocks starts with 154 * the group specified as the goal value in allocation context via 155 * ac_g_ex. Each group is first checked based on the criteria whether it 156 * can be used for allocation. ext4_mb_good_group explains how the groups are 157 * checked. 158 * 159 * Both the prealloc space are getting populated as above. So for the first 160 * request we will hit the buddy cache which will result in this prealloc 161 * space getting filled. The prealloc space is then later used for the 162 * subsequent request. 163 */ 164 165 /* 166 * mballoc operates on the following data: 167 * - on-disk bitmap 168 * - in-core buddy (actually includes buddy and bitmap) 169 * - preallocation descriptors (PAs) 170 * 171 * there are two types of preallocations: 172 * - inode 173 * assiged to specific inode and can be used for this inode only. 174 * it describes part of inode's space preallocated to specific 175 * physical blocks. any block from that preallocated can be used 176 * independent. the descriptor just tracks number of blocks left 177 * unused. so, before taking some block from descriptor, one must 178 * make sure corresponded logical block isn't allocated yet. this 179 * also means that freeing any block within descriptor's range 180 * must discard all preallocated blocks. 181 * - locality group 182 * assigned to specific locality group which does not translate to 183 * permanent set of inodes: inode can join and leave group. space 184 * from this type of preallocation can be used for any inode. thus 185 * it's consumed from the beginning to the end. 186 * 187 * relation between them can be expressed as: 188 * in-core buddy = on-disk bitmap + preallocation descriptors 189 * 190 * this mean blocks mballoc considers used are: 191 * - allocated blocks (persistent) 192 * - preallocated blocks (non-persistent) 193 * 194 * consistency in mballoc world means that at any time a block is either 195 * free or used in ALL structures. notice: "any time" should not be read 196 * literally -- time is discrete and delimited by locks. 197 * 198 * to keep it simple, we don't use block numbers, instead we count number of 199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 200 * 201 * all operations can be expressed as: 202 * - init buddy: buddy = on-disk + PAs 203 * - new PA: buddy += N; PA = N 204 * - use inode PA: on-disk += N; PA -= N 205 * - discard inode PA buddy -= on-disk - PA; PA = 0 206 * - use locality group PA on-disk += N; PA -= N 207 * - discard locality group PA buddy -= PA; PA = 0 208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 209 * is used in real operation because we can't know actual used 210 * bits from PA, only from on-disk bitmap 211 * 212 * if we follow this strict logic, then all operations above should be atomic. 213 * given some of them can block, we'd have to use something like semaphores 214 * killing performance on high-end SMP hardware. let's try to relax it using 215 * the following knowledge: 216 * 1) if buddy is referenced, it's already initialized 217 * 2) while block is used in buddy and the buddy is referenced, 218 * nobody can re-allocate that block 219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 220 * bit set and PA claims same block, it's OK. IOW, one can set bit in 221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 222 * block 223 * 224 * so, now we're building a concurrency table: 225 * - init buddy vs. 226 * - new PA 227 * blocks for PA are allocated in the buddy, buddy must be referenced 228 * until PA is linked to allocation group to avoid concurrent buddy init 229 * - use inode PA 230 * we need to make sure that either on-disk bitmap or PA has uptodate data 231 * given (3) we care that PA-=N operation doesn't interfere with init 232 * - discard inode PA 233 * the simplest way would be to have buddy initialized by the discard 234 * - use locality group PA 235 * again PA-=N must be serialized with init 236 * - discard locality group PA 237 * the simplest way would be to have buddy initialized by the discard 238 * - new PA vs. 239 * - use inode PA 240 * i_data_sem serializes them 241 * - discard inode PA 242 * discard process must wait until PA isn't used by another process 243 * - use locality group PA 244 * some mutex should serialize them 245 * - discard locality group PA 246 * discard process must wait until PA isn't used by another process 247 * - use inode PA 248 * - use inode PA 249 * i_data_sem or another mutex should serializes them 250 * - discard inode PA 251 * discard process must wait until PA isn't used by another process 252 * - use locality group PA 253 * nothing wrong here -- they're different PAs covering different blocks 254 * - discard locality group PA 255 * discard process must wait until PA isn't used by another process 256 * 257 * now we're ready to make few consequences: 258 * - PA is referenced and while it is no discard is possible 259 * - PA is referenced until block isn't marked in on-disk bitmap 260 * - PA changes only after on-disk bitmap 261 * - discard must not compete with init. either init is done before 262 * any discard or they're serialized somehow 263 * - buddy init as sum of on-disk bitmap and PAs is done atomically 264 * 265 * a special case when we've used PA to emptiness. no need to modify buddy 266 * in this case, but we should care about concurrent init 267 * 268 */ 269 270 /* 271 * Logic in few words: 272 * 273 * - allocation: 274 * load group 275 * find blocks 276 * mark bits in on-disk bitmap 277 * release group 278 * 279 * - use preallocation: 280 * find proper PA (per-inode or group) 281 * load group 282 * mark bits in on-disk bitmap 283 * release group 284 * release PA 285 * 286 * - free: 287 * load group 288 * mark bits in on-disk bitmap 289 * release group 290 * 291 * - discard preallocations in group: 292 * mark PAs deleted 293 * move them onto local list 294 * load on-disk bitmap 295 * load group 296 * remove PA from object (inode or locality group) 297 * mark free blocks in-core 298 * 299 * - discard inode's preallocations: 300 */ 301 302 /* 303 * Locking rules 304 * 305 * Locks: 306 * - bitlock on a group (group) 307 * - object (inode/locality) (object) 308 * - per-pa lock (pa) 309 * 310 * Paths: 311 * - new pa 312 * object 313 * group 314 * 315 * - find and use pa: 316 * pa 317 * 318 * - release consumed pa: 319 * pa 320 * group 321 * object 322 * 323 * - generate in-core bitmap: 324 * group 325 * pa 326 * 327 * - discard all for given object (inode, locality group): 328 * object 329 * pa 330 * group 331 * 332 * - discard all for given group: 333 * group 334 * pa 335 * group 336 * object 337 * 338 */ 339 static struct kmem_cache *ext4_pspace_cachep; 340 static struct kmem_cache *ext4_ac_cachep; 341 static struct kmem_cache *ext4_free_data_cachep; 342 343 /* We create slab caches for groupinfo data structures based on the 344 * superblock block size. There will be one per mounted filesystem for 345 * each unique s_blocksize_bits */ 346 #define NR_GRPINFO_CACHES 8 347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 348 349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 352 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 353 }; 354 355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 356 ext4_group_t group); 357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 358 ext4_group_t group); 359 360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 361 { 362 #if BITS_PER_LONG == 64 363 *bit += ((unsigned long) addr & 7UL) << 3; 364 addr = (void *) ((unsigned long) addr & ~7UL); 365 #elif BITS_PER_LONG == 32 366 *bit += ((unsigned long) addr & 3UL) << 3; 367 addr = (void *) ((unsigned long) addr & ~3UL); 368 #else 369 #error "how many bits you are?!" 370 #endif 371 return addr; 372 } 373 374 static inline int mb_test_bit(int bit, void *addr) 375 { 376 /* 377 * ext4_test_bit on architecture like powerpc 378 * needs unsigned long aligned address 379 */ 380 addr = mb_correct_addr_and_bit(&bit, addr); 381 return ext4_test_bit(bit, addr); 382 } 383 384 static inline void mb_set_bit(int bit, void *addr) 385 { 386 addr = mb_correct_addr_and_bit(&bit, addr); 387 ext4_set_bit(bit, addr); 388 } 389 390 static inline void mb_clear_bit(int bit, void *addr) 391 { 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 ext4_clear_bit(bit, addr); 394 } 395 396 static inline int mb_test_and_clear_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 return ext4_test_and_clear_bit(bit, addr); 400 } 401 402 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 403 { 404 int fix = 0, ret, tmpmax; 405 addr = mb_correct_addr_and_bit(&fix, addr); 406 tmpmax = max + fix; 407 start += fix; 408 409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 410 if (ret > max) 411 return max; 412 return ret; 413 } 414 415 static inline int mb_find_next_bit(void *addr, int max, int start) 416 { 417 int fix = 0, ret, tmpmax; 418 addr = mb_correct_addr_and_bit(&fix, addr); 419 tmpmax = max + fix; 420 start += fix; 421 422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 423 if (ret > max) 424 return max; 425 return ret; 426 } 427 428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 429 { 430 char *bb; 431 432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 433 BUG_ON(max == NULL); 434 435 if (order > e4b->bd_blkbits + 1) { 436 *max = 0; 437 return NULL; 438 } 439 440 /* at order 0 we see each particular block */ 441 if (order == 0) { 442 *max = 1 << (e4b->bd_blkbits + 3); 443 return e4b->bd_bitmap; 444 } 445 446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 448 449 return bb; 450 } 451 452 #ifdef DOUBLE_CHECK 453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 454 int first, int count) 455 { 456 int i; 457 struct super_block *sb = e4b->bd_sb; 458 459 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 460 return; 461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 462 for (i = 0; i < count; i++) { 463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 464 ext4_fsblk_t blocknr; 465 466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 468 ext4_grp_locked_error(sb, e4b->bd_group, 469 inode ? inode->i_ino : 0, 470 blocknr, 471 "freeing block already freed " 472 "(bit %u)", 473 first + i); 474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 475 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 476 } 477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 478 } 479 } 480 481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 482 { 483 int i; 484 485 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 486 return; 487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 488 for (i = 0; i < count; i++) { 489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 491 } 492 } 493 494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 495 { 496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 497 unsigned char *b1, *b2; 498 int i; 499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 500 b2 = (unsigned char *) bitmap; 501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 502 if (b1[i] != b2[i]) { 503 ext4_msg(e4b->bd_sb, KERN_ERR, 504 "corruption in group %u " 505 "at byte %u(%u): %x in copy != %x " 506 "on disk/prealloc", 507 e4b->bd_group, i, i * 8, b1[i], b2[i]); 508 BUG(); 509 } 510 } 511 } 512 } 513 514 #else 515 static inline void mb_free_blocks_double(struct inode *inode, 516 struct ext4_buddy *e4b, int first, int count) 517 { 518 return; 519 } 520 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 521 int first, int count) 522 { 523 return; 524 } 525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 526 { 527 return; 528 } 529 #endif 530 531 #ifdef AGGRESSIVE_CHECK 532 533 #define MB_CHECK_ASSERT(assert) \ 534 do { \ 535 if (!(assert)) { \ 536 printk(KERN_EMERG \ 537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 538 function, file, line, # assert); \ 539 BUG(); \ 540 } \ 541 } while (0) 542 543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 544 const char *function, int line) 545 { 546 struct super_block *sb = e4b->bd_sb; 547 int order = e4b->bd_blkbits + 1; 548 int max; 549 int max2; 550 int i; 551 int j; 552 int k; 553 int count; 554 struct ext4_group_info *grp; 555 int fragments = 0; 556 int fstart; 557 struct list_head *cur; 558 void *buddy; 559 void *buddy2; 560 561 { 562 static int mb_check_counter; 563 if (mb_check_counter++ % 100 != 0) 564 return 0; 565 } 566 567 while (order > 1) { 568 buddy = mb_find_buddy(e4b, order, &max); 569 MB_CHECK_ASSERT(buddy); 570 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 571 MB_CHECK_ASSERT(buddy2); 572 MB_CHECK_ASSERT(buddy != buddy2); 573 MB_CHECK_ASSERT(max * 2 == max2); 574 575 count = 0; 576 for (i = 0; i < max; i++) { 577 578 if (mb_test_bit(i, buddy)) { 579 /* only single bit in buddy2 may be 1 */ 580 if (!mb_test_bit(i << 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit((i<<1)+1, buddy2)); 583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 584 MB_CHECK_ASSERT( 585 mb_test_bit(i << 1, buddy2)); 586 } 587 continue; 588 } 589 590 /* both bits in buddy2 must be 1 */ 591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 593 594 for (j = 0; j < (1 << order); j++) { 595 k = (i * (1 << order)) + j; 596 MB_CHECK_ASSERT( 597 !mb_test_bit(k, e4b->bd_bitmap)); 598 } 599 count++; 600 } 601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 602 order--; 603 } 604 605 fstart = -1; 606 buddy = mb_find_buddy(e4b, 0, &max); 607 for (i = 0; i < max; i++) { 608 if (!mb_test_bit(i, buddy)) { 609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 610 if (fstart == -1) { 611 fragments++; 612 fstart = i; 613 } 614 continue; 615 } 616 fstart = -1; 617 /* check used bits only */ 618 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 619 buddy2 = mb_find_buddy(e4b, j, &max2); 620 k = i >> j; 621 MB_CHECK_ASSERT(k < max2); 622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 623 } 624 } 625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 627 628 grp = ext4_get_group_info(sb, e4b->bd_group); 629 list_for_each(cur, &grp->bb_prealloc_list) { 630 ext4_group_t groupnr; 631 struct ext4_prealloc_space *pa; 632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 634 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 635 for (i = 0; i < pa->pa_len; i++) 636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 637 } 638 return 0; 639 } 640 #undef MB_CHECK_ASSERT 641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 642 __FILE__, __func__, __LINE__) 643 #else 644 #define mb_check_buddy(e4b) 645 #endif 646 647 /* 648 * Divide blocks started from @first with length @len into 649 * smaller chunks with power of 2 blocks. 650 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 651 * then increase bb_counters[] for corresponded chunk size. 652 */ 653 static void ext4_mb_mark_free_simple(struct super_block *sb, 654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 655 struct ext4_group_info *grp) 656 { 657 struct ext4_sb_info *sbi = EXT4_SB(sb); 658 ext4_grpblk_t min; 659 ext4_grpblk_t max; 660 ext4_grpblk_t chunk; 661 unsigned int border; 662 663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 664 665 border = 2 << sb->s_blocksize_bits; 666 667 while (len > 0) { 668 /* find how many blocks can be covered since this position */ 669 max = ffs(first | border) - 1; 670 671 /* find how many blocks of power 2 we need to mark */ 672 min = fls(len) - 1; 673 674 if (max < min) 675 min = max; 676 chunk = 1 << min; 677 678 /* mark multiblock chunks only */ 679 grp->bb_counters[min]++; 680 if (min > 0) 681 mb_clear_bit(first >> min, 682 buddy + sbi->s_mb_offsets[min]); 683 684 len -= chunk; 685 first += chunk; 686 } 687 } 688 689 /* 690 * Cache the order of the largest free extent we have available in this block 691 * group. 692 */ 693 static void 694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 695 { 696 int i; 697 int bits; 698 699 grp->bb_largest_free_order = -1; /* uninit */ 700 701 bits = sb->s_blocksize_bits + 1; 702 for (i = bits; i >= 0; i--) { 703 if (grp->bb_counters[i] > 0) { 704 grp->bb_largest_free_order = i; 705 break; 706 } 707 } 708 } 709 710 static noinline_for_stack 711 void ext4_mb_generate_buddy(struct super_block *sb, 712 void *buddy, void *bitmap, ext4_group_t group) 713 { 714 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 715 struct ext4_sb_info *sbi = EXT4_SB(sb); 716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 717 ext4_grpblk_t i = 0; 718 ext4_grpblk_t first; 719 ext4_grpblk_t len; 720 unsigned free = 0; 721 unsigned fragments = 0; 722 unsigned long long period = get_cycles(); 723 724 /* initialize buddy from bitmap which is aggregation 725 * of on-disk bitmap and preallocations */ 726 i = mb_find_next_zero_bit(bitmap, max, 0); 727 grp->bb_first_free = i; 728 while (i < max) { 729 fragments++; 730 first = i; 731 i = mb_find_next_bit(bitmap, max, i); 732 len = i - first; 733 free += len; 734 if (len > 1) 735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 736 else 737 grp->bb_counters[0]++; 738 if (i < max) 739 i = mb_find_next_zero_bit(bitmap, max, i); 740 } 741 grp->bb_fragments = fragments; 742 743 if (free != grp->bb_free) { 744 ext4_grp_locked_error(sb, group, 0, 0, 745 "block bitmap and bg descriptor " 746 "inconsistent: %u vs %u free clusters", 747 free, grp->bb_free); 748 /* 749 * If we intend to continue, we consider group descriptor 750 * corrupt and update bb_free using bitmap value 751 */ 752 grp->bb_free = free; 753 ext4_mark_group_bitmap_corrupted(sb, group, 754 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 755 } 756 mb_set_largest_free_order(sb, grp); 757 758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 759 760 period = get_cycles() - period; 761 spin_lock(&sbi->s_bal_lock); 762 sbi->s_mb_buddies_generated++; 763 sbi->s_mb_generation_time += period; 764 spin_unlock(&sbi->s_bal_lock); 765 } 766 767 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 768 { 769 int count; 770 int order = 1; 771 void *buddy; 772 773 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 774 ext4_set_bits(buddy, 0, count); 775 } 776 e4b->bd_info->bb_fragments = 0; 777 memset(e4b->bd_info->bb_counters, 0, 778 sizeof(*e4b->bd_info->bb_counters) * 779 (e4b->bd_sb->s_blocksize_bits + 2)); 780 781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 782 e4b->bd_bitmap, e4b->bd_group); 783 } 784 785 /* The buddy information is attached the buddy cache inode 786 * for convenience. The information regarding each group 787 * is loaded via ext4_mb_load_buddy. The information involve 788 * block bitmap and buddy information. The information are 789 * stored in the inode as 790 * 791 * { page } 792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 793 * 794 * 795 * one block each for bitmap and buddy information. 796 * So for each group we take up 2 blocks. A page can 797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 798 * So it can have information regarding groups_per_page which 799 * is blocks_per_page/2 800 * 801 * Locking note: This routine takes the block group lock of all groups 802 * for this page; do not hold this lock when calling this routine! 803 */ 804 805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 806 { 807 ext4_group_t ngroups; 808 int blocksize; 809 int blocks_per_page; 810 int groups_per_page; 811 int err = 0; 812 int i; 813 ext4_group_t first_group, group; 814 int first_block; 815 struct super_block *sb; 816 struct buffer_head *bhs; 817 struct buffer_head **bh = NULL; 818 struct inode *inode; 819 char *data; 820 char *bitmap; 821 struct ext4_group_info *grinfo; 822 823 mb_debug(1, "init page %lu\n", page->index); 824 825 inode = page->mapping->host; 826 sb = inode->i_sb; 827 ngroups = ext4_get_groups_count(sb); 828 blocksize = i_blocksize(inode); 829 blocks_per_page = PAGE_SIZE / blocksize; 830 831 groups_per_page = blocks_per_page >> 1; 832 if (groups_per_page == 0) 833 groups_per_page = 1; 834 835 /* allocate buffer_heads to read bitmaps */ 836 if (groups_per_page > 1) { 837 i = sizeof(struct buffer_head *) * groups_per_page; 838 bh = kzalloc(i, gfp); 839 if (bh == NULL) { 840 err = -ENOMEM; 841 goto out; 842 } 843 } else 844 bh = &bhs; 845 846 first_group = page->index * blocks_per_page / 2; 847 848 /* read all groups the page covers into the cache */ 849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 850 if (group >= ngroups) 851 break; 852 853 grinfo = ext4_get_group_info(sb, group); 854 /* 855 * If page is uptodate then we came here after online resize 856 * which added some new uninitialized group info structs, so 857 * we must skip all initialized uptodate buddies on the page, 858 * which may be currently in use by an allocating task. 859 */ 860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 861 bh[i] = NULL; 862 continue; 863 } 864 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 865 if (IS_ERR(bh[i])) { 866 err = PTR_ERR(bh[i]); 867 bh[i] = NULL; 868 goto out; 869 } 870 mb_debug(1, "read bitmap for group %u\n", group); 871 } 872 873 /* wait for I/O completion */ 874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 875 int err2; 876 877 if (!bh[i]) 878 continue; 879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 880 if (!err) 881 err = err2; 882 } 883 884 first_block = page->index * blocks_per_page; 885 for (i = 0; i < blocks_per_page; i++) { 886 group = (first_block + i) >> 1; 887 if (group >= ngroups) 888 break; 889 890 if (!bh[group - first_group]) 891 /* skip initialized uptodate buddy */ 892 continue; 893 894 if (!buffer_verified(bh[group - first_group])) 895 /* Skip faulty bitmaps */ 896 continue; 897 err = 0; 898 899 /* 900 * data carry information regarding this 901 * particular group in the format specified 902 * above 903 * 904 */ 905 data = page_address(page) + (i * blocksize); 906 bitmap = bh[group - first_group]->b_data; 907 908 /* 909 * We place the buddy block and bitmap block 910 * close together 911 */ 912 if ((first_block + i) & 1) { 913 /* this is block of buddy */ 914 BUG_ON(incore == NULL); 915 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 916 group, page->index, i * blocksize); 917 trace_ext4_mb_buddy_bitmap_load(sb, group); 918 grinfo = ext4_get_group_info(sb, group); 919 grinfo->bb_fragments = 0; 920 memset(grinfo->bb_counters, 0, 921 sizeof(*grinfo->bb_counters) * 922 (sb->s_blocksize_bits+2)); 923 /* 924 * incore got set to the group block bitmap below 925 */ 926 ext4_lock_group(sb, group); 927 /* init the buddy */ 928 memset(data, 0xff, blocksize); 929 ext4_mb_generate_buddy(sb, data, incore, group); 930 ext4_unlock_group(sb, group); 931 incore = NULL; 932 } else { 933 /* this is block of bitmap */ 934 BUG_ON(incore != NULL); 935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 936 group, page->index, i * blocksize); 937 trace_ext4_mb_bitmap_load(sb, group); 938 939 /* see comments in ext4_mb_put_pa() */ 940 ext4_lock_group(sb, group); 941 memcpy(data, bitmap, blocksize); 942 943 /* mark all preallocated blks used in in-core bitmap */ 944 ext4_mb_generate_from_pa(sb, data, group); 945 ext4_mb_generate_from_freelist(sb, data, group); 946 ext4_unlock_group(sb, group); 947 948 /* set incore so that the buddy information can be 949 * generated using this 950 */ 951 incore = data; 952 } 953 } 954 SetPageUptodate(page); 955 956 out: 957 if (bh) { 958 for (i = 0; i < groups_per_page; i++) 959 brelse(bh[i]); 960 if (bh != &bhs) 961 kfree(bh); 962 } 963 return err; 964 } 965 966 /* 967 * Lock the buddy and bitmap pages. This make sure other parallel init_group 968 * on the same buddy page doesn't happen whild holding the buddy page lock. 969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 971 */ 972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 974 { 975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 976 int block, pnum, poff; 977 int blocks_per_page; 978 struct page *page; 979 980 e4b->bd_buddy_page = NULL; 981 e4b->bd_bitmap_page = NULL; 982 983 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 984 /* 985 * the buddy cache inode stores the block bitmap 986 * and buddy information in consecutive blocks. 987 * So for each group we need two blocks. 988 */ 989 block = group * 2; 990 pnum = block / blocks_per_page; 991 poff = block % blocks_per_page; 992 page = find_or_create_page(inode->i_mapping, pnum, gfp); 993 if (!page) 994 return -ENOMEM; 995 BUG_ON(page->mapping != inode->i_mapping); 996 e4b->bd_bitmap_page = page; 997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 998 999 if (blocks_per_page >= 2) { 1000 /* buddy and bitmap are on the same page */ 1001 return 0; 1002 } 1003 1004 block++; 1005 pnum = block / blocks_per_page; 1006 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1007 if (!page) 1008 return -ENOMEM; 1009 BUG_ON(page->mapping != inode->i_mapping); 1010 e4b->bd_buddy_page = page; 1011 return 0; 1012 } 1013 1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1015 { 1016 if (e4b->bd_bitmap_page) { 1017 unlock_page(e4b->bd_bitmap_page); 1018 put_page(e4b->bd_bitmap_page); 1019 } 1020 if (e4b->bd_buddy_page) { 1021 unlock_page(e4b->bd_buddy_page); 1022 put_page(e4b->bd_buddy_page); 1023 } 1024 } 1025 1026 /* 1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1028 * block group lock of all groups for this page; do not hold the BG lock when 1029 * calling this routine! 1030 */ 1031 static noinline_for_stack 1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1033 { 1034 1035 struct ext4_group_info *this_grp; 1036 struct ext4_buddy e4b; 1037 struct page *page; 1038 int ret = 0; 1039 1040 might_sleep(); 1041 mb_debug(1, "init group %u\n", group); 1042 this_grp = ext4_get_group_info(sb, group); 1043 /* 1044 * This ensures that we don't reinit the buddy cache 1045 * page which map to the group from which we are already 1046 * allocating. If we are looking at the buddy cache we would 1047 * have taken a reference using ext4_mb_load_buddy and that 1048 * would have pinned buddy page to page cache. 1049 * The call to ext4_mb_get_buddy_page_lock will mark the 1050 * page accessed. 1051 */ 1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1054 /* 1055 * somebody initialized the group 1056 * return without doing anything 1057 */ 1058 goto err; 1059 } 1060 1061 page = e4b.bd_bitmap_page; 1062 ret = ext4_mb_init_cache(page, NULL, gfp); 1063 if (ret) 1064 goto err; 1065 if (!PageUptodate(page)) { 1066 ret = -EIO; 1067 goto err; 1068 } 1069 1070 if (e4b.bd_buddy_page == NULL) { 1071 /* 1072 * If both the bitmap and buddy are in 1073 * the same page we don't need to force 1074 * init the buddy 1075 */ 1076 ret = 0; 1077 goto err; 1078 } 1079 /* init buddy cache */ 1080 page = e4b.bd_buddy_page; 1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1082 if (ret) 1083 goto err; 1084 if (!PageUptodate(page)) { 1085 ret = -EIO; 1086 goto err; 1087 } 1088 err: 1089 ext4_mb_put_buddy_page_lock(&e4b); 1090 return ret; 1091 } 1092 1093 /* 1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1095 * block group lock of all groups for this page; do not hold the BG lock when 1096 * calling this routine! 1097 */ 1098 static noinline_for_stack int 1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1100 struct ext4_buddy *e4b, gfp_t gfp) 1101 { 1102 int blocks_per_page; 1103 int block; 1104 int pnum; 1105 int poff; 1106 struct page *page; 1107 int ret; 1108 struct ext4_group_info *grp; 1109 struct ext4_sb_info *sbi = EXT4_SB(sb); 1110 struct inode *inode = sbi->s_buddy_cache; 1111 1112 might_sleep(); 1113 mb_debug(1, "load group %u\n", group); 1114 1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1116 grp = ext4_get_group_info(sb, group); 1117 1118 e4b->bd_blkbits = sb->s_blocksize_bits; 1119 e4b->bd_info = grp; 1120 e4b->bd_sb = sb; 1121 e4b->bd_group = group; 1122 e4b->bd_buddy_page = NULL; 1123 e4b->bd_bitmap_page = NULL; 1124 1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1126 /* 1127 * we need full data about the group 1128 * to make a good selection 1129 */ 1130 ret = ext4_mb_init_group(sb, group, gfp); 1131 if (ret) 1132 return ret; 1133 } 1134 1135 /* 1136 * the buddy cache inode stores the block bitmap 1137 * and buddy information in consecutive blocks. 1138 * So for each group we need two blocks. 1139 */ 1140 block = group * 2; 1141 pnum = block / blocks_per_page; 1142 poff = block % blocks_per_page; 1143 1144 /* we could use find_or_create_page(), but it locks page 1145 * what we'd like to avoid in fast path ... */ 1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1147 if (page == NULL || !PageUptodate(page)) { 1148 if (page) 1149 /* 1150 * drop the page reference and try 1151 * to get the page with lock. If we 1152 * are not uptodate that implies 1153 * somebody just created the page but 1154 * is yet to initialize the same. So 1155 * wait for it to initialize. 1156 */ 1157 put_page(page); 1158 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1159 if (page) { 1160 BUG_ON(page->mapping != inode->i_mapping); 1161 if (!PageUptodate(page)) { 1162 ret = ext4_mb_init_cache(page, NULL, gfp); 1163 if (ret) { 1164 unlock_page(page); 1165 goto err; 1166 } 1167 mb_cmp_bitmaps(e4b, page_address(page) + 1168 (poff * sb->s_blocksize)); 1169 } 1170 unlock_page(page); 1171 } 1172 } 1173 if (page == NULL) { 1174 ret = -ENOMEM; 1175 goto err; 1176 } 1177 if (!PageUptodate(page)) { 1178 ret = -EIO; 1179 goto err; 1180 } 1181 1182 /* Pages marked accessed already */ 1183 e4b->bd_bitmap_page = page; 1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1185 1186 block++; 1187 pnum = block / blocks_per_page; 1188 poff = block % blocks_per_page; 1189 1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1191 if (page == NULL || !PageUptodate(page)) { 1192 if (page) 1193 put_page(page); 1194 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1195 if (page) { 1196 BUG_ON(page->mapping != inode->i_mapping); 1197 if (!PageUptodate(page)) { 1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1199 gfp); 1200 if (ret) { 1201 unlock_page(page); 1202 goto err; 1203 } 1204 } 1205 unlock_page(page); 1206 } 1207 } 1208 if (page == NULL) { 1209 ret = -ENOMEM; 1210 goto err; 1211 } 1212 if (!PageUptodate(page)) { 1213 ret = -EIO; 1214 goto err; 1215 } 1216 1217 /* Pages marked accessed already */ 1218 e4b->bd_buddy_page = page; 1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1220 1221 BUG_ON(e4b->bd_bitmap_page == NULL); 1222 BUG_ON(e4b->bd_buddy_page == NULL); 1223 1224 return 0; 1225 1226 err: 1227 if (page) 1228 put_page(page); 1229 if (e4b->bd_bitmap_page) 1230 put_page(e4b->bd_bitmap_page); 1231 if (e4b->bd_buddy_page) 1232 put_page(e4b->bd_buddy_page); 1233 e4b->bd_buddy = NULL; 1234 e4b->bd_bitmap = NULL; 1235 return ret; 1236 } 1237 1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1239 struct ext4_buddy *e4b) 1240 { 1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1242 } 1243 1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1245 { 1246 if (e4b->bd_bitmap_page) 1247 put_page(e4b->bd_bitmap_page); 1248 if (e4b->bd_buddy_page) 1249 put_page(e4b->bd_buddy_page); 1250 } 1251 1252 1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1254 { 1255 int order = 1; 1256 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1257 void *bb; 1258 1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1261 1262 bb = e4b->bd_buddy; 1263 while (order <= e4b->bd_blkbits + 1) { 1264 block = block >> 1; 1265 if (!mb_test_bit(block, bb)) { 1266 /* this block is part of buddy of order 'order' */ 1267 return order; 1268 } 1269 bb += bb_incr; 1270 bb_incr >>= 1; 1271 order++; 1272 } 1273 return 0; 1274 } 1275 1276 static void mb_clear_bits(void *bm, int cur, int len) 1277 { 1278 __u32 *addr; 1279 1280 len = cur + len; 1281 while (cur < len) { 1282 if ((cur & 31) == 0 && (len - cur) >= 32) { 1283 /* fast path: clear whole word at once */ 1284 addr = bm + (cur >> 3); 1285 *addr = 0; 1286 cur += 32; 1287 continue; 1288 } 1289 mb_clear_bit(cur, bm); 1290 cur++; 1291 } 1292 } 1293 1294 /* clear bits in given range 1295 * will return first found zero bit if any, -1 otherwise 1296 */ 1297 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1298 { 1299 __u32 *addr; 1300 int zero_bit = -1; 1301 1302 len = cur + len; 1303 while (cur < len) { 1304 if ((cur & 31) == 0 && (len - cur) >= 32) { 1305 /* fast path: clear whole word at once */ 1306 addr = bm + (cur >> 3); 1307 if (*addr != (__u32)(-1) && zero_bit == -1) 1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1309 *addr = 0; 1310 cur += 32; 1311 continue; 1312 } 1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1314 zero_bit = cur; 1315 cur++; 1316 } 1317 1318 return zero_bit; 1319 } 1320 1321 void ext4_set_bits(void *bm, int cur, int len) 1322 { 1323 __u32 *addr; 1324 1325 len = cur + len; 1326 while (cur < len) { 1327 if ((cur & 31) == 0 && (len - cur) >= 32) { 1328 /* fast path: set whole word at once */ 1329 addr = bm + (cur >> 3); 1330 *addr = 0xffffffff; 1331 cur += 32; 1332 continue; 1333 } 1334 mb_set_bit(cur, bm); 1335 cur++; 1336 } 1337 } 1338 1339 /* 1340 * _________________________________________________________________ */ 1341 1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1343 { 1344 if (mb_test_bit(*bit + side, bitmap)) { 1345 mb_clear_bit(*bit, bitmap); 1346 (*bit) -= side; 1347 return 1; 1348 } 1349 else { 1350 (*bit) += side; 1351 mb_set_bit(*bit, bitmap); 1352 return -1; 1353 } 1354 } 1355 1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1357 { 1358 int max; 1359 int order = 1; 1360 void *buddy = mb_find_buddy(e4b, order, &max); 1361 1362 while (buddy) { 1363 void *buddy2; 1364 1365 /* Bits in range [first; last] are known to be set since 1366 * corresponding blocks were allocated. Bits in range 1367 * (first; last) will stay set because they form buddies on 1368 * upper layer. We just deal with borders if they don't 1369 * align with upper layer and then go up. 1370 * Releasing entire group is all about clearing 1371 * single bit of highest order buddy. 1372 */ 1373 1374 /* Example: 1375 * --------------------------------- 1376 * | 1 | 1 | 1 | 1 | 1377 * --------------------------------- 1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1379 * --------------------------------- 1380 * 0 1 2 3 4 5 6 7 1381 * \_____________________/ 1382 * 1383 * Neither [1] nor [6] is aligned to above layer. 1384 * Left neighbour [0] is free, so mark it busy, 1385 * decrease bb_counters and extend range to 1386 * [0; 6] 1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1388 * mark [6] free, increase bb_counters and shrink range to 1389 * [0; 5]. 1390 * Then shift range to [0; 2], go up and do the same. 1391 */ 1392 1393 1394 if (first & 1) 1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1396 if (!(last & 1)) 1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1398 if (first > last) 1399 break; 1400 order++; 1401 1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1403 mb_clear_bits(buddy, first, last - first + 1); 1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1405 break; 1406 } 1407 first >>= 1; 1408 last >>= 1; 1409 buddy = buddy2; 1410 } 1411 } 1412 1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1414 int first, int count) 1415 { 1416 int left_is_free = 0; 1417 int right_is_free = 0; 1418 int block; 1419 int last = first + count - 1; 1420 struct super_block *sb = e4b->bd_sb; 1421 1422 if (WARN_ON(count == 0)) 1423 return; 1424 BUG_ON(last >= (sb->s_blocksize << 3)); 1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1426 /* Don't bother if the block group is corrupt. */ 1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1428 return; 1429 1430 mb_check_buddy(e4b); 1431 mb_free_blocks_double(inode, e4b, first, count); 1432 1433 e4b->bd_info->bb_free += count; 1434 if (first < e4b->bd_info->bb_first_free) 1435 e4b->bd_info->bb_first_free = first; 1436 1437 /* access memory sequentially: check left neighbour, 1438 * clear range and then check right neighbour 1439 */ 1440 if (first != 0) 1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1445 1446 if (unlikely(block != -1)) { 1447 struct ext4_sb_info *sbi = EXT4_SB(sb); 1448 ext4_fsblk_t blocknr; 1449 1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1451 blocknr += EXT4_C2B(sbi, block); 1452 ext4_grp_locked_error(sb, e4b->bd_group, 1453 inode ? inode->i_ino : 0, 1454 blocknr, 1455 "freeing already freed block " 1456 "(bit %u); block bitmap corrupt.", 1457 block); 1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1460 mb_regenerate_buddy(e4b); 1461 goto done; 1462 } 1463 1464 /* let's maintain fragments counter */ 1465 if (left_is_free && right_is_free) 1466 e4b->bd_info->bb_fragments--; 1467 else if (!left_is_free && !right_is_free) 1468 e4b->bd_info->bb_fragments++; 1469 1470 /* buddy[0] == bd_bitmap is a special case, so handle 1471 * it right away and let mb_buddy_mark_free stay free of 1472 * zero order checks. 1473 * Check if neighbours are to be coaleasced, 1474 * adjust bitmap bb_counters and borders appropriately. 1475 */ 1476 if (first & 1) { 1477 first += !left_is_free; 1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1479 } 1480 if (!(last & 1)) { 1481 last -= !right_is_free; 1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1483 } 1484 1485 if (first <= last) 1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1487 1488 done: 1489 mb_set_largest_free_order(sb, e4b->bd_info); 1490 mb_check_buddy(e4b); 1491 } 1492 1493 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1494 int needed, struct ext4_free_extent *ex) 1495 { 1496 int next = block; 1497 int max, order; 1498 void *buddy; 1499 1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1501 BUG_ON(ex == NULL); 1502 1503 buddy = mb_find_buddy(e4b, 0, &max); 1504 BUG_ON(buddy == NULL); 1505 BUG_ON(block >= max); 1506 if (mb_test_bit(block, buddy)) { 1507 ex->fe_len = 0; 1508 ex->fe_start = 0; 1509 ex->fe_group = 0; 1510 return 0; 1511 } 1512 1513 /* find actual order */ 1514 order = mb_find_order_for_block(e4b, block); 1515 block = block >> order; 1516 1517 ex->fe_len = 1 << order; 1518 ex->fe_start = block << order; 1519 ex->fe_group = e4b->bd_group; 1520 1521 /* calc difference from given start */ 1522 next = next - ex->fe_start; 1523 ex->fe_len -= next; 1524 ex->fe_start += next; 1525 1526 while (needed > ex->fe_len && 1527 mb_find_buddy(e4b, order, &max)) { 1528 1529 if (block + 1 >= max) 1530 break; 1531 1532 next = (block + 1) * (1 << order); 1533 if (mb_test_bit(next, e4b->bd_bitmap)) 1534 break; 1535 1536 order = mb_find_order_for_block(e4b, next); 1537 1538 block = next >> order; 1539 ex->fe_len += 1 << order; 1540 } 1541 1542 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1543 /* Should never happen! (but apparently sometimes does?!?) */ 1544 WARN_ON(1); 1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1547 block, order, needed, ex->fe_group, ex->fe_start, 1548 ex->fe_len, ex->fe_logical); 1549 ex->fe_len = 0; 1550 ex->fe_start = 0; 1551 ex->fe_group = 0; 1552 } 1553 return ex->fe_len; 1554 } 1555 1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1557 { 1558 int ord; 1559 int mlen = 0; 1560 int max = 0; 1561 int cur; 1562 int start = ex->fe_start; 1563 int len = ex->fe_len; 1564 unsigned ret = 0; 1565 int len0 = len; 1566 void *buddy; 1567 1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1569 BUG_ON(e4b->bd_group != ex->fe_group); 1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1571 mb_check_buddy(e4b); 1572 mb_mark_used_double(e4b, start, len); 1573 1574 e4b->bd_info->bb_free -= len; 1575 if (e4b->bd_info->bb_first_free == start) 1576 e4b->bd_info->bb_first_free += len; 1577 1578 /* let's maintain fragments counter */ 1579 if (start != 0) 1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1582 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1583 if (mlen && max) 1584 e4b->bd_info->bb_fragments++; 1585 else if (!mlen && !max) 1586 e4b->bd_info->bb_fragments--; 1587 1588 /* let's maintain buddy itself */ 1589 while (len) { 1590 ord = mb_find_order_for_block(e4b, start); 1591 1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1593 /* the whole chunk may be allocated at once! */ 1594 mlen = 1 << ord; 1595 buddy = mb_find_buddy(e4b, ord, &max); 1596 BUG_ON((start >> ord) >= max); 1597 mb_set_bit(start >> ord, buddy); 1598 e4b->bd_info->bb_counters[ord]--; 1599 start += mlen; 1600 len -= mlen; 1601 BUG_ON(len < 0); 1602 continue; 1603 } 1604 1605 /* store for history */ 1606 if (ret == 0) 1607 ret = len | (ord << 16); 1608 1609 /* we have to split large buddy */ 1610 BUG_ON(ord <= 0); 1611 buddy = mb_find_buddy(e4b, ord, &max); 1612 mb_set_bit(start >> ord, buddy); 1613 e4b->bd_info->bb_counters[ord]--; 1614 1615 ord--; 1616 cur = (start >> ord) & ~1U; 1617 buddy = mb_find_buddy(e4b, ord, &max); 1618 mb_clear_bit(cur, buddy); 1619 mb_clear_bit(cur + 1, buddy); 1620 e4b->bd_info->bb_counters[ord]++; 1621 e4b->bd_info->bb_counters[ord]++; 1622 } 1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1624 1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1626 mb_check_buddy(e4b); 1627 1628 return ret; 1629 } 1630 1631 /* 1632 * Must be called under group lock! 1633 */ 1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1635 struct ext4_buddy *e4b) 1636 { 1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1638 int ret; 1639 1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1642 1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1645 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1646 1647 /* preallocation can change ac_b_ex, thus we store actually 1648 * allocated blocks for history */ 1649 ac->ac_f_ex = ac->ac_b_ex; 1650 1651 ac->ac_status = AC_STATUS_FOUND; 1652 ac->ac_tail = ret & 0xffff; 1653 ac->ac_buddy = ret >> 16; 1654 1655 /* 1656 * take the page reference. We want the page to be pinned 1657 * so that we don't get a ext4_mb_init_cache_call for this 1658 * group until we update the bitmap. That would mean we 1659 * double allocate blocks. The reference is dropped 1660 * in ext4_mb_release_context 1661 */ 1662 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1663 get_page(ac->ac_bitmap_page); 1664 ac->ac_buddy_page = e4b->bd_buddy_page; 1665 get_page(ac->ac_buddy_page); 1666 /* store last allocated for subsequent stream allocation */ 1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1668 spin_lock(&sbi->s_md_lock); 1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1671 spin_unlock(&sbi->s_md_lock); 1672 } 1673 } 1674 1675 /* 1676 * regular allocator, for general purposes allocation 1677 */ 1678 1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1680 struct ext4_buddy *e4b, 1681 int finish_group) 1682 { 1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1684 struct ext4_free_extent *bex = &ac->ac_b_ex; 1685 struct ext4_free_extent *gex = &ac->ac_g_ex; 1686 struct ext4_free_extent ex; 1687 int max; 1688 1689 if (ac->ac_status == AC_STATUS_FOUND) 1690 return; 1691 /* 1692 * We don't want to scan for a whole year 1693 */ 1694 if (ac->ac_found > sbi->s_mb_max_to_scan && 1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1696 ac->ac_status = AC_STATUS_BREAK; 1697 return; 1698 } 1699 1700 /* 1701 * Haven't found good chunk so far, let's continue 1702 */ 1703 if (bex->fe_len < gex->fe_len) 1704 return; 1705 1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1707 && bex->fe_group == e4b->bd_group) { 1708 /* recheck chunk's availability - we don't know 1709 * when it was found (within this lock-unlock 1710 * period or not) */ 1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1712 if (max >= gex->fe_len) { 1713 ext4_mb_use_best_found(ac, e4b); 1714 return; 1715 } 1716 } 1717 } 1718 1719 /* 1720 * The routine checks whether found extent is good enough. If it is, 1721 * then the extent gets marked used and flag is set to the context 1722 * to stop scanning. Otherwise, the extent is compared with the 1723 * previous found extent and if new one is better, then it's stored 1724 * in the context. Later, the best found extent will be used, if 1725 * mballoc can't find good enough extent. 1726 * 1727 * FIXME: real allocation policy is to be designed yet! 1728 */ 1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1730 struct ext4_free_extent *ex, 1731 struct ext4_buddy *e4b) 1732 { 1733 struct ext4_free_extent *bex = &ac->ac_b_ex; 1734 struct ext4_free_extent *gex = &ac->ac_g_ex; 1735 1736 BUG_ON(ex->fe_len <= 0); 1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1740 1741 ac->ac_found++; 1742 1743 /* 1744 * The special case - take what you catch first 1745 */ 1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1747 *bex = *ex; 1748 ext4_mb_use_best_found(ac, e4b); 1749 return; 1750 } 1751 1752 /* 1753 * Let's check whether the chuck is good enough 1754 */ 1755 if (ex->fe_len == gex->fe_len) { 1756 *bex = *ex; 1757 ext4_mb_use_best_found(ac, e4b); 1758 return; 1759 } 1760 1761 /* 1762 * If this is first found extent, just store it in the context 1763 */ 1764 if (bex->fe_len == 0) { 1765 *bex = *ex; 1766 return; 1767 } 1768 1769 /* 1770 * If new found extent is better, store it in the context 1771 */ 1772 if (bex->fe_len < gex->fe_len) { 1773 /* if the request isn't satisfied, any found extent 1774 * larger than previous best one is better */ 1775 if (ex->fe_len > bex->fe_len) 1776 *bex = *ex; 1777 } else if (ex->fe_len > gex->fe_len) { 1778 /* if the request is satisfied, then we try to find 1779 * an extent that still satisfy the request, but is 1780 * smaller than previous one */ 1781 if (ex->fe_len < bex->fe_len) 1782 *bex = *ex; 1783 } 1784 1785 ext4_mb_check_limits(ac, e4b, 0); 1786 } 1787 1788 static noinline_for_stack 1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1790 struct ext4_buddy *e4b) 1791 { 1792 struct ext4_free_extent ex = ac->ac_b_ex; 1793 ext4_group_t group = ex.fe_group; 1794 int max; 1795 int err; 1796 1797 BUG_ON(ex.fe_len <= 0); 1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1799 if (err) 1800 return err; 1801 1802 ext4_lock_group(ac->ac_sb, group); 1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1804 1805 if (max > 0) { 1806 ac->ac_b_ex = ex; 1807 ext4_mb_use_best_found(ac, e4b); 1808 } 1809 1810 ext4_unlock_group(ac->ac_sb, group); 1811 ext4_mb_unload_buddy(e4b); 1812 1813 return 0; 1814 } 1815 1816 static noinline_for_stack 1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1818 struct ext4_buddy *e4b) 1819 { 1820 ext4_group_t group = ac->ac_g_ex.fe_group; 1821 int max; 1822 int err; 1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1825 struct ext4_free_extent ex; 1826 1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1828 return 0; 1829 if (grp->bb_free == 0) 1830 return 0; 1831 1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1833 if (err) 1834 return err; 1835 1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1837 ext4_mb_unload_buddy(e4b); 1838 return 0; 1839 } 1840 1841 ext4_lock_group(ac->ac_sb, group); 1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1843 ac->ac_g_ex.fe_len, &ex); 1844 ex.fe_logical = 0xDEADFA11; /* debug value */ 1845 1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1847 ext4_fsblk_t start; 1848 1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1850 ex.fe_start; 1851 /* use do_div to get remainder (would be 64-bit modulo) */ 1852 if (do_div(start, sbi->s_stripe) == 0) { 1853 ac->ac_found++; 1854 ac->ac_b_ex = ex; 1855 ext4_mb_use_best_found(ac, e4b); 1856 } 1857 } else if (max >= ac->ac_g_ex.fe_len) { 1858 BUG_ON(ex.fe_len <= 0); 1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1861 ac->ac_found++; 1862 ac->ac_b_ex = ex; 1863 ext4_mb_use_best_found(ac, e4b); 1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1865 /* Sometimes, caller may want to merge even small 1866 * number of blocks to an existing extent */ 1867 BUG_ON(ex.fe_len <= 0); 1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1870 ac->ac_found++; 1871 ac->ac_b_ex = ex; 1872 ext4_mb_use_best_found(ac, e4b); 1873 } 1874 ext4_unlock_group(ac->ac_sb, group); 1875 ext4_mb_unload_buddy(e4b); 1876 1877 return 0; 1878 } 1879 1880 /* 1881 * The routine scans buddy structures (not bitmap!) from given order 1882 * to max order and tries to find big enough chunk to satisfy the req 1883 */ 1884 static noinline_for_stack 1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1886 struct ext4_buddy *e4b) 1887 { 1888 struct super_block *sb = ac->ac_sb; 1889 struct ext4_group_info *grp = e4b->bd_info; 1890 void *buddy; 1891 int i; 1892 int k; 1893 int max; 1894 1895 BUG_ON(ac->ac_2order <= 0); 1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1897 if (grp->bb_counters[i] == 0) 1898 continue; 1899 1900 buddy = mb_find_buddy(e4b, i, &max); 1901 BUG_ON(buddy == NULL); 1902 1903 k = mb_find_next_zero_bit(buddy, max, 0); 1904 if (k >= max) { 1905 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 1906 "%d free clusters of order %d. But found 0", 1907 grp->bb_counters[i], i); 1908 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 1909 e4b->bd_group, 1910 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1911 break; 1912 } 1913 ac->ac_found++; 1914 1915 ac->ac_b_ex.fe_len = 1 << i; 1916 ac->ac_b_ex.fe_start = k << i; 1917 ac->ac_b_ex.fe_group = e4b->bd_group; 1918 1919 ext4_mb_use_best_found(ac, e4b); 1920 1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1922 1923 if (EXT4_SB(sb)->s_mb_stats) 1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1925 1926 break; 1927 } 1928 } 1929 1930 /* 1931 * The routine scans the group and measures all found extents. 1932 * In order to optimize scanning, caller must pass number of 1933 * free blocks in the group, so the routine can know upper limit. 1934 */ 1935 static noinline_for_stack 1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1937 struct ext4_buddy *e4b) 1938 { 1939 struct super_block *sb = ac->ac_sb; 1940 void *bitmap = e4b->bd_bitmap; 1941 struct ext4_free_extent ex; 1942 int i; 1943 int free; 1944 1945 free = e4b->bd_info->bb_free; 1946 if (WARN_ON(free <= 0)) 1947 return; 1948 1949 i = e4b->bd_info->bb_first_free; 1950 1951 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1952 i = mb_find_next_zero_bit(bitmap, 1953 EXT4_CLUSTERS_PER_GROUP(sb), i); 1954 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1955 /* 1956 * IF we have corrupt bitmap, we won't find any 1957 * free blocks even though group info says we 1958 * we have free blocks 1959 */ 1960 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1961 "%d free clusters as per " 1962 "group info. But bitmap says 0", 1963 free); 1964 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1965 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1966 break; 1967 } 1968 1969 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1970 if (WARN_ON(ex.fe_len <= 0)) 1971 break; 1972 if (free < ex.fe_len) { 1973 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1974 "%d free clusters as per " 1975 "group info. But got %d blocks", 1976 free, ex.fe_len); 1977 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1978 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1979 /* 1980 * The number of free blocks differs. This mostly 1981 * indicate that the bitmap is corrupt. So exit 1982 * without claiming the space. 1983 */ 1984 break; 1985 } 1986 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1987 ext4_mb_measure_extent(ac, &ex, e4b); 1988 1989 i += ex.fe_len; 1990 free -= ex.fe_len; 1991 } 1992 1993 ext4_mb_check_limits(ac, e4b, 1); 1994 } 1995 1996 /* 1997 * This is a special case for storages like raid5 1998 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1999 */ 2000 static noinline_for_stack 2001 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2002 struct ext4_buddy *e4b) 2003 { 2004 struct super_block *sb = ac->ac_sb; 2005 struct ext4_sb_info *sbi = EXT4_SB(sb); 2006 void *bitmap = e4b->bd_bitmap; 2007 struct ext4_free_extent ex; 2008 ext4_fsblk_t first_group_block; 2009 ext4_fsblk_t a; 2010 ext4_grpblk_t i; 2011 int max; 2012 2013 BUG_ON(sbi->s_stripe == 0); 2014 2015 /* find first stripe-aligned block in group */ 2016 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2017 2018 a = first_group_block + sbi->s_stripe - 1; 2019 do_div(a, sbi->s_stripe); 2020 i = (a * sbi->s_stripe) - first_group_block; 2021 2022 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2023 if (!mb_test_bit(i, bitmap)) { 2024 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2025 if (max >= sbi->s_stripe) { 2026 ac->ac_found++; 2027 ex.fe_logical = 0xDEADF00D; /* debug value */ 2028 ac->ac_b_ex = ex; 2029 ext4_mb_use_best_found(ac, e4b); 2030 break; 2031 } 2032 } 2033 i += sbi->s_stripe; 2034 } 2035 } 2036 2037 /* 2038 * This is now called BEFORE we load the buddy bitmap. 2039 * Returns either 1 or 0 indicating that the group is either suitable 2040 * for the allocation or not. In addition it can also return negative 2041 * error code when something goes wrong. 2042 */ 2043 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2044 ext4_group_t group, int cr) 2045 { 2046 unsigned free, fragments; 2047 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2048 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2049 2050 BUG_ON(cr < 0 || cr >= 4); 2051 2052 free = grp->bb_free; 2053 if (free == 0) 2054 return 0; 2055 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2056 return 0; 2057 2058 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2059 return 0; 2060 2061 /* We only do this if the grp has never been initialized */ 2062 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2063 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2064 if (ret) 2065 return ret; 2066 } 2067 2068 fragments = grp->bb_fragments; 2069 if (fragments == 0) 2070 return 0; 2071 2072 switch (cr) { 2073 case 0: 2074 BUG_ON(ac->ac_2order == 0); 2075 2076 /* Avoid using the first bg of a flexgroup for data files */ 2077 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2078 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2079 ((group % flex_size) == 0)) 2080 return 0; 2081 2082 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2083 (free / fragments) >= ac->ac_g_ex.fe_len) 2084 return 1; 2085 2086 if (grp->bb_largest_free_order < ac->ac_2order) 2087 return 0; 2088 2089 return 1; 2090 case 1: 2091 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2092 return 1; 2093 break; 2094 case 2: 2095 if (free >= ac->ac_g_ex.fe_len) 2096 return 1; 2097 break; 2098 case 3: 2099 return 1; 2100 default: 2101 BUG(); 2102 } 2103 2104 return 0; 2105 } 2106 2107 static noinline_for_stack int 2108 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2109 { 2110 ext4_group_t ngroups, group, i; 2111 int cr; 2112 int err = 0, first_err = 0; 2113 struct ext4_sb_info *sbi; 2114 struct super_block *sb; 2115 struct ext4_buddy e4b; 2116 2117 sb = ac->ac_sb; 2118 sbi = EXT4_SB(sb); 2119 ngroups = ext4_get_groups_count(sb); 2120 /* non-extent files are limited to low blocks/groups */ 2121 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2122 ngroups = sbi->s_blockfile_groups; 2123 2124 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2125 2126 /* first, try the goal */ 2127 err = ext4_mb_find_by_goal(ac, &e4b); 2128 if (err || ac->ac_status == AC_STATUS_FOUND) 2129 goto out; 2130 2131 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2132 goto out; 2133 2134 /* 2135 * ac->ac2_order is set only if the fe_len is a power of 2 2136 * if ac2_order is set we also set criteria to 0 so that we 2137 * try exact allocation using buddy. 2138 */ 2139 i = fls(ac->ac_g_ex.fe_len); 2140 ac->ac_2order = 0; 2141 /* 2142 * We search using buddy data only if the order of the request 2143 * is greater than equal to the sbi_s_mb_order2_reqs 2144 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2145 * We also support searching for power-of-two requests only for 2146 * requests upto maximum buddy size we have constructed. 2147 */ 2148 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2149 /* 2150 * This should tell if fe_len is exactly power of 2 2151 */ 2152 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2153 ac->ac_2order = array_index_nospec(i - 1, 2154 sb->s_blocksize_bits + 2); 2155 } 2156 2157 /* if stream allocation is enabled, use global goal */ 2158 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2159 /* TBD: may be hot point */ 2160 spin_lock(&sbi->s_md_lock); 2161 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2162 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2163 spin_unlock(&sbi->s_md_lock); 2164 } 2165 2166 /* Let's just scan groups to find more-less suitable blocks */ 2167 cr = ac->ac_2order ? 0 : 1; 2168 /* 2169 * cr == 0 try to get exact allocation, 2170 * cr == 3 try to get anything 2171 */ 2172 repeat: 2173 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2174 ac->ac_criteria = cr; 2175 /* 2176 * searching for the right group start 2177 * from the goal value specified 2178 */ 2179 group = ac->ac_g_ex.fe_group; 2180 2181 for (i = 0; i < ngroups; group++, i++) { 2182 int ret = 0; 2183 cond_resched(); 2184 /* 2185 * Artificially restricted ngroups for non-extent 2186 * files makes group > ngroups possible on first loop. 2187 */ 2188 if (group >= ngroups) 2189 group = 0; 2190 2191 /* This now checks without needing the buddy page */ 2192 ret = ext4_mb_good_group(ac, group, cr); 2193 if (ret <= 0) { 2194 if (!first_err) 2195 first_err = ret; 2196 continue; 2197 } 2198 2199 err = ext4_mb_load_buddy(sb, group, &e4b); 2200 if (err) 2201 goto out; 2202 2203 ext4_lock_group(sb, group); 2204 2205 /* 2206 * We need to check again after locking the 2207 * block group 2208 */ 2209 ret = ext4_mb_good_group(ac, group, cr); 2210 if (ret <= 0) { 2211 ext4_unlock_group(sb, group); 2212 ext4_mb_unload_buddy(&e4b); 2213 if (!first_err) 2214 first_err = ret; 2215 continue; 2216 } 2217 2218 ac->ac_groups_scanned++; 2219 if (cr == 0) 2220 ext4_mb_simple_scan_group(ac, &e4b); 2221 else if (cr == 1 && sbi->s_stripe && 2222 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2223 ext4_mb_scan_aligned(ac, &e4b); 2224 else 2225 ext4_mb_complex_scan_group(ac, &e4b); 2226 2227 ext4_unlock_group(sb, group); 2228 ext4_mb_unload_buddy(&e4b); 2229 2230 if (ac->ac_status != AC_STATUS_CONTINUE) 2231 break; 2232 } 2233 } 2234 2235 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2236 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2237 /* 2238 * We've been searching too long. Let's try to allocate 2239 * the best chunk we've found so far 2240 */ 2241 2242 ext4_mb_try_best_found(ac, &e4b); 2243 if (ac->ac_status != AC_STATUS_FOUND) { 2244 /* 2245 * Someone more lucky has already allocated it. 2246 * The only thing we can do is just take first 2247 * found block(s) 2248 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2249 */ 2250 ac->ac_b_ex.fe_group = 0; 2251 ac->ac_b_ex.fe_start = 0; 2252 ac->ac_b_ex.fe_len = 0; 2253 ac->ac_status = AC_STATUS_CONTINUE; 2254 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2255 cr = 3; 2256 atomic_inc(&sbi->s_mb_lost_chunks); 2257 goto repeat; 2258 } 2259 } 2260 out: 2261 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2262 err = first_err; 2263 return err; 2264 } 2265 2266 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2267 { 2268 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2269 ext4_group_t group; 2270 2271 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2272 return NULL; 2273 group = *pos + 1; 2274 return (void *) ((unsigned long) group); 2275 } 2276 2277 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2278 { 2279 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2280 ext4_group_t group; 2281 2282 ++*pos; 2283 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2284 return NULL; 2285 group = *pos + 1; 2286 return (void *) ((unsigned long) group); 2287 } 2288 2289 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2290 { 2291 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2292 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2293 int i; 2294 int err, buddy_loaded = 0; 2295 struct ext4_buddy e4b; 2296 struct ext4_group_info *grinfo; 2297 unsigned char blocksize_bits = min_t(unsigned char, 2298 sb->s_blocksize_bits, 2299 EXT4_MAX_BLOCK_LOG_SIZE); 2300 struct sg { 2301 struct ext4_group_info info; 2302 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2303 } sg; 2304 2305 group--; 2306 if (group == 0) 2307 seq_puts(seq, "#group: free frags first [" 2308 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2309 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2310 2311 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2312 sizeof(struct ext4_group_info); 2313 2314 grinfo = ext4_get_group_info(sb, group); 2315 /* Load the group info in memory only if not already loaded. */ 2316 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2317 err = ext4_mb_load_buddy(sb, group, &e4b); 2318 if (err) { 2319 seq_printf(seq, "#%-5u: I/O error\n", group); 2320 return 0; 2321 } 2322 buddy_loaded = 1; 2323 } 2324 2325 memcpy(&sg, ext4_get_group_info(sb, group), i); 2326 2327 if (buddy_loaded) 2328 ext4_mb_unload_buddy(&e4b); 2329 2330 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2331 sg.info.bb_fragments, sg.info.bb_first_free); 2332 for (i = 0; i <= 13; i++) 2333 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2334 sg.info.bb_counters[i] : 0); 2335 seq_printf(seq, " ]\n"); 2336 2337 return 0; 2338 } 2339 2340 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2341 { 2342 } 2343 2344 const struct seq_operations ext4_mb_seq_groups_ops = { 2345 .start = ext4_mb_seq_groups_start, 2346 .next = ext4_mb_seq_groups_next, 2347 .stop = ext4_mb_seq_groups_stop, 2348 .show = ext4_mb_seq_groups_show, 2349 }; 2350 2351 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2352 { 2353 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2354 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2355 2356 BUG_ON(!cachep); 2357 return cachep; 2358 } 2359 2360 /* 2361 * Allocate the top-level s_group_info array for the specified number 2362 * of groups 2363 */ 2364 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2365 { 2366 struct ext4_sb_info *sbi = EXT4_SB(sb); 2367 unsigned size; 2368 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2369 2370 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2371 EXT4_DESC_PER_BLOCK_BITS(sb); 2372 if (size <= sbi->s_group_info_size) 2373 return 0; 2374 2375 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2376 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2377 if (!new_groupinfo) { 2378 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2379 return -ENOMEM; 2380 } 2381 rcu_read_lock(); 2382 old_groupinfo = rcu_dereference(sbi->s_group_info); 2383 if (old_groupinfo) 2384 memcpy(new_groupinfo, old_groupinfo, 2385 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2386 rcu_read_unlock(); 2387 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2388 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2389 if (old_groupinfo) 2390 ext4_kvfree_array_rcu(old_groupinfo); 2391 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2392 sbi->s_group_info_size); 2393 return 0; 2394 } 2395 2396 /* Create and initialize ext4_group_info data for the given group. */ 2397 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2398 struct ext4_group_desc *desc) 2399 { 2400 int i; 2401 int metalen = 0; 2402 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2403 struct ext4_sb_info *sbi = EXT4_SB(sb); 2404 struct ext4_group_info **meta_group_info; 2405 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2406 2407 /* 2408 * First check if this group is the first of a reserved block. 2409 * If it's true, we have to allocate a new table of pointers 2410 * to ext4_group_info structures 2411 */ 2412 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2413 metalen = sizeof(*meta_group_info) << 2414 EXT4_DESC_PER_BLOCK_BITS(sb); 2415 meta_group_info = kmalloc(metalen, GFP_NOFS); 2416 if (meta_group_info == NULL) { 2417 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2418 "for a buddy group"); 2419 goto exit_meta_group_info; 2420 } 2421 rcu_read_lock(); 2422 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2423 rcu_read_unlock(); 2424 } 2425 2426 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2427 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2428 2429 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2430 if (meta_group_info[i] == NULL) { 2431 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2432 goto exit_group_info; 2433 } 2434 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2435 &(meta_group_info[i]->bb_state)); 2436 2437 /* 2438 * initialize bb_free to be able to skip 2439 * empty groups without initialization 2440 */ 2441 if (ext4_has_group_desc_csum(sb) && 2442 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2443 meta_group_info[i]->bb_free = 2444 ext4_free_clusters_after_init(sb, group, desc); 2445 } else { 2446 meta_group_info[i]->bb_free = 2447 ext4_free_group_clusters(sb, desc); 2448 } 2449 2450 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2451 init_rwsem(&meta_group_info[i]->alloc_sem); 2452 meta_group_info[i]->bb_free_root = RB_ROOT; 2453 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2454 2455 #ifdef DOUBLE_CHECK 2456 { 2457 struct buffer_head *bh; 2458 meta_group_info[i]->bb_bitmap = 2459 kmalloc(sb->s_blocksize, GFP_NOFS); 2460 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2461 bh = ext4_read_block_bitmap(sb, group); 2462 BUG_ON(IS_ERR_OR_NULL(bh)); 2463 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2464 sb->s_blocksize); 2465 put_bh(bh); 2466 } 2467 #endif 2468 2469 return 0; 2470 2471 exit_group_info: 2472 /* If a meta_group_info table has been allocated, release it now */ 2473 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2474 struct ext4_group_info ***group_info; 2475 2476 rcu_read_lock(); 2477 group_info = rcu_dereference(sbi->s_group_info); 2478 kfree(group_info[idx]); 2479 group_info[idx] = NULL; 2480 rcu_read_unlock(); 2481 } 2482 exit_meta_group_info: 2483 return -ENOMEM; 2484 } /* ext4_mb_add_groupinfo */ 2485 2486 static int ext4_mb_init_backend(struct super_block *sb) 2487 { 2488 ext4_group_t ngroups = ext4_get_groups_count(sb); 2489 ext4_group_t i; 2490 struct ext4_sb_info *sbi = EXT4_SB(sb); 2491 int err; 2492 struct ext4_group_desc *desc; 2493 struct ext4_group_info ***group_info; 2494 struct kmem_cache *cachep; 2495 2496 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2497 if (err) 2498 return err; 2499 2500 sbi->s_buddy_cache = new_inode(sb); 2501 if (sbi->s_buddy_cache == NULL) { 2502 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2503 goto err_freesgi; 2504 } 2505 /* To avoid potentially colliding with an valid on-disk inode number, 2506 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2507 * not in the inode hash, so it should never be found by iget(), but 2508 * this will avoid confusion if it ever shows up during debugging. */ 2509 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2510 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2511 for (i = 0; i < ngroups; i++) { 2512 cond_resched(); 2513 desc = ext4_get_group_desc(sb, i, NULL); 2514 if (desc == NULL) { 2515 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2516 goto err_freebuddy; 2517 } 2518 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2519 goto err_freebuddy; 2520 } 2521 2522 return 0; 2523 2524 err_freebuddy: 2525 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2526 while (i-- > 0) 2527 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2528 i = sbi->s_group_info_size; 2529 rcu_read_lock(); 2530 group_info = rcu_dereference(sbi->s_group_info); 2531 while (i-- > 0) 2532 kfree(group_info[i]); 2533 rcu_read_unlock(); 2534 iput(sbi->s_buddy_cache); 2535 err_freesgi: 2536 rcu_read_lock(); 2537 kvfree(rcu_dereference(sbi->s_group_info)); 2538 rcu_read_unlock(); 2539 return -ENOMEM; 2540 } 2541 2542 static void ext4_groupinfo_destroy_slabs(void) 2543 { 2544 int i; 2545 2546 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2547 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2548 ext4_groupinfo_caches[i] = NULL; 2549 } 2550 } 2551 2552 static int ext4_groupinfo_create_slab(size_t size) 2553 { 2554 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2555 int slab_size; 2556 int blocksize_bits = order_base_2(size); 2557 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2558 struct kmem_cache *cachep; 2559 2560 if (cache_index >= NR_GRPINFO_CACHES) 2561 return -EINVAL; 2562 2563 if (unlikely(cache_index < 0)) 2564 cache_index = 0; 2565 2566 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2567 if (ext4_groupinfo_caches[cache_index]) { 2568 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2569 return 0; /* Already created */ 2570 } 2571 2572 slab_size = offsetof(struct ext4_group_info, 2573 bb_counters[blocksize_bits + 2]); 2574 2575 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2576 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2577 NULL); 2578 2579 ext4_groupinfo_caches[cache_index] = cachep; 2580 2581 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2582 if (!cachep) { 2583 printk(KERN_EMERG 2584 "EXT4-fs: no memory for groupinfo slab cache\n"); 2585 return -ENOMEM; 2586 } 2587 2588 return 0; 2589 } 2590 2591 int ext4_mb_init(struct super_block *sb) 2592 { 2593 struct ext4_sb_info *sbi = EXT4_SB(sb); 2594 unsigned i, j; 2595 unsigned offset, offset_incr; 2596 unsigned max; 2597 int ret; 2598 2599 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2600 2601 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2602 if (sbi->s_mb_offsets == NULL) { 2603 ret = -ENOMEM; 2604 goto out; 2605 } 2606 2607 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2608 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2609 if (sbi->s_mb_maxs == NULL) { 2610 ret = -ENOMEM; 2611 goto out; 2612 } 2613 2614 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2615 if (ret < 0) 2616 goto out; 2617 2618 /* order 0 is regular bitmap */ 2619 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2620 sbi->s_mb_offsets[0] = 0; 2621 2622 i = 1; 2623 offset = 0; 2624 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2625 max = sb->s_blocksize << 2; 2626 do { 2627 sbi->s_mb_offsets[i] = offset; 2628 sbi->s_mb_maxs[i] = max; 2629 offset += offset_incr; 2630 offset_incr = offset_incr >> 1; 2631 max = max >> 1; 2632 i++; 2633 } while (i <= sb->s_blocksize_bits + 1); 2634 2635 spin_lock_init(&sbi->s_md_lock); 2636 spin_lock_init(&sbi->s_bal_lock); 2637 sbi->s_mb_free_pending = 0; 2638 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2639 2640 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2641 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2642 sbi->s_mb_stats = MB_DEFAULT_STATS; 2643 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2644 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2645 /* 2646 * The default group preallocation is 512, which for 4k block 2647 * sizes translates to 2 megabytes. However for bigalloc file 2648 * systems, this is probably too big (i.e, if the cluster size 2649 * is 1 megabyte, then group preallocation size becomes half a 2650 * gigabyte!). As a default, we will keep a two megabyte 2651 * group pralloc size for cluster sizes up to 64k, and after 2652 * that, we will force a minimum group preallocation size of 2653 * 32 clusters. This translates to 8 megs when the cluster 2654 * size is 256k, and 32 megs when the cluster size is 1 meg, 2655 * which seems reasonable as a default. 2656 */ 2657 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2658 sbi->s_cluster_bits, 32); 2659 /* 2660 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2661 * to the lowest multiple of s_stripe which is bigger than 2662 * the s_mb_group_prealloc as determined above. We want 2663 * the preallocation size to be an exact multiple of the 2664 * RAID stripe size so that preallocations don't fragment 2665 * the stripes. 2666 */ 2667 if (sbi->s_stripe > 1) { 2668 sbi->s_mb_group_prealloc = roundup( 2669 sbi->s_mb_group_prealloc, sbi->s_stripe); 2670 } 2671 2672 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2673 if (sbi->s_locality_groups == NULL) { 2674 ret = -ENOMEM; 2675 goto out; 2676 } 2677 for_each_possible_cpu(i) { 2678 struct ext4_locality_group *lg; 2679 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2680 mutex_init(&lg->lg_mutex); 2681 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2682 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2683 spin_lock_init(&lg->lg_prealloc_lock); 2684 } 2685 2686 /* init file for buddy data */ 2687 ret = ext4_mb_init_backend(sb); 2688 if (ret != 0) 2689 goto out_free_locality_groups; 2690 2691 return 0; 2692 2693 out_free_locality_groups: 2694 free_percpu(sbi->s_locality_groups); 2695 sbi->s_locality_groups = NULL; 2696 out: 2697 kfree(sbi->s_mb_offsets); 2698 sbi->s_mb_offsets = NULL; 2699 kfree(sbi->s_mb_maxs); 2700 sbi->s_mb_maxs = NULL; 2701 return ret; 2702 } 2703 2704 /* need to called with the ext4 group lock held */ 2705 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2706 { 2707 struct ext4_prealloc_space *pa; 2708 struct list_head *cur, *tmp; 2709 int count = 0; 2710 2711 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2712 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2713 list_del(&pa->pa_group_list); 2714 count++; 2715 kmem_cache_free(ext4_pspace_cachep, pa); 2716 } 2717 if (count) 2718 mb_debug(1, "mballoc: %u PAs left\n", count); 2719 2720 } 2721 2722 int ext4_mb_release(struct super_block *sb) 2723 { 2724 ext4_group_t ngroups = ext4_get_groups_count(sb); 2725 ext4_group_t i; 2726 int num_meta_group_infos; 2727 struct ext4_group_info *grinfo, ***group_info; 2728 struct ext4_sb_info *sbi = EXT4_SB(sb); 2729 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2730 2731 if (sbi->s_group_info) { 2732 for (i = 0; i < ngroups; i++) { 2733 cond_resched(); 2734 grinfo = ext4_get_group_info(sb, i); 2735 #ifdef DOUBLE_CHECK 2736 kfree(grinfo->bb_bitmap); 2737 #endif 2738 ext4_lock_group(sb, i); 2739 ext4_mb_cleanup_pa(grinfo); 2740 ext4_unlock_group(sb, i); 2741 kmem_cache_free(cachep, grinfo); 2742 } 2743 num_meta_group_infos = (ngroups + 2744 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2745 EXT4_DESC_PER_BLOCK_BITS(sb); 2746 rcu_read_lock(); 2747 group_info = rcu_dereference(sbi->s_group_info); 2748 for (i = 0; i < num_meta_group_infos; i++) 2749 kfree(group_info[i]); 2750 kvfree(group_info); 2751 rcu_read_unlock(); 2752 } 2753 kfree(sbi->s_mb_offsets); 2754 kfree(sbi->s_mb_maxs); 2755 iput(sbi->s_buddy_cache); 2756 if (sbi->s_mb_stats) { 2757 ext4_msg(sb, KERN_INFO, 2758 "mballoc: %u blocks %u reqs (%u success)", 2759 atomic_read(&sbi->s_bal_allocated), 2760 atomic_read(&sbi->s_bal_reqs), 2761 atomic_read(&sbi->s_bal_success)); 2762 ext4_msg(sb, KERN_INFO, 2763 "mballoc: %u extents scanned, %u goal hits, " 2764 "%u 2^N hits, %u breaks, %u lost", 2765 atomic_read(&sbi->s_bal_ex_scanned), 2766 atomic_read(&sbi->s_bal_goals), 2767 atomic_read(&sbi->s_bal_2orders), 2768 atomic_read(&sbi->s_bal_breaks), 2769 atomic_read(&sbi->s_mb_lost_chunks)); 2770 ext4_msg(sb, KERN_INFO, 2771 "mballoc: %lu generated and it took %Lu", 2772 sbi->s_mb_buddies_generated, 2773 sbi->s_mb_generation_time); 2774 ext4_msg(sb, KERN_INFO, 2775 "mballoc: %u preallocated, %u discarded", 2776 atomic_read(&sbi->s_mb_preallocated), 2777 atomic_read(&sbi->s_mb_discarded)); 2778 } 2779 2780 free_percpu(sbi->s_locality_groups); 2781 2782 return 0; 2783 } 2784 2785 static inline int ext4_issue_discard(struct super_block *sb, 2786 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2787 struct bio **biop) 2788 { 2789 ext4_fsblk_t discard_block; 2790 2791 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2792 ext4_group_first_block_no(sb, block_group)); 2793 count = EXT4_C2B(EXT4_SB(sb), count); 2794 trace_ext4_discard_blocks(sb, 2795 (unsigned long long) discard_block, count); 2796 if (biop) { 2797 return __blkdev_issue_discard(sb->s_bdev, 2798 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 2799 (sector_t)count << (sb->s_blocksize_bits - 9), 2800 GFP_NOFS, 0, biop); 2801 } else 2802 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2803 } 2804 2805 static void ext4_free_data_in_buddy(struct super_block *sb, 2806 struct ext4_free_data *entry) 2807 { 2808 struct ext4_buddy e4b; 2809 struct ext4_group_info *db; 2810 int err, count = 0, count2 = 0; 2811 2812 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2813 entry->efd_count, entry->efd_group, entry); 2814 2815 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2816 /* we expect to find existing buddy because it's pinned */ 2817 BUG_ON(err != 0); 2818 2819 spin_lock(&EXT4_SB(sb)->s_md_lock); 2820 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2821 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2822 2823 db = e4b.bd_info; 2824 /* there are blocks to put in buddy to make them really free */ 2825 count += entry->efd_count; 2826 count2++; 2827 ext4_lock_group(sb, entry->efd_group); 2828 /* Take it out of per group rb tree */ 2829 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2830 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2831 2832 /* 2833 * Clear the trimmed flag for the group so that the next 2834 * ext4_trim_fs can trim it. 2835 * If the volume is mounted with -o discard, online discard 2836 * is supported and the free blocks will be trimmed online. 2837 */ 2838 if (!test_opt(sb, DISCARD)) 2839 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2840 2841 if (!db->bb_free_root.rb_node) { 2842 /* No more items in the per group rb tree 2843 * balance refcounts from ext4_mb_free_metadata() 2844 */ 2845 put_page(e4b.bd_buddy_page); 2846 put_page(e4b.bd_bitmap_page); 2847 } 2848 ext4_unlock_group(sb, entry->efd_group); 2849 kmem_cache_free(ext4_free_data_cachep, entry); 2850 ext4_mb_unload_buddy(&e4b); 2851 2852 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2853 } 2854 2855 /* 2856 * This function is called by the jbd2 layer once the commit has finished, 2857 * so we know we can free the blocks that were released with that commit. 2858 */ 2859 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 2860 { 2861 struct ext4_sb_info *sbi = EXT4_SB(sb); 2862 struct ext4_free_data *entry, *tmp; 2863 struct bio *discard_bio = NULL; 2864 struct list_head freed_data_list; 2865 struct list_head *cut_pos = NULL; 2866 int err; 2867 2868 INIT_LIST_HEAD(&freed_data_list); 2869 2870 spin_lock(&sbi->s_md_lock); 2871 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 2872 if (entry->efd_tid != commit_tid) 2873 break; 2874 cut_pos = &entry->efd_list; 2875 } 2876 if (cut_pos) 2877 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 2878 cut_pos); 2879 spin_unlock(&sbi->s_md_lock); 2880 2881 if (test_opt(sb, DISCARD)) { 2882 list_for_each_entry(entry, &freed_data_list, efd_list) { 2883 err = ext4_issue_discard(sb, entry->efd_group, 2884 entry->efd_start_cluster, 2885 entry->efd_count, 2886 &discard_bio); 2887 if (err && err != -EOPNOTSUPP) { 2888 ext4_msg(sb, KERN_WARNING, "discard request in" 2889 " group:%d block:%d count:%d failed" 2890 " with %d", entry->efd_group, 2891 entry->efd_start_cluster, 2892 entry->efd_count, err); 2893 } else if (err == -EOPNOTSUPP) 2894 break; 2895 } 2896 2897 if (discard_bio) { 2898 submit_bio_wait(discard_bio); 2899 bio_put(discard_bio); 2900 } 2901 } 2902 2903 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 2904 ext4_free_data_in_buddy(sb, entry); 2905 } 2906 2907 int __init ext4_init_mballoc(void) 2908 { 2909 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2910 SLAB_RECLAIM_ACCOUNT); 2911 if (ext4_pspace_cachep == NULL) 2912 return -ENOMEM; 2913 2914 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2915 SLAB_RECLAIM_ACCOUNT); 2916 if (ext4_ac_cachep == NULL) { 2917 kmem_cache_destroy(ext4_pspace_cachep); 2918 return -ENOMEM; 2919 } 2920 2921 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2922 SLAB_RECLAIM_ACCOUNT); 2923 if (ext4_free_data_cachep == NULL) { 2924 kmem_cache_destroy(ext4_pspace_cachep); 2925 kmem_cache_destroy(ext4_ac_cachep); 2926 return -ENOMEM; 2927 } 2928 return 0; 2929 } 2930 2931 void ext4_exit_mballoc(void) 2932 { 2933 /* 2934 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2935 * before destroying the slab cache. 2936 */ 2937 rcu_barrier(); 2938 kmem_cache_destroy(ext4_pspace_cachep); 2939 kmem_cache_destroy(ext4_ac_cachep); 2940 kmem_cache_destroy(ext4_free_data_cachep); 2941 ext4_groupinfo_destroy_slabs(); 2942 } 2943 2944 2945 /* 2946 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2947 * Returns 0 if success or error code 2948 */ 2949 static noinline_for_stack int 2950 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2951 handle_t *handle, unsigned int reserv_clstrs) 2952 { 2953 struct buffer_head *bitmap_bh = NULL; 2954 struct ext4_group_desc *gdp; 2955 struct buffer_head *gdp_bh; 2956 struct ext4_sb_info *sbi; 2957 struct super_block *sb; 2958 ext4_fsblk_t block; 2959 int err, len; 2960 2961 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2962 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2963 2964 sb = ac->ac_sb; 2965 sbi = EXT4_SB(sb); 2966 2967 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2968 if (IS_ERR(bitmap_bh)) { 2969 err = PTR_ERR(bitmap_bh); 2970 bitmap_bh = NULL; 2971 goto out_err; 2972 } 2973 2974 BUFFER_TRACE(bitmap_bh, "getting write access"); 2975 err = ext4_journal_get_write_access(handle, bitmap_bh); 2976 if (err) 2977 goto out_err; 2978 2979 err = -EIO; 2980 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2981 if (!gdp) 2982 goto out_err; 2983 2984 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2985 ext4_free_group_clusters(sb, gdp)); 2986 2987 BUFFER_TRACE(gdp_bh, "get_write_access"); 2988 err = ext4_journal_get_write_access(handle, gdp_bh); 2989 if (err) 2990 goto out_err; 2991 2992 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2993 2994 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2995 if (!ext4_data_block_valid(sbi, block, len)) { 2996 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2997 "fs metadata", block, block+len); 2998 /* File system mounted not to panic on error 2999 * Fix the bitmap and return EFSCORRUPTED 3000 * We leak some of the blocks here. 3001 */ 3002 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3003 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3004 ac->ac_b_ex.fe_len); 3005 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3006 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3007 if (!err) 3008 err = -EFSCORRUPTED; 3009 goto out_err; 3010 } 3011 3012 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3013 #ifdef AGGRESSIVE_CHECK 3014 { 3015 int i; 3016 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3017 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3018 bitmap_bh->b_data)); 3019 } 3020 } 3021 #endif 3022 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3023 ac->ac_b_ex.fe_len); 3024 if (ext4_has_group_desc_csum(sb) && 3025 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3026 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3027 ext4_free_group_clusters_set(sb, gdp, 3028 ext4_free_clusters_after_init(sb, 3029 ac->ac_b_ex.fe_group, gdp)); 3030 } 3031 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3032 ext4_free_group_clusters_set(sb, gdp, len); 3033 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3034 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3035 3036 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3037 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3038 /* 3039 * Now reduce the dirty block count also. Should not go negative 3040 */ 3041 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3042 /* release all the reserved blocks if non delalloc */ 3043 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3044 reserv_clstrs); 3045 3046 if (sbi->s_log_groups_per_flex) { 3047 ext4_group_t flex_group = ext4_flex_group(sbi, 3048 ac->ac_b_ex.fe_group); 3049 atomic64_sub(ac->ac_b_ex.fe_len, 3050 &sbi_array_rcu_deref(sbi, s_flex_groups, 3051 flex_group)->free_clusters); 3052 } 3053 3054 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3055 if (err) 3056 goto out_err; 3057 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3058 3059 out_err: 3060 brelse(bitmap_bh); 3061 return err; 3062 } 3063 3064 /* 3065 * here we normalize request for locality group 3066 * Group request are normalized to s_mb_group_prealloc, which goes to 3067 * s_strip if we set the same via mount option. 3068 * s_mb_group_prealloc can be configured via 3069 * /sys/fs/ext4/<partition>/mb_group_prealloc 3070 * 3071 * XXX: should we try to preallocate more than the group has now? 3072 */ 3073 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3074 { 3075 struct super_block *sb = ac->ac_sb; 3076 struct ext4_locality_group *lg = ac->ac_lg; 3077 3078 BUG_ON(lg == NULL); 3079 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3080 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3081 current->pid, ac->ac_g_ex.fe_len); 3082 } 3083 3084 /* 3085 * Normalization means making request better in terms of 3086 * size and alignment 3087 */ 3088 static noinline_for_stack void 3089 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3090 struct ext4_allocation_request *ar) 3091 { 3092 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3093 int bsbits, max; 3094 ext4_lblk_t end; 3095 loff_t size, start_off; 3096 loff_t orig_size __maybe_unused; 3097 ext4_lblk_t start; 3098 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3099 struct ext4_prealloc_space *pa; 3100 3101 /* do normalize only data requests, metadata requests 3102 do not need preallocation */ 3103 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3104 return; 3105 3106 /* sometime caller may want exact blocks */ 3107 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3108 return; 3109 3110 /* caller may indicate that preallocation isn't 3111 * required (it's a tail, for example) */ 3112 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3113 return; 3114 3115 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3116 ext4_mb_normalize_group_request(ac); 3117 return ; 3118 } 3119 3120 bsbits = ac->ac_sb->s_blocksize_bits; 3121 3122 /* first, let's learn actual file size 3123 * given current request is allocated */ 3124 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3125 size = size << bsbits; 3126 if (size < i_size_read(ac->ac_inode)) 3127 size = i_size_read(ac->ac_inode); 3128 orig_size = size; 3129 3130 /* max size of free chunks */ 3131 max = 2 << bsbits; 3132 3133 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3134 (req <= (size) || max <= (chunk_size)) 3135 3136 /* first, try to predict filesize */ 3137 /* XXX: should this table be tunable? */ 3138 start_off = 0; 3139 if (size <= 16 * 1024) { 3140 size = 16 * 1024; 3141 } else if (size <= 32 * 1024) { 3142 size = 32 * 1024; 3143 } else if (size <= 64 * 1024) { 3144 size = 64 * 1024; 3145 } else if (size <= 128 * 1024) { 3146 size = 128 * 1024; 3147 } else if (size <= 256 * 1024) { 3148 size = 256 * 1024; 3149 } else if (size <= 512 * 1024) { 3150 size = 512 * 1024; 3151 } else if (size <= 1024 * 1024) { 3152 size = 1024 * 1024; 3153 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3154 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3155 (21 - bsbits)) << 21; 3156 size = 2 * 1024 * 1024; 3157 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3158 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3159 (22 - bsbits)) << 22; 3160 size = 4 * 1024 * 1024; 3161 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3162 (8<<20)>>bsbits, max, 8 * 1024)) { 3163 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3164 (23 - bsbits)) << 23; 3165 size = 8 * 1024 * 1024; 3166 } else { 3167 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3168 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3169 ac->ac_o_ex.fe_len) << bsbits; 3170 } 3171 size = size >> bsbits; 3172 start = start_off >> bsbits; 3173 3174 /* don't cover already allocated blocks in selected range */ 3175 if (ar->pleft && start <= ar->lleft) { 3176 size -= ar->lleft + 1 - start; 3177 start = ar->lleft + 1; 3178 } 3179 if (ar->pright && start + size - 1 >= ar->lright) 3180 size -= start + size - ar->lright; 3181 3182 /* 3183 * Trim allocation request for filesystems with artificially small 3184 * groups. 3185 */ 3186 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3187 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3188 3189 end = start + size; 3190 3191 /* check we don't cross already preallocated blocks */ 3192 rcu_read_lock(); 3193 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3194 ext4_lblk_t pa_end; 3195 3196 if (pa->pa_deleted) 3197 continue; 3198 spin_lock(&pa->pa_lock); 3199 if (pa->pa_deleted) { 3200 spin_unlock(&pa->pa_lock); 3201 continue; 3202 } 3203 3204 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3205 pa->pa_len); 3206 3207 /* PA must not overlap original request */ 3208 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3209 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3210 3211 /* skip PAs this normalized request doesn't overlap with */ 3212 if (pa->pa_lstart >= end || pa_end <= start) { 3213 spin_unlock(&pa->pa_lock); 3214 continue; 3215 } 3216 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3217 3218 /* adjust start or end to be adjacent to this pa */ 3219 if (pa_end <= ac->ac_o_ex.fe_logical) { 3220 BUG_ON(pa_end < start); 3221 start = pa_end; 3222 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3223 BUG_ON(pa->pa_lstart > end); 3224 end = pa->pa_lstart; 3225 } 3226 spin_unlock(&pa->pa_lock); 3227 } 3228 rcu_read_unlock(); 3229 size = end - start; 3230 3231 /* XXX: extra loop to check we really don't overlap preallocations */ 3232 rcu_read_lock(); 3233 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3234 ext4_lblk_t pa_end; 3235 3236 spin_lock(&pa->pa_lock); 3237 if (pa->pa_deleted == 0) { 3238 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3239 pa->pa_len); 3240 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3241 } 3242 spin_unlock(&pa->pa_lock); 3243 } 3244 rcu_read_unlock(); 3245 3246 if (start + size <= ac->ac_o_ex.fe_logical && 3247 start > ac->ac_o_ex.fe_logical) { 3248 ext4_msg(ac->ac_sb, KERN_ERR, 3249 "start %lu, size %lu, fe_logical %lu", 3250 (unsigned long) start, (unsigned long) size, 3251 (unsigned long) ac->ac_o_ex.fe_logical); 3252 BUG(); 3253 } 3254 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3255 3256 /* now prepare goal request */ 3257 3258 /* XXX: is it better to align blocks WRT to logical 3259 * placement or satisfy big request as is */ 3260 ac->ac_g_ex.fe_logical = start; 3261 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3262 3263 /* define goal start in order to merge */ 3264 if (ar->pright && (ar->lright == (start + size))) { 3265 /* merge to the right */ 3266 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3267 &ac->ac_f_ex.fe_group, 3268 &ac->ac_f_ex.fe_start); 3269 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3270 } 3271 if (ar->pleft && (ar->lleft + 1 == start)) { 3272 /* merge to the left */ 3273 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3274 &ac->ac_f_ex.fe_group, 3275 &ac->ac_f_ex.fe_start); 3276 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3277 } 3278 3279 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3280 (unsigned) orig_size, (unsigned) start); 3281 } 3282 3283 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3284 { 3285 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3286 3287 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3288 atomic_inc(&sbi->s_bal_reqs); 3289 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3290 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3291 atomic_inc(&sbi->s_bal_success); 3292 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3293 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3294 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3295 atomic_inc(&sbi->s_bal_goals); 3296 if (ac->ac_found > sbi->s_mb_max_to_scan) 3297 atomic_inc(&sbi->s_bal_breaks); 3298 } 3299 3300 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3301 trace_ext4_mballoc_alloc(ac); 3302 else 3303 trace_ext4_mballoc_prealloc(ac); 3304 } 3305 3306 /* 3307 * Called on failure; free up any blocks from the inode PA for this 3308 * context. We don't need this for MB_GROUP_PA because we only change 3309 * pa_free in ext4_mb_release_context(), but on failure, we've already 3310 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3311 */ 3312 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3313 { 3314 struct ext4_prealloc_space *pa = ac->ac_pa; 3315 struct ext4_buddy e4b; 3316 int err; 3317 3318 if (pa == NULL) { 3319 if (ac->ac_f_ex.fe_len == 0) 3320 return; 3321 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3322 if (err) { 3323 /* 3324 * This should never happen since we pin the 3325 * pages in the ext4_allocation_context so 3326 * ext4_mb_load_buddy() should never fail. 3327 */ 3328 WARN(1, "mb_load_buddy failed (%d)", err); 3329 return; 3330 } 3331 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3332 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3333 ac->ac_f_ex.fe_len); 3334 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3335 ext4_mb_unload_buddy(&e4b); 3336 return; 3337 } 3338 if (pa->pa_type == MB_INODE_PA) 3339 pa->pa_free += ac->ac_b_ex.fe_len; 3340 } 3341 3342 /* 3343 * use blocks preallocated to inode 3344 */ 3345 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3346 struct ext4_prealloc_space *pa) 3347 { 3348 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3349 ext4_fsblk_t start; 3350 ext4_fsblk_t end; 3351 int len; 3352 3353 /* found preallocated blocks, use them */ 3354 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3355 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3356 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3357 len = EXT4_NUM_B2C(sbi, end - start); 3358 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3359 &ac->ac_b_ex.fe_start); 3360 ac->ac_b_ex.fe_len = len; 3361 ac->ac_status = AC_STATUS_FOUND; 3362 ac->ac_pa = pa; 3363 3364 BUG_ON(start < pa->pa_pstart); 3365 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3366 BUG_ON(pa->pa_free < len); 3367 pa->pa_free -= len; 3368 3369 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3370 } 3371 3372 /* 3373 * use blocks preallocated to locality group 3374 */ 3375 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3376 struct ext4_prealloc_space *pa) 3377 { 3378 unsigned int len = ac->ac_o_ex.fe_len; 3379 3380 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3381 &ac->ac_b_ex.fe_group, 3382 &ac->ac_b_ex.fe_start); 3383 ac->ac_b_ex.fe_len = len; 3384 ac->ac_status = AC_STATUS_FOUND; 3385 ac->ac_pa = pa; 3386 3387 /* we don't correct pa_pstart or pa_plen here to avoid 3388 * possible race when the group is being loaded concurrently 3389 * instead we correct pa later, after blocks are marked 3390 * in on-disk bitmap -- see ext4_mb_release_context() 3391 * Other CPUs are prevented from allocating from this pa by lg_mutex 3392 */ 3393 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3394 } 3395 3396 /* 3397 * Return the prealloc space that have minimal distance 3398 * from the goal block. @cpa is the prealloc 3399 * space that is having currently known minimal distance 3400 * from the goal block. 3401 */ 3402 static struct ext4_prealloc_space * 3403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3404 struct ext4_prealloc_space *pa, 3405 struct ext4_prealloc_space *cpa) 3406 { 3407 ext4_fsblk_t cur_distance, new_distance; 3408 3409 if (cpa == NULL) { 3410 atomic_inc(&pa->pa_count); 3411 return pa; 3412 } 3413 cur_distance = abs(goal_block - cpa->pa_pstart); 3414 new_distance = abs(goal_block - pa->pa_pstart); 3415 3416 if (cur_distance <= new_distance) 3417 return cpa; 3418 3419 /* drop the previous reference */ 3420 atomic_dec(&cpa->pa_count); 3421 atomic_inc(&pa->pa_count); 3422 return pa; 3423 } 3424 3425 /* 3426 * search goal blocks in preallocated space 3427 */ 3428 static noinline_for_stack int 3429 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3430 { 3431 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3432 int order, i; 3433 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3434 struct ext4_locality_group *lg; 3435 struct ext4_prealloc_space *pa, *cpa = NULL; 3436 ext4_fsblk_t goal_block; 3437 3438 /* only data can be preallocated */ 3439 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3440 return 0; 3441 3442 /* first, try per-file preallocation */ 3443 rcu_read_lock(); 3444 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3445 3446 /* all fields in this condition don't change, 3447 * so we can skip locking for them */ 3448 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3449 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3450 EXT4_C2B(sbi, pa->pa_len))) 3451 continue; 3452 3453 /* non-extent files can't have physical blocks past 2^32 */ 3454 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3455 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3456 EXT4_MAX_BLOCK_FILE_PHYS)) 3457 continue; 3458 3459 /* found preallocated blocks, use them */ 3460 spin_lock(&pa->pa_lock); 3461 if (pa->pa_deleted == 0 && pa->pa_free) { 3462 atomic_inc(&pa->pa_count); 3463 ext4_mb_use_inode_pa(ac, pa); 3464 spin_unlock(&pa->pa_lock); 3465 ac->ac_criteria = 10; 3466 rcu_read_unlock(); 3467 return 1; 3468 } 3469 spin_unlock(&pa->pa_lock); 3470 } 3471 rcu_read_unlock(); 3472 3473 /* can we use group allocation? */ 3474 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3475 return 0; 3476 3477 /* inode may have no locality group for some reason */ 3478 lg = ac->ac_lg; 3479 if (lg == NULL) 3480 return 0; 3481 order = fls(ac->ac_o_ex.fe_len) - 1; 3482 if (order > PREALLOC_TB_SIZE - 1) 3483 /* The max size of hash table is PREALLOC_TB_SIZE */ 3484 order = PREALLOC_TB_SIZE - 1; 3485 3486 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3487 /* 3488 * search for the prealloc space that is having 3489 * minimal distance from the goal block. 3490 */ 3491 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3492 rcu_read_lock(); 3493 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3494 pa_inode_list) { 3495 spin_lock(&pa->pa_lock); 3496 if (pa->pa_deleted == 0 && 3497 pa->pa_free >= ac->ac_o_ex.fe_len) { 3498 3499 cpa = ext4_mb_check_group_pa(goal_block, 3500 pa, cpa); 3501 } 3502 spin_unlock(&pa->pa_lock); 3503 } 3504 rcu_read_unlock(); 3505 } 3506 if (cpa) { 3507 ext4_mb_use_group_pa(ac, cpa); 3508 ac->ac_criteria = 20; 3509 return 1; 3510 } 3511 return 0; 3512 } 3513 3514 /* 3515 * the function goes through all block freed in the group 3516 * but not yet committed and marks them used in in-core bitmap. 3517 * buddy must be generated from this bitmap 3518 * Need to be called with the ext4 group lock held 3519 */ 3520 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3521 ext4_group_t group) 3522 { 3523 struct rb_node *n; 3524 struct ext4_group_info *grp; 3525 struct ext4_free_data *entry; 3526 3527 grp = ext4_get_group_info(sb, group); 3528 n = rb_first(&(grp->bb_free_root)); 3529 3530 while (n) { 3531 entry = rb_entry(n, struct ext4_free_data, efd_node); 3532 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3533 n = rb_next(n); 3534 } 3535 return; 3536 } 3537 3538 /* 3539 * the function goes through all preallocation in this group and marks them 3540 * used in in-core bitmap. buddy must be generated from this bitmap 3541 * Need to be called with ext4 group lock held 3542 */ 3543 static noinline_for_stack 3544 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3545 ext4_group_t group) 3546 { 3547 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3548 struct ext4_prealloc_space *pa; 3549 struct list_head *cur; 3550 ext4_group_t groupnr; 3551 ext4_grpblk_t start; 3552 int preallocated = 0; 3553 int len; 3554 3555 /* all form of preallocation discards first load group, 3556 * so the only competing code is preallocation use. 3557 * we don't need any locking here 3558 * notice we do NOT ignore preallocations with pa_deleted 3559 * otherwise we could leave used blocks available for 3560 * allocation in buddy when concurrent ext4_mb_put_pa() 3561 * is dropping preallocation 3562 */ 3563 list_for_each(cur, &grp->bb_prealloc_list) { 3564 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3565 spin_lock(&pa->pa_lock); 3566 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3567 &groupnr, &start); 3568 len = pa->pa_len; 3569 spin_unlock(&pa->pa_lock); 3570 if (unlikely(len == 0)) 3571 continue; 3572 BUG_ON(groupnr != group); 3573 ext4_set_bits(bitmap, start, len); 3574 preallocated += len; 3575 } 3576 mb_debug(1, "preallocated %u for group %u\n", preallocated, group); 3577 } 3578 3579 static void ext4_mb_pa_callback(struct rcu_head *head) 3580 { 3581 struct ext4_prealloc_space *pa; 3582 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3583 3584 BUG_ON(atomic_read(&pa->pa_count)); 3585 BUG_ON(pa->pa_deleted == 0); 3586 kmem_cache_free(ext4_pspace_cachep, pa); 3587 } 3588 3589 /* 3590 * drops a reference to preallocated space descriptor 3591 * if this was the last reference and the space is consumed 3592 */ 3593 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3594 struct super_block *sb, struct ext4_prealloc_space *pa) 3595 { 3596 ext4_group_t grp; 3597 ext4_fsblk_t grp_blk; 3598 3599 /* in this short window concurrent discard can set pa_deleted */ 3600 spin_lock(&pa->pa_lock); 3601 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3602 spin_unlock(&pa->pa_lock); 3603 return; 3604 } 3605 3606 if (pa->pa_deleted == 1) { 3607 spin_unlock(&pa->pa_lock); 3608 return; 3609 } 3610 3611 pa->pa_deleted = 1; 3612 spin_unlock(&pa->pa_lock); 3613 3614 grp_blk = pa->pa_pstart; 3615 /* 3616 * If doing group-based preallocation, pa_pstart may be in the 3617 * next group when pa is used up 3618 */ 3619 if (pa->pa_type == MB_GROUP_PA) 3620 grp_blk--; 3621 3622 grp = ext4_get_group_number(sb, grp_blk); 3623 3624 /* 3625 * possible race: 3626 * 3627 * P1 (buddy init) P2 (regular allocation) 3628 * find block B in PA 3629 * copy on-disk bitmap to buddy 3630 * mark B in on-disk bitmap 3631 * drop PA from group 3632 * mark all PAs in buddy 3633 * 3634 * thus, P1 initializes buddy with B available. to prevent this 3635 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3636 * against that pair 3637 */ 3638 ext4_lock_group(sb, grp); 3639 list_del(&pa->pa_group_list); 3640 ext4_unlock_group(sb, grp); 3641 3642 spin_lock(pa->pa_obj_lock); 3643 list_del_rcu(&pa->pa_inode_list); 3644 spin_unlock(pa->pa_obj_lock); 3645 3646 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3647 } 3648 3649 /* 3650 * creates new preallocated space for given inode 3651 */ 3652 static noinline_for_stack int 3653 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3654 { 3655 struct super_block *sb = ac->ac_sb; 3656 struct ext4_sb_info *sbi = EXT4_SB(sb); 3657 struct ext4_prealloc_space *pa; 3658 struct ext4_group_info *grp; 3659 struct ext4_inode_info *ei; 3660 3661 /* preallocate only when found space is larger then requested */ 3662 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3663 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3664 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3665 3666 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3667 if (pa == NULL) 3668 return -ENOMEM; 3669 3670 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3671 int winl; 3672 int wins; 3673 int win; 3674 int offs; 3675 3676 /* we can't allocate as much as normalizer wants. 3677 * so, found space must get proper lstart 3678 * to cover original request */ 3679 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3680 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3681 3682 /* we're limited by original request in that 3683 * logical block must be covered any way 3684 * winl is window we can move our chunk within */ 3685 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3686 3687 /* also, we should cover whole original request */ 3688 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3689 3690 /* the smallest one defines real window */ 3691 win = min(winl, wins); 3692 3693 offs = ac->ac_o_ex.fe_logical % 3694 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3695 if (offs && offs < win) 3696 win = offs; 3697 3698 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3699 EXT4_NUM_B2C(sbi, win); 3700 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3701 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3702 } 3703 3704 /* preallocation can change ac_b_ex, thus we store actually 3705 * allocated blocks for history */ 3706 ac->ac_f_ex = ac->ac_b_ex; 3707 3708 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3709 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3710 pa->pa_len = ac->ac_b_ex.fe_len; 3711 pa->pa_free = pa->pa_len; 3712 atomic_set(&pa->pa_count, 1); 3713 spin_lock_init(&pa->pa_lock); 3714 INIT_LIST_HEAD(&pa->pa_inode_list); 3715 INIT_LIST_HEAD(&pa->pa_group_list); 3716 pa->pa_deleted = 0; 3717 pa->pa_type = MB_INODE_PA; 3718 3719 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3720 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3721 trace_ext4_mb_new_inode_pa(ac, pa); 3722 3723 ext4_mb_use_inode_pa(ac, pa); 3724 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3725 3726 ei = EXT4_I(ac->ac_inode); 3727 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3728 3729 pa->pa_obj_lock = &ei->i_prealloc_lock; 3730 pa->pa_inode = ac->ac_inode; 3731 3732 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3733 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3734 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3735 3736 spin_lock(pa->pa_obj_lock); 3737 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3738 spin_unlock(pa->pa_obj_lock); 3739 3740 return 0; 3741 } 3742 3743 /* 3744 * creates new preallocated space for locality group inodes belongs to 3745 */ 3746 static noinline_for_stack int 3747 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3748 { 3749 struct super_block *sb = ac->ac_sb; 3750 struct ext4_locality_group *lg; 3751 struct ext4_prealloc_space *pa; 3752 struct ext4_group_info *grp; 3753 3754 /* preallocate only when found space is larger then requested */ 3755 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3756 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3757 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3758 3759 BUG_ON(ext4_pspace_cachep == NULL); 3760 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3761 if (pa == NULL) 3762 return -ENOMEM; 3763 3764 /* preallocation can change ac_b_ex, thus we store actually 3765 * allocated blocks for history */ 3766 ac->ac_f_ex = ac->ac_b_ex; 3767 3768 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3769 pa->pa_lstart = pa->pa_pstart; 3770 pa->pa_len = ac->ac_b_ex.fe_len; 3771 pa->pa_free = pa->pa_len; 3772 atomic_set(&pa->pa_count, 1); 3773 spin_lock_init(&pa->pa_lock); 3774 INIT_LIST_HEAD(&pa->pa_inode_list); 3775 INIT_LIST_HEAD(&pa->pa_group_list); 3776 pa->pa_deleted = 0; 3777 pa->pa_type = MB_GROUP_PA; 3778 3779 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3780 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3781 trace_ext4_mb_new_group_pa(ac, pa); 3782 3783 ext4_mb_use_group_pa(ac, pa); 3784 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3785 3786 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3787 lg = ac->ac_lg; 3788 BUG_ON(lg == NULL); 3789 3790 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3791 pa->pa_inode = NULL; 3792 3793 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3794 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3795 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3796 3797 /* 3798 * We will later add the new pa to the right bucket 3799 * after updating the pa_free in ext4_mb_release_context 3800 */ 3801 return 0; 3802 } 3803 3804 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3805 { 3806 int err; 3807 3808 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3809 err = ext4_mb_new_group_pa(ac); 3810 else 3811 err = ext4_mb_new_inode_pa(ac); 3812 return err; 3813 } 3814 3815 /* 3816 * finds all unused blocks in on-disk bitmap, frees them in 3817 * in-core bitmap and buddy. 3818 * @pa must be unlinked from inode and group lists, so that 3819 * nobody else can find/use it. 3820 * the caller MUST hold group/inode locks. 3821 * TODO: optimize the case when there are no in-core structures yet 3822 */ 3823 static noinline_for_stack int 3824 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3825 struct ext4_prealloc_space *pa) 3826 { 3827 struct super_block *sb = e4b->bd_sb; 3828 struct ext4_sb_info *sbi = EXT4_SB(sb); 3829 unsigned int end; 3830 unsigned int next; 3831 ext4_group_t group; 3832 ext4_grpblk_t bit; 3833 unsigned long long grp_blk_start; 3834 int free = 0; 3835 3836 BUG_ON(pa->pa_deleted == 0); 3837 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3838 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3839 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3840 end = bit + pa->pa_len; 3841 3842 while (bit < end) { 3843 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3844 if (bit >= end) 3845 break; 3846 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3847 mb_debug(1, " free preallocated %u/%u in group %u\n", 3848 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3849 (unsigned) next - bit, (unsigned) group); 3850 free += next - bit; 3851 3852 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3853 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3854 EXT4_C2B(sbi, bit)), 3855 next - bit); 3856 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3857 bit = next + 1; 3858 } 3859 if (free != pa->pa_free) { 3860 ext4_msg(e4b->bd_sb, KERN_CRIT, 3861 "pa %p: logic %lu, phys. %lu, len %lu", 3862 pa, (unsigned long) pa->pa_lstart, 3863 (unsigned long) pa->pa_pstart, 3864 (unsigned long) pa->pa_len); 3865 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3866 free, pa->pa_free); 3867 /* 3868 * pa is already deleted so we use the value obtained 3869 * from the bitmap and continue. 3870 */ 3871 } 3872 atomic_add(free, &sbi->s_mb_discarded); 3873 3874 return 0; 3875 } 3876 3877 static noinline_for_stack int 3878 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3879 struct ext4_prealloc_space *pa) 3880 { 3881 struct super_block *sb = e4b->bd_sb; 3882 ext4_group_t group; 3883 ext4_grpblk_t bit; 3884 3885 trace_ext4_mb_release_group_pa(sb, pa); 3886 BUG_ON(pa->pa_deleted == 0); 3887 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3888 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3889 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3890 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3891 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3892 3893 return 0; 3894 } 3895 3896 /* 3897 * releases all preallocations in given group 3898 * 3899 * first, we need to decide discard policy: 3900 * - when do we discard 3901 * 1) ENOSPC 3902 * - how many do we discard 3903 * 1) how many requested 3904 */ 3905 static noinline_for_stack int 3906 ext4_mb_discard_group_preallocations(struct super_block *sb, 3907 ext4_group_t group, int needed) 3908 { 3909 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3910 struct buffer_head *bitmap_bh = NULL; 3911 struct ext4_prealloc_space *pa, *tmp; 3912 struct list_head list; 3913 struct ext4_buddy e4b; 3914 int err; 3915 int busy = 0; 3916 int free = 0; 3917 3918 mb_debug(1, "discard preallocation for group %u\n", group); 3919 3920 if (list_empty(&grp->bb_prealloc_list)) 3921 return 0; 3922 3923 bitmap_bh = ext4_read_block_bitmap(sb, group); 3924 if (IS_ERR(bitmap_bh)) { 3925 err = PTR_ERR(bitmap_bh); 3926 ext4_error_err(sb, -err, 3927 "Error %d reading block bitmap for %u", 3928 err, group); 3929 return 0; 3930 } 3931 3932 err = ext4_mb_load_buddy(sb, group, &e4b); 3933 if (err) { 3934 ext4_warning(sb, "Error %d loading buddy information for %u", 3935 err, group); 3936 put_bh(bitmap_bh); 3937 return 0; 3938 } 3939 3940 if (needed == 0) 3941 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3942 3943 INIT_LIST_HEAD(&list); 3944 repeat: 3945 ext4_lock_group(sb, group); 3946 list_for_each_entry_safe(pa, tmp, 3947 &grp->bb_prealloc_list, pa_group_list) { 3948 spin_lock(&pa->pa_lock); 3949 if (atomic_read(&pa->pa_count)) { 3950 spin_unlock(&pa->pa_lock); 3951 busy = 1; 3952 continue; 3953 } 3954 if (pa->pa_deleted) { 3955 spin_unlock(&pa->pa_lock); 3956 continue; 3957 } 3958 3959 /* seems this one can be freed ... */ 3960 pa->pa_deleted = 1; 3961 3962 /* we can trust pa_free ... */ 3963 free += pa->pa_free; 3964 3965 spin_unlock(&pa->pa_lock); 3966 3967 list_del(&pa->pa_group_list); 3968 list_add(&pa->u.pa_tmp_list, &list); 3969 } 3970 3971 /* if we still need more blocks and some PAs were used, try again */ 3972 if (free < needed && busy) { 3973 busy = 0; 3974 ext4_unlock_group(sb, group); 3975 cond_resched(); 3976 goto repeat; 3977 } 3978 3979 /* found anything to free? */ 3980 if (list_empty(&list)) { 3981 BUG_ON(free != 0); 3982 goto out; 3983 } 3984 3985 /* now free all selected PAs */ 3986 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3987 3988 /* remove from object (inode or locality group) */ 3989 spin_lock(pa->pa_obj_lock); 3990 list_del_rcu(&pa->pa_inode_list); 3991 spin_unlock(pa->pa_obj_lock); 3992 3993 if (pa->pa_type == MB_GROUP_PA) 3994 ext4_mb_release_group_pa(&e4b, pa); 3995 else 3996 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3997 3998 list_del(&pa->u.pa_tmp_list); 3999 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4000 } 4001 4002 out: 4003 ext4_unlock_group(sb, group); 4004 ext4_mb_unload_buddy(&e4b); 4005 put_bh(bitmap_bh); 4006 return free; 4007 } 4008 4009 /* 4010 * releases all non-used preallocated blocks for given inode 4011 * 4012 * It's important to discard preallocations under i_data_sem 4013 * We don't want another block to be served from the prealloc 4014 * space when we are discarding the inode prealloc space. 4015 * 4016 * FIXME!! Make sure it is valid at all the call sites 4017 */ 4018 void ext4_discard_preallocations(struct inode *inode) 4019 { 4020 struct ext4_inode_info *ei = EXT4_I(inode); 4021 struct super_block *sb = inode->i_sb; 4022 struct buffer_head *bitmap_bh = NULL; 4023 struct ext4_prealloc_space *pa, *tmp; 4024 ext4_group_t group = 0; 4025 struct list_head list; 4026 struct ext4_buddy e4b; 4027 int err; 4028 4029 if (!S_ISREG(inode->i_mode)) { 4030 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4031 return; 4032 } 4033 4034 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 4035 trace_ext4_discard_preallocations(inode); 4036 4037 INIT_LIST_HEAD(&list); 4038 4039 repeat: 4040 /* first, collect all pa's in the inode */ 4041 spin_lock(&ei->i_prealloc_lock); 4042 while (!list_empty(&ei->i_prealloc_list)) { 4043 pa = list_entry(ei->i_prealloc_list.next, 4044 struct ext4_prealloc_space, pa_inode_list); 4045 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4046 spin_lock(&pa->pa_lock); 4047 if (atomic_read(&pa->pa_count)) { 4048 /* this shouldn't happen often - nobody should 4049 * use preallocation while we're discarding it */ 4050 spin_unlock(&pa->pa_lock); 4051 spin_unlock(&ei->i_prealloc_lock); 4052 ext4_msg(sb, KERN_ERR, 4053 "uh-oh! used pa while discarding"); 4054 WARN_ON(1); 4055 schedule_timeout_uninterruptible(HZ); 4056 goto repeat; 4057 4058 } 4059 if (pa->pa_deleted == 0) { 4060 pa->pa_deleted = 1; 4061 spin_unlock(&pa->pa_lock); 4062 list_del_rcu(&pa->pa_inode_list); 4063 list_add(&pa->u.pa_tmp_list, &list); 4064 continue; 4065 } 4066 4067 /* someone is deleting pa right now */ 4068 spin_unlock(&pa->pa_lock); 4069 spin_unlock(&ei->i_prealloc_lock); 4070 4071 /* we have to wait here because pa_deleted 4072 * doesn't mean pa is already unlinked from 4073 * the list. as we might be called from 4074 * ->clear_inode() the inode will get freed 4075 * and concurrent thread which is unlinking 4076 * pa from inode's list may access already 4077 * freed memory, bad-bad-bad */ 4078 4079 /* XXX: if this happens too often, we can 4080 * add a flag to force wait only in case 4081 * of ->clear_inode(), but not in case of 4082 * regular truncate */ 4083 schedule_timeout_uninterruptible(HZ); 4084 goto repeat; 4085 } 4086 spin_unlock(&ei->i_prealloc_lock); 4087 4088 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4089 BUG_ON(pa->pa_type != MB_INODE_PA); 4090 group = ext4_get_group_number(sb, pa->pa_pstart); 4091 4092 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4093 GFP_NOFS|__GFP_NOFAIL); 4094 if (err) { 4095 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4096 err, group); 4097 continue; 4098 } 4099 4100 bitmap_bh = ext4_read_block_bitmap(sb, group); 4101 if (IS_ERR(bitmap_bh)) { 4102 err = PTR_ERR(bitmap_bh); 4103 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4104 err, group); 4105 ext4_mb_unload_buddy(&e4b); 4106 continue; 4107 } 4108 4109 ext4_lock_group(sb, group); 4110 list_del(&pa->pa_group_list); 4111 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4112 ext4_unlock_group(sb, group); 4113 4114 ext4_mb_unload_buddy(&e4b); 4115 put_bh(bitmap_bh); 4116 4117 list_del(&pa->u.pa_tmp_list); 4118 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4119 } 4120 } 4121 4122 #ifdef CONFIG_EXT4_DEBUG 4123 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4124 { 4125 struct super_block *sb = ac->ac_sb; 4126 ext4_group_t ngroups, i; 4127 4128 if (!ext4_mballoc_debug || 4129 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4130 return; 4131 4132 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4133 " Allocation context details:"); 4134 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4135 ac->ac_status, ac->ac_flags); 4136 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4137 "goal %lu/%lu/%lu@%lu, " 4138 "best %lu/%lu/%lu@%lu cr %d", 4139 (unsigned long)ac->ac_o_ex.fe_group, 4140 (unsigned long)ac->ac_o_ex.fe_start, 4141 (unsigned long)ac->ac_o_ex.fe_len, 4142 (unsigned long)ac->ac_o_ex.fe_logical, 4143 (unsigned long)ac->ac_g_ex.fe_group, 4144 (unsigned long)ac->ac_g_ex.fe_start, 4145 (unsigned long)ac->ac_g_ex.fe_len, 4146 (unsigned long)ac->ac_g_ex.fe_logical, 4147 (unsigned long)ac->ac_b_ex.fe_group, 4148 (unsigned long)ac->ac_b_ex.fe_start, 4149 (unsigned long)ac->ac_b_ex.fe_len, 4150 (unsigned long)ac->ac_b_ex.fe_logical, 4151 (int)ac->ac_criteria); 4152 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4153 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4154 ngroups = ext4_get_groups_count(sb); 4155 for (i = 0; i < ngroups; i++) { 4156 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4157 struct ext4_prealloc_space *pa; 4158 ext4_grpblk_t start; 4159 struct list_head *cur; 4160 ext4_lock_group(sb, i); 4161 list_for_each(cur, &grp->bb_prealloc_list) { 4162 pa = list_entry(cur, struct ext4_prealloc_space, 4163 pa_group_list); 4164 spin_lock(&pa->pa_lock); 4165 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4166 NULL, &start); 4167 spin_unlock(&pa->pa_lock); 4168 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4169 start, pa->pa_len); 4170 } 4171 ext4_unlock_group(sb, i); 4172 4173 if (grp->bb_free == 0) 4174 continue; 4175 printk(KERN_ERR "%u: %d/%d \n", 4176 i, grp->bb_free, grp->bb_fragments); 4177 } 4178 printk(KERN_ERR "\n"); 4179 } 4180 #else 4181 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4182 { 4183 return; 4184 } 4185 #endif 4186 4187 /* 4188 * We use locality group preallocation for small size file. The size of the 4189 * file is determined by the current size or the resulting size after 4190 * allocation which ever is larger 4191 * 4192 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4193 */ 4194 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4195 { 4196 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4197 int bsbits = ac->ac_sb->s_blocksize_bits; 4198 loff_t size, isize; 4199 4200 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4201 return; 4202 4203 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4204 return; 4205 4206 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4207 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4208 >> bsbits; 4209 4210 if ((size == isize) && !ext4_fs_is_busy(sbi) && 4211 !inode_is_open_for_write(ac->ac_inode)) { 4212 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4213 return; 4214 } 4215 4216 if (sbi->s_mb_group_prealloc <= 0) { 4217 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4218 return; 4219 } 4220 4221 /* don't use group allocation for large files */ 4222 size = max(size, isize); 4223 if (size > sbi->s_mb_stream_request) { 4224 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4225 return; 4226 } 4227 4228 BUG_ON(ac->ac_lg != NULL); 4229 /* 4230 * locality group prealloc space are per cpu. The reason for having 4231 * per cpu locality group is to reduce the contention between block 4232 * request from multiple CPUs. 4233 */ 4234 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4235 4236 /* we're going to use group allocation */ 4237 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4238 4239 /* serialize all allocations in the group */ 4240 mutex_lock(&ac->ac_lg->lg_mutex); 4241 } 4242 4243 static noinline_for_stack int 4244 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4245 struct ext4_allocation_request *ar) 4246 { 4247 struct super_block *sb = ar->inode->i_sb; 4248 struct ext4_sb_info *sbi = EXT4_SB(sb); 4249 struct ext4_super_block *es = sbi->s_es; 4250 ext4_group_t group; 4251 unsigned int len; 4252 ext4_fsblk_t goal; 4253 ext4_grpblk_t block; 4254 4255 /* we can't allocate > group size */ 4256 len = ar->len; 4257 4258 /* just a dirty hack to filter too big requests */ 4259 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4260 len = EXT4_CLUSTERS_PER_GROUP(sb); 4261 4262 /* start searching from the goal */ 4263 goal = ar->goal; 4264 if (goal < le32_to_cpu(es->s_first_data_block) || 4265 goal >= ext4_blocks_count(es)) 4266 goal = le32_to_cpu(es->s_first_data_block); 4267 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4268 4269 /* set up allocation goals */ 4270 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4271 ac->ac_status = AC_STATUS_CONTINUE; 4272 ac->ac_sb = sb; 4273 ac->ac_inode = ar->inode; 4274 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4275 ac->ac_o_ex.fe_group = group; 4276 ac->ac_o_ex.fe_start = block; 4277 ac->ac_o_ex.fe_len = len; 4278 ac->ac_g_ex = ac->ac_o_ex; 4279 ac->ac_flags = ar->flags; 4280 4281 /* we have to define context: we'll we work with a file or 4282 * locality group. this is a policy, actually */ 4283 ext4_mb_group_or_file(ac); 4284 4285 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4286 "left: %u/%u, right %u/%u to %swritable\n", 4287 (unsigned) ar->len, (unsigned) ar->logical, 4288 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4289 (unsigned) ar->lleft, (unsigned) ar->pleft, 4290 (unsigned) ar->lright, (unsigned) ar->pright, 4291 inode_is_open_for_write(ar->inode) ? "" : "non-"); 4292 return 0; 4293 4294 } 4295 4296 static noinline_for_stack void 4297 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4298 struct ext4_locality_group *lg, 4299 int order, int total_entries) 4300 { 4301 ext4_group_t group = 0; 4302 struct ext4_buddy e4b; 4303 struct list_head discard_list; 4304 struct ext4_prealloc_space *pa, *tmp; 4305 4306 mb_debug(1, "discard locality group preallocation\n"); 4307 4308 INIT_LIST_HEAD(&discard_list); 4309 4310 spin_lock(&lg->lg_prealloc_lock); 4311 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4312 pa_inode_list, 4313 lockdep_is_held(&lg->lg_prealloc_lock)) { 4314 spin_lock(&pa->pa_lock); 4315 if (atomic_read(&pa->pa_count)) { 4316 /* 4317 * This is the pa that we just used 4318 * for block allocation. So don't 4319 * free that 4320 */ 4321 spin_unlock(&pa->pa_lock); 4322 continue; 4323 } 4324 if (pa->pa_deleted) { 4325 spin_unlock(&pa->pa_lock); 4326 continue; 4327 } 4328 /* only lg prealloc space */ 4329 BUG_ON(pa->pa_type != MB_GROUP_PA); 4330 4331 /* seems this one can be freed ... */ 4332 pa->pa_deleted = 1; 4333 spin_unlock(&pa->pa_lock); 4334 4335 list_del_rcu(&pa->pa_inode_list); 4336 list_add(&pa->u.pa_tmp_list, &discard_list); 4337 4338 total_entries--; 4339 if (total_entries <= 5) { 4340 /* 4341 * we want to keep only 5 entries 4342 * allowing it to grow to 8. This 4343 * mak sure we don't call discard 4344 * soon for this list. 4345 */ 4346 break; 4347 } 4348 } 4349 spin_unlock(&lg->lg_prealloc_lock); 4350 4351 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4352 int err; 4353 4354 group = ext4_get_group_number(sb, pa->pa_pstart); 4355 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4356 GFP_NOFS|__GFP_NOFAIL); 4357 if (err) { 4358 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4359 err, group); 4360 continue; 4361 } 4362 ext4_lock_group(sb, group); 4363 list_del(&pa->pa_group_list); 4364 ext4_mb_release_group_pa(&e4b, pa); 4365 ext4_unlock_group(sb, group); 4366 4367 ext4_mb_unload_buddy(&e4b); 4368 list_del(&pa->u.pa_tmp_list); 4369 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4370 } 4371 } 4372 4373 /* 4374 * We have incremented pa_count. So it cannot be freed at this 4375 * point. Also we hold lg_mutex. So no parallel allocation is 4376 * possible from this lg. That means pa_free cannot be updated. 4377 * 4378 * A parallel ext4_mb_discard_group_preallocations is possible. 4379 * which can cause the lg_prealloc_list to be updated. 4380 */ 4381 4382 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4383 { 4384 int order, added = 0, lg_prealloc_count = 1; 4385 struct super_block *sb = ac->ac_sb; 4386 struct ext4_locality_group *lg = ac->ac_lg; 4387 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4388 4389 order = fls(pa->pa_free) - 1; 4390 if (order > PREALLOC_TB_SIZE - 1) 4391 /* The max size of hash table is PREALLOC_TB_SIZE */ 4392 order = PREALLOC_TB_SIZE - 1; 4393 /* Add the prealloc space to lg */ 4394 spin_lock(&lg->lg_prealloc_lock); 4395 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4396 pa_inode_list, 4397 lockdep_is_held(&lg->lg_prealloc_lock)) { 4398 spin_lock(&tmp_pa->pa_lock); 4399 if (tmp_pa->pa_deleted) { 4400 spin_unlock(&tmp_pa->pa_lock); 4401 continue; 4402 } 4403 if (!added && pa->pa_free < tmp_pa->pa_free) { 4404 /* Add to the tail of the previous entry */ 4405 list_add_tail_rcu(&pa->pa_inode_list, 4406 &tmp_pa->pa_inode_list); 4407 added = 1; 4408 /* 4409 * we want to count the total 4410 * number of entries in the list 4411 */ 4412 } 4413 spin_unlock(&tmp_pa->pa_lock); 4414 lg_prealloc_count++; 4415 } 4416 if (!added) 4417 list_add_tail_rcu(&pa->pa_inode_list, 4418 &lg->lg_prealloc_list[order]); 4419 spin_unlock(&lg->lg_prealloc_lock); 4420 4421 /* Now trim the list to be not more than 8 elements */ 4422 if (lg_prealloc_count > 8) { 4423 ext4_mb_discard_lg_preallocations(sb, lg, 4424 order, lg_prealloc_count); 4425 return; 4426 } 4427 return ; 4428 } 4429 4430 /* 4431 * release all resource we used in allocation 4432 */ 4433 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4434 { 4435 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4436 struct ext4_prealloc_space *pa = ac->ac_pa; 4437 if (pa) { 4438 if (pa->pa_type == MB_GROUP_PA) { 4439 /* see comment in ext4_mb_use_group_pa() */ 4440 spin_lock(&pa->pa_lock); 4441 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4442 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4443 pa->pa_free -= ac->ac_b_ex.fe_len; 4444 pa->pa_len -= ac->ac_b_ex.fe_len; 4445 spin_unlock(&pa->pa_lock); 4446 } 4447 } 4448 if (pa) { 4449 /* 4450 * We want to add the pa to the right bucket. 4451 * Remove it from the list and while adding 4452 * make sure the list to which we are adding 4453 * doesn't grow big. 4454 */ 4455 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4456 spin_lock(pa->pa_obj_lock); 4457 list_del_rcu(&pa->pa_inode_list); 4458 spin_unlock(pa->pa_obj_lock); 4459 ext4_mb_add_n_trim(ac); 4460 } 4461 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4462 } 4463 if (ac->ac_bitmap_page) 4464 put_page(ac->ac_bitmap_page); 4465 if (ac->ac_buddy_page) 4466 put_page(ac->ac_buddy_page); 4467 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4468 mutex_unlock(&ac->ac_lg->lg_mutex); 4469 ext4_mb_collect_stats(ac); 4470 return 0; 4471 } 4472 4473 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4474 { 4475 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4476 int ret; 4477 int freed = 0; 4478 4479 trace_ext4_mb_discard_preallocations(sb, needed); 4480 for (i = 0; i < ngroups && needed > 0; i++) { 4481 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4482 freed += ret; 4483 needed -= ret; 4484 } 4485 4486 return freed; 4487 } 4488 4489 /* 4490 * Main entry point into mballoc to allocate blocks 4491 * it tries to use preallocation first, then falls back 4492 * to usual allocation 4493 */ 4494 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4495 struct ext4_allocation_request *ar, int *errp) 4496 { 4497 int freed; 4498 struct ext4_allocation_context *ac = NULL; 4499 struct ext4_sb_info *sbi; 4500 struct super_block *sb; 4501 ext4_fsblk_t block = 0; 4502 unsigned int inquota = 0; 4503 unsigned int reserv_clstrs = 0; 4504 4505 might_sleep(); 4506 sb = ar->inode->i_sb; 4507 sbi = EXT4_SB(sb); 4508 4509 trace_ext4_request_blocks(ar); 4510 4511 /* Allow to use superuser reservation for quota file */ 4512 if (ext4_is_quota_file(ar->inode)) 4513 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4514 4515 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4516 /* Without delayed allocation we need to verify 4517 * there is enough free blocks to do block allocation 4518 * and verify allocation doesn't exceed the quota limits. 4519 */ 4520 while (ar->len && 4521 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4522 4523 /* let others to free the space */ 4524 cond_resched(); 4525 ar->len = ar->len >> 1; 4526 } 4527 if (!ar->len) { 4528 *errp = -ENOSPC; 4529 return 0; 4530 } 4531 reserv_clstrs = ar->len; 4532 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4533 dquot_alloc_block_nofail(ar->inode, 4534 EXT4_C2B(sbi, ar->len)); 4535 } else { 4536 while (ar->len && 4537 dquot_alloc_block(ar->inode, 4538 EXT4_C2B(sbi, ar->len))) { 4539 4540 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4541 ar->len--; 4542 } 4543 } 4544 inquota = ar->len; 4545 if (ar->len == 0) { 4546 *errp = -EDQUOT; 4547 goto out; 4548 } 4549 } 4550 4551 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4552 if (!ac) { 4553 ar->len = 0; 4554 *errp = -ENOMEM; 4555 goto out; 4556 } 4557 4558 *errp = ext4_mb_initialize_context(ac, ar); 4559 if (*errp) { 4560 ar->len = 0; 4561 goto out; 4562 } 4563 4564 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4565 if (!ext4_mb_use_preallocated(ac)) { 4566 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4567 ext4_mb_normalize_request(ac, ar); 4568 repeat: 4569 /* allocate space in core */ 4570 *errp = ext4_mb_regular_allocator(ac); 4571 if (*errp) 4572 goto discard_and_exit; 4573 4574 /* as we've just preallocated more space than 4575 * user requested originally, we store allocated 4576 * space in a special descriptor */ 4577 if (ac->ac_status == AC_STATUS_FOUND && 4578 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4579 *errp = ext4_mb_new_preallocation(ac); 4580 if (*errp) { 4581 discard_and_exit: 4582 ext4_discard_allocated_blocks(ac); 4583 goto errout; 4584 } 4585 } 4586 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4587 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4588 if (*errp) { 4589 ext4_discard_allocated_blocks(ac); 4590 goto errout; 4591 } else { 4592 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4593 ar->len = ac->ac_b_ex.fe_len; 4594 } 4595 } else { 4596 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4597 if (freed) 4598 goto repeat; 4599 *errp = -ENOSPC; 4600 } 4601 4602 errout: 4603 if (*errp) { 4604 ac->ac_b_ex.fe_len = 0; 4605 ar->len = 0; 4606 ext4_mb_show_ac(ac); 4607 } 4608 ext4_mb_release_context(ac); 4609 out: 4610 if (ac) 4611 kmem_cache_free(ext4_ac_cachep, ac); 4612 if (inquota && ar->len < inquota) 4613 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4614 if (!ar->len) { 4615 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4616 /* release all the reserved blocks if non delalloc */ 4617 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4618 reserv_clstrs); 4619 } 4620 4621 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4622 4623 return block; 4624 } 4625 4626 /* 4627 * We can merge two free data extents only if the physical blocks 4628 * are contiguous, AND the extents were freed by the same transaction, 4629 * AND the blocks are associated with the same group. 4630 */ 4631 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4632 struct ext4_free_data *entry, 4633 struct ext4_free_data *new_entry, 4634 struct rb_root *entry_rb_root) 4635 { 4636 if ((entry->efd_tid != new_entry->efd_tid) || 4637 (entry->efd_group != new_entry->efd_group)) 4638 return; 4639 if (entry->efd_start_cluster + entry->efd_count == 4640 new_entry->efd_start_cluster) { 4641 new_entry->efd_start_cluster = entry->efd_start_cluster; 4642 new_entry->efd_count += entry->efd_count; 4643 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4644 entry->efd_start_cluster) { 4645 new_entry->efd_count += entry->efd_count; 4646 } else 4647 return; 4648 spin_lock(&sbi->s_md_lock); 4649 list_del(&entry->efd_list); 4650 spin_unlock(&sbi->s_md_lock); 4651 rb_erase(&entry->efd_node, entry_rb_root); 4652 kmem_cache_free(ext4_free_data_cachep, entry); 4653 } 4654 4655 static noinline_for_stack int 4656 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4657 struct ext4_free_data *new_entry) 4658 { 4659 ext4_group_t group = e4b->bd_group; 4660 ext4_grpblk_t cluster; 4661 ext4_grpblk_t clusters = new_entry->efd_count; 4662 struct ext4_free_data *entry; 4663 struct ext4_group_info *db = e4b->bd_info; 4664 struct super_block *sb = e4b->bd_sb; 4665 struct ext4_sb_info *sbi = EXT4_SB(sb); 4666 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4667 struct rb_node *parent = NULL, *new_node; 4668 4669 BUG_ON(!ext4_handle_valid(handle)); 4670 BUG_ON(e4b->bd_bitmap_page == NULL); 4671 BUG_ON(e4b->bd_buddy_page == NULL); 4672 4673 new_node = &new_entry->efd_node; 4674 cluster = new_entry->efd_start_cluster; 4675 4676 if (!*n) { 4677 /* first free block exent. We need to 4678 protect buddy cache from being freed, 4679 * otherwise we'll refresh it from 4680 * on-disk bitmap and lose not-yet-available 4681 * blocks */ 4682 get_page(e4b->bd_buddy_page); 4683 get_page(e4b->bd_bitmap_page); 4684 } 4685 while (*n) { 4686 parent = *n; 4687 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4688 if (cluster < entry->efd_start_cluster) 4689 n = &(*n)->rb_left; 4690 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4691 n = &(*n)->rb_right; 4692 else { 4693 ext4_grp_locked_error(sb, group, 0, 4694 ext4_group_first_block_no(sb, group) + 4695 EXT4_C2B(sbi, cluster), 4696 "Block already on to-be-freed list"); 4697 return 0; 4698 } 4699 } 4700 4701 rb_link_node(new_node, parent, n); 4702 rb_insert_color(new_node, &db->bb_free_root); 4703 4704 /* Now try to see the extent can be merged to left and right */ 4705 node = rb_prev(new_node); 4706 if (node) { 4707 entry = rb_entry(node, struct ext4_free_data, efd_node); 4708 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4709 &(db->bb_free_root)); 4710 } 4711 4712 node = rb_next(new_node); 4713 if (node) { 4714 entry = rb_entry(node, struct ext4_free_data, efd_node); 4715 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4716 &(db->bb_free_root)); 4717 } 4718 4719 spin_lock(&sbi->s_md_lock); 4720 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 4721 sbi->s_mb_free_pending += clusters; 4722 spin_unlock(&sbi->s_md_lock); 4723 return 0; 4724 } 4725 4726 /** 4727 * ext4_free_blocks() -- Free given blocks and update quota 4728 * @handle: handle for this transaction 4729 * @inode: inode 4730 * @bh: optional buffer of the block to be freed 4731 * @block: starting physical block to be freed 4732 * @count: number of blocks to be freed 4733 * @flags: flags used by ext4_free_blocks 4734 */ 4735 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4736 struct buffer_head *bh, ext4_fsblk_t block, 4737 unsigned long count, int flags) 4738 { 4739 struct buffer_head *bitmap_bh = NULL; 4740 struct super_block *sb = inode->i_sb; 4741 struct ext4_group_desc *gdp; 4742 unsigned int overflow; 4743 ext4_grpblk_t bit; 4744 struct buffer_head *gd_bh; 4745 ext4_group_t block_group; 4746 struct ext4_sb_info *sbi; 4747 struct ext4_buddy e4b; 4748 unsigned int count_clusters; 4749 int err = 0; 4750 int ret; 4751 4752 might_sleep(); 4753 if (bh) { 4754 if (block) 4755 BUG_ON(block != bh->b_blocknr); 4756 else 4757 block = bh->b_blocknr; 4758 } 4759 4760 sbi = EXT4_SB(sb); 4761 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4762 !ext4_data_block_valid(sbi, block, count)) { 4763 ext4_error(sb, "Freeing blocks not in datazone - " 4764 "block = %llu, count = %lu", block, count); 4765 goto error_return; 4766 } 4767 4768 ext4_debug("freeing block %llu\n", block); 4769 trace_ext4_free_blocks(inode, block, count, flags); 4770 4771 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4772 BUG_ON(count > 1); 4773 4774 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4775 inode, bh, block); 4776 } 4777 4778 /* 4779 * If the extent to be freed does not begin on a cluster 4780 * boundary, we need to deal with partial clusters at the 4781 * beginning and end of the extent. Normally we will free 4782 * blocks at the beginning or the end unless we are explicitly 4783 * requested to avoid doing so. 4784 */ 4785 overflow = EXT4_PBLK_COFF(sbi, block); 4786 if (overflow) { 4787 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4788 overflow = sbi->s_cluster_ratio - overflow; 4789 block += overflow; 4790 if (count > overflow) 4791 count -= overflow; 4792 else 4793 return; 4794 } else { 4795 block -= overflow; 4796 count += overflow; 4797 } 4798 } 4799 overflow = EXT4_LBLK_COFF(sbi, count); 4800 if (overflow) { 4801 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4802 if (count > overflow) 4803 count -= overflow; 4804 else 4805 return; 4806 } else 4807 count += sbi->s_cluster_ratio - overflow; 4808 } 4809 4810 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4811 int i; 4812 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4813 4814 for (i = 0; i < count; i++) { 4815 cond_resched(); 4816 if (is_metadata) 4817 bh = sb_find_get_block(inode->i_sb, block + i); 4818 ext4_forget(handle, is_metadata, inode, bh, block + i); 4819 } 4820 } 4821 4822 do_more: 4823 overflow = 0; 4824 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4825 4826 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4827 ext4_get_group_info(sb, block_group)))) 4828 return; 4829 4830 /* 4831 * Check to see if we are freeing blocks across a group 4832 * boundary. 4833 */ 4834 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4835 overflow = EXT4_C2B(sbi, bit) + count - 4836 EXT4_BLOCKS_PER_GROUP(sb); 4837 count -= overflow; 4838 } 4839 count_clusters = EXT4_NUM_B2C(sbi, count); 4840 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4841 if (IS_ERR(bitmap_bh)) { 4842 err = PTR_ERR(bitmap_bh); 4843 bitmap_bh = NULL; 4844 goto error_return; 4845 } 4846 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4847 if (!gdp) { 4848 err = -EIO; 4849 goto error_return; 4850 } 4851 4852 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4853 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4854 in_range(block, ext4_inode_table(sb, gdp), 4855 sbi->s_itb_per_group) || 4856 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4857 sbi->s_itb_per_group)) { 4858 4859 ext4_error(sb, "Freeing blocks in system zone - " 4860 "Block = %llu, count = %lu", block, count); 4861 /* err = 0. ext4_std_error should be a no op */ 4862 goto error_return; 4863 } 4864 4865 BUFFER_TRACE(bitmap_bh, "getting write access"); 4866 err = ext4_journal_get_write_access(handle, bitmap_bh); 4867 if (err) 4868 goto error_return; 4869 4870 /* 4871 * We are about to modify some metadata. Call the journal APIs 4872 * to unshare ->b_data if a currently-committing transaction is 4873 * using it 4874 */ 4875 BUFFER_TRACE(gd_bh, "get_write_access"); 4876 err = ext4_journal_get_write_access(handle, gd_bh); 4877 if (err) 4878 goto error_return; 4879 #ifdef AGGRESSIVE_CHECK 4880 { 4881 int i; 4882 for (i = 0; i < count_clusters; i++) 4883 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4884 } 4885 #endif 4886 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4887 4888 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4889 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4890 GFP_NOFS|__GFP_NOFAIL); 4891 if (err) 4892 goto error_return; 4893 4894 /* 4895 * We need to make sure we don't reuse the freed block until after the 4896 * transaction is committed. We make an exception if the inode is to be 4897 * written in writeback mode since writeback mode has weak data 4898 * consistency guarantees. 4899 */ 4900 if (ext4_handle_valid(handle) && 4901 ((flags & EXT4_FREE_BLOCKS_METADATA) || 4902 !ext4_should_writeback_data(inode))) { 4903 struct ext4_free_data *new_entry; 4904 /* 4905 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4906 * to fail. 4907 */ 4908 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4909 GFP_NOFS|__GFP_NOFAIL); 4910 new_entry->efd_start_cluster = bit; 4911 new_entry->efd_group = block_group; 4912 new_entry->efd_count = count_clusters; 4913 new_entry->efd_tid = handle->h_transaction->t_tid; 4914 4915 ext4_lock_group(sb, block_group); 4916 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4917 ext4_mb_free_metadata(handle, &e4b, new_entry); 4918 } else { 4919 /* need to update group_info->bb_free and bitmap 4920 * with group lock held. generate_buddy look at 4921 * them with group lock_held 4922 */ 4923 if (test_opt(sb, DISCARD)) { 4924 err = ext4_issue_discard(sb, block_group, bit, count, 4925 NULL); 4926 if (err && err != -EOPNOTSUPP) 4927 ext4_msg(sb, KERN_WARNING, "discard request in" 4928 " group:%d block:%d count:%lu failed" 4929 " with %d", block_group, bit, count, 4930 err); 4931 } else 4932 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4933 4934 ext4_lock_group(sb, block_group); 4935 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4936 mb_free_blocks(inode, &e4b, bit, count_clusters); 4937 } 4938 4939 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4940 ext4_free_group_clusters_set(sb, gdp, ret); 4941 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4942 ext4_group_desc_csum_set(sb, block_group, gdp); 4943 ext4_unlock_group(sb, block_group); 4944 4945 if (sbi->s_log_groups_per_flex) { 4946 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4947 atomic64_add(count_clusters, 4948 &sbi_array_rcu_deref(sbi, s_flex_groups, 4949 flex_group)->free_clusters); 4950 } 4951 4952 /* 4953 * on a bigalloc file system, defer the s_freeclusters_counter 4954 * update to the caller (ext4_remove_space and friends) so they 4955 * can determine if a cluster freed here should be rereserved 4956 */ 4957 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 4958 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4959 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4960 percpu_counter_add(&sbi->s_freeclusters_counter, 4961 count_clusters); 4962 } 4963 4964 ext4_mb_unload_buddy(&e4b); 4965 4966 /* We dirtied the bitmap block */ 4967 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4968 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4969 4970 /* And the group descriptor block */ 4971 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4972 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4973 if (!err) 4974 err = ret; 4975 4976 if (overflow && !err) { 4977 block += count; 4978 count = overflow; 4979 put_bh(bitmap_bh); 4980 goto do_more; 4981 } 4982 error_return: 4983 brelse(bitmap_bh); 4984 ext4_std_error(sb, err); 4985 return; 4986 } 4987 4988 /** 4989 * ext4_group_add_blocks() -- Add given blocks to an existing group 4990 * @handle: handle to this transaction 4991 * @sb: super block 4992 * @block: start physical block to add to the block group 4993 * @count: number of blocks to free 4994 * 4995 * This marks the blocks as free in the bitmap and buddy. 4996 */ 4997 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4998 ext4_fsblk_t block, unsigned long count) 4999 { 5000 struct buffer_head *bitmap_bh = NULL; 5001 struct buffer_head *gd_bh; 5002 ext4_group_t block_group; 5003 ext4_grpblk_t bit; 5004 unsigned int i; 5005 struct ext4_group_desc *desc; 5006 struct ext4_sb_info *sbi = EXT4_SB(sb); 5007 struct ext4_buddy e4b; 5008 int err = 0, ret, free_clusters_count; 5009 ext4_grpblk_t clusters_freed; 5010 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 5011 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 5012 unsigned long cluster_count = last_cluster - first_cluster + 1; 5013 5014 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5015 5016 if (count == 0) 5017 return 0; 5018 5019 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5020 /* 5021 * Check to see if we are freeing blocks across a group 5022 * boundary. 5023 */ 5024 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5025 ext4_warning(sb, "too many blocks added to group %u", 5026 block_group); 5027 err = -EINVAL; 5028 goto error_return; 5029 } 5030 5031 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5032 if (IS_ERR(bitmap_bh)) { 5033 err = PTR_ERR(bitmap_bh); 5034 bitmap_bh = NULL; 5035 goto error_return; 5036 } 5037 5038 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5039 if (!desc) { 5040 err = -EIO; 5041 goto error_return; 5042 } 5043 5044 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5045 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5046 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5047 in_range(block + count - 1, ext4_inode_table(sb, desc), 5048 sbi->s_itb_per_group)) { 5049 ext4_error(sb, "Adding blocks in system zones - " 5050 "Block = %llu, count = %lu", 5051 block, count); 5052 err = -EINVAL; 5053 goto error_return; 5054 } 5055 5056 BUFFER_TRACE(bitmap_bh, "getting write access"); 5057 err = ext4_journal_get_write_access(handle, bitmap_bh); 5058 if (err) 5059 goto error_return; 5060 5061 /* 5062 * We are about to modify some metadata. Call the journal APIs 5063 * to unshare ->b_data if a currently-committing transaction is 5064 * using it 5065 */ 5066 BUFFER_TRACE(gd_bh, "get_write_access"); 5067 err = ext4_journal_get_write_access(handle, gd_bh); 5068 if (err) 5069 goto error_return; 5070 5071 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5072 BUFFER_TRACE(bitmap_bh, "clear bit"); 5073 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5074 ext4_error(sb, "bit already cleared for block %llu", 5075 (ext4_fsblk_t)(block + i)); 5076 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5077 } else { 5078 clusters_freed++; 5079 } 5080 } 5081 5082 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5083 if (err) 5084 goto error_return; 5085 5086 /* 5087 * need to update group_info->bb_free and bitmap 5088 * with group lock held. generate_buddy look at 5089 * them with group lock_held 5090 */ 5091 ext4_lock_group(sb, block_group); 5092 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5093 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5094 free_clusters_count = clusters_freed + 5095 ext4_free_group_clusters(sb, desc); 5096 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5097 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5098 ext4_group_desc_csum_set(sb, block_group, desc); 5099 ext4_unlock_group(sb, block_group); 5100 percpu_counter_add(&sbi->s_freeclusters_counter, 5101 clusters_freed); 5102 5103 if (sbi->s_log_groups_per_flex) { 5104 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5105 atomic64_add(clusters_freed, 5106 &sbi_array_rcu_deref(sbi, s_flex_groups, 5107 flex_group)->free_clusters); 5108 } 5109 5110 ext4_mb_unload_buddy(&e4b); 5111 5112 /* We dirtied the bitmap block */ 5113 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5114 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5115 5116 /* And the group descriptor block */ 5117 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5118 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5119 if (!err) 5120 err = ret; 5121 5122 error_return: 5123 brelse(bitmap_bh); 5124 ext4_std_error(sb, err); 5125 return err; 5126 } 5127 5128 /** 5129 * ext4_trim_extent -- function to TRIM one single free extent in the group 5130 * @sb: super block for the file system 5131 * @start: starting block of the free extent in the alloc. group 5132 * @count: number of blocks to TRIM 5133 * @group: alloc. group we are working with 5134 * @e4b: ext4 buddy for the group 5135 * 5136 * Trim "count" blocks starting at "start" in the "group". To assure that no 5137 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5138 * be called with under the group lock. 5139 */ 5140 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5141 ext4_group_t group, struct ext4_buddy *e4b) 5142 __releases(bitlock) 5143 __acquires(bitlock) 5144 { 5145 struct ext4_free_extent ex; 5146 int ret = 0; 5147 5148 trace_ext4_trim_extent(sb, group, start, count); 5149 5150 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5151 5152 ex.fe_start = start; 5153 ex.fe_group = group; 5154 ex.fe_len = count; 5155 5156 /* 5157 * Mark blocks used, so no one can reuse them while 5158 * being trimmed. 5159 */ 5160 mb_mark_used(e4b, &ex); 5161 ext4_unlock_group(sb, group); 5162 ret = ext4_issue_discard(sb, group, start, count, NULL); 5163 ext4_lock_group(sb, group); 5164 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5165 return ret; 5166 } 5167 5168 /** 5169 * ext4_trim_all_free -- function to trim all free space in alloc. group 5170 * @sb: super block for file system 5171 * @group: group to be trimmed 5172 * @start: first group block to examine 5173 * @max: last group block to examine 5174 * @minblocks: minimum extent block count 5175 * 5176 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5177 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5178 * the extent. 5179 * 5180 * 5181 * ext4_trim_all_free walks through group's block bitmap searching for free 5182 * extents. When the free extent is found, mark it as used in group buddy 5183 * bitmap. Then issue a TRIM command on this extent and free the extent in 5184 * the group buddy bitmap. This is done until whole group is scanned. 5185 */ 5186 static ext4_grpblk_t 5187 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5188 ext4_grpblk_t start, ext4_grpblk_t max, 5189 ext4_grpblk_t minblocks) 5190 { 5191 void *bitmap; 5192 ext4_grpblk_t next, count = 0, free_count = 0; 5193 struct ext4_buddy e4b; 5194 int ret = 0; 5195 5196 trace_ext4_trim_all_free(sb, group, start, max); 5197 5198 ret = ext4_mb_load_buddy(sb, group, &e4b); 5199 if (ret) { 5200 ext4_warning(sb, "Error %d loading buddy information for %u", 5201 ret, group); 5202 return ret; 5203 } 5204 bitmap = e4b.bd_bitmap; 5205 5206 ext4_lock_group(sb, group); 5207 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5208 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5209 goto out; 5210 5211 start = (e4b.bd_info->bb_first_free > start) ? 5212 e4b.bd_info->bb_first_free : start; 5213 5214 while (start <= max) { 5215 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5216 if (start > max) 5217 break; 5218 next = mb_find_next_bit(bitmap, max + 1, start); 5219 5220 if ((next - start) >= minblocks) { 5221 ret = ext4_trim_extent(sb, start, 5222 next - start, group, &e4b); 5223 if (ret && ret != -EOPNOTSUPP) 5224 break; 5225 ret = 0; 5226 count += next - start; 5227 } 5228 free_count += next - start; 5229 start = next + 1; 5230 5231 if (fatal_signal_pending(current)) { 5232 count = -ERESTARTSYS; 5233 break; 5234 } 5235 5236 if (need_resched()) { 5237 ext4_unlock_group(sb, group); 5238 cond_resched(); 5239 ext4_lock_group(sb, group); 5240 } 5241 5242 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5243 break; 5244 } 5245 5246 if (!ret) { 5247 ret = count; 5248 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5249 } 5250 out: 5251 ext4_unlock_group(sb, group); 5252 ext4_mb_unload_buddy(&e4b); 5253 5254 ext4_debug("trimmed %d blocks in the group %d\n", 5255 count, group); 5256 5257 return ret; 5258 } 5259 5260 /** 5261 * ext4_trim_fs() -- trim ioctl handle function 5262 * @sb: superblock for filesystem 5263 * @range: fstrim_range structure 5264 * 5265 * start: First Byte to trim 5266 * len: number of Bytes to trim from start 5267 * minlen: minimum extent length in Bytes 5268 * ext4_trim_fs goes through all allocation groups containing Bytes from 5269 * start to start+len. For each such a group ext4_trim_all_free function 5270 * is invoked to trim all free space. 5271 */ 5272 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5273 { 5274 struct ext4_group_info *grp; 5275 ext4_group_t group, first_group, last_group; 5276 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5277 uint64_t start, end, minlen, trimmed = 0; 5278 ext4_fsblk_t first_data_blk = 5279 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5280 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5281 int ret = 0; 5282 5283 start = range->start >> sb->s_blocksize_bits; 5284 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5285 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5286 range->minlen >> sb->s_blocksize_bits); 5287 5288 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5289 start >= max_blks || 5290 range->len < sb->s_blocksize) 5291 return -EINVAL; 5292 if (end >= max_blks) 5293 end = max_blks - 1; 5294 if (end <= first_data_blk) 5295 goto out; 5296 if (start < first_data_blk) 5297 start = first_data_blk; 5298 5299 /* Determine first and last group to examine based on start and end */ 5300 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5301 &first_group, &first_cluster); 5302 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5303 &last_group, &last_cluster); 5304 5305 /* end now represents the last cluster to discard in this group */ 5306 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5307 5308 for (group = first_group; group <= last_group; group++) { 5309 grp = ext4_get_group_info(sb, group); 5310 /* We only do this if the grp has never been initialized */ 5311 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5312 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5313 if (ret) 5314 break; 5315 } 5316 5317 /* 5318 * For all the groups except the last one, last cluster will 5319 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5320 * change it for the last group, note that last_cluster is 5321 * already computed earlier by ext4_get_group_no_and_offset() 5322 */ 5323 if (group == last_group) 5324 end = last_cluster; 5325 5326 if (grp->bb_free >= minlen) { 5327 cnt = ext4_trim_all_free(sb, group, first_cluster, 5328 end, minlen); 5329 if (cnt < 0) { 5330 ret = cnt; 5331 break; 5332 } 5333 trimmed += cnt; 5334 } 5335 5336 /* 5337 * For every group except the first one, we are sure 5338 * that the first cluster to discard will be cluster #0. 5339 */ 5340 first_cluster = 0; 5341 } 5342 5343 if (!ret) 5344 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5345 5346 out: 5347 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5348 return ret; 5349 } 5350 5351 /* Iterate all the free extents in the group. */ 5352 int 5353 ext4_mballoc_query_range( 5354 struct super_block *sb, 5355 ext4_group_t group, 5356 ext4_grpblk_t start, 5357 ext4_grpblk_t end, 5358 ext4_mballoc_query_range_fn formatter, 5359 void *priv) 5360 { 5361 void *bitmap; 5362 ext4_grpblk_t next; 5363 struct ext4_buddy e4b; 5364 int error; 5365 5366 error = ext4_mb_load_buddy(sb, group, &e4b); 5367 if (error) 5368 return error; 5369 bitmap = e4b.bd_bitmap; 5370 5371 ext4_lock_group(sb, group); 5372 5373 start = (e4b.bd_info->bb_first_free > start) ? 5374 e4b.bd_info->bb_first_free : start; 5375 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5376 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5377 5378 while (start <= end) { 5379 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5380 if (start > end) 5381 break; 5382 next = mb_find_next_bit(bitmap, end + 1, start); 5383 5384 ext4_unlock_group(sb, group); 5385 error = formatter(sb, group, start, next - start, priv); 5386 if (error) 5387 goto out_unload; 5388 ext4_lock_group(sb, group); 5389 5390 start = next + 1; 5391 } 5392 5393 ext4_unlock_group(sb, group); 5394 out_unload: 5395 ext4_mb_unload_buddy(&e4b); 5396 5397 return error; 5398 } 5399