xref: /linux/fs/ext4/mballoc.c (revision 6179d4a213006491ff0d50073256f21fad22149b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22 
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42 
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223 
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:			buddy = on-disk + PAs
262  *  - new PA:				buddy += N; PA = N
263  *  - use inode PA:			on-disk += N; PA -= N
264  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA		on-disk += N; PA -= N
266  *  - discard locality group PA		buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328 
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360 
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group	(group)
366  *  - object (inode/locality)	(object)
367  *  - per-pa lock		(pa)
368  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406 
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412 
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418 
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 					ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 			       ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 		struct ext4_buddy *e4b, ext4_grpblk_t start,
428 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 	int __cpu;
452 	u64 __seq = 0;
453 
454 	for_each_possible_cpu(__cpu)
455 		__seq += per_cpu(discard_pa_seq, __cpu);
456 	return __seq;
457 }
458 
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 	*bit += ((unsigned long) addr & 7UL) << 3;
463 	addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 	*bit += ((unsigned long) addr & 3UL) << 3;
466 	addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 	return addr;
471 }
472 
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 	/*
476 	 * ext4_test_bit on architecture like powerpc
477 	 * needs unsigned long aligned address
478 	 */
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	return ext4_test_bit(bit, addr);
481 }
482 
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	ext4_set_bit(bit, addr);
487 }
488 
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 	addr = mb_correct_addr_and_bit(&bit, addr);
492 	ext4_clear_bit(bit, addr);
493 }
494 
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 	addr = mb_correct_addr_and_bit(&bit, addr);
498 	return ext4_test_and_clear_bit(bit, addr);
499 }
500 
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 	int fix = 0, ret, tmpmax;
504 	addr = mb_correct_addr_and_bit(&fix, addr);
505 	tmpmax = max + fix;
506 	start += fix;
507 
508 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 	if (ret > max)
510 		return max;
511 	return ret;
512 }
513 
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 	int fix = 0, ret, tmpmax;
517 	addr = mb_correct_addr_and_bit(&fix, addr);
518 	tmpmax = max + fix;
519 	start += fix;
520 
521 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 	if (ret > max)
523 		return max;
524 	return ret;
525 }
526 
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 	char *bb;
530 
531 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 	BUG_ON(max == NULL);
533 
534 	if (order > e4b->bd_blkbits + 1) {
535 		*max = 0;
536 		return NULL;
537 	}
538 
539 	/* at order 0 we see each particular block */
540 	if (order == 0) {
541 		*max = 1 << (e4b->bd_blkbits + 3);
542 		return e4b->bd_bitmap;
543 	}
544 
545 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548 	return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 			   int first, int count)
554 {
555 	int i;
556 	struct super_block *sb = e4b->bd_sb;
557 
558 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 		return;
560 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 	for (i = 0; i < count; i++) {
562 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 			ext4_fsblk_t blocknr;
564 
565 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 			ext4_grp_locked_error(sb, e4b->bd_group,
568 					      inode ? inode->i_ino : 0,
569 					      blocknr,
570 					      "freeing block already freed "
571 					      "(bit %u)",
572 					      first + i);
573 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
575 		}
576 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 	}
578 }
579 
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 	int i;
583 
584 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 		return;
586 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 	for (i = 0; i < count; i++) {
588 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 	}
591 }
592 
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 		return;
597 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 		unsigned char *b1, *b2;
599 		int i;
600 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 		b2 = (unsigned char *) bitmap;
602 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 			if (b1[i] != b2[i]) {
604 				ext4_msg(e4b->bd_sb, KERN_ERR,
605 					 "corruption in group %u "
606 					 "at byte %u(%u): %x in copy != %x "
607 					 "on disk/prealloc",
608 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 				BUG();
610 			}
611 		}
612 	}
613 }
614 
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 			struct ext4_group_info *grp, ext4_group_t group)
617 {
618 	struct buffer_head *bh;
619 
620 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 	if (!grp->bb_bitmap)
622 		return;
623 
624 	bh = ext4_read_block_bitmap(sb, group);
625 	if (IS_ERR_OR_NULL(bh)) {
626 		kfree(grp->bb_bitmap);
627 		grp->bb_bitmap = NULL;
628 		return;
629 	}
630 
631 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 	put_bh(bh);
633 }
634 
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 	kfree(grp->bb_bitmap);
638 }
639 
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642 				struct ext4_buddy *e4b, int first, int count)
643 {
644 	return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 						int first, int count)
648 {
649 	return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 	return;
654 }
655 
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 			struct ext4_group_info *grp, ext4_group_t group)
658 {
659 	return;
660 }
661 
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 	return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)						\
671 do {									\
672 	if (!(assert)) {						\
673 		printk(KERN_EMERG					\
674 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
675 			function, file, line, # assert);		\
676 		BUG();							\
677 	}								\
678 } while (0)
679 
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 				const char *function, int line)
682 {
683 	struct super_block *sb = e4b->bd_sb;
684 	int order = e4b->bd_blkbits + 1;
685 	int max;
686 	int max2;
687 	int i;
688 	int j;
689 	int k;
690 	int count;
691 	struct ext4_group_info *grp;
692 	int fragments = 0;
693 	int fstart;
694 	struct list_head *cur;
695 	void *buddy;
696 	void *buddy2;
697 
698 	if (e4b->bd_info->bb_check_counter++ % 10)
699 		return 0;
700 
701 	while (order > 1) {
702 		buddy = mb_find_buddy(e4b, order, &max);
703 		MB_CHECK_ASSERT(buddy);
704 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 		MB_CHECK_ASSERT(buddy2);
706 		MB_CHECK_ASSERT(buddy != buddy2);
707 		MB_CHECK_ASSERT(max * 2 == max2);
708 
709 		count = 0;
710 		for (i = 0; i < max; i++) {
711 
712 			if (mb_test_bit(i, buddy)) {
713 				/* only single bit in buddy2 may be 0 */
714 				if (!mb_test_bit(i << 1, buddy2)) {
715 					MB_CHECK_ASSERT(
716 						mb_test_bit((i<<1)+1, buddy2));
717 				}
718 				continue;
719 			}
720 
721 			/* both bits in buddy2 must be 1 */
722 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725 			for (j = 0; j < (1 << order); j++) {
726 				k = (i * (1 << order)) + j;
727 				MB_CHECK_ASSERT(
728 					!mb_test_bit(k, e4b->bd_bitmap));
729 			}
730 			count++;
731 		}
732 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 		order--;
734 	}
735 
736 	fstart = -1;
737 	buddy = mb_find_buddy(e4b, 0, &max);
738 	for (i = 0; i < max; i++) {
739 		if (!mb_test_bit(i, buddy)) {
740 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 			if (fstart == -1) {
742 				fragments++;
743 				fstart = i;
744 			}
745 			continue;
746 		}
747 		fstart = -1;
748 		/* check used bits only */
749 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 			buddy2 = mb_find_buddy(e4b, j, &max2);
751 			k = i >> j;
752 			MB_CHECK_ASSERT(k < max2);
753 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 		}
755 	}
756 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759 	grp = ext4_get_group_info(sb, e4b->bd_group);
760 	if (!grp)
761 		return NULL;
762 	list_for_each(cur, &grp->bb_prealloc_list) {
763 		ext4_group_t groupnr;
764 		struct ext4_prealloc_space *pa;
765 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 		for (i = 0; i < pa->pa_len; i++)
769 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 	}
771 	return 0;
772 }
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
775 					__FILE__, __func__, __LINE__)
776 #else
777 #define mb_check_buddy(e4b)
778 #endif
779 
780 /*
781  * Divide blocks started from @first with length @len into
782  * smaller chunks with power of 2 blocks.
783  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784  * then increase bb_counters[] for corresponded chunk size.
785  */
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788 					struct ext4_group_info *grp)
789 {
790 	struct ext4_sb_info *sbi = EXT4_SB(sb);
791 	ext4_grpblk_t min;
792 	ext4_grpblk_t max;
793 	ext4_grpblk_t chunk;
794 	unsigned int border;
795 
796 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797 
798 	border = 2 << sb->s_blocksize_bits;
799 
800 	while (len > 0) {
801 		/* find how many blocks can be covered since this position */
802 		max = ffs(first | border) - 1;
803 
804 		/* find how many blocks of power 2 we need to mark */
805 		min = fls(len) - 1;
806 
807 		if (max < min)
808 			min = max;
809 		chunk = 1 << min;
810 
811 		/* mark multiblock chunks only */
812 		grp->bb_counters[min]++;
813 		if (min > 0)
814 			mb_clear_bit(first >> min,
815 				     buddy + sbi->s_mb_offsets[min]);
816 
817 		len -= chunk;
818 		first += chunk;
819 	}
820 }
821 
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
823 {
824 	int order;
825 
826 	/*
827 	 * We don't bother with a special lists groups with only 1 block free
828 	 * extents and for completely empty groups.
829 	 */
830 	order = fls(len) - 2;
831 	if (order < 0)
832 		return 0;
833 	if (order == MB_NUM_ORDERS(sb))
834 		order--;
835 	return order;
836 }
837 
838 /* Move group to appropriate avg_fragment_size list */
839 static void
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
841 {
842 	struct ext4_sb_info *sbi = EXT4_SB(sb);
843 	int new_order;
844 
845 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
846 		return;
847 
848 	new_order = mb_avg_fragment_size_order(sb,
849 					grp->bb_free / grp->bb_fragments);
850 	if (new_order == grp->bb_avg_fragment_size_order)
851 		return;
852 
853 	if (grp->bb_avg_fragment_size_order != -1) {
854 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
855 					grp->bb_avg_fragment_size_order]);
856 		list_del(&grp->bb_avg_fragment_size_node);
857 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858 					grp->bb_avg_fragment_size_order]);
859 	}
860 	grp->bb_avg_fragment_size_order = new_order;
861 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
862 					grp->bb_avg_fragment_size_order]);
863 	list_add_tail(&grp->bb_avg_fragment_size_node,
864 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866 					grp->bb_avg_fragment_size_order]);
867 }
868 
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874 			enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877 	struct ext4_group_info *iter;
878 	int i;
879 
880 	if (ac->ac_status == AC_STATUS_FOUND)
881 		return;
882 
883 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
885 
886 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
887 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
888 			continue;
889 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
890 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
891 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
892 			continue;
893 		}
894 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
895 				    bb_largest_free_order_node) {
896 			if (sbi->s_mb_stats)
897 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
898 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
899 				*group = iter->bb_group;
900 				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
901 				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
902 				return;
903 			}
904 		}
905 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906 	}
907 
908 	/* Increment cr and search again if no group is found */
909 	*new_cr = CR_GOAL_LEN_FAST;
910 }
911 
912 /*
913  * Find a suitable group of given order from the average fragments list.
914  */
915 static struct ext4_group_info *
916 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
917 {
918 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
919 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
920 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
921 	struct ext4_group_info *grp = NULL, *iter;
922 	enum criteria cr = ac->ac_criteria;
923 
924 	if (list_empty(frag_list))
925 		return NULL;
926 	read_lock(frag_list_lock);
927 	if (list_empty(frag_list)) {
928 		read_unlock(frag_list_lock);
929 		return NULL;
930 	}
931 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
932 		if (sbi->s_mb_stats)
933 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
934 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
935 			grp = iter;
936 			break;
937 		}
938 	}
939 	read_unlock(frag_list_lock);
940 	return grp;
941 }
942 
943 /*
944  * Choose next group by traversing average fragment size list of suitable
945  * order. Updates *new_cr if cr level needs an update.
946  */
947 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
948 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
949 {
950 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
951 	struct ext4_group_info *grp = NULL;
952 	int i;
953 
954 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
955 		if (sbi->s_mb_stats)
956 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
957 	}
958 
959 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
960 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
961 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
962 		if (grp) {
963 			*group = grp->bb_group;
964 			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
965 			return;
966 		}
967 	}
968 
969 	/*
970 	 * CR_BEST_AVAIL_LEN works based on the concept that we have
971 	 * a larger normalized goal len request which can be trimmed to
972 	 * a smaller goal len such that it can still satisfy original
973 	 * request len. However, allocation request for non-regular
974 	 * files never gets normalized.
975 	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
976 	 */
977 	if (ac->ac_flags & EXT4_MB_HINT_DATA)
978 		*new_cr = CR_BEST_AVAIL_LEN;
979 	else
980 		*new_cr = CR_GOAL_LEN_SLOW;
981 }
982 
983 /*
984  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
985  * order we have and proactively trim the goal request length to that order to
986  * find a suitable group faster.
987  *
988  * This optimizes allocation speed at the cost of slightly reduced
989  * preallocations. However, we make sure that we don't trim the request too
990  * much and fall to CR_GOAL_LEN_SLOW in that case.
991  */
992 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
993 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
994 {
995 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
996 	struct ext4_group_info *grp = NULL;
997 	int i, order, min_order;
998 	unsigned long num_stripe_clusters = 0;
999 
1000 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1001 		if (sbi->s_mb_stats)
1002 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1003 	}
1004 
1005 	/*
1006 	 * mb_avg_fragment_size_order() returns order in a way that makes
1007 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1008 	 * fls() instead since we need to know the actual length while modifying
1009 	 * goal length.
1010 	 */
1011 	order = fls(ac->ac_g_ex.fe_len) - 1;
1012 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1013 	if (min_order < 0)
1014 		min_order = 0;
1015 
1016 	if (sbi->s_stripe > 0) {
1017 		/*
1018 		 * We are assuming that stripe size is always a multiple of
1019 		 * cluster ratio otherwise __ext4_fill_super exists early.
1020 		 */
1021 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1022 		if (1 << min_order < num_stripe_clusters)
1023 			/*
1024 			 * We consider 1 order less because later we round
1025 			 * up the goal len to num_stripe_clusters
1026 			 */
1027 			min_order = fls(num_stripe_clusters) - 1;
1028 	}
1029 
1030 	if (1 << min_order < ac->ac_o_ex.fe_len)
1031 		min_order = fls(ac->ac_o_ex.fe_len);
1032 
1033 	for (i = order; i >= min_order; i--) {
1034 		int frag_order;
1035 		/*
1036 		 * Scale down goal len to make sure we find something
1037 		 * in the free fragments list. Basically, reduce
1038 		 * preallocations.
1039 		 */
1040 		ac->ac_g_ex.fe_len = 1 << i;
1041 
1042 		if (num_stripe_clusters > 0) {
1043 			/*
1044 			 * Try to round up the adjusted goal length to
1045 			 * stripe size (in cluster units) multiple for
1046 			 * efficiency.
1047 			 */
1048 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1049 						     num_stripe_clusters);
1050 		}
1051 
1052 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1053 							ac->ac_g_ex.fe_len);
1054 
1055 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1056 		if (grp) {
1057 			*group = grp->bb_group;
1058 			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1059 			return;
1060 		}
1061 	}
1062 
1063 	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1064 	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1065 	*new_cr = CR_GOAL_LEN_SLOW;
1066 }
1067 
1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1069 {
1070 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1071 		return 0;
1072 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1073 		return 0;
1074 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1075 		return 0;
1076 	return 1;
1077 }
1078 
1079 /*
1080  * Return next linear group for allocation. If linear traversal should not be
1081  * performed, this function just returns the same group
1082  */
1083 static ext4_group_t
1084 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1085 		  ext4_group_t ngroups)
1086 {
1087 	if (!should_optimize_scan(ac))
1088 		goto inc_and_return;
1089 
1090 	if (ac->ac_groups_linear_remaining) {
1091 		ac->ac_groups_linear_remaining--;
1092 		goto inc_and_return;
1093 	}
1094 
1095 	return group;
1096 inc_and_return:
1097 	/*
1098 	 * Artificially restricted ngroups for non-extent
1099 	 * files makes group > ngroups possible on first loop.
1100 	 */
1101 	return group + 1 >= ngroups ? 0 : group + 1;
1102 }
1103 
1104 /*
1105  * ext4_mb_choose_next_group: choose next group for allocation.
1106  *
1107  * @ac        Allocation Context
1108  * @new_cr    This is an output parameter. If the there is no good group
1109  *            available at current CR level, this field is updated to indicate
1110  *            the new cr level that should be used.
1111  * @group     This is an input / output parameter. As an input it indicates the
1112  *            next group that the allocator intends to use for allocation. As
1113  *            output, this field indicates the next group that should be used as
1114  *            determined by the optimization functions.
1115  * @ngroups   Total number of groups
1116  */
1117 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1118 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1119 {
1120 	*new_cr = ac->ac_criteria;
1121 
1122 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1123 		*group = next_linear_group(ac, *group, ngroups);
1124 		return;
1125 	}
1126 
1127 	if (*new_cr == CR_POWER2_ALIGNED) {
1128 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1129 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1130 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1131 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1132 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1133 	} else {
1134 		/*
1135 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1136 		 * bb_free. But until that happens, we should never come here.
1137 		 */
1138 		WARN_ON(1);
1139 	}
1140 }
1141 
1142 /*
1143  * Cache the order of the largest free extent we have available in this block
1144  * group.
1145  */
1146 static void
1147 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1148 {
1149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1150 	int i;
1151 
1152 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1153 		if (grp->bb_counters[i] > 0)
1154 			break;
1155 	/* No need to move between order lists? */
1156 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1157 	    i == grp->bb_largest_free_order) {
1158 		grp->bb_largest_free_order = i;
1159 		return;
1160 	}
1161 
1162 	if (grp->bb_largest_free_order >= 0) {
1163 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1164 					      grp->bb_largest_free_order]);
1165 		list_del_init(&grp->bb_largest_free_order_node);
1166 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1167 					      grp->bb_largest_free_order]);
1168 	}
1169 	grp->bb_largest_free_order = i;
1170 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1171 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1172 					      grp->bb_largest_free_order]);
1173 		list_add_tail(&grp->bb_largest_free_order_node,
1174 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1175 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1176 					      grp->bb_largest_free_order]);
1177 	}
1178 }
1179 
1180 static noinline_for_stack
1181 void ext4_mb_generate_buddy(struct super_block *sb,
1182 			    void *buddy, void *bitmap, ext4_group_t group,
1183 			    struct ext4_group_info *grp)
1184 {
1185 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1186 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1187 	ext4_grpblk_t i = 0;
1188 	ext4_grpblk_t first;
1189 	ext4_grpblk_t len;
1190 	unsigned free = 0;
1191 	unsigned fragments = 0;
1192 	unsigned long long period = get_cycles();
1193 
1194 	/* initialize buddy from bitmap which is aggregation
1195 	 * of on-disk bitmap and preallocations */
1196 	i = mb_find_next_zero_bit(bitmap, max, 0);
1197 	grp->bb_first_free = i;
1198 	while (i < max) {
1199 		fragments++;
1200 		first = i;
1201 		i = mb_find_next_bit(bitmap, max, i);
1202 		len = i - first;
1203 		free += len;
1204 		if (len > 1)
1205 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1206 		else
1207 			grp->bb_counters[0]++;
1208 		if (i < max)
1209 			i = mb_find_next_zero_bit(bitmap, max, i);
1210 	}
1211 	grp->bb_fragments = fragments;
1212 
1213 	if (free != grp->bb_free) {
1214 		ext4_grp_locked_error(sb, group, 0, 0,
1215 				      "block bitmap and bg descriptor "
1216 				      "inconsistent: %u vs %u free clusters",
1217 				      free, grp->bb_free);
1218 		/*
1219 		 * If we intend to continue, we consider group descriptor
1220 		 * corrupt and update bb_free using bitmap value
1221 		 */
1222 		grp->bb_free = free;
1223 		ext4_mark_group_bitmap_corrupted(sb, group,
1224 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1225 	}
1226 	mb_set_largest_free_order(sb, grp);
1227 	mb_update_avg_fragment_size(sb, grp);
1228 
1229 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1230 
1231 	period = get_cycles() - period;
1232 	atomic_inc(&sbi->s_mb_buddies_generated);
1233 	atomic64_add(period, &sbi->s_mb_generation_time);
1234 }
1235 
1236 /* The buddy information is attached the buddy cache inode
1237  * for convenience. The information regarding each group
1238  * is loaded via ext4_mb_load_buddy. The information involve
1239  * block bitmap and buddy information. The information are
1240  * stored in the inode as
1241  *
1242  * {                        page                        }
1243  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1244  *
1245  *
1246  * one block each for bitmap and buddy information.
1247  * So for each group we take up 2 blocks. A page can
1248  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1249  * So it can have information regarding groups_per_page which
1250  * is blocks_per_page/2
1251  *
1252  * Locking note:  This routine takes the block group lock of all groups
1253  * for this page; do not hold this lock when calling this routine!
1254  */
1255 
1256 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1257 {
1258 	ext4_group_t ngroups;
1259 	unsigned int blocksize;
1260 	int blocks_per_page;
1261 	int groups_per_page;
1262 	int err = 0;
1263 	int i;
1264 	ext4_group_t first_group, group;
1265 	int first_block;
1266 	struct super_block *sb;
1267 	struct buffer_head *bhs;
1268 	struct buffer_head **bh = NULL;
1269 	struct inode *inode;
1270 	char *data;
1271 	char *bitmap;
1272 	struct ext4_group_info *grinfo;
1273 
1274 	inode = page->mapping->host;
1275 	sb = inode->i_sb;
1276 	ngroups = ext4_get_groups_count(sb);
1277 	blocksize = i_blocksize(inode);
1278 	blocks_per_page = PAGE_SIZE / blocksize;
1279 
1280 	mb_debug(sb, "init page %lu\n", page->index);
1281 
1282 	groups_per_page = blocks_per_page >> 1;
1283 	if (groups_per_page == 0)
1284 		groups_per_page = 1;
1285 
1286 	/* allocate buffer_heads to read bitmaps */
1287 	if (groups_per_page > 1) {
1288 		i = sizeof(struct buffer_head *) * groups_per_page;
1289 		bh = kzalloc(i, gfp);
1290 		if (bh == NULL)
1291 			return -ENOMEM;
1292 	} else
1293 		bh = &bhs;
1294 
1295 	first_group = page->index * blocks_per_page / 2;
1296 
1297 	/* read all groups the page covers into the cache */
1298 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1299 		if (group >= ngroups)
1300 			break;
1301 
1302 		grinfo = ext4_get_group_info(sb, group);
1303 		if (!grinfo)
1304 			continue;
1305 		/*
1306 		 * If page is uptodate then we came here after online resize
1307 		 * which added some new uninitialized group info structs, so
1308 		 * we must skip all initialized uptodate buddies on the page,
1309 		 * which may be currently in use by an allocating task.
1310 		 */
1311 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1312 			bh[i] = NULL;
1313 			continue;
1314 		}
1315 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1316 		if (IS_ERR(bh[i])) {
1317 			err = PTR_ERR(bh[i]);
1318 			bh[i] = NULL;
1319 			goto out;
1320 		}
1321 		mb_debug(sb, "read bitmap for group %u\n", group);
1322 	}
1323 
1324 	/* wait for I/O completion */
1325 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1326 		int err2;
1327 
1328 		if (!bh[i])
1329 			continue;
1330 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1331 		if (!err)
1332 			err = err2;
1333 	}
1334 
1335 	first_block = page->index * blocks_per_page;
1336 	for (i = 0; i < blocks_per_page; i++) {
1337 		group = (first_block + i) >> 1;
1338 		if (group >= ngroups)
1339 			break;
1340 
1341 		if (!bh[group - first_group])
1342 			/* skip initialized uptodate buddy */
1343 			continue;
1344 
1345 		if (!buffer_verified(bh[group - first_group]))
1346 			/* Skip faulty bitmaps */
1347 			continue;
1348 		err = 0;
1349 
1350 		/*
1351 		 * data carry information regarding this
1352 		 * particular group in the format specified
1353 		 * above
1354 		 *
1355 		 */
1356 		data = page_address(page) + (i * blocksize);
1357 		bitmap = bh[group - first_group]->b_data;
1358 
1359 		/*
1360 		 * We place the buddy block and bitmap block
1361 		 * close together
1362 		 */
1363 		grinfo = ext4_get_group_info(sb, group);
1364 		if (!grinfo) {
1365 			err = -EFSCORRUPTED;
1366 		        goto out;
1367 		}
1368 		if ((first_block + i) & 1) {
1369 			/* this is block of buddy */
1370 			BUG_ON(incore == NULL);
1371 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1372 				group, page->index, i * blocksize);
1373 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1374 			grinfo->bb_fragments = 0;
1375 			memset(grinfo->bb_counters, 0,
1376 			       sizeof(*grinfo->bb_counters) *
1377 			       (MB_NUM_ORDERS(sb)));
1378 			/*
1379 			 * incore got set to the group block bitmap below
1380 			 */
1381 			ext4_lock_group(sb, group);
1382 			/* init the buddy */
1383 			memset(data, 0xff, blocksize);
1384 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1385 			ext4_unlock_group(sb, group);
1386 			incore = NULL;
1387 		} else {
1388 			/* this is block of bitmap */
1389 			BUG_ON(incore != NULL);
1390 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1391 				group, page->index, i * blocksize);
1392 			trace_ext4_mb_bitmap_load(sb, group);
1393 
1394 			/* see comments in ext4_mb_put_pa() */
1395 			ext4_lock_group(sb, group);
1396 			memcpy(data, bitmap, blocksize);
1397 
1398 			/* mark all preallocated blks used in in-core bitmap */
1399 			ext4_mb_generate_from_pa(sb, data, group);
1400 			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1401 			ext4_unlock_group(sb, group);
1402 
1403 			/* set incore so that the buddy information can be
1404 			 * generated using this
1405 			 */
1406 			incore = data;
1407 		}
1408 	}
1409 	SetPageUptodate(page);
1410 
1411 out:
1412 	if (bh) {
1413 		for (i = 0; i < groups_per_page; i++)
1414 			brelse(bh[i]);
1415 		if (bh != &bhs)
1416 			kfree(bh);
1417 	}
1418 	return err;
1419 }
1420 
1421 /*
1422  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1423  * on the same buddy page doesn't happen whild holding the buddy page lock.
1424  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1425  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1426  */
1427 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1428 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1429 {
1430 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1431 	int block, pnum, poff;
1432 	int blocks_per_page;
1433 	struct page *page;
1434 
1435 	e4b->bd_buddy_page = NULL;
1436 	e4b->bd_bitmap_page = NULL;
1437 
1438 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1439 	/*
1440 	 * the buddy cache inode stores the block bitmap
1441 	 * and buddy information in consecutive blocks.
1442 	 * So for each group we need two blocks.
1443 	 */
1444 	block = group * 2;
1445 	pnum = block / blocks_per_page;
1446 	poff = block % blocks_per_page;
1447 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1448 	if (!page)
1449 		return -ENOMEM;
1450 	BUG_ON(page->mapping != inode->i_mapping);
1451 	e4b->bd_bitmap_page = page;
1452 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1453 
1454 	if (blocks_per_page >= 2) {
1455 		/* buddy and bitmap are on the same page */
1456 		return 0;
1457 	}
1458 
1459 	/* blocks_per_page == 1, hence we need another page for the buddy */
1460 	page = find_or_create_page(inode->i_mapping, block + 1, gfp);
1461 	if (!page)
1462 		return -ENOMEM;
1463 	BUG_ON(page->mapping != inode->i_mapping);
1464 	e4b->bd_buddy_page = page;
1465 	return 0;
1466 }
1467 
1468 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1469 {
1470 	if (e4b->bd_bitmap_page) {
1471 		unlock_page(e4b->bd_bitmap_page);
1472 		put_page(e4b->bd_bitmap_page);
1473 	}
1474 	if (e4b->bd_buddy_page) {
1475 		unlock_page(e4b->bd_buddy_page);
1476 		put_page(e4b->bd_buddy_page);
1477 	}
1478 }
1479 
1480 /*
1481  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1482  * block group lock of all groups for this page; do not hold the BG lock when
1483  * calling this routine!
1484  */
1485 static noinline_for_stack
1486 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1487 {
1488 
1489 	struct ext4_group_info *this_grp;
1490 	struct ext4_buddy e4b;
1491 	struct page *page;
1492 	int ret = 0;
1493 
1494 	might_sleep();
1495 	mb_debug(sb, "init group %u\n", group);
1496 	this_grp = ext4_get_group_info(sb, group);
1497 	if (!this_grp)
1498 		return -EFSCORRUPTED;
1499 
1500 	/*
1501 	 * This ensures that we don't reinit the buddy cache
1502 	 * page which map to the group from which we are already
1503 	 * allocating. If we are looking at the buddy cache we would
1504 	 * have taken a reference using ext4_mb_load_buddy and that
1505 	 * would have pinned buddy page to page cache.
1506 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1507 	 * page accessed.
1508 	 */
1509 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1510 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1511 		/*
1512 		 * somebody initialized the group
1513 		 * return without doing anything
1514 		 */
1515 		goto err;
1516 	}
1517 
1518 	page = e4b.bd_bitmap_page;
1519 	ret = ext4_mb_init_cache(page, NULL, gfp);
1520 	if (ret)
1521 		goto err;
1522 	if (!PageUptodate(page)) {
1523 		ret = -EIO;
1524 		goto err;
1525 	}
1526 
1527 	if (e4b.bd_buddy_page == NULL) {
1528 		/*
1529 		 * If both the bitmap and buddy are in
1530 		 * the same page we don't need to force
1531 		 * init the buddy
1532 		 */
1533 		ret = 0;
1534 		goto err;
1535 	}
1536 	/* init buddy cache */
1537 	page = e4b.bd_buddy_page;
1538 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1539 	if (ret)
1540 		goto err;
1541 	if (!PageUptodate(page)) {
1542 		ret = -EIO;
1543 		goto err;
1544 	}
1545 err:
1546 	ext4_mb_put_buddy_page_lock(&e4b);
1547 	return ret;
1548 }
1549 
1550 /*
1551  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1552  * block group lock of all groups for this page; do not hold the BG lock when
1553  * calling this routine!
1554  */
1555 static noinline_for_stack int
1556 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1557 		       struct ext4_buddy *e4b, gfp_t gfp)
1558 {
1559 	int blocks_per_page;
1560 	int block;
1561 	int pnum;
1562 	int poff;
1563 	struct page *page;
1564 	int ret;
1565 	struct ext4_group_info *grp;
1566 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1567 	struct inode *inode = sbi->s_buddy_cache;
1568 
1569 	might_sleep();
1570 	mb_debug(sb, "load group %u\n", group);
1571 
1572 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1573 	grp = ext4_get_group_info(sb, group);
1574 	if (!grp)
1575 		return -EFSCORRUPTED;
1576 
1577 	e4b->bd_blkbits = sb->s_blocksize_bits;
1578 	e4b->bd_info = grp;
1579 	e4b->bd_sb = sb;
1580 	e4b->bd_group = group;
1581 	e4b->bd_buddy_page = NULL;
1582 	e4b->bd_bitmap_page = NULL;
1583 
1584 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1585 		/*
1586 		 * we need full data about the group
1587 		 * to make a good selection
1588 		 */
1589 		ret = ext4_mb_init_group(sb, group, gfp);
1590 		if (ret)
1591 			return ret;
1592 	}
1593 
1594 	/*
1595 	 * the buddy cache inode stores the block bitmap
1596 	 * and buddy information in consecutive blocks.
1597 	 * So for each group we need two blocks.
1598 	 */
1599 	block = group * 2;
1600 	pnum = block / blocks_per_page;
1601 	poff = block % blocks_per_page;
1602 
1603 	/* we could use find_or_create_page(), but it locks page
1604 	 * what we'd like to avoid in fast path ... */
1605 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1606 	if (page == NULL || !PageUptodate(page)) {
1607 		if (page)
1608 			/*
1609 			 * drop the page reference and try
1610 			 * to get the page with lock. If we
1611 			 * are not uptodate that implies
1612 			 * somebody just created the page but
1613 			 * is yet to initialize the same. So
1614 			 * wait for it to initialize.
1615 			 */
1616 			put_page(page);
1617 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1618 		if (page) {
1619 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1620 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1621 				/* should never happen */
1622 				unlock_page(page);
1623 				ret = -EINVAL;
1624 				goto err;
1625 			}
1626 			if (!PageUptodate(page)) {
1627 				ret = ext4_mb_init_cache(page, NULL, gfp);
1628 				if (ret) {
1629 					unlock_page(page);
1630 					goto err;
1631 				}
1632 				mb_cmp_bitmaps(e4b, page_address(page) +
1633 					       (poff * sb->s_blocksize));
1634 			}
1635 			unlock_page(page);
1636 		}
1637 	}
1638 	if (page == NULL) {
1639 		ret = -ENOMEM;
1640 		goto err;
1641 	}
1642 	if (!PageUptodate(page)) {
1643 		ret = -EIO;
1644 		goto err;
1645 	}
1646 
1647 	/* Pages marked accessed already */
1648 	e4b->bd_bitmap_page = page;
1649 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1650 
1651 	block++;
1652 	pnum = block / blocks_per_page;
1653 	poff = block % blocks_per_page;
1654 
1655 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1656 	if (page == NULL || !PageUptodate(page)) {
1657 		if (page)
1658 			put_page(page);
1659 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1660 		if (page) {
1661 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1662 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1663 				/* should never happen */
1664 				unlock_page(page);
1665 				ret = -EINVAL;
1666 				goto err;
1667 			}
1668 			if (!PageUptodate(page)) {
1669 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1670 							 gfp);
1671 				if (ret) {
1672 					unlock_page(page);
1673 					goto err;
1674 				}
1675 			}
1676 			unlock_page(page);
1677 		}
1678 	}
1679 	if (page == NULL) {
1680 		ret = -ENOMEM;
1681 		goto err;
1682 	}
1683 	if (!PageUptodate(page)) {
1684 		ret = -EIO;
1685 		goto err;
1686 	}
1687 
1688 	/* Pages marked accessed already */
1689 	e4b->bd_buddy_page = page;
1690 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1691 
1692 	return 0;
1693 
1694 err:
1695 	if (page)
1696 		put_page(page);
1697 	if (e4b->bd_bitmap_page)
1698 		put_page(e4b->bd_bitmap_page);
1699 
1700 	e4b->bd_buddy = NULL;
1701 	e4b->bd_bitmap = NULL;
1702 	return ret;
1703 }
1704 
1705 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1706 			      struct ext4_buddy *e4b)
1707 {
1708 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1709 }
1710 
1711 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1712 {
1713 	if (e4b->bd_bitmap_page)
1714 		put_page(e4b->bd_bitmap_page);
1715 	if (e4b->bd_buddy_page)
1716 		put_page(e4b->bd_buddy_page);
1717 }
1718 
1719 
1720 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1721 {
1722 	int order = 1, max;
1723 	void *bb;
1724 
1725 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1726 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1727 
1728 	while (order <= e4b->bd_blkbits + 1) {
1729 		bb = mb_find_buddy(e4b, order, &max);
1730 		if (!mb_test_bit(block >> order, bb)) {
1731 			/* this block is part of buddy of order 'order' */
1732 			return order;
1733 		}
1734 		order++;
1735 	}
1736 	return 0;
1737 }
1738 
1739 static void mb_clear_bits(void *bm, int cur, int len)
1740 {
1741 	__u32 *addr;
1742 
1743 	len = cur + len;
1744 	while (cur < len) {
1745 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1746 			/* fast path: clear whole word at once */
1747 			addr = bm + (cur >> 3);
1748 			*addr = 0;
1749 			cur += 32;
1750 			continue;
1751 		}
1752 		mb_clear_bit(cur, bm);
1753 		cur++;
1754 	}
1755 }
1756 
1757 /* clear bits in given range
1758  * will return first found zero bit if any, -1 otherwise
1759  */
1760 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1761 {
1762 	__u32 *addr;
1763 	int zero_bit = -1;
1764 
1765 	len = cur + len;
1766 	while (cur < len) {
1767 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1768 			/* fast path: clear whole word at once */
1769 			addr = bm + (cur >> 3);
1770 			if (*addr != (__u32)(-1) && zero_bit == -1)
1771 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1772 			*addr = 0;
1773 			cur += 32;
1774 			continue;
1775 		}
1776 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1777 			zero_bit = cur;
1778 		cur++;
1779 	}
1780 
1781 	return zero_bit;
1782 }
1783 
1784 void mb_set_bits(void *bm, int cur, int len)
1785 {
1786 	__u32 *addr;
1787 
1788 	len = cur + len;
1789 	while (cur < len) {
1790 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1791 			/* fast path: set whole word at once */
1792 			addr = bm + (cur >> 3);
1793 			*addr = 0xffffffff;
1794 			cur += 32;
1795 			continue;
1796 		}
1797 		mb_set_bit(cur, bm);
1798 		cur++;
1799 	}
1800 }
1801 
1802 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1803 {
1804 	if (mb_test_bit(*bit + side, bitmap)) {
1805 		mb_clear_bit(*bit, bitmap);
1806 		(*bit) -= side;
1807 		return 1;
1808 	}
1809 	else {
1810 		(*bit) += side;
1811 		mb_set_bit(*bit, bitmap);
1812 		return -1;
1813 	}
1814 }
1815 
1816 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1817 {
1818 	int max;
1819 	int order = 1;
1820 	void *buddy = mb_find_buddy(e4b, order, &max);
1821 
1822 	while (buddy) {
1823 		void *buddy2;
1824 
1825 		/* Bits in range [first; last] are known to be set since
1826 		 * corresponding blocks were allocated. Bits in range
1827 		 * (first; last) will stay set because they form buddies on
1828 		 * upper layer. We just deal with borders if they don't
1829 		 * align with upper layer and then go up.
1830 		 * Releasing entire group is all about clearing
1831 		 * single bit of highest order buddy.
1832 		 */
1833 
1834 		/* Example:
1835 		 * ---------------------------------
1836 		 * |   1   |   1   |   1   |   1   |
1837 		 * ---------------------------------
1838 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1839 		 * ---------------------------------
1840 		 *   0   1   2   3   4   5   6   7
1841 		 *      \_____________________/
1842 		 *
1843 		 * Neither [1] nor [6] is aligned to above layer.
1844 		 * Left neighbour [0] is free, so mark it busy,
1845 		 * decrease bb_counters and extend range to
1846 		 * [0; 6]
1847 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1848 		 * mark [6] free, increase bb_counters and shrink range to
1849 		 * [0; 5].
1850 		 * Then shift range to [0; 2], go up and do the same.
1851 		 */
1852 
1853 
1854 		if (first & 1)
1855 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1856 		if (!(last & 1))
1857 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1858 		if (first > last)
1859 			break;
1860 		order++;
1861 
1862 		buddy2 = mb_find_buddy(e4b, order, &max);
1863 		if (!buddy2) {
1864 			mb_clear_bits(buddy, first, last - first + 1);
1865 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1866 			break;
1867 		}
1868 		first >>= 1;
1869 		last >>= 1;
1870 		buddy = buddy2;
1871 	}
1872 }
1873 
1874 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1875 			   int first, int count)
1876 {
1877 	int left_is_free = 0;
1878 	int right_is_free = 0;
1879 	int block;
1880 	int last = first + count - 1;
1881 	struct super_block *sb = e4b->bd_sb;
1882 
1883 	if (WARN_ON(count == 0))
1884 		return;
1885 	BUG_ON(last >= (sb->s_blocksize << 3));
1886 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1887 	/* Don't bother if the block group is corrupt. */
1888 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1889 		return;
1890 
1891 	mb_check_buddy(e4b);
1892 	mb_free_blocks_double(inode, e4b, first, count);
1893 
1894 	this_cpu_inc(discard_pa_seq);
1895 	e4b->bd_info->bb_free += count;
1896 	if (first < e4b->bd_info->bb_first_free)
1897 		e4b->bd_info->bb_first_free = first;
1898 
1899 	/* access memory sequentially: check left neighbour,
1900 	 * clear range and then check right neighbour
1901 	 */
1902 	if (first != 0)
1903 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1904 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1905 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1906 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1907 
1908 	if (unlikely(block != -1)) {
1909 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1910 		ext4_fsblk_t blocknr;
1911 
1912 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1913 		blocknr += EXT4_C2B(sbi, block);
1914 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1915 			ext4_grp_locked_error(sb, e4b->bd_group,
1916 					      inode ? inode->i_ino : 0,
1917 					      blocknr,
1918 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1919 					      block);
1920 			ext4_mark_group_bitmap_corrupted(
1921 				sb, e4b->bd_group,
1922 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1923 		}
1924 		goto done;
1925 	}
1926 
1927 	/* let's maintain fragments counter */
1928 	if (left_is_free && right_is_free)
1929 		e4b->bd_info->bb_fragments--;
1930 	else if (!left_is_free && !right_is_free)
1931 		e4b->bd_info->bb_fragments++;
1932 
1933 	/* buddy[0] == bd_bitmap is a special case, so handle
1934 	 * it right away and let mb_buddy_mark_free stay free of
1935 	 * zero order checks.
1936 	 * Check if neighbours are to be coaleasced,
1937 	 * adjust bitmap bb_counters and borders appropriately.
1938 	 */
1939 	if (first & 1) {
1940 		first += !left_is_free;
1941 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1942 	}
1943 	if (!(last & 1)) {
1944 		last -= !right_is_free;
1945 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1946 	}
1947 
1948 	if (first <= last)
1949 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1950 
1951 done:
1952 	mb_set_largest_free_order(sb, e4b->bd_info);
1953 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1954 	mb_check_buddy(e4b);
1955 }
1956 
1957 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1958 				int needed, struct ext4_free_extent *ex)
1959 {
1960 	int max, order, next;
1961 	void *buddy;
1962 
1963 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1964 	BUG_ON(ex == NULL);
1965 
1966 	buddy = mb_find_buddy(e4b, 0, &max);
1967 	BUG_ON(buddy == NULL);
1968 	BUG_ON(block >= max);
1969 	if (mb_test_bit(block, buddy)) {
1970 		ex->fe_len = 0;
1971 		ex->fe_start = 0;
1972 		ex->fe_group = 0;
1973 		return 0;
1974 	}
1975 
1976 	/* find actual order */
1977 	order = mb_find_order_for_block(e4b, block);
1978 
1979 	ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
1980 	ex->fe_start = block;
1981 	ex->fe_group = e4b->bd_group;
1982 
1983 	block = block >> order;
1984 
1985 	while (needed > ex->fe_len &&
1986 	       mb_find_buddy(e4b, order, &max)) {
1987 
1988 		if (block + 1 >= max)
1989 			break;
1990 
1991 		next = (block + 1) * (1 << order);
1992 		if (mb_test_bit(next, e4b->bd_bitmap))
1993 			break;
1994 
1995 		order = mb_find_order_for_block(e4b, next);
1996 
1997 		block = next >> order;
1998 		ex->fe_len += 1 << order;
1999 	}
2000 
2001 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2002 		/* Should never happen! (but apparently sometimes does?!?) */
2003 		WARN_ON(1);
2004 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2005 			"corruption or bug in mb_find_extent "
2006 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2007 			block, order, needed, ex->fe_group, ex->fe_start,
2008 			ex->fe_len, ex->fe_logical);
2009 		ex->fe_len = 0;
2010 		ex->fe_start = 0;
2011 		ex->fe_group = 0;
2012 	}
2013 	return ex->fe_len;
2014 }
2015 
2016 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2017 {
2018 	int ord;
2019 	int mlen = 0;
2020 	int max = 0;
2021 	int cur;
2022 	int start = ex->fe_start;
2023 	int len = ex->fe_len;
2024 	unsigned ret = 0;
2025 	int len0 = len;
2026 	void *buddy;
2027 	bool split = false;
2028 
2029 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2030 	BUG_ON(e4b->bd_group != ex->fe_group);
2031 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2032 	mb_check_buddy(e4b);
2033 	mb_mark_used_double(e4b, start, len);
2034 
2035 	this_cpu_inc(discard_pa_seq);
2036 	e4b->bd_info->bb_free -= len;
2037 	if (e4b->bd_info->bb_first_free == start)
2038 		e4b->bd_info->bb_first_free += len;
2039 
2040 	/* let's maintain fragments counter */
2041 	if (start != 0)
2042 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2043 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2044 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2045 	if (mlen && max)
2046 		e4b->bd_info->bb_fragments++;
2047 	else if (!mlen && !max)
2048 		e4b->bd_info->bb_fragments--;
2049 
2050 	/* let's maintain buddy itself */
2051 	while (len) {
2052 		if (!split)
2053 			ord = mb_find_order_for_block(e4b, start);
2054 
2055 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2056 			/* the whole chunk may be allocated at once! */
2057 			mlen = 1 << ord;
2058 			if (!split)
2059 				buddy = mb_find_buddy(e4b, ord, &max);
2060 			else
2061 				split = false;
2062 			BUG_ON((start >> ord) >= max);
2063 			mb_set_bit(start >> ord, buddy);
2064 			e4b->bd_info->bb_counters[ord]--;
2065 			start += mlen;
2066 			len -= mlen;
2067 			BUG_ON(len < 0);
2068 			continue;
2069 		}
2070 
2071 		/* store for history */
2072 		if (ret == 0)
2073 			ret = len | (ord << 16);
2074 
2075 		/* we have to split large buddy */
2076 		BUG_ON(ord <= 0);
2077 		buddy = mb_find_buddy(e4b, ord, &max);
2078 		mb_set_bit(start >> ord, buddy);
2079 		e4b->bd_info->bb_counters[ord]--;
2080 
2081 		ord--;
2082 		cur = (start >> ord) & ~1U;
2083 		buddy = mb_find_buddy(e4b, ord, &max);
2084 		mb_clear_bit(cur, buddy);
2085 		mb_clear_bit(cur + 1, buddy);
2086 		e4b->bd_info->bb_counters[ord]++;
2087 		e4b->bd_info->bb_counters[ord]++;
2088 		split = true;
2089 	}
2090 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2091 
2092 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2093 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2094 	mb_check_buddy(e4b);
2095 
2096 	return ret;
2097 }
2098 
2099 /*
2100  * Must be called under group lock!
2101  */
2102 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2103 					struct ext4_buddy *e4b)
2104 {
2105 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2106 	int ret;
2107 
2108 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2109 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2110 
2111 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2112 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2113 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2114 
2115 	/* preallocation can change ac_b_ex, thus we store actually
2116 	 * allocated blocks for history */
2117 	ac->ac_f_ex = ac->ac_b_ex;
2118 
2119 	ac->ac_status = AC_STATUS_FOUND;
2120 	ac->ac_tail = ret & 0xffff;
2121 	ac->ac_buddy = ret >> 16;
2122 
2123 	/*
2124 	 * take the page reference. We want the page to be pinned
2125 	 * so that we don't get a ext4_mb_init_cache_call for this
2126 	 * group until we update the bitmap. That would mean we
2127 	 * double allocate blocks. The reference is dropped
2128 	 * in ext4_mb_release_context
2129 	 */
2130 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2131 	get_page(ac->ac_bitmap_page);
2132 	ac->ac_buddy_page = e4b->bd_buddy_page;
2133 	get_page(ac->ac_buddy_page);
2134 	/* store last allocated for subsequent stream allocation */
2135 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2136 		spin_lock(&sbi->s_md_lock);
2137 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2138 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2139 		spin_unlock(&sbi->s_md_lock);
2140 	}
2141 	/*
2142 	 * As we've just preallocated more space than
2143 	 * user requested originally, we store allocated
2144 	 * space in a special descriptor.
2145 	 */
2146 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2147 		ext4_mb_new_preallocation(ac);
2148 
2149 }
2150 
2151 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2152 					struct ext4_buddy *e4b,
2153 					int finish_group)
2154 {
2155 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2156 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2157 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2158 
2159 	if (ac->ac_status == AC_STATUS_FOUND)
2160 		return;
2161 	/*
2162 	 * We don't want to scan for a whole year
2163 	 */
2164 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2165 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2166 		ac->ac_status = AC_STATUS_BREAK;
2167 		return;
2168 	}
2169 
2170 	/*
2171 	 * Haven't found good chunk so far, let's continue
2172 	 */
2173 	if (bex->fe_len < gex->fe_len)
2174 		return;
2175 
2176 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2177 		ext4_mb_use_best_found(ac, e4b);
2178 }
2179 
2180 /*
2181  * The routine checks whether found extent is good enough. If it is,
2182  * then the extent gets marked used and flag is set to the context
2183  * to stop scanning. Otherwise, the extent is compared with the
2184  * previous found extent and if new one is better, then it's stored
2185  * in the context. Later, the best found extent will be used, if
2186  * mballoc can't find good enough extent.
2187  *
2188  * The algorithm used is roughly as follows:
2189  *
2190  * * If free extent found is exactly as big as goal, then
2191  *   stop the scan and use it immediately
2192  *
2193  * * If free extent found is smaller than goal, then keep retrying
2194  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2195  *   that stop scanning and use whatever we have.
2196  *
2197  * * If free extent found is bigger than goal, then keep retrying
2198  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2199  *   stopping the scan and using the extent.
2200  *
2201  *
2202  * FIXME: real allocation policy is to be designed yet!
2203  */
2204 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2205 					struct ext4_free_extent *ex,
2206 					struct ext4_buddy *e4b)
2207 {
2208 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2209 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2210 
2211 	BUG_ON(ex->fe_len <= 0);
2212 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2213 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2214 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2215 
2216 	ac->ac_found++;
2217 	ac->ac_cX_found[ac->ac_criteria]++;
2218 
2219 	/*
2220 	 * The special case - take what you catch first
2221 	 */
2222 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2223 		*bex = *ex;
2224 		ext4_mb_use_best_found(ac, e4b);
2225 		return;
2226 	}
2227 
2228 	/*
2229 	 * Let's check whether the chuck is good enough
2230 	 */
2231 	if (ex->fe_len == gex->fe_len) {
2232 		*bex = *ex;
2233 		ext4_mb_use_best_found(ac, e4b);
2234 		return;
2235 	}
2236 
2237 	/*
2238 	 * If this is first found extent, just store it in the context
2239 	 */
2240 	if (bex->fe_len == 0) {
2241 		*bex = *ex;
2242 		return;
2243 	}
2244 
2245 	/*
2246 	 * If new found extent is better, store it in the context
2247 	 */
2248 	if (bex->fe_len < gex->fe_len) {
2249 		/* if the request isn't satisfied, any found extent
2250 		 * larger than previous best one is better */
2251 		if (ex->fe_len > bex->fe_len)
2252 			*bex = *ex;
2253 	} else if (ex->fe_len > gex->fe_len) {
2254 		/* if the request is satisfied, then we try to find
2255 		 * an extent that still satisfy the request, but is
2256 		 * smaller than previous one */
2257 		if (ex->fe_len < bex->fe_len)
2258 			*bex = *ex;
2259 	}
2260 
2261 	ext4_mb_check_limits(ac, e4b, 0);
2262 }
2263 
2264 static noinline_for_stack
2265 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2266 					struct ext4_buddy *e4b)
2267 {
2268 	struct ext4_free_extent ex = ac->ac_b_ex;
2269 	ext4_group_t group = ex.fe_group;
2270 	int max;
2271 	int err;
2272 
2273 	BUG_ON(ex.fe_len <= 0);
2274 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2275 	if (err)
2276 		return;
2277 
2278 	ext4_lock_group(ac->ac_sb, group);
2279 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2280 
2281 	if (max > 0) {
2282 		ac->ac_b_ex = ex;
2283 		ext4_mb_use_best_found(ac, e4b);
2284 	}
2285 
2286 	ext4_unlock_group(ac->ac_sb, group);
2287 	ext4_mb_unload_buddy(e4b);
2288 }
2289 
2290 static noinline_for_stack
2291 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2292 				struct ext4_buddy *e4b)
2293 {
2294 	ext4_group_t group = ac->ac_g_ex.fe_group;
2295 	int max;
2296 	int err;
2297 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2298 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2299 	struct ext4_free_extent ex;
2300 
2301 	if (!grp)
2302 		return -EFSCORRUPTED;
2303 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2304 		return 0;
2305 	if (grp->bb_free == 0)
2306 		return 0;
2307 
2308 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2309 	if (err)
2310 		return err;
2311 
2312 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2313 		ext4_mb_unload_buddy(e4b);
2314 		return 0;
2315 	}
2316 
2317 	ext4_lock_group(ac->ac_sb, group);
2318 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2319 			     ac->ac_g_ex.fe_len, &ex);
2320 	ex.fe_logical = 0xDEADFA11; /* debug value */
2321 
2322 	if (max >= ac->ac_g_ex.fe_len &&
2323 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2324 		ext4_fsblk_t start;
2325 
2326 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2327 		/* use do_div to get remainder (would be 64-bit modulo) */
2328 		if (do_div(start, sbi->s_stripe) == 0) {
2329 			ac->ac_found++;
2330 			ac->ac_b_ex = ex;
2331 			ext4_mb_use_best_found(ac, e4b);
2332 		}
2333 	} else if (max >= ac->ac_g_ex.fe_len) {
2334 		BUG_ON(ex.fe_len <= 0);
2335 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2336 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2337 		ac->ac_found++;
2338 		ac->ac_b_ex = ex;
2339 		ext4_mb_use_best_found(ac, e4b);
2340 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2341 		/* Sometimes, caller may want to merge even small
2342 		 * number of blocks to an existing extent */
2343 		BUG_ON(ex.fe_len <= 0);
2344 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2345 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2346 		ac->ac_found++;
2347 		ac->ac_b_ex = ex;
2348 		ext4_mb_use_best_found(ac, e4b);
2349 	}
2350 	ext4_unlock_group(ac->ac_sb, group);
2351 	ext4_mb_unload_buddy(e4b);
2352 
2353 	return 0;
2354 }
2355 
2356 /*
2357  * The routine scans buddy structures (not bitmap!) from given order
2358  * to max order and tries to find big enough chunk to satisfy the req
2359  */
2360 static noinline_for_stack
2361 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2362 					struct ext4_buddy *e4b)
2363 {
2364 	struct super_block *sb = ac->ac_sb;
2365 	struct ext4_group_info *grp = e4b->bd_info;
2366 	void *buddy;
2367 	int i;
2368 	int k;
2369 	int max;
2370 
2371 	BUG_ON(ac->ac_2order <= 0);
2372 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2373 		if (grp->bb_counters[i] == 0)
2374 			continue;
2375 
2376 		buddy = mb_find_buddy(e4b, i, &max);
2377 		if (WARN_RATELIMIT(buddy == NULL,
2378 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2379 			continue;
2380 
2381 		k = mb_find_next_zero_bit(buddy, max, 0);
2382 		if (k >= max) {
2383 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2384 				"%d free clusters of order %d. But found 0",
2385 				grp->bb_counters[i], i);
2386 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2387 					 e4b->bd_group,
2388 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2389 			break;
2390 		}
2391 		ac->ac_found++;
2392 		ac->ac_cX_found[ac->ac_criteria]++;
2393 
2394 		ac->ac_b_ex.fe_len = 1 << i;
2395 		ac->ac_b_ex.fe_start = k << i;
2396 		ac->ac_b_ex.fe_group = e4b->bd_group;
2397 
2398 		ext4_mb_use_best_found(ac, e4b);
2399 
2400 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2401 
2402 		if (EXT4_SB(sb)->s_mb_stats)
2403 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2404 
2405 		break;
2406 	}
2407 }
2408 
2409 /*
2410  * The routine scans the group and measures all found extents.
2411  * In order to optimize scanning, caller must pass number of
2412  * free blocks in the group, so the routine can know upper limit.
2413  */
2414 static noinline_for_stack
2415 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2416 					struct ext4_buddy *e4b)
2417 {
2418 	struct super_block *sb = ac->ac_sb;
2419 	void *bitmap = e4b->bd_bitmap;
2420 	struct ext4_free_extent ex;
2421 	int i, j, freelen;
2422 	int free;
2423 
2424 	free = e4b->bd_info->bb_free;
2425 	if (WARN_ON(free <= 0))
2426 		return;
2427 
2428 	i = e4b->bd_info->bb_first_free;
2429 
2430 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2431 		i = mb_find_next_zero_bit(bitmap,
2432 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2433 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2434 			/*
2435 			 * IF we have corrupt bitmap, we won't find any
2436 			 * free blocks even though group info says we
2437 			 * have free blocks
2438 			 */
2439 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2440 					"%d free clusters as per "
2441 					"group info. But bitmap says 0",
2442 					free);
2443 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2444 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2445 			break;
2446 		}
2447 
2448 		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2449 			/*
2450 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2451 			 * sure that this group will have a large enough
2452 			 * continuous free extent, so skip over the smaller free
2453 			 * extents
2454 			 */
2455 			j = mb_find_next_bit(bitmap,
2456 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2457 			freelen = j - i;
2458 
2459 			if (freelen < ac->ac_g_ex.fe_len) {
2460 				i = j;
2461 				free -= freelen;
2462 				continue;
2463 			}
2464 		}
2465 
2466 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2467 		if (WARN_ON(ex.fe_len <= 0))
2468 			break;
2469 		if (free < ex.fe_len) {
2470 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2471 					"%d free clusters as per "
2472 					"group info. But got %d blocks",
2473 					free, ex.fe_len);
2474 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2475 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2476 			/*
2477 			 * The number of free blocks differs. This mostly
2478 			 * indicate that the bitmap is corrupt. So exit
2479 			 * without claiming the space.
2480 			 */
2481 			break;
2482 		}
2483 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2484 		ext4_mb_measure_extent(ac, &ex, e4b);
2485 
2486 		i += ex.fe_len;
2487 		free -= ex.fe_len;
2488 	}
2489 
2490 	ext4_mb_check_limits(ac, e4b, 1);
2491 }
2492 
2493 /*
2494  * This is a special case for storages like raid5
2495  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2496  */
2497 static noinline_for_stack
2498 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2499 				 struct ext4_buddy *e4b)
2500 {
2501 	struct super_block *sb = ac->ac_sb;
2502 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2503 	void *bitmap = e4b->bd_bitmap;
2504 	struct ext4_free_extent ex;
2505 	ext4_fsblk_t first_group_block;
2506 	ext4_fsblk_t a;
2507 	ext4_grpblk_t i, stripe;
2508 	int max;
2509 
2510 	BUG_ON(sbi->s_stripe == 0);
2511 
2512 	/* find first stripe-aligned block in group */
2513 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2514 
2515 	a = first_group_block + sbi->s_stripe - 1;
2516 	do_div(a, sbi->s_stripe);
2517 	i = (a * sbi->s_stripe) - first_group_block;
2518 
2519 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2520 	i = EXT4_B2C(sbi, i);
2521 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2522 		if (!mb_test_bit(i, bitmap)) {
2523 			max = mb_find_extent(e4b, i, stripe, &ex);
2524 			if (max >= stripe) {
2525 				ac->ac_found++;
2526 				ac->ac_cX_found[ac->ac_criteria]++;
2527 				ex.fe_logical = 0xDEADF00D; /* debug value */
2528 				ac->ac_b_ex = ex;
2529 				ext4_mb_use_best_found(ac, e4b);
2530 				break;
2531 			}
2532 		}
2533 		i += stripe;
2534 	}
2535 }
2536 
2537 /*
2538  * This is also called BEFORE we load the buddy bitmap.
2539  * Returns either 1 or 0 indicating that the group is either suitable
2540  * for the allocation or not.
2541  */
2542 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2543 				ext4_group_t group, enum criteria cr)
2544 {
2545 	ext4_grpblk_t free, fragments;
2546 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2547 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2548 
2549 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2550 
2551 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2552 		return false;
2553 
2554 	free = grp->bb_free;
2555 	if (free == 0)
2556 		return false;
2557 
2558 	fragments = grp->bb_fragments;
2559 	if (fragments == 0)
2560 		return false;
2561 
2562 	switch (cr) {
2563 	case CR_POWER2_ALIGNED:
2564 		BUG_ON(ac->ac_2order == 0);
2565 
2566 		/* Avoid using the first bg of a flexgroup for data files */
2567 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2568 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2569 		    ((group % flex_size) == 0))
2570 			return false;
2571 
2572 		if (free < ac->ac_g_ex.fe_len)
2573 			return false;
2574 
2575 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2576 			return true;
2577 
2578 		if (grp->bb_largest_free_order < ac->ac_2order)
2579 			return false;
2580 
2581 		return true;
2582 	case CR_GOAL_LEN_FAST:
2583 	case CR_BEST_AVAIL_LEN:
2584 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2585 			return true;
2586 		break;
2587 	case CR_GOAL_LEN_SLOW:
2588 		if (free >= ac->ac_g_ex.fe_len)
2589 			return true;
2590 		break;
2591 	case CR_ANY_FREE:
2592 		return true;
2593 	default:
2594 		BUG();
2595 	}
2596 
2597 	return false;
2598 }
2599 
2600 /*
2601  * This could return negative error code if something goes wrong
2602  * during ext4_mb_init_group(). This should not be called with
2603  * ext4_lock_group() held.
2604  *
2605  * Note: because we are conditionally operating with the group lock in
2606  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2607  * function using __acquire and __release.  This means we need to be
2608  * super careful before messing with the error path handling via "goto
2609  * out"!
2610  */
2611 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2612 				     ext4_group_t group, enum criteria cr)
2613 {
2614 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2615 	struct super_block *sb = ac->ac_sb;
2616 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2617 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2618 	ext4_grpblk_t free;
2619 	int ret = 0;
2620 
2621 	if (!grp)
2622 		return -EFSCORRUPTED;
2623 	if (sbi->s_mb_stats)
2624 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2625 	if (should_lock) {
2626 		ext4_lock_group(sb, group);
2627 		__release(ext4_group_lock_ptr(sb, group));
2628 	}
2629 	free = grp->bb_free;
2630 	if (free == 0)
2631 		goto out;
2632 	/*
2633 	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2634 	 * can't possibly satisfy the full goal request due to insufficient
2635 	 * free blocks.
2636 	 */
2637 	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2638 		goto out;
2639 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2640 		goto out;
2641 	if (should_lock) {
2642 		__acquire(ext4_group_lock_ptr(sb, group));
2643 		ext4_unlock_group(sb, group);
2644 	}
2645 
2646 	/* We only do this if the grp has never been initialized */
2647 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2648 		struct ext4_group_desc *gdp =
2649 			ext4_get_group_desc(sb, group, NULL);
2650 		int ret;
2651 
2652 		/*
2653 		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2654 		 * search to find large good chunks almost for free. If buddy
2655 		 * data is not ready, then this optimization makes no sense. But
2656 		 * we never skip the first block group in a flex_bg, since this
2657 		 * gets used for metadata block allocation, and we want to make
2658 		 * sure we locate metadata blocks in the first block group in
2659 		 * the flex_bg if possible.
2660 		 */
2661 		if (!ext4_mb_cr_expensive(cr) &&
2662 		    (!sbi->s_log_groups_per_flex ||
2663 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2664 		    !(ext4_has_group_desc_csum(sb) &&
2665 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2666 			return 0;
2667 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2668 		if (ret)
2669 			return ret;
2670 	}
2671 
2672 	if (should_lock) {
2673 		ext4_lock_group(sb, group);
2674 		__release(ext4_group_lock_ptr(sb, group));
2675 	}
2676 	ret = ext4_mb_good_group(ac, group, cr);
2677 out:
2678 	if (should_lock) {
2679 		__acquire(ext4_group_lock_ptr(sb, group));
2680 		ext4_unlock_group(sb, group);
2681 	}
2682 	return ret;
2683 }
2684 
2685 /*
2686  * Start prefetching @nr block bitmaps starting at @group.
2687  * Return the next group which needs to be prefetched.
2688  */
2689 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2690 			      unsigned int nr, int *cnt)
2691 {
2692 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2693 	struct buffer_head *bh;
2694 	struct blk_plug plug;
2695 
2696 	blk_start_plug(&plug);
2697 	while (nr-- > 0) {
2698 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2699 								  NULL);
2700 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2701 
2702 		/*
2703 		 * Prefetch block groups with free blocks; but don't
2704 		 * bother if it is marked uninitialized on disk, since
2705 		 * it won't require I/O to read.  Also only try to
2706 		 * prefetch once, so we avoid getblk() call, which can
2707 		 * be expensive.
2708 		 */
2709 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2710 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2711 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2712 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2713 			if (bh && !IS_ERR(bh)) {
2714 				if (!buffer_uptodate(bh) && cnt)
2715 					(*cnt)++;
2716 				brelse(bh);
2717 			}
2718 		}
2719 		if (++group >= ngroups)
2720 			group = 0;
2721 	}
2722 	blk_finish_plug(&plug);
2723 	return group;
2724 }
2725 
2726 /*
2727  * Prefetching reads the block bitmap into the buffer cache; but we
2728  * need to make sure that the buddy bitmap in the page cache has been
2729  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2730  * is not yet completed, or indeed if it was not initiated by
2731  * ext4_mb_prefetch did not start the I/O.
2732  *
2733  * TODO: We should actually kick off the buddy bitmap setup in a work
2734  * queue when the buffer I/O is completed, so that we don't block
2735  * waiting for the block allocation bitmap read to finish when
2736  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2737  */
2738 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2739 			   unsigned int nr)
2740 {
2741 	struct ext4_group_desc *gdp;
2742 	struct ext4_group_info *grp;
2743 
2744 	while (nr-- > 0) {
2745 		if (!group)
2746 			group = ext4_get_groups_count(sb);
2747 		group--;
2748 		gdp = ext4_get_group_desc(sb, group, NULL);
2749 		grp = ext4_get_group_info(sb, group);
2750 
2751 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2752 		    ext4_free_group_clusters(sb, gdp) > 0) {
2753 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2754 				break;
2755 		}
2756 	}
2757 }
2758 
2759 static noinline_for_stack int
2760 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2761 {
2762 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2763 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2764 	int err = 0, first_err = 0;
2765 	unsigned int nr = 0, prefetch_ios = 0;
2766 	struct ext4_sb_info *sbi;
2767 	struct super_block *sb;
2768 	struct ext4_buddy e4b;
2769 	int lost;
2770 
2771 	sb = ac->ac_sb;
2772 	sbi = EXT4_SB(sb);
2773 	ngroups = ext4_get_groups_count(sb);
2774 	/* non-extent files are limited to low blocks/groups */
2775 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2776 		ngroups = sbi->s_blockfile_groups;
2777 
2778 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2779 
2780 	/* first, try the goal */
2781 	err = ext4_mb_find_by_goal(ac, &e4b);
2782 	if (err || ac->ac_status == AC_STATUS_FOUND)
2783 		goto out;
2784 
2785 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2786 		goto out;
2787 
2788 	/*
2789 	 * ac->ac_2order is set only if the fe_len is a power of 2
2790 	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2791 	 * so that we try exact allocation using buddy.
2792 	 */
2793 	i = fls(ac->ac_g_ex.fe_len);
2794 	ac->ac_2order = 0;
2795 	/*
2796 	 * We search using buddy data only if the order of the request
2797 	 * is greater than equal to the sbi_s_mb_order2_reqs
2798 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2799 	 * We also support searching for power-of-two requests only for
2800 	 * requests upto maximum buddy size we have constructed.
2801 	 */
2802 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2803 		if (is_power_of_2(ac->ac_g_ex.fe_len))
2804 			ac->ac_2order = array_index_nospec(i - 1,
2805 							   MB_NUM_ORDERS(sb));
2806 	}
2807 
2808 	/* if stream allocation is enabled, use global goal */
2809 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2810 		/* TBD: may be hot point */
2811 		spin_lock(&sbi->s_md_lock);
2812 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2813 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2814 		spin_unlock(&sbi->s_md_lock);
2815 	}
2816 
2817 	/*
2818 	 * Let's just scan groups to find more-less suitable blocks We
2819 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2820 	 * aligned, in which case let's do that faster approach first.
2821 	 */
2822 	if (ac->ac_2order)
2823 		cr = CR_POWER2_ALIGNED;
2824 repeat:
2825 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2826 		ac->ac_criteria = cr;
2827 		/*
2828 		 * searching for the right group start
2829 		 * from the goal value specified
2830 		 */
2831 		group = ac->ac_g_ex.fe_group;
2832 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2833 		prefetch_grp = group;
2834 
2835 		for (i = 0, new_cr = cr; i < ngroups; i++,
2836 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2837 			int ret = 0;
2838 
2839 			cond_resched();
2840 			if (new_cr != cr) {
2841 				cr = new_cr;
2842 				goto repeat;
2843 			}
2844 
2845 			/*
2846 			 * Batch reads of the block allocation bitmaps
2847 			 * to get multiple READs in flight; limit
2848 			 * prefetching at inexpensive CR, otherwise mballoc
2849 			 * can spend a lot of time loading imperfect groups
2850 			 */
2851 			if ((prefetch_grp == group) &&
2852 			    (ext4_mb_cr_expensive(cr) ||
2853 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2854 				nr = sbi->s_mb_prefetch;
2855 				if (ext4_has_feature_flex_bg(sb)) {
2856 					nr = 1 << sbi->s_log_groups_per_flex;
2857 					nr -= group & (nr - 1);
2858 					nr = min(nr, sbi->s_mb_prefetch);
2859 				}
2860 				prefetch_grp = ext4_mb_prefetch(sb, group,
2861 							nr, &prefetch_ios);
2862 			}
2863 
2864 			/* This now checks without needing the buddy page */
2865 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2866 			if (ret <= 0) {
2867 				if (!first_err)
2868 					first_err = ret;
2869 				continue;
2870 			}
2871 
2872 			err = ext4_mb_load_buddy(sb, group, &e4b);
2873 			if (err)
2874 				goto out;
2875 
2876 			ext4_lock_group(sb, group);
2877 
2878 			/*
2879 			 * We need to check again after locking the
2880 			 * block group
2881 			 */
2882 			ret = ext4_mb_good_group(ac, group, cr);
2883 			if (ret == 0) {
2884 				ext4_unlock_group(sb, group);
2885 				ext4_mb_unload_buddy(&e4b);
2886 				continue;
2887 			}
2888 
2889 			ac->ac_groups_scanned++;
2890 			if (cr == CR_POWER2_ALIGNED)
2891 				ext4_mb_simple_scan_group(ac, &e4b);
2892 			else {
2893 				bool is_stripe_aligned = sbi->s_stripe &&
2894 					!(ac->ac_g_ex.fe_len %
2895 					  EXT4_B2C(sbi, sbi->s_stripe));
2896 
2897 				if ((cr == CR_GOAL_LEN_FAST ||
2898 				     cr == CR_BEST_AVAIL_LEN) &&
2899 				    is_stripe_aligned)
2900 					ext4_mb_scan_aligned(ac, &e4b);
2901 
2902 				if (ac->ac_status == AC_STATUS_CONTINUE)
2903 					ext4_mb_complex_scan_group(ac, &e4b);
2904 			}
2905 
2906 			ext4_unlock_group(sb, group);
2907 			ext4_mb_unload_buddy(&e4b);
2908 
2909 			if (ac->ac_status != AC_STATUS_CONTINUE)
2910 				break;
2911 		}
2912 		/* Processed all groups and haven't found blocks */
2913 		if (sbi->s_mb_stats && i == ngroups)
2914 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2915 
2916 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2917 			/* Reset goal length to original goal length before
2918 			 * falling into CR_GOAL_LEN_SLOW */
2919 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2920 	}
2921 
2922 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2923 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2924 		/*
2925 		 * We've been searching too long. Let's try to allocate
2926 		 * the best chunk we've found so far
2927 		 */
2928 		ext4_mb_try_best_found(ac, &e4b);
2929 		if (ac->ac_status != AC_STATUS_FOUND) {
2930 			/*
2931 			 * Someone more lucky has already allocated it.
2932 			 * The only thing we can do is just take first
2933 			 * found block(s)
2934 			 */
2935 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2936 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2937 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2938 				 ac->ac_b_ex.fe_len, lost);
2939 
2940 			ac->ac_b_ex.fe_group = 0;
2941 			ac->ac_b_ex.fe_start = 0;
2942 			ac->ac_b_ex.fe_len = 0;
2943 			ac->ac_status = AC_STATUS_CONTINUE;
2944 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2945 			cr = CR_ANY_FREE;
2946 			goto repeat;
2947 		}
2948 	}
2949 
2950 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2951 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2952 out:
2953 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2954 		err = first_err;
2955 
2956 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2957 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2958 		 ac->ac_flags, cr, err);
2959 
2960 	if (nr)
2961 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2962 
2963 	return err;
2964 }
2965 
2966 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2967 {
2968 	struct super_block *sb = pde_data(file_inode(seq->file));
2969 	ext4_group_t group;
2970 
2971 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2972 		return NULL;
2973 	group = *pos + 1;
2974 	return (void *) ((unsigned long) group);
2975 }
2976 
2977 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2978 {
2979 	struct super_block *sb = pde_data(file_inode(seq->file));
2980 	ext4_group_t group;
2981 
2982 	++*pos;
2983 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2984 		return NULL;
2985 	group = *pos + 1;
2986 	return (void *) ((unsigned long) group);
2987 }
2988 
2989 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2990 {
2991 	struct super_block *sb = pde_data(file_inode(seq->file));
2992 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2993 	int i;
2994 	int err, buddy_loaded = 0;
2995 	struct ext4_buddy e4b;
2996 	struct ext4_group_info *grinfo;
2997 	unsigned char blocksize_bits = min_t(unsigned char,
2998 					     sb->s_blocksize_bits,
2999 					     EXT4_MAX_BLOCK_LOG_SIZE);
3000 	struct sg {
3001 		struct ext4_group_info info;
3002 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3003 	} sg;
3004 
3005 	group--;
3006 	if (group == 0)
3007 		seq_puts(seq, "#group: free  frags first ["
3008 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3009 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3010 
3011 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3012 		sizeof(struct ext4_group_info);
3013 
3014 	grinfo = ext4_get_group_info(sb, group);
3015 	if (!grinfo)
3016 		return 0;
3017 	/* Load the group info in memory only if not already loaded. */
3018 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3019 		err = ext4_mb_load_buddy(sb, group, &e4b);
3020 		if (err) {
3021 			seq_printf(seq, "#%-5u: I/O error\n", group);
3022 			return 0;
3023 		}
3024 		buddy_loaded = 1;
3025 	}
3026 
3027 	memcpy(&sg, grinfo, i);
3028 
3029 	if (buddy_loaded)
3030 		ext4_mb_unload_buddy(&e4b);
3031 
3032 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3033 			sg.info.bb_fragments, sg.info.bb_first_free);
3034 	for (i = 0; i <= 13; i++)
3035 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3036 				sg.info.bb_counters[i] : 0);
3037 	seq_puts(seq, " ]\n");
3038 
3039 	return 0;
3040 }
3041 
3042 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3043 {
3044 }
3045 
3046 const struct seq_operations ext4_mb_seq_groups_ops = {
3047 	.start  = ext4_mb_seq_groups_start,
3048 	.next   = ext4_mb_seq_groups_next,
3049 	.stop   = ext4_mb_seq_groups_stop,
3050 	.show   = ext4_mb_seq_groups_show,
3051 };
3052 
3053 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3054 {
3055 	struct super_block *sb = seq->private;
3056 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3057 
3058 	seq_puts(seq, "mballoc:\n");
3059 	if (!sbi->s_mb_stats) {
3060 		seq_puts(seq, "\tmb stats collection turned off.\n");
3061 		seq_puts(
3062 			seq,
3063 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3064 		return 0;
3065 	}
3066 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3067 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3068 
3069 	seq_printf(seq, "\tgroups_scanned: %u\n",
3070 		   atomic_read(&sbi->s_bal_groups_scanned));
3071 
3072 	/* CR_POWER2_ALIGNED stats */
3073 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3074 	seq_printf(seq, "\t\thits: %llu\n",
3075 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3076 	seq_printf(
3077 		seq, "\t\tgroups_considered: %llu\n",
3078 		atomic64_read(
3079 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3080 	seq_printf(seq, "\t\textents_scanned: %u\n",
3081 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3082 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3083 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3084 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3085 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3086 
3087 	/* CR_GOAL_LEN_FAST stats */
3088 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3089 	seq_printf(seq, "\t\thits: %llu\n",
3090 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3091 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3092 		   atomic64_read(
3093 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3094 	seq_printf(seq, "\t\textents_scanned: %u\n",
3095 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3096 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3097 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3098 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3099 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3100 
3101 	/* CR_BEST_AVAIL_LEN stats */
3102 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3103 	seq_printf(seq, "\t\thits: %llu\n",
3104 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3105 	seq_printf(
3106 		seq, "\t\tgroups_considered: %llu\n",
3107 		atomic64_read(
3108 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3109 	seq_printf(seq, "\t\textents_scanned: %u\n",
3110 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3111 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3112 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3113 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3114 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3115 
3116 	/* CR_GOAL_LEN_SLOW stats */
3117 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3118 	seq_printf(seq, "\t\thits: %llu\n",
3119 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3120 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3121 		   atomic64_read(
3122 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3123 	seq_printf(seq, "\t\textents_scanned: %u\n",
3124 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3125 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3126 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3127 
3128 	/* CR_ANY_FREE stats */
3129 	seq_puts(seq, "\tcr_any_free_stats:\n");
3130 	seq_printf(seq, "\t\thits: %llu\n",
3131 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3132 	seq_printf(
3133 		seq, "\t\tgroups_considered: %llu\n",
3134 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3135 	seq_printf(seq, "\t\textents_scanned: %u\n",
3136 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3137 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3138 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3139 
3140 	/* Aggregates */
3141 	seq_printf(seq, "\textents_scanned: %u\n",
3142 		   atomic_read(&sbi->s_bal_ex_scanned));
3143 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3144 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3145 		   atomic_read(&sbi->s_bal_len_goals));
3146 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3147 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3148 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3149 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3150 		   atomic_read(&sbi->s_mb_buddies_generated),
3151 		   ext4_get_groups_count(sb));
3152 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3153 		   atomic64_read(&sbi->s_mb_generation_time));
3154 	seq_printf(seq, "\tpreallocated: %u\n",
3155 		   atomic_read(&sbi->s_mb_preallocated));
3156 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3157 	return 0;
3158 }
3159 
3160 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3161 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3162 {
3163 	struct super_block *sb = pde_data(file_inode(seq->file));
3164 	unsigned long position;
3165 
3166 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3167 		return NULL;
3168 	position = *pos + 1;
3169 	return (void *) ((unsigned long) position);
3170 }
3171 
3172 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3173 {
3174 	struct super_block *sb = pde_data(file_inode(seq->file));
3175 	unsigned long position;
3176 
3177 	++*pos;
3178 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3179 		return NULL;
3180 	position = *pos + 1;
3181 	return (void *) ((unsigned long) position);
3182 }
3183 
3184 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3185 {
3186 	struct super_block *sb = pde_data(file_inode(seq->file));
3187 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3188 	unsigned long position = ((unsigned long) v);
3189 	struct ext4_group_info *grp;
3190 	unsigned int count;
3191 
3192 	position--;
3193 	if (position >= MB_NUM_ORDERS(sb)) {
3194 		position -= MB_NUM_ORDERS(sb);
3195 		if (position == 0)
3196 			seq_puts(seq, "avg_fragment_size_lists:\n");
3197 
3198 		count = 0;
3199 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3200 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3201 				    bb_avg_fragment_size_node)
3202 			count++;
3203 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3204 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3205 					(unsigned int)position, count);
3206 		return 0;
3207 	}
3208 
3209 	if (position == 0) {
3210 		seq_printf(seq, "optimize_scan: %d\n",
3211 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3212 		seq_puts(seq, "max_free_order_lists:\n");
3213 	}
3214 	count = 0;
3215 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3216 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3217 			    bb_largest_free_order_node)
3218 		count++;
3219 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3220 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3221 		   (unsigned int)position, count);
3222 
3223 	return 0;
3224 }
3225 
3226 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3227 {
3228 }
3229 
3230 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3231 	.start  = ext4_mb_seq_structs_summary_start,
3232 	.next   = ext4_mb_seq_structs_summary_next,
3233 	.stop   = ext4_mb_seq_structs_summary_stop,
3234 	.show   = ext4_mb_seq_structs_summary_show,
3235 };
3236 
3237 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3238 {
3239 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3240 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3241 
3242 	BUG_ON(!cachep);
3243 	return cachep;
3244 }
3245 
3246 /*
3247  * Allocate the top-level s_group_info array for the specified number
3248  * of groups
3249  */
3250 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3251 {
3252 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3253 	unsigned size;
3254 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3255 
3256 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3257 		EXT4_DESC_PER_BLOCK_BITS(sb);
3258 	if (size <= sbi->s_group_info_size)
3259 		return 0;
3260 
3261 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3262 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3263 	if (!new_groupinfo) {
3264 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3265 		return -ENOMEM;
3266 	}
3267 	rcu_read_lock();
3268 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3269 	if (old_groupinfo)
3270 		memcpy(new_groupinfo, old_groupinfo,
3271 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3272 	rcu_read_unlock();
3273 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3274 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3275 	if (old_groupinfo)
3276 		ext4_kvfree_array_rcu(old_groupinfo);
3277 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3278 		   sbi->s_group_info_size);
3279 	return 0;
3280 }
3281 
3282 /* Create and initialize ext4_group_info data for the given group. */
3283 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3284 			  struct ext4_group_desc *desc)
3285 {
3286 	int i;
3287 	int metalen = 0;
3288 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3289 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3290 	struct ext4_group_info **meta_group_info;
3291 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3292 
3293 	/*
3294 	 * First check if this group is the first of a reserved block.
3295 	 * If it's true, we have to allocate a new table of pointers
3296 	 * to ext4_group_info structures
3297 	 */
3298 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3299 		metalen = sizeof(*meta_group_info) <<
3300 			EXT4_DESC_PER_BLOCK_BITS(sb);
3301 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3302 		if (meta_group_info == NULL) {
3303 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3304 				 "for a buddy group");
3305 			return -ENOMEM;
3306 		}
3307 		rcu_read_lock();
3308 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3309 		rcu_read_unlock();
3310 	}
3311 
3312 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3313 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3314 
3315 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3316 	if (meta_group_info[i] == NULL) {
3317 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3318 		goto exit_group_info;
3319 	}
3320 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3321 		&(meta_group_info[i]->bb_state));
3322 
3323 	/*
3324 	 * initialize bb_free to be able to skip
3325 	 * empty groups without initialization
3326 	 */
3327 	if (ext4_has_group_desc_csum(sb) &&
3328 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3329 		meta_group_info[i]->bb_free =
3330 			ext4_free_clusters_after_init(sb, group, desc);
3331 	} else {
3332 		meta_group_info[i]->bb_free =
3333 			ext4_free_group_clusters(sb, desc);
3334 	}
3335 
3336 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3337 	init_rwsem(&meta_group_info[i]->alloc_sem);
3338 	meta_group_info[i]->bb_free_root = RB_ROOT;
3339 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3340 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3341 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3342 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3343 	meta_group_info[i]->bb_group = group;
3344 
3345 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3346 	return 0;
3347 
3348 exit_group_info:
3349 	/* If a meta_group_info table has been allocated, release it now */
3350 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3351 		struct ext4_group_info ***group_info;
3352 
3353 		rcu_read_lock();
3354 		group_info = rcu_dereference(sbi->s_group_info);
3355 		kfree(group_info[idx]);
3356 		group_info[idx] = NULL;
3357 		rcu_read_unlock();
3358 	}
3359 	return -ENOMEM;
3360 } /* ext4_mb_add_groupinfo */
3361 
3362 static int ext4_mb_init_backend(struct super_block *sb)
3363 {
3364 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3365 	ext4_group_t i;
3366 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3367 	int err;
3368 	struct ext4_group_desc *desc;
3369 	struct ext4_group_info ***group_info;
3370 	struct kmem_cache *cachep;
3371 
3372 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3373 	if (err)
3374 		return err;
3375 
3376 	sbi->s_buddy_cache = new_inode(sb);
3377 	if (sbi->s_buddy_cache == NULL) {
3378 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3379 		goto err_freesgi;
3380 	}
3381 	/* To avoid potentially colliding with an valid on-disk inode number,
3382 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3383 	 * not in the inode hash, so it should never be found by iget(), but
3384 	 * this will avoid confusion if it ever shows up during debugging. */
3385 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3386 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3387 	for (i = 0; i < ngroups; i++) {
3388 		cond_resched();
3389 		desc = ext4_get_group_desc(sb, i, NULL);
3390 		if (desc == NULL) {
3391 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3392 			goto err_freebuddy;
3393 		}
3394 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3395 			goto err_freebuddy;
3396 	}
3397 
3398 	if (ext4_has_feature_flex_bg(sb)) {
3399 		/* a single flex group is supposed to be read by a single IO.
3400 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3401 		 * unsigned integer, so the maximum shift is 32.
3402 		 */
3403 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3404 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3405 			goto err_freebuddy;
3406 		}
3407 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3408 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3409 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3410 	} else {
3411 		sbi->s_mb_prefetch = 32;
3412 	}
3413 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3414 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3415 	/* now many real IOs to prefetch within a single allocation at cr=0
3416 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3417 	 * load too many groups, at some point we should start to use what
3418 	 * we've got in memory.
3419 	 * with an average random access time 5ms, it'd take a second to get
3420 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3421 	 */
3422 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3423 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3424 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3425 
3426 	return 0;
3427 
3428 err_freebuddy:
3429 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3430 	while (i-- > 0) {
3431 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3432 
3433 		if (grp)
3434 			kmem_cache_free(cachep, grp);
3435 	}
3436 	i = sbi->s_group_info_size;
3437 	rcu_read_lock();
3438 	group_info = rcu_dereference(sbi->s_group_info);
3439 	while (i-- > 0)
3440 		kfree(group_info[i]);
3441 	rcu_read_unlock();
3442 	iput(sbi->s_buddy_cache);
3443 err_freesgi:
3444 	rcu_read_lock();
3445 	kvfree(rcu_dereference(sbi->s_group_info));
3446 	rcu_read_unlock();
3447 	return -ENOMEM;
3448 }
3449 
3450 static void ext4_groupinfo_destroy_slabs(void)
3451 {
3452 	int i;
3453 
3454 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3455 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3456 		ext4_groupinfo_caches[i] = NULL;
3457 	}
3458 }
3459 
3460 static int ext4_groupinfo_create_slab(size_t size)
3461 {
3462 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3463 	int slab_size;
3464 	int blocksize_bits = order_base_2(size);
3465 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3466 	struct kmem_cache *cachep;
3467 
3468 	if (cache_index >= NR_GRPINFO_CACHES)
3469 		return -EINVAL;
3470 
3471 	if (unlikely(cache_index < 0))
3472 		cache_index = 0;
3473 
3474 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3475 	if (ext4_groupinfo_caches[cache_index]) {
3476 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3477 		return 0;	/* Already created */
3478 	}
3479 
3480 	slab_size = offsetof(struct ext4_group_info,
3481 				bb_counters[blocksize_bits + 2]);
3482 
3483 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3484 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3485 					NULL);
3486 
3487 	ext4_groupinfo_caches[cache_index] = cachep;
3488 
3489 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3490 	if (!cachep) {
3491 		printk(KERN_EMERG
3492 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3493 		return -ENOMEM;
3494 	}
3495 
3496 	return 0;
3497 }
3498 
3499 static void ext4_discard_work(struct work_struct *work)
3500 {
3501 	struct ext4_sb_info *sbi = container_of(work,
3502 			struct ext4_sb_info, s_discard_work);
3503 	struct super_block *sb = sbi->s_sb;
3504 	struct ext4_free_data *fd, *nfd;
3505 	struct ext4_buddy e4b;
3506 	LIST_HEAD(discard_list);
3507 	ext4_group_t grp, load_grp;
3508 	int err = 0;
3509 
3510 	spin_lock(&sbi->s_md_lock);
3511 	list_splice_init(&sbi->s_discard_list, &discard_list);
3512 	spin_unlock(&sbi->s_md_lock);
3513 
3514 	load_grp = UINT_MAX;
3515 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3516 		/*
3517 		 * If filesystem is umounting or no memory or suffering
3518 		 * from no space, give up the discard
3519 		 */
3520 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3521 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3522 			grp = fd->efd_group;
3523 			if (grp != load_grp) {
3524 				if (load_grp != UINT_MAX)
3525 					ext4_mb_unload_buddy(&e4b);
3526 
3527 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3528 				if (err) {
3529 					kmem_cache_free(ext4_free_data_cachep, fd);
3530 					load_grp = UINT_MAX;
3531 					continue;
3532 				} else {
3533 					load_grp = grp;
3534 				}
3535 			}
3536 
3537 			ext4_lock_group(sb, grp);
3538 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3539 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3540 			ext4_unlock_group(sb, grp);
3541 		}
3542 		kmem_cache_free(ext4_free_data_cachep, fd);
3543 	}
3544 
3545 	if (load_grp != UINT_MAX)
3546 		ext4_mb_unload_buddy(&e4b);
3547 }
3548 
3549 int ext4_mb_init(struct super_block *sb)
3550 {
3551 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3552 	unsigned i, j;
3553 	unsigned offset, offset_incr;
3554 	unsigned max;
3555 	int ret;
3556 
3557 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3558 
3559 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3560 	if (sbi->s_mb_offsets == NULL) {
3561 		ret = -ENOMEM;
3562 		goto out;
3563 	}
3564 
3565 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3566 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3567 	if (sbi->s_mb_maxs == NULL) {
3568 		ret = -ENOMEM;
3569 		goto out;
3570 	}
3571 
3572 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3573 	if (ret < 0)
3574 		goto out;
3575 
3576 	/* order 0 is regular bitmap */
3577 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3578 	sbi->s_mb_offsets[0] = 0;
3579 
3580 	i = 1;
3581 	offset = 0;
3582 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3583 	max = sb->s_blocksize << 2;
3584 	do {
3585 		sbi->s_mb_offsets[i] = offset;
3586 		sbi->s_mb_maxs[i] = max;
3587 		offset += offset_incr;
3588 		offset_incr = offset_incr >> 1;
3589 		max = max >> 1;
3590 		i++;
3591 	} while (i < MB_NUM_ORDERS(sb));
3592 
3593 	sbi->s_mb_avg_fragment_size =
3594 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3595 			GFP_KERNEL);
3596 	if (!sbi->s_mb_avg_fragment_size) {
3597 		ret = -ENOMEM;
3598 		goto out;
3599 	}
3600 	sbi->s_mb_avg_fragment_size_locks =
3601 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3602 			GFP_KERNEL);
3603 	if (!sbi->s_mb_avg_fragment_size_locks) {
3604 		ret = -ENOMEM;
3605 		goto out;
3606 	}
3607 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3608 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3609 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3610 	}
3611 	sbi->s_mb_largest_free_orders =
3612 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3613 			GFP_KERNEL);
3614 	if (!sbi->s_mb_largest_free_orders) {
3615 		ret = -ENOMEM;
3616 		goto out;
3617 	}
3618 	sbi->s_mb_largest_free_orders_locks =
3619 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3620 			GFP_KERNEL);
3621 	if (!sbi->s_mb_largest_free_orders_locks) {
3622 		ret = -ENOMEM;
3623 		goto out;
3624 	}
3625 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3626 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3627 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3628 	}
3629 
3630 	spin_lock_init(&sbi->s_md_lock);
3631 	sbi->s_mb_free_pending = 0;
3632 	INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3633 	INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3634 	INIT_LIST_HEAD(&sbi->s_discard_list);
3635 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3636 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3637 
3638 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3639 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3640 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3641 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3642 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3643 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3644 
3645 	/*
3646 	 * The default group preallocation is 512, which for 4k block
3647 	 * sizes translates to 2 megabytes.  However for bigalloc file
3648 	 * systems, this is probably too big (i.e, if the cluster size
3649 	 * is 1 megabyte, then group preallocation size becomes half a
3650 	 * gigabyte!).  As a default, we will keep a two megabyte
3651 	 * group pralloc size for cluster sizes up to 64k, and after
3652 	 * that, we will force a minimum group preallocation size of
3653 	 * 32 clusters.  This translates to 8 megs when the cluster
3654 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3655 	 * which seems reasonable as a default.
3656 	 */
3657 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3658 				       sbi->s_cluster_bits, 32);
3659 	/*
3660 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3661 	 * to the lowest multiple of s_stripe which is bigger than
3662 	 * the s_mb_group_prealloc as determined above. We want
3663 	 * the preallocation size to be an exact multiple of the
3664 	 * RAID stripe size so that preallocations don't fragment
3665 	 * the stripes.
3666 	 */
3667 	if (sbi->s_stripe > 1) {
3668 		sbi->s_mb_group_prealloc = roundup(
3669 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3670 	}
3671 
3672 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3673 	if (sbi->s_locality_groups == NULL) {
3674 		ret = -ENOMEM;
3675 		goto out;
3676 	}
3677 	for_each_possible_cpu(i) {
3678 		struct ext4_locality_group *lg;
3679 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3680 		mutex_init(&lg->lg_mutex);
3681 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3682 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3683 		spin_lock_init(&lg->lg_prealloc_lock);
3684 	}
3685 
3686 	if (bdev_nonrot(sb->s_bdev))
3687 		sbi->s_mb_max_linear_groups = 0;
3688 	else
3689 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3690 	/* init file for buddy data */
3691 	ret = ext4_mb_init_backend(sb);
3692 	if (ret != 0)
3693 		goto out_free_locality_groups;
3694 
3695 	return 0;
3696 
3697 out_free_locality_groups:
3698 	free_percpu(sbi->s_locality_groups);
3699 	sbi->s_locality_groups = NULL;
3700 out:
3701 	kfree(sbi->s_mb_avg_fragment_size);
3702 	kfree(sbi->s_mb_avg_fragment_size_locks);
3703 	kfree(sbi->s_mb_largest_free_orders);
3704 	kfree(sbi->s_mb_largest_free_orders_locks);
3705 	kfree(sbi->s_mb_offsets);
3706 	sbi->s_mb_offsets = NULL;
3707 	kfree(sbi->s_mb_maxs);
3708 	sbi->s_mb_maxs = NULL;
3709 	return ret;
3710 }
3711 
3712 /* need to called with the ext4 group lock held */
3713 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3714 {
3715 	struct ext4_prealloc_space *pa;
3716 	struct list_head *cur, *tmp;
3717 	int count = 0;
3718 
3719 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3720 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3721 		list_del(&pa->pa_group_list);
3722 		count++;
3723 		kmem_cache_free(ext4_pspace_cachep, pa);
3724 	}
3725 	return count;
3726 }
3727 
3728 int ext4_mb_release(struct super_block *sb)
3729 {
3730 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3731 	ext4_group_t i;
3732 	int num_meta_group_infos;
3733 	struct ext4_group_info *grinfo, ***group_info;
3734 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3735 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3736 	int count;
3737 
3738 	if (test_opt(sb, DISCARD)) {
3739 		/*
3740 		 * wait the discard work to drain all of ext4_free_data
3741 		 */
3742 		flush_work(&sbi->s_discard_work);
3743 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3744 	}
3745 
3746 	if (sbi->s_group_info) {
3747 		for (i = 0; i < ngroups; i++) {
3748 			cond_resched();
3749 			grinfo = ext4_get_group_info(sb, i);
3750 			if (!grinfo)
3751 				continue;
3752 			mb_group_bb_bitmap_free(grinfo);
3753 			ext4_lock_group(sb, i);
3754 			count = ext4_mb_cleanup_pa(grinfo);
3755 			if (count)
3756 				mb_debug(sb, "mballoc: %d PAs left\n",
3757 					 count);
3758 			ext4_unlock_group(sb, i);
3759 			kmem_cache_free(cachep, grinfo);
3760 		}
3761 		num_meta_group_infos = (ngroups +
3762 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3763 			EXT4_DESC_PER_BLOCK_BITS(sb);
3764 		rcu_read_lock();
3765 		group_info = rcu_dereference(sbi->s_group_info);
3766 		for (i = 0; i < num_meta_group_infos; i++)
3767 			kfree(group_info[i]);
3768 		kvfree(group_info);
3769 		rcu_read_unlock();
3770 	}
3771 	kfree(sbi->s_mb_avg_fragment_size);
3772 	kfree(sbi->s_mb_avg_fragment_size_locks);
3773 	kfree(sbi->s_mb_largest_free_orders);
3774 	kfree(sbi->s_mb_largest_free_orders_locks);
3775 	kfree(sbi->s_mb_offsets);
3776 	kfree(sbi->s_mb_maxs);
3777 	iput(sbi->s_buddy_cache);
3778 	if (sbi->s_mb_stats) {
3779 		ext4_msg(sb, KERN_INFO,
3780 		       "mballoc: %u blocks %u reqs (%u success)",
3781 				atomic_read(&sbi->s_bal_allocated),
3782 				atomic_read(&sbi->s_bal_reqs),
3783 				atomic_read(&sbi->s_bal_success));
3784 		ext4_msg(sb, KERN_INFO,
3785 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3786 				"%u 2^N hits, %u breaks, %u lost",
3787 				atomic_read(&sbi->s_bal_ex_scanned),
3788 				atomic_read(&sbi->s_bal_groups_scanned),
3789 				atomic_read(&sbi->s_bal_goals),
3790 				atomic_read(&sbi->s_bal_2orders),
3791 				atomic_read(&sbi->s_bal_breaks),
3792 				atomic_read(&sbi->s_mb_lost_chunks));
3793 		ext4_msg(sb, KERN_INFO,
3794 		       "mballoc: %u generated and it took %llu",
3795 				atomic_read(&sbi->s_mb_buddies_generated),
3796 				atomic64_read(&sbi->s_mb_generation_time));
3797 		ext4_msg(sb, KERN_INFO,
3798 		       "mballoc: %u preallocated, %u discarded",
3799 				atomic_read(&sbi->s_mb_preallocated),
3800 				atomic_read(&sbi->s_mb_discarded));
3801 	}
3802 
3803 	free_percpu(sbi->s_locality_groups);
3804 
3805 	return 0;
3806 }
3807 
3808 static inline int ext4_issue_discard(struct super_block *sb,
3809 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3810 		struct bio **biop)
3811 {
3812 	ext4_fsblk_t discard_block;
3813 
3814 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3815 			 ext4_group_first_block_no(sb, block_group));
3816 	count = EXT4_C2B(EXT4_SB(sb), count);
3817 	trace_ext4_discard_blocks(sb,
3818 			(unsigned long long) discard_block, count);
3819 	if (biop) {
3820 		return __blkdev_issue_discard(sb->s_bdev,
3821 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3822 			(sector_t)count << (sb->s_blocksize_bits - 9),
3823 			GFP_NOFS, biop);
3824 	} else
3825 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3826 }
3827 
3828 static void ext4_free_data_in_buddy(struct super_block *sb,
3829 				    struct ext4_free_data *entry)
3830 {
3831 	struct ext4_buddy e4b;
3832 	struct ext4_group_info *db;
3833 	int err, count = 0;
3834 
3835 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3836 		 entry->efd_count, entry->efd_group, entry);
3837 
3838 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3839 	/* we expect to find existing buddy because it's pinned */
3840 	BUG_ON(err != 0);
3841 
3842 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3843 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3844 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3845 
3846 	db = e4b.bd_info;
3847 	/* there are blocks to put in buddy to make them really free */
3848 	count += entry->efd_count;
3849 	ext4_lock_group(sb, entry->efd_group);
3850 	/* Take it out of per group rb tree */
3851 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3852 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3853 
3854 	/*
3855 	 * Clear the trimmed flag for the group so that the next
3856 	 * ext4_trim_fs can trim it.
3857 	 * If the volume is mounted with -o discard, online discard
3858 	 * is supported and the free blocks will be trimmed online.
3859 	 */
3860 	if (!test_opt(sb, DISCARD))
3861 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3862 
3863 	if (!db->bb_free_root.rb_node) {
3864 		/* No more items in the per group rb tree
3865 		 * balance refcounts from ext4_mb_free_metadata()
3866 		 */
3867 		put_page(e4b.bd_buddy_page);
3868 		put_page(e4b.bd_bitmap_page);
3869 	}
3870 	ext4_unlock_group(sb, entry->efd_group);
3871 	ext4_mb_unload_buddy(&e4b);
3872 
3873 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3874 }
3875 
3876 /*
3877  * This function is called by the jbd2 layer once the commit has finished,
3878  * so we know we can free the blocks that were released with that commit.
3879  */
3880 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3881 {
3882 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3883 	struct ext4_free_data *entry, *tmp;
3884 	LIST_HEAD(freed_data_list);
3885 	struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3886 	bool wake;
3887 
3888 	list_replace_init(s_freed_head, &freed_data_list);
3889 
3890 	list_for_each_entry(entry, &freed_data_list, efd_list)
3891 		ext4_free_data_in_buddy(sb, entry);
3892 
3893 	if (test_opt(sb, DISCARD)) {
3894 		spin_lock(&sbi->s_md_lock);
3895 		wake = list_empty(&sbi->s_discard_list);
3896 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3897 		spin_unlock(&sbi->s_md_lock);
3898 		if (wake)
3899 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3900 	} else {
3901 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3902 			kmem_cache_free(ext4_free_data_cachep, entry);
3903 	}
3904 }
3905 
3906 int __init ext4_init_mballoc(void)
3907 {
3908 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3909 					SLAB_RECLAIM_ACCOUNT);
3910 	if (ext4_pspace_cachep == NULL)
3911 		goto out;
3912 
3913 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3914 				    SLAB_RECLAIM_ACCOUNT);
3915 	if (ext4_ac_cachep == NULL)
3916 		goto out_pa_free;
3917 
3918 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3919 					   SLAB_RECLAIM_ACCOUNT);
3920 	if (ext4_free_data_cachep == NULL)
3921 		goto out_ac_free;
3922 
3923 	return 0;
3924 
3925 out_ac_free:
3926 	kmem_cache_destroy(ext4_ac_cachep);
3927 out_pa_free:
3928 	kmem_cache_destroy(ext4_pspace_cachep);
3929 out:
3930 	return -ENOMEM;
3931 }
3932 
3933 void ext4_exit_mballoc(void)
3934 {
3935 	/*
3936 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3937 	 * before destroying the slab cache.
3938 	 */
3939 	rcu_barrier();
3940 	kmem_cache_destroy(ext4_pspace_cachep);
3941 	kmem_cache_destroy(ext4_ac_cachep);
3942 	kmem_cache_destroy(ext4_free_data_cachep);
3943 	ext4_groupinfo_destroy_slabs();
3944 }
3945 
3946 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3947 #define EXT4_MB_SYNC_UPDATE 0x0002
3948 static int
3949 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3950 		     ext4_group_t group, ext4_grpblk_t blkoff,
3951 		     ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3952 {
3953 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3954 	struct buffer_head *bitmap_bh = NULL;
3955 	struct ext4_group_desc *gdp;
3956 	struct buffer_head *gdp_bh;
3957 	int err;
3958 	unsigned int i, already, changed = len;
3959 
3960 	KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3961 				   handle, sb, state, group, blkoff, len,
3962 				   flags, ret_changed);
3963 
3964 	if (ret_changed)
3965 		*ret_changed = 0;
3966 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3967 	if (IS_ERR(bitmap_bh))
3968 		return PTR_ERR(bitmap_bh);
3969 
3970 	if (handle) {
3971 		BUFFER_TRACE(bitmap_bh, "getting write access");
3972 		err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3973 						    EXT4_JTR_NONE);
3974 		if (err)
3975 			goto out_err;
3976 	}
3977 
3978 	err = -EIO;
3979 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3980 	if (!gdp)
3981 		goto out_err;
3982 
3983 	if (handle) {
3984 		BUFFER_TRACE(gdp_bh, "get_write_access");
3985 		err = ext4_journal_get_write_access(handle, sb, gdp_bh,
3986 						    EXT4_JTR_NONE);
3987 		if (err)
3988 			goto out_err;
3989 	}
3990 
3991 	ext4_lock_group(sb, group);
3992 	if (ext4_has_group_desc_csum(sb) &&
3993 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3994 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3995 		ext4_free_group_clusters_set(sb, gdp,
3996 			ext4_free_clusters_after_init(sb, group, gdp));
3997 	}
3998 
3999 	if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4000 		already = 0;
4001 		for (i = 0; i < len; i++)
4002 			if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4003 					state)
4004 				already++;
4005 		changed = len - already;
4006 	}
4007 
4008 	if (state) {
4009 		mb_set_bits(bitmap_bh->b_data, blkoff, len);
4010 		ext4_free_group_clusters_set(sb, gdp,
4011 			ext4_free_group_clusters(sb, gdp) - changed);
4012 	} else {
4013 		mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4014 		ext4_free_group_clusters_set(sb, gdp,
4015 			ext4_free_group_clusters(sb, gdp) + changed);
4016 	}
4017 
4018 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4019 	ext4_group_desc_csum_set(sb, group, gdp);
4020 	ext4_unlock_group(sb, group);
4021 	if (ret_changed)
4022 		*ret_changed = changed;
4023 
4024 	if (sbi->s_log_groups_per_flex) {
4025 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
4026 		struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4027 					   s_flex_groups, flex_group);
4028 
4029 		if (state)
4030 			atomic64_sub(changed, &fg->free_clusters);
4031 		else
4032 			atomic64_add(changed, &fg->free_clusters);
4033 	}
4034 
4035 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4036 	if (err)
4037 		goto out_err;
4038 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4039 	if (err)
4040 		goto out_err;
4041 
4042 	if (flags & EXT4_MB_SYNC_UPDATE) {
4043 		sync_dirty_buffer(bitmap_bh);
4044 		sync_dirty_buffer(gdp_bh);
4045 	}
4046 
4047 out_err:
4048 	brelse(bitmap_bh);
4049 	return err;
4050 }
4051 
4052 /*
4053  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4054  * Returns 0 if success or error code
4055  */
4056 static noinline_for_stack int
4057 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4058 				handle_t *handle, unsigned int reserv_clstrs)
4059 {
4060 	struct ext4_group_desc *gdp;
4061 	struct ext4_sb_info *sbi;
4062 	struct super_block *sb;
4063 	ext4_fsblk_t block;
4064 	int err, len;
4065 	int flags = 0;
4066 	ext4_grpblk_t changed;
4067 
4068 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4069 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4070 
4071 	sb = ac->ac_sb;
4072 	sbi = EXT4_SB(sb);
4073 
4074 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4075 	if (!gdp)
4076 		return -EIO;
4077 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4078 			ext4_free_group_clusters(sb, gdp));
4079 
4080 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4081 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4082 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4083 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4084 			   "fs metadata", block, block+len);
4085 		/* File system mounted not to panic on error
4086 		 * Fix the bitmap and return EFSCORRUPTED
4087 		 * We leak some of the blocks here.
4088 		 */
4089 		err = ext4_mb_mark_context(handle, sb, true,
4090 					   ac->ac_b_ex.fe_group,
4091 					   ac->ac_b_ex.fe_start,
4092 					   ac->ac_b_ex.fe_len,
4093 					   0, NULL);
4094 		if (!err)
4095 			err = -EFSCORRUPTED;
4096 		return err;
4097 	}
4098 
4099 #ifdef AGGRESSIVE_CHECK
4100 	flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4101 #endif
4102 	err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4103 				   ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4104 				   flags, &changed);
4105 
4106 	if (err && changed == 0)
4107 		return err;
4108 
4109 #ifdef AGGRESSIVE_CHECK
4110 	BUG_ON(changed != ac->ac_b_ex.fe_len);
4111 #endif
4112 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4113 	/*
4114 	 * Now reduce the dirty block count also. Should not go negative
4115 	 */
4116 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4117 		/* release all the reserved blocks if non delalloc */
4118 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4119 				   reserv_clstrs);
4120 
4121 	return err;
4122 }
4123 
4124 /*
4125  * Idempotent helper for Ext4 fast commit replay path to set the state of
4126  * blocks in bitmaps and update counters.
4127  */
4128 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4129 		     int len, bool state)
4130 {
4131 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4132 	ext4_group_t group;
4133 	ext4_grpblk_t blkoff;
4134 	int err = 0;
4135 	unsigned int clen, thisgrp_len;
4136 
4137 	while (len > 0) {
4138 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4139 
4140 		/*
4141 		 * Check to see if we are freeing blocks across a group
4142 		 * boundary.
4143 		 * In case of flex_bg, this can happen that (block, len) may
4144 		 * span across more than one group. In that case we need to
4145 		 * get the corresponding group metadata to work with.
4146 		 * For this we have goto again loop.
4147 		 */
4148 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4149 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4150 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4151 
4152 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4153 			ext4_error(sb, "Marking blocks in system zone - "
4154 				   "Block = %llu, len = %u",
4155 				   block, thisgrp_len);
4156 			break;
4157 		}
4158 
4159 		err = ext4_mb_mark_context(NULL, sb, state,
4160 					   group, blkoff, clen,
4161 					   EXT4_MB_BITMAP_MARKED_CHECK |
4162 					   EXT4_MB_SYNC_UPDATE,
4163 					   NULL);
4164 		if (err)
4165 			break;
4166 
4167 		block += thisgrp_len;
4168 		len -= thisgrp_len;
4169 		BUG_ON(len < 0);
4170 	}
4171 }
4172 
4173 /*
4174  * here we normalize request for locality group
4175  * Group request are normalized to s_mb_group_prealloc, which goes to
4176  * s_strip if we set the same via mount option.
4177  * s_mb_group_prealloc can be configured via
4178  * /sys/fs/ext4/<partition>/mb_group_prealloc
4179  *
4180  * XXX: should we try to preallocate more than the group has now?
4181  */
4182 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4183 {
4184 	struct super_block *sb = ac->ac_sb;
4185 	struct ext4_locality_group *lg = ac->ac_lg;
4186 
4187 	BUG_ON(lg == NULL);
4188 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4189 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4190 }
4191 
4192 /*
4193  * This function returns the next element to look at during inode
4194  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4195  * (ei->i_prealloc_lock)
4196  *
4197  * new_start	The start of the range we want to compare
4198  * cur_start	The existing start that we are comparing against
4199  * node	The node of the rb_tree
4200  */
4201 static inline struct rb_node*
4202 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4203 {
4204 	if (new_start < cur_start)
4205 		return node->rb_left;
4206 	else
4207 		return node->rb_right;
4208 }
4209 
4210 static inline void
4211 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4212 			  ext4_lblk_t start, loff_t end)
4213 {
4214 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4215 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4216 	struct ext4_prealloc_space *tmp_pa;
4217 	ext4_lblk_t tmp_pa_start;
4218 	loff_t tmp_pa_end;
4219 	struct rb_node *iter;
4220 
4221 	read_lock(&ei->i_prealloc_lock);
4222 	for (iter = ei->i_prealloc_node.rb_node; iter;
4223 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4224 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4225 				  pa_node.inode_node);
4226 		tmp_pa_start = tmp_pa->pa_lstart;
4227 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4228 
4229 		spin_lock(&tmp_pa->pa_lock);
4230 		if (tmp_pa->pa_deleted == 0)
4231 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4232 		spin_unlock(&tmp_pa->pa_lock);
4233 	}
4234 	read_unlock(&ei->i_prealloc_lock);
4235 }
4236 
4237 /*
4238  * Given an allocation context "ac" and a range "start", "end", check
4239  * and adjust boundaries if the range overlaps with any of the existing
4240  * preallocatoins stored in the corresponding inode of the allocation context.
4241  *
4242  * Parameters:
4243  *	ac			allocation context
4244  *	start			start of the new range
4245  *	end			end of the new range
4246  */
4247 static inline void
4248 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4249 			  ext4_lblk_t *start, loff_t *end)
4250 {
4251 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4252 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4253 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4254 	struct rb_node *iter;
4255 	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4256 	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4257 
4258 	new_start = *start;
4259 	new_end = *end;
4260 
4261 	/*
4262 	 * Adjust the normalized range so that it doesn't overlap with any
4263 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4264 	 * so it doesn't change underneath us.
4265 	 */
4266 	read_lock(&ei->i_prealloc_lock);
4267 
4268 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4269 	for (iter = ei->i_prealloc_node.rb_node; iter;
4270 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4271 					    tmp_pa_start, iter)) {
4272 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4273 				  pa_node.inode_node);
4274 		tmp_pa_start = tmp_pa->pa_lstart;
4275 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4276 
4277 		/* PA must not overlap original request */
4278 		spin_lock(&tmp_pa->pa_lock);
4279 		if (tmp_pa->pa_deleted == 0)
4280 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4281 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4282 		spin_unlock(&tmp_pa->pa_lock);
4283 	}
4284 
4285 	/*
4286 	 * Step 2: check if the found PA is left or right neighbor and
4287 	 * get the other neighbor
4288 	 */
4289 	if (tmp_pa) {
4290 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4291 			struct rb_node *tmp;
4292 
4293 			left_pa = tmp_pa;
4294 			tmp = rb_next(&left_pa->pa_node.inode_node);
4295 			if (tmp) {
4296 				right_pa = rb_entry(tmp,
4297 						    struct ext4_prealloc_space,
4298 						    pa_node.inode_node);
4299 			}
4300 		} else {
4301 			struct rb_node *tmp;
4302 
4303 			right_pa = tmp_pa;
4304 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4305 			if (tmp) {
4306 				left_pa = rb_entry(tmp,
4307 						   struct ext4_prealloc_space,
4308 						   pa_node.inode_node);
4309 			}
4310 		}
4311 	}
4312 
4313 	/* Step 3: get the non deleted neighbors */
4314 	if (left_pa) {
4315 		for (iter = &left_pa->pa_node.inode_node;;
4316 		     iter = rb_prev(iter)) {
4317 			if (!iter) {
4318 				left_pa = NULL;
4319 				break;
4320 			}
4321 
4322 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4323 					  pa_node.inode_node);
4324 			left_pa = tmp_pa;
4325 			spin_lock(&tmp_pa->pa_lock);
4326 			if (tmp_pa->pa_deleted == 0) {
4327 				spin_unlock(&tmp_pa->pa_lock);
4328 				break;
4329 			}
4330 			spin_unlock(&tmp_pa->pa_lock);
4331 		}
4332 	}
4333 
4334 	if (right_pa) {
4335 		for (iter = &right_pa->pa_node.inode_node;;
4336 		     iter = rb_next(iter)) {
4337 			if (!iter) {
4338 				right_pa = NULL;
4339 				break;
4340 			}
4341 
4342 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4343 					  pa_node.inode_node);
4344 			right_pa = tmp_pa;
4345 			spin_lock(&tmp_pa->pa_lock);
4346 			if (tmp_pa->pa_deleted == 0) {
4347 				spin_unlock(&tmp_pa->pa_lock);
4348 				break;
4349 			}
4350 			spin_unlock(&tmp_pa->pa_lock);
4351 		}
4352 	}
4353 
4354 	if (left_pa) {
4355 		left_pa_end = pa_logical_end(sbi, left_pa);
4356 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4357 	}
4358 
4359 	if (right_pa) {
4360 		right_pa_start = right_pa->pa_lstart;
4361 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4362 	}
4363 
4364 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4365 	if (left_pa) {
4366 		if (left_pa_end > new_start)
4367 			new_start = left_pa_end;
4368 	}
4369 
4370 	if (right_pa) {
4371 		if (right_pa_start < new_end)
4372 			new_end = right_pa_start;
4373 	}
4374 	read_unlock(&ei->i_prealloc_lock);
4375 
4376 	/* XXX: extra loop to check we really don't overlap preallocations */
4377 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4378 
4379 	*start = new_start;
4380 	*end = new_end;
4381 }
4382 
4383 /*
4384  * Normalization means making request better in terms of
4385  * size and alignment
4386  */
4387 static noinline_for_stack void
4388 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4389 				struct ext4_allocation_request *ar)
4390 {
4391 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4392 	struct ext4_super_block *es = sbi->s_es;
4393 	int bsbits, max;
4394 	loff_t size, start_off, end;
4395 	loff_t orig_size __maybe_unused;
4396 	ext4_lblk_t start;
4397 
4398 	/* do normalize only data requests, metadata requests
4399 	   do not need preallocation */
4400 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4401 		return;
4402 
4403 	/* sometime caller may want exact blocks */
4404 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4405 		return;
4406 
4407 	/* caller may indicate that preallocation isn't
4408 	 * required (it's a tail, for example) */
4409 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4410 		return;
4411 
4412 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4413 		ext4_mb_normalize_group_request(ac);
4414 		return ;
4415 	}
4416 
4417 	bsbits = ac->ac_sb->s_blocksize_bits;
4418 
4419 	/* first, let's learn actual file size
4420 	 * given current request is allocated */
4421 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4422 	size = size << bsbits;
4423 	if (size < i_size_read(ac->ac_inode))
4424 		size = i_size_read(ac->ac_inode);
4425 	orig_size = size;
4426 
4427 	/* max size of free chunks */
4428 	max = 2 << bsbits;
4429 
4430 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4431 		(req <= (size) || max <= (chunk_size))
4432 
4433 	/* first, try to predict filesize */
4434 	/* XXX: should this table be tunable? */
4435 	start_off = 0;
4436 	if (size <= 16 * 1024) {
4437 		size = 16 * 1024;
4438 	} else if (size <= 32 * 1024) {
4439 		size = 32 * 1024;
4440 	} else if (size <= 64 * 1024) {
4441 		size = 64 * 1024;
4442 	} else if (size <= 128 * 1024) {
4443 		size = 128 * 1024;
4444 	} else if (size <= 256 * 1024) {
4445 		size = 256 * 1024;
4446 	} else if (size <= 512 * 1024) {
4447 		size = 512 * 1024;
4448 	} else if (size <= 1024 * 1024) {
4449 		size = 1024 * 1024;
4450 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4451 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4452 						(21 - bsbits)) << 21;
4453 		size = 2 * 1024 * 1024;
4454 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4455 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4456 							(22 - bsbits)) << 22;
4457 		size = 4 * 1024 * 1024;
4458 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4459 					(8<<20)>>bsbits, max, 8 * 1024)) {
4460 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4461 							(23 - bsbits)) << 23;
4462 		size = 8 * 1024 * 1024;
4463 	} else {
4464 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4465 		size	  = (loff_t) EXT4_C2B(sbi,
4466 					      ac->ac_o_ex.fe_len) << bsbits;
4467 	}
4468 	size = size >> bsbits;
4469 	start = start_off >> bsbits;
4470 
4471 	/*
4472 	 * For tiny groups (smaller than 8MB) the chosen allocation
4473 	 * alignment may be larger than group size. Make sure the
4474 	 * alignment does not move allocation to a different group which
4475 	 * makes mballoc fail assertions later.
4476 	 */
4477 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4478 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4479 
4480 	/* avoid unnecessary preallocation that may trigger assertions */
4481 	if (start + size > EXT_MAX_BLOCKS)
4482 		size = EXT_MAX_BLOCKS - start;
4483 
4484 	/* don't cover already allocated blocks in selected range */
4485 	if (ar->pleft && start <= ar->lleft) {
4486 		size -= ar->lleft + 1 - start;
4487 		start = ar->lleft + 1;
4488 	}
4489 	if (ar->pright && start + size - 1 >= ar->lright)
4490 		size -= start + size - ar->lright;
4491 
4492 	/*
4493 	 * Trim allocation request for filesystems with artificially small
4494 	 * groups.
4495 	 */
4496 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4497 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4498 
4499 	end = start + size;
4500 
4501 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4502 
4503 	size = end - start;
4504 
4505 	/*
4506 	 * In this function "start" and "size" are normalized for better
4507 	 * alignment and length such that we could preallocate more blocks.
4508 	 * This normalization is done such that original request of
4509 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4510 	 * "size" boundaries.
4511 	 * (Note fe_len can be relaxed since FS block allocation API does not
4512 	 * provide gurantee on number of contiguous blocks allocation since that
4513 	 * depends upon free space left, etc).
4514 	 * In case of inode pa, later we use the allocated blocks
4515 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4516 	 * range of goal/best blocks [start, size] to put it at the
4517 	 * ac_o_ex.fe_logical extent of this inode.
4518 	 * (See ext4_mb_use_inode_pa() for more details)
4519 	 */
4520 	if (start + size <= ac->ac_o_ex.fe_logical ||
4521 			start > ac->ac_o_ex.fe_logical) {
4522 		ext4_msg(ac->ac_sb, KERN_ERR,
4523 			 "start %lu, size %lu, fe_logical %lu",
4524 			 (unsigned long) start, (unsigned long) size,
4525 			 (unsigned long) ac->ac_o_ex.fe_logical);
4526 		BUG();
4527 	}
4528 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4529 
4530 	/* now prepare goal request */
4531 
4532 	/* XXX: is it better to align blocks WRT to logical
4533 	 * placement or satisfy big request as is */
4534 	ac->ac_g_ex.fe_logical = start;
4535 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4536 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4537 
4538 	/* define goal start in order to merge */
4539 	if (ar->pright && (ar->lright == (start + size)) &&
4540 	    ar->pright >= size &&
4541 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4542 		/* merge to the right */
4543 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4544 						&ac->ac_g_ex.fe_group,
4545 						&ac->ac_g_ex.fe_start);
4546 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4547 	}
4548 	if (ar->pleft && (ar->lleft + 1 == start) &&
4549 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4550 		/* merge to the left */
4551 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4552 						&ac->ac_g_ex.fe_group,
4553 						&ac->ac_g_ex.fe_start);
4554 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4555 	}
4556 
4557 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4558 		 orig_size, start);
4559 }
4560 
4561 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4562 {
4563 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4564 
4565 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4566 		atomic_inc(&sbi->s_bal_reqs);
4567 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4568 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4569 			atomic_inc(&sbi->s_bal_success);
4570 
4571 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4572 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4573 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4574 		}
4575 
4576 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4577 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4578 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4579 			atomic_inc(&sbi->s_bal_goals);
4580 		/* did we allocate as much as normalizer originally wanted? */
4581 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4582 			atomic_inc(&sbi->s_bal_len_goals);
4583 
4584 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4585 			atomic_inc(&sbi->s_bal_breaks);
4586 	}
4587 
4588 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4589 		trace_ext4_mballoc_alloc(ac);
4590 	else
4591 		trace_ext4_mballoc_prealloc(ac);
4592 }
4593 
4594 /*
4595  * Called on failure; free up any blocks from the inode PA for this
4596  * context.  We don't need this for MB_GROUP_PA because we only change
4597  * pa_free in ext4_mb_release_context(), but on failure, we've already
4598  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4599  */
4600 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4601 {
4602 	struct ext4_prealloc_space *pa = ac->ac_pa;
4603 	struct ext4_buddy e4b;
4604 	int err;
4605 
4606 	if (pa == NULL) {
4607 		if (ac->ac_f_ex.fe_len == 0)
4608 			return;
4609 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4610 		if (WARN_RATELIMIT(err,
4611 				   "ext4: mb_load_buddy failed (%d)", err))
4612 			/*
4613 			 * This should never happen since we pin the
4614 			 * pages in the ext4_allocation_context so
4615 			 * ext4_mb_load_buddy() should never fail.
4616 			 */
4617 			return;
4618 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4619 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4620 			       ac->ac_f_ex.fe_len);
4621 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4622 		ext4_mb_unload_buddy(&e4b);
4623 		return;
4624 	}
4625 	if (pa->pa_type == MB_INODE_PA) {
4626 		spin_lock(&pa->pa_lock);
4627 		pa->pa_free += ac->ac_b_ex.fe_len;
4628 		spin_unlock(&pa->pa_lock);
4629 	}
4630 }
4631 
4632 /*
4633  * use blocks preallocated to inode
4634  */
4635 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4636 				struct ext4_prealloc_space *pa)
4637 {
4638 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4639 	ext4_fsblk_t start;
4640 	ext4_fsblk_t end;
4641 	int len;
4642 
4643 	/* found preallocated blocks, use them */
4644 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4645 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4646 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4647 	len = EXT4_NUM_B2C(sbi, end - start);
4648 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4649 					&ac->ac_b_ex.fe_start);
4650 	ac->ac_b_ex.fe_len = len;
4651 	ac->ac_status = AC_STATUS_FOUND;
4652 	ac->ac_pa = pa;
4653 
4654 	BUG_ON(start < pa->pa_pstart);
4655 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4656 	BUG_ON(pa->pa_free < len);
4657 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4658 	pa->pa_free -= len;
4659 
4660 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4661 }
4662 
4663 /*
4664  * use blocks preallocated to locality group
4665  */
4666 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4667 				struct ext4_prealloc_space *pa)
4668 {
4669 	unsigned int len = ac->ac_o_ex.fe_len;
4670 
4671 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4672 					&ac->ac_b_ex.fe_group,
4673 					&ac->ac_b_ex.fe_start);
4674 	ac->ac_b_ex.fe_len = len;
4675 	ac->ac_status = AC_STATUS_FOUND;
4676 	ac->ac_pa = pa;
4677 
4678 	/* we don't correct pa_pstart or pa_len here to avoid
4679 	 * possible race when the group is being loaded concurrently
4680 	 * instead we correct pa later, after blocks are marked
4681 	 * in on-disk bitmap -- see ext4_mb_release_context()
4682 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4683 	 */
4684 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4685 		 pa->pa_lstart, len, pa);
4686 }
4687 
4688 /*
4689  * Return the prealloc space that have minimal distance
4690  * from the goal block. @cpa is the prealloc
4691  * space that is having currently known minimal distance
4692  * from the goal block.
4693  */
4694 static struct ext4_prealloc_space *
4695 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4696 			struct ext4_prealloc_space *pa,
4697 			struct ext4_prealloc_space *cpa)
4698 {
4699 	ext4_fsblk_t cur_distance, new_distance;
4700 
4701 	if (cpa == NULL) {
4702 		atomic_inc(&pa->pa_count);
4703 		return pa;
4704 	}
4705 	cur_distance = abs(goal_block - cpa->pa_pstart);
4706 	new_distance = abs(goal_block - pa->pa_pstart);
4707 
4708 	if (cur_distance <= new_distance)
4709 		return cpa;
4710 
4711 	/* drop the previous reference */
4712 	atomic_dec(&cpa->pa_count);
4713 	atomic_inc(&pa->pa_count);
4714 	return pa;
4715 }
4716 
4717 /*
4718  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4719  */
4720 static bool
4721 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4722 		      struct ext4_prealloc_space *pa)
4723 {
4724 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4725 	ext4_fsblk_t start;
4726 
4727 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4728 		return true;
4729 
4730 	/*
4731 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4732 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4733 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4734 	 * consistent with ext4_mb_find_by_goal.
4735 	 */
4736 	start = pa->pa_pstart +
4737 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4738 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4739 		return false;
4740 
4741 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4742 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4743 		return false;
4744 
4745 	return true;
4746 }
4747 
4748 /*
4749  * search goal blocks in preallocated space
4750  */
4751 static noinline_for_stack bool
4752 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4753 {
4754 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4755 	int order, i;
4756 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4757 	struct ext4_locality_group *lg;
4758 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4759 	struct rb_node *iter;
4760 	ext4_fsblk_t goal_block;
4761 
4762 	/* only data can be preallocated */
4763 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4764 		return false;
4765 
4766 	/*
4767 	 * first, try per-file preallocation by searching the inode pa rbtree.
4768 	 *
4769 	 * Here, we can't do a direct traversal of the tree because
4770 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4771 	 * deleted and that can cause direct traversal to skip some entries.
4772 	 */
4773 	read_lock(&ei->i_prealloc_lock);
4774 
4775 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4776 		goto try_group_pa;
4777 	}
4778 
4779 	/*
4780 	 * Step 1: Find a pa with logical start immediately adjacent to the
4781 	 * original logical start. This could be on the left or right.
4782 	 *
4783 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4784 	 */
4785 	for (iter = ei->i_prealloc_node.rb_node; iter;
4786 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4787 					    tmp_pa->pa_lstart, iter)) {
4788 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4789 				  pa_node.inode_node);
4790 	}
4791 
4792 	/*
4793 	 * Step 2: The adjacent pa might be to the right of logical start, find
4794 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4795 	 * logical start is towards the left of original request's logical start
4796 	 */
4797 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4798 		struct rb_node *tmp;
4799 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4800 
4801 		if (tmp) {
4802 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4803 					    pa_node.inode_node);
4804 		} else {
4805 			/*
4806 			 * If there is no adjacent pa to the left then finding
4807 			 * an overlapping pa is not possible hence stop searching
4808 			 * inode pa tree
4809 			 */
4810 			goto try_group_pa;
4811 		}
4812 	}
4813 
4814 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4815 
4816 	/*
4817 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4818 	 * the first non deleted adjacent pa. After this step we should have a
4819 	 * valid tmp_pa which is guaranteed to be non deleted.
4820 	 */
4821 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4822 		if (!iter) {
4823 			/*
4824 			 * no non deleted left adjacent pa, so stop searching
4825 			 * inode pa tree
4826 			 */
4827 			goto try_group_pa;
4828 		}
4829 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4830 				  pa_node.inode_node);
4831 		spin_lock(&tmp_pa->pa_lock);
4832 		if (tmp_pa->pa_deleted == 0) {
4833 			/*
4834 			 * We will keep holding the pa_lock from
4835 			 * this point on because we don't want group discard
4836 			 * to delete this pa underneath us. Since group
4837 			 * discard is anyways an ENOSPC operation it
4838 			 * should be okay for it to wait a few more cycles.
4839 			 */
4840 			break;
4841 		} else {
4842 			spin_unlock(&tmp_pa->pa_lock);
4843 		}
4844 	}
4845 
4846 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4847 	BUG_ON(tmp_pa->pa_deleted == 1);
4848 
4849 	/*
4850 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4851 	 * pa can possibly satisfy the request hence check if it overlaps
4852 	 * original logical start and stop searching if it doesn't.
4853 	 */
4854 	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4855 		spin_unlock(&tmp_pa->pa_lock);
4856 		goto try_group_pa;
4857 	}
4858 
4859 	/* non-extent files can't have physical blocks past 2^32 */
4860 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4861 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4862 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4863 		/*
4864 		 * Since PAs don't overlap, we won't find any other PA to
4865 		 * satisfy this.
4866 		 */
4867 		spin_unlock(&tmp_pa->pa_lock);
4868 		goto try_group_pa;
4869 	}
4870 
4871 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4872 		atomic_inc(&tmp_pa->pa_count);
4873 		ext4_mb_use_inode_pa(ac, tmp_pa);
4874 		spin_unlock(&tmp_pa->pa_lock);
4875 		read_unlock(&ei->i_prealloc_lock);
4876 		return true;
4877 	} else {
4878 		/*
4879 		 * We found a valid overlapping pa but couldn't use it because
4880 		 * it had no free blocks. This should ideally never happen
4881 		 * because:
4882 		 *
4883 		 * 1. When a new inode pa is added to rbtree it must have
4884 		 *    pa_free > 0 since otherwise we won't actually need
4885 		 *    preallocation.
4886 		 *
4887 		 * 2. An inode pa that is in the rbtree can only have it's
4888 		 *    pa_free become zero when another thread calls:
4889 		 *      ext4_mb_new_blocks
4890 		 *       ext4_mb_use_preallocated
4891 		 *        ext4_mb_use_inode_pa
4892 		 *
4893 		 * 3. Further, after the above calls make pa_free == 0, we will
4894 		 *    immediately remove it from the rbtree in:
4895 		 *      ext4_mb_new_blocks
4896 		 *       ext4_mb_release_context
4897 		 *        ext4_mb_put_pa
4898 		 *
4899 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4900 		 * from tree both happen in ext4_mb_new_blocks, which is always
4901 		 * called with i_data_sem held for data allocations, we can be
4902 		 * sure that another process will never see a pa in rbtree with
4903 		 * pa_free == 0.
4904 		 */
4905 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4906 	}
4907 	spin_unlock(&tmp_pa->pa_lock);
4908 try_group_pa:
4909 	read_unlock(&ei->i_prealloc_lock);
4910 
4911 	/* can we use group allocation? */
4912 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4913 		return false;
4914 
4915 	/* inode may have no locality group for some reason */
4916 	lg = ac->ac_lg;
4917 	if (lg == NULL)
4918 		return false;
4919 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4920 	if (order > PREALLOC_TB_SIZE - 1)
4921 		/* The max size of hash table is PREALLOC_TB_SIZE */
4922 		order = PREALLOC_TB_SIZE - 1;
4923 
4924 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4925 	/*
4926 	 * search for the prealloc space that is having
4927 	 * minimal distance from the goal block.
4928 	 */
4929 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4930 		rcu_read_lock();
4931 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4932 					pa_node.lg_list) {
4933 			spin_lock(&tmp_pa->pa_lock);
4934 			if (tmp_pa->pa_deleted == 0 &&
4935 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4936 
4937 				cpa = ext4_mb_check_group_pa(goal_block,
4938 								tmp_pa, cpa);
4939 			}
4940 			spin_unlock(&tmp_pa->pa_lock);
4941 		}
4942 		rcu_read_unlock();
4943 	}
4944 	if (cpa) {
4945 		ext4_mb_use_group_pa(ac, cpa);
4946 		return true;
4947 	}
4948 	return false;
4949 }
4950 
4951 /*
4952  * the function goes through all preallocation in this group and marks them
4953  * used in in-core bitmap. buddy must be generated from this bitmap
4954  * Need to be called with ext4 group lock held
4955  */
4956 static noinline_for_stack
4957 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4958 					ext4_group_t group)
4959 {
4960 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4961 	struct ext4_prealloc_space *pa;
4962 	struct list_head *cur;
4963 	ext4_group_t groupnr;
4964 	ext4_grpblk_t start;
4965 	int preallocated = 0;
4966 	int len;
4967 
4968 	if (!grp)
4969 		return;
4970 
4971 	/* all form of preallocation discards first load group,
4972 	 * so the only competing code is preallocation use.
4973 	 * we don't need any locking here
4974 	 * notice we do NOT ignore preallocations with pa_deleted
4975 	 * otherwise we could leave used blocks available for
4976 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4977 	 * is dropping preallocation
4978 	 */
4979 	list_for_each(cur, &grp->bb_prealloc_list) {
4980 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4981 		spin_lock(&pa->pa_lock);
4982 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4983 					     &groupnr, &start);
4984 		len = pa->pa_len;
4985 		spin_unlock(&pa->pa_lock);
4986 		if (unlikely(len == 0))
4987 			continue;
4988 		BUG_ON(groupnr != group);
4989 		mb_set_bits(bitmap, start, len);
4990 		preallocated += len;
4991 	}
4992 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4993 }
4994 
4995 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4996 				    struct ext4_prealloc_space *pa)
4997 {
4998 	struct ext4_inode_info *ei;
4999 
5000 	if (pa->pa_deleted) {
5001 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5002 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5003 			     pa->pa_len);
5004 		return;
5005 	}
5006 
5007 	pa->pa_deleted = 1;
5008 
5009 	if (pa->pa_type == MB_INODE_PA) {
5010 		ei = EXT4_I(pa->pa_inode);
5011 		atomic_dec(&ei->i_prealloc_active);
5012 	}
5013 }
5014 
5015 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5016 {
5017 	BUG_ON(!pa);
5018 	BUG_ON(atomic_read(&pa->pa_count));
5019 	BUG_ON(pa->pa_deleted == 0);
5020 	kmem_cache_free(ext4_pspace_cachep, pa);
5021 }
5022 
5023 static void ext4_mb_pa_callback(struct rcu_head *head)
5024 {
5025 	struct ext4_prealloc_space *pa;
5026 
5027 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5028 	ext4_mb_pa_free(pa);
5029 }
5030 
5031 /*
5032  * drops a reference to preallocated space descriptor
5033  * if this was the last reference and the space is consumed
5034  */
5035 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5036 			struct super_block *sb, struct ext4_prealloc_space *pa)
5037 {
5038 	ext4_group_t grp;
5039 	ext4_fsblk_t grp_blk;
5040 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5041 
5042 	/* in this short window concurrent discard can set pa_deleted */
5043 	spin_lock(&pa->pa_lock);
5044 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5045 		spin_unlock(&pa->pa_lock);
5046 		return;
5047 	}
5048 
5049 	if (pa->pa_deleted == 1) {
5050 		spin_unlock(&pa->pa_lock);
5051 		return;
5052 	}
5053 
5054 	ext4_mb_mark_pa_deleted(sb, pa);
5055 	spin_unlock(&pa->pa_lock);
5056 
5057 	grp_blk = pa->pa_pstart;
5058 	/*
5059 	 * If doing group-based preallocation, pa_pstart may be in the
5060 	 * next group when pa is used up
5061 	 */
5062 	if (pa->pa_type == MB_GROUP_PA)
5063 		grp_blk--;
5064 
5065 	grp = ext4_get_group_number(sb, grp_blk);
5066 
5067 	/*
5068 	 * possible race:
5069 	 *
5070 	 *  P1 (buddy init)			P2 (regular allocation)
5071 	 *					find block B in PA
5072 	 *  copy on-disk bitmap to buddy
5073 	 *  					mark B in on-disk bitmap
5074 	 *					drop PA from group
5075 	 *  mark all PAs in buddy
5076 	 *
5077 	 * thus, P1 initializes buddy with B available. to prevent this
5078 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5079 	 * against that pair
5080 	 */
5081 	ext4_lock_group(sb, grp);
5082 	list_del(&pa->pa_group_list);
5083 	ext4_unlock_group(sb, grp);
5084 
5085 	if (pa->pa_type == MB_INODE_PA) {
5086 		write_lock(pa->pa_node_lock.inode_lock);
5087 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5088 		write_unlock(pa->pa_node_lock.inode_lock);
5089 		ext4_mb_pa_free(pa);
5090 	} else {
5091 		spin_lock(pa->pa_node_lock.lg_lock);
5092 		list_del_rcu(&pa->pa_node.lg_list);
5093 		spin_unlock(pa->pa_node_lock.lg_lock);
5094 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5095 	}
5096 }
5097 
5098 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5099 {
5100 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5101 	struct ext4_prealloc_space *iter_pa, *new_pa;
5102 	ext4_lblk_t iter_start, new_start;
5103 
5104 	while (*iter) {
5105 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5106 				   pa_node.inode_node);
5107 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5108 				   pa_node.inode_node);
5109 		iter_start = iter_pa->pa_lstart;
5110 		new_start = new_pa->pa_lstart;
5111 
5112 		parent = *iter;
5113 		if (new_start < iter_start)
5114 			iter = &((*iter)->rb_left);
5115 		else
5116 			iter = &((*iter)->rb_right);
5117 	}
5118 
5119 	rb_link_node(new, parent, iter);
5120 	rb_insert_color(new, root);
5121 }
5122 
5123 /*
5124  * creates new preallocated space for given inode
5125  */
5126 static noinline_for_stack void
5127 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5128 {
5129 	struct super_block *sb = ac->ac_sb;
5130 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5131 	struct ext4_prealloc_space *pa;
5132 	struct ext4_group_info *grp;
5133 	struct ext4_inode_info *ei;
5134 
5135 	/* preallocate only when found space is larger then requested */
5136 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5137 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5138 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5139 	BUG_ON(ac->ac_pa == NULL);
5140 
5141 	pa = ac->ac_pa;
5142 
5143 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5144 		struct ext4_free_extent ex = {
5145 			.fe_logical = ac->ac_g_ex.fe_logical,
5146 			.fe_len = ac->ac_orig_goal_len,
5147 		};
5148 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5149 
5150 		/* we can't allocate as much as normalizer wants.
5151 		 * so, found space must get proper lstart
5152 		 * to cover original request */
5153 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5154 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5155 
5156 		/*
5157 		 * Use the below logic for adjusting best extent as it keeps
5158 		 * fragmentation in check while ensuring logical range of best
5159 		 * extent doesn't overflow out of goal extent:
5160 		 *
5161 		 * 1. Check if best ex can be kept at end of goal (before
5162 		 *    cr_best_avail trimmed it) and still cover original start
5163 		 * 2. Else, check if best ex can be kept at start of goal and
5164 		 *    still cover original start
5165 		 * 3. Else, keep the best ex at start of original request.
5166 		 */
5167 		ex.fe_len = ac->ac_b_ex.fe_len;
5168 
5169 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5170 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5171 			goto adjust_bex;
5172 
5173 		ex.fe_logical = ac->ac_g_ex.fe_logical;
5174 		if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5175 			goto adjust_bex;
5176 
5177 		ex.fe_logical = ac->ac_o_ex.fe_logical;
5178 adjust_bex:
5179 		ac->ac_b_ex.fe_logical = ex.fe_logical;
5180 
5181 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5182 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5183 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5184 	}
5185 
5186 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5187 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5188 	pa->pa_len = ac->ac_b_ex.fe_len;
5189 	pa->pa_free = pa->pa_len;
5190 	spin_lock_init(&pa->pa_lock);
5191 	INIT_LIST_HEAD(&pa->pa_group_list);
5192 	pa->pa_deleted = 0;
5193 	pa->pa_type = MB_INODE_PA;
5194 
5195 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5196 		 pa->pa_len, pa->pa_lstart);
5197 	trace_ext4_mb_new_inode_pa(ac, pa);
5198 
5199 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5200 	ext4_mb_use_inode_pa(ac, pa);
5201 
5202 	ei = EXT4_I(ac->ac_inode);
5203 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5204 	if (!grp)
5205 		return;
5206 
5207 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5208 	pa->pa_inode = ac->ac_inode;
5209 
5210 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5211 
5212 	write_lock(pa->pa_node_lock.inode_lock);
5213 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5214 	write_unlock(pa->pa_node_lock.inode_lock);
5215 	atomic_inc(&ei->i_prealloc_active);
5216 }
5217 
5218 /*
5219  * creates new preallocated space for locality group inodes belongs to
5220  */
5221 static noinline_for_stack void
5222 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5223 {
5224 	struct super_block *sb = ac->ac_sb;
5225 	struct ext4_locality_group *lg;
5226 	struct ext4_prealloc_space *pa;
5227 	struct ext4_group_info *grp;
5228 
5229 	/* preallocate only when found space is larger then requested */
5230 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5231 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5232 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5233 	BUG_ON(ac->ac_pa == NULL);
5234 
5235 	pa = ac->ac_pa;
5236 
5237 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5238 	pa->pa_lstart = pa->pa_pstart;
5239 	pa->pa_len = ac->ac_b_ex.fe_len;
5240 	pa->pa_free = pa->pa_len;
5241 	spin_lock_init(&pa->pa_lock);
5242 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5243 	INIT_LIST_HEAD(&pa->pa_group_list);
5244 	pa->pa_deleted = 0;
5245 	pa->pa_type = MB_GROUP_PA;
5246 
5247 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5248 		 pa->pa_len, pa->pa_lstart);
5249 	trace_ext4_mb_new_group_pa(ac, pa);
5250 
5251 	ext4_mb_use_group_pa(ac, pa);
5252 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5253 
5254 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5255 	if (!grp)
5256 		return;
5257 	lg = ac->ac_lg;
5258 	BUG_ON(lg == NULL);
5259 
5260 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5261 	pa->pa_inode = NULL;
5262 
5263 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5264 
5265 	/*
5266 	 * We will later add the new pa to the right bucket
5267 	 * after updating the pa_free in ext4_mb_release_context
5268 	 */
5269 }
5270 
5271 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5272 {
5273 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5274 		ext4_mb_new_group_pa(ac);
5275 	else
5276 		ext4_mb_new_inode_pa(ac);
5277 }
5278 
5279 /*
5280  * finds all unused blocks in on-disk bitmap, frees them in
5281  * in-core bitmap and buddy.
5282  * @pa must be unlinked from inode and group lists, so that
5283  * nobody else can find/use it.
5284  * the caller MUST hold group/inode locks.
5285  * TODO: optimize the case when there are no in-core structures yet
5286  */
5287 static noinline_for_stack int
5288 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5289 			struct ext4_prealloc_space *pa)
5290 {
5291 	struct super_block *sb = e4b->bd_sb;
5292 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5293 	unsigned int end;
5294 	unsigned int next;
5295 	ext4_group_t group;
5296 	ext4_grpblk_t bit;
5297 	unsigned long long grp_blk_start;
5298 	int free = 0;
5299 
5300 	BUG_ON(pa->pa_deleted == 0);
5301 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5302 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5303 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5304 	end = bit + pa->pa_len;
5305 
5306 	while (bit < end) {
5307 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5308 		if (bit >= end)
5309 			break;
5310 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5311 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5312 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5313 			 (unsigned) next - bit, (unsigned) group);
5314 		free += next - bit;
5315 
5316 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5317 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5318 						    EXT4_C2B(sbi, bit)),
5319 					       next - bit);
5320 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5321 		bit = next + 1;
5322 	}
5323 	if (free != pa->pa_free) {
5324 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5325 			 "pa %p: logic %lu, phys. %lu, len %d",
5326 			 pa, (unsigned long) pa->pa_lstart,
5327 			 (unsigned long) pa->pa_pstart,
5328 			 pa->pa_len);
5329 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5330 					free, pa->pa_free);
5331 		/*
5332 		 * pa is already deleted so we use the value obtained
5333 		 * from the bitmap and continue.
5334 		 */
5335 	}
5336 	atomic_add(free, &sbi->s_mb_discarded);
5337 
5338 	return 0;
5339 }
5340 
5341 static noinline_for_stack int
5342 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5343 				struct ext4_prealloc_space *pa)
5344 {
5345 	struct super_block *sb = e4b->bd_sb;
5346 	ext4_group_t group;
5347 	ext4_grpblk_t bit;
5348 
5349 	trace_ext4_mb_release_group_pa(sb, pa);
5350 	BUG_ON(pa->pa_deleted == 0);
5351 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5352 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5353 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5354 			     e4b->bd_group, group, pa->pa_pstart);
5355 		return 0;
5356 	}
5357 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5358 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5359 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5360 
5361 	return 0;
5362 }
5363 
5364 /*
5365  * releases all preallocations in given group
5366  *
5367  * first, we need to decide discard policy:
5368  * - when do we discard
5369  *   1) ENOSPC
5370  * - how many do we discard
5371  *   1) how many requested
5372  */
5373 static noinline_for_stack int
5374 ext4_mb_discard_group_preallocations(struct super_block *sb,
5375 				     ext4_group_t group, int *busy)
5376 {
5377 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5378 	struct buffer_head *bitmap_bh = NULL;
5379 	struct ext4_prealloc_space *pa, *tmp;
5380 	LIST_HEAD(list);
5381 	struct ext4_buddy e4b;
5382 	struct ext4_inode_info *ei;
5383 	int err;
5384 	int free = 0;
5385 
5386 	if (!grp)
5387 		return 0;
5388 	mb_debug(sb, "discard preallocation for group %u\n", group);
5389 	if (list_empty(&grp->bb_prealloc_list))
5390 		goto out_dbg;
5391 
5392 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5393 	if (IS_ERR(bitmap_bh)) {
5394 		err = PTR_ERR(bitmap_bh);
5395 		ext4_error_err(sb, -err,
5396 			       "Error %d reading block bitmap for %u",
5397 			       err, group);
5398 		goto out_dbg;
5399 	}
5400 
5401 	err = ext4_mb_load_buddy(sb, group, &e4b);
5402 	if (err) {
5403 		ext4_warning(sb, "Error %d loading buddy information for %u",
5404 			     err, group);
5405 		put_bh(bitmap_bh);
5406 		goto out_dbg;
5407 	}
5408 
5409 	ext4_lock_group(sb, group);
5410 	list_for_each_entry_safe(pa, tmp,
5411 				&grp->bb_prealloc_list, pa_group_list) {
5412 		spin_lock(&pa->pa_lock);
5413 		if (atomic_read(&pa->pa_count)) {
5414 			spin_unlock(&pa->pa_lock);
5415 			*busy = 1;
5416 			continue;
5417 		}
5418 		if (pa->pa_deleted) {
5419 			spin_unlock(&pa->pa_lock);
5420 			continue;
5421 		}
5422 
5423 		/* seems this one can be freed ... */
5424 		ext4_mb_mark_pa_deleted(sb, pa);
5425 
5426 		if (!free)
5427 			this_cpu_inc(discard_pa_seq);
5428 
5429 		/* we can trust pa_free ... */
5430 		free += pa->pa_free;
5431 
5432 		spin_unlock(&pa->pa_lock);
5433 
5434 		list_del(&pa->pa_group_list);
5435 		list_add(&pa->u.pa_tmp_list, &list);
5436 	}
5437 
5438 	/* now free all selected PAs */
5439 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5440 
5441 		/* remove from object (inode or locality group) */
5442 		if (pa->pa_type == MB_GROUP_PA) {
5443 			spin_lock(pa->pa_node_lock.lg_lock);
5444 			list_del_rcu(&pa->pa_node.lg_list);
5445 			spin_unlock(pa->pa_node_lock.lg_lock);
5446 		} else {
5447 			write_lock(pa->pa_node_lock.inode_lock);
5448 			ei = EXT4_I(pa->pa_inode);
5449 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5450 			write_unlock(pa->pa_node_lock.inode_lock);
5451 		}
5452 
5453 		list_del(&pa->u.pa_tmp_list);
5454 
5455 		if (pa->pa_type == MB_GROUP_PA) {
5456 			ext4_mb_release_group_pa(&e4b, pa);
5457 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5458 		} else {
5459 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5460 			ext4_mb_pa_free(pa);
5461 		}
5462 	}
5463 
5464 	ext4_unlock_group(sb, group);
5465 	ext4_mb_unload_buddy(&e4b);
5466 	put_bh(bitmap_bh);
5467 out_dbg:
5468 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5469 		 free, group, grp->bb_free);
5470 	return free;
5471 }
5472 
5473 /*
5474  * releases all non-used preallocated blocks for given inode
5475  *
5476  * It's important to discard preallocations under i_data_sem
5477  * We don't want another block to be served from the prealloc
5478  * space when we are discarding the inode prealloc space.
5479  *
5480  * FIXME!! Make sure it is valid at all the call sites
5481  */
5482 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5483 {
5484 	struct ext4_inode_info *ei = EXT4_I(inode);
5485 	struct super_block *sb = inode->i_sb;
5486 	struct buffer_head *bitmap_bh = NULL;
5487 	struct ext4_prealloc_space *pa, *tmp;
5488 	ext4_group_t group = 0;
5489 	LIST_HEAD(list);
5490 	struct ext4_buddy e4b;
5491 	struct rb_node *iter;
5492 	int err;
5493 
5494 	if (!S_ISREG(inode->i_mode)) {
5495 		return;
5496 	}
5497 
5498 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5499 		return;
5500 
5501 	mb_debug(sb, "discard preallocation for inode %lu\n",
5502 		 inode->i_ino);
5503 	trace_ext4_discard_preallocations(inode,
5504 			atomic_read(&ei->i_prealloc_active), needed);
5505 
5506 	if (needed == 0)
5507 		needed = UINT_MAX;
5508 
5509 repeat:
5510 	/* first, collect all pa's in the inode */
5511 	write_lock(&ei->i_prealloc_lock);
5512 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5513 	     iter = rb_next(iter)) {
5514 		pa = rb_entry(iter, struct ext4_prealloc_space,
5515 			      pa_node.inode_node);
5516 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5517 
5518 		spin_lock(&pa->pa_lock);
5519 		if (atomic_read(&pa->pa_count)) {
5520 			/* this shouldn't happen often - nobody should
5521 			 * use preallocation while we're discarding it */
5522 			spin_unlock(&pa->pa_lock);
5523 			write_unlock(&ei->i_prealloc_lock);
5524 			ext4_msg(sb, KERN_ERR,
5525 				 "uh-oh! used pa while discarding");
5526 			WARN_ON(1);
5527 			schedule_timeout_uninterruptible(HZ);
5528 			goto repeat;
5529 
5530 		}
5531 		if (pa->pa_deleted == 0) {
5532 			ext4_mb_mark_pa_deleted(sb, pa);
5533 			spin_unlock(&pa->pa_lock);
5534 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5535 			list_add(&pa->u.pa_tmp_list, &list);
5536 			needed--;
5537 			continue;
5538 		}
5539 
5540 		/* someone is deleting pa right now */
5541 		spin_unlock(&pa->pa_lock);
5542 		write_unlock(&ei->i_prealloc_lock);
5543 
5544 		/* we have to wait here because pa_deleted
5545 		 * doesn't mean pa is already unlinked from
5546 		 * the list. as we might be called from
5547 		 * ->clear_inode() the inode will get freed
5548 		 * and concurrent thread which is unlinking
5549 		 * pa from inode's list may access already
5550 		 * freed memory, bad-bad-bad */
5551 
5552 		/* XXX: if this happens too often, we can
5553 		 * add a flag to force wait only in case
5554 		 * of ->clear_inode(), but not in case of
5555 		 * regular truncate */
5556 		schedule_timeout_uninterruptible(HZ);
5557 		goto repeat;
5558 	}
5559 	write_unlock(&ei->i_prealloc_lock);
5560 
5561 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5562 		BUG_ON(pa->pa_type != MB_INODE_PA);
5563 		group = ext4_get_group_number(sb, pa->pa_pstart);
5564 
5565 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5566 					     GFP_NOFS|__GFP_NOFAIL);
5567 		if (err) {
5568 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5569 				       err, group);
5570 			continue;
5571 		}
5572 
5573 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5574 		if (IS_ERR(bitmap_bh)) {
5575 			err = PTR_ERR(bitmap_bh);
5576 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5577 				       err, group);
5578 			ext4_mb_unload_buddy(&e4b);
5579 			continue;
5580 		}
5581 
5582 		ext4_lock_group(sb, group);
5583 		list_del(&pa->pa_group_list);
5584 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5585 		ext4_unlock_group(sb, group);
5586 
5587 		ext4_mb_unload_buddy(&e4b);
5588 		put_bh(bitmap_bh);
5589 
5590 		list_del(&pa->u.pa_tmp_list);
5591 		ext4_mb_pa_free(pa);
5592 	}
5593 }
5594 
5595 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5596 {
5597 	struct ext4_prealloc_space *pa;
5598 
5599 	BUG_ON(ext4_pspace_cachep == NULL);
5600 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5601 	if (!pa)
5602 		return -ENOMEM;
5603 	atomic_set(&pa->pa_count, 1);
5604 	ac->ac_pa = pa;
5605 	return 0;
5606 }
5607 
5608 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5609 {
5610 	struct ext4_prealloc_space *pa = ac->ac_pa;
5611 
5612 	BUG_ON(!pa);
5613 	ac->ac_pa = NULL;
5614 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5615 	/*
5616 	 * current function is only called due to an error or due to
5617 	 * len of found blocks < len of requested blocks hence the PA has not
5618 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5619 	 */
5620 	pa->pa_deleted = 1;
5621 	ext4_mb_pa_free(pa);
5622 }
5623 
5624 #ifdef CONFIG_EXT4_DEBUG
5625 static inline void ext4_mb_show_pa(struct super_block *sb)
5626 {
5627 	ext4_group_t i, ngroups;
5628 
5629 	if (ext4_forced_shutdown(sb))
5630 		return;
5631 
5632 	ngroups = ext4_get_groups_count(sb);
5633 	mb_debug(sb, "groups: ");
5634 	for (i = 0; i < ngroups; i++) {
5635 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5636 		struct ext4_prealloc_space *pa;
5637 		ext4_grpblk_t start;
5638 		struct list_head *cur;
5639 
5640 		if (!grp)
5641 			continue;
5642 		ext4_lock_group(sb, i);
5643 		list_for_each(cur, &grp->bb_prealloc_list) {
5644 			pa = list_entry(cur, struct ext4_prealloc_space,
5645 					pa_group_list);
5646 			spin_lock(&pa->pa_lock);
5647 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5648 						     NULL, &start);
5649 			spin_unlock(&pa->pa_lock);
5650 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5651 				 pa->pa_len);
5652 		}
5653 		ext4_unlock_group(sb, i);
5654 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5655 			 grp->bb_fragments);
5656 	}
5657 }
5658 
5659 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5660 {
5661 	struct super_block *sb = ac->ac_sb;
5662 
5663 	if (ext4_forced_shutdown(sb))
5664 		return;
5665 
5666 	mb_debug(sb, "Can't allocate:"
5667 			" Allocation context details:");
5668 	mb_debug(sb, "status %u flags 0x%x",
5669 			ac->ac_status, ac->ac_flags);
5670 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5671 			"goal %lu/%lu/%lu@%lu, "
5672 			"best %lu/%lu/%lu@%lu cr %d",
5673 			(unsigned long)ac->ac_o_ex.fe_group,
5674 			(unsigned long)ac->ac_o_ex.fe_start,
5675 			(unsigned long)ac->ac_o_ex.fe_len,
5676 			(unsigned long)ac->ac_o_ex.fe_logical,
5677 			(unsigned long)ac->ac_g_ex.fe_group,
5678 			(unsigned long)ac->ac_g_ex.fe_start,
5679 			(unsigned long)ac->ac_g_ex.fe_len,
5680 			(unsigned long)ac->ac_g_ex.fe_logical,
5681 			(unsigned long)ac->ac_b_ex.fe_group,
5682 			(unsigned long)ac->ac_b_ex.fe_start,
5683 			(unsigned long)ac->ac_b_ex.fe_len,
5684 			(unsigned long)ac->ac_b_ex.fe_logical,
5685 			(int)ac->ac_criteria);
5686 	mb_debug(sb, "%u found", ac->ac_found);
5687 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5688 	if (ac->ac_pa)
5689 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5690 			 "group pa" : "inode pa");
5691 	ext4_mb_show_pa(sb);
5692 }
5693 #else
5694 static inline void ext4_mb_show_pa(struct super_block *sb)
5695 {
5696 }
5697 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5698 {
5699 	ext4_mb_show_pa(ac->ac_sb);
5700 }
5701 #endif
5702 
5703 /*
5704  * We use locality group preallocation for small size file. The size of the
5705  * file is determined by the current size or the resulting size after
5706  * allocation which ever is larger
5707  *
5708  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5709  */
5710 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5711 {
5712 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5713 	int bsbits = ac->ac_sb->s_blocksize_bits;
5714 	loff_t size, isize;
5715 	bool inode_pa_eligible, group_pa_eligible;
5716 
5717 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5718 		return;
5719 
5720 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5721 		return;
5722 
5723 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5724 	inode_pa_eligible = true;
5725 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5726 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5727 		>> bsbits;
5728 
5729 	/* No point in using inode preallocation for closed files */
5730 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5731 	    !inode_is_open_for_write(ac->ac_inode))
5732 		inode_pa_eligible = false;
5733 
5734 	size = max(size, isize);
5735 	/* Don't use group allocation for large files */
5736 	if (size > sbi->s_mb_stream_request)
5737 		group_pa_eligible = false;
5738 
5739 	if (!group_pa_eligible) {
5740 		if (inode_pa_eligible)
5741 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5742 		else
5743 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5744 		return;
5745 	}
5746 
5747 	BUG_ON(ac->ac_lg != NULL);
5748 	/*
5749 	 * locality group prealloc space are per cpu. The reason for having
5750 	 * per cpu locality group is to reduce the contention between block
5751 	 * request from multiple CPUs.
5752 	 */
5753 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5754 
5755 	/* we're going to use group allocation */
5756 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5757 
5758 	/* serialize all allocations in the group */
5759 	mutex_lock(&ac->ac_lg->lg_mutex);
5760 }
5761 
5762 static noinline_for_stack void
5763 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5764 				struct ext4_allocation_request *ar)
5765 {
5766 	struct super_block *sb = ar->inode->i_sb;
5767 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5768 	struct ext4_super_block *es = sbi->s_es;
5769 	ext4_group_t group;
5770 	unsigned int len;
5771 	ext4_fsblk_t goal;
5772 	ext4_grpblk_t block;
5773 
5774 	/* we can't allocate > group size */
5775 	len = ar->len;
5776 
5777 	/* just a dirty hack to filter too big requests  */
5778 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5779 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5780 
5781 	/* start searching from the goal */
5782 	goal = ar->goal;
5783 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5784 			goal >= ext4_blocks_count(es))
5785 		goal = le32_to_cpu(es->s_first_data_block);
5786 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5787 
5788 	/* set up allocation goals */
5789 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5790 	ac->ac_status = AC_STATUS_CONTINUE;
5791 	ac->ac_sb = sb;
5792 	ac->ac_inode = ar->inode;
5793 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5794 	ac->ac_o_ex.fe_group = group;
5795 	ac->ac_o_ex.fe_start = block;
5796 	ac->ac_o_ex.fe_len = len;
5797 	ac->ac_g_ex = ac->ac_o_ex;
5798 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5799 	ac->ac_flags = ar->flags;
5800 
5801 	/* we have to define context: we'll work with a file or
5802 	 * locality group. this is a policy, actually */
5803 	ext4_mb_group_or_file(ac);
5804 
5805 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5806 			"left: %u/%u, right %u/%u to %swritable\n",
5807 			(unsigned) ar->len, (unsigned) ar->logical,
5808 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5809 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5810 			(unsigned) ar->lright, (unsigned) ar->pright,
5811 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5812 }
5813 
5814 static noinline_for_stack void
5815 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5816 					struct ext4_locality_group *lg,
5817 					int order, int total_entries)
5818 {
5819 	ext4_group_t group = 0;
5820 	struct ext4_buddy e4b;
5821 	LIST_HEAD(discard_list);
5822 	struct ext4_prealloc_space *pa, *tmp;
5823 
5824 	mb_debug(sb, "discard locality group preallocation\n");
5825 
5826 	spin_lock(&lg->lg_prealloc_lock);
5827 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5828 				pa_node.lg_list,
5829 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5830 		spin_lock(&pa->pa_lock);
5831 		if (atomic_read(&pa->pa_count)) {
5832 			/*
5833 			 * This is the pa that we just used
5834 			 * for block allocation. So don't
5835 			 * free that
5836 			 */
5837 			spin_unlock(&pa->pa_lock);
5838 			continue;
5839 		}
5840 		if (pa->pa_deleted) {
5841 			spin_unlock(&pa->pa_lock);
5842 			continue;
5843 		}
5844 		/* only lg prealloc space */
5845 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5846 
5847 		/* seems this one can be freed ... */
5848 		ext4_mb_mark_pa_deleted(sb, pa);
5849 		spin_unlock(&pa->pa_lock);
5850 
5851 		list_del_rcu(&pa->pa_node.lg_list);
5852 		list_add(&pa->u.pa_tmp_list, &discard_list);
5853 
5854 		total_entries--;
5855 		if (total_entries <= 5) {
5856 			/*
5857 			 * we want to keep only 5 entries
5858 			 * allowing it to grow to 8. This
5859 			 * mak sure we don't call discard
5860 			 * soon for this list.
5861 			 */
5862 			break;
5863 		}
5864 	}
5865 	spin_unlock(&lg->lg_prealloc_lock);
5866 
5867 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5868 		int err;
5869 
5870 		group = ext4_get_group_number(sb, pa->pa_pstart);
5871 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5872 					     GFP_NOFS|__GFP_NOFAIL);
5873 		if (err) {
5874 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5875 				       err, group);
5876 			continue;
5877 		}
5878 		ext4_lock_group(sb, group);
5879 		list_del(&pa->pa_group_list);
5880 		ext4_mb_release_group_pa(&e4b, pa);
5881 		ext4_unlock_group(sb, group);
5882 
5883 		ext4_mb_unload_buddy(&e4b);
5884 		list_del(&pa->u.pa_tmp_list);
5885 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5886 	}
5887 }
5888 
5889 /*
5890  * We have incremented pa_count. So it cannot be freed at this
5891  * point. Also we hold lg_mutex. So no parallel allocation is
5892  * possible from this lg. That means pa_free cannot be updated.
5893  *
5894  * A parallel ext4_mb_discard_group_preallocations is possible.
5895  * which can cause the lg_prealloc_list to be updated.
5896  */
5897 
5898 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5899 {
5900 	int order, added = 0, lg_prealloc_count = 1;
5901 	struct super_block *sb = ac->ac_sb;
5902 	struct ext4_locality_group *lg = ac->ac_lg;
5903 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5904 
5905 	order = fls(pa->pa_free) - 1;
5906 	if (order > PREALLOC_TB_SIZE - 1)
5907 		/* The max size of hash table is PREALLOC_TB_SIZE */
5908 		order = PREALLOC_TB_SIZE - 1;
5909 	/* Add the prealloc space to lg */
5910 	spin_lock(&lg->lg_prealloc_lock);
5911 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5912 				pa_node.lg_list,
5913 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5914 		spin_lock(&tmp_pa->pa_lock);
5915 		if (tmp_pa->pa_deleted) {
5916 			spin_unlock(&tmp_pa->pa_lock);
5917 			continue;
5918 		}
5919 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5920 			/* Add to the tail of the previous entry */
5921 			list_add_tail_rcu(&pa->pa_node.lg_list,
5922 						&tmp_pa->pa_node.lg_list);
5923 			added = 1;
5924 			/*
5925 			 * we want to count the total
5926 			 * number of entries in the list
5927 			 */
5928 		}
5929 		spin_unlock(&tmp_pa->pa_lock);
5930 		lg_prealloc_count++;
5931 	}
5932 	if (!added)
5933 		list_add_tail_rcu(&pa->pa_node.lg_list,
5934 					&lg->lg_prealloc_list[order]);
5935 	spin_unlock(&lg->lg_prealloc_lock);
5936 
5937 	/* Now trim the list to be not more than 8 elements */
5938 	if (lg_prealloc_count > 8)
5939 		ext4_mb_discard_lg_preallocations(sb, lg,
5940 						  order, lg_prealloc_count);
5941 }
5942 
5943 /*
5944  * release all resource we used in allocation
5945  */
5946 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5947 {
5948 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5949 	struct ext4_prealloc_space *pa = ac->ac_pa;
5950 	if (pa) {
5951 		if (pa->pa_type == MB_GROUP_PA) {
5952 			/* see comment in ext4_mb_use_group_pa() */
5953 			spin_lock(&pa->pa_lock);
5954 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5955 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5956 			pa->pa_free -= ac->ac_b_ex.fe_len;
5957 			pa->pa_len -= ac->ac_b_ex.fe_len;
5958 			spin_unlock(&pa->pa_lock);
5959 
5960 			/*
5961 			 * We want to add the pa to the right bucket.
5962 			 * Remove it from the list and while adding
5963 			 * make sure the list to which we are adding
5964 			 * doesn't grow big.
5965 			 */
5966 			if (likely(pa->pa_free)) {
5967 				spin_lock(pa->pa_node_lock.lg_lock);
5968 				list_del_rcu(&pa->pa_node.lg_list);
5969 				spin_unlock(pa->pa_node_lock.lg_lock);
5970 				ext4_mb_add_n_trim(ac);
5971 			}
5972 		}
5973 
5974 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5975 	}
5976 	if (ac->ac_bitmap_page)
5977 		put_page(ac->ac_bitmap_page);
5978 	if (ac->ac_buddy_page)
5979 		put_page(ac->ac_buddy_page);
5980 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5981 		mutex_unlock(&ac->ac_lg->lg_mutex);
5982 	ext4_mb_collect_stats(ac);
5983 	return 0;
5984 }
5985 
5986 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5987 {
5988 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5989 	int ret;
5990 	int freed = 0, busy = 0;
5991 	int retry = 0;
5992 
5993 	trace_ext4_mb_discard_preallocations(sb, needed);
5994 
5995 	if (needed == 0)
5996 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5997  repeat:
5998 	for (i = 0; i < ngroups && needed > 0; i++) {
5999 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6000 		freed += ret;
6001 		needed -= ret;
6002 		cond_resched();
6003 	}
6004 
6005 	if (needed > 0 && busy && ++retry < 3) {
6006 		busy = 0;
6007 		goto repeat;
6008 	}
6009 
6010 	return freed;
6011 }
6012 
6013 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6014 			struct ext4_allocation_context *ac, u64 *seq)
6015 {
6016 	int freed;
6017 	u64 seq_retry = 0;
6018 	bool ret = false;
6019 
6020 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6021 	if (freed) {
6022 		ret = true;
6023 		goto out_dbg;
6024 	}
6025 	seq_retry = ext4_get_discard_pa_seq_sum();
6026 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6027 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6028 		*seq = seq_retry;
6029 		ret = true;
6030 	}
6031 
6032 out_dbg:
6033 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6034 	return ret;
6035 }
6036 
6037 /*
6038  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6039  * linearly starting at the goal block and also excludes the blocks which
6040  * are going to be in use after fast commit replay.
6041  */
6042 static ext4_fsblk_t
6043 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6044 {
6045 	struct buffer_head *bitmap_bh;
6046 	struct super_block *sb = ar->inode->i_sb;
6047 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6048 	ext4_group_t group, nr;
6049 	ext4_grpblk_t blkoff;
6050 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6051 	ext4_grpblk_t i = 0;
6052 	ext4_fsblk_t goal, block;
6053 	struct ext4_super_block *es = sbi->s_es;
6054 
6055 	goal = ar->goal;
6056 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6057 			goal >= ext4_blocks_count(es))
6058 		goal = le32_to_cpu(es->s_first_data_block);
6059 
6060 	ar->len = 0;
6061 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6062 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6063 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6064 		if (IS_ERR(bitmap_bh)) {
6065 			*errp = PTR_ERR(bitmap_bh);
6066 			pr_warn("Failed to read block bitmap\n");
6067 			return 0;
6068 		}
6069 
6070 		while (1) {
6071 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6072 						blkoff);
6073 			if (i >= max)
6074 				break;
6075 			if (ext4_fc_replay_check_excluded(sb,
6076 				ext4_group_first_block_no(sb, group) +
6077 				EXT4_C2B(sbi, i))) {
6078 				blkoff = i + 1;
6079 			} else
6080 				break;
6081 		}
6082 		brelse(bitmap_bh);
6083 		if (i < max)
6084 			break;
6085 
6086 		if (++group >= ext4_get_groups_count(sb))
6087 			group = 0;
6088 
6089 		blkoff = 0;
6090 	}
6091 
6092 	if (i >= max) {
6093 		*errp = -ENOSPC;
6094 		return 0;
6095 	}
6096 
6097 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6098 	ext4_mb_mark_bb(sb, block, 1, true);
6099 	ar->len = 1;
6100 
6101 	return block;
6102 }
6103 
6104 /*
6105  * Main entry point into mballoc to allocate blocks
6106  * it tries to use preallocation first, then falls back
6107  * to usual allocation
6108  */
6109 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6110 				struct ext4_allocation_request *ar, int *errp)
6111 {
6112 	struct ext4_allocation_context *ac = NULL;
6113 	struct ext4_sb_info *sbi;
6114 	struct super_block *sb;
6115 	ext4_fsblk_t block = 0;
6116 	unsigned int inquota = 0;
6117 	unsigned int reserv_clstrs = 0;
6118 	int retries = 0;
6119 	u64 seq;
6120 
6121 	might_sleep();
6122 	sb = ar->inode->i_sb;
6123 	sbi = EXT4_SB(sb);
6124 
6125 	trace_ext4_request_blocks(ar);
6126 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6127 		return ext4_mb_new_blocks_simple(ar, errp);
6128 
6129 	/* Allow to use superuser reservation for quota file */
6130 	if (ext4_is_quota_file(ar->inode))
6131 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6132 
6133 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6134 		/* Without delayed allocation we need to verify
6135 		 * there is enough free blocks to do block allocation
6136 		 * and verify allocation doesn't exceed the quota limits.
6137 		 */
6138 		while (ar->len &&
6139 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6140 
6141 			/* let others to free the space */
6142 			cond_resched();
6143 			ar->len = ar->len >> 1;
6144 		}
6145 		if (!ar->len) {
6146 			ext4_mb_show_pa(sb);
6147 			*errp = -ENOSPC;
6148 			return 0;
6149 		}
6150 		reserv_clstrs = ar->len;
6151 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6152 			dquot_alloc_block_nofail(ar->inode,
6153 						 EXT4_C2B(sbi, ar->len));
6154 		} else {
6155 			while (ar->len &&
6156 				dquot_alloc_block(ar->inode,
6157 						  EXT4_C2B(sbi, ar->len))) {
6158 
6159 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6160 				ar->len--;
6161 			}
6162 		}
6163 		inquota = ar->len;
6164 		if (ar->len == 0) {
6165 			*errp = -EDQUOT;
6166 			goto out;
6167 		}
6168 	}
6169 
6170 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6171 	if (!ac) {
6172 		ar->len = 0;
6173 		*errp = -ENOMEM;
6174 		goto out;
6175 	}
6176 
6177 	ext4_mb_initialize_context(ac, ar);
6178 
6179 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6180 	seq = this_cpu_read(discard_pa_seq);
6181 	if (!ext4_mb_use_preallocated(ac)) {
6182 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6183 		ext4_mb_normalize_request(ac, ar);
6184 
6185 		*errp = ext4_mb_pa_alloc(ac);
6186 		if (*errp)
6187 			goto errout;
6188 repeat:
6189 		/* allocate space in core */
6190 		*errp = ext4_mb_regular_allocator(ac);
6191 		/*
6192 		 * pa allocated above is added to grp->bb_prealloc_list only
6193 		 * when we were able to allocate some block i.e. when
6194 		 * ac->ac_status == AC_STATUS_FOUND.
6195 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6196 		 * So we have to free this pa here itself.
6197 		 */
6198 		if (*errp) {
6199 			ext4_mb_pa_put_free(ac);
6200 			ext4_discard_allocated_blocks(ac);
6201 			goto errout;
6202 		}
6203 		if (ac->ac_status == AC_STATUS_FOUND &&
6204 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6205 			ext4_mb_pa_put_free(ac);
6206 	}
6207 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6208 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6209 		if (*errp) {
6210 			ext4_discard_allocated_blocks(ac);
6211 			goto errout;
6212 		} else {
6213 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6214 			ar->len = ac->ac_b_ex.fe_len;
6215 		}
6216 	} else {
6217 		if (++retries < 3 &&
6218 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6219 			goto repeat;
6220 		/*
6221 		 * If block allocation fails then the pa allocated above
6222 		 * needs to be freed here itself.
6223 		 */
6224 		ext4_mb_pa_put_free(ac);
6225 		*errp = -ENOSPC;
6226 	}
6227 
6228 	if (*errp) {
6229 errout:
6230 		ac->ac_b_ex.fe_len = 0;
6231 		ar->len = 0;
6232 		ext4_mb_show_ac(ac);
6233 	}
6234 	ext4_mb_release_context(ac);
6235 	kmem_cache_free(ext4_ac_cachep, ac);
6236 out:
6237 	if (inquota && ar->len < inquota)
6238 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6239 	if (!ar->len) {
6240 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6241 			/* release all the reserved blocks if non delalloc */
6242 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6243 						reserv_clstrs);
6244 	}
6245 
6246 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6247 
6248 	return block;
6249 }
6250 
6251 /*
6252  * We can merge two free data extents only if the physical blocks
6253  * are contiguous, AND the extents were freed by the same transaction,
6254  * AND the blocks are associated with the same group.
6255  */
6256 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6257 					struct ext4_free_data *entry,
6258 					struct ext4_free_data *new_entry,
6259 					struct rb_root *entry_rb_root)
6260 {
6261 	if ((entry->efd_tid != new_entry->efd_tid) ||
6262 	    (entry->efd_group != new_entry->efd_group))
6263 		return;
6264 	if (entry->efd_start_cluster + entry->efd_count ==
6265 	    new_entry->efd_start_cluster) {
6266 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6267 		new_entry->efd_count += entry->efd_count;
6268 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6269 		   entry->efd_start_cluster) {
6270 		new_entry->efd_count += entry->efd_count;
6271 	} else
6272 		return;
6273 	spin_lock(&sbi->s_md_lock);
6274 	list_del(&entry->efd_list);
6275 	spin_unlock(&sbi->s_md_lock);
6276 	rb_erase(&entry->efd_node, entry_rb_root);
6277 	kmem_cache_free(ext4_free_data_cachep, entry);
6278 }
6279 
6280 static noinline_for_stack void
6281 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6282 		      struct ext4_free_data *new_entry)
6283 {
6284 	ext4_group_t group = e4b->bd_group;
6285 	ext4_grpblk_t cluster;
6286 	ext4_grpblk_t clusters = new_entry->efd_count;
6287 	struct ext4_free_data *entry;
6288 	struct ext4_group_info *db = e4b->bd_info;
6289 	struct super_block *sb = e4b->bd_sb;
6290 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6291 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6292 	struct rb_node *parent = NULL, *new_node;
6293 
6294 	BUG_ON(!ext4_handle_valid(handle));
6295 	BUG_ON(e4b->bd_bitmap_page == NULL);
6296 	BUG_ON(e4b->bd_buddy_page == NULL);
6297 
6298 	new_node = &new_entry->efd_node;
6299 	cluster = new_entry->efd_start_cluster;
6300 
6301 	if (!*n) {
6302 		/* first free block exent. We need to
6303 		   protect buddy cache from being freed,
6304 		 * otherwise we'll refresh it from
6305 		 * on-disk bitmap and lose not-yet-available
6306 		 * blocks */
6307 		get_page(e4b->bd_buddy_page);
6308 		get_page(e4b->bd_bitmap_page);
6309 	}
6310 	while (*n) {
6311 		parent = *n;
6312 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6313 		if (cluster < entry->efd_start_cluster)
6314 			n = &(*n)->rb_left;
6315 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6316 			n = &(*n)->rb_right;
6317 		else {
6318 			ext4_grp_locked_error(sb, group, 0,
6319 				ext4_group_first_block_no(sb, group) +
6320 				EXT4_C2B(sbi, cluster),
6321 				"Block already on to-be-freed list");
6322 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6323 			return;
6324 		}
6325 	}
6326 
6327 	rb_link_node(new_node, parent, n);
6328 	rb_insert_color(new_node, &db->bb_free_root);
6329 
6330 	/* Now try to see the extent can be merged to left and right */
6331 	node = rb_prev(new_node);
6332 	if (node) {
6333 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6334 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6335 					    &(db->bb_free_root));
6336 	}
6337 
6338 	node = rb_next(new_node);
6339 	if (node) {
6340 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6341 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6342 					    &(db->bb_free_root));
6343 	}
6344 
6345 	spin_lock(&sbi->s_md_lock);
6346 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6347 	sbi->s_mb_free_pending += clusters;
6348 	spin_unlock(&sbi->s_md_lock);
6349 }
6350 
6351 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6352 					unsigned long count)
6353 {
6354 	struct super_block *sb = inode->i_sb;
6355 	ext4_group_t group;
6356 	ext4_grpblk_t blkoff;
6357 
6358 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6359 	ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6360 			     EXT4_MB_BITMAP_MARKED_CHECK |
6361 			     EXT4_MB_SYNC_UPDATE,
6362 			     NULL);
6363 }
6364 
6365 /**
6366  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6367  *			Used by ext4_free_blocks()
6368  * @handle:		handle for this transaction
6369  * @inode:		inode
6370  * @block:		starting physical block to be freed
6371  * @count:		number of blocks to be freed
6372  * @flags:		flags used by ext4_free_blocks
6373  */
6374 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6375 			       ext4_fsblk_t block, unsigned long count,
6376 			       int flags)
6377 {
6378 	struct super_block *sb = inode->i_sb;
6379 	struct ext4_group_info *grp;
6380 	unsigned int overflow;
6381 	ext4_grpblk_t bit;
6382 	ext4_group_t block_group;
6383 	struct ext4_sb_info *sbi;
6384 	struct ext4_buddy e4b;
6385 	unsigned int count_clusters;
6386 	int err = 0;
6387 	int mark_flags = 0;
6388 	ext4_grpblk_t changed;
6389 
6390 	sbi = EXT4_SB(sb);
6391 
6392 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6393 	    !ext4_inode_block_valid(inode, block, count)) {
6394 		ext4_error(sb, "Freeing blocks in system zone - "
6395 			   "Block = %llu, count = %lu", block, count);
6396 		/* err = 0. ext4_std_error should be a no op */
6397 		goto error_out;
6398 	}
6399 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6400 
6401 do_more:
6402 	overflow = 0;
6403 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6404 
6405 	grp = ext4_get_group_info(sb, block_group);
6406 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6407 		return;
6408 
6409 	/*
6410 	 * Check to see if we are freeing blocks across a group
6411 	 * boundary.
6412 	 */
6413 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6414 		overflow = EXT4_C2B(sbi, bit) + count -
6415 			EXT4_BLOCKS_PER_GROUP(sb);
6416 		count -= overflow;
6417 		/* The range changed so it's no longer validated */
6418 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6419 	}
6420 	count_clusters = EXT4_NUM_B2C(sbi, count);
6421 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6422 
6423 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6424 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6425 				     GFP_NOFS|__GFP_NOFAIL);
6426 	if (err)
6427 		goto error_out;
6428 
6429 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6430 	    !ext4_inode_block_valid(inode, block, count)) {
6431 		ext4_error(sb, "Freeing blocks in system zone - "
6432 			   "Block = %llu, count = %lu", block, count);
6433 		/* err = 0. ext4_std_error should be a no op */
6434 		goto error_clean;
6435 	}
6436 
6437 #ifdef AGGRESSIVE_CHECK
6438 	mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6439 #endif
6440 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6441 				   count_clusters, mark_flags, &changed);
6442 
6443 
6444 	if (err && changed == 0)
6445 		goto error_clean;
6446 
6447 #ifdef AGGRESSIVE_CHECK
6448 	BUG_ON(changed != count_clusters);
6449 #endif
6450 
6451 	/*
6452 	 * We need to make sure we don't reuse the freed block until after the
6453 	 * transaction is committed. We make an exception if the inode is to be
6454 	 * written in writeback mode since writeback mode has weak data
6455 	 * consistency guarantees.
6456 	 */
6457 	if (ext4_handle_valid(handle) &&
6458 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6459 	     !ext4_should_writeback_data(inode))) {
6460 		struct ext4_free_data *new_entry;
6461 		/*
6462 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6463 		 * to fail.
6464 		 */
6465 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6466 				GFP_NOFS|__GFP_NOFAIL);
6467 		new_entry->efd_start_cluster = bit;
6468 		new_entry->efd_group = block_group;
6469 		new_entry->efd_count = count_clusters;
6470 		new_entry->efd_tid = handle->h_transaction->t_tid;
6471 
6472 		ext4_lock_group(sb, block_group);
6473 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6474 	} else {
6475 		if (test_opt(sb, DISCARD)) {
6476 			err = ext4_issue_discard(sb, block_group, bit,
6477 						 count_clusters, NULL);
6478 			if (err && err != -EOPNOTSUPP)
6479 				ext4_msg(sb, KERN_WARNING, "discard request in"
6480 					 " group:%u block:%d count:%lu failed"
6481 					 " with %d", block_group, bit, count,
6482 					 err);
6483 		} else
6484 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6485 
6486 		ext4_lock_group(sb, block_group);
6487 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6488 	}
6489 
6490 	ext4_unlock_group(sb, block_group);
6491 
6492 	/*
6493 	 * on a bigalloc file system, defer the s_freeclusters_counter
6494 	 * update to the caller (ext4_remove_space and friends) so they
6495 	 * can determine if a cluster freed here should be rereserved
6496 	 */
6497 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6498 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6499 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6500 		percpu_counter_add(&sbi->s_freeclusters_counter,
6501 				   count_clusters);
6502 	}
6503 
6504 	if (overflow && !err) {
6505 		block += count;
6506 		count = overflow;
6507 		ext4_mb_unload_buddy(&e4b);
6508 		/* The range changed so it's no longer validated */
6509 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6510 		goto do_more;
6511 	}
6512 
6513 error_clean:
6514 	ext4_mb_unload_buddy(&e4b);
6515 error_out:
6516 	ext4_std_error(sb, err);
6517 }
6518 
6519 /**
6520  * ext4_free_blocks() -- Free given blocks and update quota
6521  * @handle:		handle for this transaction
6522  * @inode:		inode
6523  * @bh:			optional buffer of the block to be freed
6524  * @block:		starting physical block to be freed
6525  * @count:		number of blocks to be freed
6526  * @flags:		flags used by ext4_free_blocks
6527  */
6528 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6529 		      struct buffer_head *bh, ext4_fsblk_t block,
6530 		      unsigned long count, int flags)
6531 {
6532 	struct super_block *sb = inode->i_sb;
6533 	unsigned int overflow;
6534 	struct ext4_sb_info *sbi;
6535 
6536 	sbi = EXT4_SB(sb);
6537 
6538 	if (bh) {
6539 		if (block)
6540 			BUG_ON(block != bh->b_blocknr);
6541 		else
6542 			block = bh->b_blocknr;
6543 	}
6544 
6545 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6546 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6547 		return;
6548 	}
6549 
6550 	might_sleep();
6551 
6552 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6553 	    !ext4_inode_block_valid(inode, block, count)) {
6554 		ext4_error(sb, "Freeing blocks not in datazone - "
6555 			   "block = %llu, count = %lu", block, count);
6556 		return;
6557 	}
6558 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6559 
6560 	ext4_debug("freeing block %llu\n", block);
6561 	trace_ext4_free_blocks(inode, block, count, flags);
6562 
6563 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6564 		BUG_ON(count > 1);
6565 
6566 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6567 			    inode, bh, block);
6568 	}
6569 
6570 	/*
6571 	 * If the extent to be freed does not begin on a cluster
6572 	 * boundary, we need to deal with partial clusters at the
6573 	 * beginning and end of the extent.  Normally we will free
6574 	 * blocks at the beginning or the end unless we are explicitly
6575 	 * requested to avoid doing so.
6576 	 */
6577 	overflow = EXT4_PBLK_COFF(sbi, block);
6578 	if (overflow) {
6579 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6580 			overflow = sbi->s_cluster_ratio - overflow;
6581 			block += overflow;
6582 			if (count > overflow)
6583 				count -= overflow;
6584 			else
6585 				return;
6586 		} else {
6587 			block -= overflow;
6588 			count += overflow;
6589 		}
6590 		/* The range changed so it's no longer validated */
6591 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6592 	}
6593 	overflow = EXT4_LBLK_COFF(sbi, count);
6594 	if (overflow) {
6595 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6596 			if (count > overflow)
6597 				count -= overflow;
6598 			else
6599 				return;
6600 		} else
6601 			count += sbi->s_cluster_ratio - overflow;
6602 		/* The range changed so it's no longer validated */
6603 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6604 	}
6605 
6606 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6607 		int i;
6608 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6609 
6610 		for (i = 0; i < count; i++) {
6611 			cond_resched();
6612 			if (is_metadata)
6613 				bh = sb_find_get_block(inode->i_sb, block + i);
6614 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6615 		}
6616 	}
6617 
6618 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6619 }
6620 
6621 /**
6622  * ext4_group_add_blocks() -- Add given blocks to an existing group
6623  * @handle:			handle to this transaction
6624  * @sb:				super block
6625  * @block:			start physical block to add to the block group
6626  * @count:			number of blocks to free
6627  *
6628  * This marks the blocks as free in the bitmap and buddy.
6629  */
6630 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6631 			 ext4_fsblk_t block, unsigned long count)
6632 {
6633 	ext4_group_t block_group;
6634 	ext4_grpblk_t bit;
6635 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6636 	struct ext4_buddy e4b;
6637 	int err = 0;
6638 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6639 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6640 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6641 	ext4_grpblk_t changed;
6642 
6643 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6644 
6645 	if (cluster_count == 0)
6646 		return 0;
6647 
6648 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6649 	/*
6650 	 * Check to see if we are freeing blocks across a group
6651 	 * boundary.
6652 	 */
6653 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6654 		ext4_warning(sb, "too many blocks added to group %u",
6655 			     block_group);
6656 		err = -EINVAL;
6657 		goto error_out;
6658 	}
6659 
6660 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6661 	if (err)
6662 		goto error_out;
6663 
6664 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6665 		ext4_error(sb, "Adding blocks in system zones - "
6666 			   "Block = %llu, count = %lu",
6667 			   block, count);
6668 		err = -EINVAL;
6669 		goto error_clean;
6670 	}
6671 
6672 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6673 				   cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6674 				   &changed);
6675 	if (err && changed == 0)
6676 		goto error_clean;
6677 
6678 	if (changed != cluster_count)
6679 		ext4_error(sb, "bit already cleared in group %u", block_group);
6680 
6681 	ext4_lock_group(sb, block_group);
6682 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6683 	ext4_unlock_group(sb, block_group);
6684 	percpu_counter_add(&sbi->s_freeclusters_counter,
6685 			   changed);
6686 
6687 error_clean:
6688 	ext4_mb_unload_buddy(&e4b);
6689 error_out:
6690 	ext4_std_error(sb, err);
6691 	return err;
6692 }
6693 
6694 /**
6695  * ext4_trim_extent -- function to TRIM one single free extent in the group
6696  * @sb:		super block for the file system
6697  * @start:	starting block of the free extent in the alloc. group
6698  * @count:	number of blocks to TRIM
6699  * @e4b:	ext4 buddy for the group
6700  *
6701  * Trim "count" blocks starting at "start" in the "group". To assure that no
6702  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6703  * be called with under the group lock.
6704  */
6705 static int ext4_trim_extent(struct super_block *sb,
6706 		int start, int count, struct ext4_buddy *e4b)
6707 __releases(bitlock)
6708 __acquires(bitlock)
6709 {
6710 	struct ext4_free_extent ex;
6711 	ext4_group_t group = e4b->bd_group;
6712 	int ret = 0;
6713 
6714 	trace_ext4_trim_extent(sb, group, start, count);
6715 
6716 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6717 
6718 	ex.fe_start = start;
6719 	ex.fe_group = group;
6720 	ex.fe_len = count;
6721 
6722 	/*
6723 	 * Mark blocks used, so no one can reuse them while
6724 	 * being trimmed.
6725 	 */
6726 	mb_mark_used(e4b, &ex);
6727 	ext4_unlock_group(sb, group);
6728 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6729 	ext4_lock_group(sb, group);
6730 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6731 	return ret;
6732 }
6733 
6734 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6735 					   ext4_group_t grp)
6736 {
6737 	unsigned long nr_clusters_in_group;
6738 
6739 	if (grp < (ext4_get_groups_count(sb) - 1))
6740 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6741 	else
6742 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6743 					ext4_group_first_block_no(sb, grp))
6744 				       >> EXT4_CLUSTER_BITS(sb);
6745 
6746 	return nr_clusters_in_group - 1;
6747 }
6748 
6749 static bool ext4_trim_interrupted(void)
6750 {
6751 	return fatal_signal_pending(current) || freezing(current);
6752 }
6753 
6754 static int ext4_try_to_trim_range(struct super_block *sb,
6755 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6756 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6757 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6758 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6759 {
6760 	ext4_grpblk_t next, count, free_count, last, origin_start;
6761 	bool set_trimmed = false;
6762 	void *bitmap;
6763 
6764 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6765 	bitmap = e4b->bd_bitmap;
6766 	if (start == 0 && max >= last)
6767 		set_trimmed = true;
6768 	origin_start = start;
6769 	start = max(e4b->bd_info->bb_first_free, start);
6770 	count = 0;
6771 	free_count = 0;
6772 
6773 	while (start <= max) {
6774 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6775 		if (start > max)
6776 			break;
6777 
6778 		next = mb_find_next_bit(bitmap, last + 1, start);
6779 		if (origin_start == 0 && next >= last)
6780 			set_trimmed = true;
6781 
6782 		if ((next - start) >= minblocks) {
6783 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6784 
6785 			if (ret && ret != -EOPNOTSUPP)
6786 				return count;
6787 			count += next - start;
6788 		}
6789 		free_count += next - start;
6790 		start = next + 1;
6791 
6792 		if (ext4_trim_interrupted())
6793 			return count;
6794 
6795 		if (need_resched()) {
6796 			ext4_unlock_group(sb, e4b->bd_group);
6797 			cond_resched();
6798 			ext4_lock_group(sb, e4b->bd_group);
6799 		}
6800 
6801 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6802 			break;
6803 	}
6804 
6805 	if (set_trimmed)
6806 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6807 
6808 	return count;
6809 }
6810 
6811 /**
6812  * ext4_trim_all_free -- function to trim all free space in alloc. group
6813  * @sb:			super block for file system
6814  * @group:		group to be trimmed
6815  * @start:		first group block to examine
6816  * @max:		last group block to examine
6817  * @minblocks:		minimum extent block count
6818  *
6819  * ext4_trim_all_free walks through group's block bitmap searching for free
6820  * extents. When the free extent is found, mark it as used in group buddy
6821  * bitmap. Then issue a TRIM command on this extent and free the extent in
6822  * the group buddy bitmap.
6823  */
6824 static ext4_grpblk_t
6825 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6826 		   ext4_grpblk_t start, ext4_grpblk_t max,
6827 		   ext4_grpblk_t minblocks)
6828 {
6829 	struct ext4_buddy e4b;
6830 	int ret;
6831 
6832 	trace_ext4_trim_all_free(sb, group, start, max);
6833 
6834 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6835 	if (ret) {
6836 		ext4_warning(sb, "Error %d loading buddy information for %u",
6837 			     ret, group);
6838 		return ret;
6839 	}
6840 
6841 	ext4_lock_group(sb, group);
6842 
6843 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6844 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6845 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6846 	else
6847 		ret = 0;
6848 
6849 	ext4_unlock_group(sb, group);
6850 	ext4_mb_unload_buddy(&e4b);
6851 
6852 	ext4_debug("trimmed %d blocks in the group %d\n",
6853 		ret, group);
6854 
6855 	return ret;
6856 }
6857 
6858 /**
6859  * ext4_trim_fs() -- trim ioctl handle function
6860  * @sb:			superblock for filesystem
6861  * @range:		fstrim_range structure
6862  *
6863  * start:	First Byte to trim
6864  * len:		number of Bytes to trim from start
6865  * minlen:	minimum extent length in Bytes
6866  * ext4_trim_fs goes through all allocation groups containing Bytes from
6867  * start to start+len. For each such a group ext4_trim_all_free function
6868  * is invoked to trim all free space.
6869  */
6870 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6871 {
6872 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6873 	struct ext4_group_info *grp;
6874 	ext4_group_t group, first_group, last_group;
6875 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6876 	uint64_t start, end, minlen, trimmed = 0;
6877 	ext4_fsblk_t first_data_blk =
6878 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6879 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6880 	int ret = 0;
6881 
6882 	start = range->start >> sb->s_blocksize_bits;
6883 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6884 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6885 			      range->minlen >> sb->s_blocksize_bits);
6886 
6887 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6888 	    start >= max_blks ||
6889 	    range->len < sb->s_blocksize)
6890 		return -EINVAL;
6891 	/* No point to try to trim less than discard granularity */
6892 	if (range->minlen < discard_granularity) {
6893 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6894 				discard_granularity >> sb->s_blocksize_bits);
6895 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6896 			goto out;
6897 	}
6898 	if (end >= max_blks - 1)
6899 		end = max_blks - 1;
6900 	if (end <= first_data_blk)
6901 		goto out;
6902 	if (start < first_data_blk)
6903 		start = first_data_blk;
6904 
6905 	/* Determine first and last group to examine based on start and end */
6906 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6907 				     &first_group, &first_cluster);
6908 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6909 				     &last_group, &last_cluster);
6910 
6911 	/* end now represents the last cluster to discard in this group */
6912 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6913 
6914 	for (group = first_group; group <= last_group; group++) {
6915 		if (ext4_trim_interrupted())
6916 			break;
6917 		grp = ext4_get_group_info(sb, group);
6918 		if (!grp)
6919 			continue;
6920 		/* We only do this if the grp has never been initialized */
6921 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6922 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6923 			if (ret)
6924 				break;
6925 		}
6926 
6927 		/*
6928 		 * For all the groups except the last one, last cluster will
6929 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6930 		 * change it for the last group, note that last_cluster is
6931 		 * already computed earlier by ext4_get_group_no_and_offset()
6932 		 */
6933 		if (group == last_group)
6934 			end = last_cluster;
6935 		if (grp->bb_free >= minlen) {
6936 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6937 						 end, minlen);
6938 			if (cnt < 0) {
6939 				ret = cnt;
6940 				break;
6941 			}
6942 			trimmed += cnt;
6943 		}
6944 
6945 		/*
6946 		 * For every group except the first one, we are sure
6947 		 * that the first cluster to discard will be cluster #0.
6948 		 */
6949 		first_cluster = 0;
6950 	}
6951 
6952 	if (!ret)
6953 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6954 
6955 out:
6956 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6957 	return ret;
6958 }
6959 
6960 /* Iterate all the free extents in the group. */
6961 int
6962 ext4_mballoc_query_range(
6963 	struct super_block		*sb,
6964 	ext4_group_t			group,
6965 	ext4_grpblk_t			start,
6966 	ext4_grpblk_t			end,
6967 	ext4_mballoc_query_range_fn	formatter,
6968 	void				*priv)
6969 {
6970 	void				*bitmap;
6971 	ext4_grpblk_t			next;
6972 	struct ext4_buddy		e4b;
6973 	int				error;
6974 
6975 	error = ext4_mb_load_buddy(sb, group, &e4b);
6976 	if (error)
6977 		return error;
6978 	bitmap = e4b.bd_bitmap;
6979 
6980 	ext4_lock_group(sb, group);
6981 
6982 	start = max(e4b.bd_info->bb_first_free, start);
6983 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6984 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6985 
6986 	while (start <= end) {
6987 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6988 		if (start > end)
6989 			break;
6990 		next = mb_find_next_bit(bitmap, end + 1, start);
6991 
6992 		ext4_unlock_group(sb, group);
6993 		error = formatter(sb, group, start, next - start, priv);
6994 		if (error)
6995 			goto out_unload;
6996 		ext4_lock_group(sb, group);
6997 
6998 		start = next + 1;
6999 	}
7000 
7001 	ext4_unlock_group(sb, group);
7002 out_unload:
7003 	ext4_mb_unload_buddy(&e4b);
7004 
7005 	return error;
7006 }
7007 
7008 #ifdef CONFIG_EXT4_KUNIT_TESTS
7009 #include "mballoc-test.c"
7010 #endif
7011