1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 #include <kunit/static_stub.h> 22 23 /* 24 * MUSTDO: 25 * - test ext4_ext_search_left() and ext4_ext_search_right() 26 * - search for metadata in few groups 27 * 28 * TODO v4: 29 * - normalization should take into account whether file is still open 30 * - discard preallocations if no free space left (policy?) 31 * - don't normalize tails 32 * - quota 33 * - reservation for superuser 34 * 35 * TODO v3: 36 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 37 * - track min/max extents in each group for better group selection 38 * - mb_mark_used() may allocate chunk right after splitting buddy 39 * - tree of groups sorted by number of free blocks 40 * - error handling 41 */ 42 43 /* 44 * The allocation request involve request for multiple number of blocks 45 * near to the goal(block) value specified. 46 * 47 * During initialization phase of the allocator we decide to use the 48 * group preallocation or inode preallocation depending on the size of 49 * the file. The size of the file could be the resulting file size we 50 * would have after allocation, or the current file size, which ever 51 * is larger. If the size is less than sbi->s_mb_stream_request we 52 * select to use the group preallocation. The default value of 53 * s_mb_stream_request is 16 blocks. This can also be tuned via 54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 55 * terms of number of blocks. 56 * 57 * The main motivation for having small file use group preallocation is to 58 * ensure that we have small files closer together on the disk. 59 * 60 * First stage the allocator looks at the inode prealloc list, 61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 62 * spaces for this particular inode. The inode prealloc space is 63 * represented as: 64 * 65 * pa_lstart -> the logical start block for this prealloc space 66 * pa_pstart -> the physical start block for this prealloc space 67 * pa_len -> length for this prealloc space (in clusters) 68 * pa_free -> free space available in this prealloc space (in clusters) 69 * 70 * The inode preallocation space is used looking at the _logical_ start 71 * block. If only the logical file block falls within the range of prealloc 72 * space we will consume the particular prealloc space. This makes sure that 73 * we have contiguous physical blocks representing the file blocks 74 * 75 * The important thing to be noted in case of inode prealloc space is that 76 * we don't modify the values associated to inode prealloc space except 77 * pa_free. 78 * 79 * If we are not able to find blocks in the inode prealloc space and if we 80 * have the group allocation flag set then we look at the locality group 81 * prealloc space. These are per CPU prealloc list represented as 82 * 83 * ext4_sb_info.s_locality_groups[smp_processor_id()] 84 * 85 * The reason for having a per cpu locality group is to reduce the contention 86 * between CPUs. It is possible to get scheduled at this point. 87 * 88 * The locality group prealloc space is used looking at whether we have 89 * enough free space (pa_free) within the prealloc space. 90 * 91 * If we can't allocate blocks via inode prealloc or/and locality group 92 * prealloc then we look at the buddy cache. The buddy cache is represented 93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 94 * mapped to the buddy and bitmap information regarding different 95 * groups. The buddy information is attached to buddy cache inode so that 96 * we can access them through the page cache. The information regarding 97 * each group is loaded via ext4_mb_load_buddy. The information involve 98 * block bitmap and buddy information. The information are stored in the 99 * inode as: 100 * 101 * { page } 102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 103 * 104 * 105 * one block each for bitmap and buddy information. So for each group we 106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 107 * blocksize) blocks. So it can have information regarding groups_per_page 108 * which is blocks_per_page/2 109 * 110 * The buddy cache inode is not stored on disk. The inode is thrown 111 * away when the filesystem is unmounted. 112 * 113 * We look for count number of blocks in the buddy cache. If we were able 114 * to locate that many free blocks we return with additional information 115 * regarding rest of the contiguous physical block available 116 * 117 * Before allocating blocks via buddy cache we normalize the request 118 * blocks. This ensure we ask for more blocks that we needed. The extra 119 * blocks that we get after allocation is added to the respective prealloc 120 * list. In case of inode preallocation we follow a list of heuristics 121 * based on file size. This can be found in ext4_mb_normalize_request. If 122 * we are doing a group prealloc we try to normalize the request to 123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 124 * dependent on the cluster size; for non-bigalloc file systems, it is 125 * 512 blocks. This can be tuned via 126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 127 * terms of number of blocks. If we have mounted the file system with -O 128 * stripe=<value> option the group prealloc request is normalized to the 129 * smallest multiple of the stripe value (sbi->s_stripe) which is 130 * greater than the default mb_group_prealloc. 131 * 132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 133 * structures in two data structures: 134 * 135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 136 * 137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 138 * 139 * This is an array of lists where the index in the array represents the 140 * largest free order in the buddy bitmap of the participating group infos of 141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 142 * number of buddy bitmap orders possible) number of lists. Group-infos are 143 * placed in appropriate lists. 144 * 145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 146 * 147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 148 * 149 * This is an array of lists where in the i-th list there are groups with 150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 152 * Note that we don't bother with a special list for completely empty groups 153 * so we only have MB_NUM_ORDERS(sb) lists. 154 * 155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 156 * structures to decide the order in which groups are to be traversed for 157 * fulfilling an allocation request. 158 * 159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 160 * >= the order of the request. We directly look at the largest free order list 161 * in the data structure (1) above where largest_free_order = order of the 162 * request. If that list is empty, we look at remaining list in the increasing 163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 164 * lookup in O(1) time. 165 * 166 * At CR_GOAL_LEN_FAST, we only consider groups where 167 * average fragment size > request size. So, we lookup a group which has average 168 * fragment size just above or equal to request size using our average fragment 169 * size group lists (data structure 2) in O(1) time. 170 * 171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 174 * fragment size > goal length. So before falling to the slower 175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 177 * enough average fragment size. This increases the chances of finding a 178 * suitable block group in O(1) time and results in faster allocation at the 179 * cost of reduced size of allocation. 180 * 181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 183 * CR_GOAL_LEN_FAST phase. 184 * 185 * The regular allocator (using the buddy cache) supports a few tunables. 186 * 187 * /sys/fs/ext4/<partition>/mb_min_to_scan 188 * /sys/fs/ext4/<partition>/mb_max_to_scan 189 * /sys/fs/ext4/<partition>/mb_order2_req 190 * /sys/fs/ext4/<partition>/mb_linear_limit 191 * 192 * The regular allocator uses buddy scan only if the request len is power of 193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 194 * value of s_mb_order2_reqs can be tuned via 195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 196 * stripe size (sbi->s_stripe), we try to search for contiguous block in 197 * stripe size. This should result in better allocation on RAID setups. If 198 * not, we search in the specific group using bitmap for best extents. The 199 * tunable min_to_scan and max_to_scan control the behaviour here. 200 * min_to_scan indicate how long the mballoc __must__ look for a best 201 * extent and max_to_scan indicates how long the mballoc __can__ look for a 202 * best extent in the found extents. Searching for the blocks starts with 203 * the group specified as the goal value in allocation context via 204 * ac_g_ex. Each group is first checked based on the criteria whether it 205 * can be used for allocation. ext4_mb_good_group explains how the groups are 206 * checked. 207 * 208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 209 * get traversed linearly. That may result in subsequent allocations being not 210 * close to each other. And so, the underlying device may get filled up in a 211 * non-linear fashion. While that may not matter on non-rotational devices, for 212 * rotational devices that may result in higher seek times. "mb_linear_limit" 213 * tells mballoc how many groups mballoc should search linearly before 214 * performing consulting above data structures for more efficient lookups. For 215 * non rotational devices, this value defaults to 0 and for rotational devices 216 * this is set to MB_DEFAULT_LINEAR_LIMIT. 217 * 218 * Both the prealloc space are getting populated as above. So for the first 219 * request we will hit the buddy cache which will result in this prealloc 220 * space getting filled. The prealloc space is then later used for the 221 * subsequent request. 222 */ 223 224 /* 225 * mballoc operates on the following data: 226 * - on-disk bitmap 227 * - in-core buddy (actually includes buddy and bitmap) 228 * - preallocation descriptors (PAs) 229 * 230 * there are two types of preallocations: 231 * - inode 232 * assiged to specific inode and can be used for this inode only. 233 * it describes part of inode's space preallocated to specific 234 * physical blocks. any block from that preallocated can be used 235 * independent. the descriptor just tracks number of blocks left 236 * unused. so, before taking some block from descriptor, one must 237 * make sure corresponded logical block isn't allocated yet. this 238 * also means that freeing any block within descriptor's range 239 * must discard all preallocated blocks. 240 * - locality group 241 * assigned to specific locality group which does not translate to 242 * permanent set of inodes: inode can join and leave group. space 243 * from this type of preallocation can be used for any inode. thus 244 * it's consumed from the beginning to the end. 245 * 246 * relation between them can be expressed as: 247 * in-core buddy = on-disk bitmap + preallocation descriptors 248 * 249 * this mean blocks mballoc considers used are: 250 * - allocated blocks (persistent) 251 * - preallocated blocks (non-persistent) 252 * 253 * consistency in mballoc world means that at any time a block is either 254 * free or used in ALL structures. notice: "any time" should not be read 255 * literally -- time is discrete and delimited by locks. 256 * 257 * to keep it simple, we don't use block numbers, instead we count number of 258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 259 * 260 * all operations can be expressed as: 261 * - init buddy: buddy = on-disk + PAs 262 * - new PA: buddy += N; PA = N 263 * - use inode PA: on-disk += N; PA -= N 264 * - discard inode PA buddy -= on-disk - PA; PA = 0 265 * - use locality group PA on-disk += N; PA -= N 266 * - discard locality group PA buddy -= PA; PA = 0 267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 268 * is used in real operation because we can't know actual used 269 * bits from PA, only from on-disk bitmap 270 * 271 * if we follow this strict logic, then all operations above should be atomic. 272 * given some of them can block, we'd have to use something like semaphores 273 * killing performance on high-end SMP hardware. let's try to relax it using 274 * the following knowledge: 275 * 1) if buddy is referenced, it's already initialized 276 * 2) while block is used in buddy and the buddy is referenced, 277 * nobody can re-allocate that block 278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 279 * bit set and PA claims same block, it's OK. IOW, one can set bit in 280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 281 * block 282 * 283 * so, now we're building a concurrency table: 284 * - init buddy vs. 285 * - new PA 286 * blocks for PA are allocated in the buddy, buddy must be referenced 287 * until PA is linked to allocation group to avoid concurrent buddy init 288 * - use inode PA 289 * we need to make sure that either on-disk bitmap or PA has uptodate data 290 * given (3) we care that PA-=N operation doesn't interfere with init 291 * - discard inode PA 292 * the simplest way would be to have buddy initialized by the discard 293 * - use locality group PA 294 * again PA-=N must be serialized with init 295 * - discard locality group PA 296 * the simplest way would be to have buddy initialized by the discard 297 * - new PA vs. 298 * - use inode PA 299 * i_data_sem serializes them 300 * - discard inode PA 301 * discard process must wait until PA isn't used by another process 302 * - use locality group PA 303 * some mutex should serialize them 304 * - discard locality group PA 305 * discard process must wait until PA isn't used by another process 306 * - use inode PA 307 * - use inode PA 308 * i_data_sem or another mutex should serializes them 309 * - discard inode PA 310 * discard process must wait until PA isn't used by another process 311 * - use locality group PA 312 * nothing wrong here -- they're different PAs covering different blocks 313 * - discard locality group PA 314 * discard process must wait until PA isn't used by another process 315 * 316 * now we're ready to make few consequences: 317 * - PA is referenced and while it is no discard is possible 318 * - PA is referenced until block isn't marked in on-disk bitmap 319 * - PA changes only after on-disk bitmap 320 * - discard must not compete with init. either init is done before 321 * any discard or they're serialized somehow 322 * - buddy init as sum of on-disk bitmap and PAs is done atomically 323 * 324 * a special case when we've used PA to emptiness. no need to modify buddy 325 * in this case, but we should care about concurrent init 326 * 327 */ 328 329 /* 330 * Logic in few words: 331 * 332 * - allocation: 333 * load group 334 * find blocks 335 * mark bits in on-disk bitmap 336 * release group 337 * 338 * - use preallocation: 339 * find proper PA (per-inode or group) 340 * load group 341 * mark bits in on-disk bitmap 342 * release group 343 * release PA 344 * 345 * - free: 346 * load group 347 * mark bits in on-disk bitmap 348 * release group 349 * 350 * - discard preallocations in group: 351 * mark PAs deleted 352 * move them onto local list 353 * load on-disk bitmap 354 * load group 355 * remove PA from object (inode or locality group) 356 * mark free blocks in-core 357 * 358 * - discard inode's preallocations: 359 */ 360 361 /* 362 * Locking rules 363 * 364 * Locks: 365 * - bitlock on a group (group) 366 * - object (inode/locality) (object) 367 * - per-pa lock (pa) 368 * - cr_power2_aligned lists lock (cr_power2_aligned) 369 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 370 * 371 * Paths: 372 * - new pa 373 * object 374 * group 375 * 376 * - find and use pa: 377 * pa 378 * 379 * - release consumed pa: 380 * pa 381 * group 382 * object 383 * 384 * - generate in-core bitmap: 385 * group 386 * pa 387 * 388 * - discard all for given object (inode, locality group): 389 * object 390 * pa 391 * group 392 * 393 * - discard all for given group: 394 * group 395 * pa 396 * group 397 * object 398 * 399 * - allocation path (ext4_mb_regular_allocator) 400 * group 401 * cr_power2_aligned/cr_goal_len_fast 402 */ 403 static struct kmem_cache *ext4_pspace_cachep; 404 static struct kmem_cache *ext4_ac_cachep; 405 static struct kmem_cache *ext4_free_data_cachep; 406 407 /* We create slab caches for groupinfo data structures based on the 408 * superblock block size. There will be one per mounted filesystem for 409 * each unique s_blocksize_bits */ 410 #define NR_GRPINFO_CACHES 8 411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 412 413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 416 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 417 }; 418 419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 420 ext4_group_t group); 421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 422 423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 424 ext4_group_t group, enum criteria cr); 425 426 static int ext4_try_to_trim_range(struct super_block *sb, 427 struct ext4_buddy *e4b, ext4_grpblk_t start, 428 ext4_grpblk_t max, ext4_grpblk_t minblocks); 429 430 /* 431 * The algorithm using this percpu seq counter goes below: 432 * 1. We sample the percpu discard_pa_seq counter before trying for block 433 * allocation in ext4_mb_new_blocks(). 434 * 2. We increment this percpu discard_pa_seq counter when we either allocate 435 * or free these blocks i.e. while marking those blocks as used/free in 436 * mb_mark_used()/mb_free_blocks(). 437 * 3. We also increment this percpu seq counter when we successfully identify 438 * that the bb_prealloc_list is not empty and hence proceed for discarding 439 * of those PAs inside ext4_mb_discard_group_preallocations(). 440 * 441 * Now to make sure that the regular fast path of block allocation is not 442 * affected, as a small optimization we only sample the percpu seq counter 443 * on that cpu. Only when the block allocation fails and when freed blocks 444 * found were 0, that is when we sample percpu seq counter for all cpus using 445 * below function ext4_get_discard_pa_seq_sum(). This happens after making 446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 447 */ 448 static DEFINE_PER_CPU(u64, discard_pa_seq); 449 static inline u64 ext4_get_discard_pa_seq_sum(void) 450 { 451 int __cpu; 452 u64 __seq = 0; 453 454 for_each_possible_cpu(__cpu) 455 __seq += per_cpu(discard_pa_seq, __cpu); 456 return __seq; 457 } 458 459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 460 { 461 #if BITS_PER_LONG == 64 462 *bit += ((unsigned long) addr & 7UL) << 3; 463 addr = (void *) ((unsigned long) addr & ~7UL); 464 #elif BITS_PER_LONG == 32 465 *bit += ((unsigned long) addr & 3UL) << 3; 466 addr = (void *) ((unsigned long) addr & ~3UL); 467 #else 468 #error "how many bits you are?!" 469 #endif 470 return addr; 471 } 472 473 static inline int mb_test_bit(int bit, void *addr) 474 { 475 /* 476 * ext4_test_bit on architecture like powerpc 477 * needs unsigned long aligned address 478 */ 479 addr = mb_correct_addr_and_bit(&bit, addr); 480 return ext4_test_bit(bit, addr); 481 } 482 483 static inline void mb_set_bit(int bit, void *addr) 484 { 485 addr = mb_correct_addr_and_bit(&bit, addr); 486 ext4_set_bit(bit, addr); 487 } 488 489 static inline void mb_clear_bit(int bit, void *addr) 490 { 491 addr = mb_correct_addr_and_bit(&bit, addr); 492 ext4_clear_bit(bit, addr); 493 } 494 495 static inline int mb_test_and_clear_bit(int bit, void *addr) 496 { 497 addr = mb_correct_addr_and_bit(&bit, addr); 498 return ext4_test_and_clear_bit(bit, addr); 499 } 500 501 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 502 { 503 int fix = 0, ret, tmpmax; 504 addr = mb_correct_addr_and_bit(&fix, addr); 505 tmpmax = max + fix; 506 start += fix; 507 508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 509 if (ret > max) 510 return max; 511 return ret; 512 } 513 514 static inline int mb_find_next_bit(void *addr, int max, int start) 515 { 516 int fix = 0, ret, tmpmax; 517 addr = mb_correct_addr_and_bit(&fix, addr); 518 tmpmax = max + fix; 519 start += fix; 520 521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 522 if (ret > max) 523 return max; 524 return ret; 525 } 526 527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 528 { 529 char *bb; 530 531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 532 BUG_ON(max == NULL); 533 534 if (order > e4b->bd_blkbits + 1) { 535 *max = 0; 536 return NULL; 537 } 538 539 /* at order 0 we see each particular block */ 540 if (order == 0) { 541 *max = 1 << (e4b->bd_blkbits + 3); 542 return e4b->bd_bitmap; 543 } 544 545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 547 548 return bb; 549 } 550 551 #ifdef DOUBLE_CHECK 552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 553 int first, int count) 554 { 555 int i; 556 struct super_block *sb = e4b->bd_sb; 557 558 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 559 return; 560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 561 for (i = 0; i < count; i++) { 562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 563 ext4_fsblk_t blocknr; 564 565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 567 ext4_grp_locked_error(sb, e4b->bd_group, 568 inode ? inode->i_ino : 0, 569 blocknr, 570 "freeing block already freed " 571 "(bit %u)", 572 first + i); 573 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 574 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 575 } 576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 577 } 578 } 579 580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 581 { 582 int i; 583 584 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 585 return; 586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 587 for (i = 0; i < count; i++) { 588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 590 } 591 } 592 593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 594 { 595 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 596 return; 597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 598 unsigned char *b1, *b2; 599 int i; 600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 601 b2 = (unsigned char *) bitmap; 602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 603 if (b1[i] != b2[i]) { 604 ext4_msg(e4b->bd_sb, KERN_ERR, 605 "corruption in group %u " 606 "at byte %u(%u): %x in copy != %x " 607 "on disk/prealloc", 608 e4b->bd_group, i, i * 8, b1[i], b2[i]); 609 BUG(); 610 } 611 } 612 } 613 } 614 615 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 616 struct ext4_group_info *grp, ext4_group_t group) 617 { 618 struct buffer_head *bh; 619 620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 621 if (!grp->bb_bitmap) 622 return; 623 624 bh = ext4_read_block_bitmap(sb, group); 625 if (IS_ERR_OR_NULL(bh)) { 626 kfree(grp->bb_bitmap); 627 grp->bb_bitmap = NULL; 628 return; 629 } 630 631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 632 put_bh(bh); 633 } 634 635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 636 { 637 kfree(grp->bb_bitmap); 638 } 639 640 #else 641 static inline void mb_free_blocks_double(struct inode *inode, 642 struct ext4_buddy *e4b, int first, int count) 643 { 644 return; 645 } 646 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 647 int first, int count) 648 { 649 return; 650 } 651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 652 { 653 return; 654 } 655 656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 657 struct ext4_group_info *grp, ext4_group_t group) 658 { 659 return; 660 } 661 662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 663 { 664 return; 665 } 666 #endif 667 668 #ifdef AGGRESSIVE_CHECK 669 670 #define MB_CHECK_ASSERT(assert) \ 671 do { \ 672 if (!(assert)) { \ 673 printk(KERN_EMERG \ 674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 675 function, file, line, # assert); \ 676 BUG(); \ 677 } \ 678 } while (0) 679 680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 681 const char *function, int line) 682 { 683 struct super_block *sb = e4b->bd_sb; 684 int order = e4b->bd_blkbits + 1; 685 int max; 686 int max2; 687 int i; 688 int j; 689 int k; 690 int count; 691 struct ext4_group_info *grp; 692 int fragments = 0; 693 int fstart; 694 struct list_head *cur; 695 void *buddy; 696 void *buddy2; 697 698 if (e4b->bd_info->bb_check_counter++ % 10) 699 return 0; 700 701 while (order > 1) { 702 buddy = mb_find_buddy(e4b, order, &max); 703 MB_CHECK_ASSERT(buddy); 704 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 705 MB_CHECK_ASSERT(buddy2); 706 MB_CHECK_ASSERT(buddy != buddy2); 707 MB_CHECK_ASSERT(max * 2 == max2); 708 709 count = 0; 710 for (i = 0; i < max; i++) { 711 712 if (mb_test_bit(i, buddy)) { 713 /* only single bit in buddy2 may be 0 */ 714 if (!mb_test_bit(i << 1, buddy2)) { 715 MB_CHECK_ASSERT( 716 mb_test_bit((i<<1)+1, buddy2)); 717 } 718 continue; 719 } 720 721 /* both bits in buddy2 must be 1 */ 722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 724 725 for (j = 0; j < (1 << order); j++) { 726 k = (i * (1 << order)) + j; 727 MB_CHECK_ASSERT( 728 !mb_test_bit(k, e4b->bd_bitmap)); 729 } 730 count++; 731 } 732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 733 order--; 734 } 735 736 fstart = -1; 737 buddy = mb_find_buddy(e4b, 0, &max); 738 for (i = 0; i < max; i++) { 739 if (!mb_test_bit(i, buddy)) { 740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 741 if (fstart == -1) { 742 fragments++; 743 fstart = i; 744 } 745 continue; 746 } 747 fstart = -1; 748 /* check used bits only */ 749 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 750 buddy2 = mb_find_buddy(e4b, j, &max2); 751 k = i >> j; 752 MB_CHECK_ASSERT(k < max2); 753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 754 } 755 } 756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 758 759 grp = ext4_get_group_info(sb, e4b->bd_group); 760 if (!grp) 761 return NULL; 762 list_for_each(cur, &grp->bb_prealloc_list) { 763 ext4_group_t groupnr; 764 struct ext4_prealloc_space *pa; 765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 767 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 768 for (i = 0; i < pa->pa_len; i++) 769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 770 } 771 return 0; 772 } 773 #undef MB_CHECK_ASSERT 774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 775 __FILE__, __func__, __LINE__) 776 #else 777 #define mb_check_buddy(e4b) 778 #endif 779 780 /* 781 * Divide blocks started from @first with length @len into 782 * smaller chunks with power of 2 blocks. 783 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 784 * then increase bb_counters[] for corresponded chunk size. 785 */ 786 static void ext4_mb_mark_free_simple(struct super_block *sb, 787 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 788 struct ext4_group_info *grp) 789 { 790 struct ext4_sb_info *sbi = EXT4_SB(sb); 791 ext4_grpblk_t min; 792 ext4_grpblk_t max; 793 ext4_grpblk_t chunk; 794 unsigned int border; 795 796 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 797 798 border = 2 << sb->s_blocksize_bits; 799 800 while (len > 0) { 801 /* find how many blocks can be covered since this position */ 802 max = ffs(first | border) - 1; 803 804 /* find how many blocks of power 2 we need to mark */ 805 min = fls(len) - 1; 806 807 if (max < min) 808 min = max; 809 chunk = 1 << min; 810 811 /* mark multiblock chunks only */ 812 grp->bb_counters[min]++; 813 if (min > 0) 814 mb_clear_bit(first >> min, 815 buddy + sbi->s_mb_offsets[min]); 816 817 len -= chunk; 818 first += chunk; 819 } 820 } 821 822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 823 { 824 int order; 825 826 /* 827 * We don't bother with a special lists groups with only 1 block free 828 * extents and for completely empty groups. 829 */ 830 order = fls(len) - 2; 831 if (order < 0) 832 return 0; 833 if (order == MB_NUM_ORDERS(sb)) 834 order--; 835 return order; 836 } 837 838 /* Move group to appropriate avg_fragment_size list */ 839 static void 840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 841 { 842 struct ext4_sb_info *sbi = EXT4_SB(sb); 843 int new_order; 844 845 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 846 return; 847 848 new_order = mb_avg_fragment_size_order(sb, 849 grp->bb_free / grp->bb_fragments); 850 if (new_order == grp->bb_avg_fragment_size_order) 851 return; 852 853 if (grp->bb_avg_fragment_size_order != -1) { 854 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 855 grp->bb_avg_fragment_size_order]); 856 list_del(&grp->bb_avg_fragment_size_node); 857 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 858 grp->bb_avg_fragment_size_order]); 859 } 860 grp->bb_avg_fragment_size_order = new_order; 861 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 862 grp->bb_avg_fragment_size_order]); 863 list_add_tail(&grp->bb_avg_fragment_size_node, 864 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 865 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 866 grp->bb_avg_fragment_size_order]); 867 } 868 869 /* 870 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 871 * cr level needs an update. 872 */ 873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 874 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 875 { 876 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 877 struct ext4_group_info *iter; 878 int i; 879 880 if (ac->ac_status == AC_STATUS_FOUND) 881 return; 882 883 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 884 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 885 886 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 887 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 888 continue; 889 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 890 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 891 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 892 continue; 893 } 894 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 895 bb_largest_free_order_node) { 896 if (sbi->s_mb_stats) 897 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 898 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 899 *group = iter->bb_group; 900 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 901 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 902 return; 903 } 904 } 905 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 906 } 907 908 /* Increment cr and search again if no group is found */ 909 *new_cr = CR_GOAL_LEN_FAST; 910 } 911 912 /* 913 * Find a suitable group of given order from the average fragments list. 914 */ 915 static struct ext4_group_info * 916 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 917 { 918 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 919 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 920 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 921 struct ext4_group_info *grp = NULL, *iter; 922 enum criteria cr = ac->ac_criteria; 923 924 if (list_empty(frag_list)) 925 return NULL; 926 read_lock(frag_list_lock); 927 if (list_empty(frag_list)) { 928 read_unlock(frag_list_lock); 929 return NULL; 930 } 931 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 932 if (sbi->s_mb_stats) 933 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 934 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 935 grp = iter; 936 break; 937 } 938 } 939 read_unlock(frag_list_lock); 940 return grp; 941 } 942 943 /* 944 * Choose next group by traversing average fragment size list of suitable 945 * order. Updates *new_cr if cr level needs an update. 946 */ 947 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 948 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 949 { 950 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 951 struct ext4_group_info *grp = NULL; 952 int i; 953 954 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 955 if (sbi->s_mb_stats) 956 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 957 } 958 959 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 960 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 961 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 962 if (grp) { 963 *group = grp->bb_group; 964 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 965 return; 966 } 967 } 968 969 /* 970 * CR_BEST_AVAIL_LEN works based on the concept that we have 971 * a larger normalized goal len request which can be trimmed to 972 * a smaller goal len such that it can still satisfy original 973 * request len. However, allocation request for non-regular 974 * files never gets normalized. 975 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 976 */ 977 if (ac->ac_flags & EXT4_MB_HINT_DATA) 978 *new_cr = CR_BEST_AVAIL_LEN; 979 else 980 *new_cr = CR_GOAL_LEN_SLOW; 981 } 982 983 /* 984 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 985 * order we have and proactively trim the goal request length to that order to 986 * find a suitable group faster. 987 * 988 * This optimizes allocation speed at the cost of slightly reduced 989 * preallocations. However, we make sure that we don't trim the request too 990 * much and fall to CR_GOAL_LEN_SLOW in that case. 991 */ 992 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 993 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 994 { 995 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 996 struct ext4_group_info *grp = NULL; 997 int i, order, min_order; 998 unsigned long num_stripe_clusters = 0; 999 1000 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1001 if (sbi->s_mb_stats) 1002 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1003 } 1004 1005 /* 1006 * mb_avg_fragment_size_order() returns order in a way that makes 1007 * retrieving back the length using (1 << order) inaccurate. Hence, use 1008 * fls() instead since we need to know the actual length while modifying 1009 * goal length. 1010 */ 1011 order = fls(ac->ac_g_ex.fe_len) - 1; 1012 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1013 if (min_order < 0) 1014 min_order = 0; 1015 1016 if (sbi->s_stripe > 0) { 1017 /* 1018 * We are assuming that stripe size is always a multiple of 1019 * cluster ratio otherwise __ext4_fill_super exists early. 1020 */ 1021 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1022 if (1 << min_order < num_stripe_clusters) 1023 /* 1024 * We consider 1 order less because later we round 1025 * up the goal len to num_stripe_clusters 1026 */ 1027 min_order = fls(num_stripe_clusters) - 1; 1028 } 1029 1030 if (1 << min_order < ac->ac_o_ex.fe_len) 1031 min_order = fls(ac->ac_o_ex.fe_len); 1032 1033 for (i = order; i >= min_order; i--) { 1034 int frag_order; 1035 /* 1036 * Scale down goal len to make sure we find something 1037 * in the free fragments list. Basically, reduce 1038 * preallocations. 1039 */ 1040 ac->ac_g_ex.fe_len = 1 << i; 1041 1042 if (num_stripe_clusters > 0) { 1043 /* 1044 * Try to round up the adjusted goal length to 1045 * stripe size (in cluster units) multiple for 1046 * efficiency. 1047 */ 1048 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1049 num_stripe_clusters); 1050 } 1051 1052 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1053 ac->ac_g_ex.fe_len); 1054 1055 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1056 if (grp) { 1057 *group = grp->bb_group; 1058 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1059 return; 1060 } 1061 } 1062 1063 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1064 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1065 *new_cr = CR_GOAL_LEN_SLOW; 1066 } 1067 1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1069 { 1070 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1071 return 0; 1072 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1073 return 0; 1074 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1075 return 0; 1076 return 1; 1077 } 1078 1079 /* 1080 * Return next linear group for allocation. If linear traversal should not be 1081 * performed, this function just returns the same group 1082 */ 1083 static ext4_group_t 1084 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1085 ext4_group_t ngroups) 1086 { 1087 if (!should_optimize_scan(ac)) 1088 goto inc_and_return; 1089 1090 if (ac->ac_groups_linear_remaining) { 1091 ac->ac_groups_linear_remaining--; 1092 goto inc_and_return; 1093 } 1094 1095 return group; 1096 inc_and_return: 1097 /* 1098 * Artificially restricted ngroups for non-extent 1099 * files makes group > ngroups possible on first loop. 1100 */ 1101 return group + 1 >= ngroups ? 0 : group + 1; 1102 } 1103 1104 /* 1105 * ext4_mb_choose_next_group: choose next group for allocation. 1106 * 1107 * @ac Allocation Context 1108 * @new_cr This is an output parameter. If the there is no good group 1109 * available at current CR level, this field is updated to indicate 1110 * the new cr level that should be used. 1111 * @group This is an input / output parameter. As an input it indicates the 1112 * next group that the allocator intends to use for allocation. As 1113 * output, this field indicates the next group that should be used as 1114 * determined by the optimization functions. 1115 * @ngroups Total number of groups 1116 */ 1117 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1118 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1119 { 1120 *new_cr = ac->ac_criteria; 1121 1122 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1123 *group = next_linear_group(ac, *group, ngroups); 1124 return; 1125 } 1126 1127 if (*new_cr == CR_POWER2_ALIGNED) { 1128 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1129 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1130 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1131 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1132 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1133 } else { 1134 /* 1135 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1136 * bb_free. But until that happens, we should never come here. 1137 */ 1138 WARN_ON(1); 1139 } 1140 } 1141 1142 /* 1143 * Cache the order of the largest free extent we have available in this block 1144 * group. 1145 */ 1146 static void 1147 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1148 { 1149 struct ext4_sb_info *sbi = EXT4_SB(sb); 1150 int i; 1151 1152 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1153 if (grp->bb_counters[i] > 0) 1154 break; 1155 /* No need to move between order lists? */ 1156 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1157 i == grp->bb_largest_free_order) { 1158 grp->bb_largest_free_order = i; 1159 return; 1160 } 1161 1162 if (grp->bb_largest_free_order >= 0) { 1163 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1164 grp->bb_largest_free_order]); 1165 list_del_init(&grp->bb_largest_free_order_node); 1166 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1167 grp->bb_largest_free_order]); 1168 } 1169 grp->bb_largest_free_order = i; 1170 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1171 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1172 grp->bb_largest_free_order]); 1173 list_add_tail(&grp->bb_largest_free_order_node, 1174 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1175 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1176 grp->bb_largest_free_order]); 1177 } 1178 } 1179 1180 static noinline_for_stack 1181 void ext4_mb_generate_buddy(struct super_block *sb, 1182 void *buddy, void *bitmap, ext4_group_t group, 1183 struct ext4_group_info *grp) 1184 { 1185 struct ext4_sb_info *sbi = EXT4_SB(sb); 1186 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1187 ext4_grpblk_t i = 0; 1188 ext4_grpblk_t first; 1189 ext4_grpblk_t len; 1190 unsigned free = 0; 1191 unsigned fragments = 0; 1192 unsigned long long period = get_cycles(); 1193 1194 /* initialize buddy from bitmap which is aggregation 1195 * of on-disk bitmap and preallocations */ 1196 i = mb_find_next_zero_bit(bitmap, max, 0); 1197 grp->bb_first_free = i; 1198 while (i < max) { 1199 fragments++; 1200 first = i; 1201 i = mb_find_next_bit(bitmap, max, i); 1202 len = i - first; 1203 free += len; 1204 if (len > 1) 1205 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1206 else 1207 grp->bb_counters[0]++; 1208 if (i < max) 1209 i = mb_find_next_zero_bit(bitmap, max, i); 1210 } 1211 grp->bb_fragments = fragments; 1212 1213 if (free != grp->bb_free) { 1214 ext4_grp_locked_error(sb, group, 0, 0, 1215 "block bitmap and bg descriptor " 1216 "inconsistent: %u vs %u free clusters", 1217 free, grp->bb_free); 1218 /* 1219 * If we intend to continue, we consider group descriptor 1220 * corrupt and update bb_free using bitmap value 1221 */ 1222 grp->bb_free = free; 1223 ext4_mark_group_bitmap_corrupted(sb, group, 1224 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1225 } 1226 mb_set_largest_free_order(sb, grp); 1227 mb_update_avg_fragment_size(sb, grp); 1228 1229 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1230 1231 period = get_cycles() - period; 1232 atomic_inc(&sbi->s_mb_buddies_generated); 1233 atomic64_add(period, &sbi->s_mb_generation_time); 1234 } 1235 1236 /* The buddy information is attached the buddy cache inode 1237 * for convenience. The information regarding each group 1238 * is loaded via ext4_mb_load_buddy. The information involve 1239 * block bitmap and buddy information. The information are 1240 * stored in the inode as 1241 * 1242 * { page } 1243 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1244 * 1245 * 1246 * one block each for bitmap and buddy information. 1247 * So for each group we take up 2 blocks. A page can 1248 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1249 * So it can have information regarding groups_per_page which 1250 * is blocks_per_page/2 1251 * 1252 * Locking note: This routine takes the block group lock of all groups 1253 * for this page; do not hold this lock when calling this routine! 1254 */ 1255 1256 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1257 { 1258 ext4_group_t ngroups; 1259 unsigned int blocksize; 1260 int blocks_per_page; 1261 int groups_per_page; 1262 int err = 0; 1263 int i; 1264 ext4_group_t first_group, group; 1265 int first_block; 1266 struct super_block *sb; 1267 struct buffer_head *bhs; 1268 struct buffer_head **bh = NULL; 1269 struct inode *inode; 1270 char *data; 1271 char *bitmap; 1272 struct ext4_group_info *grinfo; 1273 1274 inode = page->mapping->host; 1275 sb = inode->i_sb; 1276 ngroups = ext4_get_groups_count(sb); 1277 blocksize = i_blocksize(inode); 1278 blocks_per_page = PAGE_SIZE / blocksize; 1279 1280 mb_debug(sb, "init page %lu\n", page->index); 1281 1282 groups_per_page = blocks_per_page >> 1; 1283 if (groups_per_page == 0) 1284 groups_per_page = 1; 1285 1286 /* allocate buffer_heads to read bitmaps */ 1287 if (groups_per_page > 1) { 1288 i = sizeof(struct buffer_head *) * groups_per_page; 1289 bh = kzalloc(i, gfp); 1290 if (bh == NULL) 1291 return -ENOMEM; 1292 } else 1293 bh = &bhs; 1294 1295 first_group = page->index * blocks_per_page / 2; 1296 1297 /* read all groups the page covers into the cache */ 1298 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1299 if (group >= ngroups) 1300 break; 1301 1302 grinfo = ext4_get_group_info(sb, group); 1303 if (!grinfo) 1304 continue; 1305 /* 1306 * If page is uptodate then we came here after online resize 1307 * which added some new uninitialized group info structs, so 1308 * we must skip all initialized uptodate buddies on the page, 1309 * which may be currently in use by an allocating task. 1310 */ 1311 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1312 bh[i] = NULL; 1313 continue; 1314 } 1315 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1316 if (IS_ERR(bh[i])) { 1317 err = PTR_ERR(bh[i]); 1318 bh[i] = NULL; 1319 goto out; 1320 } 1321 mb_debug(sb, "read bitmap for group %u\n", group); 1322 } 1323 1324 /* wait for I/O completion */ 1325 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1326 int err2; 1327 1328 if (!bh[i]) 1329 continue; 1330 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1331 if (!err) 1332 err = err2; 1333 } 1334 1335 first_block = page->index * blocks_per_page; 1336 for (i = 0; i < blocks_per_page; i++) { 1337 group = (first_block + i) >> 1; 1338 if (group >= ngroups) 1339 break; 1340 1341 if (!bh[group - first_group]) 1342 /* skip initialized uptodate buddy */ 1343 continue; 1344 1345 if (!buffer_verified(bh[group - first_group])) 1346 /* Skip faulty bitmaps */ 1347 continue; 1348 err = 0; 1349 1350 /* 1351 * data carry information regarding this 1352 * particular group in the format specified 1353 * above 1354 * 1355 */ 1356 data = page_address(page) + (i * blocksize); 1357 bitmap = bh[group - first_group]->b_data; 1358 1359 /* 1360 * We place the buddy block and bitmap block 1361 * close together 1362 */ 1363 grinfo = ext4_get_group_info(sb, group); 1364 if (!grinfo) { 1365 err = -EFSCORRUPTED; 1366 goto out; 1367 } 1368 if ((first_block + i) & 1) { 1369 /* this is block of buddy */ 1370 BUG_ON(incore == NULL); 1371 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1372 group, page->index, i * blocksize); 1373 trace_ext4_mb_buddy_bitmap_load(sb, group); 1374 grinfo->bb_fragments = 0; 1375 memset(grinfo->bb_counters, 0, 1376 sizeof(*grinfo->bb_counters) * 1377 (MB_NUM_ORDERS(sb))); 1378 /* 1379 * incore got set to the group block bitmap below 1380 */ 1381 ext4_lock_group(sb, group); 1382 /* init the buddy */ 1383 memset(data, 0xff, blocksize); 1384 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1385 ext4_unlock_group(sb, group); 1386 incore = NULL; 1387 } else { 1388 /* this is block of bitmap */ 1389 BUG_ON(incore != NULL); 1390 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1391 group, page->index, i * blocksize); 1392 trace_ext4_mb_bitmap_load(sb, group); 1393 1394 /* see comments in ext4_mb_put_pa() */ 1395 ext4_lock_group(sb, group); 1396 memcpy(data, bitmap, blocksize); 1397 1398 /* mark all preallocated blks used in in-core bitmap */ 1399 ext4_mb_generate_from_pa(sb, data, group); 1400 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1401 ext4_unlock_group(sb, group); 1402 1403 /* set incore so that the buddy information can be 1404 * generated using this 1405 */ 1406 incore = data; 1407 } 1408 } 1409 SetPageUptodate(page); 1410 1411 out: 1412 if (bh) { 1413 for (i = 0; i < groups_per_page; i++) 1414 brelse(bh[i]); 1415 if (bh != &bhs) 1416 kfree(bh); 1417 } 1418 return err; 1419 } 1420 1421 /* 1422 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1423 * on the same buddy page doesn't happen whild holding the buddy page lock. 1424 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1425 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1426 */ 1427 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1428 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1429 { 1430 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1431 int block, pnum, poff; 1432 int blocks_per_page; 1433 struct page *page; 1434 1435 e4b->bd_buddy_page = NULL; 1436 e4b->bd_bitmap_page = NULL; 1437 1438 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1439 /* 1440 * the buddy cache inode stores the block bitmap 1441 * and buddy information in consecutive blocks. 1442 * So for each group we need two blocks. 1443 */ 1444 block = group * 2; 1445 pnum = block / blocks_per_page; 1446 poff = block % blocks_per_page; 1447 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1448 if (!page) 1449 return -ENOMEM; 1450 BUG_ON(page->mapping != inode->i_mapping); 1451 e4b->bd_bitmap_page = page; 1452 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1453 1454 if (blocks_per_page >= 2) { 1455 /* buddy and bitmap are on the same page */ 1456 return 0; 1457 } 1458 1459 /* blocks_per_page == 1, hence we need another page for the buddy */ 1460 page = find_or_create_page(inode->i_mapping, block + 1, gfp); 1461 if (!page) 1462 return -ENOMEM; 1463 BUG_ON(page->mapping != inode->i_mapping); 1464 e4b->bd_buddy_page = page; 1465 return 0; 1466 } 1467 1468 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1469 { 1470 if (e4b->bd_bitmap_page) { 1471 unlock_page(e4b->bd_bitmap_page); 1472 put_page(e4b->bd_bitmap_page); 1473 } 1474 if (e4b->bd_buddy_page) { 1475 unlock_page(e4b->bd_buddy_page); 1476 put_page(e4b->bd_buddy_page); 1477 } 1478 } 1479 1480 /* 1481 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1482 * block group lock of all groups for this page; do not hold the BG lock when 1483 * calling this routine! 1484 */ 1485 static noinline_for_stack 1486 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1487 { 1488 1489 struct ext4_group_info *this_grp; 1490 struct ext4_buddy e4b; 1491 struct page *page; 1492 int ret = 0; 1493 1494 might_sleep(); 1495 mb_debug(sb, "init group %u\n", group); 1496 this_grp = ext4_get_group_info(sb, group); 1497 if (!this_grp) 1498 return -EFSCORRUPTED; 1499 1500 /* 1501 * This ensures that we don't reinit the buddy cache 1502 * page which map to the group from which we are already 1503 * allocating. If we are looking at the buddy cache we would 1504 * have taken a reference using ext4_mb_load_buddy and that 1505 * would have pinned buddy page to page cache. 1506 * The call to ext4_mb_get_buddy_page_lock will mark the 1507 * page accessed. 1508 */ 1509 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1510 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1511 /* 1512 * somebody initialized the group 1513 * return without doing anything 1514 */ 1515 goto err; 1516 } 1517 1518 page = e4b.bd_bitmap_page; 1519 ret = ext4_mb_init_cache(page, NULL, gfp); 1520 if (ret) 1521 goto err; 1522 if (!PageUptodate(page)) { 1523 ret = -EIO; 1524 goto err; 1525 } 1526 1527 if (e4b.bd_buddy_page == NULL) { 1528 /* 1529 * If both the bitmap and buddy are in 1530 * the same page we don't need to force 1531 * init the buddy 1532 */ 1533 ret = 0; 1534 goto err; 1535 } 1536 /* init buddy cache */ 1537 page = e4b.bd_buddy_page; 1538 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1539 if (ret) 1540 goto err; 1541 if (!PageUptodate(page)) { 1542 ret = -EIO; 1543 goto err; 1544 } 1545 err: 1546 ext4_mb_put_buddy_page_lock(&e4b); 1547 return ret; 1548 } 1549 1550 /* 1551 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1552 * block group lock of all groups for this page; do not hold the BG lock when 1553 * calling this routine! 1554 */ 1555 static noinline_for_stack int 1556 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1557 struct ext4_buddy *e4b, gfp_t gfp) 1558 { 1559 int blocks_per_page; 1560 int block; 1561 int pnum; 1562 int poff; 1563 struct page *page; 1564 int ret; 1565 struct ext4_group_info *grp; 1566 struct ext4_sb_info *sbi = EXT4_SB(sb); 1567 struct inode *inode = sbi->s_buddy_cache; 1568 1569 might_sleep(); 1570 mb_debug(sb, "load group %u\n", group); 1571 1572 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1573 grp = ext4_get_group_info(sb, group); 1574 if (!grp) 1575 return -EFSCORRUPTED; 1576 1577 e4b->bd_blkbits = sb->s_blocksize_bits; 1578 e4b->bd_info = grp; 1579 e4b->bd_sb = sb; 1580 e4b->bd_group = group; 1581 e4b->bd_buddy_page = NULL; 1582 e4b->bd_bitmap_page = NULL; 1583 1584 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1585 /* 1586 * we need full data about the group 1587 * to make a good selection 1588 */ 1589 ret = ext4_mb_init_group(sb, group, gfp); 1590 if (ret) 1591 return ret; 1592 } 1593 1594 /* 1595 * the buddy cache inode stores the block bitmap 1596 * and buddy information in consecutive blocks. 1597 * So for each group we need two blocks. 1598 */ 1599 block = group * 2; 1600 pnum = block / blocks_per_page; 1601 poff = block % blocks_per_page; 1602 1603 /* we could use find_or_create_page(), but it locks page 1604 * what we'd like to avoid in fast path ... */ 1605 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1606 if (page == NULL || !PageUptodate(page)) { 1607 if (page) 1608 /* 1609 * drop the page reference and try 1610 * to get the page with lock. If we 1611 * are not uptodate that implies 1612 * somebody just created the page but 1613 * is yet to initialize the same. So 1614 * wait for it to initialize. 1615 */ 1616 put_page(page); 1617 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1618 if (page) { 1619 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1620 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1621 /* should never happen */ 1622 unlock_page(page); 1623 ret = -EINVAL; 1624 goto err; 1625 } 1626 if (!PageUptodate(page)) { 1627 ret = ext4_mb_init_cache(page, NULL, gfp); 1628 if (ret) { 1629 unlock_page(page); 1630 goto err; 1631 } 1632 mb_cmp_bitmaps(e4b, page_address(page) + 1633 (poff * sb->s_blocksize)); 1634 } 1635 unlock_page(page); 1636 } 1637 } 1638 if (page == NULL) { 1639 ret = -ENOMEM; 1640 goto err; 1641 } 1642 if (!PageUptodate(page)) { 1643 ret = -EIO; 1644 goto err; 1645 } 1646 1647 /* Pages marked accessed already */ 1648 e4b->bd_bitmap_page = page; 1649 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1650 1651 block++; 1652 pnum = block / blocks_per_page; 1653 poff = block % blocks_per_page; 1654 1655 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1656 if (page == NULL || !PageUptodate(page)) { 1657 if (page) 1658 put_page(page); 1659 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1660 if (page) { 1661 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1662 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1663 /* should never happen */ 1664 unlock_page(page); 1665 ret = -EINVAL; 1666 goto err; 1667 } 1668 if (!PageUptodate(page)) { 1669 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1670 gfp); 1671 if (ret) { 1672 unlock_page(page); 1673 goto err; 1674 } 1675 } 1676 unlock_page(page); 1677 } 1678 } 1679 if (page == NULL) { 1680 ret = -ENOMEM; 1681 goto err; 1682 } 1683 if (!PageUptodate(page)) { 1684 ret = -EIO; 1685 goto err; 1686 } 1687 1688 /* Pages marked accessed already */ 1689 e4b->bd_buddy_page = page; 1690 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1691 1692 return 0; 1693 1694 err: 1695 if (page) 1696 put_page(page); 1697 if (e4b->bd_bitmap_page) 1698 put_page(e4b->bd_bitmap_page); 1699 1700 e4b->bd_buddy = NULL; 1701 e4b->bd_bitmap = NULL; 1702 return ret; 1703 } 1704 1705 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1706 struct ext4_buddy *e4b) 1707 { 1708 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1709 } 1710 1711 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1712 { 1713 if (e4b->bd_bitmap_page) 1714 put_page(e4b->bd_bitmap_page); 1715 if (e4b->bd_buddy_page) 1716 put_page(e4b->bd_buddy_page); 1717 } 1718 1719 1720 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1721 { 1722 int order = 1, max; 1723 void *bb; 1724 1725 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1726 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1727 1728 while (order <= e4b->bd_blkbits + 1) { 1729 bb = mb_find_buddy(e4b, order, &max); 1730 if (!mb_test_bit(block >> order, bb)) { 1731 /* this block is part of buddy of order 'order' */ 1732 return order; 1733 } 1734 order++; 1735 } 1736 return 0; 1737 } 1738 1739 static void mb_clear_bits(void *bm, int cur, int len) 1740 { 1741 __u32 *addr; 1742 1743 len = cur + len; 1744 while (cur < len) { 1745 if ((cur & 31) == 0 && (len - cur) >= 32) { 1746 /* fast path: clear whole word at once */ 1747 addr = bm + (cur >> 3); 1748 *addr = 0; 1749 cur += 32; 1750 continue; 1751 } 1752 mb_clear_bit(cur, bm); 1753 cur++; 1754 } 1755 } 1756 1757 /* clear bits in given range 1758 * will return first found zero bit if any, -1 otherwise 1759 */ 1760 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1761 { 1762 __u32 *addr; 1763 int zero_bit = -1; 1764 1765 len = cur + len; 1766 while (cur < len) { 1767 if ((cur & 31) == 0 && (len - cur) >= 32) { 1768 /* fast path: clear whole word at once */ 1769 addr = bm + (cur >> 3); 1770 if (*addr != (__u32)(-1) && zero_bit == -1) 1771 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1772 *addr = 0; 1773 cur += 32; 1774 continue; 1775 } 1776 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1777 zero_bit = cur; 1778 cur++; 1779 } 1780 1781 return zero_bit; 1782 } 1783 1784 void mb_set_bits(void *bm, int cur, int len) 1785 { 1786 __u32 *addr; 1787 1788 len = cur + len; 1789 while (cur < len) { 1790 if ((cur & 31) == 0 && (len - cur) >= 32) { 1791 /* fast path: set whole word at once */ 1792 addr = bm + (cur >> 3); 1793 *addr = 0xffffffff; 1794 cur += 32; 1795 continue; 1796 } 1797 mb_set_bit(cur, bm); 1798 cur++; 1799 } 1800 } 1801 1802 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1803 { 1804 if (mb_test_bit(*bit + side, bitmap)) { 1805 mb_clear_bit(*bit, bitmap); 1806 (*bit) -= side; 1807 return 1; 1808 } 1809 else { 1810 (*bit) += side; 1811 mb_set_bit(*bit, bitmap); 1812 return -1; 1813 } 1814 } 1815 1816 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1817 { 1818 int max; 1819 int order = 1; 1820 void *buddy = mb_find_buddy(e4b, order, &max); 1821 1822 while (buddy) { 1823 void *buddy2; 1824 1825 /* Bits in range [first; last] are known to be set since 1826 * corresponding blocks were allocated. Bits in range 1827 * (first; last) will stay set because they form buddies on 1828 * upper layer. We just deal with borders if they don't 1829 * align with upper layer and then go up. 1830 * Releasing entire group is all about clearing 1831 * single bit of highest order buddy. 1832 */ 1833 1834 /* Example: 1835 * --------------------------------- 1836 * | 1 | 1 | 1 | 1 | 1837 * --------------------------------- 1838 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1839 * --------------------------------- 1840 * 0 1 2 3 4 5 6 7 1841 * \_____________________/ 1842 * 1843 * Neither [1] nor [6] is aligned to above layer. 1844 * Left neighbour [0] is free, so mark it busy, 1845 * decrease bb_counters and extend range to 1846 * [0; 6] 1847 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1848 * mark [6] free, increase bb_counters and shrink range to 1849 * [0; 5]. 1850 * Then shift range to [0; 2], go up and do the same. 1851 */ 1852 1853 1854 if (first & 1) 1855 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1856 if (!(last & 1)) 1857 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1858 if (first > last) 1859 break; 1860 order++; 1861 1862 buddy2 = mb_find_buddy(e4b, order, &max); 1863 if (!buddy2) { 1864 mb_clear_bits(buddy, first, last - first + 1); 1865 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1866 break; 1867 } 1868 first >>= 1; 1869 last >>= 1; 1870 buddy = buddy2; 1871 } 1872 } 1873 1874 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1875 int first, int count) 1876 { 1877 int left_is_free = 0; 1878 int right_is_free = 0; 1879 int block; 1880 int last = first + count - 1; 1881 struct super_block *sb = e4b->bd_sb; 1882 1883 if (WARN_ON(count == 0)) 1884 return; 1885 BUG_ON(last >= (sb->s_blocksize << 3)); 1886 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1887 /* Don't bother if the block group is corrupt. */ 1888 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1889 return; 1890 1891 mb_check_buddy(e4b); 1892 mb_free_blocks_double(inode, e4b, first, count); 1893 1894 this_cpu_inc(discard_pa_seq); 1895 e4b->bd_info->bb_free += count; 1896 if (first < e4b->bd_info->bb_first_free) 1897 e4b->bd_info->bb_first_free = first; 1898 1899 /* access memory sequentially: check left neighbour, 1900 * clear range and then check right neighbour 1901 */ 1902 if (first != 0) 1903 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1904 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1905 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1906 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1907 1908 if (unlikely(block != -1)) { 1909 struct ext4_sb_info *sbi = EXT4_SB(sb); 1910 ext4_fsblk_t blocknr; 1911 1912 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1913 blocknr += EXT4_C2B(sbi, block); 1914 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1915 ext4_grp_locked_error(sb, e4b->bd_group, 1916 inode ? inode->i_ino : 0, 1917 blocknr, 1918 "freeing already freed block (bit %u); block bitmap corrupt.", 1919 block); 1920 ext4_mark_group_bitmap_corrupted( 1921 sb, e4b->bd_group, 1922 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1923 } 1924 goto done; 1925 } 1926 1927 /* let's maintain fragments counter */ 1928 if (left_is_free && right_is_free) 1929 e4b->bd_info->bb_fragments--; 1930 else if (!left_is_free && !right_is_free) 1931 e4b->bd_info->bb_fragments++; 1932 1933 /* buddy[0] == bd_bitmap is a special case, so handle 1934 * it right away and let mb_buddy_mark_free stay free of 1935 * zero order checks. 1936 * Check if neighbours are to be coaleasced, 1937 * adjust bitmap bb_counters and borders appropriately. 1938 */ 1939 if (first & 1) { 1940 first += !left_is_free; 1941 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1942 } 1943 if (!(last & 1)) { 1944 last -= !right_is_free; 1945 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1946 } 1947 1948 if (first <= last) 1949 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1950 1951 done: 1952 mb_set_largest_free_order(sb, e4b->bd_info); 1953 mb_update_avg_fragment_size(sb, e4b->bd_info); 1954 mb_check_buddy(e4b); 1955 } 1956 1957 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1958 int needed, struct ext4_free_extent *ex) 1959 { 1960 int max, order, next; 1961 void *buddy; 1962 1963 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1964 BUG_ON(ex == NULL); 1965 1966 buddy = mb_find_buddy(e4b, 0, &max); 1967 BUG_ON(buddy == NULL); 1968 BUG_ON(block >= max); 1969 if (mb_test_bit(block, buddy)) { 1970 ex->fe_len = 0; 1971 ex->fe_start = 0; 1972 ex->fe_group = 0; 1973 return 0; 1974 } 1975 1976 /* find actual order */ 1977 order = mb_find_order_for_block(e4b, block); 1978 1979 ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); 1980 ex->fe_start = block; 1981 ex->fe_group = e4b->bd_group; 1982 1983 block = block >> order; 1984 1985 while (needed > ex->fe_len && 1986 mb_find_buddy(e4b, order, &max)) { 1987 1988 if (block + 1 >= max) 1989 break; 1990 1991 next = (block + 1) * (1 << order); 1992 if (mb_test_bit(next, e4b->bd_bitmap)) 1993 break; 1994 1995 order = mb_find_order_for_block(e4b, next); 1996 1997 block = next >> order; 1998 ex->fe_len += 1 << order; 1999 } 2000 2001 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2002 /* Should never happen! (but apparently sometimes does?!?) */ 2003 WARN_ON(1); 2004 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2005 "corruption or bug in mb_find_extent " 2006 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2007 block, order, needed, ex->fe_group, ex->fe_start, 2008 ex->fe_len, ex->fe_logical); 2009 ex->fe_len = 0; 2010 ex->fe_start = 0; 2011 ex->fe_group = 0; 2012 } 2013 return ex->fe_len; 2014 } 2015 2016 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2017 { 2018 int ord; 2019 int mlen = 0; 2020 int max = 0; 2021 int cur; 2022 int start = ex->fe_start; 2023 int len = ex->fe_len; 2024 unsigned ret = 0; 2025 int len0 = len; 2026 void *buddy; 2027 bool split = false; 2028 2029 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2030 BUG_ON(e4b->bd_group != ex->fe_group); 2031 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2032 mb_check_buddy(e4b); 2033 mb_mark_used_double(e4b, start, len); 2034 2035 this_cpu_inc(discard_pa_seq); 2036 e4b->bd_info->bb_free -= len; 2037 if (e4b->bd_info->bb_first_free == start) 2038 e4b->bd_info->bb_first_free += len; 2039 2040 /* let's maintain fragments counter */ 2041 if (start != 0) 2042 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2043 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2044 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2045 if (mlen && max) 2046 e4b->bd_info->bb_fragments++; 2047 else if (!mlen && !max) 2048 e4b->bd_info->bb_fragments--; 2049 2050 /* let's maintain buddy itself */ 2051 while (len) { 2052 if (!split) 2053 ord = mb_find_order_for_block(e4b, start); 2054 2055 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2056 /* the whole chunk may be allocated at once! */ 2057 mlen = 1 << ord; 2058 if (!split) 2059 buddy = mb_find_buddy(e4b, ord, &max); 2060 else 2061 split = false; 2062 BUG_ON((start >> ord) >= max); 2063 mb_set_bit(start >> ord, buddy); 2064 e4b->bd_info->bb_counters[ord]--; 2065 start += mlen; 2066 len -= mlen; 2067 BUG_ON(len < 0); 2068 continue; 2069 } 2070 2071 /* store for history */ 2072 if (ret == 0) 2073 ret = len | (ord << 16); 2074 2075 /* we have to split large buddy */ 2076 BUG_ON(ord <= 0); 2077 buddy = mb_find_buddy(e4b, ord, &max); 2078 mb_set_bit(start >> ord, buddy); 2079 e4b->bd_info->bb_counters[ord]--; 2080 2081 ord--; 2082 cur = (start >> ord) & ~1U; 2083 buddy = mb_find_buddy(e4b, ord, &max); 2084 mb_clear_bit(cur, buddy); 2085 mb_clear_bit(cur + 1, buddy); 2086 e4b->bd_info->bb_counters[ord]++; 2087 e4b->bd_info->bb_counters[ord]++; 2088 split = true; 2089 } 2090 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2091 2092 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2093 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2094 mb_check_buddy(e4b); 2095 2096 return ret; 2097 } 2098 2099 /* 2100 * Must be called under group lock! 2101 */ 2102 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2103 struct ext4_buddy *e4b) 2104 { 2105 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2106 int ret; 2107 2108 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2109 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2110 2111 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2112 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2113 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2114 2115 /* preallocation can change ac_b_ex, thus we store actually 2116 * allocated blocks for history */ 2117 ac->ac_f_ex = ac->ac_b_ex; 2118 2119 ac->ac_status = AC_STATUS_FOUND; 2120 ac->ac_tail = ret & 0xffff; 2121 ac->ac_buddy = ret >> 16; 2122 2123 /* 2124 * take the page reference. We want the page to be pinned 2125 * so that we don't get a ext4_mb_init_cache_call for this 2126 * group until we update the bitmap. That would mean we 2127 * double allocate blocks. The reference is dropped 2128 * in ext4_mb_release_context 2129 */ 2130 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2131 get_page(ac->ac_bitmap_page); 2132 ac->ac_buddy_page = e4b->bd_buddy_page; 2133 get_page(ac->ac_buddy_page); 2134 /* store last allocated for subsequent stream allocation */ 2135 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2136 spin_lock(&sbi->s_md_lock); 2137 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2138 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2139 spin_unlock(&sbi->s_md_lock); 2140 } 2141 /* 2142 * As we've just preallocated more space than 2143 * user requested originally, we store allocated 2144 * space in a special descriptor. 2145 */ 2146 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2147 ext4_mb_new_preallocation(ac); 2148 2149 } 2150 2151 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2152 struct ext4_buddy *e4b, 2153 int finish_group) 2154 { 2155 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2156 struct ext4_free_extent *bex = &ac->ac_b_ex; 2157 struct ext4_free_extent *gex = &ac->ac_g_ex; 2158 2159 if (ac->ac_status == AC_STATUS_FOUND) 2160 return; 2161 /* 2162 * We don't want to scan for a whole year 2163 */ 2164 if (ac->ac_found > sbi->s_mb_max_to_scan && 2165 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2166 ac->ac_status = AC_STATUS_BREAK; 2167 return; 2168 } 2169 2170 /* 2171 * Haven't found good chunk so far, let's continue 2172 */ 2173 if (bex->fe_len < gex->fe_len) 2174 return; 2175 2176 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2177 ext4_mb_use_best_found(ac, e4b); 2178 } 2179 2180 /* 2181 * The routine checks whether found extent is good enough. If it is, 2182 * then the extent gets marked used and flag is set to the context 2183 * to stop scanning. Otherwise, the extent is compared with the 2184 * previous found extent and if new one is better, then it's stored 2185 * in the context. Later, the best found extent will be used, if 2186 * mballoc can't find good enough extent. 2187 * 2188 * The algorithm used is roughly as follows: 2189 * 2190 * * If free extent found is exactly as big as goal, then 2191 * stop the scan and use it immediately 2192 * 2193 * * If free extent found is smaller than goal, then keep retrying 2194 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2195 * that stop scanning and use whatever we have. 2196 * 2197 * * If free extent found is bigger than goal, then keep retrying 2198 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2199 * stopping the scan and using the extent. 2200 * 2201 * 2202 * FIXME: real allocation policy is to be designed yet! 2203 */ 2204 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2205 struct ext4_free_extent *ex, 2206 struct ext4_buddy *e4b) 2207 { 2208 struct ext4_free_extent *bex = &ac->ac_b_ex; 2209 struct ext4_free_extent *gex = &ac->ac_g_ex; 2210 2211 BUG_ON(ex->fe_len <= 0); 2212 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2213 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2214 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2215 2216 ac->ac_found++; 2217 ac->ac_cX_found[ac->ac_criteria]++; 2218 2219 /* 2220 * The special case - take what you catch first 2221 */ 2222 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2223 *bex = *ex; 2224 ext4_mb_use_best_found(ac, e4b); 2225 return; 2226 } 2227 2228 /* 2229 * Let's check whether the chuck is good enough 2230 */ 2231 if (ex->fe_len == gex->fe_len) { 2232 *bex = *ex; 2233 ext4_mb_use_best_found(ac, e4b); 2234 return; 2235 } 2236 2237 /* 2238 * If this is first found extent, just store it in the context 2239 */ 2240 if (bex->fe_len == 0) { 2241 *bex = *ex; 2242 return; 2243 } 2244 2245 /* 2246 * If new found extent is better, store it in the context 2247 */ 2248 if (bex->fe_len < gex->fe_len) { 2249 /* if the request isn't satisfied, any found extent 2250 * larger than previous best one is better */ 2251 if (ex->fe_len > bex->fe_len) 2252 *bex = *ex; 2253 } else if (ex->fe_len > gex->fe_len) { 2254 /* if the request is satisfied, then we try to find 2255 * an extent that still satisfy the request, but is 2256 * smaller than previous one */ 2257 if (ex->fe_len < bex->fe_len) 2258 *bex = *ex; 2259 } 2260 2261 ext4_mb_check_limits(ac, e4b, 0); 2262 } 2263 2264 static noinline_for_stack 2265 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2266 struct ext4_buddy *e4b) 2267 { 2268 struct ext4_free_extent ex = ac->ac_b_ex; 2269 ext4_group_t group = ex.fe_group; 2270 int max; 2271 int err; 2272 2273 BUG_ON(ex.fe_len <= 0); 2274 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2275 if (err) 2276 return; 2277 2278 ext4_lock_group(ac->ac_sb, group); 2279 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2280 2281 if (max > 0) { 2282 ac->ac_b_ex = ex; 2283 ext4_mb_use_best_found(ac, e4b); 2284 } 2285 2286 ext4_unlock_group(ac->ac_sb, group); 2287 ext4_mb_unload_buddy(e4b); 2288 } 2289 2290 static noinline_for_stack 2291 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2292 struct ext4_buddy *e4b) 2293 { 2294 ext4_group_t group = ac->ac_g_ex.fe_group; 2295 int max; 2296 int err; 2297 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2298 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2299 struct ext4_free_extent ex; 2300 2301 if (!grp) 2302 return -EFSCORRUPTED; 2303 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2304 return 0; 2305 if (grp->bb_free == 0) 2306 return 0; 2307 2308 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2309 if (err) 2310 return err; 2311 2312 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2313 ext4_mb_unload_buddy(e4b); 2314 return 0; 2315 } 2316 2317 ext4_lock_group(ac->ac_sb, group); 2318 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2319 ac->ac_g_ex.fe_len, &ex); 2320 ex.fe_logical = 0xDEADFA11; /* debug value */ 2321 2322 if (max >= ac->ac_g_ex.fe_len && 2323 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2324 ext4_fsblk_t start; 2325 2326 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2327 /* use do_div to get remainder (would be 64-bit modulo) */ 2328 if (do_div(start, sbi->s_stripe) == 0) { 2329 ac->ac_found++; 2330 ac->ac_b_ex = ex; 2331 ext4_mb_use_best_found(ac, e4b); 2332 } 2333 } else if (max >= ac->ac_g_ex.fe_len) { 2334 BUG_ON(ex.fe_len <= 0); 2335 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2336 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2337 ac->ac_found++; 2338 ac->ac_b_ex = ex; 2339 ext4_mb_use_best_found(ac, e4b); 2340 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2341 /* Sometimes, caller may want to merge even small 2342 * number of blocks to an existing extent */ 2343 BUG_ON(ex.fe_len <= 0); 2344 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2345 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2346 ac->ac_found++; 2347 ac->ac_b_ex = ex; 2348 ext4_mb_use_best_found(ac, e4b); 2349 } 2350 ext4_unlock_group(ac->ac_sb, group); 2351 ext4_mb_unload_buddy(e4b); 2352 2353 return 0; 2354 } 2355 2356 /* 2357 * The routine scans buddy structures (not bitmap!) from given order 2358 * to max order and tries to find big enough chunk to satisfy the req 2359 */ 2360 static noinline_for_stack 2361 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2362 struct ext4_buddy *e4b) 2363 { 2364 struct super_block *sb = ac->ac_sb; 2365 struct ext4_group_info *grp = e4b->bd_info; 2366 void *buddy; 2367 int i; 2368 int k; 2369 int max; 2370 2371 BUG_ON(ac->ac_2order <= 0); 2372 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2373 if (grp->bb_counters[i] == 0) 2374 continue; 2375 2376 buddy = mb_find_buddy(e4b, i, &max); 2377 if (WARN_RATELIMIT(buddy == NULL, 2378 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2379 continue; 2380 2381 k = mb_find_next_zero_bit(buddy, max, 0); 2382 if (k >= max) { 2383 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2384 "%d free clusters of order %d. But found 0", 2385 grp->bb_counters[i], i); 2386 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2387 e4b->bd_group, 2388 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2389 break; 2390 } 2391 ac->ac_found++; 2392 ac->ac_cX_found[ac->ac_criteria]++; 2393 2394 ac->ac_b_ex.fe_len = 1 << i; 2395 ac->ac_b_ex.fe_start = k << i; 2396 ac->ac_b_ex.fe_group = e4b->bd_group; 2397 2398 ext4_mb_use_best_found(ac, e4b); 2399 2400 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2401 2402 if (EXT4_SB(sb)->s_mb_stats) 2403 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2404 2405 break; 2406 } 2407 } 2408 2409 /* 2410 * The routine scans the group and measures all found extents. 2411 * In order to optimize scanning, caller must pass number of 2412 * free blocks in the group, so the routine can know upper limit. 2413 */ 2414 static noinline_for_stack 2415 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2416 struct ext4_buddy *e4b) 2417 { 2418 struct super_block *sb = ac->ac_sb; 2419 void *bitmap = e4b->bd_bitmap; 2420 struct ext4_free_extent ex; 2421 int i, j, freelen; 2422 int free; 2423 2424 free = e4b->bd_info->bb_free; 2425 if (WARN_ON(free <= 0)) 2426 return; 2427 2428 i = e4b->bd_info->bb_first_free; 2429 2430 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2431 i = mb_find_next_zero_bit(bitmap, 2432 EXT4_CLUSTERS_PER_GROUP(sb), i); 2433 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2434 /* 2435 * IF we have corrupt bitmap, we won't find any 2436 * free blocks even though group info says we 2437 * have free blocks 2438 */ 2439 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2440 "%d free clusters as per " 2441 "group info. But bitmap says 0", 2442 free); 2443 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2444 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2445 break; 2446 } 2447 2448 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2449 /* 2450 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2451 * sure that this group will have a large enough 2452 * continuous free extent, so skip over the smaller free 2453 * extents 2454 */ 2455 j = mb_find_next_bit(bitmap, 2456 EXT4_CLUSTERS_PER_GROUP(sb), i); 2457 freelen = j - i; 2458 2459 if (freelen < ac->ac_g_ex.fe_len) { 2460 i = j; 2461 free -= freelen; 2462 continue; 2463 } 2464 } 2465 2466 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2467 if (WARN_ON(ex.fe_len <= 0)) 2468 break; 2469 if (free < ex.fe_len) { 2470 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2471 "%d free clusters as per " 2472 "group info. But got %d blocks", 2473 free, ex.fe_len); 2474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2475 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2476 /* 2477 * The number of free blocks differs. This mostly 2478 * indicate that the bitmap is corrupt. So exit 2479 * without claiming the space. 2480 */ 2481 break; 2482 } 2483 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2484 ext4_mb_measure_extent(ac, &ex, e4b); 2485 2486 i += ex.fe_len; 2487 free -= ex.fe_len; 2488 } 2489 2490 ext4_mb_check_limits(ac, e4b, 1); 2491 } 2492 2493 /* 2494 * This is a special case for storages like raid5 2495 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2496 */ 2497 static noinline_for_stack 2498 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2499 struct ext4_buddy *e4b) 2500 { 2501 struct super_block *sb = ac->ac_sb; 2502 struct ext4_sb_info *sbi = EXT4_SB(sb); 2503 void *bitmap = e4b->bd_bitmap; 2504 struct ext4_free_extent ex; 2505 ext4_fsblk_t first_group_block; 2506 ext4_fsblk_t a; 2507 ext4_grpblk_t i, stripe; 2508 int max; 2509 2510 BUG_ON(sbi->s_stripe == 0); 2511 2512 /* find first stripe-aligned block in group */ 2513 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2514 2515 a = first_group_block + sbi->s_stripe - 1; 2516 do_div(a, sbi->s_stripe); 2517 i = (a * sbi->s_stripe) - first_group_block; 2518 2519 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2520 i = EXT4_B2C(sbi, i); 2521 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2522 if (!mb_test_bit(i, bitmap)) { 2523 max = mb_find_extent(e4b, i, stripe, &ex); 2524 if (max >= stripe) { 2525 ac->ac_found++; 2526 ac->ac_cX_found[ac->ac_criteria]++; 2527 ex.fe_logical = 0xDEADF00D; /* debug value */ 2528 ac->ac_b_ex = ex; 2529 ext4_mb_use_best_found(ac, e4b); 2530 break; 2531 } 2532 } 2533 i += stripe; 2534 } 2535 } 2536 2537 /* 2538 * This is also called BEFORE we load the buddy bitmap. 2539 * Returns either 1 or 0 indicating that the group is either suitable 2540 * for the allocation or not. 2541 */ 2542 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2543 ext4_group_t group, enum criteria cr) 2544 { 2545 ext4_grpblk_t free, fragments; 2546 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2547 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2548 2549 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2550 2551 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2552 return false; 2553 2554 free = grp->bb_free; 2555 if (free == 0) 2556 return false; 2557 2558 fragments = grp->bb_fragments; 2559 if (fragments == 0) 2560 return false; 2561 2562 switch (cr) { 2563 case CR_POWER2_ALIGNED: 2564 BUG_ON(ac->ac_2order == 0); 2565 2566 /* Avoid using the first bg of a flexgroup for data files */ 2567 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2568 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2569 ((group % flex_size) == 0)) 2570 return false; 2571 2572 if (free < ac->ac_g_ex.fe_len) 2573 return false; 2574 2575 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2576 return true; 2577 2578 if (grp->bb_largest_free_order < ac->ac_2order) 2579 return false; 2580 2581 return true; 2582 case CR_GOAL_LEN_FAST: 2583 case CR_BEST_AVAIL_LEN: 2584 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2585 return true; 2586 break; 2587 case CR_GOAL_LEN_SLOW: 2588 if (free >= ac->ac_g_ex.fe_len) 2589 return true; 2590 break; 2591 case CR_ANY_FREE: 2592 return true; 2593 default: 2594 BUG(); 2595 } 2596 2597 return false; 2598 } 2599 2600 /* 2601 * This could return negative error code if something goes wrong 2602 * during ext4_mb_init_group(). This should not be called with 2603 * ext4_lock_group() held. 2604 * 2605 * Note: because we are conditionally operating with the group lock in 2606 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2607 * function using __acquire and __release. This means we need to be 2608 * super careful before messing with the error path handling via "goto 2609 * out"! 2610 */ 2611 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2612 ext4_group_t group, enum criteria cr) 2613 { 2614 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2615 struct super_block *sb = ac->ac_sb; 2616 struct ext4_sb_info *sbi = EXT4_SB(sb); 2617 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2618 ext4_grpblk_t free; 2619 int ret = 0; 2620 2621 if (!grp) 2622 return -EFSCORRUPTED; 2623 if (sbi->s_mb_stats) 2624 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2625 if (should_lock) { 2626 ext4_lock_group(sb, group); 2627 __release(ext4_group_lock_ptr(sb, group)); 2628 } 2629 free = grp->bb_free; 2630 if (free == 0) 2631 goto out; 2632 /* 2633 * In all criterias except CR_ANY_FREE we try to avoid groups that 2634 * can't possibly satisfy the full goal request due to insufficient 2635 * free blocks. 2636 */ 2637 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2638 goto out; 2639 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2640 goto out; 2641 if (should_lock) { 2642 __acquire(ext4_group_lock_ptr(sb, group)); 2643 ext4_unlock_group(sb, group); 2644 } 2645 2646 /* We only do this if the grp has never been initialized */ 2647 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2648 struct ext4_group_desc *gdp = 2649 ext4_get_group_desc(sb, group, NULL); 2650 int ret; 2651 2652 /* 2653 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2654 * search to find large good chunks almost for free. If buddy 2655 * data is not ready, then this optimization makes no sense. But 2656 * we never skip the first block group in a flex_bg, since this 2657 * gets used for metadata block allocation, and we want to make 2658 * sure we locate metadata blocks in the first block group in 2659 * the flex_bg if possible. 2660 */ 2661 if (!ext4_mb_cr_expensive(cr) && 2662 (!sbi->s_log_groups_per_flex || 2663 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2664 !(ext4_has_group_desc_csum(sb) && 2665 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2666 return 0; 2667 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2668 if (ret) 2669 return ret; 2670 } 2671 2672 if (should_lock) { 2673 ext4_lock_group(sb, group); 2674 __release(ext4_group_lock_ptr(sb, group)); 2675 } 2676 ret = ext4_mb_good_group(ac, group, cr); 2677 out: 2678 if (should_lock) { 2679 __acquire(ext4_group_lock_ptr(sb, group)); 2680 ext4_unlock_group(sb, group); 2681 } 2682 return ret; 2683 } 2684 2685 /* 2686 * Start prefetching @nr block bitmaps starting at @group. 2687 * Return the next group which needs to be prefetched. 2688 */ 2689 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2690 unsigned int nr, int *cnt) 2691 { 2692 ext4_group_t ngroups = ext4_get_groups_count(sb); 2693 struct buffer_head *bh; 2694 struct blk_plug plug; 2695 2696 blk_start_plug(&plug); 2697 while (nr-- > 0) { 2698 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2699 NULL); 2700 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2701 2702 /* 2703 * Prefetch block groups with free blocks; but don't 2704 * bother if it is marked uninitialized on disk, since 2705 * it won't require I/O to read. Also only try to 2706 * prefetch once, so we avoid getblk() call, which can 2707 * be expensive. 2708 */ 2709 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2710 EXT4_MB_GRP_NEED_INIT(grp) && 2711 ext4_free_group_clusters(sb, gdp) > 0 ) { 2712 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2713 if (bh && !IS_ERR(bh)) { 2714 if (!buffer_uptodate(bh) && cnt) 2715 (*cnt)++; 2716 brelse(bh); 2717 } 2718 } 2719 if (++group >= ngroups) 2720 group = 0; 2721 } 2722 blk_finish_plug(&plug); 2723 return group; 2724 } 2725 2726 /* 2727 * Prefetching reads the block bitmap into the buffer cache; but we 2728 * need to make sure that the buddy bitmap in the page cache has been 2729 * initialized. Note that ext4_mb_init_group() will block if the I/O 2730 * is not yet completed, or indeed if it was not initiated by 2731 * ext4_mb_prefetch did not start the I/O. 2732 * 2733 * TODO: We should actually kick off the buddy bitmap setup in a work 2734 * queue when the buffer I/O is completed, so that we don't block 2735 * waiting for the block allocation bitmap read to finish when 2736 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2737 */ 2738 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2739 unsigned int nr) 2740 { 2741 struct ext4_group_desc *gdp; 2742 struct ext4_group_info *grp; 2743 2744 while (nr-- > 0) { 2745 if (!group) 2746 group = ext4_get_groups_count(sb); 2747 group--; 2748 gdp = ext4_get_group_desc(sb, group, NULL); 2749 grp = ext4_get_group_info(sb, group); 2750 2751 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2752 ext4_free_group_clusters(sb, gdp) > 0) { 2753 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2754 break; 2755 } 2756 } 2757 } 2758 2759 static noinline_for_stack int 2760 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2761 { 2762 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2763 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2764 int err = 0, first_err = 0; 2765 unsigned int nr = 0, prefetch_ios = 0; 2766 struct ext4_sb_info *sbi; 2767 struct super_block *sb; 2768 struct ext4_buddy e4b; 2769 int lost; 2770 2771 sb = ac->ac_sb; 2772 sbi = EXT4_SB(sb); 2773 ngroups = ext4_get_groups_count(sb); 2774 /* non-extent files are limited to low blocks/groups */ 2775 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2776 ngroups = sbi->s_blockfile_groups; 2777 2778 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2779 2780 /* first, try the goal */ 2781 err = ext4_mb_find_by_goal(ac, &e4b); 2782 if (err || ac->ac_status == AC_STATUS_FOUND) 2783 goto out; 2784 2785 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2786 goto out; 2787 2788 /* 2789 * ac->ac_2order is set only if the fe_len is a power of 2 2790 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2791 * so that we try exact allocation using buddy. 2792 */ 2793 i = fls(ac->ac_g_ex.fe_len); 2794 ac->ac_2order = 0; 2795 /* 2796 * We search using buddy data only if the order of the request 2797 * is greater than equal to the sbi_s_mb_order2_reqs 2798 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2799 * We also support searching for power-of-two requests only for 2800 * requests upto maximum buddy size we have constructed. 2801 */ 2802 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2803 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2804 ac->ac_2order = array_index_nospec(i - 1, 2805 MB_NUM_ORDERS(sb)); 2806 } 2807 2808 /* if stream allocation is enabled, use global goal */ 2809 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2810 /* TBD: may be hot point */ 2811 spin_lock(&sbi->s_md_lock); 2812 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2813 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2814 spin_unlock(&sbi->s_md_lock); 2815 } 2816 2817 /* 2818 * Let's just scan groups to find more-less suitable blocks We 2819 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2820 * aligned, in which case let's do that faster approach first. 2821 */ 2822 if (ac->ac_2order) 2823 cr = CR_POWER2_ALIGNED; 2824 repeat: 2825 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2826 ac->ac_criteria = cr; 2827 /* 2828 * searching for the right group start 2829 * from the goal value specified 2830 */ 2831 group = ac->ac_g_ex.fe_group; 2832 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2833 prefetch_grp = group; 2834 2835 for (i = 0, new_cr = cr; i < ngroups; i++, 2836 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2837 int ret = 0; 2838 2839 cond_resched(); 2840 if (new_cr != cr) { 2841 cr = new_cr; 2842 goto repeat; 2843 } 2844 2845 /* 2846 * Batch reads of the block allocation bitmaps 2847 * to get multiple READs in flight; limit 2848 * prefetching at inexpensive CR, otherwise mballoc 2849 * can spend a lot of time loading imperfect groups 2850 */ 2851 if ((prefetch_grp == group) && 2852 (ext4_mb_cr_expensive(cr) || 2853 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2854 nr = sbi->s_mb_prefetch; 2855 if (ext4_has_feature_flex_bg(sb)) { 2856 nr = 1 << sbi->s_log_groups_per_flex; 2857 nr -= group & (nr - 1); 2858 nr = min(nr, sbi->s_mb_prefetch); 2859 } 2860 prefetch_grp = ext4_mb_prefetch(sb, group, 2861 nr, &prefetch_ios); 2862 } 2863 2864 /* This now checks without needing the buddy page */ 2865 ret = ext4_mb_good_group_nolock(ac, group, cr); 2866 if (ret <= 0) { 2867 if (!first_err) 2868 first_err = ret; 2869 continue; 2870 } 2871 2872 err = ext4_mb_load_buddy(sb, group, &e4b); 2873 if (err) 2874 goto out; 2875 2876 ext4_lock_group(sb, group); 2877 2878 /* 2879 * We need to check again after locking the 2880 * block group 2881 */ 2882 ret = ext4_mb_good_group(ac, group, cr); 2883 if (ret == 0) { 2884 ext4_unlock_group(sb, group); 2885 ext4_mb_unload_buddy(&e4b); 2886 continue; 2887 } 2888 2889 ac->ac_groups_scanned++; 2890 if (cr == CR_POWER2_ALIGNED) 2891 ext4_mb_simple_scan_group(ac, &e4b); 2892 else { 2893 bool is_stripe_aligned = sbi->s_stripe && 2894 !(ac->ac_g_ex.fe_len % 2895 EXT4_B2C(sbi, sbi->s_stripe)); 2896 2897 if ((cr == CR_GOAL_LEN_FAST || 2898 cr == CR_BEST_AVAIL_LEN) && 2899 is_stripe_aligned) 2900 ext4_mb_scan_aligned(ac, &e4b); 2901 2902 if (ac->ac_status == AC_STATUS_CONTINUE) 2903 ext4_mb_complex_scan_group(ac, &e4b); 2904 } 2905 2906 ext4_unlock_group(sb, group); 2907 ext4_mb_unload_buddy(&e4b); 2908 2909 if (ac->ac_status != AC_STATUS_CONTINUE) 2910 break; 2911 } 2912 /* Processed all groups and haven't found blocks */ 2913 if (sbi->s_mb_stats && i == ngroups) 2914 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2915 2916 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2917 /* Reset goal length to original goal length before 2918 * falling into CR_GOAL_LEN_SLOW */ 2919 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2920 } 2921 2922 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2923 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2924 /* 2925 * We've been searching too long. Let's try to allocate 2926 * the best chunk we've found so far 2927 */ 2928 ext4_mb_try_best_found(ac, &e4b); 2929 if (ac->ac_status != AC_STATUS_FOUND) { 2930 /* 2931 * Someone more lucky has already allocated it. 2932 * The only thing we can do is just take first 2933 * found block(s) 2934 */ 2935 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2936 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2937 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2938 ac->ac_b_ex.fe_len, lost); 2939 2940 ac->ac_b_ex.fe_group = 0; 2941 ac->ac_b_ex.fe_start = 0; 2942 ac->ac_b_ex.fe_len = 0; 2943 ac->ac_status = AC_STATUS_CONTINUE; 2944 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2945 cr = CR_ANY_FREE; 2946 goto repeat; 2947 } 2948 } 2949 2950 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2951 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2952 out: 2953 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2954 err = first_err; 2955 2956 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2957 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2958 ac->ac_flags, cr, err); 2959 2960 if (nr) 2961 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2962 2963 return err; 2964 } 2965 2966 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2967 { 2968 struct super_block *sb = pde_data(file_inode(seq->file)); 2969 ext4_group_t group; 2970 2971 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2972 return NULL; 2973 group = *pos + 1; 2974 return (void *) ((unsigned long) group); 2975 } 2976 2977 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2978 { 2979 struct super_block *sb = pde_data(file_inode(seq->file)); 2980 ext4_group_t group; 2981 2982 ++*pos; 2983 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2984 return NULL; 2985 group = *pos + 1; 2986 return (void *) ((unsigned long) group); 2987 } 2988 2989 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2990 { 2991 struct super_block *sb = pde_data(file_inode(seq->file)); 2992 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2993 int i; 2994 int err, buddy_loaded = 0; 2995 struct ext4_buddy e4b; 2996 struct ext4_group_info *grinfo; 2997 unsigned char blocksize_bits = min_t(unsigned char, 2998 sb->s_blocksize_bits, 2999 EXT4_MAX_BLOCK_LOG_SIZE); 3000 struct sg { 3001 struct ext4_group_info info; 3002 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3003 } sg; 3004 3005 group--; 3006 if (group == 0) 3007 seq_puts(seq, "#group: free frags first [" 3008 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3009 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3010 3011 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3012 sizeof(struct ext4_group_info); 3013 3014 grinfo = ext4_get_group_info(sb, group); 3015 if (!grinfo) 3016 return 0; 3017 /* Load the group info in memory only if not already loaded. */ 3018 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3019 err = ext4_mb_load_buddy(sb, group, &e4b); 3020 if (err) { 3021 seq_printf(seq, "#%-5u: I/O error\n", group); 3022 return 0; 3023 } 3024 buddy_loaded = 1; 3025 } 3026 3027 memcpy(&sg, grinfo, i); 3028 3029 if (buddy_loaded) 3030 ext4_mb_unload_buddy(&e4b); 3031 3032 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3033 sg.info.bb_fragments, sg.info.bb_first_free); 3034 for (i = 0; i <= 13; i++) 3035 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3036 sg.info.bb_counters[i] : 0); 3037 seq_puts(seq, " ]\n"); 3038 3039 return 0; 3040 } 3041 3042 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3043 { 3044 } 3045 3046 const struct seq_operations ext4_mb_seq_groups_ops = { 3047 .start = ext4_mb_seq_groups_start, 3048 .next = ext4_mb_seq_groups_next, 3049 .stop = ext4_mb_seq_groups_stop, 3050 .show = ext4_mb_seq_groups_show, 3051 }; 3052 3053 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3054 { 3055 struct super_block *sb = seq->private; 3056 struct ext4_sb_info *sbi = EXT4_SB(sb); 3057 3058 seq_puts(seq, "mballoc:\n"); 3059 if (!sbi->s_mb_stats) { 3060 seq_puts(seq, "\tmb stats collection turned off.\n"); 3061 seq_puts( 3062 seq, 3063 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3064 return 0; 3065 } 3066 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3067 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3068 3069 seq_printf(seq, "\tgroups_scanned: %u\n", 3070 atomic_read(&sbi->s_bal_groups_scanned)); 3071 3072 /* CR_POWER2_ALIGNED stats */ 3073 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3074 seq_printf(seq, "\t\thits: %llu\n", 3075 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3076 seq_printf( 3077 seq, "\t\tgroups_considered: %llu\n", 3078 atomic64_read( 3079 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3080 seq_printf(seq, "\t\textents_scanned: %u\n", 3081 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3082 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3083 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3084 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3085 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3086 3087 /* CR_GOAL_LEN_FAST stats */ 3088 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3089 seq_printf(seq, "\t\thits: %llu\n", 3090 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3091 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3092 atomic64_read( 3093 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3094 seq_printf(seq, "\t\textents_scanned: %u\n", 3095 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3096 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3097 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3098 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3099 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3100 3101 /* CR_BEST_AVAIL_LEN stats */ 3102 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3103 seq_printf(seq, "\t\thits: %llu\n", 3104 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3105 seq_printf( 3106 seq, "\t\tgroups_considered: %llu\n", 3107 atomic64_read( 3108 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3109 seq_printf(seq, "\t\textents_scanned: %u\n", 3110 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3111 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3112 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3113 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3114 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3115 3116 /* CR_GOAL_LEN_SLOW stats */ 3117 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3118 seq_printf(seq, "\t\thits: %llu\n", 3119 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3120 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3121 atomic64_read( 3122 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3123 seq_printf(seq, "\t\textents_scanned: %u\n", 3124 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3125 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3126 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3127 3128 /* CR_ANY_FREE stats */ 3129 seq_puts(seq, "\tcr_any_free_stats:\n"); 3130 seq_printf(seq, "\t\thits: %llu\n", 3131 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3132 seq_printf( 3133 seq, "\t\tgroups_considered: %llu\n", 3134 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3135 seq_printf(seq, "\t\textents_scanned: %u\n", 3136 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3137 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3138 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3139 3140 /* Aggregates */ 3141 seq_printf(seq, "\textents_scanned: %u\n", 3142 atomic_read(&sbi->s_bal_ex_scanned)); 3143 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3144 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3145 atomic_read(&sbi->s_bal_len_goals)); 3146 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3147 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3148 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3149 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3150 atomic_read(&sbi->s_mb_buddies_generated), 3151 ext4_get_groups_count(sb)); 3152 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3153 atomic64_read(&sbi->s_mb_generation_time)); 3154 seq_printf(seq, "\tpreallocated: %u\n", 3155 atomic_read(&sbi->s_mb_preallocated)); 3156 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3157 return 0; 3158 } 3159 3160 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3161 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3162 { 3163 struct super_block *sb = pde_data(file_inode(seq->file)); 3164 unsigned long position; 3165 3166 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3167 return NULL; 3168 position = *pos + 1; 3169 return (void *) ((unsigned long) position); 3170 } 3171 3172 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3173 { 3174 struct super_block *sb = pde_data(file_inode(seq->file)); 3175 unsigned long position; 3176 3177 ++*pos; 3178 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3179 return NULL; 3180 position = *pos + 1; 3181 return (void *) ((unsigned long) position); 3182 } 3183 3184 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3185 { 3186 struct super_block *sb = pde_data(file_inode(seq->file)); 3187 struct ext4_sb_info *sbi = EXT4_SB(sb); 3188 unsigned long position = ((unsigned long) v); 3189 struct ext4_group_info *grp; 3190 unsigned int count; 3191 3192 position--; 3193 if (position >= MB_NUM_ORDERS(sb)) { 3194 position -= MB_NUM_ORDERS(sb); 3195 if (position == 0) 3196 seq_puts(seq, "avg_fragment_size_lists:\n"); 3197 3198 count = 0; 3199 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3200 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3201 bb_avg_fragment_size_node) 3202 count++; 3203 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3204 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3205 (unsigned int)position, count); 3206 return 0; 3207 } 3208 3209 if (position == 0) { 3210 seq_printf(seq, "optimize_scan: %d\n", 3211 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3212 seq_puts(seq, "max_free_order_lists:\n"); 3213 } 3214 count = 0; 3215 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3216 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3217 bb_largest_free_order_node) 3218 count++; 3219 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3220 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3221 (unsigned int)position, count); 3222 3223 return 0; 3224 } 3225 3226 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3227 { 3228 } 3229 3230 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3231 .start = ext4_mb_seq_structs_summary_start, 3232 .next = ext4_mb_seq_structs_summary_next, 3233 .stop = ext4_mb_seq_structs_summary_stop, 3234 .show = ext4_mb_seq_structs_summary_show, 3235 }; 3236 3237 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3238 { 3239 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3240 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3241 3242 BUG_ON(!cachep); 3243 return cachep; 3244 } 3245 3246 /* 3247 * Allocate the top-level s_group_info array for the specified number 3248 * of groups 3249 */ 3250 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3251 { 3252 struct ext4_sb_info *sbi = EXT4_SB(sb); 3253 unsigned size; 3254 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3255 3256 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3257 EXT4_DESC_PER_BLOCK_BITS(sb); 3258 if (size <= sbi->s_group_info_size) 3259 return 0; 3260 3261 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3262 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3263 if (!new_groupinfo) { 3264 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3265 return -ENOMEM; 3266 } 3267 rcu_read_lock(); 3268 old_groupinfo = rcu_dereference(sbi->s_group_info); 3269 if (old_groupinfo) 3270 memcpy(new_groupinfo, old_groupinfo, 3271 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3272 rcu_read_unlock(); 3273 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3274 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3275 if (old_groupinfo) 3276 ext4_kvfree_array_rcu(old_groupinfo); 3277 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3278 sbi->s_group_info_size); 3279 return 0; 3280 } 3281 3282 /* Create and initialize ext4_group_info data for the given group. */ 3283 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3284 struct ext4_group_desc *desc) 3285 { 3286 int i; 3287 int metalen = 0; 3288 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3289 struct ext4_sb_info *sbi = EXT4_SB(sb); 3290 struct ext4_group_info **meta_group_info; 3291 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3292 3293 /* 3294 * First check if this group is the first of a reserved block. 3295 * If it's true, we have to allocate a new table of pointers 3296 * to ext4_group_info structures 3297 */ 3298 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3299 metalen = sizeof(*meta_group_info) << 3300 EXT4_DESC_PER_BLOCK_BITS(sb); 3301 meta_group_info = kmalloc(metalen, GFP_NOFS); 3302 if (meta_group_info == NULL) { 3303 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3304 "for a buddy group"); 3305 return -ENOMEM; 3306 } 3307 rcu_read_lock(); 3308 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3309 rcu_read_unlock(); 3310 } 3311 3312 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3313 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3314 3315 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3316 if (meta_group_info[i] == NULL) { 3317 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3318 goto exit_group_info; 3319 } 3320 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3321 &(meta_group_info[i]->bb_state)); 3322 3323 /* 3324 * initialize bb_free to be able to skip 3325 * empty groups without initialization 3326 */ 3327 if (ext4_has_group_desc_csum(sb) && 3328 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3329 meta_group_info[i]->bb_free = 3330 ext4_free_clusters_after_init(sb, group, desc); 3331 } else { 3332 meta_group_info[i]->bb_free = 3333 ext4_free_group_clusters(sb, desc); 3334 } 3335 3336 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3337 init_rwsem(&meta_group_info[i]->alloc_sem); 3338 meta_group_info[i]->bb_free_root = RB_ROOT; 3339 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3340 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3341 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3342 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3343 meta_group_info[i]->bb_group = group; 3344 3345 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3346 return 0; 3347 3348 exit_group_info: 3349 /* If a meta_group_info table has been allocated, release it now */ 3350 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3351 struct ext4_group_info ***group_info; 3352 3353 rcu_read_lock(); 3354 group_info = rcu_dereference(sbi->s_group_info); 3355 kfree(group_info[idx]); 3356 group_info[idx] = NULL; 3357 rcu_read_unlock(); 3358 } 3359 return -ENOMEM; 3360 } /* ext4_mb_add_groupinfo */ 3361 3362 static int ext4_mb_init_backend(struct super_block *sb) 3363 { 3364 ext4_group_t ngroups = ext4_get_groups_count(sb); 3365 ext4_group_t i; 3366 struct ext4_sb_info *sbi = EXT4_SB(sb); 3367 int err; 3368 struct ext4_group_desc *desc; 3369 struct ext4_group_info ***group_info; 3370 struct kmem_cache *cachep; 3371 3372 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3373 if (err) 3374 return err; 3375 3376 sbi->s_buddy_cache = new_inode(sb); 3377 if (sbi->s_buddy_cache == NULL) { 3378 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3379 goto err_freesgi; 3380 } 3381 /* To avoid potentially colliding with an valid on-disk inode number, 3382 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3383 * not in the inode hash, so it should never be found by iget(), but 3384 * this will avoid confusion if it ever shows up during debugging. */ 3385 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3386 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3387 for (i = 0; i < ngroups; i++) { 3388 cond_resched(); 3389 desc = ext4_get_group_desc(sb, i, NULL); 3390 if (desc == NULL) { 3391 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3392 goto err_freebuddy; 3393 } 3394 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3395 goto err_freebuddy; 3396 } 3397 3398 if (ext4_has_feature_flex_bg(sb)) { 3399 /* a single flex group is supposed to be read by a single IO. 3400 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3401 * unsigned integer, so the maximum shift is 32. 3402 */ 3403 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3404 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3405 goto err_freebuddy; 3406 } 3407 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3408 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3409 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3410 } else { 3411 sbi->s_mb_prefetch = 32; 3412 } 3413 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3414 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3415 /* now many real IOs to prefetch within a single allocation at cr=0 3416 * given cr=0 is an CPU-related optimization we shouldn't try to 3417 * load too many groups, at some point we should start to use what 3418 * we've got in memory. 3419 * with an average random access time 5ms, it'd take a second to get 3420 * 200 groups (* N with flex_bg), so let's make this limit 4 3421 */ 3422 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3423 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3424 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3425 3426 return 0; 3427 3428 err_freebuddy: 3429 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3430 while (i-- > 0) { 3431 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3432 3433 if (grp) 3434 kmem_cache_free(cachep, grp); 3435 } 3436 i = sbi->s_group_info_size; 3437 rcu_read_lock(); 3438 group_info = rcu_dereference(sbi->s_group_info); 3439 while (i-- > 0) 3440 kfree(group_info[i]); 3441 rcu_read_unlock(); 3442 iput(sbi->s_buddy_cache); 3443 err_freesgi: 3444 rcu_read_lock(); 3445 kvfree(rcu_dereference(sbi->s_group_info)); 3446 rcu_read_unlock(); 3447 return -ENOMEM; 3448 } 3449 3450 static void ext4_groupinfo_destroy_slabs(void) 3451 { 3452 int i; 3453 3454 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3455 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3456 ext4_groupinfo_caches[i] = NULL; 3457 } 3458 } 3459 3460 static int ext4_groupinfo_create_slab(size_t size) 3461 { 3462 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3463 int slab_size; 3464 int blocksize_bits = order_base_2(size); 3465 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3466 struct kmem_cache *cachep; 3467 3468 if (cache_index >= NR_GRPINFO_CACHES) 3469 return -EINVAL; 3470 3471 if (unlikely(cache_index < 0)) 3472 cache_index = 0; 3473 3474 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3475 if (ext4_groupinfo_caches[cache_index]) { 3476 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3477 return 0; /* Already created */ 3478 } 3479 3480 slab_size = offsetof(struct ext4_group_info, 3481 bb_counters[blocksize_bits + 2]); 3482 3483 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3484 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3485 NULL); 3486 3487 ext4_groupinfo_caches[cache_index] = cachep; 3488 3489 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3490 if (!cachep) { 3491 printk(KERN_EMERG 3492 "EXT4-fs: no memory for groupinfo slab cache\n"); 3493 return -ENOMEM; 3494 } 3495 3496 return 0; 3497 } 3498 3499 static void ext4_discard_work(struct work_struct *work) 3500 { 3501 struct ext4_sb_info *sbi = container_of(work, 3502 struct ext4_sb_info, s_discard_work); 3503 struct super_block *sb = sbi->s_sb; 3504 struct ext4_free_data *fd, *nfd; 3505 struct ext4_buddy e4b; 3506 LIST_HEAD(discard_list); 3507 ext4_group_t grp, load_grp; 3508 int err = 0; 3509 3510 spin_lock(&sbi->s_md_lock); 3511 list_splice_init(&sbi->s_discard_list, &discard_list); 3512 spin_unlock(&sbi->s_md_lock); 3513 3514 load_grp = UINT_MAX; 3515 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3516 /* 3517 * If filesystem is umounting or no memory or suffering 3518 * from no space, give up the discard 3519 */ 3520 if ((sb->s_flags & SB_ACTIVE) && !err && 3521 !atomic_read(&sbi->s_retry_alloc_pending)) { 3522 grp = fd->efd_group; 3523 if (grp != load_grp) { 3524 if (load_grp != UINT_MAX) 3525 ext4_mb_unload_buddy(&e4b); 3526 3527 err = ext4_mb_load_buddy(sb, grp, &e4b); 3528 if (err) { 3529 kmem_cache_free(ext4_free_data_cachep, fd); 3530 load_grp = UINT_MAX; 3531 continue; 3532 } else { 3533 load_grp = grp; 3534 } 3535 } 3536 3537 ext4_lock_group(sb, grp); 3538 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3539 fd->efd_start_cluster + fd->efd_count - 1, 1); 3540 ext4_unlock_group(sb, grp); 3541 } 3542 kmem_cache_free(ext4_free_data_cachep, fd); 3543 } 3544 3545 if (load_grp != UINT_MAX) 3546 ext4_mb_unload_buddy(&e4b); 3547 } 3548 3549 int ext4_mb_init(struct super_block *sb) 3550 { 3551 struct ext4_sb_info *sbi = EXT4_SB(sb); 3552 unsigned i, j; 3553 unsigned offset, offset_incr; 3554 unsigned max; 3555 int ret; 3556 3557 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3558 3559 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3560 if (sbi->s_mb_offsets == NULL) { 3561 ret = -ENOMEM; 3562 goto out; 3563 } 3564 3565 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3566 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3567 if (sbi->s_mb_maxs == NULL) { 3568 ret = -ENOMEM; 3569 goto out; 3570 } 3571 3572 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3573 if (ret < 0) 3574 goto out; 3575 3576 /* order 0 is regular bitmap */ 3577 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3578 sbi->s_mb_offsets[0] = 0; 3579 3580 i = 1; 3581 offset = 0; 3582 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3583 max = sb->s_blocksize << 2; 3584 do { 3585 sbi->s_mb_offsets[i] = offset; 3586 sbi->s_mb_maxs[i] = max; 3587 offset += offset_incr; 3588 offset_incr = offset_incr >> 1; 3589 max = max >> 1; 3590 i++; 3591 } while (i < MB_NUM_ORDERS(sb)); 3592 3593 sbi->s_mb_avg_fragment_size = 3594 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3595 GFP_KERNEL); 3596 if (!sbi->s_mb_avg_fragment_size) { 3597 ret = -ENOMEM; 3598 goto out; 3599 } 3600 sbi->s_mb_avg_fragment_size_locks = 3601 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3602 GFP_KERNEL); 3603 if (!sbi->s_mb_avg_fragment_size_locks) { 3604 ret = -ENOMEM; 3605 goto out; 3606 } 3607 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3608 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3609 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3610 } 3611 sbi->s_mb_largest_free_orders = 3612 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3613 GFP_KERNEL); 3614 if (!sbi->s_mb_largest_free_orders) { 3615 ret = -ENOMEM; 3616 goto out; 3617 } 3618 sbi->s_mb_largest_free_orders_locks = 3619 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3620 GFP_KERNEL); 3621 if (!sbi->s_mb_largest_free_orders_locks) { 3622 ret = -ENOMEM; 3623 goto out; 3624 } 3625 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3626 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3627 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3628 } 3629 3630 spin_lock_init(&sbi->s_md_lock); 3631 sbi->s_mb_free_pending = 0; 3632 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]); 3633 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]); 3634 INIT_LIST_HEAD(&sbi->s_discard_list); 3635 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3636 atomic_set(&sbi->s_retry_alloc_pending, 0); 3637 3638 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3639 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3640 sbi->s_mb_stats = MB_DEFAULT_STATS; 3641 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3642 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3643 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3644 3645 /* 3646 * The default group preallocation is 512, which for 4k block 3647 * sizes translates to 2 megabytes. However for bigalloc file 3648 * systems, this is probably too big (i.e, if the cluster size 3649 * is 1 megabyte, then group preallocation size becomes half a 3650 * gigabyte!). As a default, we will keep a two megabyte 3651 * group pralloc size for cluster sizes up to 64k, and after 3652 * that, we will force a minimum group preallocation size of 3653 * 32 clusters. This translates to 8 megs when the cluster 3654 * size is 256k, and 32 megs when the cluster size is 1 meg, 3655 * which seems reasonable as a default. 3656 */ 3657 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3658 sbi->s_cluster_bits, 32); 3659 /* 3660 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3661 * to the lowest multiple of s_stripe which is bigger than 3662 * the s_mb_group_prealloc as determined above. We want 3663 * the preallocation size to be an exact multiple of the 3664 * RAID stripe size so that preallocations don't fragment 3665 * the stripes. 3666 */ 3667 if (sbi->s_stripe > 1) { 3668 sbi->s_mb_group_prealloc = roundup( 3669 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3670 } 3671 3672 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3673 if (sbi->s_locality_groups == NULL) { 3674 ret = -ENOMEM; 3675 goto out; 3676 } 3677 for_each_possible_cpu(i) { 3678 struct ext4_locality_group *lg; 3679 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3680 mutex_init(&lg->lg_mutex); 3681 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3682 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3683 spin_lock_init(&lg->lg_prealloc_lock); 3684 } 3685 3686 if (bdev_nonrot(sb->s_bdev)) 3687 sbi->s_mb_max_linear_groups = 0; 3688 else 3689 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3690 /* init file for buddy data */ 3691 ret = ext4_mb_init_backend(sb); 3692 if (ret != 0) 3693 goto out_free_locality_groups; 3694 3695 return 0; 3696 3697 out_free_locality_groups: 3698 free_percpu(sbi->s_locality_groups); 3699 sbi->s_locality_groups = NULL; 3700 out: 3701 kfree(sbi->s_mb_avg_fragment_size); 3702 kfree(sbi->s_mb_avg_fragment_size_locks); 3703 kfree(sbi->s_mb_largest_free_orders); 3704 kfree(sbi->s_mb_largest_free_orders_locks); 3705 kfree(sbi->s_mb_offsets); 3706 sbi->s_mb_offsets = NULL; 3707 kfree(sbi->s_mb_maxs); 3708 sbi->s_mb_maxs = NULL; 3709 return ret; 3710 } 3711 3712 /* need to called with the ext4 group lock held */ 3713 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3714 { 3715 struct ext4_prealloc_space *pa; 3716 struct list_head *cur, *tmp; 3717 int count = 0; 3718 3719 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3720 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3721 list_del(&pa->pa_group_list); 3722 count++; 3723 kmem_cache_free(ext4_pspace_cachep, pa); 3724 } 3725 return count; 3726 } 3727 3728 int ext4_mb_release(struct super_block *sb) 3729 { 3730 ext4_group_t ngroups = ext4_get_groups_count(sb); 3731 ext4_group_t i; 3732 int num_meta_group_infos; 3733 struct ext4_group_info *grinfo, ***group_info; 3734 struct ext4_sb_info *sbi = EXT4_SB(sb); 3735 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3736 int count; 3737 3738 if (test_opt(sb, DISCARD)) { 3739 /* 3740 * wait the discard work to drain all of ext4_free_data 3741 */ 3742 flush_work(&sbi->s_discard_work); 3743 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3744 } 3745 3746 if (sbi->s_group_info) { 3747 for (i = 0; i < ngroups; i++) { 3748 cond_resched(); 3749 grinfo = ext4_get_group_info(sb, i); 3750 if (!grinfo) 3751 continue; 3752 mb_group_bb_bitmap_free(grinfo); 3753 ext4_lock_group(sb, i); 3754 count = ext4_mb_cleanup_pa(grinfo); 3755 if (count) 3756 mb_debug(sb, "mballoc: %d PAs left\n", 3757 count); 3758 ext4_unlock_group(sb, i); 3759 kmem_cache_free(cachep, grinfo); 3760 } 3761 num_meta_group_infos = (ngroups + 3762 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3763 EXT4_DESC_PER_BLOCK_BITS(sb); 3764 rcu_read_lock(); 3765 group_info = rcu_dereference(sbi->s_group_info); 3766 for (i = 0; i < num_meta_group_infos; i++) 3767 kfree(group_info[i]); 3768 kvfree(group_info); 3769 rcu_read_unlock(); 3770 } 3771 kfree(sbi->s_mb_avg_fragment_size); 3772 kfree(sbi->s_mb_avg_fragment_size_locks); 3773 kfree(sbi->s_mb_largest_free_orders); 3774 kfree(sbi->s_mb_largest_free_orders_locks); 3775 kfree(sbi->s_mb_offsets); 3776 kfree(sbi->s_mb_maxs); 3777 iput(sbi->s_buddy_cache); 3778 if (sbi->s_mb_stats) { 3779 ext4_msg(sb, KERN_INFO, 3780 "mballoc: %u blocks %u reqs (%u success)", 3781 atomic_read(&sbi->s_bal_allocated), 3782 atomic_read(&sbi->s_bal_reqs), 3783 atomic_read(&sbi->s_bal_success)); 3784 ext4_msg(sb, KERN_INFO, 3785 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3786 "%u 2^N hits, %u breaks, %u lost", 3787 atomic_read(&sbi->s_bal_ex_scanned), 3788 atomic_read(&sbi->s_bal_groups_scanned), 3789 atomic_read(&sbi->s_bal_goals), 3790 atomic_read(&sbi->s_bal_2orders), 3791 atomic_read(&sbi->s_bal_breaks), 3792 atomic_read(&sbi->s_mb_lost_chunks)); 3793 ext4_msg(sb, KERN_INFO, 3794 "mballoc: %u generated and it took %llu", 3795 atomic_read(&sbi->s_mb_buddies_generated), 3796 atomic64_read(&sbi->s_mb_generation_time)); 3797 ext4_msg(sb, KERN_INFO, 3798 "mballoc: %u preallocated, %u discarded", 3799 atomic_read(&sbi->s_mb_preallocated), 3800 atomic_read(&sbi->s_mb_discarded)); 3801 } 3802 3803 free_percpu(sbi->s_locality_groups); 3804 3805 return 0; 3806 } 3807 3808 static inline int ext4_issue_discard(struct super_block *sb, 3809 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3810 struct bio **biop) 3811 { 3812 ext4_fsblk_t discard_block; 3813 3814 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3815 ext4_group_first_block_no(sb, block_group)); 3816 count = EXT4_C2B(EXT4_SB(sb), count); 3817 trace_ext4_discard_blocks(sb, 3818 (unsigned long long) discard_block, count); 3819 if (biop) { 3820 return __blkdev_issue_discard(sb->s_bdev, 3821 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3822 (sector_t)count << (sb->s_blocksize_bits - 9), 3823 GFP_NOFS, biop); 3824 } else 3825 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3826 } 3827 3828 static void ext4_free_data_in_buddy(struct super_block *sb, 3829 struct ext4_free_data *entry) 3830 { 3831 struct ext4_buddy e4b; 3832 struct ext4_group_info *db; 3833 int err, count = 0; 3834 3835 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3836 entry->efd_count, entry->efd_group, entry); 3837 3838 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3839 /* we expect to find existing buddy because it's pinned */ 3840 BUG_ON(err != 0); 3841 3842 spin_lock(&EXT4_SB(sb)->s_md_lock); 3843 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3844 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3845 3846 db = e4b.bd_info; 3847 /* there are blocks to put in buddy to make them really free */ 3848 count += entry->efd_count; 3849 ext4_lock_group(sb, entry->efd_group); 3850 /* Take it out of per group rb tree */ 3851 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3852 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3853 3854 /* 3855 * Clear the trimmed flag for the group so that the next 3856 * ext4_trim_fs can trim it. 3857 * If the volume is mounted with -o discard, online discard 3858 * is supported and the free blocks will be trimmed online. 3859 */ 3860 if (!test_opt(sb, DISCARD)) 3861 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3862 3863 if (!db->bb_free_root.rb_node) { 3864 /* No more items in the per group rb tree 3865 * balance refcounts from ext4_mb_free_metadata() 3866 */ 3867 put_page(e4b.bd_buddy_page); 3868 put_page(e4b.bd_bitmap_page); 3869 } 3870 ext4_unlock_group(sb, entry->efd_group); 3871 ext4_mb_unload_buddy(&e4b); 3872 3873 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3874 } 3875 3876 /* 3877 * This function is called by the jbd2 layer once the commit has finished, 3878 * so we know we can free the blocks that were released with that commit. 3879 */ 3880 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3881 { 3882 struct ext4_sb_info *sbi = EXT4_SB(sb); 3883 struct ext4_free_data *entry, *tmp; 3884 LIST_HEAD(freed_data_list); 3885 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; 3886 bool wake; 3887 3888 list_replace_init(s_freed_head, &freed_data_list); 3889 3890 list_for_each_entry(entry, &freed_data_list, efd_list) 3891 ext4_free_data_in_buddy(sb, entry); 3892 3893 if (test_opt(sb, DISCARD)) { 3894 spin_lock(&sbi->s_md_lock); 3895 wake = list_empty(&sbi->s_discard_list); 3896 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3897 spin_unlock(&sbi->s_md_lock); 3898 if (wake) 3899 queue_work(system_unbound_wq, &sbi->s_discard_work); 3900 } else { 3901 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3902 kmem_cache_free(ext4_free_data_cachep, entry); 3903 } 3904 } 3905 3906 int __init ext4_init_mballoc(void) 3907 { 3908 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3909 SLAB_RECLAIM_ACCOUNT); 3910 if (ext4_pspace_cachep == NULL) 3911 goto out; 3912 3913 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3914 SLAB_RECLAIM_ACCOUNT); 3915 if (ext4_ac_cachep == NULL) 3916 goto out_pa_free; 3917 3918 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3919 SLAB_RECLAIM_ACCOUNT); 3920 if (ext4_free_data_cachep == NULL) 3921 goto out_ac_free; 3922 3923 return 0; 3924 3925 out_ac_free: 3926 kmem_cache_destroy(ext4_ac_cachep); 3927 out_pa_free: 3928 kmem_cache_destroy(ext4_pspace_cachep); 3929 out: 3930 return -ENOMEM; 3931 } 3932 3933 void ext4_exit_mballoc(void) 3934 { 3935 /* 3936 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3937 * before destroying the slab cache. 3938 */ 3939 rcu_barrier(); 3940 kmem_cache_destroy(ext4_pspace_cachep); 3941 kmem_cache_destroy(ext4_ac_cachep); 3942 kmem_cache_destroy(ext4_free_data_cachep); 3943 ext4_groupinfo_destroy_slabs(); 3944 } 3945 3946 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 3947 #define EXT4_MB_SYNC_UPDATE 0x0002 3948 static int 3949 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, 3950 ext4_group_t group, ext4_grpblk_t blkoff, 3951 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) 3952 { 3953 struct ext4_sb_info *sbi = EXT4_SB(sb); 3954 struct buffer_head *bitmap_bh = NULL; 3955 struct ext4_group_desc *gdp; 3956 struct buffer_head *gdp_bh; 3957 int err; 3958 unsigned int i, already, changed = len; 3959 3960 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, 3961 handle, sb, state, group, blkoff, len, 3962 flags, ret_changed); 3963 3964 if (ret_changed) 3965 *ret_changed = 0; 3966 bitmap_bh = ext4_read_block_bitmap(sb, group); 3967 if (IS_ERR(bitmap_bh)) 3968 return PTR_ERR(bitmap_bh); 3969 3970 if (handle) { 3971 BUFFER_TRACE(bitmap_bh, "getting write access"); 3972 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3973 EXT4_JTR_NONE); 3974 if (err) 3975 goto out_err; 3976 } 3977 3978 err = -EIO; 3979 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 3980 if (!gdp) 3981 goto out_err; 3982 3983 if (handle) { 3984 BUFFER_TRACE(gdp_bh, "get_write_access"); 3985 err = ext4_journal_get_write_access(handle, sb, gdp_bh, 3986 EXT4_JTR_NONE); 3987 if (err) 3988 goto out_err; 3989 } 3990 3991 ext4_lock_group(sb, group); 3992 if (ext4_has_group_desc_csum(sb) && 3993 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3994 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3995 ext4_free_group_clusters_set(sb, gdp, 3996 ext4_free_clusters_after_init(sb, group, gdp)); 3997 } 3998 3999 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { 4000 already = 0; 4001 for (i = 0; i < len; i++) 4002 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4003 state) 4004 already++; 4005 changed = len - already; 4006 } 4007 4008 if (state) { 4009 mb_set_bits(bitmap_bh->b_data, blkoff, len); 4010 ext4_free_group_clusters_set(sb, gdp, 4011 ext4_free_group_clusters(sb, gdp) - changed); 4012 } else { 4013 mb_clear_bits(bitmap_bh->b_data, blkoff, len); 4014 ext4_free_group_clusters_set(sb, gdp, 4015 ext4_free_group_clusters(sb, gdp) + changed); 4016 } 4017 4018 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4019 ext4_group_desc_csum_set(sb, group, gdp); 4020 ext4_unlock_group(sb, group); 4021 if (ret_changed) 4022 *ret_changed = changed; 4023 4024 if (sbi->s_log_groups_per_flex) { 4025 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4026 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4027 s_flex_groups, flex_group); 4028 4029 if (state) 4030 atomic64_sub(changed, &fg->free_clusters); 4031 else 4032 atomic64_add(changed, &fg->free_clusters); 4033 } 4034 4035 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4036 if (err) 4037 goto out_err; 4038 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4039 if (err) 4040 goto out_err; 4041 4042 if (flags & EXT4_MB_SYNC_UPDATE) { 4043 sync_dirty_buffer(bitmap_bh); 4044 sync_dirty_buffer(gdp_bh); 4045 } 4046 4047 out_err: 4048 brelse(bitmap_bh); 4049 return err; 4050 } 4051 4052 /* 4053 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 4054 * Returns 0 if success or error code 4055 */ 4056 static noinline_for_stack int 4057 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 4058 handle_t *handle, unsigned int reserv_clstrs) 4059 { 4060 struct ext4_group_desc *gdp; 4061 struct ext4_sb_info *sbi; 4062 struct super_block *sb; 4063 ext4_fsblk_t block; 4064 int err, len; 4065 int flags = 0; 4066 ext4_grpblk_t changed; 4067 4068 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4069 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4070 4071 sb = ac->ac_sb; 4072 sbi = EXT4_SB(sb); 4073 4074 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL); 4075 if (!gdp) 4076 return -EIO; 4077 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4078 ext4_free_group_clusters(sb, gdp)); 4079 4080 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4081 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4082 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4083 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4084 "fs metadata", block, block+len); 4085 /* File system mounted not to panic on error 4086 * Fix the bitmap and return EFSCORRUPTED 4087 * We leak some of the blocks here. 4088 */ 4089 err = ext4_mb_mark_context(handle, sb, true, 4090 ac->ac_b_ex.fe_group, 4091 ac->ac_b_ex.fe_start, 4092 ac->ac_b_ex.fe_len, 4093 0, NULL); 4094 if (!err) 4095 err = -EFSCORRUPTED; 4096 return err; 4097 } 4098 4099 #ifdef AGGRESSIVE_CHECK 4100 flags |= EXT4_MB_BITMAP_MARKED_CHECK; 4101 #endif 4102 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, 4103 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, 4104 flags, &changed); 4105 4106 if (err && changed == 0) 4107 return err; 4108 4109 #ifdef AGGRESSIVE_CHECK 4110 BUG_ON(changed != ac->ac_b_ex.fe_len); 4111 #endif 4112 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4113 /* 4114 * Now reduce the dirty block count also. Should not go negative 4115 */ 4116 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4117 /* release all the reserved blocks if non delalloc */ 4118 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4119 reserv_clstrs); 4120 4121 return err; 4122 } 4123 4124 /* 4125 * Idempotent helper for Ext4 fast commit replay path to set the state of 4126 * blocks in bitmaps and update counters. 4127 */ 4128 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4129 int len, bool state) 4130 { 4131 struct ext4_sb_info *sbi = EXT4_SB(sb); 4132 ext4_group_t group; 4133 ext4_grpblk_t blkoff; 4134 int err = 0; 4135 unsigned int clen, thisgrp_len; 4136 4137 while (len > 0) { 4138 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4139 4140 /* 4141 * Check to see if we are freeing blocks across a group 4142 * boundary. 4143 * In case of flex_bg, this can happen that (block, len) may 4144 * span across more than one group. In that case we need to 4145 * get the corresponding group metadata to work with. 4146 * For this we have goto again loop. 4147 */ 4148 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4149 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4150 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4151 4152 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4153 ext4_error(sb, "Marking blocks in system zone - " 4154 "Block = %llu, len = %u", 4155 block, thisgrp_len); 4156 break; 4157 } 4158 4159 err = ext4_mb_mark_context(NULL, sb, state, 4160 group, blkoff, clen, 4161 EXT4_MB_BITMAP_MARKED_CHECK | 4162 EXT4_MB_SYNC_UPDATE, 4163 NULL); 4164 if (err) 4165 break; 4166 4167 block += thisgrp_len; 4168 len -= thisgrp_len; 4169 BUG_ON(len < 0); 4170 } 4171 } 4172 4173 /* 4174 * here we normalize request for locality group 4175 * Group request are normalized to s_mb_group_prealloc, which goes to 4176 * s_strip if we set the same via mount option. 4177 * s_mb_group_prealloc can be configured via 4178 * /sys/fs/ext4/<partition>/mb_group_prealloc 4179 * 4180 * XXX: should we try to preallocate more than the group has now? 4181 */ 4182 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4183 { 4184 struct super_block *sb = ac->ac_sb; 4185 struct ext4_locality_group *lg = ac->ac_lg; 4186 4187 BUG_ON(lg == NULL); 4188 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4189 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4190 } 4191 4192 /* 4193 * This function returns the next element to look at during inode 4194 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4195 * (ei->i_prealloc_lock) 4196 * 4197 * new_start The start of the range we want to compare 4198 * cur_start The existing start that we are comparing against 4199 * node The node of the rb_tree 4200 */ 4201 static inline struct rb_node* 4202 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4203 { 4204 if (new_start < cur_start) 4205 return node->rb_left; 4206 else 4207 return node->rb_right; 4208 } 4209 4210 static inline void 4211 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4212 ext4_lblk_t start, loff_t end) 4213 { 4214 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4215 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4216 struct ext4_prealloc_space *tmp_pa; 4217 ext4_lblk_t tmp_pa_start; 4218 loff_t tmp_pa_end; 4219 struct rb_node *iter; 4220 4221 read_lock(&ei->i_prealloc_lock); 4222 for (iter = ei->i_prealloc_node.rb_node; iter; 4223 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4224 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4225 pa_node.inode_node); 4226 tmp_pa_start = tmp_pa->pa_lstart; 4227 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4228 4229 spin_lock(&tmp_pa->pa_lock); 4230 if (tmp_pa->pa_deleted == 0) 4231 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4232 spin_unlock(&tmp_pa->pa_lock); 4233 } 4234 read_unlock(&ei->i_prealloc_lock); 4235 } 4236 4237 /* 4238 * Given an allocation context "ac" and a range "start", "end", check 4239 * and adjust boundaries if the range overlaps with any of the existing 4240 * preallocatoins stored in the corresponding inode of the allocation context. 4241 * 4242 * Parameters: 4243 * ac allocation context 4244 * start start of the new range 4245 * end end of the new range 4246 */ 4247 static inline void 4248 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4249 ext4_lblk_t *start, loff_t *end) 4250 { 4251 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4252 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4253 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4254 struct rb_node *iter; 4255 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4256 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4257 4258 new_start = *start; 4259 new_end = *end; 4260 4261 /* 4262 * Adjust the normalized range so that it doesn't overlap with any 4263 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4264 * so it doesn't change underneath us. 4265 */ 4266 read_lock(&ei->i_prealloc_lock); 4267 4268 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4269 for (iter = ei->i_prealloc_node.rb_node; iter; 4270 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4271 tmp_pa_start, iter)) { 4272 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4273 pa_node.inode_node); 4274 tmp_pa_start = tmp_pa->pa_lstart; 4275 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4276 4277 /* PA must not overlap original request */ 4278 spin_lock(&tmp_pa->pa_lock); 4279 if (tmp_pa->pa_deleted == 0) 4280 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4281 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4282 spin_unlock(&tmp_pa->pa_lock); 4283 } 4284 4285 /* 4286 * Step 2: check if the found PA is left or right neighbor and 4287 * get the other neighbor 4288 */ 4289 if (tmp_pa) { 4290 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4291 struct rb_node *tmp; 4292 4293 left_pa = tmp_pa; 4294 tmp = rb_next(&left_pa->pa_node.inode_node); 4295 if (tmp) { 4296 right_pa = rb_entry(tmp, 4297 struct ext4_prealloc_space, 4298 pa_node.inode_node); 4299 } 4300 } else { 4301 struct rb_node *tmp; 4302 4303 right_pa = tmp_pa; 4304 tmp = rb_prev(&right_pa->pa_node.inode_node); 4305 if (tmp) { 4306 left_pa = rb_entry(tmp, 4307 struct ext4_prealloc_space, 4308 pa_node.inode_node); 4309 } 4310 } 4311 } 4312 4313 /* Step 3: get the non deleted neighbors */ 4314 if (left_pa) { 4315 for (iter = &left_pa->pa_node.inode_node;; 4316 iter = rb_prev(iter)) { 4317 if (!iter) { 4318 left_pa = NULL; 4319 break; 4320 } 4321 4322 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4323 pa_node.inode_node); 4324 left_pa = tmp_pa; 4325 spin_lock(&tmp_pa->pa_lock); 4326 if (tmp_pa->pa_deleted == 0) { 4327 spin_unlock(&tmp_pa->pa_lock); 4328 break; 4329 } 4330 spin_unlock(&tmp_pa->pa_lock); 4331 } 4332 } 4333 4334 if (right_pa) { 4335 for (iter = &right_pa->pa_node.inode_node;; 4336 iter = rb_next(iter)) { 4337 if (!iter) { 4338 right_pa = NULL; 4339 break; 4340 } 4341 4342 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4343 pa_node.inode_node); 4344 right_pa = tmp_pa; 4345 spin_lock(&tmp_pa->pa_lock); 4346 if (tmp_pa->pa_deleted == 0) { 4347 spin_unlock(&tmp_pa->pa_lock); 4348 break; 4349 } 4350 spin_unlock(&tmp_pa->pa_lock); 4351 } 4352 } 4353 4354 if (left_pa) { 4355 left_pa_end = pa_logical_end(sbi, left_pa); 4356 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4357 } 4358 4359 if (right_pa) { 4360 right_pa_start = right_pa->pa_lstart; 4361 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4362 } 4363 4364 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4365 if (left_pa) { 4366 if (left_pa_end > new_start) 4367 new_start = left_pa_end; 4368 } 4369 4370 if (right_pa) { 4371 if (right_pa_start < new_end) 4372 new_end = right_pa_start; 4373 } 4374 read_unlock(&ei->i_prealloc_lock); 4375 4376 /* XXX: extra loop to check we really don't overlap preallocations */ 4377 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4378 4379 *start = new_start; 4380 *end = new_end; 4381 } 4382 4383 /* 4384 * Normalization means making request better in terms of 4385 * size and alignment 4386 */ 4387 static noinline_for_stack void 4388 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4389 struct ext4_allocation_request *ar) 4390 { 4391 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4392 struct ext4_super_block *es = sbi->s_es; 4393 int bsbits, max; 4394 loff_t size, start_off, end; 4395 loff_t orig_size __maybe_unused; 4396 ext4_lblk_t start; 4397 4398 /* do normalize only data requests, metadata requests 4399 do not need preallocation */ 4400 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4401 return; 4402 4403 /* sometime caller may want exact blocks */ 4404 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4405 return; 4406 4407 /* caller may indicate that preallocation isn't 4408 * required (it's a tail, for example) */ 4409 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4410 return; 4411 4412 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4413 ext4_mb_normalize_group_request(ac); 4414 return ; 4415 } 4416 4417 bsbits = ac->ac_sb->s_blocksize_bits; 4418 4419 /* first, let's learn actual file size 4420 * given current request is allocated */ 4421 size = extent_logical_end(sbi, &ac->ac_o_ex); 4422 size = size << bsbits; 4423 if (size < i_size_read(ac->ac_inode)) 4424 size = i_size_read(ac->ac_inode); 4425 orig_size = size; 4426 4427 /* max size of free chunks */ 4428 max = 2 << bsbits; 4429 4430 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4431 (req <= (size) || max <= (chunk_size)) 4432 4433 /* first, try to predict filesize */ 4434 /* XXX: should this table be tunable? */ 4435 start_off = 0; 4436 if (size <= 16 * 1024) { 4437 size = 16 * 1024; 4438 } else if (size <= 32 * 1024) { 4439 size = 32 * 1024; 4440 } else if (size <= 64 * 1024) { 4441 size = 64 * 1024; 4442 } else if (size <= 128 * 1024) { 4443 size = 128 * 1024; 4444 } else if (size <= 256 * 1024) { 4445 size = 256 * 1024; 4446 } else if (size <= 512 * 1024) { 4447 size = 512 * 1024; 4448 } else if (size <= 1024 * 1024) { 4449 size = 1024 * 1024; 4450 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4451 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4452 (21 - bsbits)) << 21; 4453 size = 2 * 1024 * 1024; 4454 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4455 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4456 (22 - bsbits)) << 22; 4457 size = 4 * 1024 * 1024; 4458 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4459 (8<<20)>>bsbits, max, 8 * 1024)) { 4460 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4461 (23 - bsbits)) << 23; 4462 size = 8 * 1024 * 1024; 4463 } else { 4464 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4465 size = (loff_t) EXT4_C2B(sbi, 4466 ac->ac_o_ex.fe_len) << bsbits; 4467 } 4468 size = size >> bsbits; 4469 start = start_off >> bsbits; 4470 4471 /* 4472 * For tiny groups (smaller than 8MB) the chosen allocation 4473 * alignment may be larger than group size. Make sure the 4474 * alignment does not move allocation to a different group which 4475 * makes mballoc fail assertions later. 4476 */ 4477 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4478 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4479 4480 /* avoid unnecessary preallocation that may trigger assertions */ 4481 if (start + size > EXT_MAX_BLOCKS) 4482 size = EXT_MAX_BLOCKS - start; 4483 4484 /* don't cover already allocated blocks in selected range */ 4485 if (ar->pleft && start <= ar->lleft) { 4486 size -= ar->lleft + 1 - start; 4487 start = ar->lleft + 1; 4488 } 4489 if (ar->pright && start + size - 1 >= ar->lright) 4490 size -= start + size - ar->lright; 4491 4492 /* 4493 * Trim allocation request for filesystems with artificially small 4494 * groups. 4495 */ 4496 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4497 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4498 4499 end = start + size; 4500 4501 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4502 4503 size = end - start; 4504 4505 /* 4506 * In this function "start" and "size" are normalized for better 4507 * alignment and length such that we could preallocate more blocks. 4508 * This normalization is done such that original request of 4509 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4510 * "size" boundaries. 4511 * (Note fe_len can be relaxed since FS block allocation API does not 4512 * provide gurantee on number of contiguous blocks allocation since that 4513 * depends upon free space left, etc). 4514 * In case of inode pa, later we use the allocated blocks 4515 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4516 * range of goal/best blocks [start, size] to put it at the 4517 * ac_o_ex.fe_logical extent of this inode. 4518 * (See ext4_mb_use_inode_pa() for more details) 4519 */ 4520 if (start + size <= ac->ac_o_ex.fe_logical || 4521 start > ac->ac_o_ex.fe_logical) { 4522 ext4_msg(ac->ac_sb, KERN_ERR, 4523 "start %lu, size %lu, fe_logical %lu", 4524 (unsigned long) start, (unsigned long) size, 4525 (unsigned long) ac->ac_o_ex.fe_logical); 4526 BUG(); 4527 } 4528 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4529 4530 /* now prepare goal request */ 4531 4532 /* XXX: is it better to align blocks WRT to logical 4533 * placement or satisfy big request as is */ 4534 ac->ac_g_ex.fe_logical = start; 4535 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4536 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4537 4538 /* define goal start in order to merge */ 4539 if (ar->pright && (ar->lright == (start + size)) && 4540 ar->pright >= size && 4541 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4542 /* merge to the right */ 4543 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4544 &ac->ac_g_ex.fe_group, 4545 &ac->ac_g_ex.fe_start); 4546 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4547 } 4548 if (ar->pleft && (ar->lleft + 1 == start) && 4549 ar->pleft + 1 < ext4_blocks_count(es)) { 4550 /* merge to the left */ 4551 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4552 &ac->ac_g_ex.fe_group, 4553 &ac->ac_g_ex.fe_start); 4554 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4555 } 4556 4557 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4558 orig_size, start); 4559 } 4560 4561 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4562 { 4563 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4564 4565 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4566 atomic_inc(&sbi->s_bal_reqs); 4567 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4568 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4569 atomic_inc(&sbi->s_bal_success); 4570 4571 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4572 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4573 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4574 } 4575 4576 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4577 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4578 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4579 atomic_inc(&sbi->s_bal_goals); 4580 /* did we allocate as much as normalizer originally wanted? */ 4581 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4582 atomic_inc(&sbi->s_bal_len_goals); 4583 4584 if (ac->ac_found > sbi->s_mb_max_to_scan) 4585 atomic_inc(&sbi->s_bal_breaks); 4586 } 4587 4588 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4589 trace_ext4_mballoc_alloc(ac); 4590 else 4591 trace_ext4_mballoc_prealloc(ac); 4592 } 4593 4594 /* 4595 * Called on failure; free up any blocks from the inode PA for this 4596 * context. We don't need this for MB_GROUP_PA because we only change 4597 * pa_free in ext4_mb_release_context(), but on failure, we've already 4598 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4599 */ 4600 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4601 { 4602 struct ext4_prealloc_space *pa = ac->ac_pa; 4603 struct ext4_buddy e4b; 4604 int err; 4605 4606 if (pa == NULL) { 4607 if (ac->ac_f_ex.fe_len == 0) 4608 return; 4609 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4610 if (WARN_RATELIMIT(err, 4611 "ext4: mb_load_buddy failed (%d)", err)) 4612 /* 4613 * This should never happen since we pin the 4614 * pages in the ext4_allocation_context so 4615 * ext4_mb_load_buddy() should never fail. 4616 */ 4617 return; 4618 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4619 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4620 ac->ac_f_ex.fe_len); 4621 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4622 ext4_mb_unload_buddy(&e4b); 4623 return; 4624 } 4625 if (pa->pa_type == MB_INODE_PA) { 4626 spin_lock(&pa->pa_lock); 4627 pa->pa_free += ac->ac_b_ex.fe_len; 4628 spin_unlock(&pa->pa_lock); 4629 } 4630 } 4631 4632 /* 4633 * use blocks preallocated to inode 4634 */ 4635 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4636 struct ext4_prealloc_space *pa) 4637 { 4638 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4639 ext4_fsblk_t start; 4640 ext4_fsblk_t end; 4641 int len; 4642 4643 /* found preallocated blocks, use them */ 4644 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4645 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4646 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4647 len = EXT4_NUM_B2C(sbi, end - start); 4648 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4649 &ac->ac_b_ex.fe_start); 4650 ac->ac_b_ex.fe_len = len; 4651 ac->ac_status = AC_STATUS_FOUND; 4652 ac->ac_pa = pa; 4653 4654 BUG_ON(start < pa->pa_pstart); 4655 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4656 BUG_ON(pa->pa_free < len); 4657 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4658 pa->pa_free -= len; 4659 4660 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4661 } 4662 4663 /* 4664 * use blocks preallocated to locality group 4665 */ 4666 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4667 struct ext4_prealloc_space *pa) 4668 { 4669 unsigned int len = ac->ac_o_ex.fe_len; 4670 4671 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4672 &ac->ac_b_ex.fe_group, 4673 &ac->ac_b_ex.fe_start); 4674 ac->ac_b_ex.fe_len = len; 4675 ac->ac_status = AC_STATUS_FOUND; 4676 ac->ac_pa = pa; 4677 4678 /* we don't correct pa_pstart or pa_len here to avoid 4679 * possible race when the group is being loaded concurrently 4680 * instead we correct pa later, after blocks are marked 4681 * in on-disk bitmap -- see ext4_mb_release_context() 4682 * Other CPUs are prevented from allocating from this pa by lg_mutex 4683 */ 4684 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4685 pa->pa_lstart, len, pa); 4686 } 4687 4688 /* 4689 * Return the prealloc space that have minimal distance 4690 * from the goal block. @cpa is the prealloc 4691 * space that is having currently known minimal distance 4692 * from the goal block. 4693 */ 4694 static struct ext4_prealloc_space * 4695 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4696 struct ext4_prealloc_space *pa, 4697 struct ext4_prealloc_space *cpa) 4698 { 4699 ext4_fsblk_t cur_distance, new_distance; 4700 4701 if (cpa == NULL) { 4702 atomic_inc(&pa->pa_count); 4703 return pa; 4704 } 4705 cur_distance = abs(goal_block - cpa->pa_pstart); 4706 new_distance = abs(goal_block - pa->pa_pstart); 4707 4708 if (cur_distance <= new_distance) 4709 return cpa; 4710 4711 /* drop the previous reference */ 4712 atomic_dec(&cpa->pa_count); 4713 atomic_inc(&pa->pa_count); 4714 return pa; 4715 } 4716 4717 /* 4718 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4719 */ 4720 static bool 4721 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4722 struct ext4_prealloc_space *pa) 4723 { 4724 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4725 ext4_fsblk_t start; 4726 4727 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4728 return true; 4729 4730 /* 4731 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4732 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4733 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4734 * consistent with ext4_mb_find_by_goal. 4735 */ 4736 start = pa->pa_pstart + 4737 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4738 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4739 return false; 4740 4741 if (ac->ac_g_ex.fe_len > pa->pa_len - 4742 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4743 return false; 4744 4745 return true; 4746 } 4747 4748 /* 4749 * search goal blocks in preallocated space 4750 */ 4751 static noinline_for_stack bool 4752 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4753 { 4754 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4755 int order, i; 4756 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4757 struct ext4_locality_group *lg; 4758 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4759 struct rb_node *iter; 4760 ext4_fsblk_t goal_block; 4761 4762 /* only data can be preallocated */ 4763 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4764 return false; 4765 4766 /* 4767 * first, try per-file preallocation by searching the inode pa rbtree. 4768 * 4769 * Here, we can't do a direct traversal of the tree because 4770 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4771 * deleted and that can cause direct traversal to skip some entries. 4772 */ 4773 read_lock(&ei->i_prealloc_lock); 4774 4775 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4776 goto try_group_pa; 4777 } 4778 4779 /* 4780 * Step 1: Find a pa with logical start immediately adjacent to the 4781 * original logical start. This could be on the left or right. 4782 * 4783 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4784 */ 4785 for (iter = ei->i_prealloc_node.rb_node; iter; 4786 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4787 tmp_pa->pa_lstart, iter)) { 4788 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4789 pa_node.inode_node); 4790 } 4791 4792 /* 4793 * Step 2: The adjacent pa might be to the right of logical start, find 4794 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4795 * logical start is towards the left of original request's logical start 4796 */ 4797 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4798 struct rb_node *tmp; 4799 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4800 4801 if (tmp) { 4802 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4803 pa_node.inode_node); 4804 } else { 4805 /* 4806 * If there is no adjacent pa to the left then finding 4807 * an overlapping pa is not possible hence stop searching 4808 * inode pa tree 4809 */ 4810 goto try_group_pa; 4811 } 4812 } 4813 4814 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4815 4816 /* 4817 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4818 * the first non deleted adjacent pa. After this step we should have a 4819 * valid tmp_pa which is guaranteed to be non deleted. 4820 */ 4821 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4822 if (!iter) { 4823 /* 4824 * no non deleted left adjacent pa, so stop searching 4825 * inode pa tree 4826 */ 4827 goto try_group_pa; 4828 } 4829 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4830 pa_node.inode_node); 4831 spin_lock(&tmp_pa->pa_lock); 4832 if (tmp_pa->pa_deleted == 0) { 4833 /* 4834 * We will keep holding the pa_lock from 4835 * this point on because we don't want group discard 4836 * to delete this pa underneath us. Since group 4837 * discard is anyways an ENOSPC operation it 4838 * should be okay for it to wait a few more cycles. 4839 */ 4840 break; 4841 } else { 4842 spin_unlock(&tmp_pa->pa_lock); 4843 } 4844 } 4845 4846 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4847 BUG_ON(tmp_pa->pa_deleted == 1); 4848 4849 /* 4850 * Step 4: We now have the non deleted left adjacent pa. Only this 4851 * pa can possibly satisfy the request hence check if it overlaps 4852 * original logical start and stop searching if it doesn't. 4853 */ 4854 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4855 spin_unlock(&tmp_pa->pa_lock); 4856 goto try_group_pa; 4857 } 4858 4859 /* non-extent files can't have physical blocks past 2^32 */ 4860 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4861 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4862 EXT4_MAX_BLOCK_FILE_PHYS)) { 4863 /* 4864 * Since PAs don't overlap, we won't find any other PA to 4865 * satisfy this. 4866 */ 4867 spin_unlock(&tmp_pa->pa_lock); 4868 goto try_group_pa; 4869 } 4870 4871 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4872 atomic_inc(&tmp_pa->pa_count); 4873 ext4_mb_use_inode_pa(ac, tmp_pa); 4874 spin_unlock(&tmp_pa->pa_lock); 4875 read_unlock(&ei->i_prealloc_lock); 4876 return true; 4877 } else { 4878 /* 4879 * We found a valid overlapping pa but couldn't use it because 4880 * it had no free blocks. This should ideally never happen 4881 * because: 4882 * 4883 * 1. When a new inode pa is added to rbtree it must have 4884 * pa_free > 0 since otherwise we won't actually need 4885 * preallocation. 4886 * 4887 * 2. An inode pa that is in the rbtree can only have it's 4888 * pa_free become zero when another thread calls: 4889 * ext4_mb_new_blocks 4890 * ext4_mb_use_preallocated 4891 * ext4_mb_use_inode_pa 4892 * 4893 * 3. Further, after the above calls make pa_free == 0, we will 4894 * immediately remove it from the rbtree in: 4895 * ext4_mb_new_blocks 4896 * ext4_mb_release_context 4897 * ext4_mb_put_pa 4898 * 4899 * 4. Since the pa_free becoming 0 and pa_free getting removed 4900 * from tree both happen in ext4_mb_new_blocks, which is always 4901 * called with i_data_sem held for data allocations, we can be 4902 * sure that another process will never see a pa in rbtree with 4903 * pa_free == 0. 4904 */ 4905 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4906 } 4907 spin_unlock(&tmp_pa->pa_lock); 4908 try_group_pa: 4909 read_unlock(&ei->i_prealloc_lock); 4910 4911 /* can we use group allocation? */ 4912 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4913 return false; 4914 4915 /* inode may have no locality group for some reason */ 4916 lg = ac->ac_lg; 4917 if (lg == NULL) 4918 return false; 4919 order = fls(ac->ac_o_ex.fe_len) - 1; 4920 if (order > PREALLOC_TB_SIZE - 1) 4921 /* The max size of hash table is PREALLOC_TB_SIZE */ 4922 order = PREALLOC_TB_SIZE - 1; 4923 4924 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4925 /* 4926 * search for the prealloc space that is having 4927 * minimal distance from the goal block. 4928 */ 4929 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4930 rcu_read_lock(); 4931 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4932 pa_node.lg_list) { 4933 spin_lock(&tmp_pa->pa_lock); 4934 if (tmp_pa->pa_deleted == 0 && 4935 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4936 4937 cpa = ext4_mb_check_group_pa(goal_block, 4938 tmp_pa, cpa); 4939 } 4940 spin_unlock(&tmp_pa->pa_lock); 4941 } 4942 rcu_read_unlock(); 4943 } 4944 if (cpa) { 4945 ext4_mb_use_group_pa(ac, cpa); 4946 return true; 4947 } 4948 return false; 4949 } 4950 4951 /* 4952 * the function goes through all preallocation in this group and marks them 4953 * used in in-core bitmap. buddy must be generated from this bitmap 4954 * Need to be called with ext4 group lock held 4955 */ 4956 static noinline_for_stack 4957 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4958 ext4_group_t group) 4959 { 4960 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4961 struct ext4_prealloc_space *pa; 4962 struct list_head *cur; 4963 ext4_group_t groupnr; 4964 ext4_grpblk_t start; 4965 int preallocated = 0; 4966 int len; 4967 4968 if (!grp) 4969 return; 4970 4971 /* all form of preallocation discards first load group, 4972 * so the only competing code is preallocation use. 4973 * we don't need any locking here 4974 * notice we do NOT ignore preallocations with pa_deleted 4975 * otherwise we could leave used blocks available for 4976 * allocation in buddy when concurrent ext4_mb_put_pa() 4977 * is dropping preallocation 4978 */ 4979 list_for_each(cur, &grp->bb_prealloc_list) { 4980 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 4981 spin_lock(&pa->pa_lock); 4982 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4983 &groupnr, &start); 4984 len = pa->pa_len; 4985 spin_unlock(&pa->pa_lock); 4986 if (unlikely(len == 0)) 4987 continue; 4988 BUG_ON(groupnr != group); 4989 mb_set_bits(bitmap, start, len); 4990 preallocated += len; 4991 } 4992 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 4993 } 4994 4995 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 4996 struct ext4_prealloc_space *pa) 4997 { 4998 struct ext4_inode_info *ei; 4999 5000 if (pa->pa_deleted) { 5001 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5002 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5003 pa->pa_len); 5004 return; 5005 } 5006 5007 pa->pa_deleted = 1; 5008 5009 if (pa->pa_type == MB_INODE_PA) { 5010 ei = EXT4_I(pa->pa_inode); 5011 atomic_dec(&ei->i_prealloc_active); 5012 } 5013 } 5014 5015 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5016 { 5017 BUG_ON(!pa); 5018 BUG_ON(atomic_read(&pa->pa_count)); 5019 BUG_ON(pa->pa_deleted == 0); 5020 kmem_cache_free(ext4_pspace_cachep, pa); 5021 } 5022 5023 static void ext4_mb_pa_callback(struct rcu_head *head) 5024 { 5025 struct ext4_prealloc_space *pa; 5026 5027 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5028 ext4_mb_pa_free(pa); 5029 } 5030 5031 /* 5032 * drops a reference to preallocated space descriptor 5033 * if this was the last reference and the space is consumed 5034 */ 5035 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5036 struct super_block *sb, struct ext4_prealloc_space *pa) 5037 { 5038 ext4_group_t grp; 5039 ext4_fsblk_t grp_blk; 5040 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5041 5042 /* in this short window concurrent discard can set pa_deleted */ 5043 spin_lock(&pa->pa_lock); 5044 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5045 spin_unlock(&pa->pa_lock); 5046 return; 5047 } 5048 5049 if (pa->pa_deleted == 1) { 5050 spin_unlock(&pa->pa_lock); 5051 return; 5052 } 5053 5054 ext4_mb_mark_pa_deleted(sb, pa); 5055 spin_unlock(&pa->pa_lock); 5056 5057 grp_blk = pa->pa_pstart; 5058 /* 5059 * If doing group-based preallocation, pa_pstart may be in the 5060 * next group when pa is used up 5061 */ 5062 if (pa->pa_type == MB_GROUP_PA) 5063 grp_blk--; 5064 5065 grp = ext4_get_group_number(sb, grp_blk); 5066 5067 /* 5068 * possible race: 5069 * 5070 * P1 (buddy init) P2 (regular allocation) 5071 * find block B in PA 5072 * copy on-disk bitmap to buddy 5073 * mark B in on-disk bitmap 5074 * drop PA from group 5075 * mark all PAs in buddy 5076 * 5077 * thus, P1 initializes buddy with B available. to prevent this 5078 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5079 * against that pair 5080 */ 5081 ext4_lock_group(sb, grp); 5082 list_del(&pa->pa_group_list); 5083 ext4_unlock_group(sb, grp); 5084 5085 if (pa->pa_type == MB_INODE_PA) { 5086 write_lock(pa->pa_node_lock.inode_lock); 5087 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5088 write_unlock(pa->pa_node_lock.inode_lock); 5089 ext4_mb_pa_free(pa); 5090 } else { 5091 spin_lock(pa->pa_node_lock.lg_lock); 5092 list_del_rcu(&pa->pa_node.lg_list); 5093 spin_unlock(pa->pa_node_lock.lg_lock); 5094 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5095 } 5096 } 5097 5098 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5099 { 5100 struct rb_node **iter = &root->rb_node, *parent = NULL; 5101 struct ext4_prealloc_space *iter_pa, *new_pa; 5102 ext4_lblk_t iter_start, new_start; 5103 5104 while (*iter) { 5105 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5106 pa_node.inode_node); 5107 new_pa = rb_entry(new, struct ext4_prealloc_space, 5108 pa_node.inode_node); 5109 iter_start = iter_pa->pa_lstart; 5110 new_start = new_pa->pa_lstart; 5111 5112 parent = *iter; 5113 if (new_start < iter_start) 5114 iter = &((*iter)->rb_left); 5115 else 5116 iter = &((*iter)->rb_right); 5117 } 5118 5119 rb_link_node(new, parent, iter); 5120 rb_insert_color(new, root); 5121 } 5122 5123 /* 5124 * creates new preallocated space for given inode 5125 */ 5126 static noinline_for_stack void 5127 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5128 { 5129 struct super_block *sb = ac->ac_sb; 5130 struct ext4_sb_info *sbi = EXT4_SB(sb); 5131 struct ext4_prealloc_space *pa; 5132 struct ext4_group_info *grp; 5133 struct ext4_inode_info *ei; 5134 5135 /* preallocate only when found space is larger then requested */ 5136 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5137 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5138 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5139 BUG_ON(ac->ac_pa == NULL); 5140 5141 pa = ac->ac_pa; 5142 5143 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5144 struct ext4_free_extent ex = { 5145 .fe_logical = ac->ac_g_ex.fe_logical, 5146 .fe_len = ac->ac_orig_goal_len, 5147 }; 5148 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5149 5150 /* we can't allocate as much as normalizer wants. 5151 * so, found space must get proper lstart 5152 * to cover original request */ 5153 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5154 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5155 5156 /* 5157 * Use the below logic for adjusting best extent as it keeps 5158 * fragmentation in check while ensuring logical range of best 5159 * extent doesn't overflow out of goal extent: 5160 * 5161 * 1. Check if best ex can be kept at end of goal (before 5162 * cr_best_avail trimmed it) and still cover original start 5163 * 2. Else, check if best ex can be kept at start of goal and 5164 * still cover original start 5165 * 3. Else, keep the best ex at start of original request. 5166 */ 5167 ex.fe_len = ac->ac_b_ex.fe_len; 5168 5169 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5170 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5171 goto adjust_bex; 5172 5173 ex.fe_logical = ac->ac_g_ex.fe_logical; 5174 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) 5175 goto adjust_bex; 5176 5177 ex.fe_logical = ac->ac_o_ex.fe_logical; 5178 adjust_bex: 5179 ac->ac_b_ex.fe_logical = ex.fe_logical; 5180 5181 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5182 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 5183 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5184 } 5185 5186 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5187 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5188 pa->pa_len = ac->ac_b_ex.fe_len; 5189 pa->pa_free = pa->pa_len; 5190 spin_lock_init(&pa->pa_lock); 5191 INIT_LIST_HEAD(&pa->pa_group_list); 5192 pa->pa_deleted = 0; 5193 pa->pa_type = MB_INODE_PA; 5194 5195 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5196 pa->pa_len, pa->pa_lstart); 5197 trace_ext4_mb_new_inode_pa(ac, pa); 5198 5199 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5200 ext4_mb_use_inode_pa(ac, pa); 5201 5202 ei = EXT4_I(ac->ac_inode); 5203 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5204 if (!grp) 5205 return; 5206 5207 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5208 pa->pa_inode = ac->ac_inode; 5209 5210 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5211 5212 write_lock(pa->pa_node_lock.inode_lock); 5213 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5214 write_unlock(pa->pa_node_lock.inode_lock); 5215 atomic_inc(&ei->i_prealloc_active); 5216 } 5217 5218 /* 5219 * creates new preallocated space for locality group inodes belongs to 5220 */ 5221 static noinline_for_stack void 5222 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5223 { 5224 struct super_block *sb = ac->ac_sb; 5225 struct ext4_locality_group *lg; 5226 struct ext4_prealloc_space *pa; 5227 struct ext4_group_info *grp; 5228 5229 /* preallocate only when found space is larger then requested */ 5230 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5231 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5232 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5233 BUG_ON(ac->ac_pa == NULL); 5234 5235 pa = ac->ac_pa; 5236 5237 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5238 pa->pa_lstart = pa->pa_pstart; 5239 pa->pa_len = ac->ac_b_ex.fe_len; 5240 pa->pa_free = pa->pa_len; 5241 spin_lock_init(&pa->pa_lock); 5242 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5243 INIT_LIST_HEAD(&pa->pa_group_list); 5244 pa->pa_deleted = 0; 5245 pa->pa_type = MB_GROUP_PA; 5246 5247 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5248 pa->pa_len, pa->pa_lstart); 5249 trace_ext4_mb_new_group_pa(ac, pa); 5250 5251 ext4_mb_use_group_pa(ac, pa); 5252 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5253 5254 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5255 if (!grp) 5256 return; 5257 lg = ac->ac_lg; 5258 BUG_ON(lg == NULL); 5259 5260 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5261 pa->pa_inode = NULL; 5262 5263 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5264 5265 /* 5266 * We will later add the new pa to the right bucket 5267 * after updating the pa_free in ext4_mb_release_context 5268 */ 5269 } 5270 5271 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5272 { 5273 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5274 ext4_mb_new_group_pa(ac); 5275 else 5276 ext4_mb_new_inode_pa(ac); 5277 } 5278 5279 /* 5280 * finds all unused blocks in on-disk bitmap, frees them in 5281 * in-core bitmap and buddy. 5282 * @pa must be unlinked from inode and group lists, so that 5283 * nobody else can find/use it. 5284 * the caller MUST hold group/inode locks. 5285 * TODO: optimize the case when there are no in-core structures yet 5286 */ 5287 static noinline_for_stack int 5288 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5289 struct ext4_prealloc_space *pa) 5290 { 5291 struct super_block *sb = e4b->bd_sb; 5292 struct ext4_sb_info *sbi = EXT4_SB(sb); 5293 unsigned int end; 5294 unsigned int next; 5295 ext4_group_t group; 5296 ext4_grpblk_t bit; 5297 unsigned long long grp_blk_start; 5298 int free = 0; 5299 5300 BUG_ON(pa->pa_deleted == 0); 5301 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5302 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5303 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5304 end = bit + pa->pa_len; 5305 5306 while (bit < end) { 5307 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5308 if (bit >= end) 5309 break; 5310 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5311 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5312 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5313 (unsigned) next - bit, (unsigned) group); 5314 free += next - bit; 5315 5316 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5317 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5318 EXT4_C2B(sbi, bit)), 5319 next - bit); 5320 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5321 bit = next + 1; 5322 } 5323 if (free != pa->pa_free) { 5324 ext4_msg(e4b->bd_sb, KERN_CRIT, 5325 "pa %p: logic %lu, phys. %lu, len %d", 5326 pa, (unsigned long) pa->pa_lstart, 5327 (unsigned long) pa->pa_pstart, 5328 pa->pa_len); 5329 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5330 free, pa->pa_free); 5331 /* 5332 * pa is already deleted so we use the value obtained 5333 * from the bitmap and continue. 5334 */ 5335 } 5336 atomic_add(free, &sbi->s_mb_discarded); 5337 5338 return 0; 5339 } 5340 5341 static noinline_for_stack int 5342 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5343 struct ext4_prealloc_space *pa) 5344 { 5345 struct super_block *sb = e4b->bd_sb; 5346 ext4_group_t group; 5347 ext4_grpblk_t bit; 5348 5349 trace_ext4_mb_release_group_pa(sb, pa); 5350 BUG_ON(pa->pa_deleted == 0); 5351 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5352 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5353 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5354 e4b->bd_group, group, pa->pa_pstart); 5355 return 0; 5356 } 5357 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5358 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5359 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5360 5361 return 0; 5362 } 5363 5364 /* 5365 * releases all preallocations in given group 5366 * 5367 * first, we need to decide discard policy: 5368 * - when do we discard 5369 * 1) ENOSPC 5370 * - how many do we discard 5371 * 1) how many requested 5372 */ 5373 static noinline_for_stack int 5374 ext4_mb_discard_group_preallocations(struct super_block *sb, 5375 ext4_group_t group, int *busy) 5376 { 5377 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5378 struct buffer_head *bitmap_bh = NULL; 5379 struct ext4_prealloc_space *pa, *tmp; 5380 LIST_HEAD(list); 5381 struct ext4_buddy e4b; 5382 struct ext4_inode_info *ei; 5383 int err; 5384 int free = 0; 5385 5386 if (!grp) 5387 return 0; 5388 mb_debug(sb, "discard preallocation for group %u\n", group); 5389 if (list_empty(&grp->bb_prealloc_list)) 5390 goto out_dbg; 5391 5392 bitmap_bh = ext4_read_block_bitmap(sb, group); 5393 if (IS_ERR(bitmap_bh)) { 5394 err = PTR_ERR(bitmap_bh); 5395 ext4_error_err(sb, -err, 5396 "Error %d reading block bitmap for %u", 5397 err, group); 5398 goto out_dbg; 5399 } 5400 5401 err = ext4_mb_load_buddy(sb, group, &e4b); 5402 if (err) { 5403 ext4_warning(sb, "Error %d loading buddy information for %u", 5404 err, group); 5405 put_bh(bitmap_bh); 5406 goto out_dbg; 5407 } 5408 5409 ext4_lock_group(sb, group); 5410 list_for_each_entry_safe(pa, tmp, 5411 &grp->bb_prealloc_list, pa_group_list) { 5412 spin_lock(&pa->pa_lock); 5413 if (atomic_read(&pa->pa_count)) { 5414 spin_unlock(&pa->pa_lock); 5415 *busy = 1; 5416 continue; 5417 } 5418 if (pa->pa_deleted) { 5419 spin_unlock(&pa->pa_lock); 5420 continue; 5421 } 5422 5423 /* seems this one can be freed ... */ 5424 ext4_mb_mark_pa_deleted(sb, pa); 5425 5426 if (!free) 5427 this_cpu_inc(discard_pa_seq); 5428 5429 /* we can trust pa_free ... */ 5430 free += pa->pa_free; 5431 5432 spin_unlock(&pa->pa_lock); 5433 5434 list_del(&pa->pa_group_list); 5435 list_add(&pa->u.pa_tmp_list, &list); 5436 } 5437 5438 /* now free all selected PAs */ 5439 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5440 5441 /* remove from object (inode or locality group) */ 5442 if (pa->pa_type == MB_GROUP_PA) { 5443 spin_lock(pa->pa_node_lock.lg_lock); 5444 list_del_rcu(&pa->pa_node.lg_list); 5445 spin_unlock(pa->pa_node_lock.lg_lock); 5446 } else { 5447 write_lock(pa->pa_node_lock.inode_lock); 5448 ei = EXT4_I(pa->pa_inode); 5449 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5450 write_unlock(pa->pa_node_lock.inode_lock); 5451 } 5452 5453 list_del(&pa->u.pa_tmp_list); 5454 5455 if (pa->pa_type == MB_GROUP_PA) { 5456 ext4_mb_release_group_pa(&e4b, pa); 5457 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5458 } else { 5459 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5460 ext4_mb_pa_free(pa); 5461 } 5462 } 5463 5464 ext4_unlock_group(sb, group); 5465 ext4_mb_unload_buddy(&e4b); 5466 put_bh(bitmap_bh); 5467 out_dbg: 5468 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5469 free, group, grp->bb_free); 5470 return free; 5471 } 5472 5473 /* 5474 * releases all non-used preallocated blocks for given inode 5475 * 5476 * It's important to discard preallocations under i_data_sem 5477 * We don't want another block to be served from the prealloc 5478 * space when we are discarding the inode prealloc space. 5479 * 5480 * FIXME!! Make sure it is valid at all the call sites 5481 */ 5482 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5483 { 5484 struct ext4_inode_info *ei = EXT4_I(inode); 5485 struct super_block *sb = inode->i_sb; 5486 struct buffer_head *bitmap_bh = NULL; 5487 struct ext4_prealloc_space *pa, *tmp; 5488 ext4_group_t group = 0; 5489 LIST_HEAD(list); 5490 struct ext4_buddy e4b; 5491 struct rb_node *iter; 5492 int err; 5493 5494 if (!S_ISREG(inode->i_mode)) { 5495 return; 5496 } 5497 5498 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5499 return; 5500 5501 mb_debug(sb, "discard preallocation for inode %lu\n", 5502 inode->i_ino); 5503 trace_ext4_discard_preallocations(inode, 5504 atomic_read(&ei->i_prealloc_active), needed); 5505 5506 if (needed == 0) 5507 needed = UINT_MAX; 5508 5509 repeat: 5510 /* first, collect all pa's in the inode */ 5511 write_lock(&ei->i_prealloc_lock); 5512 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5513 iter = rb_next(iter)) { 5514 pa = rb_entry(iter, struct ext4_prealloc_space, 5515 pa_node.inode_node); 5516 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5517 5518 spin_lock(&pa->pa_lock); 5519 if (atomic_read(&pa->pa_count)) { 5520 /* this shouldn't happen often - nobody should 5521 * use preallocation while we're discarding it */ 5522 spin_unlock(&pa->pa_lock); 5523 write_unlock(&ei->i_prealloc_lock); 5524 ext4_msg(sb, KERN_ERR, 5525 "uh-oh! used pa while discarding"); 5526 WARN_ON(1); 5527 schedule_timeout_uninterruptible(HZ); 5528 goto repeat; 5529 5530 } 5531 if (pa->pa_deleted == 0) { 5532 ext4_mb_mark_pa_deleted(sb, pa); 5533 spin_unlock(&pa->pa_lock); 5534 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5535 list_add(&pa->u.pa_tmp_list, &list); 5536 needed--; 5537 continue; 5538 } 5539 5540 /* someone is deleting pa right now */ 5541 spin_unlock(&pa->pa_lock); 5542 write_unlock(&ei->i_prealloc_lock); 5543 5544 /* we have to wait here because pa_deleted 5545 * doesn't mean pa is already unlinked from 5546 * the list. as we might be called from 5547 * ->clear_inode() the inode will get freed 5548 * and concurrent thread which is unlinking 5549 * pa from inode's list may access already 5550 * freed memory, bad-bad-bad */ 5551 5552 /* XXX: if this happens too often, we can 5553 * add a flag to force wait only in case 5554 * of ->clear_inode(), but not in case of 5555 * regular truncate */ 5556 schedule_timeout_uninterruptible(HZ); 5557 goto repeat; 5558 } 5559 write_unlock(&ei->i_prealloc_lock); 5560 5561 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5562 BUG_ON(pa->pa_type != MB_INODE_PA); 5563 group = ext4_get_group_number(sb, pa->pa_pstart); 5564 5565 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5566 GFP_NOFS|__GFP_NOFAIL); 5567 if (err) { 5568 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5569 err, group); 5570 continue; 5571 } 5572 5573 bitmap_bh = ext4_read_block_bitmap(sb, group); 5574 if (IS_ERR(bitmap_bh)) { 5575 err = PTR_ERR(bitmap_bh); 5576 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5577 err, group); 5578 ext4_mb_unload_buddy(&e4b); 5579 continue; 5580 } 5581 5582 ext4_lock_group(sb, group); 5583 list_del(&pa->pa_group_list); 5584 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5585 ext4_unlock_group(sb, group); 5586 5587 ext4_mb_unload_buddy(&e4b); 5588 put_bh(bitmap_bh); 5589 5590 list_del(&pa->u.pa_tmp_list); 5591 ext4_mb_pa_free(pa); 5592 } 5593 } 5594 5595 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5596 { 5597 struct ext4_prealloc_space *pa; 5598 5599 BUG_ON(ext4_pspace_cachep == NULL); 5600 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5601 if (!pa) 5602 return -ENOMEM; 5603 atomic_set(&pa->pa_count, 1); 5604 ac->ac_pa = pa; 5605 return 0; 5606 } 5607 5608 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5609 { 5610 struct ext4_prealloc_space *pa = ac->ac_pa; 5611 5612 BUG_ON(!pa); 5613 ac->ac_pa = NULL; 5614 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5615 /* 5616 * current function is only called due to an error or due to 5617 * len of found blocks < len of requested blocks hence the PA has not 5618 * been added to grp->bb_prealloc_list. So we don't need to lock it 5619 */ 5620 pa->pa_deleted = 1; 5621 ext4_mb_pa_free(pa); 5622 } 5623 5624 #ifdef CONFIG_EXT4_DEBUG 5625 static inline void ext4_mb_show_pa(struct super_block *sb) 5626 { 5627 ext4_group_t i, ngroups; 5628 5629 if (ext4_forced_shutdown(sb)) 5630 return; 5631 5632 ngroups = ext4_get_groups_count(sb); 5633 mb_debug(sb, "groups: "); 5634 for (i = 0; i < ngroups; i++) { 5635 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5636 struct ext4_prealloc_space *pa; 5637 ext4_grpblk_t start; 5638 struct list_head *cur; 5639 5640 if (!grp) 5641 continue; 5642 ext4_lock_group(sb, i); 5643 list_for_each(cur, &grp->bb_prealloc_list) { 5644 pa = list_entry(cur, struct ext4_prealloc_space, 5645 pa_group_list); 5646 spin_lock(&pa->pa_lock); 5647 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5648 NULL, &start); 5649 spin_unlock(&pa->pa_lock); 5650 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5651 pa->pa_len); 5652 } 5653 ext4_unlock_group(sb, i); 5654 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5655 grp->bb_fragments); 5656 } 5657 } 5658 5659 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5660 { 5661 struct super_block *sb = ac->ac_sb; 5662 5663 if (ext4_forced_shutdown(sb)) 5664 return; 5665 5666 mb_debug(sb, "Can't allocate:" 5667 " Allocation context details:"); 5668 mb_debug(sb, "status %u flags 0x%x", 5669 ac->ac_status, ac->ac_flags); 5670 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5671 "goal %lu/%lu/%lu@%lu, " 5672 "best %lu/%lu/%lu@%lu cr %d", 5673 (unsigned long)ac->ac_o_ex.fe_group, 5674 (unsigned long)ac->ac_o_ex.fe_start, 5675 (unsigned long)ac->ac_o_ex.fe_len, 5676 (unsigned long)ac->ac_o_ex.fe_logical, 5677 (unsigned long)ac->ac_g_ex.fe_group, 5678 (unsigned long)ac->ac_g_ex.fe_start, 5679 (unsigned long)ac->ac_g_ex.fe_len, 5680 (unsigned long)ac->ac_g_ex.fe_logical, 5681 (unsigned long)ac->ac_b_ex.fe_group, 5682 (unsigned long)ac->ac_b_ex.fe_start, 5683 (unsigned long)ac->ac_b_ex.fe_len, 5684 (unsigned long)ac->ac_b_ex.fe_logical, 5685 (int)ac->ac_criteria); 5686 mb_debug(sb, "%u found", ac->ac_found); 5687 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5688 if (ac->ac_pa) 5689 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5690 "group pa" : "inode pa"); 5691 ext4_mb_show_pa(sb); 5692 } 5693 #else 5694 static inline void ext4_mb_show_pa(struct super_block *sb) 5695 { 5696 } 5697 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5698 { 5699 ext4_mb_show_pa(ac->ac_sb); 5700 } 5701 #endif 5702 5703 /* 5704 * We use locality group preallocation for small size file. The size of the 5705 * file is determined by the current size or the resulting size after 5706 * allocation which ever is larger 5707 * 5708 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5709 */ 5710 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5711 { 5712 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5713 int bsbits = ac->ac_sb->s_blocksize_bits; 5714 loff_t size, isize; 5715 bool inode_pa_eligible, group_pa_eligible; 5716 5717 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5718 return; 5719 5720 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5721 return; 5722 5723 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5724 inode_pa_eligible = true; 5725 size = extent_logical_end(sbi, &ac->ac_o_ex); 5726 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5727 >> bsbits; 5728 5729 /* No point in using inode preallocation for closed files */ 5730 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5731 !inode_is_open_for_write(ac->ac_inode)) 5732 inode_pa_eligible = false; 5733 5734 size = max(size, isize); 5735 /* Don't use group allocation for large files */ 5736 if (size > sbi->s_mb_stream_request) 5737 group_pa_eligible = false; 5738 5739 if (!group_pa_eligible) { 5740 if (inode_pa_eligible) 5741 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5742 else 5743 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5744 return; 5745 } 5746 5747 BUG_ON(ac->ac_lg != NULL); 5748 /* 5749 * locality group prealloc space are per cpu. The reason for having 5750 * per cpu locality group is to reduce the contention between block 5751 * request from multiple CPUs. 5752 */ 5753 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5754 5755 /* we're going to use group allocation */ 5756 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5757 5758 /* serialize all allocations in the group */ 5759 mutex_lock(&ac->ac_lg->lg_mutex); 5760 } 5761 5762 static noinline_for_stack void 5763 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5764 struct ext4_allocation_request *ar) 5765 { 5766 struct super_block *sb = ar->inode->i_sb; 5767 struct ext4_sb_info *sbi = EXT4_SB(sb); 5768 struct ext4_super_block *es = sbi->s_es; 5769 ext4_group_t group; 5770 unsigned int len; 5771 ext4_fsblk_t goal; 5772 ext4_grpblk_t block; 5773 5774 /* we can't allocate > group size */ 5775 len = ar->len; 5776 5777 /* just a dirty hack to filter too big requests */ 5778 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5779 len = EXT4_CLUSTERS_PER_GROUP(sb); 5780 5781 /* start searching from the goal */ 5782 goal = ar->goal; 5783 if (goal < le32_to_cpu(es->s_first_data_block) || 5784 goal >= ext4_blocks_count(es)) 5785 goal = le32_to_cpu(es->s_first_data_block); 5786 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5787 5788 /* set up allocation goals */ 5789 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5790 ac->ac_status = AC_STATUS_CONTINUE; 5791 ac->ac_sb = sb; 5792 ac->ac_inode = ar->inode; 5793 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5794 ac->ac_o_ex.fe_group = group; 5795 ac->ac_o_ex.fe_start = block; 5796 ac->ac_o_ex.fe_len = len; 5797 ac->ac_g_ex = ac->ac_o_ex; 5798 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5799 ac->ac_flags = ar->flags; 5800 5801 /* we have to define context: we'll work with a file or 5802 * locality group. this is a policy, actually */ 5803 ext4_mb_group_or_file(ac); 5804 5805 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5806 "left: %u/%u, right %u/%u to %swritable\n", 5807 (unsigned) ar->len, (unsigned) ar->logical, 5808 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5809 (unsigned) ar->lleft, (unsigned) ar->pleft, 5810 (unsigned) ar->lright, (unsigned) ar->pright, 5811 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5812 } 5813 5814 static noinline_for_stack void 5815 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5816 struct ext4_locality_group *lg, 5817 int order, int total_entries) 5818 { 5819 ext4_group_t group = 0; 5820 struct ext4_buddy e4b; 5821 LIST_HEAD(discard_list); 5822 struct ext4_prealloc_space *pa, *tmp; 5823 5824 mb_debug(sb, "discard locality group preallocation\n"); 5825 5826 spin_lock(&lg->lg_prealloc_lock); 5827 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5828 pa_node.lg_list, 5829 lockdep_is_held(&lg->lg_prealloc_lock)) { 5830 spin_lock(&pa->pa_lock); 5831 if (atomic_read(&pa->pa_count)) { 5832 /* 5833 * This is the pa that we just used 5834 * for block allocation. So don't 5835 * free that 5836 */ 5837 spin_unlock(&pa->pa_lock); 5838 continue; 5839 } 5840 if (pa->pa_deleted) { 5841 spin_unlock(&pa->pa_lock); 5842 continue; 5843 } 5844 /* only lg prealloc space */ 5845 BUG_ON(pa->pa_type != MB_GROUP_PA); 5846 5847 /* seems this one can be freed ... */ 5848 ext4_mb_mark_pa_deleted(sb, pa); 5849 spin_unlock(&pa->pa_lock); 5850 5851 list_del_rcu(&pa->pa_node.lg_list); 5852 list_add(&pa->u.pa_tmp_list, &discard_list); 5853 5854 total_entries--; 5855 if (total_entries <= 5) { 5856 /* 5857 * we want to keep only 5 entries 5858 * allowing it to grow to 8. This 5859 * mak sure we don't call discard 5860 * soon for this list. 5861 */ 5862 break; 5863 } 5864 } 5865 spin_unlock(&lg->lg_prealloc_lock); 5866 5867 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5868 int err; 5869 5870 group = ext4_get_group_number(sb, pa->pa_pstart); 5871 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5872 GFP_NOFS|__GFP_NOFAIL); 5873 if (err) { 5874 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5875 err, group); 5876 continue; 5877 } 5878 ext4_lock_group(sb, group); 5879 list_del(&pa->pa_group_list); 5880 ext4_mb_release_group_pa(&e4b, pa); 5881 ext4_unlock_group(sb, group); 5882 5883 ext4_mb_unload_buddy(&e4b); 5884 list_del(&pa->u.pa_tmp_list); 5885 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5886 } 5887 } 5888 5889 /* 5890 * We have incremented pa_count. So it cannot be freed at this 5891 * point. Also we hold lg_mutex. So no parallel allocation is 5892 * possible from this lg. That means pa_free cannot be updated. 5893 * 5894 * A parallel ext4_mb_discard_group_preallocations is possible. 5895 * which can cause the lg_prealloc_list to be updated. 5896 */ 5897 5898 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5899 { 5900 int order, added = 0, lg_prealloc_count = 1; 5901 struct super_block *sb = ac->ac_sb; 5902 struct ext4_locality_group *lg = ac->ac_lg; 5903 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5904 5905 order = fls(pa->pa_free) - 1; 5906 if (order > PREALLOC_TB_SIZE - 1) 5907 /* The max size of hash table is PREALLOC_TB_SIZE */ 5908 order = PREALLOC_TB_SIZE - 1; 5909 /* Add the prealloc space to lg */ 5910 spin_lock(&lg->lg_prealloc_lock); 5911 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5912 pa_node.lg_list, 5913 lockdep_is_held(&lg->lg_prealloc_lock)) { 5914 spin_lock(&tmp_pa->pa_lock); 5915 if (tmp_pa->pa_deleted) { 5916 spin_unlock(&tmp_pa->pa_lock); 5917 continue; 5918 } 5919 if (!added && pa->pa_free < tmp_pa->pa_free) { 5920 /* Add to the tail of the previous entry */ 5921 list_add_tail_rcu(&pa->pa_node.lg_list, 5922 &tmp_pa->pa_node.lg_list); 5923 added = 1; 5924 /* 5925 * we want to count the total 5926 * number of entries in the list 5927 */ 5928 } 5929 spin_unlock(&tmp_pa->pa_lock); 5930 lg_prealloc_count++; 5931 } 5932 if (!added) 5933 list_add_tail_rcu(&pa->pa_node.lg_list, 5934 &lg->lg_prealloc_list[order]); 5935 spin_unlock(&lg->lg_prealloc_lock); 5936 5937 /* Now trim the list to be not more than 8 elements */ 5938 if (lg_prealloc_count > 8) 5939 ext4_mb_discard_lg_preallocations(sb, lg, 5940 order, lg_prealloc_count); 5941 } 5942 5943 /* 5944 * release all resource we used in allocation 5945 */ 5946 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5947 { 5948 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5949 struct ext4_prealloc_space *pa = ac->ac_pa; 5950 if (pa) { 5951 if (pa->pa_type == MB_GROUP_PA) { 5952 /* see comment in ext4_mb_use_group_pa() */ 5953 spin_lock(&pa->pa_lock); 5954 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5955 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5956 pa->pa_free -= ac->ac_b_ex.fe_len; 5957 pa->pa_len -= ac->ac_b_ex.fe_len; 5958 spin_unlock(&pa->pa_lock); 5959 5960 /* 5961 * We want to add the pa to the right bucket. 5962 * Remove it from the list and while adding 5963 * make sure the list to which we are adding 5964 * doesn't grow big. 5965 */ 5966 if (likely(pa->pa_free)) { 5967 spin_lock(pa->pa_node_lock.lg_lock); 5968 list_del_rcu(&pa->pa_node.lg_list); 5969 spin_unlock(pa->pa_node_lock.lg_lock); 5970 ext4_mb_add_n_trim(ac); 5971 } 5972 } 5973 5974 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5975 } 5976 if (ac->ac_bitmap_page) 5977 put_page(ac->ac_bitmap_page); 5978 if (ac->ac_buddy_page) 5979 put_page(ac->ac_buddy_page); 5980 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5981 mutex_unlock(&ac->ac_lg->lg_mutex); 5982 ext4_mb_collect_stats(ac); 5983 return 0; 5984 } 5985 5986 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 5987 { 5988 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 5989 int ret; 5990 int freed = 0, busy = 0; 5991 int retry = 0; 5992 5993 trace_ext4_mb_discard_preallocations(sb, needed); 5994 5995 if (needed == 0) 5996 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 5997 repeat: 5998 for (i = 0; i < ngroups && needed > 0; i++) { 5999 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6000 freed += ret; 6001 needed -= ret; 6002 cond_resched(); 6003 } 6004 6005 if (needed > 0 && busy && ++retry < 3) { 6006 busy = 0; 6007 goto repeat; 6008 } 6009 6010 return freed; 6011 } 6012 6013 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6014 struct ext4_allocation_context *ac, u64 *seq) 6015 { 6016 int freed; 6017 u64 seq_retry = 0; 6018 bool ret = false; 6019 6020 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6021 if (freed) { 6022 ret = true; 6023 goto out_dbg; 6024 } 6025 seq_retry = ext4_get_discard_pa_seq_sum(); 6026 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6027 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6028 *seq = seq_retry; 6029 ret = true; 6030 } 6031 6032 out_dbg: 6033 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6034 return ret; 6035 } 6036 6037 /* 6038 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6039 * linearly starting at the goal block and also excludes the blocks which 6040 * are going to be in use after fast commit replay. 6041 */ 6042 static ext4_fsblk_t 6043 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6044 { 6045 struct buffer_head *bitmap_bh; 6046 struct super_block *sb = ar->inode->i_sb; 6047 struct ext4_sb_info *sbi = EXT4_SB(sb); 6048 ext4_group_t group, nr; 6049 ext4_grpblk_t blkoff; 6050 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6051 ext4_grpblk_t i = 0; 6052 ext4_fsblk_t goal, block; 6053 struct ext4_super_block *es = sbi->s_es; 6054 6055 goal = ar->goal; 6056 if (goal < le32_to_cpu(es->s_first_data_block) || 6057 goal >= ext4_blocks_count(es)) 6058 goal = le32_to_cpu(es->s_first_data_block); 6059 6060 ar->len = 0; 6061 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6062 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6063 bitmap_bh = ext4_read_block_bitmap(sb, group); 6064 if (IS_ERR(bitmap_bh)) { 6065 *errp = PTR_ERR(bitmap_bh); 6066 pr_warn("Failed to read block bitmap\n"); 6067 return 0; 6068 } 6069 6070 while (1) { 6071 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6072 blkoff); 6073 if (i >= max) 6074 break; 6075 if (ext4_fc_replay_check_excluded(sb, 6076 ext4_group_first_block_no(sb, group) + 6077 EXT4_C2B(sbi, i))) { 6078 blkoff = i + 1; 6079 } else 6080 break; 6081 } 6082 brelse(bitmap_bh); 6083 if (i < max) 6084 break; 6085 6086 if (++group >= ext4_get_groups_count(sb)) 6087 group = 0; 6088 6089 blkoff = 0; 6090 } 6091 6092 if (i >= max) { 6093 *errp = -ENOSPC; 6094 return 0; 6095 } 6096 6097 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6098 ext4_mb_mark_bb(sb, block, 1, true); 6099 ar->len = 1; 6100 6101 return block; 6102 } 6103 6104 /* 6105 * Main entry point into mballoc to allocate blocks 6106 * it tries to use preallocation first, then falls back 6107 * to usual allocation 6108 */ 6109 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6110 struct ext4_allocation_request *ar, int *errp) 6111 { 6112 struct ext4_allocation_context *ac = NULL; 6113 struct ext4_sb_info *sbi; 6114 struct super_block *sb; 6115 ext4_fsblk_t block = 0; 6116 unsigned int inquota = 0; 6117 unsigned int reserv_clstrs = 0; 6118 int retries = 0; 6119 u64 seq; 6120 6121 might_sleep(); 6122 sb = ar->inode->i_sb; 6123 sbi = EXT4_SB(sb); 6124 6125 trace_ext4_request_blocks(ar); 6126 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6127 return ext4_mb_new_blocks_simple(ar, errp); 6128 6129 /* Allow to use superuser reservation for quota file */ 6130 if (ext4_is_quota_file(ar->inode)) 6131 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6132 6133 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6134 /* Without delayed allocation we need to verify 6135 * there is enough free blocks to do block allocation 6136 * and verify allocation doesn't exceed the quota limits. 6137 */ 6138 while (ar->len && 6139 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6140 6141 /* let others to free the space */ 6142 cond_resched(); 6143 ar->len = ar->len >> 1; 6144 } 6145 if (!ar->len) { 6146 ext4_mb_show_pa(sb); 6147 *errp = -ENOSPC; 6148 return 0; 6149 } 6150 reserv_clstrs = ar->len; 6151 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6152 dquot_alloc_block_nofail(ar->inode, 6153 EXT4_C2B(sbi, ar->len)); 6154 } else { 6155 while (ar->len && 6156 dquot_alloc_block(ar->inode, 6157 EXT4_C2B(sbi, ar->len))) { 6158 6159 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6160 ar->len--; 6161 } 6162 } 6163 inquota = ar->len; 6164 if (ar->len == 0) { 6165 *errp = -EDQUOT; 6166 goto out; 6167 } 6168 } 6169 6170 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6171 if (!ac) { 6172 ar->len = 0; 6173 *errp = -ENOMEM; 6174 goto out; 6175 } 6176 6177 ext4_mb_initialize_context(ac, ar); 6178 6179 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6180 seq = this_cpu_read(discard_pa_seq); 6181 if (!ext4_mb_use_preallocated(ac)) { 6182 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6183 ext4_mb_normalize_request(ac, ar); 6184 6185 *errp = ext4_mb_pa_alloc(ac); 6186 if (*errp) 6187 goto errout; 6188 repeat: 6189 /* allocate space in core */ 6190 *errp = ext4_mb_regular_allocator(ac); 6191 /* 6192 * pa allocated above is added to grp->bb_prealloc_list only 6193 * when we were able to allocate some block i.e. when 6194 * ac->ac_status == AC_STATUS_FOUND. 6195 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6196 * So we have to free this pa here itself. 6197 */ 6198 if (*errp) { 6199 ext4_mb_pa_put_free(ac); 6200 ext4_discard_allocated_blocks(ac); 6201 goto errout; 6202 } 6203 if (ac->ac_status == AC_STATUS_FOUND && 6204 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6205 ext4_mb_pa_put_free(ac); 6206 } 6207 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6208 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6209 if (*errp) { 6210 ext4_discard_allocated_blocks(ac); 6211 goto errout; 6212 } else { 6213 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6214 ar->len = ac->ac_b_ex.fe_len; 6215 } 6216 } else { 6217 if (++retries < 3 && 6218 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6219 goto repeat; 6220 /* 6221 * If block allocation fails then the pa allocated above 6222 * needs to be freed here itself. 6223 */ 6224 ext4_mb_pa_put_free(ac); 6225 *errp = -ENOSPC; 6226 } 6227 6228 if (*errp) { 6229 errout: 6230 ac->ac_b_ex.fe_len = 0; 6231 ar->len = 0; 6232 ext4_mb_show_ac(ac); 6233 } 6234 ext4_mb_release_context(ac); 6235 kmem_cache_free(ext4_ac_cachep, ac); 6236 out: 6237 if (inquota && ar->len < inquota) 6238 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6239 if (!ar->len) { 6240 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6241 /* release all the reserved blocks if non delalloc */ 6242 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6243 reserv_clstrs); 6244 } 6245 6246 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6247 6248 return block; 6249 } 6250 6251 /* 6252 * We can merge two free data extents only if the physical blocks 6253 * are contiguous, AND the extents were freed by the same transaction, 6254 * AND the blocks are associated with the same group. 6255 */ 6256 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6257 struct ext4_free_data *entry, 6258 struct ext4_free_data *new_entry, 6259 struct rb_root *entry_rb_root) 6260 { 6261 if ((entry->efd_tid != new_entry->efd_tid) || 6262 (entry->efd_group != new_entry->efd_group)) 6263 return; 6264 if (entry->efd_start_cluster + entry->efd_count == 6265 new_entry->efd_start_cluster) { 6266 new_entry->efd_start_cluster = entry->efd_start_cluster; 6267 new_entry->efd_count += entry->efd_count; 6268 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6269 entry->efd_start_cluster) { 6270 new_entry->efd_count += entry->efd_count; 6271 } else 6272 return; 6273 spin_lock(&sbi->s_md_lock); 6274 list_del(&entry->efd_list); 6275 spin_unlock(&sbi->s_md_lock); 6276 rb_erase(&entry->efd_node, entry_rb_root); 6277 kmem_cache_free(ext4_free_data_cachep, entry); 6278 } 6279 6280 static noinline_for_stack void 6281 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6282 struct ext4_free_data *new_entry) 6283 { 6284 ext4_group_t group = e4b->bd_group; 6285 ext4_grpblk_t cluster; 6286 ext4_grpblk_t clusters = new_entry->efd_count; 6287 struct ext4_free_data *entry; 6288 struct ext4_group_info *db = e4b->bd_info; 6289 struct super_block *sb = e4b->bd_sb; 6290 struct ext4_sb_info *sbi = EXT4_SB(sb); 6291 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6292 struct rb_node *parent = NULL, *new_node; 6293 6294 BUG_ON(!ext4_handle_valid(handle)); 6295 BUG_ON(e4b->bd_bitmap_page == NULL); 6296 BUG_ON(e4b->bd_buddy_page == NULL); 6297 6298 new_node = &new_entry->efd_node; 6299 cluster = new_entry->efd_start_cluster; 6300 6301 if (!*n) { 6302 /* first free block exent. We need to 6303 protect buddy cache from being freed, 6304 * otherwise we'll refresh it from 6305 * on-disk bitmap and lose not-yet-available 6306 * blocks */ 6307 get_page(e4b->bd_buddy_page); 6308 get_page(e4b->bd_bitmap_page); 6309 } 6310 while (*n) { 6311 parent = *n; 6312 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6313 if (cluster < entry->efd_start_cluster) 6314 n = &(*n)->rb_left; 6315 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6316 n = &(*n)->rb_right; 6317 else { 6318 ext4_grp_locked_error(sb, group, 0, 6319 ext4_group_first_block_no(sb, group) + 6320 EXT4_C2B(sbi, cluster), 6321 "Block already on to-be-freed list"); 6322 kmem_cache_free(ext4_free_data_cachep, new_entry); 6323 return; 6324 } 6325 } 6326 6327 rb_link_node(new_node, parent, n); 6328 rb_insert_color(new_node, &db->bb_free_root); 6329 6330 /* Now try to see the extent can be merged to left and right */ 6331 node = rb_prev(new_node); 6332 if (node) { 6333 entry = rb_entry(node, struct ext4_free_data, efd_node); 6334 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6335 &(db->bb_free_root)); 6336 } 6337 6338 node = rb_next(new_node); 6339 if (node) { 6340 entry = rb_entry(node, struct ext4_free_data, efd_node); 6341 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6342 &(db->bb_free_root)); 6343 } 6344 6345 spin_lock(&sbi->s_md_lock); 6346 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]); 6347 sbi->s_mb_free_pending += clusters; 6348 spin_unlock(&sbi->s_md_lock); 6349 } 6350 6351 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6352 unsigned long count) 6353 { 6354 struct super_block *sb = inode->i_sb; 6355 ext4_group_t group; 6356 ext4_grpblk_t blkoff; 6357 6358 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6359 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count, 6360 EXT4_MB_BITMAP_MARKED_CHECK | 6361 EXT4_MB_SYNC_UPDATE, 6362 NULL); 6363 } 6364 6365 /** 6366 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6367 * Used by ext4_free_blocks() 6368 * @handle: handle for this transaction 6369 * @inode: inode 6370 * @block: starting physical block to be freed 6371 * @count: number of blocks to be freed 6372 * @flags: flags used by ext4_free_blocks 6373 */ 6374 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6375 ext4_fsblk_t block, unsigned long count, 6376 int flags) 6377 { 6378 struct super_block *sb = inode->i_sb; 6379 struct ext4_group_info *grp; 6380 unsigned int overflow; 6381 ext4_grpblk_t bit; 6382 ext4_group_t block_group; 6383 struct ext4_sb_info *sbi; 6384 struct ext4_buddy e4b; 6385 unsigned int count_clusters; 6386 int err = 0; 6387 int mark_flags = 0; 6388 ext4_grpblk_t changed; 6389 6390 sbi = EXT4_SB(sb); 6391 6392 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6393 !ext4_inode_block_valid(inode, block, count)) { 6394 ext4_error(sb, "Freeing blocks in system zone - " 6395 "Block = %llu, count = %lu", block, count); 6396 /* err = 0. ext4_std_error should be a no op */ 6397 goto error_out; 6398 } 6399 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6400 6401 do_more: 6402 overflow = 0; 6403 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6404 6405 grp = ext4_get_group_info(sb, block_group); 6406 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6407 return; 6408 6409 /* 6410 * Check to see if we are freeing blocks across a group 6411 * boundary. 6412 */ 6413 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6414 overflow = EXT4_C2B(sbi, bit) + count - 6415 EXT4_BLOCKS_PER_GROUP(sb); 6416 count -= overflow; 6417 /* The range changed so it's no longer validated */ 6418 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6419 } 6420 count_clusters = EXT4_NUM_B2C(sbi, count); 6421 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6422 6423 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6424 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6425 GFP_NOFS|__GFP_NOFAIL); 6426 if (err) 6427 goto error_out; 6428 6429 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6430 !ext4_inode_block_valid(inode, block, count)) { 6431 ext4_error(sb, "Freeing blocks in system zone - " 6432 "Block = %llu, count = %lu", block, count); 6433 /* err = 0. ext4_std_error should be a no op */ 6434 goto error_clean; 6435 } 6436 6437 #ifdef AGGRESSIVE_CHECK 6438 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; 6439 #endif 6440 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6441 count_clusters, mark_flags, &changed); 6442 6443 6444 if (err && changed == 0) 6445 goto error_clean; 6446 6447 #ifdef AGGRESSIVE_CHECK 6448 BUG_ON(changed != count_clusters); 6449 #endif 6450 6451 /* 6452 * We need to make sure we don't reuse the freed block until after the 6453 * transaction is committed. We make an exception if the inode is to be 6454 * written in writeback mode since writeback mode has weak data 6455 * consistency guarantees. 6456 */ 6457 if (ext4_handle_valid(handle) && 6458 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6459 !ext4_should_writeback_data(inode))) { 6460 struct ext4_free_data *new_entry; 6461 /* 6462 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6463 * to fail. 6464 */ 6465 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6466 GFP_NOFS|__GFP_NOFAIL); 6467 new_entry->efd_start_cluster = bit; 6468 new_entry->efd_group = block_group; 6469 new_entry->efd_count = count_clusters; 6470 new_entry->efd_tid = handle->h_transaction->t_tid; 6471 6472 ext4_lock_group(sb, block_group); 6473 ext4_mb_free_metadata(handle, &e4b, new_entry); 6474 } else { 6475 if (test_opt(sb, DISCARD)) { 6476 err = ext4_issue_discard(sb, block_group, bit, 6477 count_clusters, NULL); 6478 if (err && err != -EOPNOTSUPP) 6479 ext4_msg(sb, KERN_WARNING, "discard request in" 6480 " group:%u block:%d count:%lu failed" 6481 " with %d", block_group, bit, count, 6482 err); 6483 } else 6484 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6485 6486 ext4_lock_group(sb, block_group); 6487 mb_free_blocks(inode, &e4b, bit, count_clusters); 6488 } 6489 6490 ext4_unlock_group(sb, block_group); 6491 6492 /* 6493 * on a bigalloc file system, defer the s_freeclusters_counter 6494 * update to the caller (ext4_remove_space and friends) so they 6495 * can determine if a cluster freed here should be rereserved 6496 */ 6497 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6498 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6499 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6500 percpu_counter_add(&sbi->s_freeclusters_counter, 6501 count_clusters); 6502 } 6503 6504 if (overflow && !err) { 6505 block += count; 6506 count = overflow; 6507 ext4_mb_unload_buddy(&e4b); 6508 /* The range changed so it's no longer validated */ 6509 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6510 goto do_more; 6511 } 6512 6513 error_clean: 6514 ext4_mb_unload_buddy(&e4b); 6515 error_out: 6516 ext4_std_error(sb, err); 6517 } 6518 6519 /** 6520 * ext4_free_blocks() -- Free given blocks and update quota 6521 * @handle: handle for this transaction 6522 * @inode: inode 6523 * @bh: optional buffer of the block to be freed 6524 * @block: starting physical block to be freed 6525 * @count: number of blocks to be freed 6526 * @flags: flags used by ext4_free_blocks 6527 */ 6528 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6529 struct buffer_head *bh, ext4_fsblk_t block, 6530 unsigned long count, int flags) 6531 { 6532 struct super_block *sb = inode->i_sb; 6533 unsigned int overflow; 6534 struct ext4_sb_info *sbi; 6535 6536 sbi = EXT4_SB(sb); 6537 6538 if (bh) { 6539 if (block) 6540 BUG_ON(block != bh->b_blocknr); 6541 else 6542 block = bh->b_blocknr; 6543 } 6544 6545 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6546 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6547 return; 6548 } 6549 6550 might_sleep(); 6551 6552 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6553 !ext4_inode_block_valid(inode, block, count)) { 6554 ext4_error(sb, "Freeing blocks not in datazone - " 6555 "block = %llu, count = %lu", block, count); 6556 return; 6557 } 6558 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6559 6560 ext4_debug("freeing block %llu\n", block); 6561 trace_ext4_free_blocks(inode, block, count, flags); 6562 6563 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6564 BUG_ON(count > 1); 6565 6566 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6567 inode, bh, block); 6568 } 6569 6570 /* 6571 * If the extent to be freed does not begin on a cluster 6572 * boundary, we need to deal with partial clusters at the 6573 * beginning and end of the extent. Normally we will free 6574 * blocks at the beginning or the end unless we are explicitly 6575 * requested to avoid doing so. 6576 */ 6577 overflow = EXT4_PBLK_COFF(sbi, block); 6578 if (overflow) { 6579 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6580 overflow = sbi->s_cluster_ratio - overflow; 6581 block += overflow; 6582 if (count > overflow) 6583 count -= overflow; 6584 else 6585 return; 6586 } else { 6587 block -= overflow; 6588 count += overflow; 6589 } 6590 /* The range changed so it's no longer validated */ 6591 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6592 } 6593 overflow = EXT4_LBLK_COFF(sbi, count); 6594 if (overflow) { 6595 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6596 if (count > overflow) 6597 count -= overflow; 6598 else 6599 return; 6600 } else 6601 count += sbi->s_cluster_ratio - overflow; 6602 /* The range changed so it's no longer validated */ 6603 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6604 } 6605 6606 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6607 int i; 6608 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6609 6610 for (i = 0; i < count; i++) { 6611 cond_resched(); 6612 if (is_metadata) 6613 bh = sb_find_get_block(inode->i_sb, block + i); 6614 ext4_forget(handle, is_metadata, inode, bh, block + i); 6615 } 6616 } 6617 6618 ext4_mb_clear_bb(handle, inode, block, count, flags); 6619 } 6620 6621 /** 6622 * ext4_group_add_blocks() -- Add given blocks to an existing group 6623 * @handle: handle to this transaction 6624 * @sb: super block 6625 * @block: start physical block to add to the block group 6626 * @count: number of blocks to free 6627 * 6628 * This marks the blocks as free in the bitmap and buddy. 6629 */ 6630 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6631 ext4_fsblk_t block, unsigned long count) 6632 { 6633 ext4_group_t block_group; 6634 ext4_grpblk_t bit; 6635 struct ext4_sb_info *sbi = EXT4_SB(sb); 6636 struct ext4_buddy e4b; 6637 int err = 0; 6638 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6639 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6640 unsigned long cluster_count = last_cluster - first_cluster + 1; 6641 ext4_grpblk_t changed; 6642 6643 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6644 6645 if (cluster_count == 0) 6646 return 0; 6647 6648 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6649 /* 6650 * Check to see if we are freeing blocks across a group 6651 * boundary. 6652 */ 6653 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6654 ext4_warning(sb, "too many blocks added to group %u", 6655 block_group); 6656 err = -EINVAL; 6657 goto error_out; 6658 } 6659 6660 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6661 if (err) 6662 goto error_out; 6663 6664 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6665 ext4_error(sb, "Adding blocks in system zones - " 6666 "Block = %llu, count = %lu", 6667 block, count); 6668 err = -EINVAL; 6669 goto error_clean; 6670 } 6671 6672 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6673 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, 6674 &changed); 6675 if (err && changed == 0) 6676 goto error_clean; 6677 6678 if (changed != cluster_count) 6679 ext4_error(sb, "bit already cleared in group %u", block_group); 6680 6681 ext4_lock_group(sb, block_group); 6682 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6683 ext4_unlock_group(sb, block_group); 6684 percpu_counter_add(&sbi->s_freeclusters_counter, 6685 changed); 6686 6687 error_clean: 6688 ext4_mb_unload_buddy(&e4b); 6689 error_out: 6690 ext4_std_error(sb, err); 6691 return err; 6692 } 6693 6694 /** 6695 * ext4_trim_extent -- function to TRIM one single free extent in the group 6696 * @sb: super block for the file system 6697 * @start: starting block of the free extent in the alloc. group 6698 * @count: number of blocks to TRIM 6699 * @e4b: ext4 buddy for the group 6700 * 6701 * Trim "count" blocks starting at "start" in the "group". To assure that no 6702 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6703 * be called with under the group lock. 6704 */ 6705 static int ext4_trim_extent(struct super_block *sb, 6706 int start, int count, struct ext4_buddy *e4b) 6707 __releases(bitlock) 6708 __acquires(bitlock) 6709 { 6710 struct ext4_free_extent ex; 6711 ext4_group_t group = e4b->bd_group; 6712 int ret = 0; 6713 6714 trace_ext4_trim_extent(sb, group, start, count); 6715 6716 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6717 6718 ex.fe_start = start; 6719 ex.fe_group = group; 6720 ex.fe_len = count; 6721 6722 /* 6723 * Mark blocks used, so no one can reuse them while 6724 * being trimmed. 6725 */ 6726 mb_mark_used(e4b, &ex); 6727 ext4_unlock_group(sb, group); 6728 ret = ext4_issue_discard(sb, group, start, count, NULL); 6729 ext4_lock_group(sb, group); 6730 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6731 return ret; 6732 } 6733 6734 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6735 ext4_group_t grp) 6736 { 6737 unsigned long nr_clusters_in_group; 6738 6739 if (grp < (ext4_get_groups_count(sb) - 1)) 6740 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6741 else 6742 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6743 ext4_group_first_block_no(sb, grp)) 6744 >> EXT4_CLUSTER_BITS(sb); 6745 6746 return nr_clusters_in_group - 1; 6747 } 6748 6749 static bool ext4_trim_interrupted(void) 6750 { 6751 return fatal_signal_pending(current) || freezing(current); 6752 } 6753 6754 static int ext4_try_to_trim_range(struct super_block *sb, 6755 struct ext4_buddy *e4b, ext4_grpblk_t start, 6756 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6757 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6758 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6759 { 6760 ext4_grpblk_t next, count, free_count, last, origin_start; 6761 bool set_trimmed = false; 6762 void *bitmap; 6763 6764 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6765 bitmap = e4b->bd_bitmap; 6766 if (start == 0 && max >= last) 6767 set_trimmed = true; 6768 origin_start = start; 6769 start = max(e4b->bd_info->bb_first_free, start); 6770 count = 0; 6771 free_count = 0; 6772 6773 while (start <= max) { 6774 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6775 if (start > max) 6776 break; 6777 6778 next = mb_find_next_bit(bitmap, last + 1, start); 6779 if (origin_start == 0 && next >= last) 6780 set_trimmed = true; 6781 6782 if ((next - start) >= minblocks) { 6783 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6784 6785 if (ret && ret != -EOPNOTSUPP) 6786 return count; 6787 count += next - start; 6788 } 6789 free_count += next - start; 6790 start = next + 1; 6791 6792 if (ext4_trim_interrupted()) 6793 return count; 6794 6795 if (need_resched()) { 6796 ext4_unlock_group(sb, e4b->bd_group); 6797 cond_resched(); 6798 ext4_lock_group(sb, e4b->bd_group); 6799 } 6800 6801 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6802 break; 6803 } 6804 6805 if (set_trimmed) 6806 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6807 6808 return count; 6809 } 6810 6811 /** 6812 * ext4_trim_all_free -- function to trim all free space in alloc. group 6813 * @sb: super block for file system 6814 * @group: group to be trimmed 6815 * @start: first group block to examine 6816 * @max: last group block to examine 6817 * @minblocks: minimum extent block count 6818 * 6819 * ext4_trim_all_free walks through group's block bitmap searching for free 6820 * extents. When the free extent is found, mark it as used in group buddy 6821 * bitmap. Then issue a TRIM command on this extent and free the extent in 6822 * the group buddy bitmap. 6823 */ 6824 static ext4_grpblk_t 6825 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6826 ext4_grpblk_t start, ext4_grpblk_t max, 6827 ext4_grpblk_t minblocks) 6828 { 6829 struct ext4_buddy e4b; 6830 int ret; 6831 6832 trace_ext4_trim_all_free(sb, group, start, max); 6833 6834 ret = ext4_mb_load_buddy(sb, group, &e4b); 6835 if (ret) { 6836 ext4_warning(sb, "Error %d loading buddy information for %u", 6837 ret, group); 6838 return ret; 6839 } 6840 6841 ext4_lock_group(sb, group); 6842 6843 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6844 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 6845 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6846 else 6847 ret = 0; 6848 6849 ext4_unlock_group(sb, group); 6850 ext4_mb_unload_buddy(&e4b); 6851 6852 ext4_debug("trimmed %d blocks in the group %d\n", 6853 ret, group); 6854 6855 return ret; 6856 } 6857 6858 /** 6859 * ext4_trim_fs() -- trim ioctl handle function 6860 * @sb: superblock for filesystem 6861 * @range: fstrim_range structure 6862 * 6863 * start: First Byte to trim 6864 * len: number of Bytes to trim from start 6865 * minlen: minimum extent length in Bytes 6866 * ext4_trim_fs goes through all allocation groups containing Bytes from 6867 * start to start+len. For each such a group ext4_trim_all_free function 6868 * is invoked to trim all free space. 6869 */ 6870 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6871 { 6872 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 6873 struct ext4_group_info *grp; 6874 ext4_group_t group, first_group, last_group; 6875 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6876 uint64_t start, end, minlen, trimmed = 0; 6877 ext4_fsblk_t first_data_blk = 6878 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6879 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6880 int ret = 0; 6881 6882 start = range->start >> sb->s_blocksize_bits; 6883 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6884 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6885 range->minlen >> sb->s_blocksize_bits); 6886 6887 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6888 start >= max_blks || 6889 range->len < sb->s_blocksize) 6890 return -EINVAL; 6891 /* No point to try to trim less than discard granularity */ 6892 if (range->minlen < discard_granularity) { 6893 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6894 discard_granularity >> sb->s_blocksize_bits); 6895 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 6896 goto out; 6897 } 6898 if (end >= max_blks - 1) 6899 end = max_blks - 1; 6900 if (end <= first_data_blk) 6901 goto out; 6902 if (start < first_data_blk) 6903 start = first_data_blk; 6904 6905 /* Determine first and last group to examine based on start and end */ 6906 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6907 &first_group, &first_cluster); 6908 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6909 &last_group, &last_cluster); 6910 6911 /* end now represents the last cluster to discard in this group */ 6912 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6913 6914 for (group = first_group; group <= last_group; group++) { 6915 if (ext4_trim_interrupted()) 6916 break; 6917 grp = ext4_get_group_info(sb, group); 6918 if (!grp) 6919 continue; 6920 /* We only do this if the grp has never been initialized */ 6921 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6922 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6923 if (ret) 6924 break; 6925 } 6926 6927 /* 6928 * For all the groups except the last one, last cluster will 6929 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6930 * change it for the last group, note that last_cluster is 6931 * already computed earlier by ext4_get_group_no_and_offset() 6932 */ 6933 if (group == last_group) 6934 end = last_cluster; 6935 if (grp->bb_free >= minlen) { 6936 cnt = ext4_trim_all_free(sb, group, first_cluster, 6937 end, minlen); 6938 if (cnt < 0) { 6939 ret = cnt; 6940 break; 6941 } 6942 trimmed += cnt; 6943 } 6944 6945 /* 6946 * For every group except the first one, we are sure 6947 * that the first cluster to discard will be cluster #0. 6948 */ 6949 first_cluster = 0; 6950 } 6951 6952 if (!ret) 6953 EXT4_SB(sb)->s_last_trim_minblks = minlen; 6954 6955 out: 6956 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6957 return ret; 6958 } 6959 6960 /* Iterate all the free extents in the group. */ 6961 int 6962 ext4_mballoc_query_range( 6963 struct super_block *sb, 6964 ext4_group_t group, 6965 ext4_grpblk_t start, 6966 ext4_grpblk_t end, 6967 ext4_mballoc_query_range_fn formatter, 6968 void *priv) 6969 { 6970 void *bitmap; 6971 ext4_grpblk_t next; 6972 struct ext4_buddy e4b; 6973 int error; 6974 6975 error = ext4_mb_load_buddy(sb, group, &e4b); 6976 if (error) 6977 return error; 6978 bitmap = e4b.bd_bitmap; 6979 6980 ext4_lock_group(sb, group); 6981 6982 start = max(e4b.bd_info->bb_first_free, start); 6983 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 6984 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6985 6986 while (start <= end) { 6987 start = mb_find_next_zero_bit(bitmap, end + 1, start); 6988 if (start > end) 6989 break; 6990 next = mb_find_next_bit(bitmap, end + 1, start); 6991 6992 ext4_unlock_group(sb, group); 6993 error = formatter(sb, group, start, next - start, priv); 6994 if (error) 6995 goto out_unload; 6996 ext4_lock_group(sb, group); 6997 6998 start = next + 1; 6999 } 7000 7001 ext4_unlock_group(sb, group); 7002 out_unload: 7003 ext4_mb_unload_buddy(&e4b); 7004 7005 return error; 7006 } 7007 7008 #ifdef CONFIG_EXT4_KUNIT_TESTS 7009 #include "mballoc-test.c" 7010 #endif 7011