1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "mballoc.h" 25 /* 26 * MUSTDO: 27 * - test ext4_ext_search_left() and ext4_ext_search_right() 28 * - search for metadata in few groups 29 * 30 * TODO v4: 31 * - normalization should take into account whether file is still open 32 * - discard preallocations if no free space left (policy?) 33 * - don't normalize tails 34 * - quota 35 * - reservation for superuser 36 * 37 * TODO v3: 38 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 39 * - track min/max extents in each group for better group selection 40 * - mb_mark_used() may allocate chunk right after splitting buddy 41 * - tree of groups sorted by number of free blocks 42 * - error handling 43 */ 44 45 /* 46 * The allocation request involve request for multiple number of blocks 47 * near to the goal(block) value specified. 48 * 49 * During initialization phase of the allocator we decide to use the group 50 * preallocation or inode preallocation depending on the size file. The 51 * size of the file could be the resulting file size we would have after 52 * allocation or the current file size which ever is larger. If the size is 53 * less that sbi->s_mb_stream_request we select the group 54 * preallocation. The default value of s_mb_stream_request is 16 55 * blocks. This can also be tuned via 56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms 57 * of number of blocks. 58 * 59 * The main motivation for having small file use group preallocation is to 60 * ensure that we have small file closer in the disk. 61 * 62 * First stage the allocator looks at the inode prealloc list 63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for 64 * this particular inode. The inode prealloc space is represented as: 65 * 66 * pa_lstart -> the logical start block for this prealloc space 67 * pa_pstart -> the physical start block for this prealloc space 68 * pa_len -> lenght for this prealloc space 69 * pa_free -> free space available in this prealloc space 70 * 71 * The inode preallocation space is used looking at the _logical_ start 72 * block. If only the logical file block falls within the range of prealloc 73 * space we will consume the particular prealloc space. This make sure that 74 * that the we have contiguous physical blocks representing the file blocks 75 * 76 * The important thing to be noted in case of inode prealloc space is that 77 * we don't modify the values associated to inode prealloc space except 78 * pa_free. 79 * 80 * If we are not able to find blocks in the inode prealloc space and if we 81 * have the group allocation flag set then we look at the locality group 82 * prealloc space. These are per CPU prealloc list repreasented as 83 * 84 * ext4_sb_info.s_locality_groups[smp_processor_id()] 85 * 86 * The reason for having a per cpu locality group is to reduce the contention 87 * between CPUs. It is possible to get scheduled at this point. 88 * 89 * The locality group prealloc space is used looking at whether we have 90 * enough free space (pa_free) withing the prealloc space. 91 * 92 * If we can't allocate blocks via inode prealloc or/and locality group 93 * prealloc then we look at the buddy cache. The buddy cache is represented 94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 95 * mapped to the buddy and bitmap information regarding different 96 * groups. The buddy information is attached to buddy cache inode so that 97 * we can access them through the page cache. The information regarding 98 * each group is loaded via ext4_mb_load_buddy. The information involve 99 * block bitmap and buddy information. The information are stored in the 100 * inode as: 101 * 102 * { page } 103 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]... 104 * 105 * 106 * one block each for bitmap and buddy information. So for each group we 107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 108 * blocksize) blocks. So it can have information regarding groups_per_page 109 * which is blocks_per_page/2 110 * 111 * The buddy cache inode is not stored on disk. The inode is thrown 112 * away when the filesystem is unmounted. 113 * 114 * We look for count number of blocks in the buddy cache. If we were able 115 * to locate that many free blocks we return with additional information 116 * regarding rest of the contiguous physical block available 117 * 118 * Before allocating blocks via buddy cache we normalize the request 119 * blocks. This ensure we ask for more blocks that we needed. The extra 120 * blocks that we get after allocation is added to the respective prealloc 121 * list. In case of inode preallocation we follow a list of heuristics 122 * based on file size. This can be found in ext4_mb_normalize_request. If 123 * we are doing a group prealloc we try to normalize the request to 124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to 125 * 512 blocks. This can be tuned via 126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in 127 * terms of number of blocks. If we have mounted the file system with -O 128 * stripe=<value> option the group prealloc request is normalized to the 129 * stripe value (sbi->s_stripe) 130 * 131 * The regular allocator(using the buddy cache) support few tunables. 132 * 133 * /proc/fs/ext4/<partition>/min_to_scan 134 * /proc/fs/ext4/<partition>/max_to_scan 135 * /proc/fs/ext4/<partition>/order2_req 136 * 137 * The regular allocator use buddy scan only if the request len is power of 138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 139 * value of s_mb_order2_reqs can be tuned via 140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to 141 * stripe size (sbi->s_stripe), we try to search for contigous block in 142 * stripe size. This should result in better allocation on RAID setup. If 143 * not we search in the specific group using bitmap for best extents. The 144 * tunable min_to_scan and max_to_scan controll the behaviour here. 145 * min_to_scan indicate how long the mballoc __must__ look for a best 146 * extent and max_to_scanindicate how long the mballoc __can__ look for a 147 * best extent in the found extents. Searching for the blocks starts with 148 * the group specified as the goal value in allocation context via 149 * ac_g_ex. Each group is first checked based on the criteria whether it 150 * can used for allocation. ext4_mb_good_group explains how the groups are 151 * checked. 152 * 153 * Both the prealloc space are getting populated as above. So for the first 154 * request we will hit the buddy cache which will result in this prealloc 155 * space getting filled. The prealloc space is then later used for the 156 * subsequent request. 157 */ 158 159 /* 160 * mballoc operates on the following data: 161 * - on-disk bitmap 162 * - in-core buddy (actually includes buddy and bitmap) 163 * - preallocation descriptors (PAs) 164 * 165 * there are two types of preallocations: 166 * - inode 167 * assiged to specific inode and can be used for this inode only. 168 * it describes part of inode's space preallocated to specific 169 * physical blocks. any block from that preallocated can be used 170 * independent. the descriptor just tracks number of blocks left 171 * unused. so, before taking some block from descriptor, one must 172 * make sure corresponded logical block isn't allocated yet. this 173 * also means that freeing any block within descriptor's range 174 * must discard all preallocated blocks. 175 * - locality group 176 * assigned to specific locality group which does not translate to 177 * permanent set of inodes: inode can join and leave group. space 178 * from this type of preallocation can be used for any inode. thus 179 * it's consumed from the beginning to the end. 180 * 181 * relation between them can be expressed as: 182 * in-core buddy = on-disk bitmap + preallocation descriptors 183 * 184 * this mean blocks mballoc considers used are: 185 * - allocated blocks (persistent) 186 * - preallocated blocks (non-persistent) 187 * 188 * consistency in mballoc world means that at any time a block is either 189 * free or used in ALL structures. notice: "any time" should not be read 190 * literally -- time is discrete and delimited by locks. 191 * 192 * to keep it simple, we don't use block numbers, instead we count number of 193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 194 * 195 * all operations can be expressed as: 196 * - init buddy: buddy = on-disk + PAs 197 * - new PA: buddy += N; PA = N 198 * - use inode PA: on-disk += N; PA -= N 199 * - discard inode PA buddy -= on-disk - PA; PA = 0 200 * - use locality group PA on-disk += N; PA -= N 201 * - discard locality group PA buddy -= PA; PA = 0 202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 203 * is used in real operation because we can't know actual used 204 * bits from PA, only from on-disk bitmap 205 * 206 * if we follow this strict logic, then all operations above should be atomic. 207 * given some of them can block, we'd have to use something like semaphores 208 * killing performance on high-end SMP hardware. let's try to relax it using 209 * the following knowledge: 210 * 1) if buddy is referenced, it's already initialized 211 * 2) while block is used in buddy and the buddy is referenced, 212 * nobody can re-allocate that block 213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 214 * bit set and PA claims same block, it's OK. IOW, one can set bit in 215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 216 * block 217 * 218 * so, now we're building a concurrency table: 219 * - init buddy vs. 220 * - new PA 221 * blocks for PA are allocated in the buddy, buddy must be referenced 222 * until PA is linked to allocation group to avoid concurrent buddy init 223 * - use inode PA 224 * we need to make sure that either on-disk bitmap or PA has uptodate data 225 * given (3) we care that PA-=N operation doesn't interfere with init 226 * - discard inode PA 227 * the simplest way would be to have buddy initialized by the discard 228 * - use locality group PA 229 * again PA-=N must be serialized with init 230 * - discard locality group PA 231 * the simplest way would be to have buddy initialized by the discard 232 * - new PA vs. 233 * - use inode PA 234 * i_data_sem serializes them 235 * - discard inode PA 236 * discard process must wait until PA isn't used by another process 237 * - use locality group PA 238 * some mutex should serialize them 239 * - discard locality group PA 240 * discard process must wait until PA isn't used by another process 241 * - use inode PA 242 * - use inode PA 243 * i_data_sem or another mutex should serializes them 244 * - discard inode PA 245 * discard process must wait until PA isn't used by another process 246 * - use locality group PA 247 * nothing wrong here -- they're different PAs covering different blocks 248 * - discard locality group PA 249 * discard process must wait until PA isn't used by another process 250 * 251 * now we're ready to make few consequences: 252 * - PA is referenced and while it is no discard is possible 253 * - PA is referenced until block isn't marked in on-disk bitmap 254 * - PA changes only after on-disk bitmap 255 * - discard must not compete with init. either init is done before 256 * any discard or they're serialized somehow 257 * - buddy init as sum of on-disk bitmap and PAs is done atomically 258 * 259 * a special case when we've used PA to emptiness. no need to modify buddy 260 * in this case, but we should care about concurrent init 261 * 262 */ 263 264 /* 265 * Logic in few words: 266 * 267 * - allocation: 268 * load group 269 * find blocks 270 * mark bits in on-disk bitmap 271 * release group 272 * 273 * - use preallocation: 274 * find proper PA (per-inode or group) 275 * load group 276 * mark bits in on-disk bitmap 277 * release group 278 * release PA 279 * 280 * - free: 281 * load group 282 * mark bits in on-disk bitmap 283 * release group 284 * 285 * - discard preallocations in group: 286 * mark PAs deleted 287 * move them onto local list 288 * load on-disk bitmap 289 * load group 290 * remove PA from object (inode or locality group) 291 * mark free blocks in-core 292 * 293 * - discard inode's preallocations: 294 */ 295 296 /* 297 * Locking rules 298 * 299 * Locks: 300 * - bitlock on a group (group) 301 * - object (inode/locality) (object) 302 * - per-pa lock (pa) 303 * 304 * Paths: 305 * - new pa 306 * object 307 * group 308 * 309 * - find and use pa: 310 * pa 311 * 312 * - release consumed pa: 313 * pa 314 * group 315 * object 316 * 317 * - generate in-core bitmap: 318 * group 319 * pa 320 * 321 * - discard all for given object (inode, locality group): 322 * object 323 * pa 324 * group 325 * 326 * - discard all for given group: 327 * group 328 * pa 329 * group 330 * object 331 * 332 */ 333 334 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 335 { 336 #if BITS_PER_LONG == 64 337 *bit += ((unsigned long) addr & 7UL) << 3; 338 addr = (void *) ((unsigned long) addr & ~7UL); 339 #elif BITS_PER_LONG == 32 340 *bit += ((unsigned long) addr & 3UL) << 3; 341 addr = (void *) ((unsigned long) addr & ~3UL); 342 #else 343 #error "how many bits you are?!" 344 #endif 345 return addr; 346 } 347 348 static inline int mb_test_bit(int bit, void *addr) 349 { 350 /* 351 * ext4_test_bit on architecture like powerpc 352 * needs unsigned long aligned address 353 */ 354 addr = mb_correct_addr_and_bit(&bit, addr); 355 return ext4_test_bit(bit, addr); 356 } 357 358 static inline void mb_set_bit(int bit, void *addr) 359 { 360 addr = mb_correct_addr_and_bit(&bit, addr); 361 ext4_set_bit(bit, addr); 362 } 363 364 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr) 365 { 366 addr = mb_correct_addr_and_bit(&bit, addr); 367 ext4_set_bit_atomic(lock, bit, addr); 368 } 369 370 static inline void mb_clear_bit(int bit, void *addr) 371 { 372 addr = mb_correct_addr_and_bit(&bit, addr); 373 ext4_clear_bit(bit, addr); 374 } 375 376 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr) 377 { 378 addr = mb_correct_addr_and_bit(&bit, addr); 379 ext4_clear_bit_atomic(lock, bit, addr); 380 } 381 382 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 383 { 384 int fix = 0, ret, tmpmax; 385 addr = mb_correct_addr_and_bit(&fix, addr); 386 tmpmax = max + fix; 387 start += fix; 388 389 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 390 if (ret > max) 391 return max; 392 return ret; 393 } 394 395 static inline int mb_find_next_bit(void *addr, int max, int start) 396 { 397 int fix = 0, ret, tmpmax; 398 addr = mb_correct_addr_and_bit(&fix, addr); 399 tmpmax = max + fix; 400 start += fix; 401 402 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 403 if (ret > max) 404 return max; 405 return ret; 406 } 407 408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 409 { 410 char *bb; 411 412 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 413 BUG_ON(max == NULL); 414 415 if (order > e4b->bd_blkbits + 1) { 416 *max = 0; 417 return NULL; 418 } 419 420 /* at order 0 we see each particular block */ 421 *max = 1 << (e4b->bd_blkbits + 3); 422 if (order == 0) 423 return EXT4_MB_BITMAP(e4b); 424 425 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 426 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 427 428 return bb; 429 } 430 431 #ifdef DOUBLE_CHECK 432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 433 int first, int count) 434 { 435 int i; 436 struct super_block *sb = e4b->bd_sb; 437 438 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 439 return; 440 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group)); 441 for (i = 0; i < count; i++) { 442 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 443 ext4_fsblk_t blocknr; 444 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); 445 blocknr += first + i; 446 blocknr += 447 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 448 449 ext4_error(sb, __func__, "double-free of inode" 450 " %lu's block %llu(bit %u in group %lu)\n", 451 inode ? inode->i_ino : 0, blocknr, 452 first + i, e4b->bd_group); 453 } 454 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 455 } 456 } 457 458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 459 { 460 int i; 461 462 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 463 return; 464 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); 465 for (i = 0; i < count; i++) { 466 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 467 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 468 } 469 } 470 471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 472 { 473 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 474 unsigned char *b1, *b2; 475 int i; 476 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 477 b2 = (unsigned char *) bitmap; 478 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 479 if (b1[i] != b2[i]) { 480 printk(KERN_ERR "corruption in group %lu " 481 "at byte %u(%u): %x in copy != %x " 482 "on disk/prealloc\n", 483 e4b->bd_group, i, i * 8, b1[i], b2[i]); 484 BUG(); 485 } 486 } 487 } 488 } 489 490 #else 491 static inline void mb_free_blocks_double(struct inode *inode, 492 struct ext4_buddy *e4b, int first, int count) 493 { 494 return; 495 } 496 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 497 int first, int count) 498 { 499 return; 500 } 501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 502 { 503 return; 504 } 505 #endif 506 507 #ifdef AGGRESSIVE_CHECK 508 509 #define MB_CHECK_ASSERT(assert) \ 510 do { \ 511 if (!(assert)) { \ 512 printk(KERN_EMERG \ 513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 514 function, file, line, # assert); \ 515 BUG(); \ 516 } \ 517 } while (0) 518 519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 520 const char *function, int line) 521 { 522 struct super_block *sb = e4b->bd_sb; 523 int order = e4b->bd_blkbits + 1; 524 int max; 525 int max2; 526 int i; 527 int j; 528 int k; 529 int count; 530 struct ext4_group_info *grp; 531 int fragments = 0; 532 int fstart; 533 struct list_head *cur; 534 void *buddy; 535 void *buddy2; 536 537 { 538 static int mb_check_counter; 539 if (mb_check_counter++ % 100 != 0) 540 return 0; 541 } 542 543 while (order > 1) { 544 buddy = mb_find_buddy(e4b, order, &max); 545 MB_CHECK_ASSERT(buddy); 546 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 547 MB_CHECK_ASSERT(buddy2); 548 MB_CHECK_ASSERT(buddy != buddy2); 549 MB_CHECK_ASSERT(max * 2 == max2); 550 551 count = 0; 552 for (i = 0; i < max; i++) { 553 554 if (mb_test_bit(i, buddy)) { 555 /* only single bit in buddy2 may be 1 */ 556 if (!mb_test_bit(i << 1, buddy2)) { 557 MB_CHECK_ASSERT( 558 mb_test_bit((i<<1)+1, buddy2)); 559 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 560 MB_CHECK_ASSERT( 561 mb_test_bit(i << 1, buddy2)); 562 } 563 continue; 564 } 565 566 /* both bits in buddy2 must be 0 */ 567 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 568 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 569 570 for (j = 0; j < (1 << order); j++) { 571 k = (i * (1 << order)) + j; 572 MB_CHECK_ASSERT( 573 !mb_test_bit(k, EXT4_MB_BITMAP(e4b))); 574 } 575 count++; 576 } 577 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 578 order--; 579 } 580 581 fstart = -1; 582 buddy = mb_find_buddy(e4b, 0, &max); 583 for (i = 0; i < max; i++) { 584 if (!mb_test_bit(i, buddy)) { 585 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 586 if (fstart == -1) { 587 fragments++; 588 fstart = i; 589 } 590 continue; 591 } 592 fstart = -1; 593 /* check used bits only */ 594 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 595 buddy2 = mb_find_buddy(e4b, j, &max2); 596 k = i >> j; 597 MB_CHECK_ASSERT(k < max2); 598 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 599 } 600 } 601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 602 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 603 604 grp = ext4_get_group_info(sb, e4b->bd_group); 605 buddy = mb_find_buddy(e4b, 0, &max); 606 list_for_each(cur, &grp->bb_prealloc_list) { 607 ext4_group_t groupnr; 608 struct ext4_prealloc_space *pa; 609 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 610 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 611 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 612 for (i = 0; i < pa->pa_len; i++) 613 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 614 } 615 return 0; 616 } 617 #undef MB_CHECK_ASSERT 618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 619 __FILE__, __func__, __LINE__) 620 #else 621 #define mb_check_buddy(e4b) 622 #endif 623 624 /* FIXME!! need more doc */ 625 static void ext4_mb_mark_free_simple(struct super_block *sb, 626 void *buddy, unsigned first, int len, 627 struct ext4_group_info *grp) 628 { 629 struct ext4_sb_info *sbi = EXT4_SB(sb); 630 unsigned short min; 631 unsigned short max; 632 unsigned short chunk; 633 unsigned short border; 634 635 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb)); 636 637 border = 2 << sb->s_blocksize_bits; 638 639 while (len > 0) { 640 /* find how many blocks can be covered since this position */ 641 max = ffs(first | border) - 1; 642 643 /* find how many blocks of power 2 we need to mark */ 644 min = fls(len) - 1; 645 646 if (max < min) 647 min = max; 648 chunk = 1 << min; 649 650 /* mark multiblock chunks only */ 651 grp->bb_counters[min]++; 652 if (min > 0) 653 mb_clear_bit(first >> min, 654 buddy + sbi->s_mb_offsets[min]); 655 656 len -= chunk; 657 first += chunk; 658 } 659 } 660 661 static void ext4_mb_generate_buddy(struct super_block *sb, 662 void *buddy, void *bitmap, ext4_group_t group) 663 { 664 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 665 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb); 666 unsigned short i = 0; 667 unsigned short first; 668 unsigned short len; 669 unsigned free = 0; 670 unsigned fragments = 0; 671 unsigned long long period = get_cycles(); 672 673 /* initialize buddy from bitmap which is aggregation 674 * of on-disk bitmap and preallocations */ 675 i = mb_find_next_zero_bit(bitmap, max, 0); 676 grp->bb_first_free = i; 677 while (i < max) { 678 fragments++; 679 first = i; 680 i = mb_find_next_bit(bitmap, max, i); 681 len = i - first; 682 free += len; 683 if (len > 1) 684 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 685 else 686 grp->bb_counters[0]++; 687 if (i < max) 688 i = mb_find_next_zero_bit(bitmap, max, i); 689 } 690 grp->bb_fragments = fragments; 691 692 if (free != grp->bb_free) { 693 ext4_error(sb, __func__, 694 "EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n", 695 group, free, grp->bb_free); 696 /* 697 * If we intent to continue, we consider group descritor 698 * corrupt and update bb_free using bitmap value 699 */ 700 grp->bb_free = free; 701 } 702 703 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 704 705 period = get_cycles() - period; 706 spin_lock(&EXT4_SB(sb)->s_bal_lock); 707 EXT4_SB(sb)->s_mb_buddies_generated++; 708 EXT4_SB(sb)->s_mb_generation_time += period; 709 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 710 } 711 712 /* The buddy information is attached the buddy cache inode 713 * for convenience. The information regarding each group 714 * is loaded via ext4_mb_load_buddy. The information involve 715 * block bitmap and buddy information. The information are 716 * stored in the inode as 717 * 718 * { page } 719 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]... 720 * 721 * 722 * one block each for bitmap and buddy information. 723 * So for each group we take up 2 blocks. A page can 724 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 725 * So it can have information regarding groups_per_page which 726 * is blocks_per_page/2 727 */ 728 729 static int ext4_mb_init_cache(struct page *page, char *incore) 730 { 731 int blocksize; 732 int blocks_per_page; 733 int groups_per_page; 734 int err = 0; 735 int i; 736 ext4_group_t first_group; 737 int first_block; 738 struct super_block *sb; 739 struct buffer_head *bhs; 740 struct buffer_head **bh; 741 struct inode *inode; 742 char *data; 743 char *bitmap; 744 745 mb_debug("init page %lu\n", page->index); 746 747 inode = page->mapping->host; 748 sb = inode->i_sb; 749 blocksize = 1 << inode->i_blkbits; 750 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 751 752 groups_per_page = blocks_per_page >> 1; 753 if (groups_per_page == 0) 754 groups_per_page = 1; 755 756 /* allocate buffer_heads to read bitmaps */ 757 if (groups_per_page > 1) { 758 err = -ENOMEM; 759 i = sizeof(struct buffer_head *) * groups_per_page; 760 bh = kzalloc(i, GFP_NOFS); 761 if (bh == NULL) 762 goto out; 763 } else 764 bh = &bhs; 765 766 first_group = page->index * blocks_per_page / 2; 767 768 /* read all groups the page covers into the cache */ 769 for (i = 0; i < groups_per_page; i++) { 770 struct ext4_group_desc *desc; 771 772 if (first_group + i >= EXT4_SB(sb)->s_groups_count) 773 break; 774 775 err = -EIO; 776 desc = ext4_get_group_desc(sb, first_group + i, NULL); 777 if (desc == NULL) 778 goto out; 779 780 err = -ENOMEM; 781 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc)); 782 if (bh[i] == NULL) 783 goto out; 784 785 if (buffer_uptodate(bh[i]) && 786 !(desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) 787 continue; 788 789 lock_buffer(bh[i]); 790 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); 791 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 792 ext4_init_block_bitmap(sb, bh[i], 793 first_group + i, desc); 794 set_buffer_uptodate(bh[i]); 795 unlock_buffer(bh[i]); 796 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); 797 continue; 798 } 799 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); 800 get_bh(bh[i]); 801 bh[i]->b_end_io = end_buffer_read_sync; 802 submit_bh(READ, bh[i]); 803 mb_debug("read bitmap for group %lu\n", first_group + i); 804 } 805 806 /* wait for I/O completion */ 807 for (i = 0; i < groups_per_page && bh[i]; i++) 808 wait_on_buffer(bh[i]); 809 810 err = -EIO; 811 for (i = 0; i < groups_per_page && bh[i]; i++) 812 if (!buffer_uptodate(bh[i])) 813 goto out; 814 815 err = 0; 816 first_block = page->index * blocks_per_page; 817 for (i = 0; i < blocks_per_page; i++) { 818 int group; 819 struct ext4_group_info *grinfo; 820 821 group = (first_block + i) >> 1; 822 if (group >= EXT4_SB(sb)->s_groups_count) 823 break; 824 825 /* 826 * data carry information regarding this 827 * particular group in the format specified 828 * above 829 * 830 */ 831 data = page_address(page) + (i * blocksize); 832 bitmap = bh[group - first_group]->b_data; 833 834 /* 835 * We place the buddy block and bitmap block 836 * close together 837 */ 838 if ((first_block + i) & 1) { 839 /* this is block of buddy */ 840 BUG_ON(incore == NULL); 841 mb_debug("put buddy for group %u in page %lu/%x\n", 842 group, page->index, i * blocksize); 843 memset(data, 0xff, blocksize); 844 grinfo = ext4_get_group_info(sb, group); 845 grinfo->bb_fragments = 0; 846 memset(grinfo->bb_counters, 0, 847 sizeof(unsigned short)*(sb->s_blocksize_bits+2)); 848 /* 849 * incore got set to the group block bitmap below 850 */ 851 ext4_mb_generate_buddy(sb, data, incore, group); 852 incore = NULL; 853 } else { 854 /* this is block of bitmap */ 855 BUG_ON(incore != NULL); 856 mb_debug("put bitmap for group %u in page %lu/%x\n", 857 group, page->index, i * blocksize); 858 859 /* see comments in ext4_mb_put_pa() */ 860 ext4_lock_group(sb, group); 861 memcpy(data, bitmap, blocksize); 862 863 /* mark all preallocated blks used in in-core bitmap */ 864 ext4_mb_generate_from_pa(sb, data, group); 865 ext4_unlock_group(sb, group); 866 867 /* set incore so that the buddy information can be 868 * generated using this 869 */ 870 incore = data; 871 } 872 } 873 SetPageUptodate(page); 874 875 out: 876 if (bh) { 877 for (i = 0; i < groups_per_page && bh[i]; i++) 878 brelse(bh[i]); 879 if (bh != &bhs) 880 kfree(bh); 881 } 882 return err; 883 } 884 885 static noinline_for_stack int 886 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 887 struct ext4_buddy *e4b) 888 { 889 struct ext4_sb_info *sbi = EXT4_SB(sb); 890 struct inode *inode = sbi->s_buddy_cache; 891 int blocks_per_page; 892 int block; 893 int pnum; 894 int poff; 895 struct page *page; 896 int ret; 897 898 mb_debug("load group %lu\n", group); 899 900 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 901 902 e4b->bd_blkbits = sb->s_blocksize_bits; 903 e4b->bd_info = ext4_get_group_info(sb, group); 904 e4b->bd_sb = sb; 905 e4b->bd_group = group; 906 e4b->bd_buddy_page = NULL; 907 e4b->bd_bitmap_page = NULL; 908 909 /* 910 * the buddy cache inode stores the block bitmap 911 * and buddy information in consecutive blocks. 912 * So for each group we need two blocks. 913 */ 914 block = group * 2; 915 pnum = block / blocks_per_page; 916 poff = block % blocks_per_page; 917 918 /* we could use find_or_create_page(), but it locks page 919 * what we'd like to avoid in fast path ... */ 920 page = find_get_page(inode->i_mapping, pnum); 921 if (page == NULL || !PageUptodate(page)) { 922 if (page) 923 page_cache_release(page); 924 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 925 if (page) { 926 BUG_ON(page->mapping != inode->i_mapping); 927 if (!PageUptodate(page)) { 928 ret = ext4_mb_init_cache(page, NULL); 929 if (ret) { 930 unlock_page(page); 931 goto err; 932 } 933 mb_cmp_bitmaps(e4b, page_address(page) + 934 (poff * sb->s_blocksize)); 935 } 936 unlock_page(page); 937 } 938 } 939 if (page == NULL || !PageUptodate(page)) { 940 ret = -EIO; 941 goto err; 942 } 943 e4b->bd_bitmap_page = page; 944 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 945 mark_page_accessed(page); 946 947 block++; 948 pnum = block / blocks_per_page; 949 poff = block % blocks_per_page; 950 951 page = find_get_page(inode->i_mapping, pnum); 952 if (page == NULL || !PageUptodate(page)) { 953 if (page) 954 page_cache_release(page); 955 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 956 if (page) { 957 BUG_ON(page->mapping != inode->i_mapping); 958 if (!PageUptodate(page)) { 959 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 960 if (ret) { 961 unlock_page(page); 962 goto err; 963 } 964 } 965 unlock_page(page); 966 } 967 } 968 if (page == NULL || !PageUptodate(page)) { 969 ret = -EIO; 970 goto err; 971 } 972 e4b->bd_buddy_page = page; 973 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 974 mark_page_accessed(page); 975 976 BUG_ON(e4b->bd_bitmap_page == NULL); 977 BUG_ON(e4b->bd_buddy_page == NULL); 978 979 return 0; 980 981 err: 982 if (e4b->bd_bitmap_page) 983 page_cache_release(e4b->bd_bitmap_page); 984 if (e4b->bd_buddy_page) 985 page_cache_release(e4b->bd_buddy_page); 986 e4b->bd_buddy = NULL; 987 e4b->bd_bitmap = NULL; 988 return ret; 989 } 990 991 static void ext4_mb_release_desc(struct ext4_buddy *e4b) 992 { 993 if (e4b->bd_bitmap_page) 994 page_cache_release(e4b->bd_bitmap_page); 995 if (e4b->bd_buddy_page) 996 page_cache_release(e4b->bd_buddy_page); 997 } 998 999 1000 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1001 { 1002 int order = 1; 1003 void *bb; 1004 1005 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 1006 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1007 1008 bb = EXT4_MB_BUDDY(e4b); 1009 while (order <= e4b->bd_blkbits + 1) { 1010 block = block >> 1; 1011 if (!mb_test_bit(block, bb)) { 1012 /* this block is part of buddy of order 'order' */ 1013 return order; 1014 } 1015 bb += 1 << (e4b->bd_blkbits - order); 1016 order++; 1017 } 1018 return 0; 1019 } 1020 1021 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len) 1022 { 1023 __u32 *addr; 1024 1025 len = cur + len; 1026 while (cur < len) { 1027 if ((cur & 31) == 0 && (len - cur) >= 32) { 1028 /* fast path: clear whole word at once */ 1029 addr = bm + (cur >> 3); 1030 *addr = 0; 1031 cur += 32; 1032 continue; 1033 } 1034 mb_clear_bit_atomic(lock, cur, bm); 1035 cur++; 1036 } 1037 } 1038 1039 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len) 1040 { 1041 __u32 *addr; 1042 1043 len = cur + len; 1044 while (cur < len) { 1045 if ((cur & 31) == 0 && (len - cur) >= 32) { 1046 /* fast path: set whole word at once */ 1047 addr = bm + (cur >> 3); 1048 *addr = 0xffffffff; 1049 cur += 32; 1050 continue; 1051 } 1052 mb_set_bit_atomic(lock, cur, bm); 1053 cur++; 1054 } 1055 } 1056 1057 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1058 int first, int count) 1059 { 1060 int block = 0; 1061 int max = 0; 1062 int order; 1063 void *buddy; 1064 void *buddy2; 1065 struct super_block *sb = e4b->bd_sb; 1066 1067 BUG_ON(first + count > (sb->s_blocksize << 3)); 1068 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group)); 1069 mb_check_buddy(e4b); 1070 mb_free_blocks_double(inode, e4b, first, count); 1071 1072 e4b->bd_info->bb_free += count; 1073 if (first < e4b->bd_info->bb_first_free) 1074 e4b->bd_info->bb_first_free = first; 1075 1076 /* let's maintain fragments counter */ 1077 if (first != 0) 1078 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b)); 1079 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1080 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b)); 1081 if (block && max) 1082 e4b->bd_info->bb_fragments--; 1083 else if (!block && !max) 1084 e4b->bd_info->bb_fragments++; 1085 1086 /* let's maintain buddy itself */ 1087 while (count-- > 0) { 1088 block = first++; 1089 order = 0; 1090 1091 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) { 1092 ext4_fsblk_t blocknr; 1093 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); 1094 blocknr += block; 1095 blocknr += 1096 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 1097 ext4_unlock_group(sb, e4b->bd_group); 1098 ext4_error(sb, __func__, "double-free of inode" 1099 " %lu's block %llu(bit %u in group %lu)\n", 1100 inode ? inode->i_ino : 0, blocknr, block, 1101 e4b->bd_group); 1102 ext4_lock_group(sb, e4b->bd_group); 1103 } 1104 mb_clear_bit(block, EXT4_MB_BITMAP(e4b)); 1105 e4b->bd_info->bb_counters[order]++; 1106 1107 /* start of the buddy */ 1108 buddy = mb_find_buddy(e4b, order, &max); 1109 1110 do { 1111 block &= ~1UL; 1112 if (mb_test_bit(block, buddy) || 1113 mb_test_bit(block + 1, buddy)) 1114 break; 1115 1116 /* both the buddies are free, try to coalesce them */ 1117 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1118 1119 if (!buddy2) 1120 break; 1121 1122 if (order > 0) { 1123 /* for special purposes, we don't set 1124 * free bits in bitmap */ 1125 mb_set_bit(block, buddy); 1126 mb_set_bit(block + 1, buddy); 1127 } 1128 e4b->bd_info->bb_counters[order]--; 1129 e4b->bd_info->bb_counters[order]--; 1130 1131 block = block >> 1; 1132 order++; 1133 e4b->bd_info->bb_counters[order]++; 1134 1135 mb_clear_bit(block, buddy2); 1136 buddy = buddy2; 1137 } while (1); 1138 } 1139 mb_check_buddy(e4b); 1140 } 1141 1142 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, 1143 int needed, struct ext4_free_extent *ex) 1144 { 1145 int next = block; 1146 int max; 1147 int ord; 1148 void *buddy; 1149 1150 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); 1151 BUG_ON(ex == NULL); 1152 1153 buddy = mb_find_buddy(e4b, order, &max); 1154 BUG_ON(buddy == NULL); 1155 BUG_ON(block >= max); 1156 if (mb_test_bit(block, buddy)) { 1157 ex->fe_len = 0; 1158 ex->fe_start = 0; 1159 ex->fe_group = 0; 1160 return 0; 1161 } 1162 1163 /* FIXME dorp order completely ? */ 1164 if (likely(order == 0)) { 1165 /* find actual order */ 1166 order = mb_find_order_for_block(e4b, block); 1167 block = block >> order; 1168 } 1169 1170 ex->fe_len = 1 << order; 1171 ex->fe_start = block << order; 1172 ex->fe_group = e4b->bd_group; 1173 1174 /* calc difference from given start */ 1175 next = next - ex->fe_start; 1176 ex->fe_len -= next; 1177 ex->fe_start += next; 1178 1179 while (needed > ex->fe_len && 1180 (buddy = mb_find_buddy(e4b, order, &max))) { 1181 1182 if (block + 1 >= max) 1183 break; 1184 1185 next = (block + 1) * (1 << order); 1186 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b))) 1187 break; 1188 1189 ord = mb_find_order_for_block(e4b, next); 1190 1191 order = ord; 1192 block = next >> order; 1193 ex->fe_len += 1 << order; 1194 } 1195 1196 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1197 return ex->fe_len; 1198 } 1199 1200 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1201 { 1202 int ord; 1203 int mlen = 0; 1204 int max = 0; 1205 int cur; 1206 int start = ex->fe_start; 1207 int len = ex->fe_len; 1208 unsigned ret = 0; 1209 int len0 = len; 1210 void *buddy; 1211 1212 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1213 BUG_ON(e4b->bd_group != ex->fe_group); 1214 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); 1215 mb_check_buddy(e4b); 1216 mb_mark_used_double(e4b, start, len); 1217 1218 e4b->bd_info->bb_free -= len; 1219 if (e4b->bd_info->bb_first_free == start) 1220 e4b->bd_info->bb_first_free += len; 1221 1222 /* let's maintain fragments counter */ 1223 if (start != 0) 1224 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b)); 1225 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1226 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b)); 1227 if (mlen && max) 1228 e4b->bd_info->bb_fragments++; 1229 else if (!mlen && !max) 1230 e4b->bd_info->bb_fragments--; 1231 1232 /* let's maintain buddy itself */ 1233 while (len) { 1234 ord = mb_find_order_for_block(e4b, start); 1235 1236 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1237 /* the whole chunk may be allocated at once! */ 1238 mlen = 1 << ord; 1239 buddy = mb_find_buddy(e4b, ord, &max); 1240 BUG_ON((start >> ord) >= max); 1241 mb_set_bit(start >> ord, buddy); 1242 e4b->bd_info->bb_counters[ord]--; 1243 start += mlen; 1244 len -= mlen; 1245 BUG_ON(len < 0); 1246 continue; 1247 } 1248 1249 /* store for history */ 1250 if (ret == 0) 1251 ret = len | (ord << 16); 1252 1253 /* we have to split large buddy */ 1254 BUG_ON(ord <= 0); 1255 buddy = mb_find_buddy(e4b, ord, &max); 1256 mb_set_bit(start >> ord, buddy); 1257 e4b->bd_info->bb_counters[ord]--; 1258 1259 ord--; 1260 cur = (start >> ord) & ~1U; 1261 buddy = mb_find_buddy(e4b, ord, &max); 1262 mb_clear_bit(cur, buddy); 1263 mb_clear_bit(cur + 1, buddy); 1264 e4b->bd_info->bb_counters[ord]++; 1265 e4b->bd_info->bb_counters[ord]++; 1266 } 1267 1268 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group), 1269 EXT4_MB_BITMAP(e4b), ex->fe_start, len0); 1270 mb_check_buddy(e4b); 1271 1272 return ret; 1273 } 1274 1275 /* 1276 * Must be called under group lock! 1277 */ 1278 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1279 struct ext4_buddy *e4b) 1280 { 1281 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1282 int ret; 1283 1284 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1285 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1286 1287 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1288 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1289 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1290 1291 /* preallocation can change ac_b_ex, thus we store actually 1292 * allocated blocks for history */ 1293 ac->ac_f_ex = ac->ac_b_ex; 1294 1295 ac->ac_status = AC_STATUS_FOUND; 1296 ac->ac_tail = ret & 0xffff; 1297 ac->ac_buddy = ret >> 16; 1298 1299 /* XXXXXXX: SUCH A HORRIBLE **CK */ 1300 /*FIXME!! Why ? */ 1301 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1302 get_page(ac->ac_bitmap_page); 1303 ac->ac_buddy_page = e4b->bd_buddy_page; 1304 get_page(ac->ac_buddy_page); 1305 1306 /* store last allocated for subsequent stream allocation */ 1307 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) { 1308 spin_lock(&sbi->s_md_lock); 1309 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1310 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1311 spin_unlock(&sbi->s_md_lock); 1312 } 1313 } 1314 1315 /* 1316 * regular allocator, for general purposes allocation 1317 */ 1318 1319 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1320 struct ext4_buddy *e4b, 1321 int finish_group) 1322 { 1323 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1324 struct ext4_free_extent *bex = &ac->ac_b_ex; 1325 struct ext4_free_extent *gex = &ac->ac_g_ex; 1326 struct ext4_free_extent ex; 1327 int max; 1328 1329 /* 1330 * We don't want to scan for a whole year 1331 */ 1332 if (ac->ac_found > sbi->s_mb_max_to_scan && 1333 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1334 ac->ac_status = AC_STATUS_BREAK; 1335 return; 1336 } 1337 1338 /* 1339 * Haven't found good chunk so far, let's continue 1340 */ 1341 if (bex->fe_len < gex->fe_len) 1342 return; 1343 1344 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1345 && bex->fe_group == e4b->bd_group) { 1346 /* recheck chunk's availability - we don't know 1347 * when it was found (within this lock-unlock 1348 * period or not) */ 1349 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); 1350 if (max >= gex->fe_len) { 1351 ext4_mb_use_best_found(ac, e4b); 1352 return; 1353 } 1354 } 1355 } 1356 1357 /* 1358 * The routine checks whether found extent is good enough. If it is, 1359 * then the extent gets marked used and flag is set to the context 1360 * to stop scanning. Otherwise, the extent is compared with the 1361 * previous found extent and if new one is better, then it's stored 1362 * in the context. Later, the best found extent will be used, if 1363 * mballoc can't find good enough extent. 1364 * 1365 * FIXME: real allocation policy is to be designed yet! 1366 */ 1367 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1368 struct ext4_free_extent *ex, 1369 struct ext4_buddy *e4b) 1370 { 1371 struct ext4_free_extent *bex = &ac->ac_b_ex; 1372 struct ext4_free_extent *gex = &ac->ac_g_ex; 1373 1374 BUG_ON(ex->fe_len <= 0); 1375 BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1376 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1377 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1378 1379 ac->ac_found++; 1380 1381 /* 1382 * The special case - take what you catch first 1383 */ 1384 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1385 *bex = *ex; 1386 ext4_mb_use_best_found(ac, e4b); 1387 return; 1388 } 1389 1390 /* 1391 * Let's check whether the chuck is good enough 1392 */ 1393 if (ex->fe_len == gex->fe_len) { 1394 *bex = *ex; 1395 ext4_mb_use_best_found(ac, e4b); 1396 return; 1397 } 1398 1399 /* 1400 * If this is first found extent, just store it in the context 1401 */ 1402 if (bex->fe_len == 0) { 1403 *bex = *ex; 1404 return; 1405 } 1406 1407 /* 1408 * If new found extent is better, store it in the context 1409 */ 1410 if (bex->fe_len < gex->fe_len) { 1411 /* if the request isn't satisfied, any found extent 1412 * larger than previous best one is better */ 1413 if (ex->fe_len > bex->fe_len) 1414 *bex = *ex; 1415 } else if (ex->fe_len > gex->fe_len) { 1416 /* if the request is satisfied, then we try to find 1417 * an extent that still satisfy the request, but is 1418 * smaller than previous one */ 1419 if (ex->fe_len < bex->fe_len) 1420 *bex = *ex; 1421 } 1422 1423 ext4_mb_check_limits(ac, e4b, 0); 1424 } 1425 1426 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1427 struct ext4_buddy *e4b) 1428 { 1429 struct ext4_free_extent ex = ac->ac_b_ex; 1430 ext4_group_t group = ex.fe_group; 1431 int max; 1432 int err; 1433 1434 BUG_ON(ex.fe_len <= 0); 1435 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1436 if (err) 1437 return err; 1438 1439 ext4_lock_group(ac->ac_sb, group); 1440 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); 1441 1442 if (max > 0) { 1443 ac->ac_b_ex = ex; 1444 ext4_mb_use_best_found(ac, e4b); 1445 } 1446 1447 ext4_unlock_group(ac->ac_sb, group); 1448 ext4_mb_release_desc(e4b); 1449 1450 return 0; 1451 } 1452 1453 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1454 struct ext4_buddy *e4b) 1455 { 1456 ext4_group_t group = ac->ac_g_ex.fe_group; 1457 int max; 1458 int err; 1459 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1460 struct ext4_super_block *es = sbi->s_es; 1461 struct ext4_free_extent ex; 1462 1463 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1464 return 0; 1465 1466 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1467 if (err) 1468 return err; 1469 1470 ext4_lock_group(ac->ac_sb, group); 1471 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, 1472 ac->ac_g_ex.fe_len, &ex); 1473 1474 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1475 ext4_fsblk_t start; 1476 1477 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) + 1478 ex.fe_start + le32_to_cpu(es->s_first_data_block); 1479 /* use do_div to get remainder (would be 64-bit modulo) */ 1480 if (do_div(start, sbi->s_stripe) == 0) { 1481 ac->ac_found++; 1482 ac->ac_b_ex = ex; 1483 ext4_mb_use_best_found(ac, e4b); 1484 } 1485 } else if (max >= ac->ac_g_ex.fe_len) { 1486 BUG_ON(ex.fe_len <= 0); 1487 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1488 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1489 ac->ac_found++; 1490 ac->ac_b_ex = ex; 1491 ext4_mb_use_best_found(ac, e4b); 1492 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1493 /* Sometimes, caller may want to merge even small 1494 * number of blocks to an existing extent */ 1495 BUG_ON(ex.fe_len <= 0); 1496 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1497 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1498 ac->ac_found++; 1499 ac->ac_b_ex = ex; 1500 ext4_mb_use_best_found(ac, e4b); 1501 } 1502 ext4_unlock_group(ac->ac_sb, group); 1503 ext4_mb_release_desc(e4b); 1504 1505 return 0; 1506 } 1507 1508 /* 1509 * The routine scans buddy structures (not bitmap!) from given order 1510 * to max order and tries to find big enough chunk to satisfy the req 1511 */ 1512 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1513 struct ext4_buddy *e4b) 1514 { 1515 struct super_block *sb = ac->ac_sb; 1516 struct ext4_group_info *grp = e4b->bd_info; 1517 void *buddy; 1518 int i; 1519 int k; 1520 int max; 1521 1522 BUG_ON(ac->ac_2order <= 0); 1523 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1524 if (grp->bb_counters[i] == 0) 1525 continue; 1526 1527 buddy = mb_find_buddy(e4b, i, &max); 1528 BUG_ON(buddy == NULL); 1529 1530 k = mb_find_next_zero_bit(buddy, max, 0); 1531 BUG_ON(k >= max); 1532 1533 ac->ac_found++; 1534 1535 ac->ac_b_ex.fe_len = 1 << i; 1536 ac->ac_b_ex.fe_start = k << i; 1537 ac->ac_b_ex.fe_group = e4b->bd_group; 1538 1539 ext4_mb_use_best_found(ac, e4b); 1540 1541 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1542 1543 if (EXT4_SB(sb)->s_mb_stats) 1544 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1545 1546 break; 1547 } 1548 } 1549 1550 /* 1551 * The routine scans the group and measures all found extents. 1552 * In order to optimize scanning, caller must pass number of 1553 * free blocks in the group, so the routine can know upper limit. 1554 */ 1555 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1556 struct ext4_buddy *e4b) 1557 { 1558 struct super_block *sb = ac->ac_sb; 1559 void *bitmap = EXT4_MB_BITMAP(e4b); 1560 struct ext4_free_extent ex; 1561 int i; 1562 int free; 1563 1564 free = e4b->bd_info->bb_free; 1565 BUG_ON(free <= 0); 1566 1567 i = e4b->bd_info->bb_first_free; 1568 1569 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1570 i = mb_find_next_zero_bit(bitmap, 1571 EXT4_BLOCKS_PER_GROUP(sb), i); 1572 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) { 1573 /* 1574 * IF we have corrupt bitmap, we won't find any 1575 * free blocks even though group info says we 1576 * we have free blocks 1577 */ 1578 ext4_error(sb, __func__, "%d free blocks as per " 1579 "group info. But bitmap says 0\n", 1580 free); 1581 break; 1582 } 1583 1584 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); 1585 BUG_ON(ex.fe_len <= 0); 1586 if (free < ex.fe_len) { 1587 ext4_error(sb, __func__, "%d free blocks as per " 1588 "group info. But got %d blocks\n", 1589 free, ex.fe_len); 1590 /* 1591 * The number of free blocks differs. This mostly 1592 * indicate that the bitmap is corrupt. So exit 1593 * without claiming the space. 1594 */ 1595 break; 1596 } 1597 1598 ext4_mb_measure_extent(ac, &ex, e4b); 1599 1600 i += ex.fe_len; 1601 free -= ex.fe_len; 1602 } 1603 1604 ext4_mb_check_limits(ac, e4b, 1); 1605 } 1606 1607 /* 1608 * This is a special case for storages like raid5 1609 * we try to find stripe-aligned chunks for stripe-size requests 1610 * XXX should do so at least for multiples of stripe size as well 1611 */ 1612 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1613 struct ext4_buddy *e4b) 1614 { 1615 struct super_block *sb = ac->ac_sb; 1616 struct ext4_sb_info *sbi = EXT4_SB(sb); 1617 void *bitmap = EXT4_MB_BITMAP(e4b); 1618 struct ext4_free_extent ex; 1619 ext4_fsblk_t first_group_block; 1620 ext4_fsblk_t a; 1621 ext4_grpblk_t i; 1622 int max; 1623 1624 BUG_ON(sbi->s_stripe == 0); 1625 1626 /* find first stripe-aligned block in group */ 1627 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb) 1628 + le32_to_cpu(sbi->s_es->s_first_data_block); 1629 a = first_group_block + sbi->s_stripe - 1; 1630 do_div(a, sbi->s_stripe); 1631 i = (a * sbi->s_stripe) - first_group_block; 1632 1633 while (i < EXT4_BLOCKS_PER_GROUP(sb)) { 1634 if (!mb_test_bit(i, bitmap)) { 1635 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); 1636 if (max >= sbi->s_stripe) { 1637 ac->ac_found++; 1638 ac->ac_b_ex = ex; 1639 ext4_mb_use_best_found(ac, e4b); 1640 break; 1641 } 1642 } 1643 i += sbi->s_stripe; 1644 } 1645 } 1646 1647 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1648 ext4_group_t group, int cr) 1649 { 1650 unsigned free, fragments; 1651 unsigned i, bits; 1652 struct ext4_group_desc *desc; 1653 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1654 1655 BUG_ON(cr < 0 || cr >= 4); 1656 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp)); 1657 1658 free = grp->bb_free; 1659 fragments = grp->bb_fragments; 1660 if (free == 0) 1661 return 0; 1662 if (fragments == 0) 1663 return 0; 1664 1665 switch (cr) { 1666 case 0: 1667 BUG_ON(ac->ac_2order == 0); 1668 /* If this group is uninitialized, skip it initially */ 1669 desc = ext4_get_group_desc(ac->ac_sb, group, NULL); 1670 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) 1671 return 0; 1672 1673 bits = ac->ac_sb->s_blocksize_bits + 1; 1674 for (i = ac->ac_2order; i <= bits; i++) 1675 if (grp->bb_counters[i] > 0) 1676 return 1; 1677 break; 1678 case 1: 1679 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1680 return 1; 1681 break; 1682 case 2: 1683 if (free >= ac->ac_g_ex.fe_len) 1684 return 1; 1685 break; 1686 case 3: 1687 return 1; 1688 default: 1689 BUG(); 1690 } 1691 1692 return 0; 1693 } 1694 1695 static noinline_for_stack int 1696 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1697 { 1698 ext4_group_t group; 1699 ext4_group_t i; 1700 int cr; 1701 int err = 0; 1702 int bsbits; 1703 struct ext4_sb_info *sbi; 1704 struct super_block *sb; 1705 struct ext4_buddy e4b; 1706 loff_t size, isize; 1707 1708 sb = ac->ac_sb; 1709 sbi = EXT4_SB(sb); 1710 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1711 1712 /* first, try the goal */ 1713 err = ext4_mb_find_by_goal(ac, &e4b); 1714 if (err || ac->ac_status == AC_STATUS_FOUND) 1715 goto out; 1716 1717 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1718 goto out; 1719 1720 /* 1721 * ac->ac2_order is set only if the fe_len is a power of 2 1722 * if ac2_order is set we also set criteria to 0 so that we 1723 * try exact allocation using buddy. 1724 */ 1725 i = fls(ac->ac_g_ex.fe_len); 1726 ac->ac_2order = 0; 1727 /* 1728 * We search using buddy data only if the order of the request 1729 * is greater than equal to the sbi_s_mb_order2_reqs 1730 * You can tune it via /proc/fs/ext4/<partition>/order2_req 1731 */ 1732 if (i >= sbi->s_mb_order2_reqs) { 1733 /* 1734 * This should tell if fe_len is exactly power of 2 1735 */ 1736 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1737 ac->ac_2order = i - 1; 1738 } 1739 1740 bsbits = ac->ac_sb->s_blocksize_bits; 1741 /* if stream allocation is enabled, use global goal */ 1742 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 1743 isize = i_size_read(ac->ac_inode) >> bsbits; 1744 if (size < isize) 1745 size = isize; 1746 1747 if (size < sbi->s_mb_stream_request && 1748 (ac->ac_flags & EXT4_MB_HINT_DATA)) { 1749 /* TBD: may be hot point */ 1750 spin_lock(&sbi->s_md_lock); 1751 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 1752 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 1753 spin_unlock(&sbi->s_md_lock); 1754 } 1755 /* Let's just scan groups to find more-less suitable blocks */ 1756 cr = ac->ac_2order ? 0 : 1; 1757 /* 1758 * cr == 0 try to get exact allocation, 1759 * cr == 3 try to get anything 1760 */ 1761 repeat: 1762 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 1763 ac->ac_criteria = cr; 1764 /* 1765 * searching for the right group start 1766 * from the goal value specified 1767 */ 1768 group = ac->ac_g_ex.fe_group; 1769 1770 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) { 1771 struct ext4_group_info *grp; 1772 struct ext4_group_desc *desc; 1773 1774 if (group == EXT4_SB(sb)->s_groups_count) 1775 group = 0; 1776 1777 /* quick check to skip empty groups */ 1778 grp = ext4_get_group_info(ac->ac_sb, group); 1779 if (grp->bb_free == 0) 1780 continue; 1781 1782 /* 1783 * if the group is already init we check whether it is 1784 * a good group and if not we don't load the buddy 1785 */ 1786 if (EXT4_MB_GRP_NEED_INIT(grp)) { 1787 /* 1788 * we need full data about the group 1789 * to make a good selection 1790 */ 1791 err = ext4_mb_load_buddy(sb, group, &e4b); 1792 if (err) 1793 goto out; 1794 ext4_mb_release_desc(&e4b); 1795 } 1796 1797 /* 1798 * If the particular group doesn't satisfy our 1799 * criteria we continue with the next group 1800 */ 1801 if (!ext4_mb_good_group(ac, group, cr)) 1802 continue; 1803 1804 err = ext4_mb_load_buddy(sb, group, &e4b); 1805 if (err) 1806 goto out; 1807 1808 ext4_lock_group(sb, group); 1809 if (!ext4_mb_good_group(ac, group, cr)) { 1810 /* someone did allocation from this group */ 1811 ext4_unlock_group(sb, group); 1812 ext4_mb_release_desc(&e4b); 1813 continue; 1814 } 1815 1816 ac->ac_groups_scanned++; 1817 desc = ext4_get_group_desc(sb, group, NULL); 1818 if (cr == 0 || (desc->bg_flags & 1819 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) && 1820 ac->ac_2order != 0)) 1821 ext4_mb_simple_scan_group(ac, &e4b); 1822 else if (cr == 1 && 1823 ac->ac_g_ex.fe_len == sbi->s_stripe) 1824 ext4_mb_scan_aligned(ac, &e4b); 1825 else 1826 ext4_mb_complex_scan_group(ac, &e4b); 1827 1828 ext4_unlock_group(sb, group); 1829 ext4_mb_release_desc(&e4b); 1830 1831 if (ac->ac_status != AC_STATUS_CONTINUE) 1832 break; 1833 } 1834 } 1835 1836 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 1837 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1838 /* 1839 * We've been searching too long. Let's try to allocate 1840 * the best chunk we've found so far 1841 */ 1842 1843 ext4_mb_try_best_found(ac, &e4b); 1844 if (ac->ac_status != AC_STATUS_FOUND) { 1845 /* 1846 * Someone more lucky has already allocated it. 1847 * The only thing we can do is just take first 1848 * found block(s) 1849 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 1850 */ 1851 ac->ac_b_ex.fe_group = 0; 1852 ac->ac_b_ex.fe_start = 0; 1853 ac->ac_b_ex.fe_len = 0; 1854 ac->ac_status = AC_STATUS_CONTINUE; 1855 ac->ac_flags |= EXT4_MB_HINT_FIRST; 1856 cr = 3; 1857 atomic_inc(&sbi->s_mb_lost_chunks); 1858 goto repeat; 1859 } 1860 } 1861 out: 1862 return err; 1863 } 1864 1865 #ifdef EXT4_MB_HISTORY 1866 struct ext4_mb_proc_session { 1867 struct ext4_mb_history *history; 1868 struct super_block *sb; 1869 int start; 1870 int max; 1871 }; 1872 1873 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s, 1874 struct ext4_mb_history *hs, 1875 int first) 1876 { 1877 if (hs == s->history + s->max) 1878 hs = s->history; 1879 if (!first && hs == s->history + s->start) 1880 return NULL; 1881 while (hs->orig.fe_len == 0) { 1882 hs++; 1883 if (hs == s->history + s->max) 1884 hs = s->history; 1885 if (hs == s->history + s->start) 1886 return NULL; 1887 } 1888 return hs; 1889 } 1890 1891 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos) 1892 { 1893 struct ext4_mb_proc_session *s = seq->private; 1894 struct ext4_mb_history *hs; 1895 int l = *pos; 1896 1897 if (l == 0) 1898 return SEQ_START_TOKEN; 1899 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1); 1900 if (!hs) 1901 return NULL; 1902 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL); 1903 return hs; 1904 } 1905 1906 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v, 1907 loff_t *pos) 1908 { 1909 struct ext4_mb_proc_session *s = seq->private; 1910 struct ext4_mb_history *hs = v; 1911 1912 ++*pos; 1913 if (v == SEQ_START_TOKEN) 1914 return ext4_mb_history_skip_empty(s, s->history + s->start, 1); 1915 else 1916 return ext4_mb_history_skip_empty(s, ++hs, 0); 1917 } 1918 1919 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v) 1920 { 1921 char buf[25], buf2[25], buf3[25], *fmt; 1922 struct ext4_mb_history *hs = v; 1923 1924 if (v == SEQ_START_TOKEN) { 1925 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s " 1926 "%-5s %-2s %-5s %-5s %-5s %-6s\n", 1927 "pid", "inode", "original", "goal", "result", "found", 1928 "grps", "cr", "flags", "merge", "tail", "broken"); 1929 return 0; 1930 } 1931 1932 if (hs->op == EXT4_MB_HISTORY_ALLOC) { 1933 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u " 1934 "%-5u %-5s %-5u %-6u\n"; 1935 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group, 1936 hs->result.fe_start, hs->result.fe_len, 1937 hs->result.fe_logical); 1938 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group, 1939 hs->orig.fe_start, hs->orig.fe_len, 1940 hs->orig.fe_logical); 1941 sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group, 1942 hs->goal.fe_start, hs->goal.fe_len, 1943 hs->goal.fe_logical); 1944 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2, 1945 hs->found, hs->groups, hs->cr, hs->flags, 1946 hs->merged ? "M" : "", hs->tail, 1947 hs->buddy ? 1 << hs->buddy : 0); 1948 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) { 1949 fmt = "%-5u %-8u %-23s %-23s %-23s\n"; 1950 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group, 1951 hs->result.fe_start, hs->result.fe_len, 1952 hs->result.fe_logical); 1953 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group, 1954 hs->orig.fe_start, hs->orig.fe_len, 1955 hs->orig.fe_logical); 1956 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2); 1957 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) { 1958 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group, 1959 hs->result.fe_start, hs->result.fe_len); 1960 seq_printf(seq, "%-5u %-8u %-23s discard\n", 1961 hs->pid, hs->ino, buf2); 1962 } else if (hs->op == EXT4_MB_HISTORY_FREE) { 1963 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group, 1964 hs->result.fe_start, hs->result.fe_len); 1965 seq_printf(seq, "%-5u %-8u %-23s free\n", 1966 hs->pid, hs->ino, buf2); 1967 } 1968 return 0; 1969 } 1970 1971 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v) 1972 { 1973 } 1974 1975 static struct seq_operations ext4_mb_seq_history_ops = { 1976 .start = ext4_mb_seq_history_start, 1977 .next = ext4_mb_seq_history_next, 1978 .stop = ext4_mb_seq_history_stop, 1979 .show = ext4_mb_seq_history_show, 1980 }; 1981 1982 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file) 1983 { 1984 struct super_block *sb = PDE(inode)->data; 1985 struct ext4_sb_info *sbi = EXT4_SB(sb); 1986 struct ext4_mb_proc_session *s; 1987 int rc; 1988 int size; 1989 1990 if (unlikely(sbi->s_mb_history == NULL)) 1991 return -ENOMEM; 1992 s = kmalloc(sizeof(*s), GFP_KERNEL); 1993 if (s == NULL) 1994 return -ENOMEM; 1995 s->sb = sb; 1996 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max; 1997 s->history = kmalloc(size, GFP_KERNEL); 1998 if (s->history == NULL) { 1999 kfree(s); 2000 return -ENOMEM; 2001 } 2002 2003 spin_lock(&sbi->s_mb_history_lock); 2004 memcpy(s->history, sbi->s_mb_history, size); 2005 s->max = sbi->s_mb_history_max; 2006 s->start = sbi->s_mb_history_cur % s->max; 2007 spin_unlock(&sbi->s_mb_history_lock); 2008 2009 rc = seq_open(file, &ext4_mb_seq_history_ops); 2010 if (rc == 0) { 2011 struct seq_file *m = (struct seq_file *)file->private_data; 2012 m->private = s; 2013 } else { 2014 kfree(s->history); 2015 kfree(s); 2016 } 2017 return rc; 2018 2019 } 2020 2021 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file) 2022 { 2023 struct seq_file *seq = (struct seq_file *)file->private_data; 2024 struct ext4_mb_proc_session *s = seq->private; 2025 kfree(s->history); 2026 kfree(s); 2027 return seq_release(inode, file); 2028 } 2029 2030 static ssize_t ext4_mb_seq_history_write(struct file *file, 2031 const char __user *buffer, 2032 size_t count, loff_t *ppos) 2033 { 2034 struct seq_file *seq = (struct seq_file *)file->private_data; 2035 struct ext4_mb_proc_session *s = seq->private; 2036 struct super_block *sb = s->sb; 2037 char str[32]; 2038 int value; 2039 2040 if (count >= sizeof(str)) { 2041 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n", 2042 "mb_history", (int)sizeof(str)); 2043 return -EOVERFLOW; 2044 } 2045 2046 if (copy_from_user(str, buffer, count)) 2047 return -EFAULT; 2048 2049 value = simple_strtol(str, NULL, 0); 2050 if (value < 0) 2051 return -ERANGE; 2052 EXT4_SB(sb)->s_mb_history_filter = value; 2053 2054 return count; 2055 } 2056 2057 static struct file_operations ext4_mb_seq_history_fops = { 2058 .owner = THIS_MODULE, 2059 .open = ext4_mb_seq_history_open, 2060 .read = seq_read, 2061 .write = ext4_mb_seq_history_write, 2062 .llseek = seq_lseek, 2063 .release = ext4_mb_seq_history_release, 2064 }; 2065 2066 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2067 { 2068 struct super_block *sb = seq->private; 2069 struct ext4_sb_info *sbi = EXT4_SB(sb); 2070 ext4_group_t group; 2071 2072 if (*pos < 0 || *pos >= sbi->s_groups_count) 2073 return NULL; 2074 2075 group = *pos + 1; 2076 return (void *) group; 2077 } 2078 2079 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2080 { 2081 struct super_block *sb = seq->private; 2082 struct ext4_sb_info *sbi = EXT4_SB(sb); 2083 ext4_group_t group; 2084 2085 ++*pos; 2086 if (*pos < 0 || *pos >= sbi->s_groups_count) 2087 return NULL; 2088 group = *pos + 1; 2089 return (void *) group;; 2090 } 2091 2092 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2093 { 2094 struct super_block *sb = seq->private; 2095 long group = (long) v; 2096 int i; 2097 int err; 2098 struct ext4_buddy e4b; 2099 struct sg { 2100 struct ext4_group_info info; 2101 unsigned short counters[16]; 2102 } sg; 2103 2104 group--; 2105 if (group == 0) 2106 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2107 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2108 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2109 "group", "free", "frags", "first", 2110 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2111 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2112 2113 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2114 sizeof(struct ext4_group_info); 2115 err = ext4_mb_load_buddy(sb, group, &e4b); 2116 if (err) { 2117 seq_printf(seq, "#%-5lu: I/O error\n", group); 2118 return 0; 2119 } 2120 ext4_lock_group(sb, group); 2121 memcpy(&sg, ext4_get_group_info(sb, group), i); 2122 ext4_unlock_group(sb, group); 2123 ext4_mb_release_desc(&e4b); 2124 2125 seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free, 2126 sg.info.bb_fragments, sg.info.bb_first_free); 2127 for (i = 0; i <= 13; i++) 2128 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2129 sg.info.bb_counters[i] : 0); 2130 seq_printf(seq, " ]\n"); 2131 2132 return 0; 2133 } 2134 2135 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2136 { 2137 } 2138 2139 static struct seq_operations ext4_mb_seq_groups_ops = { 2140 .start = ext4_mb_seq_groups_start, 2141 .next = ext4_mb_seq_groups_next, 2142 .stop = ext4_mb_seq_groups_stop, 2143 .show = ext4_mb_seq_groups_show, 2144 }; 2145 2146 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2147 { 2148 struct super_block *sb = PDE(inode)->data; 2149 int rc; 2150 2151 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2152 if (rc == 0) { 2153 struct seq_file *m = (struct seq_file *)file->private_data; 2154 m->private = sb; 2155 } 2156 return rc; 2157 2158 } 2159 2160 static struct file_operations ext4_mb_seq_groups_fops = { 2161 .owner = THIS_MODULE, 2162 .open = ext4_mb_seq_groups_open, 2163 .read = seq_read, 2164 .llseek = seq_lseek, 2165 .release = seq_release, 2166 }; 2167 2168 static void ext4_mb_history_release(struct super_block *sb) 2169 { 2170 struct ext4_sb_info *sbi = EXT4_SB(sb); 2171 2172 if (sbi->s_proc != NULL) { 2173 remove_proc_entry("mb_groups", sbi->s_proc); 2174 remove_proc_entry("mb_history", sbi->s_proc); 2175 } 2176 kfree(sbi->s_mb_history); 2177 } 2178 2179 static void ext4_mb_history_init(struct super_block *sb) 2180 { 2181 struct ext4_sb_info *sbi = EXT4_SB(sb); 2182 int i; 2183 2184 if (sbi->s_proc != NULL) { 2185 proc_create_data("mb_history", S_IRUGO, sbi->s_proc, 2186 &ext4_mb_seq_history_fops, sb); 2187 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2188 &ext4_mb_seq_groups_fops, sb); 2189 } 2190 2191 sbi->s_mb_history_max = 1000; 2192 sbi->s_mb_history_cur = 0; 2193 spin_lock_init(&sbi->s_mb_history_lock); 2194 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history); 2195 sbi->s_mb_history = kzalloc(i, GFP_KERNEL); 2196 /* if we can't allocate history, then we simple won't use it */ 2197 } 2198 2199 static noinline_for_stack void 2200 ext4_mb_store_history(struct ext4_allocation_context *ac) 2201 { 2202 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2203 struct ext4_mb_history h; 2204 2205 if (unlikely(sbi->s_mb_history == NULL)) 2206 return; 2207 2208 if (!(ac->ac_op & sbi->s_mb_history_filter)) 2209 return; 2210 2211 h.op = ac->ac_op; 2212 h.pid = current->pid; 2213 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0; 2214 h.orig = ac->ac_o_ex; 2215 h.result = ac->ac_b_ex; 2216 h.flags = ac->ac_flags; 2217 h.found = ac->ac_found; 2218 h.groups = ac->ac_groups_scanned; 2219 h.cr = ac->ac_criteria; 2220 h.tail = ac->ac_tail; 2221 h.buddy = ac->ac_buddy; 2222 h.merged = 0; 2223 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) { 2224 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 2225 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 2226 h.merged = 1; 2227 h.goal = ac->ac_g_ex; 2228 h.result = ac->ac_f_ex; 2229 } 2230 2231 spin_lock(&sbi->s_mb_history_lock); 2232 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h)); 2233 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max) 2234 sbi->s_mb_history_cur = 0; 2235 spin_unlock(&sbi->s_mb_history_lock); 2236 } 2237 2238 #else 2239 #define ext4_mb_history_release(sb) 2240 #define ext4_mb_history_init(sb) 2241 #endif 2242 2243 2244 /* Create and initialize ext4_group_info data for the given group. */ 2245 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2246 struct ext4_group_desc *desc) 2247 { 2248 int i, len; 2249 int metalen = 0; 2250 struct ext4_sb_info *sbi = EXT4_SB(sb); 2251 struct ext4_group_info **meta_group_info; 2252 2253 /* 2254 * First check if this group is the first of a reserved block. 2255 * If it's true, we have to allocate a new table of pointers 2256 * to ext4_group_info structures 2257 */ 2258 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2259 metalen = sizeof(*meta_group_info) << 2260 EXT4_DESC_PER_BLOCK_BITS(sb); 2261 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2262 if (meta_group_info == NULL) { 2263 printk(KERN_ERR "EXT4-fs: can't allocate mem for a " 2264 "buddy group\n"); 2265 goto exit_meta_group_info; 2266 } 2267 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2268 meta_group_info; 2269 } 2270 2271 /* 2272 * calculate needed size. if change bb_counters size, 2273 * don't forget about ext4_mb_generate_buddy() 2274 */ 2275 len = offsetof(typeof(**meta_group_info), 2276 bb_counters[sb->s_blocksize_bits + 2]); 2277 2278 meta_group_info = 2279 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2280 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2281 2282 meta_group_info[i] = kzalloc(len, GFP_KERNEL); 2283 if (meta_group_info[i] == NULL) { 2284 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n"); 2285 goto exit_group_info; 2286 } 2287 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2288 &(meta_group_info[i]->bb_state)); 2289 2290 /* 2291 * initialize bb_free to be able to skip 2292 * empty groups without initialization 2293 */ 2294 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2295 meta_group_info[i]->bb_free = 2296 ext4_free_blocks_after_init(sb, group, desc); 2297 } else { 2298 meta_group_info[i]->bb_free = 2299 le16_to_cpu(desc->bg_free_blocks_count); 2300 } 2301 2302 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2303 2304 #ifdef DOUBLE_CHECK 2305 { 2306 struct buffer_head *bh; 2307 meta_group_info[i]->bb_bitmap = 2308 kmalloc(sb->s_blocksize, GFP_KERNEL); 2309 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2310 bh = ext4_read_block_bitmap(sb, group); 2311 BUG_ON(bh == NULL); 2312 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2313 sb->s_blocksize); 2314 put_bh(bh); 2315 } 2316 #endif 2317 2318 return 0; 2319 2320 exit_group_info: 2321 /* If a meta_group_info table has been allocated, release it now */ 2322 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) 2323 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2324 exit_meta_group_info: 2325 return -ENOMEM; 2326 } /* ext4_mb_add_groupinfo */ 2327 2328 /* 2329 * Add a group to the existing groups. 2330 * This function is used for online resize 2331 */ 2332 int ext4_mb_add_more_groupinfo(struct super_block *sb, ext4_group_t group, 2333 struct ext4_group_desc *desc) 2334 { 2335 struct ext4_sb_info *sbi = EXT4_SB(sb); 2336 struct inode *inode = sbi->s_buddy_cache; 2337 int blocks_per_page; 2338 int block; 2339 int pnum; 2340 struct page *page; 2341 int err; 2342 2343 /* Add group based on group descriptor*/ 2344 err = ext4_mb_add_groupinfo(sb, group, desc); 2345 if (err) 2346 return err; 2347 2348 /* 2349 * Cache pages containing dynamic mb_alloc datas (buddy and bitmap 2350 * datas) are set not up to date so that they will be re-initilaized 2351 * during the next call to ext4_mb_load_buddy 2352 */ 2353 2354 /* Set buddy page as not up to date */ 2355 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 2356 block = group * 2; 2357 pnum = block / blocks_per_page; 2358 page = find_get_page(inode->i_mapping, pnum); 2359 if (page != NULL) { 2360 ClearPageUptodate(page); 2361 page_cache_release(page); 2362 } 2363 2364 /* Set bitmap page as not up to date */ 2365 block++; 2366 pnum = block / blocks_per_page; 2367 page = find_get_page(inode->i_mapping, pnum); 2368 if (page != NULL) { 2369 ClearPageUptodate(page); 2370 page_cache_release(page); 2371 } 2372 2373 return 0; 2374 } 2375 2376 /* 2377 * Update an existing group. 2378 * This function is used for online resize 2379 */ 2380 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add) 2381 { 2382 grp->bb_free += add; 2383 } 2384 2385 static int ext4_mb_init_backend(struct super_block *sb) 2386 { 2387 ext4_group_t i; 2388 int metalen; 2389 struct ext4_sb_info *sbi = EXT4_SB(sb); 2390 struct ext4_super_block *es = sbi->s_es; 2391 int num_meta_group_infos; 2392 int num_meta_group_infos_max; 2393 int array_size; 2394 struct ext4_group_info **meta_group_info; 2395 struct ext4_group_desc *desc; 2396 2397 /* This is the number of blocks used by GDT */ 2398 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 2399 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); 2400 2401 /* 2402 * This is the total number of blocks used by GDT including 2403 * the number of reserved blocks for GDT. 2404 * The s_group_info array is allocated with this value 2405 * to allow a clean online resize without a complex 2406 * manipulation of pointer. 2407 * The drawback is the unused memory when no resize 2408 * occurs but it's very low in terms of pages 2409 * (see comments below) 2410 * Need to handle this properly when META_BG resizing is allowed 2411 */ 2412 num_meta_group_infos_max = num_meta_group_infos + 2413 le16_to_cpu(es->s_reserved_gdt_blocks); 2414 2415 /* 2416 * array_size is the size of s_group_info array. We round it 2417 * to the next power of two because this approximation is done 2418 * internally by kmalloc so we can have some more memory 2419 * for free here (e.g. may be used for META_BG resize). 2420 */ 2421 array_size = 1; 2422 while (array_size < sizeof(*sbi->s_group_info) * 2423 num_meta_group_infos_max) 2424 array_size = array_size << 1; 2425 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte 2426 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. 2427 * So a two level scheme suffices for now. */ 2428 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL); 2429 if (sbi->s_group_info == NULL) { 2430 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n"); 2431 return -ENOMEM; 2432 } 2433 sbi->s_buddy_cache = new_inode(sb); 2434 if (sbi->s_buddy_cache == NULL) { 2435 printk(KERN_ERR "EXT4-fs: can't get new inode\n"); 2436 goto err_freesgi; 2437 } 2438 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2439 2440 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb); 2441 for (i = 0; i < num_meta_group_infos; i++) { 2442 if ((i + 1) == num_meta_group_infos) 2443 metalen = sizeof(*meta_group_info) * 2444 (sbi->s_groups_count - 2445 (i << EXT4_DESC_PER_BLOCK_BITS(sb))); 2446 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2447 if (meta_group_info == NULL) { 2448 printk(KERN_ERR "EXT4-fs: can't allocate mem for a " 2449 "buddy group\n"); 2450 goto err_freemeta; 2451 } 2452 sbi->s_group_info[i] = meta_group_info; 2453 } 2454 2455 for (i = 0; i < sbi->s_groups_count; i++) { 2456 desc = ext4_get_group_desc(sb, i, NULL); 2457 if (desc == NULL) { 2458 printk(KERN_ERR 2459 "EXT4-fs: can't read descriptor %lu\n", i); 2460 goto err_freebuddy; 2461 } 2462 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2463 goto err_freebuddy; 2464 } 2465 2466 return 0; 2467 2468 err_freebuddy: 2469 while (i-- > 0) 2470 kfree(ext4_get_group_info(sb, i)); 2471 i = num_meta_group_infos; 2472 err_freemeta: 2473 while (i-- > 0) 2474 kfree(sbi->s_group_info[i]); 2475 iput(sbi->s_buddy_cache); 2476 err_freesgi: 2477 kfree(sbi->s_group_info); 2478 return -ENOMEM; 2479 } 2480 2481 int ext4_mb_init(struct super_block *sb, int needs_recovery) 2482 { 2483 struct ext4_sb_info *sbi = EXT4_SB(sb); 2484 unsigned i, j; 2485 unsigned offset; 2486 unsigned max; 2487 int ret; 2488 2489 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short); 2490 2491 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2492 if (sbi->s_mb_offsets == NULL) { 2493 return -ENOMEM; 2494 } 2495 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2496 if (sbi->s_mb_maxs == NULL) { 2497 kfree(sbi->s_mb_maxs); 2498 return -ENOMEM; 2499 } 2500 2501 /* order 0 is regular bitmap */ 2502 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2503 sbi->s_mb_offsets[0] = 0; 2504 2505 i = 1; 2506 offset = 0; 2507 max = sb->s_blocksize << 2; 2508 do { 2509 sbi->s_mb_offsets[i] = offset; 2510 sbi->s_mb_maxs[i] = max; 2511 offset += 1 << (sb->s_blocksize_bits - i); 2512 max = max >> 1; 2513 i++; 2514 } while (i <= sb->s_blocksize_bits + 1); 2515 2516 /* init file for buddy data */ 2517 ret = ext4_mb_init_backend(sb); 2518 if (ret != 0) { 2519 kfree(sbi->s_mb_offsets); 2520 kfree(sbi->s_mb_maxs); 2521 return ret; 2522 } 2523 2524 spin_lock_init(&sbi->s_md_lock); 2525 INIT_LIST_HEAD(&sbi->s_active_transaction); 2526 INIT_LIST_HEAD(&sbi->s_closed_transaction); 2527 INIT_LIST_HEAD(&sbi->s_committed_transaction); 2528 spin_lock_init(&sbi->s_bal_lock); 2529 2530 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2531 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2532 sbi->s_mb_stats = MB_DEFAULT_STATS; 2533 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2534 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2535 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT; 2536 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC; 2537 2538 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2539 if (sbi->s_locality_groups == NULL) { 2540 kfree(sbi->s_mb_offsets); 2541 kfree(sbi->s_mb_maxs); 2542 return -ENOMEM; 2543 } 2544 for_each_possible_cpu(i) { 2545 struct ext4_locality_group *lg; 2546 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2547 mutex_init(&lg->lg_mutex); 2548 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2549 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2550 spin_lock_init(&lg->lg_prealloc_lock); 2551 } 2552 2553 ext4_mb_init_per_dev_proc(sb); 2554 ext4_mb_history_init(sb); 2555 2556 printk(KERN_INFO "EXT4-fs: mballoc enabled\n"); 2557 return 0; 2558 } 2559 2560 /* need to called with ext4 group lock (ext4_lock_group) */ 2561 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2562 { 2563 struct ext4_prealloc_space *pa; 2564 struct list_head *cur, *tmp; 2565 int count = 0; 2566 2567 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2568 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2569 list_del(&pa->pa_group_list); 2570 count++; 2571 kfree(pa); 2572 } 2573 if (count) 2574 mb_debug("mballoc: %u PAs left\n", count); 2575 2576 } 2577 2578 int ext4_mb_release(struct super_block *sb) 2579 { 2580 ext4_group_t i; 2581 int num_meta_group_infos; 2582 struct ext4_group_info *grinfo; 2583 struct ext4_sb_info *sbi = EXT4_SB(sb); 2584 2585 /* release freed, non-committed blocks */ 2586 spin_lock(&sbi->s_md_lock); 2587 list_splice_init(&sbi->s_closed_transaction, 2588 &sbi->s_committed_transaction); 2589 list_splice_init(&sbi->s_active_transaction, 2590 &sbi->s_committed_transaction); 2591 spin_unlock(&sbi->s_md_lock); 2592 ext4_mb_free_committed_blocks(sb); 2593 2594 if (sbi->s_group_info) { 2595 for (i = 0; i < sbi->s_groups_count; i++) { 2596 grinfo = ext4_get_group_info(sb, i); 2597 #ifdef DOUBLE_CHECK 2598 kfree(grinfo->bb_bitmap); 2599 #endif 2600 ext4_lock_group(sb, i); 2601 ext4_mb_cleanup_pa(grinfo); 2602 ext4_unlock_group(sb, i); 2603 kfree(grinfo); 2604 } 2605 num_meta_group_infos = (sbi->s_groups_count + 2606 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2607 EXT4_DESC_PER_BLOCK_BITS(sb); 2608 for (i = 0; i < num_meta_group_infos; i++) 2609 kfree(sbi->s_group_info[i]); 2610 kfree(sbi->s_group_info); 2611 } 2612 kfree(sbi->s_mb_offsets); 2613 kfree(sbi->s_mb_maxs); 2614 if (sbi->s_buddy_cache) 2615 iput(sbi->s_buddy_cache); 2616 if (sbi->s_mb_stats) { 2617 printk(KERN_INFO 2618 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n", 2619 atomic_read(&sbi->s_bal_allocated), 2620 atomic_read(&sbi->s_bal_reqs), 2621 atomic_read(&sbi->s_bal_success)); 2622 printk(KERN_INFO 2623 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, " 2624 "%u 2^N hits, %u breaks, %u lost\n", 2625 atomic_read(&sbi->s_bal_ex_scanned), 2626 atomic_read(&sbi->s_bal_goals), 2627 atomic_read(&sbi->s_bal_2orders), 2628 atomic_read(&sbi->s_bal_breaks), 2629 atomic_read(&sbi->s_mb_lost_chunks)); 2630 printk(KERN_INFO 2631 "EXT4-fs: mballoc: %lu generated and it took %Lu\n", 2632 sbi->s_mb_buddies_generated++, 2633 sbi->s_mb_generation_time); 2634 printk(KERN_INFO 2635 "EXT4-fs: mballoc: %u preallocated, %u discarded\n", 2636 atomic_read(&sbi->s_mb_preallocated), 2637 atomic_read(&sbi->s_mb_discarded)); 2638 } 2639 2640 free_percpu(sbi->s_locality_groups); 2641 ext4_mb_history_release(sb); 2642 ext4_mb_destroy_per_dev_proc(sb); 2643 2644 return 0; 2645 } 2646 2647 static noinline_for_stack void 2648 ext4_mb_free_committed_blocks(struct super_block *sb) 2649 { 2650 struct ext4_sb_info *sbi = EXT4_SB(sb); 2651 int err; 2652 int i; 2653 int count = 0; 2654 int count2 = 0; 2655 struct ext4_free_metadata *md; 2656 struct ext4_buddy e4b; 2657 2658 if (list_empty(&sbi->s_committed_transaction)) 2659 return; 2660 2661 /* there is committed blocks to be freed yet */ 2662 do { 2663 /* get next array of blocks */ 2664 md = NULL; 2665 spin_lock(&sbi->s_md_lock); 2666 if (!list_empty(&sbi->s_committed_transaction)) { 2667 md = list_entry(sbi->s_committed_transaction.next, 2668 struct ext4_free_metadata, list); 2669 list_del(&md->list); 2670 } 2671 spin_unlock(&sbi->s_md_lock); 2672 2673 if (md == NULL) 2674 break; 2675 2676 mb_debug("gonna free %u blocks in group %lu (0x%p):", 2677 md->num, md->group, md); 2678 2679 err = ext4_mb_load_buddy(sb, md->group, &e4b); 2680 /* we expect to find existing buddy because it's pinned */ 2681 BUG_ON(err != 0); 2682 2683 /* there are blocks to put in buddy to make them really free */ 2684 count += md->num; 2685 count2++; 2686 ext4_lock_group(sb, md->group); 2687 for (i = 0; i < md->num; i++) { 2688 mb_debug(" %u", md->blocks[i]); 2689 mb_free_blocks(NULL, &e4b, md->blocks[i], 1); 2690 } 2691 mb_debug("\n"); 2692 ext4_unlock_group(sb, md->group); 2693 2694 /* balance refcounts from ext4_mb_free_metadata() */ 2695 page_cache_release(e4b.bd_buddy_page); 2696 page_cache_release(e4b.bd_bitmap_page); 2697 2698 kfree(md); 2699 ext4_mb_release_desc(&e4b); 2700 2701 } while (md); 2702 2703 mb_debug("freed %u blocks in %u structures\n", count, count2); 2704 } 2705 2706 #define EXT4_MB_STATS_NAME "stats" 2707 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan" 2708 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan" 2709 #define EXT4_MB_ORDER2_REQ "order2_req" 2710 #define EXT4_MB_STREAM_REQ "stream_req" 2711 #define EXT4_MB_GROUP_PREALLOC "group_prealloc" 2712 2713 static int ext4_mb_init_per_dev_proc(struct super_block *sb) 2714 { 2715 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR; 2716 struct ext4_sb_info *sbi = EXT4_SB(sb); 2717 struct proc_dir_entry *proc; 2718 2719 if (sbi->s_proc == NULL) 2720 return -EINVAL; 2721 2722 EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats); 2723 EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan); 2724 EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan); 2725 EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs); 2726 EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request); 2727 EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc); 2728 return 0; 2729 2730 err_out: 2731 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc); 2732 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc); 2733 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc); 2734 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc); 2735 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc); 2736 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc); 2737 return -ENOMEM; 2738 } 2739 2740 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb) 2741 { 2742 struct ext4_sb_info *sbi = EXT4_SB(sb); 2743 2744 if (sbi->s_proc == NULL) 2745 return -EINVAL; 2746 2747 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc); 2748 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc); 2749 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc); 2750 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc); 2751 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc); 2752 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc); 2753 2754 return 0; 2755 } 2756 2757 int __init init_ext4_mballoc(void) 2758 { 2759 ext4_pspace_cachep = 2760 kmem_cache_create("ext4_prealloc_space", 2761 sizeof(struct ext4_prealloc_space), 2762 0, SLAB_RECLAIM_ACCOUNT, NULL); 2763 if (ext4_pspace_cachep == NULL) 2764 return -ENOMEM; 2765 2766 ext4_ac_cachep = 2767 kmem_cache_create("ext4_alloc_context", 2768 sizeof(struct ext4_allocation_context), 2769 0, SLAB_RECLAIM_ACCOUNT, NULL); 2770 if (ext4_ac_cachep == NULL) { 2771 kmem_cache_destroy(ext4_pspace_cachep); 2772 return -ENOMEM; 2773 } 2774 return 0; 2775 } 2776 2777 void exit_ext4_mballoc(void) 2778 { 2779 /* XXX: synchronize_rcu(); */ 2780 kmem_cache_destroy(ext4_pspace_cachep); 2781 kmem_cache_destroy(ext4_ac_cachep); 2782 } 2783 2784 2785 /* 2786 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps 2787 * Returns 0 if success or error code 2788 */ 2789 static noinline_for_stack int 2790 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2791 handle_t *handle, unsigned long reserv_blks) 2792 { 2793 struct buffer_head *bitmap_bh = NULL; 2794 struct ext4_super_block *es; 2795 struct ext4_group_desc *gdp; 2796 struct buffer_head *gdp_bh; 2797 struct ext4_sb_info *sbi; 2798 struct super_block *sb; 2799 ext4_fsblk_t block; 2800 int err, len; 2801 2802 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2803 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2804 2805 sb = ac->ac_sb; 2806 sbi = EXT4_SB(sb); 2807 es = sbi->s_es; 2808 2809 2810 err = -EIO; 2811 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2812 if (!bitmap_bh) 2813 goto out_err; 2814 2815 err = ext4_journal_get_write_access(handle, bitmap_bh); 2816 if (err) 2817 goto out_err; 2818 2819 err = -EIO; 2820 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2821 if (!gdp) 2822 goto out_err; 2823 2824 ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group, 2825 gdp->bg_free_blocks_count); 2826 2827 err = ext4_journal_get_write_access(handle, gdp_bh); 2828 if (err) 2829 goto out_err; 2830 2831 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb) 2832 + ac->ac_b_ex.fe_start 2833 + le32_to_cpu(es->s_first_data_block); 2834 2835 len = ac->ac_b_ex.fe_len; 2836 if (in_range(ext4_block_bitmap(sb, gdp), block, len) || 2837 in_range(ext4_inode_bitmap(sb, gdp), block, len) || 2838 in_range(block, ext4_inode_table(sb, gdp), 2839 EXT4_SB(sb)->s_itb_per_group) || 2840 in_range(block + len - 1, ext4_inode_table(sb, gdp), 2841 EXT4_SB(sb)->s_itb_per_group)) { 2842 ext4_error(sb, __func__, 2843 "Allocating block in system zone - block = %llu", 2844 block); 2845 /* File system mounted not to panic on error 2846 * Fix the bitmap and repeat the block allocation 2847 * We leak some of the blocks here. 2848 */ 2849 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), 2850 bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2851 ac->ac_b_ex.fe_len); 2852 err = ext4_journal_dirty_metadata(handle, bitmap_bh); 2853 if (!err) 2854 err = -EAGAIN; 2855 goto out_err; 2856 } 2857 #ifdef AGGRESSIVE_CHECK 2858 { 2859 int i; 2860 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2861 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2862 bitmap_bh->b_data)); 2863 } 2864 } 2865 #endif 2866 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data, 2867 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len); 2868 2869 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group)); 2870 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2871 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2872 gdp->bg_free_blocks_count = 2873 cpu_to_le16(ext4_free_blocks_after_init(sb, 2874 ac->ac_b_ex.fe_group, 2875 gdp)); 2876 } 2877 le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len); 2878 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp); 2879 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group)); 2880 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len); 2881 /* 2882 * Now reduce the dirty block count also. Should not go negative 2883 */ 2884 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2885 /* release all the reserved blocks if non delalloc */ 2886 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks); 2887 else 2888 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 2889 ac->ac_b_ex.fe_len); 2890 2891 if (sbi->s_log_groups_per_flex) { 2892 ext4_group_t flex_group = ext4_flex_group(sbi, 2893 ac->ac_b_ex.fe_group); 2894 spin_lock(sb_bgl_lock(sbi, flex_group)); 2895 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len; 2896 spin_unlock(sb_bgl_lock(sbi, flex_group)); 2897 } 2898 2899 err = ext4_journal_dirty_metadata(handle, bitmap_bh); 2900 if (err) 2901 goto out_err; 2902 err = ext4_journal_dirty_metadata(handle, gdp_bh); 2903 2904 out_err: 2905 sb->s_dirt = 1; 2906 brelse(bitmap_bh); 2907 return err; 2908 } 2909 2910 /* 2911 * here we normalize request for locality group 2912 * Group request are normalized to s_strip size if we set the same via mount 2913 * option. If not we set it to s_mb_group_prealloc which can be configured via 2914 * /proc/fs/ext4/<partition>/group_prealloc 2915 * 2916 * XXX: should we try to preallocate more than the group has now? 2917 */ 2918 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2919 { 2920 struct super_block *sb = ac->ac_sb; 2921 struct ext4_locality_group *lg = ac->ac_lg; 2922 2923 BUG_ON(lg == NULL); 2924 if (EXT4_SB(sb)->s_stripe) 2925 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe; 2926 else 2927 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2928 mb_debug("#%u: goal %u blocks for locality group\n", 2929 current->pid, ac->ac_g_ex.fe_len); 2930 } 2931 2932 /* 2933 * Normalization means making request better in terms of 2934 * size and alignment 2935 */ 2936 static noinline_for_stack void 2937 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2938 struct ext4_allocation_request *ar) 2939 { 2940 int bsbits, max; 2941 ext4_lblk_t end; 2942 loff_t size, orig_size, start_off; 2943 ext4_lblk_t start, orig_start; 2944 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2945 struct ext4_prealloc_space *pa; 2946 2947 /* do normalize only data requests, metadata requests 2948 do not need preallocation */ 2949 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2950 return; 2951 2952 /* sometime caller may want exact blocks */ 2953 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2954 return; 2955 2956 /* caller may indicate that preallocation isn't 2957 * required (it's a tail, for example) */ 2958 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2959 return; 2960 2961 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2962 ext4_mb_normalize_group_request(ac); 2963 return ; 2964 } 2965 2966 bsbits = ac->ac_sb->s_blocksize_bits; 2967 2968 /* first, let's learn actual file size 2969 * given current request is allocated */ 2970 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 2971 size = size << bsbits; 2972 if (size < i_size_read(ac->ac_inode)) 2973 size = i_size_read(ac->ac_inode); 2974 2975 /* max size of free chunks */ 2976 max = 2 << bsbits; 2977 2978 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2979 (req <= (size) || max <= (chunk_size)) 2980 2981 /* first, try to predict filesize */ 2982 /* XXX: should this table be tunable? */ 2983 start_off = 0; 2984 if (size <= 16 * 1024) { 2985 size = 16 * 1024; 2986 } else if (size <= 32 * 1024) { 2987 size = 32 * 1024; 2988 } else if (size <= 64 * 1024) { 2989 size = 64 * 1024; 2990 } else if (size <= 128 * 1024) { 2991 size = 128 * 1024; 2992 } else if (size <= 256 * 1024) { 2993 size = 256 * 1024; 2994 } else if (size <= 512 * 1024) { 2995 size = 512 * 1024; 2996 } else if (size <= 1024 * 1024) { 2997 size = 1024 * 1024; 2998 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2999 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3000 (21 - bsbits)) << 21; 3001 size = 2 * 1024 * 1024; 3002 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3003 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3004 (22 - bsbits)) << 22; 3005 size = 4 * 1024 * 1024; 3006 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3007 (8<<20)>>bsbits, max, 8 * 1024)) { 3008 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3009 (23 - bsbits)) << 23; 3010 size = 8 * 1024 * 1024; 3011 } else { 3012 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 3013 size = ac->ac_o_ex.fe_len << bsbits; 3014 } 3015 orig_size = size = size >> bsbits; 3016 orig_start = start = start_off >> bsbits; 3017 3018 /* don't cover already allocated blocks in selected range */ 3019 if (ar->pleft && start <= ar->lleft) { 3020 size -= ar->lleft + 1 - start; 3021 start = ar->lleft + 1; 3022 } 3023 if (ar->pright && start + size - 1 >= ar->lright) 3024 size -= start + size - ar->lright; 3025 3026 end = start + size; 3027 3028 /* check we don't cross already preallocated blocks */ 3029 rcu_read_lock(); 3030 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3031 unsigned long pa_end; 3032 3033 if (pa->pa_deleted) 3034 continue; 3035 spin_lock(&pa->pa_lock); 3036 if (pa->pa_deleted) { 3037 spin_unlock(&pa->pa_lock); 3038 continue; 3039 } 3040 3041 pa_end = pa->pa_lstart + pa->pa_len; 3042 3043 /* PA must not overlap original request */ 3044 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3045 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3046 3047 /* skip PA normalized request doesn't overlap with */ 3048 if (pa->pa_lstart >= end) { 3049 spin_unlock(&pa->pa_lock); 3050 continue; 3051 } 3052 if (pa_end <= start) { 3053 spin_unlock(&pa->pa_lock); 3054 continue; 3055 } 3056 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3057 3058 if (pa_end <= ac->ac_o_ex.fe_logical) { 3059 BUG_ON(pa_end < start); 3060 start = pa_end; 3061 } 3062 3063 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3064 BUG_ON(pa->pa_lstart > end); 3065 end = pa->pa_lstart; 3066 } 3067 spin_unlock(&pa->pa_lock); 3068 } 3069 rcu_read_unlock(); 3070 size = end - start; 3071 3072 /* XXX: extra loop to check we really don't overlap preallocations */ 3073 rcu_read_lock(); 3074 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3075 unsigned long pa_end; 3076 spin_lock(&pa->pa_lock); 3077 if (pa->pa_deleted == 0) { 3078 pa_end = pa->pa_lstart + pa->pa_len; 3079 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3080 } 3081 spin_unlock(&pa->pa_lock); 3082 } 3083 rcu_read_unlock(); 3084 3085 if (start + size <= ac->ac_o_ex.fe_logical && 3086 start > ac->ac_o_ex.fe_logical) { 3087 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n", 3088 (unsigned long) start, (unsigned long) size, 3089 (unsigned long) ac->ac_o_ex.fe_logical); 3090 } 3091 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3092 start > ac->ac_o_ex.fe_logical); 3093 BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3094 3095 /* now prepare goal request */ 3096 3097 /* XXX: is it better to align blocks WRT to logical 3098 * placement or satisfy big request as is */ 3099 ac->ac_g_ex.fe_logical = start; 3100 ac->ac_g_ex.fe_len = size; 3101 3102 /* define goal start in order to merge */ 3103 if (ar->pright && (ar->lright == (start + size))) { 3104 /* merge to the right */ 3105 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3106 &ac->ac_f_ex.fe_group, 3107 &ac->ac_f_ex.fe_start); 3108 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3109 } 3110 if (ar->pleft && (ar->lleft + 1 == start)) { 3111 /* merge to the left */ 3112 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3113 &ac->ac_f_ex.fe_group, 3114 &ac->ac_f_ex.fe_start); 3115 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3116 } 3117 3118 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size, 3119 (unsigned) orig_size, (unsigned) start); 3120 } 3121 3122 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3123 { 3124 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3125 3126 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3127 atomic_inc(&sbi->s_bal_reqs); 3128 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3129 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len) 3130 atomic_inc(&sbi->s_bal_success); 3131 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3132 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3133 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3134 atomic_inc(&sbi->s_bal_goals); 3135 if (ac->ac_found > sbi->s_mb_max_to_scan) 3136 atomic_inc(&sbi->s_bal_breaks); 3137 } 3138 3139 ext4_mb_store_history(ac); 3140 } 3141 3142 /* 3143 * use blocks preallocated to inode 3144 */ 3145 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3146 struct ext4_prealloc_space *pa) 3147 { 3148 ext4_fsblk_t start; 3149 ext4_fsblk_t end; 3150 int len; 3151 3152 /* found preallocated blocks, use them */ 3153 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3154 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len); 3155 len = end - start; 3156 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3157 &ac->ac_b_ex.fe_start); 3158 ac->ac_b_ex.fe_len = len; 3159 ac->ac_status = AC_STATUS_FOUND; 3160 ac->ac_pa = pa; 3161 3162 BUG_ON(start < pa->pa_pstart); 3163 BUG_ON(start + len > pa->pa_pstart + pa->pa_len); 3164 BUG_ON(pa->pa_free < len); 3165 pa->pa_free -= len; 3166 3167 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa); 3168 } 3169 3170 /* 3171 * use blocks preallocated to locality group 3172 */ 3173 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3174 struct ext4_prealloc_space *pa) 3175 { 3176 unsigned int len = ac->ac_o_ex.fe_len; 3177 3178 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3179 &ac->ac_b_ex.fe_group, 3180 &ac->ac_b_ex.fe_start); 3181 ac->ac_b_ex.fe_len = len; 3182 ac->ac_status = AC_STATUS_FOUND; 3183 ac->ac_pa = pa; 3184 3185 /* we don't correct pa_pstart or pa_plen here to avoid 3186 * possible race when the group is being loaded concurrently 3187 * instead we correct pa later, after blocks are marked 3188 * in on-disk bitmap -- see ext4_mb_release_context() 3189 * Other CPUs are prevented from allocating from this pa by lg_mutex 3190 */ 3191 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3192 } 3193 3194 /* 3195 * Return the prealloc space that have minimal distance 3196 * from the goal block. @cpa is the prealloc 3197 * space that is having currently known minimal distance 3198 * from the goal block. 3199 */ 3200 static struct ext4_prealloc_space * 3201 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3202 struct ext4_prealloc_space *pa, 3203 struct ext4_prealloc_space *cpa) 3204 { 3205 ext4_fsblk_t cur_distance, new_distance; 3206 3207 if (cpa == NULL) { 3208 atomic_inc(&pa->pa_count); 3209 return pa; 3210 } 3211 cur_distance = abs(goal_block - cpa->pa_pstart); 3212 new_distance = abs(goal_block - pa->pa_pstart); 3213 3214 if (cur_distance < new_distance) 3215 return cpa; 3216 3217 /* drop the previous reference */ 3218 atomic_dec(&cpa->pa_count); 3219 atomic_inc(&pa->pa_count); 3220 return pa; 3221 } 3222 3223 /* 3224 * search goal blocks in preallocated space 3225 */ 3226 static noinline_for_stack int 3227 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3228 { 3229 int order, i; 3230 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3231 struct ext4_locality_group *lg; 3232 struct ext4_prealloc_space *pa, *cpa = NULL; 3233 ext4_fsblk_t goal_block; 3234 3235 /* only data can be preallocated */ 3236 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3237 return 0; 3238 3239 /* first, try per-file preallocation */ 3240 rcu_read_lock(); 3241 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3242 3243 /* all fields in this condition don't change, 3244 * so we can skip locking for them */ 3245 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3246 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len) 3247 continue; 3248 3249 /* found preallocated blocks, use them */ 3250 spin_lock(&pa->pa_lock); 3251 if (pa->pa_deleted == 0 && pa->pa_free) { 3252 atomic_inc(&pa->pa_count); 3253 ext4_mb_use_inode_pa(ac, pa); 3254 spin_unlock(&pa->pa_lock); 3255 ac->ac_criteria = 10; 3256 rcu_read_unlock(); 3257 return 1; 3258 } 3259 spin_unlock(&pa->pa_lock); 3260 } 3261 rcu_read_unlock(); 3262 3263 /* can we use group allocation? */ 3264 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3265 return 0; 3266 3267 /* inode may have no locality group for some reason */ 3268 lg = ac->ac_lg; 3269 if (lg == NULL) 3270 return 0; 3271 order = fls(ac->ac_o_ex.fe_len) - 1; 3272 if (order > PREALLOC_TB_SIZE - 1) 3273 /* The max size of hash table is PREALLOC_TB_SIZE */ 3274 order = PREALLOC_TB_SIZE - 1; 3275 3276 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) + 3277 ac->ac_g_ex.fe_start + 3278 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block); 3279 /* 3280 * search for the prealloc space that is having 3281 * minimal distance from the goal block. 3282 */ 3283 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3284 rcu_read_lock(); 3285 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3286 pa_inode_list) { 3287 spin_lock(&pa->pa_lock); 3288 if (pa->pa_deleted == 0 && 3289 pa->pa_free >= ac->ac_o_ex.fe_len) { 3290 3291 cpa = ext4_mb_check_group_pa(goal_block, 3292 pa, cpa); 3293 } 3294 spin_unlock(&pa->pa_lock); 3295 } 3296 rcu_read_unlock(); 3297 } 3298 if (cpa) { 3299 ext4_mb_use_group_pa(ac, cpa); 3300 ac->ac_criteria = 20; 3301 return 1; 3302 } 3303 return 0; 3304 } 3305 3306 /* 3307 * the function goes through all preallocation in this group and marks them 3308 * used in in-core bitmap. buddy must be generated from this bitmap 3309 * Need to be called with ext4 group lock (ext4_lock_group) 3310 */ 3311 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3312 ext4_group_t group) 3313 { 3314 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3315 struct ext4_prealloc_space *pa; 3316 struct list_head *cur; 3317 ext4_group_t groupnr; 3318 ext4_grpblk_t start; 3319 int preallocated = 0; 3320 int count = 0; 3321 int len; 3322 3323 /* all form of preallocation discards first load group, 3324 * so the only competing code is preallocation use. 3325 * we don't need any locking here 3326 * notice we do NOT ignore preallocations with pa_deleted 3327 * otherwise we could leave used blocks available for 3328 * allocation in buddy when concurrent ext4_mb_put_pa() 3329 * is dropping preallocation 3330 */ 3331 list_for_each(cur, &grp->bb_prealloc_list) { 3332 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3333 spin_lock(&pa->pa_lock); 3334 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3335 &groupnr, &start); 3336 len = pa->pa_len; 3337 spin_unlock(&pa->pa_lock); 3338 if (unlikely(len == 0)) 3339 continue; 3340 BUG_ON(groupnr != group); 3341 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group), 3342 bitmap, start, len); 3343 preallocated += len; 3344 count++; 3345 } 3346 mb_debug("prellocated %u for group %lu\n", preallocated, group); 3347 } 3348 3349 static void ext4_mb_pa_callback(struct rcu_head *head) 3350 { 3351 struct ext4_prealloc_space *pa; 3352 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3353 kmem_cache_free(ext4_pspace_cachep, pa); 3354 } 3355 3356 /* 3357 * drops a reference to preallocated space descriptor 3358 * if this was the last reference and the space is consumed 3359 */ 3360 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3361 struct super_block *sb, struct ext4_prealloc_space *pa) 3362 { 3363 unsigned long grp; 3364 3365 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3366 return; 3367 3368 /* in this short window concurrent discard can set pa_deleted */ 3369 spin_lock(&pa->pa_lock); 3370 if (pa->pa_deleted == 1) { 3371 spin_unlock(&pa->pa_lock); 3372 return; 3373 } 3374 3375 pa->pa_deleted = 1; 3376 spin_unlock(&pa->pa_lock); 3377 3378 /* -1 is to protect from crossing allocation group */ 3379 ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL); 3380 3381 /* 3382 * possible race: 3383 * 3384 * P1 (buddy init) P2 (regular allocation) 3385 * find block B in PA 3386 * copy on-disk bitmap to buddy 3387 * mark B in on-disk bitmap 3388 * drop PA from group 3389 * mark all PAs in buddy 3390 * 3391 * thus, P1 initializes buddy with B available. to prevent this 3392 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3393 * against that pair 3394 */ 3395 ext4_lock_group(sb, grp); 3396 list_del(&pa->pa_group_list); 3397 ext4_unlock_group(sb, grp); 3398 3399 spin_lock(pa->pa_obj_lock); 3400 list_del_rcu(&pa->pa_inode_list); 3401 spin_unlock(pa->pa_obj_lock); 3402 3403 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3404 } 3405 3406 /* 3407 * creates new preallocated space for given inode 3408 */ 3409 static noinline_for_stack int 3410 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3411 { 3412 struct super_block *sb = ac->ac_sb; 3413 struct ext4_prealloc_space *pa; 3414 struct ext4_group_info *grp; 3415 struct ext4_inode_info *ei; 3416 3417 /* preallocate only when found space is larger then requested */ 3418 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3419 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3420 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3421 3422 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3423 if (pa == NULL) 3424 return -ENOMEM; 3425 3426 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3427 int winl; 3428 int wins; 3429 int win; 3430 int offs; 3431 3432 /* we can't allocate as much as normalizer wants. 3433 * so, found space must get proper lstart 3434 * to cover original request */ 3435 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3436 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3437 3438 /* we're limited by original request in that 3439 * logical block must be covered any way 3440 * winl is window we can move our chunk within */ 3441 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3442 3443 /* also, we should cover whole original request */ 3444 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len; 3445 3446 /* the smallest one defines real window */ 3447 win = min(winl, wins); 3448 3449 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len; 3450 if (offs && offs < win) 3451 win = offs; 3452 3453 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win; 3454 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3455 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3456 } 3457 3458 /* preallocation can change ac_b_ex, thus we store actually 3459 * allocated blocks for history */ 3460 ac->ac_f_ex = ac->ac_b_ex; 3461 3462 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3463 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3464 pa->pa_len = ac->ac_b_ex.fe_len; 3465 pa->pa_free = pa->pa_len; 3466 atomic_set(&pa->pa_count, 1); 3467 spin_lock_init(&pa->pa_lock); 3468 pa->pa_deleted = 0; 3469 pa->pa_linear = 0; 3470 3471 mb_debug("new inode pa %p: %llu/%u for %u\n", pa, 3472 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3473 3474 ext4_mb_use_inode_pa(ac, pa); 3475 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3476 3477 ei = EXT4_I(ac->ac_inode); 3478 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3479 3480 pa->pa_obj_lock = &ei->i_prealloc_lock; 3481 pa->pa_inode = ac->ac_inode; 3482 3483 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3484 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3485 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3486 3487 spin_lock(pa->pa_obj_lock); 3488 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3489 spin_unlock(pa->pa_obj_lock); 3490 3491 return 0; 3492 } 3493 3494 /* 3495 * creates new preallocated space for locality group inodes belongs to 3496 */ 3497 static noinline_for_stack int 3498 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3499 { 3500 struct super_block *sb = ac->ac_sb; 3501 struct ext4_locality_group *lg; 3502 struct ext4_prealloc_space *pa; 3503 struct ext4_group_info *grp; 3504 3505 /* preallocate only when found space is larger then requested */ 3506 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3507 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3508 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3509 3510 BUG_ON(ext4_pspace_cachep == NULL); 3511 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3512 if (pa == NULL) 3513 return -ENOMEM; 3514 3515 /* preallocation can change ac_b_ex, thus we store actually 3516 * allocated blocks for history */ 3517 ac->ac_f_ex = ac->ac_b_ex; 3518 3519 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3520 pa->pa_lstart = pa->pa_pstart; 3521 pa->pa_len = ac->ac_b_ex.fe_len; 3522 pa->pa_free = pa->pa_len; 3523 atomic_set(&pa->pa_count, 1); 3524 spin_lock_init(&pa->pa_lock); 3525 INIT_LIST_HEAD(&pa->pa_inode_list); 3526 pa->pa_deleted = 0; 3527 pa->pa_linear = 1; 3528 3529 mb_debug("new group pa %p: %llu/%u for %u\n", pa, 3530 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3531 3532 ext4_mb_use_group_pa(ac, pa); 3533 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3534 3535 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3536 lg = ac->ac_lg; 3537 BUG_ON(lg == NULL); 3538 3539 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3540 pa->pa_inode = NULL; 3541 3542 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3543 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3544 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3545 3546 /* 3547 * We will later add the new pa to the right bucket 3548 * after updating the pa_free in ext4_mb_release_context 3549 */ 3550 return 0; 3551 } 3552 3553 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3554 { 3555 int err; 3556 3557 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3558 err = ext4_mb_new_group_pa(ac); 3559 else 3560 err = ext4_mb_new_inode_pa(ac); 3561 return err; 3562 } 3563 3564 /* 3565 * finds all unused blocks in on-disk bitmap, frees them in 3566 * in-core bitmap and buddy. 3567 * @pa must be unlinked from inode and group lists, so that 3568 * nobody else can find/use it. 3569 * the caller MUST hold group/inode locks. 3570 * TODO: optimize the case when there are no in-core structures yet 3571 */ 3572 static noinline_for_stack int 3573 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3574 struct ext4_prealloc_space *pa, 3575 struct ext4_allocation_context *ac) 3576 { 3577 struct super_block *sb = e4b->bd_sb; 3578 struct ext4_sb_info *sbi = EXT4_SB(sb); 3579 unsigned long end; 3580 unsigned long next; 3581 ext4_group_t group; 3582 ext4_grpblk_t bit; 3583 sector_t start; 3584 int err = 0; 3585 int free = 0; 3586 3587 BUG_ON(pa->pa_deleted == 0); 3588 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3589 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3590 end = bit + pa->pa_len; 3591 3592 if (ac) { 3593 ac->ac_sb = sb; 3594 ac->ac_inode = pa->pa_inode; 3595 ac->ac_op = EXT4_MB_HISTORY_DISCARD; 3596 } 3597 3598 while (bit < end) { 3599 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3600 if (bit >= end) 3601 break; 3602 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3603 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit + 3604 le32_to_cpu(sbi->s_es->s_first_data_block); 3605 mb_debug(" free preallocated %u/%u in group %u\n", 3606 (unsigned) start, (unsigned) next - bit, 3607 (unsigned) group); 3608 free += next - bit; 3609 3610 if (ac) { 3611 ac->ac_b_ex.fe_group = group; 3612 ac->ac_b_ex.fe_start = bit; 3613 ac->ac_b_ex.fe_len = next - bit; 3614 ac->ac_b_ex.fe_logical = 0; 3615 ext4_mb_store_history(ac); 3616 } 3617 3618 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3619 bit = next + 1; 3620 } 3621 if (free != pa->pa_free) { 3622 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n", 3623 pa, (unsigned long) pa->pa_lstart, 3624 (unsigned long) pa->pa_pstart, 3625 (unsigned long) pa->pa_len); 3626 ext4_error(sb, __func__, "free %u, pa_free %u\n", 3627 free, pa->pa_free); 3628 /* 3629 * pa is already deleted so we use the value obtained 3630 * from the bitmap and continue. 3631 */ 3632 } 3633 atomic_add(free, &sbi->s_mb_discarded); 3634 3635 return err; 3636 } 3637 3638 static noinline_for_stack int 3639 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3640 struct ext4_prealloc_space *pa, 3641 struct ext4_allocation_context *ac) 3642 { 3643 struct super_block *sb = e4b->bd_sb; 3644 ext4_group_t group; 3645 ext4_grpblk_t bit; 3646 3647 if (ac) 3648 ac->ac_op = EXT4_MB_HISTORY_DISCARD; 3649 3650 BUG_ON(pa->pa_deleted == 0); 3651 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3652 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3653 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3654 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3655 3656 if (ac) { 3657 ac->ac_sb = sb; 3658 ac->ac_inode = NULL; 3659 ac->ac_b_ex.fe_group = group; 3660 ac->ac_b_ex.fe_start = bit; 3661 ac->ac_b_ex.fe_len = pa->pa_len; 3662 ac->ac_b_ex.fe_logical = 0; 3663 ext4_mb_store_history(ac); 3664 } 3665 3666 return 0; 3667 } 3668 3669 /* 3670 * releases all preallocations in given group 3671 * 3672 * first, we need to decide discard policy: 3673 * - when do we discard 3674 * 1) ENOSPC 3675 * - how many do we discard 3676 * 1) how many requested 3677 */ 3678 static noinline_for_stack int 3679 ext4_mb_discard_group_preallocations(struct super_block *sb, 3680 ext4_group_t group, int needed) 3681 { 3682 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3683 struct buffer_head *bitmap_bh = NULL; 3684 struct ext4_prealloc_space *pa, *tmp; 3685 struct ext4_allocation_context *ac; 3686 struct list_head list; 3687 struct ext4_buddy e4b; 3688 int err; 3689 int busy = 0; 3690 int free = 0; 3691 3692 mb_debug("discard preallocation for group %lu\n", group); 3693 3694 if (list_empty(&grp->bb_prealloc_list)) 3695 return 0; 3696 3697 bitmap_bh = ext4_read_block_bitmap(sb, group); 3698 if (bitmap_bh == NULL) { 3699 ext4_error(sb, __func__, "Error in reading block " 3700 "bitmap for %lu\n", group); 3701 return 0; 3702 } 3703 3704 err = ext4_mb_load_buddy(sb, group, &e4b); 3705 if (err) { 3706 ext4_error(sb, __func__, "Error in loading buddy " 3707 "information for %lu\n", group); 3708 put_bh(bitmap_bh); 3709 return 0; 3710 } 3711 3712 if (needed == 0) 3713 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1; 3714 3715 INIT_LIST_HEAD(&list); 3716 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 3717 repeat: 3718 ext4_lock_group(sb, group); 3719 list_for_each_entry_safe(pa, tmp, 3720 &grp->bb_prealloc_list, pa_group_list) { 3721 spin_lock(&pa->pa_lock); 3722 if (atomic_read(&pa->pa_count)) { 3723 spin_unlock(&pa->pa_lock); 3724 busy = 1; 3725 continue; 3726 } 3727 if (pa->pa_deleted) { 3728 spin_unlock(&pa->pa_lock); 3729 continue; 3730 } 3731 3732 /* seems this one can be freed ... */ 3733 pa->pa_deleted = 1; 3734 3735 /* we can trust pa_free ... */ 3736 free += pa->pa_free; 3737 3738 spin_unlock(&pa->pa_lock); 3739 3740 list_del(&pa->pa_group_list); 3741 list_add(&pa->u.pa_tmp_list, &list); 3742 } 3743 3744 /* if we still need more blocks and some PAs were used, try again */ 3745 if (free < needed && busy) { 3746 busy = 0; 3747 ext4_unlock_group(sb, group); 3748 /* 3749 * Yield the CPU here so that we don't get soft lockup 3750 * in non preempt case. 3751 */ 3752 yield(); 3753 goto repeat; 3754 } 3755 3756 /* found anything to free? */ 3757 if (list_empty(&list)) { 3758 BUG_ON(free != 0); 3759 goto out; 3760 } 3761 3762 /* now free all selected PAs */ 3763 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3764 3765 /* remove from object (inode or locality group) */ 3766 spin_lock(pa->pa_obj_lock); 3767 list_del_rcu(&pa->pa_inode_list); 3768 spin_unlock(pa->pa_obj_lock); 3769 3770 if (pa->pa_linear) 3771 ext4_mb_release_group_pa(&e4b, pa, ac); 3772 else 3773 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); 3774 3775 list_del(&pa->u.pa_tmp_list); 3776 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3777 } 3778 3779 out: 3780 ext4_unlock_group(sb, group); 3781 if (ac) 3782 kmem_cache_free(ext4_ac_cachep, ac); 3783 ext4_mb_release_desc(&e4b); 3784 put_bh(bitmap_bh); 3785 return free; 3786 } 3787 3788 /* 3789 * releases all non-used preallocated blocks for given inode 3790 * 3791 * It's important to discard preallocations under i_data_sem 3792 * We don't want another block to be served from the prealloc 3793 * space when we are discarding the inode prealloc space. 3794 * 3795 * FIXME!! Make sure it is valid at all the call sites 3796 */ 3797 void ext4_discard_preallocations(struct inode *inode) 3798 { 3799 struct ext4_inode_info *ei = EXT4_I(inode); 3800 struct super_block *sb = inode->i_sb; 3801 struct buffer_head *bitmap_bh = NULL; 3802 struct ext4_prealloc_space *pa, *tmp; 3803 struct ext4_allocation_context *ac; 3804 ext4_group_t group = 0; 3805 struct list_head list; 3806 struct ext4_buddy e4b; 3807 int err; 3808 3809 if (!S_ISREG(inode->i_mode)) { 3810 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3811 return; 3812 } 3813 3814 mb_debug("discard preallocation for inode %lu\n", inode->i_ino); 3815 3816 INIT_LIST_HEAD(&list); 3817 3818 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 3819 repeat: 3820 /* first, collect all pa's in the inode */ 3821 spin_lock(&ei->i_prealloc_lock); 3822 while (!list_empty(&ei->i_prealloc_list)) { 3823 pa = list_entry(ei->i_prealloc_list.next, 3824 struct ext4_prealloc_space, pa_inode_list); 3825 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3826 spin_lock(&pa->pa_lock); 3827 if (atomic_read(&pa->pa_count)) { 3828 /* this shouldn't happen often - nobody should 3829 * use preallocation while we're discarding it */ 3830 spin_unlock(&pa->pa_lock); 3831 spin_unlock(&ei->i_prealloc_lock); 3832 printk(KERN_ERR "uh-oh! used pa while discarding\n"); 3833 WARN_ON(1); 3834 schedule_timeout_uninterruptible(HZ); 3835 goto repeat; 3836 3837 } 3838 if (pa->pa_deleted == 0) { 3839 pa->pa_deleted = 1; 3840 spin_unlock(&pa->pa_lock); 3841 list_del_rcu(&pa->pa_inode_list); 3842 list_add(&pa->u.pa_tmp_list, &list); 3843 continue; 3844 } 3845 3846 /* someone is deleting pa right now */ 3847 spin_unlock(&pa->pa_lock); 3848 spin_unlock(&ei->i_prealloc_lock); 3849 3850 /* we have to wait here because pa_deleted 3851 * doesn't mean pa is already unlinked from 3852 * the list. as we might be called from 3853 * ->clear_inode() the inode will get freed 3854 * and concurrent thread which is unlinking 3855 * pa from inode's list may access already 3856 * freed memory, bad-bad-bad */ 3857 3858 /* XXX: if this happens too often, we can 3859 * add a flag to force wait only in case 3860 * of ->clear_inode(), but not in case of 3861 * regular truncate */ 3862 schedule_timeout_uninterruptible(HZ); 3863 goto repeat; 3864 } 3865 spin_unlock(&ei->i_prealloc_lock); 3866 3867 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3868 BUG_ON(pa->pa_linear != 0); 3869 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3870 3871 err = ext4_mb_load_buddy(sb, group, &e4b); 3872 if (err) { 3873 ext4_error(sb, __func__, "Error in loading buddy " 3874 "information for %lu\n", group); 3875 continue; 3876 } 3877 3878 bitmap_bh = ext4_read_block_bitmap(sb, group); 3879 if (bitmap_bh == NULL) { 3880 ext4_error(sb, __func__, "Error in reading block " 3881 "bitmap for %lu\n", group); 3882 ext4_mb_release_desc(&e4b); 3883 continue; 3884 } 3885 3886 ext4_lock_group(sb, group); 3887 list_del(&pa->pa_group_list); 3888 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); 3889 ext4_unlock_group(sb, group); 3890 3891 ext4_mb_release_desc(&e4b); 3892 put_bh(bitmap_bh); 3893 3894 list_del(&pa->u.pa_tmp_list); 3895 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3896 } 3897 if (ac) 3898 kmem_cache_free(ext4_ac_cachep, ac); 3899 } 3900 3901 /* 3902 * finds all preallocated spaces and return blocks being freed to them 3903 * if preallocated space becomes full (no block is used from the space) 3904 * then the function frees space in buddy 3905 * XXX: at the moment, truncate (which is the only way to free blocks) 3906 * discards all preallocations 3907 */ 3908 static void ext4_mb_return_to_preallocation(struct inode *inode, 3909 struct ext4_buddy *e4b, 3910 sector_t block, int count) 3911 { 3912 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list)); 3913 } 3914 #ifdef MB_DEBUG 3915 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3916 { 3917 struct super_block *sb = ac->ac_sb; 3918 ext4_group_t i; 3919 3920 printk(KERN_ERR "EXT4-fs: Can't allocate:" 3921 " Allocation context details:\n"); 3922 printk(KERN_ERR "EXT4-fs: status %d flags %d\n", 3923 ac->ac_status, ac->ac_flags); 3924 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, " 3925 "best %lu/%lu/%lu@%lu cr %d\n", 3926 (unsigned long)ac->ac_o_ex.fe_group, 3927 (unsigned long)ac->ac_o_ex.fe_start, 3928 (unsigned long)ac->ac_o_ex.fe_len, 3929 (unsigned long)ac->ac_o_ex.fe_logical, 3930 (unsigned long)ac->ac_g_ex.fe_group, 3931 (unsigned long)ac->ac_g_ex.fe_start, 3932 (unsigned long)ac->ac_g_ex.fe_len, 3933 (unsigned long)ac->ac_g_ex.fe_logical, 3934 (unsigned long)ac->ac_b_ex.fe_group, 3935 (unsigned long)ac->ac_b_ex.fe_start, 3936 (unsigned long)ac->ac_b_ex.fe_len, 3937 (unsigned long)ac->ac_b_ex.fe_logical, 3938 (int)ac->ac_criteria); 3939 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned, 3940 ac->ac_found); 3941 printk(KERN_ERR "EXT4-fs: groups: \n"); 3942 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { 3943 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3944 struct ext4_prealloc_space *pa; 3945 ext4_grpblk_t start; 3946 struct list_head *cur; 3947 ext4_lock_group(sb, i); 3948 list_for_each(cur, &grp->bb_prealloc_list) { 3949 pa = list_entry(cur, struct ext4_prealloc_space, 3950 pa_group_list); 3951 spin_lock(&pa->pa_lock); 3952 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3953 NULL, &start); 3954 spin_unlock(&pa->pa_lock); 3955 printk(KERN_ERR "PA:%lu:%d:%u \n", i, 3956 start, pa->pa_len); 3957 } 3958 ext4_unlock_group(sb, i); 3959 3960 if (grp->bb_free == 0) 3961 continue; 3962 printk(KERN_ERR "%lu: %d/%d \n", 3963 i, grp->bb_free, grp->bb_fragments); 3964 } 3965 printk(KERN_ERR "\n"); 3966 } 3967 #else 3968 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3969 { 3970 return; 3971 } 3972 #endif 3973 3974 /* 3975 * We use locality group preallocation for small size file. The size of the 3976 * file is determined by the current size or the resulting size after 3977 * allocation which ever is larger 3978 * 3979 * One can tune this size via /proc/fs/ext4/<partition>/stream_req 3980 */ 3981 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3982 { 3983 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3984 int bsbits = ac->ac_sb->s_blocksize_bits; 3985 loff_t size, isize; 3986 3987 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3988 return; 3989 3990 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 3991 isize = i_size_read(ac->ac_inode) >> bsbits; 3992 size = max(size, isize); 3993 3994 /* don't use group allocation for large files */ 3995 if (size >= sbi->s_mb_stream_request) 3996 return; 3997 3998 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3999 return; 4000 4001 BUG_ON(ac->ac_lg != NULL); 4002 /* 4003 * locality group prealloc space are per cpu. The reason for having 4004 * per cpu locality group is to reduce the contention between block 4005 * request from multiple CPUs. 4006 */ 4007 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id()); 4008 4009 /* we're going to use group allocation */ 4010 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4011 4012 /* serialize all allocations in the group */ 4013 mutex_lock(&ac->ac_lg->lg_mutex); 4014 } 4015 4016 static noinline_for_stack int 4017 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4018 struct ext4_allocation_request *ar) 4019 { 4020 struct super_block *sb = ar->inode->i_sb; 4021 struct ext4_sb_info *sbi = EXT4_SB(sb); 4022 struct ext4_super_block *es = sbi->s_es; 4023 ext4_group_t group; 4024 unsigned long len; 4025 unsigned long goal; 4026 ext4_grpblk_t block; 4027 4028 /* we can't allocate > group size */ 4029 len = ar->len; 4030 4031 /* just a dirty hack to filter too big requests */ 4032 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10) 4033 len = EXT4_BLOCKS_PER_GROUP(sb) - 10; 4034 4035 /* start searching from the goal */ 4036 goal = ar->goal; 4037 if (goal < le32_to_cpu(es->s_first_data_block) || 4038 goal >= ext4_blocks_count(es)) 4039 goal = le32_to_cpu(es->s_first_data_block); 4040 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4041 4042 /* set up allocation goals */ 4043 ac->ac_b_ex.fe_logical = ar->logical; 4044 ac->ac_b_ex.fe_group = 0; 4045 ac->ac_b_ex.fe_start = 0; 4046 ac->ac_b_ex.fe_len = 0; 4047 ac->ac_status = AC_STATUS_CONTINUE; 4048 ac->ac_groups_scanned = 0; 4049 ac->ac_ex_scanned = 0; 4050 ac->ac_found = 0; 4051 ac->ac_sb = sb; 4052 ac->ac_inode = ar->inode; 4053 ac->ac_o_ex.fe_logical = ar->logical; 4054 ac->ac_o_ex.fe_group = group; 4055 ac->ac_o_ex.fe_start = block; 4056 ac->ac_o_ex.fe_len = len; 4057 ac->ac_g_ex.fe_logical = ar->logical; 4058 ac->ac_g_ex.fe_group = group; 4059 ac->ac_g_ex.fe_start = block; 4060 ac->ac_g_ex.fe_len = len; 4061 ac->ac_f_ex.fe_len = 0; 4062 ac->ac_flags = ar->flags; 4063 ac->ac_2order = 0; 4064 ac->ac_criteria = 0; 4065 ac->ac_pa = NULL; 4066 ac->ac_bitmap_page = NULL; 4067 ac->ac_buddy_page = NULL; 4068 ac->ac_lg = NULL; 4069 4070 /* we have to define context: we'll we work with a file or 4071 * locality group. this is a policy, actually */ 4072 ext4_mb_group_or_file(ac); 4073 4074 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4075 "left: %u/%u, right %u/%u to %swritable\n", 4076 (unsigned) ar->len, (unsigned) ar->logical, 4077 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4078 (unsigned) ar->lleft, (unsigned) ar->pleft, 4079 (unsigned) ar->lright, (unsigned) ar->pright, 4080 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4081 return 0; 4082 4083 } 4084 4085 static noinline_for_stack void 4086 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4087 struct ext4_locality_group *lg, 4088 int order, int total_entries) 4089 { 4090 ext4_group_t group = 0; 4091 struct ext4_buddy e4b; 4092 struct list_head discard_list; 4093 struct ext4_prealloc_space *pa, *tmp; 4094 struct ext4_allocation_context *ac; 4095 4096 mb_debug("discard locality group preallocation\n"); 4097 4098 INIT_LIST_HEAD(&discard_list); 4099 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4100 4101 spin_lock(&lg->lg_prealloc_lock); 4102 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4103 pa_inode_list) { 4104 spin_lock(&pa->pa_lock); 4105 if (atomic_read(&pa->pa_count)) { 4106 /* 4107 * This is the pa that we just used 4108 * for block allocation. So don't 4109 * free that 4110 */ 4111 spin_unlock(&pa->pa_lock); 4112 continue; 4113 } 4114 if (pa->pa_deleted) { 4115 spin_unlock(&pa->pa_lock); 4116 continue; 4117 } 4118 /* only lg prealloc space */ 4119 BUG_ON(!pa->pa_linear); 4120 4121 /* seems this one can be freed ... */ 4122 pa->pa_deleted = 1; 4123 spin_unlock(&pa->pa_lock); 4124 4125 list_del_rcu(&pa->pa_inode_list); 4126 list_add(&pa->u.pa_tmp_list, &discard_list); 4127 4128 total_entries--; 4129 if (total_entries <= 5) { 4130 /* 4131 * we want to keep only 5 entries 4132 * allowing it to grow to 8. This 4133 * mak sure we don't call discard 4134 * soon for this list. 4135 */ 4136 break; 4137 } 4138 } 4139 spin_unlock(&lg->lg_prealloc_lock); 4140 4141 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4142 4143 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4144 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4145 ext4_error(sb, __func__, "Error in loading buddy " 4146 "information for %lu\n", group); 4147 continue; 4148 } 4149 ext4_lock_group(sb, group); 4150 list_del(&pa->pa_group_list); 4151 ext4_mb_release_group_pa(&e4b, pa, ac); 4152 ext4_unlock_group(sb, group); 4153 4154 ext4_mb_release_desc(&e4b); 4155 list_del(&pa->u.pa_tmp_list); 4156 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4157 } 4158 if (ac) 4159 kmem_cache_free(ext4_ac_cachep, ac); 4160 } 4161 4162 /* 4163 * We have incremented pa_count. So it cannot be freed at this 4164 * point. Also we hold lg_mutex. So no parallel allocation is 4165 * possible from this lg. That means pa_free cannot be updated. 4166 * 4167 * A parallel ext4_mb_discard_group_preallocations is possible. 4168 * which can cause the lg_prealloc_list to be updated. 4169 */ 4170 4171 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4172 { 4173 int order, added = 0, lg_prealloc_count = 1; 4174 struct super_block *sb = ac->ac_sb; 4175 struct ext4_locality_group *lg = ac->ac_lg; 4176 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4177 4178 order = fls(pa->pa_free) - 1; 4179 if (order > PREALLOC_TB_SIZE - 1) 4180 /* The max size of hash table is PREALLOC_TB_SIZE */ 4181 order = PREALLOC_TB_SIZE - 1; 4182 /* Add the prealloc space to lg */ 4183 rcu_read_lock(); 4184 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4185 pa_inode_list) { 4186 spin_lock(&tmp_pa->pa_lock); 4187 if (tmp_pa->pa_deleted) { 4188 spin_unlock(&pa->pa_lock); 4189 continue; 4190 } 4191 if (!added && pa->pa_free < tmp_pa->pa_free) { 4192 /* Add to the tail of the previous entry */ 4193 list_add_tail_rcu(&pa->pa_inode_list, 4194 &tmp_pa->pa_inode_list); 4195 added = 1; 4196 /* 4197 * we want to count the total 4198 * number of entries in the list 4199 */ 4200 } 4201 spin_unlock(&tmp_pa->pa_lock); 4202 lg_prealloc_count++; 4203 } 4204 if (!added) 4205 list_add_tail_rcu(&pa->pa_inode_list, 4206 &lg->lg_prealloc_list[order]); 4207 rcu_read_unlock(); 4208 4209 /* Now trim the list to be not more than 8 elements */ 4210 if (lg_prealloc_count > 8) { 4211 ext4_mb_discard_lg_preallocations(sb, lg, 4212 order, lg_prealloc_count); 4213 return; 4214 } 4215 return ; 4216 } 4217 4218 /* 4219 * release all resource we used in allocation 4220 */ 4221 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4222 { 4223 struct ext4_prealloc_space *pa = ac->ac_pa; 4224 if (pa) { 4225 if (pa->pa_linear) { 4226 /* see comment in ext4_mb_use_group_pa() */ 4227 spin_lock(&pa->pa_lock); 4228 pa->pa_pstart += ac->ac_b_ex.fe_len; 4229 pa->pa_lstart += ac->ac_b_ex.fe_len; 4230 pa->pa_free -= ac->ac_b_ex.fe_len; 4231 pa->pa_len -= ac->ac_b_ex.fe_len; 4232 spin_unlock(&pa->pa_lock); 4233 /* 4234 * We want to add the pa to the right bucket. 4235 * Remove it from the list and while adding 4236 * make sure the list to which we are adding 4237 * doesn't grow big. 4238 */ 4239 if (likely(pa->pa_free)) { 4240 spin_lock(pa->pa_obj_lock); 4241 list_del_rcu(&pa->pa_inode_list); 4242 spin_unlock(pa->pa_obj_lock); 4243 ext4_mb_add_n_trim(ac); 4244 } 4245 } 4246 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4247 } 4248 if (ac->ac_bitmap_page) 4249 page_cache_release(ac->ac_bitmap_page); 4250 if (ac->ac_buddy_page) 4251 page_cache_release(ac->ac_buddy_page); 4252 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4253 mutex_unlock(&ac->ac_lg->lg_mutex); 4254 ext4_mb_collect_stats(ac); 4255 return 0; 4256 } 4257 4258 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4259 { 4260 ext4_group_t i; 4261 int ret; 4262 int freed = 0; 4263 4264 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) { 4265 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4266 freed += ret; 4267 needed -= ret; 4268 } 4269 4270 return freed; 4271 } 4272 4273 /* 4274 * Main entry point into mballoc to allocate blocks 4275 * it tries to use preallocation first, then falls back 4276 * to usual allocation 4277 */ 4278 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4279 struct ext4_allocation_request *ar, int *errp) 4280 { 4281 int freed; 4282 struct ext4_allocation_context *ac = NULL; 4283 struct ext4_sb_info *sbi; 4284 struct super_block *sb; 4285 ext4_fsblk_t block = 0; 4286 unsigned long inquota; 4287 unsigned long reserv_blks = 0; 4288 4289 sb = ar->inode->i_sb; 4290 sbi = EXT4_SB(sb); 4291 4292 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) { 4293 /* 4294 * With delalloc we already reserved the blocks 4295 */ 4296 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) { 4297 /* let others to free the space */ 4298 yield(); 4299 ar->len = ar->len >> 1; 4300 } 4301 if (!ar->len) { 4302 *errp = -ENOSPC; 4303 return 0; 4304 } 4305 reserv_blks = ar->len; 4306 } 4307 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) { 4308 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4309 ar->len--; 4310 } 4311 if (ar->len == 0) { 4312 *errp = -EDQUOT; 4313 return 0; 4314 } 4315 inquota = ar->len; 4316 4317 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag) 4318 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4319 4320 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4321 if (!ac) { 4322 ar->len = 0; 4323 *errp = -ENOMEM; 4324 goto out1; 4325 } 4326 4327 ext4_mb_poll_new_transaction(sb, handle); 4328 4329 *errp = ext4_mb_initialize_context(ac, ar); 4330 if (*errp) { 4331 ar->len = 0; 4332 goto out2; 4333 } 4334 4335 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4336 if (!ext4_mb_use_preallocated(ac)) { 4337 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4338 ext4_mb_normalize_request(ac, ar); 4339 repeat: 4340 /* allocate space in core */ 4341 ext4_mb_regular_allocator(ac); 4342 4343 /* as we've just preallocated more space than 4344 * user requested orinally, we store allocated 4345 * space in a special descriptor */ 4346 if (ac->ac_status == AC_STATUS_FOUND && 4347 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4348 ext4_mb_new_preallocation(ac); 4349 } 4350 4351 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4352 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks); 4353 if (*errp == -EAGAIN) { 4354 ac->ac_b_ex.fe_group = 0; 4355 ac->ac_b_ex.fe_start = 0; 4356 ac->ac_b_ex.fe_len = 0; 4357 ac->ac_status = AC_STATUS_CONTINUE; 4358 goto repeat; 4359 } else if (*errp) { 4360 ac->ac_b_ex.fe_len = 0; 4361 ar->len = 0; 4362 ext4_mb_show_ac(ac); 4363 } else { 4364 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4365 ar->len = ac->ac_b_ex.fe_len; 4366 } 4367 } else { 4368 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4369 if (freed) 4370 goto repeat; 4371 *errp = -ENOSPC; 4372 ac->ac_b_ex.fe_len = 0; 4373 ar->len = 0; 4374 ext4_mb_show_ac(ac); 4375 } 4376 4377 ext4_mb_release_context(ac); 4378 4379 out2: 4380 kmem_cache_free(ext4_ac_cachep, ac); 4381 out1: 4382 if (ar->len < inquota) 4383 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len); 4384 4385 return block; 4386 } 4387 static void ext4_mb_poll_new_transaction(struct super_block *sb, 4388 handle_t *handle) 4389 { 4390 struct ext4_sb_info *sbi = EXT4_SB(sb); 4391 4392 if (sbi->s_last_transaction == handle->h_transaction->t_tid) 4393 return; 4394 4395 /* new transaction! time to close last one and free blocks for 4396 * committed transaction. we know that only transaction can be 4397 * active, so previos transaction can be being logged and we 4398 * know that transaction before previous is known to be already 4399 * logged. this means that now we may free blocks freed in all 4400 * transactions before previous one. hope I'm clear enough ... */ 4401 4402 spin_lock(&sbi->s_md_lock); 4403 if (sbi->s_last_transaction != handle->h_transaction->t_tid) { 4404 mb_debug("new transaction %lu, old %lu\n", 4405 (unsigned long) handle->h_transaction->t_tid, 4406 (unsigned long) sbi->s_last_transaction); 4407 list_splice_init(&sbi->s_closed_transaction, 4408 &sbi->s_committed_transaction); 4409 list_splice_init(&sbi->s_active_transaction, 4410 &sbi->s_closed_transaction); 4411 sbi->s_last_transaction = handle->h_transaction->t_tid; 4412 } 4413 spin_unlock(&sbi->s_md_lock); 4414 4415 ext4_mb_free_committed_blocks(sb); 4416 } 4417 4418 static noinline_for_stack int 4419 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4420 ext4_group_t group, ext4_grpblk_t block, int count) 4421 { 4422 struct ext4_group_info *db = e4b->bd_info; 4423 struct super_block *sb = e4b->bd_sb; 4424 struct ext4_sb_info *sbi = EXT4_SB(sb); 4425 struct ext4_free_metadata *md; 4426 int i; 4427 4428 BUG_ON(e4b->bd_bitmap_page == NULL); 4429 BUG_ON(e4b->bd_buddy_page == NULL); 4430 4431 ext4_lock_group(sb, group); 4432 for (i = 0; i < count; i++) { 4433 md = db->bb_md_cur; 4434 if (md && db->bb_tid != handle->h_transaction->t_tid) { 4435 db->bb_md_cur = NULL; 4436 md = NULL; 4437 } 4438 4439 if (md == NULL) { 4440 ext4_unlock_group(sb, group); 4441 md = kmalloc(sizeof(*md), GFP_NOFS); 4442 if (md == NULL) 4443 return -ENOMEM; 4444 md->num = 0; 4445 md->group = group; 4446 4447 ext4_lock_group(sb, group); 4448 if (db->bb_md_cur == NULL) { 4449 spin_lock(&sbi->s_md_lock); 4450 list_add(&md->list, &sbi->s_active_transaction); 4451 spin_unlock(&sbi->s_md_lock); 4452 /* protect buddy cache from being freed, 4453 * otherwise we'll refresh it from 4454 * on-disk bitmap and lose not-yet-available 4455 * blocks */ 4456 page_cache_get(e4b->bd_buddy_page); 4457 page_cache_get(e4b->bd_bitmap_page); 4458 db->bb_md_cur = md; 4459 db->bb_tid = handle->h_transaction->t_tid; 4460 mb_debug("new md 0x%p for group %lu\n", 4461 md, md->group); 4462 } else { 4463 kfree(md); 4464 md = db->bb_md_cur; 4465 } 4466 } 4467 4468 BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS); 4469 md->blocks[md->num] = block + i; 4470 md->num++; 4471 if (md->num == EXT4_BB_MAX_BLOCKS) { 4472 /* no more space, put full container on a sb's list */ 4473 db->bb_md_cur = NULL; 4474 } 4475 } 4476 ext4_unlock_group(sb, group); 4477 return 0; 4478 } 4479 4480 /* 4481 * Main entry point into mballoc to free blocks 4482 */ 4483 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode, 4484 unsigned long block, unsigned long count, 4485 int metadata, unsigned long *freed) 4486 { 4487 struct buffer_head *bitmap_bh = NULL; 4488 struct super_block *sb = inode->i_sb; 4489 struct ext4_allocation_context *ac = NULL; 4490 struct ext4_group_desc *gdp; 4491 struct ext4_super_block *es; 4492 unsigned long overflow; 4493 ext4_grpblk_t bit; 4494 struct buffer_head *gd_bh; 4495 ext4_group_t block_group; 4496 struct ext4_sb_info *sbi; 4497 struct ext4_buddy e4b; 4498 int err = 0; 4499 int ret; 4500 4501 *freed = 0; 4502 4503 ext4_mb_poll_new_transaction(sb, handle); 4504 4505 sbi = EXT4_SB(sb); 4506 es = EXT4_SB(sb)->s_es; 4507 if (block < le32_to_cpu(es->s_first_data_block) || 4508 block + count < block || 4509 block + count > ext4_blocks_count(es)) { 4510 ext4_error(sb, __func__, 4511 "Freeing blocks not in datazone - " 4512 "block = %lu, count = %lu", block, count); 4513 goto error_return; 4514 } 4515 4516 ext4_debug("freeing block %lu\n", block); 4517 4518 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4519 if (ac) { 4520 ac->ac_op = EXT4_MB_HISTORY_FREE; 4521 ac->ac_inode = inode; 4522 ac->ac_sb = sb; 4523 } 4524 4525 do_more: 4526 overflow = 0; 4527 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4528 4529 /* 4530 * Check to see if we are freeing blocks across a group 4531 * boundary. 4532 */ 4533 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4534 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 4535 count -= overflow; 4536 } 4537 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4538 if (!bitmap_bh) { 4539 err = -EIO; 4540 goto error_return; 4541 } 4542 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4543 if (!gdp) { 4544 err = -EIO; 4545 goto error_return; 4546 } 4547 4548 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4549 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4550 in_range(block, ext4_inode_table(sb, gdp), 4551 EXT4_SB(sb)->s_itb_per_group) || 4552 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4553 EXT4_SB(sb)->s_itb_per_group)) { 4554 4555 ext4_error(sb, __func__, 4556 "Freeing blocks in system zone - " 4557 "Block = %lu, count = %lu", block, count); 4558 /* err = 0. ext4_std_error should be a no op */ 4559 goto error_return; 4560 } 4561 4562 BUFFER_TRACE(bitmap_bh, "getting write access"); 4563 err = ext4_journal_get_write_access(handle, bitmap_bh); 4564 if (err) 4565 goto error_return; 4566 4567 /* 4568 * We are about to modify some metadata. Call the journal APIs 4569 * to unshare ->b_data if a currently-committing transaction is 4570 * using it 4571 */ 4572 BUFFER_TRACE(gd_bh, "get_write_access"); 4573 err = ext4_journal_get_write_access(handle, gd_bh); 4574 if (err) 4575 goto error_return; 4576 4577 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4578 if (err) 4579 goto error_return; 4580 4581 #ifdef AGGRESSIVE_CHECK 4582 { 4583 int i; 4584 for (i = 0; i < count; i++) 4585 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4586 } 4587 #endif 4588 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data, 4589 bit, count); 4590 4591 /* We dirtied the bitmap block */ 4592 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4593 err = ext4_journal_dirty_metadata(handle, bitmap_bh); 4594 4595 if (ac) { 4596 ac->ac_b_ex.fe_group = block_group; 4597 ac->ac_b_ex.fe_start = bit; 4598 ac->ac_b_ex.fe_len = count; 4599 ext4_mb_store_history(ac); 4600 } 4601 4602 if (metadata) { 4603 /* blocks being freed are metadata. these blocks shouldn't 4604 * be used until this transaction is committed */ 4605 ext4_mb_free_metadata(handle, &e4b, block_group, bit, count); 4606 } else { 4607 ext4_lock_group(sb, block_group); 4608 mb_free_blocks(inode, &e4b, bit, count); 4609 ext4_mb_return_to_preallocation(inode, &e4b, block, count); 4610 ext4_unlock_group(sb, block_group); 4611 } 4612 4613 spin_lock(sb_bgl_lock(sbi, block_group)); 4614 le16_add_cpu(&gdp->bg_free_blocks_count, count); 4615 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 4616 spin_unlock(sb_bgl_lock(sbi, block_group)); 4617 percpu_counter_add(&sbi->s_freeblocks_counter, count); 4618 4619 if (sbi->s_log_groups_per_flex) { 4620 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4621 spin_lock(sb_bgl_lock(sbi, flex_group)); 4622 sbi->s_flex_groups[flex_group].free_blocks += count; 4623 spin_unlock(sb_bgl_lock(sbi, flex_group)); 4624 } 4625 4626 ext4_mb_release_desc(&e4b); 4627 4628 *freed += count; 4629 4630 /* And the group descriptor block */ 4631 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4632 ret = ext4_journal_dirty_metadata(handle, gd_bh); 4633 if (!err) 4634 err = ret; 4635 4636 if (overflow && !err) { 4637 block += count; 4638 count = overflow; 4639 put_bh(bitmap_bh); 4640 goto do_more; 4641 } 4642 sb->s_dirt = 1; 4643 error_return: 4644 brelse(bitmap_bh); 4645 ext4_std_error(sb, err); 4646 if (ac) 4647 kmem_cache_free(ext4_ac_cachep, ac); 4648 return; 4649 } 4650