xref: /linux/fs/ext4/mballoc.c (revision 5f4123be3cdb1dbd77fa9d6d2bb96bb9689a0a19)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 /*
26  * MUSTDO:
27  *   - test ext4_ext_search_left() and ext4_ext_search_right()
28  *   - search for metadata in few groups
29  *
30  * TODO v4:
31  *   - normalization should take into account whether file is still open
32  *   - discard preallocations if no free space left (policy?)
33  *   - don't normalize tails
34  *   - quota
35  *   - reservation for superuser
36  *
37  * TODO v3:
38  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
39  *   - track min/max extents in each group for better group selection
40  *   - mb_mark_used() may allocate chunk right after splitting buddy
41  *   - tree of groups sorted by number of free blocks
42  *   - error handling
43  */
44 
45 /*
46  * The allocation request involve request for multiple number of blocks
47  * near to the goal(block) value specified.
48  *
49  * During initialization phase of the allocator we decide to use the group
50  * preallocation or inode preallocation depending on the size file. The
51  * size of the file could be the resulting file size we would have after
52  * allocation or the current file size which ever is larger. If the size is
53  * less that sbi->s_mb_stream_request we select the group
54  * preallocation. The default value of s_mb_stream_request is 16
55  * blocks. This can also be tuned via
56  * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57  * of number of blocks.
58  *
59  * The main motivation for having small file use group preallocation is to
60  * ensure that we have small file closer in the disk.
61  *
62  * First stage the allocator looks at the inode prealloc list
63  * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64  * this particular inode. The inode prealloc space is represented as:
65  *
66  * pa_lstart -> the logical start block for this prealloc space
67  * pa_pstart -> the physical start block for this prealloc space
68  * pa_len    -> lenght for this prealloc space
69  * pa_free   ->  free space available in this prealloc space
70  *
71  * The inode preallocation space is used looking at the _logical_ start
72  * block. If only the logical file block falls within the range of prealloc
73  * space we will consume the particular prealloc space. This make sure that
74  * that the we have contiguous physical blocks representing the file blocks
75  *
76  * The important thing to be noted in case of inode prealloc space is that
77  * we don't modify the values associated to inode prealloc space except
78  * pa_free.
79  *
80  * If we are not able to find blocks in the inode prealloc space and if we
81  * have the group allocation flag set then we look at the locality group
82  * prealloc space. These are per CPU prealloc list repreasented as
83  *
84  * ext4_sb_info.s_locality_groups[smp_processor_id()]
85  *
86  * The reason for having a per cpu locality group is to reduce the contention
87  * between CPUs. It is possible to get scheduled at this point.
88  *
89  * The locality group prealloc space is used looking at whether we have
90  * enough free space (pa_free) withing the prealloc space.
91  *
92  * If we can't allocate blocks via inode prealloc or/and locality group
93  * prealloc then we look at the buddy cache. The buddy cache is represented
94  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95  * mapped to the buddy and bitmap information regarding different
96  * groups. The buddy information is attached to buddy cache inode so that
97  * we can access them through the page cache. The information regarding
98  * each group is loaded via ext4_mb_load_buddy.  The information involve
99  * block bitmap and buddy information. The information are stored in the
100  * inode as:
101  *
102  *  {                        page                        }
103  *  [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
104  *
105  *
106  * one block each for bitmap and buddy information.  So for each group we
107  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108  * blocksize) blocks.  So it can have information regarding groups_per_page
109  * which is blocks_per_page/2
110  *
111  * The buddy cache inode is not stored on disk. The inode is thrown
112  * away when the filesystem is unmounted.
113  *
114  * We look for count number of blocks in the buddy cache. If we were able
115  * to locate that many free blocks we return with additional information
116  * regarding rest of the contiguous physical block available
117  *
118  * Before allocating blocks via buddy cache we normalize the request
119  * blocks. This ensure we ask for more blocks that we needed. The extra
120  * blocks that we get after allocation is added to the respective prealloc
121  * list. In case of inode preallocation we follow a list of heuristics
122  * based on file size. This can be found in ext4_mb_normalize_request. If
123  * we are doing a group prealloc we try to normalize the request to
124  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125  * 512 blocks. This can be tuned via
126  * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * stripe value (sbi->s_stripe)
130  *
131  * The regular allocator(using the buddy cache) support few tunables.
132  *
133  * /proc/fs/ext4/<partition>/min_to_scan
134  * /proc/fs/ext4/<partition>/max_to_scan
135  * /proc/fs/ext4/<partition>/order2_req
136  *
137  * The regular allocator use buddy scan only if the request len is power of
138  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139  * value of s_mb_order2_reqs can be tuned via
140  * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
141  * stripe size (sbi->s_stripe), we try to search for contigous block in
142  * stripe size. This should result in better allocation on RAID setup. If
143  * not we search in the specific group using bitmap for best extents. The
144  * tunable min_to_scan and max_to_scan controll the behaviour here.
145  * min_to_scan indicate how long the mballoc __must__ look for a best
146  * extent and max_to_scanindicate how long the mballoc __can__ look for a
147  * best extent in the found extents. Searching for the blocks starts with
148  * the group specified as the goal value in allocation context via
149  * ac_g_ex. Each group is first checked based on the criteria whether it
150  * can used for allocation. ext4_mb_good_group explains how the groups are
151  * checked.
152  *
153  * Both the prealloc space are getting populated as above. So for the first
154  * request we will hit the buddy cache which will result in this prealloc
155  * space getting filled. The prealloc space is then later used for the
156  * subsequent request.
157  */
158 
159 /*
160  * mballoc operates on the following data:
161  *  - on-disk bitmap
162  *  - in-core buddy (actually includes buddy and bitmap)
163  *  - preallocation descriptors (PAs)
164  *
165  * there are two types of preallocations:
166  *  - inode
167  *    assiged to specific inode and can be used for this inode only.
168  *    it describes part of inode's space preallocated to specific
169  *    physical blocks. any block from that preallocated can be used
170  *    independent. the descriptor just tracks number of blocks left
171  *    unused. so, before taking some block from descriptor, one must
172  *    make sure corresponded logical block isn't allocated yet. this
173  *    also means that freeing any block within descriptor's range
174  *    must discard all preallocated blocks.
175  *  - locality group
176  *    assigned to specific locality group which does not translate to
177  *    permanent set of inodes: inode can join and leave group. space
178  *    from this type of preallocation can be used for any inode. thus
179  *    it's consumed from the beginning to the end.
180  *
181  * relation between them can be expressed as:
182  *    in-core buddy = on-disk bitmap + preallocation descriptors
183  *
184  * this mean blocks mballoc considers used are:
185  *  - allocated blocks (persistent)
186  *  - preallocated blocks (non-persistent)
187  *
188  * consistency in mballoc world means that at any time a block is either
189  * free or used in ALL structures. notice: "any time" should not be read
190  * literally -- time is discrete and delimited by locks.
191  *
192  *  to keep it simple, we don't use block numbers, instead we count number of
193  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194  *
195  * all operations can be expressed as:
196  *  - init buddy:			buddy = on-disk + PAs
197  *  - new PA:				buddy += N; PA = N
198  *  - use inode PA:			on-disk += N; PA -= N
199  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
200  *  - use locality group PA		on-disk += N; PA -= N
201  *  - discard locality group PA		buddy -= PA; PA = 0
202  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203  *        is used in real operation because we can't know actual used
204  *        bits from PA, only from on-disk bitmap
205  *
206  * if we follow this strict logic, then all operations above should be atomic.
207  * given some of them can block, we'd have to use something like semaphores
208  * killing performance on high-end SMP hardware. let's try to relax it using
209  * the following knowledge:
210  *  1) if buddy is referenced, it's already initialized
211  *  2) while block is used in buddy and the buddy is referenced,
212  *     nobody can re-allocate that block
213  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
215  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216  *     block
217  *
218  * so, now we're building a concurrency table:
219  *  - init buddy vs.
220  *    - new PA
221  *      blocks for PA are allocated in the buddy, buddy must be referenced
222  *      until PA is linked to allocation group to avoid concurrent buddy init
223  *    - use inode PA
224  *      we need to make sure that either on-disk bitmap or PA has uptodate data
225  *      given (3) we care that PA-=N operation doesn't interfere with init
226  *    - discard inode PA
227  *      the simplest way would be to have buddy initialized by the discard
228  *    - use locality group PA
229  *      again PA-=N must be serialized with init
230  *    - discard locality group PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *  - new PA vs.
233  *    - use inode PA
234  *      i_data_sem serializes them
235  *    - discard inode PA
236  *      discard process must wait until PA isn't used by another process
237  *    - use locality group PA
238  *      some mutex should serialize them
239  *    - discard locality group PA
240  *      discard process must wait until PA isn't used by another process
241  *  - use inode PA
242  *    - use inode PA
243  *      i_data_sem or another mutex should serializes them
244  *    - discard inode PA
245  *      discard process must wait until PA isn't used by another process
246  *    - use locality group PA
247  *      nothing wrong here -- they're different PAs covering different blocks
248  *    - discard locality group PA
249  *      discard process must wait until PA isn't used by another process
250  *
251  * now we're ready to make few consequences:
252  *  - PA is referenced and while it is no discard is possible
253  *  - PA is referenced until block isn't marked in on-disk bitmap
254  *  - PA changes only after on-disk bitmap
255  *  - discard must not compete with init. either init is done before
256  *    any discard or they're serialized somehow
257  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
258  *
259  * a special case when we've used PA to emptiness. no need to modify buddy
260  * in this case, but we should care about concurrent init
261  *
262  */
263 
264  /*
265  * Logic in few words:
266  *
267  *  - allocation:
268  *    load group
269  *    find blocks
270  *    mark bits in on-disk bitmap
271  *    release group
272  *
273  *  - use preallocation:
274  *    find proper PA (per-inode or group)
275  *    load group
276  *    mark bits in on-disk bitmap
277  *    release group
278  *    release PA
279  *
280  *  - free:
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *
285  *  - discard preallocations in group:
286  *    mark PAs deleted
287  *    move them onto local list
288  *    load on-disk bitmap
289  *    load group
290  *    remove PA from object (inode or locality group)
291  *    mark free blocks in-core
292  *
293  *  - discard inode's preallocations:
294  */
295 
296 /*
297  * Locking rules
298  *
299  * Locks:
300  *  - bitlock on a group	(group)
301  *  - object (inode/locality)	(object)
302  *  - per-pa lock		(pa)
303  *
304  * Paths:
305  *  - new pa
306  *    object
307  *    group
308  *
309  *  - find and use pa:
310  *    pa
311  *
312  *  - release consumed pa:
313  *    pa
314  *    group
315  *    object
316  *
317  *  - generate in-core bitmap:
318  *    group
319  *        pa
320  *
321  *  - discard all for given object (inode, locality group):
322  *    object
323  *        pa
324  *    group
325  *
326  *  - discard all for given group:
327  *    group
328  *        pa
329  *    group
330  *        object
331  *
332  */
333 
334 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
335 {
336 #if BITS_PER_LONG == 64
337 	*bit += ((unsigned long) addr & 7UL) << 3;
338 	addr = (void *) ((unsigned long) addr & ~7UL);
339 #elif BITS_PER_LONG == 32
340 	*bit += ((unsigned long) addr & 3UL) << 3;
341 	addr = (void *) ((unsigned long) addr & ~3UL);
342 #else
343 #error "how many bits you are?!"
344 #endif
345 	return addr;
346 }
347 
348 static inline int mb_test_bit(int bit, void *addr)
349 {
350 	/*
351 	 * ext4_test_bit on architecture like powerpc
352 	 * needs unsigned long aligned address
353 	 */
354 	addr = mb_correct_addr_and_bit(&bit, addr);
355 	return ext4_test_bit(bit, addr);
356 }
357 
358 static inline void mb_set_bit(int bit, void *addr)
359 {
360 	addr = mb_correct_addr_and_bit(&bit, addr);
361 	ext4_set_bit(bit, addr);
362 }
363 
364 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
365 {
366 	addr = mb_correct_addr_and_bit(&bit, addr);
367 	ext4_set_bit_atomic(lock, bit, addr);
368 }
369 
370 static inline void mb_clear_bit(int bit, void *addr)
371 {
372 	addr = mb_correct_addr_and_bit(&bit, addr);
373 	ext4_clear_bit(bit, addr);
374 }
375 
376 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378 	addr = mb_correct_addr_and_bit(&bit, addr);
379 	ext4_clear_bit_atomic(lock, bit, addr);
380 }
381 
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384 	int fix = 0, ret, tmpmax;
385 	addr = mb_correct_addr_and_bit(&fix, addr);
386 	tmpmax = max + fix;
387 	start += fix;
388 
389 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 	if (ret > max)
391 		return max;
392 	return ret;
393 }
394 
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397 	int fix = 0, ret, tmpmax;
398 	addr = mb_correct_addr_and_bit(&fix, addr);
399 	tmpmax = max + fix;
400 	start += fix;
401 
402 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 	if (ret > max)
404 		return max;
405 	return ret;
406 }
407 
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410 	char *bb;
411 
412 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 	BUG_ON(max == NULL);
414 
415 	if (order > e4b->bd_blkbits + 1) {
416 		*max = 0;
417 		return NULL;
418 	}
419 
420 	/* at order 0 we see each particular block */
421 	*max = 1 << (e4b->bd_blkbits + 3);
422 	if (order == 0)
423 		return EXT4_MB_BITMAP(e4b);
424 
425 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427 
428 	return bb;
429 }
430 
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 			   int first, int count)
434 {
435 	int i;
436 	struct super_block *sb = e4b->bd_sb;
437 
438 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 		return;
440 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
441 	for (i = 0; i < count; i++) {
442 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 			ext4_fsblk_t blocknr;
444 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 			blocknr += first + i;
446 			blocknr +=
447 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448 
449 			ext4_error(sb, __func__, "double-free of inode"
450 				   " %lu's block %llu(bit %u in group %lu)\n",
451 				   inode ? inode->i_ino : 0, blocknr,
452 				   first + i, e4b->bd_group);
453 		}
454 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 	}
456 }
457 
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 	int i;
461 
462 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 		return;
464 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
465 	for (i = 0; i < count; i++) {
466 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 	}
469 }
470 
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 		unsigned char *b1, *b2;
475 		int i;
476 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 		b2 = (unsigned char *) bitmap;
478 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 			if (b1[i] != b2[i]) {
480 				printk(KERN_ERR "corruption in group %lu "
481 				       "at byte %u(%u): %x in copy != %x "
482 				       "on disk/prealloc\n",
483 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
484 				BUG();
485 			}
486 		}
487 	}
488 }
489 
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492 				struct ext4_buddy *e4b, int first, int count)
493 {
494 	return;
495 }
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497 						int first, int count)
498 {
499 	return;
500 }
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 {
503 	return;
504 }
505 #endif
506 
507 #ifdef AGGRESSIVE_CHECK
508 
509 #define MB_CHECK_ASSERT(assert)						\
510 do {									\
511 	if (!(assert)) {						\
512 		printk(KERN_EMERG					\
513 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
514 			function, file, line, # assert);		\
515 		BUG();							\
516 	}								\
517 } while (0)
518 
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520 				const char *function, int line)
521 {
522 	struct super_block *sb = e4b->bd_sb;
523 	int order = e4b->bd_blkbits + 1;
524 	int max;
525 	int max2;
526 	int i;
527 	int j;
528 	int k;
529 	int count;
530 	struct ext4_group_info *grp;
531 	int fragments = 0;
532 	int fstart;
533 	struct list_head *cur;
534 	void *buddy;
535 	void *buddy2;
536 
537 	{
538 		static int mb_check_counter;
539 		if (mb_check_counter++ % 100 != 0)
540 			return 0;
541 	}
542 
543 	while (order > 1) {
544 		buddy = mb_find_buddy(e4b, order, &max);
545 		MB_CHECK_ASSERT(buddy);
546 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
547 		MB_CHECK_ASSERT(buddy2);
548 		MB_CHECK_ASSERT(buddy != buddy2);
549 		MB_CHECK_ASSERT(max * 2 == max2);
550 
551 		count = 0;
552 		for (i = 0; i < max; i++) {
553 
554 			if (mb_test_bit(i, buddy)) {
555 				/* only single bit in buddy2 may be 1 */
556 				if (!mb_test_bit(i << 1, buddy2)) {
557 					MB_CHECK_ASSERT(
558 						mb_test_bit((i<<1)+1, buddy2));
559 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
560 					MB_CHECK_ASSERT(
561 						mb_test_bit(i << 1, buddy2));
562 				}
563 				continue;
564 			}
565 
566 			/* both bits in buddy2 must be 0 */
567 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
568 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
569 
570 			for (j = 0; j < (1 << order); j++) {
571 				k = (i * (1 << order)) + j;
572 				MB_CHECK_ASSERT(
573 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
574 			}
575 			count++;
576 		}
577 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
578 		order--;
579 	}
580 
581 	fstart = -1;
582 	buddy = mb_find_buddy(e4b, 0, &max);
583 	for (i = 0; i < max; i++) {
584 		if (!mb_test_bit(i, buddy)) {
585 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
586 			if (fstart == -1) {
587 				fragments++;
588 				fstart = i;
589 			}
590 			continue;
591 		}
592 		fstart = -1;
593 		/* check used bits only */
594 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
595 			buddy2 = mb_find_buddy(e4b, j, &max2);
596 			k = i >> j;
597 			MB_CHECK_ASSERT(k < max2);
598 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
599 		}
600 	}
601 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
602 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
603 
604 	grp = ext4_get_group_info(sb, e4b->bd_group);
605 	buddy = mb_find_buddy(e4b, 0, &max);
606 	list_for_each(cur, &grp->bb_prealloc_list) {
607 		ext4_group_t groupnr;
608 		struct ext4_prealloc_space *pa;
609 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
610 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
611 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
612 		for (i = 0; i < pa->pa_len; i++)
613 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
614 	}
615 	return 0;
616 }
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
619 					__FILE__, __func__, __LINE__)
620 #else
621 #define mb_check_buddy(e4b)
622 #endif
623 
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block *sb,
626 				void *buddy, unsigned first, int len,
627 					struct ext4_group_info *grp)
628 {
629 	struct ext4_sb_info *sbi = EXT4_SB(sb);
630 	unsigned short min;
631 	unsigned short max;
632 	unsigned short chunk;
633 	unsigned short border;
634 
635 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
636 
637 	border = 2 << sb->s_blocksize_bits;
638 
639 	while (len > 0) {
640 		/* find how many blocks can be covered since this position */
641 		max = ffs(first | border) - 1;
642 
643 		/* find how many blocks of power 2 we need to mark */
644 		min = fls(len) - 1;
645 
646 		if (max < min)
647 			min = max;
648 		chunk = 1 << min;
649 
650 		/* mark multiblock chunks only */
651 		grp->bb_counters[min]++;
652 		if (min > 0)
653 			mb_clear_bit(first >> min,
654 				     buddy + sbi->s_mb_offsets[min]);
655 
656 		len -= chunk;
657 		first += chunk;
658 	}
659 }
660 
661 static void ext4_mb_generate_buddy(struct super_block *sb,
662 				void *buddy, void *bitmap, ext4_group_t group)
663 {
664 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
665 	unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
666 	unsigned short i = 0;
667 	unsigned short first;
668 	unsigned short len;
669 	unsigned free = 0;
670 	unsigned fragments = 0;
671 	unsigned long long period = get_cycles();
672 
673 	/* initialize buddy from bitmap which is aggregation
674 	 * of on-disk bitmap and preallocations */
675 	i = mb_find_next_zero_bit(bitmap, max, 0);
676 	grp->bb_first_free = i;
677 	while (i < max) {
678 		fragments++;
679 		first = i;
680 		i = mb_find_next_bit(bitmap, max, i);
681 		len = i - first;
682 		free += len;
683 		if (len > 1)
684 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
685 		else
686 			grp->bb_counters[0]++;
687 		if (i < max)
688 			i = mb_find_next_zero_bit(bitmap, max, i);
689 	}
690 	grp->bb_fragments = fragments;
691 
692 	if (free != grp->bb_free) {
693 		ext4_error(sb, __func__,
694 			"EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
695 			group, free, grp->bb_free);
696 		/*
697 		 * If we intent to continue, we consider group descritor
698 		 * corrupt and update bb_free using bitmap value
699 		 */
700 		grp->bb_free = free;
701 	}
702 
703 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
704 
705 	period = get_cycles() - period;
706 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
707 	EXT4_SB(sb)->s_mb_buddies_generated++;
708 	EXT4_SB(sb)->s_mb_generation_time += period;
709 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
710 }
711 
712 /* The buddy information is attached the buddy cache inode
713  * for convenience. The information regarding each group
714  * is loaded via ext4_mb_load_buddy. The information involve
715  * block bitmap and buddy information. The information are
716  * stored in the inode as
717  *
718  * {                        page                        }
719  * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
720  *
721  *
722  * one block each for bitmap and buddy information.
723  * So for each group we take up 2 blocks. A page can
724  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
725  * So it can have information regarding groups_per_page which
726  * is blocks_per_page/2
727  */
728 
729 static int ext4_mb_init_cache(struct page *page, char *incore)
730 {
731 	int blocksize;
732 	int blocks_per_page;
733 	int groups_per_page;
734 	int err = 0;
735 	int i;
736 	ext4_group_t first_group;
737 	int first_block;
738 	struct super_block *sb;
739 	struct buffer_head *bhs;
740 	struct buffer_head **bh;
741 	struct inode *inode;
742 	char *data;
743 	char *bitmap;
744 
745 	mb_debug("init page %lu\n", page->index);
746 
747 	inode = page->mapping->host;
748 	sb = inode->i_sb;
749 	blocksize = 1 << inode->i_blkbits;
750 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
751 
752 	groups_per_page = blocks_per_page >> 1;
753 	if (groups_per_page == 0)
754 		groups_per_page = 1;
755 
756 	/* allocate buffer_heads to read bitmaps */
757 	if (groups_per_page > 1) {
758 		err = -ENOMEM;
759 		i = sizeof(struct buffer_head *) * groups_per_page;
760 		bh = kzalloc(i, GFP_NOFS);
761 		if (bh == NULL)
762 			goto out;
763 	} else
764 		bh = &bhs;
765 
766 	first_group = page->index * blocks_per_page / 2;
767 
768 	/* read all groups the page covers into the cache */
769 	for (i = 0; i < groups_per_page; i++) {
770 		struct ext4_group_desc *desc;
771 
772 		if (first_group + i >= EXT4_SB(sb)->s_groups_count)
773 			break;
774 
775 		err = -EIO;
776 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
777 		if (desc == NULL)
778 			goto out;
779 
780 		err = -ENOMEM;
781 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
782 		if (bh[i] == NULL)
783 			goto out;
784 
785 		if (buffer_uptodate(bh[i]) &&
786 		    !(desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))
787 			continue;
788 
789 		lock_buffer(bh[i]);
790 		spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
791 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
792 			ext4_init_block_bitmap(sb, bh[i],
793 						first_group + i, desc);
794 			set_buffer_uptodate(bh[i]);
795 			unlock_buffer(bh[i]);
796 			spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
797 			continue;
798 		}
799 		spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
800 		get_bh(bh[i]);
801 		bh[i]->b_end_io = end_buffer_read_sync;
802 		submit_bh(READ, bh[i]);
803 		mb_debug("read bitmap for group %lu\n", first_group + i);
804 	}
805 
806 	/* wait for I/O completion */
807 	for (i = 0; i < groups_per_page && bh[i]; i++)
808 		wait_on_buffer(bh[i]);
809 
810 	err = -EIO;
811 	for (i = 0; i < groups_per_page && bh[i]; i++)
812 		if (!buffer_uptodate(bh[i]))
813 			goto out;
814 
815 	err = 0;
816 	first_block = page->index * blocks_per_page;
817 	for (i = 0; i < blocks_per_page; i++) {
818 		int group;
819 		struct ext4_group_info *grinfo;
820 
821 		group = (first_block + i) >> 1;
822 		if (group >= EXT4_SB(sb)->s_groups_count)
823 			break;
824 
825 		/*
826 		 * data carry information regarding this
827 		 * particular group in the format specified
828 		 * above
829 		 *
830 		 */
831 		data = page_address(page) + (i * blocksize);
832 		bitmap = bh[group - first_group]->b_data;
833 
834 		/*
835 		 * We place the buddy block and bitmap block
836 		 * close together
837 		 */
838 		if ((first_block + i) & 1) {
839 			/* this is block of buddy */
840 			BUG_ON(incore == NULL);
841 			mb_debug("put buddy for group %u in page %lu/%x\n",
842 				group, page->index, i * blocksize);
843 			memset(data, 0xff, blocksize);
844 			grinfo = ext4_get_group_info(sb, group);
845 			grinfo->bb_fragments = 0;
846 			memset(grinfo->bb_counters, 0,
847 			       sizeof(unsigned short)*(sb->s_blocksize_bits+2));
848 			/*
849 			 * incore got set to the group block bitmap below
850 			 */
851 			ext4_mb_generate_buddy(sb, data, incore, group);
852 			incore = NULL;
853 		} else {
854 			/* this is block of bitmap */
855 			BUG_ON(incore != NULL);
856 			mb_debug("put bitmap for group %u in page %lu/%x\n",
857 				group, page->index, i * blocksize);
858 
859 			/* see comments in ext4_mb_put_pa() */
860 			ext4_lock_group(sb, group);
861 			memcpy(data, bitmap, blocksize);
862 
863 			/* mark all preallocated blks used in in-core bitmap */
864 			ext4_mb_generate_from_pa(sb, data, group);
865 			ext4_unlock_group(sb, group);
866 
867 			/* set incore so that the buddy information can be
868 			 * generated using this
869 			 */
870 			incore = data;
871 		}
872 	}
873 	SetPageUptodate(page);
874 
875 out:
876 	if (bh) {
877 		for (i = 0; i < groups_per_page && bh[i]; i++)
878 			brelse(bh[i]);
879 		if (bh != &bhs)
880 			kfree(bh);
881 	}
882 	return err;
883 }
884 
885 static noinline_for_stack int
886 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
887 					struct ext4_buddy *e4b)
888 {
889 	struct ext4_sb_info *sbi = EXT4_SB(sb);
890 	struct inode *inode = sbi->s_buddy_cache;
891 	int blocks_per_page;
892 	int block;
893 	int pnum;
894 	int poff;
895 	struct page *page;
896 	int ret;
897 
898 	mb_debug("load group %lu\n", group);
899 
900 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
901 
902 	e4b->bd_blkbits = sb->s_blocksize_bits;
903 	e4b->bd_info = ext4_get_group_info(sb, group);
904 	e4b->bd_sb = sb;
905 	e4b->bd_group = group;
906 	e4b->bd_buddy_page = NULL;
907 	e4b->bd_bitmap_page = NULL;
908 
909 	/*
910 	 * the buddy cache inode stores the block bitmap
911 	 * and buddy information in consecutive blocks.
912 	 * So for each group we need two blocks.
913 	 */
914 	block = group * 2;
915 	pnum = block / blocks_per_page;
916 	poff = block % blocks_per_page;
917 
918 	/* we could use find_or_create_page(), but it locks page
919 	 * what we'd like to avoid in fast path ... */
920 	page = find_get_page(inode->i_mapping, pnum);
921 	if (page == NULL || !PageUptodate(page)) {
922 		if (page)
923 			page_cache_release(page);
924 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
925 		if (page) {
926 			BUG_ON(page->mapping != inode->i_mapping);
927 			if (!PageUptodate(page)) {
928 				ret = ext4_mb_init_cache(page, NULL);
929 				if (ret) {
930 					unlock_page(page);
931 					goto err;
932 				}
933 				mb_cmp_bitmaps(e4b, page_address(page) +
934 					       (poff * sb->s_blocksize));
935 			}
936 			unlock_page(page);
937 		}
938 	}
939 	if (page == NULL || !PageUptodate(page)) {
940 		ret = -EIO;
941 		goto err;
942 	}
943 	e4b->bd_bitmap_page = page;
944 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
945 	mark_page_accessed(page);
946 
947 	block++;
948 	pnum = block / blocks_per_page;
949 	poff = block % blocks_per_page;
950 
951 	page = find_get_page(inode->i_mapping, pnum);
952 	if (page == NULL || !PageUptodate(page)) {
953 		if (page)
954 			page_cache_release(page);
955 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
956 		if (page) {
957 			BUG_ON(page->mapping != inode->i_mapping);
958 			if (!PageUptodate(page)) {
959 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
960 				if (ret) {
961 					unlock_page(page);
962 					goto err;
963 				}
964 			}
965 			unlock_page(page);
966 		}
967 	}
968 	if (page == NULL || !PageUptodate(page)) {
969 		ret = -EIO;
970 		goto err;
971 	}
972 	e4b->bd_buddy_page = page;
973 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
974 	mark_page_accessed(page);
975 
976 	BUG_ON(e4b->bd_bitmap_page == NULL);
977 	BUG_ON(e4b->bd_buddy_page == NULL);
978 
979 	return 0;
980 
981 err:
982 	if (e4b->bd_bitmap_page)
983 		page_cache_release(e4b->bd_bitmap_page);
984 	if (e4b->bd_buddy_page)
985 		page_cache_release(e4b->bd_buddy_page);
986 	e4b->bd_buddy = NULL;
987 	e4b->bd_bitmap = NULL;
988 	return ret;
989 }
990 
991 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
992 {
993 	if (e4b->bd_bitmap_page)
994 		page_cache_release(e4b->bd_bitmap_page);
995 	if (e4b->bd_buddy_page)
996 		page_cache_release(e4b->bd_buddy_page);
997 }
998 
999 
1000 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1001 {
1002 	int order = 1;
1003 	void *bb;
1004 
1005 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1006 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1007 
1008 	bb = EXT4_MB_BUDDY(e4b);
1009 	while (order <= e4b->bd_blkbits + 1) {
1010 		block = block >> 1;
1011 		if (!mb_test_bit(block, bb)) {
1012 			/* this block is part of buddy of order 'order' */
1013 			return order;
1014 		}
1015 		bb += 1 << (e4b->bd_blkbits - order);
1016 		order++;
1017 	}
1018 	return 0;
1019 }
1020 
1021 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1022 {
1023 	__u32 *addr;
1024 
1025 	len = cur + len;
1026 	while (cur < len) {
1027 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1028 			/* fast path: clear whole word at once */
1029 			addr = bm + (cur >> 3);
1030 			*addr = 0;
1031 			cur += 32;
1032 			continue;
1033 		}
1034 		mb_clear_bit_atomic(lock, cur, bm);
1035 		cur++;
1036 	}
1037 }
1038 
1039 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1040 {
1041 	__u32 *addr;
1042 
1043 	len = cur + len;
1044 	while (cur < len) {
1045 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1046 			/* fast path: set whole word at once */
1047 			addr = bm + (cur >> 3);
1048 			*addr = 0xffffffff;
1049 			cur += 32;
1050 			continue;
1051 		}
1052 		mb_set_bit_atomic(lock, cur, bm);
1053 		cur++;
1054 	}
1055 }
1056 
1057 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1058 			  int first, int count)
1059 {
1060 	int block = 0;
1061 	int max = 0;
1062 	int order;
1063 	void *buddy;
1064 	void *buddy2;
1065 	struct super_block *sb = e4b->bd_sb;
1066 
1067 	BUG_ON(first + count > (sb->s_blocksize << 3));
1068 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1069 	mb_check_buddy(e4b);
1070 	mb_free_blocks_double(inode, e4b, first, count);
1071 
1072 	e4b->bd_info->bb_free += count;
1073 	if (first < e4b->bd_info->bb_first_free)
1074 		e4b->bd_info->bb_first_free = first;
1075 
1076 	/* let's maintain fragments counter */
1077 	if (first != 0)
1078 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1079 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1080 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1081 	if (block && max)
1082 		e4b->bd_info->bb_fragments--;
1083 	else if (!block && !max)
1084 		e4b->bd_info->bb_fragments++;
1085 
1086 	/* let's maintain buddy itself */
1087 	while (count-- > 0) {
1088 		block = first++;
1089 		order = 0;
1090 
1091 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1092 			ext4_fsblk_t blocknr;
1093 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1094 			blocknr += block;
1095 			blocknr +=
1096 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1097 			ext4_unlock_group(sb, e4b->bd_group);
1098 			ext4_error(sb, __func__, "double-free of inode"
1099 				   " %lu's block %llu(bit %u in group %lu)\n",
1100 				   inode ? inode->i_ino : 0, blocknr, block,
1101 				   e4b->bd_group);
1102 			ext4_lock_group(sb, e4b->bd_group);
1103 		}
1104 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1105 		e4b->bd_info->bb_counters[order]++;
1106 
1107 		/* start of the buddy */
1108 		buddy = mb_find_buddy(e4b, order, &max);
1109 
1110 		do {
1111 			block &= ~1UL;
1112 			if (mb_test_bit(block, buddy) ||
1113 					mb_test_bit(block + 1, buddy))
1114 				break;
1115 
1116 			/* both the buddies are free, try to coalesce them */
1117 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1118 
1119 			if (!buddy2)
1120 				break;
1121 
1122 			if (order > 0) {
1123 				/* for special purposes, we don't set
1124 				 * free bits in bitmap */
1125 				mb_set_bit(block, buddy);
1126 				mb_set_bit(block + 1, buddy);
1127 			}
1128 			e4b->bd_info->bb_counters[order]--;
1129 			e4b->bd_info->bb_counters[order]--;
1130 
1131 			block = block >> 1;
1132 			order++;
1133 			e4b->bd_info->bb_counters[order]++;
1134 
1135 			mb_clear_bit(block, buddy2);
1136 			buddy = buddy2;
1137 		} while (1);
1138 	}
1139 	mb_check_buddy(e4b);
1140 }
1141 
1142 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1143 				int needed, struct ext4_free_extent *ex)
1144 {
1145 	int next = block;
1146 	int max;
1147 	int ord;
1148 	void *buddy;
1149 
1150 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1151 	BUG_ON(ex == NULL);
1152 
1153 	buddy = mb_find_buddy(e4b, order, &max);
1154 	BUG_ON(buddy == NULL);
1155 	BUG_ON(block >= max);
1156 	if (mb_test_bit(block, buddy)) {
1157 		ex->fe_len = 0;
1158 		ex->fe_start = 0;
1159 		ex->fe_group = 0;
1160 		return 0;
1161 	}
1162 
1163 	/* FIXME dorp order completely ? */
1164 	if (likely(order == 0)) {
1165 		/* find actual order */
1166 		order = mb_find_order_for_block(e4b, block);
1167 		block = block >> order;
1168 	}
1169 
1170 	ex->fe_len = 1 << order;
1171 	ex->fe_start = block << order;
1172 	ex->fe_group = e4b->bd_group;
1173 
1174 	/* calc difference from given start */
1175 	next = next - ex->fe_start;
1176 	ex->fe_len -= next;
1177 	ex->fe_start += next;
1178 
1179 	while (needed > ex->fe_len &&
1180 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1181 
1182 		if (block + 1 >= max)
1183 			break;
1184 
1185 		next = (block + 1) * (1 << order);
1186 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1187 			break;
1188 
1189 		ord = mb_find_order_for_block(e4b, next);
1190 
1191 		order = ord;
1192 		block = next >> order;
1193 		ex->fe_len += 1 << order;
1194 	}
1195 
1196 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1197 	return ex->fe_len;
1198 }
1199 
1200 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1201 {
1202 	int ord;
1203 	int mlen = 0;
1204 	int max = 0;
1205 	int cur;
1206 	int start = ex->fe_start;
1207 	int len = ex->fe_len;
1208 	unsigned ret = 0;
1209 	int len0 = len;
1210 	void *buddy;
1211 
1212 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1213 	BUG_ON(e4b->bd_group != ex->fe_group);
1214 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1215 	mb_check_buddy(e4b);
1216 	mb_mark_used_double(e4b, start, len);
1217 
1218 	e4b->bd_info->bb_free -= len;
1219 	if (e4b->bd_info->bb_first_free == start)
1220 		e4b->bd_info->bb_first_free += len;
1221 
1222 	/* let's maintain fragments counter */
1223 	if (start != 0)
1224 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1225 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1226 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1227 	if (mlen && max)
1228 		e4b->bd_info->bb_fragments++;
1229 	else if (!mlen && !max)
1230 		e4b->bd_info->bb_fragments--;
1231 
1232 	/* let's maintain buddy itself */
1233 	while (len) {
1234 		ord = mb_find_order_for_block(e4b, start);
1235 
1236 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1237 			/* the whole chunk may be allocated at once! */
1238 			mlen = 1 << ord;
1239 			buddy = mb_find_buddy(e4b, ord, &max);
1240 			BUG_ON((start >> ord) >= max);
1241 			mb_set_bit(start >> ord, buddy);
1242 			e4b->bd_info->bb_counters[ord]--;
1243 			start += mlen;
1244 			len -= mlen;
1245 			BUG_ON(len < 0);
1246 			continue;
1247 		}
1248 
1249 		/* store for history */
1250 		if (ret == 0)
1251 			ret = len | (ord << 16);
1252 
1253 		/* we have to split large buddy */
1254 		BUG_ON(ord <= 0);
1255 		buddy = mb_find_buddy(e4b, ord, &max);
1256 		mb_set_bit(start >> ord, buddy);
1257 		e4b->bd_info->bb_counters[ord]--;
1258 
1259 		ord--;
1260 		cur = (start >> ord) & ~1U;
1261 		buddy = mb_find_buddy(e4b, ord, &max);
1262 		mb_clear_bit(cur, buddy);
1263 		mb_clear_bit(cur + 1, buddy);
1264 		e4b->bd_info->bb_counters[ord]++;
1265 		e4b->bd_info->bb_counters[ord]++;
1266 	}
1267 
1268 	mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1269 			EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1270 	mb_check_buddy(e4b);
1271 
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Must be called under group lock!
1277  */
1278 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1279 					struct ext4_buddy *e4b)
1280 {
1281 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1282 	int ret;
1283 
1284 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1285 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1286 
1287 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1288 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1289 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1290 
1291 	/* preallocation can change ac_b_ex, thus we store actually
1292 	 * allocated blocks for history */
1293 	ac->ac_f_ex = ac->ac_b_ex;
1294 
1295 	ac->ac_status = AC_STATUS_FOUND;
1296 	ac->ac_tail = ret & 0xffff;
1297 	ac->ac_buddy = ret >> 16;
1298 
1299 	/* XXXXXXX: SUCH A HORRIBLE **CK */
1300 	/*FIXME!! Why ? */
1301 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1302 	get_page(ac->ac_bitmap_page);
1303 	ac->ac_buddy_page = e4b->bd_buddy_page;
1304 	get_page(ac->ac_buddy_page);
1305 
1306 	/* store last allocated for subsequent stream allocation */
1307 	if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1308 		spin_lock(&sbi->s_md_lock);
1309 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1310 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1311 		spin_unlock(&sbi->s_md_lock);
1312 	}
1313 }
1314 
1315 /*
1316  * regular allocator, for general purposes allocation
1317  */
1318 
1319 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1320 					struct ext4_buddy *e4b,
1321 					int finish_group)
1322 {
1323 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1324 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1325 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1326 	struct ext4_free_extent ex;
1327 	int max;
1328 
1329 	/*
1330 	 * We don't want to scan for a whole year
1331 	 */
1332 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1333 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1334 		ac->ac_status = AC_STATUS_BREAK;
1335 		return;
1336 	}
1337 
1338 	/*
1339 	 * Haven't found good chunk so far, let's continue
1340 	 */
1341 	if (bex->fe_len < gex->fe_len)
1342 		return;
1343 
1344 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1345 			&& bex->fe_group == e4b->bd_group) {
1346 		/* recheck chunk's availability - we don't know
1347 		 * when it was found (within this lock-unlock
1348 		 * period or not) */
1349 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1350 		if (max >= gex->fe_len) {
1351 			ext4_mb_use_best_found(ac, e4b);
1352 			return;
1353 		}
1354 	}
1355 }
1356 
1357 /*
1358  * The routine checks whether found extent is good enough. If it is,
1359  * then the extent gets marked used and flag is set to the context
1360  * to stop scanning. Otherwise, the extent is compared with the
1361  * previous found extent and if new one is better, then it's stored
1362  * in the context. Later, the best found extent will be used, if
1363  * mballoc can't find good enough extent.
1364  *
1365  * FIXME: real allocation policy is to be designed yet!
1366  */
1367 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1368 					struct ext4_free_extent *ex,
1369 					struct ext4_buddy *e4b)
1370 {
1371 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1372 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1373 
1374 	BUG_ON(ex->fe_len <= 0);
1375 	BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1376 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1377 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1378 
1379 	ac->ac_found++;
1380 
1381 	/*
1382 	 * The special case - take what you catch first
1383 	 */
1384 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1385 		*bex = *ex;
1386 		ext4_mb_use_best_found(ac, e4b);
1387 		return;
1388 	}
1389 
1390 	/*
1391 	 * Let's check whether the chuck is good enough
1392 	 */
1393 	if (ex->fe_len == gex->fe_len) {
1394 		*bex = *ex;
1395 		ext4_mb_use_best_found(ac, e4b);
1396 		return;
1397 	}
1398 
1399 	/*
1400 	 * If this is first found extent, just store it in the context
1401 	 */
1402 	if (bex->fe_len == 0) {
1403 		*bex = *ex;
1404 		return;
1405 	}
1406 
1407 	/*
1408 	 * If new found extent is better, store it in the context
1409 	 */
1410 	if (bex->fe_len < gex->fe_len) {
1411 		/* if the request isn't satisfied, any found extent
1412 		 * larger than previous best one is better */
1413 		if (ex->fe_len > bex->fe_len)
1414 			*bex = *ex;
1415 	} else if (ex->fe_len > gex->fe_len) {
1416 		/* if the request is satisfied, then we try to find
1417 		 * an extent that still satisfy the request, but is
1418 		 * smaller than previous one */
1419 		if (ex->fe_len < bex->fe_len)
1420 			*bex = *ex;
1421 	}
1422 
1423 	ext4_mb_check_limits(ac, e4b, 0);
1424 }
1425 
1426 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1427 					struct ext4_buddy *e4b)
1428 {
1429 	struct ext4_free_extent ex = ac->ac_b_ex;
1430 	ext4_group_t group = ex.fe_group;
1431 	int max;
1432 	int err;
1433 
1434 	BUG_ON(ex.fe_len <= 0);
1435 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1436 	if (err)
1437 		return err;
1438 
1439 	ext4_lock_group(ac->ac_sb, group);
1440 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1441 
1442 	if (max > 0) {
1443 		ac->ac_b_ex = ex;
1444 		ext4_mb_use_best_found(ac, e4b);
1445 	}
1446 
1447 	ext4_unlock_group(ac->ac_sb, group);
1448 	ext4_mb_release_desc(e4b);
1449 
1450 	return 0;
1451 }
1452 
1453 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1454 				struct ext4_buddy *e4b)
1455 {
1456 	ext4_group_t group = ac->ac_g_ex.fe_group;
1457 	int max;
1458 	int err;
1459 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1460 	struct ext4_super_block *es = sbi->s_es;
1461 	struct ext4_free_extent ex;
1462 
1463 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1464 		return 0;
1465 
1466 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1467 	if (err)
1468 		return err;
1469 
1470 	ext4_lock_group(ac->ac_sb, group);
1471 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1472 			     ac->ac_g_ex.fe_len, &ex);
1473 
1474 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1475 		ext4_fsblk_t start;
1476 
1477 		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1478 			ex.fe_start + le32_to_cpu(es->s_first_data_block);
1479 		/* use do_div to get remainder (would be 64-bit modulo) */
1480 		if (do_div(start, sbi->s_stripe) == 0) {
1481 			ac->ac_found++;
1482 			ac->ac_b_ex = ex;
1483 			ext4_mb_use_best_found(ac, e4b);
1484 		}
1485 	} else if (max >= ac->ac_g_ex.fe_len) {
1486 		BUG_ON(ex.fe_len <= 0);
1487 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1488 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1489 		ac->ac_found++;
1490 		ac->ac_b_ex = ex;
1491 		ext4_mb_use_best_found(ac, e4b);
1492 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1493 		/* Sometimes, caller may want to merge even small
1494 		 * number of blocks to an existing extent */
1495 		BUG_ON(ex.fe_len <= 0);
1496 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1497 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1498 		ac->ac_found++;
1499 		ac->ac_b_ex = ex;
1500 		ext4_mb_use_best_found(ac, e4b);
1501 	}
1502 	ext4_unlock_group(ac->ac_sb, group);
1503 	ext4_mb_release_desc(e4b);
1504 
1505 	return 0;
1506 }
1507 
1508 /*
1509  * The routine scans buddy structures (not bitmap!) from given order
1510  * to max order and tries to find big enough chunk to satisfy the req
1511  */
1512 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1513 					struct ext4_buddy *e4b)
1514 {
1515 	struct super_block *sb = ac->ac_sb;
1516 	struct ext4_group_info *grp = e4b->bd_info;
1517 	void *buddy;
1518 	int i;
1519 	int k;
1520 	int max;
1521 
1522 	BUG_ON(ac->ac_2order <= 0);
1523 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1524 		if (grp->bb_counters[i] == 0)
1525 			continue;
1526 
1527 		buddy = mb_find_buddy(e4b, i, &max);
1528 		BUG_ON(buddy == NULL);
1529 
1530 		k = mb_find_next_zero_bit(buddy, max, 0);
1531 		BUG_ON(k >= max);
1532 
1533 		ac->ac_found++;
1534 
1535 		ac->ac_b_ex.fe_len = 1 << i;
1536 		ac->ac_b_ex.fe_start = k << i;
1537 		ac->ac_b_ex.fe_group = e4b->bd_group;
1538 
1539 		ext4_mb_use_best_found(ac, e4b);
1540 
1541 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1542 
1543 		if (EXT4_SB(sb)->s_mb_stats)
1544 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1545 
1546 		break;
1547 	}
1548 }
1549 
1550 /*
1551  * The routine scans the group and measures all found extents.
1552  * In order to optimize scanning, caller must pass number of
1553  * free blocks in the group, so the routine can know upper limit.
1554  */
1555 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1556 					struct ext4_buddy *e4b)
1557 {
1558 	struct super_block *sb = ac->ac_sb;
1559 	void *bitmap = EXT4_MB_BITMAP(e4b);
1560 	struct ext4_free_extent ex;
1561 	int i;
1562 	int free;
1563 
1564 	free = e4b->bd_info->bb_free;
1565 	BUG_ON(free <= 0);
1566 
1567 	i = e4b->bd_info->bb_first_free;
1568 
1569 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1570 		i = mb_find_next_zero_bit(bitmap,
1571 						EXT4_BLOCKS_PER_GROUP(sb), i);
1572 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1573 			/*
1574 			 * IF we have corrupt bitmap, we won't find any
1575 			 * free blocks even though group info says we
1576 			 * we have free blocks
1577 			 */
1578 			ext4_error(sb, __func__, "%d free blocks as per "
1579 					"group info. But bitmap says 0\n",
1580 					free);
1581 			break;
1582 		}
1583 
1584 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1585 		BUG_ON(ex.fe_len <= 0);
1586 		if (free < ex.fe_len) {
1587 			ext4_error(sb, __func__, "%d free blocks as per "
1588 					"group info. But got %d blocks\n",
1589 					free, ex.fe_len);
1590 			/*
1591 			 * The number of free blocks differs. This mostly
1592 			 * indicate that the bitmap is corrupt. So exit
1593 			 * without claiming the space.
1594 			 */
1595 			break;
1596 		}
1597 
1598 		ext4_mb_measure_extent(ac, &ex, e4b);
1599 
1600 		i += ex.fe_len;
1601 		free -= ex.fe_len;
1602 	}
1603 
1604 	ext4_mb_check_limits(ac, e4b, 1);
1605 }
1606 
1607 /*
1608  * This is a special case for storages like raid5
1609  * we try to find stripe-aligned chunks for stripe-size requests
1610  * XXX should do so at least for multiples of stripe size as well
1611  */
1612 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1613 				 struct ext4_buddy *e4b)
1614 {
1615 	struct super_block *sb = ac->ac_sb;
1616 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1617 	void *bitmap = EXT4_MB_BITMAP(e4b);
1618 	struct ext4_free_extent ex;
1619 	ext4_fsblk_t first_group_block;
1620 	ext4_fsblk_t a;
1621 	ext4_grpblk_t i;
1622 	int max;
1623 
1624 	BUG_ON(sbi->s_stripe == 0);
1625 
1626 	/* find first stripe-aligned block in group */
1627 	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1628 		+ le32_to_cpu(sbi->s_es->s_first_data_block);
1629 	a = first_group_block + sbi->s_stripe - 1;
1630 	do_div(a, sbi->s_stripe);
1631 	i = (a * sbi->s_stripe) - first_group_block;
1632 
1633 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1634 		if (!mb_test_bit(i, bitmap)) {
1635 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1636 			if (max >= sbi->s_stripe) {
1637 				ac->ac_found++;
1638 				ac->ac_b_ex = ex;
1639 				ext4_mb_use_best_found(ac, e4b);
1640 				break;
1641 			}
1642 		}
1643 		i += sbi->s_stripe;
1644 	}
1645 }
1646 
1647 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1648 				ext4_group_t group, int cr)
1649 {
1650 	unsigned free, fragments;
1651 	unsigned i, bits;
1652 	struct ext4_group_desc *desc;
1653 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1654 
1655 	BUG_ON(cr < 0 || cr >= 4);
1656 	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1657 
1658 	free = grp->bb_free;
1659 	fragments = grp->bb_fragments;
1660 	if (free == 0)
1661 		return 0;
1662 	if (fragments == 0)
1663 		return 0;
1664 
1665 	switch (cr) {
1666 	case 0:
1667 		BUG_ON(ac->ac_2order == 0);
1668 		/* If this group is uninitialized, skip it initially */
1669 		desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1670 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1671 			return 0;
1672 
1673 		bits = ac->ac_sb->s_blocksize_bits + 1;
1674 		for (i = ac->ac_2order; i <= bits; i++)
1675 			if (grp->bb_counters[i] > 0)
1676 				return 1;
1677 		break;
1678 	case 1:
1679 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1680 			return 1;
1681 		break;
1682 	case 2:
1683 		if (free >= ac->ac_g_ex.fe_len)
1684 			return 1;
1685 		break;
1686 	case 3:
1687 		return 1;
1688 	default:
1689 		BUG();
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 static noinline_for_stack int
1696 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1697 {
1698 	ext4_group_t group;
1699 	ext4_group_t i;
1700 	int cr;
1701 	int err = 0;
1702 	int bsbits;
1703 	struct ext4_sb_info *sbi;
1704 	struct super_block *sb;
1705 	struct ext4_buddy e4b;
1706 	loff_t size, isize;
1707 
1708 	sb = ac->ac_sb;
1709 	sbi = EXT4_SB(sb);
1710 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1711 
1712 	/* first, try the goal */
1713 	err = ext4_mb_find_by_goal(ac, &e4b);
1714 	if (err || ac->ac_status == AC_STATUS_FOUND)
1715 		goto out;
1716 
1717 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1718 		goto out;
1719 
1720 	/*
1721 	 * ac->ac2_order is set only if the fe_len is a power of 2
1722 	 * if ac2_order is set we also set criteria to 0 so that we
1723 	 * try exact allocation using buddy.
1724 	 */
1725 	i = fls(ac->ac_g_ex.fe_len);
1726 	ac->ac_2order = 0;
1727 	/*
1728 	 * We search using buddy data only if the order of the request
1729 	 * is greater than equal to the sbi_s_mb_order2_reqs
1730 	 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1731 	 */
1732 	if (i >= sbi->s_mb_order2_reqs) {
1733 		/*
1734 		 * This should tell if fe_len is exactly power of 2
1735 		 */
1736 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1737 			ac->ac_2order = i - 1;
1738 	}
1739 
1740 	bsbits = ac->ac_sb->s_blocksize_bits;
1741 	/* if stream allocation is enabled, use global goal */
1742 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1743 	isize = i_size_read(ac->ac_inode) >> bsbits;
1744 	if (size < isize)
1745 		size = isize;
1746 
1747 	if (size < sbi->s_mb_stream_request &&
1748 			(ac->ac_flags & EXT4_MB_HINT_DATA)) {
1749 		/* TBD: may be hot point */
1750 		spin_lock(&sbi->s_md_lock);
1751 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1752 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1753 		spin_unlock(&sbi->s_md_lock);
1754 	}
1755 	/* Let's just scan groups to find more-less suitable blocks */
1756 	cr = ac->ac_2order ? 0 : 1;
1757 	/*
1758 	 * cr == 0 try to get exact allocation,
1759 	 * cr == 3  try to get anything
1760 	 */
1761 repeat:
1762 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1763 		ac->ac_criteria = cr;
1764 		/*
1765 		 * searching for the right group start
1766 		 * from the goal value specified
1767 		 */
1768 		group = ac->ac_g_ex.fe_group;
1769 
1770 		for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1771 			struct ext4_group_info *grp;
1772 			struct ext4_group_desc *desc;
1773 
1774 			if (group == EXT4_SB(sb)->s_groups_count)
1775 				group = 0;
1776 
1777 			/* quick check to skip empty groups */
1778 			grp = ext4_get_group_info(ac->ac_sb, group);
1779 			if (grp->bb_free == 0)
1780 				continue;
1781 
1782 			/*
1783 			 * if the group is already init we check whether it is
1784 			 * a good group and if not we don't load the buddy
1785 			 */
1786 			if (EXT4_MB_GRP_NEED_INIT(grp)) {
1787 				/*
1788 				 * we need full data about the group
1789 				 * to make a good selection
1790 				 */
1791 				err = ext4_mb_load_buddy(sb, group, &e4b);
1792 				if (err)
1793 					goto out;
1794 				ext4_mb_release_desc(&e4b);
1795 			}
1796 
1797 			/*
1798 			 * If the particular group doesn't satisfy our
1799 			 * criteria we continue with the next group
1800 			 */
1801 			if (!ext4_mb_good_group(ac, group, cr))
1802 				continue;
1803 
1804 			err = ext4_mb_load_buddy(sb, group, &e4b);
1805 			if (err)
1806 				goto out;
1807 
1808 			ext4_lock_group(sb, group);
1809 			if (!ext4_mb_good_group(ac, group, cr)) {
1810 				/* someone did allocation from this group */
1811 				ext4_unlock_group(sb, group);
1812 				ext4_mb_release_desc(&e4b);
1813 				continue;
1814 			}
1815 
1816 			ac->ac_groups_scanned++;
1817 			desc = ext4_get_group_desc(sb, group, NULL);
1818 			if (cr == 0 || (desc->bg_flags &
1819 					cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
1820 					ac->ac_2order != 0))
1821 				ext4_mb_simple_scan_group(ac, &e4b);
1822 			else if (cr == 1 &&
1823 					ac->ac_g_ex.fe_len == sbi->s_stripe)
1824 				ext4_mb_scan_aligned(ac, &e4b);
1825 			else
1826 				ext4_mb_complex_scan_group(ac, &e4b);
1827 
1828 			ext4_unlock_group(sb, group);
1829 			ext4_mb_release_desc(&e4b);
1830 
1831 			if (ac->ac_status != AC_STATUS_CONTINUE)
1832 				break;
1833 		}
1834 	}
1835 
1836 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
1837 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1838 		/*
1839 		 * We've been searching too long. Let's try to allocate
1840 		 * the best chunk we've found so far
1841 		 */
1842 
1843 		ext4_mb_try_best_found(ac, &e4b);
1844 		if (ac->ac_status != AC_STATUS_FOUND) {
1845 			/*
1846 			 * Someone more lucky has already allocated it.
1847 			 * The only thing we can do is just take first
1848 			 * found block(s)
1849 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
1850 			 */
1851 			ac->ac_b_ex.fe_group = 0;
1852 			ac->ac_b_ex.fe_start = 0;
1853 			ac->ac_b_ex.fe_len = 0;
1854 			ac->ac_status = AC_STATUS_CONTINUE;
1855 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
1856 			cr = 3;
1857 			atomic_inc(&sbi->s_mb_lost_chunks);
1858 			goto repeat;
1859 		}
1860 	}
1861 out:
1862 	return err;
1863 }
1864 
1865 #ifdef EXT4_MB_HISTORY
1866 struct ext4_mb_proc_session {
1867 	struct ext4_mb_history *history;
1868 	struct super_block *sb;
1869 	int start;
1870 	int max;
1871 };
1872 
1873 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
1874 					struct ext4_mb_history *hs,
1875 					int first)
1876 {
1877 	if (hs == s->history + s->max)
1878 		hs = s->history;
1879 	if (!first && hs == s->history + s->start)
1880 		return NULL;
1881 	while (hs->orig.fe_len == 0) {
1882 		hs++;
1883 		if (hs == s->history + s->max)
1884 			hs = s->history;
1885 		if (hs == s->history + s->start)
1886 			return NULL;
1887 	}
1888 	return hs;
1889 }
1890 
1891 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
1892 {
1893 	struct ext4_mb_proc_session *s = seq->private;
1894 	struct ext4_mb_history *hs;
1895 	int l = *pos;
1896 
1897 	if (l == 0)
1898 		return SEQ_START_TOKEN;
1899 	hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1900 	if (!hs)
1901 		return NULL;
1902 	while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
1903 	return hs;
1904 }
1905 
1906 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
1907 				      loff_t *pos)
1908 {
1909 	struct ext4_mb_proc_session *s = seq->private;
1910 	struct ext4_mb_history *hs = v;
1911 
1912 	++*pos;
1913 	if (v == SEQ_START_TOKEN)
1914 		return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1915 	else
1916 		return ext4_mb_history_skip_empty(s, ++hs, 0);
1917 }
1918 
1919 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
1920 {
1921 	char buf[25], buf2[25], buf3[25], *fmt;
1922 	struct ext4_mb_history *hs = v;
1923 
1924 	if (v == SEQ_START_TOKEN) {
1925 		seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
1926 				"%-5s %-2s %-5s %-5s %-5s %-6s\n",
1927 			  "pid", "inode", "original", "goal", "result", "found",
1928 			   "grps", "cr", "flags", "merge", "tail", "broken");
1929 		return 0;
1930 	}
1931 
1932 	if (hs->op == EXT4_MB_HISTORY_ALLOC) {
1933 		fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
1934 			"%-5u %-5s %-5u %-6u\n";
1935 		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1936 			hs->result.fe_start, hs->result.fe_len,
1937 			hs->result.fe_logical);
1938 		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1939 			hs->orig.fe_start, hs->orig.fe_len,
1940 			hs->orig.fe_logical);
1941 		sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
1942 			hs->goal.fe_start, hs->goal.fe_len,
1943 			hs->goal.fe_logical);
1944 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
1945 				hs->found, hs->groups, hs->cr, hs->flags,
1946 				hs->merged ? "M" : "", hs->tail,
1947 				hs->buddy ? 1 << hs->buddy : 0);
1948 	} else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
1949 		fmt = "%-5u %-8u %-23s %-23s %-23s\n";
1950 		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1951 			hs->result.fe_start, hs->result.fe_len,
1952 			hs->result.fe_logical);
1953 		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1954 			hs->orig.fe_start, hs->orig.fe_len,
1955 			hs->orig.fe_logical);
1956 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
1957 	} else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
1958 		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1959 			hs->result.fe_start, hs->result.fe_len);
1960 		seq_printf(seq, "%-5u %-8u %-23s discard\n",
1961 				hs->pid, hs->ino, buf2);
1962 	} else if (hs->op == EXT4_MB_HISTORY_FREE) {
1963 		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1964 			hs->result.fe_start, hs->result.fe_len);
1965 		seq_printf(seq, "%-5u %-8u %-23s free\n",
1966 				hs->pid, hs->ino, buf2);
1967 	}
1968 	return 0;
1969 }
1970 
1971 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
1972 {
1973 }
1974 
1975 static struct seq_operations ext4_mb_seq_history_ops = {
1976 	.start  = ext4_mb_seq_history_start,
1977 	.next   = ext4_mb_seq_history_next,
1978 	.stop   = ext4_mb_seq_history_stop,
1979 	.show   = ext4_mb_seq_history_show,
1980 };
1981 
1982 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
1983 {
1984 	struct super_block *sb = PDE(inode)->data;
1985 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 	struct ext4_mb_proc_session *s;
1987 	int rc;
1988 	int size;
1989 
1990 	if (unlikely(sbi->s_mb_history == NULL))
1991 		return -ENOMEM;
1992 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1993 	if (s == NULL)
1994 		return -ENOMEM;
1995 	s->sb = sb;
1996 	size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
1997 	s->history = kmalloc(size, GFP_KERNEL);
1998 	if (s->history == NULL) {
1999 		kfree(s);
2000 		return -ENOMEM;
2001 	}
2002 
2003 	spin_lock(&sbi->s_mb_history_lock);
2004 	memcpy(s->history, sbi->s_mb_history, size);
2005 	s->max = sbi->s_mb_history_max;
2006 	s->start = sbi->s_mb_history_cur % s->max;
2007 	spin_unlock(&sbi->s_mb_history_lock);
2008 
2009 	rc = seq_open(file, &ext4_mb_seq_history_ops);
2010 	if (rc == 0) {
2011 		struct seq_file *m = (struct seq_file *)file->private_data;
2012 		m->private = s;
2013 	} else {
2014 		kfree(s->history);
2015 		kfree(s);
2016 	}
2017 	return rc;
2018 
2019 }
2020 
2021 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2022 {
2023 	struct seq_file *seq = (struct seq_file *)file->private_data;
2024 	struct ext4_mb_proc_session *s = seq->private;
2025 	kfree(s->history);
2026 	kfree(s);
2027 	return seq_release(inode, file);
2028 }
2029 
2030 static ssize_t ext4_mb_seq_history_write(struct file *file,
2031 				const char __user *buffer,
2032 				size_t count, loff_t *ppos)
2033 {
2034 	struct seq_file *seq = (struct seq_file *)file->private_data;
2035 	struct ext4_mb_proc_session *s = seq->private;
2036 	struct super_block *sb = s->sb;
2037 	char str[32];
2038 	int value;
2039 
2040 	if (count >= sizeof(str)) {
2041 		printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2042 				"mb_history", (int)sizeof(str));
2043 		return -EOVERFLOW;
2044 	}
2045 
2046 	if (copy_from_user(str, buffer, count))
2047 		return -EFAULT;
2048 
2049 	value = simple_strtol(str, NULL, 0);
2050 	if (value < 0)
2051 		return -ERANGE;
2052 	EXT4_SB(sb)->s_mb_history_filter = value;
2053 
2054 	return count;
2055 }
2056 
2057 static struct file_operations ext4_mb_seq_history_fops = {
2058 	.owner		= THIS_MODULE,
2059 	.open		= ext4_mb_seq_history_open,
2060 	.read		= seq_read,
2061 	.write		= ext4_mb_seq_history_write,
2062 	.llseek		= seq_lseek,
2063 	.release	= ext4_mb_seq_history_release,
2064 };
2065 
2066 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2067 {
2068 	struct super_block *sb = seq->private;
2069 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2070 	ext4_group_t group;
2071 
2072 	if (*pos < 0 || *pos >= sbi->s_groups_count)
2073 		return NULL;
2074 
2075 	group = *pos + 1;
2076 	return (void *) group;
2077 }
2078 
2079 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2080 {
2081 	struct super_block *sb = seq->private;
2082 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2083 	ext4_group_t group;
2084 
2085 	++*pos;
2086 	if (*pos < 0 || *pos >= sbi->s_groups_count)
2087 		return NULL;
2088 	group = *pos + 1;
2089 	return (void *) group;;
2090 }
2091 
2092 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2093 {
2094 	struct super_block *sb = seq->private;
2095 	long group = (long) v;
2096 	int i;
2097 	int err;
2098 	struct ext4_buddy e4b;
2099 	struct sg {
2100 		struct ext4_group_info info;
2101 		unsigned short counters[16];
2102 	} sg;
2103 
2104 	group--;
2105 	if (group == 0)
2106 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2107 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2108 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2109 			   "group", "free", "frags", "first",
2110 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2111 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2112 
2113 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2114 		sizeof(struct ext4_group_info);
2115 	err = ext4_mb_load_buddy(sb, group, &e4b);
2116 	if (err) {
2117 		seq_printf(seq, "#%-5lu: I/O error\n", group);
2118 		return 0;
2119 	}
2120 	ext4_lock_group(sb, group);
2121 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2122 	ext4_unlock_group(sb, group);
2123 	ext4_mb_release_desc(&e4b);
2124 
2125 	seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
2126 			sg.info.bb_fragments, sg.info.bb_first_free);
2127 	for (i = 0; i <= 13; i++)
2128 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2129 				sg.info.bb_counters[i] : 0);
2130 	seq_printf(seq, " ]\n");
2131 
2132 	return 0;
2133 }
2134 
2135 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2136 {
2137 }
2138 
2139 static struct seq_operations ext4_mb_seq_groups_ops = {
2140 	.start  = ext4_mb_seq_groups_start,
2141 	.next   = ext4_mb_seq_groups_next,
2142 	.stop   = ext4_mb_seq_groups_stop,
2143 	.show   = ext4_mb_seq_groups_show,
2144 };
2145 
2146 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2147 {
2148 	struct super_block *sb = PDE(inode)->data;
2149 	int rc;
2150 
2151 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2152 	if (rc == 0) {
2153 		struct seq_file *m = (struct seq_file *)file->private_data;
2154 		m->private = sb;
2155 	}
2156 	return rc;
2157 
2158 }
2159 
2160 static struct file_operations ext4_mb_seq_groups_fops = {
2161 	.owner		= THIS_MODULE,
2162 	.open		= ext4_mb_seq_groups_open,
2163 	.read		= seq_read,
2164 	.llseek		= seq_lseek,
2165 	.release	= seq_release,
2166 };
2167 
2168 static void ext4_mb_history_release(struct super_block *sb)
2169 {
2170 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2171 
2172 	if (sbi->s_proc != NULL) {
2173 		remove_proc_entry("mb_groups", sbi->s_proc);
2174 		remove_proc_entry("mb_history", sbi->s_proc);
2175 	}
2176 	kfree(sbi->s_mb_history);
2177 }
2178 
2179 static void ext4_mb_history_init(struct super_block *sb)
2180 {
2181 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2182 	int i;
2183 
2184 	if (sbi->s_proc != NULL) {
2185 		proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2186 				 &ext4_mb_seq_history_fops, sb);
2187 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2188 				 &ext4_mb_seq_groups_fops, sb);
2189 	}
2190 
2191 	sbi->s_mb_history_max = 1000;
2192 	sbi->s_mb_history_cur = 0;
2193 	spin_lock_init(&sbi->s_mb_history_lock);
2194 	i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2195 	sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2196 	/* if we can't allocate history, then we simple won't use it */
2197 }
2198 
2199 static noinline_for_stack void
2200 ext4_mb_store_history(struct ext4_allocation_context *ac)
2201 {
2202 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2203 	struct ext4_mb_history h;
2204 
2205 	if (unlikely(sbi->s_mb_history == NULL))
2206 		return;
2207 
2208 	if (!(ac->ac_op & sbi->s_mb_history_filter))
2209 		return;
2210 
2211 	h.op = ac->ac_op;
2212 	h.pid = current->pid;
2213 	h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2214 	h.orig = ac->ac_o_ex;
2215 	h.result = ac->ac_b_ex;
2216 	h.flags = ac->ac_flags;
2217 	h.found = ac->ac_found;
2218 	h.groups = ac->ac_groups_scanned;
2219 	h.cr = ac->ac_criteria;
2220 	h.tail = ac->ac_tail;
2221 	h.buddy = ac->ac_buddy;
2222 	h.merged = 0;
2223 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2224 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2225 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2226 			h.merged = 1;
2227 		h.goal = ac->ac_g_ex;
2228 		h.result = ac->ac_f_ex;
2229 	}
2230 
2231 	spin_lock(&sbi->s_mb_history_lock);
2232 	memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2233 	if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2234 		sbi->s_mb_history_cur = 0;
2235 	spin_unlock(&sbi->s_mb_history_lock);
2236 }
2237 
2238 #else
2239 #define ext4_mb_history_release(sb)
2240 #define ext4_mb_history_init(sb)
2241 #endif
2242 
2243 
2244 /* Create and initialize ext4_group_info data for the given group. */
2245 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2246 			  struct ext4_group_desc *desc)
2247 {
2248 	int i, len;
2249 	int metalen = 0;
2250 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2251 	struct ext4_group_info **meta_group_info;
2252 
2253 	/*
2254 	 * First check if this group is the first of a reserved block.
2255 	 * If it's true, we have to allocate a new table of pointers
2256 	 * to ext4_group_info structures
2257 	 */
2258 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2259 		metalen = sizeof(*meta_group_info) <<
2260 			EXT4_DESC_PER_BLOCK_BITS(sb);
2261 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2262 		if (meta_group_info == NULL) {
2263 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2264 			       "buddy group\n");
2265 			goto exit_meta_group_info;
2266 		}
2267 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2268 			meta_group_info;
2269 	}
2270 
2271 	/*
2272 	 * calculate needed size. if change bb_counters size,
2273 	 * don't forget about ext4_mb_generate_buddy()
2274 	 */
2275 	len = offsetof(typeof(**meta_group_info),
2276 		       bb_counters[sb->s_blocksize_bits + 2]);
2277 
2278 	meta_group_info =
2279 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2280 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2281 
2282 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2283 	if (meta_group_info[i] == NULL) {
2284 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2285 		goto exit_group_info;
2286 	}
2287 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2288 		&(meta_group_info[i]->bb_state));
2289 
2290 	/*
2291 	 * initialize bb_free to be able to skip
2292 	 * empty groups without initialization
2293 	 */
2294 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2295 		meta_group_info[i]->bb_free =
2296 			ext4_free_blocks_after_init(sb, group, desc);
2297 	} else {
2298 		meta_group_info[i]->bb_free =
2299 			le16_to_cpu(desc->bg_free_blocks_count);
2300 	}
2301 
2302 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2303 
2304 #ifdef DOUBLE_CHECK
2305 	{
2306 		struct buffer_head *bh;
2307 		meta_group_info[i]->bb_bitmap =
2308 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2309 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2310 		bh = ext4_read_block_bitmap(sb, group);
2311 		BUG_ON(bh == NULL);
2312 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2313 			sb->s_blocksize);
2314 		put_bh(bh);
2315 	}
2316 #endif
2317 
2318 	return 0;
2319 
2320 exit_group_info:
2321 	/* If a meta_group_info table has been allocated, release it now */
2322 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2323 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2324 exit_meta_group_info:
2325 	return -ENOMEM;
2326 } /* ext4_mb_add_groupinfo */
2327 
2328 /*
2329  * Add a group to the existing groups.
2330  * This function is used for online resize
2331  */
2332 int ext4_mb_add_more_groupinfo(struct super_block *sb, ext4_group_t group,
2333 			       struct ext4_group_desc *desc)
2334 {
2335 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2336 	struct inode *inode = sbi->s_buddy_cache;
2337 	int blocks_per_page;
2338 	int block;
2339 	int pnum;
2340 	struct page *page;
2341 	int err;
2342 
2343 	/* Add group based on group descriptor*/
2344 	err = ext4_mb_add_groupinfo(sb, group, desc);
2345 	if (err)
2346 		return err;
2347 
2348 	/*
2349 	 * Cache pages containing dynamic mb_alloc datas (buddy and bitmap
2350 	 * datas) are set not up to date so that they will be re-initilaized
2351 	 * during the next call to ext4_mb_load_buddy
2352 	 */
2353 
2354 	/* Set buddy page as not up to date */
2355 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
2356 	block = group * 2;
2357 	pnum = block / blocks_per_page;
2358 	page = find_get_page(inode->i_mapping, pnum);
2359 	if (page != NULL) {
2360 		ClearPageUptodate(page);
2361 		page_cache_release(page);
2362 	}
2363 
2364 	/* Set bitmap page as not up to date */
2365 	block++;
2366 	pnum = block / blocks_per_page;
2367 	page = find_get_page(inode->i_mapping, pnum);
2368 	if (page != NULL) {
2369 		ClearPageUptodate(page);
2370 		page_cache_release(page);
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 /*
2377  * Update an existing group.
2378  * This function is used for online resize
2379  */
2380 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2381 {
2382 	grp->bb_free += add;
2383 }
2384 
2385 static int ext4_mb_init_backend(struct super_block *sb)
2386 {
2387 	ext4_group_t i;
2388 	int metalen;
2389 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2390 	struct ext4_super_block *es = sbi->s_es;
2391 	int num_meta_group_infos;
2392 	int num_meta_group_infos_max;
2393 	int array_size;
2394 	struct ext4_group_info **meta_group_info;
2395 	struct ext4_group_desc *desc;
2396 
2397 	/* This is the number of blocks used by GDT */
2398 	num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2399 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2400 
2401 	/*
2402 	 * This is the total number of blocks used by GDT including
2403 	 * the number of reserved blocks for GDT.
2404 	 * The s_group_info array is allocated with this value
2405 	 * to allow a clean online resize without a complex
2406 	 * manipulation of pointer.
2407 	 * The drawback is the unused memory when no resize
2408 	 * occurs but it's very low in terms of pages
2409 	 * (see comments below)
2410 	 * Need to handle this properly when META_BG resizing is allowed
2411 	 */
2412 	num_meta_group_infos_max = num_meta_group_infos +
2413 				le16_to_cpu(es->s_reserved_gdt_blocks);
2414 
2415 	/*
2416 	 * array_size is the size of s_group_info array. We round it
2417 	 * to the next power of two because this approximation is done
2418 	 * internally by kmalloc so we can have some more memory
2419 	 * for free here (e.g. may be used for META_BG resize).
2420 	 */
2421 	array_size = 1;
2422 	while (array_size < sizeof(*sbi->s_group_info) *
2423 	       num_meta_group_infos_max)
2424 		array_size = array_size << 1;
2425 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2426 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2427 	 * So a two level scheme suffices for now. */
2428 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2429 	if (sbi->s_group_info == NULL) {
2430 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2431 		return -ENOMEM;
2432 	}
2433 	sbi->s_buddy_cache = new_inode(sb);
2434 	if (sbi->s_buddy_cache == NULL) {
2435 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2436 		goto err_freesgi;
2437 	}
2438 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2439 
2440 	metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2441 	for (i = 0; i < num_meta_group_infos; i++) {
2442 		if ((i + 1) == num_meta_group_infos)
2443 			metalen = sizeof(*meta_group_info) *
2444 				(sbi->s_groups_count -
2445 					(i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2446 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2447 		if (meta_group_info == NULL) {
2448 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2449 			       "buddy group\n");
2450 			goto err_freemeta;
2451 		}
2452 		sbi->s_group_info[i] = meta_group_info;
2453 	}
2454 
2455 	for (i = 0; i < sbi->s_groups_count; i++) {
2456 		desc = ext4_get_group_desc(sb, i, NULL);
2457 		if (desc == NULL) {
2458 			printk(KERN_ERR
2459 				"EXT4-fs: can't read descriptor %lu\n", i);
2460 			goto err_freebuddy;
2461 		}
2462 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2463 			goto err_freebuddy;
2464 	}
2465 
2466 	return 0;
2467 
2468 err_freebuddy:
2469 	while (i-- > 0)
2470 		kfree(ext4_get_group_info(sb, i));
2471 	i = num_meta_group_infos;
2472 err_freemeta:
2473 	while (i-- > 0)
2474 		kfree(sbi->s_group_info[i]);
2475 	iput(sbi->s_buddy_cache);
2476 err_freesgi:
2477 	kfree(sbi->s_group_info);
2478 	return -ENOMEM;
2479 }
2480 
2481 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2482 {
2483 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2484 	unsigned i, j;
2485 	unsigned offset;
2486 	unsigned max;
2487 	int ret;
2488 
2489 	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2490 
2491 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2492 	if (sbi->s_mb_offsets == NULL) {
2493 		return -ENOMEM;
2494 	}
2495 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2496 	if (sbi->s_mb_maxs == NULL) {
2497 		kfree(sbi->s_mb_maxs);
2498 		return -ENOMEM;
2499 	}
2500 
2501 	/* order 0 is regular bitmap */
2502 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2503 	sbi->s_mb_offsets[0] = 0;
2504 
2505 	i = 1;
2506 	offset = 0;
2507 	max = sb->s_blocksize << 2;
2508 	do {
2509 		sbi->s_mb_offsets[i] = offset;
2510 		sbi->s_mb_maxs[i] = max;
2511 		offset += 1 << (sb->s_blocksize_bits - i);
2512 		max = max >> 1;
2513 		i++;
2514 	} while (i <= sb->s_blocksize_bits + 1);
2515 
2516 	/* init file for buddy data */
2517 	ret = ext4_mb_init_backend(sb);
2518 	if (ret != 0) {
2519 		kfree(sbi->s_mb_offsets);
2520 		kfree(sbi->s_mb_maxs);
2521 		return ret;
2522 	}
2523 
2524 	spin_lock_init(&sbi->s_md_lock);
2525 	INIT_LIST_HEAD(&sbi->s_active_transaction);
2526 	INIT_LIST_HEAD(&sbi->s_closed_transaction);
2527 	INIT_LIST_HEAD(&sbi->s_committed_transaction);
2528 	spin_lock_init(&sbi->s_bal_lock);
2529 
2530 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2531 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2532 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2533 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2534 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2535 	sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2536 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2537 
2538 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2539 	if (sbi->s_locality_groups == NULL) {
2540 		kfree(sbi->s_mb_offsets);
2541 		kfree(sbi->s_mb_maxs);
2542 		return -ENOMEM;
2543 	}
2544 	for_each_possible_cpu(i) {
2545 		struct ext4_locality_group *lg;
2546 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2547 		mutex_init(&lg->lg_mutex);
2548 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2549 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2550 		spin_lock_init(&lg->lg_prealloc_lock);
2551 	}
2552 
2553 	ext4_mb_init_per_dev_proc(sb);
2554 	ext4_mb_history_init(sb);
2555 
2556 	printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2557 	return 0;
2558 }
2559 
2560 /* need to called with ext4 group lock (ext4_lock_group) */
2561 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2562 {
2563 	struct ext4_prealloc_space *pa;
2564 	struct list_head *cur, *tmp;
2565 	int count = 0;
2566 
2567 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2568 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2569 		list_del(&pa->pa_group_list);
2570 		count++;
2571 		kfree(pa);
2572 	}
2573 	if (count)
2574 		mb_debug("mballoc: %u PAs left\n", count);
2575 
2576 }
2577 
2578 int ext4_mb_release(struct super_block *sb)
2579 {
2580 	ext4_group_t i;
2581 	int num_meta_group_infos;
2582 	struct ext4_group_info *grinfo;
2583 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2584 
2585 	/* release freed, non-committed blocks */
2586 	spin_lock(&sbi->s_md_lock);
2587 	list_splice_init(&sbi->s_closed_transaction,
2588 			&sbi->s_committed_transaction);
2589 	list_splice_init(&sbi->s_active_transaction,
2590 			&sbi->s_committed_transaction);
2591 	spin_unlock(&sbi->s_md_lock);
2592 	ext4_mb_free_committed_blocks(sb);
2593 
2594 	if (sbi->s_group_info) {
2595 		for (i = 0; i < sbi->s_groups_count; i++) {
2596 			grinfo = ext4_get_group_info(sb, i);
2597 #ifdef DOUBLE_CHECK
2598 			kfree(grinfo->bb_bitmap);
2599 #endif
2600 			ext4_lock_group(sb, i);
2601 			ext4_mb_cleanup_pa(grinfo);
2602 			ext4_unlock_group(sb, i);
2603 			kfree(grinfo);
2604 		}
2605 		num_meta_group_infos = (sbi->s_groups_count +
2606 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2607 			EXT4_DESC_PER_BLOCK_BITS(sb);
2608 		for (i = 0; i < num_meta_group_infos; i++)
2609 			kfree(sbi->s_group_info[i]);
2610 		kfree(sbi->s_group_info);
2611 	}
2612 	kfree(sbi->s_mb_offsets);
2613 	kfree(sbi->s_mb_maxs);
2614 	if (sbi->s_buddy_cache)
2615 		iput(sbi->s_buddy_cache);
2616 	if (sbi->s_mb_stats) {
2617 		printk(KERN_INFO
2618 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2619 				atomic_read(&sbi->s_bal_allocated),
2620 				atomic_read(&sbi->s_bal_reqs),
2621 				atomic_read(&sbi->s_bal_success));
2622 		printk(KERN_INFO
2623 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2624 				"%u 2^N hits, %u breaks, %u lost\n",
2625 				atomic_read(&sbi->s_bal_ex_scanned),
2626 				atomic_read(&sbi->s_bal_goals),
2627 				atomic_read(&sbi->s_bal_2orders),
2628 				atomic_read(&sbi->s_bal_breaks),
2629 				atomic_read(&sbi->s_mb_lost_chunks));
2630 		printk(KERN_INFO
2631 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2632 				sbi->s_mb_buddies_generated++,
2633 				sbi->s_mb_generation_time);
2634 		printk(KERN_INFO
2635 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2636 				atomic_read(&sbi->s_mb_preallocated),
2637 				atomic_read(&sbi->s_mb_discarded));
2638 	}
2639 
2640 	free_percpu(sbi->s_locality_groups);
2641 	ext4_mb_history_release(sb);
2642 	ext4_mb_destroy_per_dev_proc(sb);
2643 
2644 	return 0;
2645 }
2646 
2647 static noinline_for_stack void
2648 ext4_mb_free_committed_blocks(struct super_block *sb)
2649 {
2650 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2651 	int err;
2652 	int i;
2653 	int count = 0;
2654 	int count2 = 0;
2655 	struct ext4_free_metadata *md;
2656 	struct ext4_buddy e4b;
2657 
2658 	if (list_empty(&sbi->s_committed_transaction))
2659 		return;
2660 
2661 	/* there is committed blocks to be freed yet */
2662 	do {
2663 		/* get next array of blocks */
2664 		md = NULL;
2665 		spin_lock(&sbi->s_md_lock);
2666 		if (!list_empty(&sbi->s_committed_transaction)) {
2667 			md = list_entry(sbi->s_committed_transaction.next,
2668 					struct ext4_free_metadata, list);
2669 			list_del(&md->list);
2670 		}
2671 		spin_unlock(&sbi->s_md_lock);
2672 
2673 		if (md == NULL)
2674 			break;
2675 
2676 		mb_debug("gonna free %u blocks in group %lu (0x%p):",
2677 				md->num, md->group, md);
2678 
2679 		err = ext4_mb_load_buddy(sb, md->group, &e4b);
2680 		/* we expect to find existing buddy because it's pinned */
2681 		BUG_ON(err != 0);
2682 
2683 		/* there are blocks to put in buddy to make them really free */
2684 		count += md->num;
2685 		count2++;
2686 		ext4_lock_group(sb, md->group);
2687 		for (i = 0; i < md->num; i++) {
2688 			mb_debug(" %u", md->blocks[i]);
2689 			mb_free_blocks(NULL, &e4b, md->blocks[i], 1);
2690 		}
2691 		mb_debug("\n");
2692 		ext4_unlock_group(sb, md->group);
2693 
2694 		/* balance refcounts from ext4_mb_free_metadata() */
2695 		page_cache_release(e4b.bd_buddy_page);
2696 		page_cache_release(e4b.bd_bitmap_page);
2697 
2698 		kfree(md);
2699 		ext4_mb_release_desc(&e4b);
2700 
2701 	} while (md);
2702 
2703 	mb_debug("freed %u blocks in %u structures\n", count, count2);
2704 }
2705 
2706 #define EXT4_MB_STATS_NAME		"stats"
2707 #define EXT4_MB_MAX_TO_SCAN_NAME	"max_to_scan"
2708 #define EXT4_MB_MIN_TO_SCAN_NAME	"min_to_scan"
2709 #define EXT4_MB_ORDER2_REQ		"order2_req"
2710 #define EXT4_MB_STREAM_REQ		"stream_req"
2711 #define EXT4_MB_GROUP_PREALLOC		"group_prealloc"
2712 
2713 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2714 {
2715 	mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2716 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2717 	struct proc_dir_entry *proc;
2718 
2719 	if (sbi->s_proc == NULL)
2720 		return -EINVAL;
2721 
2722 	EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2723 	EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2724 	EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2725 	EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2726 	EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2727 	EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2728 	return 0;
2729 
2730 err_out:
2731 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2732 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2733 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2734 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2735 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2736 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2737 	return -ENOMEM;
2738 }
2739 
2740 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2741 {
2742 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2743 
2744 	if (sbi->s_proc == NULL)
2745 		return -EINVAL;
2746 
2747 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2748 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2749 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2750 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2751 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2752 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2753 
2754 	return 0;
2755 }
2756 
2757 int __init init_ext4_mballoc(void)
2758 {
2759 	ext4_pspace_cachep =
2760 		kmem_cache_create("ext4_prealloc_space",
2761 				     sizeof(struct ext4_prealloc_space),
2762 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2763 	if (ext4_pspace_cachep == NULL)
2764 		return -ENOMEM;
2765 
2766 	ext4_ac_cachep =
2767 		kmem_cache_create("ext4_alloc_context",
2768 				     sizeof(struct ext4_allocation_context),
2769 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2770 	if (ext4_ac_cachep == NULL) {
2771 		kmem_cache_destroy(ext4_pspace_cachep);
2772 		return -ENOMEM;
2773 	}
2774 	return 0;
2775 }
2776 
2777 void exit_ext4_mballoc(void)
2778 {
2779 	/* XXX: synchronize_rcu(); */
2780 	kmem_cache_destroy(ext4_pspace_cachep);
2781 	kmem_cache_destroy(ext4_ac_cachep);
2782 }
2783 
2784 
2785 /*
2786  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2787  * Returns 0 if success or error code
2788  */
2789 static noinline_for_stack int
2790 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2791 				handle_t *handle, unsigned long reserv_blks)
2792 {
2793 	struct buffer_head *bitmap_bh = NULL;
2794 	struct ext4_super_block *es;
2795 	struct ext4_group_desc *gdp;
2796 	struct buffer_head *gdp_bh;
2797 	struct ext4_sb_info *sbi;
2798 	struct super_block *sb;
2799 	ext4_fsblk_t block;
2800 	int err, len;
2801 
2802 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2803 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2804 
2805 	sb = ac->ac_sb;
2806 	sbi = EXT4_SB(sb);
2807 	es = sbi->s_es;
2808 
2809 
2810 	err = -EIO;
2811 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2812 	if (!bitmap_bh)
2813 		goto out_err;
2814 
2815 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2816 	if (err)
2817 		goto out_err;
2818 
2819 	err = -EIO;
2820 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2821 	if (!gdp)
2822 		goto out_err;
2823 
2824 	ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
2825 			gdp->bg_free_blocks_count);
2826 
2827 	err = ext4_journal_get_write_access(handle, gdp_bh);
2828 	if (err)
2829 		goto out_err;
2830 
2831 	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2832 		+ ac->ac_b_ex.fe_start
2833 		+ le32_to_cpu(es->s_first_data_block);
2834 
2835 	len = ac->ac_b_ex.fe_len;
2836 	if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
2837 	    in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
2838 	    in_range(block, ext4_inode_table(sb, gdp),
2839 		     EXT4_SB(sb)->s_itb_per_group) ||
2840 	    in_range(block + len - 1, ext4_inode_table(sb, gdp),
2841 		     EXT4_SB(sb)->s_itb_per_group)) {
2842 		ext4_error(sb, __func__,
2843 			   "Allocating block in system zone - block = %llu",
2844 			   block);
2845 		/* File system mounted not to panic on error
2846 		 * Fix the bitmap and repeat the block allocation
2847 		 * We leak some of the blocks here.
2848 		 */
2849 		mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
2850 				bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2851 				ac->ac_b_ex.fe_len);
2852 		err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2853 		if (!err)
2854 			err = -EAGAIN;
2855 		goto out_err;
2856 	}
2857 #ifdef AGGRESSIVE_CHECK
2858 	{
2859 		int i;
2860 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2861 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2862 						bitmap_bh->b_data));
2863 		}
2864 	}
2865 #endif
2866 	mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
2867 				ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
2868 
2869 	spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2870 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2871 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2872 		gdp->bg_free_blocks_count =
2873 			cpu_to_le16(ext4_free_blocks_after_init(sb,
2874 						ac->ac_b_ex.fe_group,
2875 						gdp));
2876 	}
2877 	le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
2878 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2879 	spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2880 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2881 	/*
2882 	 * Now reduce the dirty block count also. Should not go negative
2883 	 */
2884 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2885 		/* release all the reserved blocks if non delalloc */
2886 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2887 	else
2888 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
2889 						ac->ac_b_ex.fe_len);
2890 
2891 	if (sbi->s_log_groups_per_flex) {
2892 		ext4_group_t flex_group = ext4_flex_group(sbi,
2893 							  ac->ac_b_ex.fe_group);
2894 		spin_lock(sb_bgl_lock(sbi, flex_group));
2895 		sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
2896 		spin_unlock(sb_bgl_lock(sbi, flex_group));
2897 	}
2898 
2899 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2900 	if (err)
2901 		goto out_err;
2902 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
2903 
2904 out_err:
2905 	sb->s_dirt = 1;
2906 	brelse(bitmap_bh);
2907 	return err;
2908 }
2909 
2910 /*
2911  * here we normalize request for locality group
2912  * Group request are normalized to s_strip size if we set the same via mount
2913  * option. If not we set it to s_mb_group_prealloc which can be configured via
2914  * /proc/fs/ext4/<partition>/group_prealloc
2915  *
2916  * XXX: should we try to preallocate more than the group has now?
2917  */
2918 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2919 {
2920 	struct super_block *sb = ac->ac_sb;
2921 	struct ext4_locality_group *lg = ac->ac_lg;
2922 
2923 	BUG_ON(lg == NULL);
2924 	if (EXT4_SB(sb)->s_stripe)
2925 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2926 	else
2927 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2928 	mb_debug("#%u: goal %u blocks for locality group\n",
2929 		current->pid, ac->ac_g_ex.fe_len);
2930 }
2931 
2932 /*
2933  * Normalization means making request better in terms of
2934  * size and alignment
2935  */
2936 static noinline_for_stack void
2937 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2938 				struct ext4_allocation_request *ar)
2939 {
2940 	int bsbits, max;
2941 	ext4_lblk_t end;
2942 	loff_t size, orig_size, start_off;
2943 	ext4_lblk_t start, orig_start;
2944 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2945 	struct ext4_prealloc_space *pa;
2946 
2947 	/* do normalize only data requests, metadata requests
2948 	   do not need preallocation */
2949 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2950 		return;
2951 
2952 	/* sometime caller may want exact blocks */
2953 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2954 		return;
2955 
2956 	/* caller may indicate that preallocation isn't
2957 	 * required (it's a tail, for example) */
2958 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2959 		return;
2960 
2961 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2962 		ext4_mb_normalize_group_request(ac);
2963 		return ;
2964 	}
2965 
2966 	bsbits = ac->ac_sb->s_blocksize_bits;
2967 
2968 	/* first, let's learn actual file size
2969 	 * given current request is allocated */
2970 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2971 	size = size << bsbits;
2972 	if (size < i_size_read(ac->ac_inode))
2973 		size = i_size_read(ac->ac_inode);
2974 
2975 	/* max size of free chunks */
2976 	max = 2 << bsbits;
2977 
2978 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
2979 		(req <= (size) || max <= (chunk_size))
2980 
2981 	/* first, try to predict filesize */
2982 	/* XXX: should this table be tunable? */
2983 	start_off = 0;
2984 	if (size <= 16 * 1024) {
2985 		size = 16 * 1024;
2986 	} else if (size <= 32 * 1024) {
2987 		size = 32 * 1024;
2988 	} else if (size <= 64 * 1024) {
2989 		size = 64 * 1024;
2990 	} else if (size <= 128 * 1024) {
2991 		size = 128 * 1024;
2992 	} else if (size <= 256 * 1024) {
2993 		size = 256 * 1024;
2994 	} else if (size <= 512 * 1024) {
2995 		size = 512 * 1024;
2996 	} else if (size <= 1024 * 1024) {
2997 		size = 1024 * 1024;
2998 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2999 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3000 						(21 - bsbits)) << 21;
3001 		size = 2 * 1024 * 1024;
3002 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3003 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3004 							(22 - bsbits)) << 22;
3005 		size = 4 * 1024 * 1024;
3006 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3007 					(8<<20)>>bsbits, max, 8 * 1024)) {
3008 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3009 							(23 - bsbits)) << 23;
3010 		size = 8 * 1024 * 1024;
3011 	} else {
3012 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3013 		size	  = ac->ac_o_ex.fe_len << bsbits;
3014 	}
3015 	orig_size = size = size >> bsbits;
3016 	orig_start = start = start_off >> bsbits;
3017 
3018 	/* don't cover already allocated blocks in selected range */
3019 	if (ar->pleft && start <= ar->lleft) {
3020 		size -= ar->lleft + 1 - start;
3021 		start = ar->lleft + 1;
3022 	}
3023 	if (ar->pright && start + size - 1 >= ar->lright)
3024 		size -= start + size - ar->lright;
3025 
3026 	end = start + size;
3027 
3028 	/* check we don't cross already preallocated blocks */
3029 	rcu_read_lock();
3030 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3031 		unsigned long pa_end;
3032 
3033 		if (pa->pa_deleted)
3034 			continue;
3035 		spin_lock(&pa->pa_lock);
3036 		if (pa->pa_deleted) {
3037 			spin_unlock(&pa->pa_lock);
3038 			continue;
3039 		}
3040 
3041 		pa_end = pa->pa_lstart + pa->pa_len;
3042 
3043 		/* PA must not overlap original request */
3044 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3045 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3046 
3047 		/* skip PA normalized request doesn't overlap with */
3048 		if (pa->pa_lstart >= end) {
3049 			spin_unlock(&pa->pa_lock);
3050 			continue;
3051 		}
3052 		if (pa_end <= start) {
3053 			spin_unlock(&pa->pa_lock);
3054 			continue;
3055 		}
3056 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3057 
3058 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3059 			BUG_ON(pa_end < start);
3060 			start = pa_end;
3061 		}
3062 
3063 		if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3064 			BUG_ON(pa->pa_lstart > end);
3065 			end = pa->pa_lstart;
3066 		}
3067 		spin_unlock(&pa->pa_lock);
3068 	}
3069 	rcu_read_unlock();
3070 	size = end - start;
3071 
3072 	/* XXX: extra loop to check we really don't overlap preallocations */
3073 	rcu_read_lock();
3074 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3075 		unsigned long pa_end;
3076 		spin_lock(&pa->pa_lock);
3077 		if (pa->pa_deleted == 0) {
3078 			pa_end = pa->pa_lstart + pa->pa_len;
3079 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3080 		}
3081 		spin_unlock(&pa->pa_lock);
3082 	}
3083 	rcu_read_unlock();
3084 
3085 	if (start + size <= ac->ac_o_ex.fe_logical &&
3086 			start > ac->ac_o_ex.fe_logical) {
3087 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3088 			(unsigned long) start, (unsigned long) size,
3089 			(unsigned long) ac->ac_o_ex.fe_logical);
3090 	}
3091 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3092 			start > ac->ac_o_ex.fe_logical);
3093 	BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3094 
3095 	/* now prepare goal request */
3096 
3097 	/* XXX: is it better to align blocks WRT to logical
3098 	 * placement or satisfy big request as is */
3099 	ac->ac_g_ex.fe_logical = start;
3100 	ac->ac_g_ex.fe_len = size;
3101 
3102 	/* define goal start in order to merge */
3103 	if (ar->pright && (ar->lright == (start + size))) {
3104 		/* merge to the right */
3105 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3106 						&ac->ac_f_ex.fe_group,
3107 						&ac->ac_f_ex.fe_start);
3108 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3109 	}
3110 	if (ar->pleft && (ar->lleft + 1 == start)) {
3111 		/* merge to the left */
3112 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3113 						&ac->ac_f_ex.fe_group,
3114 						&ac->ac_f_ex.fe_start);
3115 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3116 	}
3117 
3118 	mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3119 		(unsigned) orig_size, (unsigned) start);
3120 }
3121 
3122 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3123 {
3124 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3125 
3126 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3127 		atomic_inc(&sbi->s_bal_reqs);
3128 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3129 		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3130 			atomic_inc(&sbi->s_bal_success);
3131 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3132 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3133 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3134 			atomic_inc(&sbi->s_bal_goals);
3135 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3136 			atomic_inc(&sbi->s_bal_breaks);
3137 	}
3138 
3139 	ext4_mb_store_history(ac);
3140 }
3141 
3142 /*
3143  * use blocks preallocated to inode
3144  */
3145 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3146 				struct ext4_prealloc_space *pa)
3147 {
3148 	ext4_fsblk_t start;
3149 	ext4_fsblk_t end;
3150 	int len;
3151 
3152 	/* found preallocated blocks, use them */
3153 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3154 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3155 	len = end - start;
3156 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3157 					&ac->ac_b_ex.fe_start);
3158 	ac->ac_b_ex.fe_len = len;
3159 	ac->ac_status = AC_STATUS_FOUND;
3160 	ac->ac_pa = pa;
3161 
3162 	BUG_ON(start < pa->pa_pstart);
3163 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3164 	BUG_ON(pa->pa_free < len);
3165 	pa->pa_free -= len;
3166 
3167 	mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3168 }
3169 
3170 /*
3171  * use blocks preallocated to locality group
3172  */
3173 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3174 				struct ext4_prealloc_space *pa)
3175 {
3176 	unsigned int len = ac->ac_o_ex.fe_len;
3177 
3178 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3179 					&ac->ac_b_ex.fe_group,
3180 					&ac->ac_b_ex.fe_start);
3181 	ac->ac_b_ex.fe_len = len;
3182 	ac->ac_status = AC_STATUS_FOUND;
3183 	ac->ac_pa = pa;
3184 
3185 	/* we don't correct pa_pstart or pa_plen here to avoid
3186 	 * possible race when the group is being loaded concurrently
3187 	 * instead we correct pa later, after blocks are marked
3188 	 * in on-disk bitmap -- see ext4_mb_release_context()
3189 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3190 	 */
3191 	mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3192 }
3193 
3194 /*
3195  * Return the prealloc space that have minimal distance
3196  * from the goal block. @cpa is the prealloc
3197  * space that is having currently known minimal distance
3198  * from the goal block.
3199  */
3200 static struct ext4_prealloc_space *
3201 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3202 			struct ext4_prealloc_space *pa,
3203 			struct ext4_prealloc_space *cpa)
3204 {
3205 	ext4_fsblk_t cur_distance, new_distance;
3206 
3207 	if (cpa == NULL) {
3208 		atomic_inc(&pa->pa_count);
3209 		return pa;
3210 	}
3211 	cur_distance = abs(goal_block - cpa->pa_pstart);
3212 	new_distance = abs(goal_block - pa->pa_pstart);
3213 
3214 	if (cur_distance < new_distance)
3215 		return cpa;
3216 
3217 	/* drop the previous reference */
3218 	atomic_dec(&cpa->pa_count);
3219 	atomic_inc(&pa->pa_count);
3220 	return pa;
3221 }
3222 
3223 /*
3224  * search goal blocks in preallocated space
3225  */
3226 static noinline_for_stack int
3227 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3228 {
3229 	int order, i;
3230 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3231 	struct ext4_locality_group *lg;
3232 	struct ext4_prealloc_space *pa, *cpa = NULL;
3233 	ext4_fsblk_t goal_block;
3234 
3235 	/* only data can be preallocated */
3236 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3237 		return 0;
3238 
3239 	/* first, try per-file preallocation */
3240 	rcu_read_lock();
3241 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3242 
3243 		/* all fields in this condition don't change,
3244 		 * so we can skip locking for them */
3245 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3246 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3247 			continue;
3248 
3249 		/* found preallocated blocks, use them */
3250 		spin_lock(&pa->pa_lock);
3251 		if (pa->pa_deleted == 0 && pa->pa_free) {
3252 			atomic_inc(&pa->pa_count);
3253 			ext4_mb_use_inode_pa(ac, pa);
3254 			spin_unlock(&pa->pa_lock);
3255 			ac->ac_criteria = 10;
3256 			rcu_read_unlock();
3257 			return 1;
3258 		}
3259 		spin_unlock(&pa->pa_lock);
3260 	}
3261 	rcu_read_unlock();
3262 
3263 	/* can we use group allocation? */
3264 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3265 		return 0;
3266 
3267 	/* inode may have no locality group for some reason */
3268 	lg = ac->ac_lg;
3269 	if (lg == NULL)
3270 		return 0;
3271 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3272 	if (order > PREALLOC_TB_SIZE - 1)
3273 		/* The max size of hash table is PREALLOC_TB_SIZE */
3274 		order = PREALLOC_TB_SIZE - 1;
3275 
3276 	goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3277 		     ac->ac_g_ex.fe_start +
3278 		     le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3279 	/*
3280 	 * search for the prealloc space that is having
3281 	 * minimal distance from the goal block.
3282 	 */
3283 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3284 		rcu_read_lock();
3285 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3286 					pa_inode_list) {
3287 			spin_lock(&pa->pa_lock);
3288 			if (pa->pa_deleted == 0 &&
3289 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3290 
3291 				cpa = ext4_mb_check_group_pa(goal_block,
3292 								pa, cpa);
3293 			}
3294 			spin_unlock(&pa->pa_lock);
3295 		}
3296 		rcu_read_unlock();
3297 	}
3298 	if (cpa) {
3299 		ext4_mb_use_group_pa(ac, cpa);
3300 		ac->ac_criteria = 20;
3301 		return 1;
3302 	}
3303 	return 0;
3304 }
3305 
3306 /*
3307  * the function goes through all preallocation in this group and marks them
3308  * used in in-core bitmap. buddy must be generated from this bitmap
3309  * Need to be called with ext4 group lock (ext4_lock_group)
3310  */
3311 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3312 					ext4_group_t group)
3313 {
3314 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3315 	struct ext4_prealloc_space *pa;
3316 	struct list_head *cur;
3317 	ext4_group_t groupnr;
3318 	ext4_grpblk_t start;
3319 	int preallocated = 0;
3320 	int count = 0;
3321 	int len;
3322 
3323 	/* all form of preallocation discards first load group,
3324 	 * so the only competing code is preallocation use.
3325 	 * we don't need any locking here
3326 	 * notice we do NOT ignore preallocations with pa_deleted
3327 	 * otherwise we could leave used blocks available for
3328 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3329 	 * is dropping preallocation
3330 	 */
3331 	list_for_each(cur, &grp->bb_prealloc_list) {
3332 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3333 		spin_lock(&pa->pa_lock);
3334 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3335 					     &groupnr, &start);
3336 		len = pa->pa_len;
3337 		spin_unlock(&pa->pa_lock);
3338 		if (unlikely(len == 0))
3339 			continue;
3340 		BUG_ON(groupnr != group);
3341 		mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3342 						bitmap, start, len);
3343 		preallocated += len;
3344 		count++;
3345 	}
3346 	mb_debug("prellocated %u for group %lu\n", preallocated, group);
3347 }
3348 
3349 static void ext4_mb_pa_callback(struct rcu_head *head)
3350 {
3351 	struct ext4_prealloc_space *pa;
3352 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3353 	kmem_cache_free(ext4_pspace_cachep, pa);
3354 }
3355 
3356 /*
3357  * drops a reference to preallocated space descriptor
3358  * if this was the last reference and the space is consumed
3359  */
3360 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3361 			struct super_block *sb, struct ext4_prealloc_space *pa)
3362 {
3363 	unsigned long grp;
3364 
3365 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3366 		return;
3367 
3368 	/* in this short window concurrent discard can set pa_deleted */
3369 	spin_lock(&pa->pa_lock);
3370 	if (pa->pa_deleted == 1) {
3371 		spin_unlock(&pa->pa_lock);
3372 		return;
3373 	}
3374 
3375 	pa->pa_deleted = 1;
3376 	spin_unlock(&pa->pa_lock);
3377 
3378 	/* -1 is to protect from crossing allocation group */
3379 	ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3380 
3381 	/*
3382 	 * possible race:
3383 	 *
3384 	 *  P1 (buddy init)			P2 (regular allocation)
3385 	 *					find block B in PA
3386 	 *  copy on-disk bitmap to buddy
3387 	 *  					mark B in on-disk bitmap
3388 	 *					drop PA from group
3389 	 *  mark all PAs in buddy
3390 	 *
3391 	 * thus, P1 initializes buddy with B available. to prevent this
3392 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3393 	 * against that pair
3394 	 */
3395 	ext4_lock_group(sb, grp);
3396 	list_del(&pa->pa_group_list);
3397 	ext4_unlock_group(sb, grp);
3398 
3399 	spin_lock(pa->pa_obj_lock);
3400 	list_del_rcu(&pa->pa_inode_list);
3401 	spin_unlock(pa->pa_obj_lock);
3402 
3403 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3404 }
3405 
3406 /*
3407  * creates new preallocated space for given inode
3408  */
3409 static noinline_for_stack int
3410 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3411 {
3412 	struct super_block *sb = ac->ac_sb;
3413 	struct ext4_prealloc_space *pa;
3414 	struct ext4_group_info *grp;
3415 	struct ext4_inode_info *ei;
3416 
3417 	/* preallocate only when found space is larger then requested */
3418 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3419 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3420 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3421 
3422 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3423 	if (pa == NULL)
3424 		return -ENOMEM;
3425 
3426 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3427 		int winl;
3428 		int wins;
3429 		int win;
3430 		int offs;
3431 
3432 		/* we can't allocate as much as normalizer wants.
3433 		 * so, found space must get proper lstart
3434 		 * to cover original request */
3435 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3436 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3437 
3438 		/* we're limited by original request in that
3439 		 * logical block must be covered any way
3440 		 * winl is window we can move our chunk within */
3441 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3442 
3443 		/* also, we should cover whole original request */
3444 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3445 
3446 		/* the smallest one defines real window */
3447 		win = min(winl, wins);
3448 
3449 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3450 		if (offs && offs < win)
3451 			win = offs;
3452 
3453 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3454 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3455 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3456 	}
3457 
3458 	/* preallocation can change ac_b_ex, thus we store actually
3459 	 * allocated blocks for history */
3460 	ac->ac_f_ex = ac->ac_b_ex;
3461 
3462 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3463 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3464 	pa->pa_len = ac->ac_b_ex.fe_len;
3465 	pa->pa_free = pa->pa_len;
3466 	atomic_set(&pa->pa_count, 1);
3467 	spin_lock_init(&pa->pa_lock);
3468 	pa->pa_deleted = 0;
3469 	pa->pa_linear = 0;
3470 
3471 	mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3472 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3473 
3474 	ext4_mb_use_inode_pa(ac, pa);
3475 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3476 
3477 	ei = EXT4_I(ac->ac_inode);
3478 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3479 
3480 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3481 	pa->pa_inode = ac->ac_inode;
3482 
3483 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3484 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3485 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3486 
3487 	spin_lock(pa->pa_obj_lock);
3488 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3489 	spin_unlock(pa->pa_obj_lock);
3490 
3491 	return 0;
3492 }
3493 
3494 /*
3495  * creates new preallocated space for locality group inodes belongs to
3496  */
3497 static noinline_for_stack int
3498 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3499 {
3500 	struct super_block *sb = ac->ac_sb;
3501 	struct ext4_locality_group *lg;
3502 	struct ext4_prealloc_space *pa;
3503 	struct ext4_group_info *grp;
3504 
3505 	/* preallocate only when found space is larger then requested */
3506 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3507 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3508 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3509 
3510 	BUG_ON(ext4_pspace_cachep == NULL);
3511 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3512 	if (pa == NULL)
3513 		return -ENOMEM;
3514 
3515 	/* preallocation can change ac_b_ex, thus we store actually
3516 	 * allocated blocks for history */
3517 	ac->ac_f_ex = ac->ac_b_ex;
3518 
3519 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3520 	pa->pa_lstart = pa->pa_pstart;
3521 	pa->pa_len = ac->ac_b_ex.fe_len;
3522 	pa->pa_free = pa->pa_len;
3523 	atomic_set(&pa->pa_count, 1);
3524 	spin_lock_init(&pa->pa_lock);
3525 	INIT_LIST_HEAD(&pa->pa_inode_list);
3526 	pa->pa_deleted = 0;
3527 	pa->pa_linear = 1;
3528 
3529 	mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3530 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3531 
3532 	ext4_mb_use_group_pa(ac, pa);
3533 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3534 
3535 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3536 	lg = ac->ac_lg;
3537 	BUG_ON(lg == NULL);
3538 
3539 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3540 	pa->pa_inode = NULL;
3541 
3542 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3543 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3544 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3545 
3546 	/*
3547 	 * We will later add the new pa to the right bucket
3548 	 * after updating the pa_free in ext4_mb_release_context
3549 	 */
3550 	return 0;
3551 }
3552 
3553 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3554 {
3555 	int err;
3556 
3557 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3558 		err = ext4_mb_new_group_pa(ac);
3559 	else
3560 		err = ext4_mb_new_inode_pa(ac);
3561 	return err;
3562 }
3563 
3564 /*
3565  * finds all unused blocks in on-disk bitmap, frees them in
3566  * in-core bitmap and buddy.
3567  * @pa must be unlinked from inode and group lists, so that
3568  * nobody else can find/use it.
3569  * the caller MUST hold group/inode locks.
3570  * TODO: optimize the case when there are no in-core structures yet
3571  */
3572 static noinline_for_stack int
3573 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3574 			struct ext4_prealloc_space *pa,
3575 			struct ext4_allocation_context *ac)
3576 {
3577 	struct super_block *sb = e4b->bd_sb;
3578 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3579 	unsigned long end;
3580 	unsigned long next;
3581 	ext4_group_t group;
3582 	ext4_grpblk_t bit;
3583 	sector_t start;
3584 	int err = 0;
3585 	int free = 0;
3586 
3587 	BUG_ON(pa->pa_deleted == 0);
3588 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3589 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3590 	end = bit + pa->pa_len;
3591 
3592 	if (ac) {
3593 		ac->ac_sb = sb;
3594 		ac->ac_inode = pa->pa_inode;
3595 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3596 	}
3597 
3598 	while (bit < end) {
3599 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3600 		if (bit >= end)
3601 			break;
3602 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3603 		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3604 				le32_to_cpu(sbi->s_es->s_first_data_block);
3605 		mb_debug("    free preallocated %u/%u in group %u\n",
3606 				(unsigned) start, (unsigned) next - bit,
3607 				(unsigned) group);
3608 		free += next - bit;
3609 
3610 		if (ac) {
3611 			ac->ac_b_ex.fe_group = group;
3612 			ac->ac_b_ex.fe_start = bit;
3613 			ac->ac_b_ex.fe_len = next - bit;
3614 			ac->ac_b_ex.fe_logical = 0;
3615 			ext4_mb_store_history(ac);
3616 		}
3617 
3618 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3619 		bit = next + 1;
3620 	}
3621 	if (free != pa->pa_free) {
3622 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3623 			pa, (unsigned long) pa->pa_lstart,
3624 			(unsigned long) pa->pa_pstart,
3625 			(unsigned long) pa->pa_len);
3626 		ext4_error(sb, __func__, "free %u, pa_free %u\n",
3627 						free, pa->pa_free);
3628 		/*
3629 		 * pa is already deleted so we use the value obtained
3630 		 * from the bitmap and continue.
3631 		 */
3632 	}
3633 	atomic_add(free, &sbi->s_mb_discarded);
3634 
3635 	return err;
3636 }
3637 
3638 static noinline_for_stack int
3639 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3640 				struct ext4_prealloc_space *pa,
3641 				struct ext4_allocation_context *ac)
3642 {
3643 	struct super_block *sb = e4b->bd_sb;
3644 	ext4_group_t group;
3645 	ext4_grpblk_t bit;
3646 
3647 	if (ac)
3648 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3649 
3650 	BUG_ON(pa->pa_deleted == 0);
3651 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3652 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3653 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3654 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3655 
3656 	if (ac) {
3657 		ac->ac_sb = sb;
3658 		ac->ac_inode = NULL;
3659 		ac->ac_b_ex.fe_group = group;
3660 		ac->ac_b_ex.fe_start = bit;
3661 		ac->ac_b_ex.fe_len = pa->pa_len;
3662 		ac->ac_b_ex.fe_logical = 0;
3663 		ext4_mb_store_history(ac);
3664 	}
3665 
3666 	return 0;
3667 }
3668 
3669 /*
3670  * releases all preallocations in given group
3671  *
3672  * first, we need to decide discard policy:
3673  * - when do we discard
3674  *   1) ENOSPC
3675  * - how many do we discard
3676  *   1) how many requested
3677  */
3678 static noinline_for_stack int
3679 ext4_mb_discard_group_preallocations(struct super_block *sb,
3680 					ext4_group_t group, int needed)
3681 {
3682 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3683 	struct buffer_head *bitmap_bh = NULL;
3684 	struct ext4_prealloc_space *pa, *tmp;
3685 	struct ext4_allocation_context *ac;
3686 	struct list_head list;
3687 	struct ext4_buddy e4b;
3688 	int err;
3689 	int busy = 0;
3690 	int free = 0;
3691 
3692 	mb_debug("discard preallocation for group %lu\n", group);
3693 
3694 	if (list_empty(&grp->bb_prealloc_list))
3695 		return 0;
3696 
3697 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3698 	if (bitmap_bh == NULL) {
3699 		ext4_error(sb, __func__, "Error in reading block "
3700 				"bitmap for %lu\n", group);
3701 		return 0;
3702 	}
3703 
3704 	err = ext4_mb_load_buddy(sb, group, &e4b);
3705 	if (err) {
3706 		ext4_error(sb, __func__, "Error in loading buddy "
3707 				"information for %lu\n", group);
3708 		put_bh(bitmap_bh);
3709 		return 0;
3710 	}
3711 
3712 	if (needed == 0)
3713 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3714 
3715 	INIT_LIST_HEAD(&list);
3716 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3717 repeat:
3718 	ext4_lock_group(sb, group);
3719 	list_for_each_entry_safe(pa, tmp,
3720 				&grp->bb_prealloc_list, pa_group_list) {
3721 		spin_lock(&pa->pa_lock);
3722 		if (atomic_read(&pa->pa_count)) {
3723 			spin_unlock(&pa->pa_lock);
3724 			busy = 1;
3725 			continue;
3726 		}
3727 		if (pa->pa_deleted) {
3728 			spin_unlock(&pa->pa_lock);
3729 			continue;
3730 		}
3731 
3732 		/* seems this one can be freed ... */
3733 		pa->pa_deleted = 1;
3734 
3735 		/* we can trust pa_free ... */
3736 		free += pa->pa_free;
3737 
3738 		spin_unlock(&pa->pa_lock);
3739 
3740 		list_del(&pa->pa_group_list);
3741 		list_add(&pa->u.pa_tmp_list, &list);
3742 	}
3743 
3744 	/* if we still need more blocks and some PAs were used, try again */
3745 	if (free < needed && busy) {
3746 		busy = 0;
3747 		ext4_unlock_group(sb, group);
3748 		/*
3749 		 * Yield the CPU here so that we don't get soft lockup
3750 		 * in non preempt case.
3751 		 */
3752 		yield();
3753 		goto repeat;
3754 	}
3755 
3756 	/* found anything to free? */
3757 	if (list_empty(&list)) {
3758 		BUG_ON(free != 0);
3759 		goto out;
3760 	}
3761 
3762 	/* now free all selected PAs */
3763 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3764 
3765 		/* remove from object (inode or locality group) */
3766 		spin_lock(pa->pa_obj_lock);
3767 		list_del_rcu(&pa->pa_inode_list);
3768 		spin_unlock(pa->pa_obj_lock);
3769 
3770 		if (pa->pa_linear)
3771 			ext4_mb_release_group_pa(&e4b, pa, ac);
3772 		else
3773 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3774 
3775 		list_del(&pa->u.pa_tmp_list);
3776 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3777 	}
3778 
3779 out:
3780 	ext4_unlock_group(sb, group);
3781 	if (ac)
3782 		kmem_cache_free(ext4_ac_cachep, ac);
3783 	ext4_mb_release_desc(&e4b);
3784 	put_bh(bitmap_bh);
3785 	return free;
3786 }
3787 
3788 /*
3789  * releases all non-used preallocated blocks for given inode
3790  *
3791  * It's important to discard preallocations under i_data_sem
3792  * We don't want another block to be served from the prealloc
3793  * space when we are discarding the inode prealloc space.
3794  *
3795  * FIXME!! Make sure it is valid at all the call sites
3796  */
3797 void ext4_discard_preallocations(struct inode *inode)
3798 {
3799 	struct ext4_inode_info *ei = EXT4_I(inode);
3800 	struct super_block *sb = inode->i_sb;
3801 	struct buffer_head *bitmap_bh = NULL;
3802 	struct ext4_prealloc_space *pa, *tmp;
3803 	struct ext4_allocation_context *ac;
3804 	ext4_group_t group = 0;
3805 	struct list_head list;
3806 	struct ext4_buddy e4b;
3807 	int err;
3808 
3809 	if (!S_ISREG(inode->i_mode)) {
3810 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3811 		return;
3812 	}
3813 
3814 	mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3815 
3816 	INIT_LIST_HEAD(&list);
3817 
3818 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3819 repeat:
3820 	/* first, collect all pa's in the inode */
3821 	spin_lock(&ei->i_prealloc_lock);
3822 	while (!list_empty(&ei->i_prealloc_list)) {
3823 		pa = list_entry(ei->i_prealloc_list.next,
3824 				struct ext4_prealloc_space, pa_inode_list);
3825 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3826 		spin_lock(&pa->pa_lock);
3827 		if (atomic_read(&pa->pa_count)) {
3828 			/* this shouldn't happen often - nobody should
3829 			 * use preallocation while we're discarding it */
3830 			spin_unlock(&pa->pa_lock);
3831 			spin_unlock(&ei->i_prealloc_lock);
3832 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
3833 			WARN_ON(1);
3834 			schedule_timeout_uninterruptible(HZ);
3835 			goto repeat;
3836 
3837 		}
3838 		if (pa->pa_deleted == 0) {
3839 			pa->pa_deleted = 1;
3840 			spin_unlock(&pa->pa_lock);
3841 			list_del_rcu(&pa->pa_inode_list);
3842 			list_add(&pa->u.pa_tmp_list, &list);
3843 			continue;
3844 		}
3845 
3846 		/* someone is deleting pa right now */
3847 		spin_unlock(&pa->pa_lock);
3848 		spin_unlock(&ei->i_prealloc_lock);
3849 
3850 		/* we have to wait here because pa_deleted
3851 		 * doesn't mean pa is already unlinked from
3852 		 * the list. as we might be called from
3853 		 * ->clear_inode() the inode will get freed
3854 		 * and concurrent thread which is unlinking
3855 		 * pa from inode's list may access already
3856 		 * freed memory, bad-bad-bad */
3857 
3858 		/* XXX: if this happens too often, we can
3859 		 * add a flag to force wait only in case
3860 		 * of ->clear_inode(), but not in case of
3861 		 * regular truncate */
3862 		schedule_timeout_uninterruptible(HZ);
3863 		goto repeat;
3864 	}
3865 	spin_unlock(&ei->i_prealloc_lock);
3866 
3867 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3868 		BUG_ON(pa->pa_linear != 0);
3869 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3870 
3871 		err = ext4_mb_load_buddy(sb, group, &e4b);
3872 		if (err) {
3873 			ext4_error(sb, __func__, "Error in loading buddy "
3874 					"information for %lu\n", group);
3875 			continue;
3876 		}
3877 
3878 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3879 		if (bitmap_bh == NULL) {
3880 			ext4_error(sb, __func__, "Error in reading block "
3881 					"bitmap for %lu\n", group);
3882 			ext4_mb_release_desc(&e4b);
3883 			continue;
3884 		}
3885 
3886 		ext4_lock_group(sb, group);
3887 		list_del(&pa->pa_group_list);
3888 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3889 		ext4_unlock_group(sb, group);
3890 
3891 		ext4_mb_release_desc(&e4b);
3892 		put_bh(bitmap_bh);
3893 
3894 		list_del(&pa->u.pa_tmp_list);
3895 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3896 	}
3897 	if (ac)
3898 		kmem_cache_free(ext4_ac_cachep, ac);
3899 }
3900 
3901 /*
3902  * finds all preallocated spaces and return blocks being freed to them
3903  * if preallocated space becomes full (no block is used from the space)
3904  * then the function frees space in buddy
3905  * XXX: at the moment, truncate (which is the only way to free blocks)
3906  * discards all preallocations
3907  */
3908 static void ext4_mb_return_to_preallocation(struct inode *inode,
3909 					struct ext4_buddy *e4b,
3910 					sector_t block, int count)
3911 {
3912 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3913 }
3914 #ifdef MB_DEBUG
3915 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3916 {
3917 	struct super_block *sb = ac->ac_sb;
3918 	ext4_group_t i;
3919 
3920 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
3921 			" Allocation context details:\n");
3922 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3923 			ac->ac_status, ac->ac_flags);
3924 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3925 			"best %lu/%lu/%lu@%lu cr %d\n",
3926 			(unsigned long)ac->ac_o_ex.fe_group,
3927 			(unsigned long)ac->ac_o_ex.fe_start,
3928 			(unsigned long)ac->ac_o_ex.fe_len,
3929 			(unsigned long)ac->ac_o_ex.fe_logical,
3930 			(unsigned long)ac->ac_g_ex.fe_group,
3931 			(unsigned long)ac->ac_g_ex.fe_start,
3932 			(unsigned long)ac->ac_g_ex.fe_len,
3933 			(unsigned long)ac->ac_g_ex.fe_logical,
3934 			(unsigned long)ac->ac_b_ex.fe_group,
3935 			(unsigned long)ac->ac_b_ex.fe_start,
3936 			(unsigned long)ac->ac_b_ex.fe_len,
3937 			(unsigned long)ac->ac_b_ex.fe_logical,
3938 			(int)ac->ac_criteria);
3939 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3940 		ac->ac_found);
3941 	printk(KERN_ERR "EXT4-fs: groups: \n");
3942 	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
3943 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3944 		struct ext4_prealloc_space *pa;
3945 		ext4_grpblk_t start;
3946 		struct list_head *cur;
3947 		ext4_lock_group(sb, i);
3948 		list_for_each(cur, &grp->bb_prealloc_list) {
3949 			pa = list_entry(cur, struct ext4_prealloc_space,
3950 					pa_group_list);
3951 			spin_lock(&pa->pa_lock);
3952 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3953 						     NULL, &start);
3954 			spin_unlock(&pa->pa_lock);
3955 			printk(KERN_ERR "PA:%lu:%d:%u \n", i,
3956 							start, pa->pa_len);
3957 		}
3958 		ext4_unlock_group(sb, i);
3959 
3960 		if (grp->bb_free == 0)
3961 			continue;
3962 		printk(KERN_ERR "%lu: %d/%d \n",
3963 		       i, grp->bb_free, grp->bb_fragments);
3964 	}
3965 	printk(KERN_ERR "\n");
3966 }
3967 #else
3968 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3969 {
3970 	return;
3971 }
3972 #endif
3973 
3974 /*
3975  * We use locality group preallocation for small size file. The size of the
3976  * file is determined by the current size or the resulting size after
3977  * allocation which ever is larger
3978  *
3979  * One can tune this size via /proc/fs/ext4/<partition>/stream_req
3980  */
3981 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3982 {
3983 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3984 	int bsbits = ac->ac_sb->s_blocksize_bits;
3985 	loff_t size, isize;
3986 
3987 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3988 		return;
3989 
3990 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3991 	isize = i_size_read(ac->ac_inode) >> bsbits;
3992 	size = max(size, isize);
3993 
3994 	/* don't use group allocation for large files */
3995 	if (size >= sbi->s_mb_stream_request)
3996 		return;
3997 
3998 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3999 		return;
4000 
4001 	BUG_ON(ac->ac_lg != NULL);
4002 	/*
4003 	 * locality group prealloc space are per cpu. The reason for having
4004 	 * per cpu locality group is to reduce the contention between block
4005 	 * request from multiple CPUs.
4006 	 */
4007 	ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4008 
4009 	/* we're going to use group allocation */
4010 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4011 
4012 	/* serialize all allocations in the group */
4013 	mutex_lock(&ac->ac_lg->lg_mutex);
4014 }
4015 
4016 static noinline_for_stack int
4017 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4018 				struct ext4_allocation_request *ar)
4019 {
4020 	struct super_block *sb = ar->inode->i_sb;
4021 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4022 	struct ext4_super_block *es = sbi->s_es;
4023 	ext4_group_t group;
4024 	unsigned long len;
4025 	unsigned long goal;
4026 	ext4_grpblk_t block;
4027 
4028 	/* we can't allocate > group size */
4029 	len = ar->len;
4030 
4031 	/* just a dirty hack to filter too big requests  */
4032 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4033 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4034 
4035 	/* start searching from the goal */
4036 	goal = ar->goal;
4037 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4038 			goal >= ext4_blocks_count(es))
4039 		goal = le32_to_cpu(es->s_first_data_block);
4040 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4041 
4042 	/* set up allocation goals */
4043 	ac->ac_b_ex.fe_logical = ar->logical;
4044 	ac->ac_b_ex.fe_group = 0;
4045 	ac->ac_b_ex.fe_start = 0;
4046 	ac->ac_b_ex.fe_len = 0;
4047 	ac->ac_status = AC_STATUS_CONTINUE;
4048 	ac->ac_groups_scanned = 0;
4049 	ac->ac_ex_scanned = 0;
4050 	ac->ac_found = 0;
4051 	ac->ac_sb = sb;
4052 	ac->ac_inode = ar->inode;
4053 	ac->ac_o_ex.fe_logical = ar->logical;
4054 	ac->ac_o_ex.fe_group = group;
4055 	ac->ac_o_ex.fe_start = block;
4056 	ac->ac_o_ex.fe_len = len;
4057 	ac->ac_g_ex.fe_logical = ar->logical;
4058 	ac->ac_g_ex.fe_group = group;
4059 	ac->ac_g_ex.fe_start = block;
4060 	ac->ac_g_ex.fe_len = len;
4061 	ac->ac_f_ex.fe_len = 0;
4062 	ac->ac_flags = ar->flags;
4063 	ac->ac_2order = 0;
4064 	ac->ac_criteria = 0;
4065 	ac->ac_pa = NULL;
4066 	ac->ac_bitmap_page = NULL;
4067 	ac->ac_buddy_page = NULL;
4068 	ac->ac_lg = NULL;
4069 
4070 	/* we have to define context: we'll we work with a file or
4071 	 * locality group. this is a policy, actually */
4072 	ext4_mb_group_or_file(ac);
4073 
4074 	mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4075 			"left: %u/%u, right %u/%u to %swritable\n",
4076 			(unsigned) ar->len, (unsigned) ar->logical,
4077 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4078 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4079 			(unsigned) ar->lright, (unsigned) ar->pright,
4080 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4081 	return 0;
4082 
4083 }
4084 
4085 static noinline_for_stack void
4086 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4087 					struct ext4_locality_group *lg,
4088 					int order, int total_entries)
4089 {
4090 	ext4_group_t group = 0;
4091 	struct ext4_buddy e4b;
4092 	struct list_head discard_list;
4093 	struct ext4_prealloc_space *pa, *tmp;
4094 	struct ext4_allocation_context *ac;
4095 
4096 	mb_debug("discard locality group preallocation\n");
4097 
4098 	INIT_LIST_HEAD(&discard_list);
4099 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4100 
4101 	spin_lock(&lg->lg_prealloc_lock);
4102 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4103 						pa_inode_list) {
4104 		spin_lock(&pa->pa_lock);
4105 		if (atomic_read(&pa->pa_count)) {
4106 			/*
4107 			 * This is the pa that we just used
4108 			 * for block allocation. So don't
4109 			 * free that
4110 			 */
4111 			spin_unlock(&pa->pa_lock);
4112 			continue;
4113 		}
4114 		if (pa->pa_deleted) {
4115 			spin_unlock(&pa->pa_lock);
4116 			continue;
4117 		}
4118 		/* only lg prealloc space */
4119 		BUG_ON(!pa->pa_linear);
4120 
4121 		/* seems this one can be freed ... */
4122 		pa->pa_deleted = 1;
4123 		spin_unlock(&pa->pa_lock);
4124 
4125 		list_del_rcu(&pa->pa_inode_list);
4126 		list_add(&pa->u.pa_tmp_list, &discard_list);
4127 
4128 		total_entries--;
4129 		if (total_entries <= 5) {
4130 			/*
4131 			 * we want to keep only 5 entries
4132 			 * allowing it to grow to 8. This
4133 			 * mak sure we don't call discard
4134 			 * soon for this list.
4135 			 */
4136 			break;
4137 		}
4138 	}
4139 	spin_unlock(&lg->lg_prealloc_lock);
4140 
4141 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4142 
4143 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4144 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4145 			ext4_error(sb, __func__, "Error in loading buddy "
4146 					"information for %lu\n", group);
4147 			continue;
4148 		}
4149 		ext4_lock_group(sb, group);
4150 		list_del(&pa->pa_group_list);
4151 		ext4_mb_release_group_pa(&e4b, pa, ac);
4152 		ext4_unlock_group(sb, group);
4153 
4154 		ext4_mb_release_desc(&e4b);
4155 		list_del(&pa->u.pa_tmp_list);
4156 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4157 	}
4158 	if (ac)
4159 		kmem_cache_free(ext4_ac_cachep, ac);
4160 }
4161 
4162 /*
4163  * We have incremented pa_count. So it cannot be freed at this
4164  * point. Also we hold lg_mutex. So no parallel allocation is
4165  * possible from this lg. That means pa_free cannot be updated.
4166  *
4167  * A parallel ext4_mb_discard_group_preallocations is possible.
4168  * which can cause the lg_prealloc_list to be updated.
4169  */
4170 
4171 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4172 {
4173 	int order, added = 0, lg_prealloc_count = 1;
4174 	struct super_block *sb = ac->ac_sb;
4175 	struct ext4_locality_group *lg = ac->ac_lg;
4176 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4177 
4178 	order = fls(pa->pa_free) - 1;
4179 	if (order > PREALLOC_TB_SIZE - 1)
4180 		/* The max size of hash table is PREALLOC_TB_SIZE */
4181 		order = PREALLOC_TB_SIZE - 1;
4182 	/* Add the prealloc space to lg */
4183 	rcu_read_lock();
4184 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4185 						pa_inode_list) {
4186 		spin_lock(&tmp_pa->pa_lock);
4187 		if (tmp_pa->pa_deleted) {
4188 			spin_unlock(&pa->pa_lock);
4189 			continue;
4190 		}
4191 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4192 			/* Add to the tail of the previous entry */
4193 			list_add_tail_rcu(&pa->pa_inode_list,
4194 						&tmp_pa->pa_inode_list);
4195 			added = 1;
4196 			/*
4197 			 * we want to count the total
4198 			 * number of entries in the list
4199 			 */
4200 		}
4201 		spin_unlock(&tmp_pa->pa_lock);
4202 		lg_prealloc_count++;
4203 	}
4204 	if (!added)
4205 		list_add_tail_rcu(&pa->pa_inode_list,
4206 					&lg->lg_prealloc_list[order]);
4207 	rcu_read_unlock();
4208 
4209 	/* Now trim the list to be not more than 8 elements */
4210 	if (lg_prealloc_count > 8) {
4211 		ext4_mb_discard_lg_preallocations(sb, lg,
4212 						order, lg_prealloc_count);
4213 		return;
4214 	}
4215 	return ;
4216 }
4217 
4218 /*
4219  * release all resource we used in allocation
4220  */
4221 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4222 {
4223 	struct ext4_prealloc_space *pa = ac->ac_pa;
4224 	if (pa) {
4225 		if (pa->pa_linear) {
4226 			/* see comment in ext4_mb_use_group_pa() */
4227 			spin_lock(&pa->pa_lock);
4228 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4229 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4230 			pa->pa_free -= ac->ac_b_ex.fe_len;
4231 			pa->pa_len -= ac->ac_b_ex.fe_len;
4232 			spin_unlock(&pa->pa_lock);
4233 			/*
4234 			 * We want to add the pa to the right bucket.
4235 			 * Remove it from the list and while adding
4236 			 * make sure the list to which we are adding
4237 			 * doesn't grow big.
4238 			 */
4239 			if (likely(pa->pa_free)) {
4240 				spin_lock(pa->pa_obj_lock);
4241 				list_del_rcu(&pa->pa_inode_list);
4242 				spin_unlock(pa->pa_obj_lock);
4243 				ext4_mb_add_n_trim(ac);
4244 			}
4245 		}
4246 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4247 	}
4248 	if (ac->ac_bitmap_page)
4249 		page_cache_release(ac->ac_bitmap_page);
4250 	if (ac->ac_buddy_page)
4251 		page_cache_release(ac->ac_buddy_page);
4252 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4253 		mutex_unlock(&ac->ac_lg->lg_mutex);
4254 	ext4_mb_collect_stats(ac);
4255 	return 0;
4256 }
4257 
4258 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4259 {
4260 	ext4_group_t i;
4261 	int ret;
4262 	int freed = 0;
4263 
4264 	for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4265 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4266 		freed += ret;
4267 		needed -= ret;
4268 	}
4269 
4270 	return freed;
4271 }
4272 
4273 /*
4274  * Main entry point into mballoc to allocate blocks
4275  * it tries to use preallocation first, then falls back
4276  * to usual allocation
4277  */
4278 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4279 				 struct ext4_allocation_request *ar, int *errp)
4280 {
4281 	int freed;
4282 	struct ext4_allocation_context *ac = NULL;
4283 	struct ext4_sb_info *sbi;
4284 	struct super_block *sb;
4285 	ext4_fsblk_t block = 0;
4286 	unsigned long inquota;
4287 	unsigned long reserv_blks = 0;
4288 
4289 	sb = ar->inode->i_sb;
4290 	sbi = EXT4_SB(sb);
4291 
4292 	if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4293 		/*
4294 		 * With delalloc we already reserved the blocks
4295 		 */
4296 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4297 			/* let others to free the space */
4298 			yield();
4299 			ar->len = ar->len >> 1;
4300 		}
4301 		if (!ar->len) {
4302 			*errp = -ENOSPC;
4303 			return 0;
4304 		}
4305 		reserv_blks = ar->len;
4306 	}
4307 	while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4308 		ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4309 		ar->len--;
4310 	}
4311 	if (ar->len == 0) {
4312 		*errp = -EDQUOT;
4313 		return 0;
4314 	}
4315 	inquota = ar->len;
4316 
4317 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4318 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4319 
4320 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4321 	if (!ac) {
4322 		ar->len = 0;
4323 		*errp = -ENOMEM;
4324 		goto out1;
4325 	}
4326 
4327 	ext4_mb_poll_new_transaction(sb, handle);
4328 
4329 	*errp = ext4_mb_initialize_context(ac, ar);
4330 	if (*errp) {
4331 		ar->len = 0;
4332 		goto out2;
4333 	}
4334 
4335 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4336 	if (!ext4_mb_use_preallocated(ac)) {
4337 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4338 		ext4_mb_normalize_request(ac, ar);
4339 repeat:
4340 		/* allocate space in core */
4341 		ext4_mb_regular_allocator(ac);
4342 
4343 		/* as we've just preallocated more space than
4344 		 * user requested orinally, we store allocated
4345 		 * space in a special descriptor */
4346 		if (ac->ac_status == AC_STATUS_FOUND &&
4347 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4348 			ext4_mb_new_preallocation(ac);
4349 	}
4350 
4351 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4352 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4353 		if (*errp ==  -EAGAIN) {
4354 			ac->ac_b_ex.fe_group = 0;
4355 			ac->ac_b_ex.fe_start = 0;
4356 			ac->ac_b_ex.fe_len = 0;
4357 			ac->ac_status = AC_STATUS_CONTINUE;
4358 			goto repeat;
4359 		} else if (*errp) {
4360 			ac->ac_b_ex.fe_len = 0;
4361 			ar->len = 0;
4362 			ext4_mb_show_ac(ac);
4363 		} else {
4364 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4365 			ar->len = ac->ac_b_ex.fe_len;
4366 		}
4367 	} else {
4368 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4369 		if (freed)
4370 			goto repeat;
4371 		*errp = -ENOSPC;
4372 		ac->ac_b_ex.fe_len = 0;
4373 		ar->len = 0;
4374 		ext4_mb_show_ac(ac);
4375 	}
4376 
4377 	ext4_mb_release_context(ac);
4378 
4379 out2:
4380 	kmem_cache_free(ext4_ac_cachep, ac);
4381 out1:
4382 	if (ar->len < inquota)
4383 		DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4384 
4385 	return block;
4386 }
4387 static void ext4_mb_poll_new_transaction(struct super_block *sb,
4388 						handle_t *handle)
4389 {
4390 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4391 
4392 	if (sbi->s_last_transaction == handle->h_transaction->t_tid)
4393 		return;
4394 
4395 	/* new transaction! time to close last one and free blocks for
4396 	 * committed transaction. we know that only transaction can be
4397 	 * active, so previos transaction can be being logged and we
4398 	 * know that transaction before previous is known to be already
4399 	 * logged. this means that now we may free blocks freed in all
4400 	 * transactions before previous one. hope I'm clear enough ... */
4401 
4402 	spin_lock(&sbi->s_md_lock);
4403 	if (sbi->s_last_transaction != handle->h_transaction->t_tid) {
4404 		mb_debug("new transaction %lu, old %lu\n",
4405 				(unsigned long) handle->h_transaction->t_tid,
4406 				(unsigned long) sbi->s_last_transaction);
4407 		list_splice_init(&sbi->s_closed_transaction,
4408 				&sbi->s_committed_transaction);
4409 		list_splice_init(&sbi->s_active_transaction,
4410 				&sbi->s_closed_transaction);
4411 		sbi->s_last_transaction = handle->h_transaction->t_tid;
4412 	}
4413 	spin_unlock(&sbi->s_md_lock);
4414 
4415 	ext4_mb_free_committed_blocks(sb);
4416 }
4417 
4418 static noinline_for_stack int
4419 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4420 			  ext4_group_t group, ext4_grpblk_t block, int count)
4421 {
4422 	struct ext4_group_info *db = e4b->bd_info;
4423 	struct super_block *sb = e4b->bd_sb;
4424 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4425 	struct ext4_free_metadata *md;
4426 	int i;
4427 
4428 	BUG_ON(e4b->bd_bitmap_page == NULL);
4429 	BUG_ON(e4b->bd_buddy_page == NULL);
4430 
4431 	ext4_lock_group(sb, group);
4432 	for (i = 0; i < count; i++) {
4433 		md = db->bb_md_cur;
4434 		if (md && db->bb_tid != handle->h_transaction->t_tid) {
4435 			db->bb_md_cur = NULL;
4436 			md = NULL;
4437 		}
4438 
4439 		if (md == NULL) {
4440 			ext4_unlock_group(sb, group);
4441 			md = kmalloc(sizeof(*md), GFP_NOFS);
4442 			if (md == NULL)
4443 				return -ENOMEM;
4444 			md->num = 0;
4445 			md->group = group;
4446 
4447 			ext4_lock_group(sb, group);
4448 			if (db->bb_md_cur == NULL) {
4449 				spin_lock(&sbi->s_md_lock);
4450 				list_add(&md->list, &sbi->s_active_transaction);
4451 				spin_unlock(&sbi->s_md_lock);
4452 				/* protect buddy cache from being freed,
4453 				 * otherwise we'll refresh it from
4454 				 * on-disk bitmap and lose not-yet-available
4455 				 * blocks */
4456 				page_cache_get(e4b->bd_buddy_page);
4457 				page_cache_get(e4b->bd_bitmap_page);
4458 				db->bb_md_cur = md;
4459 				db->bb_tid = handle->h_transaction->t_tid;
4460 				mb_debug("new md 0x%p for group %lu\n",
4461 						md, md->group);
4462 			} else {
4463 				kfree(md);
4464 				md = db->bb_md_cur;
4465 			}
4466 		}
4467 
4468 		BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS);
4469 		md->blocks[md->num] = block + i;
4470 		md->num++;
4471 		if (md->num == EXT4_BB_MAX_BLOCKS) {
4472 			/* no more space, put full container on a sb's list */
4473 			db->bb_md_cur = NULL;
4474 		}
4475 	}
4476 	ext4_unlock_group(sb, group);
4477 	return 0;
4478 }
4479 
4480 /*
4481  * Main entry point into mballoc to free blocks
4482  */
4483 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4484 			unsigned long block, unsigned long count,
4485 			int metadata, unsigned long *freed)
4486 {
4487 	struct buffer_head *bitmap_bh = NULL;
4488 	struct super_block *sb = inode->i_sb;
4489 	struct ext4_allocation_context *ac = NULL;
4490 	struct ext4_group_desc *gdp;
4491 	struct ext4_super_block *es;
4492 	unsigned long overflow;
4493 	ext4_grpblk_t bit;
4494 	struct buffer_head *gd_bh;
4495 	ext4_group_t block_group;
4496 	struct ext4_sb_info *sbi;
4497 	struct ext4_buddy e4b;
4498 	int err = 0;
4499 	int ret;
4500 
4501 	*freed = 0;
4502 
4503 	ext4_mb_poll_new_transaction(sb, handle);
4504 
4505 	sbi = EXT4_SB(sb);
4506 	es = EXT4_SB(sb)->s_es;
4507 	if (block < le32_to_cpu(es->s_first_data_block) ||
4508 	    block + count < block ||
4509 	    block + count > ext4_blocks_count(es)) {
4510 		ext4_error(sb, __func__,
4511 			    "Freeing blocks not in datazone - "
4512 			    "block = %lu, count = %lu", block, count);
4513 		goto error_return;
4514 	}
4515 
4516 	ext4_debug("freeing block %lu\n", block);
4517 
4518 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4519 	if (ac) {
4520 		ac->ac_op = EXT4_MB_HISTORY_FREE;
4521 		ac->ac_inode = inode;
4522 		ac->ac_sb = sb;
4523 	}
4524 
4525 do_more:
4526 	overflow = 0;
4527 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4528 
4529 	/*
4530 	 * Check to see if we are freeing blocks across a group
4531 	 * boundary.
4532 	 */
4533 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4534 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4535 		count -= overflow;
4536 	}
4537 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4538 	if (!bitmap_bh) {
4539 		err = -EIO;
4540 		goto error_return;
4541 	}
4542 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4543 	if (!gdp) {
4544 		err = -EIO;
4545 		goto error_return;
4546 	}
4547 
4548 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4549 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4550 	    in_range(block, ext4_inode_table(sb, gdp),
4551 		      EXT4_SB(sb)->s_itb_per_group) ||
4552 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4553 		      EXT4_SB(sb)->s_itb_per_group)) {
4554 
4555 		ext4_error(sb, __func__,
4556 			   "Freeing blocks in system zone - "
4557 			   "Block = %lu, count = %lu", block, count);
4558 		/* err = 0. ext4_std_error should be a no op */
4559 		goto error_return;
4560 	}
4561 
4562 	BUFFER_TRACE(bitmap_bh, "getting write access");
4563 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4564 	if (err)
4565 		goto error_return;
4566 
4567 	/*
4568 	 * We are about to modify some metadata.  Call the journal APIs
4569 	 * to unshare ->b_data if a currently-committing transaction is
4570 	 * using it
4571 	 */
4572 	BUFFER_TRACE(gd_bh, "get_write_access");
4573 	err = ext4_journal_get_write_access(handle, gd_bh);
4574 	if (err)
4575 		goto error_return;
4576 
4577 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4578 	if (err)
4579 		goto error_return;
4580 
4581 #ifdef AGGRESSIVE_CHECK
4582 	{
4583 		int i;
4584 		for (i = 0; i < count; i++)
4585 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4586 	}
4587 #endif
4588 	mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4589 			bit, count);
4590 
4591 	/* We dirtied the bitmap block */
4592 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4593 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
4594 
4595 	if (ac) {
4596 		ac->ac_b_ex.fe_group = block_group;
4597 		ac->ac_b_ex.fe_start = bit;
4598 		ac->ac_b_ex.fe_len = count;
4599 		ext4_mb_store_history(ac);
4600 	}
4601 
4602 	if (metadata) {
4603 		/* blocks being freed are metadata. these blocks shouldn't
4604 		 * be used until this transaction is committed */
4605 		ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
4606 	} else {
4607 		ext4_lock_group(sb, block_group);
4608 		mb_free_blocks(inode, &e4b, bit, count);
4609 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4610 		ext4_unlock_group(sb, block_group);
4611 	}
4612 
4613 	spin_lock(sb_bgl_lock(sbi, block_group));
4614 	le16_add_cpu(&gdp->bg_free_blocks_count, count);
4615 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4616 	spin_unlock(sb_bgl_lock(sbi, block_group));
4617 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4618 
4619 	if (sbi->s_log_groups_per_flex) {
4620 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4621 		spin_lock(sb_bgl_lock(sbi, flex_group));
4622 		sbi->s_flex_groups[flex_group].free_blocks += count;
4623 		spin_unlock(sb_bgl_lock(sbi, flex_group));
4624 	}
4625 
4626 	ext4_mb_release_desc(&e4b);
4627 
4628 	*freed += count;
4629 
4630 	/* And the group descriptor block */
4631 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4632 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
4633 	if (!err)
4634 		err = ret;
4635 
4636 	if (overflow && !err) {
4637 		block += count;
4638 		count = overflow;
4639 		put_bh(bitmap_bh);
4640 		goto do_more;
4641 	}
4642 	sb->s_dirt = 1;
4643 error_return:
4644 	brelse(bitmap_bh);
4645 	ext4_std_error(sb, err);
4646 	if (ac)
4647 		kmem_cache_free(ext4_ac_cachep, ac);
4648 	return;
4649 }
4650