1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 #include <kunit/static_stub.h> 22 23 /* 24 * MUSTDO: 25 * - test ext4_ext_search_left() and ext4_ext_search_right() 26 * - search for metadata in few groups 27 * 28 * TODO v4: 29 * - normalization should take into account whether file is still open 30 * - discard preallocations if no free space left (policy?) 31 * - don't normalize tails 32 * - quota 33 * - reservation for superuser 34 * 35 * TODO v3: 36 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 37 * - track min/max extents in each group for better group selection 38 * - mb_mark_used() may allocate chunk right after splitting buddy 39 * - tree of groups sorted by number of free blocks 40 * - error handling 41 */ 42 43 /* 44 * The allocation request involve request for multiple number of blocks 45 * near to the goal(block) value specified. 46 * 47 * During initialization phase of the allocator we decide to use the 48 * group preallocation or inode preallocation depending on the size of 49 * the file. The size of the file could be the resulting file size we 50 * would have after allocation, or the current file size, which ever 51 * is larger. If the size is less than sbi->s_mb_stream_request we 52 * select to use the group preallocation. The default value of 53 * s_mb_stream_request is 16 blocks. This can also be tuned via 54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 55 * terms of number of blocks. 56 * 57 * The main motivation for having small file use group preallocation is to 58 * ensure that we have small files closer together on the disk. 59 * 60 * First stage the allocator looks at the inode prealloc list, 61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 62 * spaces for this particular inode. The inode prealloc space is 63 * represented as: 64 * 65 * pa_lstart -> the logical start block for this prealloc space 66 * pa_pstart -> the physical start block for this prealloc space 67 * pa_len -> length for this prealloc space (in clusters) 68 * pa_free -> free space available in this prealloc space (in clusters) 69 * 70 * The inode preallocation space is used looking at the _logical_ start 71 * block. If only the logical file block falls within the range of prealloc 72 * space we will consume the particular prealloc space. This makes sure that 73 * we have contiguous physical blocks representing the file blocks 74 * 75 * The important thing to be noted in case of inode prealloc space is that 76 * we don't modify the values associated to inode prealloc space except 77 * pa_free. 78 * 79 * If we are not able to find blocks in the inode prealloc space and if we 80 * have the group allocation flag set then we look at the locality group 81 * prealloc space. These are per CPU prealloc list represented as 82 * 83 * ext4_sb_info.s_locality_groups[smp_processor_id()] 84 * 85 * The reason for having a per cpu locality group is to reduce the contention 86 * between CPUs. It is possible to get scheduled at this point. 87 * 88 * The locality group prealloc space is used looking at whether we have 89 * enough free space (pa_free) within the prealloc space. 90 * 91 * If we can't allocate blocks via inode prealloc or/and locality group 92 * prealloc then we look at the buddy cache. The buddy cache is represented 93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 94 * mapped to the buddy and bitmap information regarding different 95 * groups. The buddy information is attached to buddy cache inode so that 96 * we can access them through the page cache. The information regarding 97 * each group is loaded via ext4_mb_load_buddy. The information involve 98 * block bitmap and buddy information. The information are stored in the 99 * inode as: 100 * 101 * { page } 102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 103 * 104 * 105 * one block each for bitmap and buddy information. So for each group we 106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 107 * blocksize) blocks. So it can have information regarding groups_per_page 108 * which is blocks_per_page/2 109 * 110 * The buddy cache inode is not stored on disk. The inode is thrown 111 * away when the filesystem is unmounted. 112 * 113 * We look for count number of blocks in the buddy cache. If we were able 114 * to locate that many free blocks we return with additional information 115 * regarding rest of the contiguous physical block available 116 * 117 * Before allocating blocks via buddy cache we normalize the request 118 * blocks. This ensure we ask for more blocks that we needed. The extra 119 * blocks that we get after allocation is added to the respective prealloc 120 * list. In case of inode preallocation we follow a list of heuristics 121 * based on file size. This can be found in ext4_mb_normalize_request. If 122 * we are doing a group prealloc we try to normalize the request to 123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 124 * dependent on the cluster size; for non-bigalloc file systems, it is 125 * 512 blocks. This can be tuned via 126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 127 * terms of number of blocks. If we have mounted the file system with -O 128 * stripe=<value> option the group prealloc request is normalized to the 129 * smallest multiple of the stripe value (sbi->s_stripe) which is 130 * greater than the default mb_group_prealloc. 131 * 132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 133 * structures in two data structures: 134 * 135 * 1) Array of largest free order xarrays (sbi->s_mb_largest_free_orders) 136 * 137 * Locking: Writers use xa_lock, readers use rcu_read_lock. 138 * 139 * This is an array of xarrays where the index in the array represents the 140 * largest free order in the buddy bitmap of the participating group infos of 141 * that xarray. So, there are exactly MB_NUM_ORDERS(sb) (which means total 142 * number of buddy bitmap orders possible) number of xarrays. Group-infos are 143 * placed in appropriate xarrays. 144 * 145 * 2) Average fragment size xarrays (sbi->s_mb_avg_fragment_size) 146 * 147 * Locking: Writers use xa_lock, readers use rcu_read_lock. 148 * 149 * This is an array of xarrays where in the i-th xarray there are groups with 150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 152 * Note that we don't bother with a special xarray for completely empty 153 * groups so we only have MB_NUM_ORDERS(sb) xarrays. Group-infos are placed 154 * in appropriate xarrays. 155 * 156 * In xarray, the index is the block group number, the value is the block group 157 * information, and a non-empty value indicates the block group is present in 158 * the current xarray. 159 * 160 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 161 * structures to decide the order in which groups are to be traversed for 162 * fulfilling an allocation request. 163 * 164 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 165 * >= the order of the request. We directly look at the largest free order list 166 * in the data structure (1) above where largest_free_order = order of the 167 * request. If that list is empty, we look at remaining list in the increasing 168 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 169 * lookup in O(1) time. 170 * 171 * At CR_GOAL_LEN_FAST, we only consider groups where 172 * average fragment size > request size. So, we lookup a group which has average 173 * fragment size just above or equal to request size using our average fragment 174 * size group lists (data structure 2) in O(1) time. 175 * 176 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 177 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 178 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 179 * fragment size > goal length. So before falling to the slower 180 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 181 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 182 * enough average fragment size. This increases the chances of finding a 183 * suitable block group in O(1) time and results in faster allocation at the 184 * cost of reduced size of allocation. 185 * 186 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 187 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 188 * CR_GOAL_LEN_FAST phase. 189 * 190 * The regular allocator (using the buddy cache) supports a few tunables. 191 * 192 * /sys/fs/ext4/<partition>/mb_min_to_scan 193 * /sys/fs/ext4/<partition>/mb_max_to_scan 194 * /sys/fs/ext4/<partition>/mb_order2_req 195 * /sys/fs/ext4/<partition>/mb_max_linear_groups 196 * 197 * The regular allocator uses buddy scan only if the request len is power of 198 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 199 * value of s_mb_order2_reqs can be tuned via 200 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 201 * stripe size (sbi->s_stripe), we try to search for contiguous block in 202 * stripe size. This should result in better allocation on RAID setups. If 203 * not, we search in the specific group using bitmap for best extents. The 204 * tunable min_to_scan and max_to_scan control the behaviour here. 205 * min_to_scan indicate how long the mballoc __must__ look for a best 206 * extent and max_to_scan indicates how long the mballoc __can__ look for a 207 * best extent in the found extents. Searching for the blocks starts with 208 * the group specified as the goal value in allocation context via 209 * ac_g_ex. Each group is first checked based on the criteria whether it 210 * can be used for allocation. ext4_mb_good_group explains how the groups are 211 * checked. 212 * 213 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 214 * get traversed linearly. That may result in subsequent allocations being not 215 * close to each other. And so, the underlying device may get filled up in a 216 * non-linear fashion. While that may not matter on non-rotational devices, for 217 * rotational devices that may result in higher seek times. "mb_max_linear_groups" 218 * tells mballoc how many groups mballoc should search linearly before 219 * performing consulting above data structures for more efficient lookups. For 220 * non rotational devices, this value defaults to 0 and for rotational devices 221 * this is set to MB_DEFAULT_LINEAR_LIMIT. 222 * 223 * Both the prealloc space are getting populated as above. So for the first 224 * request we will hit the buddy cache which will result in this prealloc 225 * space getting filled. The prealloc space is then later used for the 226 * subsequent request. 227 */ 228 229 /* 230 * mballoc operates on the following data: 231 * - on-disk bitmap 232 * - in-core buddy (actually includes buddy and bitmap) 233 * - preallocation descriptors (PAs) 234 * 235 * there are two types of preallocations: 236 * - inode 237 * assiged to specific inode and can be used for this inode only. 238 * it describes part of inode's space preallocated to specific 239 * physical blocks. any block from that preallocated can be used 240 * independent. the descriptor just tracks number of blocks left 241 * unused. so, before taking some block from descriptor, one must 242 * make sure corresponded logical block isn't allocated yet. this 243 * also means that freeing any block within descriptor's range 244 * must discard all preallocated blocks. 245 * - locality group 246 * assigned to specific locality group which does not translate to 247 * permanent set of inodes: inode can join and leave group. space 248 * from this type of preallocation can be used for any inode. thus 249 * it's consumed from the beginning to the end. 250 * 251 * relation between them can be expressed as: 252 * in-core buddy = on-disk bitmap + preallocation descriptors 253 * 254 * this mean blocks mballoc considers used are: 255 * - allocated blocks (persistent) 256 * - preallocated blocks (non-persistent) 257 * 258 * consistency in mballoc world means that at any time a block is either 259 * free or used in ALL structures. notice: "any time" should not be read 260 * literally -- time is discrete and delimited by locks. 261 * 262 * to keep it simple, we don't use block numbers, instead we count number of 263 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 264 * 265 * all operations can be expressed as: 266 * - init buddy: buddy = on-disk + PAs 267 * - new PA: buddy += N; PA = N 268 * - use inode PA: on-disk += N; PA -= N 269 * - discard inode PA buddy -= on-disk - PA; PA = 0 270 * - use locality group PA on-disk += N; PA -= N 271 * - discard locality group PA buddy -= PA; PA = 0 272 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 273 * is used in real operation because we can't know actual used 274 * bits from PA, only from on-disk bitmap 275 * 276 * if we follow this strict logic, then all operations above should be atomic. 277 * given some of them can block, we'd have to use something like semaphores 278 * killing performance on high-end SMP hardware. let's try to relax it using 279 * the following knowledge: 280 * 1) if buddy is referenced, it's already initialized 281 * 2) while block is used in buddy and the buddy is referenced, 282 * nobody can re-allocate that block 283 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 284 * bit set and PA claims same block, it's OK. IOW, one can set bit in 285 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 286 * block 287 * 288 * so, now we're building a concurrency table: 289 * - init buddy vs. 290 * - new PA 291 * blocks for PA are allocated in the buddy, buddy must be referenced 292 * until PA is linked to allocation group to avoid concurrent buddy init 293 * - use inode PA 294 * we need to make sure that either on-disk bitmap or PA has uptodate data 295 * given (3) we care that PA-=N operation doesn't interfere with init 296 * - discard inode PA 297 * the simplest way would be to have buddy initialized by the discard 298 * - use locality group PA 299 * again PA-=N must be serialized with init 300 * - discard locality group PA 301 * the simplest way would be to have buddy initialized by the discard 302 * - new PA vs. 303 * - use inode PA 304 * i_data_sem serializes them 305 * - discard inode PA 306 * discard process must wait until PA isn't used by another process 307 * - use locality group PA 308 * some mutex should serialize them 309 * - discard locality group PA 310 * discard process must wait until PA isn't used by another process 311 * - use inode PA 312 * - use inode PA 313 * i_data_sem or another mutex should serializes them 314 * - discard inode PA 315 * discard process must wait until PA isn't used by another process 316 * - use locality group PA 317 * nothing wrong here -- they're different PAs covering different blocks 318 * - discard locality group PA 319 * discard process must wait until PA isn't used by another process 320 * 321 * now we're ready to make few consequences: 322 * - PA is referenced and while it is no discard is possible 323 * - PA is referenced until block isn't marked in on-disk bitmap 324 * - PA changes only after on-disk bitmap 325 * - discard must not compete with init. either init is done before 326 * any discard or they're serialized somehow 327 * - buddy init as sum of on-disk bitmap and PAs is done atomically 328 * 329 * a special case when we've used PA to emptiness. no need to modify buddy 330 * in this case, but we should care about concurrent init 331 * 332 */ 333 334 /* 335 * Logic in few words: 336 * 337 * - allocation: 338 * load group 339 * find blocks 340 * mark bits in on-disk bitmap 341 * release group 342 * 343 * - use preallocation: 344 * find proper PA (per-inode or group) 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * release PA 349 * 350 * - free: 351 * load group 352 * mark bits in on-disk bitmap 353 * release group 354 * 355 * - discard preallocations in group: 356 * mark PAs deleted 357 * move them onto local list 358 * load on-disk bitmap 359 * load group 360 * remove PA from object (inode or locality group) 361 * mark free blocks in-core 362 * 363 * - discard inode's preallocations: 364 */ 365 366 /* 367 * Locking rules 368 * 369 * Locks: 370 * - bitlock on a group (group) 371 * - object (inode/locality) (object) 372 * - per-pa lock (pa) 373 * - cr_power2_aligned lists lock (cr_power2_aligned) 374 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 375 * 376 * Paths: 377 * - new pa 378 * object 379 * group 380 * 381 * - find and use pa: 382 * pa 383 * 384 * - release consumed pa: 385 * pa 386 * group 387 * object 388 * 389 * - generate in-core bitmap: 390 * group 391 * pa 392 * 393 * - discard all for given object (inode, locality group): 394 * object 395 * pa 396 * group 397 * 398 * - discard all for given group: 399 * group 400 * pa 401 * group 402 * object 403 * 404 * - allocation path (ext4_mb_regular_allocator) 405 * group 406 * cr_power2_aligned/cr_goal_len_fast 407 */ 408 static struct kmem_cache *ext4_pspace_cachep; 409 static struct kmem_cache *ext4_ac_cachep; 410 static struct kmem_cache *ext4_free_data_cachep; 411 412 /* We create slab caches for groupinfo data structures based on the 413 * superblock block size. There will be one per mounted filesystem for 414 * each unique s_blocksize_bits */ 415 #define NR_GRPINFO_CACHES 8 416 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 417 418 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 419 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 420 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 421 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 422 }; 423 424 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 425 ext4_group_t group); 426 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 427 428 static int ext4_mb_scan_group(struct ext4_allocation_context *ac, 429 ext4_group_t group); 430 431 static int ext4_try_to_trim_range(struct super_block *sb, 432 struct ext4_buddy *e4b, ext4_grpblk_t start, 433 ext4_grpblk_t max, ext4_grpblk_t minblocks); 434 435 /* 436 * The algorithm using this percpu seq counter goes below: 437 * 1. We sample the percpu discard_pa_seq counter before trying for block 438 * allocation in ext4_mb_new_blocks(). 439 * 2. We increment this percpu discard_pa_seq counter when we either allocate 440 * or free these blocks i.e. while marking those blocks as used/free in 441 * mb_mark_used()/mb_free_blocks(). 442 * 3. We also increment this percpu seq counter when we successfully identify 443 * that the bb_prealloc_list is not empty and hence proceed for discarding 444 * of those PAs inside ext4_mb_discard_group_preallocations(). 445 * 446 * Now to make sure that the regular fast path of block allocation is not 447 * affected, as a small optimization we only sample the percpu seq counter 448 * on that cpu. Only when the block allocation fails and when freed blocks 449 * found were 0, that is when we sample percpu seq counter for all cpus using 450 * below function ext4_get_discard_pa_seq_sum(). This happens after making 451 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 452 */ 453 static DEFINE_PER_CPU(u64, discard_pa_seq); 454 static inline u64 ext4_get_discard_pa_seq_sum(void) 455 { 456 int __cpu; 457 u64 __seq = 0; 458 459 for_each_possible_cpu(__cpu) 460 __seq += per_cpu(discard_pa_seq, __cpu); 461 return __seq; 462 } 463 464 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 465 { 466 #if BITS_PER_LONG == 64 467 *bit += ((unsigned long) addr & 7UL) << 3; 468 addr = (void *) ((unsigned long) addr & ~7UL); 469 #elif BITS_PER_LONG == 32 470 *bit += ((unsigned long) addr & 3UL) << 3; 471 addr = (void *) ((unsigned long) addr & ~3UL); 472 #else 473 #error "how many bits you are?!" 474 #endif 475 return addr; 476 } 477 478 static inline int mb_test_bit(int bit, void *addr) 479 { 480 /* 481 * ext4_test_bit on architecture like powerpc 482 * needs unsigned long aligned address 483 */ 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 return ext4_test_bit(bit, addr); 486 } 487 488 static inline void mb_set_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_set_bit(bit, addr); 492 } 493 494 static inline void mb_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 ext4_clear_bit(bit, addr); 498 } 499 500 static inline int mb_test_and_clear_bit(int bit, void *addr) 501 { 502 addr = mb_correct_addr_and_bit(&bit, addr); 503 return ext4_test_and_clear_bit(bit, addr); 504 } 505 506 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 507 { 508 int fix = 0, ret, tmpmax; 509 addr = mb_correct_addr_and_bit(&fix, addr); 510 tmpmax = max + fix; 511 start += fix; 512 513 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 514 if (ret > max) 515 return max; 516 return ret; 517 } 518 519 static inline int mb_find_next_bit(void *addr, int max, int start) 520 { 521 int fix = 0, ret, tmpmax; 522 addr = mb_correct_addr_and_bit(&fix, addr); 523 tmpmax = max + fix; 524 start += fix; 525 526 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 527 if (ret > max) 528 return max; 529 return ret; 530 } 531 532 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 533 { 534 char *bb; 535 536 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 537 BUG_ON(max == NULL); 538 539 if (order > e4b->bd_blkbits + 1) { 540 *max = 0; 541 return NULL; 542 } 543 544 /* at order 0 we see each particular block */ 545 if (order == 0) { 546 *max = 1 << (e4b->bd_blkbits + 3); 547 return e4b->bd_bitmap; 548 } 549 550 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 551 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 552 553 return bb; 554 } 555 556 #ifdef DOUBLE_CHECK 557 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 558 int first, int count) 559 { 560 int i; 561 struct super_block *sb = e4b->bd_sb; 562 563 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 564 return; 565 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 566 for (i = 0; i < count; i++) { 567 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 568 ext4_fsblk_t blocknr; 569 570 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 571 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 ext4_grp_locked_error(sb, e4b->bd_group, 575 inode ? inode->i_ino : 0, 576 blocknr, 577 "freeing block already freed " 578 "(bit %u)", 579 first + i); 580 } 581 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 582 } 583 } 584 585 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 586 { 587 int i; 588 589 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 590 return; 591 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 592 for (i = 0; i < count; i++) { 593 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 594 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 595 } 596 } 597 598 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 599 { 600 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 601 return; 602 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 603 unsigned char *b1, *b2; 604 int i; 605 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 606 b2 = (unsigned char *) bitmap; 607 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 608 if (b1[i] != b2[i]) { 609 ext4_msg(e4b->bd_sb, KERN_ERR, 610 "corruption in group %u " 611 "at byte %u(%u): %x in copy != %x " 612 "on disk/prealloc", 613 e4b->bd_group, i, i * 8, b1[i], b2[i]); 614 BUG(); 615 } 616 } 617 } 618 } 619 620 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 621 struct ext4_group_info *grp, ext4_group_t group) 622 { 623 struct buffer_head *bh; 624 625 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 626 if (!grp->bb_bitmap) 627 return; 628 629 bh = ext4_read_block_bitmap(sb, group); 630 if (IS_ERR_OR_NULL(bh)) { 631 kfree(grp->bb_bitmap); 632 grp->bb_bitmap = NULL; 633 return; 634 } 635 636 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 637 put_bh(bh); 638 } 639 640 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 641 { 642 kfree(grp->bb_bitmap); 643 } 644 645 #else 646 static inline void mb_free_blocks_double(struct inode *inode, 647 struct ext4_buddy *e4b, int first, int count) 648 { 649 return; 650 } 651 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 652 int first, int count) 653 { 654 return; 655 } 656 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 662 struct ext4_group_info *grp, ext4_group_t group) 663 { 664 return; 665 } 666 667 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 668 { 669 return; 670 } 671 #endif 672 673 #ifdef AGGRESSIVE_CHECK 674 675 #define MB_CHECK_ASSERT(assert) \ 676 do { \ 677 if (!(assert)) { \ 678 printk(KERN_EMERG \ 679 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 680 function, file, line, # assert); \ 681 BUG(); \ 682 } \ 683 } while (0) 684 685 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file, 686 const char *function, int line) 687 { 688 struct super_block *sb = e4b->bd_sb; 689 int order = e4b->bd_blkbits + 1; 690 int max; 691 int max2; 692 int i; 693 int j; 694 int k; 695 int count; 696 struct ext4_group_info *grp; 697 int fragments = 0; 698 int fstart; 699 struct list_head *cur; 700 void *buddy; 701 void *buddy2; 702 703 if (e4b->bd_info->bb_check_counter++ % 10) 704 return; 705 706 while (order > 1) { 707 buddy = mb_find_buddy(e4b, order, &max); 708 MB_CHECK_ASSERT(buddy); 709 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 710 MB_CHECK_ASSERT(buddy2); 711 MB_CHECK_ASSERT(buddy != buddy2); 712 MB_CHECK_ASSERT(max * 2 == max2); 713 714 count = 0; 715 for (i = 0; i < max; i++) { 716 717 if (mb_test_bit(i, buddy)) { 718 /* only single bit in buddy2 may be 0 */ 719 if (!mb_test_bit(i << 1, buddy2)) { 720 MB_CHECK_ASSERT( 721 mb_test_bit((i<<1)+1, buddy2)); 722 } 723 continue; 724 } 725 726 /* both bits in buddy2 must be 1 */ 727 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 728 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 729 730 for (j = 0; j < (1 << order); j++) { 731 k = (i * (1 << order)) + j; 732 MB_CHECK_ASSERT( 733 !mb_test_bit(k, e4b->bd_bitmap)); 734 } 735 count++; 736 } 737 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 738 order--; 739 } 740 741 fstart = -1; 742 buddy = mb_find_buddy(e4b, 0, &max); 743 for (i = 0; i < max; i++) { 744 if (!mb_test_bit(i, buddy)) { 745 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 746 if (fstart == -1) { 747 fragments++; 748 fstart = i; 749 } 750 continue; 751 } 752 fstart = -1; 753 /* check used bits only */ 754 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 755 buddy2 = mb_find_buddy(e4b, j, &max2); 756 k = i >> j; 757 MB_CHECK_ASSERT(k < max2); 758 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 759 } 760 } 761 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 762 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 763 764 grp = ext4_get_group_info(sb, e4b->bd_group); 765 if (!grp) 766 return; 767 list_for_each(cur, &grp->bb_prealloc_list) { 768 ext4_group_t groupnr; 769 struct ext4_prealloc_space *pa; 770 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 771 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 772 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 773 for (i = 0; i < pa->pa_len; i++) 774 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 775 } 776 } 777 #undef MB_CHECK_ASSERT 778 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 779 __FILE__, __func__, __LINE__) 780 #else 781 #define mb_check_buddy(e4b) 782 #endif 783 784 /* 785 * Divide blocks started from @first with length @len into 786 * smaller chunks with power of 2 blocks. 787 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 788 * then increase bb_counters[] for corresponded chunk size. 789 */ 790 static void ext4_mb_mark_free_simple(struct super_block *sb, 791 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 792 struct ext4_group_info *grp) 793 { 794 struct ext4_sb_info *sbi = EXT4_SB(sb); 795 ext4_grpblk_t min; 796 ext4_grpblk_t max; 797 ext4_grpblk_t chunk; 798 unsigned int border; 799 800 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 801 802 border = 2 << sb->s_blocksize_bits; 803 804 while (len > 0) { 805 /* find how many blocks can be covered since this position */ 806 max = ffs(first | border) - 1; 807 808 /* find how many blocks of power 2 we need to mark */ 809 min = fls(len) - 1; 810 811 if (max < min) 812 min = max; 813 chunk = 1 << min; 814 815 /* mark multiblock chunks only */ 816 grp->bb_counters[min]++; 817 if (min > 0) 818 mb_clear_bit(first >> min, 819 buddy + sbi->s_mb_offsets[min]); 820 821 len -= chunk; 822 first += chunk; 823 } 824 } 825 826 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 827 { 828 int order; 829 830 /* 831 * We don't bother with a special lists groups with only 1 block free 832 * extents and for completely empty groups. 833 */ 834 order = fls(len) - 2; 835 if (order < 0) 836 return 0; 837 if (order == MB_NUM_ORDERS(sb)) 838 order--; 839 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb))) 840 order = MB_NUM_ORDERS(sb) - 1; 841 return order; 842 } 843 844 /* Move group to appropriate avg_fragment_size list */ 845 static void 846 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 847 { 848 struct ext4_sb_info *sbi = EXT4_SB(sb); 849 int new, old; 850 851 if (!test_opt2(sb, MB_OPTIMIZE_SCAN)) 852 return; 853 854 old = grp->bb_avg_fragment_size_order; 855 new = grp->bb_fragments == 0 ? -1 : 856 mb_avg_fragment_size_order(sb, grp->bb_free / grp->bb_fragments); 857 if (new == old) 858 return; 859 860 if (old >= 0) 861 xa_erase(&sbi->s_mb_avg_fragment_size[old], grp->bb_group); 862 863 grp->bb_avg_fragment_size_order = new; 864 if (new >= 0) { 865 /* 866 * Cannot use __GFP_NOFAIL because we hold the group lock. 867 * Although allocation for insertion may fails, it's not fatal 868 * as we have linear traversal to fall back on. 869 */ 870 int err = xa_insert(&sbi->s_mb_avg_fragment_size[new], 871 grp->bb_group, grp, GFP_ATOMIC); 872 if (err) 873 mb_debug(sb, "insert group: %u to s_mb_avg_fragment_size[%d] failed, err %d", 874 grp->bb_group, new, err); 875 } 876 } 877 878 static int ext4_mb_scan_groups_xa_range(struct ext4_allocation_context *ac, 879 struct xarray *xa, 880 ext4_group_t start, ext4_group_t end) 881 { 882 struct super_block *sb = ac->ac_sb; 883 struct ext4_sb_info *sbi = EXT4_SB(sb); 884 enum criteria cr = ac->ac_criteria; 885 ext4_group_t ngroups = ext4_get_groups_count(sb); 886 unsigned long group = start; 887 struct ext4_group_info *grp; 888 889 if (WARN_ON_ONCE(end > ngroups || start >= end)) 890 return 0; 891 892 xa_for_each_range(xa, group, grp, start, end - 1) { 893 int err; 894 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 897 898 err = ext4_mb_scan_group(ac, grp->bb_group); 899 if (err || ac->ac_status != AC_STATUS_CONTINUE) 900 return err; 901 902 cond_resched(); 903 } 904 905 return 0; 906 } 907 908 /* 909 * Find a suitable group of given order from the largest free orders xarray. 910 */ 911 static inline int 912 ext4_mb_scan_groups_largest_free_order_range(struct ext4_allocation_context *ac, 913 int order, ext4_group_t start, 914 ext4_group_t end) 915 { 916 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_largest_free_orders[order]; 917 918 if (xa_empty(xa)) 919 return 0; 920 921 return ext4_mb_scan_groups_xa_range(ac, xa, start, end); 922 } 923 924 /* 925 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 926 * cr level needs an update. 927 */ 928 static int ext4_mb_scan_groups_p2_aligned(struct ext4_allocation_context *ac, 929 ext4_group_t group) 930 { 931 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 932 int i; 933 int ret = 0; 934 ext4_group_t start, end; 935 936 start = group; 937 end = ext4_get_groups_count(ac->ac_sb); 938 wrap_around: 939 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 940 ret = ext4_mb_scan_groups_largest_free_order_range(ac, i, 941 start, end); 942 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 943 return ret; 944 } 945 if (start) { 946 end = start; 947 start = 0; 948 goto wrap_around; 949 } 950 951 if (sbi->s_mb_stats) 952 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]); 953 954 /* Increment cr and search again if no group is found */ 955 ac->ac_criteria = CR_GOAL_LEN_FAST; 956 return ret; 957 } 958 959 /* 960 * Find a suitable group of given order from the average fragments xarray. 961 */ 962 static int 963 ext4_mb_scan_groups_avg_frag_order_range(struct ext4_allocation_context *ac, 964 int order, ext4_group_t start, 965 ext4_group_t end) 966 { 967 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_avg_fragment_size[order]; 968 969 if (xa_empty(xa)) 970 return 0; 971 972 return ext4_mb_scan_groups_xa_range(ac, xa, start, end); 973 } 974 975 /* 976 * Choose next group by traversing average fragment size list of suitable 977 * order. Updates *new_cr if cr level needs an update. 978 */ 979 static int ext4_mb_scan_groups_goal_fast(struct ext4_allocation_context *ac, 980 ext4_group_t group) 981 { 982 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 983 int i, ret = 0; 984 ext4_group_t start, end; 985 986 start = group; 987 end = ext4_get_groups_count(ac->ac_sb); 988 wrap_around: 989 i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 990 for (; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 991 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, i, 992 start, end); 993 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 994 return ret; 995 } 996 if (start) { 997 end = start; 998 start = 0; 999 goto wrap_around; 1000 } 1001 1002 if (sbi->s_mb_stats) 1003 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]); 1004 /* 1005 * CR_BEST_AVAIL_LEN works based on the concept that we have 1006 * a larger normalized goal len request which can be trimmed to 1007 * a smaller goal len such that it can still satisfy original 1008 * request len. However, allocation request for non-regular 1009 * files never gets normalized. 1010 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 1011 */ 1012 if (ac->ac_flags & EXT4_MB_HINT_DATA) 1013 ac->ac_criteria = CR_BEST_AVAIL_LEN; 1014 else 1015 ac->ac_criteria = CR_GOAL_LEN_SLOW; 1016 1017 return ret; 1018 } 1019 1020 /* 1021 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 1022 * order we have and proactively trim the goal request length to that order to 1023 * find a suitable group faster. 1024 * 1025 * This optimizes allocation speed at the cost of slightly reduced 1026 * preallocations. However, we make sure that we don't trim the request too 1027 * much and fall to CR_GOAL_LEN_SLOW in that case. 1028 */ 1029 static int ext4_mb_scan_groups_best_avail(struct ext4_allocation_context *ac, 1030 ext4_group_t group) 1031 { 1032 int ret = 0; 1033 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1034 int i, order, min_order; 1035 unsigned long num_stripe_clusters = 0; 1036 ext4_group_t start, end; 1037 1038 /* 1039 * mb_avg_fragment_size_order() returns order in a way that makes 1040 * retrieving back the length using (1 << order) inaccurate. Hence, use 1041 * fls() instead since we need to know the actual length while modifying 1042 * goal length. 1043 */ 1044 order = fls(ac->ac_g_ex.fe_len) - 1; 1045 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb))) 1046 order = MB_NUM_ORDERS(ac->ac_sb); 1047 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1048 if (min_order < 0) 1049 min_order = 0; 1050 1051 if (sbi->s_stripe > 0) { 1052 /* 1053 * We are assuming that stripe size is always a multiple of 1054 * cluster ratio otherwise __ext4_fill_super exists early. 1055 */ 1056 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1057 if (1 << min_order < num_stripe_clusters) 1058 /* 1059 * We consider 1 order less because later we round 1060 * up the goal len to num_stripe_clusters 1061 */ 1062 min_order = fls(num_stripe_clusters) - 1; 1063 } 1064 1065 if (1 << min_order < ac->ac_o_ex.fe_len) 1066 min_order = fls(ac->ac_o_ex.fe_len); 1067 1068 start = group; 1069 end = ext4_get_groups_count(ac->ac_sb); 1070 wrap_around: 1071 for (i = order; i >= min_order; i--) { 1072 int frag_order; 1073 /* 1074 * Scale down goal len to make sure we find something 1075 * in the free fragments list. Basically, reduce 1076 * preallocations. 1077 */ 1078 ac->ac_g_ex.fe_len = 1 << i; 1079 1080 if (num_stripe_clusters > 0) { 1081 /* 1082 * Try to round up the adjusted goal length to 1083 * stripe size (in cluster units) multiple for 1084 * efficiency. 1085 */ 1086 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1087 num_stripe_clusters); 1088 } 1089 1090 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1091 ac->ac_g_ex.fe_len); 1092 1093 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, frag_order, 1094 start, end); 1095 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 1096 return ret; 1097 } 1098 if (start) { 1099 end = start; 1100 start = 0; 1101 goto wrap_around; 1102 } 1103 1104 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1105 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1106 if (sbi->s_mb_stats) 1107 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]); 1108 ac->ac_criteria = CR_GOAL_LEN_SLOW; 1109 1110 return ret; 1111 } 1112 1113 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1114 { 1115 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1116 return 0; 1117 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1118 return 0; 1119 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1120 return 0; 1121 return 1; 1122 } 1123 1124 /* 1125 * next linear group for allocation. 1126 */ 1127 static void next_linear_group(ext4_group_t *group, ext4_group_t ngroups) 1128 { 1129 /* 1130 * Artificially restricted ngroups for non-extent 1131 * files makes group > ngroups possible on first loop. 1132 */ 1133 *group = *group + 1 >= ngroups ? 0 : *group + 1; 1134 } 1135 1136 static int ext4_mb_scan_groups_linear(struct ext4_allocation_context *ac, 1137 ext4_group_t ngroups, ext4_group_t *start, ext4_group_t count) 1138 { 1139 int ret, i; 1140 enum criteria cr = ac->ac_criteria; 1141 struct super_block *sb = ac->ac_sb; 1142 struct ext4_sb_info *sbi = EXT4_SB(sb); 1143 ext4_group_t group = *start; 1144 1145 for (i = 0; i < count; i++, next_linear_group(&group, ngroups)) { 1146 ret = ext4_mb_scan_group(ac, group); 1147 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 1148 return ret; 1149 cond_resched(); 1150 } 1151 1152 *start = group; 1153 if (count == ngroups) 1154 ac->ac_criteria++; 1155 1156 /* Processed all groups and haven't found blocks */ 1157 if (sbi->s_mb_stats && i == ngroups) 1158 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 1159 1160 return 0; 1161 } 1162 1163 static int ext4_mb_scan_groups(struct ext4_allocation_context *ac) 1164 { 1165 int ret = 0; 1166 ext4_group_t start; 1167 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1168 ext4_group_t ngroups = ext4_get_groups_count(ac->ac_sb); 1169 1170 /* non-extent files are limited to low blocks/groups */ 1171 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1172 ngroups = sbi->s_blockfile_groups; 1173 1174 /* searching for the right group start from the goal value specified */ 1175 start = ac->ac_g_ex.fe_group; 1176 ac->ac_prefetch_grp = start; 1177 ac->ac_prefetch_nr = 0; 1178 1179 if (!should_optimize_scan(ac)) 1180 return ext4_mb_scan_groups_linear(ac, ngroups, &start, ngroups); 1181 1182 /* 1183 * Optimized scanning can return non adjacent groups which can cause 1184 * seek overhead for rotational disks. So try few linear groups before 1185 * trying optimized scan. 1186 */ 1187 if (sbi->s_mb_max_linear_groups) 1188 ret = ext4_mb_scan_groups_linear(ac, ngroups, &start, 1189 sbi->s_mb_max_linear_groups); 1190 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 1191 return ret; 1192 1193 switch (ac->ac_criteria) { 1194 case CR_POWER2_ALIGNED: 1195 return ext4_mb_scan_groups_p2_aligned(ac, start); 1196 case CR_GOAL_LEN_FAST: 1197 return ext4_mb_scan_groups_goal_fast(ac, start); 1198 case CR_BEST_AVAIL_LEN: 1199 return ext4_mb_scan_groups_best_avail(ac, start); 1200 default: 1201 /* 1202 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an 1203 * rb tree sorted by bb_free. But until that happens, we should 1204 * never come here. 1205 */ 1206 WARN_ON(1); 1207 } 1208 1209 return 0; 1210 } 1211 1212 /* 1213 * Cache the order of the largest free extent we have available in this block 1214 * group. 1215 */ 1216 static void 1217 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1218 { 1219 struct ext4_sb_info *sbi = EXT4_SB(sb); 1220 int new, old = grp->bb_largest_free_order; 1221 1222 for (new = MB_NUM_ORDERS(sb) - 1; new >= 0; new--) 1223 if (grp->bb_counters[new] > 0) 1224 break; 1225 1226 /* No need to move between order lists? */ 1227 if (new == old) 1228 return; 1229 1230 if (old >= 0) { 1231 struct xarray *xa = &sbi->s_mb_largest_free_orders[old]; 1232 1233 if (!xa_empty(xa) && xa_load(xa, grp->bb_group)) 1234 xa_erase(xa, grp->bb_group); 1235 } 1236 1237 grp->bb_largest_free_order = new; 1238 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && new >= 0 && grp->bb_free) { 1239 /* 1240 * Cannot use __GFP_NOFAIL because we hold the group lock. 1241 * Although allocation for insertion may fails, it's not fatal 1242 * as we have linear traversal to fall back on. 1243 */ 1244 int err = xa_insert(&sbi->s_mb_largest_free_orders[new], 1245 grp->bb_group, grp, GFP_ATOMIC); 1246 if (err) 1247 mb_debug(sb, "insert group: %u to s_mb_largest_free_orders[%d] failed, err %d", 1248 grp->bb_group, new, err); 1249 } 1250 } 1251 1252 static noinline_for_stack 1253 void ext4_mb_generate_buddy(struct super_block *sb, 1254 void *buddy, void *bitmap, ext4_group_t group, 1255 struct ext4_group_info *grp) 1256 { 1257 struct ext4_sb_info *sbi = EXT4_SB(sb); 1258 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1259 ext4_grpblk_t i = 0; 1260 ext4_grpblk_t first; 1261 ext4_grpblk_t len; 1262 unsigned free = 0; 1263 unsigned fragments = 0; 1264 unsigned long long period = get_cycles(); 1265 1266 /* initialize buddy from bitmap which is aggregation 1267 * of on-disk bitmap and preallocations */ 1268 i = mb_find_next_zero_bit(bitmap, max, 0); 1269 grp->bb_first_free = i; 1270 while (i < max) { 1271 fragments++; 1272 first = i; 1273 i = mb_find_next_bit(bitmap, max, i); 1274 len = i - first; 1275 free += len; 1276 if (len > 1) 1277 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1278 else 1279 grp->bb_counters[0]++; 1280 if (i < max) 1281 i = mb_find_next_zero_bit(bitmap, max, i); 1282 } 1283 grp->bb_fragments = fragments; 1284 1285 if (free != grp->bb_free) { 1286 ext4_grp_locked_error(sb, group, 0, 0, 1287 "block bitmap and bg descriptor " 1288 "inconsistent: %u vs %u free clusters", 1289 free, grp->bb_free); 1290 /* 1291 * If we intend to continue, we consider group descriptor 1292 * corrupt and update bb_free using bitmap value 1293 */ 1294 grp->bb_free = free; 1295 ext4_mark_group_bitmap_corrupted(sb, group, 1296 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1297 } 1298 mb_set_largest_free_order(sb, grp); 1299 mb_update_avg_fragment_size(sb, grp); 1300 1301 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1302 1303 period = get_cycles() - period; 1304 atomic_inc(&sbi->s_mb_buddies_generated); 1305 atomic64_add(period, &sbi->s_mb_generation_time); 1306 } 1307 1308 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1309 { 1310 int count; 1311 int order = 1; 1312 void *buddy; 1313 1314 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1315 mb_set_bits(buddy, 0, count); 1316 1317 e4b->bd_info->bb_fragments = 0; 1318 memset(e4b->bd_info->bb_counters, 0, 1319 sizeof(*e4b->bd_info->bb_counters) * 1320 (e4b->bd_sb->s_blocksize_bits + 2)); 1321 1322 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1323 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1324 } 1325 1326 /* The buddy information is attached the buddy cache inode 1327 * for convenience. The information regarding each group 1328 * is loaded via ext4_mb_load_buddy. The information involve 1329 * block bitmap and buddy information. The information are 1330 * stored in the inode as 1331 * 1332 * { page } 1333 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1334 * 1335 * 1336 * one block each for bitmap and buddy information. 1337 * So for each group we take up 2 blocks. A page can 1338 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1339 * So it can have information regarding groups_per_page which 1340 * is blocks_per_page/2 1341 * 1342 * Locking note: This routine takes the block group lock of all groups 1343 * for this page; do not hold this lock when calling this routine! 1344 */ 1345 1346 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp) 1347 { 1348 ext4_group_t ngroups; 1349 unsigned int blocksize; 1350 int blocks_per_page; 1351 int groups_per_page; 1352 int err = 0; 1353 int i; 1354 ext4_group_t first_group, group; 1355 int first_block; 1356 struct super_block *sb; 1357 struct buffer_head *bhs; 1358 struct buffer_head **bh = NULL; 1359 struct inode *inode; 1360 char *data; 1361 char *bitmap; 1362 struct ext4_group_info *grinfo; 1363 1364 inode = folio->mapping->host; 1365 sb = inode->i_sb; 1366 ngroups = ext4_get_groups_count(sb); 1367 blocksize = i_blocksize(inode); 1368 blocks_per_page = PAGE_SIZE / blocksize; 1369 1370 mb_debug(sb, "init folio %lu\n", folio->index); 1371 1372 groups_per_page = blocks_per_page >> 1; 1373 if (groups_per_page == 0) 1374 groups_per_page = 1; 1375 1376 /* allocate buffer_heads to read bitmaps */ 1377 if (groups_per_page > 1) { 1378 i = sizeof(struct buffer_head *) * groups_per_page; 1379 bh = kzalloc(i, gfp); 1380 if (bh == NULL) 1381 return -ENOMEM; 1382 } else 1383 bh = &bhs; 1384 1385 first_group = folio->index * blocks_per_page / 2; 1386 1387 /* read all groups the folio covers into the cache */ 1388 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1389 if (group >= ngroups) 1390 break; 1391 1392 grinfo = ext4_get_group_info(sb, group); 1393 if (!grinfo) 1394 continue; 1395 /* 1396 * If page is uptodate then we came here after online resize 1397 * which added some new uninitialized group info structs, so 1398 * we must skip all initialized uptodate buddies on the folio, 1399 * which may be currently in use by an allocating task. 1400 */ 1401 if (folio_test_uptodate(folio) && 1402 !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1403 bh[i] = NULL; 1404 continue; 1405 } 1406 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1407 if (IS_ERR(bh[i])) { 1408 err = PTR_ERR(bh[i]); 1409 bh[i] = NULL; 1410 goto out; 1411 } 1412 mb_debug(sb, "read bitmap for group %u\n", group); 1413 } 1414 1415 /* wait for I/O completion */ 1416 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1417 int err2; 1418 1419 if (!bh[i]) 1420 continue; 1421 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1422 if (!err) 1423 err = err2; 1424 } 1425 1426 first_block = folio->index * blocks_per_page; 1427 for (i = 0; i < blocks_per_page; i++) { 1428 group = (first_block + i) >> 1; 1429 if (group >= ngroups) 1430 break; 1431 1432 if (!bh[group - first_group]) 1433 /* skip initialized uptodate buddy */ 1434 continue; 1435 1436 if (!buffer_verified(bh[group - first_group])) 1437 /* Skip faulty bitmaps */ 1438 continue; 1439 err = 0; 1440 1441 /* 1442 * data carry information regarding this 1443 * particular group in the format specified 1444 * above 1445 * 1446 */ 1447 data = folio_address(folio) + (i * blocksize); 1448 bitmap = bh[group - first_group]->b_data; 1449 1450 /* 1451 * We place the buddy block and bitmap block 1452 * close together 1453 */ 1454 grinfo = ext4_get_group_info(sb, group); 1455 if (!grinfo) { 1456 err = -EFSCORRUPTED; 1457 goto out; 1458 } 1459 if ((first_block + i) & 1) { 1460 /* this is block of buddy */ 1461 BUG_ON(incore == NULL); 1462 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n", 1463 group, folio->index, i * blocksize); 1464 trace_ext4_mb_buddy_bitmap_load(sb, group); 1465 grinfo->bb_fragments = 0; 1466 memset(grinfo->bb_counters, 0, 1467 sizeof(*grinfo->bb_counters) * 1468 (MB_NUM_ORDERS(sb))); 1469 /* 1470 * incore got set to the group block bitmap below 1471 */ 1472 ext4_lock_group(sb, group); 1473 /* init the buddy */ 1474 memset(data, 0xff, blocksize); 1475 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1476 ext4_unlock_group(sb, group); 1477 incore = NULL; 1478 } else { 1479 /* this is block of bitmap */ 1480 BUG_ON(incore != NULL); 1481 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n", 1482 group, folio->index, i * blocksize); 1483 trace_ext4_mb_bitmap_load(sb, group); 1484 1485 /* see comments in ext4_mb_put_pa() */ 1486 ext4_lock_group(sb, group); 1487 memcpy(data, bitmap, blocksize); 1488 1489 /* mark all preallocated blks used in in-core bitmap */ 1490 ext4_mb_generate_from_pa(sb, data, group); 1491 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1492 ext4_unlock_group(sb, group); 1493 1494 /* set incore so that the buddy information can be 1495 * generated using this 1496 */ 1497 incore = data; 1498 } 1499 } 1500 folio_mark_uptodate(folio); 1501 1502 out: 1503 if (bh) { 1504 for (i = 0; i < groups_per_page; i++) 1505 brelse(bh[i]); 1506 if (bh != &bhs) 1507 kfree(bh); 1508 } 1509 return err; 1510 } 1511 1512 /* 1513 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1514 * on the same buddy page doesn't happen whild holding the buddy page lock. 1515 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1516 * are on the same page e4b->bd_buddy_folio is NULL and return value is 0. 1517 */ 1518 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1519 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1520 { 1521 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1522 int block, pnum, poff; 1523 int blocks_per_page; 1524 struct folio *folio; 1525 1526 e4b->bd_buddy_folio = NULL; 1527 e4b->bd_bitmap_folio = NULL; 1528 1529 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1530 /* 1531 * the buddy cache inode stores the block bitmap 1532 * and buddy information in consecutive blocks. 1533 * So for each group we need two blocks. 1534 */ 1535 block = group * 2; 1536 pnum = block / blocks_per_page; 1537 poff = block % blocks_per_page; 1538 folio = __filemap_get_folio(inode->i_mapping, pnum, 1539 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1540 if (IS_ERR(folio)) 1541 return PTR_ERR(folio); 1542 BUG_ON(folio->mapping != inode->i_mapping); 1543 e4b->bd_bitmap_folio = folio; 1544 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); 1545 1546 if (blocks_per_page >= 2) { 1547 /* buddy and bitmap are on the same page */ 1548 return 0; 1549 } 1550 1551 /* blocks_per_page == 1, hence we need another page for the buddy */ 1552 folio = __filemap_get_folio(inode->i_mapping, block + 1, 1553 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1554 if (IS_ERR(folio)) 1555 return PTR_ERR(folio); 1556 BUG_ON(folio->mapping != inode->i_mapping); 1557 e4b->bd_buddy_folio = folio; 1558 return 0; 1559 } 1560 1561 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1562 { 1563 if (e4b->bd_bitmap_folio) { 1564 folio_unlock(e4b->bd_bitmap_folio); 1565 folio_put(e4b->bd_bitmap_folio); 1566 } 1567 if (e4b->bd_buddy_folio) { 1568 folio_unlock(e4b->bd_buddy_folio); 1569 folio_put(e4b->bd_buddy_folio); 1570 } 1571 } 1572 1573 /* 1574 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1575 * block group lock of all groups for this page; do not hold the BG lock when 1576 * calling this routine! 1577 */ 1578 static noinline_for_stack 1579 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1580 { 1581 1582 struct ext4_group_info *this_grp; 1583 struct ext4_buddy e4b; 1584 struct folio *folio; 1585 int ret = 0; 1586 1587 might_sleep(); 1588 mb_debug(sb, "init group %u\n", group); 1589 this_grp = ext4_get_group_info(sb, group); 1590 if (!this_grp) 1591 return -EFSCORRUPTED; 1592 1593 /* 1594 * This ensures that we don't reinit the buddy cache 1595 * page which map to the group from which we are already 1596 * allocating. If we are looking at the buddy cache we would 1597 * have taken a reference using ext4_mb_load_buddy and that 1598 * would have pinned buddy page to page cache. 1599 * The call to ext4_mb_get_buddy_page_lock will mark the 1600 * page accessed. 1601 */ 1602 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1603 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1604 /* 1605 * somebody initialized the group 1606 * return without doing anything 1607 */ 1608 goto err; 1609 } 1610 1611 folio = e4b.bd_bitmap_folio; 1612 ret = ext4_mb_init_cache(folio, NULL, gfp); 1613 if (ret) 1614 goto err; 1615 if (!folio_test_uptodate(folio)) { 1616 ret = -EIO; 1617 goto err; 1618 } 1619 1620 if (e4b.bd_buddy_folio == NULL) { 1621 /* 1622 * If both the bitmap and buddy are in 1623 * the same page we don't need to force 1624 * init the buddy 1625 */ 1626 ret = 0; 1627 goto err; 1628 } 1629 /* init buddy cache */ 1630 folio = e4b.bd_buddy_folio; 1631 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp); 1632 if (ret) 1633 goto err; 1634 if (!folio_test_uptodate(folio)) { 1635 ret = -EIO; 1636 goto err; 1637 } 1638 err: 1639 ext4_mb_put_buddy_page_lock(&e4b); 1640 return ret; 1641 } 1642 1643 /* 1644 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1645 * block group lock of all groups for this page; do not hold the BG lock when 1646 * calling this routine! 1647 */ 1648 static noinline_for_stack int 1649 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1650 struct ext4_buddy *e4b, gfp_t gfp) 1651 { 1652 int blocks_per_page; 1653 int block; 1654 int pnum; 1655 int poff; 1656 struct folio *folio; 1657 int ret; 1658 struct ext4_group_info *grp; 1659 struct ext4_sb_info *sbi = EXT4_SB(sb); 1660 struct inode *inode = sbi->s_buddy_cache; 1661 1662 might_sleep(); 1663 mb_debug(sb, "load group %u\n", group); 1664 1665 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1666 grp = ext4_get_group_info(sb, group); 1667 if (!grp) 1668 return -EFSCORRUPTED; 1669 1670 e4b->bd_blkbits = sb->s_blocksize_bits; 1671 e4b->bd_info = grp; 1672 e4b->bd_sb = sb; 1673 e4b->bd_group = group; 1674 e4b->bd_buddy_folio = NULL; 1675 e4b->bd_bitmap_folio = NULL; 1676 1677 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1678 /* 1679 * we need full data about the group 1680 * to make a good selection 1681 */ 1682 ret = ext4_mb_init_group(sb, group, gfp); 1683 if (ret) 1684 return ret; 1685 } 1686 1687 /* 1688 * the buddy cache inode stores the block bitmap 1689 * and buddy information in consecutive blocks. 1690 * So for each group we need two blocks. 1691 */ 1692 block = group * 2; 1693 pnum = block / blocks_per_page; 1694 poff = block % blocks_per_page; 1695 1696 /* Avoid locking the folio in the fast path ... */ 1697 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); 1698 if (IS_ERR(folio) || !folio_test_uptodate(folio)) { 1699 if (!IS_ERR(folio)) 1700 /* 1701 * drop the folio reference and try 1702 * to get the folio with lock. If we 1703 * are not uptodate that implies 1704 * somebody just created the folio but 1705 * is yet to initialize it. So 1706 * wait for it to initialize. 1707 */ 1708 folio_put(folio); 1709 folio = __filemap_get_folio(inode->i_mapping, pnum, 1710 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1711 if (!IS_ERR(folio)) { 1712 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, 1713 "ext4: bitmap's mapping != inode->i_mapping\n")) { 1714 /* should never happen */ 1715 folio_unlock(folio); 1716 ret = -EINVAL; 1717 goto err; 1718 } 1719 if (!folio_test_uptodate(folio)) { 1720 ret = ext4_mb_init_cache(folio, NULL, gfp); 1721 if (ret) { 1722 folio_unlock(folio); 1723 goto err; 1724 } 1725 mb_cmp_bitmaps(e4b, folio_address(folio) + 1726 (poff * sb->s_blocksize)); 1727 } 1728 folio_unlock(folio); 1729 } 1730 } 1731 if (IS_ERR(folio)) { 1732 ret = PTR_ERR(folio); 1733 goto err; 1734 } 1735 if (!folio_test_uptodate(folio)) { 1736 ret = -EIO; 1737 goto err; 1738 } 1739 1740 /* Folios marked accessed already */ 1741 e4b->bd_bitmap_folio = folio; 1742 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); 1743 1744 block++; 1745 pnum = block / blocks_per_page; 1746 poff = block % blocks_per_page; 1747 1748 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); 1749 if (IS_ERR(folio) || !folio_test_uptodate(folio)) { 1750 if (!IS_ERR(folio)) 1751 folio_put(folio); 1752 folio = __filemap_get_folio(inode->i_mapping, pnum, 1753 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1754 if (!IS_ERR(folio)) { 1755 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, 1756 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) { 1757 /* should never happen */ 1758 folio_unlock(folio); 1759 ret = -EINVAL; 1760 goto err; 1761 } 1762 if (!folio_test_uptodate(folio)) { 1763 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap, 1764 gfp); 1765 if (ret) { 1766 folio_unlock(folio); 1767 goto err; 1768 } 1769 } 1770 folio_unlock(folio); 1771 } 1772 } 1773 if (IS_ERR(folio)) { 1774 ret = PTR_ERR(folio); 1775 goto err; 1776 } 1777 if (!folio_test_uptodate(folio)) { 1778 ret = -EIO; 1779 goto err; 1780 } 1781 1782 /* Folios marked accessed already */ 1783 e4b->bd_buddy_folio = folio; 1784 e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize); 1785 1786 return 0; 1787 1788 err: 1789 if (!IS_ERR_OR_NULL(folio)) 1790 folio_put(folio); 1791 if (e4b->bd_bitmap_folio) 1792 folio_put(e4b->bd_bitmap_folio); 1793 1794 e4b->bd_buddy = NULL; 1795 e4b->bd_bitmap = NULL; 1796 return ret; 1797 } 1798 1799 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1800 struct ext4_buddy *e4b) 1801 { 1802 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1803 } 1804 1805 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1806 { 1807 if (e4b->bd_bitmap_folio) 1808 folio_put(e4b->bd_bitmap_folio); 1809 if (e4b->bd_buddy_folio) 1810 folio_put(e4b->bd_buddy_folio); 1811 } 1812 1813 1814 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1815 { 1816 int order = 1, max; 1817 void *bb; 1818 1819 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1820 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1821 1822 while (order <= e4b->bd_blkbits + 1) { 1823 bb = mb_find_buddy(e4b, order, &max); 1824 if (!mb_test_bit(block >> order, bb)) { 1825 /* this block is part of buddy of order 'order' */ 1826 return order; 1827 } 1828 order++; 1829 } 1830 return 0; 1831 } 1832 1833 static void mb_clear_bits(void *bm, int cur, int len) 1834 { 1835 __u32 *addr; 1836 1837 len = cur + len; 1838 while (cur < len) { 1839 if ((cur & 31) == 0 && (len - cur) >= 32) { 1840 /* fast path: clear whole word at once */ 1841 addr = bm + (cur >> 3); 1842 *addr = 0; 1843 cur += 32; 1844 continue; 1845 } 1846 mb_clear_bit(cur, bm); 1847 cur++; 1848 } 1849 } 1850 1851 /* clear bits in given range 1852 * will return first found zero bit if any, -1 otherwise 1853 */ 1854 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1855 { 1856 __u32 *addr; 1857 int zero_bit = -1; 1858 1859 len = cur + len; 1860 while (cur < len) { 1861 if ((cur & 31) == 0 && (len - cur) >= 32) { 1862 /* fast path: clear whole word at once */ 1863 addr = bm + (cur >> 3); 1864 if (*addr != (__u32)(-1) && zero_bit == -1) 1865 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1866 *addr = 0; 1867 cur += 32; 1868 continue; 1869 } 1870 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1871 zero_bit = cur; 1872 cur++; 1873 } 1874 1875 return zero_bit; 1876 } 1877 1878 void mb_set_bits(void *bm, int cur, int len) 1879 { 1880 __u32 *addr; 1881 1882 len = cur + len; 1883 while (cur < len) { 1884 if ((cur & 31) == 0 && (len - cur) >= 32) { 1885 /* fast path: set whole word at once */ 1886 addr = bm + (cur >> 3); 1887 *addr = 0xffffffff; 1888 cur += 32; 1889 continue; 1890 } 1891 mb_set_bit(cur, bm); 1892 cur++; 1893 } 1894 } 1895 1896 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1897 { 1898 if (mb_test_bit(*bit + side, bitmap)) { 1899 mb_clear_bit(*bit, bitmap); 1900 (*bit) -= side; 1901 return 1; 1902 } 1903 else { 1904 (*bit) += side; 1905 mb_set_bit(*bit, bitmap); 1906 return -1; 1907 } 1908 } 1909 1910 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1911 { 1912 int max; 1913 int order = 1; 1914 void *buddy = mb_find_buddy(e4b, order, &max); 1915 1916 while (buddy) { 1917 void *buddy2; 1918 1919 /* Bits in range [first; last] are known to be set since 1920 * corresponding blocks were allocated. Bits in range 1921 * (first; last) will stay set because they form buddies on 1922 * upper layer. We just deal with borders if they don't 1923 * align with upper layer and then go up. 1924 * Releasing entire group is all about clearing 1925 * single bit of highest order buddy. 1926 */ 1927 1928 /* Example: 1929 * --------------------------------- 1930 * | 1 | 1 | 1 | 1 | 1931 * --------------------------------- 1932 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1933 * --------------------------------- 1934 * 0 1 2 3 4 5 6 7 1935 * \_____________________/ 1936 * 1937 * Neither [1] nor [6] is aligned to above layer. 1938 * Left neighbour [0] is free, so mark it busy, 1939 * decrease bb_counters and extend range to 1940 * [0; 6] 1941 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1942 * mark [6] free, increase bb_counters and shrink range to 1943 * [0; 5]. 1944 * Then shift range to [0; 2], go up and do the same. 1945 */ 1946 1947 1948 if (first & 1) 1949 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1950 if (!(last & 1)) 1951 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1952 if (first > last) 1953 break; 1954 order++; 1955 1956 buddy2 = mb_find_buddy(e4b, order, &max); 1957 if (!buddy2) { 1958 mb_clear_bits(buddy, first, last - first + 1); 1959 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1960 break; 1961 } 1962 first >>= 1; 1963 last >>= 1; 1964 buddy = buddy2; 1965 } 1966 } 1967 1968 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1969 int first, int count) 1970 { 1971 int left_is_free = 0; 1972 int right_is_free = 0; 1973 int block; 1974 int last = first + count - 1; 1975 struct super_block *sb = e4b->bd_sb; 1976 1977 if (WARN_ON(count == 0)) 1978 return; 1979 BUG_ON(last >= (sb->s_blocksize << 3)); 1980 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1981 /* Don't bother if the block group is corrupt. */ 1982 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1983 return; 1984 1985 mb_check_buddy(e4b); 1986 mb_free_blocks_double(inode, e4b, first, count); 1987 1988 /* access memory sequentially: check left neighbour, 1989 * clear range and then check right neighbour 1990 */ 1991 if (first != 0) 1992 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1993 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1994 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1995 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1996 1997 if (unlikely(block != -1)) { 1998 struct ext4_sb_info *sbi = EXT4_SB(sb); 1999 ext4_fsblk_t blocknr; 2000 2001 /* 2002 * Fastcommit replay can free already freed blocks which 2003 * corrupts allocation info. Regenerate it. 2004 */ 2005 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 2006 mb_regenerate_buddy(e4b); 2007 goto check; 2008 } 2009 2010 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 2011 blocknr += EXT4_C2B(sbi, block); 2012 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2013 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2014 ext4_grp_locked_error(sb, e4b->bd_group, 2015 inode ? inode->i_ino : 0, blocknr, 2016 "freeing already freed block (bit %u); block bitmap corrupt.", 2017 block); 2018 return; 2019 } 2020 2021 this_cpu_inc(discard_pa_seq); 2022 e4b->bd_info->bb_free += count; 2023 if (first < e4b->bd_info->bb_first_free) 2024 e4b->bd_info->bb_first_free = first; 2025 2026 /* let's maintain fragments counter */ 2027 if (left_is_free && right_is_free) 2028 e4b->bd_info->bb_fragments--; 2029 else if (!left_is_free && !right_is_free) 2030 e4b->bd_info->bb_fragments++; 2031 2032 /* buddy[0] == bd_bitmap is a special case, so handle 2033 * it right away and let mb_buddy_mark_free stay free of 2034 * zero order checks. 2035 * Check if neighbours are to be coaleasced, 2036 * adjust bitmap bb_counters and borders appropriately. 2037 */ 2038 if (first & 1) { 2039 first += !left_is_free; 2040 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 2041 } 2042 if (!(last & 1)) { 2043 last -= !right_is_free; 2044 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 2045 } 2046 2047 if (first <= last) 2048 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 2049 2050 mb_set_largest_free_order(sb, e4b->bd_info); 2051 mb_update_avg_fragment_size(sb, e4b->bd_info); 2052 check: 2053 mb_check_buddy(e4b); 2054 } 2055 2056 static int mb_find_extent(struct ext4_buddy *e4b, int block, 2057 int needed, struct ext4_free_extent *ex) 2058 { 2059 int max, order, next; 2060 void *buddy; 2061 2062 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2063 BUG_ON(ex == NULL); 2064 2065 buddy = mb_find_buddy(e4b, 0, &max); 2066 BUG_ON(buddy == NULL); 2067 BUG_ON(block >= max); 2068 if (mb_test_bit(block, buddy)) { 2069 ex->fe_len = 0; 2070 ex->fe_start = 0; 2071 ex->fe_group = 0; 2072 return 0; 2073 } 2074 2075 /* find actual order */ 2076 order = mb_find_order_for_block(e4b, block); 2077 2078 ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); 2079 ex->fe_start = block; 2080 ex->fe_group = e4b->bd_group; 2081 2082 block = block >> order; 2083 2084 while (needed > ex->fe_len && 2085 mb_find_buddy(e4b, order, &max)) { 2086 2087 if (block + 1 >= max) 2088 break; 2089 2090 next = (block + 1) * (1 << order); 2091 if (mb_test_bit(next, e4b->bd_bitmap)) 2092 break; 2093 2094 order = mb_find_order_for_block(e4b, next); 2095 2096 block = next >> order; 2097 ex->fe_len += 1 << order; 2098 } 2099 2100 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2101 /* Should never happen! (but apparently sometimes does?!?) */ 2102 WARN_ON(1); 2103 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2104 "corruption or bug in mb_find_extent " 2105 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2106 block, order, needed, ex->fe_group, ex->fe_start, 2107 ex->fe_len, ex->fe_logical); 2108 ex->fe_len = 0; 2109 ex->fe_start = 0; 2110 ex->fe_group = 0; 2111 } 2112 return ex->fe_len; 2113 } 2114 2115 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2116 { 2117 int ord; 2118 int mlen = 0; 2119 int max = 0; 2120 int start = ex->fe_start; 2121 int len = ex->fe_len; 2122 unsigned ret = 0; 2123 int len0 = len; 2124 void *buddy; 2125 int ord_start, ord_end; 2126 2127 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2128 BUG_ON(e4b->bd_group != ex->fe_group); 2129 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2130 mb_check_buddy(e4b); 2131 mb_mark_used_double(e4b, start, len); 2132 2133 this_cpu_inc(discard_pa_seq); 2134 e4b->bd_info->bb_free -= len; 2135 if (e4b->bd_info->bb_first_free == start) 2136 e4b->bd_info->bb_first_free += len; 2137 2138 /* let's maintain fragments counter */ 2139 if (start != 0) 2140 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2141 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2142 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2143 if (mlen && max) 2144 e4b->bd_info->bb_fragments++; 2145 else if (!mlen && !max) 2146 e4b->bd_info->bb_fragments--; 2147 2148 /* let's maintain buddy itself */ 2149 while (len) { 2150 ord = mb_find_order_for_block(e4b, start); 2151 2152 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2153 /* the whole chunk may be allocated at once! */ 2154 mlen = 1 << ord; 2155 buddy = mb_find_buddy(e4b, ord, &max); 2156 BUG_ON((start >> ord) >= max); 2157 mb_set_bit(start >> ord, buddy); 2158 e4b->bd_info->bb_counters[ord]--; 2159 start += mlen; 2160 len -= mlen; 2161 BUG_ON(len < 0); 2162 continue; 2163 } 2164 2165 /* store for history */ 2166 if (ret == 0) 2167 ret = len | (ord << 16); 2168 2169 BUG_ON(ord <= 0); 2170 buddy = mb_find_buddy(e4b, ord, &max); 2171 mb_set_bit(start >> ord, buddy); 2172 e4b->bd_info->bb_counters[ord]--; 2173 2174 ord_start = (start >> ord) << ord; 2175 ord_end = ord_start + (1 << ord); 2176 /* first chunk */ 2177 if (start > ord_start) 2178 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, 2179 ord_start, start - ord_start, 2180 e4b->bd_info); 2181 2182 /* last chunk */ 2183 if (start + len < ord_end) { 2184 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, 2185 start + len, 2186 ord_end - (start + len), 2187 e4b->bd_info); 2188 break; 2189 } 2190 len = start + len - ord_end; 2191 start = ord_end; 2192 } 2193 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2194 2195 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2196 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2197 mb_check_buddy(e4b); 2198 2199 return ret; 2200 } 2201 2202 /* 2203 * Must be called under group lock! 2204 */ 2205 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2206 struct ext4_buddy *e4b) 2207 { 2208 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2209 int ret; 2210 2211 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2212 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2213 2214 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2215 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2216 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2217 2218 /* preallocation can change ac_b_ex, thus we store actually 2219 * allocated blocks for history */ 2220 ac->ac_f_ex = ac->ac_b_ex; 2221 2222 ac->ac_status = AC_STATUS_FOUND; 2223 ac->ac_tail = ret & 0xffff; 2224 ac->ac_buddy = ret >> 16; 2225 2226 /* 2227 * take the page reference. We want the page to be pinned 2228 * so that we don't get a ext4_mb_init_cache_call for this 2229 * group until we update the bitmap. That would mean we 2230 * double allocate blocks. The reference is dropped 2231 * in ext4_mb_release_context 2232 */ 2233 ac->ac_bitmap_folio = e4b->bd_bitmap_folio; 2234 folio_get(ac->ac_bitmap_folio); 2235 ac->ac_buddy_folio = e4b->bd_buddy_folio; 2236 folio_get(ac->ac_buddy_folio); 2237 /* store last allocated for subsequent stream allocation */ 2238 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2239 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals; 2240 2241 WRITE_ONCE(sbi->s_mb_last_groups[hash], ac->ac_f_ex.fe_group); 2242 } 2243 2244 /* 2245 * As we've just preallocated more space than 2246 * user requested originally, we store allocated 2247 * space in a special descriptor. 2248 */ 2249 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2250 ext4_mb_new_preallocation(ac); 2251 2252 } 2253 2254 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2255 struct ext4_buddy *e4b, 2256 int finish_group) 2257 { 2258 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2259 struct ext4_free_extent *bex = &ac->ac_b_ex; 2260 struct ext4_free_extent *gex = &ac->ac_g_ex; 2261 2262 if (ac->ac_status == AC_STATUS_FOUND) 2263 return; 2264 /* 2265 * We don't want to scan for a whole year 2266 */ 2267 if (ac->ac_found > sbi->s_mb_max_to_scan && 2268 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2269 ac->ac_status = AC_STATUS_BREAK; 2270 return; 2271 } 2272 2273 /* 2274 * Haven't found good chunk so far, let's continue 2275 */ 2276 if (bex->fe_len < gex->fe_len) 2277 return; 2278 2279 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2280 ext4_mb_use_best_found(ac, e4b); 2281 } 2282 2283 /* 2284 * The routine checks whether found extent is good enough. If it is, 2285 * then the extent gets marked used and flag is set to the context 2286 * to stop scanning. Otherwise, the extent is compared with the 2287 * previous found extent and if new one is better, then it's stored 2288 * in the context. Later, the best found extent will be used, if 2289 * mballoc can't find good enough extent. 2290 * 2291 * The algorithm used is roughly as follows: 2292 * 2293 * * If free extent found is exactly as big as goal, then 2294 * stop the scan and use it immediately 2295 * 2296 * * If free extent found is smaller than goal, then keep retrying 2297 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2298 * that stop scanning and use whatever we have. 2299 * 2300 * * If free extent found is bigger than goal, then keep retrying 2301 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2302 * stopping the scan and using the extent. 2303 * 2304 * 2305 * FIXME: real allocation policy is to be designed yet! 2306 */ 2307 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2308 struct ext4_free_extent *ex, 2309 struct ext4_buddy *e4b) 2310 { 2311 struct ext4_free_extent *bex = &ac->ac_b_ex; 2312 struct ext4_free_extent *gex = &ac->ac_g_ex; 2313 2314 BUG_ON(ex->fe_len <= 0); 2315 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2316 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2317 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2318 2319 ac->ac_found++; 2320 ac->ac_cX_found[ac->ac_criteria]++; 2321 2322 /* 2323 * The special case - take what you catch first 2324 */ 2325 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2326 *bex = *ex; 2327 ext4_mb_use_best_found(ac, e4b); 2328 return; 2329 } 2330 2331 /* 2332 * Let's check whether the chuck is good enough 2333 */ 2334 if (ex->fe_len == gex->fe_len) { 2335 *bex = *ex; 2336 ext4_mb_use_best_found(ac, e4b); 2337 return; 2338 } 2339 2340 /* 2341 * If this is first found extent, just store it in the context 2342 */ 2343 if (bex->fe_len == 0) { 2344 *bex = *ex; 2345 return; 2346 } 2347 2348 /* 2349 * If new found extent is better, store it in the context 2350 */ 2351 if (bex->fe_len < gex->fe_len) { 2352 /* if the request isn't satisfied, any found extent 2353 * larger than previous best one is better */ 2354 if (ex->fe_len > bex->fe_len) 2355 *bex = *ex; 2356 } else if (ex->fe_len > gex->fe_len) { 2357 /* if the request is satisfied, then we try to find 2358 * an extent that still satisfy the request, but is 2359 * smaller than previous one */ 2360 if (ex->fe_len < bex->fe_len) 2361 *bex = *ex; 2362 } 2363 2364 ext4_mb_check_limits(ac, e4b, 0); 2365 } 2366 2367 static noinline_for_stack 2368 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2369 struct ext4_buddy *e4b) 2370 { 2371 struct ext4_free_extent ex = ac->ac_b_ex; 2372 ext4_group_t group = ex.fe_group; 2373 int max; 2374 int err; 2375 2376 BUG_ON(ex.fe_len <= 0); 2377 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2378 if (err) 2379 return; 2380 2381 ext4_lock_group(ac->ac_sb, group); 2382 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2383 goto out; 2384 2385 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2386 2387 if (max > 0) { 2388 ac->ac_b_ex = ex; 2389 ext4_mb_use_best_found(ac, e4b); 2390 } 2391 2392 out: 2393 ext4_unlock_group(ac->ac_sb, group); 2394 ext4_mb_unload_buddy(e4b); 2395 } 2396 2397 static noinline_for_stack 2398 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2399 struct ext4_buddy *e4b) 2400 { 2401 ext4_group_t group = ac->ac_g_ex.fe_group; 2402 int max; 2403 int err; 2404 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2405 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2406 struct ext4_free_extent ex; 2407 2408 if (!grp) 2409 return -EFSCORRUPTED; 2410 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2411 return 0; 2412 if (grp->bb_free == 0) 2413 return 0; 2414 2415 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2416 if (err) 2417 return err; 2418 2419 ext4_lock_group(ac->ac_sb, group); 2420 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2421 goto out; 2422 2423 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2424 ac->ac_g_ex.fe_len, &ex); 2425 ex.fe_logical = 0xDEADFA11; /* debug value */ 2426 2427 if (max >= ac->ac_g_ex.fe_len && 2428 ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) { 2429 ext4_fsblk_t start; 2430 2431 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2432 /* use do_div to get remainder (would be 64-bit modulo) */ 2433 if (do_div(start, sbi->s_stripe) == 0) { 2434 ac->ac_found++; 2435 ac->ac_b_ex = ex; 2436 ext4_mb_use_best_found(ac, e4b); 2437 } 2438 } else if (max >= ac->ac_g_ex.fe_len) { 2439 BUG_ON(ex.fe_len <= 0); 2440 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2441 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2442 ac->ac_found++; 2443 ac->ac_b_ex = ex; 2444 ext4_mb_use_best_found(ac, e4b); 2445 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2446 /* Sometimes, caller may want to merge even small 2447 * number of blocks to an existing extent */ 2448 BUG_ON(ex.fe_len <= 0); 2449 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2450 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2451 ac->ac_found++; 2452 ac->ac_b_ex = ex; 2453 ext4_mb_use_best_found(ac, e4b); 2454 } 2455 out: 2456 ext4_unlock_group(ac->ac_sb, group); 2457 ext4_mb_unload_buddy(e4b); 2458 2459 return 0; 2460 } 2461 2462 /* 2463 * The routine scans buddy structures (not bitmap!) from given order 2464 * to max order and tries to find big enough chunk to satisfy the req 2465 */ 2466 static noinline_for_stack 2467 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2468 struct ext4_buddy *e4b) 2469 { 2470 struct super_block *sb = ac->ac_sb; 2471 struct ext4_group_info *grp = e4b->bd_info; 2472 void *buddy; 2473 int i; 2474 int k; 2475 int max; 2476 2477 BUG_ON(ac->ac_2order <= 0); 2478 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2479 if (grp->bb_counters[i] == 0) 2480 continue; 2481 2482 buddy = mb_find_buddy(e4b, i, &max); 2483 if (WARN_RATELIMIT(buddy == NULL, 2484 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2485 continue; 2486 2487 k = mb_find_next_zero_bit(buddy, max, 0); 2488 if (k >= max) { 2489 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2490 e4b->bd_group, 2491 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2492 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2493 "%d free clusters of order %d. But found 0", 2494 grp->bb_counters[i], i); 2495 break; 2496 } 2497 ac->ac_found++; 2498 ac->ac_cX_found[ac->ac_criteria]++; 2499 2500 ac->ac_b_ex.fe_len = 1 << i; 2501 ac->ac_b_ex.fe_start = k << i; 2502 ac->ac_b_ex.fe_group = e4b->bd_group; 2503 2504 ext4_mb_use_best_found(ac, e4b); 2505 2506 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2507 2508 if (EXT4_SB(sb)->s_mb_stats) 2509 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2510 2511 break; 2512 } 2513 } 2514 2515 /* 2516 * The routine scans the group and measures all found extents. 2517 * In order to optimize scanning, caller must pass number of 2518 * free blocks in the group, so the routine can know upper limit. 2519 */ 2520 static noinline_for_stack 2521 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2522 struct ext4_buddy *e4b) 2523 { 2524 struct super_block *sb = ac->ac_sb; 2525 void *bitmap = e4b->bd_bitmap; 2526 struct ext4_free_extent ex; 2527 int i, j, freelen; 2528 int free; 2529 2530 free = e4b->bd_info->bb_free; 2531 if (WARN_ON(free <= 0)) 2532 return; 2533 2534 i = e4b->bd_info->bb_first_free; 2535 2536 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2537 i = mb_find_next_zero_bit(bitmap, 2538 EXT4_CLUSTERS_PER_GROUP(sb), i); 2539 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2540 /* 2541 * IF we have corrupt bitmap, we won't find any 2542 * free blocks even though group info says we 2543 * have free blocks 2544 */ 2545 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2546 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2547 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2548 "%d free clusters as per " 2549 "group info. But bitmap says 0", 2550 free); 2551 break; 2552 } 2553 2554 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2555 /* 2556 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2557 * sure that this group will have a large enough 2558 * continuous free extent, so skip over the smaller free 2559 * extents 2560 */ 2561 j = mb_find_next_bit(bitmap, 2562 EXT4_CLUSTERS_PER_GROUP(sb), i); 2563 freelen = j - i; 2564 2565 if (freelen < ac->ac_g_ex.fe_len) { 2566 i = j; 2567 free -= freelen; 2568 continue; 2569 } 2570 } 2571 2572 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2573 if (WARN_ON(ex.fe_len <= 0)) 2574 break; 2575 if (free < ex.fe_len) { 2576 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2577 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2578 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2579 "%d free clusters as per " 2580 "group info. But got %d blocks", 2581 free, ex.fe_len); 2582 /* 2583 * The number of free blocks differs. This mostly 2584 * indicate that the bitmap is corrupt. So exit 2585 * without claiming the space. 2586 */ 2587 break; 2588 } 2589 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2590 ext4_mb_measure_extent(ac, &ex, e4b); 2591 2592 i += ex.fe_len; 2593 free -= ex.fe_len; 2594 } 2595 2596 ext4_mb_check_limits(ac, e4b, 1); 2597 } 2598 2599 /* 2600 * This is a special case for storages like raid5 2601 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2602 */ 2603 static noinline_for_stack 2604 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2605 struct ext4_buddy *e4b) 2606 { 2607 struct super_block *sb = ac->ac_sb; 2608 struct ext4_sb_info *sbi = EXT4_SB(sb); 2609 void *bitmap = e4b->bd_bitmap; 2610 struct ext4_free_extent ex; 2611 ext4_fsblk_t first_group_block; 2612 ext4_fsblk_t a; 2613 ext4_grpblk_t i, stripe; 2614 int max; 2615 2616 BUG_ON(sbi->s_stripe == 0); 2617 2618 /* find first stripe-aligned block in group */ 2619 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2620 2621 a = first_group_block + sbi->s_stripe - 1; 2622 do_div(a, sbi->s_stripe); 2623 i = (a * sbi->s_stripe) - first_group_block; 2624 2625 stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe); 2626 i = EXT4_B2C(sbi, i); 2627 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2628 if (!mb_test_bit(i, bitmap)) { 2629 max = mb_find_extent(e4b, i, stripe, &ex); 2630 if (max >= stripe) { 2631 ac->ac_found++; 2632 ac->ac_cX_found[ac->ac_criteria]++; 2633 ex.fe_logical = 0xDEADF00D; /* debug value */ 2634 ac->ac_b_ex = ex; 2635 ext4_mb_use_best_found(ac, e4b); 2636 break; 2637 } 2638 } 2639 i += stripe; 2640 } 2641 } 2642 2643 static void __ext4_mb_scan_group(struct ext4_allocation_context *ac) 2644 { 2645 bool is_stripe_aligned; 2646 struct ext4_sb_info *sbi; 2647 enum criteria cr = ac->ac_criteria; 2648 2649 ac->ac_groups_scanned++; 2650 if (cr == CR_POWER2_ALIGNED) 2651 return ext4_mb_simple_scan_group(ac, ac->ac_e4b); 2652 2653 sbi = EXT4_SB(ac->ac_sb); 2654 is_stripe_aligned = false; 2655 if ((sbi->s_stripe >= sbi->s_cluster_ratio) && 2656 !(ac->ac_g_ex.fe_len % EXT4_NUM_B2C(sbi, sbi->s_stripe))) 2657 is_stripe_aligned = true; 2658 2659 if ((cr == CR_GOAL_LEN_FAST || cr == CR_BEST_AVAIL_LEN) && 2660 is_stripe_aligned) 2661 ext4_mb_scan_aligned(ac, ac->ac_e4b); 2662 2663 if (ac->ac_status == AC_STATUS_CONTINUE) 2664 ext4_mb_complex_scan_group(ac, ac->ac_e4b); 2665 } 2666 2667 /* 2668 * This is also called BEFORE we load the buddy bitmap. 2669 * Returns either 1 or 0 indicating that the group is either suitable 2670 * for the allocation or not. 2671 */ 2672 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2673 ext4_group_t group, enum criteria cr) 2674 { 2675 ext4_grpblk_t free, fragments; 2676 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2677 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2678 2679 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2680 2681 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2682 return false; 2683 2684 free = grp->bb_free; 2685 if (free == 0) 2686 return false; 2687 2688 fragments = grp->bb_fragments; 2689 if (fragments == 0) 2690 return false; 2691 2692 switch (cr) { 2693 case CR_POWER2_ALIGNED: 2694 BUG_ON(ac->ac_2order == 0); 2695 2696 /* Avoid using the first bg of a flexgroup for data files */ 2697 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2698 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2699 ((group % flex_size) == 0)) 2700 return false; 2701 2702 if (free < ac->ac_g_ex.fe_len) 2703 return false; 2704 2705 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2706 return true; 2707 2708 if (grp->bb_largest_free_order < ac->ac_2order) 2709 return false; 2710 2711 return true; 2712 case CR_GOAL_LEN_FAST: 2713 case CR_BEST_AVAIL_LEN: 2714 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2715 return true; 2716 break; 2717 case CR_GOAL_LEN_SLOW: 2718 if (free >= ac->ac_g_ex.fe_len) 2719 return true; 2720 break; 2721 case CR_ANY_FREE: 2722 return true; 2723 default: 2724 BUG(); 2725 } 2726 2727 return false; 2728 } 2729 2730 /* 2731 * This could return negative error code if something goes wrong 2732 * during ext4_mb_init_group(). This should not be called with 2733 * ext4_lock_group() held. 2734 * 2735 * Note: because we are conditionally operating with the group lock in 2736 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2737 * function using __acquire and __release. This means we need to be 2738 * super careful before messing with the error path handling via "goto 2739 * out"! 2740 */ 2741 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2742 ext4_group_t group, enum criteria cr) 2743 { 2744 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2745 struct super_block *sb = ac->ac_sb; 2746 struct ext4_sb_info *sbi = EXT4_SB(sb); 2747 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2748 ext4_grpblk_t free; 2749 int ret = 0; 2750 2751 if (!grp) 2752 return -EFSCORRUPTED; 2753 if (sbi->s_mb_stats) 2754 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2755 if (should_lock) { 2756 ext4_lock_group(sb, group); 2757 __release(ext4_group_lock_ptr(sb, group)); 2758 } 2759 free = grp->bb_free; 2760 if (free == 0) 2761 goto out; 2762 /* 2763 * In all criterias except CR_ANY_FREE we try to avoid groups that 2764 * can't possibly satisfy the full goal request due to insufficient 2765 * free blocks. 2766 */ 2767 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2768 goto out; 2769 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2770 goto out; 2771 if (should_lock) { 2772 __acquire(ext4_group_lock_ptr(sb, group)); 2773 ext4_unlock_group(sb, group); 2774 } 2775 2776 /* We only do this if the grp has never been initialized */ 2777 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2778 struct ext4_group_desc *gdp = 2779 ext4_get_group_desc(sb, group, NULL); 2780 int ret; 2781 2782 /* 2783 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2784 * search to find large good chunks almost for free. If buddy 2785 * data is not ready, then this optimization makes no sense. But 2786 * we never skip the first block group in a flex_bg, since this 2787 * gets used for metadata block allocation, and we want to make 2788 * sure we locate metadata blocks in the first block group in 2789 * the flex_bg if possible. 2790 */ 2791 if (!ext4_mb_cr_expensive(cr) && 2792 (!sbi->s_log_groups_per_flex || 2793 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2794 !(ext4_has_group_desc_csum(sb) && 2795 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2796 return 0; 2797 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2798 if (ret) 2799 return ret; 2800 } 2801 2802 if (should_lock) { 2803 ext4_lock_group(sb, group); 2804 __release(ext4_group_lock_ptr(sb, group)); 2805 } 2806 ret = ext4_mb_good_group(ac, group, cr); 2807 out: 2808 if (should_lock) { 2809 __acquire(ext4_group_lock_ptr(sb, group)); 2810 ext4_unlock_group(sb, group); 2811 } 2812 return ret; 2813 } 2814 2815 /* 2816 * Start prefetching @nr block bitmaps starting at @group. 2817 * Return the next group which needs to be prefetched. 2818 */ 2819 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2820 unsigned int nr, int *cnt) 2821 { 2822 ext4_group_t ngroups = ext4_get_groups_count(sb); 2823 struct buffer_head *bh; 2824 struct blk_plug plug; 2825 2826 blk_start_plug(&plug); 2827 while (nr-- > 0) { 2828 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2829 NULL); 2830 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2831 2832 /* 2833 * Prefetch block groups with free blocks; but don't 2834 * bother if it is marked uninitialized on disk, since 2835 * it won't require I/O to read. Also only try to 2836 * prefetch once, so we avoid getblk() call, which can 2837 * be expensive. 2838 */ 2839 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2840 EXT4_MB_GRP_NEED_INIT(grp) && 2841 ext4_free_group_clusters(sb, gdp) > 0 ) { 2842 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2843 if (bh && !IS_ERR(bh)) { 2844 if (!buffer_uptodate(bh) && cnt) 2845 (*cnt)++; 2846 brelse(bh); 2847 } 2848 } 2849 if (++group >= ngroups) 2850 group = 0; 2851 } 2852 blk_finish_plug(&plug); 2853 return group; 2854 } 2855 2856 /* 2857 * Batch reads of the block allocation bitmaps to get 2858 * multiple READs in flight; limit prefetching at inexpensive 2859 * CR, otherwise mballoc can spend a lot of time loading 2860 * imperfect groups 2861 */ 2862 static void ext4_mb_might_prefetch(struct ext4_allocation_context *ac, 2863 ext4_group_t group) 2864 { 2865 struct ext4_sb_info *sbi; 2866 2867 if (ac->ac_prefetch_grp != group) 2868 return; 2869 2870 sbi = EXT4_SB(ac->ac_sb); 2871 if (ext4_mb_cr_expensive(ac->ac_criteria) || 2872 ac->ac_prefetch_ios < sbi->s_mb_prefetch_limit) { 2873 unsigned int nr = sbi->s_mb_prefetch; 2874 2875 if (ext4_has_feature_flex_bg(ac->ac_sb)) { 2876 nr = 1 << sbi->s_log_groups_per_flex; 2877 nr -= group & (nr - 1); 2878 nr = umin(nr, sbi->s_mb_prefetch); 2879 } 2880 2881 ac->ac_prefetch_nr = nr; 2882 ac->ac_prefetch_grp = ext4_mb_prefetch(ac->ac_sb, group, nr, 2883 &ac->ac_prefetch_ios); 2884 } 2885 } 2886 2887 /* 2888 * Prefetching reads the block bitmap into the buffer cache; but we 2889 * need to make sure that the buddy bitmap in the page cache has been 2890 * initialized. Note that ext4_mb_init_group() will block if the I/O 2891 * is not yet completed, or indeed if it was not initiated by 2892 * ext4_mb_prefetch did not start the I/O. 2893 * 2894 * TODO: We should actually kick off the buddy bitmap setup in a work 2895 * queue when the buffer I/O is completed, so that we don't block 2896 * waiting for the block allocation bitmap read to finish when 2897 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2898 */ 2899 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2900 unsigned int nr) 2901 { 2902 struct ext4_group_desc *gdp; 2903 struct ext4_group_info *grp; 2904 2905 while (nr-- > 0) { 2906 if (!group) 2907 group = ext4_get_groups_count(sb); 2908 group--; 2909 gdp = ext4_get_group_desc(sb, group, NULL); 2910 grp = ext4_get_group_info(sb, group); 2911 2912 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2913 ext4_free_group_clusters(sb, gdp) > 0) { 2914 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2915 break; 2916 } 2917 } 2918 } 2919 2920 static int ext4_mb_scan_group(struct ext4_allocation_context *ac, 2921 ext4_group_t group) 2922 { 2923 int ret; 2924 struct super_block *sb = ac->ac_sb; 2925 enum criteria cr = ac->ac_criteria; 2926 2927 ext4_mb_might_prefetch(ac, group); 2928 2929 /* prevent unnecessary buddy loading. */ 2930 if (cr < CR_ANY_FREE && spin_is_locked(ext4_group_lock_ptr(sb, group))) 2931 return 0; 2932 2933 /* This now checks without needing the buddy page */ 2934 ret = ext4_mb_good_group_nolock(ac, group, cr); 2935 if (ret <= 0) { 2936 if (!ac->ac_first_err) 2937 ac->ac_first_err = ret; 2938 return 0; 2939 } 2940 2941 ret = ext4_mb_load_buddy(sb, group, ac->ac_e4b); 2942 if (ret) 2943 return ret; 2944 2945 /* skip busy group */ 2946 if (cr >= CR_ANY_FREE) 2947 ext4_lock_group(sb, group); 2948 else if (!ext4_try_lock_group(sb, group)) 2949 goto out_unload; 2950 2951 /* We need to check again after locking the block group. */ 2952 if (unlikely(!ext4_mb_good_group(ac, group, cr))) 2953 goto out_unlock; 2954 2955 __ext4_mb_scan_group(ac); 2956 2957 out_unlock: 2958 ext4_unlock_group(sb, group); 2959 out_unload: 2960 ext4_mb_unload_buddy(ac->ac_e4b); 2961 return ret; 2962 } 2963 2964 static noinline_for_stack int 2965 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2966 { 2967 ext4_group_t i; 2968 int err = 0; 2969 struct super_block *sb = ac->ac_sb; 2970 struct ext4_sb_info *sbi = EXT4_SB(sb); 2971 struct ext4_buddy e4b; 2972 2973 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2974 2975 /* first, try the goal */ 2976 err = ext4_mb_find_by_goal(ac, &e4b); 2977 if (err || ac->ac_status == AC_STATUS_FOUND) 2978 goto out; 2979 2980 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2981 goto out; 2982 2983 /* 2984 * ac->ac_2order is set only if the fe_len is a power of 2 2985 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2986 * so that we try exact allocation using buddy. 2987 */ 2988 i = fls(ac->ac_g_ex.fe_len); 2989 ac->ac_2order = 0; 2990 /* 2991 * We search using buddy data only if the order of the request 2992 * is greater than equal to the sbi_s_mb_order2_reqs 2993 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2994 * We also support searching for power-of-two requests only for 2995 * requests upto maximum buddy size we have constructed. 2996 */ 2997 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2998 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2999 ac->ac_2order = array_index_nospec(i - 1, 3000 MB_NUM_ORDERS(sb)); 3001 } 3002 3003 /* if stream allocation is enabled, use global goal */ 3004 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 3005 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals; 3006 3007 ac->ac_g_ex.fe_group = READ_ONCE(sbi->s_mb_last_groups[hash]); 3008 ac->ac_g_ex.fe_start = -1; 3009 ac->ac_flags &= ~EXT4_MB_HINT_TRY_GOAL; 3010 } 3011 3012 /* 3013 * Let's just scan groups to find more-less suitable blocks We 3014 * start with CR_GOAL_LEN_FAST, unless it is power of 2 3015 * aligned, in which case let's do that faster approach first. 3016 */ 3017 ac->ac_criteria = CR_GOAL_LEN_FAST; 3018 if (ac->ac_2order) 3019 ac->ac_criteria = CR_POWER2_ALIGNED; 3020 3021 ac->ac_e4b = &e4b; 3022 ac->ac_prefetch_ios = 0; 3023 ac->ac_first_err = 0; 3024 repeat: 3025 while (ac->ac_criteria < EXT4_MB_NUM_CRS) { 3026 err = ext4_mb_scan_groups(ac); 3027 if (err) 3028 goto out; 3029 3030 if (ac->ac_status != AC_STATUS_CONTINUE) 3031 break; 3032 } 3033 3034 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 3035 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 3036 /* 3037 * We've been searching too long. Let's try to allocate 3038 * the best chunk we've found so far 3039 */ 3040 ext4_mb_try_best_found(ac, &e4b); 3041 if (ac->ac_status != AC_STATUS_FOUND) { 3042 int lost; 3043 3044 /* 3045 * Someone more lucky has already allocated it. 3046 * The only thing we can do is just take first 3047 * found block(s) 3048 */ 3049 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 3050 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 3051 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 3052 ac->ac_b_ex.fe_len, lost); 3053 3054 ac->ac_b_ex.fe_group = 0; 3055 ac->ac_b_ex.fe_start = 0; 3056 ac->ac_b_ex.fe_len = 0; 3057 ac->ac_status = AC_STATUS_CONTINUE; 3058 ac->ac_flags |= EXT4_MB_HINT_FIRST; 3059 ac->ac_criteria = CR_ANY_FREE; 3060 goto repeat; 3061 } 3062 } 3063 3064 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) { 3065 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 3066 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC && 3067 ac->ac_b_ex.fe_group == ac->ac_g_ex.fe_group) 3068 atomic_inc(&sbi->s_bal_stream_goals); 3069 } 3070 out: 3071 if (!err && ac->ac_status != AC_STATUS_FOUND && ac->ac_first_err) 3072 err = ac->ac_first_err; 3073 3074 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 3075 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 3076 ac->ac_flags, ac->ac_criteria, err); 3077 3078 if (ac->ac_prefetch_nr) 3079 ext4_mb_prefetch_fini(sb, ac->ac_prefetch_grp, ac->ac_prefetch_nr); 3080 3081 return err; 3082 } 3083 3084 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 3085 { 3086 struct super_block *sb = pde_data(file_inode(seq->file)); 3087 ext4_group_t group; 3088 3089 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3090 return NULL; 3091 group = *pos + 1; 3092 return (void *) ((unsigned long) group); 3093 } 3094 3095 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3096 { 3097 struct super_block *sb = pde_data(file_inode(seq->file)); 3098 ext4_group_t group; 3099 3100 ++*pos; 3101 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3102 return NULL; 3103 group = *pos + 1; 3104 return (void *) ((unsigned long) group); 3105 } 3106 3107 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3108 { 3109 struct super_block *sb = pde_data(file_inode(seq->file)); 3110 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3111 int i, err; 3112 char nbuf[16]; 3113 struct ext4_buddy e4b; 3114 struct ext4_group_info *grinfo; 3115 unsigned char blocksize_bits = min_t(unsigned char, 3116 sb->s_blocksize_bits, 3117 EXT4_MAX_BLOCK_LOG_SIZE); 3118 DEFINE_RAW_FLEX(struct ext4_group_info, sg, bb_counters, 3119 EXT4_MAX_BLOCK_LOG_SIZE + 2); 3120 3121 group--; 3122 if (group == 0) 3123 seq_puts(seq, "#group: free frags first [" 3124 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3125 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3126 3127 i = (blocksize_bits + 2) * sizeof(sg->bb_counters[0]) + 3128 sizeof(struct ext4_group_info); 3129 3130 grinfo = ext4_get_group_info(sb, group); 3131 if (!grinfo) 3132 return 0; 3133 /* Load the group info in memory only if not already loaded. */ 3134 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3135 err = ext4_mb_load_buddy(sb, group, &e4b); 3136 if (err) { 3137 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf)); 3138 return 0; 3139 } 3140 ext4_mb_unload_buddy(&e4b); 3141 } 3142 3143 /* 3144 * We care only about free space counters in the group info and 3145 * these are safe to access even after the buddy has been unloaded 3146 */ 3147 memcpy(sg, grinfo, i); 3148 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg->bb_free, 3149 sg->bb_fragments, sg->bb_first_free); 3150 for (i = 0; i <= 13; i++) 3151 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3152 sg->bb_counters[i] : 0); 3153 seq_puts(seq, " ]"); 3154 if (EXT4_MB_GRP_BBITMAP_CORRUPT(sg)) 3155 seq_puts(seq, " Block bitmap corrupted!"); 3156 seq_putc(seq, '\n'); 3157 return 0; 3158 } 3159 3160 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3161 { 3162 } 3163 3164 const struct seq_operations ext4_mb_seq_groups_ops = { 3165 .start = ext4_mb_seq_groups_start, 3166 .next = ext4_mb_seq_groups_next, 3167 .stop = ext4_mb_seq_groups_stop, 3168 .show = ext4_mb_seq_groups_show, 3169 }; 3170 3171 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3172 { 3173 struct super_block *sb = seq->private; 3174 struct ext4_sb_info *sbi = EXT4_SB(sb); 3175 3176 seq_puts(seq, "mballoc:\n"); 3177 if (!sbi->s_mb_stats) { 3178 seq_puts(seq, "\tmb stats collection turned off.\n"); 3179 seq_puts( 3180 seq, 3181 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3182 return 0; 3183 } 3184 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3185 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3186 3187 seq_printf(seq, "\tgroups_scanned: %u\n", 3188 atomic_read(&sbi->s_bal_groups_scanned)); 3189 3190 /* CR_POWER2_ALIGNED stats */ 3191 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3192 seq_printf(seq, "\t\thits: %llu\n", 3193 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3194 seq_printf( 3195 seq, "\t\tgroups_considered: %llu\n", 3196 atomic64_read( 3197 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3198 seq_printf(seq, "\t\textents_scanned: %u\n", 3199 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3200 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3201 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3202 3203 /* CR_GOAL_LEN_FAST stats */ 3204 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3205 seq_printf(seq, "\t\thits: %llu\n", 3206 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3207 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3208 atomic64_read( 3209 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3210 seq_printf(seq, "\t\textents_scanned: %u\n", 3211 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3212 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3213 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3214 3215 /* CR_BEST_AVAIL_LEN stats */ 3216 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3217 seq_printf(seq, "\t\thits: %llu\n", 3218 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3219 seq_printf( 3220 seq, "\t\tgroups_considered: %llu\n", 3221 atomic64_read( 3222 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3223 seq_printf(seq, "\t\textents_scanned: %u\n", 3224 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3225 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3226 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3227 3228 /* CR_GOAL_LEN_SLOW stats */ 3229 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3230 seq_printf(seq, "\t\thits: %llu\n", 3231 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3232 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3233 atomic64_read( 3234 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3235 seq_printf(seq, "\t\textents_scanned: %u\n", 3236 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3237 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3238 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3239 3240 /* CR_ANY_FREE stats */ 3241 seq_puts(seq, "\tcr_any_free_stats:\n"); 3242 seq_printf(seq, "\t\thits: %llu\n", 3243 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3244 seq_printf( 3245 seq, "\t\tgroups_considered: %llu\n", 3246 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3247 seq_printf(seq, "\t\textents_scanned: %u\n", 3248 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3249 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3250 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3251 3252 /* Aggregates */ 3253 seq_printf(seq, "\textents_scanned: %u\n", 3254 atomic_read(&sbi->s_bal_ex_scanned)); 3255 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3256 seq_printf(seq, "\t\tstream_goal_hits: %u\n", 3257 atomic_read(&sbi->s_bal_stream_goals)); 3258 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3259 atomic_read(&sbi->s_bal_len_goals)); 3260 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3261 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3262 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3263 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3264 atomic_read(&sbi->s_mb_buddies_generated), 3265 ext4_get_groups_count(sb)); 3266 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3267 atomic64_read(&sbi->s_mb_generation_time)); 3268 seq_printf(seq, "\tpreallocated: %u\n", 3269 atomic_read(&sbi->s_mb_preallocated)); 3270 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3271 return 0; 3272 } 3273 3274 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3275 { 3276 struct super_block *sb = pde_data(file_inode(seq->file)); 3277 unsigned long position; 3278 3279 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3280 return NULL; 3281 position = *pos + 1; 3282 return (void *) ((unsigned long) position); 3283 } 3284 3285 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3286 { 3287 struct super_block *sb = pde_data(file_inode(seq->file)); 3288 unsigned long position; 3289 3290 ++*pos; 3291 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3292 return NULL; 3293 position = *pos + 1; 3294 return (void *) ((unsigned long) position); 3295 } 3296 3297 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3298 { 3299 struct super_block *sb = pde_data(file_inode(seq->file)); 3300 struct ext4_sb_info *sbi = EXT4_SB(sb); 3301 unsigned long position = ((unsigned long) v); 3302 struct ext4_group_info *grp; 3303 unsigned int count; 3304 unsigned long idx; 3305 3306 position--; 3307 if (position >= MB_NUM_ORDERS(sb)) { 3308 position -= MB_NUM_ORDERS(sb); 3309 if (position == 0) 3310 seq_puts(seq, "avg_fragment_size_lists:\n"); 3311 3312 count = 0; 3313 xa_for_each(&sbi->s_mb_avg_fragment_size[position], idx, grp) 3314 count++; 3315 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3316 (unsigned int)position, count); 3317 return 0; 3318 } 3319 3320 if (position == 0) { 3321 seq_printf(seq, "optimize_scan: %d\n", 3322 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3323 seq_puts(seq, "max_free_order_lists:\n"); 3324 } 3325 count = 0; 3326 xa_for_each(&sbi->s_mb_largest_free_orders[position], idx, grp) 3327 count++; 3328 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3329 (unsigned int)position, count); 3330 3331 return 0; 3332 } 3333 3334 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3335 { 3336 } 3337 3338 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3339 .start = ext4_mb_seq_structs_summary_start, 3340 .next = ext4_mb_seq_structs_summary_next, 3341 .stop = ext4_mb_seq_structs_summary_stop, 3342 .show = ext4_mb_seq_structs_summary_show, 3343 }; 3344 3345 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3346 { 3347 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3348 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3349 3350 BUG_ON(!cachep); 3351 return cachep; 3352 } 3353 3354 /* 3355 * Allocate the top-level s_group_info array for the specified number 3356 * of groups 3357 */ 3358 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3359 { 3360 struct ext4_sb_info *sbi = EXT4_SB(sb); 3361 unsigned size; 3362 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3363 3364 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3365 EXT4_DESC_PER_BLOCK_BITS(sb); 3366 if (size <= sbi->s_group_info_size) 3367 return 0; 3368 3369 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3370 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3371 if (!new_groupinfo) { 3372 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3373 return -ENOMEM; 3374 } 3375 rcu_read_lock(); 3376 old_groupinfo = rcu_dereference(sbi->s_group_info); 3377 if (old_groupinfo) 3378 memcpy(new_groupinfo, old_groupinfo, 3379 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3380 rcu_read_unlock(); 3381 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3382 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3383 if (old_groupinfo) 3384 ext4_kvfree_array_rcu(old_groupinfo); 3385 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3386 sbi->s_group_info_size); 3387 return 0; 3388 } 3389 3390 /* Create and initialize ext4_group_info data for the given group. */ 3391 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3392 struct ext4_group_desc *desc) 3393 { 3394 int i; 3395 int metalen = 0; 3396 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3397 struct ext4_sb_info *sbi = EXT4_SB(sb); 3398 struct ext4_group_info **meta_group_info; 3399 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3400 3401 /* 3402 * First check if this group is the first of a reserved block. 3403 * If it's true, we have to allocate a new table of pointers 3404 * to ext4_group_info structures 3405 */ 3406 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3407 metalen = sizeof(*meta_group_info) << 3408 EXT4_DESC_PER_BLOCK_BITS(sb); 3409 meta_group_info = kmalloc(metalen, GFP_NOFS); 3410 if (meta_group_info == NULL) { 3411 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3412 "for a buddy group"); 3413 return -ENOMEM; 3414 } 3415 rcu_read_lock(); 3416 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3417 rcu_read_unlock(); 3418 } 3419 3420 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3421 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3422 3423 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3424 if (meta_group_info[i] == NULL) { 3425 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3426 goto exit_group_info; 3427 } 3428 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3429 &(meta_group_info[i]->bb_state)); 3430 3431 /* 3432 * initialize bb_free to be able to skip 3433 * empty groups without initialization 3434 */ 3435 if (ext4_has_group_desc_csum(sb) && 3436 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3437 meta_group_info[i]->bb_free = 3438 ext4_free_clusters_after_init(sb, group, desc); 3439 } else { 3440 meta_group_info[i]->bb_free = 3441 ext4_free_group_clusters(sb, desc); 3442 } 3443 3444 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3445 init_rwsem(&meta_group_info[i]->alloc_sem); 3446 meta_group_info[i]->bb_free_root = RB_ROOT; 3447 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3448 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3449 meta_group_info[i]->bb_group = group; 3450 3451 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3452 return 0; 3453 3454 exit_group_info: 3455 /* If a meta_group_info table has been allocated, release it now */ 3456 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3457 struct ext4_group_info ***group_info; 3458 3459 rcu_read_lock(); 3460 group_info = rcu_dereference(sbi->s_group_info); 3461 kfree(group_info[idx]); 3462 group_info[idx] = NULL; 3463 rcu_read_unlock(); 3464 } 3465 return -ENOMEM; 3466 } /* ext4_mb_add_groupinfo */ 3467 3468 static int ext4_mb_init_backend(struct super_block *sb) 3469 { 3470 ext4_group_t ngroups = ext4_get_groups_count(sb); 3471 ext4_group_t i; 3472 struct ext4_sb_info *sbi = EXT4_SB(sb); 3473 int err; 3474 struct ext4_group_desc *desc; 3475 struct ext4_group_info ***group_info; 3476 struct kmem_cache *cachep; 3477 3478 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3479 if (err) 3480 return err; 3481 3482 sbi->s_buddy_cache = new_inode(sb); 3483 if (sbi->s_buddy_cache == NULL) { 3484 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3485 goto err_freesgi; 3486 } 3487 /* To avoid potentially colliding with an valid on-disk inode number, 3488 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3489 * not in the inode hash, so it should never be found by iget(), but 3490 * this will avoid confusion if it ever shows up during debugging. */ 3491 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3492 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3493 for (i = 0; i < ngroups; i++) { 3494 cond_resched(); 3495 desc = ext4_get_group_desc(sb, i, NULL); 3496 if (desc == NULL) { 3497 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3498 goto err_freebuddy; 3499 } 3500 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3501 goto err_freebuddy; 3502 } 3503 3504 if (ext4_has_feature_flex_bg(sb)) { 3505 /* a single flex group is supposed to be read by a single IO. 3506 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3507 * unsigned integer, so the maximum shift is 32. 3508 */ 3509 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3510 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3511 goto err_freebuddy; 3512 } 3513 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3514 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3515 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3516 } else { 3517 sbi->s_mb_prefetch = 32; 3518 } 3519 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3520 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3521 /* 3522 * now many real IOs to prefetch within a single allocation at 3523 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related 3524 * optimization we shouldn't try to load too many groups, at some point 3525 * we should start to use what we've got in memory. 3526 * with an average random access time 5ms, it'd take a second to get 3527 * 200 groups (* N with flex_bg), so let's make this limit 4 3528 */ 3529 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3530 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3531 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3532 3533 return 0; 3534 3535 err_freebuddy: 3536 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3537 while (i-- > 0) { 3538 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3539 3540 if (grp) 3541 kmem_cache_free(cachep, grp); 3542 } 3543 i = sbi->s_group_info_size; 3544 rcu_read_lock(); 3545 group_info = rcu_dereference(sbi->s_group_info); 3546 while (i-- > 0) 3547 kfree(group_info[i]); 3548 rcu_read_unlock(); 3549 iput(sbi->s_buddy_cache); 3550 err_freesgi: 3551 rcu_read_lock(); 3552 kvfree(rcu_dereference(sbi->s_group_info)); 3553 rcu_read_unlock(); 3554 return -ENOMEM; 3555 } 3556 3557 static void ext4_groupinfo_destroy_slabs(void) 3558 { 3559 int i; 3560 3561 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3562 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3563 ext4_groupinfo_caches[i] = NULL; 3564 } 3565 } 3566 3567 static int ext4_groupinfo_create_slab(size_t size) 3568 { 3569 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3570 int slab_size; 3571 int blocksize_bits = order_base_2(size); 3572 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3573 struct kmem_cache *cachep; 3574 3575 if (cache_index >= NR_GRPINFO_CACHES) 3576 return -EINVAL; 3577 3578 if (unlikely(cache_index < 0)) 3579 cache_index = 0; 3580 3581 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3582 if (ext4_groupinfo_caches[cache_index]) { 3583 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3584 return 0; /* Already created */ 3585 } 3586 3587 slab_size = offsetof(struct ext4_group_info, 3588 bb_counters[blocksize_bits + 2]); 3589 3590 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3591 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3592 NULL); 3593 3594 ext4_groupinfo_caches[cache_index] = cachep; 3595 3596 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3597 if (!cachep) { 3598 printk(KERN_EMERG 3599 "EXT4-fs: no memory for groupinfo slab cache\n"); 3600 return -ENOMEM; 3601 } 3602 3603 return 0; 3604 } 3605 3606 static void ext4_discard_work(struct work_struct *work) 3607 { 3608 struct ext4_sb_info *sbi = container_of(work, 3609 struct ext4_sb_info, s_discard_work); 3610 struct super_block *sb = sbi->s_sb; 3611 struct ext4_free_data *fd, *nfd; 3612 struct ext4_buddy e4b; 3613 LIST_HEAD(discard_list); 3614 ext4_group_t grp, load_grp; 3615 int err = 0; 3616 3617 spin_lock(&sbi->s_md_lock); 3618 list_splice_init(&sbi->s_discard_list, &discard_list); 3619 spin_unlock(&sbi->s_md_lock); 3620 3621 load_grp = UINT_MAX; 3622 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3623 /* 3624 * If filesystem is umounting or no memory or suffering 3625 * from no space, give up the discard 3626 */ 3627 if ((sb->s_flags & SB_ACTIVE) && !err && 3628 !atomic_read(&sbi->s_retry_alloc_pending)) { 3629 grp = fd->efd_group; 3630 if (grp != load_grp) { 3631 if (load_grp != UINT_MAX) 3632 ext4_mb_unload_buddy(&e4b); 3633 3634 err = ext4_mb_load_buddy(sb, grp, &e4b); 3635 if (err) { 3636 kmem_cache_free(ext4_free_data_cachep, fd); 3637 load_grp = UINT_MAX; 3638 continue; 3639 } else { 3640 load_grp = grp; 3641 } 3642 } 3643 3644 ext4_lock_group(sb, grp); 3645 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3646 fd->efd_start_cluster + fd->efd_count - 1, 1); 3647 ext4_unlock_group(sb, grp); 3648 } 3649 kmem_cache_free(ext4_free_data_cachep, fd); 3650 } 3651 3652 if (load_grp != UINT_MAX) 3653 ext4_mb_unload_buddy(&e4b); 3654 } 3655 3656 static inline void ext4_mb_avg_fragment_size_destroy(struct ext4_sb_info *sbi) 3657 { 3658 if (!sbi->s_mb_avg_fragment_size) 3659 return; 3660 3661 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++) 3662 xa_destroy(&sbi->s_mb_avg_fragment_size[i]); 3663 3664 kfree(sbi->s_mb_avg_fragment_size); 3665 sbi->s_mb_avg_fragment_size = NULL; 3666 } 3667 3668 static inline void ext4_mb_largest_free_orders_destroy(struct ext4_sb_info *sbi) 3669 { 3670 if (!sbi->s_mb_largest_free_orders) 3671 return; 3672 3673 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++) 3674 xa_destroy(&sbi->s_mb_largest_free_orders[i]); 3675 3676 kfree(sbi->s_mb_largest_free_orders); 3677 sbi->s_mb_largest_free_orders = NULL; 3678 } 3679 3680 int ext4_mb_init(struct super_block *sb) 3681 { 3682 struct ext4_sb_info *sbi = EXT4_SB(sb); 3683 unsigned i, j; 3684 unsigned offset, offset_incr; 3685 unsigned max; 3686 int ret; 3687 3688 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3689 3690 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3691 if (sbi->s_mb_offsets == NULL) { 3692 ret = -ENOMEM; 3693 goto out; 3694 } 3695 3696 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3697 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3698 if (sbi->s_mb_maxs == NULL) { 3699 ret = -ENOMEM; 3700 goto out; 3701 } 3702 3703 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3704 if (ret < 0) 3705 goto out; 3706 3707 /* order 0 is regular bitmap */ 3708 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3709 sbi->s_mb_offsets[0] = 0; 3710 3711 i = 1; 3712 offset = 0; 3713 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3714 max = sb->s_blocksize << 2; 3715 do { 3716 sbi->s_mb_offsets[i] = offset; 3717 sbi->s_mb_maxs[i] = max; 3718 offset += offset_incr; 3719 offset_incr = offset_incr >> 1; 3720 max = max >> 1; 3721 i++; 3722 } while (i < MB_NUM_ORDERS(sb)); 3723 3724 sbi->s_mb_avg_fragment_size = 3725 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray), 3726 GFP_KERNEL); 3727 if (!sbi->s_mb_avg_fragment_size) { 3728 ret = -ENOMEM; 3729 goto out; 3730 } 3731 for (i = 0; i < MB_NUM_ORDERS(sb); i++) 3732 xa_init(&sbi->s_mb_avg_fragment_size[i]); 3733 3734 sbi->s_mb_largest_free_orders = 3735 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray), 3736 GFP_KERNEL); 3737 if (!sbi->s_mb_largest_free_orders) { 3738 ret = -ENOMEM; 3739 goto out; 3740 } 3741 for (i = 0; i < MB_NUM_ORDERS(sb); i++) 3742 xa_init(&sbi->s_mb_largest_free_orders[i]); 3743 3744 spin_lock_init(&sbi->s_md_lock); 3745 atomic_set(&sbi->s_mb_free_pending, 0); 3746 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]); 3747 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]); 3748 INIT_LIST_HEAD(&sbi->s_discard_list); 3749 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3750 atomic_set(&sbi->s_retry_alloc_pending, 0); 3751 3752 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3753 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3754 sbi->s_mb_stats = MB_DEFAULT_STATS; 3755 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3756 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3757 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3758 3759 /* 3760 * The default group preallocation is 512, which for 4k block 3761 * sizes translates to 2 megabytes. However for bigalloc file 3762 * systems, this is probably too big (i.e, if the cluster size 3763 * is 1 megabyte, then group preallocation size becomes half a 3764 * gigabyte!). As a default, we will keep a two megabyte 3765 * group pralloc size for cluster sizes up to 64k, and after 3766 * that, we will force a minimum group preallocation size of 3767 * 32 clusters. This translates to 8 megs when the cluster 3768 * size is 256k, and 32 megs when the cluster size is 1 meg, 3769 * which seems reasonable as a default. 3770 */ 3771 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3772 sbi->s_cluster_bits, 32); 3773 /* 3774 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3775 * to the lowest multiple of s_stripe which is bigger than 3776 * the s_mb_group_prealloc as determined above. We want 3777 * the preallocation size to be an exact multiple of the 3778 * RAID stripe size so that preallocations don't fragment 3779 * the stripes. 3780 */ 3781 if (sbi->s_stripe > 1) { 3782 sbi->s_mb_group_prealloc = roundup( 3783 sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe)); 3784 } 3785 3786 sbi->s_mb_nr_global_goals = umin(num_possible_cpus(), 3787 DIV_ROUND_UP(sbi->s_groups_count, 4)); 3788 sbi->s_mb_last_groups = kcalloc(sbi->s_mb_nr_global_goals, 3789 sizeof(ext4_group_t), GFP_KERNEL); 3790 if (sbi->s_mb_last_groups == NULL) { 3791 ret = -ENOMEM; 3792 goto out; 3793 } 3794 3795 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3796 if (sbi->s_locality_groups == NULL) { 3797 ret = -ENOMEM; 3798 goto out_free_last_groups; 3799 } 3800 for_each_possible_cpu(i) { 3801 struct ext4_locality_group *lg; 3802 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3803 mutex_init(&lg->lg_mutex); 3804 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3805 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3806 spin_lock_init(&lg->lg_prealloc_lock); 3807 } 3808 3809 if (bdev_nonrot(sb->s_bdev)) 3810 sbi->s_mb_max_linear_groups = 0; 3811 else 3812 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3813 /* init file for buddy data */ 3814 ret = ext4_mb_init_backend(sb); 3815 if (ret != 0) 3816 goto out_free_locality_groups; 3817 3818 return 0; 3819 3820 out_free_locality_groups: 3821 free_percpu(sbi->s_locality_groups); 3822 sbi->s_locality_groups = NULL; 3823 out_free_last_groups: 3824 kfree(sbi->s_mb_last_groups); 3825 sbi->s_mb_last_groups = NULL; 3826 out: 3827 ext4_mb_avg_fragment_size_destroy(sbi); 3828 ext4_mb_largest_free_orders_destroy(sbi); 3829 kfree(sbi->s_mb_offsets); 3830 sbi->s_mb_offsets = NULL; 3831 kfree(sbi->s_mb_maxs); 3832 sbi->s_mb_maxs = NULL; 3833 return ret; 3834 } 3835 3836 /* need to called with the ext4 group lock held */ 3837 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3838 { 3839 struct ext4_prealloc_space *pa; 3840 struct list_head *cur, *tmp; 3841 int count = 0; 3842 3843 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3844 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3845 list_del(&pa->pa_group_list); 3846 count++; 3847 kmem_cache_free(ext4_pspace_cachep, pa); 3848 } 3849 return count; 3850 } 3851 3852 void ext4_mb_release(struct super_block *sb) 3853 { 3854 ext4_group_t ngroups = ext4_get_groups_count(sb); 3855 ext4_group_t i; 3856 int num_meta_group_infos; 3857 struct ext4_group_info *grinfo, ***group_info; 3858 struct ext4_sb_info *sbi = EXT4_SB(sb); 3859 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3860 int count; 3861 3862 if (test_opt(sb, DISCARD)) { 3863 /* 3864 * wait the discard work to drain all of ext4_free_data 3865 */ 3866 flush_work(&sbi->s_discard_work); 3867 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3868 } 3869 3870 if (sbi->s_group_info) { 3871 for (i = 0; i < ngroups; i++) { 3872 cond_resched(); 3873 grinfo = ext4_get_group_info(sb, i); 3874 if (!grinfo) 3875 continue; 3876 mb_group_bb_bitmap_free(grinfo); 3877 ext4_lock_group(sb, i); 3878 count = ext4_mb_cleanup_pa(grinfo); 3879 if (count) 3880 mb_debug(sb, "mballoc: %d PAs left\n", 3881 count); 3882 ext4_unlock_group(sb, i); 3883 kmem_cache_free(cachep, grinfo); 3884 } 3885 num_meta_group_infos = (ngroups + 3886 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3887 EXT4_DESC_PER_BLOCK_BITS(sb); 3888 rcu_read_lock(); 3889 group_info = rcu_dereference(sbi->s_group_info); 3890 for (i = 0; i < num_meta_group_infos; i++) 3891 kfree(group_info[i]); 3892 kvfree(group_info); 3893 rcu_read_unlock(); 3894 } 3895 ext4_mb_avg_fragment_size_destroy(sbi); 3896 ext4_mb_largest_free_orders_destroy(sbi); 3897 kfree(sbi->s_mb_offsets); 3898 kfree(sbi->s_mb_maxs); 3899 iput(sbi->s_buddy_cache); 3900 if (sbi->s_mb_stats) { 3901 ext4_msg(sb, KERN_INFO, 3902 "mballoc: %u blocks %u reqs (%u success)", 3903 atomic_read(&sbi->s_bal_allocated), 3904 atomic_read(&sbi->s_bal_reqs), 3905 atomic_read(&sbi->s_bal_success)); 3906 ext4_msg(sb, KERN_INFO, 3907 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3908 "%u 2^N hits, %u breaks, %u lost", 3909 atomic_read(&sbi->s_bal_ex_scanned), 3910 atomic_read(&sbi->s_bal_groups_scanned), 3911 atomic_read(&sbi->s_bal_goals), 3912 atomic_read(&sbi->s_bal_2orders), 3913 atomic_read(&sbi->s_bal_breaks), 3914 atomic_read(&sbi->s_mb_lost_chunks)); 3915 ext4_msg(sb, KERN_INFO, 3916 "mballoc: %u generated and it took %llu", 3917 atomic_read(&sbi->s_mb_buddies_generated), 3918 atomic64_read(&sbi->s_mb_generation_time)); 3919 ext4_msg(sb, KERN_INFO, 3920 "mballoc: %u preallocated, %u discarded", 3921 atomic_read(&sbi->s_mb_preallocated), 3922 atomic_read(&sbi->s_mb_discarded)); 3923 } 3924 3925 free_percpu(sbi->s_locality_groups); 3926 kfree(sbi->s_mb_last_groups); 3927 } 3928 3929 static inline int ext4_issue_discard(struct super_block *sb, 3930 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 3931 { 3932 ext4_fsblk_t discard_block; 3933 3934 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3935 ext4_group_first_block_no(sb, block_group)); 3936 count = EXT4_C2B(EXT4_SB(sb), count); 3937 trace_ext4_discard_blocks(sb, 3938 (unsigned long long) discard_block, count); 3939 3940 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3941 } 3942 3943 static void ext4_free_data_in_buddy(struct super_block *sb, 3944 struct ext4_free_data *entry) 3945 { 3946 struct ext4_buddy e4b; 3947 struct ext4_group_info *db; 3948 int err, count = 0; 3949 3950 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3951 entry->efd_count, entry->efd_group, entry); 3952 3953 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3954 /* we expect to find existing buddy because it's pinned */ 3955 BUG_ON(err != 0); 3956 3957 atomic_sub(entry->efd_count, &EXT4_SB(sb)->s_mb_free_pending); 3958 db = e4b.bd_info; 3959 /* there are blocks to put in buddy to make them really free */ 3960 count += entry->efd_count; 3961 ext4_lock_group(sb, entry->efd_group); 3962 /* Take it out of per group rb tree */ 3963 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3964 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3965 3966 /* 3967 * Clear the trimmed flag for the group so that the next 3968 * ext4_trim_fs can trim it. 3969 */ 3970 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3971 3972 if (!db->bb_free_root.rb_node) { 3973 /* No more items in the per group rb tree 3974 * balance refcounts from ext4_mb_free_metadata() 3975 */ 3976 folio_put(e4b.bd_buddy_folio); 3977 folio_put(e4b.bd_bitmap_folio); 3978 } 3979 ext4_unlock_group(sb, entry->efd_group); 3980 ext4_mb_unload_buddy(&e4b); 3981 3982 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3983 } 3984 3985 /* 3986 * This function is called by the jbd2 layer once the commit has finished, 3987 * so we know we can free the blocks that were released with that commit. 3988 */ 3989 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3990 { 3991 struct ext4_sb_info *sbi = EXT4_SB(sb); 3992 struct ext4_free_data *entry, *tmp; 3993 LIST_HEAD(freed_data_list); 3994 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; 3995 bool wake; 3996 3997 list_replace_init(s_freed_head, &freed_data_list); 3998 3999 list_for_each_entry(entry, &freed_data_list, efd_list) 4000 ext4_free_data_in_buddy(sb, entry); 4001 4002 if (test_opt(sb, DISCARD)) { 4003 spin_lock(&sbi->s_md_lock); 4004 wake = list_empty(&sbi->s_discard_list); 4005 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 4006 spin_unlock(&sbi->s_md_lock); 4007 if (wake) 4008 queue_work(system_dfl_wq, &sbi->s_discard_work); 4009 } else { 4010 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 4011 kmem_cache_free(ext4_free_data_cachep, entry); 4012 } 4013 } 4014 4015 int __init ext4_init_mballoc(void) 4016 { 4017 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 4018 SLAB_RECLAIM_ACCOUNT); 4019 if (ext4_pspace_cachep == NULL) 4020 goto out; 4021 4022 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 4023 SLAB_RECLAIM_ACCOUNT); 4024 if (ext4_ac_cachep == NULL) 4025 goto out_pa_free; 4026 4027 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 4028 SLAB_RECLAIM_ACCOUNT); 4029 if (ext4_free_data_cachep == NULL) 4030 goto out_ac_free; 4031 4032 return 0; 4033 4034 out_ac_free: 4035 kmem_cache_destroy(ext4_ac_cachep); 4036 out_pa_free: 4037 kmem_cache_destroy(ext4_pspace_cachep); 4038 out: 4039 return -ENOMEM; 4040 } 4041 4042 void ext4_exit_mballoc(void) 4043 { 4044 /* 4045 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 4046 * before destroying the slab cache. 4047 */ 4048 rcu_barrier(); 4049 kmem_cache_destroy(ext4_pspace_cachep); 4050 kmem_cache_destroy(ext4_ac_cachep); 4051 kmem_cache_destroy(ext4_free_data_cachep); 4052 ext4_groupinfo_destroy_slabs(); 4053 } 4054 4055 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 4056 #define EXT4_MB_SYNC_UPDATE 0x0002 4057 static int 4058 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, 4059 ext4_group_t group, ext4_grpblk_t blkoff, 4060 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) 4061 { 4062 struct ext4_sb_info *sbi = EXT4_SB(sb); 4063 struct buffer_head *bitmap_bh = NULL; 4064 struct ext4_group_desc *gdp; 4065 struct buffer_head *gdp_bh; 4066 int err; 4067 unsigned int i, already, changed = len; 4068 4069 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, 4070 handle, sb, state, group, blkoff, len, 4071 flags, ret_changed); 4072 4073 if (ret_changed) 4074 *ret_changed = 0; 4075 bitmap_bh = ext4_read_block_bitmap(sb, group); 4076 if (IS_ERR(bitmap_bh)) 4077 return PTR_ERR(bitmap_bh); 4078 4079 if (handle) { 4080 BUFFER_TRACE(bitmap_bh, "getting write access"); 4081 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4082 EXT4_JTR_NONE); 4083 if (err) 4084 goto out_err; 4085 } 4086 4087 err = -EIO; 4088 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4089 if (!gdp) 4090 goto out_err; 4091 4092 if (handle) { 4093 BUFFER_TRACE(gdp_bh, "get_write_access"); 4094 err = ext4_journal_get_write_access(handle, sb, gdp_bh, 4095 EXT4_JTR_NONE); 4096 if (err) 4097 goto out_err; 4098 } 4099 4100 ext4_lock_group(sb, group); 4101 if (ext4_has_group_desc_csum(sb) && 4102 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4103 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4104 ext4_free_group_clusters_set(sb, gdp, 4105 ext4_free_clusters_after_init(sb, group, gdp)); 4106 } 4107 4108 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { 4109 already = 0; 4110 for (i = 0; i < len; i++) 4111 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4112 state) 4113 already++; 4114 changed = len - already; 4115 } 4116 4117 if (state) { 4118 mb_set_bits(bitmap_bh->b_data, blkoff, len); 4119 ext4_free_group_clusters_set(sb, gdp, 4120 ext4_free_group_clusters(sb, gdp) - changed); 4121 } else { 4122 mb_clear_bits(bitmap_bh->b_data, blkoff, len); 4123 ext4_free_group_clusters_set(sb, gdp, 4124 ext4_free_group_clusters(sb, gdp) + changed); 4125 } 4126 4127 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4128 ext4_group_desc_csum_set(sb, group, gdp); 4129 ext4_unlock_group(sb, group); 4130 if (ret_changed) 4131 *ret_changed = changed; 4132 4133 if (sbi->s_log_groups_per_flex) { 4134 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4135 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4136 s_flex_groups, flex_group); 4137 4138 if (state) 4139 atomic64_sub(changed, &fg->free_clusters); 4140 else 4141 atomic64_add(changed, &fg->free_clusters); 4142 } 4143 4144 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4145 if (err) 4146 goto out_err; 4147 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4148 if (err) 4149 goto out_err; 4150 4151 if (flags & EXT4_MB_SYNC_UPDATE) { 4152 sync_dirty_buffer(bitmap_bh); 4153 sync_dirty_buffer(gdp_bh); 4154 } 4155 4156 out_err: 4157 brelse(bitmap_bh); 4158 return err; 4159 } 4160 4161 /* 4162 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 4163 * Returns 0 if success or error code 4164 */ 4165 static noinline_for_stack int 4166 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 4167 handle_t *handle, unsigned int reserv_clstrs) 4168 { 4169 struct ext4_group_desc *gdp; 4170 struct ext4_sb_info *sbi; 4171 struct super_block *sb; 4172 ext4_fsblk_t block; 4173 int err, len; 4174 int flags = 0; 4175 ext4_grpblk_t changed; 4176 4177 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4178 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4179 4180 sb = ac->ac_sb; 4181 sbi = EXT4_SB(sb); 4182 4183 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL); 4184 if (!gdp) 4185 return -EIO; 4186 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4187 ext4_free_group_clusters(sb, gdp)); 4188 4189 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4190 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4191 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4192 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4193 "fs metadata", block, block+len); 4194 /* File system mounted not to panic on error 4195 * Fix the bitmap and return EFSCORRUPTED 4196 * We leak some of the blocks here. 4197 */ 4198 err = ext4_mb_mark_context(handle, sb, true, 4199 ac->ac_b_ex.fe_group, 4200 ac->ac_b_ex.fe_start, 4201 ac->ac_b_ex.fe_len, 4202 0, NULL); 4203 if (!err) 4204 err = -EFSCORRUPTED; 4205 return err; 4206 } 4207 4208 #ifdef AGGRESSIVE_CHECK 4209 flags |= EXT4_MB_BITMAP_MARKED_CHECK; 4210 #endif 4211 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, 4212 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, 4213 flags, &changed); 4214 4215 if (err && changed == 0) 4216 return err; 4217 4218 #ifdef AGGRESSIVE_CHECK 4219 BUG_ON(changed != ac->ac_b_ex.fe_len); 4220 #endif 4221 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4222 /* 4223 * Now reduce the dirty block count also. Should not go negative 4224 */ 4225 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4226 /* release all the reserved blocks if non delalloc */ 4227 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4228 reserv_clstrs); 4229 4230 return err; 4231 } 4232 4233 /* 4234 * Idempotent helper for Ext4 fast commit replay path to set the state of 4235 * blocks in bitmaps and update counters. 4236 */ 4237 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4238 int len, bool state) 4239 { 4240 struct ext4_sb_info *sbi = EXT4_SB(sb); 4241 ext4_group_t group; 4242 ext4_grpblk_t blkoff; 4243 int err = 0; 4244 unsigned int clen, thisgrp_len; 4245 4246 while (len > 0) { 4247 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4248 4249 /* 4250 * Check to see if we are freeing blocks across a group 4251 * boundary. 4252 * In case of flex_bg, this can happen that (block, len) may 4253 * span across more than one group. In that case we need to 4254 * get the corresponding group metadata to work with. 4255 * For this we have goto again loop. 4256 */ 4257 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4258 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4259 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4260 4261 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4262 ext4_error(sb, "Marking blocks in system zone - " 4263 "Block = %llu, len = %u", 4264 block, thisgrp_len); 4265 break; 4266 } 4267 4268 err = ext4_mb_mark_context(NULL, sb, state, 4269 group, blkoff, clen, 4270 EXT4_MB_BITMAP_MARKED_CHECK | 4271 EXT4_MB_SYNC_UPDATE, 4272 NULL); 4273 if (err) 4274 break; 4275 4276 block += thisgrp_len; 4277 len -= thisgrp_len; 4278 BUG_ON(len < 0); 4279 } 4280 } 4281 4282 /* 4283 * here we normalize request for locality group 4284 * Group request are normalized to s_mb_group_prealloc, which goes to 4285 * s_strip if we set the same via mount option. 4286 * s_mb_group_prealloc can be configured via 4287 * /sys/fs/ext4/<partition>/mb_group_prealloc 4288 * 4289 * XXX: should we try to preallocate more than the group has now? 4290 */ 4291 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4292 { 4293 struct super_block *sb = ac->ac_sb; 4294 struct ext4_locality_group *lg = ac->ac_lg; 4295 4296 BUG_ON(lg == NULL); 4297 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4298 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4299 } 4300 4301 /* 4302 * This function returns the next element to look at during inode 4303 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4304 * (ei->i_prealloc_lock) 4305 * 4306 * new_start The start of the range we want to compare 4307 * cur_start The existing start that we are comparing against 4308 * node The node of the rb_tree 4309 */ 4310 static inline struct rb_node* 4311 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4312 { 4313 if (new_start < cur_start) 4314 return node->rb_left; 4315 else 4316 return node->rb_right; 4317 } 4318 4319 static inline void 4320 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4321 ext4_lblk_t start, loff_t end) 4322 { 4323 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4324 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4325 struct ext4_prealloc_space *tmp_pa; 4326 ext4_lblk_t tmp_pa_start; 4327 loff_t tmp_pa_end; 4328 struct rb_node *iter; 4329 4330 read_lock(&ei->i_prealloc_lock); 4331 for (iter = ei->i_prealloc_node.rb_node; iter; 4332 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4333 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4334 pa_node.inode_node); 4335 tmp_pa_start = tmp_pa->pa_lstart; 4336 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4337 4338 spin_lock(&tmp_pa->pa_lock); 4339 if (tmp_pa->pa_deleted == 0) 4340 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4341 spin_unlock(&tmp_pa->pa_lock); 4342 } 4343 read_unlock(&ei->i_prealloc_lock); 4344 } 4345 4346 /* 4347 * Given an allocation context "ac" and a range "start", "end", check 4348 * and adjust boundaries if the range overlaps with any of the existing 4349 * preallocatoins stored in the corresponding inode of the allocation context. 4350 * 4351 * Parameters: 4352 * ac allocation context 4353 * start start of the new range 4354 * end end of the new range 4355 */ 4356 static inline void 4357 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4358 ext4_lblk_t *start, loff_t *end) 4359 { 4360 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4361 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4362 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4363 struct rb_node *iter; 4364 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4365 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4366 4367 new_start = *start; 4368 new_end = *end; 4369 4370 /* 4371 * Adjust the normalized range so that it doesn't overlap with any 4372 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4373 * so it doesn't change underneath us. 4374 */ 4375 read_lock(&ei->i_prealloc_lock); 4376 4377 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4378 for (iter = ei->i_prealloc_node.rb_node; iter; 4379 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4380 tmp_pa_start, iter)) { 4381 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4382 pa_node.inode_node); 4383 tmp_pa_start = tmp_pa->pa_lstart; 4384 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4385 4386 /* PA must not overlap original request */ 4387 spin_lock(&tmp_pa->pa_lock); 4388 if (tmp_pa->pa_deleted == 0) 4389 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4390 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4391 spin_unlock(&tmp_pa->pa_lock); 4392 } 4393 4394 /* 4395 * Step 2: check if the found PA is left or right neighbor and 4396 * get the other neighbor 4397 */ 4398 if (tmp_pa) { 4399 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4400 struct rb_node *tmp; 4401 4402 left_pa = tmp_pa; 4403 tmp = rb_next(&left_pa->pa_node.inode_node); 4404 if (tmp) { 4405 right_pa = rb_entry(tmp, 4406 struct ext4_prealloc_space, 4407 pa_node.inode_node); 4408 } 4409 } else { 4410 struct rb_node *tmp; 4411 4412 right_pa = tmp_pa; 4413 tmp = rb_prev(&right_pa->pa_node.inode_node); 4414 if (tmp) { 4415 left_pa = rb_entry(tmp, 4416 struct ext4_prealloc_space, 4417 pa_node.inode_node); 4418 } 4419 } 4420 } 4421 4422 /* Step 3: get the non deleted neighbors */ 4423 if (left_pa) { 4424 for (iter = &left_pa->pa_node.inode_node;; 4425 iter = rb_prev(iter)) { 4426 if (!iter) { 4427 left_pa = NULL; 4428 break; 4429 } 4430 4431 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4432 pa_node.inode_node); 4433 left_pa = tmp_pa; 4434 spin_lock(&tmp_pa->pa_lock); 4435 if (tmp_pa->pa_deleted == 0) { 4436 spin_unlock(&tmp_pa->pa_lock); 4437 break; 4438 } 4439 spin_unlock(&tmp_pa->pa_lock); 4440 } 4441 } 4442 4443 if (right_pa) { 4444 for (iter = &right_pa->pa_node.inode_node;; 4445 iter = rb_next(iter)) { 4446 if (!iter) { 4447 right_pa = NULL; 4448 break; 4449 } 4450 4451 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4452 pa_node.inode_node); 4453 right_pa = tmp_pa; 4454 spin_lock(&tmp_pa->pa_lock); 4455 if (tmp_pa->pa_deleted == 0) { 4456 spin_unlock(&tmp_pa->pa_lock); 4457 break; 4458 } 4459 spin_unlock(&tmp_pa->pa_lock); 4460 } 4461 } 4462 4463 if (left_pa) { 4464 left_pa_end = pa_logical_end(sbi, left_pa); 4465 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4466 } 4467 4468 if (right_pa) { 4469 right_pa_start = right_pa->pa_lstart; 4470 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4471 } 4472 4473 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4474 if (left_pa) { 4475 if (left_pa_end > new_start) 4476 new_start = left_pa_end; 4477 } 4478 4479 if (right_pa) { 4480 if (right_pa_start < new_end) 4481 new_end = right_pa_start; 4482 } 4483 read_unlock(&ei->i_prealloc_lock); 4484 4485 /* XXX: extra loop to check we really don't overlap preallocations */ 4486 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4487 4488 *start = new_start; 4489 *end = new_end; 4490 } 4491 4492 /* 4493 * Normalization means making request better in terms of 4494 * size and alignment 4495 */ 4496 static noinline_for_stack void 4497 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4498 struct ext4_allocation_request *ar) 4499 { 4500 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4501 struct ext4_super_block *es = sbi->s_es; 4502 int bsbits, max; 4503 loff_t size, start_off, end; 4504 loff_t orig_size __maybe_unused; 4505 ext4_lblk_t start; 4506 4507 /* do normalize only data requests, metadata requests 4508 do not need preallocation */ 4509 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4510 return; 4511 4512 /* sometime caller may want exact blocks */ 4513 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4514 return; 4515 4516 /* caller may indicate that preallocation isn't 4517 * required (it's a tail, for example) */ 4518 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4519 return; 4520 4521 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4522 ext4_mb_normalize_group_request(ac); 4523 return ; 4524 } 4525 4526 bsbits = ac->ac_sb->s_blocksize_bits; 4527 4528 /* first, let's learn actual file size 4529 * given current request is allocated */ 4530 size = extent_logical_end(sbi, &ac->ac_o_ex); 4531 size = size << bsbits; 4532 if (size < i_size_read(ac->ac_inode)) 4533 size = i_size_read(ac->ac_inode); 4534 orig_size = size; 4535 4536 /* max size of free chunks */ 4537 max = 2 << bsbits; 4538 4539 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4540 (req <= (size) || max <= (chunk_size)) 4541 4542 /* first, try to predict filesize */ 4543 /* XXX: should this table be tunable? */ 4544 start_off = 0; 4545 if (size <= 16 * 1024) { 4546 size = 16 * 1024; 4547 } else if (size <= 32 * 1024) { 4548 size = 32 * 1024; 4549 } else if (size <= 64 * 1024) { 4550 size = 64 * 1024; 4551 } else if (size <= 128 * 1024) { 4552 size = 128 * 1024; 4553 } else if (size <= 256 * 1024) { 4554 size = 256 * 1024; 4555 } else if (size <= 512 * 1024) { 4556 size = 512 * 1024; 4557 } else if (size <= 1024 * 1024) { 4558 size = 1024 * 1024; 4559 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4560 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4561 (21 - bsbits)) << 21; 4562 size = 2 * 1024 * 1024; 4563 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4564 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4565 (22 - bsbits)) << 22; 4566 size = 4 * 1024 * 1024; 4567 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4568 (8<<20)>>bsbits, max, 8 * 1024)) { 4569 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4570 (23 - bsbits)) << 23; 4571 size = 8 * 1024 * 1024; 4572 } else { 4573 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4574 size = (loff_t) EXT4_C2B(sbi, 4575 ac->ac_o_ex.fe_len) << bsbits; 4576 } 4577 size = size >> bsbits; 4578 start = start_off >> bsbits; 4579 4580 /* 4581 * For tiny groups (smaller than 8MB) the chosen allocation 4582 * alignment may be larger than group size. Make sure the 4583 * alignment does not move allocation to a different group which 4584 * makes mballoc fail assertions later. 4585 */ 4586 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4587 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4588 4589 /* avoid unnecessary preallocation that may trigger assertions */ 4590 if (start + size > EXT_MAX_BLOCKS) 4591 size = EXT_MAX_BLOCKS - start; 4592 4593 /* don't cover already allocated blocks in selected range */ 4594 if (ar->pleft && start <= ar->lleft) { 4595 size -= ar->lleft + 1 - start; 4596 start = ar->lleft + 1; 4597 } 4598 if (ar->pright && start + size - 1 >= ar->lright) 4599 size -= start + size - ar->lright; 4600 4601 /* 4602 * Trim allocation request for filesystems with artificially small 4603 * groups. 4604 */ 4605 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4606 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4607 4608 end = start + size; 4609 4610 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4611 4612 size = end - start; 4613 4614 /* 4615 * In this function "start" and "size" are normalized for better 4616 * alignment and length such that we could preallocate more blocks. 4617 * This normalization is done such that original request of 4618 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4619 * "size" boundaries. 4620 * (Note fe_len can be relaxed since FS block allocation API does not 4621 * provide gurantee on number of contiguous blocks allocation since that 4622 * depends upon free space left, etc). 4623 * In case of inode pa, later we use the allocated blocks 4624 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4625 * range of goal/best blocks [start, size] to put it at the 4626 * ac_o_ex.fe_logical extent of this inode. 4627 * (See ext4_mb_use_inode_pa() for more details) 4628 */ 4629 if (start + size <= ac->ac_o_ex.fe_logical || 4630 start > ac->ac_o_ex.fe_logical) { 4631 ext4_msg(ac->ac_sb, KERN_ERR, 4632 "start %lu, size %lu, fe_logical %lu", 4633 (unsigned long) start, (unsigned long) size, 4634 (unsigned long) ac->ac_o_ex.fe_logical); 4635 BUG(); 4636 } 4637 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4638 4639 /* now prepare goal request */ 4640 4641 /* XXX: is it better to align blocks WRT to logical 4642 * placement or satisfy big request as is */ 4643 ac->ac_g_ex.fe_logical = start; 4644 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4645 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4646 4647 /* define goal start in order to merge */ 4648 if (ar->pright && (ar->lright == (start + size)) && 4649 ar->pright >= size && 4650 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4651 /* merge to the right */ 4652 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4653 &ac->ac_g_ex.fe_group, 4654 &ac->ac_g_ex.fe_start); 4655 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4656 } 4657 if (ar->pleft && (ar->lleft + 1 == start) && 4658 ar->pleft + 1 < ext4_blocks_count(es)) { 4659 /* merge to the left */ 4660 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4661 &ac->ac_g_ex.fe_group, 4662 &ac->ac_g_ex.fe_start); 4663 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4664 } 4665 4666 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4667 orig_size, start); 4668 } 4669 4670 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4671 { 4672 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4673 4674 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4675 atomic_inc(&sbi->s_bal_reqs); 4676 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4677 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4678 atomic_inc(&sbi->s_bal_success); 4679 4680 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4681 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4682 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4683 } 4684 4685 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4686 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4687 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4688 atomic_inc(&sbi->s_bal_goals); 4689 /* did we allocate as much as normalizer originally wanted? */ 4690 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4691 atomic_inc(&sbi->s_bal_len_goals); 4692 4693 if (ac->ac_found > sbi->s_mb_max_to_scan) 4694 atomic_inc(&sbi->s_bal_breaks); 4695 } 4696 4697 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4698 trace_ext4_mballoc_alloc(ac); 4699 else 4700 trace_ext4_mballoc_prealloc(ac); 4701 } 4702 4703 /* 4704 * Called on failure; free up any blocks from the inode PA for this 4705 * context. We don't need this for MB_GROUP_PA because we only change 4706 * pa_free in ext4_mb_release_context(), but on failure, we've already 4707 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4708 */ 4709 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4710 { 4711 struct ext4_prealloc_space *pa = ac->ac_pa; 4712 struct ext4_buddy e4b; 4713 int err; 4714 4715 if (pa == NULL) { 4716 if (ac->ac_f_ex.fe_len == 0) 4717 return; 4718 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4719 if (WARN_RATELIMIT(err, 4720 "ext4: mb_load_buddy failed (%d)", err)) 4721 /* 4722 * This should never happen since we pin the 4723 * pages in the ext4_allocation_context so 4724 * ext4_mb_load_buddy() should never fail. 4725 */ 4726 return; 4727 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4728 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4729 ac->ac_f_ex.fe_len); 4730 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4731 ext4_mb_unload_buddy(&e4b); 4732 return; 4733 } 4734 if (pa->pa_type == MB_INODE_PA) { 4735 spin_lock(&pa->pa_lock); 4736 pa->pa_free += ac->ac_b_ex.fe_len; 4737 spin_unlock(&pa->pa_lock); 4738 } 4739 } 4740 4741 /* 4742 * use blocks preallocated to inode 4743 */ 4744 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4745 struct ext4_prealloc_space *pa) 4746 { 4747 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4748 ext4_fsblk_t start; 4749 ext4_fsblk_t end; 4750 int len; 4751 4752 /* found preallocated blocks, use them */ 4753 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4754 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4755 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4756 len = EXT4_NUM_B2C(sbi, end - start); 4757 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4758 &ac->ac_b_ex.fe_start); 4759 ac->ac_b_ex.fe_len = len; 4760 ac->ac_status = AC_STATUS_FOUND; 4761 ac->ac_pa = pa; 4762 4763 BUG_ON(start < pa->pa_pstart); 4764 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4765 BUG_ON(pa->pa_free < len); 4766 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4767 pa->pa_free -= len; 4768 4769 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4770 } 4771 4772 /* 4773 * use blocks preallocated to locality group 4774 */ 4775 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4776 struct ext4_prealloc_space *pa) 4777 { 4778 unsigned int len = ac->ac_o_ex.fe_len; 4779 4780 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4781 &ac->ac_b_ex.fe_group, 4782 &ac->ac_b_ex.fe_start); 4783 ac->ac_b_ex.fe_len = len; 4784 ac->ac_status = AC_STATUS_FOUND; 4785 ac->ac_pa = pa; 4786 4787 /* we don't correct pa_pstart or pa_len here to avoid 4788 * possible race when the group is being loaded concurrently 4789 * instead we correct pa later, after blocks are marked 4790 * in on-disk bitmap -- see ext4_mb_release_context() 4791 * Other CPUs are prevented from allocating from this pa by lg_mutex 4792 */ 4793 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4794 pa->pa_lstart, len, pa); 4795 } 4796 4797 /* 4798 * Return the prealloc space that have minimal distance 4799 * from the goal block. @cpa is the prealloc 4800 * space that is having currently known minimal distance 4801 * from the goal block. 4802 */ 4803 static struct ext4_prealloc_space * 4804 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4805 struct ext4_prealloc_space *pa, 4806 struct ext4_prealloc_space *cpa) 4807 { 4808 ext4_fsblk_t cur_distance, new_distance; 4809 4810 if (cpa == NULL) { 4811 atomic_inc(&pa->pa_count); 4812 return pa; 4813 } 4814 cur_distance = abs(goal_block - cpa->pa_pstart); 4815 new_distance = abs(goal_block - pa->pa_pstart); 4816 4817 if (cur_distance <= new_distance) 4818 return cpa; 4819 4820 /* drop the previous reference */ 4821 atomic_dec(&cpa->pa_count); 4822 atomic_inc(&pa->pa_count); 4823 return pa; 4824 } 4825 4826 /* 4827 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4828 */ 4829 static bool 4830 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4831 struct ext4_prealloc_space *pa) 4832 { 4833 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4834 ext4_fsblk_t start; 4835 4836 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4837 return true; 4838 4839 /* 4840 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4841 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4842 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4843 * consistent with ext4_mb_find_by_goal. 4844 */ 4845 start = pa->pa_pstart + 4846 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4847 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4848 return false; 4849 4850 if (ac->ac_g_ex.fe_len > pa->pa_len - 4851 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4852 return false; 4853 4854 return true; 4855 } 4856 4857 /* 4858 * search goal blocks in preallocated space 4859 */ 4860 static noinline_for_stack bool 4861 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4862 { 4863 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4864 int order, i; 4865 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4866 struct ext4_locality_group *lg; 4867 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4868 struct rb_node *iter; 4869 ext4_fsblk_t goal_block; 4870 4871 /* only data can be preallocated */ 4872 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4873 return false; 4874 4875 /* 4876 * first, try per-file preallocation by searching the inode pa rbtree. 4877 * 4878 * Here, we can't do a direct traversal of the tree because 4879 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4880 * deleted and that can cause direct traversal to skip some entries. 4881 */ 4882 read_lock(&ei->i_prealloc_lock); 4883 4884 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4885 goto try_group_pa; 4886 } 4887 4888 /* 4889 * Step 1: Find a pa with logical start immediately adjacent to the 4890 * original logical start. This could be on the left or right. 4891 * 4892 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4893 */ 4894 for (iter = ei->i_prealloc_node.rb_node; iter; 4895 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4896 tmp_pa->pa_lstart, iter)) { 4897 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4898 pa_node.inode_node); 4899 } 4900 4901 /* 4902 * Step 2: The adjacent pa might be to the right of logical start, find 4903 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4904 * logical start is towards the left of original request's logical start 4905 */ 4906 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4907 struct rb_node *tmp; 4908 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4909 4910 if (tmp) { 4911 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4912 pa_node.inode_node); 4913 } else { 4914 /* 4915 * If there is no adjacent pa to the left then finding 4916 * an overlapping pa is not possible hence stop searching 4917 * inode pa tree 4918 */ 4919 goto try_group_pa; 4920 } 4921 } 4922 4923 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4924 4925 /* 4926 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4927 * the first non deleted adjacent pa. After this step we should have a 4928 * valid tmp_pa which is guaranteed to be non deleted. 4929 */ 4930 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4931 if (!iter) { 4932 /* 4933 * no non deleted left adjacent pa, so stop searching 4934 * inode pa tree 4935 */ 4936 goto try_group_pa; 4937 } 4938 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4939 pa_node.inode_node); 4940 spin_lock(&tmp_pa->pa_lock); 4941 if (tmp_pa->pa_deleted == 0) { 4942 /* 4943 * We will keep holding the pa_lock from 4944 * this point on because we don't want group discard 4945 * to delete this pa underneath us. Since group 4946 * discard is anyways an ENOSPC operation it 4947 * should be okay for it to wait a few more cycles. 4948 */ 4949 break; 4950 } else { 4951 spin_unlock(&tmp_pa->pa_lock); 4952 } 4953 } 4954 4955 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4956 BUG_ON(tmp_pa->pa_deleted == 1); 4957 4958 /* 4959 * Step 4: We now have the non deleted left adjacent pa. Only this 4960 * pa can possibly satisfy the request hence check if it overlaps 4961 * original logical start and stop searching if it doesn't. 4962 */ 4963 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4964 spin_unlock(&tmp_pa->pa_lock); 4965 goto try_group_pa; 4966 } 4967 4968 /* non-extent files can't have physical blocks past 2^32 */ 4969 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4970 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4971 EXT4_MAX_BLOCK_FILE_PHYS)) { 4972 /* 4973 * Since PAs don't overlap, we won't find any other PA to 4974 * satisfy this. 4975 */ 4976 spin_unlock(&tmp_pa->pa_lock); 4977 goto try_group_pa; 4978 } 4979 4980 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4981 atomic_inc(&tmp_pa->pa_count); 4982 ext4_mb_use_inode_pa(ac, tmp_pa); 4983 spin_unlock(&tmp_pa->pa_lock); 4984 read_unlock(&ei->i_prealloc_lock); 4985 return true; 4986 } else { 4987 /* 4988 * We found a valid overlapping pa but couldn't use it because 4989 * it had no free blocks. This should ideally never happen 4990 * because: 4991 * 4992 * 1. When a new inode pa is added to rbtree it must have 4993 * pa_free > 0 since otherwise we won't actually need 4994 * preallocation. 4995 * 4996 * 2. An inode pa that is in the rbtree can only have it's 4997 * pa_free become zero when another thread calls: 4998 * ext4_mb_new_blocks 4999 * ext4_mb_use_preallocated 5000 * ext4_mb_use_inode_pa 5001 * 5002 * 3. Further, after the above calls make pa_free == 0, we will 5003 * immediately remove it from the rbtree in: 5004 * ext4_mb_new_blocks 5005 * ext4_mb_release_context 5006 * ext4_mb_put_pa 5007 * 5008 * 4. Since the pa_free becoming 0 and pa_free getting removed 5009 * from tree both happen in ext4_mb_new_blocks, which is always 5010 * called with i_data_sem held for data allocations, we can be 5011 * sure that another process will never see a pa in rbtree with 5012 * pa_free == 0. 5013 */ 5014 WARN_ON_ONCE(tmp_pa->pa_free == 0); 5015 } 5016 spin_unlock(&tmp_pa->pa_lock); 5017 try_group_pa: 5018 read_unlock(&ei->i_prealloc_lock); 5019 5020 /* can we use group allocation? */ 5021 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 5022 return false; 5023 5024 /* inode may have no locality group for some reason */ 5025 lg = ac->ac_lg; 5026 if (lg == NULL) 5027 return false; 5028 order = fls(ac->ac_o_ex.fe_len) - 1; 5029 if (order > PREALLOC_TB_SIZE - 1) 5030 /* The max size of hash table is PREALLOC_TB_SIZE */ 5031 order = PREALLOC_TB_SIZE - 1; 5032 5033 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 5034 /* 5035 * search for the prealloc space that is having 5036 * minimal distance from the goal block. 5037 */ 5038 for (i = order; i < PREALLOC_TB_SIZE; i++) { 5039 rcu_read_lock(); 5040 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 5041 pa_node.lg_list) { 5042 spin_lock(&tmp_pa->pa_lock); 5043 if (tmp_pa->pa_deleted == 0 && 5044 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 5045 5046 cpa = ext4_mb_check_group_pa(goal_block, 5047 tmp_pa, cpa); 5048 } 5049 spin_unlock(&tmp_pa->pa_lock); 5050 } 5051 rcu_read_unlock(); 5052 } 5053 if (cpa) { 5054 ext4_mb_use_group_pa(ac, cpa); 5055 return true; 5056 } 5057 return false; 5058 } 5059 5060 /* 5061 * the function goes through all preallocation in this group and marks them 5062 * used in in-core bitmap. buddy must be generated from this bitmap 5063 * Need to be called with ext4 group lock held 5064 */ 5065 static noinline_for_stack 5066 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 5067 ext4_group_t group) 5068 { 5069 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5070 struct ext4_prealloc_space *pa; 5071 struct list_head *cur; 5072 ext4_group_t groupnr; 5073 ext4_grpblk_t start; 5074 int preallocated = 0; 5075 int len; 5076 5077 if (!grp) 5078 return; 5079 5080 /* all form of preallocation discards first load group, 5081 * so the only competing code is preallocation use. 5082 * we don't need any locking here 5083 * notice we do NOT ignore preallocations with pa_deleted 5084 * otherwise we could leave used blocks available for 5085 * allocation in buddy when concurrent ext4_mb_put_pa() 5086 * is dropping preallocation 5087 */ 5088 list_for_each(cur, &grp->bb_prealloc_list) { 5089 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5090 spin_lock(&pa->pa_lock); 5091 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5092 &groupnr, &start); 5093 len = pa->pa_len; 5094 spin_unlock(&pa->pa_lock); 5095 if (unlikely(len == 0)) 5096 continue; 5097 BUG_ON(groupnr != group); 5098 mb_set_bits(bitmap, start, len); 5099 preallocated += len; 5100 } 5101 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5102 } 5103 5104 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5105 struct ext4_prealloc_space *pa) 5106 { 5107 struct ext4_inode_info *ei; 5108 5109 if (pa->pa_deleted) { 5110 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5111 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5112 pa->pa_len); 5113 return; 5114 } 5115 5116 pa->pa_deleted = 1; 5117 5118 if (pa->pa_type == MB_INODE_PA) { 5119 ei = EXT4_I(pa->pa_inode); 5120 atomic_dec(&ei->i_prealloc_active); 5121 } 5122 } 5123 5124 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5125 { 5126 BUG_ON(!pa); 5127 BUG_ON(atomic_read(&pa->pa_count)); 5128 BUG_ON(pa->pa_deleted == 0); 5129 kmem_cache_free(ext4_pspace_cachep, pa); 5130 } 5131 5132 static void ext4_mb_pa_callback(struct rcu_head *head) 5133 { 5134 struct ext4_prealloc_space *pa; 5135 5136 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5137 ext4_mb_pa_free(pa); 5138 } 5139 5140 /* 5141 * drops a reference to preallocated space descriptor 5142 * if this was the last reference and the space is consumed 5143 */ 5144 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5145 struct super_block *sb, struct ext4_prealloc_space *pa) 5146 { 5147 ext4_group_t grp; 5148 ext4_fsblk_t grp_blk; 5149 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5150 5151 /* in this short window concurrent discard can set pa_deleted */ 5152 spin_lock(&pa->pa_lock); 5153 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5154 spin_unlock(&pa->pa_lock); 5155 return; 5156 } 5157 5158 if (pa->pa_deleted == 1) { 5159 spin_unlock(&pa->pa_lock); 5160 return; 5161 } 5162 5163 ext4_mb_mark_pa_deleted(sb, pa); 5164 spin_unlock(&pa->pa_lock); 5165 5166 grp_blk = pa->pa_pstart; 5167 /* 5168 * If doing group-based preallocation, pa_pstart may be in the 5169 * next group when pa is used up 5170 */ 5171 if (pa->pa_type == MB_GROUP_PA) 5172 grp_blk--; 5173 5174 grp = ext4_get_group_number(sb, grp_blk); 5175 5176 /* 5177 * possible race: 5178 * 5179 * P1 (buddy init) P2 (regular allocation) 5180 * find block B in PA 5181 * copy on-disk bitmap to buddy 5182 * mark B in on-disk bitmap 5183 * drop PA from group 5184 * mark all PAs in buddy 5185 * 5186 * thus, P1 initializes buddy with B available. to prevent this 5187 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5188 * against that pair 5189 */ 5190 ext4_lock_group(sb, grp); 5191 list_del(&pa->pa_group_list); 5192 ext4_unlock_group(sb, grp); 5193 5194 if (pa->pa_type == MB_INODE_PA) { 5195 write_lock(pa->pa_node_lock.inode_lock); 5196 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5197 write_unlock(pa->pa_node_lock.inode_lock); 5198 ext4_mb_pa_free(pa); 5199 } else { 5200 spin_lock(pa->pa_node_lock.lg_lock); 5201 list_del_rcu(&pa->pa_node.lg_list); 5202 spin_unlock(pa->pa_node_lock.lg_lock); 5203 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5204 } 5205 } 5206 5207 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5208 { 5209 struct rb_node **iter = &root->rb_node, *parent = NULL; 5210 struct ext4_prealloc_space *iter_pa, *new_pa; 5211 ext4_lblk_t iter_start, new_start; 5212 5213 while (*iter) { 5214 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5215 pa_node.inode_node); 5216 new_pa = rb_entry(new, struct ext4_prealloc_space, 5217 pa_node.inode_node); 5218 iter_start = iter_pa->pa_lstart; 5219 new_start = new_pa->pa_lstart; 5220 5221 parent = *iter; 5222 if (new_start < iter_start) 5223 iter = &((*iter)->rb_left); 5224 else 5225 iter = &((*iter)->rb_right); 5226 } 5227 5228 rb_link_node(new, parent, iter); 5229 rb_insert_color(new, root); 5230 } 5231 5232 /* 5233 * creates new preallocated space for given inode 5234 */ 5235 static noinline_for_stack void 5236 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5237 { 5238 struct super_block *sb = ac->ac_sb; 5239 struct ext4_sb_info *sbi = EXT4_SB(sb); 5240 struct ext4_prealloc_space *pa; 5241 struct ext4_group_info *grp; 5242 struct ext4_inode_info *ei; 5243 5244 /* preallocate only when found space is larger then requested */ 5245 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5246 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5247 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5248 BUG_ON(ac->ac_pa == NULL); 5249 5250 pa = ac->ac_pa; 5251 5252 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5253 struct ext4_free_extent ex = { 5254 .fe_logical = ac->ac_g_ex.fe_logical, 5255 .fe_len = ac->ac_orig_goal_len, 5256 }; 5257 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5258 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); 5259 5260 /* 5261 * We can't allocate as much as normalizer wants, so we try 5262 * to get proper lstart to cover the original request, except 5263 * when the goal doesn't cover the original request as below: 5264 * 5265 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 5266 * best_ex:0/200(200) -> adjusted: 1848/2048(200) 5267 */ 5268 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5269 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5270 5271 /* 5272 * Use the below logic for adjusting best extent as it keeps 5273 * fragmentation in check while ensuring logical range of best 5274 * extent doesn't overflow out of goal extent: 5275 * 5276 * 1. Check if best ex can be kept at end of goal (before 5277 * cr_best_avail trimmed it) and still cover original start 5278 * 2. Else, check if best ex can be kept at start of goal and 5279 * still cover original end 5280 * 3. Else, keep the best ex at start of original request. 5281 */ 5282 ex.fe_len = ac->ac_b_ex.fe_len; 5283 5284 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5285 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5286 goto adjust_bex; 5287 5288 ex.fe_logical = ac->ac_g_ex.fe_logical; 5289 if (o_ex_end <= extent_logical_end(sbi, &ex)) 5290 goto adjust_bex; 5291 5292 ex.fe_logical = ac->ac_o_ex.fe_logical; 5293 adjust_bex: 5294 ac->ac_b_ex.fe_logical = ex.fe_logical; 5295 5296 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5297 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5298 } 5299 5300 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5301 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5302 pa->pa_len = ac->ac_b_ex.fe_len; 5303 pa->pa_free = pa->pa_len; 5304 spin_lock_init(&pa->pa_lock); 5305 INIT_LIST_HEAD(&pa->pa_group_list); 5306 pa->pa_deleted = 0; 5307 pa->pa_type = MB_INODE_PA; 5308 5309 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5310 pa->pa_len, pa->pa_lstart); 5311 trace_ext4_mb_new_inode_pa(ac, pa); 5312 5313 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5314 ext4_mb_use_inode_pa(ac, pa); 5315 5316 ei = EXT4_I(ac->ac_inode); 5317 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5318 if (!grp) 5319 return; 5320 5321 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5322 pa->pa_inode = ac->ac_inode; 5323 5324 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5325 5326 write_lock(pa->pa_node_lock.inode_lock); 5327 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5328 write_unlock(pa->pa_node_lock.inode_lock); 5329 atomic_inc(&ei->i_prealloc_active); 5330 } 5331 5332 /* 5333 * creates new preallocated space for locality group inodes belongs to 5334 */ 5335 static noinline_for_stack void 5336 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5337 { 5338 struct super_block *sb = ac->ac_sb; 5339 struct ext4_locality_group *lg; 5340 struct ext4_prealloc_space *pa; 5341 struct ext4_group_info *grp; 5342 5343 /* preallocate only when found space is larger then requested */ 5344 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5345 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5346 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5347 BUG_ON(ac->ac_pa == NULL); 5348 5349 pa = ac->ac_pa; 5350 5351 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5352 pa->pa_lstart = pa->pa_pstart; 5353 pa->pa_len = ac->ac_b_ex.fe_len; 5354 pa->pa_free = pa->pa_len; 5355 spin_lock_init(&pa->pa_lock); 5356 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5357 INIT_LIST_HEAD(&pa->pa_group_list); 5358 pa->pa_deleted = 0; 5359 pa->pa_type = MB_GROUP_PA; 5360 5361 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5362 pa->pa_len, pa->pa_lstart); 5363 trace_ext4_mb_new_group_pa(ac, pa); 5364 5365 ext4_mb_use_group_pa(ac, pa); 5366 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5367 5368 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5369 if (!grp) 5370 return; 5371 lg = ac->ac_lg; 5372 BUG_ON(lg == NULL); 5373 5374 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5375 pa->pa_inode = NULL; 5376 5377 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5378 5379 /* 5380 * We will later add the new pa to the right bucket 5381 * after updating the pa_free in ext4_mb_release_context 5382 */ 5383 } 5384 5385 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5386 { 5387 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5388 ext4_mb_new_group_pa(ac); 5389 else 5390 ext4_mb_new_inode_pa(ac); 5391 } 5392 5393 /* 5394 * finds all unused blocks in on-disk bitmap, frees them in 5395 * in-core bitmap and buddy. 5396 * @pa must be unlinked from inode and group lists, so that 5397 * nobody else can find/use it. 5398 * the caller MUST hold group/inode locks. 5399 * TODO: optimize the case when there are no in-core structures yet 5400 */ 5401 static noinline_for_stack void 5402 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5403 struct ext4_prealloc_space *pa) 5404 { 5405 struct super_block *sb = e4b->bd_sb; 5406 struct ext4_sb_info *sbi = EXT4_SB(sb); 5407 unsigned int end; 5408 unsigned int next; 5409 ext4_group_t group; 5410 ext4_grpblk_t bit; 5411 unsigned long long grp_blk_start; 5412 int free = 0; 5413 5414 BUG_ON(pa->pa_deleted == 0); 5415 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5416 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5417 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5418 end = bit + pa->pa_len; 5419 5420 while (bit < end) { 5421 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5422 if (bit >= end) 5423 break; 5424 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5425 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5426 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5427 (unsigned) next - bit, (unsigned) group); 5428 free += next - bit; 5429 5430 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5431 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5432 EXT4_C2B(sbi, bit)), 5433 next - bit); 5434 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5435 bit = next + 1; 5436 } 5437 if (free != pa->pa_free) { 5438 ext4_msg(e4b->bd_sb, KERN_CRIT, 5439 "pa %p: logic %lu, phys. %lu, len %d", 5440 pa, (unsigned long) pa->pa_lstart, 5441 (unsigned long) pa->pa_pstart, 5442 pa->pa_len); 5443 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5444 free, pa->pa_free); 5445 /* 5446 * pa is already deleted so we use the value obtained 5447 * from the bitmap and continue. 5448 */ 5449 } 5450 atomic_add(free, &sbi->s_mb_discarded); 5451 } 5452 5453 static noinline_for_stack void 5454 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5455 struct ext4_prealloc_space *pa) 5456 { 5457 struct super_block *sb = e4b->bd_sb; 5458 ext4_group_t group; 5459 ext4_grpblk_t bit; 5460 5461 trace_ext4_mb_release_group_pa(sb, pa); 5462 BUG_ON(pa->pa_deleted == 0); 5463 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5464 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5465 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5466 e4b->bd_group, group, pa->pa_pstart); 5467 return; 5468 } 5469 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5470 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5471 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5472 } 5473 5474 /* 5475 * releases all preallocations in given group 5476 * 5477 * first, we need to decide discard policy: 5478 * - when do we discard 5479 * 1) ENOSPC 5480 * - how many do we discard 5481 * 1) how many requested 5482 */ 5483 static noinline_for_stack int 5484 ext4_mb_discard_group_preallocations(struct super_block *sb, 5485 ext4_group_t group, int *busy) 5486 { 5487 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5488 struct buffer_head *bitmap_bh = NULL; 5489 struct ext4_prealloc_space *pa, *tmp; 5490 LIST_HEAD(list); 5491 struct ext4_buddy e4b; 5492 struct ext4_inode_info *ei; 5493 int err; 5494 int free = 0; 5495 5496 if (!grp) 5497 return 0; 5498 mb_debug(sb, "discard preallocation for group %u\n", group); 5499 if (list_empty(&grp->bb_prealloc_list)) 5500 goto out_dbg; 5501 5502 bitmap_bh = ext4_read_block_bitmap(sb, group); 5503 if (IS_ERR(bitmap_bh)) { 5504 err = PTR_ERR(bitmap_bh); 5505 ext4_error_err(sb, -err, 5506 "Error %d reading block bitmap for %u", 5507 err, group); 5508 goto out_dbg; 5509 } 5510 5511 err = ext4_mb_load_buddy(sb, group, &e4b); 5512 if (err) { 5513 ext4_warning(sb, "Error %d loading buddy information for %u", 5514 err, group); 5515 put_bh(bitmap_bh); 5516 goto out_dbg; 5517 } 5518 5519 ext4_lock_group(sb, group); 5520 list_for_each_entry_safe(pa, tmp, 5521 &grp->bb_prealloc_list, pa_group_list) { 5522 spin_lock(&pa->pa_lock); 5523 if (atomic_read(&pa->pa_count)) { 5524 spin_unlock(&pa->pa_lock); 5525 *busy = 1; 5526 continue; 5527 } 5528 if (pa->pa_deleted) { 5529 spin_unlock(&pa->pa_lock); 5530 continue; 5531 } 5532 5533 /* seems this one can be freed ... */ 5534 ext4_mb_mark_pa_deleted(sb, pa); 5535 5536 if (!free) 5537 this_cpu_inc(discard_pa_seq); 5538 5539 /* we can trust pa_free ... */ 5540 free += pa->pa_free; 5541 5542 spin_unlock(&pa->pa_lock); 5543 5544 list_del(&pa->pa_group_list); 5545 list_add(&pa->u.pa_tmp_list, &list); 5546 } 5547 5548 /* now free all selected PAs */ 5549 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5550 5551 /* remove from object (inode or locality group) */ 5552 if (pa->pa_type == MB_GROUP_PA) { 5553 spin_lock(pa->pa_node_lock.lg_lock); 5554 list_del_rcu(&pa->pa_node.lg_list); 5555 spin_unlock(pa->pa_node_lock.lg_lock); 5556 } else { 5557 write_lock(pa->pa_node_lock.inode_lock); 5558 ei = EXT4_I(pa->pa_inode); 5559 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5560 write_unlock(pa->pa_node_lock.inode_lock); 5561 } 5562 5563 list_del(&pa->u.pa_tmp_list); 5564 5565 if (pa->pa_type == MB_GROUP_PA) { 5566 ext4_mb_release_group_pa(&e4b, pa); 5567 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5568 } else { 5569 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5570 ext4_mb_pa_free(pa); 5571 } 5572 } 5573 5574 ext4_unlock_group(sb, group); 5575 ext4_mb_unload_buddy(&e4b); 5576 put_bh(bitmap_bh); 5577 out_dbg: 5578 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5579 free, group, grp->bb_free); 5580 return free; 5581 } 5582 5583 /* 5584 * releases all non-used preallocated blocks for given inode 5585 * 5586 * It's important to discard preallocations under i_data_sem 5587 * We don't want another block to be served from the prealloc 5588 * space when we are discarding the inode prealloc space. 5589 * 5590 * FIXME!! Make sure it is valid at all the call sites 5591 */ 5592 void ext4_discard_preallocations(struct inode *inode) 5593 { 5594 struct ext4_inode_info *ei = EXT4_I(inode); 5595 struct super_block *sb = inode->i_sb; 5596 struct buffer_head *bitmap_bh = NULL; 5597 struct ext4_prealloc_space *pa, *tmp; 5598 ext4_group_t group = 0; 5599 LIST_HEAD(list); 5600 struct ext4_buddy e4b; 5601 struct rb_node *iter; 5602 int err; 5603 5604 if (!S_ISREG(inode->i_mode)) 5605 return; 5606 5607 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5608 return; 5609 5610 mb_debug(sb, "discard preallocation for inode %lu\n", 5611 inode->i_ino); 5612 trace_ext4_discard_preallocations(inode, 5613 atomic_read(&ei->i_prealloc_active)); 5614 5615 repeat: 5616 /* first, collect all pa's in the inode */ 5617 write_lock(&ei->i_prealloc_lock); 5618 for (iter = rb_first(&ei->i_prealloc_node); iter; 5619 iter = rb_next(iter)) { 5620 pa = rb_entry(iter, struct ext4_prealloc_space, 5621 pa_node.inode_node); 5622 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5623 5624 spin_lock(&pa->pa_lock); 5625 if (atomic_read(&pa->pa_count)) { 5626 /* this shouldn't happen often - nobody should 5627 * use preallocation while we're discarding it */ 5628 spin_unlock(&pa->pa_lock); 5629 write_unlock(&ei->i_prealloc_lock); 5630 ext4_msg(sb, KERN_ERR, 5631 "uh-oh! used pa while discarding"); 5632 WARN_ON(1); 5633 schedule_timeout_uninterruptible(HZ); 5634 goto repeat; 5635 5636 } 5637 if (pa->pa_deleted == 0) { 5638 ext4_mb_mark_pa_deleted(sb, pa); 5639 spin_unlock(&pa->pa_lock); 5640 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5641 list_add(&pa->u.pa_tmp_list, &list); 5642 continue; 5643 } 5644 5645 /* someone is deleting pa right now */ 5646 spin_unlock(&pa->pa_lock); 5647 write_unlock(&ei->i_prealloc_lock); 5648 5649 /* we have to wait here because pa_deleted 5650 * doesn't mean pa is already unlinked from 5651 * the list. as we might be called from 5652 * ->clear_inode() the inode will get freed 5653 * and concurrent thread which is unlinking 5654 * pa from inode's list may access already 5655 * freed memory, bad-bad-bad */ 5656 5657 /* XXX: if this happens too often, we can 5658 * add a flag to force wait only in case 5659 * of ->clear_inode(), but not in case of 5660 * regular truncate */ 5661 schedule_timeout_uninterruptible(HZ); 5662 goto repeat; 5663 } 5664 write_unlock(&ei->i_prealloc_lock); 5665 5666 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5667 BUG_ON(pa->pa_type != MB_INODE_PA); 5668 group = ext4_get_group_number(sb, pa->pa_pstart); 5669 5670 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5671 GFP_NOFS|__GFP_NOFAIL); 5672 if (err) { 5673 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5674 err, group); 5675 continue; 5676 } 5677 5678 bitmap_bh = ext4_read_block_bitmap(sb, group); 5679 if (IS_ERR(bitmap_bh)) { 5680 err = PTR_ERR(bitmap_bh); 5681 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5682 err, group); 5683 ext4_mb_unload_buddy(&e4b); 5684 continue; 5685 } 5686 5687 ext4_lock_group(sb, group); 5688 list_del(&pa->pa_group_list); 5689 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5690 ext4_unlock_group(sb, group); 5691 5692 ext4_mb_unload_buddy(&e4b); 5693 put_bh(bitmap_bh); 5694 5695 list_del(&pa->u.pa_tmp_list); 5696 ext4_mb_pa_free(pa); 5697 } 5698 } 5699 5700 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5701 { 5702 struct ext4_prealloc_space *pa; 5703 5704 BUG_ON(ext4_pspace_cachep == NULL); 5705 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5706 if (!pa) 5707 return -ENOMEM; 5708 atomic_set(&pa->pa_count, 1); 5709 ac->ac_pa = pa; 5710 return 0; 5711 } 5712 5713 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5714 { 5715 struct ext4_prealloc_space *pa = ac->ac_pa; 5716 5717 BUG_ON(!pa); 5718 ac->ac_pa = NULL; 5719 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5720 /* 5721 * current function is only called due to an error or due to 5722 * len of found blocks < len of requested blocks hence the PA has not 5723 * been added to grp->bb_prealloc_list. So we don't need to lock it 5724 */ 5725 pa->pa_deleted = 1; 5726 ext4_mb_pa_free(pa); 5727 } 5728 5729 #ifdef CONFIG_EXT4_DEBUG 5730 static inline void ext4_mb_show_pa(struct super_block *sb) 5731 { 5732 ext4_group_t i, ngroups; 5733 5734 if (ext4_emergency_state(sb)) 5735 return; 5736 5737 ngroups = ext4_get_groups_count(sb); 5738 mb_debug(sb, "groups: "); 5739 for (i = 0; i < ngroups; i++) { 5740 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5741 struct ext4_prealloc_space *pa; 5742 ext4_grpblk_t start; 5743 struct list_head *cur; 5744 5745 if (!grp) 5746 continue; 5747 ext4_lock_group(sb, i); 5748 list_for_each(cur, &grp->bb_prealloc_list) { 5749 pa = list_entry(cur, struct ext4_prealloc_space, 5750 pa_group_list); 5751 spin_lock(&pa->pa_lock); 5752 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5753 NULL, &start); 5754 spin_unlock(&pa->pa_lock); 5755 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5756 pa->pa_len); 5757 } 5758 ext4_unlock_group(sb, i); 5759 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5760 grp->bb_fragments); 5761 } 5762 } 5763 5764 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5765 { 5766 struct super_block *sb = ac->ac_sb; 5767 5768 if (ext4_emergency_state(sb)) 5769 return; 5770 5771 mb_debug(sb, "Can't allocate:" 5772 " Allocation context details:"); 5773 mb_debug(sb, "status %u flags 0x%x", 5774 ac->ac_status, ac->ac_flags); 5775 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5776 "goal %lu/%lu/%lu@%lu, " 5777 "best %lu/%lu/%lu@%lu cr %d", 5778 (unsigned long)ac->ac_o_ex.fe_group, 5779 (unsigned long)ac->ac_o_ex.fe_start, 5780 (unsigned long)ac->ac_o_ex.fe_len, 5781 (unsigned long)ac->ac_o_ex.fe_logical, 5782 (unsigned long)ac->ac_g_ex.fe_group, 5783 (unsigned long)ac->ac_g_ex.fe_start, 5784 (unsigned long)ac->ac_g_ex.fe_len, 5785 (unsigned long)ac->ac_g_ex.fe_logical, 5786 (unsigned long)ac->ac_b_ex.fe_group, 5787 (unsigned long)ac->ac_b_ex.fe_start, 5788 (unsigned long)ac->ac_b_ex.fe_len, 5789 (unsigned long)ac->ac_b_ex.fe_logical, 5790 (int)ac->ac_criteria); 5791 mb_debug(sb, "%u found", ac->ac_found); 5792 mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa)); 5793 if (ac->ac_pa) 5794 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5795 "group pa" : "inode pa"); 5796 ext4_mb_show_pa(sb); 5797 } 5798 #else 5799 static inline void ext4_mb_show_pa(struct super_block *sb) 5800 { 5801 } 5802 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5803 { 5804 ext4_mb_show_pa(ac->ac_sb); 5805 } 5806 #endif 5807 5808 /* 5809 * We use locality group preallocation for small size file. The size of the 5810 * file is determined by the current size or the resulting size after 5811 * allocation which ever is larger 5812 * 5813 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5814 */ 5815 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5816 { 5817 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5818 int bsbits = ac->ac_sb->s_blocksize_bits; 5819 loff_t size, isize; 5820 bool inode_pa_eligible, group_pa_eligible; 5821 5822 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5823 return; 5824 5825 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5826 return; 5827 5828 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5829 inode_pa_eligible = true; 5830 size = extent_logical_end(sbi, &ac->ac_o_ex); 5831 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5832 >> bsbits; 5833 5834 /* No point in using inode preallocation for closed files */ 5835 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5836 !inode_is_open_for_write(ac->ac_inode)) 5837 inode_pa_eligible = false; 5838 5839 size = max(size, isize); 5840 /* Don't use group allocation for large files */ 5841 if (size > sbi->s_mb_stream_request) 5842 group_pa_eligible = false; 5843 5844 if (!group_pa_eligible) { 5845 if (inode_pa_eligible) 5846 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5847 else 5848 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5849 return; 5850 } 5851 5852 BUG_ON(ac->ac_lg != NULL); 5853 /* 5854 * locality group prealloc space are per cpu. The reason for having 5855 * per cpu locality group is to reduce the contention between block 5856 * request from multiple CPUs. 5857 */ 5858 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5859 5860 /* we're going to use group allocation */ 5861 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5862 5863 /* serialize all allocations in the group */ 5864 mutex_lock(&ac->ac_lg->lg_mutex); 5865 } 5866 5867 static noinline_for_stack void 5868 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5869 struct ext4_allocation_request *ar) 5870 { 5871 struct super_block *sb = ar->inode->i_sb; 5872 struct ext4_sb_info *sbi = EXT4_SB(sb); 5873 struct ext4_super_block *es = sbi->s_es; 5874 ext4_group_t group; 5875 unsigned int len; 5876 ext4_fsblk_t goal; 5877 ext4_grpblk_t block; 5878 5879 /* we can't allocate > group size */ 5880 len = ar->len; 5881 5882 /* just a dirty hack to filter too big requests */ 5883 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5884 len = EXT4_CLUSTERS_PER_GROUP(sb); 5885 5886 /* start searching from the goal */ 5887 goal = ar->goal; 5888 if (goal < le32_to_cpu(es->s_first_data_block) || 5889 goal >= ext4_blocks_count(es)) 5890 goal = le32_to_cpu(es->s_first_data_block); 5891 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5892 5893 /* set up allocation goals */ 5894 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5895 ac->ac_status = AC_STATUS_CONTINUE; 5896 ac->ac_sb = sb; 5897 ac->ac_inode = ar->inode; 5898 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5899 ac->ac_o_ex.fe_group = group; 5900 ac->ac_o_ex.fe_start = block; 5901 ac->ac_o_ex.fe_len = len; 5902 ac->ac_g_ex = ac->ac_o_ex; 5903 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5904 ac->ac_flags = ar->flags; 5905 5906 /* we have to define context: we'll work with a file or 5907 * locality group. this is a policy, actually */ 5908 ext4_mb_group_or_file(ac); 5909 5910 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5911 "left: %u/%u, right %u/%u to %swritable\n", 5912 (unsigned) ar->len, (unsigned) ar->logical, 5913 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5914 (unsigned) ar->lleft, (unsigned) ar->pleft, 5915 (unsigned) ar->lright, (unsigned) ar->pright, 5916 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5917 } 5918 5919 static noinline_for_stack void 5920 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5921 struct ext4_locality_group *lg, 5922 int order, int total_entries) 5923 { 5924 ext4_group_t group = 0; 5925 struct ext4_buddy e4b; 5926 LIST_HEAD(discard_list); 5927 struct ext4_prealloc_space *pa, *tmp; 5928 5929 mb_debug(sb, "discard locality group preallocation\n"); 5930 5931 spin_lock(&lg->lg_prealloc_lock); 5932 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5933 pa_node.lg_list, 5934 lockdep_is_held(&lg->lg_prealloc_lock)) { 5935 spin_lock(&pa->pa_lock); 5936 if (atomic_read(&pa->pa_count)) { 5937 /* 5938 * This is the pa that we just used 5939 * for block allocation. So don't 5940 * free that 5941 */ 5942 spin_unlock(&pa->pa_lock); 5943 continue; 5944 } 5945 if (pa->pa_deleted) { 5946 spin_unlock(&pa->pa_lock); 5947 continue; 5948 } 5949 /* only lg prealloc space */ 5950 BUG_ON(pa->pa_type != MB_GROUP_PA); 5951 5952 /* seems this one can be freed ... */ 5953 ext4_mb_mark_pa_deleted(sb, pa); 5954 spin_unlock(&pa->pa_lock); 5955 5956 list_del_rcu(&pa->pa_node.lg_list); 5957 list_add(&pa->u.pa_tmp_list, &discard_list); 5958 5959 total_entries--; 5960 if (total_entries <= 5) { 5961 /* 5962 * we want to keep only 5 entries 5963 * allowing it to grow to 8. This 5964 * mak sure we don't call discard 5965 * soon for this list. 5966 */ 5967 break; 5968 } 5969 } 5970 spin_unlock(&lg->lg_prealloc_lock); 5971 5972 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5973 int err; 5974 5975 group = ext4_get_group_number(sb, pa->pa_pstart); 5976 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5977 GFP_NOFS|__GFP_NOFAIL); 5978 if (err) { 5979 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5980 err, group); 5981 continue; 5982 } 5983 ext4_lock_group(sb, group); 5984 list_del(&pa->pa_group_list); 5985 ext4_mb_release_group_pa(&e4b, pa); 5986 ext4_unlock_group(sb, group); 5987 5988 ext4_mb_unload_buddy(&e4b); 5989 list_del(&pa->u.pa_tmp_list); 5990 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5991 } 5992 } 5993 5994 /* 5995 * We have incremented pa_count. So it cannot be freed at this 5996 * point. Also we hold lg_mutex. So no parallel allocation is 5997 * possible from this lg. That means pa_free cannot be updated. 5998 * 5999 * A parallel ext4_mb_discard_group_preallocations is possible. 6000 * which can cause the lg_prealloc_list to be updated. 6001 */ 6002 6003 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 6004 { 6005 int order, added = 0, lg_prealloc_count = 1; 6006 struct super_block *sb = ac->ac_sb; 6007 struct ext4_locality_group *lg = ac->ac_lg; 6008 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 6009 6010 order = fls(pa->pa_free) - 1; 6011 if (order > PREALLOC_TB_SIZE - 1) 6012 /* The max size of hash table is PREALLOC_TB_SIZE */ 6013 order = PREALLOC_TB_SIZE - 1; 6014 /* Add the prealloc space to lg */ 6015 spin_lock(&lg->lg_prealloc_lock); 6016 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 6017 pa_node.lg_list, 6018 lockdep_is_held(&lg->lg_prealloc_lock)) { 6019 spin_lock(&tmp_pa->pa_lock); 6020 if (tmp_pa->pa_deleted) { 6021 spin_unlock(&tmp_pa->pa_lock); 6022 continue; 6023 } 6024 if (!added && pa->pa_free < tmp_pa->pa_free) { 6025 /* Add to the tail of the previous entry */ 6026 list_add_tail_rcu(&pa->pa_node.lg_list, 6027 &tmp_pa->pa_node.lg_list); 6028 added = 1; 6029 /* 6030 * we want to count the total 6031 * number of entries in the list 6032 */ 6033 } 6034 spin_unlock(&tmp_pa->pa_lock); 6035 lg_prealloc_count++; 6036 } 6037 if (!added) 6038 list_add_tail_rcu(&pa->pa_node.lg_list, 6039 &lg->lg_prealloc_list[order]); 6040 spin_unlock(&lg->lg_prealloc_lock); 6041 6042 /* Now trim the list to be not more than 8 elements */ 6043 if (lg_prealloc_count > 8) 6044 ext4_mb_discard_lg_preallocations(sb, lg, 6045 order, lg_prealloc_count); 6046 } 6047 6048 /* 6049 * release all resource we used in allocation 6050 */ 6051 static void ext4_mb_release_context(struct ext4_allocation_context *ac) 6052 { 6053 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 6054 struct ext4_prealloc_space *pa = ac->ac_pa; 6055 if (pa) { 6056 if (pa->pa_type == MB_GROUP_PA) { 6057 /* see comment in ext4_mb_use_group_pa() */ 6058 spin_lock(&pa->pa_lock); 6059 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6060 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6061 pa->pa_free -= ac->ac_b_ex.fe_len; 6062 pa->pa_len -= ac->ac_b_ex.fe_len; 6063 spin_unlock(&pa->pa_lock); 6064 6065 /* 6066 * We want to add the pa to the right bucket. 6067 * Remove it from the list and while adding 6068 * make sure the list to which we are adding 6069 * doesn't grow big. 6070 */ 6071 if (likely(pa->pa_free)) { 6072 spin_lock(pa->pa_node_lock.lg_lock); 6073 list_del_rcu(&pa->pa_node.lg_list); 6074 spin_unlock(pa->pa_node_lock.lg_lock); 6075 ext4_mb_add_n_trim(ac); 6076 } 6077 } 6078 6079 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6080 } 6081 if (ac->ac_bitmap_folio) 6082 folio_put(ac->ac_bitmap_folio); 6083 if (ac->ac_buddy_folio) 6084 folio_put(ac->ac_buddy_folio); 6085 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6086 mutex_unlock(&ac->ac_lg->lg_mutex); 6087 ext4_mb_collect_stats(ac); 6088 } 6089 6090 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6091 { 6092 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6093 int ret; 6094 int freed = 0, busy = 0; 6095 int retry = 0; 6096 6097 trace_ext4_mb_discard_preallocations(sb, needed); 6098 6099 if (needed == 0) 6100 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6101 repeat: 6102 for (i = 0; i < ngroups && needed > 0; i++) { 6103 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6104 freed += ret; 6105 needed -= ret; 6106 cond_resched(); 6107 } 6108 6109 if (needed > 0 && busy && ++retry < 3) { 6110 busy = 0; 6111 goto repeat; 6112 } 6113 6114 return freed; 6115 } 6116 6117 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6118 struct ext4_allocation_context *ac, u64 *seq) 6119 { 6120 int freed; 6121 u64 seq_retry = 0; 6122 bool ret = false; 6123 6124 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6125 if (freed) { 6126 ret = true; 6127 goto out_dbg; 6128 } 6129 seq_retry = ext4_get_discard_pa_seq_sum(); 6130 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6131 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6132 *seq = seq_retry; 6133 ret = true; 6134 } 6135 6136 out_dbg: 6137 mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret)); 6138 return ret; 6139 } 6140 6141 /* 6142 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6143 * linearly starting at the goal block and also excludes the blocks which 6144 * are going to be in use after fast commit replay. 6145 */ 6146 static ext4_fsblk_t 6147 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6148 { 6149 struct buffer_head *bitmap_bh; 6150 struct super_block *sb = ar->inode->i_sb; 6151 struct ext4_sb_info *sbi = EXT4_SB(sb); 6152 ext4_group_t group, nr; 6153 ext4_grpblk_t blkoff; 6154 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6155 ext4_grpblk_t i = 0; 6156 ext4_fsblk_t goal, block; 6157 struct ext4_super_block *es = sbi->s_es; 6158 6159 goal = ar->goal; 6160 if (goal < le32_to_cpu(es->s_first_data_block) || 6161 goal >= ext4_blocks_count(es)) 6162 goal = le32_to_cpu(es->s_first_data_block); 6163 6164 ar->len = 0; 6165 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6166 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6167 bitmap_bh = ext4_read_block_bitmap(sb, group); 6168 if (IS_ERR(bitmap_bh)) { 6169 *errp = PTR_ERR(bitmap_bh); 6170 pr_warn("Failed to read block bitmap\n"); 6171 return 0; 6172 } 6173 6174 while (1) { 6175 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6176 blkoff); 6177 if (i >= max) 6178 break; 6179 if (ext4_fc_replay_check_excluded(sb, 6180 ext4_group_first_block_no(sb, group) + 6181 EXT4_C2B(sbi, i))) { 6182 blkoff = i + 1; 6183 } else 6184 break; 6185 } 6186 brelse(bitmap_bh); 6187 if (i < max) 6188 break; 6189 6190 if (++group >= ext4_get_groups_count(sb)) 6191 group = 0; 6192 6193 blkoff = 0; 6194 } 6195 6196 if (i >= max) { 6197 *errp = -ENOSPC; 6198 return 0; 6199 } 6200 6201 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6202 ext4_mb_mark_bb(sb, block, 1, true); 6203 ar->len = 1; 6204 6205 *errp = 0; 6206 return block; 6207 } 6208 6209 /* 6210 * Main entry point into mballoc to allocate blocks 6211 * it tries to use preallocation first, then falls back 6212 * to usual allocation 6213 */ 6214 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6215 struct ext4_allocation_request *ar, int *errp) 6216 { 6217 struct ext4_allocation_context *ac = NULL; 6218 struct ext4_sb_info *sbi; 6219 struct super_block *sb; 6220 ext4_fsblk_t block = 0; 6221 unsigned int inquota = 0; 6222 unsigned int reserv_clstrs = 0; 6223 int retries = 0; 6224 u64 seq; 6225 6226 might_sleep(); 6227 sb = ar->inode->i_sb; 6228 sbi = EXT4_SB(sb); 6229 6230 trace_ext4_request_blocks(ar); 6231 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6232 return ext4_mb_new_blocks_simple(ar, errp); 6233 6234 /* Allow to use superuser reservation for quota file */ 6235 if (ext4_is_quota_file(ar->inode)) 6236 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6237 6238 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6239 /* Without delayed allocation we need to verify 6240 * there is enough free blocks to do block allocation 6241 * and verify allocation doesn't exceed the quota limits. 6242 */ 6243 while (ar->len && 6244 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6245 6246 /* let others to free the space */ 6247 cond_resched(); 6248 ar->len = ar->len >> 1; 6249 } 6250 if (!ar->len) { 6251 ext4_mb_show_pa(sb); 6252 *errp = -ENOSPC; 6253 return 0; 6254 } 6255 reserv_clstrs = ar->len; 6256 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6257 dquot_alloc_block_nofail(ar->inode, 6258 EXT4_C2B(sbi, ar->len)); 6259 } else { 6260 while (ar->len && 6261 dquot_alloc_block(ar->inode, 6262 EXT4_C2B(sbi, ar->len))) { 6263 6264 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6265 ar->len--; 6266 } 6267 } 6268 inquota = ar->len; 6269 if (ar->len == 0) { 6270 *errp = -EDQUOT; 6271 goto out; 6272 } 6273 } 6274 6275 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6276 if (!ac) { 6277 ar->len = 0; 6278 *errp = -ENOMEM; 6279 goto out; 6280 } 6281 6282 ext4_mb_initialize_context(ac, ar); 6283 6284 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6285 seq = this_cpu_read(discard_pa_seq); 6286 if (!ext4_mb_use_preallocated(ac)) { 6287 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6288 ext4_mb_normalize_request(ac, ar); 6289 6290 *errp = ext4_mb_pa_alloc(ac); 6291 if (*errp) 6292 goto errout; 6293 repeat: 6294 /* allocate space in core */ 6295 *errp = ext4_mb_regular_allocator(ac); 6296 /* 6297 * pa allocated above is added to grp->bb_prealloc_list only 6298 * when we were able to allocate some block i.e. when 6299 * ac->ac_status == AC_STATUS_FOUND. 6300 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6301 * So we have to free this pa here itself. 6302 */ 6303 if (*errp) { 6304 ext4_mb_pa_put_free(ac); 6305 ext4_discard_allocated_blocks(ac); 6306 goto errout; 6307 } 6308 if (ac->ac_status == AC_STATUS_FOUND && 6309 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6310 ext4_mb_pa_put_free(ac); 6311 } 6312 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6313 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6314 if (*errp) { 6315 ext4_discard_allocated_blocks(ac); 6316 goto errout; 6317 } else { 6318 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6319 ar->len = ac->ac_b_ex.fe_len; 6320 } 6321 } else { 6322 if (++retries < 3 && 6323 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6324 goto repeat; 6325 /* 6326 * If block allocation fails then the pa allocated above 6327 * needs to be freed here itself. 6328 */ 6329 ext4_mb_pa_put_free(ac); 6330 *errp = -ENOSPC; 6331 } 6332 6333 if (*errp) { 6334 errout: 6335 ac->ac_b_ex.fe_len = 0; 6336 ar->len = 0; 6337 ext4_mb_show_ac(ac); 6338 } 6339 ext4_mb_release_context(ac); 6340 kmem_cache_free(ext4_ac_cachep, ac); 6341 out: 6342 if (inquota && ar->len < inquota) 6343 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6344 if (!ar->len) { 6345 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6346 /* release all the reserved blocks if non delalloc */ 6347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6348 reserv_clstrs); 6349 } 6350 6351 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6352 6353 return block; 6354 } 6355 6356 /* 6357 * We can merge two free data extents only if the physical blocks 6358 * are contiguous, AND the extents were freed by the same transaction, 6359 * AND the blocks are associated with the same group. 6360 */ 6361 static inline bool 6362 ext4_freed_extents_can_be_merged(struct ext4_free_data *entry1, 6363 struct ext4_free_data *entry2) 6364 { 6365 if (entry1->efd_tid != entry2->efd_tid) 6366 return false; 6367 if (entry1->efd_start_cluster + entry1->efd_count != 6368 entry2->efd_start_cluster) 6369 return false; 6370 if (WARN_ON_ONCE(entry1->efd_group != entry2->efd_group)) 6371 return false; 6372 return true; 6373 } 6374 6375 static inline void 6376 ext4_merge_freed_extents(struct ext4_sb_info *sbi, struct rb_root *root, 6377 struct ext4_free_data *entry1, 6378 struct ext4_free_data *entry2) 6379 { 6380 entry1->efd_count += entry2->efd_count; 6381 spin_lock(&sbi->s_md_lock); 6382 list_del(&entry2->efd_list); 6383 spin_unlock(&sbi->s_md_lock); 6384 rb_erase(&entry2->efd_node, root); 6385 kmem_cache_free(ext4_free_data_cachep, entry2); 6386 } 6387 6388 static inline void 6389 ext4_try_merge_freed_extent_prev(struct ext4_sb_info *sbi, struct rb_root *root, 6390 struct ext4_free_data *entry) 6391 { 6392 struct ext4_free_data *prev; 6393 struct rb_node *node; 6394 6395 node = rb_prev(&entry->efd_node); 6396 if (!node) 6397 return; 6398 6399 prev = rb_entry(node, struct ext4_free_data, efd_node); 6400 if (ext4_freed_extents_can_be_merged(prev, entry)) 6401 ext4_merge_freed_extents(sbi, root, prev, entry); 6402 } 6403 6404 static inline void 6405 ext4_try_merge_freed_extent_next(struct ext4_sb_info *sbi, struct rb_root *root, 6406 struct ext4_free_data *entry) 6407 { 6408 struct ext4_free_data *next; 6409 struct rb_node *node; 6410 6411 node = rb_next(&entry->efd_node); 6412 if (!node) 6413 return; 6414 6415 next = rb_entry(node, struct ext4_free_data, efd_node); 6416 if (ext4_freed_extents_can_be_merged(entry, next)) 6417 ext4_merge_freed_extents(sbi, root, entry, next); 6418 } 6419 6420 static noinline_for_stack void 6421 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6422 struct ext4_free_data *new_entry) 6423 { 6424 ext4_group_t group = e4b->bd_group; 6425 ext4_grpblk_t cluster; 6426 ext4_grpblk_t clusters = new_entry->efd_count; 6427 struct ext4_free_data *entry = NULL; 6428 struct ext4_group_info *db = e4b->bd_info; 6429 struct super_block *sb = e4b->bd_sb; 6430 struct ext4_sb_info *sbi = EXT4_SB(sb); 6431 struct rb_root *root = &db->bb_free_root; 6432 struct rb_node **n = &root->rb_node; 6433 struct rb_node *parent = NULL, *new_node; 6434 6435 BUG_ON(!ext4_handle_valid(handle)); 6436 BUG_ON(e4b->bd_bitmap_folio == NULL); 6437 BUG_ON(e4b->bd_buddy_folio == NULL); 6438 6439 new_node = &new_entry->efd_node; 6440 cluster = new_entry->efd_start_cluster; 6441 6442 if (!*n) { 6443 /* first free block exent. We need to 6444 protect buddy cache from being freed, 6445 * otherwise we'll refresh it from 6446 * on-disk bitmap and lose not-yet-available 6447 * blocks */ 6448 folio_get(e4b->bd_buddy_folio); 6449 folio_get(e4b->bd_bitmap_folio); 6450 } 6451 while (*n) { 6452 parent = *n; 6453 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6454 if (cluster < entry->efd_start_cluster) 6455 n = &(*n)->rb_left; 6456 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6457 n = &(*n)->rb_right; 6458 else { 6459 ext4_grp_locked_error(sb, group, 0, 6460 ext4_group_first_block_no(sb, group) + 6461 EXT4_C2B(sbi, cluster), 6462 "Block already on to-be-freed list"); 6463 kmem_cache_free(ext4_free_data_cachep, new_entry); 6464 return; 6465 } 6466 } 6467 6468 atomic_add(clusters, &sbi->s_mb_free_pending); 6469 if (!entry) 6470 goto insert; 6471 6472 /* Now try to see the extent can be merged to prev and next */ 6473 if (ext4_freed_extents_can_be_merged(new_entry, entry)) { 6474 entry->efd_start_cluster = cluster; 6475 entry->efd_count += new_entry->efd_count; 6476 kmem_cache_free(ext4_free_data_cachep, new_entry); 6477 ext4_try_merge_freed_extent_prev(sbi, root, entry); 6478 return; 6479 } 6480 if (ext4_freed_extents_can_be_merged(entry, new_entry)) { 6481 entry->efd_count += new_entry->efd_count; 6482 kmem_cache_free(ext4_free_data_cachep, new_entry); 6483 ext4_try_merge_freed_extent_next(sbi, root, entry); 6484 return; 6485 } 6486 insert: 6487 rb_link_node(new_node, parent, n); 6488 rb_insert_color(new_node, root); 6489 6490 spin_lock(&sbi->s_md_lock); 6491 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]); 6492 spin_unlock(&sbi->s_md_lock); 6493 } 6494 6495 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6496 unsigned long count) 6497 { 6498 struct super_block *sb = inode->i_sb; 6499 ext4_group_t group; 6500 ext4_grpblk_t blkoff; 6501 6502 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6503 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count, 6504 EXT4_MB_BITMAP_MARKED_CHECK | 6505 EXT4_MB_SYNC_UPDATE, 6506 NULL); 6507 } 6508 6509 /** 6510 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6511 * Used by ext4_free_blocks() 6512 * @handle: handle for this transaction 6513 * @inode: inode 6514 * @block: starting physical block to be freed 6515 * @count: number of blocks to be freed 6516 * @flags: flags used by ext4_free_blocks 6517 */ 6518 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6519 ext4_fsblk_t block, unsigned long count, 6520 int flags) 6521 { 6522 struct super_block *sb = inode->i_sb; 6523 struct ext4_group_info *grp; 6524 unsigned int overflow; 6525 ext4_grpblk_t bit; 6526 ext4_group_t block_group; 6527 struct ext4_sb_info *sbi; 6528 struct ext4_buddy e4b; 6529 unsigned int count_clusters; 6530 int err = 0; 6531 int mark_flags = 0; 6532 ext4_grpblk_t changed; 6533 6534 sbi = EXT4_SB(sb); 6535 6536 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6537 !ext4_inode_block_valid(inode, block, count)) { 6538 ext4_error(sb, "Freeing blocks in system zone - " 6539 "Block = %llu, count = %lu", block, count); 6540 /* err = 0. ext4_std_error should be a no op */ 6541 goto error_out; 6542 } 6543 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6544 6545 do_more: 6546 overflow = 0; 6547 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6548 6549 grp = ext4_get_group_info(sb, block_group); 6550 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6551 return; 6552 6553 /* 6554 * Check to see if we are freeing blocks across a group 6555 * boundary. 6556 */ 6557 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6558 overflow = EXT4_C2B(sbi, bit) + count - 6559 EXT4_BLOCKS_PER_GROUP(sb); 6560 count -= overflow; 6561 /* The range changed so it's no longer validated */ 6562 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6563 } 6564 count_clusters = EXT4_NUM_B2C(sbi, count); 6565 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6566 6567 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6568 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6569 GFP_NOFS|__GFP_NOFAIL); 6570 if (err) 6571 goto error_out; 6572 6573 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6574 !ext4_inode_block_valid(inode, block, count)) { 6575 ext4_error(sb, "Freeing blocks in system zone - " 6576 "Block = %llu, count = %lu", block, count); 6577 /* err = 0. ext4_std_error should be a no op */ 6578 goto error_clean; 6579 } 6580 6581 #ifdef AGGRESSIVE_CHECK 6582 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; 6583 #endif 6584 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6585 count_clusters, mark_flags, &changed); 6586 6587 6588 if (err && changed == 0) 6589 goto error_clean; 6590 6591 #ifdef AGGRESSIVE_CHECK 6592 BUG_ON(changed != count_clusters); 6593 #endif 6594 6595 /* 6596 * We need to make sure we don't reuse the freed block until after the 6597 * transaction is committed. We make an exception if the inode is to be 6598 * written in writeback mode since writeback mode has weak data 6599 * consistency guarantees. 6600 */ 6601 if (ext4_handle_valid(handle) && 6602 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6603 !ext4_should_writeback_data(inode))) { 6604 struct ext4_free_data *new_entry; 6605 /* 6606 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6607 * to fail. 6608 */ 6609 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6610 GFP_NOFS|__GFP_NOFAIL); 6611 new_entry->efd_start_cluster = bit; 6612 new_entry->efd_group = block_group; 6613 new_entry->efd_count = count_clusters; 6614 new_entry->efd_tid = handle->h_transaction->t_tid; 6615 6616 ext4_lock_group(sb, block_group); 6617 ext4_mb_free_metadata(handle, &e4b, new_entry); 6618 } else { 6619 if (test_opt(sb, DISCARD)) { 6620 err = ext4_issue_discard(sb, block_group, bit, 6621 count_clusters); 6622 /* 6623 * Ignore EOPNOTSUPP error. This is consistent with 6624 * what happens when using journal. 6625 */ 6626 if (err == -EOPNOTSUPP) 6627 err = 0; 6628 if (err) 6629 ext4_msg(sb, KERN_WARNING, "discard request in" 6630 " group:%u block:%d count:%lu failed" 6631 " with %d", block_group, bit, count, 6632 err); 6633 } 6634 6635 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6636 6637 ext4_lock_group(sb, block_group); 6638 mb_free_blocks(inode, &e4b, bit, count_clusters); 6639 } 6640 6641 ext4_unlock_group(sb, block_group); 6642 6643 /* 6644 * on a bigalloc file system, defer the s_freeclusters_counter 6645 * update to the caller (ext4_remove_space and friends) so they 6646 * can determine if a cluster freed here should be rereserved 6647 */ 6648 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6649 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6650 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6651 percpu_counter_add(&sbi->s_freeclusters_counter, 6652 count_clusters); 6653 } 6654 6655 if (overflow && !err) { 6656 block += count; 6657 count = overflow; 6658 ext4_mb_unload_buddy(&e4b); 6659 /* The range changed so it's no longer validated */ 6660 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6661 goto do_more; 6662 } 6663 6664 error_clean: 6665 ext4_mb_unload_buddy(&e4b); 6666 error_out: 6667 ext4_std_error(sb, err); 6668 } 6669 6670 /** 6671 * ext4_free_blocks() -- Free given blocks and update quota 6672 * @handle: handle for this transaction 6673 * @inode: inode 6674 * @bh: optional buffer of the block to be freed 6675 * @block: starting physical block to be freed 6676 * @count: number of blocks to be freed 6677 * @flags: flags used by ext4_free_blocks 6678 */ 6679 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6680 struct buffer_head *bh, ext4_fsblk_t block, 6681 unsigned long count, int flags) 6682 { 6683 struct super_block *sb = inode->i_sb; 6684 unsigned int overflow; 6685 struct ext4_sb_info *sbi; 6686 6687 sbi = EXT4_SB(sb); 6688 6689 if (bh) { 6690 if (block) 6691 BUG_ON(block != bh->b_blocknr); 6692 else 6693 block = bh->b_blocknr; 6694 } 6695 6696 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6697 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6698 return; 6699 } 6700 6701 might_sleep(); 6702 6703 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6704 !ext4_inode_block_valid(inode, block, count)) { 6705 ext4_error(sb, "Freeing blocks not in datazone - " 6706 "block = %llu, count = %lu", block, count); 6707 return; 6708 } 6709 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6710 6711 ext4_debug("freeing block %llu\n", block); 6712 trace_ext4_free_blocks(inode, block, count, flags); 6713 6714 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6715 BUG_ON(count > 1); 6716 6717 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6718 inode, bh, block); 6719 } 6720 6721 /* 6722 * If the extent to be freed does not begin on a cluster 6723 * boundary, we need to deal with partial clusters at the 6724 * beginning and end of the extent. Normally we will free 6725 * blocks at the beginning or the end unless we are explicitly 6726 * requested to avoid doing so. 6727 */ 6728 overflow = EXT4_PBLK_COFF(sbi, block); 6729 if (overflow) { 6730 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6731 overflow = sbi->s_cluster_ratio - overflow; 6732 block += overflow; 6733 if (count > overflow) 6734 count -= overflow; 6735 else 6736 return; 6737 } else { 6738 block -= overflow; 6739 count += overflow; 6740 } 6741 /* The range changed so it's no longer validated */ 6742 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6743 } 6744 overflow = EXT4_LBLK_COFF(sbi, count); 6745 if (overflow) { 6746 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6747 if (count > overflow) 6748 count -= overflow; 6749 else 6750 return; 6751 } else 6752 count += sbi->s_cluster_ratio - overflow; 6753 /* The range changed so it's no longer validated */ 6754 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6755 } 6756 6757 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6758 int i; 6759 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6760 6761 for (i = 0; i < count; i++) { 6762 cond_resched(); 6763 if (is_metadata) 6764 bh = sb_find_get_block_nonatomic(inode->i_sb, 6765 block + i); 6766 ext4_forget(handle, is_metadata, inode, bh, block + i); 6767 } 6768 } 6769 6770 ext4_mb_clear_bb(handle, inode, block, count, flags); 6771 } 6772 6773 /** 6774 * ext4_group_add_blocks() -- Add given blocks to an existing group 6775 * @handle: handle to this transaction 6776 * @sb: super block 6777 * @block: start physical block to add to the block group 6778 * @count: number of blocks to free 6779 * 6780 * This marks the blocks as free in the bitmap and buddy. 6781 */ 6782 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6783 ext4_fsblk_t block, unsigned long count) 6784 { 6785 ext4_group_t block_group; 6786 ext4_grpblk_t bit; 6787 struct ext4_sb_info *sbi = EXT4_SB(sb); 6788 struct ext4_buddy e4b; 6789 int err = 0; 6790 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6791 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6792 unsigned long cluster_count = last_cluster - first_cluster + 1; 6793 ext4_grpblk_t changed; 6794 6795 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6796 6797 if (cluster_count == 0) 6798 return 0; 6799 6800 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6801 /* 6802 * Check to see if we are freeing blocks across a group 6803 * boundary. 6804 */ 6805 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6806 ext4_warning(sb, "too many blocks added to group %u", 6807 block_group); 6808 err = -EINVAL; 6809 goto error_out; 6810 } 6811 6812 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6813 if (err) 6814 goto error_out; 6815 6816 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6817 ext4_error(sb, "Adding blocks in system zones - " 6818 "Block = %llu, count = %lu", 6819 block, count); 6820 err = -EINVAL; 6821 goto error_clean; 6822 } 6823 6824 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6825 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, 6826 &changed); 6827 if (err && changed == 0) 6828 goto error_clean; 6829 6830 if (changed != cluster_count) 6831 ext4_error(sb, "bit already cleared in group %u", block_group); 6832 6833 ext4_lock_group(sb, block_group); 6834 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6835 ext4_unlock_group(sb, block_group); 6836 percpu_counter_add(&sbi->s_freeclusters_counter, 6837 changed); 6838 6839 error_clean: 6840 ext4_mb_unload_buddy(&e4b); 6841 error_out: 6842 ext4_std_error(sb, err); 6843 return err; 6844 } 6845 6846 /** 6847 * ext4_trim_extent -- function to TRIM one single free extent in the group 6848 * @sb: super block for the file system 6849 * @start: starting block of the free extent in the alloc. group 6850 * @count: number of blocks to TRIM 6851 * @e4b: ext4 buddy for the group 6852 * 6853 * Trim "count" blocks starting at "start" in the "group". To assure that no 6854 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6855 * be called with under the group lock. 6856 */ 6857 static int ext4_trim_extent(struct super_block *sb, 6858 int start, int count, struct ext4_buddy *e4b) 6859 __releases(bitlock) 6860 __acquires(bitlock) 6861 { 6862 struct ext4_free_extent ex; 6863 ext4_group_t group = e4b->bd_group; 6864 int ret = 0; 6865 6866 trace_ext4_trim_extent(sb, group, start, count); 6867 6868 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6869 6870 ex.fe_start = start; 6871 ex.fe_group = group; 6872 ex.fe_len = count; 6873 6874 /* 6875 * Mark blocks used, so no one can reuse them while 6876 * being trimmed. 6877 */ 6878 mb_mark_used(e4b, &ex); 6879 ext4_unlock_group(sb, group); 6880 ret = ext4_issue_discard(sb, group, start, count); 6881 ext4_lock_group(sb, group); 6882 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6883 return ret; 6884 } 6885 6886 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6887 ext4_group_t grp) 6888 { 6889 unsigned long nr_clusters_in_group; 6890 6891 if (grp < (ext4_get_groups_count(sb) - 1)) 6892 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6893 else 6894 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6895 ext4_group_first_block_no(sb, grp)) 6896 >> EXT4_CLUSTER_BITS(sb); 6897 6898 return nr_clusters_in_group - 1; 6899 } 6900 6901 static bool ext4_trim_interrupted(void) 6902 { 6903 return fatal_signal_pending(current) || freezing(current); 6904 } 6905 6906 static int ext4_try_to_trim_range(struct super_block *sb, 6907 struct ext4_buddy *e4b, ext4_grpblk_t start, 6908 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6909 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6910 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6911 { 6912 ext4_grpblk_t next, count, free_count, last, origin_start; 6913 bool set_trimmed = false; 6914 void *bitmap; 6915 6916 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 6917 return 0; 6918 6919 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6920 bitmap = e4b->bd_bitmap; 6921 if (start == 0 && max >= last) 6922 set_trimmed = true; 6923 origin_start = start; 6924 start = max(e4b->bd_info->bb_first_free, start); 6925 count = 0; 6926 free_count = 0; 6927 6928 while (start <= max) { 6929 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6930 if (start > max) 6931 break; 6932 6933 next = mb_find_next_bit(bitmap, last + 1, start); 6934 if (origin_start == 0 && next >= last) 6935 set_trimmed = true; 6936 6937 if ((next - start) >= minblocks) { 6938 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6939 6940 if (ret && ret != -EOPNOTSUPP) 6941 return count; 6942 count += next - start; 6943 } 6944 free_count += next - start; 6945 start = next + 1; 6946 6947 if (ext4_trim_interrupted()) 6948 return count; 6949 6950 if (need_resched()) { 6951 ext4_unlock_group(sb, e4b->bd_group); 6952 cond_resched(); 6953 ext4_lock_group(sb, e4b->bd_group); 6954 } 6955 6956 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6957 break; 6958 } 6959 6960 if (set_trimmed) 6961 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6962 6963 return count; 6964 } 6965 6966 /** 6967 * ext4_trim_all_free -- function to trim all free space in alloc. group 6968 * @sb: super block for file system 6969 * @group: group to be trimmed 6970 * @start: first group block to examine 6971 * @max: last group block to examine 6972 * @minblocks: minimum extent block count 6973 * 6974 * ext4_trim_all_free walks through group's block bitmap searching for free 6975 * extents. When the free extent is found, mark it as used in group buddy 6976 * bitmap. Then issue a TRIM command on this extent and free the extent in 6977 * the group buddy bitmap. 6978 */ 6979 static ext4_grpblk_t 6980 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6981 ext4_grpblk_t start, ext4_grpblk_t max, 6982 ext4_grpblk_t minblocks) 6983 { 6984 struct ext4_buddy e4b; 6985 int ret; 6986 6987 trace_ext4_trim_all_free(sb, group, start, max); 6988 6989 ret = ext4_mb_load_buddy(sb, group, &e4b); 6990 if (ret) { 6991 ext4_warning(sb, "Error %d loading buddy information for %u", 6992 ret, group); 6993 return ret; 6994 } 6995 6996 ext4_lock_group(sb, group); 6997 6998 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6999 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 7000 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7001 else 7002 ret = 0; 7003 7004 ext4_unlock_group(sb, group); 7005 ext4_mb_unload_buddy(&e4b); 7006 7007 ext4_debug("trimmed %d blocks in the group %d\n", 7008 ret, group); 7009 7010 return ret; 7011 } 7012 7013 /** 7014 * ext4_trim_fs() -- trim ioctl handle function 7015 * @sb: superblock for filesystem 7016 * @range: fstrim_range structure 7017 * 7018 * start: First Byte to trim 7019 * len: number of Bytes to trim from start 7020 * minlen: minimum extent length in Bytes 7021 * ext4_trim_fs goes through all allocation groups containing Bytes from 7022 * start to start+len. For each such a group ext4_trim_all_free function 7023 * is invoked to trim all free space. 7024 */ 7025 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7026 { 7027 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7028 struct ext4_group_info *grp; 7029 ext4_group_t group, first_group, last_group; 7030 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7031 uint64_t start, end, minlen, trimmed = 0; 7032 ext4_fsblk_t first_data_blk = 7033 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7034 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7035 int ret = 0; 7036 7037 start = range->start >> sb->s_blocksize_bits; 7038 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7039 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7040 range->minlen >> sb->s_blocksize_bits); 7041 7042 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7043 start >= max_blks || 7044 range->len < sb->s_blocksize) 7045 return -EINVAL; 7046 /* No point to try to trim less than discard granularity */ 7047 if (range->minlen < discard_granularity) { 7048 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7049 discard_granularity >> sb->s_blocksize_bits); 7050 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7051 goto out; 7052 } 7053 if (end >= max_blks - 1) 7054 end = max_blks - 1; 7055 if (end <= first_data_blk) 7056 goto out; 7057 if (start < first_data_blk) 7058 start = first_data_blk; 7059 7060 /* Determine first and last group to examine based on start and end */ 7061 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7062 &first_group, &first_cluster); 7063 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7064 &last_group, &last_cluster); 7065 7066 /* end now represents the last cluster to discard in this group */ 7067 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7068 7069 for (group = first_group; group <= last_group; group++) { 7070 if (ext4_trim_interrupted()) 7071 break; 7072 grp = ext4_get_group_info(sb, group); 7073 if (!grp) 7074 continue; 7075 /* We only do this if the grp has never been initialized */ 7076 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7077 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7078 if (ret) 7079 break; 7080 } 7081 7082 /* 7083 * For all the groups except the last one, last cluster will 7084 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7085 * change it for the last group, note that last_cluster is 7086 * already computed earlier by ext4_get_group_no_and_offset() 7087 */ 7088 if (group == last_group) 7089 end = last_cluster; 7090 if (grp->bb_free >= minlen) { 7091 cnt = ext4_trim_all_free(sb, group, first_cluster, 7092 end, minlen); 7093 if (cnt < 0) { 7094 ret = cnt; 7095 break; 7096 } 7097 trimmed += cnt; 7098 } 7099 7100 /* 7101 * For every group except the first one, we are sure 7102 * that the first cluster to discard will be cluster #0. 7103 */ 7104 first_cluster = 0; 7105 } 7106 7107 if (!ret) 7108 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7109 7110 out: 7111 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7112 return ret; 7113 } 7114 7115 /* Iterate all the free extents in the group. */ 7116 int 7117 ext4_mballoc_query_range( 7118 struct super_block *sb, 7119 ext4_group_t group, 7120 ext4_grpblk_t first, 7121 ext4_grpblk_t end, 7122 ext4_mballoc_query_range_fn meta_formatter, 7123 ext4_mballoc_query_range_fn formatter, 7124 void *priv) 7125 { 7126 void *bitmap; 7127 ext4_grpblk_t start, next; 7128 struct ext4_buddy e4b; 7129 int error; 7130 7131 error = ext4_mb_load_buddy(sb, group, &e4b); 7132 if (error) 7133 return error; 7134 bitmap = e4b.bd_bitmap; 7135 7136 ext4_lock_group(sb, group); 7137 7138 start = max(e4b.bd_info->bb_first_free, first); 7139 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7140 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7141 if (meta_formatter && start != first) { 7142 if (start > end) 7143 start = end; 7144 ext4_unlock_group(sb, group); 7145 error = meta_formatter(sb, group, first, start - first, 7146 priv); 7147 if (error) 7148 goto out_unload; 7149 ext4_lock_group(sb, group); 7150 } 7151 while (start <= end) { 7152 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7153 if (start > end) 7154 break; 7155 next = mb_find_next_bit(bitmap, end + 1, start); 7156 7157 ext4_unlock_group(sb, group); 7158 error = formatter(sb, group, start, next - start, priv); 7159 if (error) 7160 goto out_unload; 7161 ext4_lock_group(sb, group); 7162 7163 start = next + 1; 7164 } 7165 7166 ext4_unlock_group(sb, group); 7167 out_unload: 7168 ext4_mb_unload_buddy(&e4b); 7169 7170 return error; 7171 } 7172 7173 #ifdef CONFIG_EXT4_KUNIT_TESTS 7174 #include "mballoc-test.c" 7175 #endif 7176