1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 131 * structures in two data structures: 132 * 133 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 134 * 135 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 136 * 137 * This is an array of lists where the index in the array represents the 138 * largest free order in the buddy bitmap of the participating group infos of 139 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 140 * number of buddy bitmap orders possible) number of lists. Group-infos are 141 * placed in appropriate lists. 142 * 143 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 144 * 145 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 146 * 147 * This is an array of lists where in the i-th list there are groups with 148 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 149 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 150 * Note that we don't bother with a special list for completely empty groups 151 * so we only have MB_NUM_ORDERS(sb) lists. 152 * 153 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 154 * structures to decide the order in which groups are to be traversed for 155 * fulfilling an allocation request. 156 * 157 * At CR = 0, we look for groups which have the largest_free_order >= the order 158 * of the request. We directly look at the largest free order list in the data 159 * structure (1) above where largest_free_order = order of the request. If that 160 * list is empty, we look at remaining list in the increasing order of 161 * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. 162 * 163 * At CR = 1, we only consider groups where average fragment size > request 164 * size. So, we lookup a group which has average fragment size just above or 165 * equal to request size using our average fragment size group lists (data 166 * structure 2) in O(1) time. 167 * 168 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 169 * linear order which requires O(N) search time for each CR 0 and CR 1 phase. 170 * 171 * The regular allocator (using the buddy cache) supports a few tunables. 172 * 173 * /sys/fs/ext4/<partition>/mb_min_to_scan 174 * /sys/fs/ext4/<partition>/mb_max_to_scan 175 * /sys/fs/ext4/<partition>/mb_order2_req 176 * /sys/fs/ext4/<partition>/mb_linear_limit 177 * 178 * The regular allocator uses buddy scan only if the request len is power of 179 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 180 * value of s_mb_order2_reqs can be tuned via 181 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 182 * stripe size (sbi->s_stripe), we try to search for contiguous block in 183 * stripe size. This should result in better allocation on RAID setups. If 184 * not, we search in the specific group using bitmap for best extents. The 185 * tunable min_to_scan and max_to_scan control the behaviour here. 186 * min_to_scan indicate how long the mballoc __must__ look for a best 187 * extent and max_to_scan indicates how long the mballoc __can__ look for a 188 * best extent in the found extents. Searching for the blocks starts with 189 * the group specified as the goal value in allocation context via 190 * ac_g_ex. Each group is first checked based on the criteria whether it 191 * can be used for allocation. ext4_mb_good_group explains how the groups are 192 * checked. 193 * 194 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 195 * get traversed linearly. That may result in subsequent allocations being not 196 * close to each other. And so, the underlying device may get filled up in a 197 * non-linear fashion. While that may not matter on non-rotational devices, for 198 * rotational devices that may result in higher seek times. "mb_linear_limit" 199 * tells mballoc how many groups mballoc should search linearly before 200 * performing consulting above data structures for more efficient lookups. For 201 * non rotational devices, this value defaults to 0 and for rotational devices 202 * this is set to MB_DEFAULT_LINEAR_LIMIT. 203 * 204 * Both the prealloc space are getting populated as above. So for the first 205 * request we will hit the buddy cache which will result in this prealloc 206 * space getting filled. The prealloc space is then later used for the 207 * subsequent request. 208 */ 209 210 /* 211 * mballoc operates on the following data: 212 * - on-disk bitmap 213 * - in-core buddy (actually includes buddy and bitmap) 214 * - preallocation descriptors (PAs) 215 * 216 * there are two types of preallocations: 217 * - inode 218 * assiged to specific inode and can be used for this inode only. 219 * it describes part of inode's space preallocated to specific 220 * physical blocks. any block from that preallocated can be used 221 * independent. the descriptor just tracks number of blocks left 222 * unused. so, before taking some block from descriptor, one must 223 * make sure corresponded logical block isn't allocated yet. this 224 * also means that freeing any block within descriptor's range 225 * must discard all preallocated blocks. 226 * - locality group 227 * assigned to specific locality group which does not translate to 228 * permanent set of inodes: inode can join and leave group. space 229 * from this type of preallocation can be used for any inode. thus 230 * it's consumed from the beginning to the end. 231 * 232 * relation between them can be expressed as: 233 * in-core buddy = on-disk bitmap + preallocation descriptors 234 * 235 * this mean blocks mballoc considers used are: 236 * - allocated blocks (persistent) 237 * - preallocated blocks (non-persistent) 238 * 239 * consistency in mballoc world means that at any time a block is either 240 * free or used in ALL structures. notice: "any time" should not be read 241 * literally -- time is discrete and delimited by locks. 242 * 243 * to keep it simple, we don't use block numbers, instead we count number of 244 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 245 * 246 * all operations can be expressed as: 247 * - init buddy: buddy = on-disk + PAs 248 * - new PA: buddy += N; PA = N 249 * - use inode PA: on-disk += N; PA -= N 250 * - discard inode PA buddy -= on-disk - PA; PA = 0 251 * - use locality group PA on-disk += N; PA -= N 252 * - discard locality group PA buddy -= PA; PA = 0 253 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 254 * is used in real operation because we can't know actual used 255 * bits from PA, only from on-disk bitmap 256 * 257 * if we follow this strict logic, then all operations above should be atomic. 258 * given some of them can block, we'd have to use something like semaphores 259 * killing performance on high-end SMP hardware. let's try to relax it using 260 * the following knowledge: 261 * 1) if buddy is referenced, it's already initialized 262 * 2) while block is used in buddy and the buddy is referenced, 263 * nobody can re-allocate that block 264 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 265 * bit set and PA claims same block, it's OK. IOW, one can set bit in 266 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 267 * block 268 * 269 * so, now we're building a concurrency table: 270 * - init buddy vs. 271 * - new PA 272 * blocks for PA are allocated in the buddy, buddy must be referenced 273 * until PA is linked to allocation group to avoid concurrent buddy init 274 * - use inode PA 275 * we need to make sure that either on-disk bitmap or PA has uptodate data 276 * given (3) we care that PA-=N operation doesn't interfere with init 277 * - discard inode PA 278 * the simplest way would be to have buddy initialized by the discard 279 * - use locality group PA 280 * again PA-=N must be serialized with init 281 * - discard locality group PA 282 * the simplest way would be to have buddy initialized by the discard 283 * - new PA vs. 284 * - use inode PA 285 * i_data_sem serializes them 286 * - discard inode PA 287 * discard process must wait until PA isn't used by another process 288 * - use locality group PA 289 * some mutex should serialize them 290 * - discard locality group PA 291 * discard process must wait until PA isn't used by another process 292 * - use inode PA 293 * - use inode PA 294 * i_data_sem or another mutex should serializes them 295 * - discard inode PA 296 * discard process must wait until PA isn't used by another process 297 * - use locality group PA 298 * nothing wrong here -- they're different PAs covering different blocks 299 * - discard locality group PA 300 * discard process must wait until PA isn't used by another process 301 * 302 * now we're ready to make few consequences: 303 * - PA is referenced and while it is no discard is possible 304 * - PA is referenced until block isn't marked in on-disk bitmap 305 * - PA changes only after on-disk bitmap 306 * - discard must not compete with init. either init is done before 307 * any discard or they're serialized somehow 308 * - buddy init as sum of on-disk bitmap and PAs is done atomically 309 * 310 * a special case when we've used PA to emptiness. no need to modify buddy 311 * in this case, but we should care about concurrent init 312 * 313 */ 314 315 /* 316 * Logic in few words: 317 * 318 * - allocation: 319 * load group 320 * find blocks 321 * mark bits in on-disk bitmap 322 * release group 323 * 324 * - use preallocation: 325 * find proper PA (per-inode or group) 326 * load group 327 * mark bits in on-disk bitmap 328 * release group 329 * release PA 330 * 331 * - free: 332 * load group 333 * mark bits in on-disk bitmap 334 * release group 335 * 336 * - discard preallocations in group: 337 * mark PAs deleted 338 * move them onto local list 339 * load on-disk bitmap 340 * load group 341 * remove PA from object (inode or locality group) 342 * mark free blocks in-core 343 * 344 * - discard inode's preallocations: 345 */ 346 347 /* 348 * Locking rules 349 * 350 * Locks: 351 * - bitlock on a group (group) 352 * - object (inode/locality) (object) 353 * - per-pa lock (pa) 354 * - cr0 lists lock (cr0) 355 * - cr1 tree lock (cr1) 356 * 357 * Paths: 358 * - new pa 359 * object 360 * group 361 * 362 * - find and use pa: 363 * pa 364 * 365 * - release consumed pa: 366 * pa 367 * group 368 * object 369 * 370 * - generate in-core bitmap: 371 * group 372 * pa 373 * 374 * - discard all for given object (inode, locality group): 375 * object 376 * pa 377 * group 378 * 379 * - discard all for given group: 380 * group 381 * pa 382 * group 383 * object 384 * 385 * - allocation path (ext4_mb_regular_allocator) 386 * group 387 * cr0/cr1 388 */ 389 static struct kmem_cache *ext4_pspace_cachep; 390 static struct kmem_cache *ext4_ac_cachep; 391 static struct kmem_cache *ext4_free_data_cachep; 392 393 /* We create slab caches for groupinfo data structures based on the 394 * superblock block size. There will be one per mounted filesystem for 395 * each unique s_blocksize_bits */ 396 #define NR_GRPINFO_CACHES 8 397 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 398 399 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 400 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 401 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 402 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 403 }; 404 405 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 406 ext4_group_t group); 407 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 408 ext4_group_t group); 409 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 410 411 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 412 ext4_group_t group, int cr); 413 414 static int ext4_try_to_trim_range(struct super_block *sb, 415 struct ext4_buddy *e4b, ext4_grpblk_t start, 416 ext4_grpblk_t max, ext4_grpblk_t minblocks); 417 418 /* 419 * The algorithm using this percpu seq counter goes below: 420 * 1. We sample the percpu discard_pa_seq counter before trying for block 421 * allocation in ext4_mb_new_blocks(). 422 * 2. We increment this percpu discard_pa_seq counter when we either allocate 423 * or free these blocks i.e. while marking those blocks as used/free in 424 * mb_mark_used()/mb_free_blocks(). 425 * 3. We also increment this percpu seq counter when we successfully identify 426 * that the bb_prealloc_list is not empty and hence proceed for discarding 427 * of those PAs inside ext4_mb_discard_group_preallocations(). 428 * 429 * Now to make sure that the regular fast path of block allocation is not 430 * affected, as a small optimization we only sample the percpu seq counter 431 * on that cpu. Only when the block allocation fails and when freed blocks 432 * found were 0, that is when we sample percpu seq counter for all cpus using 433 * below function ext4_get_discard_pa_seq_sum(). This happens after making 434 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 435 */ 436 static DEFINE_PER_CPU(u64, discard_pa_seq); 437 static inline u64 ext4_get_discard_pa_seq_sum(void) 438 { 439 int __cpu; 440 u64 __seq = 0; 441 442 for_each_possible_cpu(__cpu) 443 __seq += per_cpu(discard_pa_seq, __cpu); 444 return __seq; 445 } 446 447 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 448 { 449 #if BITS_PER_LONG == 64 450 *bit += ((unsigned long) addr & 7UL) << 3; 451 addr = (void *) ((unsigned long) addr & ~7UL); 452 #elif BITS_PER_LONG == 32 453 *bit += ((unsigned long) addr & 3UL) << 3; 454 addr = (void *) ((unsigned long) addr & ~3UL); 455 #else 456 #error "how many bits you are?!" 457 #endif 458 return addr; 459 } 460 461 static inline int mb_test_bit(int bit, void *addr) 462 { 463 /* 464 * ext4_test_bit on architecture like powerpc 465 * needs unsigned long aligned address 466 */ 467 addr = mb_correct_addr_and_bit(&bit, addr); 468 return ext4_test_bit(bit, addr); 469 } 470 471 static inline void mb_set_bit(int bit, void *addr) 472 { 473 addr = mb_correct_addr_and_bit(&bit, addr); 474 ext4_set_bit(bit, addr); 475 } 476 477 static inline void mb_clear_bit(int bit, void *addr) 478 { 479 addr = mb_correct_addr_and_bit(&bit, addr); 480 ext4_clear_bit(bit, addr); 481 } 482 483 static inline int mb_test_and_clear_bit(int bit, void *addr) 484 { 485 addr = mb_correct_addr_and_bit(&bit, addr); 486 return ext4_test_and_clear_bit(bit, addr); 487 } 488 489 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 490 { 491 int fix = 0, ret, tmpmax; 492 addr = mb_correct_addr_and_bit(&fix, addr); 493 tmpmax = max + fix; 494 start += fix; 495 496 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 497 if (ret > max) 498 return max; 499 return ret; 500 } 501 502 static inline int mb_find_next_bit(void *addr, int max, int start) 503 { 504 int fix = 0, ret, tmpmax; 505 addr = mb_correct_addr_and_bit(&fix, addr); 506 tmpmax = max + fix; 507 start += fix; 508 509 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 510 if (ret > max) 511 return max; 512 return ret; 513 } 514 515 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 516 { 517 char *bb; 518 519 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 520 BUG_ON(max == NULL); 521 522 if (order > e4b->bd_blkbits + 1) { 523 *max = 0; 524 return NULL; 525 } 526 527 /* at order 0 we see each particular block */ 528 if (order == 0) { 529 *max = 1 << (e4b->bd_blkbits + 3); 530 return e4b->bd_bitmap; 531 } 532 533 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 534 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 535 536 return bb; 537 } 538 539 #ifdef DOUBLE_CHECK 540 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 541 int first, int count) 542 { 543 int i; 544 struct super_block *sb = e4b->bd_sb; 545 546 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 547 return; 548 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 549 for (i = 0; i < count; i++) { 550 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 551 ext4_fsblk_t blocknr; 552 553 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 554 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 555 ext4_grp_locked_error(sb, e4b->bd_group, 556 inode ? inode->i_ino : 0, 557 blocknr, 558 "freeing block already freed " 559 "(bit %u)", 560 first + i); 561 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 562 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 563 } 564 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 565 } 566 } 567 568 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 569 { 570 int i; 571 572 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 573 return; 574 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 575 for (i = 0; i < count; i++) { 576 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 577 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 578 } 579 } 580 581 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 582 { 583 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 584 return; 585 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 586 unsigned char *b1, *b2; 587 int i; 588 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 589 b2 = (unsigned char *) bitmap; 590 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 591 if (b1[i] != b2[i]) { 592 ext4_msg(e4b->bd_sb, KERN_ERR, 593 "corruption in group %u " 594 "at byte %u(%u): %x in copy != %x " 595 "on disk/prealloc", 596 e4b->bd_group, i, i * 8, b1[i], b2[i]); 597 BUG(); 598 } 599 } 600 } 601 } 602 603 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 604 struct ext4_group_info *grp, ext4_group_t group) 605 { 606 struct buffer_head *bh; 607 608 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 609 if (!grp->bb_bitmap) 610 return; 611 612 bh = ext4_read_block_bitmap(sb, group); 613 if (IS_ERR_OR_NULL(bh)) { 614 kfree(grp->bb_bitmap); 615 grp->bb_bitmap = NULL; 616 return; 617 } 618 619 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 620 put_bh(bh); 621 } 622 623 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 624 { 625 kfree(grp->bb_bitmap); 626 } 627 628 #else 629 static inline void mb_free_blocks_double(struct inode *inode, 630 struct ext4_buddy *e4b, int first, int count) 631 { 632 return; 633 } 634 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 635 int first, int count) 636 { 637 return; 638 } 639 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 640 { 641 return; 642 } 643 644 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 645 struct ext4_group_info *grp, ext4_group_t group) 646 { 647 return; 648 } 649 650 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 651 { 652 return; 653 } 654 #endif 655 656 #ifdef AGGRESSIVE_CHECK 657 658 #define MB_CHECK_ASSERT(assert) \ 659 do { \ 660 if (!(assert)) { \ 661 printk(KERN_EMERG \ 662 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 663 function, file, line, # assert); \ 664 BUG(); \ 665 } \ 666 } while (0) 667 668 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 669 const char *function, int line) 670 { 671 struct super_block *sb = e4b->bd_sb; 672 int order = e4b->bd_blkbits + 1; 673 int max; 674 int max2; 675 int i; 676 int j; 677 int k; 678 int count; 679 struct ext4_group_info *grp; 680 int fragments = 0; 681 int fstart; 682 struct list_head *cur; 683 void *buddy; 684 void *buddy2; 685 686 if (e4b->bd_info->bb_check_counter++ % 10) 687 return 0; 688 689 while (order > 1) { 690 buddy = mb_find_buddy(e4b, order, &max); 691 MB_CHECK_ASSERT(buddy); 692 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 693 MB_CHECK_ASSERT(buddy2); 694 MB_CHECK_ASSERT(buddy != buddy2); 695 MB_CHECK_ASSERT(max * 2 == max2); 696 697 count = 0; 698 for (i = 0; i < max; i++) { 699 700 if (mb_test_bit(i, buddy)) { 701 /* only single bit in buddy2 may be 0 */ 702 if (!mb_test_bit(i << 1, buddy2)) { 703 MB_CHECK_ASSERT( 704 mb_test_bit((i<<1)+1, buddy2)); 705 } 706 continue; 707 } 708 709 /* both bits in buddy2 must be 1 */ 710 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 711 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 712 713 for (j = 0; j < (1 << order); j++) { 714 k = (i * (1 << order)) + j; 715 MB_CHECK_ASSERT( 716 !mb_test_bit(k, e4b->bd_bitmap)); 717 } 718 count++; 719 } 720 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 721 order--; 722 } 723 724 fstart = -1; 725 buddy = mb_find_buddy(e4b, 0, &max); 726 for (i = 0; i < max; i++) { 727 if (!mb_test_bit(i, buddy)) { 728 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 729 if (fstart == -1) { 730 fragments++; 731 fstart = i; 732 } 733 continue; 734 } 735 fstart = -1; 736 /* check used bits only */ 737 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 738 buddy2 = mb_find_buddy(e4b, j, &max2); 739 k = i >> j; 740 MB_CHECK_ASSERT(k < max2); 741 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 742 } 743 } 744 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 745 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 746 747 grp = ext4_get_group_info(sb, e4b->bd_group); 748 list_for_each(cur, &grp->bb_prealloc_list) { 749 ext4_group_t groupnr; 750 struct ext4_prealloc_space *pa; 751 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 752 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 753 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 754 for (i = 0; i < pa->pa_len; i++) 755 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 756 } 757 return 0; 758 } 759 #undef MB_CHECK_ASSERT 760 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 761 __FILE__, __func__, __LINE__) 762 #else 763 #define mb_check_buddy(e4b) 764 #endif 765 766 /* 767 * Divide blocks started from @first with length @len into 768 * smaller chunks with power of 2 blocks. 769 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 770 * then increase bb_counters[] for corresponded chunk size. 771 */ 772 static void ext4_mb_mark_free_simple(struct super_block *sb, 773 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 774 struct ext4_group_info *grp) 775 { 776 struct ext4_sb_info *sbi = EXT4_SB(sb); 777 ext4_grpblk_t min; 778 ext4_grpblk_t max; 779 ext4_grpblk_t chunk; 780 unsigned int border; 781 782 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 783 784 border = 2 << sb->s_blocksize_bits; 785 786 while (len > 0) { 787 /* find how many blocks can be covered since this position */ 788 max = ffs(first | border) - 1; 789 790 /* find how many blocks of power 2 we need to mark */ 791 min = fls(len) - 1; 792 793 if (max < min) 794 min = max; 795 chunk = 1 << min; 796 797 /* mark multiblock chunks only */ 798 grp->bb_counters[min]++; 799 if (min > 0) 800 mb_clear_bit(first >> min, 801 buddy + sbi->s_mb_offsets[min]); 802 803 len -= chunk; 804 first += chunk; 805 } 806 } 807 808 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 809 { 810 int order; 811 812 /* 813 * We don't bother with a special lists groups with only 1 block free 814 * extents and for completely empty groups. 815 */ 816 order = fls(len) - 2; 817 if (order < 0) 818 return 0; 819 if (order == MB_NUM_ORDERS(sb)) 820 order--; 821 return order; 822 } 823 824 /* Move group to appropriate avg_fragment_size list */ 825 static void 826 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 827 { 828 struct ext4_sb_info *sbi = EXT4_SB(sb); 829 int new_order; 830 831 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 832 return; 833 834 new_order = mb_avg_fragment_size_order(sb, 835 grp->bb_free / grp->bb_fragments); 836 if (new_order == grp->bb_avg_fragment_size_order) 837 return; 838 839 if (grp->bb_avg_fragment_size_order != -1) { 840 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 841 grp->bb_avg_fragment_size_order]); 842 list_del(&grp->bb_avg_fragment_size_node); 843 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 844 grp->bb_avg_fragment_size_order]); 845 } 846 grp->bb_avg_fragment_size_order = new_order; 847 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 848 grp->bb_avg_fragment_size_order]); 849 list_add_tail(&grp->bb_avg_fragment_size_node, 850 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 851 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 852 grp->bb_avg_fragment_size_order]); 853 } 854 855 /* 856 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 857 * cr level needs an update. 858 */ 859 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, 860 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 861 { 862 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 863 struct ext4_group_info *iter, *grp; 864 int i; 865 866 if (ac->ac_status == AC_STATUS_FOUND) 867 return; 868 869 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED)) 870 atomic_inc(&sbi->s_bal_cr0_bad_suggestions); 871 872 grp = NULL; 873 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 874 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 875 continue; 876 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 877 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 878 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 879 continue; 880 } 881 grp = NULL; 882 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 883 bb_largest_free_order_node) { 884 if (sbi->s_mb_stats) 885 atomic64_inc(&sbi->s_bal_cX_groups_considered[0]); 886 if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { 887 grp = iter; 888 break; 889 } 890 } 891 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 892 if (grp) 893 break; 894 } 895 896 if (!grp) { 897 /* Increment cr and search again */ 898 *new_cr = 1; 899 } else { 900 *group = grp->bb_group; 901 ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED; 902 } 903 } 904 905 /* 906 * Choose next group by traversing average fragment size list of suitable 907 * order. Updates *new_cr if cr level needs an update. 908 */ 909 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, 910 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 911 { 912 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 913 struct ext4_group_info *grp, *iter; 914 int i; 915 916 if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) { 917 if (sbi->s_mb_stats) 918 atomic_inc(&sbi->s_bal_cr1_bad_suggestions); 919 } 920 921 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 922 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 923 if (list_empty(&sbi->s_mb_avg_fragment_size[i])) 924 continue; 925 read_lock(&sbi->s_mb_avg_fragment_size_locks[i]); 926 if (list_empty(&sbi->s_mb_avg_fragment_size[i])) { 927 read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]); 928 continue; 929 } 930 grp = NULL; 931 list_for_each_entry(iter, &sbi->s_mb_avg_fragment_size[i], 932 bb_avg_fragment_size_node) { 933 if (sbi->s_mb_stats) 934 atomic64_inc(&sbi->s_bal_cX_groups_considered[1]); 935 if (likely(ext4_mb_good_group(ac, iter->bb_group, 1))) { 936 grp = iter; 937 break; 938 } 939 } 940 read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]); 941 if (grp) 942 break; 943 } 944 945 if (grp) { 946 *group = grp->bb_group; 947 ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; 948 } else { 949 *new_cr = 2; 950 } 951 } 952 953 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 954 { 955 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 956 return 0; 957 if (ac->ac_criteria >= 2) 958 return 0; 959 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 960 return 0; 961 return 1; 962 } 963 964 /* 965 * Return next linear group for allocation. If linear traversal should not be 966 * performed, this function just returns the same group 967 */ 968 static int 969 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups) 970 { 971 if (!should_optimize_scan(ac)) 972 goto inc_and_return; 973 974 if (ac->ac_groups_linear_remaining) { 975 ac->ac_groups_linear_remaining--; 976 goto inc_and_return; 977 } 978 979 return group; 980 inc_and_return: 981 /* 982 * Artificially restricted ngroups for non-extent 983 * files makes group > ngroups possible on first loop. 984 */ 985 return group + 1 >= ngroups ? 0 : group + 1; 986 } 987 988 /* 989 * ext4_mb_choose_next_group: choose next group for allocation. 990 * 991 * @ac Allocation Context 992 * @new_cr This is an output parameter. If the there is no good group 993 * available at current CR level, this field is updated to indicate 994 * the new cr level that should be used. 995 * @group This is an input / output parameter. As an input it indicates the 996 * next group that the allocator intends to use for allocation. As 997 * output, this field indicates the next group that should be used as 998 * determined by the optimization functions. 999 * @ngroups Total number of groups 1000 */ 1001 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1002 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1003 { 1004 *new_cr = ac->ac_criteria; 1005 1006 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1007 *group = next_linear_group(ac, *group, ngroups); 1008 return; 1009 } 1010 1011 if (*new_cr == 0) { 1012 ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); 1013 } else if (*new_cr == 1) { 1014 ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); 1015 } else { 1016 /* 1017 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1018 * bb_free. But until that happens, we should never come here. 1019 */ 1020 WARN_ON(1); 1021 } 1022 } 1023 1024 /* 1025 * Cache the order of the largest free extent we have available in this block 1026 * group. 1027 */ 1028 static void 1029 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1030 { 1031 struct ext4_sb_info *sbi = EXT4_SB(sb); 1032 int i; 1033 1034 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1035 if (grp->bb_counters[i] > 0) 1036 break; 1037 /* No need to move between order lists? */ 1038 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1039 i == grp->bb_largest_free_order) { 1040 grp->bb_largest_free_order = i; 1041 return; 1042 } 1043 1044 if (grp->bb_largest_free_order >= 0) { 1045 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1046 grp->bb_largest_free_order]); 1047 list_del_init(&grp->bb_largest_free_order_node); 1048 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1049 grp->bb_largest_free_order]); 1050 } 1051 grp->bb_largest_free_order = i; 1052 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1053 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1054 grp->bb_largest_free_order]); 1055 list_add_tail(&grp->bb_largest_free_order_node, 1056 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1057 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1058 grp->bb_largest_free_order]); 1059 } 1060 } 1061 1062 static noinline_for_stack 1063 void ext4_mb_generate_buddy(struct super_block *sb, 1064 void *buddy, void *bitmap, ext4_group_t group) 1065 { 1066 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1067 struct ext4_sb_info *sbi = EXT4_SB(sb); 1068 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1069 ext4_grpblk_t i = 0; 1070 ext4_grpblk_t first; 1071 ext4_grpblk_t len; 1072 unsigned free = 0; 1073 unsigned fragments = 0; 1074 unsigned long long period = get_cycles(); 1075 1076 /* initialize buddy from bitmap which is aggregation 1077 * of on-disk bitmap and preallocations */ 1078 i = mb_find_next_zero_bit(bitmap, max, 0); 1079 grp->bb_first_free = i; 1080 while (i < max) { 1081 fragments++; 1082 first = i; 1083 i = mb_find_next_bit(bitmap, max, i); 1084 len = i - first; 1085 free += len; 1086 if (len > 1) 1087 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1088 else 1089 grp->bb_counters[0]++; 1090 if (i < max) 1091 i = mb_find_next_zero_bit(bitmap, max, i); 1092 } 1093 grp->bb_fragments = fragments; 1094 1095 if (free != grp->bb_free) { 1096 ext4_grp_locked_error(sb, group, 0, 0, 1097 "block bitmap and bg descriptor " 1098 "inconsistent: %u vs %u free clusters", 1099 free, grp->bb_free); 1100 /* 1101 * If we intend to continue, we consider group descriptor 1102 * corrupt and update bb_free using bitmap value 1103 */ 1104 grp->bb_free = free; 1105 ext4_mark_group_bitmap_corrupted(sb, group, 1106 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1107 } 1108 mb_set_largest_free_order(sb, grp); 1109 mb_update_avg_fragment_size(sb, grp); 1110 1111 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1112 1113 period = get_cycles() - period; 1114 atomic_inc(&sbi->s_mb_buddies_generated); 1115 atomic64_add(period, &sbi->s_mb_generation_time); 1116 } 1117 1118 /* The buddy information is attached the buddy cache inode 1119 * for convenience. The information regarding each group 1120 * is loaded via ext4_mb_load_buddy. The information involve 1121 * block bitmap and buddy information. The information are 1122 * stored in the inode as 1123 * 1124 * { page } 1125 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1126 * 1127 * 1128 * one block each for bitmap and buddy information. 1129 * So for each group we take up 2 blocks. A page can 1130 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1131 * So it can have information regarding groups_per_page which 1132 * is blocks_per_page/2 1133 * 1134 * Locking note: This routine takes the block group lock of all groups 1135 * for this page; do not hold this lock when calling this routine! 1136 */ 1137 1138 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1139 { 1140 ext4_group_t ngroups; 1141 int blocksize; 1142 int blocks_per_page; 1143 int groups_per_page; 1144 int err = 0; 1145 int i; 1146 ext4_group_t first_group, group; 1147 int first_block; 1148 struct super_block *sb; 1149 struct buffer_head *bhs; 1150 struct buffer_head **bh = NULL; 1151 struct inode *inode; 1152 char *data; 1153 char *bitmap; 1154 struct ext4_group_info *grinfo; 1155 1156 inode = page->mapping->host; 1157 sb = inode->i_sb; 1158 ngroups = ext4_get_groups_count(sb); 1159 blocksize = i_blocksize(inode); 1160 blocks_per_page = PAGE_SIZE / blocksize; 1161 1162 mb_debug(sb, "init page %lu\n", page->index); 1163 1164 groups_per_page = blocks_per_page >> 1; 1165 if (groups_per_page == 0) 1166 groups_per_page = 1; 1167 1168 /* allocate buffer_heads to read bitmaps */ 1169 if (groups_per_page > 1) { 1170 i = sizeof(struct buffer_head *) * groups_per_page; 1171 bh = kzalloc(i, gfp); 1172 if (bh == NULL) { 1173 err = -ENOMEM; 1174 goto out; 1175 } 1176 } else 1177 bh = &bhs; 1178 1179 first_group = page->index * blocks_per_page / 2; 1180 1181 /* read all groups the page covers into the cache */ 1182 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1183 if (group >= ngroups) 1184 break; 1185 1186 grinfo = ext4_get_group_info(sb, group); 1187 /* 1188 * If page is uptodate then we came here after online resize 1189 * which added some new uninitialized group info structs, so 1190 * we must skip all initialized uptodate buddies on the page, 1191 * which may be currently in use by an allocating task. 1192 */ 1193 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1194 bh[i] = NULL; 1195 continue; 1196 } 1197 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1198 if (IS_ERR(bh[i])) { 1199 err = PTR_ERR(bh[i]); 1200 bh[i] = NULL; 1201 goto out; 1202 } 1203 mb_debug(sb, "read bitmap for group %u\n", group); 1204 } 1205 1206 /* wait for I/O completion */ 1207 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1208 int err2; 1209 1210 if (!bh[i]) 1211 continue; 1212 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1213 if (!err) 1214 err = err2; 1215 } 1216 1217 first_block = page->index * blocks_per_page; 1218 for (i = 0; i < blocks_per_page; i++) { 1219 group = (first_block + i) >> 1; 1220 if (group >= ngroups) 1221 break; 1222 1223 if (!bh[group - first_group]) 1224 /* skip initialized uptodate buddy */ 1225 continue; 1226 1227 if (!buffer_verified(bh[group - first_group])) 1228 /* Skip faulty bitmaps */ 1229 continue; 1230 err = 0; 1231 1232 /* 1233 * data carry information regarding this 1234 * particular group in the format specified 1235 * above 1236 * 1237 */ 1238 data = page_address(page) + (i * blocksize); 1239 bitmap = bh[group - first_group]->b_data; 1240 1241 /* 1242 * We place the buddy block and bitmap block 1243 * close together 1244 */ 1245 if ((first_block + i) & 1) { 1246 /* this is block of buddy */ 1247 BUG_ON(incore == NULL); 1248 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1249 group, page->index, i * blocksize); 1250 trace_ext4_mb_buddy_bitmap_load(sb, group); 1251 grinfo = ext4_get_group_info(sb, group); 1252 grinfo->bb_fragments = 0; 1253 memset(grinfo->bb_counters, 0, 1254 sizeof(*grinfo->bb_counters) * 1255 (MB_NUM_ORDERS(sb))); 1256 /* 1257 * incore got set to the group block bitmap below 1258 */ 1259 ext4_lock_group(sb, group); 1260 /* init the buddy */ 1261 memset(data, 0xff, blocksize); 1262 ext4_mb_generate_buddy(sb, data, incore, group); 1263 ext4_unlock_group(sb, group); 1264 incore = NULL; 1265 } else { 1266 /* this is block of bitmap */ 1267 BUG_ON(incore != NULL); 1268 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1269 group, page->index, i * blocksize); 1270 trace_ext4_mb_bitmap_load(sb, group); 1271 1272 /* see comments in ext4_mb_put_pa() */ 1273 ext4_lock_group(sb, group); 1274 memcpy(data, bitmap, blocksize); 1275 1276 /* mark all preallocated blks used in in-core bitmap */ 1277 ext4_mb_generate_from_pa(sb, data, group); 1278 ext4_mb_generate_from_freelist(sb, data, group); 1279 ext4_unlock_group(sb, group); 1280 1281 /* set incore so that the buddy information can be 1282 * generated using this 1283 */ 1284 incore = data; 1285 } 1286 } 1287 SetPageUptodate(page); 1288 1289 out: 1290 if (bh) { 1291 for (i = 0; i < groups_per_page; i++) 1292 brelse(bh[i]); 1293 if (bh != &bhs) 1294 kfree(bh); 1295 } 1296 return err; 1297 } 1298 1299 /* 1300 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1301 * on the same buddy page doesn't happen whild holding the buddy page lock. 1302 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1303 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1304 */ 1305 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1306 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1307 { 1308 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1309 int block, pnum, poff; 1310 int blocks_per_page; 1311 struct page *page; 1312 1313 e4b->bd_buddy_page = NULL; 1314 e4b->bd_bitmap_page = NULL; 1315 1316 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1317 /* 1318 * the buddy cache inode stores the block bitmap 1319 * and buddy information in consecutive blocks. 1320 * So for each group we need two blocks. 1321 */ 1322 block = group * 2; 1323 pnum = block / blocks_per_page; 1324 poff = block % blocks_per_page; 1325 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1326 if (!page) 1327 return -ENOMEM; 1328 BUG_ON(page->mapping != inode->i_mapping); 1329 e4b->bd_bitmap_page = page; 1330 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1331 1332 if (blocks_per_page >= 2) { 1333 /* buddy and bitmap are on the same page */ 1334 return 0; 1335 } 1336 1337 block++; 1338 pnum = block / blocks_per_page; 1339 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1340 if (!page) 1341 return -ENOMEM; 1342 BUG_ON(page->mapping != inode->i_mapping); 1343 e4b->bd_buddy_page = page; 1344 return 0; 1345 } 1346 1347 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1348 { 1349 if (e4b->bd_bitmap_page) { 1350 unlock_page(e4b->bd_bitmap_page); 1351 put_page(e4b->bd_bitmap_page); 1352 } 1353 if (e4b->bd_buddy_page) { 1354 unlock_page(e4b->bd_buddy_page); 1355 put_page(e4b->bd_buddy_page); 1356 } 1357 } 1358 1359 /* 1360 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1361 * block group lock of all groups for this page; do not hold the BG lock when 1362 * calling this routine! 1363 */ 1364 static noinline_for_stack 1365 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1366 { 1367 1368 struct ext4_group_info *this_grp; 1369 struct ext4_buddy e4b; 1370 struct page *page; 1371 int ret = 0; 1372 1373 might_sleep(); 1374 mb_debug(sb, "init group %u\n", group); 1375 this_grp = ext4_get_group_info(sb, group); 1376 /* 1377 * This ensures that we don't reinit the buddy cache 1378 * page which map to the group from which we are already 1379 * allocating. If we are looking at the buddy cache we would 1380 * have taken a reference using ext4_mb_load_buddy and that 1381 * would have pinned buddy page to page cache. 1382 * The call to ext4_mb_get_buddy_page_lock will mark the 1383 * page accessed. 1384 */ 1385 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1386 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1387 /* 1388 * somebody initialized the group 1389 * return without doing anything 1390 */ 1391 goto err; 1392 } 1393 1394 page = e4b.bd_bitmap_page; 1395 ret = ext4_mb_init_cache(page, NULL, gfp); 1396 if (ret) 1397 goto err; 1398 if (!PageUptodate(page)) { 1399 ret = -EIO; 1400 goto err; 1401 } 1402 1403 if (e4b.bd_buddy_page == NULL) { 1404 /* 1405 * If both the bitmap and buddy are in 1406 * the same page we don't need to force 1407 * init the buddy 1408 */ 1409 ret = 0; 1410 goto err; 1411 } 1412 /* init buddy cache */ 1413 page = e4b.bd_buddy_page; 1414 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1415 if (ret) 1416 goto err; 1417 if (!PageUptodate(page)) { 1418 ret = -EIO; 1419 goto err; 1420 } 1421 err: 1422 ext4_mb_put_buddy_page_lock(&e4b); 1423 return ret; 1424 } 1425 1426 /* 1427 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1428 * block group lock of all groups for this page; do not hold the BG lock when 1429 * calling this routine! 1430 */ 1431 static noinline_for_stack int 1432 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1433 struct ext4_buddy *e4b, gfp_t gfp) 1434 { 1435 int blocks_per_page; 1436 int block; 1437 int pnum; 1438 int poff; 1439 struct page *page; 1440 int ret; 1441 struct ext4_group_info *grp; 1442 struct ext4_sb_info *sbi = EXT4_SB(sb); 1443 struct inode *inode = sbi->s_buddy_cache; 1444 1445 might_sleep(); 1446 mb_debug(sb, "load group %u\n", group); 1447 1448 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1449 grp = ext4_get_group_info(sb, group); 1450 1451 e4b->bd_blkbits = sb->s_blocksize_bits; 1452 e4b->bd_info = grp; 1453 e4b->bd_sb = sb; 1454 e4b->bd_group = group; 1455 e4b->bd_buddy_page = NULL; 1456 e4b->bd_bitmap_page = NULL; 1457 1458 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1459 /* 1460 * we need full data about the group 1461 * to make a good selection 1462 */ 1463 ret = ext4_mb_init_group(sb, group, gfp); 1464 if (ret) 1465 return ret; 1466 } 1467 1468 /* 1469 * the buddy cache inode stores the block bitmap 1470 * and buddy information in consecutive blocks. 1471 * So for each group we need two blocks. 1472 */ 1473 block = group * 2; 1474 pnum = block / blocks_per_page; 1475 poff = block % blocks_per_page; 1476 1477 /* we could use find_or_create_page(), but it locks page 1478 * what we'd like to avoid in fast path ... */ 1479 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1480 if (page == NULL || !PageUptodate(page)) { 1481 if (page) 1482 /* 1483 * drop the page reference and try 1484 * to get the page with lock. If we 1485 * are not uptodate that implies 1486 * somebody just created the page but 1487 * is yet to initialize the same. So 1488 * wait for it to initialize. 1489 */ 1490 put_page(page); 1491 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1492 if (page) { 1493 BUG_ON(page->mapping != inode->i_mapping); 1494 if (!PageUptodate(page)) { 1495 ret = ext4_mb_init_cache(page, NULL, gfp); 1496 if (ret) { 1497 unlock_page(page); 1498 goto err; 1499 } 1500 mb_cmp_bitmaps(e4b, page_address(page) + 1501 (poff * sb->s_blocksize)); 1502 } 1503 unlock_page(page); 1504 } 1505 } 1506 if (page == NULL) { 1507 ret = -ENOMEM; 1508 goto err; 1509 } 1510 if (!PageUptodate(page)) { 1511 ret = -EIO; 1512 goto err; 1513 } 1514 1515 /* Pages marked accessed already */ 1516 e4b->bd_bitmap_page = page; 1517 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1518 1519 block++; 1520 pnum = block / blocks_per_page; 1521 poff = block % blocks_per_page; 1522 1523 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1524 if (page == NULL || !PageUptodate(page)) { 1525 if (page) 1526 put_page(page); 1527 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1528 if (page) { 1529 BUG_ON(page->mapping != inode->i_mapping); 1530 if (!PageUptodate(page)) { 1531 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1532 gfp); 1533 if (ret) { 1534 unlock_page(page); 1535 goto err; 1536 } 1537 } 1538 unlock_page(page); 1539 } 1540 } 1541 if (page == NULL) { 1542 ret = -ENOMEM; 1543 goto err; 1544 } 1545 if (!PageUptodate(page)) { 1546 ret = -EIO; 1547 goto err; 1548 } 1549 1550 /* Pages marked accessed already */ 1551 e4b->bd_buddy_page = page; 1552 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1553 1554 return 0; 1555 1556 err: 1557 if (page) 1558 put_page(page); 1559 if (e4b->bd_bitmap_page) 1560 put_page(e4b->bd_bitmap_page); 1561 if (e4b->bd_buddy_page) 1562 put_page(e4b->bd_buddy_page); 1563 e4b->bd_buddy = NULL; 1564 e4b->bd_bitmap = NULL; 1565 return ret; 1566 } 1567 1568 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1569 struct ext4_buddy *e4b) 1570 { 1571 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1572 } 1573 1574 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1575 { 1576 if (e4b->bd_bitmap_page) 1577 put_page(e4b->bd_bitmap_page); 1578 if (e4b->bd_buddy_page) 1579 put_page(e4b->bd_buddy_page); 1580 } 1581 1582 1583 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1584 { 1585 int order = 1, max; 1586 void *bb; 1587 1588 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1589 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1590 1591 while (order <= e4b->bd_blkbits + 1) { 1592 bb = mb_find_buddy(e4b, order, &max); 1593 if (!mb_test_bit(block >> order, bb)) { 1594 /* this block is part of buddy of order 'order' */ 1595 return order; 1596 } 1597 order++; 1598 } 1599 return 0; 1600 } 1601 1602 static void mb_clear_bits(void *bm, int cur, int len) 1603 { 1604 __u32 *addr; 1605 1606 len = cur + len; 1607 while (cur < len) { 1608 if ((cur & 31) == 0 && (len - cur) >= 32) { 1609 /* fast path: clear whole word at once */ 1610 addr = bm + (cur >> 3); 1611 *addr = 0; 1612 cur += 32; 1613 continue; 1614 } 1615 mb_clear_bit(cur, bm); 1616 cur++; 1617 } 1618 } 1619 1620 /* clear bits in given range 1621 * will return first found zero bit if any, -1 otherwise 1622 */ 1623 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1624 { 1625 __u32 *addr; 1626 int zero_bit = -1; 1627 1628 len = cur + len; 1629 while (cur < len) { 1630 if ((cur & 31) == 0 && (len - cur) >= 32) { 1631 /* fast path: clear whole word at once */ 1632 addr = bm + (cur >> 3); 1633 if (*addr != (__u32)(-1) && zero_bit == -1) 1634 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1635 *addr = 0; 1636 cur += 32; 1637 continue; 1638 } 1639 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1640 zero_bit = cur; 1641 cur++; 1642 } 1643 1644 return zero_bit; 1645 } 1646 1647 void mb_set_bits(void *bm, int cur, int len) 1648 { 1649 __u32 *addr; 1650 1651 len = cur + len; 1652 while (cur < len) { 1653 if ((cur & 31) == 0 && (len - cur) >= 32) { 1654 /* fast path: set whole word at once */ 1655 addr = bm + (cur >> 3); 1656 *addr = 0xffffffff; 1657 cur += 32; 1658 continue; 1659 } 1660 mb_set_bit(cur, bm); 1661 cur++; 1662 } 1663 } 1664 1665 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1666 { 1667 if (mb_test_bit(*bit + side, bitmap)) { 1668 mb_clear_bit(*bit, bitmap); 1669 (*bit) -= side; 1670 return 1; 1671 } 1672 else { 1673 (*bit) += side; 1674 mb_set_bit(*bit, bitmap); 1675 return -1; 1676 } 1677 } 1678 1679 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1680 { 1681 int max; 1682 int order = 1; 1683 void *buddy = mb_find_buddy(e4b, order, &max); 1684 1685 while (buddy) { 1686 void *buddy2; 1687 1688 /* Bits in range [first; last] are known to be set since 1689 * corresponding blocks were allocated. Bits in range 1690 * (first; last) will stay set because they form buddies on 1691 * upper layer. We just deal with borders if they don't 1692 * align with upper layer and then go up. 1693 * Releasing entire group is all about clearing 1694 * single bit of highest order buddy. 1695 */ 1696 1697 /* Example: 1698 * --------------------------------- 1699 * | 1 | 1 | 1 | 1 | 1700 * --------------------------------- 1701 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1702 * --------------------------------- 1703 * 0 1 2 3 4 5 6 7 1704 * \_____________________/ 1705 * 1706 * Neither [1] nor [6] is aligned to above layer. 1707 * Left neighbour [0] is free, so mark it busy, 1708 * decrease bb_counters and extend range to 1709 * [0; 6] 1710 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1711 * mark [6] free, increase bb_counters and shrink range to 1712 * [0; 5]. 1713 * Then shift range to [0; 2], go up and do the same. 1714 */ 1715 1716 1717 if (first & 1) 1718 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1719 if (!(last & 1)) 1720 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1721 if (first > last) 1722 break; 1723 order++; 1724 1725 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1726 mb_clear_bits(buddy, first, last - first + 1); 1727 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1728 break; 1729 } 1730 first >>= 1; 1731 last >>= 1; 1732 buddy = buddy2; 1733 } 1734 } 1735 1736 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1737 int first, int count) 1738 { 1739 int left_is_free = 0; 1740 int right_is_free = 0; 1741 int block; 1742 int last = first + count - 1; 1743 struct super_block *sb = e4b->bd_sb; 1744 1745 if (WARN_ON(count == 0)) 1746 return; 1747 BUG_ON(last >= (sb->s_blocksize << 3)); 1748 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1749 /* Don't bother if the block group is corrupt. */ 1750 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1751 return; 1752 1753 mb_check_buddy(e4b); 1754 mb_free_blocks_double(inode, e4b, first, count); 1755 1756 this_cpu_inc(discard_pa_seq); 1757 e4b->bd_info->bb_free += count; 1758 if (first < e4b->bd_info->bb_first_free) 1759 e4b->bd_info->bb_first_free = first; 1760 1761 /* access memory sequentially: check left neighbour, 1762 * clear range and then check right neighbour 1763 */ 1764 if (first != 0) 1765 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1766 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1767 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1768 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1769 1770 if (unlikely(block != -1)) { 1771 struct ext4_sb_info *sbi = EXT4_SB(sb); 1772 ext4_fsblk_t blocknr; 1773 1774 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1775 blocknr += EXT4_C2B(sbi, block); 1776 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1777 ext4_grp_locked_error(sb, e4b->bd_group, 1778 inode ? inode->i_ino : 0, 1779 blocknr, 1780 "freeing already freed block (bit %u); block bitmap corrupt.", 1781 block); 1782 ext4_mark_group_bitmap_corrupted( 1783 sb, e4b->bd_group, 1784 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1785 } 1786 goto done; 1787 } 1788 1789 /* let's maintain fragments counter */ 1790 if (left_is_free && right_is_free) 1791 e4b->bd_info->bb_fragments--; 1792 else if (!left_is_free && !right_is_free) 1793 e4b->bd_info->bb_fragments++; 1794 1795 /* buddy[0] == bd_bitmap is a special case, so handle 1796 * it right away and let mb_buddy_mark_free stay free of 1797 * zero order checks. 1798 * Check if neighbours are to be coaleasced, 1799 * adjust bitmap bb_counters and borders appropriately. 1800 */ 1801 if (first & 1) { 1802 first += !left_is_free; 1803 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1804 } 1805 if (!(last & 1)) { 1806 last -= !right_is_free; 1807 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1808 } 1809 1810 if (first <= last) 1811 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1812 1813 done: 1814 mb_set_largest_free_order(sb, e4b->bd_info); 1815 mb_update_avg_fragment_size(sb, e4b->bd_info); 1816 mb_check_buddy(e4b); 1817 } 1818 1819 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1820 int needed, struct ext4_free_extent *ex) 1821 { 1822 int next = block; 1823 int max, order; 1824 void *buddy; 1825 1826 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1827 BUG_ON(ex == NULL); 1828 1829 buddy = mb_find_buddy(e4b, 0, &max); 1830 BUG_ON(buddy == NULL); 1831 BUG_ON(block >= max); 1832 if (mb_test_bit(block, buddy)) { 1833 ex->fe_len = 0; 1834 ex->fe_start = 0; 1835 ex->fe_group = 0; 1836 return 0; 1837 } 1838 1839 /* find actual order */ 1840 order = mb_find_order_for_block(e4b, block); 1841 block = block >> order; 1842 1843 ex->fe_len = 1 << order; 1844 ex->fe_start = block << order; 1845 ex->fe_group = e4b->bd_group; 1846 1847 /* calc difference from given start */ 1848 next = next - ex->fe_start; 1849 ex->fe_len -= next; 1850 ex->fe_start += next; 1851 1852 while (needed > ex->fe_len && 1853 mb_find_buddy(e4b, order, &max)) { 1854 1855 if (block + 1 >= max) 1856 break; 1857 1858 next = (block + 1) * (1 << order); 1859 if (mb_test_bit(next, e4b->bd_bitmap)) 1860 break; 1861 1862 order = mb_find_order_for_block(e4b, next); 1863 1864 block = next >> order; 1865 ex->fe_len += 1 << order; 1866 } 1867 1868 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1869 /* Should never happen! (but apparently sometimes does?!?) */ 1870 WARN_ON(1); 1871 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 1872 "corruption or bug in mb_find_extent " 1873 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1874 block, order, needed, ex->fe_group, ex->fe_start, 1875 ex->fe_len, ex->fe_logical); 1876 ex->fe_len = 0; 1877 ex->fe_start = 0; 1878 ex->fe_group = 0; 1879 } 1880 return ex->fe_len; 1881 } 1882 1883 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1884 { 1885 int ord; 1886 int mlen = 0; 1887 int max = 0; 1888 int cur; 1889 int start = ex->fe_start; 1890 int len = ex->fe_len; 1891 unsigned ret = 0; 1892 int len0 = len; 1893 void *buddy; 1894 bool split = false; 1895 1896 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1897 BUG_ON(e4b->bd_group != ex->fe_group); 1898 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1899 mb_check_buddy(e4b); 1900 mb_mark_used_double(e4b, start, len); 1901 1902 this_cpu_inc(discard_pa_seq); 1903 e4b->bd_info->bb_free -= len; 1904 if (e4b->bd_info->bb_first_free == start) 1905 e4b->bd_info->bb_first_free += len; 1906 1907 /* let's maintain fragments counter */ 1908 if (start != 0) 1909 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1910 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1911 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1912 if (mlen && max) 1913 e4b->bd_info->bb_fragments++; 1914 else if (!mlen && !max) 1915 e4b->bd_info->bb_fragments--; 1916 1917 /* let's maintain buddy itself */ 1918 while (len) { 1919 if (!split) 1920 ord = mb_find_order_for_block(e4b, start); 1921 1922 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1923 /* the whole chunk may be allocated at once! */ 1924 mlen = 1 << ord; 1925 if (!split) 1926 buddy = mb_find_buddy(e4b, ord, &max); 1927 else 1928 split = false; 1929 BUG_ON((start >> ord) >= max); 1930 mb_set_bit(start >> ord, buddy); 1931 e4b->bd_info->bb_counters[ord]--; 1932 start += mlen; 1933 len -= mlen; 1934 BUG_ON(len < 0); 1935 continue; 1936 } 1937 1938 /* store for history */ 1939 if (ret == 0) 1940 ret = len | (ord << 16); 1941 1942 /* we have to split large buddy */ 1943 BUG_ON(ord <= 0); 1944 buddy = mb_find_buddy(e4b, ord, &max); 1945 mb_set_bit(start >> ord, buddy); 1946 e4b->bd_info->bb_counters[ord]--; 1947 1948 ord--; 1949 cur = (start >> ord) & ~1U; 1950 buddy = mb_find_buddy(e4b, ord, &max); 1951 mb_clear_bit(cur, buddy); 1952 mb_clear_bit(cur + 1, buddy); 1953 e4b->bd_info->bb_counters[ord]++; 1954 e4b->bd_info->bb_counters[ord]++; 1955 split = true; 1956 } 1957 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1958 1959 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 1960 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1961 mb_check_buddy(e4b); 1962 1963 return ret; 1964 } 1965 1966 /* 1967 * Must be called under group lock! 1968 */ 1969 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1970 struct ext4_buddy *e4b) 1971 { 1972 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1973 int ret; 1974 1975 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1976 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1977 1978 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1979 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1980 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1981 1982 /* preallocation can change ac_b_ex, thus we store actually 1983 * allocated blocks for history */ 1984 ac->ac_f_ex = ac->ac_b_ex; 1985 1986 ac->ac_status = AC_STATUS_FOUND; 1987 ac->ac_tail = ret & 0xffff; 1988 ac->ac_buddy = ret >> 16; 1989 1990 /* 1991 * take the page reference. We want the page to be pinned 1992 * so that we don't get a ext4_mb_init_cache_call for this 1993 * group until we update the bitmap. That would mean we 1994 * double allocate blocks. The reference is dropped 1995 * in ext4_mb_release_context 1996 */ 1997 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1998 get_page(ac->ac_bitmap_page); 1999 ac->ac_buddy_page = e4b->bd_buddy_page; 2000 get_page(ac->ac_buddy_page); 2001 /* store last allocated for subsequent stream allocation */ 2002 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2003 spin_lock(&sbi->s_md_lock); 2004 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2005 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2006 spin_unlock(&sbi->s_md_lock); 2007 } 2008 /* 2009 * As we've just preallocated more space than 2010 * user requested originally, we store allocated 2011 * space in a special descriptor. 2012 */ 2013 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2014 ext4_mb_new_preallocation(ac); 2015 2016 } 2017 2018 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2019 struct ext4_buddy *e4b, 2020 int finish_group) 2021 { 2022 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2023 struct ext4_free_extent *bex = &ac->ac_b_ex; 2024 struct ext4_free_extent *gex = &ac->ac_g_ex; 2025 struct ext4_free_extent ex; 2026 int max; 2027 2028 if (ac->ac_status == AC_STATUS_FOUND) 2029 return; 2030 /* 2031 * We don't want to scan for a whole year 2032 */ 2033 if (ac->ac_found > sbi->s_mb_max_to_scan && 2034 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2035 ac->ac_status = AC_STATUS_BREAK; 2036 return; 2037 } 2038 2039 /* 2040 * Haven't found good chunk so far, let's continue 2041 */ 2042 if (bex->fe_len < gex->fe_len) 2043 return; 2044 2045 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2046 && bex->fe_group == e4b->bd_group) { 2047 /* recheck chunk's availability - we don't know 2048 * when it was found (within this lock-unlock 2049 * period or not) */ 2050 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 2051 if (max >= gex->fe_len) { 2052 ext4_mb_use_best_found(ac, e4b); 2053 return; 2054 } 2055 } 2056 } 2057 2058 /* 2059 * The routine checks whether found extent is good enough. If it is, 2060 * then the extent gets marked used and flag is set to the context 2061 * to stop scanning. Otherwise, the extent is compared with the 2062 * previous found extent and if new one is better, then it's stored 2063 * in the context. Later, the best found extent will be used, if 2064 * mballoc can't find good enough extent. 2065 * 2066 * FIXME: real allocation policy is to be designed yet! 2067 */ 2068 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2069 struct ext4_free_extent *ex, 2070 struct ext4_buddy *e4b) 2071 { 2072 struct ext4_free_extent *bex = &ac->ac_b_ex; 2073 struct ext4_free_extent *gex = &ac->ac_g_ex; 2074 2075 BUG_ON(ex->fe_len <= 0); 2076 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2077 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2078 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2079 2080 ac->ac_found++; 2081 2082 /* 2083 * The special case - take what you catch first 2084 */ 2085 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2086 *bex = *ex; 2087 ext4_mb_use_best_found(ac, e4b); 2088 return; 2089 } 2090 2091 /* 2092 * Let's check whether the chuck is good enough 2093 */ 2094 if (ex->fe_len == gex->fe_len) { 2095 *bex = *ex; 2096 ext4_mb_use_best_found(ac, e4b); 2097 return; 2098 } 2099 2100 /* 2101 * If this is first found extent, just store it in the context 2102 */ 2103 if (bex->fe_len == 0) { 2104 *bex = *ex; 2105 return; 2106 } 2107 2108 /* 2109 * If new found extent is better, store it in the context 2110 */ 2111 if (bex->fe_len < gex->fe_len) { 2112 /* if the request isn't satisfied, any found extent 2113 * larger than previous best one is better */ 2114 if (ex->fe_len > bex->fe_len) 2115 *bex = *ex; 2116 } else if (ex->fe_len > gex->fe_len) { 2117 /* if the request is satisfied, then we try to find 2118 * an extent that still satisfy the request, but is 2119 * smaller than previous one */ 2120 if (ex->fe_len < bex->fe_len) 2121 *bex = *ex; 2122 } 2123 2124 ext4_mb_check_limits(ac, e4b, 0); 2125 } 2126 2127 static noinline_for_stack 2128 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2129 struct ext4_buddy *e4b) 2130 { 2131 struct ext4_free_extent ex = ac->ac_b_ex; 2132 ext4_group_t group = ex.fe_group; 2133 int max; 2134 int err; 2135 2136 BUG_ON(ex.fe_len <= 0); 2137 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2138 if (err) 2139 return err; 2140 2141 ext4_lock_group(ac->ac_sb, group); 2142 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2143 2144 if (max > 0) { 2145 ac->ac_b_ex = ex; 2146 ext4_mb_use_best_found(ac, e4b); 2147 } 2148 2149 ext4_unlock_group(ac->ac_sb, group); 2150 ext4_mb_unload_buddy(e4b); 2151 2152 return 0; 2153 } 2154 2155 static noinline_for_stack 2156 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2157 struct ext4_buddy *e4b) 2158 { 2159 ext4_group_t group = ac->ac_g_ex.fe_group; 2160 int max; 2161 int err; 2162 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2163 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2164 struct ext4_free_extent ex; 2165 2166 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 2167 return 0; 2168 if (grp->bb_free == 0) 2169 return 0; 2170 2171 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2172 if (err) 2173 return err; 2174 2175 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2176 ext4_mb_unload_buddy(e4b); 2177 return 0; 2178 } 2179 2180 ext4_lock_group(ac->ac_sb, group); 2181 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2182 ac->ac_g_ex.fe_len, &ex); 2183 ex.fe_logical = 0xDEADFA11; /* debug value */ 2184 2185 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 2186 ext4_fsblk_t start; 2187 2188 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 2189 ex.fe_start; 2190 /* use do_div to get remainder (would be 64-bit modulo) */ 2191 if (do_div(start, sbi->s_stripe) == 0) { 2192 ac->ac_found++; 2193 ac->ac_b_ex = ex; 2194 ext4_mb_use_best_found(ac, e4b); 2195 } 2196 } else if (max >= ac->ac_g_ex.fe_len) { 2197 BUG_ON(ex.fe_len <= 0); 2198 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2199 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2200 ac->ac_found++; 2201 ac->ac_b_ex = ex; 2202 ext4_mb_use_best_found(ac, e4b); 2203 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2204 /* Sometimes, caller may want to merge even small 2205 * number of blocks to an existing extent */ 2206 BUG_ON(ex.fe_len <= 0); 2207 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2208 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2209 ac->ac_found++; 2210 ac->ac_b_ex = ex; 2211 ext4_mb_use_best_found(ac, e4b); 2212 } 2213 ext4_unlock_group(ac->ac_sb, group); 2214 ext4_mb_unload_buddy(e4b); 2215 2216 return 0; 2217 } 2218 2219 /* 2220 * The routine scans buddy structures (not bitmap!) from given order 2221 * to max order and tries to find big enough chunk to satisfy the req 2222 */ 2223 static noinline_for_stack 2224 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2225 struct ext4_buddy *e4b) 2226 { 2227 struct super_block *sb = ac->ac_sb; 2228 struct ext4_group_info *grp = e4b->bd_info; 2229 void *buddy; 2230 int i; 2231 int k; 2232 int max; 2233 2234 BUG_ON(ac->ac_2order <= 0); 2235 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2236 if (grp->bb_counters[i] == 0) 2237 continue; 2238 2239 buddy = mb_find_buddy(e4b, i, &max); 2240 BUG_ON(buddy == NULL); 2241 2242 k = mb_find_next_zero_bit(buddy, max, 0); 2243 if (k >= max) { 2244 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2245 "%d free clusters of order %d. But found 0", 2246 grp->bb_counters[i], i); 2247 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2248 e4b->bd_group, 2249 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2250 break; 2251 } 2252 ac->ac_found++; 2253 2254 ac->ac_b_ex.fe_len = 1 << i; 2255 ac->ac_b_ex.fe_start = k << i; 2256 ac->ac_b_ex.fe_group = e4b->bd_group; 2257 2258 ext4_mb_use_best_found(ac, e4b); 2259 2260 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2261 2262 if (EXT4_SB(sb)->s_mb_stats) 2263 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2264 2265 break; 2266 } 2267 } 2268 2269 /* 2270 * The routine scans the group and measures all found extents. 2271 * In order to optimize scanning, caller must pass number of 2272 * free blocks in the group, so the routine can know upper limit. 2273 */ 2274 static noinline_for_stack 2275 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2276 struct ext4_buddy *e4b) 2277 { 2278 struct super_block *sb = ac->ac_sb; 2279 void *bitmap = e4b->bd_bitmap; 2280 struct ext4_free_extent ex; 2281 int i; 2282 int free; 2283 2284 free = e4b->bd_info->bb_free; 2285 if (WARN_ON(free <= 0)) 2286 return; 2287 2288 i = e4b->bd_info->bb_first_free; 2289 2290 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2291 i = mb_find_next_zero_bit(bitmap, 2292 EXT4_CLUSTERS_PER_GROUP(sb), i); 2293 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2294 /* 2295 * IF we have corrupt bitmap, we won't find any 2296 * free blocks even though group info says we 2297 * have free blocks 2298 */ 2299 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2300 "%d free clusters as per " 2301 "group info. But bitmap says 0", 2302 free); 2303 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2304 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2305 break; 2306 } 2307 2308 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2309 if (WARN_ON(ex.fe_len <= 0)) 2310 break; 2311 if (free < ex.fe_len) { 2312 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2313 "%d free clusters as per " 2314 "group info. But got %d blocks", 2315 free, ex.fe_len); 2316 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2317 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2318 /* 2319 * The number of free blocks differs. This mostly 2320 * indicate that the bitmap is corrupt. So exit 2321 * without claiming the space. 2322 */ 2323 break; 2324 } 2325 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2326 ext4_mb_measure_extent(ac, &ex, e4b); 2327 2328 i += ex.fe_len; 2329 free -= ex.fe_len; 2330 } 2331 2332 ext4_mb_check_limits(ac, e4b, 1); 2333 } 2334 2335 /* 2336 * This is a special case for storages like raid5 2337 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2338 */ 2339 static noinline_for_stack 2340 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2341 struct ext4_buddy *e4b) 2342 { 2343 struct super_block *sb = ac->ac_sb; 2344 struct ext4_sb_info *sbi = EXT4_SB(sb); 2345 void *bitmap = e4b->bd_bitmap; 2346 struct ext4_free_extent ex; 2347 ext4_fsblk_t first_group_block; 2348 ext4_fsblk_t a; 2349 ext4_grpblk_t i; 2350 int max; 2351 2352 BUG_ON(sbi->s_stripe == 0); 2353 2354 /* find first stripe-aligned block in group */ 2355 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2356 2357 a = first_group_block + sbi->s_stripe - 1; 2358 do_div(a, sbi->s_stripe); 2359 i = (a * sbi->s_stripe) - first_group_block; 2360 2361 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2362 if (!mb_test_bit(i, bitmap)) { 2363 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2364 if (max >= sbi->s_stripe) { 2365 ac->ac_found++; 2366 ex.fe_logical = 0xDEADF00D; /* debug value */ 2367 ac->ac_b_ex = ex; 2368 ext4_mb_use_best_found(ac, e4b); 2369 break; 2370 } 2371 } 2372 i += sbi->s_stripe; 2373 } 2374 } 2375 2376 /* 2377 * This is also called BEFORE we load the buddy bitmap. 2378 * Returns either 1 or 0 indicating that the group is either suitable 2379 * for the allocation or not. 2380 */ 2381 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2382 ext4_group_t group, int cr) 2383 { 2384 ext4_grpblk_t free, fragments; 2385 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2386 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2387 2388 BUG_ON(cr < 0 || cr >= 4); 2389 2390 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2391 return false; 2392 2393 free = grp->bb_free; 2394 if (free == 0) 2395 return false; 2396 2397 fragments = grp->bb_fragments; 2398 if (fragments == 0) 2399 return false; 2400 2401 switch (cr) { 2402 case 0: 2403 BUG_ON(ac->ac_2order == 0); 2404 2405 /* Avoid using the first bg of a flexgroup for data files */ 2406 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2407 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2408 ((group % flex_size) == 0)) 2409 return false; 2410 2411 if (free < ac->ac_g_ex.fe_len) 2412 return false; 2413 2414 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2415 return true; 2416 2417 if (grp->bb_largest_free_order < ac->ac_2order) 2418 return false; 2419 2420 return true; 2421 case 1: 2422 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2423 return true; 2424 break; 2425 case 2: 2426 if (free >= ac->ac_g_ex.fe_len) 2427 return true; 2428 break; 2429 case 3: 2430 return true; 2431 default: 2432 BUG(); 2433 } 2434 2435 return false; 2436 } 2437 2438 /* 2439 * This could return negative error code if something goes wrong 2440 * during ext4_mb_init_group(). This should not be called with 2441 * ext4_lock_group() held. 2442 * 2443 * Note: because we are conditionally operating with the group lock in 2444 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2445 * function using __acquire and __release. This means we need to be 2446 * super careful before messing with the error path handling via "goto 2447 * out"! 2448 */ 2449 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2450 ext4_group_t group, int cr) 2451 { 2452 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2453 struct super_block *sb = ac->ac_sb; 2454 struct ext4_sb_info *sbi = EXT4_SB(sb); 2455 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2456 ext4_grpblk_t free; 2457 int ret = 0; 2458 2459 if (sbi->s_mb_stats) 2460 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2461 if (should_lock) { 2462 ext4_lock_group(sb, group); 2463 __release(ext4_group_lock_ptr(sb, group)); 2464 } 2465 free = grp->bb_free; 2466 if (free == 0) 2467 goto out; 2468 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2469 goto out; 2470 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2471 goto out; 2472 if (should_lock) { 2473 __acquire(ext4_group_lock_ptr(sb, group)); 2474 ext4_unlock_group(sb, group); 2475 } 2476 2477 /* We only do this if the grp has never been initialized */ 2478 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2479 struct ext4_group_desc *gdp = 2480 ext4_get_group_desc(sb, group, NULL); 2481 int ret; 2482 2483 /* cr=0/1 is a very optimistic search to find large 2484 * good chunks almost for free. If buddy data is not 2485 * ready, then this optimization makes no sense. But 2486 * we never skip the first block group in a flex_bg, 2487 * since this gets used for metadata block allocation, 2488 * and we want to make sure we locate metadata blocks 2489 * in the first block group in the flex_bg if possible. 2490 */ 2491 if (cr < 2 && 2492 (!sbi->s_log_groups_per_flex || 2493 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2494 !(ext4_has_group_desc_csum(sb) && 2495 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2496 return 0; 2497 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2498 if (ret) 2499 return ret; 2500 } 2501 2502 if (should_lock) { 2503 ext4_lock_group(sb, group); 2504 __release(ext4_group_lock_ptr(sb, group)); 2505 } 2506 ret = ext4_mb_good_group(ac, group, cr); 2507 out: 2508 if (should_lock) { 2509 __acquire(ext4_group_lock_ptr(sb, group)); 2510 ext4_unlock_group(sb, group); 2511 } 2512 return ret; 2513 } 2514 2515 /* 2516 * Start prefetching @nr block bitmaps starting at @group. 2517 * Return the next group which needs to be prefetched. 2518 */ 2519 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2520 unsigned int nr, int *cnt) 2521 { 2522 ext4_group_t ngroups = ext4_get_groups_count(sb); 2523 struct buffer_head *bh; 2524 struct blk_plug plug; 2525 2526 blk_start_plug(&plug); 2527 while (nr-- > 0) { 2528 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2529 NULL); 2530 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2531 2532 /* 2533 * Prefetch block groups with free blocks; but don't 2534 * bother if it is marked uninitialized on disk, since 2535 * it won't require I/O to read. Also only try to 2536 * prefetch once, so we avoid getblk() call, which can 2537 * be expensive. 2538 */ 2539 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2540 EXT4_MB_GRP_NEED_INIT(grp) && 2541 ext4_free_group_clusters(sb, gdp) > 0 && 2542 !(ext4_has_group_desc_csum(sb) && 2543 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2544 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2545 if (bh && !IS_ERR(bh)) { 2546 if (!buffer_uptodate(bh) && cnt) 2547 (*cnt)++; 2548 brelse(bh); 2549 } 2550 } 2551 if (++group >= ngroups) 2552 group = 0; 2553 } 2554 blk_finish_plug(&plug); 2555 return group; 2556 } 2557 2558 /* 2559 * Prefetching reads the block bitmap into the buffer cache; but we 2560 * need to make sure that the buddy bitmap in the page cache has been 2561 * initialized. Note that ext4_mb_init_group() will block if the I/O 2562 * is not yet completed, or indeed if it was not initiated by 2563 * ext4_mb_prefetch did not start the I/O. 2564 * 2565 * TODO: We should actually kick off the buddy bitmap setup in a work 2566 * queue when the buffer I/O is completed, so that we don't block 2567 * waiting for the block allocation bitmap read to finish when 2568 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2569 */ 2570 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2571 unsigned int nr) 2572 { 2573 while (nr-- > 0) { 2574 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2575 NULL); 2576 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2577 2578 if (!group) 2579 group = ext4_get_groups_count(sb); 2580 group--; 2581 grp = ext4_get_group_info(sb, group); 2582 2583 if (EXT4_MB_GRP_NEED_INIT(grp) && 2584 ext4_free_group_clusters(sb, gdp) > 0 && 2585 !(ext4_has_group_desc_csum(sb) && 2586 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2587 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2588 break; 2589 } 2590 } 2591 } 2592 2593 static noinline_for_stack int 2594 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2595 { 2596 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2597 int cr = -1, new_cr; 2598 int err = 0, first_err = 0; 2599 unsigned int nr = 0, prefetch_ios = 0; 2600 struct ext4_sb_info *sbi; 2601 struct super_block *sb; 2602 struct ext4_buddy e4b; 2603 int lost; 2604 2605 sb = ac->ac_sb; 2606 sbi = EXT4_SB(sb); 2607 ngroups = ext4_get_groups_count(sb); 2608 /* non-extent files are limited to low blocks/groups */ 2609 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2610 ngroups = sbi->s_blockfile_groups; 2611 2612 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2613 2614 /* first, try the goal */ 2615 err = ext4_mb_find_by_goal(ac, &e4b); 2616 if (err || ac->ac_status == AC_STATUS_FOUND) 2617 goto out; 2618 2619 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2620 goto out; 2621 2622 /* 2623 * ac->ac_2order is set only if the fe_len is a power of 2 2624 * if ac->ac_2order is set we also set criteria to 0 so that we 2625 * try exact allocation using buddy. 2626 */ 2627 i = fls(ac->ac_g_ex.fe_len); 2628 ac->ac_2order = 0; 2629 /* 2630 * We search using buddy data only if the order of the request 2631 * is greater than equal to the sbi_s_mb_order2_reqs 2632 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2633 * We also support searching for power-of-two requests only for 2634 * requests upto maximum buddy size we have constructed. 2635 */ 2636 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2637 /* 2638 * This should tell if fe_len is exactly power of 2 2639 */ 2640 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2641 ac->ac_2order = array_index_nospec(i - 1, 2642 MB_NUM_ORDERS(sb)); 2643 } 2644 2645 /* if stream allocation is enabled, use global goal */ 2646 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2647 /* TBD: may be hot point */ 2648 spin_lock(&sbi->s_md_lock); 2649 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2650 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2651 spin_unlock(&sbi->s_md_lock); 2652 } 2653 2654 /* Let's just scan groups to find more-less suitable blocks */ 2655 cr = ac->ac_2order ? 0 : 1; 2656 /* 2657 * cr == 0 try to get exact allocation, 2658 * cr == 3 try to get anything 2659 */ 2660 repeat: 2661 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2662 ac->ac_criteria = cr; 2663 /* 2664 * searching for the right group start 2665 * from the goal value specified 2666 */ 2667 group = ac->ac_g_ex.fe_group; 2668 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2669 prefetch_grp = group; 2670 2671 for (i = 0, new_cr = cr; i < ngroups; i++, 2672 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2673 int ret = 0; 2674 2675 cond_resched(); 2676 if (new_cr != cr) { 2677 cr = new_cr; 2678 goto repeat; 2679 } 2680 2681 /* 2682 * Batch reads of the block allocation bitmaps 2683 * to get multiple READs in flight; limit 2684 * prefetching at cr=0/1, otherwise mballoc can 2685 * spend a lot of time loading imperfect groups 2686 */ 2687 if ((prefetch_grp == group) && 2688 (cr > 1 || 2689 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2690 unsigned int curr_ios = prefetch_ios; 2691 2692 nr = sbi->s_mb_prefetch; 2693 if (ext4_has_feature_flex_bg(sb)) { 2694 nr = 1 << sbi->s_log_groups_per_flex; 2695 nr -= group & (nr - 1); 2696 nr = min(nr, sbi->s_mb_prefetch); 2697 } 2698 prefetch_grp = ext4_mb_prefetch(sb, group, 2699 nr, &prefetch_ios); 2700 if (prefetch_ios == curr_ios) 2701 nr = 0; 2702 } 2703 2704 /* This now checks without needing the buddy page */ 2705 ret = ext4_mb_good_group_nolock(ac, group, cr); 2706 if (ret <= 0) { 2707 if (!first_err) 2708 first_err = ret; 2709 continue; 2710 } 2711 2712 err = ext4_mb_load_buddy(sb, group, &e4b); 2713 if (err) 2714 goto out; 2715 2716 ext4_lock_group(sb, group); 2717 2718 /* 2719 * We need to check again after locking the 2720 * block group 2721 */ 2722 ret = ext4_mb_good_group(ac, group, cr); 2723 if (ret == 0) { 2724 ext4_unlock_group(sb, group); 2725 ext4_mb_unload_buddy(&e4b); 2726 continue; 2727 } 2728 2729 ac->ac_groups_scanned++; 2730 if (cr == 0) 2731 ext4_mb_simple_scan_group(ac, &e4b); 2732 else if (cr == 1 && sbi->s_stripe && 2733 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2734 ext4_mb_scan_aligned(ac, &e4b); 2735 else 2736 ext4_mb_complex_scan_group(ac, &e4b); 2737 2738 ext4_unlock_group(sb, group); 2739 ext4_mb_unload_buddy(&e4b); 2740 2741 if (ac->ac_status != AC_STATUS_CONTINUE) 2742 break; 2743 } 2744 /* Processed all groups and haven't found blocks */ 2745 if (sbi->s_mb_stats && i == ngroups) 2746 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2747 } 2748 2749 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2750 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2751 /* 2752 * We've been searching too long. Let's try to allocate 2753 * the best chunk we've found so far 2754 */ 2755 ext4_mb_try_best_found(ac, &e4b); 2756 if (ac->ac_status != AC_STATUS_FOUND) { 2757 /* 2758 * Someone more lucky has already allocated it. 2759 * The only thing we can do is just take first 2760 * found block(s) 2761 */ 2762 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2763 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2764 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2765 ac->ac_b_ex.fe_len, lost); 2766 2767 ac->ac_b_ex.fe_group = 0; 2768 ac->ac_b_ex.fe_start = 0; 2769 ac->ac_b_ex.fe_len = 0; 2770 ac->ac_status = AC_STATUS_CONTINUE; 2771 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2772 cr = 3; 2773 goto repeat; 2774 } 2775 } 2776 2777 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2778 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2779 out: 2780 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2781 err = first_err; 2782 2783 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2784 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2785 ac->ac_flags, cr, err); 2786 2787 if (nr) 2788 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2789 2790 return err; 2791 } 2792 2793 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2794 { 2795 struct super_block *sb = pde_data(file_inode(seq->file)); 2796 ext4_group_t group; 2797 2798 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2799 return NULL; 2800 group = *pos + 1; 2801 return (void *) ((unsigned long) group); 2802 } 2803 2804 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2805 { 2806 struct super_block *sb = pde_data(file_inode(seq->file)); 2807 ext4_group_t group; 2808 2809 ++*pos; 2810 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2811 return NULL; 2812 group = *pos + 1; 2813 return (void *) ((unsigned long) group); 2814 } 2815 2816 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2817 { 2818 struct super_block *sb = pde_data(file_inode(seq->file)); 2819 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2820 int i; 2821 int err, buddy_loaded = 0; 2822 struct ext4_buddy e4b; 2823 struct ext4_group_info *grinfo; 2824 unsigned char blocksize_bits = min_t(unsigned char, 2825 sb->s_blocksize_bits, 2826 EXT4_MAX_BLOCK_LOG_SIZE); 2827 struct sg { 2828 struct ext4_group_info info; 2829 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2830 } sg; 2831 2832 group--; 2833 if (group == 0) 2834 seq_puts(seq, "#group: free frags first [" 2835 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2836 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2837 2838 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2839 sizeof(struct ext4_group_info); 2840 2841 grinfo = ext4_get_group_info(sb, group); 2842 /* Load the group info in memory only if not already loaded. */ 2843 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2844 err = ext4_mb_load_buddy(sb, group, &e4b); 2845 if (err) { 2846 seq_printf(seq, "#%-5u: I/O error\n", group); 2847 return 0; 2848 } 2849 buddy_loaded = 1; 2850 } 2851 2852 memcpy(&sg, ext4_get_group_info(sb, group), i); 2853 2854 if (buddy_loaded) 2855 ext4_mb_unload_buddy(&e4b); 2856 2857 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2858 sg.info.bb_fragments, sg.info.bb_first_free); 2859 for (i = 0; i <= 13; i++) 2860 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2861 sg.info.bb_counters[i] : 0); 2862 seq_puts(seq, " ]\n"); 2863 2864 return 0; 2865 } 2866 2867 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2868 { 2869 } 2870 2871 const struct seq_operations ext4_mb_seq_groups_ops = { 2872 .start = ext4_mb_seq_groups_start, 2873 .next = ext4_mb_seq_groups_next, 2874 .stop = ext4_mb_seq_groups_stop, 2875 .show = ext4_mb_seq_groups_show, 2876 }; 2877 2878 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 2879 { 2880 struct super_block *sb = seq->private; 2881 struct ext4_sb_info *sbi = EXT4_SB(sb); 2882 2883 seq_puts(seq, "mballoc:\n"); 2884 if (!sbi->s_mb_stats) { 2885 seq_puts(seq, "\tmb stats collection turned off.\n"); 2886 seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 2887 return 0; 2888 } 2889 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 2890 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 2891 2892 seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned)); 2893 2894 seq_puts(seq, "\tcr0_stats:\n"); 2895 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0])); 2896 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2897 atomic64_read(&sbi->s_bal_cX_groups_considered[0])); 2898 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2899 atomic64_read(&sbi->s_bal_cX_failed[0])); 2900 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2901 atomic_read(&sbi->s_bal_cr0_bad_suggestions)); 2902 2903 seq_puts(seq, "\tcr1_stats:\n"); 2904 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1])); 2905 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2906 atomic64_read(&sbi->s_bal_cX_groups_considered[1])); 2907 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2908 atomic64_read(&sbi->s_bal_cX_failed[1])); 2909 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2910 atomic_read(&sbi->s_bal_cr1_bad_suggestions)); 2911 2912 seq_puts(seq, "\tcr2_stats:\n"); 2913 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2])); 2914 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2915 atomic64_read(&sbi->s_bal_cX_groups_considered[2])); 2916 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2917 atomic64_read(&sbi->s_bal_cX_failed[2])); 2918 2919 seq_puts(seq, "\tcr3_stats:\n"); 2920 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3])); 2921 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2922 atomic64_read(&sbi->s_bal_cX_groups_considered[3])); 2923 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2924 atomic64_read(&sbi->s_bal_cX_failed[3])); 2925 seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned)); 2926 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 2927 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 2928 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 2929 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 2930 2931 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 2932 atomic_read(&sbi->s_mb_buddies_generated), 2933 ext4_get_groups_count(sb)); 2934 seq_printf(seq, "\tbuddies_time_used: %llu\n", 2935 atomic64_read(&sbi->s_mb_generation_time)); 2936 seq_printf(seq, "\tpreallocated: %u\n", 2937 atomic_read(&sbi->s_mb_preallocated)); 2938 seq_printf(seq, "\tdiscarded: %u\n", 2939 atomic_read(&sbi->s_mb_discarded)); 2940 return 0; 2941 } 2942 2943 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 2944 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 2945 { 2946 struct super_block *sb = pde_data(file_inode(seq->file)); 2947 unsigned long position; 2948 2949 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 2950 return NULL; 2951 position = *pos + 1; 2952 return (void *) ((unsigned long) position); 2953 } 2954 2955 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 2956 { 2957 struct super_block *sb = pde_data(file_inode(seq->file)); 2958 unsigned long position; 2959 2960 ++*pos; 2961 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 2962 return NULL; 2963 position = *pos + 1; 2964 return (void *) ((unsigned long) position); 2965 } 2966 2967 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 2968 { 2969 struct super_block *sb = pde_data(file_inode(seq->file)); 2970 struct ext4_sb_info *sbi = EXT4_SB(sb); 2971 unsigned long position = ((unsigned long) v); 2972 struct ext4_group_info *grp; 2973 unsigned int count; 2974 2975 position--; 2976 if (position >= MB_NUM_ORDERS(sb)) { 2977 position -= MB_NUM_ORDERS(sb); 2978 if (position == 0) 2979 seq_puts(seq, "avg_fragment_size_lists:\n"); 2980 2981 count = 0; 2982 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 2983 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 2984 bb_avg_fragment_size_node) 2985 count++; 2986 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 2987 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 2988 (unsigned int)position, count); 2989 return 0; 2990 } 2991 2992 if (position == 0) { 2993 seq_printf(seq, "optimize_scan: %d\n", 2994 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 2995 seq_puts(seq, "max_free_order_lists:\n"); 2996 } 2997 count = 0; 2998 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 2999 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3000 bb_largest_free_order_node) 3001 count++; 3002 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3003 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3004 (unsigned int)position, count); 3005 3006 return 0; 3007 } 3008 3009 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3010 { 3011 } 3012 3013 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3014 .start = ext4_mb_seq_structs_summary_start, 3015 .next = ext4_mb_seq_structs_summary_next, 3016 .stop = ext4_mb_seq_structs_summary_stop, 3017 .show = ext4_mb_seq_structs_summary_show, 3018 }; 3019 3020 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3021 { 3022 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3023 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3024 3025 BUG_ON(!cachep); 3026 return cachep; 3027 } 3028 3029 /* 3030 * Allocate the top-level s_group_info array for the specified number 3031 * of groups 3032 */ 3033 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3034 { 3035 struct ext4_sb_info *sbi = EXT4_SB(sb); 3036 unsigned size; 3037 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3038 3039 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3040 EXT4_DESC_PER_BLOCK_BITS(sb); 3041 if (size <= sbi->s_group_info_size) 3042 return 0; 3043 3044 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3045 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3046 if (!new_groupinfo) { 3047 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3048 return -ENOMEM; 3049 } 3050 rcu_read_lock(); 3051 old_groupinfo = rcu_dereference(sbi->s_group_info); 3052 if (old_groupinfo) 3053 memcpy(new_groupinfo, old_groupinfo, 3054 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3055 rcu_read_unlock(); 3056 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3057 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3058 if (old_groupinfo) 3059 ext4_kvfree_array_rcu(old_groupinfo); 3060 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3061 sbi->s_group_info_size); 3062 return 0; 3063 } 3064 3065 /* Create and initialize ext4_group_info data for the given group. */ 3066 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3067 struct ext4_group_desc *desc) 3068 { 3069 int i; 3070 int metalen = 0; 3071 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3072 struct ext4_sb_info *sbi = EXT4_SB(sb); 3073 struct ext4_group_info **meta_group_info; 3074 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3075 3076 /* 3077 * First check if this group is the first of a reserved block. 3078 * If it's true, we have to allocate a new table of pointers 3079 * to ext4_group_info structures 3080 */ 3081 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3082 metalen = sizeof(*meta_group_info) << 3083 EXT4_DESC_PER_BLOCK_BITS(sb); 3084 meta_group_info = kmalloc(metalen, GFP_NOFS); 3085 if (meta_group_info == NULL) { 3086 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3087 "for a buddy group"); 3088 goto exit_meta_group_info; 3089 } 3090 rcu_read_lock(); 3091 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3092 rcu_read_unlock(); 3093 } 3094 3095 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3096 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3097 3098 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3099 if (meta_group_info[i] == NULL) { 3100 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3101 goto exit_group_info; 3102 } 3103 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3104 &(meta_group_info[i]->bb_state)); 3105 3106 /* 3107 * initialize bb_free to be able to skip 3108 * empty groups without initialization 3109 */ 3110 if (ext4_has_group_desc_csum(sb) && 3111 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3112 meta_group_info[i]->bb_free = 3113 ext4_free_clusters_after_init(sb, group, desc); 3114 } else { 3115 meta_group_info[i]->bb_free = 3116 ext4_free_group_clusters(sb, desc); 3117 } 3118 3119 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3120 init_rwsem(&meta_group_info[i]->alloc_sem); 3121 meta_group_info[i]->bb_free_root = RB_ROOT; 3122 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3123 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3124 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3125 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3126 meta_group_info[i]->bb_group = group; 3127 3128 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3129 return 0; 3130 3131 exit_group_info: 3132 /* If a meta_group_info table has been allocated, release it now */ 3133 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3134 struct ext4_group_info ***group_info; 3135 3136 rcu_read_lock(); 3137 group_info = rcu_dereference(sbi->s_group_info); 3138 kfree(group_info[idx]); 3139 group_info[idx] = NULL; 3140 rcu_read_unlock(); 3141 } 3142 exit_meta_group_info: 3143 return -ENOMEM; 3144 } /* ext4_mb_add_groupinfo */ 3145 3146 static int ext4_mb_init_backend(struct super_block *sb) 3147 { 3148 ext4_group_t ngroups = ext4_get_groups_count(sb); 3149 ext4_group_t i; 3150 struct ext4_sb_info *sbi = EXT4_SB(sb); 3151 int err; 3152 struct ext4_group_desc *desc; 3153 struct ext4_group_info ***group_info; 3154 struct kmem_cache *cachep; 3155 3156 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3157 if (err) 3158 return err; 3159 3160 sbi->s_buddy_cache = new_inode(sb); 3161 if (sbi->s_buddy_cache == NULL) { 3162 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3163 goto err_freesgi; 3164 } 3165 /* To avoid potentially colliding with an valid on-disk inode number, 3166 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3167 * not in the inode hash, so it should never be found by iget(), but 3168 * this will avoid confusion if it ever shows up during debugging. */ 3169 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3170 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3171 for (i = 0; i < ngroups; i++) { 3172 cond_resched(); 3173 desc = ext4_get_group_desc(sb, i, NULL); 3174 if (desc == NULL) { 3175 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3176 goto err_freebuddy; 3177 } 3178 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3179 goto err_freebuddy; 3180 } 3181 3182 if (ext4_has_feature_flex_bg(sb)) { 3183 /* a single flex group is supposed to be read by a single IO. 3184 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3185 * unsigned integer, so the maximum shift is 32. 3186 */ 3187 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3188 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3189 goto err_freebuddy; 3190 } 3191 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3192 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3193 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3194 } else { 3195 sbi->s_mb_prefetch = 32; 3196 } 3197 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3198 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3199 /* now many real IOs to prefetch within a single allocation at cr=0 3200 * given cr=0 is an CPU-related optimization we shouldn't try to 3201 * load too many groups, at some point we should start to use what 3202 * we've got in memory. 3203 * with an average random access time 5ms, it'd take a second to get 3204 * 200 groups (* N with flex_bg), so let's make this limit 4 3205 */ 3206 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3207 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3208 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3209 3210 return 0; 3211 3212 err_freebuddy: 3213 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3214 while (i-- > 0) 3215 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 3216 i = sbi->s_group_info_size; 3217 rcu_read_lock(); 3218 group_info = rcu_dereference(sbi->s_group_info); 3219 while (i-- > 0) 3220 kfree(group_info[i]); 3221 rcu_read_unlock(); 3222 iput(sbi->s_buddy_cache); 3223 err_freesgi: 3224 rcu_read_lock(); 3225 kvfree(rcu_dereference(sbi->s_group_info)); 3226 rcu_read_unlock(); 3227 return -ENOMEM; 3228 } 3229 3230 static void ext4_groupinfo_destroy_slabs(void) 3231 { 3232 int i; 3233 3234 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3235 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3236 ext4_groupinfo_caches[i] = NULL; 3237 } 3238 } 3239 3240 static int ext4_groupinfo_create_slab(size_t size) 3241 { 3242 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3243 int slab_size; 3244 int blocksize_bits = order_base_2(size); 3245 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3246 struct kmem_cache *cachep; 3247 3248 if (cache_index >= NR_GRPINFO_CACHES) 3249 return -EINVAL; 3250 3251 if (unlikely(cache_index < 0)) 3252 cache_index = 0; 3253 3254 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3255 if (ext4_groupinfo_caches[cache_index]) { 3256 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3257 return 0; /* Already created */ 3258 } 3259 3260 slab_size = offsetof(struct ext4_group_info, 3261 bb_counters[blocksize_bits + 2]); 3262 3263 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3264 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3265 NULL); 3266 3267 ext4_groupinfo_caches[cache_index] = cachep; 3268 3269 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3270 if (!cachep) { 3271 printk(KERN_EMERG 3272 "EXT4-fs: no memory for groupinfo slab cache\n"); 3273 return -ENOMEM; 3274 } 3275 3276 return 0; 3277 } 3278 3279 static void ext4_discard_work(struct work_struct *work) 3280 { 3281 struct ext4_sb_info *sbi = container_of(work, 3282 struct ext4_sb_info, s_discard_work); 3283 struct super_block *sb = sbi->s_sb; 3284 struct ext4_free_data *fd, *nfd; 3285 struct ext4_buddy e4b; 3286 struct list_head discard_list; 3287 ext4_group_t grp, load_grp; 3288 int err = 0; 3289 3290 INIT_LIST_HEAD(&discard_list); 3291 spin_lock(&sbi->s_md_lock); 3292 list_splice_init(&sbi->s_discard_list, &discard_list); 3293 spin_unlock(&sbi->s_md_lock); 3294 3295 load_grp = UINT_MAX; 3296 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3297 /* 3298 * If filesystem is umounting or no memory or suffering 3299 * from no space, give up the discard 3300 */ 3301 if ((sb->s_flags & SB_ACTIVE) && !err && 3302 !atomic_read(&sbi->s_retry_alloc_pending)) { 3303 grp = fd->efd_group; 3304 if (grp != load_grp) { 3305 if (load_grp != UINT_MAX) 3306 ext4_mb_unload_buddy(&e4b); 3307 3308 err = ext4_mb_load_buddy(sb, grp, &e4b); 3309 if (err) { 3310 kmem_cache_free(ext4_free_data_cachep, fd); 3311 load_grp = UINT_MAX; 3312 continue; 3313 } else { 3314 load_grp = grp; 3315 } 3316 } 3317 3318 ext4_lock_group(sb, grp); 3319 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3320 fd->efd_start_cluster + fd->efd_count - 1, 1); 3321 ext4_unlock_group(sb, grp); 3322 } 3323 kmem_cache_free(ext4_free_data_cachep, fd); 3324 } 3325 3326 if (load_grp != UINT_MAX) 3327 ext4_mb_unload_buddy(&e4b); 3328 } 3329 3330 int ext4_mb_init(struct super_block *sb) 3331 { 3332 struct ext4_sb_info *sbi = EXT4_SB(sb); 3333 unsigned i, j; 3334 unsigned offset, offset_incr; 3335 unsigned max; 3336 int ret; 3337 3338 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3339 3340 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3341 if (sbi->s_mb_offsets == NULL) { 3342 ret = -ENOMEM; 3343 goto out; 3344 } 3345 3346 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3347 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3348 if (sbi->s_mb_maxs == NULL) { 3349 ret = -ENOMEM; 3350 goto out; 3351 } 3352 3353 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3354 if (ret < 0) 3355 goto out; 3356 3357 /* order 0 is regular bitmap */ 3358 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3359 sbi->s_mb_offsets[0] = 0; 3360 3361 i = 1; 3362 offset = 0; 3363 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3364 max = sb->s_blocksize << 2; 3365 do { 3366 sbi->s_mb_offsets[i] = offset; 3367 sbi->s_mb_maxs[i] = max; 3368 offset += offset_incr; 3369 offset_incr = offset_incr >> 1; 3370 max = max >> 1; 3371 i++; 3372 } while (i < MB_NUM_ORDERS(sb)); 3373 3374 sbi->s_mb_avg_fragment_size = 3375 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3376 GFP_KERNEL); 3377 if (!sbi->s_mb_avg_fragment_size) { 3378 ret = -ENOMEM; 3379 goto out; 3380 } 3381 sbi->s_mb_avg_fragment_size_locks = 3382 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3383 GFP_KERNEL); 3384 if (!sbi->s_mb_avg_fragment_size_locks) { 3385 ret = -ENOMEM; 3386 goto out; 3387 } 3388 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3389 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3390 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3391 } 3392 sbi->s_mb_largest_free_orders = 3393 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3394 GFP_KERNEL); 3395 if (!sbi->s_mb_largest_free_orders) { 3396 ret = -ENOMEM; 3397 goto out; 3398 } 3399 sbi->s_mb_largest_free_orders_locks = 3400 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3401 GFP_KERNEL); 3402 if (!sbi->s_mb_largest_free_orders_locks) { 3403 ret = -ENOMEM; 3404 goto out; 3405 } 3406 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3407 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3408 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3409 } 3410 3411 spin_lock_init(&sbi->s_md_lock); 3412 sbi->s_mb_free_pending = 0; 3413 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3414 INIT_LIST_HEAD(&sbi->s_discard_list); 3415 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3416 atomic_set(&sbi->s_retry_alloc_pending, 0); 3417 3418 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3419 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3420 sbi->s_mb_stats = MB_DEFAULT_STATS; 3421 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3422 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3423 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC; 3424 /* 3425 * The default group preallocation is 512, which for 4k block 3426 * sizes translates to 2 megabytes. However for bigalloc file 3427 * systems, this is probably too big (i.e, if the cluster size 3428 * is 1 megabyte, then group preallocation size becomes half a 3429 * gigabyte!). As a default, we will keep a two megabyte 3430 * group pralloc size for cluster sizes up to 64k, and after 3431 * that, we will force a minimum group preallocation size of 3432 * 32 clusters. This translates to 8 megs when the cluster 3433 * size is 256k, and 32 megs when the cluster size is 1 meg, 3434 * which seems reasonable as a default. 3435 */ 3436 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3437 sbi->s_cluster_bits, 32); 3438 /* 3439 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3440 * to the lowest multiple of s_stripe which is bigger than 3441 * the s_mb_group_prealloc as determined above. We want 3442 * the preallocation size to be an exact multiple of the 3443 * RAID stripe size so that preallocations don't fragment 3444 * the stripes. 3445 */ 3446 if (sbi->s_stripe > 1) { 3447 sbi->s_mb_group_prealloc = roundup( 3448 sbi->s_mb_group_prealloc, sbi->s_stripe); 3449 } 3450 3451 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3452 if (sbi->s_locality_groups == NULL) { 3453 ret = -ENOMEM; 3454 goto out; 3455 } 3456 for_each_possible_cpu(i) { 3457 struct ext4_locality_group *lg; 3458 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3459 mutex_init(&lg->lg_mutex); 3460 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3461 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3462 spin_lock_init(&lg->lg_prealloc_lock); 3463 } 3464 3465 if (bdev_nonrot(sb->s_bdev)) 3466 sbi->s_mb_max_linear_groups = 0; 3467 else 3468 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3469 /* init file for buddy data */ 3470 ret = ext4_mb_init_backend(sb); 3471 if (ret != 0) 3472 goto out_free_locality_groups; 3473 3474 return 0; 3475 3476 out_free_locality_groups: 3477 free_percpu(sbi->s_locality_groups); 3478 sbi->s_locality_groups = NULL; 3479 out: 3480 kfree(sbi->s_mb_avg_fragment_size); 3481 kfree(sbi->s_mb_avg_fragment_size_locks); 3482 kfree(sbi->s_mb_largest_free_orders); 3483 kfree(sbi->s_mb_largest_free_orders_locks); 3484 kfree(sbi->s_mb_offsets); 3485 sbi->s_mb_offsets = NULL; 3486 kfree(sbi->s_mb_maxs); 3487 sbi->s_mb_maxs = NULL; 3488 return ret; 3489 } 3490 3491 /* need to called with the ext4 group lock held */ 3492 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3493 { 3494 struct ext4_prealloc_space *pa; 3495 struct list_head *cur, *tmp; 3496 int count = 0; 3497 3498 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3499 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3500 list_del(&pa->pa_group_list); 3501 count++; 3502 kmem_cache_free(ext4_pspace_cachep, pa); 3503 } 3504 return count; 3505 } 3506 3507 int ext4_mb_release(struct super_block *sb) 3508 { 3509 ext4_group_t ngroups = ext4_get_groups_count(sb); 3510 ext4_group_t i; 3511 int num_meta_group_infos; 3512 struct ext4_group_info *grinfo, ***group_info; 3513 struct ext4_sb_info *sbi = EXT4_SB(sb); 3514 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3515 int count; 3516 3517 if (test_opt(sb, DISCARD)) { 3518 /* 3519 * wait the discard work to drain all of ext4_free_data 3520 */ 3521 flush_work(&sbi->s_discard_work); 3522 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3523 } 3524 3525 if (sbi->s_group_info) { 3526 for (i = 0; i < ngroups; i++) { 3527 cond_resched(); 3528 grinfo = ext4_get_group_info(sb, i); 3529 mb_group_bb_bitmap_free(grinfo); 3530 ext4_lock_group(sb, i); 3531 count = ext4_mb_cleanup_pa(grinfo); 3532 if (count) 3533 mb_debug(sb, "mballoc: %d PAs left\n", 3534 count); 3535 ext4_unlock_group(sb, i); 3536 kmem_cache_free(cachep, grinfo); 3537 } 3538 num_meta_group_infos = (ngroups + 3539 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3540 EXT4_DESC_PER_BLOCK_BITS(sb); 3541 rcu_read_lock(); 3542 group_info = rcu_dereference(sbi->s_group_info); 3543 for (i = 0; i < num_meta_group_infos; i++) 3544 kfree(group_info[i]); 3545 kvfree(group_info); 3546 rcu_read_unlock(); 3547 } 3548 kfree(sbi->s_mb_avg_fragment_size); 3549 kfree(sbi->s_mb_avg_fragment_size_locks); 3550 kfree(sbi->s_mb_largest_free_orders); 3551 kfree(sbi->s_mb_largest_free_orders_locks); 3552 kfree(sbi->s_mb_offsets); 3553 kfree(sbi->s_mb_maxs); 3554 iput(sbi->s_buddy_cache); 3555 if (sbi->s_mb_stats) { 3556 ext4_msg(sb, KERN_INFO, 3557 "mballoc: %u blocks %u reqs (%u success)", 3558 atomic_read(&sbi->s_bal_allocated), 3559 atomic_read(&sbi->s_bal_reqs), 3560 atomic_read(&sbi->s_bal_success)); 3561 ext4_msg(sb, KERN_INFO, 3562 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3563 "%u 2^N hits, %u breaks, %u lost", 3564 atomic_read(&sbi->s_bal_ex_scanned), 3565 atomic_read(&sbi->s_bal_groups_scanned), 3566 atomic_read(&sbi->s_bal_goals), 3567 atomic_read(&sbi->s_bal_2orders), 3568 atomic_read(&sbi->s_bal_breaks), 3569 atomic_read(&sbi->s_mb_lost_chunks)); 3570 ext4_msg(sb, KERN_INFO, 3571 "mballoc: %u generated and it took %llu", 3572 atomic_read(&sbi->s_mb_buddies_generated), 3573 atomic64_read(&sbi->s_mb_generation_time)); 3574 ext4_msg(sb, KERN_INFO, 3575 "mballoc: %u preallocated, %u discarded", 3576 atomic_read(&sbi->s_mb_preallocated), 3577 atomic_read(&sbi->s_mb_discarded)); 3578 } 3579 3580 free_percpu(sbi->s_locality_groups); 3581 3582 return 0; 3583 } 3584 3585 static inline int ext4_issue_discard(struct super_block *sb, 3586 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3587 struct bio **biop) 3588 { 3589 ext4_fsblk_t discard_block; 3590 3591 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3592 ext4_group_first_block_no(sb, block_group)); 3593 count = EXT4_C2B(EXT4_SB(sb), count); 3594 trace_ext4_discard_blocks(sb, 3595 (unsigned long long) discard_block, count); 3596 if (biop) { 3597 return __blkdev_issue_discard(sb->s_bdev, 3598 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3599 (sector_t)count << (sb->s_blocksize_bits - 9), 3600 GFP_NOFS, biop); 3601 } else 3602 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3603 } 3604 3605 static void ext4_free_data_in_buddy(struct super_block *sb, 3606 struct ext4_free_data *entry) 3607 { 3608 struct ext4_buddy e4b; 3609 struct ext4_group_info *db; 3610 int err, count = 0, count2 = 0; 3611 3612 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3613 entry->efd_count, entry->efd_group, entry); 3614 3615 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3616 /* we expect to find existing buddy because it's pinned */ 3617 BUG_ON(err != 0); 3618 3619 spin_lock(&EXT4_SB(sb)->s_md_lock); 3620 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3621 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3622 3623 db = e4b.bd_info; 3624 /* there are blocks to put in buddy to make them really free */ 3625 count += entry->efd_count; 3626 count2++; 3627 ext4_lock_group(sb, entry->efd_group); 3628 /* Take it out of per group rb tree */ 3629 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3630 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3631 3632 /* 3633 * Clear the trimmed flag for the group so that the next 3634 * ext4_trim_fs can trim it. 3635 * If the volume is mounted with -o discard, online discard 3636 * is supported and the free blocks will be trimmed online. 3637 */ 3638 if (!test_opt(sb, DISCARD)) 3639 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3640 3641 if (!db->bb_free_root.rb_node) { 3642 /* No more items in the per group rb tree 3643 * balance refcounts from ext4_mb_free_metadata() 3644 */ 3645 put_page(e4b.bd_buddy_page); 3646 put_page(e4b.bd_bitmap_page); 3647 } 3648 ext4_unlock_group(sb, entry->efd_group); 3649 ext4_mb_unload_buddy(&e4b); 3650 3651 mb_debug(sb, "freed %d blocks in %d structures\n", count, 3652 count2); 3653 } 3654 3655 /* 3656 * This function is called by the jbd2 layer once the commit has finished, 3657 * so we know we can free the blocks that were released with that commit. 3658 */ 3659 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3660 { 3661 struct ext4_sb_info *sbi = EXT4_SB(sb); 3662 struct ext4_free_data *entry, *tmp; 3663 struct list_head freed_data_list; 3664 struct list_head *cut_pos = NULL; 3665 bool wake; 3666 3667 INIT_LIST_HEAD(&freed_data_list); 3668 3669 spin_lock(&sbi->s_md_lock); 3670 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3671 if (entry->efd_tid != commit_tid) 3672 break; 3673 cut_pos = &entry->efd_list; 3674 } 3675 if (cut_pos) 3676 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3677 cut_pos); 3678 spin_unlock(&sbi->s_md_lock); 3679 3680 list_for_each_entry(entry, &freed_data_list, efd_list) 3681 ext4_free_data_in_buddy(sb, entry); 3682 3683 if (test_opt(sb, DISCARD)) { 3684 spin_lock(&sbi->s_md_lock); 3685 wake = list_empty(&sbi->s_discard_list); 3686 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3687 spin_unlock(&sbi->s_md_lock); 3688 if (wake) 3689 queue_work(system_unbound_wq, &sbi->s_discard_work); 3690 } else { 3691 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3692 kmem_cache_free(ext4_free_data_cachep, entry); 3693 } 3694 } 3695 3696 int __init ext4_init_mballoc(void) 3697 { 3698 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3699 SLAB_RECLAIM_ACCOUNT); 3700 if (ext4_pspace_cachep == NULL) 3701 goto out; 3702 3703 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3704 SLAB_RECLAIM_ACCOUNT); 3705 if (ext4_ac_cachep == NULL) 3706 goto out_pa_free; 3707 3708 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3709 SLAB_RECLAIM_ACCOUNT); 3710 if (ext4_free_data_cachep == NULL) 3711 goto out_ac_free; 3712 3713 return 0; 3714 3715 out_ac_free: 3716 kmem_cache_destroy(ext4_ac_cachep); 3717 out_pa_free: 3718 kmem_cache_destroy(ext4_pspace_cachep); 3719 out: 3720 return -ENOMEM; 3721 } 3722 3723 void ext4_exit_mballoc(void) 3724 { 3725 /* 3726 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3727 * before destroying the slab cache. 3728 */ 3729 rcu_barrier(); 3730 kmem_cache_destroy(ext4_pspace_cachep); 3731 kmem_cache_destroy(ext4_ac_cachep); 3732 kmem_cache_destroy(ext4_free_data_cachep); 3733 ext4_groupinfo_destroy_slabs(); 3734 } 3735 3736 3737 /* 3738 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3739 * Returns 0 if success or error code 3740 */ 3741 static noinline_for_stack int 3742 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3743 handle_t *handle, unsigned int reserv_clstrs) 3744 { 3745 struct buffer_head *bitmap_bh = NULL; 3746 struct ext4_group_desc *gdp; 3747 struct buffer_head *gdp_bh; 3748 struct ext4_sb_info *sbi; 3749 struct super_block *sb; 3750 ext4_fsblk_t block; 3751 int err, len; 3752 3753 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3754 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3755 3756 sb = ac->ac_sb; 3757 sbi = EXT4_SB(sb); 3758 3759 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3760 if (IS_ERR(bitmap_bh)) { 3761 err = PTR_ERR(bitmap_bh); 3762 bitmap_bh = NULL; 3763 goto out_err; 3764 } 3765 3766 BUFFER_TRACE(bitmap_bh, "getting write access"); 3767 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3768 EXT4_JTR_NONE); 3769 if (err) 3770 goto out_err; 3771 3772 err = -EIO; 3773 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3774 if (!gdp) 3775 goto out_err; 3776 3777 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3778 ext4_free_group_clusters(sb, gdp)); 3779 3780 BUFFER_TRACE(gdp_bh, "get_write_access"); 3781 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 3782 if (err) 3783 goto out_err; 3784 3785 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3786 3787 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3788 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 3789 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3790 "fs metadata", block, block+len); 3791 /* File system mounted not to panic on error 3792 * Fix the bitmap and return EFSCORRUPTED 3793 * We leak some of the blocks here. 3794 */ 3795 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3796 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3797 ac->ac_b_ex.fe_len); 3798 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3799 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3800 if (!err) 3801 err = -EFSCORRUPTED; 3802 goto out_err; 3803 } 3804 3805 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3806 #ifdef AGGRESSIVE_CHECK 3807 { 3808 int i; 3809 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3810 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3811 bitmap_bh->b_data)); 3812 } 3813 } 3814 #endif 3815 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3816 ac->ac_b_ex.fe_len); 3817 if (ext4_has_group_desc_csum(sb) && 3818 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3819 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3820 ext4_free_group_clusters_set(sb, gdp, 3821 ext4_free_clusters_after_init(sb, 3822 ac->ac_b_ex.fe_group, gdp)); 3823 } 3824 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3825 ext4_free_group_clusters_set(sb, gdp, len); 3826 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3827 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3828 3829 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3830 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3831 /* 3832 * Now reduce the dirty block count also. Should not go negative 3833 */ 3834 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3835 /* release all the reserved blocks if non delalloc */ 3836 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3837 reserv_clstrs); 3838 3839 if (sbi->s_log_groups_per_flex) { 3840 ext4_group_t flex_group = ext4_flex_group(sbi, 3841 ac->ac_b_ex.fe_group); 3842 atomic64_sub(ac->ac_b_ex.fe_len, 3843 &sbi_array_rcu_deref(sbi, s_flex_groups, 3844 flex_group)->free_clusters); 3845 } 3846 3847 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3848 if (err) 3849 goto out_err; 3850 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3851 3852 out_err: 3853 brelse(bitmap_bh); 3854 return err; 3855 } 3856 3857 /* 3858 * Idempotent helper for Ext4 fast commit replay path to set the state of 3859 * blocks in bitmaps and update counters. 3860 */ 3861 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 3862 int len, int state) 3863 { 3864 struct buffer_head *bitmap_bh = NULL; 3865 struct ext4_group_desc *gdp; 3866 struct buffer_head *gdp_bh; 3867 struct ext4_sb_info *sbi = EXT4_SB(sb); 3868 ext4_group_t group; 3869 ext4_grpblk_t blkoff; 3870 int i, err; 3871 int already; 3872 unsigned int clen, clen_changed, thisgrp_len; 3873 3874 while (len > 0) { 3875 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 3876 3877 /* 3878 * Check to see if we are freeing blocks across a group 3879 * boundary. 3880 * In case of flex_bg, this can happen that (block, len) may 3881 * span across more than one group. In that case we need to 3882 * get the corresponding group metadata to work with. 3883 * For this we have goto again loop. 3884 */ 3885 thisgrp_len = min_t(unsigned int, (unsigned int)len, 3886 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 3887 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 3888 3889 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 3890 ext4_error(sb, "Marking blocks in system zone - " 3891 "Block = %llu, len = %u", 3892 block, thisgrp_len); 3893 bitmap_bh = NULL; 3894 break; 3895 } 3896 3897 bitmap_bh = ext4_read_block_bitmap(sb, group); 3898 if (IS_ERR(bitmap_bh)) { 3899 err = PTR_ERR(bitmap_bh); 3900 bitmap_bh = NULL; 3901 break; 3902 } 3903 3904 err = -EIO; 3905 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 3906 if (!gdp) 3907 break; 3908 3909 ext4_lock_group(sb, group); 3910 already = 0; 3911 for (i = 0; i < clen; i++) 3912 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 3913 !state) 3914 already++; 3915 3916 clen_changed = clen - already; 3917 if (state) 3918 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 3919 else 3920 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 3921 if (ext4_has_group_desc_csum(sb) && 3922 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3923 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3924 ext4_free_group_clusters_set(sb, gdp, 3925 ext4_free_clusters_after_init(sb, group, gdp)); 3926 } 3927 if (state) 3928 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 3929 else 3930 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 3931 3932 ext4_free_group_clusters_set(sb, gdp, clen); 3933 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 3934 ext4_group_desc_csum_set(sb, group, gdp); 3935 3936 ext4_unlock_group(sb, group); 3937 3938 if (sbi->s_log_groups_per_flex) { 3939 ext4_group_t flex_group = ext4_flex_group(sbi, group); 3940 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 3941 s_flex_groups, flex_group); 3942 3943 if (state) 3944 atomic64_sub(clen_changed, &fg->free_clusters); 3945 else 3946 atomic64_add(clen_changed, &fg->free_clusters); 3947 3948 } 3949 3950 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 3951 if (err) 3952 break; 3953 sync_dirty_buffer(bitmap_bh); 3954 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 3955 sync_dirty_buffer(gdp_bh); 3956 if (err) 3957 break; 3958 3959 block += thisgrp_len; 3960 len -= thisgrp_len; 3961 brelse(bitmap_bh); 3962 BUG_ON(len < 0); 3963 } 3964 3965 if (err) 3966 brelse(bitmap_bh); 3967 } 3968 3969 /* 3970 * here we normalize request for locality group 3971 * Group request are normalized to s_mb_group_prealloc, which goes to 3972 * s_strip if we set the same via mount option. 3973 * s_mb_group_prealloc can be configured via 3974 * /sys/fs/ext4/<partition>/mb_group_prealloc 3975 * 3976 * XXX: should we try to preallocate more than the group has now? 3977 */ 3978 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3979 { 3980 struct super_block *sb = ac->ac_sb; 3981 struct ext4_locality_group *lg = ac->ac_lg; 3982 3983 BUG_ON(lg == NULL); 3984 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3985 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 3986 } 3987 3988 /* 3989 * Normalization means making request better in terms of 3990 * size and alignment 3991 */ 3992 static noinline_for_stack void 3993 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3994 struct ext4_allocation_request *ar) 3995 { 3996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3997 int bsbits, max; 3998 ext4_lblk_t end; 3999 loff_t size, start_off; 4000 loff_t orig_size __maybe_unused; 4001 ext4_lblk_t start; 4002 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4003 struct ext4_prealloc_space *pa; 4004 4005 /* do normalize only data requests, metadata requests 4006 do not need preallocation */ 4007 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4008 return; 4009 4010 /* sometime caller may want exact blocks */ 4011 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4012 return; 4013 4014 /* caller may indicate that preallocation isn't 4015 * required (it's a tail, for example) */ 4016 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4017 return; 4018 4019 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4020 ext4_mb_normalize_group_request(ac); 4021 return ; 4022 } 4023 4024 bsbits = ac->ac_sb->s_blocksize_bits; 4025 4026 /* first, let's learn actual file size 4027 * given current request is allocated */ 4028 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4029 size = size << bsbits; 4030 if (size < i_size_read(ac->ac_inode)) 4031 size = i_size_read(ac->ac_inode); 4032 orig_size = size; 4033 4034 /* max size of free chunks */ 4035 max = 2 << bsbits; 4036 4037 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4038 (req <= (size) || max <= (chunk_size)) 4039 4040 /* first, try to predict filesize */ 4041 /* XXX: should this table be tunable? */ 4042 start_off = 0; 4043 if (size <= 16 * 1024) { 4044 size = 16 * 1024; 4045 } else if (size <= 32 * 1024) { 4046 size = 32 * 1024; 4047 } else if (size <= 64 * 1024) { 4048 size = 64 * 1024; 4049 } else if (size <= 128 * 1024) { 4050 size = 128 * 1024; 4051 } else if (size <= 256 * 1024) { 4052 size = 256 * 1024; 4053 } else if (size <= 512 * 1024) { 4054 size = 512 * 1024; 4055 } else if (size <= 1024 * 1024) { 4056 size = 1024 * 1024; 4057 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4058 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4059 (21 - bsbits)) << 21; 4060 size = 2 * 1024 * 1024; 4061 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4062 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4063 (22 - bsbits)) << 22; 4064 size = 4 * 1024 * 1024; 4065 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 4066 (8<<20)>>bsbits, max, 8 * 1024)) { 4067 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4068 (23 - bsbits)) << 23; 4069 size = 8 * 1024 * 1024; 4070 } else { 4071 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4072 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 4073 ac->ac_o_ex.fe_len) << bsbits; 4074 } 4075 size = size >> bsbits; 4076 start = start_off >> bsbits; 4077 4078 /* 4079 * For tiny groups (smaller than 8MB) the chosen allocation 4080 * alignment may be larger than group size. Make sure the 4081 * alignment does not move allocation to a different group which 4082 * makes mballoc fail assertions later. 4083 */ 4084 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4085 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4086 4087 /* don't cover already allocated blocks in selected range */ 4088 if (ar->pleft && start <= ar->lleft) { 4089 size -= ar->lleft + 1 - start; 4090 start = ar->lleft + 1; 4091 } 4092 if (ar->pright && start + size - 1 >= ar->lright) 4093 size -= start + size - ar->lright; 4094 4095 /* 4096 * Trim allocation request for filesystems with artificially small 4097 * groups. 4098 */ 4099 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4100 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4101 4102 end = start + size; 4103 4104 /* check we don't cross already preallocated blocks */ 4105 rcu_read_lock(); 4106 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4107 ext4_lblk_t pa_end; 4108 4109 if (pa->pa_deleted) 4110 continue; 4111 spin_lock(&pa->pa_lock); 4112 if (pa->pa_deleted) { 4113 spin_unlock(&pa->pa_lock); 4114 continue; 4115 } 4116 4117 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4118 pa->pa_len); 4119 4120 /* PA must not overlap original request */ 4121 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 4122 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 4123 4124 /* skip PAs this normalized request doesn't overlap with */ 4125 if (pa->pa_lstart >= end || pa_end <= start) { 4126 spin_unlock(&pa->pa_lock); 4127 continue; 4128 } 4129 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 4130 4131 /* adjust start or end to be adjacent to this pa */ 4132 if (pa_end <= ac->ac_o_ex.fe_logical) { 4133 BUG_ON(pa_end < start); 4134 start = pa_end; 4135 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4136 BUG_ON(pa->pa_lstart > end); 4137 end = pa->pa_lstart; 4138 } 4139 spin_unlock(&pa->pa_lock); 4140 } 4141 rcu_read_unlock(); 4142 size = end - start; 4143 4144 /* XXX: extra loop to check we really don't overlap preallocations */ 4145 rcu_read_lock(); 4146 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4147 ext4_lblk_t pa_end; 4148 4149 spin_lock(&pa->pa_lock); 4150 if (pa->pa_deleted == 0) { 4151 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4152 pa->pa_len); 4153 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 4154 } 4155 spin_unlock(&pa->pa_lock); 4156 } 4157 rcu_read_unlock(); 4158 4159 /* 4160 * In this function "start" and "size" are normalized for better 4161 * alignment and length such that we could preallocate more blocks. 4162 * This normalization is done such that original request of 4163 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4164 * "size" boundaries. 4165 * (Note fe_len can be relaxed since FS block allocation API does not 4166 * provide gurantee on number of contiguous blocks allocation since that 4167 * depends upon free space left, etc). 4168 * In case of inode pa, later we use the allocated blocks 4169 * [pa_start + fe_logical - pa_lstart, fe_len/size] from the preallocated 4170 * range of goal/best blocks [start, size] to put it at the 4171 * ac_o_ex.fe_logical extent of this inode. 4172 * (See ext4_mb_use_inode_pa() for more details) 4173 */ 4174 if (start + size <= ac->ac_o_ex.fe_logical || 4175 start > ac->ac_o_ex.fe_logical) { 4176 ext4_msg(ac->ac_sb, KERN_ERR, 4177 "start %lu, size %lu, fe_logical %lu", 4178 (unsigned long) start, (unsigned long) size, 4179 (unsigned long) ac->ac_o_ex.fe_logical); 4180 BUG(); 4181 } 4182 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4183 4184 /* now prepare goal request */ 4185 4186 /* XXX: is it better to align blocks WRT to logical 4187 * placement or satisfy big request as is */ 4188 ac->ac_g_ex.fe_logical = start; 4189 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4190 4191 /* define goal start in order to merge */ 4192 if (ar->pright && (ar->lright == (start + size))) { 4193 /* merge to the right */ 4194 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4195 &ac->ac_f_ex.fe_group, 4196 &ac->ac_f_ex.fe_start); 4197 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4198 } 4199 if (ar->pleft && (ar->lleft + 1 == start)) { 4200 /* merge to the left */ 4201 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4202 &ac->ac_f_ex.fe_group, 4203 &ac->ac_f_ex.fe_start); 4204 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4205 } 4206 4207 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4208 orig_size, start); 4209 } 4210 4211 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4212 { 4213 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4214 4215 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4216 atomic_inc(&sbi->s_bal_reqs); 4217 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4218 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4219 atomic_inc(&sbi->s_bal_success); 4220 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4221 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4222 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4223 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4224 atomic_inc(&sbi->s_bal_goals); 4225 if (ac->ac_found > sbi->s_mb_max_to_scan) 4226 atomic_inc(&sbi->s_bal_breaks); 4227 } 4228 4229 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4230 trace_ext4_mballoc_alloc(ac); 4231 else 4232 trace_ext4_mballoc_prealloc(ac); 4233 } 4234 4235 /* 4236 * Called on failure; free up any blocks from the inode PA for this 4237 * context. We don't need this for MB_GROUP_PA because we only change 4238 * pa_free in ext4_mb_release_context(), but on failure, we've already 4239 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4240 */ 4241 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4242 { 4243 struct ext4_prealloc_space *pa = ac->ac_pa; 4244 struct ext4_buddy e4b; 4245 int err; 4246 4247 if (pa == NULL) { 4248 if (ac->ac_f_ex.fe_len == 0) 4249 return; 4250 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4251 if (err) { 4252 /* 4253 * This should never happen since we pin the 4254 * pages in the ext4_allocation_context so 4255 * ext4_mb_load_buddy() should never fail. 4256 */ 4257 WARN(1, "mb_load_buddy failed (%d)", err); 4258 return; 4259 } 4260 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4261 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4262 ac->ac_f_ex.fe_len); 4263 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4264 ext4_mb_unload_buddy(&e4b); 4265 return; 4266 } 4267 if (pa->pa_type == MB_INODE_PA) 4268 pa->pa_free += ac->ac_b_ex.fe_len; 4269 } 4270 4271 /* 4272 * use blocks preallocated to inode 4273 */ 4274 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4275 struct ext4_prealloc_space *pa) 4276 { 4277 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4278 ext4_fsblk_t start; 4279 ext4_fsblk_t end; 4280 int len; 4281 4282 /* found preallocated blocks, use them */ 4283 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4284 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4285 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4286 len = EXT4_NUM_B2C(sbi, end - start); 4287 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4288 &ac->ac_b_ex.fe_start); 4289 ac->ac_b_ex.fe_len = len; 4290 ac->ac_status = AC_STATUS_FOUND; 4291 ac->ac_pa = pa; 4292 4293 BUG_ON(start < pa->pa_pstart); 4294 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4295 BUG_ON(pa->pa_free < len); 4296 pa->pa_free -= len; 4297 4298 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4299 } 4300 4301 /* 4302 * use blocks preallocated to locality group 4303 */ 4304 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4305 struct ext4_prealloc_space *pa) 4306 { 4307 unsigned int len = ac->ac_o_ex.fe_len; 4308 4309 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4310 &ac->ac_b_ex.fe_group, 4311 &ac->ac_b_ex.fe_start); 4312 ac->ac_b_ex.fe_len = len; 4313 ac->ac_status = AC_STATUS_FOUND; 4314 ac->ac_pa = pa; 4315 4316 /* we don't correct pa_pstart or pa_plen here to avoid 4317 * possible race when the group is being loaded concurrently 4318 * instead we correct pa later, after blocks are marked 4319 * in on-disk bitmap -- see ext4_mb_release_context() 4320 * Other CPUs are prevented from allocating from this pa by lg_mutex 4321 */ 4322 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4323 pa->pa_lstart-len, len, pa); 4324 } 4325 4326 /* 4327 * Return the prealloc space that have minimal distance 4328 * from the goal block. @cpa is the prealloc 4329 * space that is having currently known minimal distance 4330 * from the goal block. 4331 */ 4332 static struct ext4_prealloc_space * 4333 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4334 struct ext4_prealloc_space *pa, 4335 struct ext4_prealloc_space *cpa) 4336 { 4337 ext4_fsblk_t cur_distance, new_distance; 4338 4339 if (cpa == NULL) { 4340 atomic_inc(&pa->pa_count); 4341 return pa; 4342 } 4343 cur_distance = abs(goal_block - cpa->pa_pstart); 4344 new_distance = abs(goal_block - pa->pa_pstart); 4345 4346 if (cur_distance <= new_distance) 4347 return cpa; 4348 4349 /* drop the previous reference */ 4350 atomic_dec(&cpa->pa_count); 4351 atomic_inc(&pa->pa_count); 4352 return pa; 4353 } 4354 4355 /* 4356 * search goal blocks in preallocated space 4357 */ 4358 static noinline_for_stack bool 4359 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4360 { 4361 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4362 int order, i; 4363 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4364 struct ext4_locality_group *lg; 4365 struct ext4_prealloc_space *pa, *cpa = NULL; 4366 ext4_fsblk_t goal_block; 4367 4368 /* only data can be preallocated */ 4369 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4370 return false; 4371 4372 /* first, try per-file preallocation */ 4373 rcu_read_lock(); 4374 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4375 4376 /* all fields in this condition don't change, 4377 * so we can skip locking for them */ 4378 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 4379 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 4380 EXT4_C2B(sbi, pa->pa_len))) 4381 continue; 4382 4383 /* non-extent files can't have physical blocks past 2^32 */ 4384 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4385 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 4386 EXT4_MAX_BLOCK_FILE_PHYS)) 4387 continue; 4388 4389 /* found preallocated blocks, use them */ 4390 spin_lock(&pa->pa_lock); 4391 if (pa->pa_deleted == 0 && pa->pa_free) { 4392 atomic_inc(&pa->pa_count); 4393 ext4_mb_use_inode_pa(ac, pa); 4394 spin_unlock(&pa->pa_lock); 4395 ac->ac_criteria = 10; 4396 rcu_read_unlock(); 4397 return true; 4398 } 4399 spin_unlock(&pa->pa_lock); 4400 } 4401 rcu_read_unlock(); 4402 4403 /* can we use group allocation? */ 4404 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4405 return false; 4406 4407 /* inode may have no locality group for some reason */ 4408 lg = ac->ac_lg; 4409 if (lg == NULL) 4410 return false; 4411 order = fls(ac->ac_o_ex.fe_len) - 1; 4412 if (order > PREALLOC_TB_SIZE - 1) 4413 /* The max size of hash table is PREALLOC_TB_SIZE */ 4414 order = PREALLOC_TB_SIZE - 1; 4415 4416 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4417 /* 4418 * search for the prealloc space that is having 4419 * minimal distance from the goal block. 4420 */ 4421 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4422 rcu_read_lock(); 4423 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 4424 pa_inode_list) { 4425 spin_lock(&pa->pa_lock); 4426 if (pa->pa_deleted == 0 && 4427 pa->pa_free >= ac->ac_o_ex.fe_len) { 4428 4429 cpa = ext4_mb_check_group_pa(goal_block, 4430 pa, cpa); 4431 } 4432 spin_unlock(&pa->pa_lock); 4433 } 4434 rcu_read_unlock(); 4435 } 4436 if (cpa) { 4437 ext4_mb_use_group_pa(ac, cpa); 4438 ac->ac_criteria = 20; 4439 return true; 4440 } 4441 return false; 4442 } 4443 4444 /* 4445 * the function goes through all block freed in the group 4446 * but not yet committed and marks them used in in-core bitmap. 4447 * buddy must be generated from this bitmap 4448 * Need to be called with the ext4 group lock held 4449 */ 4450 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 4451 ext4_group_t group) 4452 { 4453 struct rb_node *n; 4454 struct ext4_group_info *grp; 4455 struct ext4_free_data *entry; 4456 4457 grp = ext4_get_group_info(sb, group); 4458 n = rb_first(&(grp->bb_free_root)); 4459 4460 while (n) { 4461 entry = rb_entry(n, struct ext4_free_data, efd_node); 4462 mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 4463 n = rb_next(n); 4464 } 4465 return; 4466 } 4467 4468 /* 4469 * the function goes through all preallocation in this group and marks them 4470 * used in in-core bitmap. buddy must be generated from this bitmap 4471 * Need to be called with ext4 group lock held 4472 */ 4473 static noinline_for_stack 4474 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4475 ext4_group_t group) 4476 { 4477 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4478 struct ext4_prealloc_space *pa; 4479 struct list_head *cur; 4480 ext4_group_t groupnr; 4481 ext4_grpblk_t start; 4482 int preallocated = 0; 4483 int len; 4484 4485 /* all form of preallocation discards first load group, 4486 * so the only competing code is preallocation use. 4487 * we don't need any locking here 4488 * notice we do NOT ignore preallocations with pa_deleted 4489 * otherwise we could leave used blocks available for 4490 * allocation in buddy when concurrent ext4_mb_put_pa() 4491 * is dropping preallocation 4492 */ 4493 list_for_each(cur, &grp->bb_prealloc_list) { 4494 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 4495 spin_lock(&pa->pa_lock); 4496 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4497 &groupnr, &start); 4498 len = pa->pa_len; 4499 spin_unlock(&pa->pa_lock); 4500 if (unlikely(len == 0)) 4501 continue; 4502 BUG_ON(groupnr != group); 4503 mb_set_bits(bitmap, start, len); 4504 preallocated += len; 4505 } 4506 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 4507 } 4508 4509 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 4510 struct ext4_prealloc_space *pa) 4511 { 4512 struct ext4_inode_info *ei; 4513 4514 if (pa->pa_deleted) { 4515 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 4516 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 4517 pa->pa_len); 4518 return; 4519 } 4520 4521 pa->pa_deleted = 1; 4522 4523 if (pa->pa_type == MB_INODE_PA) { 4524 ei = EXT4_I(pa->pa_inode); 4525 atomic_dec(&ei->i_prealloc_active); 4526 } 4527 } 4528 4529 static void ext4_mb_pa_callback(struct rcu_head *head) 4530 { 4531 struct ext4_prealloc_space *pa; 4532 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 4533 4534 BUG_ON(atomic_read(&pa->pa_count)); 4535 BUG_ON(pa->pa_deleted == 0); 4536 kmem_cache_free(ext4_pspace_cachep, pa); 4537 } 4538 4539 /* 4540 * drops a reference to preallocated space descriptor 4541 * if this was the last reference and the space is consumed 4542 */ 4543 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 4544 struct super_block *sb, struct ext4_prealloc_space *pa) 4545 { 4546 ext4_group_t grp; 4547 ext4_fsblk_t grp_blk; 4548 4549 /* in this short window concurrent discard can set pa_deleted */ 4550 spin_lock(&pa->pa_lock); 4551 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 4552 spin_unlock(&pa->pa_lock); 4553 return; 4554 } 4555 4556 if (pa->pa_deleted == 1) { 4557 spin_unlock(&pa->pa_lock); 4558 return; 4559 } 4560 4561 ext4_mb_mark_pa_deleted(sb, pa); 4562 spin_unlock(&pa->pa_lock); 4563 4564 grp_blk = pa->pa_pstart; 4565 /* 4566 * If doing group-based preallocation, pa_pstart may be in the 4567 * next group when pa is used up 4568 */ 4569 if (pa->pa_type == MB_GROUP_PA) 4570 grp_blk--; 4571 4572 grp = ext4_get_group_number(sb, grp_blk); 4573 4574 /* 4575 * possible race: 4576 * 4577 * P1 (buddy init) P2 (regular allocation) 4578 * find block B in PA 4579 * copy on-disk bitmap to buddy 4580 * mark B in on-disk bitmap 4581 * drop PA from group 4582 * mark all PAs in buddy 4583 * 4584 * thus, P1 initializes buddy with B available. to prevent this 4585 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 4586 * against that pair 4587 */ 4588 ext4_lock_group(sb, grp); 4589 list_del(&pa->pa_group_list); 4590 ext4_unlock_group(sb, grp); 4591 4592 spin_lock(pa->pa_obj_lock); 4593 list_del_rcu(&pa->pa_inode_list); 4594 spin_unlock(pa->pa_obj_lock); 4595 4596 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4597 } 4598 4599 /* 4600 * creates new preallocated space for given inode 4601 */ 4602 static noinline_for_stack void 4603 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 4604 { 4605 struct super_block *sb = ac->ac_sb; 4606 struct ext4_sb_info *sbi = EXT4_SB(sb); 4607 struct ext4_prealloc_space *pa; 4608 struct ext4_group_info *grp; 4609 struct ext4_inode_info *ei; 4610 4611 /* preallocate only when found space is larger then requested */ 4612 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4613 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4614 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4615 BUG_ON(ac->ac_pa == NULL); 4616 4617 pa = ac->ac_pa; 4618 4619 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 4620 int winl; 4621 int wins; 4622 int win; 4623 int offs; 4624 4625 /* we can't allocate as much as normalizer wants. 4626 * so, found space must get proper lstart 4627 * to cover original request */ 4628 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 4629 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 4630 4631 /* we're limited by original request in that 4632 * logical block must be covered any way 4633 * winl is window we can move our chunk within */ 4634 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 4635 4636 /* also, we should cover whole original request */ 4637 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 4638 4639 /* the smallest one defines real window */ 4640 win = min(winl, wins); 4641 4642 offs = ac->ac_o_ex.fe_logical % 4643 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4644 if (offs && offs < win) 4645 win = offs; 4646 4647 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 4648 EXT4_NUM_B2C(sbi, win); 4649 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 4650 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 4651 } 4652 4653 /* preallocation can change ac_b_ex, thus we store actually 4654 * allocated blocks for history */ 4655 ac->ac_f_ex = ac->ac_b_ex; 4656 4657 pa->pa_lstart = ac->ac_b_ex.fe_logical; 4658 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4659 pa->pa_len = ac->ac_b_ex.fe_len; 4660 pa->pa_free = pa->pa_len; 4661 spin_lock_init(&pa->pa_lock); 4662 INIT_LIST_HEAD(&pa->pa_inode_list); 4663 INIT_LIST_HEAD(&pa->pa_group_list); 4664 pa->pa_deleted = 0; 4665 pa->pa_type = MB_INODE_PA; 4666 4667 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4668 pa->pa_len, pa->pa_lstart); 4669 trace_ext4_mb_new_inode_pa(ac, pa); 4670 4671 ext4_mb_use_inode_pa(ac, pa); 4672 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 4673 4674 ei = EXT4_I(ac->ac_inode); 4675 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4676 4677 pa->pa_obj_lock = &ei->i_prealloc_lock; 4678 pa->pa_inode = ac->ac_inode; 4679 4680 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4681 4682 spin_lock(pa->pa_obj_lock); 4683 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 4684 spin_unlock(pa->pa_obj_lock); 4685 atomic_inc(&ei->i_prealloc_active); 4686 } 4687 4688 /* 4689 * creates new preallocated space for locality group inodes belongs to 4690 */ 4691 static noinline_for_stack void 4692 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 4693 { 4694 struct super_block *sb = ac->ac_sb; 4695 struct ext4_locality_group *lg; 4696 struct ext4_prealloc_space *pa; 4697 struct ext4_group_info *grp; 4698 4699 /* preallocate only when found space is larger then requested */ 4700 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4701 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4702 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4703 BUG_ON(ac->ac_pa == NULL); 4704 4705 pa = ac->ac_pa; 4706 4707 /* preallocation can change ac_b_ex, thus we store actually 4708 * allocated blocks for history */ 4709 ac->ac_f_ex = ac->ac_b_ex; 4710 4711 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4712 pa->pa_lstart = pa->pa_pstart; 4713 pa->pa_len = ac->ac_b_ex.fe_len; 4714 pa->pa_free = pa->pa_len; 4715 spin_lock_init(&pa->pa_lock); 4716 INIT_LIST_HEAD(&pa->pa_inode_list); 4717 INIT_LIST_HEAD(&pa->pa_group_list); 4718 pa->pa_deleted = 0; 4719 pa->pa_type = MB_GROUP_PA; 4720 4721 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4722 pa->pa_len, pa->pa_lstart); 4723 trace_ext4_mb_new_group_pa(ac, pa); 4724 4725 ext4_mb_use_group_pa(ac, pa); 4726 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 4727 4728 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4729 lg = ac->ac_lg; 4730 BUG_ON(lg == NULL); 4731 4732 pa->pa_obj_lock = &lg->lg_prealloc_lock; 4733 pa->pa_inode = NULL; 4734 4735 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4736 4737 /* 4738 * We will later add the new pa to the right bucket 4739 * after updating the pa_free in ext4_mb_release_context 4740 */ 4741 } 4742 4743 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 4744 { 4745 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4746 ext4_mb_new_group_pa(ac); 4747 else 4748 ext4_mb_new_inode_pa(ac); 4749 } 4750 4751 /* 4752 * finds all unused blocks in on-disk bitmap, frees them in 4753 * in-core bitmap and buddy. 4754 * @pa must be unlinked from inode and group lists, so that 4755 * nobody else can find/use it. 4756 * the caller MUST hold group/inode locks. 4757 * TODO: optimize the case when there are no in-core structures yet 4758 */ 4759 static noinline_for_stack int 4760 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 4761 struct ext4_prealloc_space *pa) 4762 { 4763 struct super_block *sb = e4b->bd_sb; 4764 struct ext4_sb_info *sbi = EXT4_SB(sb); 4765 unsigned int end; 4766 unsigned int next; 4767 ext4_group_t group; 4768 ext4_grpblk_t bit; 4769 unsigned long long grp_blk_start; 4770 int free = 0; 4771 4772 BUG_ON(pa->pa_deleted == 0); 4773 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4774 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 4775 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4776 end = bit + pa->pa_len; 4777 4778 while (bit < end) { 4779 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 4780 if (bit >= end) 4781 break; 4782 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 4783 mb_debug(sb, "free preallocated %u/%u in group %u\n", 4784 (unsigned) ext4_group_first_block_no(sb, group) + bit, 4785 (unsigned) next - bit, (unsigned) group); 4786 free += next - bit; 4787 4788 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 4789 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 4790 EXT4_C2B(sbi, bit)), 4791 next - bit); 4792 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 4793 bit = next + 1; 4794 } 4795 if (free != pa->pa_free) { 4796 ext4_msg(e4b->bd_sb, KERN_CRIT, 4797 "pa %p: logic %lu, phys. %lu, len %d", 4798 pa, (unsigned long) pa->pa_lstart, 4799 (unsigned long) pa->pa_pstart, 4800 pa->pa_len); 4801 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 4802 free, pa->pa_free); 4803 /* 4804 * pa is already deleted so we use the value obtained 4805 * from the bitmap and continue. 4806 */ 4807 } 4808 atomic_add(free, &sbi->s_mb_discarded); 4809 4810 return 0; 4811 } 4812 4813 static noinline_for_stack int 4814 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 4815 struct ext4_prealloc_space *pa) 4816 { 4817 struct super_block *sb = e4b->bd_sb; 4818 ext4_group_t group; 4819 ext4_grpblk_t bit; 4820 4821 trace_ext4_mb_release_group_pa(sb, pa); 4822 BUG_ON(pa->pa_deleted == 0); 4823 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4824 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4825 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 4826 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 4827 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 4828 4829 return 0; 4830 } 4831 4832 /* 4833 * releases all preallocations in given group 4834 * 4835 * first, we need to decide discard policy: 4836 * - when do we discard 4837 * 1) ENOSPC 4838 * - how many do we discard 4839 * 1) how many requested 4840 */ 4841 static noinline_for_stack int 4842 ext4_mb_discard_group_preallocations(struct super_block *sb, 4843 ext4_group_t group, int *busy) 4844 { 4845 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4846 struct buffer_head *bitmap_bh = NULL; 4847 struct ext4_prealloc_space *pa, *tmp; 4848 struct list_head list; 4849 struct ext4_buddy e4b; 4850 int err; 4851 int free = 0; 4852 4853 mb_debug(sb, "discard preallocation for group %u\n", group); 4854 if (list_empty(&grp->bb_prealloc_list)) 4855 goto out_dbg; 4856 4857 bitmap_bh = ext4_read_block_bitmap(sb, group); 4858 if (IS_ERR(bitmap_bh)) { 4859 err = PTR_ERR(bitmap_bh); 4860 ext4_error_err(sb, -err, 4861 "Error %d reading block bitmap for %u", 4862 err, group); 4863 goto out_dbg; 4864 } 4865 4866 err = ext4_mb_load_buddy(sb, group, &e4b); 4867 if (err) { 4868 ext4_warning(sb, "Error %d loading buddy information for %u", 4869 err, group); 4870 put_bh(bitmap_bh); 4871 goto out_dbg; 4872 } 4873 4874 INIT_LIST_HEAD(&list); 4875 ext4_lock_group(sb, group); 4876 list_for_each_entry_safe(pa, tmp, 4877 &grp->bb_prealloc_list, pa_group_list) { 4878 spin_lock(&pa->pa_lock); 4879 if (atomic_read(&pa->pa_count)) { 4880 spin_unlock(&pa->pa_lock); 4881 *busy = 1; 4882 continue; 4883 } 4884 if (pa->pa_deleted) { 4885 spin_unlock(&pa->pa_lock); 4886 continue; 4887 } 4888 4889 /* seems this one can be freed ... */ 4890 ext4_mb_mark_pa_deleted(sb, pa); 4891 4892 if (!free) 4893 this_cpu_inc(discard_pa_seq); 4894 4895 /* we can trust pa_free ... */ 4896 free += pa->pa_free; 4897 4898 spin_unlock(&pa->pa_lock); 4899 4900 list_del(&pa->pa_group_list); 4901 list_add(&pa->u.pa_tmp_list, &list); 4902 } 4903 4904 /* now free all selected PAs */ 4905 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4906 4907 /* remove from object (inode or locality group) */ 4908 spin_lock(pa->pa_obj_lock); 4909 list_del_rcu(&pa->pa_inode_list); 4910 spin_unlock(pa->pa_obj_lock); 4911 4912 if (pa->pa_type == MB_GROUP_PA) 4913 ext4_mb_release_group_pa(&e4b, pa); 4914 else 4915 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4916 4917 list_del(&pa->u.pa_tmp_list); 4918 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4919 } 4920 4921 ext4_unlock_group(sb, group); 4922 ext4_mb_unload_buddy(&e4b); 4923 put_bh(bitmap_bh); 4924 out_dbg: 4925 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4926 free, group, grp->bb_free); 4927 return free; 4928 } 4929 4930 /* 4931 * releases all non-used preallocated blocks for given inode 4932 * 4933 * It's important to discard preallocations under i_data_sem 4934 * We don't want another block to be served from the prealloc 4935 * space when we are discarding the inode prealloc space. 4936 * 4937 * FIXME!! Make sure it is valid at all the call sites 4938 */ 4939 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 4940 { 4941 struct ext4_inode_info *ei = EXT4_I(inode); 4942 struct super_block *sb = inode->i_sb; 4943 struct buffer_head *bitmap_bh = NULL; 4944 struct ext4_prealloc_space *pa, *tmp; 4945 ext4_group_t group = 0; 4946 struct list_head list; 4947 struct ext4_buddy e4b; 4948 int err; 4949 4950 if (!S_ISREG(inode->i_mode)) { 4951 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4952 return; 4953 } 4954 4955 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 4956 return; 4957 4958 mb_debug(sb, "discard preallocation for inode %lu\n", 4959 inode->i_ino); 4960 trace_ext4_discard_preallocations(inode, 4961 atomic_read(&ei->i_prealloc_active), needed); 4962 4963 INIT_LIST_HEAD(&list); 4964 4965 if (needed == 0) 4966 needed = UINT_MAX; 4967 4968 repeat: 4969 /* first, collect all pa's in the inode */ 4970 spin_lock(&ei->i_prealloc_lock); 4971 while (!list_empty(&ei->i_prealloc_list) && needed) { 4972 pa = list_entry(ei->i_prealloc_list.prev, 4973 struct ext4_prealloc_space, pa_inode_list); 4974 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4975 spin_lock(&pa->pa_lock); 4976 if (atomic_read(&pa->pa_count)) { 4977 /* this shouldn't happen often - nobody should 4978 * use preallocation while we're discarding it */ 4979 spin_unlock(&pa->pa_lock); 4980 spin_unlock(&ei->i_prealloc_lock); 4981 ext4_msg(sb, KERN_ERR, 4982 "uh-oh! used pa while discarding"); 4983 WARN_ON(1); 4984 schedule_timeout_uninterruptible(HZ); 4985 goto repeat; 4986 4987 } 4988 if (pa->pa_deleted == 0) { 4989 ext4_mb_mark_pa_deleted(sb, pa); 4990 spin_unlock(&pa->pa_lock); 4991 list_del_rcu(&pa->pa_inode_list); 4992 list_add(&pa->u.pa_tmp_list, &list); 4993 needed--; 4994 continue; 4995 } 4996 4997 /* someone is deleting pa right now */ 4998 spin_unlock(&pa->pa_lock); 4999 spin_unlock(&ei->i_prealloc_lock); 5000 5001 /* we have to wait here because pa_deleted 5002 * doesn't mean pa is already unlinked from 5003 * the list. as we might be called from 5004 * ->clear_inode() the inode will get freed 5005 * and concurrent thread which is unlinking 5006 * pa from inode's list may access already 5007 * freed memory, bad-bad-bad */ 5008 5009 /* XXX: if this happens too often, we can 5010 * add a flag to force wait only in case 5011 * of ->clear_inode(), but not in case of 5012 * regular truncate */ 5013 schedule_timeout_uninterruptible(HZ); 5014 goto repeat; 5015 } 5016 spin_unlock(&ei->i_prealloc_lock); 5017 5018 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5019 BUG_ON(pa->pa_type != MB_INODE_PA); 5020 group = ext4_get_group_number(sb, pa->pa_pstart); 5021 5022 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5023 GFP_NOFS|__GFP_NOFAIL); 5024 if (err) { 5025 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5026 err, group); 5027 continue; 5028 } 5029 5030 bitmap_bh = ext4_read_block_bitmap(sb, group); 5031 if (IS_ERR(bitmap_bh)) { 5032 err = PTR_ERR(bitmap_bh); 5033 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5034 err, group); 5035 ext4_mb_unload_buddy(&e4b); 5036 continue; 5037 } 5038 5039 ext4_lock_group(sb, group); 5040 list_del(&pa->pa_group_list); 5041 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5042 ext4_unlock_group(sb, group); 5043 5044 ext4_mb_unload_buddy(&e4b); 5045 put_bh(bitmap_bh); 5046 5047 list_del(&pa->u.pa_tmp_list); 5048 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5049 } 5050 } 5051 5052 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5053 { 5054 struct ext4_prealloc_space *pa; 5055 5056 BUG_ON(ext4_pspace_cachep == NULL); 5057 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5058 if (!pa) 5059 return -ENOMEM; 5060 atomic_set(&pa->pa_count, 1); 5061 ac->ac_pa = pa; 5062 return 0; 5063 } 5064 5065 static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 5066 { 5067 struct ext4_prealloc_space *pa = ac->ac_pa; 5068 5069 BUG_ON(!pa); 5070 ac->ac_pa = NULL; 5071 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5072 kmem_cache_free(ext4_pspace_cachep, pa); 5073 } 5074 5075 #ifdef CONFIG_EXT4_DEBUG 5076 static inline void ext4_mb_show_pa(struct super_block *sb) 5077 { 5078 ext4_group_t i, ngroups; 5079 5080 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5081 return; 5082 5083 ngroups = ext4_get_groups_count(sb); 5084 mb_debug(sb, "groups: "); 5085 for (i = 0; i < ngroups; i++) { 5086 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5087 struct ext4_prealloc_space *pa; 5088 ext4_grpblk_t start; 5089 struct list_head *cur; 5090 ext4_lock_group(sb, i); 5091 list_for_each(cur, &grp->bb_prealloc_list) { 5092 pa = list_entry(cur, struct ext4_prealloc_space, 5093 pa_group_list); 5094 spin_lock(&pa->pa_lock); 5095 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5096 NULL, &start); 5097 spin_unlock(&pa->pa_lock); 5098 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5099 pa->pa_len); 5100 } 5101 ext4_unlock_group(sb, i); 5102 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5103 grp->bb_fragments); 5104 } 5105 } 5106 5107 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5108 { 5109 struct super_block *sb = ac->ac_sb; 5110 5111 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5112 return; 5113 5114 mb_debug(sb, "Can't allocate:" 5115 " Allocation context details:"); 5116 mb_debug(sb, "status %u flags 0x%x", 5117 ac->ac_status, ac->ac_flags); 5118 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5119 "goal %lu/%lu/%lu@%lu, " 5120 "best %lu/%lu/%lu@%lu cr %d", 5121 (unsigned long)ac->ac_o_ex.fe_group, 5122 (unsigned long)ac->ac_o_ex.fe_start, 5123 (unsigned long)ac->ac_o_ex.fe_len, 5124 (unsigned long)ac->ac_o_ex.fe_logical, 5125 (unsigned long)ac->ac_g_ex.fe_group, 5126 (unsigned long)ac->ac_g_ex.fe_start, 5127 (unsigned long)ac->ac_g_ex.fe_len, 5128 (unsigned long)ac->ac_g_ex.fe_logical, 5129 (unsigned long)ac->ac_b_ex.fe_group, 5130 (unsigned long)ac->ac_b_ex.fe_start, 5131 (unsigned long)ac->ac_b_ex.fe_len, 5132 (unsigned long)ac->ac_b_ex.fe_logical, 5133 (int)ac->ac_criteria); 5134 mb_debug(sb, "%u found", ac->ac_found); 5135 ext4_mb_show_pa(sb); 5136 } 5137 #else 5138 static inline void ext4_mb_show_pa(struct super_block *sb) 5139 { 5140 return; 5141 } 5142 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5143 { 5144 ext4_mb_show_pa(ac->ac_sb); 5145 return; 5146 } 5147 #endif 5148 5149 /* 5150 * We use locality group preallocation for small size file. The size of the 5151 * file is determined by the current size or the resulting size after 5152 * allocation which ever is larger 5153 * 5154 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5155 */ 5156 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5157 { 5158 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5159 int bsbits = ac->ac_sb->s_blocksize_bits; 5160 loff_t size, isize; 5161 bool inode_pa_eligible, group_pa_eligible; 5162 5163 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5164 return; 5165 5166 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5167 return; 5168 5169 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5170 inode_pa_eligible = true; 5171 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 5172 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5173 >> bsbits; 5174 5175 /* No point in using inode preallocation for closed files */ 5176 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5177 !inode_is_open_for_write(ac->ac_inode)) 5178 inode_pa_eligible = false; 5179 5180 size = max(size, isize); 5181 /* Don't use group allocation for large files */ 5182 if (size > sbi->s_mb_stream_request) 5183 group_pa_eligible = false; 5184 5185 if (!group_pa_eligible) { 5186 if (inode_pa_eligible) 5187 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5188 else 5189 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5190 return; 5191 } 5192 5193 BUG_ON(ac->ac_lg != NULL); 5194 /* 5195 * locality group prealloc space are per cpu. The reason for having 5196 * per cpu locality group is to reduce the contention between block 5197 * request from multiple CPUs. 5198 */ 5199 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5200 5201 /* we're going to use group allocation */ 5202 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5203 5204 /* serialize all allocations in the group */ 5205 mutex_lock(&ac->ac_lg->lg_mutex); 5206 } 5207 5208 static noinline_for_stack int 5209 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5210 struct ext4_allocation_request *ar) 5211 { 5212 struct super_block *sb = ar->inode->i_sb; 5213 struct ext4_sb_info *sbi = EXT4_SB(sb); 5214 struct ext4_super_block *es = sbi->s_es; 5215 ext4_group_t group; 5216 unsigned int len; 5217 ext4_fsblk_t goal; 5218 ext4_grpblk_t block; 5219 5220 /* we can't allocate > group size */ 5221 len = ar->len; 5222 5223 /* just a dirty hack to filter too big requests */ 5224 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5225 len = EXT4_CLUSTERS_PER_GROUP(sb); 5226 5227 /* start searching from the goal */ 5228 goal = ar->goal; 5229 if (goal < le32_to_cpu(es->s_first_data_block) || 5230 goal >= ext4_blocks_count(es)) 5231 goal = le32_to_cpu(es->s_first_data_block); 5232 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5233 5234 /* set up allocation goals */ 5235 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5236 ac->ac_status = AC_STATUS_CONTINUE; 5237 ac->ac_sb = sb; 5238 ac->ac_inode = ar->inode; 5239 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5240 ac->ac_o_ex.fe_group = group; 5241 ac->ac_o_ex.fe_start = block; 5242 ac->ac_o_ex.fe_len = len; 5243 ac->ac_g_ex = ac->ac_o_ex; 5244 ac->ac_flags = ar->flags; 5245 5246 /* we have to define context: we'll work with a file or 5247 * locality group. this is a policy, actually */ 5248 ext4_mb_group_or_file(ac); 5249 5250 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5251 "left: %u/%u, right %u/%u to %swritable\n", 5252 (unsigned) ar->len, (unsigned) ar->logical, 5253 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5254 (unsigned) ar->lleft, (unsigned) ar->pleft, 5255 (unsigned) ar->lright, (unsigned) ar->pright, 5256 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5257 return 0; 5258 5259 } 5260 5261 static noinline_for_stack void 5262 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5263 struct ext4_locality_group *lg, 5264 int order, int total_entries) 5265 { 5266 ext4_group_t group = 0; 5267 struct ext4_buddy e4b; 5268 struct list_head discard_list; 5269 struct ext4_prealloc_space *pa, *tmp; 5270 5271 mb_debug(sb, "discard locality group preallocation\n"); 5272 5273 INIT_LIST_HEAD(&discard_list); 5274 5275 spin_lock(&lg->lg_prealloc_lock); 5276 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5277 pa_inode_list, 5278 lockdep_is_held(&lg->lg_prealloc_lock)) { 5279 spin_lock(&pa->pa_lock); 5280 if (atomic_read(&pa->pa_count)) { 5281 /* 5282 * This is the pa that we just used 5283 * for block allocation. So don't 5284 * free that 5285 */ 5286 spin_unlock(&pa->pa_lock); 5287 continue; 5288 } 5289 if (pa->pa_deleted) { 5290 spin_unlock(&pa->pa_lock); 5291 continue; 5292 } 5293 /* only lg prealloc space */ 5294 BUG_ON(pa->pa_type != MB_GROUP_PA); 5295 5296 /* seems this one can be freed ... */ 5297 ext4_mb_mark_pa_deleted(sb, pa); 5298 spin_unlock(&pa->pa_lock); 5299 5300 list_del_rcu(&pa->pa_inode_list); 5301 list_add(&pa->u.pa_tmp_list, &discard_list); 5302 5303 total_entries--; 5304 if (total_entries <= 5) { 5305 /* 5306 * we want to keep only 5 entries 5307 * allowing it to grow to 8. This 5308 * mak sure we don't call discard 5309 * soon for this list. 5310 */ 5311 break; 5312 } 5313 } 5314 spin_unlock(&lg->lg_prealloc_lock); 5315 5316 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5317 int err; 5318 5319 group = ext4_get_group_number(sb, pa->pa_pstart); 5320 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5321 GFP_NOFS|__GFP_NOFAIL); 5322 if (err) { 5323 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5324 err, group); 5325 continue; 5326 } 5327 ext4_lock_group(sb, group); 5328 list_del(&pa->pa_group_list); 5329 ext4_mb_release_group_pa(&e4b, pa); 5330 ext4_unlock_group(sb, group); 5331 5332 ext4_mb_unload_buddy(&e4b); 5333 list_del(&pa->u.pa_tmp_list); 5334 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5335 } 5336 } 5337 5338 /* 5339 * We have incremented pa_count. So it cannot be freed at this 5340 * point. Also we hold lg_mutex. So no parallel allocation is 5341 * possible from this lg. That means pa_free cannot be updated. 5342 * 5343 * A parallel ext4_mb_discard_group_preallocations is possible. 5344 * which can cause the lg_prealloc_list to be updated. 5345 */ 5346 5347 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5348 { 5349 int order, added = 0, lg_prealloc_count = 1; 5350 struct super_block *sb = ac->ac_sb; 5351 struct ext4_locality_group *lg = ac->ac_lg; 5352 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5353 5354 order = fls(pa->pa_free) - 1; 5355 if (order > PREALLOC_TB_SIZE - 1) 5356 /* The max size of hash table is PREALLOC_TB_SIZE */ 5357 order = PREALLOC_TB_SIZE - 1; 5358 /* Add the prealloc space to lg */ 5359 spin_lock(&lg->lg_prealloc_lock); 5360 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5361 pa_inode_list, 5362 lockdep_is_held(&lg->lg_prealloc_lock)) { 5363 spin_lock(&tmp_pa->pa_lock); 5364 if (tmp_pa->pa_deleted) { 5365 spin_unlock(&tmp_pa->pa_lock); 5366 continue; 5367 } 5368 if (!added && pa->pa_free < tmp_pa->pa_free) { 5369 /* Add to the tail of the previous entry */ 5370 list_add_tail_rcu(&pa->pa_inode_list, 5371 &tmp_pa->pa_inode_list); 5372 added = 1; 5373 /* 5374 * we want to count the total 5375 * number of entries in the list 5376 */ 5377 } 5378 spin_unlock(&tmp_pa->pa_lock); 5379 lg_prealloc_count++; 5380 } 5381 if (!added) 5382 list_add_tail_rcu(&pa->pa_inode_list, 5383 &lg->lg_prealloc_list[order]); 5384 spin_unlock(&lg->lg_prealloc_lock); 5385 5386 /* Now trim the list to be not more than 8 elements */ 5387 if (lg_prealloc_count > 8) { 5388 ext4_mb_discard_lg_preallocations(sb, lg, 5389 order, lg_prealloc_count); 5390 return; 5391 } 5392 return ; 5393 } 5394 5395 /* 5396 * if per-inode prealloc list is too long, trim some PA 5397 */ 5398 static void ext4_mb_trim_inode_pa(struct inode *inode) 5399 { 5400 struct ext4_inode_info *ei = EXT4_I(inode); 5401 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5402 int count, delta; 5403 5404 count = atomic_read(&ei->i_prealloc_active); 5405 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1; 5406 if (count > sbi->s_mb_max_inode_prealloc + delta) { 5407 count -= sbi->s_mb_max_inode_prealloc; 5408 ext4_discard_preallocations(inode, count); 5409 } 5410 } 5411 5412 /* 5413 * release all resource we used in allocation 5414 */ 5415 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5416 { 5417 struct inode *inode = ac->ac_inode; 5418 struct ext4_inode_info *ei = EXT4_I(inode); 5419 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5420 struct ext4_prealloc_space *pa = ac->ac_pa; 5421 if (pa) { 5422 if (pa->pa_type == MB_GROUP_PA) { 5423 /* see comment in ext4_mb_use_group_pa() */ 5424 spin_lock(&pa->pa_lock); 5425 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5426 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5427 pa->pa_free -= ac->ac_b_ex.fe_len; 5428 pa->pa_len -= ac->ac_b_ex.fe_len; 5429 spin_unlock(&pa->pa_lock); 5430 5431 /* 5432 * We want to add the pa to the right bucket. 5433 * Remove it from the list and while adding 5434 * make sure the list to which we are adding 5435 * doesn't grow big. 5436 */ 5437 if (likely(pa->pa_free)) { 5438 spin_lock(pa->pa_obj_lock); 5439 list_del_rcu(&pa->pa_inode_list); 5440 spin_unlock(pa->pa_obj_lock); 5441 ext4_mb_add_n_trim(ac); 5442 } 5443 } 5444 5445 if (pa->pa_type == MB_INODE_PA) { 5446 /* 5447 * treat per-inode prealloc list as a lru list, then try 5448 * to trim the least recently used PA. 5449 */ 5450 spin_lock(pa->pa_obj_lock); 5451 list_move(&pa->pa_inode_list, &ei->i_prealloc_list); 5452 spin_unlock(pa->pa_obj_lock); 5453 } 5454 5455 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5456 } 5457 if (ac->ac_bitmap_page) 5458 put_page(ac->ac_bitmap_page); 5459 if (ac->ac_buddy_page) 5460 put_page(ac->ac_buddy_page); 5461 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5462 mutex_unlock(&ac->ac_lg->lg_mutex); 5463 ext4_mb_collect_stats(ac); 5464 ext4_mb_trim_inode_pa(inode); 5465 return 0; 5466 } 5467 5468 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 5469 { 5470 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 5471 int ret; 5472 int freed = 0, busy = 0; 5473 int retry = 0; 5474 5475 trace_ext4_mb_discard_preallocations(sb, needed); 5476 5477 if (needed == 0) 5478 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 5479 repeat: 5480 for (i = 0; i < ngroups && needed > 0; i++) { 5481 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 5482 freed += ret; 5483 needed -= ret; 5484 cond_resched(); 5485 } 5486 5487 if (needed > 0 && busy && ++retry < 3) { 5488 busy = 0; 5489 goto repeat; 5490 } 5491 5492 return freed; 5493 } 5494 5495 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 5496 struct ext4_allocation_context *ac, u64 *seq) 5497 { 5498 int freed; 5499 u64 seq_retry = 0; 5500 bool ret = false; 5501 5502 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 5503 if (freed) { 5504 ret = true; 5505 goto out_dbg; 5506 } 5507 seq_retry = ext4_get_discard_pa_seq_sum(); 5508 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 5509 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 5510 *seq = seq_retry; 5511 ret = true; 5512 } 5513 5514 out_dbg: 5515 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 5516 return ret; 5517 } 5518 5519 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5520 struct ext4_allocation_request *ar, int *errp); 5521 5522 /* 5523 * Main entry point into mballoc to allocate blocks 5524 * it tries to use preallocation first, then falls back 5525 * to usual allocation 5526 */ 5527 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 5528 struct ext4_allocation_request *ar, int *errp) 5529 { 5530 struct ext4_allocation_context *ac = NULL; 5531 struct ext4_sb_info *sbi; 5532 struct super_block *sb; 5533 ext4_fsblk_t block = 0; 5534 unsigned int inquota = 0; 5535 unsigned int reserv_clstrs = 0; 5536 int retries = 0; 5537 u64 seq; 5538 5539 might_sleep(); 5540 sb = ar->inode->i_sb; 5541 sbi = EXT4_SB(sb); 5542 5543 trace_ext4_request_blocks(ar); 5544 if (sbi->s_mount_state & EXT4_FC_REPLAY) 5545 return ext4_mb_new_blocks_simple(handle, ar, errp); 5546 5547 /* Allow to use superuser reservation for quota file */ 5548 if (ext4_is_quota_file(ar->inode)) 5549 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 5550 5551 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 5552 /* Without delayed allocation we need to verify 5553 * there is enough free blocks to do block allocation 5554 * and verify allocation doesn't exceed the quota limits. 5555 */ 5556 while (ar->len && 5557 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 5558 5559 /* let others to free the space */ 5560 cond_resched(); 5561 ar->len = ar->len >> 1; 5562 } 5563 if (!ar->len) { 5564 ext4_mb_show_pa(sb); 5565 *errp = -ENOSPC; 5566 return 0; 5567 } 5568 reserv_clstrs = ar->len; 5569 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 5570 dquot_alloc_block_nofail(ar->inode, 5571 EXT4_C2B(sbi, ar->len)); 5572 } else { 5573 while (ar->len && 5574 dquot_alloc_block(ar->inode, 5575 EXT4_C2B(sbi, ar->len))) { 5576 5577 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 5578 ar->len--; 5579 } 5580 } 5581 inquota = ar->len; 5582 if (ar->len == 0) { 5583 *errp = -EDQUOT; 5584 goto out; 5585 } 5586 } 5587 5588 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 5589 if (!ac) { 5590 ar->len = 0; 5591 *errp = -ENOMEM; 5592 goto out; 5593 } 5594 5595 *errp = ext4_mb_initialize_context(ac, ar); 5596 if (*errp) { 5597 ar->len = 0; 5598 goto out; 5599 } 5600 5601 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 5602 seq = this_cpu_read(discard_pa_seq); 5603 if (!ext4_mb_use_preallocated(ac)) { 5604 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 5605 ext4_mb_normalize_request(ac, ar); 5606 5607 *errp = ext4_mb_pa_alloc(ac); 5608 if (*errp) 5609 goto errout; 5610 repeat: 5611 /* allocate space in core */ 5612 *errp = ext4_mb_regular_allocator(ac); 5613 /* 5614 * pa allocated above is added to grp->bb_prealloc_list only 5615 * when we were able to allocate some block i.e. when 5616 * ac->ac_status == AC_STATUS_FOUND. 5617 * And error from above mean ac->ac_status != AC_STATUS_FOUND 5618 * So we have to free this pa here itself. 5619 */ 5620 if (*errp) { 5621 ext4_mb_pa_free(ac); 5622 ext4_discard_allocated_blocks(ac); 5623 goto errout; 5624 } 5625 if (ac->ac_status == AC_STATUS_FOUND && 5626 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 5627 ext4_mb_pa_free(ac); 5628 } 5629 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 5630 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 5631 if (*errp) { 5632 ext4_discard_allocated_blocks(ac); 5633 goto errout; 5634 } else { 5635 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5636 ar->len = ac->ac_b_ex.fe_len; 5637 } 5638 } else { 5639 if (++retries < 3 && 5640 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 5641 goto repeat; 5642 /* 5643 * If block allocation fails then the pa allocated above 5644 * needs to be freed here itself. 5645 */ 5646 ext4_mb_pa_free(ac); 5647 *errp = -ENOSPC; 5648 } 5649 5650 errout: 5651 if (*errp) { 5652 ac->ac_b_ex.fe_len = 0; 5653 ar->len = 0; 5654 ext4_mb_show_ac(ac); 5655 } 5656 ext4_mb_release_context(ac); 5657 out: 5658 if (ac) 5659 kmem_cache_free(ext4_ac_cachep, ac); 5660 if (inquota && ar->len < inquota) 5661 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 5662 if (!ar->len) { 5663 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 5664 /* release all the reserved blocks if non delalloc */ 5665 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 5666 reserv_clstrs); 5667 } 5668 5669 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 5670 5671 return block; 5672 } 5673 5674 /* 5675 * We can merge two free data extents only if the physical blocks 5676 * are contiguous, AND the extents were freed by the same transaction, 5677 * AND the blocks are associated with the same group. 5678 */ 5679 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 5680 struct ext4_free_data *entry, 5681 struct ext4_free_data *new_entry, 5682 struct rb_root *entry_rb_root) 5683 { 5684 if ((entry->efd_tid != new_entry->efd_tid) || 5685 (entry->efd_group != new_entry->efd_group)) 5686 return; 5687 if (entry->efd_start_cluster + entry->efd_count == 5688 new_entry->efd_start_cluster) { 5689 new_entry->efd_start_cluster = entry->efd_start_cluster; 5690 new_entry->efd_count += entry->efd_count; 5691 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 5692 entry->efd_start_cluster) { 5693 new_entry->efd_count += entry->efd_count; 5694 } else 5695 return; 5696 spin_lock(&sbi->s_md_lock); 5697 list_del(&entry->efd_list); 5698 spin_unlock(&sbi->s_md_lock); 5699 rb_erase(&entry->efd_node, entry_rb_root); 5700 kmem_cache_free(ext4_free_data_cachep, entry); 5701 } 5702 5703 static noinline_for_stack int 5704 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 5705 struct ext4_free_data *new_entry) 5706 { 5707 ext4_group_t group = e4b->bd_group; 5708 ext4_grpblk_t cluster; 5709 ext4_grpblk_t clusters = new_entry->efd_count; 5710 struct ext4_free_data *entry; 5711 struct ext4_group_info *db = e4b->bd_info; 5712 struct super_block *sb = e4b->bd_sb; 5713 struct ext4_sb_info *sbi = EXT4_SB(sb); 5714 struct rb_node **n = &db->bb_free_root.rb_node, *node; 5715 struct rb_node *parent = NULL, *new_node; 5716 5717 BUG_ON(!ext4_handle_valid(handle)); 5718 BUG_ON(e4b->bd_bitmap_page == NULL); 5719 BUG_ON(e4b->bd_buddy_page == NULL); 5720 5721 new_node = &new_entry->efd_node; 5722 cluster = new_entry->efd_start_cluster; 5723 5724 if (!*n) { 5725 /* first free block exent. We need to 5726 protect buddy cache from being freed, 5727 * otherwise we'll refresh it from 5728 * on-disk bitmap and lose not-yet-available 5729 * blocks */ 5730 get_page(e4b->bd_buddy_page); 5731 get_page(e4b->bd_bitmap_page); 5732 } 5733 while (*n) { 5734 parent = *n; 5735 entry = rb_entry(parent, struct ext4_free_data, efd_node); 5736 if (cluster < entry->efd_start_cluster) 5737 n = &(*n)->rb_left; 5738 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 5739 n = &(*n)->rb_right; 5740 else { 5741 ext4_grp_locked_error(sb, group, 0, 5742 ext4_group_first_block_no(sb, group) + 5743 EXT4_C2B(sbi, cluster), 5744 "Block already on to-be-freed list"); 5745 kmem_cache_free(ext4_free_data_cachep, new_entry); 5746 return 0; 5747 } 5748 } 5749 5750 rb_link_node(new_node, parent, n); 5751 rb_insert_color(new_node, &db->bb_free_root); 5752 5753 /* Now try to see the extent can be merged to left and right */ 5754 node = rb_prev(new_node); 5755 if (node) { 5756 entry = rb_entry(node, struct ext4_free_data, efd_node); 5757 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5758 &(db->bb_free_root)); 5759 } 5760 5761 node = rb_next(new_node); 5762 if (node) { 5763 entry = rb_entry(node, struct ext4_free_data, efd_node); 5764 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5765 &(db->bb_free_root)); 5766 } 5767 5768 spin_lock(&sbi->s_md_lock); 5769 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 5770 sbi->s_mb_free_pending += clusters; 5771 spin_unlock(&sbi->s_md_lock); 5772 return 0; 5773 } 5774 5775 /* 5776 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 5777 * linearly starting at the goal block and also excludes the blocks which 5778 * are going to be in use after fast commit replay. 5779 */ 5780 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5781 struct ext4_allocation_request *ar, int *errp) 5782 { 5783 struct buffer_head *bitmap_bh; 5784 struct super_block *sb = ar->inode->i_sb; 5785 ext4_group_t group; 5786 ext4_grpblk_t blkoff; 5787 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 5788 ext4_grpblk_t i = 0; 5789 ext4_fsblk_t goal, block; 5790 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5791 5792 goal = ar->goal; 5793 if (goal < le32_to_cpu(es->s_first_data_block) || 5794 goal >= ext4_blocks_count(es)) 5795 goal = le32_to_cpu(es->s_first_data_block); 5796 5797 ar->len = 0; 5798 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 5799 for (; group < ext4_get_groups_count(sb); group++) { 5800 bitmap_bh = ext4_read_block_bitmap(sb, group); 5801 if (IS_ERR(bitmap_bh)) { 5802 *errp = PTR_ERR(bitmap_bh); 5803 pr_warn("Failed to read block bitmap\n"); 5804 return 0; 5805 } 5806 5807 ext4_get_group_no_and_offset(sb, 5808 max(ext4_group_first_block_no(sb, group), goal), 5809 NULL, &blkoff); 5810 while (1) { 5811 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 5812 blkoff); 5813 if (i >= max) 5814 break; 5815 if (ext4_fc_replay_check_excluded(sb, 5816 ext4_group_first_block_no(sb, group) + i)) { 5817 blkoff = i + 1; 5818 } else 5819 break; 5820 } 5821 brelse(bitmap_bh); 5822 if (i < max) 5823 break; 5824 } 5825 5826 if (group >= ext4_get_groups_count(sb) || i >= max) { 5827 *errp = -ENOSPC; 5828 return 0; 5829 } 5830 5831 block = ext4_group_first_block_no(sb, group) + i; 5832 ext4_mb_mark_bb(sb, block, 1, 1); 5833 ar->len = 1; 5834 5835 return block; 5836 } 5837 5838 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 5839 unsigned long count) 5840 { 5841 struct buffer_head *bitmap_bh; 5842 struct super_block *sb = inode->i_sb; 5843 struct ext4_group_desc *gdp; 5844 struct buffer_head *gdp_bh; 5845 ext4_group_t group; 5846 ext4_grpblk_t blkoff; 5847 int already_freed = 0, err, i; 5848 5849 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 5850 bitmap_bh = ext4_read_block_bitmap(sb, group); 5851 if (IS_ERR(bitmap_bh)) { 5852 err = PTR_ERR(bitmap_bh); 5853 pr_warn("Failed to read block bitmap\n"); 5854 return; 5855 } 5856 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 5857 if (!gdp) 5858 return; 5859 5860 for (i = 0; i < count; i++) { 5861 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 5862 already_freed++; 5863 } 5864 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 5865 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 5866 if (err) 5867 return; 5868 ext4_free_group_clusters_set( 5869 sb, gdp, ext4_free_group_clusters(sb, gdp) + 5870 count - already_freed); 5871 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 5872 ext4_group_desc_csum_set(sb, group, gdp); 5873 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 5874 sync_dirty_buffer(bitmap_bh); 5875 sync_dirty_buffer(gdp_bh); 5876 brelse(bitmap_bh); 5877 } 5878 5879 /** 5880 * ext4_mb_clear_bb() -- helper function for freeing blocks. 5881 * Used by ext4_free_blocks() 5882 * @handle: handle for this transaction 5883 * @inode: inode 5884 * @block: starting physical block to be freed 5885 * @count: number of blocks to be freed 5886 * @flags: flags used by ext4_free_blocks 5887 */ 5888 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 5889 ext4_fsblk_t block, unsigned long count, 5890 int flags) 5891 { 5892 struct buffer_head *bitmap_bh = NULL; 5893 struct super_block *sb = inode->i_sb; 5894 struct ext4_group_desc *gdp; 5895 unsigned int overflow; 5896 ext4_grpblk_t bit; 5897 struct buffer_head *gd_bh; 5898 ext4_group_t block_group; 5899 struct ext4_sb_info *sbi; 5900 struct ext4_buddy e4b; 5901 unsigned int count_clusters; 5902 int err = 0; 5903 int ret; 5904 5905 sbi = EXT4_SB(sb); 5906 5907 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5908 !ext4_inode_block_valid(inode, block, count)) { 5909 ext4_error(sb, "Freeing blocks in system zone - " 5910 "Block = %llu, count = %lu", block, count); 5911 /* err = 0. ext4_std_error should be a no op */ 5912 goto error_return; 5913 } 5914 flags |= EXT4_FREE_BLOCKS_VALIDATED; 5915 5916 do_more: 5917 overflow = 0; 5918 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5919 5920 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 5921 ext4_get_group_info(sb, block_group)))) 5922 return; 5923 5924 /* 5925 * Check to see if we are freeing blocks across a group 5926 * boundary. 5927 */ 5928 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5929 overflow = EXT4_C2B(sbi, bit) + count - 5930 EXT4_BLOCKS_PER_GROUP(sb); 5931 count -= overflow; 5932 /* The range changed so it's no longer validated */ 5933 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 5934 } 5935 count_clusters = EXT4_NUM_B2C(sbi, count); 5936 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5937 if (IS_ERR(bitmap_bh)) { 5938 err = PTR_ERR(bitmap_bh); 5939 bitmap_bh = NULL; 5940 goto error_return; 5941 } 5942 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5943 if (!gdp) { 5944 err = -EIO; 5945 goto error_return; 5946 } 5947 5948 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5949 !ext4_inode_block_valid(inode, block, count)) { 5950 ext4_error(sb, "Freeing blocks in system zone - " 5951 "Block = %llu, count = %lu", block, count); 5952 /* err = 0. ext4_std_error should be a no op */ 5953 goto error_return; 5954 } 5955 5956 BUFFER_TRACE(bitmap_bh, "getting write access"); 5957 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 5958 EXT4_JTR_NONE); 5959 if (err) 5960 goto error_return; 5961 5962 /* 5963 * We are about to modify some metadata. Call the journal APIs 5964 * to unshare ->b_data if a currently-committing transaction is 5965 * using it 5966 */ 5967 BUFFER_TRACE(gd_bh, "get_write_access"); 5968 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 5969 if (err) 5970 goto error_return; 5971 #ifdef AGGRESSIVE_CHECK 5972 { 5973 int i; 5974 for (i = 0; i < count_clusters; i++) 5975 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 5976 } 5977 #endif 5978 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 5979 5980 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 5981 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 5982 GFP_NOFS|__GFP_NOFAIL); 5983 if (err) 5984 goto error_return; 5985 5986 /* 5987 * We need to make sure we don't reuse the freed block until after the 5988 * transaction is committed. We make an exception if the inode is to be 5989 * written in writeback mode since writeback mode has weak data 5990 * consistency guarantees. 5991 */ 5992 if (ext4_handle_valid(handle) && 5993 ((flags & EXT4_FREE_BLOCKS_METADATA) || 5994 !ext4_should_writeback_data(inode))) { 5995 struct ext4_free_data *new_entry; 5996 /* 5997 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 5998 * to fail. 5999 */ 6000 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6001 GFP_NOFS|__GFP_NOFAIL); 6002 new_entry->efd_start_cluster = bit; 6003 new_entry->efd_group = block_group; 6004 new_entry->efd_count = count_clusters; 6005 new_entry->efd_tid = handle->h_transaction->t_tid; 6006 6007 ext4_lock_group(sb, block_group); 6008 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6009 ext4_mb_free_metadata(handle, &e4b, new_entry); 6010 } else { 6011 /* need to update group_info->bb_free and bitmap 6012 * with group lock held. generate_buddy look at 6013 * them with group lock_held 6014 */ 6015 if (test_opt(sb, DISCARD)) { 6016 err = ext4_issue_discard(sb, block_group, bit, count, 6017 NULL); 6018 if (err && err != -EOPNOTSUPP) 6019 ext4_msg(sb, KERN_WARNING, "discard request in" 6020 " group:%u block:%d count:%lu failed" 6021 " with %d", block_group, bit, count, 6022 err); 6023 } else 6024 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6025 6026 ext4_lock_group(sb, block_group); 6027 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6028 mb_free_blocks(inode, &e4b, bit, count_clusters); 6029 } 6030 6031 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6032 ext4_free_group_clusters_set(sb, gdp, ret); 6033 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 6034 ext4_group_desc_csum_set(sb, block_group, gdp); 6035 ext4_unlock_group(sb, block_group); 6036 6037 if (sbi->s_log_groups_per_flex) { 6038 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6039 atomic64_add(count_clusters, 6040 &sbi_array_rcu_deref(sbi, s_flex_groups, 6041 flex_group)->free_clusters); 6042 } 6043 6044 /* 6045 * on a bigalloc file system, defer the s_freeclusters_counter 6046 * update to the caller (ext4_remove_space and friends) so they 6047 * can determine if a cluster freed here should be rereserved 6048 */ 6049 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6050 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6051 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6052 percpu_counter_add(&sbi->s_freeclusters_counter, 6053 count_clusters); 6054 } 6055 6056 ext4_mb_unload_buddy(&e4b); 6057 6058 /* We dirtied the bitmap block */ 6059 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6060 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6061 6062 /* And the group descriptor block */ 6063 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6064 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6065 if (!err) 6066 err = ret; 6067 6068 if (overflow && !err) { 6069 block += count; 6070 count = overflow; 6071 put_bh(bitmap_bh); 6072 /* The range changed so it's no longer validated */ 6073 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6074 goto do_more; 6075 } 6076 error_return: 6077 brelse(bitmap_bh); 6078 ext4_std_error(sb, err); 6079 return; 6080 } 6081 6082 /** 6083 * ext4_free_blocks() -- Free given blocks and update quota 6084 * @handle: handle for this transaction 6085 * @inode: inode 6086 * @bh: optional buffer of the block to be freed 6087 * @block: starting physical block to be freed 6088 * @count: number of blocks to be freed 6089 * @flags: flags used by ext4_free_blocks 6090 */ 6091 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6092 struct buffer_head *bh, ext4_fsblk_t block, 6093 unsigned long count, int flags) 6094 { 6095 struct super_block *sb = inode->i_sb; 6096 unsigned int overflow; 6097 struct ext4_sb_info *sbi; 6098 6099 sbi = EXT4_SB(sb); 6100 6101 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6102 ext4_free_blocks_simple(inode, block, count); 6103 return; 6104 } 6105 6106 might_sleep(); 6107 if (bh) { 6108 if (block) 6109 BUG_ON(block != bh->b_blocknr); 6110 else 6111 block = bh->b_blocknr; 6112 } 6113 6114 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6115 !ext4_inode_block_valid(inode, block, count)) { 6116 ext4_error(sb, "Freeing blocks not in datazone - " 6117 "block = %llu, count = %lu", block, count); 6118 return; 6119 } 6120 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6121 6122 ext4_debug("freeing block %llu\n", block); 6123 trace_ext4_free_blocks(inode, block, count, flags); 6124 6125 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6126 BUG_ON(count > 1); 6127 6128 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6129 inode, bh, block); 6130 } 6131 6132 /* 6133 * If the extent to be freed does not begin on a cluster 6134 * boundary, we need to deal with partial clusters at the 6135 * beginning and end of the extent. Normally we will free 6136 * blocks at the beginning or the end unless we are explicitly 6137 * requested to avoid doing so. 6138 */ 6139 overflow = EXT4_PBLK_COFF(sbi, block); 6140 if (overflow) { 6141 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6142 overflow = sbi->s_cluster_ratio - overflow; 6143 block += overflow; 6144 if (count > overflow) 6145 count -= overflow; 6146 else 6147 return; 6148 } else { 6149 block -= overflow; 6150 count += overflow; 6151 } 6152 /* The range changed so it's no longer validated */ 6153 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6154 } 6155 overflow = EXT4_LBLK_COFF(sbi, count); 6156 if (overflow) { 6157 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6158 if (count > overflow) 6159 count -= overflow; 6160 else 6161 return; 6162 } else 6163 count += sbi->s_cluster_ratio - overflow; 6164 /* The range changed so it's no longer validated */ 6165 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6166 } 6167 6168 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6169 int i; 6170 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6171 6172 for (i = 0; i < count; i++) { 6173 cond_resched(); 6174 if (is_metadata) 6175 bh = sb_find_get_block(inode->i_sb, block + i); 6176 ext4_forget(handle, is_metadata, inode, bh, block + i); 6177 } 6178 } 6179 6180 ext4_mb_clear_bb(handle, inode, block, count, flags); 6181 return; 6182 } 6183 6184 /** 6185 * ext4_group_add_blocks() -- Add given blocks to an existing group 6186 * @handle: handle to this transaction 6187 * @sb: super block 6188 * @block: start physical block to add to the block group 6189 * @count: number of blocks to free 6190 * 6191 * This marks the blocks as free in the bitmap and buddy. 6192 */ 6193 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6194 ext4_fsblk_t block, unsigned long count) 6195 { 6196 struct buffer_head *bitmap_bh = NULL; 6197 struct buffer_head *gd_bh; 6198 ext4_group_t block_group; 6199 ext4_grpblk_t bit; 6200 unsigned int i; 6201 struct ext4_group_desc *desc; 6202 struct ext4_sb_info *sbi = EXT4_SB(sb); 6203 struct ext4_buddy e4b; 6204 int err = 0, ret, free_clusters_count; 6205 ext4_grpblk_t clusters_freed; 6206 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6207 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6208 unsigned long cluster_count = last_cluster - first_cluster + 1; 6209 6210 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6211 6212 if (count == 0) 6213 return 0; 6214 6215 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6216 /* 6217 * Check to see if we are freeing blocks across a group 6218 * boundary. 6219 */ 6220 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6221 ext4_warning(sb, "too many blocks added to group %u", 6222 block_group); 6223 err = -EINVAL; 6224 goto error_return; 6225 } 6226 6227 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6228 if (IS_ERR(bitmap_bh)) { 6229 err = PTR_ERR(bitmap_bh); 6230 bitmap_bh = NULL; 6231 goto error_return; 6232 } 6233 6234 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6235 if (!desc) { 6236 err = -EIO; 6237 goto error_return; 6238 } 6239 6240 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6241 ext4_error(sb, "Adding blocks in system zones - " 6242 "Block = %llu, count = %lu", 6243 block, count); 6244 err = -EINVAL; 6245 goto error_return; 6246 } 6247 6248 BUFFER_TRACE(bitmap_bh, "getting write access"); 6249 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6250 EXT4_JTR_NONE); 6251 if (err) 6252 goto error_return; 6253 6254 /* 6255 * We are about to modify some metadata. Call the journal APIs 6256 * to unshare ->b_data if a currently-committing transaction is 6257 * using it 6258 */ 6259 BUFFER_TRACE(gd_bh, "get_write_access"); 6260 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6261 if (err) 6262 goto error_return; 6263 6264 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6265 BUFFER_TRACE(bitmap_bh, "clear bit"); 6266 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6267 ext4_error(sb, "bit already cleared for block %llu", 6268 (ext4_fsblk_t)(block + i)); 6269 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6270 } else { 6271 clusters_freed++; 6272 } 6273 } 6274 6275 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6276 if (err) 6277 goto error_return; 6278 6279 /* 6280 * need to update group_info->bb_free and bitmap 6281 * with group lock held. generate_buddy look at 6282 * them with group lock_held 6283 */ 6284 ext4_lock_group(sb, block_group); 6285 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6286 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6287 free_clusters_count = clusters_freed + 6288 ext4_free_group_clusters(sb, desc); 6289 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6290 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 6291 ext4_group_desc_csum_set(sb, block_group, desc); 6292 ext4_unlock_group(sb, block_group); 6293 percpu_counter_add(&sbi->s_freeclusters_counter, 6294 clusters_freed); 6295 6296 if (sbi->s_log_groups_per_flex) { 6297 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6298 atomic64_add(clusters_freed, 6299 &sbi_array_rcu_deref(sbi, s_flex_groups, 6300 flex_group)->free_clusters); 6301 } 6302 6303 ext4_mb_unload_buddy(&e4b); 6304 6305 /* We dirtied the bitmap block */ 6306 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6307 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6308 6309 /* And the group descriptor block */ 6310 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6311 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6312 if (!err) 6313 err = ret; 6314 6315 error_return: 6316 brelse(bitmap_bh); 6317 ext4_std_error(sb, err); 6318 return err; 6319 } 6320 6321 /** 6322 * ext4_trim_extent -- function to TRIM one single free extent in the group 6323 * @sb: super block for the file system 6324 * @start: starting block of the free extent in the alloc. group 6325 * @count: number of blocks to TRIM 6326 * @e4b: ext4 buddy for the group 6327 * 6328 * Trim "count" blocks starting at "start" in the "group". To assure that no 6329 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6330 * be called with under the group lock. 6331 */ 6332 static int ext4_trim_extent(struct super_block *sb, 6333 int start, int count, struct ext4_buddy *e4b) 6334 __releases(bitlock) 6335 __acquires(bitlock) 6336 { 6337 struct ext4_free_extent ex; 6338 ext4_group_t group = e4b->bd_group; 6339 int ret = 0; 6340 6341 trace_ext4_trim_extent(sb, group, start, count); 6342 6343 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6344 6345 ex.fe_start = start; 6346 ex.fe_group = group; 6347 ex.fe_len = count; 6348 6349 /* 6350 * Mark blocks used, so no one can reuse them while 6351 * being trimmed. 6352 */ 6353 mb_mark_used(e4b, &ex); 6354 ext4_unlock_group(sb, group); 6355 ret = ext4_issue_discard(sb, group, start, count, NULL); 6356 ext4_lock_group(sb, group); 6357 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6358 return ret; 6359 } 6360 6361 static int ext4_try_to_trim_range(struct super_block *sb, 6362 struct ext4_buddy *e4b, ext4_grpblk_t start, 6363 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6364 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6365 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6366 { 6367 ext4_grpblk_t next, count, free_count; 6368 void *bitmap; 6369 6370 bitmap = e4b->bd_bitmap; 6371 start = (e4b->bd_info->bb_first_free > start) ? 6372 e4b->bd_info->bb_first_free : start; 6373 count = 0; 6374 free_count = 0; 6375 6376 while (start <= max) { 6377 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6378 if (start > max) 6379 break; 6380 next = mb_find_next_bit(bitmap, max + 1, start); 6381 6382 if ((next - start) >= minblocks) { 6383 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6384 6385 if (ret && ret != -EOPNOTSUPP) 6386 break; 6387 count += next - start; 6388 } 6389 free_count += next - start; 6390 start = next + 1; 6391 6392 if (fatal_signal_pending(current)) { 6393 count = -ERESTARTSYS; 6394 break; 6395 } 6396 6397 if (need_resched()) { 6398 ext4_unlock_group(sb, e4b->bd_group); 6399 cond_resched(); 6400 ext4_lock_group(sb, e4b->bd_group); 6401 } 6402 6403 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6404 break; 6405 } 6406 6407 return count; 6408 } 6409 6410 /** 6411 * ext4_trim_all_free -- function to trim all free space in alloc. group 6412 * @sb: super block for file system 6413 * @group: group to be trimmed 6414 * @start: first group block to examine 6415 * @max: last group block to examine 6416 * @minblocks: minimum extent block count 6417 * @set_trimmed: set the trimmed flag if at least one block is trimmed 6418 * 6419 * ext4_trim_all_free walks through group's block bitmap searching for free 6420 * extents. When the free extent is found, mark it as used in group buddy 6421 * bitmap. Then issue a TRIM command on this extent and free the extent in 6422 * the group buddy bitmap. 6423 */ 6424 static ext4_grpblk_t 6425 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6426 ext4_grpblk_t start, ext4_grpblk_t max, 6427 ext4_grpblk_t minblocks, bool set_trimmed) 6428 { 6429 struct ext4_buddy e4b; 6430 int ret; 6431 6432 trace_ext4_trim_all_free(sb, group, start, max); 6433 6434 ret = ext4_mb_load_buddy(sb, group, &e4b); 6435 if (ret) { 6436 ext4_warning(sb, "Error %d loading buddy information for %u", 6437 ret, group); 6438 return ret; 6439 } 6440 6441 ext4_lock_group(sb, group); 6442 6443 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6444 minblocks < EXT4_SB(sb)->s_last_trim_minblks) { 6445 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6446 if (ret >= 0 && set_trimmed) 6447 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 6448 } else { 6449 ret = 0; 6450 } 6451 6452 ext4_unlock_group(sb, group); 6453 ext4_mb_unload_buddy(&e4b); 6454 6455 ext4_debug("trimmed %d blocks in the group %d\n", 6456 ret, group); 6457 6458 return ret; 6459 } 6460 6461 /** 6462 * ext4_trim_fs() -- trim ioctl handle function 6463 * @sb: superblock for filesystem 6464 * @range: fstrim_range structure 6465 * 6466 * start: First Byte to trim 6467 * len: number of Bytes to trim from start 6468 * minlen: minimum extent length in Bytes 6469 * ext4_trim_fs goes through all allocation groups containing Bytes from 6470 * start to start+len. For each such a group ext4_trim_all_free function 6471 * is invoked to trim all free space. 6472 */ 6473 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6474 { 6475 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 6476 struct ext4_group_info *grp; 6477 ext4_group_t group, first_group, last_group; 6478 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6479 uint64_t start, end, minlen, trimmed = 0; 6480 ext4_fsblk_t first_data_blk = 6481 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6482 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6483 bool whole_group, eof = false; 6484 int ret = 0; 6485 6486 start = range->start >> sb->s_blocksize_bits; 6487 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6488 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6489 range->minlen >> sb->s_blocksize_bits); 6490 6491 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6492 start >= max_blks || 6493 range->len < sb->s_blocksize) 6494 return -EINVAL; 6495 /* No point to try to trim less than discard granularity */ 6496 if (range->minlen < discard_granularity) { 6497 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6498 discard_granularity >> sb->s_blocksize_bits); 6499 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 6500 goto out; 6501 } 6502 if (end >= max_blks - 1) { 6503 end = max_blks - 1; 6504 eof = true; 6505 } 6506 if (end <= first_data_blk) 6507 goto out; 6508 if (start < first_data_blk) 6509 start = first_data_blk; 6510 6511 /* Determine first and last group to examine based on start and end */ 6512 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6513 &first_group, &first_cluster); 6514 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6515 &last_group, &last_cluster); 6516 6517 /* end now represents the last cluster to discard in this group */ 6518 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6519 whole_group = true; 6520 6521 for (group = first_group; group <= last_group; group++) { 6522 grp = ext4_get_group_info(sb, group); 6523 /* We only do this if the grp has never been initialized */ 6524 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6525 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6526 if (ret) 6527 break; 6528 } 6529 6530 /* 6531 * For all the groups except the last one, last cluster will 6532 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6533 * change it for the last group, note that last_cluster is 6534 * already computed earlier by ext4_get_group_no_and_offset() 6535 */ 6536 if (group == last_group) { 6537 end = last_cluster; 6538 whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6539 } 6540 if (grp->bb_free >= minlen) { 6541 cnt = ext4_trim_all_free(sb, group, first_cluster, 6542 end, minlen, whole_group); 6543 if (cnt < 0) { 6544 ret = cnt; 6545 break; 6546 } 6547 trimmed += cnt; 6548 } 6549 6550 /* 6551 * For every group except the first one, we are sure 6552 * that the first cluster to discard will be cluster #0. 6553 */ 6554 first_cluster = 0; 6555 } 6556 6557 if (!ret) 6558 EXT4_SB(sb)->s_last_trim_minblks = minlen; 6559 6560 out: 6561 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6562 return ret; 6563 } 6564 6565 /* Iterate all the free extents in the group. */ 6566 int 6567 ext4_mballoc_query_range( 6568 struct super_block *sb, 6569 ext4_group_t group, 6570 ext4_grpblk_t start, 6571 ext4_grpblk_t end, 6572 ext4_mballoc_query_range_fn formatter, 6573 void *priv) 6574 { 6575 void *bitmap; 6576 ext4_grpblk_t next; 6577 struct ext4_buddy e4b; 6578 int error; 6579 6580 error = ext4_mb_load_buddy(sb, group, &e4b); 6581 if (error) 6582 return error; 6583 bitmap = e4b.bd_bitmap; 6584 6585 ext4_lock_group(sb, group); 6586 6587 start = (e4b.bd_info->bb_first_free > start) ? 6588 e4b.bd_info->bb_first_free : start; 6589 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 6590 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6591 6592 while (start <= end) { 6593 start = mb_find_next_zero_bit(bitmap, end + 1, start); 6594 if (start > end) 6595 break; 6596 next = mb_find_next_bit(bitmap, end + 1, start); 6597 6598 ext4_unlock_group(sb, group); 6599 error = formatter(sb, group, start, next - start, priv); 6600 if (error) 6601 goto out_unload; 6602 ext4_lock_group(sb, group); 6603 6604 start = next + 1; 6605 } 6606 6607 ext4_unlock_group(sb, group); 6608 out_unload: 6609 ext4_mb_unload_buddy(&e4b); 6610 6611 return error; 6612 } 6613