1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 #include <kunit/static_stub.h> 22 23 /* 24 * MUSTDO: 25 * - test ext4_ext_search_left() and ext4_ext_search_right() 26 * - search for metadata in few groups 27 * 28 * TODO v4: 29 * - normalization should take into account whether file is still open 30 * - discard preallocations if no free space left (policy?) 31 * - don't normalize tails 32 * - quota 33 * - reservation for superuser 34 * 35 * TODO v3: 36 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 37 * - track min/max extents in each group for better group selection 38 * - mb_mark_used() may allocate chunk right after splitting buddy 39 * - tree of groups sorted by number of free blocks 40 * - error handling 41 */ 42 43 /* 44 * The allocation request involve request for multiple number of blocks 45 * near to the goal(block) value specified. 46 * 47 * During initialization phase of the allocator we decide to use the 48 * group preallocation or inode preallocation depending on the size of 49 * the file. The size of the file could be the resulting file size we 50 * would have after allocation, or the current file size, which ever 51 * is larger. If the size is less than sbi->s_mb_stream_request we 52 * select to use the group preallocation. The default value of 53 * s_mb_stream_request is 16 blocks. This can also be tuned via 54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 55 * terms of number of blocks. 56 * 57 * The main motivation for having small file use group preallocation is to 58 * ensure that we have small files closer together on the disk. 59 * 60 * First stage the allocator looks at the inode prealloc list, 61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 62 * spaces for this particular inode. The inode prealloc space is 63 * represented as: 64 * 65 * pa_lstart -> the logical start block for this prealloc space 66 * pa_pstart -> the physical start block for this prealloc space 67 * pa_len -> length for this prealloc space (in clusters) 68 * pa_free -> free space available in this prealloc space (in clusters) 69 * 70 * The inode preallocation space is used looking at the _logical_ start 71 * block. If only the logical file block falls within the range of prealloc 72 * space we will consume the particular prealloc space. This makes sure that 73 * we have contiguous physical blocks representing the file blocks 74 * 75 * The important thing to be noted in case of inode prealloc space is that 76 * we don't modify the values associated to inode prealloc space except 77 * pa_free. 78 * 79 * If we are not able to find blocks in the inode prealloc space and if we 80 * have the group allocation flag set then we look at the locality group 81 * prealloc space. These are per CPU prealloc list represented as 82 * 83 * ext4_sb_info.s_locality_groups[smp_processor_id()] 84 * 85 * The reason for having a per cpu locality group is to reduce the contention 86 * between CPUs. It is possible to get scheduled at this point. 87 * 88 * The locality group prealloc space is used looking at whether we have 89 * enough free space (pa_free) within the prealloc space. 90 * 91 * If we can't allocate blocks via inode prealloc or/and locality group 92 * prealloc then we look at the buddy cache. The buddy cache is represented 93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 94 * mapped to the buddy and bitmap information regarding different 95 * groups. The buddy information is attached to buddy cache inode so that 96 * we can access them through the page cache. The information regarding 97 * each group is loaded via ext4_mb_load_buddy. The information involve 98 * block bitmap and buddy information. The information are stored in the 99 * inode as: 100 * 101 * { page } 102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 103 * 104 * 105 * one block each for bitmap and buddy information. So for each group we 106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 107 * blocksize) blocks. So it can have information regarding groups_per_page 108 * which is blocks_per_page/2 109 * 110 * The buddy cache inode is not stored on disk. The inode is thrown 111 * away when the filesystem is unmounted. 112 * 113 * We look for count number of blocks in the buddy cache. If we were able 114 * to locate that many free blocks we return with additional information 115 * regarding rest of the contiguous physical block available 116 * 117 * Before allocating blocks via buddy cache we normalize the request 118 * blocks. This ensure we ask for more blocks that we needed. The extra 119 * blocks that we get after allocation is added to the respective prealloc 120 * list. In case of inode preallocation we follow a list of heuristics 121 * based on file size. This can be found in ext4_mb_normalize_request. If 122 * we are doing a group prealloc we try to normalize the request to 123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 124 * dependent on the cluster size; for non-bigalloc file systems, it is 125 * 512 blocks. This can be tuned via 126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 127 * terms of number of blocks. If we have mounted the file system with -O 128 * stripe=<value> option the group prealloc request is normalized to the 129 * smallest multiple of the stripe value (sbi->s_stripe) which is 130 * greater than the default mb_group_prealloc. 131 * 132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 133 * structures in two data structures: 134 * 135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 136 * 137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 138 * 139 * This is an array of lists where the index in the array represents the 140 * largest free order in the buddy bitmap of the participating group infos of 141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 142 * number of buddy bitmap orders possible) number of lists. Group-infos are 143 * placed in appropriate lists. 144 * 145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 146 * 147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 148 * 149 * This is an array of lists where in the i-th list there are groups with 150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 152 * Note that we don't bother with a special list for completely empty groups 153 * so we only have MB_NUM_ORDERS(sb) lists. 154 * 155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 156 * structures to decide the order in which groups are to be traversed for 157 * fulfilling an allocation request. 158 * 159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 160 * >= the order of the request. We directly look at the largest free order list 161 * in the data structure (1) above where largest_free_order = order of the 162 * request. If that list is empty, we look at remaining list in the increasing 163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 164 * lookup in O(1) time. 165 * 166 * At CR_GOAL_LEN_FAST, we only consider groups where 167 * average fragment size > request size. So, we lookup a group which has average 168 * fragment size just above or equal to request size using our average fragment 169 * size group lists (data structure 2) in O(1) time. 170 * 171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 174 * fragment size > goal length. So before falling to the slower 175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 177 * enough average fragment size. This increases the chances of finding a 178 * suitable block group in O(1) time and results in faster allocation at the 179 * cost of reduced size of allocation. 180 * 181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 183 * CR_GOAL_LEN_FAST phase. 184 * 185 * The regular allocator (using the buddy cache) supports a few tunables. 186 * 187 * /sys/fs/ext4/<partition>/mb_min_to_scan 188 * /sys/fs/ext4/<partition>/mb_max_to_scan 189 * /sys/fs/ext4/<partition>/mb_order2_req 190 * /sys/fs/ext4/<partition>/mb_linear_limit 191 * 192 * The regular allocator uses buddy scan only if the request len is power of 193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 194 * value of s_mb_order2_reqs can be tuned via 195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 196 * stripe size (sbi->s_stripe), we try to search for contiguous block in 197 * stripe size. This should result in better allocation on RAID setups. If 198 * not, we search in the specific group using bitmap for best extents. The 199 * tunable min_to_scan and max_to_scan control the behaviour here. 200 * min_to_scan indicate how long the mballoc __must__ look for a best 201 * extent and max_to_scan indicates how long the mballoc __can__ look for a 202 * best extent in the found extents. Searching for the blocks starts with 203 * the group specified as the goal value in allocation context via 204 * ac_g_ex. Each group is first checked based on the criteria whether it 205 * can be used for allocation. ext4_mb_good_group explains how the groups are 206 * checked. 207 * 208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 209 * get traversed linearly. That may result in subsequent allocations being not 210 * close to each other. And so, the underlying device may get filled up in a 211 * non-linear fashion. While that may not matter on non-rotational devices, for 212 * rotational devices that may result in higher seek times. "mb_linear_limit" 213 * tells mballoc how many groups mballoc should search linearly before 214 * performing consulting above data structures for more efficient lookups. For 215 * non rotational devices, this value defaults to 0 and for rotational devices 216 * this is set to MB_DEFAULT_LINEAR_LIMIT. 217 * 218 * Both the prealloc space are getting populated as above. So for the first 219 * request we will hit the buddy cache which will result in this prealloc 220 * space getting filled. The prealloc space is then later used for the 221 * subsequent request. 222 */ 223 224 /* 225 * mballoc operates on the following data: 226 * - on-disk bitmap 227 * - in-core buddy (actually includes buddy and bitmap) 228 * - preallocation descriptors (PAs) 229 * 230 * there are two types of preallocations: 231 * - inode 232 * assiged to specific inode and can be used for this inode only. 233 * it describes part of inode's space preallocated to specific 234 * physical blocks. any block from that preallocated can be used 235 * independent. the descriptor just tracks number of blocks left 236 * unused. so, before taking some block from descriptor, one must 237 * make sure corresponded logical block isn't allocated yet. this 238 * also means that freeing any block within descriptor's range 239 * must discard all preallocated blocks. 240 * - locality group 241 * assigned to specific locality group which does not translate to 242 * permanent set of inodes: inode can join and leave group. space 243 * from this type of preallocation can be used for any inode. thus 244 * it's consumed from the beginning to the end. 245 * 246 * relation between them can be expressed as: 247 * in-core buddy = on-disk bitmap + preallocation descriptors 248 * 249 * this mean blocks mballoc considers used are: 250 * - allocated blocks (persistent) 251 * - preallocated blocks (non-persistent) 252 * 253 * consistency in mballoc world means that at any time a block is either 254 * free or used in ALL structures. notice: "any time" should not be read 255 * literally -- time is discrete and delimited by locks. 256 * 257 * to keep it simple, we don't use block numbers, instead we count number of 258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 259 * 260 * all operations can be expressed as: 261 * - init buddy: buddy = on-disk + PAs 262 * - new PA: buddy += N; PA = N 263 * - use inode PA: on-disk += N; PA -= N 264 * - discard inode PA buddy -= on-disk - PA; PA = 0 265 * - use locality group PA on-disk += N; PA -= N 266 * - discard locality group PA buddy -= PA; PA = 0 267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 268 * is used in real operation because we can't know actual used 269 * bits from PA, only from on-disk bitmap 270 * 271 * if we follow this strict logic, then all operations above should be atomic. 272 * given some of them can block, we'd have to use something like semaphores 273 * killing performance on high-end SMP hardware. let's try to relax it using 274 * the following knowledge: 275 * 1) if buddy is referenced, it's already initialized 276 * 2) while block is used in buddy and the buddy is referenced, 277 * nobody can re-allocate that block 278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 279 * bit set and PA claims same block, it's OK. IOW, one can set bit in 280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 281 * block 282 * 283 * so, now we're building a concurrency table: 284 * - init buddy vs. 285 * - new PA 286 * blocks for PA are allocated in the buddy, buddy must be referenced 287 * until PA is linked to allocation group to avoid concurrent buddy init 288 * - use inode PA 289 * we need to make sure that either on-disk bitmap or PA has uptodate data 290 * given (3) we care that PA-=N operation doesn't interfere with init 291 * - discard inode PA 292 * the simplest way would be to have buddy initialized by the discard 293 * - use locality group PA 294 * again PA-=N must be serialized with init 295 * - discard locality group PA 296 * the simplest way would be to have buddy initialized by the discard 297 * - new PA vs. 298 * - use inode PA 299 * i_data_sem serializes them 300 * - discard inode PA 301 * discard process must wait until PA isn't used by another process 302 * - use locality group PA 303 * some mutex should serialize them 304 * - discard locality group PA 305 * discard process must wait until PA isn't used by another process 306 * - use inode PA 307 * - use inode PA 308 * i_data_sem or another mutex should serializes them 309 * - discard inode PA 310 * discard process must wait until PA isn't used by another process 311 * - use locality group PA 312 * nothing wrong here -- they're different PAs covering different blocks 313 * - discard locality group PA 314 * discard process must wait until PA isn't used by another process 315 * 316 * now we're ready to make few consequences: 317 * - PA is referenced and while it is no discard is possible 318 * - PA is referenced until block isn't marked in on-disk bitmap 319 * - PA changes only after on-disk bitmap 320 * - discard must not compete with init. either init is done before 321 * any discard or they're serialized somehow 322 * - buddy init as sum of on-disk bitmap and PAs is done atomically 323 * 324 * a special case when we've used PA to emptiness. no need to modify buddy 325 * in this case, but we should care about concurrent init 326 * 327 */ 328 329 /* 330 * Logic in few words: 331 * 332 * - allocation: 333 * load group 334 * find blocks 335 * mark bits in on-disk bitmap 336 * release group 337 * 338 * - use preallocation: 339 * find proper PA (per-inode or group) 340 * load group 341 * mark bits in on-disk bitmap 342 * release group 343 * release PA 344 * 345 * - free: 346 * load group 347 * mark bits in on-disk bitmap 348 * release group 349 * 350 * - discard preallocations in group: 351 * mark PAs deleted 352 * move them onto local list 353 * load on-disk bitmap 354 * load group 355 * remove PA from object (inode or locality group) 356 * mark free blocks in-core 357 * 358 * - discard inode's preallocations: 359 */ 360 361 /* 362 * Locking rules 363 * 364 * Locks: 365 * - bitlock on a group (group) 366 * - object (inode/locality) (object) 367 * - per-pa lock (pa) 368 * - cr_power2_aligned lists lock (cr_power2_aligned) 369 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 370 * 371 * Paths: 372 * - new pa 373 * object 374 * group 375 * 376 * - find and use pa: 377 * pa 378 * 379 * - release consumed pa: 380 * pa 381 * group 382 * object 383 * 384 * - generate in-core bitmap: 385 * group 386 * pa 387 * 388 * - discard all for given object (inode, locality group): 389 * object 390 * pa 391 * group 392 * 393 * - discard all for given group: 394 * group 395 * pa 396 * group 397 * object 398 * 399 * - allocation path (ext4_mb_regular_allocator) 400 * group 401 * cr_power2_aligned/cr_goal_len_fast 402 */ 403 static struct kmem_cache *ext4_pspace_cachep; 404 static struct kmem_cache *ext4_ac_cachep; 405 static struct kmem_cache *ext4_free_data_cachep; 406 407 /* We create slab caches for groupinfo data structures based on the 408 * superblock block size. There will be one per mounted filesystem for 409 * each unique s_blocksize_bits */ 410 #define NR_GRPINFO_CACHES 8 411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 412 413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 416 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 417 }; 418 419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 420 ext4_group_t group); 421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 422 423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 424 ext4_group_t group, enum criteria cr); 425 426 static int ext4_try_to_trim_range(struct super_block *sb, 427 struct ext4_buddy *e4b, ext4_grpblk_t start, 428 ext4_grpblk_t max, ext4_grpblk_t minblocks); 429 430 /* 431 * The algorithm using this percpu seq counter goes below: 432 * 1. We sample the percpu discard_pa_seq counter before trying for block 433 * allocation in ext4_mb_new_blocks(). 434 * 2. We increment this percpu discard_pa_seq counter when we either allocate 435 * or free these blocks i.e. while marking those blocks as used/free in 436 * mb_mark_used()/mb_free_blocks(). 437 * 3. We also increment this percpu seq counter when we successfully identify 438 * that the bb_prealloc_list is not empty and hence proceed for discarding 439 * of those PAs inside ext4_mb_discard_group_preallocations(). 440 * 441 * Now to make sure that the regular fast path of block allocation is not 442 * affected, as a small optimization we only sample the percpu seq counter 443 * on that cpu. Only when the block allocation fails and when freed blocks 444 * found were 0, that is when we sample percpu seq counter for all cpus using 445 * below function ext4_get_discard_pa_seq_sum(). This happens after making 446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 447 */ 448 static DEFINE_PER_CPU(u64, discard_pa_seq); 449 static inline u64 ext4_get_discard_pa_seq_sum(void) 450 { 451 int __cpu; 452 u64 __seq = 0; 453 454 for_each_possible_cpu(__cpu) 455 __seq += per_cpu(discard_pa_seq, __cpu); 456 return __seq; 457 } 458 459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 460 { 461 #if BITS_PER_LONG == 64 462 *bit += ((unsigned long) addr & 7UL) << 3; 463 addr = (void *) ((unsigned long) addr & ~7UL); 464 #elif BITS_PER_LONG == 32 465 *bit += ((unsigned long) addr & 3UL) << 3; 466 addr = (void *) ((unsigned long) addr & ~3UL); 467 #else 468 #error "how many bits you are?!" 469 #endif 470 return addr; 471 } 472 473 static inline int mb_test_bit(int bit, void *addr) 474 { 475 /* 476 * ext4_test_bit on architecture like powerpc 477 * needs unsigned long aligned address 478 */ 479 addr = mb_correct_addr_and_bit(&bit, addr); 480 return ext4_test_bit(bit, addr); 481 } 482 483 static inline void mb_set_bit(int bit, void *addr) 484 { 485 addr = mb_correct_addr_and_bit(&bit, addr); 486 ext4_set_bit(bit, addr); 487 } 488 489 static inline void mb_clear_bit(int bit, void *addr) 490 { 491 addr = mb_correct_addr_and_bit(&bit, addr); 492 ext4_clear_bit(bit, addr); 493 } 494 495 static inline int mb_test_and_clear_bit(int bit, void *addr) 496 { 497 addr = mb_correct_addr_and_bit(&bit, addr); 498 return ext4_test_and_clear_bit(bit, addr); 499 } 500 501 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 502 { 503 int fix = 0, ret, tmpmax; 504 addr = mb_correct_addr_and_bit(&fix, addr); 505 tmpmax = max + fix; 506 start += fix; 507 508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 509 if (ret > max) 510 return max; 511 return ret; 512 } 513 514 static inline int mb_find_next_bit(void *addr, int max, int start) 515 { 516 int fix = 0, ret, tmpmax; 517 addr = mb_correct_addr_and_bit(&fix, addr); 518 tmpmax = max + fix; 519 start += fix; 520 521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 522 if (ret > max) 523 return max; 524 return ret; 525 } 526 527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 528 { 529 char *bb; 530 531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 532 BUG_ON(max == NULL); 533 534 if (order > e4b->bd_blkbits + 1) { 535 *max = 0; 536 return NULL; 537 } 538 539 /* at order 0 we see each particular block */ 540 if (order == 0) { 541 *max = 1 << (e4b->bd_blkbits + 3); 542 return e4b->bd_bitmap; 543 } 544 545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 547 548 return bb; 549 } 550 551 #ifdef DOUBLE_CHECK 552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 553 int first, int count) 554 { 555 int i; 556 struct super_block *sb = e4b->bd_sb; 557 558 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 559 return; 560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 561 for (i = 0; i < count; i++) { 562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 563 ext4_fsblk_t blocknr; 564 565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 567 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 568 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 569 ext4_grp_locked_error(sb, e4b->bd_group, 570 inode ? inode->i_ino : 0, 571 blocknr, 572 "freeing block already freed " 573 "(bit %u)", 574 first + i); 575 } 576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 577 } 578 } 579 580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 581 { 582 int i; 583 584 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 585 return; 586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 587 for (i = 0; i < count; i++) { 588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 590 } 591 } 592 593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 594 { 595 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 596 return; 597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 598 unsigned char *b1, *b2; 599 int i; 600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 601 b2 = (unsigned char *) bitmap; 602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 603 if (b1[i] != b2[i]) { 604 ext4_msg(e4b->bd_sb, KERN_ERR, 605 "corruption in group %u " 606 "at byte %u(%u): %x in copy != %x " 607 "on disk/prealloc", 608 e4b->bd_group, i, i * 8, b1[i], b2[i]); 609 BUG(); 610 } 611 } 612 } 613 } 614 615 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 616 struct ext4_group_info *grp, ext4_group_t group) 617 { 618 struct buffer_head *bh; 619 620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 621 if (!grp->bb_bitmap) 622 return; 623 624 bh = ext4_read_block_bitmap(sb, group); 625 if (IS_ERR_OR_NULL(bh)) { 626 kfree(grp->bb_bitmap); 627 grp->bb_bitmap = NULL; 628 return; 629 } 630 631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 632 put_bh(bh); 633 } 634 635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 636 { 637 kfree(grp->bb_bitmap); 638 } 639 640 #else 641 static inline void mb_free_blocks_double(struct inode *inode, 642 struct ext4_buddy *e4b, int first, int count) 643 { 644 return; 645 } 646 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 647 int first, int count) 648 { 649 return; 650 } 651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 652 { 653 return; 654 } 655 656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 657 struct ext4_group_info *grp, ext4_group_t group) 658 { 659 return; 660 } 661 662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 663 { 664 return; 665 } 666 #endif 667 668 #ifdef AGGRESSIVE_CHECK 669 670 #define MB_CHECK_ASSERT(assert) \ 671 do { \ 672 if (!(assert)) { \ 673 printk(KERN_EMERG \ 674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 675 function, file, line, # assert); \ 676 BUG(); \ 677 } \ 678 } while (0) 679 680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file, 681 const char *function, int line) 682 { 683 struct super_block *sb = e4b->bd_sb; 684 int order = e4b->bd_blkbits + 1; 685 int max; 686 int max2; 687 int i; 688 int j; 689 int k; 690 int count; 691 struct ext4_group_info *grp; 692 int fragments = 0; 693 int fstart; 694 struct list_head *cur; 695 void *buddy; 696 void *buddy2; 697 698 if (e4b->bd_info->bb_check_counter++ % 10) 699 return; 700 701 while (order > 1) { 702 buddy = mb_find_buddy(e4b, order, &max); 703 MB_CHECK_ASSERT(buddy); 704 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 705 MB_CHECK_ASSERT(buddy2); 706 MB_CHECK_ASSERT(buddy != buddy2); 707 MB_CHECK_ASSERT(max * 2 == max2); 708 709 count = 0; 710 for (i = 0; i < max; i++) { 711 712 if (mb_test_bit(i, buddy)) { 713 /* only single bit in buddy2 may be 0 */ 714 if (!mb_test_bit(i << 1, buddy2)) { 715 MB_CHECK_ASSERT( 716 mb_test_bit((i<<1)+1, buddy2)); 717 } 718 continue; 719 } 720 721 /* both bits in buddy2 must be 1 */ 722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 724 725 for (j = 0; j < (1 << order); j++) { 726 k = (i * (1 << order)) + j; 727 MB_CHECK_ASSERT( 728 !mb_test_bit(k, e4b->bd_bitmap)); 729 } 730 count++; 731 } 732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 733 order--; 734 } 735 736 fstart = -1; 737 buddy = mb_find_buddy(e4b, 0, &max); 738 for (i = 0; i < max; i++) { 739 if (!mb_test_bit(i, buddy)) { 740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 741 if (fstart == -1) { 742 fragments++; 743 fstart = i; 744 } 745 continue; 746 } 747 fstart = -1; 748 /* check used bits only */ 749 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 750 buddy2 = mb_find_buddy(e4b, j, &max2); 751 k = i >> j; 752 MB_CHECK_ASSERT(k < max2); 753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 754 } 755 } 756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 758 759 grp = ext4_get_group_info(sb, e4b->bd_group); 760 if (!grp) 761 return; 762 list_for_each(cur, &grp->bb_prealloc_list) { 763 ext4_group_t groupnr; 764 struct ext4_prealloc_space *pa; 765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 767 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 768 for (i = 0; i < pa->pa_len; i++) 769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 770 } 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 return order; 835 } 836 837 /* Move group to appropriate avg_fragment_size list */ 838 static void 839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 840 { 841 struct ext4_sb_info *sbi = EXT4_SB(sb); 842 int new_order; 843 844 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) 845 return; 846 847 new_order = mb_avg_fragment_size_order(sb, 848 grp->bb_free / grp->bb_fragments); 849 if (new_order == grp->bb_avg_fragment_size_order) 850 return; 851 852 if (grp->bb_avg_fragment_size_order != -1) { 853 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 854 grp->bb_avg_fragment_size_order]); 855 list_del(&grp->bb_avg_fragment_size_node); 856 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 857 grp->bb_avg_fragment_size_order]); 858 } 859 grp->bb_avg_fragment_size_order = new_order; 860 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 861 grp->bb_avg_fragment_size_order]); 862 list_add_tail(&grp->bb_avg_fragment_size_node, 863 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 864 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 865 grp->bb_avg_fragment_size_order]); 866 } 867 868 /* 869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 870 * cr level needs an update. 871 */ 872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 873 enum criteria *new_cr, ext4_group_t *group) 874 { 875 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 876 struct ext4_group_info *iter; 877 int i; 878 879 if (ac->ac_status == AC_STATUS_FOUND) 880 return; 881 882 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 883 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 884 885 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 886 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 887 continue; 888 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 889 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 890 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 891 continue; 892 } 893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 894 bb_largest_free_order_node) { 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 897 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 898 *group = iter->bb_group; 899 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 900 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 901 return; 902 } 903 } 904 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 905 } 906 907 /* Increment cr and search again if no group is found */ 908 *new_cr = CR_GOAL_LEN_FAST; 909 } 910 911 /* 912 * Find a suitable group of given order from the average fragments list. 913 */ 914 static struct ext4_group_info * 915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 916 { 917 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 918 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 919 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 920 struct ext4_group_info *grp = NULL, *iter; 921 enum criteria cr = ac->ac_criteria; 922 923 if (list_empty(frag_list)) 924 return NULL; 925 read_lock(frag_list_lock); 926 if (list_empty(frag_list)) { 927 read_unlock(frag_list_lock); 928 return NULL; 929 } 930 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 931 if (sbi->s_mb_stats) 932 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 933 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 934 grp = iter; 935 break; 936 } 937 } 938 read_unlock(frag_list_lock); 939 return grp; 940 } 941 942 /* 943 * Choose next group by traversing average fragment size list of suitable 944 * order. Updates *new_cr if cr level needs an update. 945 */ 946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 947 enum criteria *new_cr, ext4_group_t *group) 948 { 949 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 950 struct ext4_group_info *grp = NULL; 951 int i; 952 953 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 954 if (sbi->s_mb_stats) 955 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 956 } 957 958 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 959 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 960 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 961 if (grp) { 962 *group = grp->bb_group; 963 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 964 return; 965 } 966 } 967 968 /* 969 * CR_BEST_AVAIL_LEN works based on the concept that we have 970 * a larger normalized goal len request which can be trimmed to 971 * a smaller goal len such that it can still satisfy original 972 * request len. However, allocation request for non-regular 973 * files never gets normalized. 974 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 975 */ 976 if (ac->ac_flags & EXT4_MB_HINT_DATA) 977 *new_cr = CR_BEST_AVAIL_LEN; 978 else 979 *new_cr = CR_GOAL_LEN_SLOW; 980 } 981 982 /* 983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 984 * order we have and proactively trim the goal request length to that order to 985 * find a suitable group faster. 986 * 987 * This optimizes allocation speed at the cost of slightly reduced 988 * preallocations. However, we make sure that we don't trim the request too 989 * much and fall to CR_GOAL_LEN_SLOW in that case. 990 */ 991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 992 enum criteria *new_cr, ext4_group_t *group) 993 { 994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 995 struct ext4_group_info *grp = NULL; 996 int i, order, min_order; 997 unsigned long num_stripe_clusters = 0; 998 999 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1000 if (sbi->s_mb_stats) 1001 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1002 } 1003 1004 /* 1005 * mb_avg_fragment_size_order() returns order in a way that makes 1006 * retrieving back the length using (1 << order) inaccurate. Hence, use 1007 * fls() instead since we need to know the actual length while modifying 1008 * goal length. 1009 */ 1010 order = fls(ac->ac_g_ex.fe_len) - 1; 1011 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1012 if (min_order < 0) 1013 min_order = 0; 1014 1015 if (sbi->s_stripe > 0) { 1016 /* 1017 * We are assuming that stripe size is always a multiple of 1018 * cluster ratio otherwise __ext4_fill_super exists early. 1019 */ 1020 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1021 if (1 << min_order < num_stripe_clusters) 1022 /* 1023 * We consider 1 order less because later we round 1024 * up the goal len to num_stripe_clusters 1025 */ 1026 min_order = fls(num_stripe_clusters) - 1; 1027 } 1028 1029 if (1 << min_order < ac->ac_o_ex.fe_len) 1030 min_order = fls(ac->ac_o_ex.fe_len); 1031 1032 for (i = order; i >= min_order; i--) { 1033 int frag_order; 1034 /* 1035 * Scale down goal len to make sure we find something 1036 * in the free fragments list. Basically, reduce 1037 * preallocations. 1038 */ 1039 ac->ac_g_ex.fe_len = 1 << i; 1040 1041 if (num_stripe_clusters > 0) { 1042 /* 1043 * Try to round up the adjusted goal length to 1044 * stripe size (in cluster units) multiple for 1045 * efficiency. 1046 */ 1047 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1048 num_stripe_clusters); 1049 } 1050 1051 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1052 ac->ac_g_ex.fe_len); 1053 1054 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1055 if (grp) { 1056 *group = grp->bb_group; 1057 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1058 return; 1059 } 1060 } 1061 1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1064 *new_cr = CR_GOAL_LEN_SLOW; 1065 } 1066 1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1068 { 1069 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1070 return 0; 1071 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1072 return 0; 1073 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1074 return 0; 1075 return 1; 1076 } 1077 1078 /* 1079 * Return next linear group for allocation. If linear traversal should not be 1080 * performed, this function just returns the same group 1081 */ 1082 static ext4_group_t 1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1084 ext4_group_t ngroups) 1085 { 1086 if (!should_optimize_scan(ac)) 1087 goto inc_and_return; 1088 1089 if (ac->ac_groups_linear_remaining) { 1090 ac->ac_groups_linear_remaining--; 1091 goto inc_and_return; 1092 } 1093 1094 return group; 1095 inc_and_return: 1096 /* 1097 * Artificially restricted ngroups for non-extent 1098 * files makes group > ngroups possible on first loop. 1099 */ 1100 return group + 1 >= ngroups ? 0 : group + 1; 1101 } 1102 1103 /* 1104 * ext4_mb_choose_next_group: choose next group for allocation. 1105 * 1106 * @ac Allocation Context 1107 * @new_cr This is an output parameter. If the there is no good group 1108 * available at current CR level, this field is updated to indicate 1109 * the new cr level that should be used. 1110 * @group This is an input / output parameter. As an input it indicates the 1111 * next group that the allocator intends to use for allocation. As 1112 * output, this field indicates the next group that should be used as 1113 * determined by the optimization functions. 1114 * @ngroups Total number of groups 1115 */ 1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1118 { 1119 *new_cr = ac->ac_criteria; 1120 1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1122 *group = next_linear_group(ac, *group, ngroups); 1123 return; 1124 } 1125 1126 if (*new_cr == CR_POWER2_ALIGNED) { 1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group); 1128 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group); 1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group); 1132 } else { 1133 /* 1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1135 * bb_free. But until that happens, we should never come here. 1136 */ 1137 WARN_ON(1); 1138 } 1139 } 1140 1141 /* 1142 * Cache the order of the largest free extent we have available in this block 1143 * group. 1144 */ 1145 static void 1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(sb); 1149 int i; 1150 1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1152 if (grp->bb_counters[i] > 0) 1153 break; 1154 /* No need to move between order lists? */ 1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1156 i == grp->bb_largest_free_order) { 1157 grp->bb_largest_free_order = i; 1158 return; 1159 } 1160 1161 if (grp->bb_largest_free_order >= 0) { 1162 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1163 grp->bb_largest_free_order]); 1164 list_del_init(&grp->bb_largest_free_order_node); 1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1166 grp->bb_largest_free_order]); 1167 } 1168 grp->bb_largest_free_order = i; 1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1170 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1171 grp->bb_largest_free_order]); 1172 list_add_tail(&grp->bb_largest_free_order_node, 1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 } 1177 } 1178 1179 static noinline_for_stack 1180 void ext4_mb_generate_buddy(struct super_block *sb, 1181 void *buddy, void *bitmap, ext4_group_t group, 1182 struct ext4_group_info *grp) 1183 { 1184 struct ext4_sb_info *sbi = EXT4_SB(sb); 1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1186 ext4_grpblk_t i = 0; 1187 ext4_grpblk_t first; 1188 ext4_grpblk_t len; 1189 unsigned free = 0; 1190 unsigned fragments = 0; 1191 unsigned long long period = get_cycles(); 1192 1193 /* initialize buddy from bitmap which is aggregation 1194 * of on-disk bitmap and preallocations */ 1195 i = mb_find_next_zero_bit(bitmap, max, 0); 1196 grp->bb_first_free = i; 1197 while (i < max) { 1198 fragments++; 1199 first = i; 1200 i = mb_find_next_bit(bitmap, max, i); 1201 len = i - first; 1202 free += len; 1203 if (len > 1) 1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1205 else 1206 grp->bb_counters[0]++; 1207 if (i < max) 1208 i = mb_find_next_zero_bit(bitmap, max, i); 1209 } 1210 grp->bb_fragments = fragments; 1211 1212 if (free != grp->bb_free) { 1213 ext4_grp_locked_error(sb, group, 0, 0, 1214 "block bitmap and bg descriptor " 1215 "inconsistent: %u vs %u free clusters", 1216 free, grp->bb_free); 1217 /* 1218 * If we intend to continue, we consider group descriptor 1219 * corrupt and update bb_free using bitmap value 1220 */ 1221 grp->bb_free = free; 1222 ext4_mark_group_bitmap_corrupted(sb, group, 1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1224 } 1225 mb_set_largest_free_order(sb, grp); 1226 mb_update_avg_fragment_size(sb, grp); 1227 1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1229 1230 period = get_cycles() - period; 1231 atomic_inc(&sbi->s_mb_buddies_generated); 1232 atomic64_add(period, &sbi->s_mb_generation_time); 1233 } 1234 1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1236 { 1237 int count; 1238 int order = 1; 1239 void *buddy; 1240 1241 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1242 mb_set_bits(buddy, 0, count); 1243 1244 e4b->bd_info->bb_fragments = 0; 1245 memset(e4b->bd_info->bb_counters, 0, 1246 sizeof(*e4b->bd_info->bb_counters) * 1247 (e4b->bd_sb->s_blocksize_bits + 2)); 1248 1249 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1250 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1251 } 1252 1253 /* The buddy information is attached the buddy cache inode 1254 * for convenience. The information regarding each group 1255 * is loaded via ext4_mb_load_buddy. The information involve 1256 * block bitmap and buddy information. The information are 1257 * stored in the inode as 1258 * 1259 * { page } 1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1261 * 1262 * 1263 * one block each for bitmap and buddy information. 1264 * So for each group we take up 2 blocks. A page can 1265 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1266 * So it can have information regarding groups_per_page which 1267 * is blocks_per_page/2 1268 * 1269 * Locking note: This routine takes the block group lock of all groups 1270 * for this page; do not hold this lock when calling this routine! 1271 */ 1272 1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1274 { 1275 ext4_group_t ngroups; 1276 unsigned int blocksize; 1277 int blocks_per_page; 1278 int groups_per_page; 1279 int err = 0; 1280 int i; 1281 ext4_group_t first_group, group; 1282 int first_block; 1283 struct super_block *sb; 1284 struct buffer_head *bhs; 1285 struct buffer_head **bh = NULL; 1286 struct inode *inode; 1287 char *data; 1288 char *bitmap; 1289 struct ext4_group_info *grinfo; 1290 1291 inode = page->mapping->host; 1292 sb = inode->i_sb; 1293 ngroups = ext4_get_groups_count(sb); 1294 blocksize = i_blocksize(inode); 1295 blocks_per_page = PAGE_SIZE / blocksize; 1296 1297 mb_debug(sb, "init page %lu\n", page->index); 1298 1299 groups_per_page = blocks_per_page >> 1; 1300 if (groups_per_page == 0) 1301 groups_per_page = 1; 1302 1303 /* allocate buffer_heads to read bitmaps */ 1304 if (groups_per_page > 1) { 1305 i = sizeof(struct buffer_head *) * groups_per_page; 1306 bh = kzalloc(i, gfp); 1307 if (bh == NULL) 1308 return -ENOMEM; 1309 } else 1310 bh = &bhs; 1311 1312 first_group = page->index * blocks_per_page / 2; 1313 1314 /* read all groups the page covers into the cache */ 1315 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1316 if (group >= ngroups) 1317 break; 1318 1319 grinfo = ext4_get_group_info(sb, group); 1320 if (!grinfo) 1321 continue; 1322 /* 1323 * If page is uptodate then we came here after online resize 1324 * which added some new uninitialized group info structs, so 1325 * we must skip all initialized uptodate buddies on the page, 1326 * which may be currently in use by an allocating task. 1327 */ 1328 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1329 bh[i] = NULL; 1330 continue; 1331 } 1332 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1333 if (IS_ERR(bh[i])) { 1334 err = PTR_ERR(bh[i]); 1335 bh[i] = NULL; 1336 goto out; 1337 } 1338 mb_debug(sb, "read bitmap for group %u\n", group); 1339 } 1340 1341 /* wait for I/O completion */ 1342 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1343 int err2; 1344 1345 if (!bh[i]) 1346 continue; 1347 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1348 if (!err) 1349 err = err2; 1350 } 1351 1352 first_block = page->index * blocks_per_page; 1353 for (i = 0; i < blocks_per_page; i++) { 1354 group = (first_block + i) >> 1; 1355 if (group >= ngroups) 1356 break; 1357 1358 if (!bh[group - first_group]) 1359 /* skip initialized uptodate buddy */ 1360 continue; 1361 1362 if (!buffer_verified(bh[group - first_group])) 1363 /* Skip faulty bitmaps */ 1364 continue; 1365 err = 0; 1366 1367 /* 1368 * data carry information regarding this 1369 * particular group in the format specified 1370 * above 1371 * 1372 */ 1373 data = page_address(page) + (i * blocksize); 1374 bitmap = bh[group - first_group]->b_data; 1375 1376 /* 1377 * We place the buddy block and bitmap block 1378 * close together 1379 */ 1380 grinfo = ext4_get_group_info(sb, group); 1381 if (!grinfo) { 1382 err = -EFSCORRUPTED; 1383 goto out; 1384 } 1385 if ((first_block + i) & 1) { 1386 /* this is block of buddy */ 1387 BUG_ON(incore == NULL); 1388 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1389 group, page->index, i * blocksize); 1390 trace_ext4_mb_buddy_bitmap_load(sb, group); 1391 grinfo->bb_fragments = 0; 1392 memset(grinfo->bb_counters, 0, 1393 sizeof(*grinfo->bb_counters) * 1394 (MB_NUM_ORDERS(sb))); 1395 /* 1396 * incore got set to the group block bitmap below 1397 */ 1398 ext4_lock_group(sb, group); 1399 /* init the buddy */ 1400 memset(data, 0xff, blocksize); 1401 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1402 ext4_unlock_group(sb, group); 1403 incore = NULL; 1404 } else { 1405 /* this is block of bitmap */ 1406 BUG_ON(incore != NULL); 1407 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1408 group, page->index, i * blocksize); 1409 trace_ext4_mb_bitmap_load(sb, group); 1410 1411 /* see comments in ext4_mb_put_pa() */ 1412 ext4_lock_group(sb, group); 1413 memcpy(data, bitmap, blocksize); 1414 1415 /* mark all preallocated blks used in in-core bitmap */ 1416 ext4_mb_generate_from_pa(sb, data, group); 1417 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1418 ext4_unlock_group(sb, group); 1419 1420 /* set incore so that the buddy information can be 1421 * generated using this 1422 */ 1423 incore = data; 1424 } 1425 } 1426 SetPageUptodate(page); 1427 1428 out: 1429 if (bh) { 1430 for (i = 0; i < groups_per_page; i++) 1431 brelse(bh[i]); 1432 if (bh != &bhs) 1433 kfree(bh); 1434 } 1435 return err; 1436 } 1437 1438 /* 1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1440 * on the same buddy page doesn't happen whild holding the buddy page lock. 1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1443 */ 1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1445 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1446 { 1447 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1448 int block, pnum, poff; 1449 int blocks_per_page; 1450 struct page *page; 1451 1452 e4b->bd_buddy_page = NULL; 1453 e4b->bd_bitmap_page = NULL; 1454 1455 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1456 /* 1457 * the buddy cache inode stores the block bitmap 1458 * and buddy information in consecutive blocks. 1459 * So for each group we need two blocks. 1460 */ 1461 block = group * 2; 1462 pnum = block / blocks_per_page; 1463 poff = block % blocks_per_page; 1464 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1465 if (!page) 1466 return -ENOMEM; 1467 BUG_ON(page->mapping != inode->i_mapping); 1468 e4b->bd_bitmap_page = page; 1469 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1470 1471 if (blocks_per_page >= 2) { 1472 /* buddy and bitmap are on the same page */ 1473 return 0; 1474 } 1475 1476 /* blocks_per_page == 1, hence we need another page for the buddy */ 1477 page = find_or_create_page(inode->i_mapping, block + 1, gfp); 1478 if (!page) 1479 return -ENOMEM; 1480 BUG_ON(page->mapping != inode->i_mapping); 1481 e4b->bd_buddy_page = page; 1482 return 0; 1483 } 1484 1485 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1486 { 1487 if (e4b->bd_bitmap_page) { 1488 unlock_page(e4b->bd_bitmap_page); 1489 put_page(e4b->bd_bitmap_page); 1490 } 1491 if (e4b->bd_buddy_page) { 1492 unlock_page(e4b->bd_buddy_page); 1493 put_page(e4b->bd_buddy_page); 1494 } 1495 } 1496 1497 /* 1498 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1499 * block group lock of all groups for this page; do not hold the BG lock when 1500 * calling this routine! 1501 */ 1502 static noinline_for_stack 1503 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1504 { 1505 1506 struct ext4_group_info *this_grp; 1507 struct ext4_buddy e4b; 1508 struct page *page; 1509 int ret = 0; 1510 1511 might_sleep(); 1512 mb_debug(sb, "init group %u\n", group); 1513 this_grp = ext4_get_group_info(sb, group); 1514 if (!this_grp) 1515 return -EFSCORRUPTED; 1516 1517 /* 1518 * This ensures that we don't reinit the buddy cache 1519 * page which map to the group from which we are already 1520 * allocating. If we are looking at the buddy cache we would 1521 * have taken a reference using ext4_mb_load_buddy and that 1522 * would have pinned buddy page to page cache. 1523 * The call to ext4_mb_get_buddy_page_lock will mark the 1524 * page accessed. 1525 */ 1526 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1527 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1528 /* 1529 * somebody initialized the group 1530 * return without doing anything 1531 */ 1532 goto err; 1533 } 1534 1535 page = e4b.bd_bitmap_page; 1536 ret = ext4_mb_init_cache(page, NULL, gfp); 1537 if (ret) 1538 goto err; 1539 if (!PageUptodate(page)) { 1540 ret = -EIO; 1541 goto err; 1542 } 1543 1544 if (e4b.bd_buddy_page == NULL) { 1545 /* 1546 * If both the bitmap and buddy are in 1547 * the same page we don't need to force 1548 * init the buddy 1549 */ 1550 ret = 0; 1551 goto err; 1552 } 1553 /* init buddy cache */ 1554 page = e4b.bd_buddy_page; 1555 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1556 if (ret) 1557 goto err; 1558 if (!PageUptodate(page)) { 1559 ret = -EIO; 1560 goto err; 1561 } 1562 err: 1563 ext4_mb_put_buddy_page_lock(&e4b); 1564 return ret; 1565 } 1566 1567 /* 1568 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1569 * block group lock of all groups for this page; do not hold the BG lock when 1570 * calling this routine! 1571 */ 1572 static noinline_for_stack int 1573 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1574 struct ext4_buddy *e4b, gfp_t gfp) 1575 { 1576 int blocks_per_page; 1577 int block; 1578 int pnum; 1579 int poff; 1580 struct page *page; 1581 int ret; 1582 struct ext4_group_info *grp; 1583 struct ext4_sb_info *sbi = EXT4_SB(sb); 1584 struct inode *inode = sbi->s_buddy_cache; 1585 1586 might_sleep(); 1587 mb_debug(sb, "load group %u\n", group); 1588 1589 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1590 grp = ext4_get_group_info(sb, group); 1591 if (!grp) 1592 return -EFSCORRUPTED; 1593 1594 e4b->bd_blkbits = sb->s_blocksize_bits; 1595 e4b->bd_info = grp; 1596 e4b->bd_sb = sb; 1597 e4b->bd_group = group; 1598 e4b->bd_buddy_page = NULL; 1599 e4b->bd_bitmap_page = NULL; 1600 1601 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1602 /* 1603 * we need full data about the group 1604 * to make a good selection 1605 */ 1606 ret = ext4_mb_init_group(sb, group, gfp); 1607 if (ret) 1608 return ret; 1609 } 1610 1611 /* 1612 * the buddy cache inode stores the block bitmap 1613 * and buddy information in consecutive blocks. 1614 * So for each group we need two blocks. 1615 */ 1616 block = group * 2; 1617 pnum = block / blocks_per_page; 1618 poff = block % blocks_per_page; 1619 1620 /* we could use find_or_create_page(), but it locks page 1621 * what we'd like to avoid in fast path ... */ 1622 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1623 if (page == NULL || !PageUptodate(page)) { 1624 if (page) 1625 /* 1626 * drop the page reference and try 1627 * to get the page with lock. If we 1628 * are not uptodate that implies 1629 * somebody just created the page but 1630 * is yet to initialize the same. So 1631 * wait for it to initialize. 1632 */ 1633 put_page(page); 1634 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1635 if (page) { 1636 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1637 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1638 /* should never happen */ 1639 unlock_page(page); 1640 ret = -EINVAL; 1641 goto err; 1642 } 1643 if (!PageUptodate(page)) { 1644 ret = ext4_mb_init_cache(page, NULL, gfp); 1645 if (ret) { 1646 unlock_page(page); 1647 goto err; 1648 } 1649 mb_cmp_bitmaps(e4b, page_address(page) + 1650 (poff * sb->s_blocksize)); 1651 } 1652 unlock_page(page); 1653 } 1654 } 1655 if (page == NULL) { 1656 ret = -ENOMEM; 1657 goto err; 1658 } 1659 if (!PageUptodate(page)) { 1660 ret = -EIO; 1661 goto err; 1662 } 1663 1664 /* Pages marked accessed already */ 1665 e4b->bd_bitmap_page = page; 1666 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1667 1668 block++; 1669 pnum = block / blocks_per_page; 1670 poff = block % blocks_per_page; 1671 1672 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1673 if (page == NULL || !PageUptodate(page)) { 1674 if (page) 1675 put_page(page); 1676 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1677 if (page) { 1678 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1679 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1680 /* should never happen */ 1681 unlock_page(page); 1682 ret = -EINVAL; 1683 goto err; 1684 } 1685 if (!PageUptodate(page)) { 1686 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1687 gfp); 1688 if (ret) { 1689 unlock_page(page); 1690 goto err; 1691 } 1692 } 1693 unlock_page(page); 1694 } 1695 } 1696 if (page == NULL) { 1697 ret = -ENOMEM; 1698 goto err; 1699 } 1700 if (!PageUptodate(page)) { 1701 ret = -EIO; 1702 goto err; 1703 } 1704 1705 /* Pages marked accessed already */ 1706 e4b->bd_buddy_page = page; 1707 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1708 1709 return 0; 1710 1711 err: 1712 if (page) 1713 put_page(page); 1714 if (e4b->bd_bitmap_page) 1715 put_page(e4b->bd_bitmap_page); 1716 1717 e4b->bd_buddy = NULL; 1718 e4b->bd_bitmap = NULL; 1719 return ret; 1720 } 1721 1722 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1723 struct ext4_buddy *e4b) 1724 { 1725 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1726 } 1727 1728 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1729 { 1730 if (e4b->bd_bitmap_page) 1731 put_page(e4b->bd_bitmap_page); 1732 if (e4b->bd_buddy_page) 1733 put_page(e4b->bd_buddy_page); 1734 } 1735 1736 1737 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1738 { 1739 int order = 1, max; 1740 void *bb; 1741 1742 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1743 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1744 1745 while (order <= e4b->bd_blkbits + 1) { 1746 bb = mb_find_buddy(e4b, order, &max); 1747 if (!mb_test_bit(block >> order, bb)) { 1748 /* this block is part of buddy of order 'order' */ 1749 return order; 1750 } 1751 order++; 1752 } 1753 return 0; 1754 } 1755 1756 static void mb_clear_bits(void *bm, int cur, int len) 1757 { 1758 __u32 *addr; 1759 1760 len = cur + len; 1761 while (cur < len) { 1762 if ((cur & 31) == 0 && (len - cur) >= 32) { 1763 /* fast path: clear whole word at once */ 1764 addr = bm + (cur >> 3); 1765 *addr = 0; 1766 cur += 32; 1767 continue; 1768 } 1769 mb_clear_bit(cur, bm); 1770 cur++; 1771 } 1772 } 1773 1774 /* clear bits in given range 1775 * will return first found zero bit if any, -1 otherwise 1776 */ 1777 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1778 { 1779 __u32 *addr; 1780 int zero_bit = -1; 1781 1782 len = cur + len; 1783 while (cur < len) { 1784 if ((cur & 31) == 0 && (len - cur) >= 32) { 1785 /* fast path: clear whole word at once */ 1786 addr = bm + (cur >> 3); 1787 if (*addr != (__u32)(-1) && zero_bit == -1) 1788 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1789 *addr = 0; 1790 cur += 32; 1791 continue; 1792 } 1793 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1794 zero_bit = cur; 1795 cur++; 1796 } 1797 1798 return zero_bit; 1799 } 1800 1801 void mb_set_bits(void *bm, int cur, int len) 1802 { 1803 __u32 *addr; 1804 1805 len = cur + len; 1806 while (cur < len) { 1807 if ((cur & 31) == 0 && (len - cur) >= 32) { 1808 /* fast path: set whole word at once */ 1809 addr = bm + (cur >> 3); 1810 *addr = 0xffffffff; 1811 cur += 32; 1812 continue; 1813 } 1814 mb_set_bit(cur, bm); 1815 cur++; 1816 } 1817 } 1818 1819 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1820 { 1821 if (mb_test_bit(*bit + side, bitmap)) { 1822 mb_clear_bit(*bit, bitmap); 1823 (*bit) -= side; 1824 return 1; 1825 } 1826 else { 1827 (*bit) += side; 1828 mb_set_bit(*bit, bitmap); 1829 return -1; 1830 } 1831 } 1832 1833 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1834 { 1835 int max; 1836 int order = 1; 1837 void *buddy = mb_find_buddy(e4b, order, &max); 1838 1839 while (buddy) { 1840 void *buddy2; 1841 1842 /* Bits in range [first; last] are known to be set since 1843 * corresponding blocks were allocated. Bits in range 1844 * (first; last) will stay set because they form buddies on 1845 * upper layer. We just deal with borders if they don't 1846 * align with upper layer and then go up. 1847 * Releasing entire group is all about clearing 1848 * single bit of highest order buddy. 1849 */ 1850 1851 /* Example: 1852 * --------------------------------- 1853 * | 1 | 1 | 1 | 1 | 1854 * --------------------------------- 1855 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1856 * --------------------------------- 1857 * 0 1 2 3 4 5 6 7 1858 * \_____________________/ 1859 * 1860 * Neither [1] nor [6] is aligned to above layer. 1861 * Left neighbour [0] is free, so mark it busy, 1862 * decrease bb_counters and extend range to 1863 * [0; 6] 1864 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1865 * mark [6] free, increase bb_counters and shrink range to 1866 * [0; 5]. 1867 * Then shift range to [0; 2], go up and do the same. 1868 */ 1869 1870 1871 if (first & 1) 1872 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1873 if (!(last & 1)) 1874 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1875 if (first > last) 1876 break; 1877 order++; 1878 1879 buddy2 = mb_find_buddy(e4b, order, &max); 1880 if (!buddy2) { 1881 mb_clear_bits(buddy, first, last - first + 1); 1882 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1883 break; 1884 } 1885 first >>= 1; 1886 last >>= 1; 1887 buddy = buddy2; 1888 } 1889 } 1890 1891 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1892 int first, int count) 1893 { 1894 int left_is_free = 0; 1895 int right_is_free = 0; 1896 int block; 1897 int last = first + count - 1; 1898 struct super_block *sb = e4b->bd_sb; 1899 1900 if (WARN_ON(count == 0)) 1901 return; 1902 BUG_ON(last >= (sb->s_blocksize << 3)); 1903 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1904 /* Don't bother if the block group is corrupt. */ 1905 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1906 return; 1907 1908 mb_check_buddy(e4b); 1909 mb_free_blocks_double(inode, e4b, first, count); 1910 1911 /* access memory sequentially: check left neighbour, 1912 * clear range and then check right neighbour 1913 */ 1914 if (first != 0) 1915 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1916 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1917 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1918 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1919 1920 if (unlikely(block != -1)) { 1921 struct ext4_sb_info *sbi = EXT4_SB(sb); 1922 ext4_fsblk_t blocknr; 1923 1924 /* 1925 * Fastcommit replay can free already freed blocks which 1926 * corrupts allocation info. Regenerate it. 1927 */ 1928 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 1929 mb_regenerate_buddy(e4b); 1930 goto check; 1931 } 1932 1933 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1934 blocknr += EXT4_C2B(sbi, block); 1935 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1936 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1937 ext4_grp_locked_error(sb, e4b->bd_group, 1938 inode ? inode->i_ino : 0, blocknr, 1939 "freeing already freed block (bit %u); block bitmap corrupt.", 1940 block); 1941 return; 1942 } 1943 1944 this_cpu_inc(discard_pa_seq); 1945 e4b->bd_info->bb_free += count; 1946 if (first < e4b->bd_info->bb_first_free) 1947 e4b->bd_info->bb_first_free = first; 1948 1949 /* let's maintain fragments counter */ 1950 if (left_is_free && right_is_free) 1951 e4b->bd_info->bb_fragments--; 1952 else if (!left_is_free && !right_is_free) 1953 e4b->bd_info->bb_fragments++; 1954 1955 /* buddy[0] == bd_bitmap is a special case, so handle 1956 * it right away and let mb_buddy_mark_free stay free of 1957 * zero order checks. 1958 * Check if neighbours are to be coaleasced, 1959 * adjust bitmap bb_counters and borders appropriately. 1960 */ 1961 if (first & 1) { 1962 first += !left_is_free; 1963 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1964 } 1965 if (!(last & 1)) { 1966 last -= !right_is_free; 1967 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1968 } 1969 1970 if (first <= last) 1971 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1972 1973 mb_set_largest_free_order(sb, e4b->bd_info); 1974 mb_update_avg_fragment_size(sb, e4b->bd_info); 1975 check: 1976 mb_check_buddy(e4b); 1977 } 1978 1979 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1980 int needed, struct ext4_free_extent *ex) 1981 { 1982 int max, order, next; 1983 void *buddy; 1984 1985 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1986 BUG_ON(ex == NULL); 1987 1988 buddy = mb_find_buddy(e4b, 0, &max); 1989 BUG_ON(buddy == NULL); 1990 BUG_ON(block >= max); 1991 if (mb_test_bit(block, buddy)) { 1992 ex->fe_len = 0; 1993 ex->fe_start = 0; 1994 ex->fe_group = 0; 1995 return 0; 1996 } 1997 1998 /* find actual order */ 1999 order = mb_find_order_for_block(e4b, block); 2000 2001 ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); 2002 ex->fe_start = block; 2003 ex->fe_group = e4b->bd_group; 2004 2005 block = block >> order; 2006 2007 while (needed > ex->fe_len && 2008 mb_find_buddy(e4b, order, &max)) { 2009 2010 if (block + 1 >= max) 2011 break; 2012 2013 next = (block + 1) * (1 << order); 2014 if (mb_test_bit(next, e4b->bd_bitmap)) 2015 break; 2016 2017 order = mb_find_order_for_block(e4b, next); 2018 2019 block = next >> order; 2020 ex->fe_len += 1 << order; 2021 } 2022 2023 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2024 /* Should never happen! (but apparently sometimes does?!?) */ 2025 WARN_ON(1); 2026 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2027 "corruption or bug in mb_find_extent " 2028 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2029 block, order, needed, ex->fe_group, ex->fe_start, 2030 ex->fe_len, ex->fe_logical); 2031 ex->fe_len = 0; 2032 ex->fe_start = 0; 2033 ex->fe_group = 0; 2034 } 2035 return ex->fe_len; 2036 } 2037 2038 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2039 { 2040 int ord; 2041 int mlen = 0; 2042 int max = 0; 2043 int cur; 2044 int start = ex->fe_start; 2045 int len = ex->fe_len; 2046 unsigned ret = 0; 2047 int len0 = len; 2048 void *buddy; 2049 bool split = false; 2050 2051 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2052 BUG_ON(e4b->bd_group != ex->fe_group); 2053 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2054 mb_check_buddy(e4b); 2055 mb_mark_used_double(e4b, start, len); 2056 2057 this_cpu_inc(discard_pa_seq); 2058 e4b->bd_info->bb_free -= len; 2059 if (e4b->bd_info->bb_first_free == start) 2060 e4b->bd_info->bb_first_free += len; 2061 2062 /* let's maintain fragments counter */ 2063 if (start != 0) 2064 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2065 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2066 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2067 if (mlen && max) 2068 e4b->bd_info->bb_fragments++; 2069 else if (!mlen && !max) 2070 e4b->bd_info->bb_fragments--; 2071 2072 /* let's maintain buddy itself */ 2073 while (len) { 2074 if (!split) 2075 ord = mb_find_order_for_block(e4b, start); 2076 2077 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2078 /* the whole chunk may be allocated at once! */ 2079 mlen = 1 << ord; 2080 if (!split) 2081 buddy = mb_find_buddy(e4b, ord, &max); 2082 else 2083 split = false; 2084 BUG_ON((start >> ord) >= max); 2085 mb_set_bit(start >> ord, buddy); 2086 e4b->bd_info->bb_counters[ord]--; 2087 start += mlen; 2088 len -= mlen; 2089 BUG_ON(len < 0); 2090 continue; 2091 } 2092 2093 /* store for history */ 2094 if (ret == 0) 2095 ret = len | (ord << 16); 2096 2097 /* we have to split large buddy */ 2098 BUG_ON(ord <= 0); 2099 buddy = mb_find_buddy(e4b, ord, &max); 2100 mb_set_bit(start >> ord, buddy); 2101 e4b->bd_info->bb_counters[ord]--; 2102 2103 ord--; 2104 cur = (start >> ord) & ~1U; 2105 buddy = mb_find_buddy(e4b, ord, &max); 2106 mb_clear_bit(cur, buddy); 2107 mb_clear_bit(cur + 1, buddy); 2108 e4b->bd_info->bb_counters[ord]++; 2109 e4b->bd_info->bb_counters[ord]++; 2110 split = true; 2111 } 2112 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2113 2114 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2115 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2116 mb_check_buddy(e4b); 2117 2118 return ret; 2119 } 2120 2121 /* 2122 * Must be called under group lock! 2123 */ 2124 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2125 struct ext4_buddy *e4b) 2126 { 2127 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2128 int ret; 2129 2130 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2131 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2132 2133 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2134 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2135 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2136 2137 /* preallocation can change ac_b_ex, thus we store actually 2138 * allocated blocks for history */ 2139 ac->ac_f_ex = ac->ac_b_ex; 2140 2141 ac->ac_status = AC_STATUS_FOUND; 2142 ac->ac_tail = ret & 0xffff; 2143 ac->ac_buddy = ret >> 16; 2144 2145 /* 2146 * take the page reference. We want the page to be pinned 2147 * so that we don't get a ext4_mb_init_cache_call for this 2148 * group until we update the bitmap. That would mean we 2149 * double allocate blocks. The reference is dropped 2150 * in ext4_mb_release_context 2151 */ 2152 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2153 get_page(ac->ac_bitmap_page); 2154 ac->ac_buddy_page = e4b->bd_buddy_page; 2155 get_page(ac->ac_buddy_page); 2156 /* store last allocated for subsequent stream allocation */ 2157 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2158 spin_lock(&sbi->s_md_lock); 2159 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2160 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2161 spin_unlock(&sbi->s_md_lock); 2162 } 2163 /* 2164 * As we've just preallocated more space than 2165 * user requested originally, we store allocated 2166 * space in a special descriptor. 2167 */ 2168 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2169 ext4_mb_new_preallocation(ac); 2170 2171 } 2172 2173 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2174 struct ext4_buddy *e4b, 2175 int finish_group) 2176 { 2177 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2178 struct ext4_free_extent *bex = &ac->ac_b_ex; 2179 struct ext4_free_extent *gex = &ac->ac_g_ex; 2180 2181 if (ac->ac_status == AC_STATUS_FOUND) 2182 return; 2183 /* 2184 * We don't want to scan for a whole year 2185 */ 2186 if (ac->ac_found > sbi->s_mb_max_to_scan && 2187 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2188 ac->ac_status = AC_STATUS_BREAK; 2189 return; 2190 } 2191 2192 /* 2193 * Haven't found good chunk so far, let's continue 2194 */ 2195 if (bex->fe_len < gex->fe_len) 2196 return; 2197 2198 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2199 ext4_mb_use_best_found(ac, e4b); 2200 } 2201 2202 /* 2203 * The routine checks whether found extent is good enough. If it is, 2204 * then the extent gets marked used and flag is set to the context 2205 * to stop scanning. Otherwise, the extent is compared with the 2206 * previous found extent and if new one is better, then it's stored 2207 * in the context. Later, the best found extent will be used, if 2208 * mballoc can't find good enough extent. 2209 * 2210 * The algorithm used is roughly as follows: 2211 * 2212 * * If free extent found is exactly as big as goal, then 2213 * stop the scan and use it immediately 2214 * 2215 * * If free extent found is smaller than goal, then keep retrying 2216 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2217 * that stop scanning and use whatever we have. 2218 * 2219 * * If free extent found is bigger than goal, then keep retrying 2220 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2221 * stopping the scan and using the extent. 2222 * 2223 * 2224 * FIXME: real allocation policy is to be designed yet! 2225 */ 2226 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2227 struct ext4_free_extent *ex, 2228 struct ext4_buddy *e4b) 2229 { 2230 struct ext4_free_extent *bex = &ac->ac_b_ex; 2231 struct ext4_free_extent *gex = &ac->ac_g_ex; 2232 2233 BUG_ON(ex->fe_len <= 0); 2234 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2235 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2236 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2237 2238 ac->ac_found++; 2239 ac->ac_cX_found[ac->ac_criteria]++; 2240 2241 /* 2242 * The special case - take what you catch first 2243 */ 2244 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2245 *bex = *ex; 2246 ext4_mb_use_best_found(ac, e4b); 2247 return; 2248 } 2249 2250 /* 2251 * Let's check whether the chuck is good enough 2252 */ 2253 if (ex->fe_len == gex->fe_len) { 2254 *bex = *ex; 2255 ext4_mb_use_best_found(ac, e4b); 2256 return; 2257 } 2258 2259 /* 2260 * If this is first found extent, just store it in the context 2261 */ 2262 if (bex->fe_len == 0) { 2263 *bex = *ex; 2264 return; 2265 } 2266 2267 /* 2268 * If new found extent is better, store it in the context 2269 */ 2270 if (bex->fe_len < gex->fe_len) { 2271 /* if the request isn't satisfied, any found extent 2272 * larger than previous best one is better */ 2273 if (ex->fe_len > bex->fe_len) 2274 *bex = *ex; 2275 } else if (ex->fe_len > gex->fe_len) { 2276 /* if the request is satisfied, then we try to find 2277 * an extent that still satisfy the request, but is 2278 * smaller than previous one */ 2279 if (ex->fe_len < bex->fe_len) 2280 *bex = *ex; 2281 } 2282 2283 ext4_mb_check_limits(ac, e4b, 0); 2284 } 2285 2286 static noinline_for_stack 2287 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2288 struct ext4_buddy *e4b) 2289 { 2290 struct ext4_free_extent ex = ac->ac_b_ex; 2291 ext4_group_t group = ex.fe_group; 2292 int max; 2293 int err; 2294 2295 BUG_ON(ex.fe_len <= 0); 2296 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2297 if (err) 2298 return; 2299 2300 ext4_lock_group(ac->ac_sb, group); 2301 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2302 goto out; 2303 2304 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2305 2306 if (max > 0) { 2307 ac->ac_b_ex = ex; 2308 ext4_mb_use_best_found(ac, e4b); 2309 } 2310 2311 out: 2312 ext4_unlock_group(ac->ac_sb, group); 2313 ext4_mb_unload_buddy(e4b); 2314 } 2315 2316 static noinline_for_stack 2317 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2318 struct ext4_buddy *e4b) 2319 { 2320 ext4_group_t group = ac->ac_g_ex.fe_group; 2321 int max; 2322 int err; 2323 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2324 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2325 struct ext4_free_extent ex; 2326 2327 if (!grp) 2328 return -EFSCORRUPTED; 2329 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2330 return 0; 2331 if (grp->bb_free == 0) 2332 return 0; 2333 2334 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2335 if (err) 2336 return err; 2337 2338 ext4_lock_group(ac->ac_sb, group); 2339 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2340 goto out; 2341 2342 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2343 ac->ac_g_ex.fe_len, &ex); 2344 ex.fe_logical = 0xDEADFA11; /* debug value */ 2345 2346 if (max >= ac->ac_g_ex.fe_len && 2347 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2348 ext4_fsblk_t start; 2349 2350 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2351 /* use do_div to get remainder (would be 64-bit modulo) */ 2352 if (do_div(start, sbi->s_stripe) == 0) { 2353 ac->ac_found++; 2354 ac->ac_b_ex = ex; 2355 ext4_mb_use_best_found(ac, e4b); 2356 } 2357 } else if (max >= ac->ac_g_ex.fe_len) { 2358 BUG_ON(ex.fe_len <= 0); 2359 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2360 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2361 ac->ac_found++; 2362 ac->ac_b_ex = ex; 2363 ext4_mb_use_best_found(ac, e4b); 2364 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2365 /* Sometimes, caller may want to merge even small 2366 * number of blocks to an existing extent */ 2367 BUG_ON(ex.fe_len <= 0); 2368 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2369 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2370 ac->ac_found++; 2371 ac->ac_b_ex = ex; 2372 ext4_mb_use_best_found(ac, e4b); 2373 } 2374 out: 2375 ext4_unlock_group(ac->ac_sb, group); 2376 ext4_mb_unload_buddy(e4b); 2377 2378 return 0; 2379 } 2380 2381 /* 2382 * The routine scans buddy structures (not bitmap!) from given order 2383 * to max order and tries to find big enough chunk to satisfy the req 2384 */ 2385 static noinline_for_stack 2386 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2387 struct ext4_buddy *e4b) 2388 { 2389 struct super_block *sb = ac->ac_sb; 2390 struct ext4_group_info *grp = e4b->bd_info; 2391 void *buddy; 2392 int i; 2393 int k; 2394 int max; 2395 2396 BUG_ON(ac->ac_2order <= 0); 2397 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2398 if (grp->bb_counters[i] == 0) 2399 continue; 2400 2401 buddy = mb_find_buddy(e4b, i, &max); 2402 if (WARN_RATELIMIT(buddy == NULL, 2403 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2404 continue; 2405 2406 k = mb_find_next_zero_bit(buddy, max, 0); 2407 if (k >= max) { 2408 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2409 e4b->bd_group, 2410 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2411 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2412 "%d free clusters of order %d. But found 0", 2413 grp->bb_counters[i], i); 2414 break; 2415 } 2416 ac->ac_found++; 2417 ac->ac_cX_found[ac->ac_criteria]++; 2418 2419 ac->ac_b_ex.fe_len = 1 << i; 2420 ac->ac_b_ex.fe_start = k << i; 2421 ac->ac_b_ex.fe_group = e4b->bd_group; 2422 2423 ext4_mb_use_best_found(ac, e4b); 2424 2425 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2426 2427 if (EXT4_SB(sb)->s_mb_stats) 2428 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2429 2430 break; 2431 } 2432 } 2433 2434 /* 2435 * The routine scans the group and measures all found extents. 2436 * In order to optimize scanning, caller must pass number of 2437 * free blocks in the group, so the routine can know upper limit. 2438 */ 2439 static noinline_for_stack 2440 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2441 struct ext4_buddy *e4b) 2442 { 2443 struct super_block *sb = ac->ac_sb; 2444 void *bitmap = e4b->bd_bitmap; 2445 struct ext4_free_extent ex; 2446 int i, j, freelen; 2447 int free; 2448 2449 free = e4b->bd_info->bb_free; 2450 if (WARN_ON(free <= 0)) 2451 return; 2452 2453 i = e4b->bd_info->bb_first_free; 2454 2455 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2456 i = mb_find_next_zero_bit(bitmap, 2457 EXT4_CLUSTERS_PER_GROUP(sb), i); 2458 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2459 /* 2460 * IF we have corrupt bitmap, we won't find any 2461 * free blocks even though group info says we 2462 * have free blocks 2463 */ 2464 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2465 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2466 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2467 "%d free clusters as per " 2468 "group info. But bitmap says 0", 2469 free); 2470 break; 2471 } 2472 2473 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2474 /* 2475 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2476 * sure that this group will have a large enough 2477 * continuous free extent, so skip over the smaller free 2478 * extents 2479 */ 2480 j = mb_find_next_bit(bitmap, 2481 EXT4_CLUSTERS_PER_GROUP(sb), i); 2482 freelen = j - i; 2483 2484 if (freelen < ac->ac_g_ex.fe_len) { 2485 i = j; 2486 free -= freelen; 2487 continue; 2488 } 2489 } 2490 2491 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2492 if (WARN_ON(ex.fe_len <= 0)) 2493 break; 2494 if (free < ex.fe_len) { 2495 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2496 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2497 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2498 "%d free clusters as per " 2499 "group info. But got %d blocks", 2500 free, ex.fe_len); 2501 /* 2502 * The number of free blocks differs. This mostly 2503 * indicate that the bitmap is corrupt. So exit 2504 * without claiming the space. 2505 */ 2506 break; 2507 } 2508 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2509 ext4_mb_measure_extent(ac, &ex, e4b); 2510 2511 i += ex.fe_len; 2512 free -= ex.fe_len; 2513 } 2514 2515 ext4_mb_check_limits(ac, e4b, 1); 2516 } 2517 2518 /* 2519 * This is a special case for storages like raid5 2520 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2521 */ 2522 static noinline_for_stack 2523 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2524 struct ext4_buddy *e4b) 2525 { 2526 struct super_block *sb = ac->ac_sb; 2527 struct ext4_sb_info *sbi = EXT4_SB(sb); 2528 void *bitmap = e4b->bd_bitmap; 2529 struct ext4_free_extent ex; 2530 ext4_fsblk_t first_group_block; 2531 ext4_fsblk_t a; 2532 ext4_grpblk_t i, stripe; 2533 int max; 2534 2535 BUG_ON(sbi->s_stripe == 0); 2536 2537 /* find first stripe-aligned block in group */ 2538 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2539 2540 a = first_group_block + sbi->s_stripe - 1; 2541 do_div(a, sbi->s_stripe); 2542 i = (a * sbi->s_stripe) - first_group_block; 2543 2544 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2545 i = EXT4_B2C(sbi, i); 2546 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2547 if (!mb_test_bit(i, bitmap)) { 2548 max = mb_find_extent(e4b, i, stripe, &ex); 2549 if (max >= stripe) { 2550 ac->ac_found++; 2551 ac->ac_cX_found[ac->ac_criteria]++; 2552 ex.fe_logical = 0xDEADF00D; /* debug value */ 2553 ac->ac_b_ex = ex; 2554 ext4_mb_use_best_found(ac, e4b); 2555 break; 2556 } 2557 } 2558 i += stripe; 2559 } 2560 } 2561 2562 /* 2563 * This is also called BEFORE we load the buddy bitmap. 2564 * Returns either 1 or 0 indicating that the group is either suitable 2565 * for the allocation or not. 2566 */ 2567 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2568 ext4_group_t group, enum criteria cr) 2569 { 2570 ext4_grpblk_t free, fragments; 2571 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2572 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2573 2574 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2575 2576 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2577 return false; 2578 2579 free = grp->bb_free; 2580 if (free == 0) 2581 return false; 2582 2583 fragments = grp->bb_fragments; 2584 if (fragments == 0) 2585 return false; 2586 2587 switch (cr) { 2588 case CR_POWER2_ALIGNED: 2589 BUG_ON(ac->ac_2order == 0); 2590 2591 /* Avoid using the first bg of a flexgroup for data files */ 2592 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2593 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2594 ((group % flex_size) == 0)) 2595 return false; 2596 2597 if (free < ac->ac_g_ex.fe_len) 2598 return false; 2599 2600 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2601 return true; 2602 2603 if (grp->bb_largest_free_order < ac->ac_2order) 2604 return false; 2605 2606 return true; 2607 case CR_GOAL_LEN_FAST: 2608 case CR_BEST_AVAIL_LEN: 2609 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2610 return true; 2611 break; 2612 case CR_GOAL_LEN_SLOW: 2613 if (free >= ac->ac_g_ex.fe_len) 2614 return true; 2615 break; 2616 case CR_ANY_FREE: 2617 return true; 2618 default: 2619 BUG(); 2620 } 2621 2622 return false; 2623 } 2624 2625 /* 2626 * This could return negative error code if something goes wrong 2627 * during ext4_mb_init_group(). This should not be called with 2628 * ext4_lock_group() held. 2629 * 2630 * Note: because we are conditionally operating with the group lock in 2631 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2632 * function using __acquire and __release. This means we need to be 2633 * super careful before messing with the error path handling via "goto 2634 * out"! 2635 */ 2636 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2637 ext4_group_t group, enum criteria cr) 2638 { 2639 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2640 struct super_block *sb = ac->ac_sb; 2641 struct ext4_sb_info *sbi = EXT4_SB(sb); 2642 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2643 ext4_grpblk_t free; 2644 int ret = 0; 2645 2646 if (!grp) 2647 return -EFSCORRUPTED; 2648 if (sbi->s_mb_stats) 2649 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2650 if (should_lock) { 2651 ext4_lock_group(sb, group); 2652 __release(ext4_group_lock_ptr(sb, group)); 2653 } 2654 free = grp->bb_free; 2655 if (free == 0) 2656 goto out; 2657 /* 2658 * In all criterias except CR_ANY_FREE we try to avoid groups that 2659 * can't possibly satisfy the full goal request due to insufficient 2660 * free blocks. 2661 */ 2662 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2663 goto out; 2664 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2665 goto out; 2666 if (should_lock) { 2667 __acquire(ext4_group_lock_ptr(sb, group)); 2668 ext4_unlock_group(sb, group); 2669 } 2670 2671 /* We only do this if the grp has never been initialized */ 2672 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2673 struct ext4_group_desc *gdp = 2674 ext4_get_group_desc(sb, group, NULL); 2675 int ret; 2676 2677 /* 2678 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2679 * search to find large good chunks almost for free. If buddy 2680 * data is not ready, then this optimization makes no sense. But 2681 * we never skip the first block group in a flex_bg, since this 2682 * gets used for metadata block allocation, and we want to make 2683 * sure we locate metadata blocks in the first block group in 2684 * the flex_bg if possible. 2685 */ 2686 if (!ext4_mb_cr_expensive(cr) && 2687 (!sbi->s_log_groups_per_flex || 2688 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2689 !(ext4_has_group_desc_csum(sb) && 2690 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2691 return 0; 2692 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2693 if (ret) 2694 return ret; 2695 } 2696 2697 if (should_lock) { 2698 ext4_lock_group(sb, group); 2699 __release(ext4_group_lock_ptr(sb, group)); 2700 } 2701 ret = ext4_mb_good_group(ac, group, cr); 2702 out: 2703 if (should_lock) { 2704 __acquire(ext4_group_lock_ptr(sb, group)); 2705 ext4_unlock_group(sb, group); 2706 } 2707 return ret; 2708 } 2709 2710 /* 2711 * Start prefetching @nr block bitmaps starting at @group. 2712 * Return the next group which needs to be prefetched. 2713 */ 2714 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2715 unsigned int nr, int *cnt) 2716 { 2717 ext4_group_t ngroups = ext4_get_groups_count(sb); 2718 struct buffer_head *bh; 2719 struct blk_plug plug; 2720 2721 blk_start_plug(&plug); 2722 while (nr-- > 0) { 2723 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2724 NULL); 2725 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2726 2727 /* 2728 * Prefetch block groups with free blocks; but don't 2729 * bother if it is marked uninitialized on disk, since 2730 * it won't require I/O to read. Also only try to 2731 * prefetch once, so we avoid getblk() call, which can 2732 * be expensive. 2733 */ 2734 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2735 EXT4_MB_GRP_NEED_INIT(grp) && 2736 ext4_free_group_clusters(sb, gdp) > 0 ) { 2737 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2738 if (bh && !IS_ERR(bh)) { 2739 if (!buffer_uptodate(bh) && cnt) 2740 (*cnt)++; 2741 brelse(bh); 2742 } 2743 } 2744 if (++group >= ngroups) 2745 group = 0; 2746 } 2747 blk_finish_plug(&plug); 2748 return group; 2749 } 2750 2751 /* 2752 * Prefetching reads the block bitmap into the buffer cache; but we 2753 * need to make sure that the buddy bitmap in the page cache has been 2754 * initialized. Note that ext4_mb_init_group() will block if the I/O 2755 * is not yet completed, or indeed if it was not initiated by 2756 * ext4_mb_prefetch did not start the I/O. 2757 * 2758 * TODO: We should actually kick off the buddy bitmap setup in a work 2759 * queue when the buffer I/O is completed, so that we don't block 2760 * waiting for the block allocation bitmap read to finish when 2761 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2762 */ 2763 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2764 unsigned int nr) 2765 { 2766 struct ext4_group_desc *gdp; 2767 struct ext4_group_info *grp; 2768 2769 while (nr-- > 0) { 2770 if (!group) 2771 group = ext4_get_groups_count(sb); 2772 group--; 2773 gdp = ext4_get_group_desc(sb, group, NULL); 2774 grp = ext4_get_group_info(sb, group); 2775 2776 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2777 ext4_free_group_clusters(sb, gdp) > 0) { 2778 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2779 break; 2780 } 2781 } 2782 } 2783 2784 static noinline_for_stack int 2785 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2786 { 2787 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2788 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2789 int err = 0, first_err = 0; 2790 unsigned int nr = 0, prefetch_ios = 0; 2791 struct ext4_sb_info *sbi; 2792 struct super_block *sb; 2793 struct ext4_buddy e4b; 2794 int lost; 2795 2796 sb = ac->ac_sb; 2797 sbi = EXT4_SB(sb); 2798 ngroups = ext4_get_groups_count(sb); 2799 /* non-extent files are limited to low blocks/groups */ 2800 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2801 ngroups = sbi->s_blockfile_groups; 2802 2803 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2804 2805 /* first, try the goal */ 2806 err = ext4_mb_find_by_goal(ac, &e4b); 2807 if (err || ac->ac_status == AC_STATUS_FOUND) 2808 goto out; 2809 2810 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2811 goto out; 2812 2813 /* 2814 * ac->ac_2order is set only if the fe_len is a power of 2 2815 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2816 * so that we try exact allocation using buddy. 2817 */ 2818 i = fls(ac->ac_g_ex.fe_len); 2819 ac->ac_2order = 0; 2820 /* 2821 * We search using buddy data only if the order of the request 2822 * is greater than equal to the sbi_s_mb_order2_reqs 2823 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2824 * We also support searching for power-of-two requests only for 2825 * requests upto maximum buddy size we have constructed. 2826 */ 2827 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2828 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2829 ac->ac_2order = array_index_nospec(i - 1, 2830 MB_NUM_ORDERS(sb)); 2831 } 2832 2833 /* if stream allocation is enabled, use global goal */ 2834 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2835 /* TBD: may be hot point */ 2836 spin_lock(&sbi->s_md_lock); 2837 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2838 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2839 spin_unlock(&sbi->s_md_lock); 2840 } 2841 2842 /* 2843 * Let's just scan groups to find more-less suitable blocks We 2844 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2845 * aligned, in which case let's do that faster approach first. 2846 */ 2847 if (ac->ac_2order) 2848 cr = CR_POWER2_ALIGNED; 2849 repeat: 2850 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2851 ac->ac_criteria = cr; 2852 /* 2853 * searching for the right group start 2854 * from the goal value specified 2855 */ 2856 group = ac->ac_g_ex.fe_group; 2857 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2858 prefetch_grp = group; 2859 2860 for (i = 0, new_cr = cr; i < ngroups; i++, 2861 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2862 int ret = 0; 2863 2864 cond_resched(); 2865 if (new_cr != cr) { 2866 cr = new_cr; 2867 goto repeat; 2868 } 2869 2870 /* 2871 * Batch reads of the block allocation bitmaps 2872 * to get multiple READs in flight; limit 2873 * prefetching at inexpensive CR, otherwise mballoc 2874 * can spend a lot of time loading imperfect groups 2875 */ 2876 if ((prefetch_grp == group) && 2877 (ext4_mb_cr_expensive(cr) || 2878 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2879 nr = sbi->s_mb_prefetch; 2880 if (ext4_has_feature_flex_bg(sb)) { 2881 nr = 1 << sbi->s_log_groups_per_flex; 2882 nr -= group & (nr - 1); 2883 nr = min(nr, sbi->s_mb_prefetch); 2884 } 2885 prefetch_grp = ext4_mb_prefetch(sb, group, 2886 nr, &prefetch_ios); 2887 } 2888 2889 /* This now checks without needing the buddy page */ 2890 ret = ext4_mb_good_group_nolock(ac, group, cr); 2891 if (ret <= 0) { 2892 if (!first_err) 2893 first_err = ret; 2894 continue; 2895 } 2896 2897 err = ext4_mb_load_buddy(sb, group, &e4b); 2898 if (err) 2899 goto out; 2900 2901 ext4_lock_group(sb, group); 2902 2903 /* 2904 * We need to check again after locking the 2905 * block group 2906 */ 2907 ret = ext4_mb_good_group(ac, group, cr); 2908 if (ret == 0) { 2909 ext4_unlock_group(sb, group); 2910 ext4_mb_unload_buddy(&e4b); 2911 continue; 2912 } 2913 2914 ac->ac_groups_scanned++; 2915 if (cr == CR_POWER2_ALIGNED) 2916 ext4_mb_simple_scan_group(ac, &e4b); 2917 else { 2918 bool is_stripe_aligned = sbi->s_stripe && 2919 !(ac->ac_g_ex.fe_len % 2920 EXT4_B2C(sbi, sbi->s_stripe)); 2921 2922 if ((cr == CR_GOAL_LEN_FAST || 2923 cr == CR_BEST_AVAIL_LEN) && 2924 is_stripe_aligned) 2925 ext4_mb_scan_aligned(ac, &e4b); 2926 2927 if (ac->ac_status == AC_STATUS_CONTINUE) 2928 ext4_mb_complex_scan_group(ac, &e4b); 2929 } 2930 2931 ext4_unlock_group(sb, group); 2932 ext4_mb_unload_buddy(&e4b); 2933 2934 if (ac->ac_status != AC_STATUS_CONTINUE) 2935 break; 2936 } 2937 /* Processed all groups and haven't found blocks */ 2938 if (sbi->s_mb_stats && i == ngroups) 2939 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2940 2941 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2942 /* Reset goal length to original goal length before 2943 * falling into CR_GOAL_LEN_SLOW */ 2944 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2945 } 2946 2947 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2948 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2949 /* 2950 * We've been searching too long. Let's try to allocate 2951 * the best chunk we've found so far 2952 */ 2953 ext4_mb_try_best_found(ac, &e4b); 2954 if (ac->ac_status != AC_STATUS_FOUND) { 2955 /* 2956 * Someone more lucky has already allocated it. 2957 * The only thing we can do is just take first 2958 * found block(s) 2959 */ 2960 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2961 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2962 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2963 ac->ac_b_ex.fe_len, lost); 2964 2965 ac->ac_b_ex.fe_group = 0; 2966 ac->ac_b_ex.fe_start = 0; 2967 ac->ac_b_ex.fe_len = 0; 2968 ac->ac_status = AC_STATUS_CONTINUE; 2969 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2970 cr = CR_ANY_FREE; 2971 goto repeat; 2972 } 2973 } 2974 2975 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2976 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2977 out: 2978 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2979 err = first_err; 2980 2981 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2982 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2983 ac->ac_flags, cr, err); 2984 2985 if (nr) 2986 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2987 2988 return err; 2989 } 2990 2991 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2992 { 2993 struct super_block *sb = pde_data(file_inode(seq->file)); 2994 ext4_group_t group; 2995 2996 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2997 return NULL; 2998 group = *pos + 1; 2999 return (void *) ((unsigned long) group); 3000 } 3001 3002 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3003 { 3004 struct super_block *sb = pde_data(file_inode(seq->file)); 3005 ext4_group_t group; 3006 3007 ++*pos; 3008 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3009 return NULL; 3010 group = *pos + 1; 3011 return (void *) ((unsigned long) group); 3012 } 3013 3014 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3015 { 3016 struct super_block *sb = pde_data(file_inode(seq->file)); 3017 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3018 int i, err; 3019 char nbuf[16]; 3020 struct ext4_buddy e4b; 3021 struct ext4_group_info *grinfo; 3022 unsigned char blocksize_bits = min_t(unsigned char, 3023 sb->s_blocksize_bits, 3024 EXT4_MAX_BLOCK_LOG_SIZE); 3025 struct sg { 3026 struct ext4_group_info info; 3027 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3028 } sg; 3029 3030 group--; 3031 if (group == 0) 3032 seq_puts(seq, "#group: free frags first [" 3033 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3034 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3035 3036 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3037 sizeof(struct ext4_group_info); 3038 3039 grinfo = ext4_get_group_info(sb, group); 3040 if (!grinfo) 3041 return 0; 3042 /* Load the group info in memory only if not already loaded. */ 3043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3044 err = ext4_mb_load_buddy(sb, group, &e4b); 3045 if (err) { 3046 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf)); 3047 return 0; 3048 } 3049 ext4_mb_unload_buddy(&e4b); 3050 } 3051 3052 /* 3053 * We care only about free space counters in the group info and 3054 * these are safe to access even after the buddy has been unloaded 3055 */ 3056 memcpy(&sg, grinfo, i); 3057 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3058 sg.info.bb_fragments, sg.info.bb_first_free); 3059 for (i = 0; i <= 13; i++) 3060 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3061 sg.info.bb_counters[i] : 0); 3062 seq_puts(seq, " ]"); 3063 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info)) 3064 seq_puts(seq, " Block bitmap corrupted!"); 3065 seq_puts(seq, "\n"); 3066 3067 return 0; 3068 } 3069 3070 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3071 { 3072 } 3073 3074 const struct seq_operations ext4_mb_seq_groups_ops = { 3075 .start = ext4_mb_seq_groups_start, 3076 .next = ext4_mb_seq_groups_next, 3077 .stop = ext4_mb_seq_groups_stop, 3078 .show = ext4_mb_seq_groups_show, 3079 }; 3080 3081 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3082 { 3083 struct super_block *sb = seq->private; 3084 struct ext4_sb_info *sbi = EXT4_SB(sb); 3085 3086 seq_puts(seq, "mballoc:\n"); 3087 if (!sbi->s_mb_stats) { 3088 seq_puts(seq, "\tmb stats collection turned off.\n"); 3089 seq_puts( 3090 seq, 3091 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3092 return 0; 3093 } 3094 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3095 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3096 3097 seq_printf(seq, "\tgroups_scanned: %u\n", 3098 atomic_read(&sbi->s_bal_groups_scanned)); 3099 3100 /* CR_POWER2_ALIGNED stats */ 3101 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3102 seq_printf(seq, "\t\thits: %llu\n", 3103 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3104 seq_printf( 3105 seq, "\t\tgroups_considered: %llu\n", 3106 atomic64_read( 3107 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3108 seq_printf(seq, "\t\textents_scanned: %u\n", 3109 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3110 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3111 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3112 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3113 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3114 3115 /* CR_GOAL_LEN_FAST stats */ 3116 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3117 seq_printf(seq, "\t\thits: %llu\n", 3118 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3119 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3120 atomic64_read( 3121 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3122 seq_printf(seq, "\t\textents_scanned: %u\n", 3123 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3124 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3125 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3126 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3127 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3128 3129 /* CR_BEST_AVAIL_LEN stats */ 3130 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3131 seq_printf(seq, "\t\thits: %llu\n", 3132 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3133 seq_printf( 3134 seq, "\t\tgroups_considered: %llu\n", 3135 atomic64_read( 3136 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3137 seq_printf(seq, "\t\textents_scanned: %u\n", 3138 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3139 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3140 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3141 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3142 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3143 3144 /* CR_GOAL_LEN_SLOW stats */ 3145 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3146 seq_printf(seq, "\t\thits: %llu\n", 3147 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3148 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3149 atomic64_read( 3150 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3151 seq_printf(seq, "\t\textents_scanned: %u\n", 3152 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3153 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3154 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3155 3156 /* CR_ANY_FREE stats */ 3157 seq_puts(seq, "\tcr_any_free_stats:\n"); 3158 seq_printf(seq, "\t\thits: %llu\n", 3159 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3160 seq_printf( 3161 seq, "\t\tgroups_considered: %llu\n", 3162 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3163 seq_printf(seq, "\t\textents_scanned: %u\n", 3164 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3165 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3166 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3167 3168 /* Aggregates */ 3169 seq_printf(seq, "\textents_scanned: %u\n", 3170 atomic_read(&sbi->s_bal_ex_scanned)); 3171 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3172 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3173 atomic_read(&sbi->s_bal_len_goals)); 3174 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3175 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3176 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3177 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3178 atomic_read(&sbi->s_mb_buddies_generated), 3179 ext4_get_groups_count(sb)); 3180 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3181 atomic64_read(&sbi->s_mb_generation_time)); 3182 seq_printf(seq, "\tpreallocated: %u\n", 3183 atomic_read(&sbi->s_mb_preallocated)); 3184 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3185 return 0; 3186 } 3187 3188 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3189 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3190 { 3191 struct super_block *sb = pde_data(file_inode(seq->file)); 3192 unsigned long position; 3193 3194 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3195 return NULL; 3196 position = *pos + 1; 3197 return (void *) ((unsigned long) position); 3198 } 3199 3200 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3201 { 3202 struct super_block *sb = pde_data(file_inode(seq->file)); 3203 unsigned long position; 3204 3205 ++*pos; 3206 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3207 return NULL; 3208 position = *pos + 1; 3209 return (void *) ((unsigned long) position); 3210 } 3211 3212 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3213 { 3214 struct super_block *sb = pde_data(file_inode(seq->file)); 3215 struct ext4_sb_info *sbi = EXT4_SB(sb); 3216 unsigned long position = ((unsigned long) v); 3217 struct ext4_group_info *grp; 3218 unsigned int count; 3219 3220 position--; 3221 if (position >= MB_NUM_ORDERS(sb)) { 3222 position -= MB_NUM_ORDERS(sb); 3223 if (position == 0) 3224 seq_puts(seq, "avg_fragment_size_lists:\n"); 3225 3226 count = 0; 3227 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3228 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3229 bb_avg_fragment_size_node) 3230 count++; 3231 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3232 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3233 (unsigned int)position, count); 3234 return 0; 3235 } 3236 3237 if (position == 0) { 3238 seq_printf(seq, "optimize_scan: %d\n", 3239 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3240 seq_puts(seq, "max_free_order_lists:\n"); 3241 } 3242 count = 0; 3243 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3244 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3245 bb_largest_free_order_node) 3246 count++; 3247 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3248 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3249 (unsigned int)position, count); 3250 3251 return 0; 3252 } 3253 3254 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3255 { 3256 } 3257 3258 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3259 .start = ext4_mb_seq_structs_summary_start, 3260 .next = ext4_mb_seq_structs_summary_next, 3261 .stop = ext4_mb_seq_structs_summary_stop, 3262 .show = ext4_mb_seq_structs_summary_show, 3263 }; 3264 3265 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3266 { 3267 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3268 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3269 3270 BUG_ON(!cachep); 3271 return cachep; 3272 } 3273 3274 /* 3275 * Allocate the top-level s_group_info array for the specified number 3276 * of groups 3277 */ 3278 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3279 { 3280 struct ext4_sb_info *sbi = EXT4_SB(sb); 3281 unsigned size; 3282 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3283 3284 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3285 EXT4_DESC_PER_BLOCK_BITS(sb); 3286 if (size <= sbi->s_group_info_size) 3287 return 0; 3288 3289 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3290 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3291 if (!new_groupinfo) { 3292 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3293 return -ENOMEM; 3294 } 3295 rcu_read_lock(); 3296 old_groupinfo = rcu_dereference(sbi->s_group_info); 3297 if (old_groupinfo) 3298 memcpy(new_groupinfo, old_groupinfo, 3299 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3300 rcu_read_unlock(); 3301 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3302 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3303 if (old_groupinfo) 3304 ext4_kvfree_array_rcu(old_groupinfo); 3305 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3306 sbi->s_group_info_size); 3307 return 0; 3308 } 3309 3310 /* Create and initialize ext4_group_info data for the given group. */ 3311 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3312 struct ext4_group_desc *desc) 3313 { 3314 int i; 3315 int metalen = 0; 3316 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3317 struct ext4_sb_info *sbi = EXT4_SB(sb); 3318 struct ext4_group_info **meta_group_info; 3319 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3320 3321 /* 3322 * First check if this group is the first of a reserved block. 3323 * If it's true, we have to allocate a new table of pointers 3324 * to ext4_group_info structures 3325 */ 3326 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3327 metalen = sizeof(*meta_group_info) << 3328 EXT4_DESC_PER_BLOCK_BITS(sb); 3329 meta_group_info = kmalloc(metalen, GFP_NOFS); 3330 if (meta_group_info == NULL) { 3331 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3332 "for a buddy group"); 3333 return -ENOMEM; 3334 } 3335 rcu_read_lock(); 3336 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3337 rcu_read_unlock(); 3338 } 3339 3340 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3341 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3342 3343 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3344 if (meta_group_info[i] == NULL) { 3345 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3346 goto exit_group_info; 3347 } 3348 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3349 &(meta_group_info[i]->bb_state)); 3350 3351 /* 3352 * initialize bb_free to be able to skip 3353 * empty groups without initialization 3354 */ 3355 if (ext4_has_group_desc_csum(sb) && 3356 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3357 meta_group_info[i]->bb_free = 3358 ext4_free_clusters_after_init(sb, group, desc); 3359 } else { 3360 meta_group_info[i]->bb_free = 3361 ext4_free_group_clusters(sb, desc); 3362 } 3363 3364 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3365 init_rwsem(&meta_group_info[i]->alloc_sem); 3366 meta_group_info[i]->bb_free_root = RB_ROOT; 3367 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3368 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3369 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3370 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3371 meta_group_info[i]->bb_group = group; 3372 3373 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3374 return 0; 3375 3376 exit_group_info: 3377 /* If a meta_group_info table has been allocated, release it now */ 3378 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3379 struct ext4_group_info ***group_info; 3380 3381 rcu_read_lock(); 3382 group_info = rcu_dereference(sbi->s_group_info); 3383 kfree(group_info[idx]); 3384 group_info[idx] = NULL; 3385 rcu_read_unlock(); 3386 } 3387 return -ENOMEM; 3388 } /* ext4_mb_add_groupinfo */ 3389 3390 static int ext4_mb_init_backend(struct super_block *sb) 3391 { 3392 ext4_group_t ngroups = ext4_get_groups_count(sb); 3393 ext4_group_t i; 3394 struct ext4_sb_info *sbi = EXT4_SB(sb); 3395 int err; 3396 struct ext4_group_desc *desc; 3397 struct ext4_group_info ***group_info; 3398 struct kmem_cache *cachep; 3399 3400 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3401 if (err) 3402 return err; 3403 3404 sbi->s_buddy_cache = new_inode(sb); 3405 if (sbi->s_buddy_cache == NULL) { 3406 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3407 goto err_freesgi; 3408 } 3409 /* To avoid potentially colliding with an valid on-disk inode number, 3410 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3411 * not in the inode hash, so it should never be found by iget(), but 3412 * this will avoid confusion if it ever shows up during debugging. */ 3413 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3414 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3415 for (i = 0; i < ngroups; i++) { 3416 cond_resched(); 3417 desc = ext4_get_group_desc(sb, i, NULL); 3418 if (desc == NULL) { 3419 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3420 goto err_freebuddy; 3421 } 3422 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3423 goto err_freebuddy; 3424 } 3425 3426 if (ext4_has_feature_flex_bg(sb)) { 3427 /* a single flex group is supposed to be read by a single IO. 3428 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3429 * unsigned integer, so the maximum shift is 32. 3430 */ 3431 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3432 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3433 goto err_freebuddy; 3434 } 3435 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3436 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3437 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3438 } else { 3439 sbi->s_mb_prefetch = 32; 3440 } 3441 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3442 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3443 /* now many real IOs to prefetch within a single allocation at cr=0 3444 * given cr=0 is an CPU-related optimization we shouldn't try to 3445 * load too many groups, at some point we should start to use what 3446 * we've got in memory. 3447 * with an average random access time 5ms, it'd take a second to get 3448 * 200 groups (* N with flex_bg), so let's make this limit 4 3449 */ 3450 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3451 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3452 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3453 3454 return 0; 3455 3456 err_freebuddy: 3457 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3458 while (i-- > 0) { 3459 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3460 3461 if (grp) 3462 kmem_cache_free(cachep, grp); 3463 } 3464 i = sbi->s_group_info_size; 3465 rcu_read_lock(); 3466 group_info = rcu_dereference(sbi->s_group_info); 3467 while (i-- > 0) 3468 kfree(group_info[i]); 3469 rcu_read_unlock(); 3470 iput(sbi->s_buddy_cache); 3471 err_freesgi: 3472 rcu_read_lock(); 3473 kvfree(rcu_dereference(sbi->s_group_info)); 3474 rcu_read_unlock(); 3475 return -ENOMEM; 3476 } 3477 3478 static void ext4_groupinfo_destroy_slabs(void) 3479 { 3480 int i; 3481 3482 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3483 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3484 ext4_groupinfo_caches[i] = NULL; 3485 } 3486 } 3487 3488 static int ext4_groupinfo_create_slab(size_t size) 3489 { 3490 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3491 int slab_size; 3492 int blocksize_bits = order_base_2(size); 3493 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3494 struct kmem_cache *cachep; 3495 3496 if (cache_index >= NR_GRPINFO_CACHES) 3497 return -EINVAL; 3498 3499 if (unlikely(cache_index < 0)) 3500 cache_index = 0; 3501 3502 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3503 if (ext4_groupinfo_caches[cache_index]) { 3504 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3505 return 0; /* Already created */ 3506 } 3507 3508 slab_size = offsetof(struct ext4_group_info, 3509 bb_counters[blocksize_bits + 2]); 3510 3511 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3512 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3513 NULL); 3514 3515 ext4_groupinfo_caches[cache_index] = cachep; 3516 3517 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3518 if (!cachep) { 3519 printk(KERN_EMERG 3520 "EXT4-fs: no memory for groupinfo slab cache\n"); 3521 return -ENOMEM; 3522 } 3523 3524 return 0; 3525 } 3526 3527 static void ext4_discard_work(struct work_struct *work) 3528 { 3529 struct ext4_sb_info *sbi = container_of(work, 3530 struct ext4_sb_info, s_discard_work); 3531 struct super_block *sb = sbi->s_sb; 3532 struct ext4_free_data *fd, *nfd; 3533 struct ext4_buddy e4b; 3534 LIST_HEAD(discard_list); 3535 ext4_group_t grp, load_grp; 3536 int err = 0; 3537 3538 spin_lock(&sbi->s_md_lock); 3539 list_splice_init(&sbi->s_discard_list, &discard_list); 3540 spin_unlock(&sbi->s_md_lock); 3541 3542 load_grp = UINT_MAX; 3543 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3544 /* 3545 * If filesystem is umounting or no memory or suffering 3546 * from no space, give up the discard 3547 */ 3548 if ((sb->s_flags & SB_ACTIVE) && !err && 3549 !atomic_read(&sbi->s_retry_alloc_pending)) { 3550 grp = fd->efd_group; 3551 if (grp != load_grp) { 3552 if (load_grp != UINT_MAX) 3553 ext4_mb_unload_buddy(&e4b); 3554 3555 err = ext4_mb_load_buddy(sb, grp, &e4b); 3556 if (err) { 3557 kmem_cache_free(ext4_free_data_cachep, fd); 3558 load_grp = UINT_MAX; 3559 continue; 3560 } else { 3561 load_grp = grp; 3562 } 3563 } 3564 3565 ext4_lock_group(sb, grp); 3566 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3567 fd->efd_start_cluster + fd->efd_count - 1, 1); 3568 ext4_unlock_group(sb, grp); 3569 } 3570 kmem_cache_free(ext4_free_data_cachep, fd); 3571 } 3572 3573 if (load_grp != UINT_MAX) 3574 ext4_mb_unload_buddy(&e4b); 3575 } 3576 3577 int ext4_mb_init(struct super_block *sb) 3578 { 3579 struct ext4_sb_info *sbi = EXT4_SB(sb); 3580 unsigned i, j; 3581 unsigned offset, offset_incr; 3582 unsigned max; 3583 int ret; 3584 3585 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3586 3587 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3588 if (sbi->s_mb_offsets == NULL) { 3589 ret = -ENOMEM; 3590 goto out; 3591 } 3592 3593 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3594 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3595 if (sbi->s_mb_maxs == NULL) { 3596 ret = -ENOMEM; 3597 goto out; 3598 } 3599 3600 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3601 if (ret < 0) 3602 goto out; 3603 3604 /* order 0 is regular bitmap */ 3605 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3606 sbi->s_mb_offsets[0] = 0; 3607 3608 i = 1; 3609 offset = 0; 3610 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3611 max = sb->s_blocksize << 2; 3612 do { 3613 sbi->s_mb_offsets[i] = offset; 3614 sbi->s_mb_maxs[i] = max; 3615 offset += offset_incr; 3616 offset_incr = offset_incr >> 1; 3617 max = max >> 1; 3618 i++; 3619 } while (i < MB_NUM_ORDERS(sb)); 3620 3621 sbi->s_mb_avg_fragment_size = 3622 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3623 GFP_KERNEL); 3624 if (!sbi->s_mb_avg_fragment_size) { 3625 ret = -ENOMEM; 3626 goto out; 3627 } 3628 sbi->s_mb_avg_fragment_size_locks = 3629 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3630 GFP_KERNEL); 3631 if (!sbi->s_mb_avg_fragment_size_locks) { 3632 ret = -ENOMEM; 3633 goto out; 3634 } 3635 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3636 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3637 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3638 } 3639 sbi->s_mb_largest_free_orders = 3640 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3641 GFP_KERNEL); 3642 if (!sbi->s_mb_largest_free_orders) { 3643 ret = -ENOMEM; 3644 goto out; 3645 } 3646 sbi->s_mb_largest_free_orders_locks = 3647 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3648 GFP_KERNEL); 3649 if (!sbi->s_mb_largest_free_orders_locks) { 3650 ret = -ENOMEM; 3651 goto out; 3652 } 3653 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3654 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3655 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3656 } 3657 3658 spin_lock_init(&sbi->s_md_lock); 3659 sbi->s_mb_free_pending = 0; 3660 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]); 3661 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]); 3662 INIT_LIST_HEAD(&sbi->s_discard_list); 3663 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3664 atomic_set(&sbi->s_retry_alloc_pending, 0); 3665 3666 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3667 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3668 sbi->s_mb_stats = MB_DEFAULT_STATS; 3669 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3670 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3671 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3672 3673 /* 3674 * The default group preallocation is 512, which for 4k block 3675 * sizes translates to 2 megabytes. However for bigalloc file 3676 * systems, this is probably too big (i.e, if the cluster size 3677 * is 1 megabyte, then group preallocation size becomes half a 3678 * gigabyte!). As a default, we will keep a two megabyte 3679 * group pralloc size for cluster sizes up to 64k, and after 3680 * that, we will force a minimum group preallocation size of 3681 * 32 clusters. This translates to 8 megs when the cluster 3682 * size is 256k, and 32 megs when the cluster size is 1 meg, 3683 * which seems reasonable as a default. 3684 */ 3685 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3686 sbi->s_cluster_bits, 32); 3687 /* 3688 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3689 * to the lowest multiple of s_stripe which is bigger than 3690 * the s_mb_group_prealloc as determined above. We want 3691 * the preallocation size to be an exact multiple of the 3692 * RAID stripe size so that preallocations don't fragment 3693 * the stripes. 3694 */ 3695 if (sbi->s_stripe > 1) { 3696 sbi->s_mb_group_prealloc = roundup( 3697 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3698 } 3699 3700 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3701 if (sbi->s_locality_groups == NULL) { 3702 ret = -ENOMEM; 3703 goto out; 3704 } 3705 for_each_possible_cpu(i) { 3706 struct ext4_locality_group *lg; 3707 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3708 mutex_init(&lg->lg_mutex); 3709 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3710 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3711 spin_lock_init(&lg->lg_prealloc_lock); 3712 } 3713 3714 if (bdev_nonrot(sb->s_bdev)) 3715 sbi->s_mb_max_linear_groups = 0; 3716 else 3717 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3718 /* init file for buddy data */ 3719 ret = ext4_mb_init_backend(sb); 3720 if (ret != 0) 3721 goto out_free_locality_groups; 3722 3723 return 0; 3724 3725 out_free_locality_groups: 3726 free_percpu(sbi->s_locality_groups); 3727 sbi->s_locality_groups = NULL; 3728 out: 3729 kfree(sbi->s_mb_avg_fragment_size); 3730 kfree(sbi->s_mb_avg_fragment_size_locks); 3731 kfree(sbi->s_mb_largest_free_orders); 3732 kfree(sbi->s_mb_largest_free_orders_locks); 3733 kfree(sbi->s_mb_offsets); 3734 sbi->s_mb_offsets = NULL; 3735 kfree(sbi->s_mb_maxs); 3736 sbi->s_mb_maxs = NULL; 3737 return ret; 3738 } 3739 3740 /* need to called with the ext4 group lock held */ 3741 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3742 { 3743 struct ext4_prealloc_space *pa; 3744 struct list_head *cur, *tmp; 3745 int count = 0; 3746 3747 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3748 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3749 list_del(&pa->pa_group_list); 3750 count++; 3751 kmem_cache_free(ext4_pspace_cachep, pa); 3752 } 3753 return count; 3754 } 3755 3756 void ext4_mb_release(struct super_block *sb) 3757 { 3758 ext4_group_t ngroups = ext4_get_groups_count(sb); 3759 ext4_group_t i; 3760 int num_meta_group_infos; 3761 struct ext4_group_info *grinfo, ***group_info; 3762 struct ext4_sb_info *sbi = EXT4_SB(sb); 3763 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3764 int count; 3765 3766 if (test_opt(sb, DISCARD)) { 3767 /* 3768 * wait the discard work to drain all of ext4_free_data 3769 */ 3770 flush_work(&sbi->s_discard_work); 3771 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3772 } 3773 3774 if (sbi->s_group_info) { 3775 for (i = 0; i < ngroups; i++) { 3776 cond_resched(); 3777 grinfo = ext4_get_group_info(sb, i); 3778 if (!grinfo) 3779 continue; 3780 mb_group_bb_bitmap_free(grinfo); 3781 ext4_lock_group(sb, i); 3782 count = ext4_mb_cleanup_pa(grinfo); 3783 if (count) 3784 mb_debug(sb, "mballoc: %d PAs left\n", 3785 count); 3786 ext4_unlock_group(sb, i); 3787 kmem_cache_free(cachep, grinfo); 3788 } 3789 num_meta_group_infos = (ngroups + 3790 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3791 EXT4_DESC_PER_BLOCK_BITS(sb); 3792 rcu_read_lock(); 3793 group_info = rcu_dereference(sbi->s_group_info); 3794 for (i = 0; i < num_meta_group_infos; i++) 3795 kfree(group_info[i]); 3796 kvfree(group_info); 3797 rcu_read_unlock(); 3798 } 3799 kfree(sbi->s_mb_avg_fragment_size); 3800 kfree(sbi->s_mb_avg_fragment_size_locks); 3801 kfree(sbi->s_mb_largest_free_orders); 3802 kfree(sbi->s_mb_largest_free_orders_locks); 3803 kfree(sbi->s_mb_offsets); 3804 kfree(sbi->s_mb_maxs); 3805 iput(sbi->s_buddy_cache); 3806 if (sbi->s_mb_stats) { 3807 ext4_msg(sb, KERN_INFO, 3808 "mballoc: %u blocks %u reqs (%u success)", 3809 atomic_read(&sbi->s_bal_allocated), 3810 atomic_read(&sbi->s_bal_reqs), 3811 atomic_read(&sbi->s_bal_success)); 3812 ext4_msg(sb, KERN_INFO, 3813 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3814 "%u 2^N hits, %u breaks, %u lost", 3815 atomic_read(&sbi->s_bal_ex_scanned), 3816 atomic_read(&sbi->s_bal_groups_scanned), 3817 atomic_read(&sbi->s_bal_goals), 3818 atomic_read(&sbi->s_bal_2orders), 3819 atomic_read(&sbi->s_bal_breaks), 3820 atomic_read(&sbi->s_mb_lost_chunks)); 3821 ext4_msg(sb, KERN_INFO, 3822 "mballoc: %u generated and it took %llu", 3823 atomic_read(&sbi->s_mb_buddies_generated), 3824 atomic64_read(&sbi->s_mb_generation_time)); 3825 ext4_msg(sb, KERN_INFO, 3826 "mballoc: %u preallocated, %u discarded", 3827 atomic_read(&sbi->s_mb_preallocated), 3828 atomic_read(&sbi->s_mb_discarded)); 3829 } 3830 3831 free_percpu(sbi->s_locality_groups); 3832 } 3833 3834 static inline int ext4_issue_discard(struct super_block *sb, 3835 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 3836 { 3837 ext4_fsblk_t discard_block; 3838 3839 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3840 ext4_group_first_block_no(sb, block_group)); 3841 count = EXT4_C2B(EXT4_SB(sb), count); 3842 trace_ext4_discard_blocks(sb, 3843 (unsigned long long) discard_block, count); 3844 3845 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3846 } 3847 3848 static void ext4_free_data_in_buddy(struct super_block *sb, 3849 struct ext4_free_data *entry) 3850 { 3851 struct ext4_buddy e4b; 3852 struct ext4_group_info *db; 3853 int err, count = 0; 3854 3855 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3856 entry->efd_count, entry->efd_group, entry); 3857 3858 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3859 /* we expect to find existing buddy because it's pinned */ 3860 BUG_ON(err != 0); 3861 3862 spin_lock(&EXT4_SB(sb)->s_md_lock); 3863 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3864 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3865 3866 db = e4b.bd_info; 3867 /* there are blocks to put in buddy to make them really free */ 3868 count += entry->efd_count; 3869 ext4_lock_group(sb, entry->efd_group); 3870 /* Take it out of per group rb tree */ 3871 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3872 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3873 3874 /* 3875 * Clear the trimmed flag for the group so that the next 3876 * ext4_trim_fs can trim it. 3877 * If the volume is mounted with -o discard, online discard 3878 * is supported and the free blocks will be trimmed online. 3879 */ 3880 if (!test_opt(sb, DISCARD)) 3881 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3882 3883 if (!db->bb_free_root.rb_node) { 3884 /* No more items in the per group rb tree 3885 * balance refcounts from ext4_mb_free_metadata() 3886 */ 3887 put_page(e4b.bd_buddy_page); 3888 put_page(e4b.bd_bitmap_page); 3889 } 3890 ext4_unlock_group(sb, entry->efd_group); 3891 ext4_mb_unload_buddy(&e4b); 3892 3893 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3894 } 3895 3896 /* 3897 * This function is called by the jbd2 layer once the commit has finished, 3898 * so we know we can free the blocks that were released with that commit. 3899 */ 3900 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3901 { 3902 struct ext4_sb_info *sbi = EXT4_SB(sb); 3903 struct ext4_free_data *entry, *tmp; 3904 LIST_HEAD(freed_data_list); 3905 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; 3906 bool wake; 3907 3908 list_replace_init(s_freed_head, &freed_data_list); 3909 3910 list_for_each_entry(entry, &freed_data_list, efd_list) 3911 ext4_free_data_in_buddy(sb, entry); 3912 3913 if (test_opt(sb, DISCARD)) { 3914 spin_lock(&sbi->s_md_lock); 3915 wake = list_empty(&sbi->s_discard_list); 3916 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3917 spin_unlock(&sbi->s_md_lock); 3918 if (wake) 3919 queue_work(system_unbound_wq, &sbi->s_discard_work); 3920 } else { 3921 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3922 kmem_cache_free(ext4_free_data_cachep, entry); 3923 } 3924 } 3925 3926 int __init ext4_init_mballoc(void) 3927 { 3928 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3929 SLAB_RECLAIM_ACCOUNT); 3930 if (ext4_pspace_cachep == NULL) 3931 goto out; 3932 3933 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3934 SLAB_RECLAIM_ACCOUNT); 3935 if (ext4_ac_cachep == NULL) 3936 goto out_pa_free; 3937 3938 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3939 SLAB_RECLAIM_ACCOUNT); 3940 if (ext4_free_data_cachep == NULL) 3941 goto out_ac_free; 3942 3943 return 0; 3944 3945 out_ac_free: 3946 kmem_cache_destroy(ext4_ac_cachep); 3947 out_pa_free: 3948 kmem_cache_destroy(ext4_pspace_cachep); 3949 out: 3950 return -ENOMEM; 3951 } 3952 3953 void ext4_exit_mballoc(void) 3954 { 3955 /* 3956 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3957 * before destroying the slab cache. 3958 */ 3959 rcu_barrier(); 3960 kmem_cache_destroy(ext4_pspace_cachep); 3961 kmem_cache_destroy(ext4_ac_cachep); 3962 kmem_cache_destroy(ext4_free_data_cachep); 3963 ext4_groupinfo_destroy_slabs(); 3964 } 3965 3966 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 3967 #define EXT4_MB_SYNC_UPDATE 0x0002 3968 static int 3969 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, 3970 ext4_group_t group, ext4_grpblk_t blkoff, 3971 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) 3972 { 3973 struct ext4_sb_info *sbi = EXT4_SB(sb); 3974 struct buffer_head *bitmap_bh = NULL; 3975 struct ext4_group_desc *gdp; 3976 struct buffer_head *gdp_bh; 3977 int err; 3978 unsigned int i, already, changed = len; 3979 3980 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, 3981 handle, sb, state, group, blkoff, len, 3982 flags, ret_changed); 3983 3984 if (ret_changed) 3985 *ret_changed = 0; 3986 bitmap_bh = ext4_read_block_bitmap(sb, group); 3987 if (IS_ERR(bitmap_bh)) 3988 return PTR_ERR(bitmap_bh); 3989 3990 if (handle) { 3991 BUFFER_TRACE(bitmap_bh, "getting write access"); 3992 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3993 EXT4_JTR_NONE); 3994 if (err) 3995 goto out_err; 3996 } 3997 3998 err = -EIO; 3999 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4000 if (!gdp) 4001 goto out_err; 4002 4003 if (handle) { 4004 BUFFER_TRACE(gdp_bh, "get_write_access"); 4005 err = ext4_journal_get_write_access(handle, sb, gdp_bh, 4006 EXT4_JTR_NONE); 4007 if (err) 4008 goto out_err; 4009 } 4010 4011 ext4_lock_group(sb, group); 4012 if (ext4_has_group_desc_csum(sb) && 4013 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4014 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4015 ext4_free_group_clusters_set(sb, gdp, 4016 ext4_free_clusters_after_init(sb, group, gdp)); 4017 } 4018 4019 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { 4020 already = 0; 4021 for (i = 0; i < len; i++) 4022 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4023 state) 4024 already++; 4025 changed = len - already; 4026 } 4027 4028 if (state) { 4029 mb_set_bits(bitmap_bh->b_data, blkoff, len); 4030 ext4_free_group_clusters_set(sb, gdp, 4031 ext4_free_group_clusters(sb, gdp) - changed); 4032 } else { 4033 mb_clear_bits(bitmap_bh->b_data, blkoff, len); 4034 ext4_free_group_clusters_set(sb, gdp, 4035 ext4_free_group_clusters(sb, gdp) + changed); 4036 } 4037 4038 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4039 ext4_group_desc_csum_set(sb, group, gdp); 4040 ext4_unlock_group(sb, group); 4041 if (ret_changed) 4042 *ret_changed = changed; 4043 4044 if (sbi->s_log_groups_per_flex) { 4045 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4046 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4047 s_flex_groups, flex_group); 4048 4049 if (state) 4050 atomic64_sub(changed, &fg->free_clusters); 4051 else 4052 atomic64_add(changed, &fg->free_clusters); 4053 } 4054 4055 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4056 if (err) 4057 goto out_err; 4058 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4059 if (err) 4060 goto out_err; 4061 4062 if (flags & EXT4_MB_SYNC_UPDATE) { 4063 sync_dirty_buffer(bitmap_bh); 4064 sync_dirty_buffer(gdp_bh); 4065 } 4066 4067 out_err: 4068 brelse(bitmap_bh); 4069 return err; 4070 } 4071 4072 /* 4073 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 4074 * Returns 0 if success or error code 4075 */ 4076 static noinline_for_stack int 4077 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 4078 handle_t *handle, unsigned int reserv_clstrs) 4079 { 4080 struct ext4_group_desc *gdp; 4081 struct ext4_sb_info *sbi; 4082 struct super_block *sb; 4083 ext4_fsblk_t block; 4084 int err, len; 4085 int flags = 0; 4086 ext4_grpblk_t changed; 4087 4088 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4089 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4090 4091 sb = ac->ac_sb; 4092 sbi = EXT4_SB(sb); 4093 4094 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL); 4095 if (!gdp) 4096 return -EIO; 4097 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4098 ext4_free_group_clusters(sb, gdp)); 4099 4100 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4101 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4102 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4103 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4104 "fs metadata", block, block+len); 4105 /* File system mounted not to panic on error 4106 * Fix the bitmap and return EFSCORRUPTED 4107 * We leak some of the blocks here. 4108 */ 4109 err = ext4_mb_mark_context(handle, sb, true, 4110 ac->ac_b_ex.fe_group, 4111 ac->ac_b_ex.fe_start, 4112 ac->ac_b_ex.fe_len, 4113 0, NULL); 4114 if (!err) 4115 err = -EFSCORRUPTED; 4116 return err; 4117 } 4118 4119 #ifdef AGGRESSIVE_CHECK 4120 flags |= EXT4_MB_BITMAP_MARKED_CHECK; 4121 #endif 4122 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, 4123 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, 4124 flags, &changed); 4125 4126 if (err && changed == 0) 4127 return err; 4128 4129 #ifdef AGGRESSIVE_CHECK 4130 BUG_ON(changed != ac->ac_b_ex.fe_len); 4131 #endif 4132 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4133 /* 4134 * Now reduce the dirty block count also. Should not go negative 4135 */ 4136 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4137 /* release all the reserved blocks if non delalloc */ 4138 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4139 reserv_clstrs); 4140 4141 return err; 4142 } 4143 4144 /* 4145 * Idempotent helper for Ext4 fast commit replay path to set the state of 4146 * blocks in bitmaps and update counters. 4147 */ 4148 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4149 int len, bool state) 4150 { 4151 struct ext4_sb_info *sbi = EXT4_SB(sb); 4152 ext4_group_t group; 4153 ext4_grpblk_t blkoff; 4154 int err = 0; 4155 unsigned int clen, thisgrp_len; 4156 4157 while (len > 0) { 4158 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4159 4160 /* 4161 * Check to see if we are freeing blocks across a group 4162 * boundary. 4163 * In case of flex_bg, this can happen that (block, len) may 4164 * span across more than one group. In that case we need to 4165 * get the corresponding group metadata to work with. 4166 * For this we have goto again loop. 4167 */ 4168 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4169 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4170 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4171 4172 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4173 ext4_error(sb, "Marking blocks in system zone - " 4174 "Block = %llu, len = %u", 4175 block, thisgrp_len); 4176 break; 4177 } 4178 4179 err = ext4_mb_mark_context(NULL, sb, state, 4180 group, blkoff, clen, 4181 EXT4_MB_BITMAP_MARKED_CHECK | 4182 EXT4_MB_SYNC_UPDATE, 4183 NULL); 4184 if (err) 4185 break; 4186 4187 block += thisgrp_len; 4188 len -= thisgrp_len; 4189 BUG_ON(len < 0); 4190 } 4191 } 4192 4193 /* 4194 * here we normalize request for locality group 4195 * Group request are normalized to s_mb_group_prealloc, which goes to 4196 * s_strip if we set the same via mount option. 4197 * s_mb_group_prealloc can be configured via 4198 * /sys/fs/ext4/<partition>/mb_group_prealloc 4199 * 4200 * XXX: should we try to preallocate more than the group has now? 4201 */ 4202 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4203 { 4204 struct super_block *sb = ac->ac_sb; 4205 struct ext4_locality_group *lg = ac->ac_lg; 4206 4207 BUG_ON(lg == NULL); 4208 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4209 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4210 } 4211 4212 /* 4213 * This function returns the next element to look at during inode 4214 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4215 * (ei->i_prealloc_lock) 4216 * 4217 * new_start The start of the range we want to compare 4218 * cur_start The existing start that we are comparing against 4219 * node The node of the rb_tree 4220 */ 4221 static inline struct rb_node* 4222 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4223 { 4224 if (new_start < cur_start) 4225 return node->rb_left; 4226 else 4227 return node->rb_right; 4228 } 4229 4230 static inline void 4231 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4232 ext4_lblk_t start, loff_t end) 4233 { 4234 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4235 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4236 struct ext4_prealloc_space *tmp_pa; 4237 ext4_lblk_t tmp_pa_start; 4238 loff_t tmp_pa_end; 4239 struct rb_node *iter; 4240 4241 read_lock(&ei->i_prealloc_lock); 4242 for (iter = ei->i_prealloc_node.rb_node; iter; 4243 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4244 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4245 pa_node.inode_node); 4246 tmp_pa_start = tmp_pa->pa_lstart; 4247 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4248 4249 spin_lock(&tmp_pa->pa_lock); 4250 if (tmp_pa->pa_deleted == 0) 4251 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4252 spin_unlock(&tmp_pa->pa_lock); 4253 } 4254 read_unlock(&ei->i_prealloc_lock); 4255 } 4256 4257 /* 4258 * Given an allocation context "ac" and a range "start", "end", check 4259 * and adjust boundaries if the range overlaps with any of the existing 4260 * preallocatoins stored in the corresponding inode of the allocation context. 4261 * 4262 * Parameters: 4263 * ac allocation context 4264 * start start of the new range 4265 * end end of the new range 4266 */ 4267 static inline void 4268 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4269 ext4_lblk_t *start, loff_t *end) 4270 { 4271 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4272 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4273 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4274 struct rb_node *iter; 4275 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4276 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4277 4278 new_start = *start; 4279 new_end = *end; 4280 4281 /* 4282 * Adjust the normalized range so that it doesn't overlap with any 4283 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4284 * so it doesn't change underneath us. 4285 */ 4286 read_lock(&ei->i_prealloc_lock); 4287 4288 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4289 for (iter = ei->i_prealloc_node.rb_node; iter; 4290 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4291 tmp_pa_start, iter)) { 4292 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4293 pa_node.inode_node); 4294 tmp_pa_start = tmp_pa->pa_lstart; 4295 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4296 4297 /* PA must not overlap original request */ 4298 spin_lock(&tmp_pa->pa_lock); 4299 if (tmp_pa->pa_deleted == 0) 4300 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4301 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4302 spin_unlock(&tmp_pa->pa_lock); 4303 } 4304 4305 /* 4306 * Step 2: check if the found PA is left or right neighbor and 4307 * get the other neighbor 4308 */ 4309 if (tmp_pa) { 4310 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4311 struct rb_node *tmp; 4312 4313 left_pa = tmp_pa; 4314 tmp = rb_next(&left_pa->pa_node.inode_node); 4315 if (tmp) { 4316 right_pa = rb_entry(tmp, 4317 struct ext4_prealloc_space, 4318 pa_node.inode_node); 4319 } 4320 } else { 4321 struct rb_node *tmp; 4322 4323 right_pa = tmp_pa; 4324 tmp = rb_prev(&right_pa->pa_node.inode_node); 4325 if (tmp) { 4326 left_pa = rb_entry(tmp, 4327 struct ext4_prealloc_space, 4328 pa_node.inode_node); 4329 } 4330 } 4331 } 4332 4333 /* Step 3: get the non deleted neighbors */ 4334 if (left_pa) { 4335 for (iter = &left_pa->pa_node.inode_node;; 4336 iter = rb_prev(iter)) { 4337 if (!iter) { 4338 left_pa = NULL; 4339 break; 4340 } 4341 4342 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4343 pa_node.inode_node); 4344 left_pa = tmp_pa; 4345 spin_lock(&tmp_pa->pa_lock); 4346 if (tmp_pa->pa_deleted == 0) { 4347 spin_unlock(&tmp_pa->pa_lock); 4348 break; 4349 } 4350 spin_unlock(&tmp_pa->pa_lock); 4351 } 4352 } 4353 4354 if (right_pa) { 4355 for (iter = &right_pa->pa_node.inode_node;; 4356 iter = rb_next(iter)) { 4357 if (!iter) { 4358 right_pa = NULL; 4359 break; 4360 } 4361 4362 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4363 pa_node.inode_node); 4364 right_pa = tmp_pa; 4365 spin_lock(&tmp_pa->pa_lock); 4366 if (tmp_pa->pa_deleted == 0) { 4367 spin_unlock(&tmp_pa->pa_lock); 4368 break; 4369 } 4370 spin_unlock(&tmp_pa->pa_lock); 4371 } 4372 } 4373 4374 if (left_pa) { 4375 left_pa_end = pa_logical_end(sbi, left_pa); 4376 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4377 } 4378 4379 if (right_pa) { 4380 right_pa_start = right_pa->pa_lstart; 4381 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4382 } 4383 4384 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4385 if (left_pa) { 4386 if (left_pa_end > new_start) 4387 new_start = left_pa_end; 4388 } 4389 4390 if (right_pa) { 4391 if (right_pa_start < new_end) 4392 new_end = right_pa_start; 4393 } 4394 read_unlock(&ei->i_prealloc_lock); 4395 4396 /* XXX: extra loop to check we really don't overlap preallocations */ 4397 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4398 4399 *start = new_start; 4400 *end = new_end; 4401 } 4402 4403 /* 4404 * Normalization means making request better in terms of 4405 * size and alignment 4406 */ 4407 static noinline_for_stack void 4408 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4409 struct ext4_allocation_request *ar) 4410 { 4411 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4412 struct ext4_super_block *es = sbi->s_es; 4413 int bsbits, max; 4414 loff_t size, start_off, end; 4415 loff_t orig_size __maybe_unused; 4416 ext4_lblk_t start; 4417 4418 /* do normalize only data requests, metadata requests 4419 do not need preallocation */ 4420 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4421 return; 4422 4423 /* sometime caller may want exact blocks */ 4424 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4425 return; 4426 4427 /* caller may indicate that preallocation isn't 4428 * required (it's a tail, for example) */ 4429 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4430 return; 4431 4432 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4433 ext4_mb_normalize_group_request(ac); 4434 return ; 4435 } 4436 4437 bsbits = ac->ac_sb->s_blocksize_bits; 4438 4439 /* first, let's learn actual file size 4440 * given current request is allocated */ 4441 size = extent_logical_end(sbi, &ac->ac_o_ex); 4442 size = size << bsbits; 4443 if (size < i_size_read(ac->ac_inode)) 4444 size = i_size_read(ac->ac_inode); 4445 orig_size = size; 4446 4447 /* max size of free chunks */ 4448 max = 2 << bsbits; 4449 4450 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4451 (req <= (size) || max <= (chunk_size)) 4452 4453 /* first, try to predict filesize */ 4454 /* XXX: should this table be tunable? */ 4455 start_off = 0; 4456 if (size <= 16 * 1024) { 4457 size = 16 * 1024; 4458 } else if (size <= 32 * 1024) { 4459 size = 32 * 1024; 4460 } else if (size <= 64 * 1024) { 4461 size = 64 * 1024; 4462 } else if (size <= 128 * 1024) { 4463 size = 128 * 1024; 4464 } else if (size <= 256 * 1024) { 4465 size = 256 * 1024; 4466 } else if (size <= 512 * 1024) { 4467 size = 512 * 1024; 4468 } else if (size <= 1024 * 1024) { 4469 size = 1024 * 1024; 4470 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4471 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4472 (21 - bsbits)) << 21; 4473 size = 2 * 1024 * 1024; 4474 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4475 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4476 (22 - bsbits)) << 22; 4477 size = 4 * 1024 * 1024; 4478 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4479 (8<<20)>>bsbits, max, 8 * 1024)) { 4480 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4481 (23 - bsbits)) << 23; 4482 size = 8 * 1024 * 1024; 4483 } else { 4484 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4485 size = (loff_t) EXT4_C2B(sbi, 4486 ac->ac_o_ex.fe_len) << bsbits; 4487 } 4488 size = size >> bsbits; 4489 start = start_off >> bsbits; 4490 4491 /* 4492 * For tiny groups (smaller than 8MB) the chosen allocation 4493 * alignment may be larger than group size. Make sure the 4494 * alignment does not move allocation to a different group which 4495 * makes mballoc fail assertions later. 4496 */ 4497 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4498 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4499 4500 /* avoid unnecessary preallocation that may trigger assertions */ 4501 if (start + size > EXT_MAX_BLOCKS) 4502 size = EXT_MAX_BLOCKS - start; 4503 4504 /* don't cover already allocated blocks in selected range */ 4505 if (ar->pleft && start <= ar->lleft) { 4506 size -= ar->lleft + 1 - start; 4507 start = ar->lleft + 1; 4508 } 4509 if (ar->pright && start + size - 1 >= ar->lright) 4510 size -= start + size - ar->lright; 4511 4512 /* 4513 * Trim allocation request for filesystems with artificially small 4514 * groups. 4515 */ 4516 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4517 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4518 4519 end = start + size; 4520 4521 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4522 4523 size = end - start; 4524 4525 /* 4526 * In this function "start" and "size" are normalized for better 4527 * alignment and length such that we could preallocate more blocks. 4528 * This normalization is done such that original request of 4529 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4530 * "size" boundaries. 4531 * (Note fe_len can be relaxed since FS block allocation API does not 4532 * provide gurantee on number of contiguous blocks allocation since that 4533 * depends upon free space left, etc). 4534 * In case of inode pa, later we use the allocated blocks 4535 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4536 * range of goal/best blocks [start, size] to put it at the 4537 * ac_o_ex.fe_logical extent of this inode. 4538 * (See ext4_mb_use_inode_pa() for more details) 4539 */ 4540 if (start + size <= ac->ac_o_ex.fe_logical || 4541 start > ac->ac_o_ex.fe_logical) { 4542 ext4_msg(ac->ac_sb, KERN_ERR, 4543 "start %lu, size %lu, fe_logical %lu", 4544 (unsigned long) start, (unsigned long) size, 4545 (unsigned long) ac->ac_o_ex.fe_logical); 4546 BUG(); 4547 } 4548 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4549 4550 /* now prepare goal request */ 4551 4552 /* XXX: is it better to align blocks WRT to logical 4553 * placement or satisfy big request as is */ 4554 ac->ac_g_ex.fe_logical = start; 4555 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4556 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4557 4558 /* define goal start in order to merge */ 4559 if (ar->pright && (ar->lright == (start + size)) && 4560 ar->pright >= size && 4561 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4562 /* merge to the right */ 4563 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4564 &ac->ac_g_ex.fe_group, 4565 &ac->ac_g_ex.fe_start); 4566 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4567 } 4568 if (ar->pleft && (ar->lleft + 1 == start) && 4569 ar->pleft + 1 < ext4_blocks_count(es)) { 4570 /* merge to the left */ 4571 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4572 &ac->ac_g_ex.fe_group, 4573 &ac->ac_g_ex.fe_start); 4574 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4575 } 4576 4577 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4578 orig_size, start); 4579 } 4580 4581 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4582 { 4583 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4584 4585 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4586 atomic_inc(&sbi->s_bal_reqs); 4587 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4588 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4589 atomic_inc(&sbi->s_bal_success); 4590 4591 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4592 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4593 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4594 } 4595 4596 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4597 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4598 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4599 atomic_inc(&sbi->s_bal_goals); 4600 /* did we allocate as much as normalizer originally wanted? */ 4601 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4602 atomic_inc(&sbi->s_bal_len_goals); 4603 4604 if (ac->ac_found > sbi->s_mb_max_to_scan) 4605 atomic_inc(&sbi->s_bal_breaks); 4606 } 4607 4608 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4609 trace_ext4_mballoc_alloc(ac); 4610 else 4611 trace_ext4_mballoc_prealloc(ac); 4612 } 4613 4614 /* 4615 * Called on failure; free up any blocks from the inode PA for this 4616 * context. We don't need this for MB_GROUP_PA because we only change 4617 * pa_free in ext4_mb_release_context(), but on failure, we've already 4618 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4619 */ 4620 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4621 { 4622 struct ext4_prealloc_space *pa = ac->ac_pa; 4623 struct ext4_buddy e4b; 4624 int err; 4625 4626 if (pa == NULL) { 4627 if (ac->ac_f_ex.fe_len == 0) 4628 return; 4629 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4630 if (WARN_RATELIMIT(err, 4631 "ext4: mb_load_buddy failed (%d)", err)) 4632 /* 4633 * This should never happen since we pin the 4634 * pages in the ext4_allocation_context so 4635 * ext4_mb_load_buddy() should never fail. 4636 */ 4637 return; 4638 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4639 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4640 ac->ac_f_ex.fe_len); 4641 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4642 ext4_mb_unload_buddy(&e4b); 4643 return; 4644 } 4645 if (pa->pa_type == MB_INODE_PA) { 4646 spin_lock(&pa->pa_lock); 4647 pa->pa_free += ac->ac_b_ex.fe_len; 4648 spin_unlock(&pa->pa_lock); 4649 } 4650 } 4651 4652 /* 4653 * use blocks preallocated to inode 4654 */ 4655 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4656 struct ext4_prealloc_space *pa) 4657 { 4658 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4659 ext4_fsblk_t start; 4660 ext4_fsblk_t end; 4661 int len; 4662 4663 /* found preallocated blocks, use them */ 4664 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4665 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4666 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4667 len = EXT4_NUM_B2C(sbi, end - start); 4668 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4669 &ac->ac_b_ex.fe_start); 4670 ac->ac_b_ex.fe_len = len; 4671 ac->ac_status = AC_STATUS_FOUND; 4672 ac->ac_pa = pa; 4673 4674 BUG_ON(start < pa->pa_pstart); 4675 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4676 BUG_ON(pa->pa_free < len); 4677 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4678 pa->pa_free -= len; 4679 4680 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4681 } 4682 4683 /* 4684 * use blocks preallocated to locality group 4685 */ 4686 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4687 struct ext4_prealloc_space *pa) 4688 { 4689 unsigned int len = ac->ac_o_ex.fe_len; 4690 4691 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4692 &ac->ac_b_ex.fe_group, 4693 &ac->ac_b_ex.fe_start); 4694 ac->ac_b_ex.fe_len = len; 4695 ac->ac_status = AC_STATUS_FOUND; 4696 ac->ac_pa = pa; 4697 4698 /* we don't correct pa_pstart or pa_len here to avoid 4699 * possible race when the group is being loaded concurrently 4700 * instead we correct pa later, after blocks are marked 4701 * in on-disk bitmap -- see ext4_mb_release_context() 4702 * Other CPUs are prevented from allocating from this pa by lg_mutex 4703 */ 4704 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4705 pa->pa_lstart, len, pa); 4706 } 4707 4708 /* 4709 * Return the prealloc space that have minimal distance 4710 * from the goal block. @cpa is the prealloc 4711 * space that is having currently known minimal distance 4712 * from the goal block. 4713 */ 4714 static struct ext4_prealloc_space * 4715 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4716 struct ext4_prealloc_space *pa, 4717 struct ext4_prealloc_space *cpa) 4718 { 4719 ext4_fsblk_t cur_distance, new_distance; 4720 4721 if (cpa == NULL) { 4722 atomic_inc(&pa->pa_count); 4723 return pa; 4724 } 4725 cur_distance = abs(goal_block - cpa->pa_pstart); 4726 new_distance = abs(goal_block - pa->pa_pstart); 4727 4728 if (cur_distance <= new_distance) 4729 return cpa; 4730 4731 /* drop the previous reference */ 4732 atomic_dec(&cpa->pa_count); 4733 atomic_inc(&pa->pa_count); 4734 return pa; 4735 } 4736 4737 /* 4738 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4739 */ 4740 static bool 4741 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4742 struct ext4_prealloc_space *pa) 4743 { 4744 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4745 ext4_fsblk_t start; 4746 4747 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4748 return true; 4749 4750 /* 4751 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4752 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4753 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4754 * consistent with ext4_mb_find_by_goal. 4755 */ 4756 start = pa->pa_pstart + 4757 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4758 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4759 return false; 4760 4761 if (ac->ac_g_ex.fe_len > pa->pa_len - 4762 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4763 return false; 4764 4765 return true; 4766 } 4767 4768 /* 4769 * search goal blocks in preallocated space 4770 */ 4771 static noinline_for_stack bool 4772 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4773 { 4774 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4775 int order, i; 4776 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4777 struct ext4_locality_group *lg; 4778 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4779 struct rb_node *iter; 4780 ext4_fsblk_t goal_block; 4781 4782 /* only data can be preallocated */ 4783 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4784 return false; 4785 4786 /* 4787 * first, try per-file preallocation by searching the inode pa rbtree. 4788 * 4789 * Here, we can't do a direct traversal of the tree because 4790 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4791 * deleted and that can cause direct traversal to skip some entries. 4792 */ 4793 read_lock(&ei->i_prealloc_lock); 4794 4795 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4796 goto try_group_pa; 4797 } 4798 4799 /* 4800 * Step 1: Find a pa with logical start immediately adjacent to the 4801 * original logical start. This could be on the left or right. 4802 * 4803 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4804 */ 4805 for (iter = ei->i_prealloc_node.rb_node; iter; 4806 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4807 tmp_pa->pa_lstart, iter)) { 4808 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4809 pa_node.inode_node); 4810 } 4811 4812 /* 4813 * Step 2: The adjacent pa might be to the right of logical start, find 4814 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4815 * logical start is towards the left of original request's logical start 4816 */ 4817 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4818 struct rb_node *tmp; 4819 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4820 4821 if (tmp) { 4822 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4823 pa_node.inode_node); 4824 } else { 4825 /* 4826 * If there is no adjacent pa to the left then finding 4827 * an overlapping pa is not possible hence stop searching 4828 * inode pa tree 4829 */ 4830 goto try_group_pa; 4831 } 4832 } 4833 4834 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4835 4836 /* 4837 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4838 * the first non deleted adjacent pa. After this step we should have a 4839 * valid tmp_pa which is guaranteed to be non deleted. 4840 */ 4841 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4842 if (!iter) { 4843 /* 4844 * no non deleted left adjacent pa, so stop searching 4845 * inode pa tree 4846 */ 4847 goto try_group_pa; 4848 } 4849 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4850 pa_node.inode_node); 4851 spin_lock(&tmp_pa->pa_lock); 4852 if (tmp_pa->pa_deleted == 0) { 4853 /* 4854 * We will keep holding the pa_lock from 4855 * this point on because we don't want group discard 4856 * to delete this pa underneath us. Since group 4857 * discard is anyways an ENOSPC operation it 4858 * should be okay for it to wait a few more cycles. 4859 */ 4860 break; 4861 } else { 4862 spin_unlock(&tmp_pa->pa_lock); 4863 } 4864 } 4865 4866 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4867 BUG_ON(tmp_pa->pa_deleted == 1); 4868 4869 /* 4870 * Step 4: We now have the non deleted left adjacent pa. Only this 4871 * pa can possibly satisfy the request hence check if it overlaps 4872 * original logical start and stop searching if it doesn't. 4873 */ 4874 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4875 spin_unlock(&tmp_pa->pa_lock); 4876 goto try_group_pa; 4877 } 4878 4879 /* non-extent files can't have physical blocks past 2^32 */ 4880 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4881 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4882 EXT4_MAX_BLOCK_FILE_PHYS)) { 4883 /* 4884 * Since PAs don't overlap, we won't find any other PA to 4885 * satisfy this. 4886 */ 4887 spin_unlock(&tmp_pa->pa_lock); 4888 goto try_group_pa; 4889 } 4890 4891 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4892 atomic_inc(&tmp_pa->pa_count); 4893 ext4_mb_use_inode_pa(ac, tmp_pa); 4894 spin_unlock(&tmp_pa->pa_lock); 4895 read_unlock(&ei->i_prealloc_lock); 4896 return true; 4897 } else { 4898 /* 4899 * We found a valid overlapping pa but couldn't use it because 4900 * it had no free blocks. This should ideally never happen 4901 * because: 4902 * 4903 * 1. When a new inode pa is added to rbtree it must have 4904 * pa_free > 0 since otherwise we won't actually need 4905 * preallocation. 4906 * 4907 * 2. An inode pa that is in the rbtree can only have it's 4908 * pa_free become zero when another thread calls: 4909 * ext4_mb_new_blocks 4910 * ext4_mb_use_preallocated 4911 * ext4_mb_use_inode_pa 4912 * 4913 * 3. Further, after the above calls make pa_free == 0, we will 4914 * immediately remove it from the rbtree in: 4915 * ext4_mb_new_blocks 4916 * ext4_mb_release_context 4917 * ext4_mb_put_pa 4918 * 4919 * 4. Since the pa_free becoming 0 and pa_free getting removed 4920 * from tree both happen in ext4_mb_new_blocks, which is always 4921 * called with i_data_sem held for data allocations, we can be 4922 * sure that another process will never see a pa in rbtree with 4923 * pa_free == 0. 4924 */ 4925 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4926 } 4927 spin_unlock(&tmp_pa->pa_lock); 4928 try_group_pa: 4929 read_unlock(&ei->i_prealloc_lock); 4930 4931 /* can we use group allocation? */ 4932 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4933 return false; 4934 4935 /* inode may have no locality group for some reason */ 4936 lg = ac->ac_lg; 4937 if (lg == NULL) 4938 return false; 4939 order = fls(ac->ac_o_ex.fe_len) - 1; 4940 if (order > PREALLOC_TB_SIZE - 1) 4941 /* The max size of hash table is PREALLOC_TB_SIZE */ 4942 order = PREALLOC_TB_SIZE - 1; 4943 4944 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4945 /* 4946 * search for the prealloc space that is having 4947 * minimal distance from the goal block. 4948 */ 4949 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4950 rcu_read_lock(); 4951 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4952 pa_node.lg_list) { 4953 spin_lock(&tmp_pa->pa_lock); 4954 if (tmp_pa->pa_deleted == 0 && 4955 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4956 4957 cpa = ext4_mb_check_group_pa(goal_block, 4958 tmp_pa, cpa); 4959 } 4960 spin_unlock(&tmp_pa->pa_lock); 4961 } 4962 rcu_read_unlock(); 4963 } 4964 if (cpa) { 4965 ext4_mb_use_group_pa(ac, cpa); 4966 return true; 4967 } 4968 return false; 4969 } 4970 4971 /* 4972 * the function goes through all preallocation in this group and marks them 4973 * used in in-core bitmap. buddy must be generated from this bitmap 4974 * Need to be called with ext4 group lock held 4975 */ 4976 static noinline_for_stack 4977 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4978 ext4_group_t group) 4979 { 4980 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4981 struct ext4_prealloc_space *pa; 4982 struct list_head *cur; 4983 ext4_group_t groupnr; 4984 ext4_grpblk_t start; 4985 int preallocated = 0; 4986 int len; 4987 4988 if (!grp) 4989 return; 4990 4991 /* all form of preallocation discards first load group, 4992 * so the only competing code is preallocation use. 4993 * we don't need any locking here 4994 * notice we do NOT ignore preallocations with pa_deleted 4995 * otherwise we could leave used blocks available for 4996 * allocation in buddy when concurrent ext4_mb_put_pa() 4997 * is dropping preallocation 4998 */ 4999 list_for_each(cur, &grp->bb_prealloc_list) { 5000 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5001 spin_lock(&pa->pa_lock); 5002 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5003 &groupnr, &start); 5004 len = pa->pa_len; 5005 spin_unlock(&pa->pa_lock); 5006 if (unlikely(len == 0)) 5007 continue; 5008 BUG_ON(groupnr != group); 5009 mb_set_bits(bitmap, start, len); 5010 preallocated += len; 5011 } 5012 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5013 } 5014 5015 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5016 struct ext4_prealloc_space *pa) 5017 { 5018 struct ext4_inode_info *ei; 5019 5020 if (pa->pa_deleted) { 5021 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5022 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5023 pa->pa_len); 5024 return; 5025 } 5026 5027 pa->pa_deleted = 1; 5028 5029 if (pa->pa_type == MB_INODE_PA) { 5030 ei = EXT4_I(pa->pa_inode); 5031 atomic_dec(&ei->i_prealloc_active); 5032 } 5033 } 5034 5035 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5036 { 5037 BUG_ON(!pa); 5038 BUG_ON(atomic_read(&pa->pa_count)); 5039 BUG_ON(pa->pa_deleted == 0); 5040 kmem_cache_free(ext4_pspace_cachep, pa); 5041 } 5042 5043 static void ext4_mb_pa_callback(struct rcu_head *head) 5044 { 5045 struct ext4_prealloc_space *pa; 5046 5047 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5048 ext4_mb_pa_free(pa); 5049 } 5050 5051 /* 5052 * drops a reference to preallocated space descriptor 5053 * if this was the last reference and the space is consumed 5054 */ 5055 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5056 struct super_block *sb, struct ext4_prealloc_space *pa) 5057 { 5058 ext4_group_t grp; 5059 ext4_fsblk_t grp_blk; 5060 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5061 5062 /* in this short window concurrent discard can set pa_deleted */ 5063 spin_lock(&pa->pa_lock); 5064 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5065 spin_unlock(&pa->pa_lock); 5066 return; 5067 } 5068 5069 if (pa->pa_deleted == 1) { 5070 spin_unlock(&pa->pa_lock); 5071 return; 5072 } 5073 5074 ext4_mb_mark_pa_deleted(sb, pa); 5075 spin_unlock(&pa->pa_lock); 5076 5077 grp_blk = pa->pa_pstart; 5078 /* 5079 * If doing group-based preallocation, pa_pstart may be in the 5080 * next group when pa is used up 5081 */ 5082 if (pa->pa_type == MB_GROUP_PA) 5083 grp_blk--; 5084 5085 grp = ext4_get_group_number(sb, grp_blk); 5086 5087 /* 5088 * possible race: 5089 * 5090 * P1 (buddy init) P2 (regular allocation) 5091 * find block B in PA 5092 * copy on-disk bitmap to buddy 5093 * mark B in on-disk bitmap 5094 * drop PA from group 5095 * mark all PAs in buddy 5096 * 5097 * thus, P1 initializes buddy with B available. to prevent this 5098 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5099 * against that pair 5100 */ 5101 ext4_lock_group(sb, grp); 5102 list_del(&pa->pa_group_list); 5103 ext4_unlock_group(sb, grp); 5104 5105 if (pa->pa_type == MB_INODE_PA) { 5106 write_lock(pa->pa_node_lock.inode_lock); 5107 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5108 write_unlock(pa->pa_node_lock.inode_lock); 5109 ext4_mb_pa_free(pa); 5110 } else { 5111 spin_lock(pa->pa_node_lock.lg_lock); 5112 list_del_rcu(&pa->pa_node.lg_list); 5113 spin_unlock(pa->pa_node_lock.lg_lock); 5114 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5115 } 5116 } 5117 5118 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5119 { 5120 struct rb_node **iter = &root->rb_node, *parent = NULL; 5121 struct ext4_prealloc_space *iter_pa, *new_pa; 5122 ext4_lblk_t iter_start, new_start; 5123 5124 while (*iter) { 5125 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5126 pa_node.inode_node); 5127 new_pa = rb_entry(new, struct ext4_prealloc_space, 5128 pa_node.inode_node); 5129 iter_start = iter_pa->pa_lstart; 5130 new_start = new_pa->pa_lstart; 5131 5132 parent = *iter; 5133 if (new_start < iter_start) 5134 iter = &((*iter)->rb_left); 5135 else 5136 iter = &((*iter)->rb_right); 5137 } 5138 5139 rb_link_node(new, parent, iter); 5140 rb_insert_color(new, root); 5141 } 5142 5143 /* 5144 * creates new preallocated space for given inode 5145 */ 5146 static noinline_for_stack void 5147 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5148 { 5149 struct super_block *sb = ac->ac_sb; 5150 struct ext4_sb_info *sbi = EXT4_SB(sb); 5151 struct ext4_prealloc_space *pa; 5152 struct ext4_group_info *grp; 5153 struct ext4_inode_info *ei; 5154 5155 /* preallocate only when found space is larger then requested */ 5156 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5157 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5158 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5159 BUG_ON(ac->ac_pa == NULL); 5160 5161 pa = ac->ac_pa; 5162 5163 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5164 struct ext4_free_extent ex = { 5165 .fe_logical = ac->ac_g_ex.fe_logical, 5166 .fe_len = ac->ac_orig_goal_len, 5167 }; 5168 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5169 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); 5170 5171 /* 5172 * We can't allocate as much as normalizer wants, so we try 5173 * to get proper lstart to cover the original request, except 5174 * when the goal doesn't cover the original request as below: 5175 * 5176 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 5177 * best_ex:0/200(200) -> adjusted: 1848/2048(200) 5178 */ 5179 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5180 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5181 5182 /* 5183 * Use the below logic for adjusting best extent as it keeps 5184 * fragmentation in check while ensuring logical range of best 5185 * extent doesn't overflow out of goal extent: 5186 * 5187 * 1. Check if best ex can be kept at end of goal (before 5188 * cr_best_avail trimmed it) and still cover original start 5189 * 2. Else, check if best ex can be kept at start of goal and 5190 * still cover original end 5191 * 3. Else, keep the best ex at start of original request. 5192 */ 5193 ex.fe_len = ac->ac_b_ex.fe_len; 5194 5195 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5196 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5197 goto adjust_bex; 5198 5199 ex.fe_logical = ac->ac_g_ex.fe_logical; 5200 if (o_ex_end <= extent_logical_end(sbi, &ex)) 5201 goto adjust_bex; 5202 5203 ex.fe_logical = ac->ac_o_ex.fe_logical; 5204 adjust_bex: 5205 ac->ac_b_ex.fe_logical = ex.fe_logical; 5206 5207 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5208 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5209 } 5210 5211 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5212 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5213 pa->pa_len = ac->ac_b_ex.fe_len; 5214 pa->pa_free = pa->pa_len; 5215 spin_lock_init(&pa->pa_lock); 5216 INIT_LIST_HEAD(&pa->pa_group_list); 5217 pa->pa_deleted = 0; 5218 pa->pa_type = MB_INODE_PA; 5219 5220 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5221 pa->pa_len, pa->pa_lstart); 5222 trace_ext4_mb_new_inode_pa(ac, pa); 5223 5224 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5225 ext4_mb_use_inode_pa(ac, pa); 5226 5227 ei = EXT4_I(ac->ac_inode); 5228 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5229 if (!grp) 5230 return; 5231 5232 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5233 pa->pa_inode = ac->ac_inode; 5234 5235 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5236 5237 write_lock(pa->pa_node_lock.inode_lock); 5238 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5239 write_unlock(pa->pa_node_lock.inode_lock); 5240 atomic_inc(&ei->i_prealloc_active); 5241 } 5242 5243 /* 5244 * creates new preallocated space for locality group inodes belongs to 5245 */ 5246 static noinline_for_stack void 5247 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5248 { 5249 struct super_block *sb = ac->ac_sb; 5250 struct ext4_locality_group *lg; 5251 struct ext4_prealloc_space *pa; 5252 struct ext4_group_info *grp; 5253 5254 /* preallocate only when found space is larger then requested */ 5255 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5256 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5257 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5258 BUG_ON(ac->ac_pa == NULL); 5259 5260 pa = ac->ac_pa; 5261 5262 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5263 pa->pa_lstart = pa->pa_pstart; 5264 pa->pa_len = ac->ac_b_ex.fe_len; 5265 pa->pa_free = pa->pa_len; 5266 spin_lock_init(&pa->pa_lock); 5267 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5268 INIT_LIST_HEAD(&pa->pa_group_list); 5269 pa->pa_deleted = 0; 5270 pa->pa_type = MB_GROUP_PA; 5271 5272 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5273 pa->pa_len, pa->pa_lstart); 5274 trace_ext4_mb_new_group_pa(ac, pa); 5275 5276 ext4_mb_use_group_pa(ac, pa); 5277 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5278 5279 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5280 if (!grp) 5281 return; 5282 lg = ac->ac_lg; 5283 BUG_ON(lg == NULL); 5284 5285 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5286 pa->pa_inode = NULL; 5287 5288 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5289 5290 /* 5291 * We will later add the new pa to the right bucket 5292 * after updating the pa_free in ext4_mb_release_context 5293 */ 5294 } 5295 5296 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5297 { 5298 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5299 ext4_mb_new_group_pa(ac); 5300 else 5301 ext4_mb_new_inode_pa(ac); 5302 } 5303 5304 /* 5305 * finds all unused blocks in on-disk bitmap, frees them in 5306 * in-core bitmap and buddy. 5307 * @pa must be unlinked from inode and group lists, so that 5308 * nobody else can find/use it. 5309 * the caller MUST hold group/inode locks. 5310 * TODO: optimize the case when there are no in-core structures yet 5311 */ 5312 static noinline_for_stack void 5313 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5314 struct ext4_prealloc_space *pa) 5315 { 5316 struct super_block *sb = e4b->bd_sb; 5317 struct ext4_sb_info *sbi = EXT4_SB(sb); 5318 unsigned int end; 5319 unsigned int next; 5320 ext4_group_t group; 5321 ext4_grpblk_t bit; 5322 unsigned long long grp_blk_start; 5323 int free = 0; 5324 5325 BUG_ON(pa->pa_deleted == 0); 5326 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5327 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5328 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5329 end = bit + pa->pa_len; 5330 5331 while (bit < end) { 5332 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5333 if (bit >= end) 5334 break; 5335 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5336 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5337 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5338 (unsigned) next - bit, (unsigned) group); 5339 free += next - bit; 5340 5341 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5342 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5343 EXT4_C2B(sbi, bit)), 5344 next - bit); 5345 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5346 bit = next + 1; 5347 } 5348 if (free != pa->pa_free) { 5349 ext4_msg(e4b->bd_sb, KERN_CRIT, 5350 "pa %p: logic %lu, phys. %lu, len %d", 5351 pa, (unsigned long) pa->pa_lstart, 5352 (unsigned long) pa->pa_pstart, 5353 pa->pa_len); 5354 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5355 free, pa->pa_free); 5356 /* 5357 * pa is already deleted so we use the value obtained 5358 * from the bitmap and continue. 5359 */ 5360 } 5361 atomic_add(free, &sbi->s_mb_discarded); 5362 } 5363 5364 static noinline_for_stack void 5365 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5366 struct ext4_prealloc_space *pa) 5367 { 5368 struct super_block *sb = e4b->bd_sb; 5369 ext4_group_t group; 5370 ext4_grpblk_t bit; 5371 5372 trace_ext4_mb_release_group_pa(sb, pa); 5373 BUG_ON(pa->pa_deleted == 0); 5374 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5375 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5376 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5377 e4b->bd_group, group, pa->pa_pstart); 5378 return; 5379 } 5380 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5381 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5382 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5383 } 5384 5385 /* 5386 * releases all preallocations in given group 5387 * 5388 * first, we need to decide discard policy: 5389 * - when do we discard 5390 * 1) ENOSPC 5391 * - how many do we discard 5392 * 1) how many requested 5393 */ 5394 static noinline_for_stack int 5395 ext4_mb_discard_group_preallocations(struct super_block *sb, 5396 ext4_group_t group, int *busy) 5397 { 5398 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5399 struct buffer_head *bitmap_bh = NULL; 5400 struct ext4_prealloc_space *pa, *tmp; 5401 LIST_HEAD(list); 5402 struct ext4_buddy e4b; 5403 struct ext4_inode_info *ei; 5404 int err; 5405 int free = 0; 5406 5407 if (!grp) 5408 return 0; 5409 mb_debug(sb, "discard preallocation for group %u\n", group); 5410 if (list_empty(&grp->bb_prealloc_list)) 5411 goto out_dbg; 5412 5413 bitmap_bh = ext4_read_block_bitmap(sb, group); 5414 if (IS_ERR(bitmap_bh)) { 5415 err = PTR_ERR(bitmap_bh); 5416 ext4_error_err(sb, -err, 5417 "Error %d reading block bitmap for %u", 5418 err, group); 5419 goto out_dbg; 5420 } 5421 5422 err = ext4_mb_load_buddy(sb, group, &e4b); 5423 if (err) { 5424 ext4_warning(sb, "Error %d loading buddy information for %u", 5425 err, group); 5426 put_bh(bitmap_bh); 5427 goto out_dbg; 5428 } 5429 5430 ext4_lock_group(sb, group); 5431 list_for_each_entry_safe(pa, tmp, 5432 &grp->bb_prealloc_list, pa_group_list) { 5433 spin_lock(&pa->pa_lock); 5434 if (atomic_read(&pa->pa_count)) { 5435 spin_unlock(&pa->pa_lock); 5436 *busy = 1; 5437 continue; 5438 } 5439 if (pa->pa_deleted) { 5440 spin_unlock(&pa->pa_lock); 5441 continue; 5442 } 5443 5444 /* seems this one can be freed ... */ 5445 ext4_mb_mark_pa_deleted(sb, pa); 5446 5447 if (!free) 5448 this_cpu_inc(discard_pa_seq); 5449 5450 /* we can trust pa_free ... */ 5451 free += pa->pa_free; 5452 5453 spin_unlock(&pa->pa_lock); 5454 5455 list_del(&pa->pa_group_list); 5456 list_add(&pa->u.pa_tmp_list, &list); 5457 } 5458 5459 /* now free all selected PAs */ 5460 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5461 5462 /* remove from object (inode or locality group) */ 5463 if (pa->pa_type == MB_GROUP_PA) { 5464 spin_lock(pa->pa_node_lock.lg_lock); 5465 list_del_rcu(&pa->pa_node.lg_list); 5466 spin_unlock(pa->pa_node_lock.lg_lock); 5467 } else { 5468 write_lock(pa->pa_node_lock.inode_lock); 5469 ei = EXT4_I(pa->pa_inode); 5470 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5471 write_unlock(pa->pa_node_lock.inode_lock); 5472 } 5473 5474 list_del(&pa->u.pa_tmp_list); 5475 5476 if (pa->pa_type == MB_GROUP_PA) { 5477 ext4_mb_release_group_pa(&e4b, pa); 5478 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5479 } else { 5480 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5481 ext4_mb_pa_free(pa); 5482 } 5483 } 5484 5485 ext4_unlock_group(sb, group); 5486 ext4_mb_unload_buddy(&e4b); 5487 put_bh(bitmap_bh); 5488 out_dbg: 5489 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5490 free, group, grp->bb_free); 5491 return free; 5492 } 5493 5494 /* 5495 * releases all non-used preallocated blocks for given inode 5496 * 5497 * It's important to discard preallocations under i_data_sem 5498 * We don't want another block to be served from the prealloc 5499 * space when we are discarding the inode prealloc space. 5500 * 5501 * FIXME!! Make sure it is valid at all the call sites 5502 */ 5503 void ext4_discard_preallocations(struct inode *inode) 5504 { 5505 struct ext4_inode_info *ei = EXT4_I(inode); 5506 struct super_block *sb = inode->i_sb; 5507 struct buffer_head *bitmap_bh = NULL; 5508 struct ext4_prealloc_space *pa, *tmp; 5509 ext4_group_t group = 0; 5510 LIST_HEAD(list); 5511 struct ext4_buddy e4b; 5512 struct rb_node *iter; 5513 int err; 5514 5515 if (!S_ISREG(inode->i_mode)) 5516 return; 5517 5518 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5519 return; 5520 5521 mb_debug(sb, "discard preallocation for inode %lu\n", 5522 inode->i_ino); 5523 trace_ext4_discard_preallocations(inode, 5524 atomic_read(&ei->i_prealloc_active)); 5525 5526 repeat: 5527 /* first, collect all pa's in the inode */ 5528 write_lock(&ei->i_prealloc_lock); 5529 for (iter = rb_first(&ei->i_prealloc_node); iter; 5530 iter = rb_next(iter)) { 5531 pa = rb_entry(iter, struct ext4_prealloc_space, 5532 pa_node.inode_node); 5533 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5534 5535 spin_lock(&pa->pa_lock); 5536 if (atomic_read(&pa->pa_count)) { 5537 /* this shouldn't happen often - nobody should 5538 * use preallocation while we're discarding it */ 5539 spin_unlock(&pa->pa_lock); 5540 write_unlock(&ei->i_prealloc_lock); 5541 ext4_msg(sb, KERN_ERR, 5542 "uh-oh! used pa while discarding"); 5543 WARN_ON(1); 5544 schedule_timeout_uninterruptible(HZ); 5545 goto repeat; 5546 5547 } 5548 if (pa->pa_deleted == 0) { 5549 ext4_mb_mark_pa_deleted(sb, pa); 5550 spin_unlock(&pa->pa_lock); 5551 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5552 list_add(&pa->u.pa_tmp_list, &list); 5553 continue; 5554 } 5555 5556 /* someone is deleting pa right now */ 5557 spin_unlock(&pa->pa_lock); 5558 write_unlock(&ei->i_prealloc_lock); 5559 5560 /* we have to wait here because pa_deleted 5561 * doesn't mean pa is already unlinked from 5562 * the list. as we might be called from 5563 * ->clear_inode() the inode will get freed 5564 * and concurrent thread which is unlinking 5565 * pa from inode's list may access already 5566 * freed memory, bad-bad-bad */ 5567 5568 /* XXX: if this happens too often, we can 5569 * add a flag to force wait only in case 5570 * of ->clear_inode(), but not in case of 5571 * regular truncate */ 5572 schedule_timeout_uninterruptible(HZ); 5573 goto repeat; 5574 } 5575 write_unlock(&ei->i_prealloc_lock); 5576 5577 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5578 BUG_ON(pa->pa_type != MB_INODE_PA); 5579 group = ext4_get_group_number(sb, pa->pa_pstart); 5580 5581 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5582 GFP_NOFS|__GFP_NOFAIL); 5583 if (err) { 5584 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5585 err, group); 5586 continue; 5587 } 5588 5589 bitmap_bh = ext4_read_block_bitmap(sb, group); 5590 if (IS_ERR(bitmap_bh)) { 5591 err = PTR_ERR(bitmap_bh); 5592 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5593 err, group); 5594 ext4_mb_unload_buddy(&e4b); 5595 continue; 5596 } 5597 5598 ext4_lock_group(sb, group); 5599 list_del(&pa->pa_group_list); 5600 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5601 ext4_unlock_group(sb, group); 5602 5603 ext4_mb_unload_buddy(&e4b); 5604 put_bh(bitmap_bh); 5605 5606 list_del(&pa->u.pa_tmp_list); 5607 ext4_mb_pa_free(pa); 5608 } 5609 } 5610 5611 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5612 { 5613 struct ext4_prealloc_space *pa; 5614 5615 BUG_ON(ext4_pspace_cachep == NULL); 5616 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5617 if (!pa) 5618 return -ENOMEM; 5619 atomic_set(&pa->pa_count, 1); 5620 ac->ac_pa = pa; 5621 return 0; 5622 } 5623 5624 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5625 { 5626 struct ext4_prealloc_space *pa = ac->ac_pa; 5627 5628 BUG_ON(!pa); 5629 ac->ac_pa = NULL; 5630 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5631 /* 5632 * current function is only called due to an error or due to 5633 * len of found blocks < len of requested blocks hence the PA has not 5634 * been added to grp->bb_prealloc_list. So we don't need to lock it 5635 */ 5636 pa->pa_deleted = 1; 5637 ext4_mb_pa_free(pa); 5638 } 5639 5640 #ifdef CONFIG_EXT4_DEBUG 5641 static inline void ext4_mb_show_pa(struct super_block *sb) 5642 { 5643 ext4_group_t i, ngroups; 5644 5645 if (ext4_forced_shutdown(sb)) 5646 return; 5647 5648 ngroups = ext4_get_groups_count(sb); 5649 mb_debug(sb, "groups: "); 5650 for (i = 0; i < ngroups; i++) { 5651 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5652 struct ext4_prealloc_space *pa; 5653 ext4_grpblk_t start; 5654 struct list_head *cur; 5655 5656 if (!grp) 5657 continue; 5658 ext4_lock_group(sb, i); 5659 list_for_each(cur, &grp->bb_prealloc_list) { 5660 pa = list_entry(cur, struct ext4_prealloc_space, 5661 pa_group_list); 5662 spin_lock(&pa->pa_lock); 5663 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5664 NULL, &start); 5665 spin_unlock(&pa->pa_lock); 5666 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5667 pa->pa_len); 5668 } 5669 ext4_unlock_group(sb, i); 5670 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5671 grp->bb_fragments); 5672 } 5673 } 5674 5675 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5676 { 5677 struct super_block *sb = ac->ac_sb; 5678 5679 if (ext4_forced_shutdown(sb)) 5680 return; 5681 5682 mb_debug(sb, "Can't allocate:" 5683 " Allocation context details:"); 5684 mb_debug(sb, "status %u flags 0x%x", 5685 ac->ac_status, ac->ac_flags); 5686 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5687 "goal %lu/%lu/%lu@%lu, " 5688 "best %lu/%lu/%lu@%lu cr %d", 5689 (unsigned long)ac->ac_o_ex.fe_group, 5690 (unsigned long)ac->ac_o_ex.fe_start, 5691 (unsigned long)ac->ac_o_ex.fe_len, 5692 (unsigned long)ac->ac_o_ex.fe_logical, 5693 (unsigned long)ac->ac_g_ex.fe_group, 5694 (unsigned long)ac->ac_g_ex.fe_start, 5695 (unsigned long)ac->ac_g_ex.fe_len, 5696 (unsigned long)ac->ac_g_ex.fe_logical, 5697 (unsigned long)ac->ac_b_ex.fe_group, 5698 (unsigned long)ac->ac_b_ex.fe_start, 5699 (unsigned long)ac->ac_b_ex.fe_len, 5700 (unsigned long)ac->ac_b_ex.fe_logical, 5701 (int)ac->ac_criteria); 5702 mb_debug(sb, "%u found", ac->ac_found); 5703 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5704 if (ac->ac_pa) 5705 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5706 "group pa" : "inode pa"); 5707 ext4_mb_show_pa(sb); 5708 } 5709 #else 5710 static inline void ext4_mb_show_pa(struct super_block *sb) 5711 { 5712 } 5713 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5714 { 5715 ext4_mb_show_pa(ac->ac_sb); 5716 } 5717 #endif 5718 5719 /* 5720 * We use locality group preallocation for small size file. The size of the 5721 * file is determined by the current size or the resulting size after 5722 * allocation which ever is larger 5723 * 5724 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5725 */ 5726 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5727 { 5728 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5729 int bsbits = ac->ac_sb->s_blocksize_bits; 5730 loff_t size, isize; 5731 bool inode_pa_eligible, group_pa_eligible; 5732 5733 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5734 return; 5735 5736 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5737 return; 5738 5739 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5740 inode_pa_eligible = true; 5741 size = extent_logical_end(sbi, &ac->ac_o_ex); 5742 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5743 >> bsbits; 5744 5745 /* No point in using inode preallocation for closed files */ 5746 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5747 !inode_is_open_for_write(ac->ac_inode)) 5748 inode_pa_eligible = false; 5749 5750 size = max(size, isize); 5751 /* Don't use group allocation for large files */ 5752 if (size > sbi->s_mb_stream_request) 5753 group_pa_eligible = false; 5754 5755 if (!group_pa_eligible) { 5756 if (inode_pa_eligible) 5757 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5758 else 5759 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5760 return; 5761 } 5762 5763 BUG_ON(ac->ac_lg != NULL); 5764 /* 5765 * locality group prealloc space are per cpu. The reason for having 5766 * per cpu locality group is to reduce the contention between block 5767 * request from multiple CPUs. 5768 */ 5769 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5770 5771 /* we're going to use group allocation */ 5772 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5773 5774 /* serialize all allocations in the group */ 5775 mutex_lock(&ac->ac_lg->lg_mutex); 5776 } 5777 5778 static noinline_for_stack void 5779 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5780 struct ext4_allocation_request *ar) 5781 { 5782 struct super_block *sb = ar->inode->i_sb; 5783 struct ext4_sb_info *sbi = EXT4_SB(sb); 5784 struct ext4_super_block *es = sbi->s_es; 5785 ext4_group_t group; 5786 unsigned int len; 5787 ext4_fsblk_t goal; 5788 ext4_grpblk_t block; 5789 5790 /* we can't allocate > group size */ 5791 len = ar->len; 5792 5793 /* just a dirty hack to filter too big requests */ 5794 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5795 len = EXT4_CLUSTERS_PER_GROUP(sb); 5796 5797 /* start searching from the goal */ 5798 goal = ar->goal; 5799 if (goal < le32_to_cpu(es->s_first_data_block) || 5800 goal >= ext4_blocks_count(es)) 5801 goal = le32_to_cpu(es->s_first_data_block); 5802 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5803 5804 /* set up allocation goals */ 5805 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5806 ac->ac_status = AC_STATUS_CONTINUE; 5807 ac->ac_sb = sb; 5808 ac->ac_inode = ar->inode; 5809 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5810 ac->ac_o_ex.fe_group = group; 5811 ac->ac_o_ex.fe_start = block; 5812 ac->ac_o_ex.fe_len = len; 5813 ac->ac_g_ex = ac->ac_o_ex; 5814 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5815 ac->ac_flags = ar->flags; 5816 5817 /* we have to define context: we'll work with a file or 5818 * locality group. this is a policy, actually */ 5819 ext4_mb_group_or_file(ac); 5820 5821 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5822 "left: %u/%u, right %u/%u to %swritable\n", 5823 (unsigned) ar->len, (unsigned) ar->logical, 5824 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5825 (unsigned) ar->lleft, (unsigned) ar->pleft, 5826 (unsigned) ar->lright, (unsigned) ar->pright, 5827 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5828 } 5829 5830 static noinline_for_stack void 5831 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5832 struct ext4_locality_group *lg, 5833 int order, int total_entries) 5834 { 5835 ext4_group_t group = 0; 5836 struct ext4_buddy e4b; 5837 LIST_HEAD(discard_list); 5838 struct ext4_prealloc_space *pa, *tmp; 5839 5840 mb_debug(sb, "discard locality group preallocation\n"); 5841 5842 spin_lock(&lg->lg_prealloc_lock); 5843 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5844 pa_node.lg_list, 5845 lockdep_is_held(&lg->lg_prealloc_lock)) { 5846 spin_lock(&pa->pa_lock); 5847 if (atomic_read(&pa->pa_count)) { 5848 /* 5849 * This is the pa that we just used 5850 * for block allocation. So don't 5851 * free that 5852 */ 5853 spin_unlock(&pa->pa_lock); 5854 continue; 5855 } 5856 if (pa->pa_deleted) { 5857 spin_unlock(&pa->pa_lock); 5858 continue; 5859 } 5860 /* only lg prealloc space */ 5861 BUG_ON(pa->pa_type != MB_GROUP_PA); 5862 5863 /* seems this one can be freed ... */ 5864 ext4_mb_mark_pa_deleted(sb, pa); 5865 spin_unlock(&pa->pa_lock); 5866 5867 list_del_rcu(&pa->pa_node.lg_list); 5868 list_add(&pa->u.pa_tmp_list, &discard_list); 5869 5870 total_entries--; 5871 if (total_entries <= 5) { 5872 /* 5873 * we want to keep only 5 entries 5874 * allowing it to grow to 8. This 5875 * mak sure we don't call discard 5876 * soon for this list. 5877 */ 5878 break; 5879 } 5880 } 5881 spin_unlock(&lg->lg_prealloc_lock); 5882 5883 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5884 int err; 5885 5886 group = ext4_get_group_number(sb, pa->pa_pstart); 5887 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5888 GFP_NOFS|__GFP_NOFAIL); 5889 if (err) { 5890 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5891 err, group); 5892 continue; 5893 } 5894 ext4_lock_group(sb, group); 5895 list_del(&pa->pa_group_list); 5896 ext4_mb_release_group_pa(&e4b, pa); 5897 ext4_unlock_group(sb, group); 5898 5899 ext4_mb_unload_buddy(&e4b); 5900 list_del(&pa->u.pa_tmp_list); 5901 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5902 } 5903 } 5904 5905 /* 5906 * We have incremented pa_count. So it cannot be freed at this 5907 * point. Also we hold lg_mutex. So no parallel allocation is 5908 * possible from this lg. That means pa_free cannot be updated. 5909 * 5910 * A parallel ext4_mb_discard_group_preallocations is possible. 5911 * which can cause the lg_prealloc_list to be updated. 5912 */ 5913 5914 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5915 { 5916 int order, added = 0, lg_prealloc_count = 1; 5917 struct super_block *sb = ac->ac_sb; 5918 struct ext4_locality_group *lg = ac->ac_lg; 5919 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5920 5921 order = fls(pa->pa_free) - 1; 5922 if (order > PREALLOC_TB_SIZE - 1) 5923 /* The max size of hash table is PREALLOC_TB_SIZE */ 5924 order = PREALLOC_TB_SIZE - 1; 5925 /* Add the prealloc space to lg */ 5926 spin_lock(&lg->lg_prealloc_lock); 5927 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5928 pa_node.lg_list, 5929 lockdep_is_held(&lg->lg_prealloc_lock)) { 5930 spin_lock(&tmp_pa->pa_lock); 5931 if (tmp_pa->pa_deleted) { 5932 spin_unlock(&tmp_pa->pa_lock); 5933 continue; 5934 } 5935 if (!added && pa->pa_free < tmp_pa->pa_free) { 5936 /* Add to the tail of the previous entry */ 5937 list_add_tail_rcu(&pa->pa_node.lg_list, 5938 &tmp_pa->pa_node.lg_list); 5939 added = 1; 5940 /* 5941 * we want to count the total 5942 * number of entries in the list 5943 */ 5944 } 5945 spin_unlock(&tmp_pa->pa_lock); 5946 lg_prealloc_count++; 5947 } 5948 if (!added) 5949 list_add_tail_rcu(&pa->pa_node.lg_list, 5950 &lg->lg_prealloc_list[order]); 5951 spin_unlock(&lg->lg_prealloc_lock); 5952 5953 /* Now trim the list to be not more than 8 elements */ 5954 if (lg_prealloc_count > 8) 5955 ext4_mb_discard_lg_preallocations(sb, lg, 5956 order, lg_prealloc_count); 5957 } 5958 5959 /* 5960 * release all resource we used in allocation 5961 */ 5962 static void ext4_mb_release_context(struct ext4_allocation_context *ac) 5963 { 5964 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5965 struct ext4_prealloc_space *pa = ac->ac_pa; 5966 if (pa) { 5967 if (pa->pa_type == MB_GROUP_PA) { 5968 /* see comment in ext4_mb_use_group_pa() */ 5969 spin_lock(&pa->pa_lock); 5970 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5971 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5972 pa->pa_free -= ac->ac_b_ex.fe_len; 5973 pa->pa_len -= ac->ac_b_ex.fe_len; 5974 spin_unlock(&pa->pa_lock); 5975 5976 /* 5977 * We want to add the pa to the right bucket. 5978 * Remove it from the list and while adding 5979 * make sure the list to which we are adding 5980 * doesn't grow big. 5981 */ 5982 if (likely(pa->pa_free)) { 5983 spin_lock(pa->pa_node_lock.lg_lock); 5984 list_del_rcu(&pa->pa_node.lg_list); 5985 spin_unlock(pa->pa_node_lock.lg_lock); 5986 ext4_mb_add_n_trim(ac); 5987 } 5988 } 5989 5990 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5991 } 5992 if (ac->ac_bitmap_page) 5993 put_page(ac->ac_bitmap_page); 5994 if (ac->ac_buddy_page) 5995 put_page(ac->ac_buddy_page); 5996 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5997 mutex_unlock(&ac->ac_lg->lg_mutex); 5998 ext4_mb_collect_stats(ac); 5999 } 6000 6001 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6002 { 6003 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6004 int ret; 6005 int freed = 0, busy = 0; 6006 int retry = 0; 6007 6008 trace_ext4_mb_discard_preallocations(sb, needed); 6009 6010 if (needed == 0) 6011 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6012 repeat: 6013 for (i = 0; i < ngroups && needed > 0; i++) { 6014 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6015 freed += ret; 6016 needed -= ret; 6017 cond_resched(); 6018 } 6019 6020 if (needed > 0 && busy && ++retry < 3) { 6021 busy = 0; 6022 goto repeat; 6023 } 6024 6025 return freed; 6026 } 6027 6028 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6029 struct ext4_allocation_context *ac, u64 *seq) 6030 { 6031 int freed; 6032 u64 seq_retry = 0; 6033 bool ret = false; 6034 6035 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6036 if (freed) { 6037 ret = true; 6038 goto out_dbg; 6039 } 6040 seq_retry = ext4_get_discard_pa_seq_sum(); 6041 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6042 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6043 *seq = seq_retry; 6044 ret = true; 6045 } 6046 6047 out_dbg: 6048 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6049 return ret; 6050 } 6051 6052 /* 6053 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6054 * linearly starting at the goal block and also excludes the blocks which 6055 * are going to be in use after fast commit replay. 6056 */ 6057 static ext4_fsblk_t 6058 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6059 { 6060 struct buffer_head *bitmap_bh; 6061 struct super_block *sb = ar->inode->i_sb; 6062 struct ext4_sb_info *sbi = EXT4_SB(sb); 6063 ext4_group_t group, nr; 6064 ext4_grpblk_t blkoff; 6065 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6066 ext4_grpblk_t i = 0; 6067 ext4_fsblk_t goal, block; 6068 struct ext4_super_block *es = sbi->s_es; 6069 6070 goal = ar->goal; 6071 if (goal < le32_to_cpu(es->s_first_data_block) || 6072 goal >= ext4_blocks_count(es)) 6073 goal = le32_to_cpu(es->s_first_data_block); 6074 6075 ar->len = 0; 6076 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6077 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6078 bitmap_bh = ext4_read_block_bitmap(sb, group); 6079 if (IS_ERR(bitmap_bh)) { 6080 *errp = PTR_ERR(bitmap_bh); 6081 pr_warn("Failed to read block bitmap\n"); 6082 return 0; 6083 } 6084 6085 while (1) { 6086 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6087 blkoff); 6088 if (i >= max) 6089 break; 6090 if (ext4_fc_replay_check_excluded(sb, 6091 ext4_group_first_block_no(sb, group) + 6092 EXT4_C2B(sbi, i))) { 6093 blkoff = i + 1; 6094 } else 6095 break; 6096 } 6097 brelse(bitmap_bh); 6098 if (i < max) 6099 break; 6100 6101 if (++group >= ext4_get_groups_count(sb)) 6102 group = 0; 6103 6104 blkoff = 0; 6105 } 6106 6107 if (i >= max) { 6108 *errp = -ENOSPC; 6109 return 0; 6110 } 6111 6112 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6113 ext4_mb_mark_bb(sb, block, 1, true); 6114 ar->len = 1; 6115 6116 return block; 6117 } 6118 6119 /* 6120 * Main entry point into mballoc to allocate blocks 6121 * it tries to use preallocation first, then falls back 6122 * to usual allocation 6123 */ 6124 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6125 struct ext4_allocation_request *ar, int *errp) 6126 { 6127 struct ext4_allocation_context *ac = NULL; 6128 struct ext4_sb_info *sbi; 6129 struct super_block *sb; 6130 ext4_fsblk_t block = 0; 6131 unsigned int inquota = 0; 6132 unsigned int reserv_clstrs = 0; 6133 int retries = 0; 6134 u64 seq; 6135 6136 might_sleep(); 6137 sb = ar->inode->i_sb; 6138 sbi = EXT4_SB(sb); 6139 6140 trace_ext4_request_blocks(ar); 6141 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6142 return ext4_mb_new_blocks_simple(ar, errp); 6143 6144 /* Allow to use superuser reservation for quota file */ 6145 if (ext4_is_quota_file(ar->inode)) 6146 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6147 6148 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6149 /* Without delayed allocation we need to verify 6150 * there is enough free blocks to do block allocation 6151 * and verify allocation doesn't exceed the quota limits. 6152 */ 6153 while (ar->len && 6154 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6155 6156 /* let others to free the space */ 6157 cond_resched(); 6158 ar->len = ar->len >> 1; 6159 } 6160 if (!ar->len) { 6161 ext4_mb_show_pa(sb); 6162 *errp = -ENOSPC; 6163 return 0; 6164 } 6165 reserv_clstrs = ar->len; 6166 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6167 dquot_alloc_block_nofail(ar->inode, 6168 EXT4_C2B(sbi, ar->len)); 6169 } else { 6170 while (ar->len && 6171 dquot_alloc_block(ar->inode, 6172 EXT4_C2B(sbi, ar->len))) { 6173 6174 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6175 ar->len--; 6176 } 6177 } 6178 inquota = ar->len; 6179 if (ar->len == 0) { 6180 *errp = -EDQUOT; 6181 goto out; 6182 } 6183 } 6184 6185 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6186 if (!ac) { 6187 ar->len = 0; 6188 *errp = -ENOMEM; 6189 goto out; 6190 } 6191 6192 ext4_mb_initialize_context(ac, ar); 6193 6194 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6195 seq = this_cpu_read(discard_pa_seq); 6196 if (!ext4_mb_use_preallocated(ac)) { 6197 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6198 ext4_mb_normalize_request(ac, ar); 6199 6200 *errp = ext4_mb_pa_alloc(ac); 6201 if (*errp) 6202 goto errout; 6203 repeat: 6204 /* allocate space in core */ 6205 *errp = ext4_mb_regular_allocator(ac); 6206 /* 6207 * pa allocated above is added to grp->bb_prealloc_list only 6208 * when we were able to allocate some block i.e. when 6209 * ac->ac_status == AC_STATUS_FOUND. 6210 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6211 * So we have to free this pa here itself. 6212 */ 6213 if (*errp) { 6214 ext4_mb_pa_put_free(ac); 6215 ext4_discard_allocated_blocks(ac); 6216 goto errout; 6217 } 6218 if (ac->ac_status == AC_STATUS_FOUND && 6219 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6220 ext4_mb_pa_put_free(ac); 6221 } 6222 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6223 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6224 if (*errp) { 6225 ext4_discard_allocated_blocks(ac); 6226 goto errout; 6227 } else { 6228 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6229 ar->len = ac->ac_b_ex.fe_len; 6230 } 6231 } else { 6232 if (++retries < 3 && 6233 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6234 goto repeat; 6235 /* 6236 * If block allocation fails then the pa allocated above 6237 * needs to be freed here itself. 6238 */ 6239 ext4_mb_pa_put_free(ac); 6240 *errp = -ENOSPC; 6241 } 6242 6243 if (*errp) { 6244 errout: 6245 ac->ac_b_ex.fe_len = 0; 6246 ar->len = 0; 6247 ext4_mb_show_ac(ac); 6248 } 6249 ext4_mb_release_context(ac); 6250 kmem_cache_free(ext4_ac_cachep, ac); 6251 out: 6252 if (inquota && ar->len < inquota) 6253 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6254 if (!ar->len) { 6255 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6256 /* release all the reserved blocks if non delalloc */ 6257 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6258 reserv_clstrs); 6259 } 6260 6261 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6262 6263 return block; 6264 } 6265 6266 /* 6267 * We can merge two free data extents only if the physical blocks 6268 * are contiguous, AND the extents were freed by the same transaction, 6269 * AND the blocks are associated with the same group. 6270 */ 6271 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6272 struct ext4_free_data *entry, 6273 struct ext4_free_data *new_entry, 6274 struct rb_root *entry_rb_root) 6275 { 6276 if ((entry->efd_tid != new_entry->efd_tid) || 6277 (entry->efd_group != new_entry->efd_group)) 6278 return; 6279 if (entry->efd_start_cluster + entry->efd_count == 6280 new_entry->efd_start_cluster) { 6281 new_entry->efd_start_cluster = entry->efd_start_cluster; 6282 new_entry->efd_count += entry->efd_count; 6283 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6284 entry->efd_start_cluster) { 6285 new_entry->efd_count += entry->efd_count; 6286 } else 6287 return; 6288 spin_lock(&sbi->s_md_lock); 6289 list_del(&entry->efd_list); 6290 spin_unlock(&sbi->s_md_lock); 6291 rb_erase(&entry->efd_node, entry_rb_root); 6292 kmem_cache_free(ext4_free_data_cachep, entry); 6293 } 6294 6295 static noinline_for_stack void 6296 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6297 struct ext4_free_data *new_entry) 6298 { 6299 ext4_group_t group = e4b->bd_group; 6300 ext4_grpblk_t cluster; 6301 ext4_grpblk_t clusters = new_entry->efd_count; 6302 struct ext4_free_data *entry; 6303 struct ext4_group_info *db = e4b->bd_info; 6304 struct super_block *sb = e4b->bd_sb; 6305 struct ext4_sb_info *sbi = EXT4_SB(sb); 6306 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6307 struct rb_node *parent = NULL, *new_node; 6308 6309 BUG_ON(!ext4_handle_valid(handle)); 6310 BUG_ON(e4b->bd_bitmap_page == NULL); 6311 BUG_ON(e4b->bd_buddy_page == NULL); 6312 6313 new_node = &new_entry->efd_node; 6314 cluster = new_entry->efd_start_cluster; 6315 6316 if (!*n) { 6317 /* first free block exent. We need to 6318 protect buddy cache from being freed, 6319 * otherwise we'll refresh it from 6320 * on-disk bitmap and lose not-yet-available 6321 * blocks */ 6322 get_page(e4b->bd_buddy_page); 6323 get_page(e4b->bd_bitmap_page); 6324 } 6325 while (*n) { 6326 parent = *n; 6327 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6328 if (cluster < entry->efd_start_cluster) 6329 n = &(*n)->rb_left; 6330 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6331 n = &(*n)->rb_right; 6332 else { 6333 ext4_grp_locked_error(sb, group, 0, 6334 ext4_group_first_block_no(sb, group) + 6335 EXT4_C2B(sbi, cluster), 6336 "Block already on to-be-freed list"); 6337 kmem_cache_free(ext4_free_data_cachep, new_entry); 6338 return; 6339 } 6340 } 6341 6342 rb_link_node(new_node, parent, n); 6343 rb_insert_color(new_node, &db->bb_free_root); 6344 6345 /* Now try to see the extent can be merged to left and right */ 6346 node = rb_prev(new_node); 6347 if (node) { 6348 entry = rb_entry(node, struct ext4_free_data, efd_node); 6349 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6350 &(db->bb_free_root)); 6351 } 6352 6353 node = rb_next(new_node); 6354 if (node) { 6355 entry = rb_entry(node, struct ext4_free_data, efd_node); 6356 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6357 &(db->bb_free_root)); 6358 } 6359 6360 spin_lock(&sbi->s_md_lock); 6361 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]); 6362 sbi->s_mb_free_pending += clusters; 6363 spin_unlock(&sbi->s_md_lock); 6364 } 6365 6366 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6367 unsigned long count) 6368 { 6369 struct super_block *sb = inode->i_sb; 6370 ext4_group_t group; 6371 ext4_grpblk_t blkoff; 6372 6373 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6374 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count, 6375 EXT4_MB_BITMAP_MARKED_CHECK | 6376 EXT4_MB_SYNC_UPDATE, 6377 NULL); 6378 } 6379 6380 /** 6381 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6382 * Used by ext4_free_blocks() 6383 * @handle: handle for this transaction 6384 * @inode: inode 6385 * @block: starting physical block to be freed 6386 * @count: number of blocks to be freed 6387 * @flags: flags used by ext4_free_blocks 6388 */ 6389 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6390 ext4_fsblk_t block, unsigned long count, 6391 int flags) 6392 { 6393 struct super_block *sb = inode->i_sb; 6394 struct ext4_group_info *grp; 6395 unsigned int overflow; 6396 ext4_grpblk_t bit; 6397 ext4_group_t block_group; 6398 struct ext4_sb_info *sbi; 6399 struct ext4_buddy e4b; 6400 unsigned int count_clusters; 6401 int err = 0; 6402 int mark_flags = 0; 6403 ext4_grpblk_t changed; 6404 6405 sbi = EXT4_SB(sb); 6406 6407 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6408 !ext4_inode_block_valid(inode, block, count)) { 6409 ext4_error(sb, "Freeing blocks in system zone - " 6410 "Block = %llu, count = %lu", block, count); 6411 /* err = 0. ext4_std_error should be a no op */ 6412 goto error_out; 6413 } 6414 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6415 6416 do_more: 6417 overflow = 0; 6418 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6419 6420 grp = ext4_get_group_info(sb, block_group); 6421 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6422 return; 6423 6424 /* 6425 * Check to see if we are freeing blocks across a group 6426 * boundary. 6427 */ 6428 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6429 overflow = EXT4_C2B(sbi, bit) + count - 6430 EXT4_BLOCKS_PER_GROUP(sb); 6431 count -= overflow; 6432 /* The range changed so it's no longer validated */ 6433 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6434 } 6435 count_clusters = EXT4_NUM_B2C(sbi, count); 6436 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6437 6438 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6439 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6440 GFP_NOFS|__GFP_NOFAIL); 6441 if (err) 6442 goto error_out; 6443 6444 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6445 !ext4_inode_block_valid(inode, block, count)) { 6446 ext4_error(sb, "Freeing blocks in system zone - " 6447 "Block = %llu, count = %lu", block, count); 6448 /* err = 0. ext4_std_error should be a no op */ 6449 goto error_clean; 6450 } 6451 6452 #ifdef AGGRESSIVE_CHECK 6453 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; 6454 #endif 6455 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6456 count_clusters, mark_flags, &changed); 6457 6458 6459 if (err && changed == 0) 6460 goto error_clean; 6461 6462 #ifdef AGGRESSIVE_CHECK 6463 BUG_ON(changed != count_clusters); 6464 #endif 6465 6466 /* 6467 * We need to make sure we don't reuse the freed block until after the 6468 * transaction is committed. We make an exception if the inode is to be 6469 * written in writeback mode since writeback mode has weak data 6470 * consistency guarantees. 6471 */ 6472 if (ext4_handle_valid(handle) && 6473 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6474 !ext4_should_writeback_data(inode))) { 6475 struct ext4_free_data *new_entry; 6476 /* 6477 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6478 * to fail. 6479 */ 6480 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6481 GFP_NOFS|__GFP_NOFAIL); 6482 new_entry->efd_start_cluster = bit; 6483 new_entry->efd_group = block_group; 6484 new_entry->efd_count = count_clusters; 6485 new_entry->efd_tid = handle->h_transaction->t_tid; 6486 6487 ext4_lock_group(sb, block_group); 6488 ext4_mb_free_metadata(handle, &e4b, new_entry); 6489 } else { 6490 if (test_opt(sb, DISCARD)) { 6491 err = ext4_issue_discard(sb, block_group, bit, 6492 count_clusters); 6493 /* 6494 * Ignore EOPNOTSUPP error. This is consistent with 6495 * what happens when using journal. 6496 */ 6497 if (err == -EOPNOTSUPP) 6498 err = 0; 6499 if (err) 6500 ext4_msg(sb, KERN_WARNING, "discard request in" 6501 " group:%u block:%d count:%lu failed" 6502 " with %d", block_group, bit, count, 6503 err); 6504 } else 6505 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6506 6507 ext4_lock_group(sb, block_group); 6508 mb_free_blocks(inode, &e4b, bit, count_clusters); 6509 } 6510 6511 ext4_unlock_group(sb, block_group); 6512 6513 /* 6514 * on a bigalloc file system, defer the s_freeclusters_counter 6515 * update to the caller (ext4_remove_space and friends) so they 6516 * can determine if a cluster freed here should be rereserved 6517 */ 6518 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6519 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6520 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6521 percpu_counter_add(&sbi->s_freeclusters_counter, 6522 count_clusters); 6523 } 6524 6525 if (overflow && !err) { 6526 block += count; 6527 count = overflow; 6528 ext4_mb_unload_buddy(&e4b); 6529 /* The range changed so it's no longer validated */ 6530 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6531 goto do_more; 6532 } 6533 6534 error_clean: 6535 ext4_mb_unload_buddy(&e4b); 6536 error_out: 6537 ext4_std_error(sb, err); 6538 } 6539 6540 /** 6541 * ext4_free_blocks() -- Free given blocks and update quota 6542 * @handle: handle for this transaction 6543 * @inode: inode 6544 * @bh: optional buffer of the block to be freed 6545 * @block: starting physical block to be freed 6546 * @count: number of blocks to be freed 6547 * @flags: flags used by ext4_free_blocks 6548 */ 6549 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6550 struct buffer_head *bh, ext4_fsblk_t block, 6551 unsigned long count, int flags) 6552 { 6553 struct super_block *sb = inode->i_sb; 6554 unsigned int overflow; 6555 struct ext4_sb_info *sbi; 6556 6557 sbi = EXT4_SB(sb); 6558 6559 if (bh) { 6560 if (block) 6561 BUG_ON(block != bh->b_blocknr); 6562 else 6563 block = bh->b_blocknr; 6564 } 6565 6566 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6567 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6568 return; 6569 } 6570 6571 might_sleep(); 6572 6573 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6574 !ext4_inode_block_valid(inode, block, count)) { 6575 ext4_error(sb, "Freeing blocks not in datazone - " 6576 "block = %llu, count = %lu", block, count); 6577 return; 6578 } 6579 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6580 6581 ext4_debug("freeing block %llu\n", block); 6582 trace_ext4_free_blocks(inode, block, count, flags); 6583 6584 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6585 BUG_ON(count > 1); 6586 6587 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6588 inode, bh, block); 6589 } 6590 6591 /* 6592 * If the extent to be freed does not begin on a cluster 6593 * boundary, we need to deal with partial clusters at the 6594 * beginning and end of the extent. Normally we will free 6595 * blocks at the beginning or the end unless we are explicitly 6596 * requested to avoid doing so. 6597 */ 6598 overflow = EXT4_PBLK_COFF(sbi, block); 6599 if (overflow) { 6600 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6601 overflow = sbi->s_cluster_ratio - overflow; 6602 block += overflow; 6603 if (count > overflow) 6604 count -= overflow; 6605 else 6606 return; 6607 } else { 6608 block -= overflow; 6609 count += overflow; 6610 } 6611 /* The range changed so it's no longer validated */ 6612 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6613 } 6614 overflow = EXT4_LBLK_COFF(sbi, count); 6615 if (overflow) { 6616 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6617 if (count > overflow) 6618 count -= overflow; 6619 else 6620 return; 6621 } else 6622 count += sbi->s_cluster_ratio - overflow; 6623 /* The range changed so it's no longer validated */ 6624 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6625 } 6626 6627 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6628 int i; 6629 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6630 6631 for (i = 0; i < count; i++) { 6632 cond_resched(); 6633 if (is_metadata) 6634 bh = sb_find_get_block(inode->i_sb, block + i); 6635 ext4_forget(handle, is_metadata, inode, bh, block + i); 6636 } 6637 } 6638 6639 ext4_mb_clear_bb(handle, inode, block, count, flags); 6640 } 6641 6642 /** 6643 * ext4_group_add_blocks() -- Add given blocks to an existing group 6644 * @handle: handle to this transaction 6645 * @sb: super block 6646 * @block: start physical block to add to the block group 6647 * @count: number of blocks to free 6648 * 6649 * This marks the blocks as free in the bitmap and buddy. 6650 */ 6651 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6652 ext4_fsblk_t block, unsigned long count) 6653 { 6654 ext4_group_t block_group; 6655 ext4_grpblk_t bit; 6656 struct ext4_sb_info *sbi = EXT4_SB(sb); 6657 struct ext4_buddy e4b; 6658 int err = 0; 6659 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6660 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6661 unsigned long cluster_count = last_cluster - first_cluster + 1; 6662 ext4_grpblk_t changed; 6663 6664 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6665 6666 if (cluster_count == 0) 6667 return 0; 6668 6669 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6670 /* 6671 * Check to see if we are freeing blocks across a group 6672 * boundary. 6673 */ 6674 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6675 ext4_warning(sb, "too many blocks added to group %u", 6676 block_group); 6677 err = -EINVAL; 6678 goto error_out; 6679 } 6680 6681 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6682 if (err) 6683 goto error_out; 6684 6685 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6686 ext4_error(sb, "Adding blocks in system zones - " 6687 "Block = %llu, count = %lu", 6688 block, count); 6689 err = -EINVAL; 6690 goto error_clean; 6691 } 6692 6693 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6694 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, 6695 &changed); 6696 if (err && changed == 0) 6697 goto error_clean; 6698 6699 if (changed != cluster_count) 6700 ext4_error(sb, "bit already cleared in group %u", block_group); 6701 6702 ext4_lock_group(sb, block_group); 6703 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6704 ext4_unlock_group(sb, block_group); 6705 percpu_counter_add(&sbi->s_freeclusters_counter, 6706 changed); 6707 6708 error_clean: 6709 ext4_mb_unload_buddy(&e4b); 6710 error_out: 6711 ext4_std_error(sb, err); 6712 return err; 6713 } 6714 6715 /** 6716 * ext4_trim_extent -- function to TRIM one single free extent in the group 6717 * @sb: super block for the file system 6718 * @start: starting block of the free extent in the alloc. group 6719 * @count: number of blocks to TRIM 6720 * @e4b: ext4 buddy for the group 6721 * 6722 * Trim "count" blocks starting at "start" in the "group". To assure that no 6723 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6724 * be called with under the group lock. 6725 */ 6726 static int ext4_trim_extent(struct super_block *sb, 6727 int start, int count, struct ext4_buddy *e4b) 6728 __releases(bitlock) 6729 __acquires(bitlock) 6730 { 6731 struct ext4_free_extent ex; 6732 ext4_group_t group = e4b->bd_group; 6733 int ret = 0; 6734 6735 trace_ext4_trim_extent(sb, group, start, count); 6736 6737 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6738 6739 ex.fe_start = start; 6740 ex.fe_group = group; 6741 ex.fe_len = count; 6742 6743 /* 6744 * Mark blocks used, so no one can reuse them while 6745 * being trimmed. 6746 */ 6747 mb_mark_used(e4b, &ex); 6748 ext4_unlock_group(sb, group); 6749 ret = ext4_issue_discard(sb, group, start, count); 6750 ext4_lock_group(sb, group); 6751 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6752 return ret; 6753 } 6754 6755 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6756 ext4_group_t grp) 6757 { 6758 unsigned long nr_clusters_in_group; 6759 6760 if (grp < (ext4_get_groups_count(sb) - 1)) 6761 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6762 else 6763 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6764 ext4_group_first_block_no(sb, grp)) 6765 >> EXT4_CLUSTER_BITS(sb); 6766 6767 return nr_clusters_in_group - 1; 6768 } 6769 6770 static bool ext4_trim_interrupted(void) 6771 { 6772 return fatal_signal_pending(current) || freezing(current); 6773 } 6774 6775 static int ext4_try_to_trim_range(struct super_block *sb, 6776 struct ext4_buddy *e4b, ext4_grpblk_t start, 6777 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6778 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6779 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6780 { 6781 ext4_grpblk_t next, count, free_count, last, origin_start; 6782 bool set_trimmed = false; 6783 void *bitmap; 6784 6785 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 6786 return 0; 6787 6788 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6789 bitmap = e4b->bd_bitmap; 6790 if (start == 0 && max >= last) 6791 set_trimmed = true; 6792 origin_start = start; 6793 start = max(e4b->bd_info->bb_first_free, start); 6794 count = 0; 6795 free_count = 0; 6796 6797 while (start <= max) { 6798 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6799 if (start > max) 6800 break; 6801 6802 next = mb_find_next_bit(bitmap, last + 1, start); 6803 if (origin_start == 0 && next >= last) 6804 set_trimmed = true; 6805 6806 if ((next - start) >= minblocks) { 6807 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6808 6809 if (ret && ret != -EOPNOTSUPP) 6810 return count; 6811 count += next - start; 6812 } 6813 free_count += next - start; 6814 start = next + 1; 6815 6816 if (ext4_trim_interrupted()) 6817 return count; 6818 6819 if (need_resched()) { 6820 ext4_unlock_group(sb, e4b->bd_group); 6821 cond_resched(); 6822 ext4_lock_group(sb, e4b->bd_group); 6823 } 6824 6825 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6826 break; 6827 } 6828 6829 if (set_trimmed) 6830 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6831 6832 return count; 6833 } 6834 6835 /** 6836 * ext4_trim_all_free -- function to trim all free space in alloc. group 6837 * @sb: super block for file system 6838 * @group: group to be trimmed 6839 * @start: first group block to examine 6840 * @max: last group block to examine 6841 * @minblocks: minimum extent block count 6842 * 6843 * ext4_trim_all_free walks through group's block bitmap searching for free 6844 * extents. When the free extent is found, mark it as used in group buddy 6845 * bitmap. Then issue a TRIM command on this extent and free the extent in 6846 * the group buddy bitmap. 6847 */ 6848 static ext4_grpblk_t 6849 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6850 ext4_grpblk_t start, ext4_grpblk_t max, 6851 ext4_grpblk_t minblocks) 6852 { 6853 struct ext4_buddy e4b; 6854 int ret; 6855 6856 trace_ext4_trim_all_free(sb, group, start, max); 6857 6858 ret = ext4_mb_load_buddy(sb, group, &e4b); 6859 if (ret) { 6860 ext4_warning(sb, "Error %d loading buddy information for %u", 6861 ret, group); 6862 return ret; 6863 } 6864 6865 ext4_lock_group(sb, group); 6866 6867 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6868 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 6869 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6870 else 6871 ret = 0; 6872 6873 ext4_unlock_group(sb, group); 6874 ext4_mb_unload_buddy(&e4b); 6875 6876 ext4_debug("trimmed %d blocks in the group %d\n", 6877 ret, group); 6878 6879 return ret; 6880 } 6881 6882 /** 6883 * ext4_trim_fs() -- trim ioctl handle function 6884 * @sb: superblock for filesystem 6885 * @range: fstrim_range structure 6886 * 6887 * start: First Byte to trim 6888 * len: number of Bytes to trim from start 6889 * minlen: minimum extent length in Bytes 6890 * ext4_trim_fs goes through all allocation groups containing Bytes from 6891 * start to start+len. For each such a group ext4_trim_all_free function 6892 * is invoked to trim all free space. 6893 */ 6894 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6895 { 6896 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 6897 struct ext4_group_info *grp; 6898 ext4_group_t group, first_group, last_group; 6899 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6900 uint64_t start, end, minlen, trimmed = 0; 6901 ext4_fsblk_t first_data_blk = 6902 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6903 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6904 int ret = 0; 6905 6906 start = range->start >> sb->s_blocksize_bits; 6907 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6908 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6909 range->minlen >> sb->s_blocksize_bits); 6910 6911 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6912 start >= max_blks || 6913 range->len < sb->s_blocksize) 6914 return -EINVAL; 6915 /* No point to try to trim less than discard granularity */ 6916 if (range->minlen < discard_granularity) { 6917 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6918 discard_granularity >> sb->s_blocksize_bits); 6919 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 6920 goto out; 6921 } 6922 if (end >= max_blks - 1) 6923 end = max_blks - 1; 6924 if (end <= first_data_blk) 6925 goto out; 6926 if (start < first_data_blk) 6927 start = first_data_blk; 6928 6929 /* Determine first and last group to examine based on start and end */ 6930 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6931 &first_group, &first_cluster); 6932 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6933 &last_group, &last_cluster); 6934 6935 /* end now represents the last cluster to discard in this group */ 6936 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6937 6938 for (group = first_group; group <= last_group; group++) { 6939 if (ext4_trim_interrupted()) 6940 break; 6941 grp = ext4_get_group_info(sb, group); 6942 if (!grp) 6943 continue; 6944 /* We only do this if the grp has never been initialized */ 6945 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6946 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6947 if (ret) 6948 break; 6949 } 6950 6951 /* 6952 * For all the groups except the last one, last cluster will 6953 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6954 * change it for the last group, note that last_cluster is 6955 * already computed earlier by ext4_get_group_no_and_offset() 6956 */ 6957 if (group == last_group) 6958 end = last_cluster; 6959 if (grp->bb_free >= minlen) { 6960 cnt = ext4_trim_all_free(sb, group, first_cluster, 6961 end, minlen); 6962 if (cnt < 0) { 6963 ret = cnt; 6964 break; 6965 } 6966 trimmed += cnt; 6967 } 6968 6969 /* 6970 * For every group except the first one, we are sure 6971 * that the first cluster to discard will be cluster #0. 6972 */ 6973 first_cluster = 0; 6974 } 6975 6976 if (!ret) 6977 EXT4_SB(sb)->s_last_trim_minblks = minlen; 6978 6979 out: 6980 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6981 return ret; 6982 } 6983 6984 /* Iterate all the free extents in the group. */ 6985 int 6986 ext4_mballoc_query_range( 6987 struct super_block *sb, 6988 ext4_group_t group, 6989 ext4_grpblk_t start, 6990 ext4_grpblk_t end, 6991 ext4_mballoc_query_range_fn formatter, 6992 void *priv) 6993 { 6994 void *bitmap; 6995 ext4_grpblk_t next; 6996 struct ext4_buddy e4b; 6997 int error; 6998 6999 error = ext4_mb_load_buddy(sb, group, &e4b); 7000 if (error) 7001 return error; 7002 bitmap = e4b.bd_bitmap; 7003 7004 ext4_lock_group(sb, group); 7005 7006 start = max(e4b.bd_info->bb_first_free, start); 7007 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7008 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7009 7010 while (start <= end) { 7011 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7012 if (start > end) 7013 break; 7014 next = mb_find_next_bit(bitmap, end + 1, start); 7015 7016 ext4_unlock_group(sb, group); 7017 error = formatter(sb, group, start, next - start, priv); 7018 if (error) 7019 goto out_unload; 7020 ext4_lock_group(sb, group); 7021 7022 start = next + 1; 7023 } 7024 7025 ext4_unlock_group(sb, group); 7026 out_unload: 7027 ext4_mb_unload_buddy(&e4b); 7028 7029 return error; 7030 } 7031 7032 #ifdef CONFIG_EXT4_KUNIT_TESTS 7033 #include "mballoc-test.c" 7034 #endif 7035