xref: /linux/fs/ext4/mballoc.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	struct ext4_sb_info *sbi = EXT4_SB(sb);
726 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 	ext4_grpblk_t i = 0;
728 	ext4_grpblk_t first;
729 	ext4_grpblk_t len;
730 	unsigned free = 0;
731 	unsigned fragments = 0;
732 	unsigned long long period = get_cycles();
733 
734 	/* initialize buddy from bitmap which is aggregation
735 	 * of on-disk bitmap and preallocations */
736 	i = mb_find_next_zero_bit(bitmap, max, 0);
737 	grp->bb_first_free = i;
738 	while (i < max) {
739 		fragments++;
740 		first = i;
741 		i = mb_find_next_bit(bitmap, max, i);
742 		len = i - first;
743 		free += len;
744 		if (len > 1)
745 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 		else
747 			grp->bb_counters[0]++;
748 		if (i < max)
749 			i = mb_find_next_zero_bit(bitmap, max, i);
750 	}
751 	grp->bb_fragments = fragments;
752 
753 	if (free != grp->bb_free) {
754 		ext4_grp_locked_error(sb, group, 0, 0,
755 				      "block bitmap and bg descriptor "
756 				      "inconsistent: %u vs %u free clusters",
757 				      free, grp->bb_free);
758 		/*
759 		 * If we intend to continue, we consider group descriptor
760 		 * corrupt and update bb_free using bitmap value
761 		 */
762 		grp->bb_free = free;
763 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 			percpu_counter_sub(&sbi->s_freeclusters_counter,
765 					   grp->bb_free);
766 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 	}
768 	mb_set_largest_free_order(sb, grp);
769 
770 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771 
772 	period = get_cycles() - period;
773 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 	EXT4_SB(sb)->s_mb_buddies_generated++;
775 	EXT4_SB(sb)->s_mb_generation_time += period;
776 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778 
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 	int count;
782 	int order = 1;
783 	void *buddy;
784 
785 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 		ext4_set_bits(buddy, 0, count);
787 	}
788 	e4b->bd_info->bb_fragments = 0;
789 	memset(e4b->bd_info->bb_counters, 0,
790 		sizeof(*e4b->bd_info->bb_counters) *
791 		(e4b->bd_sb->s_blocksize_bits + 2));
792 
793 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 		e4b->bd_bitmap, e4b->bd_group);
795 }
796 
797 /* The buddy information is attached the buddy cache inode
798  * for convenience. The information regarding each group
799  * is loaded via ext4_mb_load_buddy. The information involve
800  * block bitmap and buddy information. The information are
801  * stored in the inode as
802  *
803  * {                        page                        }
804  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805  *
806  *
807  * one block each for bitmap and buddy information.
808  * So for each group we take up 2 blocks. A page can
809  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
810  * So it can have information regarding groups_per_page which
811  * is blocks_per_page/2
812  *
813  * Locking note:  This routine takes the block group lock of all groups
814  * for this page; do not hold this lock when calling this routine!
815  */
816 
817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 	ext4_group_t ngroups;
820 	int blocksize;
821 	int blocks_per_page;
822 	int groups_per_page;
823 	int err = 0;
824 	int i;
825 	ext4_group_t first_group, group;
826 	int first_block;
827 	struct super_block *sb;
828 	struct buffer_head *bhs;
829 	struct buffer_head **bh = NULL;
830 	struct inode *inode;
831 	char *data;
832 	char *bitmap;
833 	struct ext4_group_info *grinfo;
834 
835 	mb_debug(1, "init page %lu\n", page->index);
836 
837 	inode = page->mapping->host;
838 	sb = inode->i_sb;
839 	ngroups = ext4_get_groups_count(sb);
840 	blocksize = 1 << inode->i_blkbits;
841 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842 
843 	groups_per_page = blocks_per_page >> 1;
844 	if (groups_per_page == 0)
845 		groups_per_page = 1;
846 
847 	/* allocate buffer_heads to read bitmaps */
848 	if (groups_per_page > 1) {
849 		i = sizeof(struct buffer_head *) * groups_per_page;
850 		bh = kzalloc(i, GFP_NOFS);
851 		if (bh == NULL) {
852 			err = -ENOMEM;
853 			goto out;
854 		}
855 	} else
856 		bh = &bhs;
857 
858 	first_group = page->index * blocks_per_page / 2;
859 
860 	/* read all groups the page covers into the cache */
861 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 		if (group >= ngroups)
863 			break;
864 
865 		grinfo = ext4_get_group_info(sb, group);
866 		/*
867 		 * If page is uptodate then we came here after online resize
868 		 * which added some new uninitialized group info structs, so
869 		 * we must skip all initialized uptodate buddies on the page,
870 		 * which may be currently in use by an allocating task.
871 		 */
872 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 			bh[i] = NULL;
874 			continue;
875 		}
876 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 			err = -ENOMEM;
878 			goto out;
879 		}
880 		mb_debug(1, "read bitmap for group %u\n", group);
881 	}
882 
883 	/* wait for I/O completion */
884 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 			err = -EIO;
887 			goto out;
888 		}
889 	}
890 
891 	first_block = page->index * blocks_per_page;
892 	for (i = 0; i < blocks_per_page; i++) {
893 		group = (first_block + i) >> 1;
894 		if (group >= ngroups)
895 			break;
896 
897 		if (!bh[group - first_group])
898 			/* skip initialized uptodate buddy */
899 			continue;
900 
901 		/*
902 		 * data carry information regarding this
903 		 * particular group in the format specified
904 		 * above
905 		 *
906 		 */
907 		data = page_address(page) + (i * blocksize);
908 		bitmap = bh[group - first_group]->b_data;
909 
910 		/*
911 		 * We place the buddy block and bitmap block
912 		 * close together
913 		 */
914 		if ((first_block + i) & 1) {
915 			/* this is block of buddy */
916 			BUG_ON(incore == NULL);
917 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 				group, page->index, i * blocksize);
919 			trace_ext4_mb_buddy_bitmap_load(sb, group);
920 			grinfo = ext4_get_group_info(sb, group);
921 			grinfo->bb_fragments = 0;
922 			memset(grinfo->bb_counters, 0,
923 			       sizeof(*grinfo->bb_counters) *
924 				(sb->s_blocksize_bits+2));
925 			/*
926 			 * incore got set to the group block bitmap below
927 			 */
928 			ext4_lock_group(sb, group);
929 			/* init the buddy */
930 			memset(data, 0xff, blocksize);
931 			ext4_mb_generate_buddy(sb, data, incore, group);
932 			ext4_unlock_group(sb, group);
933 			incore = NULL;
934 		} else {
935 			/* this is block of bitmap */
936 			BUG_ON(incore != NULL);
937 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 				group, page->index, i * blocksize);
939 			trace_ext4_mb_bitmap_load(sb, group);
940 
941 			/* see comments in ext4_mb_put_pa() */
942 			ext4_lock_group(sb, group);
943 			memcpy(data, bitmap, blocksize);
944 
945 			/* mark all preallocated blks used in in-core bitmap */
946 			ext4_mb_generate_from_pa(sb, data, group);
947 			ext4_mb_generate_from_freelist(sb, data, group);
948 			ext4_unlock_group(sb, group);
949 
950 			/* set incore so that the buddy information can be
951 			 * generated using this
952 			 */
953 			incore = data;
954 		}
955 	}
956 	SetPageUptodate(page);
957 
958 out:
959 	if (bh) {
960 		for (i = 0; i < groups_per_page; i++)
961 			brelse(bh[i]);
962 		if (bh != &bhs)
963 			kfree(bh);
964 	}
965 	return err;
966 }
967 
968 /*
969  * Lock the buddy and bitmap pages. This make sure other parallel init_group
970  * on the same buddy page doesn't happen whild holding the buddy page lock.
971  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
973  */
974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 		ext4_group_t group, struct ext4_buddy *e4b)
976 {
977 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 	int block, pnum, poff;
979 	int blocks_per_page;
980 	struct page *page;
981 
982 	e4b->bd_buddy_page = NULL;
983 	e4b->bd_bitmap_page = NULL;
984 
985 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
986 	/*
987 	 * the buddy cache inode stores the block bitmap
988 	 * and buddy information in consecutive blocks.
989 	 * So for each group we need two blocks.
990 	 */
991 	block = group * 2;
992 	pnum = block / blocks_per_page;
993 	poff = block % blocks_per_page;
994 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 	if (!page)
996 		return -ENOMEM;
997 	BUG_ON(page->mapping != inode->i_mapping);
998 	e4b->bd_bitmap_page = page;
999 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 
1001 	if (blocks_per_page >= 2) {
1002 		/* buddy and bitmap are on the same page */
1003 		return 0;
1004 	}
1005 
1006 	block++;
1007 	pnum = block / blocks_per_page;
1008 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 	if (!page)
1010 		return -ENOMEM;
1011 	BUG_ON(page->mapping != inode->i_mapping);
1012 	e4b->bd_buddy_page = page;
1013 	return 0;
1014 }
1015 
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1017 {
1018 	if (e4b->bd_bitmap_page) {
1019 		unlock_page(e4b->bd_bitmap_page);
1020 		page_cache_release(e4b->bd_bitmap_page);
1021 	}
1022 	if (e4b->bd_buddy_page) {
1023 		unlock_page(e4b->bd_buddy_page);
1024 		page_cache_release(e4b->bd_buddy_page);
1025 	}
1026 }
1027 
1028 /*
1029  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1030  * block group lock of all groups for this page; do not hold the BG lock when
1031  * calling this routine!
1032  */
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036 
1037 	struct ext4_group_info *this_grp;
1038 	struct ext4_buddy e4b;
1039 	struct page *page;
1040 	int ret = 0;
1041 
1042 	might_sleep();
1043 	mb_debug(1, "init group %u\n", group);
1044 	this_grp = ext4_get_group_info(sb, group);
1045 	/*
1046 	 * This ensures that we don't reinit the buddy cache
1047 	 * page which map to the group from which we are already
1048 	 * allocating. If we are looking at the buddy cache we would
1049 	 * have taken a reference using ext4_mb_load_buddy and that
1050 	 * would have pinned buddy page to page cache.
1051 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 	 * page accessed.
1053 	 */
1054 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1056 		/*
1057 		 * somebody initialized the group
1058 		 * return without doing anything
1059 		 */
1060 		goto err;
1061 	}
1062 
1063 	page = e4b.bd_bitmap_page;
1064 	ret = ext4_mb_init_cache(page, NULL);
1065 	if (ret)
1066 		goto err;
1067 	if (!PageUptodate(page)) {
1068 		ret = -EIO;
1069 		goto err;
1070 	}
1071 
1072 	if (e4b.bd_buddy_page == NULL) {
1073 		/*
1074 		 * If both the bitmap and buddy are in
1075 		 * the same page we don't need to force
1076 		 * init the buddy
1077 		 */
1078 		ret = 0;
1079 		goto err;
1080 	}
1081 	/* init buddy cache */
1082 	page = e4b.bd_buddy_page;
1083 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 	if (ret)
1085 		goto err;
1086 	if (!PageUptodate(page)) {
1087 		ret = -EIO;
1088 		goto err;
1089 	}
1090 err:
1091 	ext4_mb_put_buddy_page_lock(&e4b);
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1097  * block group lock of all groups for this page; do not hold the BG lock when
1098  * calling this routine!
1099  */
1100 static noinline_for_stack int
1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 					struct ext4_buddy *e4b)
1103 {
1104 	int blocks_per_page;
1105 	int block;
1106 	int pnum;
1107 	int poff;
1108 	struct page *page;
1109 	int ret;
1110 	struct ext4_group_info *grp;
1111 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 	struct inode *inode = sbi->s_buddy_cache;
1113 
1114 	might_sleep();
1115 	mb_debug(1, "load group %u\n", group);
1116 
1117 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 	grp = ext4_get_group_info(sb, group);
1119 
1120 	e4b->bd_blkbits = sb->s_blocksize_bits;
1121 	e4b->bd_info = grp;
1122 	e4b->bd_sb = sb;
1123 	e4b->bd_group = group;
1124 	e4b->bd_buddy_page = NULL;
1125 	e4b->bd_bitmap_page = NULL;
1126 
1127 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1128 		/*
1129 		 * we need full data about the group
1130 		 * to make a good selection
1131 		 */
1132 		ret = ext4_mb_init_group(sb, group);
1133 		if (ret)
1134 			return ret;
1135 	}
1136 
1137 	/*
1138 	 * the buddy cache inode stores the block bitmap
1139 	 * and buddy information in consecutive blocks.
1140 	 * So for each group we need two blocks.
1141 	 */
1142 	block = group * 2;
1143 	pnum = block / blocks_per_page;
1144 	poff = block % blocks_per_page;
1145 
1146 	/* we could use find_or_create_page(), but it locks page
1147 	 * what we'd like to avoid in fast path ... */
1148 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 	if (page == NULL || !PageUptodate(page)) {
1150 		if (page)
1151 			/*
1152 			 * drop the page reference and try
1153 			 * to get the page with lock. If we
1154 			 * are not uptodate that implies
1155 			 * somebody just created the page but
1156 			 * is yet to initialize the same. So
1157 			 * wait for it to initialize.
1158 			 */
1159 			page_cache_release(page);
1160 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 		if (page) {
1162 			BUG_ON(page->mapping != inode->i_mapping);
1163 			if (!PageUptodate(page)) {
1164 				ret = ext4_mb_init_cache(page, NULL);
1165 				if (ret) {
1166 					unlock_page(page);
1167 					goto err;
1168 				}
1169 				mb_cmp_bitmaps(e4b, page_address(page) +
1170 					       (poff * sb->s_blocksize));
1171 			}
1172 			unlock_page(page);
1173 		}
1174 	}
1175 	if (page == NULL) {
1176 		ret = -ENOMEM;
1177 		goto err;
1178 	}
1179 	if (!PageUptodate(page)) {
1180 		ret = -EIO;
1181 		goto err;
1182 	}
1183 
1184 	/* Pages marked accessed already */
1185 	e4b->bd_bitmap_page = page;
1186 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187 
1188 	block++;
1189 	pnum = block / blocks_per_page;
1190 	poff = block % blocks_per_page;
1191 
1192 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 	if (page == NULL || !PageUptodate(page)) {
1194 		if (page)
1195 			page_cache_release(page);
1196 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 		if (page) {
1198 			BUG_ON(page->mapping != inode->i_mapping);
1199 			if (!PageUptodate(page)) {
1200 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 				if (ret) {
1202 					unlock_page(page);
1203 					goto err;
1204 				}
1205 			}
1206 			unlock_page(page);
1207 		}
1208 	}
1209 	if (page == NULL) {
1210 		ret = -ENOMEM;
1211 		goto err;
1212 	}
1213 	if (!PageUptodate(page)) {
1214 		ret = -EIO;
1215 		goto err;
1216 	}
1217 
1218 	/* Pages marked accessed already */
1219 	e4b->bd_buddy_page = page;
1220 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 
1222 	BUG_ON(e4b->bd_bitmap_page == NULL);
1223 	BUG_ON(e4b->bd_buddy_page == NULL);
1224 
1225 	return 0;
1226 
1227 err:
1228 	if (page)
1229 		page_cache_release(page);
1230 	if (e4b->bd_bitmap_page)
1231 		page_cache_release(e4b->bd_bitmap_page);
1232 	if (e4b->bd_buddy_page)
1233 		page_cache_release(e4b->bd_buddy_page);
1234 	e4b->bd_buddy = NULL;
1235 	e4b->bd_bitmap = NULL;
1236 	return ret;
1237 }
1238 
1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 {
1241 	if (e4b->bd_bitmap_page)
1242 		page_cache_release(e4b->bd_bitmap_page);
1243 	if (e4b->bd_buddy_page)
1244 		page_cache_release(e4b->bd_buddy_page);
1245 }
1246 
1247 
1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 {
1250 	int order = 1;
1251 	void *bb;
1252 
1253 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1254 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1255 
1256 	bb = e4b->bd_buddy;
1257 	while (order <= e4b->bd_blkbits + 1) {
1258 		block = block >> 1;
1259 		if (!mb_test_bit(block, bb)) {
1260 			/* this block is part of buddy of order 'order' */
1261 			return order;
1262 		}
1263 		bb += 1 << (e4b->bd_blkbits - order);
1264 		order++;
1265 	}
1266 	return 0;
1267 }
1268 
1269 static void mb_clear_bits(void *bm, int cur, int len)
1270 {
1271 	__u32 *addr;
1272 
1273 	len = cur + len;
1274 	while (cur < len) {
1275 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1276 			/* fast path: clear whole word at once */
1277 			addr = bm + (cur >> 3);
1278 			*addr = 0;
1279 			cur += 32;
1280 			continue;
1281 		}
1282 		mb_clear_bit(cur, bm);
1283 		cur++;
1284 	}
1285 }
1286 
1287 /* clear bits in given range
1288  * will return first found zero bit if any, -1 otherwise
1289  */
1290 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1291 {
1292 	__u32 *addr;
1293 	int zero_bit = -1;
1294 
1295 	len = cur + len;
1296 	while (cur < len) {
1297 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1298 			/* fast path: clear whole word at once */
1299 			addr = bm + (cur >> 3);
1300 			if (*addr != (__u32)(-1) && zero_bit == -1)
1301 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1302 			*addr = 0;
1303 			cur += 32;
1304 			continue;
1305 		}
1306 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1307 			zero_bit = cur;
1308 		cur++;
1309 	}
1310 
1311 	return zero_bit;
1312 }
1313 
1314 void ext4_set_bits(void *bm, int cur, int len)
1315 {
1316 	__u32 *addr;
1317 
1318 	len = cur + len;
1319 	while (cur < len) {
1320 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1321 			/* fast path: set whole word at once */
1322 			addr = bm + (cur >> 3);
1323 			*addr = 0xffffffff;
1324 			cur += 32;
1325 			continue;
1326 		}
1327 		mb_set_bit(cur, bm);
1328 		cur++;
1329 	}
1330 }
1331 
1332 /*
1333  * _________________________________________________________________ */
1334 
1335 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1336 {
1337 	if (mb_test_bit(*bit + side, bitmap)) {
1338 		mb_clear_bit(*bit, bitmap);
1339 		(*bit) -= side;
1340 		return 1;
1341 	}
1342 	else {
1343 		(*bit) += side;
1344 		mb_set_bit(*bit, bitmap);
1345 		return -1;
1346 	}
1347 }
1348 
1349 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1350 {
1351 	int max;
1352 	int order = 1;
1353 	void *buddy = mb_find_buddy(e4b, order, &max);
1354 
1355 	while (buddy) {
1356 		void *buddy2;
1357 
1358 		/* Bits in range [first; last] are known to be set since
1359 		 * corresponding blocks were allocated. Bits in range
1360 		 * (first; last) will stay set because they form buddies on
1361 		 * upper layer. We just deal with borders if they don't
1362 		 * align with upper layer and then go up.
1363 		 * Releasing entire group is all about clearing
1364 		 * single bit of highest order buddy.
1365 		 */
1366 
1367 		/* Example:
1368 		 * ---------------------------------
1369 		 * |   1   |   1   |   1   |   1   |
1370 		 * ---------------------------------
1371 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1372 		 * ---------------------------------
1373 		 *   0   1   2   3   4   5   6   7
1374 		 *      \_____________________/
1375 		 *
1376 		 * Neither [1] nor [6] is aligned to above layer.
1377 		 * Left neighbour [0] is free, so mark it busy,
1378 		 * decrease bb_counters and extend range to
1379 		 * [0; 6]
1380 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1381 		 * mark [6] free, increase bb_counters and shrink range to
1382 		 * [0; 5].
1383 		 * Then shift range to [0; 2], go up and do the same.
1384 		 */
1385 
1386 
1387 		if (first & 1)
1388 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1389 		if (!(last & 1))
1390 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1391 		if (first > last)
1392 			break;
1393 		order++;
1394 
1395 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1396 			mb_clear_bits(buddy, first, last - first + 1);
1397 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1398 			break;
1399 		}
1400 		first >>= 1;
1401 		last >>= 1;
1402 		buddy = buddy2;
1403 	}
1404 }
1405 
1406 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1407 			   int first, int count)
1408 {
1409 	int left_is_free = 0;
1410 	int right_is_free = 0;
1411 	int block;
1412 	int last = first + count - 1;
1413 	struct super_block *sb = e4b->bd_sb;
1414 
1415 	if (WARN_ON(count == 0))
1416 		return;
1417 	BUG_ON(last >= (sb->s_blocksize << 3));
1418 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1419 	/* Don't bother if the block group is corrupt. */
1420 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1421 		return;
1422 
1423 	mb_check_buddy(e4b);
1424 	mb_free_blocks_double(inode, e4b, first, count);
1425 
1426 	e4b->bd_info->bb_free += count;
1427 	if (first < e4b->bd_info->bb_first_free)
1428 		e4b->bd_info->bb_first_free = first;
1429 
1430 	/* access memory sequentially: check left neighbour,
1431 	 * clear range and then check right neighbour
1432 	 */
1433 	if (first != 0)
1434 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1435 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1436 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1437 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1438 
1439 	if (unlikely(block != -1)) {
1440 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1441 		ext4_fsblk_t blocknr;
1442 
1443 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1444 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1445 		ext4_grp_locked_error(sb, e4b->bd_group,
1446 				      inode ? inode->i_ino : 0,
1447 				      blocknr,
1448 				      "freeing already freed block "
1449 				      "(bit %u); block bitmap corrupt.",
1450 				      block);
1451 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1452 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1453 					   e4b->bd_info->bb_free);
1454 		/* Mark the block group as corrupt. */
1455 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1456 			&e4b->bd_info->bb_state);
1457 		mb_regenerate_buddy(e4b);
1458 		goto done;
1459 	}
1460 
1461 	/* let's maintain fragments counter */
1462 	if (left_is_free && right_is_free)
1463 		e4b->bd_info->bb_fragments--;
1464 	else if (!left_is_free && !right_is_free)
1465 		e4b->bd_info->bb_fragments++;
1466 
1467 	/* buddy[0] == bd_bitmap is a special case, so handle
1468 	 * it right away and let mb_buddy_mark_free stay free of
1469 	 * zero order checks.
1470 	 * Check if neighbours are to be coaleasced,
1471 	 * adjust bitmap bb_counters and borders appropriately.
1472 	 */
1473 	if (first & 1) {
1474 		first += !left_is_free;
1475 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1476 	}
1477 	if (!(last & 1)) {
1478 		last -= !right_is_free;
1479 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1480 	}
1481 
1482 	if (first <= last)
1483 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1484 
1485 done:
1486 	mb_set_largest_free_order(sb, e4b->bd_info);
1487 	mb_check_buddy(e4b);
1488 }
1489 
1490 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1491 				int needed, struct ext4_free_extent *ex)
1492 {
1493 	int next = block;
1494 	int max, order;
1495 	void *buddy;
1496 
1497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1498 	BUG_ON(ex == NULL);
1499 
1500 	buddy = mb_find_buddy(e4b, 0, &max);
1501 	BUG_ON(buddy == NULL);
1502 	BUG_ON(block >= max);
1503 	if (mb_test_bit(block, buddy)) {
1504 		ex->fe_len = 0;
1505 		ex->fe_start = 0;
1506 		ex->fe_group = 0;
1507 		return 0;
1508 	}
1509 
1510 	/* find actual order */
1511 	order = mb_find_order_for_block(e4b, block);
1512 	block = block >> order;
1513 
1514 	ex->fe_len = 1 << order;
1515 	ex->fe_start = block << order;
1516 	ex->fe_group = e4b->bd_group;
1517 
1518 	/* calc difference from given start */
1519 	next = next - ex->fe_start;
1520 	ex->fe_len -= next;
1521 	ex->fe_start += next;
1522 
1523 	while (needed > ex->fe_len &&
1524 	       mb_find_buddy(e4b, order, &max)) {
1525 
1526 		if (block + 1 >= max)
1527 			break;
1528 
1529 		next = (block + 1) * (1 << order);
1530 		if (mb_test_bit(next, e4b->bd_bitmap))
1531 			break;
1532 
1533 		order = mb_find_order_for_block(e4b, next);
1534 
1535 		block = next >> order;
1536 		ex->fe_len += 1 << order;
1537 	}
1538 
1539 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1540 	return ex->fe_len;
1541 }
1542 
1543 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1544 {
1545 	int ord;
1546 	int mlen = 0;
1547 	int max = 0;
1548 	int cur;
1549 	int start = ex->fe_start;
1550 	int len = ex->fe_len;
1551 	unsigned ret = 0;
1552 	int len0 = len;
1553 	void *buddy;
1554 
1555 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1556 	BUG_ON(e4b->bd_group != ex->fe_group);
1557 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1558 	mb_check_buddy(e4b);
1559 	mb_mark_used_double(e4b, start, len);
1560 
1561 	e4b->bd_info->bb_free -= len;
1562 	if (e4b->bd_info->bb_first_free == start)
1563 		e4b->bd_info->bb_first_free += len;
1564 
1565 	/* let's maintain fragments counter */
1566 	if (start != 0)
1567 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1568 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1569 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1570 	if (mlen && max)
1571 		e4b->bd_info->bb_fragments++;
1572 	else if (!mlen && !max)
1573 		e4b->bd_info->bb_fragments--;
1574 
1575 	/* let's maintain buddy itself */
1576 	while (len) {
1577 		ord = mb_find_order_for_block(e4b, start);
1578 
1579 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1580 			/* the whole chunk may be allocated at once! */
1581 			mlen = 1 << ord;
1582 			buddy = mb_find_buddy(e4b, ord, &max);
1583 			BUG_ON((start >> ord) >= max);
1584 			mb_set_bit(start >> ord, buddy);
1585 			e4b->bd_info->bb_counters[ord]--;
1586 			start += mlen;
1587 			len -= mlen;
1588 			BUG_ON(len < 0);
1589 			continue;
1590 		}
1591 
1592 		/* store for history */
1593 		if (ret == 0)
1594 			ret = len | (ord << 16);
1595 
1596 		/* we have to split large buddy */
1597 		BUG_ON(ord <= 0);
1598 		buddy = mb_find_buddy(e4b, ord, &max);
1599 		mb_set_bit(start >> ord, buddy);
1600 		e4b->bd_info->bb_counters[ord]--;
1601 
1602 		ord--;
1603 		cur = (start >> ord) & ~1U;
1604 		buddy = mb_find_buddy(e4b, ord, &max);
1605 		mb_clear_bit(cur, buddy);
1606 		mb_clear_bit(cur + 1, buddy);
1607 		e4b->bd_info->bb_counters[ord]++;
1608 		e4b->bd_info->bb_counters[ord]++;
1609 	}
1610 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1611 
1612 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1613 	mb_check_buddy(e4b);
1614 
1615 	return ret;
1616 }
1617 
1618 /*
1619  * Must be called under group lock!
1620  */
1621 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1622 					struct ext4_buddy *e4b)
1623 {
1624 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1625 	int ret;
1626 
1627 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1628 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1629 
1630 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1631 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1632 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1633 
1634 	/* preallocation can change ac_b_ex, thus we store actually
1635 	 * allocated blocks for history */
1636 	ac->ac_f_ex = ac->ac_b_ex;
1637 
1638 	ac->ac_status = AC_STATUS_FOUND;
1639 	ac->ac_tail = ret & 0xffff;
1640 	ac->ac_buddy = ret >> 16;
1641 
1642 	/*
1643 	 * take the page reference. We want the page to be pinned
1644 	 * so that we don't get a ext4_mb_init_cache_call for this
1645 	 * group until we update the bitmap. That would mean we
1646 	 * double allocate blocks. The reference is dropped
1647 	 * in ext4_mb_release_context
1648 	 */
1649 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1650 	get_page(ac->ac_bitmap_page);
1651 	ac->ac_buddy_page = e4b->bd_buddy_page;
1652 	get_page(ac->ac_buddy_page);
1653 	/* store last allocated for subsequent stream allocation */
1654 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1655 		spin_lock(&sbi->s_md_lock);
1656 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1657 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1658 		spin_unlock(&sbi->s_md_lock);
1659 	}
1660 }
1661 
1662 /*
1663  * regular allocator, for general purposes allocation
1664  */
1665 
1666 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1667 					struct ext4_buddy *e4b,
1668 					int finish_group)
1669 {
1670 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1671 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1672 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1673 	struct ext4_free_extent ex;
1674 	int max;
1675 
1676 	if (ac->ac_status == AC_STATUS_FOUND)
1677 		return;
1678 	/*
1679 	 * We don't want to scan for a whole year
1680 	 */
1681 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1682 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1683 		ac->ac_status = AC_STATUS_BREAK;
1684 		return;
1685 	}
1686 
1687 	/*
1688 	 * Haven't found good chunk so far, let's continue
1689 	 */
1690 	if (bex->fe_len < gex->fe_len)
1691 		return;
1692 
1693 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1694 			&& bex->fe_group == e4b->bd_group) {
1695 		/* recheck chunk's availability - we don't know
1696 		 * when it was found (within this lock-unlock
1697 		 * period or not) */
1698 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1699 		if (max >= gex->fe_len) {
1700 			ext4_mb_use_best_found(ac, e4b);
1701 			return;
1702 		}
1703 	}
1704 }
1705 
1706 /*
1707  * The routine checks whether found extent is good enough. If it is,
1708  * then the extent gets marked used and flag is set to the context
1709  * to stop scanning. Otherwise, the extent is compared with the
1710  * previous found extent and if new one is better, then it's stored
1711  * in the context. Later, the best found extent will be used, if
1712  * mballoc can't find good enough extent.
1713  *
1714  * FIXME: real allocation policy is to be designed yet!
1715  */
1716 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1717 					struct ext4_free_extent *ex,
1718 					struct ext4_buddy *e4b)
1719 {
1720 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1721 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1722 
1723 	BUG_ON(ex->fe_len <= 0);
1724 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1725 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1726 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1727 
1728 	ac->ac_found++;
1729 
1730 	/*
1731 	 * The special case - take what you catch first
1732 	 */
1733 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1734 		*bex = *ex;
1735 		ext4_mb_use_best_found(ac, e4b);
1736 		return;
1737 	}
1738 
1739 	/*
1740 	 * Let's check whether the chuck is good enough
1741 	 */
1742 	if (ex->fe_len == gex->fe_len) {
1743 		*bex = *ex;
1744 		ext4_mb_use_best_found(ac, e4b);
1745 		return;
1746 	}
1747 
1748 	/*
1749 	 * If this is first found extent, just store it in the context
1750 	 */
1751 	if (bex->fe_len == 0) {
1752 		*bex = *ex;
1753 		return;
1754 	}
1755 
1756 	/*
1757 	 * If new found extent is better, store it in the context
1758 	 */
1759 	if (bex->fe_len < gex->fe_len) {
1760 		/* if the request isn't satisfied, any found extent
1761 		 * larger than previous best one is better */
1762 		if (ex->fe_len > bex->fe_len)
1763 			*bex = *ex;
1764 	} else if (ex->fe_len > gex->fe_len) {
1765 		/* if the request is satisfied, then we try to find
1766 		 * an extent that still satisfy the request, but is
1767 		 * smaller than previous one */
1768 		if (ex->fe_len < bex->fe_len)
1769 			*bex = *ex;
1770 	}
1771 
1772 	ext4_mb_check_limits(ac, e4b, 0);
1773 }
1774 
1775 static noinline_for_stack
1776 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1777 					struct ext4_buddy *e4b)
1778 {
1779 	struct ext4_free_extent ex = ac->ac_b_ex;
1780 	ext4_group_t group = ex.fe_group;
1781 	int max;
1782 	int err;
1783 
1784 	BUG_ON(ex.fe_len <= 0);
1785 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1786 	if (err)
1787 		return err;
1788 
1789 	ext4_lock_group(ac->ac_sb, group);
1790 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1791 
1792 	if (max > 0) {
1793 		ac->ac_b_ex = ex;
1794 		ext4_mb_use_best_found(ac, e4b);
1795 	}
1796 
1797 	ext4_unlock_group(ac->ac_sb, group);
1798 	ext4_mb_unload_buddy(e4b);
1799 
1800 	return 0;
1801 }
1802 
1803 static noinline_for_stack
1804 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1805 				struct ext4_buddy *e4b)
1806 {
1807 	ext4_group_t group = ac->ac_g_ex.fe_group;
1808 	int max;
1809 	int err;
1810 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1811 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1812 	struct ext4_free_extent ex;
1813 
1814 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1815 		return 0;
1816 	if (grp->bb_free == 0)
1817 		return 0;
1818 
1819 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1820 	if (err)
1821 		return err;
1822 
1823 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1824 		ext4_mb_unload_buddy(e4b);
1825 		return 0;
1826 	}
1827 
1828 	ext4_lock_group(ac->ac_sb, group);
1829 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1830 			     ac->ac_g_ex.fe_len, &ex);
1831 	ex.fe_logical = 0xDEADFA11; /* debug value */
1832 
1833 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1834 		ext4_fsblk_t start;
1835 
1836 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1837 			ex.fe_start;
1838 		/* use do_div to get remainder (would be 64-bit modulo) */
1839 		if (do_div(start, sbi->s_stripe) == 0) {
1840 			ac->ac_found++;
1841 			ac->ac_b_ex = ex;
1842 			ext4_mb_use_best_found(ac, e4b);
1843 		}
1844 	} else if (max >= ac->ac_g_ex.fe_len) {
1845 		BUG_ON(ex.fe_len <= 0);
1846 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1847 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1848 		ac->ac_found++;
1849 		ac->ac_b_ex = ex;
1850 		ext4_mb_use_best_found(ac, e4b);
1851 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1852 		/* Sometimes, caller may want to merge even small
1853 		 * number of blocks to an existing extent */
1854 		BUG_ON(ex.fe_len <= 0);
1855 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1856 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1857 		ac->ac_found++;
1858 		ac->ac_b_ex = ex;
1859 		ext4_mb_use_best_found(ac, e4b);
1860 	}
1861 	ext4_unlock_group(ac->ac_sb, group);
1862 	ext4_mb_unload_buddy(e4b);
1863 
1864 	return 0;
1865 }
1866 
1867 /*
1868  * The routine scans buddy structures (not bitmap!) from given order
1869  * to max order and tries to find big enough chunk to satisfy the req
1870  */
1871 static noinline_for_stack
1872 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1873 					struct ext4_buddy *e4b)
1874 {
1875 	struct super_block *sb = ac->ac_sb;
1876 	struct ext4_group_info *grp = e4b->bd_info;
1877 	void *buddy;
1878 	int i;
1879 	int k;
1880 	int max;
1881 
1882 	BUG_ON(ac->ac_2order <= 0);
1883 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1884 		if (grp->bb_counters[i] == 0)
1885 			continue;
1886 
1887 		buddy = mb_find_buddy(e4b, i, &max);
1888 		BUG_ON(buddy == NULL);
1889 
1890 		k = mb_find_next_zero_bit(buddy, max, 0);
1891 		BUG_ON(k >= max);
1892 
1893 		ac->ac_found++;
1894 
1895 		ac->ac_b_ex.fe_len = 1 << i;
1896 		ac->ac_b_ex.fe_start = k << i;
1897 		ac->ac_b_ex.fe_group = e4b->bd_group;
1898 
1899 		ext4_mb_use_best_found(ac, e4b);
1900 
1901 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1902 
1903 		if (EXT4_SB(sb)->s_mb_stats)
1904 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1905 
1906 		break;
1907 	}
1908 }
1909 
1910 /*
1911  * The routine scans the group and measures all found extents.
1912  * In order to optimize scanning, caller must pass number of
1913  * free blocks in the group, so the routine can know upper limit.
1914  */
1915 static noinline_for_stack
1916 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1917 					struct ext4_buddy *e4b)
1918 {
1919 	struct super_block *sb = ac->ac_sb;
1920 	void *bitmap = e4b->bd_bitmap;
1921 	struct ext4_free_extent ex;
1922 	int i;
1923 	int free;
1924 
1925 	free = e4b->bd_info->bb_free;
1926 	BUG_ON(free <= 0);
1927 
1928 	i = e4b->bd_info->bb_first_free;
1929 
1930 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1931 		i = mb_find_next_zero_bit(bitmap,
1932 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1933 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1934 			/*
1935 			 * IF we have corrupt bitmap, we won't find any
1936 			 * free blocks even though group info says we
1937 			 * we have free blocks
1938 			 */
1939 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1940 					"%d free clusters as per "
1941 					"group info. But bitmap says 0",
1942 					free);
1943 			break;
1944 		}
1945 
1946 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1947 		BUG_ON(ex.fe_len <= 0);
1948 		if (free < ex.fe_len) {
1949 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1950 					"%d free clusters as per "
1951 					"group info. But got %d blocks",
1952 					free, ex.fe_len);
1953 			/*
1954 			 * The number of free blocks differs. This mostly
1955 			 * indicate that the bitmap is corrupt. So exit
1956 			 * without claiming the space.
1957 			 */
1958 			break;
1959 		}
1960 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1961 		ext4_mb_measure_extent(ac, &ex, e4b);
1962 
1963 		i += ex.fe_len;
1964 		free -= ex.fe_len;
1965 	}
1966 
1967 	ext4_mb_check_limits(ac, e4b, 1);
1968 }
1969 
1970 /*
1971  * This is a special case for storages like raid5
1972  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1973  */
1974 static noinline_for_stack
1975 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1976 				 struct ext4_buddy *e4b)
1977 {
1978 	struct super_block *sb = ac->ac_sb;
1979 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1980 	void *bitmap = e4b->bd_bitmap;
1981 	struct ext4_free_extent ex;
1982 	ext4_fsblk_t first_group_block;
1983 	ext4_fsblk_t a;
1984 	ext4_grpblk_t i;
1985 	int max;
1986 
1987 	BUG_ON(sbi->s_stripe == 0);
1988 
1989 	/* find first stripe-aligned block in group */
1990 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1991 
1992 	a = first_group_block + sbi->s_stripe - 1;
1993 	do_div(a, sbi->s_stripe);
1994 	i = (a * sbi->s_stripe) - first_group_block;
1995 
1996 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1997 		if (!mb_test_bit(i, bitmap)) {
1998 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1999 			if (max >= sbi->s_stripe) {
2000 				ac->ac_found++;
2001 				ex.fe_logical = 0xDEADF00D; /* debug value */
2002 				ac->ac_b_ex = ex;
2003 				ext4_mb_use_best_found(ac, e4b);
2004 				break;
2005 			}
2006 		}
2007 		i += sbi->s_stripe;
2008 	}
2009 }
2010 
2011 /* This is now called BEFORE we load the buddy bitmap. */
2012 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2013 				ext4_group_t group, int cr)
2014 {
2015 	unsigned free, fragments;
2016 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2017 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2018 
2019 	BUG_ON(cr < 0 || cr >= 4);
2020 
2021 	free = grp->bb_free;
2022 	if (free == 0)
2023 		return 0;
2024 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2025 		return 0;
2026 
2027 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2028 		return 0;
2029 
2030 	/* We only do this if the grp has never been initialized */
2031 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2032 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2033 		if (ret)
2034 			return 0;
2035 	}
2036 
2037 	fragments = grp->bb_fragments;
2038 	if (fragments == 0)
2039 		return 0;
2040 
2041 	switch (cr) {
2042 	case 0:
2043 		BUG_ON(ac->ac_2order == 0);
2044 
2045 		/* Avoid using the first bg of a flexgroup for data files */
2046 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2047 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2048 		    ((group % flex_size) == 0))
2049 			return 0;
2050 
2051 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2052 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2053 			return 1;
2054 
2055 		if (grp->bb_largest_free_order < ac->ac_2order)
2056 			return 0;
2057 
2058 		return 1;
2059 	case 1:
2060 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2061 			return 1;
2062 		break;
2063 	case 2:
2064 		if (free >= ac->ac_g_ex.fe_len)
2065 			return 1;
2066 		break;
2067 	case 3:
2068 		return 1;
2069 	default:
2070 		BUG();
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static noinline_for_stack int
2077 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2078 {
2079 	ext4_group_t ngroups, group, i;
2080 	int cr;
2081 	int err = 0;
2082 	struct ext4_sb_info *sbi;
2083 	struct super_block *sb;
2084 	struct ext4_buddy e4b;
2085 
2086 	sb = ac->ac_sb;
2087 	sbi = EXT4_SB(sb);
2088 	ngroups = ext4_get_groups_count(sb);
2089 	/* non-extent files are limited to low blocks/groups */
2090 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2091 		ngroups = sbi->s_blockfile_groups;
2092 
2093 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2094 
2095 	/* first, try the goal */
2096 	err = ext4_mb_find_by_goal(ac, &e4b);
2097 	if (err || ac->ac_status == AC_STATUS_FOUND)
2098 		goto out;
2099 
2100 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2101 		goto out;
2102 
2103 	/*
2104 	 * ac->ac2_order is set only if the fe_len is a power of 2
2105 	 * if ac2_order is set we also set criteria to 0 so that we
2106 	 * try exact allocation using buddy.
2107 	 */
2108 	i = fls(ac->ac_g_ex.fe_len);
2109 	ac->ac_2order = 0;
2110 	/*
2111 	 * We search using buddy data only if the order of the request
2112 	 * is greater than equal to the sbi_s_mb_order2_reqs
2113 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2114 	 */
2115 	if (i >= sbi->s_mb_order2_reqs) {
2116 		/*
2117 		 * This should tell if fe_len is exactly power of 2
2118 		 */
2119 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2120 			ac->ac_2order = i - 1;
2121 	}
2122 
2123 	/* if stream allocation is enabled, use global goal */
2124 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2125 		/* TBD: may be hot point */
2126 		spin_lock(&sbi->s_md_lock);
2127 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2128 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2129 		spin_unlock(&sbi->s_md_lock);
2130 	}
2131 
2132 	/* Let's just scan groups to find more-less suitable blocks */
2133 	cr = ac->ac_2order ? 0 : 1;
2134 	/*
2135 	 * cr == 0 try to get exact allocation,
2136 	 * cr == 3  try to get anything
2137 	 */
2138 repeat:
2139 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2140 		ac->ac_criteria = cr;
2141 		/*
2142 		 * searching for the right group start
2143 		 * from the goal value specified
2144 		 */
2145 		group = ac->ac_g_ex.fe_group;
2146 
2147 		for (i = 0; i < ngroups; group++, i++) {
2148 			cond_resched();
2149 			/*
2150 			 * Artificially restricted ngroups for non-extent
2151 			 * files makes group > ngroups possible on first loop.
2152 			 */
2153 			if (group >= ngroups)
2154 				group = 0;
2155 
2156 			/* This now checks without needing the buddy page */
2157 			if (!ext4_mb_good_group(ac, group, cr))
2158 				continue;
2159 
2160 			err = ext4_mb_load_buddy(sb, group, &e4b);
2161 			if (err)
2162 				goto out;
2163 
2164 			ext4_lock_group(sb, group);
2165 
2166 			/*
2167 			 * We need to check again after locking the
2168 			 * block group
2169 			 */
2170 			if (!ext4_mb_good_group(ac, group, cr)) {
2171 				ext4_unlock_group(sb, group);
2172 				ext4_mb_unload_buddy(&e4b);
2173 				continue;
2174 			}
2175 
2176 			ac->ac_groups_scanned++;
2177 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2178 				ext4_mb_simple_scan_group(ac, &e4b);
2179 			else if (cr == 1 && sbi->s_stripe &&
2180 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2181 				ext4_mb_scan_aligned(ac, &e4b);
2182 			else
2183 				ext4_mb_complex_scan_group(ac, &e4b);
2184 
2185 			ext4_unlock_group(sb, group);
2186 			ext4_mb_unload_buddy(&e4b);
2187 
2188 			if (ac->ac_status != AC_STATUS_CONTINUE)
2189 				break;
2190 		}
2191 	}
2192 
2193 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2194 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2195 		/*
2196 		 * We've been searching too long. Let's try to allocate
2197 		 * the best chunk we've found so far
2198 		 */
2199 
2200 		ext4_mb_try_best_found(ac, &e4b);
2201 		if (ac->ac_status != AC_STATUS_FOUND) {
2202 			/*
2203 			 * Someone more lucky has already allocated it.
2204 			 * The only thing we can do is just take first
2205 			 * found block(s)
2206 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2207 			 */
2208 			ac->ac_b_ex.fe_group = 0;
2209 			ac->ac_b_ex.fe_start = 0;
2210 			ac->ac_b_ex.fe_len = 0;
2211 			ac->ac_status = AC_STATUS_CONTINUE;
2212 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2213 			cr = 3;
2214 			atomic_inc(&sbi->s_mb_lost_chunks);
2215 			goto repeat;
2216 		}
2217 	}
2218 out:
2219 	return err;
2220 }
2221 
2222 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2223 {
2224 	struct super_block *sb = seq->private;
2225 	ext4_group_t group;
2226 
2227 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2228 		return NULL;
2229 	group = *pos + 1;
2230 	return (void *) ((unsigned long) group);
2231 }
2232 
2233 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2234 {
2235 	struct super_block *sb = seq->private;
2236 	ext4_group_t group;
2237 
2238 	++*pos;
2239 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2240 		return NULL;
2241 	group = *pos + 1;
2242 	return (void *) ((unsigned long) group);
2243 }
2244 
2245 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2246 {
2247 	struct super_block *sb = seq->private;
2248 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2249 	int i;
2250 	int err, buddy_loaded = 0;
2251 	struct ext4_buddy e4b;
2252 	struct ext4_group_info *grinfo;
2253 	struct sg {
2254 		struct ext4_group_info info;
2255 		ext4_grpblk_t counters[16];
2256 	} sg;
2257 
2258 	group--;
2259 	if (group == 0)
2260 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2261 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2262 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2263 			   "group", "free", "frags", "first",
2264 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2265 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2266 
2267 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2268 		sizeof(struct ext4_group_info);
2269 	grinfo = ext4_get_group_info(sb, group);
2270 	/* Load the group info in memory only if not already loaded. */
2271 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2272 		err = ext4_mb_load_buddy(sb, group, &e4b);
2273 		if (err) {
2274 			seq_printf(seq, "#%-5u: I/O error\n", group);
2275 			return 0;
2276 		}
2277 		buddy_loaded = 1;
2278 	}
2279 
2280 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2281 
2282 	if (buddy_loaded)
2283 		ext4_mb_unload_buddy(&e4b);
2284 
2285 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2286 			sg.info.bb_fragments, sg.info.bb_first_free);
2287 	for (i = 0; i <= 13; i++)
2288 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2289 				sg.info.bb_counters[i] : 0);
2290 	seq_printf(seq, " ]\n");
2291 
2292 	return 0;
2293 }
2294 
2295 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2296 {
2297 }
2298 
2299 static const struct seq_operations ext4_mb_seq_groups_ops = {
2300 	.start  = ext4_mb_seq_groups_start,
2301 	.next   = ext4_mb_seq_groups_next,
2302 	.stop   = ext4_mb_seq_groups_stop,
2303 	.show   = ext4_mb_seq_groups_show,
2304 };
2305 
2306 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2307 {
2308 	struct super_block *sb = PDE_DATA(inode);
2309 	int rc;
2310 
2311 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2312 	if (rc == 0) {
2313 		struct seq_file *m = file->private_data;
2314 		m->private = sb;
2315 	}
2316 	return rc;
2317 
2318 }
2319 
2320 static const struct file_operations ext4_mb_seq_groups_fops = {
2321 	.owner		= THIS_MODULE,
2322 	.open		= ext4_mb_seq_groups_open,
2323 	.read		= seq_read,
2324 	.llseek		= seq_lseek,
2325 	.release	= seq_release,
2326 };
2327 
2328 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2329 {
2330 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2331 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2332 
2333 	BUG_ON(!cachep);
2334 	return cachep;
2335 }
2336 
2337 /*
2338  * Allocate the top-level s_group_info array for the specified number
2339  * of groups
2340  */
2341 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2342 {
2343 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2344 	unsigned size;
2345 	struct ext4_group_info ***new_groupinfo;
2346 
2347 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2348 		EXT4_DESC_PER_BLOCK_BITS(sb);
2349 	if (size <= sbi->s_group_info_size)
2350 		return 0;
2351 
2352 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2353 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2354 	if (!new_groupinfo) {
2355 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2356 		return -ENOMEM;
2357 	}
2358 	if (sbi->s_group_info) {
2359 		memcpy(new_groupinfo, sbi->s_group_info,
2360 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2361 		ext4_kvfree(sbi->s_group_info);
2362 	}
2363 	sbi->s_group_info = new_groupinfo;
2364 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2365 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2366 		   sbi->s_group_info_size);
2367 	return 0;
2368 }
2369 
2370 /* Create and initialize ext4_group_info data for the given group. */
2371 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2372 			  struct ext4_group_desc *desc)
2373 {
2374 	int i;
2375 	int metalen = 0;
2376 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2377 	struct ext4_group_info **meta_group_info;
2378 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2379 
2380 	/*
2381 	 * First check if this group is the first of a reserved block.
2382 	 * If it's true, we have to allocate a new table of pointers
2383 	 * to ext4_group_info structures
2384 	 */
2385 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2386 		metalen = sizeof(*meta_group_info) <<
2387 			EXT4_DESC_PER_BLOCK_BITS(sb);
2388 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2389 		if (meta_group_info == NULL) {
2390 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2391 				 "for a buddy group");
2392 			goto exit_meta_group_info;
2393 		}
2394 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2395 			meta_group_info;
2396 	}
2397 
2398 	meta_group_info =
2399 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2400 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2401 
2402 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2403 	if (meta_group_info[i] == NULL) {
2404 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2405 		goto exit_group_info;
2406 	}
2407 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2408 		&(meta_group_info[i]->bb_state));
2409 
2410 	/*
2411 	 * initialize bb_free to be able to skip
2412 	 * empty groups without initialization
2413 	 */
2414 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2415 		meta_group_info[i]->bb_free =
2416 			ext4_free_clusters_after_init(sb, group, desc);
2417 	} else {
2418 		meta_group_info[i]->bb_free =
2419 			ext4_free_group_clusters(sb, desc);
2420 	}
2421 
2422 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2423 	init_rwsem(&meta_group_info[i]->alloc_sem);
2424 	meta_group_info[i]->bb_free_root = RB_ROOT;
2425 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2426 
2427 #ifdef DOUBLE_CHECK
2428 	{
2429 		struct buffer_head *bh;
2430 		meta_group_info[i]->bb_bitmap =
2431 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2432 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2433 		bh = ext4_read_block_bitmap(sb, group);
2434 		BUG_ON(bh == NULL);
2435 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2436 			sb->s_blocksize);
2437 		put_bh(bh);
2438 	}
2439 #endif
2440 
2441 	return 0;
2442 
2443 exit_group_info:
2444 	/* If a meta_group_info table has been allocated, release it now */
2445 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2446 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2447 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2448 	}
2449 exit_meta_group_info:
2450 	return -ENOMEM;
2451 } /* ext4_mb_add_groupinfo */
2452 
2453 static int ext4_mb_init_backend(struct super_block *sb)
2454 {
2455 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2456 	ext4_group_t i;
2457 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2458 	int err;
2459 	struct ext4_group_desc *desc;
2460 	struct kmem_cache *cachep;
2461 
2462 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2463 	if (err)
2464 		return err;
2465 
2466 	sbi->s_buddy_cache = new_inode(sb);
2467 	if (sbi->s_buddy_cache == NULL) {
2468 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2469 		goto err_freesgi;
2470 	}
2471 	/* To avoid potentially colliding with an valid on-disk inode number,
2472 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2473 	 * not in the inode hash, so it should never be found by iget(), but
2474 	 * this will avoid confusion if it ever shows up during debugging. */
2475 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2476 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2477 	for (i = 0; i < ngroups; i++) {
2478 		desc = ext4_get_group_desc(sb, i, NULL);
2479 		if (desc == NULL) {
2480 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2481 			goto err_freebuddy;
2482 		}
2483 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2484 			goto err_freebuddy;
2485 	}
2486 
2487 	return 0;
2488 
2489 err_freebuddy:
2490 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2491 	while (i-- > 0)
2492 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2493 	i = sbi->s_group_info_size;
2494 	while (i-- > 0)
2495 		kfree(sbi->s_group_info[i]);
2496 	iput(sbi->s_buddy_cache);
2497 err_freesgi:
2498 	ext4_kvfree(sbi->s_group_info);
2499 	return -ENOMEM;
2500 }
2501 
2502 static void ext4_groupinfo_destroy_slabs(void)
2503 {
2504 	int i;
2505 
2506 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2507 		if (ext4_groupinfo_caches[i])
2508 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2509 		ext4_groupinfo_caches[i] = NULL;
2510 	}
2511 }
2512 
2513 static int ext4_groupinfo_create_slab(size_t size)
2514 {
2515 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2516 	int slab_size;
2517 	int blocksize_bits = order_base_2(size);
2518 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2519 	struct kmem_cache *cachep;
2520 
2521 	if (cache_index >= NR_GRPINFO_CACHES)
2522 		return -EINVAL;
2523 
2524 	if (unlikely(cache_index < 0))
2525 		cache_index = 0;
2526 
2527 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2528 	if (ext4_groupinfo_caches[cache_index]) {
2529 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2530 		return 0;	/* Already created */
2531 	}
2532 
2533 	slab_size = offsetof(struct ext4_group_info,
2534 				bb_counters[blocksize_bits + 2]);
2535 
2536 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2537 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2538 					NULL);
2539 
2540 	ext4_groupinfo_caches[cache_index] = cachep;
2541 
2542 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2543 	if (!cachep) {
2544 		printk(KERN_EMERG
2545 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2546 		return -ENOMEM;
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 int ext4_mb_init(struct super_block *sb)
2553 {
2554 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2555 	unsigned i, j;
2556 	unsigned offset;
2557 	unsigned max;
2558 	int ret;
2559 
2560 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2561 
2562 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2563 	if (sbi->s_mb_offsets == NULL) {
2564 		ret = -ENOMEM;
2565 		goto out;
2566 	}
2567 
2568 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2569 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2570 	if (sbi->s_mb_maxs == NULL) {
2571 		ret = -ENOMEM;
2572 		goto out;
2573 	}
2574 
2575 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2576 	if (ret < 0)
2577 		goto out;
2578 
2579 	/* order 0 is regular bitmap */
2580 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2581 	sbi->s_mb_offsets[0] = 0;
2582 
2583 	i = 1;
2584 	offset = 0;
2585 	max = sb->s_blocksize << 2;
2586 	do {
2587 		sbi->s_mb_offsets[i] = offset;
2588 		sbi->s_mb_maxs[i] = max;
2589 		offset += 1 << (sb->s_blocksize_bits - i);
2590 		max = max >> 1;
2591 		i++;
2592 	} while (i <= sb->s_blocksize_bits + 1);
2593 
2594 	spin_lock_init(&sbi->s_md_lock);
2595 	spin_lock_init(&sbi->s_bal_lock);
2596 
2597 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2598 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2599 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2600 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2601 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2602 	/*
2603 	 * The default group preallocation is 512, which for 4k block
2604 	 * sizes translates to 2 megabytes.  However for bigalloc file
2605 	 * systems, this is probably too big (i.e, if the cluster size
2606 	 * is 1 megabyte, then group preallocation size becomes half a
2607 	 * gigabyte!).  As a default, we will keep a two megabyte
2608 	 * group pralloc size for cluster sizes up to 64k, and after
2609 	 * that, we will force a minimum group preallocation size of
2610 	 * 32 clusters.  This translates to 8 megs when the cluster
2611 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2612 	 * which seems reasonable as a default.
2613 	 */
2614 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2615 				       sbi->s_cluster_bits, 32);
2616 	/*
2617 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2618 	 * to the lowest multiple of s_stripe which is bigger than
2619 	 * the s_mb_group_prealloc as determined above. We want
2620 	 * the preallocation size to be an exact multiple of the
2621 	 * RAID stripe size so that preallocations don't fragment
2622 	 * the stripes.
2623 	 */
2624 	if (sbi->s_stripe > 1) {
2625 		sbi->s_mb_group_prealloc = roundup(
2626 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2627 	}
2628 
2629 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2630 	if (sbi->s_locality_groups == NULL) {
2631 		ret = -ENOMEM;
2632 		goto out;
2633 	}
2634 	for_each_possible_cpu(i) {
2635 		struct ext4_locality_group *lg;
2636 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2637 		mutex_init(&lg->lg_mutex);
2638 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2639 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2640 		spin_lock_init(&lg->lg_prealloc_lock);
2641 	}
2642 
2643 	/* init file for buddy data */
2644 	ret = ext4_mb_init_backend(sb);
2645 	if (ret != 0)
2646 		goto out_free_locality_groups;
2647 
2648 	if (sbi->s_proc)
2649 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2650 				 &ext4_mb_seq_groups_fops, sb);
2651 
2652 	return 0;
2653 
2654 out_free_locality_groups:
2655 	free_percpu(sbi->s_locality_groups);
2656 	sbi->s_locality_groups = NULL;
2657 out:
2658 	kfree(sbi->s_mb_offsets);
2659 	sbi->s_mb_offsets = NULL;
2660 	kfree(sbi->s_mb_maxs);
2661 	sbi->s_mb_maxs = NULL;
2662 	return ret;
2663 }
2664 
2665 /* need to called with the ext4 group lock held */
2666 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2667 {
2668 	struct ext4_prealloc_space *pa;
2669 	struct list_head *cur, *tmp;
2670 	int count = 0;
2671 
2672 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2673 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2674 		list_del(&pa->pa_group_list);
2675 		count++;
2676 		kmem_cache_free(ext4_pspace_cachep, pa);
2677 	}
2678 	if (count)
2679 		mb_debug(1, "mballoc: %u PAs left\n", count);
2680 
2681 }
2682 
2683 int ext4_mb_release(struct super_block *sb)
2684 {
2685 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2686 	ext4_group_t i;
2687 	int num_meta_group_infos;
2688 	struct ext4_group_info *grinfo;
2689 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2690 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2691 
2692 	if (sbi->s_proc)
2693 		remove_proc_entry("mb_groups", sbi->s_proc);
2694 
2695 	if (sbi->s_group_info) {
2696 		for (i = 0; i < ngroups; i++) {
2697 			grinfo = ext4_get_group_info(sb, i);
2698 #ifdef DOUBLE_CHECK
2699 			kfree(grinfo->bb_bitmap);
2700 #endif
2701 			ext4_lock_group(sb, i);
2702 			ext4_mb_cleanup_pa(grinfo);
2703 			ext4_unlock_group(sb, i);
2704 			kmem_cache_free(cachep, grinfo);
2705 		}
2706 		num_meta_group_infos = (ngroups +
2707 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2708 			EXT4_DESC_PER_BLOCK_BITS(sb);
2709 		for (i = 0; i < num_meta_group_infos; i++)
2710 			kfree(sbi->s_group_info[i]);
2711 		ext4_kvfree(sbi->s_group_info);
2712 	}
2713 	kfree(sbi->s_mb_offsets);
2714 	kfree(sbi->s_mb_maxs);
2715 	if (sbi->s_buddy_cache)
2716 		iput(sbi->s_buddy_cache);
2717 	if (sbi->s_mb_stats) {
2718 		ext4_msg(sb, KERN_INFO,
2719 		       "mballoc: %u blocks %u reqs (%u success)",
2720 				atomic_read(&sbi->s_bal_allocated),
2721 				atomic_read(&sbi->s_bal_reqs),
2722 				atomic_read(&sbi->s_bal_success));
2723 		ext4_msg(sb, KERN_INFO,
2724 		      "mballoc: %u extents scanned, %u goal hits, "
2725 				"%u 2^N hits, %u breaks, %u lost",
2726 				atomic_read(&sbi->s_bal_ex_scanned),
2727 				atomic_read(&sbi->s_bal_goals),
2728 				atomic_read(&sbi->s_bal_2orders),
2729 				atomic_read(&sbi->s_bal_breaks),
2730 				atomic_read(&sbi->s_mb_lost_chunks));
2731 		ext4_msg(sb, KERN_INFO,
2732 		       "mballoc: %lu generated and it took %Lu",
2733 				sbi->s_mb_buddies_generated,
2734 				sbi->s_mb_generation_time);
2735 		ext4_msg(sb, KERN_INFO,
2736 		       "mballoc: %u preallocated, %u discarded",
2737 				atomic_read(&sbi->s_mb_preallocated),
2738 				atomic_read(&sbi->s_mb_discarded));
2739 	}
2740 
2741 	free_percpu(sbi->s_locality_groups);
2742 
2743 	return 0;
2744 }
2745 
2746 static inline int ext4_issue_discard(struct super_block *sb,
2747 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2748 {
2749 	ext4_fsblk_t discard_block;
2750 
2751 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2752 			 ext4_group_first_block_no(sb, block_group));
2753 	count = EXT4_C2B(EXT4_SB(sb), count);
2754 	trace_ext4_discard_blocks(sb,
2755 			(unsigned long long) discard_block, count);
2756 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2757 }
2758 
2759 /*
2760  * This function is called by the jbd2 layer once the commit has finished,
2761  * so we know we can free the blocks that were released with that commit.
2762  */
2763 static void ext4_free_data_callback(struct super_block *sb,
2764 				    struct ext4_journal_cb_entry *jce,
2765 				    int rc)
2766 {
2767 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2768 	struct ext4_buddy e4b;
2769 	struct ext4_group_info *db;
2770 	int err, count = 0, count2 = 0;
2771 
2772 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2773 		 entry->efd_count, entry->efd_group, entry);
2774 
2775 	if (test_opt(sb, DISCARD)) {
2776 		err = ext4_issue_discard(sb, entry->efd_group,
2777 					 entry->efd_start_cluster,
2778 					 entry->efd_count);
2779 		if (err && err != -EOPNOTSUPP)
2780 			ext4_msg(sb, KERN_WARNING, "discard request in"
2781 				 " group:%d block:%d count:%d failed"
2782 				 " with %d", entry->efd_group,
2783 				 entry->efd_start_cluster,
2784 				 entry->efd_count, err);
2785 	}
2786 
2787 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2788 	/* we expect to find existing buddy because it's pinned */
2789 	BUG_ON(err != 0);
2790 
2791 
2792 	db = e4b.bd_info;
2793 	/* there are blocks to put in buddy to make them really free */
2794 	count += entry->efd_count;
2795 	count2++;
2796 	ext4_lock_group(sb, entry->efd_group);
2797 	/* Take it out of per group rb tree */
2798 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2799 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2800 
2801 	/*
2802 	 * Clear the trimmed flag for the group so that the next
2803 	 * ext4_trim_fs can trim it.
2804 	 * If the volume is mounted with -o discard, online discard
2805 	 * is supported and the free blocks will be trimmed online.
2806 	 */
2807 	if (!test_opt(sb, DISCARD))
2808 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2809 
2810 	if (!db->bb_free_root.rb_node) {
2811 		/* No more items in the per group rb tree
2812 		 * balance refcounts from ext4_mb_free_metadata()
2813 		 */
2814 		page_cache_release(e4b.bd_buddy_page);
2815 		page_cache_release(e4b.bd_bitmap_page);
2816 	}
2817 	ext4_unlock_group(sb, entry->efd_group);
2818 	kmem_cache_free(ext4_free_data_cachep, entry);
2819 	ext4_mb_unload_buddy(&e4b);
2820 
2821 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2822 }
2823 
2824 int __init ext4_init_mballoc(void)
2825 {
2826 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2827 					SLAB_RECLAIM_ACCOUNT);
2828 	if (ext4_pspace_cachep == NULL)
2829 		return -ENOMEM;
2830 
2831 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2832 				    SLAB_RECLAIM_ACCOUNT);
2833 	if (ext4_ac_cachep == NULL) {
2834 		kmem_cache_destroy(ext4_pspace_cachep);
2835 		return -ENOMEM;
2836 	}
2837 
2838 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2839 					   SLAB_RECLAIM_ACCOUNT);
2840 	if (ext4_free_data_cachep == NULL) {
2841 		kmem_cache_destroy(ext4_pspace_cachep);
2842 		kmem_cache_destroy(ext4_ac_cachep);
2843 		return -ENOMEM;
2844 	}
2845 	return 0;
2846 }
2847 
2848 void ext4_exit_mballoc(void)
2849 {
2850 	/*
2851 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2852 	 * before destroying the slab cache.
2853 	 */
2854 	rcu_barrier();
2855 	kmem_cache_destroy(ext4_pspace_cachep);
2856 	kmem_cache_destroy(ext4_ac_cachep);
2857 	kmem_cache_destroy(ext4_free_data_cachep);
2858 	ext4_groupinfo_destroy_slabs();
2859 }
2860 
2861 
2862 /*
2863  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2864  * Returns 0 if success or error code
2865  */
2866 static noinline_for_stack int
2867 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2868 				handle_t *handle, unsigned int reserv_clstrs)
2869 {
2870 	struct buffer_head *bitmap_bh = NULL;
2871 	struct ext4_group_desc *gdp;
2872 	struct buffer_head *gdp_bh;
2873 	struct ext4_sb_info *sbi;
2874 	struct super_block *sb;
2875 	ext4_fsblk_t block;
2876 	int err, len;
2877 
2878 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2879 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2880 
2881 	sb = ac->ac_sb;
2882 	sbi = EXT4_SB(sb);
2883 
2884 	err = -EIO;
2885 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2886 	if (!bitmap_bh)
2887 		goto out_err;
2888 
2889 	BUFFER_TRACE(bitmap_bh, "getting write access");
2890 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2891 	if (err)
2892 		goto out_err;
2893 
2894 	err = -EIO;
2895 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2896 	if (!gdp)
2897 		goto out_err;
2898 
2899 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2900 			ext4_free_group_clusters(sb, gdp));
2901 
2902 	BUFFER_TRACE(gdp_bh, "get_write_access");
2903 	err = ext4_journal_get_write_access(handle, gdp_bh);
2904 	if (err)
2905 		goto out_err;
2906 
2907 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2908 
2909 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2910 	if (!ext4_data_block_valid(sbi, block, len)) {
2911 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2912 			   "fs metadata", block, block+len);
2913 		/* File system mounted not to panic on error
2914 		 * Fix the bitmap and repeat the block allocation
2915 		 * We leak some of the blocks here.
2916 		 */
2917 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2918 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2919 			      ac->ac_b_ex.fe_len);
2920 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2921 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2922 		if (!err)
2923 			err = -EAGAIN;
2924 		goto out_err;
2925 	}
2926 
2927 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2928 #ifdef AGGRESSIVE_CHECK
2929 	{
2930 		int i;
2931 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2932 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2933 						bitmap_bh->b_data));
2934 		}
2935 	}
2936 #endif
2937 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2938 		      ac->ac_b_ex.fe_len);
2939 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2940 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2941 		ext4_free_group_clusters_set(sb, gdp,
2942 					     ext4_free_clusters_after_init(sb,
2943 						ac->ac_b_ex.fe_group, gdp));
2944 	}
2945 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2946 	ext4_free_group_clusters_set(sb, gdp, len);
2947 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2948 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2949 
2950 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2951 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2952 	/*
2953 	 * Now reduce the dirty block count also. Should not go negative
2954 	 */
2955 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2956 		/* release all the reserved blocks if non delalloc */
2957 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2958 				   reserv_clstrs);
2959 
2960 	if (sbi->s_log_groups_per_flex) {
2961 		ext4_group_t flex_group = ext4_flex_group(sbi,
2962 							  ac->ac_b_ex.fe_group);
2963 		atomic64_sub(ac->ac_b_ex.fe_len,
2964 			     &sbi->s_flex_groups[flex_group].free_clusters);
2965 	}
2966 
2967 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2968 	if (err)
2969 		goto out_err;
2970 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2971 
2972 out_err:
2973 	brelse(bitmap_bh);
2974 	return err;
2975 }
2976 
2977 /*
2978  * here we normalize request for locality group
2979  * Group request are normalized to s_mb_group_prealloc, which goes to
2980  * s_strip if we set the same via mount option.
2981  * s_mb_group_prealloc can be configured via
2982  * /sys/fs/ext4/<partition>/mb_group_prealloc
2983  *
2984  * XXX: should we try to preallocate more than the group has now?
2985  */
2986 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2987 {
2988 	struct super_block *sb = ac->ac_sb;
2989 	struct ext4_locality_group *lg = ac->ac_lg;
2990 
2991 	BUG_ON(lg == NULL);
2992 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2993 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2994 		current->pid, ac->ac_g_ex.fe_len);
2995 }
2996 
2997 /*
2998  * Normalization means making request better in terms of
2999  * size and alignment
3000  */
3001 static noinline_for_stack void
3002 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3003 				struct ext4_allocation_request *ar)
3004 {
3005 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3006 	int bsbits, max;
3007 	ext4_lblk_t end;
3008 	loff_t size, start_off;
3009 	loff_t orig_size __maybe_unused;
3010 	ext4_lblk_t start;
3011 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3012 	struct ext4_prealloc_space *pa;
3013 
3014 	/* do normalize only data requests, metadata requests
3015 	   do not need preallocation */
3016 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3017 		return;
3018 
3019 	/* sometime caller may want exact blocks */
3020 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3021 		return;
3022 
3023 	/* caller may indicate that preallocation isn't
3024 	 * required (it's a tail, for example) */
3025 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3026 		return;
3027 
3028 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3029 		ext4_mb_normalize_group_request(ac);
3030 		return ;
3031 	}
3032 
3033 	bsbits = ac->ac_sb->s_blocksize_bits;
3034 
3035 	/* first, let's learn actual file size
3036 	 * given current request is allocated */
3037 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3038 	size = size << bsbits;
3039 	if (size < i_size_read(ac->ac_inode))
3040 		size = i_size_read(ac->ac_inode);
3041 	orig_size = size;
3042 
3043 	/* max size of free chunks */
3044 	max = 2 << bsbits;
3045 
3046 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3047 		(req <= (size) || max <= (chunk_size))
3048 
3049 	/* first, try to predict filesize */
3050 	/* XXX: should this table be tunable? */
3051 	start_off = 0;
3052 	if (size <= 16 * 1024) {
3053 		size = 16 * 1024;
3054 	} else if (size <= 32 * 1024) {
3055 		size = 32 * 1024;
3056 	} else if (size <= 64 * 1024) {
3057 		size = 64 * 1024;
3058 	} else if (size <= 128 * 1024) {
3059 		size = 128 * 1024;
3060 	} else if (size <= 256 * 1024) {
3061 		size = 256 * 1024;
3062 	} else if (size <= 512 * 1024) {
3063 		size = 512 * 1024;
3064 	} else if (size <= 1024 * 1024) {
3065 		size = 1024 * 1024;
3066 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3067 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3068 						(21 - bsbits)) << 21;
3069 		size = 2 * 1024 * 1024;
3070 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3071 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3072 							(22 - bsbits)) << 22;
3073 		size = 4 * 1024 * 1024;
3074 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3075 					(8<<20)>>bsbits, max, 8 * 1024)) {
3076 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3077 							(23 - bsbits)) << 23;
3078 		size = 8 * 1024 * 1024;
3079 	} else {
3080 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3081 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3082 					      ac->ac_o_ex.fe_len) << bsbits;
3083 	}
3084 	size = size >> bsbits;
3085 	start = start_off >> bsbits;
3086 
3087 	/* don't cover already allocated blocks in selected range */
3088 	if (ar->pleft && start <= ar->lleft) {
3089 		size -= ar->lleft + 1 - start;
3090 		start = ar->lleft + 1;
3091 	}
3092 	if (ar->pright && start + size - 1 >= ar->lright)
3093 		size -= start + size - ar->lright;
3094 
3095 	end = start + size;
3096 
3097 	/* check we don't cross already preallocated blocks */
3098 	rcu_read_lock();
3099 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3100 		ext4_lblk_t pa_end;
3101 
3102 		if (pa->pa_deleted)
3103 			continue;
3104 		spin_lock(&pa->pa_lock);
3105 		if (pa->pa_deleted) {
3106 			spin_unlock(&pa->pa_lock);
3107 			continue;
3108 		}
3109 
3110 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3111 						  pa->pa_len);
3112 
3113 		/* PA must not overlap original request */
3114 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3115 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3116 
3117 		/* skip PAs this normalized request doesn't overlap with */
3118 		if (pa->pa_lstart >= end || pa_end <= start) {
3119 			spin_unlock(&pa->pa_lock);
3120 			continue;
3121 		}
3122 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3123 
3124 		/* adjust start or end to be adjacent to this pa */
3125 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3126 			BUG_ON(pa_end < start);
3127 			start = pa_end;
3128 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3129 			BUG_ON(pa->pa_lstart > end);
3130 			end = pa->pa_lstart;
3131 		}
3132 		spin_unlock(&pa->pa_lock);
3133 	}
3134 	rcu_read_unlock();
3135 	size = end - start;
3136 
3137 	/* XXX: extra loop to check we really don't overlap preallocations */
3138 	rcu_read_lock();
3139 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3140 		ext4_lblk_t pa_end;
3141 
3142 		spin_lock(&pa->pa_lock);
3143 		if (pa->pa_deleted == 0) {
3144 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3145 							  pa->pa_len);
3146 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3147 		}
3148 		spin_unlock(&pa->pa_lock);
3149 	}
3150 	rcu_read_unlock();
3151 
3152 	if (start + size <= ac->ac_o_ex.fe_logical &&
3153 			start > ac->ac_o_ex.fe_logical) {
3154 		ext4_msg(ac->ac_sb, KERN_ERR,
3155 			 "start %lu, size %lu, fe_logical %lu",
3156 			 (unsigned long) start, (unsigned long) size,
3157 			 (unsigned long) ac->ac_o_ex.fe_logical);
3158 	}
3159 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3160 			start > ac->ac_o_ex.fe_logical);
3161 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3162 
3163 	/* now prepare goal request */
3164 
3165 	/* XXX: is it better to align blocks WRT to logical
3166 	 * placement or satisfy big request as is */
3167 	ac->ac_g_ex.fe_logical = start;
3168 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3169 
3170 	/* define goal start in order to merge */
3171 	if (ar->pright && (ar->lright == (start + size))) {
3172 		/* merge to the right */
3173 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3174 						&ac->ac_f_ex.fe_group,
3175 						&ac->ac_f_ex.fe_start);
3176 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3177 	}
3178 	if (ar->pleft && (ar->lleft + 1 == start)) {
3179 		/* merge to the left */
3180 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3181 						&ac->ac_f_ex.fe_group,
3182 						&ac->ac_f_ex.fe_start);
3183 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3184 	}
3185 
3186 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3187 		(unsigned) orig_size, (unsigned) start);
3188 }
3189 
3190 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3191 {
3192 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3193 
3194 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3195 		atomic_inc(&sbi->s_bal_reqs);
3196 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3197 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3198 			atomic_inc(&sbi->s_bal_success);
3199 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3200 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3201 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3202 			atomic_inc(&sbi->s_bal_goals);
3203 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3204 			atomic_inc(&sbi->s_bal_breaks);
3205 	}
3206 
3207 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3208 		trace_ext4_mballoc_alloc(ac);
3209 	else
3210 		trace_ext4_mballoc_prealloc(ac);
3211 }
3212 
3213 /*
3214  * Called on failure; free up any blocks from the inode PA for this
3215  * context.  We don't need this for MB_GROUP_PA because we only change
3216  * pa_free in ext4_mb_release_context(), but on failure, we've already
3217  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3218  */
3219 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3220 {
3221 	struct ext4_prealloc_space *pa = ac->ac_pa;
3222 	struct ext4_buddy e4b;
3223 	int err;
3224 
3225 	if (pa == NULL) {
3226 		if (ac->ac_f_ex.fe_len == 0)
3227 			return;
3228 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3229 		if (err) {
3230 			/*
3231 			 * This should never happen since we pin the
3232 			 * pages in the ext4_allocation_context so
3233 			 * ext4_mb_load_buddy() should never fail.
3234 			 */
3235 			WARN(1, "mb_load_buddy failed (%d)", err);
3236 			return;
3237 		}
3238 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3239 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3240 			       ac->ac_f_ex.fe_len);
3241 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3242 		ext4_mb_unload_buddy(&e4b);
3243 		return;
3244 	}
3245 	if (pa->pa_type == MB_INODE_PA)
3246 		pa->pa_free += ac->ac_b_ex.fe_len;
3247 }
3248 
3249 /*
3250  * use blocks preallocated to inode
3251  */
3252 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3253 				struct ext4_prealloc_space *pa)
3254 {
3255 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3256 	ext4_fsblk_t start;
3257 	ext4_fsblk_t end;
3258 	int len;
3259 
3260 	/* found preallocated blocks, use them */
3261 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3262 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3263 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3264 	len = EXT4_NUM_B2C(sbi, end - start);
3265 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3266 					&ac->ac_b_ex.fe_start);
3267 	ac->ac_b_ex.fe_len = len;
3268 	ac->ac_status = AC_STATUS_FOUND;
3269 	ac->ac_pa = pa;
3270 
3271 	BUG_ON(start < pa->pa_pstart);
3272 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3273 	BUG_ON(pa->pa_free < len);
3274 	pa->pa_free -= len;
3275 
3276 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3277 }
3278 
3279 /*
3280  * use blocks preallocated to locality group
3281  */
3282 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3283 				struct ext4_prealloc_space *pa)
3284 {
3285 	unsigned int len = ac->ac_o_ex.fe_len;
3286 
3287 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3288 					&ac->ac_b_ex.fe_group,
3289 					&ac->ac_b_ex.fe_start);
3290 	ac->ac_b_ex.fe_len = len;
3291 	ac->ac_status = AC_STATUS_FOUND;
3292 	ac->ac_pa = pa;
3293 
3294 	/* we don't correct pa_pstart or pa_plen here to avoid
3295 	 * possible race when the group is being loaded concurrently
3296 	 * instead we correct pa later, after blocks are marked
3297 	 * in on-disk bitmap -- see ext4_mb_release_context()
3298 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3299 	 */
3300 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3301 }
3302 
3303 /*
3304  * Return the prealloc space that have minimal distance
3305  * from the goal block. @cpa is the prealloc
3306  * space that is having currently known minimal distance
3307  * from the goal block.
3308  */
3309 static struct ext4_prealloc_space *
3310 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3311 			struct ext4_prealloc_space *pa,
3312 			struct ext4_prealloc_space *cpa)
3313 {
3314 	ext4_fsblk_t cur_distance, new_distance;
3315 
3316 	if (cpa == NULL) {
3317 		atomic_inc(&pa->pa_count);
3318 		return pa;
3319 	}
3320 	cur_distance = abs(goal_block - cpa->pa_pstart);
3321 	new_distance = abs(goal_block - pa->pa_pstart);
3322 
3323 	if (cur_distance <= new_distance)
3324 		return cpa;
3325 
3326 	/* drop the previous reference */
3327 	atomic_dec(&cpa->pa_count);
3328 	atomic_inc(&pa->pa_count);
3329 	return pa;
3330 }
3331 
3332 /*
3333  * search goal blocks in preallocated space
3334  */
3335 static noinline_for_stack int
3336 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3337 {
3338 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3339 	int order, i;
3340 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3341 	struct ext4_locality_group *lg;
3342 	struct ext4_prealloc_space *pa, *cpa = NULL;
3343 	ext4_fsblk_t goal_block;
3344 
3345 	/* only data can be preallocated */
3346 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3347 		return 0;
3348 
3349 	/* first, try per-file preallocation */
3350 	rcu_read_lock();
3351 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3352 
3353 		/* all fields in this condition don't change,
3354 		 * so we can skip locking for them */
3355 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3356 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3357 					       EXT4_C2B(sbi, pa->pa_len)))
3358 			continue;
3359 
3360 		/* non-extent files can't have physical blocks past 2^32 */
3361 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3362 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3363 		     EXT4_MAX_BLOCK_FILE_PHYS))
3364 			continue;
3365 
3366 		/* found preallocated blocks, use them */
3367 		spin_lock(&pa->pa_lock);
3368 		if (pa->pa_deleted == 0 && pa->pa_free) {
3369 			atomic_inc(&pa->pa_count);
3370 			ext4_mb_use_inode_pa(ac, pa);
3371 			spin_unlock(&pa->pa_lock);
3372 			ac->ac_criteria = 10;
3373 			rcu_read_unlock();
3374 			return 1;
3375 		}
3376 		spin_unlock(&pa->pa_lock);
3377 	}
3378 	rcu_read_unlock();
3379 
3380 	/* can we use group allocation? */
3381 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3382 		return 0;
3383 
3384 	/* inode may have no locality group for some reason */
3385 	lg = ac->ac_lg;
3386 	if (lg == NULL)
3387 		return 0;
3388 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3389 	if (order > PREALLOC_TB_SIZE - 1)
3390 		/* The max size of hash table is PREALLOC_TB_SIZE */
3391 		order = PREALLOC_TB_SIZE - 1;
3392 
3393 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3394 	/*
3395 	 * search for the prealloc space that is having
3396 	 * minimal distance from the goal block.
3397 	 */
3398 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3399 		rcu_read_lock();
3400 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3401 					pa_inode_list) {
3402 			spin_lock(&pa->pa_lock);
3403 			if (pa->pa_deleted == 0 &&
3404 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3405 
3406 				cpa = ext4_mb_check_group_pa(goal_block,
3407 								pa, cpa);
3408 			}
3409 			spin_unlock(&pa->pa_lock);
3410 		}
3411 		rcu_read_unlock();
3412 	}
3413 	if (cpa) {
3414 		ext4_mb_use_group_pa(ac, cpa);
3415 		ac->ac_criteria = 20;
3416 		return 1;
3417 	}
3418 	return 0;
3419 }
3420 
3421 /*
3422  * the function goes through all block freed in the group
3423  * but not yet committed and marks them used in in-core bitmap.
3424  * buddy must be generated from this bitmap
3425  * Need to be called with the ext4 group lock held
3426  */
3427 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3428 						ext4_group_t group)
3429 {
3430 	struct rb_node *n;
3431 	struct ext4_group_info *grp;
3432 	struct ext4_free_data *entry;
3433 
3434 	grp = ext4_get_group_info(sb, group);
3435 	n = rb_first(&(grp->bb_free_root));
3436 
3437 	while (n) {
3438 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3439 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3440 		n = rb_next(n);
3441 	}
3442 	return;
3443 }
3444 
3445 /*
3446  * the function goes through all preallocation in this group and marks them
3447  * used in in-core bitmap. buddy must be generated from this bitmap
3448  * Need to be called with ext4 group lock held
3449  */
3450 static noinline_for_stack
3451 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3452 					ext4_group_t group)
3453 {
3454 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3455 	struct ext4_prealloc_space *pa;
3456 	struct list_head *cur;
3457 	ext4_group_t groupnr;
3458 	ext4_grpblk_t start;
3459 	int preallocated = 0;
3460 	int len;
3461 
3462 	/* all form of preallocation discards first load group,
3463 	 * so the only competing code is preallocation use.
3464 	 * we don't need any locking here
3465 	 * notice we do NOT ignore preallocations with pa_deleted
3466 	 * otherwise we could leave used blocks available for
3467 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3468 	 * is dropping preallocation
3469 	 */
3470 	list_for_each(cur, &grp->bb_prealloc_list) {
3471 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3472 		spin_lock(&pa->pa_lock);
3473 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3474 					     &groupnr, &start);
3475 		len = pa->pa_len;
3476 		spin_unlock(&pa->pa_lock);
3477 		if (unlikely(len == 0))
3478 			continue;
3479 		BUG_ON(groupnr != group);
3480 		ext4_set_bits(bitmap, start, len);
3481 		preallocated += len;
3482 	}
3483 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3484 }
3485 
3486 static void ext4_mb_pa_callback(struct rcu_head *head)
3487 {
3488 	struct ext4_prealloc_space *pa;
3489 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3490 
3491 	BUG_ON(atomic_read(&pa->pa_count));
3492 	BUG_ON(pa->pa_deleted == 0);
3493 	kmem_cache_free(ext4_pspace_cachep, pa);
3494 }
3495 
3496 /*
3497  * drops a reference to preallocated space descriptor
3498  * if this was the last reference and the space is consumed
3499  */
3500 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3501 			struct super_block *sb, struct ext4_prealloc_space *pa)
3502 {
3503 	ext4_group_t grp;
3504 	ext4_fsblk_t grp_blk;
3505 
3506 	/* in this short window concurrent discard can set pa_deleted */
3507 	spin_lock(&pa->pa_lock);
3508 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3509 		spin_unlock(&pa->pa_lock);
3510 		return;
3511 	}
3512 
3513 	if (pa->pa_deleted == 1) {
3514 		spin_unlock(&pa->pa_lock);
3515 		return;
3516 	}
3517 
3518 	pa->pa_deleted = 1;
3519 	spin_unlock(&pa->pa_lock);
3520 
3521 	grp_blk = pa->pa_pstart;
3522 	/*
3523 	 * If doing group-based preallocation, pa_pstart may be in the
3524 	 * next group when pa is used up
3525 	 */
3526 	if (pa->pa_type == MB_GROUP_PA)
3527 		grp_blk--;
3528 
3529 	grp = ext4_get_group_number(sb, grp_blk);
3530 
3531 	/*
3532 	 * possible race:
3533 	 *
3534 	 *  P1 (buddy init)			P2 (regular allocation)
3535 	 *					find block B in PA
3536 	 *  copy on-disk bitmap to buddy
3537 	 *  					mark B in on-disk bitmap
3538 	 *					drop PA from group
3539 	 *  mark all PAs in buddy
3540 	 *
3541 	 * thus, P1 initializes buddy with B available. to prevent this
3542 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3543 	 * against that pair
3544 	 */
3545 	ext4_lock_group(sb, grp);
3546 	list_del(&pa->pa_group_list);
3547 	ext4_unlock_group(sb, grp);
3548 
3549 	spin_lock(pa->pa_obj_lock);
3550 	list_del_rcu(&pa->pa_inode_list);
3551 	spin_unlock(pa->pa_obj_lock);
3552 
3553 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3554 }
3555 
3556 /*
3557  * creates new preallocated space for given inode
3558  */
3559 static noinline_for_stack int
3560 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3561 {
3562 	struct super_block *sb = ac->ac_sb;
3563 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3564 	struct ext4_prealloc_space *pa;
3565 	struct ext4_group_info *grp;
3566 	struct ext4_inode_info *ei;
3567 
3568 	/* preallocate only when found space is larger then requested */
3569 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3570 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3571 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3572 
3573 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3574 	if (pa == NULL)
3575 		return -ENOMEM;
3576 
3577 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3578 		int winl;
3579 		int wins;
3580 		int win;
3581 		int offs;
3582 
3583 		/* we can't allocate as much as normalizer wants.
3584 		 * so, found space must get proper lstart
3585 		 * to cover original request */
3586 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3587 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3588 
3589 		/* we're limited by original request in that
3590 		 * logical block must be covered any way
3591 		 * winl is window we can move our chunk within */
3592 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3593 
3594 		/* also, we should cover whole original request */
3595 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3596 
3597 		/* the smallest one defines real window */
3598 		win = min(winl, wins);
3599 
3600 		offs = ac->ac_o_ex.fe_logical %
3601 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3602 		if (offs && offs < win)
3603 			win = offs;
3604 
3605 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3606 			EXT4_NUM_B2C(sbi, win);
3607 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3608 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3609 	}
3610 
3611 	/* preallocation can change ac_b_ex, thus we store actually
3612 	 * allocated blocks for history */
3613 	ac->ac_f_ex = ac->ac_b_ex;
3614 
3615 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3616 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3617 	pa->pa_len = ac->ac_b_ex.fe_len;
3618 	pa->pa_free = pa->pa_len;
3619 	atomic_set(&pa->pa_count, 1);
3620 	spin_lock_init(&pa->pa_lock);
3621 	INIT_LIST_HEAD(&pa->pa_inode_list);
3622 	INIT_LIST_HEAD(&pa->pa_group_list);
3623 	pa->pa_deleted = 0;
3624 	pa->pa_type = MB_INODE_PA;
3625 
3626 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3627 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3628 	trace_ext4_mb_new_inode_pa(ac, pa);
3629 
3630 	ext4_mb_use_inode_pa(ac, pa);
3631 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3632 
3633 	ei = EXT4_I(ac->ac_inode);
3634 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3635 
3636 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3637 	pa->pa_inode = ac->ac_inode;
3638 
3639 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3640 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3641 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3642 
3643 	spin_lock(pa->pa_obj_lock);
3644 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3645 	spin_unlock(pa->pa_obj_lock);
3646 
3647 	return 0;
3648 }
3649 
3650 /*
3651  * creates new preallocated space for locality group inodes belongs to
3652  */
3653 static noinline_for_stack int
3654 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3655 {
3656 	struct super_block *sb = ac->ac_sb;
3657 	struct ext4_locality_group *lg;
3658 	struct ext4_prealloc_space *pa;
3659 	struct ext4_group_info *grp;
3660 
3661 	/* preallocate only when found space is larger then requested */
3662 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3663 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3664 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3665 
3666 	BUG_ON(ext4_pspace_cachep == NULL);
3667 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3668 	if (pa == NULL)
3669 		return -ENOMEM;
3670 
3671 	/* preallocation can change ac_b_ex, thus we store actually
3672 	 * allocated blocks for history */
3673 	ac->ac_f_ex = ac->ac_b_ex;
3674 
3675 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3676 	pa->pa_lstart = pa->pa_pstart;
3677 	pa->pa_len = ac->ac_b_ex.fe_len;
3678 	pa->pa_free = pa->pa_len;
3679 	atomic_set(&pa->pa_count, 1);
3680 	spin_lock_init(&pa->pa_lock);
3681 	INIT_LIST_HEAD(&pa->pa_inode_list);
3682 	INIT_LIST_HEAD(&pa->pa_group_list);
3683 	pa->pa_deleted = 0;
3684 	pa->pa_type = MB_GROUP_PA;
3685 
3686 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3687 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3688 	trace_ext4_mb_new_group_pa(ac, pa);
3689 
3690 	ext4_mb_use_group_pa(ac, pa);
3691 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3692 
3693 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3694 	lg = ac->ac_lg;
3695 	BUG_ON(lg == NULL);
3696 
3697 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3698 	pa->pa_inode = NULL;
3699 
3700 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3701 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3702 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3703 
3704 	/*
3705 	 * We will later add the new pa to the right bucket
3706 	 * after updating the pa_free in ext4_mb_release_context
3707 	 */
3708 	return 0;
3709 }
3710 
3711 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3712 {
3713 	int err;
3714 
3715 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3716 		err = ext4_mb_new_group_pa(ac);
3717 	else
3718 		err = ext4_mb_new_inode_pa(ac);
3719 	return err;
3720 }
3721 
3722 /*
3723  * finds all unused blocks in on-disk bitmap, frees them in
3724  * in-core bitmap and buddy.
3725  * @pa must be unlinked from inode and group lists, so that
3726  * nobody else can find/use it.
3727  * the caller MUST hold group/inode locks.
3728  * TODO: optimize the case when there are no in-core structures yet
3729  */
3730 static noinline_for_stack int
3731 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3732 			struct ext4_prealloc_space *pa)
3733 {
3734 	struct super_block *sb = e4b->bd_sb;
3735 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3736 	unsigned int end;
3737 	unsigned int next;
3738 	ext4_group_t group;
3739 	ext4_grpblk_t bit;
3740 	unsigned long long grp_blk_start;
3741 	int err = 0;
3742 	int free = 0;
3743 
3744 	BUG_ON(pa->pa_deleted == 0);
3745 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3746 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3747 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3748 	end = bit + pa->pa_len;
3749 
3750 	while (bit < end) {
3751 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3752 		if (bit >= end)
3753 			break;
3754 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3755 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3756 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3757 			 (unsigned) next - bit, (unsigned) group);
3758 		free += next - bit;
3759 
3760 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3761 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3762 						    EXT4_C2B(sbi, bit)),
3763 					       next - bit);
3764 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3765 		bit = next + 1;
3766 	}
3767 	if (free != pa->pa_free) {
3768 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3769 			 "pa %p: logic %lu, phys. %lu, len %lu",
3770 			 pa, (unsigned long) pa->pa_lstart,
3771 			 (unsigned long) pa->pa_pstart,
3772 			 (unsigned long) pa->pa_len);
3773 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3774 					free, pa->pa_free);
3775 		/*
3776 		 * pa is already deleted so we use the value obtained
3777 		 * from the bitmap and continue.
3778 		 */
3779 	}
3780 	atomic_add(free, &sbi->s_mb_discarded);
3781 
3782 	return err;
3783 }
3784 
3785 static noinline_for_stack int
3786 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3787 				struct ext4_prealloc_space *pa)
3788 {
3789 	struct super_block *sb = e4b->bd_sb;
3790 	ext4_group_t group;
3791 	ext4_grpblk_t bit;
3792 
3793 	trace_ext4_mb_release_group_pa(sb, pa);
3794 	BUG_ON(pa->pa_deleted == 0);
3795 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3796 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3797 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3798 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3799 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3800 
3801 	return 0;
3802 }
3803 
3804 /*
3805  * releases all preallocations in given group
3806  *
3807  * first, we need to decide discard policy:
3808  * - when do we discard
3809  *   1) ENOSPC
3810  * - how many do we discard
3811  *   1) how many requested
3812  */
3813 static noinline_for_stack int
3814 ext4_mb_discard_group_preallocations(struct super_block *sb,
3815 					ext4_group_t group, int needed)
3816 {
3817 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3818 	struct buffer_head *bitmap_bh = NULL;
3819 	struct ext4_prealloc_space *pa, *tmp;
3820 	struct list_head list;
3821 	struct ext4_buddy e4b;
3822 	int err;
3823 	int busy = 0;
3824 	int free = 0;
3825 
3826 	mb_debug(1, "discard preallocation for group %u\n", group);
3827 
3828 	if (list_empty(&grp->bb_prealloc_list))
3829 		return 0;
3830 
3831 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3832 	if (bitmap_bh == NULL) {
3833 		ext4_error(sb, "Error reading block bitmap for %u", group);
3834 		return 0;
3835 	}
3836 
3837 	err = ext4_mb_load_buddy(sb, group, &e4b);
3838 	if (err) {
3839 		ext4_error(sb, "Error loading buddy information for %u", group);
3840 		put_bh(bitmap_bh);
3841 		return 0;
3842 	}
3843 
3844 	if (needed == 0)
3845 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3846 
3847 	INIT_LIST_HEAD(&list);
3848 repeat:
3849 	ext4_lock_group(sb, group);
3850 	list_for_each_entry_safe(pa, tmp,
3851 				&grp->bb_prealloc_list, pa_group_list) {
3852 		spin_lock(&pa->pa_lock);
3853 		if (atomic_read(&pa->pa_count)) {
3854 			spin_unlock(&pa->pa_lock);
3855 			busy = 1;
3856 			continue;
3857 		}
3858 		if (pa->pa_deleted) {
3859 			spin_unlock(&pa->pa_lock);
3860 			continue;
3861 		}
3862 
3863 		/* seems this one can be freed ... */
3864 		pa->pa_deleted = 1;
3865 
3866 		/* we can trust pa_free ... */
3867 		free += pa->pa_free;
3868 
3869 		spin_unlock(&pa->pa_lock);
3870 
3871 		list_del(&pa->pa_group_list);
3872 		list_add(&pa->u.pa_tmp_list, &list);
3873 	}
3874 
3875 	/* if we still need more blocks and some PAs were used, try again */
3876 	if (free < needed && busy) {
3877 		busy = 0;
3878 		ext4_unlock_group(sb, group);
3879 		cond_resched();
3880 		goto repeat;
3881 	}
3882 
3883 	/* found anything to free? */
3884 	if (list_empty(&list)) {
3885 		BUG_ON(free != 0);
3886 		goto out;
3887 	}
3888 
3889 	/* now free all selected PAs */
3890 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3891 
3892 		/* remove from object (inode or locality group) */
3893 		spin_lock(pa->pa_obj_lock);
3894 		list_del_rcu(&pa->pa_inode_list);
3895 		spin_unlock(pa->pa_obj_lock);
3896 
3897 		if (pa->pa_type == MB_GROUP_PA)
3898 			ext4_mb_release_group_pa(&e4b, pa);
3899 		else
3900 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3901 
3902 		list_del(&pa->u.pa_tmp_list);
3903 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3904 	}
3905 
3906 out:
3907 	ext4_unlock_group(sb, group);
3908 	ext4_mb_unload_buddy(&e4b);
3909 	put_bh(bitmap_bh);
3910 	return free;
3911 }
3912 
3913 /*
3914  * releases all non-used preallocated blocks for given inode
3915  *
3916  * It's important to discard preallocations under i_data_sem
3917  * We don't want another block to be served from the prealloc
3918  * space when we are discarding the inode prealloc space.
3919  *
3920  * FIXME!! Make sure it is valid at all the call sites
3921  */
3922 void ext4_discard_preallocations(struct inode *inode)
3923 {
3924 	struct ext4_inode_info *ei = EXT4_I(inode);
3925 	struct super_block *sb = inode->i_sb;
3926 	struct buffer_head *bitmap_bh = NULL;
3927 	struct ext4_prealloc_space *pa, *tmp;
3928 	ext4_group_t group = 0;
3929 	struct list_head list;
3930 	struct ext4_buddy e4b;
3931 	int err;
3932 
3933 	if (!S_ISREG(inode->i_mode)) {
3934 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3935 		return;
3936 	}
3937 
3938 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3939 	trace_ext4_discard_preallocations(inode);
3940 
3941 	INIT_LIST_HEAD(&list);
3942 
3943 repeat:
3944 	/* first, collect all pa's in the inode */
3945 	spin_lock(&ei->i_prealloc_lock);
3946 	while (!list_empty(&ei->i_prealloc_list)) {
3947 		pa = list_entry(ei->i_prealloc_list.next,
3948 				struct ext4_prealloc_space, pa_inode_list);
3949 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3950 		spin_lock(&pa->pa_lock);
3951 		if (atomic_read(&pa->pa_count)) {
3952 			/* this shouldn't happen often - nobody should
3953 			 * use preallocation while we're discarding it */
3954 			spin_unlock(&pa->pa_lock);
3955 			spin_unlock(&ei->i_prealloc_lock);
3956 			ext4_msg(sb, KERN_ERR,
3957 				 "uh-oh! used pa while discarding");
3958 			WARN_ON(1);
3959 			schedule_timeout_uninterruptible(HZ);
3960 			goto repeat;
3961 
3962 		}
3963 		if (pa->pa_deleted == 0) {
3964 			pa->pa_deleted = 1;
3965 			spin_unlock(&pa->pa_lock);
3966 			list_del_rcu(&pa->pa_inode_list);
3967 			list_add(&pa->u.pa_tmp_list, &list);
3968 			continue;
3969 		}
3970 
3971 		/* someone is deleting pa right now */
3972 		spin_unlock(&pa->pa_lock);
3973 		spin_unlock(&ei->i_prealloc_lock);
3974 
3975 		/* we have to wait here because pa_deleted
3976 		 * doesn't mean pa is already unlinked from
3977 		 * the list. as we might be called from
3978 		 * ->clear_inode() the inode will get freed
3979 		 * and concurrent thread which is unlinking
3980 		 * pa from inode's list may access already
3981 		 * freed memory, bad-bad-bad */
3982 
3983 		/* XXX: if this happens too often, we can
3984 		 * add a flag to force wait only in case
3985 		 * of ->clear_inode(), but not in case of
3986 		 * regular truncate */
3987 		schedule_timeout_uninterruptible(HZ);
3988 		goto repeat;
3989 	}
3990 	spin_unlock(&ei->i_prealloc_lock);
3991 
3992 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3993 		BUG_ON(pa->pa_type != MB_INODE_PA);
3994 		group = ext4_get_group_number(sb, pa->pa_pstart);
3995 
3996 		err = ext4_mb_load_buddy(sb, group, &e4b);
3997 		if (err) {
3998 			ext4_error(sb, "Error loading buddy information for %u",
3999 					group);
4000 			continue;
4001 		}
4002 
4003 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4004 		if (bitmap_bh == NULL) {
4005 			ext4_error(sb, "Error reading block bitmap for %u",
4006 					group);
4007 			ext4_mb_unload_buddy(&e4b);
4008 			continue;
4009 		}
4010 
4011 		ext4_lock_group(sb, group);
4012 		list_del(&pa->pa_group_list);
4013 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4014 		ext4_unlock_group(sb, group);
4015 
4016 		ext4_mb_unload_buddy(&e4b);
4017 		put_bh(bitmap_bh);
4018 
4019 		list_del(&pa->u.pa_tmp_list);
4020 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4021 	}
4022 }
4023 
4024 #ifdef CONFIG_EXT4_DEBUG
4025 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4026 {
4027 	struct super_block *sb = ac->ac_sb;
4028 	ext4_group_t ngroups, i;
4029 
4030 	if (!ext4_mballoc_debug ||
4031 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4032 		return;
4033 
4034 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4035 			" Allocation context details:");
4036 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4037 			ac->ac_status, ac->ac_flags);
4038 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4039 		 	"goal %lu/%lu/%lu@%lu, "
4040 			"best %lu/%lu/%lu@%lu cr %d",
4041 			(unsigned long)ac->ac_o_ex.fe_group,
4042 			(unsigned long)ac->ac_o_ex.fe_start,
4043 			(unsigned long)ac->ac_o_ex.fe_len,
4044 			(unsigned long)ac->ac_o_ex.fe_logical,
4045 			(unsigned long)ac->ac_g_ex.fe_group,
4046 			(unsigned long)ac->ac_g_ex.fe_start,
4047 			(unsigned long)ac->ac_g_ex.fe_len,
4048 			(unsigned long)ac->ac_g_ex.fe_logical,
4049 			(unsigned long)ac->ac_b_ex.fe_group,
4050 			(unsigned long)ac->ac_b_ex.fe_start,
4051 			(unsigned long)ac->ac_b_ex.fe_len,
4052 			(unsigned long)ac->ac_b_ex.fe_logical,
4053 			(int)ac->ac_criteria);
4054 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4055 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4056 	ngroups = ext4_get_groups_count(sb);
4057 	for (i = 0; i < ngroups; i++) {
4058 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4059 		struct ext4_prealloc_space *pa;
4060 		ext4_grpblk_t start;
4061 		struct list_head *cur;
4062 		ext4_lock_group(sb, i);
4063 		list_for_each(cur, &grp->bb_prealloc_list) {
4064 			pa = list_entry(cur, struct ext4_prealloc_space,
4065 					pa_group_list);
4066 			spin_lock(&pa->pa_lock);
4067 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4068 						     NULL, &start);
4069 			spin_unlock(&pa->pa_lock);
4070 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4071 			       start, pa->pa_len);
4072 		}
4073 		ext4_unlock_group(sb, i);
4074 
4075 		if (grp->bb_free == 0)
4076 			continue;
4077 		printk(KERN_ERR "%u: %d/%d \n",
4078 		       i, grp->bb_free, grp->bb_fragments);
4079 	}
4080 	printk(KERN_ERR "\n");
4081 }
4082 #else
4083 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4084 {
4085 	return;
4086 }
4087 #endif
4088 
4089 /*
4090  * We use locality group preallocation for small size file. The size of the
4091  * file is determined by the current size or the resulting size after
4092  * allocation which ever is larger
4093  *
4094  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4095  */
4096 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4097 {
4098 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4099 	int bsbits = ac->ac_sb->s_blocksize_bits;
4100 	loff_t size, isize;
4101 
4102 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4103 		return;
4104 
4105 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4106 		return;
4107 
4108 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4109 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4110 		>> bsbits;
4111 
4112 	if ((size == isize) &&
4113 	    !ext4_fs_is_busy(sbi) &&
4114 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4115 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4116 		return;
4117 	}
4118 
4119 	if (sbi->s_mb_group_prealloc <= 0) {
4120 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4121 		return;
4122 	}
4123 
4124 	/* don't use group allocation for large files */
4125 	size = max(size, isize);
4126 	if (size > sbi->s_mb_stream_request) {
4127 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4128 		return;
4129 	}
4130 
4131 	BUG_ON(ac->ac_lg != NULL);
4132 	/*
4133 	 * locality group prealloc space are per cpu. The reason for having
4134 	 * per cpu locality group is to reduce the contention between block
4135 	 * request from multiple CPUs.
4136 	 */
4137 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4138 
4139 	/* we're going to use group allocation */
4140 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4141 
4142 	/* serialize all allocations in the group */
4143 	mutex_lock(&ac->ac_lg->lg_mutex);
4144 }
4145 
4146 static noinline_for_stack int
4147 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4148 				struct ext4_allocation_request *ar)
4149 {
4150 	struct super_block *sb = ar->inode->i_sb;
4151 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4152 	struct ext4_super_block *es = sbi->s_es;
4153 	ext4_group_t group;
4154 	unsigned int len;
4155 	ext4_fsblk_t goal;
4156 	ext4_grpblk_t block;
4157 
4158 	/* we can't allocate > group size */
4159 	len = ar->len;
4160 
4161 	/* just a dirty hack to filter too big requests  */
4162 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4163 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4164 
4165 	/* start searching from the goal */
4166 	goal = ar->goal;
4167 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4168 			goal >= ext4_blocks_count(es))
4169 		goal = le32_to_cpu(es->s_first_data_block);
4170 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4171 
4172 	/* set up allocation goals */
4173 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4174 	ac->ac_status = AC_STATUS_CONTINUE;
4175 	ac->ac_sb = sb;
4176 	ac->ac_inode = ar->inode;
4177 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4178 	ac->ac_o_ex.fe_group = group;
4179 	ac->ac_o_ex.fe_start = block;
4180 	ac->ac_o_ex.fe_len = len;
4181 	ac->ac_g_ex = ac->ac_o_ex;
4182 	ac->ac_flags = ar->flags;
4183 
4184 	/* we have to define context: we'll we work with a file or
4185 	 * locality group. this is a policy, actually */
4186 	ext4_mb_group_or_file(ac);
4187 
4188 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4189 			"left: %u/%u, right %u/%u to %swritable\n",
4190 			(unsigned) ar->len, (unsigned) ar->logical,
4191 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4192 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4193 			(unsigned) ar->lright, (unsigned) ar->pright,
4194 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4195 	return 0;
4196 
4197 }
4198 
4199 static noinline_for_stack void
4200 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4201 					struct ext4_locality_group *lg,
4202 					int order, int total_entries)
4203 {
4204 	ext4_group_t group = 0;
4205 	struct ext4_buddy e4b;
4206 	struct list_head discard_list;
4207 	struct ext4_prealloc_space *pa, *tmp;
4208 
4209 	mb_debug(1, "discard locality group preallocation\n");
4210 
4211 	INIT_LIST_HEAD(&discard_list);
4212 
4213 	spin_lock(&lg->lg_prealloc_lock);
4214 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4215 						pa_inode_list) {
4216 		spin_lock(&pa->pa_lock);
4217 		if (atomic_read(&pa->pa_count)) {
4218 			/*
4219 			 * This is the pa that we just used
4220 			 * for block allocation. So don't
4221 			 * free that
4222 			 */
4223 			spin_unlock(&pa->pa_lock);
4224 			continue;
4225 		}
4226 		if (pa->pa_deleted) {
4227 			spin_unlock(&pa->pa_lock);
4228 			continue;
4229 		}
4230 		/* only lg prealloc space */
4231 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4232 
4233 		/* seems this one can be freed ... */
4234 		pa->pa_deleted = 1;
4235 		spin_unlock(&pa->pa_lock);
4236 
4237 		list_del_rcu(&pa->pa_inode_list);
4238 		list_add(&pa->u.pa_tmp_list, &discard_list);
4239 
4240 		total_entries--;
4241 		if (total_entries <= 5) {
4242 			/*
4243 			 * we want to keep only 5 entries
4244 			 * allowing it to grow to 8. This
4245 			 * mak sure we don't call discard
4246 			 * soon for this list.
4247 			 */
4248 			break;
4249 		}
4250 	}
4251 	spin_unlock(&lg->lg_prealloc_lock);
4252 
4253 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4254 
4255 		group = ext4_get_group_number(sb, pa->pa_pstart);
4256 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4257 			ext4_error(sb, "Error loading buddy information for %u",
4258 					group);
4259 			continue;
4260 		}
4261 		ext4_lock_group(sb, group);
4262 		list_del(&pa->pa_group_list);
4263 		ext4_mb_release_group_pa(&e4b, pa);
4264 		ext4_unlock_group(sb, group);
4265 
4266 		ext4_mb_unload_buddy(&e4b);
4267 		list_del(&pa->u.pa_tmp_list);
4268 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4269 	}
4270 }
4271 
4272 /*
4273  * We have incremented pa_count. So it cannot be freed at this
4274  * point. Also we hold lg_mutex. So no parallel allocation is
4275  * possible from this lg. That means pa_free cannot be updated.
4276  *
4277  * A parallel ext4_mb_discard_group_preallocations is possible.
4278  * which can cause the lg_prealloc_list to be updated.
4279  */
4280 
4281 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4282 {
4283 	int order, added = 0, lg_prealloc_count = 1;
4284 	struct super_block *sb = ac->ac_sb;
4285 	struct ext4_locality_group *lg = ac->ac_lg;
4286 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4287 
4288 	order = fls(pa->pa_free) - 1;
4289 	if (order > PREALLOC_TB_SIZE - 1)
4290 		/* The max size of hash table is PREALLOC_TB_SIZE */
4291 		order = PREALLOC_TB_SIZE - 1;
4292 	/* Add the prealloc space to lg */
4293 	spin_lock(&lg->lg_prealloc_lock);
4294 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4295 						pa_inode_list) {
4296 		spin_lock(&tmp_pa->pa_lock);
4297 		if (tmp_pa->pa_deleted) {
4298 			spin_unlock(&tmp_pa->pa_lock);
4299 			continue;
4300 		}
4301 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4302 			/* Add to the tail of the previous entry */
4303 			list_add_tail_rcu(&pa->pa_inode_list,
4304 						&tmp_pa->pa_inode_list);
4305 			added = 1;
4306 			/*
4307 			 * we want to count the total
4308 			 * number of entries in the list
4309 			 */
4310 		}
4311 		spin_unlock(&tmp_pa->pa_lock);
4312 		lg_prealloc_count++;
4313 	}
4314 	if (!added)
4315 		list_add_tail_rcu(&pa->pa_inode_list,
4316 					&lg->lg_prealloc_list[order]);
4317 	spin_unlock(&lg->lg_prealloc_lock);
4318 
4319 	/* Now trim the list to be not more than 8 elements */
4320 	if (lg_prealloc_count > 8) {
4321 		ext4_mb_discard_lg_preallocations(sb, lg,
4322 						  order, lg_prealloc_count);
4323 		return;
4324 	}
4325 	return ;
4326 }
4327 
4328 /*
4329  * release all resource we used in allocation
4330  */
4331 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4332 {
4333 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4334 	struct ext4_prealloc_space *pa = ac->ac_pa;
4335 	if (pa) {
4336 		if (pa->pa_type == MB_GROUP_PA) {
4337 			/* see comment in ext4_mb_use_group_pa() */
4338 			spin_lock(&pa->pa_lock);
4339 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4340 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4341 			pa->pa_free -= ac->ac_b_ex.fe_len;
4342 			pa->pa_len -= ac->ac_b_ex.fe_len;
4343 			spin_unlock(&pa->pa_lock);
4344 		}
4345 	}
4346 	if (pa) {
4347 		/*
4348 		 * We want to add the pa to the right bucket.
4349 		 * Remove it from the list and while adding
4350 		 * make sure the list to which we are adding
4351 		 * doesn't grow big.
4352 		 */
4353 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4354 			spin_lock(pa->pa_obj_lock);
4355 			list_del_rcu(&pa->pa_inode_list);
4356 			spin_unlock(pa->pa_obj_lock);
4357 			ext4_mb_add_n_trim(ac);
4358 		}
4359 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4360 	}
4361 	if (ac->ac_bitmap_page)
4362 		page_cache_release(ac->ac_bitmap_page);
4363 	if (ac->ac_buddy_page)
4364 		page_cache_release(ac->ac_buddy_page);
4365 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4366 		mutex_unlock(&ac->ac_lg->lg_mutex);
4367 	ext4_mb_collect_stats(ac);
4368 	return 0;
4369 }
4370 
4371 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4372 {
4373 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4374 	int ret;
4375 	int freed = 0;
4376 
4377 	trace_ext4_mb_discard_preallocations(sb, needed);
4378 	for (i = 0; i < ngroups && needed > 0; i++) {
4379 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4380 		freed += ret;
4381 		needed -= ret;
4382 	}
4383 
4384 	return freed;
4385 }
4386 
4387 /*
4388  * Main entry point into mballoc to allocate blocks
4389  * it tries to use preallocation first, then falls back
4390  * to usual allocation
4391  */
4392 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4393 				struct ext4_allocation_request *ar, int *errp)
4394 {
4395 	int freed;
4396 	struct ext4_allocation_context *ac = NULL;
4397 	struct ext4_sb_info *sbi;
4398 	struct super_block *sb;
4399 	ext4_fsblk_t block = 0;
4400 	unsigned int inquota = 0;
4401 	unsigned int reserv_clstrs = 0;
4402 
4403 	might_sleep();
4404 	sb = ar->inode->i_sb;
4405 	sbi = EXT4_SB(sb);
4406 
4407 	trace_ext4_request_blocks(ar);
4408 
4409 	/* Allow to use superuser reservation for quota file */
4410 	if (IS_NOQUOTA(ar->inode))
4411 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4412 
4413 	/*
4414 	 * For delayed allocation, we could skip the ENOSPC and
4415 	 * EDQUOT check, as blocks and quotas have been already
4416 	 * reserved when data being copied into pagecache.
4417 	 */
4418 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4419 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4420 	else {
4421 		/* Without delayed allocation we need to verify
4422 		 * there is enough free blocks to do block allocation
4423 		 * and verify allocation doesn't exceed the quota limits.
4424 		 */
4425 		while (ar->len &&
4426 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4427 
4428 			/* let others to free the space */
4429 			cond_resched();
4430 			ar->len = ar->len >> 1;
4431 		}
4432 		if (!ar->len) {
4433 			*errp = -ENOSPC;
4434 			return 0;
4435 		}
4436 		reserv_clstrs = ar->len;
4437 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4438 			dquot_alloc_block_nofail(ar->inode,
4439 						 EXT4_C2B(sbi, ar->len));
4440 		} else {
4441 			while (ar->len &&
4442 				dquot_alloc_block(ar->inode,
4443 						  EXT4_C2B(sbi, ar->len))) {
4444 
4445 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4446 				ar->len--;
4447 			}
4448 		}
4449 		inquota = ar->len;
4450 		if (ar->len == 0) {
4451 			*errp = -EDQUOT;
4452 			goto out;
4453 		}
4454 	}
4455 
4456 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4457 	if (!ac) {
4458 		ar->len = 0;
4459 		*errp = -ENOMEM;
4460 		goto out;
4461 	}
4462 
4463 	*errp = ext4_mb_initialize_context(ac, ar);
4464 	if (*errp) {
4465 		ar->len = 0;
4466 		goto out;
4467 	}
4468 
4469 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4470 	if (!ext4_mb_use_preallocated(ac)) {
4471 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4472 		ext4_mb_normalize_request(ac, ar);
4473 repeat:
4474 		/* allocate space in core */
4475 		*errp = ext4_mb_regular_allocator(ac);
4476 		if (*errp)
4477 			goto discard_and_exit;
4478 
4479 		/* as we've just preallocated more space than
4480 		 * user requested originally, we store allocated
4481 		 * space in a special descriptor */
4482 		if (ac->ac_status == AC_STATUS_FOUND &&
4483 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4484 			*errp = ext4_mb_new_preallocation(ac);
4485 		if (*errp) {
4486 		discard_and_exit:
4487 			ext4_discard_allocated_blocks(ac);
4488 			goto errout;
4489 		}
4490 	}
4491 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4492 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4493 		if (*errp == -EAGAIN) {
4494 			/*
4495 			 * drop the reference that we took
4496 			 * in ext4_mb_use_best_found
4497 			 */
4498 			ext4_mb_release_context(ac);
4499 			ac->ac_b_ex.fe_group = 0;
4500 			ac->ac_b_ex.fe_start = 0;
4501 			ac->ac_b_ex.fe_len = 0;
4502 			ac->ac_status = AC_STATUS_CONTINUE;
4503 			goto repeat;
4504 		} else if (*errp) {
4505 			ext4_discard_allocated_blocks(ac);
4506 			goto errout;
4507 		} else {
4508 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4509 			ar->len = ac->ac_b_ex.fe_len;
4510 		}
4511 	} else {
4512 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4513 		if (freed)
4514 			goto repeat;
4515 		*errp = -ENOSPC;
4516 	}
4517 
4518 errout:
4519 	if (*errp) {
4520 		ac->ac_b_ex.fe_len = 0;
4521 		ar->len = 0;
4522 		ext4_mb_show_ac(ac);
4523 	}
4524 	ext4_mb_release_context(ac);
4525 out:
4526 	if (ac)
4527 		kmem_cache_free(ext4_ac_cachep, ac);
4528 	if (inquota && ar->len < inquota)
4529 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4530 	if (!ar->len) {
4531 		if (!ext4_test_inode_state(ar->inode,
4532 					   EXT4_STATE_DELALLOC_RESERVED))
4533 			/* release all the reserved blocks if non delalloc */
4534 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4535 						reserv_clstrs);
4536 	}
4537 
4538 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4539 
4540 	return block;
4541 }
4542 
4543 /*
4544  * We can merge two free data extents only if the physical blocks
4545  * are contiguous, AND the extents were freed by the same transaction,
4546  * AND the blocks are associated with the same group.
4547  */
4548 static int can_merge(struct ext4_free_data *entry1,
4549 			struct ext4_free_data *entry2)
4550 {
4551 	if ((entry1->efd_tid == entry2->efd_tid) &&
4552 	    (entry1->efd_group == entry2->efd_group) &&
4553 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4554 		return 1;
4555 	return 0;
4556 }
4557 
4558 static noinline_for_stack int
4559 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4560 		      struct ext4_free_data *new_entry)
4561 {
4562 	ext4_group_t group = e4b->bd_group;
4563 	ext4_grpblk_t cluster;
4564 	struct ext4_free_data *entry;
4565 	struct ext4_group_info *db = e4b->bd_info;
4566 	struct super_block *sb = e4b->bd_sb;
4567 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4568 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4569 	struct rb_node *parent = NULL, *new_node;
4570 
4571 	BUG_ON(!ext4_handle_valid(handle));
4572 	BUG_ON(e4b->bd_bitmap_page == NULL);
4573 	BUG_ON(e4b->bd_buddy_page == NULL);
4574 
4575 	new_node = &new_entry->efd_node;
4576 	cluster = new_entry->efd_start_cluster;
4577 
4578 	if (!*n) {
4579 		/* first free block exent. We need to
4580 		   protect buddy cache from being freed,
4581 		 * otherwise we'll refresh it from
4582 		 * on-disk bitmap and lose not-yet-available
4583 		 * blocks */
4584 		page_cache_get(e4b->bd_buddy_page);
4585 		page_cache_get(e4b->bd_bitmap_page);
4586 	}
4587 	while (*n) {
4588 		parent = *n;
4589 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4590 		if (cluster < entry->efd_start_cluster)
4591 			n = &(*n)->rb_left;
4592 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4593 			n = &(*n)->rb_right;
4594 		else {
4595 			ext4_grp_locked_error(sb, group, 0,
4596 				ext4_group_first_block_no(sb, group) +
4597 				EXT4_C2B(sbi, cluster),
4598 				"Block already on to-be-freed list");
4599 			return 0;
4600 		}
4601 	}
4602 
4603 	rb_link_node(new_node, parent, n);
4604 	rb_insert_color(new_node, &db->bb_free_root);
4605 
4606 	/* Now try to see the extent can be merged to left and right */
4607 	node = rb_prev(new_node);
4608 	if (node) {
4609 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4610 		if (can_merge(entry, new_entry) &&
4611 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4612 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4613 			new_entry->efd_count += entry->efd_count;
4614 			rb_erase(node, &(db->bb_free_root));
4615 			kmem_cache_free(ext4_free_data_cachep, entry);
4616 		}
4617 	}
4618 
4619 	node = rb_next(new_node);
4620 	if (node) {
4621 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4622 		if (can_merge(new_entry, entry) &&
4623 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4624 			new_entry->efd_count += entry->efd_count;
4625 			rb_erase(node, &(db->bb_free_root));
4626 			kmem_cache_free(ext4_free_data_cachep, entry);
4627 		}
4628 	}
4629 	/* Add the extent to transaction's private list */
4630 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4631 				  &new_entry->efd_jce);
4632 	return 0;
4633 }
4634 
4635 /**
4636  * ext4_free_blocks() -- Free given blocks and update quota
4637  * @handle:		handle for this transaction
4638  * @inode:		inode
4639  * @block:		start physical block to free
4640  * @count:		number of blocks to count
4641  * @flags:		flags used by ext4_free_blocks
4642  */
4643 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4644 		      struct buffer_head *bh, ext4_fsblk_t block,
4645 		      unsigned long count, int flags)
4646 {
4647 	struct buffer_head *bitmap_bh = NULL;
4648 	struct super_block *sb = inode->i_sb;
4649 	struct ext4_group_desc *gdp;
4650 	unsigned int overflow;
4651 	ext4_grpblk_t bit;
4652 	struct buffer_head *gd_bh;
4653 	ext4_group_t block_group;
4654 	struct ext4_sb_info *sbi;
4655 	struct ext4_buddy e4b;
4656 	unsigned int count_clusters;
4657 	int err = 0;
4658 	int ret;
4659 
4660 	might_sleep();
4661 	if (bh) {
4662 		if (block)
4663 			BUG_ON(block != bh->b_blocknr);
4664 		else
4665 			block = bh->b_blocknr;
4666 	}
4667 
4668 	sbi = EXT4_SB(sb);
4669 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4670 	    !ext4_data_block_valid(sbi, block, count)) {
4671 		ext4_error(sb, "Freeing blocks not in datazone - "
4672 			   "block = %llu, count = %lu", block, count);
4673 		goto error_return;
4674 	}
4675 
4676 	ext4_debug("freeing block %llu\n", block);
4677 	trace_ext4_free_blocks(inode, block, count, flags);
4678 
4679 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4680 		struct buffer_head *tbh = bh;
4681 		int i;
4682 
4683 		BUG_ON(bh && (count > 1));
4684 
4685 		for (i = 0; i < count; i++) {
4686 			cond_resched();
4687 			if (!bh)
4688 				tbh = sb_find_get_block(inode->i_sb,
4689 							block + i);
4690 			if (!tbh)
4691 				continue;
4692 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4693 				    inode, tbh, block + i);
4694 		}
4695 	}
4696 
4697 	/*
4698 	 * We need to make sure we don't reuse the freed block until
4699 	 * after the transaction is committed, which we can do by
4700 	 * treating the block as metadata, below.  We make an
4701 	 * exception if the inode is to be written in writeback mode
4702 	 * since writeback mode has weak data consistency guarantees.
4703 	 */
4704 	if (!ext4_should_writeback_data(inode))
4705 		flags |= EXT4_FREE_BLOCKS_METADATA;
4706 
4707 	/*
4708 	 * If the extent to be freed does not begin on a cluster
4709 	 * boundary, we need to deal with partial clusters at the
4710 	 * beginning and end of the extent.  Normally we will free
4711 	 * blocks at the beginning or the end unless we are explicitly
4712 	 * requested to avoid doing so.
4713 	 */
4714 	overflow = EXT4_PBLK_COFF(sbi, block);
4715 	if (overflow) {
4716 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4717 			overflow = sbi->s_cluster_ratio - overflow;
4718 			block += overflow;
4719 			if (count > overflow)
4720 				count -= overflow;
4721 			else
4722 				return;
4723 		} else {
4724 			block -= overflow;
4725 			count += overflow;
4726 		}
4727 	}
4728 	overflow = EXT4_LBLK_COFF(sbi, count);
4729 	if (overflow) {
4730 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4731 			if (count > overflow)
4732 				count -= overflow;
4733 			else
4734 				return;
4735 		} else
4736 			count += sbi->s_cluster_ratio - overflow;
4737 	}
4738 
4739 do_more:
4740 	overflow = 0;
4741 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4742 
4743 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4744 			ext4_get_group_info(sb, block_group))))
4745 		return;
4746 
4747 	/*
4748 	 * Check to see if we are freeing blocks across a group
4749 	 * boundary.
4750 	 */
4751 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4752 		overflow = EXT4_C2B(sbi, bit) + count -
4753 			EXT4_BLOCKS_PER_GROUP(sb);
4754 		count -= overflow;
4755 	}
4756 	count_clusters = EXT4_NUM_B2C(sbi, count);
4757 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4758 	if (!bitmap_bh) {
4759 		err = -EIO;
4760 		goto error_return;
4761 	}
4762 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4763 	if (!gdp) {
4764 		err = -EIO;
4765 		goto error_return;
4766 	}
4767 
4768 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4769 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4770 	    in_range(block, ext4_inode_table(sb, gdp),
4771 		     EXT4_SB(sb)->s_itb_per_group) ||
4772 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4773 		     EXT4_SB(sb)->s_itb_per_group)) {
4774 
4775 		ext4_error(sb, "Freeing blocks in system zone - "
4776 			   "Block = %llu, count = %lu", block, count);
4777 		/* err = 0. ext4_std_error should be a no op */
4778 		goto error_return;
4779 	}
4780 
4781 	BUFFER_TRACE(bitmap_bh, "getting write access");
4782 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4783 	if (err)
4784 		goto error_return;
4785 
4786 	/*
4787 	 * We are about to modify some metadata.  Call the journal APIs
4788 	 * to unshare ->b_data if a currently-committing transaction is
4789 	 * using it
4790 	 */
4791 	BUFFER_TRACE(gd_bh, "get_write_access");
4792 	err = ext4_journal_get_write_access(handle, gd_bh);
4793 	if (err)
4794 		goto error_return;
4795 #ifdef AGGRESSIVE_CHECK
4796 	{
4797 		int i;
4798 		for (i = 0; i < count_clusters; i++)
4799 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4800 	}
4801 #endif
4802 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4803 
4804 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4805 	if (err)
4806 		goto error_return;
4807 
4808 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4809 		struct ext4_free_data *new_entry;
4810 		/*
4811 		 * blocks being freed are metadata. these blocks shouldn't
4812 		 * be used until this transaction is committed
4813 		 */
4814 	retry:
4815 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4816 		if (!new_entry) {
4817 			/*
4818 			 * We use a retry loop because
4819 			 * ext4_free_blocks() is not allowed to fail.
4820 			 */
4821 			cond_resched();
4822 			congestion_wait(BLK_RW_ASYNC, HZ/50);
4823 			goto retry;
4824 		}
4825 		new_entry->efd_start_cluster = bit;
4826 		new_entry->efd_group = block_group;
4827 		new_entry->efd_count = count_clusters;
4828 		new_entry->efd_tid = handle->h_transaction->t_tid;
4829 
4830 		ext4_lock_group(sb, block_group);
4831 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4832 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4833 	} else {
4834 		/* need to update group_info->bb_free and bitmap
4835 		 * with group lock held. generate_buddy look at
4836 		 * them with group lock_held
4837 		 */
4838 		if (test_opt(sb, DISCARD)) {
4839 			err = ext4_issue_discard(sb, block_group, bit, count);
4840 			if (err && err != -EOPNOTSUPP)
4841 				ext4_msg(sb, KERN_WARNING, "discard request in"
4842 					 " group:%d block:%d count:%lu failed"
4843 					 " with %d", block_group, bit, count,
4844 					 err);
4845 		} else
4846 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4847 
4848 		ext4_lock_group(sb, block_group);
4849 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4850 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4851 	}
4852 
4853 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4854 	ext4_free_group_clusters_set(sb, gdp, ret);
4855 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4856 	ext4_group_desc_csum_set(sb, block_group, gdp);
4857 	ext4_unlock_group(sb, block_group);
4858 
4859 	if (sbi->s_log_groups_per_flex) {
4860 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4861 		atomic64_add(count_clusters,
4862 			     &sbi->s_flex_groups[flex_group].free_clusters);
4863 	}
4864 
4865 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4866 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4867 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4868 
4869 	ext4_mb_unload_buddy(&e4b);
4870 
4871 	/* We dirtied the bitmap block */
4872 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4873 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4874 
4875 	/* And the group descriptor block */
4876 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4877 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4878 	if (!err)
4879 		err = ret;
4880 
4881 	if (overflow && !err) {
4882 		block += count;
4883 		count = overflow;
4884 		put_bh(bitmap_bh);
4885 		goto do_more;
4886 	}
4887 error_return:
4888 	brelse(bitmap_bh);
4889 	ext4_std_error(sb, err);
4890 	return;
4891 }
4892 
4893 /**
4894  * ext4_group_add_blocks() -- Add given blocks to an existing group
4895  * @handle:			handle to this transaction
4896  * @sb:				super block
4897  * @block:			start physical block to add to the block group
4898  * @count:			number of blocks to free
4899  *
4900  * This marks the blocks as free in the bitmap and buddy.
4901  */
4902 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4903 			 ext4_fsblk_t block, unsigned long count)
4904 {
4905 	struct buffer_head *bitmap_bh = NULL;
4906 	struct buffer_head *gd_bh;
4907 	ext4_group_t block_group;
4908 	ext4_grpblk_t bit;
4909 	unsigned int i;
4910 	struct ext4_group_desc *desc;
4911 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4912 	struct ext4_buddy e4b;
4913 	int err = 0, ret, blk_free_count;
4914 	ext4_grpblk_t blocks_freed;
4915 
4916 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4917 
4918 	if (count == 0)
4919 		return 0;
4920 
4921 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4922 	/*
4923 	 * Check to see if we are freeing blocks across a group
4924 	 * boundary.
4925 	 */
4926 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4927 		ext4_warning(sb, "too much blocks added to group %u\n",
4928 			     block_group);
4929 		err = -EINVAL;
4930 		goto error_return;
4931 	}
4932 
4933 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4934 	if (!bitmap_bh) {
4935 		err = -EIO;
4936 		goto error_return;
4937 	}
4938 
4939 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4940 	if (!desc) {
4941 		err = -EIO;
4942 		goto error_return;
4943 	}
4944 
4945 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4946 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4947 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4948 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4949 		     sbi->s_itb_per_group)) {
4950 		ext4_error(sb, "Adding blocks in system zones - "
4951 			   "Block = %llu, count = %lu",
4952 			   block, count);
4953 		err = -EINVAL;
4954 		goto error_return;
4955 	}
4956 
4957 	BUFFER_TRACE(bitmap_bh, "getting write access");
4958 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4959 	if (err)
4960 		goto error_return;
4961 
4962 	/*
4963 	 * We are about to modify some metadata.  Call the journal APIs
4964 	 * to unshare ->b_data if a currently-committing transaction is
4965 	 * using it
4966 	 */
4967 	BUFFER_TRACE(gd_bh, "get_write_access");
4968 	err = ext4_journal_get_write_access(handle, gd_bh);
4969 	if (err)
4970 		goto error_return;
4971 
4972 	for (i = 0, blocks_freed = 0; i < count; i++) {
4973 		BUFFER_TRACE(bitmap_bh, "clear bit");
4974 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4975 			ext4_error(sb, "bit already cleared for block %llu",
4976 				   (ext4_fsblk_t)(block + i));
4977 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4978 		} else {
4979 			blocks_freed++;
4980 		}
4981 	}
4982 
4983 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4984 	if (err)
4985 		goto error_return;
4986 
4987 	/*
4988 	 * need to update group_info->bb_free and bitmap
4989 	 * with group lock held. generate_buddy look at
4990 	 * them with group lock_held
4991 	 */
4992 	ext4_lock_group(sb, block_group);
4993 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4994 	mb_free_blocks(NULL, &e4b, bit, count);
4995 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4996 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4997 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4998 	ext4_group_desc_csum_set(sb, block_group, desc);
4999 	ext4_unlock_group(sb, block_group);
5000 	percpu_counter_add(&sbi->s_freeclusters_counter,
5001 			   EXT4_NUM_B2C(sbi, blocks_freed));
5002 
5003 	if (sbi->s_log_groups_per_flex) {
5004 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5005 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5006 			     &sbi->s_flex_groups[flex_group].free_clusters);
5007 	}
5008 
5009 	ext4_mb_unload_buddy(&e4b);
5010 
5011 	/* We dirtied the bitmap block */
5012 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5013 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5014 
5015 	/* And the group descriptor block */
5016 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5017 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5018 	if (!err)
5019 		err = ret;
5020 
5021 error_return:
5022 	brelse(bitmap_bh);
5023 	ext4_std_error(sb, err);
5024 	return err;
5025 }
5026 
5027 /**
5028  * ext4_trim_extent -- function to TRIM one single free extent in the group
5029  * @sb:		super block for the file system
5030  * @start:	starting block of the free extent in the alloc. group
5031  * @count:	number of blocks to TRIM
5032  * @group:	alloc. group we are working with
5033  * @e4b:	ext4 buddy for the group
5034  *
5035  * Trim "count" blocks starting at "start" in the "group". To assure that no
5036  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5037  * be called with under the group lock.
5038  */
5039 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5040 			     ext4_group_t group, struct ext4_buddy *e4b)
5041 __releases(bitlock)
5042 __acquires(bitlock)
5043 {
5044 	struct ext4_free_extent ex;
5045 	int ret = 0;
5046 
5047 	trace_ext4_trim_extent(sb, group, start, count);
5048 
5049 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5050 
5051 	ex.fe_start = start;
5052 	ex.fe_group = group;
5053 	ex.fe_len = count;
5054 
5055 	/*
5056 	 * Mark blocks used, so no one can reuse them while
5057 	 * being trimmed.
5058 	 */
5059 	mb_mark_used(e4b, &ex);
5060 	ext4_unlock_group(sb, group);
5061 	ret = ext4_issue_discard(sb, group, start, count);
5062 	ext4_lock_group(sb, group);
5063 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5064 	return ret;
5065 }
5066 
5067 /**
5068  * ext4_trim_all_free -- function to trim all free space in alloc. group
5069  * @sb:			super block for file system
5070  * @group:		group to be trimmed
5071  * @start:		first group block to examine
5072  * @max:		last group block to examine
5073  * @minblocks:		minimum extent block count
5074  *
5075  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5076  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5077  * the extent.
5078  *
5079  *
5080  * ext4_trim_all_free walks through group's block bitmap searching for free
5081  * extents. When the free extent is found, mark it as used in group buddy
5082  * bitmap. Then issue a TRIM command on this extent and free the extent in
5083  * the group buddy bitmap. This is done until whole group is scanned.
5084  */
5085 static ext4_grpblk_t
5086 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5087 		   ext4_grpblk_t start, ext4_grpblk_t max,
5088 		   ext4_grpblk_t minblocks)
5089 {
5090 	void *bitmap;
5091 	ext4_grpblk_t next, count = 0, free_count = 0;
5092 	struct ext4_buddy e4b;
5093 	int ret = 0;
5094 
5095 	trace_ext4_trim_all_free(sb, group, start, max);
5096 
5097 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5098 	if (ret) {
5099 		ext4_error(sb, "Error in loading buddy "
5100 				"information for %u", group);
5101 		return ret;
5102 	}
5103 	bitmap = e4b.bd_bitmap;
5104 
5105 	ext4_lock_group(sb, group);
5106 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5107 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5108 		goto out;
5109 
5110 	start = (e4b.bd_info->bb_first_free > start) ?
5111 		e4b.bd_info->bb_first_free : start;
5112 
5113 	while (start <= max) {
5114 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5115 		if (start > max)
5116 			break;
5117 		next = mb_find_next_bit(bitmap, max + 1, start);
5118 
5119 		if ((next - start) >= minblocks) {
5120 			ret = ext4_trim_extent(sb, start,
5121 					       next - start, group, &e4b);
5122 			if (ret && ret != -EOPNOTSUPP)
5123 				break;
5124 			ret = 0;
5125 			count += next - start;
5126 		}
5127 		free_count += next - start;
5128 		start = next + 1;
5129 
5130 		if (fatal_signal_pending(current)) {
5131 			count = -ERESTARTSYS;
5132 			break;
5133 		}
5134 
5135 		if (need_resched()) {
5136 			ext4_unlock_group(sb, group);
5137 			cond_resched();
5138 			ext4_lock_group(sb, group);
5139 		}
5140 
5141 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5142 			break;
5143 	}
5144 
5145 	if (!ret) {
5146 		ret = count;
5147 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5148 	}
5149 out:
5150 	ext4_unlock_group(sb, group);
5151 	ext4_mb_unload_buddy(&e4b);
5152 
5153 	ext4_debug("trimmed %d blocks in the group %d\n",
5154 		count, group);
5155 
5156 	return ret;
5157 }
5158 
5159 /**
5160  * ext4_trim_fs() -- trim ioctl handle function
5161  * @sb:			superblock for filesystem
5162  * @range:		fstrim_range structure
5163  *
5164  * start:	First Byte to trim
5165  * len:		number of Bytes to trim from start
5166  * minlen:	minimum extent length in Bytes
5167  * ext4_trim_fs goes through all allocation groups containing Bytes from
5168  * start to start+len. For each such a group ext4_trim_all_free function
5169  * is invoked to trim all free space.
5170  */
5171 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5172 {
5173 	struct ext4_group_info *grp;
5174 	ext4_group_t group, first_group, last_group;
5175 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5176 	uint64_t start, end, minlen, trimmed = 0;
5177 	ext4_fsblk_t first_data_blk =
5178 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5179 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5180 	int ret = 0;
5181 
5182 	start = range->start >> sb->s_blocksize_bits;
5183 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5184 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5185 			      range->minlen >> sb->s_blocksize_bits);
5186 
5187 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5188 	    start >= max_blks ||
5189 	    range->len < sb->s_blocksize)
5190 		return -EINVAL;
5191 	if (end >= max_blks)
5192 		end = max_blks - 1;
5193 	if (end <= first_data_blk)
5194 		goto out;
5195 	if (start < first_data_blk)
5196 		start = first_data_blk;
5197 
5198 	/* Determine first and last group to examine based on start and end */
5199 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5200 				     &first_group, &first_cluster);
5201 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5202 				     &last_group, &last_cluster);
5203 
5204 	/* end now represents the last cluster to discard in this group */
5205 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5206 
5207 	for (group = first_group; group <= last_group; group++) {
5208 		grp = ext4_get_group_info(sb, group);
5209 		/* We only do this if the grp has never been initialized */
5210 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5211 			ret = ext4_mb_init_group(sb, group);
5212 			if (ret)
5213 				break;
5214 		}
5215 
5216 		/*
5217 		 * For all the groups except the last one, last cluster will
5218 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5219 		 * change it for the last group, note that last_cluster is
5220 		 * already computed earlier by ext4_get_group_no_and_offset()
5221 		 */
5222 		if (group == last_group)
5223 			end = last_cluster;
5224 
5225 		if (grp->bb_free >= minlen) {
5226 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5227 						end, minlen);
5228 			if (cnt < 0) {
5229 				ret = cnt;
5230 				break;
5231 			}
5232 			trimmed += cnt;
5233 		}
5234 
5235 		/*
5236 		 * For every group except the first one, we are sure
5237 		 * that the first cluster to discard will be cluster #0.
5238 		 */
5239 		first_cluster = 0;
5240 	}
5241 
5242 	if (!ret)
5243 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5244 
5245 out:
5246 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5247 	return ret;
5248 }
5249