1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "mballoc.h" 25 #include <linux/debugfs.h> 26 #include <trace/events/ext4.h> 27 28 /* 29 * MUSTDO: 30 * - test ext4_ext_search_left() and ext4_ext_search_right() 31 * - search for metadata in few groups 32 * 33 * TODO v4: 34 * - normalization should take into account whether file is still open 35 * - discard preallocations if no free space left (policy?) 36 * - don't normalize tails 37 * - quota 38 * - reservation for superuser 39 * 40 * TODO v3: 41 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 42 * - track min/max extents in each group for better group selection 43 * - mb_mark_used() may allocate chunk right after splitting buddy 44 * - tree of groups sorted by number of free blocks 45 * - error handling 46 */ 47 48 /* 49 * The allocation request involve request for multiple number of blocks 50 * near to the goal(block) value specified. 51 * 52 * During initialization phase of the allocator we decide to use the 53 * group preallocation or inode preallocation depending on the size of 54 * the file. The size of the file could be the resulting file size we 55 * would have after allocation, or the current file size, which ever 56 * is larger. If the size is less than sbi->s_mb_stream_request we 57 * select to use the group preallocation. The default value of 58 * s_mb_stream_request is 16 blocks. This can also be tuned via 59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 60 * terms of number of blocks. 61 * 62 * The main motivation for having small file use group preallocation is to 63 * ensure that we have small files closer together on the disk. 64 * 65 * First stage the allocator looks at the inode prealloc list, 66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 67 * spaces for this particular inode. The inode prealloc space is 68 * represented as: 69 * 70 * pa_lstart -> the logical start block for this prealloc space 71 * pa_pstart -> the physical start block for this prealloc space 72 * pa_len -> lenght for this prealloc space 73 * pa_free -> free space available in this prealloc space 74 * 75 * The inode preallocation space is used looking at the _logical_ start 76 * block. If only the logical file block falls within the range of prealloc 77 * space we will consume the particular prealloc space. This make sure that 78 * that the we have contiguous physical blocks representing the file blocks 79 * 80 * The important thing to be noted in case of inode prealloc space is that 81 * we don't modify the values associated to inode prealloc space except 82 * pa_free. 83 * 84 * If we are not able to find blocks in the inode prealloc space and if we 85 * have the group allocation flag set then we look at the locality group 86 * prealloc space. These are per CPU prealloc list repreasented as 87 * 88 * ext4_sb_info.s_locality_groups[smp_processor_id()] 89 * 90 * The reason for having a per cpu locality group is to reduce the contention 91 * between CPUs. It is possible to get scheduled at this point. 92 * 93 * The locality group prealloc space is used looking at whether we have 94 * enough free space (pa_free) withing the prealloc space. 95 * 96 * If we can't allocate blocks via inode prealloc or/and locality group 97 * prealloc then we look at the buddy cache. The buddy cache is represented 98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 99 * mapped to the buddy and bitmap information regarding different 100 * groups. The buddy information is attached to buddy cache inode so that 101 * we can access them through the page cache. The information regarding 102 * each group is loaded via ext4_mb_load_buddy. The information involve 103 * block bitmap and buddy information. The information are stored in the 104 * inode as: 105 * 106 * { page } 107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 108 * 109 * 110 * one block each for bitmap and buddy information. So for each group we 111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 112 * blocksize) blocks. So it can have information regarding groups_per_page 113 * which is blocks_per_page/2 114 * 115 * The buddy cache inode is not stored on disk. The inode is thrown 116 * away when the filesystem is unmounted. 117 * 118 * We look for count number of blocks in the buddy cache. If we were able 119 * to locate that many free blocks we return with additional information 120 * regarding rest of the contiguous physical block available 121 * 122 * Before allocating blocks via buddy cache we normalize the request 123 * blocks. This ensure we ask for more blocks that we needed. The extra 124 * blocks that we get after allocation is added to the respective prealloc 125 * list. In case of inode preallocation we follow a list of heuristics 126 * based on file size. This can be found in ext4_mb_normalize_request. If 127 * we are doing a group prealloc we try to normalize the request to 128 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is 129 * 512 blocks. This can be tuned via 130 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in 131 * terms of number of blocks. If we have mounted the file system with -O 132 * stripe=<value> option the group prealloc request is normalized to the 133 * stripe value (sbi->s_stripe) 134 * 135 * The regular allocator(using the buddy cache) supports few tunables. 136 * 137 * /sys/fs/ext4/<partition>/mb_min_to_scan 138 * /sys/fs/ext4/<partition>/mb_max_to_scan 139 * /sys/fs/ext4/<partition>/mb_order2_req 140 * 141 * The regular allocator uses buddy scan only if the request len is power of 142 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 143 * value of s_mb_order2_reqs can be tuned via 144 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 145 * stripe size (sbi->s_stripe), we try to search for contiguous block in 146 * stripe size. This should result in better allocation on RAID setups. If 147 * not, we search in the specific group using bitmap for best extents. The 148 * tunable min_to_scan and max_to_scan control the behaviour here. 149 * min_to_scan indicate how long the mballoc __must__ look for a best 150 * extent and max_to_scan indicates how long the mballoc __can__ look for a 151 * best extent in the found extents. Searching for the blocks starts with 152 * the group specified as the goal value in allocation context via 153 * ac_g_ex. Each group is first checked based on the criteria whether it 154 * can used for allocation. ext4_mb_good_group explains how the groups are 155 * checked. 156 * 157 * Both the prealloc space are getting populated as above. So for the first 158 * request we will hit the buddy cache which will result in this prealloc 159 * space getting filled. The prealloc space is then later used for the 160 * subsequent request. 161 */ 162 163 /* 164 * mballoc operates on the following data: 165 * - on-disk bitmap 166 * - in-core buddy (actually includes buddy and bitmap) 167 * - preallocation descriptors (PAs) 168 * 169 * there are two types of preallocations: 170 * - inode 171 * assiged to specific inode and can be used for this inode only. 172 * it describes part of inode's space preallocated to specific 173 * physical blocks. any block from that preallocated can be used 174 * independent. the descriptor just tracks number of blocks left 175 * unused. so, before taking some block from descriptor, one must 176 * make sure corresponded logical block isn't allocated yet. this 177 * also means that freeing any block within descriptor's range 178 * must discard all preallocated blocks. 179 * - locality group 180 * assigned to specific locality group which does not translate to 181 * permanent set of inodes: inode can join and leave group. space 182 * from this type of preallocation can be used for any inode. thus 183 * it's consumed from the beginning to the end. 184 * 185 * relation between them can be expressed as: 186 * in-core buddy = on-disk bitmap + preallocation descriptors 187 * 188 * this mean blocks mballoc considers used are: 189 * - allocated blocks (persistent) 190 * - preallocated blocks (non-persistent) 191 * 192 * consistency in mballoc world means that at any time a block is either 193 * free or used in ALL structures. notice: "any time" should not be read 194 * literally -- time is discrete and delimited by locks. 195 * 196 * to keep it simple, we don't use block numbers, instead we count number of 197 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 198 * 199 * all operations can be expressed as: 200 * - init buddy: buddy = on-disk + PAs 201 * - new PA: buddy += N; PA = N 202 * - use inode PA: on-disk += N; PA -= N 203 * - discard inode PA buddy -= on-disk - PA; PA = 0 204 * - use locality group PA on-disk += N; PA -= N 205 * - discard locality group PA buddy -= PA; PA = 0 206 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 207 * is used in real operation because we can't know actual used 208 * bits from PA, only from on-disk bitmap 209 * 210 * if we follow this strict logic, then all operations above should be atomic. 211 * given some of them can block, we'd have to use something like semaphores 212 * killing performance on high-end SMP hardware. let's try to relax it using 213 * the following knowledge: 214 * 1) if buddy is referenced, it's already initialized 215 * 2) while block is used in buddy and the buddy is referenced, 216 * nobody can re-allocate that block 217 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 218 * bit set and PA claims same block, it's OK. IOW, one can set bit in 219 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 220 * block 221 * 222 * so, now we're building a concurrency table: 223 * - init buddy vs. 224 * - new PA 225 * blocks for PA are allocated in the buddy, buddy must be referenced 226 * until PA is linked to allocation group to avoid concurrent buddy init 227 * - use inode PA 228 * we need to make sure that either on-disk bitmap or PA has uptodate data 229 * given (3) we care that PA-=N operation doesn't interfere with init 230 * - discard inode PA 231 * the simplest way would be to have buddy initialized by the discard 232 * - use locality group PA 233 * again PA-=N must be serialized with init 234 * - discard locality group PA 235 * the simplest way would be to have buddy initialized by the discard 236 * - new PA vs. 237 * - use inode PA 238 * i_data_sem serializes them 239 * - discard inode PA 240 * discard process must wait until PA isn't used by another process 241 * - use locality group PA 242 * some mutex should serialize them 243 * - discard locality group PA 244 * discard process must wait until PA isn't used by another process 245 * - use inode PA 246 * - use inode PA 247 * i_data_sem or another mutex should serializes them 248 * - discard inode PA 249 * discard process must wait until PA isn't used by another process 250 * - use locality group PA 251 * nothing wrong here -- they're different PAs covering different blocks 252 * - discard locality group PA 253 * discard process must wait until PA isn't used by another process 254 * 255 * now we're ready to make few consequences: 256 * - PA is referenced and while it is no discard is possible 257 * - PA is referenced until block isn't marked in on-disk bitmap 258 * - PA changes only after on-disk bitmap 259 * - discard must not compete with init. either init is done before 260 * any discard or they're serialized somehow 261 * - buddy init as sum of on-disk bitmap and PAs is done atomically 262 * 263 * a special case when we've used PA to emptiness. no need to modify buddy 264 * in this case, but we should care about concurrent init 265 * 266 */ 267 268 /* 269 * Logic in few words: 270 * 271 * - allocation: 272 * load group 273 * find blocks 274 * mark bits in on-disk bitmap 275 * release group 276 * 277 * - use preallocation: 278 * find proper PA (per-inode or group) 279 * load group 280 * mark bits in on-disk bitmap 281 * release group 282 * release PA 283 * 284 * - free: 285 * load group 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - discard preallocations in group: 290 * mark PAs deleted 291 * move them onto local list 292 * load on-disk bitmap 293 * load group 294 * remove PA from object (inode or locality group) 295 * mark free blocks in-core 296 * 297 * - discard inode's preallocations: 298 */ 299 300 /* 301 * Locking rules 302 * 303 * Locks: 304 * - bitlock on a group (group) 305 * - object (inode/locality) (object) 306 * - per-pa lock (pa) 307 * 308 * Paths: 309 * - new pa 310 * object 311 * group 312 * 313 * - find and use pa: 314 * pa 315 * 316 * - release consumed pa: 317 * pa 318 * group 319 * object 320 * 321 * - generate in-core bitmap: 322 * group 323 * pa 324 * 325 * - discard all for given object (inode, locality group): 326 * object 327 * pa 328 * group 329 * 330 * - discard all for given group: 331 * group 332 * pa 333 * group 334 * object 335 * 336 */ 337 static struct kmem_cache *ext4_pspace_cachep; 338 static struct kmem_cache *ext4_ac_cachep; 339 static struct kmem_cache *ext4_free_ext_cachep; 340 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 341 ext4_group_t group); 342 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 343 ext4_group_t group); 344 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn); 345 346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 347 { 348 #if BITS_PER_LONG == 64 349 *bit += ((unsigned long) addr & 7UL) << 3; 350 addr = (void *) ((unsigned long) addr & ~7UL); 351 #elif BITS_PER_LONG == 32 352 *bit += ((unsigned long) addr & 3UL) << 3; 353 addr = (void *) ((unsigned long) addr & ~3UL); 354 #else 355 #error "how many bits you are?!" 356 #endif 357 return addr; 358 } 359 360 static inline int mb_test_bit(int bit, void *addr) 361 { 362 /* 363 * ext4_test_bit on architecture like powerpc 364 * needs unsigned long aligned address 365 */ 366 addr = mb_correct_addr_and_bit(&bit, addr); 367 return ext4_test_bit(bit, addr); 368 } 369 370 static inline void mb_set_bit(int bit, void *addr) 371 { 372 addr = mb_correct_addr_and_bit(&bit, addr); 373 ext4_set_bit(bit, addr); 374 } 375 376 static inline void mb_clear_bit(int bit, void *addr) 377 { 378 addr = mb_correct_addr_and_bit(&bit, addr); 379 ext4_clear_bit(bit, addr); 380 } 381 382 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 383 { 384 int fix = 0, ret, tmpmax; 385 addr = mb_correct_addr_and_bit(&fix, addr); 386 tmpmax = max + fix; 387 start += fix; 388 389 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 390 if (ret > max) 391 return max; 392 return ret; 393 } 394 395 static inline int mb_find_next_bit(void *addr, int max, int start) 396 { 397 int fix = 0, ret, tmpmax; 398 addr = mb_correct_addr_and_bit(&fix, addr); 399 tmpmax = max + fix; 400 start += fix; 401 402 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 403 if (ret > max) 404 return max; 405 return ret; 406 } 407 408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 409 { 410 char *bb; 411 412 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 413 BUG_ON(max == NULL); 414 415 if (order > e4b->bd_blkbits + 1) { 416 *max = 0; 417 return NULL; 418 } 419 420 /* at order 0 we see each particular block */ 421 *max = 1 << (e4b->bd_blkbits + 3); 422 if (order == 0) 423 return EXT4_MB_BITMAP(e4b); 424 425 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 426 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 427 428 return bb; 429 } 430 431 #ifdef DOUBLE_CHECK 432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 433 int first, int count) 434 { 435 int i; 436 struct super_block *sb = e4b->bd_sb; 437 438 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 439 return; 440 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 441 for (i = 0; i < count; i++) { 442 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 443 ext4_fsblk_t blocknr; 444 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); 445 blocknr += first + i; 446 blocknr += 447 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 448 ext4_grp_locked_error(sb, e4b->bd_group, 449 __func__, "double-free of inode" 450 " %lu's block %llu(bit %u in group %u)", 451 inode ? inode->i_ino : 0, blocknr, 452 first + i, e4b->bd_group); 453 } 454 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 455 } 456 } 457 458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 459 { 460 int i; 461 462 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 463 return; 464 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 465 for (i = 0; i < count; i++) { 466 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 467 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 468 } 469 } 470 471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 472 { 473 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 474 unsigned char *b1, *b2; 475 int i; 476 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 477 b2 = (unsigned char *) bitmap; 478 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 479 if (b1[i] != b2[i]) { 480 printk(KERN_ERR "corruption in group %u " 481 "at byte %u(%u): %x in copy != %x " 482 "on disk/prealloc\n", 483 e4b->bd_group, i, i * 8, b1[i], b2[i]); 484 BUG(); 485 } 486 } 487 } 488 } 489 490 #else 491 static inline void mb_free_blocks_double(struct inode *inode, 492 struct ext4_buddy *e4b, int first, int count) 493 { 494 return; 495 } 496 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 497 int first, int count) 498 { 499 return; 500 } 501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 502 { 503 return; 504 } 505 #endif 506 507 #ifdef AGGRESSIVE_CHECK 508 509 #define MB_CHECK_ASSERT(assert) \ 510 do { \ 511 if (!(assert)) { \ 512 printk(KERN_EMERG \ 513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 514 function, file, line, # assert); \ 515 BUG(); \ 516 } \ 517 } while (0) 518 519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 520 const char *function, int line) 521 { 522 struct super_block *sb = e4b->bd_sb; 523 int order = e4b->bd_blkbits + 1; 524 int max; 525 int max2; 526 int i; 527 int j; 528 int k; 529 int count; 530 struct ext4_group_info *grp; 531 int fragments = 0; 532 int fstart; 533 struct list_head *cur; 534 void *buddy; 535 void *buddy2; 536 537 { 538 static int mb_check_counter; 539 if (mb_check_counter++ % 100 != 0) 540 return 0; 541 } 542 543 while (order > 1) { 544 buddy = mb_find_buddy(e4b, order, &max); 545 MB_CHECK_ASSERT(buddy); 546 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 547 MB_CHECK_ASSERT(buddy2); 548 MB_CHECK_ASSERT(buddy != buddy2); 549 MB_CHECK_ASSERT(max * 2 == max2); 550 551 count = 0; 552 for (i = 0; i < max; i++) { 553 554 if (mb_test_bit(i, buddy)) { 555 /* only single bit in buddy2 may be 1 */ 556 if (!mb_test_bit(i << 1, buddy2)) { 557 MB_CHECK_ASSERT( 558 mb_test_bit((i<<1)+1, buddy2)); 559 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 560 MB_CHECK_ASSERT( 561 mb_test_bit(i << 1, buddy2)); 562 } 563 continue; 564 } 565 566 /* both bits in buddy2 must be 0 */ 567 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 568 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 569 570 for (j = 0; j < (1 << order); j++) { 571 k = (i * (1 << order)) + j; 572 MB_CHECK_ASSERT( 573 !mb_test_bit(k, EXT4_MB_BITMAP(e4b))); 574 } 575 count++; 576 } 577 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 578 order--; 579 } 580 581 fstart = -1; 582 buddy = mb_find_buddy(e4b, 0, &max); 583 for (i = 0; i < max; i++) { 584 if (!mb_test_bit(i, buddy)) { 585 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 586 if (fstart == -1) { 587 fragments++; 588 fstart = i; 589 } 590 continue; 591 } 592 fstart = -1; 593 /* check used bits only */ 594 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 595 buddy2 = mb_find_buddy(e4b, j, &max2); 596 k = i >> j; 597 MB_CHECK_ASSERT(k < max2); 598 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 599 } 600 } 601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 602 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 603 604 grp = ext4_get_group_info(sb, e4b->bd_group); 605 buddy = mb_find_buddy(e4b, 0, &max); 606 list_for_each(cur, &grp->bb_prealloc_list) { 607 ext4_group_t groupnr; 608 struct ext4_prealloc_space *pa; 609 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 610 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 611 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 612 for (i = 0; i < pa->pa_len; i++) 613 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 614 } 615 return 0; 616 } 617 #undef MB_CHECK_ASSERT 618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 619 __FILE__, __func__, __LINE__) 620 #else 621 #define mb_check_buddy(e4b) 622 #endif 623 624 /* FIXME!! need more doc */ 625 static void ext4_mb_mark_free_simple(struct super_block *sb, 626 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 627 struct ext4_group_info *grp) 628 { 629 struct ext4_sb_info *sbi = EXT4_SB(sb); 630 ext4_grpblk_t min; 631 ext4_grpblk_t max; 632 ext4_grpblk_t chunk; 633 unsigned short border; 634 635 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb)); 636 637 border = 2 << sb->s_blocksize_bits; 638 639 while (len > 0) { 640 /* find how many blocks can be covered since this position */ 641 max = ffs(first | border) - 1; 642 643 /* find how many blocks of power 2 we need to mark */ 644 min = fls(len) - 1; 645 646 if (max < min) 647 min = max; 648 chunk = 1 << min; 649 650 /* mark multiblock chunks only */ 651 grp->bb_counters[min]++; 652 if (min > 0) 653 mb_clear_bit(first >> min, 654 buddy + sbi->s_mb_offsets[min]); 655 656 len -= chunk; 657 first += chunk; 658 } 659 } 660 661 static noinline_for_stack 662 void ext4_mb_generate_buddy(struct super_block *sb, 663 void *buddy, void *bitmap, ext4_group_t group) 664 { 665 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 666 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb); 667 ext4_grpblk_t i = 0; 668 ext4_grpblk_t first; 669 ext4_grpblk_t len; 670 unsigned free = 0; 671 unsigned fragments = 0; 672 unsigned long long period = get_cycles(); 673 674 /* initialize buddy from bitmap which is aggregation 675 * of on-disk bitmap and preallocations */ 676 i = mb_find_next_zero_bit(bitmap, max, 0); 677 grp->bb_first_free = i; 678 while (i < max) { 679 fragments++; 680 first = i; 681 i = mb_find_next_bit(bitmap, max, i); 682 len = i - first; 683 free += len; 684 if (len > 1) 685 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 686 else 687 grp->bb_counters[0]++; 688 if (i < max) 689 i = mb_find_next_zero_bit(bitmap, max, i); 690 } 691 grp->bb_fragments = fragments; 692 693 if (free != grp->bb_free) { 694 ext4_grp_locked_error(sb, group, __func__, 695 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd", 696 group, free, grp->bb_free); 697 /* 698 * If we intent to continue, we consider group descritor 699 * corrupt and update bb_free using bitmap value 700 */ 701 grp->bb_free = free; 702 } 703 704 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 705 706 period = get_cycles() - period; 707 spin_lock(&EXT4_SB(sb)->s_bal_lock); 708 EXT4_SB(sb)->s_mb_buddies_generated++; 709 EXT4_SB(sb)->s_mb_generation_time += period; 710 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 711 } 712 713 /* The buddy information is attached the buddy cache inode 714 * for convenience. The information regarding each group 715 * is loaded via ext4_mb_load_buddy. The information involve 716 * block bitmap and buddy information. The information are 717 * stored in the inode as 718 * 719 * { page } 720 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 721 * 722 * 723 * one block each for bitmap and buddy information. 724 * So for each group we take up 2 blocks. A page can 725 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 726 * So it can have information regarding groups_per_page which 727 * is blocks_per_page/2 728 */ 729 730 static int ext4_mb_init_cache(struct page *page, char *incore) 731 { 732 ext4_group_t ngroups; 733 int blocksize; 734 int blocks_per_page; 735 int groups_per_page; 736 int err = 0; 737 int i; 738 ext4_group_t first_group; 739 int first_block; 740 struct super_block *sb; 741 struct buffer_head *bhs; 742 struct buffer_head **bh; 743 struct inode *inode; 744 char *data; 745 char *bitmap; 746 747 mb_debug(1, "init page %lu\n", page->index); 748 749 inode = page->mapping->host; 750 sb = inode->i_sb; 751 ngroups = ext4_get_groups_count(sb); 752 blocksize = 1 << inode->i_blkbits; 753 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 754 755 groups_per_page = blocks_per_page >> 1; 756 if (groups_per_page == 0) 757 groups_per_page = 1; 758 759 /* allocate buffer_heads to read bitmaps */ 760 if (groups_per_page > 1) { 761 err = -ENOMEM; 762 i = sizeof(struct buffer_head *) * groups_per_page; 763 bh = kzalloc(i, GFP_NOFS); 764 if (bh == NULL) 765 goto out; 766 } else 767 bh = &bhs; 768 769 first_group = page->index * blocks_per_page / 2; 770 771 /* read all groups the page covers into the cache */ 772 for (i = 0; i < groups_per_page; i++) { 773 struct ext4_group_desc *desc; 774 775 if (first_group + i >= ngroups) 776 break; 777 778 err = -EIO; 779 desc = ext4_get_group_desc(sb, first_group + i, NULL); 780 if (desc == NULL) 781 goto out; 782 783 err = -ENOMEM; 784 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc)); 785 if (bh[i] == NULL) 786 goto out; 787 788 if (bitmap_uptodate(bh[i])) 789 continue; 790 791 lock_buffer(bh[i]); 792 if (bitmap_uptodate(bh[i])) { 793 unlock_buffer(bh[i]); 794 continue; 795 } 796 ext4_lock_group(sb, first_group + i); 797 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 798 ext4_init_block_bitmap(sb, bh[i], 799 first_group + i, desc); 800 set_bitmap_uptodate(bh[i]); 801 set_buffer_uptodate(bh[i]); 802 ext4_unlock_group(sb, first_group + i); 803 unlock_buffer(bh[i]); 804 continue; 805 } 806 ext4_unlock_group(sb, first_group + i); 807 if (buffer_uptodate(bh[i])) { 808 /* 809 * if not uninit if bh is uptodate, 810 * bitmap is also uptodate 811 */ 812 set_bitmap_uptodate(bh[i]); 813 unlock_buffer(bh[i]); 814 continue; 815 } 816 get_bh(bh[i]); 817 /* 818 * submit the buffer_head for read. We can 819 * safely mark the bitmap as uptodate now. 820 * We do it here so the bitmap uptodate bit 821 * get set with buffer lock held. 822 */ 823 set_bitmap_uptodate(bh[i]); 824 bh[i]->b_end_io = end_buffer_read_sync; 825 submit_bh(READ, bh[i]); 826 mb_debug(1, "read bitmap for group %u\n", first_group + i); 827 } 828 829 /* wait for I/O completion */ 830 for (i = 0; i < groups_per_page && bh[i]; i++) 831 wait_on_buffer(bh[i]); 832 833 err = -EIO; 834 for (i = 0; i < groups_per_page && bh[i]; i++) 835 if (!buffer_uptodate(bh[i])) 836 goto out; 837 838 err = 0; 839 first_block = page->index * blocks_per_page; 840 /* init the page */ 841 memset(page_address(page), 0xff, PAGE_CACHE_SIZE); 842 for (i = 0; i < blocks_per_page; i++) { 843 int group; 844 struct ext4_group_info *grinfo; 845 846 group = (first_block + i) >> 1; 847 if (group >= ngroups) 848 break; 849 850 /* 851 * data carry information regarding this 852 * particular group in the format specified 853 * above 854 * 855 */ 856 data = page_address(page) + (i * blocksize); 857 bitmap = bh[group - first_group]->b_data; 858 859 /* 860 * We place the buddy block and bitmap block 861 * close together 862 */ 863 if ((first_block + i) & 1) { 864 /* this is block of buddy */ 865 BUG_ON(incore == NULL); 866 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 867 group, page->index, i * blocksize); 868 grinfo = ext4_get_group_info(sb, group); 869 grinfo->bb_fragments = 0; 870 memset(grinfo->bb_counters, 0, 871 sizeof(*grinfo->bb_counters) * 872 (sb->s_blocksize_bits+2)); 873 /* 874 * incore got set to the group block bitmap below 875 */ 876 ext4_lock_group(sb, group); 877 ext4_mb_generate_buddy(sb, data, incore, group); 878 ext4_unlock_group(sb, group); 879 incore = NULL; 880 } else { 881 /* this is block of bitmap */ 882 BUG_ON(incore != NULL); 883 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 884 group, page->index, i * blocksize); 885 886 /* see comments in ext4_mb_put_pa() */ 887 ext4_lock_group(sb, group); 888 memcpy(data, bitmap, blocksize); 889 890 /* mark all preallocated blks used in in-core bitmap */ 891 ext4_mb_generate_from_pa(sb, data, group); 892 ext4_mb_generate_from_freelist(sb, data, group); 893 ext4_unlock_group(sb, group); 894 895 /* set incore so that the buddy information can be 896 * generated using this 897 */ 898 incore = data; 899 } 900 } 901 SetPageUptodate(page); 902 903 out: 904 if (bh) { 905 for (i = 0; i < groups_per_page && bh[i]; i++) 906 brelse(bh[i]); 907 if (bh != &bhs) 908 kfree(bh); 909 } 910 return err; 911 } 912 913 static noinline_for_stack 914 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 915 { 916 917 int ret = 0; 918 void *bitmap; 919 int blocks_per_page; 920 int block, pnum, poff; 921 int num_grp_locked = 0; 922 struct ext4_group_info *this_grp; 923 struct ext4_sb_info *sbi = EXT4_SB(sb); 924 struct inode *inode = sbi->s_buddy_cache; 925 struct page *page = NULL, *bitmap_page = NULL; 926 927 mb_debug(1, "init group %u\n", group); 928 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 929 this_grp = ext4_get_group_info(sb, group); 930 /* 931 * This ensures that we don't reinit the buddy cache 932 * page which map to the group from which we are already 933 * allocating. If we are looking at the buddy cache we would 934 * have taken a reference using ext4_mb_load_buddy and that 935 * would have taken the alloc_sem lock. 936 */ 937 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group); 938 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) { 939 /* 940 * somebody initialized the group 941 * return without doing anything 942 */ 943 ret = 0; 944 goto err; 945 } 946 /* 947 * the buddy cache inode stores the block bitmap 948 * and buddy information in consecutive blocks. 949 * So for each group we need two blocks. 950 */ 951 block = group * 2; 952 pnum = block / blocks_per_page; 953 poff = block % blocks_per_page; 954 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 955 if (page) { 956 BUG_ON(page->mapping != inode->i_mapping); 957 ret = ext4_mb_init_cache(page, NULL); 958 if (ret) { 959 unlock_page(page); 960 goto err; 961 } 962 unlock_page(page); 963 } 964 if (page == NULL || !PageUptodate(page)) { 965 ret = -EIO; 966 goto err; 967 } 968 mark_page_accessed(page); 969 bitmap_page = page; 970 bitmap = page_address(page) + (poff * sb->s_blocksize); 971 972 /* init buddy cache */ 973 block++; 974 pnum = block / blocks_per_page; 975 poff = block % blocks_per_page; 976 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 977 if (page == bitmap_page) { 978 /* 979 * If both the bitmap and buddy are in 980 * the same page we don't need to force 981 * init the buddy 982 */ 983 unlock_page(page); 984 } else if (page) { 985 BUG_ON(page->mapping != inode->i_mapping); 986 ret = ext4_mb_init_cache(page, bitmap); 987 if (ret) { 988 unlock_page(page); 989 goto err; 990 } 991 unlock_page(page); 992 } 993 if (page == NULL || !PageUptodate(page)) { 994 ret = -EIO; 995 goto err; 996 } 997 mark_page_accessed(page); 998 err: 999 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked); 1000 if (bitmap_page) 1001 page_cache_release(bitmap_page); 1002 if (page) 1003 page_cache_release(page); 1004 return ret; 1005 } 1006 1007 static noinline_for_stack int 1008 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1009 struct ext4_buddy *e4b) 1010 { 1011 int blocks_per_page; 1012 int block; 1013 int pnum; 1014 int poff; 1015 struct page *page; 1016 int ret; 1017 struct ext4_group_info *grp; 1018 struct ext4_sb_info *sbi = EXT4_SB(sb); 1019 struct inode *inode = sbi->s_buddy_cache; 1020 1021 mb_debug(1, "load group %u\n", group); 1022 1023 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1024 grp = ext4_get_group_info(sb, group); 1025 1026 e4b->bd_blkbits = sb->s_blocksize_bits; 1027 e4b->bd_info = ext4_get_group_info(sb, group); 1028 e4b->bd_sb = sb; 1029 e4b->bd_group = group; 1030 e4b->bd_buddy_page = NULL; 1031 e4b->bd_bitmap_page = NULL; 1032 e4b->alloc_semp = &grp->alloc_sem; 1033 1034 /* Take the read lock on the group alloc 1035 * sem. This would make sure a parallel 1036 * ext4_mb_init_group happening on other 1037 * groups mapped by the page is blocked 1038 * till we are done with allocation 1039 */ 1040 repeat_load_buddy: 1041 down_read(e4b->alloc_semp); 1042 1043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1044 /* we need to check for group need init flag 1045 * with alloc_semp held so that we can be sure 1046 * that new blocks didn't get added to the group 1047 * when we are loading the buddy cache 1048 */ 1049 up_read(e4b->alloc_semp); 1050 /* 1051 * we need full data about the group 1052 * to make a good selection 1053 */ 1054 ret = ext4_mb_init_group(sb, group); 1055 if (ret) 1056 return ret; 1057 goto repeat_load_buddy; 1058 } 1059 1060 /* 1061 * the buddy cache inode stores the block bitmap 1062 * and buddy information in consecutive blocks. 1063 * So for each group we need two blocks. 1064 */ 1065 block = group * 2; 1066 pnum = block / blocks_per_page; 1067 poff = block % blocks_per_page; 1068 1069 /* we could use find_or_create_page(), but it locks page 1070 * what we'd like to avoid in fast path ... */ 1071 page = find_get_page(inode->i_mapping, pnum); 1072 if (page == NULL || !PageUptodate(page)) { 1073 if (page) 1074 /* 1075 * drop the page reference and try 1076 * to get the page with lock. If we 1077 * are not uptodate that implies 1078 * somebody just created the page but 1079 * is yet to initialize the same. So 1080 * wait for it to initialize. 1081 */ 1082 page_cache_release(page); 1083 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1084 if (page) { 1085 BUG_ON(page->mapping != inode->i_mapping); 1086 if (!PageUptodate(page)) { 1087 ret = ext4_mb_init_cache(page, NULL); 1088 if (ret) { 1089 unlock_page(page); 1090 goto err; 1091 } 1092 mb_cmp_bitmaps(e4b, page_address(page) + 1093 (poff * sb->s_blocksize)); 1094 } 1095 unlock_page(page); 1096 } 1097 } 1098 if (page == NULL || !PageUptodate(page)) { 1099 ret = -EIO; 1100 goto err; 1101 } 1102 e4b->bd_bitmap_page = page; 1103 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1104 mark_page_accessed(page); 1105 1106 block++; 1107 pnum = block / blocks_per_page; 1108 poff = block % blocks_per_page; 1109 1110 page = find_get_page(inode->i_mapping, pnum); 1111 if (page == NULL || !PageUptodate(page)) { 1112 if (page) 1113 page_cache_release(page); 1114 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1115 if (page) { 1116 BUG_ON(page->mapping != inode->i_mapping); 1117 if (!PageUptodate(page)) { 1118 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1119 if (ret) { 1120 unlock_page(page); 1121 goto err; 1122 } 1123 } 1124 unlock_page(page); 1125 } 1126 } 1127 if (page == NULL || !PageUptodate(page)) { 1128 ret = -EIO; 1129 goto err; 1130 } 1131 e4b->bd_buddy_page = page; 1132 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1133 mark_page_accessed(page); 1134 1135 BUG_ON(e4b->bd_bitmap_page == NULL); 1136 BUG_ON(e4b->bd_buddy_page == NULL); 1137 1138 return 0; 1139 1140 err: 1141 if (e4b->bd_bitmap_page) 1142 page_cache_release(e4b->bd_bitmap_page); 1143 if (e4b->bd_buddy_page) 1144 page_cache_release(e4b->bd_buddy_page); 1145 e4b->bd_buddy = NULL; 1146 e4b->bd_bitmap = NULL; 1147 1148 /* Done with the buddy cache */ 1149 up_read(e4b->alloc_semp); 1150 return ret; 1151 } 1152 1153 static void ext4_mb_release_desc(struct ext4_buddy *e4b) 1154 { 1155 if (e4b->bd_bitmap_page) 1156 page_cache_release(e4b->bd_bitmap_page); 1157 if (e4b->bd_buddy_page) 1158 page_cache_release(e4b->bd_buddy_page); 1159 /* Done with the buddy cache */ 1160 if (e4b->alloc_semp) 1161 up_read(e4b->alloc_semp); 1162 } 1163 1164 1165 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1166 { 1167 int order = 1; 1168 void *bb; 1169 1170 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 1171 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1172 1173 bb = EXT4_MB_BUDDY(e4b); 1174 while (order <= e4b->bd_blkbits + 1) { 1175 block = block >> 1; 1176 if (!mb_test_bit(block, bb)) { 1177 /* this block is part of buddy of order 'order' */ 1178 return order; 1179 } 1180 bb += 1 << (e4b->bd_blkbits - order); 1181 order++; 1182 } 1183 return 0; 1184 } 1185 1186 static void mb_clear_bits(void *bm, int cur, int len) 1187 { 1188 __u32 *addr; 1189 1190 len = cur + len; 1191 while (cur < len) { 1192 if ((cur & 31) == 0 && (len - cur) >= 32) { 1193 /* fast path: clear whole word at once */ 1194 addr = bm + (cur >> 3); 1195 *addr = 0; 1196 cur += 32; 1197 continue; 1198 } 1199 mb_clear_bit(cur, bm); 1200 cur++; 1201 } 1202 } 1203 1204 static void mb_set_bits(void *bm, int cur, int len) 1205 { 1206 __u32 *addr; 1207 1208 len = cur + len; 1209 while (cur < len) { 1210 if ((cur & 31) == 0 && (len - cur) >= 32) { 1211 /* fast path: set whole word at once */ 1212 addr = bm + (cur >> 3); 1213 *addr = 0xffffffff; 1214 cur += 32; 1215 continue; 1216 } 1217 mb_set_bit(cur, bm); 1218 cur++; 1219 } 1220 } 1221 1222 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1223 int first, int count) 1224 { 1225 int block = 0; 1226 int max = 0; 1227 int order; 1228 void *buddy; 1229 void *buddy2; 1230 struct super_block *sb = e4b->bd_sb; 1231 1232 BUG_ON(first + count > (sb->s_blocksize << 3)); 1233 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1234 mb_check_buddy(e4b); 1235 mb_free_blocks_double(inode, e4b, first, count); 1236 1237 e4b->bd_info->bb_free += count; 1238 if (first < e4b->bd_info->bb_first_free) 1239 e4b->bd_info->bb_first_free = first; 1240 1241 /* let's maintain fragments counter */ 1242 if (first != 0) 1243 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b)); 1244 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1245 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b)); 1246 if (block && max) 1247 e4b->bd_info->bb_fragments--; 1248 else if (!block && !max) 1249 e4b->bd_info->bb_fragments++; 1250 1251 /* let's maintain buddy itself */ 1252 while (count-- > 0) { 1253 block = first++; 1254 order = 0; 1255 1256 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) { 1257 ext4_fsblk_t blocknr; 1258 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); 1259 blocknr += block; 1260 blocknr += 1261 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 1262 ext4_grp_locked_error(sb, e4b->bd_group, 1263 __func__, "double-free of inode" 1264 " %lu's block %llu(bit %u in group %u)", 1265 inode ? inode->i_ino : 0, blocknr, block, 1266 e4b->bd_group); 1267 } 1268 mb_clear_bit(block, EXT4_MB_BITMAP(e4b)); 1269 e4b->bd_info->bb_counters[order]++; 1270 1271 /* start of the buddy */ 1272 buddy = mb_find_buddy(e4b, order, &max); 1273 1274 do { 1275 block &= ~1UL; 1276 if (mb_test_bit(block, buddy) || 1277 mb_test_bit(block + 1, buddy)) 1278 break; 1279 1280 /* both the buddies are free, try to coalesce them */ 1281 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1282 1283 if (!buddy2) 1284 break; 1285 1286 if (order > 0) { 1287 /* for special purposes, we don't set 1288 * free bits in bitmap */ 1289 mb_set_bit(block, buddy); 1290 mb_set_bit(block + 1, buddy); 1291 } 1292 e4b->bd_info->bb_counters[order]--; 1293 e4b->bd_info->bb_counters[order]--; 1294 1295 block = block >> 1; 1296 order++; 1297 e4b->bd_info->bb_counters[order]++; 1298 1299 mb_clear_bit(block, buddy2); 1300 buddy = buddy2; 1301 } while (1); 1302 } 1303 mb_check_buddy(e4b); 1304 } 1305 1306 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, 1307 int needed, struct ext4_free_extent *ex) 1308 { 1309 int next = block; 1310 int max; 1311 int ord; 1312 void *buddy; 1313 1314 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1315 BUG_ON(ex == NULL); 1316 1317 buddy = mb_find_buddy(e4b, order, &max); 1318 BUG_ON(buddy == NULL); 1319 BUG_ON(block >= max); 1320 if (mb_test_bit(block, buddy)) { 1321 ex->fe_len = 0; 1322 ex->fe_start = 0; 1323 ex->fe_group = 0; 1324 return 0; 1325 } 1326 1327 /* FIXME dorp order completely ? */ 1328 if (likely(order == 0)) { 1329 /* find actual order */ 1330 order = mb_find_order_for_block(e4b, block); 1331 block = block >> order; 1332 } 1333 1334 ex->fe_len = 1 << order; 1335 ex->fe_start = block << order; 1336 ex->fe_group = e4b->bd_group; 1337 1338 /* calc difference from given start */ 1339 next = next - ex->fe_start; 1340 ex->fe_len -= next; 1341 ex->fe_start += next; 1342 1343 while (needed > ex->fe_len && 1344 (buddy = mb_find_buddy(e4b, order, &max))) { 1345 1346 if (block + 1 >= max) 1347 break; 1348 1349 next = (block + 1) * (1 << order); 1350 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b))) 1351 break; 1352 1353 ord = mb_find_order_for_block(e4b, next); 1354 1355 order = ord; 1356 block = next >> order; 1357 ex->fe_len += 1 << order; 1358 } 1359 1360 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1361 return ex->fe_len; 1362 } 1363 1364 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1365 { 1366 int ord; 1367 int mlen = 0; 1368 int max = 0; 1369 int cur; 1370 int start = ex->fe_start; 1371 int len = ex->fe_len; 1372 unsigned ret = 0; 1373 int len0 = len; 1374 void *buddy; 1375 1376 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1377 BUG_ON(e4b->bd_group != ex->fe_group); 1378 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1379 mb_check_buddy(e4b); 1380 mb_mark_used_double(e4b, start, len); 1381 1382 e4b->bd_info->bb_free -= len; 1383 if (e4b->bd_info->bb_first_free == start) 1384 e4b->bd_info->bb_first_free += len; 1385 1386 /* let's maintain fragments counter */ 1387 if (start != 0) 1388 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b)); 1389 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1390 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b)); 1391 if (mlen && max) 1392 e4b->bd_info->bb_fragments++; 1393 else if (!mlen && !max) 1394 e4b->bd_info->bb_fragments--; 1395 1396 /* let's maintain buddy itself */ 1397 while (len) { 1398 ord = mb_find_order_for_block(e4b, start); 1399 1400 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1401 /* the whole chunk may be allocated at once! */ 1402 mlen = 1 << ord; 1403 buddy = mb_find_buddy(e4b, ord, &max); 1404 BUG_ON((start >> ord) >= max); 1405 mb_set_bit(start >> ord, buddy); 1406 e4b->bd_info->bb_counters[ord]--; 1407 start += mlen; 1408 len -= mlen; 1409 BUG_ON(len < 0); 1410 continue; 1411 } 1412 1413 /* store for history */ 1414 if (ret == 0) 1415 ret = len | (ord << 16); 1416 1417 /* we have to split large buddy */ 1418 BUG_ON(ord <= 0); 1419 buddy = mb_find_buddy(e4b, ord, &max); 1420 mb_set_bit(start >> ord, buddy); 1421 e4b->bd_info->bb_counters[ord]--; 1422 1423 ord--; 1424 cur = (start >> ord) & ~1U; 1425 buddy = mb_find_buddy(e4b, ord, &max); 1426 mb_clear_bit(cur, buddy); 1427 mb_clear_bit(cur + 1, buddy); 1428 e4b->bd_info->bb_counters[ord]++; 1429 e4b->bd_info->bb_counters[ord]++; 1430 } 1431 1432 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0); 1433 mb_check_buddy(e4b); 1434 1435 return ret; 1436 } 1437 1438 /* 1439 * Must be called under group lock! 1440 */ 1441 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1442 struct ext4_buddy *e4b) 1443 { 1444 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1445 int ret; 1446 1447 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1448 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1449 1450 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1451 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1452 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1453 1454 /* preallocation can change ac_b_ex, thus we store actually 1455 * allocated blocks for history */ 1456 ac->ac_f_ex = ac->ac_b_ex; 1457 1458 ac->ac_status = AC_STATUS_FOUND; 1459 ac->ac_tail = ret & 0xffff; 1460 ac->ac_buddy = ret >> 16; 1461 1462 /* 1463 * take the page reference. We want the page to be pinned 1464 * so that we don't get a ext4_mb_init_cache_call for this 1465 * group until we update the bitmap. That would mean we 1466 * double allocate blocks. The reference is dropped 1467 * in ext4_mb_release_context 1468 */ 1469 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1470 get_page(ac->ac_bitmap_page); 1471 ac->ac_buddy_page = e4b->bd_buddy_page; 1472 get_page(ac->ac_buddy_page); 1473 /* on allocation we use ac to track the held semaphore */ 1474 ac->alloc_semp = e4b->alloc_semp; 1475 e4b->alloc_semp = NULL; 1476 /* store last allocated for subsequent stream allocation */ 1477 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1478 spin_lock(&sbi->s_md_lock); 1479 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1480 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1481 spin_unlock(&sbi->s_md_lock); 1482 } 1483 } 1484 1485 /* 1486 * regular allocator, for general purposes allocation 1487 */ 1488 1489 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1490 struct ext4_buddy *e4b, 1491 int finish_group) 1492 { 1493 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1494 struct ext4_free_extent *bex = &ac->ac_b_ex; 1495 struct ext4_free_extent *gex = &ac->ac_g_ex; 1496 struct ext4_free_extent ex; 1497 int max; 1498 1499 if (ac->ac_status == AC_STATUS_FOUND) 1500 return; 1501 /* 1502 * We don't want to scan for a whole year 1503 */ 1504 if (ac->ac_found > sbi->s_mb_max_to_scan && 1505 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1506 ac->ac_status = AC_STATUS_BREAK; 1507 return; 1508 } 1509 1510 /* 1511 * Haven't found good chunk so far, let's continue 1512 */ 1513 if (bex->fe_len < gex->fe_len) 1514 return; 1515 1516 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1517 && bex->fe_group == e4b->bd_group) { 1518 /* recheck chunk's availability - we don't know 1519 * when it was found (within this lock-unlock 1520 * period or not) */ 1521 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); 1522 if (max >= gex->fe_len) { 1523 ext4_mb_use_best_found(ac, e4b); 1524 return; 1525 } 1526 } 1527 } 1528 1529 /* 1530 * The routine checks whether found extent is good enough. If it is, 1531 * then the extent gets marked used and flag is set to the context 1532 * to stop scanning. Otherwise, the extent is compared with the 1533 * previous found extent and if new one is better, then it's stored 1534 * in the context. Later, the best found extent will be used, if 1535 * mballoc can't find good enough extent. 1536 * 1537 * FIXME: real allocation policy is to be designed yet! 1538 */ 1539 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1540 struct ext4_free_extent *ex, 1541 struct ext4_buddy *e4b) 1542 { 1543 struct ext4_free_extent *bex = &ac->ac_b_ex; 1544 struct ext4_free_extent *gex = &ac->ac_g_ex; 1545 1546 BUG_ON(ex->fe_len <= 0); 1547 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1548 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1549 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1550 1551 ac->ac_found++; 1552 1553 /* 1554 * The special case - take what you catch first 1555 */ 1556 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1557 *bex = *ex; 1558 ext4_mb_use_best_found(ac, e4b); 1559 return; 1560 } 1561 1562 /* 1563 * Let's check whether the chuck is good enough 1564 */ 1565 if (ex->fe_len == gex->fe_len) { 1566 *bex = *ex; 1567 ext4_mb_use_best_found(ac, e4b); 1568 return; 1569 } 1570 1571 /* 1572 * If this is first found extent, just store it in the context 1573 */ 1574 if (bex->fe_len == 0) { 1575 *bex = *ex; 1576 return; 1577 } 1578 1579 /* 1580 * If new found extent is better, store it in the context 1581 */ 1582 if (bex->fe_len < gex->fe_len) { 1583 /* if the request isn't satisfied, any found extent 1584 * larger than previous best one is better */ 1585 if (ex->fe_len > bex->fe_len) 1586 *bex = *ex; 1587 } else if (ex->fe_len > gex->fe_len) { 1588 /* if the request is satisfied, then we try to find 1589 * an extent that still satisfy the request, but is 1590 * smaller than previous one */ 1591 if (ex->fe_len < bex->fe_len) 1592 *bex = *ex; 1593 } 1594 1595 ext4_mb_check_limits(ac, e4b, 0); 1596 } 1597 1598 static noinline_for_stack 1599 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1600 struct ext4_buddy *e4b) 1601 { 1602 struct ext4_free_extent ex = ac->ac_b_ex; 1603 ext4_group_t group = ex.fe_group; 1604 int max; 1605 int err; 1606 1607 BUG_ON(ex.fe_len <= 0); 1608 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1609 if (err) 1610 return err; 1611 1612 ext4_lock_group(ac->ac_sb, group); 1613 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); 1614 1615 if (max > 0) { 1616 ac->ac_b_ex = ex; 1617 ext4_mb_use_best_found(ac, e4b); 1618 } 1619 1620 ext4_unlock_group(ac->ac_sb, group); 1621 ext4_mb_release_desc(e4b); 1622 1623 return 0; 1624 } 1625 1626 static noinline_for_stack 1627 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1628 struct ext4_buddy *e4b) 1629 { 1630 ext4_group_t group = ac->ac_g_ex.fe_group; 1631 int max; 1632 int err; 1633 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1634 struct ext4_super_block *es = sbi->s_es; 1635 struct ext4_free_extent ex; 1636 1637 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1638 return 0; 1639 1640 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1641 if (err) 1642 return err; 1643 1644 ext4_lock_group(ac->ac_sb, group); 1645 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, 1646 ac->ac_g_ex.fe_len, &ex); 1647 1648 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1649 ext4_fsblk_t start; 1650 1651 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) + 1652 ex.fe_start + le32_to_cpu(es->s_first_data_block); 1653 /* use do_div to get remainder (would be 64-bit modulo) */ 1654 if (do_div(start, sbi->s_stripe) == 0) { 1655 ac->ac_found++; 1656 ac->ac_b_ex = ex; 1657 ext4_mb_use_best_found(ac, e4b); 1658 } 1659 } else if (max >= ac->ac_g_ex.fe_len) { 1660 BUG_ON(ex.fe_len <= 0); 1661 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1662 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1663 ac->ac_found++; 1664 ac->ac_b_ex = ex; 1665 ext4_mb_use_best_found(ac, e4b); 1666 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1667 /* Sometimes, caller may want to merge even small 1668 * number of blocks to an existing extent */ 1669 BUG_ON(ex.fe_len <= 0); 1670 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1671 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1672 ac->ac_found++; 1673 ac->ac_b_ex = ex; 1674 ext4_mb_use_best_found(ac, e4b); 1675 } 1676 ext4_unlock_group(ac->ac_sb, group); 1677 ext4_mb_release_desc(e4b); 1678 1679 return 0; 1680 } 1681 1682 /* 1683 * The routine scans buddy structures (not bitmap!) from given order 1684 * to max order and tries to find big enough chunk to satisfy the req 1685 */ 1686 static noinline_for_stack 1687 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1688 struct ext4_buddy *e4b) 1689 { 1690 struct super_block *sb = ac->ac_sb; 1691 struct ext4_group_info *grp = e4b->bd_info; 1692 void *buddy; 1693 int i; 1694 int k; 1695 int max; 1696 1697 BUG_ON(ac->ac_2order <= 0); 1698 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1699 if (grp->bb_counters[i] == 0) 1700 continue; 1701 1702 buddy = mb_find_buddy(e4b, i, &max); 1703 BUG_ON(buddy == NULL); 1704 1705 k = mb_find_next_zero_bit(buddy, max, 0); 1706 BUG_ON(k >= max); 1707 1708 ac->ac_found++; 1709 1710 ac->ac_b_ex.fe_len = 1 << i; 1711 ac->ac_b_ex.fe_start = k << i; 1712 ac->ac_b_ex.fe_group = e4b->bd_group; 1713 1714 ext4_mb_use_best_found(ac, e4b); 1715 1716 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1717 1718 if (EXT4_SB(sb)->s_mb_stats) 1719 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1720 1721 break; 1722 } 1723 } 1724 1725 /* 1726 * The routine scans the group and measures all found extents. 1727 * In order to optimize scanning, caller must pass number of 1728 * free blocks in the group, so the routine can know upper limit. 1729 */ 1730 static noinline_for_stack 1731 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1732 struct ext4_buddy *e4b) 1733 { 1734 struct super_block *sb = ac->ac_sb; 1735 void *bitmap = EXT4_MB_BITMAP(e4b); 1736 struct ext4_free_extent ex; 1737 int i; 1738 int free; 1739 1740 free = e4b->bd_info->bb_free; 1741 BUG_ON(free <= 0); 1742 1743 i = e4b->bd_info->bb_first_free; 1744 1745 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1746 i = mb_find_next_zero_bit(bitmap, 1747 EXT4_BLOCKS_PER_GROUP(sb), i); 1748 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) { 1749 /* 1750 * IF we have corrupt bitmap, we won't find any 1751 * free blocks even though group info says we 1752 * we have free blocks 1753 */ 1754 ext4_grp_locked_error(sb, e4b->bd_group, 1755 __func__, "%d free blocks as per " 1756 "group info. But bitmap says 0", 1757 free); 1758 break; 1759 } 1760 1761 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); 1762 BUG_ON(ex.fe_len <= 0); 1763 if (free < ex.fe_len) { 1764 ext4_grp_locked_error(sb, e4b->bd_group, 1765 __func__, "%d free blocks as per " 1766 "group info. But got %d blocks", 1767 free, ex.fe_len); 1768 /* 1769 * The number of free blocks differs. This mostly 1770 * indicate that the bitmap is corrupt. So exit 1771 * without claiming the space. 1772 */ 1773 break; 1774 } 1775 1776 ext4_mb_measure_extent(ac, &ex, e4b); 1777 1778 i += ex.fe_len; 1779 free -= ex.fe_len; 1780 } 1781 1782 ext4_mb_check_limits(ac, e4b, 1); 1783 } 1784 1785 /* 1786 * This is a special case for storages like raid5 1787 * we try to find stripe-aligned chunks for stripe-size requests 1788 * XXX should do so at least for multiples of stripe size as well 1789 */ 1790 static noinline_for_stack 1791 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1792 struct ext4_buddy *e4b) 1793 { 1794 struct super_block *sb = ac->ac_sb; 1795 struct ext4_sb_info *sbi = EXT4_SB(sb); 1796 void *bitmap = EXT4_MB_BITMAP(e4b); 1797 struct ext4_free_extent ex; 1798 ext4_fsblk_t first_group_block; 1799 ext4_fsblk_t a; 1800 ext4_grpblk_t i; 1801 int max; 1802 1803 BUG_ON(sbi->s_stripe == 0); 1804 1805 /* find first stripe-aligned block in group */ 1806 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb) 1807 + le32_to_cpu(sbi->s_es->s_first_data_block); 1808 a = first_group_block + sbi->s_stripe - 1; 1809 do_div(a, sbi->s_stripe); 1810 i = (a * sbi->s_stripe) - first_group_block; 1811 1812 while (i < EXT4_BLOCKS_PER_GROUP(sb)) { 1813 if (!mb_test_bit(i, bitmap)) { 1814 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); 1815 if (max >= sbi->s_stripe) { 1816 ac->ac_found++; 1817 ac->ac_b_ex = ex; 1818 ext4_mb_use_best_found(ac, e4b); 1819 break; 1820 } 1821 } 1822 i += sbi->s_stripe; 1823 } 1824 } 1825 1826 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1827 ext4_group_t group, int cr) 1828 { 1829 unsigned free, fragments; 1830 unsigned i, bits; 1831 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1832 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1833 1834 BUG_ON(cr < 0 || cr >= 4); 1835 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp)); 1836 1837 free = grp->bb_free; 1838 fragments = grp->bb_fragments; 1839 if (free == 0) 1840 return 0; 1841 if (fragments == 0) 1842 return 0; 1843 1844 switch (cr) { 1845 case 0: 1846 BUG_ON(ac->ac_2order == 0); 1847 1848 /* Avoid using the first bg of a flexgroup for data files */ 1849 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1850 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1851 ((group % flex_size) == 0)) 1852 return 0; 1853 1854 bits = ac->ac_sb->s_blocksize_bits + 1; 1855 for (i = ac->ac_2order; i <= bits; i++) 1856 if (grp->bb_counters[i] > 0) 1857 return 1; 1858 break; 1859 case 1: 1860 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1861 return 1; 1862 break; 1863 case 2: 1864 if (free >= ac->ac_g_ex.fe_len) 1865 return 1; 1866 break; 1867 case 3: 1868 return 1; 1869 default: 1870 BUG(); 1871 } 1872 1873 return 0; 1874 } 1875 1876 /* 1877 * lock the group_info alloc_sem of all the groups 1878 * belonging to the same buddy cache page. This 1879 * make sure other parallel operation on the buddy 1880 * cache doesn't happen whild holding the buddy cache 1881 * lock 1882 */ 1883 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group) 1884 { 1885 int i; 1886 int block, pnum; 1887 int blocks_per_page; 1888 int groups_per_page; 1889 ext4_group_t ngroups = ext4_get_groups_count(sb); 1890 ext4_group_t first_group; 1891 struct ext4_group_info *grp; 1892 1893 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1894 /* 1895 * the buddy cache inode stores the block bitmap 1896 * and buddy information in consecutive blocks. 1897 * So for each group we need two blocks. 1898 */ 1899 block = group * 2; 1900 pnum = block / blocks_per_page; 1901 first_group = pnum * blocks_per_page / 2; 1902 1903 groups_per_page = blocks_per_page >> 1; 1904 if (groups_per_page == 0) 1905 groups_per_page = 1; 1906 /* read all groups the page covers into the cache */ 1907 for (i = 0; i < groups_per_page; i++) { 1908 1909 if ((first_group + i) >= ngroups) 1910 break; 1911 grp = ext4_get_group_info(sb, first_group + i); 1912 /* take all groups write allocation 1913 * semaphore. This make sure there is 1914 * no block allocation going on in any 1915 * of that groups 1916 */ 1917 down_write_nested(&grp->alloc_sem, i); 1918 } 1919 return i; 1920 } 1921 1922 void ext4_mb_put_buddy_cache_lock(struct super_block *sb, 1923 ext4_group_t group, int locked_group) 1924 { 1925 int i; 1926 int block, pnum; 1927 int blocks_per_page; 1928 ext4_group_t first_group; 1929 struct ext4_group_info *grp; 1930 1931 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1932 /* 1933 * the buddy cache inode stores the block bitmap 1934 * and buddy information in consecutive blocks. 1935 * So for each group we need two blocks. 1936 */ 1937 block = group * 2; 1938 pnum = block / blocks_per_page; 1939 first_group = pnum * blocks_per_page / 2; 1940 /* release locks on all the groups */ 1941 for (i = 0; i < locked_group; i++) { 1942 1943 grp = ext4_get_group_info(sb, first_group + i); 1944 /* take all groups write allocation 1945 * semaphore. This make sure there is 1946 * no block allocation going on in any 1947 * of that groups 1948 */ 1949 up_write(&grp->alloc_sem); 1950 } 1951 1952 } 1953 1954 static noinline_for_stack int 1955 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1956 { 1957 ext4_group_t ngroups, group, i; 1958 int cr; 1959 int err = 0; 1960 int bsbits; 1961 struct ext4_sb_info *sbi; 1962 struct super_block *sb; 1963 struct ext4_buddy e4b; 1964 1965 sb = ac->ac_sb; 1966 sbi = EXT4_SB(sb); 1967 ngroups = ext4_get_groups_count(sb); 1968 /* non-extent files are limited to low blocks/groups */ 1969 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL)) 1970 ngroups = sbi->s_blockfile_groups; 1971 1972 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1973 1974 /* first, try the goal */ 1975 err = ext4_mb_find_by_goal(ac, &e4b); 1976 if (err || ac->ac_status == AC_STATUS_FOUND) 1977 goto out; 1978 1979 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1980 goto out; 1981 1982 /* 1983 * ac->ac2_order is set only if the fe_len is a power of 2 1984 * if ac2_order is set we also set criteria to 0 so that we 1985 * try exact allocation using buddy. 1986 */ 1987 i = fls(ac->ac_g_ex.fe_len); 1988 ac->ac_2order = 0; 1989 /* 1990 * We search using buddy data only if the order of the request 1991 * is greater than equal to the sbi_s_mb_order2_reqs 1992 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1993 */ 1994 if (i >= sbi->s_mb_order2_reqs) { 1995 /* 1996 * This should tell if fe_len is exactly power of 2 1997 */ 1998 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1999 ac->ac_2order = i - 1; 2000 } 2001 2002 bsbits = ac->ac_sb->s_blocksize_bits; 2003 2004 /* if stream allocation is enabled, use global goal */ 2005 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2006 /* TBD: may be hot point */ 2007 spin_lock(&sbi->s_md_lock); 2008 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2009 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2010 spin_unlock(&sbi->s_md_lock); 2011 } 2012 2013 /* Let's just scan groups to find more-less suitable blocks */ 2014 cr = ac->ac_2order ? 0 : 1; 2015 /* 2016 * cr == 0 try to get exact allocation, 2017 * cr == 3 try to get anything 2018 */ 2019 repeat: 2020 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2021 ac->ac_criteria = cr; 2022 /* 2023 * searching for the right group start 2024 * from the goal value specified 2025 */ 2026 group = ac->ac_g_ex.fe_group; 2027 2028 for (i = 0; i < ngroups; group++, i++) { 2029 struct ext4_group_info *grp; 2030 struct ext4_group_desc *desc; 2031 2032 if (group == ngroups) 2033 group = 0; 2034 2035 /* quick check to skip empty groups */ 2036 grp = ext4_get_group_info(sb, group); 2037 if (grp->bb_free == 0) 2038 continue; 2039 2040 err = ext4_mb_load_buddy(sb, group, &e4b); 2041 if (err) 2042 goto out; 2043 2044 ext4_lock_group(sb, group); 2045 if (!ext4_mb_good_group(ac, group, cr)) { 2046 /* someone did allocation from this group */ 2047 ext4_unlock_group(sb, group); 2048 ext4_mb_release_desc(&e4b); 2049 continue; 2050 } 2051 2052 ac->ac_groups_scanned++; 2053 desc = ext4_get_group_desc(sb, group, NULL); 2054 if (cr == 0) 2055 ext4_mb_simple_scan_group(ac, &e4b); 2056 else if (cr == 1 && 2057 ac->ac_g_ex.fe_len == sbi->s_stripe) 2058 ext4_mb_scan_aligned(ac, &e4b); 2059 else 2060 ext4_mb_complex_scan_group(ac, &e4b); 2061 2062 ext4_unlock_group(sb, group); 2063 ext4_mb_release_desc(&e4b); 2064 2065 if (ac->ac_status != AC_STATUS_CONTINUE) 2066 break; 2067 } 2068 } 2069 2070 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2071 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2072 /* 2073 * We've been searching too long. Let's try to allocate 2074 * the best chunk we've found so far 2075 */ 2076 2077 ext4_mb_try_best_found(ac, &e4b); 2078 if (ac->ac_status != AC_STATUS_FOUND) { 2079 /* 2080 * Someone more lucky has already allocated it. 2081 * The only thing we can do is just take first 2082 * found block(s) 2083 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2084 */ 2085 ac->ac_b_ex.fe_group = 0; 2086 ac->ac_b_ex.fe_start = 0; 2087 ac->ac_b_ex.fe_len = 0; 2088 ac->ac_status = AC_STATUS_CONTINUE; 2089 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2090 cr = 3; 2091 atomic_inc(&sbi->s_mb_lost_chunks); 2092 goto repeat; 2093 } 2094 } 2095 out: 2096 return err; 2097 } 2098 2099 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2100 { 2101 struct super_block *sb = seq->private; 2102 ext4_group_t group; 2103 2104 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2105 return NULL; 2106 group = *pos + 1; 2107 return (void *) ((unsigned long) group); 2108 } 2109 2110 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2111 { 2112 struct super_block *sb = seq->private; 2113 ext4_group_t group; 2114 2115 ++*pos; 2116 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2117 return NULL; 2118 group = *pos + 1; 2119 return (void *) ((unsigned long) group); 2120 } 2121 2122 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2123 { 2124 struct super_block *sb = seq->private; 2125 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2126 int i; 2127 int err; 2128 struct ext4_buddy e4b; 2129 struct sg { 2130 struct ext4_group_info info; 2131 ext4_grpblk_t counters[16]; 2132 } sg; 2133 2134 group--; 2135 if (group == 0) 2136 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2137 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2138 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2139 "group", "free", "frags", "first", 2140 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2141 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2142 2143 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2144 sizeof(struct ext4_group_info); 2145 err = ext4_mb_load_buddy(sb, group, &e4b); 2146 if (err) { 2147 seq_printf(seq, "#%-5u: I/O error\n", group); 2148 return 0; 2149 } 2150 ext4_lock_group(sb, group); 2151 memcpy(&sg, ext4_get_group_info(sb, group), i); 2152 ext4_unlock_group(sb, group); 2153 ext4_mb_release_desc(&e4b); 2154 2155 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2156 sg.info.bb_fragments, sg.info.bb_first_free); 2157 for (i = 0; i <= 13; i++) 2158 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2159 sg.info.bb_counters[i] : 0); 2160 seq_printf(seq, " ]\n"); 2161 2162 return 0; 2163 } 2164 2165 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2166 { 2167 } 2168 2169 static const struct seq_operations ext4_mb_seq_groups_ops = { 2170 .start = ext4_mb_seq_groups_start, 2171 .next = ext4_mb_seq_groups_next, 2172 .stop = ext4_mb_seq_groups_stop, 2173 .show = ext4_mb_seq_groups_show, 2174 }; 2175 2176 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2177 { 2178 struct super_block *sb = PDE(inode)->data; 2179 int rc; 2180 2181 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2182 if (rc == 0) { 2183 struct seq_file *m = (struct seq_file *)file->private_data; 2184 m->private = sb; 2185 } 2186 return rc; 2187 2188 } 2189 2190 static const struct file_operations ext4_mb_seq_groups_fops = { 2191 .owner = THIS_MODULE, 2192 .open = ext4_mb_seq_groups_open, 2193 .read = seq_read, 2194 .llseek = seq_lseek, 2195 .release = seq_release, 2196 }; 2197 2198 2199 /* Create and initialize ext4_group_info data for the given group. */ 2200 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2201 struct ext4_group_desc *desc) 2202 { 2203 int i, len; 2204 int metalen = 0; 2205 struct ext4_sb_info *sbi = EXT4_SB(sb); 2206 struct ext4_group_info **meta_group_info; 2207 2208 /* 2209 * First check if this group is the first of a reserved block. 2210 * If it's true, we have to allocate a new table of pointers 2211 * to ext4_group_info structures 2212 */ 2213 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2214 metalen = sizeof(*meta_group_info) << 2215 EXT4_DESC_PER_BLOCK_BITS(sb); 2216 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2217 if (meta_group_info == NULL) { 2218 printk(KERN_ERR "EXT4-fs: can't allocate mem for a " 2219 "buddy group\n"); 2220 goto exit_meta_group_info; 2221 } 2222 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2223 meta_group_info; 2224 } 2225 2226 /* 2227 * calculate needed size. if change bb_counters size, 2228 * don't forget about ext4_mb_generate_buddy() 2229 */ 2230 len = offsetof(typeof(**meta_group_info), 2231 bb_counters[sb->s_blocksize_bits + 2]); 2232 2233 meta_group_info = 2234 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2235 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2236 2237 meta_group_info[i] = kzalloc(len, GFP_KERNEL); 2238 if (meta_group_info[i] == NULL) { 2239 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n"); 2240 goto exit_group_info; 2241 } 2242 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2243 &(meta_group_info[i]->bb_state)); 2244 2245 /* 2246 * initialize bb_free to be able to skip 2247 * empty groups without initialization 2248 */ 2249 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2250 meta_group_info[i]->bb_free = 2251 ext4_free_blocks_after_init(sb, group, desc); 2252 } else { 2253 meta_group_info[i]->bb_free = 2254 ext4_free_blks_count(sb, desc); 2255 } 2256 2257 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2258 init_rwsem(&meta_group_info[i]->alloc_sem); 2259 meta_group_info[i]->bb_free_root.rb_node = NULL; 2260 2261 #ifdef DOUBLE_CHECK 2262 { 2263 struct buffer_head *bh; 2264 meta_group_info[i]->bb_bitmap = 2265 kmalloc(sb->s_blocksize, GFP_KERNEL); 2266 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2267 bh = ext4_read_block_bitmap(sb, group); 2268 BUG_ON(bh == NULL); 2269 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2270 sb->s_blocksize); 2271 put_bh(bh); 2272 } 2273 #endif 2274 2275 return 0; 2276 2277 exit_group_info: 2278 /* If a meta_group_info table has been allocated, release it now */ 2279 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) 2280 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2281 exit_meta_group_info: 2282 return -ENOMEM; 2283 } /* ext4_mb_add_groupinfo */ 2284 2285 static int ext4_mb_init_backend(struct super_block *sb) 2286 { 2287 ext4_group_t ngroups = ext4_get_groups_count(sb); 2288 ext4_group_t i; 2289 struct ext4_sb_info *sbi = EXT4_SB(sb); 2290 struct ext4_super_block *es = sbi->s_es; 2291 int num_meta_group_infos; 2292 int num_meta_group_infos_max; 2293 int array_size; 2294 struct ext4_group_desc *desc; 2295 2296 /* This is the number of blocks used by GDT */ 2297 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 2298 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); 2299 2300 /* 2301 * This is the total number of blocks used by GDT including 2302 * the number of reserved blocks for GDT. 2303 * The s_group_info array is allocated with this value 2304 * to allow a clean online resize without a complex 2305 * manipulation of pointer. 2306 * The drawback is the unused memory when no resize 2307 * occurs but it's very low in terms of pages 2308 * (see comments below) 2309 * Need to handle this properly when META_BG resizing is allowed 2310 */ 2311 num_meta_group_infos_max = num_meta_group_infos + 2312 le16_to_cpu(es->s_reserved_gdt_blocks); 2313 2314 /* 2315 * array_size is the size of s_group_info array. We round it 2316 * to the next power of two because this approximation is done 2317 * internally by kmalloc so we can have some more memory 2318 * for free here (e.g. may be used for META_BG resize). 2319 */ 2320 array_size = 1; 2321 while (array_size < sizeof(*sbi->s_group_info) * 2322 num_meta_group_infos_max) 2323 array_size = array_size << 1; 2324 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte 2325 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. 2326 * So a two level scheme suffices for now. */ 2327 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL); 2328 if (sbi->s_group_info == NULL) { 2329 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n"); 2330 return -ENOMEM; 2331 } 2332 sbi->s_buddy_cache = new_inode(sb); 2333 if (sbi->s_buddy_cache == NULL) { 2334 printk(KERN_ERR "EXT4-fs: can't get new inode\n"); 2335 goto err_freesgi; 2336 } 2337 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2338 for (i = 0; i < ngroups; i++) { 2339 desc = ext4_get_group_desc(sb, i, NULL); 2340 if (desc == NULL) { 2341 printk(KERN_ERR 2342 "EXT4-fs: can't read descriptor %u\n", i); 2343 goto err_freebuddy; 2344 } 2345 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2346 goto err_freebuddy; 2347 } 2348 2349 return 0; 2350 2351 err_freebuddy: 2352 while (i-- > 0) 2353 kfree(ext4_get_group_info(sb, i)); 2354 i = num_meta_group_infos; 2355 while (i-- > 0) 2356 kfree(sbi->s_group_info[i]); 2357 iput(sbi->s_buddy_cache); 2358 err_freesgi: 2359 kfree(sbi->s_group_info); 2360 return -ENOMEM; 2361 } 2362 2363 int ext4_mb_init(struct super_block *sb, int needs_recovery) 2364 { 2365 struct ext4_sb_info *sbi = EXT4_SB(sb); 2366 unsigned i, j; 2367 unsigned offset; 2368 unsigned max; 2369 int ret; 2370 2371 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2372 2373 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2374 if (sbi->s_mb_offsets == NULL) { 2375 return -ENOMEM; 2376 } 2377 2378 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2379 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2380 if (sbi->s_mb_maxs == NULL) { 2381 kfree(sbi->s_mb_offsets); 2382 return -ENOMEM; 2383 } 2384 2385 /* order 0 is regular bitmap */ 2386 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2387 sbi->s_mb_offsets[0] = 0; 2388 2389 i = 1; 2390 offset = 0; 2391 max = sb->s_blocksize << 2; 2392 do { 2393 sbi->s_mb_offsets[i] = offset; 2394 sbi->s_mb_maxs[i] = max; 2395 offset += 1 << (sb->s_blocksize_bits - i); 2396 max = max >> 1; 2397 i++; 2398 } while (i <= sb->s_blocksize_bits + 1); 2399 2400 /* init file for buddy data */ 2401 ret = ext4_mb_init_backend(sb); 2402 if (ret != 0) { 2403 kfree(sbi->s_mb_offsets); 2404 kfree(sbi->s_mb_maxs); 2405 return ret; 2406 } 2407 2408 spin_lock_init(&sbi->s_md_lock); 2409 spin_lock_init(&sbi->s_bal_lock); 2410 2411 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2412 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2413 sbi->s_mb_stats = MB_DEFAULT_STATS; 2414 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2415 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2416 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC; 2417 2418 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2419 if (sbi->s_locality_groups == NULL) { 2420 kfree(sbi->s_mb_offsets); 2421 kfree(sbi->s_mb_maxs); 2422 return -ENOMEM; 2423 } 2424 for_each_possible_cpu(i) { 2425 struct ext4_locality_group *lg; 2426 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2427 mutex_init(&lg->lg_mutex); 2428 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2429 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2430 spin_lock_init(&lg->lg_prealloc_lock); 2431 } 2432 2433 if (sbi->s_proc) 2434 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2435 &ext4_mb_seq_groups_fops, sb); 2436 2437 if (sbi->s_journal) 2438 sbi->s_journal->j_commit_callback = release_blocks_on_commit; 2439 return 0; 2440 } 2441 2442 /* need to called with the ext4 group lock held */ 2443 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2444 { 2445 struct ext4_prealloc_space *pa; 2446 struct list_head *cur, *tmp; 2447 int count = 0; 2448 2449 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2450 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2451 list_del(&pa->pa_group_list); 2452 count++; 2453 kmem_cache_free(ext4_pspace_cachep, pa); 2454 } 2455 if (count) 2456 mb_debug(1, "mballoc: %u PAs left\n", count); 2457 2458 } 2459 2460 int ext4_mb_release(struct super_block *sb) 2461 { 2462 ext4_group_t ngroups = ext4_get_groups_count(sb); 2463 ext4_group_t i; 2464 int num_meta_group_infos; 2465 struct ext4_group_info *grinfo; 2466 struct ext4_sb_info *sbi = EXT4_SB(sb); 2467 2468 if (sbi->s_group_info) { 2469 for (i = 0; i < ngroups; i++) { 2470 grinfo = ext4_get_group_info(sb, i); 2471 #ifdef DOUBLE_CHECK 2472 kfree(grinfo->bb_bitmap); 2473 #endif 2474 ext4_lock_group(sb, i); 2475 ext4_mb_cleanup_pa(grinfo); 2476 ext4_unlock_group(sb, i); 2477 kfree(grinfo); 2478 } 2479 num_meta_group_infos = (ngroups + 2480 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2481 EXT4_DESC_PER_BLOCK_BITS(sb); 2482 for (i = 0; i < num_meta_group_infos; i++) 2483 kfree(sbi->s_group_info[i]); 2484 kfree(sbi->s_group_info); 2485 } 2486 kfree(sbi->s_mb_offsets); 2487 kfree(sbi->s_mb_maxs); 2488 if (sbi->s_buddy_cache) 2489 iput(sbi->s_buddy_cache); 2490 if (sbi->s_mb_stats) { 2491 printk(KERN_INFO 2492 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n", 2493 atomic_read(&sbi->s_bal_allocated), 2494 atomic_read(&sbi->s_bal_reqs), 2495 atomic_read(&sbi->s_bal_success)); 2496 printk(KERN_INFO 2497 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, " 2498 "%u 2^N hits, %u breaks, %u lost\n", 2499 atomic_read(&sbi->s_bal_ex_scanned), 2500 atomic_read(&sbi->s_bal_goals), 2501 atomic_read(&sbi->s_bal_2orders), 2502 atomic_read(&sbi->s_bal_breaks), 2503 atomic_read(&sbi->s_mb_lost_chunks)); 2504 printk(KERN_INFO 2505 "EXT4-fs: mballoc: %lu generated and it took %Lu\n", 2506 sbi->s_mb_buddies_generated++, 2507 sbi->s_mb_generation_time); 2508 printk(KERN_INFO 2509 "EXT4-fs: mballoc: %u preallocated, %u discarded\n", 2510 atomic_read(&sbi->s_mb_preallocated), 2511 atomic_read(&sbi->s_mb_discarded)); 2512 } 2513 2514 free_percpu(sbi->s_locality_groups); 2515 if (sbi->s_proc) 2516 remove_proc_entry("mb_groups", sbi->s_proc); 2517 2518 return 0; 2519 } 2520 2521 /* 2522 * This function is called by the jbd2 layer once the commit has finished, 2523 * so we know we can free the blocks that were released with that commit. 2524 */ 2525 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn) 2526 { 2527 struct super_block *sb = journal->j_private; 2528 struct ext4_buddy e4b; 2529 struct ext4_group_info *db; 2530 int err, count = 0, count2 = 0; 2531 struct ext4_free_data *entry; 2532 struct list_head *l, *ltmp; 2533 2534 list_for_each_safe(l, ltmp, &txn->t_private_list) { 2535 entry = list_entry(l, struct ext4_free_data, list); 2536 2537 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2538 entry->count, entry->group, entry); 2539 2540 err = ext4_mb_load_buddy(sb, entry->group, &e4b); 2541 /* we expect to find existing buddy because it's pinned */ 2542 BUG_ON(err != 0); 2543 2544 db = e4b.bd_info; 2545 /* there are blocks to put in buddy to make them really free */ 2546 count += entry->count; 2547 count2++; 2548 ext4_lock_group(sb, entry->group); 2549 /* Take it out of per group rb tree */ 2550 rb_erase(&entry->node, &(db->bb_free_root)); 2551 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count); 2552 2553 if (!db->bb_free_root.rb_node) { 2554 /* No more items in the per group rb tree 2555 * balance refcounts from ext4_mb_free_metadata() 2556 */ 2557 page_cache_release(e4b.bd_buddy_page); 2558 page_cache_release(e4b.bd_bitmap_page); 2559 } 2560 ext4_unlock_group(sb, entry->group); 2561 if (test_opt(sb, DISCARD)) { 2562 ext4_fsblk_t discard_block; 2563 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 2564 2565 discard_block = (ext4_fsblk_t)entry->group * 2566 EXT4_BLOCKS_PER_GROUP(sb) 2567 + entry->start_blk 2568 + le32_to_cpu(es->s_first_data_block); 2569 trace_ext4_discard_blocks(sb, 2570 (unsigned long long)discard_block, 2571 entry->count); 2572 sb_issue_discard(sb, discard_block, entry->count); 2573 } 2574 kmem_cache_free(ext4_free_ext_cachep, entry); 2575 ext4_mb_release_desc(&e4b); 2576 } 2577 2578 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2579 } 2580 2581 #ifdef CONFIG_EXT4_DEBUG 2582 u8 mb_enable_debug __read_mostly; 2583 2584 static struct dentry *debugfs_dir; 2585 static struct dentry *debugfs_debug; 2586 2587 static void __init ext4_create_debugfs_entry(void) 2588 { 2589 debugfs_dir = debugfs_create_dir("ext4", NULL); 2590 if (debugfs_dir) 2591 debugfs_debug = debugfs_create_u8("mballoc-debug", 2592 S_IRUGO | S_IWUSR, 2593 debugfs_dir, 2594 &mb_enable_debug); 2595 } 2596 2597 static void ext4_remove_debugfs_entry(void) 2598 { 2599 debugfs_remove(debugfs_debug); 2600 debugfs_remove(debugfs_dir); 2601 } 2602 2603 #else 2604 2605 static void __init ext4_create_debugfs_entry(void) 2606 { 2607 } 2608 2609 static void ext4_remove_debugfs_entry(void) 2610 { 2611 } 2612 2613 #endif 2614 2615 int __init init_ext4_mballoc(void) 2616 { 2617 ext4_pspace_cachep = 2618 kmem_cache_create("ext4_prealloc_space", 2619 sizeof(struct ext4_prealloc_space), 2620 0, SLAB_RECLAIM_ACCOUNT, NULL); 2621 if (ext4_pspace_cachep == NULL) 2622 return -ENOMEM; 2623 2624 ext4_ac_cachep = 2625 kmem_cache_create("ext4_alloc_context", 2626 sizeof(struct ext4_allocation_context), 2627 0, SLAB_RECLAIM_ACCOUNT, NULL); 2628 if (ext4_ac_cachep == NULL) { 2629 kmem_cache_destroy(ext4_pspace_cachep); 2630 return -ENOMEM; 2631 } 2632 2633 ext4_free_ext_cachep = 2634 kmem_cache_create("ext4_free_block_extents", 2635 sizeof(struct ext4_free_data), 2636 0, SLAB_RECLAIM_ACCOUNT, NULL); 2637 if (ext4_free_ext_cachep == NULL) { 2638 kmem_cache_destroy(ext4_pspace_cachep); 2639 kmem_cache_destroy(ext4_ac_cachep); 2640 return -ENOMEM; 2641 } 2642 ext4_create_debugfs_entry(); 2643 return 0; 2644 } 2645 2646 void exit_ext4_mballoc(void) 2647 { 2648 /* 2649 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2650 * before destroying the slab cache. 2651 */ 2652 rcu_barrier(); 2653 kmem_cache_destroy(ext4_pspace_cachep); 2654 kmem_cache_destroy(ext4_ac_cachep); 2655 kmem_cache_destroy(ext4_free_ext_cachep); 2656 ext4_remove_debugfs_entry(); 2657 } 2658 2659 2660 /* 2661 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps 2662 * Returns 0 if success or error code 2663 */ 2664 static noinline_for_stack int 2665 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2666 handle_t *handle, unsigned int reserv_blks) 2667 { 2668 struct buffer_head *bitmap_bh = NULL; 2669 struct ext4_super_block *es; 2670 struct ext4_group_desc *gdp; 2671 struct buffer_head *gdp_bh; 2672 struct ext4_sb_info *sbi; 2673 struct super_block *sb; 2674 ext4_fsblk_t block; 2675 int err, len; 2676 2677 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2678 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2679 2680 sb = ac->ac_sb; 2681 sbi = EXT4_SB(sb); 2682 es = sbi->s_es; 2683 2684 2685 err = -EIO; 2686 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2687 if (!bitmap_bh) 2688 goto out_err; 2689 2690 err = ext4_journal_get_write_access(handle, bitmap_bh); 2691 if (err) 2692 goto out_err; 2693 2694 err = -EIO; 2695 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2696 if (!gdp) 2697 goto out_err; 2698 2699 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2700 ext4_free_blks_count(sb, gdp)); 2701 2702 err = ext4_journal_get_write_access(handle, gdp_bh); 2703 if (err) 2704 goto out_err; 2705 2706 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb) 2707 + ac->ac_b_ex.fe_start 2708 + le32_to_cpu(es->s_first_data_block); 2709 2710 len = ac->ac_b_ex.fe_len; 2711 if (!ext4_data_block_valid(sbi, block, len)) { 2712 ext4_error(sb, __func__, 2713 "Allocating blocks %llu-%llu which overlap " 2714 "fs metadata\n", block, block+len); 2715 /* File system mounted not to panic on error 2716 * Fix the bitmap and repeat the block allocation 2717 * We leak some of the blocks here. 2718 */ 2719 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2720 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2721 ac->ac_b_ex.fe_len); 2722 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2723 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2724 if (!err) 2725 err = -EAGAIN; 2726 goto out_err; 2727 } 2728 2729 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2730 #ifdef AGGRESSIVE_CHECK 2731 { 2732 int i; 2733 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2734 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2735 bitmap_bh->b_data)); 2736 } 2737 } 2738 #endif 2739 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len); 2740 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2741 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2742 ext4_free_blks_set(sb, gdp, 2743 ext4_free_blocks_after_init(sb, 2744 ac->ac_b_ex.fe_group, gdp)); 2745 } 2746 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len; 2747 ext4_free_blks_set(sb, gdp, len); 2748 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp); 2749 2750 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2751 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len); 2752 /* 2753 * Now reduce the dirty block count also. Should not go negative 2754 */ 2755 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2756 /* release all the reserved blocks if non delalloc */ 2757 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks); 2758 else { 2759 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 2760 ac->ac_b_ex.fe_len); 2761 /* convert reserved quota blocks to real quota blocks */ 2762 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len); 2763 } 2764 2765 if (sbi->s_log_groups_per_flex) { 2766 ext4_group_t flex_group = ext4_flex_group(sbi, 2767 ac->ac_b_ex.fe_group); 2768 atomic_sub(ac->ac_b_ex.fe_len, 2769 &sbi->s_flex_groups[flex_group].free_blocks); 2770 } 2771 2772 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2773 if (err) 2774 goto out_err; 2775 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2776 2777 out_err: 2778 sb->s_dirt = 1; 2779 brelse(bitmap_bh); 2780 return err; 2781 } 2782 2783 /* 2784 * here we normalize request for locality group 2785 * Group request are normalized to s_strip size if we set the same via mount 2786 * option. If not we set it to s_mb_group_prealloc which can be configured via 2787 * /sys/fs/ext4/<partition>/mb_group_prealloc 2788 * 2789 * XXX: should we try to preallocate more than the group has now? 2790 */ 2791 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2792 { 2793 struct super_block *sb = ac->ac_sb; 2794 struct ext4_locality_group *lg = ac->ac_lg; 2795 2796 BUG_ON(lg == NULL); 2797 if (EXT4_SB(sb)->s_stripe) 2798 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe; 2799 else 2800 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2801 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2802 current->pid, ac->ac_g_ex.fe_len); 2803 } 2804 2805 /* 2806 * Normalization means making request better in terms of 2807 * size and alignment 2808 */ 2809 static noinline_for_stack void 2810 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2811 struct ext4_allocation_request *ar) 2812 { 2813 int bsbits, max; 2814 ext4_lblk_t end; 2815 loff_t size, orig_size, start_off; 2816 ext4_lblk_t start, orig_start; 2817 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2818 struct ext4_prealloc_space *pa; 2819 2820 /* do normalize only data requests, metadata requests 2821 do not need preallocation */ 2822 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2823 return; 2824 2825 /* sometime caller may want exact blocks */ 2826 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2827 return; 2828 2829 /* caller may indicate that preallocation isn't 2830 * required (it's a tail, for example) */ 2831 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2832 return; 2833 2834 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2835 ext4_mb_normalize_group_request(ac); 2836 return ; 2837 } 2838 2839 bsbits = ac->ac_sb->s_blocksize_bits; 2840 2841 /* first, let's learn actual file size 2842 * given current request is allocated */ 2843 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 2844 size = size << bsbits; 2845 if (size < i_size_read(ac->ac_inode)) 2846 size = i_size_read(ac->ac_inode); 2847 2848 /* max size of free chunks */ 2849 max = 2 << bsbits; 2850 2851 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2852 (req <= (size) || max <= (chunk_size)) 2853 2854 /* first, try to predict filesize */ 2855 /* XXX: should this table be tunable? */ 2856 start_off = 0; 2857 if (size <= 16 * 1024) { 2858 size = 16 * 1024; 2859 } else if (size <= 32 * 1024) { 2860 size = 32 * 1024; 2861 } else if (size <= 64 * 1024) { 2862 size = 64 * 1024; 2863 } else if (size <= 128 * 1024) { 2864 size = 128 * 1024; 2865 } else if (size <= 256 * 1024) { 2866 size = 256 * 1024; 2867 } else if (size <= 512 * 1024) { 2868 size = 512 * 1024; 2869 } else if (size <= 1024 * 1024) { 2870 size = 1024 * 1024; 2871 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2872 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2873 (21 - bsbits)) << 21; 2874 size = 2 * 1024 * 1024; 2875 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2876 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2877 (22 - bsbits)) << 22; 2878 size = 4 * 1024 * 1024; 2879 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2880 (8<<20)>>bsbits, max, 8 * 1024)) { 2881 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2882 (23 - bsbits)) << 23; 2883 size = 8 * 1024 * 1024; 2884 } else { 2885 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2886 size = ac->ac_o_ex.fe_len << bsbits; 2887 } 2888 orig_size = size = size >> bsbits; 2889 orig_start = start = start_off >> bsbits; 2890 2891 /* don't cover already allocated blocks in selected range */ 2892 if (ar->pleft && start <= ar->lleft) { 2893 size -= ar->lleft + 1 - start; 2894 start = ar->lleft + 1; 2895 } 2896 if (ar->pright && start + size - 1 >= ar->lright) 2897 size -= start + size - ar->lright; 2898 2899 end = start + size; 2900 2901 /* check we don't cross already preallocated blocks */ 2902 rcu_read_lock(); 2903 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2904 ext4_lblk_t pa_end; 2905 2906 if (pa->pa_deleted) 2907 continue; 2908 spin_lock(&pa->pa_lock); 2909 if (pa->pa_deleted) { 2910 spin_unlock(&pa->pa_lock); 2911 continue; 2912 } 2913 2914 pa_end = pa->pa_lstart + pa->pa_len; 2915 2916 /* PA must not overlap original request */ 2917 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2918 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2919 2920 /* skip PAs this normalized request doesn't overlap with */ 2921 if (pa->pa_lstart >= end || pa_end <= start) { 2922 spin_unlock(&pa->pa_lock); 2923 continue; 2924 } 2925 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2926 2927 /* adjust start or end to be adjacent to this pa */ 2928 if (pa_end <= ac->ac_o_ex.fe_logical) { 2929 BUG_ON(pa_end < start); 2930 start = pa_end; 2931 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2932 BUG_ON(pa->pa_lstart > end); 2933 end = pa->pa_lstart; 2934 } 2935 spin_unlock(&pa->pa_lock); 2936 } 2937 rcu_read_unlock(); 2938 size = end - start; 2939 2940 /* XXX: extra loop to check we really don't overlap preallocations */ 2941 rcu_read_lock(); 2942 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2943 ext4_lblk_t pa_end; 2944 spin_lock(&pa->pa_lock); 2945 if (pa->pa_deleted == 0) { 2946 pa_end = pa->pa_lstart + pa->pa_len; 2947 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 2948 } 2949 spin_unlock(&pa->pa_lock); 2950 } 2951 rcu_read_unlock(); 2952 2953 if (start + size <= ac->ac_o_ex.fe_logical && 2954 start > ac->ac_o_ex.fe_logical) { 2955 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n", 2956 (unsigned long) start, (unsigned long) size, 2957 (unsigned long) ac->ac_o_ex.fe_logical); 2958 } 2959 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 2960 start > ac->ac_o_ex.fe_logical); 2961 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 2962 2963 /* now prepare goal request */ 2964 2965 /* XXX: is it better to align blocks WRT to logical 2966 * placement or satisfy big request as is */ 2967 ac->ac_g_ex.fe_logical = start; 2968 ac->ac_g_ex.fe_len = size; 2969 2970 /* define goal start in order to merge */ 2971 if (ar->pright && (ar->lright == (start + size))) { 2972 /* merge to the right */ 2973 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 2974 &ac->ac_f_ex.fe_group, 2975 &ac->ac_f_ex.fe_start); 2976 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 2977 } 2978 if (ar->pleft && (ar->lleft + 1 == start)) { 2979 /* merge to the left */ 2980 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 2981 &ac->ac_f_ex.fe_group, 2982 &ac->ac_f_ex.fe_start); 2983 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 2984 } 2985 2986 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 2987 (unsigned) orig_size, (unsigned) start); 2988 } 2989 2990 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 2991 { 2992 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2993 2994 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 2995 atomic_inc(&sbi->s_bal_reqs); 2996 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 2997 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len) 2998 atomic_inc(&sbi->s_bal_success); 2999 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3000 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3001 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3002 atomic_inc(&sbi->s_bal_goals); 3003 if (ac->ac_found > sbi->s_mb_max_to_scan) 3004 atomic_inc(&sbi->s_bal_breaks); 3005 } 3006 3007 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3008 trace_ext4_mballoc_alloc(ac); 3009 else 3010 trace_ext4_mballoc_prealloc(ac); 3011 } 3012 3013 /* 3014 * Called on failure; free up any blocks from the inode PA for this 3015 * context. We don't need this for MB_GROUP_PA because we only change 3016 * pa_free in ext4_mb_release_context(), but on failure, we've already 3017 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3018 */ 3019 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3020 { 3021 struct ext4_prealloc_space *pa = ac->ac_pa; 3022 int len; 3023 3024 if (pa && pa->pa_type == MB_INODE_PA) { 3025 len = ac->ac_b_ex.fe_len; 3026 pa->pa_free += len; 3027 } 3028 3029 } 3030 3031 /* 3032 * use blocks preallocated to inode 3033 */ 3034 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3035 struct ext4_prealloc_space *pa) 3036 { 3037 ext4_fsblk_t start; 3038 ext4_fsblk_t end; 3039 int len; 3040 3041 /* found preallocated blocks, use them */ 3042 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3043 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len); 3044 len = end - start; 3045 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3046 &ac->ac_b_ex.fe_start); 3047 ac->ac_b_ex.fe_len = len; 3048 ac->ac_status = AC_STATUS_FOUND; 3049 ac->ac_pa = pa; 3050 3051 BUG_ON(start < pa->pa_pstart); 3052 BUG_ON(start + len > pa->pa_pstart + pa->pa_len); 3053 BUG_ON(pa->pa_free < len); 3054 pa->pa_free -= len; 3055 3056 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3057 } 3058 3059 /* 3060 * use blocks preallocated to locality group 3061 */ 3062 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3063 struct ext4_prealloc_space *pa) 3064 { 3065 unsigned int len = ac->ac_o_ex.fe_len; 3066 3067 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3068 &ac->ac_b_ex.fe_group, 3069 &ac->ac_b_ex.fe_start); 3070 ac->ac_b_ex.fe_len = len; 3071 ac->ac_status = AC_STATUS_FOUND; 3072 ac->ac_pa = pa; 3073 3074 /* we don't correct pa_pstart or pa_plen here to avoid 3075 * possible race when the group is being loaded concurrently 3076 * instead we correct pa later, after blocks are marked 3077 * in on-disk bitmap -- see ext4_mb_release_context() 3078 * Other CPUs are prevented from allocating from this pa by lg_mutex 3079 */ 3080 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3081 } 3082 3083 /* 3084 * Return the prealloc space that have minimal distance 3085 * from the goal block. @cpa is the prealloc 3086 * space that is having currently known minimal distance 3087 * from the goal block. 3088 */ 3089 static struct ext4_prealloc_space * 3090 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3091 struct ext4_prealloc_space *pa, 3092 struct ext4_prealloc_space *cpa) 3093 { 3094 ext4_fsblk_t cur_distance, new_distance; 3095 3096 if (cpa == NULL) { 3097 atomic_inc(&pa->pa_count); 3098 return pa; 3099 } 3100 cur_distance = abs(goal_block - cpa->pa_pstart); 3101 new_distance = abs(goal_block - pa->pa_pstart); 3102 3103 if (cur_distance < new_distance) 3104 return cpa; 3105 3106 /* drop the previous reference */ 3107 atomic_dec(&cpa->pa_count); 3108 atomic_inc(&pa->pa_count); 3109 return pa; 3110 } 3111 3112 /* 3113 * search goal blocks in preallocated space 3114 */ 3115 static noinline_for_stack int 3116 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3117 { 3118 int order, i; 3119 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3120 struct ext4_locality_group *lg; 3121 struct ext4_prealloc_space *pa, *cpa = NULL; 3122 ext4_fsblk_t goal_block; 3123 3124 /* only data can be preallocated */ 3125 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3126 return 0; 3127 3128 /* first, try per-file preallocation */ 3129 rcu_read_lock(); 3130 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3131 3132 /* all fields in this condition don't change, 3133 * so we can skip locking for them */ 3134 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3135 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len) 3136 continue; 3137 3138 /* non-extent files can't have physical blocks past 2^32 */ 3139 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL) && 3140 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS) 3141 continue; 3142 3143 /* found preallocated blocks, use them */ 3144 spin_lock(&pa->pa_lock); 3145 if (pa->pa_deleted == 0 && pa->pa_free) { 3146 atomic_inc(&pa->pa_count); 3147 ext4_mb_use_inode_pa(ac, pa); 3148 spin_unlock(&pa->pa_lock); 3149 ac->ac_criteria = 10; 3150 rcu_read_unlock(); 3151 return 1; 3152 } 3153 spin_unlock(&pa->pa_lock); 3154 } 3155 rcu_read_unlock(); 3156 3157 /* can we use group allocation? */ 3158 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3159 return 0; 3160 3161 /* inode may have no locality group for some reason */ 3162 lg = ac->ac_lg; 3163 if (lg == NULL) 3164 return 0; 3165 order = fls(ac->ac_o_ex.fe_len) - 1; 3166 if (order > PREALLOC_TB_SIZE - 1) 3167 /* The max size of hash table is PREALLOC_TB_SIZE */ 3168 order = PREALLOC_TB_SIZE - 1; 3169 3170 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) + 3171 ac->ac_g_ex.fe_start + 3172 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block); 3173 /* 3174 * search for the prealloc space that is having 3175 * minimal distance from the goal block. 3176 */ 3177 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3178 rcu_read_lock(); 3179 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3180 pa_inode_list) { 3181 spin_lock(&pa->pa_lock); 3182 if (pa->pa_deleted == 0 && 3183 pa->pa_free >= ac->ac_o_ex.fe_len) { 3184 3185 cpa = ext4_mb_check_group_pa(goal_block, 3186 pa, cpa); 3187 } 3188 spin_unlock(&pa->pa_lock); 3189 } 3190 rcu_read_unlock(); 3191 } 3192 if (cpa) { 3193 ext4_mb_use_group_pa(ac, cpa); 3194 ac->ac_criteria = 20; 3195 return 1; 3196 } 3197 return 0; 3198 } 3199 3200 /* 3201 * the function goes through all block freed in the group 3202 * but not yet committed and marks them used in in-core bitmap. 3203 * buddy must be generated from this bitmap 3204 * Need to be called with the ext4 group lock held 3205 */ 3206 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3207 ext4_group_t group) 3208 { 3209 struct rb_node *n; 3210 struct ext4_group_info *grp; 3211 struct ext4_free_data *entry; 3212 3213 grp = ext4_get_group_info(sb, group); 3214 n = rb_first(&(grp->bb_free_root)); 3215 3216 while (n) { 3217 entry = rb_entry(n, struct ext4_free_data, node); 3218 mb_set_bits(bitmap, entry->start_blk, entry->count); 3219 n = rb_next(n); 3220 } 3221 return; 3222 } 3223 3224 /* 3225 * the function goes through all preallocation in this group and marks them 3226 * used in in-core bitmap. buddy must be generated from this bitmap 3227 * Need to be called with ext4 group lock held 3228 */ 3229 static noinline_for_stack 3230 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3231 ext4_group_t group) 3232 { 3233 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3234 struct ext4_prealloc_space *pa; 3235 struct list_head *cur; 3236 ext4_group_t groupnr; 3237 ext4_grpblk_t start; 3238 int preallocated = 0; 3239 int count = 0; 3240 int len; 3241 3242 /* all form of preallocation discards first load group, 3243 * so the only competing code is preallocation use. 3244 * we don't need any locking here 3245 * notice we do NOT ignore preallocations with pa_deleted 3246 * otherwise we could leave used blocks available for 3247 * allocation in buddy when concurrent ext4_mb_put_pa() 3248 * is dropping preallocation 3249 */ 3250 list_for_each(cur, &grp->bb_prealloc_list) { 3251 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3252 spin_lock(&pa->pa_lock); 3253 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3254 &groupnr, &start); 3255 len = pa->pa_len; 3256 spin_unlock(&pa->pa_lock); 3257 if (unlikely(len == 0)) 3258 continue; 3259 BUG_ON(groupnr != group); 3260 mb_set_bits(bitmap, start, len); 3261 preallocated += len; 3262 count++; 3263 } 3264 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3265 } 3266 3267 static void ext4_mb_pa_callback(struct rcu_head *head) 3268 { 3269 struct ext4_prealloc_space *pa; 3270 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3271 kmem_cache_free(ext4_pspace_cachep, pa); 3272 } 3273 3274 /* 3275 * drops a reference to preallocated space descriptor 3276 * if this was the last reference and the space is consumed 3277 */ 3278 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3279 struct super_block *sb, struct ext4_prealloc_space *pa) 3280 { 3281 ext4_group_t grp; 3282 ext4_fsblk_t grp_blk; 3283 3284 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3285 return; 3286 3287 /* in this short window concurrent discard can set pa_deleted */ 3288 spin_lock(&pa->pa_lock); 3289 if (pa->pa_deleted == 1) { 3290 spin_unlock(&pa->pa_lock); 3291 return; 3292 } 3293 3294 pa->pa_deleted = 1; 3295 spin_unlock(&pa->pa_lock); 3296 3297 grp_blk = pa->pa_pstart; 3298 /* 3299 * If doing group-based preallocation, pa_pstart may be in the 3300 * next group when pa is used up 3301 */ 3302 if (pa->pa_type == MB_GROUP_PA) 3303 grp_blk--; 3304 3305 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3306 3307 /* 3308 * possible race: 3309 * 3310 * P1 (buddy init) P2 (regular allocation) 3311 * find block B in PA 3312 * copy on-disk bitmap to buddy 3313 * mark B in on-disk bitmap 3314 * drop PA from group 3315 * mark all PAs in buddy 3316 * 3317 * thus, P1 initializes buddy with B available. to prevent this 3318 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3319 * against that pair 3320 */ 3321 ext4_lock_group(sb, grp); 3322 list_del(&pa->pa_group_list); 3323 ext4_unlock_group(sb, grp); 3324 3325 spin_lock(pa->pa_obj_lock); 3326 list_del_rcu(&pa->pa_inode_list); 3327 spin_unlock(pa->pa_obj_lock); 3328 3329 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3330 } 3331 3332 /* 3333 * creates new preallocated space for given inode 3334 */ 3335 static noinline_for_stack int 3336 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3337 { 3338 struct super_block *sb = ac->ac_sb; 3339 struct ext4_prealloc_space *pa; 3340 struct ext4_group_info *grp; 3341 struct ext4_inode_info *ei; 3342 3343 /* preallocate only when found space is larger then requested */ 3344 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3345 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3346 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3347 3348 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3349 if (pa == NULL) 3350 return -ENOMEM; 3351 3352 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3353 int winl; 3354 int wins; 3355 int win; 3356 int offs; 3357 3358 /* we can't allocate as much as normalizer wants. 3359 * so, found space must get proper lstart 3360 * to cover original request */ 3361 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3362 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3363 3364 /* we're limited by original request in that 3365 * logical block must be covered any way 3366 * winl is window we can move our chunk within */ 3367 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3368 3369 /* also, we should cover whole original request */ 3370 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len; 3371 3372 /* the smallest one defines real window */ 3373 win = min(winl, wins); 3374 3375 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len; 3376 if (offs && offs < win) 3377 win = offs; 3378 3379 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win; 3380 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3381 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3382 } 3383 3384 /* preallocation can change ac_b_ex, thus we store actually 3385 * allocated blocks for history */ 3386 ac->ac_f_ex = ac->ac_b_ex; 3387 3388 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3389 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3390 pa->pa_len = ac->ac_b_ex.fe_len; 3391 pa->pa_free = pa->pa_len; 3392 atomic_set(&pa->pa_count, 1); 3393 spin_lock_init(&pa->pa_lock); 3394 INIT_LIST_HEAD(&pa->pa_inode_list); 3395 INIT_LIST_HEAD(&pa->pa_group_list); 3396 pa->pa_deleted = 0; 3397 pa->pa_type = MB_INODE_PA; 3398 3399 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3400 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3401 trace_ext4_mb_new_inode_pa(ac, pa); 3402 3403 ext4_mb_use_inode_pa(ac, pa); 3404 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3405 3406 ei = EXT4_I(ac->ac_inode); 3407 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3408 3409 pa->pa_obj_lock = &ei->i_prealloc_lock; 3410 pa->pa_inode = ac->ac_inode; 3411 3412 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3413 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3414 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3415 3416 spin_lock(pa->pa_obj_lock); 3417 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3418 spin_unlock(pa->pa_obj_lock); 3419 3420 return 0; 3421 } 3422 3423 /* 3424 * creates new preallocated space for locality group inodes belongs to 3425 */ 3426 static noinline_for_stack int 3427 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3428 { 3429 struct super_block *sb = ac->ac_sb; 3430 struct ext4_locality_group *lg; 3431 struct ext4_prealloc_space *pa; 3432 struct ext4_group_info *grp; 3433 3434 /* preallocate only when found space is larger then requested */ 3435 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3436 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3437 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3438 3439 BUG_ON(ext4_pspace_cachep == NULL); 3440 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3441 if (pa == NULL) 3442 return -ENOMEM; 3443 3444 /* preallocation can change ac_b_ex, thus we store actually 3445 * allocated blocks for history */ 3446 ac->ac_f_ex = ac->ac_b_ex; 3447 3448 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3449 pa->pa_lstart = pa->pa_pstart; 3450 pa->pa_len = ac->ac_b_ex.fe_len; 3451 pa->pa_free = pa->pa_len; 3452 atomic_set(&pa->pa_count, 1); 3453 spin_lock_init(&pa->pa_lock); 3454 INIT_LIST_HEAD(&pa->pa_inode_list); 3455 INIT_LIST_HEAD(&pa->pa_group_list); 3456 pa->pa_deleted = 0; 3457 pa->pa_type = MB_GROUP_PA; 3458 3459 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3460 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3461 trace_ext4_mb_new_group_pa(ac, pa); 3462 3463 ext4_mb_use_group_pa(ac, pa); 3464 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3465 3466 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3467 lg = ac->ac_lg; 3468 BUG_ON(lg == NULL); 3469 3470 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3471 pa->pa_inode = NULL; 3472 3473 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3474 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3475 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3476 3477 /* 3478 * We will later add the new pa to the right bucket 3479 * after updating the pa_free in ext4_mb_release_context 3480 */ 3481 return 0; 3482 } 3483 3484 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3485 { 3486 int err; 3487 3488 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3489 err = ext4_mb_new_group_pa(ac); 3490 else 3491 err = ext4_mb_new_inode_pa(ac); 3492 return err; 3493 } 3494 3495 /* 3496 * finds all unused blocks in on-disk bitmap, frees them in 3497 * in-core bitmap and buddy. 3498 * @pa must be unlinked from inode and group lists, so that 3499 * nobody else can find/use it. 3500 * the caller MUST hold group/inode locks. 3501 * TODO: optimize the case when there are no in-core structures yet 3502 */ 3503 static noinline_for_stack int 3504 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3505 struct ext4_prealloc_space *pa, 3506 struct ext4_allocation_context *ac) 3507 { 3508 struct super_block *sb = e4b->bd_sb; 3509 struct ext4_sb_info *sbi = EXT4_SB(sb); 3510 unsigned int end; 3511 unsigned int next; 3512 ext4_group_t group; 3513 ext4_grpblk_t bit; 3514 unsigned long long grp_blk_start; 3515 sector_t start; 3516 int err = 0; 3517 int free = 0; 3518 3519 BUG_ON(pa->pa_deleted == 0); 3520 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3521 grp_blk_start = pa->pa_pstart - bit; 3522 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3523 end = bit + pa->pa_len; 3524 3525 if (ac) { 3526 ac->ac_sb = sb; 3527 ac->ac_inode = pa->pa_inode; 3528 } 3529 3530 while (bit < end) { 3531 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3532 if (bit >= end) 3533 break; 3534 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3535 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit + 3536 le32_to_cpu(sbi->s_es->s_first_data_block); 3537 mb_debug(1, " free preallocated %u/%u in group %u\n", 3538 (unsigned) start, (unsigned) next - bit, 3539 (unsigned) group); 3540 free += next - bit; 3541 3542 if (ac) { 3543 ac->ac_b_ex.fe_group = group; 3544 ac->ac_b_ex.fe_start = bit; 3545 ac->ac_b_ex.fe_len = next - bit; 3546 ac->ac_b_ex.fe_logical = 0; 3547 trace_ext4_mballoc_discard(ac); 3548 } 3549 3550 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit, 3551 next - bit); 3552 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3553 bit = next + 1; 3554 } 3555 if (free != pa->pa_free) { 3556 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n", 3557 pa, (unsigned long) pa->pa_lstart, 3558 (unsigned long) pa->pa_pstart, 3559 (unsigned long) pa->pa_len); 3560 ext4_grp_locked_error(sb, group, 3561 __func__, "free %u, pa_free %u", 3562 free, pa->pa_free); 3563 /* 3564 * pa is already deleted so we use the value obtained 3565 * from the bitmap and continue. 3566 */ 3567 } 3568 atomic_add(free, &sbi->s_mb_discarded); 3569 3570 return err; 3571 } 3572 3573 static noinline_for_stack int 3574 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3575 struct ext4_prealloc_space *pa, 3576 struct ext4_allocation_context *ac) 3577 { 3578 struct super_block *sb = e4b->bd_sb; 3579 ext4_group_t group; 3580 ext4_grpblk_t bit; 3581 3582 trace_ext4_mb_release_group_pa(ac, pa); 3583 BUG_ON(pa->pa_deleted == 0); 3584 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3585 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3586 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3587 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3588 3589 if (ac) { 3590 ac->ac_sb = sb; 3591 ac->ac_inode = NULL; 3592 ac->ac_b_ex.fe_group = group; 3593 ac->ac_b_ex.fe_start = bit; 3594 ac->ac_b_ex.fe_len = pa->pa_len; 3595 ac->ac_b_ex.fe_logical = 0; 3596 trace_ext4_mballoc_discard(ac); 3597 } 3598 3599 return 0; 3600 } 3601 3602 /* 3603 * releases all preallocations in given group 3604 * 3605 * first, we need to decide discard policy: 3606 * - when do we discard 3607 * 1) ENOSPC 3608 * - how many do we discard 3609 * 1) how many requested 3610 */ 3611 static noinline_for_stack int 3612 ext4_mb_discard_group_preallocations(struct super_block *sb, 3613 ext4_group_t group, int needed) 3614 { 3615 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3616 struct buffer_head *bitmap_bh = NULL; 3617 struct ext4_prealloc_space *pa, *tmp; 3618 struct ext4_allocation_context *ac; 3619 struct list_head list; 3620 struct ext4_buddy e4b; 3621 int err; 3622 int busy = 0; 3623 int free = 0; 3624 3625 mb_debug(1, "discard preallocation for group %u\n", group); 3626 3627 if (list_empty(&grp->bb_prealloc_list)) 3628 return 0; 3629 3630 bitmap_bh = ext4_read_block_bitmap(sb, group); 3631 if (bitmap_bh == NULL) { 3632 ext4_error(sb, __func__, "Error in reading block " 3633 "bitmap for %u", group); 3634 return 0; 3635 } 3636 3637 err = ext4_mb_load_buddy(sb, group, &e4b); 3638 if (err) { 3639 ext4_error(sb, __func__, "Error in loading buddy " 3640 "information for %u", group); 3641 put_bh(bitmap_bh); 3642 return 0; 3643 } 3644 3645 if (needed == 0) 3646 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1; 3647 3648 INIT_LIST_HEAD(&list); 3649 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 3650 if (ac) 3651 ac->ac_sb = sb; 3652 repeat: 3653 ext4_lock_group(sb, group); 3654 list_for_each_entry_safe(pa, tmp, 3655 &grp->bb_prealloc_list, pa_group_list) { 3656 spin_lock(&pa->pa_lock); 3657 if (atomic_read(&pa->pa_count)) { 3658 spin_unlock(&pa->pa_lock); 3659 busy = 1; 3660 continue; 3661 } 3662 if (pa->pa_deleted) { 3663 spin_unlock(&pa->pa_lock); 3664 continue; 3665 } 3666 3667 /* seems this one can be freed ... */ 3668 pa->pa_deleted = 1; 3669 3670 /* we can trust pa_free ... */ 3671 free += pa->pa_free; 3672 3673 spin_unlock(&pa->pa_lock); 3674 3675 list_del(&pa->pa_group_list); 3676 list_add(&pa->u.pa_tmp_list, &list); 3677 } 3678 3679 /* if we still need more blocks and some PAs were used, try again */ 3680 if (free < needed && busy) { 3681 busy = 0; 3682 ext4_unlock_group(sb, group); 3683 /* 3684 * Yield the CPU here so that we don't get soft lockup 3685 * in non preempt case. 3686 */ 3687 yield(); 3688 goto repeat; 3689 } 3690 3691 /* found anything to free? */ 3692 if (list_empty(&list)) { 3693 BUG_ON(free != 0); 3694 goto out; 3695 } 3696 3697 /* now free all selected PAs */ 3698 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3699 3700 /* remove from object (inode or locality group) */ 3701 spin_lock(pa->pa_obj_lock); 3702 list_del_rcu(&pa->pa_inode_list); 3703 spin_unlock(pa->pa_obj_lock); 3704 3705 if (pa->pa_type == MB_GROUP_PA) 3706 ext4_mb_release_group_pa(&e4b, pa, ac); 3707 else 3708 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); 3709 3710 list_del(&pa->u.pa_tmp_list); 3711 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3712 } 3713 3714 out: 3715 ext4_unlock_group(sb, group); 3716 if (ac) 3717 kmem_cache_free(ext4_ac_cachep, ac); 3718 ext4_mb_release_desc(&e4b); 3719 put_bh(bitmap_bh); 3720 return free; 3721 } 3722 3723 /* 3724 * releases all non-used preallocated blocks for given inode 3725 * 3726 * It's important to discard preallocations under i_data_sem 3727 * We don't want another block to be served from the prealloc 3728 * space when we are discarding the inode prealloc space. 3729 * 3730 * FIXME!! Make sure it is valid at all the call sites 3731 */ 3732 void ext4_discard_preallocations(struct inode *inode) 3733 { 3734 struct ext4_inode_info *ei = EXT4_I(inode); 3735 struct super_block *sb = inode->i_sb; 3736 struct buffer_head *bitmap_bh = NULL; 3737 struct ext4_prealloc_space *pa, *tmp; 3738 struct ext4_allocation_context *ac; 3739 ext4_group_t group = 0; 3740 struct list_head list; 3741 struct ext4_buddy e4b; 3742 int err; 3743 3744 if (!S_ISREG(inode->i_mode)) { 3745 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3746 return; 3747 } 3748 3749 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3750 trace_ext4_discard_preallocations(inode); 3751 3752 INIT_LIST_HEAD(&list); 3753 3754 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 3755 if (ac) { 3756 ac->ac_sb = sb; 3757 ac->ac_inode = inode; 3758 } 3759 repeat: 3760 /* first, collect all pa's in the inode */ 3761 spin_lock(&ei->i_prealloc_lock); 3762 while (!list_empty(&ei->i_prealloc_list)) { 3763 pa = list_entry(ei->i_prealloc_list.next, 3764 struct ext4_prealloc_space, pa_inode_list); 3765 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3766 spin_lock(&pa->pa_lock); 3767 if (atomic_read(&pa->pa_count)) { 3768 /* this shouldn't happen often - nobody should 3769 * use preallocation while we're discarding it */ 3770 spin_unlock(&pa->pa_lock); 3771 spin_unlock(&ei->i_prealloc_lock); 3772 printk(KERN_ERR "uh-oh! used pa while discarding\n"); 3773 WARN_ON(1); 3774 schedule_timeout_uninterruptible(HZ); 3775 goto repeat; 3776 3777 } 3778 if (pa->pa_deleted == 0) { 3779 pa->pa_deleted = 1; 3780 spin_unlock(&pa->pa_lock); 3781 list_del_rcu(&pa->pa_inode_list); 3782 list_add(&pa->u.pa_tmp_list, &list); 3783 continue; 3784 } 3785 3786 /* someone is deleting pa right now */ 3787 spin_unlock(&pa->pa_lock); 3788 spin_unlock(&ei->i_prealloc_lock); 3789 3790 /* we have to wait here because pa_deleted 3791 * doesn't mean pa is already unlinked from 3792 * the list. as we might be called from 3793 * ->clear_inode() the inode will get freed 3794 * and concurrent thread which is unlinking 3795 * pa from inode's list may access already 3796 * freed memory, bad-bad-bad */ 3797 3798 /* XXX: if this happens too often, we can 3799 * add a flag to force wait only in case 3800 * of ->clear_inode(), but not in case of 3801 * regular truncate */ 3802 schedule_timeout_uninterruptible(HZ); 3803 goto repeat; 3804 } 3805 spin_unlock(&ei->i_prealloc_lock); 3806 3807 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3808 BUG_ON(pa->pa_type != MB_INODE_PA); 3809 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3810 3811 err = ext4_mb_load_buddy(sb, group, &e4b); 3812 if (err) { 3813 ext4_error(sb, __func__, "Error in loading buddy " 3814 "information for %u", group); 3815 continue; 3816 } 3817 3818 bitmap_bh = ext4_read_block_bitmap(sb, group); 3819 if (bitmap_bh == NULL) { 3820 ext4_error(sb, __func__, "Error in reading block " 3821 "bitmap for %u", group); 3822 ext4_mb_release_desc(&e4b); 3823 continue; 3824 } 3825 3826 ext4_lock_group(sb, group); 3827 list_del(&pa->pa_group_list); 3828 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); 3829 ext4_unlock_group(sb, group); 3830 3831 ext4_mb_release_desc(&e4b); 3832 put_bh(bitmap_bh); 3833 3834 list_del(&pa->u.pa_tmp_list); 3835 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3836 } 3837 if (ac) 3838 kmem_cache_free(ext4_ac_cachep, ac); 3839 } 3840 3841 /* 3842 * finds all preallocated spaces and return blocks being freed to them 3843 * if preallocated space becomes full (no block is used from the space) 3844 * then the function frees space in buddy 3845 * XXX: at the moment, truncate (which is the only way to free blocks) 3846 * discards all preallocations 3847 */ 3848 static void ext4_mb_return_to_preallocation(struct inode *inode, 3849 struct ext4_buddy *e4b, 3850 sector_t block, int count) 3851 { 3852 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list)); 3853 } 3854 #ifdef CONFIG_EXT4_DEBUG 3855 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3856 { 3857 struct super_block *sb = ac->ac_sb; 3858 ext4_group_t ngroups, i; 3859 3860 printk(KERN_ERR "EXT4-fs: Can't allocate:" 3861 " Allocation context details:\n"); 3862 printk(KERN_ERR "EXT4-fs: status %d flags %d\n", 3863 ac->ac_status, ac->ac_flags); 3864 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, " 3865 "best %lu/%lu/%lu@%lu cr %d\n", 3866 (unsigned long)ac->ac_o_ex.fe_group, 3867 (unsigned long)ac->ac_o_ex.fe_start, 3868 (unsigned long)ac->ac_o_ex.fe_len, 3869 (unsigned long)ac->ac_o_ex.fe_logical, 3870 (unsigned long)ac->ac_g_ex.fe_group, 3871 (unsigned long)ac->ac_g_ex.fe_start, 3872 (unsigned long)ac->ac_g_ex.fe_len, 3873 (unsigned long)ac->ac_g_ex.fe_logical, 3874 (unsigned long)ac->ac_b_ex.fe_group, 3875 (unsigned long)ac->ac_b_ex.fe_start, 3876 (unsigned long)ac->ac_b_ex.fe_len, 3877 (unsigned long)ac->ac_b_ex.fe_logical, 3878 (int)ac->ac_criteria); 3879 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned, 3880 ac->ac_found); 3881 printk(KERN_ERR "EXT4-fs: groups: \n"); 3882 ngroups = ext4_get_groups_count(sb); 3883 for (i = 0; i < ngroups; i++) { 3884 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3885 struct ext4_prealloc_space *pa; 3886 ext4_grpblk_t start; 3887 struct list_head *cur; 3888 ext4_lock_group(sb, i); 3889 list_for_each(cur, &grp->bb_prealloc_list) { 3890 pa = list_entry(cur, struct ext4_prealloc_space, 3891 pa_group_list); 3892 spin_lock(&pa->pa_lock); 3893 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3894 NULL, &start); 3895 spin_unlock(&pa->pa_lock); 3896 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3897 start, pa->pa_len); 3898 } 3899 ext4_unlock_group(sb, i); 3900 3901 if (grp->bb_free == 0) 3902 continue; 3903 printk(KERN_ERR "%u: %d/%d \n", 3904 i, grp->bb_free, grp->bb_fragments); 3905 } 3906 printk(KERN_ERR "\n"); 3907 } 3908 #else 3909 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3910 { 3911 return; 3912 } 3913 #endif 3914 3915 /* 3916 * We use locality group preallocation for small size file. The size of the 3917 * file is determined by the current size or the resulting size after 3918 * allocation which ever is larger 3919 * 3920 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3921 */ 3922 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3923 { 3924 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3925 int bsbits = ac->ac_sb->s_blocksize_bits; 3926 loff_t size, isize; 3927 3928 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3929 return; 3930 3931 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3932 return; 3933 3934 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 3935 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3936 >> bsbits; 3937 3938 if ((size == isize) && 3939 !ext4_fs_is_busy(sbi) && 3940 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3941 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3942 return; 3943 } 3944 3945 /* don't use group allocation for large files */ 3946 size = max(size, isize); 3947 if (size >= sbi->s_mb_stream_request) { 3948 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3949 return; 3950 } 3951 3952 BUG_ON(ac->ac_lg != NULL); 3953 /* 3954 * locality group prealloc space are per cpu. The reason for having 3955 * per cpu locality group is to reduce the contention between block 3956 * request from multiple CPUs. 3957 */ 3958 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id()); 3959 3960 /* we're going to use group allocation */ 3961 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3962 3963 /* serialize all allocations in the group */ 3964 mutex_lock(&ac->ac_lg->lg_mutex); 3965 } 3966 3967 static noinline_for_stack int 3968 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3969 struct ext4_allocation_request *ar) 3970 { 3971 struct super_block *sb = ar->inode->i_sb; 3972 struct ext4_sb_info *sbi = EXT4_SB(sb); 3973 struct ext4_super_block *es = sbi->s_es; 3974 ext4_group_t group; 3975 unsigned int len; 3976 ext4_fsblk_t goal; 3977 ext4_grpblk_t block; 3978 3979 /* we can't allocate > group size */ 3980 len = ar->len; 3981 3982 /* just a dirty hack to filter too big requests */ 3983 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10) 3984 len = EXT4_BLOCKS_PER_GROUP(sb) - 10; 3985 3986 /* start searching from the goal */ 3987 goal = ar->goal; 3988 if (goal < le32_to_cpu(es->s_first_data_block) || 3989 goal >= ext4_blocks_count(es)) 3990 goal = le32_to_cpu(es->s_first_data_block); 3991 ext4_get_group_no_and_offset(sb, goal, &group, &block); 3992 3993 /* set up allocation goals */ 3994 memset(ac, 0, sizeof(struct ext4_allocation_context)); 3995 ac->ac_b_ex.fe_logical = ar->logical; 3996 ac->ac_status = AC_STATUS_CONTINUE; 3997 ac->ac_sb = sb; 3998 ac->ac_inode = ar->inode; 3999 ac->ac_o_ex.fe_logical = ar->logical; 4000 ac->ac_o_ex.fe_group = group; 4001 ac->ac_o_ex.fe_start = block; 4002 ac->ac_o_ex.fe_len = len; 4003 ac->ac_g_ex.fe_logical = ar->logical; 4004 ac->ac_g_ex.fe_group = group; 4005 ac->ac_g_ex.fe_start = block; 4006 ac->ac_g_ex.fe_len = len; 4007 ac->ac_flags = ar->flags; 4008 4009 /* we have to define context: we'll we work with a file or 4010 * locality group. this is a policy, actually */ 4011 ext4_mb_group_or_file(ac); 4012 4013 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4014 "left: %u/%u, right %u/%u to %swritable\n", 4015 (unsigned) ar->len, (unsigned) ar->logical, 4016 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4017 (unsigned) ar->lleft, (unsigned) ar->pleft, 4018 (unsigned) ar->lright, (unsigned) ar->pright, 4019 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4020 return 0; 4021 4022 } 4023 4024 static noinline_for_stack void 4025 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4026 struct ext4_locality_group *lg, 4027 int order, int total_entries) 4028 { 4029 ext4_group_t group = 0; 4030 struct ext4_buddy e4b; 4031 struct list_head discard_list; 4032 struct ext4_prealloc_space *pa, *tmp; 4033 struct ext4_allocation_context *ac; 4034 4035 mb_debug(1, "discard locality group preallocation\n"); 4036 4037 INIT_LIST_HEAD(&discard_list); 4038 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4039 if (ac) 4040 ac->ac_sb = sb; 4041 4042 spin_lock(&lg->lg_prealloc_lock); 4043 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4044 pa_inode_list) { 4045 spin_lock(&pa->pa_lock); 4046 if (atomic_read(&pa->pa_count)) { 4047 /* 4048 * This is the pa that we just used 4049 * for block allocation. So don't 4050 * free that 4051 */ 4052 spin_unlock(&pa->pa_lock); 4053 continue; 4054 } 4055 if (pa->pa_deleted) { 4056 spin_unlock(&pa->pa_lock); 4057 continue; 4058 } 4059 /* only lg prealloc space */ 4060 BUG_ON(pa->pa_type != MB_GROUP_PA); 4061 4062 /* seems this one can be freed ... */ 4063 pa->pa_deleted = 1; 4064 spin_unlock(&pa->pa_lock); 4065 4066 list_del_rcu(&pa->pa_inode_list); 4067 list_add(&pa->u.pa_tmp_list, &discard_list); 4068 4069 total_entries--; 4070 if (total_entries <= 5) { 4071 /* 4072 * we want to keep only 5 entries 4073 * allowing it to grow to 8. This 4074 * mak sure we don't call discard 4075 * soon for this list. 4076 */ 4077 break; 4078 } 4079 } 4080 spin_unlock(&lg->lg_prealloc_lock); 4081 4082 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4083 4084 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4085 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4086 ext4_error(sb, __func__, "Error in loading buddy " 4087 "information for %u", group); 4088 continue; 4089 } 4090 ext4_lock_group(sb, group); 4091 list_del(&pa->pa_group_list); 4092 ext4_mb_release_group_pa(&e4b, pa, ac); 4093 ext4_unlock_group(sb, group); 4094 4095 ext4_mb_release_desc(&e4b); 4096 list_del(&pa->u.pa_tmp_list); 4097 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4098 } 4099 if (ac) 4100 kmem_cache_free(ext4_ac_cachep, ac); 4101 } 4102 4103 /* 4104 * We have incremented pa_count. So it cannot be freed at this 4105 * point. Also we hold lg_mutex. So no parallel allocation is 4106 * possible from this lg. That means pa_free cannot be updated. 4107 * 4108 * A parallel ext4_mb_discard_group_preallocations is possible. 4109 * which can cause the lg_prealloc_list to be updated. 4110 */ 4111 4112 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4113 { 4114 int order, added = 0, lg_prealloc_count = 1; 4115 struct super_block *sb = ac->ac_sb; 4116 struct ext4_locality_group *lg = ac->ac_lg; 4117 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4118 4119 order = fls(pa->pa_free) - 1; 4120 if (order > PREALLOC_TB_SIZE - 1) 4121 /* The max size of hash table is PREALLOC_TB_SIZE */ 4122 order = PREALLOC_TB_SIZE - 1; 4123 /* Add the prealloc space to lg */ 4124 rcu_read_lock(); 4125 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4126 pa_inode_list) { 4127 spin_lock(&tmp_pa->pa_lock); 4128 if (tmp_pa->pa_deleted) { 4129 spin_unlock(&tmp_pa->pa_lock); 4130 continue; 4131 } 4132 if (!added && pa->pa_free < tmp_pa->pa_free) { 4133 /* Add to the tail of the previous entry */ 4134 list_add_tail_rcu(&pa->pa_inode_list, 4135 &tmp_pa->pa_inode_list); 4136 added = 1; 4137 /* 4138 * we want to count the total 4139 * number of entries in the list 4140 */ 4141 } 4142 spin_unlock(&tmp_pa->pa_lock); 4143 lg_prealloc_count++; 4144 } 4145 if (!added) 4146 list_add_tail_rcu(&pa->pa_inode_list, 4147 &lg->lg_prealloc_list[order]); 4148 rcu_read_unlock(); 4149 4150 /* Now trim the list to be not more than 8 elements */ 4151 if (lg_prealloc_count > 8) { 4152 ext4_mb_discard_lg_preallocations(sb, lg, 4153 order, lg_prealloc_count); 4154 return; 4155 } 4156 return ; 4157 } 4158 4159 /* 4160 * release all resource we used in allocation 4161 */ 4162 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4163 { 4164 struct ext4_prealloc_space *pa = ac->ac_pa; 4165 if (pa) { 4166 if (pa->pa_type == MB_GROUP_PA) { 4167 /* see comment in ext4_mb_use_group_pa() */ 4168 spin_lock(&pa->pa_lock); 4169 pa->pa_pstart += ac->ac_b_ex.fe_len; 4170 pa->pa_lstart += ac->ac_b_ex.fe_len; 4171 pa->pa_free -= ac->ac_b_ex.fe_len; 4172 pa->pa_len -= ac->ac_b_ex.fe_len; 4173 spin_unlock(&pa->pa_lock); 4174 } 4175 } 4176 if (ac->alloc_semp) 4177 up_read(ac->alloc_semp); 4178 if (pa) { 4179 /* 4180 * We want to add the pa to the right bucket. 4181 * Remove it from the list and while adding 4182 * make sure the list to which we are adding 4183 * doesn't grow big. We need to release 4184 * alloc_semp before calling ext4_mb_add_n_trim() 4185 */ 4186 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4187 spin_lock(pa->pa_obj_lock); 4188 list_del_rcu(&pa->pa_inode_list); 4189 spin_unlock(pa->pa_obj_lock); 4190 ext4_mb_add_n_trim(ac); 4191 } 4192 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4193 } 4194 if (ac->ac_bitmap_page) 4195 page_cache_release(ac->ac_bitmap_page); 4196 if (ac->ac_buddy_page) 4197 page_cache_release(ac->ac_buddy_page); 4198 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4199 mutex_unlock(&ac->ac_lg->lg_mutex); 4200 ext4_mb_collect_stats(ac); 4201 return 0; 4202 } 4203 4204 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4205 { 4206 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4207 int ret; 4208 int freed = 0; 4209 4210 trace_ext4_mb_discard_preallocations(sb, needed); 4211 for (i = 0; i < ngroups && needed > 0; i++) { 4212 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4213 freed += ret; 4214 needed -= ret; 4215 } 4216 4217 return freed; 4218 } 4219 4220 /* 4221 * Main entry point into mballoc to allocate blocks 4222 * it tries to use preallocation first, then falls back 4223 * to usual allocation 4224 */ 4225 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4226 struct ext4_allocation_request *ar, int *errp) 4227 { 4228 int freed; 4229 struct ext4_allocation_context *ac = NULL; 4230 struct ext4_sb_info *sbi; 4231 struct super_block *sb; 4232 ext4_fsblk_t block = 0; 4233 unsigned int inquota = 0; 4234 unsigned int reserv_blks = 0; 4235 4236 sb = ar->inode->i_sb; 4237 sbi = EXT4_SB(sb); 4238 4239 trace_ext4_request_blocks(ar); 4240 4241 /* 4242 * For delayed allocation, we could skip the ENOSPC and 4243 * EDQUOT check, as blocks and quotas have been already 4244 * reserved when data being copied into pagecache. 4245 */ 4246 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag) 4247 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4248 else { 4249 /* Without delayed allocation we need to verify 4250 * there is enough free blocks to do block allocation 4251 * and verify allocation doesn't exceed the quota limits. 4252 */ 4253 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) { 4254 /* let others to free the space */ 4255 yield(); 4256 ar->len = ar->len >> 1; 4257 } 4258 if (!ar->len) { 4259 *errp = -ENOSPC; 4260 return 0; 4261 } 4262 reserv_blks = ar->len; 4263 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) { 4264 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4265 ar->len--; 4266 } 4267 inquota = ar->len; 4268 if (ar->len == 0) { 4269 *errp = -EDQUOT; 4270 goto out3; 4271 } 4272 } 4273 4274 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4275 if (!ac) { 4276 ar->len = 0; 4277 *errp = -ENOMEM; 4278 goto out1; 4279 } 4280 4281 *errp = ext4_mb_initialize_context(ac, ar); 4282 if (*errp) { 4283 ar->len = 0; 4284 goto out2; 4285 } 4286 4287 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4288 if (!ext4_mb_use_preallocated(ac)) { 4289 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4290 ext4_mb_normalize_request(ac, ar); 4291 repeat: 4292 /* allocate space in core */ 4293 ext4_mb_regular_allocator(ac); 4294 4295 /* as we've just preallocated more space than 4296 * user requested orinally, we store allocated 4297 * space in a special descriptor */ 4298 if (ac->ac_status == AC_STATUS_FOUND && 4299 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4300 ext4_mb_new_preallocation(ac); 4301 } 4302 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4303 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks); 4304 if (*errp == -EAGAIN) { 4305 /* 4306 * drop the reference that we took 4307 * in ext4_mb_use_best_found 4308 */ 4309 ext4_mb_release_context(ac); 4310 ac->ac_b_ex.fe_group = 0; 4311 ac->ac_b_ex.fe_start = 0; 4312 ac->ac_b_ex.fe_len = 0; 4313 ac->ac_status = AC_STATUS_CONTINUE; 4314 goto repeat; 4315 } else if (*errp) { 4316 ext4_discard_allocated_blocks(ac); 4317 ac->ac_b_ex.fe_len = 0; 4318 ar->len = 0; 4319 ext4_mb_show_ac(ac); 4320 } else { 4321 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4322 ar->len = ac->ac_b_ex.fe_len; 4323 } 4324 } else { 4325 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4326 if (freed) 4327 goto repeat; 4328 *errp = -ENOSPC; 4329 ac->ac_b_ex.fe_len = 0; 4330 ar->len = 0; 4331 ext4_mb_show_ac(ac); 4332 } 4333 4334 ext4_mb_release_context(ac); 4335 4336 out2: 4337 kmem_cache_free(ext4_ac_cachep, ac); 4338 out1: 4339 if (inquota && ar->len < inquota) 4340 vfs_dq_free_block(ar->inode, inquota - ar->len); 4341 out3: 4342 if (!ar->len) { 4343 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) 4344 /* release all the reserved blocks if non delalloc */ 4345 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 4346 reserv_blks); 4347 } 4348 4349 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4350 4351 return block; 4352 } 4353 4354 /* 4355 * We can merge two free data extents only if the physical blocks 4356 * are contiguous, AND the extents were freed by the same transaction, 4357 * AND the blocks are associated with the same group. 4358 */ 4359 static int can_merge(struct ext4_free_data *entry1, 4360 struct ext4_free_data *entry2) 4361 { 4362 if ((entry1->t_tid == entry2->t_tid) && 4363 (entry1->group == entry2->group) && 4364 ((entry1->start_blk + entry1->count) == entry2->start_blk)) 4365 return 1; 4366 return 0; 4367 } 4368 4369 static noinline_for_stack int 4370 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4371 struct ext4_free_data *new_entry) 4372 { 4373 ext4_grpblk_t block; 4374 struct ext4_free_data *entry; 4375 struct ext4_group_info *db = e4b->bd_info; 4376 struct super_block *sb = e4b->bd_sb; 4377 struct ext4_sb_info *sbi = EXT4_SB(sb); 4378 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4379 struct rb_node *parent = NULL, *new_node; 4380 4381 BUG_ON(!ext4_handle_valid(handle)); 4382 BUG_ON(e4b->bd_bitmap_page == NULL); 4383 BUG_ON(e4b->bd_buddy_page == NULL); 4384 4385 new_node = &new_entry->node; 4386 block = new_entry->start_blk; 4387 4388 if (!*n) { 4389 /* first free block exent. We need to 4390 protect buddy cache from being freed, 4391 * otherwise we'll refresh it from 4392 * on-disk bitmap and lose not-yet-available 4393 * blocks */ 4394 page_cache_get(e4b->bd_buddy_page); 4395 page_cache_get(e4b->bd_bitmap_page); 4396 } 4397 while (*n) { 4398 parent = *n; 4399 entry = rb_entry(parent, struct ext4_free_data, node); 4400 if (block < entry->start_blk) 4401 n = &(*n)->rb_left; 4402 else if (block >= (entry->start_blk + entry->count)) 4403 n = &(*n)->rb_right; 4404 else { 4405 ext4_grp_locked_error(sb, e4b->bd_group, __func__, 4406 "Double free of blocks %d (%d %d)", 4407 block, entry->start_blk, entry->count); 4408 return 0; 4409 } 4410 } 4411 4412 rb_link_node(new_node, parent, n); 4413 rb_insert_color(new_node, &db->bb_free_root); 4414 4415 /* Now try to see the extent can be merged to left and right */ 4416 node = rb_prev(new_node); 4417 if (node) { 4418 entry = rb_entry(node, struct ext4_free_data, node); 4419 if (can_merge(entry, new_entry)) { 4420 new_entry->start_blk = entry->start_blk; 4421 new_entry->count += entry->count; 4422 rb_erase(node, &(db->bb_free_root)); 4423 spin_lock(&sbi->s_md_lock); 4424 list_del(&entry->list); 4425 spin_unlock(&sbi->s_md_lock); 4426 kmem_cache_free(ext4_free_ext_cachep, entry); 4427 } 4428 } 4429 4430 node = rb_next(new_node); 4431 if (node) { 4432 entry = rb_entry(node, struct ext4_free_data, node); 4433 if (can_merge(new_entry, entry)) { 4434 new_entry->count += entry->count; 4435 rb_erase(node, &(db->bb_free_root)); 4436 spin_lock(&sbi->s_md_lock); 4437 list_del(&entry->list); 4438 spin_unlock(&sbi->s_md_lock); 4439 kmem_cache_free(ext4_free_ext_cachep, entry); 4440 } 4441 } 4442 /* Add the extent to transaction's private list */ 4443 spin_lock(&sbi->s_md_lock); 4444 list_add(&new_entry->list, &handle->h_transaction->t_private_list); 4445 spin_unlock(&sbi->s_md_lock); 4446 return 0; 4447 } 4448 4449 /** 4450 * ext4_free_blocks() -- Free given blocks and update quota 4451 * @handle: handle for this transaction 4452 * @inode: inode 4453 * @block: start physical block to free 4454 * @count: number of blocks to count 4455 * @metadata: Are these metadata blocks 4456 */ 4457 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4458 struct buffer_head *bh, ext4_fsblk_t block, 4459 unsigned long count, int flags) 4460 { 4461 struct buffer_head *bitmap_bh = NULL; 4462 struct super_block *sb = inode->i_sb; 4463 struct ext4_allocation_context *ac = NULL; 4464 struct ext4_group_desc *gdp; 4465 struct ext4_super_block *es; 4466 unsigned long freed = 0; 4467 unsigned int overflow; 4468 ext4_grpblk_t bit; 4469 struct buffer_head *gd_bh; 4470 ext4_group_t block_group; 4471 struct ext4_sb_info *sbi; 4472 struct ext4_buddy e4b; 4473 int err = 0; 4474 int ret; 4475 4476 if (bh) { 4477 if (block) 4478 BUG_ON(block != bh->b_blocknr); 4479 else 4480 block = bh->b_blocknr; 4481 } 4482 4483 sbi = EXT4_SB(sb); 4484 es = EXT4_SB(sb)->s_es; 4485 if (!ext4_data_block_valid(sbi, block, count)) { 4486 ext4_error(sb, __func__, 4487 "Freeing blocks not in datazone - " 4488 "block = %llu, count = %lu", block, count); 4489 goto error_return; 4490 } 4491 4492 ext4_debug("freeing block %llu\n", block); 4493 trace_ext4_free_blocks(inode, block, count, flags); 4494 4495 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4496 struct buffer_head *tbh = bh; 4497 int i; 4498 4499 BUG_ON(bh && (count > 1)); 4500 4501 for (i = 0; i < count; i++) { 4502 if (!bh) 4503 tbh = sb_find_get_block(inode->i_sb, 4504 block + i); 4505 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4506 inode, tbh, block + i); 4507 } 4508 } 4509 4510 /* 4511 * We need to make sure we don't reuse the freed block until 4512 * after the transaction is committed, which we can do by 4513 * treating the block as metadata, below. We make an 4514 * exception if the inode is to be written in writeback mode 4515 * since writeback mode has weak data consistency guarantees. 4516 */ 4517 if (!ext4_should_writeback_data(inode)) 4518 flags |= EXT4_FREE_BLOCKS_METADATA; 4519 4520 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4521 if (ac) { 4522 ac->ac_inode = inode; 4523 ac->ac_sb = sb; 4524 } 4525 4526 do_more: 4527 overflow = 0; 4528 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4529 4530 /* 4531 * Check to see if we are freeing blocks across a group 4532 * boundary. 4533 */ 4534 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4535 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 4536 count -= overflow; 4537 } 4538 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4539 if (!bitmap_bh) { 4540 err = -EIO; 4541 goto error_return; 4542 } 4543 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4544 if (!gdp) { 4545 err = -EIO; 4546 goto error_return; 4547 } 4548 4549 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4550 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4551 in_range(block, ext4_inode_table(sb, gdp), 4552 EXT4_SB(sb)->s_itb_per_group) || 4553 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4554 EXT4_SB(sb)->s_itb_per_group)) { 4555 4556 ext4_error(sb, __func__, 4557 "Freeing blocks in system zone - " 4558 "Block = %llu, count = %lu", block, count); 4559 /* err = 0. ext4_std_error should be a no op */ 4560 goto error_return; 4561 } 4562 4563 BUFFER_TRACE(bitmap_bh, "getting write access"); 4564 err = ext4_journal_get_write_access(handle, bitmap_bh); 4565 if (err) 4566 goto error_return; 4567 4568 /* 4569 * We are about to modify some metadata. Call the journal APIs 4570 * to unshare ->b_data if a currently-committing transaction is 4571 * using it 4572 */ 4573 BUFFER_TRACE(gd_bh, "get_write_access"); 4574 err = ext4_journal_get_write_access(handle, gd_bh); 4575 if (err) 4576 goto error_return; 4577 #ifdef AGGRESSIVE_CHECK 4578 { 4579 int i; 4580 for (i = 0; i < count; i++) 4581 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4582 } 4583 #endif 4584 if (ac) { 4585 ac->ac_b_ex.fe_group = block_group; 4586 ac->ac_b_ex.fe_start = bit; 4587 ac->ac_b_ex.fe_len = count; 4588 trace_ext4_mballoc_free(ac); 4589 } 4590 4591 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4592 if (err) 4593 goto error_return; 4594 4595 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4596 struct ext4_free_data *new_entry; 4597 /* 4598 * blocks being freed are metadata. these blocks shouldn't 4599 * be used until this transaction is committed 4600 */ 4601 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS); 4602 new_entry->start_blk = bit; 4603 new_entry->group = block_group; 4604 new_entry->count = count; 4605 new_entry->t_tid = handle->h_transaction->t_tid; 4606 4607 ext4_lock_group(sb, block_group); 4608 mb_clear_bits(bitmap_bh->b_data, bit, count); 4609 ext4_mb_free_metadata(handle, &e4b, new_entry); 4610 } else { 4611 /* need to update group_info->bb_free and bitmap 4612 * with group lock held. generate_buddy look at 4613 * them with group lock_held 4614 */ 4615 ext4_lock_group(sb, block_group); 4616 mb_clear_bits(bitmap_bh->b_data, bit, count); 4617 mb_free_blocks(inode, &e4b, bit, count); 4618 ext4_mb_return_to_preallocation(inode, &e4b, block, count); 4619 } 4620 4621 ret = ext4_free_blks_count(sb, gdp) + count; 4622 ext4_free_blks_set(sb, gdp, ret); 4623 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 4624 ext4_unlock_group(sb, block_group); 4625 percpu_counter_add(&sbi->s_freeblocks_counter, count); 4626 4627 if (sbi->s_log_groups_per_flex) { 4628 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4629 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks); 4630 } 4631 4632 ext4_mb_release_desc(&e4b); 4633 4634 freed += count; 4635 4636 /* We dirtied the bitmap block */ 4637 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4638 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4639 4640 /* And the group descriptor block */ 4641 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4642 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4643 if (!err) 4644 err = ret; 4645 4646 if (overflow && !err) { 4647 block += count; 4648 count = overflow; 4649 put_bh(bitmap_bh); 4650 goto do_more; 4651 } 4652 sb->s_dirt = 1; 4653 error_return: 4654 if (freed) 4655 vfs_dq_free_block(inode, freed); 4656 brelse(bitmap_bh); 4657 ext4_std_error(sb, err); 4658 if (ac) 4659 kmem_cache_free(ext4_ac_cachep, ac); 4660 return; 4661 } 4662