1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 #include <kunit/static_stub.h> 22 23 /* 24 * MUSTDO: 25 * - test ext4_ext_search_left() and ext4_ext_search_right() 26 * - search for metadata in few groups 27 * 28 * TODO v4: 29 * - normalization should take into account whether file is still open 30 * - discard preallocations if no free space left (policy?) 31 * - don't normalize tails 32 * - quota 33 * - reservation for superuser 34 * 35 * TODO v3: 36 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 37 * - track min/max extents in each group for better group selection 38 * - mb_mark_used() may allocate chunk right after splitting buddy 39 * - tree of groups sorted by number of free blocks 40 * - error handling 41 */ 42 43 /* 44 * The allocation request involve request for multiple number of blocks 45 * near to the goal(block) value specified. 46 * 47 * During initialization phase of the allocator we decide to use the 48 * group preallocation or inode preallocation depending on the size of 49 * the file. The size of the file could be the resulting file size we 50 * would have after allocation, or the current file size, which ever 51 * is larger. If the size is less than sbi->s_mb_stream_request we 52 * select to use the group preallocation. The default value of 53 * s_mb_stream_request is 16 blocks. This can also be tuned via 54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 55 * terms of number of blocks. 56 * 57 * The main motivation for having small file use group preallocation is to 58 * ensure that we have small files closer together on the disk. 59 * 60 * First stage the allocator looks at the inode prealloc list, 61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 62 * spaces for this particular inode. The inode prealloc space is 63 * represented as: 64 * 65 * pa_lstart -> the logical start block for this prealloc space 66 * pa_pstart -> the physical start block for this prealloc space 67 * pa_len -> length for this prealloc space (in clusters) 68 * pa_free -> free space available in this prealloc space (in clusters) 69 * 70 * The inode preallocation space is used looking at the _logical_ start 71 * block. If only the logical file block falls within the range of prealloc 72 * space we will consume the particular prealloc space. This makes sure that 73 * we have contiguous physical blocks representing the file blocks 74 * 75 * The important thing to be noted in case of inode prealloc space is that 76 * we don't modify the values associated to inode prealloc space except 77 * pa_free. 78 * 79 * If we are not able to find blocks in the inode prealloc space and if we 80 * have the group allocation flag set then we look at the locality group 81 * prealloc space. These are per CPU prealloc list represented as 82 * 83 * ext4_sb_info.s_locality_groups[smp_processor_id()] 84 * 85 * The reason for having a per cpu locality group is to reduce the contention 86 * between CPUs. It is possible to get scheduled at this point. 87 * 88 * The locality group prealloc space is used looking at whether we have 89 * enough free space (pa_free) within the prealloc space. 90 * 91 * If we can't allocate blocks via inode prealloc or/and locality group 92 * prealloc then we look at the buddy cache. The buddy cache is represented 93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 94 * mapped to the buddy and bitmap information regarding different 95 * groups. The buddy information is attached to buddy cache inode so that 96 * we can access them through the page cache. The information regarding 97 * each group is loaded via ext4_mb_load_buddy. The information involve 98 * block bitmap and buddy information. The information are stored in the 99 * inode as: 100 * 101 * { page } 102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 103 * 104 * 105 * one block each for bitmap and buddy information. So for each group we 106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 107 * blocksize) blocks. So it can have information regarding groups_per_page 108 * which is blocks_per_page/2 109 * 110 * The buddy cache inode is not stored on disk. The inode is thrown 111 * away when the filesystem is unmounted. 112 * 113 * We look for count number of blocks in the buddy cache. If we were able 114 * to locate that many free blocks we return with additional information 115 * regarding rest of the contiguous physical block available 116 * 117 * Before allocating blocks via buddy cache we normalize the request 118 * blocks. This ensure we ask for more blocks that we needed. The extra 119 * blocks that we get after allocation is added to the respective prealloc 120 * list. In case of inode preallocation we follow a list of heuristics 121 * based on file size. This can be found in ext4_mb_normalize_request. If 122 * we are doing a group prealloc we try to normalize the request to 123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 124 * dependent on the cluster size; for non-bigalloc file systems, it is 125 * 512 blocks. This can be tuned via 126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 127 * terms of number of blocks. If we have mounted the file system with -O 128 * stripe=<value> option the group prealloc request is normalized to the 129 * smallest multiple of the stripe value (sbi->s_stripe) which is 130 * greater than the default mb_group_prealloc. 131 * 132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 133 * structures in two data structures: 134 * 135 * 1) Array of largest free order xarrays (sbi->s_mb_largest_free_orders) 136 * 137 * Locking: Writers use xa_lock, readers use rcu_read_lock. 138 * 139 * This is an array of xarrays where the index in the array represents the 140 * largest free order in the buddy bitmap of the participating group infos of 141 * that xarray. So, there are exactly MB_NUM_ORDERS(sb) (which means total 142 * number of buddy bitmap orders possible) number of xarrays. Group-infos are 143 * placed in appropriate xarrays. 144 * 145 * 2) Average fragment size xarrays (sbi->s_mb_avg_fragment_size) 146 * 147 * Locking: Writers use xa_lock, readers use rcu_read_lock. 148 * 149 * This is an array of xarrays where in the i-th xarray there are groups with 150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 152 * Note that we don't bother with a special xarray for completely empty 153 * groups so we only have MB_NUM_ORDERS(sb) xarrays. Group-infos are placed 154 * in appropriate xarrays. 155 * 156 * In xarray, the index is the block group number, the value is the block group 157 * information, and a non-empty value indicates the block group is present in 158 * the current xarray. 159 * 160 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 161 * structures to decide the order in which groups are to be traversed for 162 * fulfilling an allocation request. 163 * 164 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 165 * >= the order of the request. We directly look at the largest free order list 166 * in the data structure (1) above where largest_free_order = order of the 167 * request. If that list is empty, we look at remaining list in the increasing 168 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 169 * lookup in O(1) time. 170 * 171 * At CR_GOAL_LEN_FAST, we only consider groups where 172 * average fragment size > request size. So, we lookup a group which has average 173 * fragment size just above or equal to request size using our average fragment 174 * size group lists (data structure 2) in O(1) time. 175 * 176 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 177 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 178 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 179 * fragment size > goal length. So before falling to the slower 180 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 181 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 182 * enough average fragment size. This increases the chances of finding a 183 * suitable block group in O(1) time and results in faster allocation at the 184 * cost of reduced size of allocation. 185 * 186 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 187 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 188 * CR_GOAL_LEN_FAST phase. 189 * 190 * The regular allocator (using the buddy cache) supports a few tunables. 191 * 192 * /sys/fs/ext4/<partition>/mb_min_to_scan 193 * /sys/fs/ext4/<partition>/mb_max_to_scan 194 * /sys/fs/ext4/<partition>/mb_order2_req 195 * /sys/fs/ext4/<partition>/mb_max_linear_groups 196 * 197 * The regular allocator uses buddy scan only if the request len is power of 198 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 199 * value of s_mb_order2_reqs can be tuned via 200 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 201 * stripe size (sbi->s_stripe), we try to search for contiguous block in 202 * stripe size. This should result in better allocation on RAID setups. If 203 * not, we search in the specific group using bitmap for best extents. The 204 * tunable min_to_scan and max_to_scan control the behaviour here. 205 * min_to_scan indicate how long the mballoc __must__ look for a best 206 * extent and max_to_scan indicates how long the mballoc __can__ look for a 207 * best extent in the found extents. Searching for the blocks starts with 208 * the group specified as the goal value in allocation context via 209 * ac_g_ex. Each group is first checked based on the criteria whether it 210 * can be used for allocation. ext4_mb_good_group explains how the groups are 211 * checked. 212 * 213 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 214 * get traversed linearly. That may result in subsequent allocations being not 215 * close to each other. And so, the underlying device may get filled up in a 216 * non-linear fashion. While that may not matter on non-rotational devices, for 217 * rotational devices that may result in higher seek times. "mb_max_linear_groups" 218 * tells mballoc how many groups mballoc should search linearly before 219 * performing consulting above data structures for more efficient lookups. For 220 * non rotational devices, this value defaults to 0 and for rotational devices 221 * this is set to MB_DEFAULT_LINEAR_LIMIT. 222 * 223 * Both the prealloc space are getting populated as above. So for the first 224 * request we will hit the buddy cache which will result in this prealloc 225 * space getting filled. The prealloc space is then later used for the 226 * subsequent request. 227 */ 228 229 /* 230 * mballoc operates on the following data: 231 * - on-disk bitmap 232 * - in-core buddy (actually includes buddy and bitmap) 233 * - preallocation descriptors (PAs) 234 * 235 * there are two types of preallocations: 236 * - inode 237 * assiged to specific inode and can be used for this inode only. 238 * it describes part of inode's space preallocated to specific 239 * physical blocks. any block from that preallocated can be used 240 * independent. the descriptor just tracks number of blocks left 241 * unused. so, before taking some block from descriptor, one must 242 * make sure corresponded logical block isn't allocated yet. this 243 * also means that freeing any block within descriptor's range 244 * must discard all preallocated blocks. 245 * - locality group 246 * assigned to specific locality group which does not translate to 247 * permanent set of inodes: inode can join and leave group. space 248 * from this type of preallocation can be used for any inode. thus 249 * it's consumed from the beginning to the end. 250 * 251 * relation between them can be expressed as: 252 * in-core buddy = on-disk bitmap + preallocation descriptors 253 * 254 * this mean blocks mballoc considers used are: 255 * - allocated blocks (persistent) 256 * - preallocated blocks (non-persistent) 257 * 258 * consistency in mballoc world means that at any time a block is either 259 * free or used in ALL structures. notice: "any time" should not be read 260 * literally -- time is discrete and delimited by locks. 261 * 262 * to keep it simple, we don't use block numbers, instead we count number of 263 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 264 * 265 * all operations can be expressed as: 266 * - init buddy: buddy = on-disk + PAs 267 * - new PA: buddy += N; PA = N 268 * - use inode PA: on-disk += N; PA -= N 269 * - discard inode PA buddy -= on-disk - PA; PA = 0 270 * - use locality group PA on-disk += N; PA -= N 271 * - discard locality group PA buddy -= PA; PA = 0 272 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 273 * is used in real operation because we can't know actual used 274 * bits from PA, only from on-disk bitmap 275 * 276 * if we follow this strict logic, then all operations above should be atomic. 277 * given some of them can block, we'd have to use something like semaphores 278 * killing performance on high-end SMP hardware. let's try to relax it using 279 * the following knowledge: 280 * 1) if buddy is referenced, it's already initialized 281 * 2) while block is used in buddy and the buddy is referenced, 282 * nobody can re-allocate that block 283 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 284 * bit set and PA claims same block, it's OK. IOW, one can set bit in 285 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 286 * block 287 * 288 * so, now we're building a concurrency table: 289 * - init buddy vs. 290 * - new PA 291 * blocks for PA are allocated in the buddy, buddy must be referenced 292 * until PA is linked to allocation group to avoid concurrent buddy init 293 * - use inode PA 294 * we need to make sure that either on-disk bitmap or PA has uptodate data 295 * given (3) we care that PA-=N operation doesn't interfere with init 296 * - discard inode PA 297 * the simplest way would be to have buddy initialized by the discard 298 * - use locality group PA 299 * again PA-=N must be serialized with init 300 * - discard locality group PA 301 * the simplest way would be to have buddy initialized by the discard 302 * - new PA vs. 303 * - use inode PA 304 * i_data_sem serializes them 305 * - discard inode PA 306 * discard process must wait until PA isn't used by another process 307 * - use locality group PA 308 * some mutex should serialize them 309 * - discard locality group PA 310 * discard process must wait until PA isn't used by another process 311 * - use inode PA 312 * - use inode PA 313 * i_data_sem or another mutex should serializes them 314 * - discard inode PA 315 * discard process must wait until PA isn't used by another process 316 * - use locality group PA 317 * nothing wrong here -- they're different PAs covering different blocks 318 * - discard locality group PA 319 * discard process must wait until PA isn't used by another process 320 * 321 * now we're ready to make few consequences: 322 * - PA is referenced and while it is no discard is possible 323 * - PA is referenced until block isn't marked in on-disk bitmap 324 * - PA changes only after on-disk bitmap 325 * - discard must not compete with init. either init is done before 326 * any discard or they're serialized somehow 327 * - buddy init as sum of on-disk bitmap and PAs is done atomically 328 * 329 * a special case when we've used PA to emptiness. no need to modify buddy 330 * in this case, but we should care about concurrent init 331 * 332 */ 333 334 /* 335 * Logic in few words: 336 * 337 * - allocation: 338 * load group 339 * find blocks 340 * mark bits in on-disk bitmap 341 * release group 342 * 343 * - use preallocation: 344 * find proper PA (per-inode or group) 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * release PA 349 * 350 * - free: 351 * load group 352 * mark bits in on-disk bitmap 353 * release group 354 * 355 * - discard preallocations in group: 356 * mark PAs deleted 357 * move them onto local list 358 * load on-disk bitmap 359 * load group 360 * remove PA from object (inode or locality group) 361 * mark free blocks in-core 362 * 363 * - discard inode's preallocations: 364 */ 365 366 /* 367 * Locking rules 368 * 369 * Locks: 370 * - bitlock on a group (group) 371 * - object (inode/locality) (object) 372 * - per-pa lock (pa) 373 * - cr_power2_aligned lists lock (cr_power2_aligned) 374 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 375 * 376 * Paths: 377 * - new pa 378 * object 379 * group 380 * 381 * - find and use pa: 382 * pa 383 * 384 * - release consumed pa: 385 * pa 386 * group 387 * object 388 * 389 * - generate in-core bitmap: 390 * group 391 * pa 392 * 393 * - discard all for given object (inode, locality group): 394 * object 395 * pa 396 * group 397 * 398 * - discard all for given group: 399 * group 400 * pa 401 * group 402 * object 403 * 404 * - allocation path (ext4_mb_regular_allocator) 405 * group 406 * cr_power2_aligned/cr_goal_len_fast 407 */ 408 static struct kmem_cache *ext4_pspace_cachep; 409 static struct kmem_cache *ext4_ac_cachep; 410 static struct kmem_cache *ext4_free_data_cachep; 411 412 /* We create slab caches for groupinfo data structures based on the 413 * superblock block size. There will be one per mounted filesystem for 414 * each unique s_blocksize_bits */ 415 #define NR_GRPINFO_CACHES 8 416 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 417 418 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 419 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 420 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 421 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 422 }; 423 424 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 425 ext4_group_t group); 426 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 427 428 static int ext4_mb_scan_group(struct ext4_allocation_context *ac, 429 ext4_group_t group); 430 431 static int ext4_try_to_trim_range(struct super_block *sb, 432 struct ext4_buddy *e4b, ext4_grpblk_t start, 433 ext4_grpblk_t max, ext4_grpblk_t minblocks); 434 435 /* 436 * The algorithm using this percpu seq counter goes below: 437 * 1. We sample the percpu discard_pa_seq counter before trying for block 438 * allocation in ext4_mb_new_blocks(). 439 * 2. We increment this percpu discard_pa_seq counter when we either allocate 440 * or free these blocks i.e. while marking those blocks as used/free in 441 * mb_mark_used()/mb_free_blocks(). 442 * 3. We also increment this percpu seq counter when we successfully identify 443 * that the bb_prealloc_list is not empty and hence proceed for discarding 444 * of those PAs inside ext4_mb_discard_group_preallocations(). 445 * 446 * Now to make sure that the regular fast path of block allocation is not 447 * affected, as a small optimization we only sample the percpu seq counter 448 * on that cpu. Only when the block allocation fails and when freed blocks 449 * found were 0, that is when we sample percpu seq counter for all cpus using 450 * below function ext4_get_discard_pa_seq_sum(). This happens after making 451 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 452 */ 453 static DEFINE_PER_CPU(u64, discard_pa_seq); 454 static inline u64 ext4_get_discard_pa_seq_sum(void) 455 { 456 int __cpu; 457 u64 __seq = 0; 458 459 for_each_possible_cpu(__cpu) 460 __seq += per_cpu(discard_pa_seq, __cpu); 461 return __seq; 462 } 463 464 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 465 { 466 #if BITS_PER_LONG == 64 467 *bit += ((unsigned long) addr & 7UL) << 3; 468 addr = (void *) ((unsigned long) addr & ~7UL); 469 #elif BITS_PER_LONG == 32 470 *bit += ((unsigned long) addr & 3UL) << 3; 471 addr = (void *) ((unsigned long) addr & ~3UL); 472 #else 473 #error "how many bits you are?!" 474 #endif 475 return addr; 476 } 477 478 static inline int mb_test_bit(int bit, void *addr) 479 { 480 /* 481 * ext4_test_bit on architecture like powerpc 482 * needs unsigned long aligned address 483 */ 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 return ext4_test_bit(bit, addr); 486 } 487 488 static inline void mb_set_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_set_bit(bit, addr); 492 } 493 494 static inline void mb_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 ext4_clear_bit(bit, addr); 498 } 499 500 static inline int mb_test_and_clear_bit(int bit, void *addr) 501 { 502 addr = mb_correct_addr_and_bit(&bit, addr); 503 return ext4_test_and_clear_bit(bit, addr); 504 } 505 506 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 507 { 508 int fix = 0, ret, tmpmax; 509 addr = mb_correct_addr_and_bit(&fix, addr); 510 tmpmax = max + fix; 511 start += fix; 512 513 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 514 if (ret > max) 515 return max; 516 return ret; 517 } 518 519 static inline int mb_find_next_bit(void *addr, int max, int start) 520 { 521 int fix = 0, ret, tmpmax; 522 addr = mb_correct_addr_and_bit(&fix, addr); 523 tmpmax = max + fix; 524 start += fix; 525 526 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 527 if (ret > max) 528 return max; 529 return ret; 530 } 531 532 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 533 { 534 char *bb; 535 536 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 537 BUG_ON(max == NULL); 538 539 if (order > e4b->bd_blkbits + 1) { 540 *max = 0; 541 return NULL; 542 } 543 544 /* at order 0 we see each particular block */ 545 if (order == 0) { 546 *max = 1 << (e4b->bd_blkbits + 3); 547 return e4b->bd_bitmap; 548 } 549 550 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 551 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 552 553 return bb; 554 } 555 556 #ifdef DOUBLE_CHECK 557 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 558 int first, int count) 559 { 560 int i; 561 struct super_block *sb = e4b->bd_sb; 562 563 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 564 return; 565 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 566 for (i = 0; i < count; i++) { 567 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 568 ext4_fsblk_t blocknr; 569 570 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 571 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 ext4_grp_locked_error(sb, e4b->bd_group, 575 inode ? inode->i_ino : 0, 576 blocknr, 577 "freeing block already freed " 578 "(bit %u)", 579 first + i); 580 } 581 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 582 } 583 } 584 585 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 586 { 587 int i; 588 589 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 590 return; 591 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 592 for (i = 0; i < count; i++) { 593 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 594 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 595 } 596 } 597 598 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 599 { 600 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 601 return; 602 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 603 unsigned char *b1, *b2; 604 int i; 605 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 606 b2 = (unsigned char *) bitmap; 607 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 608 if (b1[i] != b2[i]) { 609 ext4_msg(e4b->bd_sb, KERN_ERR, 610 "corruption in group %u " 611 "at byte %u(%u): %x in copy != %x " 612 "on disk/prealloc", 613 e4b->bd_group, i, i * 8, b1[i], b2[i]); 614 BUG(); 615 } 616 } 617 } 618 } 619 620 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 621 struct ext4_group_info *grp, ext4_group_t group) 622 { 623 struct buffer_head *bh; 624 625 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 626 if (!grp->bb_bitmap) 627 return; 628 629 bh = ext4_read_block_bitmap(sb, group); 630 if (IS_ERR_OR_NULL(bh)) { 631 kfree(grp->bb_bitmap); 632 grp->bb_bitmap = NULL; 633 return; 634 } 635 636 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 637 put_bh(bh); 638 } 639 640 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 641 { 642 kfree(grp->bb_bitmap); 643 } 644 645 #else 646 static inline void mb_free_blocks_double(struct inode *inode, 647 struct ext4_buddy *e4b, int first, int count) 648 { 649 return; 650 } 651 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 652 int first, int count) 653 { 654 return; 655 } 656 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 662 struct ext4_group_info *grp, ext4_group_t group) 663 { 664 return; 665 } 666 667 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 668 { 669 return; 670 } 671 #endif 672 673 #ifdef AGGRESSIVE_CHECK 674 675 #define MB_CHECK_ASSERT(assert) \ 676 do { \ 677 if (!(assert)) { \ 678 printk(KERN_EMERG \ 679 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 680 function, file, line, # assert); \ 681 BUG(); \ 682 } \ 683 } while (0) 684 685 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file, 686 const char *function, int line) 687 { 688 struct super_block *sb = e4b->bd_sb; 689 int order = e4b->bd_blkbits + 1; 690 int max; 691 int max2; 692 int i; 693 int j; 694 int k; 695 int count; 696 struct ext4_group_info *grp; 697 int fragments = 0; 698 int fstart; 699 struct list_head *cur; 700 void *buddy; 701 void *buddy2; 702 703 if (e4b->bd_info->bb_check_counter++ % 10) 704 return; 705 706 while (order > 1) { 707 buddy = mb_find_buddy(e4b, order, &max); 708 MB_CHECK_ASSERT(buddy); 709 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 710 MB_CHECK_ASSERT(buddy2); 711 MB_CHECK_ASSERT(buddy != buddy2); 712 MB_CHECK_ASSERT(max * 2 == max2); 713 714 count = 0; 715 for (i = 0; i < max; i++) { 716 717 if (mb_test_bit(i, buddy)) { 718 /* only single bit in buddy2 may be 0 */ 719 if (!mb_test_bit(i << 1, buddy2)) { 720 MB_CHECK_ASSERT( 721 mb_test_bit((i<<1)+1, buddy2)); 722 } 723 continue; 724 } 725 726 /* both bits in buddy2 must be 1 */ 727 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 728 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 729 730 for (j = 0; j < (1 << order); j++) { 731 k = (i * (1 << order)) + j; 732 MB_CHECK_ASSERT( 733 !mb_test_bit(k, e4b->bd_bitmap)); 734 } 735 count++; 736 } 737 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 738 order--; 739 } 740 741 fstart = -1; 742 buddy = mb_find_buddy(e4b, 0, &max); 743 for (i = 0; i < max; i++) { 744 if (!mb_test_bit(i, buddy)) { 745 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 746 if (fstart == -1) { 747 fragments++; 748 fstart = i; 749 } 750 continue; 751 } 752 fstart = -1; 753 /* check used bits only */ 754 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 755 buddy2 = mb_find_buddy(e4b, j, &max2); 756 k = i >> j; 757 MB_CHECK_ASSERT(k < max2); 758 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 759 } 760 } 761 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 762 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 763 764 grp = ext4_get_group_info(sb, e4b->bd_group); 765 if (!grp) 766 return; 767 list_for_each(cur, &grp->bb_prealloc_list) { 768 ext4_group_t groupnr; 769 struct ext4_prealloc_space *pa; 770 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 771 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 772 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 773 for (i = 0; i < pa->pa_len; i++) 774 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 775 } 776 } 777 #undef MB_CHECK_ASSERT 778 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 779 __FILE__, __func__, __LINE__) 780 #else 781 #define mb_check_buddy(e4b) 782 #endif 783 784 /* 785 * Divide blocks started from @first with length @len into 786 * smaller chunks with power of 2 blocks. 787 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 788 * then increase bb_counters[] for corresponded chunk size. 789 */ 790 static void ext4_mb_mark_free_simple(struct super_block *sb, 791 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 792 struct ext4_group_info *grp) 793 { 794 struct ext4_sb_info *sbi = EXT4_SB(sb); 795 ext4_grpblk_t min; 796 ext4_grpblk_t max; 797 ext4_grpblk_t chunk; 798 unsigned int border; 799 800 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 801 802 border = 2 << sb->s_blocksize_bits; 803 804 while (len > 0) { 805 /* find how many blocks can be covered since this position */ 806 max = ffs(first | border) - 1; 807 808 /* find how many blocks of power 2 we need to mark */ 809 min = fls(len) - 1; 810 811 if (max < min) 812 min = max; 813 chunk = 1 << min; 814 815 /* mark multiblock chunks only */ 816 grp->bb_counters[min]++; 817 if (min > 0) 818 mb_clear_bit(first >> min, 819 buddy + sbi->s_mb_offsets[min]); 820 821 len -= chunk; 822 first += chunk; 823 } 824 } 825 826 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 827 { 828 int order; 829 830 /* 831 * We don't bother with a special lists groups with only 1 block free 832 * extents and for completely empty groups. 833 */ 834 order = fls(len) - 2; 835 if (order < 0) 836 return 0; 837 if (order == MB_NUM_ORDERS(sb)) 838 order--; 839 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb))) 840 order = MB_NUM_ORDERS(sb) - 1; 841 return order; 842 } 843 844 /* Move group to appropriate avg_fragment_size list */ 845 static void 846 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 847 { 848 struct ext4_sb_info *sbi = EXT4_SB(sb); 849 int new, old; 850 851 if (!test_opt2(sb, MB_OPTIMIZE_SCAN)) 852 return; 853 854 old = grp->bb_avg_fragment_size_order; 855 new = grp->bb_fragments == 0 ? -1 : 856 mb_avg_fragment_size_order(sb, grp->bb_free / grp->bb_fragments); 857 if (new == old) 858 return; 859 860 if (old >= 0) 861 xa_erase(&sbi->s_mb_avg_fragment_size[old], grp->bb_group); 862 863 grp->bb_avg_fragment_size_order = new; 864 if (new >= 0) { 865 /* 866 * Cannot use __GFP_NOFAIL because we hold the group lock. 867 * Although allocation for insertion may fails, it's not fatal 868 * as we have linear traversal to fall back on. 869 */ 870 int err = xa_insert(&sbi->s_mb_avg_fragment_size[new], 871 grp->bb_group, grp, GFP_ATOMIC); 872 if (err) 873 mb_debug(sb, "insert group: %u to s_mb_avg_fragment_size[%d] failed, err %d", 874 grp->bb_group, new, err); 875 } 876 } 877 878 static int ext4_mb_scan_groups_xa_range(struct ext4_allocation_context *ac, 879 struct xarray *xa, 880 ext4_group_t start, ext4_group_t end) 881 { 882 struct super_block *sb = ac->ac_sb; 883 struct ext4_sb_info *sbi = EXT4_SB(sb); 884 enum criteria cr = ac->ac_criteria; 885 ext4_group_t ngroups = ext4_get_groups_count(sb); 886 unsigned long group = start; 887 struct ext4_group_info *grp; 888 889 if (WARN_ON_ONCE(end > ngroups || start >= end)) 890 return 0; 891 892 xa_for_each_range(xa, group, grp, start, end - 1) { 893 int err; 894 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 897 898 err = ext4_mb_scan_group(ac, grp->bb_group); 899 if (err || ac->ac_status != AC_STATUS_CONTINUE) 900 return err; 901 902 cond_resched(); 903 } 904 905 return 0; 906 } 907 908 /* 909 * Find a suitable group of given order from the largest free orders xarray. 910 */ 911 static inline int 912 ext4_mb_scan_groups_largest_free_order_range(struct ext4_allocation_context *ac, 913 int order, ext4_group_t start, 914 ext4_group_t end) 915 { 916 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_largest_free_orders[order]; 917 918 if (xa_empty(xa)) 919 return 0; 920 921 return ext4_mb_scan_groups_xa_range(ac, xa, start, end); 922 } 923 924 /* 925 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 926 * cr level needs an update. 927 */ 928 static int ext4_mb_scan_groups_p2_aligned(struct ext4_allocation_context *ac, 929 ext4_group_t group) 930 { 931 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 932 int i; 933 int ret = 0; 934 ext4_group_t start, end; 935 936 start = group; 937 end = ext4_get_groups_count(ac->ac_sb); 938 wrap_around: 939 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 940 ret = ext4_mb_scan_groups_largest_free_order_range(ac, i, 941 start, end); 942 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 943 return ret; 944 } 945 if (start) { 946 end = start; 947 start = 0; 948 goto wrap_around; 949 } 950 951 if (sbi->s_mb_stats) 952 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]); 953 954 /* Increment cr and search again if no group is found */ 955 ac->ac_criteria = CR_GOAL_LEN_FAST; 956 return ret; 957 } 958 959 /* 960 * Find a suitable group of given order from the average fragments xarray. 961 */ 962 static int 963 ext4_mb_scan_groups_avg_frag_order_range(struct ext4_allocation_context *ac, 964 int order, ext4_group_t start, 965 ext4_group_t end) 966 { 967 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_avg_fragment_size[order]; 968 969 if (xa_empty(xa)) 970 return 0; 971 972 return ext4_mb_scan_groups_xa_range(ac, xa, start, end); 973 } 974 975 /* 976 * Choose next group by traversing average fragment size list of suitable 977 * order. Updates *new_cr if cr level needs an update. 978 */ 979 static int ext4_mb_scan_groups_goal_fast(struct ext4_allocation_context *ac, 980 ext4_group_t group) 981 { 982 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 983 int i, ret = 0; 984 ext4_group_t start, end; 985 986 start = group; 987 end = ext4_get_groups_count(ac->ac_sb); 988 wrap_around: 989 i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 990 for (; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 991 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, i, 992 start, end); 993 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 994 return ret; 995 } 996 if (start) { 997 end = start; 998 start = 0; 999 goto wrap_around; 1000 } 1001 1002 if (sbi->s_mb_stats) 1003 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]); 1004 /* 1005 * CR_BEST_AVAIL_LEN works based on the concept that we have 1006 * a larger normalized goal len request which can be trimmed to 1007 * a smaller goal len such that it can still satisfy original 1008 * request len. However, allocation request for non-regular 1009 * files never gets normalized. 1010 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 1011 */ 1012 if (ac->ac_flags & EXT4_MB_HINT_DATA) 1013 ac->ac_criteria = CR_BEST_AVAIL_LEN; 1014 else 1015 ac->ac_criteria = CR_GOAL_LEN_SLOW; 1016 1017 return ret; 1018 } 1019 1020 /* 1021 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 1022 * order we have and proactively trim the goal request length to that order to 1023 * find a suitable group faster. 1024 * 1025 * This optimizes allocation speed at the cost of slightly reduced 1026 * preallocations. However, we make sure that we don't trim the request too 1027 * much and fall to CR_GOAL_LEN_SLOW in that case. 1028 */ 1029 static int ext4_mb_scan_groups_best_avail(struct ext4_allocation_context *ac, 1030 ext4_group_t group) 1031 { 1032 int ret = 0; 1033 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1034 int i, order, min_order; 1035 unsigned long num_stripe_clusters = 0; 1036 ext4_group_t start, end; 1037 1038 /* 1039 * mb_avg_fragment_size_order() returns order in a way that makes 1040 * retrieving back the length using (1 << order) inaccurate. Hence, use 1041 * fls() instead since we need to know the actual length while modifying 1042 * goal length. 1043 */ 1044 order = fls(ac->ac_g_ex.fe_len) - 1; 1045 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb))) 1046 order = MB_NUM_ORDERS(ac->ac_sb); 1047 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1048 if (min_order < 0) 1049 min_order = 0; 1050 1051 if (sbi->s_stripe > 0) { 1052 /* 1053 * We are assuming that stripe size is always a multiple of 1054 * cluster ratio otherwise __ext4_fill_super exists early. 1055 */ 1056 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1057 if (1 << min_order < num_stripe_clusters) 1058 /* 1059 * We consider 1 order less because later we round 1060 * up the goal len to num_stripe_clusters 1061 */ 1062 min_order = fls(num_stripe_clusters) - 1; 1063 } 1064 1065 if (1 << min_order < ac->ac_o_ex.fe_len) 1066 min_order = fls(ac->ac_o_ex.fe_len); 1067 1068 start = group; 1069 end = ext4_get_groups_count(ac->ac_sb); 1070 wrap_around: 1071 for (i = order; i >= min_order; i--) { 1072 int frag_order; 1073 /* 1074 * Scale down goal len to make sure we find something 1075 * in the free fragments list. Basically, reduce 1076 * preallocations. 1077 */ 1078 ac->ac_g_ex.fe_len = 1 << i; 1079 1080 if (num_stripe_clusters > 0) { 1081 /* 1082 * Try to round up the adjusted goal length to 1083 * stripe size (in cluster units) multiple for 1084 * efficiency. 1085 */ 1086 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1087 num_stripe_clusters); 1088 } 1089 1090 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1091 ac->ac_g_ex.fe_len); 1092 1093 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, frag_order, 1094 start, end); 1095 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 1096 return ret; 1097 } 1098 if (start) { 1099 end = start; 1100 start = 0; 1101 goto wrap_around; 1102 } 1103 1104 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1105 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1106 if (sbi->s_mb_stats) 1107 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]); 1108 ac->ac_criteria = CR_GOAL_LEN_SLOW; 1109 1110 return ret; 1111 } 1112 1113 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1114 { 1115 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1116 return 0; 1117 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1118 return 0; 1119 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1120 return 0; 1121 return 1; 1122 } 1123 1124 /* 1125 * next linear group for allocation. 1126 */ 1127 static void next_linear_group(ext4_group_t *group, ext4_group_t ngroups) 1128 { 1129 /* 1130 * Artificially restricted ngroups for non-extent 1131 * files makes group > ngroups possible on first loop. 1132 */ 1133 *group = *group + 1 >= ngroups ? 0 : *group + 1; 1134 } 1135 1136 static int ext4_mb_scan_groups_linear(struct ext4_allocation_context *ac, 1137 ext4_group_t ngroups, ext4_group_t *start, ext4_group_t count) 1138 { 1139 int ret, i; 1140 enum criteria cr = ac->ac_criteria; 1141 struct super_block *sb = ac->ac_sb; 1142 struct ext4_sb_info *sbi = EXT4_SB(sb); 1143 ext4_group_t group = *start; 1144 1145 for (i = 0; i < count; i++, next_linear_group(&group, ngroups)) { 1146 ret = ext4_mb_scan_group(ac, group); 1147 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 1148 return ret; 1149 cond_resched(); 1150 } 1151 1152 *start = group; 1153 if (count == ngroups) 1154 ac->ac_criteria++; 1155 1156 /* Processed all groups and haven't found blocks */ 1157 if (sbi->s_mb_stats && i == ngroups) 1158 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 1159 1160 return 0; 1161 } 1162 1163 static int ext4_mb_scan_groups(struct ext4_allocation_context *ac) 1164 { 1165 int ret = 0; 1166 ext4_group_t start; 1167 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1168 ext4_group_t ngroups = ext4_get_groups_count(ac->ac_sb); 1169 1170 /* non-extent files are limited to low blocks/groups */ 1171 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1172 ngroups = sbi->s_blockfile_groups; 1173 1174 /* searching for the right group start from the goal value specified */ 1175 start = ac->ac_g_ex.fe_group; 1176 ac->ac_prefetch_grp = start; 1177 ac->ac_prefetch_nr = 0; 1178 1179 if (!should_optimize_scan(ac)) 1180 return ext4_mb_scan_groups_linear(ac, ngroups, &start, ngroups); 1181 1182 /* 1183 * Optimized scanning can return non adjacent groups which can cause 1184 * seek overhead for rotational disks. So try few linear groups before 1185 * trying optimized scan. 1186 */ 1187 if (sbi->s_mb_max_linear_groups) 1188 ret = ext4_mb_scan_groups_linear(ac, ngroups, &start, 1189 sbi->s_mb_max_linear_groups); 1190 if (ret || ac->ac_status != AC_STATUS_CONTINUE) 1191 return ret; 1192 1193 switch (ac->ac_criteria) { 1194 case CR_POWER2_ALIGNED: 1195 return ext4_mb_scan_groups_p2_aligned(ac, start); 1196 case CR_GOAL_LEN_FAST: 1197 return ext4_mb_scan_groups_goal_fast(ac, start); 1198 case CR_BEST_AVAIL_LEN: 1199 return ext4_mb_scan_groups_best_avail(ac, start); 1200 default: 1201 /* 1202 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an 1203 * rb tree sorted by bb_free. But until that happens, we should 1204 * never come here. 1205 */ 1206 WARN_ON(1); 1207 } 1208 1209 return 0; 1210 } 1211 1212 /* 1213 * Cache the order of the largest free extent we have available in this block 1214 * group. 1215 */ 1216 static void 1217 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1218 { 1219 struct ext4_sb_info *sbi = EXT4_SB(sb); 1220 int new, old = grp->bb_largest_free_order; 1221 1222 for (new = MB_NUM_ORDERS(sb) - 1; new >= 0; new--) 1223 if (grp->bb_counters[new] > 0) 1224 break; 1225 1226 /* No need to move between order lists? */ 1227 if (new == old) 1228 return; 1229 1230 if (old >= 0) { 1231 struct xarray *xa = &sbi->s_mb_largest_free_orders[old]; 1232 1233 if (!xa_empty(xa) && xa_load(xa, grp->bb_group)) 1234 xa_erase(xa, grp->bb_group); 1235 } 1236 1237 grp->bb_largest_free_order = new; 1238 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && new >= 0 && grp->bb_free) { 1239 /* 1240 * Cannot use __GFP_NOFAIL because we hold the group lock. 1241 * Although allocation for insertion may fails, it's not fatal 1242 * as we have linear traversal to fall back on. 1243 */ 1244 int err = xa_insert(&sbi->s_mb_largest_free_orders[new], 1245 grp->bb_group, grp, GFP_ATOMIC); 1246 if (err) 1247 mb_debug(sb, "insert group: %u to s_mb_largest_free_orders[%d] failed, err %d", 1248 grp->bb_group, new, err); 1249 } 1250 } 1251 1252 static noinline_for_stack 1253 void ext4_mb_generate_buddy(struct super_block *sb, 1254 void *buddy, void *bitmap, ext4_group_t group, 1255 struct ext4_group_info *grp) 1256 { 1257 struct ext4_sb_info *sbi = EXT4_SB(sb); 1258 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1259 ext4_grpblk_t i = 0; 1260 ext4_grpblk_t first; 1261 ext4_grpblk_t len; 1262 unsigned free = 0; 1263 unsigned fragments = 0; 1264 unsigned long long period = get_cycles(); 1265 1266 /* initialize buddy from bitmap which is aggregation 1267 * of on-disk bitmap and preallocations */ 1268 i = mb_find_next_zero_bit(bitmap, max, 0); 1269 grp->bb_first_free = i; 1270 while (i < max) { 1271 fragments++; 1272 first = i; 1273 i = mb_find_next_bit(bitmap, max, i); 1274 len = i - first; 1275 free += len; 1276 if (len > 1) 1277 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1278 else 1279 grp->bb_counters[0]++; 1280 if (i < max) 1281 i = mb_find_next_zero_bit(bitmap, max, i); 1282 } 1283 grp->bb_fragments = fragments; 1284 1285 if (free != grp->bb_free) { 1286 ext4_grp_locked_error(sb, group, 0, 0, 1287 "block bitmap and bg descriptor " 1288 "inconsistent: %u vs %u free clusters", 1289 free, grp->bb_free); 1290 /* 1291 * If we intend to continue, we consider group descriptor 1292 * corrupt and update bb_free using bitmap value 1293 */ 1294 grp->bb_free = free; 1295 ext4_mark_group_bitmap_corrupted(sb, group, 1296 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1297 } 1298 mb_set_largest_free_order(sb, grp); 1299 mb_update_avg_fragment_size(sb, grp); 1300 1301 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1302 1303 period = get_cycles() - period; 1304 atomic_inc(&sbi->s_mb_buddies_generated); 1305 atomic64_add(period, &sbi->s_mb_generation_time); 1306 } 1307 1308 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1309 { 1310 int count; 1311 int order = 1; 1312 void *buddy; 1313 1314 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1315 mb_set_bits(buddy, 0, count); 1316 1317 e4b->bd_info->bb_fragments = 0; 1318 memset(e4b->bd_info->bb_counters, 0, 1319 sizeof(*e4b->bd_info->bb_counters) * 1320 (e4b->bd_sb->s_blocksize_bits + 2)); 1321 1322 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1323 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1324 } 1325 1326 /* The buddy information is attached the buddy cache inode 1327 * for convenience. The information regarding each group 1328 * is loaded via ext4_mb_load_buddy. The information involve 1329 * block bitmap and buddy information. The information are 1330 * stored in the inode as 1331 * 1332 * { page } 1333 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1334 * 1335 * 1336 * one block each for bitmap and buddy information. 1337 * So for each group we take up 2 blocks. A page can 1338 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1339 * So it can have information regarding groups_per_page which 1340 * is blocks_per_page/2 1341 * 1342 * Locking note: This routine takes the block group lock of all groups 1343 * for this page; do not hold this lock when calling this routine! 1344 */ 1345 1346 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp) 1347 { 1348 ext4_group_t ngroups; 1349 unsigned int blocksize; 1350 int blocks_per_page; 1351 int groups_per_page; 1352 int err = 0; 1353 int i; 1354 ext4_group_t first_group, group; 1355 int first_block; 1356 struct super_block *sb; 1357 struct buffer_head *bhs; 1358 struct buffer_head **bh = NULL; 1359 struct inode *inode; 1360 char *data; 1361 char *bitmap; 1362 struct ext4_group_info *grinfo; 1363 1364 inode = folio->mapping->host; 1365 sb = inode->i_sb; 1366 ngroups = ext4_get_groups_count(sb); 1367 blocksize = i_blocksize(inode); 1368 blocks_per_page = PAGE_SIZE / blocksize; 1369 1370 mb_debug(sb, "init folio %lu\n", folio->index); 1371 1372 groups_per_page = blocks_per_page >> 1; 1373 if (groups_per_page == 0) 1374 groups_per_page = 1; 1375 1376 /* allocate buffer_heads to read bitmaps */ 1377 if (groups_per_page > 1) { 1378 i = sizeof(struct buffer_head *) * groups_per_page; 1379 bh = kzalloc(i, gfp); 1380 if (bh == NULL) 1381 return -ENOMEM; 1382 } else 1383 bh = &bhs; 1384 1385 first_group = folio->index * blocks_per_page / 2; 1386 1387 /* read all groups the folio covers into the cache */ 1388 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1389 if (group >= ngroups) 1390 break; 1391 1392 grinfo = ext4_get_group_info(sb, group); 1393 if (!grinfo) 1394 continue; 1395 /* 1396 * If page is uptodate then we came here after online resize 1397 * which added some new uninitialized group info structs, so 1398 * we must skip all initialized uptodate buddies on the folio, 1399 * which may be currently in use by an allocating task. 1400 */ 1401 if (folio_test_uptodate(folio) && 1402 !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1403 bh[i] = NULL; 1404 continue; 1405 } 1406 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1407 if (IS_ERR(bh[i])) { 1408 err = PTR_ERR(bh[i]); 1409 bh[i] = NULL; 1410 goto out; 1411 } 1412 mb_debug(sb, "read bitmap for group %u\n", group); 1413 } 1414 1415 /* wait for I/O completion */ 1416 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1417 int err2; 1418 1419 if (!bh[i]) 1420 continue; 1421 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1422 if (!err) 1423 err = err2; 1424 } 1425 1426 first_block = folio->index * blocks_per_page; 1427 for (i = 0; i < blocks_per_page; i++) { 1428 group = (first_block + i) >> 1; 1429 if (group >= ngroups) 1430 break; 1431 1432 if (!bh[group - first_group]) 1433 /* skip initialized uptodate buddy */ 1434 continue; 1435 1436 if (!buffer_verified(bh[group - first_group])) 1437 /* Skip faulty bitmaps */ 1438 continue; 1439 err = 0; 1440 1441 /* 1442 * data carry information regarding this 1443 * particular group in the format specified 1444 * above 1445 * 1446 */ 1447 data = folio_address(folio) + (i * blocksize); 1448 bitmap = bh[group - first_group]->b_data; 1449 1450 /* 1451 * We place the buddy block and bitmap block 1452 * close together 1453 */ 1454 grinfo = ext4_get_group_info(sb, group); 1455 if (!grinfo) { 1456 err = -EFSCORRUPTED; 1457 goto out; 1458 } 1459 if ((first_block + i) & 1) { 1460 /* this is block of buddy */ 1461 BUG_ON(incore == NULL); 1462 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n", 1463 group, folio->index, i * blocksize); 1464 trace_ext4_mb_buddy_bitmap_load(sb, group); 1465 grinfo->bb_fragments = 0; 1466 memset(grinfo->bb_counters, 0, 1467 sizeof(*grinfo->bb_counters) * 1468 (MB_NUM_ORDERS(sb))); 1469 /* 1470 * incore got set to the group block bitmap below 1471 */ 1472 ext4_lock_group(sb, group); 1473 /* init the buddy */ 1474 memset(data, 0xff, blocksize); 1475 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1476 ext4_unlock_group(sb, group); 1477 incore = NULL; 1478 } else { 1479 /* this is block of bitmap */ 1480 BUG_ON(incore != NULL); 1481 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n", 1482 group, folio->index, i * blocksize); 1483 trace_ext4_mb_bitmap_load(sb, group); 1484 1485 /* see comments in ext4_mb_put_pa() */ 1486 ext4_lock_group(sb, group); 1487 memcpy(data, bitmap, blocksize); 1488 1489 /* mark all preallocated blks used in in-core bitmap */ 1490 ext4_mb_generate_from_pa(sb, data, group); 1491 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1492 ext4_unlock_group(sb, group); 1493 1494 /* set incore so that the buddy information can be 1495 * generated using this 1496 */ 1497 incore = data; 1498 } 1499 } 1500 folio_mark_uptodate(folio); 1501 1502 out: 1503 if (bh) { 1504 for (i = 0; i < groups_per_page; i++) 1505 brelse(bh[i]); 1506 if (bh != &bhs) 1507 kfree(bh); 1508 } 1509 return err; 1510 } 1511 1512 /* 1513 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1514 * on the same buddy page doesn't happen whild holding the buddy page lock. 1515 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1516 * are on the same page e4b->bd_buddy_folio is NULL and return value is 0. 1517 */ 1518 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1519 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1520 { 1521 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1522 int block, pnum, poff; 1523 int blocks_per_page; 1524 struct folio *folio; 1525 1526 e4b->bd_buddy_folio = NULL; 1527 e4b->bd_bitmap_folio = NULL; 1528 1529 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1530 /* 1531 * the buddy cache inode stores the block bitmap 1532 * and buddy information in consecutive blocks. 1533 * So for each group we need two blocks. 1534 */ 1535 block = group * 2; 1536 pnum = block / blocks_per_page; 1537 poff = block % blocks_per_page; 1538 folio = __filemap_get_folio(inode->i_mapping, pnum, 1539 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1540 if (IS_ERR(folio)) 1541 return PTR_ERR(folio); 1542 BUG_ON(folio->mapping != inode->i_mapping); 1543 e4b->bd_bitmap_folio = folio; 1544 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); 1545 1546 if (blocks_per_page >= 2) { 1547 /* buddy and bitmap are on the same page */ 1548 return 0; 1549 } 1550 1551 /* blocks_per_page == 1, hence we need another page for the buddy */ 1552 folio = __filemap_get_folio(inode->i_mapping, block + 1, 1553 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1554 if (IS_ERR(folio)) 1555 return PTR_ERR(folio); 1556 BUG_ON(folio->mapping != inode->i_mapping); 1557 e4b->bd_buddy_folio = folio; 1558 return 0; 1559 } 1560 1561 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1562 { 1563 if (e4b->bd_bitmap_folio) { 1564 folio_unlock(e4b->bd_bitmap_folio); 1565 folio_put(e4b->bd_bitmap_folio); 1566 } 1567 if (e4b->bd_buddy_folio) { 1568 folio_unlock(e4b->bd_buddy_folio); 1569 folio_put(e4b->bd_buddy_folio); 1570 } 1571 } 1572 1573 /* 1574 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1575 * block group lock of all groups for this page; do not hold the BG lock when 1576 * calling this routine! 1577 */ 1578 static noinline_for_stack 1579 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1580 { 1581 1582 struct ext4_group_info *this_grp; 1583 struct ext4_buddy e4b; 1584 struct folio *folio; 1585 int ret = 0; 1586 1587 might_sleep(); 1588 mb_debug(sb, "init group %u\n", group); 1589 this_grp = ext4_get_group_info(sb, group); 1590 if (!this_grp) 1591 return -EFSCORRUPTED; 1592 1593 /* 1594 * This ensures that we don't reinit the buddy cache 1595 * page which map to the group from which we are already 1596 * allocating. If we are looking at the buddy cache we would 1597 * have taken a reference using ext4_mb_load_buddy and that 1598 * would have pinned buddy page to page cache. 1599 * The call to ext4_mb_get_buddy_page_lock will mark the 1600 * page accessed. 1601 */ 1602 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1603 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1604 /* 1605 * somebody initialized the group 1606 * return without doing anything 1607 */ 1608 goto err; 1609 } 1610 1611 folio = e4b.bd_bitmap_folio; 1612 ret = ext4_mb_init_cache(folio, NULL, gfp); 1613 if (ret) 1614 goto err; 1615 if (!folio_test_uptodate(folio)) { 1616 ret = -EIO; 1617 goto err; 1618 } 1619 1620 if (e4b.bd_buddy_folio == NULL) { 1621 /* 1622 * If both the bitmap and buddy are in 1623 * the same page we don't need to force 1624 * init the buddy 1625 */ 1626 ret = 0; 1627 goto err; 1628 } 1629 /* init buddy cache */ 1630 folio = e4b.bd_buddy_folio; 1631 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp); 1632 if (ret) 1633 goto err; 1634 if (!folio_test_uptodate(folio)) { 1635 ret = -EIO; 1636 goto err; 1637 } 1638 err: 1639 ext4_mb_put_buddy_page_lock(&e4b); 1640 return ret; 1641 } 1642 1643 /* 1644 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1645 * block group lock of all groups for this page; do not hold the BG lock when 1646 * calling this routine! 1647 */ 1648 static noinline_for_stack int 1649 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1650 struct ext4_buddy *e4b, gfp_t gfp) 1651 { 1652 int blocks_per_page; 1653 int block; 1654 int pnum; 1655 int poff; 1656 struct folio *folio; 1657 int ret; 1658 struct ext4_group_info *grp; 1659 struct ext4_sb_info *sbi = EXT4_SB(sb); 1660 struct inode *inode = sbi->s_buddy_cache; 1661 1662 might_sleep(); 1663 mb_debug(sb, "load group %u\n", group); 1664 1665 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1666 grp = ext4_get_group_info(sb, group); 1667 if (!grp) 1668 return -EFSCORRUPTED; 1669 1670 e4b->bd_blkbits = sb->s_blocksize_bits; 1671 e4b->bd_info = grp; 1672 e4b->bd_sb = sb; 1673 e4b->bd_group = group; 1674 e4b->bd_buddy_folio = NULL; 1675 e4b->bd_bitmap_folio = NULL; 1676 1677 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1678 /* 1679 * we need full data about the group 1680 * to make a good selection 1681 */ 1682 ret = ext4_mb_init_group(sb, group, gfp); 1683 if (ret) 1684 return ret; 1685 } 1686 1687 /* 1688 * the buddy cache inode stores the block bitmap 1689 * and buddy information in consecutive blocks. 1690 * So for each group we need two blocks. 1691 */ 1692 block = group * 2; 1693 pnum = block / blocks_per_page; 1694 poff = block % blocks_per_page; 1695 1696 /* Avoid locking the folio in the fast path ... */ 1697 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); 1698 if (IS_ERR(folio) || !folio_test_uptodate(folio)) { 1699 if (!IS_ERR(folio)) 1700 /* 1701 * drop the folio reference and try 1702 * to get the folio with lock. If we 1703 * are not uptodate that implies 1704 * somebody just created the folio but 1705 * is yet to initialize it. So 1706 * wait for it to initialize. 1707 */ 1708 folio_put(folio); 1709 folio = __filemap_get_folio(inode->i_mapping, pnum, 1710 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1711 if (!IS_ERR(folio)) { 1712 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, 1713 "ext4: bitmap's mapping != inode->i_mapping\n")) { 1714 /* should never happen */ 1715 folio_unlock(folio); 1716 ret = -EINVAL; 1717 goto err; 1718 } 1719 if (!folio_test_uptodate(folio)) { 1720 ret = ext4_mb_init_cache(folio, NULL, gfp); 1721 if (ret) { 1722 folio_unlock(folio); 1723 goto err; 1724 } 1725 mb_cmp_bitmaps(e4b, folio_address(folio) + 1726 (poff * sb->s_blocksize)); 1727 } 1728 folio_unlock(folio); 1729 } 1730 } 1731 if (IS_ERR(folio)) { 1732 ret = PTR_ERR(folio); 1733 goto err; 1734 } 1735 if (!folio_test_uptodate(folio)) { 1736 ret = -EIO; 1737 goto err; 1738 } 1739 1740 /* Folios marked accessed already */ 1741 e4b->bd_bitmap_folio = folio; 1742 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); 1743 1744 block++; 1745 pnum = block / blocks_per_page; 1746 poff = block % blocks_per_page; 1747 1748 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); 1749 if (IS_ERR(folio) || !folio_test_uptodate(folio)) { 1750 if (!IS_ERR(folio)) 1751 folio_put(folio); 1752 folio = __filemap_get_folio(inode->i_mapping, pnum, 1753 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1754 if (!IS_ERR(folio)) { 1755 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, 1756 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) { 1757 /* should never happen */ 1758 folio_unlock(folio); 1759 ret = -EINVAL; 1760 goto err; 1761 } 1762 if (!folio_test_uptodate(folio)) { 1763 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap, 1764 gfp); 1765 if (ret) { 1766 folio_unlock(folio); 1767 goto err; 1768 } 1769 } 1770 folio_unlock(folio); 1771 } 1772 } 1773 if (IS_ERR(folio)) { 1774 ret = PTR_ERR(folio); 1775 goto err; 1776 } 1777 if (!folio_test_uptodate(folio)) { 1778 ret = -EIO; 1779 goto err; 1780 } 1781 1782 /* Folios marked accessed already */ 1783 e4b->bd_buddy_folio = folio; 1784 e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize); 1785 1786 return 0; 1787 1788 err: 1789 if (!IS_ERR_OR_NULL(folio)) 1790 folio_put(folio); 1791 if (e4b->bd_bitmap_folio) 1792 folio_put(e4b->bd_bitmap_folio); 1793 1794 e4b->bd_buddy = NULL; 1795 e4b->bd_bitmap = NULL; 1796 return ret; 1797 } 1798 1799 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1800 struct ext4_buddy *e4b) 1801 { 1802 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1803 } 1804 1805 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1806 { 1807 if (e4b->bd_bitmap_folio) 1808 folio_put(e4b->bd_bitmap_folio); 1809 if (e4b->bd_buddy_folio) 1810 folio_put(e4b->bd_buddy_folio); 1811 } 1812 1813 1814 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1815 { 1816 int order = 1, max; 1817 void *bb; 1818 1819 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1820 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1821 1822 while (order <= e4b->bd_blkbits + 1) { 1823 bb = mb_find_buddy(e4b, order, &max); 1824 if (!mb_test_bit(block >> order, bb)) { 1825 /* this block is part of buddy of order 'order' */ 1826 return order; 1827 } 1828 order++; 1829 } 1830 return 0; 1831 } 1832 1833 static void mb_clear_bits(void *bm, int cur, int len) 1834 { 1835 __u32 *addr; 1836 1837 len = cur + len; 1838 while (cur < len) { 1839 if ((cur & 31) == 0 && (len - cur) >= 32) { 1840 /* fast path: clear whole word at once */ 1841 addr = bm + (cur >> 3); 1842 *addr = 0; 1843 cur += 32; 1844 continue; 1845 } 1846 mb_clear_bit(cur, bm); 1847 cur++; 1848 } 1849 } 1850 1851 /* clear bits in given range 1852 * will return first found zero bit if any, -1 otherwise 1853 */ 1854 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1855 { 1856 __u32 *addr; 1857 int zero_bit = -1; 1858 1859 len = cur + len; 1860 while (cur < len) { 1861 if ((cur & 31) == 0 && (len - cur) >= 32) { 1862 /* fast path: clear whole word at once */ 1863 addr = bm + (cur >> 3); 1864 if (*addr != (__u32)(-1) && zero_bit == -1) 1865 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1866 *addr = 0; 1867 cur += 32; 1868 continue; 1869 } 1870 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1871 zero_bit = cur; 1872 cur++; 1873 } 1874 1875 return zero_bit; 1876 } 1877 1878 void mb_set_bits(void *bm, int cur, int len) 1879 { 1880 __u32 *addr; 1881 1882 len = cur + len; 1883 while (cur < len) { 1884 if ((cur & 31) == 0 && (len - cur) >= 32) { 1885 /* fast path: set whole word at once */ 1886 addr = bm + (cur >> 3); 1887 *addr = 0xffffffff; 1888 cur += 32; 1889 continue; 1890 } 1891 mb_set_bit(cur, bm); 1892 cur++; 1893 } 1894 } 1895 1896 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1897 { 1898 if (mb_test_bit(*bit + side, bitmap)) { 1899 mb_clear_bit(*bit, bitmap); 1900 (*bit) -= side; 1901 return 1; 1902 } 1903 else { 1904 (*bit) += side; 1905 mb_set_bit(*bit, bitmap); 1906 return -1; 1907 } 1908 } 1909 1910 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1911 { 1912 int max; 1913 int order = 1; 1914 void *buddy = mb_find_buddy(e4b, order, &max); 1915 1916 while (buddy) { 1917 void *buddy2; 1918 1919 /* Bits in range [first; last] are known to be set since 1920 * corresponding blocks were allocated. Bits in range 1921 * (first; last) will stay set because they form buddies on 1922 * upper layer. We just deal with borders if they don't 1923 * align with upper layer and then go up. 1924 * Releasing entire group is all about clearing 1925 * single bit of highest order buddy. 1926 */ 1927 1928 /* Example: 1929 * --------------------------------- 1930 * | 1 | 1 | 1 | 1 | 1931 * --------------------------------- 1932 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1933 * --------------------------------- 1934 * 0 1 2 3 4 5 6 7 1935 * \_____________________/ 1936 * 1937 * Neither [1] nor [6] is aligned to above layer. 1938 * Left neighbour [0] is free, so mark it busy, 1939 * decrease bb_counters and extend range to 1940 * [0; 6] 1941 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1942 * mark [6] free, increase bb_counters and shrink range to 1943 * [0; 5]. 1944 * Then shift range to [0; 2], go up and do the same. 1945 */ 1946 1947 1948 if (first & 1) 1949 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1950 if (!(last & 1)) 1951 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1952 if (first > last) 1953 break; 1954 order++; 1955 1956 buddy2 = mb_find_buddy(e4b, order, &max); 1957 if (!buddy2) { 1958 mb_clear_bits(buddy, first, last - first + 1); 1959 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1960 break; 1961 } 1962 first >>= 1; 1963 last >>= 1; 1964 buddy = buddy2; 1965 } 1966 } 1967 1968 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1969 int first, int count) 1970 { 1971 int left_is_free = 0; 1972 int right_is_free = 0; 1973 int block; 1974 int last = first + count - 1; 1975 struct super_block *sb = e4b->bd_sb; 1976 1977 if (WARN_ON(count == 0)) 1978 return; 1979 BUG_ON(last >= (sb->s_blocksize << 3)); 1980 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1981 /* Don't bother if the block group is corrupt. */ 1982 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1983 return; 1984 1985 mb_check_buddy(e4b); 1986 mb_free_blocks_double(inode, e4b, first, count); 1987 1988 /* access memory sequentially: check left neighbour, 1989 * clear range and then check right neighbour 1990 */ 1991 if (first != 0) 1992 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1993 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1994 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1995 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1996 1997 if (unlikely(block != -1)) { 1998 struct ext4_sb_info *sbi = EXT4_SB(sb); 1999 ext4_fsblk_t blocknr; 2000 2001 /* 2002 * Fastcommit replay can free already freed blocks which 2003 * corrupts allocation info. Regenerate it. 2004 */ 2005 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 2006 mb_regenerate_buddy(e4b); 2007 goto check; 2008 } 2009 2010 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 2011 blocknr += EXT4_C2B(sbi, block); 2012 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2013 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2014 ext4_grp_locked_error(sb, e4b->bd_group, 2015 inode ? inode->i_ino : 0, blocknr, 2016 "freeing already freed block (bit %u); block bitmap corrupt.", 2017 block); 2018 return; 2019 } 2020 2021 this_cpu_inc(discard_pa_seq); 2022 e4b->bd_info->bb_free += count; 2023 if (first < e4b->bd_info->bb_first_free) 2024 e4b->bd_info->bb_first_free = first; 2025 2026 /* let's maintain fragments counter */ 2027 if (left_is_free && right_is_free) 2028 e4b->bd_info->bb_fragments--; 2029 else if (!left_is_free && !right_is_free) 2030 e4b->bd_info->bb_fragments++; 2031 2032 /* buddy[0] == bd_bitmap is a special case, so handle 2033 * it right away and let mb_buddy_mark_free stay free of 2034 * zero order checks. 2035 * Check if neighbours are to be coaleasced, 2036 * adjust bitmap bb_counters and borders appropriately. 2037 */ 2038 if (first & 1) { 2039 first += !left_is_free; 2040 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 2041 } 2042 if (!(last & 1)) { 2043 last -= !right_is_free; 2044 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 2045 } 2046 2047 if (first <= last) 2048 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 2049 2050 mb_set_largest_free_order(sb, e4b->bd_info); 2051 mb_update_avg_fragment_size(sb, e4b->bd_info); 2052 check: 2053 mb_check_buddy(e4b); 2054 } 2055 2056 static int mb_find_extent(struct ext4_buddy *e4b, int block, 2057 int needed, struct ext4_free_extent *ex) 2058 { 2059 int max, order, next; 2060 void *buddy; 2061 2062 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2063 BUG_ON(ex == NULL); 2064 2065 buddy = mb_find_buddy(e4b, 0, &max); 2066 BUG_ON(buddy == NULL); 2067 BUG_ON(block >= max); 2068 if (mb_test_bit(block, buddy)) { 2069 ex->fe_len = 0; 2070 ex->fe_start = 0; 2071 ex->fe_group = 0; 2072 return 0; 2073 } 2074 2075 /* find actual order */ 2076 order = mb_find_order_for_block(e4b, block); 2077 2078 ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); 2079 ex->fe_start = block; 2080 ex->fe_group = e4b->bd_group; 2081 2082 block = block >> order; 2083 2084 while (needed > ex->fe_len && 2085 mb_find_buddy(e4b, order, &max)) { 2086 2087 if (block + 1 >= max) 2088 break; 2089 2090 next = (block + 1) * (1 << order); 2091 if (mb_test_bit(next, e4b->bd_bitmap)) 2092 break; 2093 2094 order = mb_find_order_for_block(e4b, next); 2095 2096 block = next >> order; 2097 ex->fe_len += 1 << order; 2098 } 2099 2100 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2101 /* Should never happen! (but apparently sometimes does?!?) */ 2102 WARN_ON(1); 2103 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2104 "corruption or bug in mb_find_extent " 2105 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2106 block, order, needed, ex->fe_group, ex->fe_start, 2107 ex->fe_len, ex->fe_logical); 2108 ex->fe_len = 0; 2109 ex->fe_start = 0; 2110 ex->fe_group = 0; 2111 } 2112 return ex->fe_len; 2113 } 2114 2115 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2116 { 2117 int ord; 2118 int mlen = 0; 2119 int max = 0; 2120 int start = ex->fe_start; 2121 int len = ex->fe_len; 2122 unsigned ret = 0; 2123 int len0 = len; 2124 void *buddy; 2125 int ord_start, ord_end; 2126 2127 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2128 BUG_ON(e4b->bd_group != ex->fe_group); 2129 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2130 mb_check_buddy(e4b); 2131 mb_mark_used_double(e4b, start, len); 2132 2133 this_cpu_inc(discard_pa_seq); 2134 e4b->bd_info->bb_free -= len; 2135 if (e4b->bd_info->bb_first_free == start) 2136 e4b->bd_info->bb_first_free += len; 2137 2138 /* let's maintain fragments counter */ 2139 if (start != 0) 2140 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2141 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2142 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2143 if (mlen && max) 2144 e4b->bd_info->bb_fragments++; 2145 else if (!mlen && !max) 2146 e4b->bd_info->bb_fragments--; 2147 2148 /* let's maintain buddy itself */ 2149 while (len) { 2150 ord = mb_find_order_for_block(e4b, start); 2151 2152 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2153 /* the whole chunk may be allocated at once! */ 2154 mlen = 1 << ord; 2155 buddy = mb_find_buddy(e4b, ord, &max); 2156 BUG_ON((start >> ord) >= max); 2157 mb_set_bit(start >> ord, buddy); 2158 e4b->bd_info->bb_counters[ord]--; 2159 start += mlen; 2160 len -= mlen; 2161 BUG_ON(len < 0); 2162 continue; 2163 } 2164 2165 /* store for history */ 2166 if (ret == 0) 2167 ret = len | (ord << 16); 2168 2169 BUG_ON(ord <= 0); 2170 buddy = mb_find_buddy(e4b, ord, &max); 2171 mb_set_bit(start >> ord, buddy); 2172 e4b->bd_info->bb_counters[ord]--; 2173 2174 ord_start = (start >> ord) << ord; 2175 ord_end = ord_start + (1 << ord); 2176 /* first chunk */ 2177 if (start > ord_start) 2178 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, 2179 ord_start, start - ord_start, 2180 e4b->bd_info); 2181 2182 /* last chunk */ 2183 if (start + len < ord_end) { 2184 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, 2185 start + len, 2186 ord_end - (start + len), 2187 e4b->bd_info); 2188 break; 2189 } 2190 len = start + len - ord_end; 2191 start = ord_end; 2192 } 2193 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2194 2195 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2196 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2197 mb_check_buddy(e4b); 2198 2199 return ret; 2200 } 2201 2202 /* 2203 * Must be called under group lock! 2204 */ 2205 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2206 struct ext4_buddy *e4b) 2207 { 2208 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2209 int ret; 2210 2211 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2212 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2213 2214 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2215 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2216 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2217 2218 /* preallocation can change ac_b_ex, thus we store actually 2219 * allocated blocks for history */ 2220 ac->ac_f_ex = ac->ac_b_ex; 2221 2222 ac->ac_status = AC_STATUS_FOUND; 2223 ac->ac_tail = ret & 0xffff; 2224 ac->ac_buddy = ret >> 16; 2225 2226 /* 2227 * take the page reference. We want the page to be pinned 2228 * so that we don't get a ext4_mb_init_cache_call for this 2229 * group until we update the bitmap. That would mean we 2230 * double allocate blocks. The reference is dropped 2231 * in ext4_mb_release_context 2232 */ 2233 ac->ac_bitmap_folio = e4b->bd_bitmap_folio; 2234 folio_get(ac->ac_bitmap_folio); 2235 ac->ac_buddy_folio = e4b->bd_buddy_folio; 2236 folio_get(ac->ac_buddy_folio); 2237 /* store last allocated for subsequent stream allocation */ 2238 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2239 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals; 2240 2241 WRITE_ONCE(sbi->s_mb_last_groups[hash], ac->ac_f_ex.fe_group); 2242 } 2243 2244 /* 2245 * As we've just preallocated more space than 2246 * user requested originally, we store allocated 2247 * space in a special descriptor. 2248 */ 2249 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2250 ext4_mb_new_preallocation(ac); 2251 2252 } 2253 2254 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2255 struct ext4_buddy *e4b, 2256 int finish_group) 2257 { 2258 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2259 struct ext4_free_extent *bex = &ac->ac_b_ex; 2260 struct ext4_free_extent *gex = &ac->ac_g_ex; 2261 2262 if (ac->ac_status == AC_STATUS_FOUND) 2263 return; 2264 /* 2265 * We don't want to scan for a whole year 2266 */ 2267 if (ac->ac_found > sbi->s_mb_max_to_scan && 2268 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2269 ac->ac_status = AC_STATUS_BREAK; 2270 return; 2271 } 2272 2273 /* 2274 * Haven't found good chunk so far, let's continue 2275 */ 2276 if (bex->fe_len < gex->fe_len) 2277 return; 2278 2279 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2280 ext4_mb_use_best_found(ac, e4b); 2281 } 2282 2283 /* 2284 * The routine checks whether found extent is good enough. If it is, 2285 * then the extent gets marked used and flag is set to the context 2286 * to stop scanning. Otherwise, the extent is compared with the 2287 * previous found extent and if new one is better, then it's stored 2288 * in the context. Later, the best found extent will be used, if 2289 * mballoc can't find good enough extent. 2290 * 2291 * The algorithm used is roughly as follows: 2292 * 2293 * * If free extent found is exactly as big as goal, then 2294 * stop the scan and use it immediately 2295 * 2296 * * If free extent found is smaller than goal, then keep retrying 2297 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2298 * that stop scanning and use whatever we have. 2299 * 2300 * * If free extent found is bigger than goal, then keep retrying 2301 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2302 * stopping the scan and using the extent. 2303 * 2304 * 2305 * FIXME: real allocation policy is to be designed yet! 2306 */ 2307 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2308 struct ext4_free_extent *ex, 2309 struct ext4_buddy *e4b) 2310 { 2311 struct ext4_free_extent *bex = &ac->ac_b_ex; 2312 struct ext4_free_extent *gex = &ac->ac_g_ex; 2313 2314 BUG_ON(ex->fe_len <= 0); 2315 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2316 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2317 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2318 2319 ac->ac_found++; 2320 ac->ac_cX_found[ac->ac_criteria]++; 2321 2322 /* 2323 * The special case - take what you catch first 2324 */ 2325 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2326 *bex = *ex; 2327 ext4_mb_use_best_found(ac, e4b); 2328 return; 2329 } 2330 2331 /* 2332 * Let's check whether the chuck is good enough 2333 */ 2334 if (ex->fe_len == gex->fe_len) { 2335 *bex = *ex; 2336 ext4_mb_use_best_found(ac, e4b); 2337 return; 2338 } 2339 2340 /* 2341 * If this is first found extent, just store it in the context 2342 */ 2343 if (bex->fe_len == 0) { 2344 *bex = *ex; 2345 return; 2346 } 2347 2348 /* 2349 * If new found extent is better, store it in the context 2350 */ 2351 if (bex->fe_len < gex->fe_len) { 2352 /* if the request isn't satisfied, any found extent 2353 * larger than previous best one is better */ 2354 if (ex->fe_len > bex->fe_len) 2355 *bex = *ex; 2356 } else if (ex->fe_len > gex->fe_len) { 2357 /* if the request is satisfied, then we try to find 2358 * an extent that still satisfy the request, but is 2359 * smaller than previous one */ 2360 if (ex->fe_len < bex->fe_len) 2361 *bex = *ex; 2362 } 2363 2364 ext4_mb_check_limits(ac, e4b, 0); 2365 } 2366 2367 static noinline_for_stack 2368 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2369 struct ext4_buddy *e4b) 2370 { 2371 struct ext4_free_extent ex = ac->ac_b_ex; 2372 ext4_group_t group = ex.fe_group; 2373 int max; 2374 int err; 2375 2376 BUG_ON(ex.fe_len <= 0); 2377 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2378 if (err) 2379 return; 2380 2381 ext4_lock_group(ac->ac_sb, group); 2382 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2383 goto out; 2384 2385 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2386 2387 if (max > 0) { 2388 ac->ac_b_ex = ex; 2389 ext4_mb_use_best_found(ac, e4b); 2390 } 2391 2392 out: 2393 ext4_unlock_group(ac->ac_sb, group); 2394 ext4_mb_unload_buddy(e4b); 2395 } 2396 2397 static noinline_for_stack 2398 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2399 struct ext4_buddy *e4b) 2400 { 2401 ext4_group_t group = ac->ac_g_ex.fe_group; 2402 int max; 2403 int err; 2404 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2405 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2406 struct ext4_free_extent ex; 2407 2408 if (!grp) 2409 return -EFSCORRUPTED; 2410 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2411 return 0; 2412 if (grp->bb_free == 0) 2413 return 0; 2414 2415 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2416 if (err) 2417 return err; 2418 2419 ext4_lock_group(ac->ac_sb, group); 2420 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2421 goto out; 2422 2423 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2424 ac->ac_g_ex.fe_len, &ex); 2425 ex.fe_logical = 0xDEADFA11; /* debug value */ 2426 2427 if (max >= ac->ac_g_ex.fe_len && 2428 ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) { 2429 ext4_fsblk_t start; 2430 2431 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2432 /* use do_div to get remainder (would be 64-bit modulo) */ 2433 if (do_div(start, sbi->s_stripe) == 0) { 2434 ac->ac_found++; 2435 ac->ac_b_ex = ex; 2436 ext4_mb_use_best_found(ac, e4b); 2437 } 2438 } else if (max >= ac->ac_g_ex.fe_len) { 2439 BUG_ON(ex.fe_len <= 0); 2440 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2441 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2442 ac->ac_found++; 2443 ac->ac_b_ex = ex; 2444 ext4_mb_use_best_found(ac, e4b); 2445 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2446 /* Sometimes, caller may want to merge even small 2447 * number of blocks to an existing extent */ 2448 BUG_ON(ex.fe_len <= 0); 2449 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2450 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2451 ac->ac_found++; 2452 ac->ac_b_ex = ex; 2453 ext4_mb_use_best_found(ac, e4b); 2454 } 2455 out: 2456 ext4_unlock_group(ac->ac_sb, group); 2457 ext4_mb_unload_buddy(e4b); 2458 2459 return 0; 2460 } 2461 2462 /* 2463 * The routine scans buddy structures (not bitmap!) from given order 2464 * to max order and tries to find big enough chunk to satisfy the req 2465 */ 2466 static noinline_for_stack 2467 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2468 struct ext4_buddy *e4b) 2469 { 2470 struct super_block *sb = ac->ac_sb; 2471 struct ext4_group_info *grp = e4b->bd_info; 2472 void *buddy; 2473 int i; 2474 int k; 2475 int max; 2476 2477 BUG_ON(ac->ac_2order <= 0); 2478 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2479 if (grp->bb_counters[i] == 0) 2480 continue; 2481 2482 buddy = mb_find_buddy(e4b, i, &max); 2483 if (WARN_RATELIMIT(buddy == NULL, 2484 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2485 continue; 2486 2487 k = mb_find_next_zero_bit(buddy, max, 0); 2488 if (k >= max) { 2489 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2490 e4b->bd_group, 2491 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2492 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2493 "%d free clusters of order %d. But found 0", 2494 grp->bb_counters[i], i); 2495 break; 2496 } 2497 ac->ac_found++; 2498 ac->ac_cX_found[ac->ac_criteria]++; 2499 2500 ac->ac_b_ex.fe_len = 1 << i; 2501 ac->ac_b_ex.fe_start = k << i; 2502 ac->ac_b_ex.fe_group = e4b->bd_group; 2503 2504 ext4_mb_use_best_found(ac, e4b); 2505 2506 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2507 2508 if (EXT4_SB(sb)->s_mb_stats) 2509 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2510 2511 break; 2512 } 2513 } 2514 2515 /* 2516 * The routine scans the group and measures all found extents. 2517 * In order to optimize scanning, caller must pass number of 2518 * free blocks in the group, so the routine can know upper limit. 2519 */ 2520 static noinline_for_stack 2521 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2522 struct ext4_buddy *e4b) 2523 { 2524 struct super_block *sb = ac->ac_sb; 2525 void *bitmap = e4b->bd_bitmap; 2526 struct ext4_free_extent ex; 2527 int i, j, freelen; 2528 int free; 2529 2530 free = e4b->bd_info->bb_free; 2531 if (WARN_ON(free <= 0)) 2532 return; 2533 2534 i = e4b->bd_info->bb_first_free; 2535 2536 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2537 i = mb_find_next_zero_bit(bitmap, 2538 EXT4_CLUSTERS_PER_GROUP(sb), i); 2539 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2540 /* 2541 * IF we have corrupt bitmap, we won't find any 2542 * free blocks even though group info says we 2543 * have free blocks 2544 */ 2545 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2546 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2547 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2548 "%d free clusters as per " 2549 "group info. But bitmap says 0", 2550 free); 2551 break; 2552 } 2553 2554 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2555 /* 2556 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2557 * sure that this group will have a large enough 2558 * continuous free extent, so skip over the smaller free 2559 * extents 2560 */ 2561 j = mb_find_next_bit(bitmap, 2562 EXT4_CLUSTERS_PER_GROUP(sb), i); 2563 freelen = j - i; 2564 2565 if (freelen < ac->ac_g_ex.fe_len) { 2566 i = j; 2567 free -= freelen; 2568 continue; 2569 } 2570 } 2571 2572 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2573 if (WARN_ON(ex.fe_len <= 0)) 2574 break; 2575 if (free < ex.fe_len) { 2576 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2577 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2578 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2579 "%d free clusters as per " 2580 "group info. But got %d blocks", 2581 free, ex.fe_len); 2582 /* 2583 * The number of free blocks differs. This mostly 2584 * indicate that the bitmap is corrupt. So exit 2585 * without claiming the space. 2586 */ 2587 break; 2588 } 2589 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2590 ext4_mb_measure_extent(ac, &ex, e4b); 2591 2592 i += ex.fe_len; 2593 free -= ex.fe_len; 2594 } 2595 2596 ext4_mb_check_limits(ac, e4b, 1); 2597 } 2598 2599 /* 2600 * This is a special case for storages like raid5 2601 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2602 */ 2603 static noinline_for_stack 2604 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2605 struct ext4_buddy *e4b) 2606 { 2607 struct super_block *sb = ac->ac_sb; 2608 struct ext4_sb_info *sbi = EXT4_SB(sb); 2609 void *bitmap = e4b->bd_bitmap; 2610 struct ext4_free_extent ex; 2611 ext4_fsblk_t first_group_block; 2612 ext4_fsblk_t a; 2613 ext4_grpblk_t i, stripe; 2614 int max; 2615 2616 BUG_ON(sbi->s_stripe == 0); 2617 2618 /* find first stripe-aligned block in group */ 2619 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2620 2621 a = first_group_block + sbi->s_stripe - 1; 2622 do_div(a, sbi->s_stripe); 2623 i = (a * sbi->s_stripe) - first_group_block; 2624 2625 stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe); 2626 i = EXT4_B2C(sbi, i); 2627 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2628 if (!mb_test_bit(i, bitmap)) { 2629 max = mb_find_extent(e4b, i, stripe, &ex); 2630 if (max >= stripe) { 2631 ac->ac_found++; 2632 ac->ac_cX_found[ac->ac_criteria]++; 2633 ex.fe_logical = 0xDEADF00D; /* debug value */ 2634 ac->ac_b_ex = ex; 2635 ext4_mb_use_best_found(ac, e4b); 2636 break; 2637 } 2638 } 2639 i += stripe; 2640 } 2641 } 2642 2643 static void __ext4_mb_scan_group(struct ext4_allocation_context *ac) 2644 { 2645 bool is_stripe_aligned; 2646 struct ext4_sb_info *sbi; 2647 enum criteria cr = ac->ac_criteria; 2648 2649 ac->ac_groups_scanned++; 2650 if (cr == CR_POWER2_ALIGNED) 2651 return ext4_mb_simple_scan_group(ac, ac->ac_e4b); 2652 2653 sbi = EXT4_SB(ac->ac_sb); 2654 is_stripe_aligned = false; 2655 if ((sbi->s_stripe >= sbi->s_cluster_ratio) && 2656 !(ac->ac_g_ex.fe_len % EXT4_NUM_B2C(sbi, sbi->s_stripe))) 2657 is_stripe_aligned = true; 2658 2659 if ((cr == CR_GOAL_LEN_FAST || cr == CR_BEST_AVAIL_LEN) && 2660 is_stripe_aligned) 2661 ext4_mb_scan_aligned(ac, ac->ac_e4b); 2662 2663 if (ac->ac_status == AC_STATUS_CONTINUE) 2664 ext4_mb_complex_scan_group(ac, ac->ac_e4b); 2665 } 2666 2667 /* 2668 * This is also called BEFORE we load the buddy bitmap. 2669 * Returns either 1 or 0 indicating that the group is either suitable 2670 * for the allocation or not. 2671 */ 2672 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2673 ext4_group_t group, enum criteria cr) 2674 { 2675 ext4_grpblk_t free, fragments; 2676 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2677 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2678 2679 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2680 2681 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2682 return false; 2683 2684 free = grp->bb_free; 2685 if (free == 0) 2686 return false; 2687 2688 fragments = grp->bb_fragments; 2689 if (fragments == 0) 2690 return false; 2691 2692 switch (cr) { 2693 case CR_POWER2_ALIGNED: 2694 BUG_ON(ac->ac_2order == 0); 2695 2696 /* Avoid using the first bg of a flexgroup for data files */ 2697 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2698 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2699 ((group % flex_size) == 0)) 2700 return false; 2701 2702 if (free < ac->ac_g_ex.fe_len) 2703 return false; 2704 2705 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2706 return true; 2707 2708 if (grp->bb_largest_free_order < ac->ac_2order) 2709 return false; 2710 2711 return true; 2712 case CR_GOAL_LEN_FAST: 2713 case CR_BEST_AVAIL_LEN: 2714 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2715 return true; 2716 break; 2717 case CR_GOAL_LEN_SLOW: 2718 if (free >= ac->ac_g_ex.fe_len) 2719 return true; 2720 break; 2721 case CR_ANY_FREE: 2722 return true; 2723 default: 2724 BUG(); 2725 } 2726 2727 return false; 2728 } 2729 2730 /* 2731 * This could return negative error code if something goes wrong 2732 * during ext4_mb_init_group(). This should not be called with 2733 * ext4_lock_group() held. 2734 * 2735 * Note: because we are conditionally operating with the group lock in 2736 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2737 * function using __acquire and __release. This means we need to be 2738 * super careful before messing with the error path handling via "goto 2739 * out"! 2740 */ 2741 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2742 ext4_group_t group, enum criteria cr) 2743 { 2744 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2745 struct super_block *sb = ac->ac_sb; 2746 struct ext4_sb_info *sbi = EXT4_SB(sb); 2747 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2748 ext4_grpblk_t free; 2749 int ret = 0; 2750 2751 if (!grp) 2752 return -EFSCORRUPTED; 2753 if (sbi->s_mb_stats) 2754 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2755 if (should_lock) { 2756 ext4_lock_group(sb, group); 2757 __release(ext4_group_lock_ptr(sb, group)); 2758 } 2759 free = grp->bb_free; 2760 if (free == 0) 2761 goto out; 2762 /* 2763 * In all criterias except CR_ANY_FREE we try to avoid groups that 2764 * can't possibly satisfy the full goal request due to insufficient 2765 * free blocks. 2766 */ 2767 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2768 goto out; 2769 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2770 goto out; 2771 if (should_lock) { 2772 __acquire(ext4_group_lock_ptr(sb, group)); 2773 ext4_unlock_group(sb, group); 2774 } 2775 2776 /* We only do this if the grp has never been initialized */ 2777 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2778 struct ext4_group_desc *gdp = 2779 ext4_get_group_desc(sb, group, NULL); 2780 int ret; 2781 2782 /* 2783 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2784 * search to find large good chunks almost for free. If buddy 2785 * data is not ready, then this optimization makes no sense. But 2786 * we never skip the first block group in a flex_bg, since this 2787 * gets used for metadata block allocation, and we want to make 2788 * sure we locate metadata blocks in the first block group in 2789 * the flex_bg if possible. 2790 */ 2791 if (!ext4_mb_cr_expensive(cr) && 2792 (!sbi->s_log_groups_per_flex || 2793 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2794 !(ext4_has_group_desc_csum(sb) && 2795 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2796 return 0; 2797 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2798 if (ret) 2799 return ret; 2800 } 2801 2802 if (should_lock) { 2803 ext4_lock_group(sb, group); 2804 __release(ext4_group_lock_ptr(sb, group)); 2805 } 2806 ret = ext4_mb_good_group(ac, group, cr); 2807 out: 2808 if (should_lock) { 2809 __acquire(ext4_group_lock_ptr(sb, group)); 2810 ext4_unlock_group(sb, group); 2811 } 2812 return ret; 2813 } 2814 2815 /* 2816 * Start prefetching @nr block bitmaps starting at @group. 2817 * Return the next group which needs to be prefetched. 2818 */ 2819 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2820 unsigned int nr, int *cnt) 2821 { 2822 ext4_group_t ngroups = ext4_get_groups_count(sb); 2823 struct buffer_head *bh; 2824 struct blk_plug plug; 2825 2826 blk_start_plug(&plug); 2827 while (nr-- > 0) { 2828 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2829 NULL); 2830 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2831 2832 /* 2833 * Prefetch block groups with free blocks; but don't 2834 * bother if it is marked uninitialized on disk, since 2835 * it won't require I/O to read. Also only try to 2836 * prefetch once, so we avoid getblk() call, which can 2837 * be expensive. 2838 */ 2839 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2840 EXT4_MB_GRP_NEED_INIT(grp) && 2841 ext4_free_group_clusters(sb, gdp) > 0 ) { 2842 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2843 if (bh && !IS_ERR(bh)) { 2844 if (!buffer_uptodate(bh) && cnt) 2845 (*cnt)++; 2846 brelse(bh); 2847 } 2848 } 2849 if (++group >= ngroups) 2850 group = 0; 2851 } 2852 blk_finish_plug(&plug); 2853 return group; 2854 } 2855 2856 /* 2857 * Batch reads of the block allocation bitmaps to get 2858 * multiple READs in flight; limit prefetching at inexpensive 2859 * CR, otherwise mballoc can spend a lot of time loading 2860 * imperfect groups 2861 */ 2862 static void ext4_mb_might_prefetch(struct ext4_allocation_context *ac, 2863 ext4_group_t group) 2864 { 2865 struct ext4_sb_info *sbi; 2866 2867 if (ac->ac_prefetch_grp != group) 2868 return; 2869 2870 sbi = EXT4_SB(ac->ac_sb); 2871 if (ext4_mb_cr_expensive(ac->ac_criteria) || 2872 ac->ac_prefetch_ios < sbi->s_mb_prefetch_limit) { 2873 unsigned int nr = sbi->s_mb_prefetch; 2874 2875 if (ext4_has_feature_flex_bg(ac->ac_sb)) { 2876 nr = 1 << sbi->s_log_groups_per_flex; 2877 nr -= group & (nr - 1); 2878 nr = umin(nr, sbi->s_mb_prefetch); 2879 } 2880 2881 ac->ac_prefetch_nr = nr; 2882 ac->ac_prefetch_grp = ext4_mb_prefetch(ac->ac_sb, group, nr, 2883 &ac->ac_prefetch_ios); 2884 } 2885 } 2886 2887 /* 2888 * Prefetching reads the block bitmap into the buffer cache; but we 2889 * need to make sure that the buddy bitmap in the page cache has been 2890 * initialized. Note that ext4_mb_init_group() will block if the I/O 2891 * is not yet completed, or indeed if it was not initiated by 2892 * ext4_mb_prefetch did not start the I/O. 2893 * 2894 * TODO: We should actually kick off the buddy bitmap setup in a work 2895 * queue when the buffer I/O is completed, so that we don't block 2896 * waiting for the block allocation bitmap read to finish when 2897 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2898 */ 2899 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2900 unsigned int nr) 2901 { 2902 struct ext4_group_desc *gdp; 2903 struct ext4_group_info *grp; 2904 2905 while (nr-- > 0) { 2906 if (!group) 2907 group = ext4_get_groups_count(sb); 2908 group--; 2909 gdp = ext4_get_group_desc(sb, group, NULL); 2910 grp = ext4_get_group_info(sb, group); 2911 2912 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2913 ext4_free_group_clusters(sb, gdp) > 0) { 2914 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2915 break; 2916 } 2917 } 2918 } 2919 2920 static int ext4_mb_scan_group(struct ext4_allocation_context *ac, 2921 ext4_group_t group) 2922 { 2923 int ret; 2924 struct super_block *sb = ac->ac_sb; 2925 enum criteria cr = ac->ac_criteria; 2926 2927 ext4_mb_might_prefetch(ac, group); 2928 2929 /* prevent unnecessary buddy loading. */ 2930 if (cr < CR_ANY_FREE && spin_is_locked(ext4_group_lock_ptr(sb, group))) 2931 return 0; 2932 2933 /* This now checks without needing the buddy page */ 2934 ret = ext4_mb_good_group_nolock(ac, group, cr); 2935 if (ret <= 0) { 2936 if (!ac->ac_first_err) 2937 ac->ac_first_err = ret; 2938 return 0; 2939 } 2940 2941 ret = ext4_mb_load_buddy(sb, group, ac->ac_e4b); 2942 if (ret) 2943 return ret; 2944 2945 /* skip busy group */ 2946 if (cr >= CR_ANY_FREE) 2947 ext4_lock_group(sb, group); 2948 else if (!ext4_try_lock_group(sb, group)) 2949 goto out_unload; 2950 2951 /* We need to check again after locking the block group. */ 2952 if (unlikely(!ext4_mb_good_group(ac, group, cr))) 2953 goto out_unlock; 2954 2955 __ext4_mb_scan_group(ac); 2956 2957 out_unlock: 2958 ext4_unlock_group(sb, group); 2959 out_unload: 2960 ext4_mb_unload_buddy(ac->ac_e4b); 2961 return ret; 2962 } 2963 2964 static noinline_for_stack int 2965 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2966 { 2967 ext4_group_t i; 2968 int err = 0; 2969 struct super_block *sb = ac->ac_sb; 2970 struct ext4_sb_info *sbi = EXT4_SB(sb); 2971 struct ext4_buddy e4b; 2972 2973 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2974 2975 /* first, try the goal */ 2976 err = ext4_mb_find_by_goal(ac, &e4b); 2977 if (err || ac->ac_status == AC_STATUS_FOUND) 2978 goto out; 2979 2980 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2981 goto out; 2982 2983 /* 2984 * ac->ac_2order is set only if the fe_len is a power of 2 2985 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2986 * so that we try exact allocation using buddy. 2987 */ 2988 i = fls(ac->ac_g_ex.fe_len); 2989 ac->ac_2order = 0; 2990 /* 2991 * We search using buddy data only if the order of the request 2992 * is greater than equal to the sbi_s_mb_order2_reqs 2993 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2994 * We also support searching for power-of-two requests only for 2995 * requests upto maximum buddy size we have constructed. 2996 */ 2997 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2998 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2999 ac->ac_2order = array_index_nospec(i - 1, 3000 MB_NUM_ORDERS(sb)); 3001 } 3002 3003 /* if stream allocation is enabled, use global goal */ 3004 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 3005 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals; 3006 3007 ac->ac_g_ex.fe_group = READ_ONCE(sbi->s_mb_last_groups[hash]); 3008 ac->ac_g_ex.fe_start = -1; 3009 ac->ac_flags &= ~EXT4_MB_HINT_TRY_GOAL; 3010 } 3011 3012 /* 3013 * Let's just scan groups to find more-less suitable blocks We 3014 * start with CR_GOAL_LEN_FAST, unless it is power of 2 3015 * aligned, in which case let's do that faster approach first. 3016 */ 3017 ac->ac_criteria = CR_GOAL_LEN_FAST; 3018 if (ac->ac_2order) 3019 ac->ac_criteria = CR_POWER2_ALIGNED; 3020 3021 ac->ac_e4b = &e4b; 3022 ac->ac_prefetch_ios = 0; 3023 ac->ac_first_err = 0; 3024 repeat: 3025 while (ac->ac_criteria < EXT4_MB_NUM_CRS) { 3026 err = ext4_mb_scan_groups(ac); 3027 if (err) 3028 goto out; 3029 3030 if (ac->ac_status != AC_STATUS_CONTINUE) 3031 break; 3032 } 3033 3034 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 3035 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 3036 /* 3037 * We've been searching too long. Let's try to allocate 3038 * the best chunk we've found so far 3039 */ 3040 ext4_mb_try_best_found(ac, &e4b); 3041 if (ac->ac_status != AC_STATUS_FOUND) { 3042 int lost; 3043 3044 /* 3045 * Someone more lucky has already allocated it. 3046 * The only thing we can do is just take first 3047 * found block(s) 3048 */ 3049 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 3050 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 3051 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 3052 ac->ac_b_ex.fe_len, lost); 3053 3054 ac->ac_b_ex.fe_group = 0; 3055 ac->ac_b_ex.fe_start = 0; 3056 ac->ac_b_ex.fe_len = 0; 3057 ac->ac_status = AC_STATUS_CONTINUE; 3058 ac->ac_flags |= EXT4_MB_HINT_FIRST; 3059 ac->ac_criteria = CR_ANY_FREE; 3060 goto repeat; 3061 } 3062 } 3063 3064 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) { 3065 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 3066 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC && 3067 ac->ac_b_ex.fe_group == ac->ac_g_ex.fe_group) 3068 atomic_inc(&sbi->s_bal_stream_goals); 3069 } 3070 out: 3071 if (!err && ac->ac_status != AC_STATUS_FOUND && ac->ac_first_err) 3072 err = ac->ac_first_err; 3073 3074 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 3075 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 3076 ac->ac_flags, ac->ac_criteria, err); 3077 3078 if (ac->ac_prefetch_nr) 3079 ext4_mb_prefetch_fini(sb, ac->ac_prefetch_grp, ac->ac_prefetch_nr); 3080 3081 return err; 3082 } 3083 3084 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 3085 { 3086 struct super_block *sb = pde_data(file_inode(seq->file)); 3087 ext4_group_t group; 3088 3089 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3090 return NULL; 3091 group = *pos + 1; 3092 return (void *) ((unsigned long) group); 3093 } 3094 3095 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3096 { 3097 struct super_block *sb = pde_data(file_inode(seq->file)); 3098 ext4_group_t group; 3099 3100 ++*pos; 3101 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3102 return NULL; 3103 group = *pos + 1; 3104 return (void *) ((unsigned long) group); 3105 } 3106 3107 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3108 { 3109 struct super_block *sb = pde_data(file_inode(seq->file)); 3110 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3111 int i, err; 3112 char nbuf[16]; 3113 struct ext4_buddy e4b; 3114 struct ext4_group_info *grinfo; 3115 unsigned char blocksize_bits = min_t(unsigned char, 3116 sb->s_blocksize_bits, 3117 EXT4_MAX_BLOCK_LOG_SIZE); 3118 DEFINE_RAW_FLEX(struct ext4_group_info, sg, bb_counters, 3119 EXT4_MAX_BLOCK_LOG_SIZE + 2); 3120 3121 group--; 3122 if (group == 0) 3123 seq_puts(seq, "#group: free frags first [" 3124 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3125 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3126 3127 i = (blocksize_bits + 2) * sizeof(sg->bb_counters[0]) + 3128 sizeof(struct ext4_group_info); 3129 3130 grinfo = ext4_get_group_info(sb, group); 3131 if (!grinfo) 3132 return 0; 3133 /* Load the group info in memory only if not already loaded. */ 3134 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3135 err = ext4_mb_load_buddy(sb, group, &e4b); 3136 if (err) { 3137 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf)); 3138 return 0; 3139 } 3140 ext4_mb_unload_buddy(&e4b); 3141 } 3142 3143 /* 3144 * We care only about free space counters in the group info and 3145 * these are safe to access even after the buddy has been unloaded 3146 */ 3147 memcpy(sg, grinfo, i); 3148 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg->bb_free, 3149 sg->bb_fragments, sg->bb_first_free); 3150 for (i = 0; i <= 13; i++) 3151 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3152 sg->bb_counters[i] : 0); 3153 seq_puts(seq, " ]"); 3154 if (EXT4_MB_GRP_BBITMAP_CORRUPT(sg)) 3155 seq_puts(seq, " Block bitmap corrupted!"); 3156 seq_putc(seq, '\n'); 3157 return 0; 3158 } 3159 3160 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3161 { 3162 } 3163 3164 const struct seq_operations ext4_mb_seq_groups_ops = { 3165 .start = ext4_mb_seq_groups_start, 3166 .next = ext4_mb_seq_groups_next, 3167 .stop = ext4_mb_seq_groups_stop, 3168 .show = ext4_mb_seq_groups_show, 3169 }; 3170 3171 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3172 { 3173 struct super_block *sb = seq->private; 3174 struct ext4_sb_info *sbi = EXT4_SB(sb); 3175 3176 seq_puts(seq, "mballoc:\n"); 3177 if (!sbi->s_mb_stats) { 3178 seq_puts(seq, "\tmb stats collection turned off.\n"); 3179 seq_puts( 3180 seq, 3181 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3182 return 0; 3183 } 3184 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3185 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3186 3187 seq_printf(seq, "\tgroups_scanned: %u\n", 3188 atomic_read(&sbi->s_bal_groups_scanned)); 3189 3190 /* CR_POWER2_ALIGNED stats */ 3191 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3192 seq_printf(seq, "\t\thits: %llu\n", 3193 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3194 seq_printf( 3195 seq, "\t\tgroups_considered: %llu\n", 3196 atomic64_read( 3197 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3198 seq_printf(seq, "\t\textents_scanned: %u\n", 3199 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3200 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3201 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3202 3203 /* CR_GOAL_LEN_FAST stats */ 3204 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3205 seq_printf(seq, "\t\thits: %llu\n", 3206 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3207 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3208 atomic64_read( 3209 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3210 seq_printf(seq, "\t\textents_scanned: %u\n", 3211 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3212 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3213 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3214 3215 /* CR_BEST_AVAIL_LEN stats */ 3216 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3217 seq_printf(seq, "\t\thits: %llu\n", 3218 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3219 seq_printf( 3220 seq, "\t\tgroups_considered: %llu\n", 3221 atomic64_read( 3222 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3223 seq_printf(seq, "\t\textents_scanned: %u\n", 3224 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3225 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3226 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3227 3228 /* CR_GOAL_LEN_SLOW stats */ 3229 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3230 seq_printf(seq, "\t\thits: %llu\n", 3231 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3232 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3233 atomic64_read( 3234 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3235 seq_printf(seq, "\t\textents_scanned: %u\n", 3236 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3237 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3238 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3239 3240 /* CR_ANY_FREE stats */ 3241 seq_puts(seq, "\tcr_any_free_stats:\n"); 3242 seq_printf(seq, "\t\thits: %llu\n", 3243 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3244 seq_printf( 3245 seq, "\t\tgroups_considered: %llu\n", 3246 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3247 seq_printf(seq, "\t\textents_scanned: %u\n", 3248 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3249 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3250 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3251 3252 /* Aggregates */ 3253 seq_printf(seq, "\textents_scanned: %u\n", 3254 atomic_read(&sbi->s_bal_ex_scanned)); 3255 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3256 seq_printf(seq, "\t\tstream_goal_hits: %u\n", 3257 atomic_read(&sbi->s_bal_stream_goals)); 3258 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3259 atomic_read(&sbi->s_bal_len_goals)); 3260 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3261 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3262 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3263 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3264 atomic_read(&sbi->s_mb_buddies_generated), 3265 ext4_get_groups_count(sb)); 3266 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3267 atomic64_read(&sbi->s_mb_generation_time)); 3268 seq_printf(seq, "\tpreallocated: %u\n", 3269 atomic_read(&sbi->s_mb_preallocated)); 3270 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3271 return 0; 3272 } 3273 3274 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3275 { 3276 struct super_block *sb = pde_data(file_inode(seq->file)); 3277 unsigned long position; 3278 3279 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3280 return NULL; 3281 position = *pos + 1; 3282 return (void *) ((unsigned long) position); 3283 } 3284 3285 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3286 { 3287 struct super_block *sb = pde_data(file_inode(seq->file)); 3288 unsigned long position; 3289 3290 ++*pos; 3291 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3292 return NULL; 3293 position = *pos + 1; 3294 return (void *) ((unsigned long) position); 3295 } 3296 3297 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3298 { 3299 struct super_block *sb = pde_data(file_inode(seq->file)); 3300 struct ext4_sb_info *sbi = EXT4_SB(sb); 3301 unsigned long position = ((unsigned long) v); 3302 struct ext4_group_info *grp; 3303 unsigned int count; 3304 unsigned long idx; 3305 3306 position--; 3307 if (position >= MB_NUM_ORDERS(sb)) { 3308 position -= MB_NUM_ORDERS(sb); 3309 if (position == 0) 3310 seq_puts(seq, "avg_fragment_size_lists:\n"); 3311 3312 count = 0; 3313 xa_for_each(&sbi->s_mb_avg_fragment_size[position], idx, grp) 3314 count++; 3315 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3316 (unsigned int)position, count); 3317 return 0; 3318 } 3319 3320 if (position == 0) { 3321 seq_printf(seq, "optimize_scan: %d\n", 3322 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3323 seq_puts(seq, "max_free_order_lists:\n"); 3324 } 3325 count = 0; 3326 xa_for_each(&sbi->s_mb_largest_free_orders[position], idx, grp) 3327 count++; 3328 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3329 (unsigned int)position, count); 3330 3331 return 0; 3332 } 3333 3334 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3335 { 3336 } 3337 3338 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3339 .start = ext4_mb_seq_structs_summary_start, 3340 .next = ext4_mb_seq_structs_summary_next, 3341 .stop = ext4_mb_seq_structs_summary_stop, 3342 .show = ext4_mb_seq_structs_summary_show, 3343 }; 3344 3345 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3346 { 3347 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3348 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3349 3350 BUG_ON(!cachep); 3351 return cachep; 3352 } 3353 3354 /* 3355 * Allocate the top-level s_group_info array for the specified number 3356 * of groups 3357 */ 3358 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3359 { 3360 struct ext4_sb_info *sbi = EXT4_SB(sb); 3361 unsigned size; 3362 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3363 3364 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3365 EXT4_DESC_PER_BLOCK_BITS(sb); 3366 if (size <= sbi->s_group_info_size) 3367 return 0; 3368 3369 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3370 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3371 if (!new_groupinfo) { 3372 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3373 return -ENOMEM; 3374 } 3375 rcu_read_lock(); 3376 old_groupinfo = rcu_dereference(sbi->s_group_info); 3377 if (old_groupinfo) 3378 memcpy(new_groupinfo, old_groupinfo, 3379 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3380 rcu_read_unlock(); 3381 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3382 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3383 if (old_groupinfo) 3384 ext4_kvfree_array_rcu(old_groupinfo); 3385 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3386 sbi->s_group_info_size); 3387 return 0; 3388 } 3389 3390 /* Create and initialize ext4_group_info data for the given group. */ 3391 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3392 struct ext4_group_desc *desc) 3393 { 3394 int i; 3395 int metalen = 0; 3396 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3397 struct ext4_sb_info *sbi = EXT4_SB(sb); 3398 struct ext4_group_info **meta_group_info; 3399 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3400 3401 /* 3402 * First check if this group is the first of a reserved block. 3403 * If it's true, we have to allocate a new table of pointers 3404 * to ext4_group_info structures 3405 */ 3406 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3407 metalen = sizeof(*meta_group_info) << 3408 EXT4_DESC_PER_BLOCK_BITS(sb); 3409 meta_group_info = kmalloc(metalen, GFP_NOFS); 3410 if (meta_group_info == NULL) { 3411 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3412 "for a buddy group"); 3413 return -ENOMEM; 3414 } 3415 rcu_read_lock(); 3416 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3417 rcu_read_unlock(); 3418 } 3419 3420 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3421 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3422 3423 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3424 if (meta_group_info[i] == NULL) { 3425 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3426 goto exit_group_info; 3427 } 3428 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3429 &(meta_group_info[i]->bb_state)); 3430 3431 /* 3432 * initialize bb_free to be able to skip 3433 * empty groups without initialization 3434 */ 3435 if (ext4_has_group_desc_csum(sb) && 3436 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3437 meta_group_info[i]->bb_free = 3438 ext4_free_clusters_after_init(sb, group, desc); 3439 } else { 3440 meta_group_info[i]->bb_free = 3441 ext4_free_group_clusters(sb, desc); 3442 } 3443 3444 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3445 init_rwsem(&meta_group_info[i]->alloc_sem); 3446 meta_group_info[i]->bb_free_root = RB_ROOT; 3447 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3448 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3449 meta_group_info[i]->bb_group = group; 3450 3451 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3452 return 0; 3453 3454 exit_group_info: 3455 /* If a meta_group_info table has been allocated, release it now */ 3456 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3457 struct ext4_group_info ***group_info; 3458 3459 rcu_read_lock(); 3460 group_info = rcu_dereference(sbi->s_group_info); 3461 kfree(group_info[idx]); 3462 group_info[idx] = NULL; 3463 rcu_read_unlock(); 3464 } 3465 return -ENOMEM; 3466 } /* ext4_mb_add_groupinfo */ 3467 3468 static int ext4_mb_init_backend(struct super_block *sb) 3469 { 3470 ext4_group_t ngroups = ext4_get_groups_count(sb); 3471 ext4_group_t i; 3472 struct ext4_sb_info *sbi = EXT4_SB(sb); 3473 int err; 3474 struct ext4_group_desc *desc; 3475 struct ext4_group_info ***group_info; 3476 struct kmem_cache *cachep; 3477 3478 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3479 if (err) 3480 return err; 3481 3482 sbi->s_buddy_cache = new_inode(sb); 3483 if (sbi->s_buddy_cache == NULL) { 3484 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3485 goto err_freesgi; 3486 } 3487 /* To avoid potentially colliding with an valid on-disk inode number, 3488 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3489 * not in the inode hash, so it should never be found by iget(), but 3490 * this will avoid confusion if it ever shows up during debugging. */ 3491 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3492 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3493 for (i = 0; i < ngroups; i++) { 3494 cond_resched(); 3495 desc = ext4_get_group_desc(sb, i, NULL); 3496 if (desc == NULL) { 3497 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3498 goto err_freebuddy; 3499 } 3500 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3501 goto err_freebuddy; 3502 } 3503 3504 if (ext4_has_feature_flex_bg(sb)) { 3505 /* a single flex group is supposed to be read by a single IO. 3506 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3507 * unsigned integer, so the maximum shift is 32. 3508 */ 3509 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3510 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3511 goto err_freebuddy; 3512 } 3513 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3514 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3515 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3516 } else { 3517 sbi->s_mb_prefetch = 32; 3518 } 3519 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3520 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3521 /* 3522 * now many real IOs to prefetch within a single allocation at 3523 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related 3524 * optimization we shouldn't try to load too many groups, at some point 3525 * we should start to use what we've got in memory. 3526 * with an average random access time 5ms, it'd take a second to get 3527 * 200 groups (* N with flex_bg), so let's make this limit 4 3528 */ 3529 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3530 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3531 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3532 3533 return 0; 3534 3535 err_freebuddy: 3536 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3537 while (i-- > 0) { 3538 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3539 3540 if (grp) 3541 kmem_cache_free(cachep, grp); 3542 } 3543 i = sbi->s_group_info_size; 3544 rcu_read_lock(); 3545 group_info = rcu_dereference(sbi->s_group_info); 3546 while (i-- > 0) 3547 kfree(group_info[i]); 3548 rcu_read_unlock(); 3549 iput(sbi->s_buddy_cache); 3550 err_freesgi: 3551 rcu_read_lock(); 3552 kvfree(rcu_dereference(sbi->s_group_info)); 3553 rcu_read_unlock(); 3554 return -ENOMEM; 3555 } 3556 3557 static void ext4_groupinfo_destroy_slabs(void) 3558 { 3559 int i; 3560 3561 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3562 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3563 ext4_groupinfo_caches[i] = NULL; 3564 } 3565 } 3566 3567 static int ext4_groupinfo_create_slab(size_t size) 3568 { 3569 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3570 int slab_size; 3571 int blocksize_bits = order_base_2(size); 3572 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3573 struct kmem_cache *cachep; 3574 3575 if (cache_index >= NR_GRPINFO_CACHES) 3576 return -EINVAL; 3577 3578 if (unlikely(cache_index < 0)) 3579 cache_index = 0; 3580 3581 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3582 if (ext4_groupinfo_caches[cache_index]) { 3583 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3584 return 0; /* Already created */ 3585 } 3586 3587 slab_size = offsetof(struct ext4_group_info, 3588 bb_counters[blocksize_bits + 2]); 3589 3590 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3591 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3592 NULL); 3593 3594 ext4_groupinfo_caches[cache_index] = cachep; 3595 3596 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3597 if (!cachep) { 3598 printk(KERN_EMERG 3599 "EXT4-fs: no memory for groupinfo slab cache\n"); 3600 return -ENOMEM; 3601 } 3602 3603 return 0; 3604 } 3605 3606 static void ext4_discard_work(struct work_struct *work) 3607 { 3608 struct ext4_sb_info *sbi = container_of(work, 3609 struct ext4_sb_info, s_discard_work); 3610 struct super_block *sb = sbi->s_sb; 3611 struct ext4_free_data *fd, *nfd; 3612 struct ext4_buddy e4b; 3613 LIST_HEAD(discard_list); 3614 ext4_group_t grp, load_grp; 3615 int err = 0; 3616 3617 spin_lock(&sbi->s_md_lock); 3618 list_splice_init(&sbi->s_discard_list, &discard_list); 3619 spin_unlock(&sbi->s_md_lock); 3620 3621 load_grp = UINT_MAX; 3622 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3623 /* 3624 * If filesystem is umounting or no memory or suffering 3625 * from no space, give up the discard 3626 */ 3627 if ((sb->s_flags & SB_ACTIVE) && !err && 3628 !atomic_read(&sbi->s_retry_alloc_pending)) { 3629 grp = fd->efd_group; 3630 if (grp != load_grp) { 3631 if (load_grp != UINT_MAX) 3632 ext4_mb_unload_buddy(&e4b); 3633 3634 err = ext4_mb_load_buddy(sb, grp, &e4b); 3635 if (err) { 3636 kmem_cache_free(ext4_free_data_cachep, fd); 3637 load_grp = UINT_MAX; 3638 continue; 3639 } else { 3640 load_grp = grp; 3641 } 3642 } 3643 3644 ext4_lock_group(sb, grp); 3645 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3646 fd->efd_start_cluster + fd->efd_count - 1, 1); 3647 ext4_unlock_group(sb, grp); 3648 } 3649 kmem_cache_free(ext4_free_data_cachep, fd); 3650 } 3651 3652 if (load_grp != UINT_MAX) 3653 ext4_mb_unload_buddy(&e4b); 3654 } 3655 3656 static inline void ext4_mb_avg_fragment_size_destroy(struct ext4_sb_info *sbi) 3657 { 3658 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++) 3659 xa_destroy(&sbi->s_mb_avg_fragment_size[i]); 3660 kfree(sbi->s_mb_avg_fragment_size); 3661 } 3662 3663 static inline void ext4_mb_largest_free_orders_destroy(struct ext4_sb_info *sbi) 3664 { 3665 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++) 3666 xa_destroy(&sbi->s_mb_largest_free_orders[i]); 3667 kfree(sbi->s_mb_largest_free_orders); 3668 } 3669 3670 int ext4_mb_init(struct super_block *sb) 3671 { 3672 struct ext4_sb_info *sbi = EXT4_SB(sb); 3673 unsigned i, j; 3674 unsigned offset, offset_incr; 3675 unsigned max; 3676 int ret; 3677 3678 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3679 3680 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3681 if (sbi->s_mb_offsets == NULL) { 3682 ret = -ENOMEM; 3683 goto out; 3684 } 3685 3686 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3687 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3688 if (sbi->s_mb_maxs == NULL) { 3689 ret = -ENOMEM; 3690 goto out; 3691 } 3692 3693 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3694 if (ret < 0) 3695 goto out; 3696 3697 /* order 0 is regular bitmap */ 3698 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3699 sbi->s_mb_offsets[0] = 0; 3700 3701 i = 1; 3702 offset = 0; 3703 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3704 max = sb->s_blocksize << 2; 3705 do { 3706 sbi->s_mb_offsets[i] = offset; 3707 sbi->s_mb_maxs[i] = max; 3708 offset += offset_incr; 3709 offset_incr = offset_incr >> 1; 3710 max = max >> 1; 3711 i++; 3712 } while (i < MB_NUM_ORDERS(sb)); 3713 3714 sbi->s_mb_avg_fragment_size = 3715 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray), 3716 GFP_KERNEL); 3717 if (!sbi->s_mb_avg_fragment_size) { 3718 ret = -ENOMEM; 3719 goto out; 3720 } 3721 for (i = 0; i < MB_NUM_ORDERS(sb); i++) 3722 xa_init(&sbi->s_mb_avg_fragment_size[i]); 3723 3724 sbi->s_mb_largest_free_orders = 3725 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray), 3726 GFP_KERNEL); 3727 if (!sbi->s_mb_largest_free_orders) { 3728 ret = -ENOMEM; 3729 goto out; 3730 } 3731 for (i = 0; i < MB_NUM_ORDERS(sb); i++) 3732 xa_init(&sbi->s_mb_largest_free_orders[i]); 3733 3734 spin_lock_init(&sbi->s_md_lock); 3735 atomic_set(&sbi->s_mb_free_pending, 0); 3736 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]); 3737 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]); 3738 INIT_LIST_HEAD(&sbi->s_discard_list); 3739 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3740 atomic_set(&sbi->s_retry_alloc_pending, 0); 3741 3742 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3743 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3744 sbi->s_mb_stats = MB_DEFAULT_STATS; 3745 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3746 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3747 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3748 3749 /* 3750 * The default group preallocation is 512, which for 4k block 3751 * sizes translates to 2 megabytes. However for bigalloc file 3752 * systems, this is probably too big (i.e, if the cluster size 3753 * is 1 megabyte, then group preallocation size becomes half a 3754 * gigabyte!). As a default, we will keep a two megabyte 3755 * group pralloc size for cluster sizes up to 64k, and after 3756 * that, we will force a minimum group preallocation size of 3757 * 32 clusters. This translates to 8 megs when the cluster 3758 * size is 256k, and 32 megs when the cluster size is 1 meg, 3759 * which seems reasonable as a default. 3760 */ 3761 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3762 sbi->s_cluster_bits, 32); 3763 /* 3764 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3765 * to the lowest multiple of s_stripe which is bigger than 3766 * the s_mb_group_prealloc as determined above. We want 3767 * the preallocation size to be an exact multiple of the 3768 * RAID stripe size so that preallocations don't fragment 3769 * the stripes. 3770 */ 3771 if (sbi->s_stripe > 1) { 3772 sbi->s_mb_group_prealloc = roundup( 3773 sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe)); 3774 } 3775 3776 sbi->s_mb_nr_global_goals = umin(num_possible_cpus(), 3777 DIV_ROUND_UP(sbi->s_groups_count, 4)); 3778 sbi->s_mb_last_groups = kcalloc(sbi->s_mb_nr_global_goals, 3779 sizeof(ext4_group_t), GFP_KERNEL); 3780 if (sbi->s_mb_last_groups == NULL) { 3781 ret = -ENOMEM; 3782 goto out; 3783 } 3784 3785 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3786 if (sbi->s_locality_groups == NULL) { 3787 ret = -ENOMEM; 3788 goto out_free_last_groups; 3789 } 3790 for_each_possible_cpu(i) { 3791 struct ext4_locality_group *lg; 3792 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3793 mutex_init(&lg->lg_mutex); 3794 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3795 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3796 spin_lock_init(&lg->lg_prealloc_lock); 3797 } 3798 3799 if (bdev_nonrot(sb->s_bdev)) 3800 sbi->s_mb_max_linear_groups = 0; 3801 else 3802 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3803 /* init file for buddy data */ 3804 ret = ext4_mb_init_backend(sb); 3805 if (ret != 0) 3806 goto out_free_locality_groups; 3807 3808 return 0; 3809 3810 out_free_locality_groups: 3811 free_percpu(sbi->s_locality_groups); 3812 sbi->s_locality_groups = NULL; 3813 out_free_last_groups: 3814 kfree(sbi->s_mb_last_groups); 3815 sbi->s_mb_last_groups = NULL; 3816 out: 3817 ext4_mb_avg_fragment_size_destroy(sbi); 3818 ext4_mb_largest_free_orders_destroy(sbi); 3819 kfree(sbi->s_mb_offsets); 3820 sbi->s_mb_offsets = NULL; 3821 kfree(sbi->s_mb_maxs); 3822 sbi->s_mb_maxs = NULL; 3823 return ret; 3824 } 3825 3826 /* need to called with the ext4 group lock held */ 3827 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3828 { 3829 struct ext4_prealloc_space *pa; 3830 struct list_head *cur, *tmp; 3831 int count = 0; 3832 3833 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3834 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3835 list_del(&pa->pa_group_list); 3836 count++; 3837 kmem_cache_free(ext4_pspace_cachep, pa); 3838 } 3839 return count; 3840 } 3841 3842 void ext4_mb_release(struct super_block *sb) 3843 { 3844 ext4_group_t ngroups = ext4_get_groups_count(sb); 3845 ext4_group_t i; 3846 int num_meta_group_infos; 3847 struct ext4_group_info *grinfo, ***group_info; 3848 struct ext4_sb_info *sbi = EXT4_SB(sb); 3849 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3850 int count; 3851 3852 if (test_opt(sb, DISCARD)) { 3853 /* 3854 * wait the discard work to drain all of ext4_free_data 3855 */ 3856 flush_work(&sbi->s_discard_work); 3857 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3858 } 3859 3860 if (sbi->s_group_info) { 3861 for (i = 0; i < ngroups; i++) { 3862 cond_resched(); 3863 grinfo = ext4_get_group_info(sb, i); 3864 if (!grinfo) 3865 continue; 3866 mb_group_bb_bitmap_free(grinfo); 3867 ext4_lock_group(sb, i); 3868 count = ext4_mb_cleanup_pa(grinfo); 3869 if (count) 3870 mb_debug(sb, "mballoc: %d PAs left\n", 3871 count); 3872 ext4_unlock_group(sb, i); 3873 kmem_cache_free(cachep, grinfo); 3874 } 3875 num_meta_group_infos = (ngroups + 3876 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3877 EXT4_DESC_PER_BLOCK_BITS(sb); 3878 rcu_read_lock(); 3879 group_info = rcu_dereference(sbi->s_group_info); 3880 for (i = 0; i < num_meta_group_infos; i++) 3881 kfree(group_info[i]); 3882 kvfree(group_info); 3883 rcu_read_unlock(); 3884 } 3885 ext4_mb_avg_fragment_size_destroy(sbi); 3886 ext4_mb_largest_free_orders_destroy(sbi); 3887 kfree(sbi->s_mb_offsets); 3888 kfree(sbi->s_mb_maxs); 3889 iput(sbi->s_buddy_cache); 3890 if (sbi->s_mb_stats) { 3891 ext4_msg(sb, KERN_INFO, 3892 "mballoc: %u blocks %u reqs (%u success)", 3893 atomic_read(&sbi->s_bal_allocated), 3894 atomic_read(&sbi->s_bal_reqs), 3895 atomic_read(&sbi->s_bal_success)); 3896 ext4_msg(sb, KERN_INFO, 3897 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3898 "%u 2^N hits, %u breaks, %u lost", 3899 atomic_read(&sbi->s_bal_ex_scanned), 3900 atomic_read(&sbi->s_bal_groups_scanned), 3901 atomic_read(&sbi->s_bal_goals), 3902 atomic_read(&sbi->s_bal_2orders), 3903 atomic_read(&sbi->s_bal_breaks), 3904 atomic_read(&sbi->s_mb_lost_chunks)); 3905 ext4_msg(sb, KERN_INFO, 3906 "mballoc: %u generated and it took %llu", 3907 atomic_read(&sbi->s_mb_buddies_generated), 3908 atomic64_read(&sbi->s_mb_generation_time)); 3909 ext4_msg(sb, KERN_INFO, 3910 "mballoc: %u preallocated, %u discarded", 3911 atomic_read(&sbi->s_mb_preallocated), 3912 atomic_read(&sbi->s_mb_discarded)); 3913 } 3914 3915 free_percpu(sbi->s_locality_groups); 3916 kfree(sbi->s_mb_last_groups); 3917 } 3918 3919 static inline int ext4_issue_discard(struct super_block *sb, 3920 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 3921 { 3922 ext4_fsblk_t discard_block; 3923 3924 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3925 ext4_group_first_block_no(sb, block_group)); 3926 count = EXT4_C2B(EXT4_SB(sb), count); 3927 trace_ext4_discard_blocks(sb, 3928 (unsigned long long) discard_block, count); 3929 3930 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3931 } 3932 3933 static void ext4_free_data_in_buddy(struct super_block *sb, 3934 struct ext4_free_data *entry) 3935 { 3936 struct ext4_buddy e4b; 3937 struct ext4_group_info *db; 3938 int err, count = 0; 3939 3940 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3941 entry->efd_count, entry->efd_group, entry); 3942 3943 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3944 /* we expect to find existing buddy because it's pinned */ 3945 BUG_ON(err != 0); 3946 3947 atomic_sub(entry->efd_count, &EXT4_SB(sb)->s_mb_free_pending); 3948 db = e4b.bd_info; 3949 /* there are blocks to put in buddy to make them really free */ 3950 count += entry->efd_count; 3951 ext4_lock_group(sb, entry->efd_group); 3952 /* Take it out of per group rb tree */ 3953 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3954 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3955 3956 /* 3957 * Clear the trimmed flag for the group so that the next 3958 * ext4_trim_fs can trim it. 3959 */ 3960 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3961 3962 if (!db->bb_free_root.rb_node) { 3963 /* No more items in the per group rb tree 3964 * balance refcounts from ext4_mb_free_metadata() 3965 */ 3966 folio_put(e4b.bd_buddy_folio); 3967 folio_put(e4b.bd_bitmap_folio); 3968 } 3969 ext4_unlock_group(sb, entry->efd_group); 3970 ext4_mb_unload_buddy(&e4b); 3971 3972 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3973 } 3974 3975 /* 3976 * This function is called by the jbd2 layer once the commit has finished, 3977 * so we know we can free the blocks that were released with that commit. 3978 */ 3979 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3980 { 3981 struct ext4_sb_info *sbi = EXT4_SB(sb); 3982 struct ext4_free_data *entry, *tmp; 3983 LIST_HEAD(freed_data_list); 3984 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; 3985 bool wake; 3986 3987 list_replace_init(s_freed_head, &freed_data_list); 3988 3989 list_for_each_entry(entry, &freed_data_list, efd_list) 3990 ext4_free_data_in_buddy(sb, entry); 3991 3992 if (test_opt(sb, DISCARD)) { 3993 spin_lock(&sbi->s_md_lock); 3994 wake = list_empty(&sbi->s_discard_list); 3995 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3996 spin_unlock(&sbi->s_md_lock); 3997 if (wake) 3998 queue_work(system_unbound_wq, &sbi->s_discard_work); 3999 } else { 4000 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 4001 kmem_cache_free(ext4_free_data_cachep, entry); 4002 } 4003 } 4004 4005 int __init ext4_init_mballoc(void) 4006 { 4007 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 4008 SLAB_RECLAIM_ACCOUNT); 4009 if (ext4_pspace_cachep == NULL) 4010 goto out; 4011 4012 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 4013 SLAB_RECLAIM_ACCOUNT); 4014 if (ext4_ac_cachep == NULL) 4015 goto out_pa_free; 4016 4017 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 4018 SLAB_RECLAIM_ACCOUNT); 4019 if (ext4_free_data_cachep == NULL) 4020 goto out_ac_free; 4021 4022 return 0; 4023 4024 out_ac_free: 4025 kmem_cache_destroy(ext4_ac_cachep); 4026 out_pa_free: 4027 kmem_cache_destroy(ext4_pspace_cachep); 4028 out: 4029 return -ENOMEM; 4030 } 4031 4032 void ext4_exit_mballoc(void) 4033 { 4034 /* 4035 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 4036 * before destroying the slab cache. 4037 */ 4038 rcu_barrier(); 4039 kmem_cache_destroy(ext4_pspace_cachep); 4040 kmem_cache_destroy(ext4_ac_cachep); 4041 kmem_cache_destroy(ext4_free_data_cachep); 4042 ext4_groupinfo_destroy_slabs(); 4043 } 4044 4045 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 4046 #define EXT4_MB_SYNC_UPDATE 0x0002 4047 static int 4048 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, 4049 ext4_group_t group, ext4_grpblk_t blkoff, 4050 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) 4051 { 4052 struct ext4_sb_info *sbi = EXT4_SB(sb); 4053 struct buffer_head *bitmap_bh = NULL; 4054 struct ext4_group_desc *gdp; 4055 struct buffer_head *gdp_bh; 4056 int err; 4057 unsigned int i, already, changed = len; 4058 4059 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, 4060 handle, sb, state, group, blkoff, len, 4061 flags, ret_changed); 4062 4063 if (ret_changed) 4064 *ret_changed = 0; 4065 bitmap_bh = ext4_read_block_bitmap(sb, group); 4066 if (IS_ERR(bitmap_bh)) 4067 return PTR_ERR(bitmap_bh); 4068 4069 if (handle) { 4070 BUFFER_TRACE(bitmap_bh, "getting write access"); 4071 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4072 EXT4_JTR_NONE); 4073 if (err) 4074 goto out_err; 4075 } 4076 4077 err = -EIO; 4078 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4079 if (!gdp) 4080 goto out_err; 4081 4082 if (handle) { 4083 BUFFER_TRACE(gdp_bh, "get_write_access"); 4084 err = ext4_journal_get_write_access(handle, sb, gdp_bh, 4085 EXT4_JTR_NONE); 4086 if (err) 4087 goto out_err; 4088 } 4089 4090 ext4_lock_group(sb, group); 4091 if (ext4_has_group_desc_csum(sb) && 4092 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4093 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4094 ext4_free_group_clusters_set(sb, gdp, 4095 ext4_free_clusters_after_init(sb, group, gdp)); 4096 } 4097 4098 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { 4099 already = 0; 4100 for (i = 0; i < len; i++) 4101 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4102 state) 4103 already++; 4104 changed = len - already; 4105 } 4106 4107 if (state) { 4108 mb_set_bits(bitmap_bh->b_data, blkoff, len); 4109 ext4_free_group_clusters_set(sb, gdp, 4110 ext4_free_group_clusters(sb, gdp) - changed); 4111 } else { 4112 mb_clear_bits(bitmap_bh->b_data, blkoff, len); 4113 ext4_free_group_clusters_set(sb, gdp, 4114 ext4_free_group_clusters(sb, gdp) + changed); 4115 } 4116 4117 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4118 ext4_group_desc_csum_set(sb, group, gdp); 4119 ext4_unlock_group(sb, group); 4120 if (ret_changed) 4121 *ret_changed = changed; 4122 4123 if (sbi->s_log_groups_per_flex) { 4124 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4125 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4126 s_flex_groups, flex_group); 4127 4128 if (state) 4129 atomic64_sub(changed, &fg->free_clusters); 4130 else 4131 atomic64_add(changed, &fg->free_clusters); 4132 } 4133 4134 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4135 if (err) 4136 goto out_err; 4137 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4138 if (err) 4139 goto out_err; 4140 4141 if (flags & EXT4_MB_SYNC_UPDATE) { 4142 sync_dirty_buffer(bitmap_bh); 4143 sync_dirty_buffer(gdp_bh); 4144 } 4145 4146 out_err: 4147 brelse(bitmap_bh); 4148 return err; 4149 } 4150 4151 /* 4152 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 4153 * Returns 0 if success or error code 4154 */ 4155 static noinline_for_stack int 4156 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 4157 handle_t *handle, unsigned int reserv_clstrs) 4158 { 4159 struct ext4_group_desc *gdp; 4160 struct ext4_sb_info *sbi; 4161 struct super_block *sb; 4162 ext4_fsblk_t block; 4163 int err, len; 4164 int flags = 0; 4165 ext4_grpblk_t changed; 4166 4167 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4168 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4169 4170 sb = ac->ac_sb; 4171 sbi = EXT4_SB(sb); 4172 4173 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL); 4174 if (!gdp) 4175 return -EIO; 4176 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4177 ext4_free_group_clusters(sb, gdp)); 4178 4179 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4180 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4181 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4182 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4183 "fs metadata", block, block+len); 4184 /* File system mounted not to panic on error 4185 * Fix the bitmap and return EFSCORRUPTED 4186 * We leak some of the blocks here. 4187 */ 4188 err = ext4_mb_mark_context(handle, sb, true, 4189 ac->ac_b_ex.fe_group, 4190 ac->ac_b_ex.fe_start, 4191 ac->ac_b_ex.fe_len, 4192 0, NULL); 4193 if (!err) 4194 err = -EFSCORRUPTED; 4195 return err; 4196 } 4197 4198 #ifdef AGGRESSIVE_CHECK 4199 flags |= EXT4_MB_BITMAP_MARKED_CHECK; 4200 #endif 4201 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, 4202 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, 4203 flags, &changed); 4204 4205 if (err && changed == 0) 4206 return err; 4207 4208 #ifdef AGGRESSIVE_CHECK 4209 BUG_ON(changed != ac->ac_b_ex.fe_len); 4210 #endif 4211 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4212 /* 4213 * Now reduce the dirty block count also. Should not go negative 4214 */ 4215 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4216 /* release all the reserved blocks if non delalloc */ 4217 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4218 reserv_clstrs); 4219 4220 return err; 4221 } 4222 4223 /* 4224 * Idempotent helper for Ext4 fast commit replay path to set the state of 4225 * blocks in bitmaps and update counters. 4226 */ 4227 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4228 int len, bool state) 4229 { 4230 struct ext4_sb_info *sbi = EXT4_SB(sb); 4231 ext4_group_t group; 4232 ext4_grpblk_t blkoff; 4233 int err = 0; 4234 unsigned int clen, thisgrp_len; 4235 4236 while (len > 0) { 4237 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4238 4239 /* 4240 * Check to see if we are freeing blocks across a group 4241 * boundary. 4242 * In case of flex_bg, this can happen that (block, len) may 4243 * span across more than one group. In that case we need to 4244 * get the corresponding group metadata to work with. 4245 * For this we have goto again loop. 4246 */ 4247 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4248 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4249 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4250 4251 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4252 ext4_error(sb, "Marking blocks in system zone - " 4253 "Block = %llu, len = %u", 4254 block, thisgrp_len); 4255 break; 4256 } 4257 4258 err = ext4_mb_mark_context(NULL, sb, state, 4259 group, blkoff, clen, 4260 EXT4_MB_BITMAP_MARKED_CHECK | 4261 EXT4_MB_SYNC_UPDATE, 4262 NULL); 4263 if (err) 4264 break; 4265 4266 block += thisgrp_len; 4267 len -= thisgrp_len; 4268 BUG_ON(len < 0); 4269 } 4270 } 4271 4272 /* 4273 * here we normalize request for locality group 4274 * Group request are normalized to s_mb_group_prealloc, which goes to 4275 * s_strip if we set the same via mount option. 4276 * s_mb_group_prealloc can be configured via 4277 * /sys/fs/ext4/<partition>/mb_group_prealloc 4278 * 4279 * XXX: should we try to preallocate more than the group has now? 4280 */ 4281 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4282 { 4283 struct super_block *sb = ac->ac_sb; 4284 struct ext4_locality_group *lg = ac->ac_lg; 4285 4286 BUG_ON(lg == NULL); 4287 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4288 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4289 } 4290 4291 /* 4292 * This function returns the next element to look at during inode 4293 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4294 * (ei->i_prealloc_lock) 4295 * 4296 * new_start The start of the range we want to compare 4297 * cur_start The existing start that we are comparing against 4298 * node The node of the rb_tree 4299 */ 4300 static inline struct rb_node* 4301 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4302 { 4303 if (new_start < cur_start) 4304 return node->rb_left; 4305 else 4306 return node->rb_right; 4307 } 4308 4309 static inline void 4310 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4311 ext4_lblk_t start, loff_t end) 4312 { 4313 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4314 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4315 struct ext4_prealloc_space *tmp_pa; 4316 ext4_lblk_t tmp_pa_start; 4317 loff_t tmp_pa_end; 4318 struct rb_node *iter; 4319 4320 read_lock(&ei->i_prealloc_lock); 4321 for (iter = ei->i_prealloc_node.rb_node; iter; 4322 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4323 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4324 pa_node.inode_node); 4325 tmp_pa_start = tmp_pa->pa_lstart; 4326 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4327 4328 spin_lock(&tmp_pa->pa_lock); 4329 if (tmp_pa->pa_deleted == 0) 4330 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4331 spin_unlock(&tmp_pa->pa_lock); 4332 } 4333 read_unlock(&ei->i_prealloc_lock); 4334 } 4335 4336 /* 4337 * Given an allocation context "ac" and a range "start", "end", check 4338 * and adjust boundaries if the range overlaps with any of the existing 4339 * preallocatoins stored in the corresponding inode of the allocation context. 4340 * 4341 * Parameters: 4342 * ac allocation context 4343 * start start of the new range 4344 * end end of the new range 4345 */ 4346 static inline void 4347 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4348 ext4_lblk_t *start, loff_t *end) 4349 { 4350 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4351 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4352 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4353 struct rb_node *iter; 4354 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4355 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4356 4357 new_start = *start; 4358 new_end = *end; 4359 4360 /* 4361 * Adjust the normalized range so that it doesn't overlap with any 4362 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4363 * so it doesn't change underneath us. 4364 */ 4365 read_lock(&ei->i_prealloc_lock); 4366 4367 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4368 for (iter = ei->i_prealloc_node.rb_node; iter; 4369 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4370 tmp_pa_start, iter)) { 4371 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4372 pa_node.inode_node); 4373 tmp_pa_start = tmp_pa->pa_lstart; 4374 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4375 4376 /* PA must not overlap original request */ 4377 spin_lock(&tmp_pa->pa_lock); 4378 if (tmp_pa->pa_deleted == 0) 4379 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4380 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4381 spin_unlock(&tmp_pa->pa_lock); 4382 } 4383 4384 /* 4385 * Step 2: check if the found PA is left or right neighbor and 4386 * get the other neighbor 4387 */ 4388 if (tmp_pa) { 4389 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4390 struct rb_node *tmp; 4391 4392 left_pa = tmp_pa; 4393 tmp = rb_next(&left_pa->pa_node.inode_node); 4394 if (tmp) { 4395 right_pa = rb_entry(tmp, 4396 struct ext4_prealloc_space, 4397 pa_node.inode_node); 4398 } 4399 } else { 4400 struct rb_node *tmp; 4401 4402 right_pa = tmp_pa; 4403 tmp = rb_prev(&right_pa->pa_node.inode_node); 4404 if (tmp) { 4405 left_pa = rb_entry(tmp, 4406 struct ext4_prealloc_space, 4407 pa_node.inode_node); 4408 } 4409 } 4410 } 4411 4412 /* Step 3: get the non deleted neighbors */ 4413 if (left_pa) { 4414 for (iter = &left_pa->pa_node.inode_node;; 4415 iter = rb_prev(iter)) { 4416 if (!iter) { 4417 left_pa = NULL; 4418 break; 4419 } 4420 4421 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4422 pa_node.inode_node); 4423 left_pa = tmp_pa; 4424 spin_lock(&tmp_pa->pa_lock); 4425 if (tmp_pa->pa_deleted == 0) { 4426 spin_unlock(&tmp_pa->pa_lock); 4427 break; 4428 } 4429 spin_unlock(&tmp_pa->pa_lock); 4430 } 4431 } 4432 4433 if (right_pa) { 4434 for (iter = &right_pa->pa_node.inode_node;; 4435 iter = rb_next(iter)) { 4436 if (!iter) { 4437 right_pa = NULL; 4438 break; 4439 } 4440 4441 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4442 pa_node.inode_node); 4443 right_pa = tmp_pa; 4444 spin_lock(&tmp_pa->pa_lock); 4445 if (tmp_pa->pa_deleted == 0) { 4446 spin_unlock(&tmp_pa->pa_lock); 4447 break; 4448 } 4449 spin_unlock(&tmp_pa->pa_lock); 4450 } 4451 } 4452 4453 if (left_pa) { 4454 left_pa_end = pa_logical_end(sbi, left_pa); 4455 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4456 } 4457 4458 if (right_pa) { 4459 right_pa_start = right_pa->pa_lstart; 4460 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4461 } 4462 4463 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4464 if (left_pa) { 4465 if (left_pa_end > new_start) 4466 new_start = left_pa_end; 4467 } 4468 4469 if (right_pa) { 4470 if (right_pa_start < new_end) 4471 new_end = right_pa_start; 4472 } 4473 read_unlock(&ei->i_prealloc_lock); 4474 4475 /* XXX: extra loop to check we really don't overlap preallocations */ 4476 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4477 4478 *start = new_start; 4479 *end = new_end; 4480 } 4481 4482 /* 4483 * Normalization means making request better in terms of 4484 * size and alignment 4485 */ 4486 static noinline_for_stack void 4487 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4488 struct ext4_allocation_request *ar) 4489 { 4490 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4491 struct ext4_super_block *es = sbi->s_es; 4492 int bsbits, max; 4493 loff_t size, start_off, end; 4494 loff_t orig_size __maybe_unused; 4495 ext4_lblk_t start; 4496 4497 /* do normalize only data requests, metadata requests 4498 do not need preallocation */ 4499 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4500 return; 4501 4502 /* sometime caller may want exact blocks */ 4503 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4504 return; 4505 4506 /* caller may indicate that preallocation isn't 4507 * required (it's a tail, for example) */ 4508 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4509 return; 4510 4511 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4512 ext4_mb_normalize_group_request(ac); 4513 return ; 4514 } 4515 4516 bsbits = ac->ac_sb->s_blocksize_bits; 4517 4518 /* first, let's learn actual file size 4519 * given current request is allocated */ 4520 size = extent_logical_end(sbi, &ac->ac_o_ex); 4521 size = size << bsbits; 4522 if (size < i_size_read(ac->ac_inode)) 4523 size = i_size_read(ac->ac_inode); 4524 orig_size = size; 4525 4526 /* max size of free chunks */ 4527 max = 2 << bsbits; 4528 4529 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4530 (req <= (size) || max <= (chunk_size)) 4531 4532 /* first, try to predict filesize */ 4533 /* XXX: should this table be tunable? */ 4534 start_off = 0; 4535 if (size <= 16 * 1024) { 4536 size = 16 * 1024; 4537 } else if (size <= 32 * 1024) { 4538 size = 32 * 1024; 4539 } else if (size <= 64 * 1024) { 4540 size = 64 * 1024; 4541 } else if (size <= 128 * 1024) { 4542 size = 128 * 1024; 4543 } else if (size <= 256 * 1024) { 4544 size = 256 * 1024; 4545 } else if (size <= 512 * 1024) { 4546 size = 512 * 1024; 4547 } else if (size <= 1024 * 1024) { 4548 size = 1024 * 1024; 4549 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4550 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4551 (21 - bsbits)) << 21; 4552 size = 2 * 1024 * 1024; 4553 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4554 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4555 (22 - bsbits)) << 22; 4556 size = 4 * 1024 * 1024; 4557 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4558 (8<<20)>>bsbits, max, 8 * 1024)) { 4559 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4560 (23 - bsbits)) << 23; 4561 size = 8 * 1024 * 1024; 4562 } else { 4563 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4564 size = (loff_t) EXT4_C2B(sbi, 4565 ac->ac_o_ex.fe_len) << bsbits; 4566 } 4567 size = size >> bsbits; 4568 start = start_off >> bsbits; 4569 4570 /* 4571 * For tiny groups (smaller than 8MB) the chosen allocation 4572 * alignment may be larger than group size. Make sure the 4573 * alignment does not move allocation to a different group which 4574 * makes mballoc fail assertions later. 4575 */ 4576 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4577 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4578 4579 /* avoid unnecessary preallocation that may trigger assertions */ 4580 if (start + size > EXT_MAX_BLOCKS) 4581 size = EXT_MAX_BLOCKS - start; 4582 4583 /* don't cover already allocated blocks in selected range */ 4584 if (ar->pleft && start <= ar->lleft) { 4585 size -= ar->lleft + 1 - start; 4586 start = ar->lleft + 1; 4587 } 4588 if (ar->pright && start + size - 1 >= ar->lright) 4589 size -= start + size - ar->lright; 4590 4591 /* 4592 * Trim allocation request for filesystems with artificially small 4593 * groups. 4594 */ 4595 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4596 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4597 4598 end = start + size; 4599 4600 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4601 4602 size = end - start; 4603 4604 /* 4605 * In this function "start" and "size" are normalized for better 4606 * alignment and length such that we could preallocate more blocks. 4607 * This normalization is done such that original request of 4608 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4609 * "size" boundaries. 4610 * (Note fe_len can be relaxed since FS block allocation API does not 4611 * provide gurantee on number of contiguous blocks allocation since that 4612 * depends upon free space left, etc). 4613 * In case of inode pa, later we use the allocated blocks 4614 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4615 * range of goal/best blocks [start, size] to put it at the 4616 * ac_o_ex.fe_logical extent of this inode. 4617 * (See ext4_mb_use_inode_pa() for more details) 4618 */ 4619 if (start + size <= ac->ac_o_ex.fe_logical || 4620 start > ac->ac_o_ex.fe_logical) { 4621 ext4_msg(ac->ac_sb, KERN_ERR, 4622 "start %lu, size %lu, fe_logical %lu", 4623 (unsigned long) start, (unsigned long) size, 4624 (unsigned long) ac->ac_o_ex.fe_logical); 4625 BUG(); 4626 } 4627 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4628 4629 /* now prepare goal request */ 4630 4631 /* XXX: is it better to align blocks WRT to logical 4632 * placement or satisfy big request as is */ 4633 ac->ac_g_ex.fe_logical = start; 4634 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4635 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4636 4637 /* define goal start in order to merge */ 4638 if (ar->pright && (ar->lright == (start + size)) && 4639 ar->pright >= size && 4640 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4641 /* merge to the right */ 4642 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4643 &ac->ac_g_ex.fe_group, 4644 &ac->ac_g_ex.fe_start); 4645 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4646 } 4647 if (ar->pleft && (ar->lleft + 1 == start) && 4648 ar->pleft + 1 < ext4_blocks_count(es)) { 4649 /* merge to the left */ 4650 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4651 &ac->ac_g_ex.fe_group, 4652 &ac->ac_g_ex.fe_start); 4653 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4654 } 4655 4656 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4657 orig_size, start); 4658 } 4659 4660 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4661 { 4662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4663 4664 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4665 atomic_inc(&sbi->s_bal_reqs); 4666 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4667 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4668 atomic_inc(&sbi->s_bal_success); 4669 4670 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4671 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4672 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4673 } 4674 4675 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4676 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4677 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4678 atomic_inc(&sbi->s_bal_goals); 4679 /* did we allocate as much as normalizer originally wanted? */ 4680 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4681 atomic_inc(&sbi->s_bal_len_goals); 4682 4683 if (ac->ac_found > sbi->s_mb_max_to_scan) 4684 atomic_inc(&sbi->s_bal_breaks); 4685 } 4686 4687 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4688 trace_ext4_mballoc_alloc(ac); 4689 else 4690 trace_ext4_mballoc_prealloc(ac); 4691 } 4692 4693 /* 4694 * Called on failure; free up any blocks from the inode PA for this 4695 * context. We don't need this for MB_GROUP_PA because we only change 4696 * pa_free in ext4_mb_release_context(), but on failure, we've already 4697 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4698 */ 4699 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4700 { 4701 struct ext4_prealloc_space *pa = ac->ac_pa; 4702 struct ext4_buddy e4b; 4703 int err; 4704 4705 if (pa == NULL) { 4706 if (ac->ac_f_ex.fe_len == 0) 4707 return; 4708 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4709 if (WARN_RATELIMIT(err, 4710 "ext4: mb_load_buddy failed (%d)", err)) 4711 /* 4712 * This should never happen since we pin the 4713 * pages in the ext4_allocation_context so 4714 * ext4_mb_load_buddy() should never fail. 4715 */ 4716 return; 4717 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4718 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4719 ac->ac_f_ex.fe_len); 4720 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4721 ext4_mb_unload_buddy(&e4b); 4722 return; 4723 } 4724 if (pa->pa_type == MB_INODE_PA) { 4725 spin_lock(&pa->pa_lock); 4726 pa->pa_free += ac->ac_b_ex.fe_len; 4727 spin_unlock(&pa->pa_lock); 4728 } 4729 } 4730 4731 /* 4732 * use blocks preallocated to inode 4733 */ 4734 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4735 struct ext4_prealloc_space *pa) 4736 { 4737 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4738 ext4_fsblk_t start; 4739 ext4_fsblk_t end; 4740 int len; 4741 4742 /* found preallocated blocks, use them */ 4743 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4744 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4745 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4746 len = EXT4_NUM_B2C(sbi, end - start); 4747 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4748 &ac->ac_b_ex.fe_start); 4749 ac->ac_b_ex.fe_len = len; 4750 ac->ac_status = AC_STATUS_FOUND; 4751 ac->ac_pa = pa; 4752 4753 BUG_ON(start < pa->pa_pstart); 4754 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4755 BUG_ON(pa->pa_free < len); 4756 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4757 pa->pa_free -= len; 4758 4759 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4760 } 4761 4762 /* 4763 * use blocks preallocated to locality group 4764 */ 4765 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4766 struct ext4_prealloc_space *pa) 4767 { 4768 unsigned int len = ac->ac_o_ex.fe_len; 4769 4770 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4771 &ac->ac_b_ex.fe_group, 4772 &ac->ac_b_ex.fe_start); 4773 ac->ac_b_ex.fe_len = len; 4774 ac->ac_status = AC_STATUS_FOUND; 4775 ac->ac_pa = pa; 4776 4777 /* we don't correct pa_pstart or pa_len here to avoid 4778 * possible race when the group is being loaded concurrently 4779 * instead we correct pa later, after blocks are marked 4780 * in on-disk bitmap -- see ext4_mb_release_context() 4781 * Other CPUs are prevented from allocating from this pa by lg_mutex 4782 */ 4783 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4784 pa->pa_lstart, len, pa); 4785 } 4786 4787 /* 4788 * Return the prealloc space that have minimal distance 4789 * from the goal block. @cpa is the prealloc 4790 * space that is having currently known minimal distance 4791 * from the goal block. 4792 */ 4793 static struct ext4_prealloc_space * 4794 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4795 struct ext4_prealloc_space *pa, 4796 struct ext4_prealloc_space *cpa) 4797 { 4798 ext4_fsblk_t cur_distance, new_distance; 4799 4800 if (cpa == NULL) { 4801 atomic_inc(&pa->pa_count); 4802 return pa; 4803 } 4804 cur_distance = abs(goal_block - cpa->pa_pstart); 4805 new_distance = abs(goal_block - pa->pa_pstart); 4806 4807 if (cur_distance <= new_distance) 4808 return cpa; 4809 4810 /* drop the previous reference */ 4811 atomic_dec(&cpa->pa_count); 4812 atomic_inc(&pa->pa_count); 4813 return pa; 4814 } 4815 4816 /* 4817 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4818 */ 4819 static bool 4820 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4821 struct ext4_prealloc_space *pa) 4822 { 4823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4824 ext4_fsblk_t start; 4825 4826 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4827 return true; 4828 4829 /* 4830 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4831 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4832 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4833 * consistent with ext4_mb_find_by_goal. 4834 */ 4835 start = pa->pa_pstart + 4836 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4837 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4838 return false; 4839 4840 if (ac->ac_g_ex.fe_len > pa->pa_len - 4841 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4842 return false; 4843 4844 return true; 4845 } 4846 4847 /* 4848 * search goal blocks in preallocated space 4849 */ 4850 static noinline_for_stack bool 4851 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4852 { 4853 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4854 int order, i; 4855 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4856 struct ext4_locality_group *lg; 4857 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4858 struct rb_node *iter; 4859 ext4_fsblk_t goal_block; 4860 4861 /* only data can be preallocated */ 4862 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4863 return false; 4864 4865 /* 4866 * first, try per-file preallocation by searching the inode pa rbtree. 4867 * 4868 * Here, we can't do a direct traversal of the tree because 4869 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4870 * deleted and that can cause direct traversal to skip some entries. 4871 */ 4872 read_lock(&ei->i_prealloc_lock); 4873 4874 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4875 goto try_group_pa; 4876 } 4877 4878 /* 4879 * Step 1: Find a pa with logical start immediately adjacent to the 4880 * original logical start. This could be on the left or right. 4881 * 4882 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4883 */ 4884 for (iter = ei->i_prealloc_node.rb_node; iter; 4885 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4886 tmp_pa->pa_lstart, iter)) { 4887 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4888 pa_node.inode_node); 4889 } 4890 4891 /* 4892 * Step 2: The adjacent pa might be to the right of logical start, find 4893 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4894 * logical start is towards the left of original request's logical start 4895 */ 4896 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4897 struct rb_node *tmp; 4898 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4899 4900 if (tmp) { 4901 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4902 pa_node.inode_node); 4903 } else { 4904 /* 4905 * If there is no adjacent pa to the left then finding 4906 * an overlapping pa is not possible hence stop searching 4907 * inode pa tree 4908 */ 4909 goto try_group_pa; 4910 } 4911 } 4912 4913 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4914 4915 /* 4916 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4917 * the first non deleted adjacent pa. After this step we should have a 4918 * valid tmp_pa which is guaranteed to be non deleted. 4919 */ 4920 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4921 if (!iter) { 4922 /* 4923 * no non deleted left adjacent pa, so stop searching 4924 * inode pa tree 4925 */ 4926 goto try_group_pa; 4927 } 4928 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4929 pa_node.inode_node); 4930 spin_lock(&tmp_pa->pa_lock); 4931 if (tmp_pa->pa_deleted == 0) { 4932 /* 4933 * We will keep holding the pa_lock from 4934 * this point on because we don't want group discard 4935 * to delete this pa underneath us. Since group 4936 * discard is anyways an ENOSPC operation it 4937 * should be okay for it to wait a few more cycles. 4938 */ 4939 break; 4940 } else { 4941 spin_unlock(&tmp_pa->pa_lock); 4942 } 4943 } 4944 4945 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4946 BUG_ON(tmp_pa->pa_deleted == 1); 4947 4948 /* 4949 * Step 4: We now have the non deleted left adjacent pa. Only this 4950 * pa can possibly satisfy the request hence check if it overlaps 4951 * original logical start and stop searching if it doesn't. 4952 */ 4953 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4954 spin_unlock(&tmp_pa->pa_lock); 4955 goto try_group_pa; 4956 } 4957 4958 /* non-extent files can't have physical blocks past 2^32 */ 4959 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4960 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4961 EXT4_MAX_BLOCK_FILE_PHYS)) { 4962 /* 4963 * Since PAs don't overlap, we won't find any other PA to 4964 * satisfy this. 4965 */ 4966 spin_unlock(&tmp_pa->pa_lock); 4967 goto try_group_pa; 4968 } 4969 4970 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4971 atomic_inc(&tmp_pa->pa_count); 4972 ext4_mb_use_inode_pa(ac, tmp_pa); 4973 spin_unlock(&tmp_pa->pa_lock); 4974 read_unlock(&ei->i_prealloc_lock); 4975 return true; 4976 } else { 4977 /* 4978 * We found a valid overlapping pa but couldn't use it because 4979 * it had no free blocks. This should ideally never happen 4980 * because: 4981 * 4982 * 1. When a new inode pa is added to rbtree it must have 4983 * pa_free > 0 since otherwise we won't actually need 4984 * preallocation. 4985 * 4986 * 2. An inode pa that is in the rbtree can only have it's 4987 * pa_free become zero when another thread calls: 4988 * ext4_mb_new_blocks 4989 * ext4_mb_use_preallocated 4990 * ext4_mb_use_inode_pa 4991 * 4992 * 3. Further, after the above calls make pa_free == 0, we will 4993 * immediately remove it from the rbtree in: 4994 * ext4_mb_new_blocks 4995 * ext4_mb_release_context 4996 * ext4_mb_put_pa 4997 * 4998 * 4. Since the pa_free becoming 0 and pa_free getting removed 4999 * from tree both happen in ext4_mb_new_blocks, which is always 5000 * called with i_data_sem held for data allocations, we can be 5001 * sure that another process will never see a pa in rbtree with 5002 * pa_free == 0. 5003 */ 5004 WARN_ON_ONCE(tmp_pa->pa_free == 0); 5005 } 5006 spin_unlock(&tmp_pa->pa_lock); 5007 try_group_pa: 5008 read_unlock(&ei->i_prealloc_lock); 5009 5010 /* can we use group allocation? */ 5011 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 5012 return false; 5013 5014 /* inode may have no locality group for some reason */ 5015 lg = ac->ac_lg; 5016 if (lg == NULL) 5017 return false; 5018 order = fls(ac->ac_o_ex.fe_len) - 1; 5019 if (order > PREALLOC_TB_SIZE - 1) 5020 /* The max size of hash table is PREALLOC_TB_SIZE */ 5021 order = PREALLOC_TB_SIZE - 1; 5022 5023 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 5024 /* 5025 * search for the prealloc space that is having 5026 * minimal distance from the goal block. 5027 */ 5028 for (i = order; i < PREALLOC_TB_SIZE; i++) { 5029 rcu_read_lock(); 5030 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 5031 pa_node.lg_list) { 5032 spin_lock(&tmp_pa->pa_lock); 5033 if (tmp_pa->pa_deleted == 0 && 5034 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 5035 5036 cpa = ext4_mb_check_group_pa(goal_block, 5037 tmp_pa, cpa); 5038 } 5039 spin_unlock(&tmp_pa->pa_lock); 5040 } 5041 rcu_read_unlock(); 5042 } 5043 if (cpa) { 5044 ext4_mb_use_group_pa(ac, cpa); 5045 return true; 5046 } 5047 return false; 5048 } 5049 5050 /* 5051 * the function goes through all preallocation in this group and marks them 5052 * used in in-core bitmap. buddy must be generated from this bitmap 5053 * Need to be called with ext4 group lock held 5054 */ 5055 static noinline_for_stack 5056 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 5057 ext4_group_t group) 5058 { 5059 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5060 struct ext4_prealloc_space *pa; 5061 struct list_head *cur; 5062 ext4_group_t groupnr; 5063 ext4_grpblk_t start; 5064 int preallocated = 0; 5065 int len; 5066 5067 if (!grp) 5068 return; 5069 5070 /* all form of preallocation discards first load group, 5071 * so the only competing code is preallocation use. 5072 * we don't need any locking here 5073 * notice we do NOT ignore preallocations with pa_deleted 5074 * otherwise we could leave used blocks available for 5075 * allocation in buddy when concurrent ext4_mb_put_pa() 5076 * is dropping preallocation 5077 */ 5078 list_for_each(cur, &grp->bb_prealloc_list) { 5079 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5080 spin_lock(&pa->pa_lock); 5081 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5082 &groupnr, &start); 5083 len = pa->pa_len; 5084 spin_unlock(&pa->pa_lock); 5085 if (unlikely(len == 0)) 5086 continue; 5087 BUG_ON(groupnr != group); 5088 mb_set_bits(bitmap, start, len); 5089 preallocated += len; 5090 } 5091 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5092 } 5093 5094 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5095 struct ext4_prealloc_space *pa) 5096 { 5097 struct ext4_inode_info *ei; 5098 5099 if (pa->pa_deleted) { 5100 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5101 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5102 pa->pa_len); 5103 return; 5104 } 5105 5106 pa->pa_deleted = 1; 5107 5108 if (pa->pa_type == MB_INODE_PA) { 5109 ei = EXT4_I(pa->pa_inode); 5110 atomic_dec(&ei->i_prealloc_active); 5111 } 5112 } 5113 5114 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5115 { 5116 BUG_ON(!pa); 5117 BUG_ON(atomic_read(&pa->pa_count)); 5118 BUG_ON(pa->pa_deleted == 0); 5119 kmem_cache_free(ext4_pspace_cachep, pa); 5120 } 5121 5122 static void ext4_mb_pa_callback(struct rcu_head *head) 5123 { 5124 struct ext4_prealloc_space *pa; 5125 5126 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5127 ext4_mb_pa_free(pa); 5128 } 5129 5130 /* 5131 * drops a reference to preallocated space descriptor 5132 * if this was the last reference and the space is consumed 5133 */ 5134 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5135 struct super_block *sb, struct ext4_prealloc_space *pa) 5136 { 5137 ext4_group_t grp; 5138 ext4_fsblk_t grp_blk; 5139 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5140 5141 /* in this short window concurrent discard can set pa_deleted */ 5142 spin_lock(&pa->pa_lock); 5143 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5144 spin_unlock(&pa->pa_lock); 5145 return; 5146 } 5147 5148 if (pa->pa_deleted == 1) { 5149 spin_unlock(&pa->pa_lock); 5150 return; 5151 } 5152 5153 ext4_mb_mark_pa_deleted(sb, pa); 5154 spin_unlock(&pa->pa_lock); 5155 5156 grp_blk = pa->pa_pstart; 5157 /* 5158 * If doing group-based preallocation, pa_pstart may be in the 5159 * next group when pa is used up 5160 */ 5161 if (pa->pa_type == MB_GROUP_PA) 5162 grp_blk--; 5163 5164 grp = ext4_get_group_number(sb, grp_blk); 5165 5166 /* 5167 * possible race: 5168 * 5169 * P1 (buddy init) P2 (regular allocation) 5170 * find block B in PA 5171 * copy on-disk bitmap to buddy 5172 * mark B in on-disk bitmap 5173 * drop PA from group 5174 * mark all PAs in buddy 5175 * 5176 * thus, P1 initializes buddy with B available. to prevent this 5177 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5178 * against that pair 5179 */ 5180 ext4_lock_group(sb, grp); 5181 list_del(&pa->pa_group_list); 5182 ext4_unlock_group(sb, grp); 5183 5184 if (pa->pa_type == MB_INODE_PA) { 5185 write_lock(pa->pa_node_lock.inode_lock); 5186 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5187 write_unlock(pa->pa_node_lock.inode_lock); 5188 ext4_mb_pa_free(pa); 5189 } else { 5190 spin_lock(pa->pa_node_lock.lg_lock); 5191 list_del_rcu(&pa->pa_node.lg_list); 5192 spin_unlock(pa->pa_node_lock.lg_lock); 5193 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5194 } 5195 } 5196 5197 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5198 { 5199 struct rb_node **iter = &root->rb_node, *parent = NULL; 5200 struct ext4_prealloc_space *iter_pa, *new_pa; 5201 ext4_lblk_t iter_start, new_start; 5202 5203 while (*iter) { 5204 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5205 pa_node.inode_node); 5206 new_pa = rb_entry(new, struct ext4_prealloc_space, 5207 pa_node.inode_node); 5208 iter_start = iter_pa->pa_lstart; 5209 new_start = new_pa->pa_lstart; 5210 5211 parent = *iter; 5212 if (new_start < iter_start) 5213 iter = &((*iter)->rb_left); 5214 else 5215 iter = &((*iter)->rb_right); 5216 } 5217 5218 rb_link_node(new, parent, iter); 5219 rb_insert_color(new, root); 5220 } 5221 5222 /* 5223 * creates new preallocated space for given inode 5224 */ 5225 static noinline_for_stack void 5226 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5227 { 5228 struct super_block *sb = ac->ac_sb; 5229 struct ext4_sb_info *sbi = EXT4_SB(sb); 5230 struct ext4_prealloc_space *pa; 5231 struct ext4_group_info *grp; 5232 struct ext4_inode_info *ei; 5233 5234 /* preallocate only when found space is larger then requested */ 5235 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5236 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5237 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5238 BUG_ON(ac->ac_pa == NULL); 5239 5240 pa = ac->ac_pa; 5241 5242 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5243 struct ext4_free_extent ex = { 5244 .fe_logical = ac->ac_g_ex.fe_logical, 5245 .fe_len = ac->ac_orig_goal_len, 5246 }; 5247 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5248 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); 5249 5250 /* 5251 * We can't allocate as much as normalizer wants, so we try 5252 * to get proper lstart to cover the original request, except 5253 * when the goal doesn't cover the original request as below: 5254 * 5255 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 5256 * best_ex:0/200(200) -> adjusted: 1848/2048(200) 5257 */ 5258 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5259 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5260 5261 /* 5262 * Use the below logic for adjusting best extent as it keeps 5263 * fragmentation in check while ensuring logical range of best 5264 * extent doesn't overflow out of goal extent: 5265 * 5266 * 1. Check if best ex can be kept at end of goal (before 5267 * cr_best_avail trimmed it) and still cover original start 5268 * 2. Else, check if best ex can be kept at start of goal and 5269 * still cover original end 5270 * 3. Else, keep the best ex at start of original request. 5271 */ 5272 ex.fe_len = ac->ac_b_ex.fe_len; 5273 5274 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5275 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5276 goto adjust_bex; 5277 5278 ex.fe_logical = ac->ac_g_ex.fe_logical; 5279 if (o_ex_end <= extent_logical_end(sbi, &ex)) 5280 goto adjust_bex; 5281 5282 ex.fe_logical = ac->ac_o_ex.fe_logical; 5283 adjust_bex: 5284 ac->ac_b_ex.fe_logical = ex.fe_logical; 5285 5286 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5287 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5288 } 5289 5290 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5291 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5292 pa->pa_len = ac->ac_b_ex.fe_len; 5293 pa->pa_free = pa->pa_len; 5294 spin_lock_init(&pa->pa_lock); 5295 INIT_LIST_HEAD(&pa->pa_group_list); 5296 pa->pa_deleted = 0; 5297 pa->pa_type = MB_INODE_PA; 5298 5299 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5300 pa->pa_len, pa->pa_lstart); 5301 trace_ext4_mb_new_inode_pa(ac, pa); 5302 5303 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5304 ext4_mb_use_inode_pa(ac, pa); 5305 5306 ei = EXT4_I(ac->ac_inode); 5307 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5308 if (!grp) 5309 return; 5310 5311 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5312 pa->pa_inode = ac->ac_inode; 5313 5314 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5315 5316 write_lock(pa->pa_node_lock.inode_lock); 5317 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5318 write_unlock(pa->pa_node_lock.inode_lock); 5319 atomic_inc(&ei->i_prealloc_active); 5320 } 5321 5322 /* 5323 * creates new preallocated space for locality group inodes belongs to 5324 */ 5325 static noinline_for_stack void 5326 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5327 { 5328 struct super_block *sb = ac->ac_sb; 5329 struct ext4_locality_group *lg; 5330 struct ext4_prealloc_space *pa; 5331 struct ext4_group_info *grp; 5332 5333 /* preallocate only when found space is larger then requested */ 5334 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5335 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5336 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5337 BUG_ON(ac->ac_pa == NULL); 5338 5339 pa = ac->ac_pa; 5340 5341 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5342 pa->pa_lstart = pa->pa_pstart; 5343 pa->pa_len = ac->ac_b_ex.fe_len; 5344 pa->pa_free = pa->pa_len; 5345 spin_lock_init(&pa->pa_lock); 5346 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5347 INIT_LIST_HEAD(&pa->pa_group_list); 5348 pa->pa_deleted = 0; 5349 pa->pa_type = MB_GROUP_PA; 5350 5351 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5352 pa->pa_len, pa->pa_lstart); 5353 trace_ext4_mb_new_group_pa(ac, pa); 5354 5355 ext4_mb_use_group_pa(ac, pa); 5356 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5357 5358 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5359 if (!grp) 5360 return; 5361 lg = ac->ac_lg; 5362 BUG_ON(lg == NULL); 5363 5364 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5365 pa->pa_inode = NULL; 5366 5367 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5368 5369 /* 5370 * We will later add the new pa to the right bucket 5371 * after updating the pa_free in ext4_mb_release_context 5372 */ 5373 } 5374 5375 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5376 { 5377 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5378 ext4_mb_new_group_pa(ac); 5379 else 5380 ext4_mb_new_inode_pa(ac); 5381 } 5382 5383 /* 5384 * finds all unused blocks in on-disk bitmap, frees them in 5385 * in-core bitmap and buddy. 5386 * @pa must be unlinked from inode and group lists, so that 5387 * nobody else can find/use it. 5388 * the caller MUST hold group/inode locks. 5389 * TODO: optimize the case when there are no in-core structures yet 5390 */ 5391 static noinline_for_stack void 5392 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5393 struct ext4_prealloc_space *pa) 5394 { 5395 struct super_block *sb = e4b->bd_sb; 5396 struct ext4_sb_info *sbi = EXT4_SB(sb); 5397 unsigned int end; 5398 unsigned int next; 5399 ext4_group_t group; 5400 ext4_grpblk_t bit; 5401 unsigned long long grp_blk_start; 5402 int free = 0; 5403 5404 BUG_ON(pa->pa_deleted == 0); 5405 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5406 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5407 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5408 end = bit + pa->pa_len; 5409 5410 while (bit < end) { 5411 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5412 if (bit >= end) 5413 break; 5414 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5415 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5416 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5417 (unsigned) next - bit, (unsigned) group); 5418 free += next - bit; 5419 5420 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5421 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5422 EXT4_C2B(sbi, bit)), 5423 next - bit); 5424 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5425 bit = next + 1; 5426 } 5427 if (free != pa->pa_free) { 5428 ext4_msg(e4b->bd_sb, KERN_CRIT, 5429 "pa %p: logic %lu, phys. %lu, len %d", 5430 pa, (unsigned long) pa->pa_lstart, 5431 (unsigned long) pa->pa_pstart, 5432 pa->pa_len); 5433 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5434 free, pa->pa_free); 5435 /* 5436 * pa is already deleted so we use the value obtained 5437 * from the bitmap and continue. 5438 */ 5439 } 5440 atomic_add(free, &sbi->s_mb_discarded); 5441 } 5442 5443 static noinline_for_stack void 5444 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5445 struct ext4_prealloc_space *pa) 5446 { 5447 struct super_block *sb = e4b->bd_sb; 5448 ext4_group_t group; 5449 ext4_grpblk_t bit; 5450 5451 trace_ext4_mb_release_group_pa(sb, pa); 5452 BUG_ON(pa->pa_deleted == 0); 5453 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5454 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5455 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5456 e4b->bd_group, group, pa->pa_pstart); 5457 return; 5458 } 5459 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5460 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5461 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5462 } 5463 5464 /* 5465 * releases all preallocations in given group 5466 * 5467 * first, we need to decide discard policy: 5468 * - when do we discard 5469 * 1) ENOSPC 5470 * - how many do we discard 5471 * 1) how many requested 5472 */ 5473 static noinline_for_stack int 5474 ext4_mb_discard_group_preallocations(struct super_block *sb, 5475 ext4_group_t group, int *busy) 5476 { 5477 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5478 struct buffer_head *bitmap_bh = NULL; 5479 struct ext4_prealloc_space *pa, *tmp; 5480 LIST_HEAD(list); 5481 struct ext4_buddy e4b; 5482 struct ext4_inode_info *ei; 5483 int err; 5484 int free = 0; 5485 5486 if (!grp) 5487 return 0; 5488 mb_debug(sb, "discard preallocation for group %u\n", group); 5489 if (list_empty(&grp->bb_prealloc_list)) 5490 goto out_dbg; 5491 5492 bitmap_bh = ext4_read_block_bitmap(sb, group); 5493 if (IS_ERR(bitmap_bh)) { 5494 err = PTR_ERR(bitmap_bh); 5495 ext4_error_err(sb, -err, 5496 "Error %d reading block bitmap for %u", 5497 err, group); 5498 goto out_dbg; 5499 } 5500 5501 err = ext4_mb_load_buddy(sb, group, &e4b); 5502 if (err) { 5503 ext4_warning(sb, "Error %d loading buddy information for %u", 5504 err, group); 5505 put_bh(bitmap_bh); 5506 goto out_dbg; 5507 } 5508 5509 ext4_lock_group(sb, group); 5510 list_for_each_entry_safe(pa, tmp, 5511 &grp->bb_prealloc_list, pa_group_list) { 5512 spin_lock(&pa->pa_lock); 5513 if (atomic_read(&pa->pa_count)) { 5514 spin_unlock(&pa->pa_lock); 5515 *busy = 1; 5516 continue; 5517 } 5518 if (pa->pa_deleted) { 5519 spin_unlock(&pa->pa_lock); 5520 continue; 5521 } 5522 5523 /* seems this one can be freed ... */ 5524 ext4_mb_mark_pa_deleted(sb, pa); 5525 5526 if (!free) 5527 this_cpu_inc(discard_pa_seq); 5528 5529 /* we can trust pa_free ... */ 5530 free += pa->pa_free; 5531 5532 spin_unlock(&pa->pa_lock); 5533 5534 list_del(&pa->pa_group_list); 5535 list_add(&pa->u.pa_tmp_list, &list); 5536 } 5537 5538 /* now free all selected PAs */ 5539 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5540 5541 /* remove from object (inode or locality group) */ 5542 if (pa->pa_type == MB_GROUP_PA) { 5543 spin_lock(pa->pa_node_lock.lg_lock); 5544 list_del_rcu(&pa->pa_node.lg_list); 5545 spin_unlock(pa->pa_node_lock.lg_lock); 5546 } else { 5547 write_lock(pa->pa_node_lock.inode_lock); 5548 ei = EXT4_I(pa->pa_inode); 5549 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5550 write_unlock(pa->pa_node_lock.inode_lock); 5551 } 5552 5553 list_del(&pa->u.pa_tmp_list); 5554 5555 if (pa->pa_type == MB_GROUP_PA) { 5556 ext4_mb_release_group_pa(&e4b, pa); 5557 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5558 } else { 5559 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5560 ext4_mb_pa_free(pa); 5561 } 5562 } 5563 5564 ext4_unlock_group(sb, group); 5565 ext4_mb_unload_buddy(&e4b); 5566 put_bh(bitmap_bh); 5567 out_dbg: 5568 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5569 free, group, grp->bb_free); 5570 return free; 5571 } 5572 5573 /* 5574 * releases all non-used preallocated blocks for given inode 5575 * 5576 * It's important to discard preallocations under i_data_sem 5577 * We don't want another block to be served from the prealloc 5578 * space when we are discarding the inode prealloc space. 5579 * 5580 * FIXME!! Make sure it is valid at all the call sites 5581 */ 5582 void ext4_discard_preallocations(struct inode *inode) 5583 { 5584 struct ext4_inode_info *ei = EXT4_I(inode); 5585 struct super_block *sb = inode->i_sb; 5586 struct buffer_head *bitmap_bh = NULL; 5587 struct ext4_prealloc_space *pa, *tmp; 5588 ext4_group_t group = 0; 5589 LIST_HEAD(list); 5590 struct ext4_buddy e4b; 5591 struct rb_node *iter; 5592 int err; 5593 5594 if (!S_ISREG(inode->i_mode)) 5595 return; 5596 5597 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5598 return; 5599 5600 mb_debug(sb, "discard preallocation for inode %lu\n", 5601 inode->i_ino); 5602 trace_ext4_discard_preallocations(inode, 5603 atomic_read(&ei->i_prealloc_active)); 5604 5605 repeat: 5606 /* first, collect all pa's in the inode */ 5607 write_lock(&ei->i_prealloc_lock); 5608 for (iter = rb_first(&ei->i_prealloc_node); iter; 5609 iter = rb_next(iter)) { 5610 pa = rb_entry(iter, struct ext4_prealloc_space, 5611 pa_node.inode_node); 5612 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5613 5614 spin_lock(&pa->pa_lock); 5615 if (atomic_read(&pa->pa_count)) { 5616 /* this shouldn't happen often - nobody should 5617 * use preallocation while we're discarding it */ 5618 spin_unlock(&pa->pa_lock); 5619 write_unlock(&ei->i_prealloc_lock); 5620 ext4_msg(sb, KERN_ERR, 5621 "uh-oh! used pa while discarding"); 5622 WARN_ON(1); 5623 schedule_timeout_uninterruptible(HZ); 5624 goto repeat; 5625 5626 } 5627 if (pa->pa_deleted == 0) { 5628 ext4_mb_mark_pa_deleted(sb, pa); 5629 spin_unlock(&pa->pa_lock); 5630 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5631 list_add(&pa->u.pa_tmp_list, &list); 5632 continue; 5633 } 5634 5635 /* someone is deleting pa right now */ 5636 spin_unlock(&pa->pa_lock); 5637 write_unlock(&ei->i_prealloc_lock); 5638 5639 /* we have to wait here because pa_deleted 5640 * doesn't mean pa is already unlinked from 5641 * the list. as we might be called from 5642 * ->clear_inode() the inode will get freed 5643 * and concurrent thread which is unlinking 5644 * pa from inode's list may access already 5645 * freed memory, bad-bad-bad */ 5646 5647 /* XXX: if this happens too often, we can 5648 * add a flag to force wait only in case 5649 * of ->clear_inode(), but not in case of 5650 * regular truncate */ 5651 schedule_timeout_uninterruptible(HZ); 5652 goto repeat; 5653 } 5654 write_unlock(&ei->i_prealloc_lock); 5655 5656 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5657 BUG_ON(pa->pa_type != MB_INODE_PA); 5658 group = ext4_get_group_number(sb, pa->pa_pstart); 5659 5660 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5661 GFP_NOFS|__GFP_NOFAIL); 5662 if (err) { 5663 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5664 err, group); 5665 continue; 5666 } 5667 5668 bitmap_bh = ext4_read_block_bitmap(sb, group); 5669 if (IS_ERR(bitmap_bh)) { 5670 err = PTR_ERR(bitmap_bh); 5671 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5672 err, group); 5673 ext4_mb_unload_buddy(&e4b); 5674 continue; 5675 } 5676 5677 ext4_lock_group(sb, group); 5678 list_del(&pa->pa_group_list); 5679 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5680 ext4_unlock_group(sb, group); 5681 5682 ext4_mb_unload_buddy(&e4b); 5683 put_bh(bitmap_bh); 5684 5685 list_del(&pa->u.pa_tmp_list); 5686 ext4_mb_pa_free(pa); 5687 } 5688 } 5689 5690 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5691 { 5692 struct ext4_prealloc_space *pa; 5693 5694 BUG_ON(ext4_pspace_cachep == NULL); 5695 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5696 if (!pa) 5697 return -ENOMEM; 5698 atomic_set(&pa->pa_count, 1); 5699 ac->ac_pa = pa; 5700 return 0; 5701 } 5702 5703 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5704 { 5705 struct ext4_prealloc_space *pa = ac->ac_pa; 5706 5707 BUG_ON(!pa); 5708 ac->ac_pa = NULL; 5709 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5710 /* 5711 * current function is only called due to an error or due to 5712 * len of found blocks < len of requested blocks hence the PA has not 5713 * been added to grp->bb_prealloc_list. So we don't need to lock it 5714 */ 5715 pa->pa_deleted = 1; 5716 ext4_mb_pa_free(pa); 5717 } 5718 5719 #ifdef CONFIG_EXT4_DEBUG 5720 static inline void ext4_mb_show_pa(struct super_block *sb) 5721 { 5722 ext4_group_t i, ngroups; 5723 5724 if (ext4_emergency_state(sb)) 5725 return; 5726 5727 ngroups = ext4_get_groups_count(sb); 5728 mb_debug(sb, "groups: "); 5729 for (i = 0; i < ngroups; i++) { 5730 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5731 struct ext4_prealloc_space *pa; 5732 ext4_grpblk_t start; 5733 struct list_head *cur; 5734 5735 if (!grp) 5736 continue; 5737 ext4_lock_group(sb, i); 5738 list_for_each(cur, &grp->bb_prealloc_list) { 5739 pa = list_entry(cur, struct ext4_prealloc_space, 5740 pa_group_list); 5741 spin_lock(&pa->pa_lock); 5742 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5743 NULL, &start); 5744 spin_unlock(&pa->pa_lock); 5745 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5746 pa->pa_len); 5747 } 5748 ext4_unlock_group(sb, i); 5749 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5750 grp->bb_fragments); 5751 } 5752 } 5753 5754 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5755 { 5756 struct super_block *sb = ac->ac_sb; 5757 5758 if (ext4_emergency_state(sb)) 5759 return; 5760 5761 mb_debug(sb, "Can't allocate:" 5762 " Allocation context details:"); 5763 mb_debug(sb, "status %u flags 0x%x", 5764 ac->ac_status, ac->ac_flags); 5765 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5766 "goal %lu/%lu/%lu@%lu, " 5767 "best %lu/%lu/%lu@%lu cr %d", 5768 (unsigned long)ac->ac_o_ex.fe_group, 5769 (unsigned long)ac->ac_o_ex.fe_start, 5770 (unsigned long)ac->ac_o_ex.fe_len, 5771 (unsigned long)ac->ac_o_ex.fe_logical, 5772 (unsigned long)ac->ac_g_ex.fe_group, 5773 (unsigned long)ac->ac_g_ex.fe_start, 5774 (unsigned long)ac->ac_g_ex.fe_len, 5775 (unsigned long)ac->ac_g_ex.fe_logical, 5776 (unsigned long)ac->ac_b_ex.fe_group, 5777 (unsigned long)ac->ac_b_ex.fe_start, 5778 (unsigned long)ac->ac_b_ex.fe_len, 5779 (unsigned long)ac->ac_b_ex.fe_logical, 5780 (int)ac->ac_criteria); 5781 mb_debug(sb, "%u found", ac->ac_found); 5782 mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa)); 5783 if (ac->ac_pa) 5784 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5785 "group pa" : "inode pa"); 5786 ext4_mb_show_pa(sb); 5787 } 5788 #else 5789 static inline void ext4_mb_show_pa(struct super_block *sb) 5790 { 5791 } 5792 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5793 { 5794 ext4_mb_show_pa(ac->ac_sb); 5795 } 5796 #endif 5797 5798 /* 5799 * We use locality group preallocation for small size file. The size of the 5800 * file is determined by the current size or the resulting size after 5801 * allocation which ever is larger 5802 * 5803 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5804 */ 5805 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5806 { 5807 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5808 int bsbits = ac->ac_sb->s_blocksize_bits; 5809 loff_t size, isize; 5810 bool inode_pa_eligible, group_pa_eligible; 5811 5812 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5813 return; 5814 5815 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5816 return; 5817 5818 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5819 inode_pa_eligible = true; 5820 size = extent_logical_end(sbi, &ac->ac_o_ex); 5821 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5822 >> bsbits; 5823 5824 /* No point in using inode preallocation for closed files */ 5825 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5826 !inode_is_open_for_write(ac->ac_inode)) 5827 inode_pa_eligible = false; 5828 5829 size = max(size, isize); 5830 /* Don't use group allocation for large files */ 5831 if (size > sbi->s_mb_stream_request) 5832 group_pa_eligible = false; 5833 5834 if (!group_pa_eligible) { 5835 if (inode_pa_eligible) 5836 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5837 else 5838 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5839 return; 5840 } 5841 5842 BUG_ON(ac->ac_lg != NULL); 5843 /* 5844 * locality group prealloc space are per cpu. The reason for having 5845 * per cpu locality group is to reduce the contention between block 5846 * request from multiple CPUs. 5847 */ 5848 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5849 5850 /* we're going to use group allocation */ 5851 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5852 5853 /* serialize all allocations in the group */ 5854 mutex_lock(&ac->ac_lg->lg_mutex); 5855 } 5856 5857 static noinline_for_stack void 5858 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5859 struct ext4_allocation_request *ar) 5860 { 5861 struct super_block *sb = ar->inode->i_sb; 5862 struct ext4_sb_info *sbi = EXT4_SB(sb); 5863 struct ext4_super_block *es = sbi->s_es; 5864 ext4_group_t group; 5865 unsigned int len; 5866 ext4_fsblk_t goal; 5867 ext4_grpblk_t block; 5868 5869 /* we can't allocate > group size */ 5870 len = ar->len; 5871 5872 /* just a dirty hack to filter too big requests */ 5873 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5874 len = EXT4_CLUSTERS_PER_GROUP(sb); 5875 5876 /* start searching from the goal */ 5877 goal = ar->goal; 5878 if (goal < le32_to_cpu(es->s_first_data_block) || 5879 goal >= ext4_blocks_count(es)) 5880 goal = le32_to_cpu(es->s_first_data_block); 5881 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5882 5883 /* set up allocation goals */ 5884 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5885 ac->ac_status = AC_STATUS_CONTINUE; 5886 ac->ac_sb = sb; 5887 ac->ac_inode = ar->inode; 5888 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5889 ac->ac_o_ex.fe_group = group; 5890 ac->ac_o_ex.fe_start = block; 5891 ac->ac_o_ex.fe_len = len; 5892 ac->ac_g_ex = ac->ac_o_ex; 5893 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5894 ac->ac_flags = ar->flags; 5895 5896 /* we have to define context: we'll work with a file or 5897 * locality group. this is a policy, actually */ 5898 ext4_mb_group_or_file(ac); 5899 5900 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5901 "left: %u/%u, right %u/%u to %swritable\n", 5902 (unsigned) ar->len, (unsigned) ar->logical, 5903 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5904 (unsigned) ar->lleft, (unsigned) ar->pleft, 5905 (unsigned) ar->lright, (unsigned) ar->pright, 5906 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5907 } 5908 5909 static noinline_for_stack void 5910 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5911 struct ext4_locality_group *lg, 5912 int order, int total_entries) 5913 { 5914 ext4_group_t group = 0; 5915 struct ext4_buddy e4b; 5916 LIST_HEAD(discard_list); 5917 struct ext4_prealloc_space *pa, *tmp; 5918 5919 mb_debug(sb, "discard locality group preallocation\n"); 5920 5921 spin_lock(&lg->lg_prealloc_lock); 5922 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5923 pa_node.lg_list, 5924 lockdep_is_held(&lg->lg_prealloc_lock)) { 5925 spin_lock(&pa->pa_lock); 5926 if (atomic_read(&pa->pa_count)) { 5927 /* 5928 * This is the pa that we just used 5929 * for block allocation. So don't 5930 * free that 5931 */ 5932 spin_unlock(&pa->pa_lock); 5933 continue; 5934 } 5935 if (pa->pa_deleted) { 5936 spin_unlock(&pa->pa_lock); 5937 continue; 5938 } 5939 /* only lg prealloc space */ 5940 BUG_ON(pa->pa_type != MB_GROUP_PA); 5941 5942 /* seems this one can be freed ... */ 5943 ext4_mb_mark_pa_deleted(sb, pa); 5944 spin_unlock(&pa->pa_lock); 5945 5946 list_del_rcu(&pa->pa_node.lg_list); 5947 list_add(&pa->u.pa_tmp_list, &discard_list); 5948 5949 total_entries--; 5950 if (total_entries <= 5) { 5951 /* 5952 * we want to keep only 5 entries 5953 * allowing it to grow to 8. This 5954 * mak sure we don't call discard 5955 * soon for this list. 5956 */ 5957 break; 5958 } 5959 } 5960 spin_unlock(&lg->lg_prealloc_lock); 5961 5962 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5963 int err; 5964 5965 group = ext4_get_group_number(sb, pa->pa_pstart); 5966 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5967 GFP_NOFS|__GFP_NOFAIL); 5968 if (err) { 5969 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5970 err, group); 5971 continue; 5972 } 5973 ext4_lock_group(sb, group); 5974 list_del(&pa->pa_group_list); 5975 ext4_mb_release_group_pa(&e4b, pa); 5976 ext4_unlock_group(sb, group); 5977 5978 ext4_mb_unload_buddy(&e4b); 5979 list_del(&pa->u.pa_tmp_list); 5980 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5981 } 5982 } 5983 5984 /* 5985 * We have incremented pa_count. So it cannot be freed at this 5986 * point. Also we hold lg_mutex. So no parallel allocation is 5987 * possible from this lg. That means pa_free cannot be updated. 5988 * 5989 * A parallel ext4_mb_discard_group_preallocations is possible. 5990 * which can cause the lg_prealloc_list to be updated. 5991 */ 5992 5993 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5994 { 5995 int order, added = 0, lg_prealloc_count = 1; 5996 struct super_block *sb = ac->ac_sb; 5997 struct ext4_locality_group *lg = ac->ac_lg; 5998 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5999 6000 order = fls(pa->pa_free) - 1; 6001 if (order > PREALLOC_TB_SIZE - 1) 6002 /* The max size of hash table is PREALLOC_TB_SIZE */ 6003 order = PREALLOC_TB_SIZE - 1; 6004 /* Add the prealloc space to lg */ 6005 spin_lock(&lg->lg_prealloc_lock); 6006 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 6007 pa_node.lg_list, 6008 lockdep_is_held(&lg->lg_prealloc_lock)) { 6009 spin_lock(&tmp_pa->pa_lock); 6010 if (tmp_pa->pa_deleted) { 6011 spin_unlock(&tmp_pa->pa_lock); 6012 continue; 6013 } 6014 if (!added && pa->pa_free < tmp_pa->pa_free) { 6015 /* Add to the tail of the previous entry */ 6016 list_add_tail_rcu(&pa->pa_node.lg_list, 6017 &tmp_pa->pa_node.lg_list); 6018 added = 1; 6019 /* 6020 * we want to count the total 6021 * number of entries in the list 6022 */ 6023 } 6024 spin_unlock(&tmp_pa->pa_lock); 6025 lg_prealloc_count++; 6026 } 6027 if (!added) 6028 list_add_tail_rcu(&pa->pa_node.lg_list, 6029 &lg->lg_prealloc_list[order]); 6030 spin_unlock(&lg->lg_prealloc_lock); 6031 6032 /* Now trim the list to be not more than 8 elements */ 6033 if (lg_prealloc_count > 8) 6034 ext4_mb_discard_lg_preallocations(sb, lg, 6035 order, lg_prealloc_count); 6036 } 6037 6038 /* 6039 * release all resource we used in allocation 6040 */ 6041 static void ext4_mb_release_context(struct ext4_allocation_context *ac) 6042 { 6043 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 6044 struct ext4_prealloc_space *pa = ac->ac_pa; 6045 if (pa) { 6046 if (pa->pa_type == MB_GROUP_PA) { 6047 /* see comment in ext4_mb_use_group_pa() */ 6048 spin_lock(&pa->pa_lock); 6049 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6050 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6051 pa->pa_free -= ac->ac_b_ex.fe_len; 6052 pa->pa_len -= ac->ac_b_ex.fe_len; 6053 spin_unlock(&pa->pa_lock); 6054 6055 /* 6056 * We want to add the pa to the right bucket. 6057 * Remove it from the list and while adding 6058 * make sure the list to which we are adding 6059 * doesn't grow big. 6060 */ 6061 if (likely(pa->pa_free)) { 6062 spin_lock(pa->pa_node_lock.lg_lock); 6063 list_del_rcu(&pa->pa_node.lg_list); 6064 spin_unlock(pa->pa_node_lock.lg_lock); 6065 ext4_mb_add_n_trim(ac); 6066 } 6067 } 6068 6069 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6070 } 6071 if (ac->ac_bitmap_folio) 6072 folio_put(ac->ac_bitmap_folio); 6073 if (ac->ac_buddy_folio) 6074 folio_put(ac->ac_buddy_folio); 6075 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6076 mutex_unlock(&ac->ac_lg->lg_mutex); 6077 ext4_mb_collect_stats(ac); 6078 } 6079 6080 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6081 { 6082 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6083 int ret; 6084 int freed = 0, busy = 0; 6085 int retry = 0; 6086 6087 trace_ext4_mb_discard_preallocations(sb, needed); 6088 6089 if (needed == 0) 6090 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6091 repeat: 6092 for (i = 0; i < ngroups && needed > 0; i++) { 6093 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6094 freed += ret; 6095 needed -= ret; 6096 cond_resched(); 6097 } 6098 6099 if (needed > 0 && busy && ++retry < 3) { 6100 busy = 0; 6101 goto repeat; 6102 } 6103 6104 return freed; 6105 } 6106 6107 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6108 struct ext4_allocation_context *ac, u64 *seq) 6109 { 6110 int freed; 6111 u64 seq_retry = 0; 6112 bool ret = false; 6113 6114 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6115 if (freed) { 6116 ret = true; 6117 goto out_dbg; 6118 } 6119 seq_retry = ext4_get_discard_pa_seq_sum(); 6120 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6121 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6122 *seq = seq_retry; 6123 ret = true; 6124 } 6125 6126 out_dbg: 6127 mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret)); 6128 return ret; 6129 } 6130 6131 /* 6132 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6133 * linearly starting at the goal block and also excludes the blocks which 6134 * are going to be in use after fast commit replay. 6135 */ 6136 static ext4_fsblk_t 6137 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6138 { 6139 struct buffer_head *bitmap_bh; 6140 struct super_block *sb = ar->inode->i_sb; 6141 struct ext4_sb_info *sbi = EXT4_SB(sb); 6142 ext4_group_t group, nr; 6143 ext4_grpblk_t blkoff; 6144 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6145 ext4_grpblk_t i = 0; 6146 ext4_fsblk_t goal, block; 6147 struct ext4_super_block *es = sbi->s_es; 6148 6149 goal = ar->goal; 6150 if (goal < le32_to_cpu(es->s_first_data_block) || 6151 goal >= ext4_blocks_count(es)) 6152 goal = le32_to_cpu(es->s_first_data_block); 6153 6154 ar->len = 0; 6155 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6156 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6157 bitmap_bh = ext4_read_block_bitmap(sb, group); 6158 if (IS_ERR(bitmap_bh)) { 6159 *errp = PTR_ERR(bitmap_bh); 6160 pr_warn("Failed to read block bitmap\n"); 6161 return 0; 6162 } 6163 6164 while (1) { 6165 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6166 blkoff); 6167 if (i >= max) 6168 break; 6169 if (ext4_fc_replay_check_excluded(sb, 6170 ext4_group_first_block_no(sb, group) + 6171 EXT4_C2B(sbi, i))) { 6172 blkoff = i + 1; 6173 } else 6174 break; 6175 } 6176 brelse(bitmap_bh); 6177 if (i < max) 6178 break; 6179 6180 if (++group >= ext4_get_groups_count(sb)) 6181 group = 0; 6182 6183 blkoff = 0; 6184 } 6185 6186 if (i >= max) { 6187 *errp = -ENOSPC; 6188 return 0; 6189 } 6190 6191 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6192 ext4_mb_mark_bb(sb, block, 1, true); 6193 ar->len = 1; 6194 6195 *errp = 0; 6196 return block; 6197 } 6198 6199 /* 6200 * Main entry point into mballoc to allocate blocks 6201 * it tries to use preallocation first, then falls back 6202 * to usual allocation 6203 */ 6204 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6205 struct ext4_allocation_request *ar, int *errp) 6206 { 6207 struct ext4_allocation_context *ac = NULL; 6208 struct ext4_sb_info *sbi; 6209 struct super_block *sb; 6210 ext4_fsblk_t block = 0; 6211 unsigned int inquota = 0; 6212 unsigned int reserv_clstrs = 0; 6213 int retries = 0; 6214 u64 seq; 6215 6216 might_sleep(); 6217 sb = ar->inode->i_sb; 6218 sbi = EXT4_SB(sb); 6219 6220 trace_ext4_request_blocks(ar); 6221 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6222 return ext4_mb_new_blocks_simple(ar, errp); 6223 6224 /* Allow to use superuser reservation for quota file */ 6225 if (ext4_is_quota_file(ar->inode)) 6226 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6227 6228 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6229 /* Without delayed allocation we need to verify 6230 * there is enough free blocks to do block allocation 6231 * and verify allocation doesn't exceed the quota limits. 6232 */ 6233 while (ar->len && 6234 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6235 6236 /* let others to free the space */ 6237 cond_resched(); 6238 ar->len = ar->len >> 1; 6239 } 6240 if (!ar->len) { 6241 ext4_mb_show_pa(sb); 6242 *errp = -ENOSPC; 6243 return 0; 6244 } 6245 reserv_clstrs = ar->len; 6246 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6247 dquot_alloc_block_nofail(ar->inode, 6248 EXT4_C2B(sbi, ar->len)); 6249 } else { 6250 while (ar->len && 6251 dquot_alloc_block(ar->inode, 6252 EXT4_C2B(sbi, ar->len))) { 6253 6254 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6255 ar->len--; 6256 } 6257 } 6258 inquota = ar->len; 6259 if (ar->len == 0) { 6260 *errp = -EDQUOT; 6261 goto out; 6262 } 6263 } 6264 6265 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6266 if (!ac) { 6267 ar->len = 0; 6268 *errp = -ENOMEM; 6269 goto out; 6270 } 6271 6272 ext4_mb_initialize_context(ac, ar); 6273 6274 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6275 seq = this_cpu_read(discard_pa_seq); 6276 if (!ext4_mb_use_preallocated(ac)) { 6277 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6278 ext4_mb_normalize_request(ac, ar); 6279 6280 *errp = ext4_mb_pa_alloc(ac); 6281 if (*errp) 6282 goto errout; 6283 repeat: 6284 /* allocate space in core */ 6285 *errp = ext4_mb_regular_allocator(ac); 6286 /* 6287 * pa allocated above is added to grp->bb_prealloc_list only 6288 * when we were able to allocate some block i.e. when 6289 * ac->ac_status == AC_STATUS_FOUND. 6290 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6291 * So we have to free this pa here itself. 6292 */ 6293 if (*errp) { 6294 ext4_mb_pa_put_free(ac); 6295 ext4_discard_allocated_blocks(ac); 6296 goto errout; 6297 } 6298 if (ac->ac_status == AC_STATUS_FOUND && 6299 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6300 ext4_mb_pa_put_free(ac); 6301 } 6302 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6303 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6304 if (*errp) { 6305 ext4_discard_allocated_blocks(ac); 6306 goto errout; 6307 } else { 6308 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6309 ar->len = ac->ac_b_ex.fe_len; 6310 } 6311 } else { 6312 if (++retries < 3 && 6313 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6314 goto repeat; 6315 /* 6316 * If block allocation fails then the pa allocated above 6317 * needs to be freed here itself. 6318 */ 6319 ext4_mb_pa_put_free(ac); 6320 *errp = -ENOSPC; 6321 } 6322 6323 if (*errp) { 6324 errout: 6325 ac->ac_b_ex.fe_len = 0; 6326 ar->len = 0; 6327 ext4_mb_show_ac(ac); 6328 } 6329 ext4_mb_release_context(ac); 6330 kmem_cache_free(ext4_ac_cachep, ac); 6331 out: 6332 if (inquota && ar->len < inquota) 6333 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6334 if (!ar->len) { 6335 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6336 /* release all the reserved blocks if non delalloc */ 6337 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6338 reserv_clstrs); 6339 } 6340 6341 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6342 6343 return block; 6344 } 6345 6346 /* 6347 * We can merge two free data extents only if the physical blocks 6348 * are contiguous, AND the extents were freed by the same transaction, 6349 * AND the blocks are associated with the same group. 6350 */ 6351 static inline bool 6352 ext4_freed_extents_can_be_merged(struct ext4_free_data *entry1, 6353 struct ext4_free_data *entry2) 6354 { 6355 if (entry1->efd_tid != entry2->efd_tid) 6356 return false; 6357 if (entry1->efd_start_cluster + entry1->efd_count != 6358 entry2->efd_start_cluster) 6359 return false; 6360 if (WARN_ON_ONCE(entry1->efd_group != entry2->efd_group)) 6361 return false; 6362 return true; 6363 } 6364 6365 static inline void 6366 ext4_merge_freed_extents(struct ext4_sb_info *sbi, struct rb_root *root, 6367 struct ext4_free_data *entry1, 6368 struct ext4_free_data *entry2) 6369 { 6370 entry1->efd_count += entry2->efd_count; 6371 spin_lock(&sbi->s_md_lock); 6372 list_del(&entry2->efd_list); 6373 spin_unlock(&sbi->s_md_lock); 6374 rb_erase(&entry2->efd_node, root); 6375 kmem_cache_free(ext4_free_data_cachep, entry2); 6376 } 6377 6378 static inline void 6379 ext4_try_merge_freed_extent_prev(struct ext4_sb_info *sbi, struct rb_root *root, 6380 struct ext4_free_data *entry) 6381 { 6382 struct ext4_free_data *prev; 6383 struct rb_node *node; 6384 6385 node = rb_prev(&entry->efd_node); 6386 if (!node) 6387 return; 6388 6389 prev = rb_entry(node, struct ext4_free_data, efd_node); 6390 if (ext4_freed_extents_can_be_merged(prev, entry)) 6391 ext4_merge_freed_extents(sbi, root, prev, entry); 6392 } 6393 6394 static inline void 6395 ext4_try_merge_freed_extent_next(struct ext4_sb_info *sbi, struct rb_root *root, 6396 struct ext4_free_data *entry) 6397 { 6398 struct ext4_free_data *next; 6399 struct rb_node *node; 6400 6401 node = rb_next(&entry->efd_node); 6402 if (!node) 6403 return; 6404 6405 next = rb_entry(node, struct ext4_free_data, efd_node); 6406 if (ext4_freed_extents_can_be_merged(entry, next)) 6407 ext4_merge_freed_extents(sbi, root, entry, next); 6408 } 6409 6410 static noinline_for_stack void 6411 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6412 struct ext4_free_data *new_entry) 6413 { 6414 ext4_group_t group = e4b->bd_group; 6415 ext4_grpblk_t cluster; 6416 ext4_grpblk_t clusters = new_entry->efd_count; 6417 struct ext4_free_data *entry = NULL; 6418 struct ext4_group_info *db = e4b->bd_info; 6419 struct super_block *sb = e4b->bd_sb; 6420 struct ext4_sb_info *sbi = EXT4_SB(sb); 6421 struct rb_root *root = &db->bb_free_root; 6422 struct rb_node **n = &root->rb_node; 6423 struct rb_node *parent = NULL, *new_node; 6424 6425 BUG_ON(!ext4_handle_valid(handle)); 6426 BUG_ON(e4b->bd_bitmap_folio == NULL); 6427 BUG_ON(e4b->bd_buddy_folio == NULL); 6428 6429 new_node = &new_entry->efd_node; 6430 cluster = new_entry->efd_start_cluster; 6431 6432 if (!*n) { 6433 /* first free block exent. We need to 6434 protect buddy cache from being freed, 6435 * otherwise we'll refresh it from 6436 * on-disk bitmap and lose not-yet-available 6437 * blocks */ 6438 folio_get(e4b->bd_buddy_folio); 6439 folio_get(e4b->bd_bitmap_folio); 6440 } 6441 while (*n) { 6442 parent = *n; 6443 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6444 if (cluster < entry->efd_start_cluster) 6445 n = &(*n)->rb_left; 6446 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6447 n = &(*n)->rb_right; 6448 else { 6449 ext4_grp_locked_error(sb, group, 0, 6450 ext4_group_first_block_no(sb, group) + 6451 EXT4_C2B(sbi, cluster), 6452 "Block already on to-be-freed list"); 6453 kmem_cache_free(ext4_free_data_cachep, new_entry); 6454 return; 6455 } 6456 } 6457 6458 atomic_add(clusters, &sbi->s_mb_free_pending); 6459 if (!entry) 6460 goto insert; 6461 6462 /* Now try to see the extent can be merged to prev and next */ 6463 if (ext4_freed_extents_can_be_merged(new_entry, entry)) { 6464 entry->efd_start_cluster = cluster; 6465 entry->efd_count += new_entry->efd_count; 6466 kmem_cache_free(ext4_free_data_cachep, new_entry); 6467 ext4_try_merge_freed_extent_prev(sbi, root, entry); 6468 return; 6469 } 6470 if (ext4_freed_extents_can_be_merged(entry, new_entry)) { 6471 entry->efd_count += new_entry->efd_count; 6472 kmem_cache_free(ext4_free_data_cachep, new_entry); 6473 ext4_try_merge_freed_extent_next(sbi, root, entry); 6474 return; 6475 } 6476 insert: 6477 rb_link_node(new_node, parent, n); 6478 rb_insert_color(new_node, root); 6479 6480 spin_lock(&sbi->s_md_lock); 6481 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]); 6482 spin_unlock(&sbi->s_md_lock); 6483 } 6484 6485 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6486 unsigned long count) 6487 { 6488 struct super_block *sb = inode->i_sb; 6489 ext4_group_t group; 6490 ext4_grpblk_t blkoff; 6491 6492 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6493 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count, 6494 EXT4_MB_BITMAP_MARKED_CHECK | 6495 EXT4_MB_SYNC_UPDATE, 6496 NULL); 6497 } 6498 6499 /** 6500 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6501 * Used by ext4_free_blocks() 6502 * @handle: handle for this transaction 6503 * @inode: inode 6504 * @block: starting physical block to be freed 6505 * @count: number of blocks to be freed 6506 * @flags: flags used by ext4_free_blocks 6507 */ 6508 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6509 ext4_fsblk_t block, unsigned long count, 6510 int flags) 6511 { 6512 struct super_block *sb = inode->i_sb; 6513 struct ext4_group_info *grp; 6514 unsigned int overflow; 6515 ext4_grpblk_t bit; 6516 ext4_group_t block_group; 6517 struct ext4_sb_info *sbi; 6518 struct ext4_buddy e4b; 6519 unsigned int count_clusters; 6520 int err = 0; 6521 int mark_flags = 0; 6522 ext4_grpblk_t changed; 6523 6524 sbi = EXT4_SB(sb); 6525 6526 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6527 !ext4_inode_block_valid(inode, block, count)) { 6528 ext4_error(sb, "Freeing blocks in system zone - " 6529 "Block = %llu, count = %lu", block, count); 6530 /* err = 0. ext4_std_error should be a no op */ 6531 goto error_out; 6532 } 6533 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6534 6535 do_more: 6536 overflow = 0; 6537 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6538 6539 grp = ext4_get_group_info(sb, block_group); 6540 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6541 return; 6542 6543 /* 6544 * Check to see if we are freeing blocks across a group 6545 * boundary. 6546 */ 6547 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6548 overflow = EXT4_C2B(sbi, bit) + count - 6549 EXT4_BLOCKS_PER_GROUP(sb); 6550 count -= overflow; 6551 /* The range changed so it's no longer validated */ 6552 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6553 } 6554 count_clusters = EXT4_NUM_B2C(sbi, count); 6555 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6556 6557 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6558 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6559 GFP_NOFS|__GFP_NOFAIL); 6560 if (err) 6561 goto error_out; 6562 6563 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6564 !ext4_inode_block_valid(inode, block, count)) { 6565 ext4_error(sb, "Freeing blocks in system zone - " 6566 "Block = %llu, count = %lu", block, count); 6567 /* err = 0. ext4_std_error should be a no op */ 6568 goto error_clean; 6569 } 6570 6571 #ifdef AGGRESSIVE_CHECK 6572 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; 6573 #endif 6574 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6575 count_clusters, mark_flags, &changed); 6576 6577 6578 if (err && changed == 0) 6579 goto error_clean; 6580 6581 #ifdef AGGRESSIVE_CHECK 6582 BUG_ON(changed != count_clusters); 6583 #endif 6584 6585 /* 6586 * We need to make sure we don't reuse the freed block until after the 6587 * transaction is committed. We make an exception if the inode is to be 6588 * written in writeback mode since writeback mode has weak data 6589 * consistency guarantees. 6590 */ 6591 if (ext4_handle_valid(handle) && 6592 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6593 !ext4_should_writeback_data(inode))) { 6594 struct ext4_free_data *new_entry; 6595 /* 6596 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6597 * to fail. 6598 */ 6599 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6600 GFP_NOFS|__GFP_NOFAIL); 6601 new_entry->efd_start_cluster = bit; 6602 new_entry->efd_group = block_group; 6603 new_entry->efd_count = count_clusters; 6604 new_entry->efd_tid = handle->h_transaction->t_tid; 6605 6606 ext4_lock_group(sb, block_group); 6607 ext4_mb_free_metadata(handle, &e4b, new_entry); 6608 } else { 6609 if (test_opt(sb, DISCARD)) { 6610 err = ext4_issue_discard(sb, block_group, bit, 6611 count_clusters); 6612 /* 6613 * Ignore EOPNOTSUPP error. This is consistent with 6614 * what happens when using journal. 6615 */ 6616 if (err == -EOPNOTSUPP) 6617 err = 0; 6618 if (err) 6619 ext4_msg(sb, KERN_WARNING, "discard request in" 6620 " group:%u block:%d count:%lu failed" 6621 " with %d", block_group, bit, count, 6622 err); 6623 } 6624 6625 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6626 6627 ext4_lock_group(sb, block_group); 6628 mb_free_blocks(inode, &e4b, bit, count_clusters); 6629 } 6630 6631 ext4_unlock_group(sb, block_group); 6632 6633 /* 6634 * on a bigalloc file system, defer the s_freeclusters_counter 6635 * update to the caller (ext4_remove_space and friends) so they 6636 * can determine if a cluster freed here should be rereserved 6637 */ 6638 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6639 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6640 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6641 percpu_counter_add(&sbi->s_freeclusters_counter, 6642 count_clusters); 6643 } 6644 6645 if (overflow && !err) { 6646 block += count; 6647 count = overflow; 6648 ext4_mb_unload_buddy(&e4b); 6649 /* The range changed so it's no longer validated */ 6650 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6651 goto do_more; 6652 } 6653 6654 error_clean: 6655 ext4_mb_unload_buddy(&e4b); 6656 error_out: 6657 ext4_std_error(sb, err); 6658 } 6659 6660 /** 6661 * ext4_free_blocks() -- Free given blocks and update quota 6662 * @handle: handle for this transaction 6663 * @inode: inode 6664 * @bh: optional buffer of the block to be freed 6665 * @block: starting physical block to be freed 6666 * @count: number of blocks to be freed 6667 * @flags: flags used by ext4_free_blocks 6668 */ 6669 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6670 struct buffer_head *bh, ext4_fsblk_t block, 6671 unsigned long count, int flags) 6672 { 6673 struct super_block *sb = inode->i_sb; 6674 unsigned int overflow; 6675 struct ext4_sb_info *sbi; 6676 6677 sbi = EXT4_SB(sb); 6678 6679 if (bh) { 6680 if (block) 6681 BUG_ON(block != bh->b_blocknr); 6682 else 6683 block = bh->b_blocknr; 6684 } 6685 6686 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6687 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6688 return; 6689 } 6690 6691 might_sleep(); 6692 6693 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6694 !ext4_inode_block_valid(inode, block, count)) { 6695 ext4_error(sb, "Freeing blocks not in datazone - " 6696 "block = %llu, count = %lu", block, count); 6697 return; 6698 } 6699 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6700 6701 ext4_debug("freeing block %llu\n", block); 6702 trace_ext4_free_blocks(inode, block, count, flags); 6703 6704 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6705 BUG_ON(count > 1); 6706 6707 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6708 inode, bh, block); 6709 } 6710 6711 /* 6712 * If the extent to be freed does not begin on a cluster 6713 * boundary, we need to deal with partial clusters at the 6714 * beginning and end of the extent. Normally we will free 6715 * blocks at the beginning or the end unless we are explicitly 6716 * requested to avoid doing so. 6717 */ 6718 overflow = EXT4_PBLK_COFF(sbi, block); 6719 if (overflow) { 6720 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6721 overflow = sbi->s_cluster_ratio - overflow; 6722 block += overflow; 6723 if (count > overflow) 6724 count -= overflow; 6725 else 6726 return; 6727 } else { 6728 block -= overflow; 6729 count += overflow; 6730 } 6731 /* The range changed so it's no longer validated */ 6732 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6733 } 6734 overflow = EXT4_LBLK_COFF(sbi, count); 6735 if (overflow) { 6736 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6737 if (count > overflow) 6738 count -= overflow; 6739 else 6740 return; 6741 } else 6742 count += sbi->s_cluster_ratio - overflow; 6743 /* The range changed so it's no longer validated */ 6744 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6745 } 6746 6747 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6748 int i; 6749 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6750 6751 for (i = 0; i < count; i++) { 6752 cond_resched(); 6753 if (is_metadata) 6754 bh = sb_find_get_block_nonatomic(inode->i_sb, 6755 block + i); 6756 ext4_forget(handle, is_metadata, inode, bh, block + i); 6757 } 6758 } 6759 6760 ext4_mb_clear_bb(handle, inode, block, count, flags); 6761 } 6762 6763 /** 6764 * ext4_group_add_blocks() -- Add given blocks to an existing group 6765 * @handle: handle to this transaction 6766 * @sb: super block 6767 * @block: start physical block to add to the block group 6768 * @count: number of blocks to free 6769 * 6770 * This marks the blocks as free in the bitmap and buddy. 6771 */ 6772 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6773 ext4_fsblk_t block, unsigned long count) 6774 { 6775 ext4_group_t block_group; 6776 ext4_grpblk_t bit; 6777 struct ext4_sb_info *sbi = EXT4_SB(sb); 6778 struct ext4_buddy e4b; 6779 int err = 0; 6780 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6781 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6782 unsigned long cluster_count = last_cluster - first_cluster + 1; 6783 ext4_grpblk_t changed; 6784 6785 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6786 6787 if (cluster_count == 0) 6788 return 0; 6789 6790 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6791 /* 6792 * Check to see if we are freeing blocks across a group 6793 * boundary. 6794 */ 6795 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6796 ext4_warning(sb, "too many blocks added to group %u", 6797 block_group); 6798 err = -EINVAL; 6799 goto error_out; 6800 } 6801 6802 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6803 if (err) 6804 goto error_out; 6805 6806 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6807 ext4_error(sb, "Adding blocks in system zones - " 6808 "Block = %llu, count = %lu", 6809 block, count); 6810 err = -EINVAL; 6811 goto error_clean; 6812 } 6813 6814 err = ext4_mb_mark_context(handle, sb, false, block_group, bit, 6815 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, 6816 &changed); 6817 if (err && changed == 0) 6818 goto error_clean; 6819 6820 if (changed != cluster_count) 6821 ext4_error(sb, "bit already cleared in group %u", block_group); 6822 6823 ext4_lock_group(sb, block_group); 6824 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6825 ext4_unlock_group(sb, block_group); 6826 percpu_counter_add(&sbi->s_freeclusters_counter, 6827 changed); 6828 6829 error_clean: 6830 ext4_mb_unload_buddy(&e4b); 6831 error_out: 6832 ext4_std_error(sb, err); 6833 return err; 6834 } 6835 6836 /** 6837 * ext4_trim_extent -- function to TRIM one single free extent in the group 6838 * @sb: super block for the file system 6839 * @start: starting block of the free extent in the alloc. group 6840 * @count: number of blocks to TRIM 6841 * @e4b: ext4 buddy for the group 6842 * 6843 * Trim "count" blocks starting at "start" in the "group". To assure that no 6844 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6845 * be called with under the group lock. 6846 */ 6847 static int ext4_trim_extent(struct super_block *sb, 6848 int start, int count, struct ext4_buddy *e4b) 6849 __releases(bitlock) 6850 __acquires(bitlock) 6851 { 6852 struct ext4_free_extent ex; 6853 ext4_group_t group = e4b->bd_group; 6854 int ret = 0; 6855 6856 trace_ext4_trim_extent(sb, group, start, count); 6857 6858 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6859 6860 ex.fe_start = start; 6861 ex.fe_group = group; 6862 ex.fe_len = count; 6863 6864 /* 6865 * Mark blocks used, so no one can reuse them while 6866 * being trimmed. 6867 */ 6868 mb_mark_used(e4b, &ex); 6869 ext4_unlock_group(sb, group); 6870 ret = ext4_issue_discard(sb, group, start, count); 6871 ext4_lock_group(sb, group); 6872 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6873 return ret; 6874 } 6875 6876 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6877 ext4_group_t grp) 6878 { 6879 unsigned long nr_clusters_in_group; 6880 6881 if (grp < (ext4_get_groups_count(sb) - 1)) 6882 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6883 else 6884 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6885 ext4_group_first_block_no(sb, grp)) 6886 >> EXT4_CLUSTER_BITS(sb); 6887 6888 return nr_clusters_in_group - 1; 6889 } 6890 6891 static bool ext4_trim_interrupted(void) 6892 { 6893 return fatal_signal_pending(current) || freezing(current); 6894 } 6895 6896 static int ext4_try_to_trim_range(struct super_block *sb, 6897 struct ext4_buddy *e4b, ext4_grpblk_t start, 6898 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6899 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6900 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6901 { 6902 ext4_grpblk_t next, count, free_count, last, origin_start; 6903 bool set_trimmed = false; 6904 void *bitmap; 6905 6906 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 6907 return 0; 6908 6909 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6910 bitmap = e4b->bd_bitmap; 6911 if (start == 0 && max >= last) 6912 set_trimmed = true; 6913 origin_start = start; 6914 start = max(e4b->bd_info->bb_first_free, start); 6915 count = 0; 6916 free_count = 0; 6917 6918 while (start <= max) { 6919 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6920 if (start > max) 6921 break; 6922 6923 next = mb_find_next_bit(bitmap, last + 1, start); 6924 if (origin_start == 0 && next >= last) 6925 set_trimmed = true; 6926 6927 if ((next - start) >= minblocks) { 6928 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6929 6930 if (ret && ret != -EOPNOTSUPP) 6931 return count; 6932 count += next - start; 6933 } 6934 free_count += next - start; 6935 start = next + 1; 6936 6937 if (ext4_trim_interrupted()) 6938 return count; 6939 6940 if (need_resched()) { 6941 ext4_unlock_group(sb, e4b->bd_group); 6942 cond_resched(); 6943 ext4_lock_group(sb, e4b->bd_group); 6944 } 6945 6946 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6947 break; 6948 } 6949 6950 if (set_trimmed) 6951 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6952 6953 return count; 6954 } 6955 6956 /** 6957 * ext4_trim_all_free -- function to trim all free space in alloc. group 6958 * @sb: super block for file system 6959 * @group: group to be trimmed 6960 * @start: first group block to examine 6961 * @max: last group block to examine 6962 * @minblocks: minimum extent block count 6963 * 6964 * ext4_trim_all_free walks through group's block bitmap searching for free 6965 * extents. When the free extent is found, mark it as used in group buddy 6966 * bitmap. Then issue a TRIM command on this extent and free the extent in 6967 * the group buddy bitmap. 6968 */ 6969 static ext4_grpblk_t 6970 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6971 ext4_grpblk_t start, ext4_grpblk_t max, 6972 ext4_grpblk_t minblocks) 6973 { 6974 struct ext4_buddy e4b; 6975 int ret; 6976 6977 trace_ext4_trim_all_free(sb, group, start, max); 6978 6979 ret = ext4_mb_load_buddy(sb, group, &e4b); 6980 if (ret) { 6981 ext4_warning(sb, "Error %d loading buddy information for %u", 6982 ret, group); 6983 return ret; 6984 } 6985 6986 ext4_lock_group(sb, group); 6987 6988 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6989 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 6990 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6991 else 6992 ret = 0; 6993 6994 ext4_unlock_group(sb, group); 6995 ext4_mb_unload_buddy(&e4b); 6996 6997 ext4_debug("trimmed %d blocks in the group %d\n", 6998 ret, group); 6999 7000 return ret; 7001 } 7002 7003 /** 7004 * ext4_trim_fs() -- trim ioctl handle function 7005 * @sb: superblock for filesystem 7006 * @range: fstrim_range structure 7007 * 7008 * start: First Byte to trim 7009 * len: number of Bytes to trim from start 7010 * minlen: minimum extent length in Bytes 7011 * ext4_trim_fs goes through all allocation groups containing Bytes from 7012 * start to start+len. For each such a group ext4_trim_all_free function 7013 * is invoked to trim all free space. 7014 */ 7015 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7016 { 7017 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7018 struct ext4_group_info *grp; 7019 ext4_group_t group, first_group, last_group; 7020 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7021 uint64_t start, end, minlen, trimmed = 0; 7022 ext4_fsblk_t first_data_blk = 7023 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7024 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7025 int ret = 0; 7026 7027 start = range->start >> sb->s_blocksize_bits; 7028 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7029 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7030 range->minlen >> sb->s_blocksize_bits); 7031 7032 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7033 start >= max_blks || 7034 range->len < sb->s_blocksize) 7035 return -EINVAL; 7036 /* No point to try to trim less than discard granularity */ 7037 if (range->minlen < discard_granularity) { 7038 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7039 discard_granularity >> sb->s_blocksize_bits); 7040 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7041 goto out; 7042 } 7043 if (end >= max_blks - 1) 7044 end = max_blks - 1; 7045 if (end <= first_data_blk) 7046 goto out; 7047 if (start < first_data_blk) 7048 start = first_data_blk; 7049 7050 /* Determine first and last group to examine based on start and end */ 7051 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7052 &first_group, &first_cluster); 7053 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7054 &last_group, &last_cluster); 7055 7056 /* end now represents the last cluster to discard in this group */ 7057 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7058 7059 for (group = first_group; group <= last_group; group++) { 7060 if (ext4_trim_interrupted()) 7061 break; 7062 grp = ext4_get_group_info(sb, group); 7063 if (!grp) 7064 continue; 7065 /* We only do this if the grp has never been initialized */ 7066 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7067 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7068 if (ret) 7069 break; 7070 } 7071 7072 /* 7073 * For all the groups except the last one, last cluster will 7074 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7075 * change it for the last group, note that last_cluster is 7076 * already computed earlier by ext4_get_group_no_and_offset() 7077 */ 7078 if (group == last_group) 7079 end = last_cluster; 7080 if (grp->bb_free >= minlen) { 7081 cnt = ext4_trim_all_free(sb, group, first_cluster, 7082 end, minlen); 7083 if (cnt < 0) { 7084 ret = cnt; 7085 break; 7086 } 7087 trimmed += cnt; 7088 } 7089 7090 /* 7091 * For every group except the first one, we are sure 7092 * that the first cluster to discard will be cluster #0. 7093 */ 7094 first_cluster = 0; 7095 } 7096 7097 if (!ret) 7098 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7099 7100 out: 7101 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7102 return ret; 7103 } 7104 7105 /* Iterate all the free extents in the group. */ 7106 int 7107 ext4_mballoc_query_range( 7108 struct super_block *sb, 7109 ext4_group_t group, 7110 ext4_grpblk_t first, 7111 ext4_grpblk_t end, 7112 ext4_mballoc_query_range_fn meta_formatter, 7113 ext4_mballoc_query_range_fn formatter, 7114 void *priv) 7115 { 7116 void *bitmap; 7117 ext4_grpblk_t start, next; 7118 struct ext4_buddy e4b; 7119 int error; 7120 7121 error = ext4_mb_load_buddy(sb, group, &e4b); 7122 if (error) 7123 return error; 7124 bitmap = e4b.bd_bitmap; 7125 7126 ext4_lock_group(sb, group); 7127 7128 start = max(e4b.bd_info->bb_first_free, first); 7129 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7130 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7131 if (meta_formatter && start != first) { 7132 if (start > end) 7133 start = end; 7134 ext4_unlock_group(sb, group); 7135 error = meta_formatter(sb, group, first, start - first, 7136 priv); 7137 if (error) 7138 goto out_unload; 7139 ext4_lock_group(sb, group); 7140 } 7141 while (start <= end) { 7142 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7143 if (start > end) 7144 break; 7145 next = mb_find_next_bit(bitmap, end + 1, start); 7146 7147 ext4_unlock_group(sb, group); 7148 error = formatter(sb, group, start, next - start, priv); 7149 if (error) 7150 goto out_unload; 7151 ext4_lock_group(sb, group); 7152 7153 start = next + 1; 7154 } 7155 7156 ext4_unlock_group(sb, group); 7157 out_unload: 7158 ext4_mb_unload_buddy(&e4b); 7159 7160 return error; 7161 } 7162 7163 #ifdef CONFIG_EXT4_KUNIT_TESTS 7164 #include "mballoc-test.c" 7165 #endif 7166