1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/debugfs.h> 27 #include <linux/log2.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 /* 32 * MUSTDO: 33 * - test ext4_ext_search_left() and ext4_ext_search_right() 34 * - search for metadata in few groups 35 * 36 * TODO v4: 37 * - normalization should take into account whether file is still open 38 * - discard preallocations if no free space left (policy?) 39 * - don't normalize tails 40 * - quota 41 * - reservation for superuser 42 * 43 * TODO v3: 44 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 45 * - track min/max extents in each group for better group selection 46 * - mb_mark_used() may allocate chunk right after splitting buddy 47 * - tree of groups sorted by number of free blocks 48 * - error handling 49 */ 50 51 /* 52 * The allocation request involve request for multiple number of blocks 53 * near to the goal(block) value specified. 54 * 55 * During initialization phase of the allocator we decide to use the 56 * group preallocation or inode preallocation depending on the size of 57 * the file. The size of the file could be the resulting file size we 58 * would have after allocation, or the current file size, which ever 59 * is larger. If the size is less than sbi->s_mb_stream_request we 60 * select to use the group preallocation. The default value of 61 * s_mb_stream_request is 16 blocks. This can also be tuned via 62 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 63 * terms of number of blocks. 64 * 65 * The main motivation for having small file use group preallocation is to 66 * ensure that we have small files closer together on the disk. 67 * 68 * First stage the allocator looks at the inode prealloc list, 69 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 70 * spaces for this particular inode. The inode prealloc space is 71 * represented as: 72 * 73 * pa_lstart -> the logical start block for this prealloc space 74 * pa_pstart -> the physical start block for this prealloc space 75 * pa_len -> length for this prealloc space (in clusters) 76 * pa_free -> free space available in this prealloc space (in clusters) 77 * 78 * The inode preallocation space is used looking at the _logical_ start 79 * block. If only the logical file block falls within the range of prealloc 80 * space we will consume the particular prealloc space. This makes sure that 81 * we have contiguous physical blocks representing the file blocks 82 * 83 * The important thing to be noted in case of inode prealloc space is that 84 * we don't modify the values associated to inode prealloc space except 85 * pa_free. 86 * 87 * If we are not able to find blocks in the inode prealloc space and if we 88 * have the group allocation flag set then we look at the locality group 89 * prealloc space. These are per CPU prealloc list represented as 90 * 91 * ext4_sb_info.s_locality_groups[smp_processor_id()] 92 * 93 * The reason for having a per cpu locality group is to reduce the contention 94 * between CPUs. It is possible to get scheduled at this point. 95 * 96 * The locality group prealloc space is used looking at whether we have 97 * enough free space (pa_free) within the prealloc space. 98 * 99 * If we can't allocate blocks via inode prealloc or/and locality group 100 * prealloc then we look at the buddy cache. The buddy cache is represented 101 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 102 * mapped to the buddy and bitmap information regarding different 103 * groups. The buddy information is attached to buddy cache inode so that 104 * we can access them through the page cache. The information regarding 105 * each group is loaded via ext4_mb_load_buddy. The information involve 106 * block bitmap and buddy information. The information are stored in the 107 * inode as: 108 * 109 * { page } 110 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 111 * 112 * 113 * one block each for bitmap and buddy information. So for each group we 114 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 115 * blocksize) blocks. So it can have information regarding groups_per_page 116 * which is blocks_per_page/2 117 * 118 * The buddy cache inode is not stored on disk. The inode is thrown 119 * away when the filesystem is unmounted. 120 * 121 * We look for count number of blocks in the buddy cache. If we were able 122 * to locate that many free blocks we return with additional information 123 * regarding rest of the contiguous physical block available 124 * 125 * Before allocating blocks via buddy cache we normalize the request 126 * blocks. This ensure we ask for more blocks that we needed. The extra 127 * blocks that we get after allocation is added to the respective prealloc 128 * list. In case of inode preallocation we follow a list of heuristics 129 * based on file size. This can be found in ext4_mb_normalize_request. If 130 * we are doing a group prealloc we try to normalize the request to 131 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 132 * dependent on the cluster size; for non-bigalloc file systems, it is 133 * 512 blocks. This can be tuned via 134 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 135 * terms of number of blocks. If we have mounted the file system with -O 136 * stripe=<value> option the group prealloc request is normalized to the 137 * the smallest multiple of the stripe value (sbi->s_stripe) which is 138 * greater than the default mb_group_prealloc. 139 * 140 * The regular allocator (using the buddy cache) supports a few tunables. 141 * 142 * /sys/fs/ext4/<partition>/mb_min_to_scan 143 * /sys/fs/ext4/<partition>/mb_max_to_scan 144 * /sys/fs/ext4/<partition>/mb_order2_req 145 * 146 * The regular allocator uses buddy scan only if the request len is power of 147 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 148 * value of s_mb_order2_reqs can be tuned via 149 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 150 * stripe size (sbi->s_stripe), we try to search for contiguous block in 151 * stripe size. This should result in better allocation on RAID setups. If 152 * not, we search in the specific group using bitmap for best extents. The 153 * tunable min_to_scan and max_to_scan control the behaviour here. 154 * min_to_scan indicate how long the mballoc __must__ look for a best 155 * extent and max_to_scan indicates how long the mballoc __can__ look for a 156 * best extent in the found extents. Searching for the blocks starts with 157 * the group specified as the goal value in allocation context via 158 * ac_g_ex. Each group is first checked based on the criteria whether it 159 * can be used for allocation. ext4_mb_good_group explains how the groups are 160 * checked. 161 * 162 * Both the prealloc space are getting populated as above. So for the first 163 * request we will hit the buddy cache which will result in this prealloc 164 * space getting filled. The prealloc space is then later used for the 165 * subsequent request. 166 */ 167 168 /* 169 * mballoc operates on the following data: 170 * - on-disk bitmap 171 * - in-core buddy (actually includes buddy and bitmap) 172 * - preallocation descriptors (PAs) 173 * 174 * there are two types of preallocations: 175 * - inode 176 * assiged to specific inode and can be used for this inode only. 177 * it describes part of inode's space preallocated to specific 178 * physical blocks. any block from that preallocated can be used 179 * independent. the descriptor just tracks number of blocks left 180 * unused. so, before taking some block from descriptor, one must 181 * make sure corresponded logical block isn't allocated yet. this 182 * also means that freeing any block within descriptor's range 183 * must discard all preallocated blocks. 184 * - locality group 185 * assigned to specific locality group which does not translate to 186 * permanent set of inodes: inode can join and leave group. space 187 * from this type of preallocation can be used for any inode. thus 188 * it's consumed from the beginning to the end. 189 * 190 * relation between them can be expressed as: 191 * in-core buddy = on-disk bitmap + preallocation descriptors 192 * 193 * this mean blocks mballoc considers used are: 194 * - allocated blocks (persistent) 195 * - preallocated blocks (non-persistent) 196 * 197 * consistency in mballoc world means that at any time a block is either 198 * free or used in ALL structures. notice: "any time" should not be read 199 * literally -- time is discrete and delimited by locks. 200 * 201 * to keep it simple, we don't use block numbers, instead we count number of 202 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 203 * 204 * all operations can be expressed as: 205 * - init buddy: buddy = on-disk + PAs 206 * - new PA: buddy += N; PA = N 207 * - use inode PA: on-disk += N; PA -= N 208 * - discard inode PA buddy -= on-disk - PA; PA = 0 209 * - use locality group PA on-disk += N; PA -= N 210 * - discard locality group PA buddy -= PA; PA = 0 211 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 212 * is used in real operation because we can't know actual used 213 * bits from PA, only from on-disk bitmap 214 * 215 * if we follow this strict logic, then all operations above should be atomic. 216 * given some of them can block, we'd have to use something like semaphores 217 * killing performance on high-end SMP hardware. let's try to relax it using 218 * the following knowledge: 219 * 1) if buddy is referenced, it's already initialized 220 * 2) while block is used in buddy and the buddy is referenced, 221 * nobody can re-allocate that block 222 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 223 * bit set and PA claims same block, it's OK. IOW, one can set bit in 224 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 225 * block 226 * 227 * so, now we're building a concurrency table: 228 * - init buddy vs. 229 * - new PA 230 * blocks for PA are allocated in the buddy, buddy must be referenced 231 * until PA is linked to allocation group to avoid concurrent buddy init 232 * - use inode PA 233 * we need to make sure that either on-disk bitmap or PA has uptodate data 234 * given (3) we care that PA-=N operation doesn't interfere with init 235 * - discard inode PA 236 * the simplest way would be to have buddy initialized by the discard 237 * - use locality group PA 238 * again PA-=N must be serialized with init 239 * - discard locality group PA 240 * the simplest way would be to have buddy initialized by the discard 241 * - new PA vs. 242 * - use inode PA 243 * i_data_sem serializes them 244 * - discard inode PA 245 * discard process must wait until PA isn't used by another process 246 * - use locality group PA 247 * some mutex should serialize them 248 * - discard locality group PA 249 * discard process must wait until PA isn't used by another process 250 * - use inode PA 251 * - use inode PA 252 * i_data_sem or another mutex should serializes them 253 * - discard inode PA 254 * discard process must wait until PA isn't used by another process 255 * - use locality group PA 256 * nothing wrong here -- they're different PAs covering different blocks 257 * - discard locality group PA 258 * discard process must wait until PA isn't used by another process 259 * 260 * now we're ready to make few consequences: 261 * - PA is referenced and while it is no discard is possible 262 * - PA is referenced until block isn't marked in on-disk bitmap 263 * - PA changes only after on-disk bitmap 264 * - discard must not compete with init. either init is done before 265 * any discard or they're serialized somehow 266 * - buddy init as sum of on-disk bitmap and PAs is done atomically 267 * 268 * a special case when we've used PA to emptiness. no need to modify buddy 269 * in this case, but we should care about concurrent init 270 * 271 */ 272 273 /* 274 * Logic in few words: 275 * 276 * - allocation: 277 * load group 278 * find blocks 279 * mark bits in on-disk bitmap 280 * release group 281 * 282 * - use preallocation: 283 * find proper PA (per-inode or group) 284 * load group 285 * mark bits in on-disk bitmap 286 * release group 287 * release PA 288 * 289 * - free: 290 * load group 291 * mark bits in on-disk bitmap 292 * release group 293 * 294 * - discard preallocations in group: 295 * mark PAs deleted 296 * move them onto local list 297 * load on-disk bitmap 298 * load group 299 * remove PA from object (inode or locality group) 300 * mark free blocks in-core 301 * 302 * - discard inode's preallocations: 303 */ 304 305 /* 306 * Locking rules 307 * 308 * Locks: 309 * - bitlock on a group (group) 310 * - object (inode/locality) (object) 311 * - per-pa lock (pa) 312 * 313 * Paths: 314 * - new pa 315 * object 316 * group 317 * 318 * - find and use pa: 319 * pa 320 * 321 * - release consumed pa: 322 * pa 323 * group 324 * object 325 * 326 * - generate in-core bitmap: 327 * group 328 * pa 329 * 330 * - discard all for given object (inode, locality group): 331 * object 332 * pa 333 * group 334 * 335 * - discard all for given group: 336 * group 337 * pa 338 * group 339 * object 340 * 341 */ 342 static struct kmem_cache *ext4_pspace_cachep; 343 static struct kmem_cache *ext4_ac_cachep; 344 static struct kmem_cache *ext4_free_data_cachep; 345 346 /* We create slab caches for groupinfo data structures based on the 347 * superblock block size. There will be one per mounted filesystem for 348 * each unique s_blocksize_bits */ 349 #define NR_GRPINFO_CACHES 8 350 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 351 352 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 353 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 354 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 355 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 356 }; 357 358 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 359 ext4_group_t group); 360 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 361 ext4_group_t group); 362 static void ext4_free_data_callback(struct super_block *sb, 363 struct ext4_journal_cb_entry *jce, int rc); 364 365 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 366 { 367 #if BITS_PER_LONG == 64 368 *bit += ((unsigned long) addr & 7UL) << 3; 369 addr = (void *) ((unsigned long) addr & ~7UL); 370 #elif BITS_PER_LONG == 32 371 *bit += ((unsigned long) addr & 3UL) << 3; 372 addr = (void *) ((unsigned long) addr & ~3UL); 373 #else 374 #error "how many bits you are?!" 375 #endif 376 return addr; 377 } 378 379 static inline int mb_test_bit(int bit, void *addr) 380 { 381 /* 382 * ext4_test_bit on architecture like powerpc 383 * needs unsigned long aligned address 384 */ 385 addr = mb_correct_addr_and_bit(&bit, addr); 386 return ext4_test_bit(bit, addr); 387 } 388 389 static inline void mb_set_bit(int bit, void *addr) 390 { 391 addr = mb_correct_addr_and_bit(&bit, addr); 392 ext4_set_bit(bit, addr); 393 } 394 395 static inline void mb_clear_bit(int bit, void *addr) 396 { 397 addr = mb_correct_addr_and_bit(&bit, addr); 398 ext4_clear_bit(bit, addr); 399 } 400 401 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 402 { 403 int fix = 0, ret, tmpmax; 404 addr = mb_correct_addr_and_bit(&fix, addr); 405 tmpmax = max + fix; 406 start += fix; 407 408 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 409 if (ret > max) 410 return max; 411 return ret; 412 } 413 414 static inline int mb_find_next_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 428 { 429 char *bb; 430 431 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 432 BUG_ON(max == NULL); 433 434 if (order > e4b->bd_blkbits + 1) { 435 *max = 0; 436 return NULL; 437 } 438 439 /* at order 0 we see each particular block */ 440 if (order == 0) { 441 *max = 1 << (e4b->bd_blkbits + 3); 442 return e4b->bd_bitmap; 443 } 444 445 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 446 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 447 448 return bb; 449 } 450 451 #ifdef DOUBLE_CHECK 452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 453 int first, int count) 454 { 455 int i; 456 struct super_block *sb = e4b->bd_sb; 457 458 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 459 return; 460 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 461 for (i = 0; i < count; i++) { 462 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 463 ext4_fsblk_t blocknr; 464 465 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 466 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 467 ext4_grp_locked_error(sb, e4b->bd_group, 468 inode ? inode->i_ino : 0, 469 blocknr, 470 "freeing block already freed " 471 "(bit %u)", 472 first + i); 473 } 474 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 475 } 476 } 477 478 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 479 { 480 int i; 481 482 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 483 return; 484 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 485 for (i = 0; i < count; i++) { 486 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 487 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 492 { 493 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 494 unsigned char *b1, *b2; 495 int i; 496 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 497 b2 = (unsigned char *) bitmap; 498 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 499 if (b1[i] != b2[i]) { 500 ext4_msg(e4b->bd_sb, KERN_ERR, 501 "corruption in group %u " 502 "at byte %u(%u): %x in copy != %x " 503 "on disk/prealloc", 504 e4b->bd_group, i, i * 8, b1[i], b2[i]); 505 BUG(); 506 } 507 } 508 } 509 } 510 511 #else 512 static inline void mb_free_blocks_double(struct inode *inode, 513 struct ext4_buddy *e4b, int first, int count) 514 { 515 return; 516 } 517 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 518 int first, int count) 519 { 520 return; 521 } 522 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 523 { 524 return; 525 } 526 #endif 527 528 #ifdef AGGRESSIVE_CHECK 529 530 #define MB_CHECK_ASSERT(assert) \ 531 do { \ 532 if (!(assert)) { \ 533 printk(KERN_EMERG \ 534 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 535 function, file, line, # assert); \ 536 BUG(); \ 537 } \ 538 } while (0) 539 540 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 541 const char *function, int line) 542 { 543 struct super_block *sb = e4b->bd_sb; 544 int order = e4b->bd_blkbits + 1; 545 int max; 546 int max2; 547 int i; 548 int j; 549 int k; 550 int count; 551 struct ext4_group_info *grp; 552 int fragments = 0; 553 int fstart; 554 struct list_head *cur; 555 void *buddy; 556 void *buddy2; 557 558 { 559 static int mb_check_counter; 560 if (mb_check_counter++ % 100 != 0) 561 return 0; 562 } 563 564 while (order > 1) { 565 buddy = mb_find_buddy(e4b, order, &max); 566 MB_CHECK_ASSERT(buddy); 567 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 568 MB_CHECK_ASSERT(buddy2); 569 MB_CHECK_ASSERT(buddy != buddy2); 570 MB_CHECK_ASSERT(max * 2 == max2); 571 572 count = 0; 573 for (i = 0; i < max; i++) { 574 575 if (mb_test_bit(i, buddy)) { 576 /* only single bit in buddy2 may be 1 */ 577 if (!mb_test_bit(i << 1, buddy2)) { 578 MB_CHECK_ASSERT( 579 mb_test_bit((i<<1)+1, buddy2)); 580 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit(i << 1, buddy2)); 583 } 584 continue; 585 } 586 587 /* both bits in buddy2 must be 1 */ 588 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 589 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 590 591 for (j = 0; j < (1 << order); j++) { 592 k = (i * (1 << order)) + j; 593 MB_CHECK_ASSERT( 594 !mb_test_bit(k, e4b->bd_bitmap)); 595 } 596 count++; 597 } 598 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 599 order--; 600 } 601 602 fstart = -1; 603 buddy = mb_find_buddy(e4b, 0, &max); 604 for (i = 0; i < max; i++) { 605 if (!mb_test_bit(i, buddy)) { 606 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 607 if (fstart == -1) { 608 fragments++; 609 fstart = i; 610 } 611 continue; 612 } 613 fstart = -1; 614 /* check used bits only */ 615 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 616 buddy2 = mb_find_buddy(e4b, j, &max2); 617 k = i >> j; 618 MB_CHECK_ASSERT(k < max2); 619 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 620 } 621 } 622 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 623 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 624 625 grp = ext4_get_group_info(sb, e4b->bd_group); 626 list_for_each(cur, &grp->bb_prealloc_list) { 627 ext4_group_t groupnr; 628 struct ext4_prealloc_space *pa; 629 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 630 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 631 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 632 for (i = 0; i < pa->pa_len; i++) 633 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 634 } 635 return 0; 636 } 637 #undef MB_CHECK_ASSERT 638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 639 __FILE__, __func__, __LINE__) 640 #else 641 #define mb_check_buddy(e4b) 642 #endif 643 644 /* 645 * Divide blocks started from @first with length @len into 646 * smaller chunks with power of 2 blocks. 647 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 648 * then increase bb_counters[] for corresponded chunk size. 649 */ 650 static void ext4_mb_mark_free_simple(struct super_block *sb, 651 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 652 struct ext4_group_info *grp) 653 { 654 struct ext4_sb_info *sbi = EXT4_SB(sb); 655 ext4_grpblk_t min; 656 ext4_grpblk_t max; 657 ext4_grpblk_t chunk; 658 unsigned short border; 659 660 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 661 662 border = 2 << sb->s_blocksize_bits; 663 664 while (len > 0) { 665 /* find how many blocks can be covered since this position */ 666 max = ffs(first | border) - 1; 667 668 /* find how many blocks of power 2 we need to mark */ 669 min = fls(len) - 1; 670 671 if (max < min) 672 min = max; 673 chunk = 1 << min; 674 675 /* mark multiblock chunks only */ 676 grp->bb_counters[min]++; 677 if (min > 0) 678 mb_clear_bit(first >> min, 679 buddy + sbi->s_mb_offsets[min]); 680 681 len -= chunk; 682 first += chunk; 683 } 684 } 685 686 /* 687 * Cache the order of the largest free extent we have available in this block 688 * group. 689 */ 690 static void 691 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 692 { 693 int i; 694 int bits; 695 696 grp->bb_largest_free_order = -1; /* uninit */ 697 698 bits = sb->s_blocksize_bits + 1; 699 for (i = bits; i >= 0; i--) { 700 if (grp->bb_counters[i] > 0) { 701 grp->bb_largest_free_order = i; 702 break; 703 } 704 } 705 } 706 707 static noinline_for_stack 708 void ext4_mb_generate_buddy(struct super_block *sb, 709 void *buddy, void *bitmap, ext4_group_t group) 710 { 711 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 712 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 713 ext4_grpblk_t i = 0; 714 ext4_grpblk_t first; 715 ext4_grpblk_t len; 716 unsigned free = 0; 717 unsigned fragments = 0; 718 unsigned long long period = get_cycles(); 719 720 /* initialize buddy from bitmap which is aggregation 721 * of on-disk bitmap and preallocations */ 722 i = mb_find_next_zero_bit(bitmap, max, 0); 723 grp->bb_first_free = i; 724 while (i < max) { 725 fragments++; 726 first = i; 727 i = mb_find_next_bit(bitmap, max, i); 728 len = i - first; 729 free += len; 730 if (len > 1) 731 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 732 else 733 grp->bb_counters[0]++; 734 if (i < max) 735 i = mb_find_next_zero_bit(bitmap, max, i); 736 } 737 grp->bb_fragments = fragments; 738 739 if (free != grp->bb_free) { 740 ext4_grp_locked_error(sb, group, 0, 0, 741 "%u clusters in bitmap, %u in gd", 742 free, grp->bb_free); 743 /* 744 * If we intent to continue, we consider group descritor 745 * corrupt and update bb_free using bitmap value 746 */ 747 grp->bb_free = free; 748 } 749 mb_set_largest_free_order(sb, grp); 750 751 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 752 753 period = get_cycles() - period; 754 spin_lock(&EXT4_SB(sb)->s_bal_lock); 755 EXT4_SB(sb)->s_mb_buddies_generated++; 756 EXT4_SB(sb)->s_mb_generation_time += period; 757 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 758 } 759 760 /* The buddy information is attached the buddy cache inode 761 * for convenience. The information regarding each group 762 * is loaded via ext4_mb_load_buddy. The information involve 763 * block bitmap and buddy information. The information are 764 * stored in the inode as 765 * 766 * { page } 767 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 768 * 769 * 770 * one block each for bitmap and buddy information. 771 * So for each group we take up 2 blocks. A page can 772 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 773 * So it can have information regarding groups_per_page which 774 * is blocks_per_page/2 775 * 776 * Locking note: This routine takes the block group lock of all groups 777 * for this page; do not hold this lock when calling this routine! 778 */ 779 780 static int ext4_mb_init_cache(struct page *page, char *incore) 781 { 782 ext4_group_t ngroups; 783 int blocksize; 784 int blocks_per_page; 785 int groups_per_page; 786 int err = 0; 787 int i; 788 ext4_group_t first_group, group; 789 int first_block; 790 struct super_block *sb; 791 struct buffer_head *bhs; 792 struct buffer_head **bh = NULL; 793 struct inode *inode; 794 char *data; 795 char *bitmap; 796 struct ext4_group_info *grinfo; 797 798 mb_debug(1, "init page %lu\n", page->index); 799 800 inode = page->mapping->host; 801 sb = inode->i_sb; 802 ngroups = ext4_get_groups_count(sb); 803 blocksize = 1 << inode->i_blkbits; 804 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 805 806 groups_per_page = blocks_per_page >> 1; 807 if (groups_per_page == 0) 808 groups_per_page = 1; 809 810 /* allocate buffer_heads to read bitmaps */ 811 if (groups_per_page > 1) { 812 i = sizeof(struct buffer_head *) * groups_per_page; 813 bh = kzalloc(i, GFP_NOFS); 814 if (bh == NULL) { 815 err = -ENOMEM; 816 goto out; 817 } 818 } else 819 bh = &bhs; 820 821 first_group = page->index * blocks_per_page / 2; 822 823 /* read all groups the page covers into the cache */ 824 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 825 if (group >= ngroups) 826 break; 827 828 grinfo = ext4_get_group_info(sb, group); 829 /* 830 * If page is uptodate then we came here after online resize 831 * which added some new uninitialized group info structs, so 832 * we must skip all initialized uptodate buddies on the page, 833 * which may be currently in use by an allocating task. 834 */ 835 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 836 bh[i] = NULL; 837 continue; 838 } 839 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 840 err = -ENOMEM; 841 goto out; 842 } 843 mb_debug(1, "read bitmap for group %u\n", group); 844 } 845 846 /* wait for I/O completion */ 847 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 848 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 849 err = -EIO; 850 goto out; 851 } 852 } 853 854 first_block = page->index * blocks_per_page; 855 for (i = 0; i < blocks_per_page; i++) { 856 int group; 857 858 group = (first_block + i) >> 1; 859 if (group >= ngroups) 860 break; 861 862 if (!bh[group - first_group]) 863 /* skip initialized uptodate buddy */ 864 continue; 865 866 /* 867 * data carry information regarding this 868 * particular group in the format specified 869 * above 870 * 871 */ 872 data = page_address(page) + (i * blocksize); 873 bitmap = bh[group - first_group]->b_data; 874 875 /* 876 * We place the buddy block and bitmap block 877 * close together 878 */ 879 if ((first_block + i) & 1) { 880 /* this is block of buddy */ 881 BUG_ON(incore == NULL); 882 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 883 group, page->index, i * blocksize); 884 trace_ext4_mb_buddy_bitmap_load(sb, group); 885 grinfo = ext4_get_group_info(sb, group); 886 grinfo->bb_fragments = 0; 887 memset(grinfo->bb_counters, 0, 888 sizeof(*grinfo->bb_counters) * 889 (sb->s_blocksize_bits+2)); 890 /* 891 * incore got set to the group block bitmap below 892 */ 893 ext4_lock_group(sb, group); 894 /* init the buddy */ 895 memset(data, 0xff, blocksize); 896 ext4_mb_generate_buddy(sb, data, incore, group); 897 ext4_unlock_group(sb, group); 898 incore = NULL; 899 } else { 900 /* this is block of bitmap */ 901 BUG_ON(incore != NULL); 902 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 903 group, page->index, i * blocksize); 904 trace_ext4_mb_bitmap_load(sb, group); 905 906 /* see comments in ext4_mb_put_pa() */ 907 ext4_lock_group(sb, group); 908 memcpy(data, bitmap, blocksize); 909 910 /* mark all preallocated blks used in in-core bitmap */ 911 ext4_mb_generate_from_pa(sb, data, group); 912 ext4_mb_generate_from_freelist(sb, data, group); 913 ext4_unlock_group(sb, group); 914 915 /* set incore so that the buddy information can be 916 * generated using this 917 */ 918 incore = data; 919 } 920 } 921 SetPageUptodate(page); 922 923 out: 924 if (bh) { 925 for (i = 0; i < groups_per_page; i++) 926 brelse(bh[i]); 927 if (bh != &bhs) 928 kfree(bh); 929 } 930 return err; 931 } 932 933 /* 934 * Lock the buddy and bitmap pages. This make sure other parallel init_group 935 * on the same buddy page doesn't happen whild holding the buddy page lock. 936 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 937 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 938 */ 939 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 940 ext4_group_t group, struct ext4_buddy *e4b) 941 { 942 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 943 int block, pnum, poff; 944 int blocks_per_page; 945 struct page *page; 946 947 e4b->bd_buddy_page = NULL; 948 e4b->bd_bitmap_page = NULL; 949 950 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 951 /* 952 * the buddy cache inode stores the block bitmap 953 * and buddy information in consecutive blocks. 954 * So for each group we need two blocks. 955 */ 956 block = group * 2; 957 pnum = block / blocks_per_page; 958 poff = block % blocks_per_page; 959 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 960 if (!page) 961 return -EIO; 962 BUG_ON(page->mapping != inode->i_mapping); 963 e4b->bd_bitmap_page = page; 964 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 965 966 if (blocks_per_page >= 2) { 967 /* buddy and bitmap are on the same page */ 968 return 0; 969 } 970 971 block++; 972 pnum = block / blocks_per_page; 973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 974 if (!page) 975 return -EIO; 976 BUG_ON(page->mapping != inode->i_mapping); 977 e4b->bd_buddy_page = page; 978 return 0; 979 } 980 981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 982 { 983 if (e4b->bd_bitmap_page) { 984 unlock_page(e4b->bd_bitmap_page); 985 page_cache_release(e4b->bd_bitmap_page); 986 } 987 if (e4b->bd_buddy_page) { 988 unlock_page(e4b->bd_buddy_page); 989 page_cache_release(e4b->bd_buddy_page); 990 } 991 } 992 993 /* 994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 995 * block group lock of all groups for this page; do not hold the BG lock when 996 * calling this routine! 997 */ 998 static noinline_for_stack 999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1000 { 1001 1002 struct ext4_group_info *this_grp; 1003 struct ext4_buddy e4b; 1004 struct page *page; 1005 int ret = 0; 1006 1007 mb_debug(1, "init group %u\n", group); 1008 this_grp = ext4_get_group_info(sb, group); 1009 /* 1010 * This ensures that we don't reinit the buddy cache 1011 * page which map to the group from which we are already 1012 * allocating. If we are looking at the buddy cache we would 1013 * have taken a reference using ext4_mb_load_buddy and that 1014 * would have pinned buddy page to page cache. 1015 */ 1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1018 /* 1019 * somebody initialized the group 1020 * return without doing anything 1021 */ 1022 goto err; 1023 } 1024 1025 page = e4b.bd_bitmap_page; 1026 ret = ext4_mb_init_cache(page, NULL); 1027 if (ret) 1028 goto err; 1029 if (!PageUptodate(page)) { 1030 ret = -EIO; 1031 goto err; 1032 } 1033 mark_page_accessed(page); 1034 1035 if (e4b.bd_buddy_page == NULL) { 1036 /* 1037 * If both the bitmap and buddy are in 1038 * the same page we don't need to force 1039 * init the buddy 1040 */ 1041 ret = 0; 1042 goto err; 1043 } 1044 /* init buddy cache */ 1045 page = e4b.bd_buddy_page; 1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1047 if (ret) 1048 goto err; 1049 if (!PageUptodate(page)) { 1050 ret = -EIO; 1051 goto err; 1052 } 1053 mark_page_accessed(page); 1054 err: 1055 ext4_mb_put_buddy_page_lock(&e4b); 1056 return ret; 1057 } 1058 1059 /* 1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1061 * block group lock of all groups for this page; do not hold the BG lock when 1062 * calling this routine! 1063 */ 1064 static noinline_for_stack int 1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1066 struct ext4_buddy *e4b) 1067 { 1068 int blocks_per_page; 1069 int block; 1070 int pnum; 1071 int poff; 1072 struct page *page; 1073 int ret; 1074 struct ext4_group_info *grp; 1075 struct ext4_sb_info *sbi = EXT4_SB(sb); 1076 struct inode *inode = sbi->s_buddy_cache; 1077 1078 mb_debug(1, "load group %u\n", group); 1079 1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1081 grp = ext4_get_group_info(sb, group); 1082 1083 e4b->bd_blkbits = sb->s_blocksize_bits; 1084 e4b->bd_info = grp; 1085 e4b->bd_sb = sb; 1086 e4b->bd_group = group; 1087 e4b->bd_buddy_page = NULL; 1088 e4b->bd_bitmap_page = NULL; 1089 1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1091 /* 1092 * we need full data about the group 1093 * to make a good selection 1094 */ 1095 ret = ext4_mb_init_group(sb, group); 1096 if (ret) 1097 return ret; 1098 } 1099 1100 /* 1101 * the buddy cache inode stores the block bitmap 1102 * and buddy information in consecutive blocks. 1103 * So for each group we need two blocks. 1104 */ 1105 block = group * 2; 1106 pnum = block / blocks_per_page; 1107 poff = block % blocks_per_page; 1108 1109 /* we could use find_or_create_page(), but it locks page 1110 * what we'd like to avoid in fast path ... */ 1111 page = find_get_page(inode->i_mapping, pnum); 1112 if (page == NULL || !PageUptodate(page)) { 1113 if (page) 1114 /* 1115 * drop the page reference and try 1116 * to get the page with lock. If we 1117 * are not uptodate that implies 1118 * somebody just created the page but 1119 * is yet to initialize the same. So 1120 * wait for it to initialize. 1121 */ 1122 page_cache_release(page); 1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1124 if (page) { 1125 BUG_ON(page->mapping != inode->i_mapping); 1126 if (!PageUptodate(page)) { 1127 ret = ext4_mb_init_cache(page, NULL); 1128 if (ret) { 1129 unlock_page(page); 1130 goto err; 1131 } 1132 mb_cmp_bitmaps(e4b, page_address(page) + 1133 (poff * sb->s_blocksize)); 1134 } 1135 unlock_page(page); 1136 } 1137 } 1138 if (page == NULL || !PageUptodate(page)) { 1139 ret = -EIO; 1140 goto err; 1141 } 1142 e4b->bd_bitmap_page = page; 1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1144 mark_page_accessed(page); 1145 1146 block++; 1147 pnum = block / blocks_per_page; 1148 poff = block % blocks_per_page; 1149 1150 page = find_get_page(inode->i_mapping, pnum); 1151 if (page == NULL || !PageUptodate(page)) { 1152 if (page) 1153 page_cache_release(page); 1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1155 if (page) { 1156 BUG_ON(page->mapping != inode->i_mapping); 1157 if (!PageUptodate(page)) { 1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1159 if (ret) { 1160 unlock_page(page); 1161 goto err; 1162 } 1163 } 1164 unlock_page(page); 1165 } 1166 } 1167 if (page == NULL || !PageUptodate(page)) { 1168 ret = -EIO; 1169 goto err; 1170 } 1171 e4b->bd_buddy_page = page; 1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1173 mark_page_accessed(page); 1174 1175 BUG_ON(e4b->bd_bitmap_page == NULL); 1176 BUG_ON(e4b->bd_buddy_page == NULL); 1177 1178 return 0; 1179 1180 err: 1181 if (page) 1182 page_cache_release(page); 1183 if (e4b->bd_bitmap_page) 1184 page_cache_release(e4b->bd_bitmap_page); 1185 if (e4b->bd_buddy_page) 1186 page_cache_release(e4b->bd_buddy_page); 1187 e4b->bd_buddy = NULL; 1188 e4b->bd_bitmap = NULL; 1189 return ret; 1190 } 1191 1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1193 { 1194 if (e4b->bd_bitmap_page) 1195 page_cache_release(e4b->bd_bitmap_page); 1196 if (e4b->bd_buddy_page) 1197 page_cache_release(e4b->bd_buddy_page); 1198 } 1199 1200 1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1202 { 1203 int order = 1; 1204 void *bb; 1205 1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1208 1209 bb = e4b->bd_buddy; 1210 while (order <= e4b->bd_blkbits + 1) { 1211 block = block >> 1; 1212 if (!mb_test_bit(block, bb)) { 1213 /* this block is part of buddy of order 'order' */ 1214 return order; 1215 } 1216 bb += 1 << (e4b->bd_blkbits - order); 1217 order++; 1218 } 1219 return 0; 1220 } 1221 1222 static void mb_clear_bits(void *bm, int cur, int len) 1223 { 1224 __u32 *addr; 1225 1226 len = cur + len; 1227 while (cur < len) { 1228 if ((cur & 31) == 0 && (len - cur) >= 32) { 1229 /* fast path: clear whole word at once */ 1230 addr = bm + (cur >> 3); 1231 *addr = 0; 1232 cur += 32; 1233 continue; 1234 } 1235 mb_clear_bit(cur, bm); 1236 cur++; 1237 } 1238 } 1239 1240 void ext4_set_bits(void *bm, int cur, int len) 1241 { 1242 __u32 *addr; 1243 1244 len = cur + len; 1245 while (cur < len) { 1246 if ((cur & 31) == 0 && (len - cur) >= 32) { 1247 /* fast path: set whole word at once */ 1248 addr = bm + (cur >> 3); 1249 *addr = 0xffffffff; 1250 cur += 32; 1251 continue; 1252 } 1253 mb_set_bit(cur, bm); 1254 cur++; 1255 } 1256 } 1257 1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1259 int first, int count) 1260 { 1261 int block = 0; 1262 int max = 0; 1263 int order; 1264 void *buddy; 1265 void *buddy2; 1266 struct super_block *sb = e4b->bd_sb; 1267 1268 BUG_ON(first + count > (sb->s_blocksize << 3)); 1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1270 mb_check_buddy(e4b); 1271 mb_free_blocks_double(inode, e4b, first, count); 1272 1273 e4b->bd_info->bb_free += count; 1274 if (first < e4b->bd_info->bb_first_free) 1275 e4b->bd_info->bb_first_free = first; 1276 1277 /* let's maintain fragments counter */ 1278 if (first != 0) 1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap); 1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1281 max = !mb_test_bit(first + count, e4b->bd_bitmap); 1282 if (block && max) 1283 e4b->bd_info->bb_fragments--; 1284 else if (!block && !max) 1285 e4b->bd_info->bb_fragments++; 1286 1287 /* let's maintain buddy itself */ 1288 while (count-- > 0) { 1289 block = first++; 1290 order = 0; 1291 1292 if (!mb_test_bit(block, e4b->bd_bitmap)) { 1293 ext4_fsblk_t blocknr; 1294 1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1296 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1297 ext4_grp_locked_error(sb, e4b->bd_group, 1298 inode ? inode->i_ino : 0, 1299 blocknr, 1300 "freeing already freed block " 1301 "(bit %u)", block); 1302 } 1303 mb_clear_bit(block, e4b->bd_bitmap); 1304 e4b->bd_info->bb_counters[order]++; 1305 1306 /* start of the buddy */ 1307 buddy = mb_find_buddy(e4b, order, &max); 1308 1309 do { 1310 block &= ~1UL; 1311 if (mb_test_bit(block, buddy) || 1312 mb_test_bit(block + 1, buddy)) 1313 break; 1314 1315 /* both the buddies are free, try to coalesce them */ 1316 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1317 1318 if (!buddy2) 1319 break; 1320 1321 if (order > 0) { 1322 /* for special purposes, we don't set 1323 * free bits in bitmap */ 1324 mb_set_bit(block, buddy); 1325 mb_set_bit(block + 1, buddy); 1326 } 1327 e4b->bd_info->bb_counters[order]--; 1328 e4b->bd_info->bb_counters[order]--; 1329 1330 block = block >> 1; 1331 order++; 1332 e4b->bd_info->bb_counters[order]++; 1333 1334 mb_clear_bit(block, buddy2); 1335 buddy = buddy2; 1336 } while (1); 1337 } 1338 mb_set_largest_free_order(sb, e4b->bd_info); 1339 mb_check_buddy(e4b); 1340 } 1341 1342 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1343 int needed, struct ext4_free_extent *ex) 1344 { 1345 int next = block; 1346 int max, order; 1347 void *buddy; 1348 1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1350 BUG_ON(ex == NULL); 1351 1352 buddy = mb_find_buddy(e4b, 0, &max); 1353 BUG_ON(buddy == NULL); 1354 BUG_ON(block >= max); 1355 if (mb_test_bit(block, buddy)) { 1356 ex->fe_len = 0; 1357 ex->fe_start = 0; 1358 ex->fe_group = 0; 1359 return 0; 1360 } 1361 1362 /* find actual order */ 1363 order = mb_find_order_for_block(e4b, block); 1364 block = block >> order; 1365 1366 ex->fe_len = 1 << order; 1367 ex->fe_start = block << order; 1368 ex->fe_group = e4b->bd_group; 1369 1370 /* calc difference from given start */ 1371 next = next - ex->fe_start; 1372 ex->fe_len -= next; 1373 ex->fe_start += next; 1374 1375 while (needed > ex->fe_len && 1376 mb_find_buddy(e4b, order, &max)) { 1377 1378 if (block + 1 >= max) 1379 break; 1380 1381 next = (block + 1) * (1 << order); 1382 if (mb_test_bit(next, e4b->bd_bitmap)) 1383 break; 1384 1385 order = mb_find_order_for_block(e4b, next); 1386 1387 block = next >> order; 1388 ex->fe_len += 1 << order; 1389 } 1390 1391 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1392 return ex->fe_len; 1393 } 1394 1395 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1396 { 1397 int ord; 1398 int mlen = 0; 1399 int max = 0; 1400 int cur; 1401 int start = ex->fe_start; 1402 int len = ex->fe_len; 1403 unsigned ret = 0; 1404 int len0 = len; 1405 void *buddy; 1406 1407 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1408 BUG_ON(e4b->bd_group != ex->fe_group); 1409 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1410 mb_check_buddy(e4b); 1411 mb_mark_used_double(e4b, start, len); 1412 1413 e4b->bd_info->bb_free -= len; 1414 if (e4b->bd_info->bb_first_free == start) 1415 e4b->bd_info->bb_first_free += len; 1416 1417 /* let's maintain fragments counter */ 1418 if (start != 0) 1419 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1420 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1421 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1422 if (mlen && max) 1423 e4b->bd_info->bb_fragments++; 1424 else if (!mlen && !max) 1425 e4b->bd_info->bb_fragments--; 1426 1427 /* let's maintain buddy itself */ 1428 while (len) { 1429 ord = mb_find_order_for_block(e4b, start); 1430 1431 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1432 /* the whole chunk may be allocated at once! */ 1433 mlen = 1 << ord; 1434 buddy = mb_find_buddy(e4b, ord, &max); 1435 BUG_ON((start >> ord) >= max); 1436 mb_set_bit(start >> ord, buddy); 1437 e4b->bd_info->bb_counters[ord]--; 1438 start += mlen; 1439 len -= mlen; 1440 BUG_ON(len < 0); 1441 continue; 1442 } 1443 1444 /* store for history */ 1445 if (ret == 0) 1446 ret = len | (ord << 16); 1447 1448 /* we have to split large buddy */ 1449 BUG_ON(ord <= 0); 1450 buddy = mb_find_buddy(e4b, ord, &max); 1451 mb_set_bit(start >> ord, buddy); 1452 e4b->bd_info->bb_counters[ord]--; 1453 1454 ord--; 1455 cur = (start >> ord) & ~1U; 1456 buddy = mb_find_buddy(e4b, ord, &max); 1457 mb_clear_bit(cur, buddy); 1458 mb_clear_bit(cur + 1, buddy); 1459 e4b->bd_info->bb_counters[ord]++; 1460 e4b->bd_info->bb_counters[ord]++; 1461 } 1462 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1463 1464 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1465 mb_check_buddy(e4b); 1466 1467 return ret; 1468 } 1469 1470 /* 1471 * Must be called under group lock! 1472 */ 1473 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1474 struct ext4_buddy *e4b) 1475 { 1476 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1477 int ret; 1478 1479 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1480 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1481 1482 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1483 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1484 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1485 1486 /* preallocation can change ac_b_ex, thus we store actually 1487 * allocated blocks for history */ 1488 ac->ac_f_ex = ac->ac_b_ex; 1489 1490 ac->ac_status = AC_STATUS_FOUND; 1491 ac->ac_tail = ret & 0xffff; 1492 ac->ac_buddy = ret >> 16; 1493 1494 /* 1495 * take the page reference. We want the page to be pinned 1496 * so that we don't get a ext4_mb_init_cache_call for this 1497 * group until we update the bitmap. That would mean we 1498 * double allocate blocks. The reference is dropped 1499 * in ext4_mb_release_context 1500 */ 1501 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1502 get_page(ac->ac_bitmap_page); 1503 ac->ac_buddy_page = e4b->bd_buddy_page; 1504 get_page(ac->ac_buddy_page); 1505 /* store last allocated for subsequent stream allocation */ 1506 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1507 spin_lock(&sbi->s_md_lock); 1508 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1509 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1510 spin_unlock(&sbi->s_md_lock); 1511 } 1512 } 1513 1514 /* 1515 * regular allocator, for general purposes allocation 1516 */ 1517 1518 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1519 struct ext4_buddy *e4b, 1520 int finish_group) 1521 { 1522 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1523 struct ext4_free_extent *bex = &ac->ac_b_ex; 1524 struct ext4_free_extent *gex = &ac->ac_g_ex; 1525 struct ext4_free_extent ex; 1526 int max; 1527 1528 if (ac->ac_status == AC_STATUS_FOUND) 1529 return; 1530 /* 1531 * We don't want to scan for a whole year 1532 */ 1533 if (ac->ac_found > sbi->s_mb_max_to_scan && 1534 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1535 ac->ac_status = AC_STATUS_BREAK; 1536 return; 1537 } 1538 1539 /* 1540 * Haven't found good chunk so far, let's continue 1541 */ 1542 if (bex->fe_len < gex->fe_len) 1543 return; 1544 1545 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1546 && bex->fe_group == e4b->bd_group) { 1547 /* recheck chunk's availability - we don't know 1548 * when it was found (within this lock-unlock 1549 * period or not) */ 1550 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1551 if (max >= gex->fe_len) { 1552 ext4_mb_use_best_found(ac, e4b); 1553 return; 1554 } 1555 } 1556 } 1557 1558 /* 1559 * The routine checks whether found extent is good enough. If it is, 1560 * then the extent gets marked used and flag is set to the context 1561 * to stop scanning. Otherwise, the extent is compared with the 1562 * previous found extent and if new one is better, then it's stored 1563 * in the context. Later, the best found extent will be used, if 1564 * mballoc can't find good enough extent. 1565 * 1566 * FIXME: real allocation policy is to be designed yet! 1567 */ 1568 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1569 struct ext4_free_extent *ex, 1570 struct ext4_buddy *e4b) 1571 { 1572 struct ext4_free_extent *bex = &ac->ac_b_ex; 1573 struct ext4_free_extent *gex = &ac->ac_g_ex; 1574 1575 BUG_ON(ex->fe_len <= 0); 1576 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1577 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1578 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1579 1580 ac->ac_found++; 1581 1582 /* 1583 * The special case - take what you catch first 1584 */ 1585 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1586 *bex = *ex; 1587 ext4_mb_use_best_found(ac, e4b); 1588 return; 1589 } 1590 1591 /* 1592 * Let's check whether the chuck is good enough 1593 */ 1594 if (ex->fe_len == gex->fe_len) { 1595 *bex = *ex; 1596 ext4_mb_use_best_found(ac, e4b); 1597 return; 1598 } 1599 1600 /* 1601 * If this is first found extent, just store it in the context 1602 */ 1603 if (bex->fe_len == 0) { 1604 *bex = *ex; 1605 return; 1606 } 1607 1608 /* 1609 * If new found extent is better, store it in the context 1610 */ 1611 if (bex->fe_len < gex->fe_len) { 1612 /* if the request isn't satisfied, any found extent 1613 * larger than previous best one is better */ 1614 if (ex->fe_len > bex->fe_len) 1615 *bex = *ex; 1616 } else if (ex->fe_len > gex->fe_len) { 1617 /* if the request is satisfied, then we try to find 1618 * an extent that still satisfy the request, but is 1619 * smaller than previous one */ 1620 if (ex->fe_len < bex->fe_len) 1621 *bex = *ex; 1622 } 1623 1624 ext4_mb_check_limits(ac, e4b, 0); 1625 } 1626 1627 static noinline_for_stack 1628 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1629 struct ext4_buddy *e4b) 1630 { 1631 struct ext4_free_extent ex = ac->ac_b_ex; 1632 ext4_group_t group = ex.fe_group; 1633 int max; 1634 int err; 1635 1636 BUG_ON(ex.fe_len <= 0); 1637 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1638 if (err) 1639 return err; 1640 1641 ext4_lock_group(ac->ac_sb, group); 1642 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1643 1644 if (max > 0) { 1645 ac->ac_b_ex = ex; 1646 ext4_mb_use_best_found(ac, e4b); 1647 } 1648 1649 ext4_unlock_group(ac->ac_sb, group); 1650 ext4_mb_unload_buddy(e4b); 1651 1652 return 0; 1653 } 1654 1655 static noinline_for_stack 1656 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1657 struct ext4_buddy *e4b) 1658 { 1659 ext4_group_t group = ac->ac_g_ex.fe_group; 1660 int max; 1661 int err; 1662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1663 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1664 struct ext4_free_extent ex; 1665 1666 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1667 return 0; 1668 if (grp->bb_free == 0) 1669 return 0; 1670 1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1672 if (err) 1673 return err; 1674 1675 ext4_lock_group(ac->ac_sb, group); 1676 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1677 ac->ac_g_ex.fe_len, &ex); 1678 1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1680 ext4_fsblk_t start; 1681 1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1683 ex.fe_start; 1684 /* use do_div to get remainder (would be 64-bit modulo) */ 1685 if (do_div(start, sbi->s_stripe) == 0) { 1686 ac->ac_found++; 1687 ac->ac_b_ex = ex; 1688 ext4_mb_use_best_found(ac, e4b); 1689 } 1690 } else if (max >= ac->ac_g_ex.fe_len) { 1691 BUG_ON(ex.fe_len <= 0); 1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1694 ac->ac_found++; 1695 ac->ac_b_ex = ex; 1696 ext4_mb_use_best_found(ac, e4b); 1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1698 /* Sometimes, caller may want to merge even small 1699 * number of blocks to an existing extent */ 1700 BUG_ON(ex.fe_len <= 0); 1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1703 ac->ac_found++; 1704 ac->ac_b_ex = ex; 1705 ext4_mb_use_best_found(ac, e4b); 1706 } 1707 ext4_unlock_group(ac->ac_sb, group); 1708 ext4_mb_unload_buddy(e4b); 1709 1710 return 0; 1711 } 1712 1713 /* 1714 * The routine scans buddy structures (not bitmap!) from given order 1715 * to max order and tries to find big enough chunk to satisfy the req 1716 */ 1717 static noinline_for_stack 1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1719 struct ext4_buddy *e4b) 1720 { 1721 struct super_block *sb = ac->ac_sb; 1722 struct ext4_group_info *grp = e4b->bd_info; 1723 void *buddy; 1724 int i; 1725 int k; 1726 int max; 1727 1728 BUG_ON(ac->ac_2order <= 0); 1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1730 if (grp->bb_counters[i] == 0) 1731 continue; 1732 1733 buddy = mb_find_buddy(e4b, i, &max); 1734 BUG_ON(buddy == NULL); 1735 1736 k = mb_find_next_zero_bit(buddy, max, 0); 1737 BUG_ON(k >= max); 1738 1739 ac->ac_found++; 1740 1741 ac->ac_b_ex.fe_len = 1 << i; 1742 ac->ac_b_ex.fe_start = k << i; 1743 ac->ac_b_ex.fe_group = e4b->bd_group; 1744 1745 ext4_mb_use_best_found(ac, e4b); 1746 1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1748 1749 if (EXT4_SB(sb)->s_mb_stats) 1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1751 1752 break; 1753 } 1754 } 1755 1756 /* 1757 * The routine scans the group and measures all found extents. 1758 * In order to optimize scanning, caller must pass number of 1759 * free blocks in the group, so the routine can know upper limit. 1760 */ 1761 static noinline_for_stack 1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1763 struct ext4_buddy *e4b) 1764 { 1765 struct super_block *sb = ac->ac_sb; 1766 void *bitmap = e4b->bd_bitmap; 1767 struct ext4_free_extent ex; 1768 int i; 1769 int free; 1770 1771 free = e4b->bd_info->bb_free; 1772 BUG_ON(free <= 0); 1773 1774 i = e4b->bd_info->bb_first_free; 1775 1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1777 i = mb_find_next_zero_bit(bitmap, 1778 EXT4_CLUSTERS_PER_GROUP(sb), i); 1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1780 /* 1781 * IF we have corrupt bitmap, we won't find any 1782 * free blocks even though group info says we 1783 * we have free blocks 1784 */ 1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1786 "%d free clusters as per " 1787 "group info. But bitmap says 0", 1788 free); 1789 break; 1790 } 1791 1792 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1793 BUG_ON(ex.fe_len <= 0); 1794 if (free < ex.fe_len) { 1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1796 "%d free clusters as per " 1797 "group info. But got %d blocks", 1798 free, ex.fe_len); 1799 /* 1800 * The number of free blocks differs. This mostly 1801 * indicate that the bitmap is corrupt. So exit 1802 * without claiming the space. 1803 */ 1804 break; 1805 } 1806 1807 ext4_mb_measure_extent(ac, &ex, e4b); 1808 1809 i += ex.fe_len; 1810 free -= ex.fe_len; 1811 } 1812 1813 ext4_mb_check_limits(ac, e4b, 1); 1814 } 1815 1816 /* 1817 * This is a special case for storages like raid5 1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1819 */ 1820 static noinline_for_stack 1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1822 struct ext4_buddy *e4b) 1823 { 1824 struct super_block *sb = ac->ac_sb; 1825 struct ext4_sb_info *sbi = EXT4_SB(sb); 1826 void *bitmap = e4b->bd_bitmap; 1827 struct ext4_free_extent ex; 1828 ext4_fsblk_t first_group_block; 1829 ext4_fsblk_t a; 1830 ext4_grpblk_t i; 1831 int max; 1832 1833 BUG_ON(sbi->s_stripe == 0); 1834 1835 /* find first stripe-aligned block in group */ 1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1837 1838 a = first_group_block + sbi->s_stripe - 1; 1839 do_div(a, sbi->s_stripe); 1840 i = (a * sbi->s_stripe) - first_group_block; 1841 1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1843 if (!mb_test_bit(i, bitmap)) { 1844 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1845 if (max >= sbi->s_stripe) { 1846 ac->ac_found++; 1847 ac->ac_b_ex = ex; 1848 ext4_mb_use_best_found(ac, e4b); 1849 break; 1850 } 1851 } 1852 i += sbi->s_stripe; 1853 } 1854 } 1855 1856 /* This is now called BEFORE we load the buddy bitmap. */ 1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1858 ext4_group_t group, int cr) 1859 { 1860 unsigned free, fragments; 1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1863 1864 BUG_ON(cr < 0 || cr >= 4); 1865 1866 free = grp->bb_free; 1867 if (free == 0) 1868 return 0; 1869 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 1870 return 0; 1871 1872 /* We only do this if the grp has never been initialized */ 1873 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1874 int ret = ext4_mb_init_group(ac->ac_sb, group); 1875 if (ret) 1876 return 0; 1877 } 1878 1879 fragments = grp->bb_fragments; 1880 if (fragments == 0) 1881 return 0; 1882 1883 switch (cr) { 1884 case 0: 1885 BUG_ON(ac->ac_2order == 0); 1886 1887 if (grp->bb_largest_free_order < ac->ac_2order) 1888 return 0; 1889 1890 /* Avoid using the first bg of a flexgroup for data files */ 1891 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1892 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1893 ((group % flex_size) == 0)) 1894 return 0; 1895 1896 return 1; 1897 case 1: 1898 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1899 return 1; 1900 break; 1901 case 2: 1902 if (free >= ac->ac_g_ex.fe_len) 1903 return 1; 1904 break; 1905 case 3: 1906 return 1; 1907 default: 1908 BUG(); 1909 } 1910 1911 return 0; 1912 } 1913 1914 static noinline_for_stack int 1915 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1916 { 1917 ext4_group_t ngroups, group, i; 1918 int cr; 1919 int err = 0; 1920 struct ext4_sb_info *sbi; 1921 struct super_block *sb; 1922 struct ext4_buddy e4b; 1923 1924 sb = ac->ac_sb; 1925 sbi = EXT4_SB(sb); 1926 ngroups = ext4_get_groups_count(sb); 1927 /* non-extent files are limited to low blocks/groups */ 1928 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1929 ngroups = sbi->s_blockfile_groups; 1930 1931 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1932 1933 /* first, try the goal */ 1934 err = ext4_mb_find_by_goal(ac, &e4b); 1935 if (err || ac->ac_status == AC_STATUS_FOUND) 1936 goto out; 1937 1938 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1939 goto out; 1940 1941 /* 1942 * ac->ac2_order is set only if the fe_len is a power of 2 1943 * if ac2_order is set we also set criteria to 0 so that we 1944 * try exact allocation using buddy. 1945 */ 1946 i = fls(ac->ac_g_ex.fe_len); 1947 ac->ac_2order = 0; 1948 /* 1949 * We search using buddy data only if the order of the request 1950 * is greater than equal to the sbi_s_mb_order2_reqs 1951 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1952 */ 1953 if (i >= sbi->s_mb_order2_reqs) { 1954 /* 1955 * This should tell if fe_len is exactly power of 2 1956 */ 1957 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1958 ac->ac_2order = i - 1; 1959 } 1960 1961 /* if stream allocation is enabled, use global goal */ 1962 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1963 /* TBD: may be hot point */ 1964 spin_lock(&sbi->s_md_lock); 1965 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 1966 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 1967 spin_unlock(&sbi->s_md_lock); 1968 } 1969 1970 /* Let's just scan groups to find more-less suitable blocks */ 1971 cr = ac->ac_2order ? 0 : 1; 1972 /* 1973 * cr == 0 try to get exact allocation, 1974 * cr == 3 try to get anything 1975 */ 1976 repeat: 1977 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 1978 ac->ac_criteria = cr; 1979 /* 1980 * searching for the right group start 1981 * from the goal value specified 1982 */ 1983 group = ac->ac_g_ex.fe_group; 1984 1985 for (i = 0; i < ngroups; group++, i++) { 1986 if (group == ngroups) 1987 group = 0; 1988 1989 /* This now checks without needing the buddy page */ 1990 if (!ext4_mb_good_group(ac, group, cr)) 1991 continue; 1992 1993 err = ext4_mb_load_buddy(sb, group, &e4b); 1994 if (err) 1995 goto out; 1996 1997 ext4_lock_group(sb, group); 1998 1999 /* 2000 * We need to check again after locking the 2001 * block group 2002 */ 2003 if (!ext4_mb_good_group(ac, group, cr)) { 2004 ext4_unlock_group(sb, group); 2005 ext4_mb_unload_buddy(&e4b); 2006 continue; 2007 } 2008 2009 ac->ac_groups_scanned++; 2010 if (cr == 0) 2011 ext4_mb_simple_scan_group(ac, &e4b); 2012 else if (cr == 1 && sbi->s_stripe && 2013 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2014 ext4_mb_scan_aligned(ac, &e4b); 2015 else 2016 ext4_mb_complex_scan_group(ac, &e4b); 2017 2018 ext4_unlock_group(sb, group); 2019 ext4_mb_unload_buddy(&e4b); 2020 2021 if (ac->ac_status != AC_STATUS_CONTINUE) 2022 break; 2023 } 2024 } 2025 2026 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2027 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2028 /* 2029 * We've been searching too long. Let's try to allocate 2030 * the best chunk we've found so far 2031 */ 2032 2033 ext4_mb_try_best_found(ac, &e4b); 2034 if (ac->ac_status != AC_STATUS_FOUND) { 2035 /* 2036 * Someone more lucky has already allocated it. 2037 * The only thing we can do is just take first 2038 * found block(s) 2039 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2040 */ 2041 ac->ac_b_ex.fe_group = 0; 2042 ac->ac_b_ex.fe_start = 0; 2043 ac->ac_b_ex.fe_len = 0; 2044 ac->ac_status = AC_STATUS_CONTINUE; 2045 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2046 cr = 3; 2047 atomic_inc(&sbi->s_mb_lost_chunks); 2048 goto repeat; 2049 } 2050 } 2051 out: 2052 return err; 2053 } 2054 2055 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2056 { 2057 struct super_block *sb = seq->private; 2058 ext4_group_t group; 2059 2060 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2061 return NULL; 2062 group = *pos + 1; 2063 return (void *) ((unsigned long) group); 2064 } 2065 2066 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2067 { 2068 struct super_block *sb = seq->private; 2069 ext4_group_t group; 2070 2071 ++*pos; 2072 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2073 return NULL; 2074 group = *pos + 1; 2075 return (void *) ((unsigned long) group); 2076 } 2077 2078 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2079 { 2080 struct super_block *sb = seq->private; 2081 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2082 int i; 2083 int err, buddy_loaded = 0; 2084 struct ext4_buddy e4b; 2085 struct ext4_group_info *grinfo; 2086 struct sg { 2087 struct ext4_group_info info; 2088 ext4_grpblk_t counters[16]; 2089 } sg; 2090 2091 group--; 2092 if (group == 0) 2093 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2094 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2095 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2096 "group", "free", "frags", "first", 2097 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2098 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2099 2100 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2101 sizeof(struct ext4_group_info); 2102 grinfo = ext4_get_group_info(sb, group); 2103 /* Load the group info in memory only if not already loaded. */ 2104 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2105 err = ext4_mb_load_buddy(sb, group, &e4b); 2106 if (err) { 2107 seq_printf(seq, "#%-5u: I/O error\n", group); 2108 return 0; 2109 } 2110 buddy_loaded = 1; 2111 } 2112 2113 memcpy(&sg, ext4_get_group_info(sb, group), i); 2114 2115 if (buddy_loaded) 2116 ext4_mb_unload_buddy(&e4b); 2117 2118 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2119 sg.info.bb_fragments, sg.info.bb_first_free); 2120 for (i = 0; i <= 13; i++) 2121 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2122 sg.info.bb_counters[i] : 0); 2123 seq_printf(seq, " ]\n"); 2124 2125 return 0; 2126 } 2127 2128 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2129 { 2130 } 2131 2132 static const struct seq_operations ext4_mb_seq_groups_ops = { 2133 .start = ext4_mb_seq_groups_start, 2134 .next = ext4_mb_seq_groups_next, 2135 .stop = ext4_mb_seq_groups_stop, 2136 .show = ext4_mb_seq_groups_show, 2137 }; 2138 2139 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2140 { 2141 struct super_block *sb = PDE(inode)->data; 2142 int rc; 2143 2144 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2145 if (rc == 0) { 2146 struct seq_file *m = file->private_data; 2147 m->private = sb; 2148 } 2149 return rc; 2150 2151 } 2152 2153 static const struct file_operations ext4_mb_seq_groups_fops = { 2154 .owner = THIS_MODULE, 2155 .open = ext4_mb_seq_groups_open, 2156 .read = seq_read, 2157 .llseek = seq_lseek, 2158 .release = seq_release, 2159 }; 2160 2161 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2162 { 2163 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2164 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2165 2166 BUG_ON(!cachep); 2167 return cachep; 2168 } 2169 2170 /* 2171 * Allocate the top-level s_group_info array for the specified number 2172 * of groups 2173 */ 2174 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2175 { 2176 struct ext4_sb_info *sbi = EXT4_SB(sb); 2177 unsigned size; 2178 struct ext4_group_info ***new_groupinfo; 2179 2180 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2181 EXT4_DESC_PER_BLOCK_BITS(sb); 2182 if (size <= sbi->s_group_info_size) 2183 return 0; 2184 2185 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2186 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2187 if (!new_groupinfo) { 2188 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2189 return -ENOMEM; 2190 } 2191 if (sbi->s_group_info) { 2192 memcpy(new_groupinfo, sbi->s_group_info, 2193 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2194 ext4_kvfree(sbi->s_group_info); 2195 } 2196 sbi->s_group_info = new_groupinfo; 2197 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2198 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2199 sbi->s_group_info_size); 2200 return 0; 2201 } 2202 2203 /* Create and initialize ext4_group_info data for the given group. */ 2204 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2205 struct ext4_group_desc *desc) 2206 { 2207 int i; 2208 int metalen = 0; 2209 struct ext4_sb_info *sbi = EXT4_SB(sb); 2210 struct ext4_group_info **meta_group_info; 2211 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2212 2213 /* 2214 * First check if this group is the first of a reserved block. 2215 * If it's true, we have to allocate a new table of pointers 2216 * to ext4_group_info structures 2217 */ 2218 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2219 metalen = sizeof(*meta_group_info) << 2220 EXT4_DESC_PER_BLOCK_BITS(sb); 2221 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2222 if (meta_group_info == NULL) { 2223 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2224 "for a buddy group"); 2225 goto exit_meta_group_info; 2226 } 2227 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2228 meta_group_info; 2229 } 2230 2231 meta_group_info = 2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2233 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2234 2235 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2236 if (meta_group_info[i] == NULL) { 2237 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2238 goto exit_group_info; 2239 } 2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2241 &(meta_group_info[i]->bb_state)); 2242 2243 /* 2244 * initialize bb_free to be able to skip 2245 * empty groups without initialization 2246 */ 2247 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2248 meta_group_info[i]->bb_free = 2249 ext4_free_clusters_after_init(sb, group, desc); 2250 } else { 2251 meta_group_info[i]->bb_free = 2252 ext4_free_group_clusters(sb, desc); 2253 } 2254 2255 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2256 init_rwsem(&meta_group_info[i]->alloc_sem); 2257 meta_group_info[i]->bb_free_root = RB_ROOT; 2258 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2259 2260 #ifdef DOUBLE_CHECK 2261 { 2262 struct buffer_head *bh; 2263 meta_group_info[i]->bb_bitmap = 2264 kmalloc(sb->s_blocksize, GFP_KERNEL); 2265 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2266 bh = ext4_read_block_bitmap(sb, group); 2267 BUG_ON(bh == NULL); 2268 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2269 sb->s_blocksize); 2270 put_bh(bh); 2271 } 2272 #endif 2273 2274 return 0; 2275 2276 exit_group_info: 2277 /* If a meta_group_info table has been allocated, release it now */ 2278 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2279 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2280 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2281 } 2282 exit_meta_group_info: 2283 return -ENOMEM; 2284 } /* ext4_mb_add_groupinfo */ 2285 2286 static int ext4_mb_init_backend(struct super_block *sb) 2287 { 2288 ext4_group_t ngroups = ext4_get_groups_count(sb); 2289 ext4_group_t i; 2290 struct ext4_sb_info *sbi = EXT4_SB(sb); 2291 int err; 2292 struct ext4_group_desc *desc; 2293 struct kmem_cache *cachep; 2294 2295 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2296 if (err) 2297 return err; 2298 2299 sbi->s_buddy_cache = new_inode(sb); 2300 if (sbi->s_buddy_cache == NULL) { 2301 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2302 goto err_freesgi; 2303 } 2304 /* To avoid potentially colliding with an valid on-disk inode number, 2305 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2306 * not in the inode hash, so it should never be found by iget(), but 2307 * this will avoid confusion if it ever shows up during debugging. */ 2308 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2309 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2310 for (i = 0; i < ngroups; i++) { 2311 desc = ext4_get_group_desc(sb, i, NULL); 2312 if (desc == NULL) { 2313 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2314 goto err_freebuddy; 2315 } 2316 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2317 goto err_freebuddy; 2318 } 2319 2320 return 0; 2321 2322 err_freebuddy: 2323 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2324 while (i-- > 0) 2325 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2326 i = sbi->s_group_info_size; 2327 while (i-- > 0) 2328 kfree(sbi->s_group_info[i]); 2329 iput(sbi->s_buddy_cache); 2330 err_freesgi: 2331 ext4_kvfree(sbi->s_group_info); 2332 return -ENOMEM; 2333 } 2334 2335 static void ext4_groupinfo_destroy_slabs(void) 2336 { 2337 int i; 2338 2339 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2340 if (ext4_groupinfo_caches[i]) 2341 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2342 ext4_groupinfo_caches[i] = NULL; 2343 } 2344 } 2345 2346 static int ext4_groupinfo_create_slab(size_t size) 2347 { 2348 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2349 int slab_size; 2350 int blocksize_bits = order_base_2(size); 2351 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2352 struct kmem_cache *cachep; 2353 2354 if (cache_index >= NR_GRPINFO_CACHES) 2355 return -EINVAL; 2356 2357 if (unlikely(cache_index < 0)) 2358 cache_index = 0; 2359 2360 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2361 if (ext4_groupinfo_caches[cache_index]) { 2362 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2363 return 0; /* Already created */ 2364 } 2365 2366 slab_size = offsetof(struct ext4_group_info, 2367 bb_counters[blocksize_bits + 2]); 2368 2369 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2370 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2371 NULL); 2372 2373 ext4_groupinfo_caches[cache_index] = cachep; 2374 2375 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2376 if (!cachep) { 2377 printk(KERN_EMERG 2378 "EXT4-fs: no memory for groupinfo slab cache\n"); 2379 return -ENOMEM; 2380 } 2381 2382 return 0; 2383 } 2384 2385 int ext4_mb_init(struct super_block *sb) 2386 { 2387 struct ext4_sb_info *sbi = EXT4_SB(sb); 2388 unsigned i, j; 2389 unsigned offset; 2390 unsigned max; 2391 int ret; 2392 2393 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2394 2395 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2396 if (sbi->s_mb_offsets == NULL) { 2397 ret = -ENOMEM; 2398 goto out; 2399 } 2400 2401 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2402 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2403 if (sbi->s_mb_maxs == NULL) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 2408 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2409 if (ret < 0) 2410 goto out; 2411 2412 /* order 0 is regular bitmap */ 2413 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2414 sbi->s_mb_offsets[0] = 0; 2415 2416 i = 1; 2417 offset = 0; 2418 max = sb->s_blocksize << 2; 2419 do { 2420 sbi->s_mb_offsets[i] = offset; 2421 sbi->s_mb_maxs[i] = max; 2422 offset += 1 << (sb->s_blocksize_bits - i); 2423 max = max >> 1; 2424 i++; 2425 } while (i <= sb->s_blocksize_bits + 1); 2426 2427 spin_lock_init(&sbi->s_md_lock); 2428 spin_lock_init(&sbi->s_bal_lock); 2429 2430 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2431 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2432 sbi->s_mb_stats = MB_DEFAULT_STATS; 2433 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2434 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2435 /* 2436 * The default group preallocation is 512, which for 4k block 2437 * sizes translates to 2 megabytes. However for bigalloc file 2438 * systems, this is probably too big (i.e, if the cluster size 2439 * is 1 megabyte, then group preallocation size becomes half a 2440 * gigabyte!). As a default, we will keep a two megabyte 2441 * group pralloc size for cluster sizes up to 64k, and after 2442 * that, we will force a minimum group preallocation size of 2443 * 32 clusters. This translates to 8 megs when the cluster 2444 * size is 256k, and 32 megs when the cluster size is 1 meg, 2445 * which seems reasonable as a default. 2446 */ 2447 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2448 sbi->s_cluster_bits, 32); 2449 /* 2450 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2451 * to the lowest multiple of s_stripe which is bigger than 2452 * the s_mb_group_prealloc as determined above. We want 2453 * the preallocation size to be an exact multiple of the 2454 * RAID stripe size so that preallocations don't fragment 2455 * the stripes. 2456 */ 2457 if (sbi->s_stripe > 1) { 2458 sbi->s_mb_group_prealloc = roundup( 2459 sbi->s_mb_group_prealloc, sbi->s_stripe); 2460 } 2461 2462 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2463 if (sbi->s_locality_groups == NULL) { 2464 ret = -ENOMEM; 2465 goto out_free_groupinfo_slab; 2466 } 2467 for_each_possible_cpu(i) { 2468 struct ext4_locality_group *lg; 2469 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2470 mutex_init(&lg->lg_mutex); 2471 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2472 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2473 spin_lock_init(&lg->lg_prealloc_lock); 2474 } 2475 2476 /* init file for buddy data */ 2477 ret = ext4_mb_init_backend(sb); 2478 if (ret != 0) 2479 goto out_free_locality_groups; 2480 2481 if (sbi->s_proc) 2482 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2483 &ext4_mb_seq_groups_fops, sb); 2484 2485 return 0; 2486 2487 out_free_locality_groups: 2488 free_percpu(sbi->s_locality_groups); 2489 sbi->s_locality_groups = NULL; 2490 out_free_groupinfo_slab: 2491 ext4_groupinfo_destroy_slabs(); 2492 out: 2493 kfree(sbi->s_mb_offsets); 2494 sbi->s_mb_offsets = NULL; 2495 kfree(sbi->s_mb_maxs); 2496 sbi->s_mb_maxs = NULL; 2497 return ret; 2498 } 2499 2500 /* need to called with the ext4 group lock held */ 2501 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2502 { 2503 struct ext4_prealloc_space *pa; 2504 struct list_head *cur, *tmp; 2505 int count = 0; 2506 2507 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2508 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2509 list_del(&pa->pa_group_list); 2510 count++; 2511 kmem_cache_free(ext4_pspace_cachep, pa); 2512 } 2513 if (count) 2514 mb_debug(1, "mballoc: %u PAs left\n", count); 2515 2516 } 2517 2518 int ext4_mb_release(struct super_block *sb) 2519 { 2520 ext4_group_t ngroups = ext4_get_groups_count(sb); 2521 ext4_group_t i; 2522 int num_meta_group_infos; 2523 struct ext4_group_info *grinfo; 2524 struct ext4_sb_info *sbi = EXT4_SB(sb); 2525 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2526 2527 if (sbi->s_proc) 2528 remove_proc_entry("mb_groups", sbi->s_proc); 2529 2530 if (sbi->s_group_info) { 2531 for (i = 0; i < ngroups; i++) { 2532 grinfo = ext4_get_group_info(sb, i); 2533 #ifdef DOUBLE_CHECK 2534 kfree(grinfo->bb_bitmap); 2535 #endif 2536 ext4_lock_group(sb, i); 2537 ext4_mb_cleanup_pa(grinfo); 2538 ext4_unlock_group(sb, i); 2539 kmem_cache_free(cachep, grinfo); 2540 } 2541 num_meta_group_infos = (ngroups + 2542 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2543 EXT4_DESC_PER_BLOCK_BITS(sb); 2544 for (i = 0; i < num_meta_group_infos; i++) 2545 kfree(sbi->s_group_info[i]); 2546 ext4_kvfree(sbi->s_group_info); 2547 } 2548 kfree(sbi->s_mb_offsets); 2549 kfree(sbi->s_mb_maxs); 2550 if (sbi->s_buddy_cache) 2551 iput(sbi->s_buddy_cache); 2552 if (sbi->s_mb_stats) { 2553 ext4_msg(sb, KERN_INFO, 2554 "mballoc: %u blocks %u reqs (%u success)", 2555 atomic_read(&sbi->s_bal_allocated), 2556 atomic_read(&sbi->s_bal_reqs), 2557 atomic_read(&sbi->s_bal_success)); 2558 ext4_msg(sb, KERN_INFO, 2559 "mballoc: %u extents scanned, %u goal hits, " 2560 "%u 2^N hits, %u breaks, %u lost", 2561 atomic_read(&sbi->s_bal_ex_scanned), 2562 atomic_read(&sbi->s_bal_goals), 2563 atomic_read(&sbi->s_bal_2orders), 2564 atomic_read(&sbi->s_bal_breaks), 2565 atomic_read(&sbi->s_mb_lost_chunks)); 2566 ext4_msg(sb, KERN_INFO, 2567 "mballoc: %lu generated and it took %Lu", 2568 sbi->s_mb_buddies_generated, 2569 sbi->s_mb_generation_time); 2570 ext4_msg(sb, KERN_INFO, 2571 "mballoc: %u preallocated, %u discarded", 2572 atomic_read(&sbi->s_mb_preallocated), 2573 atomic_read(&sbi->s_mb_discarded)); 2574 } 2575 2576 free_percpu(sbi->s_locality_groups); 2577 2578 return 0; 2579 } 2580 2581 static inline int ext4_issue_discard(struct super_block *sb, 2582 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2583 { 2584 ext4_fsblk_t discard_block; 2585 2586 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2587 ext4_group_first_block_no(sb, block_group)); 2588 count = EXT4_C2B(EXT4_SB(sb), count); 2589 trace_ext4_discard_blocks(sb, 2590 (unsigned long long) discard_block, count); 2591 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2592 } 2593 2594 /* 2595 * This function is called by the jbd2 layer once the commit has finished, 2596 * so we know we can free the blocks that were released with that commit. 2597 */ 2598 static void ext4_free_data_callback(struct super_block *sb, 2599 struct ext4_journal_cb_entry *jce, 2600 int rc) 2601 { 2602 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2603 struct ext4_buddy e4b; 2604 struct ext4_group_info *db; 2605 int err, count = 0, count2 = 0; 2606 2607 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2608 entry->efd_count, entry->efd_group, entry); 2609 2610 if (test_opt(sb, DISCARD)) { 2611 err = ext4_issue_discard(sb, entry->efd_group, 2612 entry->efd_start_cluster, 2613 entry->efd_count); 2614 if (err && err != -EOPNOTSUPP) 2615 ext4_msg(sb, KERN_WARNING, "discard request in" 2616 " group:%d block:%d count:%d failed" 2617 " with %d", entry->efd_group, 2618 entry->efd_start_cluster, 2619 entry->efd_count, err); 2620 } 2621 2622 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2623 /* we expect to find existing buddy because it's pinned */ 2624 BUG_ON(err != 0); 2625 2626 2627 db = e4b.bd_info; 2628 /* there are blocks to put in buddy to make them really free */ 2629 count += entry->efd_count; 2630 count2++; 2631 ext4_lock_group(sb, entry->efd_group); 2632 /* Take it out of per group rb tree */ 2633 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2634 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2635 2636 /* 2637 * Clear the trimmed flag for the group so that the next 2638 * ext4_trim_fs can trim it. 2639 * If the volume is mounted with -o discard, online discard 2640 * is supported and the free blocks will be trimmed online. 2641 */ 2642 if (!test_opt(sb, DISCARD)) 2643 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2644 2645 if (!db->bb_free_root.rb_node) { 2646 /* No more items in the per group rb tree 2647 * balance refcounts from ext4_mb_free_metadata() 2648 */ 2649 page_cache_release(e4b.bd_buddy_page); 2650 page_cache_release(e4b.bd_bitmap_page); 2651 } 2652 ext4_unlock_group(sb, entry->efd_group); 2653 kmem_cache_free(ext4_free_data_cachep, entry); 2654 ext4_mb_unload_buddy(&e4b); 2655 2656 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2657 } 2658 2659 #ifdef CONFIG_EXT4_DEBUG 2660 u8 mb_enable_debug __read_mostly; 2661 2662 static struct dentry *debugfs_dir; 2663 static struct dentry *debugfs_debug; 2664 2665 static void __init ext4_create_debugfs_entry(void) 2666 { 2667 debugfs_dir = debugfs_create_dir("ext4", NULL); 2668 if (debugfs_dir) 2669 debugfs_debug = debugfs_create_u8("mballoc-debug", 2670 S_IRUGO | S_IWUSR, 2671 debugfs_dir, 2672 &mb_enable_debug); 2673 } 2674 2675 static void ext4_remove_debugfs_entry(void) 2676 { 2677 debugfs_remove(debugfs_debug); 2678 debugfs_remove(debugfs_dir); 2679 } 2680 2681 #else 2682 2683 static void __init ext4_create_debugfs_entry(void) 2684 { 2685 } 2686 2687 static void ext4_remove_debugfs_entry(void) 2688 { 2689 } 2690 2691 #endif 2692 2693 int __init ext4_init_mballoc(void) 2694 { 2695 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2696 SLAB_RECLAIM_ACCOUNT); 2697 if (ext4_pspace_cachep == NULL) 2698 return -ENOMEM; 2699 2700 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2701 SLAB_RECLAIM_ACCOUNT); 2702 if (ext4_ac_cachep == NULL) { 2703 kmem_cache_destroy(ext4_pspace_cachep); 2704 return -ENOMEM; 2705 } 2706 2707 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2708 SLAB_RECLAIM_ACCOUNT); 2709 if (ext4_free_data_cachep == NULL) { 2710 kmem_cache_destroy(ext4_pspace_cachep); 2711 kmem_cache_destroy(ext4_ac_cachep); 2712 return -ENOMEM; 2713 } 2714 ext4_create_debugfs_entry(); 2715 return 0; 2716 } 2717 2718 void ext4_exit_mballoc(void) 2719 { 2720 /* 2721 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2722 * before destroying the slab cache. 2723 */ 2724 rcu_barrier(); 2725 kmem_cache_destroy(ext4_pspace_cachep); 2726 kmem_cache_destroy(ext4_ac_cachep); 2727 kmem_cache_destroy(ext4_free_data_cachep); 2728 ext4_groupinfo_destroy_slabs(); 2729 ext4_remove_debugfs_entry(); 2730 } 2731 2732 2733 /* 2734 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2735 * Returns 0 if success or error code 2736 */ 2737 static noinline_for_stack int 2738 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2739 handle_t *handle, unsigned int reserv_clstrs) 2740 { 2741 struct buffer_head *bitmap_bh = NULL; 2742 struct ext4_group_desc *gdp; 2743 struct buffer_head *gdp_bh; 2744 struct ext4_sb_info *sbi; 2745 struct super_block *sb; 2746 ext4_fsblk_t block; 2747 int err, len; 2748 2749 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2750 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2751 2752 sb = ac->ac_sb; 2753 sbi = EXT4_SB(sb); 2754 2755 err = -EIO; 2756 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2757 if (!bitmap_bh) 2758 goto out_err; 2759 2760 err = ext4_journal_get_write_access(handle, bitmap_bh); 2761 if (err) 2762 goto out_err; 2763 2764 err = -EIO; 2765 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2766 if (!gdp) 2767 goto out_err; 2768 2769 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2770 ext4_free_group_clusters(sb, gdp)); 2771 2772 err = ext4_journal_get_write_access(handle, gdp_bh); 2773 if (err) 2774 goto out_err; 2775 2776 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2777 2778 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2779 if (!ext4_data_block_valid(sbi, block, len)) { 2780 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2781 "fs metadata", block, block+len); 2782 /* File system mounted not to panic on error 2783 * Fix the bitmap and repeat the block allocation 2784 * We leak some of the blocks here. 2785 */ 2786 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2787 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2788 ac->ac_b_ex.fe_len); 2789 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2790 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2791 if (!err) 2792 err = -EAGAIN; 2793 goto out_err; 2794 } 2795 2796 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2797 #ifdef AGGRESSIVE_CHECK 2798 { 2799 int i; 2800 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2801 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2802 bitmap_bh->b_data)); 2803 } 2804 } 2805 #endif 2806 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2807 ac->ac_b_ex.fe_len); 2808 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2809 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2810 ext4_free_group_clusters_set(sb, gdp, 2811 ext4_free_clusters_after_init(sb, 2812 ac->ac_b_ex.fe_group, gdp)); 2813 } 2814 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2815 ext4_free_group_clusters_set(sb, gdp, len); 2816 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2817 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2818 2819 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2820 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2821 /* 2822 * Now reduce the dirty block count also. Should not go negative 2823 */ 2824 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2825 /* release all the reserved blocks if non delalloc */ 2826 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2827 reserv_clstrs); 2828 2829 if (sbi->s_log_groups_per_flex) { 2830 ext4_group_t flex_group = ext4_flex_group(sbi, 2831 ac->ac_b_ex.fe_group); 2832 atomic_sub(ac->ac_b_ex.fe_len, 2833 &sbi->s_flex_groups[flex_group].free_clusters); 2834 } 2835 2836 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2837 if (err) 2838 goto out_err; 2839 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2840 2841 out_err: 2842 brelse(bitmap_bh); 2843 return err; 2844 } 2845 2846 /* 2847 * here we normalize request for locality group 2848 * Group request are normalized to s_mb_group_prealloc, which goes to 2849 * s_strip if we set the same via mount option. 2850 * s_mb_group_prealloc can be configured via 2851 * /sys/fs/ext4/<partition>/mb_group_prealloc 2852 * 2853 * XXX: should we try to preallocate more than the group has now? 2854 */ 2855 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2856 { 2857 struct super_block *sb = ac->ac_sb; 2858 struct ext4_locality_group *lg = ac->ac_lg; 2859 2860 BUG_ON(lg == NULL); 2861 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2862 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2863 current->pid, ac->ac_g_ex.fe_len); 2864 } 2865 2866 /* 2867 * Normalization means making request better in terms of 2868 * size and alignment 2869 */ 2870 static noinline_for_stack void 2871 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2872 struct ext4_allocation_request *ar) 2873 { 2874 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2875 int bsbits, max; 2876 ext4_lblk_t end; 2877 loff_t size, start_off; 2878 loff_t orig_size __maybe_unused; 2879 ext4_lblk_t start; 2880 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2881 struct ext4_prealloc_space *pa; 2882 2883 /* do normalize only data requests, metadata requests 2884 do not need preallocation */ 2885 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2886 return; 2887 2888 /* sometime caller may want exact blocks */ 2889 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2890 return; 2891 2892 /* caller may indicate that preallocation isn't 2893 * required (it's a tail, for example) */ 2894 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2895 return; 2896 2897 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2898 ext4_mb_normalize_group_request(ac); 2899 return ; 2900 } 2901 2902 bsbits = ac->ac_sb->s_blocksize_bits; 2903 2904 /* first, let's learn actual file size 2905 * given current request is allocated */ 2906 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2907 size = size << bsbits; 2908 if (size < i_size_read(ac->ac_inode)) 2909 size = i_size_read(ac->ac_inode); 2910 orig_size = size; 2911 2912 /* max size of free chunks */ 2913 max = 2 << bsbits; 2914 2915 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2916 (req <= (size) || max <= (chunk_size)) 2917 2918 /* first, try to predict filesize */ 2919 /* XXX: should this table be tunable? */ 2920 start_off = 0; 2921 if (size <= 16 * 1024) { 2922 size = 16 * 1024; 2923 } else if (size <= 32 * 1024) { 2924 size = 32 * 1024; 2925 } else if (size <= 64 * 1024) { 2926 size = 64 * 1024; 2927 } else if (size <= 128 * 1024) { 2928 size = 128 * 1024; 2929 } else if (size <= 256 * 1024) { 2930 size = 256 * 1024; 2931 } else if (size <= 512 * 1024) { 2932 size = 512 * 1024; 2933 } else if (size <= 1024 * 1024) { 2934 size = 1024 * 1024; 2935 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2936 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2937 (21 - bsbits)) << 21; 2938 size = 2 * 1024 * 1024; 2939 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2940 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2941 (22 - bsbits)) << 22; 2942 size = 4 * 1024 * 1024; 2943 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2944 (8<<20)>>bsbits, max, 8 * 1024)) { 2945 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2946 (23 - bsbits)) << 23; 2947 size = 8 * 1024 * 1024; 2948 } else { 2949 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2950 size = ac->ac_o_ex.fe_len << bsbits; 2951 } 2952 size = size >> bsbits; 2953 start = start_off >> bsbits; 2954 2955 /* don't cover already allocated blocks in selected range */ 2956 if (ar->pleft && start <= ar->lleft) { 2957 size -= ar->lleft + 1 - start; 2958 start = ar->lleft + 1; 2959 } 2960 if (ar->pright && start + size - 1 >= ar->lright) 2961 size -= start + size - ar->lright; 2962 2963 end = start + size; 2964 2965 /* check we don't cross already preallocated blocks */ 2966 rcu_read_lock(); 2967 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2968 ext4_lblk_t pa_end; 2969 2970 if (pa->pa_deleted) 2971 continue; 2972 spin_lock(&pa->pa_lock); 2973 if (pa->pa_deleted) { 2974 spin_unlock(&pa->pa_lock); 2975 continue; 2976 } 2977 2978 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2979 pa->pa_len); 2980 2981 /* PA must not overlap original request */ 2982 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2983 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2984 2985 /* skip PAs this normalized request doesn't overlap with */ 2986 if (pa->pa_lstart >= end || pa_end <= start) { 2987 spin_unlock(&pa->pa_lock); 2988 continue; 2989 } 2990 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2991 2992 /* adjust start or end to be adjacent to this pa */ 2993 if (pa_end <= ac->ac_o_ex.fe_logical) { 2994 BUG_ON(pa_end < start); 2995 start = pa_end; 2996 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2997 BUG_ON(pa->pa_lstart > end); 2998 end = pa->pa_lstart; 2999 } 3000 spin_unlock(&pa->pa_lock); 3001 } 3002 rcu_read_unlock(); 3003 size = end - start; 3004 3005 /* XXX: extra loop to check we really don't overlap preallocations */ 3006 rcu_read_lock(); 3007 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3008 ext4_lblk_t pa_end; 3009 3010 spin_lock(&pa->pa_lock); 3011 if (pa->pa_deleted == 0) { 3012 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3013 pa->pa_len); 3014 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3015 } 3016 spin_unlock(&pa->pa_lock); 3017 } 3018 rcu_read_unlock(); 3019 3020 if (start + size <= ac->ac_o_ex.fe_logical && 3021 start > ac->ac_o_ex.fe_logical) { 3022 ext4_msg(ac->ac_sb, KERN_ERR, 3023 "start %lu, size %lu, fe_logical %lu", 3024 (unsigned long) start, (unsigned long) size, 3025 (unsigned long) ac->ac_o_ex.fe_logical); 3026 } 3027 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3028 start > ac->ac_o_ex.fe_logical); 3029 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3030 3031 /* now prepare goal request */ 3032 3033 /* XXX: is it better to align blocks WRT to logical 3034 * placement or satisfy big request as is */ 3035 ac->ac_g_ex.fe_logical = start; 3036 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3037 3038 /* define goal start in order to merge */ 3039 if (ar->pright && (ar->lright == (start + size))) { 3040 /* merge to the right */ 3041 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3042 &ac->ac_f_ex.fe_group, 3043 &ac->ac_f_ex.fe_start); 3044 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3045 } 3046 if (ar->pleft && (ar->lleft + 1 == start)) { 3047 /* merge to the left */ 3048 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3049 &ac->ac_f_ex.fe_group, 3050 &ac->ac_f_ex.fe_start); 3051 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3052 } 3053 3054 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3055 (unsigned) orig_size, (unsigned) start); 3056 } 3057 3058 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3059 { 3060 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3061 3062 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3063 atomic_inc(&sbi->s_bal_reqs); 3064 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3065 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3066 atomic_inc(&sbi->s_bal_success); 3067 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3068 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3069 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3070 atomic_inc(&sbi->s_bal_goals); 3071 if (ac->ac_found > sbi->s_mb_max_to_scan) 3072 atomic_inc(&sbi->s_bal_breaks); 3073 } 3074 3075 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3076 trace_ext4_mballoc_alloc(ac); 3077 else 3078 trace_ext4_mballoc_prealloc(ac); 3079 } 3080 3081 /* 3082 * Called on failure; free up any blocks from the inode PA for this 3083 * context. We don't need this for MB_GROUP_PA because we only change 3084 * pa_free in ext4_mb_release_context(), but on failure, we've already 3085 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3086 */ 3087 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3088 { 3089 struct ext4_prealloc_space *pa = ac->ac_pa; 3090 3091 if (pa && pa->pa_type == MB_INODE_PA) 3092 pa->pa_free += ac->ac_b_ex.fe_len; 3093 } 3094 3095 /* 3096 * use blocks preallocated to inode 3097 */ 3098 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3099 struct ext4_prealloc_space *pa) 3100 { 3101 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3102 ext4_fsblk_t start; 3103 ext4_fsblk_t end; 3104 int len; 3105 3106 /* found preallocated blocks, use them */ 3107 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3108 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3109 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3110 len = EXT4_NUM_B2C(sbi, end - start); 3111 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3112 &ac->ac_b_ex.fe_start); 3113 ac->ac_b_ex.fe_len = len; 3114 ac->ac_status = AC_STATUS_FOUND; 3115 ac->ac_pa = pa; 3116 3117 BUG_ON(start < pa->pa_pstart); 3118 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3119 BUG_ON(pa->pa_free < len); 3120 pa->pa_free -= len; 3121 3122 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3123 } 3124 3125 /* 3126 * use blocks preallocated to locality group 3127 */ 3128 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3129 struct ext4_prealloc_space *pa) 3130 { 3131 unsigned int len = ac->ac_o_ex.fe_len; 3132 3133 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3134 &ac->ac_b_ex.fe_group, 3135 &ac->ac_b_ex.fe_start); 3136 ac->ac_b_ex.fe_len = len; 3137 ac->ac_status = AC_STATUS_FOUND; 3138 ac->ac_pa = pa; 3139 3140 /* we don't correct pa_pstart or pa_plen here to avoid 3141 * possible race when the group is being loaded concurrently 3142 * instead we correct pa later, after blocks are marked 3143 * in on-disk bitmap -- see ext4_mb_release_context() 3144 * Other CPUs are prevented from allocating from this pa by lg_mutex 3145 */ 3146 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3147 } 3148 3149 /* 3150 * Return the prealloc space that have minimal distance 3151 * from the goal block. @cpa is the prealloc 3152 * space that is having currently known minimal distance 3153 * from the goal block. 3154 */ 3155 static struct ext4_prealloc_space * 3156 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3157 struct ext4_prealloc_space *pa, 3158 struct ext4_prealloc_space *cpa) 3159 { 3160 ext4_fsblk_t cur_distance, new_distance; 3161 3162 if (cpa == NULL) { 3163 atomic_inc(&pa->pa_count); 3164 return pa; 3165 } 3166 cur_distance = abs(goal_block - cpa->pa_pstart); 3167 new_distance = abs(goal_block - pa->pa_pstart); 3168 3169 if (cur_distance <= new_distance) 3170 return cpa; 3171 3172 /* drop the previous reference */ 3173 atomic_dec(&cpa->pa_count); 3174 atomic_inc(&pa->pa_count); 3175 return pa; 3176 } 3177 3178 /* 3179 * search goal blocks in preallocated space 3180 */ 3181 static noinline_for_stack int 3182 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3183 { 3184 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3185 int order, i; 3186 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3187 struct ext4_locality_group *lg; 3188 struct ext4_prealloc_space *pa, *cpa = NULL; 3189 ext4_fsblk_t goal_block; 3190 3191 /* only data can be preallocated */ 3192 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3193 return 0; 3194 3195 /* first, try per-file preallocation */ 3196 rcu_read_lock(); 3197 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3198 3199 /* all fields in this condition don't change, 3200 * so we can skip locking for them */ 3201 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3202 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3203 EXT4_C2B(sbi, pa->pa_len))) 3204 continue; 3205 3206 /* non-extent files can't have physical blocks past 2^32 */ 3207 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3208 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3209 EXT4_MAX_BLOCK_FILE_PHYS)) 3210 continue; 3211 3212 /* found preallocated blocks, use them */ 3213 spin_lock(&pa->pa_lock); 3214 if (pa->pa_deleted == 0 && pa->pa_free) { 3215 atomic_inc(&pa->pa_count); 3216 ext4_mb_use_inode_pa(ac, pa); 3217 spin_unlock(&pa->pa_lock); 3218 ac->ac_criteria = 10; 3219 rcu_read_unlock(); 3220 return 1; 3221 } 3222 spin_unlock(&pa->pa_lock); 3223 } 3224 rcu_read_unlock(); 3225 3226 /* can we use group allocation? */ 3227 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3228 return 0; 3229 3230 /* inode may have no locality group for some reason */ 3231 lg = ac->ac_lg; 3232 if (lg == NULL) 3233 return 0; 3234 order = fls(ac->ac_o_ex.fe_len) - 1; 3235 if (order > PREALLOC_TB_SIZE - 1) 3236 /* The max size of hash table is PREALLOC_TB_SIZE */ 3237 order = PREALLOC_TB_SIZE - 1; 3238 3239 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3240 /* 3241 * search for the prealloc space that is having 3242 * minimal distance from the goal block. 3243 */ 3244 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3245 rcu_read_lock(); 3246 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3247 pa_inode_list) { 3248 spin_lock(&pa->pa_lock); 3249 if (pa->pa_deleted == 0 && 3250 pa->pa_free >= ac->ac_o_ex.fe_len) { 3251 3252 cpa = ext4_mb_check_group_pa(goal_block, 3253 pa, cpa); 3254 } 3255 spin_unlock(&pa->pa_lock); 3256 } 3257 rcu_read_unlock(); 3258 } 3259 if (cpa) { 3260 ext4_mb_use_group_pa(ac, cpa); 3261 ac->ac_criteria = 20; 3262 return 1; 3263 } 3264 return 0; 3265 } 3266 3267 /* 3268 * the function goes through all block freed in the group 3269 * but not yet committed and marks them used in in-core bitmap. 3270 * buddy must be generated from this bitmap 3271 * Need to be called with the ext4 group lock held 3272 */ 3273 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3274 ext4_group_t group) 3275 { 3276 struct rb_node *n; 3277 struct ext4_group_info *grp; 3278 struct ext4_free_data *entry; 3279 3280 grp = ext4_get_group_info(sb, group); 3281 n = rb_first(&(grp->bb_free_root)); 3282 3283 while (n) { 3284 entry = rb_entry(n, struct ext4_free_data, efd_node); 3285 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3286 n = rb_next(n); 3287 } 3288 return; 3289 } 3290 3291 /* 3292 * the function goes through all preallocation in this group and marks them 3293 * used in in-core bitmap. buddy must be generated from this bitmap 3294 * Need to be called with ext4 group lock held 3295 */ 3296 static noinline_for_stack 3297 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3298 ext4_group_t group) 3299 { 3300 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3301 struct ext4_prealloc_space *pa; 3302 struct list_head *cur; 3303 ext4_group_t groupnr; 3304 ext4_grpblk_t start; 3305 int preallocated = 0; 3306 int len; 3307 3308 /* all form of preallocation discards first load group, 3309 * so the only competing code is preallocation use. 3310 * we don't need any locking here 3311 * notice we do NOT ignore preallocations with pa_deleted 3312 * otherwise we could leave used blocks available for 3313 * allocation in buddy when concurrent ext4_mb_put_pa() 3314 * is dropping preallocation 3315 */ 3316 list_for_each(cur, &grp->bb_prealloc_list) { 3317 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3318 spin_lock(&pa->pa_lock); 3319 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3320 &groupnr, &start); 3321 len = pa->pa_len; 3322 spin_unlock(&pa->pa_lock); 3323 if (unlikely(len == 0)) 3324 continue; 3325 BUG_ON(groupnr != group); 3326 ext4_set_bits(bitmap, start, len); 3327 preallocated += len; 3328 } 3329 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3330 } 3331 3332 static void ext4_mb_pa_callback(struct rcu_head *head) 3333 { 3334 struct ext4_prealloc_space *pa; 3335 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3336 kmem_cache_free(ext4_pspace_cachep, pa); 3337 } 3338 3339 /* 3340 * drops a reference to preallocated space descriptor 3341 * if this was the last reference and the space is consumed 3342 */ 3343 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3344 struct super_block *sb, struct ext4_prealloc_space *pa) 3345 { 3346 ext4_group_t grp; 3347 ext4_fsblk_t grp_blk; 3348 3349 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3350 return; 3351 3352 /* in this short window concurrent discard can set pa_deleted */ 3353 spin_lock(&pa->pa_lock); 3354 if (pa->pa_deleted == 1) { 3355 spin_unlock(&pa->pa_lock); 3356 return; 3357 } 3358 3359 pa->pa_deleted = 1; 3360 spin_unlock(&pa->pa_lock); 3361 3362 grp_blk = pa->pa_pstart; 3363 /* 3364 * If doing group-based preallocation, pa_pstart may be in the 3365 * next group when pa is used up 3366 */ 3367 if (pa->pa_type == MB_GROUP_PA) 3368 grp_blk--; 3369 3370 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3371 3372 /* 3373 * possible race: 3374 * 3375 * P1 (buddy init) P2 (regular allocation) 3376 * find block B in PA 3377 * copy on-disk bitmap to buddy 3378 * mark B in on-disk bitmap 3379 * drop PA from group 3380 * mark all PAs in buddy 3381 * 3382 * thus, P1 initializes buddy with B available. to prevent this 3383 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3384 * against that pair 3385 */ 3386 ext4_lock_group(sb, grp); 3387 list_del(&pa->pa_group_list); 3388 ext4_unlock_group(sb, grp); 3389 3390 spin_lock(pa->pa_obj_lock); 3391 list_del_rcu(&pa->pa_inode_list); 3392 spin_unlock(pa->pa_obj_lock); 3393 3394 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3395 } 3396 3397 /* 3398 * creates new preallocated space for given inode 3399 */ 3400 static noinline_for_stack int 3401 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3402 { 3403 struct super_block *sb = ac->ac_sb; 3404 struct ext4_sb_info *sbi = EXT4_SB(sb); 3405 struct ext4_prealloc_space *pa; 3406 struct ext4_group_info *grp; 3407 struct ext4_inode_info *ei; 3408 3409 /* preallocate only when found space is larger then requested */ 3410 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3411 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3412 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3413 3414 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3415 if (pa == NULL) 3416 return -ENOMEM; 3417 3418 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3419 int winl; 3420 int wins; 3421 int win; 3422 int offs; 3423 3424 /* we can't allocate as much as normalizer wants. 3425 * so, found space must get proper lstart 3426 * to cover original request */ 3427 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3428 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3429 3430 /* we're limited by original request in that 3431 * logical block must be covered any way 3432 * winl is window we can move our chunk within */ 3433 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3434 3435 /* also, we should cover whole original request */ 3436 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3437 3438 /* the smallest one defines real window */ 3439 win = min(winl, wins); 3440 3441 offs = ac->ac_o_ex.fe_logical % 3442 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3443 if (offs && offs < win) 3444 win = offs; 3445 3446 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3447 EXT4_B2C(sbi, win); 3448 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3449 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3450 } 3451 3452 /* preallocation can change ac_b_ex, thus we store actually 3453 * allocated blocks for history */ 3454 ac->ac_f_ex = ac->ac_b_ex; 3455 3456 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3457 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3458 pa->pa_len = ac->ac_b_ex.fe_len; 3459 pa->pa_free = pa->pa_len; 3460 atomic_set(&pa->pa_count, 1); 3461 spin_lock_init(&pa->pa_lock); 3462 INIT_LIST_HEAD(&pa->pa_inode_list); 3463 INIT_LIST_HEAD(&pa->pa_group_list); 3464 pa->pa_deleted = 0; 3465 pa->pa_type = MB_INODE_PA; 3466 3467 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3468 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3469 trace_ext4_mb_new_inode_pa(ac, pa); 3470 3471 ext4_mb_use_inode_pa(ac, pa); 3472 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3473 3474 ei = EXT4_I(ac->ac_inode); 3475 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3476 3477 pa->pa_obj_lock = &ei->i_prealloc_lock; 3478 pa->pa_inode = ac->ac_inode; 3479 3480 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3481 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3482 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3483 3484 spin_lock(pa->pa_obj_lock); 3485 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3486 spin_unlock(pa->pa_obj_lock); 3487 3488 return 0; 3489 } 3490 3491 /* 3492 * creates new preallocated space for locality group inodes belongs to 3493 */ 3494 static noinline_for_stack int 3495 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3496 { 3497 struct super_block *sb = ac->ac_sb; 3498 struct ext4_locality_group *lg; 3499 struct ext4_prealloc_space *pa; 3500 struct ext4_group_info *grp; 3501 3502 /* preallocate only when found space is larger then requested */ 3503 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3504 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3505 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3506 3507 BUG_ON(ext4_pspace_cachep == NULL); 3508 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3509 if (pa == NULL) 3510 return -ENOMEM; 3511 3512 /* preallocation can change ac_b_ex, thus we store actually 3513 * allocated blocks for history */ 3514 ac->ac_f_ex = ac->ac_b_ex; 3515 3516 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3517 pa->pa_lstart = pa->pa_pstart; 3518 pa->pa_len = ac->ac_b_ex.fe_len; 3519 pa->pa_free = pa->pa_len; 3520 atomic_set(&pa->pa_count, 1); 3521 spin_lock_init(&pa->pa_lock); 3522 INIT_LIST_HEAD(&pa->pa_inode_list); 3523 INIT_LIST_HEAD(&pa->pa_group_list); 3524 pa->pa_deleted = 0; 3525 pa->pa_type = MB_GROUP_PA; 3526 3527 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3528 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3529 trace_ext4_mb_new_group_pa(ac, pa); 3530 3531 ext4_mb_use_group_pa(ac, pa); 3532 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3533 3534 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3535 lg = ac->ac_lg; 3536 BUG_ON(lg == NULL); 3537 3538 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3539 pa->pa_inode = NULL; 3540 3541 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3542 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3543 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3544 3545 /* 3546 * We will later add the new pa to the right bucket 3547 * after updating the pa_free in ext4_mb_release_context 3548 */ 3549 return 0; 3550 } 3551 3552 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3553 { 3554 int err; 3555 3556 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3557 err = ext4_mb_new_group_pa(ac); 3558 else 3559 err = ext4_mb_new_inode_pa(ac); 3560 return err; 3561 } 3562 3563 /* 3564 * finds all unused blocks in on-disk bitmap, frees them in 3565 * in-core bitmap and buddy. 3566 * @pa must be unlinked from inode and group lists, so that 3567 * nobody else can find/use it. 3568 * the caller MUST hold group/inode locks. 3569 * TODO: optimize the case when there are no in-core structures yet 3570 */ 3571 static noinline_for_stack int 3572 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3573 struct ext4_prealloc_space *pa) 3574 { 3575 struct super_block *sb = e4b->bd_sb; 3576 struct ext4_sb_info *sbi = EXT4_SB(sb); 3577 unsigned int end; 3578 unsigned int next; 3579 ext4_group_t group; 3580 ext4_grpblk_t bit; 3581 unsigned long long grp_blk_start; 3582 int err = 0; 3583 int free = 0; 3584 3585 BUG_ON(pa->pa_deleted == 0); 3586 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3587 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3588 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3589 end = bit + pa->pa_len; 3590 3591 while (bit < end) { 3592 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3593 if (bit >= end) 3594 break; 3595 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3596 mb_debug(1, " free preallocated %u/%u in group %u\n", 3597 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3598 (unsigned) next - bit, (unsigned) group); 3599 free += next - bit; 3600 3601 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3602 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3603 EXT4_C2B(sbi, bit)), 3604 next - bit); 3605 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3606 bit = next + 1; 3607 } 3608 if (free != pa->pa_free) { 3609 ext4_msg(e4b->bd_sb, KERN_CRIT, 3610 "pa %p: logic %lu, phys. %lu, len %lu", 3611 pa, (unsigned long) pa->pa_lstart, 3612 (unsigned long) pa->pa_pstart, 3613 (unsigned long) pa->pa_len); 3614 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3615 free, pa->pa_free); 3616 /* 3617 * pa is already deleted so we use the value obtained 3618 * from the bitmap and continue. 3619 */ 3620 } 3621 atomic_add(free, &sbi->s_mb_discarded); 3622 3623 return err; 3624 } 3625 3626 static noinline_for_stack int 3627 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3628 struct ext4_prealloc_space *pa) 3629 { 3630 struct super_block *sb = e4b->bd_sb; 3631 ext4_group_t group; 3632 ext4_grpblk_t bit; 3633 3634 trace_ext4_mb_release_group_pa(sb, pa); 3635 BUG_ON(pa->pa_deleted == 0); 3636 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3637 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3638 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3639 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3640 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3641 3642 return 0; 3643 } 3644 3645 /* 3646 * releases all preallocations in given group 3647 * 3648 * first, we need to decide discard policy: 3649 * - when do we discard 3650 * 1) ENOSPC 3651 * - how many do we discard 3652 * 1) how many requested 3653 */ 3654 static noinline_for_stack int 3655 ext4_mb_discard_group_preallocations(struct super_block *sb, 3656 ext4_group_t group, int needed) 3657 { 3658 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3659 struct buffer_head *bitmap_bh = NULL; 3660 struct ext4_prealloc_space *pa, *tmp; 3661 struct list_head list; 3662 struct ext4_buddy e4b; 3663 int err; 3664 int busy = 0; 3665 int free = 0; 3666 3667 mb_debug(1, "discard preallocation for group %u\n", group); 3668 3669 if (list_empty(&grp->bb_prealloc_list)) 3670 return 0; 3671 3672 bitmap_bh = ext4_read_block_bitmap(sb, group); 3673 if (bitmap_bh == NULL) { 3674 ext4_error(sb, "Error reading block bitmap for %u", group); 3675 return 0; 3676 } 3677 3678 err = ext4_mb_load_buddy(sb, group, &e4b); 3679 if (err) { 3680 ext4_error(sb, "Error loading buddy information for %u", group); 3681 put_bh(bitmap_bh); 3682 return 0; 3683 } 3684 3685 if (needed == 0) 3686 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3687 3688 INIT_LIST_HEAD(&list); 3689 repeat: 3690 ext4_lock_group(sb, group); 3691 list_for_each_entry_safe(pa, tmp, 3692 &grp->bb_prealloc_list, pa_group_list) { 3693 spin_lock(&pa->pa_lock); 3694 if (atomic_read(&pa->pa_count)) { 3695 spin_unlock(&pa->pa_lock); 3696 busy = 1; 3697 continue; 3698 } 3699 if (pa->pa_deleted) { 3700 spin_unlock(&pa->pa_lock); 3701 continue; 3702 } 3703 3704 /* seems this one can be freed ... */ 3705 pa->pa_deleted = 1; 3706 3707 /* we can trust pa_free ... */ 3708 free += pa->pa_free; 3709 3710 spin_unlock(&pa->pa_lock); 3711 3712 list_del(&pa->pa_group_list); 3713 list_add(&pa->u.pa_tmp_list, &list); 3714 } 3715 3716 /* if we still need more blocks and some PAs were used, try again */ 3717 if (free < needed && busy) { 3718 busy = 0; 3719 ext4_unlock_group(sb, group); 3720 /* 3721 * Yield the CPU here so that we don't get soft lockup 3722 * in non preempt case. 3723 */ 3724 yield(); 3725 goto repeat; 3726 } 3727 3728 /* found anything to free? */ 3729 if (list_empty(&list)) { 3730 BUG_ON(free != 0); 3731 goto out; 3732 } 3733 3734 /* now free all selected PAs */ 3735 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3736 3737 /* remove from object (inode or locality group) */ 3738 spin_lock(pa->pa_obj_lock); 3739 list_del_rcu(&pa->pa_inode_list); 3740 spin_unlock(pa->pa_obj_lock); 3741 3742 if (pa->pa_type == MB_GROUP_PA) 3743 ext4_mb_release_group_pa(&e4b, pa); 3744 else 3745 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3746 3747 list_del(&pa->u.pa_tmp_list); 3748 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3749 } 3750 3751 out: 3752 ext4_unlock_group(sb, group); 3753 ext4_mb_unload_buddy(&e4b); 3754 put_bh(bitmap_bh); 3755 return free; 3756 } 3757 3758 /* 3759 * releases all non-used preallocated blocks for given inode 3760 * 3761 * It's important to discard preallocations under i_data_sem 3762 * We don't want another block to be served from the prealloc 3763 * space when we are discarding the inode prealloc space. 3764 * 3765 * FIXME!! Make sure it is valid at all the call sites 3766 */ 3767 void ext4_discard_preallocations(struct inode *inode) 3768 { 3769 struct ext4_inode_info *ei = EXT4_I(inode); 3770 struct super_block *sb = inode->i_sb; 3771 struct buffer_head *bitmap_bh = NULL; 3772 struct ext4_prealloc_space *pa, *tmp; 3773 ext4_group_t group = 0; 3774 struct list_head list; 3775 struct ext4_buddy e4b; 3776 int err; 3777 3778 if (!S_ISREG(inode->i_mode)) { 3779 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3780 return; 3781 } 3782 3783 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3784 trace_ext4_discard_preallocations(inode); 3785 3786 INIT_LIST_HEAD(&list); 3787 3788 repeat: 3789 /* first, collect all pa's in the inode */ 3790 spin_lock(&ei->i_prealloc_lock); 3791 while (!list_empty(&ei->i_prealloc_list)) { 3792 pa = list_entry(ei->i_prealloc_list.next, 3793 struct ext4_prealloc_space, pa_inode_list); 3794 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3795 spin_lock(&pa->pa_lock); 3796 if (atomic_read(&pa->pa_count)) { 3797 /* this shouldn't happen often - nobody should 3798 * use preallocation while we're discarding it */ 3799 spin_unlock(&pa->pa_lock); 3800 spin_unlock(&ei->i_prealloc_lock); 3801 ext4_msg(sb, KERN_ERR, 3802 "uh-oh! used pa while discarding"); 3803 WARN_ON(1); 3804 schedule_timeout_uninterruptible(HZ); 3805 goto repeat; 3806 3807 } 3808 if (pa->pa_deleted == 0) { 3809 pa->pa_deleted = 1; 3810 spin_unlock(&pa->pa_lock); 3811 list_del_rcu(&pa->pa_inode_list); 3812 list_add(&pa->u.pa_tmp_list, &list); 3813 continue; 3814 } 3815 3816 /* someone is deleting pa right now */ 3817 spin_unlock(&pa->pa_lock); 3818 spin_unlock(&ei->i_prealloc_lock); 3819 3820 /* we have to wait here because pa_deleted 3821 * doesn't mean pa is already unlinked from 3822 * the list. as we might be called from 3823 * ->clear_inode() the inode will get freed 3824 * and concurrent thread which is unlinking 3825 * pa from inode's list may access already 3826 * freed memory, bad-bad-bad */ 3827 3828 /* XXX: if this happens too often, we can 3829 * add a flag to force wait only in case 3830 * of ->clear_inode(), but not in case of 3831 * regular truncate */ 3832 schedule_timeout_uninterruptible(HZ); 3833 goto repeat; 3834 } 3835 spin_unlock(&ei->i_prealloc_lock); 3836 3837 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3838 BUG_ON(pa->pa_type != MB_INODE_PA); 3839 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3840 3841 err = ext4_mb_load_buddy(sb, group, &e4b); 3842 if (err) { 3843 ext4_error(sb, "Error loading buddy information for %u", 3844 group); 3845 continue; 3846 } 3847 3848 bitmap_bh = ext4_read_block_bitmap(sb, group); 3849 if (bitmap_bh == NULL) { 3850 ext4_error(sb, "Error reading block bitmap for %u", 3851 group); 3852 ext4_mb_unload_buddy(&e4b); 3853 continue; 3854 } 3855 3856 ext4_lock_group(sb, group); 3857 list_del(&pa->pa_group_list); 3858 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3859 ext4_unlock_group(sb, group); 3860 3861 ext4_mb_unload_buddy(&e4b); 3862 put_bh(bitmap_bh); 3863 3864 list_del(&pa->u.pa_tmp_list); 3865 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3866 } 3867 } 3868 3869 #ifdef CONFIG_EXT4_DEBUG 3870 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3871 { 3872 struct super_block *sb = ac->ac_sb; 3873 ext4_group_t ngroups, i; 3874 3875 if (!mb_enable_debug || 3876 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3877 return; 3878 3879 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3880 " Allocation context details:"); 3881 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3882 ac->ac_status, ac->ac_flags); 3883 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3884 "goal %lu/%lu/%lu@%lu, " 3885 "best %lu/%lu/%lu@%lu cr %d", 3886 (unsigned long)ac->ac_o_ex.fe_group, 3887 (unsigned long)ac->ac_o_ex.fe_start, 3888 (unsigned long)ac->ac_o_ex.fe_len, 3889 (unsigned long)ac->ac_o_ex.fe_logical, 3890 (unsigned long)ac->ac_g_ex.fe_group, 3891 (unsigned long)ac->ac_g_ex.fe_start, 3892 (unsigned long)ac->ac_g_ex.fe_len, 3893 (unsigned long)ac->ac_g_ex.fe_logical, 3894 (unsigned long)ac->ac_b_ex.fe_group, 3895 (unsigned long)ac->ac_b_ex.fe_start, 3896 (unsigned long)ac->ac_b_ex.fe_len, 3897 (unsigned long)ac->ac_b_ex.fe_logical, 3898 (int)ac->ac_criteria); 3899 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3900 ac->ac_ex_scanned, ac->ac_found); 3901 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3902 ngroups = ext4_get_groups_count(sb); 3903 for (i = 0; i < ngroups; i++) { 3904 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3905 struct ext4_prealloc_space *pa; 3906 ext4_grpblk_t start; 3907 struct list_head *cur; 3908 ext4_lock_group(sb, i); 3909 list_for_each(cur, &grp->bb_prealloc_list) { 3910 pa = list_entry(cur, struct ext4_prealloc_space, 3911 pa_group_list); 3912 spin_lock(&pa->pa_lock); 3913 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3914 NULL, &start); 3915 spin_unlock(&pa->pa_lock); 3916 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3917 start, pa->pa_len); 3918 } 3919 ext4_unlock_group(sb, i); 3920 3921 if (grp->bb_free == 0) 3922 continue; 3923 printk(KERN_ERR "%u: %d/%d \n", 3924 i, grp->bb_free, grp->bb_fragments); 3925 } 3926 printk(KERN_ERR "\n"); 3927 } 3928 #else 3929 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3930 { 3931 return; 3932 } 3933 #endif 3934 3935 /* 3936 * We use locality group preallocation for small size file. The size of the 3937 * file is determined by the current size or the resulting size after 3938 * allocation which ever is larger 3939 * 3940 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3941 */ 3942 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3943 { 3944 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3945 int bsbits = ac->ac_sb->s_blocksize_bits; 3946 loff_t size, isize; 3947 3948 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3949 return; 3950 3951 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3952 return; 3953 3954 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3955 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3956 >> bsbits; 3957 3958 if ((size == isize) && 3959 !ext4_fs_is_busy(sbi) && 3960 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3961 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3962 return; 3963 } 3964 3965 if (sbi->s_mb_group_prealloc <= 0) { 3966 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3967 return; 3968 } 3969 3970 /* don't use group allocation for large files */ 3971 size = max(size, isize); 3972 if (size > sbi->s_mb_stream_request) { 3973 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3974 return; 3975 } 3976 3977 BUG_ON(ac->ac_lg != NULL); 3978 /* 3979 * locality group prealloc space are per cpu. The reason for having 3980 * per cpu locality group is to reduce the contention between block 3981 * request from multiple CPUs. 3982 */ 3983 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 3984 3985 /* we're going to use group allocation */ 3986 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3987 3988 /* serialize all allocations in the group */ 3989 mutex_lock(&ac->ac_lg->lg_mutex); 3990 } 3991 3992 static noinline_for_stack int 3993 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3994 struct ext4_allocation_request *ar) 3995 { 3996 struct super_block *sb = ar->inode->i_sb; 3997 struct ext4_sb_info *sbi = EXT4_SB(sb); 3998 struct ext4_super_block *es = sbi->s_es; 3999 ext4_group_t group; 4000 unsigned int len; 4001 ext4_fsblk_t goal; 4002 ext4_grpblk_t block; 4003 4004 /* we can't allocate > group size */ 4005 len = ar->len; 4006 4007 /* just a dirty hack to filter too big requests */ 4008 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10) 4009 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10; 4010 4011 /* start searching from the goal */ 4012 goal = ar->goal; 4013 if (goal < le32_to_cpu(es->s_first_data_block) || 4014 goal >= ext4_blocks_count(es)) 4015 goal = le32_to_cpu(es->s_first_data_block); 4016 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4017 4018 /* set up allocation goals */ 4019 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4020 ac->ac_status = AC_STATUS_CONTINUE; 4021 ac->ac_sb = sb; 4022 ac->ac_inode = ar->inode; 4023 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4024 ac->ac_o_ex.fe_group = group; 4025 ac->ac_o_ex.fe_start = block; 4026 ac->ac_o_ex.fe_len = len; 4027 ac->ac_g_ex = ac->ac_o_ex; 4028 ac->ac_flags = ar->flags; 4029 4030 /* we have to define context: we'll we work with a file or 4031 * locality group. this is a policy, actually */ 4032 ext4_mb_group_or_file(ac); 4033 4034 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4035 "left: %u/%u, right %u/%u to %swritable\n", 4036 (unsigned) ar->len, (unsigned) ar->logical, 4037 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4038 (unsigned) ar->lleft, (unsigned) ar->pleft, 4039 (unsigned) ar->lright, (unsigned) ar->pright, 4040 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4041 return 0; 4042 4043 } 4044 4045 static noinline_for_stack void 4046 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4047 struct ext4_locality_group *lg, 4048 int order, int total_entries) 4049 { 4050 ext4_group_t group = 0; 4051 struct ext4_buddy e4b; 4052 struct list_head discard_list; 4053 struct ext4_prealloc_space *pa, *tmp; 4054 4055 mb_debug(1, "discard locality group preallocation\n"); 4056 4057 INIT_LIST_HEAD(&discard_list); 4058 4059 spin_lock(&lg->lg_prealloc_lock); 4060 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4061 pa_inode_list) { 4062 spin_lock(&pa->pa_lock); 4063 if (atomic_read(&pa->pa_count)) { 4064 /* 4065 * This is the pa that we just used 4066 * for block allocation. So don't 4067 * free that 4068 */ 4069 spin_unlock(&pa->pa_lock); 4070 continue; 4071 } 4072 if (pa->pa_deleted) { 4073 spin_unlock(&pa->pa_lock); 4074 continue; 4075 } 4076 /* only lg prealloc space */ 4077 BUG_ON(pa->pa_type != MB_GROUP_PA); 4078 4079 /* seems this one can be freed ... */ 4080 pa->pa_deleted = 1; 4081 spin_unlock(&pa->pa_lock); 4082 4083 list_del_rcu(&pa->pa_inode_list); 4084 list_add(&pa->u.pa_tmp_list, &discard_list); 4085 4086 total_entries--; 4087 if (total_entries <= 5) { 4088 /* 4089 * we want to keep only 5 entries 4090 * allowing it to grow to 8. This 4091 * mak sure we don't call discard 4092 * soon for this list. 4093 */ 4094 break; 4095 } 4096 } 4097 spin_unlock(&lg->lg_prealloc_lock); 4098 4099 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4100 4101 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4102 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4103 ext4_error(sb, "Error loading buddy information for %u", 4104 group); 4105 continue; 4106 } 4107 ext4_lock_group(sb, group); 4108 list_del(&pa->pa_group_list); 4109 ext4_mb_release_group_pa(&e4b, pa); 4110 ext4_unlock_group(sb, group); 4111 4112 ext4_mb_unload_buddy(&e4b); 4113 list_del(&pa->u.pa_tmp_list); 4114 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4115 } 4116 } 4117 4118 /* 4119 * We have incremented pa_count. So it cannot be freed at this 4120 * point. Also we hold lg_mutex. So no parallel allocation is 4121 * possible from this lg. That means pa_free cannot be updated. 4122 * 4123 * A parallel ext4_mb_discard_group_preallocations is possible. 4124 * which can cause the lg_prealloc_list to be updated. 4125 */ 4126 4127 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4128 { 4129 int order, added = 0, lg_prealloc_count = 1; 4130 struct super_block *sb = ac->ac_sb; 4131 struct ext4_locality_group *lg = ac->ac_lg; 4132 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4133 4134 order = fls(pa->pa_free) - 1; 4135 if (order > PREALLOC_TB_SIZE - 1) 4136 /* The max size of hash table is PREALLOC_TB_SIZE */ 4137 order = PREALLOC_TB_SIZE - 1; 4138 /* Add the prealloc space to lg */ 4139 rcu_read_lock(); 4140 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4141 pa_inode_list) { 4142 spin_lock(&tmp_pa->pa_lock); 4143 if (tmp_pa->pa_deleted) { 4144 spin_unlock(&tmp_pa->pa_lock); 4145 continue; 4146 } 4147 if (!added && pa->pa_free < tmp_pa->pa_free) { 4148 /* Add to the tail of the previous entry */ 4149 list_add_tail_rcu(&pa->pa_inode_list, 4150 &tmp_pa->pa_inode_list); 4151 added = 1; 4152 /* 4153 * we want to count the total 4154 * number of entries in the list 4155 */ 4156 } 4157 spin_unlock(&tmp_pa->pa_lock); 4158 lg_prealloc_count++; 4159 } 4160 if (!added) 4161 list_add_tail_rcu(&pa->pa_inode_list, 4162 &lg->lg_prealloc_list[order]); 4163 rcu_read_unlock(); 4164 4165 /* Now trim the list to be not more than 8 elements */ 4166 if (lg_prealloc_count > 8) { 4167 ext4_mb_discard_lg_preallocations(sb, lg, 4168 order, lg_prealloc_count); 4169 return; 4170 } 4171 return ; 4172 } 4173 4174 /* 4175 * release all resource we used in allocation 4176 */ 4177 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4178 { 4179 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4180 struct ext4_prealloc_space *pa = ac->ac_pa; 4181 if (pa) { 4182 if (pa->pa_type == MB_GROUP_PA) { 4183 /* see comment in ext4_mb_use_group_pa() */ 4184 spin_lock(&pa->pa_lock); 4185 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4186 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4187 pa->pa_free -= ac->ac_b_ex.fe_len; 4188 pa->pa_len -= ac->ac_b_ex.fe_len; 4189 spin_unlock(&pa->pa_lock); 4190 } 4191 } 4192 if (pa) { 4193 /* 4194 * We want to add the pa to the right bucket. 4195 * Remove it from the list and while adding 4196 * make sure the list to which we are adding 4197 * doesn't grow big. 4198 */ 4199 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4200 spin_lock(pa->pa_obj_lock); 4201 list_del_rcu(&pa->pa_inode_list); 4202 spin_unlock(pa->pa_obj_lock); 4203 ext4_mb_add_n_trim(ac); 4204 } 4205 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4206 } 4207 if (ac->ac_bitmap_page) 4208 page_cache_release(ac->ac_bitmap_page); 4209 if (ac->ac_buddy_page) 4210 page_cache_release(ac->ac_buddy_page); 4211 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4212 mutex_unlock(&ac->ac_lg->lg_mutex); 4213 ext4_mb_collect_stats(ac); 4214 return 0; 4215 } 4216 4217 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4218 { 4219 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4220 int ret; 4221 int freed = 0; 4222 4223 trace_ext4_mb_discard_preallocations(sb, needed); 4224 for (i = 0; i < ngroups && needed > 0; i++) { 4225 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4226 freed += ret; 4227 needed -= ret; 4228 } 4229 4230 return freed; 4231 } 4232 4233 /* 4234 * Main entry point into mballoc to allocate blocks 4235 * it tries to use preallocation first, then falls back 4236 * to usual allocation 4237 */ 4238 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4239 struct ext4_allocation_request *ar, int *errp) 4240 { 4241 int freed; 4242 struct ext4_allocation_context *ac = NULL; 4243 struct ext4_sb_info *sbi; 4244 struct super_block *sb; 4245 ext4_fsblk_t block = 0; 4246 unsigned int inquota = 0; 4247 unsigned int reserv_clstrs = 0; 4248 4249 sb = ar->inode->i_sb; 4250 sbi = EXT4_SB(sb); 4251 4252 trace_ext4_request_blocks(ar); 4253 4254 /* Allow to use superuser reservation for quota file */ 4255 if (IS_NOQUOTA(ar->inode)) 4256 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4257 4258 /* 4259 * For delayed allocation, we could skip the ENOSPC and 4260 * EDQUOT check, as blocks and quotas have been already 4261 * reserved when data being copied into pagecache. 4262 */ 4263 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4264 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4265 else { 4266 /* Without delayed allocation we need to verify 4267 * there is enough free blocks to do block allocation 4268 * and verify allocation doesn't exceed the quota limits. 4269 */ 4270 while (ar->len && 4271 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4272 4273 /* let others to free the space */ 4274 yield(); 4275 ar->len = ar->len >> 1; 4276 } 4277 if (!ar->len) { 4278 *errp = -ENOSPC; 4279 return 0; 4280 } 4281 reserv_clstrs = ar->len; 4282 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4283 dquot_alloc_block_nofail(ar->inode, 4284 EXT4_C2B(sbi, ar->len)); 4285 } else { 4286 while (ar->len && 4287 dquot_alloc_block(ar->inode, 4288 EXT4_C2B(sbi, ar->len))) { 4289 4290 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4291 ar->len--; 4292 } 4293 } 4294 inquota = ar->len; 4295 if (ar->len == 0) { 4296 *errp = -EDQUOT; 4297 goto out; 4298 } 4299 } 4300 4301 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4302 if (!ac) { 4303 ar->len = 0; 4304 *errp = -ENOMEM; 4305 goto out; 4306 } 4307 4308 *errp = ext4_mb_initialize_context(ac, ar); 4309 if (*errp) { 4310 ar->len = 0; 4311 goto out; 4312 } 4313 4314 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4315 if (!ext4_mb_use_preallocated(ac)) { 4316 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4317 ext4_mb_normalize_request(ac, ar); 4318 repeat: 4319 /* allocate space in core */ 4320 *errp = ext4_mb_regular_allocator(ac); 4321 if (*errp) { 4322 ext4_discard_allocated_blocks(ac); 4323 goto errout; 4324 } 4325 4326 /* as we've just preallocated more space than 4327 * user requested orinally, we store allocated 4328 * space in a special descriptor */ 4329 if (ac->ac_status == AC_STATUS_FOUND && 4330 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4331 ext4_mb_new_preallocation(ac); 4332 } 4333 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4334 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4335 if (*errp == -EAGAIN) { 4336 /* 4337 * drop the reference that we took 4338 * in ext4_mb_use_best_found 4339 */ 4340 ext4_mb_release_context(ac); 4341 ac->ac_b_ex.fe_group = 0; 4342 ac->ac_b_ex.fe_start = 0; 4343 ac->ac_b_ex.fe_len = 0; 4344 ac->ac_status = AC_STATUS_CONTINUE; 4345 goto repeat; 4346 } else if (*errp) { 4347 ext4_discard_allocated_blocks(ac); 4348 goto errout; 4349 } else { 4350 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4351 ar->len = ac->ac_b_ex.fe_len; 4352 } 4353 } else { 4354 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4355 if (freed) 4356 goto repeat; 4357 *errp = -ENOSPC; 4358 } 4359 4360 errout: 4361 if (*errp) { 4362 ac->ac_b_ex.fe_len = 0; 4363 ar->len = 0; 4364 ext4_mb_show_ac(ac); 4365 } 4366 ext4_mb_release_context(ac); 4367 out: 4368 if (ac) 4369 kmem_cache_free(ext4_ac_cachep, ac); 4370 if (inquota && ar->len < inquota) 4371 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4372 if (!ar->len) { 4373 if (!ext4_test_inode_state(ar->inode, 4374 EXT4_STATE_DELALLOC_RESERVED)) 4375 /* release all the reserved blocks if non delalloc */ 4376 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4377 reserv_clstrs); 4378 } 4379 4380 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4381 4382 return block; 4383 } 4384 4385 /* 4386 * We can merge two free data extents only if the physical blocks 4387 * are contiguous, AND the extents were freed by the same transaction, 4388 * AND the blocks are associated with the same group. 4389 */ 4390 static int can_merge(struct ext4_free_data *entry1, 4391 struct ext4_free_data *entry2) 4392 { 4393 if ((entry1->efd_tid == entry2->efd_tid) && 4394 (entry1->efd_group == entry2->efd_group) && 4395 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4396 return 1; 4397 return 0; 4398 } 4399 4400 static noinline_for_stack int 4401 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4402 struct ext4_free_data *new_entry) 4403 { 4404 ext4_group_t group = e4b->bd_group; 4405 ext4_grpblk_t cluster; 4406 struct ext4_free_data *entry; 4407 struct ext4_group_info *db = e4b->bd_info; 4408 struct super_block *sb = e4b->bd_sb; 4409 struct ext4_sb_info *sbi = EXT4_SB(sb); 4410 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4411 struct rb_node *parent = NULL, *new_node; 4412 4413 BUG_ON(!ext4_handle_valid(handle)); 4414 BUG_ON(e4b->bd_bitmap_page == NULL); 4415 BUG_ON(e4b->bd_buddy_page == NULL); 4416 4417 new_node = &new_entry->efd_node; 4418 cluster = new_entry->efd_start_cluster; 4419 4420 if (!*n) { 4421 /* first free block exent. We need to 4422 protect buddy cache from being freed, 4423 * otherwise we'll refresh it from 4424 * on-disk bitmap and lose not-yet-available 4425 * blocks */ 4426 page_cache_get(e4b->bd_buddy_page); 4427 page_cache_get(e4b->bd_bitmap_page); 4428 } 4429 while (*n) { 4430 parent = *n; 4431 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4432 if (cluster < entry->efd_start_cluster) 4433 n = &(*n)->rb_left; 4434 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4435 n = &(*n)->rb_right; 4436 else { 4437 ext4_grp_locked_error(sb, group, 0, 4438 ext4_group_first_block_no(sb, group) + 4439 EXT4_C2B(sbi, cluster), 4440 "Block already on to-be-freed list"); 4441 return 0; 4442 } 4443 } 4444 4445 rb_link_node(new_node, parent, n); 4446 rb_insert_color(new_node, &db->bb_free_root); 4447 4448 /* Now try to see the extent can be merged to left and right */ 4449 node = rb_prev(new_node); 4450 if (node) { 4451 entry = rb_entry(node, struct ext4_free_data, efd_node); 4452 if (can_merge(entry, new_entry)) { 4453 new_entry->efd_start_cluster = entry->efd_start_cluster; 4454 new_entry->efd_count += entry->efd_count; 4455 rb_erase(node, &(db->bb_free_root)); 4456 ext4_journal_callback_del(handle, &entry->efd_jce); 4457 kmem_cache_free(ext4_free_data_cachep, entry); 4458 } 4459 } 4460 4461 node = rb_next(new_node); 4462 if (node) { 4463 entry = rb_entry(node, struct ext4_free_data, efd_node); 4464 if (can_merge(new_entry, entry)) { 4465 new_entry->efd_count += entry->efd_count; 4466 rb_erase(node, &(db->bb_free_root)); 4467 ext4_journal_callback_del(handle, &entry->efd_jce); 4468 kmem_cache_free(ext4_free_data_cachep, entry); 4469 } 4470 } 4471 /* Add the extent to transaction's private list */ 4472 ext4_journal_callback_add(handle, ext4_free_data_callback, 4473 &new_entry->efd_jce); 4474 return 0; 4475 } 4476 4477 /** 4478 * ext4_free_blocks() -- Free given blocks and update quota 4479 * @handle: handle for this transaction 4480 * @inode: inode 4481 * @block: start physical block to free 4482 * @count: number of blocks to count 4483 * @flags: flags used by ext4_free_blocks 4484 */ 4485 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4486 struct buffer_head *bh, ext4_fsblk_t block, 4487 unsigned long count, int flags) 4488 { 4489 struct buffer_head *bitmap_bh = NULL; 4490 struct super_block *sb = inode->i_sb; 4491 struct ext4_group_desc *gdp; 4492 unsigned long freed = 0; 4493 unsigned int overflow; 4494 ext4_grpblk_t bit; 4495 struct buffer_head *gd_bh; 4496 ext4_group_t block_group; 4497 struct ext4_sb_info *sbi; 4498 struct ext4_buddy e4b; 4499 unsigned int count_clusters; 4500 int err = 0; 4501 int ret; 4502 4503 if (bh) { 4504 if (block) 4505 BUG_ON(block != bh->b_blocknr); 4506 else 4507 block = bh->b_blocknr; 4508 } 4509 4510 sbi = EXT4_SB(sb); 4511 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4512 !ext4_data_block_valid(sbi, block, count)) { 4513 ext4_error(sb, "Freeing blocks not in datazone - " 4514 "block = %llu, count = %lu", block, count); 4515 goto error_return; 4516 } 4517 4518 ext4_debug("freeing block %llu\n", block); 4519 trace_ext4_free_blocks(inode, block, count, flags); 4520 4521 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4522 struct buffer_head *tbh = bh; 4523 int i; 4524 4525 BUG_ON(bh && (count > 1)); 4526 4527 for (i = 0; i < count; i++) { 4528 if (!bh) 4529 tbh = sb_find_get_block(inode->i_sb, 4530 block + i); 4531 if (unlikely(!tbh)) 4532 continue; 4533 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4534 inode, tbh, block + i); 4535 } 4536 } 4537 4538 /* 4539 * We need to make sure we don't reuse the freed block until 4540 * after the transaction is committed, which we can do by 4541 * treating the block as metadata, below. We make an 4542 * exception if the inode is to be written in writeback mode 4543 * since writeback mode has weak data consistency guarantees. 4544 */ 4545 if (!ext4_should_writeback_data(inode)) 4546 flags |= EXT4_FREE_BLOCKS_METADATA; 4547 4548 /* 4549 * If the extent to be freed does not begin on a cluster 4550 * boundary, we need to deal with partial clusters at the 4551 * beginning and end of the extent. Normally we will free 4552 * blocks at the beginning or the end unless we are explicitly 4553 * requested to avoid doing so. 4554 */ 4555 overflow = block & (sbi->s_cluster_ratio - 1); 4556 if (overflow) { 4557 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4558 overflow = sbi->s_cluster_ratio - overflow; 4559 block += overflow; 4560 if (count > overflow) 4561 count -= overflow; 4562 else 4563 return; 4564 } else { 4565 block -= overflow; 4566 count += overflow; 4567 } 4568 } 4569 overflow = count & (sbi->s_cluster_ratio - 1); 4570 if (overflow) { 4571 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4572 if (count > overflow) 4573 count -= overflow; 4574 else 4575 return; 4576 } else 4577 count += sbi->s_cluster_ratio - overflow; 4578 } 4579 4580 do_more: 4581 overflow = 0; 4582 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4583 4584 /* 4585 * Check to see if we are freeing blocks across a group 4586 * boundary. 4587 */ 4588 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4589 overflow = EXT4_C2B(sbi, bit) + count - 4590 EXT4_BLOCKS_PER_GROUP(sb); 4591 count -= overflow; 4592 } 4593 count_clusters = EXT4_B2C(sbi, count); 4594 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4595 if (!bitmap_bh) { 4596 err = -EIO; 4597 goto error_return; 4598 } 4599 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4600 if (!gdp) { 4601 err = -EIO; 4602 goto error_return; 4603 } 4604 4605 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4606 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4607 in_range(block, ext4_inode_table(sb, gdp), 4608 EXT4_SB(sb)->s_itb_per_group) || 4609 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4610 EXT4_SB(sb)->s_itb_per_group)) { 4611 4612 ext4_error(sb, "Freeing blocks in system zone - " 4613 "Block = %llu, count = %lu", block, count); 4614 /* err = 0. ext4_std_error should be a no op */ 4615 goto error_return; 4616 } 4617 4618 BUFFER_TRACE(bitmap_bh, "getting write access"); 4619 err = ext4_journal_get_write_access(handle, bitmap_bh); 4620 if (err) 4621 goto error_return; 4622 4623 /* 4624 * We are about to modify some metadata. Call the journal APIs 4625 * to unshare ->b_data if a currently-committing transaction is 4626 * using it 4627 */ 4628 BUFFER_TRACE(gd_bh, "get_write_access"); 4629 err = ext4_journal_get_write_access(handle, gd_bh); 4630 if (err) 4631 goto error_return; 4632 #ifdef AGGRESSIVE_CHECK 4633 { 4634 int i; 4635 for (i = 0; i < count_clusters; i++) 4636 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4637 } 4638 #endif 4639 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4640 4641 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4642 if (err) 4643 goto error_return; 4644 4645 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4646 struct ext4_free_data *new_entry; 4647 /* 4648 * blocks being freed are metadata. these blocks shouldn't 4649 * be used until this transaction is committed 4650 */ 4651 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4652 if (!new_entry) { 4653 ext4_mb_unload_buddy(&e4b); 4654 err = -ENOMEM; 4655 goto error_return; 4656 } 4657 new_entry->efd_start_cluster = bit; 4658 new_entry->efd_group = block_group; 4659 new_entry->efd_count = count_clusters; 4660 new_entry->efd_tid = handle->h_transaction->t_tid; 4661 4662 ext4_lock_group(sb, block_group); 4663 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4664 ext4_mb_free_metadata(handle, &e4b, new_entry); 4665 } else { 4666 /* need to update group_info->bb_free and bitmap 4667 * with group lock held. generate_buddy look at 4668 * them with group lock_held 4669 */ 4670 if (test_opt(sb, DISCARD)) { 4671 err = ext4_issue_discard(sb, block_group, bit, count); 4672 if (err && err != -EOPNOTSUPP) 4673 ext4_msg(sb, KERN_WARNING, "discard request in" 4674 " group:%d block:%d count:%lu failed" 4675 " with %d", block_group, bit, count, 4676 err); 4677 } 4678 4679 4680 ext4_lock_group(sb, block_group); 4681 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4682 mb_free_blocks(inode, &e4b, bit, count_clusters); 4683 } 4684 4685 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4686 ext4_free_group_clusters_set(sb, gdp, ret); 4687 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4688 ext4_group_desc_csum_set(sb, block_group, gdp); 4689 ext4_unlock_group(sb, block_group); 4690 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4691 4692 if (sbi->s_log_groups_per_flex) { 4693 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4694 atomic_add(count_clusters, 4695 &sbi->s_flex_groups[flex_group].free_clusters); 4696 } 4697 4698 ext4_mb_unload_buddy(&e4b); 4699 4700 freed += count; 4701 4702 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4703 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4704 4705 /* We dirtied the bitmap block */ 4706 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4707 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4708 4709 /* And the group descriptor block */ 4710 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4711 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4712 if (!err) 4713 err = ret; 4714 4715 if (overflow && !err) { 4716 block += count; 4717 count = overflow; 4718 put_bh(bitmap_bh); 4719 goto do_more; 4720 } 4721 error_return: 4722 brelse(bitmap_bh); 4723 ext4_std_error(sb, err); 4724 return; 4725 } 4726 4727 /** 4728 * ext4_group_add_blocks() -- Add given blocks to an existing group 4729 * @handle: handle to this transaction 4730 * @sb: super block 4731 * @block: start physical block to add to the block group 4732 * @count: number of blocks to free 4733 * 4734 * This marks the blocks as free in the bitmap and buddy. 4735 */ 4736 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4737 ext4_fsblk_t block, unsigned long count) 4738 { 4739 struct buffer_head *bitmap_bh = NULL; 4740 struct buffer_head *gd_bh; 4741 ext4_group_t block_group; 4742 ext4_grpblk_t bit; 4743 unsigned int i; 4744 struct ext4_group_desc *desc; 4745 struct ext4_sb_info *sbi = EXT4_SB(sb); 4746 struct ext4_buddy e4b; 4747 int err = 0, ret, blk_free_count; 4748 ext4_grpblk_t blocks_freed; 4749 4750 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4751 4752 if (count == 0) 4753 return 0; 4754 4755 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4756 /* 4757 * Check to see if we are freeing blocks across a group 4758 * boundary. 4759 */ 4760 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4761 ext4_warning(sb, "too much blocks added to group %u\n", 4762 block_group); 4763 err = -EINVAL; 4764 goto error_return; 4765 } 4766 4767 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4768 if (!bitmap_bh) { 4769 err = -EIO; 4770 goto error_return; 4771 } 4772 4773 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4774 if (!desc) { 4775 err = -EIO; 4776 goto error_return; 4777 } 4778 4779 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4780 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4781 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4782 in_range(block + count - 1, ext4_inode_table(sb, desc), 4783 sbi->s_itb_per_group)) { 4784 ext4_error(sb, "Adding blocks in system zones - " 4785 "Block = %llu, count = %lu", 4786 block, count); 4787 err = -EINVAL; 4788 goto error_return; 4789 } 4790 4791 BUFFER_TRACE(bitmap_bh, "getting write access"); 4792 err = ext4_journal_get_write_access(handle, bitmap_bh); 4793 if (err) 4794 goto error_return; 4795 4796 /* 4797 * We are about to modify some metadata. Call the journal APIs 4798 * to unshare ->b_data if a currently-committing transaction is 4799 * using it 4800 */ 4801 BUFFER_TRACE(gd_bh, "get_write_access"); 4802 err = ext4_journal_get_write_access(handle, gd_bh); 4803 if (err) 4804 goto error_return; 4805 4806 for (i = 0, blocks_freed = 0; i < count; i++) { 4807 BUFFER_TRACE(bitmap_bh, "clear bit"); 4808 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4809 ext4_error(sb, "bit already cleared for block %llu", 4810 (ext4_fsblk_t)(block + i)); 4811 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4812 } else { 4813 blocks_freed++; 4814 } 4815 } 4816 4817 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4818 if (err) 4819 goto error_return; 4820 4821 /* 4822 * need to update group_info->bb_free and bitmap 4823 * with group lock held. generate_buddy look at 4824 * them with group lock_held 4825 */ 4826 ext4_lock_group(sb, block_group); 4827 mb_clear_bits(bitmap_bh->b_data, bit, count); 4828 mb_free_blocks(NULL, &e4b, bit, count); 4829 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4830 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4831 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4832 ext4_group_desc_csum_set(sb, block_group, desc); 4833 ext4_unlock_group(sb, block_group); 4834 percpu_counter_add(&sbi->s_freeclusters_counter, 4835 EXT4_B2C(sbi, blocks_freed)); 4836 4837 if (sbi->s_log_groups_per_flex) { 4838 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4839 atomic_add(EXT4_B2C(sbi, blocks_freed), 4840 &sbi->s_flex_groups[flex_group].free_clusters); 4841 } 4842 4843 ext4_mb_unload_buddy(&e4b); 4844 4845 /* We dirtied the bitmap block */ 4846 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4847 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4848 4849 /* And the group descriptor block */ 4850 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4851 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4852 if (!err) 4853 err = ret; 4854 4855 error_return: 4856 brelse(bitmap_bh); 4857 ext4_std_error(sb, err); 4858 return err; 4859 } 4860 4861 /** 4862 * ext4_trim_extent -- function to TRIM one single free extent in the group 4863 * @sb: super block for the file system 4864 * @start: starting block of the free extent in the alloc. group 4865 * @count: number of blocks to TRIM 4866 * @group: alloc. group we are working with 4867 * @e4b: ext4 buddy for the group 4868 * 4869 * Trim "count" blocks starting at "start" in the "group". To assure that no 4870 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4871 * be called with under the group lock. 4872 */ 4873 static int ext4_trim_extent(struct super_block *sb, int start, int count, 4874 ext4_group_t group, struct ext4_buddy *e4b) 4875 { 4876 struct ext4_free_extent ex; 4877 int ret = 0; 4878 4879 trace_ext4_trim_extent(sb, group, start, count); 4880 4881 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4882 4883 ex.fe_start = start; 4884 ex.fe_group = group; 4885 ex.fe_len = count; 4886 4887 /* 4888 * Mark blocks used, so no one can reuse them while 4889 * being trimmed. 4890 */ 4891 mb_mark_used(e4b, &ex); 4892 ext4_unlock_group(sb, group); 4893 ret = ext4_issue_discard(sb, group, start, count); 4894 ext4_lock_group(sb, group); 4895 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4896 return ret; 4897 } 4898 4899 /** 4900 * ext4_trim_all_free -- function to trim all free space in alloc. group 4901 * @sb: super block for file system 4902 * @group: group to be trimmed 4903 * @start: first group block to examine 4904 * @max: last group block to examine 4905 * @minblocks: minimum extent block count 4906 * 4907 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4908 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4909 * the extent. 4910 * 4911 * 4912 * ext4_trim_all_free walks through group's block bitmap searching for free 4913 * extents. When the free extent is found, mark it as used in group buddy 4914 * bitmap. Then issue a TRIM command on this extent and free the extent in 4915 * the group buddy bitmap. This is done until whole group is scanned. 4916 */ 4917 static ext4_grpblk_t 4918 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 4919 ext4_grpblk_t start, ext4_grpblk_t max, 4920 ext4_grpblk_t minblocks) 4921 { 4922 void *bitmap; 4923 ext4_grpblk_t next, count = 0, free_count = 0; 4924 struct ext4_buddy e4b; 4925 int ret = 0; 4926 4927 trace_ext4_trim_all_free(sb, group, start, max); 4928 4929 ret = ext4_mb_load_buddy(sb, group, &e4b); 4930 if (ret) { 4931 ext4_error(sb, "Error in loading buddy " 4932 "information for %u", group); 4933 return ret; 4934 } 4935 bitmap = e4b.bd_bitmap; 4936 4937 ext4_lock_group(sb, group); 4938 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 4939 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 4940 goto out; 4941 4942 start = (e4b.bd_info->bb_first_free > start) ? 4943 e4b.bd_info->bb_first_free : start; 4944 4945 while (start <= max) { 4946 start = mb_find_next_zero_bit(bitmap, max + 1, start); 4947 if (start > max) 4948 break; 4949 next = mb_find_next_bit(bitmap, max + 1, start); 4950 4951 if ((next - start) >= minblocks) { 4952 ret = ext4_trim_extent(sb, start, 4953 next - start, group, &e4b); 4954 if (ret && ret != -EOPNOTSUPP) 4955 break; 4956 ret = 0; 4957 count += next - start; 4958 } 4959 free_count += next - start; 4960 start = next + 1; 4961 4962 if (fatal_signal_pending(current)) { 4963 count = -ERESTARTSYS; 4964 break; 4965 } 4966 4967 if (need_resched()) { 4968 ext4_unlock_group(sb, group); 4969 cond_resched(); 4970 ext4_lock_group(sb, group); 4971 } 4972 4973 if ((e4b.bd_info->bb_free - free_count) < minblocks) 4974 break; 4975 } 4976 4977 if (!ret) { 4978 ret = count; 4979 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 4980 } 4981 out: 4982 ext4_unlock_group(sb, group); 4983 ext4_mb_unload_buddy(&e4b); 4984 4985 ext4_debug("trimmed %d blocks in the group %d\n", 4986 count, group); 4987 4988 return ret; 4989 } 4990 4991 /** 4992 * ext4_trim_fs() -- trim ioctl handle function 4993 * @sb: superblock for filesystem 4994 * @range: fstrim_range structure 4995 * 4996 * start: First Byte to trim 4997 * len: number of Bytes to trim from start 4998 * minlen: minimum extent length in Bytes 4999 * ext4_trim_fs goes through all allocation groups containing Bytes from 5000 * start to start+len. For each such a group ext4_trim_all_free function 5001 * is invoked to trim all free space. 5002 */ 5003 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5004 { 5005 struct ext4_group_info *grp; 5006 ext4_group_t group, first_group, last_group; 5007 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5008 uint64_t start, end, minlen, trimmed = 0; 5009 ext4_fsblk_t first_data_blk = 5010 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5011 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5012 int ret = 0; 5013 5014 start = range->start >> sb->s_blocksize_bits; 5015 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5016 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5017 range->minlen >> sb->s_blocksize_bits); 5018 5019 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5020 start >= max_blks || 5021 range->len < sb->s_blocksize) 5022 return -EINVAL; 5023 if (end >= max_blks) 5024 end = max_blks - 1; 5025 if (end <= first_data_blk) 5026 goto out; 5027 if (start < first_data_blk) 5028 start = first_data_blk; 5029 5030 /* Determine first and last group to examine based on start and end */ 5031 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5032 &first_group, &first_cluster); 5033 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5034 &last_group, &last_cluster); 5035 5036 /* end now represents the last cluster to discard in this group */ 5037 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5038 5039 for (group = first_group; group <= last_group; group++) { 5040 grp = ext4_get_group_info(sb, group); 5041 /* We only do this if the grp has never been initialized */ 5042 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5043 ret = ext4_mb_init_group(sb, group); 5044 if (ret) 5045 break; 5046 } 5047 5048 /* 5049 * For all the groups except the last one, last cluster will 5050 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5051 * change it for the last group, note that last_cluster is 5052 * already computed earlier by ext4_get_group_no_and_offset() 5053 */ 5054 if (group == last_group) 5055 end = last_cluster; 5056 5057 if (grp->bb_free >= minlen) { 5058 cnt = ext4_trim_all_free(sb, group, first_cluster, 5059 end, minlen); 5060 if (cnt < 0) { 5061 ret = cnt; 5062 break; 5063 } 5064 trimmed += cnt; 5065 } 5066 5067 /* 5068 * For every group except the first one, we are sure 5069 * that the first cluster to discard will be cluster #0. 5070 */ 5071 first_cluster = 0; 5072 } 5073 5074 if (!ret) 5075 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5076 5077 out: 5078 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5079 return ret; 5080 } 5081