1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 #include <linux/dax.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 142 int pextents); 143 144 /* 145 * Test whether an inode is a fast symlink. 146 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 147 */ 148 int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 151 int ea_blocks = EXT4_I(inode)->i_file_acl ? 152 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 153 154 if (ext4_has_inline_data(inode)) 155 return 0; 156 157 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 158 } 159 return S_ISLNK(inode->i_mode) && inode->i_size && 160 (inode->i_size < EXT4_N_BLOCKS * 4); 161 } 162 163 /* 164 * Called at the last iput() if i_nlink is zero. 165 */ 166 void ext4_evict_inode(struct inode *inode) 167 { 168 handle_t *handle; 169 int err; 170 /* 171 * Credits for final inode cleanup and freeing: 172 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 173 * (xattr block freeing), bitmap, group descriptor (inode freeing) 174 */ 175 int extra_credits = 6; 176 struct ext4_xattr_inode_array *ea_inode_array = NULL; 177 bool freeze_protected = false; 178 179 trace_ext4_evict_inode(inode); 180 181 if (inode->i_nlink) { 182 /* 183 * When journalling data dirty buffers are tracked only in the 184 * journal. So although mm thinks everything is clean and 185 * ready for reaping the inode might still have some pages to 186 * write in the running transaction or waiting to be 187 * checkpointed. Thus calling jbd2_journal_invalidate_folio() 188 * (via truncate_inode_pages()) to discard these buffers can 189 * cause data loss. Also even if we did not discard these 190 * buffers, we would have no way to find them after the inode 191 * is reaped and thus user could see stale data if he tries to 192 * read them before the transaction is checkpointed. So be 193 * careful and force everything to disk here... We use 194 * ei->i_datasync_tid to store the newest transaction 195 * containing inode's data. 196 * 197 * Note that directories do not have this problem because they 198 * don't use page cache. 199 */ 200 if (inode->i_ino != EXT4_JOURNAL_INO && 201 ext4_should_journal_data(inode) && 202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 203 inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 226 * flag but we still need to remove the inode from the writeback lists. 227 */ 228 if (!list_empty_careful(&inode->i_io_list)) { 229 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 230 inode_io_list_del(inode); 231 } 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it. When we are in a running transaction though, 236 * we are already protected against freezing and we cannot grab further 237 * protection due to lock ordering constraints. 238 */ 239 if (!ext4_journal_current_handle()) { 240 sb_start_intwrite(inode->i_sb); 241 freeze_protected = true; 242 } 243 244 if (!IS_NOQUOTA(inode)) 245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 246 247 /* 248 * Block bitmap, group descriptor, and inode are accounted in both 249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 250 */ 251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 252 ext4_blocks_for_truncate(inode) + extra_credits - 3); 253 if (IS_ERR(handle)) { 254 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 255 /* 256 * If we're going to skip the normal cleanup, we still need to 257 * make sure that the in-core orphan linked list is properly 258 * cleaned up. 259 */ 260 ext4_orphan_del(NULL, inode); 261 if (freeze_protected) 262 sb_end_intwrite(inode->i_sb); 263 goto no_delete; 264 } 265 266 if (IS_SYNC(inode)) 267 ext4_handle_sync(handle); 268 269 /* 270 * Set inode->i_size to 0 before calling ext4_truncate(). We need 271 * special handling of symlinks here because i_size is used to 272 * determine whether ext4_inode_info->i_data contains symlink data or 273 * block mappings. Setting i_size to 0 will remove its fast symlink 274 * status. Erase i_data so that it becomes a valid empty block map. 275 */ 276 if (ext4_inode_is_fast_symlink(inode)) 277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 278 inode->i_size = 0; 279 err = ext4_mark_inode_dirty(handle, inode); 280 if (err) { 281 ext4_warning(inode->i_sb, 282 "couldn't mark inode dirty (err %d)", err); 283 goto stop_handle; 284 } 285 if (inode->i_blocks) { 286 err = ext4_truncate(inode); 287 if (err) { 288 ext4_error_err(inode->i_sb, -err, 289 "couldn't truncate inode %lu (err %d)", 290 inode->i_ino, err); 291 goto stop_handle; 292 } 293 } 294 295 /* Remove xattr references. */ 296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 297 extra_credits); 298 if (err) { 299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 300 stop_handle: 301 ext4_journal_stop(handle); 302 ext4_orphan_del(NULL, inode); 303 if (freeze_protected) 304 sb_end_intwrite(inode->i_sb); 305 ext4_xattr_inode_array_free(ea_inode_array); 306 goto no_delete; 307 } 308 309 /* 310 * Kill off the orphan record which ext4_truncate created. 311 * AKPM: I think this can be inside the above `if'. 312 * Note that ext4_orphan_del() has to be able to cope with the 313 * deletion of a non-existent orphan - this is because we don't 314 * know if ext4_truncate() actually created an orphan record. 315 * (Well, we could do this if we need to, but heck - it works) 316 */ 317 ext4_orphan_del(handle, inode); 318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 319 320 /* 321 * One subtle ordering requirement: if anything has gone wrong 322 * (transaction abort, IO errors, whatever), then we can still 323 * do these next steps (the fs will already have been marked as 324 * having errors), but we can't free the inode if the mark_dirty 325 * fails. 326 */ 327 if (ext4_mark_inode_dirty(handle, inode)) 328 /* If that failed, just do the required in-core inode clear. */ 329 ext4_clear_inode(inode); 330 else 331 ext4_free_inode(handle, inode); 332 ext4_journal_stop(handle); 333 if (freeze_protected) 334 sb_end_intwrite(inode->i_sb); 335 ext4_xattr_inode_array_free(ea_inode_array); 336 return; 337 no_delete: 338 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 339 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 340 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 341 } 342 343 #ifdef CONFIG_QUOTA 344 qsize_t *ext4_get_reserved_space(struct inode *inode) 345 { 346 return &EXT4_I(inode)->i_reserved_quota; 347 } 348 #endif 349 350 /* 351 * Called with i_data_sem down, which is important since we can call 352 * ext4_discard_preallocations() from here. 353 */ 354 void ext4_da_update_reserve_space(struct inode *inode, 355 int used, int quota_claim) 356 { 357 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 358 struct ext4_inode_info *ei = EXT4_I(inode); 359 360 spin_lock(&ei->i_block_reservation_lock); 361 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 362 if (unlikely(used > ei->i_reserved_data_blocks)) { 363 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 364 "with only %d reserved data blocks", 365 __func__, inode->i_ino, used, 366 ei->i_reserved_data_blocks); 367 WARN_ON(1); 368 used = ei->i_reserved_data_blocks; 369 } 370 371 /* Update per-inode reservations */ 372 ei->i_reserved_data_blocks -= used; 373 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 374 375 spin_unlock(&ei->i_block_reservation_lock); 376 377 /* Update quota subsystem for data blocks */ 378 if (quota_claim) 379 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 380 else { 381 /* 382 * We did fallocate with an offset that is already delayed 383 * allocated. So on delayed allocated writeback we should 384 * not re-claim the quota for fallocated blocks. 385 */ 386 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 387 } 388 389 /* 390 * If we have done all the pending block allocations and if 391 * there aren't any writers on the inode, we can discard the 392 * inode's preallocations. 393 */ 394 if ((ei->i_reserved_data_blocks == 0) && 395 !inode_is_open_for_write(inode)) 396 ext4_discard_preallocations(inode, 0); 397 } 398 399 static int __check_block_validity(struct inode *inode, const char *func, 400 unsigned int line, 401 struct ext4_map_blocks *map) 402 { 403 if (ext4_has_feature_journal(inode->i_sb) && 404 (inode->i_ino == 405 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 406 return 0; 407 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, 0); 455 } else { 456 retval = ext4_ind_map_blocks(handle, inode, map, 0); 457 } 458 up_read((&EXT4_I(inode)->i_data_sem)); 459 460 /* 461 * We don't check m_len because extent will be collpased in status 462 * tree. So the m_len might not equal. 463 */ 464 if (es_map->m_lblk != map->m_lblk || 465 es_map->m_flags != map->m_flags || 466 es_map->m_pblk != map->m_pblk) { 467 printk("ES cache assertion failed for inode: %lu " 468 "es_cached ex [%d/%d/%llu/%x] != " 469 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 470 inode->i_ino, es_map->m_lblk, es_map->m_len, 471 es_map->m_pblk, es_map->m_flags, map->m_lblk, 472 map->m_len, map->m_pblk, map->m_flags, 473 retval, flags); 474 } 475 } 476 #endif /* ES_AGGRESSIVE_TEST */ 477 478 /* 479 * The ext4_map_blocks() function tries to look up the requested blocks, 480 * and returns if the blocks are already mapped. 481 * 482 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 483 * and store the allocated blocks in the result buffer head and mark it 484 * mapped. 485 * 486 * If file type is extents based, it will call ext4_ext_map_blocks(), 487 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 488 * based files 489 * 490 * On success, it returns the number of blocks being mapped or allocated. if 491 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 492 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 493 * 494 * It returns 0 if plain look up failed (blocks have not been allocated), in 495 * that case, @map is returned as unmapped but we still do fill map->m_len to 496 * indicate the length of a hole starting at map->m_lblk. 497 * 498 * It returns the error in case of allocation failure. 499 */ 500 int ext4_map_blocks(handle_t *handle, struct inode *inode, 501 struct ext4_map_blocks *map, int flags) 502 { 503 struct extent_status es; 504 int retval; 505 int ret = 0; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 514 flags, map->m_len, (unsigned long) map->m_lblk); 515 516 /* 517 * ext4_map_blocks returns an int, and m_len is an unsigned int 518 */ 519 if (unlikely(map->m_len > INT_MAX)) 520 map->m_len = INT_MAX; 521 522 /* We can handle the block number less than EXT_MAX_BLOCKS */ 523 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 524 return -EFSCORRUPTED; 525 526 /* Lookup extent status tree firstly */ 527 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 528 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 529 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 530 map->m_pblk = ext4_es_pblock(&es) + 531 map->m_lblk - es.es_lblk; 532 map->m_flags |= ext4_es_is_written(&es) ? 533 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 534 retval = es.es_len - (map->m_lblk - es.es_lblk); 535 if (retval > map->m_len) 536 retval = map->m_len; 537 map->m_len = retval; 538 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 539 map->m_pblk = 0; 540 retval = es.es_len - (map->m_lblk - es.es_lblk); 541 if (retval > map->m_len) 542 retval = map->m_len; 543 map->m_len = retval; 544 retval = 0; 545 } else { 546 BUG(); 547 } 548 #ifdef ES_AGGRESSIVE_TEST 549 ext4_map_blocks_es_recheck(handle, inode, map, 550 &orig_map, flags); 551 #endif 552 goto found; 553 } 554 555 /* 556 * Try to see if we can get the block without requesting a new 557 * file system block. 558 */ 559 down_read(&EXT4_I(inode)->i_data_sem); 560 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 561 retval = ext4_ext_map_blocks(handle, inode, map, 0); 562 } else { 563 retval = ext4_ind_map_blocks(handle, inode, map, 0); 564 } 565 if (retval > 0) { 566 unsigned int status; 567 568 if (unlikely(retval != map->m_len)) { 569 ext4_warning(inode->i_sb, 570 "ES len assertion failed for inode " 571 "%lu: retval %d != map->m_len %d", 572 inode->i_ino, retval, map->m_len); 573 WARN_ON(1); 574 } 575 576 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 579 !(status & EXTENT_STATUS_WRITTEN) && 580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 581 map->m_lblk + map->m_len - 1)) 582 status |= EXTENT_STATUS_DELAYED; 583 ret = ext4_es_insert_extent(inode, map->m_lblk, 584 map->m_len, map->m_pblk, status); 585 if (ret < 0) 586 retval = ret; 587 } 588 up_read((&EXT4_I(inode)->i_data_sem)); 589 590 found: 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 592 ret = check_block_validity(inode, map); 593 if (ret != 0) 594 return ret; 595 } 596 597 /* If it is only a block(s) look up */ 598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 599 return retval; 600 601 /* 602 * Returns if the blocks have already allocated 603 * 604 * Note that if blocks have been preallocated 605 * ext4_ext_get_block() returns the create = 0 606 * with buffer head unmapped. 607 */ 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 609 /* 610 * If we need to convert extent to unwritten 611 * we continue and do the actual work in 612 * ext4_ext_map_blocks() 613 */ 614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 615 return retval; 616 617 /* 618 * Here we clear m_flags because after allocating an new extent, 619 * it will be set again. 620 */ 621 map->m_flags &= ~EXT4_MAP_FLAGS; 622 623 /* 624 * New blocks allocate and/or writing to unwritten extent 625 * will possibly result in updating i_data, so we take 626 * the write lock of i_data_sem, and call get_block() 627 * with create == 1 flag. 628 */ 629 down_write(&EXT4_I(inode)->i_data_sem); 630 631 /* 632 * We need to check for EXT4 here because migrate 633 * could have changed the inode type in between 634 */ 635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 636 retval = ext4_ext_map_blocks(handle, inode, map, flags); 637 } else { 638 retval = ext4_ind_map_blocks(handle, inode, map, flags); 639 640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 641 /* 642 * We allocated new blocks which will result in 643 * i_data's format changing. Force the migrate 644 * to fail by clearing migrate flags 645 */ 646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 647 } 648 649 /* 650 * Update reserved blocks/metadata blocks after successful 651 * block allocation which had been deferred till now. We don't 652 * support fallocate for non extent files. So we can update 653 * reserve space here. 654 */ 655 if ((retval > 0) && 656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 657 ext4_da_update_reserve_space(inode, retval, 1); 658 } 659 660 if (retval > 0) { 661 unsigned int status; 662 663 if (unlikely(retval != map->m_len)) { 664 ext4_warning(inode->i_sb, 665 "ES len assertion failed for inode " 666 "%lu: retval %d != map->m_len %d", 667 inode->i_ino, retval, map->m_len); 668 WARN_ON(1); 669 } 670 671 /* 672 * We have to zeroout blocks before inserting them into extent 673 * status tree. Otherwise someone could look them up there and 674 * use them before they are really zeroed. We also have to 675 * unmap metadata before zeroing as otherwise writeback can 676 * overwrite zeros with stale data from block device. 677 */ 678 if (flags & EXT4_GET_BLOCKS_ZERO && 679 map->m_flags & EXT4_MAP_MAPPED && 680 map->m_flags & EXT4_MAP_NEW) { 681 ret = ext4_issue_zeroout(inode, map->m_lblk, 682 map->m_pblk, map->m_len); 683 if (ret) { 684 retval = ret; 685 goto out_sem; 686 } 687 } 688 689 /* 690 * If the extent has been zeroed out, we don't need to update 691 * extent status tree. 692 */ 693 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 694 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 695 if (ext4_es_is_written(&es)) 696 goto out_sem; 697 } 698 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 699 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 700 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 701 !(status & EXTENT_STATUS_WRITTEN) && 702 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 703 map->m_lblk + map->m_len - 1)) 704 status |= EXTENT_STATUS_DELAYED; 705 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 706 map->m_pblk, status); 707 if (ret < 0) { 708 retval = ret; 709 goto out_sem; 710 } 711 } 712 713 out_sem: 714 up_write((&EXT4_I(inode)->i_data_sem)); 715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 716 ret = check_block_validity(inode, map); 717 if (ret != 0) 718 return ret; 719 720 /* 721 * Inodes with freshly allocated blocks where contents will be 722 * visible after transaction commit must be on transaction's 723 * ordered data list. 724 */ 725 if (map->m_flags & EXT4_MAP_NEW && 726 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 727 !(flags & EXT4_GET_BLOCKS_ZERO) && 728 !ext4_is_quota_file(inode) && 729 ext4_should_order_data(inode)) { 730 loff_t start_byte = 731 (loff_t)map->m_lblk << inode->i_blkbits; 732 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 733 734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 735 ret = ext4_jbd2_inode_add_wait(handle, inode, 736 start_byte, length); 737 else 738 ret = ext4_jbd2_inode_add_write(handle, inode, 739 start_byte, length); 740 if (ret) 741 return ret; 742 } 743 } 744 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 745 map->m_flags & EXT4_MAP_MAPPED)) 746 ext4_fc_track_range(handle, inode, map->m_lblk, 747 map->m_lblk + map->m_len - 1); 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 do { 775 old_state = READ_ONCE(bh->b_state); 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely( 778 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 779 } 780 781 static int _ext4_get_block(struct inode *inode, sector_t iblock, 782 struct buffer_head *bh, int flags) 783 { 784 struct ext4_map_blocks map; 785 int ret = 0; 786 787 if (ext4_has_inline_data(inode)) 788 return -ERANGE; 789 790 map.m_lblk = iblock; 791 map.m_len = bh->b_size >> inode->i_blkbits; 792 793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 794 flags); 795 if (ret > 0) { 796 map_bh(bh, inode->i_sb, map.m_pblk); 797 ext4_update_bh_state(bh, map.m_flags); 798 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 799 ret = 0; 800 } else if (ret == 0) { 801 /* hole case, need to fill in bh->b_size */ 802 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 803 } 804 return ret; 805 } 806 807 int ext4_get_block(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh, int create) 809 { 810 return _ext4_get_block(inode, iblock, bh, 811 create ? EXT4_GET_BLOCKS_CREATE : 0); 812 } 813 814 /* 815 * Get block function used when preparing for buffered write if we require 816 * creating an unwritten extent if blocks haven't been allocated. The extent 817 * will be converted to written after the IO is complete. 818 */ 819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 820 struct buffer_head *bh_result, int create) 821 { 822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 823 inode->i_ino, create); 824 return _ext4_get_block(inode, iblock, bh_result, 825 EXT4_GET_BLOCKS_IO_CREATE_EXT); 826 } 827 828 /* Maximum number of blocks we map for direct IO at once. */ 829 #define DIO_MAX_BLOCKS 4096 830 831 /* 832 * `handle' can be NULL if create is zero 833 */ 834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 835 ext4_lblk_t block, int map_flags) 836 { 837 struct ext4_map_blocks map; 838 struct buffer_head *bh; 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 840 int err; 841 842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 843 || handle != NULL || create == 0); 844 845 map.m_lblk = block; 846 map.m_len = 1; 847 err = ext4_map_blocks(handle, inode, &map, map_flags); 848 849 if (err == 0) 850 return create ? ERR_PTR(-ENOSPC) : NULL; 851 if (err < 0) 852 return ERR_PTR(err); 853 854 bh = sb_getblk(inode->i_sb, map.m_pblk); 855 if (unlikely(!bh)) 856 return ERR_PTR(-ENOMEM); 857 if (map.m_flags & EXT4_MAP_NEW) { 858 ASSERT(create != 0); 859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 860 || (handle != NULL)); 861 862 /* 863 * Now that we do not always journal data, we should 864 * keep in mind whether this should always journal the 865 * new buffer as metadata. For now, regular file 866 * writes use ext4_get_block instead, so it's not a 867 * problem. 868 */ 869 lock_buffer(bh); 870 BUFFER_TRACE(bh, "call get_create_access"); 871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 872 EXT4_JTR_NONE); 873 if (unlikely(err)) { 874 unlock_buffer(bh); 875 goto errout; 876 } 877 if (!buffer_uptodate(bh)) { 878 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 879 set_buffer_uptodate(bh); 880 } 881 unlock_buffer(bh); 882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 883 err = ext4_handle_dirty_metadata(handle, inode, bh); 884 if (unlikely(err)) 885 goto errout; 886 } else 887 BUFFER_TRACE(bh, "not a new buffer"); 888 return bh; 889 errout: 890 brelse(bh); 891 return ERR_PTR(err); 892 } 893 894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 895 ext4_lblk_t block, int map_flags) 896 { 897 struct buffer_head *bh; 898 int ret; 899 900 bh = ext4_getblk(handle, inode, block, map_flags); 901 if (IS_ERR(bh)) 902 return bh; 903 if (!bh || ext4_buffer_uptodate(bh)) 904 return bh; 905 906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 907 if (ret) { 908 put_bh(bh); 909 return ERR_PTR(ret); 910 } 911 return bh; 912 } 913 914 /* Read a contiguous batch of blocks. */ 915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 916 bool wait, struct buffer_head **bhs) 917 { 918 int i, err; 919 920 for (i = 0; i < bh_count; i++) { 921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 922 if (IS_ERR(bhs[i])) { 923 err = PTR_ERR(bhs[i]); 924 bh_count = i; 925 goto out_brelse; 926 } 927 } 928 929 for (i = 0; i < bh_count; i++) 930 /* Note that NULL bhs[i] is valid because of holes. */ 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 933 934 if (!wait) 935 return 0; 936 937 for (i = 0; i < bh_count; i++) 938 if (bhs[i]) 939 wait_on_buffer(bhs[i]); 940 941 for (i = 0; i < bh_count; i++) { 942 if (bhs[i] && !buffer_uptodate(bhs[i])) { 943 err = -EIO; 944 goto out_brelse; 945 } 946 } 947 return 0; 948 949 out_brelse: 950 for (i = 0; i < bh_count; i++) { 951 brelse(bhs[i]); 952 bhs[i] = NULL; 953 } 954 return err; 955 } 956 957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 958 struct buffer_head *head, 959 unsigned from, 960 unsigned to, 961 int *partial, 962 int (*fn)(handle_t *handle, struct inode *inode, 963 struct buffer_head *bh)) 964 { 965 struct buffer_head *bh; 966 unsigned block_start, block_end; 967 unsigned blocksize = head->b_size; 968 int err, ret = 0; 969 struct buffer_head *next; 970 971 for (bh = head, block_start = 0; 972 ret == 0 && (bh != head || !block_start); 973 block_start = block_end, bh = next) { 974 next = bh->b_this_page; 975 block_end = block_start + blocksize; 976 if (block_end <= from || block_start >= to) { 977 if (partial && !buffer_uptodate(bh)) 978 *partial = 1; 979 continue; 980 } 981 err = (*fn)(handle, inode, bh); 982 if (!ret) 983 ret = err; 984 } 985 return ret; 986 } 987 988 /* 989 * To preserve ordering, it is essential that the hole instantiation and 990 * the data write be encapsulated in a single transaction. We cannot 991 * close off a transaction and start a new one between the ext4_get_block() 992 * and the commit_write(). So doing the jbd2_journal_start at the start of 993 * prepare_write() is the right place. 994 * 995 * Also, this function can nest inside ext4_writepage(). In that case, we 996 * *know* that ext4_writepage() has generated enough buffer credits to do the 997 * whole page. So we won't block on the journal in that case, which is good, 998 * because the caller may be PF_MEMALLOC. 999 * 1000 * By accident, ext4 can be reentered when a transaction is open via 1001 * quota file writes. If we were to commit the transaction while thus 1002 * reentered, there can be a deadlock - we would be holding a quota 1003 * lock, and the commit would never complete if another thread had a 1004 * transaction open and was blocking on the quota lock - a ranking 1005 * violation. 1006 * 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1008 * will _not_ run commit under these circumstances because handle->h_ref 1009 * is elevated. We'll still have enough credits for the tiny quotafile 1010 * write. 1011 */ 1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1013 struct buffer_head *bh) 1014 { 1015 int dirty = buffer_dirty(bh); 1016 int ret; 1017 1018 if (!buffer_mapped(bh) || buffer_freed(bh)) 1019 return 0; 1020 /* 1021 * __block_write_begin() could have dirtied some buffers. Clean 1022 * the dirty bit as jbd2_journal_get_write_access() could complain 1023 * otherwise about fs integrity issues. Setting of the dirty bit 1024 * by __block_write_begin() isn't a real problem here as we clear 1025 * the bit before releasing a page lock and thus writeback cannot 1026 * ever write the buffer. 1027 */ 1028 if (dirty) 1029 clear_buffer_dirty(bh); 1030 BUFFER_TRACE(bh, "get write access"); 1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1032 EXT4_JTR_NONE); 1033 if (!ret && dirty) 1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1035 return ret; 1036 } 1037 1038 #ifdef CONFIG_FS_ENCRYPTION 1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1040 get_block_t *get_block) 1041 { 1042 unsigned from = pos & (PAGE_SIZE - 1); 1043 unsigned to = from + len; 1044 struct inode *inode = page->mapping->host; 1045 unsigned block_start, block_end; 1046 sector_t block; 1047 int err = 0; 1048 unsigned blocksize = inode->i_sb->s_blocksize; 1049 unsigned bbits; 1050 struct buffer_head *bh, *head, *wait[2]; 1051 int nr_wait = 0; 1052 int i; 1053 1054 BUG_ON(!PageLocked(page)); 1055 BUG_ON(from > PAGE_SIZE); 1056 BUG_ON(to > PAGE_SIZE); 1057 BUG_ON(from > to); 1058 1059 if (!page_has_buffers(page)) 1060 create_empty_buffers(page, blocksize, 0); 1061 head = page_buffers(page); 1062 bbits = ilog2(blocksize); 1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1064 1065 for (bh = head, block_start = 0; bh != head || !block_start; 1066 block++, block_start = block_end, bh = bh->b_this_page) { 1067 block_end = block_start + blocksize; 1068 if (block_end <= from || block_start >= to) { 1069 if (PageUptodate(page)) { 1070 set_buffer_uptodate(bh); 1071 } 1072 continue; 1073 } 1074 if (buffer_new(bh)) 1075 clear_buffer_new(bh); 1076 if (!buffer_mapped(bh)) { 1077 WARN_ON(bh->b_size != blocksize); 1078 err = get_block(inode, block, bh, 1); 1079 if (err) 1080 break; 1081 if (buffer_new(bh)) { 1082 if (PageUptodate(page)) { 1083 clear_buffer_new(bh); 1084 set_buffer_uptodate(bh); 1085 mark_buffer_dirty(bh); 1086 continue; 1087 } 1088 if (block_end > to || block_start < from) 1089 zero_user_segments(page, to, block_end, 1090 block_start, from); 1091 continue; 1092 } 1093 } 1094 if (PageUptodate(page)) { 1095 set_buffer_uptodate(bh); 1096 continue; 1097 } 1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1099 !buffer_unwritten(bh) && 1100 (block_start < from || block_end > to)) { 1101 ext4_read_bh_lock(bh, 0, false); 1102 wait[nr_wait++] = bh; 1103 } 1104 } 1105 /* 1106 * If we issued read requests, let them complete. 1107 */ 1108 for (i = 0; i < nr_wait; i++) { 1109 wait_on_buffer(wait[i]); 1110 if (!buffer_uptodate(wait[i])) 1111 err = -EIO; 1112 } 1113 if (unlikely(err)) { 1114 page_zero_new_buffers(page, from, to); 1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1116 for (i = 0; i < nr_wait; i++) { 1117 int err2; 1118 1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1120 bh_offset(wait[i])); 1121 if (err2) { 1122 clear_buffer_uptodate(wait[i]); 1123 err = err2; 1124 } 1125 } 1126 } 1127 1128 return err; 1129 } 1130 #endif 1131 1132 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1133 loff_t pos, unsigned len, unsigned flags, 1134 struct page **pagep, void **fsdata) 1135 { 1136 struct inode *inode = mapping->host; 1137 int ret, needed_blocks; 1138 handle_t *handle; 1139 int retries = 0; 1140 struct page *page; 1141 pgoff_t index; 1142 unsigned from, to; 1143 1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1145 return -EIO; 1146 1147 trace_ext4_write_begin(inode, pos, len, flags); 1148 /* 1149 * Reserve one block more for addition to orphan list in case 1150 * we allocate blocks but write fails for some reason 1151 */ 1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1153 index = pos >> PAGE_SHIFT; 1154 from = pos & (PAGE_SIZE - 1); 1155 to = from + len; 1156 1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1159 flags, pagep); 1160 if (ret < 0) 1161 return ret; 1162 if (ret == 1) 1163 return 0; 1164 } 1165 1166 /* 1167 * grab_cache_page_write_begin() can take a long time if the 1168 * system is thrashing due to memory pressure, or if the page 1169 * is being written back. So grab it first before we start 1170 * the transaction handle. This also allows us to allocate 1171 * the page (if needed) without using GFP_NOFS. 1172 */ 1173 retry_grab: 1174 page = grab_cache_page_write_begin(mapping, index, flags); 1175 if (!page) 1176 return -ENOMEM; 1177 unlock_page(page); 1178 1179 retry_journal: 1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1181 if (IS_ERR(handle)) { 1182 put_page(page); 1183 return PTR_ERR(handle); 1184 } 1185 1186 lock_page(page); 1187 if (page->mapping != mapping) { 1188 /* The page got truncated from under us */ 1189 unlock_page(page); 1190 put_page(page); 1191 ext4_journal_stop(handle); 1192 goto retry_grab; 1193 } 1194 /* In case writeback began while the page was unlocked */ 1195 wait_for_stable_page(page); 1196 1197 #ifdef CONFIG_FS_ENCRYPTION 1198 if (ext4_should_dioread_nolock(inode)) 1199 ret = ext4_block_write_begin(page, pos, len, 1200 ext4_get_block_unwritten); 1201 else 1202 ret = ext4_block_write_begin(page, pos, len, 1203 ext4_get_block); 1204 #else 1205 if (ext4_should_dioread_nolock(inode)) 1206 ret = __block_write_begin(page, pos, len, 1207 ext4_get_block_unwritten); 1208 else 1209 ret = __block_write_begin(page, pos, len, ext4_get_block); 1210 #endif 1211 if (!ret && ext4_should_journal_data(inode)) { 1212 ret = ext4_walk_page_buffers(handle, inode, 1213 page_buffers(page), from, to, NULL, 1214 do_journal_get_write_access); 1215 } 1216 1217 if (ret) { 1218 bool extended = (pos + len > inode->i_size) && 1219 !ext4_verity_in_progress(inode); 1220 1221 unlock_page(page); 1222 /* 1223 * __block_write_begin may have instantiated a few blocks 1224 * outside i_size. Trim these off again. Don't need 1225 * i_size_read because we hold i_rwsem. 1226 * 1227 * Add inode to orphan list in case we crash before 1228 * truncate finishes 1229 */ 1230 if (extended && ext4_can_truncate(inode)) 1231 ext4_orphan_add(handle, inode); 1232 1233 ext4_journal_stop(handle); 1234 if (extended) { 1235 ext4_truncate_failed_write(inode); 1236 /* 1237 * If truncate failed early the inode might 1238 * still be on the orphan list; we need to 1239 * make sure the inode is removed from the 1240 * orphan list in that case. 1241 */ 1242 if (inode->i_nlink) 1243 ext4_orphan_del(NULL, inode); 1244 } 1245 1246 if (ret == -ENOSPC && 1247 ext4_should_retry_alloc(inode->i_sb, &retries)) 1248 goto retry_journal; 1249 put_page(page); 1250 return ret; 1251 } 1252 *pagep = page; 1253 return ret; 1254 } 1255 1256 /* For write_end() in data=journal mode */ 1257 static int write_end_fn(handle_t *handle, struct inode *inode, 1258 struct buffer_head *bh) 1259 { 1260 int ret; 1261 if (!buffer_mapped(bh) || buffer_freed(bh)) 1262 return 0; 1263 set_buffer_uptodate(bh); 1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1265 clear_buffer_meta(bh); 1266 clear_buffer_prio(bh); 1267 return ret; 1268 } 1269 1270 /* 1271 * We need to pick up the new inode size which generic_commit_write gave us 1272 * `file' can be NULL - eg, when called from page_symlink(). 1273 * 1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1275 * buffers are managed internally. 1276 */ 1277 static int ext4_write_end(struct file *file, 1278 struct address_space *mapping, 1279 loff_t pos, unsigned len, unsigned copied, 1280 struct page *page, void *fsdata) 1281 { 1282 handle_t *handle = ext4_journal_current_handle(); 1283 struct inode *inode = mapping->host; 1284 loff_t old_size = inode->i_size; 1285 int ret = 0, ret2; 1286 int i_size_changed = 0; 1287 bool verity = ext4_verity_in_progress(inode); 1288 1289 trace_ext4_write_end(inode, pos, len, copied); 1290 1291 if (ext4_has_inline_data(inode)) 1292 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1293 1294 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1295 /* 1296 * it's important to update i_size while still holding page lock: 1297 * page writeout could otherwise come in and zero beyond i_size. 1298 * 1299 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1300 * blocks are being written past EOF, so skip the i_size update. 1301 */ 1302 if (!verity) 1303 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1304 unlock_page(page); 1305 put_page(page); 1306 1307 if (old_size < pos && !verity) 1308 pagecache_isize_extended(inode, old_size, pos); 1309 /* 1310 * Don't mark the inode dirty under page lock. First, it unnecessarily 1311 * makes the holding time of page lock longer. Second, it forces lock 1312 * ordering of page lock and transaction start for journaling 1313 * filesystems. 1314 */ 1315 if (i_size_changed) 1316 ret = ext4_mark_inode_dirty(handle, inode); 1317 1318 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1319 /* if we have allocated more blocks and copied 1320 * less. We will have blocks allocated outside 1321 * inode->i_size. So truncate them 1322 */ 1323 ext4_orphan_add(handle, inode); 1324 1325 ret2 = ext4_journal_stop(handle); 1326 if (!ret) 1327 ret = ret2; 1328 1329 if (pos + len > inode->i_size && !verity) { 1330 ext4_truncate_failed_write(inode); 1331 /* 1332 * If truncate failed early the inode might still be 1333 * on the orphan list; we need to make sure the inode 1334 * is removed from the orphan list in that case. 1335 */ 1336 if (inode->i_nlink) 1337 ext4_orphan_del(NULL, inode); 1338 } 1339 1340 return ret ? ret : copied; 1341 } 1342 1343 /* 1344 * This is a private version of page_zero_new_buffers() which doesn't 1345 * set the buffer to be dirty, since in data=journalled mode we need 1346 * to call ext4_handle_dirty_metadata() instead. 1347 */ 1348 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1349 struct inode *inode, 1350 struct page *page, 1351 unsigned from, unsigned to) 1352 { 1353 unsigned int block_start = 0, block_end; 1354 struct buffer_head *head, *bh; 1355 1356 bh = head = page_buffers(page); 1357 do { 1358 block_end = block_start + bh->b_size; 1359 if (buffer_new(bh)) { 1360 if (block_end > from && block_start < to) { 1361 if (!PageUptodate(page)) { 1362 unsigned start, size; 1363 1364 start = max(from, block_start); 1365 size = min(to, block_end) - start; 1366 1367 zero_user(page, start, size); 1368 write_end_fn(handle, inode, bh); 1369 } 1370 clear_buffer_new(bh); 1371 } 1372 } 1373 block_start = block_end; 1374 bh = bh->b_this_page; 1375 } while (bh != head); 1376 } 1377 1378 static int ext4_journalled_write_end(struct file *file, 1379 struct address_space *mapping, 1380 loff_t pos, unsigned len, unsigned copied, 1381 struct page *page, void *fsdata) 1382 { 1383 handle_t *handle = ext4_journal_current_handle(); 1384 struct inode *inode = mapping->host; 1385 loff_t old_size = inode->i_size; 1386 int ret = 0, ret2; 1387 int partial = 0; 1388 unsigned from, to; 1389 int size_changed = 0; 1390 bool verity = ext4_verity_in_progress(inode); 1391 1392 trace_ext4_journalled_write_end(inode, pos, len, copied); 1393 from = pos & (PAGE_SIZE - 1); 1394 to = from + len; 1395 1396 BUG_ON(!ext4_handle_valid(handle)); 1397 1398 if (ext4_has_inline_data(inode)) 1399 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1400 1401 if (unlikely(copied < len) && !PageUptodate(page)) { 1402 copied = 0; 1403 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1404 } else { 1405 if (unlikely(copied < len)) 1406 ext4_journalled_zero_new_buffers(handle, inode, page, 1407 from + copied, to); 1408 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1409 from, from + copied, &partial, 1410 write_end_fn); 1411 if (!partial) 1412 SetPageUptodate(page); 1413 } 1414 if (!verity) 1415 size_changed = ext4_update_inode_size(inode, pos + copied); 1416 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1417 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1418 unlock_page(page); 1419 put_page(page); 1420 1421 if (old_size < pos && !verity) 1422 pagecache_isize_extended(inode, old_size, pos); 1423 1424 if (size_changed) { 1425 ret2 = ext4_mark_inode_dirty(handle, inode); 1426 if (!ret) 1427 ret = ret2; 1428 } 1429 1430 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1431 /* if we have allocated more blocks and copied 1432 * less. We will have blocks allocated outside 1433 * inode->i_size. So truncate them 1434 */ 1435 ext4_orphan_add(handle, inode); 1436 1437 ret2 = ext4_journal_stop(handle); 1438 if (!ret) 1439 ret = ret2; 1440 if (pos + len > inode->i_size && !verity) { 1441 ext4_truncate_failed_write(inode); 1442 /* 1443 * If truncate failed early the inode might still be 1444 * on the orphan list; we need to make sure the inode 1445 * is removed from the orphan list in that case. 1446 */ 1447 if (inode->i_nlink) 1448 ext4_orphan_del(NULL, inode); 1449 } 1450 1451 return ret ? ret : copied; 1452 } 1453 1454 /* 1455 * Reserve space for a single cluster 1456 */ 1457 static int ext4_da_reserve_space(struct inode *inode) 1458 { 1459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1460 struct ext4_inode_info *ei = EXT4_I(inode); 1461 int ret; 1462 1463 /* 1464 * We will charge metadata quota at writeout time; this saves 1465 * us from metadata over-estimation, though we may go over by 1466 * a small amount in the end. Here we just reserve for data. 1467 */ 1468 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1469 if (ret) 1470 return ret; 1471 1472 spin_lock(&ei->i_block_reservation_lock); 1473 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1474 spin_unlock(&ei->i_block_reservation_lock); 1475 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1476 return -ENOSPC; 1477 } 1478 ei->i_reserved_data_blocks++; 1479 trace_ext4_da_reserve_space(inode); 1480 spin_unlock(&ei->i_block_reservation_lock); 1481 1482 return 0; /* success */ 1483 } 1484 1485 void ext4_da_release_space(struct inode *inode, int to_free) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 1490 if (!to_free) 1491 return; /* Nothing to release, exit */ 1492 1493 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1494 1495 trace_ext4_da_release_space(inode, to_free); 1496 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1497 /* 1498 * if there aren't enough reserved blocks, then the 1499 * counter is messed up somewhere. Since this 1500 * function is called from invalidate page, it's 1501 * harmless to return without any action. 1502 */ 1503 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1504 "ino %lu, to_free %d with only %d reserved " 1505 "data blocks", inode->i_ino, to_free, 1506 ei->i_reserved_data_blocks); 1507 WARN_ON(1); 1508 to_free = ei->i_reserved_data_blocks; 1509 } 1510 ei->i_reserved_data_blocks -= to_free; 1511 1512 /* update fs dirty data blocks counter */ 1513 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1514 1515 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1516 1517 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1518 } 1519 1520 /* 1521 * Delayed allocation stuff 1522 */ 1523 1524 struct mpage_da_data { 1525 struct inode *inode; 1526 struct writeback_control *wbc; 1527 1528 pgoff_t first_page; /* The first page to write */ 1529 pgoff_t next_page; /* Current page to examine */ 1530 pgoff_t last_page; /* Last page to examine */ 1531 /* 1532 * Extent to map - this can be after first_page because that can be 1533 * fully mapped. We somewhat abuse m_flags to store whether the extent 1534 * is delalloc or unwritten. 1535 */ 1536 struct ext4_map_blocks map; 1537 struct ext4_io_submit io_submit; /* IO submission data */ 1538 unsigned int do_map:1; 1539 unsigned int scanned_until_end:1; 1540 }; 1541 1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1543 bool invalidate) 1544 { 1545 int nr_pages, i; 1546 pgoff_t index, end; 1547 struct pagevec pvec; 1548 struct inode *inode = mpd->inode; 1549 struct address_space *mapping = inode->i_mapping; 1550 1551 /* This is necessary when next_page == 0. */ 1552 if (mpd->first_page >= mpd->next_page) 1553 return; 1554 1555 mpd->scanned_until_end = 0; 1556 index = mpd->first_page; 1557 end = mpd->next_page - 1; 1558 if (invalidate) { 1559 ext4_lblk_t start, last; 1560 start = index << (PAGE_SHIFT - inode->i_blkbits); 1561 last = end << (PAGE_SHIFT - inode->i_blkbits); 1562 ext4_es_remove_extent(inode, start, last - start + 1); 1563 } 1564 1565 pagevec_init(&pvec); 1566 while (index <= end) { 1567 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1568 if (nr_pages == 0) 1569 break; 1570 for (i = 0; i < nr_pages; i++) { 1571 struct page *page = pvec.pages[i]; 1572 struct folio *folio = page_folio(page); 1573 1574 BUG_ON(!folio_test_locked(folio)); 1575 BUG_ON(folio_test_writeback(folio)); 1576 if (invalidate) { 1577 if (folio_mapped(folio)) 1578 folio_clear_dirty_for_io(folio); 1579 block_invalidate_folio(folio, 0, 1580 folio_size(folio)); 1581 folio_clear_uptodate(folio); 1582 } 1583 folio_unlock(folio); 1584 } 1585 pagevec_release(&pvec); 1586 } 1587 } 1588 1589 static void ext4_print_free_blocks(struct inode *inode) 1590 { 1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1592 struct super_block *sb = inode->i_sb; 1593 struct ext4_inode_info *ei = EXT4_I(inode); 1594 1595 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1596 EXT4_C2B(EXT4_SB(inode->i_sb), 1597 ext4_count_free_clusters(sb))); 1598 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1599 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1600 (long long) EXT4_C2B(EXT4_SB(sb), 1601 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1602 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1603 (long long) EXT4_C2B(EXT4_SB(sb), 1604 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1605 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1606 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1607 ei->i_reserved_data_blocks); 1608 return; 1609 } 1610 1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1612 struct buffer_head *bh) 1613 { 1614 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1615 } 1616 1617 /* 1618 * ext4_insert_delayed_block - adds a delayed block to the extents status 1619 * tree, incrementing the reserved cluster/block 1620 * count or making a pending reservation 1621 * where needed 1622 * 1623 * @inode - file containing the newly added block 1624 * @lblk - logical block to be added 1625 * 1626 * Returns 0 on success, negative error code on failure. 1627 */ 1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1629 { 1630 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1631 int ret; 1632 bool allocated = false; 1633 bool reserved = false; 1634 1635 /* 1636 * If the cluster containing lblk is shared with a delayed, 1637 * written, or unwritten extent in a bigalloc file system, it's 1638 * already been accounted for and does not need to be reserved. 1639 * A pending reservation must be made for the cluster if it's 1640 * shared with a written or unwritten extent and doesn't already 1641 * have one. Written and unwritten extents can be purged from the 1642 * extents status tree if the system is under memory pressure, so 1643 * it's necessary to examine the extent tree if a search of the 1644 * extents status tree doesn't get a match. 1645 */ 1646 if (sbi->s_cluster_ratio == 1) { 1647 ret = ext4_da_reserve_space(inode); 1648 if (ret != 0) /* ENOSPC */ 1649 goto errout; 1650 reserved = true; 1651 } else { /* bigalloc */ 1652 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1653 if (!ext4_es_scan_clu(inode, 1654 &ext4_es_is_mapped, lblk)) { 1655 ret = ext4_clu_mapped(inode, 1656 EXT4_B2C(sbi, lblk)); 1657 if (ret < 0) 1658 goto errout; 1659 if (ret == 0) { 1660 ret = ext4_da_reserve_space(inode); 1661 if (ret != 0) /* ENOSPC */ 1662 goto errout; 1663 reserved = true; 1664 } else { 1665 allocated = true; 1666 } 1667 } else { 1668 allocated = true; 1669 } 1670 } 1671 } 1672 1673 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1674 if (ret && reserved) 1675 ext4_da_release_space(inode, 1); 1676 1677 errout: 1678 return ret; 1679 } 1680 1681 /* 1682 * This function is grabs code from the very beginning of 1683 * ext4_map_blocks, but assumes that the caller is from delayed write 1684 * time. This function looks up the requested blocks and sets the 1685 * buffer delay bit under the protection of i_data_sem. 1686 */ 1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1688 struct ext4_map_blocks *map, 1689 struct buffer_head *bh) 1690 { 1691 struct extent_status es; 1692 int retval; 1693 sector_t invalid_block = ~((sector_t) 0xffff); 1694 #ifdef ES_AGGRESSIVE_TEST 1695 struct ext4_map_blocks orig_map; 1696 1697 memcpy(&orig_map, map, sizeof(*map)); 1698 #endif 1699 1700 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1701 invalid_block = ~0; 1702 1703 map->m_flags = 0; 1704 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1705 (unsigned long) map->m_lblk); 1706 1707 /* Lookup extent status tree firstly */ 1708 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1709 if (ext4_es_is_hole(&es)) { 1710 retval = 0; 1711 down_read(&EXT4_I(inode)->i_data_sem); 1712 goto add_delayed; 1713 } 1714 1715 /* 1716 * Delayed extent could be allocated by fallocate. 1717 * So we need to check it. 1718 */ 1719 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1720 map_bh(bh, inode->i_sb, invalid_block); 1721 set_buffer_new(bh); 1722 set_buffer_delay(bh); 1723 return 0; 1724 } 1725 1726 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1727 retval = es.es_len - (iblock - es.es_lblk); 1728 if (retval > map->m_len) 1729 retval = map->m_len; 1730 map->m_len = retval; 1731 if (ext4_es_is_written(&es)) 1732 map->m_flags |= EXT4_MAP_MAPPED; 1733 else if (ext4_es_is_unwritten(&es)) 1734 map->m_flags |= EXT4_MAP_UNWRITTEN; 1735 else 1736 BUG(); 1737 1738 #ifdef ES_AGGRESSIVE_TEST 1739 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1740 #endif 1741 return retval; 1742 } 1743 1744 /* 1745 * Try to see if we can get the block without requesting a new 1746 * file system block. 1747 */ 1748 down_read(&EXT4_I(inode)->i_data_sem); 1749 if (ext4_has_inline_data(inode)) 1750 retval = 0; 1751 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1752 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1753 else 1754 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1755 1756 add_delayed: 1757 if (retval == 0) { 1758 int ret; 1759 1760 /* 1761 * XXX: __block_prepare_write() unmaps passed block, 1762 * is it OK? 1763 */ 1764 1765 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1766 if (ret != 0) { 1767 retval = ret; 1768 goto out_unlock; 1769 } 1770 1771 map_bh(bh, inode->i_sb, invalid_block); 1772 set_buffer_new(bh); 1773 set_buffer_delay(bh); 1774 } else if (retval > 0) { 1775 int ret; 1776 unsigned int status; 1777 1778 if (unlikely(retval != map->m_len)) { 1779 ext4_warning(inode->i_sb, 1780 "ES len assertion failed for inode " 1781 "%lu: retval %d != map->m_len %d", 1782 inode->i_ino, retval, map->m_len); 1783 WARN_ON(1); 1784 } 1785 1786 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1787 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1788 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1789 map->m_pblk, status); 1790 if (ret != 0) 1791 retval = ret; 1792 } 1793 1794 out_unlock: 1795 up_read((&EXT4_I(inode)->i_data_sem)); 1796 1797 return retval; 1798 } 1799 1800 /* 1801 * This is a special get_block_t callback which is used by 1802 * ext4_da_write_begin(). It will either return mapped block or 1803 * reserve space for a single block. 1804 * 1805 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1806 * We also have b_blocknr = -1 and b_bdev initialized properly 1807 * 1808 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1809 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1810 * initialized properly. 1811 */ 1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1813 struct buffer_head *bh, int create) 1814 { 1815 struct ext4_map_blocks map; 1816 int ret = 0; 1817 1818 BUG_ON(create == 0); 1819 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1820 1821 map.m_lblk = iblock; 1822 map.m_len = 1; 1823 1824 /* 1825 * first, we need to know whether the block is allocated already 1826 * preallocated blocks are unmapped but should treated 1827 * the same as allocated blocks. 1828 */ 1829 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1830 if (ret <= 0) 1831 return ret; 1832 1833 map_bh(bh, inode->i_sb, map.m_pblk); 1834 ext4_update_bh_state(bh, map.m_flags); 1835 1836 if (buffer_unwritten(bh)) { 1837 /* A delayed write to unwritten bh should be marked 1838 * new and mapped. Mapped ensures that we don't do 1839 * get_block multiple times when we write to the same 1840 * offset and new ensures that we do proper zero out 1841 * for partial write. 1842 */ 1843 set_buffer_new(bh); 1844 set_buffer_mapped(bh); 1845 } 1846 return 0; 1847 } 1848 1849 static int __ext4_journalled_writepage(struct page *page, 1850 unsigned int len) 1851 { 1852 struct address_space *mapping = page->mapping; 1853 struct inode *inode = mapping->host; 1854 handle_t *handle = NULL; 1855 int ret = 0, err = 0; 1856 int inline_data = ext4_has_inline_data(inode); 1857 struct buffer_head *inode_bh = NULL; 1858 loff_t size; 1859 1860 ClearPageChecked(page); 1861 1862 if (inline_data) { 1863 BUG_ON(page->index != 0); 1864 BUG_ON(len > ext4_get_max_inline_size(inode)); 1865 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1866 if (inode_bh == NULL) 1867 goto out; 1868 } 1869 /* 1870 * We need to release the page lock before we start the 1871 * journal, so grab a reference so the page won't disappear 1872 * out from under us. 1873 */ 1874 get_page(page); 1875 unlock_page(page); 1876 1877 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1878 ext4_writepage_trans_blocks(inode)); 1879 if (IS_ERR(handle)) { 1880 ret = PTR_ERR(handle); 1881 put_page(page); 1882 goto out_no_pagelock; 1883 } 1884 BUG_ON(!ext4_handle_valid(handle)); 1885 1886 lock_page(page); 1887 put_page(page); 1888 size = i_size_read(inode); 1889 if (page->mapping != mapping || page_offset(page) > size) { 1890 /* The page got truncated from under us */ 1891 ext4_journal_stop(handle); 1892 ret = 0; 1893 goto out; 1894 } 1895 1896 if (inline_data) { 1897 ret = ext4_mark_inode_dirty(handle, inode); 1898 } else { 1899 struct buffer_head *page_bufs = page_buffers(page); 1900 1901 if (page->index == size >> PAGE_SHIFT) 1902 len = size & ~PAGE_MASK; 1903 else 1904 len = PAGE_SIZE; 1905 1906 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1907 NULL, do_journal_get_write_access); 1908 1909 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1910 NULL, write_end_fn); 1911 } 1912 if (ret == 0) 1913 ret = err; 1914 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1915 if (ret == 0) 1916 ret = err; 1917 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1918 err = ext4_journal_stop(handle); 1919 if (!ret) 1920 ret = err; 1921 1922 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1923 out: 1924 unlock_page(page); 1925 out_no_pagelock: 1926 brelse(inode_bh); 1927 return ret; 1928 } 1929 1930 /* 1931 * Note that we don't need to start a transaction unless we're journaling data 1932 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1933 * need to file the inode to the transaction's list in ordered mode because if 1934 * we are writing back data added by write(), the inode is already there and if 1935 * we are writing back data modified via mmap(), no one guarantees in which 1936 * transaction the data will hit the disk. In case we are journaling data, we 1937 * cannot start transaction directly because transaction start ranks above page 1938 * lock so we have to do some magic. 1939 * 1940 * This function can get called via... 1941 * - ext4_writepages after taking page lock (have journal handle) 1942 * - journal_submit_inode_data_buffers (no journal handle) 1943 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1944 * - grab_page_cache when doing write_begin (have journal handle) 1945 * 1946 * We don't do any block allocation in this function. If we have page with 1947 * multiple blocks we need to write those buffer_heads that are mapped. This 1948 * is important for mmaped based write. So if we do with blocksize 1K 1949 * truncate(f, 1024); 1950 * a = mmap(f, 0, 4096); 1951 * a[0] = 'a'; 1952 * truncate(f, 4096); 1953 * we have in the page first buffer_head mapped via page_mkwrite call back 1954 * but other buffer_heads would be unmapped but dirty (dirty done via the 1955 * do_wp_page). So writepage should write the first block. If we modify 1956 * the mmap area beyond 1024 we will again get a page_fault and the 1957 * page_mkwrite callback will do the block allocation and mark the 1958 * buffer_heads mapped. 1959 * 1960 * We redirty the page if we have any buffer_heads that is either delay or 1961 * unwritten in the page. 1962 * 1963 * We can get recursively called as show below. 1964 * 1965 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1966 * ext4_writepage() 1967 * 1968 * But since we don't do any block allocation we should not deadlock. 1969 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1970 */ 1971 static int ext4_writepage(struct page *page, 1972 struct writeback_control *wbc) 1973 { 1974 struct folio *folio = page_folio(page); 1975 int ret = 0; 1976 loff_t size; 1977 unsigned int len; 1978 struct buffer_head *page_bufs = NULL; 1979 struct inode *inode = page->mapping->host; 1980 struct ext4_io_submit io_submit; 1981 bool keep_towrite = false; 1982 1983 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1984 folio_invalidate(folio, 0, folio_size(folio)); 1985 folio_unlock(folio); 1986 return -EIO; 1987 } 1988 1989 trace_ext4_writepage(page); 1990 size = i_size_read(inode); 1991 if (page->index == size >> PAGE_SHIFT && 1992 !ext4_verity_in_progress(inode)) 1993 len = size & ~PAGE_MASK; 1994 else 1995 len = PAGE_SIZE; 1996 1997 /* Should never happen but for bugs in other kernel subsystems */ 1998 if (!page_has_buffers(page)) { 1999 ext4_warning_inode(inode, 2000 "page %lu does not have buffers attached", page->index); 2001 ClearPageDirty(page); 2002 unlock_page(page); 2003 return 0; 2004 } 2005 2006 page_bufs = page_buffers(page); 2007 /* 2008 * We cannot do block allocation or other extent handling in this 2009 * function. If there are buffers needing that, we have to redirty 2010 * the page. But we may reach here when we do a journal commit via 2011 * journal_submit_inode_data_buffers() and in that case we must write 2012 * allocated buffers to achieve data=ordered mode guarantees. 2013 * 2014 * Also, if there is only one buffer per page (the fs block 2015 * size == the page size), if one buffer needs block 2016 * allocation or needs to modify the extent tree to clear the 2017 * unwritten flag, we know that the page can't be written at 2018 * all, so we might as well refuse the write immediately. 2019 * Unfortunately if the block size != page size, we can't as 2020 * easily detect this case using ext4_walk_page_buffers(), but 2021 * for the extremely common case, this is an optimization that 2022 * skips a useless round trip through ext4_bio_write_page(). 2023 */ 2024 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2025 ext4_bh_delay_or_unwritten)) { 2026 redirty_page_for_writepage(wbc, page); 2027 if ((current->flags & PF_MEMALLOC) || 2028 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2029 /* 2030 * For memory cleaning there's no point in writing only 2031 * some buffers. So just bail out. Warn if we came here 2032 * from direct reclaim. 2033 */ 2034 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2035 == PF_MEMALLOC); 2036 unlock_page(page); 2037 return 0; 2038 } 2039 keep_towrite = true; 2040 } 2041 2042 if (PageChecked(page) && ext4_should_journal_data(inode)) 2043 /* 2044 * It's mmapped pagecache. Add buffers and journal it. There 2045 * doesn't seem much point in redirtying the page here. 2046 */ 2047 return __ext4_journalled_writepage(page, len); 2048 2049 ext4_io_submit_init(&io_submit, wbc); 2050 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2051 if (!io_submit.io_end) { 2052 redirty_page_for_writepage(wbc, page); 2053 unlock_page(page); 2054 return -ENOMEM; 2055 } 2056 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2057 ext4_io_submit(&io_submit); 2058 /* Drop io_end reference we got from init */ 2059 ext4_put_io_end_defer(io_submit.io_end); 2060 return ret; 2061 } 2062 2063 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2064 { 2065 int len; 2066 loff_t size; 2067 int err; 2068 2069 BUG_ON(page->index != mpd->first_page); 2070 clear_page_dirty_for_io(page); 2071 /* 2072 * We have to be very careful here! Nothing protects writeback path 2073 * against i_size changes and the page can be writeably mapped into 2074 * page tables. So an application can be growing i_size and writing 2075 * data through mmap while writeback runs. clear_page_dirty_for_io() 2076 * write-protects our page in page tables and the page cannot get 2077 * written to again until we release page lock. So only after 2078 * clear_page_dirty_for_io() we are safe to sample i_size for 2079 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2080 * on the barrier provided by TestClearPageDirty in 2081 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2082 * after page tables are updated. 2083 */ 2084 size = i_size_read(mpd->inode); 2085 if (page->index == size >> PAGE_SHIFT && 2086 !ext4_verity_in_progress(mpd->inode)) 2087 len = size & ~PAGE_MASK; 2088 else 2089 len = PAGE_SIZE; 2090 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2091 if (!err) 2092 mpd->wbc->nr_to_write--; 2093 mpd->first_page++; 2094 2095 return err; 2096 } 2097 2098 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2099 2100 /* 2101 * mballoc gives us at most this number of blocks... 2102 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2103 * The rest of mballoc seems to handle chunks up to full group size. 2104 */ 2105 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2106 2107 /* 2108 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2109 * 2110 * @mpd - extent of blocks 2111 * @lblk - logical number of the block in the file 2112 * @bh - buffer head we want to add to the extent 2113 * 2114 * The function is used to collect contig. blocks in the same state. If the 2115 * buffer doesn't require mapping for writeback and we haven't started the 2116 * extent of buffers to map yet, the function returns 'true' immediately - the 2117 * caller can write the buffer right away. Otherwise the function returns true 2118 * if the block has been added to the extent, false if the block couldn't be 2119 * added. 2120 */ 2121 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2122 struct buffer_head *bh) 2123 { 2124 struct ext4_map_blocks *map = &mpd->map; 2125 2126 /* Buffer that doesn't need mapping for writeback? */ 2127 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2128 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2129 /* So far no extent to map => we write the buffer right away */ 2130 if (map->m_len == 0) 2131 return true; 2132 return false; 2133 } 2134 2135 /* First block in the extent? */ 2136 if (map->m_len == 0) { 2137 /* We cannot map unless handle is started... */ 2138 if (!mpd->do_map) 2139 return false; 2140 map->m_lblk = lblk; 2141 map->m_len = 1; 2142 map->m_flags = bh->b_state & BH_FLAGS; 2143 return true; 2144 } 2145 2146 /* Don't go larger than mballoc is willing to allocate */ 2147 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2148 return false; 2149 2150 /* Can we merge the block to our big extent? */ 2151 if (lblk == map->m_lblk + map->m_len && 2152 (bh->b_state & BH_FLAGS) == map->m_flags) { 2153 map->m_len++; 2154 return true; 2155 } 2156 return false; 2157 } 2158 2159 /* 2160 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2161 * 2162 * @mpd - extent of blocks for mapping 2163 * @head - the first buffer in the page 2164 * @bh - buffer we should start processing from 2165 * @lblk - logical number of the block in the file corresponding to @bh 2166 * 2167 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2168 * the page for IO if all buffers in this page were mapped and there's no 2169 * accumulated extent of buffers to map or add buffers in the page to the 2170 * extent of buffers to map. The function returns 1 if the caller can continue 2171 * by processing the next page, 0 if it should stop adding buffers to the 2172 * extent to map because we cannot extend it anymore. It can also return value 2173 * < 0 in case of error during IO submission. 2174 */ 2175 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2176 struct buffer_head *head, 2177 struct buffer_head *bh, 2178 ext4_lblk_t lblk) 2179 { 2180 struct inode *inode = mpd->inode; 2181 int err; 2182 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2183 >> inode->i_blkbits; 2184 2185 if (ext4_verity_in_progress(inode)) 2186 blocks = EXT_MAX_BLOCKS; 2187 2188 do { 2189 BUG_ON(buffer_locked(bh)); 2190 2191 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2192 /* Found extent to map? */ 2193 if (mpd->map.m_len) 2194 return 0; 2195 /* Buffer needs mapping and handle is not started? */ 2196 if (!mpd->do_map) 2197 return 0; 2198 /* Everything mapped so far and we hit EOF */ 2199 break; 2200 } 2201 } while (lblk++, (bh = bh->b_this_page) != head); 2202 /* So far everything mapped? Submit the page for IO. */ 2203 if (mpd->map.m_len == 0) { 2204 err = mpage_submit_page(mpd, head->b_page); 2205 if (err < 0) 2206 return err; 2207 } 2208 if (lblk >= blocks) { 2209 mpd->scanned_until_end = 1; 2210 return 0; 2211 } 2212 return 1; 2213 } 2214 2215 /* 2216 * mpage_process_page - update page buffers corresponding to changed extent and 2217 * may submit fully mapped page for IO 2218 * 2219 * @mpd - description of extent to map, on return next extent to map 2220 * @m_lblk - logical block mapping. 2221 * @m_pblk - corresponding physical mapping. 2222 * @map_bh - determines on return whether this page requires any further 2223 * mapping or not. 2224 * Scan given page buffers corresponding to changed extent and update buffer 2225 * state according to new extent state. 2226 * We map delalloc buffers to their physical location, clear unwritten bits. 2227 * If the given page is not fully mapped, we update @map to the next extent in 2228 * the given page that needs mapping & return @map_bh as true. 2229 */ 2230 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2231 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2232 bool *map_bh) 2233 { 2234 struct buffer_head *head, *bh; 2235 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2236 ext4_lblk_t lblk = *m_lblk; 2237 ext4_fsblk_t pblock = *m_pblk; 2238 int err = 0; 2239 int blkbits = mpd->inode->i_blkbits; 2240 ssize_t io_end_size = 0; 2241 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2242 2243 bh = head = page_buffers(page); 2244 do { 2245 if (lblk < mpd->map.m_lblk) 2246 continue; 2247 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2248 /* 2249 * Buffer after end of mapped extent. 2250 * Find next buffer in the page to map. 2251 */ 2252 mpd->map.m_len = 0; 2253 mpd->map.m_flags = 0; 2254 io_end_vec->size += io_end_size; 2255 2256 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2257 if (err > 0) 2258 err = 0; 2259 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2260 io_end_vec = ext4_alloc_io_end_vec(io_end); 2261 if (IS_ERR(io_end_vec)) { 2262 err = PTR_ERR(io_end_vec); 2263 goto out; 2264 } 2265 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2266 } 2267 *map_bh = true; 2268 goto out; 2269 } 2270 if (buffer_delay(bh)) { 2271 clear_buffer_delay(bh); 2272 bh->b_blocknr = pblock++; 2273 } 2274 clear_buffer_unwritten(bh); 2275 io_end_size += (1 << blkbits); 2276 } while (lblk++, (bh = bh->b_this_page) != head); 2277 2278 io_end_vec->size += io_end_size; 2279 *map_bh = false; 2280 out: 2281 *m_lblk = lblk; 2282 *m_pblk = pblock; 2283 return err; 2284 } 2285 2286 /* 2287 * mpage_map_buffers - update buffers corresponding to changed extent and 2288 * submit fully mapped pages for IO 2289 * 2290 * @mpd - description of extent to map, on return next extent to map 2291 * 2292 * Scan buffers corresponding to changed extent (we expect corresponding pages 2293 * to be already locked) and update buffer state according to new extent state. 2294 * We map delalloc buffers to their physical location, clear unwritten bits, 2295 * and mark buffers as uninit when we perform writes to unwritten extents 2296 * and do extent conversion after IO is finished. If the last page is not fully 2297 * mapped, we update @map to the next extent in the last page that needs 2298 * mapping. Otherwise we submit the page for IO. 2299 */ 2300 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2301 { 2302 struct pagevec pvec; 2303 int nr_pages, i; 2304 struct inode *inode = mpd->inode; 2305 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2306 pgoff_t start, end; 2307 ext4_lblk_t lblk; 2308 ext4_fsblk_t pblock; 2309 int err; 2310 bool map_bh = false; 2311 2312 start = mpd->map.m_lblk >> bpp_bits; 2313 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2314 lblk = start << bpp_bits; 2315 pblock = mpd->map.m_pblk; 2316 2317 pagevec_init(&pvec); 2318 while (start <= end) { 2319 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2320 &start, end); 2321 if (nr_pages == 0) 2322 break; 2323 for (i = 0; i < nr_pages; i++) { 2324 struct page *page = pvec.pages[i]; 2325 2326 err = mpage_process_page(mpd, page, &lblk, &pblock, 2327 &map_bh); 2328 /* 2329 * If map_bh is true, means page may require further bh 2330 * mapping, or maybe the page was submitted for IO. 2331 * So we return to call further extent mapping. 2332 */ 2333 if (err < 0 || map_bh) 2334 goto out; 2335 /* Page fully mapped - let IO run! */ 2336 err = mpage_submit_page(mpd, page); 2337 if (err < 0) 2338 goto out; 2339 } 2340 pagevec_release(&pvec); 2341 } 2342 /* Extent fully mapped and matches with page boundary. We are done. */ 2343 mpd->map.m_len = 0; 2344 mpd->map.m_flags = 0; 2345 return 0; 2346 out: 2347 pagevec_release(&pvec); 2348 return err; 2349 } 2350 2351 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2352 { 2353 struct inode *inode = mpd->inode; 2354 struct ext4_map_blocks *map = &mpd->map; 2355 int get_blocks_flags; 2356 int err, dioread_nolock; 2357 2358 trace_ext4_da_write_pages_extent(inode, map); 2359 /* 2360 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2361 * to convert an unwritten extent to be initialized (in the case 2362 * where we have written into one or more preallocated blocks). It is 2363 * possible that we're going to need more metadata blocks than 2364 * previously reserved. However we must not fail because we're in 2365 * writeback and there is nothing we can do about it so it might result 2366 * in data loss. So use reserved blocks to allocate metadata if 2367 * possible. 2368 * 2369 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2370 * the blocks in question are delalloc blocks. This indicates 2371 * that the blocks and quotas has already been checked when 2372 * the data was copied into the page cache. 2373 */ 2374 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2375 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2376 EXT4_GET_BLOCKS_IO_SUBMIT; 2377 dioread_nolock = ext4_should_dioread_nolock(inode); 2378 if (dioread_nolock) 2379 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2380 if (map->m_flags & BIT(BH_Delay)) 2381 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2382 2383 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2384 if (err < 0) 2385 return err; 2386 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2387 if (!mpd->io_submit.io_end->handle && 2388 ext4_handle_valid(handle)) { 2389 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2390 handle->h_rsv_handle = NULL; 2391 } 2392 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2393 } 2394 2395 BUG_ON(map->m_len == 0); 2396 return 0; 2397 } 2398 2399 /* 2400 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2401 * mpd->len and submit pages underlying it for IO 2402 * 2403 * @handle - handle for journal operations 2404 * @mpd - extent to map 2405 * @give_up_on_write - we set this to true iff there is a fatal error and there 2406 * is no hope of writing the data. The caller should discard 2407 * dirty pages to avoid infinite loops. 2408 * 2409 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2410 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2411 * them to initialized or split the described range from larger unwritten 2412 * extent. Note that we need not map all the described range since allocation 2413 * can return less blocks or the range is covered by more unwritten extents. We 2414 * cannot map more because we are limited by reserved transaction credits. On 2415 * the other hand we always make sure that the last touched page is fully 2416 * mapped so that it can be written out (and thus forward progress is 2417 * guaranteed). After mapping we submit all mapped pages for IO. 2418 */ 2419 static int mpage_map_and_submit_extent(handle_t *handle, 2420 struct mpage_da_data *mpd, 2421 bool *give_up_on_write) 2422 { 2423 struct inode *inode = mpd->inode; 2424 struct ext4_map_blocks *map = &mpd->map; 2425 int err; 2426 loff_t disksize; 2427 int progress = 0; 2428 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2429 struct ext4_io_end_vec *io_end_vec; 2430 2431 io_end_vec = ext4_alloc_io_end_vec(io_end); 2432 if (IS_ERR(io_end_vec)) 2433 return PTR_ERR(io_end_vec); 2434 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2435 do { 2436 err = mpage_map_one_extent(handle, mpd); 2437 if (err < 0) { 2438 struct super_block *sb = inode->i_sb; 2439 2440 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2441 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2442 goto invalidate_dirty_pages; 2443 /* 2444 * Let the uper layers retry transient errors. 2445 * In the case of ENOSPC, if ext4_count_free_blocks() 2446 * is non-zero, a commit should free up blocks. 2447 */ 2448 if ((err == -ENOMEM) || 2449 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2450 if (progress) 2451 goto update_disksize; 2452 return err; 2453 } 2454 ext4_msg(sb, KERN_CRIT, 2455 "Delayed block allocation failed for " 2456 "inode %lu at logical offset %llu with" 2457 " max blocks %u with error %d", 2458 inode->i_ino, 2459 (unsigned long long)map->m_lblk, 2460 (unsigned)map->m_len, -err); 2461 ext4_msg(sb, KERN_CRIT, 2462 "This should not happen!! Data will " 2463 "be lost\n"); 2464 if (err == -ENOSPC) 2465 ext4_print_free_blocks(inode); 2466 invalidate_dirty_pages: 2467 *give_up_on_write = true; 2468 return err; 2469 } 2470 progress = 1; 2471 /* 2472 * Update buffer state, submit mapped pages, and get us new 2473 * extent to map 2474 */ 2475 err = mpage_map_and_submit_buffers(mpd); 2476 if (err < 0) 2477 goto update_disksize; 2478 } while (map->m_len); 2479 2480 update_disksize: 2481 /* 2482 * Update on-disk size after IO is submitted. Races with 2483 * truncate are avoided by checking i_size under i_data_sem. 2484 */ 2485 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2486 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2487 int err2; 2488 loff_t i_size; 2489 2490 down_write(&EXT4_I(inode)->i_data_sem); 2491 i_size = i_size_read(inode); 2492 if (disksize > i_size) 2493 disksize = i_size; 2494 if (disksize > EXT4_I(inode)->i_disksize) 2495 EXT4_I(inode)->i_disksize = disksize; 2496 up_write(&EXT4_I(inode)->i_data_sem); 2497 err2 = ext4_mark_inode_dirty(handle, inode); 2498 if (err2) { 2499 ext4_error_err(inode->i_sb, -err2, 2500 "Failed to mark inode %lu dirty", 2501 inode->i_ino); 2502 } 2503 if (!err) 2504 err = err2; 2505 } 2506 return err; 2507 } 2508 2509 /* 2510 * Calculate the total number of credits to reserve for one writepages 2511 * iteration. This is called from ext4_writepages(). We map an extent of 2512 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2513 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2514 * bpp - 1 blocks in bpp different extents. 2515 */ 2516 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2517 { 2518 int bpp = ext4_journal_blocks_per_page(inode); 2519 2520 return ext4_meta_trans_blocks(inode, 2521 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2522 } 2523 2524 /* 2525 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2526 * and underlying extent to map 2527 * 2528 * @mpd - where to look for pages 2529 * 2530 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2531 * IO immediately. When we find a page which isn't mapped we start accumulating 2532 * extent of buffers underlying these pages that needs mapping (formed by 2533 * either delayed or unwritten buffers). We also lock the pages containing 2534 * these buffers. The extent found is returned in @mpd structure (starting at 2535 * mpd->lblk with length mpd->len blocks). 2536 * 2537 * Note that this function can attach bios to one io_end structure which are 2538 * neither logically nor physically contiguous. Although it may seem as an 2539 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2540 * case as we need to track IO to all buffers underlying a page in one io_end. 2541 */ 2542 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2543 { 2544 struct address_space *mapping = mpd->inode->i_mapping; 2545 struct pagevec pvec; 2546 unsigned int nr_pages; 2547 long left = mpd->wbc->nr_to_write; 2548 pgoff_t index = mpd->first_page; 2549 pgoff_t end = mpd->last_page; 2550 xa_mark_t tag; 2551 int i, err = 0; 2552 int blkbits = mpd->inode->i_blkbits; 2553 ext4_lblk_t lblk; 2554 struct buffer_head *head; 2555 2556 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2557 tag = PAGECACHE_TAG_TOWRITE; 2558 else 2559 tag = PAGECACHE_TAG_DIRTY; 2560 2561 pagevec_init(&pvec); 2562 mpd->map.m_len = 0; 2563 mpd->next_page = index; 2564 while (index <= end) { 2565 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2566 tag); 2567 if (nr_pages == 0) 2568 break; 2569 2570 for (i = 0; i < nr_pages; i++) { 2571 struct page *page = pvec.pages[i]; 2572 2573 /* 2574 * Accumulated enough dirty pages? This doesn't apply 2575 * to WB_SYNC_ALL mode. For integrity sync we have to 2576 * keep going because someone may be concurrently 2577 * dirtying pages, and we might have synced a lot of 2578 * newly appeared dirty pages, but have not synced all 2579 * of the old dirty pages. 2580 */ 2581 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2582 goto out; 2583 2584 /* If we can't merge this page, we are done. */ 2585 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2586 goto out; 2587 2588 lock_page(page); 2589 /* 2590 * If the page is no longer dirty, or its mapping no 2591 * longer corresponds to inode we are writing (which 2592 * means it has been truncated or invalidated), or the 2593 * page is already under writeback and we are not doing 2594 * a data integrity writeback, skip the page 2595 */ 2596 if (!PageDirty(page) || 2597 (PageWriteback(page) && 2598 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2599 unlikely(page->mapping != mapping)) { 2600 unlock_page(page); 2601 continue; 2602 } 2603 2604 wait_on_page_writeback(page); 2605 BUG_ON(PageWriteback(page)); 2606 2607 /* 2608 * Should never happen but for buggy code in 2609 * other subsystems that call 2610 * set_page_dirty() without properly warning 2611 * the file system first. See [1] for more 2612 * information. 2613 * 2614 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2615 */ 2616 if (!page_has_buffers(page)) { 2617 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index); 2618 ClearPageDirty(page); 2619 unlock_page(page); 2620 continue; 2621 } 2622 2623 if (mpd->map.m_len == 0) 2624 mpd->first_page = page->index; 2625 mpd->next_page = page->index + 1; 2626 /* Add all dirty buffers to mpd */ 2627 lblk = ((ext4_lblk_t)page->index) << 2628 (PAGE_SHIFT - blkbits); 2629 head = page_buffers(page); 2630 err = mpage_process_page_bufs(mpd, head, head, lblk); 2631 if (err <= 0) 2632 goto out; 2633 err = 0; 2634 left--; 2635 } 2636 pagevec_release(&pvec); 2637 cond_resched(); 2638 } 2639 mpd->scanned_until_end = 1; 2640 return 0; 2641 out: 2642 pagevec_release(&pvec); 2643 return err; 2644 } 2645 2646 static int ext4_writepages(struct address_space *mapping, 2647 struct writeback_control *wbc) 2648 { 2649 pgoff_t writeback_index = 0; 2650 long nr_to_write = wbc->nr_to_write; 2651 int range_whole = 0; 2652 int cycled = 1; 2653 handle_t *handle = NULL; 2654 struct mpage_da_data mpd; 2655 struct inode *inode = mapping->host; 2656 int needed_blocks, rsv_blocks = 0, ret = 0; 2657 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2658 struct blk_plug plug; 2659 bool give_up_on_write = false; 2660 2661 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2662 return -EIO; 2663 2664 percpu_down_read(&sbi->s_writepages_rwsem); 2665 trace_ext4_writepages(inode, wbc); 2666 2667 /* 2668 * No pages to write? This is mainly a kludge to avoid starting 2669 * a transaction for special inodes like journal inode on last iput() 2670 * because that could violate lock ordering on umount 2671 */ 2672 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2673 goto out_writepages; 2674 2675 if (ext4_should_journal_data(inode)) { 2676 ret = generic_writepages(mapping, wbc); 2677 goto out_writepages; 2678 } 2679 2680 /* 2681 * If the filesystem has aborted, it is read-only, so return 2682 * right away instead of dumping stack traces later on that 2683 * will obscure the real source of the problem. We test 2684 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2685 * the latter could be true if the filesystem is mounted 2686 * read-only, and in that case, ext4_writepages should 2687 * *never* be called, so if that ever happens, we would want 2688 * the stack trace. 2689 */ 2690 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2691 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2692 ret = -EROFS; 2693 goto out_writepages; 2694 } 2695 2696 /* 2697 * If we have inline data and arrive here, it means that 2698 * we will soon create the block for the 1st page, so 2699 * we'd better clear the inline data here. 2700 */ 2701 if (ext4_has_inline_data(inode)) { 2702 /* Just inode will be modified... */ 2703 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2704 if (IS_ERR(handle)) { 2705 ret = PTR_ERR(handle); 2706 goto out_writepages; 2707 } 2708 BUG_ON(ext4_test_inode_state(inode, 2709 EXT4_STATE_MAY_INLINE_DATA)); 2710 ext4_destroy_inline_data(handle, inode); 2711 ext4_journal_stop(handle); 2712 } 2713 2714 if (ext4_should_dioread_nolock(inode)) { 2715 /* 2716 * We may need to convert up to one extent per block in 2717 * the page and we may dirty the inode. 2718 */ 2719 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2720 PAGE_SIZE >> inode->i_blkbits); 2721 } 2722 2723 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2724 range_whole = 1; 2725 2726 if (wbc->range_cyclic) { 2727 writeback_index = mapping->writeback_index; 2728 if (writeback_index) 2729 cycled = 0; 2730 mpd.first_page = writeback_index; 2731 mpd.last_page = -1; 2732 } else { 2733 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2734 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2735 } 2736 2737 mpd.inode = inode; 2738 mpd.wbc = wbc; 2739 ext4_io_submit_init(&mpd.io_submit, wbc); 2740 retry: 2741 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2742 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2743 blk_start_plug(&plug); 2744 2745 /* 2746 * First writeback pages that don't need mapping - we can avoid 2747 * starting a transaction unnecessarily and also avoid being blocked 2748 * in the block layer on device congestion while having transaction 2749 * started. 2750 */ 2751 mpd.do_map = 0; 2752 mpd.scanned_until_end = 0; 2753 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2754 if (!mpd.io_submit.io_end) { 2755 ret = -ENOMEM; 2756 goto unplug; 2757 } 2758 ret = mpage_prepare_extent_to_map(&mpd); 2759 /* Unlock pages we didn't use */ 2760 mpage_release_unused_pages(&mpd, false); 2761 /* Submit prepared bio */ 2762 ext4_io_submit(&mpd.io_submit); 2763 ext4_put_io_end_defer(mpd.io_submit.io_end); 2764 mpd.io_submit.io_end = NULL; 2765 if (ret < 0) 2766 goto unplug; 2767 2768 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2769 /* For each extent of pages we use new io_end */ 2770 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2771 if (!mpd.io_submit.io_end) { 2772 ret = -ENOMEM; 2773 break; 2774 } 2775 2776 /* 2777 * We have two constraints: We find one extent to map and we 2778 * must always write out whole page (makes a difference when 2779 * blocksize < pagesize) so that we don't block on IO when we 2780 * try to write out the rest of the page. Journalled mode is 2781 * not supported by delalloc. 2782 */ 2783 BUG_ON(ext4_should_journal_data(inode)); 2784 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2785 2786 /* start a new transaction */ 2787 handle = ext4_journal_start_with_reserve(inode, 2788 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2789 if (IS_ERR(handle)) { 2790 ret = PTR_ERR(handle); 2791 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2792 "%ld pages, ino %lu; err %d", __func__, 2793 wbc->nr_to_write, inode->i_ino, ret); 2794 /* Release allocated io_end */ 2795 ext4_put_io_end(mpd.io_submit.io_end); 2796 mpd.io_submit.io_end = NULL; 2797 break; 2798 } 2799 mpd.do_map = 1; 2800 2801 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2802 ret = mpage_prepare_extent_to_map(&mpd); 2803 if (!ret && mpd.map.m_len) 2804 ret = mpage_map_and_submit_extent(handle, &mpd, 2805 &give_up_on_write); 2806 /* 2807 * Caution: If the handle is synchronous, 2808 * ext4_journal_stop() can wait for transaction commit 2809 * to finish which may depend on writeback of pages to 2810 * complete or on page lock to be released. In that 2811 * case, we have to wait until after we have 2812 * submitted all the IO, released page locks we hold, 2813 * and dropped io_end reference (for extent conversion 2814 * to be able to complete) before stopping the handle. 2815 */ 2816 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2817 ext4_journal_stop(handle); 2818 handle = NULL; 2819 mpd.do_map = 0; 2820 } 2821 /* Unlock pages we didn't use */ 2822 mpage_release_unused_pages(&mpd, give_up_on_write); 2823 /* Submit prepared bio */ 2824 ext4_io_submit(&mpd.io_submit); 2825 2826 /* 2827 * Drop our io_end reference we got from init. We have 2828 * to be careful and use deferred io_end finishing if 2829 * we are still holding the transaction as we can 2830 * release the last reference to io_end which may end 2831 * up doing unwritten extent conversion. 2832 */ 2833 if (handle) { 2834 ext4_put_io_end_defer(mpd.io_submit.io_end); 2835 ext4_journal_stop(handle); 2836 } else 2837 ext4_put_io_end(mpd.io_submit.io_end); 2838 mpd.io_submit.io_end = NULL; 2839 2840 if (ret == -ENOSPC && sbi->s_journal) { 2841 /* 2842 * Commit the transaction which would 2843 * free blocks released in the transaction 2844 * and try again 2845 */ 2846 jbd2_journal_force_commit_nested(sbi->s_journal); 2847 ret = 0; 2848 continue; 2849 } 2850 /* Fatal error - ENOMEM, EIO... */ 2851 if (ret) 2852 break; 2853 } 2854 unplug: 2855 blk_finish_plug(&plug); 2856 if (!ret && !cycled && wbc->nr_to_write > 0) { 2857 cycled = 1; 2858 mpd.last_page = writeback_index - 1; 2859 mpd.first_page = 0; 2860 goto retry; 2861 } 2862 2863 /* Update index */ 2864 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2865 /* 2866 * Set the writeback_index so that range_cyclic 2867 * mode will write it back later 2868 */ 2869 mapping->writeback_index = mpd.first_page; 2870 2871 out_writepages: 2872 trace_ext4_writepages_result(inode, wbc, ret, 2873 nr_to_write - wbc->nr_to_write); 2874 percpu_up_read(&sbi->s_writepages_rwsem); 2875 return ret; 2876 } 2877 2878 static int ext4_dax_writepages(struct address_space *mapping, 2879 struct writeback_control *wbc) 2880 { 2881 int ret; 2882 long nr_to_write = wbc->nr_to_write; 2883 struct inode *inode = mapping->host; 2884 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2885 2886 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2887 return -EIO; 2888 2889 percpu_down_read(&sbi->s_writepages_rwsem); 2890 trace_ext4_writepages(inode, wbc); 2891 2892 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2893 trace_ext4_writepages_result(inode, wbc, ret, 2894 nr_to_write - wbc->nr_to_write); 2895 percpu_up_read(&sbi->s_writepages_rwsem); 2896 return ret; 2897 } 2898 2899 static int ext4_nonda_switch(struct super_block *sb) 2900 { 2901 s64 free_clusters, dirty_clusters; 2902 struct ext4_sb_info *sbi = EXT4_SB(sb); 2903 2904 /* 2905 * switch to non delalloc mode if we are running low 2906 * on free block. The free block accounting via percpu 2907 * counters can get slightly wrong with percpu_counter_batch getting 2908 * accumulated on each CPU without updating global counters 2909 * Delalloc need an accurate free block accounting. So switch 2910 * to non delalloc when we are near to error range. 2911 */ 2912 free_clusters = 2913 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2914 dirty_clusters = 2915 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2916 /* 2917 * Start pushing delalloc when 1/2 of free blocks are dirty. 2918 */ 2919 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2920 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2921 2922 if (2 * free_clusters < 3 * dirty_clusters || 2923 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2924 /* 2925 * free block count is less than 150% of dirty blocks 2926 * or free blocks is less than watermark 2927 */ 2928 return 1; 2929 } 2930 return 0; 2931 } 2932 2933 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2934 loff_t pos, unsigned len, unsigned flags, 2935 struct page **pagep, void **fsdata) 2936 { 2937 int ret, retries = 0; 2938 struct page *page; 2939 pgoff_t index; 2940 struct inode *inode = mapping->host; 2941 2942 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2943 return -EIO; 2944 2945 index = pos >> PAGE_SHIFT; 2946 2947 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2948 ext4_verity_in_progress(inode)) { 2949 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2950 return ext4_write_begin(file, mapping, pos, 2951 len, flags, pagep, fsdata); 2952 } 2953 *fsdata = (void *)0; 2954 trace_ext4_da_write_begin(inode, pos, len, flags); 2955 2956 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2957 ret = ext4_da_write_inline_data_begin(mapping, inode, 2958 pos, len, flags, 2959 pagep, fsdata); 2960 if (ret < 0) 2961 return ret; 2962 if (ret == 1) 2963 return 0; 2964 } 2965 2966 retry: 2967 page = grab_cache_page_write_begin(mapping, index, flags); 2968 if (!page) 2969 return -ENOMEM; 2970 2971 /* In case writeback began while the page was unlocked */ 2972 wait_for_stable_page(page); 2973 2974 #ifdef CONFIG_FS_ENCRYPTION 2975 ret = ext4_block_write_begin(page, pos, len, 2976 ext4_da_get_block_prep); 2977 #else 2978 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2979 #endif 2980 if (ret < 0) { 2981 unlock_page(page); 2982 put_page(page); 2983 /* 2984 * block_write_begin may have instantiated a few blocks 2985 * outside i_size. Trim these off again. Don't need 2986 * i_size_read because we hold inode lock. 2987 */ 2988 if (pos + len > inode->i_size) 2989 ext4_truncate_failed_write(inode); 2990 2991 if (ret == -ENOSPC && 2992 ext4_should_retry_alloc(inode->i_sb, &retries)) 2993 goto retry; 2994 return ret; 2995 } 2996 2997 *pagep = page; 2998 return ret; 2999 } 3000 3001 /* 3002 * Check if we should update i_disksize 3003 * when write to the end of file but not require block allocation 3004 */ 3005 static int ext4_da_should_update_i_disksize(struct page *page, 3006 unsigned long offset) 3007 { 3008 struct buffer_head *bh; 3009 struct inode *inode = page->mapping->host; 3010 unsigned int idx; 3011 int i; 3012 3013 bh = page_buffers(page); 3014 idx = offset >> inode->i_blkbits; 3015 3016 for (i = 0; i < idx; i++) 3017 bh = bh->b_this_page; 3018 3019 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3020 return 0; 3021 return 1; 3022 } 3023 3024 static int ext4_da_write_end(struct file *file, 3025 struct address_space *mapping, 3026 loff_t pos, unsigned len, unsigned copied, 3027 struct page *page, void *fsdata) 3028 { 3029 struct inode *inode = mapping->host; 3030 loff_t new_i_size; 3031 unsigned long start, end; 3032 int write_mode = (int)(unsigned long)fsdata; 3033 3034 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3035 return ext4_write_end(file, mapping, pos, 3036 len, copied, page, fsdata); 3037 3038 trace_ext4_da_write_end(inode, pos, len, copied); 3039 3040 if (write_mode != CONVERT_INLINE_DATA && 3041 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3042 ext4_has_inline_data(inode)) 3043 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3044 3045 start = pos & (PAGE_SIZE - 1); 3046 end = start + copied - 1; 3047 3048 /* 3049 * Since we are holding inode lock, we are sure i_disksize <= 3050 * i_size. We also know that if i_disksize < i_size, there are 3051 * delalloc writes pending in the range upto i_size. If the end of 3052 * the current write is <= i_size, there's no need to touch 3053 * i_disksize since writeback will push i_disksize upto i_size 3054 * eventually. If the end of the current write is > i_size and 3055 * inside an allocated block (ext4_da_should_update_i_disksize() 3056 * check), we need to update i_disksize here as neither 3057 * ext4_writepage() nor certain ext4_writepages() paths not 3058 * allocating blocks update i_disksize. 3059 * 3060 * Note that we defer inode dirtying to generic_write_end() / 3061 * ext4_da_write_inline_data_end(). 3062 */ 3063 new_i_size = pos + copied; 3064 if (copied && new_i_size > inode->i_size && 3065 ext4_da_should_update_i_disksize(page, end)) 3066 ext4_update_i_disksize(inode, new_i_size); 3067 3068 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3069 } 3070 3071 /* 3072 * Force all delayed allocation blocks to be allocated for a given inode. 3073 */ 3074 int ext4_alloc_da_blocks(struct inode *inode) 3075 { 3076 trace_ext4_alloc_da_blocks(inode); 3077 3078 if (!EXT4_I(inode)->i_reserved_data_blocks) 3079 return 0; 3080 3081 /* 3082 * We do something simple for now. The filemap_flush() will 3083 * also start triggering a write of the data blocks, which is 3084 * not strictly speaking necessary (and for users of 3085 * laptop_mode, not even desirable). However, to do otherwise 3086 * would require replicating code paths in: 3087 * 3088 * ext4_writepages() -> 3089 * write_cache_pages() ---> (via passed in callback function) 3090 * __mpage_da_writepage() --> 3091 * mpage_add_bh_to_extent() 3092 * mpage_da_map_blocks() 3093 * 3094 * The problem is that write_cache_pages(), located in 3095 * mm/page-writeback.c, marks pages clean in preparation for 3096 * doing I/O, which is not desirable if we're not planning on 3097 * doing I/O at all. 3098 * 3099 * We could call write_cache_pages(), and then redirty all of 3100 * the pages by calling redirty_page_for_writepage() but that 3101 * would be ugly in the extreme. So instead we would need to 3102 * replicate parts of the code in the above functions, 3103 * simplifying them because we wouldn't actually intend to 3104 * write out the pages, but rather only collect contiguous 3105 * logical block extents, call the multi-block allocator, and 3106 * then update the buffer heads with the block allocations. 3107 * 3108 * For now, though, we'll cheat by calling filemap_flush(), 3109 * which will map the blocks, and start the I/O, but not 3110 * actually wait for the I/O to complete. 3111 */ 3112 return filemap_flush(inode->i_mapping); 3113 } 3114 3115 /* 3116 * bmap() is special. It gets used by applications such as lilo and by 3117 * the swapper to find the on-disk block of a specific piece of data. 3118 * 3119 * Naturally, this is dangerous if the block concerned is still in the 3120 * journal. If somebody makes a swapfile on an ext4 data-journaling 3121 * filesystem and enables swap, then they may get a nasty shock when the 3122 * data getting swapped to that swapfile suddenly gets overwritten by 3123 * the original zero's written out previously to the journal and 3124 * awaiting writeback in the kernel's buffer cache. 3125 * 3126 * So, if we see any bmap calls here on a modified, data-journaled file, 3127 * take extra steps to flush any blocks which might be in the cache. 3128 */ 3129 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3130 { 3131 struct inode *inode = mapping->host; 3132 journal_t *journal; 3133 int err; 3134 3135 /* 3136 * We can get here for an inline file via the FIBMAP ioctl 3137 */ 3138 if (ext4_has_inline_data(inode)) 3139 return 0; 3140 3141 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3142 test_opt(inode->i_sb, DELALLOC)) { 3143 /* 3144 * With delalloc we want to sync the file 3145 * so that we can make sure we allocate 3146 * blocks for file 3147 */ 3148 filemap_write_and_wait(mapping); 3149 } 3150 3151 if (EXT4_JOURNAL(inode) && 3152 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3153 /* 3154 * This is a REALLY heavyweight approach, but the use of 3155 * bmap on dirty files is expected to be extremely rare: 3156 * only if we run lilo or swapon on a freshly made file 3157 * do we expect this to happen. 3158 * 3159 * (bmap requires CAP_SYS_RAWIO so this does not 3160 * represent an unprivileged user DOS attack --- we'd be 3161 * in trouble if mortal users could trigger this path at 3162 * will.) 3163 * 3164 * NB. EXT4_STATE_JDATA is not set on files other than 3165 * regular files. If somebody wants to bmap a directory 3166 * or symlink and gets confused because the buffer 3167 * hasn't yet been flushed to disk, they deserve 3168 * everything they get. 3169 */ 3170 3171 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3172 journal = EXT4_JOURNAL(inode); 3173 jbd2_journal_lock_updates(journal); 3174 err = jbd2_journal_flush(journal, 0); 3175 jbd2_journal_unlock_updates(journal); 3176 3177 if (err) 3178 return 0; 3179 } 3180 3181 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3182 } 3183 3184 static int ext4_readpage(struct file *file, struct page *page) 3185 { 3186 int ret = -EAGAIN; 3187 struct inode *inode = page->mapping->host; 3188 3189 trace_ext4_readpage(page); 3190 3191 if (ext4_has_inline_data(inode)) 3192 ret = ext4_readpage_inline(inode, page); 3193 3194 if (ret == -EAGAIN) 3195 return ext4_mpage_readpages(inode, NULL, page); 3196 3197 return ret; 3198 } 3199 3200 static void ext4_readahead(struct readahead_control *rac) 3201 { 3202 struct inode *inode = rac->mapping->host; 3203 3204 /* If the file has inline data, no need to do readahead. */ 3205 if (ext4_has_inline_data(inode)) 3206 return; 3207 3208 ext4_mpage_readpages(inode, rac, NULL); 3209 } 3210 3211 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3212 size_t length) 3213 { 3214 trace_ext4_invalidate_folio(folio, offset, length); 3215 3216 /* No journalling happens on data buffers when this function is used */ 3217 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3218 3219 block_invalidate_folio(folio, offset, length); 3220 } 3221 3222 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3223 size_t offset, size_t length) 3224 { 3225 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3226 3227 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3228 3229 /* 3230 * If it's a full truncate we just forget about the pending dirtying 3231 */ 3232 if (offset == 0 && length == folio_size(folio)) 3233 folio_clear_checked(folio); 3234 3235 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3236 } 3237 3238 /* Wrapper for aops... */ 3239 static void ext4_journalled_invalidate_folio(struct folio *folio, 3240 size_t offset, 3241 size_t length) 3242 { 3243 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3244 } 3245 3246 static int ext4_releasepage(struct page *page, gfp_t wait) 3247 { 3248 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3249 3250 trace_ext4_releasepage(page); 3251 3252 /* Page has dirty journalled data -> cannot release */ 3253 if (PageChecked(page)) 3254 return 0; 3255 if (journal) 3256 return jbd2_journal_try_to_free_buffers(journal, page); 3257 else 3258 return try_to_free_buffers(page); 3259 } 3260 3261 static bool ext4_inode_datasync_dirty(struct inode *inode) 3262 { 3263 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3264 3265 if (journal) { 3266 if (jbd2_transaction_committed(journal, 3267 EXT4_I(inode)->i_datasync_tid)) 3268 return false; 3269 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3270 return !list_empty(&EXT4_I(inode)->i_fc_list); 3271 return true; 3272 } 3273 3274 /* Any metadata buffers to write? */ 3275 if (!list_empty(&inode->i_mapping->private_list)) 3276 return true; 3277 return inode->i_state & I_DIRTY_DATASYNC; 3278 } 3279 3280 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3281 struct ext4_map_blocks *map, loff_t offset, 3282 loff_t length, unsigned int flags) 3283 { 3284 u8 blkbits = inode->i_blkbits; 3285 3286 /* 3287 * Writes that span EOF might trigger an I/O size update on completion, 3288 * so consider them to be dirty for the purpose of O_DSYNC, even if 3289 * there is no other metadata changes being made or are pending. 3290 */ 3291 iomap->flags = 0; 3292 if (ext4_inode_datasync_dirty(inode) || 3293 offset + length > i_size_read(inode)) 3294 iomap->flags |= IOMAP_F_DIRTY; 3295 3296 if (map->m_flags & EXT4_MAP_NEW) 3297 iomap->flags |= IOMAP_F_NEW; 3298 3299 if (flags & IOMAP_DAX) 3300 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3301 else 3302 iomap->bdev = inode->i_sb->s_bdev; 3303 iomap->offset = (u64) map->m_lblk << blkbits; 3304 iomap->length = (u64) map->m_len << blkbits; 3305 3306 if ((map->m_flags & EXT4_MAP_MAPPED) && 3307 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3308 iomap->flags |= IOMAP_F_MERGED; 3309 3310 /* 3311 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3312 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3313 * set. In order for any allocated unwritten extents to be converted 3314 * into written extents correctly within the ->end_io() handler, we 3315 * need to ensure that the iomap->type is set appropriately. Hence, the 3316 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3317 * been set first. 3318 */ 3319 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3320 iomap->type = IOMAP_UNWRITTEN; 3321 iomap->addr = (u64) map->m_pblk << blkbits; 3322 if (flags & IOMAP_DAX) 3323 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3324 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3325 iomap->type = IOMAP_MAPPED; 3326 iomap->addr = (u64) map->m_pblk << blkbits; 3327 if (flags & IOMAP_DAX) 3328 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3329 } else { 3330 iomap->type = IOMAP_HOLE; 3331 iomap->addr = IOMAP_NULL_ADDR; 3332 } 3333 } 3334 3335 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3336 unsigned int flags) 3337 { 3338 handle_t *handle; 3339 u8 blkbits = inode->i_blkbits; 3340 int ret, dio_credits, m_flags = 0, retries = 0; 3341 3342 /* 3343 * Trim the mapping request to the maximum value that we can map at 3344 * once for direct I/O. 3345 */ 3346 if (map->m_len > DIO_MAX_BLOCKS) 3347 map->m_len = DIO_MAX_BLOCKS; 3348 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3349 3350 retry: 3351 /* 3352 * Either we allocate blocks and then don't get an unwritten extent, so 3353 * in that case we have reserved enough credits. Or, the blocks are 3354 * already allocated and unwritten. In that case, the extent conversion 3355 * fits into the credits as well. 3356 */ 3357 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3358 if (IS_ERR(handle)) 3359 return PTR_ERR(handle); 3360 3361 /* 3362 * DAX and direct I/O are the only two operations that are currently 3363 * supported with IOMAP_WRITE. 3364 */ 3365 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3366 if (flags & IOMAP_DAX) 3367 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3368 /* 3369 * We use i_size instead of i_disksize here because delalloc writeback 3370 * can complete at any point during the I/O and subsequently push the 3371 * i_disksize out to i_size. This could be beyond where direct I/O is 3372 * happening and thus expose allocated blocks to direct I/O reads. 3373 */ 3374 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3375 m_flags = EXT4_GET_BLOCKS_CREATE; 3376 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3377 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3378 3379 ret = ext4_map_blocks(handle, inode, map, m_flags); 3380 3381 /* 3382 * We cannot fill holes in indirect tree based inodes as that could 3383 * expose stale data in the case of a crash. Use the magic error code 3384 * to fallback to buffered I/O. 3385 */ 3386 if (!m_flags && !ret) 3387 ret = -ENOTBLK; 3388 3389 ext4_journal_stop(handle); 3390 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3391 goto retry; 3392 3393 return ret; 3394 } 3395 3396 3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3398 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3399 { 3400 int ret; 3401 struct ext4_map_blocks map; 3402 u8 blkbits = inode->i_blkbits; 3403 3404 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3405 return -EINVAL; 3406 3407 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3408 return -ERANGE; 3409 3410 /* 3411 * Calculate the first and last logical blocks respectively. 3412 */ 3413 map.m_lblk = offset >> blkbits; 3414 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3415 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3416 3417 if (flags & IOMAP_WRITE) { 3418 /* 3419 * We check here if the blocks are already allocated, then we 3420 * don't need to start a journal txn and we can directly return 3421 * the mapping information. This could boost performance 3422 * especially in multi-threaded overwrite requests. 3423 */ 3424 if (offset + length <= i_size_read(inode)) { 3425 ret = ext4_map_blocks(NULL, inode, &map, 0); 3426 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3427 goto out; 3428 } 3429 ret = ext4_iomap_alloc(inode, &map, flags); 3430 } else { 3431 ret = ext4_map_blocks(NULL, inode, &map, 0); 3432 } 3433 3434 if (ret < 0) 3435 return ret; 3436 out: 3437 /* 3438 * When inline encryption is enabled, sometimes I/O to an encrypted file 3439 * has to be broken up to guarantee DUN contiguity. Handle this by 3440 * limiting the length of the mapping returned. 3441 */ 3442 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3443 3444 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3445 3446 return 0; 3447 } 3448 3449 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3450 loff_t length, unsigned flags, struct iomap *iomap, 3451 struct iomap *srcmap) 3452 { 3453 int ret; 3454 3455 /* 3456 * Even for writes we don't need to allocate blocks, so just pretend 3457 * we are reading to save overhead of starting a transaction. 3458 */ 3459 flags &= ~IOMAP_WRITE; 3460 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3461 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3462 return ret; 3463 } 3464 3465 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3466 ssize_t written, unsigned flags, struct iomap *iomap) 3467 { 3468 /* 3469 * Check to see whether an error occurred while writing out the data to 3470 * the allocated blocks. If so, return the magic error code so that we 3471 * fallback to buffered I/O and attempt to complete the remainder of 3472 * the I/O. Any blocks that may have been allocated in preparation for 3473 * the direct I/O will be reused during buffered I/O. 3474 */ 3475 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3476 return -ENOTBLK; 3477 3478 return 0; 3479 } 3480 3481 const struct iomap_ops ext4_iomap_ops = { 3482 .iomap_begin = ext4_iomap_begin, 3483 .iomap_end = ext4_iomap_end, 3484 }; 3485 3486 const struct iomap_ops ext4_iomap_overwrite_ops = { 3487 .iomap_begin = ext4_iomap_overwrite_begin, 3488 .iomap_end = ext4_iomap_end, 3489 }; 3490 3491 static bool ext4_iomap_is_delalloc(struct inode *inode, 3492 struct ext4_map_blocks *map) 3493 { 3494 struct extent_status es; 3495 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3496 3497 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3498 map->m_lblk, end, &es); 3499 3500 if (!es.es_len || es.es_lblk > end) 3501 return false; 3502 3503 if (es.es_lblk > map->m_lblk) { 3504 map->m_len = es.es_lblk - map->m_lblk; 3505 return false; 3506 } 3507 3508 offset = map->m_lblk - es.es_lblk; 3509 map->m_len = es.es_len - offset; 3510 3511 return true; 3512 } 3513 3514 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3515 loff_t length, unsigned int flags, 3516 struct iomap *iomap, struct iomap *srcmap) 3517 { 3518 int ret; 3519 bool delalloc = false; 3520 struct ext4_map_blocks map; 3521 u8 blkbits = inode->i_blkbits; 3522 3523 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3524 return -EINVAL; 3525 3526 if (ext4_has_inline_data(inode)) { 3527 ret = ext4_inline_data_iomap(inode, iomap); 3528 if (ret != -EAGAIN) { 3529 if (ret == 0 && offset >= iomap->length) 3530 ret = -ENOENT; 3531 return ret; 3532 } 3533 } 3534 3535 /* 3536 * Calculate the first and last logical block respectively. 3537 */ 3538 map.m_lblk = offset >> blkbits; 3539 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3540 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3541 3542 /* 3543 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3544 * So handle it here itself instead of querying ext4_map_blocks(). 3545 * Since ext4_map_blocks() will warn about it and will return 3546 * -EIO error. 3547 */ 3548 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3549 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3550 3551 if (offset >= sbi->s_bitmap_maxbytes) { 3552 map.m_flags = 0; 3553 goto set_iomap; 3554 } 3555 } 3556 3557 ret = ext4_map_blocks(NULL, inode, &map, 0); 3558 if (ret < 0) 3559 return ret; 3560 if (ret == 0) 3561 delalloc = ext4_iomap_is_delalloc(inode, &map); 3562 3563 set_iomap: 3564 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3565 if (delalloc && iomap->type == IOMAP_HOLE) 3566 iomap->type = IOMAP_DELALLOC; 3567 3568 return 0; 3569 } 3570 3571 const struct iomap_ops ext4_iomap_report_ops = { 3572 .iomap_begin = ext4_iomap_begin_report, 3573 }; 3574 3575 /* 3576 * Whenever the folio is being dirtied, corresponding buffers should already 3577 * be attached to the transaction (we take care of this in ext4_page_mkwrite() 3578 * and ext4_write_begin()). However we cannot move buffers to dirty transaction 3579 * lists here because ->dirty_folio is called under VFS locks and the folio 3580 * is not necessarily locked. 3581 * 3582 * We cannot just dirty the folio and leave attached buffers clean, because the 3583 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3584 * or jbddirty because all the journalling code will explode. 3585 * 3586 * So what we do is to mark the folio "pending dirty" and next time writepage 3587 * is called, propagate that into the buffers appropriately. 3588 */ 3589 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3590 struct folio *folio) 3591 { 3592 WARN_ON_ONCE(!folio_buffers(folio)); 3593 folio_set_checked(folio); 3594 return filemap_dirty_folio(mapping, folio); 3595 } 3596 3597 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3598 { 3599 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3600 WARN_ON_ONCE(!folio_buffers(folio)); 3601 return block_dirty_folio(mapping, folio); 3602 } 3603 3604 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3605 struct file *file, sector_t *span) 3606 { 3607 return iomap_swapfile_activate(sis, file, span, 3608 &ext4_iomap_report_ops); 3609 } 3610 3611 static const struct address_space_operations ext4_aops = { 3612 .readpage = ext4_readpage, 3613 .readahead = ext4_readahead, 3614 .writepage = ext4_writepage, 3615 .writepages = ext4_writepages, 3616 .write_begin = ext4_write_begin, 3617 .write_end = ext4_write_end, 3618 .dirty_folio = ext4_dirty_folio, 3619 .bmap = ext4_bmap, 3620 .invalidate_folio = ext4_invalidate_folio, 3621 .releasepage = ext4_releasepage, 3622 .direct_IO = noop_direct_IO, 3623 .migratepage = buffer_migrate_page, 3624 .is_partially_uptodate = block_is_partially_uptodate, 3625 .error_remove_page = generic_error_remove_page, 3626 .swap_activate = ext4_iomap_swap_activate, 3627 }; 3628 3629 static const struct address_space_operations ext4_journalled_aops = { 3630 .readpage = ext4_readpage, 3631 .readahead = ext4_readahead, 3632 .writepage = ext4_writepage, 3633 .writepages = ext4_writepages, 3634 .write_begin = ext4_write_begin, 3635 .write_end = ext4_journalled_write_end, 3636 .dirty_folio = ext4_journalled_dirty_folio, 3637 .bmap = ext4_bmap, 3638 .invalidate_folio = ext4_journalled_invalidate_folio, 3639 .releasepage = ext4_releasepage, 3640 .direct_IO = noop_direct_IO, 3641 .is_partially_uptodate = block_is_partially_uptodate, 3642 .error_remove_page = generic_error_remove_page, 3643 .swap_activate = ext4_iomap_swap_activate, 3644 }; 3645 3646 static const struct address_space_operations ext4_da_aops = { 3647 .readpage = ext4_readpage, 3648 .readahead = ext4_readahead, 3649 .writepage = ext4_writepage, 3650 .writepages = ext4_writepages, 3651 .write_begin = ext4_da_write_begin, 3652 .write_end = ext4_da_write_end, 3653 .dirty_folio = ext4_dirty_folio, 3654 .bmap = ext4_bmap, 3655 .invalidate_folio = ext4_invalidate_folio, 3656 .releasepage = ext4_releasepage, 3657 .direct_IO = noop_direct_IO, 3658 .migratepage = buffer_migrate_page, 3659 .is_partially_uptodate = block_is_partially_uptodate, 3660 .error_remove_page = generic_error_remove_page, 3661 .swap_activate = ext4_iomap_swap_activate, 3662 }; 3663 3664 static const struct address_space_operations ext4_dax_aops = { 3665 .writepages = ext4_dax_writepages, 3666 .direct_IO = noop_direct_IO, 3667 .dirty_folio = noop_dirty_folio, 3668 .bmap = ext4_bmap, 3669 .swap_activate = ext4_iomap_swap_activate, 3670 }; 3671 3672 void ext4_set_aops(struct inode *inode) 3673 { 3674 switch (ext4_inode_journal_mode(inode)) { 3675 case EXT4_INODE_ORDERED_DATA_MODE: 3676 case EXT4_INODE_WRITEBACK_DATA_MODE: 3677 break; 3678 case EXT4_INODE_JOURNAL_DATA_MODE: 3679 inode->i_mapping->a_ops = &ext4_journalled_aops; 3680 return; 3681 default: 3682 BUG(); 3683 } 3684 if (IS_DAX(inode)) 3685 inode->i_mapping->a_ops = &ext4_dax_aops; 3686 else if (test_opt(inode->i_sb, DELALLOC)) 3687 inode->i_mapping->a_ops = &ext4_da_aops; 3688 else 3689 inode->i_mapping->a_ops = &ext4_aops; 3690 } 3691 3692 static int __ext4_block_zero_page_range(handle_t *handle, 3693 struct address_space *mapping, loff_t from, loff_t length) 3694 { 3695 ext4_fsblk_t index = from >> PAGE_SHIFT; 3696 unsigned offset = from & (PAGE_SIZE-1); 3697 unsigned blocksize, pos; 3698 ext4_lblk_t iblock; 3699 struct inode *inode = mapping->host; 3700 struct buffer_head *bh; 3701 struct page *page; 3702 int err = 0; 3703 3704 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3705 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3706 if (!page) 3707 return -ENOMEM; 3708 3709 blocksize = inode->i_sb->s_blocksize; 3710 3711 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3712 3713 if (!page_has_buffers(page)) 3714 create_empty_buffers(page, blocksize, 0); 3715 3716 /* Find the buffer that contains "offset" */ 3717 bh = page_buffers(page); 3718 pos = blocksize; 3719 while (offset >= pos) { 3720 bh = bh->b_this_page; 3721 iblock++; 3722 pos += blocksize; 3723 } 3724 if (buffer_freed(bh)) { 3725 BUFFER_TRACE(bh, "freed: skip"); 3726 goto unlock; 3727 } 3728 if (!buffer_mapped(bh)) { 3729 BUFFER_TRACE(bh, "unmapped"); 3730 ext4_get_block(inode, iblock, bh, 0); 3731 /* unmapped? It's a hole - nothing to do */ 3732 if (!buffer_mapped(bh)) { 3733 BUFFER_TRACE(bh, "still unmapped"); 3734 goto unlock; 3735 } 3736 } 3737 3738 /* Ok, it's mapped. Make sure it's up-to-date */ 3739 if (PageUptodate(page)) 3740 set_buffer_uptodate(bh); 3741 3742 if (!buffer_uptodate(bh)) { 3743 err = ext4_read_bh_lock(bh, 0, true); 3744 if (err) 3745 goto unlock; 3746 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3747 /* We expect the key to be set. */ 3748 BUG_ON(!fscrypt_has_encryption_key(inode)); 3749 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3750 bh_offset(bh)); 3751 if (err) { 3752 clear_buffer_uptodate(bh); 3753 goto unlock; 3754 } 3755 } 3756 } 3757 if (ext4_should_journal_data(inode)) { 3758 BUFFER_TRACE(bh, "get write access"); 3759 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3760 EXT4_JTR_NONE); 3761 if (err) 3762 goto unlock; 3763 } 3764 zero_user(page, offset, length); 3765 BUFFER_TRACE(bh, "zeroed end of block"); 3766 3767 if (ext4_should_journal_data(inode)) { 3768 err = ext4_handle_dirty_metadata(handle, inode, bh); 3769 } else { 3770 err = 0; 3771 mark_buffer_dirty(bh); 3772 if (ext4_should_order_data(inode)) 3773 err = ext4_jbd2_inode_add_write(handle, inode, from, 3774 length); 3775 } 3776 3777 unlock: 3778 unlock_page(page); 3779 put_page(page); 3780 return err; 3781 } 3782 3783 /* 3784 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3785 * starting from file offset 'from'. The range to be zero'd must 3786 * be contained with in one block. If the specified range exceeds 3787 * the end of the block it will be shortened to end of the block 3788 * that corresponds to 'from' 3789 */ 3790 static int ext4_block_zero_page_range(handle_t *handle, 3791 struct address_space *mapping, loff_t from, loff_t length) 3792 { 3793 struct inode *inode = mapping->host; 3794 unsigned offset = from & (PAGE_SIZE-1); 3795 unsigned blocksize = inode->i_sb->s_blocksize; 3796 unsigned max = blocksize - (offset & (blocksize - 1)); 3797 3798 /* 3799 * correct length if it does not fall between 3800 * 'from' and the end of the block 3801 */ 3802 if (length > max || length < 0) 3803 length = max; 3804 3805 if (IS_DAX(inode)) { 3806 return dax_zero_range(inode, from, length, NULL, 3807 &ext4_iomap_ops); 3808 } 3809 return __ext4_block_zero_page_range(handle, mapping, from, length); 3810 } 3811 3812 /* 3813 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3814 * up to the end of the block which corresponds to `from'. 3815 * This required during truncate. We need to physically zero the tail end 3816 * of that block so it doesn't yield old data if the file is later grown. 3817 */ 3818 static int ext4_block_truncate_page(handle_t *handle, 3819 struct address_space *mapping, loff_t from) 3820 { 3821 unsigned offset = from & (PAGE_SIZE-1); 3822 unsigned length; 3823 unsigned blocksize; 3824 struct inode *inode = mapping->host; 3825 3826 /* If we are processing an encrypted inode during orphan list handling */ 3827 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3828 return 0; 3829 3830 blocksize = inode->i_sb->s_blocksize; 3831 length = blocksize - (offset & (blocksize - 1)); 3832 3833 return ext4_block_zero_page_range(handle, mapping, from, length); 3834 } 3835 3836 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3837 loff_t lstart, loff_t length) 3838 { 3839 struct super_block *sb = inode->i_sb; 3840 struct address_space *mapping = inode->i_mapping; 3841 unsigned partial_start, partial_end; 3842 ext4_fsblk_t start, end; 3843 loff_t byte_end = (lstart + length - 1); 3844 int err = 0; 3845 3846 partial_start = lstart & (sb->s_blocksize - 1); 3847 partial_end = byte_end & (sb->s_blocksize - 1); 3848 3849 start = lstart >> sb->s_blocksize_bits; 3850 end = byte_end >> sb->s_blocksize_bits; 3851 3852 /* Handle partial zero within the single block */ 3853 if (start == end && 3854 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3855 err = ext4_block_zero_page_range(handle, mapping, 3856 lstart, length); 3857 return err; 3858 } 3859 /* Handle partial zero out on the start of the range */ 3860 if (partial_start) { 3861 err = ext4_block_zero_page_range(handle, mapping, 3862 lstart, sb->s_blocksize); 3863 if (err) 3864 return err; 3865 } 3866 /* Handle partial zero out on the end of the range */ 3867 if (partial_end != sb->s_blocksize - 1) 3868 err = ext4_block_zero_page_range(handle, mapping, 3869 byte_end - partial_end, 3870 partial_end + 1); 3871 return err; 3872 } 3873 3874 int ext4_can_truncate(struct inode *inode) 3875 { 3876 if (S_ISREG(inode->i_mode)) 3877 return 1; 3878 if (S_ISDIR(inode->i_mode)) 3879 return 1; 3880 if (S_ISLNK(inode->i_mode)) 3881 return !ext4_inode_is_fast_symlink(inode); 3882 return 0; 3883 } 3884 3885 /* 3886 * We have to make sure i_disksize gets properly updated before we truncate 3887 * page cache due to hole punching or zero range. Otherwise i_disksize update 3888 * can get lost as it may have been postponed to submission of writeback but 3889 * that will never happen after we truncate page cache. 3890 */ 3891 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3892 loff_t len) 3893 { 3894 handle_t *handle; 3895 int ret; 3896 3897 loff_t size = i_size_read(inode); 3898 3899 WARN_ON(!inode_is_locked(inode)); 3900 if (offset > size || offset + len < size) 3901 return 0; 3902 3903 if (EXT4_I(inode)->i_disksize >= size) 3904 return 0; 3905 3906 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3907 if (IS_ERR(handle)) 3908 return PTR_ERR(handle); 3909 ext4_update_i_disksize(inode, size); 3910 ret = ext4_mark_inode_dirty(handle, inode); 3911 ext4_journal_stop(handle); 3912 3913 return ret; 3914 } 3915 3916 static void ext4_wait_dax_page(struct inode *inode) 3917 { 3918 filemap_invalidate_unlock(inode->i_mapping); 3919 schedule(); 3920 filemap_invalidate_lock(inode->i_mapping); 3921 } 3922 3923 int ext4_break_layouts(struct inode *inode) 3924 { 3925 struct page *page; 3926 int error; 3927 3928 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3929 return -EINVAL; 3930 3931 do { 3932 page = dax_layout_busy_page(inode->i_mapping); 3933 if (!page) 3934 return 0; 3935 3936 error = ___wait_var_event(&page->_refcount, 3937 atomic_read(&page->_refcount) == 1, 3938 TASK_INTERRUPTIBLE, 0, 0, 3939 ext4_wait_dax_page(inode)); 3940 } while (error == 0); 3941 3942 return error; 3943 } 3944 3945 /* 3946 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3947 * associated with the given offset and length 3948 * 3949 * @inode: File inode 3950 * @offset: The offset where the hole will begin 3951 * @len: The length of the hole 3952 * 3953 * Returns: 0 on success or negative on failure 3954 */ 3955 3956 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3957 { 3958 struct super_block *sb = inode->i_sb; 3959 ext4_lblk_t first_block, stop_block; 3960 struct address_space *mapping = inode->i_mapping; 3961 loff_t first_block_offset, last_block_offset; 3962 handle_t *handle; 3963 unsigned int credits; 3964 int ret = 0, ret2 = 0; 3965 3966 trace_ext4_punch_hole(inode, offset, length, 0); 3967 3968 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3969 if (ext4_has_inline_data(inode)) { 3970 filemap_invalidate_lock(mapping); 3971 ret = ext4_convert_inline_data(inode); 3972 filemap_invalidate_unlock(mapping); 3973 if (ret) 3974 return ret; 3975 } 3976 3977 /* 3978 * Write out all dirty pages to avoid race conditions 3979 * Then release them. 3980 */ 3981 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3982 ret = filemap_write_and_wait_range(mapping, offset, 3983 offset + length - 1); 3984 if (ret) 3985 return ret; 3986 } 3987 3988 inode_lock(inode); 3989 3990 /* No need to punch hole beyond i_size */ 3991 if (offset >= inode->i_size) 3992 goto out_mutex; 3993 3994 /* 3995 * If the hole extends beyond i_size, set the hole 3996 * to end after the page that contains i_size 3997 */ 3998 if (offset + length > inode->i_size) { 3999 length = inode->i_size + 4000 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4001 offset; 4002 } 4003 4004 if (offset & (sb->s_blocksize - 1) || 4005 (offset + length) & (sb->s_blocksize - 1)) { 4006 /* 4007 * Attach jinode to inode for jbd2 if we do any zeroing of 4008 * partial block 4009 */ 4010 ret = ext4_inode_attach_jinode(inode); 4011 if (ret < 0) 4012 goto out_mutex; 4013 4014 } 4015 4016 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4017 inode_dio_wait(inode); 4018 4019 /* 4020 * Prevent page faults from reinstantiating pages we have released from 4021 * page cache. 4022 */ 4023 filemap_invalidate_lock(mapping); 4024 4025 ret = ext4_break_layouts(inode); 4026 if (ret) 4027 goto out_dio; 4028 4029 first_block_offset = round_up(offset, sb->s_blocksize); 4030 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4031 4032 /* Now release the pages and zero block aligned part of pages*/ 4033 if (last_block_offset > first_block_offset) { 4034 ret = ext4_update_disksize_before_punch(inode, offset, length); 4035 if (ret) 4036 goto out_dio; 4037 truncate_pagecache_range(inode, first_block_offset, 4038 last_block_offset); 4039 } 4040 4041 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4042 credits = ext4_writepage_trans_blocks(inode); 4043 else 4044 credits = ext4_blocks_for_truncate(inode); 4045 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4046 if (IS_ERR(handle)) { 4047 ret = PTR_ERR(handle); 4048 ext4_std_error(sb, ret); 4049 goto out_dio; 4050 } 4051 4052 ret = ext4_zero_partial_blocks(handle, inode, offset, 4053 length); 4054 if (ret) 4055 goto out_stop; 4056 4057 first_block = (offset + sb->s_blocksize - 1) >> 4058 EXT4_BLOCK_SIZE_BITS(sb); 4059 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4060 4061 /* If there are blocks to remove, do it */ 4062 if (stop_block > first_block) { 4063 4064 down_write(&EXT4_I(inode)->i_data_sem); 4065 ext4_discard_preallocations(inode, 0); 4066 4067 ret = ext4_es_remove_extent(inode, first_block, 4068 stop_block - first_block); 4069 if (ret) { 4070 up_write(&EXT4_I(inode)->i_data_sem); 4071 goto out_stop; 4072 } 4073 4074 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4075 ret = ext4_ext_remove_space(inode, first_block, 4076 stop_block - 1); 4077 else 4078 ret = ext4_ind_remove_space(handle, inode, first_block, 4079 stop_block); 4080 4081 up_write(&EXT4_I(inode)->i_data_sem); 4082 } 4083 ext4_fc_track_range(handle, inode, first_block, stop_block); 4084 if (IS_SYNC(inode)) 4085 ext4_handle_sync(handle); 4086 4087 inode->i_mtime = inode->i_ctime = current_time(inode); 4088 ret2 = ext4_mark_inode_dirty(handle, inode); 4089 if (unlikely(ret2)) 4090 ret = ret2; 4091 if (ret >= 0) 4092 ext4_update_inode_fsync_trans(handle, inode, 1); 4093 out_stop: 4094 ext4_journal_stop(handle); 4095 out_dio: 4096 filemap_invalidate_unlock(mapping); 4097 out_mutex: 4098 inode_unlock(inode); 4099 return ret; 4100 } 4101 4102 int ext4_inode_attach_jinode(struct inode *inode) 4103 { 4104 struct ext4_inode_info *ei = EXT4_I(inode); 4105 struct jbd2_inode *jinode; 4106 4107 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4108 return 0; 4109 4110 jinode = jbd2_alloc_inode(GFP_KERNEL); 4111 spin_lock(&inode->i_lock); 4112 if (!ei->jinode) { 4113 if (!jinode) { 4114 spin_unlock(&inode->i_lock); 4115 return -ENOMEM; 4116 } 4117 ei->jinode = jinode; 4118 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4119 jinode = NULL; 4120 } 4121 spin_unlock(&inode->i_lock); 4122 if (unlikely(jinode != NULL)) 4123 jbd2_free_inode(jinode); 4124 return 0; 4125 } 4126 4127 /* 4128 * ext4_truncate() 4129 * 4130 * We block out ext4_get_block() block instantiations across the entire 4131 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4132 * simultaneously on behalf of the same inode. 4133 * 4134 * As we work through the truncate and commit bits of it to the journal there 4135 * is one core, guiding principle: the file's tree must always be consistent on 4136 * disk. We must be able to restart the truncate after a crash. 4137 * 4138 * The file's tree may be transiently inconsistent in memory (although it 4139 * probably isn't), but whenever we close off and commit a journal transaction, 4140 * the contents of (the filesystem + the journal) must be consistent and 4141 * restartable. It's pretty simple, really: bottom up, right to left (although 4142 * left-to-right works OK too). 4143 * 4144 * Note that at recovery time, journal replay occurs *before* the restart of 4145 * truncate against the orphan inode list. 4146 * 4147 * The committed inode has the new, desired i_size (which is the same as 4148 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4149 * that this inode's truncate did not complete and it will again call 4150 * ext4_truncate() to have another go. So there will be instantiated blocks 4151 * to the right of the truncation point in a crashed ext4 filesystem. But 4152 * that's fine - as long as they are linked from the inode, the post-crash 4153 * ext4_truncate() run will find them and release them. 4154 */ 4155 int ext4_truncate(struct inode *inode) 4156 { 4157 struct ext4_inode_info *ei = EXT4_I(inode); 4158 unsigned int credits; 4159 int err = 0, err2; 4160 handle_t *handle; 4161 struct address_space *mapping = inode->i_mapping; 4162 4163 /* 4164 * There is a possibility that we're either freeing the inode 4165 * or it's a completely new inode. In those cases we might not 4166 * have i_rwsem locked because it's not necessary. 4167 */ 4168 if (!(inode->i_state & (I_NEW|I_FREEING))) 4169 WARN_ON(!inode_is_locked(inode)); 4170 trace_ext4_truncate_enter(inode); 4171 4172 if (!ext4_can_truncate(inode)) 4173 goto out_trace; 4174 4175 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4176 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4177 4178 if (ext4_has_inline_data(inode)) { 4179 int has_inline = 1; 4180 4181 err = ext4_inline_data_truncate(inode, &has_inline); 4182 if (err || has_inline) 4183 goto out_trace; 4184 } 4185 4186 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4187 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4188 if (ext4_inode_attach_jinode(inode) < 0) 4189 goto out_trace; 4190 } 4191 4192 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4193 credits = ext4_writepage_trans_blocks(inode); 4194 else 4195 credits = ext4_blocks_for_truncate(inode); 4196 4197 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4198 if (IS_ERR(handle)) { 4199 err = PTR_ERR(handle); 4200 goto out_trace; 4201 } 4202 4203 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4204 ext4_block_truncate_page(handle, mapping, inode->i_size); 4205 4206 /* 4207 * We add the inode to the orphan list, so that if this 4208 * truncate spans multiple transactions, and we crash, we will 4209 * resume the truncate when the filesystem recovers. It also 4210 * marks the inode dirty, to catch the new size. 4211 * 4212 * Implication: the file must always be in a sane, consistent 4213 * truncatable state while each transaction commits. 4214 */ 4215 err = ext4_orphan_add(handle, inode); 4216 if (err) 4217 goto out_stop; 4218 4219 down_write(&EXT4_I(inode)->i_data_sem); 4220 4221 ext4_discard_preallocations(inode, 0); 4222 4223 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4224 err = ext4_ext_truncate(handle, inode); 4225 else 4226 ext4_ind_truncate(handle, inode); 4227 4228 up_write(&ei->i_data_sem); 4229 if (err) 4230 goto out_stop; 4231 4232 if (IS_SYNC(inode)) 4233 ext4_handle_sync(handle); 4234 4235 out_stop: 4236 /* 4237 * If this was a simple ftruncate() and the file will remain alive, 4238 * then we need to clear up the orphan record which we created above. 4239 * However, if this was a real unlink then we were called by 4240 * ext4_evict_inode(), and we allow that function to clean up the 4241 * orphan info for us. 4242 */ 4243 if (inode->i_nlink) 4244 ext4_orphan_del(handle, inode); 4245 4246 inode->i_mtime = inode->i_ctime = current_time(inode); 4247 err2 = ext4_mark_inode_dirty(handle, inode); 4248 if (unlikely(err2 && !err)) 4249 err = err2; 4250 ext4_journal_stop(handle); 4251 4252 out_trace: 4253 trace_ext4_truncate_exit(inode); 4254 return err; 4255 } 4256 4257 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4258 { 4259 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4260 return inode_peek_iversion_raw(inode); 4261 else 4262 return inode_peek_iversion(inode); 4263 } 4264 4265 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4266 struct ext4_inode_info *ei) 4267 { 4268 struct inode *inode = &(ei->vfs_inode); 4269 u64 i_blocks = READ_ONCE(inode->i_blocks); 4270 struct super_block *sb = inode->i_sb; 4271 4272 if (i_blocks <= ~0U) { 4273 /* 4274 * i_blocks can be represented in a 32 bit variable 4275 * as multiple of 512 bytes 4276 */ 4277 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4278 raw_inode->i_blocks_high = 0; 4279 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4280 return 0; 4281 } 4282 4283 /* 4284 * This should never happen since sb->s_maxbytes should not have 4285 * allowed this, sb->s_maxbytes was set according to the huge_file 4286 * feature in ext4_fill_super(). 4287 */ 4288 if (!ext4_has_feature_huge_file(sb)) 4289 return -EFSCORRUPTED; 4290 4291 if (i_blocks <= 0xffffffffffffULL) { 4292 /* 4293 * i_blocks can be represented in a 48 bit variable 4294 * as multiple of 512 bytes 4295 */ 4296 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4297 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4298 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4299 } else { 4300 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4301 /* i_block is stored in file system block size */ 4302 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4303 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4304 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4305 } 4306 return 0; 4307 } 4308 4309 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4310 { 4311 struct ext4_inode_info *ei = EXT4_I(inode); 4312 uid_t i_uid; 4313 gid_t i_gid; 4314 projid_t i_projid; 4315 int block; 4316 int err; 4317 4318 err = ext4_inode_blocks_set(raw_inode, ei); 4319 4320 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4321 i_uid = i_uid_read(inode); 4322 i_gid = i_gid_read(inode); 4323 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4324 if (!(test_opt(inode->i_sb, NO_UID32))) { 4325 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4326 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4327 /* 4328 * Fix up interoperability with old kernels. Otherwise, 4329 * old inodes get re-used with the upper 16 bits of the 4330 * uid/gid intact. 4331 */ 4332 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4333 raw_inode->i_uid_high = 0; 4334 raw_inode->i_gid_high = 0; 4335 } else { 4336 raw_inode->i_uid_high = 4337 cpu_to_le16(high_16_bits(i_uid)); 4338 raw_inode->i_gid_high = 4339 cpu_to_le16(high_16_bits(i_gid)); 4340 } 4341 } else { 4342 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4343 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4344 raw_inode->i_uid_high = 0; 4345 raw_inode->i_gid_high = 0; 4346 } 4347 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4348 4349 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4350 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4351 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4352 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4353 4354 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4355 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4356 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4357 raw_inode->i_file_acl_high = 4358 cpu_to_le16(ei->i_file_acl >> 32); 4359 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4360 ext4_isize_set(raw_inode, ei->i_disksize); 4361 4362 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4363 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4364 if (old_valid_dev(inode->i_rdev)) { 4365 raw_inode->i_block[0] = 4366 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4367 raw_inode->i_block[1] = 0; 4368 } else { 4369 raw_inode->i_block[0] = 0; 4370 raw_inode->i_block[1] = 4371 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4372 raw_inode->i_block[2] = 0; 4373 } 4374 } else if (!ext4_has_inline_data(inode)) { 4375 for (block = 0; block < EXT4_N_BLOCKS; block++) 4376 raw_inode->i_block[block] = ei->i_data[block]; 4377 } 4378 4379 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4380 u64 ivers = ext4_inode_peek_iversion(inode); 4381 4382 raw_inode->i_disk_version = cpu_to_le32(ivers); 4383 if (ei->i_extra_isize) { 4384 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4385 raw_inode->i_version_hi = 4386 cpu_to_le32(ivers >> 32); 4387 raw_inode->i_extra_isize = 4388 cpu_to_le16(ei->i_extra_isize); 4389 } 4390 } 4391 4392 if (i_projid != EXT4_DEF_PROJID && 4393 !ext4_has_feature_project(inode->i_sb)) 4394 err = err ?: -EFSCORRUPTED; 4395 4396 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4397 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4398 raw_inode->i_projid = cpu_to_le32(i_projid); 4399 4400 ext4_inode_csum_set(inode, raw_inode, ei); 4401 return err; 4402 } 4403 4404 /* 4405 * ext4_get_inode_loc returns with an extra refcount against the inode's 4406 * underlying buffer_head on success. If we pass 'inode' and it does not 4407 * have in-inode xattr, we have all inode data in memory that is needed 4408 * to recreate the on-disk version of this inode. 4409 */ 4410 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4411 struct inode *inode, struct ext4_iloc *iloc, 4412 ext4_fsblk_t *ret_block) 4413 { 4414 struct ext4_group_desc *gdp; 4415 struct buffer_head *bh; 4416 ext4_fsblk_t block; 4417 struct blk_plug plug; 4418 int inodes_per_block, inode_offset; 4419 4420 iloc->bh = NULL; 4421 if (ino < EXT4_ROOT_INO || 4422 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4423 return -EFSCORRUPTED; 4424 4425 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4426 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4427 if (!gdp) 4428 return -EIO; 4429 4430 /* 4431 * Figure out the offset within the block group inode table 4432 */ 4433 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4434 inode_offset = ((ino - 1) % 4435 EXT4_INODES_PER_GROUP(sb)); 4436 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4437 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4438 4439 bh = sb_getblk(sb, block); 4440 if (unlikely(!bh)) 4441 return -ENOMEM; 4442 if (ext4_buffer_uptodate(bh)) 4443 goto has_buffer; 4444 4445 lock_buffer(bh); 4446 if (ext4_buffer_uptodate(bh)) { 4447 /* Someone brought it uptodate while we waited */ 4448 unlock_buffer(bh); 4449 goto has_buffer; 4450 } 4451 4452 /* 4453 * If we have all information of the inode in memory and this 4454 * is the only valid inode in the block, we need not read the 4455 * block. 4456 */ 4457 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4458 struct buffer_head *bitmap_bh; 4459 int i, start; 4460 4461 start = inode_offset & ~(inodes_per_block - 1); 4462 4463 /* Is the inode bitmap in cache? */ 4464 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4465 if (unlikely(!bitmap_bh)) 4466 goto make_io; 4467 4468 /* 4469 * If the inode bitmap isn't in cache then the 4470 * optimisation may end up performing two reads instead 4471 * of one, so skip it. 4472 */ 4473 if (!buffer_uptodate(bitmap_bh)) { 4474 brelse(bitmap_bh); 4475 goto make_io; 4476 } 4477 for (i = start; i < start + inodes_per_block; i++) { 4478 if (i == inode_offset) 4479 continue; 4480 if (ext4_test_bit(i, bitmap_bh->b_data)) 4481 break; 4482 } 4483 brelse(bitmap_bh); 4484 if (i == start + inodes_per_block) { 4485 struct ext4_inode *raw_inode = 4486 (struct ext4_inode *) (bh->b_data + iloc->offset); 4487 4488 /* all other inodes are free, so skip I/O */ 4489 memset(bh->b_data, 0, bh->b_size); 4490 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4491 ext4_fill_raw_inode(inode, raw_inode); 4492 set_buffer_uptodate(bh); 4493 unlock_buffer(bh); 4494 goto has_buffer; 4495 } 4496 } 4497 4498 make_io: 4499 /* 4500 * If we need to do any I/O, try to pre-readahead extra 4501 * blocks from the inode table. 4502 */ 4503 blk_start_plug(&plug); 4504 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4505 ext4_fsblk_t b, end, table; 4506 unsigned num; 4507 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4508 4509 table = ext4_inode_table(sb, gdp); 4510 /* s_inode_readahead_blks is always a power of 2 */ 4511 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4512 if (table > b) 4513 b = table; 4514 end = b + ra_blks; 4515 num = EXT4_INODES_PER_GROUP(sb); 4516 if (ext4_has_group_desc_csum(sb)) 4517 num -= ext4_itable_unused_count(sb, gdp); 4518 table += num / inodes_per_block; 4519 if (end > table) 4520 end = table; 4521 while (b <= end) 4522 ext4_sb_breadahead_unmovable(sb, b++); 4523 } 4524 4525 /* 4526 * There are other valid inodes in the buffer, this inode 4527 * has in-inode xattrs, or we don't have this inode in memory. 4528 * Read the block from disk. 4529 */ 4530 trace_ext4_load_inode(sb, ino); 4531 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4532 blk_finish_plug(&plug); 4533 wait_on_buffer(bh); 4534 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4535 if (!buffer_uptodate(bh)) { 4536 if (ret_block) 4537 *ret_block = block; 4538 brelse(bh); 4539 return -EIO; 4540 } 4541 has_buffer: 4542 iloc->bh = bh; 4543 return 0; 4544 } 4545 4546 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4547 struct ext4_iloc *iloc) 4548 { 4549 ext4_fsblk_t err_blk = 0; 4550 int ret; 4551 4552 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4553 &err_blk); 4554 4555 if (ret == -EIO) 4556 ext4_error_inode_block(inode, err_blk, EIO, 4557 "unable to read itable block"); 4558 4559 return ret; 4560 } 4561 4562 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4563 { 4564 ext4_fsblk_t err_blk = 0; 4565 int ret; 4566 4567 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4568 &err_blk); 4569 4570 if (ret == -EIO) 4571 ext4_error_inode_block(inode, err_blk, EIO, 4572 "unable to read itable block"); 4573 4574 return ret; 4575 } 4576 4577 4578 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4579 struct ext4_iloc *iloc) 4580 { 4581 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4582 } 4583 4584 static bool ext4_should_enable_dax(struct inode *inode) 4585 { 4586 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4587 4588 if (test_opt2(inode->i_sb, DAX_NEVER)) 4589 return false; 4590 if (!S_ISREG(inode->i_mode)) 4591 return false; 4592 if (ext4_should_journal_data(inode)) 4593 return false; 4594 if (ext4_has_inline_data(inode)) 4595 return false; 4596 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4597 return false; 4598 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4599 return false; 4600 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4601 return false; 4602 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4603 return true; 4604 4605 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4606 } 4607 4608 void ext4_set_inode_flags(struct inode *inode, bool init) 4609 { 4610 unsigned int flags = EXT4_I(inode)->i_flags; 4611 unsigned int new_fl = 0; 4612 4613 WARN_ON_ONCE(IS_DAX(inode) && init); 4614 4615 if (flags & EXT4_SYNC_FL) 4616 new_fl |= S_SYNC; 4617 if (flags & EXT4_APPEND_FL) 4618 new_fl |= S_APPEND; 4619 if (flags & EXT4_IMMUTABLE_FL) 4620 new_fl |= S_IMMUTABLE; 4621 if (flags & EXT4_NOATIME_FL) 4622 new_fl |= S_NOATIME; 4623 if (flags & EXT4_DIRSYNC_FL) 4624 new_fl |= S_DIRSYNC; 4625 4626 /* Because of the way inode_set_flags() works we must preserve S_DAX 4627 * here if already set. */ 4628 new_fl |= (inode->i_flags & S_DAX); 4629 if (init && ext4_should_enable_dax(inode)) 4630 new_fl |= S_DAX; 4631 4632 if (flags & EXT4_ENCRYPT_FL) 4633 new_fl |= S_ENCRYPTED; 4634 if (flags & EXT4_CASEFOLD_FL) 4635 new_fl |= S_CASEFOLD; 4636 if (flags & EXT4_VERITY_FL) 4637 new_fl |= S_VERITY; 4638 inode_set_flags(inode, new_fl, 4639 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4640 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4641 } 4642 4643 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4644 struct ext4_inode_info *ei) 4645 { 4646 blkcnt_t i_blocks ; 4647 struct inode *inode = &(ei->vfs_inode); 4648 struct super_block *sb = inode->i_sb; 4649 4650 if (ext4_has_feature_huge_file(sb)) { 4651 /* we are using combined 48 bit field */ 4652 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4653 le32_to_cpu(raw_inode->i_blocks_lo); 4654 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4655 /* i_blocks represent file system block size */ 4656 return i_blocks << (inode->i_blkbits - 9); 4657 } else { 4658 return i_blocks; 4659 } 4660 } else { 4661 return le32_to_cpu(raw_inode->i_blocks_lo); 4662 } 4663 } 4664 4665 static inline int ext4_iget_extra_inode(struct inode *inode, 4666 struct ext4_inode *raw_inode, 4667 struct ext4_inode_info *ei) 4668 { 4669 __le32 *magic = (void *)raw_inode + 4670 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4671 4672 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4673 EXT4_INODE_SIZE(inode->i_sb) && 4674 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4675 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4676 return ext4_find_inline_data_nolock(inode); 4677 } else 4678 EXT4_I(inode)->i_inline_off = 0; 4679 return 0; 4680 } 4681 4682 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4683 { 4684 if (!ext4_has_feature_project(inode->i_sb)) 4685 return -EOPNOTSUPP; 4686 *projid = EXT4_I(inode)->i_projid; 4687 return 0; 4688 } 4689 4690 /* 4691 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4692 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4693 * set. 4694 */ 4695 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4696 { 4697 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4698 inode_set_iversion_raw(inode, val); 4699 else 4700 inode_set_iversion_queried(inode, val); 4701 } 4702 4703 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4704 ext4_iget_flags flags, const char *function, 4705 unsigned int line) 4706 { 4707 struct ext4_iloc iloc; 4708 struct ext4_inode *raw_inode; 4709 struct ext4_inode_info *ei; 4710 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4711 struct inode *inode; 4712 journal_t *journal = EXT4_SB(sb)->s_journal; 4713 long ret; 4714 loff_t size; 4715 int block; 4716 uid_t i_uid; 4717 gid_t i_gid; 4718 projid_t i_projid; 4719 4720 if ((!(flags & EXT4_IGET_SPECIAL) && 4721 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4722 ino == le32_to_cpu(es->s_usr_quota_inum) || 4723 ino == le32_to_cpu(es->s_grp_quota_inum) || 4724 ino == le32_to_cpu(es->s_prj_quota_inum) || 4725 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4726 (ino < EXT4_ROOT_INO) || 4727 (ino > le32_to_cpu(es->s_inodes_count))) { 4728 if (flags & EXT4_IGET_HANDLE) 4729 return ERR_PTR(-ESTALE); 4730 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4731 "inode #%lu: comm %s: iget: illegal inode #", 4732 ino, current->comm); 4733 return ERR_PTR(-EFSCORRUPTED); 4734 } 4735 4736 inode = iget_locked(sb, ino); 4737 if (!inode) 4738 return ERR_PTR(-ENOMEM); 4739 if (!(inode->i_state & I_NEW)) 4740 return inode; 4741 4742 ei = EXT4_I(inode); 4743 iloc.bh = NULL; 4744 4745 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4746 if (ret < 0) 4747 goto bad_inode; 4748 raw_inode = ext4_raw_inode(&iloc); 4749 4750 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4751 ext4_error_inode(inode, function, line, 0, 4752 "iget: root inode unallocated"); 4753 ret = -EFSCORRUPTED; 4754 goto bad_inode; 4755 } 4756 4757 if ((flags & EXT4_IGET_HANDLE) && 4758 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4759 ret = -ESTALE; 4760 goto bad_inode; 4761 } 4762 4763 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4764 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4765 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4766 EXT4_INODE_SIZE(inode->i_sb) || 4767 (ei->i_extra_isize & 3)) { 4768 ext4_error_inode(inode, function, line, 0, 4769 "iget: bad extra_isize %u " 4770 "(inode size %u)", 4771 ei->i_extra_isize, 4772 EXT4_INODE_SIZE(inode->i_sb)); 4773 ret = -EFSCORRUPTED; 4774 goto bad_inode; 4775 } 4776 } else 4777 ei->i_extra_isize = 0; 4778 4779 /* Precompute checksum seed for inode metadata */ 4780 if (ext4_has_metadata_csum(sb)) { 4781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4782 __u32 csum; 4783 __le32 inum = cpu_to_le32(inode->i_ino); 4784 __le32 gen = raw_inode->i_generation; 4785 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4786 sizeof(inum)); 4787 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4788 sizeof(gen)); 4789 } 4790 4791 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4792 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4793 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4794 ext4_error_inode_err(inode, function, line, 0, 4795 EFSBADCRC, "iget: checksum invalid"); 4796 ret = -EFSBADCRC; 4797 goto bad_inode; 4798 } 4799 4800 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4801 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4802 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4803 if (ext4_has_feature_project(sb) && 4804 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4805 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4806 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4807 else 4808 i_projid = EXT4_DEF_PROJID; 4809 4810 if (!(test_opt(inode->i_sb, NO_UID32))) { 4811 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4812 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4813 } 4814 i_uid_write(inode, i_uid); 4815 i_gid_write(inode, i_gid); 4816 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4817 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4818 4819 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4820 ei->i_inline_off = 0; 4821 ei->i_dir_start_lookup = 0; 4822 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4823 /* We now have enough fields to check if the inode was active or not. 4824 * This is needed because nfsd might try to access dead inodes 4825 * the test is that same one that e2fsck uses 4826 * NeilBrown 1999oct15 4827 */ 4828 if (inode->i_nlink == 0) { 4829 if ((inode->i_mode == 0 || 4830 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4831 ino != EXT4_BOOT_LOADER_INO) { 4832 /* this inode is deleted */ 4833 ret = -ESTALE; 4834 goto bad_inode; 4835 } 4836 /* The only unlinked inodes we let through here have 4837 * valid i_mode and are being read by the orphan 4838 * recovery code: that's fine, we're about to complete 4839 * the process of deleting those. 4840 * OR it is the EXT4_BOOT_LOADER_INO which is 4841 * not initialized on a new filesystem. */ 4842 } 4843 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4844 ext4_set_inode_flags(inode, true); 4845 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4846 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4847 if (ext4_has_feature_64bit(sb)) 4848 ei->i_file_acl |= 4849 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4850 inode->i_size = ext4_isize(sb, raw_inode); 4851 if ((size = i_size_read(inode)) < 0) { 4852 ext4_error_inode(inode, function, line, 0, 4853 "iget: bad i_size value: %lld", size); 4854 ret = -EFSCORRUPTED; 4855 goto bad_inode; 4856 } 4857 /* 4858 * If dir_index is not enabled but there's dir with INDEX flag set, 4859 * we'd normally treat htree data as empty space. But with metadata 4860 * checksumming that corrupts checksums so forbid that. 4861 */ 4862 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4863 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4864 ext4_error_inode(inode, function, line, 0, 4865 "iget: Dir with htree data on filesystem without dir_index feature."); 4866 ret = -EFSCORRUPTED; 4867 goto bad_inode; 4868 } 4869 ei->i_disksize = inode->i_size; 4870 #ifdef CONFIG_QUOTA 4871 ei->i_reserved_quota = 0; 4872 #endif 4873 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4874 ei->i_block_group = iloc.block_group; 4875 ei->i_last_alloc_group = ~0; 4876 /* 4877 * NOTE! The in-memory inode i_data array is in little-endian order 4878 * even on big-endian machines: we do NOT byteswap the block numbers! 4879 */ 4880 for (block = 0; block < EXT4_N_BLOCKS; block++) 4881 ei->i_data[block] = raw_inode->i_block[block]; 4882 INIT_LIST_HEAD(&ei->i_orphan); 4883 ext4_fc_init_inode(&ei->vfs_inode); 4884 4885 /* 4886 * Set transaction id's of transactions that have to be committed 4887 * to finish f[data]sync. We set them to currently running transaction 4888 * as we cannot be sure that the inode or some of its metadata isn't 4889 * part of the transaction - the inode could have been reclaimed and 4890 * now it is reread from disk. 4891 */ 4892 if (journal) { 4893 transaction_t *transaction; 4894 tid_t tid; 4895 4896 read_lock(&journal->j_state_lock); 4897 if (journal->j_running_transaction) 4898 transaction = journal->j_running_transaction; 4899 else 4900 transaction = journal->j_committing_transaction; 4901 if (transaction) 4902 tid = transaction->t_tid; 4903 else 4904 tid = journal->j_commit_sequence; 4905 read_unlock(&journal->j_state_lock); 4906 ei->i_sync_tid = tid; 4907 ei->i_datasync_tid = tid; 4908 } 4909 4910 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4911 if (ei->i_extra_isize == 0) { 4912 /* The extra space is currently unused. Use it. */ 4913 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4914 ei->i_extra_isize = sizeof(struct ext4_inode) - 4915 EXT4_GOOD_OLD_INODE_SIZE; 4916 } else { 4917 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4918 if (ret) 4919 goto bad_inode; 4920 } 4921 } 4922 4923 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4924 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4925 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4926 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4927 4928 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4929 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4930 4931 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4932 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4933 ivers |= 4934 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4935 } 4936 ext4_inode_set_iversion_queried(inode, ivers); 4937 } 4938 4939 ret = 0; 4940 if (ei->i_file_acl && 4941 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4942 ext4_error_inode(inode, function, line, 0, 4943 "iget: bad extended attribute block %llu", 4944 ei->i_file_acl); 4945 ret = -EFSCORRUPTED; 4946 goto bad_inode; 4947 } else if (!ext4_has_inline_data(inode)) { 4948 /* validate the block references in the inode */ 4949 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4950 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4951 (S_ISLNK(inode->i_mode) && 4952 !ext4_inode_is_fast_symlink(inode)))) { 4953 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4954 ret = ext4_ext_check_inode(inode); 4955 else 4956 ret = ext4_ind_check_inode(inode); 4957 } 4958 } 4959 if (ret) 4960 goto bad_inode; 4961 4962 if (S_ISREG(inode->i_mode)) { 4963 inode->i_op = &ext4_file_inode_operations; 4964 inode->i_fop = &ext4_file_operations; 4965 ext4_set_aops(inode); 4966 } else if (S_ISDIR(inode->i_mode)) { 4967 inode->i_op = &ext4_dir_inode_operations; 4968 inode->i_fop = &ext4_dir_operations; 4969 } else if (S_ISLNK(inode->i_mode)) { 4970 /* VFS does not allow setting these so must be corruption */ 4971 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4972 ext4_error_inode(inode, function, line, 0, 4973 "iget: immutable or append flags " 4974 "not allowed on symlinks"); 4975 ret = -EFSCORRUPTED; 4976 goto bad_inode; 4977 } 4978 if (IS_ENCRYPTED(inode)) { 4979 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4980 ext4_set_aops(inode); 4981 } else if (ext4_inode_is_fast_symlink(inode)) { 4982 inode->i_link = (char *)ei->i_data; 4983 inode->i_op = &ext4_fast_symlink_inode_operations; 4984 nd_terminate_link(ei->i_data, inode->i_size, 4985 sizeof(ei->i_data) - 1); 4986 } else { 4987 inode->i_op = &ext4_symlink_inode_operations; 4988 ext4_set_aops(inode); 4989 } 4990 inode_nohighmem(inode); 4991 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4992 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4993 inode->i_op = &ext4_special_inode_operations; 4994 if (raw_inode->i_block[0]) 4995 init_special_inode(inode, inode->i_mode, 4996 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4997 else 4998 init_special_inode(inode, inode->i_mode, 4999 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5000 } else if (ino == EXT4_BOOT_LOADER_INO) { 5001 make_bad_inode(inode); 5002 } else { 5003 ret = -EFSCORRUPTED; 5004 ext4_error_inode(inode, function, line, 0, 5005 "iget: bogus i_mode (%o)", inode->i_mode); 5006 goto bad_inode; 5007 } 5008 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5009 ext4_error_inode(inode, function, line, 0, 5010 "casefold flag without casefold feature"); 5011 brelse(iloc.bh); 5012 5013 unlock_new_inode(inode); 5014 return inode; 5015 5016 bad_inode: 5017 brelse(iloc.bh); 5018 iget_failed(inode); 5019 return ERR_PTR(ret); 5020 } 5021 5022 static void __ext4_update_other_inode_time(struct super_block *sb, 5023 unsigned long orig_ino, 5024 unsigned long ino, 5025 struct ext4_inode *raw_inode) 5026 { 5027 struct inode *inode; 5028 5029 inode = find_inode_by_ino_rcu(sb, ino); 5030 if (!inode) 5031 return; 5032 5033 if (!inode_is_dirtytime_only(inode)) 5034 return; 5035 5036 spin_lock(&inode->i_lock); 5037 if (inode_is_dirtytime_only(inode)) { 5038 struct ext4_inode_info *ei = EXT4_I(inode); 5039 5040 inode->i_state &= ~I_DIRTY_TIME; 5041 spin_unlock(&inode->i_lock); 5042 5043 spin_lock(&ei->i_raw_lock); 5044 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5045 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5046 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5047 ext4_inode_csum_set(inode, raw_inode, ei); 5048 spin_unlock(&ei->i_raw_lock); 5049 trace_ext4_other_inode_update_time(inode, orig_ino); 5050 return; 5051 } 5052 spin_unlock(&inode->i_lock); 5053 } 5054 5055 /* 5056 * Opportunistically update the other time fields for other inodes in 5057 * the same inode table block. 5058 */ 5059 static void ext4_update_other_inodes_time(struct super_block *sb, 5060 unsigned long orig_ino, char *buf) 5061 { 5062 unsigned long ino; 5063 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5064 int inode_size = EXT4_INODE_SIZE(sb); 5065 5066 /* 5067 * Calculate the first inode in the inode table block. Inode 5068 * numbers are one-based. That is, the first inode in a block 5069 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5070 */ 5071 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5072 rcu_read_lock(); 5073 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5074 if (ino == orig_ino) 5075 continue; 5076 __ext4_update_other_inode_time(sb, orig_ino, ino, 5077 (struct ext4_inode *)buf); 5078 } 5079 rcu_read_unlock(); 5080 } 5081 5082 /* 5083 * Post the struct inode info into an on-disk inode location in the 5084 * buffer-cache. This gobbles the caller's reference to the 5085 * buffer_head in the inode location struct. 5086 * 5087 * The caller must have write access to iloc->bh. 5088 */ 5089 static int ext4_do_update_inode(handle_t *handle, 5090 struct inode *inode, 5091 struct ext4_iloc *iloc) 5092 { 5093 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5094 struct ext4_inode_info *ei = EXT4_I(inode); 5095 struct buffer_head *bh = iloc->bh; 5096 struct super_block *sb = inode->i_sb; 5097 int err; 5098 int need_datasync = 0, set_large_file = 0; 5099 5100 spin_lock(&ei->i_raw_lock); 5101 5102 /* 5103 * For fields not tracked in the in-memory inode, initialise them 5104 * to zero for new inodes. 5105 */ 5106 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5107 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5108 5109 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5110 need_datasync = 1; 5111 if (ei->i_disksize > 0x7fffffffULL) { 5112 if (!ext4_has_feature_large_file(sb) || 5113 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5114 set_large_file = 1; 5115 } 5116 5117 err = ext4_fill_raw_inode(inode, raw_inode); 5118 spin_unlock(&ei->i_raw_lock); 5119 if (err) { 5120 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5121 goto out_brelse; 5122 } 5123 5124 if (inode->i_sb->s_flags & SB_LAZYTIME) 5125 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5126 bh->b_data); 5127 5128 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5129 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5130 if (err) 5131 goto out_error; 5132 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5133 if (set_large_file) { 5134 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5135 err = ext4_journal_get_write_access(handle, sb, 5136 EXT4_SB(sb)->s_sbh, 5137 EXT4_JTR_NONE); 5138 if (err) 5139 goto out_error; 5140 lock_buffer(EXT4_SB(sb)->s_sbh); 5141 ext4_set_feature_large_file(sb); 5142 ext4_superblock_csum_set(sb); 5143 unlock_buffer(EXT4_SB(sb)->s_sbh); 5144 ext4_handle_sync(handle); 5145 err = ext4_handle_dirty_metadata(handle, NULL, 5146 EXT4_SB(sb)->s_sbh); 5147 } 5148 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5149 out_error: 5150 ext4_std_error(inode->i_sb, err); 5151 out_brelse: 5152 brelse(bh); 5153 return err; 5154 } 5155 5156 /* 5157 * ext4_write_inode() 5158 * 5159 * We are called from a few places: 5160 * 5161 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5162 * Here, there will be no transaction running. We wait for any running 5163 * transaction to commit. 5164 * 5165 * - Within flush work (sys_sync(), kupdate and such). 5166 * We wait on commit, if told to. 5167 * 5168 * - Within iput_final() -> write_inode_now() 5169 * We wait on commit, if told to. 5170 * 5171 * In all cases it is actually safe for us to return without doing anything, 5172 * because the inode has been copied into a raw inode buffer in 5173 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5174 * writeback. 5175 * 5176 * Note that we are absolutely dependent upon all inode dirtiers doing the 5177 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5178 * which we are interested. 5179 * 5180 * It would be a bug for them to not do this. The code: 5181 * 5182 * mark_inode_dirty(inode) 5183 * stuff(); 5184 * inode->i_size = expr; 5185 * 5186 * is in error because write_inode() could occur while `stuff()' is running, 5187 * and the new i_size will be lost. Plus the inode will no longer be on the 5188 * superblock's dirty inode list. 5189 */ 5190 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5191 { 5192 int err; 5193 5194 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5195 sb_rdonly(inode->i_sb)) 5196 return 0; 5197 5198 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5199 return -EIO; 5200 5201 if (EXT4_SB(inode->i_sb)->s_journal) { 5202 if (ext4_journal_current_handle()) { 5203 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5204 dump_stack(); 5205 return -EIO; 5206 } 5207 5208 /* 5209 * No need to force transaction in WB_SYNC_NONE mode. Also 5210 * ext4_sync_fs() will force the commit after everything is 5211 * written. 5212 */ 5213 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5214 return 0; 5215 5216 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5217 EXT4_I(inode)->i_sync_tid); 5218 } else { 5219 struct ext4_iloc iloc; 5220 5221 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5222 if (err) 5223 return err; 5224 /* 5225 * sync(2) will flush the whole buffer cache. No need to do 5226 * it here separately for each inode. 5227 */ 5228 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5229 sync_dirty_buffer(iloc.bh); 5230 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5231 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5232 "IO error syncing inode"); 5233 err = -EIO; 5234 } 5235 brelse(iloc.bh); 5236 } 5237 return err; 5238 } 5239 5240 /* 5241 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5242 * buffers that are attached to a folio straddling i_size and are undergoing 5243 * commit. In that case we have to wait for commit to finish and try again. 5244 */ 5245 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5246 { 5247 unsigned offset; 5248 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5249 tid_t commit_tid = 0; 5250 int ret; 5251 5252 offset = inode->i_size & (PAGE_SIZE - 1); 5253 /* 5254 * If the folio is fully truncated, we don't need to wait for any commit 5255 * (and we even should not as __ext4_journalled_invalidate_folio() may 5256 * strip all buffers from the folio but keep the folio dirty which can then 5257 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without 5258 * buffers). Also we don't need to wait for any commit if all buffers in 5259 * the folio remain valid. This is most beneficial for the common case of 5260 * blocksize == PAGESIZE. 5261 */ 5262 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5263 return; 5264 while (1) { 5265 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5266 inode->i_size >> PAGE_SHIFT); 5267 if (!folio) 5268 return; 5269 ret = __ext4_journalled_invalidate_folio(folio, offset, 5270 folio_size(folio) - offset); 5271 folio_unlock(folio); 5272 folio_put(folio); 5273 if (ret != -EBUSY) 5274 return; 5275 commit_tid = 0; 5276 read_lock(&journal->j_state_lock); 5277 if (journal->j_committing_transaction) 5278 commit_tid = journal->j_committing_transaction->t_tid; 5279 read_unlock(&journal->j_state_lock); 5280 if (commit_tid) 5281 jbd2_log_wait_commit(journal, commit_tid); 5282 } 5283 } 5284 5285 /* 5286 * ext4_setattr() 5287 * 5288 * Called from notify_change. 5289 * 5290 * We want to trap VFS attempts to truncate the file as soon as 5291 * possible. In particular, we want to make sure that when the VFS 5292 * shrinks i_size, we put the inode on the orphan list and modify 5293 * i_disksize immediately, so that during the subsequent flushing of 5294 * dirty pages and freeing of disk blocks, we can guarantee that any 5295 * commit will leave the blocks being flushed in an unused state on 5296 * disk. (On recovery, the inode will get truncated and the blocks will 5297 * be freed, so we have a strong guarantee that no future commit will 5298 * leave these blocks visible to the user.) 5299 * 5300 * Another thing we have to assure is that if we are in ordered mode 5301 * and inode is still attached to the committing transaction, we must 5302 * we start writeout of all the dirty pages which are being truncated. 5303 * This way we are sure that all the data written in the previous 5304 * transaction are already on disk (truncate waits for pages under 5305 * writeback). 5306 * 5307 * Called with inode->i_rwsem down. 5308 */ 5309 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5310 struct iattr *attr) 5311 { 5312 struct inode *inode = d_inode(dentry); 5313 int error, rc = 0; 5314 int orphan = 0; 5315 const unsigned int ia_valid = attr->ia_valid; 5316 5317 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5318 return -EIO; 5319 5320 if (unlikely(IS_IMMUTABLE(inode))) 5321 return -EPERM; 5322 5323 if (unlikely(IS_APPEND(inode) && 5324 (ia_valid & (ATTR_MODE | ATTR_UID | 5325 ATTR_GID | ATTR_TIMES_SET)))) 5326 return -EPERM; 5327 5328 error = setattr_prepare(mnt_userns, dentry, attr); 5329 if (error) 5330 return error; 5331 5332 error = fscrypt_prepare_setattr(dentry, attr); 5333 if (error) 5334 return error; 5335 5336 error = fsverity_prepare_setattr(dentry, attr); 5337 if (error) 5338 return error; 5339 5340 if (is_quota_modification(inode, attr)) { 5341 error = dquot_initialize(inode); 5342 if (error) 5343 return error; 5344 } 5345 5346 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5347 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5348 handle_t *handle; 5349 5350 /* (user+group)*(old+new) structure, inode write (sb, 5351 * inode block, ? - but truncate inode update has it) */ 5352 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5353 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5354 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5355 if (IS_ERR(handle)) { 5356 error = PTR_ERR(handle); 5357 goto err_out; 5358 } 5359 5360 /* dquot_transfer() calls back ext4_get_inode_usage() which 5361 * counts xattr inode references. 5362 */ 5363 down_read(&EXT4_I(inode)->xattr_sem); 5364 error = dquot_transfer(inode, attr); 5365 up_read(&EXT4_I(inode)->xattr_sem); 5366 5367 if (error) { 5368 ext4_journal_stop(handle); 5369 return error; 5370 } 5371 /* Update corresponding info in inode so that everything is in 5372 * one transaction */ 5373 if (attr->ia_valid & ATTR_UID) 5374 inode->i_uid = attr->ia_uid; 5375 if (attr->ia_valid & ATTR_GID) 5376 inode->i_gid = attr->ia_gid; 5377 error = ext4_mark_inode_dirty(handle, inode); 5378 ext4_journal_stop(handle); 5379 if (unlikely(error)) { 5380 return error; 5381 } 5382 } 5383 5384 if (attr->ia_valid & ATTR_SIZE) { 5385 handle_t *handle; 5386 loff_t oldsize = inode->i_size; 5387 int shrink = (attr->ia_size < inode->i_size); 5388 5389 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5390 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5391 5392 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5393 return -EFBIG; 5394 } 5395 } 5396 if (!S_ISREG(inode->i_mode)) { 5397 return -EINVAL; 5398 } 5399 5400 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5401 inode_inc_iversion(inode); 5402 5403 if (shrink) { 5404 if (ext4_should_order_data(inode)) { 5405 error = ext4_begin_ordered_truncate(inode, 5406 attr->ia_size); 5407 if (error) 5408 goto err_out; 5409 } 5410 /* 5411 * Blocks are going to be removed from the inode. Wait 5412 * for dio in flight. 5413 */ 5414 inode_dio_wait(inode); 5415 } 5416 5417 filemap_invalidate_lock(inode->i_mapping); 5418 5419 rc = ext4_break_layouts(inode); 5420 if (rc) { 5421 filemap_invalidate_unlock(inode->i_mapping); 5422 goto err_out; 5423 } 5424 5425 if (attr->ia_size != inode->i_size) { 5426 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5427 if (IS_ERR(handle)) { 5428 error = PTR_ERR(handle); 5429 goto out_mmap_sem; 5430 } 5431 if (ext4_handle_valid(handle) && shrink) { 5432 error = ext4_orphan_add(handle, inode); 5433 orphan = 1; 5434 } 5435 /* 5436 * Update c/mtime on truncate up, ext4_truncate() will 5437 * update c/mtime in shrink case below 5438 */ 5439 if (!shrink) { 5440 inode->i_mtime = current_time(inode); 5441 inode->i_ctime = inode->i_mtime; 5442 } 5443 5444 if (shrink) 5445 ext4_fc_track_range(handle, inode, 5446 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5447 inode->i_sb->s_blocksize_bits, 5448 EXT_MAX_BLOCKS - 1); 5449 else 5450 ext4_fc_track_range( 5451 handle, inode, 5452 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5453 inode->i_sb->s_blocksize_bits, 5454 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5455 inode->i_sb->s_blocksize_bits); 5456 5457 down_write(&EXT4_I(inode)->i_data_sem); 5458 EXT4_I(inode)->i_disksize = attr->ia_size; 5459 rc = ext4_mark_inode_dirty(handle, inode); 5460 if (!error) 5461 error = rc; 5462 /* 5463 * We have to update i_size under i_data_sem together 5464 * with i_disksize to avoid races with writeback code 5465 * running ext4_wb_update_i_disksize(). 5466 */ 5467 if (!error) 5468 i_size_write(inode, attr->ia_size); 5469 up_write(&EXT4_I(inode)->i_data_sem); 5470 ext4_journal_stop(handle); 5471 if (error) 5472 goto out_mmap_sem; 5473 if (!shrink) { 5474 pagecache_isize_extended(inode, oldsize, 5475 inode->i_size); 5476 } else if (ext4_should_journal_data(inode)) { 5477 ext4_wait_for_tail_page_commit(inode); 5478 } 5479 } 5480 5481 /* 5482 * Truncate pagecache after we've waited for commit 5483 * in data=journal mode to make pages freeable. 5484 */ 5485 truncate_pagecache(inode, inode->i_size); 5486 /* 5487 * Call ext4_truncate() even if i_size didn't change to 5488 * truncate possible preallocated blocks. 5489 */ 5490 if (attr->ia_size <= oldsize) { 5491 rc = ext4_truncate(inode); 5492 if (rc) 5493 error = rc; 5494 } 5495 out_mmap_sem: 5496 filemap_invalidate_unlock(inode->i_mapping); 5497 } 5498 5499 if (!error) { 5500 setattr_copy(mnt_userns, inode, attr); 5501 mark_inode_dirty(inode); 5502 } 5503 5504 /* 5505 * If the call to ext4_truncate failed to get a transaction handle at 5506 * all, we need to clean up the in-core orphan list manually. 5507 */ 5508 if (orphan && inode->i_nlink) 5509 ext4_orphan_del(NULL, inode); 5510 5511 if (!error && (ia_valid & ATTR_MODE)) 5512 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5513 5514 err_out: 5515 if (error) 5516 ext4_std_error(inode->i_sb, error); 5517 if (!error) 5518 error = rc; 5519 return error; 5520 } 5521 5522 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5523 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5524 { 5525 struct inode *inode = d_inode(path->dentry); 5526 struct ext4_inode *raw_inode; 5527 struct ext4_inode_info *ei = EXT4_I(inode); 5528 unsigned int flags; 5529 5530 if ((request_mask & STATX_BTIME) && 5531 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5532 stat->result_mask |= STATX_BTIME; 5533 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5534 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5535 } 5536 5537 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5538 if (flags & EXT4_APPEND_FL) 5539 stat->attributes |= STATX_ATTR_APPEND; 5540 if (flags & EXT4_COMPR_FL) 5541 stat->attributes |= STATX_ATTR_COMPRESSED; 5542 if (flags & EXT4_ENCRYPT_FL) 5543 stat->attributes |= STATX_ATTR_ENCRYPTED; 5544 if (flags & EXT4_IMMUTABLE_FL) 5545 stat->attributes |= STATX_ATTR_IMMUTABLE; 5546 if (flags & EXT4_NODUMP_FL) 5547 stat->attributes |= STATX_ATTR_NODUMP; 5548 if (flags & EXT4_VERITY_FL) 5549 stat->attributes |= STATX_ATTR_VERITY; 5550 5551 stat->attributes_mask |= (STATX_ATTR_APPEND | 5552 STATX_ATTR_COMPRESSED | 5553 STATX_ATTR_ENCRYPTED | 5554 STATX_ATTR_IMMUTABLE | 5555 STATX_ATTR_NODUMP | 5556 STATX_ATTR_VERITY); 5557 5558 generic_fillattr(mnt_userns, inode, stat); 5559 return 0; 5560 } 5561 5562 int ext4_file_getattr(struct user_namespace *mnt_userns, 5563 const struct path *path, struct kstat *stat, 5564 u32 request_mask, unsigned int query_flags) 5565 { 5566 struct inode *inode = d_inode(path->dentry); 5567 u64 delalloc_blocks; 5568 5569 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5570 5571 /* 5572 * If there is inline data in the inode, the inode will normally not 5573 * have data blocks allocated (it may have an external xattr block). 5574 * Report at least one sector for such files, so tools like tar, rsync, 5575 * others don't incorrectly think the file is completely sparse. 5576 */ 5577 if (unlikely(ext4_has_inline_data(inode))) 5578 stat->blocks += (stat->size + 511) >> 9; 5579 5580 /* 5581 * We can't update i_blocks if the block allocation is delayed 5582 * otherwise in the case of system crash before the real block 5583 * allocation is done, we will have i_blocks inconsistent with 5584 * on-disk file blocks. 5585 * We always keep i_blocks updated together with real 5586 * allocation. But to not confuse with user, stat 5587 * will return the blocks that include the delayed allocation 5588 * blocks for this file. 5589 */ 5590 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5591 EXT4_I(inode)->i_reserved_data_blocks); 5592 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5593 return 0; 5594 } 5595 5596 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5597 int pextents) 5598 { 5599 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5600 return ext4_ind_trans_blocks(inode, lblocks); 5601 return ext4_ext_index_trans_blocks(inode, pextents); 5602 } 5603 5604 /* 5605 * Account for index blocks, block groups bitmaps and block group 5606 * descriptor blocks if modify datablocks and index blocks 5607 * worse case, the indexs blocks spread over different block groups 5608 * 5609 * If datablocks are discontiguous, they are possible to spread over 5610 * different block groups too. If they are contiguous, with flexbg, 5611 * they could still across block group boundary. 5612 * 5613 * Also account for superblock, inode, quota and xattr blocks 5614 */ 5615 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5616 int pextents) 5617 { 5618 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5619 int gdpblocks; 5620 int idxblocks; 5621 int ret = 0; 5622 5623 /* 5624 * How many index blocks need to touch to map @lblocks logical blocks 5625 * to @pextents physical extents? 5626 */ 5627 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5628 5629 ret = idxblocks; 5630 5631 /* 5632 * Now let's see how many group bitmaps and group descriptors need 5633 * to account 5634 */ 5635 groups = idxblocks + pextents; 5636 gdpblocks = groups; 5637 if (groups > ngroups) 5638 groups = ngroups; 5639 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5640 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5641 5642 /* bitmaps and block group descriptor blocks */ 5643 ret += groups + gdpblocks; 5644 5645 /* Blocks for super block, inode, quota and xattr blocks */ 5646 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5647 5648 return ret; 5649 } 5650 5651 /* 5652 * Calculate the total number of credits to reserve to fit 5653 * the modification of a single pages into a single transaction, 5654 * which may include multiple chunks of block allocations. 5655 * 5656 * This could be called via ext4_write_begin() 5657 * 5658 * We need to consider the worse case, when 5659 * one new block per extent. 5660 */ 5661 int ext4_writepage_trans_blocks(struct inode *inode) 5662 { 5663 int bpp = ext4_journal_blocks_per_page(inode); 5664 int ret; 5665 5666 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5667 5668 /* Account for data blocks for journalled mode */ 5669 if (ext4_should_journal_data(inode)) 5670 ret += bpp; 5671 return ret; 5672 } 5673 5674 /* 5675 * Calculate the journal credits for a chunk of data modification. 5676 * 5677 * This is called from DIO, fallocate or whoever calling 5678 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5679 * 5680 * journal buffers for data blocks are not included here, as DIO 5681 * and fallocate do no need to journal data buffers. 5682 */ 5683 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5684 { 5685 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5686 } 5687 5688 /* 5689 * The caller must have previously called ext4_reserve_inode_write(). 5690 * Give this, we know that the caller already has write access to iloc->bh. 5691 */ 5692 int ext4_mark_iloc_dirty(handle_t *handle, 5693 struct inode *inode, struct ext4_iloc *iloc) 5694 { 5695 int err = 0; 5696 5697 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5698 put_bh(iloc->bh); 5699 return -EIO; 5700 } 5701 ext4_fc_track_inode(handle, inode); 5702 5703 if (IS_I_VERSION(inode)) 5704 inode_inc_iversion(inode); 5705 5706 /* the do_update_inode consumes one bh->b_count */ 5707 get_bh(iloc->bh); 5708 5709 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5710 err = ext4_do_update_inode(handle, inode, iloc); 5711 put_bh(iloc->bh); 5712 return err; 5713 } 5714 5715 /* 5716 * On success, We end up with an outstanding reference count against 5717 * iloc->bh. This _must_ be cleaned up later. 5718 */ 5719 5720 int 5721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5722 struct ext4_iloc *iloc) 5723 { 5724 int err; 5725 5726 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5727 return -EIO; 5728 5729 err = ext4_get_inode_loc(inode, iloc); 5730 if (!err) { 5731 BUFFER_TRACE(iloc->bh, "get_write_access"); 5732 err = ext4_journal_get_write_access(handle, inode->i_sb, 5733 iloc->bh, EXT4_JTR_NONE); 5734 if (err) { 5735 brelse(iloc->bh); 5736 iloc->bh = NULL; 5737 } 5738 } 5739 ext4_std_error(inode->i_sb, err); 5740 return err; 5741 } 5742 5743 static int __ext4_expand_extra_isize(struct inode *inode, 5744 unsigned int new_extra_isize, 5745 struct ext4_iloc *iloc, 5746 handle_t *handle, int *no_expand) 5747 { 5748 struct ext4_inode *raw_inode; 5749 struct ext4_xattr_ibody_header *header; 5750 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5751 struct ext4_inode_info *ei = EXT4_I(inode); 5752 int error; 5753 5754 /* this was checked at iget time, but double check for good measure */ 5755 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5756 (ei->i_extra_isize & 3)) { 5757 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5758 ei->i_extra_isize, 5759 EXT4_INODE_SIZE(inode->i_sb)); 5760 return -EFSCORRUPTED; 5761 } 5762 if ((new_extra_isize < ei->i_extra_isize) || 5763 (new_extra_isize < 4) || 5764 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5765 return -EINVAL; /* Should never happen */ 5766 5767 raw_inode = ext4_raw_inode(iloc); 5768 5769 header = IHDR(inode, raw_inode); 5770 5771 /* No extended attributes present */ 5772 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5773 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5774 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5775 EXT4_I(inode)->i_extra_isize, 0, 5776 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5777 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5778 return 0; 5779 } 5780 5781 /* try to expand with EAs present */ 5782 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5783 raw_inode, handle); 5784 if (error) { 5785 /* 5786 * Inode size expansion failed; don't try again 5787 */ 5788 *no_expand = 1; 5789 } 5790 5791 return error; 5792 } 5793 5794 /* 5795 * Expand an inode by new_extra_isize bytes. 5796 * Returns 0 on success or negative error number on failure. 5797 */ 5798 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5799 unsigned int new_extra_isize, 5800 struct ext4_iloc iloc, 5801 handle_t *handle) 5802 { 5803 int no_expand; 5804 int error; 5805 5806 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5807 return -EOVERFLOW; 5808 5809 /* 5810 * In nojournal mode, we can immediately attempt to expand 5811 * the inode. When journaled, we first need to obtain extra 5812 * buffer credits since we may write into the EA block 5813 * with this same handle. If journal_extend fails, then it will 5814 * only result in a minor loss of functionality for that inode. 5815 * If this is felt to be critical, then e2fsck should be run to 5816 * force a large enough s_min_extra_isize. 5817 */ 5818 if (ext4_journal_extend(handle, 5819 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5820 return -ENOSPC; 5821 5822 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5823 return -EBUSY; 5824 5825 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5826 handle, &no_expand); 5827 ext4_write_unlock_xattr(inode, &no_expand); 5828 5829 return error; 5830 } 5831 5832 int ext4_expand_extra_isize(struct inode *inode, 5833 unsigned int new_extra_isize, 5834 struct ext4_iloc *iloc) 5835 { 5836 handle_t *handle; 5837 int no_expand; 5838 int error, rc; 5839 5840 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5841 brelse(iloc->bh); 5842 return -EOVERFLOW; 5843 } 5844 5845 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5846 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5847 if (IS_ERR(handle)) { 5848 error = PTR_ERR(handle); 5849 brelse(iloc->bh); 5850 return error; 5851 } 5852 5853 ext4_write_lock_xattr(inode, &no_expand); 5854 5855 BUFFER_TRACE(iloc->bh, "get_write_access"); 5856 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5857 EXT4_JTR_NONE); 5858 if (error) { 5859 brelse(iloc->bh); 5860 goto out_unlock; 5861 } 5862 5863 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5864 handle, &no_expand); 5865 5866 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5867 if (!error) 5868 error = rc; 5869 5870 out_unlock: 5871 ext4_write_unlock_xattr(inode, &no_expand); 5872 ext4_journal_stop(handle); 5873 return error; 5874 } 5875 5876 /* 5877 * What we do here is to mark the in-core inode as clean with respect to inode 5878 * dirtiness (it may still be data-dirty). 5879 * This means that the in-core inode may be reaped by prune_icache 5880 * without having to perform any I/O. This is a very good thing, 5881 * because *any* task may call prune_icache - even ones which 5882 * have a transaction open against a different journal. 5883 * 5884 * Is this cheating? Not really. Sure, we haven't written the 5885 * inode out, but prune_icache isn't a user-visible syncing function. 5886 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5887 * we start and wait on commits. 5888 */ 5889 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5890 const char *func, unsigned int line) 5891 { 5892 struct ext4_iloc iloc; 5893 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5894 int err; 5895 5896 might_sleep(); 5897 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5898 err = ext4_reserve_inode_write(handle, inode, &iloc); 5899 if (err) 5900 goto out; 5901 5902 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5903 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5904 iloc, handle); 5905 5906 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5907 out: 5908 if (unlikely(err)) 5909 ext4_error_inode_err(inode, func, line, 0, err, 5910 "mark_inode_dirty error"); 5911 return err; 5912 } 5913 5914 /* 5915 * ext4_dirty_inode() is called from __mark_inode_dirty() 5916 * 5917 * We're really interested in the case where a file is being extended. 5918 * i_size has been changed by generic_commit_write() and we thus need 5919 * to include the updated inode in the current transaction. 5920 * 5921 * Also, dquot_alloc_block() will always dirty the inode when blocks 5922 * are allocated to the file. 5923 * 5924 * If the inode is marked synchronous, we don't honour that here - doing 5925 * so would cause a commit on atime updates, which we don't bother doing. 5926 * We handle synchronous inodes at the highest possible level. 5927 */ 5928 void ext4_dirty_inode(struct inode *inode, int flags) 5929 { 5930 handle_t *handle; 5931 5932 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5933 if (IS_ERR(handle)) 5934 return; 5935 ext4_mark_inode_dirty(handle, inode); 5936 ext4_journal_stop(handle); 5937 } 5938 5939 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5940 { 5941 journal_t *journal; 5942 handle_t *handle; 5943 int err; 5944 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5945 5946 /* 5947 * We have to be very careful here: changing a data block's 5948 * journaling status dynamically is dangerous. If we write a 5949 * data block to the journal, change the status and then delete 5950 * that block, we risk forgetting to revoke the old log record 5951 * from the journal and so a subsequent replay can corrupt data. 5952 * So, first we make sure that the journal is empty and that 5953 * nobody is changing anything. 5954 */ 5955 5956 journal = EXT4_JOURNAL(inode); 5957 if (!journal) 5958 return 0; 5959 if (is_journal_aborted(journal)) 5960 return -EROFS; 5961 5962 /* Wait for all existing dio workers */ 5963 inode_dio_wait(inode); 5964 5965 /* 5966 * Before flushing the journal and switching inode's aops, we have 5967 * to flush all dirty data the inode has. There can be outstanding 5968 * delayed allocations, there can be unwritten extents created by 5969 * fallocate or buffered writes in dioread_nolock mode covered by 5970 * dirty data which can be converted only after flushing the dirty 5971 * data (and journalled aops don't know how to handle these cases). 5972 */ 5973 if (val) { 5974 filemap_invalidate_lock(inode->i_mapping); 5975 err = filemap_write_and_wait(inode->i_mapping); 5976 if (err < 0) { 5977 filemap_invalidate_unlock(inode->i_mapping); 5978 return err; 5979 } 5980 } 5981 5982 percpu_down_write(&sbi->s_writepages_rwsem); 5983 jbd2_journal_lock_updates(journal); 5984 5985 /* 5986 * OK, there are no updates running now, and all cached data is 5987 * synced to disk. We are now in a completely consistent state 5988 * which doesn't have anything in the journal, and we know that 5989 * no filesystem updates are running, so it is safe to modify 5990 * the inode's in-core data-journaling state flag now. 5991 */ 5992 5993 if (val) 5994 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5995 else { 5996 err = jbd2_journal_flush(journal, 0); 5997 if (err < 0) { 5998 jbd2_journal_unlock_updates(journal); 5999 percpu_up_write(&sbi->s_writepages_rwsem); 6000 return err; 6001 } 6002 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6003 } 6004 ext4_set_aops(inode); 6005 6006 jbd2_journal_unlock_updates(journal); 6007 percpu_up_write(&sbi->s_writepages_rwsem); 6008 6009 if (val) 6010 filemap_invalidate_unlock(inode->i_mapping); 6011 6012 /* Finally we can mark the inode as dirty. */ 6013 6014 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6015 if (IS_ERR(handle)) 6016 return PTR_ERR(handle); 6017 6018 ext4_fc_mark_ineligible(inode->i_sb, 6019 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6020 err = ext4_mark_inode_dirty(handle, inode); 6021 ext4_handle_sync(handle); 6022 ext4_journal_stop(handle); 6023 ext4_std_error(inode->i_sb, err); 6024 6025 return err; 6026 } 6027 6028 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6029 struct buffer_head *bh) 6030 { 6031 return !buffer_mapped(bh); 6032 } 6033 6034 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6035 { 6036 struct vm_area_struct *vma = vmf->vma; 6037 struct page *page = vmf->page; 6038 loff_t size; 6039 unsigned long len; 6040 int err; 6041 vm_fault_t ret; 6042 struct file *file = vma->vm_file; 6043 struct inode *inode = file_inode(file); 6044 struct address_space *mapping = inode->i_mapping; 6045 handle_t *handle; 6046 get_block_t *get_block; 6047 int retries = 0; 6048 6049 if (unlikely(IS_IMMUTABLE(inode))) 6050 return VM_FAULT_SIGBUS; 6051 6052 sb_start_pagefault(inode->i_sb); 6053 file_update_time(vma->vm_file); 6054 6055 filemap_invalidate_lock_shared(mapping); 6056 6057 err = ext4_convert_inline_data(inode); 6058 if (err) 6059 goto out_ret; 6060 6061 /* 6062 * On data journalling we skip straight to the transaction handle: 6063 * there's no delalloc; page truncated will be checked later; the 6064 * early return w/ all buffers mapped (calculates size/len) can't 6065 * be used; and there's no dioread_nolock, so only ext4_get_block. 6066 */ 6067 if (ext4_should_journal_data(inode)) 6068 goto retry_alloc; 6069 6070 /* Delalloc case is easy... */ 6071 if (test_opt(inode->i_sb, DELALLOC) && 6072 !ext4_nonda_switch(inode->i_sb)) { 6073 do { 6074 err = block_page_mkwrite(vma, vmf, 6075 ext4_da_get_block_prep); 6076 } while (err == -ENOSPC && 6077 ext4_should_retry_alloc(inode->i_sb, &retries)); 6078 goto out_ret; 6079 } 6080 6081 lock_page(page); 6082 size = i_size_read(inode); 6083 /* Page got truncated from under us? */ 6084 if (page->mapping != mapping || page_offset(page) > size) { 6085 unlock_page(page); 6086 ret = VM_FAULT_NOPAGE; 6087 goto out; 6088 } 6089 6090 if (page->index == size >> PAGE_SHIFT) 6091 len = size & ~PAGE_MASK; 6092 else 6093 len = PAGE_SIZE; 6094 /* 6095 * Return if we have all the buffers mapped. This avoids the need to do 6096 * journal_start/journal_stop which can block and take a long time 6097 * 6098 * This cannot be done for data journalling, as we have to add the 6099 * inode to the transaction's list to writeprotect pages on commit. 6100 */ 6101 if (page_has_buffers(page)) { 6102 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6103 0, len, NULL, 6104 ext4_bh_unmapped)) { 6105 /* Wait so that we don't change page under IO */ 6106 wait_for_stable_page(page); 6107 ret = VM_FAULT_LOCKED; 6108 goto out; 6109 } 6110 } 6111 unlock_page(page); 6112 /* OK, we need to fill the hole... */ 6113 if (ext4_should_dioread_nolock(inode)) 6114 get_block = ext4_get_block_unwritten; 6115 else 6116 get_block = ext4_get_block; 6117 retry_alloc: 6118 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6119 ext4_writepage_trans_blocks(inode)); 6120 if (IS_ERR(handle)) { 6121 ret = VM_FAULT_SIGBUS; 6122 goto out; 6123 } 6124 /* 6125 * Data journalling can't use block_page_mkwrite() because it 6126 * will set_buffer_dirty() before do_journal_get_write_access() 6127 * thus might hit warning messages for dirty metadata buffers. 6128 */ 6129 if (!ext4_should_journal_data(inode)) { 6130 err = block_page_mkwrite(vma, vmf, get_block); 6131 } else { 6132 lock_page(page); 6133 size = i_size_read(inode); 6134 /* Page got truncated from under us? */ 6135 if (page->mapping != mapping || page_offset(page) > size) { 6136 ret = VM_FAULT_NOPAGE; 6137 goto out_error; 6138 } 6139 6140 if (page->index == size >> PAGE_SHIFT) 6141 len = size & ~PAGE_MASK; 6142 else 6143 len = PAGE_SIZE; 6144 6145 err = __block_write_begin(page, 0, len, ext4_get_block); 6146 if (!err) { 6147 ret = VM_FAULT_SIGBUS; 6148 if (ext4_walk_page_buffers(handle, inode, 6149 page_buffers(page), 0, len, NULL, 6150 do_journal_get_write_access)) 6151 goto out_error; 6152 if (ext4_walk_page_buffers(handle, inode, 6153 page_buffers(page), 0, len, NULL, 6154 write_end_fn)) 6155 goto out_error; 6156 if (ext4_jbd2_inode_add_write(handle, inode, 6157 page_offset(page), len)) 6158 goto out_error; 6159 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6160 } else { 6161 unlock_page(page); 6162 } 6163 } 6164 ext4_journal_stop(handle); 6165 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6166 goto retry_alloc; 6167 out_ret: 6168 ret = block_page_mkwrite_return(err); 6169 out: 6170 filemap_invalidate_unlock_shared(mapping); 6171 sb_end_pagefault(inode->i_sb); 6172 return ret; 6173 out_error: 6174 unlock_page(page); 6175 ext4_journal_stop(handle); 6176 goto out; 6177 } 6178