1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 bool freeze_protected = false; 179 180 trace_ext4_evict_inode(inode); 181 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidatepage() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 204 inode->i_data.nrpages) { 205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 207 208 jbd2_complete_transaction(journal, commit_tid); 209 filemap_write_and_wait(&inode->i_data); 210 } 211 truncate_inode_pages_final(&inode->i_data); 212 213 goto no_delete; 214 } 215 216 if (is_bad_inode(inode)) 217 goto no_delete; 218 dquot_initialize(inode); 219 220 if (ext4_should_order_data(inode)) 221 ext4_begin_ordered_truncate(inode, 0); 222 truncate_inode_pages_final(&inode->i_data); 223 224 /* 225 * For inodes with journalled data, transaction commit could have 226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 227 * flag but we still need to remove the inode from the writeback lists. 228 */ 229 if (!list_empty_careful(&inode->i_io_list)) { 230 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 231 inode_io_list_del(inode); 232 } 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it. When we are in a running transaction though, 237 * we are already protected against freezing and we cannot grab further 238 * protection due to lock ordering constraints. 239 */ 240 if (!ext4_journal_current_handle()) { 241 sb_start_intwrite(inode->i_sb); 242 freeze_protected = true; 243 } 244 245 if (!IS_NOQUOTA(inode)) 246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 247 248 /* 249 * Block bitmap, group descriptor, and inode are accounted in both 250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 251 */ 252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 253 ext4_blocks_for_truncate(inode) + extra_credits - 3); 254 if (IS_ERR(handle)) { 255 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 256 /* 257 * If we're going to skip the normal cleanup, we still need to 258 * make sure that the in-core orphan linked list is properly 259 * cleaned up. 260 */ 261 ext4_orphan_del(NULL, inode); 262 if (freeze_protected) 263 sb_end_intwrite(inode->i_sb); 264 goto no_delete; 265 } 266 267 if (IS_SYNC(inode)) 268 ext4_handle_sync(handle); 269 270 /* 271 * Set inode->i_size to 0 before calling ext4_truncate(). We need 272 * special handling of symlinks here because i_size is used to 273 * determine whether ext4_inode_info->i_data contains symlink data or 274 * block mappings. Setting i_size to 0 will remove its fast symlink 275 * status. Erase i_data so that it becomes a valid empty block map. 276 */ 277 if (ext4_inode_is_fast_symlink(inode)) 278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 279 inode->i_size = 0; 280 err = ext4_mark_inode_dirty(handle, inode); 281 if (err) { 282 ext4_warning(inode->i_sb, 283 "couldn't mark inode dirty (err %d)", err); 284 goto stop_handle; 285 } 286 if (inode->i_blocks) { 287 err = ext4_truncate(inode); 288 if (err) { 289 ext4_error_err(inode->i_sb, -err, 290 "couldn't truncate inode %lu (err %d)", 291 inode->i_ino, err); 292 goto stop_handle; 293 } 294 } 295 296 /* Remove xattr references. */ 297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 298 extra_credits); 299 if (err) { 300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 301 stop_handle: 302 ext4_journal_stop(handle); 303 ext4_orphan_del(NULL, inode); 304 if (freeze_protected) 305 sb_end_intwrite(inode->i_sb); 306 ext4_xattr_inode_array_free(ea_inode_array); 307 goto no_delete; 308 } 309 310 /* 311 * Kill off the orphan record which ext4_truncate created. 312 * AKPM: I think this can be inside the above `if'. 313 * Note that ext4_orphan_del() has to be able to cope with the 314 * deletion of a non-existent orphan - this is because we don't 315 * know if ext4_truncate() actually created an orphan record. 316 * (Well, we could do this if we need to, but heck - it works) 317 */ 318 ext4_orphan_del(handle, inode); 319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 320 321 /* 322 * One subtle ordering requirement: if anything has gone wrong 323 * (transaction abort, IO errors, whatever), then we can still 324 * do these next steps (the fs will already have been marked as 325 * having errors), but we can't free the inode if the mark_dirty 326 * fails. 327 */ 328 if (ext4_mark_inode_dirty(handle, inode)) 329 /* If that failed, just do the required in-core inode clear. */ 330 ext4_clear_inode(inode); 331 else 332 ext4_free_inode(handle, inode); 333 ext4_journal_stop(handle); 334 if (freeze_protected) 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 342 } 343 344 #ifdef CONFIG_QUOTA 345 qsize_t *ext4_get_reserved_space(struct inode *inode) 346 { 347 return &EXT4_I(inode)->i_reserved_quota; 348 } 349 #endif 350 351 /* 352 * Called with i_data_sem down, which is important since we can call 353 * ext4_discard_preallocations() from here. 354 */ 355 void ext4_da_update_reserve_space(struct inode *inode, 356 int used, int quota_claim) 357 { 358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 359 struct ext4_inode_info *ei = EXT4_I(inode); 360 361 spin_lock(&ei->i_block_reservation_lock); 362 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 363 if (unlikely(used > ei->i_reserved_data_blocks)) { 364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 365 "with only %d reserved data blocks", 366 __func__, inode->i_ino, used, 367 ei->i_reserved_data_blocks); 368 WARN_ON(1); 369 used = ei->i_reserved_data_blocks; 370 } 371 372 /* Update per-inode reservations */ 373 ei->i_reserved_data_blocks -= used; 374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 375 376 spin_unlock(&ei->i_block_reservation_lock); 377 378 /* Update quota subsystem for data blocks */ 379 if (quota_claim) 380 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 381 else { 382 /* 383 * We did fallocate with an offset that is already delayed 384 * allocated. So on delayed allocated writeback we should 385 * not re-claim the quota for fallocated blocks. 386 */ 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 388 } 389 390 /* 391 * If we have done all the pending block allocations and if 392 * there aren't any writers on the inode, we can discard the 393 * inode's preallocations. 394 */ 395 if ((ei->i_reserved_data_blocks == 0) && 396 !inode_is_open_for_write(inode)) 397 ext4_discard_preallocations(inode, 0); 398 } 399 400 static int __check_block_validity(struct inode *inode, const char *func, 401 unsigned int line, 402 struct ext4_map_blocks *map) 403 { 404 if (ext4_has_feature_journal(inode->i_sb) && 405 (inode->i_ino == 406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 407 return 0; 408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 409 ext4_error_inode(inode, func, line, map->m_pblk, 410 "lblock %lu mapped to illegal pblock %llu " 411 "(length %d)", (unsigned long) map->m_lblk, 412 map->m_pblk, map->m_len); 413 return -EFSCORRUPTED; 414 } 415 return 0; 416 } 417 418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 419 ext4_lblk_t len) 420 { 421 int ret; 422 423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 424 return fscrypt_zeroout_range(inode, lblk, pblk, len); 425 426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 427 if (ret > 0) 428 ret = 0; 429 430 return ret; 431 } 432 433 #define check_block_validity(inode, map) \ 434 __check_block_validity((inode), __func__, __LINE__, (map)) 435 436 #ifdef ES_AGGRESSIVE_TEST 437 static void ext4_map_blocks_es_recheck(handle_t *handle, 438 struct inode *inode, 439 struct ext4_map_blocks *es_map, 440 struct ext4_map_blocks *map, 441 int flags) 442 { 443 int retval; 444 445 map->m_flags = 0; 446 /* 447 * There is a race window that the result is not the same. 448 * e.g. xfstests #223 when dioread_nolock enables. The reason 449 * is that we lookup a block mapping in extent status tree with 450 * out taking i_data_sem. So at the time the unwritten extent 451 * could be converted. 452 */ 453 down_read(&EXT4_I(inode)->i_data_sem); 454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 455 retval = ext4_ext_map_blocks(handle, inode, map, 0); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, 0); 458 } 459 up_read((&EXT4_I(inode)->i_data_sem)); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocated. if 492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 493 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 494 * 495 * It returns 0 if plain look up failed (blocks have not been allocated), in 496 * that case, @map is returned as unmapped but we still do fill map->m_len to 497 * indicate the length of a hole starting at map->m_lblk. 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 int ret = 0; 507 #ifdef ES_AGGRESSIVE_TEST 508 struct ext4_map_blocks orig_map; 509 510 memcpy(&orig_map, map, sizeof(*map)); 511 #endif 512 513 map->m_flags = 0; 514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 515 flags, map->m_len, (unsigned long) map->m_lblk); 516 517 /* 518 * ext4_map_blocks returns an int, and m_len is an unsigned int 519 */ 520 if (unlikely(map->m_len > INT_MAX)) 521 map->m_len = INT_MAX; 522 523 /* We can handle the block number less than EXT_MAX_BLOCKS */ 524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 525 return -EFSCORRUPTED; 526 527 /* Lookup extent status tree firstly */ 528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 531 map->m_pblk = ext4_es_pblock(&es) + 532 map->m_lblk - es.es_lblk; 533 map->m_flags |= ext4_es_is_written(&es) ? 534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 535 retval = es.es_len - (map->m_lblk - es.es_lblk); 536 if (retval > map->m_len) 537 retval = map->m_len; 538 map->m_len = retval; 539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 540 map->m_pblk = 0; 541 retval = es.es_len - (map->m_lblk - es.es_lblk); 542 if (retval > map->m_len) 543 retval = map->m_len; 544 map->m_len = retval; 545 retval = 0; 546 } else { 547 BUG(); 548 } 549 #ifdef ES_AGGRESSIVE_TEST 550 ext4_map_blocks_es_recheck(handle, inode, map, 551 &orig_map, flags); 552 #endif 553 goto found; 554 } 555 556 /* 557 * Try to see if we can get the block without requesting a new 558 * file system block. 559 */ 560 down_read(&EXT4_I(inode)->i_data_sem); 561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 562 retval = ext4_ext_map_blocks(handle, inode, map, 0); 563 } else { 564 retval = ext4_ind_map_blocks(handle, inode, map, 0); 565 } 566 if (retval > 0) { 567 unsigned int status; 568 569 if (unlikely(retval != map->m_len)) { 570 ext4_warning(inode->i_sb, 571 "ES len assertion failed for inode " 572 "%lu: retval %d != map->m_len %d", 573 inode->i_ino, retval, map->m_len); 574 WARN_ON(1); 575 } 576 577 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 580 !(status & EXTENT_STATUS_WRITTEN) && 581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 582 map->m_lblk + map->m_len - 1)) 583 status |= EXTENT_STATUS_DELAYED; 584 ret = ext4_es_insert_extent(inode, map->m_lblk, 585 map->m_len, map->m_pblk, status); 586 if (ret < 0) 587 retval = ret; 588 } 589 up_read((&EXT4_I(inode)->i_data_sem)); 590 591 found: 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 593 ret = check_block_validity(inode, map); 594 if (ret != 0) 595 return ret; 596 } 597 598 /* If it is only a block(s) look up */ 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 600 return retval; 601 602 /* 603 * Returns if the blocks have already allocated 604 * 605 * Note that if blocks have been preallocated 606 * ext4_ext_get_block() returns the create = 0 607 * with buffer head unmapped. 608 */ 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 610 /* 611 * If we need to convert extent to unwritten 612 * we continue and do the actual work in 613 * ext4_ext_map_blocks() 614 */ 615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 616 return retval; 617 618 /* 619 * Here we clear m_flags because after allocating an new extent, 620 * it will be set again. 621 */ 622 map->m_flags &= ~EXT4_MAP_FLAGS; 623 624 /* 625 * New blocks allocate and/or writing to unwritten extent 626 * will possibly result in updating i_data, so we take 627 * the write lock of i_data_sem, and call get_block() 628 * with create == 1 flag. 629 */ 630 down_write(&EXT4_I(inode)->i_data_sem); 631 632 /* 633 * We need to check for EXT4 here because migrate 634 * could have changed the inode type in between 635 */ 636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 637 retval = ext4_ext_map_blocks(handle, inode, map, flags); 638 } else { 639 retval = ext4_ind_map_blocks(handle, inode, map, flags); 640 641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 642 /* 643 * We allocated new blocks which will result in 644 * i_data's format changing. Force the migrate 645 * to fail by clearing migrate flags 646 */ 647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 648 } 649 650 /* 651 * Update reserved blocks/metadata blocks after successful 652 * block allocation which had been deferred till now. We don't 653 * support fallocate for non extent files. So we can update 654 * reserve space here. 655 */ 656 if ((retval > 0) && 657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 658 ext4_da_update_reserve_space(inode, retval, 1); 659 } 660 661 if (retval > 0) { 662 unsigned int status; 663 664 if (unlikely(retval != map->m_len)) { 665 ext4_warning(inode->i_sb, 666 "ES len assertion failed for inode " 667 "%lu: retval %d != map->m_len %d", 668 inode->i_ino, retval, map->m_len); 669 WARN_ON(1); 670 } 671 672 /* 673 * We have to zeroout blocks before inserting them into extent 674 * status tree. Otherwise someone could look them up there and 675 * use them before they are really zeroed. We also have to 676 * unmap metadata before zeroing as otherwise writeback can 677 * overwrite zeros with stale data from block device. 678 */ 679 if (flags & EXT4_GET_BLOCKS_ZERO && 680 map->m_flags & EXT4_MAP_MAPPED && 681 map->m_flags & EXT4_MAP_NEW) { 682 ret = ext4_issue_zeroout(inode, map->m_lblk, 683 map->m_pblk, map->m_len); 684 if (ret) { 685 retval = ret; 686 goto out_sem; 687 } 688 } 689 690 /* 691 * If the extent has been zeroed out, we don't need to update 692 * extent status tree. 693 */ 694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 696 if (ext4_es_is_written(&es)) 697 goto out_sem; 698 } 699 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 702 !(status & EXTENT_STATUS_WRITTEN) && 703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 704 map->m_lblk + map->m_len - 1)) 705 status |= EXTENT_STATUS_DELAYED; 706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 707 map->m_pblk, status); 708 if (ret < 0) { 709 retval = ret; 710 goto out_sem; 711 } 712 } 713 714 out_sem: 715 up_write((&EXT4_I(inode)->i_data_sem)); 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 717 ret = check_block_validity(inode, map); 718 if (ret != 0) 719 return ret; 720 721 /* 722 * Inodes with freshly allocated blocks where contents will be 723 * visible after transaction commit must be on transaction's 724 * ordered data list. 725 */ 726 if (map->m_flags & EXT4_MAP_NEW && 727 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 728 !(flags & EXT4_GET_BLOCKS_ZERO) && 729 !ext4_is_quota_file(inode) && 730 ext4_should_order_data(inode)) { 731 loff_t start_byte = 732 (loff_t)map->m_lblk << inode->i_blkbits; 733 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 734 735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 736 ret = ext4_jbd2_inode_add_wait(handle, inode, 737 start_byte, length); 738 else 739 ret = ext4_jbd2_inode_add_write(handle, inode, 740 start_byte, length); 741 if (ret) 742 return ret; 743 } 744 ext4_fc_track_range(handle, inode, map->m_lblk, 745 map->m_lblk + map->m_len - 1); 746 } 747 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 do { 775 old_state = READ_ONCE(bh->b_state); 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely( 778 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 779 } 780 781 static int _ext4_get_block(struct inode *inode, sector_t iblock, 782 struct buffer_head *bh, int flags) 783 { 784 struct ext4_map_blocks map; 785 int ret = 0; 786 787 if (ext4_has_inline_data(inode)) 788 return -ERANGE; 789 790 map.m_lblk = iblock; 791 map.m_len = bh->b_size >> inode->i_blkbits; 792 793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 794 flags); 795 if (ret > 0) { 796 map_bh(bh, inode->i_sb, map.m_pblk); 797 ext4_update_bh_state(bh, map.m_flags); 798 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 799 ret = 0; 800 } else if (ret == 0) { 801 /* hole case, need to fill in bh->b_size */ 802 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 803 } 804 return ret; 805 } 806 807 int ext4_get_block(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh, int create) 809 { 810 return _ext4_get_block(inode, iblock, bh, 811 create ? EXT4_GET_BLOCKS_CREATE : 0); 812 } 813 814 /* 815 * Get block function used when preparing for buffered write if we require 816 * creating an unwritten extent if blocks haven't been allocated. The extent 817 * will be converted to written after the IO is complete. 818 */ 819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 820 struct buffer_head *bh_result, int create) 821 { 822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 823 inode->i_ino, create); 824 return _ext4_get_block(inode, iblock, bh_result, 825 EXT4_GET_BLOCKS_IO_CREATE_EXT); 826 } 827 828 /* Maximum number of blocks we map for direct IO at once. */ 829 #define DIO_MAX_BLOCKS 4096 830 831 /* 832 * `handle' can be NULL if create is zero 833 */ 834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 835 ext4_lblk_t block, int map_flags) 836 { 837 struct ext4_map_blocks map; 838 struct buffer_head *bh; 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 840 int err; 841 842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 843 || handle != NULL || create == 0); 844 845 map.m_lblk = block; 846 map.m_len = 1; 847 err = ext4_map_blocks(handle, inode, &map, map_flags); 848 849 if (err == 0) 850 return create ? ERR_PTR(-ENOSPC) : NULL; 851 if (err < 0) 852 return ERR_PTR(err); 853 854 bh = sb_getblk(inode->i_sb, map.m_pblk); 855 if (unlikely(!bh)) 856 return ERR_PTR(-ENOMEM); 857 if (map.m_flags & EXT4_MAP_NEW) { 858 ASSERT(create != 0); 859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 860 || (handle != NULL)); 861 862 /* 863 * Now that we do not always journal data, we should 864 * keep in mind whether this should always journal the 865 * new buffer as metadata. For now, regular file 866 * writes use ext4_get_block instead, so it's not a 867 * problem. 868 */ 869 lock_buffer(bh); 870 BUFFER_TRACE(bh, "call get_create_access"); 871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 872 EXT4_JTR_NONE); 873 if (unlikely(err)) { 874 unlock_buffer(bh); 875 goto errout; 876 } 877 if (!buffer_uptodate(bh)) { 878 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 879 set_buffer_uptodate(bh); 880 } 881 unlock_buffer(bh); 882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 883 err = ext4_handle_dirty_metadata(handle, inode, bh); 884 if (unlikely(err)) 885 goto errout; 886 } else 887 BUFFER_TRACE(bh, "not a new buffer"); 888 return bh; 889 errout: 890 brelse(bh); 891 return ERR_PTR(err); 892 } 893 894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 895 ext4_lblk_t block, int map_flags) 896 { 897 struct buffer_head *bh; 898 int ret; 899 900 bh = ext4_getblk(handle, inode, block, map_flags); 901 if (IS_ERR(bh)) 902 return bh; 903 if (!bh || ext4_buffer_uptodate(bh)) 904 return bh; 905 906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 907 if (ret) { 908 put_bh(bh); 909 return ERR_PTR(ret); 910 } 911 return bh; 912 } 913 914 /* Read a contiguous batch of blocks. */ 915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 916 bool wait, struct buffer_head **bhs) 917 { 918 int i, err; 919 920 for (i = 0; i < bh_count; i++) { 921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 922 if (IS_ERR(bhs[i])) { 923 err = PTR_ERR(bhs[i]); 924 bh_count = i; 925 goto out_brelse; 926 } 927 } 928 929 for (i = 0; i < bh_count; i++) 930 /* Note that NULL bhs[i] is valid because of holes. */ 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 933 934 if (!wait) 935 return 0; 936 937 for (i = 0; i < bh_count; i++) 938 if (bhs[i]) 939 wait_on_buffer(bhs[i]); 940 941 for (i = 0; i < bh_count; i++) { 942 if (bhs[i] && !buffer_uptodate(bhs[i])) { 943 err = -EIO; 944 goto out_brelse; 945 } 946 } 947 return 0; 948 949 out_brelse: 950 for (i = 0; i < bh_count; i++) { 951 brelse(bhs[i]); 952 bhs[i] = NULL; 953 } 954 return err; 955 } 956 957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 958 struct buffer_head *head, 959 unsigned from, 960 unsigned to, 961 int *partial, 962 int (*fn)(handle_t *handle, struct inode *inode, 963 struct buffer_head *bh)) 964 { 965 struct buffer_head *bh; 966 unsigned block_start, block_end; 967 unsigned blocksize = head->b_size; 968 int err, ret = 0; 969 struct buffer_head *next; 970 971 for (bh = head, block_start = 0; 972 ret == 0 && (bh != head || !block_start); 973 block_start = block_end, bh = next) { 974 next = bh->b_this_page; 975 block_end = block_start + blocksize; 976 if (block_end <= from || block_start >= to) { 977 if (partial && !buffer_uptodate(bh)) 978 *partial = 1; 979 continue; 980 } 981 err = (*fn)(handle, inode, bh); 982 if (!ret) 983 ret = err; 984 } 985 return ret; 986 } 987 988 /* 989 * To preserve ordering, it is essential that the hole instantiation and 990 * the data write be encapsulated in a single transaction. We cannot 991 * close off a transaction and start a new one between the ext4_get_block() 992 * and the commit_write(). So doing the jbd2_journal_start at the start of 993 * prepare_write() is the right place. 994 * 995 * Also, this function can nest inside ext4_writepage(). In that case, we 996 * *know* that ext4_writepage() has generated enough buffer credits to do the 997 * whole page. So we won't block on the journal in that case, which is good, 998 * because the caller may be PF_MEMALLOC. 999 * 1000 * By accident, ext4 can be reentered when a transaction is open via 1001 * quota file writes. If we were to commit the transaction while thus 1002 * reentered, there can be a deadlock - we would be holding a quota 1003 * lock, and the commit would never complete if another thread had a 1004 * transaction open and was blocking on the quota lock - a ranking 1005 * violation. 1006 * 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1008 * will _not_ run commit under these circumstances because handle->h_ref 1009 * is elevated. We'll still have enough credits for the tiny quotafile 1010 * write. 1011 */ 1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1013 struct buffer_head *bh) 1014 { 1015 int dirty = buffer_dirty(bh); 1016 int ret; 1017 1018 if (!buffer_mapped(bh) || buffer_freed(bh)) 1019 return 0; 1020 /* 1021 * __block_write_begin() could have dirtied some buffers. Clean 1022 * the dirty bit as jbd2_journal_get_write_access() could complain 1023 * otherwise about fs integrity issues. Setting of the dirty bit 1024 * by __block_write_begin() isn't a real problem here as we clear 1025 * the bit before releasing a page lock and thus writeback cannot 1026 * ever write the buffer. 1027 */ 1028 if (dirty) 1029 clear_buffer_dirty(bh); 1030 BUFFER_TRACE(bh, "get write access"); 1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1032 EXT4_JTR_NONE); 1033 if (!ret && dirty) 1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1035 return ret; 1036 } 1037 1038 #ifdef CONFIG_FS_ENCRYPTION 1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1040 get_block_t *get_block) 1041 { 1042 unsigned from = pos & (PAGE_SIZE - 1); 1043 unsigned to = from + len; 1044 struct inode *inode = page->mapping->host; 1045 unsigned block_start, block_end; 1046 sector_t block; 1047 int err = 0; 1048 unsigned blocksize = inode->i_sb->s_blocksize; 1049 unsigned bbits; 1050 struct buffer_head *bh, *head, *wait[2]; 1051 int nr_wait = 0; 1052 int i; 1053 1054 BUG_ON(!PageLocked(page)); 1055 BUG_ON(from > PAGE_SIZE); 1056 BUG_ON(to > PAGE_SIZE); 1057 BUG_ON(from > to); 1058 1059 if (!page_has_buffers(page)) 1060 create_empty_buffers(page, blocksize, 0); 1061 head = page_buffers(page); 1062 bbits = ilog2(blocksize); 1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1064 1065 for (bh = head, block_start = 0; bh != head || !block_start; 1066 block++, block_start = block_end, bh = bh->b_this_page) { 1067 block_end = block_start + blocksize; 1068 if (block_end <= from || block_start >= to) { 1069 if (PageUptodate(page)) { 1070 set_buffer_uptodate(bh); 1071 } 1072 continue; 1073 } 1074 if (buffer_new(bh)) 1075 clear_buffer_new(bh); 1076 if (!buffer_mapped(bh)) { 1077 WARN_ON(bh->b_size != blocksize); 1078 err = get_block(inode, block, bh, 1); 1079 if (err) 1080 break; 1081 if (buffer_new(bh)) { 1082 if (PageUptodate(page)) { 1083 clear_buffer_new(bh); 1084 set_buffer_uptodate(bh); 1085 mark_buffer_dirty(bh); 1086 continue; 1087 } 1088 if (block_end > to || block_start < from) 1089 zero_user_segments(page, to, block_end, 1090 block_start, from); 1091 continue; 1092 } 1093 } 1094 if (PageUptodate(page)) { 1095 set_buffer_uptodate(bh); 1096 continue; 1097 } 1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1099 !buffer_unwritten(bh) && 1100 (block_start < from || block_end > to)) { 1101 ext4_read_bh_lock(bh, 0, false); 1102 wait[nr_wait++] = bh; 1103 } 1104 } 1105 /* 1106 * If we issued read requests, let them complete. 1107 */ 1108 for (i = 0; i < nr_wait; i++) { 1109 wait_on_buffer(wait[i]); 1110 if (!buffer_uptodate(wait[i])) 1111 err = -EIO; 1112 } 1113 if (unlikely(err)) { 1114 page_zero_new_buffers(page, from, to); 1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1116 for (i = 0; i < nr_wait; i++) { 1117 int err2; 1118 1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1120 bh_offset(wait[i])); 1121 if (err2) { 1122 clear_buffer_uptodate(wait[i]); 1123 err = err2; 1124 } 1125 } 1126 } 1127 1128 return err; 1129 } 1130 #endif 1131 1132 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1133 loff_t pos, unsigned len, unsigned flags, 1134 struct page **pagep, void **fsdata) 1135 { 1136 struct inode *inode = mapping->host; 1137 int ret, needed_blocks; 1138 handle_t *handle; 1139 int retries = 0; 1140 struct page *page; 1141 pgoff_t index; 1142 unsigned from, to; 1143 1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1145 return -EIO; 1146 1147 trace_ext4_write_begin(inode, pos, len, flags); 1148 /* 1149 * Reserve one block more for addition to orphan list in case 1150 * we allocate blocks but write fails for some reason 1151 */ 1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1153 index = pos >> PAGE_SHIFT; 1154 from = pos & (PAGE_SIZE - 1); 1155 to = from + len; 1156 1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1159 flags, pagep); 1160 if (ret < 0) 1161 return ret; 1162 if (ret == 1) 1163 return 0; 1164 } 1165 1166 /* 1167 * grab_cache_page_write_begin() can take a long time if the 1168 * system is thrashing due to memory pressure, or if the page 1169 * is being written back. So grab it first before we start 1170 * the transaction handle. This also allows us to allocate 1171 * the page (if needed) without using GFP_NOFS. 1172 */ 1173 retry_grab: 1174 page = grab_cache_page_write_begin(mapping, index, flags); 1175 if (!page) 1176 return -ENOMEM; 1177 unlock_page(page); 1178 1179 retry_journal: 1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1181 if (IS_ERR(handle)) { 1182 put_page(page); 1183 return PTR_ERR(handle); 1184 } 1185 1186 lock_page(page); 1187 if (page->mapping != mapping) { 1188 /* The page got truncated from under us */ 1189 unlock_page(page); 1190 put_page(page); 1191 ext4_journal_stop(handle); 1192 goto retry_grab; 1193 } 1194 /* In case writeback began while the page was unlocked */ 1195 wait_for_stable_page(page); 1196 1197 #ifdef CONFIG_FS_ENCRYPTION 1198 if (ext4_should_dioread_nolock(inode)) 1199 ret = ext4_block_write_begin(page, pos, len, 1200 ext4_get_block_unwritten); 1201 else 1202 ret = ext4_block_write_begin(page, pos, len, 1203 ext4_get_block); 1204 #else 1205 if (ext4_should_dioread_nolock(inode)) 1206 ret = __block_write_begin(page, pos, len, 1207 ext4_get_block_unwritten); 1208 else 1209 ret = __block_write_begin(page, pos, len, ext4_get_block); 1210 #endif 1211 if (!ret && ext4_should_journal_data(inode)) { 1212 ret = ext4_walk_page_buffers(handle, inode, 1213 page_buffers(page), from, to, NULL, 1214 do_journal_get_write_access); 1215 } 1216 1217 if (ret) { 1218 bool extended = (pos + len > inode->i_size) && 1219 !ext4_verity_in_progress(inode); 1220 1221 unlock_page(page); 1222 /* 1223 * __block_write_begin may have instantiated a few blocks 1224 * outside i_size. Trim these off again. Don't need 1225 * i_size_read because we hold i_mutex. 1226 * 1227 * Add inode to orphan list in case we crash before 1228 * truncate finishes 1229 */ 1230 if (extended && ext4_can_truncate(inode)) 1231 ext4_orphan_add(handle, inode); 1232 1233 ext4_journal_stop(handle); 1234 if (extended) { 1235 ext4_truncate_failed_write(inode); 1236 /* 1237 * If truncate failed early the inode might 1238 * still be on the orphan list; we need to 1239 * make sure the inode is removed from the 1240 * orphan list in that case. 1241 */ 1242 if (inode->i_nlink) 1243 ext4_orphan_del(NULL, inode); 1244 } 1245 1246 if (ret == -ENOSPC && 1247 ext4_should_retry_alloc(inode->i_sb, &retries)) 1248 goto retry_journal; 1249 put_page(page); 1250 return ret; 1251 } 1252 *pagep = page; 1253 return ret; 1254 } 1255 1256 /* For write_end() in data=journal mode */ 1257 static int write_end_fn(handle_t *handle, struct inode *inode, 1258 struct buffer_head *bh) 1259 { 1260 int ret; 1261 if (!buffer_mapped(bh) || buffer_freed(bh)) 1262 return 0; 1263 set_buffer_uptodate(bh); 1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1265 clear_buffer_meta(bh); 1266 clear_buffer_prio(bh); 1267 return ret; 1268 } 1269 1270 /* 1271 * We need to pick up the new inode size which generic_commit_write gave us 1272 * `file' can be NULL - eg, when called from page_symlink(). 1273 * 1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1275 * buffers are managed internally. 1276 */ 1277 static int ext4_write_end(struct file *file, 1278 struct address_space *mapping, 1279 loff_t pos, unsigned len, unsigned copied, 1280 struct page *page, void *fsdata) 1281 { 1282 handle_t *handle = ext4_journal_current_handle(); 1283 struct inode *inode = mapping->host; 1284 loff_t old_size = inode->i_size; 1285 int ret = 0, ret2; 1286 int i_size_changed = 0; 1287 int inline_data = ext4_has_inline_data(inode); 1288 bool verity = ext4_verity_in_progress(inode); 1289 1290 trace_ext4_write_end(inode, pos, len, copied); 1291 if (inline_data) { 1292 ret = ext4_write_inline_data_end(inode, pos, len, 1293 copied, page); 1294 if (ret < 0) { 1295 unlock_page(page); 1296 put_page(page); 1297 goto errout; 1298 } 1299 copied = ret; 1300 } else 1301 copied = block_write_end(file, mapping, pos, 1302 len, copied, page, fsdata); 1303 /* 1304 * it's important to update i_size while still holding page lock: 1305 * page writeout could otherwise come in and zero beyond i_size. 1306 * 1307 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1308 * blocks are being written past EOF, so skip the i_size update. 1309 */ 1310 if (!verity) 1311 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1312 unlock_page(page); 1313 put_page(page); 1314 1315 if (old_size < pos && !verity) 1316 pagecache_isize_extended(inode, old_size, pos); 1317 /* 1318 * Don't mark the inode dirty under page lock. First, it unnecessarily 1319 * makes the holding time of page lock longer. Second, it forces lock 1320 * ordering of page lock and transaction start for journaling 1321 * filesystems. 1322 */ 1323 if (i_size_changed || inline_data) 1324 ret = ext4_mark_inode_dirty(handle, inode); 1325 1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1327 /* if we have allocated more blocks and copied 1328 * less. We will have blocks allocated outside 1329 * inode->i_size. So truncate them 1330 */ 1331 ext4_orphan_add(handle, inode); 1332 errout: 1333 ret2 = ext4_journal_stop(handle); 1334 if (!ret) 1335 ret = ret2; 1336 1337 if (pos + len > inode->i_size && !verity) { 1338 ext4_truncate_failed_write(inode); 1339 /* 1340 * If truncate failed early the inode might still be 1341 * on the orphan list; we need to make sure the inode 1342 * is removed from the orphan list in that case. 1343 */ 1344 if (inode->i_nlink) 1345 ext4_orphan_del(NULL, inode); 1346 } 1347 1348 return ret ? ret : copied; 1349 } 1350 1351 /* 1352 * This is a private version of page_zero_new_buffers() which doesn't 1353 * set the buffer to be dirty, since in data=journalled mode we need 1354 * to call ext4_handle_dirty_metadata() instead. 1355 */ 1356 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1357 struct inode *inode, 1358 struct page *page, 1359 unsigned from, unsigned to) 1360 { 1361 unsigned int block_start = 0, block_end; 1362 struct buffer_head *head, *bh; 1363 1364 bh = head = page_buffers(page); 1365 do { 1366 block_end = block_start + bh->b_size; 1367 if (buffer_new(bh)) { 1368 if (block_end > from && block_start < to) { 1369 if (!PageUptodate(page)) { 1370 unsigned start, size; 1371 1372 start = max(from, block_start); 1373 size = min(to, block_end) - start; 1374 1375 zero_user(page, start, size); 1376 write_end_fn(handle, inode, bh); 1377 } 1378 clear_buffer_new(bh); 1379 } 1380 } 1381 block_start = block_end; 1382 bh = bh->b_this_page; 1383 } while (bh != head); 1384 } 1385 1386 static int ext4_journalled_write_end(struct file *file, 1387 struct address_space *mapping, 1388 loff_t pos, unsigned len, unsigned copied, 1389 struct page *page, void *fsdata) 1390 { 1391 handle_t *handle = ext4_journal_current_handle(); 1392 struct inode *inode = mapping->host; 1393 loff_t old_size = inode->i_size; 1394 int ret = 0, ret2; 1395 int partial = 0; 1396 unsigned from, to; 1397 int size_changed = 0; 1398 int inline_data = ext4_has_inline_data(inode); 1399 bool verity = ext4_verity_in_progress(inode); 1400 1401 trace_ext4_journalled_write_end(inode, pos, len, copied); 1402 from = pos & (PAGE_SIZE - 1); 1403 to = from + len; 1404 1405 BUG_ON(!ext4_handle_valid(handle)); 1406 1407 if (inline_data) { 1408 ret = ext4_write_inline_data_end(inode, pos, len, 1409 copied, page); 1410 if (ret < 0) { 1411 unlock_page(page); 1412 put_page(page); 1413 goto errout; 1414 } 1415 copied = ret; 1416 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1417 copied = 0; 1418 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1419 } else { 1420 if (unlikely(copied < len)) 1421 ext4_journalled_zero_new_buffers(handle, inode, page, 1422 from + copied, to); 1423 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1424 from, from + copied, &partial, 1425 write_end_fn); 1426 if (!partial) 1427 SetPageUptodate(page); 1428 } 1429 if (!verity) 1430 size_changed = ext4_update_inode_size(inode, pos + copied); 1431 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1432 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1433 unlock_page(page); 1434 put_page(page); 1435 1436 if (old_size < pos && !verity) 1437 pagecache_isize_extended(inode, old_size, pos); 1438 1439 if (size_changed || inline_data) { 1440 ret2 = ext4_mark_inode_dirty(handle, inode); 1441 if (!ret) 1442 ret = ret2; 1443 } 1444 1445 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1446 /* if we have allocated more blocks and copied 1447 * less. We will have blocks allocated outside 1448 * inode->i_size. So truncate them 1449 */ 1450 ext4_orphan_add(handle, inode); 1451 1452 errout: 1453 ret2 = ext4_journal_stop(handle); 1454 if (!ret) 1455 ret = ret2; 1456 if (pos + len > inode->i_size && !verity) { 1457 ext4_truncate_failed_write(inode); 1458 /* 1459 * If truncate failed early the inode might still be 1460 * on the orphan list; we need to make sure the inode 1461 * is removed from the orphan list in that case. 1462 */ 1463 if (inode->i_nlink) 1464 ext4_orphan_del(NULL, inode); 1465 } 1466 1467 return ret ? ret : copied; 1468 } 1469 1470 /* 1471 * Reserve space for a single cluster 1472 */ 1473 static int ext4_da_reserve_space(struct inode *inode) 1474 { 1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1476 struct ext4_inode_info *ei = EXT4_I(inode); 1477 int ret; 1478 1479 /* 1480 * We will charge metadata quota at writeout time; this saves 1481 * us from metadata over-estimation, though we may go over by 1482 * a small amount in the end. Here we just reserve for data. 1483 */ 1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1485 if (ret) 1486 return ret; 1487 1488 spin_lock(&ei->i_block_reservation_lock); 1489 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1490 spin_unlock(&ei->i_block_reservation_lock); 1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1492 return -ENOSPC; 1493 } 1494 ei->i_reserved_data_blocks++; 1495 trace_ext4_da_reserve_space(inode); 1496 spin_unlock(&ei->i_block_reservation_lock); 1497 1498 return 0; /* success */ 1499 } 1500 1501 void ext4_da_release_space(struct inode *inode, int to_free) 1502 { 1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1504 struct ext4_inode_info *ei = EXT4_I(inode); 1505 1506 if (!to_free) 1507 return; /* Nothing to release, exit */ 1508 1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1510 1511 trace_ext4_da_release_space(inode, to_free); 1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1513 /* 1514 * if there aren't enough reserved blocks, then the 1515 * counter is messed up somewhere. Since this 1516 * function is called from invalidate page, it's 1517 * harmless to return without any action. 1518 */ 1519 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1520 "ino %lu, to_free %d with only %d reserved " 1521 "data blocks", inode->i_ino, to_free, 1522 ei->i_reserved_data_blocks); 1523 WARN_ON(1); 1524 to_free = ei->i_reserved_data_blocks; 1525 } 1526 ei->i_reserved_data_blocks -= to_free; 1527 1528 /* update fs dirty data blocks counter */ 1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1530 1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1532 1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1534 } 1535 1536 /* 1537 * Delayed allocation stuff 1538 */ 1539 1540 struct mpage_da_data { 1541 struct inode *inode; 1542 struct writeback_control *wbc; 1543 1544 pgoff_t first_page; /* The first page to write */ 1545 pgoff_t next_page; /* Current page to examine */ 1546 pgoff_t last_page; /* Last page to examine */ 1547 /* 1548 * Extent to map - this can be after first_page because that can be 1549 * fully mapped. We somewhat abuse m_flags to store whether the extent 1550 * is delalloc or unwritten. 1551 */ 1552 struct ext4_map_blocks map; 1553 struct ext4_io_submit io_submit; /* IO submission data */ 1554 unsigned int do_map:1; 1555 unsigned int scanned_until_end:1; 1556 }; 1557 1558 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1559 bool invalidate) 1560 { 1561 int nr_pages, i; 1562 pgoff_t index, end; 1563 struct pagevec pvec; 1564 struct inode *inode = mpd->inode; 1565 struct address_space *mapping = inode->i_mapping; 1566 1567 /* This is necessary when next_page == 0. */ 1568 if (mpd->first_page >= mpd->next_page) 1569 return; 1570 1571 mpd->scanned_until_end = 0; 1572 index = mpd->first_page; 1573 end = mpd->next_page - 1; 1574 if (invalidate) { 1575 ext4_lblk_t start, last; 1576 start = index << (PAGE_SHIFT - inode->i_blkbits); 1577 last = end << (PAGE_SHIFT - inode->i_blkbits); 1578 ext4_es_remove_extent(inode, start, last - start + 1); 1579 } 1580 1581 pagevec_init(&pvec); 1582 while (index <= end) { 1583 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1584 if (nr_pages == 0) 1585 break; 1586 for (i = 0; i < nr_pages; i++) { 1587 struct page *page = pvec.pages[i]; 1588 1589 BUG_ON(!PageLocked(page)); 1590 BUG_ON(PageWriteback(page)); 1591 if (invalidate) { 1592 if (page_mapped(page)) 1593 clear_page_dirty_for_io(page); 1594 block_invalidatepage(page, 0, PAGE_SIZE); 1595 ClearPageUptodate(page); 1596 } 1597 unlock_page(page); 1598 } 1599 pagevec_release(&pvec); 1600 } 1601 } 1602 1603 static void ext4_print_free_blocks(struct inode *inode) 1604 { 1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1606 struct super_block *sb = inode->i_sb; 1607 struct ext4_inode_info *ei = EXT4_I(inode); 1608 1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1610 EXT4_C2B(EXT4_SB(inode->i_sb), 1611 ext4_count_free_clusters(sb))); 1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1614 (long long) EXT4_C2B(EXT4_SB(sb), 1615 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1617 (long long) EXT4_C2B(EXT4_SB(sb), 1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1619 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1621 ei->i_reserved_data_blocks); 1622 return; 1623 } 1624 1625 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1626 struct buffer_head *bh) 1627 { 1628 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1629 } 1630 1631 /* 1632 * ext4_insert_delayed_block - adds a delayed block to the extents status 1633 * tree, incrementing the reserved cluster/block 1634 * count or making a pending reservation 1635 * where needed 1636 * 1637 * @inode - file containing the newly added block 1638 * @lblk - logical block to be added 1639 * 1640 * Returns 0 on success, negative error code on failure. 1641 */ 1642 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1643 { 1644 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1645 int ret; 1646 bool allocated = false; 1647 1648 /* 1649 * If the cluster containing lblk is shared with a delayed, 1650 * written, or unwritten extent in a bigalloc file system, it's 1651 * already been accounted for and does not need to be reserved. 1652 * A pending reservation must be made for the cluster if it's 1653 * shared with a written or unwritten extent and doesn't already 1654 * have one. Written and unwritten extents can be purged from the 1655 * extents status tree if the system is under memory pressure, so 1656 * it's necessary to examine the extent tree if a search of the 1657 * extents status tree doesn't get a match. 1658 */ 1659 if (sbi->s_cluster_ratio == 1) { 1660 ret = ext4_da_reserve_space(inode); 1661 if (ret != 0) /* ENOSPC */ 1662 goto errout; 1663 } else { /* bigalloc */ 1664 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1665 if (!ext4_es_scan_clu(inode, 1666 &ext4_es_is_mapped, lblk)) { 1667 ret = ext4_clu_mapped(inode, 1668 EXT4_B2C(sbi, lblk)); 1669 if (ret < 0) 1670 goto errout; 1671 if (ret == 0) { 1672 ret = ext4_da_reserve_space(inode); 1673 if (ret != 0) /* ENOSPC */ 1674 goto errout; 1675 } else { 1676 allocated = true; 1677 } 1678 } else { 1679 allocated = true; 1680 } 1681 } 1682 } 1683 1684 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1685 1686 errout: 1687 return ret; 1688 } 1689 1690 /* 1691 * This function is grabs code from the very beginning of 1692 * ext4_map_blocks, but assumes that the caller is from delayed write 1693 * time. This function looks up the requested blocks and sets the 1694 * buffer delay bit under the protection of i_data_sem. 1695 */ 1696 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1697 struct ext4_map_blocks *map, 1698 struct buffer_head *bh) 1699 { 1700 struct extent_status es; 1701 int retval; 1702 sector_t invalid_block = ~((sector_t) 0xffff); 1703 #ifdef ES_AGGRESSIVE_TEST 1704 struct ext4_map_blocks orig_map; 1705 1706 memcpy(&orig_map, map, sizeof(*map)); 1707 #endif 1708 1709 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1710 invalid_block = ~0; 1711 1712 map->m_flags = 0; 1713 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1714 (unsigned long) map->m_lblk); 1715 1716 /* Lookup extent status tree firstly */ 1717 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1718 if (ext4_es_is_hole(&es)) { 1719 retval = 0; 1720 down_read(&EXT4_I(inode)->i_data_sem); 1721 goto add_delayed; 1722 } 1723 1724 /* 1725 * Delayed extent could be allocated by fallocate. 1726 * So we need to check it. 1727 */ 1728 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1729 map_bh(bh, inode->i_sb, invalid_block); 1730 set_buffer_new(bh); 1731 set_buffer_delay(bh); 1732 return 0; 1733 } 1734 1735 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1736 retval = es.es_len - (iblock - es.es_lblk); 1737 if (retval > map->m_len) 1738 retval = map->m_len; 1739 map->m_len = retval; 1740 if (ext4_es_is_written(&es)) 1741 map->m_flags |= EXT4_MAP_MAPPED; 1742 else if (ext4_es_is_unwritten(&es)) 1743 map->m_flags |= EXT4_MAP_UNWRITTEN; 1744 else 1745 BUG(); 1746 1747 #ifdef ES_AGGRESSIVE_TEST 1748 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1749 #endif 1750 return retval; 1751 } 1752 1753 /* 1754 * Try to see if we can get the block without requesting a new 1755 * file system block. 1756 */ 1757 down_read(&EXT4_I(inode)->i_data_sem); 1758 if (ext4_has_inline_data(inode)) 1759 retval = 0; 1760 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1761 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1762 else 1763 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1764 1765 add_delayed: 1766 if (retval == 0) { 1767 int ret; 1768 1769 /* 1770 * XXX: __block_prepare_write() unmaps passed block, 1771 * is it OK? 1772 */ 1773 1774 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1775 if (ret != 0) { 1776 retval = ret; 1777 goto out_unlock; 1778 } 1779 1780 map_bh(bh, inode->i_sb, invalid_block); 1781 set_buffer_new(bh); 1782 set_buffer_delay(bh); 1783 } else if (retval > 0) { 1784 int ret; 1785 unsigned int status; 1786 1787 if (unlikely(retval != map->m_len)) { 1788 ext4_warning(inode->i_sb, 1789 "ES len assertion failed for inode " 1790 "%lu: retval %d != map->m_len %d", 1791 inode->i_ino, retval, map->m_len); 1792 WARN_ON(1); 1793 } 1794 1795 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1796 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1797 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1798 map->m_pblk, status); 1799 if (ret != 0) 1800 retval = ret; 1801 } 1802 1803 out_unlock: 1804 up_read((&EXT4_I(inode)->i_data_sem)); 1805 1806 return retval; 1807 } 1808 1809 /* 1810 * This is a special get_block_t callback which is used by 1811 * ext4_da_write_begin(). It will either return mapped block or 1812 * reserve space for a single block. 1813 * 1814 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1815 * We also have b_blocknr = -1 and b_bdev initialized properly 1816 * 1817 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1818 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1819 * initialized properly. 1820 */ 1821 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1822 struct buffer_head *bh, int create) 1823 { 1824 struct ext4_map_blocks map; 1825 int ret = 0; 1826 1827 BUG_ON(create == 0); 1828 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1829 1830 map.m_lblk = iblock; 1831 map.m_len = 1; 1832 1833 /* 1834 * first, we need to know whether the block is allocated already 1835 * preallocated blocks are unmapped but should treated 1836 * the same as allocated blocks. 1837 */ 1838 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1839 if (ret <= 0) 1840 return ret; 1841 1842 map_bh(bh, inode->i_sb, map.m_pblk); 1843 ext4_update_bh_state(bh, map.m_flags); 1844 1845 if (buffer_unwritten(bh)) { 1846 /* A delayed write to unwritten bh should be marked 1847 * new and mapped. Mapped ensures that we don't do 1848 * get_block multiple times when we write to the same 1849 * offset and new ensures that we do proper zero out 1850 * for partial write. 1851 */ 1852 set_buffer_new(bh); 1853 set_buffer_mapped(bh); 1854 } 1855 return 0; 1856 } 1857 1858 static int bget_one(handle_t *handle, struct inode *inode, 1859 struct buffer_head *bh) 1860 { 1861 get_bh(bh); 1862 return 0; 1863 } 1864 1865 static int bput_one(handle_t *handle, struct inode *inode, 1866 struct buffer_head *bh) 1867 { 1868 put_bh(bh); 1869 return 0; 1870 } 1871 1872 static int __ext4_journalled_writepage(struct page *page, 1873 unsigned int len) 1874 { 1875 struct address_space *mapping = page->mapping; 1876 struct inode *inode = mapping->host; 1877 struct buffer_head *page_bufs = NULL; 1878 handle_t *handle = NULL; 1879 int ret = 0, err = 0; 1880 int inline_data = ext4_has_inline_data(inode); 1881 struct buffer_head *inode_bh = NULL; 1882 1883 ClearPageChecked(page); 1884 1885 if (inline_data) { 1886 BUG_ON(page->index != 0); 1887 BUG_ON(len > ext4_get_max_inline_size(inode)); 1888 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1889 if (inode_bh == NULL) 1890 goto out; 1891 } else { 1892 page_bufs = page_buffers(page); 1893 if (!page_bufs) { 1894 BUG(); 1895 goto out; 1896 } 1897 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1898 NULL, bget_one); 1899 } 1900 /* 1901 * We need to release the page lock before we start the 1902 * journal, so grab a reference so the page won't disappear 1903 * out from under us. 1904 */ 1905 get_page(page); 1906 unlock_page(page); 1907 1908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1909 ext4_writepage_trans_blocks(inode)); 1910 if (IS_ERR(handle)) { 1911 ret = PTR_ERR(handle); 1912 put_page(page); 1913 goto out_no_pagelock; 1914 } 1915 BUG_ON(!ext4_handle_valid(handle)); 1916 1917 lock_page(page); 1918 put_page(page); 1919 if (page->mapping != mapping) { 1920 /* The page got truncated from under us */ 1921 ext4_journal_stop(handle); 1922 ret = 0; 1923 goto out; 1924 } 1925 1926 if (inline_data) { 1927 ret = ext4_mark_inode_dirty(handle, inode); 1928 } else { 1929 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1930 NULL, do_journal_get_write_access); 1931 1932 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1933 NULL, write_end_fn); 1934 } 1935 if (ret == 0) 1936 ret = err; 1937 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1938 if (ret == 0) 1939 ret = err; 1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1941 err = ext4_journal_stop(handle); 1942 if (!ret) 1943 ret = err; 1944 1945 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1946 out: 1947 unlock_page(page); 1948 out_no_pagelock: 1949 if (!inline_data && page_bufs) 1950 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, 1951 NULL, bput_one); 1952 brelse(inode_bh); 1953 return ret; 1954 } 1955 1956 /* 1957 * Note that we don't need to start a transaction unless we're journaling data 1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1959 * need to file the inode to the transaction's list in ordered mode because if 1960 * we are writing back data added by write(), the inode is already there and if 1961 * we are writing back data modified via mmap(), no one guarantees in which 1962 * transaction the data will hit the disk. In case we are journaling data, we 1963 * cannot start transaction directly because transaction start ranks above page 1964 * lock so we have to do some magic. 1965 * 1966 * This function can get called via... 1967 * - ext4_writepages after taking page lock (have journal handle) 1968 * - journal_submit_inode_data_buffers (no journal handle) 1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1970 * - grab_page_cache when doing write_begin (have journal handle) 1971 * 1972 * We don't do any block allocation in this function. If we have page with 1973 * multiple blocks we need to write those buffer_heads that are mapped. This 1974 * is important for mmaped based write. So if we do with blocksize 1K 1975 * truncate(f, 1024); 1976 * a = mmap(f, 0, 4096); 1977 * a[0] = 'a'; 1978 * truncate(f, 4096); 1979 * we have in the page first buffer_head mapped via page_mkwrite call back 1980 * but other buffer_heads would be unmapped but dirty (dirty done via the 1981 * do_wp_page). So writepage should write the first block. If we modify 1982 * the mmap area beyond 1024 we will again get a page_fault and the 1983 * page_mkwrite callback will do the block allocation and mark the 1984 * buffer_heads mapped. 1985 * 1986 * We redirty the page if we have any buffer_heads that is either delay or 1987 * unwritten in the page. 1988 * 1989 * We can get recursively called as show below. 1990 * 1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1992 * ext4_writepage() 1993 * 1994 * But since we don't do any block allocation we should not deadlock. 1995 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1996 */ 1997 static int ext4_writepage(struct page *page, 1998 struct writeback_control *wbc) 1999 { 2000 int ret = 0; 2001 loff_t size; 2002 unsigned int len; 2003 struct buffer_head *page_bufs = NULL; 2004 struct inode *inode = page->mapping->host; 2005 struct ext4_io_submit io_submit; 2006 bool keep_towrite = false; 2007 2008 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2009 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 2010 unlock_page(page); 2011 return -EIO; 2012 } 2013 2014 trace_ext4_writepage(page); 2015 size = i_size_read(inode); 2016 if (page->index == size >> PAGE_SHIFT && 2017 !ext4_verity_in_progress(inode)) 2018 len = size & ~PAGE_MASK; 2019 else 2020 len = PAGE_SIZE; 2021 2022 page_bufs = page_buffers(page); 2023 /* 2024 * We cannot do block allocation or other extent handling in this 2025 * function. If there are buffers needing that, we have to redirty 2026 * the page. But we may reach here when we do a journal commit via 2027 * journal_submit_inode_data_buffers() and in that case we must write 2028 * allocated buffers to achieve data=ordered mode guarantees. 2029 * 2030 * Also, if there is only one buffer per page (the fs block 2031 * size == the page size), if one buffer needs block 2032 * allocation or needs to modify the extent tree to clear the 2033 * unwritten flag, we know that the page can't be written at 2034 * all, so we might as well refuse the write immediately. 2035 * Unfortunately if the block size != page size, we can't as 2036 * easily detect this case using ext4_walk_page_buffers(), but 2037 * for the extremely common case, this is an optimization that 2038 * skips a useless round trip through ext4_bio_write_page(). 2039 */ 2040 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2041 ext4_bh_delay_or_unwritten)) { 2042 redirty_page_for_writepage(wbc, page); 2043 if ((current->flags & PF_MEMALLOC) || 2044 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2045 /* 2046 * For memory cleaning there's no point in writing only 2047 * some buffers. So just bail out. Warn if we came here 2048 * from direct reclaim. 2049 */ 2050 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2051 == PF_MEMALLOC); 2052 unlock_page(page); 2053 return 0; 2054 } 2055 keep_towrite = true; 2056 } 2057 2058 if (PageChecked(page) && ext4_should_journal_data(inode)) 2059 /* 2060 * It's mmapped pagecache. Add buffers and journal it. There 2061 * doesn't seem much point in redirtying the page here. 2062 */ 2063 return __ext4_journalled_writepage(page, len); 2064 2065 ext4_io_submit_init(&io_submit, wbc); 2066 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2067 if (!io_submit.io_end) { 2068 redirty_page_for_writepage(wbc, page); 2069 unlock_page(page); 2070 return -ENOMEM; 2071 } 2072 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2073 ext4_io_submit(&io_submit); 2074 /* Drop io_end reference we got from init */ 2075 ext4_put_io_end_defer(io_submit.io_end); 2076 return ret; 2077 } 2078 2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2080 { 2081 int len; 2082 loff_t size; 2083 int err; 2084 2085 BUG_ON(page->index != mpd->first_page); 2086 clear_page_dirty_for_io(page); 2087 /* 2088 * We have to be very careful here! Nothing protects writeback path 2089 * against i_size changes and the page can be writeably mapped into 2090 * page tables. So an application can be growing i_size and writing 2091 * data through mmap while writeback runs. clear_page_dirty_for_io() 2092 * write-protects our page in page tables and the page cannot get 2093 * written to again until we release page lock. So only after 2094 * clear_page_dirty_for_io() we are safe to sample i_size for 2095 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2096 * on the barrier provided by TestClearPageDirty in 2097 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2098 * after page tables are updated. 2099 */ 2100 size = i_size_read(mpd->inode); 2101 if (page->index == size >> PAGE_SHIFT && 2102 !ext4_verity_in_progress(mpd->inode)) 2103 len = size & ~PAGE_MASK; 2104 else 2105 len = PAGE_SIZE; 2106 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2107 if (!err) 2108 mpd->wbc->nr_to_write--; 2109 mpd->first_page++; 2110 2111 return err; 2112 } 2113 2114 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2115 2116 /* 2117 * mballoc gives us at most this number of blocks... 2118 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2119 * The rest of mballoc seems to handle chunks up to full group size. 2120 */ 2121 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2122 2123 /* 2124 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2125 * 2126 * @mpd - extent of blocks 2127 * @lblk - logical number of the block in the file 2128 * @bh - buffer head we want to add to the extent 2129 * 2130 * The function is used to collect contig. blocks in the same state. If the 2131 * buffer doesn't require mapping for writeback and we haven't started the 2132 * extent of buffers to map yet, the function returns 'true' immediately - the 2133 * caller can write the buffer right away. Otherwise the function returns true 2134 * if the block has been added to the extent, false if the block couldn't be 2135 * added. 2136 */ 2137 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2138 struct buffer_head *bh) 2139 { 2140 struct ext4_map_blocks *map = &mpd->map; 2141 2142 /* Buffer that doesn't need mapping for writeback? */ 2143 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2144 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2145 /* So far no extent to map => we write the buffer right away */ 2146 if (map->m_len == 0) 2147 return true; 2148 return false; 2149 } 2150 2151 /* First block in the extent? */ 2152 if (map->m_len == 0) { 2153 /* We cannot map unless handle is started... */ 2154 if (!mpd->do_map) 2155 return false; 2156 map->m_lblk = lblk; 2157 map->m_len = 1; 2158 map->m_flags = bh->b_state & BH_FLAGS; 2159 return true; 2160 } 2161 2162 /* Don't go larger than mballoc is willing to allocate */ 2163 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2164 return false; 2165 2166 /* Can we merge the block to our big extent? */ 2167 if (lblk == map->m_lblk + map->m_len && 2168 (bh->b_state & BH_FLAGS) == map->m_flags) { 2169 map->m_len++; 2170 return true; 2171 } 2172 return false; 2173 } 2174 2175 /* 2176 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2177 * 2178 * @mpd - extent of blocks for mapping 2179 * @head - the first buffer in the page 2180 * @bh - buffer we should start processing from 2181 * @lblk - logical number of the block in the file corresponding to @bh 2182 * 2183 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2184 * the page for IO if all buffers in this page were mapped and there's no 2185 * accumulated extent of buffers to map or add buffers in the page to the 2186 * extent of buffers to map. The function returns 1 if the caller can continue 2187 * by processing the next page, 0 if it should stop adding buffers to the 2188 * extent to map because we cannot extend it anymore. It can also return value 2189 * < 0 in case of error during IO submission. 2190 */ 2191 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2192 struct buffer_head *head, 2193 struct buffer_head *bh, 2194 ext4_lblk_t lblk) 2195 { 2196 struct inode *inode = mpd->inode; 2197 int err; 2198 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2199 >> inode->i_blkbits; 2200 2201 if (ext4_verity_in_progress(inode)) 2202 blocks = EXT_MAX_BLOCKS; 2203 2204 do { 2205 BUG_ON(buffer_locked(bh)); 2206 2207 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2208 /* Found extent to map? */ 2209 if (mpd->map.m_len) 2210 return 0; 2211 /* Buffer needs mapping and handle is not started? */ 2212 if (!mpd->do_map) 2213 return 0; 2214 /* Everything mapped so far and we hit EOF */ 2215 break; 2216 } 2217 } while (lblk++, (bh = bh->b_this_page) != head); 2218 /* So far everything mapped? Submit the page for IO. */ 2219 if (mpd->map.m_len == 0) { 2220 err = mpage_submit_page(mpd, head->b_page); 2221 if (err < 0) 2222 return err; 2223 } 2224 if (lblk >= blocks) { 2225 mpd->scanned_until_end = 1; 2226 return 0; 2227 } 2228 return 1; 2229 } 2230 2231 /* 2232 * mpage_process_page - update page buffers corresponding to changed extent and 2233 * may submit fully mapped page for IO 2234 * 2235 * @mpd - description of extent to map, on return next extent to map 2236 * @m_lblk - logical block mapping. 2237 * @m_pblk - corresponding physical mapping. 2238 * @map_bh - determines on return whether this page requires any further 2239 * mapping or not. 2240 * Scan given page buffers corresponding to changed extent and update buffer 2241 * state according to new extent state. 2242 * We map delalloc buffers to their physical location, clear unwritten bits. 2243 * If the given page is not fully mapped, we update @map to the next extent in 2244 * the given page that needs mapping & return @map_bh as true. 2245 */ 2246 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2247 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2248 bool *map_bh) 2249 { 2250 struct buffer_head *head, *bh; 2251 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2252 ext4_lblk_t lblk = *m_lblk; 2253 ext4_fsblk_t pblock = *m_pblk; 2254 int err = 0; 2255 int blkbits = mpd->inode->i_blkbits; 2256 ssize_t io_end_size = 0; 2257 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2258 2259 bh = head = page_buffers(page); 2260 do { 2261 if (lblk < mpd->map.m_lblk) 2262 continue; 2263 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2264 /* 2265 * Buffer after end of mapped extent. 2266 * Find next buffer in the page to map. 2267 */ 2268 mpd->map.m_len = 0; 2269 mpd->map.m_flags = 0; 2270 io_end_vec->size += io_end_size; 2271 io_end_size = 0; 2272 2273 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2274 if (err > 0) 2275 err = 0; 2276 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2277 io_end_vec = ext4_alloc_io_end_vec(io_end); 2278 if (IS_ERR(io_end_vec)) { 2279 err = PTR_ERR(io_end_vec); 2280 goto out; 2281 } 2282 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2283 } 2284 *map_bh = true; 2285 goto out; 2286 } 2287 if (buffer_delay(bh)) { 2288 clear_buffer_delay(bh); 2289 bh->b_blocknr = pblock++; 2290 } 2291 clear_buffer_unwritten(bh); 2292 io_end_size += (1 << blkbits); 2293 } while (lblk++, (bh = bh->b_this_page) != head); 2294 2295 io_end_vec->size += io_end_size; 2296 io_end_size = 0; 2297 *map_bh = false; 2298 out: 2299 *m_lblk = lblk; 2300 *m_pblk = pblock; 2301 return err; 2302 } 2303 2304 /* 2305 * mpage_map_buffers - update buffers corresponding to changed extent and 2306 * submit fully mapped pages for IO 2307 * 2308 * @mpd - description of extent to map, on return next extent to map 2309 * 2310 * Scan buffers corresponding to changed extent (we expect corresponding pages 2311 * to be already locked) and update buffer state according to new extent state. 2312 * We map delalloc buffers to their physical location, clear unwritten bits, 2313 * and mark buffers as uninit when we perform writes to unwritten extents 2314 * and do extent conversion after IO is finished. If the last page is not fully 2315 * mapped, we update @map to the next extent in the last page that needs 2316 * mapping. Otherwise we submit the page for IO. 2317 */ 2318 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2319 { 2320 struct pagevec pvec; 2321 int nr_pages, i; 2322 struct inode *inode = mpd->inode; 2323 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2324 pgoff_t start, end; 2325 ext4_lblk_t lblk; 2326 ext4_fsblk_t pblock; 2327 int err; 2328 bool map_bh = false; 2329 2330 start = mpd->map.m_lblk >> bpp_bits; 2331 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2332 lblk = start << bpp_bits; 2333 pblock = mpd->map.m_pblk; 2334 2335 pagevec_init(&pvec); 2336 while (start <= end) { 2337 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2338 &start, end); 2339 if (nr_pages == 0) 2340 break; 2341 for (i = 0; i < nr_pages; i++) { 2342 struct page *page = pvec.pages[i]; 2343 2344 err = mpage_process_page(mpd, page, &lblk, &pblock, 2345 &map_bh); 2346 /* 2347 * If map_bh is true, means page may require further bh 2348 * mapping, or maybe the page was submitted for IO. 2349 * So we return to call further extent mapping. 2350 */ 2351 if (err < 0 || map_bh) 2352 goto out; 2353 /* Page fully mapped - let IO run! */ 2354 err = mpage_submit_page(mpd, page); 2355 if (err < 0) 2356 goto out; 2357 } 2358 pagevec_release(&pvec); 2359 } 2360 /* Extent fully mapped and matches with page boundary. We are done. */ 2361 mpd->map.m_len = 0; 2362 mpd->map.m_flags = 0; 2363 return 0; 2364 out: 2365 pagevec_release(&pvec); 2366 return err; 2367 } 2368 2369 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2370 { 2371 struct inode *inode = mpd->inode; 2372 struct ext4_map_blocks *map = &mpd->map; 2373 int get_blocks_flags; 2374 int err, dioread_nolock; 2375 2376 trace_ext4_da_write_pages_extent(inode, map); 2377 /* 2378 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2379 * to convert an unwritten extent to be initialized (in the case 2380 * where we have written into one or more preallocated blocks). It is 2381 * possible that we're going to need more metadata blocks than 2382 * previously reserved. However we must not fail because we're in 2383 * writeback and there is nothing we can do about it so it might result 2384 * in data loss. So use reserved blocks to allocate metadata if 2385 * possible. 2386 * 2387 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2388 * the blocks in question are delalloc blocks. This indicates 2389 * that the blocks and quotas has already been checked when 2390 * the data was copied into the page cache. 2391 */ 2392 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2393 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2394 EXT4_GET_BLOCKS_IO_SUBMIT; 2395 dioread_nolock = ext4_should_dioread_nolock(inode); 2396 if (dioread_nolock) 2397 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2398 if (map->m_flags & BIT(BH_Delay)) 2399 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2400 2401 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2402 if (err < 0) 2403 return err; 2404 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2405 if (!mpd->io_submit.io_end->handle && 2406 ext4_handle_valid(handle)) { 2407 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2408 handle->h_rsv_handle = NULL; 2409 } 2410 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2411 } 2412 2413 BUG_ON(map->m_len == 0); 2414 return 0; 2415 } 2416 2417 /* 2418 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2419 * mpd->len and submit pages underlying it for IO 2420 * 2421 * @handle - handle for journal operations 2422 * @mpd - extent to map 2423 * @give_up_on_write - we set this to true iff there is a fatal error and there 2424 * is no hope of writing the data. The caller should discard 2425 * dirty pages to avoid infinite loops. 2426 * 2427 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2428 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2429 * them to initialized or split the described range from larger unwritten 2430 * extent. Note that we need not map all the described range since allocation 2431 * can return less blocks or the range is covered by more unwritten extents. We 2432 * cannot map more because we are limited by reserved transaction credits. On 2433 * the other hand we always make sure that the last touched page is fully 2434 * mapped so that it can be written out (and thus forward progress is 2435 * guaranteed). After mapping we submit all mapped pages for IO. 2436 */ 2437 static int mpage_map_and_submit_extent(handle_t *handle, 2438 struct mpage_da_data *mpd, 2439 bool *give_up_on_write) 2440 { 2441 struct inode *inode = mpd->inode; 2442 struct ext4_map_blocks *map = &mpd->map; 2443 int err; 2444 loff_t disksize; 2445 int progress = 0; 2446 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2447 struct ext4_io_end_vec *io_end_vec; 2448 2449 io_end_vec = ext4_alloc_io_end_vec(io_end); 2450 if (IS_ERR(io_end_vec)) 2451 return PTR_ERR(io_end_vec); 2452 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2453 do { 2454 err = mpage_map_one_extent(handle, mpd); 2455 if (err < 0) { 2456 struct super_block *sb = inode->i_sb; 2457 2458 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2459 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2460 goto invalidate_dirty_pages; 2461 /* 2462 * Let the uper layers retry transient errors. 2463 * In the case of ENOSPC, if ext4_count_free_blocks() 2464 * is non-zero, a commit should free up blocks. 2465 */ 2466 if ((err == -ENOMEM) || 2467 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2468 if (progress) 2469 goto update_disksize; 2470 return err; 2471 } 2472 ext4_msg(sb, KERN_CRIT, 2473 "Delayed block allocation failed for " 2474 "inode %lu at logical offset %llu with" 2475 " max blocks %u with error %d", 2476 inode->i_ino, 2477 (unsigned long long)map->m_lblk, 2478 (unsigned)map->m_len, -err); 2479 ext4_msg(sb, KERN_CRIT, 2480 "This should not happen!! Data will " 2481 "be lost\n"); 2482 if (err == -ENOSPC) 2483 ext4_print_free_blocks(inode); 2484 invalidate_dirty_pages: 2485 *give_up_on_write = true; 2486 return err; 2487 } 2488 progress = 1; 2489 /* 2490 * Update buffer state, submit mapped pages, and get us new 2491 * extent to map 2492 */ 2493 err = mpage_map_and_submit_buffers(mpd); 2494 if (err < 0) 2495 goto update_disksize; 2496 } while (map->m_len); 2497 2498 update_disksize: 2499 /* 2500 * Update on-disk size after IO is submitted. Races with 2501 * truncate are avoided by checking i_size under i_data_sem. 2502 */ 2503 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2504 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2505 int err2; 2506 loff_t i_size; 2507 2508 down_write(&EXT4_I(inode)->i_data_sem); 2509 i_size = i_size_read(inode); 2510 if (disksize > i_size) 2511 disksize = i_size; 2512 if (disksize > EXT4_I(inode)->i_disksize) 2513 EXT4_I(inode)->i_disksize = disksize; 2514 up_write(&EXT4_I(inode)->i_data_sem); 2515 err2 = ext4_mark_inode_dirty(handle, inode); 2516 if (err2) { 2517 ext4_error_err(inode->i_sb, -err2, 2518 "Failed to mark inode %lu dirty", 2519 inode->i_ino); 2520 } 2521 if (!err) 2522 err = err2; 2523 } 2524 return err; 2525 } 2526 2527 /* 2528 * Calculate the total number of credits to reserve for one writepages 2529 * iteration. This is called from ext4_writepages(). We map an extent of 2530 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2531 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2532 * bpp - 1 blocks in bpp different extents. 2533 */ 2534 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2535 { 2536 int bpp = ext4_journal_blocks_per_page(inode); 2537 2538 return ext4_meta_trans_blocks(inode, 2539 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2540 } 2541 2542 /* 2543 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2544 * and underlying extent to map 2545 * 2546 * @mpd - where to look for pages 2547 * 2548 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2549 * IO immediately. When we find a page which isn't mapped we start accumulating 2550 * extent of buffers underlying these pages that needs mapping (formed by 2551 * either delayed or unwritten buffers). We also lock the pages containing 2552 * these buffers. The extent found is returned in @mpd structure (starting at 2553 * mpd->lblk with length mpd->len blocks). 2554 * 2555 * Note that this function can attach bios to one io_end structure which are 2556 * neither logically nor physically contiguous. Although it may seem as an 2557 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2558 * case as we need to track IO to all buffers underlying a page in one io_end. 2559 */ 2560 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2561 { 2562 struct address_space *mapping = mpd->inode->i_mapping; 2563 struct pagevec pvec; 2564 unsigned int nr_pages; 2565 long left = mpd->wbc->nr_to_write; 2566 pgoff_t index = mpd->first_page; 2567 pgoff_t end = mpd->last_page; 2568 xa_mark_t tag; 2569 int i, err = 0; 2570 int blkbits = mpd->inode->i_blkbits; 2571 ext4_lblk_t lblk; 2572 struct buffer_head *head; 2573 2574 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2575 tag = PAGECACHE_TAG_TOWRITE; 2576 else 2577 tag = PAGECACHE_TAG_DIRTY; 2578 2579 pagevec_init(&pvec); 2580 mpd->map.m_len = 0; 2581 mpd->next_page = index; 2582 while (index <= end) { 2583 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2584 tag); 2585 if (nr_pages == 0) 2586 break; 2587 2588 for (i = 0; i < nr_pages; i++) { 2589 struct page *page = pvec.pages[i]; 2590 2591 /* 2592 * Accumulated enough dirty pages? This doesn't apply 2593 * to WB_SYNC_ALL mode. For integrity sync we have to 2594 * keep going because someone may be concurrently 2595 * dirtying pages, and we might have synced a lot of 2596 * newly appeared dirty pages, but have not synced all 2597 * of the old dirty pages. 2598 */ 2599 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2600 goto out; 2601 2602 /* If we can't merge this page, we are done. */ 2603 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2604 goto out; 2605 2606 lock_page(page); 2607 /* 2608 * If the page is no longer dirty, or its mapping no 2609 * longer corresponds to inode we are writing (which 2610 * means it has been truncated or invalidated), or the 2611 * page is already under writeback and we are not doing 2612 * a data integrity writeback, skip the page 2613 */ 2614 if (!PageDirty(page) || 2615 (PageWriteback(page) && 2616 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2617 unlikely(page->mapping != mapping)) { 2618 unlock_page(page); 2619 continue; 2620 } 2621 2622 wait_on_page_writeback(page); 2623 BUG_ON(PageWriteback(page)); 2624 2625 if (mpd->map.m_len == 0) 2626 mpd->first_page = page->index; 2627 mpd->next_page = page->index + 1; 2628 /* Add all dirty buffers to mpd */ 2629 lblk = ((ext4_lblk_t)page->index) << 2630 (PAGE_SHIFT - blkbits); 2631 head = page_buffers(page); 2632 err = mpage_process_page_bufs(mpd, head, head, lblk); 2633 if (err <= 0) 2634 goto out; 2635 err = 0; 2636 left--; 2637 } 2638 pagevec_release(&pvec); 2639 cond_resched(); 2640 } 2641 mpd->scanned_until_end = 1; 2642 return 0; 2643 out: 2644 pagevec_release(&pvec); 2645 return err; 2646 } 2647 2648 static int ext4_writepages(struct address_space *mapping, 2649 struct writeback_control *wbc) 2650 { 2651 pgoff_t writeback_index = 0; 2652 long nr_to_write = wbc->nr_to_write; 2653 int range_whole = 0; 2654 int cycled = 1; 2655 handle_t *handle = NULL; 2656 struct mpage_da_data mpd; 2657 struct inode *inode = mapping->host; 2658 int needed_blocks, rsv_blocks = 0, ret = 0; 2659 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2660 struct blk_plug plug; 2661 bool give_up_on_write = false; 2662 2663 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2664 return -EIO; 2665 2666 percpu_down_read(&sbi->s_writepages_rwsem); 2667 trace_ext4_writepages(inode, wbc); 2668 2669 /* 2670 * No pages to write? This is mainly a kludge to avoid starting 2671 * a transaction for special inodes like journal inode on last iput() 2672 * because that could violate lock ordering on umount 2673 */ 2674 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2675 goto out_writepages; 2676 2677 if (ext4_should_journal_data(inode)) { 2678 ret = generic_writepages(mapping, wbc); 2679 goto out_writepages; 2680 } 2681 2682 /* 2683 * If the filesystem has aborted, it is read-only, so return 2684 * right away instead of dumping stack traces later on that 2685 * will obscure the real source of the problem. We test 2686 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2687 * the latter could be true if the filesystem is mounted 2688 * read-only, and in that case, ext4_writepages should 2689 * *never* be called, so if that ever happens, we would want 2690 * the stack trace. 2691 */ 2692 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2693 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2694 ret = -EROFS; 2695 goto out_writepages; 2696 } 2697 2698 /* 2699 * If we have inline data and arrive here, it means that 2700 * we will soon create the block for the 1st page, so 2701 * we'd better clear the inline data here. 2702 */ 2703 if (ext4_has_inline_data(inode)) { 2704 /* Just inode will be modified... */ 2705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2706 if (IS_ERR(handle)) { 2707 ret = PTR_ERR(handle); 2708 goto out_writepages; 2709 } 2710 BUG_ON(ext4_test_inode_state(inode, 2711 EXT4_STATE_MAY_INLINE_DATA)); 2712 ext4_destroy_inline_data(handle, inode); 2713 ext4_journal_stop(handle); 2714 } 2715 2716 if (ext4_should_dioread_nolock(inode)) { 2717 /* 2718 * We may need to convert up to one extent per block in 2719 * the page and we may dirty the inode. 2720 */ 2721 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2722 PAGE_SIZE >> inode->i_blkbits); 2723 } 2724 2725 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2726 range_whole = 1; 2727 2728 if (wbc->range_cyclic) { 2729 writeback_index = mapping->writeback_index; 2730 if (writeback_index) 2731 cycled = 0; 2732 mpd.first_page = writeback_index; 2733 mpd.last_page = -1; 2734 } else { 2735 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2736 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2737 } 2738 2739 mpd.inode = inode; 2740 mpd.wbc = wbc; 2741 ext4_io_submit_init(&mpd.io_submit, wbc); 2742 retry: 2743 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2744 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2745 blk_start_plug(&plug); 2746 2747 /* 2748 * First writeback pages that don't need mapping - we can avoid 2749 * starting a transaction unnecessarily and also avoid being blocked 2750 * in the block layer on device congestion while having transaction 2751 * started. 2752 */ 2753 mpd.do_map = 0; 2754 mpd.scanned_until_end = 0; 2755 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2756 if (!mpd.io_submit.io_end) { 2757 ret = -ENOMEM; 2758 goto unplug; 2759 } 2760 ret = mpage_prepare_extent_to_map(&mpd); 2761 /* Unlock pages we didn't use */ 2762 mpage_release_unused_pages(&mpd, false); 2763 /* Submit prepared bio */ 2764 ext4_io_submit(&mpd.io_submit); 2765 ext4_put_io_end_defer(mpd.io_submit.io_end); 2766 mpd.io_submit.io_end = NULL; 2767 if (ret < 0) 2768 goto unplug; 2769 2770 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2771 /* For each extent of pages we use new io_end */ 2772 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2773 if (!mpd.io_submit.io_end) { 2774 ret = -ENOMEM; 2775 break; 2776 } 2777 2778 /* 2779 * We have two constraints: We find one extent to map and we 2780 * must always write out whole page (makes a difference when 2781 * blocksize < pagesize) so that we don't block on IO when we 2782 * try to write out the rest of the page. Journalled mode is 2783 * not supported by delalloc. 2784 */ 2785 BUG_ON(ext4_should_journal_data(inode)); 2786 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2787 2788 /* start a new transaction */ 2789 handle = ext4_journal_start_with_reserve(inode, 2790 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2791 if (IS_ERR(handle)) { 2792 ret = PTR_ERR(handle); 2793 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2794 "%ld pages, ino %lu; err %d", __func__, 2795 wbc->nr_to_write, inode->i_ino, ret); 2796 /* Release allocated io_end */ 2797 ext4_put_io_end(mpd.io_submit.io_end); 2798 mpd.io_submit.io_end = NULL; 2799 break; 2800 } 2801 mpd.do_map = 1; 2802 2803 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2804 ret = mpage_prepare_extent_to_map(&mpd); 2805 if (!ret && mpd.map.m_len) 2806 ret = mpage_map_and_submit_extent(handle, &mpd, 2807 &give_up_on_write); 2808 /* 2809 * Caution: If the handle is synchronous, 2810 * ext4_journal_stop() can wait for transaction commit 2811 * to finish which may depend on writeback of pages to 2812 * complete or on page lock to be released. In that 2813 * case, we have to wait until after we have 2814 * submitted all the IO, released page locks we hold, 2815 * and dropped io_end reference (for extent conversion 2816 * to be able to complete) before stopping the handle. 2817 */ 2818 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2819 ext4_journal_stop(handle); 2820 handle = NULL; 2821 mpd.do_map = 0; 2822 } 2823 /* Unlock pages we didn't use */ 2824 mpage_release_unused_pages(&mpd, give_up_on_write); 2825 /* Submit prepared bio */ 2826 ext4_io_submit(&mpd.io_submit); 2827 2828 /* 2829 * Drop our io_end reference we got from init. We have 2830 * to be careful and use deferred io_end finishing if 2831 * we are still holding the transaction as we can 2832 * release the last reference to io_end which may end 2833 * up doing unwritten extent conversion. 2834 */ 2835 if (handle) { 2836 ext4_put_io_end_defer(mpd.io_submit.io_end); 2837 ext4_journal_stop(handle); 2838 } else 2839 ext4_put_io_end(mpd.io_submit.io_end); 2840 mpd.io_submit.io_end = NULL; 2841 2842 if (ret == -ENOSPC && sbi->s_journal) { 2843 /* 2844 * Commit the transaction which would 2845 * free blocks released in the transaction 2846 * and try again 2847 */ 2848 jbd2_journal_force_commit_nested(sbi->s_journal); 2849 ret = 0; 2850 continue; 2851 } 2852 /* Fatal error - ENOMEM, EIO... */ 2853 if (ret) 2854 break; 2855 } 2856 unplug: 2857 blk_finish_plug(&plug); 2858 if (!ret && !cycled && wbc->nr_to_write > 0) { 2859 cycled = 1; 2860 mpd.last_page = writeback_index - 1; 2861 mpd.first_page = 0; 2862 goto retry; 2863 } 2864 2865 /* Update index */ 2866 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2867 /* 2868 * Set the writeback_index so that range_cyclic 2869 * mode will write it back later 2870 */ 2871 mapping->writeback_index = mpd.first_page; 2872 2873 out_writepages: 2874 trace_ext4_writepages_result(inode, wbc, ret, 2875 nr_to_write - wbc->nr_to_write); 2876 percpu_up_read(&sbi->s_writepages_rwsem); 2877 return ret; 2878 } 2879 2880 static int ext4_dax_writepages(struct address_space *mapping, 2881 struct writeback_control *wbc) 2882 { 2883 int ret; 2884 long nr_to_write = wbc->nr_to_write; 2885 struct inode *inode = mapping->host; 2886 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2887 2888 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2889 return -EIO; 2890 2891 percpu_down_read(&sbi->s_writepages_rwsem); 2892 trace_ext4_writepages(inode, wbc); 2893 2894 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2895 trace_ext4_writepages_result(inode, wbc, ret, 2896 nr_to_write - wbc->nr_to_write); 2897 percpu_up_read(&sbi->s_writepages_rwsem); 2898 return ret; 2899 } 2900 2901 static int ext4_nonda_switch(struct super_block *sb) 2902 { 2903 s64 free_clusters, dirty_clusters; 2904 struct ext4_sb_info *sbi = EXT4_SB(sb); 2905 2906 /* 2907 * switch to non delalloc mode if we are running low 2908 * on free block. The free block accounting via percpu 2909 * counters can get slightly wrong with percpu_counter_batch getting 2910 * accumulated on each CPU without updating global counters 2911 * Delalloc need an accurate free block accounting. So switch 2912 * to non delalloc when we are near to error range. 2913 */ 2914 free_clusters = 2915 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2916 dirty_clusters = 2917 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2918 /* 2919 * Start pushing delalloc when 1/2 of free blocks are dirty. 2920 */ 2921 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2922 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2923 2924 if (2 * free_clusters < 3 * dirty_clusters || 2925 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2926 /* 2927 * free block count is less than 150% of dirty blocks 2928 * or free blocks is less than watermark 2929 */ 2930 return 1; 2931 } 2932 return 0; 2933 } 2934 2935 /* We always reserve for an inode update; the superblock could be there too */ 2936 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2937 { 2938 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2939 return 1; 2940 2941 if (pos + len <= 0x7fffffffULL) 2942 return 1; 2943 2944 /* We might need to update the superblock to set LARGE_FILE */ 2945 return 2; 2946 } 2947 2948 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2949 loff_t pos, unsigned len, unsigned flags, 2950 struct page **pagep, void **fsdata) 2951 { 2952 int ret, retries = 0; 2953 struct page *page; 2954 pgoff_t index; 2955 struct inode *inode = mapping->host; 2956 handle_t *handle; 2957 2958 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2959 return -EIO; 2960 2961 index = pos >> PAGE_SHIFT; 2962 2963 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2964 ext4_verity_in_progress(inode)) { 2965 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2966 return ext4_write_begin(file, mapping, pos, 2967 len, flags, pagep, fsdata); 2968 } 2969 *fsdata = (void *)0; 2970 trace_ext4_da_write_begin(inode, pos, len, flags); 2971 2972 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2973 ret = ext4_da_write_inline_data_begin(mapping, inode, 2974 pos, len, flags, 2975 pagep, fsdata); 2976 if (ret < 0) 2977 return ret; 2978 if (ret == 1) 2979 return 0; 2980 } 2981 2982 /* 2983 * grab_cache_page_write_begin() can take a long time if the 2984 * system is thrashing due to memory pressure, or if the page 2985 * is being written back. So grab it first before we start 2986 * the transaction handle. This also allows us to allocate 2987 * the page (if needed) without using GFP_NOFS. 2988 */ 2989 retry_grab: 2990 page = grab_cache_page_write_begin(mapping, index, flags); 2991 if (!page) 2992 return -ENOMEM; 2993 unlock_page(page); 2994 2995 /* 2996 * With delayed allocation, we don't log the i_disksize update 2997 * if there is delayed block allocation. But we still need 2998 * to journalling the i_disksize update if writes to the end 2999 * of file which has an already mapped buffer. 3000 */ 3001 retry_journal: 3002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3003 ext4_da_write_credits(inode, pos, len)); 3004 if (IS_ERR(handle)) { 3005 put_page(page); 3006 return PTR_ERR(handle); 3007 } 3008 3009 lock_page(page); 3010 if (page->mapping != mapping) { 3011 /* The page got truncated from under us */ 3012 unlock_page(page); 3013 put_page(page); 3014 ext4_journal_stop(handle); 3015 goto retry_grab; 3016 } 3017 /* In case writeback began while the page was unlocked */ 3018 wait_for_stable_page(page); 3019 3020 #ifdef CONFIG_FS_ENCRYPTION 3021 ret = ext4_block_write_begin(page, pos, len, 3022 ext4_da_get_block_prep); 3023 #else 3024 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3025 #endif 3026 if (ret < 0) { 3027 unlock_page(page); 3028 ext4_journal_stop(handle); 3029 /* 3030 * block_write_begin may have instantiated a few blocks 3031 * outside i_size. Trim these off again. Don't need 3032 * i_size_read because we hold i_mutex. 3033 */ 3034 if (pos + len > inode->i_size) 3035 ext4_truncate_failed_write(inode); 3036 3037 if (ret == -ENOSPC && 3038 ext4_should_retry_alloc(inode->i_sb, &retries)) 3039 goto retry_journal; 3040 3041 put_page(page); 3042 return ret; 3043 } 3044 3045 *pagep = page; 3046 return ret; 3047 } 3048 3049 /* 3050 * Check if we should update i_disksize 3051 * when write to the end of file but not require block allocation 3052 */ 3053 static int ext4_da_should_update_i_disksize(struct page *page, 3054 unsigned long offset) 3055 { 3056 struct buffer_head *bh; 3057 struct inode *inode = page->mapping->host; 3058 unsigned int idx; 3059 int i; 3060 3061 bh = page_buffers(page); 3062 idx = offset >> inode->i_blkbits; 3063 3064 for (i = 0; i < idx; i++) 3065 bh = bh->b_this_page; 3066 3067 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3068 return 0; 3069 return 1; 3070 } 3071 3072 static int ext4_da_write_end(struct file *file, 3073 struct address_space *mapping, 3074 loff_t pos, unsigned len, unsigned copied, 3075 struct page *page, void *fsdata) 3076 { 3077 struct inode *inode = mapping->host; 3078 int ret = 0, ret2; 3079 handle_t *handle = ext4_journal_current_handle(); 3080 loff_t new_i_size; 3081 unsigned long start, end; 3082 int write_mode = (int)(unsigned long)fsdata; 3083 3084 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3085 return ext4_write_end(file, mapping, pos, 3086 len, copied, page, fsdata); 3087 3088 trace_ext4_da_write_end(inode, pos, len, copied); 3089 start = pos & (PAGE_SIZE - 1); 3090 end = start + copied - 1; 3091 3092 /* 3093 * generic_write_end() will run mark_inode_dirty() if i_size 3094 * changes. So let's piggyback the i_disksize mark_inode_dirty 3095 * into that. 3096 */ 3097 new_i_size = pos + copied; 3098 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3099 if (ext4_has_inline_data(inode) || 3100 ext4_da_should_update_i_disksize(page, end)) { 3101 ext4_update_i_disksize(inode, new_i_size); 3102 /* We need to mark inode dirty even if 3103 * new_i_size is less that inode->i_size 3104 * bu greater than i_disksize.(hint delalloc) 3105 */ 3106 ret = ext4_mark_inode_dirty(handle, inode); 3107 } 3108 } 3109 3110 if (write_mode != CONVERT_INLINE_DATA && 3111 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3112 ext4_has_inline_data(inode)) 3113 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3114 page); 3115 else 3116 ret2 = generic_write_end(file, mapping, pos, len, copied, 3117 page, fsdata); 3118 3119 copied = ret2; 3120 if (ret2 < 0) 3121 ret = ret2; 3122 ret2 = ext4_journal_stop(handle); 3123 if (unlikely(ret2 && !ret)) 3124 ret = ret2; 3125 3126 return ret ? ret : copied; 3127 } 3128 3129 /* 3130 * Force all delayed allocation blocks to be allocated for a given inode. 3131 */ 3132 int ext4_alloc_da_blocks(struct inode *inode) 3133 { 3134 trace_ext4_alloc_da_blocks(inode); 3135 3136 if (!EXT4_I(inode)->i_reserved_data_blocks) 3137 return 0; 3138 3139 /* 3140 * We do something simple for now. The filemap_flush() will 3141 * also start triggering a write of the data blocks, which is 3142 * not strictly speaking necessary (and for users of 3143 * laptop_mode, not even desirable). However, to do otherwise 3144 * would require replicating code paths in: 3145 * 3146 * ext4_writepages() -> 3147 * write_cache_pages() ---> (via passed in callback function) 3148 * __mpage_da_writepage() --> 3149 * mpage_add_bh_to_extent() 3150 * mpage_da_map_blocks() 3151 * 3152 * The problem is that write_cache_pages(), located in 3153 * mm/page-writeback.c, marks pages clean in preparation for 3154 * doing I/O, which is not desirable if we're not planning on 3155 * doing I/O at all. 3156 * 3157 * We could call write_cache_pages(), and then redirty all of 3158 * the pages by calling redirty_page_for_writepage() but that 3159 * would be ugly in the extreme. So instead we would need to 3160 * replicate parts of the code in the above functions, 3161 * simplifying them because we wouldn't actually intend to 3162 * write out the pages, but rather only collect contiguous 3163 * logical block extents, call the multi-block allocator, and 3164 * then update the buffer heads with the block allocations. 3165 * 3166 * For now, though, we'll cheat by calling filemap_flush(), 3167 * which will map the blocks, and start the I/O, but not 3168 * actually wait for the I/O to complete. 3169 */ 3170 return filemap_flush(inode->i_mapping); 3171 } 3172 3173 /* 3174 * bmap() is special. It gets used by applications such as lilo and by 3175 * the swapper to find the on-disk block of a specific piece of data. 3176 * 3177 * Naturally, this is dangerous if the block concerned is still in the 3178 * journal. If somebody makes a swapfile on an ext4 data-journaling 3179 * filesystem and enables swap, then they may get a nasty shock when the 3180 * data getting swapped to that swapfile suddenly gets overwritten by 3181 * the original zero's written out previously to the journal and 3182 * awaiting writeback in the kernel's buffer cache. 3183 * 3184 * So, if we see any bmap calls here on a modified, data-journaled file, 3185 * take extra steps to flush any blocks which might be in the cache. 3186 */ 3187 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3188 { 3189 struct inode *inode = mapping->host; 3190 journal_t *journal; 3191 int err; 3192 3193 /* 3194 * We can get here for an inline file via the FIBMAP ioctl 3195 */ 3196 if (ext4_has_inline_data(inode)) 3197 return 0; 3198 3199 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3200 test_opt(inode->i_sb, DELALLOC)) { 3201 /* 3202 * With delalloc we want to sync the file 3203 * so that we can make sure we allocate 3204 * blocks for file 3205 */ 3206 filemap_write_and_wait(mapping); 3207 } 3208 3209 if (EXT4_JOURNAL(inode) && 3210 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3211 /* 3212 * This is a REALLY heavyweight approach, but the use of 3213 * bmap on dirty files is expected to be extremely rare: 3214 * only if we run lilo or swapon on a freshly made file 3215 * do we expect this to happen. 3216 * 3217 * (bmap requires CAP_SYS_RAWIO so this does not 3218 * represent an unprivileged user DOS attack --- we'd be 3219 * in trouble if mortal users could trigger this path at 3220 * will.) 3221 * 3222 * NB. EXT4_STATE_JDATA is not set on files other than 3223 * regular files. If somebody wants to bmap a directory 3224 * or symlink and gets confused because the buffer 3225 * hasn't yet been flushed to disk, they deserve 3226 * everything they get. 3227 */ 3228 3229 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3230 journal = EXT4_JOURNAL(inode); 3231 jbd2_journal_lock_updates(journal); 3232 err = jbd2_journal_flush(journal, 0); 3233 jbd2_journal_unlock_updates(journal); 3234 3235 if (err) 3236 return 0; 3237 } 3238 3239 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3240 } 3241 3242 static int ext4_readpage(struct file *file, struct page *page) 3243 { 3244 int ret = -EAGAIN; 3245 struct inode *inode = page->mapping->host; 3246 3247 trace_ext4_readpage(page); 3248 3249 if (ext4_has_inline_data(inode)) 3250 ret = ext4_readpage_inline(inode, page); 3251 3252 if (ret == -EAGAIN) 3253 return ext4_mpage_readpages(inode, NULL, page); 3254 3255 return ret; 3256 } 3257 3258 static void ext4_readahead(struct readahead_control *rac) 3259 { 3260 struct inode *inode = rac->mapping->host; 3261 3262 /* If the file has inline data, no need to do readahead. */ 3263 if (ext4_has_inline_data(inode)) 3264 return; 3265 3266 ext4_mpage_readpages(inode, rac, NULL); 3267 } 3268 3269 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3270 unsigned int length) 3271 { 3272 trace_ext4_invalidatepage(page, offset, length); 3273 3274 /* No journalling happens on data buffers when this function is used */ 3275 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3276 3277 block_invalidatepage(page, offset, length); 3278 } 3279 3280 static int __ext4_journalled_invalidatepage(struct page *page, 3281 unsigned int offset, 3282 unsigned int length) 3283 { 3284 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3285 3286 trace_ext4_journalled_invalidatepage(page, offset, length); 3287 3288 /* 3289 * If it's a full truncate we just forget about the pending dirtying 3290 */ 3291 if (offset == 0 && length == PAGE_SIZE) 3292 ClearPageChecked(page); 3293 3294 return jbd2_journal_invalidatepage(journal, page, offset, length); 3295 } 3296 3297 /* Wrapper for aops... */ 3298 static void ext4_journalled_invalidatepage(struct page *page, 3299 unsigned int offset, 3300 unsigned int length) 3301 { 3302 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3303 } 3304 3305 static int ext4_releasepage(struct page *page, gfp_t wait) 3306 { 3307 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3308 3309 trace_ext4_releasepage(page); 3310 3311 /* Page has dirty journalled data -> cannot release */ 3312 if (PageChecked(page)) 3313 return 0; 3314 if (journal) 3315 return jbd2_journal_try_to_free_buffers(journal, page); 3316 else 3317 return try_to_free_buffers(page); 3318 } 3319 3320 static bool ext4_inode_datasync_dirty(struct inode *inode) 3321 { 3322 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3323 3324 if (journal) { 3325 if (jbd2_transaction_committed(journal, 3326 EXT4_I(inode)->i_datasync_tid)) 3327 return false; 3328 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3329 return !list_empty(&EXT4_I(inode)->i_fc_list); 3330 return true; 3331 } 3332 3333 /* Any metadata buffers to write? */ 3334 if (!list_empty(&inode->i_mapping->private_list)) 3335 return true; 3336 return inode->i_state & I_DIRTY_DATASYNC; 3337 } 3338 3339 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3340 struct ext4_map_blocks *map, loff_t offset, 3341 loff_t length) 3342 { 3343 u8 blkbits = inode->i_blkbits; 3344 3345 /* 3346 * Writes that span EOF might trigger an I/O size update on completion, 3347 * so consider them to be dirty for the purpose of O_DSYNC, even if 3348 * there is no other metadata changes being made or are pending. 3349 */ 3350 iomap->flags = 0; 3351 if (ext4_inode_datasync_dirty(inode) || 3352 offset + length > i_size_read(inode)) 3353 iomap->flags |= IOMAP_F_DIRTY; 3354 3355 if (map->m_flags & EXT4_MAP_NEW) 3356 iomap->flags |= IOMAP_F_NEW; 3357 3358 iomap->bdev = inode->i_sb->s_bdev; 3359 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3360 iomap->offset = (u64) map->m_lblk << blkbits; 3361 iomap->length = (u64) map->m_len << blkbits; 3362 3363 if ((map->m_flags & EXT4_MAP_MAPPED) && 3364 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3365 iomap->flags |= IOMAP_F_MERGED; 3366 3367 /* 3368 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3369 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3370 * set. In order for any allocated unwritten extents to be converted 3371 * into written extents correctly within the ->end_io() handler, we 3372 * need to ensure that the iomap->type is set appropriately. Hence, the 3373 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3374 * been set first. 3375 */ 3376 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3377 iomap->type = IOMAP_UNWRITTEN; 3378 iomap->addr = (u64) map->m_pblk << blkbits; 3379 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3380 iomap->type = IOMAP_MAPPED; 3381 iomap->addr = (u64) map->m_pblk << blkbits; 3382 } else { 3383 iomap->type = IOMAP_HOLE; 3384 iomap->addr = IOMAP_NULL_ADDR; 3385 } 3386 } 3387 3388 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3389 unsigned int flags) 3390 { 3391 handle_t *handle; 3392 u8 blkbits = inode->i_blkbits; 3393 int ret, dio_credits, m_flags = 0, retries = 0; 3394 3395 /* 3396 * Trim the mapping request to the maximum value that we can map at 3397 * once for direct I/O. 3398 */ 3399 if (map->m_len > DIO_MAX_BLOCKS) 3400 map->m_len = DIO_MAX_BLOCKS; 3401 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3402 3403 retry: 3404 /* 3405 * Either we allocate blocks and then don't get an unwritten extent, so 3406 * in that case we have reserved enough credits. Or, the blocks are 3407 * already allocated and unwritten. In that case, the extent conversion 3408 * fits into the credits as well. 3409 */ 3410 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3411 if (IS_ERR(handle)) 3412 return PTR_ERR(handle); 3413 3414 /* 3415 * DAX and direct I/O are the only two operations that are currently 3416 * supported with IOMAP_WRITE. 3417 */ 3418 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3419 if (IS_DAX(inode)) 3420 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3421 /* 3422 * We use i_size instead of i_disksize here because delalloc writeback 3423 * can complete at any point during the I/O and subsequently push the 3424 * i_disksize out to i_size. This could be beyond where direct I/O is 3425 * happening and thus expose allocated blocks to direct I/O reads. 3426 */ 3427 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3428 m_flags = EXT4_GET_BLOCKS_CREATE; 3429 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3430 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3431 3432 ret = ext4_map_blocks(handle, inode, map, m_flags); 3433 3434 /* 3435 * We cannot fill holes in indirect tree based inodes as that could 3436 * expose stale data in the case of a crash. Use the magic error code 3437 * to fallback to buffered I/O. 3438 */ 3439 if (!m_flags && !ret) 3440 ret = -ENOTBLK; 3441 3442 ext4_journal_stop(handle); 3443 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3444 goto retry; 3445 3446 return ret; 3447 } 3448 3449 3450 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3451 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3452 { 3453 int ret; 3454 struct ext4_map_blocks map; 3455 u8 blkbits = inode->i_blkbits; 3456 3457 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3458 return -EINVAL; 3459 3460 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3461 return -ERANGE; 3462 3463 /* 3464 * Calculate the first and last logical blocks respectively. 3465 */ 3466 map.m_lblk = offset >> blkbits; 3467 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3468 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3469 3470 if (flags & IOMAP_WRITE) { 3471 /* 3472 * We check here if the blocks are already allocated, then we 3473 * don't need to start a journal txn and we can directly return 3474 * the mapping information. This could boost performance 3475 * especially in multi-threaded overwrite requests. 3476 */ 3477 if (offset + length <= i_size_read(inode)) { 3478 ret = ext4_map_blocks(NULL, inode, &map, 0); 3479 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3480 goto out; 3481 } 3482 ret = ext4_iomap_alloc(inode, &map, flags); 3483 } else { 3484 ret = ext4_map_blocks(NULL, inode, &map, 0); 3485 } 3486 3487 if (ret < 0) 3488 return ret; 3489 out: 3490 ext4_set_iomap(inode, iomap, &map, offset, length); 3491 3492 return 0; 3493 } 3494 3495 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3496 loff_t length, unsigned flags, struct iomap *iomap, 3497 struct iomap *srcmap) 3498 { 3499 int ret; 3500 3501 /* 3502 * Even for writes we don't need to allocate blocks, so just pretend 3503 * we are reading to save overhead of starting a transaction. 3504 */ 3505 flags &= ~IOMAP_WRITE; 3506 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3507 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3508 return ret; 3509 } 3510 3511 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3512 ssize_t written, unsigned flags, struct iomap *iomap) 3513 { 3514 /* 3515 * Check to see whether an error occurred while writing out the data to 3516 * the allocated blocks. If so, return the magic error code so that we 3517 * fallback to buffered I/O and attempt to complete the remainder of 3518 * the I/O. Any blocks that may have been allocated in preparation for 3519 * the direct I/O will be reused during buffered I/O. 3520 */ 3521 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3522 return -ENOTBLK; 3523 3524 return 0; 3525 } 3526 3527 const struct iomap_ops ext4_iomap_ops = { 3528 .iomap_begin = ext4_iomap_begin, 3529 .iomap_end = ext4_iomap_end, 3530 }; 3531 3532 const struct iomap_ops ext4_iomap_overwrite_ops = { 3533 .iomap_begin = ext4_iomap_overwrite_begin, 3534 .iomap_end = ext4_iomap_end, 3535 }; 3536 3537 static bool ext4_iomap_is_delalloc(struct inode *inode, 3538 struct ext4_map_blocks *map) 3539 { 3540 struct extent_status es; 3541 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3542 3543 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3544 map->m_lblk, end, &es); 3545 3546 if (!es.es_len || es.es_lblk > end) 3547 return false; 3548 3549 if (es.es_lblk > map->m_lblk) { 3550 map->m_len = es.es_lblk - map->m_lblk; 3551 return false; 3552 } 3553 3554 offset = map->m_lblk - es.es_lblk; 3555 map->m_len = es.es_len - offset; 3556 3557 return true; 3558 } 3559 3560 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3561 loff_t length, unsigned int flags, 3562 struct iomap *iomap, struct iomap *srcmap) 3563 { 3564 int ret; 3565 bool delalloc = false; 3566 struct ext4_map_blocks map; 3567 u8 blkbits = inode->i_blkbits; 3568 3569 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3570 return -EINVAL; 3571 3572 if (ext4_has_inline_data(inode)) { 3573 ret = ext4_inline_data_iomap(inode, iomap); 3574 if (ret != -EAGAIN) { 3575 if (ret == 0 && offset >= iomap->length) 3576 ret = -ENOENT; 3577 return ret; 3578 } 3579 } 3580 3581 /* 3582 * Calculate the first and last logical block respectively. 3583 */ 3584 map.m_lblk = offset >> blkbits; 3585 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3586 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3587 3588 /* 3589 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3590 * So handle it here itself instead of querying ext4_map_blocks(). 3591 * Since ext4_map_blocks() will warn about it and will return 3592 * -EIO error. 3593 */ 3594 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3596 3597 if (offset >= sbi->s_bitmap_maxbytes) { 3598 map.m_flags = 0; 3599 goto set_iomap; 3600 } 3601 } 3602 3603 ret = ext4_map_blocks(NULL, inode, &map, 0); 3604 if (ret < 0) 3605 return ret; 3606 if (ret == 0) 3607 delalloc = ext4_iomap_is_delalloc(inode, &map); 3608 3609 set_iomap: 3610 ext4_set_iomap(inode, iomap, &map, offset, length); 3611 if (delalloc && iomap->type == IOMAP_HOLE) 3612 iomap->type = IOMAP_DELALLOC; 3613 3614 return 0; 3615 } 3616 3617 const struct iomap_ops ext4_iomap_report_ops = { 3618 .iomap_begin = ext4_iomap_begin_report, 3619 }; 3620 3621 /* 3622 * Pages can be marked dirty completely asynchronously from ext4's journalling 3623 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3624 * much here because ->set_page_dirty is called under VFS locks. The page is 3625 * not necessarily locked. 3626 * 3627 * We cannot just dirty the page and leave attached buffers clean, because the 3628 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3629 * or jbddirty because all the journalling code will explode. 3630 * 3631 * So what we do is to mark the page "pending dirty" and next time writepage 3632 * is called, propagate that into the buffers appropriately. 3633 */ 3634 static int ext4_journalled_set_page_dirty(struct page *page) 3635 { 3636 SetPageChecked(page); 3637 return __set_page_dirty_nobuffers(page); 3638 } 3639 3640 static int ext4_set_page_dirty(struct page *page) 3641 { 3642 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3643 WARN_ON_ONCE(!page_has_buffers(page)); 3644 return __set_page_dirty_buffers(page); 3645 } 3646 3647 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3648 struct file *file, sector_t *span) 3649 { 3650 return iomap_swapfile_activate(sis, file, span, 3651 &ext4_iomap_report_ops); 3652 } 3653 3654 static const struct address_space_operations ext4_aops = { 3655 .readpage = ext4_readpage, 3656 .readahead = ext4_readahead, 3657 .writepage = ext4_writepage, 3658 .writepages = ext4_writepages, 3659 .write_begin = ext4_write_begin, 3660 .write_end = ext4_write_end, 3661 .set_page_dirty = ext4_set_page_dirty, 3662 .bmap = ext4_bmap, 3663 .invalidatepage = ext4_invalidatepage, 3664 .releasepage = ext4_releasepage, 3665 .direct_IO = noop_direct_IO, 3666 .migratepage = buffer_migrate_page, 3667 .is_partially_uptodate = block_is_partially_uptodate, 3668 .error_remove_page = generic_error_remove_page, 3669 .swap_activate = ext4_iomap_swap_activate, 3670 }; 3671 3672 static const struct address_space_operations ext4_journalled_aops = { 3673 .readpage = ext4_readpage, 3674 .readahead = ext4_readahead, 3675 .writepage = ext4_writepage, 3676 .writepages = ext4_writepages, 3677 .write_begin = ext4_write_begin, 3678 .write_end = ext4_journalled_write_end, 3679 .set_page_dirty = ext4_journalled_set_page_dirty, 3680 .bmap = ext4_bmap, 3681 .invalidatepage = ext4_journalled_invalidatepage, 3682 .releasepage = ext4_releasepage, 3683 .direct_IO = noop_direct_IO, 3684 .is_partially_uptodate = block_is_partially_uptodate, 3685 .error_remove_page = generic_error_remove_page, 3686 .swap_activate = ext4_iomap_swap_activate, 3687 }; 3688 3689 static const struct address_space_operations ext4_da_aops = { 3690 .readpage = ext4_readpage, 3691 .readahead = ext4_readahead, 3692 .writepage = ext4_writepage, 3693 .writepages = ext4_writepages, 3694 .write_begin = ext4_da_write_begin, 3695 .write_end = ext4_da_write_end, 3696 .set_page_dirty = ext4_set_page_dirty, 3697 .bmap = ext4_bmap, 3698 .invalidatepage = ext4_invalidatepage, 3699 .releasepage = ext4_releasepage, 3700 .direct_IO = noop_direct_IO, 3701 .migratepage = buffer_migrate_page, 3702 .is_partially_uptodate = block_is_partially_uptodate, 3703 .error_remove_page = generic_error_remove_page, 3704 .swap_activate = ext4_iomap_swap_activate, 3705 }; 3706 3707 static const struct address_space_operations ext4_dax_aops = { 3708 .writepages = ext4_dax_writepages, 3709 .direct_IO = noop_direct_IO, 3710 .set_page_dirty = __set_page_dirty_no_writeback, 3711 .bmap = ext4_bmap, 3712 .invalidatepage = noop_invalidatepage, 3713 .swap_activate = ext4_iomap_swap_activate, 3714 }; 3715 3716 void ext4_set_aops(struct inode *inode) 3717 { 3718 switch (ext4_inode_journal_mode(inode)) { 3719 case EXT4_INODE_ORDERED_DATA_MODE: 3720 case EXT4_INODE_WRITEBACK_DATA_MODE: 3721 break; 3722 case EXT4_INODE_JOURNAL_DATA_MODE: 3723 inode->i_mapping->a_ops = &ext4_journalled_aops; 3724 return; 3725 default: 3726 BUG(); 3727 } 3728 if (IS_DAX(inode)) 3729 inode->i_mapping->a_ops = &ext4_dax_aops; 3730 else if (test_opt(inode->i_sb, DELALLOC)) 3731 inode->i_mapping->a_ops = &ext4_da_aops; 3732 else 3733 inode->i_mapping->a_ops = &ext4_aops; 3734 } 3735 3736 static int __ext4_block_zero_page_range(handle_t *handle, 3737 struct address_space *mapping, loff_t from, loff_t length) 3738 { 3739 ext4_fsblk_t index = from >> PAGE_SHIFT; 3740 unsigned offset = from & (PAGE_SIZE-1); 3741 unsigned blocksize, pos; 3742 ext4_lblk_t iblock; 3743 struct inode *inode = mapping->host; 3744 struct buffer_head *bh; 3745 struct page *page; 3746 int err = 0; 3747 3748 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3749 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3750 if (!page) 3751 return -ENOMEM; 3752 3753 blocksize = inode->i_sb->s_blocksize; 3754 3755 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3756 3757 if (!page_has_buffers(page)) 3758 create_empty_buffers(page, blocksize, 0); 3759 3760 /* Find the buffer that contains "offset" */ 3761 bh = page_buffers(page); 3762 pos = blocksize; 3763 while (offset >= pos) { 3764 bh = bh->b_this_page; 3765 iblock++; 3766 pos += blocksize; 3767 } 3768 if (buffer_freed(bh)) { 3769 BUFFER_TRACE(bh, "freed: skip"); 3770 goto unlock; 3771 } 3772 if (!buffer_mapped(bh)) { 3773 BUFFER_TRACE(bh, "unmapped"); 3774 ext4_get_block(inode, iblock, bh, 0); 3775 /* unmapped? It's a hole - nothing to do */ 3776 if (!buffer_mapped(bh)) { 3777 BUFFER_TRACE(bh, "still unmapped"); 3778 goto unlock; 3779 } 3780 } 3781 3782 /* Ok, it's mapped. Make sure it's up-to-date */ 3783 if (PageUptodate(page)) 3784 set_buffer_uptodate(bh); 3785 3786 if (!buffer_uptodate(bh)) { 3787 err = ext4_read_bh_lock(bh, 0, true); 3788 if (err) 3789 goto unlock; 3790 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3791 /* We expect the key to be set. */ 3792 BUG_ON(!fscrypt_has_encryption_key(inode)); 3793 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3794 bh_offset(bh)); 3795 if (err) { 3796 clear_buffer_uptodate(bh); 3797 goto unlock; 3798 } 3799 } 3800 } 3801 if (ext4_should_journal_data(inode)) { 3802 BUFFER_TRACE(bh, "get write access"); 3803 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3804 EXT4_JTR_NONE); 3805 if (err) 3806 goto unlock; 3807 } 3808 zero_user(page, offset, length); 3809 BUFFER_TRACE(bh, "zeroed end of block"); 3810 3811 if (ext4_should_journal_data(inode)) { 3812 err = ext4_handle_dirty_metadata(handle, inode, bh); 3813 } else { 3814 err = 0; 3815 mark_buffer_dirty(bh); 3816 if (ext4_should_order_data(inode)) 3817 err = ext4_jbd2_inode_add_write(handle, inode, from, 3818 length); 3819 } 3820 3821 unlock: 3822 unlock_page(page); 3823 put_page(page); 3824 return err; 3825 } 3826 3827 /* 3828 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3829 * starting from file offset 'from'. The range to be zero'd must 3830 * be contained with in one block. If the specified range exceeds 3831 * the end of the block it will be shortened to end of the block 3832 * that corresponds to 'from' 3833 */ 3834 static int ext4_block_zero_page_range(handle_t *handle, 3835 struct address_space *mapping, loff_t from, loff_t length) 3836 { 3837 struct inode *inode = mapping->host; 3838 unsigned offset = from & (PAGE_SIZE-1); 3839 unsigned blocksize = inode->i_sb->s_blocksize; 3840 unsigned max = blocksize - (offset & (blocksize - 1)); 3841 3842 /* 3843 * correct length if it does not fall between 3844 * 'from' and the end of the block 3845 */ 3846 if (length > max || length < 0) 3847 length = max; 3848 3849 if (IS_DAX(inode)) { 3850 return iomap_zero_range(inode, from, length, NULL, 3851 &ext4_iomap_ops); 3852 } 3853 return __ext4_block_zero_page_range(handle, mapping, from, length); 3854 } 3855 3856 /* 3857 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3858 * up to the end of the block which corresponds to `from'. 3859 * This required during truncate. We need to physically zero the tail end 3860 * of that block so it doesn't yield old data if the file is later grown. 3861 */ 3862 static int ext4_block_truncate_page(handle_t *handle, 3863 struct address_space *mapping, loff_t from) 3864 { 3865 unsigned offset = from & (PAGE_SIZE-1); 3866 unsigned length; 3867 unsigned blocksize; 3868 struct inode *inode = mapping->host; 3869 3870 /* If we are processing an encrypted inode during orphan list handling */ 3871 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3872 return 0; 3873 3874 blocksize = inode->i_sb->s_blocksize; 3875 length = blocksize - (offset & (blocksize - 1)); 3876 3877 return ext4_block_zero_page_range(handle, mapping, from, length); 3878 } 3879 3880 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3881 loff_t lstart, loff_t length) 3882 { 3883 struct super_block *sb = inode->i_sb; 3884 struct address_space *mapping = inode->i_mapping; 3885 unsigned partial_start, partial_end; 3886 ext4_fsblk_t start, end; 3887 loff_t byte_end = (lstart + length - 1); 3888 int err = 0; 3889 3890 partial_start = lstart & (sb->s_blocksize - 1); 3891 partial_end = byte_end & (sb->s_blocksize - 1); 3892 3893 start = lstart >> sb->s_blocksize_bits; 3894 end = byte_end >> sb->s_blocksize_bits; 3895 3896 /* Handle partial zero within the single block */ 3897 if (start == end && 3898 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3899 err = ext4_block_zero_page_range(handle, mapping, 3900 lstart, length); 3901 return err; 3902 } 3903 /* Handle partial zero out on the start of the range */ 3904 if (partial_start) { 3905 err = ext4_block_zero_page_range(handle, mapping, 3906 lstart, sb->s_blocksize); 3907 if (err) 3908 return err; 3909 } 3910 /* Handle partial zero out on the end of the range */ 3911 if (partial_end != sb->s_blocksize - 1) 3912 err = ext4_block_zero_page_range(handle, mapping, 3913 byte_end - partial_end, 3914 partial_end + 1); 3915 return err; 3916 } 3917 3918 int ext4_can_truncate(struct inode *inode) 3919 { 3920 if (S_ISREG(inode->i_mode)) 3921 return 1; 3922 if (S_ISDIR(inode->i_mode)) 3923 return 1; 3924 if (S_ISLNK(inode->i_mode)) 3925 return !ext4_inode_is_fast_symlink(inode); 3926 return 0; 3927 } 3928 3929 /* 3930 * We have to make sure i_disksize gets properly updated before we truncate 3931 * page cache due to hole punching or zero range. Otherwise i_disksize update 3932 * can get lost as it may have been postponed to submission of writeback but 3933 * that will never happen after we truncate page cache. 3934 */ 3935 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3936 loff_t len) 3937 { 3938 handle_t *handle; 3939 int ret; 3940 3941 loff_t size = i_size_read(inode); 3942 3943 WARN_ON(!inode_is_locked(inode)); 3944 if (offset > size || offset + len < size) 3945 return 0; 3946 3947 if (EXT4_I(inode)->i_disksize >= size) 3948 return 0; 3949 3950 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3951 if (IS_ERR(handle)) 3952 return PTR_ERR(handle); 3953 ext4_update_i_disksize(inode, size); 3954 ret = ext4_mark_inode_dirty(handle, inode); 3955 ext4_journal_stop(handle); 3956 3957 return ret; 3958 } 3959 3960 static void ext4_wait_dax_page(struct inode *inode) 3961 { 3962 filemap_invalidate_unlock(inode->i_mapping); 3963 schedule(); 3964 filemap_invalidate_lock(inode->i_mapping); 3965 } 3966 3967 int ext4_break_layouts(struct inode *inode) 3968 { 3969 struct page *page; 3970 int error; 3971 3972 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3973 return -EINVAL; 3974 3975 do { 3976 page = dax_layout_busy_page(inode->i_mapping); 3977 if (!page) 3978 return 0; 3979 3980 error = ___wait_var_event(&page->_refcount, 3981 atomic_read(&page->_refcount) == 1, 3982 TASK_INTERRUPTIBLE, 0, 0, 3983 ext4_wait_dax_page(inode)); 3984 } while (error == 0); 3985 3986 return error; 3987 } 3988 3989 /* 3990 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3991 * associated with the given offset and length 3992 * 3993 * @inode: File inode 3994 * @offset: The offset where the hole will begin 3995 * @len: The length of the hole 3996 * 3997 * Returns: 0 on success or negative on failure 3998 */ 3999 4000 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4001 { 4002 struct super_block *sb = inode->i_sb; 4003 ext4_lblk_t first_block, stop_block; 4004 struct address_space *mapping = inode->i_mapping; 4005 loff_t first_block_offset, last_block_offset; 4006 handle_t *handle; 4007 unsigned int credits; 4008 int ret = 0, ret2 = 0; 4009 4010 trace_ext4_punch_hole(inode, offset, length, 0); 4011 4012 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4013 if (ext4_has_inline_data(inode)) { 4014 filemap_invalidate_lock(mapping); 4015 ret = ext4_convert_inline_data(inode); 4016 filemap_invalidate_unlock(mapping); 4017 if (ret) 4018 return ret; 4019 } 4020 4021 /* 4022 * Write out all dirty pages to avoid race conditions 4023 * Then release them. 4024 */ 4025 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4026 ret = filemap_write_and_wait_range(mapping, offset, 4027 offset + length - 1); 4028 if (ret) 4029 return ret; 4030 } 4031 4032 inode_lock(inode); 4033 4034 /* No need to punch hole beyond i_size */ 4035 if (offset >= inode->i_size) 4036 goto out_mutex; 4037 4038 /* 4039 * If the hole extends beyond i_size, set the hole 4040 * to end after the page that contains i_size 4041 */ 4042 if (offset + length > inode->i_size) { 4043 length = inode->i_size + 4044 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4045 offset; 4046 } 4047 4048 if (offset & (sb->s_blocksize - 1) || 4049 (offset + length) & (sb->s_blocksize - 1)) { 4050 /* 4051 * Attach jinode to inode for jbd2 if we do any zeroing of 4052 * partial block 4053 */ 4054 ret = ext4_inode_attach_jinode(inode); 4055 if (ret < 0) 4056 goto out_mutex; 4057 4058 } 4059 4060 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4061 inode_dio_wait(inode); 4062 4063 /* 4064 * Prevent page faults from reinstantiating pages we have released from 4065 * page cache. 4066 */ 4067 filemap_invalidate_lock(mapping); 4068 4069 ret = ext4_break_layouts(inode); 4070 if (ret) 4071 goto out_dio; 4072 4073 first_block_offset = round_up(offset, sb->s_blocksize); 4074 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4075 4076 /* Now release the pages and zero block aligned part of pages*/ 4077 if (last_block_offset > first_block_offset) { 4078 ret = ext4_update_disksize_before_punch(inode, offset, length); 4079 if (ret) 4080 goto out_dio; 4081 truncate_pagecache_range(inode, first_block_offset, 4082 last_block_offset); 4083 } 4084 4085 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4086 credits = ext4_writepage_trans_blocks(inode); 4087 else 4088 credits = ext4_blocks_for_truncate(inode); 4089 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4090 if (IS_ERR(handle)) { 4091 ret = PTR_ERR(handle); 4092 ext4_std_error(sb, ret); 4093 goto out_dio; 4094 } 4095 4096 ret = ext4_zero_partial_blocks(handle, inode, offset, 4097 length); 4098 if (ret) 4099 goto out_stop; 4100 4101 first_block = (offset + sb->s_blocksize - 1) >> 4102 EXT4_BLOCK_SIZE_BITS(sb); 4103 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4104 4105 /* If there are blocks to remove, do it */ 4106 if (stop_block > first_block) { 4107 4108 down_write(&EXT4_I(inode)->i_data_sem); 4109 ext4_discard_preallocations(inode, 0); 4110 4111 ret = ext4_es_remove_extent(inode, first_block, 4112 stop_block - first_block); 4113 if (ret) { 4114 up_write(&EXT4_I(inode)->i_data_sem); 4115 goto out_stop; 4116 } 4117 4118 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4119 ret = ext4_ext_remove_space(inode, first_block, 4120 stop_block - 1); 4121 else 4122 ret = ext4_ind_remove_space(handle, inode, first_block, 4123 stop_block); 4124 4125 up_write(&EXT4_I(inode)->i_data_sem); 4126 } 4127 ext4_fc_track_range(handle, inode, first_block, stop_block); 4128 if (IS_SYNC(inode)) 4129 ext4_handle_sync(handle); 4130 4131 inode->i_mtime = inode->i_ctime = current_time(inode); 4132 ret2 = ext4_mark_inode_dirty(handle, inode); 4133 if (unlikely(ret2)) 4134 ret = ret2; 4135 if (ret >= 0) 4136 ext4_update_inode_fsync_trans(handle, inode, 1); 4137 out_stop: 4138 ext4_journal_stop(handle); 4139 out_dio: 4140 filemap_invalidate_unlock(mapping); 4141 out_mutex: 4142 inode_unlock(inode); 4143 return ret; 4144 } 4145 4146 int ext4_inode_attach_jinode(struct inode *inode) 4147 { 4148 struct ext4_inode_info *ei = EXT4_I(inode); 4149 struct jbd2_inode *jinode; 4150 4151 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4152 return 0; 4153 4154 jinode = jbd2_alloc_inode(GFP_KERNEL); 4155 spin_lock(&inode->i_lock); 4156 if (!ei->jinode) { 4157 if (!jinode) { 4158 spin_unlock(&inode->i_lock); 4159 return -ENOMEM; 4160 } 4161 ei->jinode = jinode; 4162 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4163 jinode = NULL; 4164 } 4165 spin_unlock(&inode->i_lock); 4166 if (unlikely(jinode != NULL)) 4167 jbd2_free_inode(jinode); 4168 return 0; 4169 } 4170 4171 /* 4172 * ext4_truncate() 4173 * 4174 * We block out ext4_get_block() block instantiations across the entire 4175 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4176 * simultaneously on behalf of the same inode. 4177 * 4178 * As we work through the truncate and commit bits of it to the journal there 4179 * is one core, guiding principle: the file's tree must always be consistent on 4180 * disk. We must be able to restart the truncate after a crash. 4181 * 4182 * The file's tree may be transiently inconsistent in memory (although it 4183 * probably isn't), but whenever we close off and commit a journal transaction, 4184 * the contents of (the filesystem + the journal) must be consistent and 4185 * restartable. It's pretty simple, really: bottom up, right to left (although 4186 * left-to-right works OK too). 4187 * 4188 * Note that at recovery time, journal replay occurs *before* the restart of 4189 * truncate against the orphan inode list. 4190 * 4191 * The committed inode has the new, desired i_size (which is the same as 4192 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4193 * that this inode's truncate did not complete and it will again call 4194 * ext4_truncate() to have another go. So there will be instantiated blocks 4195 * to the right of the truncation point in a crashed ext4 filesystem. But 4196 * that's fine - as long as they are linked from the inode, the post-crash 4197 * ext4_truncate() run will find them and release them. 4198 */ 4199 int ext4_truncate(struct inode *inode) 4200 { 4201 struct ext4_inode_info *ei = EXT4_I(inode); 4202 unsigned int credits; 4203 int err = 0, err2; 4204 handle_t *handle; 4205 struct address_space *mapping = inode->i_mapping; 4206 4207 /* 4208 * There is a possibility that we're either freeing the inode 4209 * or it's a completely new inode. In those cases we might not 4210 * have i_mutex locked because it's not necessary. 4211 */ 4212 if (!(inode->i_state & (I_NEW|I_FREEING))) 4213 WARN_ON(!inode_is_locked(inode)); 4214 trace_ext4_truncate_enter(inode); 4215 4216 if (!ext4_can_truncate(inode)) 4217 goto out_trace; 4218 4219 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4220 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4221 4222 if (ext4_has_inline_data(inode)) { 4223 int has_inline = 1; 4224 4225 err = ext4_inline_data_truncate(inode, &has_inline); 4226 if (err || has_inline) 4227 goto out_trace; 4228 } 4229 4230 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4231 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4232 if (ext4_inode_attach_jinode(inode) < 0) 4233 goto out_trace; 4234 } 4235 4236 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4237 credits = ext4_writepage_trans_blocks(inode); 4238 else 4239 credits = ext4_blocks_for_truncate(inode); 4240 4241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4242 if (IS_ERR(handle)) { 4243 err = PTR_ERR(handle); 4244 goto out_trace; 4245 } 4246 4247 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4248 ext4_block_truncate_page(handle, mapping, inode->i_size); 4249 4250 /* 4251 * We add the inode to the orphan list, so that if this 4252 * truncate spans multiple transactions, and we crash, we will 4253 * resume the truncate when the filesystem recovers. It also 4254 * marks the inode dirty, to catch the new size. 4255 * 4256 * Implication: the file must always be in a sane, consistent 4257 * truncatable state while each transaction commits. 4258 */ 4259 err = ext4_orphan_add(handle, inode); 4260 if (err) 4261 goto out_stop; 4262 4263 down_write(&EXT4_I(inode)->i_data_sem); 4264 4265 ext4_discard_preallocations(inode, 0); 4266 4267 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4268 err = ext4_ext_truncate(handle, inode); 4269 else 4270 ext4_ind_truncate(handle, inode); 4271 4272 up_write(&ei->i_data_sem); 4273 if (err) 4274 goto out_stop; 4275 4276 if (IS_SYNC(inode)) 4277 ext4_handle_sync(handle); 4278 4279 out_stop: 4280 /* 4281 * If this was a simple ftruncate() and the file will remain alive, 4282 * then we need to clear up the orphan record which we created above. 4283 * However, if this was a real unlink then we were called by 4284 * ext4_evict_inode(), and we allow that function to clean up the 4285 * orphan info for us. 4286 */ 4287 if (inode->i_nlink) 4288 ext4_orphan_del(handle, inode); 4289 4290 inode->i_mtime = inode->i_ctime = current_time(inode); 4291 err2 = ext4_mark_inode_dirty(handle, inode); 4292 if (unlikely(err2 && !err)) 4293 err = err2; 4294 ext4_journal_stop(handle); 4295 4296 out_trace: 4297 trace_ext4_truncate_exit(inode); 4298 return err; 4299 } 4300 4301 /* 4302 * ext4_get_inode_loc returns with an extra refcount against the inode's 4303 * underlying buffer_head on success. If 'in_mem' is true, we have all 4304 * data in memory that is needed to recreate the on-disk version of this 4305 * inode. 4306 */ 4307 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4308 struct ext4_iloc *iloc, int in_mem, 4309 ext4_fsblk_t *ret_block) 4310 { 4311 struct ext4_group_desc *gdp; 4312 struct buffer_head *bh; 4313 ext4_fsblk_t block; 4314 struct blk_plug plug; 4315 int inodes_per_block, inode_offset; 4316 4317 iloc->bh = NULL; 4318 if (ino < EXT4_ROOT_INO || 4319 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4320 return -EFSCORRUPTED; 4321 4322 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4323 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4324 if (!gdp) 4325 return -EIO; 4326 4327 /* 4328 * Figure out the offset within the block group inode table 4329 */ 4330 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4331 inode_offset = ((ino - 1) % 4332 EXT4_INODES_PER_GROUP(sb)); 4333 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4334 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4335 4336 bh = sb_getblk(sb, block); 4337 if (unlikely(!bh)) 4338 return -ENOMEM; 4339 if (ext4_buffer_uptodate(bh)) 4340 goto has_buffer; 4341 4342 lock_buffer(bh); 4343 /* 4344 * If we have all information of the inode in memory and this 4345 * is the only valid inode in the block, we need not read the 4346 * block. 4347 */ 4348 if (in_mem) { 4349 struct buffer_head *bitmap_bh; 4350 int i, start; 4351 4352 start = inode_offset & ~(inodes_per_block - 1); 4353 4354 /* Is the inode bitmap in cache? */ 4355 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4356 if (unlikely(!bitmap_bh)) 4357 goto make_io; 4358 4359 /* 4360 * If the inode bitmap isn't in cache then the 4361 * optimisation may end up performing two reads instead 4362 * of one, so skip it. 4363 */ 4364 if (!buffer_uptodate(bitmap_bh)) { 4365 brelse(bitmap_bh); 4366 goto make_io; 4367 } 4368 for (i = start; i < start + inodes_per_block; i++) { 4369 if (i == inode_offset) 4370 continue; 4371 if (ext4_test_bit(i, bitmap_bh->b_data)) 4372 break; 4373 } 4374 brelse(bitmap_bh); 4375 if (i == start + inodes_per_block) { 4376 /* all other inodes are free, so skip I/O */ 4377 memset(bh->b_data, 0, bh->b_size); 4378 set_buffer_uptodate(bh); 4379 unlock_buffer(bh); 4380 goto has_buffer; 4381 } 4382 } 4383 4384 make_io: 4385 /* 4386 * If we need to do any I/O, try to pre-readahead extra 4387 * blocks from the inode table. 4388 */ 4389 blk_start_plug(&plug); 4390 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4391 ext4_fsblk_t b, end, table; 4392 unsigned num; 4393 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4394 4395 table = ext4_inode_table(sb, gdp); 4396 /* s_inode_readahead_blks is always a power of 2 */ 4397 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4398 if (table > b) 4399 b = table; 4400 end = b + ra_blks; 4401 num = EXT4_INODES_PER_GROUP(sb); 4402 if (ext4_has_group_desc_csum(sb)) 4403 num -= ext4_itable_unused_count(sb, gdp); 4404 table += num / inodes_per_block; 4405 if (end > table) 4406 end = table; 4407 while (b <= end) 4408 ext4_sb_breadahead_unmovable(sb, b++); 4409 } 4410 4411 /* 4412 * There are other valid inodes in the buffer, this inode 4413 * has in-inode xattrs, or we don't have this inode in memory. 4414 * Read the block from disk. 4415 */ 4416 trace_ext4_load_inode(sb, ino); 4417 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4418 blk_finish_plug(&plug); 4419 wait_on_buffer(bh); 4420 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4421 if (!buffer_uptodate(bh)) { 4422 if (ret_block) 4423 *ret_block = block; 4424 brelse(bh); 4425 return -EIO; 4426 } 4427 has_buffer: 4428 iloc->bh = bh; 4429 return 0; 4430 } 4431 4432 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4433 struct ext4_iloc *iloc) 4434 { 4435 ext4_fsblk_t err_blk; 4436 int ret; 4437 4438 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0, 4439 &err_blk); 4440 4441 if (ret == -EIO) 4442 ext4_error_inode_block(inode, err_blk, EIO, 4443 "unable to read itable block"); 4444 4445 return ret; 4446 } 4447 4448 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4449 { 4450 ext4_fsblk_t err_blk; 4451 int ret; 4452 4453 /* We have all inode data except xattrs in memory here. */ 4454 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 4455 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk); 4456 4457 if (ret == -EIO) 4458 ext4_error_inode_block(inode, err_blk, EIO, 4459 "unable to read itable block"); 4460 4461 return ret; 4462 } 4463 4464 4465 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4466 struct ext4_iloc *iloc) 4467 { 4468 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL); 4469 } 4470 4471 static bool ext4_should_enable_dax(struct inode *inode) 4472 { 4473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4474 4475 if (test_opt2(inode->i_sb, DAX_NEVER)) 4476 return false; 4477 if (!S_ISREG(inode->i_mode)) 4478 return false; 4479 if (ext4_should_journal_data(inode)) 4480 return false; 4481 if (ext4_has_inline_data(inode)) 4482 return false; 4483 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4484 return false; 4485 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4486 return false; 4487 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4488 return false; 4489 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4490 return true; 4491 4492 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4493 } 4494 4495 void ext4_set_inode_flags(struct inode *inode, bool init) 4496 { 4497 unsigned int flags = EXT4_I(inode)->i_flags; 4498 unsigned int new_fl = 0; 4499 4500 WARN_ON_ONCE(IS_DAX(inode) && init); 4501 4502 if (flags & EXT4_SYNC_FL) 4503 new_fl |= S_SYNC; 4504 if (flags & EXT4_APPEND_FL) 4505 new_fl |= S_APPEND; 4506 if (flags & EXT4_IMMUTABLE_FL) 4507 new_fl |= S_IMMUTABLE; 4508 if (flags & EXT4_NOATIME_FL) 4509 new_fl |= S_NOATIME; 4510 if (flags & EXT4_DIRSYNC_FL) 4511 new_fl |= S_DIRSYNC; 4512 4513 /* Because of the way inode_set_flags() works we must preserve S_DAX 4514 * here if already set. */ 4515 new_fl |= (inode->i_flags & S_DAX); 4516 if (init && ext4_should_enable_dax(inode)) 4517 new_fl |= S_DAX; 4518 4519 if (flags & EXT4_ENCRYPT_FL) 4520 new_fl |= S_ENCRYPTED; 4521 if (flags & EXT4_CASEFOLD_FL) 4522 new_fl |= S_CASEFOLD; 4523 if (flags & EXT4_VERITY_FL) 4524 new_fl |= S_VERITY; 4525 inode_set_flags(inode, new_fl, 4526 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4527 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4528 } 4529 4530 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4531 struct ext4_inode_info *ei) 4532 { 4533 blkcnt_t i_blocks ; 4534 struct inode *inode = &(ei->vfs_inode); 4535 struct super_block *sb = inode->i_sb; 4536 4537 if (ext4_has_feature_huge_file(sb)) { 4538 /* we are using combined 48 bit field */ 4539 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4540 le32_to_cpu(raw_inode->i_blocks_lo); 4541 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4542 /* i_blocks represent file system block size */ 4543 return i_blocks << (inode->i_blkbits - 9); 4544 } else { 4545 return i_blocks; 4546 } 4547 } else { 4548 return le32_to_cpu(raw_inode->i_blocks_lo); 4549 } 4550 } 4551 4552 static inline int ext4_iget_extra_inode(struct inode *inode, 4553 struct ext4_inode *raw_inode, 4554 struct ext4_inode_info *ei) 4555 { 4556 __le32 *magic = (void *)raw_inode + 4557 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4558 4559 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4560 EXT4_INODE_SIZE(inode->i_sb) && 4561 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4562 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4563 return ext4_find_inline_data_nolock(inode); 4564 } else 4565 EXT4_I(inode)->i_inline_off = 0; 4566 return 0; 4567 } 4568 4569 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4570 { 4571 if (!ext4_has_feature_project(inode->i_sb)) 4572 return -EOPNOTSUPP; 4573 *projid = EXT4_I(inode)->i_projid; 4574 return 0; 4575 } 4576 4577 /* 4578 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4579 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4580 * set. 4581 */ 4582 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4583 { 4584 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4585 inode_set_iversion_raw(inode, val); 4586 else 4587 inode_set_iversion_queried(inode, val); 4588 } 4589 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4590 { 4591 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4592 return inode_peek_iversion_raw(inode); 4593 else 4594 return inode_peek_iversion(inode); 4595 } 4596 4597 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4598 ext4_iget_flags flags, const char *function, 4599 unsigned int line) 4600 { 4601 struct ext4_iloc iloc; 4602 struct ext4_inode *raw_inode; 4603 struct ext4_inode_info *ei; 4604 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4605 struct inode *inode; 4606 journal_t *journal = EXT4_SB(sb)->s_journal; 4607 long ret; 4608 loff_t size; 4609 int block; 4610 uid_t i_uid; 4611 gid_t i_gid; 4612 projid_t i_projid; 4613 4614 if ((!(flags & EXT4_IGET_SPECIAL) && 4615 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4616 ino == le32_to_cpu(es->s_usr_quota_inum) || 4617 ino == le32_to_cpu(es->s_grp_quota_inum) || 4618 ino == le32_to_cpu(es->s_prj_quota_inum) || 4619 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4620 (ino < EXT4_ROOT_INO) || 4621 (ino > le32_to_cpu(es->s_inodes_count))) { 4622 if (flags & EXT4_IGET_HANDLE) 4623 return ERR_PTR(-ESTALE); 4624 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4625 "inode #%lu: comm %s: iget: illegal inode #", 4626 ino, current->comm); 4627 return ERR_PTR(-EFSCORRUPTED); 4628 } 4629 4630 inode = iget_locked(sb, ino); 4631 if (!inode) 4632 return ERR_PTR(-ENOMEM); 4633 if (!(inode->i_state & I_NEW)) 4634 return inode; 4635 4636 ei = EXT4_I(inode); 4637 iloc.bh = NULL; 4638 4639 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4640 if (ret < 0) 4641 goto bad_inode; 4642 raw_inode = ext4_raw_inode(&iloc); 4643 4644 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4645 ext4_error_inode(inode, function, line, 0, 4646 "iget: root inode unallocated"); 4647 ret = -EFSCORRUPTED; 4648 goto bad_inode; 4649 } 4650 4651 if ((flags & EXT4_IGET_HANDLE) && 4652 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4653 ret = -ESTALE; 4654 goto bad_inode; 4655 } 4656 4657 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4658 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4659 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4660 EXT4_INODE_SIZE(inode->i_sb) || 4661 (ei->i_extra_isize & 3)) { 4662 ext4_error_inode(inode, function, line, 0, 4663 "iget: bad extra_isize %u " 4664 "(inode size %u)", 4665 ei->i_extra_isize, 4666 EXT4_INODE_SIZE(inode->i_sb)); 4667 ret = -EFSCORRUPTED; 4668 goto bad_inode; 4669 } 4670 } else 4671 ei->i_extra_isize = 0; 4672 4673 /* Precompute checksum seed for inode metadata */ 4674 if (ext4_has_metadata_csum(sb)) { 4675 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4676 __u32 csum; 4677 __le32 inum = cpu_to_le32(inode->i_ino); 4678 __le32 gen = raw_inode->i_generation; 4679 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4680 sizeof(inum)); 4681 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4682 sizeof(gen)); 4683 } 4684 4685 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4686 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4687 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4688 ext4_error_inode_err(inode, function, line, 0, 4689 EFSBADCRC, "iget: checksum invalid"); 4690 ret = -EFSBADCRC; 4691 goto bad_inode; 4692 } 4693 4694 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4695 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4696 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4697 if (ext4_has_feature_project(sb) && 4698 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4699 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4700 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4701 else 4702 i_projid = EXT4_DEF_PROJID; 4703 4704 if (!(test_opt(inode->i_sb, NO_UID32))) { 4705 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4706 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4707 } 4708 i_uid_write(inode, i_uid); 4709 i_gid_write(inode, i_gid); 4710 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4711 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4712 4713 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4714 ei->i_inline_off = 0; 4715 ei->i_dir_start_lookup = 0; 4716 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4717 /* We now have enough fields to check if the inode was active or not. 4718 * This is needed because nfsd might try to access dead inodes 4719 * the test is that same one that e2fsck uses 4720 * NeilBrown 1999oct15 4721 */ 4722 if (inode->i_nlink == 0) { 4723 if ((inode->i_mode == 0 || 4724 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4725 ino != EXT4_BOOT_LOADER_INO) { 4726 /* this inode is deleted */ 4727 ret = -ESTALE; 4728 goto bad_inode; 4729 } 4730 /* The only unlinked inodes we let through here have 4731 * valid i_mode and are being read by the orphan 4732 * recovery code: that's fine, we're about to complete 4733 * the process of deleting those. 4734 * OR it is the EXT4_BOOT_LOADER_INO which is 4735 * not initialized on a new filesystem. */ 4736 } 4737 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4738 ext4_set_inode_flags(inode, true); 4739 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4740 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4741 if (ext4_has_feature_64bit(sb)) 4742 ei->i_file_acl |= 4743 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4744 inode->i_size = ext4_isize(sb, raw_inode); 4745 if ((size = i_size_read(inode)) < 0) { 4746 ext4_error_inode(inode, function, line, 0, 4747 "iget: bad i_size value: %lld", size); 4748 ret = -EFSCORRUPTED; 4749 goto bad_inode; 4750 } 4751 /* 4752 * If dir_index is not enabled but there's dir with INDEX flag set, 4753 * we'd normally treat htree data as empty space. But with metadata 4754 * checksumming that corrupts checksums so forbid that. 4755 */ 4756 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4757 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4758 ext4_error_inode(inode, function, line, 0, 4759 "iget: Dir with htree data on filesystem without dir_index feature."); 4760 ret = -EFSCORRUPTED; 4761 goto bad_inode; 4762 } 4763 ei->i_disksize = inode->i_size; 4764 #ifdef CONFIG_QUOTA 4765 ei->i_reserved_quota = 0; 4766 #endif 4767 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4768 ei->i_block_group = iloc.block_group; 4769 ei->i_last_alloc_group = ~0; 4770 /* 4771 * NOTE! The in-memory inode i_data array is in little-endian order 4772 * even on big-endian machines: we do NOT byteswap the block numbers! 4773 */ 4774 for (block = 0; block < EXT4_N_BLOCKS; block++) 4775 ei->i_data[block] = raw_inode->i_block[block]; 4776 INIT_LIST_HEAD(&ei->i_orphan); 4777 ext4_fc_init_inode(&ei->vfs_inode); 4778 4779 /* 4780 * Set transaction id's of transactions that have to be committed 4781 * to finish f[data]sync. We set them to currently running transaction 4782 * as we cannot be sure that the inode or some of its metadata isn't 4783 * part of the transaction - the inode could have been reclaimed and 4784 * now it is reread from disk. 4785 */ 4786 if (journal) { 4787 transaction_t *transaction; 4788 tid_t tid; 4789 4790 read_lock(&journal->j_state_lock); 4791 if (journal->j_running_transaction) 4792 transaction = journal->j_running_transaction; 4793 else 4794 transaction = journal->j_committing_transaction; 4795 if (transaction) 4796 tid = transaction->t_tid; 4797 else 4798 tid = journal->j_commit_sequence; 4799 read_unlock(&journal->j_state_lock); 4800 ei->i_sync_tid = tid; 4801 ei->i_datasync_tid = tid; 4802 } 4803 4804 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4805 if (ei->i_extra_isize == 0) { 4806 /* The extra space is currently unused. Use it. */ 4807 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4808 ei->i_extra_isize = sizeof(struct ext4_inode) - 4809 EXT4_GOOD_OLD_INODE_SIZE; 4810 } else { 4811 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4812 if (ret) 4813 goto bad_inode; 4814 } 4815 } 4816 4817 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4818 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4819 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4820 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4821 4822 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4823 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4824 4825 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4826 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4827 ivers |= 4828 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4829 } 4830 ext4_inode_set_iversion_queried(inode, ivers); 4831 } 4832 4833 ret = 0; 4834 if (ei->i_file_acl && 4835 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4836 ext4_error_inode(inode, function, line, 0, 4837 "iget: bad extended attribute block %llu", 4838 ei->i_file_acl); 4839 ret = -EFSCORRUPTED; 4840 goto bad_inode; 4841 } else if (!ext4_has_inline_data(inode)) { 4842 /* validate the block references in the inode */ 4843 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4844 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4845 (S_ISLNK(inode->i_mode) && 4846 !ext4_inode_is_fast_symlink(inode)))) { 4847 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4848 ret = ext4_ext_check_inode(inode); 4849 else 4850 ret = ext4_ind_check_inode(inode); 4851 } 4852 } 4853 if (ret) 4854 goto bad_inode; 4855 4856 if (S_ISREG(inode->i_mode)) { 4857 inode->i_op = &ext4_file_inode_operations; 4858 inode->i_fop = &ext4_file_operations; 4859 ext4_set_aops(inode); 4860 } else if (S_ISDIR(inode->i_mode)) { 4861 inode->i_op = &ext4_dir_inode_operations; 4862 inode->i_fop = &ext4_dir_operations; 4863 } else if (S_ISLNK(inode->i_mode)) { 4864 /* VFS does not allow setting these so must be corruption */ 4865 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4866 ext4_error_inode(inode, function, line, 0, 4867 "iget: immutable or append flags " 4868 "not allowed on symlinks"); 4869 ret = -EFSCORRUPTED; 4870 goto bad_inode; 4871 } 4872 if (IS_ENCRYPTED(inode)) { 4873 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4874 ext4_set_aops(inode); 4875 } else if (ext4_inode_is_fast_symlink(inode)) { 4876 inode->i_link = (char *)ei->i_data; 4877 inode->i_op = &ext4_fast_symlink_inode_operations; 4878 nd_terminate_link(ei->i_data, inode->i_size, 4879 sizeof(ei->i_data) - 1); 4880 } else { 4881 inode->i_op = &ext4_symlink_inode_operations; 4882 ext4_set_aops(inode); 4883 } 4884 inode_nohighmem(inode); 4885 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4886 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4887 inode->i_op = &ext4_special_inode_operations; 4888 if (raw_inode->i_block[0]) 4889 init_special_inode(inode, inode->i_mode, 4890 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4891 else 4892 init_special_inode(inode, inode->i_mode, 4893 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4894 } else if (ino == EXT4_BOOT_LOADER_INO) { 4895 make_bad_inode(inode); 4896 } else { 4897 ret = -EFSCORRUPTED; 4898 ext4_error_inode(inode, function, line, 0, 4899 "iget: bogus i_mode (%o)", inode->i_mode); 4900 goto bad_inode; 4901 } 4902 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4903 ext4_error_inode(inode, function, line, 0, 4904 "casefold flag without casefold feature"); 4905 brelse(iloc.bh); 4906 4907 unlock_new_inode(inode); 4908 return inode; 4909 4910 bad_inode: 4911 brelse(iloc.bh); 4912 iget_failed(inode); 4913 return ERR_PTR(ret); 4914 } 4915 4916 static int ext4_inode_blocks_set(handle_t *handle, 4917 struct ext4_inode *raw_inode, 4918 struct ext4_inode_info *ei) 4919 { 4920 struct inode *inode = &(ei->vfs_inode); 4921 u64 i_blocks = READ_ONCE(inode->i_blocks); 4922 struct super_block *sb = inode->i_sb; 4923 4924 if (i_blocks <= ~0U) { 4925 /* 4926 * i_blocks can be represented in a 32 bit variable 4927 * as multiple of 512 bytes 4928 */ 4929 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4930 raw_inode->i_blocks_high = 0; 4931 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4932 return 0; 4933 } 4934 4935 /* 4936 * This should never happen since sb->s_maxbytes should not have 4937 * allowed this, sb->s_maxbytes was set according to the huge_file 4938 * feature in ext4_fill_super(). 4939 */ 4940 if (!ext4_has_feature_huge_file(sb)) 4941 return -EFSCORRUPTED; 4942 4943 if (i_blocks <= 0xffffffffffffULL) { 4944 /* 4945 * i_blocks can be represented in a 48 bit variable 4946 * as multiple of 512 bytes 4947 */ 4948 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4949 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4950 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4951 } else { 4952 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4953 /* i_block is stored in file system block size */ 4954 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4955 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4956 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4957 } 4958 return 0; 4959 } 4960 4961 static void __ext4_update_other_inode_time(struct super_block *sb, 4962 unsigned long orig_ino, 4963 unsigned long ino, 4964 struct ext4_inode *raw_inode) 4965 { 4966 struct inode *inode; 4967 4968 inode = find_inode_by_ino_rcu(sb, ino); 4969 if (!inode) 4970 return; 4971 4972 if (!inode_is_dirtytime_only(inode)) 4973 return; 4974 4975 spin_lock(&inode->i_lock); 4976 if (inode_is_dirtytime_only(inode)) { 4977 struct ext4_inode_info *ei = EXT4_I(inode); 4978 4979 inode->i_state &= ~I_DIRTY_TIME; 4980 spin_unlock(&inode->i_lock); 4981 4982 spin_lock(&ei->i_raw_lock); 4983 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4984 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4985 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4986 ext4_inode_csum_set(inode, raw_inode, ei); 4987 spin_unlock(&ei->i_raw_lock); 4988 trace_ext4_other_inode_update_time(inode, orig_ino); 4989 return; 4990 } 4991 spin_unlock(&inode->i_lock); 4992 } 4993 4994 /* 4995 * Opportunistically update the other time fields for other inodes in 4996 * the same inode table block. 4997 */ 4998 static void ext4_update_other_inodes_time(struct super_block *sb, 4999 unsigned long orig_ino, char *buf) 5000 { 5001 unsigned long ino; 5002 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5003 int inode_size = EXT4_INODE_SIZE(sb); 5004 5005 /* 5006 * Calculate the first inode in the inode table block. Inode 5007 * numbers are one-based. That is, the first inode in a block 5008 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5009 */ 5010 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5011 rcu_read_lock(); 5012 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5013 if (ino == orig_ino) 5014 continue; 5015 __ext4_update_other_inode_time(sb, orig_ino, ino, 5016 (struct ext4_inode *)buf); 5017 } 5018 rcu_read_unlock(); 5019 } 5020 5021 /* 5022 * Post the struct inode info into an on-disk inode location in the 5023 * buffer-cache. This gobbles the caller's reference to the 5024 * buffer_head in the inode location struct. 5025 * 5026 * The caller must have write access to iloc->bh. 5027 */ 5028 static int ext4_do_update_inode(handle_t *handle, 5029 struct inode *inode, 5030 struct ext4_iloc *iloc) 5031 { 5032 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5033 struct ext4_inode_info *ei = EXT4_I(inode); 5034 struct buffer_head *bh = iloc->bh; 5035 struct super_block *sb = inode->i_sb; 5036 int err = 0, block; 5037 int need_datasync = 0, set_large_file = 0; 5038 uid_t i_uid; 5039 gid_t i_gid; 5040 projid_t i_projid; 5041 5042 spin_lock(&ei->i_raw_lock); 5043 5044 /* 5045 * For fields not tracked in the in-memory inode, initialise them 5046 * to zero for new inodes. 5047 */ 5048 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5049 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5050 5051 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5052 5053 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5054 i_uid = i_uid_read(inode); 5055 i_gid = i_gid_read(inode); 5056 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5057 if (!(test_opt(inode->i_sb, NO_UID32))) { 5058 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5059 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5060 /* 5061 * Fix up interoperability with old kernels. Otherwise, 5062 * old inodes get re-used with the upper 16 bits of the 5063 * uid/gid intact. 5064 */ 5065 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5066 raw_inode->i_uid_high = 0; 5067 raw_inode->i_gid_high = 0; 5068 } else { 5069 raw_inode->i_uid_high = 5070 cpu_to_le16(high_16_bits(i_uid)); 5071 raw_inode->i_gid_high = 5072 cpu_to_le16(high_16_bits(i_gid)); 5073 } 5074 } else { 5075 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5076 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5077 raw_inode->i_uid_high = 0; 5078 raw_inode->i_gid_high = 0; 5079 } 5080 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5081 5082 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5083 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5084 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5085 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5086 5087 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5088 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5089 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5090 raw_inode->i_file_acl_high = 5091 cpu_to_le16(ei->i_file_acl >> 32); 5092 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5093 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5094 ext4_isize_set(raw_inode, ei->i_disksize); 5095 need_datasync = 1; 5096 } 5097 if (ei->i_disksize > 0x7fffffffULL) { 5098 if (!ext4_has_feature_large_file(sb) || 5099 EXT4_SB(sb)->s_es->s_rev_level == 5100 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5101 set_large_file = 1; 5102 } 5103 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5104 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5105 if (old_valid_dev(inode->i_rdev)) { 5106 raw_inode->i_block[0] = 5107 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5108 raw_inode->i_block[1] = 0; 5109 } else { 5110 raw_inode->i_block[0] = 0; 5111 raw_inode->i_block[1] = 5112 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5113 raw_inode->i_block[2] = 0; 5114 } 5115 } else if (!ext4_has_inline_data(inode)) { 5116 for (block = 0; block < EXT4_N_BLOCKS; block++) 5117 raw_inode->i_block[block] = ei->i_data[block]; 5118 } 5119 5120 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5121 u64 ivers = ext4_inode_peek_iversion(inode); 5122 5123 raw_inode->i_disk_version = cpu_to_le32(ivers); 5124 if (ei->i_extra_isize) { 5125 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5126 raw_inode->i_version_hi = 5127 cpu_to_le32(ivers >> 32); 5128 raw_inode->i_extra_isize = 5129 cpu_to_le16(ei->i_extra_isize); 5130 } 5131 } 5132 5133 if (i_projid != EXT4_DEF_PROJID && 5134 !ext4_has_feature_project(inode->i_sb)) 5135 err = err ?: -EFSCORRUPTED; 5136 5137 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5138 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5139 raw_inode->i_projid = cpu_to_le32(i_projid); 5140 5141 ext4_inode_csum_set(inode, raw_inode, ei); 5142 spin_unlock(&ei->i_raw_lock); 5143 if (err) { 5144 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5145 goto out_brelse; 5146 } 5147 5148 if (inode->i_sb->s_flags & SB_LAZYTIME) 5149 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5150 bh->b_data); 5151 5152 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5153 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5154 if (err) 5155 goto out_error; 5156 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5157 if (set_large_file) { 5158 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5159 err = ext4_journal_get_write_access(handle, sb, 5160 EXT4_SB(sb)->s_sbh, 5161 EXT4_JTR_NONE); 5162 if (err) 5163 goto out_error; 5164 lock_buffer(EXT4_SB(sb)->s_sbh); 5165 ext4_set_feature_large_file(sb); 5166 ext4_superblock_csum_set(sb); 5167 unlock_buffer(EXT4_SB(sb)->s_sbh); 5168 ext4_handle_sync(handle); 5169 err = ext4_handle_dirty_metadata(handle, NULL, 5170 EXT4_SB(sb)->s_sbh); 5171 } 5172 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5173 out_error: 5174 ext4_std_error(inode->i_sb, err); 5175 out_brelse: 5176 brelse(bh); 5177 return err; 5178 } 5179 5180 /* 5181 * ext4_write_inode() 5182 * 5183 * We are called from a few places: 5184 * 5185 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5186 * Here, there will be no transaction running. We wait for any running 5187 * transaction to commit. 5188 * 5189 * - Within flush work (sys_sync(), kupdate and such). 5190 * We wait on commit, if told to. 5191 * 5192 * - Within iput_final() -> write_inode_now() 5193 * We wait on commit, if told to. 5194 * 5195 * In all cases it is actually safe for us to return without doing anything, 5196 * because the inode has been copied into a raw inode buffer in 5197 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5198 * writeback. 5199 * 5200 * Note that we are absolutely dependent upon all inode dirtiers doing the 5201 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5202 * which we are interested. 5203 * 5204 * It would be a bug for them to not do this. The code: 5205 * 5206 * mark_inode_dirty(inode) 5207 * stuff(); 5208 * inode->i_size = expr; 5209 * 5210 * is in error because write_inode() could occur while `stuff()' is running, 5211 * and the new i_size will be lost. Plus the inode will no longer be on the 5212 * superblock's dirty inode list. 5213 */ 5214 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5215 { 5216 int err; 5217 5218 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5219 sb_rdonly(inode->i_sb)) 5220 return 0; 5221 5222 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5223 return -EIO; 5224 5225 if (EXT4_SB(inode->i_sb)->s_journal) { 5226 if (ext4_journal_current_handle()) { 5227 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5228 dump_stack(); 5229 return -EIO; 5230 } 5231 5232 /* 5233 * No need to force transaction in WB_SYNC_NONE mode. Also 5234 * ext4_sync_fs() will force the commit after everything is 5235 * written. 5236 */ 5237 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5238 return 0; 5239 5240 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5241 EXT4_I(inode)->i_sync_tid); 5242 } else { 5243 struct ext4_iloc iloc; 5244 5245 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5246 if (err) 5247 return err; 5248 /* 5249 * sync(2) will flush the whole buffer cache. No need to do 5250 * it here separately for each inode. 5251 */ 5252 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5253 sync_dirty_buffer(iloc.bh); 5254 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5255 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5256 "IO error syncing inode"); 5257 err = -EIO; 5258 } 5259 brelse(iloc.bh); 5260 } 5261 return err; 5262 } 5263 5264 /* 5265 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5266 * buffers that are attached to a page stradding i_size and are undergoing 5267 * commit. In that case we have to wait for commit to finish and try again. 5268 */ 5269 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5270 { 5271 struct page *page; 5272 unsigned offset; 5273 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5274 tid_t commit_tid = 0; 5275 int ret; 5276 5277 offset = inode->i_size & (PAGE_SIZE - 1); 5278 /* 5279 * If the page is fully truncated, we don't need to wait for any commit 5280 * (and we even should not as __ext4_journalled_invalidatepage() may 5281 * strip all buffers from the page but keep the page dirty which can then 5282 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5283 * buffers). Also we don't need to wait for any commit if all buffers in 5284 * the page remain valid. This is most beneficial for the common case of 5285 * blocksize == PAGESIZE. 5286 */ 5287 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5288 return; 5289 while (1) { 5290 page = find_lock_page(inode->i_mapping, 5291 inode->i_size >> PAGE_SHIFT); 5292 if (!page) 5293 return; 5294 ret = __ext4_journalled_invalidatepage(page, offset, 5295 PAGE_SIZE - offset); 5296 unlock_page(page); 5297 put_page(page); 5298 if (ret != -EBUSY) 5299 return; 5300 commit_tid = 0; 5301 read_lock(&journal->j_state_lock); 5302 if (journal->j_committing_transaction) 5303 commit_tid = journal->j_committing_transaction->t_tid; 5304 read_unlock(&journal->j_state_lock); 5305 if (commit_tid) 5306 jbd2_log_wait_commit(journal, commit_tid); 5307 } 5308 } 5309 5310 /* 5311 * ext4_setattr() 5312 * 5313 * Called from notify_change. 5314 * 5315 * We want to trap VFS attempts to truncate the file as soon as 5316 * possible. In particular, we want to make sure that when the VFS 5317 * shrinks i_size, we put the inode on the orphan list and modify 5318 * i_disksize immediately, so that during the subsequent flushing of 5319 * dirty pages and freeing of disk blocks, we can guarantee that any 5320 * commit will leave the blocks being flushed in an unused state on 5321 * disk. (On recovery, the inode will get truncated and the blocks will 5322 * be freed, so we have a strong guarantee that no future commit will 5323 * leave these blocks visible to the user.) 5324 * 5325 * Another thing we have to assure is that if we are in ordered mode 5326 * and inode is still attached to the committing transaction, we must 5327 * we start writeout of all the dirty pages which are being truncated. 5328 * This way we are sure that all the data written in the previous 5329 * transaction are already on disk (truncate waits for pages under 5330 * writeback). 5331 * 5332 * Called with inode->i_mutex down. 5333 */ 5334 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5335 struct iattr *attr) 5336 { 5337 struct inode *inode = d_inode(dentry); 5338 int error, rc = 0; 5339 int orphan = 0; 5340 const unsigned int ia_valid = attr->ia_valid; 5341 5342 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5343 return -EIO; 5344 5345 if (unlikely(IS_IMMUTABLE(inode))) 5346 return -EPERM; 5347 5348 if (unlikely(IS_APPEND(inode) && 5349 (ia_valid & (ATTR_MODE | ATTR_UID | 5350 ATTR_GID | ATTR_TIMES_SET)))) 5351 return -EPERM; 5352 5353 error = setattr_prepare(mnt_userns, dentry, attr); 5354 if (error) 5355 return error; 5356 5357 error = fscrypt_prepare_setattr(dentry, attr); 5358 if (error) 5359 return error; 5360 5361 error = fsverity_prepare_setattr(dentry, attr); 5362 if (error) 5363 return error; 5364 5365 if (is_quota_modification(inode, attr)) { 5366 error = dquot_initialize(inode); 5367 if (error) 5368 return error; 5369 } 5370 ext4_fc_start_update(inode); 5371 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5372 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5373 handle_t *handle; 5374 5375 /* (user+group)*(old+new) structure, inode write (sb, 5376 * inode block, ? - but truncate inode update has it) */ 5377 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5378 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5379 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5380 if (IS_ERR(handle)) { 5381 error = PTR_ERR(handle); 5382 goto err_out; 5383 } 5384 5385 /* dquot_transfer() calls back ext4_get_inode_usage() which 5386 * counts xattr inode references. 5387 */ 5388 down_read(&EXT4_I(inode)->xattr_sem); 5389 error = dquot_transfer(inode, attr); 5390 up_read(&EXT4_I(inode)->xattr_sem); 5391 5392 if (error) { 5393 ext4_journal_stop(handle); 5394 ext4_fc_stop_update(inode); 5395 return error; 5396 } 5397 /* Update corresponding info in inode so that everything is in 5398 * one transaction */ 5399 if (attr->ia_valid & ATTR_UID) 5400 inode->i_uid = attr->ia_uid; 5401 if (attr->ia_valid & ATTR_GID) 5402 inode->i_gid = attr->ia_gid; 5403 error = ext4_mark_inode_dirty(handle, inode); 5404 ext4_journal_stop(handle); 5405 if (unlikely(error)) { 5406 ext4_fc_stop_update(inode); 5407 return error; 5408 } 5409 } 5410 5411 if (attr->ia_valid & ATTR_SIZE) { 5412 handle_t *handle; 5413 loff_t oldsize = inode->i_size; 5414 int shrink = (attr->ia_size < inode->i_size); 5415 5416 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5417 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5418 5419 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5420 ext4_fc_stop_update(inode); 5421 return -EFBIG; 5422 } 5423 } 5424 if (!S_ISREG(inode->i_mode)) { 5425 ext4_fc_stop_update(inode); 5426 return -EINVAL; 5427 } 5428 5429 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5430 inode_inc_iversion(inode); 5431 5432 if (shrink) { 5433 if (ext4_should_order_data(inode)) { 5434 error = ext4_begin_ordered_truncate(inode, 5435 attr->ia_size); 5436 if (error) 5437 goto err_out; 5438 } 5439 /* 5440 * Blocks are going to be removed from the inode. Wait 5441 * for dio in flight. 5442 */ 5443 inode_dio_wait(inode); 5444 } 5445 5446 filemap_invalidate_lock(inode->i_mapping); 5447 5448 rc = ext4_break_layouts(inode); 5449 if (rc) { 5450 filemap_invalidate_unlock(inode->i_mapping); 5451 goto err_out; 5452 } 5453 5454 if (attr->ia_size != inode->i_size) { 5455 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5456 if (IS_ERR(handle)) { 5457 error = PTR_ERR(handle); 5458 goto out_mmap_sem; 5459 } 5460 if (ext4_handle_valid(handle) && shrink) { 5461 error = ext4_orphan_add(handle, inode); 5462 orphan = 1; 5463 } 5464 /* 5465 * Update c/mtime on truncate up, ext4_truncate() will 5466 * update c/mtime in shrink case below 5467 */ 5468 if (!shrink) { 5469 inode->i_mtime = current_time(inode); 5470 inode->i_ctime = inode->i_mtime; 5471 } 5472 5473 if (shrink) 5474 ext4_fc_track_range(handle, inode, 5475 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5476 inode->i_sb->s_blocksize_bits, 5477 (oldsize > 0 ? oldsize - 1 : 0) >> 5478 inode->i_sb->s_blocksize_bits); 5479 else 5480 ext4_fc_track_range( 5481 handle, inode, 5482 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5483 inode->i_sb->s_blocksize_bits, 5484 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5485 inode->i_sb->s_blocksize_bits); 5486 5487 down_write(&EXT4_I(inode)->i_data_sem); 5488 EXT4_I(inode)->i_disksize = attr->ia_size; 5489 rc = ext4_mark_inode_dirty(handle, inode); 5490 if (!error) 5491 error = rc; 5492 /* 5493 * We have to update i_size under i_data_sem together 5494 * with i_disksize to avoid races with writeback code 5495 * running ext4_wb_update_i_disksize(). 5496 */ 5497 if (!error) 5498 i_size_write(inode, attr->ia_size); 5499 up_write(&EXT4_I(inode)->i_data_sem); 5500 ext4_journal_stop(handle); 5501 if (error) 5502 goto out_mmap_sem; 5503 if (!shrink) { 5504 pagecache_isize_extended(inode, oldsize, 5505 inode->i_size); 5506 } else if (ext4_should_journal_data(inode)) { 5507 ext4_wait_for_tail_page_commit(inode); 5508 } 5509 } 5510 5511 /* 5512 * Truncate pagecache after we've waited for commit 5513 * in data=journal mode to make pages freeable. 5514 */ 5515 truncate_pagecache(inode, inode->i_size); 5516 /* 5517 * Call ext4_truncate() even if i_size didn't change to 5518 * truncate possible preallocated blocks. 5519 */ 5520 if (attr->ia_size <= oldsize) { 5521 rc = ext4_truncate(inode); 5522 if (rc) 5523 error = rc; 5524 } 5525 out_mmap_sem: 5526 filemap_invalidate_unlock(inode->i_mapping); 5527 } 5528 5529 if (!error) { 5530 setattr_copy(mnt_userns, inode, attr); 5531 mark_inode_dirty(inode); 5532 } 5533 5534 /* 5535 * If the call to ext4_truncate failed to get a transaction handle at 5536 * all, we need to clean up the in-core orphan list manually. 5537 */ 5538 if (orphan && inode->i_nlink) 5539 ext4_orphan_del(NULL, inode); 5540 5541 if (!error && (ia_valid & ATTR_MODE)) 5542 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5543 5544 err_out: 5545 if (error) 5546 ext4_std_error(inode->i_sb, error); 5547 if (!error) 5548 error = rc; 5549 ext4_fc_stop_update(inode); 5550 return error; 5551 } 5552 5553 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5554 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5555 { 5556 struct inode *inode = d_inode(path->dentry); 5557 struct ext4_inode *raw_inode; 5558 struct ext4_inode_info *ei = EXT4_I(inode); 5559 unsigned int flags; 5560 5561 if ((request_mask & STATX_BTIME) && 5562 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5563 stat->result_mask |= STATX_BTIME; 5564 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5565 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5566 } 5567 5568 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5569 if (flags & EXT4_APPEND_FL) 5570 stat->attributes |= STATX_ATTR_APPEND; 5571 if (flags & EXT4_COMPR_FL) 5572 stat->attributes |= STATX_ATTR_COMPRESSED; 5573 if (flags & EXT4_ENCRYPT_FL) 5574 stat->attributes |= STATX_ATTR_ENCRYPTED; 5575 if (flags & EXT4_IMMUTABLE_FL) 5576 stat->attributes |= STATX_ATTR_IMMUTABLE; 5577 if (flags & EXT4_NODUMP_FL) 5578 stat->attributes |= STATX_ATTR_NODUMP; 5579 if (flags & EXT4_VERITY_FL) 5580 stat->attributes |= STATX_ATTR_VERITY; 5581 5582 stat->attributes_mask |= (STATX_ATTR_APPEND | 5583 STATX_ATTR_COMPRESSED | 5584 STATX_ATTR_ENCRYPTED | 5585 STATX_ATTR_IMMUTABLE | 5586 STATX_ATTR_NODUMP | 5587 STATX_ATTR_VERITY); 5588 5589 generic_fillattr(mnt_userns, inode, stat); 5590 return 0; 5591 } 5592 5593 int ext4_file_getattr(struct user_namespace *mnt_userns, 5594 const struct path *path, struct kstat *stat, 5595 u32 request_mask, unsigned int query_flags) 5596 { 5597 struct inode *inode = d_inode(path->dentry); 5598 u64 delalloc_blocks; 5599 5600 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5601 5602 /* 5603 * If there is inline data in the inode, the inode will normally not 5604 * have data blocks allocated (it may have an external xattr block). 5605 * Report at least one sector for such files, so tools like tar, rsync, 5606 * others don't incorrectly think the file is completely sparse. 5607 */ 5608 if (unlikely(ext4_has_inline_data(inode))) 5609 stat->blocks += (stat->size + 511) >> 9; 5610 5611 /* 5612 * We can't update i_blocks if the block allocation is delayed 5613 * otherwise in the case of system crash before the real block 5614 * allocation is done, we will have i_blocks inconsistent with 5615 * on-disk file blocks. 5616 * We always keep i_blocks updated together with real 5617 * allocation. But to not confuse with user, stat 5618 * will return the blocks that include the delayed allocation 5619 * blocks for this file. 5620 */ 5621 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5622 EXT4_I(inode)->i_reserved_data_blocks); 5623 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5624 return 0; 5625 } 5626 5627 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5628 int pextents) 5629 { 5630 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5631 return ext4_ind_trans_blocks(inode, lblocks); 5632 return ext4_ext_index_trans_blocks(inode, pextents); 5633 } 5634 5635 /* 5636 * Account for index blocks, block groups bitmaps and block group 5637 * descriptor blocks if modify datablocks and index blocks 5638 * worse case, the indexs blocks spread over different block groups 5639 * 5640 * If datablocks are discontiguous, they are possible to spread over 5641 * different block groups too. If they are contiguous, with flexbg, 5642 * they could still across block group boundary. 5643 * 5644 * Also account for superblock, inode, quota and xattr blocks 5645 */ 5646 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5647 int pextents) 5648 { 5649 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5650 int gdpblocks; 5651 int idxblocks; 5652 int ret = 0; 5653 5654 /* 5655 * How many index blocks need to touch to map @lblocks logical blocks 5656 * to @pextents physical extents? 5657 */ 5658 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5659 5660 ret = idxblocks; 5661 5662 /* 5663 * Now let's see how many group bitmaps and group descriptors need 5664 * to account 5665 */ 5666 groups = idxblocks + pextents; 5667 gdpblocks = groups; 5668 if (groups > ngroups) 5669 groups = ngroups; 5670 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5671 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5672 5673 /* bitmaps and block group descriptor blocks */ 5674 ret += groups + gdpblocks; 5675 5676 /* Blocks for super block, inode, quota and xattr blocks */ 5677 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5678 5679 return ret; 5680 } 5681 5682 /* 5683 * Calculate the total number of credits to reserve to fit 5684 * the modification of a single pages into a single transaction, 5685 * which may include multiple chunks of block allocations. 5686 * 5687 * This could be called via ext4_write_begin() 5688 * 5689 * We need to consider the worse case, when 5690 * one new block per extent. 5691 */ 5692 int ext4_writepage_trans_blocks(struct inode *inode) 5693 { 5694 int bpp = ext4_journal_blocks_per_page(inode); 5695 int ret; 5696 5697 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5698 5699 /* Account for data blocks for journalled mode */ 5700 if (ext4_should_journal_data(inode)) 5701 ret += bpp; 5702 return ret; 5703 } 5704 5705 /* 5706 * Calculate the journal credits for a chunk of data modification. 5707 * 5708 * This is called from DIO, fallocate or whoever calling 5709 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5710 * 5711 * journal buffers for data blocks are not included here, as DIO 5712 * and fallocate do no need to journal data buffers. 5713 */ 5714 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5715 { 5716 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5717 } 5718 5719 /* 5720 * The caller must have previously called ext4_reserve_inode_write(). 5721 * Give this, we know that the caller already has write access to iloc->bh. 5722 */ 5723 int ext4_mark_iloc_dirty(handle_t *handle, 5724 struct inode *inode, struct ext4_iloc *iloc) 5725 { 5726 int err = 0; 5727 5728 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5729 put_bh(iloc->bh); 5730 return -EIO; 5731 } 5732 ext4_fc_track_inode(handle, inode); 5733 5734 if (IS_I_VERSION(inode)) 5735 inode_inc_iversion(inode); 5736 5737 /* the do_update_inode consumes one bh->b_count */ 5738 get_bh(iloc->bh); 5739 5740 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5741 err = ext4_do_update_inode(handle, inode, iloc); 5742 put_bh(iloc->bh); 5743 return err; 5744 } 5745 5746 /* 5747 * On success, We end up with an outstanding reference count against 5748 * iloc->bh. This _must_ be cleaned up later. 5749 */ 5750 5751 int 5752 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5753 struct ext4_iloc *iloc) 5754 { 5755 int err; 5756 5757 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5758 return -EIO; 5759 5760 err = ext4_get_inode_loc(inode, iloc); 5761 if (!err) { 5762 BUFFER_TRACE(iloc->bh, "get_write_access"); 5763 err = ext4_journal_get_write_access(handle, inode->i_sb, 5764 iloc->bh, EXT4_JTR_NONE); 5765 if (err) { 5766 brelse(iloc->bh); 5767 iloc->bh = NULL; 5768 } 5769 } 5770 ext4_std_error(inode->i_sb, err); 5771 return err; 5772 } 5773 5774 static int __ext4_expand_extra_isize(struct inode *inode, 5775 unsigned int new_extra_isize, 5776 struct ext4_iloc *iloc, 5777 handle_t *handle, int *no_expand) 5778 { 5779 struct ext4_inode *raw_inode; 5780 struct ext4_xattr_ibody_header *header; 5781 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5782 struct ext4_inode_info *ei = EXT4_I(inode); 5783 int error; 5784 5785 /* this was checked at iget time, but double check for good measure */ 5786 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5787 (ei->i_extra_isize & 3)) { 5788 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5789 ei->i_extra_isize, 5790 EXT4_INODE_SIZE(inode->i_sb)); 5791 return -EFSCORRUPTED; 5792 } 5793 if ((new_extra_isize < ei->i_extra_isize) || 5794 (new_extra_isize < 4) || 5795 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5796 return -EINVAL; /* Should never happen */ 5797 5798 raw_inode = ext4_raw_inode(iloc); 5799 5800 header = IHDR(inode, raw_inode); 5801 5802 /* No extended attributes present */ 5803 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5804 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5805 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5806 EXT4_I(inode)->i_extra_isize, 0, 5807 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5808 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5809 return 0; 5810 } 5811 5812 /* try to expand with EAs present */ 5813 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5814 raw_inode, handle); 5815 if (error) { 5816 /* 5817 * Inode size expansion failed; don't try again 5818 */ 5819 *no_expand = 1; 5820 } 5821 5822 return error; 5823 } 5824 5825 /* 5826 * Expand an inode by new_extra_isize bytes. 5827 * Returns 0 on success or negative error number on failure. 5828 */ 5829 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5830 unsigned int new_extra_isize, 5831 struct ext4_iloc iloc, 5832 handle_t *handle) 5833 { 5834 int no_expand; 5835 int error; 5836 5837 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5838 return -EOVERFLOW; 5839 5840 /* 5841 * In nojournal mode, we can immediately attempt to expand 5842 * the inode. When journaled, we first need to obtain extra 5843 * buffer credits since we may write into the EA block 5844 * with this same handle. If journal_extend fails, then it will 5845 * only result in a minor loss of functionality for that inode. 5846 * If this is felt to be critical, then e2fsck should be run to 5847 * force a large enough s_min_extra_isize. 5848 */ 5849 if (ext4_journal_extend(handle, 5850 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5851 return -ENOSPC; 5852 5853 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5854 return -EBUSY; 5855 5856 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5857 handle, &no_expand); 5858 ext4_write_unlock_xattr(inode, &no_expand); 5859 5860 return error; 5861 } 5862 5863 int ext4_expand_extra_isize(struct inode *inode, 5864 unsigned int new_extra_isize, 5865 struct ext4_iloc *iloc) 5866 { 5867 handle_t *handle; 5868 int no_expand; 5869 int error, rc; 5870 5871 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5872 brelse(iloc->bh); 5873 return -EOVERFLOW; 5874 } 5875 5876 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5877 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5878 if (IS_ERR(handle)) { 5879 error = PTR_ERR(handle); 5880 brelse(iloc->bh); 5881 return error; 5882 } 5883 5884 ext4_write_lock_xattr(inode, &no_expand); 5885 5886 BUFFER_TRACE(iloc->bh, "get_write_access"); 5887 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5888 EXT4_JTR_NONE); 5889 if (error) { 5890 brelse(iloc->bh); 5891 goto out_unlock; 5892 } 5893 5894 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5895 handle, &no_expand); 5896 5897 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5898 if (!error) 5899 error = rc; 5900 5901 out_unlock: 5902 ext4_write_unlock_xattr(inode, &no_expand); 5903 ext4_journal_stop(handle); 5904 return error; 5905 } 5906 5907 /* 5908 * What we do here is to mark the in-core inode as clean with respect to inode 5909 * dirtiness (it may still be data-dirty). 5910 * This means that the in-core inode may be reaped by prune_icache 5911 * without having to perform any I/O. This is a very good thing, 5912 * because *any* task may call prune_icache - even ones which 5913 * have a transaction open against a different journal. 5914 * 5915 * Is this cheating? Not really. Sure, we haven't written the 5916 * inode out, but prune_icache isn't a user-visible syncing function. 5917 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5918 * we start and wait on commits. 5919 */ 5920 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5921 const char *func, unsigned int line) 5922 { 5923 struct ext4_iloc iloc; 5924 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5925 int err; 5926 5927 might_sleep(); 5928 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5929 err = ext4_reserve_inode_write(handle, inode, &iloc); 5930 if (err) 5931 goto out; 5932 5933 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5934 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5935 iloc, handle); 5936 5937 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5938 out: 5939 if (unlikely(err)) 5940 ext4_error_inode_err(inode, func, line, 0, err, 5941 "mark_inode_dirty error"); 5942 return err; 5943 } 5944 5945 /* 5946 * ext4_dirty_inode() is called from __mark_inode_dirty() 5947 * 5948 * We're really interested in the case where a file is being extended. 5949 * i_size has been changed by generic_commit_write() and we thus need 5950 * to include the updated inode in the current transaction. 5951 * 5952 * Also, dquot_alloc_block() will always dirty the inode when blocks 5953 * are allocated to the file. 5954 * 5955 * If the inode is marked synchronous, we don't honour that here - doing 5956 * so would cause a commit on atime updates, which we don't bother doing. 5957 * We handle synchronous inodes at the highest possible level. 5958 */ 5959 void ext4_dirty_inode(struct inode *inode, int flags) 5960 { 5961 handle_t *handle; 5962 5963 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5964 if (IS_ERR(handle)) 5965 return; 5966 ext4_mark_inode_dirty(handle, inode); 5967 ext4_journal_stop(handle); 5968 } 5969 5970 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5971 { 5972 journal_t *journal; 5973 handle_t *handle; 5974 int err; 5975 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5976 5977 /* 5978 * We have to be very careful here: changing a data block's 5979 * journaling status dynamically is dangerous. If we write a 5980 * data block to the journal, change the status and then delete 5981 * that block, we risk forgetting to revoke the old log record 5982 * from the journal and so a subsequent replay can corrupt data. 5983 * So, first we make sure that the journal is empty and that 5984 * nobody is changing anything. 5985 */ 5986 5987 journal = EXT4_JOURNAL(inode); 5988 if (!journal) 5989 return 0; 5990 if (is_journal_aborted(journal)) 5991 return -EROFS; 5992 5993 /* Wait for all existing dio workers */ 5994 inode_dio_wait(inode); 5995 5996 /* 5997 * Before flushing the journal and switching inode's aops, we have 5998 * to flush all dirty data the inode has. There can be outstanding 5999 * delayed allocations, there can be unwritten extents created by 6000 * fallocate or buffered writes in dioread_nolock mode covered by 6001 * dirty data which can be converted only after flushing the dirty 6002 * data (and journalled aops don't know how to handle these cases). 6003 */ 6004 if (val) { 6005 filemap_invalidate_lock(inode->i_mapping); 6006 err = filemap_write_and_wait(inode->i_mapping); 6007 if (err < 0) { 6008 filemap_invalidate_unlock(inode->i_mapping); 6009 return err; 6010 } 6011 } 6012 6013 percpu_down_write(&sbi->s_writepages_rwsem); 6014 jbd2_journal_lock_updates(journal); 6015 6016 /* 6017 * OK, there are no updates running now, and all cached data is 6018 * synced to disk. We are now in a completely consistent state 6019 * which doesn't have anything in the journal, and we know that 6020 * no filesystem updates are running, so it is safe to modify 6021 * the inode's in-core data-journaling state flag now. 6022 */ 6023 6024 if (val) 6025 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6026 else { 6027 err = jbd2_journal_flush(journal, 0); 6028 if (err < 0) { 6029 jbd2_journal_unlock_updates(journal); 6030 percpu_up_write(&sbi->s_writepages_rwsem); 6031 return err; 6032 } 6033 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6034 } 6035 ext4_set_aops(inode); 6036 6037 jbd2_journal_unlock_updates(journal); 6038 percpu_up_write(&sbi->s_writepages_rwsem); 6039 6040 if (val) 6041 filemap_invalidate_unlock(inode->i_mapping); 6042 6043 /* Finally we can mark the inode as dirty. */ 6044 6045 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6046 if (IS_ERR(handle)) 6047 return PTR_ERR(handle); 6048 6049 ext4_fc_mark_ineligible(inode->i_sb, 6050 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 6051 err = ext4_mark_inode_dirty(handle, inode); 6052 ext4_handle_sync(handle); 6053 ext4_journal_stop(handle); 6054 ext4_std_error(inode->i_sb, err); 6055 6056 return err; 6057 } 6058 6059 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6060 struct buffer_head *bh) 6061 { 6062 return !buffer_mapped(bh); 6063 } 6064 6065 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6066 { 6067 struct vm_area_struct *vma = vmf->vma; 6068 struct page *page = vmf->page; 6069 loff_t size; 6070 unsigned long len; 6071 int err; 6072 vm_fault_t ret; 6073 struct file *file = vma->vm_file; 6074 struct inode *inode = file_inode(file); 6075 struct address_space *mapping = inode->i_mapping; 6076 handle_t *handle; 6077 get_block_t *get_block; 6078 int retries = 0; 6079 6080 if (unlikely(IS_IMMUTABLE(inode))) 6081 return VM_FAULT_SIGBUS; 6082 6083 sb_start_pagefault(inode->i_sb); 6084 file_update_time(vma->vm_file); 6085 6086 filemap_invalidate_lock_shared(mapping); 6087 6088 err = ext4_convert_inline_data(inode); 6089 if (err) 6090 goto out_ret; 6091 6092 /* 6093 * On data journalling we skip straight to the transaction handle: 6094 * there's no delalloc; page truncated will be checked later; the 6095 * early return w/ all buffers mapped (calculates size/len) can't 6096 * be used; and there's no dioread_nolock, so only ext4_get_block. 6097 */ 6098 if (ext4_should_journal_data(inode)) 6099 goto retry_alloc; 6100 6101 /* Delalloc case is easy... */ 6102 if (test_opt(inode->i_sb, DELALLOC) && 6103 !ext4_nonda_switch(inode->i_sb)) { 6104 do { 6105 err = block_page_mkwrite(vma, vmf, 6106 ext4_da_get_block_prep); 6107 } while (err == -ENOSPC && 6108 ext4_should_retry_alloc(inode->i_sb, &retries)); 6109 goto out_ret; 6110 } 6111 6112 lock_page(page); 6113 size = i_size_read(inode); 6114 /* Page got truncated from under us? */ 6115 if (page->mapping != mapping || page_offset(page) > size) { 6116 unlock_page(page); 6117 ret = VM_FAULT_NOPAGE; 6118 goto out; 6119 } 6120 6121 if (page->index == size >> PAGE_SHIFT) 6122 len = size & ~PAGE_MASK; 6123 else 6124 len = PAGE_SIZE; 6125 /* 6126 * Return if we have all the buffers mapped. This avoids the need to do 6127 * journal_start/journal_stop which can block and take a long time 6128 * 6129 * This cannot be done for data journalling, as we have to add the 6130 * inode to the transaction's list to writeprotect pages on commit. 6131 */ 6132 if (page_has_buffers(page)) { 6133 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6134 0, len, NULL, 6135 ext4_bh_unmapped)) { 6136 /* Wait so that we don't change page under IO */ 6137 wait_for_stable_page(page); 6138 ret = VM_FAULT_LOCKED; 6139 goto out; 6140 } 6141 } 6142 unlock_page(page); 6143 /* OK, we need to fill the hole... */ 6144 if (ext4_should_dioread_nolock(inode)) 6145 get_block = ext4_get_block_unwritten; 6146 else 6147 get_block = ext4_get_block; 6148 retry_alloc: 6149 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6150 ext4_writepage_trans_blocks(inode)); 6151 if (IS_ERR(handle)) { 6152 ret = VM_FAULT_SIGBUS; 6153 goto out; 6154 } 6155 /* 6156 * Data journalling can't use block_page_mkwrite() because it 6157 * will set_buffer_dirty() before do_journal_get_write_access() 6158 * thus might hit warning messages for dirty metadata buffers. 6159 */ 6160 if (!ext4_should_journal_data(inode)) { 6161 err = block_page_mkwrite(vma, vmf, get_block); 6162 } else { 6163 lock_page(page); 6164 size = i_size_read(inode); 6165 /* Page got truncated from under us? */ 6166 if (page->mapping != mapping || page_offset(page) > size) { 6167 ret = VM_FAULT_NOPAGE; 6168 goto out_error; 6169 } 6170 6171 if (page->index == size >> PAGE_SHIFT) 6172 len = size & ~PAGE_MASK; 6173 else 6174 len = PAGE_SIZE; 6175 6176 err = __block_write_begin(page, 0, len, ext4_get_block); 6177 if (!err) { 6178 ret = VM_FAULT_SIGBUS; 6179 if (ext4_walk_page_buffers(handle, inode, 6180 page_buffers(page), 0, len, NULL, 6181 do_journal_get_write_access)) 6182 goto out_error; 6183 if (ext4_walk_page_buffers(handle, inode, 6184 page_buffers(page), 0, len, NULL, 6185 write_end_fn)) 6186 goto out_error; 6187 if (ext4_jbd2_inode_add_write(handle, inode, 6188 page_offset(page), len)) 6189 goto out_error; 6190 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6191 } else { 6192 unlock_page(page); 6193 } 6194 } 6195 ext4_journal_stop(handle); 6196 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6197 goto retry_alloc; 6198 out_ret: 6199 ret = block_page_mkwrite_return(err); 6200 out: 6201 filemap_invalidate_unlock_shared(mapping); 6202 sb_end_pagefault(inode->i_sb); 6203 return ret; 6204 out_error: 6205 unlock_page(page); 6206 ext4_journal_stop(handle); 6207 goto out; 6208 } 6209