1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 445 down_read((&EXT4_I(inode)->i_data_sem)); 446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 447 retval = ext4_ext_map_blocks(handle, inode, map, flags & 448 EXT4_GET_BLOCKS_KEEP_SIZE); 449 } else { 450 retval = ext4_ind_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } 453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 454 up_read((&EXT4_I(inode)->i_data_sem)); 455 /* 456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 457 * because it shouldn't be marked in es_map->m_flags. 458 */ 459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocate. 492 * if create==0 and the blocks are pre-allocated and uninitialized block, 493 * the result buffer head is unmapped. If the create ==1, it will make sure 494 * the buffer head is mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, buffer head is unmapped 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 514 "logical block %lu\n", inode->i_ino, flags, map->m_len, 515 (unsigned long) map->m_lblk); 516 517 ext4_es_lru_add(inode); 518 519 /* Lookup extent status tree firstly */ 520 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 521 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 522 map->m_pblk = ext4_es_pblock(&es) + 523 map->m_lblk - es.es_lblk; 524 map->m_flags |= ext4_es_is_written(&es) ? 525 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 526 retval = es.es_len - (map->m_lblk - es.es_lblk); 527 if (retval > map->m_len) 528 retval = map->m_len; 529 map->m_len = retval; 530 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 531 retval = 0; 532 } else { 533 BUG_ON(1); 534 } 535 #ifdef ES_AGGRESSIVE_TEST 536 ext4_map_blocks_es_recheck(handle, inode, map, 537 &orig_map, flags); 538 #endif 539 goto found; 540 } 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 547 down_read((&EXT4_I(inode)->i_data_sem)); 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 549 retval = ext4_ext_map_blocks(handle, inode, map, flags & 550 EXT4_GET_BLOCKS_KEEP_SIZE); 551 } else { 552 retval = ext4_ind_map_blocks(handle, inode, map, flags & 553 EXT4_GET_BLOCKS_KEEP_SIZE); 554 } 555 if (retval > 0) { 556 int ret; 557 unsigned long long status; 558 559 #ifdef ES_AGGRESSIVE_TEST 560 if (retval != map->m_len) { 561 printk("ES len assertion failed for inode: %lu " 562 "retval %d != map->m_len %d " 563 "in %s (lookup)\n", inode->i_ino, retval, 564 map->m_len, __func__); 565 } 566 #endif 567 568 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 569 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 570 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 571 ext4_find_delalloc_range(inode, map->m_lblk, 572 map->m_lblk + map->m_len - 1)) 573 status |= EXTENT_STATUS_DELAYED; 574 ret = ext4_es_insert_extent(inode, map->m_lblk, 575 map->m_len, map->m_pblk, status); 576 if (ret < 0) 577 retval = ret; 578 } 579 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 580 up_read((&EXT4_I(inode)->i_data_sem)); 581 582 found: 583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 584 int ret = check_block_validity(inode, map); 585 if (ret != 0) 586 return ret; 587 } 588 589 /* If it is only a block(s) look up */ 590 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 591 return retval; 592 593 /* 594 * Returns if the blocks have already allocated 595 * 596 * Note that if blocks have been preallocated 597 * ext4_ext_get_block() returns the create = 0 598 * with buffer head unmapped. 599 */ 600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 601 return retval; 602 603 /* 604 * Here we clear m_flags because after allocating an new extent, 605 * it will be set again. 606 */ 607 map->m_flags &= ~EXT4_MAP_FLAGS; 608 609 /* 610 * New blocks allocate and/or writing to uninitialized extent 611 * will possibly result in updating i_data, so we take 612 * the write lock of i_data_sem, and call get_blocks() 613 * with create == 1 flag. 614 */ 615 down_write((&EXT4_I(inode)->i_data_sem)); 616 617 /* 618 * if the caller is from delayed allocation writeout path 619 * we have already reserved fs blocks for allocation 620 * let the underlying get_block() function know to 621 * avoid double accounting 622 */ 623 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 624 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 625 /* 626 * We need to check for EXT4 here because migrate 627 * could have changed the inode type in between 628 */ 629 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 630 retval = ext4_ext_map_blocks(handle, inode, map, flags); 631 } else { 632 retval = ext4_ind_map_blocks(handle, inode, map, flags); 633 634 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 635 /* 636 * We allocated new blocks which will result in 637 * i_data's format changing. Force the migrate 638 * to fail by clearing migrate flags 639 */ 640 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 641 } 642 643 /* 644 * Update reserved blocks/metadata blocks after successful 645 * block allocation which had been deferred till now. We don't 646 * support fallocate for non extent files. So we can update 647 * reserve space here. 648 */ 649 if ((retval > 0) && 650 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 651 ext4_da_update_reserve_space(inode, retval, 1); 652 } 653 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 654 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 655 656 if (retval > 0) { 657 int ret; 658 unsigned long long status; 659 660 #ifdef ES_AGGRESSIVE_TEST 661 if (retval != map->m_len) { 662 printk("ES len assertion failed for inode: %lu " 663 "retval %d != map->m_len %d " 664 "in %s (allocation)\n", inode->i_ino, retval, 665 map->m_len, __func__); 666 } 667 #endif 668 669 /* 670 * If the extent has been zeroed out, we don't need to update 671 * extent status tree. 672 */ 673 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 674 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 675 if (ext4_es_is_written(&es)) 676 goto has_zeroout; 677 } 678 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 679 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 680 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 681 ext4_find_delalloc_range(inode, map->m_lblk, 682 map->m_lblk + map->m_len - 1)) 683 status |= EXTENT_STATUS_DELAYED; 684 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 685 map->m_pblk, status); 686 if (ret < 0) 687 retval = ret; 688 } 689 690 has_zeroout: 691 up_write((&EXT4_I(inode)->i_data_sem)); 692 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 693 int ret = check_block_validity(inode, map); 694 if (ret != 0) 695 return ret; 696 } 697 return retval; 698 } 699 700 /* Maximum number of blocks we map for direct IO at once. */ 701 #define DIO_MAX_BLOCKS 4096 702 703 static int _ext4_get_block(struct inode *inode, sector_t iblock, 704 struct buffer_head *bh, int flags) 705 { 706 handle_t *handle = ext4_journal_current_handle(); 707 struct ext4_map_blocks map; 708 int ret = 0, started = 0; 709 int dio_credits; 710 711 if (ext4_has_inline_data(inode)) 712 return -ERANGE; 713 714 map.m_lblk = iblock; 715 map.m_len = bh->b_size >> inode->i_blkbits; 716 717 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 718 /* Direct IO write... */ 719 if (map.m_len > DIO_MAX_BLOCKS) 720 map.m_len = DIO_MAX_BLOCKS; 721 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 722 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 723 dio_credits); 724 if (IS_ERR(handle)) { 725 ret = PTR_ERR(handle); 726 return ret; 727 } 728 started = 1; 729 } 730 731 ret = ext4_map_blocks(handle, inode, &map, flags); 732 if (ret > 0) { 733 map_bh(bh, inode->i_sb, map.m_pblk); 734 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 735 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 736 ret = 0; 737 } 738 if (started) 739 ext4_journal_stop(handle); 740 return ret; 741 } 742 743 int ext4_get_block(struct inode *inode, sector_t iblock, 744 struct buffer_head *bh, int create) 745 { 746 return _ext4_get_block(inode, iblock, bh, 747 create ? EXT4_GET_BLOCKS_CREATE : 0); 748 } 749 750 /* 751 * `handle' can be NULL if create is zero 752 */ 753 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 754 ext4_lblk_t block, int create, int *errp) 755 { 756 struct ext4_map_blocks map; 757 struct buffer_head *bh; 758 int fatal = 0, err; 759 760 J_ASSERT(handle != NULL || create == 0); 761 762 map.m_lblk = block; 763 map.m_len = 1; 764 err = ext4_map_blocks(handle, inode, &map, 765 create ? EXT4_GET_BLOCKS_CREATE : 0); 766 767 /* ensure we send some value back into *errp */ 768 *errp = 0; 769 770 if (create && err == 0) 771 err = -ENOSPC; /* should never happen */ 772 if (err < 0) 773 *errp = err; 774 if (err <= 0) 775 return NULL; 776 777 bh = sb_getblk(inode->i_sb, map.m_pblk); 778 if (unlikely(!bh)) { 779 *errp = -ENOMEM; 780 return NULL; 781 } 782 if (map.m_flags & EXT4_MAP_NEW) { 783 J_ASSERT(create != 0); 784 J_ASSERT(handle != NULL); 785 786 /* 787 * Now that we do not always journal data, we should 788 * keep in mind whether this should always journal the 789 * new buffer as metadata. For now, regular file 790 * writes use ext4_get_block instead, so it's not a 791 * problem. 792 */ 793 lock_buffer(bh); 794 BUFFER_TRACE(bh, "call get_create_access"); 795 fatal = ext4_journal_get_create_access(handle, bh); 796 if (!fatal && !buffer_uptodate(bh)) { 797 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 798 set_buffer_uptodate(bh); 799 } 800 unlock_buffer(bh); 801 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 802 err = ext4_handle_dirty_metadata(handle, inode, bh); 803 if (!fatal) 804 fatal = err; 805 } else { 806 BUFFER_TRACE(bh, "not a new buffer"); 807 } 808 if (fatal) { 809 *errp = fatal; 810 brelse(bh); 811 bh = NULL; 812 } 813 return bh; 814 } 815 816 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 817 ext4_lblk_t block, int create, int *err) 818 { 819 struct buffer_head *bh; 820 821 bh = ext4_getblk(handle, inode, block, create, err); 822 if (!bh) 823 return bh; 824 if (buffer_uptodate(bh)) 825 return bh; 826 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 827 wait_on_buffer(bh); 828 if (buffer_uptodate(bh)) 829 return bh; 830 put_bh(bh); 831 *err = -EIO; 832 return NULL; 833 } 834 835 int ext4_walk_page_buffers(handle_t *handle, 836 struct buffer_head *head, 837 unsigned from, 838 unsigned to, 839 int *partial, 840 int (*fn)(handle_t *handle, 841 struct buffer_head *bh)) 842 { 843 struct buffer_head *bh; 844 unsigned block_start, block_end; 845 unsigned blocksize = head->b_size; 846 int err, ret = 0; 847 struct buffer_head *next; 848 849 for (bh = head, block_start = 0; 850 ret == 0 && (bh != head || !block_start); 851 block_start = block_end, bh = next) { 852 next = bh->b_this_page; 853 block_end = block_start + blocksize; 854 if (block_end <= from || block_start >= to) { 855 if (partial && !buffer_uptodate(bh)) 856 *partial = 1; 857 continue; 858 } 859 err = (*fn)(handle, bh); 860 if (!ret) 861 ret = err; 862 } 863 return ret; 864 } 865 866 /* 867 * To preserve ordering, it is essential that the hole instantiation and 868 * the data write be encapsulated in a single transaction. We cannot 869 * close off a transaction and start a new one between the ext4_get_block() 870 * and the commit_write(). So doing the jbd2_journal_start at the start of 871 * prepare_write() is the right place. 872 * 873 * Also, this function can nest inside ext4_writepage(). In that case, we 874 * *know* that ext4_writepage() has generated enough buffer credits to do the 875 * whole page. So we won't block on the journal in that case, which is good, 876 * because the caller may be PF_MEMALLOC. 877 * 878 * By accident, ext4 can be reentered when a transaction is open via 879 * quota file writes. If we were to commit the transaction while thus 880 * reentered, there can be a deadlock - we would be holding a quota 881 * lock, and the commit would never complete if another thread had a 882 * transaction open and was blocking on the quota lock - a ranking 883 * violation. 884 * 885 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 886 * will _not_ run commit under these circumstances because handle->h_ref 887 * is elevated. We'll still have enough credits for the tiny quotafile 888 * write. 889 */ 890 int do_journal_get_write_access(handle_t *handle, 891 struct buffer_head *bh) 892 { 893 int dirty = buffer_dirty(bh); 894 int ret; 895 896 if (!buffer_mapped(bh) || buffer_freed(bh)) 897 return 0; 898 /* 899 * __block_write_begin() could have dirtied some buffers. Clean 900 * the dirty bit as jbd2_journal_get_write_access() could complain 901 * otherwise about fs integrity issues. Setting of the dirty bit 902 * by __block_write_begin() isn't a real problem here as we clear 903 * the bit before releasing a page lock and thus writeback cannot 904 * ever write the buffer. 905 */ 906 if (dirty) 907 clear_buffer_dirty(bh); 908 ret = ext4_journal_get_write_access(handle, bh); 909 if (!ret && dirty) 910 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 911 return ret; 912 } 913 914 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 915 struct buffer_head *bh_result, int create); 916 static int ext4_write_begin(struct file *file, struct address_space *mapping, 917 loff_t pos, unsigned len, unsigned flags, 918 struct page **pagep, void **fsdata) 919 { 920 struct inode *inode = mapping->host; 921 int ret, needed_blocks; 922 handle_t *handle; 923 int retries = 0; 924 struct page *page; 925 pgoff_t index; 926 unsigned from, to; 927 928 trace_ext4_write_begin(inode, pos, len, flags); 929 /* 930 * Reserve one block more for addition to orphan list in case 931 * we allocate blocks but write fails for some reason 932 */ 933 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 934 index = pos >> PAGE_CACHE_SHIFT; 935 from = pos & (PAGE_CACHE_SIZE - 1); 936 to = from + len; 937 938 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 939 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 940 flags, pagep); 941 if (ret < 0) 942 return ret; 943 if (ret == 1) 944 return 0; 945 } 946 947 /* 948 * grab_cache_page_write_begin() can take a long time if the 949 * system is thrashing due to memory pressure, or if the page 950 * is being written back. So grab it first before we start 951 * the transaction handle. This also allows us to allocate 952 * the page (if needed) without using GFP_NOFS. 953 */ 954 retry_grab: 955 page = grab_cache_page_write_begin(mapping, index, flags); 956 if (!page) 957 return -ENOMEM; 958 unlock_page(page); 959 960 retry_journal: 961 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 962 if (IS_ERR(handle)) { 963 page_cache_release(page); 964 return PTR_ERR(handle); 965 } 966 967 lock_page(page); 968 if (page->mapping != mapping) { 969 /* The page got truncated from under us */ 970 unlock_page(page); 971 page_cache_release(page); 972 ext4_journal_stop(handle); 973 goto retry_grab; 974 } 975 wait_on_page_writeback(page); 976 977 if (ext4_should_dioread_nolock(inode)) 978 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 979 else 980 ret = __block_write_begin(page, pos, len, ext4_get_block); 981 982 if (!ret && ext4_should_journal_data(inode)) { 983 ret = ext4_walk_page_buffers(handle, page_buffers(page), 984 from, to, NULL, 985 do_journal_get_write_access); 986 } 987 988 if (ret) { 989 unlock_page(page); 990 /* 991 * __block_write_begin may have instantiated a few blocks 992 * outside i_size. Trim these off again. Don't need 993 * i_size_read because we hold i_mutex. 994 * 995 * Add inode to orphan list in case we crash before 996 * truncate finishes 997 */ 998 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 999 ext4_orphan_add(handle, inode); 1000 1001 ext4_journal_stop(handle); 1002 if (pos + len > inode->i_size) { 1003 ext4_truncate_failed_write(inode); 1004 /* 1005 * If truncate failed early the inode might 1006 * still be on the orphan list; we need to 1007 * make sure the inode is removed from the 1008 * orphan list in that case. 1009 */ 1010 if (inode->i_nlink) 1011 ext4_orphan_del(NULL, inode); 1012 } 1013 1014 if (ret == -ENOSPC && 1015 ext4_should_retry_alloc(inode->i_sb, &retries)) 1016 goto retry_journal; 1017 page_cache_release(page); 1018 return ret; 1019 } 1020 *pagep = page; 1021 return ret; 1022 } 1023 1024 /* For write_end() in data=journal mode */ 1025 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1026 { 1027 int ret; 1028 if (!buffer_mapped(bh) || buffer_freed(bh)) 1029 return 0; 1030 set_buffer_uptodate(bh); 1031 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1032 clear_buffer_meta(bh); 1033 clear_buffer_prio(bh); 1034 return ret; 1035 } 1036 1037 /* 1038 * We need to pick up the new inode size which generic_commit_write gave us 1039 * `file' can be NULL - eg, when called from page_symlink(). 1040 * 1041 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1042 * buffers are managed internally. 1043 */ 1044 static int ext4_write_end(struct file *file, 1045 struct address_space *mapping, 1046 loff_t pos, unsigned len, unsigned copied, 1047 struct page *page, void *fsdata) 1048 { 1049 handle_t *handle = ext4_journal_current_handle(); 1050 struct inode *inode = mapping->host; 1051 int ret = 0, ret2; 1052 int i_size_changed = 0; 1053 1054 trace_ext4_write_end(inode, pos, len, copied); 1055 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1056 ret = ext4_jbd2_file_inode(handle, inode); 1057 if (ret) { 1058 unlock_page(page); 1059 page_cache_release(page); 1060 goto errout; 1061 } 1062 } 1063 1064 if (ext4_has_inline_data(inode)) { 1065 ret = ext4_write_inline_data_end(inode, pos, len, 1066 copied, page); 1067 if (ret < 0) 1068 goto errout; 1069 copied = ret; 1070 } else 1071 copied = block_write_end(file, mapping, pos, 1072 len, copied, page, fsdata); 1073 1074 /* 1075 * No need to use i_size_read() here, the i_size 1076 * cannot change under us because we hole i_mutex. 1077 * 1078 * But it's important to update i_size while still holding page lock: 1079 * page writeout could otherwise come in and zero beyond i_size. 1080 */ 1081 if (pos + copied > inode->i_size) { 1082 i_size_write(inode, pos + copied); 1083 i_size_changed = 1; 1084 } 1085 1086 if (pos + copied > EXT4_I(inode)->i_disksize) { 1087 /* We need to mark inode dirty even if 1088 * new_i_size is less that inode->i_size 1089 * but greater than i_disksize. (hint delalloc) 1090 */ 1091 ext4_update_i_disksize(inode, (pos + copied)); 1092 i_size_changed = 1; 1093 } 1094 unlock_page(page); 1095 page_cache_release(page); 1096 1097 /* 1098 * Don't mark the inode dirty under page lock. First, it unnecessarily 1099 * makes the holding time of page lock longer. Second, it forces lock 1100 * ordering of page lock and transaction start for journaling 1101 * filesystems. 1102 */ 1103 if (i_size_changed) 1104 ext4_mark_inode_dirty(handle, inode); 1105 1106 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1107 /* if we have allocated more blocks and copied 1108 * less. We will have blocks allocated outside 1109 * inode->i_size. So truncate them 1110 */ 1111 ext4_orphan_add(handle, inode); 1112 errout: 1113 ret2 = ext4_journal_stop(handle); 1114 if (!ret) 1115 ret = ret2; 1116 1117 if (pos + len > inode->i_size) { 1118 ext4_truncate_failed_write(inode); 1119 /* 1120 * If truncate failed early the inode might still be 1121 * on the orphan list; we need to make sure the inode 1122 * is removed from the orphan list in that case. 1123 */ 1124 if (inode->i_nlink) 1125 ext4_orphan_del(NULL, inode); 1126 } 1127 1128 return ret ? ret : copied; 1129 } 1130 1131 static int ext4_journalled_write_end(struct file *file, 1132 struct address_space *mapping, 1133 loff_t pos, unsigned len, unsigned copied, 1134 struct page *page, void *fsdata) 1135 { 1136 handle_t *handle = ext4_journal_current_handle(); 1137 struct inode *inode = mapping->host; 1138 int ret = 0, ret2; 1139 int partial = 0; 1140 unsigned from, to; 1141 loff_t new_i_size; 1142 1143 trace_ext4_journalled_write_end(inode, pos, len, copied); 1144 from = pos & (PAGE_CACHE_SIZE - 1); 1145 to = from + len; 1146 1147 BUG_ON(!ext4_handle_valid(handle)); 1148 1149 if (ext4_has_inline_data(inode)) 1150 copied = ext4_write_inline_data_end(inode, pos, len, 1151 copied, page); 1152 else { 1153 if (copied < len) { 1154 if (!PageUptodate(page)) 1155 copied = 0; 1156 page_zero_new_buffers(page, from+copied, to); 1157 } 1158 1159 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1160 to, &partial, write_end_fn); 1161 if (!partial) 1162 SetPageUptodate(page); 1163 } 1164 new_i_size = pos + copied; 1165 if (new_i_size > inode->i_size) 1166 i_size_write(inode, pos+copied); 1167 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1168 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1169 if (new_i_size > EXT4_I(inode)->i_disksize) { 1170 ext4_update_i_disksize(inode, new_i_size); 1171 ret2 = ext4_mark_inode_dirty(handle, inode); 1172 if (!ret) 1173 ret = ret2; 1174 } 1175 1176 unlock_page(page); 1177 page_cache_release(page); 1178 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1179 /* if we have allocated more blocks and copied 1180 * less. We will have blocks allocated outside 1181 * inode->i_size. So truncate them 1182 */ 1183 ext4_orphan_add(handle, inode); 1184 1185 ret2 = ext4_journal_stop(handle); 1186 if (!ret) 1187 ret = ret2; 1188 if (pos + len > inode->i_size) { 1189 ext4_truncate_failed_write(inode); 1190 /* 1191 * If truncate failed early the inode might still be 1192 * on the orphan list; we need to make sure the inode 1193 * is removed from the orphan list in that case. 1194 */ 1195 if (inode->i_nlink) 1196 ext4_orphan_del(NULL, inode); 1197 } 1198 1199 return ret ? ret : copied; 1200 } 1201 1202 /* 1203 * Reserve a metadata for a single block located at lblock 1204 */ 1205 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1206 { 1207 int retries = 0; 1208 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1209 struct ext4_inode_info *ei = EXT4_I(inode); 1210 unsigned int md_needed; 1211 ext4_lblk_t save_last_lblock; 1212 int save_len; 1213 1214 /* 1215 * recalculate the amount of metadata blocks to reserve 1216 * in order to allocate nrblocks 1217 * worse case is one extent per block 1218 */ 1219 repeat: 1220 spin_lock(&ei->i_block_reservation_lock); 1221 /* 1222 * ext4_calc_metadata_amount() has side effects, which we have 1223 * to be prepared undo if we fail to claim space. 1224 */ 1225 save_len = ei->i_da_metadata_calc_len; 1226 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1227 md_needed = EXT4_NUM_B2C(sbi, 1228 ext4_calc_metadata_amount(inode, lblock)); 1229 trace_ext4_da_reserve_space(inode, md_needed); 1230 1231 /* 1232 * We do still charge estimated metadata to the sb though; 1233 * we cannot afford to run out of free blocks. 1234 */ 1235 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1236 ei->i_da_metadata_calc_len = save_len; 1237 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1238 spin_unlock(&ei->i_block_reservation_lock); 1239 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1240 cond_resched(); 1241 goto repeat; 1242 } 1243 return -ENOSPC; 1244 } 1245 ei->i_reserved_meta_blocks += md_needed; 1246 spin_unlock(&ei->i_block_reservation_lock); 1247 1248 return 0; /* success */ 1249 } 1250 1251 /* 1252 * Reserve a single cluster located at lblock 1253 */ 1254 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1255 { 1256 int retries = 0; 1257 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1258 struct ext4_inode_info *ei = EXT4_I(inode); 1259 unsigned int md_needed; 1260 int ret; 1261 ext4_lblk_t save_last_lblock; 1262 int save_len; 1263 1264 /* 1265 * We will charge metadata quota at writeout time; this saves 1266 * us from metadata over-estimation, though we may go over by 1267 * a small amount in the end. Here we just reserve for data. 1268 */ 1269 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1270 if (ret) 1271 return ret; 1272 1273 /* 1274 * recalculate the amount of metadata blocks to reserve 1275 * in order to allocate nrblocks 1276 * worse case is one extent per block 1277 */ 1278 repeat: 1279 spin_lock(&ei->i_block_reservation_lock); 1280 /* 1281 * ext4_calc_metadata_amount() has side effects, which we have 1282 * to be prepared undo if we fail to claim space. 1283 */ 1284 save_len = ei->i_da_metadata_calc_len; 1285 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1286 md_needed = EXT4_NUM_B2C(sbi, 1287 ext4_calc_metadata_amount(inode, lblock)); 1288 trace_ext4_da_reserve_space(inode, md_needed); 1289 1290 /* 1291 * We do still charge estimated metadata to the sb though; 1292 * we cannot afford to run out of free blocks. 1293 */ 1294 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1295 ei->i_da_metadata_calc_len = save_len; 1296 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1297 spin_unlock(&ei->i_block_reservation_lock); 1298 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1299 cond_resched(); 1300 goto repeat; 1301 } 1302 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1303 return -ENOSPC; 1304 } 1305 ei->i_reserved_data_blocks++; 1306 ei->i_reserved_meta_blocks += md_needed; 1307 spin_unlock(&ei->i_block_reservation_lock); 1308 1309 return 0; /* success */ 1310 } 1311 1312 static void ext4_da_release_space(struct inode *inode, int to_free) 1313 { 1314 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1315 struct ext4_inode_info *ei = EXT4_I(inode); 1316 1317 if (!to_free) 1318 return; /* Nothing to release, exit */ 1319 1320 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1321 1322 trace_ext4_da_release_space(inode, to_free); 1323 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1324 /* 1325 * if there aren't enough reserved blocks, then the 1326 * counter is messed up somewhere. Since this 1327 * function is called from invalidate page, it's 1328 * harmless to return without any action. 1329 */ 1330 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1331 "ino %lu, to_free %d with only %d reserved " 1332 "data blocks", inode->i_ino, to_free, 1333 ei->i_reserved_data_blocks); 1334 WARN_ON(1); 1335 to_free = ei->i_reserved_data_blocks; 1336 } 1337 ei->i_reserved_data_blocks -= to_free; 1338 1339 if (ei->i_reserved_data_blocks == 0) { 1340 /* 1341 * We can release all of the reserved metadata blocks 1342 * only when we have written all of the delayed 1343 * allocation blocks. 1344 * Note that in case of bigalloc, i_reserved_meta_blocks, 1345 * i_reserved_data_blocks, etc. refer to number of clusters. 1346 */ 1347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1348 ei->i_reserved_meta_blocks); 1349 ei->i_reserved_meta_blocks = 0; 1350 ei->i_da_metadata_calc_len = 0; 1351 } 1352 1353 /* update fs dirty data blocks counter */ 1354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1355 1356 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1357 1358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1359 } 1360 1361 static void ext4_da_page_release_reservation(struct page *page, 1362 unsigned int offset, 1363 unsigned int length) 1364 { 1365 int to_release = 0; 1366 struct buffer_head *head, *bh; 1367 unsigned int curr_off = 0; 1368 struct inode *inode = page->mapping->host; 1369 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1370 unsigned int stop = offset + length; 1371 int num_clusters; 1372 ext4_fsblk_t lblk; 1373 1374 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1375 1376 head = page_buffers(page); 1377 bh = head; 1378 do { 1379 unsigned int next_off = curr_off + bh->b_size; 1380 1381 if (next_off > stop) 1382 break; 1383 1384 if ((offset <= curr_off) && (buffer_delay(bh))) { 1385 to_release++; 1386 clear_buffer_delay(bh); 1387 } 1388 curr_off = next_off; 1389 } while ((bh = bh->b_this_page) != head); 1390 1391 if (to_release) { 1392 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1393 ext4_es_remove_extent(inode, lblk, to_release); 1394 } 1395 1396 /* If we have released all the blocks belonging to a cluster, then we 1397 * need to release the reserved space for that cluster. */ 1398 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1399 while (num_clusters > 0) { 1400 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1401 ((num_clusters - 1) << sbi->s_cluster_bits); 1402 if (sbi->s_cluster_ratio == 1 || 1403 !ext4_find_delalloc_cluster(inode, lblk)) 1404 ext4_da_release_space(inode, 1); 1405 1406 num_clusters--; 1407 } 1408 } 1409 1410 /* 1411 * Delayed allocation stuff 1412 */ 1413 1414 struct mpage_da_data { 1415 struct inode *inode; 1416 struct writeback_control *wbc; 1417 1418 pgoff_t first_page; /* The first page to write */ 1419 pgoff_t next_page; /* Current page to examine */ 1420 pgoff_t last_page; /* Last page to examine */ 1421 /* 1422 * Extent to map - this can be after first_page because that can be 1423 * fully mapped. We somewhat abuse m_flags to store whether the extent 1424 * is delalloc or unwritten. 1425 */ 1426 struct ext4_map_blocks map; 1427 struct ext4_io_submit io_submit; /* IO submission data */ 1428 }; 1429 1430 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1431 bool invalidate) 1432 { 1433 int nr_pages, i; 1434 pgoff_t index, end; 1435 struct pagevec pvec; 1436 struct inode *inode = mpd->inode; 1437 struct address_space *mapping = inode->i_mapping; 1438 1439 /* This is necessary when next_page == 0. */ 1440 if (mpd->first_page >= mpd->next_page) 1441 return; 1442 1443 index = mpd->first_page; 1444 end = mpd->next_page - 1; 1445 if (invalidate) { 1446 ext4_lblk_t start, last; 1447 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1448 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1449 ext4_es_remove_extent(inode, start, last - start + 1); 1450 } 1451 1452 pagevec_init(&pvec, 0); 1453 while (index <= end) { 1454 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1455 if (nr_pages == 0) 1456 break; 1457 for (i = 0; i < nr_pages; i++) { 1458 struct page *page = pvec.pages[i]; 1459 if (page->index > end) 1460 break; 1461 BUG_ON(!PageLocked(page)); 1462 BUG_ON(PageWriteback(page)); 1463 if (invalidate) { 1464 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1465 ClearPageUptodate(page); 1466 } 1467 unlock_page(page); 1468 } 1469 index = pvec.pages[nr_pages - 1]->index + 1; 1470 pagevec_release(&pvec); 1471 } 1472 } 1473 1474 static void ext4_print_free_blocks(struct inode *inode) 1475 { 1476 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1477 struct super_block *sb = inode->i_sb; 1478 struct ext4_inode_info *ei = EXT4_I(inode); 1479 1480 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1481 EXT4_C2B(EXT4_SB(inode->i_sb), 1482 ext4_count_free_clusters(sb))); 1483 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1484 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1485 (long long) EXT4_C2B(EXT4_SB(sb), 1486 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1487 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1488 (long long) EXT4_C2B(EXT4_SB(sb), 1489 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1490 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1491 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1492 ei->i_reserved_data_blocks); 1493 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1494 ei->i_reserved_meta_blocks); 1495 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1496 ei->i_allocated_meta_blocks); 1497 return; 1498 } 1499 1500 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1501 { 1502 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1503 } 1504 1505 /* 1506 * This function is grabs code from the very beginning of 1507 * ext4_map_blocks, but assumes that the caller is from delayed write 1508 * time. This function looks up the requested blocks and sets the 1509 * buffer delay bit under the protection of i_data_sem. 1510 */ 1511 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1512 struct ext4_map_blocks *map, 1513 struct buffer_head *bh) 1514 { 1515 struct extent_status es; 1516 int retval; 1517 sector_t invalid_block = ~((sector_t) 0xffff); 1518 #ifdef ES_AGGRESSIVE_TEST 1519 struct ext4_map_blocks orig_map; 1520 1521 memcpy(&orig_map, map, sizeof(*map)); 1522 #endif 1523 1524 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1525 invalid_block = ~0; 1526 1527 map->m_flags = 0; 1528 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1529 "logical block %lu\n", inode->i_ino, map->m_len, 1530 (unsigned long) map->m_lblk); 1531 1532 ext4_es_lru_add(inode); 1533 1534 /* Lookup extent status tree firstly */ 1535 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1536 1537 if (ext4_es_is_hole(&es)) { 1538 retval = 0; 1539 down_read((&EXT4_I(inode)->i_data_sem)); 1540 goto add_delayed; 1541 } 1542 1543 /* 1544 * Delayed extent could be allocated by fallocate. 1545 * So we need to check it. 1546 */ 1547 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1548 map_bh(bh, inode->i_sb, invalid_block); 1549 set_buffer_new(bh); 1550 set_buffer_delay(bh); 1551 return 0; 1552 } 1553 1554 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1555 retval = es.es_len - (iblock - es.es_lblk); 1556 if (retval > map->m_len) 1557 retval = map->m_len; 1558 map->m_len = retval; 1559 if (ext4_es_is_written(&es)) 1560 map->m_flags |= EXT4_MAP_MAPPED; 1561 else if (ext4_es_is_unwritten(&es)) 1562 map->m_flags |= EXT4_MAP_UNWRITTEN; 1563 else 1564 BUG_ON(1); 1565 1566 #ifdef ES_AGGRESSIVE_TEST 1567 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1568 #endif 1569 return retval; 1570 } 1571 1572 /* 1573 * Try to see if we can get the block without requesting a new 1574 * file system block. 1575 */ 1576 down_read((&EXT4_I(inode)->i_data_sem)); 1577 if (ext4_has_inline_data(inode)) { 1578 /* 1579 * We will soon create blocks for this page, and let 1580 * us pretend as if the blocks aren't allocated yet. 1581 * In case of clusters, we have to handle the work 1582 * of mapping from cluster so that the reserved space 1583 * is calculated properly. 1584 */ 1585 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1586 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1587 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1588 retval = 0; 1589 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1590 retval = ext4_ext_map_blocks(NULL, inode, map, 1591 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1592 else 1593 retval = ext4_ind_map_blocks(NULL, inode, map, 1594 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1595 1596 add_delayed: 1597 if (retval == 0) { 1598 int ret; 1599 /* 1600 * XXX: __block_prepare_write() unmaps passed block, 1601 * is it OK? 1602 */ 1603 /* 1604 * If the block was allocated from previously allocated cluster, 1605 * then we don't need to reserve it again. However we still need 1606 * to reserve metadata for every block we're going to write. 1607 */ 1608 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1609 ret = ext4_da_reserve_space(inode, iblock); 1610 if (ret) { 1611 /* not enough space to reserve */ 1612 retval = ret; 1613 goto out_unlock; 1614 } 1615 } else { 1616 ret = ext4_da_reserve_metadata(inode, iblock); 1617 if (ret) { 1618 /* not enough space to reserve */ 1619 retval = ret; 1620 goto out_unlock; 1621 } 1622 } 1623 1624 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1625 ~0, EXTENT_STATUS_DELAYED); 1626 if (ret) { 1627 retval = ret; 1628 goto out_unlock; 1629 } 1630 1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1632 * and it should not appear on the bh->b_state. 1633 */ 1634 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1635 1636 map_bh(bh, inode->i_sb, invalid_block); 1637 set_buffer_new(bh); 1638 set_buffer_delay(bh); 1639 } else if (retval > 0) { 1640 int ret; 1641 unsigned long long status; 1642 1643 #ifdef ES_AGGRESSIVE_TEST 1644 if (retval != map->m_len) { 1645 printk("ES len assertion failed for inode: %lu " 1646 "retval %d != map->m_len %d " 1647 "in %s (lookup)\n", inode->i_ino, retval, 1648 map->m_len, __func__); 1649 } 1650 #endif 1651 1652 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1653 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1654 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1655 map->m_pblk, status); 1656 if (ret != 0) 1657 retval = ret; 1658 } 1659 1660 out_unlock: 1661 up_read((&EXT4_I(inode)->i_data_sem)); 1662 1663 return retval; 1664 } 1665 1666 /* 1667 * This is a special get_blocks_t callback which is used by 1668 * ext4_da_write_begin(). It will either return mapped block or 1669 * reserve space for a single block. 1670 * 1671 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1672 * We also have b_blocknr = -1 and b_bdev initialized properly 1673 * 1674 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1675 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1676 * initialized properly. 1677 */ 1678 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1679 struct buffer_head *bh, int create) 1680 { 1681 struct ext4_map_blocks map; 1682 int ret = 0; 1683 1684 BUG_ON(create == 0); 1685 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1686 1687 map.m_lblk = iblock; 1688 map.m_len = 1; 1689 1690 /* 1691 * first, we need to know whether the block is allocated already 1692 * preallocated blocks are unmapped but should treated 1693 * the same as allocated blocks. 1694 */ 1695 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1696 if (ret <= 0) 1697 return ret; 1698 1699 map_bh(bh, inode->i_sb, map.m_pblk); 1700 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1701 1702 if (buffer_unwritten(bh)) { 1703 /* A delayed write to unwritten bh should be marked 1704 * new and mapped. Mapped ensures that we don't do 1705 * get_block multiple times when we write to the same 1706 * offset and new ensures that we do proper zero out 1707 * for partial write. 1708 */ 1709 set_buffer_new(bh); 1710 set_buffer_mapped(bh); 1711 } 1712 return 0; 1713 } 1714 1715 static int bget_one(handle_t *handle, struct buffer_head *bh) 1716 { 1717 get_bh(bh); 1718 return 0; 1719 } 1720 1721 static int bput_one(handle_t *handle, struct buffer_head *bh) 1722 { 1723 put_bh(bh); 1724 return 0; 1725 } 1726 1727 static int __ext4_journalled_writepage(struct page *page, 1728 unsigned int len) 1729 { 1730 struct address_space *mapping = page->mapping; 1731 struct inode *inode = mapping->host; 1732 struct buffer_head *page_bufs = NULL; 1733 handle_t *handle = NULL; 1734 int ret = 0, err = 0; 1735 int inline_data = ext4_has_inline_data(inode); 1736 struct buffer_head *inode_bh = NULL; 1737 1738 ClearPageChecked(page); 1739 1740 if (inline_data) { 1741 BUG_ON(page->index != 0); 1742 BUG_ON(len > ext4_get_max_inline_size(inode)); 1743 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1744 if (inode_bh == NULL) 1745 goto out; 1746 } else { 1747 page_bufs = page_buffers(page); 1748 if (!page_bufs) { 1749 BUG(); 1750 goto out; 1751 } 1752 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1753 NULL, bget_one); 1754 } 1755 /* As soon as we unlock the page, it can go away, but we have 1756 * references to buffers so we are safe */ 1757 unlock_page(page); 1758 1759 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1760 ext4_writepage_trans_blocks(inode)); 1761 if (IS_ERR(handle)) { 1762 ret = PTR_ERR(handle); 1763 goto out; 1764 } 1765 1766 BUG_ON(!ext4_handle_valid(handle)); 1767 1768 if (inline_data) { 1769 ret = ext4_journal_get_write_access(handle, inode_bh); 1770 1771 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1772 1773 } else { 1774 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1775 do_journal_get_write_access); 1776 1777 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1778 write_end_fn); 1779 } 1780 if (ret == 0) 1781 ret = err; 1782 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1783 err = ext4_journal_stop(handle); 1784 if (!ret) 1785 ret = err; 1786 1787 if (!ext4_has_inline_data(inode)) 1788 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1789 NULL, bput_one); 1790 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1791 out: 1792 brelse(inode_bh); 1793 return ret; 1794 } 1795 1796 /* 1797 * Note that we don't need to start a transaction unless we're journaling data 1798 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1799 * need to file the inode to the transaction's list in ordered mode because if 1800 * we are writing back data added by write(), the inode is already there and if 1801 * we are writing back data modified via mmap(), no one guarantees in which 1802 * transaction the data will hit the disk. In case we are journaling data, we 1803 * cannot start transaction directly because transaction start ranks above page 1804 * lock so we have to do some magic. 1805 * 1806 * This function can get called via... 1807 * - ext4_writepages after taking page lock (have journal handle) 1808 * - journal_submit_inode_data_buffers (no journal handle) 1809 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1810 * - grab_page_cache when doing write_begin (have journal handle) 1811 * 1812 * We don't do any block allocation in this function. If we have page with 1813 * multiple blocks we need to write those buffer_heads that are mapped. This 1814 * is important for mmaped based write. So if we do with blocksize 1K 1815 * truncate(f, 1024); 1816 * a = mmap(f, 0, 4096); 1817 * a[0] = 'a'; 1818 * truncate(f, 4096); 1819 * we have in the page first buffer_head mapped via page_mkwrite call back 1820 * but other buffer_heads would be unmapped but dirty (dirty done via the 1821 * do_wp_page). So writepage should write the first block. If we modify 1822 * the mmap area beyond 1024 we will again get a page_fault and the 1823 * page_mkwrite callback will do the block allocation and mark the 1824 * buffer_heads mapped. 1825 * 1826 * We redirty the page if we have any buffer_heads that is either delay or 1827 * unwritten in the page. 1828 * 1829 * We can get recursively called as show below. 1830 * 1831 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1832 * ext4_writepage() 1833 * 1834 * But since we don't do any block allocation we should not deadlock. 1835 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1836 */ 1837 static int ext4_writepage(struct page *page, 1838 struct writeback_control *wbc) 1839 { 1840 int ret = 0; 1841 loff_t size; 1842 unsigned int len; 1843 struct buffer_head *page_bufs = NULL; 1844 struct inode *inode = page->mapping->host; 1845 struct ext4_io_submit io_submit; 1846 1847 trace_ext4_writepage(page); 1848 size = i_size_read(inode); 1849 if (page->index == size >> PAGE_CACHE_SHIFT) 1850 len = size & ~PAGE_CACHE_MASK; 1851 else 1852 len = PAGE_CACHE_SIZE; 1853 1854 page_bufs = page_buffers(page); 1855 /* 1856 * We cannot do block allocation or other extent handling in this 1857 * function. If there are buffers needing that, we have to redirty 1858 * the page. But we may reach here when we do a journal commit via 1859 * journal_submit_inode_data_buffers() and in that case we must write 1860 * allocated buffers to achieve data=ordered mode guarantees. 1861 */ 1862 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1863 ext4_bh_delay_or_unwritten)) { 1864 redirty_page_for_writepage(wbc, page); 1865 if (current->flags & PF_MEMALLOC) { 1866 /* 1867 * For memory cleaning there's no point in writing only 1868 * some buffers. So just bail out. Warn if we came here 1869 * from direct reclaim. 1870 */ 1871 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1872 == PF_MEMALLOC); 1873 unlock_page(page); 1874 return 0; 1875 } 1876 } 1877 1878 if (PageChecked(page) && ext4_should_journal_data(inode)) 1879 /* 1880 * It's mmapped pagecache. Add buffers and journal it. There 1881 * doesn't seem much point in redirtying the page here. 1882 */ 1883 return __ext4_journalled_writepage(page, len); 1884 1885 ext4_io_submit_init(&io_submit, wbc); 1886 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1887 if (!io_submit.io_end) { 1888 redirty_page_for_writepage(wbc, page); 1889 unlock_page(page); 1890 return -ENOMEM; 1891 } 1892 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1893 ext4_io_submit(&io_submit); 1894 /* Drop io_end reference we got from init */ 1895 ext4_put_io_end_defer(io_submit.io_end); 1896 return ret; 1897 } 1898 1899 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1900 1901 /* 1902 * mballoc gives us at most this number of blocks... 1903 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1904 * The rest of mballoc seems to handle chunks upto full group size. 1905 */ 1906 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1907 1908 /* 1909 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1910 * 1911 * @mpd - extent of blocks 1912 * @lblk - logical number of the block in the file 1913 * @b_state - b_state of the buffer head added 1914 * 1915 * the function is used to collect contig. blocks in same state 1916 */ 1917 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1918 unsigned long b_state) 1919 { 1920 struct ext4_map_blocks *map = &mpd->map; 1921 1922 /* Don't go larger than mballoc is willing to allocate */ 1923 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1924 return 0; 1925 1926 /* First block in the extent? */ 1927 if (map->m_len == 0) { 1928 map->m_lblk = lblk; 1929 map->m_len = 1; 1930 map->m_flags = b_state & BH_FLAGS; 1931 return 1; 1932 } 1933 1934 /* Can we merge the block to our big extent? */ 1935 if (lblk == map->m_lblk + map->m_len && 1936 (b_state & BH_FLAGS) == map->m_flags) { 1937 map->m_len++; 1938 return 1; 1939 } 1940 return 0; 1941 } 1942 1943 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd, 1944 struct buffer_head *head, 1945 struct buffer_head *bh, 1946 ext4_lblk_t lblk) 1947 { 1948 struct inode *inode = mpd->inode; 1949 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1950 >> inode->i_blkbits; 1951 1952 do { 1953 BUG_ON(buffer_locked(bh)); 1954 1955 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1956 (!buffer_delay(bh) && !buffer_unwritten(bh)) || 1957 lblk >= blocks) { 1958 /* Found extent to map? */ 1959 if (mpd->map.m_len) 1960 return false; 1961 if (lblk >= blocks) 1962 return true; 1963 continue; 1964 } 1965 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state)) 1966 return false; 1967 } while (lblk++, (bh = bh->b_this_page) != head); 1968 return true; 1969 } 1970 1971 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1972 { 1973 int len; 1974 loff_t size = i_size_read(mpd->inode); 1975 int err; 1976 1977 BUG_ON(page->index != mpd->first_page); 1978 if (page->index == size >> PAGE_CACHE_SHIFT) 1979 len = size & ~PAGE_CACHE_MASK; 1980 else 1981 len = PAGE_CACHE_SIZE; 1982 clear_page_dirty_for_io(page); 1983 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1984 if (!err) 1985 mpd->wbc->nr_to_write--; 1986 mpd->first_page++; 1987 1988 return err; 1989 } 1990 1991 /* 1992 * mpage_map_buffers - update buffers corresponding to changed extent and 1993 * submit fully mapped pages for IO 1994 * 1995 * @mpd - description of extent to map, on return next extent to map 1996 * 1997 * Scan buffers corresponding to changed extent (we expect corresponding pages 1998 * to be already locked) and update buffer state according to new extent state. 1999 * We map delalloc buffers to their physical location, clear unwritten bits, 2000 * and mark buffers as uninit when we perform writes to uninitialized extents 2001 * and do extent conversion after IO is finished. If the last page is not fully 2002 * mapped, we update @map to the next extent in the last page that needs 2003 * mapping. Otherwise we submit the page for IO. 2004 */ 2005 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2006 { 2007 struct pagevec pvec; 2008 int nr_pages, i; 2009 struct inode *inode = mpd->inode; 2010 struct buffer_head *head, *bh; 2011 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2012 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2013 >> inode->i_blkbits; 2014 pgoff_t start, end; 2015 ext4_lblk_t lblk; 2016 sector_t pblock; 2017 int err; 2018 2019 start = mpd->map.m_lblk >> bpp_bits; 2020 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2021 lblk = start << bpp_bits; 2022 pblock = mpd->map.m_pblk; 2023 2024 pagevec_init(&pvec, 0); 2025 while (start <= end) { 2026 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2027 PAGEVEC_SIZE); 2028 if (nr_pages == 0) 2029 break; 2030 for (i = 0; i < nr_pages; i++) { 2031 struct page *page = pvec.pages[i]; 2032 2033 if (page->index > end) 2034 break; 2035 /* Upto 'end' pages must be contiguous */ 2036 BUG_ON(page->index != start); 2037 bh = head = page_buffers(page); 2038 do { 2039 if (lblk < mpd->map.m_lblk) 2040 continue; 2041 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2042 /* 2043 * Buffer after end of mapped extent. 2044 * Find next buffer in the page to map. 2045 */ 2046 mpd->map.m_len = 0; 2047 mpd->map.m_flags = 0; 2048 add_page_bufs_to_extent(mpd, head, bh, 2049 lblk); 2050 pagevec_release(&pvec); 2051 return 0; 2052 } 2053 if (buffer_delay(bh)) { 2054 clear_buffer_delay(bh); 2055 bh->b_blocknr = pblock++; 2056 } 2057 clear_buffer_unwritten(bh); 2058 } while (++lblk < blocks && 2059 (bh = bh->b_this_page) != head); 2060 2061 /* 2062 * FIXME: This is going to break if dioread_nolock 2063 * supports blocksize < pagesize as we will try to 2064 * convert potentially unmapped parts of inode. 2065 */ 2066 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2067 /* Page fully mapped - let IO run! */ 2068 err = mpage_submit_page(mpd, page); 2069 if (err < 0) { 2070 pagevec_release(&pvec); 2071 return err; 2072 } 2073 start++; 2074 } 2075 pagevec_release(&pvec); 2076 } 2077 /* Extent fully mapped and matches with page boundary. We are done. */ 2078 mpd->map.m_len = 0; 2079 mpd->map.m_flags = 0; 2080 return 0; 2081 } 2082 2083 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2084 { 2085 struct inode *inode = mpd->inode; 2086 struct ext4_map_blocks *map = &mpd->map; 2087 int get_blocks_flags; 2088 int err; 2089 2090 trace_ext4_da_write_pages_extent(inode, map); 2091 /* 2092 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2093 * to convert an uninitialized extent to be initialized (in the case 2094 * where we have written into one or more preallocated blocks). It is 2095 * possible that we're going to need more metadata blocks than 2096 * previously reserved. However we must not fail because we're in 2097 * writeback and there is nothing we can do about it so it might result 2098 * in data loss. So use reserved blocks to allocate metadata if 2099 * possible. 2100 * 2101 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2102 * in question are delalloc blocks. This affects functions in many 2103 * different parts of the allocation call path. This flag exists 2104 * primarily because we don't want to change *many* call functions, so 2105 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2106 * once the inode's allocation semaphore is taken. 2107 */ 2108 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2109 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2110 if (ext4_should_dioread_nolock(inode)) 2111 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2112 if (map->m_flags & (1 << BH_Delay)) 2113 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2114 2115 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2116 if (err < 0) 2117 return err; 2118 if (map->m_flags & EXT4_MAP_UNINIT) { 2119 if (!mpd->io_submit.io_end->handle && 2120 ext4_handle_valid(handle)) { 2121 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2122 handle->h_rsv_handle = NULL; 2123 } 2124 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2125 } 2126 2127 BUG_ON(map->m_len == 0); 2128 if (map->m_flags & EXT4_MAP_NEW) { 2129 struct block_device *bdev = inode->i_sb->s_bdev; 2130 int i; 2131 2132 for (i = 0; i < map->m_len; i++) 2133 unmap_underlying_metadata(bdev, map->m_pblk + i); 2134 } 2135 return 0; 2136 } 2137 2138 /* 2139 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2140 * mpd->len and submit pages underlying it for IO 2141 * 2142 * @handle - handle for journal operations 2143 * @mpd - extent to map 2144 * 2145 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2146 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2147 * them to initialized or split the described range from larger unwritten 2148 * extent. Note that we need not map all the described range since allocation 2149 * can return less blocks or the range is covered by more unwritten extents. We 2150 * cannot map more because we are limited by reserved transaction credits. On 2151 * the other hand we always make sure that the last touched page is fully 2152 * mapped so that it can be written out (and thus forward progress is 2153 * guaranteed). After mapping we submit all mapped pages for IO. 2154 */ 2155 static int mpage_map_and_submit_extent(handle_t *handle, 2156 struct mpage_da_data *mpd, 2157 bool *give_up_on_write) 2158 { 2159 struct inode *inode = mpd->inode; 2160 struct ext4_map_blocks *map = &mpd->map; 2161 int err; 2162 loff_t disksize; 2163 2164 mpd->io_submit.io_end->offset = 2165 ((loff_t)map->m_lblk) << inode->i_blkbits; 2166 do { 2167 err = mpage_map_one_extent(handle, mpd); 2168 if (err < 0) { 2169 struct super_block *sb = inode->i_sb; 2170 2171 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2172 goto invalidate_dirty_pages; 2173 /* 2174 * Let the uper layers retry transient errors. 2175 * In the case of ENOSPC, if ext4_count_free_blocks() 2176 * is non-zero, a commit should free up blocks. 2177 */ 2178 if ((err == -ENOMEM) || 2179 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2180 return err; 2181 ext4_msg(sb, KERN_CRIT, 2182 "Delayed block allocation failed for " 2183 "inode %lu at logical offset %llu with" 2184 " max blocks %u with error %d", 2185 inode->i_ino, 2186 (unsigned long long)map->m_lblk, 2187 (unsigned)map->m_len, -err); 2188 ext4_msg(sb, KERN_CRIT, 2189 "This should not happen!! Data will " 2190 "be lost\n"); 2191 if (err == -ENOSPC) 2192 ext4_print_free_blocks(inode); 2193 invalidate_dirty_pages: 2194 *give_up_on_write = true; 2195 return err; 2196 } 2197 /* 2198 * Update buffer state, submit mapped pages, and get us new 2199 * extent to map 2200 */ 2201 err = mpage_map_and_submit_buffers(mpd); 2202 if (err < 0) 2203 return err; 2204 } while (map->m_len); 2205 2206 /* Update on-disk size after IO is submitted */ 2207 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2208 if (disksize > i_size_read(inode)) 2209 disksize = i_size_read(inode); 2210 if (disksize > EXT4_I(inode)->i_disksize) { 2211 int err2; 2212 2213 ext4_update_i_disksize(inode, disksize); 2214 err2 = ext4_mark_inode_dirty(handle, inode); 2215 if (err2) 2216 ext4_error(inode->i_sb, 2217 "Failed to mark inode %lu dirty", 2218 inode->i_ino); 2219 if (!err) 2220 err = err2; 2221 } 2222 return err; 2223 } 2224 2225 /* 2226 * Calculate the total number of credits to reserve for one writepages 2227 * iteration. This is called from ext4_writepages(). We map an extent of 2228 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2229 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2230 * bpp - 1 blocks in bpp different extents. 2231 */ 2232 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2233 { 2234 int bpp = ext4_journal_blocks_per_page(inode); 2235 2236 return ext4_meta_trans_blocks(inode, 2237 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2238 } 2239 2240 /* 2241 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2242 * and underlying extent to map 2243 * 2244 * @mpd - where to look for pages 2245 * 2246 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2247 * IO immediately. When we find a page which isn't mapped we start accumulating 2248 * extent of buffers underlying these pages that needs mapping (formed by 2249 * either delayed or unwritten buffers). We also lock the pages containing 2250 * these buffers. The extent found is returned in @mpd structure (starting at 2251 * mpd->lblk with length mpd->len blocks). 2252 * 2253 * Note that this function can attach bios to one io_end structure which are 2254 * neither logically nor physically contiguous. Although it may seem as an 2255 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2256 * case as we need to track IO to all buffers underlying a page in one io_end. 2257 */ 2258 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2259 { 2260 struct address_space *mapping = mpd->inode->i_mapping; 2261 struct pagevec pvec; 2262 unsigned int nr_pages; 2263 pgoff_t index = mpd->first_page; 2264 pgoff_t end = mpd->last_page; 2265 int tag; 2266 int i, err = 0; 2267 int blkbits = mpd->inode->i_blkbits; 2268 ext4_lblk_t lblk; 2269 struct buffer_head *head; 2270 2271 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2272 tag = PAGECACHE_TAG_TOWRITE; 2273 else 2274 tag = PAGECACHE_TAG_DIRTY; 2275 2276 pagevec_init(&pvec, 0); 2277 mpd->map.m_len = 0; 2278 mpd->next_page = index; 2279 while (index <= end) { 2280 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2282 if (nr_pages == 0) 2283 goto out; 2284 2285 for (i = 0; i < nr_pages; i++) { 2286 struct page *page = pvec.pages[i]; 2287 2288 /* 2289 * At this point, the page may be truncated or 2290 * invalidated (changing page->mapping to NULL), or 2291 * even swizzled back from swapper_space to tmpfs file 2292 * mapping. However, page->index will not change 2293 * because we have a reference on the page. 2294 */ 2295 if (page->index > end) 2296 goto out; 2297 2298 /* If we can't merge this page, we are done. */ 2299 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2300 goto out; 2301 2302 lock_page(page); 2303 /* 2304 * If the page is no longer dirty, or its mapping no 2305 * longer corresponds to inode we are writing (which 2306 * means it has been truncated or invalidated), or the 2307 * page is already under writeback and we are not doing 2308 * a data integrity writeback, skip the page 2309 */ 2310 if (!PageDirty(page) || 2311 (PageWriteback(page) && 2312 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2313 unlikely(page->mapping != mapping)) { 2314 unlock_page(page); 2315 continue; 2316 } 2317 2318 wait_on_page_writeback(page); 2319 BUG_ON(PageWriteback(page)); 2320 2321 if (mpd->map.m_len == 0) 2322 mpd->first_page = page->index; 2323 mpd->next_page = page->index + 1; 2324 /* Add all dirty buffers to mpd */ 2325 lblk = ((ext4_lblk_t)page->index) << 2326 (PAGE_CACHE_SHIFT - blkbits); 2327 head = page_buffers(page); 2328 if (!add_page_bufs_to_extent(mpd, head, head, lblk)) 2329 goto out; 2330 /* So far everything mapped? Submit the page for IO. */ 2331 if (mpd->map.m_len == 0) { 2332 err = mpage_submit_page(mpd, page); 2333 if (err < 0) 2334 goto out; 2335 } 2336 2337 /* 2338 * Accumulated enough dirty pages? This doesn't apply 2339 * to WB_SYNC_ALL mode. For integrity sync we have to 2340 * keep going because someone may be concurrently 2341 * dirtying pages, and we might have synced a lot of 2342 * newly appeared dirty pages, but have not synced all 2343 * of the old dirty pages. 2344 */ 2345 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2346 mpd->next_page - mpd->first_page >= 2347 mpd->wbc->nr_to_write) 2348 goto out; 2349 } 2350 pagevec_release(&pvec); 2351 cond_resched(); 2352 } 2353 return 0; 2354 out: 2355 pagevec_release(&pvec); 2356 return err; 2357 } 2358 2359 static int __writepage(struct page *page, struct writeback_control *wbc, 2360 void *data) 2361 { 2362 struct address_space *mapping = data; 2363 int ret = ext4_writepage(page, wbc); 2364 mapping_set_error(mapping, ret); 2365 return ret; 2366 } 2367 2368 static int ext4_writepages(struct address_space *mapping, 2369 struct writeback_control *wbc) 2370 { 2371 pgoff_t writeback_index = 0; 2372 long nr_to_write = wbc->nr_to_write; 2373 int range_whole = 0; 2374 int cycled = 1; 2375 handle_t *handle = NULL; 2376 struct mpage_da_data mpd; 2377 struct inode *inode = mapping->host; 2378 int needed_blocks, rsv_blocks = 0, ret = 0; 2379 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2380 bool done; 2381 struct blk_plug plug; 2382 bool give_up_on_write = false; 2383 2384 trace_ext4_writepages(inode, wbc); 2385 2386 /* 2387 * No pages to write? This is mainly a kludge to avoid starting 2388 * a transaction for special inodes like journal inode on last iput() 2389 * because that could violate lock ordering on umount 2390 */ 2391 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2392 return 0; 2393 2394 if (ext4_should_journal_data(inode)) { 2395 struct blk_plug plug; 2396 int ret; 2397 2398 blk_start_plug(&plug); 2399 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2400 blk_finish_plug(&plug); 2401 return ret; 2402 } 2403 2404 /* 2405 * If the filesystem has aborted, it is read-only, so return 2406 * right away instead of dumping stack traces later on that 2407 * will obscure the real source of the problem. We test 2408 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2409 * the latter could be true if the filesystem is mounted 2410 * read-only, and in that case, ext4_writepages should 2411 * *never* be called, so if that ever happens, we would want 2412 * the stack trace. 2413 */ 2414 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2415 return -EROFS; 2416 2417 if (ext4_should_dioread_nolock(inode)) { 2418 /* 2419 * We may need to convert upto one extent per block in 2420 * the page and we may dirty the inode. 2421 */ 2422 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2423 } 2424 2425 /* 2426 * If we have inline data and arrive here, it means that 2427 * we will soon create the block for the 1st page, so 2428 * we'd better clear the inline data here. 2429 */ 2430 if (ext4_has_inline_data(inode)) { 2431 /* Just inode will be modified... */ 2432 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2433 if (IS_ERR(handle)) { 2434 ret = PTR_ERR(handle); 2435 goto out_writepages; 2436 } 2437 BUG_ON(ext4_test_inode_state(inode, 2438 EXT4_STATE_MAY_INLINE_DATA)); 2439 ext4_destroy_inline_data(handle, inode); 2440 ext4_journal_stop(handle); 2441 } 2442 2443 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2444 range_whole = 1; 2445 2446 if (wbc->range_cyclic) { 2447 writeback_index = mapping->writeback_index; 2448 if (writeback_index) 2449 cycled = 0; 2450 mpd.first_page = writeback_index; 2451 mpd.last_page = -1; 2452 } else { 2453 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2454 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2455 } 2456 2457 mpd.inode = inode; 2458 mpd.wbc = wbc; 2459 ext4_io_submit_init(&mpd.io_submit, wbc); 2460 retry: 2461 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2462 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2463 done = false; 2464 blk_start_plug(&plug); 2465 while (!done && mpd.first_page <= mpd.last_page) { 2466 /* For each extent of pages we use new io_end */ 2467 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2468 if (!mpd.io_submit.io_end) { 2469 ret = -ENOMEM; 2470 break; 2471 } 2472 2473 /* 2474 * We have two constraints: We find one extent to map and we 2475 * must always write out whole page (makes a difference when 2476 * blocksize < pagesize) so that we don't block on IO when we 2477 * try to write out the rest of the page. Journalled mode is 2478 * not supported by delalloc. 2479 */ 2480 BUG_ON(ext4_should_journal_data(inode)); 2481 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2482 2483 /* start a new transaction */ 2484 handle = ext4_journal_start_with_reserve(inode, 2485 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2486 if (IS_ERR(handle)) { 2487 ret = PTR_ERR(handle); 2488 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2489 "%ld pages, ino %lu; err %d", __func__, 2490 wbc->nr_to_write, inode->i_ino, ret); 2491 /* Release allocated io_end */ 2492 ext4_put_io_end(mpd.io_submit.io_end); 2493 break; 2494 } 2495 2496 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2497 ret = mpage_prepare_extent_to_map(&mpd); 2498 if (!ret) { 2499 if (mpd.map.m_len) 2500 ret = mpage_map_and_submit_extent(handle, &mpd, 2501 &give_up_on_write); 2502 else { 2503 /* 2504 * We scanned the whole range (or exhausted 2505 * nr_to_write), submitted what was mapped and 2506 * didn't find anything needing mapping. We are 2507 * done. 2508 */ 2509 done = true; 2510 } 2511 } 2512 ext4_journal_stop(handle); 2513 /* Submit prepared bio */ 2514 ext4_io_submit(&mpd.io_submit); 2515 /* Unlock pages we didn't use */ 2516 mpage_release_unused_pages(&mpd, give_up_on_write); 2517 /* Drop our io_end reference we got from init */ 2518 ext4_put_io_end(mpd.io_submit.io_end); 2519 2520 if (ret == -ENOSPC && sbi->s_journal) { 2521 /* 2522 * Commit the transaction which would 2523 * free blocks released in the transaction 2524 * and try again 2525 */ 2526 jbd2_journal_force_commit_nested(sbi->s_journal); 2527 ret = 0; 2528 continue; 2529 } 2530 /* Fatal error - ENOMEM, EIO... */ 2531 if (ret) 2532 break; 2533 } 2534 blk_finish_plug(&plug); 2535 if (!ret && !cycled) { 2536 cycled = 1; 2537 mpd.last_page = writeback_index - 1; 2538 mpd.first_page = 0; 2539 goto retry; 2540 } 2541 2542 /* Update index */ 2543 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2544 /* 2545 * Set the writeback_index so that range_cyclic 2546 * mode will write it back later 2547 */ 2548 mapping->writeback_index = mpd.first_page; 2549 2550 out_writepages: 2551 trace_ext4_writepages_result(inode, wbc, ret, 2552 nr_to_write - wbc->nr_to_write); 2553 return ret; 2554 } 2555 2556 static int ext4_nonda_switch(struct super_block *sb) 2557 { 2558 s64 free_clusters, dirty_clusters; 2559 struct ext4_sb_info *sbi = EXT4_SB(sb); 2560 2561 /* 2562 * switch to non delalloc mode if we are running low 2563 * on free block. The free block accounting via percpu 2564 * counters can get slightly wrong with percpu_counter_batch getting 2565 * accumulated on each CPU without updating global counters 2566 * Delalloc need an accurate free block accounting. So switch 2567 * to non delalloc when we are near to error range. 2568 */ 2569 free_clusters = 2570 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2571 dirty_clusters = 2572 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2573 /* 2574 * Start pushing delalloc when 1/2 of free blocks are dirty. 2575 */ 2576 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2577 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2578 2579 if (2 * free_clusters < 3 * dirty_clusters || 2580 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2581 /* 2582 * free block count is less than 150% of dirty blocks 2583 * or free blocks is less than watermark 2584 */ 2585 return 1; 2586 } 2587 return 0; 2588 } 2589 2590 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2591 loff_t pos, unsigned len, unsigned flags, 2592 struct page **pagep, void **fsdata) 2593 { 2594 int ret, retries = 0; 2595 struct page *page; 2596 pgoff_t index; 2597 struct inode *inode = mapping->host; 2598 handle_t *handle; 2599 2600 index = pos >> PAGE_CACHE_SHIFT; 2601 2602 if (ext4_nonda_switch(inode->i_sb)) { 2603 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2604 return ext4_write_begin(file, mapping, pos, 2605 len, flags, pagep, fsdata); 2606 } 2607 *fsdata = (void *)0; 2608 trace_ext4_da_write_begin(inode, pos, len, flags); 2609 2610 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2611 ret = ext4_da_write_inline_data_begin(mapping, inode, 2612 pos, len, flags, 2613 pagep, fsdata); 2614 if (ret < 0) 2615 return ret; 2616 if (ret == 1) 2617 return 0; 2618 } 2619 2620 /* 2621 * grab_cache_page_write_begin() can take a long time if the 2622 * system is thrashing due to memory pressure, or if the page 2623 * is being written back. So grab it first before we start 2624 * the transaction handle. This also allows us to allocate 2625 * the page (if needed) without using GFP_NOFS. 2626 */ 2627 retry_grab: 2628 page = grab_cache_page_write_begin(mapping, index, flags); 2629 if (!page) 2630 return -ENOMEM; 2631 unlock_page(page); 2632 2633 /* 2634 * With delayed allocation, we don't log the i_disksize update 2635 * if there is delayed block allocation. But we still need 2636 * to journalling the i_disksize update if writes to the end 2637 * of file which has an already mapped buffer. 2638 */ 2639 retry_journal: 2640 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2641 if (IS_ERR(handle)) { 2642 page_cache_release(page); 2643 return PTR_ERR(handle); 2644 } 2645 2646 lock_page(page); 2647 if (page->mapping != mapping) { 2648 /* The page got truncated from under us */ 2649 unlock_page(page); 2650 page_cache_release(page); 2651 ext4_journal_stop(handle); 2652 goto retry_grab; 2653 } 2654 /* In case writeback began while the page was unlocked */ 2655 wait_on_page_writeback(page); 2656 2657 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2658 if (ret < 0) { 2659 unlock_page(page); 2660 ext4_journal_stop(handle); 2661 /* 2662 * block_write_begin may have instantiated a few blocks 2663 * outside i_size. Trim these off again. Don't need 2664 * i_size_read because we hold i_mutex. 2665 */ 2666 if (pos + len > inode->i_size) 2667 ext4_truncate_failed_write(inode); 2668 2669 if (ret == -ENOSPC && 2670 ext4_should_retry_alloc(inode->i_sb, &retries)) 2671 goto retry_journal; 2672 2673 page_cache_release(page); 2674 return ret; 2675 } 2676 2677 *pagep = page; 2678 return ret; 2679 } 2680 2681 /* 2682 * Check if we should update i_disksize 2683 * when write to the end of file but not require block allocation 2684 */ 2685 static int ext4_da_should_update_i_disksize(struct page *page, 2686 unsigned long offset) 2687 { 2688 struct buffer_head *bh; 2689 struct inode *inode = page->mapping->host; 2690 unsigned int idx; 2691 int i; 2692 2693 bh = page_buffers(page); 2694 idx = offset >> inode->i_blkbits; 2695 2696 for (i = 0; i < idx; i++) 2697 bh = bh->b_this_page; 2698 2699 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2700 return 0; 2701 return 1; 2702 } 2703 2704 static int ext4_da_write_end(struct file *file, 2705 struct address_space *mapping, 2706 loff_t pos, unsigned len, unsigned copied, 2707 struct page *page, void *fsdata) 2708 { 2709 struct inode *inode = mapping->host; 2710 int ret = 0, ret2; 2711 handle_t *handle = ext4_journal_current_handle(); 2712 loff_t new_i_size; 2713 unsigned long start, end; 2714 int write_mode = (int)(unsigned long)fsdata; 2715 2716 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2717 return ext4_write_end(file, mapping, pos, 2718 len, copied, page, fsdata); 2719 2720 trace_ext4_da_write_end(inode, pos, len, copied); 2721 start = pos & (PAGE_CACHE_SIZE - 1); 2722 end = start + copied - 1; 2723 2724 /* 2725 * generic_write_end() will run mark_inode_dirty() if i_size 2726 * changes. So let's piggyback the i_disksize mark_inode_dirty 2727 * into that. 2728 */ 2729 new_i_size = pos + copied; 2730 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2731 if (ext4_has_inline_data(inode) || 2732 ext4_da_should_update_i_disksize(page, end)) { 2733 down_write(&EXT4_I(inode)->i_data_sem); 2734 if (new_i_size > EXT4_I(inode)->i_disksize) 2735 EXT4_I(inode)->i_disksize = new_i_size; 2736 up_write(&EXT4_I(inode)->i_data_sem); 2737 /* We need to mark inode dirty even if 2738 * new_i_size is less that inode->i_size 2739 * bu greater than i_disksize.(hint delalloc) 2740 */ 2741 ext4_mark_inode_dirty(handle, inode); 2742 } 2743 } 2744 2745 if (write_mode != CONVERT_INLINE_DATA && 2746 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2747 ext4_has_inline_data(inode)) 2748 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2749 page); 2750 else 2751 ret2 = generic_write_end(file, mapping, pos, len, copied, 2752 page, fsdata); 2753 2754 copied = ret2; 2755 if (ret2 < 0) 2756 ret = ret2; 2757 ret2 = ext4_journal_stop(handle); 2758 if (!ret) 2759 ret = ret2; 2760 2761 return ret ? ret : copied; 2762 } 2763 2764 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2765 unsigned int length) 2766 { 2767 /* 2768 * Drop reserved blocks 2769 */ 2770 BUG_ON(!PageLocked(page)); 2771 if (!page_has_buffers(page)) 2772 goto out; 2773 2774 ext4_da_page_release_reservation(page, offset, length); 2775 2776 out: 2777 ext4_invalidatepage(page, offset, length); 2778 2779 return; 2780 } 2781 2782 /* 2783 * Force all delayed allocation blocks to be allocated for a given inode. 2784 */ 2785 int ext4_alloc_da_blocks(struct inode *inode) 2786 { 2787 trace_ext4_alloc_da_blocks(inode); 2788 2789 if (!EXT4_I(inode)->i_reserved_data_blocks && 2790 !EXT4_I(inode)->i_reserved_meta_blocks) 2791 return 0; 2792 2793 /* 2794 * We do something simple for now. The filemap_flush() will 2795 * also start triggering a write of the data blocks, which is 2796 * not strictly speaking necessary (and for users of 2797 * laptop_mode, not even desirable). However, to do otherwise 2798 * would require replicating code paths in: 2799 * 2800 * ext4_writepages() -> 2801 * write_cache_pages() ---> (via passed in callback function) 2802 * __mpage_da_writepage() --> 2803 * mpage_add_bh_to_extent() 2804 * mpage_da_map_blocks() 2805 * 2806 * The problem is that write_cache_pages(), located in 2807 * mm/page-writeback.c, marks pages clean in preparation for 2808 * doing I/O, which is not desirable if we're not planning on 2809 * doing I/O at all. 2810 * 2811 * We could call write_cache_pages(), and then redirty all of 2812 * the pages by calling redirty_page_for_writepage() but that 2813 * would be ugly in the extreme. So instead we would need to 2814 * replicate parts of the code in the above functions, 2815 * simplifying them because we wouldn't actually intend to 2816 * write out the pages, but rather only collect contiguous 2817 * logical block extents, call the multi-block allocator, and 2818 * then update the buffer heads with the block allocations. 2819 * 2820 * For now, though, we'll cheat by calling filemap_flush(), 2821 * which will map the blocks, and start the I/O, but not 2822 * actually wait for the I/O to complete. 2823 */ 2824 return filemap_flush(inode->i_mapping); 2825 } 2826 2827 /* 2828 * bmap() is special. It gets used by applications such as lilo and by 2829 * the swapper to find the on-disk block of a specific piece of data. 2830 * 2831 * Naturally, this is dangerous if the block concerned is still in the 2832 * journal. If somebody makes a swapfile on an ext4 data-journaling 2833 * filesystem and enables swap, then they may get a nasty shock when the 2834 * data getting swapped to that swapfile suddenly gets overwritten by 2835 * the original zero's written out previously to the journal and 2836 * awaiting writeback in the kernel's buffer cache. 2837 * 2838 * So, if we see any bmap calls here on a modified, data-journaled file, 2839 * take extra steps to flush any blocks which might be in the cache. 2840 */ 2841 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2842 { 2843 struct inode *inode = mapping->host; 2844 journal_t *journal; 2845 int err; 2846 2847 /* 2848 * We can get here for an inline file via the FIBMAP ioctl 2849 */ 2850 if (ext4_has_inline_data(inode)) 2851 return 0; 2852 2853 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2854 test_opt(inode->i_sb, DELALLOC)) { 2855 /* 2856 * With delalloc we want to sync the file 2857 * so that we can make sure we allocate 2858 * blocks for file 2859 */ 2860 filemap_write_and_wait(mapping); 2861 } 2862 2863 if (EXT4_JOURNAL(inode) && 2864 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2865 /* 2866 * This is a REALLY heavyweight approach, but the use of 2867 * bmap on dirty files is expected to be extremely rare: 2868 * only if we run lilo or swapon on a freshly made file 2869 * do we expect this to happen. 2870 * 2871 * (bmap requires CAP_SYS_RAWIO so this does not 2872 * represent an unprivileged user DOS attack --- we'd be 2873 * in trouble if mortal users could trigger this path at 2874 * will.) 2875 * 2876 * NB. EXT4_STATE_JDATA is not set on files other than 2877 * regular files. If somebody wants to bmap a directory 2878 * or symlink and gets confused because the buffer 2879 * hasn't yet been flushed to disk, they deserve 2880 * everything they get. 2881 */ 2882 2883 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2884 journal = EXT4_JOURNAL(inode); 2885 jbd2_journal_lock_updates(journal); 2886 err = jbd2_journal_flush(journal); 2887 jbd2_journal_unlock_updates(journal); 2888 2889 if (err) 2890 return 0; 2891 } 2892 2893 return generic_block_bmap(mapping, block, ext4_get_block); 2894 } 2895 2896 static int ext4_readpage(struct file *file, struct page *page) 2897 { 2898 int ret = -EAGAIN; 2899 struct inode *inode = page->mapping->host; 2900 2901 trace_ext4_readpage(page); 2902 2903 if (ext4_has_inline_data(inode)) 2904 ret = ext4_readpage_inline(inode, page); 2905 2906 if (ret == -EAGAIN) 2907 return mpage_readpage(page, ext4_get_block); 2908 2909 return ret; 2910 } 2911 2912 static int 2913 ext4_readpages(struct file *file, struct address_space *mapping, 2914 struct list_head *pages, unsigned nr_pages) 2915 { 2916 struct inode *inode = mapping->host; 2917 2918 /* If the file has inline data, no need to do readpages. */ 2919 if (ext4_has_inline_data(inode)) 2920 return 0; 2921 2922 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2923 } 2924 2925 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2926 unsigned int length) 2927 { 2928 trace_ext4_invalidatepage(page, offset, length); 2929 2930 /* No journalling happens on data buffers when this function is used */ 2931 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2932 2933 block_invalidatepage(page, offset, length); 2934 } 2935 2936 static int __ext4_journalled_invalidatepage(struct page *page, 2937 unsigned int offset, 2938 unsigned int length) 2939 { 2940 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2941 2942 trace_ext4_journalled_invalidatepage(page, offset, length); 2943 2944 /* 2945 * If it's a full truncate we just forget about the pending dirtying 2946 */ 2947 if (offset == 0 && length == PAGE_CACHE_SIZE) 2948 ClearPageChecked(page); 2949 2950 return jbd2_journal_invalidatepage(journal, page, offset, length); 2951 } 2952 2953 /* Wrapper for aops... */ 2954 static void ext4_journalled_invalidatepage(struct page *page, 2955 unsigned int offset, 2956 unsigned int length) 2957 { 2958 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2959 } 2960 2961 static int ext4_releasepage(struct page *page, gfp_t wait) 2962 { 2963 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2964 2965 trace_ext4_releasepage(page); 2966 2967 /* Page has dirty journalled data -> cannot release */ 2968 if (PageChecked(page)) 2969 return 0; 2970 if (journal) 2971 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2972 else 2973 return try_to_free_buffers(page); 2974 } 2975 2976 /* 2977 * ext4_get_block used when preparing for a DIO write or buffer write. 2978 * We allocate an uinitialized extent if blocks haven't been allocated. 2979 * The extent will be converted to initialized after the IO is complete. 2980 */ 2981 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2982 struct buffer_head *bh_result, int create) 2983 { 2984 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2985 inode->i_ino, create); 2986 return _ext4_get_block(inode, iblock, bh_result, 2987 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2988 } 2989 2990 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2991 struct buffer_head *bh_result, int create) 2992 { 2993 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2994 inode->i_ino, create); 2995 return _ext4_get_block(inode, iblock, bh_result, 2996 EXT4_GET_BLOCKS_NO_LOCK); 2997 } 2998 2999 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3000 ssize_t size, void *private, int ret, 3001 bool is_async) 3002 { 3003 struct inode *inode = file_inode(iocb->ki_filp); 3004 ext4_io_end_t *io_end = iocb->private; 3005 3006 /* if not async direct IO just return */ 3007 if (!io_end) { 3008 inode_dio_done(inode); 3009 if (is_async) 3010 aio_complete(iocb, ret, 0); 3011 return; 3012 } 3013 3014 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3015 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3016 iocb->private, io_end->inode->i_ino, iocb, offset, 3017 size); 3018 3019 iocb->private = NULL; 3020 io_end->offset = offset; 3021 io_end->size = size; 3022 if (is_async) { 3023 io_end->iocb = iocb; 3024 io_end->result = ret; 3025 } 3026 ext4_put_io_end_defer(io_end); 3027 } 3028 3029 /* 3030 * For ext4 extent files, ext4 will do direct-io write to holes, 3031 * preallocated extents, and those write extend the file, no need to 3032 * fall back to buffered IO. 3033 * 3034 * For holes, we fallocate those blocks, mark them as uninitialized 3035 * If those blocks were preallocated, we mark sure they are split, but 3036 * still keep the range to write as uninitialized. 3037 * 3038 * The unwritten extents will be converted to written when DIO is completed. 3039 * For async direct IO, since the IO may still pending when return, we 3040 * set up an end_io call back function, which will do the conversion 3041 * when async direct IO completed. 3042 * 3043 * If the O_DIRECT write will extend the file then add this inode to the 3044 * orphan list. So recovery will truncate it back to the original size 3045 * if the machine crashes during the write. 3046 * 3047 */ 3048 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3049 const struct iovec *iov, loff_t offset, 3050 unsigned long nr_segs) 3051 { 3052 struct file *file = iocb->ki_filp; 3053 struct inode *inode = file->f_mapping->host; 3054 ssize_t ret; 3055 size_t count = iov_length(iov, nr_segs); 3056 int overwrite = 0; 3057 get_block_t *get_block_func = NULL; 3058 int dio_flags = 0; 3059 loff_t final_size = offset + count; 3060 ext4_io_end_t *io_end = NULL; 3061 3062 /* Use the old path for reads and writes beyond i_size. */ 3063 if (rw != WRITE || final_size > inode->i_size) 3064 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3065 3066 BUG_ON(iocb->private == NULL); 3067 3068 /* 3069 * Make all waiters for direct IO properly wait also for extent 3070 * conversion. This also disallows race between truncate() and 3071 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3072 */ 3073 if (rw == WRITE) 3074 atomic_inc(&inode->i_dio_count); 3075 3076 /* If we do a overwrite dio, i_mutex locking can be released */ 3077 overwrite = *((int *)iocb->private); 3078 3079 if (overwrite) { 3080 down_read(&EXT4_I(inode)->i_data_sem); 3081 mutex_unlock(&inode->i_mutex); 3082 } 3083 3084 /* 3085 * We could direct write to holes and fallocate. 3086 * 3087 * Allocated blocks to fill the hole are marked as 3088 * uninitialized to prevent parallel buffered read to expose 3089 * the stale data before DIO complete the data IO. 3090 * 3091 * As to previously fallocated extents, ext4 get_block will 3092 * just simply mark the buffer mapped but still keep the 3093 * extents uninitialized. 3094 * 3095 * For non AIO case, we will convert those unwritten extents 3096 * to written after return back from blockdev_direct_IO. 3097 * 3098 * For async DIO, the conversion needs to be deferred when the 3099 * IO is completed. The ext4 end_io callback function will be 3100 * called to take care of the conversion work. Here for async 3101 * case, we allocate an io_end structure to hook to the iocb. 3102 */ 3103 iocb->private = NULL; 3104 ext4_inode_aio_set(inode, NULL); 3105 if (!is_sync_kiocb(iocb)) { 3106 io_end = ext4_init_io_end(inode, GFP_NOFS); 3107 if (!io_end) { 3108 ret = -ENOMEM; 3109 goto retake_lock; 3110 } 3111 io_end->flag |= EXT4_IO_END_DIRECT; 3112 /* 3113 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3114 */ 3115 iocb->private = ext4_get_io_end(io_end); 3116 /* 3117 * we save the io structure for current async direct 3118 * IO, so that later ext4_map_blocks() could flag the 3119 * io structure whether there is a unwritten extents 3120 * needs to be converted when IO is completed. 3121 */ 3122 ext4_inode_aio_set(inode, io_end); 3123 } 3124 3125 if (overwrite) { 3126 get_block_func = ext4_get_block_write_nolock; 3127 } else { 3128 get_block_func = ext4_get_block_write; 3129 dio_flags = DIO_LOCKING; 3130 } 3131 ret = __blockdev_direct_IO(rw, iocb, inode, 3132 inode->i_sb->s_bdev, iov, 3133 offset, nr_segs, 3134 get_block_func, 3135 ext4_end_io_dio, 3136 NULL, 3137 dio_flags); 3138 3139 /* 3140 * Put our reference to io_end. This can free the io_end structure e.g. 3141 * in sync IO case or in case of error. It can even perform extent 3142 * conversion if all bios we submitted finished before we got here. 3143 * Note that in that case iocb->private can be already set to NULL 3144 * here. 3145 */ 3146 if (io_end) { 3147 ext4_inode_aio_set(inode, NULL); 3148 ext4_put_io_end(io_end); 3149 /* 3150 * When no IO was submitted ext4_end_io_dio() was not 3151 * called so we have to put iocb's reference. 3152 */ 3153 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3154 WARN_ON(iocb->private != io_end); 3155 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3156 WARN_ON(io_end->iocb); 3157 /* 3158 * Generic code already did inode_dio_done() so we 3159 * have to clear EXT4_IO_END_DIRECT to not do it for 3160 * the second time. 3161 */ 3162 io_end->flag = 0; 3163 ext4_put_io_end(io_end); 3164 iocb->private = NULL; 3165 } 3166 } 3167 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3168 EXT4_STATE_DIO_UNWRITTEN)) { 3169 int err; 3170 /* 3171 * for non AIO case, since the IO is already 3172 * completed, we could do the conversion right here 3173 */ 3174 err = ext4_convert_unwritten_extents(NULL, inode, 3175 offset, ret); 3176 if (err < 0) 3177 ret = err; 3178 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3179 } 3180 3181 retake_lock: 3182 if (rw == WRITE) 3183 inode_dio_done(inode); 3184 /* take i_mutex locking again if we do a ovewrite dio */ 3185 if (overwrite) { 3186 up_read(&EXT4_I(inode)->i_data_sem); 3187 mutex_lock(&inode->i_mutex); 3188 } 3189 3190 return ret; 3191 } 3192 3193 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3194 const struct iovec *iov, loff_t offset, 3195 unsigned long nr_segs) 3196 { 3197 struct file *file = iocb->ki_filp; 3198 struct inode *inode = file->f_mapping->host; 3199 ssize_t ret; 3200 3201 /* 3202 * If we are doing data journalling we don't support O_DIRECT 3203 */ 3204 if (ext4_should_journal_data(inode)) 3205 return 0; 3206 3207 /* Let buffer I/O handle the inline data case. */ 3208 if (ext4_has_inline_data(inode)) 3209 return 0; 3210 3211 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3212 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3213 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3214 else 3215 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3216 trace_ext4_direct_IO_exit(inode, offset, 3217 iov_length(iov, nr_segs), rw, ret); 3218 return ret; 3219 } 3220 3221 /* 3222 * Pages can be marked dirty completely asynchronously from ext4's journalling 3223 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3224 * much here because ->set_page_dirty is called under VFS locks. The page is 3225 * not necessarily locked. 3226 * 3227 * We cannot just dirty the page and leave attached buffers clean, because the 3228 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3229 * or jbddirty because all the journalling code will explode. 3230 * 3231 * So what we do is to mark the page "pending dirty" and next time writepage 3232 * is called, propagate that into the buffers appropriately. 3233 */ 3234 static int ext4_journalled_set_page_dirty(struct page *page) 3235 { 3236 SetPageChecked(page); 3237 return __set_page_dirty_nobuffers(page); 3238 } 3239 3240 static const struct address_space_operations ext4_aops = { 3241 .readpage = ext4_readpage, 3242 .readpages = ext4_readpages, 3243 .writepage = ext4_writepage, 3244 .writepages = ext4_writepages, 3245 .write_begin = ext4_write_begin, 3246 .write_end = ext4_write_end, 3247 .bmap = ext4_bmap, 3248 .invalidatepage = ext4_invalidatepage, 3249 .releasepage = ext4_releasepage, 3250 .direct_IO = ext4_direct_IO, 3251 .migratepage = buffer_migrate_page, 3252 .is_partially_uptodate = block_is_partially_uptodate, 3253 .error_remove_page = generic_error_remove_page, 3254 }; 3255 3256 static const struct address_space_operations ext4_journalled_aops = { 3257 .readpage = ext4_readpage, 3258 .readpages = ext4_readpages, 3259 .writepage = ext4_writepage, 3260 .writepages = ext4_writepages, 3261 .write_begin = ext4_write_begin, 3262 .write_end = ext4_journalled_write_end, 3263 .set_page_dirty = ext4_journalled_set_page_dirty, 3264 .bmap = ext4_bmap, 3265 .invalidatepage = ext4_journalled_invalidatepage, 3266 .releasepage = ext4_releasepage, 3267 .direct_IO = ext4_direct_IO, 3268 .is_partially_uptodate = block_is_partially_uptodate, 3269 .error_remove_page = generic_error_remove_page, 3270 }; 3271 3272 static const struct address_space_operations ext4_da_aops = { 3273 .readpage = ext4_readpage, 3274 .readpages = ext4_readpages, 3275 .writepage = ext4_writepage, 3276 .writepages = ext4_writepages, 3277 .write_begin = ext4_da_write_begin, 3278 .write_end = ext4_da_write_end, 3279 .bmap = ext4_bmap, 3280 .invalidatepage = ext4_da_invalidatepage, 3281 .releasepage = ext4_releasepage, 3282 .direct_IO = ext4_direct_IO, 3283 .migratepage = buffer_migrate_page, 3284 .is_partially_uptodate = block_is_partially_uptodate, 3285 .error_remove_page = generic_error_remove_page, 3286 }; 3287 3288 void ext4_set_aops(struct inode *inode) 3289 { 3290 switch (ext4_inode_journal_mode(inode)) { 3291 case EXT4_INODE_ORDERED_DATA_MODE: 3292 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3293 break; 3294 case EXT4_INODE_WRITEBACK_DATA_MODE: 3295 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3296 break; 3297 case EXT4_INODE_JOURNAL_DATA_MODE: 3298 inode->i_mapping->a_ops = &ext4_journalled_aops; 3299 return; 3300 default: 3301 BUG(); 3302 } 3303 if (test_opt(inode->i_sb, DELALLOC)) 3304 inode->i_mapping->a_ops = &ext4_da_aops; 3305 else 3306 inode->i_mapping->a_ops = &ext4_aops; 3307 } 3308 3309 /* 3310 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3311 * up to the end of the block which corresponds to `from'. 3312 * This required during truncate. We need to physically zero the tail end 3313 * of that block so it doesn't yield old data if the file is later grown. 3314 */ 3315 int ext4_block_truncate_page(handle_t *handle, 3316 struct address_space *mapping, loff_t from) 3317 { 3318 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3319 unsigned length; 3320 unsigned blocksize; 3321 struct inode *inode = mapping->host; 3322 3323 blocksize = inode->i_sb->s_blocksize; 3324 length = blocksize - (offset & (blocksize - 1)); 3325 3326 return ext4_block_zero_page_range(handle, mapping, from, length); 3327 } 3328 3329 /* 3330 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3331 * starting from file offset 'from'. The range to be zero'd must 3332 * be contained with in one block. If the specified range exceeds 3333 * the end of the block it will be shortened to end of the block 3334 * that cooresponds to 'from' 3335 */ 3336 int ext4_block_zero_page_range(handle_t *handle, 3337 struct address_space *mapping, loff_t from, loff_t length) 3338 { 3339 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3340 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3341 unsigned blocksize, max, pos; 3342 ext4_lblk_t iblock; 3343 struct inode *inode = mapping->host; 3344 struct buffer_head *bh; 3345 struct page *page; 3346 int err = 0; 3347 3348 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3349 mapping_gfp_mask(mapping) & ~__GFP_FS); 3350 if (!page) 3351 return -ENOMEM; 3352 3353 blocksize = inode->i_sb->s_blocksize; 3354 max = blocksize - (offset & (blocksize - 1)); 3355 3356 /* 3357 * correct length if it does not fall between 3358 * 'from' and the end of the block 3359 */ 3360 if (length > max || length < 0) 3361 length = max; 3362 3363 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3364 3365 if (!page_has_buffers(page)) 3366 create_empty_buffers(page, blocksize, 0); 3367 3368 /* Find the buffer that contains "offset" */ 3369 bh = page_buffers(page); 3370 pos = blocksize; 3371 while (offset >= pos) { 3372 bh = bh->b_this_page; 3373 iblock++; 3374 pos += blocksize; 3375 } 3376 if (buffer_freed(bh)) { 3377 BUFFER_TRACE(bh, "freed: skip"); 3378 goto unlock; 3379 } 3380 if (!buffer_mapped(bh)) { 3381 BUFFER_TRACE(bh, "unmapped"); 3382 ext4_get_block(inode, iblock, bh, 0); 3383 /* unmapped? It's a hole - nothing to do */ 3384 if (!buffer_mapped(bh)) { 3385 BUFFER_TRACE(bh, "still unmapped"); 3386 goto unlock; 3387 } 3388 } 3389 3390 /* Ok, it's mapped. Make sure it's up-to-date */ 3391 if (PageUptodate(page)) 3392 set_buffer_uptodate(bh); 3393 3394 if (!buffer_uptodate(bh)) { 3395 err = -EIO; 3396 ll_rw_block(READ, 1, &bh); 3397 wait_on_buffer(bh); 3398 /* Uhhuh. Read error. Complain and punt. */ 3399 if (!buffer_uptodate(bh)) 3400 goto unlock; 3401 } 3402 if (ext4_should_journal_data(inode)) { 3403 BUFFER_TRACE(bh, "get write access"); 3404 err = ext4_journal_get_write_access(handle, bh); 3405 if (err) 3406 goto unlock; 3407 } 3408 zero_user(page, offset, length); 3409 BUFFER_TRACE(bh, "zeroed end of block"); 3410 3411 if (ext4_should_journal_data(inode)) { 3412 err = ext4_handle_dirty_metadata(handle, inode, bh); 3413 } else { 3414 err = 0; 3415 mark_buffer_dirty(bh); 3416 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3417 err = ext4_jbd2_file_inode(handle, inode); 3418 } 3419 3420 unlock: 3421 unlock_page(page); 3422 page_cache_release(page); 3423 return err; 3424 } 3425 3426 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3427 loff_t lstart, loff_t length) 3428 { 3429 struct super_block *sb = inode->i_sb; 3430 struct address_space *mapping = inode->i_mapping; 3431 unsigned partial_start, partial_end; 3432 ext4_fsblk_t start, end; 3433 loff_t byte_end = (lstart + length - 1); 3434 int err = 0; 3435 3436 partial_start = lstart & (sb->s_blocksize - 1); 3437 partial_end = byte_end & (sb->s_blocksize - 1); 3438 3439 start = lstart >> sb->s_blocksize_bits; 3440 end = byte_end >> sb->s_blocksize_bits; 3441 3442 /* Handle partial zero within the single block */ 3443 if (start == end && 3444 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3445 err = ext4_block_zero_page_range(handle, mapping, 3446 lstart, length); 3447 return err; 3448 } 3449 /* Handle partial zero out on the start of the range */ 3450 if (partial_start) { 3451 err = ext4_block_zero_page_range(handle, mapping, 3452 lstart, sb->s_blocksize); 3453 if (err) 3454 return err; 3455 } 3456 /* Handle partial zero out on the end of the range */ 3457 if (partial_end != sb->s_blocksize - 1) 3458 err = ext4_block_zero_page_range(handle, mapping, 3459 byte_end - partial_end, 3460 partial_end + 1); 3461 return err; 3462 } 3463 3464 int ext4_can_truncate(struct inode *inode) 3465 { 3466 if (S_ISREG(inode->i_mode)) 3467 return 1; 3468 if (S_ISDIR(inode->i_mode)) 3469 return 1; 3470 if (S_ISLNK(inode->i_mode)) 3471 return !ext4_inode_is_fast_symlink(inode); 3472 return 0; 3473 } 3474 3475 /* 3476 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3477 * associated with the given offset and length 3478 * 3479 * @inode: File inode 3480 * @offset: The offset where the hole will begin 3481 * @len: The length of the hole 3482 * 3483 * Returns: 0 on success or negative on failure 3484 */ 3485 3486 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3487 { 3488 struct super_block *sb = inode->i_sb; 3489 ext4_lblk_t first_block, stop_block; 3490 struct address_space *mapping = inode->i_mapping; 3491 loff_t first_block_offset, last_block_offset; 3492 handle_t *handle; 3493 unsigned int credits; 3494 int ret = 0; 3495 3496 if (!S_ISREG(inode->i_mode)) 3497 return -EOPNOTSUPP; 3498 3499 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3500 /* TODO: Add support for bigalloc file systems */ 3501 return -EOPNOTSUPP; 3502 } 3503 3504 trace_ext4_punch_hole(inode, offset, length); 3505 3506 /* 3507 * Write out all dirty pages to avoid race conditions 3508 * Then release them. 3509 */ 3510 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3511 ret = filemap_write_and_wait_range(mapping, offset, 3512 offset + length - 1); 3513 if (ret) 3514 return ret; 3515 } 3516 3517 mutex_lock(&inode->i_mutex); 3518 /* It's not possible punch hole on append only file */ 3519 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3520 ret = -EPERM; 3521 goto out_mutex; 3522 } 3523 if (IS_SWAPFILE(inode)) { 3524 ret = -ETXTBSY; 3525 goto out_mutex; 3526 } 3527 3528 /* No need to punch hole beyond i_size */ 3529 if (offset >= inode->i_size) 3530 goto out_mutex; 3531 3532 /* 3533 * If the hole extends beyond i_size, set the hole 3534 * to end after the page that contains i_size 3535 */ 3536 if (offset + length > inode->i_size) { 3537 length = inode->i_size + 3538 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3539 offset; 3540 } 3541 3542 first_block_offset = round_up(offset, sb->s_blocksize); 3543 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3544 3545 /* Now release the pages and zero block aligned part of pages*/ 3546 if (last_block_offset > first_block_offset) 3547 truncate_pagecache_range(inode, first_block_offset, 3548 last_block_offset); 3549 3550 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3551 ext4_inode_block_unlocked_dio(inode); 3552 inode_dio_wait(inode); 3553 3554 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3555 credits = ext4_writepage_trans_blocks(inode); 3556 else 3557 credits = ext4_blocks_for_truncate(inode); 3558 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3559 if (IS_ERR(handle)) { 3560 ret = PTR_ERR(handle); 3561 ext4_std_error(sb, ret); 3562 goto out_dio; 3563 } 3564 3565 ret = ext4_zero_partial_blocks(handle, inode, offset, 3566 length); 3567 if (ret) 3568 goto out_stop; 3569 3570 first_block = (offset + sb->s_blocksize - 1) >> 3571 EXT4_BLOCK_SIZE_BITS(sb); 3572 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3573 3574 /* If there are no blocks to remove, return now */ 3575 if (first_block >= stop_block) 3576 goto out_stop; 3577 3578 down_write(&EXT4_I(inode)->i_data_sem); 3579 ext4_discard_preallocations(inode); 3580 3581 ret = ext4_es_remove_extent(inode, first_block, 3582 stop_block - first_block); 3583 if (ret) { 3584 up_write(&EXT4_I(inode)->i_data_sem); 3585 goto out_stop; 3586 } 3587 3588 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3589 ret = ext4_ext_remove_space(inode, first_block, 3590 stop_block - 1); 3591 else 3592 ret = ext4_free_hole_blocks(handle, inode, first_block, 3593 stop_block); 3594 3595 ext4_discard_preallocations(inode); 3596 up_write(&EXT4_I(inode)->i_data_sem); 3597 if (IS_SYNC(inode)) 3598 ext4_handle_sync(handle); 3599 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3600 ext4_mark_inode_dirty(handle, inode); 3601 out_stop: 3602 ext4_journal_stop(handle); 3603 out_dio: 3604 ext4_inode_resume_unlocked_dio(inode); 3605 out_mutex: 3606 mutex_unlock(&inode->i_mutex); 3607 return ret; 3608 } 3609 3610 /* 3611 * ext4_truncate() 3612 * 3613 * We block out ext4_get_block() block instantiations across the entire 3614 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3615 * simultaneously on behalf of the same inode. 3616 * 3617 * As we work through the truncate and commit bits of it to the journal there 3618 * is one core, guiding principle: the file's tree must always be consistent on 3619 * disk. We must be able to restart the truncate after a crash. 3620 * 3621 * The file's tree may be transiently inconsistent in memory (although it 3622 * probably isn't), but whenever we close off and commit a journal transaction, 3623 * the contents of (the filesystem + the journal) must be consistent and 3624 * restartable. It's pretty simple, really: bottom up, right to left (although 3625 * left-to-right works OK too). 3626 * 3627 * Note that at recovery time, journal replay occurs *before* the restart of 3628 * truncate against the orphan inode list. 3629 * 3630 * The committed inode has the new, desired i_size (which is the same as 3631 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3632 * that this inode's truncate did not complete and it will again call 3633 * ext4_truncate() to have another go. So there will be instantiated blocks 3634 * to the right of the truncation point in a crashed ext4 filesystem. But 3635 * that's fine - as long as they are linked from the inode, the post-crash 3636 * ext4_truncate() run will find them and release them. 3637 */ 3638 void ext4_truncate(struct inode *inode) 3639 { 3640 struct ext4_inode_info *ei = EXT4_I(inode); 3641 unsigned int credits; 3642 handle_t *handle; 3643 struct address_space *mapping = inode->i_mapping; 3644 3645 /* 3646 * There is a possibility that we're either freeing the inode 3647 * or it completely new indode. In those cases we might not 3648 * have i_mutex locked because it's not necessary. 3649 */ 3650 if (!(inode->i_state & (I_NEW|I_FREEING))) 3651 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3652 trace_ext4_truncate_enter(inode); 3653 3654 if (!ext4_can_truncate(inode)) 3655 return; 3656 3657 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3658 3659 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3660 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3661 3662 if (ext4_has_inline_data(inode)) { 3663 int has_inline = 1; 3664 3665 ext4_inline_data_truncate(inode, &has_inline); 3666 if (has_inline) 3667 return; 3668 } 3669 3670 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3671 credits = ext4_writepage_trans_blocks(inode); 3672 else 3673 credits = ext4_blocks_for_truncate(inode); 3674 3675 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3676 if (IS_ERR(handle)) { 3677 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3678 return; 3679 } 3680 3681 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3682 ext4_block_truncate_page(handle, mapping, inode->i_size); 3683 3684 /* 3685 * We add the inode to the orphan list, so that if this 3686 * truncate spans multiple transactions, and we crash, we will 3687 * resume the truncate when the filesystem recovers. It also 3688 * marks the inode dirty, to catch the new size. 3689 * 3690 * Implication: the file must always be in a sane, consistent 3691 * truncatable state while each transaction commits. 3692 */ 3693 if (ext4_orphan_add(handle, inode)) 3694 goto out_stop; 3695 3696 down_write(&EXT4_I(inode)->i_data_sem); 3697 3698 ext4_discard_preallocations(inode); 3699 3700 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3701 ext4_ext_truncate(handle, inode); 3702 else 3703 ext4_ind_truncate(handle, inode); 3704 3705 up_write(&ei->i_data_sem); 3706 3707 if (IS_SYNC(inode)) 3708 ext4_handle_sync(handle); 3709 3710 out_stop: 3711 /* 3712 * If this was a simple ftruncate() and the file will remain alive, 3713 * then we need to clear up the orphan record which we created above. 3714 * However, if this was a real unlink then we were called by 3715 * ext4_delete_inode(), and we allow that function to clean up the 3716 * orphan info for us. 3717 */ 3718 if (inode->i_nlink) 3719 ext4_orphan_del(handle, inode); 3720 3721 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3722 ext4_mark_inode_dirty(handle, inode); 3723 ext4_journal_stop(handle); 3724 3725 trace_ext4_truncate_exit(inode); 3726 } 3727 3728 /* 3729 * ext4_get_inode_loc returns with an extra refcount against the inode's 3730 * underlying buffer_head on success. If 'in_mem' is true, we have all 3731 * data in memory that is needed to recreate the on-disk version of this 3732 * inode. 3733 */ 3734 static int __ext4_get_inode_loc(struct inode *inode, 3735 struct ext4_iloc *iloc, int in_mem) 3736 { 3737 struct ext4_group_desc *gdp; 3738 struct buffer_head *bh; 3739 struct super_block *sb = inode->i_sb; 3740 ext4_fsblk_t block; 3741 int inodes_per_block, inode_offset; 3742 3743 iloc->bh = NULL; 3744 if (!ext4_valid_inum(sb, inode->i_ino)) 3745 return -EIO; 3746 3747 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3748 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3749 if (!gdp) 3750 return -EIO; 3751 3752 /* 3753 * Figure out the offset within the block group inode table 3754 */ 3755 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3756 inode_offset = ((inode->i_ino - 1) % 3757 EXT4_INODES_PER_GROUP(sb)); 3758 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3759 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3760 3761 bh = sb_getblk(sb, block); 3762 if (unlikely(!bh)) 3763 return -ENOMEM; 3764 if (!buffer_uptodate(bh)) { 3765 lock_buffer(bh); 3766 3767 /* 3768 * If the buffer has the write error flag, we have failed 3769 * to write out another inode in the same block. In this 3770 * case, we don't have to read the block because we may 3771 * read the old inode data successfully. 3772 */ 3773 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3774 set_buffer_uptodate(bh); 3775 3776 if (buffer_uptodate(bh)) { 3777 /* someone brought it uptodate while we waited */ 3778 unlock_buffer(bh); 3779 goto has_buffer; 3780 } 3781 3782 /* 3783 * If we have all information of the inode in memory and this 3784 * is the only valid inode in the block, we need not read the 3785 * block. 3786 */ 3787 if (in_mem) { 3788 struct buffer_head *bitmap_bh; 3789 int i, start; 3790 3791 start = inode_offset & ~(inodes_per_block - 1); 3792 3793 /* Is the inode bitmap in cache? */ 3794 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3795 if (unlikely(!bitmap_bh)) 3796 goto make_io; 3797 3798 /* 3799 * If the inode bitmap isn't in cache then the 3800 * optimisation may end up performing two reads instead 3801 * of one, so skip it. 3802 */ 3803 if (!buffer_uptodate(bitmap_bh)) { 3804 brelse(bitmap_bh); 3805 goto make_io; 3806 } 3807 for (i = start; i < start + inodes_per_block; i++) { 3808 if (i == inode_offset) 3809 continue; 3810 if (ext4_test_bit(i, bitmap_bh->b_data)) 3811 break; 3812 } 3813 brelse(bitmap_bh); 3814 if (i == start + inodes_per_block) { 3815 /* all other inodes are free, so skip I/O */ 3816 memset(bh->b_data, 0, bh->b_size); 3817 set_buffer_uptodate(bh); 3818 unlock_buffer(bh); 3819 goto has_buffer; 3820 } 3821 } 3822 3823 make_io: 3824 /* 3825 * If we need to do any I/O, try to pre-readahead extra 3826 * blocks from the inode table. 3827 */ 3828 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3829 ext4_fsblk_t b, end, table; 3830 unsigned num; 3831 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3832 3833 table = ext4_inode_table(sb, gdp); 3834 /* s_inode_readahead_blks is always a power of 2 */ 3835 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3836 if (table > b) 3837 b = table; 3838 end = b + ra_blks; 3839 num = EXT4_INODES_PER_GROUP(sb); 3840 if (ext4_has_group_desc_csum(sb)) 3841 num -= ext4_itable_unused_count(sb, gdp); 3842 table += num / inodes_per_block; 3843 if (end > table) 3844 end = table; 3845 while (b <= end) 3846 sb_breadahead(sb, b++); 3847 } 3848 3849 /* 3850 * There are other valid inodes in the buffer, this inode 3851 * has in-inode xattrs, or we don't have this inode in memory. 3852 * Read the block from disk. 3853 */ 3854 trace_ext4_load_inode(inode); 3855 get_bh(bh); 3856 bh->b_end_io = end_buffer_read_sync; 3857 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3858 wait_on_buffer(bh); 3859 if (!buffer_uptodate(bh)) { 3860 EXT4_ERROR_INODE_BLOCK(inode, block, 3861 "unable to read itable block"); 3862 brelse(bh); 3863 return -EIO; 3864 } 3865 } 3866 has_buffer: 3867 iloc->bh = bh; 3868 return 0; 3869 } 3870 3871 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3872 { 3873 /* We have all inode data except xattrs in memory here. */ 3874 return __ext4_get_inode_loc(inode, iloc, 3875 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3876 } 3877 3878 void ext4_set_inode_flags(struct inode *inode) 3879 { 3880 unsigned int flags = EXT4_I(inode)->i_flags; 3881 3882 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3883 if (flags & EXT4_SYNC_FL) 3884 inode->i_flags |= S_SYNC; 3885 if (flags & EXT4_APPEND_FL) 3886 inode->i_flags |= S_APPEND; 3887 if (flags & EXT4_IMMUTABLE_FL) 3888 inode->i_flags |= S_IMMUTABLE; 3889 if (flags & EXT4_NOATIME_FL) 3890 inode->i_flags |= S_NOATIME; 3891 if (flags & EXT4_DIRSYNC_FL) 3892 inode->i_flags |= S_DIRSYNC; 3893 } 3894 3895 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3896 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3897 { 3898 unsigned int vfs_fl; 3899 unsigned long old_fl, new_fl; 3900 3901 do { 3902 vfs_fl = ei->vfs_inode.i_flags; 3903 old_fl = ei->i_flags; 3904 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3905 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3906 EXT4_DIRSYNC_FL); 3907 if (vfs_fl & S_SYNC) 3908 new_fl |= EXT4_SYNC_FL; 3909 if (vfs_fl & S_APPEND) 3910 new_fl |= EXT4_APPEND_FL; 3911 if (vfs_fl & S_IMMUTABLE) 3912 new_fl |= EXT4_IMMUTABLE_FL; 3913 if (vfs_fl & S_NOATIME) 3914 new_fl |= EXT4_NOATIME_FL; 3915 if (vfs_fl & S_DIRSYNC) 3916 new_fl |= EXT4_DIRSYNC_FL; 3917 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3918 } 3919 3920 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3921 struct ext4_inode_info *ei) 3922 { 3923 blkcnt_t i_blocks ; 3924 struct inode *inode = &(ei->vfs_inode); 3925 struct super_block *sb = inode->i_sb; 3926 3927 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3928 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3929 /* we are using combined 48 bit field */ 3930 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3931 le32_to_cpu(raw_inode->i_blocks_lo); 3932 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3933 /* i_blocks represent file system block size */ 3934 return i_blocks << (inode->i_blkbits - 9); 3935 } else { 3936 return i_blocks; 3937 } 3938 } else { 3939 return le32_to_cpu(raw_inode->i_blocks_lo); 3940 } 3941 } 3942 3943 static inline void ext4_iget_extra_inode(struct inode *inode, 3944 struct ext4_inode *raw_inode, 3945 struct ext4_inode_info *ei) 3946 { 3947 __le32 *magic = (void *)raw_inode + 3948 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3949 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3950 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3951 ext4_find_inline_data_nolock(inode); 3952 } else 3953 EXT4_I(inode)->i_inline_off = 0; 3954 } 3955 3956 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3957 { 3958 struct ext4_iloc iloc; 3959 struct ext4_inode *raw_inode; 3960 struct ext4_inode_info *ei; 3961 struct inode *inode; 3962 journal_t *journal = EXT4_SB(sb)->s_journal; 3963 long ret; 3964 int block; 3965 uid_t i_uid; 3966 gid_t i_gid; 3967 3968 inode = iget_locked(sb, ino); 3969 if (!inode) 3970 return ERR_PTR(-ENOMEM); 3971 if (!(inode->i_state & I_NEW)) 3972 return inode; 3973 3974 ei = EXT4_I(inode); 3975 iloc.bh = NULL; 3976 3977 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3978 if (ret < 0) 3979 goto bad_inode; 3980 raw_inode = ext4_raw_inode(&iloc); 3981 3982 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3983 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3984 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3985 EXT4_INODE_SIZE(inode->i_sb)) { 3986 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3987 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3988 EXT4_INODE_SIZE(inode->i_sb)); 3989 ret = -EIO; 3990 goto bad_inode; 3991 } 3992 } else 3993 ei->i_extra_isize = 0; 3994 3995 /* Precompute checksum seed for inode metadata */ 3996 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3997 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3998 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3999 __u32 csum; 4000 __le32 inum = cpu_to_le32(inode->i_ino); 4001 __le32 gen = raw_inode->i_generation; 4002 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4003 sizeof(inum)); 4004 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4005 sizeof(gen)); 4006 } 4007 4008 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4009 EXT4_ERROR_INODE(inode, "checksum invalid"); 4010 ret = -EIO; 4011 goto bad_inode; 4012 } 4013 4014 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4015 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4016 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4017 if (!(test_opt(inode->i_sb, NO_UID32))) { 4018 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4019 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4020 } 4021 i_uid_write(inode, i_uid); 4022 i_gid_write(inode, i_gid); 4023 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4024 4025 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4026 ei->i_inline_off = 0; 4027 ei->i_dir_start_lookup = 0; 4028 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4029 /* We now have enough fields to check if the inode was active or not. 4030 * This is needed because nfsd might try to access dead inodes 4031 * the test is that same one that e2fsck uses 4032 * NeilBrown 1999oct15 4033 */ 4034 if (inode->i_nlink == 0) { 4035 if ((inode->i_mode == 0 || 4036 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4037 ino != EXT4_BOOT_LOADER_INO) { 4038 /* this inode is deleted */ 4039 ret = -ESTALE; 4040 goto bad_inode; 4041 } 4042 /* The only unlinked inodes we let through here have 4043 * valid i_mode and are being read by the orphan 4044 * recovery code: that's fine, we're about to complete 4045 * the process of deleting those. 4046 * OR it is the EXT4_BOOT_LOADER_INO which is 4047 * not initialized on a new filesystem. */ 4048 } 4049 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4050 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4051 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4052 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4053 ei->i_file_acl |= 4054 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4055 inode->i_size = ext4_isize(raw_inode); 4056 ei->i_disksize = inode->i_size; 4057 #ifdef CONFIG_QUOTA 4058 ei->i_reserved_quota = 0; 4059 #endif 4060 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4061 ei->i_block_group = iloc.block_group; 4062 ei->i_last_alloc_group = ~0; 4063 /* 4064 * NOTE! The in-memory inode i_data array is in little-endian order 4065 * even on big-endian machines: we do NOT byteswap the block numbers! 4066 */ 4067 for (block = 0; block < EXT4_N_BLOCKS; block++) 4068 ei->i_data[block] = raw_inode->i_block[block]; 4069 INIT_LIST_HEAD(&ei->i_orphan); 4070 4071 /* 4072 * Set transaction id's of transactions that have to be committed 4073 * to finish f[data]sync. We set them to currently running transaction 4074 * as we cannot be sure that the inode or some of its metadata isn't 4075 * part of the transaction - the inode could have been reclaimed and 4076 * now it is reread from disk. 4077 */ 4078 if (journal) { 4079 transaction_t *transaction; 4080 tid_t tid; 4081 4082 read_lock(&journal->j_state_lock); 4083 if (journal->j_running_transaction) 4084 transaction = journal->j_running_transaction; 4085 else 4086 transaction = journal->j_committing_transaction; 4087 if (transaction) 4088 tid = transaction->t_tid; 4089 else 4090 tid = journal->j_commit_sequence; 4091 read_unlock(&journal->j_state_lock); 4092 ei->i_sync_tid = tid; 4093 ei->i_datasync_tid = tid; 4094 } 4095 4096 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4097 if (ei->i_extra_isize == 0) { 4098 /* The extra space is currently unused. Use it. */ 4099 ei->i_extra_isize = sizeof(struct ext4_inode) - 4100 EXT4_GOOD_OLD_INODE_SIZE; 4101 } else { 4102 ext4_iget_extra_inode(inode, raw_inode, ei); 4103 } 4104 } 4105 4106 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4107 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4108 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4109 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4110 4111 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4113 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4114 inode->i_version |= 4115 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4116 } 4117 4118 ret = 0; 4119 if (ei->i_file_acl && 4120 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4121 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4122 ei->i_file_acl); 4123 ret = -EIO; 4124 goto bad_inode; 4125 } else if (!ext4_has_inline_data(inode)) { 4126 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4127 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4128 (S_ISLNK(inode->i_mode) && 4129 !ext4_inode_is_fast_symlink(inode)))) 4130 /* Validate extent which is part of inode */ 4131 ret = ext4_ext_check_inode(inode); 4132 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4133 (S_ISLNK(inode->i_mode) && 4134 !ext4_inode_is_fast_symlink(inode))) { 4135 /* Validate block references which are part of inode */ 4136 ret = ext4_ind_check_inode(inode); 4137 } 4138 } 4139 if (ret) 4140 goto bad_inode; 4141 4142 if (S_ISREG(inode->i_mode)) { 4143 inode->i_op = &ext4_file_inode_operations; 4144 inode->i_fop = &ext4_file_operations; 4145 ext4_set_aops(inode); 4146 } else if (S_ISDIR(inode->i_mode)) { 4147 inode->i_op = &ext4_dir_inode_operations; 4148 inode->i_fop = &ext4_dir_operations; 4149 } else if (S_ISLNK(inode->i_mode)) { 4150 if (ext4_inode_is_fast_symlink(inode)) { 4151 inode->i_op = &ext4_fast_symlink_inode_operations; 4152 nd_terminate_link(ei->i_data, inode->i_size, 4153 sizeof(ei->i_data) - 1); 4154 } else { 4155 inode->i_op = &ext4_symlink_inode_operations; 4156 ext4_set_aops(inode); 4157 } 4158 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4159 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4160 inode->i_op = &ext4_special_inode_operations; 4161 if (raw_inode->i_block[0]) 4162 init_special_inode(inode, inode->i_mode, 4163 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4164 else 4165 init_special_inode(inode, inode->i_mode, 4166 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4167 } else if (ino == EXT4_BOOT_LOADER_INO) { 4168 make_bad_inode(inode); 4169 } else { 4170 ret = -EIO; 4171 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4172 goto bad_inode; 4173 } 4174 brelse(iloc.bh); 4175 ext4_set_inode_flags(inode); 4176 unlock_new_inode(inode); 4177 return inode; 4178 4179 bad_inode: 4180 brelse(iloc.bh); 4181 iget_failed(inode); 4182 return ERR_PTR(ret); 4183 } 4184 4185 static int ext4_inode_blocks_set(handle_t *handle, 4186 struct ext4_inode *raw_inode, 4187 struct ext4_inode_info *ei) 4188 { 4189 struct inode *inode = &(ei->vfs_inode); 4190 u64 i_blocks = inode->i_blocks; 4191 struct super_block *sb = inode->i_sb; 4192 4193 if (i_blocks <= ~0U) { 4194 /* 4195 * i_blocks can be represented in a 32 bit variable 4196 * as multiple of 512 bytes 4197 */ 4198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4199 raw_inode->i_blocks_high = 0; 4200 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4201 return 0; 4202 } 4203 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4204 return -EFBIG; 4205 4206 if (i_blocks <= 0xffffffffffffULL) { 4207 /* 4208 * i_blocks can be represented in a 48 bit variable 4209 * as multiple of 512 bytes 4210 */ 4211 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4212 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4213 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4214 } else { 4215 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4216 /* i_block is stored in file system block size */ 4217 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4220 } 4221 return 0; 4222 } 4223 4224 /* 4225 * Post the struct inode info into an on-disk inode location in the 4226 * buffer-cache. This gobbles the caller's reference to the 4227 * buffer_head in the inode location struct. 4228 * 4229 * The caller must have write access to iloc->bh. 4230 */ 4231 static int ext4_do_update_inode(handle_t *handle, 4232 struct inode *inode, 4233 struct ext4_iloc *iloc) 4234 { 4235 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4236 struct ext4_inode_info *ei = EXT4_I(inode); 4237 struct buffer_head *bh = iloc->bh; 4238 int err = 0, rc, block; 4239 int need_datasync = 0; 4240 uid_t i_uid; 4241 gid_t i_gid; 4242 4243 /* For fields not not tracking in the in-memory inode, 4244 * initialise them to zero for new inodes. */ 4245 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4246 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4247 4248 ext4_get_inode_flags(ei); 4249 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4250 i_uid = i_uid_read(inode); 4251 i_gid = i_gid_read(inode); 4252 if (!(test_opt(inode->i_sb, NO_UID32))) { 4253 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4254 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4255 /* 4256 * Fix up interoperability with old kernels. Otherwise, old inodes get 4257 * re-used with the upper 16 bits of the uid/gid intact 4258 */ 4259 if (!ei->i_dtime) { 4260 raw_inode->i_uid_high = 4261 cpu_to_le16(high_16_bits(i_uid)); 4262 raw_inode->i_gid_high = 4263 cpu_to_le16(high_16_bits(i_gid)); 4264 } else { 4265 raw_inode->i_uid_high = 0; 4266 raw_inode->i_gid_high = 0; 4267 } 4268 } else { 4269 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4270 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4271 raw_inode->i_uid_high = 0; 4272 raw_inode->i_gid_high = 0; 4273 } 4274 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4275 4276 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4277 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4278 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4279 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4280 4281 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4282 goto out_brelse; 4283 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4284 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4285 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4286 cpu_to_le32(EXT4_OS_HURD)) 4287 raw_inode->i_file_acl_high = 4288 cpu_to_le16(ei->i_file_acl >> 32); 4289 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4290 if (ei->i_disksize != ext4_isize(raw_inode)) { 4291 ext4_isize_set(raw_inode, ei->i_disksize); 4292 need_datasync = 1; 4293 } 4294 if (ei->i_disksize > 0x7fffffffULL) { 4295 struct super_block *sb = inode->i_sb; 4296 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4297 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4298 EXT4_SB(sb)->s_es->s_rev_level == 4299 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4300 /* If this is the first large file 4301 * created, add a flag to the superblock. 4302 */ 4303 err = ext4_journal_get_write_access(handle, 4304 EXT4_SB(sb)->s_sbh); 4305 if (err) 4306 goto out_brelse; 4307 ext4_update_dynamic_rev(sb); 4308 EXT4_SET_RO_COMPAT_FEATURE(sb, 4309 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4310 ext4_handle_sync(handle); 4311 err = ext4_handle_dirty_super(handle, sb); 4312 } 4313 } 4314 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4315 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4316 if (old_valid_dev(inode->i_rdev)) { 4317 raw_inode->i_block[0] = 4318 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4319 raw_inode->i_block[1] = 0; 4320 } else { 4321 raw_inode->i_block[0] = 0; 4322 raw_inode->i_block[1] = 4323 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4324 raw_inode->i_block[2] = 0; 4325 } 4326 } else if (!ext4_has_inline_data(inode)) { 4327 for (block = 0; block < EXT4_N_BLOCKS; block++) 4328 raw_inode->i_block[block] = ei->i_data[block]; 4329 } 4330 4331 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4332 if (ei->i_extra_isize) { 4333 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4334 raw_inode->i_version_hi = 4335 cpu_to_le32(inode->i_version >> 32); 4336 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4337 } 4338 4339 ext4_inode_csum_set(inode, raw_inode, ei); 4340 4341 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4342 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4343 if (!err) 4344 err = rc; 4345 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4346 4347 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4348 out_brelse: 4349 brelse(bh); 4350 ext4_std_error(inode->i_sb, err); 4351 return err; 4352 } 4353 4354 /* 4355 * ext4_write_inode() 4356 * 4357 * We are called from a few places: 4358 * 4359 * - Within generic_file_write() for O_SYNC files. 4360 * Here, there will be no transaction running. We wait for any running 4361 * transaction to commit. 4362 * 4363 * - Within sys_sync(), kupdate and such. 4364 * We wait on commit, if tol to. 4365 * 4366 * - Within prune_icache() (PF_MEMALLOC == true) 4367 * Here we simply return. We can't afford to block kswapd on the 4368 * journal commit. 4369 * 4370 * In all cases it is actually safe for us to return without doing anything, 4371 * because the inode has been copied into a raw inode buffer in 4372 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4373 * knfsd. 4374 * 4375 * Note that we are absolutely dependent upon all inode dirtiers doing the 4376 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4377 * which we are interested. 4378 * 4379 * It would be a bug for them to not do this. The code: 4380 * 4381 * mark_inode_dirty(inode) 4382 * stuff(); 4383 * inode->i_size = expr; 4384 * 4385 * is in error because a kswapd-driven write_inode() could occur while 4386 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4387 * will no longer be on the superblock's dirty inode list. 4388 */ 4389 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4390 { 4391 int err; 4392 4393 if (current->flags & PF_MEMALLOC) 4394 return 0; 4395 4396 if (EXT4_SB(inode->i_sb)->s_journal) { 4397 if (ext4_journal_current_handle()) { 4398 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4399 dump_stack(); 4400 return -EIO; 4401 } 4402 4403 if (wbc->sync_mode != WB_SYNC_ALL) 4404 return 0; 4405 4406 err = ext4_force_commit(inode->i_sb); 4407 } else { 4408 struct ext4_iloc iloc; 4409 4410 err = __ext4_get_inode_loc(inode, &iloc, 0); 4411 if (err) 4412 return err; 4413 if (wbc->sync_mode == WB_SYNC_ALL) 4414 sync_dirty_buffer(iloc.bh); 4415 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4416 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4417 "IO error syncing inode"); 4418 err = -EIO; 4419 } 4420 brelse(iloc.bh); 4421 } 4422 return err; 4423 } 4424 4425 /* 4426 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4427 * buffers that are attached to a page stradding i_size and are undergoing 4428 * commit. In that case we have to wait for commit to finish and try again. 4429 */ 4430 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4431 { 4432 struct page *page; 4433 unsigned offset; 4434 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4435 tid_t commit_tid = 0; 4436 int ret; 4437 4438 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4439 /* 4440 * All buffers in the last page remain valid? Then there's nothing to 4441 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4442 * blocksize case 4443 */ 4444 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4445 return; 4446 while (1) { 4447 page = find_lock_page(inode->i_mapping, 4448 inode->i_size >> PAGE_CACHE_SHIFT); 4449 if (!page) 4450 return; 4451 ret = __ext4_journalled_invalidatepage(page, offset, 4452 PAGE_CACHE_SIZE - offset); 4453 unlock_page(page); 4454 page_cache_release(page); 4455 if (ret != -EBUSY) 4456 return; 4457 commit_tid = 0; 4458 read_lock(&journal->j_state_lock); 4459 if (journal->j_committing_transaction) 4460 commit_tid = journal->j_committing_transaction->t_tid; 4461 read_unlock(&journal->j_state_lock); 4462 if (commit_tid) 4463 jbd2_log_wait_commit(journal, commit_tid); 4464 } 4465 } 4466 4467 /* 4468 * ext4_setattr() 4469 * 4470 * Called from notify_change. 4471 * 4472 * We want to trap VFS attempts to truncate the file as soon as 4473 * possible. In particular, we want to make sure that when the VFS 4474 * shrinks i_size, we put the inode on the orphan list and modify 4475 * i_disksize immediately, so that during the subsequent flushing of 4476 * dirty pages and freeing of disk blocks, we can guarantee that any 4477 * commit will leave the blocks being flushed in an unused state on 4478 * disk. (On recovery, the inode will get truncated and the blocks will 4479 * be freed, so we have a strong guarantee that no future commit will 4480 * leave these blocks visible to the user.) 4481 * 4482 * Another thing we have to assure is that if we are in ordered mode 4483 * and inode is still attached to the committing transaction, we must 4484 * we start writeout of all the dirty pages which are being truncated. 4485 * This way we are sure that all the data written in the previous 4486 * transaction are already on disk (truncate waits for pages under 4487 * writeback). 4488 * 4489 * Called with inode->i_mutex down. 4490 */ 4491 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4492 { 4493 struct inode *inode = dentry->d_inode; 4494 int error, rc = 0; 4495 int orphan = 0; 4496 const unsigned int ia_valid = attr->ia_valid; 4497 4498 error = inode_change_ok(inode, attr); 4499 if (error) 4500 return error; 4501 4502 if (is_quota_modification(inode, attr)) 4503 dquot_initialize(inode); 4504 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4505 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4506 handle_t *handle; 4507 4508 /* (user+group)*(old+new) structure, inode write (sb, 4509 * inode block, ? - but truncate inode update has it) */ 4510 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4511 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4512 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4513 if (IS_ERR(handle)) { 4514 error = PTR_ERR(handle); 4515 goto err_out; 4516 } 4517 error = dquot_transfer(inode, attr); 4518 if (error) { 4519 ext4_journal_stop(handle); 4520 return error; 4521 } 4522 /* Update corresponding info in inode so that everything is in 4523 * one transaction */ 4524 if (attr->ia_valid & ATTR_UID) 4525 inode->i_uid = attr->ia_uid; 4526 if (attr->ia_valid & ATTR_GID) 4527 inode->i_gid = attr->ia_gid; 4528 error = ext4_mark_inode_dirty(handle, inode); 4529 ext4_journal_stop(handle); 4530 } 4531 4532 if (attr->ia_valid & ATTR_SIZE) { 4533 4534 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4535 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4536 4537 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4538 return -EFBIG; 4539 } 4540 } 4541 4542 if (S_ISREG(inode->i_mode) && 4543 attr->ia_valid & ATTR_SIZE && 4544 (attr->ia_size < inode->i_size)) { 4545 handle_t *handle; 4546 4547 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4548 if (IS_ERR(handle)) { 4549 error = PTR_ERR(handle); 4550 goto err_out; 4551 } 4552 if (ext4_handle_valid(handle)) { 4553 error = ext4_orphan_add(handle, inode); 4554 orphan = 1; 4555 } 4556 EXT4_I(inode)->i_disksize = attr->ia_size; 4557 rc = ext4_mark_inode_dirty(handle, inode); 4558 if (!error) 4559 error = rc; 4560 ext4_journal_stop(handle); 4561 4562 if (ext4_should_order_data(inode)) { 4563 error = ext4_begin_ordered_truncate(inode, 4564 attr->ia_size); 4565 if (error) { 4566 /* Do as much error cleanup as possible */ 4567 handle = ext4_journal_start(inode, 4568 EXT4_HT_INODE, 3); 4569 if (IS_ERR(handle)) { 4570 ext4_orphan_del(NULL, inode); 4571 goto err_out; 4572 } 4573 ext4_orphan_del(handle, inode); 4574 orphan = 0; 4575 ext4_journal_stop(handle); 4576 goto err_out; 4577 } 4578 } 4579 } 4580 4581 if (attr->ia_valid & ATTR_SIZE) { 4582 if (attr->ia_size != inode->i_size) { 4583 loff_t oldsize = inode->i_size; 4584 4585 i_size_write(inode, attr->ia_size); 4586 /* 4587 * Blocks are going to be removed from the inode. Wait 4588 * for dio in flight. Temporarily disable 4589 * dioread_nolock to prevent livelock. 4590 */ 4591 if (orphan) { 4592 if (!ext4_should_journal_data(inode)) { 4593 ext4_inode_block_unlocked_dio(inode); 4594 inode_dio_wait(inode); 4595 ext4_inode_resume_unlocked_dio(inode); 4596 } else 4597 ext4_wait_for_tail_page_commit(inode); 4598 } 4599 /* 4600 * Truncate pagecache after we've waited for commit 4601 * in data=journal mode to make pages freeable. 4602 */ 4603 truncate_pagecache(inode, oldsize, inode->i_size); 4604 } 4605 ext4_truncate(inode); 4606 } 4607 4608 if (!rc) { 4609 setattr_copy(inode, attr); 4610 mark_inode_dirty(inode); 4611 } 4612 4613 /* 4614 * If the call to ext4_truncate failed to get a transaction handle at 4615 * all, we need to clean up the in-core orphan list manually. 4616 */ 4617 if (orphan && inode->i_nlink) 4618 ext4_orphan_del(NULL, inode); 4619 4620 if (!rc && (ia_valid & ATTR_MODE)) 4621 rc = ext4_acl_chmod(inode); 4622 4623 err_out: 4624 ext4_std_error(inode->i_sb, error); 4625 if (!error) 4626 error = rc; 4627 return error; 4628 } 4629 4630 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4631 struct kstat *stat) 4632 { 4633 struct inode *inode; 4634 unsigned long long delalloc_blocks; 4635 4636 inode = dentry->d_inode; 4637 generic_fillattr(inode, stat); 4638 4639 /* 4640 * We can't update i_blocks if the block allocation is delayed 4641 * otherwise in the case of system crash before the real block 4642 * allocation is done, we will have i_blocks inconsistent with 4643 * on-disk file blocks. 4644 * We always keep i_blocks updated together with real 4645 * allocation. But to not confuse with user, stat 4646 * will return the blocks that include the delayed allocation 4647 * blocks for this file. 4648 */ 4649 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4650 EXT4_I(inode)->i_reserved_data_blocks); 4651 4652 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9); 4653 return 0; 4654 } 4655 4656 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4657 int pextents) 4658 { 4659 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4660 return ext4_ind_trans_blocks(inode, lblocks); 4661 return ext4_ext_index_trans_blocks(inode, pextents); 4662 } 4663 4664 /* 4665 * Account for index blocks, block groups bitmaps and block group 4666 * descriptor blocks if modify datablocks and index blocks 4667 * worse case, the indexs blocks spread over different block groups 4668 * 4669 * If datablocks are discontiguous, they are possible to spread over 4670 * different block groups too. If they are contiguous, with flexbg, 4671 * they could still across block group boundary. 4672 * 4673 * Also account for superblock, inode, quota and xattr blocks 4674 */ 4675 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4676 int pextents) 4677 { 4678 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4679 int gdpblocks; 4680 int idxblocks; 4681 int ret = 0; 4682 4683 /* 4684 * How many index blocks need to touch to map @lblocks logical blocks 4685 * to @pextents physical extents? 4686 */ 4687 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4688 4689 ret = idxblocks; 4690 4691 /* 4692 * Now let's see how many group bitmaps and group descriptors need 4693 * to account 4694 */ 4695 groups = idxblocks + pextents; 4696 gdpblocks = groups; 4697 if (groups > ngroups) 4698 groups = ngroups; 4699 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4700 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4701 4702 /* bitmaps and block group descriptor blocks */ 4703 ret += groups + gdpblocks; 4704 4705 /* Blocks for super block, inode, quota and xattr blocks */ 4706 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4707 4708 return ret; 4709 } 4710 4711 /* 4712 * Calculate the total number of credits to reserve to fit 4713 * the modification of a single pages into a single transaction, 4714 * which may include multiple chunks of block allocations. 4715 * 4716 * This could be called via ext4_write_begin() 4717 * 4718 * We need to consider the worse case, when 4719 * one new block per extent. 4720 */ 4721 int ext4_writepage_trans_blocks(struct inode *inode) 4722 { 4723 int bpp = ext4_journal_blocks_per_page(inode); 4724 int ret; 4725 4726 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4727 4728 /* Account for data blocks for journalled mode */ 4729 if (ext4_should_journal_data(inode)) 4730 ret += bpp; 4731 return ret; 4732 } 4733 4734 /* 4735 * Calculate the journal credits for a chunk of data modification. 4736 * 4737 * This is called from DIO, fallocate or whoever calling 4738 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4739 * 4740 * journal buffers for data blocks are not included here, as DIO 4741 * and fallocate do no need to journal data buffers. 4742 */ 4743 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4744 { 4745 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4746 } 4747 4748 /* 4749 * The caller must have previously called ext4_reserve_inode_write(). 4750 * Give this, we know that the caller already has write access to iloc->bh. 4751 */ 4752 int ext4_mark_iloc_dirty(handle_t *handle, 4753 struct inode *inode, struct ext4_iloc *iloc) 4754 { 4755 int err = 0; 4756 4757 if (IS_I_VERSION(inode)) 4758 inode_inc_iversion(inode); 4759 4760 /* the do_update_inode consumes one bh->b_count */ 4761 get_bh(iloc->bh); 4762 4763 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4764 err = ext4_do_update_inode(handle, inode, iloc); 4765 put_bh(iloc->bh); 4766 return err; 4767 } 4768 4769 /* 4770 * On success, We end up with an outstanding reference count against 4771 * iloc->bh. This _must_ be cleaned up later. 4772 */ 4773 4774 int 4775 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4776 struct ext4_iloc *iloc) 4777 { 4778 int err; 4779 4780 err = ext4_get_inode_loc(inode, iloc); 4781 if (!err) { 4782 BUFFER_TRACE(iloc->bh, "get_write_access"); 4783 err = ext4_journal_get_write_access(handle, iloc->bh); 4784 if (err) { 4785 brelse(iloc->bh); 4786 iloc->bh = NULL; 4787 } 4788 } 4789 ext4_std_error(inode->i_sb, err); 4790 return err; 4791 } 4792 4793 /* 4794 * Expand an inode by new_extra_isize bytes. 4795 * Returns 0 on success or negative error number on failure. 4796 */ 4797 static int ext4_expand_extra_isize(struct inode *inode, 4798 unsigned int new_extra_isize, 4799 struct ext4_iloc iloc, 4800 handle_t *handle) 4801 { 4802 struct ext4_inode *raw_inode; 4803 struct ext4_xattr_ibody_header *header; 4804 4805 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4806 return 0; 4807 4808 raw_inode = ext4_raw_inode(&iloc); 4809 4810 header = IHDR(inode, raw_inode); 4811 4812 /* No extended attributes present */ 4813 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4814 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4815 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4816 new_extra_isize); 4817 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4818 return 0; 4819 } 4820 4821 /* try to expand with EAs present */ 4822 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4823 raw_inode, handle); 4824 } 4825 4826 /* 4827 * What we do here is to mark the in-core inode as clean with respect to inode 4828 * dirtiness (it may still be data-dirty). 4829 * This means that the in-core inode may be reaped by prune_icache 4830 * without having to perform any I/O. This is a very good thing, 4831 * because *any* task may call prune_icache - even ones which 4832 * have a transaction open against a different journal. 4833 * 4834 * Is this cheating? Not really. Sure, we haven't written the 4835 * inode out, but prune_icache isn't a user-visible syncing function. 4836 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4837 * we start and wait on commits. 4838 */ 4839 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4840 { 4841 struct ext4_iloc iloc; 4842 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4843 static unsigned int mnt_count; 4844 int err, ret; 4845 4846 might_sleep(); 4847 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4848 err = ext4_reserve_inode_write(handle, inode, &iloc); 4849 if (ext4_handle_valid(handle) && 4850 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4851 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4852 /* 4853 * We need extra buffer credits since we may write into EA block 4854 * with this same handle. If journal_extend fails, then it will 4855 * only result in a minor loss of functionality for that inode. 4856 * If this is felt to be critical, then e2fsck should be run to 4857 * force a large enough s_min_extra_isize. 4858 */ 4859 if ((jbd2_journal_extend(handle, 4860 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4861 ret = ext4_expand_extra_isize(inode, 4862 sbi->s_want_extra_isize, 4863 iloc, handle); 4864 if (ret) { 4865 ext4_set_inode_state(inode, 4866 EXT4_STATE_NO_EXPAND); 4867 if (mnt_count != 4868 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4869 ext4_warning(inode->i_sb, 4870 "Unable to expand inode %lu. Delete" 4871 " some EAs or run e2fsck.", 4872 inode->i_ino); 4873 mnt_count = 4874 le16_to_cpu(sbi->s_es->s_mnt_count); 4875 } 4876 } 4877 } 4878 } 4879 if (!err) 4880 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4881 return err; 4882 } 4883 4884 /* 4885 * ext4_dirty_inode() is called from __mark_inode_dirty() 4886 * 4887 * We're really interested in the case where a file is being extended. 4888 * i_size has been changed by generic_commit_write() and we thus need 4889 * to include the updated inode in the current transaction. 4890 * 4891 * Also, dquot_alloc_block() will always dirty the inode when blocks 4892 * are allocated to the file. 4893 * 4894 * If the inode is marked synchronous, we don't honour that here - doing 4895 * so would cause a commit on atime updates, which we don't bother doing. 4896 * We handle synchronous inodes at the highest possible level. 4897 */ 4898 void ext4_dirty_inode(struct inode *inode, int flags) 4899 { 4900 handle_t *handle; 4901 4902 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4903 if (IS_ERR(handle)) 4904 goto out; 4905 4906 ext4_mark_inode_dirty(handle, inode); 4907 4908 ext4_journal_stop(handle); 4909 out: 4910 return; 4911 } 4912 4913 #if 0 4914 /* 4915 * Bind an inode's backing buffer_head into this transaction, to prevent 4916 * it from being flushed to disk early. Unlike 4917 * ext4_reserve_inode_write, this leaves behind no bh reference and 4918 * returns no iloc structure, so the caller needs to repeat the iloc 4919 * lookup to mark the inode dirty later. 4920 */ 4921 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4922 { 4923 struct ext4_iloc iloc; 4924 4925 int err = 0; 4926 if (handle) { 4927 err = ext4_get_inode_loc(inode, &iloc); 4928 if (!err) { 4929 BUFFER_TRACE(iloc.bh, "get_write_access"); 4930 err = jbd2_journal_get_write_access(handle, iloc.bh); 4931 if (!err) 4932 err = ext4_handle_dirty_metadata(handle, 4933 NULL, 4934 iloc.bh); 4935 brelse(iloc.bh); 4936 } 4937 } 4938 ext4_std_error(inode->i_sb, err); 4939 return err; 4940 } 4941 #endif 4942 4943 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4944 { 4945 journal_t *journal; 4946 handle_t *handle; 4947 int err; 4948 4949 /* 4950 * We have to be very careful here: changing a data block's 4951 * journaling status dynamically is dangerous. If we write a 4952 * data block to the journal, change the status and then delete 4953 * that block, we risk forgetting to revoke the old log record 4954 * from the journal and so a subsequent replay can corrupt data. 4955 * So, first we make sure that the journal is empty and that 4956 * nobody is changing anything. 4957 */ 4958 4959 journal = EXT4_JOURNAL(inode); 4960 if (!journal) 4961 return 0; 4962 if (is_journal_aborted(journal)) 4963 return -EROFS; 4964 /* We have to allocate physical blocks for delalloc blocks 4965 * before flushing journal. otherwise delalloc blocks can not 4966 * be allocated any more. even more truncate on delalloc blocks 4967 * could trigger BUG by flushing delalloc blocks in journal. 4968 * There is no delalloc block in non-journal data mode. 4969 */ 4970 if (val && test_opt(inode->i_sb, DELALLOC)) { 4971 err = ext4_alloc_da_blocks(inode); 4972 if (err < 0) 4973 return err; 4974 } 4975 4976 /* Wait for all existing dio workers */ 4977 ext4_inode_block_unlocked_dio(inode); 4978 inode_dio_wait(inode); 4979 4980 jbd2_journal_lock_updates(journal); 4981 4982 /* 4983 * OK, there are no updates running now, and all cached data is 4984 * synced to disk. We are now in a completely consistent state 4985 * which doesn't have anything in the journal, and we know that 4986 * no filesystem updates are running, so it is safe to modify 4987 * the inode's in-core data-journaling state flag now. 4988 */ 4989 4990 if (val) 4991 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4992 else { 4993 jbd2_journal_flush(journal); 4994 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4995 } 4996 ext4_set_aops(inode); 4997 4998 jbd2_journal_unlock_updates(journal); 4999 ext4_inode_resume_unlocked_dio(inode); 5000 5001 /* Finally we can mark the inode as dirty. */ 5002 5003 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5004 if (IS_ERR(handle)) 5005 return PTR_ERR(handle); 5006 5007 err = ext4_mark_inode_dirty(handle, inode); 5008 ext4_handle_sync(handle); 5009 ext4_journal_stop(handle); 5010 ext4_std_error(inode->i_sb, err); 5011 5012 return err; 5013 } 5014 5015 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5016 { 5017 return !buffer_mapped(bh); 5018 } 5019 5020 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5021 { 5022 struct page *page = vmf->page; 5023 loff_t size; 5024 unsigned long len; 5025 int ret; 5026 struct file *file = vma->vm_file; 5027 struct inode *inode = file_inode(file); 5028 struct address_space *mapping = inode->i_mapping; 5029 handle_t *handle; 5030 get_block_t *get_block; 5031 int retries = 0; 5032 5033 sb_start_pagefault(inode->i_sb); 5034 file_update_time(vma->vm_file); 5035 /* Delalloc case is easy... */ 5036 if (test_opt(inode->i_sb, DELALLOC) && 5037 !ext4_should_journal_data(inode) && 5038 !ext4_nonda_switch(inode->i_sb)) { 5039 do { 5040 ret = __block_page_mkwrite(vma, vmf, 5041 ext4_da_get_block_prep); 5042 } while (ret == -ENOSPC && 5043 ext4_should_retry_alloc(inode->i_sb, &retries)); 5044 goto out_ret; 5045 } 5046 5047 lock_page(page); 5048 size = i_size_read(inode); 5049 /* Page got truncated from under us? */ 5050 if (page->mapping != mapping || page_offset(page) > size) { 5051 unlock_page(page); 5052 ret = VM_FAULT_NOPAGE; 5053 goto out; 5054 } 5055 5056 if (page->index == size >> PAGE_CACHE_SHIFT) 5057 len = size & ~PAGE_CACHE_MASK; 5058 else 5059 len = PAGE_CACHE_SIZE; 5060 /* 5061 * Return if we have all the buffers mapped. This avoids the need to do 5062 * journal_start/journal_stop which can block and take a long time 5063 */ 5064 if (page_has_buffers(page)) { 5065 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5066 0, len, NULL, 5067 ext4_bh_unmapped)) { 5068 /* Wait so that we don't change page under IO */ 5069 wait_for_stable_page(page); 5070 ret = VM_FAULT_LOCKED; 5071 goto out; 5072 } 5073 } 5074 unlock_page(page); 5075 /* OK, we need to fill the hole... */ 5076 if (ext4_should_dioread_nolock(inode)) 5077 get_block = ext4_get_block_write; 5078 else 5079 get_block = ext4_get_block; 5080 retry_alloc: 5081 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5082 ext4_writepage_trans_blocks(inode)); 5083 if (IS_ERR(handle)) { 5084 ret = VM_FAULT_SIGBUS; 5085 goto out; 5086 } 5087 ret = __block_page_mkwrite(vma, vmf, get_block); 5088 if (!ret && ext4_should_journal_data(inode)) { 5089 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5090 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5091 unlock_page(page); 5092 ret = VM_FAULT_SIGBUS; 5093 ext4_journal_stop(handle); 5094 goto out; 5095 } 5096 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5097 } 5098 ext4_journal_stop(handle); 5099 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5100 goto retry_alloc; 5101 out_ret: 5102 ret = block_page_mkwrite_return(ret); 5103 out: 5104 sb_end_pagefault(inode->i_sb); 5105 return ret; 5106 } 5107