xref: /linux/fs/ext4/inode.c (revision ee114b97e67b2a572f94982567a21ac4ee17c133)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 				unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (!is_bad_inode(inode))
224 		dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages(&inode->i_data, 0);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 	if (is_bad_inode(inode))
232 		goto no_delete;
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 		return ext4_ext_calc_metadata_amount(inode, lblock);
331 
332 	return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334 
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 					int used, int quota_claim)
341 {
342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 	struct ext4_inode_info *ei = EXT4_I(inode);
344 
345 	spin_lock(&ei->i_block_reservation_lock);
346 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 	if (unlikely(used > ei->i_reserved_data_blocks)) {
348 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 			 "with only %d reserved data blocks",
350 			 __func__, inode->i_ino, used,
351 			 ei->i_reserved_data_blocks);
352 		WARN_ON(1);
353 		used = ei->i_reserved_data_blocks;
354 	}
355 
356 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 			"with only %d reserved metadata blocks "
359 			"(releasing %d blocks with reserved %d data blocks)",
360 			inode->i_ino, ei->i_allocated_meta_blocks,
361 			     ei->i_reserved_meta_blocks, used,
362 			     ei->i_reserved_data_blocks);
363 		WARN_ON(1);
364 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 	}
366 
367 	/* Update per-inode reservations */
368 	ei->i_reserved_data_blocks -= used;
369 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 			   used + ei->i_allocated_meta_blocks);
372 	ei->i_allocated_meta_blocks = 0;
373 
374 	if (ei->i_reserved_data_blocks == 0) {
375 		/*
376 		 * We can release all of the reserved metadata blocks
377 		 * only when we have written all of the delayed
378 		 * allocation blocks.
379 		 */
380 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 				   ei->i_reserved_meta_blocks);
382 		ei->i_reserved_meta_blocks = 0;
383 		ei->i_da_metadata_calc_len = 0;
384 	}
385 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386 
387 	/* Update quota subsystem for data blocks */
388 	if (quota_claim)
389 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 	else {
391 		/*
392 		 * We did fallocate with an offset that is already delayed
393 		 * allocated. So on delayed allocated writeback we should
394 		 * not re-claim the quota for fallocated blocks.
395 		 */
396 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 	}
398 
399 	/*
400 	 * If we have done all the pending block allocations and if
401 	 * there aren't any writers on the inode, we can discard the
402 	 * inode's preallocations.
403 	 */
404 	if ((ei->i_reserved_data_blocks == 0) &&
405 	    (atomic_read(&inode->i_writecount) == 0))
406 		ext4_discard_preallocations(inode);
407 }
408 
409 static int __check_block_validity(struct inode *inode, const char *func,
410 				unsigned int line,
411 				struct ext4_map_blocks *map)
412 {
413 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 				   map->m_len)) {
415 		ext4_error_inode(inode, func, line, map->m_pblk,
416 				 "lblock %lu mapped to illegal pblock "
417 				 "(length %d)", (unsigned long) map->m_lblk,
418 				 map->m_len);
419 		return -EIO;
420 	}
421 	return 0;
422 }
423 
424 #define check_block_validity(inode, map)	\
425 	__check_block_validity((inode), __func__, __LINE__, (map))
426 
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 				       struct inode *inode,
430 				       struct ext4_map_blocks *es_map,
431 				       struct ext4_map_blocks *map,
432 				       int flags)
433 {
434 	int retval;
435 
436 	map->m_flags = 0;
437 	/*
438 	 * There is a race window that the result is not the same.
439 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
440 	 * is that we lookup a block mapping in extent status tree with
441 	 * out taking i_data_sem.  So at the time the unwritten extent
442 	 * could be converted.
443 	 */
444 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 		down_read((&EXT4_I(inode)->i_data_sem));
446 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 					     EXT4_GET_BLOCKS_KEEP_SIZE);
449 	} else {
450 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	}
453 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 		up_read((&EXT4_I(inode)->i_data_sem));
455 	/*
456 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 	 * because it shouldn't be marked in es_map->m_flags.
458 	 */
459 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 	struct ext4_map_blocks orig_map;
508 
509 	memcpy(&orig_map, map, sizeof(*map));
510 #endif
511 
512 	map->m_flags = 0;
513 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 		  (unsigned long) map->m_lblk);
516 
517 	ext4_es_lru_add(inode);
518 
519 	/* Lookup extent status tree firstly */
520 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
521 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
522 			map->m_pblk = ext4_es_pblock(&es) +
523 					map->m_lblk - es.es_lblk;
524 			map->m_flags |= ext4_es_is_written(&es) ?
525 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
526 			retval = es.es_len - (map->m_lblk - es.es_lblk);
527 			if (retval > map->m_len)
528 				retval = map->m_len;
529 			map->m_len = retval;
530 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
531 			retval = 0;
532 		} else {
533 			BUG_ON(1);
534 		}
535 #ifdef ES_AGGRESSIVE_TEST
536 		ext4_map_blocks_es_recheck(handle, inode, map,
537 					   &orig_map, flags);
538 #endif
539 		goto found;
540 	}
541 
542 	/*
543 	 * Try to see if we can get the block without requesting a new
544 	 * file system block.
545 	 */
546 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
547 		down_read((&EXT4_I(inode)->i_data_sem));
548 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 					     EXT4_GET_BLOCKS_KEEP_SIZE);
551 	} else {
552 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 					     EXT4_GET_BLOCKS_KEEP_SIZE);
554 	}
555 	if (retval > 0) {
556 		int ret;
557 		unsigned long long status;
558 
559 #ifdef ES_AGGRESSIVE_TEST
560 		if (retval != map->m_len) {
561 			printk("ES len assertion failed for inode: %lu "
562 			       "retval %d != map->m_len %d "
563 			       "in %s (lookup)\n", inode->i_ino, retval,
564 			       map->m_len, __func__);
565 		}
566 #endif
567 
568 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
569 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
570 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
571 		    ext4_find_delalloc_range(inode, map->m_lblk,
572 					     map->m_lblk + map->m_len - 1))
573 			status |= EXTENT_STATUS_DELAYED;
574 		ret = ext4_es_insert_extent(inode, map->m_lblk,
575 					    map->m_len, map->m_pblk, status);
576 		if (ret < 0)
577 			retval = ret;
578 	}
579 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
580 		up_read((&EXT4_I(inode)->i_data_sem));
581 
582 found:
583 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
584 		int ret = check_block_validity(inode, map);
585 		if (ret != 0)
586 			return ret;
587 	}
588 
589 	/* If it is only a block(s) look up */
590 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
591 		return retval;
592 
593 	/*
594 	 * Returns if the blocks have already allocated
595 	 *
596 	 * Note that if blocks have been preallocated
597 	 * ext4_ext_get_block() returns the create = 0
598 	 * with buffer head unmapped.
599 	 */
600 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
601 		return retval;
602 
603 	/*
604 	 * Here we clear m_flags because after allocating an new extent,
605 	 * it will be set again.
606 	 */
607 	map->m_flags &= ~EXT4_MAP_FLAGS;
608 
609 	/*
610 	 * New blocks allocate and/or writing to uninitialized extent
611 	 * will possibly result in updating i_data, so we take
612 	 * the write lock of i_data_sem, and call get_blocks()
613 	 * with create == 1 flag.
614 	 */
615 	down_write((&EXT4_I(inode)->i_data_sem));
616 
617 	/*
618 	 * if the caller is from delayed allocation writeout path
619 	 * we have already reserved fs blocks for allocation
620 	 * let the underlying get_block() function know to
621 	 * avoid double accounting
622 	 */
623 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
624 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
625 	/*
626 	 * We need to check for EXT4 here because migrate
627 	 * could have changed the inode type in between
628 	 */
629 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
630 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
631 	} else {
632 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
633 
634 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
635 			/*
636 			 * We allocated new blocks which will result in
637 			 * i_data's format changing.  Force the migrate
638 			 * to fail by clearing migrate flags
639 			 */
640 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
641 		}
642 
643 		/*
644 		 * Update reserved blocks/metadata blocks after successful
645 		 * block allocation which had been deferred till now. We don't
646 		 * support fallocate for non extent files. So we can update
647 		 * reserve space here.
648 		 */
649 		if ((retval > 0) &&
650 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
651 			ext4_da_update_reserve_space(inode, retval, 1);
652 	}
653 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
654 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
655 
656 	if (retval > 0) {
657 		int ret;
658 		unsigned long long status;
659 
660 #ifdef ES_AGGRESSIVE_TEST
661 		if (retval != map->m_len) {
662 			printk("ES len assertion failed for inode: %lu "
663 			       "retval %d != map->m_len %d "
664 			       "in %s (allocation)\n", inode->i_ino, retval,
665 			       map->m_len, __func__);
666 		}
667 #endif
668 
669 		/*
670 		 * If the extent has been zeroed out, we don't need to update
671 		 * extent status tree.
672 		 */
673 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
674 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
675 			if (ext4_es_is_written(&es))
676 				goto has_zeroout;
677 		}
678 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
679 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
680 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
681 		    ext4_find_delalloc_range(inode, map->m_lblk,
682 					     map->m_lblk + map->m_len - 1))
683 			status |= EXTENT_STATUS_DELAYED;
684 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
685 					    map->m_pblk, status);
686 		if (ret < 0)
687 			retval = ret;
688 	}
689 
690 has_zeroout:
691 	up_write((&EXT4_I(inode)->i_data_sem));
692 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
693 		int ret = check_block_validity(inode, map);
694 		if (ret != 0)
695 			return ret;
696 	}
697 	return retval;
698 }
699 
700 /* Maximum number of blocks we map for direct IO at once. */
701 #define DIO_MAX_BLOCKS 4096
702 
703 static int _ext4_get_block(struct inode *inode, sector_t iblock,
704 			   struct buffer_head *bh, int flags)
705 {
706 	handle_t *handle = ext4_journal_current_handle();
707 	struct ext4_map_blocks map;
708 	int ret = 0, started = 0;
709 	int dio_credits;
710 
711 	if (ext4_has_inline_data(inode))
712 		return -ERANGE;
713 
714 	map.m_lblk = iblock;
715 	map.m_len = bh->b_size >> inode->i_blkbits;
716 
717 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
718 		/* Direct IO write... */
719 		if (map.m_len > DIO_MAX_BLOCKS)
720 			map.m_len = DIO_MAX_BLOCKS;
721 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
722 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
723 					    dio_credits);
724 		if (IS_ERR(handle)) {
725 			ret = PTR_ERR(handle);
726 			return ret;
727 		}
728 		started = 1;
729 	}
730 
731 	ret = ext4_map_blocks(handle, inode, &map, flags);
732 	if (ret > 0) {
733 		map_bh(bh, inode->i_sb, map.m_pblk);
734 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
735 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
736 		ret = 0;
737 	}
738 	if (started)
739 		ext4_journal_stop(handle);
740 	return ret;
741 }
742 
743 int ext4_get_block(struct inode *inode, sector_t iblock,
744 		   struct buffer_head *bh, int create)
745 {
746 	return _ext4_get_block(inode, iblock, bh,
747 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
748 }
749 
750 /*
751  * `handle' can be NULL if create is zero
752  */
753 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
754 				ext4_lblk_t block, int create, int *errp)
755 {
756 	struct ext4_map_blocks map;
757 	struct buffer_head *bh;
758 	int fatal = 0, err;
759 
760 	J_ASSERT(handle != NULL || create == 0);
761 
762 	map.m_lblk = block;
763 	map.m_len = 1;
764 	err = ext4_map_blocks(handle, inode, &map,
765 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
766 
767 	/* ensure we send some value back into *errp */
768 	*errp = 0;
769 
770 	if (create && err == 0)
771 		err = -ENOSPC;	/* should never happen */
772 	if (err < 0)
773 		*errp = err;
774 	if (err <= 0)
775 		return NULL;
776 
777 	bh = sb_getblk(inode->i_sb, map.m_pblk);
778 	if (unlikely(!bh)) {
779 		*errp = -ENOMEM;
780 		return NULL;
781 	}
782 	if (map.m_flags & EXT4_MAP_NEW) {
783 		J_ASSERT(create != 0);
784 		J_ASSERT(handle != NULL);
785 
786 		/*
787 		 * Now that we do not always journal data, we should
788 		 * keep in mind whether this should always journal the
789 		 * new buffer as metadata.  For now, regular file
790 		 * writes use ext4_get_block instead, so it's not a
791 		 * problem.
792 		 */
793 		lock_buffer(bh);
794 		BUFFER_TRACE(bh, "call get_create_access");
795 		fatal = ext4_journal_get_create_access(handle, bh);
796 		if (!fatal && !buffer_uptodate(bh)) {
797 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
798 			set_buffer_uptodate(bh);
799 		}
800 		unlock_buffer(bh);
801 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
802 		err = ext4_handle_dirty_metadata(handle, inode, bh);
803 		if (!fatal)
804 			fatal = err;
805 	} else {
806 		BUFFER_TRACE(bh, "not a new buffer");
807 	}
808 	if (fatal) {
809 		*errp = fatal;
810 		brelse(bh);
811 		bh = NULL;
812 	}
813 	return bh;
814 }
815 
816 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
817 			       ext4_lblk_t block, int create, int *err)
818 {
819 	struct buffer_head *bh;
820 
821 	bh = ext4_getblk(handle, inode, block, create, err);
822 	if (!bh)
823 		return bh;
824 	if (buffer_uptodate(bh))
825 		return bh;
826 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
827 	wait_on_buffer(bh);
828 	if (buffer_uptodate(bh))
829 		return bh;
830 	put_bh(bh);
831 	*err = -EIO;
832 	return NULL;
833 }
834 
835 int ext4_walk_page_buffers(handle_t *handle,
836 			   struct buffer_head *head,
837 			   unsigned from,
838 			   unsigned to,
839 			   int *partial,
840 			   int (*fn)(handle_t *handle,
841 				     struct buffer_head *bh))
842 {
843 	struct buffer_head *bh;
844 	unsigned block_start, block_end;
845 	unsigned blocksize = head->b_size;
846 	int err, ret = 0;
847 	struct buffer_head *next;
848 
849 	for (bh = head, block_start = 0;
850 	     ret == 0 && (bh != head || !block_start);
851 	     block_start = block_end, bh = next) {
852 		next = bh->b_this_page;
853 		block_end = block_start + blocksize;
854 		if (block_end <= from || block_start >= to) {
855 			if (partial && !buffer_uptodate(bh))
856 				*partial = 1;
857 			continue;
858 		}
859 		err = (*fn)(handle, bh);
860 		if (!ret)
861 			ret = err;
862 	}
863 	return ret;
864 }
865 
866 /*
867  * To preserve ordering, it is essential that the hole instantiation and
868  * the data write be encapsulated in a single transaction.  We cannot
869  * close off a transaction and start a new one between the ext4_get_block()
870  * and the commit_write().  So doing the jbd2_journal_start at the start of
871  * prepare_write() is the right place.
872  *
873  * Also, this function can nest inside ext4_writepage().  In that case, we
874  * *know* that ext4_writepage() has generated enough buffer credits to do the
875  * whole page.  So we won't block on the journal in that case, which is good,
876  * because the caller may be PF_MEMALLOC.
877  *
878  * By accident, ext4 can be reentered when a transaction is open via
879  * quota file writes.  If we were to commit the transaction while thus
880  * reentered, there can be a deadlock - we would be holding a quota
881  * lock, and the commit would never complete if another thread had a
882  * transaction open and was blocking on the quota lock - a ranking
883  * violation.
884  *
885  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
886  * will _not_ run commit under these circumstances because handle->h_ref
887  * is elevated.  We'll still have enough credits for the tiny quotafile
888  * write.
889  */
890 int do_journal_get_write_access(handle_t *handle,
891 				struct buffer_head *bh)
892 {
893 	int dirty = buffer_dirty(bh);
894 	int ret;
895 
896 	if (!buffer_mapped(bh) || buffer_freed(bh))
897 		return 0;
898 	/*
899 	 * __block_write_begin() could have dirtied some buffers. Clean
900 	 * the dirty bit as jbd2_journal_get_write_access() could complain
901 	 * otherwise about fs integrity issues. Setting of the dirty bit
902 	 * by __block_write_begin() isn't a real problem here as we clear
903 	 * the bit before releasing a page lock and thus writeback cannot
904 	 * ever write the buffer.
905 	 */
906 	if (dirty)
907 		clear_buffer_dirty(bh);
908 	ret = ext4_journal_get_write_access(handle, bh);
909 	if (!ret && dirty)
910 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
911 	return ret;
912 }
913 
914 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
915 		   struct buffer_head *bh_result, int create);
916 static int ext4_write_begin(struct file *file, struct address_space *mapping,
917 			    loff_t pos, unsigned len, unsigned flags,
918 			    struct page **pagep, void **fsdata)
919 {
920 	struct inode *inode = mapping->host;
921 	int ret, needed_blocks;
922 	handle_t *handle;
923 	int retries = 0;
924 	struct page *page;
925 	pgoff_t index;
926 	unsigned from, to;
927 
928 	trace_ext4_write_begin(inode, pos, len, flags);
929 	/*
930 	 * Reserve one block more for addition to orphan list in case
931 	 * we allocate blocks but write fails for some reason
932 	 */
933 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
934 	index = pos >> PAGE_CACHE_SHIFT;
935 	from = pos & (PAGE_CACHE_SIZE - 1);
936 	to = from + len;
937 
938 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
939 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
940 						    flags, pagep);
941 		if (ret < 0)
942 			return ret;
943 		if (ret == 1)
944 			return 0;
945 	}
946 
947 	/*
948 	 * grab_cache_page_write_begin() can take a long time if the
949 	 * system is thrashing due to memory pressure, or if the page
950 	 * is being written back.  So grab it first before we start
951 	 * the transaction handle.  This also allows us to allocate
952 	 * the page (if needed) without using GFP_NOFS.
953 	 */
954 retry_grab:
955 	page = grab_cache_page_write_begin(mapping, index, flags);
956 	if (!page)
957 		return -ENOMEM;
958 	unlock_page(page);
959 
960 retry_journal:
961 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
962 	if (IS_ERR(handle)) {
963 		page_cache_release(page);
964 		return PTR_ERR(handle);
965 	}
966 
967 	lock_page(page);
968 	if (page->mapping != mapping) {
969 		/* The page got truncated from under us */
970 		unlock_page(page);
971 		page_cache_release(page);
972 		ext4_journal_stop(handle);
973 		goto retry_grab;
974 	}
975 	wait_on_page_writeback(page);
976 
977 	if (ext4_should_dioread_nolock(inode))
978 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
979 	else
980 		ret = __block_write_begin(page, pos, len, ext4_get_block);
981 
982 	if (!ret && ext4_should_journal_data(inode)) {
983 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
984 					     from, to, NULL,
985 					     do_journal_get_write_access);
986 	}
987 
988 	if (ret) {
989 		unlock_page(page);
990 		/*
991 		 * __block_write_begin may have instantiated a few blocks
992 		 * outside i_size.  Trim these off again. Don't need
993 		 * i_size_read because we hold i_mutex.
994 		 *
995 		 * Add inode to orphan list in case we crash before
996 		 * truncate finishes
997 		 */
998 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
999 			ext4_orphan_add(handle, inode);
1000 
1001 		ext4_journal_stop(handle);
1002 		if (pos + len > inode->i_size) {
1003 			ext4_truncate_failed_write(inode);
1004 			/*
1005 			 * If truncate failed early the inode might
1006 			 * still be on the orphan list; we need to
1007 			 * make sure the inode is removed from the
1008 			 * orphan list in that case.
1009 			 */
1010 			if (inode->i_nlink)
1011 				ext4_orphan_del(NULL, inode);
1012 		}
1013 
1014 		if (ret == -ENOSPC &&
1015 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1016 			goto retry_journal;
1017 		page_cache_release(page);
1018 		return ret;
1019 	}
1020 	*pagep = page;
1021 	return ret;
1022 }
1023 
1024 /* For write_end() in data=journal mode */
1025 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1026 {
1027 	int ret;
1028 	if (!buffer_mapped(bh) || buffer_freed(bh))
1029 		return 0;
1030 	set_buffer_uptodate(bh);
1031 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032 	clear_buffer_meta(bh);
1033 	clear_buffer_prio(bh);
1034 	return ret;
1035 }
1036 
1037 /*
1038  * We need to pick up the new inode size which generic_commit_write gave us
1039  * `file' can be NULL - eg, when called from page_symlink().
1040  *
1041  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1042  * buffers are managed internally.
1043  */
1044 static int ext4_write_end(struct file *file,
1045 			  struct address_space *mapping,
1046 			  loff_t pos, unsigned len, unsigned copied,
1047 			  struct page *page, void *fsdata)
1048 {
1049 	handle_t *handle = ext4_journal_current_handle();
1050 	struct inode *inode = mapping->host;
1051 	int ret = 0, ret2;
1052 	int i_size_changed = 0;
1053 
1054 	trace_ext4_write_end(inode, pos, len, copied);
1055 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1056 		ret = ext4_jbd2_file_inode(handle, inode);
1057 		if (ret) {
1058 			unlock_page(page);
1059 			page_cache_release(page);
1060 			goto errout;
1061 		}
1062 	}
1063 
1064 	if (ext4_has_inline_data(inode)) {
1065 		ret = ext4_write_inline_data_end(inode, pos, len,
1066 						 copied, page);
1067 		if (ret < 0)
1068 			goto errout;
1069 		copied = ret;
1070 	} else
1071 		copied = block_write_end(file, mapping, pos,
1072 					 len, copied, page, fsdata);
1073 
1074 	/*
1075 	 * No need to use i_size_read() here, the i_size
1076 	 * cannot change under us because we hole i_mutex.
1077 	 *
1078 	 * But it's important to update i_size while still holding page lock:
1079 	 * page writeout could otherwise come in and zero beyond i_size.
1080 	 */
1081 	if (pos + copied > inode->i_size) {
1082 		i_size_write(inode, pos + copied);
1083 		i_size_changed = 1;
1084 	}
1085 
1086 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1087 		/* We need to mark inode dirty even if
1088 		 * new_i_size is less that inode->i_size
1089 		 * but greater than i_disksize. (hint delalloc)
1090 		 */
1091 		ext4_update_i_disksize(inode, (pos + copied));
1092 		i_size_changed = 1;
1093 	}
1094 	unlock_page(page);
1095 	page_cache_release(page);
1096 
1097 	/*
1098 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1099 	 * makes the holding time of page lock longer. Second, it forces lock
1100 	 * ordering of page lock and transaction start for journaling
1101 	 * filesystems.
1102 	 */
1103 	if (i_size_changed)
1104 		ext4_mark_inode_dirty(handle, inode);
1105 
1106 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1107 		/* if we have allocated more blocks and copied
1108 		 * less. We will have blocks allocated outside
1109 		 * inode->i_size. So truncate them
1110 		 */
1111 		ext4_orphan_add(handle, inode);
1112 errout:
1113 	ret2 = ext4_journal_stop(handle);
1114 	if (!ret)
1115 		ret = ret2;
1116 
1117 	if (pos + len > inode->i_size) {
1118 		ext4_truncate_failed_write(inode);
1119 		/*
1120 		 * If truncate failed early the inode might still be
1121 		 * on the orphan list; we need to make sure the inode
1122 		 * is removed from the orphan list in that case.
1123 		 */
1124 		if (inode->i_nlink)
1125 			ext4_orphan_del(NULL, inode);
1126 	}
1127 
1128 	return ret ? ret : copied;
1129 }
1130 
1131 static int ext4_journalled_write_end(struct file *file,
1132 				     struct address_space *mapping,
1133 				     loff_t pos, unsigned len, unsigned copied,
1134 				     struct page *page, void *fsdata)
1135 {
1136 	handle_t *handle = ext4_journal_current_handle();
1137 	struct inode *inode = mapping->host;
1138 	int ret = 0, ret2;
1139 	int partial = 0;
1140 	unsigned from, to;
1141 	loff_t new_i_size;
1142 
1143 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1144 	from = pos & (PAGE_CACHE_SIZE - 1);
1145 	to = from + len;
1146 
1147 	BUG_ON(!ext4_handle_valid(handle));
1148 
1149 	if (ext4_has_inline_data(inode))
1150 		copied = ext4_write_inline_data_end(inode, pos, len,
1151 						    copied, page);
1152 	else {
1153 		if (copied < len) {
1154 			if (!PageUptodate(page))
1155 				copied = 0;
1156 			page_zero_new_buffers(page, from+copied, to);
1157 		}
1158 
1159 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1160 					     to, &partial, write_end_fn);
1161 		if (!partial)
1162 			SetPageUptodate(page);
1163 	}
1164 	new_i_size = pos + copied;
1165 	if (new_i_size > inode->i_size)
1166 		i_size_write(inode, pos+copied);
1167 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1168 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1169 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1170 		ext4_update_i_disksize(inode, new_i_size);
1171 		ret2 = ext4_mark_inode_dirty(handle, inode);
1172 		if (!ret)
1173 			ret = ret2;
1174 	}
1175 
1176 	unlock_page(page);
1177 	page_cache_release(page);
1178 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1179 		/* if we have allocated more blocks and copied
1180 		 * less. We will have blocks allocated outside
1181 		 * inode->i_size. So truncate them
1182 		 */
1183 		ext4_orphan_add(handle, inode);
1184 
1185 	ret2 = ext4_journal_stop(handle);
1186 	if (!ret)
1187 		ret = ret2;
1188 	if (pos + len > inode->i_size) {
1189 		ext4_truncate_failed_write(inode);
1190 		/*
1191 		 * If truncate failed early the inode might still be
1192 		 * on the orphan list; we need to make sure the inode
1193 		 * is removed from the orphan list in that case.
1194 		 */
1195 		if (inode->i_nlink)
1196 			ext4_orphan_del(NULL, inode);
1197 	}
1198 
1199 	return ret ? ret : copied;
1200 }
1201 
1202 /*
1203  * Reserve a metadata for a single block located at lblock
1204  */
1205 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1206 {
1207 	int retries = 0;
1208 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1209 	struct ext4_inode_info *ei = EXT4_I(inode);
1210 	unsigned int md_needed;
1211 	ext4_lblk_t save_last_lblock;
1212 	int save_len;
1213 
1214 	/*
1215 	 * recalculate the amount of metadata blocks to reserve
1216 	 * in order to allocate nrblocks
1217 	 * worse case is one extent per block
1218 	 */
1219 repeat:
1220 	spin_lock(&ei->i_block_reservation_lock);
1221 	/*
1222 	 * ext4_calc_metadata_amount() has side effects, which we have
1223 	 * to be prepared undo if we fail to claim space.
1224 	 */
1225 	save_len = ei->i_da_metadata_calc_len;
1226 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1227 	md_needed = EXT4_NUM_B2C(sbi,
1228 				 ext4_calc_metadata_amount(inode, lblock));
1229 	trace_ext4_da_reserve_space(inode, md_needed);
1230 
1231 	/*
1232 	 * We do still charge estimated metadata to the sb though;
1233 	 * we cannot afford to run out of free blocks.
1234 	 */
1235 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1236 		ei->i_da_metadata_calc_len = save_len;
1237 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1238 		spin_unlock(&ei->i_block_reservation_lock);
1239 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1240 			cond_resched();
1241 			goto repeat;
1242 		}
1243 		return -ENOSPC;
1244 	}
1245 	ei->i_reserved_meta_blocks += md_needed;
1246 	spin_unlock(&ei->i_block_reservation_lock);
1247 
1248 	return 0;       /* success */
1249 }
1250 
1251 /*
1252  * Reserve a single cluster located at lblock
1253  */
1254 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1255 {
1256 	int retries = 0;
1257 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1258 	struct ext4_inode_info *ei = EXT4_I(inode);
1259 	unsigned int md_needed;
1260 	int ret;
1261 	ext4_lblk_t save_last_lblock;
1262 	int save_len;
1263 
1264 	/*
1265 	 * We will charge metadata quota at writeout time; this saves
1266 	 * us from metadata over-estimation, though we may go over by
1267 	 * a small amount in the end.  Here we just reserve for data.
1268 	 */
1269 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1270 	if (ret)
1271 		return ret;
1272 
1273 	/*
1274 	 * recalculate the amount of metadata blocks to reserve
1275 	 * in order to allocate nrblocks
1276 	 * worse case is one extent per block
1277 	 */
1278 repeat:
1279 	spin_lock(&ei->i_block_reservation_lock);
1280 	/*
1281 	 * ext4_calc_metadata_amount() has side effects, which we have
1282 	 * to be prepared undo if we fail to claim space.
1283 	 */
1284 	save_len = ei->i_da_metadata_calc_len;
1285 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1286 	md_needed = EXT4_NUM_B2C(sbi,
1287 				 ext4_calc_metadata_amount(inode, lblock));
1288 	trace_ext4_da_reserve_space(inode, md_needed);
1289 
1290 	/*
1291 	 * We do still charge estimated metadata to the sb though;
1292 	 * we cannot afford to run out of free blocks.
1293 	 */
1294 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1295 		ei->i_da_metadata_calc_len = save_len;
1296 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1297 		spin_unlock(&ei->i_block_reservation_lock);
1298 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1299 			cond_resched();
1300 			goto repeat;
1301 		}
1302 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1303 		return -ENOSPC;
1304 	}
1305 	ei->i_reserved_data_blocks++;
1306 	ei->i_reserved_meta_blocks += md_needed;
1307 	spin_unlock(&ei->i_block_reservation_lock);
1308 
1309 	return 0;       /* success */
1310 }
1311 
1312 static void ext4_da_release_space(struct inode *inode, int to_free)
1313 {
1314 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315 	struct ext4_inode_info *ei = EXT4_I(inode);
1316 
1317 	if (!to_free)
1318 		return;		/* Nothing to release, exit */
1319 
1320 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1321 
1322 	trace_ext4_da_release_space(inode, to_free);
1323 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1324 		/*
1325 		 * if there aren't enough reserved blocks, then the
1326 		 * counter is messed up somewhere.  Since this
1327 		 * function is called from invalidate page, it's
1328 		 * harmless to return without any action.
1329 		 */
1330 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1331 			 "ino %lu, to_free %d with only %d reserved "
1332 			 "data blocks", inode->i_ino, to_free,
1333 			 ei->i_reserved_data_blocks);
1334 		WARN_ON(1);
1335 		to_free = ei->i_reserved_data_blocks;
1336 	}
1337 	ei->i_reserved_data_blocks -= to_free;
1338 
1339 	if (ei->i_reserved_data_blocks == 0) {
1340 		/*
1341 		 * We can release all of the reserved metadata blocks
1342 		 * only when we have written all of the delayed
1343 		 * allocation blocks.
1344 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1345 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1346 		 */
1347 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1348 				   ei->i_reserved_meta_blocks);
1349 		ei->i_reserved_meta_blocks = 0;
1350 		ei->i_da_metadata_calc_len = 0;
1351 	}
1352 
1353 	/* update fs dirty data blocks counter */
1354 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1355 
1356 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1357 
1358 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1359 }
1360 
1361 static void ext4_da_page_release_reservation(struct page *page,
1362 					     unsigned int offset,
1363 					     unsigned int length)
1364 {
1365 	int to_release = 0;
1366 	struct buffer_head *head, *bh;
1367 	unsigned int curr_off = 0;
1368 	struct inode *inode = page->mapping->host;
1369 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1370 	unsigned int stop = offset + length;
1371 	int num_clusters;
1372 	ext4_fsblk_t lblk;
1373 
1374 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1375 
1376 	head = page_buffers(page);
1377 	bh = head;
1378 	do {
1379 		unsigned int next_off = curr_off + bh->b_size;
1380 
1381 		if (next_off > stop)
1382 			break;
1383 
1384 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1385 			to_release++;
1386 			clear_buffer_delay(bh);
1387 		}
1388 		curr_off = next_off;
1389 	} while ((bh = bh->b_this_page) != head);
1390 
1391 	if (to_release) {
1392 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1393 		ext4_es_remove_extent(inode, lblk, to_release);
1394 	}
1395 
1396 	/* If we have released all the blocks belonging to a cluster, then we
1397 	 * need to release the reserved space for that cluster. */
1398 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1399 	while (num_clusters > 0) {
1400 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1401 			((num_clusters - 1) << sbi->s_cluster_bits);
1402 		if (sbi->s_cluster_ratio == 1 ||
1403 		    !ext4_find_delalloc_cluster(inode, lblk))
1404 			ext4_da_release_space(inode, 1);
1405 
1406 		num_clusters--;
1407 	}
1408 }
1409 
1410 /*
1411  * Delayed allocation stuff
1412  */
1413 
1414 struct mpage_da_data {
1415 	struct inode *inode;
1416 	struct writeback_control *wbc;
1417 
1418 	pgoff_t first_page;	/* The first page to write */
1419 	pgoff_t next_page;	/* Current page to examine */
1420 	pgoff_t last_page;	/* Last page to examine */
1421 	/*
1422 	 * Extent to map - this can be after first_page because that can be
1423 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1424 	 * is delalloc or unwritten.
1425 	 */
1426 	struct ext4_map_blocks map;
1427 	struct ext4_io_submit io_submit;	/* IO submission data */
1428 };
1429 
1430 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1431 				       bool invalidate)
1432 {
1433 	int nr_pages, i;
1434 	pgoff_t index, end;
1435 	struct pagevec pvec;
1436 	struct inode *inode = mpd->inode;
1437 	struct address_space *mapping = inode->i_mapping;
1438 
1439 	/* This is necessary when next_page == 0. */
1440 	if (mpd->first_page >= mpd->next_page)
1441 		return;
1442 
1443 	index = mpd->first_page;
1444 	end   = mpd->next_page - 1;
1445 	if (invalidate) {
1446 		ext4_lblk_t start, last;
1447 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1449 		ext4_es_remove_extent(inode, start, last - start + 1);
1450 	}
1451 
1452 	pagevec_init(&pvec, 0);
1453 	while (index <= end) {
1454 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1455 		if (nr_pages == 0)
1456 			break;
1457 		for (i = 0; i < nr_pages; i++) {
1458 			struct page *page = pvec.pages[i];
1459 			if (page->index > end)
1460 				break;
1461 			BUG_ON(!PageLocked(page));
1462 			BUG_ON(PageWriteback(page));
1463 			if (invalidate) {
1464 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1465 				ClearPageUptodate(page);
1466 			}
1467 			unlock_page(page);
1468 		}
1469 		index = pvec.pages[nr_pages - 1]->index + 1;
1470 		pagevec_release(&pvec);
1471 	}
1472 }
1473 
1474 static void ext4_print_free_blocks(struct inode *inode)
1475 {
1476 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1477 	struct super_block *sb = inode->i_sb;
1478 	struct ext4_inode_info *ei = EXT4_I(inode);
1479 
1480 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1481 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1482 			ext4_count_free_clusters(sb)));
1483 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1484 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1485 	       (long long) EXT4_C2B(EXT4_SB(sb),
1486 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1487 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1488 	       (long long) EXT4_C2B(EXT4_SB(sb),
1489 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1490 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1491 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1492 		 ei->i_reserved_data_blocks);
1493 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1494 	       ei->i_reserved_meta_blocks);
1495 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1496 	       ei->i_allocated_meta_blocks);
1497 	return;
1498 }
1499 
1500 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1501 {
1502 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1503 }
1504 
1505 /*
1506  * This function is grabs code from the very beginning of
1507  * ext4_map_blocks, but assumes that the caller is from delayed write
1508  * time. This function looks up the requested blocks and sets the
1509  * buffer delay bit under the protection of i_data_sem.
1510  */
1511 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1512 			      struct ext4_map_blocks *map,
1513 			      struct buffer_head *bh)
1514 {
1515 	struct extent_status es;
1516 	int retval;
1517 	sector_t invalid_block = ~((sector_t) 0xffff);
1518 #ifdef ES_AGGRESSIVE_TEST
1519 	struct ext4_map_blocks orig_map;
1520 
1521 	memcpy(&orig_map, map, sizeof(*map));
1522 #endif
1523 
1524 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1525 		invalid_block = ~0;
1526 
1527 	map->m_flags = 0;
1528 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1529 		  "logical block %lu\n", inode->i_ino, map->m_len,
1530 		  (unsigned long) map->m_lblk);
1531 
1532 	ext4_es_lru_add(inode);
1533 
1534 	/* Lookup extent status tree firstly */
1535 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1536 
1537 		if (ext4_es_is_hole(&es)) {
1538 			retval = 0;
1539 			down_read((&EXT4_I(inode)->i_data_sem));
1540 			goto add_delayed;
1541 		}
1542 
1543 		/*
1544 		 * Delayed extent could be allocated by fallocate.
1545 		 * So we need to check it.
1546 		 */
1547 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548 			map_bh(bh, inode->i_sb, invalid_block);
1549 			set_buffer_new(bh);
1550 			set_buffer_delay(bh);
1551 			return 0;
1552 		}
1553 
1554 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555 		retval = es.es_len - (iblock - es.es_lblk);
1556 		if (retval > map->m_len)
1557 			retval = map->m_len;
1558 		map->m_len = retval;
1559 		if (ext4_es_is_written(&es))
1560 			map->m_flags |= EXT4_MAP_MAPPED;
1561 		else if (ext4_es_is_unwritten(&es))
1562 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1563 		else
1564 			BUG_ON(1);
1565 
1566 #ifdef ES_AGGRESSIVE_TEST
1567 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 #endif
1569 		return retval;
1570 	}
1571 
1572 	/*
1573 	 * Try to see if we can get the block without requesting a new
1574 	 * file system block.
1575 	 */
1576 	down_read((&EXT4_I(inode)->i_data_sem));
1577 	if (ext4_has_inline_data(inode)) {
1578 		/*
1579 		 * We will soon create blocks for this page, and let
1580 		 * us pretend as if the blocks aren't allocated yet.
1581 		 * In case of clusters, we have to handle the work
1582 		 * of mapping from cluster so that the reserved space
1583 		 * is calculated properly.
1584 		 */
1585 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1587 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588 		retval = 0;
1589 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590 		retval = ext4_ext_map_blocks(NULL, inode, map,
1591 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592 	else
1593 		retval = ext4_ind_map_blocks(NULL, inode, map,
1594 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595 
1596 add_delayed:
1597 	if (retval == 0) {
1598 		int ret;
1599 		/*
1600 		 * XXX: __block_prepare_write() unmaps passed block,
1601 		 * is it OK?
1602 		 */
1603 		/*
1604 		 * If the block was allocated from previously allocated cluster,
1605 		 * then we don't need to reserve it again. However we still need
1606 		 * to reserve metadata for every block we're going to write.
1607 		 */
1608 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609 			ret = ext4_da_reserve_space(inode, iblock);
1610 			if (ret) {
1611 				/* not enough space to reserve */
1612 				retval = ret;
1613 				goto out_unlock;
1614 			}
1615 		} else {
1616 			ret = ext4_da_reserve_metadata(inode, iblock);
1617 			if (ret) {
1618 				/* not enough space to reserve */
1619 				retval = ret;
1620 				goto out_unlock;
1621 			}
1622 		}
1623 
1624 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625 					    ~0, EXTENT_STATUS_DELAYED);
1626 		if (ret) {
1627 			retval = ret;
1628 			goto out_unlock;
1629 		}
1630 
1631 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632 		 * and it should not appear on the bh->b_state.
1633 		 */
1634 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635 
1636 		map_bh(bh, inode->i_sb, invalid_block);
1637 		set_buffer_new(bh);
1638 		set_buffer_delay(bh);
1639 	} else if (retval > 0) {
1640 		int ret;
1641 		unsigned long long status;
1642 
1643 #ifdef ES_AGGRESSIVE_TEST
1644 		if (retval != map->m_len) {
1645 			printk("ES len assertion failed for inode: %lu "
1646 			       "retval %d != map->m_len %d "
1647 			       "in %s (lookup)\n", inode->i_ino, retval,
1648 			       map->m_len, __func__);
1649 		}
1650 #endif
1651 
1652 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1653 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1654 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1655 					    map->m_pblk, status);
1656 		if (ret != 0)
1657 			retval = ret;
1658 	}
1659 
1660 out_unlock:
1661 	up_read((&EXT4_I(inode)->i_data_sem));
1662 
1663 	return retval;
1664 }
1665 
1666 /*
1667  * This is a special get_blocks_t callback which is used by
1668  * ext4_da_write_begin().  It will either return mapped block or
1669  * reserve space for a single block.
1670  *
1671  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1672  * We also have b_blocknr = -1 and b_bdev initialized properly
1673  *
1674  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1675  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1676  * initialized properly.
1677  */
1678 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1679 			   struct buffer_head *bh, int create)
1680 {
1681 	struct ext4_map_blocks map;
1682 	int ret = 0;
1683 
1684 	BUG_ON(create == 0);
1685 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1686 
1687 	map.m_lblk = iblock;
1688 	map.m_len = 1;
1689 
1690 	/*
1691 	 * first, we need to know whether the block is allocated already
1692 	 * preallocated blocks are unmapped but should treated
1693 	 * the same as allocated blocks.
1694 	 */
1695 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1696 	if (ret <= 0)
1697 		return ret;
1698 
1699 	map_bh(bh, inode->i_sb, map.m_pblk);
1700 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1701 
1702 	if (buffer_unwritten(bh)) {
1703 		/* A delayed write to unwritten bh should be marked
1704 		 * new and mapped.  Mapped ensures that we don't do
1705 		 * get_block multiple times when we write to the same
1706 		 * offset and new ensures that we do proper zero out
1707 		 * for partial write.
1708 		 */
1709 		set_buffer_new(bh);
1710 		set_buffer_mapped(bh);
1711 	}
1712 	return 0;
1713 }
1714 
1715 static int bget_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717 	get_bh(bh);
1718 	return 0;
1719 }
1720 
1721 static int bput_one(handle_t *handle, struct buffer_head *bh)
1722 {
1723 	put_bh(bh);
1724 	return 0;
1725 }
1726 
1727 static int __ext4_journalled_writepage(struct page *page,
1728 				       unsigned int len)
1729 {
1730 	struct address_space *mapping = page->mapping;
1731 	struct inode *inode = mapping->host;
1732 	struct buffer_head *page_bufs = NULL;
1733 	handle_t *handle = NULL;
1734 	int ret = 0, err = 0;
1735 	int inline_data = ext4_has_inline_data(inode);
1736 	struct buffer_head *inode_bh = NULL;
1737 
1738 	ClearPageChecked(page);
1739 
1740 	if (inline_data) {
1741 		BUG_ON(page->index != 0);
1742 		BUG_ON(len > ext4_get_max_inline_size(inode));
1743 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1744 		if (inode_bh == NULL)
1745 			goto out;
1746 	} else {
1747 		page_bufs = page_buffers(page);
1748 		if (!page_bufs) {
1749 			BUG();
1750 			goto out;
1751 		}
1752 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1753 				       NULL, bget_one);
1754 	}
1755 	/* As soon as we unlock the page, it can go away, but we have
1756 	 * references to buffers so we are safe */
1757 	unlock_page(page);
1758 
1759 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1760 				    ext4_writepage_trans_blocks(inode));
1761 	if (IS_ERR(handle)) {
1762 		ret = PTR_ERR(handle);
1763 		goto out;
1764 	}
1765 
1766 	BUG_ON(!ext4_handle_valid(handle));
1767 
1768 	if (inline_data) {
1769 		ret = ext4_journal_get_write_access(handle, inode_bh);
1770 
1771 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1772 
1773 	} else {
1774 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1775 					     do_journal_get_write_access);
1776 
1777 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778 					     write_end_fn);
1779 	}
1780 	if (ret == 0)
1781 		ret = err;
1782 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1783 	err = ext4_journal_stop(handle);
1784 	if (!ret)
1785 		ret = err;
1786 
1787 	if (!ext4_has_inline_data(inode))
1788 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1789 				       NULL, bput_one);
1790 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1791 out:
1792 	brelse(inode_bh);
1793 	return ret;
1794 }
1795 
1796 /*
1797  * Note that we don't need to start a transaction unless we're journaling data
1798  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1799  * need to file the inode to the transaction's list in ordered mode because if
1800  * we are writing back data added by write(), the inode is already there and if
1801  * we are writing back data modified via mmap(), no one guarantees in which
1802  * transaction the data will hit the disk. In case we are journaling data, we
1803  * cannot start transaction directly because transaction start ranks above page
1804  * lock so we have to do some magic.
1805  *
1806  * This function can get called via...
1807  *   - ext4_writepages after taking page lock (have journal handle)
1808  *   - journal_submit_inode_data_buffers (no journal handle)
1809  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1810  *   - grab_page_cache when doing write_begin (have journal handle)
1811  *
1812  * We don't do any block allocation in this function. If we have page with
1813  * multiple blocks we need to write those buffer_heads that are mapped. This
1814  * is important for mmaped based write. So if we do with blocksize 1K
1815  * truncate(f, 1024);
1816  * a = mmap(f, 0, 4096);
1817  * a[0] = 'a';
1818  * truncate(f, 4096);
1819  * we have in the page first buffer_head mapped via page_mkwrite call back
1820  * but other buffer_heads would be unmapped but dirty (dirty done via the
1821  * do_wp_page). So writepage should write the first block. If we modify
1822  * the mmap area beyond 1024 we will again get a page_fault and the
1823  * page_mkwrite callback will do the block allocation and mark the
1824  * buffer_heads mapped.
1825  *
1826  * We redirty the page if we have any buffer_heads that is either delay or
1827  * unwritten in the page.
1828  *
1829  * We can get recursively called as show below.
1830  *
1831  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1832  *		ext4_writepage()
1833  *
1834  * But since we don't do any block allocation we should not deadlock.
1835  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1836  */
1837 static int ext4_writepage(struct page *page,
1838 			  struct writeback_control *wbc)
1839 {
1840 	int ret = 0;
1841 	loff_t size;
1842 	unsigned int len;
1843 	struct buffer_head *page_bufs = NULL;
1844 	struct inode *inode = page->mapping->host;
1845 	struct ext4_io_submit io_submit;
1846 
1847 	trace_ext4_writepage(page);
1848 	size = i_size_read(inode);
1849 	if (page->index == size >> PAGE_CACHE_SHIFT)
1850 		len = size & ~PAGE_CACHE_MASK;
1851 	else
1852 		len = PAGE_CACHE_SIZE;
1853 
1854 	page_bufs = page_buffers(page);
1855 	/*
1856 	 * We cannot do block allocation or other extent handling in this
1857 	 * function. If there are buffers needing that, we have to redirty
1858 	 * the page. But we may reach here when we do a journal commit via
1859 	 * journal_submit_inode_data_buffers() and in that case we must write
1860 	 * allocated buffers to achieve data=ordered mode guarantees.
1861 	 */
1862 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1863 				   ext4_bh_delay_or_unwritten)) {
1864 		redirty_page_for_writepage(wbc, page);
1865 		if (current->flags & PF_MEMALLOC) {
1866 			/*
1867 			 * For memory cleaning there's no point in writing only
1868 			 * some buffers. So just bail out. Warn if we came here
1869 			 * from direct reclaim.
1870 			 */
1871 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1872 							== PF_MEMALLOC);
1873 			unlock_page(page);
1874 			return 0;
1875 		}
1876 	}
1877 
1878 	if (PageChecked(page) && ext4_should_journal_data(inode))
1879 		/*
1880 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1881 		 * doesn't seem much point in redirtying the page here.
1882 		 */
1883 		return __ext4_journalled_writepage(page, len);
1884 
1885 	ext4_io_submit_init(&io_submit, wbc);
1886 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1887 	if (!io_submit.io_end) {
1888 		redirty_page_for_writepage(wbc, page);
1889 		unlock_page(page);
1890 		return -ENOMEM;
1891 	}
1892 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1893 	ext4_io_submit(&io_submit);
1894 	/* Drop io_end reference we got from init */
1895 	ext4_put_io_end_defer(io_submit.io_end);
1896 	return ret;
1897 }
1898 
1899 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1900 
1901 /*
1902  * mballoc gives us at most this number of blocks...
1903  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1904  * The rest of mballoc seems to handle chunks upto full group size.
1905  */
1906 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1907 
1908 /*
1909  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1910  *
1911  * @mpd - extent of blocks
1912  * @lblk - logical number of the block in the file
1913  * @b_state - b_state of the buffer head added
1914  *
1915  * the function is used to collect contig. blocks in same state
1916  */
1917 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1918 				  unsigned long b_state)
1919 {
1920 	struct ext4_map_blocks *map = &mpd->map;
1921 
1922 	/* Don't go larger than mballoc is willing to allocate */
1923 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1924 		return 0;
1925 
1926 	/* First block in the extent? */
1927 	if (map->m_len == 0) {
1928 		map->m_lblk = lblk;
1929 		map->m_len = 1;
1930 		map->m_flags = b_state & BH_FLAGS;
1931 		return 1;
1932 	}
1933 
1934 	/* Can we merge the block to our big extent? */
1935 	if (lblk == map->m_lblk + map->m_len &&
1936 	    (b_state & BH_FLAGS) == map->m_flags) {
1937 		map->m_len++;
1938 		return 1;
1939 	}
1940 	return 0;
1941 }
1942 
1943 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1944 				    struct buffer_head *head,
1945 				    struct buffer_head *bh,
1946 				    ext4_lblk_t lblk)
1947 {
1948 	struct inode *inode = mpd->inode;
1949 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1950 							>> inode->i_blkbits;
1951 
1952 	do {
1953 		BUG_ON(buffer_locked(bh));
1954 
1955 		if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1956 		    (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1957 		    lblk >= blocks) {
1958 			/* Found extent to map? */
1959 			if (mpd->map.m_len)
1960 				return false;
1961 			if (lblk >= blocks)
1962 				return true;
1963 			continue;
1964 		}
1965 		if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1966 			return false;
1967 	} while (lblk++, (bh = bh->b_this_page) != head);
1968 	return true;
1969 }
1970 
1971 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1972 {
1973 	int len;
1974 	loff_t size = i_size_read(mpd->inode);
1975 	int err;
1976 
1977 	BUG_ON(page->index != mpd->first_page);
1978 	if (page->index == size >> PAGE_CACHE_SHIFT)
1979 		len = size & ~PAGE_CACHE_MASK;
1980 	else
1981 		len = PAGE_CACHE_SIZE;
1982 	clear_page_dirty_for_io(page);
1983 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1984 	if (!err)
1985 		mpd->wbc->nr_to_write--;
1986 	mpd->first_page++;
1987 
1988 	return err;
1989 }
1990 
1991 /*
1992  * mpage_map_buffers - update buffers corresponding to changed extent and
1993  *		       submit fully mapped pages for IO
1994  *
1995  * @mpd - description of extent to map, on return next extent to map
1996  *
1997  * Scan buffers corresponding to changed extent (we expect corresponding pages
1998  * to be already locked) and update buffer state according to new extent state.
1999  * We map delalloc buffers to their physical location, clear unwritten bits,
2000  * and mark buffers as uninit when we perform writes to uninitialized extents
2001  * and do extent conversion after IO is finished. If the last page is not fully
2002  * mapped, we update @map to the next extent in the last page that needs
2003  * mapping. Otherwise we submit the page for IO.
2004  */
2005 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2006 {
2007 	struct pagevec pvec;
2008 	int nr_pages, i;
2009 	struct inode *inode = mpd->inode;
2010 	struct buffer_head *head, *bh;
2011 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2012 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2013 							>> inode->i_blkbits;
2014 	pgoff_t start, end;
2015 	ext4_lblk_t lblk;
2016 	sector_t pblock;
2017 	int err;
2018 
2019 	start = mpd->map.m_lblk >> bpp_bits;
2020 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2021 	lblk = start << bpp_bits;
2022 	pblock = mpd->map.m_pblk;
2023 
2024 	pagevec_init(&pvec, 0);
2025 	while (start <= end) {
2026 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2027 					  PAGEVEC_SIZE);
2028 		if (nr_pages == 0)
2029 			break;
2030 		for (i = 0; i < nr_pages; i++) {
2031 			struct page *page = pvec.pages[i];
2032 
2033 			if (page->index > end)
2034 				break;
2035 			/* Upto 'end' pages must be contiguous */
2036 			BUG_ON(page->index != start);
2037 			bh = head = page_buffers(page);
2038 			do {
2039 				if (lblk < mpd->map.m_lblk)
2040 					continue;
2041 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2042 					/*
2043 					 * Buffer after end of mapped extent.
2044 					 * Find next buffer in the page to map.
2045 					 */
2046 					mpd->map.m_len = 0;
2047 					mpd->map.m_flags = 0;
2048 					add_page_bufs_to_extent(mpd, head, bh,
2049 								lblk);
2050 					pagevec_release(&pvec);
2051 					return 0;
2052 				}
2053 				if (buffer_delay(bh)) {
2054 					clear_buffer_delay(bh);
2055 					bh->b_blocknr = pblock++;
2056 				}
2057 				clear_buffer_unwritten(bh);
2058 			} while (++lblk < blocks &&
2059 				 (bh = bh->b_this_page) != head);
2060 
2061 			/*
2062 			 * FIXME: This is going to break if dioread_nolock
2063 			 * supports blocksize < pagesize as we will try to
2064 			 * convert potentially unmapped parts of inode.
2065 			 */
2066 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2067 			/* Page fully mapped - let IO run! */
2068 			err = mpage_submit_page(mpd, page);
2069 			if (err < 0) {
2070 				pagevec_release(&pvec);
2071 				return err;
2072 			}
2073 			start++;
2074 		}
2075 		pagevec_release(&pvec);
2076 	}
2077 	/* Extent fully mapped and matches with page boundary. We are done. */
2078 	mpd->map.m_len = 0;
2079 	mpd->map.m_flags = 0;
2080 	return 0;
2081 }
2082 
2083 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2084 {
2085 	struct inode *inode = mpd->inode;
2086 	struct ext4_map_blocks *map = &mpd->map;
2087 	int get_blocks_flags;
2088 	int err;
2089 
2090 	trace_ext4_da_write_pages_extent(inode, map);
2091 	/*
2092 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2093 	 * to convert an uninitialized extent to be initialized (in the case
2094 	 * where we have written into one or more preallocated blocks).  It is
2095 	 * possible that we're going to need more metadata blocks than
2096 	 * previously reserved. However we must not fail because we're in
2097 	 * writeback and there is nothing we can do about it so it might result
2098 	 * in data loss.  So use reserved blocks to allocate metadata if
2099 	 * possible.
2100 	 *
2101 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2102 	 * in question are delalloc blocks.  This affects functions in many
2103 	 * different parts of the allocation call path.  This flag exists
2104 	 * primarily because we don't want to change *many* call functions, so
2105 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2106 	 * once the inode's allocation semaphore is taken.
2107 	 */
2108 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2109 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2110 	if (ext4_should_dioread_nolock(inode))
2111 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2112 	if (map->m_flags & (1 << BH_Delay))
2113 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2114 
2115 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2116 	if (err < 0)
2117 		return err;
2118 	if (map->m_flags & EXT4_MAP_UNINIT) {
2119 		if (!mpd->io_submit.io_end->handle &&
2120 		    ext4_handle_valid(handle)) {
2121 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2122 			handle->h_rsv_handle = NULL;
2123 		}
2124 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2125 	}
2126 
2127 	BUG_ON(map->m_len == 0);
2128 	if (map->m_flags & EXT4_MAP_NEW) {
2129 		struct block_device *bdev = inode->i_sb->s_bdev;
2130 		int i;
2131 
2132 		for (i = 0; i < map->m_len; i++)
2133 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2134 	}
2135 	return 0;
2136 }
2137 
2138 /*
2139  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2140  *				 mpd->len and submit pages underlying it for IO
2141  *
2142  * @handle - handle for journal operations
2143  * @mpd - extent to map
2144  *
2145  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2146  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2147  * them to initialized or split the described range from larger unwritten
2148  * extent. Note that we need not map all the described range since allocation
2149  * can return less blocks or the range is covered by more unwritten extents. We
2150  * cannot map more because we are limited by reserved transaction credits. On
2151  * the other hand we always make sure that the last touched page is fully
2152  * mapped so that it can be written out (and thus forward progress is
2153  * guaranteed). After mapping we submit all mapped pages for IO.
2154  */
2155 static int mpage_map_and_submit_extent(handle_t *handle,
2156 				       struct mpage_da_data *mpd,
2157 				       bool *give_up_on_write)
2158 {
2159 	struct inode *inode = mpd->inode;
2160 	struct ext4_map_blocks *map = &mpd->map;
2161 	int err;
2162 	loff_t disksize;
2163 
2164 	mpd->io_submit.io_end->offset =
2165 				((loff_t)map->m_lblk) << inode->i_blkbits;
2166 	do {
2167 		err = mpage_map_one_extent(handle, mpd);
2168 		if (err < 0) {
2169 			struct super_block *sb = inode->i_sb;
2170 
2171 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2172 				goto invalidate_dirty_pages;
2173 			/*
2174 			 * Let the uper layers retry transient errors.
2175 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2176 			 * is non-zero, a commit should free up blocks.
2177 			 */
2178 			if ((err == -ENOMEM) ||
2179 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2180 				return err;
2181 			ext4_msg(sb, KERN_CRIT,
2182 				 "Delayed block allocation failed for "
2183 				 "inode %lu at logical offset %llu with"
2184 				 " max blocks %u with error %d",
2185 				 inode->i_ino,
2186 				 (unsigned long long)map->m_lblk,
2187 				 (unsigned)map->m_len, -err);
2188 			ext4_msg(sb, KERN_CRIT,
2189 				 "This should not happen!! Data will "
2190 				 "be lost\n");
2191 			if (err == -ENOSPC)
2192 				ext4_print_free_blocks(inode);
2193 		invalidate_dirty_pages:
2194 			*give_up_on_write = true;
2195 			return err;
2196 		}
2197 		/*
2198 		 * Update buffer state, submit mapped pages, and get us new
2199 		 * extent to map
2200 		 */
2201 		err = mpage_map_and_submit_buffers(mpd);
2202 		if (err < 0)
2203 			return err;
2204 	} while (map->m_len);
2205 
2206 	/* Update on-disk size after IO is submitted */
2207 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2208 	if (disksize > i_size_read(inode))
2209 		disksize = i_size_read(inode);
2210 	if (disksize > EXT4_I(inode)->i_disksize) {
2211 		int err2;
2212 
2213 		ext4_update_i_disksize(inode, disksize);
2214 		err2 = ext4_mark_inode_dirty(handle, inode);
2215 		if (err2)
2216 			ext4_error(inode->i_sb,
2217 				   "Failed to mark inode %lu dirty",
2218 				   inode->i_ino);
2219 		if (!err)
2220 			err = err2;
2221 	}
2222 	return err;
2223 }
2224 
2225 /*
2226  * Calculate the total number of credits to reserve for one writepages
2227  * iteration. This is called from ext4_writepages(). We map an extent of
2228  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2229  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2230  * bpp - 1 blocks in bpp different extents.
2231  */
2232 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2233 {
2234 	int bpp = ext4_journal_blocks_per_page(inode);
2235 
2236 	return ext4_meta_trans_blocks(inode,
2237 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2238 }
2239 
2240 /*
2241  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2242  * 				 and underlying extent to map
2243  *
2244  * @mpd - where to look for pages
2245  *
2246  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2247  * IO immediately. When we find a page which isn't mapped we start accumulating
2248  * extent of buffers underlying these pages that needs mapping (formed by
2249  * either delayed or unwritten buffers). We also lock the pages containing
2250  * these buffers. The extent found is returned in @mpd structure (starting at
2251  * mpd->lblk with length mpd->len blocks).
2252  *
2253  * Note that this function can attach bios to one io_end structure which are
2254  * neither logically nor physically contiguous. Although it may seem as an
2255  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2256  * case as we need to track IO to all buffers underlying a page in one io_end.
2257  */
2258 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2259 {
2260 	struct address_space *mapping = mpd->inode->i_mapping;
2261 	struct pagevec pvec;
2262 	unsigned int nr_pages;
2263 	pgoff_t index = mpd->first_page;
2264 	pgoff_t end = mpd->last_page;
2265 	int tag;
2266 	int i, err = 0;
2267 	int blkbits = mpd->inode->i_blkbits;
2268 	ext4_lblk_t lblk;
2269 	struct buffer_head *head;
2270 
2271 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2272 		tag = PAGECACHE_TAG_TOWRITE;
2273 	else
2274 		tag = PAGECACHE_TAG_DIRTY;
2275 
2276 	pagevec_init(&pvec, 0);
2277 	mpd->map.m_len = 0;
2278 	mpd->next_page = index;
2279 	while (index <= end) {
2280 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2281 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2282 		if (nr_pages == 0)
2283 			goto out;
2284 
2285 		for (i = 0; i < nr_pages; i++) {
2286 			struct page *page = pvec.pages[i];
2287 
2288 			/*
2289 			 * At this point, the page may be truncated or
2290 			 * invalidated (changing page->mapping to NULL), or
2291 			 * even swizzled back from swapper_space to tmpfs file
2292 			 * mapping. However, page->index will not change
2293 			 * because we have a reference on the page.
2294 			 */
2295 			if (page->index > end)
2296 				goto out;
2297 
2298 			/* If we can't merge this page, we are done. */
2299 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2300 				goto out;
2301 
2302 			lock_page(page);
2303 			/*
2304 			 * If the page is no longer dirty, or its mapping no
2305 			 * longer corresponds to inode we are writing (which
2306 			 * means it has been truncated or invalidated), or the
2307 			 * page is already under writeback and we are not doing
2308 			 * a data integrity writeback, skip the page
2309 			 */
2310 			if (!PageDirty(page) ||
2311 			    (PageWriteback(page) &&
2312 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2313 			    unlikely(page->mapping != mapping)) {
2314 				unlock_page(page);
2315 				continue;
2316 			}
2317 
2318 			wait_on_page_writeback(page);
2319 			BUG_ON(PageWriteback(page));
2320 
2321 			if (mpd->map.m_len == 0)
2322 				mpd->first_page = page->index;
2323 			mpd->next_page = page->index + 1;
2324 			/* Add all dirty buffers to mpd */
2325 			lblk = ((ext4_lblk_t)page->index) <<
2326 				(PAGE_CACHE_SHIFT - blkbits);
2327 			head = page_buffers(page);
2328 			if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2329 				goto out;
2330 			/* So far everything mapped? Submit the page for IO. */
2331 			if (mpd->map.m_len == 0) {
2332 				err = mpage_submit_page(mpd, page);
2333 				if (err < 0)
2334 					goto out;
2335 			}
2336 
2337 			/*
2338 			 * Accumulated enough dirty pages? This doesn't apply
2339 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2340 			 * keep going because someone may be concurrently
2341 			 * dirtying pages, and we might have synced a lot of
2342 			 * newly appeared dirty pages, but have not synced all
2343 			 * of the old dirty pages.
2344 			 */
2345 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2346 			    mpd->next_page - mpd->first_page >=
2347 							mpd->wbc->nr_to_write)
2348 				goto out;
2349 		}
2350 		pagevec_release(&pvec);
2351 		cond_resched();
2352 	}
2353 	return 0;
2354 out:
2355 	pagevec_release(&pvec);
2356 	return err;
2357 }
2358 
2359 static int __writepage(struct page *page, struct writeback_control *wbc,
2360 		       void *data)
2361 {
2362 	struct address_space *mapping = data;
2363 	int ret = ext4_writepage(page, wbc);
2364 	mapping_set_error(mapping, ret);
2365 	return ret;
2366 }
2367 
2368 static int ext4_writepages(struct address_space *mapping,
2369 			   struct writeback_control *wbc)
2370 {
2371 	pgoff_t	writeback_index = 0;
2372 	long nr_to_write = wbc->nr_to_write;
2373 	int range_whole = 0;
2374 	int cycled = 1;
2375 	handle_t *handle = NULL;
2376 	struct mpage_da_data mpd;
2377 	struct inode *inode = mapping->host;
2378 	int needed_blocks, rsv_blocks = 0, ret = 0;
2379 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2380 	bool done;
2381 	struct blk_plug plug;
2382 	bool give_up_on_write = false;
2383 
2384 	trace_ext4_writepages(inode, wbc);
2385 
2386 	/*
2387 	 * No pages to write? This is mainly a kludge to avoid starting
2388 	 * a transaction for special inodes like journal inode on last iput()
2389 	 * because that could violate lock ordering on umount
2390 	 */
2391 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2392 		return 0;
2393 
2394 	if (ext4_should_journal_data(inode)) {
2395 		struct blk_plug plug;
2396 		int ret;
2397 
2398 		blk_start_plug(&plug);
2399 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2400 		blk_finish_plug(&plug);
2401 		return ret;
2402 	}
2403 
2404 	/*
2405 	 * If the filesystem has aborted, it is read-only, so return
2406 	 * right away instead of dumping stack traces later on that
2407 	 * will obscure the real source of the problem.  We test
2408 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2409 	 * the latter could be true if the filesystem is mounted
2410 	 * read-only, and in that case, ext4_writepages should
2411 	 * *never* be called, so if that ever happens, we would want
2412 	 * the stack trace.
2413 	 */
2414 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2415 		return -EROFS;
2416 
2417 	if (ext4_should_dioread_nolock(inode)) {
2418 		/*
2419 		 * We may need to convert upto one extent per block in
2420 		 * the page and we may dirty the inode.
2421 		 */
2422 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2423 	}
2424 
2425 	/*
2426 	 * If we have inline data and arrive here, it means that
2427 	 * we will soon create the block for the 1st page, so
2428 	 * we'd better clear the inline data here.
2429 	 */
2430 	if (ext4_has_inline_data(inode)) {
2431 		/* Just inode will be modified... */
2432 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2433 		if (IS_ERR(handle)) {
2434 			ret = PTR_ERR(handle);
2435 			goto out_writepages;
2436 		}
2437 		BUG_ON(ext4_test_inode_state(inode,
2438 				EXT4_STATE_MAY_INLINE_DATA));
2439 		ext4_destroy_inline_data(handle, inode);
2440 		ext4_journal_stop(handle);
2441 	}
2442 
2443 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2444 		range_whole = 1;
2445 
2446 	if (wbc->range_cyclic) {
2447 		writeback_index = mapping->writeback_index;
2448 		if (writeback_index)
2449 			cycled = 0;
2450 		mpd.first_page = writeback_index;
2451 		mpd.last_page = -1;
2452 	} else {
2453 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2454 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2455 	}
2456 
2457 	mpd.inode = inode;
2458 	mpd.wbc = wbc;
2459 	ext4_io_submit_init(&mpd.io_submit, wbc);
2460 retry:
2461 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2462 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2463 	done = false;
2464 	blk_start_plug(&plug);
2465 	while (!done && mpd.first_page <= mpd.last_page) {
2466 		/* For each extent of pages we use new io_end */
2467 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2468 		if (!mpd.io_submit.io_end) {
2469 			ret = -ENOMEM;
2470 			break;
2471 		}
2472 
2473 		/*
2474 		 * We have two constraints: We find one extent to map and we
2475 		 * must always write out whole page (makes a difference when
2476 		 * blocksize < pagesize) so that we don't block on IO when we
2477 		 * try to write out the rest of the page. Journalled mode is
2478 		 * not supported by delalloc.
2479 		 */
2480 		BUG_ON(ext4_should_journal_data(inode));
2481 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2482 
2483 		/* start a new transaction */
2484 		handle = ext4_journal_start_with_reserve(inode,
2485 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2486 		if (IS_ERR(handle)) {
2487 			ret = PTR_ERR(handle);
2488 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2489 			       "%ld pages, ino %lu; err %d", __func__,
2490 				wbc->nr_to_write, inode->i_ino, ret);
2491 			/* Release allocated io_end */
2492 			ext4_put_io_end(mpd.io_submit.io_end);
2493 			break;
2494 		}
2495 
2496 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2497 		ret = mpage_prepare_extent_to_map(&mpd);
2498 		if (!ret) {
2499 			if (mpd.map.m_len)
2500 				ret = mpage_map_and_submit_extent(handle, &mpd,
2501 					&give_up_on_write);
2502 			else {
2503 				/*
2504 				 * We scanned the whole range (or exhausted
2505 				 * nr_to_write), submitted what was mapped and
2506 				 * didn't find anything needing mapping. We are
2507 				 * done.
2508 				 */
2509 				done = true;
2510 			}
2511 		}
2512 		ext4_journal_stop(handle);
2513 		/* Submit prepared bio */
2514 		ext4_io_submit(&mpd.io_submit);
2515 		/* Unlock pages we didn't use */
2516 		mpage_release_unused_pages(&mpd, give_up_on_write);
2517 		/* Drop our io_end reference we got from init */
2518 		ext4_put_io_end(mpd.io_submit.io_end);
2519 
2520 		if (ret == -ENOSPC && sbi->s_journal) {
2521 			/*
2522 			 * Commit the transaction which would
2523 			 * free blocks released in the transaction
2524 			 * and try again
2525 			 */
2526 			jbd2_journal_force_commit_nested(sbi->s_journal);
2527 			ret = 0;
2528 			continue;
2529 		}
2530 		/* Fatal error - ENOMEM, EIO... */
2531 		if (ret)
2532 			break;
2533 	}
2534 	blk_finish_plug(&plug);
2535 	if (!ret && !cycled) {
2536 		cycled = 1;
2537 		mpd.last_page = writeback_index - 1;
2538 		mpd.first_page = 0;
2539 		goto retry;
2540 	}
2541 
2542 	/* Update index */
2543 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2544 		/*
2545 		 * Set the writeback_index so that range_cyclic
2546 		 * mode will write it back later
2547 		 */
2548 		mapping->writeback_index = mpd.first_page;
2549 
2550 out_writepages:
2551 	trace_ext4_writepages_result(inode, wbc, ret,
2552 				     nr_to_write - wbc->nr_to_write);
2553 	return ret;
2554 }
2555 
2556 static int ext4_nonda_switch(struct super_block *sb)
2557 {
2558 	s64 free_clusters, dirty_clusters;
2559 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2560 
2561 	/*
2562 	 * switch to non delalloc mode if we are running low
2563 	 * on free block. The free block accounting via percpu
2564 	 * counters can get slightly wrong with percpu_counter_batch getting
2565 	 * accumulated on each CPU without updating global counters
2566 	 * Delalloc need an accurate free block accounting. So switch
2567 	 * to non delalloc when we are near to error range.
2568 	 */
2569 	free_clusters =
2570 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2571 	dirty_clusters =
2572 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2573 	/*
2574 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2575 	 */
2576 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2577 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2578 
2579 	if (2 * free_clusters < 3 * dirty_clusters ||
2580 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2581 		/*
2582 		 * free block count is less than 150% of dirty blocks
2583 		 * or free blocks is less than watermark
2584 		 */
2585 		return 1;
2586 	}
2587 	return 0;
2588 }
2589 
2590 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2591 			       loff_t pos, unsigned len, unsigned flags,
2592 			       struct page **pagep, void **fsdata)
2593 {
2594 	int ret, retries = 0;
2595 	struct page *page;
2596 	pgoff_t index;
2597 	struct inode *inode = mapping->host;
2598 	handle_t *handle;
2599 
2600 	index = pos >> PAGE_CACHE_SHIFT;
2601 
2602 	if (ext4_nonda_switch(inode->i_sb)) {
2603 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2604 		return ext4_write_begin(file, mapping, pos,
2605 					len, flags, pagep, fsdata);
2606 	}
2607 	*fsdata = (void *)0;
2608 	trace_ext4_da_write_begin(inode, pos, len, flags);
2609 
2610 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2611 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2612 						      pos, len, flags,
2613 						      pagep, fsdata);
2614 		if (ret < 0)
2615 			return ret;
2616 		if (ret == 1)
2617 			return 0;
2618 	}
2619 
2620 	/*
2621 	 * grab_cache_page_write_begin() can take a long time if the
2622 	 * system is thrashing due to memory pressure, or if the page
2623 	 * is being written back.  So grab it first before we start
2624 	 * the transaction handle.  This also allows us to allocate
2625 	 * the page (if needed) without using GFP_NOFS.
2626 	 */
2627 retry_grab:
2628 	page = grab_cache_page_write_begin(mapping, index, flags);
2629 	if (!page)
2630 		return -ENOMEM;
2631 	unlock_page(page);
2632 
2633 	/*
2634 	 * With delayed allocation, we don't log the i_disksize update
2635 	 * if there is delayed block allocation. But we still need
2636 	 * to journalling the i_disksize update if writes to the end
2637 	 * of file which has an already mapped buffer.
2638 	 */
2639 retry_journal:
2640 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2641 	if (IS_ERR(handle)) {
2642 		page_cache_release(page);
2643 		return PTR_ERR(handle);
2644 	}
2645 
2646 	lock_page(page);
2647 	if (page->mapping != mapping) {
2648 		/* The page got truncated from under us */
2649 		unlock_page(page);
2650 		page_cache_release(page);
2651 		ext4_journal_stop(handle);
2652 		goto retry_grab;
2653 	}
2654 	/* In case writeback began while the page was unlocked */
2655 	wait_on_page_writeback(page);
2656 
2657 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2658 	if (ret < 0) {
2659 		unlock_page(page);
2660 		ext4_journal_stop(handle);
2661 		/*
2662 		 * block_write_begin may have instantiated a few blocks
2663 		 * outside i_size.  Trim these off again. Don't need
2664 		 * i_size_read because we hold i_mutex.
2665 		 */
2666 		if (pos + len > inode->i_size)
2667 			ext4_truncate_failed_write(inode);
2668 
2669 		if (ret == -ENOSPC &&
2670 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2671 			goto retry_journal;
2672 
2673 		page_cache_release(page);
2674 		return ret;
2675 	}
2676 
2677 	*pagep = page;
2678 	return ret;
2679 }
2680 
2681 /*
2682  * Check if we should update i_disksize
2683  * when write to the end of file but not require block allocation
2684  */
2685 static int ext4_da_should_update_i_disksize(struct page *page,
2686 					    unsigned long offset)
2687 {
2688 	struct buffer_head *bh;
2689 	struct inode *inode = page->mapping->host;
2690 	unsigned int idx;
2691 	int i;
2692 
2693 	bh = page_buffers(page);
2694 	idx = offset >> inode->i_blkbits;
2695 
2696 	for (i = 0; i < idx; i++)
2697 		bh = bh->b_this_page;
2698 
2699 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2700 		return 0;
2701 	return 1;
2702 }
2703 
2704 static int ext4_da_write_end(struct file *file,
2705 			     struct address_space *mapping,
2706 			     loff_t pos, unsigned len, unsigned copied,
2707 			     struct page *page, void *fsdata)
2708 {
2709 	struct inode *inode = mapping->host;
2710 	int ret = 0, ret2;
2711 	handle_t *handle = ext4_journal_current_handle();
2712 	loff_t new_i_size;
2713 	unsigned long start, end;
2714 	int write_mode = (int)(unsigned long)fsdata;
2715 
2716 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2717 		return ext4_write_end(file, mapping, pos,
2718 				      len, copied, page, fsdata);
2719 
2720 	trace_ext4_da_write_end(inode, pos, len, copied);
2721 	start = pos & (PAGE_CACHE_SIZE - 1);
2722 	end = start + copied - 1;
2723 
2724 	/*
2725 	 * generic_write_end() will run mark_inode_dirty() if i_size
2726 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2727 	 * into that.
2728 	 */
2729 	new_i_size = pos + copied;
2730 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2731 		if (ext4_has_inline_data(inode) ||
2732 		    ext4_da_should_update_i_disksize(page, end)) {
2733 			down_write(&EXT4_I(inode)->i_data_sem);
2734 			if (new_i_size > EXT4_I(inode)->i_disksize)
2735 				EXT4_I(inode)->i_disksize = new_i_size;
2736 			up_write(&EXT4_I(inode)->i_data_sem);
2737 			/* We need to mark inode dirty even if
2738 			 * new_i_size is less that inode->i_size
2739 			 * bu greater than i_disksize.(hint delalloc)
2740 			 */
2741 			ext4_mark_inode_dirty(handle, inode);
2742 		}
2743 	}
2744 
2745 	if (write_mode != CONVERT_INLINE_DATA &&
2746 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2747 	    ext4_has_inline_data(inode))
2748 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2749 						     page);
2750 	else
2751 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2752 							page, fsdata);
2753 
2754 	copied = ret2;
2755 	if (ret2 < 0)
2756 		ret = ret2;
2757 	ret2 = ext4_journal_stop(handle);
2758 	if (!ret)
2759 		ret = ret2;
2760 
2761 	return ret ? ret : copied;
2762 }
2763 
2764 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2765 				   unsigned int length)
2766 {
2767 	/*
2768 	 * Drop reserved blocks
2769 	 */
2770 	BUG_ON(!PageLocked(page));
2771 	if (!page_has_buffers(page))
2772 		goto out;
2773 
2774 	ext4_da_page_release_reservation(page, offset, length);
2775 
2776 out:
2777 	ext4_invalidatepage(page, offset, length);
2778 
2779 	return;
2780 }
2781 
2782 /*
2783  * Force all delayed allocation blocks to be allocated for a given inode.
2784  */
2785 int ext4_alloc_da_blocks(struct inode *inode)
2786 {
2787 	trace_ext4_alloc_da_blocks(inode);
2788 
2789 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2790 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2791 		return 0;
2792 
2793 	/*
2794 	 * We do something simple for now.  The filemap_flush() will
2795 	 * also start triggering a write of the data blocks, which is
2796 	 * not strictly speaking necessary (and for users of
2797 	 * laptop_mode, not even desirable).  However, to do otherwise
2798 	 * would require replicating code paths in:
2799 	 *
2800 	 * ext4_writepages() ->
2801 	 *    write_cache_pages() ---> (via passed in callback function)
2802 	 *        __mpage_da_writepage() -->
2803 	 *           mpage_add_bh_to_extent()
2804 	 *           mpage_da_map_blocks()
2805 	 *
2806 	 * The problem is that write_cache_pages(), located in
2807 	 * mm/page-writeback.c, marks pages clean in preparation for
2808 	 * doing I/O, which is not desirable if we're not planning on
2809 	 * doing I/O at all.
2810 	 *
2811 	 * We could call write_cache_pages(), and then redirty all of
2812 	 * the pages by calling redirty_page_for_writepage() but that
2813 	 * would be ugly in the extreme.  So instead we would need to
2814 	 * replicate parts of the code in the above functions,
2815 	 * simplifying them because we wouldn't actually intend to
2816 	 * write out the pages, but rather only collect contiguous
2817 	 * logical block extents, call the multi-block allocator, and
2818 	 * then update the buffer heads with the block allocations.
2819 	 *
2820 	 * For now, though, we'll cheat by calling filemap_flush(),
2821 	 * which will map the blocks, and start the I/O, but not
2822 	 * actually wait for the I/O to complete.
2823 	 */
2824 	return filemap_flush(inode->i_mapping);
2825 }
2826 
2827 /*
2828  * bmap() is special.  It gets used by applications such as lilo and by
2829  * the swapper to find the on-disk block of a specific piece of data.
2830  *
2831  * Naturally, this is dangerous if the block concerned is still in the
2832  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2833  * filesystem and enables swap, then they may get a nasty shock when the
2834  * data getting swapped to that swapfile suddenly gets overwritten by
2835  * the original zero's written out previously to the journal and
2836  * awaiting writeback in the kernel's buffer cache.
2837  *
2838  * So, if we see any bmap calls here on a modified, data-journaled file,
2839  * take extra steps to flush any blocks which might be in the cache.
2840  */
2841 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2842 {
2843 	struct inode *inode = mapping->host;
2844 	journal_t *journal;
2845 	int err;
2846 
2847 	/*
2848 	 * We can get here for an inline file via the FIBMAP ioctl
2849 	 */
2850 	if (ext4_has_inline_data(inode))
2851 		return 0;
2852 
2853 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2854 			test_opt(inode->i_sb, DELALLOC)) {
2855 		/*
2856 		 * With delalloc we want to sync the file
2857 		 * so that we can make sure we allocate
2858 		 * blocks for file
2859 		 */
2860 		filemap_write_and_wait(mapping);
2861 	}
2862 
2863 	if (EXT4_JOURNAL(inode) &&
2864 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2865 		/*
2866 		 * This is a REALLY heavyweight approach, but the use of
2867 		 * bmap on dirty files is expected to be extremely rare:
2868 		 * only if we run lilo or swapon on a freshly made file
2869 		 * do we expect this to happen.
2870 		 *
2871 		 * (bmap requires CAP_SYS_RAWIO so this does not
2872 		 * represent an unprivileged user DOS attack --- we'd be
2873 		 * in trouble if mortal users could trigger this path at
2874 		 * will.)
2875 		 *
2876 		 * NB. EXT4_STATE_JDATA is not set on files other than
2877 		 * regular files.  If somebody wants to bmap a directory
2878 		 * or symlink and gets confused because the buffer
2879 		 * hasn't yet been flushed to disk, they deserve
2880 		 * everything they get.
2881 		 */
2882 
2883 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2884 		journal = EXT4_JOURNAL(inode);
2885 		jbd2_journal_lock_updates(journal);
2886 		err = jbd2_journal_flush(journal);
2887 		jbd2_journal_unlock_updates(journal);
2888 
2889 		if (err)
2890 			return 0;
2891 	}
2892 
2893 	return generic_block_bmap(mapping, block, ext4_get_block);
2894 }
2895 
2896 static int ext4_readpage(struct file *file, struct page *page)
2897 {
2898 	int ret = -EAGAIN;
2899 	struct inode *inode = page->mapping->host;
2900 
2901 	trace_ext4_readpage(page);
2902 
2903 	if (ext4_has_inline_data(inode))
2904 		ret = ext4_readpage_inline(inode, page);
2905 
2906 	if (ret == -EAGAIN)
2907 		return mpage_readpage(page, ext4_get_block);
2908 
2909 	return ret;
2910 }
2911 
2912 static int
2913 ext4_readpages(struct file *file, struct address_space *mapping,
2914 		struct list_head *pages, unsigned nr_pages)
2915 {
2916 	struct inode *inode = mapping->host;
2917 
2918 	/* If the file has inline data, no need to do readpages. */
2919 	if (ext4_has_inline_data(inode))
2920 		return 0;
2921 
2922 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2923 }
2924 
2925 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2926 				unsigned int length)
2927 {
2928 	trace_ext4_invalidatepage(page, offset, length);
2929 
2930 	/* No journalling happens on data buffers when this function is used */
2931 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2932 
2933 	block_invalidatepage(page, offset, length);
2934 }
2935 
2936 static int __ext4_journalled_invalidatepage(struct page *page,
2937 					    unsigned int offset,
2938 					    unsigned int length)
2939 {
2940 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2941 
2942 	trace_ext4_journalled_invalidatepage(page, offset, length);
2943 
2944 	/*
2945 	 * If it's a full truncate we just forget about the pending dirtying
2946 	 */
2947 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2948 		ClearPageChecked(page);
2949 
2950 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2951 }
2952 
2953 /* Wrapper for aops... */
2954 static void ext4_journalled_invalidatepage(struct page *page,
2955 					   unsigned int offset,
2956 					   unsigned int length)
2957 {
2958 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2959 }
2960 
2961 static int ext4_releasepage(struct page *page, gfp_t wait)
2962 {
2963 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2964 
2965 	trace_ext4_releasepage(page);
2966 
2967 	/* Page has dirty journalled data -> cannot release */
2968 	if (PageChecked(page))
2969 		return 0;
2970 	if (journal)
2971 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2972 	else
2973 		return try_to_free_buffers(page);
2974 }
2975 
2976 /*
2977  * ext4_get_block used when preparing for a DIO write or buffer write.
2978  * We allocate an uinitialized extent if blocks haven't been allocated.
2979  * The extent will be converted to initialized after the IO is complete.
2980  */
2981 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2982 		   struct buffer_head *bh_result, int create)
2983 {
2984 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2985 		   inode->i_ino, create);
2986 	return _ext4_get_block(inode, iblock, bh_result,
2987 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2988 }
2989 
2990 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2991 		   struct buffer_head *bh_result, int create)
2992 {
2993 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2994 		   inode->i_ino, create);
2995 	return _ext4_get_block(inode, iblock, bh_result,
2996 			       EXT4_GET_BLOCKS_NO_LOCK);
2997 }
2998 
2999 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3000 			    ssize_t size, void *private, int ret,
3001 			    bool is_async)
3002 {
3003 	struct inode *inode = file_inode(iocb->ki_filp);
3004         ext4_io_end_t *io_end = iocb->private;
3005 
3006 	/* if not async direct IO just return */
3007 	if (!io_end) {
3008 		inode_dio_done(inode);
3009 		if (is_async)
3010 			aio_complete(iocb, ret, 0);
3011 		return;
3012 	}
3013 
3014 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3015 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3016  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3017 		  size);
3018 
3019 	iocb->private = NULL;
3020 	io_end->offset = offset;
3021 	io_end->size = size;
3022 	if (is_async) {
3023 		io_end->iocb = iocb;
3024 		io_end->result = ret;
3025 	}
3026 	ext4_put_io_end_defer(io_end);
3027 }
3028 
3029 /*
3030  * For ext4 extent files, ext4 will do direct-io write to holes,
3031  * preallocated extents, and those write extend the file, no need to
3032  * fall back to buffered IO.
3033  *
3034  * For holes, we fallocate those blocks, mark them as uninitialized
3035  * If those blocks were preallocated, we mark sure they are split, but
3036  * still keep the range to write as uninitialized.
3037  *
3038  * The unwritten extents will be converted to written when DIO is completed.
3039  * For async direct IO, since the IO may still pending when return, we
3040  * set up an end_io call back function, which will do the conversion
3041  * when async direct IO completed.
3042  *
3043  * If the O_DIRECT write will extend the file then add this inode to the
3044  * orphan list.  So recovery will truncate it back to the original size
3045  * if the machine crashes during the write.
3046  *
3047  */
3048 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3049 			      const struct iovec *iov, loff_t offset,
3050 			      unsigned long nr_segs)
3051 {
3052 	struct file *file = iocb->ki_filp;
3053 	struct inode *inode = file->f_mapping->host;
3054 	ssize_t ret;
3055 	size_t count = iov_length(iov, nr_segs);
3056 	int overwrite = 0;
3057 	get_block_t *get_block_func = NULL;
3058 	int dio_flags = 0;
3059 	loff_t final_size = offset + count;
3060 	ext4_io_end_t *io_end = NULL;
3061 
3062 	/* Use the old path for reads and writes beyond i_size. */
3063 	if (rw != WRITE || final_size > inode->i_size)
3064 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3065 
3066 	BUG_ON(iocb->private == NULL);
3067 
3068 	/*
3069 	 * Make all waiters for direct IO properly wait also for extent
3070 	 * conversion. This also disallows race between truncate() and
3071 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3072 	 */
3073 	if (rw == WRITE)
3074 		atomic_inc(&inode->i_dio_count);
3075 
3076 	/* If we do a overwrite dio, i_mutex locking can be released */
3077 	overwrite = *((int *)iocb->private);
3078 
3079 	if (overwrite) {
3080 		down_read(&EXT4_I(inode)->i_data_sem);
3081 		mutex_unlock(&inode->i_mutex);
3082 	}
3083 
3084 	/*
3085 	 * We could direct write to holes and fallocate.
3086 	 *
3087 	 * Allocated blocks to fill the hole are marked as
3088 	 * uninitialized to prevent parallel buffered read to expose
3089 	 * the stale data before DIO complete the data IO.
3090 	 *
3091 	 * As to previously fallocated extents, ext4 get_block will
3092 	 * just simply mark the buffer mapped but still keep the
3093 	 * extents uninitialized.
3094 	 *
3095 	 * For non AIO case, we will convert those unwritten extents
3096 	 * to written after return back from blockdev_direct_IO.
3097 	 *
3098 	 * For async DIO, the conversion needs to be deferred when the
3099 	 * IO is completed. The ext4 end_io callback function will be
3100 	 * called to take care of the conversion work.  Here for async
3101 	 * case, we allocate an io_end structure to hook to the iocb.
3102 	 */
3103 	iocb->private = NULL;
3104 	ext4_inode_aio_set(inode, NULL);
3105 	if (!is_sync_kiocb(iocb)) {
3106 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3107 		if (!io_end) {
3108 			ret = -ENOMEM;
3109 			goto retake_lock;
3110 		}
3111 		io_end->flag |= EXT4_IO_END_DIRECT;
3112 		/*
3113 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3114 		 */
3115 		iocb->private = ext4_get_io_end(io_end);
3116 		/*
3117 		 * we save the io structure for current async direct
3118 		 * IO, so that later ext4_map_blocks() could flag the
3119 		 * io structure whether there is a unwritten extents
3120 		 * needs to be converted when IO is completed.
3121 		 */
3122 		ext4_inode_aio_set(inode, io_end);
3123 	}
3124 
3125 	if (overwrite) {
3126 		get_block_func = ext4_get_block_write_nolock;
3127 	} else {
3128 		get_block_func = ext4_get_block_write;
3129 		dio_flags = DIO_LOCKING;
3130 	}
3131 	ret = __blockdev_direct_IO(rw, iocb, inode,
3132 				   inode->i_sb->s_bdev, iov,
3133 				   offset, nr_segs,
3134 				   get_block_func,
3135 				   ext4_end_io_dio,
3136 				   NULL,
3137 				   dio_flags);
3138 
3139 	/*
3140 	 * Put our reference to io_end. This can free the io_end structure e.g.
3141 	 * in sync IO case or in case of error. It can even perform extent
3142 	 * conversion if all bios we submitted finished before we got here.
3143 	 * Note that in that case iocb->private can be already set to NULL
3144 	 * here.
3145 	 */
3146 	if (io_end) {
3147 		ext4_inode_aio_set(inode, NULL);
3148 		ext4_put_io_end(io_end);
3149 		/*
3150 		 * When no IO was submitted ext4_end_io_dio() was not
3151 		 * called so we have to put iocb's reference.
3152 		 */
3153 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3154 			WARN_ON(iocb->private != io_end);
3155 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3156 			WARN_ON(io_end->iocb);
3157 			/*
3158 			 * Generic code already did inode_dio_done() so we
3159 			 * have to clear EXT4_IO_END_DIRECT to not do it for
3160 			 * the second time.
3161 			 */
3162 			io_end->flag = 0;
3163 			ext4_put_io_end(io_end);
3164 			iocb->private = NULL;
3165 		}
3166 	}
3167 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3168 						EXT4_STATE_DIO_UNWRITTEN)) {
3169 		int err;
3170 		/*
3171 		 * for non AIO case, since the IO is already
3172 		 * completed, we could do the conversion right here
3173 		 */
3174 		err = ext4_convert_unwritten_extents(NULL, inode,
3175 						     offset, ret);
3176 		if (err < 0)
3177 			ret = err;
3178 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3179 	}
3180 
3181 retake_lock:
3182 	if (rw == WRITE)
3183 		inode_dio_done(inode);
3184 	/* take i_mutex locking again if we do a ovewrite dio */
3185 	if (overwrite) {
3186 		up_read(&EXT4_I(inode)->i_data_sem);
3187 		mutex_lock(&inode->i_mutex);
3188 	}
3189 
3190 	return ret;
3191 }
3192 
3193 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3194 			      const struct iovec *iov, loff_t offset,
3195 			      unsigned long nr_segs)
3196 {
3197 	struct file *file = iocb->ki_filp;
3198 	struct inode *inode = file->f_mapping->host;
3199 	ssize_t ret;
3200 
3201 	/*
3202 	 * If we are doing data journalling we don't support O_DIRECT
3203 	 */
3204 	if (ext4_should_journal_data(inode))
3205 		return 0;
3206 
3207 	/* Let buffer I/O handle the inline data case. */
3208 	if (ext4_has_inline_data(inode))
3209 		return 0;
3210 
3211 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3212 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3213 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3214 	else
3215 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3216 	trace_ext4_direct_IO_exit(inode, offset,
3217 				iov_length(iov, nr_segs), rw, ret);
3218 	return ret;
3219 }
3220 
3221 /*
3222  * Pages can be marked dirty completely asynchronously from ext4's journalling
3223  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3224  * much here because ->set_page_dirty is called under VFS locks.  The page is
3225  * not necessarily locked.
3226  *
3227  * We cannot just dirty the page and leave attached buffers clean, because the
3228  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3229  * or jbddirty because all the journalling code will explode.
3230  *
3231  * So what we do is to mark the page "pending dirty" and next time writepage
3232  * is called, propagate that into the buffers appropriately.
3233  */
3234 static int ext4_journalled_set_page_dirty(struct page *page)
3235 {
3236 	SetPageChecked(page);
3237 	return __set_page_dirty_nobuffers(page);
3238 }
3239 
3240 static const struct address_space_operations ext4_aops = {
3241 	.readpage		= ext4_readpage,
3242 	.readpages		= ext4_readpages,
3243 	.writepage		= ext4_writepage,
3244 	.writepages		= ext4_writepages,
3245 	.write_begin		= ext4_write_begin,
3246 	.write_end		= ext4_write_end,
3247 	.bmap			= ext4_bmap,
3248 	.invalidatepage		= ext4_invalidatepage,
3249 	.releasepage		= ext4_releasepage,
3250 	.direct_IO		= ext4_direct_IO,
3251 	.migratepage		= buffer_migrate_page,
3252 	.is_partially_uptodate  = block_is_partially_uptodate,
3253 	.error_remove_page	= generic_error_remove_page,
3254 };
3255 
3256 static const struct address_space_operations ext4_journalled_aops = {
3257 	.readpage		= ext4_readpage,
3258 	.readpages		= ext4_readpages,
3259 	.writepage		= ext4_writepage,
3260 	.writepages		= ext4_writepages,
3261 	.write_begin		= ext4_write_begin,
3262 	.write_end		= ext4_journalled_write_end,
3263 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3264 	.bmap			= ext4_bmap,
3265 	.invalidatepage		= ext4_journalled_invalidatepage,
3266 	.releasepage		= ext4_releasepage,
3267 	.direct_IO		= ext4_direct_IO,
3268 	.is_partially_uptodate  = block_is_partially_uptodate,
3269 	.error_remove_page	= generic_error_remove_page,
3270 };
3271 
3272 static const struct address_space_operations ext4_da_aops = {
3273 	.readpage		= ext4_readpage,
3274 	.readpages		= ext4_readpages,
3275 	.writepage		= ext4_writepage,
3276 	.writepages		= ext4_writepages,
3277 	.write_begin		= ext4_da_write_begin,
3278 	.write_end		= ext4_da_write_end,
3279 	.bmap			= ext4_bmap,
3280 	.invalidatepage		= ext4_da_invalidatepage,
3281 	.releasepage		= ext4_releasepage,
3282 	.direct_IO		= ext4_direct_IO,
3283 	.migratepage		= buffer_migrate_page,
3284 	.is_partially_uptodate  = block_is_partially_uptodate,
3285 	.error_remove_page	= generic_error_remove_page,
3286 };
3287 
3288 void ext4_set_aops(struct inode *inode)
3289 {
3290 	switch (ext4_inode_journal_mode(inode)) {
3291 	case EXT4_INODE_ORDERED_DATA_MODE:
3292 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3293 		break;
3294 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3295 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3296 		break;
3297 	case EXT4_INODE_JOURNAL_DATA_MODE:
3298 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3299 		return;
3300 	default:
3301 		BUG();
3302 	}
3303 	if (test_opt(inode->i_sb, DELALLOC))
3304 		inode->i_mapping->a_ops = &ext4_da_aops;
3305 	else
3306 		inode->i_mapping->a_ops = &ext4_aops;
3307 }
3308 
3309 /*
3310  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3311  * up to the end of the block which corresponds to `from'.
3312  * This required during truncate. We need to physically zero the tail end
3313  * of that block so it doesn't yield old data if the file is later grown.
3314  */
3315 int ext4_block_truncate_page(handle_t *handle,
3316 		struct address_space *mapping, loff_t from)
3317 {
3318 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3319 	unsigned length;
3320 	unsigned blocksize;
3321 	struct inode *inode = mapping->host;
3322 
3323 	blocksize = inode->i_sb->s_blocksize;
3324 	length = blocksize - (offset & (blocksize - 1));
3325 
3326 	return ext4_block_zero_page_range(handle, mapping, from, length);
3327 }
3328 
3329 /*
3330  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3331  * starting from file offset 'from'.  The range to be zero'd must
3332  * be contained with in one block.  If the specified range exceeds
3333  * the end of the block it will be shortened to end of the block
3334  * that cooresponds to 'from'
3335  */
3336 int ext4_block_zero_page_range(handle_t *handle,
3337 		struct address_space *mapping, loff_t from, loff_t length)
3338 {
3339 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3340 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3341 	unsigned blocksize, max, pos;
3342 	ext4_lblk_t iblock;
3343 	struct inode *inode = mapping->host;
3344 	struct buffer_head *bh;
3345 	struct page *page;
3346 	int err = 0;
3347 
3348 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3349 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3350 	if (!page)
3351 		return -ENOMEM;
3352 
3353 	blocksize = inode->i_sb->s_blocksize;
3354 	max = blocksize - (offset & (blocksize - 1));
3355 
3356 	/*
3357 	 * correct length if it does not fall between
3358 	 * 'from' and the end of the block
3359 	 */
3360 	if (length > max || length < 0)
3361 		length = max;
3362 
3363 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3364 
3365 	if (!page_has_buffers(page))
3366 		create_empty_buffers(page, blocksize, 0);
3367 
3368 	/* Find the buffer that contains "offset" */
3369 	bh = page_buffers(page);
3370 	pos = blocksize;
3371 	while (offset >= pos) {
3372 		bh = bh->b_this_page;
3373 		iblock++;
3374 		pos += blocksize;
3375 	}
3376 	if (buffer_freed(bh)) {
3377 		BUFFER_TRACE(bh, "freed: skip");
3378 		goto unlock;
3379 	}
3380 	if (!buffer_mapped(bh)) {
3381 		BUFFER_TRACE(bh, "unmapped");
3382 		ext4_get_block(inode, iblock, bh, 0);
3383 		/* unmapped? It's a hole - nothing to do */
3384 		if (!buffer_mapped(bh)) {
3385 			BUFFER_TRACE(bh, "still unmapped");
3386 			goto unlock;
3387 		}
3388 	}
3389 
3390 	/* Ok, it's mapped. Make sure it's up-to-date */
3391 	if (PageUptodate(page))
3392 		set_buffer_uptodate(bh);
3393 
3394 	if (!buffer_uptodate(bh)) {
3395 		err = -EIO;
3396 		ll_rw_block(READ, 1, &bh);
3397 		wait_on_buffer(bh);
3398 		/* Uhhuh. Read error. Complain and punt. */
3399 		if (!buffer_uptodate(bh))
3400 			goto unlock;
3401 	}
3402 	if (ext4_should_journal_data(inode)) {
3403 		BUFFER_TRACE(bh, "get write access");
3404 		err = ext4_journal_get_write_access(handle, bh);
3405 		if (err)
3406 			goto unlock;
3407 	}
3408 	zero_user(page, offset, length);
3409 	BUFFER_TRACE(bh, "zeroed end of block");
3410 
3411 	if (ext4_should_journal_data(inode)) {
3412 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3413 	} else {
3414 		err = 0;
3415 		mark_buffer_dirty(bh);
3416 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3417 			err = ext4_jbd2_file_inode(handle, inode);
3418 	}
3419 
3420 unlock:
3421 	unlock_page(page);
3422 	page_cache_release(page);
3423 	return err;
3424 }
3425 
3426 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3427 			     loff_t lstart, loff_t length)
3428 {
3429 	struct super_block *sb = inode->i_sb;
3430 	struct address_space *mapping = inode->i_mapping;
3431 	unsigned partial_start, partial_end;
3432 	ext4_fsblk_t start, end;
3433 	loff_t byte_end = (lstart + length - 1);
3434 	int err = 0;
3435 
3436 	partial_start = lstart & (sb->s_blocksize - 1);
3437 	partial_end = byte_end & (sb->s_blocksize - 1);
3438 
3439 	start = lstart >> sb->s_blocksize_bits;
3440 	end = byte_end >> sb->s_blocksize_bits;
3441 
3442 	/* Handle partial zero within the single block */
3443 	if (start == end &&
3444 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3445 		err = ext4_block_zero_page_range(handle, mapping,
3446 						 lstart, length);
3447 		return err;
3448 	}
3449 	/* Handle partial zero out on the start of the range */
3450 	if (partial_start) {
3451 		err = ext4_block_zero_page_range(handle, mapping,
3452 						 lstart, sb->s_blocksize);
3453 		if (err)
3454 			return err;
3455 	}
3456 	/* Handle partial zero out on the end of the range */
3457 	if (partial_end != sb->s_blocksize - 1)
3458 		err = ext4_block_zero_page_range(handle, mapping,
3459 						 byte_end - partial_end,
3460 						 partial_end + 1);
3461 	return err;
3462 }
3463 
3464 int ext4_can_truncate(struct inode *inode)
3465 {
3466 	if (S_ISREG(inode->i_mode))
3467 		return 1;
3468 	if (S_ISDIR(inode->i_mode))
3469 		return 1;
3470 	if (S_ISLNK(inode->i_mode))
3471 		return !ext4_inode_is_fast_symlink(inode);
3472 	return 0;
3473 }
3474 
3475 /*
3476  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3477  * associated with the given offset and length
3478  *
3479  * @inode:  File inode
3480  * @offset: The offset where the hole will begin
3481  * @len:    The length of the hole
3482  *
3483  * Returns: 0 on success or negative on failure
3484  */
3485 
3486 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3487 {
3488 	struct super_block *sb = inode->i_sb;
3489 	ext4_lblk_t first_block, stop_block;
3490 	struct address_space *mapping = inode->i_mapping;
3491 	loff_t first_block_offset, last_block_offset;
3492 	handle_t *handle;
3493 	unsigned int credits;
3494 	int ret = 0;
3495 
3496 	if (!S_ISREG(inode->i_mode))
3497 		return -EOPNOTSUPP;
3498 
3499 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3500 		/* TODO: Add support for bigalloc file systems */
3501 		return -EOPNOTSUPP;
3502 	}
3503 
3504 	trace_ext4_punch_hole(inode, offset, length);
3505 
3506 	/*
3507 	 * Write out all dirty pages to avoid race conditions
3508 	 * Then release them.
3509 	 */
3510 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3511 		ret = filemap_write_and_wait_range(mapping, offset,
3512 						   offset + length - 1);
3513 		if (ret)
3514 			return ret;
3515 	}
3516 
3517 	mutex_lock(&inode->i_mutex);
3518 	/* It's not possible punch hole on append only file */
3519 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3520 		ret = -EPERM;
3521 		goto out_mutex;
3522 	}
3523 	if (IS_SWAPFILE(inode)) {
3524 		ret = -ETXTBSY;
3525 		goto out_mutex;
3526 	}
3527 
3528 	/* No need to punch hole beyond i_size */
3529 	if (offset >= inode->i_size)
3530 		goto out_mutex;
3531 
3532 	/*
3533 	 * If the hole extends beyond i_size, set the hole
3534 	 * to end after the page that contains i_size
3535 	 */
3536 	if (offset + length > inode->i_size) {
3537 		length = inode->i_size +
3538 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3539 		   offset;
3540 	}
3541 
3542 	first_block_offset = round_up(offset, sb->s_blocksize);
3543 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3544 
3545 	/* Now release the pages and zero block aligned part of pages*/
3546 	if (last_block_offset > first_block_offset)
3547 		truncate_pagecache_range(inode, first_block_offset,
3548 					 last_block_offset);
3549 
3550 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3551 	ext4_inode_block_unlocked_dio(inode);
3552 	inode_dio_wait(inode);
3553 
3554 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3555 		credits = ext4_writepage_trans_blocks(inode);
3556 	else
3557 		credits = ext4_blocks_for_truncate(inode);
3558 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3559 	if (IS_ERR(handle)) {
3560 		ret = PTR_ERR(handle);
3561 		ext4_std_error(sb, ret);
3562 		goto out_dio;
3563 	}
3564 
3565 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3566 				       length);
3567 	if (ret)
3568 		goto out_stop;
3569 
3570 	first_block = (offset + sb->s_blocksize - 1) >>
3571 		EXT4_BLOCK_SIZE_BITS(sb);
3572 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3573 
3574 	/* If there are no blocks to remove, return now */
3575 	if (first_block >= stop_block)
3576 		goto out_stop;
3577 
3578 	down_write(&EXT4_I(inode)->i_data_sem);
3579 	ext4_discard_preallocations(inode);
3580 
3581 	ret = ext4_es_remove_extent(inode, first_block,
3582 				    stop_block - first_block);
3583 	if (ret) {
3584 		up_write(&EXT4_I(inode)->i_data_sem);
3585 		goto out_stop;
3586 	}
3587 
3588 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3589 		ret = ext4_ext_remove_space(inode, first_block,
3590 					    stop_block - 1);
3591 	else
3592 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3593 					    stop_block);
3594 
3595 	ext4_discard_preallocations(inode);
3596 	up_write(&EXT4_I(inode)->i_data_sem);
3597 	if (IS_SYNC(inode))
3598 		ext4_handle_sync(handle);
3599 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3600 	ext4_mark_inode_dirty(handle, inode);
3601 out_stop:
3602 	ext4_journal_stop(handle);
3603 out_dio:
3604 	ext4_inode_resume_unlocked_dio(inode);
3605 out_mutex:
3606 	mutex_unlock(&inode->i_mutex);
3607 	return ret;
3608 }
3609 
3610 /*
3611  * ext4_truncate()
3612  *
3613  * We block out ext4_get_block() block instantiations across the entire
3614  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3615  * simultaneously on behalf of the same inode.
3616  *
3617  * As we work through the truncate and commit bits of it to the journal there
3618  * is one core, guiding principle: the file's tree must always be consistent on
3619  * disk.  We must be able to restart the truncate after a crash.
3620  *
3621  * The file's tree may be transiently inconsistent in memory (although it
3622  * probably isn't), but whenever we close off and commit a journal transaction,
3623  * the contents of (the filesystem + the journal) must be consistent and
3624  * restartable.  It's pretty simple, really: bottom up, right to left (although
3625  * left-to-right works OK too).
3626  *
3627  * Note that at recovery time, journal replay occurs *before* the restart of
3628  * truncate against the orphan inode list.
3629  *
3630  * The committed inode has the new, desired i_size (which is the same as
3631  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3632  * that this inode's truncate did not complete and it will again call
3633  * ext4_truncate() to have another go.  So there will be instantiated blocks
3634  * to the right of the truncation point in a crashed ext4 filesystem.  But
3635  * that's fine - as long as they are linked from the inode, the post-crash
3636  * ext4_truncate() run will find them and release them.
3637  */
3638 void ext4_truncate(struct inode *inode)
3639 {
3640 	struct ext4_inode_info *ei = EXT4_I(inode);
3641 	unsigned int credits;
3642 	handle_t *handle;
3643 	struct address_space *mapping = inode->i_mapping;
3644 
3645 	/*
3646 	 * There is a possibility that we're either freeing the inode
3647 	 * or it completely new indode. In those cases we might not
3648 	 * have i_mutex locked because it's not necessary.
3649 	 */
3650 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3651 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3652 	trace_ext4_truncate_enter(inode);
3653 
3654 	if (!ext4_can_truncate(inode))
3655 		return;
3656 
3657 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3658 
3659 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3660 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3661 
3662 	if (ext4_has_inline_data(inode)) {
3663 		int has_inline = 1;
3664 
3665 		ext4_inline_data_truncate(inode, &has_inline);
3666 		if (has_inline)
3667 			return;
3668 	}
3669 
3670 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3671 		credits = ext4_writepage_trans_blocks(inode);
3672 	else
3673 		credits = ext4_blocks_for_truncate(inode);
3674 
3675 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3676 	if (IS_ERR(handle)) {
3677 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3678 		return;
3679 	}
3680 
3681 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3682 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3683 
3684 	/*
3685 	 * We add the inode to the orphan list, so that if this
3686 	 * truncate spans multiple transactions, and we crash, we will
3687 	 * resume the truncate when the filesystem recovers.  It also
3688 	 * marks the inode dirty, to catch the new size.
3689 	 *
3690 	 * Implication: the file must always be in a sane, consistent
3691 	 * truncatable state while each transaction commits.
3692 	 */
3693 	if (ext4_orphan_add(handle, inode))
3694 		goto out_stop;
3695 
3696 	down_write(&EXT4_I(inode)->i_data_sem);
3697 
3698 	ext4_discard_preallocations(inode);
3699 
3700 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3701 		ext4_ext_truncate(handle, inode);
3702 	else
3703 		ext4_ind_truncate(handle, inode);
3704 
3705 	up_write(&ei->i_data_sem);
3706 
3707 	if (IS_SYNC(inode))
3708 		ext4_handle_sync(handle);
3709 
3710 out_stop:
3711 	/*
3712 	 * If this was a simple ftruncate() and the file will remain alive,
3713 	 * then we need to clear up the orphan record which we created above.
3714 	 * However, if this was a real unlink then we were called by
3715 	 * ext4_delete_inode(), and we allow that function to clean up the
3716 	 * orphan info for us.
3717 	 */
3718 	if (inode->i_nlink)
3719 		ext4_orphan_del(handle, inode);
3720 
3721 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3722 	ext4_mark_inode_dirty(handle, inode);
3723 	ext4_journal_stop(handle);
3724 
3725 	trace_ext4_truncate_exit(inode);
3726 }
3727 
3728 /*
3729  * ext4_get_inode_loc returns with an extra refcount against the inode's
3730  * underlying buffer_head on success. If 'in_mem' is true, we have all
3731  * data in memory that is needed to recreate the on-disk version of this
3732  * inode.
3733  */
3734 static int __ext4_get_inode_loc(struct inode *inode,
3735 				struct ext4_iloc *iloc, int in_mem)
3736 {
3737 	struct ext4_group_desc	*gdp;
3738 	struct buffer_head	*bh;
3739 	struct super_block	*sb = inode->i_sb;
3740 	ext4_fsblk_t		block;
3741 	int			inodes_per_block, inode_offset;
3742 
3743 	iloc->bh = NULL;
3744 	if (!ext4_valid_inum(sb, inode->i_ino))
3745 		return -EIO;
3746 
3747 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3748 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3749 	if (!gdp)
3750 		return -EIO;
3751 
3752 	/*
3753 	 * Figure out the offset within the block group inode table
3754 	 */
3755 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3756 	inode_offset = ((inode->i_ino - 1) %
3757 			EXT4_INODES_PER_GROUP(sb));
3758 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3759 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3760 
3761 	bh = sb_getblk(sb, block);
3762 	if (unlikely(!bh))
3763 		return -ENOMEM;
3764 	if (!buffer_uptodate(bh)) {
3765 		lock_buffer(bh);
3766 
3767 		/*
3768 		 * If the buffer has the write error flag, we have failed
3769 		 * to write out another inode in the same block.  In this
3770 		 * case, we don't have to read the block because we may
3771 		 * read the old inode data successfully.
3772 		 */
3773 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3774 			set_buffer_uptodate(bh);
3775 
3776 		if (buffer_uptodate(bh)) {
3777 			/* someone brought it uptodate while we waited */
3778 			unlock_buffer(bh);
3779 			goto has_buffer;
3780 		}
3781 
3782 		/*
3783 		 * If we have all information of the inode in memory and this
3784 		 * is the only valid inode in the block, we need not read the
3785 		 * block.
3786 		 */
3787 		if (in_mem) {
3788 			struct buffer_head *bitmap_bh;
3789 			int i, start;
3790 
3791 			start = inode_offset & ~(inodes_per_block - 1);
3792 
3793 			/* Is the inode bitmap in cache? */
3794 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3795 			if (unlikely(!bitmap_bh))
3796 				goto make_io;
3797 
3798 			/*
3799 			 * If the inode bitmap isn't in cache then the
3800 			 * optimisation may end up performing two reads instead
3801 			 * of one, so skip it.
3802 			 */
3803 			if (!buffer_uptodate(bitmap_bh)) {
3804 				brelse(bitmap_bh);
3805 				goto make_io;
3806 			}
3807 			for (i = start; i < start + inodes_per_block; i++) {
3808 				if (i == inode_offset)
3809 					continue;
3810 				if (ext4_test_bit(i, bitmap_bh->b_data))
3811 					break;
3812 			}
3813 			brelse(bitmap_bh);
3814 			if (i == start + inodes_per_block) {
3815 				/* all other inodes are free, so skip I/O */
3816 				memset(bh->b_data, 0, bh->b_size);
3817 				set_buffer_uptodate(bh);
3818 				unlock_buffer(bh);
3819 				goto has_buffer;
3820 			}
3821 		}
3822 
3823 make_io:
3824 		/*
3825 		 * If we need to do any I/O, try to pre-readahead extra
3826 		 * blocks from the inode table.
3827 		 */
3828 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3829 			ext4_fsblk_t b, end, table;
3830 			unsigned num;
3831 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3832 
3833 			table = ext4_inode_table(sb, gdp);
3834 			/* s_inode_readahead_blks is always a power of 2 */
3835 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3836 			if (table > b)
3837 				b = table;
3838 			end = b + ra_blks;
3839 			num = EXT4_INODES_PER_GROUP(sb);
3840 			if (ext4_has_group_desc_csum(sb))
3841 				num -= ext4_itable_unused_count(sb, gdp);
3842 			table += num / inodes_per_block;
3843 			if (end > table)
3844 				end = table;
3845 			while (b <= end)
3846 				sb_breadahead(sb, b++);
3847 		}
3848 
3849 		/*
3850 		 * There are other valid inodes in the buffer, this inode
3851 		 * has in-inode xattrs, or we don't have this inode in memory.
3852 		 * Read the block from disk.
3853 		 */
3854 		trace_ext4_load_inode(inode);
3855 		get_bh(bh);
3856 		bh->b_end_io = end_buffer_read_sync;
3857 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3858 		wait_on_buffer(bh);
3859 		if (!buffer_uptodate(bh)) {
3860 			EXT4_ERROR_INODE_BLOCK(inode, block,
3861 					       "unable to read itable block");
3862 			brelse(bh);
3863 			return -EIO;
3864 		}
3865 	}
3866 has_buffer:
3867 	iloc->bh = bh;
3868 	return 0;
3869 }
3870 
3871 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3872 {
3873 	/* We have all inode data except xattrs in memory here. */
3874 	return __ext4_get_inode_loc(inode, iloc,
3875 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3876 }
3877 
3878 void ext4_set_inode_flags(struct inode *inode)
3879 {
3880 	unsigned int flags = EXT4_I(inode)->i_flags;
3881 
3882 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3883 	if (flags & EXT4_SYNC_FL)
3884 		inode->i_flags |= S_SYNC;
3885 	if (flags & EXT4_APPEND_FL)
3886 		inode->i_flags |= S_APPEND;
3887 	if (flags & EXT4_IMMUTABLE_FL)
3888 		inode->i_flags |= S_IMMUTABLE;
3889 	if (flags & EXT4_NOATIME_FL)
3890 		inode->i_flags |= S_NOATIME;
3891 	if (flags & EXT4_DIRSYNC_FL)
3892 		inode->i_flags |= S_DIRSYNC;
3893 }
3894 
3895 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3896 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3897 {
3898 	unsigned int vfs_fl;
3899 	unsigned long old_fl, new_fl;
3900 
3901 	do {
3902 		vfs_fl = ei->vfs_inode.i_flags;
3903 		old_fl = ei->i_flags;
3904 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3905 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3906 				EXT4_DIRSYNC_FL);
3907 		if (vfs_fl & S_SYNC)
3908 			new_fl |= EXT4_SYNC_FL;
3909 		if (vfs_fl & S_APPEND)
3910 			new_fl |= EXT4_APPEND_FL;
3911 		if (vfs_fl & S_IMMUTABLE)
3912 			new_fl |= EXT4_IMMUTABLE_FL;
3913 		if (vfs_fl & S_NOATIME)
3914 			new_fl |= EXT4_NOATIME_FL;
3915 		if (vfs_fl & S_DIRSYNC)
3916 			new_fl |= EXT4_DIRSYNC_FL;
3917 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3918 }
3919 
3920 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3921 				  struct ext4_inode_info *ei)
3922 {
3923 	blkcnt_t i_blocks ;
3924 	struct inode *inode = &(ei->vfs_inode);
3925 	struct super_block *sb = inode->i_sb;
3926 
3927 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3928 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3929 		/* we are using combined 48 bit field */
3930 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3931 					le32_to_cpu(raw_inode->i_blocks_lo);
3932 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3933 			/* i_blocks represent file system block size */
3934 			return i_blocks  << (inode->i_blkbits - 9);
3935 		} else {
3936 			return i_blocks;
3937 		}
3938 	} else {
3939 		return le32_to_cpu(raw_inode->i_blocks_lo);
3940 	}
3941 }
3942 
3943 static inline void ext4_iget_extra_inode(struct inode *inode,
3944 					 struct ext4_inode *raw_inode,
3945 					 struct ext4_inode_info *ei)
3946 {
3947 	__le32 *magic = (void *)raw_inode +
3948 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3949 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3950 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3951 		ext4_find_inline_data_nolock(inode);
3952 	} else
3953 		EXT4_I(inode)->i_inline_off = 0;
3954 }
3955 
3956 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3957 {
3958 	struct ext4_iloc iloc;
3959 	struct ext4_inode *raw_inode;
3960 	struct ext4_inode_info *ei;
3961 	struct inode *inode;
3962 	journal_t *journal = EXT4_SB(sb)->s_journal;
3963 	long ret;
3964 	int block;
3965 	uid_t i_uid;
3966 	gid_t i_gid;
3967 
3968 	inode = iget_locked(sb, ino);
3969 	if (!inode)
3970 		return ERR_PTR(-ENOMEM);
3971 	if (!(inode->i_state & I_NEW))
3972 		return inode;
3973 
3974 	ei = EXT4_I(inode);
3975 	iloc.bh = NULL;
3976 
3977 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3978 	if (ret < 0)
3979 		goto bad_inode;
3980 	raw_inode = ext4_raw_inode(&iloc);
3981 
3982 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3983 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3984 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3985 		    EXT4_INODE_SIZE(inode->i_sb)) {
3986 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3987 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3988 				EXT4_INODE_SIZE(inode->i_sb));
3989 			ret = -EIO;
3990 			goto bad_inode;
3991 		}
3992 	} else
3993 		ei->i_extra_isize = 0;
3994 
3995 	/* Precompute checksum seed for inode metadata */
3996 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3998 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3999 		__u32 csum;
4000 		__le32 inum = cpu_to_le32(inode->i_ino);
4001 		__le32 gen = raw_inode->i_generation;
4002 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4003 				   sizeof(inum));
4004 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4005 					      sizeof(gen));
4006 	}
4007 
4008 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4009 		EXT4_ERROR_INODE(inode, "checksum invalid");
4010 		ret = -EIO;
4011 		goto bad_inode;
4012 	}
4013 
4014 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4015 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4016 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4017 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4018 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4019 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4020 	}
4021 	i_uid_write(inode, i_uid);
4022 	i_gid_write(inode, i_gid);
4023 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4024 
4025 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4026 	ei->i_inline_off = 0;
4027 	ei->i_dir_start_lookup = 0;
4028 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4029 	/* We now have enough fields to check if the inode was active or not.
4030 	 * This is needed because nfsd might try to access dead inodes
4031 	 * the test is that same one that e2fsck uses
4032 	 * NeilBrown 1999oct15
4033 	 */
4034 	if (inode->i_nlink == 0) {
4035 		if ((inode->i_mode == 0 ||
4036 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4037 		    ino != EXT4_BOOT_LOADER_INO) {
4038 			/* this inode is deleted */
4039 			ret = -ESTALE;
4040 			goto bad_inode;
4041 		}
4042 		/* The only unlinked inodes we let through here have
4043 		 * valid i_mode and are being read by the orphan
4044 		 * recovery code: that's fine, we're about to complete
4045 		 * the process of deleting those.
4046 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4047 		 * not initialized on a new filesystem. */
4048 	}
4049 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4050 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4051 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4052 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4053 		ei->i_file_acl |=
4054 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4055 	inode->i_size = ext4_isize(raw_inode);
4056 	ei->i_disksize = inode->i_size;
4057 #ifdef CONFIG_QUOTA
4058 	ei->i_reserved_quota = 0;
4059 #endif
4060 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4061 	ei->i_block_group = iloc.block_group;
4062 	ei->i_last_alloc_group = ~0;
4063 	/*
4064 	 * NOTE! The in-memory inode i_data array is in little-endian order
4065 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4066 	 */
4067 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4068 		ei->i_data[block] = raw_inode->i_block[block];
4069 	INIT_LIST_HEAD(&ei->i_orphan);
4070 
4071 	/*
4072 	 * Set transaction id's of transactions that have to be committed
4073 	 * to finish f[data]sync. We set them to currently running transaction
4074 	 * as we cannot be sure that the inode or some of its metadata isn't
4075 	 * part of the transaction - the inode could have been reclaimed and
4076 	 * now it is reread from disk.
4077 	 */
4078 	if (journal) {
4079 		transaction_t *transaction;
4080 		tid_t tid;
4081 
4082 		read_lock(&journal->j_state_lock);
4083 		if (journal->j_running_transaction)
4084 			transaction = journal->j_running_transaction;
4085 		else
4086 			transaction = journal->j_committing_transaction;
4087 		if (transaction)
4088 			tid = transaction->t_tid;
4089 		else
4090 			tid = journal->j_commit_sequence;
4091 		read_unlock(&journal->j_state_lock);
4092 		ei->i_sync_tid = tid;
4093 		ei->i_datasync_tid = tid;
4094 	}
4095 
4096 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4097 		if (ei->i_extra_isize == 0) {
4098 			/* The extra space is currently unused. Use it. */
4099 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4100 					    EXT4_GOOD_OLD_INODE_SIZE;
4101 		} else {
4102 			ext4_iget_extra_inode(inode, raw_inode, ei);
4103 		}
4104 	}
4105 
4106 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4107 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4108 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4109 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4110 
4111 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4113 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4114 			inode->i_version |=
4115 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4116 	}
4117 
4118 	ret = 0;
4119 	if (ei->i_file_acl &&
4120 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4121 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4122 				 ei->i_file_acl);
4123 		ret = -EIO;
4124 		goto bad_inode;
4125 	} else if (!ext4_has_inline_data(inode)) {
4126 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4127 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4128 			    (S_ISLNK(inode->i_mode) &&
4129 			     !ext4_inode_is_fast_symlink(inode))))
4130 				/* Validate extent which is part of inode */
4131 				ret = ext4_ext_check_inode(inode);
4132 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4133 			   (S_ISLNK(inode->i_mode) &&
4134 			    !ext4_inode_is_fast_symlink(inode))) {
4135 			/* Validate block references which are part of inode */
4136 			ret = ext4_ind_check_inode(inode);
4137 		}
4138 	}
4139 	if (ret)
4140 		goto bad_inode;
4141 
4142 	if (S_ISREG(inode->i_mode)) {
4143 		inode->i_op = &ext4_file_inode_operations;
4144 		inode->i_fop = &ext4_file_operations;
4145 		ext4_set_aops(inode);
4146 	} else if (S_ISDIR(inode->i_mode)) {
4147 		inode->i_op = &ext4_dir_inode_operations;
4148 		inode->i_fop = &ext4_dir_operations;
4149 	} else if (S_ISLNK(inode->i_mode)) {
4150 		if (ext4_inode_is_fast_symlink(inode)) {
4151 			inode->i_op = &ext4_fast_symlink_inode_operations;
4152 			nd_terminate_link(ei->i_data, inode->i_size,
4153 				sizeof(ei->i_data) - 1);
4154 		} else {
4155 			inode->i_op = &ext4_symlink_inode_operations;
4156 			ext4_set_aops(inode);
4157 		}
4158 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4159 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4160 		inode->i_op = &ext4_special_inode_operations;
4161 		if (raw_inode->i_block[0])
4162 			init_special_inode(inode, inode->i_mode,
4163 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4164 		else
4165 			init_special_inode(inode, inode->i_mode,
4166 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4167 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4168 		make_bad_inode(inode);
4169 	} else {
4170 		ret = -EIO;
4171 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4172 		goto bad_inode;
4173 	}
4174 	brelse(iloc.bh);
4175 	ext4_set_inode_flags(inode);
4176 	unlock_new_inode(inode);
4177 	return inode;
4178 
4179 bad_inode:
4180 	brelse(iloc.bh);
4181 	iget_failed(inode);
4182 	return ERR_PTR(ret);
4183 }
4184 
4185 static int ext4_inode_blocks_set(handle_t *handle,
4186 				struct ext4_inode *raw_inode,
4187 				struct ext4_inode_info *ei)
4188 {
4189 	struct inode *inode = &(ei->vfs_inode);
4190 	u64 i_blocks = inode->i_blocks;
4191 	struct super_block *sb = inode->i_sb;
4192 
4193 	if (i_blocks <= ~0U) {
4194 		/*
4195 		 * i_blocks can be represented in a 32 bit variable
4196 		 * as multiple of 512 bytes
4197 		 */
4198 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4199 		raw_inode->i_blocks_high = 0;
4200 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4201 		return 0;
4202 	}
4203 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4204 		return -EFBIG;
4205 
4206 	if (i_blocks <= 0xffffffffffffULL) {
4207 		/*
4208 		 * i_blocks can be represented in a 48 bit variable
4209 		 * as multiple of 512 bytes
4210 		 */
4211 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4212 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4214 	} else {
4215 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4216 		/* i_block is stored in file system block size */
4217 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4218 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4220 	}
4221 	return 0;
4222 }
4223 
4224 /*
4225  * Post the struct inode info into an on-disk inode location in the
4226  * buffer-cache.  This gobbles the caller's reference to the
4227  * buffer_head in the inode location struct.
4228  *
4229  * The caller must have write access to iloc->bh.
4230  */
4231 static int ext4_do_update_inode(handle_t *handle,
4232 				struct inode *inode,
4233 				struct ext4_iloc *iloc)
4234 {
4235 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4236 	struct ext4_inode_info *ei = EXT4_I(inode);
4237 	struct buffer_head *bh = iloc->bh;
4238 	int err = 0, rc, block;
4239 	int need_datasync = 0;
4240 	uid_t i_uid;
4241 	gid_t i_gid;
4242 
4243 	/* For fields not not tracking in the in-memory inode,
4244 	 * initialise them to zero for new inodes. */
4245 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4246 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4247 
4248 	ext4_get_inode_flags(ei);
4249 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4250 	i_uid = i_uid_read(inode);
4251 	i_gid = i_gid_read(inode);
4252 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4253 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4254 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4255 /*
4256  * Fix up interoperability with old kernels. Otherwise, old inodes get
4257  * re-used with the upper 16 bits of the uid/gid intact
4258  */
4259 		if (!ei->i_dtime) {
4260 			raw_inode->i_uid_high =
4261 				cpu_to_le16(high_16_bits(i_uid));
4262 			raw_inode->i_gid_high =
4263 				cpu_to_le16(high_16_bits(i_gid));
4264 		} else {
4265 			raw_inode->i_uid_high = 0;
4266 			raw_inode->i_gid_high = 0;
4267 		}
4268 	} else {
4269 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4270 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4271 		raw_inode->i_uid_high = 0;
4272 		raw_inode->i_gid_high = 0;
4273 	}
4274 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4275 
4276 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4277 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4278 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4279 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4280 
4281 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4282 		goto out_brelse;
4283 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4284 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4285 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4286 	    cpu_to_le32(EXT4_OS_HURD))
4287 		raw_inode->i_file_acl_high =
4288 			cpu_to_le16(ei->i_file_acl >> 32);
4289 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4290 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4291 		ext4_isize_set(raw_inode, ei->i_disksize);
4292 		need_datasync = 1;
4293 	}
4294 	if (ei->i_disksize > 0x7fffffffULL) {
4295 		struct super_block *sb = inode->i_sb;
4296 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4297 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4298 				EXT4_SB(sb)->s_es->s_rev_level ==
4299 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4300 			/* If this is the first large file
4301 			 * created, add a flag to the superblock.
4302 			 */
4303 			err = ext4_journal_get_write_access(handle,
4304 					EXT4_SB(sb)->s_sbh);
4305 			if (err)
4306 				goto out_brelse;
4307 			ext4_update_dynamic_rev(sb);
4308 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4309 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4310 			ext4_handle_sync(handle);
4311 			err = ext4_handle_dirty_super(handle, sb);
4312 		}
4313 	}
4314 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4315 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4316 		if (old_valid_dev(inode->i_rdev)) {
4317 			raw_inode->i_block[0] =
4318 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4319 			raw_inode->i_block[1] = 0;
4320 		} else {
4321 			raw_inode->i_block[0] = 0;
4322 			raw_inode->i_block[1] =
4323 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4324 			raw_inode->i_block[2] = 0;
4325 		}
4326 	} else if (!ext4_has_inline_data(inode)) {
4327 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4328 			raw_inode->i_block[block] = ei->i_data[block];
4329 	}
4330 
4331 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4332 	if (ei->i_extra_isize) {
4333 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334 			raw_inode->i_version_hi =
4335 			cpu_to_le32(inode->i_version >> 32);
4336 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4337 	}
4338 
4339 	ext4_inode_csum_set(inode, raw_inode, ei);
4340 
4341 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4342 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4343 	if (!err)
4344 		err = rc;
4345 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4346 
4347 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4348 out_brelse:
4349 	brelse(bh);
4350 	ext4_std_error(inode->i_sb, err);
4351 	return err;
4352 }
4353 
4354 /*
4355  * ext4_write_inode()
4356  *
4357  * We are called from a few places:
4358  *
4359  * - Within generic_file_write() for O_SYNC files.
4360  *   Here, there will be no transaction running. We wait for any running
4361  *   transaction to commit.
4362  *
4363  * - Within sys_sync(), kupdate and such.
4364  *   We wait on commit, if tol to.
4365  *
4366  * - Within prune_icache() (PF_MEMALLOC == true)
4367  *   Here we simply return.  We can't afford to block kswapd on the
4368  *   journal commit.
4369  *
4370  * In all cases it is actually safe for us to return without doing anything,
4371  * because the inode has been copied into a raw inode buffer in
4372  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4373  * knfsd.
4374  *
4375  * Note that we are absolutely dependent upon all inode dirtiers doing the
4376  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4377  * which we are interested.
4378  *
4379  * It would be a bug for them to not do this.  The code:
4380  *
4381  *	mark_inode_dirty(inode)
4382  *	stuff();
4383  *	inode->i_size = expr;
4384  *
4385  * is in error because a kswapd-driven write_inode() could occur while
4386  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4387  * will no longer be on the superblock's dirty inode list.
4388  */
4389 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4390 {
4391 	int err;
4392 
4393 	if (current->flags & PF_MEMALLOC)
4394 		return 0;
4395 
4396 	if (EXT4_SB(inode->i_sb)->s_journal) {
4397 		if (ext4_journal_current_handle()) {
4398 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4399 			dump_stack();
4400 			return -EIO;
4401 		}
4402 
4403 		if (wbc->sync_mode != WB_SYNC_ALL)
4404 			return 0;
4405 
4406 		err = ext4_force_commit(inode->i_sb);
4407 	} else {
4408 		struct ext4_iloc iloc;
4409 
4410 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4411 		if (err)
4412 			return err;
4413 		if (wbc->sync_mode == WB_SYNC_ALL)
4414 			sync_dirty_buffer(iloc.bh);
4415 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4416 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4417 					 "IO error syncing inode");
4418 			err = -EIO;
4419 		}
4420 		brelse(iloc.bh);
4421 	}
4422 	return err;
4423 }
4424 
4425 /*
4426  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4427  * buffers that are attached to a page stradding i_size and are undergoing
4428  * commit. In that case we have to wait for commit to finish and try again.
4429  */
4430 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4431 {
4432 	struct page *page;
4433 	unsigned offset;
4434 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4435 	tid_t commit_tid = 0;
4436 	int ret;
4437 
4438 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4439 	/*
4440 	 * All buffers in the last page remain valid? Then there's nothing to
4441 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4442 	 * blocksize case
4443 	 */
4444 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4445 		return;
4446 	while (1) {
4447 		page = find_lock_page(inode->i_mapping,
4448 				      inode->i_size >> PAGE_CACHE_SHIFT);
4449 		if (!page)
4450 			return;
4451 		ret = __ext4_journalled_invalidatepage(page, offset,
4452 						PAGE_CACHE_SIZE - offset);
4453 		unlock_page(page);
4454 		page_cache_release(page);
4455 		if (ret != -EBUSY)
4456 			return;
4457 		commit_tid = 0;
4458 		read_lock(&journal->j_state_lock);
4459 		if (journal->j_committing_transaction)
4460 			commit_tid = journal->j_committing_transaction->t_tid;
4461 		read_unlock(&journal->j_state_lock);
4462 		if (commit_tid)
4463 			jbd2_log_wait_commit(journal, commit_tid);
4464 	}
4465 }
4466 
4467 /*
4468  * ext4_setattr()
4469  *
4470  * Called from notify_change.
4471  *
4472  * We want to trap VFS attempts to truncate the file as soon as
4473  * possible.  In particular, we want to make sure that when the VFS
4474  * shrinks i_size, we put the inode on the orphan list and modify
4475  * i_disksize immediately, so that during the subsequent flushing of
4476  * dirty pages and freeing of disk blocks, we can guarantee that any
4477  * commit will leave the blocks being flushed in an unused state on
4478  * disk.  (On recovery, the inode will get truncated and the blocks will
4479  * be freed, so we have a strong guarantee that no future commit will
4480  * leave these blocks visible to the user.)
4481  *
4482  * Another thing we have to assure is that if we are in ordered mode
4483  * and inode is still attached to the committing transaction, we must
4484  * we start writeout of all the dirty pages which are being truncated.
4485  * This way we are sure that all the data written in the previous
4486  * transaction are already on disk (truncate waits for pages under
4487  * writeback).
4488  *
4489  * Called with inode->i_mutex down.
4490  */
4491 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4492 {
4493 	struct inode *inode = dentry->d_inode;
4494 	int error, rc = 0;
4495 	int orphan = 0;
4496 	const unsigned int ia_valid = attr->ia_valid;
4497 
4498 	error = inode_change_ok(inode, attr);
4499 	if (error)
4500 		return error;
4501 
4502 	if (is_quota_modification(inode, attr))
4503 		dquot_initialize(inode);
4504 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4505 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4506 		handle_t *handle;
4507 
4508 		/* (user+group)*(old+new) structure, inode write (sb,
4509 		 * inode block, ? - but truncate inode update has it) */
4510 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4511 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4512 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4513 		if (IS_ERR(handle)) {
4514 			error = PTR_ERR(handle);
4515 			goto err_out;
4516 		}
4517 		error = dquot_transfer(inode, attr);
4518 		if (error) {
4519 			ext4_journal_stop(handle);
4520 			return error;
4521 		}
4522 		/* Update corresponding info in inode so that everything is in
4523 		 * one transaction */
4524 		if (attr->ia_valid & ATTR_UID)
4525 			inode->i_uid = attr->ia_uid;
4526 		if (attr->ia_valid & ATTR_GID)
4527 			inode->i_gid = attr->ia_gid;
4528 		error = ext4_mark_inode_dirty(handle, inode);
4529 		ext4_journal_stop(handle);
4530 	}
4531 
4532 	if (attr->ia_valid & ATTR_SIZE) {
4533 
4534 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4535 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4536 
4537 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4538 				return -EFBIG;
4539 		}
4540 	}
4541 
4542 	if (S_ISREG(inode->i_mode) &&
4543 	    attr->ia_valid & ATTR_SIZE &&
4544 	    (attr->ia_size < inode->i_size)) {
4545 		handle_t *handle;
4546 
4547 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4548 		if (IS_ERR(handle)) {
4549 			error = PTR_ERR(handle);
4550 			goto err_out;
4551 		}
4552 		if (ext4_handle_valid(handle)) {
4553 			error = ext4_orphan_add(handle, inode);
4554 			orphan = 1;
4555 		}
4556 		EXT4_I(inode)->i_disksize = attr->ia_size;
4557 		rc = ext4_mark_inode_dirty(handle, inode);
4558 		if (!error)
4559 			error = rc;
4560 		ext4_journal_stop(handle);
4561 
4562 		if (ext4_should_order_data(inode)) {
4563 			error = ext4_begin_ordered_truncate(inode,
4564 							    attr->ia_size);
4565 			if (error) {
4566 				/* Do as much error cleanup as possible */
4567 				handle = ext4_journal_start(inode,
4568 							    EXT4_HT_INODE, 3);
4569 				if (IS_ERR(handle)) {
4570 					ext4_orphan_del(NULL, inode);
4571 					goto err_out;
4572 				}
4573 				ext4_orphan_del(handle, inode);
4574 				orphan = 0;
4575 				ext4_journal_stop(handle);
4576 				goto err_out;
4577 			}
4578 		}
4579 	}
4580 
4581 	if (attr->ia_valid & ATTR_SIZE) {
4582 		if (attr->ia_size != inode->i_size) {
4583 			loff_t oldsize = inode->i_size;
4584 
4585 			i_size_write(inode, attr->ia_size);
4586 			/*
4587 			 * Blocks are going to be removed from the inode. Wait
4588 			 * for dio in flight.  Temporarily disable
4589 			 * dioread_nolock to prevent livelock.
4590 			 */
4591 			if (orphan) {
4592 				if (!ext4_should_journal_data(inode)) {
4593 					ext4_inode_block_unlocked_dio(inode);
4594 					inode_dio_wait(inode);
4595 					ext4_inode_resume_unlocked_dio(inode);
4596 				} else
4597 					ext4_wait_for_tail_page_commit(inode);
4598 			}
4599 			/*
4600 			 * Truncate pagecache after we've waited for commit
4601 			 * in data=journal mode to make pages freeable.
4602 			 */
4603 			truncate_pagecache(inode, oldsize, inode->i_size);
4604 		}
4605 		ext4_truncate(inode);
4606 	}
4607 
4608 	if (!rc) {
4609 		setattr_copy(inode, attr);
4610 		mark_inode_dirty(inode);
4611 	}
4612 
4613 	/*
4614 	 * If the call to ext4_truncate failed to get a transaction handle at
4615 	 * all, we need to clean up the in-core orphan list manually.
4616 	 */
4617 	if (orphan && inode->i_nlink)
4618 		ext4_orphan_del(NULL, inode);
4619 
4620 	if (!rc && (ia_valid & ATTR_MODE))
4621 		rc = ext4_acl_chmod(inode);
4622 
4623 err_out:
4624 	ext4_std_error(inode->i_sb, error);
4625 	if (!error)
4626 		error = rc;
4627 	return error;
4628 }
4629 
4630 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4631 		 struct kstat *stat)
4632 {
4633 	struct inode *inode;
4634 	unsigned long long delalloc_blocks;
4635 
4636 	inode = dentry->d_inode;
4637 	generic_fillattr(inode, stat);
4638 
4639 	/*
4640 	 * We can't update i_blocks if the block allocation is delayed
4641 	 * otherwise in the case of system crash before the real block
4642 	 * allocation is done, we will have i_blocks inconsistent with
4643 	 * on-disk file blocks.
4644 	 * We always keep i_blocks updated together with real
4645 	 * allocation. But to not confuse with user, stat
4646 	 * will return the blocks that include the delayed allocation
4647 	 * blocks for this file.
4648 	 */
4649 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4650 				EXT4_I(inode)->i_reserved_data_blocks);
4651 
4652 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4653 	return 0;
4654 }
4655 
4656 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4657 				   int pextents)
4658 {
4659 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4660 		return ext4_ind_trans_blocks(inode, lblocks);
4661 	return ext4_ext_index_trans_blocks(inode, pextents);
4662 }
4663 
4664 /*
4665  * Account for index blocks, block groups bitmaps and block group
4666  * descriptor blocks if modify datablocks and index blocks
4667  * worse case, the indexs blocks spread over different block groups
4668  *
4669  * If datablocks are discontiguous, they are possible to spread over
4670  * different block groups too. If they are contiguous, with flexbg,
4671  * they could still across block group boundary.
4672  *
4673  * Also account for superblock, inode, quota and xattr blocks
4674  */
4675 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4676 				  int pextents)
4677 {
4678 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4679 	int gdpblocks;
4680 	int idxblocks;
4681 	int ret = 0;
4682 
4683 	/*
4684 	 * How many index blocks need to touch to map @lblocks logical blocks
4685 	 * to @pextents physical extents?
4686 	 */
4687 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4688 
4689 	ret = idxblocks;
4690 
4691 	/*
4692 	 * Now let's see how many group bitmaps and group descriptors need
4693 	 * to account
4694 	 */
4695 	groups = idxblocks + pextents;
4696 	gdpblocks = groups;
4697 	if (groups > ngroups)
4698 		groups = ngroups;
4699 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4700 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4701 
4702 	/* bitmaps and block group descriptor blocks */
4703 	ret += groups + gdpblocks;
4704 
4705 	/* Blocks for super block, inode, quota and xattr blocks */
4706 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4707 
4708 	return ret;
4709 }
4710 
4711 /*
4712  * Calculate the total number of credits to reserve to fit
4713  * the modification of a single pages into a single transaction,
4714  * which may include multiple chunks of block allocations.
4715  *
4716  * This could be called via ext4_write_begin()
4717  *
4718  * We need to consider the worse case, when
4719  * one new block per extent.
4720  */
4721 int ext4_writepage_trans_blocks(struct inode *inode)
4722 {
4723 	int bpp = ext4_journal_blocks_per_page(inode);
4724 	int ret;
4725 
4726 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4727 
4728 	/* Account for data blocks for journalled mode */
4729 	if (ext4_should_journal_data(inode))
4730 		ret += bpp;
4731 	return ret;
4732 }
4733 
4734 /*
4735  * Calculate the journal credits for a chunk of data modification.
4736  *
4737  * This is called from DIO, fallocate or whoever calling
4738  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4739  *
4740  * journal buffers for data blocks are not included here, as DIO
4741  * and fallocate do no need to journal data buffers.
4742  */
4743 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4744 {
4745 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4746 }
4747 
4748 /*
4749  * The caller must have previously called ext4_reserve_inode_write().
4750  * Give this, we know that the caller already has write access to iloc->bh.
4751  */
4752 int ext4_mark_iloc_dirty(handle_t *handle,
4753 			 struct inode *inode, struct ext4_iloc *iloc)
4754 {
4755 	int err = 0;
4756 
4757 	if (IS_I_VERSION(inode))
4758 		inode_inc_iversion(inode);
4759 
4760 	/* the do_update_inode consumes one bh->b_count */
4761 	get_bh(iloc->bh);
4762 
4763 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4764 	err = ext4_do_update_inode(handle, inode, iloc);
4765 	put_bh(iloc->bh);
4766 	return err;
4767 }
4768 
4769 /*
4770  * On success, We end up with an outstanding reference count against
4771  * iloc->bh.  This _must_ be cleaned up later.
4772  */
4773 
4774 int
4775 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4776 			 struct ext4_iloc *iloc)
4777 {
4778 	int err;
4779 
4780 	err = ext4_get_inode_loc(inode, iloc);
4781 	if (!err) {
4782 		BUFFER_TRACE(iloc->bh, "get_write_access");
4783 		err = ext4_journal_get_write_access(handle, iloc->bh);
4784 		if (err) {
4785 			brelse(iloc->bh);
4786 			iloc->bh = NULL;
4787 		}
4788 	}
4789 	ext4_std_error(inode->i_sb, err);
4790 	return err;
4791 }
4792 
4793 /*
4794  * Expand an inode by new_extra_isize bytes.
4795  * Returns 0 on success or negative error number on failure.
4796  */
4797 static int ext4_expand_extra_isize(struct inode *inode,
4798 				   unsigned int new_extra_isize,
4799 				   struct ext4_iloc iloc,
4800 				   handle_t *handle)
4801 {
4802 	struct ext4_inode *raw_inode;
4803 	struct ext4_xattr_ibody_header *header;
4804 
4805 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4806 		return 0;
4807 
4808 	raw_inode = ext4_raw_inode(&iloc);
4809 
4810 	header = IHDR(inode, raw_inode);
4811 
4812 	/* No extended attributes present */
4813 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4814 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4815 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4816 			new_extra_isize);
4817 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4818 		return 0;
4819 	}
4820 
4821 	/* try to expand with EAs present */
4822 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4823 					  raw_inode, handle);
4824 }
4825 
4826 /*
4827  * What we do here is to mark the in-core inode as clean with respect to inode
4828  * dirtiness (it may still be data-dirty).
4829  * This means that the in-core inode may be reaped by prune_icache
4830  * without having to perform any I/O.  This is a very good thing,
4831  * because *any* task may call prune_icache - even ones which
4832  * have a transaction open against a different journal.
4833  *
4834  * Is this cheating?  Not really.  Sure, we haven't written the
4835  * inode out, but prune_icache isn't a user-visible syncing function.
4836  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4837  * we start and wait on commits.
4838  */
4839 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4840 {
4841 	struct ext4_iloc iloc;
4842 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4843 	static unsigned int mnt_count;
4844 	int err, ret;
4845 
4846 	might_sleep();
4847 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4848 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4849 	if (ext4_handle_valid(handle) &&
4850 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4851 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4852 		/*
4853 		 * We need extra buffer credits since we may write into EA block
4854 		 * with this same handle. If journal_extend fails, then it will
4855 		 * only result in a minor loss of functionality for that inode.
4856 		 * If this is felt to be critical, then e2fsck should be run to
4857 		 * force a large enough s_min_extra_isize.
4858 		 */
4859 		if ((jbd2_journal_extend(handle,
4860 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4861 			ret = ext4_expand_extra_isize(inode,
4862 						      sbi->s_want_extra_isize,
4863 						      iloc, handle);
4864 			if (ret) {
4865 				ext4_set_inode_state(inode,
4866 						     EXT4_STATE_NO_EXPAND);
4867 				if (mnt_count !=
4868 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4869 					ext4_warning(inode->i_sb,
4870 					"Unable to expand inode %lu. Delete"
4871 					" some EAs or run e2fsck.",
4872 					inode->i_ino);
4873 					mnt_count =
4874 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4875 				}
4876 			}
4877 		}
4878 	}
4879 	if (!err)
4880 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4881 	return err;
4882 }
4883 
4884 /*
4885  * ext4_dirty_inode() is called from __mark_inode_dirty()
4886  *
4887  * We're really interested in the case where a file is being extended.
4888  * i_size has been changed by generic_commit_write() and we thus need
4889  * to include the updated inode in the current transaction.
4890  *
4891  * Also, dquot_alloc_block() will always dirty the inode when blocks
4892  * are allocated to the file.
4893  *
4894  * If the inode is marked synchronous, we don't honour that here - doing
4895  * so would cause a commit on atime updates, which we don't bother doing.
4896  * We handle synchronous inodes at the highest possible level.
4897  */
4898 void ext4_dirty_inode(struct inode *inode, int flags)
4899 {
4900 	handle_t *handle;
4901 
4902 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4903 	if (IS_ERR(handle))
4904 		goto out;
4905 
4906 	ext4_mark_inode_dirty(handle, inode);
4907 
4908 	ext4_journal_stop(handle);
4909 out:
4910 	return;
4911 }
4912 
4913 #if 0
4914 /*
4915  * Bind an inode's backing buffer_head into this transaction, to prevent
4916  * it from being flushed to disk early.  Unlike
4917  * ext4_reserve_inode_write, this leaves behind no bh reference and
4918  * returns no iloc structure, so the caller needs to repeat the iloc
4919  * lookup to mark the inode dirty later.
4920  */
4921 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4922 {
4923 	struct ext4_iloc iloc;
4924 
4925 	int err = 0;
4926 	if (handle) {
4927 		err = ext4_get_inode_loc(inode, &iloc);
4928 		if (!err) {
4929 			BUFFER_TRACE(iloc.bh, "get_write_access");
4930 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4931 			if (!err)
4932 				err = ext4_handle_dirty_metadata(handle,
4933 								 NULL,
4934 								 iloc.bh);
4935 			brelse(iloc.bh);
4936 		}
4937 	}
4938 	ext4_std_error(inode->i_sb, err);
4939 	return err;
4940 }
4941 #endif
4942 
4943 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4944 {
4945 	journal_t *journal;
4946 	handle_t *handle;
4947 	int err;
4948 
4949 	/*
4950 	 * We have to be very careful here: changing a data block's
4951 	 * journaling status dynamically is dangerous.  If we write a
4952 	 * data block to the journal, change the status and then delete
4953 	 * that block, we risk forgetting to revoke the old log record
4954 	 * from the journal and so a subsequent replay can corrupt data.
4955 	 * So, first we make sure that the journal is empty and that
4956 	 * nobody is changing anything.
4957 	 */
4958 
4959 	journal = EXT4_JOURNAL(inode);
4960 	if (!journal)
4961 		return 0;
4962 	if (is_journal_aborted(journal))
4963 		return -EROFS;
4964 	/* We have to allocate physical blocks for delalloc blocks
4965 	 * before flushing journal. otherwise delalloc blocks can not
4966 	 * be allocated any more. even more truncate on delalloc blocks
4967 	 * could trigger BUG by flushing delalloc blocks in journal.
4968 	 * There is no delalloc block in non-journal data mode.
4969 	 */
4970 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4971 		err = ext4_alloc_da_blocks(inode);
4972 		if (err < 0)
4973 			return err;
4974 	}
4975 
4976 	/* Wait for all existing dio workers */
4977 	ext4_inode_block_unlocked_dio(inode);
4978 	inode_dio_wait(inode);
4979 
4980 	jbd2_journal_lock_updates(journal);
4981 
4982 	/*
4983 	 * OK, there are no updates running now, and all cached data is
4984 	 * synced to disk.  We are now in a completely consistent state
4985 	 * which doesn't have anything in the journal, and we know that
4986 	 * no filesystem updates are running, so it is safe to modify
4987 	 * the inode's in-core data-journaling state flag now.
4988 	 */
4989 
4990 	if (val)
4991 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4992 	else {
4993 		jbd2_journal_flush(journal);
4994 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4995 	}
4996 	ext4_set_aops(inode);
4997 
4998 	jbd2_journal_unlock_updates(journal);
4999 	ext4_inode_resume_unlocked_dio(inode);
5000 
5001 	/* Finally we can mark the inode as dirty. */
5002 
5003 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5004 	if (IS_ERR(handle))
5005 		return PTR_ERR(handle);
5006 
5007 	err = ext4_mark_inode_dirty(handle, inode);
5008 	ext4_handle_sync(handle);
5009 	ext4_journal_stop(handle);
5010 	ext4_std_error(inode->i_sb, err);
5011 
5012 	return err;
5013 }
5014 
5015 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5016 {
5017 	return !buffer_mapped(bh);
5018 }
5019 
5020 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5021 {
5022 	struct page *page = vmf->page;
5023 	loff_t size;
5024 	unsigned long len;
5025 	int ret;
5026 	struct file *file = vma->vm_file;
5027 	struct inode *inode = file_inode(file);
5028 	struct address_space *mapping = inode->i_mapping;
5029 	handle_t *handle;
5030 	get_block_t *get_block;
5031 	int retries = 0;
5032 
5033 	sb_start_pagefault(inode->i_sb);
5034 	file_update_time(vma->vm_file);
5035 	/* Delalloc case is easy... */
5036 	if (test_opt(inode->i_sb, DELALLOC) &&
5037 	    !ext4_should_journal_data(inode) &&
5038 	    !ext4_nonda_switch(inode->i_sb)) {
5039 		do {
5040 			ret = __block_page_mkwrite(vma, vmf,
5041 						   ext4_da_get_block_prep);
5042 		} while (ret == -ENOSPC &&
5043 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5044 		goto out_ret;
5045 	}
5046 
5047 	lock_page(page);
5048 	size = i_size_read(inode);
5049 	/* Page got truncated from under us? */
5050 	if (page->mapping != mapping || page_offset(page) > size) {
5051 		unlock_page(page);
5052 		ret = VM_FAULT_NOPAGE;
5053 		goto out;
5054 	}
5055 
5056 	if (page->index == size >> PAGE_CACHE_SHIFT)
5057 		len = size & ~PAGE_CACHE_MASK;
5058 	else
5059 		len = PAGE_CACHE_SIZE;
5060 	/*
5061 	 * Return if we have all the buffers mapped. This avoids the need to do
5062 	 * journal_start/journal_stop which can block and take a long time
5063 	 */
5064 	if (page_has_buffers(page)) {
5065 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5066 					    0, len, NULL,
5067 					    ext4_bh_unmapped)) {
5068 			/* Wait so that we don't change page under IO */
5069 			wait_for_stable_page(page);
5070 			ret = VM_FAULT_LOCKED;
5071 			goto out;
5072 		}
5073 	}
5074 	unlock_page(page);
5075 	/* OK, we need to fill the hole... */
5076 	if (ext4_should_dioread_nolock(inode))
5077 		get_block = ext4_get_block_write;
5078 	else
5079 		get_block = ext4_get_block;
5080 retry_alloc:
5081 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5082 				    ext4_writepage_trans_blocks(inode));
5083 	if (IS_ERR(handle)) {
5084 		ret = VM_FAULT_SIGBUS;
5085 		goto out;
5086 	}
5087 	ret = __block_page_mkwrite(vma, vmf, get_block);
5088 	if (!ret && ext4_should_journal_data(inode)) {
5089 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5090 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5091 			unlock_page(page);
5092 			ret = VM_FAULT_SIGBUS;
5093 			ext4_journal_stop(handle);
5094 			goto out;
5095 		}
5096 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5097 	}
5098 	ext4_journal_stop(handle);
5099 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5100 		goto retry_alloc;
5101 out_ret:
5102 	ret = block_page_mkwrite_return(ret);
5103 out:
5104 	sb_end_pagefault(inode->i_sb);
5105 	return ret;
5106 }
5107