xref: /linux/fs/ext4/inode.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41 
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 		(inode->i_sb->s_blocksize >> 9) : 0;
49 
50 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52 
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65 	int err;
66 
67 	might_sleep();
68 
69 	BUFFER_TRACE(bh, "enter");
70 
71 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 		  "data mode %lx\n",
73 		  bh, is_metadata, inode->i_mode,
74 		  test_opt(inode->i_sb, DATA_FLAGS));
75 
76 	/* Never use the revoke function if we are doing full data
77 	 * journaling: there is no need to, and a V1 superblock won't
78 	 * support it.  Otherwise, only skip the revoke on un-journaled
79 	 * data blocks. */
80 
81 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 	    (!is_metadata && !ext4_should_journal_data(inode))) {
83 		if (bh) {
84 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 			return ext4_journal_forget(handle, bh);
86 		}
87 		return 0;
88 	}
89 
90 	/*
91 	 * data!=journal && (is_metadata || should_journal_data(inode))
92 	 */
93 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 	err = ext4_journal_revoke(handle, blocknr, bh);
95 	if (err)
96 		ext4_abort(inode->i_sb, __FUNCTION__,
97 			   "error %d when attempting revoke", err);
98 	BUFFER_TRACE(bh, "exit");
99 	return err;
100 }
101 
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108 	ext4_lblk_t needed;
109 
110 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111 
112 	/* Give ourselves just enough room to cope with inodes in which
113 	 * i_blocks is corrupt: we've seen disk corruptions in the past
114 	 * which resulted in random data in an inode which looked enough
115 	 * like a regular file for ext4 to try to delete it.  Things
116 	 * will go a bit crazy if that happens, but at least we should
117 	 * try not to panic the whole kernel. */
118 	if (needed < 2)
119 		needed = 2;
120 
121 	/* But we need to bound the transaction so we don't overflow the
122 	 * journal. */
123 	if (needed > EXT4_MAX_TRANS_DATA)
124 		needed = EXT4_MAX_TRANS_DATA;
125 
126 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128 
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141 	handle_t *result;
142 
143 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 	if (!IS_ERR(result))
145 		return result;
146 
147 	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 	return result;
149 }
150 
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 		return 0;
161 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 		return 0;
163 	return 1;
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176 
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182 	handle_t *handle;
183 
184 	truncate_inode_pages(&inode->i_data, 0);
185 
186 	if (is_bad_inode(inode))
187 		goto no_delete;
188 
189 	handle = start_transaction(inode);
190 	if (IS_ERR(handle)) {
191 		/*
192 		 * If we're going to skip the normal cleanup, we still need to
193 		 * make sure that the in-core orphan linked list is properly
194 		 * cleaned up.
195 		 */
196 		ext4_orphan_del(NULL, inode);
197 		goto no_delete;
198 	}
199 
200 	if (IS_SYNC(inode))
201 		handle->h_sync = 1;
202 	inode->i_size = 0;
203 	if (inode->i_blocks)
204 		ext4_truncate(inode);
205 	/*
206 	 * Kill off the orphan record which ext4_truncate created.
207 	 * AKPM: I think this can be inside the above `if'.
208 	 * Note that ext4_orphan_del() has to be able to cope with the
209 	 * deletion of a non-existent orphan - this is because we don't
210 	 * know if ext4_truncate() actually created an orphan record.
211 	 * (Well, we could do this if we need to, but heck - it works)
212 	 */
213 	ext4_orphan_del(handle, inode);
214 	EXT4_I(inode)->i_dtime	= get_seconds();
215 
216 	/*
217 	 * One subtle ordering requirement: if anything has gone wrong
218 	 * (transaction abort, IO errors, whatever), then we can still
219 	 * do these next steps (the fs will already have been marked as
220 	 * having errors), but we can't free the inode if the mark_dirty
221 	 * fails.
222 	 */
223 	if (ext4_mark_inode_dirty(handle, inode))
224 		/* If that failed, just do the required in-core inode clear. */
225 		clear_inode(inode);
226 	else
227 		ext4_free_inode(handle, inode);
228 	ext4_journal_stop(handle);
229 	return;
230 no_delete:
231 	clear_inode(inode);	/* We must guarantee clearing of inode... */
232 }
233 
234 typedef struct {
235 	__le32	*p;
236 	__le32	key;
237 	struct buffer_head *bh;
238 } Indirect;
239 
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242 	p->key = *(p->p = v);
243 	p->bh = bh;
244 }
245 
246 /**
247  *	ext4_block_to_path - parse the block number into array of offsets
248  *	@inode: inode in question (we are only interested in its superblock)
249  *	@i_block: block number to be parsed
250  *	@offsets: array to store the offsets in
251  *	@boundary: set this non-zero if the referred-to block is likely to be
252  *	       followed (on disk) by an indirect block.
253  *
254  *	To store the locations of file's data ext4 uses a data structure common
255  *	for UNIX filesystems - tree of pointers anchored in the inode, with
256  *	data blocks at leaves and indirect blocks in intermediate nodes.
257  *	This function translates the block number into path in that tree -
258  *	return value is the path length and @offsets[n] is the offset of
259  *	pointer to (n+1)th node in the nth one. If @block is out of range
260  *	(negative or too large) warning is printed and zero returned.
261  *
262  *	Note: function doesn't find node addresses, so no IO is needed. All
263  *	we need to know is the capacity of indirect blocks (taken from the
264  *	inode->i_sb).
265  */
266 
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276 
277 static int ext4_block_to_path(struct inode *inode,
278 			ext4_lblk_t i_block,
279 			ext4_lblk_t offsets[4], int *boundary)
280 {
281 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 	const long direct_blocks = EXT4_NDIR_BLOCKS,
284 		indirect_blocks = ptrs,
285 		double_blocks = (1 << (ptrs_bits * 2));
286 	int n = 0;
287 	int final = 0;
288 
289 	if (i_block < 0) {
290 		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 	} else if (i_block < direct_blocks) {
292 		offsets[n++] = i_block;
293 		final = direct_blocks;
294 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 		offsets[n++] = EXT4_IND_BLOCK;
296 		offsets[n++] = i_block;
297 		final = ptrs;
298 	} else if ((i_block -= indirect_blocks) < double_blocks) {
299 		offsets[n++] = EXT4_DIND_BLOCK;
300 		offsets[n++] = i_block >> ptrs_bits;
301 		offsets[n++] = i_block & (ptrs - 1);
302 		final = ptrs;
303 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 		offsets[n++] = EXT4_TIND_BLOCK;
305 		offsets[n++] = i_block >> (ptrs_bits * 2);
306 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 		offsets[n++] = i_block & (ptrs - 1);
308 		final = ptrs;
309 	} else {
310 		ext4_warning(inode->i_sb, "ext4_block_to_path",
311 				"block %lu > max",
312 				i_block + direct_blocks +
313 				indirect_blocks + double_blocks);
314 	}
315 	if (boundary)
316 		*boundary = final - 1 - (i_block & (ptrs - 1));
317 	return n;
318 }
319 
320 /**
321  *	ext4_get_branch - read the chain of indirect blocks leading to data
322  *	@inode: inode in question
323  *	@depth: depth of the chain (1 - direct pointer, etc.)
324  *	@offsets: offsets of pointers in inode/indirect blocks
325  *	@chain: place to store the result
326  *	@err: here we store the error value
327  *
328  *	Function fills the array of triples <key, p, bh> and returns %NULL
329  *	if everything went OK or the pointer to the last filled triple
330  *	(incomplete one) otherwise. Upon the return chain[i].key contains
331  *	the number of (i+1)-th block in the chain (as it is stored in memory,
332  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *	number (it points into struct inode for i==0 and into the bh->b_data
334  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *	block for i>0 and NULL for i==0. In other words, it holds the block
336  *	numbers of the chain, addresses they were taken from (and where we can
337  *	verify that chain did not change) and buffer_heads hosting these
338  *	numbers.
339  *
340  *	Function stops when it stumbles upon zero pointer (absent block)
341  *		(pointer to last triple returned, *@err == 0)
342  *	or when it gets an IO error reading an indirect block
343  *		(ditto, *@err == -EIO)
344  *	or when it reads all @depth-1 indirect blocks successfully and finds
345  *	the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 				 ext4_lblk_t  *offsets,
352 				 Indirect chain[4], int *err)
353 {
354 	struct super_block *sb = inode->i_sb;
355 	Indirect *p = chain;
356 	struct buffer_head *bh;
357 
358 	*err = 0;
359 	/* i_data is not going away, no lock needed */
360 	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 	if (!p->key)
362 		goto no_block;
363 	while (--depth) {
364 		bh = sb_bread(sb, le32_to_cpu(p->key));
365 		if (!bh)
366 			goto failure;
367 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 		/* Reader: end */
369 		if (!p->key)
370 			goto no_block;
371 	}
372 	return NULL;
373 
374 failure:
375 	*err = -EIO;
376 no_block:
377 	return p;
378 }
379 
380 /**
381  *	ext4_find_near - find a place for allocation with sufficient locality
382  *	@inode: owner
383  *	@ind: descriptor of indirect block.
384  *
385  *	This function returns the prefered place for block allocation.
386  *	It is used when heuristic for sequential allocation fails.
387  *	Rules are:
388  *	  + if there is a block to the left of our position - allocate near it.
389  *	  + if pointer will live in indirect block - allocate near that block.
390  *	  + if pointer will live in inode - allocate in the same
391  *	    cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *	Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402 	struct ext4_inode_info *ei = EXT4_I(inode);
403 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 	__le32 *p;
405 	ext4_fsblk_t bg_start;
406 	ext4_grpblk_t colour;
407 
408 	/* Try to find previous block */
409 	for (p = ind->p - 1; p >= start; p--) {
410 		if (*p)
411 			return le32_to_cpu(*p);
412 	}
413 
414 	/* No such thing, so let's try location of indirect block */
415 	if (ind->bh)
416 		return ind->bh->b_blocknr;
417 
418 	/*
419 	 * It is going to be referred to from the inode itself? OK, just put it
420 	 * into the same cylinder group then.
421 	 */
422 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423 	colour = (current->pid % 16) *
424 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 	return bg_start + colour;
426 }
427 
428 /**
429  *	ext4_find_goal - find a prefered place for allocation.
430  *	@inode: owner
431  *	@block:  block we want
432  *	@partial: pointer to the last triple within a chain
433  *
434  *	Normally this function find the prefered place for block allocation,
435  *	returns it.
436  */
437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
438 		Indirect *partial)
439 {
440 	struct ext4_block_alloc_info *block_i;
441 
442 	block_i =  EXT4_I(inode)->i_block_alloc_info;
443 
444 	/*
445 	 * try the heuristic for sequential allocation,
446 	 * failing that at least try to get decent locality.
447 	 */
448 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
449 		&& (block_i->last_alloc_physical_block != 0)) {
450 		return block_i->last_alloc_physical_block + 1;
451 	}
452 
453 	return ext4_find_near(inode, partial);
454 }
455 
456 /**
457  *	ext4_blks_to_allocate: Look up the block map and count the number
458  *	of direct blocks need to be allocated for the given branch.
459  *
460  *	@branch: chain of indirect blocks
461  *	@k: number of blocks need for indirect blocks
462  *	@blks: number of data blocks to be mapped.
463  *	@blocks_to_boundary:  the offset in the indirect block
464  *
465  *	return the total number of blocks to be allocate, including the
466  *	direct and indirect blocks.
467  */
468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
469 		int blocks_to_boundary)
470 {
471 	unsigned long count = 0;
472 
473 	/*
474 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
475 	 * then it's clear blocks on that path have not allocated
476 	 */
477 	if (k > 0) {
478 		/* right now we don't handle cross boundary allocation */
479 		if (blks < blocks_to_boundary + 1)
480 			count += blks;
481 		else
482 			count += blocks_to_boundary + 1;
483 		return count;
484 	}
485 
486 	count++;
487 	while (count < blks && count <= blocks_to_boundary &&
488 		le32_to_cpu(*(branch[0].p + count)) == 0) {
489 		count++;
490 	}
491 	return count;
492 }
493 
494 /**
495  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
496  *	@indirect_blks: the number of blocks need to allocate for indirect
497  *			blocks
498  *
499  *	@new_blocks: on return it will store the new block numbers for
500  *	the indirect blocks(if needed) and the first direct block,
501  *	@blks:	on return it will store the total number of allocated
502  *		direct blocks
503  */
504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505 			ext4_fsblk_t goal, int indirect_blks, int blks,
506 			ext4_fsblk_t new_blocks[4], int *err)
507 {
508 	int target, i;
509 	unsigned long count = 0;
510 	int index = 0;
511 	ext4_fsblk_t current_block = 0;
512 	int ret = 0;
513 
514 	/*
515 	 * Here we try to allocate the requested multiple blocks at once,
516 	 * on a best-effort basis.
517 	 * To build a branch, we should allocate blocks for
518 	 * the indirect blocks(if not allocated yet), and at least
519 	 * the first direct block of this branch.  That's the
520 	 * minimum number of blocks need to allocate(required)
521 	 */
522 	target = blks + indirect_blks;
523 
524 	while (1) {
525 		count = target;
526 		/* allocating blocks for indirect blocks and direct blocks */
527 		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
528 		if (*err)
529 			goto failed_out;
530 
531 		target -= count;
532 		/* allocate blocks for indirect blocks */
533 		while (index < indirect_blks && count) {
534 			new_blocks[index++] = current_block++;
535 			count--;
536 		}
537 
538 		if (count > 0)
539 			break;
540 	}
541 
542 	/* save the new block number for the first direct block */
543 	new_blocks[index] = current_block;
544 
545 	/* total number of blocks allocated for direct blocks */
546 	ret = count;
547 	*err = 0;
548 	return ret;
549 failed_out:
550 	for (i = 0; i <index; i++)
551 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
552 	return ret;
553 }
554 
555 /**
556  *	ext4_alloc_branch - allocate and set up a chain of blocks.
557  *	@inode: owner
558  *	@indirect_blks: number of allocated indirect blocks
559  *	@blks: number of allocated direct blocks
560  *	@offsets: offsets (in the blocks) to store the pointers to next.
561  *	@branch: place to store the chain in.
562  *
563  *	This function allocates blocks, zeroes out all but the last one,
564  *	links them into chain and (if we are synchronous) writes them to disk.
565  *	In other words, it prepares a branch that can be spliced onto the
566  *	inode. It stores the information about that chain in the branch[], in
567  *	the same format as ext4_get_branch() would do. We are calling it after
568  *	we had read the existing part of chain and partial points to the last
569  *	triple of that (one with zero ->key). Upon the exit we have the same
570  *	picture as after the successful ext4_get_block(), except that in one
571  *	place chain is disconnected - *branch->p is still zero (we did not
572  *	set the last link), but branch->key contains the number that should
573  *	be placed into *branch->p to fill that gap.
574  *
575  *	If allocation fails we free all blocks we've allocated (and forget
576  *	their buffer_heads) and return the error value the from failed
577  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
578  *	as described above and return 0.
579  */
580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581 			int indirect_blks, int *blks, ext4_fsblk_t goal,
582 			ext4_lblk_t *offsets, Indirect *branch)
583 {
584 	int blocksize = inode->i_sb->s_blocksize;
585 	int i, n = 0;
586 	int err = 0;
587 	struct buffer_head *bh;
588 	int num;
589 	ext4_fsblk_t new_blocks[4];
590 	ext4_fsblk_t current_block;
591 
592 	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
593 				*blks, new_blocks, &err);
594 	if (err)
595 		return err;
596 
597 	branch[0].key = cpu_to_le32(new_blocks[0]);
598 	/*
599 	 * metadata blocks and data blocks are allocated.
600 	 */
601 	for (n = 1; n <= indirect_blks;  n++) {
602 		/*
603 		 * Get buffer_head for parent block, zero it out
604 		 * and set the pointer to new one, then send
605 		 * parent to disk.
606 		 */
607 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
608 		branch[n].bh = bh;
609 		lock_buffer(bh);
610 		BUFFER_TRACE(bh, "call get_create_access");
611 		err = ext4_journal_get_create_access(handle, bh);
612 		if (err) {
613 			unlock_buffer(bh);
614 			brelse(bh);
615 			goto failed;
616 		}
617 
618 		memset(bh->b_data, 0, blocksize);
619 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
620 		branch[n].key = cpu_to_le32(new_blocks[n]);
621 		*branch[n].p = branch[n].key;
622 		if ( n == indirect_blks) {
623 			current_block = new_blocks[n];
624 			/*
625 			 * End of chain, update the last new metablock of
626 			 * the chain to point to the new allocated
627 			 * data blocks numbers
628 			 */
629 			for (i=1; i < num; i++)
630 				*(branch[n].p + i) = cpu_to_le32(++current_block);
631 		}
632 		BUFFER_TRACE(bh, "marking uptodate");
633 		set_buffer_uptodate(bh);
634 		unlock_buffer(bh);
635 
636 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637 		err = ext4_journal_dirty_metadata(handle, bh);
638 		if (err)
639 			goto failed;
640 	}
641 	*blks = num;
642 	return err;
643 failed:
644 	/* Allocation failed, free what we already allocated */
645 	for (i = 1; i <= n ; i++) {
646 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
647 		ext4_journal_forget(handle, branch[i].bh);
648 	}
649 	for (i = 0; i <indirect_blks; i++)
650 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
651 
652 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
653 
654 	return err;
655 }
656 
657 /**
658  * ext4_splice_branch - splice the allocated branch onto inode.
659  * @inode: owner
660  * @block: (logical) number of block we are adding
661  * @chain: chain of indirect blocks (with a missing link - see
662  *	ext4_alloc_branch)
663  * @where: location of missing link
664  * @num:   number of indirect blocks we are adding
665  * @blks:  number of direct blocks we are adding
666  *
667  * This function fills the missing link and does all housekeeping needed in
668  * inode (->i_blocks, etc.). In case of success we end up with the full
669  * chain to new block and return 0.
670  */
671 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
672 			ext4_lblk_t block, Indirect *where, int num, int blks)
673 {
674 	int i;
675 	int err = 0;
676 	struct ext4_block_alloc_info *block_i;
677 	ext4_fsblk_t current_block;
678 
679 	block_i = EXT4_I(inode)->i_block_alloc_info;
680 	/*
681 	 * If we're splicing into a [td]indirect block (as opposed to the
682 	 * inode) then we need to get write access to the [td]indirect block
683 	 * before the splice.
684 	 */
685 	if (where->bh) {
686 		BUFFER_TRACE(where->bh, "get_write_access");
687 		err = ext4_journal_get_write_access(handle, where->bh);
688 		if (err)
689 			goto err_out;
690 	}
691 	/* That's it */
692 
693 	*where->p = where->key;
694 
695 	/*
696 	 * Update the host buffer_head or inode to point to more just allocated
697 	 * direct blocks blocks
698 	 */
699 	if (num == 0 && blks > 1) {
700 		current_block = le32_to_cpu(where->key) + 1;
701 		for (i = 1; i < blks; i++)
702 			*(where->p + i ) = cpu_to_le32(current_block++);
703 	}
704 
705 	/*
706 	 * update the most recently allocated logical & physical block
707 	 * in i_block_alloc_info, to assist find the proper goal block for next
708 	 * allocation
709 	 */
710 	if (block_i) {
711 		block_i->last_alloc_logical_block = block + blks - 1;
712 		block_i->last_alloc_physical_block =
713 				le32_to_cpu(where[num].key) + blks - 1;
714 	}
715 
716 	/* We are done with atomic stuff, now do the rest of housekeeping */
717 
718 	inode->i_ctime = ext4_current_time(inode);
719 	ext4_mark_inode_dirty(handle, inode);
720 
721 	/* had we spliced it onto indirect block? */
722 	if (where->bh) {
723 		/*
724 		 * If we spliced it onto an indirect block, we haven't
725 		 * altered the inode.  Note however that if it is being spliced
726 		 * onto an indirect block at the very end of the file (the
727 		 * file is growing) then we *will* alter the inode to reflect
728 		 * the new i_size.  But that is not done here - it is done in
729 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
730 		 */
731 		jbd_debug(5, "splicing indirect only\n");
732 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733 		err = ext4_journal_dirty_metadata(handle, where->bh);
734 		if (err)
735 			goto err_out;
736 	} else {
737 		/*
738 		 * OK, we spliced it into the inode itself on a direct block.
739 		 * Inode was dirtied above.
740 		 */
741 		jbd_debug(5, "splicing direct\n");
742 	}
743 	return err;
744 
745 err_out:
746 	for (i = 1; i <= num; i++) {
747 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
748 		ext4_journal_forget(handle, where[i].bh);
749 		ext4_free_blocks(handle, inode,
750 					le32_to_cpu(where[i-1].key), 1, 0);
751 	}
752 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
753 
754 	return err;
755 }
756 
757 /*
758  * Allocation strategy is simple: if we have to allocate something, we will
759  * have to go the whole way to leaf. So let's do it before attaching anything
760  * to tree, set linkage between the newborn blocks, write them if sync is
761  * required, recheck the path, free and repeat if check fails, otherwise
762  * set the last missing link (that will protect us from any truncate-generated
763  * removals - all blocks on the path are immune now) and possibly force the
764  * write on the parent block.
765  * That has a nice additional property: no special recovery from the failed
766  * allocations is needed - we simply release blocks and do not touch anything
767  * reachable from inode.
768  *
769  * `handle' can be NULL if create == 0.
770  *
771  * The BKL may not be held on entry here.  Be sure to take it early.
772  * return > 0, # of blocks mapped or allocated.
773  * return = 0, if plain lookup failed.
774  * return < 0, error case.
775  *
776  *
777  * Need to be called with
778  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
779  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
780  */
781 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
782 		ext4_lblk_t iblock, unsigned long maxblocks,
783 		struct buffer_head *bh_result,
784 		int create, int extend_disksize)
785 {
786 	int err = -EIO;
787 	ext4_lblk_t offsets[4];
788 	Indirect chain[4];
789 	Indirect *partial;
790 	ext4_fsblk_t goal;
791 	int indirect_blks;
792 	int blocks_to_boundary = 0;
793 	int depth;
794 	struct ext4_inode_info *ei = EXT4_I(inode);
795 	int count = 0;
796 	ext4_fsblk_t first_block = 0;
797 
798 
799 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
800 	J_ASSERT(handle != NULL || create == 0);
801 	depth = ext4_block_to_path(inode, iblock, offsets,
802 					&blocks_to_boundary);
803 
804 	if (depth == 0)
805 		goto out;
806 
807 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
808 
809 	/* Simplest case - block found, no allocation needed */
810 	if (!partial) {
811 		first_block = le32_to_cpu(chain[depth - 1].key);
812 		clear_buffer_new(bh_result);
813 		count++;
814 		/*map more blocks*/
815 		while (count < maxblocks && count <= blocks_to_boundary) {
816 			ext4_fsblk_t blk;
817 
818 			blk = le32_to_cpu(*(chain[depth-1].p + count));
819 
820 			if (blk == first_block + count)
821 				count++;
822 			else
823 				break;
824 		}
825 		goto got_it;
826 	}
827 
828 	/* Next simple case - plain lookup or failed read of indirect block */
829 	if (!create || err == -EIO)
830 		goto cleanup;
831 
832 	/*
833 	 * Okay, we need to do block allocation.  Lazily initialize the block
834 	 * allocation info here if necessary
835 	*/
836 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
837 		ext4_init_block_alloc_info(inode);
838 
839 	goal = ext4_find_goal(inode, iblock, partial);
840 
841 	/* the number of blocks need to allocate for [d,t]indirect blocks */
842 	indirect_blks = (chain + depth) - partial - 1;
843 
844 	/*
845 	 * Next look up the indirect map to count the totoal number of
846 	 * direct blocks to allocate for this branch.
847 	 */
848 	count = ext4_blks_to_allocate(partial, indirect_blks,
849 					maxblocks, blocks_to_boundary);
850 	/*
851 	 * Block out ext4_truncate while we alter the tree
852 	 */
853 	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
854 				offsets + (partial - chain), partial);
855 
856 	/*
857 	 * The ext4_splice_branch call will free and forget any buffers
858 	 * on the new chain if there is a failure, but that risks using
859 	 * up transaction credits, especially for bitmaps where the
860 	 * credits cannot be returned.  Can we handle this somehow?  We
861 	 * may need to return -EAGAIN upwards in the worst case.  --sct
862 	 */
863 	if (!err)
864 		err = ext4_splice_branch(handle, inode, iblock,
865 					partial, indirect_blks, count);
866 	/*
867 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
868 	 * protect it if you're about to implement concurrent
869 	 * ext4_get_block() -bzzz
870 	*/
871 	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
872 		ei->i_disksize = inode->i_size;
873 	if (err)
874 		goto cleanup;
875 
876 	set_buffer_new(bh_result);
877 got_it:
878 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
879 	if (count > blocks_to_boundary)
880 		set_buffer_boundary(bh_result);
881 	err = count;
882 	/* Clean up and exit */
883 	partial = chain + depth - 1;	/* the whole chain */
884 cleanup:
885 	while (partial > chain) {
886 		BUFFER_TRACE(partial->bh, "call brelse");
887 		brelse(partial->bh);
888 		partial--;
889 	}
890 	BUFFER_TRACE(bh_result, "returned");
891 out:
892 	return err;
893 }
894 
895 /* Maximum number of blocks we map for direct IO at once. */
896 #define DIO_MAX_BLOCKS 4096
897 /*
898  * Number of credits we need for writing DIO_MAX_BLOCKS:
899  * We need sb + group descriptor + bitmap + inode -> 4
900  * For B blocks with A block pointers per block we need:
901  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
902  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
903  */
904 #define DIO_CREDITS 25
905 
906 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
907 			unsigned long max_blocks, struct buffer_head *bh,
908 			int create, int extend_disksize)
909 {
910 	int retval;
911 	/*
912 	 * Try to see if we can get  the block without requesting
913 	 * for new file system block.
914 	 */
915 	down_read((&EXT4_I(inode)->i_data_sem));
916 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
917 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
918 				bh, 0, 0);
919 	} else {
920 		retval = ext4_get_blocks_handle(handle,
921 				inode, block, max_blocks, bh, 0, 0);
922 	}
923 	up_read((&EXT4_I(inode)->i_data_sem));
924 	if (!create || (retval > 0))
925 		return retval;
926 
927 	/*
928 	 * We need to allocate new blocks which will result
929 	 * in i_data update
930 	 */
931 	down_write((&EXT4_I(inode)->i_data_sem));
932 	/*
933 	 * We need to check for EXT4 here because migrate
934 	 * could have changed the inode type in between
935 	 */
936 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
937 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
938 				bh, create, extend_disksize);
939 	} else {
940 		retval = ext4_get_blocks_handle(handle, inode, block,
941 				max_blocks, bh, create, extend_disksize);
942 	}
943 	up_write((&EXT4_I(inode)->i_data_sem));
944 	return retval;
945 }
946 
947 static int ext4_get_block(struct inode *inode, sector_t iblock,
948 			struct buffer_head *bh_result, int create)
949 {
950 	handle_t *handle = ext4_journal_current_handle();
951 	int ret = 0, started = 0;
952 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
953 
954 	if (create && !handle) {
955 		/* Direct IO write... */
956 		if (max_blocks > DIO_MAX_BLOCKS)
957 			max_blocks = DIO_MAX_BLOCKS;
958 		handle = ext4_journal_start(inode, DIO_CREDITS +
959 			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
960 		if (IS_ERR(handle)) {
961 			ret = PTR_ERR(handle);
962 			goto out;
963 		}
964 		started = 1;
965 	}
966 
967 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
968 					max_blocks, bh_result, create, 0);
969 	if (ret > 0) {
970 		bh_result->b_size = (ret << inode->i_blkbits);
971 		ret = 0;
972 	}
973 	if (started)
974 		ext4_journal_stop(handle);
975 out:
976 	return ret;
977 }
978 
979 /*
980  * `handle' can be NULL if create is zero
981  */
982 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
983 				ext4_lblk_t block, int create, int *errp)
984 {
985 	struct buffer_head dummy;
986 	int fatal = 0, err;
987 
988 	J_ASSERT(handle != NULL || create == 0);
989 
990 	dummy.b_state = 0;
991 	dummy.b_blocknr = -1000;
992 	buffer_trace_init(&dummy.b_history);
993 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
994 					&dummy, create, 1);
995 	/*
996 	 * ext4_get_blocks_handle() returns number of blocks
997 	 * mapped. 0 in case of a HOLE.
998 	 */
999 	if (err > 0) {
1000 		if (err > 1)
1001 			WARN_ON(1);
1002 		err = 0;
1003 	}
1004 	*errp = err;
1005 	if (!err && buffer_mapped(&dummy)) {
1006 		struct buffer_head *bh;
1007 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1008 		if (!bh) {
1009 			*errp = -EIO;
1010 			goto err;
1011 		}
1012 		if (buffer_new(&dummy)) {
1013 			J_ASSERT(create != 0);
1014 			J_ASSERT(handle != NULL);
1015 
1016 			/*
1017 			 * Now that we do not always journal data, we should
1018 			 * keep in mind whether this should always journal the
1019 			 * new buffer as metadata.  For now, regular file
1020 			 * writes use ext4_get_block instead, so it's not a
1021 			 * problem.
1022 			 */
1023 			lock_buffer(bh);
1024 			BUFFER_TRACE(bh, "call get_create_access");
1025 			fatal = ext4_journal_get_create_access(handle, bh);
1026 			if (!fatal && !buffer_uptodate(bh)) {
1027 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1028 				set_buffer_uptodate(bh);
1029 			}
1030 			unlock_buffer(bh);
1031 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1032 			err = ext4_journal_dirty_metadata(handle, bh);
1033 			if (!fatal)
1034 				fatal = err;
1035 		} else {
1036 			BUFFER_TRACE(bh, "not a new buffer");
1037 		}
1038 		if (fatal) {
1039 			*errp = fatal;
1040 			brelse(bh);
1041 			bh = NULL;
1042 		}
1043 		return bh;
1044 	}
1045 err:
1046 	return NULL;
1047 }
1048 
1049 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1050 			       ext4_lblk_t block, int create, int *err)
1051 {
1052 	struct buffer_head * bh;
1053 
1054 	bh = ext4_getblk(handle, inode, block, create, err);
1055 	if (!bh)
1056 		return bh;
1057 	if (buffer_uptodate(bh))
1058 		return bh;
1059 	ll_rw_block(READ_META, 1, &bh);
1060 	wait_on_buffer(bh);
1061 	if (buffer_uptodate(bh))
1062 		return bh;
1063 	put_bh(bh);
1064 	*err = -EIO;
1065 	return NULL;
1066 }
1067 
1068 static int walk_page_buffers(	handle_t *handle,
1069 				struct buffer_head *head,
1070 				unsigned from,
1071 				unsigned to,
1072 				int *partial,
1073 				int (*fn)(	handle_t *handle,
1074 						struct buffer_head *bh))
1075 {
1076 	struct buffer_head *bh;
1077 	unsigned block_start, block_end;
1078 	unsigned blocksize = head->b_size;
1079 	int err, ret = 0;
1080 	struct buffer_head *next;
1081 
1082 	for (	bh = head, block_start = 0;
1083 		ret == 0 && (bh != head || !block_start);
1084 		block_start = block_end, bh = next)
1085 	{
1086 		next = bh->b_this_page;
1087 		block_end = block_start + blocksize;
1088 		if (block_end <= from || block_start >= to) {
1089 			if (partial && !buffer_uptodate(bh))
1090 				*partial = 1;
1091 			continue;
1092 		}
1093 		err = (*fn)(handle, bh);
1094 		if (!ret)
1095 			ret = err;
1096 	}
1097 	return ret;
1098 }
1099 
1100 /*
1101  * To preserve ordering, it is essential that the hole instantiation and
1102  * the data write be encapsulated in a single transaction.  We cannot
1103  * close off a transaction and start a new one between the ext4_get_block()
1104  * and the commit_write().  So doing the jbd2_journal_start at the start of
1105  * prepare_write() is the right place.
1106  *
1107  * Also, this function can nest inside ext4_writepage() ->
1108  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1109  * has generated enough buffer credits to do the whole page.  So we won't
1110  * block on the journal in that case, which is good, because the caller may
1111  * be PF_MEMALLOC.
1112  *
1113  * By accident, ext4 can be reentered when a transaction is open via
1114  * quota file writes.  If we were to commit the transaction while thus
1115  * reentered, there can be a deadlock - we would be holding a quota
1116  * lock, and the commit would never complete if another thread had a
1117  * transaction open and was blocking on the quota lock - a ranking
1118  * violation.
1119  *
1120  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1121  * will _not_ run commit under these circumstances because handle->h_ref
1122  * is elevated.  We'll still have enough credits for the tiny quotafile
1123  * write.
1124  */
1125 static int do_journal_get_write_access(handle_t *handle,
1126 					struct buffer_head *bh)
1127 {
1128 	if (!buffer_mapped(bh) || buffer_freed(bh))
1129 		return 0;
1130 	return ext4_journal_get_write_access(handle, bh);
1131 }
1132 
1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134 				loff_t pos, unsigned len, unsigned flags,
1135 				struct page **pagep, void **fsdata)
1136 {
1137  	struct inode *inode = mapping->host;
1138 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1139 	handle_t *handle;
1140 	int retries = 0;
1141  	struct page *page;
1142  	pgoff_t index;
1143  	unsigned from, to;
1144 
1145  	index = pos >> PAGE_CACHE_SHIFT;
1146  	from = pos & (PAGE_CACHE_SIZE - 1);
1147  	to = from + len;
1148 
1149 retry:
1150  	page = __grab_cache_page(mapping, index);
1151  	if (!page)
1152  		return -ENOMEM;
1153  	*pagep = page;
1154 
1155   	handle = ext4_journal_start(inode, needed_blocks);
1156   	if (IS_ERR(handle)) {
1157  		unlock_page(page);
1158  		page_cache_release(page);
1159   		ret = PTR_ERR(handle);
1160   		goto out;
1161 	}
1162 
1163 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1164 							ext4_get_block);
1165 
1166 	if (!ret && ext4_should_journal_data(inode)) {
1167 		ret = walk_page_buffers(handle, page_buffers(page),
1168 				from, to, NULL, do_journal_get_write_access);
1169 	}
1170 
1171 	if (ret) {
1172 		ext4_journal_stop(handle);
1173  		unlock_page(page);
1174  		page_cache_release(page);
1175 	}
1176 
1177 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1178 		goto retry;
1179 out:
1180 	return ret;
1181 }
1182 
1183 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1184 {
1185 	int err = jbd2_journal_dirty_data(handle, bh);
1186 	if (err)
1187 		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1188 						bh, handle, err);
1189 	return err;
1190 }
1191 
1192 /* For write_end() in data=journal mode */
1193 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1194 {
1195 	if (!buffer_mapped(bh) || buffer_freed(bh))
1196 		return 0;
1197 	set_buffer_uptodate(bh);
1198 	return ext4_journal_dirty_metadata(handle, bh);
1199 }
1200 
1201 /*
1202  * Generic write_end handler for ordered and writeback ext4 journal modes.
1203  * We can't use generic_write_end, because that unlocks the page and we need to
1204  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1205  * after block_write_end.
1206  */
1207 static int ext4_generic_write_end(struct file *file,
1208 				struct address_space *mapping,
1209 				loff_t pos, unsigned len, unsigned copied,
1210 				struct page *page, void *fsdata)
1211 {
1212 	struct inode *inode = file->f_mapping->host;
1213 
1214 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1215 
1216 	if (pos+copied > inode->i_size) {
1217 		i_size_write(inode, pos+copied);
1218 		mark_inode_dirty(inode);
1219 	}
1220 
1221 	return copied;
1222 }
1223 
1224 /*
1225  * We need to pick up the new inode size which generic_commit_write gave us
1226  * `file' can be NULL - eg, when called from page_symlink().
1227  *
1228  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1229  * buffers are managed internally.
1230  */
1231 static int ext4_ordered_write_end(struct file *file,
1232 				struct address_space *mapping,
1233 				loff_t pos, unsigned len, unsigned copied,
1234 				struct page *page, void *fsdata)
1235 {
1236 	handle_t *handle = ext4_journal_current_handle();
1237 	struct inode *inode = file->f_mapping->host;
1238 	unsigned from, to;
1239 	int ret = 0, ret2;
1240 
1241 	from = pos & (PAGE_CACHE_SIZE - 1);
1242 	to = from + len;
1243 
1244 	ret = walk_page_buffers(handle, page_buffers(page),
1245 		from, to, NULL, ext4_journal_dirty_data);
1246 
1247 	if (ret == 0) {
1248 		/*
1249 		 * generic_write_end() will run mark_inode_dirty() if i_size
1250 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1251 		 * into that.
1252 		 */
1253 		loff_t new_i_size;
1254 
1255 		new_i_size = pos + copied;
1256 		if (new_i_size > EXT4_I(inode)->i_disksize)
1257 			EXT4_I(inode)->i_disksize = new_i_size;
1258 		copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1259 							page, fsdata);
1260 		if (copied < 0)
1261 			ret = copied;
1262 	}
1263 	ret2 = ext4_journal_stop(handle);
1264 	if (!ret)
1265 		ret = ret2;
1266 	unlock_page(page);
1267 	page_cache_release(page);
1268 
1269 	return ret ? ret : copied;
1270 }
1271 
1272 static int ext4_writeback_write_end(struct file *file,
1273 				struct address_space *mapping,
1274 				loff_t pos, unsigned len, unsigned copied,
1275 				struct page *page, void *fsdata)
1276 {
1277 	handle_t *handle = ext4_journal_current_handle();
1278 	struct inode *inode = file->f_mapping->host;
1279 	int ret = 0, ret2;
1280 	loff_t new_i_size;
1281 
1282 	new_i_size = pos + copied;
1283 	if (new_i_size > EXT4_I(inode)->i_disksize)
1284 		EXT4_I(inode)->i_disksize = new_i_size;
1285 
1286 	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1287 							page, fsdata);
1288 	if (copied < 0)
1289 		ret = copied;
1290 
1291 	ret2 = ext4_journal_stop(handle);
1292 	if (!ret)
1293 		ret = ret2;
1294 	unlock_page(page);
1295 	page_cache_release(page);
1296 
1297 	return ret ? ret : copied;
1298 }
1299 
1300 static int ext4_journalled_write_end(struct file *file,
1301 				struct address_space *mapping,
1302 				loff_t pos, unsigned len, unsigned copied,
1303 				struct page *page, void *fsdata)
1304 {
1305 	handle_t *handle = ext4_journal_current_handle();
1306 	struct inode *inode = mapping->host;
1307 	int ret = 0, ret2;
1308 	int partial = 0;
1309 	unsigned from, to;
1310 
1311 	from = pos & (PAGE_CACHE_SIZE - 1);
1312 	to = from + len;
1313 
1314 	if (copied < len) {
1315 		if (!PageUptodate(page))
1316 			copied = 0;
1317 		page_zero_new_buffers(page, from+copied, to);
1318 	}
1319 
1320 	ret = walk_page_buffers(handle, page_buffers(page), from,
1321 				to, &partial, write_end_fn);
1322 	if (!partial)
1323 		SetPageUptodate(page);
1324 	if (pos+copied > inode->i_size)
1325 		i_size_write(inode, pos+copied);
1326 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1327 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1328 		EXT4_I(inode)->i_disksize = inode->i_size;
1329 		ret2 = ext4_mark_inode_dirty(handle, inode);
1330 		if (!ret)
1331 			ret = ret2;
1332 	}
1333 
1334 	ret2 = ext4_journal_stop(handle);
1335 	if (!ret)
1336 		ret = ret2;
1337 	unlock_page(page);
1338 	page_cache_release(page);
1339 
1340 	return ret ? ret : copied;
1341 }
1342 
1343 /*
1344  * bmap() is special.  It gets used by applications such as lilo and by
1345  * the swapper to find the on-disk block of a specific piece of data.
1346  *
1347  * Naturally, this is dangerous if the block concerned is still in the
1348  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1349  * filesystem and enables swap, then they may get a nasty shock when the
1350  * data getting swapped to that swapfile suddenly gets overwritten by
1351  * the original zero's written out previously to the journal and
1352  * awaiting writeback in the kernel's buffer cache.
1353  *
1354  * So, if we see any bmap calls here on a modified, data-journaled file,
1355  * take extra steps to flush any blocks which might be in the cache.
1356  */
1357 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1358 {
1359 	struct inode *inode = mapping->host;
1360 	journal_t *journal;
1361 	int err;
1362 
1363 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1364 		/*
1365 		 * This is a REALLY heavyweight approach, but the use of
1366 		 * bmap on dirty files is expected to be extremely rare:
1367 		 * only if we run lilo or swapon on a freshly made file
1368 		 * do we expect this to happen.
1369 		 *
1370 		 * (bmap requires CAP_SYS_RAWIO so this does not
1371 		 * represent an unprivileged user DOS attack --- we'd be
1372 		 * in trouble if mortal users could trigger this path at
1373 		 * will.)
1374 		 *
1375 		 * NB. EXT4_STATE_JDATA is not set on files other than
1376 		 * regular files.  If somebody wants to bmap a directory
1377 		 * or symlink and gets confused because the buffer
1378 		 * hasn't yet been flushed to disk, they deserve
1379 		 * everything they get.
1380 		 */
1381 
1382 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1383 		journal = EXT4_JOURNAL(inode);
1384 		jbd2_journal_lock_updates(journal);
1385 		err = jbd2_journal_flush(journal);
1386 		jbd2_journal_unlock_updates(journal);
1387 
1388 		if (err)
1389 			return 0;
1390 	}
1391 
1392 	return generic_block_bmap(mapping,block,ext4_get_block);
1393 }
1394 
1395 static int bget_one(handle_t *handle, struct buffer_head *bh)
1396 {
1397 	get_bh(bh);
1398 	return 0;
1399 }
1400 
1401 static int bput_one(handle_t *handle, struct buffer_head *bh)
1402 {
1403 	put_bh(bh);
1404 	return 0;
1405 }
1406 
1407 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1408 {
1409 	if (buffer_mapped(bh))
1410 		return ext4_journal_dirty_data(handle, bh);
1411 	return 0;
1412 }
1413 
1414 /*
1415  * Note that we always start a transaction even if we're not journalling
1416  * data.  This is to preserve ordering: any hole instantiation within
1417  * __block_write_full_page -> ext4_get_block() should be journalled
1418  * along with the data so we don't crash and then get metadata which
1419  * refers to old data.
1420  *
1421  * In all journalling modes block_write_full_page() will start the I/O.
1422  *
1423  * Problem:
1424  *
1425  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1426  *		ext4_writepage()
1427  *
1428  * Similar for:
1429  *
1430  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1431  *
1432  * Same applies to ext4_get_block().  We will deadlock on various things like
1433  * lock_journal and i_data_sem
1434  *
1435  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1436  * allocations fail.
1437  *
1438  * 16May01: If we're reentered then journal_current_handle() will be
1439  *	    non-zero. We simply *return*.
1440  *
1441  * 1 July 2001: @@@ FIXME:
1442  *   In journalled data mode, a data buffer may be metadata against the
1443  *   current transaction.  But the same file is part of a shared mapping
1444  *   and someone does a writepage() on it.
1445  *
1446  *   We will move the buffer onto the async_data list, but *after* it has
1447  *   been dirtied. So there's a small window where we have dirty data on
1448  *   BJ_Metadata.
1449  *
1450  *   Note that this only applies to the last partial page in the file.  The
1451  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1452  *   broken code anyway: it's wrong for msync()).
1453  *
1454  *   It's a rare case: affects the final partial page, for journalled data
1455  *   where the file is subject to bith write() and writepage() in the same
1456  *   transction.  To fix it we'll need a custom block_write_full_page().
1457  *   We'll probably need that anyway for journalling writepage() output.
1458  *
1459  * We don't honour synchronous mounts for writepage().  That would be
1460  * disastrous.  Any write() or metadata operation will sync the fs for
1461  * us.
1462  *
1463  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1464  * we don't need to open a transaction here.
1465  */
1466 static int ext4_ordered_writepage(struct page *page,
1467 				struct writeback_control *wbc)
1468 {
1469 	struct inode *inode = page->mapping->host;
1470 	struct buffer_head *page_bufs;
1471 	handle_t *handle = NULL;
1472 	int ret = 0;
1473 	int err;
1474 
1475 	J_ASSERT(PageLocked(page));
1476 
1477 	/*
1478 	 * We give up here if we're reentered, because it might be for a
1479 	 * different filesystem.
1480 	 */
1481 	if (ext4_journal_current_handle())
1482 		goto out_fail;
1483 
1484 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1485 
1486 	if (IS_ERR(handle)) {
1487 		ret = PTR_ERR(handle);
1488 		goto out_fail;
1489 	}
1490 
1491 	if (!page_has_buffers(page)) {
1492 		create_empty_buffers(page, inode->i_sb->s_blocksize,
1493 				(1 << BH_Dirty)|(1 << BH_Uptodate));
1494 	}
1495 	page_bufs = page_buffers(page);
1496 	walk_page_buffers(handle, page_bufs, 0,
1497 			PAGE_CACHE_SIZE, NULL, bget_one);
1498 
1499 	ret = block_write_full_page(page, ext4_get_block, wbc);
1500 
1501 	/*
1502 	 * The page can become unlocked at any point now, and
1503 	 * truncate can then come in and change things.  So we
1504 	 * can't touch *page from now on.  But *page_bufs is
1505 	 * safe due to elevated refcount.
1506 	 */
1507 
1508 	/*
1509 	 * And attach them to the current transaction.  But only if
1510 	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1511 	 * and generally junk.
1512 	 */
1513 	if (ret == 0) {
1514 		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1515 					NULL, jbd2_journal_dirty_data_fn);
1516 		if (!ret)
1517 			ret = err;
1518 	}
1519 	walk_page_buffers(handle, page_bufs, 0,
1520 			PAGE_CACHE_SIZE, NULL, bput_one);
1521 	err = ext4_journal_stop(handle);
1522 	if (!ret)
1523 		ret = err;
1524 	return ret;
1525 
1526 out_fail:
1527 	redirty_page_for_writepage(wbc, page);
1528 	unlock_page(page);
1529 	return ret;
1530 }
1531 
1532 static int ext4_writeback_writepage(struct page *page,
1533 				struct writeback_control *wbc)
1534 {
1535 	struct inode *inode = page->mapping->host;
1536 	handle_t *handle = NULL;
1537 	int ret = 0;
1538 	int err;
1539 
1540 	if (ext4_journal_current_handle())
1541 		goto out_fail;
1542 
1543 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1544 	if (IS_ERR(handle)) {
1545 		ret = PTR_ERR(handle);
1546 		goto out_fail;
1547 	}
1548 
1549 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1550 		ret = nobh_writepage(page, ext4_get_block, wbc);
1551 	else
1552 		ret = block_write_full_page(page, ext4_get_block, wbc);
1553 
1554 	err = ext4_journal_stop(handle);
1555 	if (!ret)
1556 		ret = err;
1557 	return ret;
1558 
1559 out_fail:
1560 	redirty_page_for_writepage(wbc, page);
1561 	unlock_page(page);
1562 	return ret;
1563 }
1564 
1565 static int ext4_journalled_writepage(struct page *page,
1566 				struct writeback_control *wbc)
1567 {
1568 	struct inode *inode = page->mapping->host;
1569 	handle_t *handle = NULL;
1570 	int ret = 0;
1571 	int err;
1572 
1573 	if (ext4_journal_current_handle())
1574 		goto no_write;
1575 
1576 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1577 	if (IS_ERR(handle)) {
1578 		ret = PTR_ERR(handle);
1579 		goto no_write;
1580 	}
1581 
1582 	if (!page_has_buffers(page) || PageChecked(page)) {
1583 		/*
1584 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1585 		 * doesn't seem much point in redirtying the page here.
1586 		 */
1587 		ClearPageChecked(page);
1588 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1589 					ext4_get_block);
1590 		if (ret != 0) {
1591 			ext4_journal_stop(handle);
1592 			goto out_unlock;
1593 		}
1594 		ret = walk_page_buffers(handle, page_buffers(page), 0,
1595 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1596 
1597 		err = walk_page_buffers(handle, page_buffers(page), 0,
1598 				PAGE_CACHE_SIZE, NULL, write_end_fn);
1599 		if (ret == 0)
1600 			ret = err;
1601 		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1602 		unlock_page(page);
1603 	} else {
1604 		/*
1605 		 * It may be a page full of checkpoint-mode buffers.  We don't
1606 		 * really know unless we go poke around in the buffer_heads.
1607 		 * But block_write_full_page will do the right thing.
1608 		 */
1609 		ret = block_write_full_page(page, ext4_get_block, wbc);
1610 	}
1611 	err = ext4_journal_stop(handle);
1612 	if (!ret)
1613 		ret = err;
1614 out:
1615 	return ret;
1616 
1617 no_write:
1618 	redirty_page_for_writepage(wbc, page);
1619 out_unlock:
1620 	unlock_page(page);
1621 	goto out;
1622 }
1623 
1624 static int ext4_readpage(struct file *file, struct page *page)
1625 {
1626 	return mpage_readpage(page, ext4_get_block);
1627 }
1628 
1629 static int
1630 ext4_readpages(struct file *file, struct address_space *mapping,
1631 		struct list_head *pages, unsigned nr_pages)
1632 {
1633 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1634 }
1635 
1636 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1637 {
1638 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1639 
1640 	/*
1641 	 * If it's a full truncate we just forget about the pending dirtying
1642 	 */
1643 	if (offset == 0)
1644 		ClearPageChecked(page);
1645 
1646 	jbd2_journal_invalidatepage(journal, page, offset);
1647 }
1648 
1649 static int ext4_releasepage(struct page *page, gfp_t wait)
1650 {
1651 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1652 
1653 	WARN_ON(PageChecked(page));
1654 	if (!page_has_buffers(page))
1655 		return 0;
1656 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1657 }
1658 
1659 /*
1660  * If the O_DIRECT write will extend the file then add this inode to the
1661  * orphan list.  So recovery will truncate it back to the original size
1662  * if the machine crashes during the write.
1663  *
1664  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1665  * crashes then stale disk data _may_ be exposed inside the file. But current
1666  * VFS code falls back into buffered path in that case so we are safe.
1667  */
1668 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1669 			const struct iovec *iov, loff_t offset,
1670 			unsigned long nr_segs)
1671 {
1672 	struct file *file = iocb->ki_filp;
1673 	struct inode *inode = file->f_mapping->host;
1674 	struct ext4_inode_info *ei = EXT4_I(inode);
1675 	handle_t *handle;
1676 	ssize_t ret;
1677 	int orphan = 0;
1678 	size_t count = iov_length(iov, nr_segs);
1679 
1680 	if (rw == WRITE) {
1681 		loff_t final_size = offset + count;
1682 
1683 		if (final_size > inode->i_size) {
1684 			/* Credits for sb + inode write */
1685 			handle = ext4_journal_start(inode, 2);
1686 			if (IS_ERR(handle)) {
1687 				ret = PTR_ERR(handle);
1688 				goto out;
1689 			}
1690 			ret = ext4_orphan_add(handle, inode);
1691 			if (ret) {
1692 				ext4_journal_stop(handle);
1693 				goto out;
1694 			}
1695 			orphan = 1;
1696 			ei->i_disksize = inode->i_size;
1697 			ext4_journal_stop(handle);
1698 		}
1699 	}
1700 
1701 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1702 				 offset, nr_segs,
1703 				 ext4_get_block, NULL);
1704 
1705 	if (orphan) {
1706 		int err;
1707 
1708 		/* Credits for sb + inode write */
1709 		handle = ext4_journal_start(inode, 2);
1710 		if (IS_ERR(handle)) {
1711 			/* This is really bad luck. We've written the data
1712 			 * but cannot extend i_size. Bail out and pretend
1713 			 * the write failed... */
1714 			ret = PTR_ERR(handle);
1715 			goto out;
1716 		}
1717 		if (inode->i_nlink)
1718 			ext4_orphan_del(handle, inode);
1719 		if (ret > 0) {
1720 			loff_t end = offset + ret;
1721 			if (end > inode->i_size) {
1722 				ei->i_disksize = end;
1723 				i_size_write(inode, end);
1724 				/*
1725 				 * We're going to return a positive `ret'
1726 				 * here due to non-zero-length I/O, so there's
1727 				 * no way of reporting error returns from
1728 				 * ext4_mark_inode_dirty() to userspace.  So
1729 				 * ignore it.
1730 				 */
1731 				ext4_mark_inode_dirty(handle, inode);
1732 			}
1733 		}
1734 		err = ext4_journal_stop(handle);
1735 		if (ret == 0)
1736 			ret = err;
1737 	}
1738 out:
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Pages can be marked dirty completely asynchronously from ext4's journalling
1744  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1745  * much here because ->set_page_dirty is called under VFS locks.  The page is
1746  * not necessarily locked.
1747  *
1748  * We cannot just dirty the page and leave attached buffers clean, because the
1749  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1750  * or jbddirty because all the journalling code will explode.
1751  *
1752  * So what we do is to mark the page "pending dirty" and next time writepage
1753  * is called, propagate that into the buffers appropriately.
1754  */
1755 static int ext4_journalled_set_page_dirty(struct page *page)
1756 {
1757 	SetPageChecked(page);
1758 	return __set_page_dirty_nobuffers(page);
1759 }
1760 
1761 static const struct address_space_operations ext4_ordered_aops = {
1762 	.readpage	= ext4_readpage,
1763 	.readpages	= ext4_readpages,
1764 	.writepage	= ext4_ordered_writepage,
1765 	.sync_page	= block_sync_page,
1766 	.write_begin	= ext4_write_begin,
1767 	.write_end	= ext4_ordered_write_end,
1768 	.bmap		= ext4_bmap,
1769 	.invalidatepage	= ext4_invalidatepage,
1770 	.releasepage	= ext4_releasepage,
1771 	.direct_IO	= ext4_direct_IO,
1772 	.migratepage	= buffer_migrate_page,
1773 };
1774 
1775 static const struct address_space_operations ext4_writeback_aops = {
1776 	.readpage	= ext4_readpage,
1777 	.readpages	= ext4_readpages,
1778 	.writepage	= ext4_writeback_writepage,
1779 	.sync_page	= block_sync_page,
1780 	.write_begin	= ext4_write_begin,
1781 	.write_end	= ext4_writeback_write_end,
1782 	.bmap		= ext4_bmap,
1783 	.invalidatepage	= ext4_invalidatepage,
1784 	.releasepage	= ext4_releasepage,
1785 	.direct_IO	= ext4_direct_IO,
1786 	.migratepage	= buffer_migrate_page,
1787 };
1788 
1789 static const struct address_space_operations ext4_journalled_aops = {
1790 	.readpage	= ext4_readpage,
1791 	.readpages	= ext4_readpages,
1792 	.writepage	= ext4_journalled_writepage,
1793 	.sync_page	= block_sync_page,
1794 	.write_begin	= ext4_write_begin,
1795 	.write_end	= ext4_journalled_write_end,
1796 	.set_page_dirty	= ext4_journalled_set_page_dirty,
1797 	.bmap		= ext4_bmap,
1798 	.invalidatepage	= ext4_invalidatepage,
1799 	.releasepage	= ext4_releasepage,
1800 };
1801 
1802 void ext4_set_aops(struct inode *inode)
1803 {
1804 	if (ext4_should_order_data(inode))
1805 		inode->i_mapping->a_ops = &ext4_ordered_aops;
1806 	else if (ext4_should_writeback_data(inode))
1807 		inode->i_mapping->a_ops = &ext4_writeback_aops;
1808 	else
1809 		inode->i_mapping->a_ops = &ext4_journalled_aops;
1810 }
1811 
1812 /*
1813  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1814  * up to the end of the block which corresponds to `from'.
1815  * This required during truncate. We need to physically zero the tail end
1816  * of that block so it doesn't yield old data if the file is later grown.
1817  */
1818 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1819 		struct address_space *mapping, loff_t from)
1820 {
1821 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1822 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1823 	unsigned blocksize, length, pos;
1824 	ext4_lblk_t iblock;
1825 	struct inode *inode = mapping->host;
1826 	struct buffer_head *bh;
1827 	int err = 0;
1828 
1829 	blocksize = inode->i_sb->s_blocksize;
1830 	length = blocksize - (offset & (blocksize - 1));
1831 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1832 
1833 	/*
1834 	 * For "nobh" option,  we can only work if we don't need to
1835 	 * read-in the page - otherwise we create buffers to do the IO.
1836 	 */
1837 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1838 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1839 		zero_user(page, offset, length);
1840 		set_page_dirty(page);
1841 		goto unlock;
1842 	}
1843 
1844 	if (!page_has_buffers(page))
1845 		create_empty_buffers(page, blocksize, 0);
1846 
1847 	/* Find the buffer that contains "offset" */
1848 	bh = page_buffers(page);
1849 	pos = blocksize;
1850 	while (offset >= pos) {
1851 		bh = bh->b_this_page;
1852 		iblock++;
1853 		pos += blocksize;
1854 	}
1855 
1856 	err = 0;
1857 	if (buffer_freed(bh)) {
1858 		BUFFER_TRACE(bh, "freed: skip");
1859 		goto unlock;
1860 	}
1861 
1862 	if (!buffer_mapped(bh)) {
1863 		BUFFER_TRACE(bh, "unmapped");
1864 		ext4_get_block(inode, iblock, bh, 0);
1865 		/* unmapped? It's a hole - nothing to do */
1866 		if (!buffer_mapped(bh)) {
1867 			BUFFER_TRACE(bh, "still unmapped");
1868 			goto unlock;
1869 		}
1870 	}
1871 
1872 	/* Ok, it's mapped. Make sure it's up-to-date */
1873 	if (PageUptodate(page))
1874 		set_buffer_uptodate(bh);
1875 
1876 	if (!buffer_uptodate(bh)) {
1877 		err = -EIO;
1878 		ll_rw_block(READ, 1, &bh);
1879 		wait_on_buffer(bh);
1880 		/* Uhhuh. Read error. Complain and punt. */
1881 		if (!buffer_uptodate(bh))
1882 			goto unlock;
1883 	}
1884 
1885 	if (ext4_should_journal_data(inode)) {
1886 		BUFFER_TRACE(bh, "get write access");
1887 		err = ext4_journal_get_write_access(handle, bh);
1888 		if (err)
1889 			goto unlock;
1890 	}
1891 
1892 	zero_user(page, offset, length);
1893 
1894 	BUFFER_TRACE(bh, "zeroed end of block");
1895 
1896 	err = 0;
1897 	if (ext4_should_journal_data(inode)) {
1898 		err = ext4_journal_dirty_metadata(handle, bh);
1899 	} else {
1900 		if (ext4_should_order_data(inode))
1901 			err = ext4_journal_dirty_data(handle, bh);
1902 		mark_buffer_dirty(bh);
1903 	}
1904 
1905 unlock:
1906 	unlock_page(page);
1907 	page_cache_release(page);
1908 	return err;
1909 }
1910 
1911 /*
1912  * Probably it should be a library function... search for first non-zero word
1913  * or memcmp with zero_page, whatever is better for particular architecture.
1914  * Linus?
1915  */
1916 static inline int all_zeroes(__le32 *p, __le32 *q)
1917 {
1918 	while (p < q)
1919 		if (*p++)
1920 			return 0;
1921 	return 1;
1922 }
1923 
1924 /**
1925  *	ext4_find_shared - find the indirect blocks for partial truncation.
1926  *	@inode:	  inode in question
1927  *	@depth:	  depth of the affected branch
1928  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1929  *	@chain:	  place to store the pointers to partial indirect blocks
1930  *	@top:	  place to the (detached) top of branch
1931  *
1932  *	This is a helper function used by ext4_truncate().
1933  *
1934  *	When we do truncate() we may have to clean the ends of several
1935  *	indirect blocks but leave the blocks themselves alive. Block is
1936  *	partially truncated if some data below the new i_size is refered
1937  *	from it (and it is on the path to the first completely truncated
1938  *	data block, indeed).  We have to free the top of that path along
1939  *	with everything to the right of the path. Since no allocation
1940  *	past the truncation point is possible until ext4_truncate()
1941  *	finishes, we may safely do the latter, but top of branch may
1942  *	require special attention - pageout below the truncation point
1943  *	might try to populate it.
1944  *
1945  *	We atomically detach the top of branch from the tree, store the
1946  *	block number of its root in *@top, pointers to buffer_heads of
1947  *	partially truncated blocks - in @chain[].bh and pointers to
1948  *	their last elements that should not be removed - in
1949  *	@chain[].p. Return value is the pointer to last filled element
1950  *	of @chain.
1951  *
1952  *	The work left to caller to do the actual freeing of subtrees:
1953  *		a) free the subtree starting from *@top
1954  *		b) free the subtrees whose roots are stored in
1955  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1956  *		c) free the subtrees growing from the inode past the @chain[0].
1957  *			(no partially truncated stuff there).  */
1958 
1959 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1960 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1961 {
1962 	Indirect *partial, *p;
1963 	int k, err;
1964 
1965 	*top = 0;
1966 	/* Make k index the deepest non-null offest + 1 */
1967 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1968 		;
1969 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1970 	/* Writer: pointers */
1971 	if (!partial)
1972 		partial = chain + k-1;
1973 	/*
1974 	 * If the branch acquired continuation since we've looked at it -
1975 	 * fine, it should all survive and (new) top doesn't belong to us.
1976 	 */
1977 	if (!partial->key && *partial->p)
1978 		/* Writer: end */
1979 		goto no_top;
1980 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1981 		;
1982 	/*
1983 	 * OK, we've found the last block that must survive. The rest of our
1984 	 * branch should be detached before unlocking. However, if that rest
1985 	 * of branch is all ours and does not grow immediately from the inode
1986 	 * it's easier to cheat and just decrement partial->p.
1987 	 */
1988 	if (p == chain + k - 1 && p > chain) {
1989 		p->p--;
1990 	} else {
1991 		*top = *p->p;
1992 		/* Nope, don't do this in ext4.  Must leave the tree intact */
1993 #if 0
1994 		*p->p = 0;
1995 #endif
1996 	}
1997 	/* Writer: end */
1998 
1999 	while(partial > p) {
2000 		brelse(partial->bh);
2001 		partial--;
2002 	}
2003 no_top:
2004 	return partial;
2005 }
2006 
2007 /*
2008  * Zero a number of block pointers in either an inode or an indirect block.
2009  * If we restart the transaction we must again get write access to the
2010  * indirect block for further modification.
2011  *
2012  * We release `count' blocks on disk, but (last - first) may be greater
2013  * than `count' because there can be holes in there.
2014  */
2015 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2016 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2017 		unsigned long count, __le32 *first, __le32 *last)
2018 {
2019 	__le32 *p;
2020 	if (try_to_extend_transaction(handle, inode)) {
2021 		if (bh) {
2022 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2023 			ext4_journal_dirty_metadata(handle, bh);
2024 		}
2025 		ext4_mark_inode_dirty(handle, inode);
2026 		ext4_journal_test_restart(handle, inode);
2027 		if (bh) {
2028 			BUFFER_TRACE(bh, "retaking write access");
2029 			ext4_journal_get_write_access(handle, bh);
2030 		}
2031 	}
2032 
2033 	/*
2034 	 * Any buffers which are on the journal will be in memory. We find
2035 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2036 	 * on them.  We've already detached each block from the file, so
2037 	 * bforget() in jbd2_journal_forget() should be safe.
2038 	 *
2039 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2040 	 */
2041 	for (p = first; p < last; p++) {
2042 		u32 nr = le32_to_cpu(*p);
2043 		if (nr) {
2044 			struct buffer_head *tbh;
2045 
2046 			*p = 0;
2047 			tbh = sb_find_get_block(inode->i_sb, nr);
2048 			ext4_forget(handle, 0, inode, tbh, nr);
2049 		}
2050 	}
2051 
2052 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
2053 }
2054 
2055 /**
2056  * ext4_free_data - free a list of data blocks
2057  * @handle:	handle for this transaction
2058  * @inode:	inode we are dealing with
2059  * @this_bh:	indirect buffer_head which contains *@first and *@last
2060  * @first:	array of block numbers
2061  * @last:	points immediately past the end of array
2062  *
2063  * We are freeing all blocks refered from that array (numbers are stored as
2064  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2065  *
2066  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2067  * blocks are contiguous then releasing them at one time will only affect one
2068  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2069  * actually use a lot of journal space.
2070  *
2071  * @this_bh will be %NULL if @first and @last point into the inode's direct
2072  * block pointers.
2073  */
2074 static void ext4_free_data(handle_t *handle, struct inode *inode,
2075 			   struct buffer_head *this_bh,
2076 			   __le32 *first, __le32 *last)
2077 {
2078 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2079 	unsigned long count = 0;	    /* Number of blocks in the run */
2080 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2081 					       corresponding to
2082 					       block_to_free */
2083 	ext4_fsblk_t nr;		    /* Current block # */
2084 	__le32 *p;			    /* Pointer into inode/ind
2085 					       for current block */
2086 	int err;
2087 
2088 	if (this_bh) {				/* For indirect block */
2089 		BUFFER_TRACE(this_bh, "get_write_access");
2090 		err = ext4_journal_get_write_access(handle, this_bh);
2091 		/* Important: if we can't update the indirect pointers
2092 		 * to the blocks, we can't free them. */
2093 		if (err)
2094 			return;
2095 	}
2096 
2097 	for (p = first; p < last; p++) {
2098 		nr = le32_to_cpu(*p);
2099 		if (nr) {
2100 			/* accumulate blocks to free if they're contiguous */
2101 			if (count == 0) {
2102 				block_to_free = nr;
2103 				block_to_free_p = p;
2104 				count = 1;
2105 			} else if (nr == block_to_free + count) {
2106 				count++;
2107 			} else {
2108 				ext4_clear_blocks(handle, inode, this_bh,
2109 						  block_to_free,
2110 						  count, block_to_free_p, p);
2111 				block_to_free = nr;
2112 				block_to_free_p = p;
2113 				count = 1;
2114 			}
2115 		}
2116 	}
2117 
2118 	if (count > 0)
2119 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2120 				  count, block_to_free_p, p);
2121 
2122 	if (this_bh) {
2123 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2124 		ext4_journal_dirty_metadata(handle, this_bh);
2125 	}
2126 }
2127 
2128 /**
2129  *	ext4_free_branches - free an array of branches
2130  *	@handle: JBD handle for this transaction
2131  *	@inode:	inode we are dealing with
2132  *	@parent_bh: the buffer_head which contains *@first and *@last
2133  *	@first:	array of block numbers
2134  *	@last:	pointer immediately past the end of array
2135  *	@depth:	depth of the branches to free
2136  *
2137  *	We are freeing all blocks refered from these branches (numbers are
2138  *	stored as little-endian 32-bit) and updating @inode->i_blocks
2139  *	appropriately.
2140  */
2141 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2142 			       struct buffer_head *parent_bh,
2143 			       __le32 *first, __le32 *last, int depth)
2144 {
2145 	ext4_fsblk_t nr;
2146 	__le32 *p;
2147 
2148 	if (is_handle_aborted(handle))
2149 		return;
2150 
2151 	if (depth--) {
2152 		struct buffer_head *bh;
2153 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2154 		p = last;
2155 		while (--p >= first) {
2156 			nr = le32_to_cpu(*p);
2157 			if (!nr)
2158 				continue;		/* A hole */
2159 
2160 			/* Go read the buffer for the next level down */
2161 			bh = sb_bread(inode->i_sb, nr);
2162 
2163 			/*
2164 			 * A read failure? Report error and clear slot
2165 			 * (should be rare).
2166 			 */
2167 			if (!bh) {
2168 				ext4_error(inode->i_sb, "ext4_free_branches",
2169 					   "Read failure, inode=%lu, block=%llu",
2170 					   inode->i_ino, nr);
2171 				continue;
2172 			}
2173 
2174 			/* This zaps the entire block.  Bottom up. */
2175 			BUFFER_TRACE(bh, "free child branches");
2176 			ext4_free_branches(handle, inode, bh,
2177 					   (__le32*)bh->b_data,
2178 					   (__le32*)bh->b_data + addr_per_block,
2179 					   depth);
2180 
2181 			/*
2182 			 * We've probably journalled the indirect block several
2183 			 * times during the truncate.  But it's no longer
2184 			 * needed and we now drop it from the transaction via
2185 			 * jbd2_journal_revoke().
2186 			 *
2187 			 * That's easy if it's exclusively part of this
2188 			 * transaction.  But if it's part of the committing
2189 			 * transaction then jbd2_journal_forget() will simply
2190 			 * brelse() it.  That means that if the underlying
2191 			 * block is reallocated in ext4_get_block(),
2192 			 * unmap_underlying_metadata() will find this block
2193 			 * and will try to get rid of it.  damn, damn.
2194 			 *
2195 			 * If this block has already been committed to the
2196 			 * journal, a revoke record will be written.  And
2197 			 * revoke records must be emitted *before* clearing
2198 			 * this block's bit in the bitmaps.
2199 			 */
2200 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2201 
2202 			/*
2203 			 * Everything below this this pointer has been
2204 			 * released.  Now let this top-of-subtree go.
2205 			 *
2206 			 * We want the freeing of this indirect block to be
2207 			 * atomic in the journal with the updating of the
2208 			 * bitmap block which owns it.  So make some room in
2209 			 * the journal.
2210 			 *
2211 			 * We zero the parent pointer *after* freeing its
2212 			 * pointee in the bitmaps, so if extend_transaction()
2213 			 * for some reason fails to put the bitmap changes and
2214 			 * the release into the same transaction, recovery
2215 			 * will merely complain about releasing a free block,
2216 			 * rather than leaking blocks.
2217 			 */
2218 			if (is_handle_aborted(handle))
2219 				return;
2220 			if (try_to_extend_transaction(handle, inode)) {
2221 				ext4_mark_inode_dirty(handle, inode);
2222 				ext4_journal_test_restart(handle, inode);
2223 			}
2224 
2225 			ext4_free_blocks(handle, inode, nr, 1, 1);
2226 
2227 			if (parent_bh) {
2228 				/*
2229 				 * The block which we have just freed is
2230 				 * pointed to by an indirect block: journal it
2231 				 */
2232 				BUFFER_TRACE(parent_bh, "get_write_access");
2233 				if (!ext4_journal_get_write_access(handle,
2234 								   parent_bh)){
2235 					*p = 0;
2236 					BUFFER_TRACE(parent_bh,
2237 					"call ext4_journal_dirty_metadata");
2238 					ext4_journal_dirty_metadata(handle,
2239 								    parent_bh);
2240 				}
2241 			}
2242 		}
2243 	} else {
2244 		/* We have reached the bottom of the tree. */
2245 		BUFFER_TRACE(parent_bh, "free data blocks");
2246 		ext4_free_data(handle, inode, parent_bh, first, last);
2247 	}
2248 }
2249 
2250 /*
2251  * ext4_truncate()
2252  *
2253  * We block out ext4_get_block() block instantiations across the entire
2254  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2255  * simultaneously on behalf of the same inode.
2256  *
2257  * As we work through the truncate and commmit bits of it to the journal there
2258  * is one core, guiding principle: the file's tree must always be consistent on
2259  * disk.  We must be able to restart the truncate after a crash.
2260  *
2261  * The file's tree may be transiently inconsistent in memory (although it
2262  * probably isn't), but whenever we close off and commit a journal transaction,
2263  * the contents of (the filesystem + the journal) must be consistent and
2264  * restartable.  It's pretty simple, really: bottom up, right to left (although
2265  * left-to-right works OK too).
2266  *
2267  * Note that at recovery time, journal replay occurs *before* the restart of
2268  * truncate against the orphan inode list.
2269  *
2270  * The committed inode has the new, desired i_size (which is the same as
2271  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2272  * that this inode's truncate did not complete and it will again call
2273  * ext4_truncate() to have another go.  So there will be instantiated blocks
2274  * to the right of the truncation point in a crashed ext4 filesystem.  But
2275  * that's fine - as long as they are linked from the inode, the post-crash
2276  * ext4_truncate() run will find them and release them.
2277  */
2278 void ext4_truncate(struct inode *inode)
2279 {
2280 	handle_t *handle;
2281 	struct ext4_inode_info *ei = EXT4_I(inode);
2282 	__le32 *i_data = ei->i_data;
2283 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2284 	struct address_space *mapping = inode->i_mapping;
2285 	ext4_lblk_t offsets[4];
2286 	Indirect chain[4];
2287 	Indirect *partial;
2288 	__le32 nr = 0;
2289 	int n;
2290 	ext4_lblk_t last_block;
2291 	unsigned blocksize = inode->i_sb->s_blocksize;
2292 	struct page *page;
2293 
2294 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2295 	    S_ISLNK(inode->i_mode)))
2296 		return;
2297 	if (ext4_inode_is_fast_symlink(inode))
2298 		return;
2299 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2300 		return;
2301 
2302 	/*
2303 	 * We have to lock the EOF page here, because lock_page() nests
2304 	 * outside jbd2_journal_start().
2305 	 */
2306 	if ((inode->i_size & (blocksize - 1)) == 0) {
2307 		/* Block boundary? Nothing to do */
2308 		page = NULL;
2309 	} else {
2310 		page = grab_cache_page(mapping,
2311 				inode->i_size >> PAGE_CACHE_SHIFT);
2312 		if (!page)
2313 			return;
2314 	}
2315 
2316 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2317 		ext4_ext_truncate(inode, page);
2318 		return;
2319 	}
2320 
2321 	handle = start_transaction(inode);
2322 	if (IS_ERR(handle)) {
2323 		if (page) {
2324 			clear_highpage(page);
2325 			flush_dcache_page(page);
2326 			unlock_page(page);
2327 			page_cache_release(page);
2328 		}
2329 		return;		/* AKPM: return what? */
2330 	}
2331 
2332 	last_block = (inode->i_size + blocksize-1)
2333 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2334 
2335 	if (page)
2336 		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2337 
2338 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2339 	if (n == 0)
2340 		goto out_stop;	/* error */
2341 
2342 	/*
2343 	 * OK.  This truncate is going to happen.  We add the inode to the
2344 	 * orphan list, so that if this truncate spans multiple transactions,
2345 	 * and we crash, we will resume the truncate when the filesystem
2346 	 * recovers.  It also marks the inode dirty, to catch the new size.
2347 	 *
2348 	 * Implication: the file must always be in a sane, consistent
2349 	 * truncatable state while each transaction commits.
2350 	 */
2351 	if (ext4_orphan_add(handle, inode))
2352 		goto out_stop;
2353 
2354 	/*
2355 	 * The orphan list entry will now protect us from any crash which
2356 	 * occurs before the truncate completes, so it is now safe to propagate
2357 	 * the new, shorter inode size (held for now in i_size) into the
2358 	 * on-disk inode. We do this via i_disksize, which is the value which
2359 	 * ext4 *really* writes onto the disk inode.
2360 	 */
2361 	ei->i_disksize = inode->i_size;
2362 
2363 	/*
2364 	 * From here we block out all ext4_get_block() callers who want to
2365 	 * modify the block allocation tree.
2366 	 */
2367 	down_write(&ei->i_data_sem);
2368 
2369 	if (n == 1) {		/* direct blocks */
2370 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2371 			       i_data + EXT4_NDIR_BLOCKS);
2372 		goto do_indirects;
2373 	}
2374 
2375 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2376 	/* Kill the top of shared branch (not detached) */
2377 	if (nr) {
2378 		if (partial == chain) {
2379 			/* Shared branch grows from the inode */
2380 			ext4_free_branches(handle, inode, NULL,
2381 					   &nr, &nr+1, (chain+n-1) - partial);
2382 			*partial->p = 0;
2383 			/*
2384 			 * We mark the inode dirty prior to restart,
2385 			 * and prior to stop.  No need for it here.
2386 			 */
2387 		} else {
2388 			/* Shared branch grows from an indirect block */
2389 			BUFFER_TRACE(partial->bh, "get_write_access");
2390 			ext4_free_branches(handle, inode, partial->bh,
2391 					partial->p,
2392 					partial->p+1, (chain+n-1) - partial);
2393 		}
2394 	}
2395 	/* Clear the ends of indirect blocks on the shared branch */
2396 	while (partial > chain) {
2397 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2398 				   (__le32*)partial->bh->b_data+addr_per_block,
2399 				   (chain+n-1) - partial);
2400 		BUFFER_TRACE(partial->bh, "call brelse");
2401 		brelse (partial->bh);
2402 		partial--;
2403 	}
2404 do_indirects:
2405 	/* Kill the remaining (whole) subtrees */
2406 	switch (offsets[0]) {
2407 	default:
2408 		nr = i_data[EXT4_IND_BLOCK];
2409 		if (nr) {
2410 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2411 			i_data[EXT4_IND_BLOCK] = 0;
2412 		}
2413 	case EXT4_IND_BLOCK:
2414 		nr = i_data[EXT4_DIND_BLOCK];
2415 		if (nr) {
2416 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2417 			i_data[EXT4_DIND_BLOCK] = 0;
2418 		}
2419 	case EXT4_DIND_BLOCK:
2420 		nr = i_data[EXT4_TIND_BLOCK];
2421 		if (nr) {
2422 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2423 			i_data[EXT4_TIND_BLOCK] = 0;
2424 		}
2425 	case EXT4_TIND_BLOCK:
2426 		;
2427 	}
2428 
2429 	ext4_discard_reservation(inode);
2430 
2431 	up_write(&ei->i_data_sem);
2432 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2433 	ext4_mark_inode_dirty(handle, inode);
2434 
2435 	/*
2436 	 * In a multi-transaction truncate, we only make the final transaction
2437 	 * synchronous
2438 	 */
2439 	if (IS_SYNC(inode))
2440 		handle->h_sync = 1;
2441 out_stop:
2442 	/*
2443 	 * If this was a simple ftruncate(), and the file will remain alive
2444 	 * then we need to clear up the orphan record which we created above.
2445 	 * However, if this was a real unlink then we were called by
2446 	 * ext4_delete_inode(), and we allow that function to clean up the
2447 	 * orphan info for us.
2448 	 */
2449 	if (inode->i_nlink)
2450 		ext4_orphan_del(handle, inode);
2451 
2452 	ext4_journal_stop(handle);
2453 }
2454 
2455 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2456 		unsigned long ino, struct ext4_iloc *iloc)
2457 {
2458 	unsigned long desc, group_desc;
2459 	ext4_group_t block_group;
2460 	unsigned long offset;
2461 	ext4_fsblk_t block;
2462 	struct buffer_head *bh;
2463 	struct ext4_group_desc * gdp;
2464 
2465 	if (!ext4_valid_inum(sb, ino)) {
2466 		/*
2467 		 * This error is already checked for in namei.c unless we are
2468 		 * looking at an NFS filehandle, in which case no error
2469 		 * report is needed
2470 		 */
2471 		return 0;
2472 	}
2473 
2474 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2475 	if (block_group >= EXT4_SB(sb)->s_groups_count) {
2476 		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2477 		return 0;
2478 	}
2479 	smp_rmb();
2480 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2481 	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2482 	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2483 	if (!bh) {
2484 		ext4_error (sb, "ext4_get_inode_block",
2485 			    "Descriptor not loaded");
2486 		return 0;
2487 	}
2488 
2489 	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2490 		desc * EXT4_DESC_SIZE(sb));
2491 	/*
2492 	 * Figure out the offset within the block group inode table
2493 	 */
2494 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2495 		EXT4_INODE_SIZE(sb);
2496 	block = ext4_inode_table(sb, gdp) +
2497 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2498 
2499 	iloc->block_group = block_group;
2500 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2501 	return block;
2502 }
2503 
2504 /*
2505  * ext4_get_inode_loc returns with an extra refcount against the inode's
2506  * underlying buffer_head on success. If 'in_mem' is true, we have all
2507  * data in memory that is needed to recreate the on-disk version of this
2508  * inode.
2509  */
2510 static int __ext4_get_inode_loc(struct inode *inode,
2511 				struct ext4_iloc *iloc, int in_mem)
2512 {
2513 	ext4_fsblk_t block;
2514 	struct buffer_head *bh;
2515 
2516 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2517 	if (!block)
2518 		return -EIO;
2519 
2520 	bh = sb_getblk(inode->i_sb, block);
2521 	if (!bh) {
2522 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2523 				"unable to read inode block - "
2524 				"inode=%lu, block=%llu",
2525 				 inode->i_ino, block);
2526 		return -EIO;
2527 	}
2528 	if (!buffer_uptodate(bh)) {
2529 		lock_buffer(bh);
2530 		if (buffer_uptodate(bh)) {
2531 			/* someone brought it uptodate while we waited */
2532 			unlock_buffer(bh);
2533 			goto has_buffer;
2534 		}
2535 
2536 		/*
2537 		 * If we have all information of the inode in memory and this
2538 		 * is the only valid inode in the block, we need not read the
2539 		 * block.
2540 		 */
2541 		if (in_mem) {
2542 			struct buffer_head *bitmap_bh;
2543 			struct ext4_group_desc *desc;
2544 			int inodes_per_buffer;
2545 			int inode_offset, i;
2546 			ext4_group_t block_group;
2547 			int start;
2548 
2549 			block_group = (inode->i_ino - 1) /
2550 					EXT4_INODES_PER_GROUP(inode->i_sb);
2551 			inodes_per_buffer = bh->b_size /
2552 				EXT4_INODE_SIZE(inode->i_sb);
2553 			inode_offset = ((inode->i_ino - 1) %
2554 					EXT4_INODES_PER_GROUP(inode->i_sb));
2555 			start = inode_offset & ~(inodes_per_buffer - 1);
2556 
2557 			/* Is the inode bitmap in cache? */
2558 			desc = ext4_get_group_desc(inode->i_sb,
2559 						block_group, NULL);
2560 			if (!desc)
2561 				goto make_io;
2562 
2563 			bitmap_bh = sb_getblk(inode->i_sb,
2564 				ext4_inode_bitmap(inode->i_sb, desc));
2565 			if (!bitmap_bh)
2566 				goto make_io;
2567 
2568 			/*
2569 			 * If the inode bitmap isn't in cache then the
2570 			 * optimisation may end up performing two reads instead
2571 			 * of one, so skip it.
2572 			 */
2573 			if (!buffer_uptodate(bitmap_bh)) {
2574 				brelse(bitmap_bh);
2575 				goto make_io;
2576 			}
2577 			for (i = start; i < start + inodes_per_buffer; i++) {
2578 				if (i == inode_offset)
2579 					continue;
2580 				if (ext4_test_bit(i, bitmap_bh->b_data))
2581 					break;
2582 			}
2583 			brelse(bitmap_bh);
2584 			if (i == start + inodes_per_buffer) {
2585 				/* all other inodes are free, so skip I/O */
2586 				memset(bh->b_data, 0, bh->b_size);
2587 				set_buffer_uptodate(bh);
2588 				unlock_buffer(bh);
2589 				goto has_buffer;
2590 			}
2591 		}
2592 
2593 make_io:
2594 		/*
2595 		 * There are other valid inodes in the buffer, this inode
2596 		 * has in-inode xattrs, or we don't have this inode in memory.
2597 		 * Read the block from disk.
2598 		 */
2599 		get_bh(bh);
2600 		bh->b_end_io = end_buffer_read_sync;
2601 		submit_bh(READ_META, bh);
2602 		wait_on_buffer(bh);
2603 		if (!buffer_uptodate(bh)) {
2604 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2605 					"unable to read inode block - "
2606 					"inode=%lu, block=%llu",
2607 					inode->i_ino, block);
2608 			brelse(bh);
2609 			return -EIO;
2610 		}
2611 	}
2612 has_buffer:
2613 	iloc->bh = bh;
2614 	return 0;
2615 }
2616 
2617 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2618 {
2619 	/* We have all inode data except xattrs in memory here. */
2620 	return __ext4_get_inode_loc(inode, iloc,
2621 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2622 }
2623 
2624 void ext4_set_inode_flags(struct inode *inode)
2625 {
2626 	unsigned int flags = EXT4_I(inode)->i_flags;
2627 
2628 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2629 	if (flags & EXT4_SYNC_FL)
2630 		inode->i_flags |= S_SYNC;
2631 	if (flags & EXT4_APPEND_FL)
2632 		inode->i_flags |= S_APPEND;
2633 	if (flags & EXT4_IMMUTABLE_FL)
2634 		inode->i_flags |= S_IMMUTABLE;
2635 	if (flags & EXT4_NOATIME_FL)
2636 		inode->i_flags |= S_NOATIME;
2637 	if (flags & EXT4_DIRSYNC_FL)
2638 		inode->i_flags |= S_DIRSYNC;
2639 }
2640 
2641 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2642 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2643 {
2644 	unsigned int flags = ei->vfs_inode.i_flags;
2645 
2646 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2647 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2648 	if (flags & S_SYNC)
2649 		ei->i_flags |= EXT4_SYNC_FL;
2650 	if (flags & S_APPEND)
2651 		ei->i_flags |= EXT4_APPEND_FL;
2652 	if (flags & S_IMMUTABLE)
2653 		ei->i_flags |= EXT4_IMMUTABLE_FL;
2654 	if (flags & S_NOATIME)
2655 		ei->i_flags |= EXT4_NOATIME_FL;
2656 	if (flags & S_DIRSYNC)
2657 		ei->i_flags |= EXT4_DIRSYNC_FL;
2658 }
2659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2660 					struct ext4_inode_info *ei)
2661 {
2662 	blkcnt_t i_blocks ;
2663 	struct inode *inode = &(ei->vfs_inode);
2664 	struct super_block *sb = inode->i_sb;
2665 
2666 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2667 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2668 		/* we are using combined 48 bit field */
2669 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2670 					le32_to_cpu(raw_inode->i_blocks_lo);
2671 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2672 			/* i_blocks represent file system block size */
2673 			return i_blocks  << (inode->i_blkbits - 9);
2674 		} else {
2675 			return i_blocks;
2676 		}
2677 	} else {
2678 		return le32_to_cpu(raw_inode->i_blocks_lo);
2679 	}
2680 }
2681 
2682 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2683 {
2684 	struct ext4_iloc iloc;
2685 	struct ext4_inode *raw_inode;
2686 	struct ext4_inode_info *ei;
2687 	struct buffer_head *bh;
2688 	struct inode *inode;
2689 	long ret;
2690 	int block;
2691 
2692 	inode = iget_locked(sb, ino);
2693 	if (!inode)
2694 		return ERR_PTR(-ENOMEM);
2695 	if (!(inode->i_state & I_NEW))
2696 		return inode;
2697 
2698 	ei = EXT4_I(inode);
2699 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2700 	ei->i_acl = EXT4_ACL_NOT_CACHED;
2701 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2702 #endif
2703 	ei->i_block_alloc_info = NULL;
2704 
2705 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
2706 	if (ret < 0)
2707 		goto bad_inode;
2708 	bh = iloc.bh;
2709 	raw_inode = ext4_raw_inode(&iloc);
2710 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2711 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2712 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2713 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2714 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2715 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2716 	}
2717 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2718 
2719 	ei->i_state = 0;
2720 	ei->i_dir_start_lookup = 0;
2721 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2722 	/* We now have enough fields to check if the inode was active or not.
2723 	 * This is needed because nfsd might try to access dead inodes
2724 	 * the test is that same one that e2fsck uses
2725 	 * NeilBrown 1999oct15
2726 	 */
2727 	if (inode->i_nlink == 0) {
2728 		if (inode->i_mode == 0 ||
2729 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2730 			/* this inode is deleted */
2731 			brelse (bh);
2732 			ret = -ESTALE;
2733 			goto bad_inode;
2734 		}
2735 		/* The only unlinked inodes we let through here have
2736 		 * valid i_mode and are being read by the orphan
2737 		 * recovery code: that's fine, we're about to complete
2738 		 * the process of deleting those. */
2739 	}
2740 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2741 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2742 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2743 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2744 	    cpu_to_le32(EXT4_OS_HURD)) {
2745 		ei->i_file_acl |=
2746 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2747 	}
2748 	inode->i_size = ext4_isize(raw_inode);
2749 	ei->i_disksize = inode->i_size;
2750 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2751 	ei->i_block_group = iloc.block_group;
2752 	/*
2753 	 * NOTE! The in-memory inode i_data array is in little-endian order
2754 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2755 	 */
2756 	for (block = 0; block < EXT4_N_BLOCKS; block++)
2757 		ei->i_data[block] = raw_inode->i_block[block];
2758 	INIT_LIST_HEAD(&ei->i_orphan);
2759 
2760 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2761 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2762 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2763 		    EXT4_INODE_SIZE(inode->i_sb)) {
2764 			brelse (bh);
2765 			ret = -EIO;
2766 			goto bad_inode;
2767 		}
2768 		if (ei->i_extra_isize == 0) {
2769 			/* The extra space is currently unused. Use it. */
2770 			ei->i_extra_isize = sizeof(struct ext4_inode) -
2771 					    EXT4_GOOD_OLD_INODE_SIZE;
2772 		} else {
2773 			__le32 *magic = (void *)raw_inode +
2774 					EXT4_GOOD_OLD_INODE_SIZE +
2775 					ei->i_extra_isize;
2776 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2777 				 ei->i_state |= EXT4_STATE_XATTR;
2778 		}
2779 	} else
2780 		ei->i_extra_isize = 0;
2781 
2782 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2783 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2784 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2785 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2786 
2787 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2788 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2789 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2790 			inode->i_version |=
2791 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2792 	}
2793 
2794 	if (S_ISREG(inode->i_mode)) {
2795 		inode->i_op = &ext4_file_inode_operations;
2796 		inode->i_fop = &ext4_file_operations;
2797 		ext4_set_aops(inode);
2798 	} else if (S_ISDIR(inode->i_mode)) {
2799 		inode->i_op = &ext4_dir_inode_operations;
2800 		inode->i_fop = &ext4_dir_operations;
2801 	} else if (S_ISLNK(inode->i_mode)) {
2802 		if (ext4_inode_is_fast_symlink(inode))
2803 			inode->i_op = &ext4_fast_symlink_inode_operations;
2804 		else {
2805 			inode->i_op = &ext4_symlink_inode_operations;
2806 			ext4_set_aops(inode);
2807 		}
2808 	} else {
2809 		inode->i_op = &ext4_special_inode_operations;
2810 		if (raw_inode->i_block[0])
2811 			init_special_inode(inode, inode->i_mode,
2812 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2813 		else
2814 			init_special_inode(inode, inode->i_mode,
2815 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2816 	}
2817 	brelse (iloc.bh);
2818 	ext4_set_inode_flags(inode);
2819 	unlock_new_inode(inode);
2820 	return inode;
2821 
2822 bad_inode:
2823 	iget_failed(inode);
2824 	return ERR_PTR(ret);
2825 }
2826 
2827 static int ext4_inode_blocks_set(handle_t *handle,
2828 				struct ext4_inode *raw_inode,
2829 				struct ext4_inode_info *ei)
2830 {
2831 	struct inode *inode = &(ei->vfs_inode);
2832 	u64 i_blocks = inode->i_blocks;
2833 	struct super_block *sb = inode->i_sb;
2834 	int err = 0;
2835 
2836 	if (i_blocks <= ~0U) {
2837 		/*
2838 		 * i_blocks can be represnted in a 32 bit variable
2839 		 * as multiple of 512 bytes
2840 		 */
2841 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2842 		raw_inode->i_blocks_high = 0;
2843 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2844 	} else if (i_blocks <= 0xffffffffffffULL) {
2845 		/*
2846 		 * i_blocks can be represented in a 48 bit variable
2847 		 * as multiple of 512 bytes
2848 		 */
2849 		err = ext4_update_rocompat_feature(handle, sb,
2850 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2851 		if (err)
2852 			goto  err_out;
2853 		/* i_block is stored in the split  48 bit fields */
2854 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2855 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2856 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2857 	} else {
2858 		/*
2859 		 * i_blocks should be represented in a 48 bit variable
2860 		 * as multiple of  file system block size
2861 		 */
2862 		err = ext4_update_rocompat_feature(handle, sb,
2863 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2864 		if (err)
2865 			goto  err_out;
2866 		ei->i_flags |= EXT4_HUGE_FILE_FL;
2867 		/* i_block is stored in file system block size */
2868 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
2869 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2870 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2871 	}
2872 err_out:
2873 	return err;
2874 }
2875 
2876 /*
2877  * Post the struct inode info into an on-disk inode location in the
2878  * buffer-cache.  This gobbles the caller's reference to the
2879  * buffer_head in the inode location struct.
2880  *
2881  * The caller must have write access to iloc->bh.
2882  */
2883 static int ext4_do_update_inode(handle_t *handle,
2884 				struct inode *inode,
2885 				struct ext4_iloc *iloc)
2886 {
2887 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2888 	struct ext4_inode_info *ei = EXT4_I(inode);
2889 	struct buffer_head *bh = iloc->bh;
2890 	int err = 0, rc, block;
2891 
2892 	/* For fields not not tracking in the in-memory inode,
2893 	 * initialise them to zero for new inodes. */
2894 	if (ei->i_state & EXT4_STATE_NEW)
2895 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2896 
2897 	ext4_get_inode_flags(ei);
2898 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2899 	if(!(test_opt(inode->i_sb, NO_UID32))) {
2900 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2901 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2902 /*
2903  * Fix up interoperability with old kernels. Otherwise, old inodes get
2904  * re-used with the upper 16 bits of the uid/gid intact
2905  */
2906 		if(!ei->i_dtime) {
2907 			raw_inode->i_uid_high =
2908 				cpu_to_le16(high_16_bits(inode->i_uid));
2909 			raw_inode->i_gid_high =
2910 				cpu_to_le16(high_16_bits(inode->i_gid));
2911 		} else {
2912 			raw_inode->i_uid_high = 0;
2913 			raw_inode->i_gid_high = 0;
2914 		}
2915 	} else {
2916 		raw_inode->i_uid_low =
2917 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
2918 		raw_inode->i_gid_low =
2919 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
2920 		raw_inode->i_uid_high = 0;
2921 		raw_inode->i_gid_high = 0;
2922 	}
2923 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2924 
2925 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2926 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2927 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2928 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2929 
2930 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
2931 		goto out_brelse;
2932 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2933 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2934 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2935 	    cpu_to_le32(EXT4_OS_HURD))
2936 		raw_inode->i_file_acl_high =
2937 			cpu_to_le16(ei->i_file_acl >> 32);
2938 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2939 	ext4_isize_set(raw_inode, ei->i_disksize);
2940 	if (ei->i_disksize > 0x7fffffffULL) {
2941 		struct super_block *sb = inode->i_sb;
2942 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2943 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2944 				EXT4_SB(sb)->s_es->s_rev_level ==
2945 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2946 			/* If this is the first large file
2947 			 * created, add a flag to the superblock.
2948 			 */
2949 			err = ext4_journal_get_write_access(handle,
2950 					EXT4_SB(sb)->s_sbh);
2951 			if (err)
2952 				goto out_brelse;
2953 			ext4_update_dynamic_rev(sb);
2954 			EXT4_SET_RO_COMPAT_FEATURE(sb,
2955 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2956 			sb->s_dirt = 1;
2957 			handle->h_sync = 1;
2958 			err = ext4_journal_dirty_metadata(handle,
2959 					EXT4_SB(sb)->s_sbh);
2960 		}
2961 	}
2962 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2963 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2964 		if (old_valid_dev(inode->i_rdev)) {
2965 			raw_inode->i_block[0] =
2966 				cpu_to_le32(old_encode_dev(inode->i_rdev));
2967 			raw_inode->i_block[1] = 0;
2968 		} else {
2969 			raw_inode->i_block[0] = 0;
2970 			raw_inode->i_block[1] =
2971 				cpu_to_le32(new_encode_dev(inode->i_rdev));
2972 			raw_inode->i_block[2] = 0;
2973 		}
2974 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2975 		raw_inode->i_block[block] = ei->i_data[block];
2976 
2977 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2978 	if (ei->i_extra_isize) {
2979 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2980 			raw_inode->i_version_hi =
2981 			cpu_to_le32(inode->i_version >> 32);
2982 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2983 	}
2984 
2985 
2986 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2987 	rc = ext4_journal_dirty_metadata(handle, bh);
2988 	if (!err)
2989 		err = rc;
2990 	ei->i_state &= ~EXT4_STATE_NEW;
2991 
2992 out_brelse:
2993 	brelse (bh);
2994 	ext4_std_error(inode->i_sb, err);
2995 	return err;
2996 }
2997 
2998 /*
2999  * ext4_write_inode()
3000  *
3001  * We are called from a few places:
3002  *
3003  * - Within generic_file_write() for O_SYNC files.
3004  *   Here, there will be no transaction running. We wait for any running
3005  *   trasnaction to commit.
3006  *
3007  * - Within sys_sync(), kupdate and such.
3008  *   We wait on commit, if tol to.
3009  *
3010  * - Within prune_icache() (PF_MEMALLOC == true)
3011  *   Here we simply return.  We can't afford to block kswapd on the
3012  *   journal commit.
3013  *
3014  * In all cases it is actually safe for us to return without doing anything,
3015  * because the inode has been copied into a raw inode buffer in
3016  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3017  * knfsd.
3018  *
3019  * Note that we are absolutely dependent upon all inode dirtiers doing the
3020  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3021  * which we are interested.
3022  *
3023  * It would be a bug for them to not do this.  The code:
3024  *
3025  *	mark_inode_dirty(inode)
3026  *	stuff();
3027  *	inode->i_size = expr;
3028  *
3029  * is in error because a kswapd-driven write_inode() could occur while
3030  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3031  * will no longer be on the superblock's dirty inode list.
3032  */
3033 int ext4_write_inode(struct inode *inode, int wait)
3034 {
3035 	if (current->flags & PF_MEMALLOC)
3036 		return 0;
3037 
3038 	if (ext4_journal_current_handle()) {
3039 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3040 		dump_stack();
3041 		return -EIO;
3042 	}
3043 
3044 	if (!wait)
3045 		return 0;
3046 
3047 	return ext4_force_commit(inode->i_sb);
3048 }
3049 
3050 /*
3051  * ext4_setattr()
3052  *
3053  * Called from notify_change.
3054  *
3055  * We want to trap VFS attempts to truncate the file as soon as
3056  * possible.  In particular, we want to make sure that when the VFS
3057  * shrinks i_size, we put the inode on the orphan list and modify
3058  * i_disksize immediately, so that during the subsequent flushing of
3059  * dirty pages and freeing of disk blocks, we can guarantee that any
3060  * commit will leave the blocks being flushed in an unused state on
3061  * disk.  (On recovery, the inode will get truncated and the blocks will
3062  * be freed, so we have a strong guarantee that no future commit will
3063  * leave these blocks visible to the user.)
3064  *
3065  * Called with inode->sem down.
3066  */
3067 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3068 {
3069 	struct inode *inode = dentry->d_inode;
3070 	int error, rc = 0;
3071 	const unsigned int ia_valid = attr->ia_valid;
3072 
3073 	error = inode_change_ok(inode, attr);
3074 	if (error)
3075 		return error;
3076 
3077 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3078 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3079 		handle_t *handle;
3080 
3081 		/* (user+group)*(old+new) structure, inode write (sb,
3082 		 * inode block, ? - but truncate inode update has it) */
3083 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3084 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3085 		if (IS_ERR(handle)) {
3086 			error = PTR_ERR(handle);
3087 			goto err_out;
3088 		}
3089 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3090 		if (error) {
3091 			ext4_journal_stop(handle);
3092 			return error;
3093 		}
3094 		/* Update corresponding info in inode so that everything is in
3095 		 * one transaction */
3096 		if (attr->ia_valid & ATTR_UID)
3097 			inode->i_uid = attr->ia_uid;
3098 		if (attr->ia_valid & ATTR_GID)
3099 			inode->i_gid = attr->ia_gid;
3100 		error = ext4_mark_inode_dirty(handle, inode);
3101 		ext4_journal_stop(handle);
3102 	}
3103 
3104 	if (attr->ia_valid & ATTR_SIZE) {
3105 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3106 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3107 
3108 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3109 				error = -EFBIG;
3110 				goto err_out;
3111 			}
3112 		}
3113 	}
3114 
3115 	if (S_ISREG(inode->i_mode) &&
3116 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3117 		handle_t *handle;
3118 
3119 		handle = ext4_journal_start(inode, 3);
3120 		if (IS_ERR(handle)) {
3121 			error = PTR_ERR(handle);
3122 			goto err_out;
3123 		}
3124 
3125 		error = ext4_orphan_add(handle, inode);
3126 		EXT4_I(inode)->i_disksize = attr->ia_size;
3127 		rc = ext4_mark_inode_dirty(handle, inode);
3128 		if (!error)
3129 			error = rc;
3130 		ext4_journal_stop(handle);
3131 	}
3132 
3133 	rc = inode_setattr(inode, attr);
3134 
3135 	/* If inode_setattr's call to ext4_truncate failed to get a
3136 	 * transaction handle at all, we need to clean up the in-core
3137 	 * orphan list manually. */
3138 	if (inode->i_nlink)
3139 		ext4_orphan_del(NULL, inode);
3140 
3141 	if (!rc && (ia_valid & ATTR_MODE))
3142 		rc = ext4_acl_chmod(inode);
3143 
3144 err_out:
3145 	ext4_std_error(inode->i_sb, error);
3146 	if (!error)
3147 		error = rc;
3148 	return error;
3149 }
3150 
3151 
3152 /*
3153  * How many blocks doth make a writepage()?
3154  *
3155  * With N blocks per page, it may be:
3156  * N data blocks
3157  * 2 indirect block
3158  * 2 dindirect
3159  * 1 tindirect
3160  * N+5 bitmap blocks (from the above)
3161  * N+5 group descriptor summary blocks
3162  * 1 inode block
3163  * 1 superblock.
3164  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3165  *
3166  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3167  *
3168  * With ordered or writeback data it's the same, less the N data blocks.
3169  *
3170  * If the inode's direct blocks can hold an integral number of pages then a
3171  * page cannot straddle two indirect blocks, and we can only touch one indirect
3172  * and dindirect block, and the "5" above becomes "3".
3173  *
3174  * This still overestimates under most circumstances.  If we were to pass the
3175  * start and end offsets in here as well we could do block_to_path() on each
3176  * block and work out the exact number of indirects which are touched.  Pah.
3177  */
3178 
3179 int ext4_writepage_trans_blocks(struct inode *inode)
3180 {
3181 	int bpp = ext4_journal_blocks_per_page(inode);
3182 	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3183 	int ret;
3184 
3185 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3186 		return ext4_ext_writepage_trans_blocks(inode, bpp);
3187 
3188 	if (ext4_should_journal_data(inode))
3189 		ret = 3 * (bpp + indirects) + 2;
3190 	else
3191 		ret = 2 * (bpp + indirects) + 2;
3192 
3193 #ifdef CONFIG_QUOTA
3194 	/* We know that structure was already allocated during DQUOT_INIT so
3195 	 * we will be updating only the data blocks + inodes */
3196 	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3197 #endif
3198 
3199 	return ret;
3200 }
3201 
3202 /*
3203  * The caller must have previously called ext4_reserve_inode_write().
3204  * Give this, we know that the caller already has write access to iloc->bh.
3205  */
3206 int ext4_mark_iloc_dirty(handle_t *handle,
3207 		struct inode *inode, struct ext4_iloc *iloc)
3208 {
3209 	int err = 0;
3210 
3211 	if (test_opt(inode->i_sb, I_VERSION))
3212 		inode_inc_iversion(inode);
3213 
3214 	/* the do_update_inode consumes one bh->b_count */
3215 	get_bh(iloc->bh);
3216 
3217 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3218 	err = ext4_do_update_inode(handle, inode, iloc);
3219 	put_bh(iloc->bh);
3220 	return err;
3221 }
3222 
3223 /*
3224  * On success, We end up with an outstanding reference count against
3225  * iloc->bh.  This _must_ be cleaned up later.
3226  */
3227 
3228 int
3229 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3230 			 struct ext4_iloc *iloc)
3231 {
3232 	int err = 0;
3233 	if (handle) {
3234 		err = ext4_get_inode_loc(inode, iloc);
3235 		if (!err) {
3236 			BUFFER_TRACE(iloc->bh, "get_write_access");
3237 			err = ext4_journal_get_write_access(handle, iloc->bh);
3238 			if (err) {
3239 				brelse(iloc->bh);
3240 				iloc->bh = NULL;
3241 			}
3242 		}
3243 	}
3244 	ext4_std_error(inode->i_sb, err);
3245 	return err;
3246 }
3247 
3248 /*
3249  * Expand an inode by new_extra_isize bytes.
3250  * Returns 0 on success or negative error number on failure.
3251  */
3252 static int ext4_expand_extra_isize(struct inode *inode,
3253 				   unsigned int new_extra_isize,
3254 				   struct ext4_iloc iloc,
3255 				   handle_t *handle)
3256 {
3257 	struct ext4_inode *raw_inode;
3258 	struct ext4_xattr_ibody_header *header;
3259 	struct ext4_xattr_entry *entry;
3260 
3261 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3262 		return 0;
3263 
3264 	raw_inode = ext4_raw_inode(&iloc);
3265 
3266 	header = IHDR(inode, raw_inode);
3267 	entry = IFIRST(header);
3268 
3269 	/* No extended attributes present */
3270 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3271 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3272 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3273 			new_extra_isize);
3274 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
3275 		return 0;
3276 	}
3277 
3278 	/* try to expand with EAs present */
3279 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3280 					  raw_inode, handle);
3281 }
3282 
3283 /*
3284  * What we do here is to mark the in-core inode as clean with respect to inode
3285  * dirtiness (it may still be data-dirty).
3286  * This means that the in-core inode may be reaped by prune_icache
3287  * without having to perform any I/O.  This is a very good thing,
3288  * because *any* task may call prune_icache - even ones which
3289  * have a transaction open against a different journal.
3290  *
3291  * Is this cheating?  Not really.  Sure, we haven't written the
3292  * inode out, but prune_icache isn't a user-visible syncing function.
3293  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3294  * we start and wait on commits.
3295  *
3296  * Is this efficient/effective?  Well, we're being nice to the system
3297  * by cleaning up our inodes proactively so they can be reaped
3298  * without I/O.  But we are potentially leaving up to five seconds'
3299  * worth of inodes floating about which prune_icache wants us to
3300  * write out.  One way to fix that would be to get prune_icache()
3301  * to do a write_super() to free up some memory.  It has the desired
3302  * effect.
3303  */
3304 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3305 {
3306 	struct ext4_iloc iloc;
3307 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3308 	static unsigned int mnt_count;
3309 	int err, ret;
3310 
3311 	might_sleep();
3312 	err = ext4_reserve_inode_write(handle, inode, &iloc);
3313 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3314 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3315 		/*
3316 		 * We need extra buffer credits since we may write into EA block
3317 		 * with this same handle. If journal_extend fails, then it will
3318 		 * only result in a minor loss of functionality for that inode.
3319 		 * If this is felt to be critical, then e2fsck should be run to
3320 		 * force a large enough s_min_extra_isize.
3321 		 */
3322 		if ((jbd2_journal_extend(handle,
3323 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3324 			ret = ext4_expand_extra_isize(inode,
3325 						      sbi->s_want_extra_isize,
3326 						      iloc, handle);
3327 			if (ret) {
3328 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3329 				if (mnt_count !=
3330 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3331 					ext4_warning(inode->i_sb, __FUNCTION__,
3332 					"Unable to expand inode %lu. Delete"
3333 					" some EAs or run e2fsck.",
3334 					inode->i_ino);
3335 					mnt_count =
3336 					  le16_to_cpu(sbi->s_es->s_mnt_count);
3337 				}
3338 			}
3339 		}
3340 	}
3341 	if (!err)
3342 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3343 	return err;
3344 }
3345 
3346 /*
3347  * ext4_dirty_inode() is called from __mark_inode_dirty()
3348  *
3349  * We're really interested in the case where a file is being extended.
3350  * i_size has been changed by generic_commit_write() and we thus need
3351  * to include the updated inode in the current transaction.
3352  *
3353  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3354  * are allocated to the file.
3355  *
3356  * If the inode is marked synchronous, we don't honour that here - doing
3357  * so would cause a commit on atime updates, which we don't bother doing.
3358  * We handle synchronous inodes at the highest possible level.
3359  */
3360 void ext4_dirty_inode(struct inode *inode)
3361 {
3362 	handle_t *current_handle = ext4_journal_current_handle();
3363 	handle_t *handle;
3364 
3365 	handle = ext4_journal_start(inode, 2);
3366 	if (IS_ERR(handle))
3367 		goto out;
3368 	if (current_handle &&
3369 		current_handle->h_transaction != handle->h_transaction) {
3370 		/* This task has a transaction open against a different fs */
3371 		printk(KERN_EMERG "%s: transactions do not match!\n",
3372 		       __FUNCTION__);
3373 	} else {
3374 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3375 				current_handle);
3376 		ext4_mark_inode_dirty(handle, inode);
3377 	}
3378 	ext4_journal_stop(handle);
3379 out:
3380 	return;
3381 }
3382 
3383 #if 0
3384 /*
3385  * Bind an inode's backing buffer_head into this transaction, to prevent
3386  * it from being flushed to disk early.  Unlike
3387  * ext4_reserve_inode_write, this leaves behind no bh reference and
3388  * returns no iloc structure, so the caller needs to repeat the iloc
3389  * lookup to mark the inode dirty later.
3390  */
3391 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3392 {
3393 	struct ext4_iloc iloc;
3394 
3395 	int err = 0;
3396 	if (handle) {
3397 		err = ext4_get_inode_loc(inode, &iloc);
3398 		if (!err) {
3399 			BUFFER_TRACE(iloc.bh, "get_write_access");
3400 			err = jbd2_journal_get_write_access(handle, iloc.bh);
3401 			if (!err)
3402 				err = ext4_journal_dirty_metadata(handle,
3403 								  iloc.bh);
3404 			brelse(iloc.bh);
3405 		}
3406 	}
3407 	ext4_std_error(inode->i_sb, err);
3408 	return err;
3409 }
3410 #endif
3411 
3412 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3413 {
3414 	journal_t *journal;
3415 	handle_t *handle;
3416 	int err;
3417 
3418 	/*
3419 	 * We have to be very careful here: changing a data block's
3420 	 * journaling status dynamically is dangerous.  If we write a
3421 	 * data block to the journal, change the status and then delete
3422 	 * that block, we risk forgetting to revoke the old log record
3423 	 * from the journal and so a subsequent replay can corrupt data.
3424 	 * So, first we make sure that the journal is empty and that
3425 	 * nobody is changing anything.
3426 	 */
3427 
3428 	journal = EXT4_JOURNAL(inode);
3429 	if (is_journal_aborted(journal))
3430 		return -EROFS;
3431 
3432 	jbd2_journal_lock_updates(journal);
3433 	jbd2_journal_flush(journal);
3434 
3435 	/*
3436 	 * OK, there are no updates running now, and all cached data is
3437 	 * synced to disk.  We are now in a completely consistent state
3438 	 * which doesn't have anything in the journal, and we know that
3439 	 * no filesystem updates are running, so it is safe to modify
3440 	 * the inode's in-core data-journaling state flag now.
3441 	 */
3442 
3443 	if (val)
3444 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3445 	else
3446 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3447 	ext4_set_aops(inode);
3448 
3449 	jbd2_journal_unlock_updates(journal);
3450 
3451 	/* Finally we can mark the inode as dirty. */
3452 
3453 	handle = ext4_journal_start(inode, 1);
3454 	if (IS_ERR(handle))
3455 		return PTR_ERR(handle);
3456 
3457 	err = ext4_mark_inode_dirty(handle, inode);
3458 	handle->h_sync = 1;
3459 	ext4_journal_stop(handle);
3460 	ext4_std_error(inode->i_sb, err);
3461 
3462 	return err;
3463 }
3464