1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/ext4_jbd2.h> 29 #include <linux/jbd2.h> 30 #include <linux/highuid.h> 31 #include <linux/pagemap.h> 32 #include <linux/quotaops.h> 33 #include <linux/string.h> 34 #include <linux/buffer_head.h> 35 #include <linux/writeback.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "xattr.h" 40 #include "acl.h" 41 42 /* 43 * Test whether an inode is a fast symlink. 44 */ 45 static int ext4_inode_is_fast_symlink(struct inode *inode) 46 { 47 int ea_blocks = EXT4_I(inode)->i_file_acl ? 48 (inode->i_sb->s_blocksize >> 9) : 0; 49 50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 51 } 52 53 /* 54 * The ext4 forget function must perform a revoke if we are freeing data 55 * which has been journaled. Metadata (eg. indirect blocks) must be 56 * revoked in all cases. 57 * 58 * "bh" may be NULL: a metadata block may have been freed from memory 59 * but there may still be a record of it in the journal, and that record 60 * still needs to be revoked. 61 */ 62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 63 struct buffer_head *bh, ext4_fsblk_t blocknr) 64 { 65 int err; 66 67 might_sleep(); 68 69 BUFFER_TRACE(bh, "enter"); 70 71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 72 "data mode %lx\n", 73 bh, is_metadata, inode->i_mode, 74 test_opt(inode->i_sb, DATA_FLAGS)); 75 76 /* Never use the revoke function if we are doing full data 77 * journaling: there is no need to, and a V1 superblock won't 78 * support it. Otherwise, only skip the revoke on un-journaled 79 * data blocks. */ 80 81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 82 (!is_metadata && !ext4_should_journal_data(inode))) { 83 if (bh) { 84 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 85 return ext4_journal_forget(handle, bh); 86 } 87 return 0; 88 } 89 90 /* 91 * data!=journal && (is_metadata || should_journal_data(inode)) 92 */ 93 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 94 err = ext4_journal_revoke(handle, blocknr, bh); 95 if (err) 96 ext4_abort(inode->i_sb, __FUNCTION__, 97 "error %d when attempting revoke", err); 98 BUFFER_TRACE(bh, "exit"); 99 return err; 100 } 101 102 /* 103 * Work out how many blocks we need to proceed with the next chunk of a 104 * truncate transaction. 105 */ 106 static unsigned long blocks_for_truncate(struct inode *inode) 107 { 108 ext4_lblk_t needed; 109 110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 111 112 /* Give ourselves just enough room to cope with inodes in which 113 * i_blocks is corrupt: we've seen disk corruptions in the past 114 * which resulted in random data in an inode which looked enough 115 * like a regular file for ext4 to try to delete it. Things 116 * will go a bit crazy if that happens, but at least we should 117 * try not to panic the whole kernel. */ 118 if (needed < 2) 119 needed = 2; 120 121 /* But we need to bound the transaction so we don't overflow the 122 * journal. */ 123 if (needed > EXT4_MAX_TRANS_DATA) 124 needed = EXT4_MAX_TRANS_DATA; 125 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 127 } 128 129 /* 130 * Truncate transactions can be complex and absolutely huge. So we need to 131 * be able to restart the transaction at a conventient checkpoint to make 132 * sure we don't overflow the journal. 133 * 134 * start_transaction gets us a new handle for a truncate transaction, 135 * and extend_transaction tries to extend the existing one a bit. If 136 * extend fails, we need to propagate the failure up and restart the 137 * transaction in the top-level truncate loop. --sct 138 */ 139 static handle_t *start_transaction(struct inode *inode) 140 { 141 handle_t *result; 142 143 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 144 if (!IS_ERR(result)) 145 return result; 146 147 ext4_std_error(inode->i_sb, PTR_ERR(result)); 148 return result; 149 } 150 151 /* 152 * Try to extend this transaction for the purposes of truncation. 153 * 154 * Returns 0 if we managed to create more room. If we can't create more 155 * room, and the transaction must be restarted we return 1. 156 */ 157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 158 { 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 160 return 0; 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 162 return 0; 163 return 1; 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 172 { 173 jbd_debug(2, "restarting handle %p\n", handle); 174 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 175 } 176 177 /* 178 * Called at the last iput() if i_nlink is zero. 179 */ 180 void ext4_delete_inode (struct inode * inode) 181 { 182 handle_t *handle; 183 184 truncate_inode_pages(&inode->i_data, 0); 185 186 if (is_bad_inode(inode)) 187 goto no_delete; 188 189 handle = start_transaction(inode); 190 if (IS_ERR(handle)) { 191 /* 192 * If we're going to skip the normal cleanup, we still need to 193 * make sure that the in-core orphan linked list is properly 194 * cleaned up. 195 */ 196 ext4_orphan_del(NULL, inode); 197 goto no_delete; 198 } 199 200 if (IS_SYNC(inode)) 201 handle->h_sync = 1; 202 inode->i_size = 0; 203 if (inode->i_blocks) 204 ext4_truncate(inode); 205 /* 206 * Kill off the orphan record which ext4_truncate created. 207 * AKPM: I think this can be inside the above `if'. 208 * Note that ext4_orphan_del() has to be able to cope with the 209 * deletion of a non-existent orphan - this is because we don't 210 * know if ext4_truncate() actually created an orphan record. 211 * (Well, we could do this if we need to, but heck - it works) 212 */ 213 ext4_orphan_del(handle, inode); 214 EXT4_I(inode)->i_dtime = get_seconds(); 215 216 /* 217 * One subtle ordering requirement: if anything has gone wrong 218 * (transaction abort, IO errors, whatever), then we can still 219 * do these next steps (the fs will already have been marked as 220 * having errors), but we can't free the inode if the mark_dirty 221 * fails. 222 */ 223 if (ext4_mark_inode_dirty(handle, inode)) 224 /* If that failed, just do the required in-core inode clear. */ 225 clear_inode(inode); 226 else 227 ext4_free_inode(handle, inode); 228 ext4_journal_stop(handle); 229 return; 230 no_delete: 231 clear_inode(inode); /* We must guarantee clearing of inode... */ 232 } 233 234 typedef struct { 235 __le32 *p; 236 __le32 key; 237 struct buffer_head *bh; 238 } Indirect; 239 240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 241 { 242 p->key = *(p->p = v); 243 p->bh = bh; 244 } 245 246 /** 247 * ext4_block_to_path - parse the block number into array of offsets 248 * @inode: inode in question (we are only interested in its superblock) 249 * @i_block: block number to be parsed 250 * @offsets: array to store the offsets in 251 * @boundary: set this non-zero if the referred-to block is likely to be 252 * followed (on disk) by an indirect block. 253 * 254 * To store the locations of file's data ext4 uses a data structure common 255 * for UNIX filesystems - tree of pointers anchored in the inode, with 256 * data blocks at leaves and indirect blocks in intermediate nodes. 257 * This function translates the block number into path in that tree - 258 * return value is the path length and @offsets[n] is the offset of 259 * pointer to (n+1)th node in the nth one. If @block is out of range 260 * (negative or too large) warning is printed and zero returned. 261 * 262 * Note: function doesn't find node addresses, so no IO is needed. All 263 * we need to know is the capacity of indirect blocks (taken from the 264 * inode->i_sb). 265 */ 266 267 /* 268 * Portability note: the last comparison (check that we fit into triple 269 * indirect block) is spelled differently, because otherwise on an 270 * architecture with 32-bit longs and 8Kb pages we might get into trouble 271 * if our filesystem had 8Kb blocks. We might use long long, but that would 272 * kill us on x86. Oh, well, at least the sign propagation does not matter - 273 * i_block would have to be negative in the very beginning, so we would not 274 * get there at all. 275 */ 276 277 static int ext4_block_to_path(struct inode *inode, 278 ext4_lblk_t i_block, 279 ext4_lblk_t offsets[4], int *boundary) 280 { 281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 283 const long direct_blocks = EXT4_NDIR_BLOCKS, 284 indirect_blocks = ptrs, 285 double_blocks = (1 << (ptrs_bits * 2)); 286 int n = 0; 287 int final = 0; 288 289 if (i_block < 0) { 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 291 } else if (i_block < direct_blocks) { 292 offsets[n++] = i_block; 293 final = direct_blocks; 294 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 295 offsets[n++] = EXT4_IND_BLOCK; 296 offsets[n++] = i_block; 297 final = ptrs; 298 } else if ((i_block -= indirect_blocks) < double_blocks) { 299 offsets[n++] = EXT4_DIND_BLOCK; 300 offsets[n++] = i_block >> ptrs_bits; 301 offsets[n++] = i_block & (ptrs - 1); 302 final = ptrs; 303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 304 offsets[n++] = EXT4_TIND_BLOCK; 305 offsets[n++] = i_block >> (ptrs_bits * 2); 306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 307 offsets[n++] = i_block & (ptrs - 1); 308 final = ptrs; 309 } else { 310 ext4_warning(inode->i_sb, "ext4_block_to_path", 311 "block %lu > max", 312 i_block + direct_blocks + 313 indirect_blocks + double_blocks); 314 } 315 if (boundary) 316 *boundary = final - 1 - (i_block & (ptrs - 1)); 317 return n; 318 } 319 320 /** 321 * ext4_get_branch - read the chain of indirect blocks leading to data 322 * @inode: inode in question 323 * @depth: depth of the chain (1 - direct pointer, etc.) 324 * @offsets: offsets of pointers in inode/indirect blocks 325 * @chain: place to store the result 326 * @err: here we store the error value 327 * 328 * Function fills the array of triples <key, p, bh> and returns %NULL 329 * if everything went OK or the pointer to the last filled triple 330 * (incomplete one) otherwise. Upon the return chain[i].key contains 331 * the number of (i+1)-th block in the chain (as it is stored in memory, 332 * i.e. little-endian 32-bit), chain[i].p contains the address of that 333 * number (it points into struct inode for i==0 and into the bh->b_data 334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 335 * block for i>0 and NULL for i==0. In other words, it holds the block 336 * numbers of the chain, addresses they were taken from (and where we can 337 * verify that chain did not change) and buffer_heads hosting these 338 * numbers. 339 * 340 * Function stops when it stumbles upon zero pointer (absent block) 341 * (pointer to last triple returned, *@err == 0) 342 * or when it gets an IO error reading an indirect block 343 * (ditto, *@err == -EIO) 344 * or when it reads all @depth-1 indirect blocks successfully and finds 345 * the whole chain, all way to the data (returns %NULL, *err == 0). 346 * 347 * Need to be called with 348 * down_read(&EXT4_I(inode)->i_data_sem) 349 */ 350 static Indirect *ext4_get_branch(struct inode *inode, int depth, 351 ext4_lblk_t *offsets, 352 Indirect chain[4], int *err) 353 { 354 struct super_block *sb = inode->i_sb; 355 Indirect *p = chain; 356 struct buffer_head *bh; 357 358 *err = 0; 359 /* i_data is not going away, no lock needed */ 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 361 if (!p->key) 362 goto no_block; 363 while (--depth) { 364 bh = sb_bread(sb, le32_to_cpu(p->key)); 365 if (!bh) 366 goto failure; 367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 368 /* Reader: end */ 369 if (!p->key) 370 goto no_block; 371 } 372 return NULL; 373 374 failure: 375 *err = -EIO; 376 no_block: 377 return p; 378 } 379 380 /** 381 * ext4_find_near - find a place for allocation with sufficient locality 382 * @inode: owner 383 * @ind: descriptor of indirect block. 384 * 385 * This function returns the prefered place for block allocation. 386 * It is used when heuristic for sequential allocation fails. 387 * Rules are: 388 * + if there is a block to the left of our position - allocate near it. 389 * + if pointer will live in indirect block - allocate near that block. 390 * + if pointer will live in inode - allocate in the same 391 * cylinder group. 392 * 393 * In the latter case we colour the starting block by the callers PID to 394 * prevent it from clashing with concurrent allocations for a different inode 395 * in the same block group. The PID is used here so that functionally related 396 * files will be close-by on-disk. 397 * 398 * Caller must make sure that @ind is valid and will stay that way. 399 */ 400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 401 { 402 struct ext4_inode_info *ei = EXT4_I(inode); 403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 404 __le32 *p; 405 ext4_fsblk_t bg_start; 406 ext4_grpblk_t colour; 407 408 /* Try to find previous block */ 409 for (p = ind->p - 1; p >= start; p--) { 410 if (*p) 411 return le32_to_cpu(*p); 412 } 413 414 /* No such thing, so let's try location of indirect block */ 415 if (ind->bh) 416 return ind->bh->b_blocknr; 417 418 /* 419 * It is going to be referred to from the inode itself? OK, just put it 420 * into the same cylinder group then. 421 */ 422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 423 colour = (current->pid % 16) * 424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 425 return bg_start + colour; 426 } 427 428 /** 429 * ext4_find_goal - find a prefered place for allocation. 430 * @inode: owner 431 * @block: block we want 432 * @partial: pointer to the last triple within a chain 433 * 434 * Normally this function find the prefered place for block allocation, 435 * returns it. 436 */ 437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 438 Indirect *partial) 439 { 440 struct ext4_block_alloc_info *block_i; 441 442 block_i = EXT4_I(inode)->i_block_alloc_info; 443 444 /* 445 * try the heuristic for sequential allocation, 446 * failing that at least try to get decent locality. 447 */ 448 if (block_i && (block == block_i->last_alloc_logical_block + 1) 449 && (block_i->last_alloc_physical_block != 0)) { 450 return block_i->last_alloc_physical_block + 1; 451 } 452 453 return ext4_find_near(inode, partial); 454 } 455 456 /** 457 * ext4_blks_to_allocate: Look up the block map and count the number 458 * of direct blocks need to be allocated for the given branch. 459 * 460 * @branch: chain of indirect blocks 461 * @k: number of blocks need for indirect blocks 462 * @blks: number of data blocks to be mapped. 463 * @blocks_to_boundary: the offset in the indirect block 464 * 465 * return the total number of blocks to be allocate, including the 466 * direct and indirect blocks. 467 */ 468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 469 int blocks_to_boundary) 470 { 471 unsigned long count = 0; 472 473 /* 474 * Simple case, [t,d]Indirect block(s) has not allocated yet 475 * then it's clear blocks on that path have not allocated 476 */ 477 if (k > 0) { 478 /* right now we don't handle cross boundary allocation */ 479 if (blks < blocks_to_boundary + 1) 480 count += blks; 481 else 482 count += blocks_to_boundary + 1; 483 return count; 484 } 485 486 count++; 487 while (count < blks && count <= blocks_to_boundary && 488 le32_to_cpu(*(branch[0].p + count)) == 0) { 489 count++; 490 } 491 return count; 492 } 493 494 /** 495 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 496 * @indirect_blks: the number of blocks need to allocate for indirect 497 * blocks 498 * 499 * @new_blocks: on return it will store the new block numbers for 500 * the indirect blocks(if needed) and the first direct block, 501 * @blks: on return it will store the total number of allocated 502 * direct blocks 503 */ 504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 505 ext4_fsblk_t goal, int indirect_blks, int blks, 506 ext4_fsblk_t new_blocks[4], int *err) 507 { 508 int target, i; 509 unsigned long count = 0; 510 int index = 0; 511 ext4_fsblk_t current_block = 0; 512 int ret = 0; 513 514 /* 515 * Here we try to allocate the requested multiple blocks at once, 516 * on a best-effort basis. 517 * To build a branch, we should allocate blocks for 518 * the indirect blocks(if not allocated yet), and at least 519 * the first direct block of this branch. That's the 520 * minimum number of blocks need to allocate(required) 521 */ 522 target = blks + indirect_blks; 523 524 while (1) { 525 count = target; 526 /* allocating blocks for indirect blocks and direct blocks */ 527 current_block = ext4_new_blocks(handle,inode,goal,&count,err); 528 if (*err) 529 goto failed_out; 530 531 target -= count; 532 /* allocate blocks for indirect blocks */ 533 while (index < indirect_blks && count) { 534 new_blocks[index++] = current_block++; 535 count--; 536 } 537 538 if (count > 0) 539 break; 540 } 541 542 /* save the new block number for the first direct block */ 543 new_blocks[index] = current_block; 544 545 /* total number of blocks allocated for direct blocks */ 546 ret = count; 547 *err = 0; 548 return ret; 549 failed_out: 550 for (i = 0; i <index; i++) 551 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 552 return ret; 553 } 554 555 /** 556 * ext4_alloc_branch - allocate and set up a chain of blocks. 557 * @inode: owner 558 * @indirect_blks: number of allocated indirect blocks 559 * @blks: number of allocated direct blocks 560 * @offsets: offsets (in the blocks) to store the pointers to next. 561 * @branch: place to store the chain in. 562 * 563 * This function allocates blocks, zeroes out all but the last one, 564 * links them into chain and (if we are synchronous) writes them to disk. 565 * In other words, it prepares a branch that can be spliced onto the 566 * inode. It stores the information about that chain in the branch[], in 567 * the same format as ext4_get_branch() would do. We are calling it after 568 * we had read the existing part of chain and partial points to the last 569 * triple of that (one with zero ->key). Upon the exit we have the same 570 * picture as after the successful ext4_get_block(), except that in one 571 * place chain is disconnected - *branch->p is still zero (we did not 572 * set the last link), but branch->key contains the number that should 573 * be placed into *branch->p to fill that gap. 574 * 575 * If allocation fails we free all blocks we've allocated (and forget 576 * their buffer_heads) and return the error value the from failed 577 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 578 * as described above and return 0. 579 */ 580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 581 int indirect_blks, int *blks, ext4_fsblk_t goal, 582 ext4_lblk_t *offsets, Indirect *branch) 583 { 584 int blocksize = inode->i_sb->s_blocksize; 585 int i, n = 0; 586 int err = 0; 587 struct buffer_head *bh; 588 int num; 589 ext4_fsblk_t new_blocks[4]; 590 ext4_fsblk_t current_block; 591 592 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks, 593 *blks, new_blocks, &err); 594 if (err) 595 return err; 596 597 branch[0].key = cpu_to_le32(new_blocks[0]); 598 /* 599 * metadata blocks and data blocks are allocated. 600 */ 601 for (n = 1; n <= indirect_blks; n++) { 602 /* 603 * Get buffer_head for parent block, zero it out 604 * and set the pointer to new one, then send 605 * parent to disk. 606 */ 607 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 608 branch[n].bh = bh; 609 lock_buffer(bh); 610 BUFFER_TRACE(bh, "call get_create_access"); 611 err = ext4_journal_get_create_access(handle, bh); 612 if (err) { 613 unlock_buffer(bh); 614 brelse(bh); 615 goto failed; 616 } 617 618 memset(bh->b_data, 0, blocksize); 619 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 620 branch[n].key = cpu_to_le32(new_blocks[n]); 621 *branch[n].p = branch[n].key; 622 if ( n == indirect_blks) { 623 current_block = new_blocks[n]; 624 /* 625 * End of chain, update the last new metablock of 626 * the chain to point to the new allocated 627 * data blocks numbers 628 */ 629 for (i=1; i < num; i++) 630 *(branch[n].p + i) = cpu_to_le32(++current_block); 631 } 632 BUFFER_TRACE(bh, "marking uptodate"); 633 set_buffer_uptodate(bh); 634 unlock_buffer(bh); 635 636 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 637 err = ext4_journal_dirty_metadata(handle, bh); 638 if (err) 639 goto failed; 640 } 641 *blks = num; 642 return err; 643 failed: 644 /* Allocation failed, free what we already allocated */ 645 for (i = 1; i <= n ; i++) { 646 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 647 ext4_journal_forget(handle, branch[i].bh); 648 } 649 for (i = 0; i <indirect_blks; i++) 650 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 651 652 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 653 654 return err; 655 } 656 657 /** 658 * ext4_splice_branch - splice the allocated branch onto inode. 659 * @inode: owner 660 * @block: (logical) number of block we are adding 661 * @chain: chain of indirect blocks (with a missing link - see 662 * ext4_alloc_branch) 663 * @where: location of missing link 664 * @num: number of indirect blocks we are adding 665 * @blks: number of direct blocks we are adding 666 * 667 * This function fills the missing link and does all housekeeping needed in 668 * inode (->i_blocks, etc.). In case of success we end up with the full 669 * chain to new block and return 0. 670 */ 671 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 672 ext4_lblk_t block, Indirect *where, int num, int blks) 673 { 674 int i; 675 int err = 0; 676 struct ext4_block_alloc_info *block_i; 677 ext4_fsblk_t current_block; 678 679 block_i = EXT4_I(inode)->i_block_alloc_info; 680 /* 681 * If we're splicing into a [td]indirect block (as opposed to the 682 * inode) then we need to get write access to the [td]indirect block 683 * before the splice. 684 */ 685 if (where->bh) { 686 BUFFER_TRACE(where->bh, "get_write_access"); 687 err = ext4_journal_get_write_access(handle, where->bh); 688 if (err) 689 goto err_out; 690 } 691 /* That's it */ 692 693 *where->p = where->key; 694 695 /* 696 * Update the host buffer_head or inode to point to more just allocated 697 * direct blocks blocks 698 */ 699 if (num == 0 && blks > 1) { 700 current_block = le32_to_cpu(where->key) + 1; 701 for (i = 1; i < blks; i++) 702 *(where->p + i ) = cpu_to_le32(current_block++); 703 } 704 705 /* 706 * update the most recently allocated logical & physical block 707 * in i_block_alloc_info, to assist find the proper goal block for next 708 * allocation 709 */ 710 if (block_i) { 711 block_i->last_alloc_logical_block = block + blks - 1; 712 block_i->last_alloc_physical_block = 713 le32_to_cpu(where[num].key) + blks - 1; 714 } 715 716 /* We are done with atomic stuff, now do the rest of housekeeping */ 717 718 inode->i_ctime = ext4_current_time(inode); 719 ext4_mark_inode_dirty(handle, inode); 720 721 /* had we spliced it onto indirect block? */ 722 if (where->bh) { 723 /* 724 * If we spliced it onto an indirect block, we haven't 725 * altered the inode. Note however that if it is being spliced 726 * onto an indirect block at the very end of the file (the 727 * file is growing) then we *will* alter the inode to reflect 728 * the new i_size. But that is not done here - it is done in 729 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 730 */ 731 jbd_debug(5, "splicing indirect only\n"); 732 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 733 err = ext4_journal_dirty_metadata(handle, where->bh); 734 if (err) 735 goto err_out; 736 } else { 737 /* 738 * OK, we spliced it into the inode itself on a direct block. 739 * Inode was dirtied above. 740 */ 741 jbd_debug(5, "splicing direct\n"); 742 } 743 return err; 744 745 err_out: 746 for (i = 1; i <= num; i++) { 747 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 748 ext4_journal_forget(handle, where[i].bh); 749 ext4_free_blocks(handle, inode, 750 le32_to_cpu(where[i-1].key), 1, 0); 751 } 752 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 753 754 return err; 755 } 756 757 /* 758 * Allocation strategy is simple: if we have to allocate something, we will 759 * have to go the whole way to leaf. So let's do it before attaching anything 760 * to tree, set linkage between the newborn blocks, write them if sync is 761 * required, recheck the path, free and repeat if check fails, otherwise 762 * set the last missing link (that will protect us from any truncate-generated 763 * removals - all blocks on the path are immune now) and possibly force the 764 * write on the parent block. 765 * That has a nice additional property: no special recovery from the failed 766 * allocations is needed - we simply release blocks and do not touch anything 767 * reachable from inode. 768 * 769 * `handle' can be NULL if create == 0. 770 * 771 * The BKL may not be held on entry here. Be sure to take it early. 772 * return > 0, # of blocks mapped or allocated. 773 * return = 0, if plain lookup failed. 774 * return < 0, error case. 775 * 776 * 777 * Need to be called with 778 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 779 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 780 */ 781 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 782 ext4_lblk_t iblock, unsigned long maxblocks, 783 struct buffer_head *bh_result, 784 int create, int extend_disksize) 785 { 786 int err = -EIO; 787 ext4_lblk_t offsets[4]; 788 Indirect chain[4]; 789 Indirect *partial; 790 ext4_fsblk_t goal; 791 int indirect_blks; 792 int blocks_to_boundary = 0; 793 int depth; 794 struct ext4_inode_info *ei = EXT4_I(inode); 795 int count = 0; 796 ext4_fsblk_t first_block = 0; 797 798 799 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 800 J_ASSERT(handle != NULL || create == 0); 801 depth = ext4_block_to_path(inode, iblock, offsets, 802 &blocks_to_boundary); 803 804 if (depth == 0) 805 goto out; 806 807 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 808 809 /* Simplest case - block found, no allocation needed */ 810 if (!partial) { 811 first_block = le32_to_cpu(chain[depth - 1].key); 812 clear_buffer_new(bh_result); 813 count++; 814 /*map more blocks*/ 815 while (count < maxblocks && count <= blocks_to_boundary) { 816 ext4_fsblk_t blk; 817 818 blk = le32_to_cpu(*(chain[depth-1].p + count)); 819 820 if (blk == first_block + count) 821 count++; 822 else 823 break; 824 } 825 goto got_it; 826 } 827 828 /* Next simple case - plain lookup or failed read of indirect block */ 829 if (!create || err == -EIO) 830 goto cleanup; 831 832 /* 833 * Okay, we need to do block allocation. Lazily initialize the block 834 * allocation info here if necessary 835 */ 836 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 837 ext4_init_block_alloc_info(inode); 838 839 goal = ext4_find_goal(inode, iblock, partial); 840 841 /* the number of blocks need to allocate for [d,t]indirect blocks */ 842 indirect_blks = (chain + depth) - partial - 1; 843 844 /* 845 * Next look up the indirect map to count the totoal number of 846 * direct blocks to allocate for this branch. 847 */ 848 count = ext4_blks_to_allocate(partial, indirect_blks, 849 maxblocks, blocks_to_boundary); 850 /* 851 * Block out ext4_truncate while we alter the tree 852 */ 853 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal, 854 offsets + (partial - chain), partial); 855 856 /* 857 * The ext4_splice_branch call will free and forget any buffers 858 * on the new chain if there is a failure, but that risks using 859 * up transaction credits, especially for bitmaps where the 860 * credits cannot be returned. Can we handle this somehow? We 861 * may need to return -EAGAIN upwards in the worst case. --sct 862 */ 863 if (!err) 864 err = ext4_splice_branch(handle, inode, iblock, 865 partial, indirect_blks, count); 866 /* 867 * i_disksize growing is protected by i_data_sem. Don't forget to 868 * protect it if you're about to implement concurrent 869 * ext4_get_block() -bzzz 870 */ 871 if (!err && extend_disksize && inode->i_size > ei->i_disksize) 872 ei->i_disksize = inode->i_size; 873 if (err) 874 goto cleanup; 875 876 set_buffer_new(bh_result); 877 got_it: 878 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 879 if (count > blocks_to_boundary) 880 set_buffer_boundary(bh_result); 881 err = count; 882 /* Clean up and exit */ 883 partial = chain + depth - 1; /* the whole chain */ 884 cleanup: 885 while (partial > chain) { 886 BUFFER_TRACE(partial->bh, "call brelse"); 887 brelse(partial->bh); 888 partial--; 889 } 890 BUFFER_TRACE(bh_result, "returned"); 891 out: 892 return err; 893 } 894 895 /* Maximum number of blocks we map for direct IO at once. */ 896 #define DIO_MAX_BLOCKS 4096 897 /* 898 * Number of credits we need for writing DIO_MAX_BLOCKS: 899 * We need sb + group descriptor + bitmap + inode -> 4 900 * For B blocks with A block pointers per block we need: 901 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 902 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 903 */ 904 #define DIO_CREDITS 25 905 906 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 907 unsigned long max_blocks, struct buffer_head *bh, 908 int create, int extend_disksize) 909 { 910 int retval; 911 /* 912 * Try to see if we can get the block without requesting 913 * for new file system block. 914 */ 915 down_read((&EXT4_I(inode)->i_data_sem)); 916 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 917 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 918 bh, 0, 0); 919 } else { 920 retval = ext4_get_blocks_handle(handle, 921 inode, block, max_blocks, bh, 0, 0); 922 } 923 up_read((&EXT4_I(inode)->i_data_sem)); 924 if (!create || (retval > 0)) 925 return retval; 926 927 /* 928 * We need to allocate new blocks which will result 929 * in i_data update 930 */ 931 down_write((&EXT4_I(inode)->i_data_sem)); 932 /* 933 * We need to check for EXT4 here because migrate 934 * could have changed the inode type in between 935 */ 936 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 937 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 938 bh, create, extend_disksize); 939 } else { 940 retval = ext4_get_blocks_handle(handle, inode, block, 941 max_blocks, bh, create, extend_disksize); 942 } 943 up_write((&EXT4_I(inode)->i_data_sem)); 944 return retval; 945 } 946 947 static int ext4_get_block(struct inode *inode, sector_t iblock, 948 struct buffer_head *bh_result, int create) 949 { 950 handle_t *handle = ext4_journal_current_handle(); 951 int ret = 0, started = 0; 952 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 953 954 if (create && !handle) { 955 /* Direct IO write... */ 956 if (max_blocks > DIO_MAX_BLOCKS) 957 max_blocks = DIO_MAX_BLOCKS; 958 handle = ext4_journal_start(inode, DIO_CREDITS + 959 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb)); 960 if (IS_ERR(handle)) { 961 ret = PTR_ERR(handle); 962 goto out; 963 } 964 started = 1; 965 } 966 967 ret = ext4_get_blocks_wrap(handle, inode, iblock, 968 max_blocks, bh_result, create, 0); 969 if (ret > 0) { 970 bh_result->b_size = (ret << inode->i_blkbits); 971 ret = 0; 972 } 973 if (started) 974 ext4_journal_stop(handle); 975 out: 976 return ret; 977 } 978 979 /* 980 * `handle' can be NULL if create is zero 981 */ 982 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 983 ext4_lblk_t block, int create, int *errp) 984 { 985 struct buffer_head dummy; 986 int fatal = 0, err; 987 988 J_ASSERT(handle != NULL || create == 0); 989 990 dummy.b_state = 0; 991 dummy.b_blocknr = -1000; 992 buffer_trace_init(&dummy.b_history); 993 err = ext4_get_blocks_wrap(handle, inode, block, 1, 994 &dummy, create, 1); 995 /* 996 * ext4_get_blocks_handle() returns number of blocks 997 * mapped. 0 in case of a HOLE. 998 */ 999 if (err > 0) { 1000 if (err > 1) 1001 WARN_ON(1); 1002 err = 0; 1003 } 1004 *errp = err; 1005 if (!err && buffer_mapped(&dummy)) { 1006 struct buffer_head *bh; 1007 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1008 if (!bh) { 1009 *errp = -EIO; 1010 goto err; 1011 } 1012 if (buffer_new(&dummy)) { 1013 J_ASSERT(create != 0); 1014 J_ASSERT(handle != NULL); 1015 1016 /* 1017 * Now that we do not always journal data, we should 1018 * keep in mind whether this should always journal the 1019 * new buffer as metadata. For now, regular file 1020 * writes use ext4_get_block instead, so it's not a 1021 * problem. 1022 */ 1023 lock_buffer(bh); 1024 BUFFER_TRACE(bh, "call get_create_access"); 1025 fatal = ext4_journal_get_create_access(handle, bh); 1026 if (!fatal && !buffer_uptodate(bh)) { 1027 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1028 set_buffer_uptodate(bh); 1029 } 1030 unlock_buffer(bh); 1031 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1032 err = ext4_journal_dirty_metadata(handle, bh); 1033 if (!fatal) 1034 fatal = err; 1035 } else { 1036 BUFFER_TRACE(bh, "not a new buffer"); 1037 } 1038 if (fatal) { 1039 *errp = fatal; 1040 brelse(bh); 1041 bh = NULL; 1042 } 1043 return bh; 1044 } 1045 err: 1046 return NULL; 1047 } 1048 1049 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1050 ext4_lblk_t block, int create, int *err) 1051 { 1052 struct buffer_head * bh; 1053 1054 bh = ext4_getblk(handle, inode, block, create, err); 1055 if (!bh) 1056 return bh; 1057 if (buffer_uptodate(bh)) 1058 return bh; 1059 ll_rw_block(READ_META, 1, &bh); 1060 wait_on_buffer(bh); 1061 if (buffer_uptodate(bh)) 1062 return bh; 1063 put_bh(bh); 1064 *err = -EIO; 1065 return NULL; 1066 } 1067 1068 static int walk_page_buffers( handle_t *handle, 1069 struct buffer_head *head, 1070 unsigned from, 1071 unsigned to, 1072 int *partial, 1073 int (*fn)( handle_t *handle, 1074 struct buffer_head *bh)) 1075 { 1076 struct buffer_head *bh; 1077 unsigned block_start, block_end; 1078 unsigned blocksize = head->b_size; 1079 int err, ret = 0; 1080 struct buffer_head *next; 1081 1082 for ( bh = head, block_start = 0; 1083 ret == 0 && (bh != head || !block_start); 1084 block_start = block_end, bh = next) 1085 { 1086 next = bh->b_this_page; 1087 block_end = block_start + blocksize; 1088 if (block_end <= from || block_start >= to) { 1089 if (partial && !buffer_uptodate(bh)) 1090 *partial = 1; 1091 continue; 1092 } 1093 err = (*fn)(handle, bh); 1094 if (!ret) 1095 ret = err; 1096 } 1097 return ret; 1098 } 1099 1100 /* 1101 * To preserve ordering, it is essential that the hole instantiation and 1102 * the data write be encapsulated in a single transaction. We cannot 1103 * close off a transaction and start a new one between the ext4_get_block() 1104 * and the commit_write(). So doing the jbd2_journal_start at the start of 1105 * prepare_write() is the right place. 1106 * 1107 * Also, this function can nest inside ext4_writepage() -> 1108 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1109 * has generated enough buffer credits to do the whole page. So we won't 1110 * block on the journal in that case, which is good, because the caller may 1111 * be PF_MEMALLOC. 1112 * 1113 * By accident, ext4 can be reentered when a transaction is open via 1114 * quota file writes. If we were to commit the transaction while thus 1115 * reentered, there can be a deadlock - we would be holding a quota 1116 * lock, and the commit would never complete if another thread had a 1117 * transaction open and was blocking on the quota lock - a ranking 1118 * violation. 1119 * 1120 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1121 * will _not_ run commit under these circumstances because handle->h_ref 1122 * is elevated. We'll still have enough credits for the tiny quotafile 1123 * write. 1124 */ 1125 static int do_journal_get_write_access(handle_t *handle, 1126 struct buffer_head *bh) 1127 { 1128 if (!buffer_mapped(bh) || buffer_freed(bh)) 1129 return 0; 1130 return ext4_journal_get_write_access(handle, bh); 1131 } 1132 1133 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1134 loff_t pos, unsigned len, unsigned flags, 1135 struct page **pagep, void **fsdata) 1136 { 1137 struct inode *inode = mapping->host; 1138 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1139 handle_t *handle; 1140 int retries = 0; 1141 struct page *page; 1142 pgoff_t index; 1143 unsigned from, to; 1144 1145 index = pos >> PAGE_CACHE_SHIFT; 1146 from = pos & (PAGE_CACHE_SIZE - 1); 1147 to = from + len; 1148 1149 retry: 1150 page = __grab_cache_page(mapping, index); 1151 if (!page) 1152 return -ENOMEM; 1153 *pagep = page; 1154 1155 handle = ext4_journal_start(inode, needed_blocks); 1156 if (IS_ERR(handle)) { 1157 unlock_page(page); 1158 page_cache_release(page); 1159 ret = PTR_ERR(handle); 1160 goto out; 1161 } 1162 1163 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1164 ext4_get_block); 1165 1166 if (!ret && ext4_should_journal_data(inode)) { 1167 ret = walk_page_buffers(handle, page_buffers(page), 1168 from, to, NULL, do_journal_get_write_access); 1169 } 1170 1171 if (ret) { 1172 ext4_journal_stop(handle); 1173 unlock_page(page); 1174 page_cache_release(page); 1175 } 1176 1177 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1178 goto retry; 1179 out: 1180 return ret; 1181 } 1182 1183 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1184 { 1185 int err = jbd2_journal_dirty_data(handle, bh); 1186 if (err) 1187 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__, 1188 bh, handle, err); 1189 return err; 1190 } 1191 1192 /* For write_end() in data=journal mode */ 1193 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1194 { 1195 if (!buffer_mapped(bh) || buffer_freed(bh)) 1196 return 0; 1197 set_buffer_uptodate(bh); 1198 return ext4_journal_dirty_metadata(handle, bh); 1199 } 1200 1201 /* 1202 * Generic write_end handler for ordered and writeback ext4 journal modes. 1203 * We can't use generic_write_end, because that unlocks the page and we need to 1204 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run 1205 * after block_write_end. 1206 */ 1207 static int ext4_generic_write_end(struct file *file, 1208 struct address_space *mapping, 1209 loff_t pos, unsigned len, unsigned copied, 1210 struct page *page, void *fsdata) 1211 { 1212 struct inode *inode = file->f_mapping->host; 1213 1214 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1215 1216 if (pos+copied > inode->i_size) { 1217 i_size_write(inode, pos+copied); 1218 mark_inode_dirty(inode); 1219 } 1220 1221 return copied; 1222 } 1223 1224 /* 1225 * We need to pick up the new inode size which generic_commit_write gave us 1226 * `file' can be NULL - eg, when called from page_symlink(). 1227 * 1228 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1229 * buffers are managed internally. 1230 */ 1231 static int ext4_ordered_write_end(struct file *file, 1232 struct address_space *mapping, 1233 loff_t pos, unsigned len, unsigned copied, 1234 struct page *page, void *fsdata) 1235 { 1236 handle_t *handle = ext4_journal_current_handle(); 1237 struct inode *inode = file->f_mapping->host; 1238 unsigned from, to; 1239 int ret = 0, ret2; 1240 1241 from = pos & (PAGE_CACHE_SIZE - 1); 1242 to = from + len; 1243 1244 ret = walk_page_buffers(handle, page_buffers(page), 1245 from, to, NULL, ext4_journal_dirty_data); 1246 1247 if (ret == 0) { 1248 /* 1249 * generic_write_end() will run mark_inode_dirty() if i_size 1250 * changes. So let's piggyback the i_disksize mark_inode_dirty 1251 * into that. 1252 */ 1253 loff_t new_i_size; 1254 1255 new_i_size = pos + copied; 1256 if (new_i_size > EXT4_I(inode)->i_disksize) 1257 EXT4_I(inode)->i_disksize = new_i_size; 1258 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1259 page, fsdata); 1260 if (copied < 0) 1261 ret = copied; 1262 } 1263 ret2 = ext4_journal_stop(handle); 1264 if (!ret) 1265 ret = ret2; 1266 unlock_page(page); 1267 page_cache_release(page); 1268 1269 return ret ? ret : copied; 1270 } 1271 1272 static int ext4_writeback_write_end(struct file *file, 1273 struct address_space *mapping, 1274 loff_t pos, unsigned len, unsigned copied, 1275 struct page *page, void *fsdata) 1276 { 1277 handle_t *handle = ext4_journal_current_handle(); 1278 struct inode *inode = file->f_mapping->host; 1279 int ret = 0, ret2; 1280 loff_t new_i_size; 1281 1282 new_i_size = pos + copied; 1283 if (new_i_size > EXT4_I(inode)->i_disksize) 1284 EXT4_I(inode)->i_disksize = new_i_size; 1285 1286 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1287 page, fsdata); 1288 if (copied < 0) 1289 ret = copied; 1290 1291 ret2 = ext4_journal_stop(handle); 1292 if (!ret) 1293 ret = ret2; 1294 unlock_page(page); 1295 page_cache_release(page); 1296 1297 return ret ? ret : copied; 1298 } 1299 1300 static int ext4_journalled_write_end(struct file *file, 1301 struct address_space *mapping, 1302 loff_t pos, unsigned len, unsigned copied, 1303 struct page *page, void *fsdata) 1304 { 1305 handle_t *handle = ext4_journal_current_handle(); 1306 struct inode *inode = mapping->host; 1307 int ret = 0, ret2; 1308 int partial = 0; 1309 unsigned from, to; 1310 1311 from = pos & (PAGE_CACHE_SIZE - 1); 1312 to = from + len; 1313 1314 if (copied < len) { 1315 if (!PageUptodate(page)) 1316 copied = 0; 1317 page_zero_new_buffers(page, from+copied, to); 1318 } 1319 1320 ret = walk_page_buffers(handle, page_buffers(page), from, 1321 to, &partial, write_end_fn); 1322 if (!partial) 1323 SetPageUptodate(page); 1324 if (pos+copied > inode->i_size) 1325 i_size_write(inode, pos+copied); 1326 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1327 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1328 EXT4_I(inode)->i_disksize = inode->i_size; 1329 ret2 = ext4_mark_inode_dirty(handle, inode); 1330 if (!ret) 1331 ret = ret2; 1332 } 1333 1334 ret2 = ext4_journal_stop(handle); 1335 if (!ret) 1336 ret = ret2; 1337 unlock_page(page); 1338 page_cache_release(page); 1339 1340 return ret ? ret : copied; 1341 } 1342 1343 /* 1344 * bmap() is special. It gets used by applications such as lilo and by 1345 * the swapper to find the on-disk block of a specific piece of data. 1346 * 1347 * Naturally, this is dangerous if the block concerned is still in the 1348 * journal. If somebody makes a swapfile on an ext4 data-journaling 1349 * filesystem and enables swap, then they may get a nasty shock when the 1350 * data getting swapped to that swapfile suddenly gets overwritten by 1351 * the original zero's written out previously to the journal and 1352 * awaiting writeback in the kernel's buffer cache. 1353 * 1354 * So, if we see any bmap calls here on a modified, data-journaled file, 1355 * take extra steps to flush any blocks which might be in the cache. 1356 */ 1357 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 1358 { 1359 struct inode *inode = mapping->host; 1360 journal_t *journal; 1361 int err; 1362 1363 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 1364 /* 1365 * This is a REALLY heavyweight approach, but the use of 1366 * bmap on dirty files is expected to be extremely rare: 1367 * only if we run lilo or swapon on a freshly made file 1368 * do we expect this to happen. 1369 * 1370 * (bmap requires CAP_SYS_RAWIO so this does not 1371 * represent an unprivileged user DOS attack --- we'd be 1372 * in trouble if mortal users could trigger this path at 1373 * will.) 1374 * 1375 * NB. EXT4_STATE_JDATA is not set on files other than 1376 * regular files. If somebody wants to bmap a directory 1377 * or symlink and gets confused because the buffer 1378 * hasn't yet been flushed to disk, they deserve 1379 * everything they get. 1380 */ 1381 1382 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 1383 journal = EXT4_JOURNAL(inode); 1384 jbd2_journal_lock_updates(journal); 1385 err = jbd2_journal_flush(journal); 1386 jbd2_journal_unlock_updates(journal); 1387 1388 if (err) 1389 return 0; 1390 } 1391 1392 return generic_block_bmap(mapping,block,ext4_get_block); 1393 } 1394 1395 static int bget_one(handle_t *handle, struct buffer_head *bh) 1396 { 1397 get_bh(bh); 1398 return 0; 1399 } 1400 1401 static int bput_one(handle_t *handle, struct buffer_head *bh) 1402 { 1403 put_bh(bh); 1404 return 0; 1405 } 1406 1407 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1408 { 1409 if (buffer_mapped(bh)) 1410 return ext4_journal_dirty_data(handle, bh); 1411 return 0; 1412 } 1413 1414 /* 1415 * Note that we always start a transaction even if we're not journalling 1416 * data. This is to preserve ordering: any hole instantiation within 1417 * __block_write_full_page -> ext4_get_block() should be journalled 1418 * along with the data so we don't crash and then get metadata which 1419 * refers to old data. 1420 * 1421 * In all journalling modes block_write_full_page() will start the I/O. 1422 * 1423 * Problem: 1424 * 1425 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1426 * ext4_writepage() 1427 * 1428 * Similar for: 1429 * 1430 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1431 * 1432 * Same applies to ext4_get_block(). We will deadlock on various things like 1433 * lock_journal and i_data_sem 1434 * 1435 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1436 * allocations fail. 1437 * 1438 * 16May01: If we're reentered then journal_current_handle() will be 1439 * non-zero. We simply *return*. 1440 * 1441 * 1 July 2001: @@@ FIXME: 1442 * In journalled data mode, a data buffer may be metadata against the 1443 * current transaction. But the same file is part of a shared mapping 1444 * and someone does a writepage() on it. 1445 * 1446 * We will move the buffer onto the async_data list, but *after* it has 1447 * been dirtied. So there's a small window where we have dirty data on 1448 * BJ_Metadata. 1449 * 1450 * Note that this only applies to the last partial page in the file. The 1451 * bit which block_write_full_page() uses prepare/commit for. (That's 1452 * broken code anyway: it's wrong for msync()). 1453 * 1454 * It's a rare case: affects the final partial page, for journalled data 1455 * where the file is subject to bith write() and writepage() in the same 1456 * transction. To fix it we'll need a custom block_write_full_page(). 1457 * We'll probably need that anyway for journalling writepage() output. 1458 * 1459 * We don't honour synchronous mounts for writepage(). That would be 1460 * disastrous. Any write() or metadata operation will sync the fs for 1461 * us. 1462 * 1463 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1464 * we don't need to open a transaction here. 1465 */ 1466 static int ext4_ordered_writepage(struct page *page, 1467 struct writeback_control *wbc) 1468 { 1469 struct inode *inode = page->mapping->host; 1470 struct buffer_head *page_bufs; 1471 handle_t *handle = NULL; 1472 int ret = 0; 1473 int err; 1474 1475 J_ASSERT(PageLocked(page)); 1476 1477 /* 1478 * We give up here if we're reentered, because it might be for a 1479 * different filesystem. 1480 */ 1481 if (ext4_journal_current_handle()) 1482 goto out_fail; 1483 1484 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1485 1486 if (IS_ERR(handle)) { 1487 ret = PTR_ERR(handle); 1488 goto out_fail; 1489 } 1490 1491 if (!page_has_buffers(page)) { 1492 create_empty_buffers(page, inode->i_sb->s_blocksize, 1493 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1494 } 1495 page_bufs = page_buffers(page); 1496 walk_page_buffers(handle, page_bufs, 0, 1497 PAGE_CACHE_SIZE, NULL, bget_one); 1498 1499 ret = block_write_full_page(page, ext4_get_block, wbc); 1500 1501 /* 1502 * The page can become unlocked at any point now, and 1503 * truncate can then come in and change things. So we 1504 * can't touch *page from now on. But *page_bufs is 1505 * safe due to elevated refcount. 1506 */ 1507 1508 /* 1509 * And attach them to the current transaction. But only if 1510 * block_write_full_page() succeeded. Otherwise they are unmapped, 1511 * and generally junk. 1512 */ 1513 if (ret == 0) { 1514 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1515 NULL, jbd2_journal_dirty_data_fn); 1516 if (!ret) 1517 ret = err; 1518 } 1519 walk_page_buffers(handle, page_bufs, 0, 1520 PAGE_CACHE_SIZE, NULL, bput_one); 1521 err = ext4_journal_stop(handle); 1522 if (!ret) 1523 ret = err; 1524 return ret; 1525 1526 out_fail: 1527 redirty_page_for_writepage(wbc, page); 1528 unlock_page(page); 1529 return ret; 1530 } 1531 1532 static int ext4_writeback_writepage(struct page *page, 1533 struct writeback_control *wbc) 1534 { 1535 struct inode *inode = page->mapping->host; 1536 handle_t *handle = NULL; 1537 int ret = 0; 1538 int err; 1539 1540 if (ext4_journal_current_handle()) 1541 goto out_fail; 1542 1543 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1544 if (IS_ERR(handle)) { 1545 ret = PTR_ERR(handle); 1546 goto out_fail; 1547 } 1548 1549 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1550 ret = nobh_writepage(page, ext4_get_block, wbc); 1551 else 1552 ret = block_write_full_page(page, ext4_get_block, wbc); 1553 1554 err = ext4_journal_stop(handle); 1555 if (!ret) 1556 ret = err; 1557 return ret; 1558 1559 out_fail: 1560 redirty_page_for_writepage(wbc, page); 1561 unlock_page(page); 1562 return ret; 1563 } 1564 1565 static int ext4_journalled_writepage(struct page *page, 1566 struct writeback_control *wbc) 1567 { 1568 struct inode *inode = page->mapping->host; 1569 handle_t *handle = NULL; 1570 int ret = 0; 1571 int err; 1572 1573 if (ext4_journal_current_handle()) 1574 goto no_write; 1575 1576 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1577 if (IS_ERR(handle)) { 1578 ret = PTR_ERR(handle); 1579 goto no_write; 1580 } 1581 1582 if (!page_has_buffers(page) || PageChecked(page)) { 1583 /* 1584 * It's mmapped pagecache. Add buffers and journal it. There 1585 * doesn't seem much point in redirtying the page here. 1586 */ 1587 ClearPageChecked(page); 1588 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 1589 ext4_get_block); 1590 if (ret != 0) { 1591 ext4_journal_stop(handle); 1592 goto out_unlock; 1593 } 1594 ret = walk_page_buffers(handle, page_buffers(page), 0, 1595 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1596 1597 err = walk_page_buffers(handle, page_buffers(page), 0, 1598 PAGE_CACHE_SIZE, NULL, write_end_fn); 1599 if (ret == 0) 1600 ret = err; 1601 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1602 unlock_page(page); 1603 } else { 1604 /* 1605 * It may be a page full of checkpoint-mode buffers. We don't 1606 * really know unless we go poke around in the buffer_heads. 1607 * But block_write_full_page will do the right thing. 1608 */ 1609 ret = block_write_full_page(page, ext4_get_block, wbc); 1610 } 1611 err = ext4_journal_stop(handle); 1612 if (!ret) 1613 ret = err; 1614 out: 1615 return ret; 1616 1617 no_write: 1618 redirty_page_for_writepage(wbc, page); 1619 out_unlock: 1620 unlock_page(page); 1621 goto out; 1622 } 1623 1624 static int ext4_readpage(struct file *file, struct page *page) 1625 { 1626 return mpage_readpage(page, ext4_get_block); 1627 } 1628 1629 static int 1630 ext4_readpages(struct file *file, struct address_space *mapping, 1631 struct list_head *pages, unsigned nr_pages) 1632 { 1633 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 1634 } 1635 1636 static void ext4_invalidatepage(struct page *page, unsigned long offset) 1637 { 1638 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1639 1640 /* 1641 * If it's a full truncate we just forget about the pending dirtying 1642 */ 1643 if (offset == 0) 1644 ClearPageChecked(page); 1645 1646 jbd2_journal_invalidatepage(journal, page, offset); 1647 } 1648 1649 static int ext4_releasepage(struct page *page, gfp_t wait) 1650 { 1651 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1652 1653 WARN_ON(PageChecked(page)); 1654 if (!page_has_buffers(page)) 1655 return 0; 1656 return jbd2_journal_try_to_free_buffers(journal, page, wait); 1657 } 1658 1659 /* 1660 * If the O_DIRECT write will extend the file then add this inode to the 1661 * orphan list. So recovery will truncate it back to the original size 1662 * if the machine crashes during the write. 1663 * 1664 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1665 * crashes then stale disk data _may_ be exposed inside the file. But current 1666 * VFS code falls back into buffered path in that case so we are safe. 1667 */ 1668 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 1669 const struct iovec *iov, loff_t offset, 1670 unsigned long nr_segs) 1671 { 1672 struct file *file = iocb->ki_filp; 1673 struct inode *inode = file->f_mapping->host; 1674 struct ext4_inode_info *ei = EXT4_I(inode); 1675 handle_t *handle; 1676 ssize_t ret; 1677 int orphan = 0; 1678 size_t count = iov_length(iov, nr_segs); 1679 1680 if (rw == WRITE) { 1681 loff_t final_size = offset + count; 1682 1683 if (final_size > inode->i_size) { 1684 /* Credits for sb + inode write */ 1685 handle = ext4_journal_start(inode, 2); 1686 if (IS_ERR(handle)) { 1687 ret = PTR_ERR(handle); 1688 goto out; 1689 } 1690 ret = ext4_orphan_add(handle, inode); 1691 if (ret) { 1692 ext4_journal_stop(handle); 1693 goto out; 1694 } 1695 orphan = 1; 1696 ei->i_disksize = inode->i_size; 1697 ext4_journal_stop(handle); 1698 } 1699 } 1700 1701 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 1702 offset, nr_segs, 1703 ext4_get_block, NULL); 1704 1705 if (orphan) { 1706 int err; 1707 1708 /* Credits for sb + inode write */ 1709 handle = ext4_journal_start(inode, 2); 1710 if (IS_ERR(handle)) { 1711 /* This is really bad luck. We've written the data 1712 * but cannot extend i_size. Bail out and pretend 1713 * the write failed... */ 1714 ret = PTR_ERR(handle); 1715 goto out; 1716 } 1717 if (inode->i_nlink) 1718 ext4_orphan_del(handle, inode); 1719 if (ret > 0) { 1720 loff_t end = offset + ret; 1721 if (end > inode->i_size) { 1722 ei->i_disksize = end; 1723 i_size_write(inode, end); 1724 /* 1725 * We're going to return a positive `ret' 1726 * here due to non-zero-length I/O, so there's 1727 * no way of reporting error returns from 1728 * ext4_mark_inode_dirty() to userspace. So 1729 * ignore it. 1730 */ 1731 ext4_mark_inode_dirty(handle, inode); 1732 } 1733 } 1734 err = ext4_journal_stop(handle); 1735 if (ret == 0) 1736 ret = err; 1737 } 1738 out: 1739 return ret; 1740 } 1741 1742 /* 1743 * Pages can be marked dirty completely asynchronously from ext4's journalling 1744 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1745 * much here because ->set_page_dirty is called under VFS locks. The page is 1746 * not necessarily locked. 1747 * 1748 * We cannot just dirty the page and leave attached buffers clean, because the 1749 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1750 * or jbddirty because all the journalling code will explode. 1751 * 1752 * So what we do is to mark the page "pending dirty" and next time writepage 1753 * is called, propagate that into the buffers appropriately. 1754 */ 1755 static int ext4_journalled_set_page_dirty(struct page *page) 1756 { 1757 SetPageChecked(page); 1758 return __set_page_dirty_nobuffers(page); 1759 } 1760 1761 static const struct address_space_operations ext4_ordered_aops = { 1762 .readpage = ext4_readpage, 1763 .readpages = ext4_readpages, 1764 .writepage = ext4_ordered_writepage, 1765 .sync_page = block_sync_page, 1766 .write_begin = ext4_write_begin, 1767 .write_end = ext4_ordered_write_end, 1768 .bmap = ext4_bmap, 1769 .invalidatepage = ext4_invalidatepage, 1770 .releasepage = ext4_releasepage, 1771 .direct_IO = ext4_direct_IO, 1772 .migratepage = buffer_migrate_page, 1773 }; 1774 1775 static const struct address_space_operations ext4_writeback_aops = { 1776 .readpage = ext4_readpage, 1777 .readpages = ext4_readpages, 1778 .writepage = ext4_writeback_writepage, 1779 .sync_page = block_sync_page, 1780 .write_begin = ext4_write_begin, 1781 .write_end = ext4_writeback_write_end, 1782 .bmap = ext4_bmap, 1783 .invalidatepage = ext4_invalidatepage, 1784 .releasepage = ext4_releasepage, 1785 .direct_IO = ext4_direct_IO, 1786 .migratepage = buffer_migrate_page, 1787 }; 1788 1789 static const struct address_space_operations ext4_journalled_aops = { 1790 .readpage = ext4_readpage, 1791 .readpages = ext4_readpages, 1792 .writepage = ext4_journalled_writepage, 1793 .sync_page = block_sync_page, 1794 .write_begin = ext4_write_begin, 1795 .write_end = ext4_journalled_write_end, 1796 .set_page_dirty = ext4_journalled_set_page_dirty, 1797 .bmap = ext4_bmap, 1798 .invalidatepage = ext4_invalidatepage, 1799 .releasepage = ext4_releasepage, 1800 }; 1801 1802 void ext4_set_aops(struct inode *inode) 1803 { 1804 if (ext4_should_order_data(inode)) 1805 inode->i_mapping->a_ops = &ext4_ordered_aops; 1806 else if (ext4_should_writeback_data(inode)) 1807 inode->i_mapping->a_ops = &ext4_writeback_aops; 1808 else 1809 inode->i_mapping->a_ops = &ext4_journalled_aops; 1810 } 1811 1812 /* 1813 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 1814 * up to the end of the block which corresponds to `from'. 1815 * This required during truncate. We need to physically zero the tail end 1816 * of that block so it doesn't yield old data if the file is later grown. 1817 */ 1818 int ext4_block_truncate_page(handle_t *handle, struct page *page, 1819 struct address_space *mapping, loff_t from) 1820 { 1821 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 1822 unsigned offset = from & (PAGE_CACHE_SIZE-1); 1823 unsigned blocksize, length, pos; 1824 ext4_lblk_t iblock; 1825 struct inode *inode = mapping->host; 1826 struct buffer_head *bh; 1827 int err = 0; 1828 1829 blocksize = inode->i_sb->s_blocksize; 1830 length = blocksize - (offset & (blocksize - 1)); 1831 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1832 1833 /* 1834 * For "nobh" option, we can only work if we don't need to 1835 * read-in the page - otherwise we create buffers to do the IO. 1836 */ 1837 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 1838 ext4_should_writeback_data(inode) && PageUptodate(page)) { 1839 zero_user(page, offset, length); 1840 set_page_dirty(page); 1841 goto unlock; 1842 } 1843 1844 if (!page_has_buffers(page)) 1845 create_empty_buffers(page, blocksize, 0); 1846 1847 /* Find the buffer that contains "offset" */ 1848 bh = page_buffers(page); 1849 pos = blocksize; 1850 while (offset >= pos) { 1851 bh = bh->b_this_page; 1852 iblock++; 1853 pos += blocksize; 1854 } 1855 1856 err = 0; 1857 if (buffer_freed(bh)) { 1858 BUFFER_TRACE(bh, "freed: skip"); 1859 goto unlock; 1860 } 1861 1862 if (!buffer_mapped(bh)) { 1863 BUFFER_TRACE(bh, "unmapped"); 1864 ext4_get_block(inode, iblock, bh, 0); 1865 /* unmapped? It's a hole - nothing to do */ 1866 if (!buffer_mapped(bh)) { 1867 BUFFER_TRACE(bh, "still unmapped"); 1868 goto unlock; 1869 } 1870 } 1871 1872 /* Ok, it's mapped. Make sure it's up-to-date */ 1873 if (PageUptodate(page)) 1874 set_buffer_uptodate(bh); 1875 1876 if (!buffer_uptodate(bh)) { 1877 err = -EIO; 1878 ll_rw_block(READ, 1, &bh); 1879 wait_on_buffer(bh); 1880 /* Uhhuh. Read error. Complain and punt. */ 1881 if (!buffer_uptodate(bh)) 1882 goto unlock; 1883 } 1884 1885 if (ext4_should_journal_data(inode)) { 1886 BUFFER_TRACE(bh, "get write access"); 1887 err = ext4_journal_get_write_access(handle, bh); 1888 if (err) 1889 goto unlock; 1890 } 1891 1892 zero_user(page, offset, length); 1893 1894 BUFFER_TRACE(bh, "zeroed end of block"); 1895 1896 err = 0; 1897 if (ext4_should_journal_data(inode)) { 1898 err = ext4_journal_dirty_metadata(handle, bh); 1899 } else { 1900 if (ext4_should_order_data(inode)) 1901 err = ext4_journal_dirty_data(handle, bh); 1902 mark_buffer_dirty(bh); 1903 } 1904 1905 unlock: 1906 unlock_page(page); 1907 page_cache_release(page); 1908 return err; 1909 } 1910 1911 /* 1912 * Probably it should be a library function... search for first non-zero word 1913 * or memcmp with zero_page, whatever is better for particular architecture. 1914 * Linus? 1915 */ 1916 static inline int all_zeroes(__le32 *p, __le32 *q) 1917 { 1918 while (p < q) 1919 if (*p++) 1920 return 0; 1921 return 1; 1922 } 1923 1924 /** 1925 * ext4_find_shared - find the indirect blocks for partial truncation. 1926 * @inode: inode in question 1927 * @depth: depth of the affected branch 1928 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 1929 * @chain: place to store the pointers to partial indirect blocks 1930 * @top: place to the (detached) top of branch 1931 * 1932 * This is a helper function used by ext4_truncate(). 1933 * 1934 * When we do truncate() we may have to clean the ends of several 1935 * indirect blocks but leave the blocks themselves alive. Block is 1936 * partially truncated if some data below the new i_size is refered 1937 * from it (and it is on the path to the first completely truncated 1938 * data block, indeed). We have to free the top of that path along 1939 * with everything to the right of the path. Since no allocation 1940 * past the truncation point is possible until ext4_truncate() 1941 * finishes, we may safely do the latter, but top of branch may 1942 * require special attention - pageout below the truncation point 1943 * might try to populate it. 1944 * 1945 * We atomically detach the top of branch from the tree, store the 1946 * block number of its root in *@top, pointers to buffer_heads of 1947 * partially truncated blocks - in @chain[].bh and pointers to 1948 * their last elements that should not be removed - in 1949 * @chain[].p. Return value is the pointer to last filled element 1950 * of @chain. 1951 * 1952 * The work left to caller to do the actual freeing of subtrees: 1953 * a) free the subtree starting from *@top 1954 * b) free the subtrees whose roots are stored in 1955 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1956 * c) free the subtrees growing from the inode past the @chain[0]. 1957 * (no partially truncated stuff there). */ 1958 1959 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1960 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 1961 { 1962 Indirect *partial, *p; 1963 int k, err; 1964 1965 *top = 0; 1966 /* Make k index the deepest non-null offest + 1 */ 1967 for (k = depth; k > 1 && !offsets[k-1]; k--) 1968 ; 1969 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1970 /* Writer: pointers */ 1971 if (!partial) 1972 partial = chain + k-1; 1973 /* 1974 * If the branch acquired continuation since we've looked at it - 1975 * fine, it should all survive and (new) top doesn't belong to us. 1976 */ 1977 if (!partial->key && *partial->p) 1978 /* Writer: end */ 1979 goto no_top; 1980 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 1981 ; 1982 /* 1983 * OK, we've found the last block that must survive. The rest of our 1984 * branch should be detached before unlocking. However, if that rest 1985 * of branch is all ours and does not grow immediately from the inode 1986 * it's easier to cheat and just decrement partial->p. 1987 */ 1988 if (p == chain + k - 1 && p > chain) { 1989 p->p--; 1990 } else { 1991 *top = *p->p; 1992 /* Nope, don't do this in ext4. Must leave the tree intact */ 1993 #if 0 1994 *p->p = 0; 1995 #endif 1996 } 1997 /* Writer: end */ 1998 1999 while(partial > p) { 2000 brelse(partial->bh); 2001 partial--; 2002 } 2003 no_top: 2004 return partial; 2005 } 2006 2007 /* 2008 * Zero a number of block pointers in either an inode or an indirect block. 2009 * If we restart the transaction we must again get write access to the 2010 * indirect block for further modification. 2011 * 2012 * We release `count' blocks on disk, but (last - first) may be greater 2013 * than `count' because there can be holes in there. 2014 */ 2015 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 2016 struct buffer_head *bh, ext4_fsblk_t block_to_free, 2017 unsigned long count, __le32 *first, __le32 *last) 2018 { 2019 __le32 *p; 2020 if (try_to_extend_transaction(handle, inode)) { 2021 if (bh) { 2022 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2023 ext4_journal_dirty_metadata(handle, bh); 2024 } 2025 ext4_mark_inode_dirty(handle, inode); 2026 ext4_journal_test_restart(handle, inode); 2027 if (bh) { 2028 BUFFER_TRACE(bh, "retaking write access"); 2029 ext4_journal_get_write_access(handle, bh); 2030 } 2031 } 2032 2033 /* 2034 * Any buffers which are on the journal will be in memory. We find 2035 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 2036 * on them. We've already detached each block from the file, so 2037 * bforget() in jbd2_journal_forget() should be safe. 2038 * 2039 * AKPM: turn on bforget in jbd2_journal_forget()!!! 2040 */ 2041 for (p = first; p < last; p++) { 2042 u32 nr = le32_to_cpu(*p); 2043 if (nr) { 2044 struct buffer_head *tbh; 2045 2046 *p = 0; 2047 tbh = sb_find_get_block(inode->i_sb, nr); 2048 ext4_forget(handle, 0, inode, tbh, nr); 2049 } 2050 } 2051 2052 ext4_free_blocks(handle, inode, block_to_free, count, 0); 2053 } 2054 2055 /** 2056 * ext4_free_data - free a list of data blocks 2057 * @handle: handle for this transaction 2058 * @inode: inode we are dealing with 2059 * @this_bh: indirect buffer_head which contains *@first and *@last 2060 * @first: array of block numbers 2061 * @last: points immediately past the end of array 2062 * 2063 * We are freeing all blocks refered from that array (numbers are stored as 2064 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2065 * 2066 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2067 * blocks are contiguous then releasing them at one time will only affect one 2068 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2069 * actually use a lot of journal space. 2070 * 2071 * @this_bh will be %NULL if @first and @last point into the inode's direct 2072 * block pointers. 2073 */ 2074 static void ext4_free_data(handle_t *handle, struct inode *inode, 2075 struct buffer_head *this_bh, 2076 __le32 *first, __le32 *last) 2077 { 2078 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2079 unsigned long count = 0; /* Number of blocks in the run */ 2080 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2081 corresponding to 2082 block_to_free */ 2083 ext4_fsblk_t nr; /* Current block # */ 2084 __le32 *p; /* Pointer into inode/ind 2085 for current block */ 2086 int err; 2087 2088 if (this_bh) { /* For indirect block */ 2089 BUFFER_TRACE(this_bh, "get_write_access"); 2090 err = ext4_journal_get_write_access(handle, this_bh); 2091 /* Important: if we can't update the indirect pointers 2092 * to the blocks, we can't free them. */ 2093 if (err) 2094 return; 2095 } 2096 2097 for (p = first; p < last; p++) { 2098 nr = le32_to_cpu(*p); 2099 if (nr) { 2100 /* accumulate blocks to free if they're contiguous */ 2101 if (count == 0) { 2102 block_to_free = nr; 2103 block_to_free_p = p; 2104 count = 1; 2105 } else if (nr == block_to_free + count) { 2106 count++; 2107 } else { 2108 ext4_clear_blocks(handle, inode, this_bh, 2109 block_to_free, 2110 count, block_to_free_p, p); 2111 block_to_free = nr; 2112 block_to_free_p = p; 2113 count = 1; 2114 } 2115 } 2116 } 2117 2118 if (count > 0) 2119 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 2120 count, block_to_free_p, p); 2121 2122 if (this_bh) { 2123 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 2124 ext4_journal_dirty_metadata(handle, this_bh); 2125 } 2126 } 2127 2128 /** 2129 * ext4_free_branches - free an array of branches 2130 * @handle: JBD handle for this transaction 2131 * @inode: inode we are dealing with 2132 * @parent_bh: the buffer_head which contains *@first and *@last 2133 * @first: array of block numbers 2134 * @last: pointer immediately past the end of array 2135 * @depth: depth of the branches to free 2136 * 2137 * We are freeing all blocks refered from these branches (numbers are 2138 * stored as little-endian 32-bit) and updating @inode->i_blocks 2139 * appropriately. 2140 */ 2141 static void ext4_free_branches(handle_t *handle, struct inode *inode, 2142 struct buffer_head *parent_bh, 2143 __le32 *first, __le32 *last, int depth) 2144 { 2145 ext4_fsblk_t nr; 2146 __le32 *p; 2147 2148 if (is_handle_aborted(handle)) 2149 return; 2150 2151 if (depth--) { 2152 struct buffer_head *bh; 2153 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2154 p = last; 2155 while (--p >= first) { 2156 nr = le32_to_cpu(*p); 2157 if (!nr) 2158 continue; /* A hole */ 2159 2160 /* Go read the buffer for the next level down */ 2161 bh = sb_bread(inode->i_sb, nr); 2162 2163 /* 2164 * A read failure? Report error and clear slot 2165 * (should be rare). 2166 */ 2167 if (!bh) { 2168 ext4_error(inode->i_sb, "ext4_free_branches", 2169 "Read failure, inode=%lu, block=%llu", 2170 inode->i_ino, nr); 2171 continue; 2172 } 2173 2174 /* This zaps the entire block. Bottom up. */ 2175 BUFFER_TRACE(bh, "free child branches"); 2176 ext4_free_branches(handle, inode, bh, 2177 (__le32*)bh->b_data, 2178 (__le32*)bh->b_data + addr_per_block, 2179 depth); 2180 2181 /* 2182 * We've probably journalled the indirect block several 2183 * times during the truncate. But it's no longer 2184 * needed and we now drop it from the transaction via 2185 * jbd2_journal_revoke(). 2186 * 2187 * That's easy if it's exclusively part of this 2188 * transaction. But if it's part of the committing 2189 * transaction then jbd2_journal_forget() will simply 2190 * brelse() it. That means that if the underlying 2191 * block is reallocated in ext4_get_block(), 2192 * unmap_underlying_metadata() will find this block 2193 * and will try to get rid of it. damn, damn. 2194 * 2195 * If this block has already been committed to the 2196 * journal, a revoke record will be written. And 2197 * revoke records must be emitted *before* clearing 2198 * this block's bit in the bitmaps. 2199 */ 2200 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 2201 2202 /* 2203 * Everything below this this pointer has been 2204 * released. Now let this top-of-subtree go. 2205 * 2206 * We want the freeing of this indirect block to be 2207 * atomic in the journal with the updating of the 2208 * bitmap block which owns it. So make some room in 2209 * the journal. 2210 * 2211 * We zero the parent pointer *after* freeing its 2212 * pointee in the bitmaps, so if extend_transaction() 2213 * for some reason fails to put the bitmap changes and 2214 * the release into the same transaction, recovery 2215 * will merely complain about releasing a free block, 2216 * rather than leaking blocks. 2217 */ 2218 if (is_handle_aborted(handle)) 2219 return; 2220 if (try_to_extend_transaction(handle, inode)) { 2221 ext4_mark_inode_dirty(handle, inode); 2222 ext4_journal_test_restart(handle, inode); 2223 } 2224 2225 ext4_free_blocks(handle, inode, nr, 1, 1); 2226 2227 if (parent_bh) { 2228 /* 2229 * The block which we have just freed is 2230 * pointed to by an indirect block: journal it 2231 */ 2232 BUFFER_TRACE(parent_bh, "get_write_access"); 2233 if (!ext4_journal_get_write_access(handle, 2234 parent_bh)){ 2235 *p = 0; 2236 BUFFER_TRACE(parent_bh, 2237 "call ext4_journal_dirty_metadata"); 2238 ext4_journal_dirty_metadata(handle, 2239 parent_bh); 2240 } 2241 } 2242 } 2243 } else { 2244 /* We have reached the bottom of the tree. */ 2245 BUFFER_TRACE(parent_bh, "free data blocks"); 2246 ext4_free_data(handle, inode, parent_bh, first, last); 2247 } 2248 } 2249 2250 /* 2251 * ext4_truncate() 2252 * 2253 * We block out ext4_get_block() block instantiations across the entire 2254 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 2255 * simultaneously on behalf of the same inode. 2256 * 2257 * As we work through the truncate and commmit bits of it to the journal there 2258 * is one core, guiding principle: the file's tree must always be consistent on 2259 * disk. We must be able to restart the truncate after a crash. 2260 * 2261 * The file's tree may be transiently inconsistent in memory (although it 2262 * probably isn't), but whenever we close off and commit a journal transaction, 2263 * the contents of (the filesystem + the journal) must be consistent and 2264 * restartable. It's pretty simple, really: bottom up, right to left (although 2265 * left-to-right works OK too). 2266 * 2267 * Note that at recovery time, journal replay occurs *before* the restart of 2268 * truncate against the orphan inode list. 2269 * 2270 * The committed inode has the new, desired i_size (which is the same as 2271 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 2272 * that this inode's truncate did not complete and it will again call 2273 * ext4_truncate() to have another go. So there will be instantiated blocks 2274 * to the right of the truncation point in a crashed ext4 filesystem. But 2275 * that's fine - as long as they are linked from the inode, the post-crash 2276 * ext4_truncate() run will find them and release them. 2277 */ 2278 void ext4_truncate(struct inode *inode) 2279 { 2280 handle_t *handle; 2281 struct ext4_inode_info *ei = EXT4_I(inode); 2282 __le32 *i_data = ei->i_data; 2283 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2284 struct address_space *mapping = inode->i_mapping; 2285 ext4_lblk_t offsets[4]; 2286 Indirect chain[4]; 2287 Indirect *partial; 2288 __le32 nr = 0; 2289 int n; 2290 ext4_lblk_t last_block; 2291 unsigned blocksize = inode->i_sb->s_blocksize; 2292 struct page *page; 2293 2294 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2295 S_ISLNK(inode->i_mode))) 2296 return; 2297 if (ext4_inode_is_fast_symlink(inode)) 2298 return; 2299 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2300 return; 2301 2302 /* 2303 * We have to lock the EOF page here, because lock_page() nests 2304 * outside jbd2_journal_start(). 2305 */ 2306 if ((inode->i_size & (blocksize - 1)) == 0) { 2307 /* Block boundary? Nothing to do */ 2308 page = NULL; 2309 } else { 2310 page = grab_cache_page(mapping, 2311 inode->i_size >> PAGE_CACHE_SHIFT); 2312 if (!page) 2313 return; 2314 } 2315 2316 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 2317 ext4_ext_truncate(inode, page); 2318 return; 2319 } 2320 2321 handle = start_transaction(inode); 2322 if (IS_ERR(handle)) { 2323 if (page) { 2324 clear_highpage(page); 2325 flush_dcache_page(page); 2326 unlock_page(page); 2327 page_cache_release(page); 2328 } 2329 return; /* AKPM: return what? */ 2330 } 2331 2332 last_block = (inode->i_size + blocksize-1) 2333 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 2334 2335 if (page) 2336 ext4_block_truncate_page(handle, page, mapping, inode->i_size); 2337 2338 n = ext4_block_to_path(inode, last_block, offsets, NULL); 2339 if (n == 0) 2340 goto out_stop; /* error */ 2341 2342 /* 2343 * OK. This truncate is going to happen. We add the inode to the 2344 * orphan list, so that if this truncate spans multiple transactions, 2345 * and we crash, we will resume the truncate when the filesystem 2346 * recovers. It also marks the inode dirty, to catch the new size. 2347 * 2348 * Implication: the file must always be in a sane, consistent 2349 * truncatable state while each transaction commits. 2350 */ 2351 if (ext4_orphan_add(handle, inode)) 2352 goto out_stop; 2353 2354 /* 2355 * The orphan list entry will now protect us from any crash which 2356 * occurs before the truncate completes, so it is now safe to propagate 2357 * the new, shorter inode size (held for now in i_size) into the 2358 * on-disk inode. We do this via i_disksize, which is the value which 2359 * ext4 *really* writes onto the disk inode. 2360 */ 2361 ei->i_disksize = inode->i_size; 2362 2363 /* 2364 * From here we block out all ext4_get_block() callers who want to 2365 * modify the block allocation tree. 2366 */ 2367 down_write(&ei->i_data_sem); 2368 2369 if (n == 1) { /* direct blocks */ 2370 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 2371 i_data + EXT4_NDIR_BLOCKS); 2372 goto do_indirects; 2373 } 2374 2375 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 2376 /* Kill the top of shared branch (not detached) */ 2377 if (nr) { 2378 if (partial == chain) { 2379 /* Shared branch grows from the inode */ 2380 ext4_free_branches(handle, inode, NULL, 2381 &nr, &nr+1, (chain+n-1) - partial); 2382 *partial->p = 0; 2383 /* 2384 * We mark the inode dirty prior to restart, 2385 * and prior to stop. No need for it here. 2386 */ 2387 } else { 2388 /* Shared branch grows from an indirect block */ 2389 BUFFER_TRACE(partial->bh, "get_write_access"); 2390 ext4_free_branches(handle, inode, partial->bh, 2391 partial->p, 2392 partial->p+1, (chain+n-1) - partial); 2393 } 2394 } 2395 /* Clear the ends of indirect blocks on the shared branch */ 2396 while (partial > chain) { 2397 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 2398 (__le32*)partial->bh->b_data+addr_per_block, 2399 (chain+n-1) - partial); 2400 BUFFER_TRACE(partial->bh, "call brelse"); 2401 brelse (partial->bh); 2402 partial--; 2403 } 2404 do_indirects: 2405 /* Kill the remaining (whole) subtrees */ 2406 switch (offsets[0]) { 2407 default: 2408 nr = i_data[EXT4_IND_BLOCK]; 2409 if (nr) { 2410 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2411 i_data[EXT4_IND_BLOCK] = 0; 2412 } 2413 case EXT4_IND_BLOCK: 2414 nr = i_data[EXT4_DIND_BLOCK]; 2415 if (nr) { 2416 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2417 i_data[EXT4_DIND_BLOCK] = 0; 2418 } 2419 case EXT4_DIND_BLOCK: 2420 nr = i_data[EXT4_TIND_BLOCK]; 2421 if (nr) { 2422 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2423 i_data[EXT4_TIND_BLOCK] = 0; 2424 } 2425 case EXT4_TIND_BLOCK: 2426 ; 2427 } 2428 2429 ext4_discard_reservation(inode); 2430 2431 up_write(&ei->i_data_sem); 2432 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 2433 ext4_mark_inode_dirty(handle, inode); 2434 2435 /* 2436 * In a multi-transaction truncate, we only make the final transaction 2437 * synchronous 2438 */ 2439 if (IS_SYNC(inode)) 2440 handle->h_sync = 1; 2441 out_stop: 2442 /* 2443 * If this was a simple ftruncate(), and the file will remain alive 2444 * then we need to clear up the orphan record which we created above. 2445 * However, if this was a real unlink then we were called by 2446 * ext4_delete_inode(), and we allow that function to clean up the 2447 * orphan info for us. 2448 */ 2449 if (inode->i_nlink) 2450 ext4_orphan_del(handle, inode); 2451 2452 ext4_journal_stop(handle); 2453 } 2454 2455 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 2456 unsigned long ino, struct ext4_iloc *iloc) 2457 { 2458 unsigned long desc, group_desc; 2459 ext4_group_t block_group; 2460 unsigned long offset; 2461 ext4_fsblk_t block; 2462 struct buffer_head *bh; 2463 struct ext4_group_desc * gdp; 2464 2465 if (!ext4_valid_inum(sb, ino)) { 2466 /* 2467 * This error is already checked for in namei.c unless we are 2468 * looking at an NFS filehandle, in which case no error 2469 * report is needed 2470 */ 2471 return 0; 2472 } 2473 2474 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 2475 if (block_group >= EXT4_SB(sb)->s_groups_count) { 2476 ext4_error(sb,"ext4_get_inode_block","group >= groups count"); 2477 return 0; 2478 } 2479 smp_rmb(); 2480 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2481 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2482 bh = EXT4_SB(sb)->s_group_desc[group_desc]; 2483 if (!bh) { 2484 ext4_error (sb, "ext4_get_inode_block", 2485 "Descriptor not loaded"); 2486 return 0; 2487 } 2488 2489 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data + 2490 desc * EXT4_DESC_SIZE(sb)); 2491 /* 2492 * Figure out the offset within the block group inode table 2493 */ 2494 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 2495 EXT4_INODE_SIZE(sb); 2496 block = ext4_inode_table(sb, gdp) + 2497 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 2498 2499 iloc->block_group = block_group; 2500 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 2501 return block; 2502 } 2503 2504 /* 2505 * ext4_get_inode_loc returns with an extra refcount against the inode's 2506 * underlying buffer_head on success. If 'in_mem' is true, we have all 2507 * data in memory that is needed to recreate the on-disk version of this 2508 * inode. 2509 */ 2510 static int __ext4_get_inode_loc(struct inode *inode, 2511 struct ext4_iloc *iloc, int in_mem) 2512 { 2513 ext4_fsblk_t block; 2514 struct buffer_head *bh; 2515 2516 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2517 if (!block) 2518 return -EIO; 2519 2520 bh = sb_getblk(inode->i_sb, block); 2521 if (!bh) { 2522 ext4_error (inode->i_sb, "ext4_get_inode_loc", 2523 "unable to read inode block - " 2524 "inode=%lu, block=%llu", 2525 inode->i_ino, block); 2526 return -EIO; 2527 } 2528 if (!buffer_uptodate(bh)) { 2529 lock_buffer(bh); 2530 if (buffer_uptodate(bh)) { 2531 /* someone brought it uptodate while we waited */ 2532 unlock_buffer(bh); 2533 goto has_buffer; 2534 } 2535 2536 /* 2537 * If we have all information of the inode in memory and this 2538 * is the only valid inode in the block, we need not read the 2539 * block. 2540 */ 2541 if (in_mem) { 2542 struct buffer_head *bitmap_bh; 2543 struct ext4_group_desc *desc; 2544 int inodes_per_buffer; 2545 int inode_offset, i; 2546 ext4_group_t block_group; 2547 int start; 2548 2549 block_group = (inode->i_ino - 1) / 2550 EXT4_INODES_PER_GROUP(inode->i_sb); 2551 inodes_per_buffer = bh->b_size / 2552 EXT4_INODE_SIZE(inode->i_sb); 2553 inode_offset = ((inode->i_ino - 1) % 2554 EXT4_INODES_PER_GROUP(inode->i_sb)); 2555 start = inode_offset & ~(inodes_per_buffer - 1); 2556 2557 /* Is the inode bitmap in cache? */ 2558 desc = ext4_get_group_desc(inode->i_sb, 2559 block_group, NULL); 2560 if (!desc) 2561 goto make_io; 2562 2563 bitmap_bh = sb_getblk(inode->i_sb, 2564 ext4_inode_bitmap(inode->i_sb, desc)); 2565 if (!bitmap_bh) 2566 goto make_io; 2567 2568 /* 2569 * If the inode bitmap isn't in cache then the 2570 * optimisation may end up performing two reads instead 2571 * of one, so skip it. 2572 */ 2573 if (!buffer_uptodate(bitmap_bh)) { 2574 brelse(bitmap_bh); 2575 goto make_io; 2576 } 2577 for (i = start; i < start + inodes_per_buffer; i++) { 2578 if (i == inode_offset) 2579 continue; 2580 if (ext4_test_bit(i, bitmap_bh->b_data)) 2581 break; 2582 } 2583 brelse(bitmap_bh); 2584 if (i == start + inodes_per_buffer) { 2585 /* all other inodes are free, so skip I/O */ 2586 memset(bh->b_data, 0, bh->b_size); 2587 set_buffer_uptodate(bh); 2588 unlock_buffer(bh); 2589 goto has_buffer; 2590 } 2591 } 2592 2593 make_io: 2594 /* 2595 * There are other valid inodes in the buffer, this inode 2596 * has in-inode xattrs, or we don't have this inode in memory. 2597 * Read the block from disk. 2598 */ 2599 get_bh(bh); 2600 bh->b_end_io = end_buffer_read_sync; 2601 submit_bh(READ_META, bh); 2602 wait_on_buffer(bh); 2603 if (!buffer_uptodate(bh)) { 2604 ext4_error(inode->i_sb, "ext4_get_inode_loc", 2605 "unable to read inode block - " 2606 "inode=%lu, block=%llu", 2607 inode->i_ino, block); 2608 brelse(bh); 2609 return -EIO; 2610 } 2611 } 2612 has_buffer: 2613 iloc->bh = bh; 2614 return 0; 2615 } 2616 2617 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 2618 { 2619 /* We have all inode data except xattrs in memory here. */ 2620 return __ext4_get_inode_loc(inode, iloc, 2621 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 2622 } 2623 2624 void ext4_set_inode_flags(struct inode *inode) 2625 { 2626 unsigned int flags = EXT4_I(inode)->i_flags; 2627 2628 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2629 if (flags & EXT4_SYNC_FL) 2630 inode->i_flags |= S_SYNC; 2631 if (flags & EXT4_APPEND_FL) 2632 inode->i_flags |= S_APPEND; 2633 if (flags & EXT4_IMMUTABLE_FL) 2634 inode->i_flags |= S_IMMUTABLE; 2635 if (flags & EXT4_NOATIME_FL) 2636 inode->i_flags |= S_NOATIME; 2637 if (flags & EXT4_DIRSYNC_FL) 2638 inode->i_flags |= S_DIRSYNC; 2639 } 2640 2641 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 2642 void ext4_get_inode_flags(struct ext4_inode_info *ei) 2643 { 2644 unsigned int flags = ei->vfs_inode.i_flags; 2645 2646 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 2647 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 2648 if (flags & S_SYNC) 2649 ei->i_flags |= EXT4_SYNC_FL; 2650 if (flags & S_APPEND) 2651 ei->i_flags |= EXT4_APPEND_FL; 2652 if (flags & S_IMMUTABLE) 2653 ei->i_flags |= EXT4_IMMUTABLE_FL; 2654 if (flags & S_NOATIME) 2655 ei->i_flags |= EXT4_NOATIME_FL; 2656 if (flags & S_DIRSYNC) 2657 ei->i_flags |= EXT4_DIRSYNC_FL; 2658 } 2659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 2660 struct ext4_inode_info *ei) 2661 { 2662 blkcnt_t i_blocks ; 2663 struct inode *inode = &(ei->vfs_inode); 2664 struct super_block *sb = inode->i_sb; 2665 2666 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2667 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2668 /* we are using combined 48 bit field */ 2669 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 2670 le32_to_cpu(raw_inode->i_blocks_lo); 2671 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 2672 /* i_blocks represent file system block size */ 2673 return i_blocks << (inode->i_blkbits - 9); 2674 } else { 2675 return i_blocks; 2676 } 2677 } else { 2678 return le32_to_cpu(raw_inode->i_blocks_lo); 2679 } 2680 } 2681 2682 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 2683 { 2684 struct ext4_iloc iloc; 2685 struct ext4_inode *raw_inode; 2686 struct ext4_inode_info *ei; 2687 struct buffer_head *bh; 2688 struct inode *inode; 2689 long ret; 2690 int block; 2691 2692 inode = iget_locked(sb, ino); 2693 if (!inode) 2694 return ERR_PTR(-ENOMEM); 2695 if (!(inode->i_state & I_NEW)) 2696 return inode; 2697 2698 ei = EXT4_I(inode); 2699 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 2700 ei->i_acl = EXT4_ACL_NOT_CACHED; 2701 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 2702 #endif 2703 ei->i_block_alloc_info = NULL; 2704 2705 ret = __ext4_get_inode_loc(inode, &iloc, 0); 2706 if (ret < 0) 2707 goto bad_inode; 2708 bh = iloc.bh; 2709 raw_inode = ext4_raw_inode(&iloc); 2710 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2711 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2712 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2713 if(!(test_opt (inode->i_sb, NO_UID32))) { 2714 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2715 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2716 } 2717 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 2718 2719 ei->i_state = 0; 2720 ei->i_dir_start_lookup = 0; 2721 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2722 /* We now have enough fields to check if the inode was active or not. 2723 * This is needed because nfsd might try to access dead inodes 2724 * the test is that same one that e2fsck uses 2725 * NeilBrown 1999oct15 2726 */ 2727 if (inode->i_nlink == 0) { 2728 if (inode->i_mode == 0 || 2729 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 2730 /* this inode is deleted */ 2731 brelse (bh); 2732 ret = -ESTALE; 2733 goto bad_inode; 2734 } 2735 /* The only unlinked inodes we let through here have 2736 * valid i_mode and are being read by the orphan 2737 * recovery code: that's fine, we're about to complete 2738 * the process of deleting those. */ 2739 } 2740 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2741 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 2742 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 2743 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2744 cpu_to_le32(EXT4_OS_HURD)) { 2745 ei->i_file_acl |= 2746 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 2747 } 2748 inode->i_size = ext4_isize(raw_inode); 2749 ei->i_disksize = inode->i_size; 2750 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2751 ei->i_block_group = iloc.block_group; 2752 /* 2753 * NOTE! The in-memory inode i_data array is in little-endian order 2754 * even on big-endian machines: we do NOT byteswap the block numbers! 2755 */ 2756 for (block = 0; block < EXT4_N_BLOCKS; block++) 2757 ei->i_data[block] = raw_inode->i_block[block]; 2758 INIT_LIST_HEAD(&ei->i_orphan); 2759 2760 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2761 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 2762 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 2763 EXT4_INODE_SIZE(inode->i_sb)) { 2764 brelse (bh); 2765 ret = -EIO; 2766 goto bad_inode; 2767 } 2768 if (ei->i_extra_isize == 0) { 2769 /* The extra space is currently unused. Use it. */ 2770 ei->i_extra_isize = sizeof(struct ext4_inode) - 2771 EXT4_GOOD_OLD_INODE_SIZE; 2772 } else { 2773 __le32 *magic = (void *)raw_inode + 2774 EXT4_GOOD_OLD_INODE_SIZE + 2775 ei->i_extra_isize; 2776 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 2777 ei->i_state |= EXT4_STATE_XATTR; 2778 } 2779 } else 2780 ei->i_extra_isize = 0; 2781 2782 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 2783 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 2784 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 2785 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 2786 2787 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 2788 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2789 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 2790 inode->i_version |= 2791 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 2792 } 2793 2794 if (S_ISREG(inode->i_mode)) { 2795 inode->i_op = &ext4_file_inode_operations; 2796 inode->i_fop = &ext4_file_operations; 2797 ext4_set_aops(inode); 2798 } else if (S_ISDIR(inode->i_mode)) { 2799 inode->i_op = &ext4_dir_inode_operations; 2800 inode->i_fop = &ext4_dir_operations; 2801 } else if (S_ISLNK(inode->i_mode)) { 2802 if (ext4_inode_is_fast_symlink(inode)) 2803 inode->i_op = &ext4_fast_symlink_inode_operations; 2804 else { 2805 inode->i_op = &ext4_symlink_inode_operations; 2806 ext4_set_aops(inode); 2807 } 2808 } else { 2809 inode->i_op = &ext4_special_inode_operations; 2810 if (raw_inode->i_block[0]) 2811 init_special_inode(inode, inode->i_mode, 2812 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 2813 else 2814 init_special_inode(inode, inode->i_mode, 2815 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 2816 } 2817 brelse (iloc.bh); 2818 ext4_set_inode_flags(inode); 2819 unlock_new_inode(inode); 2820 return inode; 2821 2822 bad_inode: 2823 iget_failed(inode); 2824 return ERR_PTR(ret); 2825 } 2826 2827 static int ext4_inode_blocks_set(handle_t *handle, 2828 struct ext4_inode *raw_inode, 2829 struct ext4_inode_info *ei) 2830 { 2831 struct inode *inode = &(ei->vfs_inode); 2832 u64 i_blocks = inode->i_blocks; 2833 struct super_block *sb = inode->i_sb; 2834 int err = 0; 2835 2836 if (i_blocks <= ~0U) { 2837 /* 2838 * i_blocks can be represnted in a 32 bit variable 2839 * as multiple of 512 bytes 2840 */ 2841 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2842 raw_inode->i_blocks_high = 0; 2843 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2844 } else if (i_blocks <= 0xffffffffffffULL) { 2845 /* 2846 * i_blocks can be represented in a 48 bit variable 2847 * as multiple of 512 bytes 2848 */ 2849 err = ext4_update_rocompat_feature(handle, sb, 2850 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2851 if (err) 2852 goto err_out; 2853 /* i_block is stored in the split 48 bit fields */ 2854 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2855 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2856 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2857 } else { 2858 /* 2859 * i_blocks should be represented in a 48 bit variable 2860 * as multiple of file system block size 2861 */ 2862 err = ext4_update_rocompat_feature(handle, sb, 2863 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2864 if (err) 2865 goto err_out; 2866 ei->i_flags |= EXT4_HUGE_FILE_FL; 2867 /* i_block is stored in file system block size */ 2868 i_blocks = i_blocks >> (inode->i_blkbits - 9); 2869 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2870 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2871 } 2872 err_out: 2873 return err; 2874 } 2875 2876 /* 2877 * Post the struct inode info into an on-disk inode location in the 2878 * buffer-cache. This gobbles the caller's reference to the 2879 * buffer_head in the inode location struct. 2880 * 2881 * The caller must have write access to iloc->bh. 2882 */ 2883 static int ext4_do_update_inode(handle_t *handle, 2884 struct inode *inode, 2885 struct ext4_iloc *iloc) 2886 { 2887 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 2888 struct ext4_inode_info *ei = EXT4_I(inode); 2889 struct buffer_head *bh = iloc->bh; 2890 int err = 0, rc, block; 2891 2892 /* For fields not not tracking in the in-memory inode, 2893 * initialise them to zero for new inodes. */ 2894 if (ei->i_state & EXT4_STATE_NEW) 2895 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 2896 2897 ext4_get_inode_flags(ei); 2898 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 2899 if(!(test_opt(inode->i_sb, NO_UID32))) { 2900 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 2901 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 2902 /* 2903 * Fix up interoperability with old kernels. Otherwise, old inodes get 2904 * re-used with the upper 16 bits of the uid/gid intact 2905 */ 2906 if(!ei->i_dtime) { 2907 raw_inode->i_uid_high = 2908 cpu_to_le16(high_16_bits(inode->i_uid)); 2909 raw_inode->i_gid_high = 2910 cpu_to_le16(high_16_bits(inode->i_gid)); 2911 } else { 2912 raw_inode->i_uid_high = 0; 2913 raw_inode->i_gid_high = 0; 2914 } 2915 } else { 2916 raw_inode->i_uid_low = 2917 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 2918 raw_inode->i_gid_low = 2919 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 2920 raw_inode->i_uid_high = 0; 2921 raw_inode->i_gid_high = 0; 2922 } 2923 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 2924 2925 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 2926 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 2927 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 2928 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 2929 2930 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 2931 goto out_brelse; 2932 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 2933 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 2934 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2935 cpu_to_le32(EXT4_OS_HURD)) 2936 raw_inode->i_file_acl_high = 2937 cpu_to_le16(ei->i_file_acl >> 32); 2938 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 2939 ext4_isize_set(raw_inode, ei->i_disksize); 2940 if (ei->i_disksize > 0x7fffffffULL) { 2941 struct super_block *sb = inode->i_sb; 2942 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 2943 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 2944 EXT4_SB(sb)->s_es->s_rev_level == 2945 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 2946 /* If this is the first large file 2947 * created, add a flag to the superblock. 2948 */ 2949 err = ext4_journal_get_write_access(handle, 2950 EXT4_SB(sb)->s_sbh); 2951 if (err) 2952 goto out_brelse; 2953 ext4_update_dynamic_rev(sb); 2954 EXT4_SET_RO_COMPAT_FEATURE(sb, 2955 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 2956 sb->s_dirt = 1; 2957 handle->h_sync = 1; 2958 err = ext4_journal_dirty_metadata(handle, 2959 EXT4_SB(sb)->s_sbh); 2960 } 2961 } 2962 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 2963 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 2964 if (old_valid_dev(inode->i_rdev)) { 2965 raw_inode->i_block[0] = 2966 cpu_to_le32(old_encode_dev(inode->i_rdev)); 2967 raw_inode->i_block[1] = 0; 2968 } else { 2969 raw_inode->i_block[0] = 0; 2970 raw_inode->i_block[1] = 2971 cpu_to_le32(new_encode_dev(inode->i_rdev)); 2972 raw_inode->i_block[2] = 0; 2973 } 2974 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 2975 raw_inode->i_block[block] = ei->i_data[block]; 2976 2977 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 2978 if (ei->i_extra_isize) { 2979 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 2980 raw_inode->i_version_hi = 2981 cpu_to_le32(inode->i_version >> 32); 2982 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 2983 } 2984 2985 2986 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2987 rc = ext4_journal_dirty_metadata(handle, bh); 2988 if (!err) 2989 err = rc; 2990 ei->i_state &= ~EXT4_STATE_NEW; 2991 2992 out_brelse: 2993 brelse (bh); 2994 ext4_std_error(inode->i_sb, err); 2995 return err; 2996 } 2997 2998 /* 2999 * ext4_write_inode() 3000 * 3001 * We are called from a few places: 3002 * 3003 * - Within generic_file_write() for O_SYNC files. 3004 * Here, there will be no transaction running. We wait for any running 3005 * trasnaction to commit. 3006 * 3007 * - Within sys_sync(), kupdate and such. 3008 * We wait on commit, if tol to. 3009 * 3010 * - Within prune_icache() (PF_MEMALLOC == true) 3011 * Here we simply return. We can't afford to block kswapd on the 3012 * journal commit. 3013 * 3014 * In all cases it is actually safe for us to return without doing anything, 3015 * because the inode has been copied into a raw inode buffer in 3016 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3017 * knfsd. 3018 * 3019 * Note that we are absolutely dependent upon all inode dirtiers doing the 3020 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3021 * which we are interested. 3022 * 3023 * It would be a bug for them to not do this. The code: 3024 * 3025 * mark_inode_dirty(inode) 3026 * stuff(); 3027 * inode->i_size = expr; 3028 * 3029 * is in error because a kswapd-driven write_inode() could occur while 3030 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3031 * will no longer be on the superblock's dirty inode list. 3032 */ 3033 int ext4_write_inode(struct inode *inode, int wait) 3034 { 3035 if (current->flags & PF_MEMALLOC) 3036 return 0; 3037 3038 if (ext4_journal_current_handle()) { 3039 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3040 dump_stack(); 3041 return -EIO; 3042 } 3043 3044 if (!wait) 3045 return 0; 3046 3047 return ext4_force_commit(inode->i_sb); 3048 } 3049 3050 /* 3051 * ext4_setattr() 3052 * 3053 * Called from notify_change. 3054 * 3055 * We want to trap VFS attempts to truncate the file as soon as 3056 * possible. In particular, we want to make sure that when the VFS 3057 * shrinks i_size, we put the inode on the orphan list and modify 3058 * i_disksize immediately, so that during the subsequent flushing of 3059 * dirty pages and freeing of disk blocks, we can guarantee that any 3060 * commit will leave the blocks being flushed in an unused state on 3061 * disk. (On recovery, the inode will get truncated and the blocks will 3062 * be freed, so we have a strong guarantee that no future commit will 3063 * leave these blocks visible to the user.) 3064 * 3065 * Called with inode->sem down. 3066 */ 3067 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 3068 { 3069 struct inode *inode = dentry->d_inode; 3070 int error, rc = 0; 3071 const unsigned int ia_valid = attr->ia_valid; 3072 3073 error = inode_change_ok(inode, attr); 3074 if (error) 3075 return error; 3076 3077 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3078 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3079 handle_t *handle; 3080 3081 /* (user+group)*(old+new) structure, inode write (sb, 3082 * inode block, ? - but truncate inode update has it) */ 3083 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 3084 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 3085 if (IS_ERR(handle)) { 3086 error = PTR_ERR(handle); 3087 goto err_out; 3088 } 3089 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3090 if (error) { 3091 ext4_journal_stop(handle); 3092 return error; 3093 } 3094 /* Update corresponding info in inode so that everything is in 3095 * one transaction */ 3096 if (attr->ia_valid & ATTR_UID) 3097 inode->i_uid = attr->ia_uid; 3098 if (attr->ia_valid & ATTR_GID) 3099 inode->i_gid = attr->ia_gid; 3100 error = ext4_mark_inode_dirty(handle, inode); 3101 ext4_journal_stop(handle); 3102 } 3103 3104 if (attr->ia_valid & ATTR_SIZE) { 3105 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 3106 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3107 3108 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 3109 error = -EFBIG; 3110 goto err_out; 3111 } 3112 } 3113 } 3114 3115 if (S_ISREG(inode->i_mode) && 3116 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3117 handle_t *handle; 3118 3119 handle = ext4_journal_start(inode, 3); 3120 if (IS_ERR(handle)) { 3121 error = PTR_ERR(handle); 3122 goto err_out; 3123 } 3124 3125 error = ext4_orphan_add(handle, inode); 3126 EXT4_I(inode)->i_disksize = attr->ia_size; 3127 rc = ext4_mark_inode_dirty(handle, inode); 3128 if (!error) 3129 error = rc; 3130 ext4_journal_stop(handle); 3131 } 3132 3133 rc = inode_setattr(inode, attr); 3134 3135 /* If inode_setattr's call to ext4_truncate failed to get a 3136 * transaction handle at all, we need to clean up the in-core 3137 * orphan list manually. */ 3138 if (inode->i_nlink) 3139 ext4_orphan_del(NULL, inode); 3140 3141 if (!rc && (ia_valid & ATTR_MODE)) 3142 rc = ext4_acl_chmod(inode); 3143 3144 err_out: 3145 ext4_std_error(inode->i_sb, error); 3146 if (!error) 3147 error = rc; 3148 return error; 3149 } 3150 3151 3152 /* 3153 * How many blocks doth make a writepage()? 3154 * 3155 * With N blocks per page, it may be: 3156 * N data blocks 3157 * 2 indirect block 3158 * 2 dindirect 3159 * 1 tindirect 3160 * N+5 bitmap blocks (from the above) 3161 * N+5 group descriptor summary blocks 3162 * 1 inode block 3163 * 1 superblock. 3164 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 3165 * 3166 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 3167 * 3168 * With ordered or writeback data it's the same, less the N data blocks. 3169 * 3170 * If the inode's direct blocks can hold an integral number of pages then a 3171 * page cannot straddle two indirect blocks, and we can only touch one indirect 3172 * and dindirect block, and the "5" above becomes "3". 3173 * 3174 * This still overestimates under most circumstances. If we were to pass the 3175 * start and end offsets in here as well we could do block_to_path() on each 3176 * block and work out the exact number of indirects which are touched. Pah. 3177 */ 3178 3179 int ext4_writepage_trans_blocks(struct inode *inode) 3180 { 3181 int bpp = ext4_journal_blocks_per_page(inode); 3182 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 3183 int ret; 3184 3185 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3186 return ext4_ext_writepage_trans_blocks(inode, bpp); 3187 3188 if (ext4_should_journal_data(inode)) 3189 ret = 3 * (bpp + indirects) + 2; 3190 else 3191 ret = 2 * (bpp + indirects) + 2; 3192 3193 #ifdef CONFIG_QUOTA 3194 /* We know that structure was already allocated during DQUOT_INIT so 3195 * we will be updating only the data blocks + inodes */ 3196 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 3197 #endif 3198 3199 return ret; 3200 } 3201 3202 /* 3203 * The caller must have previously called ext4_reserve_inode_write(). 3204 * Give this, we know that the caller already has write access to iloc->bh. 3205 */ 3206 int ext4_mark_iloc_dirty(handle_t *handle, 3207 struct inode *inode, struct ext4_iloc *iloc) 3208 { 3209 int err = 0; 3210 3211 if (test_opt(inode->i_sb, I_VERSION)) 3212 inode_inc_iversion(inode); 3213 3214 /* the do_update_inode consumes one bh->b_count */ 3215 get_bh(iloc->bh); 3216 3217 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 3218 err = ext4_do_update_inode(handle, inode, iloc); 3219 put_bh(iloc->bh); 3220 return err; 3221 } 3222 3223 /* 3224 * On success, We end up with an outstanding reference count against 3225 * iloc->bh. This _must_ be cleaned up later. 3226 */ 3227 3228 int 3229 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 3230 struct ext4_iloc *iloc) 3231 { 3232 int err = 0; 3233 if (handle) { 3234 err = ext4_get_inode_loc(inode, iloc); 3235 if (!err) { 3236 BUFFER_TRACE(iloc->bh, "get_write_access"); 3237 err = ext4_journal_get_write_access(handle, iloc->bh); 3238 if (err) { 3239 brelse(iloc->bh); 3240 iloc->bh = NULL; 3241 } 3242 } 3243 } 3244 ext4_std_error(inode->i_sb, err); 3245 return err; 3246 } 3247 3248 /* 3249 * Expand an inode by new_extra_isize bytes. 3250 * Returns 0 on success or negative error number on failure. 3251 */ 3252 static int ext4_expand_extra_isize(struct inode *inode, 3253 unsigned int new_extra_isize, 3254 struct ext4_iloc iloc, 3255 handle_t *handle) 3256 { 3257 struct ext4_inode *raw_inode; 3258 struct ext4_xattr_ibody_header *header; 3259 struct ext4_xattr_entry *entry; 3260 3261 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 3262 return 0; 3263 3264 raw_inode = ext4_raw_inode(&iloc); 3265 3266 header = IHDR(inode, raw_inode); 3267 entry = IFIRST(header); 3268 3269 /* No extended attributes present */ 3270 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 3271 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 3272 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 3273 new_extra_isize); 3274 EXT4_I(inode)->i_extra_isize = new_extra_isize; 3275 return 0; 3276 } 3277 3278 /* try to expand with EAs present */ 3279 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 3280 raw_inode, handle); 3281 } 3282 3283 /* 3284 * What we do here is to mark the in-core inode as clean with respect to inode 3285 * dirtiness (it may still be data-dirty). 3286 * This means that the in-core inode may be reaped by prune_icache 3287 * without having to perform any I/O. This is a very good thing, 3288 * because *any* task may call prune_icache - even ones which 3289 * have a transaction open against a different journal. 3290 * 3291 * Is this cheating? Not really. Sure, we haven't written the 3292 * inode out, but prune_icache isn't a user-visible syncing function. 3293 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3294 * we start and wait on commits. 3295 * 3296 * Is this efficient/effective? Well, we're being nice to the system 3297 * by cleaning up our inodes proactively so they can be reaped 3298 * without I/O. But we are potentially leaving up to five seconds' 3299 * worth of inodes floating about which prune_icache wants us to 3300 * write out. One way to fix that would be to get prune_icache() 3301 * to do a write_super() to free up some memory. It has the desired 3302 * effect. 3303 */ 3304 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 3305 { 3306 struct ext4_iloc iloc; 3307 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3308 static unsigned int mnt_count; 3309 int err, ret; 3310 3311 might_sleep(); 3312 err = ext4_reserve_inode_write(handle, inode, &iloc); 3313 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 3314 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 3315 /* 3316 * We need extra buffer credits since we may write into EA block 3317 * with this same handle. If journal_extend fails, then it will 3318 * only result in a minor loss of functionality for that inode. 3319 * If this is felt to be critical, then e2fsck should be run to 3320 * force a large enough s_min_extra_isize. 3321 */ 3322 if ((jbd2_journal_extend(handle, 3323 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 3324 ret = ext4_expand_extra_isize(inode, 3325 sbi->s_want_extra_isize, 3326 iloc, handle); 3327 if (ret) { 3328 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 3329 if (mnt_count != 3330 le16_to_cpu(sbi->s_es->s_mnt_count)) { 3331 ext4_warning(inode->i_sb, __FUNCTION__, 3332 "Unable to expand inode %lu. Delete" 3333 " some EAs or run e2fsck.", 3334 inode->i_ino); 3335 mnt_count = 3336 le16_to_cpu(sbi->s_es->s_mnt_count); 3337 } 3338 } 3339 } 3340 } 3341 if (!err) 3342 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3343 return err; 3344 } 3345 3346 /* 3347 * ext4_dirty_inode() is called from __mark_inode_dirty() 3348 * 3349 * We're really interested in the case where a file is being extended. 3350 * i_size has been changed by generic_commit_write() and we thus need 3351 * to include the updated inode in the current transaction. 3352 * 3353 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 3354 * are allocated to the file. 3355 * 3356 * If the inode is marked synchronous, we don't honour that here - doing 3357 * so would cause a commit on atime updates, which we don't bother doing. 3358 * We handle synchronous inodes at the highest possible level. 3359 */ 3360 void ext4_dirty_inode(struct inode *inode) 3361 { 3362 handle_t *current_handle = ext4_journal_current_handle(); 3363 handle_t *handle; 3364 3365 handle = ext4_journal_start(inode, 2); 3366 if (IS_ERR(handle)) 3367 goto out; 3368 if (current_handle && 3369 current_handle->h_transaction != handle->h_transaction) { 3370 /* This task has a transaction open against a different fs */ 3371 printk(KERN_EMERG "%s: transactions do not match!\n", 3372 __FUNCTION__); 3373 } else { 3374 jbd_debug(5, "marking dirty. outer handle=%p\n", 3375 current_handle); 3376 ext4_mark_inode_dirty(handle, inode); 3377 } 3378 ext4_journal_stop(handle); 3379 out: 3380 return; 3381 } 3382 3383 #if 0 3384 /* 3385 * Bind an inode's backing buffer_head into this transaction, to prevent 3386 * it from being flushed to disk early. Unlike 3387 * ext4_reserve_inode_write, this leaves behind no bh reference and 3388 * returns no iloc structure, so the caller needs to repeat the iloc 3389 * lookup to mark the inode dirty later. 3390 */ 3391 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 3392 { 3393 struct ext4_iloc iloc; 3394 3395 int err = 0; 3396 if (handle) { 3397 err = ext4_get_inode_loc(inode, &iloc); 3398 if (!err) { 3399 BUFFER_TRACE(iloc.bh, "get_write_access"); 3400 err = jbd2_journal_get_write_access(handle, iloc.bh); 3401 if (!err) 3402 err = ext4_journal_dirty_metadata(handle, 3403 iloc.bh); 3404 brelse(iloc.bh); 3405 } 3406 } 3407 ext4_std_error(inode->i_sb, err); 3408 return err; 3409 } 3410 #endif 3411 3412 int ext4_change_inode_journal_flag(struct inode *inode, int val) 3413 { 3414 journal_t *journal; 3415 handle_t *handle; 3416 int err; 3417 3418 /* 3419 * We have to be very careful here: changing a data block's 3420 * journaling status dynamically is dangerous. If we write a 3421 * data block to the journal, change the status and then delete 3422 * that block, we risk forgetting to revoke the old log record 3423 * from the journal and so a subsequent replay can corrupt data. 3424 * So, first we make sure that the journal is empty and that 3425 * nobody is changing anything. 3426 */ 3427 3428 journal = EXT4_JOURNAL(inode); 3429 if (is_journal_aborted(journal)) 3430 return -EROFS; 3431 3432 jbd2_journal_lock_updates(journal); 3433 jbd2_journal_flush(journal); 3434 3435 /* 3436 * OK, there are no updates running now, and all cached data is 3437 * synced to disk. We are now in a completely consistent state 3438 * which doesn't have anything in the journal, and we know that 3439 * no filesystem updates are running, so it is safe to modify 3440 * the inode's in-core data-journaling state flag now. 3441 */ 3442 3443 if (val) 3444 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 3445 else 3446 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 3447 ext4_set_aops(inode); 3448 3449 jbd2_journal_unlock_updates(journal); 3450 3451 /* Finally we can mark the inode as dirty. */ 3452 3453 handle = ext4_journal_start(inode, 1); 3454 if (IS_ERR(handle)) 3455 return PTR_ERR(handle); 3456 3457 err = ext4_mark_inode_dirty(handle, inode); 3458 handle->h_sync = 1; 3459 ext4_journal_stop(handle); 3460 ext4_std_error(inode->i_sb, err); 3461 3462 return err; 3463 } 3464