1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 bool freeze_protected = false; 179 180 trace_ext4_evict_inode(inode); 181 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidatepage() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 204 inode->i_data.nrpages) { 205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 207 208 jbd2_complete_transaction(journal, commit_tid); 209 filemap_write_and_wait(&inode->i_data); 210 } 211 truncate_inode_pages_final(&inode->i_data); 212 213 goto no_delete; 214 } 215 216 if (is_bad_inode(inode)) 217 goto no_delete; 218 dquot_initialize(inode); 219 220 if (ext4_should_order_data(inode)) 221 ext4_begin_ordered_truncate(inode, 0); 222 truncate_inode_pages_final(&inode->i_data); 223 224 /* 225 * For inodes with journalled data, transaction commit could have 226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 227 * flag but we still need to remove the inode from the writeback lists. 228 */ 229 if (!list_empty_careful(&inode->i_io_list)) { 230 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 231 inode_io_list_del(inode); 232 } 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it. When we are in a running transaction though, 237 * we are already protected against freezing and we cannot grab further 238 * protection due to lock ordering constraints. 239 */ 240 if (!ext4_journal_current_handle()) { 241 sb_start_intwrite(inode->i_sb); 242 freeze_protected = true; 243 } 244 245 if (!IS_NOQUOTA(inode)) 246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 247 248 /* 249 * Block bitmap, group descriptor, and inode are accounted in both 250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 251 */ 252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 253 ext4_blocks_for_truncate(inode) + extra_credits - 3); 254 if (IS_ERR(handle)) { 255 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 256 /* 257 * If we're going to skip the normal cleanup, we still need to 258 * make sure that the in-core orphan linked list is properly 259 * cleaned up. 260 */ 261 ext4_orphan_del(NULL, inode); 262 if (freeze_protected) 263 sb_end_intwrite(inode->i_sb); 264 goto no_delete; 265 } 266 267 if (IS_SYNC(inode)) 268 ext4_handle_sync(handle); 269 270 /* 271 * Set inode->i_size to 0 before calling ext4_truncate(). We need 272 * special handling of symlinks here because i_size is used to 273 * determine whether ext4_inode_info->i_data contains symlink data or 274 * block mappings. Setting i_size to 0 will remove its fast symlink 275 * status. Erase i_data so that it becomes a valid empty block map. 276 */ 277 if (ext4_inode_is_fast_symlink(inode)) 278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 279 inode->i_size = 0; 280 err = ext4_mark_inode_dirty(handle, inode); 281 if (err) { 282 ext4_warning(inode->i_sb, 283 "couldn't mark inode dirty (err %d)", err); 284 goto stop_handle; 285 } 286 if (inode->i_blocks) { 287 err = ext4_truncate(inode); 288 if (err) { 289 ext4_error_err(inode->i_sb, -err, 290 "couldn't truncate inode %lu (err %d)", 291 inode->i_ino, err); 292 goto stop_handle; 293 } 294 } 295 296 /* Remove xattr references. */ 297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 298 extra_credits); 299 if (err) { 300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 301 stop_handle: 302 ext4_journal_stop(handle); 303 ext4_orphan_del(NULL, inode); 304 if (freeze_protected) 305 sb_end_intwrite(inode->i_sb); 306 ext4_xattr_inode_array_free(ea_inode_array); 307 goto no_delete; 308 } 309 310 /* 311 * Kill off the orphan record which ext4_truncate created. 312 * AKPM: I think this can be inside the above `if'. 313 * Note that ext4_orphan_del() has to be able to cope with the 314 * deletion of a non-existent orphan - this is because we don't 315 * know if ext4_truncate() actually created an orphan record. 316 * (Well, we could do this if we need to, but heck - it works) 317 */ 318 ext4_orphan_del(handle, inode); 319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 320 321 /* 322 * One subtle ordering requirement: if anything has gone wrong 323 * (transaction abort, IO errors, whatever), then we can still 324 * do these next steps (the fs will already have been marked as 325 * having errors), but we can't free the inode if the mark_dirty 326 * fails. 327 */ 328 if (ext4_mark_inode_dirty(handle, inode)) 329 /* If that failed, just do the required in-core inode clear. */ 330 ext4_clear_inode(inode); 331 else 332 ext4_free_inode(handle, inode); 333 ext4_journal_stop(handle); 334 if (freeze_protected) 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 342 } 343 344 #ifdef CONFIG_QUOTA 345 qsize_t *ext4_get_reserved_space(struct inode *inode) 346 { 347 return &EXT4_I(inode)->i_reserved_quota; 348 } 349 #endif 350 351 /* 352 * Called with i_data_sem down, which is important since we can call 353 * ext4_discard_preallocations() from here. 354 */ 355 void ext4_da_update_reserve_space(struct inode *inode, 356 int used, int quota_claim) 357 { 358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 359 struct ext4_inode_info *ei = EXT4_I(inode); 360 361 spin_lock(&ei->i_block_reservation_lock); 362 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 363 if (unlikely(used > ei->i_reserved_data_blocks)) { 364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 365 "with only %d reserved data blocks", 366 __func__, inode->i_ino, used, 367 ei->i_reserved_data_blocks); 368 WARN_ON(1); 369 used = ei->i_reserved_data_blocks; 370 } 371 372 /* Update per-inode reservations */ 373 ei->i_reserved_data_blocks -= used; 374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 375 376 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 377 378 /* Update quota subsystem for data blocks */ 379 if (quota_claim) 380 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 381 else { 382 /* 383 * We did fallocate with an offset that is already delayed 384 * allocated. So on delayed allocated writeback we should 385 * not re-claim the quota for fallocated blocks. 386 */ 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 388 } 389 390 /* 391 * If we have done all the pending block allocations and if 392 * there aren't any writers on the inode, we can discard the 393 * inode's preallocations. 394 */ 395 if ((ei->i_reserved_data_blocks == 0) && 396 !inode_is_open_for_write(inode)) 397 ext4_discard_preallocations(inode, 0); 398 } 399 400 static int __check_block_validity(struct inode *inode, const char *func, 401 unsigned int line, 402 struct ext4_map_blocks *map) 403 { 404 if (ext4_has_feature_journal(inode->i_sb) && 405 (inode->i_ino == 406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 407 return 0; 408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 409 ext4_error_inode(inode, func, line, map->m_pblk, 410 "lblock %lu mapped to illegal pblock %llu " 411 "(length %d)", (unsigned long) map->m_lblk, 412 map->m_pblk, map->m_len); 413 return -EFSCORRUPTED; 414 } 415 return 0; 416 } 417 418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 419 ext4_lblk_t len) 420 { 421 int ret; 422 423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 424 return fscrypt_zeroout_range(inode, lblk, pblk, len); 425 426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 427 if (ret > 0) 428 ret = 0; 429 430 return ret; 431 } 432 433 #define check_block_validity(inode, map) \ 434 __check_block_validity((inode), __func__, __LINE__, (map)) 435 436 #ifdef ES_AGGRESSIVE_TEST 437 static void ext4_map_blocks_es_recheck(handle_t *handle, 438 struct inode *inode, 439 struct ext4_map_blocks *es_map, 440 struct ext4_map_blocks *map, 441 int flags) 442 { 443 int retval; 444 445 map->m_flags = 0; 446 /* 447 * There is a race window that the result is not the same. 448 * e.g. xfstests #223 when dioread_nolock enables. The reason 449 * is that we lookup a block mapping in extent status tree with 450 * out taking i_data_sem. So at the time the unwritten extent 451 * could be converted. 452 */ 453 down_read(&EXT4_I(inode)->i_data_sem); 454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 455 retval = ext4_ext_map_blocks(handle, inode, map, 0); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, 0); 458 } 459 up_read((&EXT4_I(inode)->i_data_sem)); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocated. if 492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 493 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 494 * 495 * It returns 0 if plain look up failed (blocks have not been allocated), in 496 * that case, @map is returned as unmapped but we still do fill map->m_len to 497 * indicate the length of a hole starting at map->m_lblk. 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 int ret = 0; 507 #ifdef ES_AGGRESSIVE_TEST 508 struct ext4_map_blocks orig_map; 509 510 memcpy(&orig_map, map, sizeof(*map)); 511 #endif 512 513 map->m_flags = 0; 514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 515 flags, map->m_len, (unsigned long) map->m_lblk); 516 517 /* 518 * ext4_map_blocks returns an int, and m_len is an unsigned int 519 */ 520 if (unlikely(map->m_len > INT_MAX)) 521 map->m_len = INT_MAX; 522 523 /* We can handle the block number less than EXT_MAX_BLOCKS */ 524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 525 return -EFSCORRUPTED; 526 527 /* Lookup extent status tree firstly */ 528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 531 map->m_pblk = ext4_es_pblock(&es) + 532 map->m_lblk - es.es_lblk; 533 map->m_flags |= ext4_es_is_written(&es) ? 534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 535 retval = es.es_len - (map->m_lblk - es.es_lblk); 536 if (retval > map->m_len) 537 retval = map->m_len; 538 map->m_len = retval; 539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 540 map->m_pblk = 0; 541 retval = es.es_len - (map->m_lblk - es.es_lblk); 542 if (retval > map->m_len) 543 retval = map->m_len; 544 map->m_len = retval; 545 retval = 0; 546 } else { 547 BUG(); 548 } 549 #ifdef ES_AGGRESSIVE_TEST 550 ext4_map_blocks_es_recheck(handle, inode, map, 551 &orig_map, flags); 552 #endif 553 goto found; 554 } 555 556 /* 557 * Try to see if we can get the block without requesting a new 558 * file system block. 559 */ 560 down_read(&EXT4_I(inode)->i_data_sem); 561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 562 retval = ext4_ext_map_blocks(handle, inode, map, 0); 563 } else { 564 retval = ext4_ind_map_blocks(handle, inode, map, 0); 565 } 566 if (retval > 0) { 567 unsigned int status; 568 569 if (unlikely(retval != map->m_len)) { 570 ext4_warning(inode->i_sb, 571 "ES len assertion failed for inode " 572 "%lu: retval %d != map->m_len %d", 573 inode->i_ino, retval, map->m_len); 574 WARN_ON(1); 575 } 576 577 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 580 !(status & EXTENT_STATUS_WRITTEN) && 581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 582 map->m_lblk + map->m_len - 1)) 583 status |= EXTENT_STATUS_DELAYED; 584 ret = ext4_es_insert_extent(inode, map->m_lblk, 585 map->m_len, map->m_pblk, status); 586 if (ret < 0) 587 retval = ret; 588 } 589 up_read((&EXT4_I(inode)->i_data_sem)); 590 591 found: 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 593 ret = check_block_validity(inode, map); 594 if (ret != 0) 595 return ret; 596 } 597 598 /* If it is only a block(s) look up */ 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 600 return retval; 601 602 /* 603 * Returns if the blocks have already allocated 604 * 605 * Note that if blocks have been preallocated 606 * ext4_ext_get_block() returns the create = 0 607 * with buffer head unmapped. 608 */ 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 610 /* 611 * If we need to convert extent to unwritten 612 * we continue and do the actual work in 613 * ext4_ext_map_blocks() 614 */ 615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 616 return retval; 617 618 /* 619 * Here we clear m_flags because after allocating an new extent, 620 * it will be set again. 621 */ 622 map->m_flags &= ~EXT4_MAP_FLAGS; 623 624 /* 625 * New blocks allocate and/or writing to unwritten extent 626 * will possibly result in updating i_data, so we take 627 * the write lock of i_data_sem, and call get_block() 628 * with create == 1 flag. 629 */ 630 down_write(&EXT4_I(inode)->i_data_sem); 631 632 /* 633 * We need to check for EXT4 here because migrate 634 * could have changed the inode type in between 635 */ 636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 637 retval = ext4_ext_map_blocks(handle, inode, map, flags); 638 } else { 639 retval = ext4_ind_map_blocks(handle, inode, map, flags); 640 641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 642 /* 643 * We allocated new blocks which will result in 644 * i_data's format changing. Force the migrate 645 * to fail by clearing migrate flags 646 */ 647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 648 } 649 650 /* 651 * Update reserved blocks/metadata blocks after successful 652 * block allocation which had been deferred till now. We don't 653 * support fallocate for non extent files. So we can update 654 * reserve space here. 655 */ 656 if ((retval > 0) && 657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 658 ext4_da_update_reserve_space(inode, retval, 1); 659 } 660 661 if (retval > 0) { 662 unsigned int status; 663 664 if (unlikely(retval != map->m_len)) { 665 ext4_warning(inode->i_sb, 666 "ES len assertion failed for inode " 667 "%lu: retval %d != map->m_len %d", 668 inode->i_ino, retval, map->m_len); 669 WARN_ON(1); 670 } 671 672 /* 673 * We have to zeroout blocks before inserting them into extent 674 * status tree. Otherwise someone could look them up there and 675 * use them before they are really zeroed. We also have to 676 * unmap metadata before zeroing as otherwise writeback can 677 * overwrite zeros with stale data from block device. 678 */ 679 if (flags & EXT4_GET_BLOCKS_ZERO && 680 map->m_flags & EXT4_MAP_MAPPED && 681 map->m_flags & EXT4_MAP_NEW) { 682 ret = ext4_issue_zeroout(inode, map->m_lblk, 683 map->m_pblk, map->m_len); 684 if (ret) { 685 retval = ret; 686 goto out_sem; 687 } 688 } 689 690 /* 691 * If the extent has been zeroed out, we don't need to update 692 * extent status tree. 693 */ 694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 696 if (ext4_es_is_written(&es)) 697 goto out_sem; 698 } 699 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 702 !(status & EXTENT_STATUS_WRITTEN) && 703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 704 map->m_lblk + map->m_len - 1)) 705 status |= EXTENT_STATUS_DELAYED; 706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 707 map->m_pblk, status); 708 if (ret < 0) { 709 retval = ret; 710 goto out_sem; 711 } 712 } 713 714 out_sem: 715 up_write((&EXT4_I(inode)->i_data_sem)); 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 717 ret = check_block_validity(inode, map); 718 if (ret != 0) 719 return ret; 720 721 /* 722 * Inodes with freshly allocated blocks where contents will be 723 * visible after transaction commit must be on transaction's 724 * ordered data list. 725 */ 726 if (map->m_flags & EXT4_MAP_NEW && 727 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 728 !(flags & EXT4_GET_BLOCKS_ZERO) && 729 !ext4_is_quota_file(inode) && 730 ext4_should_order_data(inode)) { 731 loff_t start_byte = 732 (loff_t)map->m_lblk << inode->i_blkbits; 733 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 734 735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 736 ret = ext4_jbd2_inode_add_wait(handle, inode, 737 start_byte, length); 738 else 739 ret = ext4_jbd2_inode_add_write(handle, inode, 740 start_byte, length); 741 if (ret) 742 return ret; 743 } 744 ext4_fc_track_range(handle, inode, map->m_lblk, 745 map->m_lblk + map->m_len - 1); 746 } 747 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 do { 775 old_state = READ_ONCE(bh->b_state); 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely( 778 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 779 } 780 781 static int _ext4_get_block(struct inode *inode, sector_t iblock, 782 struct buffer_head *bh, int flags) 783 { 784 struct ext4_map_blocks map; 785 int ret = 0; 786 787 if (ext4_has_inline_data(inode)) 788 return -ERANGE; 789 790 map.m_lblk = iblock; 791 map.m_len = bh->b_size >> inode->i_blkbits; 792 793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 794 flags); 795 if (ret > 0) { 796 map_bh(bh, inode->i_sb, map.m_pblk); 797 ext4_update_bh_state(bh, map.m_flags); 798 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 799 ret = 0; 800 } else if (ret == 0) { 801 /* hole case, need to fill in bh->b_size */ 802 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 803 } 804 return ret; 805 } 806 807 int ext4_get_block(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh, int create) 809 { 810 return _ext4_get_block(inode, iblock, bh, 811 create ? EXT4_GET_BLOCKS_CREATE : 0); 812 } 813 814 /* 815 * Get block function used when preparing for buffered write if we require 816 * creating an unwritten extent if blocks haven't been allocated. The extent 817 * will be converted to written after the IO is complete. 818 */ 819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 820 struct buffer_head *bh_result, int create) 821 { 822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 823 inode->i_ino, create); 824 return _ext4_get_block(inode, iblock, bh_result, 825 EXT4_GET_BLOCKS_IO_CREATE_EXT); 826 } 827 828 /* Maximum number of blocks we map for direct IO at once. */ 829 #define DIO_MAX_BLOCKS 4096 830 831 /* 832 * `handle' can be NULL if create is zero 833 */ 834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 835 ext4_lblk_t block, int map_flags) 836 { 837 struct ext4_map_blocks map; 838 struct buffer_head *bh; 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 840 int err; 841 842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 843 || handle != NULL || create == 0); 844 845 map.m_lblk = block; 846 map.m_len = 1; 847 err = ext4_map_blocks(handle, inode, &map, map_flags); 848 849 if (err == 0) 850 return create ? ERR_PTR(-ENOSPC) : NULL; 851 if (err < 0) 852 return ERR_PTR(err); 853 854 bh = sb_getblk(inode->i_sb, map.m_pblk); 855 if (unlikely(!bh)) 856 return ERR_PTR(-ENOMEM); 857 if (map.m_flags & EXT4_MAP_NEW) { 858 ASSERT(create != 0); 859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 860 || (handle != NULL)); 861 862 /* 863 * Now that we do not always journal data, we should 864 * keep in mind whether this should always journal the 865 * new buffer as metadata. For now, regular file 866 * writes use ext4_get_block instead, so it's not a 867 * problem. 868 */ 869 lock_buffer(bh); 870 BUFFER_TRACE(bh, "call get_create_access"); 871 err = ext4_journal_get_create_access(handle, bh); 872 if (unlikely(err)) { 873 unlock_buffer(bh); 874 goto errout; 875 } 876 if (!buffer_uptodate(bh)) { 877 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 878 set_buffer_uptodate(bh); 879 } 880 unlock_buffer(bh); 881 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 882 err = ext4_handle_dirty_metadata(handle, inode, bh); 883 if (unlikely(err)) 884 goto errout; 885 } else 886 BUFFER_TRACE(bh, "not a new buffer"); 887 return bh; 888 errout: 889 brelse(bh); 890 return ERR_PTR(err); 891 } 892 893 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 894 ext4_lblk_t block, int map_flags) 895 { 896 struct buffer_head *bh; 897 int ret; 898 899 bh = ext4_getblk(handle, inode, block, map_flags); 900 if (IS_ERR(bh)) 901 return bh; 902 if (!bh || ext4_buffer_uptodate(bh)) 903 return bh; 904 905 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 906 if (ret) { 907 put_bh(bh); 908 return ERR_PTR(ret); 909 } 910 return bh; 911 } 912 913 /* Read a contiguous batch of blocks. */ 914 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 915 bool wait, struct buffer_head **bhs) 916 { 917 int i, err; 918 919 for (i = 0; i < bh_count; i++) { 920 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 921 if (IS_ERR(bhs[i])) { 922 err = PTR_ERR(bhs[i]); 923 bh_count = i; 924 goto out_brelse; 925 } 926 } 927 928 for (i = 0; i < bh_count; i++) 929 /* Note that NULL bhs[i] is valid because of holes. */ 930 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 931 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 932 933 if (!wait) 934 return 0; 935 936 for (i = 0; i < bh_count; i++) 937 if (bhs[i]) 938 wait_on_buffer(bhs[i]); 939 940 for (i = 0; i < bh_count; i++) { 941 if (bhs[i] && !buffer_uptodate(bhs[i])) { 942 err = -EIO; 943 goto out_brelse; 944 } 945 } 946 return 0; 947 948 out_brelse: 949 for (i = 0; i < bh_count; i++) { 950 brelse(bhs[i]); 951 bhs[i] = NULL; 952 } 953 return err; 954 } 955 956 int ext4_walk_page_buffers(handle_t *handle, 957 struct buffer_head *head, 958 unsigned from, 959 unsigned to, 960 int *partial, 961 int (*fn)(handle_t *handle, 962 struct buffer_head *bh)) 963 { 964 struct buffer_head *bh; 965 unsigned block_start, block_end; 966 unsigned blocksize = head->b_size; 967 int err, ret = 0; 968 struct buffer_head *next; 969 970 for (bh = head, block_start = 0; 971 ret == 0 && (bh != head || !block_start); 972 block_start = block_end, bh = next) { 973 next = bh->b_this_page; 974 block_end = block_start + blocksize; 975 if (block_end <= from || block_start >= to) { 976 if (partial && !buffer_uptodate(bh)) 977 *partial = 1; 978 continue; 979 } 980 err = (*fn)(handle, bh); 981 if (!ret) 982 ret = err; 983 } 984 return ret; 985 } 986 987 /* 988 * To preserve ordering, it is essential that the hole instantiation and 989 * the data write be encapsulated in a single transaction. We cannot 990 * close off a transaction and start a new one between the ext4_get_block() 991 * and the commit_write(). So doing the jbd2_journal_start at the start of 992 * prepare_write() is the right place. 993 * 994 * Also, this function can nest inside ext4_writepage(). In that case, we 995 * *know* that ext4_writepage() has generated enough buffer credits to do the 996 * whole page. So we won't block on the journal in that case, which is good, 997 * because the caller may be PF_MEMALLOC. 998 * 999 * By accident, ext4 can be reentered when a transaction is open via 1000 * quota file writes. If we were to commit the transaction while thus 1001 * reentered, there can be a deadlock - we would be holding a quota 1002 * lock, and the commit would never complete if another thread had a 1003 * transaction open and was blocking on the quota lock - a ranking 1004 * violation. 1005 * 1006 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1007 * will _not_ run commit under these circumstances because handle->h_ref 1008 * is elevated. We'll still have enough credits for the tiny quotafile 1009 * write. 1010 */ 1011 int do_journal_get_write_access(handle_t *handle, 1012 struct buffer_head *bh) 1013 { 1014 int dirty = buffer_dirty(bh); 1015 int ret; 1016 1017 if (!buffer_mapped(bh) || buffer_freed(bh)) 1018 return 0; 1019 /* 1020 * __block_write_begin() could have dirtied some buffers. Clean 1021 * the dirty bit as jbd2_journal_get_write_access() could complain 1022 * otherwise about fs integrity issues. Setting of the dirty bit 1023 * by __block_write_begin() isn't a real problem here as we clear 1024 * the bit before releasing a page lock and thus writeback cannot 1025 * ever write the buffer. 1026 */ 1027 if (dirty) 1028 clear_buffer_dirty(bh); 1029 BUFFER_TRACE(bh, "get write access"); 1030 ret = ext4_journal_get_write_access(handle, bh); 1031 if (!ret && dirty) 1032 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1033 return ret; 1034 } 1035 1036 #ifdef CONFIG_FS_ENCRYPTION 1037 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1038 get_block_t *get_block) 1039 { 1040 unsigned from = pos & (PAGE_SIZE - 1); 1041 unsigned to = from + len; 1042 struct inode *inode = page->mapping->host; 1043 unsigned block_start, block_end; 1044 sector_t block; 1045 int err = 0; 1046 unsigned blocksize = inode->i_sb->s_blocksize; 1047 unsigned bbits; 1048 struct buffer_head *bh, *head, *wait[2]; 1049 int nr_wait = 0; 1050 int i; 1051 1052 BUG_ON(!PageLocked(page)); 1053 BUG_ON(from > PAGE_SIZE); 1054 BUG_ON(to > PAGE_SIZE); 1055 BUG_ON(from > to); 1056 1057 if (!page_has_buffers(page)) 1058 create_empty_buffers(page, blocksize, 0); 1059 head = page_buffers(page); 1060 bbits = ilog2(blocksize); 1061 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1062 1063 for (bh = head, block_start = 0; bh != head || !block_start; 1064 block++, block_start = block_end, bh = bh->b_this_page) { 1065 block_end = block_start + blocksize; 1066 if (block_end <= from || block_start >= to) { 1067 if (PageUptodate(page)) { 1068 if (!buffer_uptodate(bh)) 1069 set_buffer_uptodate(bh); 1070 } 1071 continue; 1072 } 1073 if (buffer_new(bh)) 1074 clear_buffer_new(bh); 1075 if (!buffer_mapped(bh)) { 1076 WARN_ON(bh->b_size != blocksize); 1077 err = get_block(inode, block, bh, 1); 1078 if (err) 1079 break; 1080 if (buffer_new(bh)) { 1081 if (PageUptodate(page)) { 1082 clear_buffer_new(bh); 1083 set_buffer_uptodate(bh); 1084 mark_buffer_dirty(bh); 1085 continue; 1086 } 1087 if (block_end > to || block_start < from) 1088 zero_user_segments(page, to, block_end, 1089 block_start, from); 1090 continue; 1091 } 1092 } 1093 if (PageUptodate(page)) { 1094 if (!buffer_uptodate(bh)) 1095 set_buffer_uptodate(bh); 1096 continue; 1097 } 1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1099 !buffer_unwritten(bh) && 1100 (block_start < from || block_end > to)) { 1101 ext4_read_bh_lock(bh, 0, false); 1102 wait[nr_wait++] = bh; 1103 } 1104 } 1105 /* 1106 * If we issued read requests, let them complete. 1107 */ 1108 for (i = 0; i < nr_wait; i++) { 1109 wait_on_buffer(wait[i]); 1110 if (!buffer_uptodate(wait[i])) 1111 err = -EIO; 1112 } 1113 if (unlikely(err)) { 1114 page_zero_new_buffers(page, from, to); 1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1116 for (i = 0; i < nr_wait; i++) { 1117 int err2; 1118 1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1120 bh_offset(wait[i])); 1121 if (err2) { 1122 clear_buffer_uptodate(wait[i]); 1123 err = err2; 1124 } 1125 } 1126 } 1127 1128 return err; 1129 } 1130 #endif 1131 1132 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1133 loff_t pos, unsigned len, unsigned flags, 1134 struct page **pagep, void **fsdata) 1135 { 1136 struct inode *inode = mapping->host; 1137 int ret, needed_blocks; 1138 handle_t *handle; 1139 int retries = 0; 1140 struct page *page; 1141 pgoff_t index; 1142 unsigned from, to; 1143 1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1145 return -EIO; 1146 1147 trace_ext4_write_begin(inode, pos, len, flags); 1148 /* 1149 * Reserve one block more for addition to orphan list in case 1150 * we allocate blocks but write fails for some reason 1151 */ 1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1153 index = pos >> PAGE_SHIFT; 1154 from = pos & (PAGE_SIZE - 1); 1155 to = from + len; 1156 1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1159 flags, pagep); 1160 if (ret < 0) 1161 return ret; 1162 if (ret == 1) 1163 return 0; 1164 } 1165 1166 /* 1167 * grab_cache_page_write_begin() can take a long time if the 1168 * system is thrashing due to memory pressure, or if the page 1169 * is being written back. So grab it first before we start 1170 * the transaction handle. This also allows us to allocate 1171 * the page (if needed) without using GFP_NOFS. 1172 */ 1173 retry_grab: 1174 page = grab_cache_page_write_begin(mapping, index, flags); 1175 if (!page) 1176 return -ENOMEM; 1177 unlock_page(page); 1178 1179 retry_journal: 1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1181 if (IS_ERR(handle)) { 1182 put_page(page); 1183 return PTR_ERR(handle); 1184 } 1185 1186 lock_page(page); 1187 if (page->mapping != mapping) { 1188 /* The page got truncated from under us */ 1189 unlock_page(page); 1190 put_page(page); 1191 ext4_journal_stop(handle); 1192 goto retry_grab; 1193 } 1194 /* In case writeback began while the page was unlocked */ 1195 wait_for_stable_page(page); 1196 1197 #ifdef CONFIG_FS_ENCRYPTION 1198 if (ext4_should_dioread_nolock(inode)) 1199 ret = ext4_block_write_begin(page, pos, len, 1200 ext4_get_block_unwritten); 1201 else 1202 ret = ext4_block_write_begin(page, pos, len, 1203 ext4_get_block); 1204 #else 1205 if (ext4_should_dioread_nolock(inode)) 1206 ret = __block_write_begin(page, pos, len, 1207 ext4_get_block_unwritten); 1208 else 1209 ret = __block_write_begin(page, pos, len, ext4_get_block); 1210 #endif 1211 if (!ret && ext4_should_journal_data(inode)) { 1212 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1213 from, to, NULL, 1214 do_journal_get_write_access); 1215 } 1216 1217 if (ret) { 1218 bool extended = (pos + len > inode->i_size) && 1219 !ext4_verity_in_progress(inode); 1220 1221 unlock_page(page); 1222 /* 1223 * __block_write_begin may have instantiated a few blocks 1224 * outside i_size. Trim these off again. Don't need 1225 * i_size_read because we hold i_mutex. 1226 * 1227 * Add inode to orphan list in case we crash before 1228 * truncate finishes 1229 */ 1230 if (extended && ext4_can_truncate(inode)) 1231 ext4_orphan_add(handle, inode); 1232 1233 ext4_journal_stop(handle); 1234 if (extended) { 1235 ext4_truncate_failed_write(inode); 1236 /* 1237 * If truncate failed early the inode might 1238 * still be on the orphan list; we need to 1239 * make sure the inode is removed from the 1240 * orphan list in that case. 1241 */ 1242 if (inode->i_nlink) 1243 ext4_orphan_del(NULL, inode); 1244 } 1245 1246 if (ret == -ENOSPC && 1247 ext4_should_retry_alloc(inode->i_sb, &retries)) 1248 goto retry_journal; 1249 put_page(page); 1250 return ret; 1251 } 1252 *pagep = page; 1253 return ret; 1254 } 1255 1256 /* For write_end() in data=journal mode */ 1257 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1258 { 1259 int ret; 1260 if (!buffer_mapped(bh) || buffer_freed(bh)) 1261 return 0; 1262 set_buffer_uptodate(bh); 1263 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1264 clear_buffer_meta(bh); 1265 clear_buffer_prio(bh); 1266 return ret; 1267 } 1268 1269 /* 1270 * We need to pick up the new inode size which generic_commit_write gave us 1271 * `file' can be NULL - eg, when called from page_symlink(). 1272 * 1273 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1274 * buffers are managed internally. 1275 */ 1276 static int ext4_write_end(struct file *file, 1277 struct address_space *mapping, 1278 loff_t pos, unsigned len, unsigned copied, 1279 struct page *page, void *fsdata) 1280 { 1281 handle_t *handle = ext4_journal_current_handle(); 1282 struct inode *inode = mapping->host; 1283 loff_t old_size = inode->i_size; 1284 int ret = 0, ret2; 1285 int i_size_changed = 0; 1286 int inline_data = ext4_has_inline_data(inode); 1287 bool verity = ext4_verity_in_progress(inode); 1288 1289 trace_ext4_write_end(inode, pos, len, copied); 1290 if (inline_data) { 1291 ret = ext4_write_inline_data_end(inode, pos, len, 1292 copied, page); 1293 if (ret < 0) { 1294 unlock_page(page); 1295 put_page(page); 1296 goto errout; 1297 } 1298 copied = ret; 1299 } else 1300 copied = block_write_end(file, mapping, pos, 1301 len, copied, page, fsdata); 1302 /* 1303 * it's important to update i_size while still holding page lock: 1304 * page writeout could otherwise come in and zero beyond i_size. 1305 * 1306 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1307 * blocks are being written past EOF, so skip the i_size update. 1308 */ 1309 if (!verity) 1310 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1311 unlock_page(page); 1312 put_page(page); 1313 1314 if (old_size < pos && !verity) 1315 pagecache_isize_extended(inode, old_size, pos); 1316 /* 1317 * Don't mark the inode dirty under page lock. First, it unnecessarily 1318 * makes the holding time of page lock longer. Second, it forces lock 1319 * ordering of page lock and transaction start for journaling 1320 * filesystems. 1321 */ 1322 if (i_size_changed || inline_data) 1323 ret = ext4_mark_inode_dirty(handle, inode); 1324 1325 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1326 /* if we have allocated more blocks and copied 1327 * less. We will have blocks allocated outside 1328 * inode->i_size. So truncate them 1329 */ 1330 ext4_orphan_add(handle, inode); 1331 errout: 1332 ret2 = ext4_journal_stop(handle); 1333 if (!ret) 1334 ret = ret2; 1335 1336 if (pos + len > inode->i_size && !verity) { 1337 ext4_truncate_failed_write(inode); 1338 /* 1339 * If truncate failed early the inode might still be 1340 * on the orphan list; we need to make sure the inode 1341 * is removed from the orphan list in that case. 1342 */ 1343 if (inode->i_nlink) 1344 ext4_orphan_del(NULL, inode); 1345 } 1346 1347 return ret ? ret : copied; 1348 } 1349 1350 /* 1351 * This is a private version of page_zero_new_buffers() which doesn't 1352 * set the buffer to be dirty, since in data=journalled mode we need 1353 * to call ext4_handle_dirty_metadata() instead. 1354 */ 1355 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1356 struct page *page, 1357 unsigned from, unsigned to) 1358 { 1359 unsigned int block_start = 0, block_end; 1360 struct buffer_head *head, *bh; 1361 1362 bh = head = page_buffers(page); 1363 do { 1364 block_end = block_start + bh->b_size; 1365 if (buffer_new(bh)) { 1366 if (block_end > from && block_start < to) { 1367 if (!PageUptodate(page)) { 1368 unsigned start, size; 1369 1370 start = max(from, block_start); 1371 size = min(to, block_end) - start; 1372 1373 zero_user(page, start, size); 1374 write_end_fn(handle, bh); 1375 } 1376 clear_buffer_new(bh); 1377 } 1378 } 1379 block_start = block_end; 1380 bh = bh->b_this_page; 1381 } while (bh != head); 1382 } 1383 1384 static int ext4_journalled_write_end(struct file *file, 1385 struct address_space *mapping, 1386 loff_t pos, unsigned len, unsigned copied, 1387 struct page *page, void *fsdata) 1388 { 1389 handle_t *handle = ext4_journal_current_handle(); 1390 struct inode *inode = mapping->host; 1391 loff_t old_size = inode->i_size; 1392 int ret = 0, ret2; 1393 int partial = 0; 1394 unsigned from, to; 1395 int size_changed = 0; 1396 int inline_data = ext4_has_inline_data(inode); 1397 bool verity = ext4_verity_in_progress(inode); 1398 1399 trace_ext4_journalled_write_end(inode, pos, len, copied); 1400 from = pos & (PAGE_SIZE - 1); 1401 to = from + len; 1402 1403 BUG_ON(!ext4_handle_valid(handle)); 1404 1405 if (inline_data) { 1406 ret = ext4_write_inline_data_end(inode, pos, len, 1407 copied, page); 1408 if (ret < 0) { 1409 unlock_page(page); 1410 put_page(page); 1411 goto errout; 1412 } 1413 copied = ret; 1414 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1415 copied = 0; 1416 ext4_journalled_zero_new_buffers(handle, page, from, to); 1417 } else { 1418 if (unlikely(copied < len)) 1419 ext4_journalled_zero_new_buffers(handle, page, 1420 from + copied, to); 1421 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1422 from + copied, &partial, 1423 write_end_fn); 1424 if (!partial) 1425 SetPageUptodate(page); 1426 } 1427 if (!verity) 1428 size_changed = ext4_update_inode_size(inode, pos + copied); 1429 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1430 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1431 unlock_page(page); 1432 put_page(page); 1433 1434 if (old_size < pos && !verity) 1435 pagecache_isize_extended(inode, old_size, pos); 1436 1437 if (size_changed || inline_data) { 1438 ret2 = ext4_mark_inode_dirty(handle, inode); 1439 if (!ret) 1440 ret = ret2; 1441 } 1442 1443 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1444 /* if we have allocated more blocks and copied 1445 * less. We will have blocks allocated outside 1446 * inode->i_size. So truncate them 1447 */ 1448 ext4_orphan_add(handle, inode); 1449 1450 errout: 1451 ret2 = ext4_journal_stop(handle); 1452 if (!ret) 1453 ret = ret2; 1454 if (pos + len > inode->i_size && !verity) { 1455 ext4_truncate_failed_write(inode); 1456 /* 1457 * If truncate failed early the inode might still be 1458 * on the orphan list; we need to make sure the inode 1459 * is removed from the orphan list in that case. 1460 */ 1461 if (inode->i_nlink) 1462 ext4_orphan_del(NULL, inode); 1463 } 1464 1465 return ret ? ret : copied; 1466 } 1467 1468 /* 1469 * Reserve space for a single cluster 1470 */ 1471 static int ext4_da_reserve_space(struct inode *inode) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 struct ext4_inode_info *ei = EXT4_I(inode); 1475 int ret; 1476 1477 /* 1478 * We will charge metadata quota at writeout time; this saves 1479 * us from metadata over-estimation, though we may go over by 1480 * a small amount in the end. Here we just reserve for data. 1481 */ 1482 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1483 if (ret) 1484 return ret; 1485 1486 spin_lock(&ei->i_block_reservation_lock); 1487 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1488 spin_unlock(&ei->i_block_reservation_lock); 1489 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1490 return -ENOSPC; 1491 } 1492 ei->i_reserved_data_blocks++; 1493 trace_ext4_da_reserve_space(inode); 1494 spin_unlock(&ei->i_block_reservation_lock); 1495 1496 return 0; /* success */ 1497 } 1498 1499 void ext4_da_release_space(struct inode *inode, int to_free) 1500 { 1501 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1502 struct ext4_inode_info *ei = EXT4_I(inode); 1503 1504 if (!to_free) 1505 return; /* Nothing to release, exit */ 1506 1507 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1508 1509 trace_ext4_da_release_space(inode, to_free); 1510 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1511 /* 1512 * if there aren't enough reserved blocks, then the 1513 * counter is messed up somewhere. Since this 1514 * function is called from invalidate page, it's 1515 * harmless to return without any action. 1516 */ 1517 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1518 "ino %lu, to_free %d with only %d reserved " 1519 "data blocks", inode->i_ino, to_free, 1520 ei->i_reserved_data_blocks); 1521 WARN_ON(1); 1522 to_free = ei->i_reserved_data_blocks; 1523 } 1524 ei->i_reserved_data_blocks -= to_free; 1525 1526 /* update fs dirty data blocks counter */ 1527 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1528 1529 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1530 1531 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1532 } 1533 1534 /* 1535 * Delayed allocation stuff 1536 */ 1537 1538 struct mpage_da_data { 1539 struct inode *inode; 1540 struct writeback_control *wbc; 1541 1542 pgoff_t first_page; /* The first page to write */ 1543 pgoff_t next_page; /* Current page to examine */ 1544 pgoff_t last_page; /* Last page to examine */ 1545 /* 1546 * Extent to map - this can be after first_page because that can be 1547 * fully mapped. We somewhat abuse m_flags to store whether the extent 1548 * is delalloc or unwritten. 1549 */ 1550 struct ext4_map_blocks map; 1551 struct ext4_io_submit io_submit; /* IO submission data */ 1552 unsigned int do_map:1; 1553 unsigned int scanned_until_end:1; 1554 }; 1555 1556 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1557 bool invalidate) 1558 { 1559 int nr_pages, i; 1560 pgoff_t index, end; 1561 struct pagevec pvec; 1562 struct inode *inode = mpd->inode; 1563 struct address_space *mapping = inode->i_mapping; 1564 1565 /* This is necessary when next_page == 0. */ 1566 if (mpd->first_page >= mpd->next_page) 1567 return; 1568 1569 mpd->scanned_until_end = 0; 1570 index = mpd->first_page; 1571 end = mpd->next_page - 1; 1572 if (invalidate) { 1573 ext4_lblk_t start, last; 1574 start = index << (PAGE_SHIFT - inode->i_blkbits); 1575 last = end << (PAGE_SHIFT - inode->i_blkbits); 1576 ext4_es_remove_extent(inode, start, last - start + 1); 1577 } 1578 1579 pagevec_init(&pvec); 1580 while (index <= end) { 1581 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1582 if (nr_pages == 0) 1583 break; 1584 for (i = 0; i < nr_pages; i++) { 1585 struct page *page = pvec.pages[i]; 1586 1587 BUG_ON(!PageLocked(page)); 1588 BUG_ON(PageWriteback(page)); 1589 if (invalidate) { 1590 if (page_mapped(page)) 1591 clear_page_dirty_for_io(page); 1592 block_invalidatepage(page, 0, PAGE_SIZE); 1593 ClearPageUptodate(page); 1594 } 1595 unlock_page(page); 1596 } 1597 pagevec_release(&pvec); 1598 } 1599 } 1600 1601 static void ext4_print_free_blocks(struct inode *inode) 1602 { 1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1604 struct super_block *sb = inode->i_sb; 1605 struct ext4_inode_info *ei = EXT4_I(inode); 1606 1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1608 EXT4_C2B(EXT4_SB(inode->i_sb), 1609 ext4_count_free_clusters(sb))); 1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1612 (long long) EXT4_C2B(EXT4_SB(sb), 1613 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1615 (long long) EXT4_C2B(EXT4_SB(sb), 1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1617 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1619 ei->i_reserved_data_blocks); 1620 return; 1621 } 1622 1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1624 { 1625 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1626 } 1627 1628 /* 1629 * ext4_insert_delayed_block - adds a delayed block to the extents status 1630 * tree, incrementing the reserved cluster/block 1631 * count or making a pending reservation 1632 * where needed 1633 * 1634 * @inode - file containing the newly added block 1635 * @lblk - logical block to be added 1636 * 1637 * Returns 0 on success, negative error code on failure. 1638 */ 1639 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1640 { 1641 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1642 int ret; 1643 bool allocated = false; 1644 1645 /* 1646 * If the cluster containing lblk is shared with a delayed, 1647 * written, or unwritten extent in a bigalloc file system, it's 1648 * already been accounted for and does not need to be reserved. 1649 * A pending reservation must be made for the cluster if it's 1650 * shared with a written or unwritten extent and doesn't already 1651 * have one. Written and unwritten extents can be purged from the 1652 * extents status tree if the system is under memory pressure, so 1653 * it's necessary to examine the extent tree if a search of the 1654 * extents status tree doesn't get a match. 1655 */ 1656 if (sbi->s_cluster_ratio == 1) { 1657 ret = ext4_da_reserve_space(inode); 1658 if (ret != 0) /* ENOSPC */ 1659 goto errout; 1660 } else { /* bigalloc */ 1661 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1662 if (!ext4_es_scan_clu(inode, 1663 &ext4_es_is_mapped, lblk)) { 1664 ret = ext4_clu_mapped(inode, 1665 EXT4_B2C(sbi, lblk)); 1666 if (ret < 0) 1667 goto errout; 1668 if (ret == 0) { 1669 ret = ext4_da_reserve_space(inode); 1670 if (ret != 0) /* ENOSPC */ 1671 goto errout; 1672 } else { 1673 allocated = true; 1674 } 1675 } else { 1676 allocated = true; 1677 } 1678 } 1679 } 1680 1681 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1682 1683 errout: 1684 return ret; 1685 } 1686 1687 /* 1688 * This function is grabs code from the very beginning of 1689 * ext4_map_blocks, but assumes that the caller is from delayed write 1690 * time. This function looks up the requested blocks and sets the 1691 * buffer delay bit under the protection of i_data_sem. 1692 */ 1693 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1694 struct ext4_map_blocks *map, 1695 struct buffer_head *bh) 1696 { 1697 struct extent_status es; 1698 int retval; 1699 sector_t invalid_block = ~((sector_t) 0xffff); 1700 #ifdef ES_AGGRESSIVE_TEST 1701 struct ext4_map_blocks orig_map; 1702 1703 memcpy(&orig_map, map, sizeof(*map)); 1704 #endif 1705 1706 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1707 invalid_block = ~0; 1708 1709 map->m_flags = 0; 1710 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1711 (unsigned long) map->m_lblk); 1712 1713 /* Lookup extent status tree firstly */ 1714 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1715 if (ext4_es_is_hole(&es)) { 1716 retval = 0; 1717 down_read(&EXT4_I(inode)->i_data_sem); 1718 goto add_delayed; 1719 } 1720 1721 /* 1722 * Delayed extent could be allocated by fallocate. 1723 * So we need to check it. 1724 */ 1725 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1726 map_bh(bh, inode->i_sb, invalid_block); 1727 set_buffer_new(bh); 1728 set_buffer_delay(bh); 1729 return 0; 1730 } 1731 1732 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1733 retval = es.es_len - (iblock - es.es_lblk); 1734 if (retval > map->m_len) 1735 retval = map->m_len; 1736 map->m_len = retval; 1737 if (ext4_es_is_written(&es)) 1738 map->m_flags |= EXT4_MAP_MAPPED; 1739 else if (ext4_es_is_unwritten(&es)) 1740 map->m_flags |= EXT4_MAP_UNWRITTEN; 1741 else 1742 BUG(); 1743 1744 #ifdef ES_AGGRESSIVE_TEST 1745 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1746 #endif 1747 return retval; 1748 } 1749 1750 /* 1751 * Try to see if we can get the block without requesting a new 1752 * file system block. 1753 */ 1754 down_read(&EXT4_I(inode)->i_data_sem); 1755 if (ext4_has_inline_data(inode)) 1756 retval = 0; 1757 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1758 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1759 else 1760 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1761 1762 add_delayed: 1763 if (retval == 0) { 1764 int ret; 1765 1766 /* 1767 * XXX: __block_prepare_write() unmaps passed block, 1768 * is it OK? 1769 */ 1770 1771 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1772 if (ret != 0) { 1773 retval = ret; 1774 goto out_unlock; 1775 } 1776 1777 map_bh(bh, inode->i_sb, invalid_block); 1778 set_buffer_new(bh); 1779 set_buffer_delay(bh); 1780 } else if (retval > 0) { 1781 int ret; 1782 unsigned int status; 1783 1784 if (unlikely(retval != map->m_len)) { 1785 ext4_warning(inode->i_sb, 1786 "ES len assertion failed for inode " 1787 "%lu: retval %d != map->m_len %d", 1788 inode->i_ino, retval, map->m_len); 1789 WARN_ON(1); 1790 } 1791 1792 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1793 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1794 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1795 map->m_pblk, status); 1796 if (ret != 0) 1797 retval = ret; 1798 } 1799 1800 out_unlock: 1801 up_read((&EXT4_I(inode)->i_data_sem)); 1802 1803 return retval; 1804 } 1805 1806 /* 1807 * This is a special get_block_t callback which is used by 1808 * ext4_da_write_begin(). It will either return mapped block or 1809 * reserve space for a single block. 1810 * 1811 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1812 * We also have b_blocknr = -1 and b_bdev initialized properly 1813 * 1814 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1815 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1816 * initialized properly. 1817 */ 1818 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1819 struct buffer_head *bh, int create) 1820 { 1821 struct ext4_map_blocks map; 1822 int ret = 0; 1823 1824 BUG_ON(create == 0); 1825 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1826 1827 map.m_lblk = iblock; 1828 map.m_len = 1; 1829 1830 /* 1831 * first, we need to know whether the block is allocated already 1832 * preallocated blocks are unmapped but should treated 1833 * the same as allocated blocks. 1834 */ 1835 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1836 if (ret <= 0) 1837 return ret; 1838 1839 map_bh(bh, inode->i_sb, map.m_pblk); 1840 ext4_update_bh_state(bh, map.m_flags); 1841 1842 if (buffer_unwritten(bh)) { 1843 /* A delayed write to unwritten bh should be marked 1844 * new and mapped. Mapped ensures that we don't do 1845 * get_block multiple times when we write to the same 1846 * offset and new ensures that we do proper zero out 1847 * for partial write. 1848 */ 1849 set_buffer_new(bh); 1850 set_buffer_mapped(bh); 1851 } 1852 return 0; 1853 } 1854 1855 static int bget_one(handle_t *handle, struct buffer_head *bh) 1856 { 1857 get_bh(bh); 1858 return 0; 1859 } 1860 1861 static int bput_one(handle_t *handle, struct buffer_head *bh) 1862 { 1863 put_bh(bh); 1864 return 0; 1865 } 1866 1867 static int __ext4_journalled_writepage(struct page *page, 1868 unsigned int len) 1869 { 1870 struct address_space *mapping = page->mapping; 1871 struct inode *inode = mapping->host; 1872 struct buffer_head *page_bufs = NULL; 1873 handle_t *handle = NULL; 1874 int ret = 0, err = 0; 1875 int inline_data = ext4_has_inline_data(inode); 1876 struct buffer_head *inode_bh = NULL; 1877 1878 ClearPageChecked(page); 1879 1880 if (inline_data) { 1881 BUG_ON(page->index != 0); 1882 BUG_ON(len > ext4_get_max_inline_size(inode)); 1883 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1884 if (inode_bh == NULL) 1885 goto out; 1886 } else { 1887 page_bufs = page_buffers(page); 1888 if (!page_bufs) { 1889 BUG(); 1890 goto out; 1891 } 1892 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1893 NULL, bget_one); 1894 } 1895 /* 1896 * We need to release the page lock before we start the 1897 * journal, so grab a reference so the page won't disappear 1898 * out from under us. 1899 */ 1900 get_page(page); 1901 unlock_page(page); 1902 1903 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1904 ext4_writepage_trans_blocks(inode)); 1905 if (IS_ERR(handle)) { 1906 ret = PTR_ERR(handle); 1907 put_page(page); 1908 goto out_no_pagelock; 1909 } 1910 BUG_ON(!ext4_handle_valid(handle)); 1911 1912 lock_page(page); 1913 put_page(page); 1914 if (page->mapping != mapping) { 1915 /* The page got truncated from under us */ 1916 ext4_journal_stop(handle); 1917 ret = 0; 1918 goto out; 1919 } 1920 1921 if (inline_data) { 1922 ret = ext4_mark_inode_dirty(handle, inode); 1923 } else { 1924 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1925 do_journal_get_write_access); 1926 1927 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1928 write_end_fn); 1929 } 1930 if (ret == 0) 1931 ret = err; 1932 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1933 if (ret == 0) 1934 ret = err; 1935 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1936 err = ext4_journal_stop(handle); 1937 if (!ret) 1938 ret = err; 1939 1940 if (!ext4_has_inline_data(inode)) 1941 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1942 NULL, bput_one); 1943 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1944 out: 1945 unlock_page(page); 1946 out_no_pagelock: 1947 brelse(inode_bh); 1948 return ret; 1949 } 1950 1951 /* 1952 * Note that we don't need to start a transaction unless we're journaling data 1953 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1954 * need to file the inode to the transaction's list in ordered mode because if 1955 * we are writing back data added by write(), the inode is already there and if 1956 * we are writing back data modified via mmap(), no one guarantees in which 1957 * transaction the data will hit the disk. In case we are journaling data, we 1958 * cannot start transaction directly because transaction start ranks above page 1959 * lock so we have to do some magic. 1960 * 1961 * This function can get called via... 1962 * - ext4_writepages after taking page lock (have journal handle) 1963 * - journal_submit_inode_data_buffers (no journal handle) 1964 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1965 * - grab_page_cache when doing write_begin (have journal handle) 1966 * 1967 * We don't do any block allocation in this function. If we have page with 1968 * multiple blocks we need to write those buffer_heads that are mapped. This 1969 * is important for mmaped based write. So if we do with blocksize 1K 1970 * truncate(f, 1024); 1971 * a = mmap(f, 0, 4096); 1972 * a[0] = 'a'; 1973 * truncate(f, 4096); 1974 * we have in the page first buffer_head mapped via page_mkwrite call back 1975 * but other buffer_heads would be unmapped but dirty (dirty done via the 1976 * do_wp_page). So writepage should write the first block. If we modify 1977 * the mmap area beyond 1024 we will again get a page_fault and the 1978 * page_mkwrite callback will do the block allocation and mark the 1979 * buffer_heads mapped. 1980 * 1981 * We redirty the page if we have any buffer_heads that is either delay or 1982 * unwritten in the page. 1983 * 1984 * We can get recursively called as show below. 1985 * 1986 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1987 * ext4_writepage() 1988 * 1989 * But since we don't do any block allocation we should not deadlock. 1990 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1991 */ 1992 static int ext4_writepage(struct page *page, 1993 struct writeback_control *wbc) 1994 { 1995 int ret = 0; 1996 loff_t size; 1997 unsigned int len; 1998 struct buffer_head *page_bufs = NULL; 1999 struct inode *inode = page->mapping->host; 2000 struct ext4_io_submit io_submit; 2001 bool keep_towrite = false; 2002 2003 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2004 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 2005 unlock_page(page); 2006 return -EIO; 2007 } 2008 2009 trace_ext4_writepage(page); 2010 size = i_size_read(inode); 2011 if (page->index == size >> PAGE_SHIFT && 2012 !ext4_verity_in_progress(inode)) 2013 len = size & ~PAGE_MASK; 2014 else 2015 len = PAGE_SIZE; 2016 2017 page_bufs = page_buffers(page); 2018 /* 2019 * We cannot do block allocation or other extent handling in this 2020 * function. If there are buffers needing that, we have to redirty 2021 * the page. But we may reach here when we do a journal commit via 2022 * journal_submit_inode_data_buffers() and in that case we must write 2023 * allocated buffers to achieve data=ordered mode guarantees. 2024 * 2025 * Also, if there is only one buffer per page (the fs block 2026 * size == the page size), if one buffer needs block 2027 * allocation or needs to modify the extent tree to clear the 2028 * unwritten flag, we know that the page can't be written at 2029 * all, so we might as well refuse the write immediately. 2030 * Unfortunately if the block size != page size, we can't as 2031 * easily detect this case using ext4_walk_page_buffers(), but 2032 * for the extremely common case, this is an optimization that 2033 * skips a useless round trip through ext4_bio_write_page(). 2034 */ 2035 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2036 ext4_bh_delay_or_unwritten)) { 2037 redirty_page_for_writepage(wbc, page); 2038 if ((current->flags & PF_MEMALLOC) || 2039 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2040 /* 2041 * For memory cleaning there's no point in writing only 2042 * some buffers. So just bail out. Warn if we came here 2043 * from direct reclaim. 2044 */ 2045 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2046 == PF_MEMALLOC); 2047 unlock_page(page); 2048 return 0; 2049 } 2050 keep_towrite = true; 2051 } 2052 2053 if (PageChecked(page) && ext4_should_journal_data(inode)) 2054 /* 2055 * It's mmapped pagecache. Add buffers and journal it. There 2056 * doesn't seem much point in redirtying the page here. 2057 */ 2058 return __ext4_journalled_writepage(page, len); 2059 2060 ext4_io_submit_init(&io_submit, wbc); 2061 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2062 if (!io_submit.io_end) { 2063 redirty_page_for_writepage(wbc, page); 2064 unlock_page(page); 2065 return -ENOMEM; 2066 } 2067 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2068 ext4_io_submit(&io_submit); 2069 /* Drop io_end reference we got from init */ 2070 ext4_put_io_end_defer(io_submit.io_end); 2071 return ret; 2072 } 2073 2074 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2075 { 2076 int len; 2077 loff_t size; 2078 int err; 2079 2080 BUG_ON(page->index != mpd->first_page); 2081 clear_page_dirty_for_io(page); 2082 /* 2083 * We have to be very careful here! Nothing protects writeback path 2084 * against i_size changes and the page can be writeably mapped into 2085 * page tables. So an application can be growing i_size and writing 2086 * data through mmap while writeback runs. clear_page_dirty_for_io() 2087 * write-protects our page in page tables and the page cannot get 2088 * written to again until we release page lock. So only after 2089 * clear_page_dirty_for_io() we are safe to sample i_size for 2090 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2091 * on the barrier provided by TestClearPageDirty in 2092 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2093 * after page tables are updated. 2094 */ 2095 size = i_size_read(mpd->inode); 2096 if (page->index == size >> PAGE_SHIFT && 2097 !ext4_verity_in_progress(mpd->inode)) 2098 len = size & ~PAGE_MASK; 2099 else 2100 len = PAGE_SIZE; 2101 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2102 if (!err) 2103 mpd->wbc->nr_to_write--; 2104 mpd->first_page++; 2105 2106 return err; 2107 } 2108 2109 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2110 2111 /* 2112 * mballoc gives us at most this number of blocks... 2113 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2114 * The rest of mballoc seems to handle chunks up to full group size. 2115 */ 2116 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2117 2118 /* 2119 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2120 * 2121 * @mpd - extent of blocks 2122 * @lblk - logical number of the block in the file 2123 * @bh - buffer head we want to add to the extent 2124 * 2125 * The function is used to collect contig. blocks in the same state. If the 2126 * buffer doesn't require mapping for writeback and we haven't started the 2127 * extent of buffers to map yet, the function returns 'true' immediately - the 2128 * caller can write the buffer right away. Otherwise the function returns true 2129 * if the block has been added to the extent, false if the block couldn't be 2130 * added. 2131 */ 2132 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2133 struct buffer_head *bh) 2134 { 2135 struct ext4_map_blocks *map = &mpd->map; 2136 2137 /* Buffer that doesn't need mapping for writeback? */ 2138 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2139 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2140 /* So far no extent to map => we write the buffer right away */ 2141 if (map->m_len == 0) 2142 return true; 2143 return false; 2144 } 2145 2146 /* First block in the extent? */ 2147 if (map->m_len == 0) { 2148 /* We cannot map unless handle is started... */ 2149 if (!mpd->do_map) 2150 return false; 2151 map->m_lblk = lblk; 2152 map->m_len = 1; 2153 map->m_flags = bh->b_state & BH_FLAGS; 2154 return true; 2155 } 2156 2157 /* Don't go larger than mballoc is willing to allocate */ 2158 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2159 return false; 2160 2161 /* Can we merge the block to our big extent? */ 2162 if (lblk == map->m_lblk + map->m_len && 2163 (bh->b_state & BH_FLAGS) == map->m_flags) { 2164 map->m_len++; 2165 return true; 2166 } 2167 return false; 2168 } 2169 2170 /* 2171 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2172 * 2173 * @mpd - extent of blocks for mapping 2174 * @head - the first buffer in the page 2175 * @bh - buffer we should start processing from 2176 * @lblk - logical number of the block in the file corresponding to @bh 2177 * 2178 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2179 * the page for IO if all buffers in this page were mapped and there's no 2180 * accumulated extent of buffers to map or add buffers in the page to the 2181 * extent of buffers to map. The function returns 1 if the caller can continue 2182 * by processing the next page, 0 if it should stop adding buffers to the 2183 * extent to map because we cannot extend it anymore. It can also return value 2184 * < 0 in case of error during IO submission. 2185 */ 2186 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2187 struct buffer_head *head, 2188 struct buffer_head *bh, 2189 ext4_lblk_t lblk) 2190 { 2191 struct inode *inode = mpd->inode; 2192 int err; 2193 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2194 >> inode->i_blkbits; 2195 2196 if (ext4_verity_in_progress(inode)) 2197 blocks = EXT_MAX_BLOCKS; 2198 2199 do { 2200 BUG_ON(buffer_locked(bh)); 2201 2202 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2203 /* Found extent to map? */ 2204 if (mpd->map.m_len) 2205 return 0; 2206 /* Buffer needs mapping and handle is not started? */ 2207 if (!mpd->do_map) 2208 return 0; 2209 /* Everything mapped so far and we hit EOF */ 2210 break; 2211 } 2212 } while (lblk++, (bh = bh->b_this_page) != head); 2213 /* So far everything mapped? Submit the page for IO. */ 2214 if (mpd->map.m_len == 0) { 2215 err = mpage_submit_page(mpd, head->b_page); 2216 if (err < 0) 2217 return err; 2218 } 2219 if (lblk >= blocks) { 2220 mpd->scanned_until_end = 1; 2221 return 0; 2222 } 2223 return 1; 2224 } 2225 2226 /* 2227 * mpage_process_page - update page buffers corresponding to changed extent and 2228 * may submit fully mapped page for IO 2229 * 2230 * @mpd - description of extent to map, on return next extent to map 2231 * @m_lblk - logical block mapping. 2232 * @m_pblk - corresponding physical mapping. 2233 * @map_bh - determines on return whether this page requires any further 2234 * mapping or not. 2235 * Scan given page buffers corresponding to changed extent and update buffer 2236 * state according to new extent state. 2237 * We map delalloc buffers to their physical location, clear unwritten bits. 2238 * If the given page is not fully mapped, we update @map to the next extent in 2239 * the given page that needs mapping & return @map_bh as true. 2240 */ 2241 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2242 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2243 bool *map_bh) 2244 { 2245 struct buffer_head *head, *bh; 2246 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2247 ext4_lblk_t lblk = *m_lblk; 2248 ext4_fsblk_t pblock = *m_pblk; 2249 int err = 0; 2250 int blkbits = mpd->inode->i_blkbits; 2251 ssize_t io_end_size = 0; 2252 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2253 2254 bh = head = page_buffers(page); 2255 do { 2256 if (lblk < mpd->map.m_lblk) 2257 continue; 2258 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2259 /* 2260 * Buffer after end of mapped extent. 2261 * Find next buffer in the page to map. 2262 */ 2263 mpd->map.m_len = 0; 2264 mpd->map.m_flags = 0; 2265 io_end_vec->size += io_end_size; 2266 io_end_size = 0; 2267 2268 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2269 if (err > 0) 2270 err = 0; 2271 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2272 io_end_vec = ext4_alloc_io_end_vec(io_end); 2273 if (IS_ERR(io_end_vec)) { 2274 err = PTR_ERR(io_end_vec); 2275 goto out; 2276 } 2277 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2278 } 2279 *map_bh = true; 2280 goto out; 2281 } 2282 if (buffer_delay(bh)) { 2283 clear_buffer_delay(bh); 2284 bh->b_blocknr = pblock++; 2285 } 2286 clear_buffer_unwritten(bh); 2287 io_end_size += (1 << blkbits); 2288 } while (lblk++, (bh = bh->b_this_page) != head); 2289 2290 io_end_vec->size += io_end_size; 2291 io_end_size = 0; 2292 *map_bh = false; 2293 out: 2294 *m_lblk = lblk; 2295 *m_pblk = pblock; 2296 return err; 2297 } 2298 2299 /* 2300 * mpage_map_buffers - update buffers corresponding to changed extent and 2301 * submit fully mapped pages for IO 2302 * 2303 * @mpd - description of extent to map, on return next extent to map 2304 * 2305 * Scan buffers corresponding to changed extent (we expect corresponding pages 2306 * to be already locked) and update buffer state according to new extent state. 2307 * We map delalloc buffers to their physical location, clear unwritten bits, 2308 * and mark buffers as uninit when we perform writes to unwritten extents 2309 * and do extent conversion after IO is finished. If the last page is not fully 2310 * mapped, we update @map to the next extent in the last page that needs 2311 * mapping. Otherwise we submit the page for IO. 2312 */ 2313 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2314 { 2315 struct pagevec pvec; 2316 int nr_pages, i; 2317 struct inode *inode = mpd->inode; 2318 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2319 pgoff_t start, end; 2320 ext4_lblk_t lblk; 2321 ext4_fsblk_t pblock; 2322 int err; 2323 bool map_bh = false; 2324 2325 start = mpd->map.m_lblk >> bpp_bits; 2326 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2327 lblk = start << bpp_bits; 2328 pblock = mpd->map.m_pblk; 2329 2330 pagevec_init(&pvec); 2331 while (start <= end) { 2332 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2333 &start, end); 2334 if (nr_pages == 0) 2335 break; 2336 for (i = 0; i < nr_pages; i++) { 2337 struct page *page = pvec.pages[i]; 2338 2339 err = mpage_process_page(mpd, page, &lblk, &pblock, 2340 &map_bh); 2341 /* 2342 * If map_bh is true, means page may require further bh 2343 * mapping, or maybe the page was submitted for IO. 2344 * So we return to call further extent mapping. 2345 */ 2346 if (err < 0 || map_bh) 2347 goto out; 2348 /* Page fully mapped - let IO run! */ 2349 err = mpage_submit_page(mpd, page); 2350 if (err < 0) 2351 goto out; 2352 } 2353 pagevec_release(&pvec); 2354 } 2355 /* Extent fully mapped and matches with page boundary. We are done. */ 2356 mpd->map.m_len = 0; 2357 mpd->map.m_flags = 0; 2358 return 0; 2359 out: 2360 pagevec_release(&pvec); 2361 return err; 2362 } 2363 2364 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2365 { 2366 struct inode *inode = mpd->inode; 2367 struct ext4_map_blocks *map = &mpd->map; 2368 int get_blocks_flags; 2369 int err, dioread_nolock; 2370 2371 trace_ext4_da_write_pages_extent(inode, map); 2372 /* 2373 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2374 * to convert an unwritten extent to be initialized (in the case 2375 * where we have written into one or more preallocated blocks). It is 2376 * possible that we're going to need more metadata blocks than 2377 * previously reserved. However we must not fail because we're in 2378 * writeback and there is nothing we can do about it so it might result 2379 * in data loss. So use reserved blocks to allocate metadata if 2380 * possible. 2381 * 2382 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2383 * the blocks in question are delalloc blocks. This indicates 2384 * that the blocks and quotas has already been checked when 2385 * the data was copied into the page cache. 2386 */ 2387 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2388 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2389 EXT4_GET_BLOCKS_IO_SUBMIT; 2390 dioread_nolock = ext4_should_dioread_nolock(inode); 2391 if (dioread_nolock) 2392 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2393 if (map->m_flags & BIT(BH_Delay)) 2394 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2395 2396 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2397 if (err < 0) 2398 return err; 2399 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2400 if (!mpd->io_submit.io_end->handle && 2401 ext4_handle_valid(handle)) { 2402 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2403 handle->h_rsv_handle = NULL; 2404 } 2405 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2406 } 2407 2408 BUG_ON(map->m_len == 0); 2409 return 0; 2410 } 2411 2412 /* 2413 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2414 * mpd->len and submit pages underlying it for IO 2415 * 2416 * @handle - handle for journal operations 2417 * @mpd - extent to map 2418 * @give_up_on_write - we set this to true iff there is a fatal error and there 2419 * is no hope of writing the data. The caller should discard 2420 * dirty pages to avoid infinite loops. 2421 * 2422 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2423 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2424 * them to initialized or split the described range from larger unwritten 2425 * extent. Note that we need not map all the described range since allocation 2426 * can return less blocks or the range is covered by more unwritten extents. We 2427 * cannot map more because we are limited by reserved transaction credits. On 2428 * the other hand we always make sure that the last touched page is fully 2429 * mapped so that it can be written out (and thus forward progress is 2430 * guaranteed). After mapping we submit all mapped pages for IO. 2431 */ 2432 static int mpage_map_and_submit_extent(handle_t *handle, 2433 struct mpage_da_data *mpd, 2434 bool *give_up_on_write) 2435 { 2436 struct inode *inode = mpd->inode; 2437 struct ext4_map_blocks *map = &mpd->map; 2438 int err; 2439 loff_t disksize; 2440 int progress = 0; 2441 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2442 struct ext4_io_end_vec *io_end_vec; 2443 2444 io_end_vec = ext4_alloc_io_end_vec(io_end); 2445 if (IS_ERR(io_end_vec)) 2446 return PTR_ERR(io_end_vec); 2447 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2448 do { 2449 err = mpage_map_one_extent(handle, mpd); 2450 if (err < 0) { 2451 struct super_block *sb = inode->i_sb; 2452 2453 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2454 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2455 goto invalidate_dirty_pages; 2456 /* 2457 * Let the uper layers retry transient errors. 2458 * In the case of ENOSPC, if ext4_count_free_blocks() 2459 * is non-zero, a commit should free up blocks. 2460 */ 2461 if ((err == -ENOMEM) || 2462 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2463 if (progress) 2464 goto update_disksize; 2465 return err; 2466 } 2467 ext4_msg(sb, KERN_CRIT, 2468 "Delayed block allocation failed for " 2469 "inode %lu at logical offset %llu with" 2470 " max blocks %u with error %d", 2471 inode->i_ino, 2472 (unsigned long long)map->m_lblk, 2473 (unsigned)map->m_len, -err); 2474 ext4_msg(sb, KERN_CRIT, 2475 "This should not happen!! Data will " 2476 "be lost\n"); 2477 if (err == -ENOSPC) 2478 ext4_print_free_blocks(inode); 2479 invalidate_dirty_pages: 2480 *give_up_on_write = true; 2481 return err; 2482 } 2483 progress = 1; 2484 /* 2485 * Update buffer state, submit mapped pages, and get us new 2486 * extent to map 2487 */ 2488 err = mpage_map_and_submit_buffers(mpd); 2489 if (err < 0) 2490 goto update_disksize; 2491 } while (map->m_len); 2492 2493 update_disksize: 2494 /* 2495 * Update on-disk size after IO is submitted. Races with 2496 * truncate are avoided by checking i_size under i_data_sem. 2497 */ 2498 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2499 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2500 int err2; 2501 loff_t i_size; 2502 2503 down_write(&EXT4_I(inode)->i_data_sem); 2504 i_size = i_size_read(inode); 2505 if (disksize > i_size) 2506 disksize = i_size; 2507 if (disksize > EXT4_I(inode)->i_disksize) 2508 EXT4_I(inode)->i_disksize = disksize; 2509 up_write(&EXT4_I(inode)->i_data_sem); 2510 err2 = ext4_mark_inode_dirty(handle, inode); 2511 if (err2) { 2512 ext4_error_err(inode->i_sb, -err2, 2513 "Failed to mark inode %lu dirty", 2514 inode->i_ino); 2515 } 2516 if (!err) 2517 err = err2; 2518 } 2519 return err; 2520 } 2521 2522 /* 2523 * Calculate the total number of credits to reserve for one writepages 2524 * iteration. This is called from ext4_writepages(). We map an extent of 2525 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2526 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2527 * bpp - 1 blocks in bpp different extents. 2528 */ 2529 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2530 { 2531 int bpp = ext4_journal_blocks_per_page(inode); 2532 2533 return ext4_meta_trans_blocks(inode, 2534 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2535 } 2536 2537 /* 2538 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2539 * and underlying extent to map 2540 * 2541 * @mpd - where to look for pages 2542 * 2543 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2544 * IO immediately. When we find a page which isn't mapped we start accumulating 2545 * extent of buffers underlying these pages that needs mapping (formed by 2546 * either delayed or unwritten buffers). We also lock the pages containing 2547 * these buffers. The extent found is returned in @mpd structure (starting at 2548 * mpd->lblk with length mpd->len blocks). 2549 * 2550 * Note that this function can attach bios to one io_end structure which are 2551 * neither logically nor physically contiguous. Although it may seem as an 2552 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2553 * case as we need to track IO to all buffers underlying a page in one io_end. 2554 */ 2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2556 { 2557 struct address_space *mapping = mpd->inode->i_mapping; 2558 struct pagevec pvec; 2559 unsigned int nr_pages; 2560 long left = mpd->wbc->nr_to_write; 2561 pgoff_t index = mpd->first_page; 2562 pgoff_t end = mpd->last_page; 2563 xa_mark_t tag; 2564 int i, err = 0; 2565 int blkbits = mpd->inode->i_blkbits; 2566 ext4_lblk_t lblk; 2567 struct buffer_head *head; 2568 2569 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2570 tag = PAGECACHE_TAG_TOWRITE; 2571 else 2572 tag = PAGECACHE_TAG_DIRTY; 2573 2574 pagevec_init(&pvec); 2575 mpd->map.m_len = 0; 2576 mpd->next_page = index; 2577 while (index <= end) { 2578 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2579 tag); 2580 if (nr_pages == 0) 2581 break; 2582 2583 for (i = 0; i < nr_pages; i++) { 2584 struct page *page = pvec.pages[i]; 2585 2586 /* 2587 * Accumulated enough dirty pages? This doesn't apply 2588 * to WB_SYNC_ALL mode. For integrity sync we have to 2589 * keep going because someone may be concurrently 2590 * dirtying pages, and we might have synced a lot of 2591 * newly appeared dirty pages, but have not synced all 2592 * of the old dirty pages. 2593 */ 2594 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2595 goto out; 2596 2597 /* If we can't merge this page, we are done. */ 2598 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2599 goto out; 2600 2601 lock_page(page); 2602 /* 2603 * If the page is no longer dirty, or its mapping no 2604 * longer corresponds to inode we are writing (which 2605 * means it has been truncated or invalidated), or the 2606 * page is already under writeback and we are not doing 2607 * a data integrity writeback, skip the page 2608 */ 2609 if (!PageDirty(page) || 2610 (PageWriteback(page) && 2611 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2612 unlikely(page->mapping != mapping)) { 2613 unlock_page(page); 2614 continue; 2615 } 2616 2617 wait_on_page_writeback(page); 2618 BUG_ON(PageWriteback(page)); 2619 2620 if (mpd->map.m_len == 0) 2621 mpd->first_page = page->index; 2622 mpd->next_page = page->index + 1; 2623 /* Add all dirty buffers to mpd */ 2624 lblk = ((ext4_lblk_t)page->index) << 2625 (PAGE_SHIFT - blkbits); 2626 head = page_buffers(page); 2627 err = mpage_process_page_bufs(mpd, head, head, lblk); 2628 if (err <= 0) 2629 goto out; 2630 err = 0; 2631 left--; 2632 } 2633 pagevec_release(&pvec); 2634 cond_resched(); 2635 } 2636 mpd->scanned_until_end = 1; 2637 return 0; 2638 out: 2639 pagevec_release(&pvec); 2640 return err; 2641 } 2642 2643 static int ext4_writepages(struct address_space *mapping, 2644 struct writeback_control *wbc) 2645 { 2646 pgoff_t writeback_index = 0; 2647 long nr_to_write = wbc->nr_to_write; 2648 int range_whole = 0; 2649 int cycled = 1; 2650 handle_t *handle = NULL; 2651 struct mpage_da_data mpd; 2652 struct inode *inode = mapping->host; 2653 int needed_blocks, rsv_blocks = 0, ret = 0; 2654 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2655 struct blk_plug plug; 2656 bool give_up_on_write = false; 2657 2658 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2659 return -EIO; 2660 2661 percpu_down_read(&sbi->s_writepages_rwsem); 2662 trace_ext4_writepages(inode, wbc); 2663 2664 /* 2665 * No pages to write? This is mainly a kludge to avoid starting 2666 * a transaction for special inodes like journal inode on last iput() 2667 * because that could violate lock ordering on umount 2668 */ 2669 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2670 goto out_writepages; 2671 2672 if (ext4_should_journal_data(inode)) { 2673 ret = generic_writepages(mapping, wbc); 2674 goto out_writepages; 2675 } 2676 2677 /* 2678 * If the filesystem has aborted, it is read-only, so return 2679 * right away instead of dumping stack traces later on that 2680 * will obscure the real source of the problem. We test 2681 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2682 * the latter could be true if the filesystem is mounted 2683 * read-only, and in that case, ext4_writepages should 2684 * *never* be called, so if that ever happens, we would want 2685 * the stack trace. 2686 */ 2687 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2688 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2689 ret = -EROFS; 2690 goto out_writepages; 2691 } 2692 2693 /* 2694 * If we have inline data and arrive here, it means that 2695 * we will soon create the block for the 1st page, so 2696 * we'd better clear the inline data here. 2697 */ 2698 if (ext4_has_inline_data(inode)) { 2699 /* Just inode will be modified... */ 2700 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2701 if (IS_ERR(handle)) { 2702 ret = PTR_ERR(handle); 2703 goto out_writepages; 2704 } 2705 BUG_ON(ext4_test_inode_state(inode, 2706 EXT4_STATE_MAY_INLINE_DATA)); 2707 ext4_destroy_inline_data(handle, inode); 2708 ext4_journal_stop(handle); 2709 } 2710 2711 if (ext4_should_dioread_nolock(inode)) { 2712 /* 2713 * We may need to convert up to one extent per block in 2714 * the page and we may dirty the inode. 2715 */ 2716 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2717 PAGE_SIZE >> inode->i_blkbits); 2718 } 2719 2720 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2721 range_whole = 1; 2722 2723 if (wbc->range_cyclic) { 2724 writeback_index = mapping->writeback_index; 2725 if (writeback_index) 2726 cycled = 0; 2727 mpd.first_page = writeback_index; 2728 mpd.last_page = -1; 2729 } else { 2730 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2731 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2732 } 2733 2734 mpd.inode = inode; 2735 mpd.wbc = wbc; 2736 ext4_io_submit_init(&mpd.io_submit, wbc); 2737 retry: 2738 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2739 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2740 blk_start_plug(&plug); 2741 2742 /* 2743 * First writeback pages that don't need mapping - we can avoid 2744 * starting a transaction unnecessarily and also avoid being blocked 2745 * in the block layer on device congestion while having transaction 2746 * started. 2747 */ 2748 mpd.do_map = 0; 2749 mpd.scanned_until_end = 0; 2750 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2751 if (!mpd.io_submit.io_end) { 2752 ret = -ENOMEM; 2753 goto unplug; 2754 } 2755 ret = mpage_prepare_extent_to_map(&mpd); 2756 /* Unlock pages we didn't use */ 2757 mpage_release_unused_pages(&mpd, false); 2758 /* Submit prepared bio */ 2759 ext4_io_submit(&mpd.io_submit); 2760 ext4_put_io_end_defer(mpd.io_submit.io_end); 2761 mpd.io_submit.io_end = NULL; 2762 if (ret < 0) 2763 goto unplug; 2764 2765 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2766 /* For each extent of pages we use new io_end */ 2767 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2768 if (!mpd.io_submit.io_end) { 2769 ret = -ENOMEM; 2770 break; 2771 } 2772 2773 /* 2774 * We have two constraints: We find one extent to map and we 2775 * must always write out whole page (makes a difference when 2776 * blocksize < pagesize) so that we don't block on IO when we 2777 * try to write out the rest of the page. Journalled mode is 2778 * not supported by delalloc. 2779 */ 2780 BUG_ON(ext4_should_journal_data(inode)); 2781 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2782 2783 /* start a new transaction */ 2784 handle = ext4_journal_start_with_reserve(inode, 2785 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2786 if (IS_ERR(handle)) { 2787 ret = PTR_ERR(handle); 2788 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2789 "%ld pages, ino %lu; err %d", __func__, 2790 wbc->nr_to_write, inode->i_ino, ret); 2791 /* Release allocated io_end */ 2792 ext4_put_io_end(mpd.io_submit.io_end); 2793 mpd.io_submit.io_end = NULL; 2794 break; 2795 } 2796 mpd.do_map = 1; 2797 2798 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2799 ret = mpage_prepare_extent_to_map(&mpd); 2800 if (!ret && mpd.map.m_len) 2801 ret = mpage_map_and_submit_extent(handle, &mpd, 2802 &give_up_on_write); 2803 /* 2804 * Caution: If the handle is synchronous, 2805 * ext4_journal_stop() can wait for transaction commit 2806 * to finish which may depend on writeback of pages to 2807 * complete or on page lock to be released. In that 2808 * case, we have to wait until after we have 2809 * submitted all the IO, released page locks we hold, 2810 * and dropped io_end reference (for extent conversion 2811 * to be able to complete) before stopping the handle. 2812 */ 2813 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2814 ext4_journal_stop(handle); 2815 handle = NULL; 2816 mpd.do_map = 0; 2817 } 2818 /* Unlock pages we didn't use */ 2819 mpage_release_unused_pages(&mpd, give_up_on_write); 2820 /* Submit prepared bio */ 2821 ext4_io_submit(&mpd.io_submit); 2822 2823 /* 2824 * Drop our io_end reference we got from init. We have 2825 * to be careful and use deferred io_end finishing if 2826 * we are still holding the transaction as we can 2827 * release the last reference to io_end which may end 2828 * up doing unwritten extent conversion. 2829 */ 2830 if (handle) { 2831 ext4_put_io_end_defer(mpd.io_submit.io_end); 2832 ext4_journal_stop(handle); 2833 } else 2834 ext4_put_io_end(mpd.io_submit.io_end); 2835 mpd.io_submit.io_end = NULL; 2836 2837 if (ret == -ENOSPC && sbi->s_journal) { 2838 /* 2839 * Commit the transaction which would 2840 * free blocks released in the transaction 2841 * and try again 2842 */ 2843 jbd2_journal_force_commit_nested(sbi->s_journal); 2844 ret = 0; 2845 continue; 2846 } 2847 /* Fatal error - ENOMEM, EIO... */ 2848 if (ret) 2849 break; 2850 } 2851 unplug: 2852 blk_finish_plug(&plug); 2853 if (!ret && !cycled && wbc->nr_to_write > 0) { 2854 cycled = 1; 2855 mpd.last_page = writeback_index - 1; 2856 mpd.first_page = 0; 2857 goto retry; 2858 } 2859 2860 /* Update index */ 2861 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2862 /* 2863 * Set the writeback_index so that range_cyclic 2864 * mode will write it back later 2865 */ 2866 mapping->writeback_index = mpd.first_page; 2867 2868 out_writepages: 2869 trace_ext4_writepages_result(inode, wbc, ret, 2870 nr_to_write - wbc->nr_to_write); 2871 percpu_up_read(&sbi->s_writepages_rwsem); 2872 return ret; 2873 } 2874 2875 static int ext4_dax_writepages(struct address_space *mapping, 2876 struct writeback_control *wbc) 2877 { 2878 int ret; 2879 long nr_to_write = wbc->nr_to_write; 2880 struct inode *inode = mapping->host; 2881 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2882 2883 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2884 return -EIO; 2885 2886 percpu_down_read(&sbi->s_writepages_rwsem); 2887 trace_ext4_writepages(inode, wbc); 2888 2889 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2890 trace_ext4_writepages_result(inode, wbc, ret, 2891 nr_to_write - wbc->nr_to_write); 2892 percpu_up_read(&sbi->s_writepages_rwsem); 2893 return ret; 2894 } 2895 2896 static int ext4_nonda_switch(struct super_block *sb) 2897 { 2898 s64 free_clusters, dirty_clusters; 2899 struct ext4_sb_info *sbi = EXT4_SB(sb); 2900 2901 /* 2902 * switch to non delalloc mode if we are running low 2903 * on free block. The free block accounting via percpu 2904 * counters can get slightly wrong with percpu_counter_batch getting 2905 * accumulated on each CPU without updating global counters 2906 * Delalloc need an accurate free block accounting. So switch 2907 * to non delalloc when we are near to error range. 2908 */ 2909 free_clusters = 2910 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2911 dirty_clusters = 2912 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2913 /* 2914 * Start pushing delalloc when 1/2 of free blocks are dirty. 2915 */ 2916 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2917 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2918 2919 if (2 * free_clusters < 3 * dirty_clusters || 2920 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2921 /* 2922 * free block count is less than 150% of dirty blocks 2923 * or free blocks is less than watermark 2924 */ 2925 return 1; 2926 } 2927 return 0; 2928 } 2929 2930 /* We always reserve for an inode update; the superblock could be there too */ 2931 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2932 { 2933 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2934 return 1; 2935 2936 if (pos + len <= 0x7fffffffULL) 2937 return 1; 2938 2939 /* We might need to update the superblock to set LARGE_FILE */ 2940 return 2; 2941 } 2942 2943 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2944 loff_t pos, unsigned len, unsigned flags, 2945 struct page **pagep, void **fsdata) 2946 { 2947 int ret, retries = 0; 2948 struct page *page; 2949 pgoff_t index; 2950 struct inode *inode = mapping->host; 2951 handle_t *handle; 2952 2953 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2954 return -EIO; 2955 2956 index = pos >> PAGE_SHIFT; 2957 2958 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2959 ext4_verity_in_progress(inode)) { 2960 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2961 return ext4_write_begin(file, mapping, pos, 2962 len, flags, pagep, fsdata); 2963 } 2964 *fsdata = (void *)0; 2965 trace_ext4_da_write_begin(inode, pos, len, flags); 2966 2967 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2968 ret = ext4_da_write_inline_data_begin(mapping, inode, 2969 pos, len, flags, 2970 pagep, fsdata); 2971 if (ret < 0) 2972 return ret; 2973 if (ret == 1) 2974 return 0; 2975 } 2976 2977 /* 2978 * grab_cache_page_write_begin() can take a long time if the 2979 * system is thrashing due to memory pressure, or if the page 2980 * is being written back. So grab it first before we start 2981 * the transaction handle. This also allows us to allocate 2982 * the page (if needed) without using GFP_NOFS. 2983 */ 2984 retry_grab: 2985 page = grab_cache_page_write_begin(mapping, index, flags); 2986 if (!page) 2987 return -ENOMEM; 2988 unlock_page(page); 2989 2990 /* 2991 * With delayed allocation, we don't log the i_disksize update 2992 * if there is delayed block allocation. But we still need 2993 * to journalling the i_disksize update if writes to the end 2994 * of file which has an already mapped buffer. 2995 */ 2996 retry_journal: 2997 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2998 ext4_da_write_credits(inode, pos, len)); 2999 if (IS_ERR(handle)) { 3000 put_page(page); 3001 return PTR_ERR(handle); 3002 } 3003 3004 lock_page(page); 3005 if (page->mapping != mapping) { 3006 /* The page got truncated from under us */ 3007 unlock_page(page); 3008 put_page(page); 3009 ext4_journal_stop(handle); 3010 goto retry_grab; 3011 } 3012 /* In case writeback began while the page was unlocked */ 3013 wait_for_stable_page(page); 3014 3015 #ifdef CONFIG_FS_ENCRYPTION 3016 ret = ext4_block_write_begin(page, pos, len, 3017 ext4_da_get_block_prep); 3018 #else 3019 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3020 #endif 3021 if (ret < 0) { 3022 unlock_page(page); 3023 ext4_journal_stop(handle); 3024 /* 3025 * block_write_begin may have instantiated a few blocks 3026 * outside i_size. Trim these off again. Don't need 3027 * i_size_read because we hold i_mutex. 3028 */ 3029 if (pos + len > inode->i_size) 3030 ext4_truncate_failed_write(inode); 3031 3032 if (ret == -ENOSPC && 3033 ext4_should_retry_alloc(inode->i_sb, &retries)) 3034 goto retry_journal; 3035 3036 put_page(page); 3037 return ret; 3038 } 3039 3040 *pagep = page; 3041 return ret; 3042 } 3043 3044 /* 3045 * Check if we should update i_disksize 3046 * when write to the end of file but not require block allocation 3047 */ 3048 static int ext4_da_should_update_i_disksize(struct page *page, 3049 unsigned long offset) 3050 { 3051 struct buffer_head *bh; 3052 struct inode *inode = page->mapping->host; 3053 unsigned int idx; 3054 int i; 3055 3056 bh = page_buffers(page); 3057 idx = offset >> inode->i_blkbits; 3058 3059 for (i = 0; i < idx; i++) 3060 bh = bh->b_this_page; 3061 3062 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3063 return 0; 3064 return 1; 3065 } 3066 3067 static int ext4_da_write_end(struct file *file, 3068 struct address_space *mapping, 3069 loff_t pos, unsigned len, unsigned copied, 3070 struct page *page, void *fsdata) 3071 { 3072 struct inode *inode = mapping->host; 3073 int ret = 0, ret2; 3074 handle_t *handle = ext4_journal_current_handle(); 3075 loff_t new_i_size; 3076 unsigned long start, end; 3077 int write_mode = (int)(unsigned long)fsdata; 3078 3079 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3080 return ext4_write_end(file, mapping, pos, 3081 len, copied, page, fsdata); 3082 3083 trace_ext4_da_write_end(inode, pos, len, copied); 3084 start = pos & (PAGE_SIZE - 1); 3085 end = start + copied - 1; 3086 3087 /* 3088 * generic_write_end() will run mark_inode_dirty() if i_size 3089 * changes. So let's piggyback the i_disksize mark_inode_dirty 3090 * into that. 3091 */ 3092 new_i_size = pos + copied; 3093 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3094 if (ext4_has_inline_data(inode) || 3095 ext4_da_should_update_i_disksize(page, end)) { 3096 ext4_update_i_disksize(inode, new_i_size); 3097 /* We need to mark inode dirty even if 3098 * new_i_size is less that inode->i_size 3099 * bu greater than i_disksize.(hint delalloc) 3100 */ 3101 ret = ext4_mark_inode_dirty(handle, inode); 3102 } 3103 } 3104 3105 if (write_mode != CONVERT_INLINE_DATA && 3106 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3107 ext4_has_inline_data(inode)) 3108 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3109 page); 3110 else 3111 ret2 = generic_write_end(file, mapping, pos, len, copied, 3112 page, fsdata); 3113 3114 copied = ret2; 3115 if (ret2 < 0) 3116 ret = ret2; 3117 ret2 = ext4_journal_stop(handle); 3118 if (unlikely(ret2 && !ret)) 3119 ret = ret2; 3120 3121 return ret ? ret : copied; 3122 } 3123 3124 /* 3125 * Force all delayed allocation blocks to be allocated for a given inode. 3126 */ 3127 int ext4_alloc_da_blocks(struct inode *inode) 3128 { 3129 trace_ext4_alloc_da_blocks(inode); 3130 3131 if (!EXT4_I(inode)->i_reserved_data_blocks) 3132 return 0; 3133 3134 /* 3135 * We do something simple for now. The filemap_flush() will 3136 * also start triggering a write of the data blocks, which is 3137 * not strictly speaking necessary (and for users of 3138 * laptop_mode, not even desirable). However, to do otherwise 3139 * would require replicating code paths in: 3140 * 3141 * ext4_writepages() -> 3142 * write_cache_pages() ---> (via passed in callback function) 3143 * __mpage_da_writepage() --> 3144 * mpage_add_bh_to_extent() 3145 * mpage_da_map_blocks() 3146 * 3147 * The problem is that write_cache_pages(), located in 3148 * mm/page-writeback.c, marks pages clean in preparation for 3149 * doing I/O, which is not desirable if we're not planning on 3150 * doing I/O at all. 3151 * 3152 * We could call write_cache_pages(), and then redirty all of 3153 * the pages by calling redirty_page_for_writepage() but that 3154 * would be ugly in the extreme. So instead we would need to 3155 * replicate parts of the code in the above functions, 3156 * simplifying them because we wouldn't actually intend to 3157 * write out the pages, but rather only collect contiguous 3158 * logical block extents, call the multi-block allocator, and 3159 * then update the buffer heads with the block allocations. 3160 * 3161 * For now, though, we'll cheat by calling filemap_flush(), 3162 * which will map the blocks, and start the I/O, but not 3163 * actually wait for the I/O to complete. 3164 */ 3165 return filemap_flush(inode->i_mapping); 3166 } 3167 3168 /* 3169 * bmap() is special. It gets used by applications such as lilo and by 3170 * the swapper to find the on-disk block of a specific piece of data. 3171 * 3172 * Naturally, this is dangerous if the block concerned is still in the 3173 * journal. If somebody makes a swapfile on an ext4 data-journaling 3174 * filesystem and enables swap, then they may get a nasty shock when the 3175 * data getting swapped to that swapfile suddenly gets overwritten by 3176 * the original zero's written out previously to the journal and 3177 * awaiting writeback in the kernel's buffer cache. 3178 * 3179 * So, if we see any bmap calls here on a modified, data-journaled file, 3180 * take extra steps to flush any blocks which might be in the cache. 3181 */ 3182 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3183 { 3184 struct inode *inode = mapping->host; 3185 journal_t *journal; 3186 int err; 3187 3188 /* 3189 * We can get here for an inline file via the FIBMAP ioctl 3190 */ 3191 if (ext4_has_inline_data(inode)) 3192 return 0; 3193 3194 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3195 test_opt(inode->i_sb, DELALLOC)) { 3196 /* 3197 * With delalloc we want to sync the file 3198 * so that we can make sure we allocate 3199 * blocks for file 3200 */ 3201 filemap_write_and_wait(mapping); 3202 } 3203 3204 if (EXT4_JOURNAL(inode) && 3205 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3206 /* 3207 * This is a REALLY heavyweight approach, but the use of 3208 * bmap on dirty files is expected to be extremely rare: 3209 * only if we run lilo or swapon on a freshly made file 3210 * do we expect this to happen. 3211 * 3212 * (bmap requires CAP_SYS_RAWIO so this does not 3213 * represent an unprivileged user DOS attack --- we'd be 3214 * in trouble if mortal users could trigger this path at 3215 * will.) 3216 * 3217 * NB. EXT4_STATE_JDATA is not set on files other than 3218 * regular files. If somebody wants to bmap a directory 3219 * or symlink and gets confused because the buffer 3220 * hasn't yet been flushed to disk, they deserve 3221 * everything they get. 3222 */ 3223 3224 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3225 journal = EXT4_JOURNAL(inode); 3226 jbd2_journal_lock_updates(journal); 3227 err = jbd2_journal_flush(journal); 3228 jbd2_journal_unlock_updates(journal); 3229 3230 if (err) 3231 return 0; 3232 } 3233 3234 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3235 } 3236 3237 static int ext4_readpage(struct file *file, struct page *page) 3238 { 3239 int ret = -EAGAIN; 3240 struct inode *inode = page->mapping->host; 3241 3242 trace_ext4_readpage(page); 3243 3244 if (ext4_has_inline_data(inode)) 3245 ret = ext4_readpage_inline(inode, page); 3246 3247 if (ret == -EAGAIN) 3248 return ext4_mpage_readpages(inode, NULL, page); 3249 3250 return ret; 3251 } 3252 3253 static void ext4_readahead(struct readahead_control *rac) 3254 { 3255 struct inode *inode = rac->mapping->host; 3256 3257 /* If the file has inline data, no need to do readahead. */ 3258 if (ext4_has_inline_data(inode)) 3259 return; 3260 3261 ext4_mpage_readpages(inode, rac, NULL); 3262 } 3263 3264 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3265 unsigned int length) 3266 { 3267 trace_ext4_invalidatepage(page, offset, length); 3268 3269 /* No journalling happens on data buffers when this function is used */ 3270 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3271 3272 block_invalidatepage(page, offset, length); 3273 } 3274 3275 static int __ext4_journalled_invalidatepage(struct page *page, 3276 unsigned int offset, 3277 unsigned int length) 3278 { 3279 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3280 3281 trace_ext4_journalled_invalidatepage(page, offset, length); 3282 3283 /* 3284 * If it's a full truncate we just forget about the pending dirtying 3285 */ 3286 if (offset == 0 && length == PAGE_SIZE) 3287 ClearPageChecked(page); 3288 3289 return jbd2_journal_invalidatepage(journal, page, offset, length); 3290 } 3291 3292 /* Wrapper for aops... */ 3293 static void ext4_journalled_invalidatepage(struct page *page, 3294 unsigned int offset, 3295 unsigned int length) 3296 { 3297 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3298 } 3299 3300 static int ext4_releasepage(struct page *page, gfp_t wait) 3301 { 3302 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3303 3304 trace_ext4_releasepage(page); 3305 3306 /* Page has dirty journalled data -> cannot release */ 3307 if (PageChecked(page)) 3308 return 0; 3309 if (journal) 3310 return jbd2_journal_try_to_free_buffers(journal, page); 3311 else 3312 return try_to_free_buffers(page); 3313 } 3314 3315 static bool ext4_inode_datasync_dirty(struct inode *inode) 3316 { 3317 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3318 3319 if (journal) { 3320 if (jbd2_transaction_committed(journal, 3321 EXT4_I(inode)->i_datasync_tid)) 3322 return false; 3323 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3324 return !list_empty(&EXT4_I(inode)->i_fc_list); 3325 return true; 3326 } 3327 3328 /* Any metadata buffers to write? */ 3329 if (!list_empty(&inode->i_mapping->private_list)) 3330 return true; 3331 return inode->i_state & I_DIRTY_DATASYNC; 3332 } 3333 3334 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3335 struct ext4_map_blocks *map, loff_t offset, 3336 loff_t length) 3337 { 3338 u8 blkbits = inode->i_blkbits; 3339 3340 /* 3341 * Writes that span EOF might trigger an I/O size update on completion, 3342 * so consider them to be dirty for the purpose of O_DSYNC, even if 3343 * there is no other metadata changes being made or are pending. 3344 */ 3345 iomap->flags = 0; 3346 if (ext4_inode_datasync_dirty(inode) || 3347 offset + length > i_size_read(inode)) 3348 iomap->flags |= IOMAP_F_DIRTY; 3349 3350 if (map->m_flags & EXT4_MAP_NEW) 3351 iomap->flags |= IOMAP_F_NEW; 3352 3353 iomap->bdev = inode->i_sb->s_bdev; 3354 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3355 iomap->offset = (u64) map->m_lblk << blkbits; 3356 iomap->length = (u64) map->m_len << blkbits; 3357 3358 if ((map->m_flags & EXT4_MAP_MAPPED) && 3359 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3360 iomap->flags |= IOMAP_F_MERGED; 3361 3362 /* 3363 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3364 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3365 * set. In order for any allocated unwritten extents to be converted 3366 * into written extents correctly within the ->end_io() handler, we 3367 * need to ensure that the iomap->type is set appropriately. Hence, the 3368 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3369 * been set first. 3370 */ 3371 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3372 iomap->type = IOMAP_UNWRITTEN; 3373 iomap->addr = (u64) map->m_pblk << blkbits; 3374 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3375 iomap->type = IOMAP_MAPPED; 3376 iomap->addr = (u64) map->m_pblk << blkbits; 3377 } else { 3378 iomap->type = IOMAP_HOLE; 3379 iomap->addr = IOMAP_NULL_ADDR; 3380 } 3381 } 3382 3383 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3384 unsigned int flags) 3385 { 3386 handle_t *handle; 3387 u8 blkbits = inode->i_blkbits; 3388 int ret, dio_credits, m_flags = 0, retries = 0; 3389 3390 /* 3391 * Trim the mapping request to the maximum value that we can map at 3392 * once for direct I/O. 3393 */ 3394 if (map->m_len > DIO_MAX_BLOCKS) 3395 map->m_len = DIO_MAX_BLOCKS; 3396 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3397 3398 retry: 3399 /* 3400 * Either we allocate blocks and then don't get an unwritten extent, so 3401 * in that case we have reserved enough credits. Or, the blocks are 3402 * already allocated and unwritten. In that case, the extent conversion 3403 * fits into the credits as well. 3404 */ 3405 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3406 if (IS_ERR(handle)) 3407 return PTR_ERR(handle); 3408 3409 /* 3410 * DAX and direct I/O are the only two operations that are currently 3411 * supported with IOMAP_WRITE. 3412 */ 3413 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3414 if (IS_DAX(inode)) 3415 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3416 /* 3417 * We use i_size instead of i_disksize here because delalloc writeback 3418 * can complete at any point during the I/O and subsequently push the 3419 * i_disksize out to i_size. This could be beyond where direct I/O is 3420 * happening and thus expose allocated blocks to direct I/O reads. 3421 */ 3422 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3423 m_flags = EXT4_GET_BLOCKS_CREATE; 3424 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3425 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3426 3427 ret = ext4_map_blocks(handle, inode, map, m_flags); 3428 3429 /* 3430 * We cannot fill holes in indirect tree based inodes as that could 3431 * expose stale data in the case of a crash. Use the magic error code 3432 * to fallback to buffered I/O. 3433 */ 3434 if (!m_flags && !ret) 3435 ret = -ENOTBLK; 3436 3437 ext4_journal_stop(handle); 3438 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3439 goto retry; 3440 3441 return ret; 3442 } 3443 3444 3445 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3446 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3447 { 3448 int ret; 3449 struct ext4_map_blocks map; 3450 u8 blkbits = inode->i_blkbits; 3451 3452 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3453 return -EINVAL; 3454 3455 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3456 return -ERANGE; 3457 3458 /* 3459 * Calculate the first and last logical blocks respectively. 3460 */ 3461 map.m_lblk = offset >> blkbits; 3462 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3463 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3464 3465 if (flags & IOMAP_WRITE) { 3466 /* 3467 * We check here if the blocks are already allocated, then we 3468 * don't need to start a journal txn and we can directly return 3469 * the mapping information. This could boost performance 3470 * especially in multi-threaded overwrite requests. 3471 */ 3472 if (offset + length <= i_size_read(inode)) { 3473 ret = ext4_map_blocks(NULL, inode, &map, 0); 3474 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3475 goto out; 3476 } 3477 ret = ext4_iomap_alloc(inode, &map, flags); 3478 } else { 3479 ret = ext4_map_blocks(NULL, inode, &map, 0); 3480 } 3481 3482 if (ret < 0) 3483 return ret; 3484 out: 3485 ext4_set_iomap(inode, iomap, &map, offset, length); 3486 3487 return 0; 3488 } 3489 3490 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3491 loff_t length, unsigned flags, struct iomap *iomap, 3492 struct iomap *srcmap) 3493 { 3494 int ret; 3495 3496 /* 3497 * Even for writes we don't need to allocate blocks, so just pretend 3498 * we are reading to save overhead of starting a transaction. 3499 */ 3500 flags &= ~IOMAP_WRITE; 3501 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3502 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3503 return ret; 3504 } 3505 3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3507 ssize_t written, unsigned flags, struct iomap *iomap) 3508 { 3509 /* 3510 * Check to see whether an error occurred while writing out the data to 3511 * the allocated blocks. If so, return the magic error code so that we 3512 * fallback to buffered I/O and attempt to complete the remainder of 3513 * the I/O. Any blocks that may have been allocated in preparation for 3514 * the direct I/O will be reused during buffered I/O. 3515 */ 3516 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3517 return -ENOTBLK; 3518 3519 return 0; 3520 } 3521 3522 const struct iomap_ops ext4_iomap_ops = { 3523 .iomap_begin = ext4_iomap_begin, 3524 .iomap_end = ext4_iomap_end, 3525 }; 3526 3527 const struct iomap_ops ext4_iomap_overwrite_ops = { 3528 .iomap_begin = ext4_iomap_overwrite_begin, 3529 .iomap_end = ext4_iomap_end, 3530 }; 3531 3532 static bool ext4_iomap_is_delalloc(struct inode *inode, 3533 struct ext4_map_blocks *map) 3534 { 3535 struct extent_status es; 3536 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3537 3538 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3539 map->m_lblk, end, &es); 3540 3541 if (!es.es_len || es.es_lblk > end) 3542 return false; 3543 3544 if (es.es_lblk > map->m_lblk) { 3545 map->m_len = es.es_lblk - map->m_lblk; 3546 return false; 3547 } 3548 3549 offset = map->m_lblk - es.es_lblk; 3550 map->m_len = es.es_len - offset; 3551 3552 return true; 3553 } 3554 3555 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3556 loff_t length, unsigned int flags, 3557 struct iomap *iomap, struct iomap *srcmap) 3558 { 3559 int ret; 3560 bool delalloc = false; 3561 struct ext4_map_blocks map; 3562 u8 blkbits = inode->i_blkbits; 3563 3564 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3565 return -EINVAL; 3566 3567 if (ext4_has_inline_data(inode)) { 3568 ret = ext4_inline_data_iomap(inode, iomap); 3569 if (ret != -EAGAIN) { 3570 if (ret == 0 && offset >= iomap->length) 3571 ret = -ENOENT; 3572 return ret; 3573 } 3574 } 3575 3576 /* 3577 * Calculate the first and last logical block respectively. 3578 */ 3579 map.m_lblk = offset >> blkbits; 3580 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3581 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3582 3583 /* 3584 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3585 * So handle it here itself instead of querying ext4_map_blocks(). 3586 * Since ext4_map_blocks() will warn about it and will return 3587 * -EIO error. 3588 */ 3589 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3590 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3591 3592 if (offset >= sbi->s_bitmap_maxbytes) { 3593 map.m_flags = 0; 3594 goto set_iomap; 3595 } 3596 } 3597 3598 ret = ext4_map_blocks(NULL, inode, &map, 0); 3599 if (ret < 0) 3600 return ret; 3601 if (ret == 0) 3602 delalloc = ext4_iomap_is_delalloc(inode, &map); 3603 3604 set_iomap: 3605 ext4_set_iomap(inode, iomap, &map, offset, length); 3606 if (delalloc && iomap->type == IOMAP_HOLE) 3607 iomap->type = IOMAP_DELALLOC; 3608 3609 return 0; 3610 } 3611 3612 const struct iomap_ops ext4_iomap_report_ops = { 3613 .iomap_begin = ext4_iomap_begin_report, 3614 }; 3615 3616 /* 3617 * Pages can be marked dirty completely asynchronously from ext4's journalling 3618 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3619 * much here because ->set_page_dirty is called under VFS locks. The page is 3620 * not necessarily locked. 3621 * 3622 * We cannot just dirty the page and leave attached buffers clean, because the 3623 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3624 * or jbddirty because all the journalling code will explode. 3625 * 3626 * So what we do is to mark the page "pending dirty" and next time writepage 3627 * is called, propagate that into the buffers appropriately. 3628 */ 3629 static int ext4_journalled_set_page_dirty(struct page *page) 3630 { 3631 SetPageChecked(page); 3632 return __set_page_dirty_nobuffers(page); 3633 } 3634 3635 static int ext4_set_page_dirty(struct page *page) 3636 { 3637 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3638 WARN_ON_ONCE(!page_has_buffers(page)); 3639 return __set_page_dirty_buffers(page); 3640 } 3641 3642 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3643 struct file *file, sector_t *span) 3644 { 3645 return iomap_swapfile_activate(sis, file, span, 3646 &ext4_iomap_report_ops); 3647 } 3648 3649 static const struct address_space_operations ext4_aops = { 3650 .readpage = ext4_readpage, 3651 .readahead = ext4_readahead, 3652 .writepage = ext4_writepage, 3653 .writepages = ext4_writepages, 3654 .write_begin = ext4_write_begin, 3655 .write_end = ext4_write_end, 3656 .set_page_dirty = ext4_set_page_dirty, 3657 .bmap = ext4_bmap, 3658 .invalidatepage = ext4_invalidatepage, 3659 .releasepage = ext4_releasepage, 3660 .direct_IO = noop_direct_IO, 3661 .migratepage = buffer_migrate_page, 3662 .is_partially_uptodate = block_is_partially_uptodate, 3663 .error_remove_page = generic_error_remove_page, 3664 .swap_activate = ext4_iomap_swap_activate, 3665 }; 3666 3667 static const struct address_space_operations ext4_journalled_aops = { 3668 .readpage = ext4_readpage, 3669 .readahead = ext4_readahead, 3670 .writepage = ext4_writepage, 3671 .writepages = ext4_writepages, 3672 .write_begin = ext4_write_begin, 3673 .write_end = ext4_journalled_write_end, 3674 .set_page_dirty = ext4_journalled_set_page_dirty, 3675 .bmap = ext4_bmap, 3676 .invalidatepage = ext4_journalled_invalidatepage, 3677 .releasepage = ext4_releasepage, 3678 .direct_IO = noop_direct_IO, 3679 .is_partially_uptodate = block_is_partially_uptodate, 3680 .error_remove_page = generic_error_remove_page, 3681 .swap_activate = ext4_iomap_swap_activate, 3682 }; 3683 3684 static const struct address_space_operations ext4_da_aops = { 3685 .readpage = ext4_readpage, 3686 .readahead = ext4_readahead, 3687 .writepage = ext4_writepage, 3688 .writepages = ext4_writepages, 3689 .write_begin = ext4_da_write_begin, 3690 .write_end = ext4_da_write_end, 3691 .set_page_dirty = ext4_set_page_dirty, 3692 .bmap = ext4_bmap, 3693 .invalidatepage = ext4_invalidatepage, 3694 .releasepage = ext4_releasepage, 3695 .direct_IO = noop_direct_IO, 3696 .migratepage = buffer_migrate_page, 3697 .is_partially_uptodate = block_is_partially_uptodate, 3698 .error_remove_page = generic_error_remove_page, 3699 .swap_activate = ext4_iomap_swap_activate, 3700 }; 3701 3702 static const struct address_space_operations ext4_dax_aops = { 3703 .writepages = ext4_dax_writepages, 3704 .direct_IO = noop_direct_IO, 3705 .set_page_dirty = noop_set_page_dirty, 3706 .bmap = ext4_bmap, 3707 .invalidatepage = noop_invalidatepage, 3708 .swap_activate = ext4_iomap_swap_activate, 3709 }; 3710 3711 void ext4_set_aops(struct inode *inode) 3712 { 3713 switch (ext4_inode_journal_mode(inode)) { 3714 case EXT4_INODE_ORDERED_DATA_MODE: 3715 case EXT4_INODE_WRITEBACK_DATA_MODE: 3716 break; 3717 case EXT4_INODE_JOURNAL_DATA_MODE: 3718 inode->i_mapping->a_ops = &ext4_journalled_aops; 3719 return; 3720 default: 3721 BUG(); 3722 } 3723 if (IS_DAX(inode)) 3724 inode->i_mapping->a_ops = &ext4_dax_aops; 3725 else if (test_opt(inode->i_sb, DELALLOC)) 3726 inode->i_mapping->a_ops = &ext4_da_aops; 3727 else 3728 inode->i_mapping->a_ops = &ext4_aops; 3729 } 3730 3731 static int __ext4_block_zero_page_range(handle_t *handle, 3732 struct address_space *mapping, loff_t from, loff_t length) 3733 { 3734 ext4_fsblk_t index = from >> PAGE_SHIFT; 3735 unsigned offset = from & (PAGE_SIZE-1); 3736 unsigned blocksize, pos; 3737 ext4_lblk_t iblock; 3738 struct inode *inode = mapping->host; 3739 struct buffer_head *bh; 3740 struct page *page; 3741 int err = 0; 3742 3743 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3744 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3745 if (!page) 3746 return -ENOMEM; 3747 3748 blocksize = inode->i_sb->s_blocksize; 3749 3750 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3751 3752 if (!page_has_buffers(page)) 3753 create_empty_buffers(page, blocksize, 0); 3754 3755 /* Find the buffer that contains "offset" */ 3756 bh = page_buffers(page); 3757 pos = blocksize; 3758 while (offset >= pos) { 3759 bh = bh->b_this_page; 3760 iblock++; 3761 pos += blocksize; 3762 } 3763 if (buffer_freed(bh)) { 3764 BUFFER_TRACE(bh, "freed: skip"); 3765 goto unlock; 3766 } 3767 if (!buffer_mapped(bh)) { 3768 BUFFER_TRACE(bh, "unmapped"); 3769 ext4_get_block(inode, iblock, bh, 0); 3770 /* unmapped? It's a hole - nothing to do */ 3771 if (!buffer_mapped(bh)) { 3772 BUFFER_TRACE(bh, "still unmapped"); 3773 goto unlock; 3774 } 3775 } 3776 3777 /* Ok, it's mapped. Make sure it's up-to-date */ 3778 if (PageUptodate(page)) 3779 set_buffer_uptodate(bh); 3780 3781 if (!buffer_uptodate(bh)) { 3782 err = ext4_read_bh_lock(bh, 0, true); 3783 if (err) 3784 goto unlock; 3785 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3786 /* We expect the key to be set. */ 3787 BUG_ON(!fscrypt_has_encryption_key(inode)); 3788 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3789 bh_offset(bh)); 3790 if (err) { 3791 clear_buffer_uptodate(bh); 3792 goto unlock; 3793 } 3794 } 3795 } 3796 if (ext4_should_journal_data(inode)) { 3797 BUFFER_TRACE(bh, "get write access"); 3798 err = ext4_journal_get_write_access(handle, bh); 3799 if (err) 3800 goto unlock; 3801 } 3802 zero_user(page, offset, length); 3803 BUFFER_TRACE(bh, "zeroed end of block"); 3804 3805 if (ext4_should_journal_data(inode)) { 3806 err = ext4_handle_dirty_metadata(handle, inode, bh); 3807 } else { 3808 err = 0; 3809 mark_buffer_dirty(bh); 3810 if (ext4_should_order_data(inode)) 3811 err = ext4_jbd2_inode_add_write(handle, inode, from, 3812 length); 3813 } 3814 3815 unlock: 3816 unlock_page(page); 3817 put_page(page); 3818 return err; 3819 } 3820 3821 /* 3822 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3823 * starting from file offset 'from'. The range to be zero'd must 3824 * be contained with in one block. If the specified range exceeds 3825 * the end of the block it will be shortened to end of the block 3826 * that cooresponds to 'from' 3827 */ 3828 static int ext4_block_zero_page_range(handle_t *handle, 3829 struct address_space *mapping, loff_t from, loff_t length) 3830 { 3831 struct inode *inode = mapping->host; 3832 unsigned offset = from & (PAGE_SIZE-1); 3833 unsigned blocksize = inode->i_sb->s_blocksize; 3834 unsigned max = blocksize - (offset & (blocksize - 1)); 3835 3836 /* 3837 * correct length if it does not fall between 3838 * 'from' and the end of the block 3839 */ 3840 if (length > max || length < 0) 3841 length = max; 3842 3843 if (IS_DAX(inode)) { 3844 return iomap_zero_range(inode, from, length, NULL, 3845 &ext4_iomap_ops); 3846 } 3847 return __ext4_block_zero_page_range(handle, mapping, from, length); 3848 } 3849 3850 /* 3851 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3852 * up to the end of the block which corresponds to `from'. 3853 * This required during truncate. We need to physically zero the tail end 3854 * of that block so it doesn't yield old data if the file is later grown. 3855 */ 3856 static int ext4_block_truncate_page(handle_t *handle, 3857 struct address_space *mapping, loff_t from) 3858 { 3859 unsigned offset = from & (PAGE_SIZE-1); 3860 unsigned length; 3861 unsigned blocksize; 3862 struct inode *inode = mapping->host; 3863 3864 /* If we are processing an encrypted inode during orphan list handling */ 3865 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3866 return 0; 3867 3868 blocksize = inode->i_sb->s_blocksize; 3869 length = blocksize - (offset & (blocksize - 1)); 3870 3871 return ext4_block_zero_page_range(handle, mapping, from, length); 3872 } 3873 3874 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3875 loff_t lstart, loff_t length) 3876 { 3877 struct super_block *sb = inode->i_sb; 3878 struct address_space *mapping = inode->i_mapping; 3879 unsigned partial_start, partial_end; 3880 ext4_fsblk_t start, end; 3881 loff_t byte_end = (lstart + length - 1); 3882 int err = 0; 3883 3884 partial_start = lstart & (sb->s_blocksize - 1); 3885 partial_end = byte_end & (sb->s_blocksize - 1); 3886 3887 start = lstart >> sb->s_blocksize_bits; 3888 end = byte_end >> sb->s_blocksize_bits; 3889 3890 /* Handle partial zero within the single block */ 3891 if (start == end && 3892 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3893 err = ext4_block_zero_page_range(handle, mapping, 3894 lstart, length); 3895 return err; 3896 } 3897 /* Handle partial zero out on the start of the range */ 3898 if (partial_start) { 3899 err = ext4_block_zero_page_range(handle, mapping, 3900 lstart, sb->s_blocksize); 3901 if (err) 3902 return err; 3903 } 3904 /* Handle partial zero out on the end of the range */ 3905 if (partial_end != sb->s_blocksize - 1) 3906 err = ext4_block_zero_page_range(handle, mapping, 3907 byte_end - partial_end, 3908 partial_end + 1); 3909 return err; 3910 } 3911 3912 int ext4_can_truncate(struct inode *inode) 3913 { 3914 if (S_ISREG(inode->i_mode)) 3915 return 1; 3916 if (S_ISDIR(inode->i_mode)) 3917 return 1; 3918 if (S_ISLNK(inode->i_mode)) 3919 return !ext4_inode_is_fast_symlink(inode); 3920 return 0; 3921 } 3922 3923 /* 3924 * We have to make sure i_disksize gets properly updated before we truncate 3925 * page cache due to hole punching or zero range. Otherwise i_disksize update 3926 * can get lost as it may have been postponed to submission of writeback but 3927 * that will never happen after we truncate page cache. 3928 */ 3929 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3930 loff_t len) 3931 { 3932 handle_t *handle; 3933 int ret; 3934 3935 loff_t size = i_size_read(inode); 3936 3937 WARN_ON(!inode_is_locked(inode)); 3938 if (offset > size || offset + len < size) 3939 return 0; 3940 3941 if (EXT4_I(inode)->i_disksize >= size) 3942 return 0; 3943 3944 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3945 if (IS_ERR(handle)) 3946 return PTR_ERR(handle); 3947 ext4_update_i_disksize(inode, size); 3948 ret = ext4_mark_inode_dirty(handle, inode); 3949 ext4_journal_stop(handle); 3950 3951 return ret; 3952 } 3953 3954 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3955 { 3956 up_write(&ei->i_mmap_sem); 3957 schedule(); 3958 down_write(&ei->i_mmap_sem); 3959 } 3960 3961 int ext4_break_layouts(struct inode *inode) 3962 { 3963 struct ext4_inode_info *ei = EXT4_I(inode); 3964 struct page *page; 3965 int error; 3966 3967 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3968 return -EINVAL; 3969 3970 do { 3971 page = dax_layout_busy_page(inode->i_mapping); 3972 if (!page) 3973 return 0; 3974 3975 error = ___wait_var_event(&page->_refcount, 3976 atomic_read(&page->_refcount) == 1, 3977 TASK_INTERRUPTIBLE, 0, 0, 3978 ext4_wait_dax_page(ei)); 3979 } while (error == 0); 3980 3981 return error; 3982 } 3983 3984 /* 3985 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3986 * associated with the given offset and length 3987 * 3988 * @inode: File inode 3989 * @offset: The offset where the hole will begin 3990 * @len: The length of the hole 3991 * 3992 * Returns: 0 on success or negative on failure 3993 */ 3994 3995 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3996 { 3997 struct super_block *sb = inode->i_sb; 3998 ext4_lblk_t first_block, stop_block; 3999 struct address_space *mapping = inode->i_mapping; 4000 loff_t first_block_offset, last_block_offset; 4001 handle_t *handle; 4002 unsigned int credits; 4003 int ret = 0, ret2 = 0; 4004 4005 trace_ext4_punch_hole(inode, offset, length, 0); 4006 4007 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4008 if (ext4_has_inline_data(inode)) { 4009 down_write(&EXT4_I(inode)->i_mmap_sem); 4010 ret = ext4_convert_inline_data(inode); 4011 up_write(&EXT4_I(inode)->i_mmap_sem); 4012 if (ret) 4013 return ret; 4014 } 4015 4016 /* 4017 * Write out all dirty pages to avoid race conditions 4018 * Then release them. 4019 */ 4020 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4021 ret = filemap_write_and_wait_range(mapping, offset, 4022 offset + length - 1); 4023 if (ret) 4024 return ret; 4025 } 4026 4027 inode_lock(inode); 4028 4029 /* No need to punch hole beyond i_size */ 4030 if (offset >= inode->i_size) 4031 goto out_mutex; 4032 4033 /* 4034 * If the hole extends beyond i_size, set the hole 4035 * to end after the page that contains i_size 4036 */ 4037 if (offset + length > inode->i_size) { 4038 length = inode->i_size + 4039 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4040 offset; 4041 } 4042 4043 if (offset & (sb->s_blocksize - 1) || 4044 (offset + length) & (sb->s_blocksize - 1)) { 4045 /* 4046 * Attach jinode to inode for jbd2 if we do any zeroing of 4047 * partial block 4048 */ 4049 ret = ext4_inode_attach_jinode(inode); 4050 if (ret < 0) 4051 goto out_mutex; 4052 4053 } 4054 4055 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4056 inode_dio_wait(inode); 4057 4058 /* 4059 * Prevent page faults from reinstantiating pages we have released from 4060 * page cache. 4061 */ 4062 down_write(&EXT4_I(inode)->i_mmap_sem); 4063 4064 ret = ext4_break_layouts(inode); 4065 if (ret) 4066 goto out_dio; 4067 4068 first_block_offset = round_up(offset, sb->s_blocksize); 4069 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4070 4071 /* Now release the pages and zero block aligned part of pages*/ 4072 if (last_block_offset > first_block_offset) { 4073 ret = ext4_update_disksize_before_punch(inode, offset, length); 4074 if (ret) 4075 goto out_dio; 4076 truncate_pagecache_range(inode, first_block_offset, 4077 last_block_offset); 4078 } 4079 4080 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4081 credits = ext4_writepage_trans_blocks(inode); 4082 else 4083 credits = ext4_blocks_for_truncate(inode); 4084 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4085 if (IS_ERR(handle)) { 4086 ret = PTR_ERR(handle); 4087 ext4_std_error(sb, ret); 4088 goto out_dio; 4089 } 4090 4091 ret = ext4_zero_partial_blocks(handle, inode, offset, 4092 length); 4093 if (ret) 4094 goto out_stop; 4095 4096 first_block = (offset + sb->s_blocksize - 1) >> 4097 EXT4_BLOCK_SIZE_BITS(sb); 4098 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4099 4100 /* If there are blocks to remove, do it */ 4101 if (stop_block > first_block) { 4102 4103 down_write(&EXT4_I(inode)->i_data_sem); 4104 ext4_discard_preallocations(inode, 0); 4105 4106 ret = ext4_es_remove_extent(inode, first_block, 4107 stop_block - first_block); 4108 if (ret) { 4109 up_write(&EXT4_I(inode)->i_data_sem); 4110 goto out_stop; 4111 } 4112 4113 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4114 ret = ext4_ext_remove_space(inode, first_block, 4115 stop_block - 1); 4116 else 4117 ret = ext4_ind_remove_space(handle, inode, first_block, 4118 stop_block); 4119 4120 up_write(&EXT4_I(inode)->i_data_sem); 4121 } 4122 ext4_fc_track_range(handle, inode, first_block, stop_block); 4123 if (IS_SYNC(inode)) 4124 ext4_handle_sync(handle); 4125 4126 inode->i_mtime = inode->i_ctime = current_time(inode); 4127 ret2 = ext4_mark_inode_dirty(handle, inode); 4128 if (unlikely(ret2)) 4129 ret = ret2; 4130 if (ret >= 0) 4131 ext4_update_inode_fsync_trans(handle, inode, 1); 4132 out_stop: 4133 ext4_journal_stop(handle); 4134 out_dio: 4135 up_write(&EXT4_I(inode)->i_mmap_sem); 4136 out_mutex: 4137 inode_unlock(inode); 4138 return ret; 4139 } 4140 4141 int ext4_inode_attach_jinode(struct inode *inode) 4142 { 4143 struct ext4_inode_info *ei = EXT4_I(inode); 4144 struct jbd2_inode *jinode; 4145 4146 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4147 return 0; 4148 4149 jinode = jbd2_alloc_inode(GFP_KERNEL); 4150 spin_lock(&inode->i_lock); 4151 if (!ei->jinode) { 4152 if (!jinode) { 4153 spin_unlock(&inode->i_lock); 4154 return -ENOMEM; 4155 } 4156 ei->jinode = jinode; 4157 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4158 jinode = NULL; 4159 } 4160 spin_unlock(&inode->i_lock); 4161 if (unlikely(jinode != NULL)) 4162 jbd2_free_inode(jinode); 4163 return 0; 4164 } 4165 4166 /* 4167 * ext4_truncate() 4168 * 4169 * We block out ext4_get_block() block instantiations across the entire 4170 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4171 * simultaneously on behalf of the same inode. 4172 * 4173 * As we work through the truncate and commit bits of it to the journal there 4174 * is one core, guiding principle: the file's tree must always be consistent on 4175 * disk. We must be able to restart the truncate after a crash. 4176 * 4177 * The file's tree may be transiently inconsistent in memory (although it 4178 * probably isn't), but whenever we close off and commit a journal transaction, 4179 * the contents of (the filesystem + the journal) must be consistent and 4180 * restartable. It's pretty simple, really: bottom up, right to left (although 4181 * left-to-right works OK too). 4182 * 4183 * Note that at recovery time, journal replay occurs *before* the restart of 4184 * truncate against the orphan inode list. 4185 * 4186 * The committed inode has the new, desired i_size (which is the same as 4187 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4188 * that this inode's truncate did not complete and it will again call 4189 * ext4_truncate() to have another go. So there will be instantiated blocks 4190 * to the right of the truncation point in a crashed ext4 filesystem. But 4191 * that's fine - as long as they are linked from the inode, the post-crash 4192 * ext4_truncate() run will find them and release them. 4193 */ 4194 int ext4_truncate(struct inode *inode) 4195 { 4196 struct ext4_inode_info *ei = EXT4_I(inode); 4197 unsigned int credits; 4198 int err = 0, err2; 4199 handle_t *handle; 4200 struct address_space *mapping = inode->i_mapping; 4201 4202 /* 4203 * There is a possibility that we're either freeing the inode 4204 * or it's a completely new inode. In those cases we might not 4205 * have i_mutex locked because it's not necessary. 4206 */ 4207 if (!(inode->i_state & (I_NEW|I_FREEING))) 4208 WARN_ON(!inode_is_locked(inode)); 4209 trace_ext4_truncate_enter(inode); 4210 4211 if (!ext4_can_truncate(inode)) 4212 goto out_trace; 4213 4214 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4215 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4216 4217 if (ext4_has_inline_data(inode)) { 4218 int has_inline = 1; 4219 4220 err = ext4_inline_data_truncate(inode, &has_inline); 4221 if (err || has_inline) 4222 goto out_trace; 4223 } 4224 4225 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4226 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4227 if (ext4_inode_attach_jinode(inode) < 0) 4228 goto out_trace; 4229 } 4230 4231 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4232 credits = ext4_writepage_trans_blocks(inode); 4233 else 4234 credits = ext4_blocks_for_truncate(inode); 4235 4236 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4237 if (IS_ERR(handle)) { 4238 err = PTR_ERR(handle); 4239 goto out_trace; 4240 } 4241 4242 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4243 ext4_block_truncate_page(handle, mapping, inode->i_size); 4244 4245 /* 4246 * We add the inode to the orphan list, so that if this 4247 * truncate spans multiple transactions, and we crash, we will 4248 * resume the truncate when the filesystem recovers. It also 4249 * marks the inode dirty, to catch the new size. 4250 * 4251 * Implication: the file must always be in a sane, consistent 4252 * truncatable state while each transaction commits. 4253 */ 4254 err = ext4_orphan_add(handle, inode); 4255 if (err) 4256 goto out_stop; 4257 4258 down_write(&EXT4_I(inode)->i_data_sem); 4259 4260 ext4_discard_preallocations(inode, 0); 4261 4262 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4263 err = ext4_ext_truncate(handle, inode); 4264 else 4265 ext4_ind_truncate(handle, inode); 4266 4267 up_write(&ei->i_data_sem); 4268 if (err) 4269 goto out_stop; 4270 4271 if (IS_SYNC(inode)) 4272 ext4_handle_sync(handle); 4273 4274 out_stop: 4275 /* 4276 * If this was a simple ftruncate() and the file will remain alive, 4277 * then we need to clear up the orphan record which we created above. 4278 * However, if this was a real unlink then we were called by 4279 * ext4_evict_inode(), and we allow that function to clean up the 4280 * orphan info for us. 4281 */ 4282 if (inode->i_nlink) 4283 ext4_orphan_del(handle, inode); 4284 4285 inode->i_mtime = inode->i_ctime = current_time(inode); 4286 err2 = ext4_mark_inode_dirty(handle, inode); 4287 if (unlikely(err2 && !err)) 4288 err = err2; 4289 ext4_journal_stop(handle); 4290 4291 out_trace: 4292 trace_ext4_truncate_exit(inode); 4293 return err; 4294 } 4295 4296 /* 4297 * ext4_get_inode_loc returns with an extra refcount against the inode's 4298 * underlying buffer_head on success. If 'in_mem' is true, we have all 4299 * data in memory that is needed to recreate the on-disk version of this 4300 * inode. 4301 */ 4302 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4303 struct ext4_iloc *iloc, int in_mem, 4304 ext4_fsblk_t *ret_block) 4305 { 4306 struct ext4_group_desc *gdp; 4307 struct buffer_head *bh; 4308 ext4_fsblk_t block; 4309 struct blk_plug plug; 4310 int inodes_per_block, inode_offset; 4311 4312 iloc->bh = NULL; 4313 if (ino < EXT4_ROOT_INO || 4314 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4315 return -EFSCORRUPTED; 4316 4317 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4318 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4319 if (!gdp) 4320 return -EIO; 4321 4322 /* 4323 * Figure out the offset within the block group inode table 4324 */ 4325 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4326 inode_offset = ((ino - 1) % 4327 EXT4_INODES_PER_GROUP(sb)); 4328 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4329 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4330 4331 bh = sb_getblk(sb, block); 4332 if (unlikely(!bh)) 4333 return -ENOMEM; 4334 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4335 goto simulate_eio; 4336 if (!buffer_uptodate(bh)) { 4337 lock_buffer(bh); 4338 4339 if (ext4_buffer_uptodate(bh)) { 4340 /* someone brought it uptodate while we waited */ 4341 unlock_buffer(bh); 4342 goto has_buffer; 4343 } 4344 4345 /* 4346 * If we have all information of the inode in memory and this 4347 * is the only valid inode in the block, we need not read the 4348 * block. 4349 */ 4350 if (in_mem) { 4351 struct buffer_head *bitmap_bh; 4352 int i, start; 4353 4354 start = inode_offset & ~(inodes_per_block - 1); 4355 4356 /* Is the inode bitmap in cache? */ 4357 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4358 if (unlikely(!bitmap_bh)) 4359 goto make_io; 4360 4361 /* 4362 * If the inode bitmap isn't in cache then the 4363 * optimisation may end up performing two reads instead 4364 * of one, so skip it. 4365 */ 4366 if (!buffer_uptodate(bitmap_bh)) { 4367 brelse(bitmap_bh); 4368 goto make_io; 4369 } 4370 for (i = start; i < start + inodes_per_block; i++) { 4371 if (i == inode_offset) 4372 continue; 4373 if (ext4_test_bit(i, bitmap_bh->b_data)) 4374 break; 4375 } 4376 brelse(bitmap_bh); 4377 if (i == start + inodes_per_block) { 4378 /* all other inodes are free, so skip I/O */ 4379 memset(bh->b_data, 0, bh->b_size); 4380 set_buffer_uptodate(bh); 4381 unlock_buffer(bh); 4382 goto has_buffer; 4383 } 4384 } 4385 4386 make_io: 4387 /* 4388 * If we need to do any I/O, try to pre-readahead extra 4389 * blocks from the inode table. 4390 */ 4391 blk_start_plug(&plug); 4392 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4393 ext4_fsblk_t b, end, table; 4394 unsigned num; 4395 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4396 4397 table = ext4_inode_table(sb, gdp); 4398 /* s_inode_readahead_blks is always a power of 2 */ 4399 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4400 if (table > b) 4401 b = table; 4402 end = b + ra_blks; 4403 num = EXT4_INODES_PER_GROUP(sb); 4404 if (ext4_has_group_desc_csum(sb)) 4405 num -= ext4_itable_unused_count(sb, gdp); 4406 table += num / inodes_per_block; 4407 if (end > table) 4408 end = table; 4409 while (b <= end) 4410 ext4_sb_breadahead_unmovable(sb, b++); 4411 } 4412 4413 /* 4414 * There are other valid inodes in the buffer, this inode 4415 * has in-inode xattrs, or we don't have this inode in memory. 4416 * Read the block from disk. 4417 */ 4418 trace_ext4_load_inode(sb, ino); 4419 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4420 blk_finish_plug(&plug); 4421 wait_on_buffer(bh); 4422 if (!buffer_uptodate(bh)) { 4423 simulate_eio: 4424 if (ret_block) 4425 *ret_block = block; 4426 brelse(bh); 4427 return -EIO; 4428 } 4429 } 4430 has_buffer: 4431 iloc->bh = bh; 4432 return 0; 4433 } 4434 4435 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4436 struct ext4_iloc *iloc) 4437 { 4438 ext4_fsblk_t err_blk; 4439 int ret; 4440 4441 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0, 4442 &err_blk); 4443 4444 if (ret == -EIO) 4445 ext4_error_inode_block(inode, err_blk, EIO, 4446 "unable to read itable block"); 4447 4448 return ret; 4449 } 4450 4451 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4452 { 4453 ext4_fsblk_t err_blk; 4454 int ret; 4455 4456 /* We have all inode data except xattrs in memory here. */ 4457 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 4458 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk); 4459 4460 if (ret == -EIO) 4461 ext4_error_inode_block(inode, err_blk, EIO, 4462 "unable to read itable block"); 4463 4464 return ret; 4465 } 4466 4467 4468 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4469 struct ext4_iloc *iloc) 4470 { 4471 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL); 4472 } 4473 4474 static bool ext4_should_enable_dax(struct inode *inode) 4475 { 4476 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4477 4478 if (test_opt2(inode->i_sb, DAX_NEVER)) 4479 return false; 4480 if (!S_ISREG(inode->i_mode)) 4481 return false; 4482 if (ext4_should_journal_data(inode)) 4483 return false; 4484 if (ext4_has_inline_data(inode)) 4485 return false; 4486 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4487 return false; 4488 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4489 return false; 4490 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4491 return false; 4492 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4493 return true; 4494 4495 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4496 } 4497 4498 void ext4_set_inode_flags(struct inode *inode, bool init) 4499 { 4500 unsigned int flags = EXT4_I(inode)->i_flags; 4501 unsigned int new_fl = 0; 4502 4503 WARN_ON_ONCE(IS_DAX(inode) && init); 4504 4505 if (flags & EXT4_SYNC_FL) 4506 new_fl |= S_SYNC; 4507 if (flags & EXT4_APPEND_FL) 4508 new_fl |= S_APPEND; 4509 if (flags & EXT4_IMMUTABLE_FL) 4510 new_fl |= S_IMMUTABLE; 4511 if (flags & EXT4_NOATIME_FL) 4512 new_fl |= S_NOATIME; 4513 if (flags & EXT4_DIRSYNC_FL) 4514 new_fl |= S_DIRSYNC; 4515 4516 /* Because of the way inode_set_flags() works we must preserve S_DAX 4517 * here if already set. */ 4518 new_fl |= (inode->i_flags & S_DAX); 4519 if (init && ext4_should_enable_dax(inode)) 4520 new_fl |= S_DAX; 4521 4522 if (flags & EXT4_ENCRYPT_FL) 4523 new_fl |= S_ENCRYPTED; 4524 if (flags & EXT4_CASEFOLD_FL) 4525 new_fl |= S_CASEFOLD; 4526 if (flags & EXT4_VERITY_FL) 4527 new_fl |= S_VERITY; 4528 inode_set_flags(inode, new_fl, 4529 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4530 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4531 } 4532 4533 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4534 struct ext4_inode_info *ei) 4535 { 4536 blkcnt_t i_blocks ; 4537 struct inode *inode = &(ei->vfs_inode); 4538 struct super_block *sb = inode->i_sb; 4539 4540 if (ext4_has_feature_huge_file(sb)) { 4541 /* we are using combined 48 bit field */ 4542 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4543 le32_to_cpu(raw_inode->i_blocks_lo); 4544 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4545 /* i_blocks represent file system block size */ 4546 return i_blocks << (inode->i_blkbits - 9); 4547 } else { 4548 return i_blocks; 4549 } 4550 } else { 4551 return le32_to_cpu(raw_inode->i_blocks_lo); 4552 } 4553 } 4554 4555 static inline int ext4_iget_extra_inode(struct inode *inode, 4556 struct ext4_inode *raw_inode, 4557 struct ext4_inode_info *ei) 4558 { 4559 __le32 *magic = (void *)raw_inode + 4560 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4561 4562 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4563 EXT4_INODE_SIZE(inode->i_sb) && 4564 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4565 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4566 return ext4_find_inline_data_nolock(inode); 4567 } else 4568 EXT4_I(inode)->i_inline_off = 0; 4569 return 0; 4570 } 4571 4572 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4573 { 4574 if (!ext4_has_feature_project(inode->i_sb)) 4575 return -EOPNOTSUPP; 4576 *projid = EXT4_I(inode)->i_projid; 4577 return 0; 4578 } 4579 4580 /* 4581 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4582 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4583 * set. 4584 */ 4585 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4586 { 4587 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4588 inode_set_iversion_raw(inode, val); 4589 else 4590 inode_set_iversion_queried(inode, val); 4591 } 4592 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4593 { 4594 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4595 return inode_peek_iversion_raw(inode); 4596 else 4597 return inode_peek_iversion(inode); 4598 } 4599 4600 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4601 ext4_iget_flags flags, const char *function, 4602 unsigned int line) 4603 { 4604 struct ext4_iloc iloc; 4605 struct ext4_inode *raw_inode; 4606 struct ext4_inode_info *ei; 4607 struct inode *inode; 4608 journal_t *journal = EXT4_SB(sb)->s_journal; 4609 long ret; 4610 loff_t size; 4611 int block; 4612 uid_t i_uid; 4613 gid_t i_gid; 4614 projid_t i_projid; 4615 4616 if ((!(flags & EXT4_IGET_SPECIAL) && 4617 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4618 (ino < EXT4_ROOT_INO) || 4619 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4620 if (flags & EXT4_IGET_HANDLE) 4621 return ERR_PTR(-ESTALE); 4622 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4623 "inode #%lu: comm %s: iget: illegal inode #", 4624 ino, current->comm); 4625 return ERR_PTR(-EFSCORRUPTED); 4626 } 4627 4628 inode = iget_locked(sb, ino); 4629 if (!inode) 4630 return ERR_PTR(-ENOMEM); 4631 if (!(inode->i_state & I_NEW)) 4632 return inode; 4633 4634 ei = EXT4_I(inode); 4635 iloc.bh = NULL; 4636 4637 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4638 if (ret < 0) 4639 goto bad_inode; 4640 raw_inode = ext4_raw_inode(&iloc); 4641 4642 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4643 ext4_error_inode(inode, function, line, 0, 4644 "iget: root inode unallocated"); 4645 ret = -EFSCORRUPTED; 4646 goto bad_inode; 4647 } 4648 4649 if ((flags & EXT4_IGET_HANDLE) && 4650 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4651 ret = -ESTALE; 4652 goto bad_inode; 4653 } 4654 4655 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4656 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4657 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4658 EXT4_INODE_SIZE(inode->i_sb) || 4659 (ei->i_extra_isize & 3)) { 4660 ext4_error_inode(inode, function, line, 0, 4661 "iget: bad extra_isize %u " 4662 "(inode size %u)", 4663 ei->i_extra_isize, 4664 EXT4_INODE_SIZE(inode->i_sb)); 4665 ret = -EFSCORRUPTED; 4666 goto bad_inode; 4667 } 4668 } else 4669 ei->i_extra_isize = 0; 4670 4671 /* Precompute checksum seed for inode metadata */ 4672 if (ext4_has_metadata_csum(sb)) { 4673 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4674 __u32 csum; 4675 __le32 inum = cpu_to_le32(inode->i_ino); 4676 __le32 gen = raw_inode->i_generation; 4677 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4678 sizeof(inum)); 4679 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4680 sizeof(gen)); 4681 } 4682 4683 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4684 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4685 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4686 ext4_error_inode_err(inode, function, line, 0, 4687 EFSBADCRC, "iget: checksum invalid"); 4688 ret = -EFSBADCRC; 4689 goto bad_inode; 4690 } 4691 4692 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4693 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4694 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4695 if (ext4_has_feature_project(sb) && 4696 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4697 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4698 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4699 else 4700 i_projid = EXT4_DEF_PROJID; 4701 4702 if (!(test_opt(inode->i_sb, NO_UID32))) { 4703 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4704 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4705 } 4706 i_uid_write(inode, i_uid); 4707 i_gid_write(inode, i_gid); 4708 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4709 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4710 4711 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4712 ei->i_inline_off = 0; 4713 ei->i_dir_start_lookup = 0; 4714 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4715 /* We now have enough fields to check if the inode was active or not. 4716 * This is needed because nfsd might try to access dead inodes 4717 * the test is that same one that e2fsck uses 4718 * NeilBrown 1999oct15 4719 */ 4720 if (inode->i_nlink == 0) { 4721 if ((inode->i_mode == 0 || 4722 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4723 ino != EXT4_BOOT_LOADER_INO) { 4724 /* this inode is deleted */ 4725 ret = -ESTALE; 4726 goto bad_inode; 4727 } 4728 /* The only unlinked inodes we let through here have 4729 * valid i_mode and are being read by the orphan 4730 * recovery code: that's fine, we're about to complete 4731 * the process of deleting those. 4732 * OR it is the EXT4_BOOT_LOADER_INO which is 4733 * not initialized on a new filesystem. */ 4734 } 4735 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4736 ext4_set_inode_flags(inode, true); 4737 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4738 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4739 if (ext4_has_feature_64bit(sb)) 4740 ei->i_file_acl |= 4741 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4742 inode->i_size = ext4_isize(sb, raw_inode); 4743 if ((size = i_size_read(inode)) < 0) { 4744 ext4_error_inode(inode, function, line, 0, 4745 "iget: bad i_size value: %lld", size); 4746 ret = -EFSCORRUPTED; 4747 goto bad_inode; 4748 } 4749 /* 4750 * If dir_index is not enabled but there's dir with INDEX flag set, 4751 * we'd normally treat htree data as empty space. But with metadata 4752 * checksumming that corrupts checksums so forbid that. 4753 */ 4754 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4755 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4756 ext4_error_inode(inode, function, line, 0, 4757 "iget: Dir with htree data on filesystem without dir_index feature."); 4758 ret = -EFSCORRUPTED; 4759 goto bad_inode; 4760 } 4761 ei->i_disksize = inode->i_size; 4762 #ifdef CONFIG_QUOTA 4763 ei->i_reserved_quota = 0; 4764 #endif 4765 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4766 ei->i_block_group = iloc.block_group; 4767 ei->i_last_alloc_group = ~0; 4768 /* 4769 * NOTE! The in-memory inode i_data array is in little-endian order 4770 * even on big-endian machines: we do NOT byteswap the block numbers! 4771 */ 4772 for (block = 0; block < EXT4_N_BLOCKS; block++) 4773 ei->i_data[block] = raw_inode->i_block[block]; 4774 INIT_LIST_HEAD(&ei->i_orphan); 4775 ext4_fc_init_inode(&ei->vfs_inode); 4776 4777 /* 4778 * Set transaction id's of transactions that have to be committed 4779 * to finish f[data]sync. We set them to currently running transaction 4780 * as we cannot be sure that the inode or some of its metadata isn't 4781 * part of the transaction - the inode could have been reclaimed and 4782 * now it is reread from disk. 4783 */ 4784 if (journal) { 4785 transaction_t *transaction; 4786 tid_t tid; 4787 4788 read_lock(&journal->j_state_lock); 4789 if (journal->j_running_transaction) 4790 transaction = journal->j_running_transaction; 4791 else 4792 transaction = journal->j_committing_transaction; 4793 if (transaction) 4794 tid = transaction->t_tid; 4795 else 4796 tid = journal->j_commit_sequence; 4797 read_unlock(&journal->j_state_lock); 4798 ei->i_sync_tid = tid; 4799 ei->i_datasync_tid = tid; 4800 } 4801 4802 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4803 if (ei->i_extra_isize == 0) { 4804 /* The extra space is currently unused. Use it. */ 4805 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4806 ei->i_extra_isize = sizeof(struct ext4_inode) - 4807 EXT4_GOOD_OLD_INODE_SIZE; 4808 } else { 4809 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4810 if (ret) 4811 goto bad_inode; 4812 } 4813 } 4814 4815 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4816 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4817 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4818 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4819 4820 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4821 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4822 4823 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4824 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4825 ivers |= 4826 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4827 } 4828 ext4_inode_set_iversion_queried(inode, ivers); 4829 } 4830 4831 ret = 0; 4832 if (ei->i_file_acl && 4833 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4834 ext4_error_inode(inode, function, line, 0, 4835 "iget: bad extended attribute block %llu", 4836 ei->i_file_acl); 4837 ret = -EFSCORRUPTED; 4838 goto bad_inode; 4839 } else if (!ext4_has_inline_data(inode)) { 4840 /* validate the block references in the inode */ 4841 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4842 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4843 (S_ISLNK(inode->i_mode) && 4844 !ext4_inode_is_fast_symlink(inode)))) { 4845 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4846 ret = ext4_ext_check_inode(inode); 4847 else 4848 ret = ext4_ind_check_inode(inode); 4849 } 4850 } 4851 if (ret) 4852 goto bad_inode; 4853 4854 if (S_ISREG(inode->i_mode)) { 4855 inode->i_op = &ext4_file_inode_operations; 4856 inode->i_fop = &ext4_file_operations; 4857 ext4_set_aops(inode); 4858 } else if (S_ISDIR(inode->i_mode)) { 4859 inode->i_op = &ext4_dir_inode_operations; 4860 inode->i_fop = &ext4_dir_operations; 4861 } else if (S_ISLNK(inode->i_mode)) { 4862 /* VFS does not allow setting these so must be corruption */ 4863 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4864 ext4_error_inode(inode, function, line, 0, 4865 "iget: immutable or append flags " 4866 "not allowed on symlinks"); 4867 ret = -EFSCORRUPTED; 4868 goto bad_inode; 4869 } 4870 if (IS_ENCRYPTED(inode)) { 4871 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4872 ext4_set_aops(inode); 4873 } else if (ext4_inode_is_fast_symlink(inode)) { 4874 inode->i_link = (char *)ei->i_data; 4875 inode->i_op = &ext4_fast_symlink_inode_operations; 4876 nd_terminate_link(ei->i_data, inode->i_size, 4877 sizeof(ei->i_data) - 1); 4878 } else { 4879 inode->i_op = &ext4_symlink_inode_operations; 4880 ext4_set_aops(inode); 4881 } 4882 inode_nohighmem(inode); 4883 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4884 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4885 inode->i_op = &ext4_special_inode_operations; 4886 if (raw_inode->i_block[0]) 4887 init_special_inode(inode, inode->i_mode, 4888 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4889 else 4890 init_special_inode(inode, inode->i_mode, 4891 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4892 } else if (ino == EXT4_BOOT_LOADER_INO) { 4893 make_bad_inode(inode); 4894 } else { 4895 ret = -EFSCORRUPTED; 4896 ext4_error_inode(inode, function, line, 0, 4897 "iget: bogus i_mode (%o)", inode->i_mode); 4898 goto bad_inode; 4899 } 4900 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4901 ext4_error_inode(inode, function, line, 0, 4902 "casefold flag without casefold feature"); 4903 brelse(iloc.bh); 4904 4905 unlock_new_inode(inode); 4906 return inode; 4907 4908 bad_inode: 4909 brelse(iloc.bh); 4910 iget_failed(inode); 4911 return ERR_PTR(ret); 4912 } 4913 4914 static int ext4_inode_blocks_set(handle_t *handle, 4915 struct ext4_inode *raw_inode, 4916 struct ext4_inode_info *ei) 4917 { 4918 struct inode *inode = &(ei->vfs_inode); 4919 u64 i_blocks = READ_ONCE(inode->i_blocks); 4920 struct super_block *sb = inode->i_sb; 4921 4922 if (i_blocks <= ~0U) { 4923 /* 4924 * i_blocks can be represented in a 32 bit variable 4925 * as multiple of 512 bytes 4926 */ 4927 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4928 raw_inode->i_blocks_high = 0; 4929 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4930 return 0; 4931 } 4932 if (!ext4_has_feature_huge_file(sb)) 4933 return -EFBIG; 4934 4935 if (i_blocks <= 0xffffffffffffULL) { 4936 /* 4937 * i_blocks can be represented in a 48 bit variable 4938 * as multiple of 512 bytes 4939 */ 4940 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4941 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4942 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4943 } else { 4944 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4945 /* i_block is stored in file system block size */ 4946 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4947 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4948 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4949 } 4950 return 0; 4951 } 4952 4953 static void __ext4_update_other_inode_time(struct super_block *sb, 4954 unsigned long orig_ino, 4955 unsigned long ino, 4956 struct ext4_inode *raw_inode) 4957 { 4958 struct inode *inode; 4959 4960 inode = find_inode_by_ino_rcu(sb, ino); 4961 if (!inode) 4962 return; 4963 4964 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4965 I_DIRTY_INODE)) || 4966 ((inode->i_state & I_DIRTY_TIME) == 0)) 4967 return; 4968 4969 spin_lock(&inode->i_lock); 4970 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4971 I_DIRTY_INODE)) == 0) && 4972 (inode->i_state & I_DIRTY_TIME)) { 4973 struct ext4_inode_info *ei = EXT4_I(inode); 4974 4975 inode->i_state &= ~I_DIRTY_TIME; 4976 spin_unlock(&inode->i_lock); 4977 4978 spin_lock(&ei->i_raw_lock); 4979 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4980 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4981 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4982 ext4_inode_csum_set(inode, raw_inode, ei); 4983 spin_unlock(&ei->i_raw_lock); 4984 trace_ext4_other_inode_update_time(inode, orig_ino); 4985 return; 4986 } 4987 spin_unlock(&inode->i_lock); 4988 } 4989 4990 /* 4991 * Opportunistically update the other time fields for other inodes in 4992 * the same inode table block. 4993 */ 4994 static void ext4_update_other_inodes_time(struct super_block *sb, 4995 unsigned long orig_ino, char *buf) 4996 { 4997 unsigned long ino; 4998 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4999 int inode_size = EXT4_INODE_SIZE(sb); 5000 5001 /* 5002 * Calculate the first inode in the inode table block. Inode 5003 * numbers are one-based. That is, the first inode in a block 5004 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5005 */ 5006 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5007 rcu_read_lock(); 5008 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5009 if (ino == orig_ino) 5010 continue; 5011 __ext4_update_other_inode_time(sb, orig_ino, ino, 5012 (struct ext4_inode *)buf); 5013 } 5014 rcu_read_unlock(); 5015 } 5016 5017 /* 5018 * Post the struct inode info into an on-disk inode location in the 5019 * buffer-cache. This gobbles the caller's reference to the 5020 * buffer_head in the inode location struct. 5021 * 5022 * The caller must have write access to iloc->bh. 5023 */ 5024 static int ext4_do_update_inode(handle_t *handle, 5025 struct inode *inode, 5026 struct ext4_iloc *iloc) 5027 { 5028 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5029 struct ext4_inode_info *ei = EXT4_I(inode); 5030 struct buffer_head *bh = iloc->bh; 5031 struct super_block *sb = inode->i_sb; 5032 int err = 0, rc, block; 5033 int need_datasync = 0, set_large_file = 0; 5034 uid_t i_uid; 5035 gid_t i_gid; 5036 projid_t i_projid; 5037 5038 spin_lock(&ei->i_raw_lock); 5039 5040 /* For fields not tracked in the in-memory inode, 5041 * initialise them to zero for new inodes. */ 5042 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5043 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5044 5045 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5046 if (err) { 5047 spin_unlock(&ei->i_raw_lock); 5048 goto out_brelse; 5049 } 5050 5051 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5052 i_uid = i_uid_read(inode); 5053 i_gid = i_gid_read(inode); 5054 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5055 if (!(test_opt(inode->i_sb, NO_UID32))) { 5056 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5057 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5058 /* 5059 * Fix up interoperability with old kernels. Otherwise, old inodes get 5060 * re-used with the upper 16 bits of the uid/gid intact 5061 */ 5062 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5063 raw_inode->i_uid_high = 0; 5064 raw_inode->i_gid_high = 0; 5065 } else { 5066 raw_inode->i_uid_high = 5067 cpu_to_le16(high_16_bits(i_uid)); 5068 raw_inode->i_gid_high = 5069 cpu_to_le16(high_16_bits(i_gid)); 5070 } 5071 } else { 5072 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5073 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5074 raw_inode->i_uid_high = 0; 5075 raw_inode->i_gid_high = 0; 5076 } 5077 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5078 5079 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5080 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5081 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5082 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5083 5084 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5085 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5086 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5087 raw_inode->i_file_acl_high = 5088 cpu_to_le16(ei->i_file_acl >> 32); 5089 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5090 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5091 ext4_isize_set(raw_inode, ei->i_disksize); 5092 need_datasync = 1; 5093 } 5094 if (ei->i_disksize > 0x7fffffffULL) { 5095 if (!ext4_has_feature_large_file(sb) || 5096 EXT4_SB(sb)->s_es->s_rev_level == 5097 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5098 set_large_file = 1; 5099 } 5100 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5101 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5102 if (old_valid_dev(inode->i_rdev)) { 5103 raw_inode->i_block[0] = 5104 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5105 raw_inode->i_block[1] = 0; 5106 } else { 5107 raw_inode->i_block[0] = 0; 5108 raw_inode->i_block[1] = 5109 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5110 raw_inode->i_block[2] = 0; 5111 } 5112 } else if (!ext4_has_inline_data(inode)) { 5113 for (block = 0; block < EXT4_N_BLOCKS; block++) 5114 raw_inode->i_block[block] = ei->i_data[block]; 5115 } 5116 5117 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5118 u64 ivers = ext4_inode_peek_iversion(inode); 5119 5120 raw_inode->i_disk_version = cpu_to_le32(ivers); 5121 if (ei->i_extra_isize) { 5122 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5123 raw_inode->i_version_hi = 5124 cpu_to_le32(ivers >> 32); 5125 raw_inode->i_extra_isize = 5126 cpu_to_le16(ei->i_extra_isize); 5127 } 5128 } 5129 5130 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5131 i_projid != EXT4_DEF_PROJID); 5132 5133 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5134 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5135 raw_inode->i_projid = cpu_to_le32(i_projid); 5136 5137 ext4_inode_csum_set(inode, raw_inode, ei); 5138 spin_unlock(&ei->i_raw_lock); 5139 if (inode->i_sb->s_flags & SB_LAZYTIME) 5140 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5141 bh->b_data); 5142 5143 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5144 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5145 if (!err) 5146 err = rc; 5147 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5148 if (set_large_file) { 5149 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5150 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5151 if (err) 5152 goto out_brelse; 5153 ext4_set_feature_large_file(sb); 5154 ext4_handle_sync(handle); 5155 err = ext4_handle_dirty_super(handle, sb); 5156 } 5157 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5158 out_brelse: 5159 brelse(bh); 5160 ext4_std_error(inode->i_sb, err); 5161 return err; 5162 } 5163 5164 /* 5165 * ext4_write_inode() 5166 * 5167 * We are called from a few places: 5168 * 5169 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5170 * Here, there will be no transaction running. We wait for any running 5171 * transaction to commit. 5172 * 5173 * - Within flush work (sys_sync(), kupdate and such). 5174 * We wait on commit, if told to. 5175 * 5176 * - Within iput_final() -> write_inode_now() 5177 * We wait on commit, if told to. 5178 * 5179 * In all cases it is actually safe for us to return without doing anything, 5180 * because the inode has been copied into a raw inode buffer in 5181 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5182 * writeback. 5183 * 5184 * Note that we are absolutely dependent upon all inode dirtiers doing the 5185 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5186 * which we are interested. 5187 * 5188 * It would be a bug for them to not do this. The code: 5189 * 5190 * mark_inode_dirty(inode) 5191 * stuff(); 5192 * inode->i_size = expr; 5193 * 5194 * is in error because write_inode() could occur while `stuff()' is running, 5195 * and the new i_size will be lost. Plus the inode will no longer be on the 5196 * superblock's dirty inode list. 5197 */ 5198 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5199 { 5200 int err; 5201 5202 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5203 sb_rdonly(inode->i_sb)) 5204 return 0; 5205 5206 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5207 return -EIO; 5208 5209 if (EXT4_SB(inode->i_sb)->s_journal) { 5210 if (ext4_journal_current_handle()) { 5211 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5212 dump_stack(); 5213 return -EIO; 5214 } 5215 5216 /* 5217 * No need to force transaction in WB_SYNC_NONE mode. Also 5218 * ext4_sync_fs() will force the commit after everything is 5219 * written. 5220 */ 5221 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5222 return 0; 5223 5224 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5225 EXT4_I(inode)->i_sync_tid); 5226 } else { 5227 struct ext4_iloc iloc; 5228 5229 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5230 if (err) 5231 return err; 5232 /* 5233 * sync(2) will flush the whole buffer cache. No need to do 5234 * it here separately for each inode. 5235 */ 5236 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5237 sync_dirty_buffer(iloc.bh); 5238 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5239 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5240 "IO error syncing inode"); 5241 err = -EIO; 5242 } 5243 brelse(iloc.bh); 5244 } 5245 return err; 5246 } 5247 5248 /* 5249 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5250 * buffers that are attached to a page stradding i_size and are undergoing 5251 * commit. In that case we have to wait for commit to finish and try again. 5252 */ 5253 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5254 { 5255 struct page *page; 5256 unsigned offset; 5257 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5258 tid_t commit_tid = 0; 5259 int ret; 5260 5261 offset = inode->i_size & (PAGE_SIZE - 1); 5262 /* 5263 * If the page is fully truncated, we don't need to wait for any commit 5264 * (and we even should not as __ext4_journalled_invalidatepage() may 5265 * strip all buffers from the page but keep the page dirty which can then 5266 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5267 * buffers). Also we don't need to wait for any commit if all buffers in 5268 * the page remain valid. This is most beneficial for the common case of 5269 * blocksize == PAGESIZE. 5270 */ 5271 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5272 return; 5273 while (1) { 5274 page = find_lock_page(inode->i_mapping, 5275 inode->i_size >> PAGE_SHIFT); 5276 if (!page) 5277 return; 5278 ret = __ext4_journalled_invalidatepage(page, offset, 5279 PAGE_SIZE - offset); 5280 unlock_page(page); 5281 put_page(page); 5282 if (ret != -EBUSY) 5283 return; 5284 commit_tid = 0; 5285 read_lock(&journal->j_state_lock); 5286 if (journal->j_committing_transaction) 5287 commit_tid = journal->j_committing_transaction->t_tid; 5288 read_unlock(&journal->j_state_lock); 5289 if (commit_tid) 5290 jbd2_log_wait_commit(journal, commit_tid); 5291 } 5292 } 5293 5294 /* 5295 * ext4_setattr() 5296 * 5297 * Called from notify_change. 5298 * 5299 * We want to trap VFS attempts to truncate the file as soon as 5300 * possible. In particular, we want to make sure that when the VFS 5301 * shrinks i_size, we put the inode on the orphan list and modify 5302 * i_disksize immediately, so that during the subsequent flushing of 5303 * dirty pages and freeing of disk blocks, we can guarantee that any 5304 * commit will leave the blocks being flushed in an unused state on 5305 * disk. (On recovery, the inode will get truncated and the blocks will 5306 * be freed, so we have a strong guarantee that no future commit will 5307 * leave these blocks visible to the user.) 5308 * 5309 * Another thing we have to assure is that if we are in ordered mode 5310 * and inode is still attached to the committing transaction, we must 5311 * we start writeout of all the dirty pages which are being truncated. 5312 * This way we are sure that all the data written in the previous 5313 * transaction are already on disk (truncate waits for pages under 5314 * writeback). 5315 * 5316 * Called with inode->i_mutex down. 5317 */ 5318 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5319 { 5320 struct inode *inode = d_inode(dentry); 5321 int error, rc = 0; 5322 int orphan = 0; 5323 const unsigned int ia_valid = attr->ia_valid; 5324 5325 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5326 return -EIO; 5327 5328 if (unlikely(IS_IMMUTABLE(inode))) 5329 return -EPERM; 5330 5331 if (unlikely(IS_APPEND(inode) && 5332 (ia_valid & (ATTR_MODE | ATTR_UID | 5333 ATTR_GID | ATTR_TIMES_SET)))) 5334 return -EPERM; 5335 5336 error = setattr_prepare(dentry, attr); 5337 if (error) 5338 return error; 5339 5340 error = fscrypt_prepare_setattr(dentry, attr); 5341 if (error) 5342 return error; 5343 5344 error = fsverity_prepare_setattr(dentry, attr); 5345 if (error) 5346 return error; 5347 5348 if (is_quota_modification(inode, attr)) { 5349 error = dquot_initialize(inode); 5350 if (error) 5351 return error; 5352 } 5353 ext4_fc_start_update(inode); 5354 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5355 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5356 handle_t *handle; 5357 5358 /* (user+group)*(old+new) structure, inode write (sb, 5359 * inode block, ? - but truncate inode update has it) */ 5360 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5361 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5362 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5363 if (IS_ERR(handle)) { 5364 error = PTR_ERR(handle); 5365 goto err_out; 5366 } 5367 5368 /* dquot_transfer() calls back ext4_get_inode_usage() which 5369 * counts xattr inode references. 5370 */ 5371 down_read(&EXT4_I(inode)->xattr_sem); 5372 error = dquot_transfer(inode, attr); 5373 up_read(&EXT4_I(inode)->xattr_sem); 5374 5375 if (error) { 5376 ext4_journal_stop(handle); 5377 ext4_fc_stop_update(inode); 5378 return error; 5379 } 5380 /* Update corresponding info in inode so that everything is in 5381 * one transaction */ 5382 if (attr->ia_valid & ATTR_UID) 5383 inode->i_uid = attr->ia_uid; 5384 if (attr->ia_valid & ATTR_GID) 5385 inode->i_gid = attr->ia_gid; 5386 error = ext4_mark_inode_dirty(handle, inode); 5387 ext4_journal_stop(handle); 5388 if (unlikely(error)) 5389 return error; 5390 } 5391 5392 if (attr->ia_valid & ATTR_SIZE) { 5393 handle_t *handle; 5394 loff_t oldsize = inode->i_size; 5395 int shrink = (attr->ia_size < inode->i_size); 5396 5397 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5398 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5399 5400 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5401 ext4_fc_stop_update(inode); 5402 return -EFBIG; 5403 } 5404 } 5405 if (!S_ISREG(inode->i_mode)) { 5406 ext4_fc_stop_update(inode); 5407 return -EINVAL; 5408 } 5409 5410 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5411 inode_inc_iversion(inode); 5412 5413 if (shrink) { 5414 if (ext4_should_order_data(inode)) { 5415 error = ext4_begin_ordered_truncate(inode, 5416 attr->ia_size); 5417 if (error) 5418 goto err_out; 5419 } 5420 /* 5421 * Blocks are going to be removed from the inode. Wait 5422 * for dio in flight. 5423 */ 5424 inode_dio_wait(inode); 5425 } 5426 5427 down_write(&EXT4_I(inode)->i_mmap_sem); 5428 5429 rc = ext4_break_layouts(inode); 5430 if (rc) { 5431 up_write(&EXT4_I(inode)->i_mmap_sem); 5432 goto err_out; 5433 } 5434 5435 if (attr->ia_size != inode->i_size) { 5436 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5437 if (IS_ERR(handle)) { 5438 error = PTR_ERR(handle); 5439 goto out_mmap_sem; 5440 } 5441 if (ext4_handle_valid(handle) && shrink) { 5442 error = ext4_orphan_add(handle, inode); 5443 orphan = 1; 5444 } 5445 /* 5446 * Update c/mtime on truncate up, ext4_truncate() will 5447 * update c/mtime in shrink case below 5448 */ 5449 if (!shrink) { 5450 inode->i_mtime = current_time(inode); 5451 inode->i_ctime = inode->i_mtime; 5452 } 5453 5454 if (shrink) 5455 ext4_fc_track_range(handle, inode, 5456 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5457 inode->i_sb->s_blocksize_bits, 5458 (oldsize > 0 ? oldsize - 1 : 0) >> 5459 inode->i_sb->s_blocksize_bits); 5460 else 5461 ext4_fc_track_range( 5462 handle, inode, 5463 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5464 inode->i_sb->s_blocksize_bits, 5465 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5466 inode->i_sb->s_blocksize_bits); 5467 5468 down_write(&EXT4_I(inode)->i_data_sem); 5469 EXT4_I(inode)->i_disksize = attr->ia_size; 5470 rc = ext4_mark_inode_dirty(handle, inode); 5471 if (!error) 5472 error = rc; 5473 /* 5474 * We have to update i_size under i_data_sem together 5475 * with i_disksize to avoid races with writeback code 5476 * running ext4_wb_update_i_disksize(). 5477 */ 5478 if (!error) 5479 i_size_write(inode, attr->ia_size); 5480 up_write(&EXT4_I(inode)->i_data_sem); 5481 ext4_journal_stop(handle); 5482 if (error) 5483 goto out_mmap_sem; 5484 if (!shrink) { 5485 pagecache_isize_extended(inode, oldsize, 5486 inode->i_size); 5487 } else if (ext4_should_journal_data(inode)) { 5488 ext4_wait_for_tail_page_commit(inode); 5489 } 5490 } 5491 5492 /* 5493 * Truncate pagecache after we've waited for commit 5494 * in data=journal mode to make pages freeable. 5495 */ 5496 truncate_pagecache(inode, inode->i_size); 5497 /* 5498 * Call ext4_truncate() even if i_size didn't change to 5499 * truncate possible preallocated blocks. 5500 */ 5501 if (attr->ia_size <= oldsize) { 5502 rc = ext4_truncate(inode); 5503 if (rc) 5504 error = rc; 5505 } 5506 out_mmap_sem: 5507 up_write(&EXT4_I(inode)->i_mmap_sem); 5508 } 5509 5510 if (!error) { 5511 setattr_copy(inode, attr); 5512 mark_inode_dirty(inode); 5513 } 5514 5515 /* 5516 * If the call to ext4_truncate failed to get a transaction handle at 5517 * all, we need to clean up the in-core orphan list manually. 5518 */ 5519 if (orphan && inode->i_nlink) 5520 ext4_orphan_del(NULL, inode); 5521 5522 if (!error && (ia_valid & ATTR_MODE)) 5523 rc = posix_acl_chmod(inode, inode->i_mode); 5524 5525 err_out: 5526 if (error) 5527 ext4_std_error(inode->i_sb, error); 5528 if (!error) 5529 error = rc; 5530 ext4_fc_stop_update(inode); 5531 return error; 5532 } 5533 5534 int ext4_getattr(const struct path *path, struct kstat *stat, 5535 u32 request_mask, unsigned int query_flags) 5536 { 5537 struct inode *inode = d_inode(path->dentry); 5538 struct ext4_inode *raw_inode; 5539 struct ext4_inode_info *ei = EXT4_I(inode); 5540 unsigned int flags; 5541 5542 if ((request_mask & STATX_BTIME) && 5543 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5544 stat->result_mask |= STATX_BTIME; 5545 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5546 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5547 } 5548 5549 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5550 if (flags & EXT4_APPEND_FL) 5551 stat->attributes |= STATX_ATTR_APPEND; 5552 if (flags & EXT4_COMPR_FL) 5553 stat->attributes |= STATX_ATTR_COMPRESSED; 5554 if (flags & EXT4_ENCRYPT_FL) 5555 stat->attributes |= STATX_ATTR_ENCRYPTED; 5556 if (flags & EXT4_IMMUTABLE_FL) 5557 stat->attributes |= STATX_ATTR_IMMUTABLE; 5558 if (flags & EXT4_NODUMP_FL) 5559 stat->attributes |= STATX_ATTR_NODUMP; 5560 if (flags & EXT4_VERITY_FL) 5561 stat->attributes |= STATX_ATTR_VERITY; 5562 5563 stat->attributes_mask |= (STATX_ATTR_APPEND | 5564 STATX_ATTR_COMPRESSED | 5565 STATX_ATTR_ENCRYPTED | 5566 STATX_ATTR_IMMUTABLE | 5567 STATX_ATTR_NODUMP | 5568 STATX_ATTR_VERITY); 5569 5570 generic_fillattr(inode, stat); 5571 return 0; 5572 } 5573 5574 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5575 u32 request_mask, unsigned int query_flags) 5576 { 5577 struct inode *inode = d_inode(path->dentry); 5578 u64 delalloc_blocks; 5579 5580 ext4_getattr(path, stat, request_mask, query_flags); 5581 5582 /* 5583 * If there is inline data in the inode, the inode will normally not 5584 * have data blocks allocated (it may have an external xattr block). 5585 * Report at least one sector for such files, so tools like tar, rsync, 5586 * others don't incorrectly think the file is completely sparse. 5587 */ 5588 if (unlikely(ext4_has_inline_data(inode))) 5589 stat->blocks += (stat->size + 511) >> 9; 5590 5591 /* 5592 * We can't update i_blocks if the block allocation is delayed 5593 * otherwise in the case of system crash before the real block 5594 * allocation is done, we will have i_blocks inconsistent with 5595 * on-disk file blocks. 5596 * We always keep i_blocks updated together with real 5597 * allocation. But to not confuse with user, stat 5598 * will return the blocks that include the delayed allocation 5599 * blocks for this file. 5600 */ 5601 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5602 EXT4_I(inode)->i_reserved_data_blocks); 5603 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5604 return 0; 5605 } 5606 5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5608 int pextents) 5609 { 5610 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5611 return ext4_ind_trans_blocks(inode, lblocks); 5612 return ext4_ext_index_trans_blocks(inode, pextents); 5613 } 5614 5615 /* 5616 * Account for index blocks, block groups bitmaps and block group 5617 * descriptor blocks if modify datablocks and index blocks 5618 * worse case, the indexs blocks spread over different block groups 5619 * 5620 * If datablocks are discontiguous, they are possible to spread over 5621 * different block groups too. If they are contiguous, with flexbg, 5622 * they could still across block group boundary. 5623 * 5624 * Also account for superblock, inode, quota and xattr blocks 5625 */ 5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5627 int pextents) 5628 { 5629 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5630 int gdpblocks; 5631 int idxblocks; 5632 int ret = 0; 5633 5634 /* 5635 * How many index blocks need to touch to map @lblocks logical blocks 5636 * to @pextents physical extents? 5637 */ 5638 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5639 5640 ret = idxblocks; 5641 5642 /* 5643 * Now let's see how many group bitmaps and group descriptors need 5644 * to account 5645 */ 5646 groups = idxblocks + pextents; 5647 gdpblocks = groups; 5648 if (groups > ngroups) 5649 groups = ngroups; 5650 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5651 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5652 5653 /* bitmaps and block group descriptor blocks */ 5654 ret += groups + gdpblocks; 5655 5656 /* Blocks for super block, inode, quota and xattr blocks */ 5657 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5658 5659 return ret; 5660 } 5661 5662 /* 5663 * Calculate the total number of credits to reserve to fit 5664 * the modification of a single pages into a single transaction, 5665 * which may include multiple chunks of block allocations. 5666 * 5667 * This could be called via ext4_write_begin() 5668 * 5669 * We need to consider the worse case, when 5670 * one new block per extent. 5671 */ 5672 int ext4_writepage_trans_blocks(struct inode *inode) 5673 { 5674 int bpp = ext4_journal_blocks_per_page(inode); 5675 int ret; 5676 5677 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5678 5679 /* Account for data blocks for journalled mode */ 5680 if (ext4_should_journal_data(inode)) 5681 ret += bpp; 5682 return ret; 5683 } 5684 5685 /* 5686 * Calculate the journal credits for a chunk of data modification. 5687 * 5688 * This is called from DIO, fallocate or whoever calling 5689 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5690 * 5691 * journal buffers for data blocks are not included here, as DIO 5692 * and fallocate do no need to journal data buffers. 5693 */ 5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5695 { 5696 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5697 } 5698 5699 /* 5700 * The caller must have previously called ext4_reserve_inode_write(). 5701 * Give this, we know that the caller already has write access to iloc->bh. 5702 */ 5703 int ext4_mark_iloc_dirty(handle_t *handle, 5704 struct inode *inode, struct ext4_iloc *iloc) 5705 { 5706 int err = 0; 5707 5708 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5709 put_bh(iloc->bh); 5710 return -EIO; 5711 } 5712 ext4_fc_track_inode(handle, inode); 5713 5714 if (IS_I_VERSION(inode)) 5715 inode_inc_iversion(inode); 5716 5717 /* the do_update_inode consumes one bh->b_count */ 5718 get_bh(iloc->bh); 5719 5720 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5721 err = ext4_do_update_inode(handle, inode, iloc); 5722 put_bh(iloc->bh); 5723 return err; 5724 } 5725 5726 /* 5727 * On success, We end up with an outstanding reference count against 5728 * iloc->bh. This _must_ be cleaned up later. 5729 */ 5730 5731 int 5732 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5733 struct ext4_iloc *iloc) 5734 { 5735 int err; 5736 5737 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5738 return -EIO; 5739 5740 err = ext4_get_inode_loc(inode, iloc); 5741 if (!err) { 5742 BUFFER_TRACE(iloc->bh, "get_write_access"); 5743 err = ext4_journal_get_write_access(handle, iloc->bh); 5744 if (err) { 5745 brelse(iloc->bh); 5746 iloc->bh = NULL; 5747 } 5748 } 5749 ext4_std_error(inode->i_sb, err); 5750 return err; 5751 } 5752 5753 static int __ext4_expand_extra_isize(struct inode *inode, 5754 unsigned int new_extra_isize, 5755 struct ext4_iloc *iloc, 5756 handle_t *handle, int *no_expand) 5757 { 5758 struct ext4_inode *raw_inode; 5759 struct ext4_xattr_ibody_header *header; 5760 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5761 struct ext4_inode_info *ei = EXT4_I(inode); 5762 int error; 5763 5764 /* this was checked at iget time, but double check for good measure */ 5765 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5766 (ei->i_extra_isize & 3)) { 5767 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5768 ei->i_extra_isize, 5769 EXT4_INODE_SIZE(inode->i_sb)); 5770 return -EFSCORRUPTED; 5771 } 5772 if ((new_extra_isize < ei->i_extra_isize) || 5773 (new_extra_isize < 4) || 5774 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5775 return -EINVAL; /* Should never happen */ 5776 5777 raw_inode = ext4_raw_inode(iloc); 5778 5779 header = IHDR(inode, raw_inode); 5780 5781 /* No extended attributes present */ 5782 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5783 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5784 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5785 EXT4_I(inode)->i_extra_isize, 0, 5786 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5787 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5788 return 0; 5789 } 5790 5791 /* try to expand with EAs present */ 5792 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5793 raw_inode, handle); 5794 if (error) { 5795 /* 5796 * Inode size expansion failed; don't try again 5797 */ 5798 *no_expand = 1; 5799 } 5800 5801 return error; 5802 } 5803 5804 /* 5805 * Expand an inode by new_extra_isize bytes. 5806 * Returns 0 on success or negative error number on failure. 5807 */ 5808 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5809 unsigned int new_extra_isize, 5810 struct ext4_iloc iloc, 5811 handle_t *handle) 5812 { 5813 int no_expand; 5814 int error; 5815 5816 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5817 return -EOVERFLOW; 5818 5819 /* 5820 * In nojournal mode, we can immediately attempt to expand 5821 * the inode. When journaled, we first need to obtain extra 5822 * buffer credits since we may write into the EA block 5823 * with this same handle. If journal_extend fails, then it will 5824 * only result in a minor loss of functionality for that inode. 5825 * If this is felt to be critical, then e2fsck should be run to 5826 * force a large enough s_min_extra_isize. 5827 */ 5828 if (ext4_journal_extend(handle, 5829 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5830 return -ENOSPC; 5831 5832 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5833 return -EBUSY; 5834 5835 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5836 handle, &no_expand); 5837 ext4_write_unlock_xattr(inode, &no_expand); 5838 5839 return error; 5840 } 5841 5842 int ext4_expand_extra_isize(struct inode *inode, 5843 unsigned int new_extra_isize, 5844 struct ext4_iloc *iloc) 5845 { 5846 handle_t *handle; 5847 int no_expand; 5848 int error, rc; 5849 5850 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5851 brelse(iloc->bh); 5852 return -EOVERFLOW; 5853 } 5854 5855 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5856 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5857 if (IS_ERR(handle)) { 5858 error = PTR_ERR(handle); 5859 brelse(iloc->bh); 5860 return error; 5861 } 5862 5863 ext4_write_lock_xattr(inode, &no_expand); 5864 5865 BUFFER_TRACE(iloc->bh, "get_write_access"); 5866 error = ext4_journal_get_write_access(handle, iloc->bh); 5867 if (error) { 5868 brelse(iloc->bh); 5869 goto out_unlock; 5870 } 5871 5872 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5873 handle, &no_expand); 5874 5875 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5876 if (!error) 5877 error = rc; 5878 5879 out_unlock: 5880 ext4_write_unlock_xattr(inode, &no_expand); 5881 ext4_journal_stop(handle); 5882 return error; 5883 } 5884 5885 /* 5886 * What we do here is to mark the in-core inode as clean with respect to inode 5887 * dirtiness (it may still be data-dirty). 5888 * This means that the in-core inode may be reaped by prune_icache 5889 * without having to perform any I/O. This is a very good thing, 5890 * because *any* task may call prune_icache - even ones which 5891 * have a transaction open against a different journal. 5892 * 5893 * Is this cheating? Not really. Sure, we haven't written the 5894 * inode out, but prune_icache isn't a user-visible syncing function. 5895 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5896 * we start and wait on commits. 5897 */ 5898 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5899 const char *func, unsigned int line) 5900 { 5901 struct ext4_iloc iloc; 5902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5903 int err; 5904 5905 might_sleep(); 5906 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5907 err = ext4_reserve_inode_write(handle, inode, &iloc); 5908 if (err) 5909 goto out; 5910 5911 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5912 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5913 iloc, handle); 5914 5915 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5916 out: 5917 if (unlikely(err)) 5918 ext4_error_inode_err(inode, func, line, 0, err, 5919 "mark_inode_dirty error"); 5920 return err; 5921 } 5922 5923 /* 5924 * ext4_dirty_inode() is called from __mark_inode_dirty() 5925 * 5926 * We're really interested in the case where a file is being extended. 5927 * i_size has been changed by generic_commit_write() and we thus need 5928 * to include the updated inode in the current transaction. 5929 * 5930 * Also, dquot_alloc_block() will always dirty the inode when blocks 5931 * are allocated to the file. 5932 * 5933 * If the inode is marked synchronous, we don't honour that here - doing 5934 * so would cause a commit on atime updates, which we don't bother doing. 5935 * We handle synchronous inodes at the highest possible level. 5936 * 5937 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5939 * to copy into the on-disk inode structure are the timestamp files. 5940 */ 5941 void ext4_dirty_inode(struct inode *inode, int flags) 5942 { 5943 handle_t *handle; 5944 5945 if (flags == I_DIRTY_TIME) 5946 return; 5947 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5948 if (IS_ERR(handle)) 5949 goto out; 5950 5951 ext4_mark_inode_dirty(handle, inode); 5952 5953 ext4_journal_stop(handle); 5954 out: 5955 return; 5956 } 5957 5958 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5959 { 5960 journal_t *journal; 5961 handle_t *handle; 5962 int err; 5963 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5964 5965 /* 5966 * We have to be very careful here: changing a data block's 5967 * journaling status dynamically is dangerous. If we write a 5968 * data block to the journal, change the status and then delete 5969 * that block, we risk forgetting to revoke the old log record 5970 * from the journal and so a subsequent replay can corrupt data. 5971 * So, first we make sure that the journal is empty and that 5972 * nobody is changing anything. 5973 */ 5974 5975 journal = EXT4_JOURNAL(inode); 5976 if (!journal) 5977 return 0; 5978 if (is_journal_aborted(journal)) 5979 return -EROFS; 5980 5981 /* Wait for all existing dio workers */ 5982 inode_dio_wait(inode); 5983 5984 /* 5985 * Before flushing the journal and switching inode's aops, we have 5986 * to flush all dirty data the inode has. There can be outstanding 5987 * delayed allocations, there can be unwritten extents created by 5988 * fallocate or buffered writes in dioread_nolock mode covered by 5989 * dirty data which can be converted only after flushing the dirty 5990 * data (and journalled aops don't know how to handle these cases). 5991 */ 5992 if (val) { 5993 down_write(&EXT4_I(inode)->i_mmap_sem); 5994 err = filemap_write_and_wait(inode->i_mapping); 5995 if (err < 0) { 5996 up_write(&EXT4_I(inode)->i_mmap_sem); 5997 return err; 5998 } 5999 } 6000 6001 percpu_down_write(&sbi->s_writepages_rwsem); 6002 jbd2_journal_lock_updates(journal); 6003 6004 /* 6005 * OK, there are no updates running now, and all cached data is 6006 * synced to disk. We are now in a completely consistent state 6007 * which doesn't have anything in the journal, and we know that 6008 * no filesystem updates are running, so it is safe to modify 6009 * the inode's in-core data-journaling state flag now. 6010 */ 6011 6012 if (val) 6013 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6014 else { 6015 err = jbd2_journal_flush(journal); 6016 if (err < 0) { 6017 jbd2_journal_unlock_updates(journal); 6018 percpu_up_write(&sbi->s_writepages_rwsem); 6019 return err; 6020 } 6021 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6022 } 6023 ext4_set_aops(inode); 6024 6025 jbd2_journal_unlock_updates(journal); 6026 percpu_up_write(&sbi->s_writepages_rwsem); 6027 6028 if (val) 6029 up_write(&EXT4_I(inode)->i_mmap_sem); 6030 6031 /* Finally we can mark the inode as dirty. */ 6032 6033 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6034 if (IS_ERR(handle)) 6035 return PTR_ERR(handle); 6036 6037 ext4_fc_mark_ineligible(inode->i_sb, 6038 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 6039 err = ext4_mark_inode_dirty(handle, inode); 6040 ext4_handle_sync(handle); 6041 ext4_journal_stop(handle); 6042 ext4_std_error(inode->i_sb, err); 6043 6044 return err; 6045 } 6046 6047 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6048 { 6049 return !buffer_mapped(bh); 6050 } 6051 6052 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6053 { 6054 struct vm_area_struct *vma = vmf->vma; 6055 struct page *page = vmf->page; 6056 loff_t size; 6057 unsigned long len; 6058 int err; 6059 vm_fault_t ret; 6060 struct file *file = vma->vm_file; 6061 struct inode *inode = file_inode(file); 6062 struct address_space *mapping = inode->i_mapping; 6063 handle_t *handle; 6064 get_block_t *get_block; 6065 int retries = 0; 6066 6067 if (unlikely(IS_IMMUTABLE(inode))) 6068 return VM_FAULT_SIGBUS; 6069 6070 sb_start_pagefault(inode->i_sb); 6071 file_update_time(vma->vm_file); 6072 6073 down_read(&EXT4_I(inode)->i_mmap_sem); 6074 6075 err = ext4_convert_inline_data(inode); 6076 if (err) 6077 goto out_ret; 6078 6079 /* 6080 * On data journalling we skip straight to the transaction handle: 6081 * there's no delalloc; page truncated will be checked later; the 6082 * early return w/ all buffers mapped (calculates size/len) can't 6083 * be used; and there's no dioread_nolock, so only ext4_get_block. 6084 */ 6085 if (ext4_should_journal_data(inode)) 6086 goto retry_alloc; 6087 6088 /* Delalloc case is easy... */ 6089 if (test_opt(inode->i_sb, DELALLOC) && 6090 !ext4_nonda_switch(inode->i_sb)) { 6091 do { 6092 err = block_page_mkwrite(vma, vmf, 6093 ext4_da_get_block_prep); 6094 } while (err == -ENOSPC && 6095 ext4_should_retry_alloc(inode->i_sb, &retries)); 6096 goto out_ret; 6097 } 6098 6099 lock_page(page); 6100 size = i_size_read(inode); 6101 /* Page got truncated from under us? */ 6102 if (page->mapping != mapping || page_offset(page) > size) { 6103 unlock_page(page); 6104 ret = VM_FAULT_NOPAGE; 6105 goto out; 6106 } 6107 6108 if (page->index == size >> PAGE_SHIFT) 6109 len = size & ~PAGE_MASK; 6110 else 6111 len = PAGE_SIZE; 6112 /* 6113 * Return if we have all the buffers mapped. This avoids the need to do 6114 * journal_start/journal_stop which can block and take a long time 6115 * 6116 * This cannot be done for data journalling, as we have to add the 6117 * inode to the transaction's list to writeprotect pages on commit. 6118 */ 6119 if (page_has_buffers(page)) { 6120 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6121 0, len, NULL, 6122 ext4_bh_unmapped)) { 6123 /* Wait so that we don't change page under IO */ 6124 wait_for_stable_page(page); 6125 ret = VM_FAULT_LOCKED; 6126 goto out; 6127 } 6128 } 6129 unlock_page(page); 6130 /* OK, we need to fill the hole... */ 6131 if (ext4_should_dioread_nolock(inode)) 6132 get_block = ext4_get_block_unwritten; 6133 else 6134 get_block = ext4_get_block; 6135 retry_alloc: 6136 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6137 ext4_writepage_trans_blocks(inode)); 6138 if (IS_ERR(handle)) { 6139 ret = VM_FAULT_SIGBUS; 6140 goto out; 6141 } 6142 /* 6143 * Data journalling can't use block_page_mkwrite() because it 6144 * will set_buffer_dirty() before do_journal_get_write_access() 6145 * thus might hit warning messages for dirty metadata buffers. 6146 */ 6147 if (!ext4_should_journal_data(inode)) { 6148 err = block_page_mkwrite(vma, vmf, get_block); 6149 } else { 6150 lock_page(page); 6151 size = i_size_read(inode); 6152 /* Page got truncated from under us? */ 6153 if (page->mapping != mapping || page_offset(page) > size) { 6154 ret = VM_FAULT_NOPAGE; 6155 goto out_error; 6156 } 6157 6158 if (page->index == size >> PAGE_SHIFT) 6159 len = size & ~PAGE_MASK; 6160 else 6161 len = PAGE_SIZE; 6162 6163 err = __block_write_begin(page, 0, len, ext4_get_block); 6164 if (!err) { 6165 ret = VM_FAULT_SIGBUS; 6166 if (ext4_walk_page_buffers(handle, page_buffers(page), 6167 0, len, NULL, do_journal_get_write_access)) 6168 goto out_error; 6169 if (ext4_walk_page_buffers(handle, page_buffers(page), 6170 0, len, NULL, write_end_fn)) 6171 goto out_error; 6172 if (ext4_jbd2_inode_add_write(handle, inode, 6173 page_offset(page), len)) 6174 goto out_error; 6175 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6176 } else { 6177 unlock_page(page); 6178 } 6179 } 6180 ext4_journal_stop(handle); 6181 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6182 goto retry_alloc; 6183 out_ret: 6184 ret = block_page_mkwrite_return(err); 6185 out: 6186 up_read(&EXT4_I(inode)->i_mmap_sem); 6187 sb_end_pagefault(inode->i_sb); 6188 return ret; 6189 out_error: 6190 unlock_page(page); 6191 ext4_journal_stop(handle); 6192 goto out; 6193 } 6194 6195 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6196 { 6197 struct inode *inode = file_inode(vmf->vma->vm_file); 6198 vm_fault_t ret; 6199 6200 down_read(&EXT4_I(inode)->i_mmap_sem); 6201 ret = filemap_fault(vmf); 6202 up_read(&EXT4_I(inode)->i_mmap_sem); 6203 6204 return ret; 6205 } 6206