1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "ext4_extents.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static inline int ext4_begin_ordered_truncate(struct inode *inode, 51 loff_t new_size) 52 { 53 return jbd2_journal_begin_ordered_truncate( 54 EXT4_SB(inode->i_sb)->s_journal, 55 &EXT4_I(inode)->jinode, 56 new_size); 57 } 58 59 static void ext4_invalidatepage(struct page *page, unsigned long offset); 60 61 /* 62 * Test whether an inode is a fast symlink. 63 */ 64 static int ext4_inode_is_fast_symlink(struct inode *inode) 65 { 66 int ea_blocks = EXT4_I(inode)->i_file_acl ? 67 (inode->i_sb->s_blocksize >> 9) : 0; 68 69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 70 } 71 72 /* 73 * The ext4 forget function must perform a revoke if we are freeing data 74 * which has been journaled. Metadata (eg. indirect blocks) must be 75 * revoked in all cases. 76 * 77 * "bh" may be NULL: a metadata block may have been freed from memory 78 * but there may still be a record of it in the journal, and that record 79 * still needs to be revoked. 80 * 81 * If the handle isn't valid we're not journaling, but we still need to 82 * call into ext4_journal_revoke() to put the buffer head. 83 */ 84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 85 struct buffer_head *bh, ext4_fsblk_t blocknr) 86 { 87 int err; 88 89 might_sleep(); 90 91 BUFFER_TRACE(bh, "enter"); 92 93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 94 "data mode %x\n", 95 bh, is_metadata, inode->i_mode, 96 test_opt(inode->i_sb, DATA_FLAGS)); 97 98 /* Never use the revoke function if we are doing full data 99 * journaling: there is no need to, and a V1 superblock won't 100 * support it. Otherwise, only skip the revoke on un-journaled 101 * data blocks. */ 102 103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 104 (!is_metadata && !ext4_should_journal_data(inode))) { 105 if (bh) { 106 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 107 return ext4_journal_forget(handle, bh); 108 } 109 return 0; 110 } 111 112 /* 113 * data!=journal && (is_metadata || should_journal_data(inode)) 114 */ 115 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 116 err = ext4_journal_revoke(handle, blocknr, bh); 117 if (err) 118 ext4_abort(inode->i_sb, __func__, 119 "error %d when attempting revoke", err); 120 BUFFER_TRACE(bh, "exit"); 121 return err; 122 } 123 124 /* 125 * Work out how many blocks we need to proceed with the next chunk of a 126 * truncate transaction. 127 */ 128 static unsigned long blocks_for_truncate(struct inode *inode) 129 { 130 ext4_lblk_t needed; 131 132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 133 134 /* Give ourselves just enough room to cope with inodes in which 135 * i_blocks is corrupt: we've seen disk corruptions in the past 136 * which resulted in random data in an inode which looked enough 137 * like a regular file for ext4 to try to delete it. Things 138 * will go a bit crazy if that happens, but at least we should 139 * try not to panic the whole kernel. */ 140 if (needed < 2) 141 needed = 2; 142 143 /* But we need to bound the transaction so we don't overflow the 144 * journal. */ 145 if (needed > EXT4_MAX_TRANS_DATA) 146 needed = EXT4_MAX_TRANS_DATA; 147 148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 149 } 150 151 /* 152 * Truncate transactions can be complex and absolutely huge. So we need to 153 * be able to restart the transaction at a conventient checkpoint to make 154 * sure we don't overflow the journal. 155 * 156 * start_transaction gets us a new handle for a truncate transaction, 157 * and extend_transaction tries to extend the existing one a bit. If 158 * extend fails, we need to propagate the failure up and restart the 159 * transaction in the top-level truncate loop. --sct 160 */ 161 static handle_t *start_transaction(struct inode *inode) 162 { 163 handle_t *result; 164 165 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 166 if (!IS_ERR(result)) 167 return result; 168 169 ext4_std_error(inode->i_sb, PTR_ERR(result)); 170 return result; 171 } 172 173 /* 174 * Try to extend this transaction for the purposes of truncation. 175 * 176 * Returns 0 if we managed to create more room. If we can't create more 177 * room, and the transaction must be restarted we return 1. 178 */ 179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 180 { 181 if (!ext4_handle_valid(handle)) 182 return 0; 183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 184 return 0; 185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 186 return 0; 187 return 1; 188 } 189 190 /* 191 * Restart the transaction associated with *handle. This does a commit, 192 * so before we call here everything must be consistently dirtied against 193 * this transaction. 194 */ 195 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 196 { 197 BUG_ON(EXT4_JOURNAL(inode) == NULL); 198 jbd_debug(2, "restarting handle %p\n", handle); 199 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 200 } 201 202 /* 203 * Called at the last iput() if i_nlink is zero. 204 */ 205 void ext4_delete_inode(struct inode *inode) 206 { 207 handle_t *handle; 208 int err; 209 210 if (ext4_should_order_data(inode)) 211 ext4_begin_ordered_truncate(inode, 0); 212 truncate_inode_pages(&inode->i_data, 0); 213 214 if (is_bad_inode(inode)) 215 goto no_delete; 216 217 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 218 if (IS_ERR(handle)) { 219 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 220 /* 221 * If we're going to skip the normal cleanup, we still need to 222 * make sure that the in-core orphan linked list is properly 223 * cleaned up. 224 */ 225 ext4_orphan_del(NULL, inode); 226 goto no_delete; 227 } 228 229 if (IS_SYNC(inode)) 230 ext4_handle_sync(handle); 231 inode->i_size = 0; 232 err = ext4_mark_inode_dirty(handle, inode); 233 if (err) { 234 ext4_warning(inode->i_sb, __func__, 235 "couldn't mark inode dirty (err %d)", err); 236 goto stop_handle; 237 } 238 if (inode->i_blocks) 239 ext4_truncate(inode); 240 241 /* 242 * ext4_ext_truncate() doesn't reserve any slop when it 243 * restarts journal transactions; therefore there may not be 244 * enough credits left in the handle to remove the inode from 245 * the orphan list and set the dtime field. 246 */ 247 if (!ext4_handle_has_enough_credits(handle, 3)) { 248 err = ext4_journal_extend(handle, 3); 249 if (err > 0) 250 err = ext4_journal_restart(handle, 3); 251 if (err != 0) { 252 ext4_warning(inode->i_sb, __func__, 253 "couldn't extend journal (err %d)", err); 254 stop_handle: 255 ext4_journal_stop(handle); 256 goto no_delete; 257 } 258 } 259 260 /* 261 * Kill off the orphan record which ext4_truncate created. 262 * AKPM: I think this can be inside the above `if'. 263 * Note that ext4_orphan_del() has to be able to cope with the 264 * deletion of a non-existent orphan - this is because we don't 265 * know if ext4_truncate() actually created an orphan record. 266 * (Well, we could do this if we need to, but heck - it works) 267 */ 268 ext4_orphan_del(handle, inode); 269 EXT4_I(inode)->i_dtime = get_seconds(); 270 271 /* 272 * One subtle ordering requirement: if anything has gone wrong 273 * (transaction abort, IO errors, whatever), then we can still 274 * do these next steps (the fs will already have been marked as 275 * having errors), but we can't free the inode if the mark_dirty 276 * fails. 277 */ 278 if (ext4_mark_inode_dirty(handle, inode)) 279 /* If that failed, just do the required in-core inode clear. */ 280 clear_inode(inode); 281 else 282 ext4_free_inode(handle, inode); 283 ext4_journal_stop(handle); 284 return; 285 no_delete: 286 clear_inode(inode); /* We must guarantee clearing of inode... */ 287 } 288 289 typedef struct { 290 __le32 *p; 291 __le32 key; 292 struct buffer_head *bh; 293 } Indirect; 294 295 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 296 { 297 p->key = *(p->p = v); 298 p->bh = bh; 299 } 300 301 /** 302 * ext4_block_to_path - parse the block number into array of offsets 303 * @inode: inode in question (we are only interested in its superblock) 304 * @i_block: block number to be parsed 305 * @offsets: array to store the offsets in 306 * @boundary: set this non-zero if the referred-to block is likely to be 307 * followed (on disk) by an indirect block. 308 * 309 * To store the locations of file's data ext4 uses a data structure common 310 * for UNIX filesystems - tree of pointers anchored in the inode, with 311 * data blocks at leaves and indirect blocks in intermediate nodes. 312 * This function translates the block number into path in that tree - 313 * return value is the path length and @offsets[n] is the offset of 314 * pointer to (n+1)th node in the nth one. If @block is out of range 315 * (negative or too large) warning is printed and zero returned. 316 * 317 * Note: function doesn't find node addresses, so no IO is needed. All 318 * we need to know is the capacity of indirect blocks (taken from the 319 * inode->i_sb). 320 */ 321 322 /* 323 * Portability note: the last comparison (check that we fit into triple 324 * indirect block) is spelled differently, because otherwise on an 325 * architecture with 32-bit longs and 8Kb pages we might get into trouble 326 * if our filesystem had 8Kb blocks. We might use long long, but that would 327 * kill us on x86. Oh, well, at least the sign propagation does not matter - 328 * i_block would have to be negative in the very beginning, so we would not 329 * get there at all. 330 */ 331 332 static int ext4_block_to_path(struct inode *inode, 333 ext4_lblk_t i_block, 334 ext4_lblk_t offsets[4], int *boundary) 335 { 336 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 337 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 338 const long direct_blocks = EXT4_NDIR_BLOCKS, 339 indirect_blocks = ptrs, 340 double_blocks = (1 << (ptrs_bits * 2)); 341 int n = 0; 342 int final = 0; 343 344 if (i_block < 0) { 345 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 346 } else if (i_block < direct_blocks) { 347 offsets[n++] = i_block; 348 final = direct_blocks; 349 } else if ((i_block -= direct_blocks) < indirect_blocks) { 350 offsets[n++] = EXT4_IND_BLOCK; 351 offsets[n++] = i_block; 352 final = ptrs; 353 } else if ((i_block -= indirect_blocks) < double_blocks) { 354 offsets[n++] = EXT4_DIND_BLOCK; 355 offsets[n++] = i_block >> ptrs_bits; 356 offsets[n++] = i_block & (ptrs - 1); 357 final = ptrs; 358 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 359 offsets[n++] = EXT4_TIND_BLOCK; 360 offsets[n++] = i_block >> (ptrs_bits * 2); 361 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 362 offsets[n++] = i_block & (ptrs - 1); 363 final = ptrs; 364 } else { 365 ext4_warning(inode->i_sb, "ext4_block_to_path", 366 "block %lu > max in inode %lu", 367 i_block + direct_blocks + 368 indirect_blocks + double_blocks, inode->i_ino); 369 } 370 if (boundary) 371 *boundary = final - 1 - (i_block & (ptrs - 1)); 372 return n; 373 } 374 375 static int __ext4_check_blockref(const char *function, struct inode *inode, 376 __le32 *p, unsigned int max) 377 { 378 __le32 *bref = p; 379 unsigned int blk; 380 381 while (bref < p+max) { 382 blk = le32_to_cpu(*bref++); 383 if (blk && 384 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 385 blk, 1))) { 386 ext4_error(inode->i_sb, function, 387 "invalid block reference %u " 388 "in inode #%lu", blk, inode->i_ino); 389 return -EIO; 390 } 391 } 392 return 0; 393 } 394 395 396 #define ext4_check_indirect_blockref(inode, bh) \ 397 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 398 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 399 400 #define ext4_check_inode_blockref(inode) \ 401 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 402 EXT4_NDIR_BLOCKS) 403 404 /** 405 * ext4_get_branch - read the chain of indirect blocks leading to data 406 * @inode: inode in question 407 * @depth: depth of the chain (1 - direct pointer, etc.) 408 * @offsets: offsets of pointers in inode/indirect blocks 409 * @chain: place to store the result 410 * @err: here we store the error value 411 * 412 * Function fills the array of triples <key, p, bh> and returns %NULL 413 * if everything went OK or the pointer to the last filled triple 414 * (incomplete one) otherwise. Upon the return chain[i].key contains 415 * the number of (i+1)-th block in the chain (as it is stored in memory, 416 * i.e. little-endian 32-bit), chain[i].p contains the address of that 417 * number (it points into struct inode for i==0 and into the bh->b_data 418 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 419 * block for i>0 and NULL for i==0. In other words, it holds the block 420 * numbers of the chain, addresses they were taken from (and where we can 421 * verify that chain did not change) and buffer_heads hosting these 422 * numbers. 423 * 424 * Function stops when it stumbles upon zero pointer (absent block) 425 * (pointer to last triple returned, *@err == 0) 426 * or when it gets an IO error reading an indirect block 427 * (ditto, *@err == -EIO) 428 * or when it reads all @depth-1 indirect blocks successfully and finds 429 * the whole chain, all way to the data (returns %NULL, *err == 0). 430 * 431 * Need to be called with 432 * down_read(&EXT4_I(inode)->i_data_sem) 433 */ 434 static Indirect *ext4_get_branch(struct inode *inode, int depth, 435 ext4_lblk_t *offsets, 436 Indirect chain[4], int *err) 437 { 438 struct super_block *sb = inode->i_sb; 439 Indirect *p = chain; 440 struct buffer_head *bh; 441 442 *err = 0; 443 /* i_data is not going away, no lock needed */ 444 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 445 if (!p->key) 446 goto no_block; 447 while (--depth) { 448 bh = sb_getblk(sb, le32_to_cpu(p->key)); 449 if (unlikely(!bh)) 450 goto failure; 451 452 if (!bh_uptodate_or_lock(bh)) { 453 if (bh_submit_read(bh) < 0) { 454 put_bh(bh); 455 goto failure; 456 } 457 /* validate block references */ 458 if (ext4_check_indirect_blockref(inode, bh)) { 459 put_bh(bh); 460 goto failure; 461 } 462 } 463 464 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 465 /* Reader: end */ 466 if (!p->key) 467 goto no_block; 468 } 469 return NULL; 470 471 failure: 472 *err = -EIO; 473 no_block: 474 return p; 475 } 476 477 /** 478 * ext4_find_near - find a place for allocation with sufficient locality 479 * @inode: owner 480 * @ind: descriptor of indirect block. 481 * 482 * This function returns the preferred place for block allocation. 483 * It is used when heuristic for sequential allocation fails. 484 * Rules are: 485 * + if there is a block to the left of our position - allocate near it. 486 * + if pointer will live in indirect block - allocate near that block. 487 * + if pointer will live in inode - allocate in the same 488 * cylinder group. 489 * 490 * In the latter case we colour the starting block by the callers PID to 491 * prevent it from clashing with concurrent allocations for a different inode 492 * in the same block group. The PID is used here so that functionally related 493 * files will be close-by on-disk. 494 * 495 * Caller must make sure that @ind is valid and will stay that way. 496 */ 497 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 498 { 499 struct ext4_inode_info *ei = EXT4_I(inode); 500 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 501 __le32 *p; 502 ext4_fsblk_t bg_start; 503 ext4_fsblk_t last_block; 504 ext4_grpblk_t colour; 505 ext4_group_t block_group; 506 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 507 508 /* Try to find previous block */ 509 for (p = ind->p - 1; p >= start; p--) { 510 if (*p) 511 return le32_to_cpu(*p); 512 } 513 514 /* No such thing, so let's try location of indirect block */ 515 if (ind->bh) 516 return ind->bh->b_blocknr; 517 518 /* 519 * It is going to be referred to from the inode itself? OK, just put it 520 * into the same cylinder group then. 521 */ 522 block_group = ei->i_block_group; 523 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 524 block_group &= ~(flex_size-1); 525 if (S_ISREG(inode->i_mode)) 526 block_group++; 527 } 528 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 529 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 530 531 /* 532 * If we are doing delayed allocation, we don't need take 533 * colour into account. 534 */ 535 if (test_opt(inode->i_sb, DELALLOC)) 536 return bg_start; 537 538 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 539 colour = (current->pid % 16) * 540 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 541 else 542 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 543 return bg_start + colour; 544 } 545 546 /** 547 * ext4_find_goal - find a preferred place for allocation. 548 * @inode: owner 549 * @block: block we want 550 * @partial: pointer to the last triple within a chain 551 * 552 * Normally this function find the preferred place for block allocation, 553 * returns it. 554 */ 555 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 556 Indirect *partial) 557 { 558 /* 559 * XXX need to get goal block from mballoc's data structures 560 */ 561 562 return ext4_find_near(inode, partial); 563 } 564 565 /** 566 * ext4_blks_to_allocate: Look up the block map and count the number 567 * of direct blocks need to be allocated for the given branch. 568 * 569 * @branch: chain of indirect blocks 570 * @k: number of blocks need for indirect blocks 571 * @blks: number of data blocks to be mapped. 572 * @blocks_to_boundary: the offset in the indirect block 573 * 574 * return the total number of blocks to be allocate, including the 575 * direct and indirect blocks. 576 */ 577 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 578 int blocks_to_boundary) 579 { 580 unsigned int count = 0; 581 582 /* 583 * Simple case, [t,d]Indirect block(s) has not allocated yet 584 * then it's clear blocks on that path have not allocated 585 */ 586 if (k > 0) { 587 /* right now we don't handle cross boundary allocation */ 588 if (blks < blocks_to_boundary + 1) 589 count += blks; 590 else 591 count += blocks_to_boundary + 1; 592 return count; 593 } 594 595 count++; 596 while (count < blks && count <= blocks_to_boundary && 597 le32_to_cpu(*(branch[0].p + count)) == 0) { 598 count++; 599 } 600 return count; 601 } 602 603 /** 604 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 605 * @indirect_blks: the number of blocks need to allocate for indirect 606 * blocks 607 * 608 * @new_blocks: on return it will store the new block numbers for 609 * the indirect blocks(if needed) and the first direct block, 610 * @blks: on return it will store the total number of allocated 611 * direct blocks 612 */ 613 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 614 ext4_lblk_t iblock, ext4_fsblk_t goal, 615 int indirect_blks, int blks, 616 ext4_fsblk_t new_blocks[4], int *err) 617 { 618 struct ext4_allocation_request ar; 619 int target, i; 620 unsigned long count = 0, blk_allocated = 0; 621 int index = 0; 622 ext4_fsblk_t current_block = 0; 623 int ret = 0; 624 625 /* 626 * Here we try to allocate the requested multiple blocks at once, 627 * on a best-effort basis. 628 * To build a branch, we should allocate blocks for 629 * the indirect blocks(if not allocated yet), and at least 630 * the first direct block of this branch. That's the 631 * minimum number of blocks need to allocate(required) 632 */ 633 /* first we try to allocate the indirect blocks */ 634 target = indirect_blks; 635 while (target > 0) { 636 count = target; 637 /* allocating blocks for indirect blocks and direct blocks */ 638 current_block = ext4_new_meta_blocks(handle, inode, 639 goal, &count, err); 640 if (*err) 641 goto failed_out; 642 643 target -= count; 644 /* allocate blocks for indirect blocks */ 645 while (index < indirect_blks && count) { 646 new_blocks[index++] = current_block++; 647 count--; 648 } 649 if (count > 0) { 650 /* 651 * save the new block number 652 * for the first direct block 653 */ 654 new_blocks[index] = current_block; 655 printk(KERN_INFO "%s returned more blocks than " 656 "requested\n", __func__); 657 WARN_ON(1); 658 break; 659 } 660 } 661 662 target = blks - count ; 663 blk_allocated = count; 664 if (!target) 665 goto allocated; 666 /* Now allocate data blocks */ 667 memset(&ar, 0, sizeof(ar)); 668 ar.inode = inode; 669 ar.goal = goal; 670 ar.len = target; 671 ar.logical = iblock; 672 if (S_ISREG(inode->i_mode)) 673 /* enable in-core preallocation only for regular files */ 674 ar.flags = EXT4_MB_HINT_DATA; 675 676 current_block = ext4_mb_new_blocks(handle, &ar, err); 677 678 if (*err && (target == blks)) { 679 /* 680 * if the allocation failed and we didn't allocate 681 * any blocks before 682 */ 683 goto failed_out; 684 } 685 if (!*err) { 686 if (target == blks) { 687 /* 688 * save the new block number 689 * for the first direct block 690 */ 691 new_blocks[index] = current_block; 692 } 693 blk_allocated += ar.len; 694 } 695 allocated: 696 /* total number of blocks allocated for direct blocks */ 697 ret = blk_allocated; 698 *err = 0; 699 return ret; 700 failed_out: 701 for (i = 0; i < index; i++) 702 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 703 return ret; 704 } 705 706 /** 707 * ext4_alloc_branch - allocate and set up a chain of blocks. 708 * @inode: owner 709 * @indirect_blks: number of allocated indirect blocks 710 * @blks: number of allocated direct blocks 711 * @offsets: offsets (in the blocks) to store the pointers to next. 712 * @branch: place to store the chain in. 713 * 714 * This function allocates blocks, zeroes out all but the last one, 715 * links them into chain and (if we are synchronous) writes them to disk. 716 * In other words, it prepares a branch that can be spliced onto the 717 * inode. It stores the information about that chain in the branch[], in 718 * the same format as ext4_get_branch() would do. We are calling it after 719 * we had read the existing part of chain and partial points to the last 720 * triple of that (one with zero ->key). Upon the exit we have the same 721 * picture as after the successful ext4_get_block(), except that in one 722 * place chain is disconnected - *branch->p is still zero (we did not 723 * set the last link), but branch->key contains the number that should 724 * be placed into *branch->p to fill that gap. 725 * 726 * If allocation fails we free all blocks we've allocated (and forget 727 * their buffer_heads) and return the error value the from failed 728 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 729 * as described above and return 0. 730 */ 731 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 732 ext4_lblk_t iblock, int indirect_blks, 733 int *blks, ext4_fsblk_t goal, 734 ext4_lblk_t *offsets, Indirect *branch) 735 { 736 int blocksize = inode->i_sb->s_blocksize; 737 int i, n = 0; 738 int err = 0; 739 struct buffer_head *bh; 740 int num; 741 ext4_fsblk_t new_blocks[4]; 742 ext4_fsblk_t current_block; 743 744 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 745 *blks, new_blocks, &err); 746 if (err) 747 return err; 748 749 branch[0].key = cpu_to_le32(new_blocks[0]); 750 /* 751 * metadata blocks and data blocks are allocated. 752 */ 753 for (n = 1; n <= indirect_blks; n++) { 754 /* 755 * Get buffer_head for parent block, zero it out 756 * and set the pointer to new one, then send 757 * parent to disk. 758 */ 759 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 760 branch[n].bh = bh; 761 lock_buffer(bh); 762 BUFFER_TRACE(bh, "call get_create_access"); 763 err = ext4_journal_get_create_access(handle, bh); 764 if (err) { 765 unlock_buffer(bh); 766 brelse(bh); 767 goto failed; 768 } 769 770 memset(bh->b_data, 0, blocksize); 771 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 772 branch[n].key = cpu_to_le32(new_blocks[n]); 773 *branch[n].p = branch[n].key; 774 if (n == indirect_blks) { 775 current_block = new_blocks[n]; 776 /* 777 * End of chain, update the last new metablock of 778 * the chain to point to the new allocated 779 * data blocks numbers 780 */ 781 for (i = 1; i < num; i++) 782 *(branch[n].p + i) = cpu_to_le32(++current_block); 783 } 784 BUFFER_TRACE(bh, "marking uptodate"); 785 set_buffer_uptodate(bh); 786 unlock_buffer(bh); 787 788 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 789 err = ext4_handle_dirty_metadata(handle, inode, bh); 790 if (err) 791 goto failed; 792 } 793 *blks = num; 794 return err; 795 failed: 796 /* Allocation failed, free what we already allocated */ 797 for (i = 1; i <= n ; i++) { 798 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 799 ext4_journal_forget(handle, branch[i].bh); 800 } 801 for (i = 0; i < indirect_blks; i++) 802 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 803 804 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 805 806 return err; 807 } 808 809 /** 810 * ext4_splice_branch - splice the allocated branch onto inode. 811 * @inode: owner 812 * @block: (logical) number of block we are adding 813 * @chain: chain of indirect blocks (with a missing link - see 814 * ext4_alloc_branch) 815 * @where: location of missing link 816 * @num: number of indirect blocks we are adding 817 * @blks: number of direct blocks we are adding 818 * 819 * This function fills the missing link and does all housekeeping needed in 820 * inode (->i_blocks, etc.). In case of success we end up with the full 821 * chain to new block and return 0. 822 */ 823 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 824 ext4_lblk_t block, Indirect *where, int num, 825 int blks) 826 { 827 int i; 828 int err = 0; 829 ext4_fsblk_t current_block; 830 831 /* 832 * If we're splicing into a [td]indirect block (as opposed to the 833 * inode) then we need to get write access to the [td]indirect block 834 * before the splice. 835 */ 836 if (where->bh) { 837 BUFFER_TRACE(where->bh, "get_write_access"); 838 err = ext4_journal_get_write_access(handle, where->bh); 839 if (err) 840 goto err_out; 841 } 842 /* That's it */ 843 844 *where->p = where->key; 845 846 /* 847 * Update the host buffer_head or inode to point to more just allocated 848 * direct blocks blocks 849 */ 850 if (num == 0 && blks > 1) { 851 current_block = le32_to_cpu(where->key) + 1; 852 for (i = 1; i < blks; i++) 853 *(where->p + i) = cpu_to_le32(current_block++); 854 } 855 856 /* We are done with atomic stuff, now do the rest of housekeeping */ 857 /* had we spliced it onto indirect block? */ 858 if (where->bh) { 859 /* 860 * If we spliced it onto an indirect block, we haven't 861 * altered the inode. Note however that if it is being spliced 862 * onto an indirect block at the very end of the file (the 863 * file is growing) then we *will* alter the inode to reflect 864 * the new i_size. But that is not done here - it is done in 865 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 866 */ 867 jbd_debug(5, "splicing indirect only\n"); 868 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 869 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 870 if (err) 871 goto err_out; 872 } else { 873 /* 874 * OK, we spliced it into the inode itself on a direct block. 875 */ 876 ext4_mark_inode_dirty(handle, inode); 877 jbd_debug(5, "splicing direct\n"); 878 } 879 return err; 880 881 err_out: 882 for (i = 1; i <= num; i++) { 883 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 884 ext4_journal_forget(handle, where[i].bh); 885 ext4_free_blocks(handle, inode, 886 le32_to_cpu(where[i-1].key), 1, 0); 887 } 888 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 889 890 return err; 891 } 892 893 /* 894 * The ext4_ind_get_blocks() function handles non-extents inodes 895 * (i.e., using the traditional indirect/double-indirect i_blocks 896 * scheme) for ext4_get_blocks(). 897 * 898 * Allocation strategy is simple: if we have to allocate something, we will 899 * have to go the whole way to leaf. So let's do it before attaching anything 900 * to tree, set linkage between the newborn blocks, write them if sync is 901 * required, recheck the path, free and repeat if check fails, otherwise 902 * set the last missing link (that will protect us from any truncate-generated 903 * removals - all blocks on the path are immune now) and possibly force the 904 * write on the parent block. 905 * That has a nice additional property: no special recovery from the failed 906 * allocations is needed - we simply release blocks and do not touch anything 907 * reachable from inode. 908 * 909 * `handle' can be NULL if create == 0. 910 * 911 * return > 0, # of blocks mapped or allocated. 912 * return = 0, if plain lookup failed. 913 * return < 0, error case. 914 * 915 * The ext4_ind_get_blocks() function should be called with 916 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 917 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 918 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 919 * blocks. 920 */ 921 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode, 922 ext4_lblk_t iblock, unsigned int maxblocks, 923 struct buffer_head *bh_result, 924 int flags) 925 { 926 int err = -EIO; 927 ext4_lblk_t offsets[4]; 928 Indirect chain[4]; 929 Indirect *partial; 930 ext4_fsblk_t goal; 931 int indirect_blks; 932 int blocks_to_boundary = 0; 933 int depth; 934 int count = 0; 935 ext4_fsblk_t first_block = 0; 936 937 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 938 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 939 depth = ext4_block_to_path(inode, iblock, offsets, 940 &blocks_to_boundary); 941 942 if (depth == 0) 943 goto out; 944 945 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 946 947 /* Simplest case - block found, no allocation needed */ 948 if (!partial) { 949 first_block = le32_to_cpu(chain[depth - 1].key); 950 clear_buffer_new(bh_result); 951 count++; 952 /*map more blocks*/ 953 while (count < maxblocks && count <= blocks_to_boundary) { 954 ext4_fsblk_t blk; 955 956 blk = le32_to_cpu(*(chain[depth-1].p + count)); 957 958 if (blk == first_block + count) 959 count++; 960 else 961 break; 962 } 963 goto got_it; 964 } 965 966 /* Next simple case - plain lookup or failed read of indirect block */ 967 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 968 goto cleanup; 969 970 /* 971 * Okay, we need to do block allocation. 972 */ 973 goal = ext4_find_goal(inode, iblock, partial); 974 975 /* the number of blocks need to allocate for [d,t]indirect blocks */ 976 indirect_blks = (chain + depth) - partial - 1; 977 978 /* 979 * Next look up the indirect map to count the totoal number of 980 * direct blocks to allocate for this branch. 981 */ 982 count = ext4_blks_to_allocate(partial, indirect_blks, 983 maxblocks, blocks_to_boundary); 984 /* 985 * Block out ext4_truncate while we alter the tree 986 */ 987 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 988 &count, goal, 989 offsets + (partial - chain), partial); 990 991 /* 992 * The ext4_splice_branch call will free and forget any buffers 993 * on the new chain if there is a failure, but that risks using 994 * up transaction credits, especially for bitmaps where the 995 * credits cannot be returned. Can we handle this somehow? We 996 * may need to return -EAGAIN upwards in the worst case. --sct 997 */ 998 if (!err) 999 err = ext4_splice_branch(handle, inode, iblock, 1000 partial, indirect_blks, count); 1001 else 1002 goto cleanup; 1003 1004 set_buffer_new(bh_result); 1005 got_it: 1006 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 1007 if (count > blocks_to_boundary) 1008 set_buffer_boundary(bh_result); 1009 err = count; 1010 /* Clean up and exit */ 1011 partial = chain + depth - 1; /* the whole chain */ 1012 cleanup: 1013 while (partial > chain) { 1014 BUFFER_TRACE(partial->bh, "call brelse"); 1015 brelse(partial->bh); 1016 partial--; 1017 } 1018 BUFFER_TRACE(bh_result, "returned"); 1019 out: 1020 return err; 1021 } 1022 1023 qsize_t ext4_get_reserved_space(struct inode *inode) 1024 { 1025 unsigned long long total; 1026 1027 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1028 total = EXT4_I(inode)->i_reserved_data_blocks + 1029 EXT4_I(inode)->i_reserved_meta_blocks; 1030 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1031 1032 return total; 1033 } 1034 /* 1035 * Calculate the number of metadata blocks need to reserve 1036 * to allocate @blocks for non extent file based file 1037 */ 1038 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 1039 { 1040 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1041 int ind_blks, dind_blks, tind_blks; 1042 1043 /* number of new indirect blocks needed */ 1044 ind_blks = (blocks + icap - 1) / icap; 1045 1046 dind_blks = (ind_blks + icap - 1) / icap; 1047 1048 tind_blks = 1; 1049 1050 return ind_blks + dind_blks + tind_blks; 1051 } 1052 1053 /* 1054 * Calculate the number of metadata blocks need to reserve 1055 * to allocate given number of blocks 1056 */ 1057 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1058 { 1059 if (!blocks) 1060 return 0; 1061 1062 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1063 return ext4_ext_calc_metadata_amount(inode, blocks); 1064 1065 return ext4_indirect_calc_metadata_amount(inode, blocks); 1066 } 1067 1068 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1069 { 1070 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1071 int total, mdb, mdb_free; 1072 1073 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1074 /* recalculate the number of metablocks still need to be reserved */ 1075 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1076 mdb = ext4_calc_metadata_amount(inode, total); 1077 1078 /* figure out how many metablocks to release */ 1079 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1080 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1081 1082 if (mdb_free) { 1083 /* Account for allocated meta_blocks */ 1084 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1085 1086 /* update fs dirty blocks counter */ 1087 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1088 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1089 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1090 } 1091 1092 /* update per-inode reservations */ 1093 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1094 EXT4_I(inode)->i_reserved_data_blocks -= used; 1095 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1096 1097 /* 1098 * free those over-booking quota for metadata blocks 1099 */ 1100 if (mdb_free) 1101 vfs_dq_release_reservation_block(inode, mdb_free); 1102 1103 /* 1104 * If we have done all the pending block allocations and if 1105 * there aren't any writers on the inode, we can discard the 1106 * inode's preallocations. 1107 */ 1108 if (!total && (atomic_read(&inode->i_writecount) == 0)) 1109 ext4_discard_preallocations(inode); 1110 } 1111 1112 static int check_block_validity(struct inode *inode, sector_t logical, 1113 sector_t phys, int len) 1114 { 1115 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) { 1116 ext4_error(inode->i_sb, "check_block_validity", 1117 "inode #%lu logical block %llu mapped to %llu " 1118 "(size %d)", inode->i_ino, 1119 (unsigned long long) logical, 1120 (unsigned long long) phys, len); 1121 WARN_ON(1); 1122 return -EIO; 1123 } 1124 return 0; 1125 } 1126 1127 /* 1128 * The ext4_get_blocks() function tries to look up the requested blocks, 1129 * and returns if the blocks are already mapped. 1130 * 1131 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1132 * and store the allocated blocks in the result buffer head and mark it 1133 * mapped. 1134 * 1135 * If file type is extents based, it will call ext4_ext_get_blocks(), 1136 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping 1137 * based files 1138 * 1139 * On success, it returns the number of blocks being mapped or allocate. 1140 * if create==0 and the blocks are pre-allocated and uninitialized block, 1141 * the result buffer head is unmapped. If the create ==1, it will make sure 1142 * the buffer head is mapped. 1143 * 1144 * It returns 0 if plain look up failed (blocks have not been allocated), in 1145 * that casem, buffer head is unmapped 1146 * 1147 * It returns the error in case of allocation failure. 1148 */ 1149 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block, 1150 unsigned int max_blocks, struct buffer_head *bh, 1151 int flags) 1152 { 1153 int retval; 1154 1155 clear_buffer_mapped(bh); 1156 clear_buffer_unwritten(bh); 1157 1158 /* 1159 * Try to see if we can get the block without requesting a new 1160 * file system block. 1161 */ 1162 down_read((&EXT4_I(inode)->i_data_sem)); 1163 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1164 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1165 bh, 0); 1166 } else { 1167 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks, 1168 bh, 0); 1169 } 1170 up_read((&EXT4_I(inode)->i_data_sem)); 1171 1172 if (retval > 0 && buffer_mapped(bh)) { 1173 int ret = check_block_validity(inode, block, 1174 bh->b_blocknr, retval); 1175 if (ret != 0) 1176 return ret; 1177 } 1178 1179 /* If it is only a block(s) look up */ 1180 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1181 return retval; 1182 1183 /* 1184 * Returns if the blocks have already allocated 1185 * 1186 * Note that if blocks have been preallocated 1187 * ext4_ext_get_block() returns th create = 0 1188 * with buffer head unmapped. 1189 */ 1190 if (retval > 0 && buffer_mapped(bh)) 1191 return retval; 1192 1193 /* 1194 * When we call get_blocks without the create flag, the 1195 * BH_Unwritten flag could have gotten set if the blocks 1196 * requested were part of a uninitialized extent. We need to 1197 * clear this flag now that we are committed to convert all or 1198 * part of the uninitialized extent to be an initialized 1199 * extent. This is because we need to avoid the combination 1200 * of BH_Unwritten and BH_Mapped flags being simultaneously 1201 * set on the buffer_head. 1202 */ 1203 clear_buffer_unwritten(bh); 1204 1205 /* 1206 * New blocks allocate and/or writing to uninitialized extent 1207 * will possibly result in updating i_data, so we take 1208 * the write lock of i_data_sem, and call get_blocks() 1209 * with create == 1 flag. 1210 */ 1211 down_write((&EXT4_I(inode)->i_data_sem)); 1212 1213 /* 1214 * if the caller is from delayed allocation writeout path 1215 * we have already reserved fs blocks for allocation 1216 * let the underlying get_block() function know to 1217 * avoid double accounting 1218 */ 1219 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1220 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1221 /* 1222 * We need to check for EXT4 here because migrate 1223 * could have changed the inode type in between 1224 */ 1225 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1226 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1227 bh, flags); 1228 } else { 1229 retval = ext4_ind_get_blocks(handle, inode, block, 1230 max_blocks, bh, flags); 1231 1232 if (retval > 0 && buffer_new(bh)) { 1233 /* 1234 * We allocated new blocks which will result in 1235 * i_data's format changing. Force the migrate 1236 * to fail by clearing migrate flags 1237 */ 1238 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1239 ~EXT4_EXT_MIGRATE; 1240 } 1241 } 1242 1243 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1244 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1245 1246 /* 1247 * Update reserved blocks/metadata blocks after successful 1248 * block allocation which had been deferred till now. 1249 */ 1250 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE)) 1251 ext4_da_update_reserve_space(inode, retval); 1252 1253 up_write((&EXT4_I(inode)->i_data_sem)); 1254 if (retval > 0 && buffer_mapped(bh)) { 1255 int ret = check_block_validity(inode, block, 1256 bh->b_blocknr, retval); 1257 if (ret != 0) 1258 return ret; 1259 } 1260 return retval; 1261 } 1262 1263 /* Maximum number of blocks we map for direct IO at once. */ 1264 #define DIO_MAX_BLOCKS 4096 1265 1266 int ext4_get_block(struct inode *inode, sector_t iblock, 1267 struct buffer_head *bh_result, int create) 1268 { 1269 handle_t *handle = ext4_journal_current_handle(); 1270 int ret = 0, started = 0; 1271 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1272 int dio_credits; 1273 1274 if (create && !handle) { 1275 /* Direct IO write... */ 1276 if (max_blocks > DIO_MAX_BLOCKS) 1277 max_blocks = DIO_MAX_BLOCKS; 1278 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1279 handle = ext4_journal_start(inode, dio_credits); 1280 if (IS_ERR(handle)) { 1281 ret = PTR_ERR(handle); 1282 goto out; 1283 } 1284 started = 1; 1285 } 1286 1287 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 1288 create ? EXT4_GET_BLOCKS_CREATE : 0); 1289 if (ret > 0) { 1290 bh_result->b_size = (ret << inode->i_blkbits); 1291 ret = 0; 1292 } 1293 if (started) 1294 ext4_journal_stop(handle); 1295 out: 1296 return ret; 1297 } 1298 1299 /* 1300 * `handle' can be NULL if create is zero 1301 */ 1302 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1303 ext4_lblk_t block, int create, int *errp) 1304 { 1305 struct buffer_head dummy; 1306 int fatal = 0, err; 1307 int flags = 0; 1308 1309 J_ASSERT(handle != NULL || create == 0); 1310 1311 dummy.b_state = 0; 1312 dummy.b_blocknr = -1000; 1313 buffer_trace_init(&dummy.b_history); 1314 if (create) 1315 flags |= EXT4_GET_BLOCKS_CREATE; 1316 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags); 1317 /* 1318 * ext4_get_blocks() returns number of blocks mapped. 0 in 1319 * case of a HOLE. 1320 */ 1321 if (err > 0) { 1322 if (err > 1) 1323 WARN_ON(1); 1324 err = 0; 1325 } 1326 *errp = err; 1327 if (!err && buffer_mapped(&dummy)) { 1328 struct buffer_head *bh; 1329 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1330 if (!bh) { 1331 *errp = -EIO; 1332 goto err; 1333 } 1334 if (buffer_new(&dummy)) { 1335 J_ASSERT(create != 0); 1336 J_ASSERT(handle != NULL); 1337 1338 /* 1339 * Now that we do not always journal data, we should 1340 * keep in mind whether this should always journal the 1341 * new buffer as metadata. For now, regular file 1342 * writes use ext4_get_block instead, so it's not a 1343 * problem. 1344 */ 1345 lock_buffer(bh); 1346 BUFFER_TRACE(bh, "call get_create_access"); 1347 fatal = ext4_journal_get_create_access(handle, bh); 1348 if (!fatal && !buffer_uptodate(bh)) { 1349 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1350 set_buffer_uptodate(bh); 1351 } 1352 unlock_buffer(bh); 1353 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1354 err = ext4_handle_dirty_metadata(handle, inode, bh); 1355 if (!fatal) 1356 fatal = err; 1357 } else { 1358 BUFFER_TRACE(bh, "not a new buffer"); 1359 } 1360 if (fatal) { 1361 *errp = fatal; 1362 brelse(bh); 1363 bh = NULL; 1364 } 1365 return bh; 1366 } 1367 err: 1368 return NULL; 1369 } 1370 1371 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1372 ext4_lblk_t block, int create, int *err) 1373 { 1374 struct buffer_head *bh; 1375 1376 bh = ext4_getblk(handle, inode, block, create, err); 1377 if (!bh) 1378 return bh; 1379 if (buffer_uptodate(bh)) 1380 return bh; 1381 ll_rw_block(READ_META, 1, &bh); 1382 wait_on_buffer(bh); 1383 if (buffer_uptodate(bh)) 1384 return bh; 1385 put_bh(bh); 1386 *err = -EIO; 1387 return NULL; 1388 } 1389 1390 static int walk_page_buffers(handle_t *handle, 1391 struct buffer_head *head, 1392 unsigned from, 1393 unsigned to, 1394 int *partial, 1395 int (*fn)(handle_t *handle, 1396 struct buffer_head *bh)) 1397 { 1398 struct buffer_head *bh; 1399 unsigned block_start, block_end; 1400 unsigned blocksize = head->b_size; 1401 int err, ret = 0; 1402 struct buffer_head *next; 1403 1404 for (bh = head, block_start = 0; 1405 ret == 0 && (bh != head || !block_start); 1406 block_start = block_end, bh = next) { 1407 next = bh->b_this_page; 1408 block_end = block_start + blocksize; 1409 if (block_end <= from || block_start >= to) { 1410 if (partial && !buffer_uptodate(bh)) 1411 *partial = 1; 1412 continue; 1413 } 1414 err = (*fn)(handle, bh); 1415 if (!ret) 1416 ret = err; 1417 } 1418 return ret; 1419 } 1420 1421 /* 1422 * To preserve ordering, it is essential that the hole instantiation and 1423 * the data write be encapsulated in a single transaction. We cannot 1424 * close off a transaction and start a new one between the ext4_get_block() 1425 * and the commit_write(). So doing the jbd2_journal_start at the start of 1426 * prepare_write() is the right place. 1427 * 1428 * Also, this function can nest inside ext4_writepage() -> 1429 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1430 * has generated enough buffer credits to do the whole page. So we won't 1431 * block on the journal in that case, which is good, because the caller may 1432 * be PF_MEMALLOC. 1433 * 1434 * By accident, ext4 can be reentered when a transaction is open via 1435 * quota file writes. If we were to commit the transaction while thus 1436 * reentered, there can be a deadlock - we would be holding a quota 1437 * lock, and the commit would never complete if another thread had a 1438 * transaction open and was blocking on the quota lock - a ranking 1439 * violation. 1440 * 1441 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1442 * will _not_ run commit under these circumstances because handle->h_ref 1443 * is elevated. We'll still have enough credits for the tiny quotafile 1444 * write. 1445 */ 1446 static int do_journal_get_write_access(handle_t *handle, 1447 struct buffer_head *bh) 1448 { 1449 if (!buffer_mapped(bh) || buffer_freed(bh)) 1450 return 0; 1451 return ext4_journal_get_write_access(handle, bh); 1452 } 1453 1454 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1455 loff_t pos, unsigned len, unsigned flags, 1456 struct page **pagep, void **fsdata) 1457 { 1458 struct inode *inode = mapping->host; 1459 int ret, needed_blocks; 1460 handle_t *handle; 1461 int retries = 0; 1462 struct page *page; 1463 pgoff_t index; 1464 unsigned from, to; 1465 1466 trace_ext4_write_begin(inode, pos, len, flags); 1467 /* 1468 * Reserve one block more for addition to orphan list in case 1469 * we allocate blocks but write fails for some reason 1470 */ 1471 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1472 index = pos >> PAGE_CACHE_SHIFT; 1473 from = pos & (PAGE_CACHE_SIZE - 1); 1474 to = from + len; 1475 1476 retry: 1477 handle = ext4_journal_start(inode, needed_blocks); 1478 if (IS_ERR(handle)) { 1479 ret = PTR_ERR(handle); 1480 goto out; 1481 } 1482 1483 /* We cannot recurse into the filesystem as the transaction is already 1484 * started */ 1485 flags |= AOP_FLAG_NOFS; 1486 1487 page = grab_cache_page_write_begin(mapping, index, flags); 1488 if (!page) { 1489 ext4_journal_stop(handle); 1490 ret = -ENOMEM; 1491 goto out; 1492 } 1493 *pagep = page; 1494 1495 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1496 ext4_get_block); 1497 1498 if (!ret && ext4_should_journal_data(inode)) { 1499 ret = walk_page_buffers(handle, page_buffers(page), 1500 from, to, NULL, do_journal_get_write_access); 1501 } 1502 1503 if (ret) { 1504 unlock_page(page); 1505 page_cache_release(page); 1506 /* 1507 * block_write_begin may have instantiated a few blocks 1508 * outside i_size. Trim these off again. Don't need 1509 * i_size_read because we hold i_mutex. 1510 * 1511 * Add inode to orphan list in case we crash before 1512 * truncate finishes 1513 */ 1514 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1515 ext4_orphan_add(handle, inode); 1516 1517 ext4_journal_stop(handle); 1518 if (pos + len > inode->i_size) { 1519 ext4_truncate(inode); 1520 /* 1521 * If truncate failed early the inode might 1522 * still be on the orphan list; we need to 1523 * make sure the inode is removed from the 1524 * orphan list in that case. 1525 */ 1526 if (inode->i_nlink) 1527 ext4_orphan_del(NULL, inode); 1528 } 1529 } 1530 1531 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1532 goto retry; 1533 out: 1534 return ret; 1535 } 1536 1537 /* For write_end() in data=journal mode */ 1538 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1539 { 1540 if (!buffer_mapped(bh) || buffer_freed(bh)) 1541 return 0; 1542 set_buffer_uptodate(bh); 1543 return ext4_handle_dirty_metadata(handle, NULL, bh); 1544 } 1545 1546 static int ext4_generic_write_end(struct file *file, 1547 struct address_space *mapping, 1548 loff_t pos, unsigned len, unsigned copied, 1549 struct page *page, void *fsdata) 1550 { 1551 int i_size_changed = 0; 1552 struct inode *inode = mapping->host; 1553 handle_t *handle = ext4_journal_current_handle(); 1554 1555 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1556 1557 /* 1558 * No need to use i_size_read() here, the i_size 1559 * cannot change under us because we hold i_mutex. 1560 * 1561 * But it's important to update i_size while still holding page lock: 1562 * page writeout could otherwise come in and zero beyond i_size. 1563 */ 1564 if (pos + copied > inode->i_size) { 1565 i_size_write(inode, pos + copied); 1566 i_size_changed = 1; 1567 } 1568 1569 if (pos + copied > EXT4_I(inode)->i_disksize) { 1570 /* We need to mark inode dirty even if 1571 * new_i_size is less that inode->i_size 1572 * bu greater than i_disksize.(hint delalloc) 1573 */ 1574 ext4_update_i_disksize(inode, (pos + copied)); 1575 i_size_changed = 1; 1576 } 1577 unlock_page(page); 1578 page_cache_release(page); 1579 1580 /* 1581 * Don't mark the inode dirty under page lock. First, it unnecessarily 1582 * makes the holding time of page lock longer. Second, it forces lock 1583 * ordering of page lock and transaction start for journaling 1584 * filesystems. 1585 */ 1586 if (i_size_changed) 1587 ext4_mark_inode_dirty(handle, inode); 1588 1589 return copied; 1590 } 1591 1592 /* 1593 * We need to pick up the new inode size which generic_commit_write gave us 1594 * `file' can be NULL - eg, when called from page_symlink(). 1595 * 1596 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1597 * buffers are managed internally. 1598 */ 1599 static int ext4_ordered_write_end(struct file *file, 1600 struct address_space *mapping, 1601 loff_t pos, unsigned len, unsigned copied, 1602 struct page *page, void *fsdata) 1603 { 1604 handle_t *handle = ext4_journal_current_handle(); 1605 struct inode *inode = mapping->host; 1606 int ret = 0, ret2; 1607 1608 trace_ext4_ordered_write_end(inode, pos, len, copied); 1609 ret = ext4_jbd2_file_inode(handle, inode); 1610 1611 if (ret == 0) { 1612 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1613 page, fsdata); 1614 copied = ret2; 1615 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1616 /* if we have allocated more blocks and copied 1617 * less. We will have blocks allocated outside 1618 * inode->i_size. So truncate them 1619 */ 1620 ext4_orphan_add(handle, inode); 1621 if (ret2 < 0) 1622 ret = ret2; 1623 } 1624 ret2 = ext4_journal_stop(handle); 1625 if (!ret) 1626 ret = ret2; 1627 1628 if (pos + len > inode->i_size) { 1629 ext4_truncate(inode); 1630 /* 1631 * If truncate failed early the inode might still be 1632 * on the orphan list; we need to make sure the inode 1633 * is removed from the orphan list in that case. 1634 */ 1635 if (inode->i_nlink) 1636 ext4_orphan_del(NULL, inode); 1637 } 1638 1639 1640 return ret ? ret : copied; 1641 } 1642 1643 static int ext4_writeback_write_end(struct file *file, 1644 struct address_space *mapping, 1645 loff_t pos, unsigned len, unsigned copied, 1646 struct page *page, void *fsdata) 1647 { 1648 handle_t *handle = ext4_journal_current_handle(); 1649 struct inode *inode = mapping->host; 1650 int ret = 0, ret2; 1651 1652 trace_ext4_writeback_write_end(inode, pos, len, copied); 1653 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1654 page, fsdata); 1655 copied = ret2; 1656 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1657 /* if we have allocated more blocks and copied 1658 * less. We will have blocks allocated outside 1659 * inode->i_size. So truncate them 1660 */ 1661 ext4_orphan_add(handle, inode); 1662 1663 if (ret2 < 0) 1664 ret = ret2; 1665 1666 ret2 = ext4_journal_stop(handle); 1667 if (!ret) 1668 ret = ret2; 1669 1670 if (pos + len > inode->i_size) { 1671 ext4_truncate(inode); 1672 /* 1673 * If truncate failed early the inode might still be 1674 * on the orphan list; we need to make sure the inode 1675 * is removed from the orphan list in that case. 1676 */ 1677 if (inode->i_nlink) 1678 ext4_orphan_del(NULL, inode); 1679 } 1680 1681 return ret ? ret : copied; 1682 } 1683 1684 static int ext4_journalled_write_end(struct file *file, 1685 struct address_space *mapping, 1686 loff_t pos, unsigned len, unsigned copied, 1687 struct page *page, void *fsdata) 1688 { 1689 handle_t *handle = ext4_journal_current_handle(); 1690 struct inode *inode = mapping->host; 1691 int ret = 0, ret2; 1692 int partial = 0; 1693 unsigned from, to; 1694 loff_t new_i_size; 1695 1696 trace_ext4_journalled_write_end(inode, pos, len, copied); 1697 from = pos & (PAGE_CACHE_SIZE - 1); 1698 to = from + len; 1699 1700 if (copied < len) { 1701 if (!PageUptodate(page)) 1702 copied = 0; 1703 page_zero_new_buffers(page, from+copied, to); 1704 } 1705 1706 ret = walk_page_buffers(handle, page_buffers(page), from, 1707 to, &partial, write_end_fn); 1708 if (!partial) 1709 SetPageUptodate(page); 1710 new_i_size = pos + copied; 1711 if (new_i_size > inode->i_size) 1712 i_size_write(inode, pos+copied); 1713 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1714 if (new_i_size > EXT4_I(inode)->i_disksize) { 1715 ext4_update_i_disksize(inode, new_i_size); 1716 ret2 = ext4_mark_inode_dirty(handle, inode); 1717 if (!ret) 1718 ret = ret2; 1719 } 1720 1721 unlock_page(page); 1722 page_cache_release(page); 1723 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1724 /* if we have allocated more blocks and copied 1725 * less. We will have blocks allocated outside 1726 * inode->i_size. So truncate them 1727 */ 1728 ext4_orphan_add(handle, inode); 1729 1730 ret2 = ext4_journal_stop(handle); 1731 if (!ret) 1732 ret = ret2; 1733 if (pos + len > inode->i_size) { 1734 ext4_truncate(inode); 1735 /* 1736 * If truncate failed early the inode might still be 1737 * on the orphan list; we need to make sure the inode 1738 * is removed from the orphan list in that case. 1739 */ 1740 if (inode->i_nlink) 1741 ext4_orphan_del(NULL, inode); 1742 } 1743 1744 return ret ? ret : copied; 1745 } 1746 1747 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1748 { 1749 int retries = 0; 1750 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1751 unsigned long md_needed, mdblocks, total = 0; 1752 1753 /* 1754 * recalculate the amount of metadata blocks to reserve 1755 * in order to allocate nrblocks 1756 * worse case is one extent per block 1757 */ 1758 repeat: 1759 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1760 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1761 mdblocks = ext4_calc_metadata_amount(inode, total); 1762 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1763 1764 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1765 total = md_needed + nrblocks; 1766 1767 /* 1768 * Make quota reservation here to prevent quota overflow 1769 * later. Real quota accounting is done at pages writeout 1770 * time. 1771 */ 1772 if (vfs_dq_reserve_block(inode, total)) { 1773 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1774 return -EDQUOT; 1775 } 1776 1777 if (ext4_claim_free_blocks(sbi, total)) { 1778 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1779 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1780 yield(); 1781 goto repeat; 1782 } 1783 vfs_dq_release_reservation_block(inode, total); 1784 return -ENOSPC; 1785 } 1786 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1787 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1788 1789 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1790 return 0; /* success */ 1791 } 1792 1793 static void ext4_da_release_space(struct inode *inode, int to_free) 1794 { 1795 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1796 int total, mdb, mdb_free, release; 1797 1798 if (!to_free) 1799 return; /* Nothing to release, exit */ 1800 1801 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1802 1803 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1804 /* 1805 * if there is no reserved blocks, but we try to free some 1806 * then the counter is messed up somewhere. 1807 * but since this function is called from invalidate 1808 * page, it's harmless to return without any action 1809 */ 1810 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1811 "blocks for inode %lu, but there is no reserved " 1812 "data blocks\n", to_free, inode->i_ino); 1813 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1814 return; 1815 } 1816 1817 /* recalculate the number of metablocks still need to be reserved */ 1818 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1819 mdb = ext4_calc_metadata_amount(inode, total); 1820 1821 /* figure out how many metablocks to release */ 1822 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1823 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1824 1825 release = to_free + mdb_free; 1826 1827 /* update fs dirty blocks counter for truncate case */ 1828 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1829 1830 /* update per-inode reservations */ 1831 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1832 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1833 1834 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1835 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1836 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1837 1838 vfs_dq_release_reservation_block(inode, release); 1839 } 1840 1841 static void ext4_da_page_release_reservation(struct page *page, 1842 unsigned long offset) 1843 { 1844 int to_release = 0; 1845 struct buffer_head *head, *bh; 1846 unsigned int curr_off = 0; 1847 1848 head = page_buffers(page); 1849 bh = head; 1850 do { 1851 unsigned int next_off = curr_off + bh->b_size; 1852 1853 if ((offset <= curr_off) && (buffer_delay(bh))) { 1854 to_release++; 1855 clear_buffer_delay(bh); 1856 } 1857 curr_off = next_off; 1858 } while ((bh = bh->b_this_page) != head); 1859 ext4_da_release_space(page->mapping->host, to_release); 1860 } 1861 1862 /* 1863 * Delayed allocation stuff 1864 */ 1865 1866 struct mpage_da_data { 1867 struct inode *inode; 1868 sector_t b_blocknr; /* start block number of extent */ 1869 size_t b_size; /* size of extent */ 1870 unsigned long b_state; /* state of the extent */ 1871 unsigned long first_page, next_page; /* extent of pages */ 1872 struct writeback_control *wbc; 1873 int io_done; 1874 int pages_written; 1875 int retval; 1876 }; 1877 1878 /* 1879 * mpage_da_submit_io - walks through extent of pages and try to write 1880 * them with writepage() call back 1881 * 1882 * @mpd->inode: inode 1883 * @mpd->first_page: first page of the extent 1884 * @mpd->next_page: page after the last page of the extent 1885 * 1886 * By the time mpage_da_submit_io() is called we expect all blocks 1887 * to be allocated. this may be wrong if allocation failed. 1888 * 1889 * As pages are already locked by write_cache_pages(), we can't use it 1890 */ 1891 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1892 { 1893 long pages_skipped; 1894 struct pagevec pvec; 1895 unsigned long index, end; 1896 int ret = 0, err, nr_pages, i; 1897 struct inode *inode = mpd->inode; 1898 struct address_space *mapping = inode->i_mapping; 1899 1900 BUG_ON(mpd->next_page <= mpd->first_page); 1901 /* 1902 * We need to start from the first_page to the next_page - 1 1903 * to make sure we also write the mapped dirty buffer_heads. 1904 * If we look at mpd->b_blocknr we would only be looking 1905 * at the currently mapped buffer_heads. 1906 */ 1907 index = mpd->first_page; 1908 end = mpd->next_page - 1; 1909 1910 pagevec_init(&pvec, 0); 1911 while (index <= end) { 1912 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1913 if (nr_pages == 0) 1914 break; 1915 for (i = 0; i < nr_pages; i++) { 1916 struct page *page = pvec.pages[i]; 1917 1918 index = page->index; 1919 if (index > end) 1920 break; 1921 index++; 1922 1923 BUG_ON(!PageLocked(page)); 1924 BUG_ON(PageWriteback(page)); 1925 1926 pages_skipped = mpd->wbc->pages_skipped; 1927 err = mapping->a_ops->writepage(page, mpd->wbc); 1928 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1929 /* 1930 * have successfully written the page 1931 * without skipping the same 1932 */ 1933 mpd->pages_written++; 1934 /* 1935 * In error case, we have to continue because 1936 * remaining pages are still locked 1937 * XXX: unlock and re-dirty them? 1938 */ 1939 if (ret == 0) 1940 ret = err; 1941 } 1942 pagevec_release(&pvec); 1943 } 1944 return ret; 1945 } 1946 1947 /* 1948 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1949 * 1950 * @mpd->inode - inode to walk through 1951 * @exbh->b_blocknr - first block on a disk 1952 * @exbh->b_size - amount of space in bytes 1953 * @logical - first logical block to start assignment with 1954 * 1955 * the function goes through all passed space and put actual disk 1956 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 1957 */ 1958 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1959 struct buffer_head *exbh) 1960 { 1961 struct inode *inode = mpd->inode; 1962 struct address_space *mapping = inode->i_mapping; 1963 int blocks = exbh->b_size >> inode->i_blkbits; 1964 sector_t pblock = exbh->b_blocknr, cur_logical; 1965 struct buffer_head *head, *bh; 1966 pgoff_t index, end; 1967 struct pagevec pvec; 1968 int nr_pages, i; 1969 1970 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1971 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1972 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1973 1974 pagevec_init(&pvec, 0); 1975 1976 while (index <= end) { 1977 /* XXX: optimize tail */ 1978 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1979 if (nr_pages == 0) 1980 break; 1981 for (i = 0; i < nr_pages; i++) { 1982 struct page *page = pvec.pages[i]; 1983 1984 index = page->index; 1985 if (index > end) 1986 break; 1987 index++; 1988 1989 BUG_ON(!PageLocked(page)); 1990 BUG_ON(PageWriteback(page)); 1991 BUG_ON(!page_has_buffers(page)); 1992 1993 bh = page_buffers(page); 1994 head = bh; 1995 1996 /* skip blocks out of the range */ 1997 do { 1998 if (cur_logical >= logical) 1999 break; 2000 cur_logical++; 2001 } while ((bh = bh->b_this_page) != head); 2002 2003 do { 2004 if (cur_logical >= logical + blocks) 2005 break; 2006 2007 if (buffer_delay(bh) || 2008 buffer_unwritten(bh)) { 2009 2010 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2011 2012 if (buffer_delay(bh)) { 2013 clear_buffer_delay(bh); 2014 bh->b_blocknr = pblock; 2015 } else { 2016 /* 2017 * unwritten already should have 2018 * blocknr assigned. Verify that 2019 */ 2020 clear_buffer_unwritten(bh); 2021 BUG_ON(bh->b_blocknr != pblock); 2022 } 2023 2024 } else if (buffer_mapped(bh)) 2025 BUG_ON(bh->b_blocknr != pblock); 2026 2027 cur_logical++; 2028 pblock++; 2029 } while ((bh = bh->b_this_page) != head); 2030 } 2031 pagevec_release(&pvec); 2032 } 2033 } 2034 2035 2036 /* 2037 * __unmap_underlying_blocks - just a helper function to unmap 2038 * set of blocks described by @bh 2039 */ 2040 static inline void __unmap_underlying_blocks(struct inode *inode, 2041 struct buffer_head *bh) 2042 { 2043 struct block_device *bdev = inode->i_sb->s_bdev; 2044 int blocks, i; 2045 2046 blocks = bh->b_size >> inode->i_blkbits; 2047 for (i = 0; i < blocks; i++) 2048 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 2049 } 2050 2051 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2052 sector_t logical, long blk_cnt) 2053 { 2054 int nr_pages, i; 2055 pgoff_t index, end; 2056 struct pagevec pvec; 2057 struct inode *inode = mpd->inode; 2058 struct address_space *mapping = inode->i_mapping; 2059 2060 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2061 end = (logical + blk_cnt - 1) >> 2062 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2063 while (index <= end) { 2064 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2065 if (nr_pages == 0) 2066 break; 2067 for (i = 0; i < nr_pages; i++) { 2068 struct page *page = pvec.pages[i]; 2069 index = page->index; 2070 if (index > end) 2071 break; 2072 index++; 2073 2074 BUG_ON(!PageLocked(page)); 2075 BUG_ON(PageWriteback(page)); 2076 block_invalidatepage(page, 0); 2077 ClearPageUptodate(page); 2078 unlock_page(page); 2079 } 2080 } 2081 return; 2082 } 2083 2084 static void ext4_print_free_blocks(struct inode *inode) 2085 { 2086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2087 printk(KERN_EMERG "Total free blocks count %lld\n", 2088 ext4_count_free_blocks(inode->i_sb)); 2089 printk(KERN_EMERG "Free/Dirty block details\n"); 2090 printk(KERN_EMERG "free_blocks=%lld\n", 2091 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter)); 2092 printk(KERN_EMERG "dirty_blocks=%lld\n", 2093 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2094 printk(KERN_EMERG "Block reservation details\n"); 2095 printk(KERN_EMERG "i_reserved_data_blocks=%u\n", 2096 EXT4_I(inode)->i_reserved_data_blocks); 2097 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n", 2098 EXT4_I(inode)->i_reserved_meta_blocks); 2099 return; 2100 } 2101 2102 /* 2103 * mpage_da_map_blocks - go through given space 2104 * 2105 * @mpd - bh describing space 2106 * 2107 * The function skips space we know is already mapped to disk blocks. 2108 * 2109 */ 2110 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2111 { 2112 int err, blks, get_blocks_flags; 2113 struct buffer_head new; 2114 sector_t next = mpd->b_blocknr; 2115 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2116 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2117 handle_t *handle = NULL; 2118 2119 /* 2120 * We consider only non-mapped and non-allocated blocks 2121 */ 2122 if ((mpd->b_state & (1 << BH_Mapped)) && 2123 !(mpd->b_state & (1 << BH_Delay)) && 2124 !(mpd->b_state & (1 << BH_Unwritten))) 2125 return 0; 2126 2127 /* 2128 * If we didn't accumulate anything to write simply return 2129 */ 2130 if (!mpd->b_size) 2131 return 0; 2132 2133 handle = ext4_journal_current_handle(); 2134 BUG_ON(!handle); 2135 2136 /* 2137 * Call ext4_get_blocks() to allocate any delayed allocation 2138 * blocks, or to convert an uninitialized extent to be 2139 * initialized (in the case where we have written into 2140 * one or more preallocated blocks). 2141 * 2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2143 * indicate that we are on the delayed allocation path. This 2144 * affects functions in many different parts of the allocation 2145 * call path. This flag exists primarily because we don't 2146 * want to change *many* call functions, so ext4_get_blocks() 2147 * will set the magic i_delalloc_reserved_flag once the 2148 * inode's allocation semaphore is taken. 2149 * 2150 * If the blocks in questions were delalloc blocks, set 2151 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2152 * variables are updated after the blocks have been allocated. 2153 */ 2154 new.b_state = 0; 2155 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE | 2156 EXT4_GET_BLOCKS_DELALLOC_RESERVE); 2157 if (mpd->b_state & (1 << BH_Delay)) 2158 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE; 2159 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks, 2160 &new, get_blocks_flags); 2161 if (blks < 0) { 2162 err = blks; 2163 /* 2164 * If get block returns with error we simply 2165 * return. Later writepage will redirty the page and 2166 * writepages will find the dirty page again 2167 */ 2168 if (err == -EAGAIN) 2169 return 0; 2170 2171 if (err == -ENOSPC && 2172 ext4_count_free_blocks(mpd->inode->i_sb)) { 2173 mpd->retval = err; 2174 return 0; 2175 } 2176 2177 /* 2178 * get block failure will cause us to loop in 2179 * writepages, because a_ops->writepage won't be able 2180 * to make progress. The page will be redirtied by 2181 * writepage and writepages will again try to write 2182 * the same. 2183 */ 2184 printk(KERN_EMERG "%s block allocation failed for inode %lu " 2185 "at logical offset %llu with max blocks " 2186 "%zd with error %d\n", 2187 __func__, mpd->inode->i_ino, 2188 (unsigned long long)next, 2189 mpd->b_size >> mpd->inode->i_blkbits, err); 2190 printk(KERN_EMERG "This should not happen.!! " 2191 "Data will be lost\n"); 2192 if (err == -ENOSPC) { 2193 ext4_print_free_blocks(mpd->inode); 2194 } 2195 /* invalidate all the pages */ 2196 ext4_da_block_invalidatepages(mpd, next, 2197 mpd->b_size >> mpd->inode->i_blkbits); 2198 return err; 2199 } 2200 BUG_ON(blks == 0); 2201 2202 new.b_size = (blks << mpd->inode->i_blkbits); 2203 2204 if (buffer_new(&new)) 2205 __unmap_underlying_blocks(mpd->inode, &new); 2206 2207 /* 2208 * If blocks are delayed marked, we need to 2209 * put actual blocknr and drop delayed bit 2210 */ 2211 if ((mpd->b_state & (1 << BH_Delay)) || 2212 (mpd->b_state & (1 << BH_Unwritten))) 2213 mpage_put_bnr_to_bhs(mpd, next, &new); 2214 2215 if (ext4_should_order_data(mpd->inode)) { 2216 err = ext4_jbd2_file_inode(handle, mpd->inode); 2217 if (err) 2218 return err; 2219 } 2220 2221 /* 2222 * Update on-disk size along with block allocation. 2223 */ 2224 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2225 if (disksize > i_size_read(mpd->inode)) 2226 disksize = i_size_read(mpd->inode); 2227 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2228 ext4_update_i_disksize(mpd->inode, disksize); 2229 return ext4_mark_inode_dirty(handle, mpd->inode); 2230 } 2231 2232 return 0; 2233 } 2234 2235 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2236 (1 << BH_Delay) | (1 << BH_Unwritten)) 2237 2238 /* 2239 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2240 * 2241 * @mpd->lbh - extent of blocks 2242 * @logical - logical number of the block in the file 2243 * @bh - bh of the block (used to access block's state) 2244 * 2245 * the function is used to collect contig. blocks in same state 2246 */ 2247 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2248 sector_t logical, size_t b_size, 2249 unsigned long b_state) 2250 { 2251 sector_t next; 2252 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2253 2254 /* check if thereserved journal credits might overflow */ 2255 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2256 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2257 /* 2258 * With non-extent format we are limited by the journal 2259 * credit available. Total credit needed to insert 2260 * nrblocks contiguous blocks is dependent on the 2261 * nrblocks. So limit nrblocks. 2262 */ 2263 goto flush_it; 2264 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2265 EXT4_MAX_TRANS_DATA) { 2266 /* 2267 * Adding the new buffer_head would make it cross the 2268 * allowed limit for which we have journal credit 2269 * reserved. So limit the new bh->b_size 2270 */ 2271 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2272 mpd->inode->i_blkbits; 2273 /* we will do mpage_da_submit_io in the next loop */ 2274 } 2275 } 2276 /* 2277 * First block in the extent 2278 */ 2279 if (mpd->b_size == 0) { 2280 mpd->b_blocknr = logical; 2281 mpd->b_size = b_size; 2282 mpd->b_state = b_state & BH_FLAGS; 2283 return; 2284 } 2285 2286 next = mpd->b_blocknr + nrblocks; 2287 /* 2288 * Can we merge the block to our big extent? 2289 */ 2290 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2291 mpd->b_size += b_size; 2292 return; 2293 } 2294 2295 flush_it: 2296 /* 2297 * We couldn't merge the block to our extent, so we 2298 * need to flush current extent and start new one 2299 */ 2300 if (mpage_da_map_blocks(mpd) == 0) 2301 mpage_da_submit_io(mpd); 2302 mpd->io_done = 1; 2303 return; 2304 } 2305 2306 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2307 { 2308 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2309 } 2310 2311 /* 2312 * __mpage_da_writepage - finds extent of pages and blocks 2313 * 2314 * @page: page to consider 2315 * @wbc: not used, we just follow rules 2316 * @data: context 2317 * 2318 * The function finds extents of pages and scan them for all blocks. 2319 */ 2320 static int __mpage_da_writepage(struct page *page, 2321 struct writeback_control *wbc, void *data) 2322 { 2323 struct mpage_da_data *mpd = data; 2324 struct inode *inode = mpd->inode; 2325 struct buffer_head *bh, *head; 2326 sector_t logical; 2327 2328 if (mpd->io_done) { 2329 /* 2330 * Rest of the page in the page_vec 2331 * redirty then and skip then. We will 2332 * try to to write them again after 2333 * starting a new transaction 2334 */ 2335 redirty_page_for_writepage(wbc, page); 2336 unlock_page(page); 2337 return MPAGE_DA_EXTENT_TAIL; 2338 } 2339 /* 2340 * Can we merge this page to current extent? 2341 */ 2342 if (mpd->next_page != page->index) { 2343 /* 2344 * Nope, we can't. So, we map non-allocated blocks 2345 * and start IO on them using writepage() 2346 */ 2347 if (mpd->next_page != mpd->first_page) { 2348 if (mpage_da_map_blocks(mpd) == 0) 2349 mpage_da_submit_io(mpd); 2350 /* 2351 * skip rest of the page in the page_vec 2352 */ 2353 mpd->io_done = 1; 2354 redirty_page_for_writepage(wbc, page); 2355 unlock_page(page); 2356 return MPAGE_DA_EXTENT_TAIL; 2357 } 2358 2359 /* 2360 * Start next extent of pages ... 2361 */ 2362 mpd->first_page = page->index; 2363 2364 /* 2365 * ... and blocks 2366 */ 2367 mpd->b_size = 0; 2368 mpd->b_state = 0; 2369 mpd->b_blocknr = 0; 2370 } 2371 2372 mpd->next_page = page->index + 1; 2373 logical = (sector_t) page->index << 2374 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2375 2376 if (!page_has_buffers(page)) { 2377 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2378 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2379 if (mpd->io_done) 2380 return MPAGE_DA_EXTENT_TAIL; 2381 } else { 2382 /* 2383 * Page with regular buffer heads, just add all dirty ones 2384 */ 2385 head = page_buffers(page); 2386 bh = head; 2387 do { 2388 BUG_ON(buffer_locked(bh)); 2389 /* 2390 * We need to try to allocate 2391 * unmapped blocks in the same page. 2392 * Otherwise we won't make progress 2393 * with the page in ext4_writepage 2394 */ 2395 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2396 mpage_add_bh_to_extent(mpd, logical, 2397 bh->b_size, 2398 bh->b_state); 2399 if (mpd->io_done) 2400 return MPAGE_DA_EXTENT_TAIL; 2401 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2402 /* 2403 * mapped dirty buffer. We need to update 2404 * the b_state because we look at 2405 * b_state in mpage_da_map_blocks. We don't 2406 * update b_size because if we find an 2407 * unmapped buffer_head later we need to 2408 * use the b_state flag of that buffer_head. 2409 */ 2410 if (mpd->b_size == 0) 2411 mpd->b_state = bh->b_state & BH_FLAGS; 2412 } 2413 logical++; 2414 } while ((bh = bh->b_this_page) != head); 2415 } 2416 2417 return 0; 2418 } 2419 2420 /* 2421 * This is a special get_blocks_t callback which is used by 2422 * ext4_da_write_begin(). It will either return mapped block or 2423 * reserve space for a single block. 2424 * 2425 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2426 * We also have b_blocknr = -1 and b_bdev initialized properly 2427 * 2428 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2429 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2430 * initialized properly. 2431 */ 2432 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2433 struct buffer_head *bh_result, int create) 2434 { 2435 int ret = 0; 2436 sector_t invalid_block = ~((sector_t) 0xffff); 2437 2438 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2439 invalid_block = ~0; 2440 2441 BUG_ON(create == 0); 2442 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2443 2444 /* 2445 * first, we need to know whether the block is allocated already 2446 * preallocated blocks are unmapped but should treated 2447 * the same as allocated blocks. 2448 */ 2449 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0); 2450 if ((ret == 0) && !buffer_delay(bh_result)) { 2451 /* the block isn't (pre)allocated yet, let's reserve space */ 2452 /* 2453 * XXX: __block_prepare_write() unmaps passed block, 2454 * is it OK? 2455 */ 2456 ret = ext4_da_reserve_space(inode, 1); 2457 if (ret) 2458 /* not enough space to reserve */ 2459 return ret; 2460 2461 map_bh(bh_result, inode->i_sb, invalid_block); 2462 set_buffer_new(bh_result); 2463 set_buffer_delay(bh_result); 2464 } else if (ret > 0) { 2465 bh_result->b_size = (ret << inode->i_blkbits); 2466 if (buffer_unwritten(bh_result)) { 2467 /* A delayed write to unwritten bh should 2468 * be marked new and mapped. Mapped ensures 2469 * that we don't do get_block multiple times 2470 * when we write to the same offset and new 2471 * ensures that we do proper zero out for 2472 * partial write. 2473 */ 2474 set_buffer_new(bh_result); 2475 set_buffer_mapped(bh_result); 2476 } 2477 ret = 0; 2478 } 2479 2480 return ret; 2481 } 2482 2483 /* 2484 * This function is used as a standard get_block_t calback function 2485 * when there is no desire to allocate any blocks. It is used as a 2486 * callback function for block_prepare_write(), nobh_writepage(), and 2487 * block_write_full_page(). These functions should only try to map a 2488 * single block at a time. 2489 * 2490 * Since this function doesn't do block allocations even if the caller 2491 * requests it by passing in create=1, it is critically important that 2492 * any caller checks to make sure that any buffer heads are returned 2493 * by this function are either all already mapped or marked for 2494 * delayed allocation before calling nobh_writepage() or 2495 * block_write_full_page(). Otherwise, b_blocknr could be left 2496 * unitialized, and the page write functions will be taken by 2497 * surprise. 2498 */ 2499 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2500 struct buffer_head *bh_result, int create) 2501 { 2502 int ret = 0; 2503 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2504 2505 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2506 2507 /* 2508 * we don't want to do block allocation in writepage 2509 * so call get_block_wrap with create = 0 2510 */ 2511 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0); 2512 if (ret > 0) { 2513 bh_result->b_size = (ret << inode->i_blkbits); 2514 ret = 0; 2515 } 2516 return ret; 2517 } 2518 2519 static int bget_one(handle_t *handle, struct buffer_head *bh) 2520 { 2521 get_bh(bh); 2522 return 0; 2523 } 2524 2525 static int bput_one(handle_t *handle, struct buffer_head *bh) 2526 { 2527 put_bh(bh); 2528 return 0; 2529 } 2530 2531 static int __ext4_journalled_writepage(struct page *page, 2532 struct writeback_control *wbc, 2533 unsigned int len) 2534 { 2535 struct address_space *mapping = page->mapping; 2536 struct inode *inode = mapping->host; 2537 struct buffer_head *page_bufs; 2538 handle_t *handle = NULL; 2539 int ret = 0; 2540 int err; 2541 2542 page_bufs = page_buffers(page); 2543 BUG_ON(!page_bufs); 2544 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2545 /* As soon as we unlock the page, it can go away, but we have 2546 * references to buffers so we are safe */ 2547 unlock_page(page); 2548 2549 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2550 if (IS_ERR(handle)) { 2551 ret = PTR_ERR(handle); 2552 goto out; 2553 } 2554 2555 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2556 do_journal_get_write_access); 2557 2558 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2559 write_end_fn); 2560 if (ret == 0) 2561 ret = err; 2562 err = ext4_journal_stop(handle); 2563 if (!ret) 2564 ret = err; 2565 2566 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2567 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2568 out: 2569 return ret; 2570 } 2571 2572 /* 2573 * Note that we don't need to start a transaction unless we're journaling data 2574 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2575 * need to file the inode to the transaction's list in ordered mode because if 2576 * we are writing back data added by write(), the inode is already there and if 2577 * we are writing back data modified via mmap(), noone guarantees in which 2578 * transaction the data will hit the disk. In case we are journaling data, we 2579 * cannot start transaction directly because transaction start ranks above page 2580 * lock so we have to do some magic. 2581 * 2582 * This function can get called via... 2583 * - ext4_da_writepages after taking page lock (have journal handle) 2584 * - journal_submit_inode_data_buffers (no journal handle) 2585 * - shrink_page_list via pdflush (no journal handle) 2586 * - grab_page_cache when doing write_begin (have journal handle) 2587 * 2588 * We don't do any block allocation in this function. If we have page with 2589 * multiple blocks we need to write those buffer_heads that are mapped. This 2590 * is important for mmaped based write. So if we do with blocksize 1K 2591 * truncate(f, 1024); 2592 * a = mmap(f, 0, 4096); 2593 * a[0] = 'a'; 2594 * truncate(f, 4096); 2595 * we have in the page first buffer_head mapped via page_mkwrite call back 2596 * but other bufer_heads would be unmapped but dirty(dirty done via the 2597 * do_wp_page). So writepage should write the first block. If we modify 2598 * the mmap area beyond 1024 we will again get a page_fault and the 2599 * page_mkwrite callback will do the block allocation and mark the 2600 * buffer_heads mapped. 2601 * 2602 * We redirty the page if we have any buffer_heads that is either delay or 2603 * unwritten in the page. 2604 * 2605 * We can get recursively called as show below. 2606 * 2607 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2608 * ext4_writepage() 2609 * 2610 * But since we don't do any block allocation we should not deadlock. 2611 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2612 */ 2613 static int ext4_writepage(struct page *page, 2614 struct writeback_control *wbc) 2615 { 2616 int ret = 0; 2617 loff_t size; 2618 unsigned int len; 2619 struct buffer_head *page_bufs; 2620 struct inode *inode = page->mapping->host; 2621 2622 trace_ext4_writepage(inode, page); 2623 size = i_size_read(inode); 2624 if (page->index == size >> PAGE_CACHE_SHIFT) 2625 len = size & ~PAGE_CACHE_MASK; 2626 else 2627 len = PAGE_CACHE_SIZE; 2628 2629 if (page_has_buffers(page)) { 2630 page_bufs = page_buffers(page); 2631 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2632 ext4_bh_delay_or_unwritten)) { 2633 /* 2634 * We don't want to do block allocation 2635 * So redirty the page and return 2636 * We may reach here when we do a journal commit 2637 * via journal_submit_inode_data_buffers. 2638 * If we don't have mapping block we just ignore 2639 * them. We can also reach here via shrink_page_list 2640 */ 2641 redirty_page_for_writepage(wbc, page); 2642 unlock_page(page); 2643 return 0; 2644 } 2645 } else { 2646 /* 2647 * The test for page_has_buffers() is subtle: 2648 * We know the page is dirty but it lost buffers. That means 2649 * that at some moment in time after write_begin()/write_end() 2650 * has been called all buffers have been clean and thus they 2651 * must have been written at least once. So they are all 2652 * mapped and we can happily proceed with mapping them 2653 * and writing the page. 2654 * 2655 * Try to initialize the buffer_heads and check whether 2656 * all are mapped and non delay. We don't want to 2657 * do block allocation here. 2658 */ 2659 ret = block_prepare_write(page, 0, len, 2660 noalloc_get_block_write); 2661 if (!ret) { 2662 page_bufs = page_buffers(page); 2663 /* check whether all are mapped and non delay */ 2664 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2665 ext4_bh_delay_or_unwritten)) { 2666 redirty_page_for_writepage(wbc, page); 2667 unlock_page(page); 2668 return 0; 2669 } 2670 } else { 2671 /* 2672 * We can't do block allocation here 2673 * so just redity the page and unlock 2674 * and return 2675 */ 2676 redirty_page_for_writepage(wbc, page); 2677 unlock_page(page); 2678 return 0; 2679 } 2680 /* now mark the buffer_heads as dirty and uptodate */ 2681 block_commit_write(page, 0, len); 2682 } 2683 2684 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2685 /* 2686 * It's mmapped pagecache. Add buffers and journal it. There 2687 * doesn't seem much point in redirtying the page here. 2688 */ 2689 ClearPageChecked(page); 2690 return __ext4_journalled_writepage(page, wbc, len); 2691 } 2692 2693 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2694 ret = nobh_writepage(page, noalloc_get_block_write, wbc); 2695 else 2696 ret = block_write_full_page(page, noalloc_get_block_write, 2697 wbc); 2698 2699 return ret; 2700 } 2701 2702 /* 2703 * This is called via ext4_da_writepages() to 2704 * calulate the total number of credits to reserve to fit 2705 * a single extent allocation into a single transaction, 2706 * ext4_da_writpeages() will loop calling this before 2707 * the block allocation. 2708 */ 2709 2710 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2711 { 2712 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2713 2714 /* 2715 * With non-extent format the journal credit needed to 2716 * insert nrblocks contiguous block is dependent on 2717 * number of contiguous block. So we will limit 2718 * number of contiguous block to a sane value 2719 */ 2720 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2721 (max_blocks > EXT4_MAX_TRANS_DATA)) 2722 max_blocks = EXT4_MAX_TRANS_DATA; 2723 2724 return ext4_chunk_trans_blocks(inode, max_blocks); 2725 } 2726 2727 static int ext4_da_writepages(struct address_space *mapping, 2728 struct writeback_control *wbc) 2729 { 2730 pgoff_t index; 2731 int range_whole = 0; 2732 handle_t *handle = NULL; 2733 struct mpage_da_data mpd; 2734 struct inode *inode = mapping->host; 2735 int no_nrwrite_index_update; 2736 int pages_written = 0; 2737 long pages_skipped; 2738 int range_cyclic, cycled = 1, io_done = 0; 2739 int needed_blocks, ret = 0, nr_to_writebump = 0; 2740 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2741 2742 trace_ext4_da_writepages(inode, wbc); 2743 2744 /* 2745 * No pages to write? This is mainly a kludge to avoid starting 2746 * a transaction for special inodes like journal inode on last iput() 2747 * because that could violate lock ordering on umount 2748 */ 2749 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2750 return 0; 2751 2752 /* 2753 * If the filesystem has aborted, it is read-only, so return 2754 * right away instead of dumping stack traces later on that 2755 * will obscure the real source of the problem. We test 2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2757 * the latter could be true if the filesystem is mounted 2758 * read-only, and in that case, ext4_da_writepages should 2759 * *never* be called, so if that ever happens, we would want 2760 * the stack trace. 2761 */ 2762 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2763 return -EROFS; 2764 2765 /* 2766 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2767 * This make sure small files blocks are allocated in 2768 * single attempt. This ensure that small files 2769 * get less fragmented. 2770 */ 2771 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2772 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2773 wbc->nr_to_write = sbi->s_mb_stream_request; 2774 } 2775 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2776 range_whole = 1; 2777 2778 range_cyclic = wbc->range_cyclic; 2779 if (wbc->range_cyclic) { 2780 index = mapping->writeback_index; 2781 if (index) 2782 cycled = 0; 2783 wbc->range_start = index << PAGE_CACHE_SHIFT; 2784 wbc->range_end = LLONG_MAX; 2785 wbc->range_cyclic = 0; 2786 } else 2787 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2788 2789 mpd.wbc = wbc; 2790 mpd.inode = mapping->host; 2791 2792 /* 2793 * we don't want write_cache_pages to update 2794 * nr_to_write and writeback_index 2795 */ 2796 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2797 wbc->no_nrwrite_index_update = 1; 2798 pages_skipped = wbc->pages_skipped; 2799 2800 retry: 2801 while (!ret && wbc->nr_to_write > 0) { 2802 2803 /* 2804 * we insert one extent at a time. So we need 2805 * credit needed for single extent allocation. 2806 * journalled mode is currently not supported 2807 * by delalloc 2808 */ 2809 BUG_ON(ext4_should_journal_data(inode)); 2810 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2811 2812 /* start a new transaction*/ 2813 handle = ext4_journal_start(inode, needed_blocks); 2814 if (IS_ERR(handle)) { 2815 ret = PTR_ERR(handle); 2816 printk(KERN_CRIT "%s: jbd2_start: " 2817 "%ld pages, ino %lu; err %d\n", __func__, 2818 wbc->nr_to_write, inode->i_ino, ret); 2819 dump_stack(); 2820 goto out_writepages; 2821 } 2822 2823 /* 2824 * Now call __mpage_da_writepage to find the next 2825 * contiguous region of logical blocks that need 2826 * blocks to be allocated by ext4. We don't actually 2827 * submit the blocks for I/O here, even though 2828 * write_cache_pages thinks it will, and will set the 2829 * pages as clean for write before calling 2830 * __mpage_da_writepage(). 2831 */ 2832 mpd.b_size = 0; 2833 mpd.b_state = 0; 2834 mpd.b_blocknr = 0; 2835 mpd.first_page = 0; 2836 mpd.next_page = 0; 2837 mpd.io_done = 0; 2838 mpd.pages_written = 0; 2839 mpd.retval = 0; 2840 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, 2841 &mpd); 2842 /* 2843 * If we have a contigous extent of pages and we 2844 * haven't done the I/O yet, map the blocks and submit 2845 * them for I/O. 2846 */ 2847 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2848 if (mpage_da_map_blocks(&mpd) == 0) 2849 mpage_da_submit_io(&mpd); 2850 mpd.io_done = 1; 2851 ret = MPAGE_DA_EXTENT_TAIL; 2852 } 2853 wbc->nr_to_write -= mpd.pages_written; 2854 2855 ext4_journal_stop(handle); 2856 2857 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2858 /* commit the transaction which would 2859 * free blocks released in the transaction 2860 * and try again 2861 */ 2862 jbd2_journal_force_commit_nested(sbi->s_journal); 2863 wbc->pages_skipped = pages_skipped; 2864 ret = 0; 2865 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2866 /* 2867 * got one extent now try with 2868 * rest of the pages 2869 */ 2870 pages_written += mpd.pages_written; 2871 wbc->pages_skipped = pages_skipped; 2872 ret = 0; 2873 io_done = 1; 2874 } else if (wbc->nr_to_write) 2875 /* 2876 * There is no more writeout needed 2877 * or we requested for a noblocking writeout 2878 * and we found the device congested 2879 */ 2880 break; 2881 } 2882 if (!io_done && !cycled) { 2883 cycled = 1; 2884 index = 0; 2885 wbc->range_start = index << PAGE_CACHE_SHIFT; 2886 wbc->range_end = mapping->writeback_index - 1; 2887 goto retry; 2888 } 2889 if (pages_skipped != wbc->pages_skipped) 2890 printk(KERN_EMERG "This should not happen leaving %s " 2891 "with nr_to_write = %ld ret = %d\n", 2892 __func__, wbc->nr_to_write, ret); 2893 2894 /* Update index */ 2895 index += pages_written; 2896 wbc->range_cyclic = range_cyclic; 2897 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2898 /* 2899 * set the writeback_index so that range_cyclic 2900 * mode will write it back later 2901 */ 2902 mapping->writeback_index = index; 2903 2904 out_writepages: 2905 if (!no_nrwrite_index_update) 2906 wbc->no_nrwrite_index_update = 0; 2907 wbc->nr_to_write -= nr_to_writebump; 2908 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2909 return ret; 2910 } 2911 2912 #define FALL_BACK_TO_NONDELALLOC 1 2913 static int ext4_nonda_switch(struct super_block *sb) 2914 { 2915 s64 free_blocks, dirty_blocks; 2916 struct ext4_sb_info *sbi = EXT4_SB(sb); 2917 2918 /* 2919 * switch to non delalloc mode if we are running low 2920 * on free block. The free block accounting via percpu 2921 * counters can get slightly wrong with percpu_counter_batch getting 2922 * accumulated on each CPU without updating global counters 2923 * Delalloc need an accurate free block accounting. So switch 2924 * to non delalloc when we are near to error range. 2925 */ 2926 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2927 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2928 if (2 * free_blocks < 3 * dirty_blocks || 2929 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2930 /* 2931 * free block count is less that 150% of dirty blocks 2932 * or free blocks is less that watermark 2933 */ 2934 return 1; 2935 } 2936 return 0; 2937 } 2938 2939 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2940 loff_t pos, unsigned len, unsigned flags, 2941 struct page **pagep, void **fsdata) 2942 { 2943 int ret, retries = 0; 2944 struct page *page; 2945 pgoff_t index; 2946 unsigned from, to; 2947 struct inode *inode = mapping->host; 2948 handle_t *handle; 2949 2950 index = pos >> PAGE_CACHE_SHIFT; 2951 from = pos & (PAGE_CACHE_SIZE - 1); 2952 to = from + len; 2953 2954 if (ext4_nonda_switch(inode->i_sb)) { 2955 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2956 return ext4_write_begin(file, mapping, pos, 2957 len, flags, pagep, fsdata); 2958 } 2959 *fsdata = (void *)0; 2960 trace_ext4_da_write_begin(inode, pos, len, flags); 2961 retry: 2962 /* 2963 * With delayed allocation, we don't log the i_disksize update 2964 * if there is delayed block allocation. But we still need 2965 * to journalling the i_disksize update if writes to the end 2966 * of file which has an already mapped buffer. 2967 */ 2968 handle = ext4_journal_start(inode, 1); 2969 if (IS_ERR(handle)) { 2970 ret = PTR_ERR(handle); 2971 goto out; 2972 } 2973 /* We cannot recurse into the filesystem as the transaction is already 2974 * started */ 2975 flags |= AOP_FLAG_NOFS; 2976 2977 page = grab_cache_page_write_begin(mapping, index, flags); 2978 if (!page) { 2979 ext4_journal_stop(handle); 2980 ret = -ENOMEM; 2981 goto out; 2982 } 2983 *pagep = page; 2984 2985 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2986 ext4_da_get_block_prep); 2987 if (ret < 0) { 2988 unlock_page(page); 2989 ext4_journal_stop(handle); 2990 page_cache_release(page); 2991 /* 2992 * block_write_begin may have instantiated a few blocks 2993 * outside i_size. Trim these off again. Don't need 2994 * i_size_read because we hold i_mutex. 2995 */ 2996 if (pos + len > inode->i_size) 2997 ext4_truncate(inode); 2998 } 2999 3000 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3001 goto retry; 3002 out: 3003 return ret; 3004 } 3005 3006 /* 3007 * Check if we should update i_disksize 3008 * when write to the end of file but not require block allocation 3009 */ 3010 static int ext4_da_should_update_i_disksize(struct page *page, 3011 unsigned long offset) 3012 { 3013 struct buffer_head *bh; 3014 struct inode *inode = page->mapping->host; 3015 unsigned int idx; 3016 int i; 3017 3018 bh = page_buffers(page); 3019 idx = offset >> inode->i_blkbits; 3020 3021 for (i = 0; i < idx; i++) 3022 bh = bh->b_this_page; 3023 3024 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3025 return 0; 3026 return 1; 3027 } 3028 3029 static int ext4_da_write_end(struct file *file, 3030 struct address_space *mapping, 3031 loff_t pos, unsigned len, unsigned copied, 3032 struct page *page, void *fsdata) 3033 { 3034 struct inode *inode = mapping->host; 3035 int ret = 0, ret2; 3036 handle_t *handle = ext4_journal_current_handle(); 3037 loff_t new_i_size; 3038 unsigned long start, end; 3039 int write_mode = (int)(unsigned long)fsdata; 3040 3041 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3042 if (ext4_should_order_data(inode)) { 3043 return ext4_ordered_write_end(file, mapping, pos, 3044 len, copied, page, fsdata); 3045 } else if (ext4_should_writeback_data(inode)) { 3046 return ext4_writeback_write_end(file, mapping, pos, 3047 len, copied, page, fsdata); 3048 } else { 3049 BUG(); 3050 } 3051 } 3052 3053 trace_ext4_da_write_end(inode, pos, len, copied); 3054 start = pos & (PAGE_CACHE_SIZE - 1); 3055 end = start + copied - 1; 3056 3057 /* 3058 * generic_write_end() will run mark_inode_dirty() if i_size 3059 * changes. So let's piggyback the i_disksize mark_inode_dirty 3060 * into that. 3061 */ 3062 3063 new_i_size = pos + copied; 3064 if (new_i_size > EXT4_I(inode)->i_disksize) { 3065 if (ext4_da_should_update_i_disksize(page, end)) { 3066 down_write(&EXT4_I(inode)->i_data_sem); 3067 if (new_i_size > EXT4_I(inode)->i_disksize) { 3068 /* 3069 * Updating i_disksize when extending file 3070 * without needing block allocation 3071 */ 3072 if (ext4_should_order_data(inode)) 3073 ret = ext4_jbd2_file_inode(handle, 3074 inode); 3075 3076 EXT4_I(inode)->i_disksize = new_i_size; 3077 } 3078 up_write(&EXT4_I(inode)->i_data_sem); 3079 /* We need to mark inode dirty even if 3080 * new_i_size is less that inode->i_size 3081 * bu greater than i_disksize.(hint delalloc) 3082 */ 3083 ext4_mark_inode_dirty(handle, inode); 3084 } 3085 } 3086 ret2 = generic_write_end(file, mapping, pos, len, copied, 3087 page, fsdata); 3088 copied = ret2; 3089 if (ret2 < 0) 3090 ret = ret2; 3091 ret2 = ext4_journal_stop(handle); 3092 if (!ret) 3093 ret = ret2; 3094 3095 return ret ? ret : copied; 3096 } 3097 3098 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3099 { 3100 /* 3101 * Drop reserved blocks 3102 */ 3103 BUG_ON(!PageLocked(page)); 3104 if (!page_has_buffers(page)) 3105 goto out; 3106 3107 ext4_da_page_release_reservation(page, offset); 3108 3109 out: 3110 ext4_invalidatepage(page, offset); 3111 3112 return; 3113 } 3114 3115 /* 3116 * Force all delayed allocation blocks to be allocated for a given inode. 3117 */ 3118 int ext4_alloc_da_blocks(struct inode *inode) 3119 { 3120 if (!EXT4_I(inode)->i_reserved_data_blocks && 3121 !EXT4_I(inode)->i_reserved_meta_blocks) 3122 return 0; 3123 3124 /* 3125 * We do something simple for now. The filemap_flush() will 3126 * also start triggering a write of the data blocks, which is 3127 * not strictly speaking necessary (and for users of 3128 * laptop_mode, not even desirable). However, to do otherwise 3129 * would require replicating code paths in: 3130 * 3131 * ext4_da_writepages() -> 3132 * write_cache_pages() ---> (via passed in callback function) 3133 * __mpage_da_writepage() --> 3134 * mpage_add_bh_to_extent() 3135 * mpage_da_map_blocks() 3136 * 3137 * The problem is that write_cache_pages(), located in 3138 * mm/page-writeback.c, marks pages clean in preparation for 3139 * doing I/O, which is not desirable if we're not planning on 3140 * doing I/O at all. 3141 * 3142 * We could call write_cache_pages(), and then redirty all of 3143 * the pages by calling redirty_page_for_writeback() but that 3144 * would be ugly in the extreme. So instead we would need to 3145 * replicate parts of the code in the above functions, 3146 * simplifying them becuase we wouldn't actually intend to 3147 * write out the pages, but rather only collect contiguous 3148 * logical block extents, call the multi-block allocator, and 3149 * then update the buffer heads with the block allocations. 3150 * 3151 * For now, though, we'll cheat by calling filemap_flush(), 3152 * which will map the blocks, and start the I/O, but not 3153 * actually wait for the I/O to complete. 3154 */ 3155 return filemap_flush(inode->i_mapping); 3156 } 3157 3158 /* 3159 * bmap() is special. It gets used by applications such as lilo and by 3160 * the swapper to find the on-disk block of a specific piece of data. 3161 * 3162 * Naturally, this is dangerous if the block concerned is still in the 3163 * journal. If somebody makes a swapfile on an ext4 data-journaling 3164 * filesystem and enables swap, then they may get a nasty shock when the 3165 * data getting swapped to that swapfile suddenly gets overwritten by 3166 * the original zero's written out previously to the journal and 3167 * awaiting writeback in the kernel's buffer cache. 3168 * 3169 * So, if we see any bmap calls here on a modified, data-journaled file, 3170 * take extra steps to flush any blocks which might be in the cache. 3171 */ 3172 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3173 { 3174 struct inode *inode = mapping->host; 3175 journal_t *journal; 3176 int err; 3177 3178 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3179 test_opt(inode->i_sb, DELALLOC)) { 3180 /* 3181 * With delalloc we want to sync the file 3182 * so that we can make sure we allocate 3183 * blocks for file 3184 */ 3185 filemap_write_and_wait(mapping); 3186 } 3187 3188 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 3189 /* 3190 * This is a REALLY heavyweight approach, but the use of 3191 * bmap on dirty files is expected to be extremely rare: 3192 * only if we run lilo or swapon on a freshly made file 3193 * do we expect this to happen. 3194 * 3195 * (bmap requires CAP_SYS_RAWIO so this does not 3196 * represent an unprivileged user DOS attack --- we'd be 3197 * in trouble if mortal users could trigger this path at 3198 * will.) 3199 * 3200 * NB. EXT4_STATE_JDATA is not set on files other than 3201 * regular files. If somebody wants to bmap a directory 3202 * or symlink and gets confused because the buffer 3203 * hasn't yet been flushed to disk, they deserve 3204 * everything they get. 3205 */ 3206 3207 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 3208 journal = EXT4_JOURNAL(inode); 3209 jbd2_journal_lock_updates(journal); 3210 err = jbd2_journal_flush(journal); 3211 jbd2_journal_unlock_updates(journal); 3212 3213 if (err) 3214 return 0; 3215 } 3216 3217 return generic_block_bmap(mapping, block, ext4_get_block); 3218 } 3219 3220 static int ext4_readpage(struct file *file, struct page *page) 3221 { 3222 return mpage_readpage(page, ext4_get_block); 3223 } 3224 3225 static int 3226 ext4_readpages(struct file *file, struct address_space *mapping, 3227 struct list_head *pages, unsigned nr_pages) 3228 { 3229 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3230 } 3231 3232 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3233 { 3234 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3235 3236 /* 3237 * If it's a full truncate we just forget about the pending dirtying 3238 */ 3239 if (offset == 0) 3240 ClearPageChecked(page); 3241 3242 if (journal) 3243 jbd2_journal_invalidatepage(journal, page, offset); 3244 else 3245 block_invalidatepage(page, offset); 3246 } 3247 3248 static int ext4_releasepage(struct page *page, gfp_t wait) 3249 { 3250 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3251 3252 WARN_ON(PageChecked(page)); 3253 if (!page_has_buffers(page)) 3254 return 0; 3255 if (journal) 3256 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3257 else 3258 return try_to_free_buffers(page); 3259 } 3260 3261 /* 3262 * If the O_DIRECT write will extend the file then add this inode to the 3263 * orphan list. So recovery will truncate it back to the original size 3264 * if the machine crashes during the write. 3265 * 3266 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3267 * crashes then stale disk data _may_ be exposed inside the file. But current 3268 * VFS code falls back into buffered path in that case so we are safe. 3269 */ 3270 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3271 const struct iovec *iov, loff_t offset, 3272 unsigned long nr_segs) 3273 { 3274 struct file *file = iocb->ki_filp; 3275 struct inode *inode = file->f_mapping->host; 3276 struct ext4_inode_info *ei = EXT4_I(inode); 3277 handle_t *handle; 3278 ssize_t ret; 3279 int orphan = 0; 3280 size_t count = iov_length(iov, nr_segs); 3281 3282 if (rw == WRITE) { 3283 loff_t final_size = offset + count; 3284 3285 if (final_size > inode->i_size) { 3286 /* Credits for sb + inode write */ 3287 handle = ext4_journal_start(inode, 2); 3288 if (IS_ERR(handle)) { 3289 ret = PTR_ERR(handle); 3290 goto out; 3291 } 3292 ret = ext4_orphan_add(handle, inode); 3293 if (ret) { 3294 ext4_journal_stop(handle); 3295 goto out; 3296 } 3297 orphan = 1; 3298 ei->i_disksize = inode->i_size; 3299 ext4_journal_stop(handle); 3300 } 3301 } 3302 3303 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3304 offset, nr_segs, 3305 ext4_get_block, NULL); 3306 3307 if (orphan) { 3308 int err; 3309 3310 /* Credits for sb + inode write */ 3311 handle = ext4_journal_start(inode, 2); 3312 if (IS_ERR(handle)) { 3313 /* This is really bad luck. We've written the data 3314 * but cannot extend i_size. Bail out and pretend 3315 * the write failed... */ 3316 ret = PTR_ERR(handle); 3317 goto out; 3318 } 3319 if (inode->i_nlink) 3320 ext4_orphan_del(handle, inode); 3321 if (ret > 0) { 3322 loff_t end = offset + ret; 3323 if (end > inode->i_size) { 3324 ei->i_disksize = end; 3325 i_size_write(inode, end); 3326 /* 3327 * We're going to return a positive `ret' 3328 * here due to non-zero-length I/O, so there's 3329 * no way of reporting error returns from 3330 * ext4_mark_inode_dirty() to userspace. So 3331 * ignore it. 3332 */ 3333 ext4_mark_inode_dirty(handle, inode); 3334 } 3335 } 3336 err = ext4_journal_stop(handle); 3337 if (ret == 0) 3338 ret = err; 3339 } 3340 out: 3341 return ret; 3342 } 3343 3344 /* 3345 * Pages can be marked dirty completely asynchronously from ext4's journalling 3346 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3347 * much here because ->set_page_dirty is called under VFS locks. The page is 3348 * not necessarily locked. 3349 * 3350 * We cannot just dirty the page and leave attached buffers clean, because the 3351 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3352 * or jbddirty because all the journalling code will explode. 3353 * 3354 * So what we do is to mark the page "pending dirty" and next time writepage 3355 * is called, propagate that into the buffers appropriately. 3356 */ 3357 static int ext4_journalled_set_page_dirty(struct page *page) 3358 { 3359 SetPageChecked(page); 3360 return __set_page_dirty_nobuffers(page); 3361 } 3362 3363 static const struct address_space_operations ext4_ordered_aops = { 3364 .readpage = ext4_readpage, 3365 .readpages = ext4_readpages, 3366 .writepage = ext4_writepage, 3367 .sync_page = block_sync_page, 3368 .write_begin = ext4_write_begin, 3369 .write_end = ext4_ordered_write_end, 3370 .bmap = ext4_bmap, 3371 .invalidatepage = ext4_invalidatepage, 3372 .releasepage = ext4_releasepage, 3373 .direct_IO = ext4_direct_IO, 3374 .migratepage = buffer_migrate_page, 3375 .is_partially_uptodate = block_is_partially_uptodate, 3376 }; 3377 3378 static const struct address_space_operations ext4_writeback_aops = { 3379 .readpage = ext4_readpage, 3380 .readpages = ext4_readpages, 3381 .writepage = ext4_writepage, 3382 .sync_page = block_sync_page, 3383 .write_begin = ext4_write_begin, 3384 .write_end = ext4_writeback_write_end, 3385 .bmap = ext4_bmap, 3386 .invalidatepage = ext4_invalidatepage, 3387 .releasepage = ext4_releasepage, 3388 .direct_IO = ext4_direct_IO, 3389 .migratepage = buffer_migrate_page, 3390 .is_partially_uptodate = block_is_partially_uptodate, 3391 }; 3392 3393 static const struct address_space_operations ext4_journalled_aops = { 3394 .readpage = ext4_readpage, 3395 .readpages = ext4_readpages, 3396 .writepage = ext4_writepage, 3397 .sync_page = block_sync_page, 3398 .write_begin = ext4_write_begin, 3399 .write_end = ext4_journalled_write_end, 3400 .set_page_dirty = ext4_journalled_set_page_dirty, 3401 .bmap = ext4_bmap, 3402 .invalidatepage = ext4_invalidatepage, 3403 .releasepage = ext4_releasepage, 3404 .is_partially_uptodate = block_is_partially_uptodate, 3405 }; 3406 3407 static const struct address_space_operations ext4_da_aops = { 3408 .readpage = ext4_readpage, 3409 .readpages = ext4_readpages, 3410 .writepage = ext4_writepage, 3411 .writepages = ext4_da_writepages, 3412 .sync_page = block_sync_page, 3413 .write_begin = ext4_da_write_begin, 3414 .write_end = ext4_da_write_end, 3415 .bmap = ext4_bmap, 3416 .invalidatepage = ext4_da_invalidatepage, 3417 .releasepage = ext4_releasepage, 3418 .direct_IO = ext4_direct_IO, 3419 .migratepage = buffer_migrate_page, 3420 .is_partially_uptodate = block_is_partially_uptodate, 3421 }; 3422 3423 void ext4_set_aops(struct inode *inode) 3424 { 3425 if (ext4_should_order_data(inode) && 3426 test_opt(inode->i_sb, DELALLOC)) 3427 inode->i_mapping->a_ops = &ext4_da_aops; 3428 else if (ext4_should_order_data(inode)) 3429 inode->i_mapping->a_ops = &ext4_ordered_aops; 3430 else if (ext4_should_writeback_data(inode) && 3431 test_opt(inode->i_sb, DELALLOC)) 3432 inode->i_mapping->a_ops = &ext4_da_aops; 3433 else if (ext4_should_writeback_data(inode)) 3434 inode->i_mapping->a_ops = &ext4_writeback_aops; 3435 else 3436 inode->i_mapping->a_ops = &ext4_journalled_aops; 3437 } 3438 3439 /* 3440 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3441 * up to the end of the block which corresponds to `from'. 3442 * This required during truncate. We need to physically zero the tail end 3443 * of that block so it doesn't yield old data if the file is later grown. 3444 */ 3445 int ext4_block_truncate_page(handle_t *handle, 3446 struct address_space *mapping, loff_t from) 3447 { 3448 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3449 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3450 unsigned blocksize, length, pos; 3451 ext4_lblk_t iblock; 3452 struct inode *inode = mapping->host; 3453 struct buffer_head *bh; 3454 struct page *page; 3455 int err = 0; 3456 3457 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3458 mapping_gfp_mask(mapping) & ~__GFP_FS); 3459 if (!page) 3460 return -EINVAL; 3461 3462 blocksize = inode->i_sb->s_blocksize; 3463 length = blocksize - (offset & (blocksize - 1)); 3464 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3465 3466 /* 3467 * For "nobh" option, we can only work if we don't need to 3468 * read-in the page - otherwise we create buffers to do the IO. 3469 */ 3470 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3471 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3472 zero_user(page, offset, length); 3473 set_page_dirty(page); 3474 goto unlock; 3475 } 3476 3477 if (!page_has_buffers(page)) 3478 create_empty_buffers(page, blocksize, 0); 3479 3480 /* Find the buffer that contains "offset" */ 3481 bh = page_buffers(page); 3482 pos = blocksize; 3483 while (offset >= pos) { 3484 bh = bh->b_this_page; 3485 iblock++; 3486 pos += blocksize; 3487 } 3488 3489 err = 0; 3490 if (buffer_freed(bh)) { 3491 BUFFER_TRACE(bh, "freed: skip"); 3492 goto unlock; 3493 } 3494 3495 if (!buffer_mapped(bh)) { 3496 BUFFER_TRACE(bh, "unmapped"); 3497 ext4_get_block(inode, iblock, bh, 0); 3498 /* unmapped? It's a hole - nothing to do */ 3499 if (!buffer_mapped(bh)) { 3500 BUFFER_TRACE(bh, "still unmapped"); 3501 goto unlock; 3502 } 3503 } 3504 3505 /* Ok, it's mapped. Make sure it's up-to-date */ 3506 if (PageUptodate(page)) 3507 set_buffer_uptodate(bh); 3508 3509 if (!buffer_uptodate(bh)) { 3510 err = -EIO; 3511 ll_rw_block(READ, 1, &bh); 3512 wait_on_buffer(bh); 3513 /* Uhhuh. Read error. Complain and punt. */ 3514 if (!buffer_uptodate(bh)) 3515 goto unlock; 3516 } 3517 3518 if (ext4_should_journal_data(inode)) { 3519 BUFFER_TRACE(bh, "get write access"); 3520 err = ext4_journal_get_write_access(handle, bh); 3521 if (err) 3522 goto unlock; 3523 } 3524 3525 zero_user(page, offset, length); 3526 3527 BUFFER_TRACE(bh, "zeroed end of block"); 3528 3529 err = 0; 3530 if (ext4_should_journal_data(inode)) { 3531 err = ext4_handle_dirty_metadata(handle, inode, bh); 3532 } else { 3533 if (ext4_should_order_data(inode)) 3534 err = ext4_jbd2_file_inode(handle, inode); 3535 mark_buffer_dirty(bh); 3536 } 3537 3538 unlock: 3539 unlock_page(page); 3540 page_cache_release(page); 3541 return err; 3542 } 3543 3544 /* 3545 * Probably it should be a library function... search for first non-zero word 3546 * or memcmp with zero_page, whatever is better for particular architecture. 3547 * Linus? 3548 */ 3549 static inline int all_zeroes(__le32 *p, __le32 *q) 3550 { 3551 while (p < q) 3552 if (*p++) 3553 return 0; 3554 return 1; 3555 } 3556 3557 /** 3558 * ext4_find_shared - find the indirect blocks for partial truncation. 3559 * @inode: inode in question 3560 * @depth: depth of the affected branch 3561 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3562 * @chain: place to store the pointers to partial indirect blocks 3563 * @top: place to the (detached) top of branch 3564 * 3565 * This is a helper function used by ext4_truncate(). 3566 * 3567 * When we do truncate() we may have to clean the ends of several 3568 * indirect blocks but leave the blocks themselves alive. Block is 3569 * partially truncated if some data below the new i_size is refered 3570 * from it (and it is on the path to the first completely truncated 3571 * data block, indeed). We have to free the top of that path along 3572 * with everything to the right of the path. Since no allocation 3573 * past the truncation point is possible until ext4_truncate() 3574 * finishes, we may safely do the latter, but top of branch may 3575 * require special attention - pageout below the truncation point 3576 * might try to populate it. 3577 * 3578 * We atomically detach the top of branch from the tree, store the 3579 * block number of its root in *@top, pointers to buffer_heads of 3580 * partially truncated blocks - in @chain[].bh and pointers to 3581 * their last elements that should not be removed - in 3582 * @chain[].p. Return value is the pointer to last filled element 3583 * of @chain. 3584 * 3585 * The work left to caller to do the actual freeing of subtrees: 3586 * a) free the subtree starting from *@top 3587 * b) free the subtrees whose roots are stored in 3588 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3589 * c) free the subtrees growing from the inode past the @chain[0]. 3590 * (no partially truncated stuff there). */ 3591 3592 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3593 ext4_lblk_t offsets[4], Indirect chain[4], 3594 __le32 *top) 3595 { 3596 Indirect *partial, *p; 3597 int k, err; 3598 3599 *top = 0; 3600 /* Make k index the deepest non-null offest + 1 */ 3601 for (k = depth; k > 1 && !offsets[k-1]; k--) 3602 ; 3603 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3604 /* Writer: pointers */ 3605 if (!partial) 3606 partial = chain + k-1; 3607 /* 3608 * If the branch acquired continuation since we've looked at it - 3609 * fine, it should all survive and (new) top doesn't belong to us. 3610 */ 3611 if (!partial->key && *partial->p) 3612 /* Writer: end */ 3613 goto no_top; 3614 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3615 ; 3616 /* 3617 * OK, we've found the last block that must survive. The rest of our 3618 * branch should be detached before unlocking. However, if that rest 3619 * of branch is all ours and does not grow immediately from the inode 3620 * it's easier to cheat and just decrement partial->p. 3621 */ 3622 if (p == chain + k - 1 && p > chain) { 3623 p->p--; 3624 } else { 3625 *top = *p->p; 3626 /* Nope, don't do this in ext4. Must leave the tree intact */ 3627 #if 0 3628 *p->p = 0; 3629 #endif 3630 } 3631 /* Writer: end */ 3632 3633 while (partial > p) { 3634 brelse(partial->bh); 3635 partial--; 3636 } 3637 no_top: 3638 return partial; 3639 } 3640 3641 /* 3642 * Zero a number of block pointers in either an inode or an indirect block. 3643 * If we restart the transaction we must again get write access to the 3644 * indirect block for further modification. 3645 * 3646 * We release `count' blocks on disk, but (last - first) may be greater 3647 * than `count' because there can be holes in there. 3648 */ 3649 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3650 struct buffer_head *bh, 3651 ext4_fsblk_t block_to_free, 3652 unsigned long count, __le32 *first, 3653 __le32 *last) 3654 { 3655 __le32 *p; 3656 if (try_to_extend_transaction(handle, inode)) { 3657 if (bh) { 3658 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3659 ext4_handle_dirty_metadata(handle, inode, bh); 3660 } 3661 ext4_mark_inode_dirty(handle, inode); 3662 ext4_journal_test_restart(handle, inode); 3663 if (bh) { 3664 BUFFER_TRACE(bh, "retaking write access"); 3665 ext4_journal_get_write_access(handle, bh); 3666 } 3667 } 3668 3669 /* 3670 * Any buffers which are on the journal will be in memory. We 3671 * find them on the hash table so jbd2_journal_revoke() will 3672 * run jbd2_journal_forget() on them. We've already detached 3673 * each block from the file, so bforget() in 3674 * jbd2_journal_forget() should be safe. 3675 * 3676 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3677 */ 3678 for (p = first; p < last; p++) { 3679 u32 nr = le32_to_cpu(*p); 3680 if (nr) { 3681 struct buffer_head *tbh; 3682 3683 *p = 0; 3684 tbh = sb_find_get_block(inode->i_sb, nr); 3685 ext4_forget(handle, 0, inode, tbh, nr); 3686 } 3687 } 3688 3689 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3690 } 3691 3692 /** 3693 * ext4_free_data - free a list of data blocks 3694 * @handle: handle for this transaction 3695 * @inode: inode we are dealing with 3696 * @this_bh: indirect buffer_head which contains *@first and *@last 3697 * @first: array of block numbers 3698 * @last: points immediately past the end of array 3699 * 3700 * We are freeing all blocks refered from that array (numbers are stored as 3701 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3702 * 3703 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3704 * blocks are contiguous then releasing them at one time will only affect one 3705 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3706 * actually use a lot of journal space. 3707 * 3708 * @this_bh will be %NULL if @first and @last point into the inode's direct 3709 * block pointers. 3710 */ 3711 static void ext4_free_data(handle_t *handle, struct inode *inode, 3712 struct buffer_head *this_bh, 3713 __le32 *first, __le32 *last) 3714 { 3715 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3716 unsigned long count = 0; /* Number of blocks in the run */ 3717 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3718 corresponding to 3719 block_to_free */ 3720 ext4_fsblk_t nr; /* Current block # */ 3721 __le32 *p; /* Pointer into inode/ind 3722 for current block */ 3723 int err; 3724 3725 if (this_bh) { /* For indirect block */ 3726 BUFFER_TRACE(this_bh, "get_write_access"); 3727 err = ext4_journal_get_write_access(handle, this_bh); 3728 /* Important: if we can't update the indirect pointers 3729 * to the blocks, we can't free them. */ 3730 if (err) 3731 return; 3732 } 3733 3734 for (p = first; p < last; p++) { 3735 nr = le32_to_cpu(*p); 3736 if (nr) { 3737 /* accumulate blocks to free if they're contiguous */ 3738 if (count == 0) { 3739 block_to_free = nr; 3740 block_to_free_p = p; 3741 count = 1; 3742 } else if (nr == block_to_free + count) { 3743 count++; 3744 } else { 3745 ext4_clear_blocks(handle, inode, this_bh, 3746 block_to_free, 3747 count, block_to_free_p, p); 3748 block_to_free = nr; 3749 block_to_free_p = p; 3750 count = 1; 3751 } 3752 } 3753 } 3754 3755 if (count > 0) 3756 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3757 count, block_to_free_p, p); 3758 3759 if (this_bh) { 3760 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 3761 3762 /* 3763 * The buffer head should have an attached journal head at this 3764 * point. However, if the data is corrupted and an indirect 3765 * block pointed to itself, it would have been detached when 3766 * the block was cleared. Check for this instead of OOPSing. 3767 */ 3768 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 3769 ext4_handle_dirty_metadata(handle, inode, this_bh); 3770 else 3771 ext4_error(inode->i_sb, __func__, 3772 "circular indirect block detected, " 3773 "inode=%lu, block=%llu", 3774 inode->i_ino, 3775 (unsigned long long) this_bh->b_blocknr); 3776 } 3777 } 3778 3779 /** 3780 * ext4_free_branches - free an array of branches 3781 * @handle: JBD handle for this transaction 3782 * @inode: inode we are dealing with 3783 * @parent_bh: the buffer_head which contains *@first and *@last 3784 * @first: array of block numbers 3785 * @last: pointer immediately past the end of array 3786 * @depth: depth of the branches to free 3787 * 3788 * We are freeing all blocks refered from these branches (numbers are 3789 * stored as little-endian 32-bit) and updating @inode->i_blocks 3790 * appropriately. 3791 */ 3792 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3793 struct buffer_head *parent_bh, 3794 __le32 *first, __le32 *last, int depth) 3795 { 3796 ext4_fsblk_t nr; 3797 __le32 *p; 3798 3799 if (ext4_handle_is_aborted(handle)) 3800 return; 3801 3802 if (depth--) { 3803 struct buffer_head *bh; 3804 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3805 p = last; 3806 while (--p >= first) { 3807 nr = le32_to_cpu(*p); 3808 if (!nr) 3809 continue; /* A hole */ 3810 3811 /* Go read the buffer for the next level down */ 3812 bh = sb_bread(inode->i_sb, nr); 3813 3814 /* 3815 * A read failure? Report error and clear slot 3816 * (should be rare). 3817 */ 3818 if (!bh) { 3819 ext4_error(inode->i_sb, "ext4_free_branches", 3820 "Read failure, inode=%lu, block=%llu", 3821 inode->i_ino, nr); 3822 continue; 3823 } 3824 3825 /* This zaps the entire block. Bottom up. */ 3826 BUFFER_TRACE(bh, "free child branches"); 3827 ext4_free_branches(handle, inode, bh, 3828 (__le32 *) bh->b_data, 3829 (__le32 *) bh->b_data + addr_per_block, 3830 depth); 3831 3832 /* 3833 * We've probably journalled the indirect block several 3834 * times during the truncate. But it's no longer 3835 * needed and we now drop it from the transaction via 3836 * jbd2_journal_revoke(). 3837 * 3838 * That's easy if it's exclusively part of this 3839 * transaction. But if it's part of the committing 3840 * transaction then jbd2_journal_forget() will simply 3841 * brelse() it. That means that if the underlying 3842 * block is reallocated in ext4_get_block(), 3843 * unmap_underlying_metadata() will find this block 3844 * and will try to get rid of it. damn, damn. 3845 * 3846 * If this block has already been committed to the 3847 * journal, a revoke record will be written. And 3848 * revoke records must be emitted *before* clearing 3849 * this block's bit in the bitmaps. 3850 */ 3851 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3852 3853 /* 3854 * Everything below this this pointer has been 3855 * released. Now let this top-of-subtree go. 3856 * 3857 * We want the freeing of this indirect block to be 3858 * atomic in the journal with the updating of the 3859 * bitmap block which owns it. So make some room in 3860 * the journal. 3861 * 3862 * We zero the parent pointer *after* freeing its 3863 * pointee in the bitmaps, so if extend_transaction() 3864 * for some reason fails to put the bitmap changes and 3865 * the release into the same transaction, recovery 3866 * will merely complain about releasing a free block, 3867 * rather than leaking blocks. 3868 */ 3869 if (ext4_handle_is_aborted(handle)) 3870 return; 3871 if (try_to_extend_transaction(handle, inode)) { 3872 ext4_mark_inode_dirty(handle, inode); 3873 ext4_journal_test_restart(handle, inode); 3874 } 3875 3876 ext4_free_blocks(handle, inode, nr, 1, 1); 3877 3878 if (parent_bh) { 3879 /* 3880 * The block which we have just freed is 3881 * pointed to by an indirect block: journal it 3882 */ 3883 BUFFER_TRACE(parent_bh, "get_write_access"); 3884 if (!ext4_journal_get_write_access(handle, 3885 parent_bh)){ 3886 *p = 0; 3887 BUFFER_TRACE(parent_bh, 3888 "call ext4_handle_dirty_metadata"); 3889 ext4_handle_dirty_metadata(handle, 3890 inode, 3891 parent_bh); 3892 } 3893 } 3894 } 3895 } else { 3896 /* We have reached the bottom of the tree. */ 3897 BUFFER_TRACE(parent_bh, "free data blocks"); 3898 ext4_free_data(handle, inode, parent_bh, first, last); 3899 } 3900 } 3901 3902 int ext4_can_truncate(struct inode *inode) 3903 { 3904 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3905 return 0; 3906 if (S_ISREG(inode->i_mode)) 3907 return 1; 3908 if (S_ISDIR(inode->i_mode)) 3909 return 1; 3910 if (S_ISLNK(inode->i_mode)) 3911 return !ext4_inode_is_fast_symlink(inode); 3912 return 0; 3913 } 3914 3915 /* 3916 * ext4_truncate() 3917 * 3918 * We block out ext4_get_block() block instantiations across the entire 3919 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3920 * simultaneously on behalf of the same inode. 3921 * 3922 * As we work through the truncate and commmit bits of it to the journal there 3923 * is one core, guiding principle: the file's tree must always be consistent on 3924 * disk. We must be able to restart the truncate after a crash. 3925 * 3926 * The file's tree may be transiently inconsistent in memory (although it 3927 * probably isn't), but whenever we close off and commit a journal transaction, 3928 * the contents of (the filesystem + the journal) must be consistent and 3929 * restartable. It's pretty simple, really: bottom up, right to left (although 3930 * left-to-right works OK too). 3931 * 3932 * Note that at recovery time, journal replay occurs *before* the restart of 3933 * truncate against the orphan inode list. 3934 * 3935 * The committed inode has the new, desired i_size (which is the same as 3936 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3937 * that this inode's truncate did not complete and it will again call 3938 * ext4_truncate() to have another go. So there will be instantiated blocks 3939 * to the right of the truncation point in a crashed ext4 filesystem. But 3940 * that's fine - as long as they are linked from the inode, the post-crash 3941 * ext4_truncate() run will find them and release them. 3942 */ 3943 void ext4_truncate(struct inode *inode) 3944 { 3945 handle_t *handle; 3946 struct ext4_inode_info *ei = EXT4_I(inode); 3947 __le32 *i_data = ei->i_data; 3948 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3949 struct address_space *mapping = inode->i_mapping; 3950 ext4_lblk_t offsets[4]; 3951 Indirect chain[4]; 3952 Indirect *partial; 3953 __le32 nr = 0; 3954 int n; 3955 ext4_lblk_t last_block; 3956 unsigned blocksize = inode->i_sb->s_blocksize; 3957 3958 if (!ext4_can_truncate(inode)) 3959 return; 3960 3961 if (ei->i_disksize && inode->i_size == 0 && 3962 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3963 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE; 3964 3965 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3966 ext4_ext_truncate(inode); 3967 return; 3968 } 3969 3970 handle = start_transaction(inode); 3971 if (IS_ERR(handle)) 3972 return; /* AKPM: return what? */ 3973 3974 last_block = (inode->i_size + blocksize-1) 3975 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3976 3977 if (inode->i_size & (blocksize - 1)) 3978 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3979 goto out_stop; 3980 3981 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3982 if (n == 0) 3983 goto out_stop; /* error */ 3984 3985 /* 3986 * OK. This truncate is going to happen. We add the inode to the 3987 * orphan list, so that if this truncate spans multiple transactions, 3988 * and we crash, we will resume the truncate when the filesystem 3989 * recovers. It also marks the inode dirty, to catch the new size. 3990 * 3991 * Implication: the file must always be in a sane, consistent 3992 * truncatable state while each transaction commits. 3993 */ 3994 if (ext4_orphan_add(handle, inode)) 3995 goto out_stop; 3996 3997 /* 3998 * From here we block out all ext4_get_block() callers who want to 3999 * modify the block allocation tree. 4000 */ 4001 down_write(&ei->i_data_sem); 4002 4003 ext4_discard_preallocations(inode); 4004 4005 /* 4006 * The orphan list entry will now protect us from any crash which 4007 * occurs before the truncate completes, so it is now safe to propagate 4008 * the new, shorter inode size (held for now in i_size) into the 4009 * on-disk inode. We do this via i_disksize, which is the value which 4010 * ext4 *really* writes onto the disk inode. 4011 */ 4012 ei->i_disksize = inode->i_size; 4013 4014 if (n == 1) { /* direct blocks */ 4015 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4016 i_data + EXT4_NDIR_BLOCKS); 4017 goto do_indirects; 4018 } 4019 4020 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4021 /* Kill the top of shared branch (not detached) */ 4022 if (nr) { 4023 if (partial == chain) { 4024 /* Shared branch grows from the inode */ 4025 ext4_free_branches(handle, inode, NULL, 4026 &nr, &nr+1, (chain+n-1) - partial); 4027 *partial->p = 0; 4028 /* 4029 * We mark the inode dirty prior to restart, 4030 * and prior to stop. No need for it here. 4031 */ 4032 } else { 4033 /* Shared branch grows from an indirect block */ 4034 BUFFER_TRACE(partial->bh, "get_write_access"); 4035 ext4_free_branches(handle, inode, partial->bh, 4036 partial->p, 4037 partial->p+1, (chain+n-1) - partial); 4038 } 4039 } 4040 /* Clear the ends of indirect blocks on the shared branch */ 4041 while (partial > chain) { 4042 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4043 (__le32*)partial->bh->b_data+addr_per_block, 4044 (chain+n-1) - partial); 4045 BUFFER_TRACE(partial->bh, "call brelse"); 4046 brelse(partial->bh); 4047 partial--; 4048 } 4049 do_indirects: 4050 /* Kill the remaining (whole) subtrees */ 4051 switch (offsets[0]) { 4052 default: 4053 nr = i_data[EXT4_IND_BLOCK]; 4054 if (nr) { 4055 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4056 i_data[EXT4_IND_BLOCK] = 0; 4057 } 4058 case EXT4_IND_BLOCK: 4059 nr = i_data[EXT4_DIND_BLOCK]; 4060 if (nr) { 4061 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4062 i_data[EXT4_DIND_BLOCK] = 0; 4063 } 4064 case EXT4_DIND_BLOCK: 4065 nr = i_data[EXT4_TIND_BLOCK]; 4066 if (nr) { 4067 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4068 i_data[EXT4_TIND_BLOCK] = 0; 4069 } 4070 case EXT4_TIND_BLOCK: 4071 ; 4072 } 4073 4074 up_write(&ei->i_data_sem); 4075 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4076 ext4_mark_inode_dirty(handle, inode); 4077 4078 /* 4079 * In a multi-transaction truncate, we only make the final transaction 4080 * synchronous 4081 */ 4082 if (IS_SYNC(inode)) 4083 ext4_handle_sync(handle); 4084 out_stop: 4085 /* 4086 * If this was a simple ftruncate(), and the file will remain alive 4087 * then we need to clear up the orphan record which we created above. 4088 * However, if this was a real unlink then we were called by 4089 * ext4_delete_inode(), and we allow that function to clean up the 4090 * orphan info for us. 4091 */ 4092 if (inode->i_nlink) 4093 ext4_orphan_del(handle, inode); 4094 4095 ext4_journal_stop(handle); 4096 } 4097 4098 /* 4099 * ext4_get_inode_loc returns with an extra refcount against the inode's 4100 * underlying buffer_head on success. If 'in_mem' is true, we have all 4101 * data in memory that is needed to recreate the on-disk version of this 4102 * inode. 4103 */ 4104 static int __ext4_get_inode_loc(struct inode *inode, 4105 struct ext4_iloc *iloc, int in_mem) 4106 { 4107 struct ext4_group_desc *gdp; 4108 struct buffer_head *bh; 4109 struct super_block *sb = inode->i_sb; 4110 ext4_fsblk_t block; 4111 int inodes_per_block, inode_offset; 4112 4113 iloc->bh = NULL; 4114 if (!ext4_valid_inum(sb, inode->i_ino)) 4115 return -EIO; 4116 4117 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4118 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4119 if (!gdp) 4120 return -EIO; 4121 4122 /* 4123 * Figure out the offset within the block group inode table 4124 */ 4125 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4126 inode_offset = ((inode->i_ino - 1) % 4127 EXT4_INODES_PER_GROUP(sb)); 4128 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4129 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4130 4131 bh = sb_getblk(sb, block); 4132 if (!bh) { 4133 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 4134 "inode block - inode=%lu, block=%llu", 4135 inode->i_ino, block); 4136 return -EIO; 4137 } 4138 if (!buffer_uptodate(bh)) { 4139 lock_buffer(bh); 4140 4141 /* 4142 * If the buffer has the write error flag, we have failed 4143 * to write out another inode in the same block. In this 4144 * case, we don't have to read the block because we may 4145 * read the old inode data successfully. 4146 */ 4147 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4148 set_buffer_uptodate(bh); 4149 4150 if (buffer_uptodate(bh)) { 4151 /* someone brought it uptodate while we waited */ 4152 unlock_buffer(bh); 4153 goto has_buffer; 4154 } 4155 4156 /* 4157 * If we have all information of the inode in memory and this 4158 * is the only valid inode in the block, we need not read the 4159 * block. 4160 */ 4161 if (in_mem) { 4162 struct buffer_head *bitmap_bh; 4163 int i, start; 4164 4165 start = inode_offset & ~(inodes_per_block - 1); 4166 4167 /* Is the inode bitmap in cache? */ 4168 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4169 if (!bitmap_bh) 4170 goto make_io; 4171 4172 /* 4173 * If the inode bitmap isn't in cache then the 4174 * optimisation may end up performing two reads instead 4175 * of one, so skip it. 4176 */ 4177 if (!buffer_uptodate(bitmap_bh)) { 4178 brelse(bitmap_bh); 4179 goto make_io; 4180 } 4181 for (i = start; i < start + inodes_per_block; i++) { 4182 if (i == inode_offset) 4183 continue; 4184 if (ext4_test_bit(i, bitmap_bh->b_data)) 4185 break; 4186 } 4187 brelse(bitmap_bh); 4188 if (i == start + inodes_per_block) { 4189 /* all other inodes are free, so skip I/O */ 4190 memset(bh->b_data, 0, bh->b_size); 4191 set_buffer_uptodate(bh); 4192 unlock_buffer(bh); 4193 goto has_buffer; 4194 } 4195 } 4196 4197 make_io: 4198 /* 4199 * If we need to do any I/O, try to pre-readahead extra 4200 * blocks from the inode table. 4201 */ 4202 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4203 ext4_fsblk_t b, end, table; 4204 unsigned num; 4205 4206 table = ext4_inode_table(sb, gdp); 4207 /* s_inode_readahead_blks is always a power of 2 */ 4208 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4209 if (table > b) 4210 b = table; 4211 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4212 num = EXT4_INODES_PER_GROUP(sb); 4213 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4214 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4215 num -= ext4_itable_unused_count(sb, gdp); 4216 table += num / inodes_per_block; 4217 if (end > table) 4218 end = table; 4219 while (b <= end) 4220 sb_breadahead(sb, b++); 4221 } 4222 4223 /* 4224 * There are other valid inodes in the buffer, this inode 4225 * has in-inode xattrs, or we don't have this inode in memory. 4226 * Read the block from disk. 4227 */ 4228 get_bh(bh); 4229 bh->b_end_io = end_buffer_read_sync; 4230 submit_bh(READ_META, bh); 4231 wait_on_buffer(bh); 4232 if (!buffer_uptodate(bh)) { 4233 ext4_error(sb, __func__, 4234 "unable to read inode block - inode=%lu, " 4235 "block=%llu", inode->i_ino, block); 4236 brelse(bh); 4237 return -EIO; 4238 } 4239 } 4240 has_buffer: 4241 iloc->bh = bh; 4242 return 0; 4243 } 4244 4245 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4246 { 4247 /* We have all inode data except xattrs in memory here. */ 4248 return __ext4_get_inode_loc(inode, iloc, 4249 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 4250 } 4251 4252 void ext4_set_inode_flags(struct inode *inode) 4253 { 4254 unsigned int flags = EXT4_I(inode)->i_flags; 4255 4256 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4257 if (flags & EXT4_SYNC_FL) 4258 inode->i_flags |= S_SYNC; 4259 if (flags & EXT4_APPEND_FL) 4260 inode->i_flags |= S_APPEND; 4261 if (flags & EXT4_IMMUTABLE_FL) 4262 inode->i_flags |= S_IMMUTABLE; 4263 if (flags & EXT4_NOATIME_FL) 4264 inode->i_flags |= S_NOATIME; 4265 if (flags & EXT4_DIRSYNC_FL) 4266 inode->i_flags |= S_DIRSYNC; 4267 } 4268 4269 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4270 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4271 { 4272 unsigned int flags = ei->vfs_inode.i_flags; 4273 4274 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4275 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4276 if (flags & S_SYNC) 4277 ei->i_flags |= EXT4_SYNC_FL; 4278 if (flags & S_APPEND) 4279 ei->i_flags |= EXT4_APPEND_FL; 4280 if (flags & S_IMMUTABLE) 4281 ei->i_flags |= EXT4_IMMUTABLE_FL; 4282 if (flags & S_NOATIME) 4283 ei->i_flags |= EXT4_NOATIME_FL; 4284 if (flags & S_DIRSYNC) 4285 ei->i_flags |= EXT4_DIRSYNC_FL; 4286 } 4287 4288 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4289 struct ext4_inode_info *ei) 4290 { 4291 blkcnt_t i_blocks ; 4292 struct inode *inode = &(ei->vfs_inode); 4293 struct super_block *sb = inode->i_sb; 4294 4295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4296 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4297 /* we are using combined 48 bit field */ 4298 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4299 le32_to_cpu(raw_inode->i_blocks_lo); 4300 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4301 /* i_blocks represent file system block size */ 4302 return i_blocks << (inode->i_blkbits - 9); 4303 } else { 4304 return i_blocks; 4305 } 4306 } else { 4307 return le32_to_cpu(raw_inode->i_blocks_lo); 4308 } 4309 } 4310 4311 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4312 { 4313 struct ext4_iloc iloc; 4314 struct ext4_inode *raw_inode; 4315 struct ext4_inode_info *ei; 4316 struct buffer_head *bh; 4317 struct inode *inode; 4318 long ret; 4319 int block; 4320 4321 inode = iget_locked(sb, ino); 4322 if (!inode) 4323 return ERR_PTR(-ENOMEM); 4324 if (!(inode->i_state & I_NEW)) 4325 return inode; 4326 4327 ei = EXT4_I(inode); 4328 4329 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4330 if (ret < 0) 4331 goto bad_inode; 4332 bh = iloc.bh; 4333 raw_inode = ext4_raw_inode(&iloc); 4334 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4335 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4336 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4337 if (!(test_opt(inode->i_sb, NO_UID32))) { 4338 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4339 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4340 } 4341 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4342 4343 ei->i_state = 0; 4344 ei->i_dir_start_lookup = 0; 4345 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4346 /* We now have enough fields to check if the inode was active or not. 4347 * This is needed because nfsd might try to access dead inodes 4348 * the test is that same one that e2fsck uses 4349 * NeilBrown 1999oct15 4350 */ 4351 if (inode->i_nlink == 0) { 4352 if (inode->i_mode == 0 || 4353 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4354 /* this inode is deleted */ 4355 brelse(bh); 4356 ret = -ESTALE; 4357 goto bad_inode; 4358 } 4359 /* The only unlinked inodes we let through here have 4360 * valid i_mode and are being read by the orphan 4361 * recovery code: that's fine, we're about to complete 4362 * the process of deleting those. */ 4363 } 4364 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4365 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4366 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4367 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4368 ei->i_file_acl |= 4369 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4370 inode->i_size = ext4_isize(raw_inode); 4371 ei->i_disksize = inode->i_size; 4372 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4373 ei->i_block_group = iloc.block_group; 4374 ei->i_last_alloc_group = ~0; 4375 /* 4376 * NOTE! The in-memory inode i_data array is in little-endian order 4377 * even on big-endian machines: we do NOT byteswap the block numbers! 4378 */ 4379 for (block = 0; block < EXT4_N_BLOCKS; block++) 4380 ei->i_data[block] = raw_inode->i_block[block]; 4381 INIT_LIST_HEAD(&ei->i_orphan); 4382 4383 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4384 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4385 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4386 EXT4_INODE_SIZE(inode->i_sb)) { 4387 brelse(bh); 4388 ret = -EIO; 4389 goto bad_inode; 4390 } 4391 if (ei->i_extra_isize == 0) { 4392 /* The extra space is currently unused. Use it. */ 4393 ei->i_extra_isize = sizeof(struct ext4_inode) - 4394 EXT4_GOOD_OLD_INODE_SIZE; 4395 } else { 4396 __le32 *magic = (void *)raw_inode + 4397 EXT4_GOOD_OLD_INODE_SIZE + 4398 ei->i_extra_isize; 4399 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4400 ei->i_state |= EXT4_STATE_XATTR; 4401 } 4402 } else 4403 ei->i_extra_isize = 0; 4404 4405 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4406 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4407 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4408 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4409 4410 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4411 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4412 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4413 inode->i_version |= 4414 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4415 } 4416 4417 ret = 0; 4418 if (ei->i_file_acl && 4419 ((ei->i_file_acl < 4420 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) + 4421 EXT4_SB(sb)->s_gdb_count)) || 4422 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) { 4423 ext4_error(sb, __func__, 4424 "bad extended attribute block %llu in inode #%lu", 4425 ei->i_file_acl, inode->i_ino); 4426 ret = -EIO; 4427 goto bad_inode; 4428 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 4429 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4430 (S_ISLNK(inode->i_mode) && 4431 !ext4_inode_is_fast_symlink(inode))) 4432 /* Validate extent which is part of inode */ 4433 ret = ext4_ext_check_inode(inode); 4434 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4435 (S_ISLNK(inode->i_mode) && 4436 !ext4_inode_is_fast_symlink(inode))) { 4437 /* Validate block references which are part of inode */ 4438 ret = ext4_check_inode_blockref(inode); 4439 } 4440 if (ret) { 4441 brelse(bh); 4442 goto bad_inode; 4443 } 4444 4445 if (S_ISREG(inode->i_mode)) { 4446 inode->i_op = &ext4_file_inode_operations; 4447 inode->i_fop = &ext4_file_operations; 4448 ext4_set_aops(inode); 4449 } else if (S_ISDIR(inode->i_mode)) { 4450 inode->i_op = &ext4_dir_inode_operations; 4451 inode->i_fop = &ext4_dir_operations; 4452 } else if (S_ISLNK(inode->i_mode)) { 4453 if (ext4_inode_is_fast_symlink(inode)) { 4454 inode->i_op = &ext4_fast_symlink_inode_operations; 4455 nd_terminate_link(ei->i_data, inode->i_size, 4456 sizeof(ei->i_data) - 1); 4457 } else { 4458 inode->i_op = &ext4_symlink_inode_operations; 4459 ext4_set_aops(inode); 4460 } 4461 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4462 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4463 inode->i_op = &ext4_special_inode_operations; 4464 if (raw_inode->i_block[0]) 4465 init_special_inode(inode, inode->i_mode, 4466 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4467 else 4468 init_special_inode(inode, inode->i_mode, 4469 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4470 } else { 4471 brelse(bh); 4472 ret = -EIO; 4473 ext4_error(inode->i_sb, __func__, 4474 "bogus i_mode (%o) for inode=%lu", 4475 inode->i_mode, inode->i_ino); 4476 goto bad_inode; 4477 } 4478 brelse(iloc.bh); 4479 ext4_set_inode_flags(inode); 4480 unlock_new_inode(inode); 4481 return inode; 4482 4483 bad_inode: 4484 iget_failed(inode); 4485 return ERR_PTR(ret); 4486 } 4487 4488 static int ext4_inode_blocks_set(handle_t *handle, 4489 struct ext4_inode *raw_inode, 4490 struct ext4_inode_info *ei) 4491 { 4492 struct inode *inode = &(ei->vfs_inode); 4493 u64 i_blocks = inode->i_blocks; 4494 struct super_block *sb = inode->i_sb; 4495 4496 if (i_blocks <= ~0U) { 4497 /* 4498 * i_blocks can be represnted in a 32 bit variable 4499 * as multiple of 512 bytes 4500 */ 4501 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4502 raw_inode->i_blocks_high = 0; 4503 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4504 return 0; 4505 } 4506 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4507 return -EFBIG; 4508 4509 if (i_blocks <= 0xffffffffffffULL) { 4510 /* 4511 * i_blocks can be represented in a 48 bit variable 4512 * as multiple of 512 bytes 4513 */ 4514 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4515 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4516 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4517 } else { 4518 ei->i_flags |= EXT4_HUGE_FILE_FL; 4519 /* i_block is stored in file system block size */ 4520 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4521 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4522 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4523 } 4524 return 0; 4525 } 4526 4527 /* 4528 * Post the struct inode info into an on-disk inode location in the 4529 * buffer-cache. This gobbles the caller's reference to the 4530 * buffer_head in the inode location struct. 4531 * 4532 * The caller must have write access to iloc->bh. 4533 */ 4534 static int ext4_do_update_inode(handle_t *handle, 4535 struct inode *inode, 4536 struct ext4_iloc *iloc) 4537 { 4538 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4539 struct ext4_inode_info *ei = EXT4_I(inode); 4540 struct buffer_head *bh = iloc->bh; 4541 int err = 0, rc, block; 4542 4543 /* For fields not not tracking in the in-memory inode, 4544 * initialise them to zero for new inodes. */ 4545 if (ei->i_state & EXT4_STATE_NEW) 4546 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4547 4548 ext4_get_inode_flags(ei); 4549 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4550 if (!(test_opt(inode->i_sb, NO_UID32))) { 4551 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4552 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4553 /* 4554 * Fix up interoperability with old kernels. Otherwise, old inodes get 4555 * re-used with the upper 16 bits of the uid/gid intact 4556 */ 4557 if (!ei->i_dtime) { 4558 raw_inode->i_uid_high = 4559 cpu_to_le16(high_16_bits(inode->i_uid)); 4560 raw_inode->i_gid_high = 4561 cpu_to_le16(high_16_bits(inode->i_gid)); 4562 } else { 4563 raw_inode->i_uid_high = 0; 4564 raw_inode->i_gid_high = 0; 4565 } 4566 } else { 4567 raw_inode->i_uid_low = 4568 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4569 raw_inode->i_gid_low = 4570 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4571 raw_inode->i_uid_high = 0; 4572 raw_inode->i_gid_high = 0; 4573 } 4574 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4575 4576 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4577 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4578 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4579 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4580 4581 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4582 goto out_brelse; 4583 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4584 /* clear the migrate flag in the raw_inode */ 4585 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4586 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4587 cpu_to_le32(EXT4_OS_HURD)) 4588 raw_inode->i_file_acl_high = 4589 cpu_to_le16(ei->i_file_acl >> 32); 4590 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4591 ext4_isize_set(raw_inode, ei->i_disksize); 4592 if (ei->i_disksize > 0x7fffffffULL) { 4593 struct super_block *sb = inode->i_sb; 4594 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4595 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4596 EXT4_SB(sb)->s_es->s_rev_level == 4597 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4598 /* If this is the first large file 4599 * created, add a flag to the superblock. 4600 */ 4601 err = ext4_journal_get_write_access(handle, 4602 EXT4_SB(sb)->s_sbh); 4603 if (err) 4604 goto out_brelse; 4605 ext4_update_dynamic_rev(sb); 4606 EXT4_SET_RO_COMPAT_FEATURE(sb, 4607 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4608 sb->s_dirt = 1; 4609 ext4_handle_sync(handle); 4610 err = ext4_handle_dirty_metadata(handle, inode, 4611 EXT4_SB(sb)->s_sbh); 4612 } 4613 } 4614 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4615 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4616 if (old_valid_dev(inode->i_rdev)) { 4617 raw_inode->i_block[0] = 4618 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4619 raw_inode->i_block[1] = 0; 4620 } else { 4621 raw_inode->i_block[0] = 0; 4622 raw_inode->i_block[1] = 4623 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4624 raw_inode->i_block[2] = 0; 4625 } 4626 } else 4627 for (block = 0; block < EXT4_N_BLOCKS; block++) 4628 raw_inode->i_block[block] = ei->i_data[block]; 4629 4630 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4631 if (ei->i_extra_isize) { 4632 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4633 raw_inode->i_version_hi = 4634 cpu_to_le32(inode->i_version >> 32); 4635 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4636 } 4637 4638 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4639 rc = ext4_handle_dirty_metadata(handle, inode, bh); 4640 if (!err) 4641 err = rc; 4642 ei->i_state &= ~EXT4_STATE_NEW; 4643 4644 out_brelse: 4645 brelse(bh); 4646 ext4_std_error(inode->i_sb, err); 4647 return err; 4648 } 4649 4650 /* 4651 * ext4_write_inode() 4652 * 4653 * We are called from a few places: 4654 * 4655 * - Within generic_file_write() for O_SYNC files. 4656 * Here, there will be no transaction running. We wait for any running 4657 * trasnaction to commit. 4658 * 4659 * - Within sys_sync(), kupdate and such. 4660 * We wait on commit, if tol to. 4661 * 4662 * - Within prune_icache() (PF_MEMALLOC == true) 4663 * Here we simply return. We can't afford to block kswapd on the 4664 * journal commit. 4665 * 4666 * In all cases it is actually safe for us to return without doing anything, 4667 * because the inode has been copied into a raw inode buffer in 4668 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4669 * knfsd. 4670 * 4671 * Note that we are absolutely dependent upon all inode dirtiers doing the 4672 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4673 * which we are interested. 4674 * 4675 * It would be a bug for them to not do this. The code: 4676 * 4677 * mark_inode_dirty(inode) 4678 * stuff(); 4679 * inode->i_size = expr; 4680 * 4681 * is in error because a kswapd-driven write_inode() could occur while 4682 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4683 * will no longer be on the superblock's dirty inode list. 4684 */ 4685 int ext4_write_inode(struct inode *inode, int wait) 4686 { 4687 if (current->flags & PF_MEMALLOC) 4688 return 0; 4689 4690 if (ext4_journal_current_handle()) { 4691 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4692 dump_stack(); 4693 return -EIO; 4694 } 4695 4696 if (!wait) 4697 return 0; 4698 4699 return ext4_force_commit(inode->i_sb); 4700 } 4701 4702 /* 4703 * ext4_setattr() 4704 * 4705 * Called from notify_change. 4706 * 4707 * We want to trap VFS attempts to truncate the file as soon as 4708 * possible. In particular, we want to make sure that when the VFS 4709 * shrinks i_size, we put the inode on the orphan list and modify 4710 * i_disksize immediately, so that during the subsequent flushing of 4711 * dirty pages and freeing of disk blocks, we can guarantee that any 4712 * commit will leave the blocks being flushed in an unused state on 4713 * disk. (On recovery, the inode will get truncated and the blocks will 4714 * be freed, so we have a strong guarantee that no future commit will 4715 * leave these blocks visible to the user.) 4716 * 4717 * Another thing we have to assure is that if we are in ordered mode 4718 * and inode is still attached to the committing transaction, we must 4719 * we start writeout of all the dirty pages which are being truncated. 4720 * This way we are sure that all the data written in the previous 4721 * transaction are already on disk (truncate waits for pages under 4722 * writeback). 4723 * 4724 * Called with inode->i_mutex down. 4725 */ 4726 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4727 { 4728 struct inode *inode = dentry->d_inode; 4729 int error, rc = 0; 4730 const unsigned int ia_valid = attr->ia_valid; 4731 4732 error = inode_change_ok(inode, attr); 4733 if (error) 4734 return error; 4735 4736 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4737 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4738 handle_t *handle; 4739 4740 /* (user+group)*(old+new) structure, inode write (sb, 4741 * inode block, ? - but truncate inode update has it) */ 4742 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4743 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4744 if (IS_ERR(handle)) { 4745 error = PTR_ERR(handle); 4746 goto err_out; 4747 } 4748 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0; 4749 if (error) { 4750 ext4_journal_stop(handle); 4751 return error; 4752 } 4753 /* Update corresponding info in inode so that everything is in 4754 * one transaction */ 4755 if (attr->ia_valid & ATTR_UID) 4756 inode->i_uid = attr->ia_uid; 4757 if (attr->ia_valid & ATTR_GID) 4758 inode->i_gid = attr->ia_gid; 4759 error = ext4_mark_inode_dirty(handle, inode); 4760 ext4_journal_stop(handle); 4761 } 4762 4763 if (attr->ia_valid & ATTR_SIZE) { 4764 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4765 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4766 4767 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4768 error = -EFBIG; 4769 goto err_out; 4770 } 4771 } 4772 } 4773 4774 if (S_ISREG(inode->i_mode) && 4775 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4776 handle_t *handle; 4777 4778 handle = ext4_journal_start(inode, 3); 4779 if (IS_ERR(handle)) { 4780 error = PTR_ERR(handle); 4781 goto err_out; 4782 } 4783 4784 error = ext4_orphan_add(handle, inode); 4785 EXT4_I(inode)->i_disksize = attr->ia_size; 4786 rc = ext4_mark_inode_dirty(handle, inode); 4787 if (!error) 4788 error = rc; 4789 ext4_journal_stop(handle); 4790 4791 if (ext4_should_order_data(inode)) { 4792 error = ext4_begin_ordered_truncate(inode, 4793 attr->ia_size); 4794 if (error) { 4795 /* Do as much error cleanup as possible */ 4796 handle = ext4_journal_start(inode, 3); 4797 if (IS_ERR(handle)) { 4798 ext4_orphan_del(NULL, inode); 4799 goto err_out; 4800 } 4801 ext4_orphan_del(handle, inode); 4802 ext4_journal_stop(handle); 4803 goto err_out; 4804 } 4805 } 4806 } 4807 4808 rc = inode_setattr(inode, attr); 4809 4810 /* If inode_setattr's call to ext4_truncate failed to get a 4811 * transaction handle at all, we need to clean up the in-core 4812 * orphan list manually. */ 4813 if (inode->i_nlink) 4814 ext4_orphan_del(NULL, inode); 4815 4816 if (!rc && (ia_valid & ATTR_MODE)) 4817 rc = ext4_acl_chmod(inode); 4818 4819 err_out: 4820 ext4_std_error(inode->i_sb, error); 4821 if (!error) 4822 error = rc; 4823 return error; 4824 } 4825 4826 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4827 struct kstat *stat) 4828 { 4829 struct inode *inode; 4830 unsigned long delalloc_blocks; 4831 4832 inode = dentry->d_inode; 4833 generic_fillattr(inode, stat); 4834 4835 /* 4836 * We can't update i_blocks if the block allocation is delayed 4837 * otherwise in the case of system crash before the real block 4838 * allocation is done, we will have i_blocks inconsistent with 4839 * on-disk file blocks. 4840 * We always keep i_blocks updated together with real 4841 * allocation. But to not confuse with user, stat 4842 * will return the blocks that include the delayed allocation 4843 * blocks for this file. 4844 */ 4845 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4846 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4847 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4848 4849 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4850 return 0; 4851 } 4852 4853 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4854 int chunk) 4855 { 4856 int indirects; 4857 4858 /* if nrblocks are contiguous */ 4859 if (chunk) { 4860 /* 4861 * With N contiguous data blocks, it need at most 4862 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4863 * 2 dindirect blocks 4864 * 1 tindirect block 4865 */ 4866 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4867 return indirects + 3; 4868 } 4869 /* 4870 * if nrblocks are not contiguous, worse case, each block touch 4871 * a indirect block, and each indirect block touch a double indirect 4872 * block, plus a triple indirect block 4873 */ 4874 indirects = nrblocks * 2 + 1; 4875 return indirects; 4876 } 4877 4878 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4879 { 4880 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4881 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 4882 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4883 } 4884 4885 /* 4886 * Account for index blocks, block groups bitmaps and block group 4887 * descriptor blocks if modify datablocks and index blocks 4888 * worse case, the indexs blocks spread over different block groups 4889 * 4890 * If datablocks are discontiguous, they are possible to spread over 4891 * different block groups too. If they are contiugous, with flexbg, 4892 * they could still across block group boundary. 4893 * 4894 * Also account for superblock, inode, quota and xattr blocks 4895 */ 4896 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4897 { 4898 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4899 int gdpblocks; 4900 int idxblocks; 4901 int ret = 0; 4902 4903 /* 4904 * How many index blocks need to touch to modify nrblocks? 4905 * The "Chunk" flag indicating whether the nrblocks is 4906 * physically contiguous on disk 4907 * 4908 * For Direct IO and fallocate, they calls get_block to allocate 4909 * one single extent at a time, so they could set the "Chunk" flag 4910 */ 4911 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4912 4913 ret = idxblocks; 4914 4915 /* 4916 * Now let's see how many group bitmaps and group descriptors need 4917 * to account 4918 */ 4919 groups = idxblocks; 4920 if (chunk) 4921 groups += 1; 4922 else 4923 groups += nrblocks; 4924 4925 gdpblocks = groups; 4926 if (groups > ngroups) 4927 groups = ngroups; 4928 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4929 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4930 4931 /* bitmaps and block group descriptor blocks */ 4932 ret += groups + gdpblocks; 4933 4934 /* Blocks for super block, inode, quota and xattr blocks */ 4935 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4936 4937 return ret; 4938 } 4939 4940 /* 4941 * Calulate the total number of credits to reserve to fit 4942 * the modification of a single pages into a single transaction, 4943 * which may include multiple chunks of block allocations. 4944 * 4945 * This could be called via ext4_write_begin() 4946 * 4947 * We need to consider the worse case, when 4948 * one new block per extent. 4949 */ 4950 int ext4_writepage_trans_blocks(struct inode *inode) 4951 { 4952 int bpp = ext4_journal_blocks_per_page(inode); 4953 int ret; 4954 4955 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4956 4957 /* Account for data blocks for journalled mode */ 4958 if (ext4_should_journal_data(inode)) 4959 ret += bpp; 4960 return ret; 4961 } 4962 4963 /* 4964 * Calculate the journal credits for a chunk of data modification. 4965 * 4966 * This is called from DIO, fallocate or whoever calling 4967 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks. 4968 * 4969 * journal buffers for data blocks are not included here, as DIO 4970 * and fallocate do no need to journal data buffers. 4971 */ 4972 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4973 { 4974 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4975 } 4976 4977 /* 4978 * The caller must have previously called ext4_reserve_inode_write(). 4979 * Give this, we know that the caller already has write access to iloc->bh. 4980 */ 4981 int ext4_mark_iloc_dirty(handle_t *handle, 4982 struct inode *inode, struct ext4_iloc *iloc) 4983 { 4984 int err = 0; 4985 4986 if (test_opt(inode->i_sb, I_VERSION)) 4987 inode_inc_iversion(inode); 4988 4989 /* the do_update_inode consumes one bh->b_count */ 4990 get_bh(iloc->bh); 4991 4992 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4993 err = ext4_do_update_inode(handle, inode, iloc); 4994 put_bh(iloc->bh); 4995 return err; 4996 } 4997 4998 /* 4999 * On success, We end up with an outstanding reference count against 5000 * iloc->bh. This _must_ be cleaned up later. 5001 */ 5002 5003 int 5004 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5005 struct ext4_iloc *iloc) 5006 { 5007 int err; 5008 5009 err = ext4_get_inode_loc(inode, iloc); 5010 if (!err) { 5011 BUFFER_TRACE(iloc->bh, "get_write_access"); 5012 err = ext4_journal_get_write_access(handle, iloc->bh); 5013 if (err) { 5014 brelse(iloc->bh); 5015 iloc->bh = NULL; 5016 } 5017 } 5018 ext4_std_error(inode->i_sb, err); 5019 return err; 5020 } 5021 5022 /* 5023 * Expand an inode by new_extra_isize bytes. 5024 * Returns 0 on success or negative error number on failure. 5025 */ 5026 static int ext4_expand_extra_isize(struct inode *inode, 5027 unsigned int new_extra_isize, 5028 struct ext4_iloc iloc, 5029 handle_t *handle) 5030 { 5031 struct ext4_inode *raw_inode; 5032 struct ext4_xattr_ibody_header *header; 5033 struct ext4_xattr_entry *entry; 5034 5035 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5036 return 0; 5037 5038 raw_inode = ext4_raw_inode(&iloc); 5039 5040 header = IHDR(inode, raw_inode); 5041 entry = IFIRST(header); 5042 5043 /* No extended attributes present */ 5044 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 5045 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5046 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5047 new_extra_isize); 5048 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5049 return 0; 5050 } 5051 5052 /* try to expand with EAs present */ 5053 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5054 raw_inode, handle); 5055 } 5056 5057 /* 5058 * What we do here is to mark the in-core inode as clean with respect to inode 5059 * dirtiness (it may still be data-dirty). 5060 * This means that the in-core inode may be reaped by prune_icache 5061 * without having to perform any I/O. This is a very good thing, 5062 * because *any* task may call prune_icache - even ones which 5063 * have a transaction open against a different journal. 5064 * 5065 * Is this cheating? Not really. Sure, we haven't written the 5066 * inode out, but prune_icache isn't a user-visible syncing function. 5067 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5068 * we start and wait on commits. 5069 * 5070 * Is this efficient/effective? Well, we're being nice to the system 5071 * by cleaning up our inodes proactively so they can be reaped 5072 * without I/O. But we are potentially leaving up to five seconds' 5073 * worth of inodes floating about which prune_icache wants us to 5074 * write out. One way to fix that would be to get prune_icache() 5075 * to do a write_super() to free up some memory. It has the desired 5076 * effect. 5077 */ 5078 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5079 { 5080 struct ext4_iloc iloc; 5081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5082 static unsigned int mnt_count; 5083 int err, ret; 5084 5085 might_sleep(); 5086 err = ext4_reserve_inode_write(handle, inode, &iloc); 5087 if (ext4_handle_valid(handle) && 5088 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5089 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 5090 /* 5091 * We need extra buffer credits since we may write into EA block 5092 * with this same handle. If journal_extend fails, then it will 5093 * only result in a minor loss of functionality for that inode. 5094 * If this is felt to be critical, then e2fsck should be run to 5095 * force a large enough s_min_extra_isize. 5096 */ 5097 if ((jbd2_journal_extend(handle, 5098 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5099 ret = ext4_expand_extra_isize(inode, 5100 sbi->s_want_extra_isize, 5101 iloc, handle); 5102 if (ret) { 5103 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 5104 if (mnt_count != 5105 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5106 ext4_warning(inode->i_sb, __func__, 5107 "Unable to expand inode %lu. Delete" 5108 " some EAs or run e2fsck.", 5109 inode->i_ino); 5110 mnt_count = 5111 le16_to_cpu(sbi->s_es->s_mnt_count); 5112 } 5113 } 5114 } 5115 } 5116 if (!err) 5117 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5118 return err; 5119 } 5120 5121 /* 5122 * ext4_dirty_inode() is called from __mark_inode_dirty() 5123 * 5124 * We're really interested in the case where a file is being extended. 5125 * i_size has been changed by generic_commit_write() and we thus need 5126 * to include the updated inode in the current transaction. 5127 * 5128 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks 5129 * are allocated to the file. 5130 * 5131 * If the inode is marked synchronous, we don't honour that here - doing 5132 * so would cause a commit on atime updates, which we don't bother doing. 5133 * We handle synchronous inodes at the highest possible level. 5134 */ 5135 void ext4_dirty_inode(struct inode *inode) 5136 { 5137 handle_t *current_handle = ext4_journal_current_handle(); 5138 handle_t *handle; 5139 5140 if (!ext4_handle_valid(current_handle)) { 5141 ext4_mark_inode_dirty(current_handle, inode); 5142 return; 5143 } 5144 5145 handle = ext4_journal_start(inode, 2); 5146 if (IS_ERR(handle)) 5147 goto out; 5148 if (current_handle && 5149 current_handle->h_transaction != handle->h_transaction) { 5150 /* This task has a transaction open against a different fs */ 5151 printk(KERN_EMERG "%s: transactions do not match!\n", 5152 __func__); 5153 } else { 5154 jbd_debug(5, "marking dirty. outer handle=%p\n", 5155 current_handle); 5156 ext4_mark_inode_dirty(handle, inode); 5157 } 5158 ext4_journal_stop(handle); 5159 out: 5160 return; 5161 } 5162 5163 #if 0 5164 /* 5165 * Bind an inode's backing buffer_head into this transaction, to prevent 5166 * it from being flushed to disk early. Unlike 5167 * ext4_reserve_inode_write, this leaves behind no bh reference and 5168 * returns no iloc structure, so the caller needs to repeat the iloc 5169 * lookup to mark the inode dirty later. 5170 */ 5171 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5172 { 5173 struct ext4_iloc iloc; 5174 5175 int err = 0; 5176 if (handle) { 5177 err = ext4_get_inode_loc(inode, &iloc); 5178 if (!err) { 5179 BUFFER_TRACE(iloc.bh, "get_write_access"); 5180 err = jbd2_journal_get_write_access(handle, iloc.bh); 5181 if (!err) 5182 err = ext4_handle_dirty_metadata(handle, 5183 inode, 5184 iloc.bh); 5185 brelse(iloc.bh); 5186 } 5187 } 5188 ext4_std_error(inode->i_sb, err); 5189 return err; 5190 } 5191 #endif 5192 5193 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5194 { 5195 journal_t *journal; 5196 handle_t *handle; 5197 int err; 5198 5199 /* 5200 * We have to be very careful here: changing a data block's 5201 * journaling status dynamically is dangerous. If we write a 5202 * data block to the journal, change the status and then delete 5203 * that block, we risk forgetting to revoke the old log record 5204 * from the journal and so a subsequent replay can corrupt data. 5205 * So, first we make sure that the journal is empty and that 5206 * nobody is changing anything. 5207 */ 5208 5209 journal = EXT4_JOURNAL(inode); 5210 if (!journal) 5211 return 0; 5212 if (is_journal_aborted(journal)) 5213 return -EROFS; 5214 5215 jbd2_journal_lock_updates(journal); 5216 jbd2_journal_flush(journal); 5217 5218 /* 5219 * OK, there are no updates running now, and all cached data is 5220 * synced to disk. We are now in a completely consistent state 5221 * which doesn't have anything in the journal, and we know that 5222 * no filesystem updates are running, so it is safe to modify 5223 * the inode's in-core data-journaling state flag now. 5224 */ 5225 5226 if (val) 5227 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5228 else 5229 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5230 ext4_set_aops(inode); 5231 5232 jbd2_journal_unlock_updates(journal); 5233 5234 /* Finally we can mark the inode as dirty. */ 5235 5236 handle = ext4_journal_start(inode, 1); 5237 if (IS_ERR(handle)) 5238 return PTR_ERR(handle); 5239 5240 err = ext4_mark_inode_dirty(handle, inode); 5241 ext4_handle_sync(handle); 5242 ext4_journal_stop(handle); 5243 ext4_std_error(inode->i_sb, err); 5244 5245 return err; 5246 } 5247 5248 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5249 { 5250 return !buffer_mapped(bh); 5251 } 5252 5253 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5254 { 5255 struct page *page = vmf->page; 5256 loff_t size; 5257 unsigned long len; 5258 int ret = -EINVAL; 5259 void *fsdata; 5260 struct file *file = vma->vm_file; 5261 struct inode *inode = file->f_path.dentry->d_inode; 5262 struct address_space *mapping = inode->i_mapping; 5263 5264 /* 5265 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5266 * get i_mutex because we are already holding mmap_sem. 5267 */ 5268 down_read(&inode->i_alloc_sem); 5269 size = i_size_read(inode); 5270 if (page->mapping != mapping || size <= page_offset(page) 5271 || !PageUptodate(page)) { 5272 /* page got truncated from under us? */ 5273 goto out_unlock; 5274 } 5275 ret = 0; 5276 if (PageMappedToDisk(page)) 5277 goto out_unlock; 5278 5279 if (page->index == size >> PAGE_CACHE_SHIFT) 5280 len = size & ~PAGE_CACHE_MASK; 5281 else 5282 len = PAGE_CACHE_SIZE; 5283 5284 if (page_has_buffers(page)) { 5285 /* return if we have all the buffers mapped */ 5286 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5287 ext4_bh_unmapped)) 5288 goto out_unlock; 5289 } 5290 /* 5291 * OK, we need to fill the hole... Do write_begin write_end 5292 * to do block allocation/reservation.We are not holding 5293 * inode.i__mutex here. That allow * parallel write_begin, 5294 * write_end call. lock_page prevent this from happening 5295 * on the same page though 5296 */ 5297 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5298 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5299 if (ret < 0) 5300 goto out_unlock; 5301 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5302 len, len, page, fsdata); 5303 if (ret < 0) 5304 goto out_unlock; 5305 ret = 0; 5306 out_unlock: 5307 if (ret) 5308 ret = VM_FAULT_SIGBUS; 5309 up_read(&inode->i_alloc_sem); 5310 return ret; 5311 } 5312