xref: /linux/fs/ext4/inode.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 					      loff_t new_size)
52 {
53 	return jbd2_journal_begin_ordered_truncate(
54 					EXT4_SB(inode->i_sb)->s_journal,
55 					&EXT4_I(inode)->jinode,
56 					new_size);
57 }
58 
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
60 
61 /*
62  * Test whether an inode is a fast symlink.
63  */
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
65 {
66 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 		(inode->i_sb->s_blocksize >> 9) : 0;
68 
69 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 }
71 
72 /*
73  * The ext4 forget function must perform a revoke if we are freeing data
74  * which has been journaled.  Metadata (eg. indirect blocks) must be
75  * revoked in all cases.
76  *
77  * "bh" may be NULL: a metadata block may have been freed from memory
78  * but there may still be a record of it in the journal, and that record
79  * still needs to be revoked.
80  *
81  * If the handle isn't valid we're not journaling, but we still need to
82  * call into ext4_journal_revoke() to put the buffer head.
83  */
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85 		struct buffer_head *bh, ext4_fsblk_t blocknr)
86 {
87 	int err;
88 
89 	might_sleep();
90 
91 	BUFFER_TRACE(bh, "enter");
92 
93 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94 		  "data mode %x\n",
95 		  bh, is_metadata, inode->i_mode,
96 		  test_opt(inode->i_sb, DATA_FLAGS));
97 
98 	/* Never use the revoke function if we are doing full data
99 	 * journaling: there is no need to, and a V1 superblock won't
100 	 * support it.  Otherwise, only skip the revoke on un-journaled
101 	 * data blocks. */
102 
103 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 	    (!is_metadata && !ext4_should_journal_data(inode))) {
105 		if (bh) {
106 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
107 			return ext4_journal_forget(handle, bh);
108 		}
109 		return 0;
110 	}
111 
112 	/*
113 	 * data!=journal && (is_metadata || should_journal_data(inode))
114 	 */
115 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 	err = ext4_journal_revoke(handle, blocknr, bh);
117 	if (err)
118 		ext4_abort(inode->i_sb, __func__,
119 			   "error %d when attempting revoke", err);
120 	BUFFER_TRACE(bh, "exit");
121 	return err;
122 }
123 
124 /*
125  * Work out how many blocks we need to proceed with the next chunk of a
126  * truncate transaction.
127  */
128 static unsigned long blocks_for_truncate(struct inode *inode)
129 {
130 	ext4_lblk_t needed;
131 
132 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133 
134 	/* Give ourselves just enough room to cope with inodes in which
135 	 * i_blocks is corrupt: we've seen disk corruptions in the past
136 	 * which resulted in random data in an inode which looked enough
137 	 * like a regular file for ext4 to try to delete it.  Things
138 	 * will go a bit crazy if that happens, but at least we should
139 	 * try not to panic the whole kernel. */
140 	if (needed < 2)
141 		needed = 2;
142 
143 	/* But we need to bound the transaction so we don't overflow the
144 	 * journal. */
145 	if (needed > EXT4_MAX_TRANS_DATA)
146 		needed = EXT4_MAX_TRANS_DATA;
147 
148 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 }
150 
151 /*
152  * Truncate transactions can be complex and absolutely huge.  So we need to
153  * be able to restart the transaction at a conventient checkpoint to make
154  * sure we don't overflow the journal.
155  *
156  * start_transaction gets us a new handle for a truncate transaction,
157  * and extend_transaction tries to extend the existing one a bit.  If
158  * extend fails, we need to propagate the failure up and restart the
159  * transaction in the top-level truncate loop. --sct
160  */
161 static handle_t *start_transaction(struct inode *inode)
162 {
163 	handle_t *result;
164 
165 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 	if (!IS_ERR(result))
167 		return result;
168 
169 	ext4_std_error(inode->i_sb, PTR_ERR(result));
170 	return result;
171 }
172 
173 /*
174  * Try to extend this transaction for the purposes of truncation.
175  *
176  * Returns 0 if we managed to create more room.  If we can't create more
177  * room, and the transaction must be restarted we return 1.
178  */
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 {
181 	if (!ext4_handle_valid(handle))
182 		return 0;
183 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184 		return 0;
185 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 		return 0;
187 	return 1;
188 }
189 
190 /*
191  * Restart the transaction associated with *handle.  This does a commit,
192  * so before we call here everything must be consistently dirtied against
193  * this transaction.
194  */
195 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196 {
197 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
198 	jbd_debug(2, "restarting handle %p\n", handle);
199 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
200 }
201 
202 /*
203  * Called at the last iput() if i_nlink is zero.
204  */
205 void ext4_delete_inode(struct inode *inode)
206 {
207 	handle_t *handle;
208 	int err;
209 
210 	if (ext4_should_order_data(inode))
211 		ext4_begin_ordered_truncate(inode, 0);
212 	truncate_inode_pages(&inode->i_data, 0);
213 
214 	if (is_bad_inode(inode))
215 		goto no_delete;
216 
217 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218 	if (IS_ERR(handle)) {
219 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
220 		/*
221 		 * If we're going to skip the normal cleanup, we still need to
222 		 * make sure that the in-core orphan linked list is properly
223 		 * cleaned up.
224 		 */
225 		ext4_orphan_del(NULL, inode);
226 		goto no_delete;
227 	}
228 
229 	if (IS_SYNC(inode))
230 		ext4_handle_sync(handle);
231 	inode->i_size = 0;
232 	err = ext4_mark_inode_dirty(handle, inode);
233 	if (err) {
234 		ext4_warning(inode->i_sb, __func__,
235 			     "couldn't mark inode dirty (err %d)", err);
236 		goto stop_handle;
237 	}
238 	if (inode->i_blocks)
239 		ext4_truncate(inode);
240 
241 	/*
242 	 * ext4_ext_truncate() doesn't reserve any slop when it
243 	 * restarts journal transactions; therefore there may not be
244 	 * enough credits left in the handle to remove the inode from
245 	 * the orphan list and set the dtime field.
246 	 */
247 	if (!ext4_handle_has_enough_credits(handle, 3)) {
248 		err = ext4_journal_extend(handle, 3);
249 		if (err > 0)
250 			err = ext4_journal_restart(handle, 3);
251 		if (err != 0) {
252 			ext4_warning(inode->i_sb, __func__,
253 				     "couldn't extend journal (err %d)", err);
254 		stop_handle:
255 			ext4_journal_stop(handle);
256 			goto no_delete;
257 		}
258 	}
259 
260 	/*
261 	 * Kill off the orphan record which ext4_truncate created.
262 	 * AKPM: I think this can be inside the above `if'.
263 	 * Note that ext4_orphan_del() has to be able to cope with the
264 	 * deletion of a non-existent orphan - this is because we don't
265 	 * know if ext4_truncate() actually created an orphan record.
266 	 * (Well, we could do this if we need to, but heck - it works)
267 	 */
268 	ext4_orphan_del(handle, inode);
269 	EXT4_I(inode)->i_dtime	= get_seconds();
270 
271 	/*
272 	 * One subtle ordering requirement: if anything has gone wrong
273 	 * (transaction abort, IO errors, whatever), then we can still
274 	 * do these next steps (the fs will already have been marked as
275 	 * having errors), but we can't free the inode if the mark_dirty
276 	 * fails.
277 	 */
278 	if (ext4_mark_inode_dirty(handle, inode))
279 		/* If that failed, just do the required in-core inode clear. */
280 		clear_inode(inode);
281 	else
282 		ext4_free_inode(handle, inode);
283 	ext4_journal_stop(handle);
284 	return;
285 no_delete:
286 	clear_inode(inode);	/* We must guarantee clearing of inode... */
287 }
288 
289 typedef struct {
290 	__le32	*p;
291 	__le32	key;
292 	struct buffer_head *bh;
293 } Indirect;
294 
295 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
296 {
297 	p->key = *(p->p = v);
298 	p->bh = bh;
299 }
300 
301 /**
302  *	ext4_block_to_path - parse the block number into array of offsets
303  *	@inode: inode in question (we are only interested in its superblock)
304  *	@i_block: block number to be parsed
305  *	@offsets: array to store the offsets in
306  *	@boundary: set this non-zero if the referred-to block is likely to be
307  *	       followed (on disk) by an indirect block.
308  *
309  *	To store the locations of file's data ext4 uses a data structure common
310  *	for UNIX filesystems - tree of pointers anchored in the inode, with
311  *	data blocks at leaves and indirect blocks in intermediate nodes.
312  *	This function translates the block number into path in that tree -
313  *	return value is the path length and @offsets[n] is the offset of
314  *	pointer to (n+1)th node in the nth one. If @block is out of range
315  *	(negative or too large) warning is printed and zero returned.
316  *
317  *	Note: function doesn't find node addresses, so no IO is needed. All
318  *	we need to know is the capacity of indirect blocks (taken from the
319  *	inode->i_sb).
320  */
321 
322 /*
323  * Portability note: the last comparison (check that we fit into triple
324  * indirect block) is spelled differently, because otherwise on an
325  * architecture with 32-bit longs and 8Kb pages we might get into trouble
326  * if our filesystem had 8Kb blocks. We might use long long, but that would
327  * kill us on x86. Oh, well, at least the sign propagation does not matter -
328  * i_block would have to be negative in the very beginning, so we would not
329  * get there at all.
330  */
331 
332 static int ext4_block_to_path(struct inode *inode,
333 			      ext4_lblk_t i_block,
334 			      ext4_lblk_t offsets[4], int *boundary)
335 {
336 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
337 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
338 	const long direct_blocks = EXT4_NDIR_BLOCKS,
339 		indirect_blocks = ptrs,
340 		double_blocks = (1 << (ptrs_bits * 2));
341 	int n = 0;
342 	int final = 0;
343 
344 	if (i_block < 0) {
345 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
346 	} else if (i_block < direct_blocks) {
347 		offsets[n++] = i_block;
348 		final = direct_blocks;
349 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
350 		offsets[n++] = EXT4_IND_BLOCK;
351 		offsets[n++] = i_block;
352 		final = ptrs;
353 	} else if ((i_block -= indirect_blocks) < double_blocks) {
354 		offsets[n++] = EXT4_DIND_BLOCK;
355 		offsets[n++] = i_block >> ptrs_bits;
356 		offsets[n++] = i_block & (ptrs - 1);
357 		final = ptrs;
358 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
359 		offsets[n++] = EXT4_TIND_BLOCK;
360 		offsets[n++] = i_block >> (ptrs_bits * 2);
361 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
362 		offsets[n++] = i_block & (ptrs - 1);
363 		final = ptrs;
364 	} else {
365 		ext4_warning(inode->i_sb, "ext4_block_to_path",
366 			     "block %lu > max in inode %lu",
367 			     i_block + direct_blocks +
368 			     indirect_blocks + double_blocks, inode->i_ino);
369 	}
370 	if (boundary)
371 		*boundary = final - 1 - (i_block & (ptrs - 1));
372 	return n;
373 }
374 
375 static int __ext4_check_blockref(const char *function, struct inode *inode,
376 				 __le32 *p, unsigned int max)
377 {
378 	__le32 *bref = p;
379 	unsigned int blk;
380 
381 	while (bref < p+max) {
382 		blk = le32_to_cpu(*bref++);
383 		if (blk &&
384 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
385 						    blk, 1))) {
386 			ext4_error(inode->i_sb, function,
387 				   "invalid block reference %u "
388 				   "in inode #%lu", blk, inode->i_ino);
389 			return -EIO;
390 		}
391 	}
392 	return 0;
393 }
394 
395 
396 #define ext4_check_indirect_blockref(inode, bh)                         \
397 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
398 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
399 
400 #define ext4_check_inode_blockref(inode)                                \
401 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
402 			      EXT4_NDIR_BLOCKS)
403 
404 /**
405  *	ext4_get_branch - read the chain of indirect blocks leading to data
406  *	@inode: inode in question
407  *	@depth: depth of the chain (1 - direct pointer, etc.)
408  *	@offsets: offsets of pointers in inode/indirect blocks
409  *	@chain: place to store the result
410  *	@err: here we store the error value
411  *
412  *	Function fills the array of triples <key, p, bh> and returns %NULL
413  *	if everything went OK or the pointer to the last filled triple
414  *	(incomplete one) otherwise. Upon the return chain[i].key contains
415  *	the number of (i+1)-th block in the chain (as it is stored in memory,
416  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
417  *	number (it points into struct inode for i==0 and into the bh->b_data
418  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
419  *	block for i>0 and NULL for i==0. In other words, it holds the block
420  *	numbers of the chain, addresses they were taken from (and where we can
421  *	verify that chain did not change) and buffer_heads hosting these
422  *	numbers.
423  *
424  *	Function stops when it stumbles upon zero pointer (absent block)
425  *		(pointer to last triple returned, *@err == 0)
426  *	or when it gets an IO error reading an indirect block
427  *		(ditto, *@err == -EIO)
428  *	or when it reads all @depth-1 indirect blocks successfully and finds
429  *	the whole chain, all way to the data (returns %NULL, *err == 0).
430  *
431  *      Need to be called with
432  *      down_read(&EXT4_I(inode)->i_data_sem)
433  */
434 static Indirect *ext4_get_branch(struct inode *inode, int depth,
435 				 ext4_lblk_t  *offsets,
436 				 Indirect chain[4], int *err)
437 {
438 	struct super_block *sb = inode->i_sb;
439 	Indirect *p = chain;
440 	struct buffer_head *bh;
441 
442 	*err = 0;
443 	/* i_data is not going away, no lock needed */
444 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
445 	if (!p->key)
446 		goto no_block;
447 	while (--depth) {
448 		bh = sb_getblk(sb, le32_to_cpu(p->key));
449 		if (unlikely(!bh))
450 			goto failure;
451 
452 		if (!bh_uptodate_or_lock(bh)) {
453 			if (bh_submit_read(bh) < 0) {
454 				put_bh(bh);
455 				goto failure;
456 			}
457 			/* validate block references */
458 			if (ext4_check_indirect_blockref(inode, bh)) {
459 				put_bh(bh);
460 				goto failure;
461 			}
462 		}
463 
464 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
465 		/* Reader: end */
466 		if (!p->key)
467 			goto no_block;
468 	}
469 	return NULL;
470 
471 failure:
472 	*err = -EIO;
473 no_block:
474 	return p;
475 }
476 
477 /**
478  *	ext4_find_near - find a place for allocation with sufficient locality
479  *	@inode: owner
480  *	@ind: descriptor of indirect block.
481  *
482  *	This function returns the preferred place for block allocation.
483  *	It is used when heuristic for sequential allocation fails.
484  *	Rules are:
485  *	  + if there is a block to the left of our position - allocate near it.
486  *	  + if pointer will live in indirect block - allocate near that block.
487  *	  + if pointer will live in inode - allocate in the same
488  *	    cylinder group.
489  *
490  * In the latter case we colour the starting block by the callers PID to
491  * prevent it from clashing with concurrent allocations for a different inode
492  * in the same block group.   The PID is used here so that functionally related
493  * files will be close-by on-disk.
494  *
495  *	Caller must make sure that @ind is valid and will stay that way.
496  */
497 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
498 {
499 	struct ext4_inode_info *ei = EXT4_I(inode);
500 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
501 	__le32 *p;
502 	ext4_fsblk_t bg_start;
503 	ext4_fsblk_t last_block;
504 	ext4_grpblk_t colour;
505 	ext4_group_t block_group;
506 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
507 
508 	/* Try to find previous block */
509 	for (p = ind->p - 1; p >= start; p--) {
510 		if (*p)
511 			return le32_to_cpu(*p);
512 	}
513 
514 	/* No such thing, so let's try location of indirect block */
515 	if (ind->bh)
516 		return ind->bh->b_blocknr;
517 
518 	/*
519 	 * It is going to be referred to from the inode itself? OK, just put it
520 	 * into the same cylinder group then.
521 	 */
522 	block_group = ei->i_block_group;
523 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
524 		block_group &= ~(flex_size-1);
525 		if (S_ISREG(inode->i_mode))
526 			block_group++;
527 	}
528 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
529 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
530 
531 	/*
532 	 * If we are doing delayed allocation, we don't need take
533 	 * colour into account.
534 	 */
535 	if (test_opt(inode->i_sb, DELALLOC))
536 		return bg_start;
537 
538 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
539 		colour = (current->pid % 16) *
540 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
541 	else
542 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
543 	return bg_start + colour;
544 }
545 
546 /**
547  *	ext4_find_goal - find a preferred place for allocation.
548  *	@inode: owner
549  *	@block:  block we want
550  *	@partial: pointer to the last triple within a chain
551  *
552  *	Normally this function find the preferred place for block allocation,
553  *	returns it.
554  */
555 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
556 				   Indirect *partial)
557 {
558 	/*
559 	 * XXX need to get goal block from mballoc's data structures
560 	 */
561 
562 	return ext4_find_near(inode, partial);
563 }
564 
565 /**
566  *	ext4_blks_to_allocate: Look up the block map and count the number
567  *	of direct blocks need to be allocated for the given branch.
568  *
569  *	@branch: chain of indirect blocks
570  *	@k: number of blocks need for indirect blocks
571  *	@blks: number of data blocks to be mapped.
572  *	@blocks_to_boundary:  the offset in the indirect block
573  *
574  *	return the total number of blocks to be allocate, including the
575  *	direct and indirect blocks.
576  */
577 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
578 				 int blocks_to_boundary)
579 {
580 	unsigned int count = 0;
581 
582 	/*
583 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
584 	 * then it's clear blocks on that path have not allocated
585 	 */
586 	if (k > 0) {
587 		/* right now we don't handle cross boundary allocation */
588 		if (blks < blocks_to_boundary + 1)
589 			count += blks;
590 		else
591 			count += blocks_to_boundary + 1;
592 		return count;
593 	}
594 
595 	count++;
596 	while (count < blks && count <= blocks_to_boundary &&
597 		le32_to_cpu(*(branch[0].p + count)) == 0) {
598 		count++;
599 	}
600 	return count;
601 }
602 
603 /**
604  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
605  *	@indirect_blks: the number of blocks need to allocate for indirect
606  *			blocks
607  *
608  *	@new_blocks: on return it will store the new block numbers for
609  *	the indirect blocks(if needed) and the first direct block,
610  *	@blks:	on return it will store the total number of allocated
611  *		direct blocks
612  */
613 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
614 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
615 			     int indirect_blks, int blks,
616 			     ext4_fsblk_t new_blocks[4], int *err)
617 {
618 	struct ext4_allocation_request ar;
619 	int target, i;
620 	unsigned long count = 0, blk_allocated = 0;
621 	int index = 0;
622 	ext4_fsblk_t current_block = 0;
623 	int ret = 0;
624 
625 	/*
626 	 * Here we try to allocate the requested multiple blocks at once,
627 	 * on a best-effort basis.
628 	 * To build a branch, we should allocate blocks for
629 	 * the indirect blocks(if not allocated yet), and at least
630 	 * the first direct block of this branch.  That's the
631 	 * minimum number of blocks need to allocate(required)
632 	 */
633 	/* first we try to allocate the indirect blocks */
634 	target = indirect_blks;
635 	while (target > 0) {
636 		count = target;
637 		/* allocating blocks for indirect blocks and direct blocks */
638 		current_block = ext4_new_meta_blocks(handle, inode,
639 							goal, &count, err);
640 		if (*err)
641 			goto failed_out;
642 
643 		target -= count;
644 		/* allocate blocks for indirect blocks */
645 		while (index < indirect_blks && count) {
646 			new_blocks[index++] = current_block++;
647 			count--;
648 		}
649 		if (count > 0) {
650 			/*
651 			 * save the new block number
652 			 * for the first direct block
653 			 */
654 			new_blocks[index] = current_block;
655 			printk(KERN_INFO "%s returned more blocks than "
656 						"requested\n", __func__);
657 			WARN_ON(1);
658 			break;
659 		}
660 	}
661 
662 	target = blks - count ;
663 	blk_allocated = count;
664 	if (!target)
665 		goto allocated;
666 	/* Now allocate data blocks */
667 	memset(&ar, 0, sizeof(ar));
668 	ar.inode = inode;
669 	ar.goal = goal;
670 	ar.len = target;
671 	ar.logical = iblock;
672 	if (S_ISREG(inode->i_mode))
673 		/* enable in-core preallocation only for regular files */
674 		ar.flags = EXT4_MB_HINT_DATA;
675 
676 	current_block = ext4_mb_new_blocks(handle, &ar, err);
677 
678 	if (*err && (target == blks)) {
679 		/*
680 		 * if the allocation failed and we didn't allocate
681 		 * any blocks before
682 		 */
683 		goto failed_out;
684 	}
685 	if (!*err) {
686 		if (target == blks) {
687 			/*
688 			 * save the new block number
689 			 * for the first direct block
690 			 */
691 			new_blocks[index] = current_block;
692 		}
693 		blk_allocated += ar.len;
694 	}
695 allocated:
696 	/* total number of blocks allocated for direct blocks */
697 	ret = blk_allocated;
698 	*err = 0;
699 	return ret;
700 failed_out:
701 	for (i = 0; i < index; i++)
702 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
703 	return ret;
704 }
705 
706 /**
707  *	ext4_alloc_branch - allocate and set up a chain of blocks.
708  *	@inode: owner
709  *	@indirect_blks: number of allocated indirect blocks
710  *	@blks: number of allocated direct blocks
711  *	@offsets: offsets (in the blocks) to store the pointers to next.
712  *	@branch: place to store the chain in.
713  *
714  *	This function allocates blocks, zeroes out all but the last one,
715  *	links them into chain and (if we are synchronous) writes them to disk.
716  *	In other words, it prepares a branch that can be spliced onto the
717  *	inode. It stores the information about that chain in the branch[], in
718  *	the same format as ext4_get_branch() would do. We are calling it after
719  *	we had read the existing part of chain and partial points to the last
720  *	triple of that (one with zero ->key). Upon the exit we have the same
721  *	picture as after the successful ext4_get_block(), except that in one
722  *	place chain is disconnected - *branch->p is still zero (we did not
723  *	set the last link), but branch->key contains the number that should
724  *	be placed into *branch->p to fill that gap.
725  *
726  *	If allocation fails we free all blocks we've allocated (and forget
727  *	their buffer_heads) and return the error value the from failed
728  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
729  *	as described above and return 0.
730  */
731 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
732 			     ext4_lblk_t iblock, int indirect_blks,
733 			     int *blks, ext4_fsblk_t goal,
734 			     ext4_lblk_t *offsets, Indirect *branch)
735 {
736 	int blocksize = inode->i_sb->s_blocksize;
737 	int i, n = 0;
738 	int err = 0;
739 	struct buffer_head *bh;
740 	int num;
741 	ext4_fsblk_t new_blocks[4];
742 	ext4_fsblk_t current_block;
743 
744 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
745 				*blks, new_blocks, &err);
746 	if (err)
747 		return err;
748 
749 	branch[0].key = cpu_to_le32(new_blocks[0]);
750 	/*
751 	 * metadata blocks and data blocks are allocated.
752 	 */
753 	for (n = 1; n <= indirect_blks;  n++) {
754 		/*
755 		 * Get buffer_head for parent block, zero it out
756 		 * and set the pointer to new one, then send
757 		 * parent to disk.
758 		 */
759 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
760 		branch[n].bh = bh;
761 		lock_buffer(bh);
762 		BUFFER_TRACE(bh, "call get_create_access");
763 		err = ext4_journal_get_create_access(handle, bh);
764 		if (err) {
765 			unlock_buffer(bh);
766 			brelse(bh);
767 			goto failed;
768 		}
769 
770 		memset(bh->b_data, 0, blocksize);
771 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
772 		branch[n].key = cpu_to_le32(new_blocks[n]);
773 		*branch[n].p = branch[n].key;
774 		if (n == indirect_blks) {
775 			current_block = new_blocks[n];
776 			/*
777 			 * End of chain, update the last new metablock of
778 			 * the chain to point to the new allocated
779 			 * data blocks numbers
780 			 */
781 			for (i = 1; i < num; i++)
782 				*(branch[n].p + i) = cpu_to_le32(++current_block);
783 		}
784 		BUFFER_TRACE(bh, "marking uptodate");
785 		set_buffer_uptodate(bh);
786 		unlock_buffer(bh);
787 
788 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
789 		err = ext4_handle_dirty_metadata(handle, inode, bh);
790 		if (err)
791 			goto failed;
792 	}
793 	*blks = num;
794 	return err;
795 failed:
796 	/* Allocation failed, free what we already allocated */
797 	for (i = 1; i <= n ; i++) {
798 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
799 		ext4_journal_forget(handle, branch[i].bh);
800 	}
801 	for (i = 0; i < indirect_blks; i++)
802 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
803 
804 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
805 
806 	return err;
807 }
808 
809 /**
810  * ext4_splice_branch - splice the allocated branch onto inode.
811  * @inode: owner
812  * @block: (logical) number of block we are adding
813  * @chain: chain of indirect blocks (with a missing link - see
814  *	ext4_alloc_branch)
815  * @where: location of missing link
816  * @num:   number of indirect blocks we are adding
817  * @blks:  number of direct blocks we are adding
818  *
819  * This function fills the missing link and does all housekeeping needed in
820  * inode (->i_blocks, etc.). In case of success we end up with the full
821  * chain to new block and return 0.
822  */
823 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
824 			      ext4_lblk_t block, Indirect *where, int num,
825 			      int blks)
826 {
827 	int i;
828 	int err = 0;
829 	ext4_fsblk_t current_block;
830 
831 	/*
832 	 * If we're splicing into a [td]indirect block (as opposed to the
833 	 * inode) then we need to get write access to the [td]indirect block
834 	 * before the splice.
835 	 */
836 	if (where->bh) {
837 		BUFFER_TRACE(where->bh, "get_write_access");
838 		err = ext4_journal_get_write_access(handle, where->bh);
839 		if (err)
840 			goto err_out;
841 	}
842 	/* That's it */
843 
844 	*where->p = where->key;
845 
846 	/*
847 	 * Update the host buffer_head or inode to point to more just allocated
848 	 * direct blocks blocks
849 	 */
850 	if (num == 0 && blks > 1) {
851 		current_block = le32_to_cpu(where->key) + 1;
852 		for (i = 1; i < blks; i++)
853 			*(where->p + i) = cpu_to_le32(current_block++);
854 	}
855 
856 	/* We are done with atomic stuff, now do the rest of housekeeping */
857 	/* had we spliced it onto indirect block? */
858 	if (where->bh) {
859 		/*
860 		 * If we spliced it onto an indirect block, we haven't
861 		 * altered the inode.  Note however that if it is being spliced
862 		 * onto an indirect block at the very end of the file (the
863 		 * file is growing) then we *will* alter the inode to reflect
864 		 * the new i_size.  But that is not done here - it is done in
865 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
866 		 */
867 		jbd_debug(5, "splicing indirect only\n");
868 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
869 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
870 		if (err)
871 			goto err_out;
872 	} else {
873 		/*
874 		 * OK, we spliced it into the inode itself on a direct block.
875 		 */
876 		ext4_mark_inode_dirty(handle, inode);
877 		jbd_debug(5, "splicing direct\n");
878 	}
879 	return err;
880 
881 err_out:
882 	for (i = 1; i <= num; i++) {
883 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
884 		ext4_journal_forget(handle, where[i].bh);
885 		ext4_free_blocks(handle, inode,
886 					le32_to_cpu(where[i-1].key), 1, 0);
887 	}
888 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
889 
890 	return err;
891 }
892 
893 /*
894  * The ext4_ind_get_blocks() function handles non-extents inodes
895  * (i.e., using the traditional indirect/double-indirect i_blocks
896  * scheme) for ext4_get_blocks().
897  *
898  * Allocation strategy is simple: if we have to allocate something, we will
899  * have to go the whole way to leaf. So let's do it before attaching anything
900  * to tree, set linkage between the newborn blocks, write them if sync is
901  * required, recheck the path, free and repeat if check fails, otherwise
902  * set the last missing link (that will protect us from any truncate-generated
903  * removals - all blocks on the path are immune now) and possibly force the
904  * write on the parent block.
905  * That has a nice additional property: no special recovery from the failed
906  * allocations is needed - we simply release blocks and do not touch anything
907  * reachable from inode.
908  *
909  * `handle' can be NULL if create == 0.
910  *
911  * return > 0, # of blocks mapped or allocated.
912  * return = 0, if plain lookup failed.
913  * return < 0, error case.
914  *
915  * The ext4_ind_get_blocks() function should be called with
916  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
917  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
918  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
919  * blocks.
920  */
921 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
922 			       ext4_lblk_t iblock, unsigned int maxblocks,
923 			       struct buffer_head *bh_result,
924 			       int flags)
925 {
926 	int err = -EIO;
927 	ext4_lblk_t offsets[4];
928 	Indirect chain[4];
929 	Indirect *partial;
930 	ext4_fsblk_t goal;
931 	int indirect_blks;
932 	int blocks_to_boundary = 0;
933 	int depth;
934 	int count = 0;
935 	ext4_fsblk_t first_block = 0;
936 
937 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
938 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
939 	depth = ext4_block_to_path(inode, iblock, offsets,
940 				   &blocks_to_boundary);
941 
942 	if (depth == 0)
943 		goto out;
944 
945 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
946 
947 	/* Simplest case - block found, no allocation needed */
948 	if (!partial) {
949 		first_block = le32_to_cpu(chain[depth - 1].key);
950 		clear_buffer_new(bh_result);
951 		count++;
952 		/*map more blocks*/
953 		while (count < maxblocks && count <= blocks_to_boundary) {
954 			ext4_fsblk_t blk;
955 
956 			blk = le32_to_cpu(*(chain[depth-1].p + count));
957 
958 			if (blk == first_block + count)
959 				count++;
960 			else
961 				break;
962 		}
963 		goto got_it;
964 	}
965 
966 	/* Next simple case - plain lookup or failed read of indirect block */
967 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
968 		goto cleanup;
969 
970 	/*
971 	 * Okay, we need to do block allocation.
972 	*/
973 	goal = ext4_find_goal(inode, iblock, partial);
974 
975 	/* the number of blocks need to allocate for [d,t]indirect blocks */
976 	indirect_blks = (chain + depth) - partial - 1;
977 
978 	/*
979 	 * Next look up the indirect map to count the totoal number of
980 	 * direct blocks to allocate for this branch.
981 	 */
982 	count = ext4_blks_to_allocate(partial, indirect_blks,
983 					maxblocks, blocks_to_boundary);
984 	/*
985 	 * Block out ext4_truncate while we alter the tree
986 	 */
987 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
988 				&count, goal,
989 				offsets + (partial - chain), partial);
990 
991 	/*
992 	 * The ext4_splice_branch call will free and forget any buffers
993 	 * on the new chain if there is a failure, but that risks using
994 	 * up transaction credits, especially for bitmaps where the
995 	 * credits cannot be returned.  Can we handle this somehow?  We
996 	 * may need to return -EAGAIN upwards in the worst case.  --sct
997 	 */
998 	if (!err)
999 		err = ext4_splice_branch(handle, inode, iblock,
1000 					 partial, indirect_blks, count);
1001 	else
1002 		goto cleanup;
1003 
1004 	set_buffer_new(bh_result);
1005 got_it:
1006 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1007 	if (count > blocks_to_boundary)
1008 		set_buffer_boundary(bh_result);
1009 	err = count;
1010 	/* Clean up and exit */
1011 	partial = chain + depth - 1;	/* the whole chain */
1012 cleanup:
1013 	while (partial > chain) {
1014 		BUFFER_TRACE(partial->bh, "call brelse");
1015 		brelse(partial->bh);
1016 		partial--;
1017 	}
1018 	BUFFER_TRACE(bh_result, "returned");
1019 out:
1020 	return err;
1021 }
1022 
1023 qsize_t ext4_get_reserved_space(struct inode *inode)
1024 {
1025 	unsigned long long total;
1026 
1027 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1028 	total = EXT4_I(inode)->i_reserved_data_blocks +
1029 		EXT4_I(inode)->i_reserved_meta_blocks;
1030 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1031 
1032 	return total;
1033 }
1034 /*
1035  * Calculate the number of metadata blocks need to reserve
1036  * to allocate @blocks for non extent file based file
1037  */
1038 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1039 {
1040 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1041 	int ind_blks, dind_blks, tind_blks;
1042 
1043 	/* number of new indirect blocks needed */
1044 	ind_blks = (blocks + icap - 1) / icap;
1045 
1046 	dind_blks = (ind_blks + icap - 1) / icap;
1047 
1048 	tind_blks = 1;
1049 
1050 	return ind_blks + dind_blks + tind_blks;
1051 }
1052 
1053 /*
1054  * Calculate the number of metadata blocks need to reserve
1055  * to allocate given number of blocks
1056  */
1057 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1058 {
1059 	if (!blocks)
1060 		return 0;
1061 
1062 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1063 		return ext4_ext_calc_metadata_amount(inode, blocks);
1064 
1065 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1066 }
1067 
1068 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1069 {
1070 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1071 	int total, mdb, mdb_free;
1072 
1073 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1074 	/* recalculate the number of metablocks still need to be reserved */
1075 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1076 	mdb = ext4_calc_metadata_amount(inode, total);
1077 
1078 	/* figure out how many metablocks to release */
1079 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1080 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1081 
1082 	if (mdb_free) {
1083 		/* Account for allocated meta_blocks */
1084 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1085 
1086 		/* update fs dirty blocks counter */
1087 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1088 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1089 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1090 	}
1091 
1092 	/* update per-inode reservations */
1093 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1094 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1095 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1096 
1097 	/*
1098 	 * free those over-booking quota for metadata blocks
1099 	 */
1100 	if (mdb_free)
1101 		vfs_dq_release_reservation_block(inode, mdb_free);
1102 
1103 	/*
1104 	 * If we have done all the pending block allocations and if
1105 	 * there aren't any writers on the inode, we can discard the
1106 	 * inode's preallocations.
1107 	 */
1108 	if (!total && (atomic_read(&inode->i_writecount) == 0))
1109 		ext4_discard_preallocations(inode);
1110 }
1111 
1112 static int check_block_validity(struct inode *inode, sector_t logical,
1113 				sector_t phys, int len)
1114 {
1115 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1116 		ext4_error(inode->i_sb, "check_block_validity",
1117 			   "inode #%lu logical block %llu mapped to %llu "
1118 			   "(size %d)", inode->i_ino,
1119 			   (unsigned long long) logical,
1120 			   (unsigned long long) phys, len);
1121 		WARN_ON(1);
1122 		return -EIO;
1123 	}
1124 	return 0;
1125 }
1126 
1127 /*
1128  * The ext4_get_blocks() function tries to look up the requested blocks,
1129  * and returns if the blocks are already mapped.
1130  *
1131  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1132  * and store the allocated blocks in the result buffer head and mark it
1133  * mapped.
1134  *
1135  * If file type is extents based, it will call ext4_ext_get_blocks(),
1136  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1137  * based files
1138  *
1139  * On success, it returns the number of blocks being mapped or allocate.
1140  * if create==0 and the blocks are pre-allocated and uninitialized block,
1141  * the result buffer head is unmapped. If the create ==1, it will make sure
1142  * the buffer head is mapped.
1143  *
1144  * It returns 0 if plain look up failed (blocks have not been allocated), in
1145  * that casem, buffer head is unmapped
1146  *
1147  * It returns the error in case of allocation failure.
1148  */
1149 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1150 		    unsigned int max_blocks, struct buffer_head *bh,
1151 		    int flags)
1152 {
1153 	int retval;
1154 
1155 	clear_buffer_mapped(bh);
1156 	clear_buffer_unwritten(bh);
1157 
1158 	/*
1159 	 * Try to see if we can get the block without requesting a new
1160 	 * file system block.
1161 	 */
1162 	down_read((&EXT4_I(inode)->i_data_sem));
1163 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1164 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1165 				bh, 0);
1166 	} else {
1167 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1168 					     bh, 0);
1169 	}
1170 	up_read((&EXT4_I(inode)->i_data_sem));
1171 
1172 	if (retval > 0 && buffer_mapped(bh)) {
1173 		int ret = check_block_validity(inode, block,
1174 					       bh->b_blocknr, retval);
1175 		if (ret != 0)
1176 			return ret;
1177 	}
1178 
1179 	/* If it is only a block(s) look up */
1180 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1181 		return retval;
1182 
1183 	/*
1184 	 * Returns if the blocks have already allocated
1185 	 *
1186 	 * Note that if blocks have been preallocated
1187 	 * ext4_ext_get_block() returns th create = 0
1188 	 * with buffer head unmapped.
1189 	 */
1190 	if (retval > 0 && buffer_mapped(bh))
1191 		return retval;
1192 
1193 	/*
1194 	 * When we call get_blocks without the create flag, the
1195 	 * BH_Unwritten flag could have gotten set if the blocks
1196 	 * requested were part of a uninitialized extent.  We need to
1197 	 * clear this flag now that we are committed to convert all or
1198 	 * part of the uninitialized extent to be an initialized
1199 	 * extent.  This is because we need to avoid the combination
1200 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1201 	 * set on the buffer_head.
1202 	 */
1203 	clear_buffer_unwritten(bh);
1204 
1205 	/*
1206 	 * New blocks allocate and/or writing to uninitialized extent
1207 	 * will possibly result in updating i_data, so we take
1208 	 * the write lock of i_data_sem, and call get_blocks()
1209 	 * with create == 1 flag.
1210 	 */
1211 	down_write((&EXT4_I(inode)->i_data_sem));
1212 
1213 	/*
1214 	 * if the caller is from delayed allocation writeout path
1215 	 * we have already reserved fs blocks for allocation
1216 	 * let the underlying get_block() function know to
1217 	 * avoid double accounting
1218 	 */
1219 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1220 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1221 	/*
1222 	 * We need to check for EXT4 here because migrate
1223 	 * could have changed the inode type in between
1224 	 */
1225 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1226 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1227 					      bh, flags);
1228 	} else {
1229 		retval = ext4_ind_get_blocks(handle, inode, block,
1230 					     max_blocks, bh, flags);
1231 
1232 		if (retval > 0 && buffer_new(bh)) {
1233 			/*
1234 			 * We allocated new blocks which will result in
1235 			 * i_data's format changing.  Force the migrate
1236 			 * to fail by clearing migrate flags
1237 			 */
1238 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1239 							~EXT4_EXT_MIGRATE;
1240 		}
1241 	}
1242 
1243 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1244 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1245 
1246 	/*
1247 	 * Update reserved blocks/metadata blocks after successful
1248 	 * block allocation which had been deferred till now.
1249 	 */
1250 	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1251 		ext4_da_update_reserve_space(inode, retval);
1252 
1253 	up_write((&EXT4_I(inode)->i_data_sem));
1254 	if (retval > 0 && buffer_mapped(bh)) {
1255 		int ret = check_block_validity(inode, block,
1256 					       bh->b_blocknr, retval);
1257 		if (ret != 0)
1258 			return ret;
1259 	}
1260 	return retval;
1261 }
1262 
1263 /* Maximum number of blocks we map for direct IO at once. */
1264 #define DIO_MAX_BLOCKS 4096
1265 
1266 int ext4_get_block(struct inode *inode, sector_t iblock,
1267 		   struct buffer_head *bh_result, int create)
1268 {
1269 	handle_t *handle = ext4_journal_current_handle();
1270 	int ret = 0, started = 0;
1271 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1272 	int dio_credits;
1273 
1274 	if (create && !handle) {
1275 		/* Direct IO write... */
1276 		if (max_blocks > DIO_MAX_BLOCKS)
1277 			max_blocks = DIO_MAX_BLOCKS;
1278 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1279 		handle = ext4_journal_start(inode, dio_credits);
1280 		if (IS_ERR(handle)) {
1281 			ret = PTR_ERR(handle);
1282 			goto out;
1283 		}
1284 		started = 1;
1285 	}
1286 
1287 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1288 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1289 	if (ret > 0) {
1290 		bh_result->b_size = (ret << inode->i_blkbits);
1291 		ret = 0;
1292 	}
1293 	if (started)
1294 		ext4_journal_stop(handle);
1295 out:
1296 	return ret;
1297 }
1298 
1299 /*
1300  * `handle' can be NULL if create is zero
1301  */
1302 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1303 				ext4_lblk_t block, int create, int *errp)
1304 {
1305 	struct buffer_head dummy;
1306 	int fatal = 0, err;
1307 	int flags = 0;
1308 
1309 	J_ASSERT(handle != NULL || create == 0);
1310 
1311 	dummy.b_state = 0;
1312 	dummy.b_blocknr = -1000;
1313 	buffer_trace_init(&dummy.b_history);
1314 	if (create)
1315 		flags |= EXT4_GET_BLOCKS_CREATE;
1316 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1317 	/*
1318 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1319 	 * case of a HOLE.
1320 	 */
1321 	if (err > 0) {
1322 		if (err > 1)
1323 			WARN_ON(1);
1324 		err = 0;
1325 	}
1326 	*errp = err;
1327 	if (!err && buffer_mapped(&dummy)) {
1328 		struct buffer_head *bh;
1329 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1330 		if (!bh) {
1331 			*errp = -EIO;
1332 			goto err;
1333 		}
1334 		if (buffer_new(&dummy)) {
1335 			J_ASSERT(create != 0);
1336 			J_ASSERT(handle != NULL);
1337 
1338 			/*
1339 			 * Now that we do not always journal data, we should
1340 			 * keep in mind whether this should always journal the
1341 			 * new buffer as metadata.  For now, regular file
1342 			 * writes use ext4_get_block instead, so it's not a
1343 			 * problem.
1344 			 */
1345 			lock_buffer(bh);
1346 			BUFFER_TRACE(bh, "call get_create_access");
1347 			fatal = ext4_journal_get_create_access(handle, bh);
1348 			if (!fatal && !buffer_uptodate(bh)) {
1349 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1350 				set_buffer_uptodate(bh);
1351 			}
1352 			unlock_buffer(bh);
1353 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1354 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1355 			if (!fatal)
1356 				fatal = err;
1357 		} else {
1358 			BUFFER_TRACE(bh, "not a new buffer");
1359 		}
1360 		if (fatal) {
1361 			*errp = fatal;
1362 			brelse(bh);
1363 			bh = NULL;
1364 		}
1365 		return bh;
1366 	}
1367 err:
1368 	return NULL;
1369 }
1370 
1371 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1372 			       ext4_lblk_t block, int create, int *err)
1373 {
1374 	struct buffer_head *bh;
1375 
1376 	bh = ext4_getblk(handle, inode, block, create, err);
1377 	if (!bh)
1378 		return bh;
1379 	if (buffer_uptodate(bh))
1380 		return bh;
1381 	ll_rw_block(READ_META, 1, &bh);
1382 	wait_on_buffer(bh);
1383 	if (buffer_uptodate(bh))
1384 		return bh;
1385 	put_bh(bh);
1386 	*err = -EIO;
1387 	return NULL;
1388 }
1389 
1390 static int walk_page_buffers(handle_t *handle,
1391 			     struct buffer_head *head,
1392 			     unsigned from,
1393 			     unsigned to,
1394 			     int *partial,
1395 			     int (*fn)(handle_t *handle,
1396 				       struct buffer_head *bh))
1397 {
1398 	struct buffer_head *bh;
1399 	unsigned block_start, block_end;
1400 	unsigned blocksize = head->b_size;
1401 	int err, ret = 0;
1402 	struct buffer_head *next;
1403 
1404 	for (bh = head, block_start = 0;
1405 	     ret == 0 && (bh != head || !block_start);
1406 	     block_start = block_end, bh = next) {
1407 		next = bh->b_this_page;
1408 		block_end = block_start + blocksize;
1409 		if (block_end <= from || block_start >= to) {
1410 			if (partial && !buffer_uptodate(bh))
1411 				*partial = 1;
1412 			continue;
1413 		}
1414 		err = (*fn)(handle, bh);
1415 		if (!ret)
1416 			ret = err;
1417 	}
1418 	return ret;
1419 }
1420 
1421 /*
1422  * To preserve ordering, it is essential that the hole instantiation and
1423  * the data write be encapsulated in a single transaction.  We cannot
1424  * close off a transaction and start a new one between the ext4_get_block()
1425  * and the commit_write().  So doing the jbd2_journal_start at the start of
1426  * prepare_write() is the right place.
1427  *
1428  * Also, this function can nest inside ext4_writepage() ->
1429  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1430  * has generated enough buffer credits to do the whole page.  So we won't
1431  * block on the journal in that case, which is good, because the caller may
1432  * be PF_MEMALLOC.
1433  *
1434  * By accident, ext4 can be reentered when a transaction is open via
1435  * quota file writes.  If we were to commit the transaction while thus
1436  * reentered, there can be a deadlock - we would be holding a quota
1437  * lock, and the commit would never complete if another thread had a
1438  * transaction open and was blocking on the quota lock - a ranking
1439  * violation.
1440  *
1441  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1442  * will _not_ run commit under these circumstances because handle->h_ref
1443  * is elevated.  We'll still have enough credits for the tiny quotafile
1444  * write.
1445  */
1446 static int do_journal_get_write_access(handle_t *handle,
1447 				       struct buffer_head *bh)
1448 {
1449 	if (!buffer_mapped(bh) || buffer_freed(bh))
1450 		return 0;
1451 	return ext4_journal_get_write_access(handle, bh);
1452 }
1453 
1454 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1455 			    loff_t pos, unsigned len, unsigned flags,
1456 			    struct page **pagep, void **fsdata)
1457 {
1458 	struct inode *inode = mapping->host;
1459 	int ret, needed_blocks;
1460 	handle_t *handle;
1461 	int retries = 0;
1462 	struct page *page;
1463 	pgoff_t index;
1464 	unsigned from, to;
1465 
1466 	trace_ext4_write_begin(inode, pos, len, flags);
1467 	/*
1468 	 * Reserve one block more for addition to orphan list in case
1469 	 * we allocate blocks but write fails for some reason
1470 	 */
1471 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1472 	index = pos >> PAGE_CACHE_SHIFT;
1473 	from = pos & (PAGE_CACHE_SIZE - 1);
1474 	to = from + len;
1475 
1476 retry:
1477 	handle = ext4_journal_start(inode, needed_blocks);
1478 	if (IS_ERR(handle)) {
1479 		ret = PTR_ERR(handle);
1480 		goto out;
1481 	}
1482 
1483 	/* We cannot recurse into the filesystem as the transaction is already
1484 	 * started */
1485 	flags |= AOP_FLAG_NOFS;
1486 
1487 	page = grab_cache_page_write_begin(mapping, index, flags);
1488 	if (!page) {
1489 		ext4_journal_stop(handle);
1490 		ret = -ENOMEM;
1491 		goto out;
1492 	}
1493 	*pagep = page;
1494 
1495 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1496 				ext4_get_block);
1497 
1498 	if (!ret && ext4_should_journal_data(inode)) {
1499 		ret = walk_page_buffers(handle, page_buffers(page),
1500 				from, to, NULL, do_journal_get_write_access);
1501 	}
1502 
1503 	if (ret) {
1504 		unlock_page(page);
1505 		page_cache_release(page);
1506 		/*
1507 		 * block_write_begin may have instantiated a few blocks
1508 		 * outside i_size.  Trim these off again. Don't need
1509 		 * i_size_read because we hold i_mutex.
1510 		 *
1511 		 * Add inode to orphan list in case we crash before
1512 		 * truncate finishes
1513 		 */
1514 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1515 			ext4_orphan_add(handle, inode);
1516 
1517 		ext4_journal_stop(handle);
1518 		if (pos + len > inode->i_size) {
1519 			ext4_truncate(inode);
1520 			/*
1521 			 * If truncate failed early the inode might
1522 			 * still be on the orphan list; we need to
1523 			 * make sure the inode is removed from the
1524 			 * orphan list in that case.
1525 			 */
1526 			if (inode->i_nlink)
1527 				ext4_orphan_del(NULL, inode);
1528 		}
1529 	}
1530 
1531 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1532 		goto retry;
1533 out:
1534 	return ret;
1535 }
1536 
1537 /* For write_end() in data=journal mode */
1538 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1539 {
1540 	if (!buffer_mapped(bh) || buffer_freed(bh))
1541 		return 0;
1542 	set_buffer_uptodate(bh);
1543 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1544 }
1545 
1546 static int ext4_generic_write_end(struct file *file,
1547 				  struct address_space *mapping,
1548 				  loff_t pos, unsigned len, unsigned copied,
1549 				  struct page *page, void *fsdata)
1550 {
1551 	int i_size_changed = 0;
1552 	struct inode *inode = mapping->host;
1553 	handle_t *handle = ext4_journal_current_handle();
1554 
1555 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1556 
1557 	/*
1558 	 * No need to use i_size_read() here, the i_size
1559 	 * cannot change under us because we hold i_mutex.
1560 	 *
1561 	 * But it's important to update i_size while still holding page lock:
1562 	 * page writeout could otherwise come in and zero beyond i_size.
1563 	 */
1564 	if (pos + copied > inode->i_size) {
1565 		i_size_write(inode, pos + copied);
1566 		i_size_changed = 1;
1567 	}
1568 
1569 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1570 		/* We need to mark inode dirty even if
1571 		 * new_i_size is less that inode->i_size
1572 		 * bu greater than i_disksize.(hint delalloc)
1573 		 */
1574 		ext4_update_i_disksize(inode, (pos + copied));
1575 		i_size_changed = 1;
1576 	}
1577 	unlock_page(page);
1578 	page_cache_release(page);
1579 
1580 	/*
1581 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1582 	 * makes the holding time of page lock longer. Second, it forces lock
1583 	 * ordering of page lock and transaction start for journaling
1584 	 * filesystems.
1585 	 */
1586 	if (i_size_changed)
1587 		ext4_mark_inode_dirty(handle, inode);
1588 
1589 	return copied;
1590 }
1591 
1592 /*
1593  * We need to pick up the new inode size which generic_commit_write gave us
1594  * `file' can be NULL - eg, when called from page_symlink().
1595  *
1596  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1597  * buffers are managed internally.
1598  */
1599 static int ext4_ordered_write_end(struct file *file,
1600 				  struct address_space *mapping,
1601 				  loff_t pos, unsigned len, unsigned copied,
1602 				  struct page *page, void *fsdata)
1603 {
1604 	handle_t *handle = ext4_journal_current_handle();
1605 	struct inode *inode = mapping->host;
1606 	int ret = 0, ret2;
1607 
1608 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1609 	ret = ext4_jbd2_file_inode(handle, inode);
1610 
1611 	if (ret == 0) {
1612 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1613 							page, fsdata);
1614 		copied = ret2;
1615 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1616 			/* if we have allocated more blocks and copied
1617 			 * less. We will have blocks allocated outside
1618 			 * inode->i_size. So truncate them
1619 			 */
1620 			ext4_orphan_add(handle, inode);
1621 		if (ret2 < 0)
1622 			ret = ret2;
1623 	}
1624 	ret2 = ext4_journal_stop(handle);
1625 	if (!ret)
1626 		ret = ret2;
1627 
1628 	if (pos + len > inode->i_size) {
1629 		ext4_truncate(inode);
1630 		/*
1631 		 * If truncate failed early the inode might still be
1632 		 * on the orphan list; we need to make sure the inode
1633 		 * is removed from the orphan list in that case.
1634 		 */
1635 		if (inode->i_nlink)
1636 			ext4_orphan_del(NULL, inode);
1637 	}
1638 
1639 
1640 	return ret ? ret : copied;
1641 }
1642 
1643 static int ext4_writeback_write_end(struct file *file,
1644 				    struct address_space *mapping,
1645 				    loff_t pos, unsigned len, unsigned copied,
1646 				    struct page *page, void *fsdata)
1647 {
1648 	handle_t *handle = ext4_journal_current_handle();
1649 	struct inode *inode = mapping->host;
1650 	int ret = 0, ret2;
1651 
1652 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1653 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1654 							page, fsdata);
1655 	copied = ret2;
1656 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1657 		/* if we have allocated more blocks and copied
1658 		 * less. We will have blocks allocated outside
1659 		 * inode->i_size. So truncate them
1660 		 */
1661 		ext4_orphan_add(handle, inode);
1662 
1663 	if (ret2 < 0)
1664 		ret = ret2;
1665 
1666 	ret2 = ext4_journal_stop(handle);
1667 	if (!ret)
1668 		ret = ret2;
1669 
1670 	if (pos + len > inode->i_size) {
1671 		ext4_truncate(inode);
1672 		/*
1673 		 * If truncate failed early the inode might still be
1674 		 * on the orphan list; we need to make sure the inode
1675 		 * is removed from the orphan list in that case.
1676 		 */
1677 		if (inode->i_nlink)
1678 			ext4_orphan_del(NULL, inode);
1679 	}
1680 
1681 	return ret ? ret : copied;
1682 }
1683 
1684 static int ext4_journalled_write_end(struct file *file,
1685 				     struct address_space *mapping,
1686 				     loff_t pos, unsigned len, unsigned copied,
1687 				     struct page *page, void *fsdata)
1688 {
1689 	handle_t *handle = ext4_journal_current_handle();
1690 	struct inode *inode = mapping->host;
1691 	int ret = 0, ret2;
1692 	int partial = 0;
1693 	unsigned from, to;
1694 	loff_t new_i_size;
1695 
1696 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1697 	from = pos & (PAGE_CACHE_SIZE - 1);
1698 	to = from + len;
1699 
1700 	if (copied < len) {
1701 		if (!PageUptodate(page))
1702 			copied = 0;
1703 		page_zero_new_buffers(page, from+copied, to);
1704 	}
1705 
1706 	ret = walk_page_buffers(handle, page_buffers(page), from,
1707 				to, &partial, write_end_fn);
1708 	if (!partial)
1709 		SetPageUptodate(page);
1710 	new_i_size = pos + copied;
1711 	if (new_i_size > inode->i_size)
1712 		i_size_write(inode, pos+copied);
1713 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1714 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1715 		ext4_update_i_disksize(inode, new_i_size);
1716 		ret2 = ext4_mark_inode_dirty(handle, inode);
1717 		if (!ret)
1718 			ret = ret2;
1719 	}
1720 
1721 	unlock_page(page);
1722 	page_cache_release(page);
1723 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1724 		/* if we have allocated more blocks and copied
1725 		 * less. We will have blocks allocated outside
1726 		 * inode->i_size. So truncate them
1727 		 */
1728 		ext4_orphan_add(handle, inode);
1729 
1730 	ret2 = ext4_journal_stop(handle);
1731 	if (!ret)
1732 		ret = ret2;
1733 	if (pos + len > inode->i_size) {
1734 		ext4_truncate(inode);
1735 		/*
1736 		 * If truncate failed early the inode might still be
1737 		 * on the orphan list; we need to make sure the inode
1738 		 * is removed from the orphan list in that case.
1739 		 */
1740 		if (inode->i_nlink)
1741 			ext4_orphan_del(NULL, inode);
1742 	}
1743 
1744 	return ret ? ret : copied;
1745 }
1746 
1747 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1748 {
1749 	int retries = 0;
1750 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1751 	unsigned long md_needed, mdblocks, total = 0;
1752 
1753 	/*
1754 	 * recalculate the amount of metadata blocks to reserve
1755 	 * in order to allocate nrblocks
1756 	 * worse case is one extent per block
1757 	 */
1758 repeat:
1759 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1760 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1761 	mdblocks = ext4_calc_metadata_amount(inode, total);
1762 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1763 
1764 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1765 	total = md_needed + nrblocks;
1766 
1767 	/*
1768 	 * Make quota reservation here to prevent quota overflow
1769 	 * later. Real quota accounting is done at pages writeout
1770 	 * time.
1771 	 */
1772 	if (vfs_dq_reserve_block(inode, total)) {
1773 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1774 		return -EDQUOT;
1775 	}
1776 
1777 	if (ext4_claim_free_blocks(sbi, total)) {
1778 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1779 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1780 			yield();
1781 			goto repeat;
1782 		}
1783 		vfs_dq_release_reservation_block(inode, total);
1784 		return -ENOSPC;
1785 	}
1786 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1787 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1788 
1789 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1790 	return 0;       /* success */
1791 }
1792 
1793 static void ext4_da_release_space(struct inode *inode, int to_free)
1794 {
1795 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1796 	int total, mdb, mdb_free, release;
1797 
1798 	if (!to_free)
1799 		return;		/* Nothing to release, exit */
1800 
1801 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1802 
1803 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1804 		/*
1805 		 * if there is no reserved blocks, but we try to free some
1806 		 * then the counter is messed up somewhere.
1807 		 * but since this function is called from invalidate
1808 		 * page, it's harmless to return without any action
1809 		 */
1810 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1811 			    "blocks for inode %lu, but there is no reserved "
1812 			    "data blocks\n", to_free, inode->i_ino);
1813 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1814 		return;
1815 	}
1816 
1817 	/* recalculate the number of metablocks still need to be reserved */
1818 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1819 	mdb = ext4_calc_metadata_amount(inode, total);
1820 
1821 	/* figure out how many metablocks to release */
1822 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1823 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1824 
1825 	release = to_free + mdb_free;
1826 
1827 	/* update fs dirty blocks counter for truncate case */
1828 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1829 
1830 	/* update per-inode reservations */
1831 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1832 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1833 
1834 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1835 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1836 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1837 
1838 	vfs_dq_release_reservation_block(inode, release);
1839 }
1840 
1841 static void ext4_da_page_release_reservation(struct page *page,
1842 					     unsigned long offset)
1843 {
1844 	int to_release = 0;
1845 	struct buffer_head *head, *bh;
1846 	unsigned int curr_off = 0;
1847 
1848 	head = page_buffers(page);
1849 	bh = head;
1850 	do {
1851 		unsigned int next_off = curr_off + bh->b_size;
1852 
1853 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1854 			to_release++;
1855 			clear_buffer_delay(bh);
1856 		}
1857 		curr_off = next_off;
1858 	} while ((bh = bh->b_this_page) != head);
1859 	ext4_da_release_space(page->mapping->host, to_release);
1860 }
1861 
1862 /*
1863  * Delayed allocation stuff
1864  */
1865 
1866 struct mpage_da_data {
1867 	struct inode *inode;
1868 	sector_t b_blocknr;		/* start block number of extent */
1869 	size_t b_size;			/* size of extent */
1870 	unsigned long b_state;		/* state of the extent */
1871 	unsigned long first_page, next_page;	/* extent of pages */
1872 	struct writeback_control *wbc;
1873 	int io_done;
1874 	int pages_written;
1875 	int retval;
1876 };
1877 
1878 /*
1879  * mpage_da_submit_io - walks through extent of pages and try to write
1880  * them with writepage() call back
1881  *
1882  * @mpd->inode: inode
1883  * @mpd->first_page: first page of the extent
1884  * @mpd->next_page: page after the last page of the extent
1885  *
1886  * By the time mpage_da_submit_io() is called we expect all blocks
1887  * to be allocated. this may be wrong if allocation failed.
1888  *
1889  * As pages are already locked by write_cache_pages(), we can't use it
1890  */
1891 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1892 {
1893 	long pages_skipped;
1894 	struct pagevec pvec;
1895 	unsigned long index, end;
1896 	int ret = 0, err, nr_pages, i;
1897 	struct inode *inode = mpd->inode;
1898 	struct address_space *mapping = inode->i_mapping;
1899 
1900 	BUG_ON(mpd->next_page <= mpd->first_page);
1901 	/*
1902 	 * We need to start from the first_page to the next_page - 1
1903 	 * to make sure we also write the mapped dirty buffer_heads.
1904 	 * If we look at mpd->b_blocknr we would only be looking
1905 	 * at the currently mapped buffer_heads.
1906 	 */
1907 	index = mpd->first_page;
1908 	end = mpd->next_page - 1;
1909 
1910 	pagevec_init(&pvec, 0);
1911 	while (index <= end) {
1912 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1913 		if (nr_pages == 0)
1914 			break;
1915 		for (i = 0; i < nr_pages; i++) {
1916 			struct page *page = pvec.pages[i];
1917 
1918 			index = page->index;
1919 			if (index > end)
1920 				break;
1921 			index++;
1922 
1923 			BUG_ON(!PageLocked(page));
1924 			BUG_ON(PageWriteback(page));
1925 
1926 			pages_skipped = mpd->wbc->pages_skipped;
1927 			err = mapping->a_ops->writepage(page, mpd->wbc);
1928 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1929 				/*
1930 				 * have successfully written the page
1931 				 * without skipping the same
1932 				 */
1933 				mpd->pages_written++;
1934 			/*
1935 			 * In error case, we have to continue because
1936 			 * remaining pages are still locked
1937 			 * XXX: unlock and re-dirty them?
1938 			 */
1939 			if (ret == 0)
1940 				ret = err;
1941 		}
1942 		pagevec_release(&pvec);
1943 	}
1944 	return ret;
1945 }
1946 
1947 /*
1948  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1949  *
1950  * @mpd->inode - inode to walk through
1951  * @exbh->b_blocknr - first block on a disk
1952  * @exbh->b_size - amount of space in bytes
1953  * @logical - first logical block to start assignment with
1954  *
1955  * the function goes through all passed space and put actual disk
1956  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1957  */
1958 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1959 				 struct buffer_head *exbh)
1960 {
1961 	struct inode *inode = mpd->inode;
1962 	struct address_space *mapping = inode->i_mapping;
1963 	int blocks = exbh->b_size >> inode->i_blkbits;
1964 	sector_t pblock = exbh->b_blocknr, cur_logical;
1965 	struct buffer_head *head, *bh;
1966 	pgoff_t index, end;
1967 	struct pagevec pvec;
1968 	int nr_pages, i;
1969 
1970 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1971 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1973 
1974 	pagevec_init(&pvec, 0);
1975 
1976 	while (index <= end) {
1977 		/* XXX: optimize tail */
1978 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1979 		if (nr_pages == 0)
1980 			break;
1981 		for (i = 0; i < nr_pages; i++) {
1982 			struct page *page = pvec.pages[i];
1983 
1984 			index = page->index;
1985 			if (index > end)
1986 				break;
1987 			index++;
1988 
1989 			BUG_ON(!PageLocked(page));
1990 			BUG_ON(PageWriteback(page));
1991 			BUG_ON(!page_has_buffers(page));
1992 
1993 			bh = page_buffers(page);
1994 			head = bh;
1995 
1996 			/* skip blocks out of the range */
1997 			do {
1998 				if (cur_logical >= logical)
1999 					break;
2000 				cur_logical++;
2001 			} while ((bh = bh->b_this_page) != head);
2002 
2003 			do {
2004 				if (cur_logical >= logical + blocks)
2005 					break;
2006 
2007 				if (buffer_delay(bh) ||
2008 						buffer_unwritten(bh)) {
2009 
2010 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2011 
2012 					if (buffer_delay(bh)) {
2013 						clear_buffer_delay(bh);
2014 						bh->b_blocknr = pblock;
2015 					} else {
2016 						/*
2017 						 * unwritten already should have
2018 						 * blocknr assigned. Verify that
2019 						 */
2020 						clear_buffer_unwritten(bh);
2021 						BUG_ON(bh->b_blocknr != pblock);
2022 					}
2023 
2024 				} else if (buffer_mapped(bh))
2025 					BUG_ON(bh->b_blocknr != pblock);
2026 
2027 				cur_logical++;
2028 				pblock++;
2029 			} while ((bh = bh->b_this_page) != head);
2030 		}
2031 		pagevec_release(&pvec);
2032 	}
2033 }
2034 
2035 
2036 /*
2037  * __unmap_underlying_blocks - just a helper function to unmap
2038  * set of blocks described by @bh
2039  */
2040 static inline void __unmap_underlying_blocks(struct inode *inode,
2041 					     struct buffer_head *bh)
2042 {
2043 	struct block_device *bdev = inode->i_sb->s_bdev;
2044 	int blocks, i;
2045 
2046 	blocks = bh->b_size >> inode->i_blkbits;
2047 	for (i = 0; i < blocks; i++)
2048 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2049 }
2050 
2051 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2052 					sector_t logical, long blk_cnt)
2053 {
2054 	int nr_pages, i;
2055 	pgoff_t index, end;
2056 	struct pagevec pvec;
2057 	struct inode *inode = mpd->inode;
2058 	struct address_space *mapping = inode->i_mapping;
2059 
2060 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2061 	end   = (logical + blk_cnt - 1) >>
2062 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2063 	while (index <= end) {
2064 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2065 		if (nr_pages == 0)
2066 			break;
2067 		for (i = 0; i < nr_pages; i++) {
2068 			struct page *page = pvec.pages[i];
2069 			index = page->index;
2070 			if (index > end)
2071 				break;
2072 			index++;
2073 
2074 			BUG_ON(!PageLocked(page));
2075 			BUG_ON(PageWriteback(page));
2076 			block_invalidatepage(page, 0);
2077 			ClearPageUptodate(page);
2078 			unlock_page(page);
2079 		}
2080 	}
2081 	return;
2082 }
2083 
2084 static void ext4_print_free_blocks(struct inode *inode)
2085 {
2086 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2087 	printk(KERN_EMERG "Total free blocks count %lld\n",
2088 			ext4_count_free_blocks(inode->i_sb));
2089 	printk(KERN_EMERG "Free/Dirty block details\n");
2090 	printk(KERN_EMERG "free_blocks=%lld\n",
2091 			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2092 	printk(KERN_EMERG "dirty_blocks=%lld\n",
2093 			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2094 	printk(KERN_EMERG "Block reservation details\n");
2095 	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2096 			EXT4_I(inode)->i_reserved_data_blocks);
2097 	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2098 			EXT4_I(inode)->i_reserved_meta_blocks);
2099 	return;
2100 }
2101 
2102 /*
2103  * mpage_da_map_blocks - go through given space
2104  *
2105  * @mpd - bh describing space
2106  *
2107  * The function skips space we know is already mapped to disk blocks.
2108  *
2109  */
2110 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2111 {
2112 	int err, blks, get_blocks_flags;
2113 	struct buffer_head new;
2114 	sector_t next = mpd->b_blocknr;
2115 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2116 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2117 	handle_t *handle = NULL;
2118 
2119 	/*
2120 	 * We consider only non-mapped and non-allocated blocks
2121 	 */
2122 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2123 		!(mpd->b_state & (1 << BH_Delay)) &&
2124 		!(mpd->b_state & (1 << BH_Unwritten)))
2125 		return 0;
2126 
2127 	/*
2128 	 * If we didn't accumulate anything to write simply return
2129 	 */
2130 	if (!mpd->b_size)
2131 		return 0;
2132 
2133 	handle = ext4_journal_current_handle();
2134 	BUG_ON(!handle);
2135 
2136 	/*
2137 	 * Call ext4_get_blocks() to allocate any delayed allocation
2138 	 * blocks, or to convert an uninitialized extent to be
2139 	 * initialized (in the case where we have written into
2140 	 * one or more preallocated blocks).
2141 	 *
2142 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2143 	 * indicate that we are on the delayed allocation path.  This
2144 	 * affects functions in many different parts of the allocation
2145 	 * call path.  This flag exists primarily because we don't
2146 	 * want to change *many* call functions, so ext4_get_blocks()
2147 	 * will set the magic i_delalloc_reserved_flag once the
2148 	 * inode's allocation semaphore is taken.
2149 	 *
2150 	 * If the blocks in questions were delalloc blocks, set
2151 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2152 	 * variables are updated after the blocks have been allocated.
2153 	 */
2154 	new.b_state = 0;
2155 	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2156 			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2157 	if (mpd->b_state & (1 << BH_Delay))
2158 		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2159 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2160 			       &new, get_blocks_flags);
2161 	if (blks < 0) {
2162 		err = blks;
2163 		/*
2164 		 * If get block returns with error we simply
2165 		 * return. Later writepage will redirty the page and
2166 		 * writepages will find the dirty page again
2167 		 */
2168 		if (err == -EAGAIN)
2169 			return 0;
2170 
2171 		if (err == -ENOSPC &&
2172 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2173 			mpd->retval = err;
2174 			return 0;
2175 		}
2176 
2177 		/*
2178 		 * get block failure will cause us to loop in
2179 		 * writepages, because a_ops->writepage won't be able
2180 		 * to make progress. The page will be redirtied by
2181 		 * writepage and writepages will again try to write
2182 		 * the same.
2183 		 */
2184 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
2185 				  "at logical offset %llu with max blocks "
2186 				  "%zd with error %d\n",
2187 				  __func__, mpd->inode->i_ino,
2188 				  (unsigned long long)next,
2189 				  mpd->b_size >> mpd->inode->i_blkbits, err);
2190 		printk(KERN_EMERG "This should not happen.!! "
2191 					"Data will be lost\n");
2192 		if (err == -ENOSPC) {
2193 			ext4_print_free_blocks(mpd->inode);
2194 		}
2195 		/* invalidate all the pages */
2196 		ext4_da_block_invalidatepages(mpd, next,
2197 				mpd->b_size >> mpd->inode->i_blkbits);
2198 		return err;
2199 	}
2200 	BUG_ON(blks == 0);
2201 
2202 	new.b_size = (blks << mpd->inode->i_blkbits);
2203 
2204 	if (buffer_new(&new))
2205 		__unmap_underlying_blocks(mpd->inode, &new);
2206 
2207 	/*
2208 	 * If blocks are delayed marked, we need to
2209 	 * put actual blocknr and drop delayed bit
2210 	 */
2211 	if ((mpd->b_state & (1 << BH_Delay)) ||
2212 	    (mpd->b_state & (1 << BH_Unwritten)))
2213 		mpage_put_bnr_to_bhs(mpd, next, &new);
2214 
2215 	if (ext4_should_order_data(mpd->inode)) {
2216 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2217 		if (err)
2218 			return err;
2219 	}
2220 
2221 	/*
2222 	 * Update on-disk size along with block allocation.
2223 	 */
2224 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2225 	if (disksize > i_size_read(mpd->inode))
2226 		disksize = i_size_read(mpd->inode);
2227 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2228 		ext4_update_i_disksize(mpd->inode, disksize);
2229 		return ext4_mark_inode_dirty(handle, mpd->inode);
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2236 		(1 << BH_Delay) | (1 << BH_Unwritten))
2237 
2238 /*
2239  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2240  *
2241  * @mpd->lbh - extent of blocks
2242  * @logical - logical number of the block in the file
2243  * @bh - bh of the block (used to access block's state)
2244  *
2245  * the function is used to collect contig. blocks in same state
2246  */
2247 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2248 				   sector_t logical, size_t b_size,
2249 				   unsigned long b_state)
2250 {
2251 	sector_t next;
2252 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2253 
2254 	/* check if thereserved journal credits might overflow */
2255 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2256 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2257 			/*
2258 			 * With non-extent format we are limited by the journal
2259 			 * credit available.  Total credit needed to insert
2260 			 * nrblocks contiguous blocks is dependent on the
2261 			 * nrblocks.  So limit nrblocks.
2262 			 */
2263 			goto flush_it;
2264 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2265 				EXT4_MAX_TRANS_DATA) {
2266 			/*
2267 			 * Adding the new buffer_head would make it cross the
2268 			 * allowed limit for which we have journal credit
2269 			 * reserved. So limit the new bh->b_size
2270 			 */
2271 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2272 						mpd->inode->i_blkbits;
2273 			/* we will do mpage_da_submit_io in the next loop */
2274 		}
2275 	}
2276 	/*
2277 	 * First block in the extent
2278 	 */
2279 	if (mpd->b_size == 0) {
2280 		mpd->b_blocknr = logical;
2281 		mpd->b_size = b_size;
2282 		mpd->b_state = b_state & BH_FLAGS;
2283 		return;
2284 	}
2285 
2286 	next = mpd->b_blocknr + nrblocks;
2287 	/*
2288 	 * Can we merge the block to our big extent?
2289 	 */
2290 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2291 		mpd->b_size += b_size;
2292 		return;
2293 	}
2294 
2295 flush_it:
2296 	/*
2297 	 * We couldn't merge the block to our extent, so we
2298 	 * need to flush current  extent and start new one
2299 	 */
2300 	if (mpage_da_map_blocks(mpd) == 0)
2301 		mpage_da_submit_io(mpd);
2302 	mpd->io_done = 1;
2303 	return;
2304 }
2305 
2306 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2307 {
2308 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2309 }
2310 
2311 /*
2312  * __mpage_da_writepage - finds extent of pages and blocks
2313  *
2314  * @page: page to consider
2315  * @wbc: not used, we just follow rules
2316  * @data: context
2317  *
2318  * The function finds extents of pages and scan them for all blocks.
2319  */
2320 static int __mpage_da_writepage(struct page *page,
2321 				struct writeback_control *wbc, void *data)
2322 {
2323 	struct mpage_da_data *mpd = data;
2324 	struct inode *inode = mpd->inode;
2325 	struct buffer_head *bh, *head;
2326 	sector_t logical;
2327 
2328 	if (mpd->io_done) {
2329 		/*
2330 		 * Rest of the page in the page_vec
2331 		 * redirty then and skip then. We will
2332 		 * try to to write them again after
2333 		 * starting a new transaction
2334 		 */
2335 		redirty_page_for_writepage(wbc, page);
2336 		unlock_page(page);
2337 		return MPAGE_DA_EXTENT_TAIL;
2338 	}
2339 	/*
2340 	 * Can we merge this page to current extent?
2341 	 */
2342 	if (mpd->next_page != page->index) {
2343 		/*
2344 		 * Nope, we can't. So, we map non-allocated blocks
2345 		 * and start IO on them using writepage()
2346 		 */
2347 		if (mpd->next_page != mpd->first_page) {
2348 			if (mpage_da_map_blocks(mpd) == 0)
2349 				mpage_da_submit_io(mpd);
2350 			/*
2351 			 * skip rest of the page in the page_vec
2352 			 */
2353 			mpd->io_done = 1;
2354 			redirty_page_for_writepage(wbc, page);
2355 			unlock_page(page);
2356 			return MPAGE_DA_EXTENT_TAIL;
2357 		}
2358 
2359 		/*
2360 		 * Start next extent of pages ...
2361 		 */
2362 		mpd->first_page = page->index;
2363 
2364 		/*
2365 		 * ... and blocks
2366 		 */
2367 		mpd->b_size = 0;
2368 		mpd->b_state = 0;
2369 		mpd->b_blocknr = 0;
2370 	}
2371 
2372 	mpd->next_page = page->index + 1;
2373 	logical = (sector_t) page->index <<
2374 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2375 
2376 	if (!page_has_buffers(page)) {
2377 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2378 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2379 		if (mpd->io_done)
2380 			return MPAGE_DA_EXTENT_TAIL;
2381 	} else {
2382 		/*
2383 		 * Page with regular buffer heads, just add all dirty ones
2384 		 */
2385 		head = page_buffers(page);
2386 		bh = head;
2387 		do {
2388 			BUG_ON(buffer_locked(bh));
2389 			/*
2390 			 * We need to try to allocate
2391 			 * unmapped blocks in the same page.
2392 			 * Otherwise we won't make progress
2393 			 * with the page in ext4_writepage
2394 			 */
2395 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2396 				mpage_add_bh_to_extent(mpd, logical,
2397 						       bh->b_size,
2398 						       bh->b_state);
2399 				if (mpd->io_done)
2400 					return MPAGE_DA_EXTENT_TAIL;
2401 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2402 				/*
2403 				 * mapped dirty buffer. We need to update
2404 				 * the b_state because we look at
2405 				 * b_state in mpage_da_map_blocks. We don't
2406 				 * update b_size because if we find an
2407 				 * unmapped buffer_head later we need to
2408 				 * use the b_state flag of that buffer_head.
2409 				 */
2410 				if (mpd->b_size == 0)
2411 					mpd->b_state = bh->b_state & BH_FLAGS;
2412 			}
2413 			logical++;
2414 		} while ((bh = bh->b_this_page) != head);
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 /*
2421  * This is a special get_blocks_t callback which is used by
2422  * ext4_da_write_begin().  It will either return mapped block or
2423  * reserve space for a single block.
2424  *
2425  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2426  * We also have b_blocknr = -1 and b_bdev initialized properly
2427  *
2428  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2429  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2430  * initialized properly.
2431  */
2432 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2433 				  struct buffer_head *bh_result, int create)
2434 {
2435 	int ret = 0;
2436 	sector_t invalid_block = ~((sector_t) 0xffff);
2437 
2438 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2439 		invalid_block = ~0;
2440 
2441 	BUG_ON(create == 0);
2442 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2443 
2444 	/*
2445 	 * first, we need to know whether the block is allocated already
2446 	 * preallocated blocks are unmapped but should treated
2447 	 * the same as allocated blocks.
2448 	 */
2449 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2450 	if ((ret == 0) && !buffer_delay(bh_result)) {
2451 		/* the block isn't (pre)allocated yet, let's reserve space */
2452 		/*
2453 		 * XXX: __block_prepare_write() unmaps passed block,
2454 		 * is it OK?
2455 		 */
2456 		ret = ext4_da_reserve_space(inode, 1);
2457 		if (ret)
2458 			/* not enough space to reserve */
2459 			return ret;
2460 
2461 		map_bh(bh_result, inode->i_sb, invalid_block);
2462 		set_buffer_new(bh_result);
2463 		set_buffer_delay(bh_result);
2464 	} else if (ret > 0) {
2465 		bh_result->b_size = (ret << inode->i_blkbits);
2466 		if (buffer_unwritten(bh_result)) {
2467 			/* A delayed write to unwritten bh should
2468 			 * be marked new and mapped.  Mapped ensures
2469 			 * that we don't do get_block multiple times
2470 			 * when we write to the same offset and new
2471 			 * ensures that we do proper zero out for
2472 			 * partial write.
2473 			 */
2474 			set_buffer_new(bh_result);
2475 			set_buffer_mapped(bh_result);
2476 		}
2477 		ret = 0;
2478 	}
2479 
2480 	return ret;
2481 }
2482 
2483 /*
2484  * This function is used as a standard get_block_t calback function
2485  * when there is no desire to allocate any blocks.  It is used as a
2486  * callback function for block_prepare_write(), nobh_writepage(), and
2487  * block_write_full_page().  These functions should only try to map a
2488  * single block at a time.
2489  *
2490  * Since this function doesn't do block allocations even if the caller
2491  * requests it by passing in create=1, it is critically important that
2492  * any caller checks to make sure that any buffer heads are returned
2493  * by this function are either all already mapped or marked for
2494  * delayed allocation before calling nobh_writepage() or
2495  * block_write_full_page().  Otherwise, b_blocknr could be left
2496  * unitialized, and the page write functions will be taken by
2497  * surprise.
2498  */
2499 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2500 				   struct buffer_head *bh_result, int create)
2501 {
2502 	int ret = 0;
2503 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2504 
2505 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2506 
2507 	/*
2508 	 * we don't want to do block allocation in writepage
2509 	 * so call get_block_wrap with create = 0
2510 	 */
2511 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2512 	if (ret > 0) {
2513 		bh_result->b_size = (ret << inode->i_blkbits);
2514 		ret = 0;
2515 	}
2516 	return ret;
2517 }
2518 
2519 static int bget_one(handle_t *handle, struct buffer_head *bh)
2520 {
2521 	get_bh(bh);
2522 	return 0;
2523 }
2524 
2525 static int bput_one(handle_t *handle, struct buffer_head *bh)
2526 {
2527 	put_bh(bh);
2528 	return 0;
2529 }
2530 
2531 static int __ext4_journalled_writepage(struct page *page,
2532 				       struct writeback_control *wbc,
2533 				       unsigned int len)
2534 {
2535 	struct address_space *mapping = page->mapping;
2536 	struct inode *inode = mapping->host;
2537 	struct buffer_head *page_bufs;
2538 	handle_t *handle = NULL;
2539 	int ret = 0;
2540 	int err;
2541 
2542 	page_bufs = page_buffers(page);
2543 	BUG_ON(!page_bufs);
2544 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2545 	/* As soon as we unlock the page, it can go away, but we have
2546 	 * references to buffers so we are safe */
2547 	unlock_page(page);
2548 
2549 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2550 	if (IS_ERR(handle)) {
2551 		ret = PTR_ERR(handle);
2552 		goto out;
2553 	}
2554 
2555 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2556 				do_journal_get_write_access);
2557 
2558 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2559 				write_end_fn);
2560 	if (ret == 0)
2561 		ret = err;
2562 	err = ext4_journal_stop(handle);
2563 	if (!ret)
2564 		ret = err;
2565 
2566 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2567 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2568 out:
2569 	return ret;
2570 }
2571 
2572 /*
2573  * Note that we don't need to start a transaction unless we're journaling data
2574  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2575  * need to file the inode to the transaction's list in ordered mode because if
2576  * we are writing back data added by write(), the inode is already there and if
2577  * we are writing back data modified via mmap(), noone guarantees in which
2578  * transaction the data will hit the disk. In case we are journaling data, we
2579  * cannot start transaction directly because transaction start ranks above page
2580  * lock so we have to do some magic.
2581  *
2582  * This function can get called via...
2583  *   - ext4_da_writepages after taking page lock (have journal handle)
2584  *   - journal_submit_inode_data_buffers (no journal handle)
2585  *   - shrink_page_list via pdflush (no journal handle)
2586  *   - grab_page_cache when doing write_begin (have journal handle)
2587  *
2588  * We don't do any block allocation in this function. If we have page with
2589  * multiple blocks we need to write those buffer_heads that are mapped. This
2590  * is important for mmaped based write. So if we do with blocksize 1K
2591  * truncate(f, 1024);
2592  * a = mmap(f, 0, 4096);
2593  * a[0] = 'a';
2594  * truncate(f, 4096);
2595  * we have in the page first buffer_head mapped via page_mkwrite call back
2596  * but other bufer_heads would be unmapped but dirty(dirty done via the
2597  * do_wp_page). So writepage should write the first block. If we modify
2598  * the mmap area beyond 1024 we will again get a page_fault and the
2599  * page_mkwrite callback will do the block allocation and mark the
2600  * buffer_heads mapped.
2601  *
2602  * We redirty the page if we have any buffer_heads that is either delay or
2603  * unwritten in the page.
2604  *
2605  * We can get recursively called as show below.
2606  *
2607  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2608  *		ext4_writepage()
2609  *
2610  * But since we don't do any block allocation we should not deadlock.
2611  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2612  */
2613 static int ext4_writepage(struct page *page,
2614 			  struct writeback_control *wbc)
2615 {
2616 	int ret = 0;
2617 	loff_t size;
2618 	unsigned int len;
2619 	struct buffer_head *page_bufs;
2620 	struct inode *inode = page->mapping->host;
2621 
2622 	trace_ext4_writepage(inode, page);
2623 	size = i_size_read(inode);
2624 	if (page->index == size >> PAGE_CACHE_SHIFT)
2625 		len = size & ~PAGE_CACHE_MASK;
2626 	else
2627 		len = PAGE_CACHE_SIZE;
2628 
2629 	if (page_has_buffers(page)) {
2630 		page_bufs = page_buffers(page);
2631 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2632 					ext4_bh_delay_or_unwritten)) {
2633 			/*
2634 			 * We don't want to do  block allocation
2635 			 * So redirty the page and return
2636 			 * We may reach here when we do a journal commit
2637 			 * via journal_submit_inode_data_buffers.
2638 			 * If we don't have mapping block we just ignore
2639 			 * them. We can also reach here via shrink_page_list
2640 			 */
2641 			redirty_page_for_writepage(wbc, page);
2642 			unlock_page(page);
2643 			return 0;
2644 		}
2645 	} else {
2646 		/*
2647 		 * The test for page_has_buffers() is subtle:
2648 		 * We know the page is dirty but it lost buffers. That means
2649 		 * that at some moment in time after write_begin()/write_end()
2650 		 * has been called all buffers have been clean and thus they
2651 		 * must have been written at least once. So they are all
2652 		 * mapped and we can happily proceed with mapping them
2653 		 * and writing the page.
2654 		 *
2655 		 * Try to initialize the buffer_heads and check whether
2656 		 * all are mapped and non delay. We don't want to
2657 		 * do block allocation here.
2658 		 */
2659 		ret = block_prepare_write(page, 0, len,
2660 					  noalloc_get_block_write);
2661 		if (!ret) {
2662 			page_bufs = page_buffers(page);
2663 			/* check whether all are mapped and non delay */
2664 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2665 						ext4_bh_delay_or_unwritten)) {
2666 				redirty_page_for_writepage(wbc, page);
2667 				unlock_page(page);
2668 				return 0;
2669 			}
2670 		} else {
2671 			/*
2672 			 * We can't do block allocation here
2673 			 * so just redity the page and unlock
2674 			 * and return
2675 			 */
2676 			redirty_page_for_writepage(wbc, page);
2677 			unlock_page(page);
2678 			return 0;
2679 		}
2680 		/* now mark the buffer_heads as dirty and uptodate */
2681 		block_commit_write(page, 0, len);
2682 	}
2683 
2684 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2685 		/*
2686 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2687 		 * doesn't seem much point in redirtying the page here.
2688 		 */
2689 		ClearPageChecked(page);
2690 		return __ext4_journalled_writepage(page, wbc, len);
2691 	}
2692 
2693 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2694 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2695 	else
2696 		ret = block_write_full_page(page, noalloc_get_block_write,
2697 					    wbc);
2698 
2699 	return ret;
2700 }
2701 
2702 /*
2703  * This is called via ext4_da_writepages() to
2704  * calulate the total number of credits to reserve to fit
2705  * a single extent allocation into a single transaction,
2706  * ext4_da_writpeages() will loop calling this before
2707  * the block allocation.
2708  */
2709 
2710 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2711 {
2712 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2713 
2714 	/*
2715 	 * With non-extent format the journal credit needed to
2716 	 * insert nrblocks contiguous block is dependent on
2717 	 * number of contiguous block. So we will limit
2718 	 * number of contiguous block to a sane value
2719 	 */
2720 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2721 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2722 		max_blocks = EXT4_MAX_TRANS_DATA;
2723 
2724 	return ext4_chunk_trans_blocks(inode, max_blocks);
2725 }
2726 
2727 static int ext4_da_writepages(struct address_space *mapping,
2728 			      struct writeback_control *wbc)
2729 {
2730 	pgoff_t	index;
2731 	int range_whole = 0;
2732 	handle_t *handle = NULL;
2733 	struct mpage_da_data mpd;
2734 	struct inode *inode = mapping->host;
2735 	int no_nrwrite_index_update;
2736 	int pages_written = 0;
2737 	long pages_skipped;
2738 	int range_cyclic, cycled = 1, io_done = 0;
2739 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2740 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2741 
2742 	trace_ext4_da_writepages(inode, wbc);
2743 
2744 	/*
2745 	 * No pages to write? This is mainly a kludge to avoid starting
2746 	 * a transaction for special inodes like journal inode on last iput()
2747 	 * because that could violate lock ordering on umount
2748 	 */
2749 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2750 		return 0;
2751 
2752 	/*
2753 	 * If the filesystem has aborted, it is read-only, so return
2754 	 * right away instead of dumping stack traces later on that
2755 	 * will obscure the real source of the problem.  We test
2756 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2757 	 * the latter could be true if the filesystem is mounted
2758 	 * read-only, and in that case, ext4_da_writepages should
2759 	 * *never* be called, so if that ever happens, we would want
2760 	 * the stack trace.
2761 	 */
2762 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2763 		return -EROFS;
2764 
2765 	/*
2766 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2767 	 * This make sure small files blocks are allocated in
2768 	 * single attempt. This ensure that small files
2769 	 * get less fragmented.
2770 	 */
2771 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2772 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2773 		wbc->nr_to_write = sbi->s_mb_stream_request;
2774 	}
2775 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2776 		range_whole = 1;
2777 
2778 	range_cyclic = wbc->range_cyclic;
2779 	if (wbc->range_cyclic) {
2780 		index = mapping->writeback_index;
2781 		if (index)
2782 			cycled = 0;
2783 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2784 		wbc->range_end  = LLONG_MAX;
2785 		wbc->range_cyclic = 0;
2786 	} else
2787 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2788 
2789 	mpd.wbc = wbc;
2790 	mpd.inode = mapping->host;
2791 
2792 	/*
2793 	 * we don't want write_cache_pages to update
2794 	 * nr_to_write and writeback_index
2795 	 */
2796 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2797 	wbc->no_nrwrite_index_update = 1;
2798 	pages_skipped = wbc->pages_skipped;
2799 
2800 retry:
2801 	while (!ret && wbc->nr_to_write > 0) {
2802 
2803 		/*
2804 		 * we  insert one extent at a time. So we need
2805 		 * credit needed for single extent allocation.
2806 		 * journalled mode is currently not supported
2807 		 * by delalloc
2808 		 */
2809 		BUG_ON(ext4_should_journal_data(inode));
2810 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2811 
2812 		/* start a new transaction*/
2813 		handle = ext4_journal_start(inode, needed_blocks);
2814 		if (IS_ERR(handle)) {
2815 			ret = PTR_ERR(handle);
2816 			printk(KERN_CRIT "%s: jbd2_start: "
2817 			       "%ld pages, ino %lu; err %d\n", __func__,
2818 				wbc->nr_to_write, inode->i_ino, ret);
2819 			dump_stack();
2820 			goto out_writepages;
2821 		}
2822 
2823 		/*
2824 		 * Now call __mpage_da_writepage to find the next
2825 		 * contiguous region of logical blocks that need
2826 		 * blocks to be allocated by ext4.  We don't actually
2827 		 * submit the blocks for I/O here, even though
2828 		 * write_cache_pages thinks it will, and will set the
2829 		 * pages as clean for write before calling
2830 		 * __mpage_da_writepage().
2831 		 */
2832 		mpd.b_size = 0;
2833 		mpd.b_state = 0;
2834 		mpd.b_blocknr = 0;
2835 		mpd.first_page = 0;
2836 		mpd.next_page = 0;
2837 		mpd.io_done = 0;
2838 		mpd.pages_written = 0;
2839 		mpd.retval = 0;
2840 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2841 					&mpd);
2842 		/*
2843 		 * If we have a contigous extent of pages and we
2844 		 * haven't done the I/O yet, map the blocks and submit
2845 		 * them for I/O.
2846 		 */
2847 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2848 			if (mpage_da_map_blocks(&mpd) == 0)
2849 				mpage_da_submit_io(&mpd);
2850 			mpd.io_done = 1;
2851 			ret = MPAGE_DA_EXTENT_TAIL;
2852 		}
2853 		wbc->nr_to_write -= mpd.pages_written;
2854 
2855 		ext4_journal_stop(handle);
2856 
2857 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2858 			/* commit the transaction which would
2859 			 * free blocks released in the transaction
2860 			 * and try again
2861 			 */
2862 			jbd2_journal_force_commit_nested(sbi->s_journal);
2863 			wbc->pages_skipped = pages_skipped;
2864 			ret = 0;
2865 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2866 			/*
2867 			 * got one extent now try with
2868 			 * rest of the pages
2869 			 */
2870 			pages_written += mpd.pages_written;
2871 			wbc->pages_skipped = pages_skipped;
2872 			ret = 0;
2873 			io_done = 1;
2874 		} else if (wbc->nr_to_write)
2875 			/*
2876 			 * There is no more writeout needed
2877 			 * or we requested for a noblocking writeout
2878 			 * and we found the device congested
2879 			 */
2880 			break;
2881 	}
2882 	if (!io_done && !cycled) {
2883 		cycled = 1;
2884 		index = 0;
2885 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2886 		wbc->range_end  = mapping->writeback_index - 1;
2887 		goto retry;
2888 	}
2889 	if (pages_skipped != wbc->pages_skipped)
2890 		printk(KERN_EMERG "This should not happen leaving %s "
2891 				"with nr_to_write = %ld ret = %d\n",
2892 				__func__, wbc->nr_to_write, ret);
2893 
2894 	/* Update index */
2895 	index += pages_written;
2896 	wbc->range_cyclic = range_cyclic;
2897 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2898 		/*
2899 		 * set the writeback_index so that range_cyclic
2900 		 * mode will write it back later
2901 		 */
2902 		mapping->writeback_index = index;
2903 
2904 out_writepages:
2905 	if (!no_nrwrite_index_update)
2906 		wbc->no_nrwrite_index_update = 0;
2907 	wbc->nr_to_write -= nr_to_writebump;
2908 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2909 	return ret;
2910 }
2911 
2912 #define FALL_BACK_TO_NONDELALLOC 1
2913 static int ext4_nonda_switch(struct super_block *sb)
2914 {
2915 	s64 free_blocks, dirty_blocks;
2916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2917 
2918 	/*
2919 	 * switch to non delalloc mode if we are running low
2920 	 * on free block. The free block accounting via percpu
2921 	 * counters can get slightly wrong with percpu_counter_batch getting
2922 	 * accumulated on each CPU without updating global counters
2923 	 * Delalloc need an accurate free block accounting. So switch
2924 	 * to non delalloc when we are near to error range.
2925 	 */
2926 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2927 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2928 	if (2 * free_blocks < 3 * dirty_blocks ||
2929 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2930 		/*
2931 		 * free block count is less that 150% of dirty blocks
2932 		 * or free blocks is less that watermark
2933 		 */
2934 		return 1;
2935 	}
2936 	return 0;
2937 }
2938 
2939 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2940 			       loff_t pos, unsigned len, unsigned flags,
2941 			       struct page **pagep, void **fsdata)
2942 {
2943 	int ret, retries = 0;
2944 	struct page *page;
2945 	pgoff_t index;
2946 	unsigned from, to;
2947 	struct inode *inode = mapping->host;
2948 	handle_t *handle;
2949 
2950 	index = pos >> PAGE_CACHE_SHIFT;
2951 	from = pos & (PAGE_CACHE_SIZE - 1);
2952 	to = from + len;
2953 
2954 	if (ext4_nonda_switch(inode->i_sb)) {
2955 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2956 		return ext4_write_begin(file, mapping, pos,
2957 					len, flags, pagep, fsdata);
2958 	}
2959 	*fsdata = (void *)0;
2960 	trace_ext4_da_write_begin(inode, pos, len, flags);
2961 retry:
2962 	/*
2963 	 * With delayed allocation, we don't log the i_disksize update
2964 	 * if there is delayed block allocation. But we still need
2965 	 * to journalling the i_disksize update if writes to the end
2966 	 * of file which has an already mapped buffer.
2967 	 */
2968 	handle = ext4_journal_start(inode, 1);
2969 	if (IS_ERR(handle)) {
2970 		ret = PTR_ERR(handle);
2971 		goto out;
2972 	}
2973 	/* We cannot recurse into the filesystem as the transaction is already
2974 	 * started */
2975 	flags |= AOP_FLAG_NOFS;
2976 
2977 	page = grab_cache_page_write_begin(mapping, index, flags);
2978 	if (!page) {
2979 		ext4_journal_stop(handle);
2980 		ret = -ENOMEM;
2981 		goto out;
2982 	}
2983 	*pagep = page;
2984 
2985 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2986 				ext4_da_get_block_prep);
2987 	if (ret < 0) {
2988 		unlock_page(page);
2989 		ext4_journal_stop(handle);
2990 		page_cache_release(page);
2991 		/*
2992 		 * block_write_begin may have instantiated a few blocks
2993 		 * outside i_size.  Trim these off again. Don't need
2994 		 * i_size_read because we hold i_mutex.
2995 		 */
2996 		if (pos + len > inode->i_size)
2997 			ext4_truncate(inode);
2998 	}
2999 
3000 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3001 		goto retry;
3002 out:
3003 	return ret;
3004 }
3005 
3006 /*
3007  * Check if we should update i_disksize
3008  * when write to the end of file but not require block allocation
3009  */
3010 static int ext4_da_should_update_i_disksize(struct page *page,
3011 					    unsigned long offset)
3012 {
3013 	struct buffer_head *bh;
3014 	struct inode *inode = page->mapping->host;
3015 	unsigned int idx;
3016 	int i;
3017 
3018 	bh = page_buffers(page);
3019 	idx = offset >> inode->i_blkbits;
3020 
3021 	for (i = 0; i < idx; i++)
3022 		bh = bh->b_this_page;
3023 
3024 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3025 		return 0;
3026 	return 1;
3027 }
3028 
3029 static int ext4_da_write_end(struct file *file,
3030 			     struct address_space *mapping,
3031 			     loff_t pos, unsigned len, unsigned copied,
3032 			     struct page *page, void *fsdata)
3033 {
3034 	struct inode *inode = mapping->host;
3035 	int ret = 0, ret2;
3036 	handle_t *handle = ext4_journal_current_handle();
3037 	loff_t new_i_size;
3038 	unsigned long start, end;
3039 	int write_mode = (int)(unsigned long)fsdata;
3040 
3041 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3042 		if (ext4_should_order_data(inode)) {
3043 			return ext4_ordered_write_end(file, mapping, pos,
3044 					len, copied, page, fsdata);
3045 		} else if (ext4_should_writeback_data(inode)) {
3046 			return ext4_writeback_write_end(file, mapping, pos,
3047 					len, copied, page, fsdata);
3048 		} else {
3049 			BUG();
3050 		}
3051 	}
3052 
3053 	trace_ext4_da_write_end(inode, pos, len, copied);
3054 	start = pos & (PAGE_CACHE_SIZE - 1);
3055 	end = start + copied - 1;
3056 
3057 	/*
3058 	 * generic_write_end() will run mark_inode_dirty() if i_size
3059 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3060 	 * into that.
3061 	 */
3062 
3063 	new_i_size = pos + copied;
3064 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3065 		if (ext4_da_should_update_i_disksize(page, end)) {
3066 			down_write(&EXT4_I(inode)->i_data_sem);
3067 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3068 				/*
3069 				 * Updating i_disksize when extending file
3070 				 * without needing block allocation
3071 				 */
3072 				if (ext4_should_order_data(inode))
3073 					ret = ext4_jbd2_file_inode(handle,
3074 								   inode);
3075 
3076 				EXT4_I(inode)->i_disksize = new_i_size;
3077 			}
3078 			up_write(&EXT4_I(inode)->i_data_sem);
3079 			/* We need to mark inode dirty even if
3080 			 * new_i_size is less that inode->i_size
3081 			 * bu greater than i_disksize.(hint delalloc)
3082 			 */
3083 			ext4_mark_inode_dirty(handle, inode);
3084 		}
3085 	}
3086 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3087 							page, fsdata);
3088 	copied = ret2;
3089 	if (ret2 < 0)
3090 		ret = ret2;
3091 	ret2 = ext4_journal_stop(handle);
3092 	if (!ret)
3093 		ret = ret2;
3094 
3095 	return ret ? ret : copied;
3096 }
3097 
3098 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3099 {
3100 	/*
3101 	 * Drop reserved blocks
3102 	 */
3103 	BUG_ON(!PageLocked(page));
3104 	if (!page_has_buffers(page))
3105 		goto out;
3106 
3107 	ext4_da_page_release_reservation(page, offset);
3108 
3109 out:
3110 	ext4_invalidatepage(page, offset);
3111 
3112 	return;
3113 }
3114 
3115 /*
3116  * Force all delayed allocation blocks to be allocated for a given inode.
3117  */
3118 int ext4_alloc_da_blocks(struct inode *inode)
3119 {
3120 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3121 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3122 		return 0;
3123 
3124 	/*
3125 	 * We do something simple for now.  The filemap_flush() will
3126 	 * also start triggering a write of the data blocks, which is
3127 	 * not strictly speaking necessary (and for users of
3128 	 * laptop_mode, not even desirable).  However, to do otherwise
3129 	 * would require replicating code paths in:
3130 	 *
3131 	 * ext4_da_writepages() ->
3132 	 *    write_cache_pages() ---> (via passed in callback function)
3133 	 *        __mpage_da_writepage() -->
3134 	 *           mpage_add_bh_to_extent()
3135 	 *           mpage_da_map_blocks()
3136 	 *
3137 	 * The problem is that write_cache_pages(), located in
3138 	 * mm/page-writeback.c, marks pages clean in preparation for
3139 	 * doing I/O, which is not desirable if we're not planning on
3140 	 * doing I/O at all.
3141 	 *
3142 	 * We could call write_cache_pages(), and then redirty all of
3143 	 * the pages by calling redirty_page_for_writeback() but that
3144 	 * would be ugly in the extreme.  So instead we would need to
3145 	 * replicate parts of the code in the above functions,
3146 	 * simplifying them becuase we wouldn't actually intend to
3147 	 * write out the pages, but rather only collect contiguous
3148 	 * logical block extents, call the multi-block allocator, and
3149 	 * then update the buffer heads with the block allocations.
3150 	 *
3151 	 * For now, though, we'll cheat by calling filemap_flush(),
3152 	 * which will map the blocks, and start the I/O, but not
3153 	 * actually wait for the I/O to complete.
3154 	 */
3155 	return filemap_flush(inode->i_mapping);
3156 }
3157 
3158 /*
3159  * bmap() is special.  It gets used by applications such as lilo and by
3160  * the swapper to find the on-disk block of a specific piece of data.
3161  *
3162  * Naturally, this is dangerous if the block concerned is still in the
3163  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3164  * filesystem and enables swap, then they may get a nasty shock when the
3165  * data getting swapped to that swapfile suddenly gets overwritten by
3166  * the original zero's written out previously to the journal and
3167  * awaiting writeback in the kernel's buffer cache.
3168  *
3169  * So, if we see any bmap calls here on a modified, data-journaled file,
3170  * take extra steps to flush any blocks which might be in the cache.
3171  */
3172 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3173 {
3174 	struct inode *inode = mapping->host;
3175 	journal_t *journal;
3176 	int err;
3177 
3178 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3179 			test_opt(inode->i_sb, DELALLOC)) {
3180 		/*
3181 		 * With delalloc we want to sync the file
3182 		 * so that we can make sure we allocate
3183 		 * blocks for file
3184 		 */
3185 		filemap_write_and_wait(mapping);
3186 	}
3187 
3188 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3189 		/*
3190 		 * This is a REALLY heavyweight approach, but the use of
3191 		 * bmap on dirty files is expected to be extremely rare:
3192 		 * only if we run lilo or swapon on a freshly made file
3193 		 * do we expect this to happen.
3194 		 *
3195 		 * (bmap requires CAP_SYS_RAWIO so this does not
3196 		 * represent an unprivileged user DOS attack --- we'd be
3197 		 * in trouble if mortal users could trigger this path at
3198 		 * will.)
3199 		 *
3200 		 * NB. EXT4_STATE_JDATA is not set on files other than
3201 		 * regular files.  If somebody wants to bmap a directory
3202 		 * or symlink and gets confused because the buffer
3203 		 * hasn't yet been flushed to disk, they deserve
3204 		 * everything they get.
3205 		 */
3206 
3207 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3208 		journal = EXT4_JOURNAL(inode);
3209 		jbd2_journal_lock_updates(journal);
3210 		err = jbd2_journal_flush(journal);
3211 		jbd2_journal_unlock_updates(journal);
3212 
3213 		if (err)
3214 			return 0;
3215 	}
3216 
3217 	return generic_block_bmap(mapping, block, ext4_get_block);
3218 }
3219 
3220 static int ext4_readpage(struct file *file, struct page *page)
3221 {
3222 	return mpage_readpage(page, ext4_get_block);
3223 }
3224 
3225 static int
3226 ext4_readpages(struct file *file, struct address_space *mapping,
3227 		struct list_head *pages, unsigned nr_pages)
3228 {
3229 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3230 }
3231 
3232 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3233 {
3234 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3235 
3236 	/*
3237 	 * If it's a full truncate we just forget about the pending dirtying
3238 	 */
3239 	if (offset == 0)
3240 		ClearPageChecked(page);
3241 
3242 	if (journal)
3243 		jbd2_journal_invalidatepage(journal, page, offset);
3244 	else
3245 		block_invalidatepage(page, offset);
3246 }
3247 
3248 static int ext4_releasepage(struct page *page, gfp_t wait)
3249 {
3250 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3251 
3252 	WARN_ON(PageChecked(page));
3253 	if (!page_has_buffers(page))
3254 		return 0;
3255 	if (journal)
3256 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3257 	else
3258 		return try_to_free_buffers(page);
3259 }
3260 
3261 /*
3262  * If the O_DIRECT write will extend the file then add this inode to the
3263  * orphan list.  So recovery will truncate it back to the original size
3264  * if the machine crashes during the write.
3265  *
3266  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3267  * crashes then stale disk data _may_ be exposed inside the file. But current
3268  * VFS code falls back into buffered path in that case so we are safe.
3269  */
3270 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3271 			      const struct iovec *iov, loff_t offset,
3272 			      unsigned long nr_segs)
3273 {
3274 	struct file *file = iocb->ki_filp;
3275 	struct inode *inode = file->f_mapping->host;
3276 	struct ext4_inode_info *ei = EXT4_I(inode);
3277 	handle_t *handle;
3278 	ssize_t ret;
3279 	int orphan = 0;
3280 	size_t count = iov_length(iov, nr_segs);
3281 
3282 	if (rw == WRITE) {
3283 		loff_t final_size = offset + count;
3284 
3285 		if (final_size > inode->i_size) {
3286 			/* Credits for sb + inode write */
3287 			handle = ext4_journal_start(inode, 2);
3288 			if (IS_ERR(handle)) {
3289 				ret = PTR_ERR(handle);
3290 				goto out;
3291 			}
3292 			ret = ext4_orphan_add(handle, inode);
3293 			if (ret) {
3294 				ext4_journal_stop(handle);
3295 				goto out;
3296 			}
3297 			orphan = 1;
3298 			ei->i_disksize = inode->i_size;
3299 			ext4_journal_stop(handle);
3300 		}
3301 	}
3302 
3303 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3304 				 offset, nr_segs,
3305 				 ext4_get_block, NULL);
3306 
3307 	if (orphan) {
3308 		int err;
3309 
3310 		/* Credits for sb + inode write */
3311 		handle = ext4_journal_start(inode, 2);
3312 		if (IS_ERR(handle)) {
3313 			/* This is really bad luck. We've written the data
3314 			 * but cannot extend i_size. Bail out and pretend
3315 			 * the write failed... */
3316 			ret = PTR_ERR(handle);
3317 			goto out;
3318 		}
3319 		if (inode->i_nlink)
3320 			ext4_orphan_del(handle, inode);
3321 		if (ret > 0) {
3322 			loff_t end = offset + ret;
3323 			if (end > inode->i_size) {
3324 				ei->i_disksize = end;
3325 				i_size_write(inode, end);
3326 				/*
3327 				 * We're going to return a positive `ret'
3328 				 * here due to non-zero-length I/O, so there's
3329 				 * no way of reporting error returns from
3330 				 * ext4_mark_inode_dirty() to userspace.  So
3331 				 * ignore it.
3332 				 */
3333 				ext4_mark_inode_dirty(handle, inode);
3334 			}
3335 		}
3336 		err = ext4_journal_stop(handle);
3337 		if (ret == 0)
3338 			ret = err;
3339 	}
3340 out:
3341 	return ret;
3342 }
3343 
3344 /*
3345  * Pages can be marked dirty completely asynchronously from ext4's journalling
3346  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3347  * much here because ->set_page_dirty is called under VFS locks.  The page is
3348  * not necessarily locked.
3349  *
3350  * We cannot just dirty the page and leave attached buffers clean, because the
3351  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3352  * or jbddirty because all the journalling code will explode.
3353  *
3354  * So what we do is to mark the page "pending dirty" and next time writepage
3355  * is called, propagate that into the buffers appropriately.
3356  */
3357 static int ext4_journalled_set_page_dirty(struct page *page)
3358 {
3359 	SetPageChecked(page);
3360 	return __set_page_dirty_nobuffers(page);
3361 }
3362 
3363 static const struct address_space_operations ext4_ordered_aops = {
3364 	.readpage		= ext4_readpage,
3365 	.readpages		= ext4_readpages,
3366 	.writepage		= ext4_writepage,
3367 	.sync_page		= block_sync_page,
3368 	.write_begin		= ext4_write_begin,
3369 	.write_end		= ext4_ordered_write_end,
3370 	.bmap			= ext4_bmap,
3371 	.invalidatepage		= ext4_invalidatepage,
3372 	.releasepage		= ext4_releasepage,
3373 	.direct_IO		= ext4_direct_IO,
3374 	.migratepage		= buffer_migrate_page,
3375 	.is_partially_uptodate  = block_is_partially_uptodate,
3376 };
3377 
3378 static const struct address_space_operations ext4_writeback_aops = {
3379 	.readpage		= ext4_readpage,
3380 	.readpages		= ext4_readpages,
3381 	.writepage		= ext4_writepage,
3382 	.sync_page		= block_sync_page,
3383 	.write_begin		= ext4_write_begin,
3384 	.write_end		= ext4_writeback_write_end,
3385 	.bmap			= ext4_bmap,
3386 	.invalidatepage		= ext4_invalidatepage,
3387 	.releasepage		= ext4_releasepage,
3388 	.direct_IO		= ext4_direct_IO,
3389 	.migratepage		= buffer_migrate_page,
3390 	.is_partially_uptodate  = block_is_partially_uptodate,
3391 };
3392 
3393 static const struct address_space_operations ext4_journalled_aops = {
3394 	.readpage		= ext4_readpage,
3395 	.readpages		= ext4_readpages,
3396 	.writepage		= ext4_writepage,
3397 	.sync_page		= block_sync_page,
3398 	.write_begin		= ext4_write_begin,
3399 	.write_end		= ext4_journalled_write_end,
3400 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3401 	.bmap			= ext4_bmap,
3402 	.invalidatepage		= ext4_invalidatepage,
3403 	.releasepage		= ext4_releasepage,
3404 	.is_partially_uptodate  = block_is_partially_uptodate,
3405 };
3406 
3407 static const struct address_space_operations ext4_da_aops = {
3408 	.readpage		= ext4_readpage,
3409 	.readpages		= ext4_readpages,
3410 	.writepage		= ext4_writepage,
3411 	.writepages		= ext4_da_writepages,
3412 	.sync_page		= block_sync_page,
3413 	.write_begin		= ext4_da_write_begin,
3414 	.write_end		= ext4_da_write_end,
3415 	.bmap			= ext4_bmap,
3416 	.invalidatepage		= ext4_da_invalidatepage,
3417 	.releasepage		= ext4_releasepage,
3418 	.direct_IO		= ext4_direct_IO,
3419 	.migratepage		= buffer_migrate_page,
3420 	.is_partially_uptodate  = block_is_partially_uptodate,
3421 };
3422 
3423 void ext4_set_aops(struct inode *inode)
3424 {
3425 	if (ext4_should_order_data(inode) &&
3426 		test_opt(inode->i_sb, DELALLOC))
3427 		inode->i_mapping->a_ops = &ext4_da_aops;
3428 	else if (ext4_should_order_data(inode))
3429 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3430 	else if (ext4_should_writeback_data(inode) &&
3431 		 test_opt(inode->i_sb, DELALLOC))
3432 		inode->i_mapping->a_ops = &ext4_da_aops;
3433 	else if (ext4_should_writeback_data(inode))
3434 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3435 	else
3436 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3437 }
3438 
3439 /*
3440  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3441  * up to the end of the block which corresponds to `from'.
3442  * This required during truncate. We need to physically zero the tail end
3443  * of that block so it doesn't yield old data if the file is later grown.
3444  */
3445 int ext4_block_truncate_page(handle_t *handle,
3446 		struct address_space *mapping, loff_t from)
3447 {
3448 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3449 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3450 	unsigned blocksize, length, pos;
3451 	ext4_lblk_t iblock;
3452 	struct inode *inode = mapping->host;
3453 	struct buffer_head *bh;
3454 	struct page *page;
3455 	int err = 0;
3456 
3457 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3458 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3459 	if (!page)
3460 		return -EINVAL;
3461 
3462 	blocksize = inode->i_sb->s_blocksize;
3463 	length = blocksize - (offset & (blocksize - 1));
3464 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3465 
3466 	/*
3467 	 * For "nobh" option,  we can only work if we don't need to
3468 	 * read-in the page - otherwise we create buffers to do the IO.
3469 	 */
3470 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3471 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3472 		zero_user(page, offset, length);
3473 		set_page_dirty(page);
3474 		goto unlock;
3475 	}
3476 
3477 	if (!page_has_buffers(page))
3478 		create_empty_buffers(page, blocksize, 0);
3479 
3480 	/* Find the buffer that contains "offset" */
3481 	bh = page_buffers(page);
3482 	pos = blocksize;
3483 	while (offset >= pos) {
3484 		bh = bh->b_this_page;
3485 		iblock++;
3486 		pos += blocksize;
3487 	}
3488 
3489 	err = 0;
3490 	if (buffer_freed(bh)) {
3491 		BUFFER_TRACE(bh, "freed: skip");
3492 		goto unlock;
3493 	}
3494 
3495 	if (!buffer_mapped(bh)) {
3496 		BUFFER_TRACE(bh, "unmapped");
3497 		ext4_get_block(inode, iblock, bh, 0);
3498 		/* unmapped? It's a hole - nothing to do */
3499 		if (!buffer_mapped(bh)) {
3500 			BUFFER_TRACE(bh, "still unmapped");
3501 			goto unlock;
3502 		}
3503 	}
3504 
3505 	/* Ok, it's mapped. Make sure it's up-to-date */
3506 	if (PageUptodate(page))
3507 		set_buffer_uptodate(bh);
3508 
3509 	if (!buffer_uptodate(bh)) {
3510 		err = -EIO;
3511 		ll_rw_block(READ, 1, &bh);
3512 		wait_on_buffer(bh);
3513 		/* Uhhuh. Read error. Complain and punt. */
3514 		if (!buffer_uptodate(bh))
3515 			goto unlock;
3516 	}
3517 
3518 	if (ext4_should_journal_data(inode)) {
3519 		BUFFER_TRACE(bh, "get write access");
3520 		err = ext4_journal_get_write_access(handle, bh);
3521 		if (err)
3522 			goto unlock;
3523 	}
3524 
3525 	zero_user(page, offset, length);
3526 
3527 	BUFFER_TRACE(bh, "zeroed end of block");
3528 
3529 	err = 0;
3530 	if (ext4_should_journal_data(inode)) {
3531 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3532 	} else {
3533 		if (ext4_should_order_data(inode))
3534 			err = ext4_jbd2_file_inode(handle, inode);
3535 		mark_buffer_dirty(bh);
3536 	}
3537 
3538 unlock:
3539 	unlock_page(page);
3540 	page_cache_release(page);
3541 	return err;
3542 }
3543 
3544 /*
3545  * Probably it should be a library function... search for first non-zero word
3546  * or memcmp with zero_page, whatever is better for particular architecture.
3547  * Linus?
3548  */
3549 static inline int all_zeroes(__le32 *p, __le32 *q)
3550 {
3551 	while (p < q)
3552 		if (*p++)
3553 			return 0;
3554 	return 1;
3555 }
3556 
3557 /**
3558  *	ext4_find_shared - find the indirect blocks for partial truncation.
3559  *	@inode:	  inode in question
3560  *	@depth:	  depth of the affected branch
3561  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3562  *	@chain:	  place to store the pointers to partial indirect blocks
3563  *	@top:	  place to the (detached) top of branch
3564  *
3565  *	This is a helper function used by ext4_truncate().
3566  *
3567  *	When we do truncate() we may have to clean the ends of several
3568  *	indirect blocks but leave the blocks themselves alive. Block is
3569  *	partially truncated if some data below the new i_size is refered
3570  *	from it (and it is on the path to the first completely truncated
3571  *	data block, indeed).  We have to free the top of that path along
3572  *	with everything to the right of the path. Since no allocation
3573  *	past the truncation point is possible until ext4_truncate()
3574  *	finishes, we may safely do the latter, but top of branch may
3575  *	require special attention - pageout below the truncation point
3576  *	might try to populate it.
3577  *
3578  *	We atomically detach the top of branch from the tree, store the
3579  *	block number of its root in *@top, pointers to buffer_heads of
3580  *	partially truncated blocks - in @chain[].bh and pointers to
3581  *	their last elements that should not be removed - in
3582  *	@chain[].p. Return value is the pointer to last filled element
3583  *	of @chain.
3584  *
3585  *	The work left to caller to do the actual freeing of subtrees:
3586  *		a) free the subtree starting from *@top
3587  *		b) free the subtrees whose roots are stored in
3588  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3589  *		c) free the subtrees growing from the inode past the @chain[0].
3590  *			(no partially truncated stuff there).  */
3591 
3592 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3593 				  ext4_lblk_t offsets[4], Indirect chain[4],
3594 				  __le32 *top)
3595 {
3596 	Indirect *partial, *p;
3597 	int k, err;
3598 
3599 	*top = 0;
3600 	/* Make k index the deepest non-null offest + 1 */
3601 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3602 		;
3603 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3604 	/* Writer: pointers */
3605 	if (!partial)
3606 		partial = chain + k-1;
3607 	/*
3608 	 * If the branch acquired continuation since we've looked at it -
3609 	 * fine, it should all survive and (new) top doesn't belong to us.
3610 	 */
3611 	if (!partial->key && *partial->p)
3612 		/* Writer: end */
3613 		goto no_top;
3614 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3615 		;
3616 	/*
3617 	 * OK, we've found the last block that must survive. The rest of our
3618 	 * branch should be detached before unlocking. However, if that rest
3619 	 * of branch is all ours and does not grow immediately from the inode
3620 	 * it's easier to cheat and just decrement partial->p.
3621 	 */
3622 	if (p == chain + k - 1 && p > chain) {
3623 		p->p--;
3624 	} else {
3625 		*top = *p->p;
3626 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3627 #if 0
3628 		*p->p = 0;
3629 #endif
3630 	}
3631 	/* Writer: end */
3632 
3633 	while (partial > p) {
3634 		brelse(partial->bh);
3635 		partial--;
3636 	}
3637 no_top:
3638 	return partial;
3639 }
3640 
3641 /*
3642  * Zero a number of block pointers in either an inode or an indirect block.
3643  * If we restart the transaction we must again get write access to the
3644  * indirect block for further modification.
3645  *
3646  * We release `count' blocks on disk, but (last - first) may be greater
3647  * than `count' because there can be holes in there.
3648  */
3649 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3650 			      struct buffer_head *bh,
3651 			      ext4_fsblk_t block_to_free,
3652 			      unsigned long count, __le32 *first,
3653 			      __le32 *last)
3654 {
3655 	__le32 *p;
3656 	if (try_to_extend_transaction(handle, inode)) {
3657 		if (bh) {
3658 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3659 			ext4_handle_dirty_metadata(handle, inode, bh);
3660 		}
3661 		ext4_mark_inode_dirty(handle, inode);
3662 		ext4_journal_test_restart(handle, inode);
3663 		if (bh) {
3664 			BUFFER_TRACE(bh, "retaking write access");
3665 			ext4_journal_get_write_access(handle, bh);
3666 		}
3667 	}
3668 
3669 	/*
3670 	 * Any buffers which are on the journal will be in memory. We
3671 	 * find them on the hash table so jbd2_journal_revoke() will
3672 	 * run jbd2_journal_forget() on them.  We've already detached
3673 	 * each block from the file, so bforget() in
3674 	 * jbd2_journal_forget() should be safe.
3675 	 *
3676 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3677 	 */
3678 	for (p = first; p < last; p++) {
3679 		u32 nr = le32_to_cpu(*p);
3680 		if (nr) {
3681 			struct buffer_head *tbh;
3682 
3683 			*p = 0;
3684 			tbh = sb_find_get_block(inode->i_sb, nr);
3685 			ext4_forget(handle, 0, inode, tbh, nr);
3686 		}
3687 	}
3688 
3689 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3690 }
3691 
3692 /**
3693  * ext4_free_data - free a list of data blocks
3694  * @handle:	handle for this transaction
3695  * @inode:	inode we are dealing with
3696  * @this_bh:	indirect buffer_head which contains *@first and *@last
3697  * @first:	array of block numbers
3698  * @last:	points immediately past the end of array
3699  *
3700  * We are freeing all blocks refered from that array (numbers are stored as
3701  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3702  *
3703  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3704  * blocks are contiguous then releasing them at one time will only affect one
3705  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3706  * actually use a lot of journal space.
3707  *
3708  * @this_bh will be %NULL if @first and @last point into the inode's direct
3709  * block pointers.
3710  */
3711 static void ext4_free_data(handle_t *handle, struct inode *inode,
3712 			   struct buffer_head *this_bh,
3713 			   __le32 *first, __le32 *last)
3714 {
3715 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3716 	unsigned long count = 0;	    /* Number of blocks in the run */
3717 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3718 					       corresponding to
3719 					       block_to_free */
3720 	ext4_fsblk_t nr;		    /* Current block # */
3721 	__le32 *p;			    /* Pointer into inode/ind
3722 					       for current block */
3723 	int err;
3724 
3725 	if (this_bh) {				/* For indirect block */
3726 		BUFFER_TRACE(this_bh, "get_write_access");
3727 		err = ext4_journal_get_write_access(handle, this_bh);
3728 		/* Important: if we can't update the indirect pointers
3729 		 * to the blocks, we can't free them. */
3730 		if (err)
3731 			return;
3732 	}
3733 
3734 	for (p = first; p < last; p++) {
3735 		nr = le32_to_cpu(*p);
3736 		if (nr) {
3737 			/* accumulate blocks to free if they're contiguous */
3738 			if (count == 0) {
3739 				block_to_free = nr;
3740 				block_to_free_p = p;
3741 				count = 1;
3742 			} else if (nr == block_to_free + count) {
3743 				count++;
3744 			} else {
3745 				ext4_clear_blocks(handle, inode, this_bh,
3746 						  block_to_free,
3747 						  count, block_to_free_p, p);
3748 				block_to_free = nr;
3749 				block_to_free_p = p;
3750 				count = 1;
3751 			}
3752 		}
3753 	}
3754 
3755 	if (count > 0)
3756 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3757 				  count, block_to_free_p, p);
3758 
3759 	if (this_bh) {
3760 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3761 
3762 		/*
3763 		 * The buffer head should have an attached journal head at this
3764 		 * point. However, if the data is corrupted and an indirect
3765 		 * block pointed to itself, it would have been detached when
3766 		 * the block was cleared. Check for this instead of OOPSing.
3767 		 */
3768 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3769 			ext4_handle_dirty_metadata(handle, inode, this_bh);
3770 		else
3771 			ext4_error(inode->i_sb, __func__,
3772 				   "circular indirect block detected, "
3773 				   "inode=%lu, block=%llu",
3774 				   inode->i_ino,
3775 				   (unsigned long long) this_bh->b_blocknr);
3776 	}
3777 }
3778 
3779 /**
3780  *	ext4_free_branches - free an array of branches
3781  *	@handle: JBD handle for this transaction
3782  *	@inode:	inode we are dealing with
3783  *	@parent_bh: the buffer_head which contains *@first and *@last
3784  *	@first:	array of block numbers
3785  *	@last:	pointer immediately past the end of array
3786  *	@depth:	depth of the branches to free
3787  *
3788  *	We are freeing all blocks refered from these branches (numbers are
3789  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3790  *	appropriately.
3791  */
3792 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3793 			       struct buffer_head *parent_bh,
3794 			       __le32 *first, __le32 *last, int depth)
3795 {
3796 	ext4_fsblk_t nr;
3797 	__le32 *p;
3798 
3799 	if (ext4_handle_is_aborted(handle))
3800 		return;
3801 
3802 	if (depth--) {
3803 		struct buffer_head *bh;
3804 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3805 		p = last;
3806 		while (--p >= first) {
3807 			nr = le32_to_cpu(*p);
3808 			if (!nr)
3809 				continue;		/* A hole */
3810 
3811 			/* Go read the buffer for the next level down */
3812 			bh = sb_bread(inode->i_sb, nr);
3813 
3814 			/*
3815 			 * A read failure? Report error and clear slot
3816 			 * (should be rare).
3817 			 */
3818 			if (!bh) {
3819 				ext4_error(inode->i_sb, "ext4_free_branches",
3820 					   "Read failure, inode=%lu, block=%llu",
3821 					   inode->i_ino, nr);
3822 				continue;
3823 			}
3824 
3825 			/* This zaps the entire block.  Bottom up. */
3826 			BUFFER_TRACE(bh, "free child branches");
3827 			ext4_free_branches(handle, inode, bh,
3828 					(__le32 *) bh->b_data,
3829 					(__le32 *) bh->b_data + addr_per_block,
3830 					depth);
3831 
3832 			/*
3833 			 * We've probably journalled the indirect block several
3834 			 * times during the truncate.  But it's no longer
3835 			 * needed and we now drop it from the transaction via
3836 			 * jbd2_journal_revoke().
3837 			 *
3838 			 * That's easy if it's exclusively part of this
3839 			 * transaction.  But if it's part of the committing
3840 			 * transaction then jbd2_journal_forget() will simply
3841 			 * brelse() it.  That means that if the underlying
3842 			 * block is reallocated in ext4_get_block(),
3843 			 * unmap_underlying_metadata() will find this block
3844 			 * and will try to get rid of it.  damn, damn.
3845 			 *
3846 			 * If this block has already been committed to the
3847 			 * journal, a revoke record will be written.  And
3848 			 * revoke records must be emitted *before* clearing
3849 			 * this block's bit in the bitmaps.
3850 			 */
3851 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3852 
3853 			/*
3854 			 * Everything below this this pointer has been
3855 			 * released.  Now let this top-of-subtree go.
3856 			 *
3857 			 * We want the freeing of this indirect block to be
3858 			 * atomic in the journal with the updating of the
3859 			 * bitmap block which owns it.  So make some room in
3860 			 * the journal.
3861 			 *
3862 			 * We zero the parent pointer *after* freeing its
3863 			 * pointee in the bitmaps, so if extend_transaction()
3864 			 * for some reason fails to put the bitmap changes and
3865 			 * the release into the same transaction, recovery
3866 			 * will merely complain about releasing a free block,
3867 			 * rather than leaking blocks.
3868 			 */
3869 			if (ext4_handle_is_aborted(handle))
3870 				return;
3871 			if (try_to_extend_transaction(handle, inode)) {
3872 				ext4_mark_inode_dirty(handle, inode);
3873 				ext4_journal_test_restart(handle, inode);
3874 			}
3875 
3876 			ext4_free_blocks(handle, inode, nr, 1, 1);
3877 
3878 			if (parent_bh) {
3879 				/*
3880 				 * The block which we have just freed is
3881 				 * pointed to by an indirect block: journal it
3882 				 */
3883 				BUFFER_TRACE(parent_bh, "get_write_access");
3884 				if (!ext4_journal_get_write_access(handle,
3885 								   parent_bh)){
3886 					*p = 0;
3887 					BUFFER_TRACE(parent_bh,
3888 					"call ext4_handle_dirty_metadata");
3889 					ext4_handle_dirty_metadata(handle,
3890 								   inode,
3891 								   parent_bh);
3892 				}
3893 			}
3894 		}
3895 	} else {
3896 		/* We have reached the bottom of the tree. */
3897 		BUFFER_TRACE(parent_bh, "free data blocks");
3898 		ext4_free_data(handle, inode, parent_bh, first, last);
3899 	}
3900 }
3901 
3902 int ext4_can_truncate(struct inode *inode)
3903 {
3904 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3905 		return 0;
3906 	if (S_ISREG(inode->i_mode))
3907 		return 1;
3908 	if (S_ISDIR(inode->i_mode))
3909 		return 1;
3910 	if (S_ISLNK(inode->i_mode))
3911 		return !ext4_inode_is_fast_symlink(inode);
3912 	return 0;
3913 }
3914 
3915 /*
3916  * ext4_truncate()
3917  *
3918  * We block out ext4_get_block() block instantiations across the entire
3919  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3920  * simultaneously on behalf of the same inode.
3921  *
3922  * As we work through the truncate and commmit bits of it to the journal there
3923  * is one core, guiding principle: the file's tree must always be consistent on
3924  * disk.  We must be able to restart the truncate after a crash.
3925  *
3926  * The file's tree may be transiently inconsistent in memory (although it
3927  * probably isn't), but whenever we close off and commit a journal transaction,
3928  * the contents of (the filesystem + the journal) must be consistent and
3929  * restartable.  It's pretty simple, really: bottom up, right to left (although
3930  * left-to-right works OK too).
3931  *
3932  * Note that at recovery time, journal replay occurs *before* the restart of
3933  * truncate against the orphan inode list.
3934  *
3935  * The committed inode has the new, desired i_size (which is the same as
3936  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3937  * that this inode's truncate did not complete and it will again call
3938  * ext4_truncate() to have another go.  So there will be instantiated blocks
3939  * to the right of the truncation point in a crashed ext4 filesystem.  But
3940  * that's fine - as long as they are linked from the inode, the post-crash
3941  * ext4_truncate() run will find them and release them.
3942  */
3943 void ext4_truncate(struct inode *inode)
3944 {
3945 	handle_t *handle;
3946 	struct ext4_inode_info *ei = EXT4_I(inode);
3947 	__le32 *i_data = ei->i_data;
3948 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3949 	struct address_space *mapping = inode->i_mapping;
3950 	ext4_lblk_t offsets[4];
3951 	Indirect chain[4];
3952 	Indirect *partial;
3953 	__le32 nr = 0;
3954 	int n;
3955 	ext4_lblk_t last_block;
3956 	unsigned blocksize = inode->i_sb->s_blocksize;
3957 
3958 	if (!ext4_can_truncate(inode))
3959 		return;
3960 
3961 	if (ei->i_disksize && inode->i_size == 0 &&
3962 	    !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3963 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3964 
3965 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3966 		ext4_ext_truncate(inode);
3967 		return;
3968 	}
3969 
3970 	handle = start_transaction(inode);
3971 	if (IS_ERR(handle))
3972 		return;		/* AKPM: return what? */
3973 
3974 	last_block = (inode->i_size + blocksize-1)
3975 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3976 
3977 	if (inode->i_size & (blocksize - 1))
3978 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3979 			goto out_stop;
3980 
3981 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3982 	if (n == 0)
3983 		goto out_stop;	/* error */
3984 
3985 	/*
3986 	 * OK.  This truncate is going to happen.  We add the inode to the
3987 	 * orphan list, so that if this truncate spans multiple transactions,
3988 	 * and we crash, we will resume the truncate when the filesystem
3989 	 * recovers.  It also marks the inode dirty, to catch the new size.
3990 	 *
3991 	 * Implication: the file must always be in a sane, consistent
3992 	 * truncatable state while each transaction commits.
3993 	 */
3994 	if (ext4_orphan_add(handle, inode))
3995 		goto out_stop;
3996 
3997 	/*
3998 	 * From here we block out all ext4_get_block() callers who want to
3999 	 * modify the block allocation tree.
4000 	 */
4001 	down_write(&ei->i_data_sem);
4002 
4003 	ext4_discard_preallocations(inode);
4004 
4005 	/*
4006 	 * The orphan list entry will now protect us from any crash which
4007 	 * occurs before the truncate completes, so it is now safe to propagate
4008 	 * the new, shorter inode size (held for now in i_size) into the
4009 	 * on-disk inode. We do this via i_disksize, which is the value which
4010 	 * ext4 *really* writes onto the disk inode.
4011 	 */
4012 	ei->i_disksize = inode->i_size;
4013 
4014 	if (n == 1) {		/* direct blocks */
4015 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4016 			       i_data + EXT4_NDIR_BLOCKS);
4017 		goto do_indirects;
4018 	}
4019 
4020 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4021 	/* Kill the top of shared branch (not detached) */
4022 	if (nr) {
4023 		if (partial == chain) {
4024 			/* Shared branch grows from the inode */
4025 			ext4_free_branches(handle, inode, NULL,
4026 					   &nr, &nr+1, (chain+n-1) - partial);
4027 			*partial->p = 0;
4028 			/*
4029 			 * We mark the inode dirty prior to restart,
4030 			 * and prior to stop.  No need for it here.
4031 			 */
4032 		} else {
4033 			/* Shared branch grows from an indirect block */
4034 			BUFFER_TRACE(partial->bh, "get_write_access");
4035 			ext4_free_branches(handle, inode, partial->bh,
4036 					partial->p,
4037 					partial->p+1, (chain+n-1) - partial);
4038 		}
4039 	}
4040 	/* Clear the ends of indirect blocks on the shared branch */
4041 	while (partial > chain) {
4042 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4043 				   (__le32*)partial->bh->b_data+addr_per_block,
4044 				   (chain+n-1) - partial);
4045 		BUFFER_TRACE(partial->bh, "call brelse");
4046 		brelse(partial->bh);
4047 		partial--;
4048 	}
4049 do_indirects:
4050 	/* Kill the remaining (whole) subtrees */
4051 	switch (offsets[0]) {
4052 	default:
4053 		nr = i_data[EXT4_IND_BLOCK];
4054 		if (nr) {
4055 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4056 			i_data[EXT4_IND_BLOCK] = 0;
4057 		}
4058 	case EXT4_IND_BLOCK:
4059 		nr = i_data[EXT4_DIND_BLOCK];
4060 		if (nr) {
4061 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4062 			i_data[EXT4_DIND_BLOCK] = 0;
4063 		}
4064 	case EXT4_DIND_BLOCK:
4065 		nr = i_data[EXT4_TIND_BLOCK];
4066 		if (nr) {
4067 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4068 			i_data[EXT4_TIND_BLOCK] = 0;
4069 		}
4070 	case EXT4_TIND_BLOCK:
4071 		;
4072 	}
4073 
4074 	up_write(&ei->i_data_sem);
4075 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4076 	ext4_mark_inode_dirty(handle, inode);
4077 
4078 	/*
4079 	 * In a multi-transaction truncate, we only make the final transaction
4080 	 * synchronous
4081 	 */
4082 	if (IS_SYNC(inode))
4083 		ext4_handle_sync(handle);
4084 out_stop:
4085 	/*
4086 	 * If this was a simple ftruncate(), and the file will remain alive
4087 	 * then we need to clear up the orphan record which we created above.
4088 	 * However, if this was a real unlink then we were called by
4089 	 * ext4_delete_inode(), and we allow that function to clean up the
4090 	 * orphan info for us.
4091 	 */
4092 	if (inode->i_nlink)
4093 		ext4_orphan_del(handle, inode);
4094 
4095 	ext4_journal_stop(handle);
4096 }
4097 
4098 /*
4099  * ext4_get_inode_loc returns with an extra refcount against the inode's
4100  * underlying buffer_head on success. If 'in_mem' is true, we have all
4101  * data in memory that is needed to recreate the on-disk version of this
4102  * inode.
4103  */
4104 static int __ext4_get_inode_loc(struct inode *inode,
4105 				struct ext4_iloc *iloc, int in_mem)
4106 {
4107 	struct ext4_group_desc	*gdp;
4108 	struct buffer_head	*bh;
4109 	struct super_block	*sb = inode->i_sb;
4110 	ext4_fsblk_t		block;
4111 	int			inodes_per_block, inode_offset;
4112 
4113 	iloc->bh = NULL;
4114 	if (!ext4_valid_inum(sb, inode->i_ino))
4115 		return -EIO;
4116 
4117 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4118 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4119 	if (!gdp)
4120 		return -EIO;
4121 
4122 	/*
4123 	 * Figure out the offset within the block group inode table
4124 	 */
4125 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4126 	inode_offset = ((inode->i_ino - 1) %
4127 			EXT4_INODES_PER_GROUP(sb));
4128 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4129 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4130 
4131 	bh = sb_getblk(sb, block);
4132 	if (!bh) {
4133 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4134 			   "inode block - inode=%lu, block=%llu",
4135 			   inode->i_ino, block);
4136 		return -EIO;
4137 	}
4138 	if (!buffer_uptodate(bh)) {
4139 		lock_buffer(bh);
4140 
4141 		/*
4142 		 * If the buffer has the write error flag, we have failed
4143 		 * to write out another inode in the same block.  In this
4144 		 * case, we don't have to read the block because we may
4145 		 * read the old inode data successfully.
4146 		 */
4147 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4148 			set_buffer_uptodate(bh);
4149 
4150 		if (buffer_uptodate(bh)) {
4151 			/* someone brought it uptodate while we waited */
4152 			unlock_buffer(bh);
4153 			goto has_buffer;
4154 		}
4155 
4156 		/*
4157 		 * If we have all information of the inode in memory and this
4158 		 * is the only valid inode in the block, we need not read the
4159 		 * block.
4160 		 */
4161 		if (in_mem) {
4162 			struct buffer_head *bitmap_bh;
4163 			int i, start;
4164 
4165 			start = inode_offset & ~(inodes_per_block - 1);
4166 
4167 			/* Is the inode bitmap in cache? */
4168 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4169 			if (!bitmap_bh)
4170 				goto make_io;
4171 
4172 			/*
4173 			 * If the inode bitmap isn't in cache then the
4174 			 * optimisation may end up performing two reads instead
4175 			 * of one, so skip it.
4176 			 */
4177 			if (!buffer_uptodate(bitmap_bh)) {
4178 				brelse(bitmap_bh);
4179 				goto make_io;
4180 			}
4181 			for (i = start; i < start + inodes_per_block; i++) {
4182 				if (i == inode_offset)
4183 					continue;
4184 				if (ext4_test_bit(i, bitmap_bh->b_data))
4185 					break;
4186 			}
4187 			brelse(bitmap_bh);
4188 			if (i == start + inodes_per_block) {
4189 				/* all other inodes are free, so skip I/O */
4190 				memset(bh->b_data, 0, bh->b_size);
4191 				set_buffer_uptodate(bh);
4192 				unlock_buffer(bh);
4193 				goto has_buffer;
4194 			}
4195 		}
4196 
4197 make_io:
4198 		/*
4199 		 * If we need to do any I/O, try to pre-readahead extra
4200 		 * blocks from the inode table.
4201 		 */
4202 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4203 			ext4_fsblk_t b, end, table;
4204 			unsigned num;
4205 
4206 			table = ext4_inode_table(sb, gdp);
4207 			/* s_inode_readahead_blks is always a power of 2 */
4208 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4209 			if (table > b)
4210 				b = table;
4211 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4212 			num = EXT4_INODES_PER_GROUP(sb);
4213 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4214 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4215 				num -= ext4_itable_unused_count(sb, gdp);
4216 			table += num / inodes_per_block;
4217 			if (end > table)
4218 				end = table;
4219 			while (b <= end)
4220 				sb_breadahead(sb, b++);
4221 		}
4222 
4223 		/*
4224 		 * There are other valid inodes in the buffer, this inode
4225 		 * has in-inode xattrs, or we don't have this inode in memory.
4226 		 * Read the block from disk.
4227 		 */
4228 		get_bh(bh);
4229 		bh->b_end_io = end_buffer_read_sync;
4230 		submit_bh(READ_META, bh);
4231 		wait_on_buffer(bh);
4232 		if (!buffer_uptodate(bh)) {
4233 			ext4_error(sb, __func__,
4234 				   "unable to read inode block - inode=%lu, "
4235 				   "block=%llu", inode->i_ino, block);
4236 			brelse(bh);
4237 			return -EIO;
4238 		}
4239 	}
4240 has_buffer:
4241 	iloc->bh = bh;
4242 	return 0;
4243 }
4244 
4245 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4246 {
4247 	/* We have all inode data except xattrs in memory here. */
4248 	return __ext4_get_inode_loc(inode, iloc,
4249 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4250 }
4251 
4252 void ext4_set_inode_flags(struct inode *inode)
4253 {
4254 	unsigned int flags = EXT4_I(inode)->i_flags;
4255 
4256 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4257 	if (flags & EXT4_SYNC_FL)
4258 		inode->i_flags |= S_SYNC;
4259 	if (flags & EXT4_APPEND_FL)
4260 		inode->i_flags |= S_APPEND;
4261 	if (flags & EXT4_IMMUTABLE_FL)
4262 		inode->i_flags |= S_IMMUTABLE;
4263 	if (flags & EXT4_NOATIME_FL)
4264 		inode->i_flags |= S_NOATIME;
4265 	if (flags & EXT4_DIRSYNC_FL)
4266 		inode->i_flags |= S_DIRSYNC;
4267 }
4268 
4269 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4270 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4271 {
4272 	unsigned int flags = ei->vfs_inode.i_flags;
4273 
4274 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4275 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4276 	if (flags & S_SYNC)
4277 		ei->i_flags |= EXT4_SYNC_FL;
4278 	if (flags & S_APPEND)
4279 		ei->i_flags |= EXT4_APPEND_FL;
4280 	if (flags & S_IMMUTABLE)
4281 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4282 	if (flags & S_NOATIME)
4283 		ei->i_flags |= EXT4_NOATIME_FL;
4284 	if (flags & S_DIRSYNC)
4285 		ei->i_flags |= EXT4_DIRSYNC_FL;
4286 }
4287 
4288 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4289 				  struct ext4_inode_info *ei)
4290 {
4291 	blkcnt_t i_blocks ;
4292 	struct inode *inode = &(ei->vfs_inode);
4293 	struct super_block *sb = inode->i_sb;
4294 
4295 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4296 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4297 		/* we are using combined 48 bit field */
4298 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4299 					le32_to_cpu(raw_inode->i_blocks_lo);
4300 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4301 			/* i_blocks represent file system block size */
4302 			return i_blocks  << (inode->i_blkbits - 9);
4303 		} else {
4304 			return i_blocks;
4305 		}
4306 	} else {
4307 		return le32_to_cpu(raw_inode->i_blocks_lo);
4308 	}
4309 }
4310 
4311 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4312 {
4313 	struct ext4_iloc iloc;
4314 	struct ext4_inode *raw_inode;
4315 	struct ext4_inode_info *ei;
4316 	struct buffer_head *bh;
4317 	struct inode *inode;
4318 	long ret;
4319 	int block;
4320 
4321 	inode = iget_locked(sb, ino);
4322 	if (!inode)
4323 		return ERR_PTR(-ENOMEM);
4324 	if (!(inode->i_state & I_NEW))
4325 		return inode;
4326 
4327 	ei = EXT4_I(inode);
4328 
4329 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4330 	if (ret < 0)
4331 		goto bad_inode;
4332 	bh = iloc.bh;
4333 	raw_inode = ext4_raw_inode(&iloc);
4334 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4335 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4336 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4337 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4338 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4339 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4340 	}
4341 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4342 
4343 	ei->i_state = 0;
4344 	ei->i_dir_start_lookup = 0;
4345 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4346 	/* We now have enough fields to check if the inode was active or not.
4347 	 * This is needed because nfsd might try to access dead inodes
4348 	 * the test is that same one that e2fsck uses
4349 	 * NeilBrown 1999oct15
4350 	 */
4351 	if (inode->i_nlink == 0) {
4352 		if (inode->i_mode == 0 ||
4353 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4354 			/* this inode is deleted */
4355 			brelse(bh);
4356 			ret = -ESTALE;
4357 			goto bad_inode;
4358 		}
4359 		/* The only unlinked inodes we let through here have
4360 		 * valid i_mode and are being read by the orphan
4361 		 * recovery code: that's fine, we're about to complete
4362 		 * the process of deleting those. */
4363 	}
4364 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4365 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4366 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4367 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4368 		ei->i_file_acl |=
4369 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4370 	inode->i_size = ext4_isize(raw_inode);
4371 	ei->i_disksize = inode->i_size;
4372 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4373 	ei->i_block_group = iloc.block_group;
4374 	ei->i_last_alloc_group = ~0;
4375 	/*
4376 	 * NOTE! The in-memory inode i_data array is in little-endian order
4377 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4378 	 */
4379 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4380 		ei->i_data[block] = raw_inode->i_block[block];
4381 	INIT_LIST_HEAD(&ei->i_orphan);
4382 
4383 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4384 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4385 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4386 		    EXT4_INODE_SIZE(inode->i_sb)) {
4387 			brelse(bh);
4388 			ret = -EIO;
4389 			goto bad_inode;
4390 		}
4391 		if (ei->i_extra_isize == 0) {
4392 			/* The extra space is currently unused. Use it. */
4393 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4394 					    EXT4_GOOD_OLD_INODE_SIZE;
4395 		} else {
4396 			__le32 *magic = (void *)raw_inode +
4397 					EXT4_GOOD_OLD_INODE_SIZE +
4398 					ei->i_extra_isize;
4399 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4400 				ei->i_state |= EXT4_STATE_XATTR;
4401 		}
4402 	} else
4403 		ei->i_extra_isize = 0;
4404 
4405 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4406 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4407 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4408 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4409 
4410 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4411 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4412 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4413 			inode->i_version |=
4414 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4415 	}
4416 
4417 	ret = 0;
4418 	if (ei->i_file_acl &&
4419 	    ((ei->i_file_acl <
4420 	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4421 	       EXT4_SB(sb)->s_gdb_count)) ||
4422 	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4423 		ext4_error(sb, __func__,
4424 			   "bad extended attribute block %llu in inode #%lu",
4425 			   ei->i_file_acl, inode->i_ino);
4426 		ret = -EIO;
4427 		goto bad_inode;
4428 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4429 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4430 		    (S_ISLNK(inode->i_mode) &&
4431 		     !ext4_inode_is_fast_symlink(inode)))
4432 			/* Validate extent which is part of inode */
4433 			ret = ext4_ext_check_inode(inode);
4434 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4435 		   (S_ISLNK(inode->i_mode) &&
4436 		    !ext4_inode_is_fast_symlink(inode))) {
4437 		/* Validate block references which are part of inode */
4438 		ret = ext4_check_inode_blockref(inode);
4439 	}
4440 	if (ret) {
4441 		brelse(bh);
4442 		goto bad_inode;
4443 	}
4444 
4445 	if (S_ISREG(inode->i_mode)) {
4446 		inode->i_op = &ext4_file_inode_operations;
4447 		inode->i_fop = &ext4_file_operations;
4448 		ext4_set_aops(inode);
4449 	} else if (S_ISDIR(inode->i_mode)) {
4450 		inode->i_op = &ext4_dir_inode_operations;
4451 		inode->i_fop = &ext4_dir_operations;
4452 	} else if (S_ISLNK(inode->i_mode)) {
4453 		if (ext4_inode_is_fast_symlink(inode)) {
4454 			inode->i_op = &ext4_fast_symlink_inode_operations;
4455 			nd_terminate_link(ei->i_data, inode->i_size,
4456 				sizeof(ei->i_data) - 1);
4457 		} else {
4458 			inode->i_op = &ext4_symlink_inode_operations;
4459 			ext4_set_aops(inode);
4460 		}
4461 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4462 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4463 		inode->i_op = &ext4_special_inode_operations;
4464 		if (raw_inode->i_block[0])
4465 			init_special_inode(inode, inode->i_mode,
4466 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4467 		else
4468 			init_special_inode(inode, inode->i_mode,
4469 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4470 	} else {
4471 		brelse(bh);
4472 		ret = -EIO;
4473 		ext4_error(inode->i_sb, __func__,
4474 			   "bogus i_mode (%o) for inode=%lu",
4475 			   inode->i_mode, inode->i_ino);
4476 		goto bad_inode;
4477 	}
4478 	brelse(iloc.bh);
4479 	ext4_set_inode_flags(inode);
4480 	unlock_new_inode(inode);
4481 	return inode;
4482 
4483 bad_inode:
4484 	iget_failed(inode);
4485 	return ERR_PTR(ret);
4486 }
4487 
4488 static int ext4_inode_blocks_set(handle_t *handle,
4489 				struct ext4_inode *raw_inode,
4490 				struct ext4_inode_info *ei)
4491 {
4492 	struct inode *inode = &(ei->vfs_inode);
4493 	u64 i_blocks = inode->i_blocks;
4494 	struct super_block *sb = inode->i_sb;
4495 
4496 	if (i_blocks <= ~0U) {
4497 		/*
4498 		 * i_blocks can be represnted in a 32 bit variable
4499 		 * as multiple of 512 bytes
4500 		 */
4501 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4502 		raw_inode->i_blocks_high = 0;
4503 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4504 		return 0;
4505 	}
4506 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4507 		return -EFBIG;
4508 
4509 	if (i_blocks <= 0xffffffffffffULL) {
4510 		/*
4511 		 * i_blocks can be represented in a 48 bit variable
4512 		 * as multiple of 512 bytes
4513 		 */
4514 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4515 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4516 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4517 	} else {
4518 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4519 		/* i_block is stored in file system block size */
4520 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4521 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4522 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4523 	}
4524 	return 0;
4525 }
4526 
4527 /*
4528  * Post the struct inode info into an on-disk inode location in the
4529  * buffer-cache.  This gobbles the caller's reference to the
4530  * buffer_head in the inode location struct.
4531  *
4532  * The caller must have write access to iloc->bh.
4533  */
4534 static int ext4_do_update_inode(handle_t *handle,
4535 				struct inode *inode,
4536 				struct ext4_iloc *iloc)
4537 {
4538 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4539 	struct ext4_inode_info *ei = EXT4_I(inode);
4540 	struct buffer_head *bh = iloc->bh;
4541 	int err = 0, rc, block;
4542 
4543 	/* For fields not not tracking in the in-memory inode,
4544 	 * initialise them to zero for new inodes. */
4545 	if (ei->i_state & EXT4_STATE_NEW)
4546 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4547 
4548 	ext4_get_inode_flags(ei);
4549 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4550 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4551 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4552 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4553 /*
4554  * Fix up interoperability with old kernels. Otherwise, old inodes get
4555  * re-used with the upper 16 bits of the uid/gid intact
4556  */
4557 		if (!ei->i_dtime) {
4558 			raw_inode->i_uid_high =
4559 				cpu_to_le16(high_16_bits(inode->i_uid));
4560 			raw_inode->i_gid_high =
4561 				cpu_to_le16(high_16_bits(inode->i_gid));
4562 		} else {
4563 			raw_inode->i_uid_high = 0;
4564 			raw_inode->i_gid_high = 0;
4565 		}
4566 	} else {
4567 		raw_inode->i_uid_low =
4568 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4569 		raw_inode->i_gid_low =
4570 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4571 		raw_inode->i_uid_high = 0;
4572 		raw_inode->i_gid_high = 0;
4573 	}
4574 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4575 
4576 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4577 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4578 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4579 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4580 
4581 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4582 		goto out_brelse;
4583 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4584 	/* clear the migrate flag in the raw_inode */
4585 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4586 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4587 	    cpu_to_le32(EXT4_OS_HURD))
4588 		raw_inode->i_file_acl_high =
4589 			cpu_to_le16(ei->i_file_acl >> 32);
4590 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4591 	ext4_isize_set(raw_inode, ei->i_disksize);
4592 	if (ei->i_disksize > 0x7fffffffULL) {
4593 		struct super_block *sb = inode->i_sb;
4594 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4595 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4596 				EXT4_SB(sb)->s_es->s_rev_level ==
4597 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4598 			/* If this is the first large file
4599 			 * created, add a flag to the superblock.
4600 			 */
4601 			err = ext4_journal_get_write_access(handle,
4602 					EXT4_SB(sb)->s_sbh);
4603 			if (err)
4604 				goto out_brelse;
4605 			ext4_update_dynamic_rev(sb);
4606 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4607 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4608 			sb->s_dirt = 1;
4609 			ext4_handle_sync(handle);
4610 			err = ext4_handle_dirty_metadata(handle, inode,
4611 					EXT4_SB(sb)->s_sbh);
4612 		}
4613 	}
4614 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4615 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4616 		if (old_valid_dev(inode->i_rdev)) {
4617 			raw_inode->i_block[0] =
4618 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4619 			raw_inode->i_block[1] = 0;
4620 		} else {
4621 			raw_inode->i_block[0] = 0;
4622 			raw_inode->i_block[1] =
4623 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4624 			raw_inode->i_block[2] = 0;
4625 		}
4626 	} else
4627 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4628 			raw_inode->i_block[block] = ei->i_data[block];
4629 
4630 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4631 	if (ei->i_extra_isize) {
4632 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4633 			raw_inode->i_version_hi =
4634 			cpu_to_le32(inode->i_version >> 32);
4635 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4636 	}
4637 
4638 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4639 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4640 	if (!err)
4641 		err = rc;
4642 	ei->i_state &= ~EXT4_STATE_NEW;
4643 
4644 out_brelse:
4645 	brelse(bh);
4646 	ext4_std_error(inode->i_sb, err);
4647 	return err;
4648 }
4649 
4650 /*
4651  * ext4_write_inode()
4652  *
4653  * We are called from a few places:
4654  *
4655  * - Within generic_file_write() for O_SYNC files.
4656  *   Here, there will be no transaction running. We wait for any running
4657  *   trasnaction to commit.
4658  *
4659  * - Within sys_sync(), kupdate and such.
4660  *   We wait on commit, if tol to.
4661  *
4662  * - Within prune_icache() (PF_MEMALLOC == true)
4663  *   Here we simply return.  We can't afford to block kswapd on the
4664  *   journal commit.
4665  *
4666  * In all cases it is actually safe for us to return without doing anything,
4667  * because the inode has been copied into a raw inode buffer in
4668  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4669  * knfsd.
4670  *
4671  * Note that we are absolutely dependent upon all inode dirtiers doing the
4672  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4673  * which we are interested.
4674  *
4675  * It would be a bug for them to not do this.  The code:
4676  *
4677  *	mark_inode_dirty(inode)
4678  *	stuff();
4679  *	inode->i_size = expr;
4680  *
4681  * is in error because a kswapd-driven write_inode() could occur while
4682  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4683  * will no longer be on the superblock's dirty inode list.
4684  */
4685 int ext4_write_inode(struct inode *inode, int wait)
4686 {
4687 	if (current->flags & PF_MEMALLOC)
4688 		return 0;
4689 
4690 	if (ext4_journal_current_handle()) {
4691 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4692 		dump_stack();
4693 		return -EIO;
4694 	}
4695 
4696 	if (!wait)
4697 		return 0;
4698 
4699 	return ext4_force_commit(inode->i_sb);
4700 }
4701 
4702 /*
4703  * ext4_setattr()
4704  *
4705  * Called from notify_change.
4706  *
4707  * We want to trap VFS attempts to truncate the file as soon as
4708  * possible.  In particular, we want to make sure that when the VFS
4709  * shrinks i_size, we put the inode on the orphan list and modify
4710  * i_disksize immediately, so that during the subsequent flushing of
4711  * dirty pages and freeing of disk blocks, we can guarantee that any
4712  * commit will leave the blocks being flushed in an unused state on
4713  * disk.  (On recovery, the inode will get truncated and the blocks will
4714  * be freed, so we have a strong guarantee that no future commit will
4715  * leave these blocks visible to the user.)
4716  *
4717  * Another thing we have to assure is that if we are in ordered mode
4718  * and inode is still attached to the committing transaction, we must
4719  * we start writeout of all the dirty pages which are being truncated.
4720  * This way we are sure that all the data written in the previous
4721  * transaction are already on disk (truncate waits for pages under
4722  * writeback).
4723  *
4724  * Called with inode->i_mutex down.
4725  */
4726 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4727 {
4728 	struct inode *inode = dentry->d_inode;
4729 	int error, rc = 0;
4730 	const unsigned int ia_valid = attr->ia_valid;
4731 
4732 	error = inode_change_ok(inode, attr);
4733 	if (error)
4734 		return error;
4735 
4736 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4737 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4738 		handle_t *handle;
4739 
4740 		/* (user+group)*(old+new) structure, inode write (sb,
4741 		 * inode block, ? - but truncate inode update has it) */
4742 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4743 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4744 		if (IS_ERR(handle)) {
4745 			error = PTR_ERR(handle);
4746 			goto err_out;
4747 		}
4748 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4749 		if (error) {
4750 			ext4_journal_stop(handle);
4751 			return error;
4752 		}
4753 		/* Update corresponding info in inode so that everything is in
4754 		 * one transaction */
4755 		if (attr->ia_valid & ATTR_UID)
4756 			inode->i_uid = attr->ia_uid;
4757 		if (attr->ia_valid & ATTR_GID)
4758 			inode->i_gid = attr->ia_gid;
4759 		error = ext4_mark_inode_dirty(handle, inode);
4760 		ext4_journal_stop(handle);
4761 	}
4762 
4763 	if (attr->ia_valid & ATTR_SIZE) {
4764 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4765 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4766 
4767 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4768 				error = -EFBIG;
4769 				goto err_out;
4770 			}
4771 		}
4772 	}
4773 
4774 	if (S_ISREG(inode->i_mode) &&
4775 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4776 		handle_t *handle;
4777 
4778 		handle = ext4_journal_start(inode, 3);
4779 		if (IS_ERR(handle)) {
4780 			error = PTR_ERR(handle);
4781 			goto err_out;
4782 		}
4783 
4784 		error = ext4_orphan_add(handle, inode);
4785 		EXT4_I(inode)->i_disksize = attr->ia_size;
4786 		rc = ext4_mark_inode_dirty(handle, inode);
4787 		if (!error)
4788 			error = rc;
4789 		ext4_journal_stop(handle);
4790 
4791 		if (ext4_should_order_data(inode)) {
4792 			error = ext4_begin_ordered_truncate(inode,
4793 							    attr->ia_size);
4794 			if (error) {
4795 				/* Do as much error cleanup as possible */
4796 				handle = ext4_journal_start(inode, 3);
4797 				if (IS_ERR(handle)) {
4798 					ext4_orphan_del(NULL, inode);
4799 					goto err_out;
4800 				}
4801 				ext4_orphan_del(handle, inode);
4802 				ext4_journal_stop(handle);
4803 				goto err_out;
4804 			}
4805 		}
4806 	}
4807 
4808 	rc = inode_setattr(inode, attr);
4809 
4810 	/* If inode_setattr's call to ext4_truncate failed to get a
4811 	 * transaction handle at all, we need to clean up the in-core
4812 	 * orphan list manually. */
4813 	if (inode->i_nlink)
4814 		ext4_orphan_del(NULL, inode);
4815 
4816 	if (!rc && (ia_valid & ATTR_MODE))
4817 		rc = ext4_acl_chmod(inode);
4818 
4819 err_out:
4820 	ext4_std_error(inode->i_sb, error);
4821 	if (!error)
4822 		error = rc;
4823 	return error;
4824 }
4825 
4826 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4827 		 struct kstat *stat)
4828 {
4829 	struct inode *inode;
4830 	unsigned long delalloc_blocks;
4831 
4832 	inode = dentry->d_inode;
4833 	generic_fillattr(inode, stat);
4834 
4835 	/*
4836 	 * We can't update i_blocks if the block allocation is delayed
4837 	 * otherwise in the case of system crash before the real block
4838 	 * allocation is done, we will have i_blocks inconsistent with
4839 	 * on-disk file blocks.
4840 	 * We always keep i_blocks updated together with real
4841 	 * allocation. But to not confuse with user, stat
4842 	 * will return the blocks that include the delayed allocation
4843 	 * blocks for this file.
4844 	 */
4845 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4846 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4847 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4848 
4849 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4850 	return 0;
4851 }
4852 
4853 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4854 				      int chunk)
4855 {
4856 	int indirects;
4857 
4858 	/* if nrblocks are contiguous */
4859 	if (chunk) {
4860 		/*
4861 		 * With N contiguous data blocks, it need at most
4862 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4863 		 * 2 dindirect blocks
4864 		 * 1 tindirect block
4865 		 */
4866 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4867 		return indirects + 3;
4868 	}
4869 	/*
4870 	 * if nrblocks are not contiguous, worse case, each block touch
4871 	 * a indirect block, and each indirect block touch a double indirect
4872 	 * block, plus a triple indirect block
4873 	 */
4874 	indirects = nrblocks * 2 + 1;
4875 	return indirects;
4876 }
4877 
4878 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4879 {
4880 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4881 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4882 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4883 }
4884 
4885 /*
4886  * Account for index blocks, block groups bitmaps and block group
4887  * descriptor blocks if modify datablocks and index blocks
4888  * worse case, the indexs blocks spread over different block groups
4889  *
4890  * If datablocks are discontiguous, they are possible to spread over
4891  * different block groups too. If they are contiugous, with flexbg,
4892  * they could still across block group boundary.
4893  *
4894  * Also account for superblock, inode, quota and xattr blocks
4895  */
4896 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4897 {
4898 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4899 	int gdpblocks;
4900 	int idxblocks;
4901 	int ret = 0;
4902 
4903 	/*
4904 	 * How many index blocks need to touch to modify nrblocks?
4905 	 * The "Chunk" flag indicating whether the nrblocks is
4906 	 * physically contiguous on disk
4907 	 *
4908 	 * For Direct IO and fallocate, they calls get_block to allocate
4909 	 * one single extent at a time, so they could set the "Chunk" flag
4910 	 */
4911 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4912 
4913 	ret = idxblocks;
4914 
4915 	/*
4916 	 * Now let's see how many group bitmaps and group descriptors need
4917 	 * to account
4918 	 */
4919 	groups = idxblocks;
4920 	if (chunk)
4921 		groups += 1;
4922 	else
4923 		groups += nrblocks;
4924 
4925 	gdpblocks = groups;
4926 	if (groups > ngroups)
4927 		groups = ngroups;
4928 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4929 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4930 
4931 	/* bitmaps and block group descriptor blocks */
4932 	ret += groups + gdpblocks;
4933 
4934 	/* Blocks for super block, inode, quota and xattr blocks */
4935 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4936 
4937 	return ret;
4938 }
4939 
4940 /*
4941  * Calulate the total number of credits to reserve to fit
4942  * the modification of a single pages into a single transaction,
4943  * which may include multiple chunks of block allocations.
4944  *
4945  * This could be called via ext4_write_begin()
4946  *
4947  * We need to consider the worse case, when
4948  * one new block per extent.
4949  */
4950 int ext4_writepage_trans_blocks(struct inode *inode)
4951 {
4952 	int bpp = ext4_journal_blocks_per_page(inode);
4953 	int ret;
4954 
4955 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4956 
4957 	/* Account for data blocks for journalled mode */
4958 	if (ext4_should_journal_data(inode))
4959 		ret += bpp;
4960 	return ret;
4961 }
4962 
4963 /*
4964  * Calculate the journal credits for a chunk of data modification.
4965  *
4966  * This is called from DIO, fallocate or whoever calling
4967  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4968  *
4969  * journal buffers for data blocks are not included here, as DIO
4970  * and fallocate do no need to journal data buffers.
4971  */
4972 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4973 {
4974 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4975 }
4976 
4977 /*
4978  * The caller must have previously called ext4_reserve_inode_write().
4979  * Give this, we know that the caller already has write access to iloc->bh.
4980  */
4981 int ext4_mark_iloc_dirty(handle_t *handle,
4982 			 struct inode *inode, struct ext4_iloc *iloc)
4983 {
4984 	int err = 0;
4985 
4986 	if (test_opt(inode->i_sb, I_VERSION))
4987 		inode_inc_iversion(inode);
4988 
4989 	/* the do_update_inode consumes one bh->b_count */
4990 	get_bh(iloc->bh);
4991 
4992 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4993 	err = ext4_do_update_inode(handle, inode, iloc);
4994 	put_bh(iloc->bh);
4995 	return err;
4996 }
4997 
4998 /*
4999  * On success, We end up with an outstanding reference count against
5000  * iloc->bh.  This _must_ be cleaned up later.
5001  */
5002 
5003 int
5004 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5005 			 struct ext4_iloc *iloc)
5006 {
5007 	int err;
5008 
5009 	err = ext4_get_inode_loc(inode, iloc);
5010 	if (!err) {
5011 		BUFFER_TRACE(iloc->bh, "get_write_access");
5012 		err = ext4_journal_get_write_access(handle, iloc->bh);
5013 		if (err) {
5014 			brelse(iloc->bh);
5015 			iloc->bh = NULL;
5016 		}
5017 	}
5018 	ext4_std_error(inode->i_sb, err);
5019 	return err;
5020 }
5021 
5022 /*
5023  * Expand an inode by new_extra_isize bytes.
5024  * Returns 0 on success or negative error number on failure.
5025  */
5026 static int ext4_expand_extra_isize(struct inode *inode,
5027 				   unsigned int new_extra_isize,
5028 				   struct ext4_iloc iloc,
5029 				   handle_t *handle)
5030 {
5031 	struct ext4_inode *raw_inode;
5032 	struct ext4_xattr_ibody_header *header;
5033 	struct ext4_xattr_entry *entry;
5034 
5035 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5036 		return 0;
5037 
5038 	raw_inode = ext4_raw_inode(&iloc);
5039 
5040 	header = IHDR(inode, raw_inode);
5041 	entry = IFIRST(header);
5042 
5043 	/* No extended attributes present */
5044 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5045 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5046 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5047 			new_extra_isize);
5048 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5049 		return 0;
5050 	}
5051 
5052 	/* try to expand with EAs present */
5053 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5054 					  raw_inode, handle);
5055 }
5056 
5057 /*
5058  * What we do here is to mark the in-core inode as clean with respect to inode
5059  * dirtiness (it may still be data-dirty).
5060  * This means that the in-core inode may be reaped by prune_icache
5061  * without having to perform any I/O.  This is a very good thing,
5062  * because *any* task may call prune_icache - even ones which
5063  * have a transaction open against a different journal.
5064  *
5065  * Is this cheating?  Not really.  Sure, we haven't written the
5066  * inode out, but prune_icache isn't a user-visible syncing function.
5067  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5068  * we start and wait on commits.
5069  *
5070  * Is this efficient/effective?  Well, we're being nice to the system
5071  * by cleaning up our inodes proactively so they can be reaped
5072  * without I/O.  But we are potentially leaving up to five seconds'
5073  * worth of inodes floating about which prune_icache wants us to
5074  * write out.  One way to fix that would be to get prune_icache()
5075  * to do a write_super() to free up some memory.  It has the desired
5076  * effect.
5077  */
5078 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5079 {
5080 	struct ext4_iloc iloc;
5081 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5082 	static unsigned int mnt_count;
5083 	int err, ret;
5084 
5085 	might_sleep();
5086 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5087 	if (ext4_handle_valid(handle) &&
5088 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5089 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5090 		/*
5091 		 * We need extra buffer credits since we may write into EA block
5092 		 * with this same handle. If journal_extend fails, then it will
5093 		 * only result in a minor loss of functionality for that inode.
5094 		 * If this is felt to be critical, then e2fsck should be run to
5095 		 * force a large enough s_min_extra_isize.
5096 		 */
5097 		if ((jbd2_journal_extend(handle,
5098 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5099 			ret = ext4_expand_extra_isize(inode,
5100 						      sbi->s_want_extra_isize,
5101 						      iloc, handle);
5102 			if (ret) {
5103 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5104 				if (mnt_count !=
5105 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5106 					ext4_warning(inode->i_sb, __func__,
5107 					"Unable to expand inode %lu. Delete"
5108 					" some EAs or run e2fsck.",
5109 					inode->i_ino);
5110 					mnt_count =
5111 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5112 				}
5113 			}
5114 		}
5115 	}
5116 	if (!err)
5117 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5118 	return err;
5119 }
5120 
5121 /*
5122  * ext4_dirty_inode() is called from __mark_inode_dirty()
5123  *
5124  * We're really interested in the case where a file is being extended.
5125  * i_size has been changed by generic_commit_write() and we thus need
5126  * to include the updated inode in the current transaction.
5127  *
5128  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5129  * are allocated to the file.
5130  *
5131  * If the inode is marked synchronous, we don't honour that here - doing
5132  * so would cause a commit on atime updates, which we don't bother doing.
5133  * We handle synchronous inodes at the highest possible level.
5134  */
5135 void ext4_dirty_inode(struct inode *inode)
5136 {
5137 	handle_t *current_handle = ext4_journal_current_handle();
5138 	handle_t *handle;
5139 
5140 	if (!ext4_handle_valid(current_handle)) {
5141 		ext4_mark_inode_dirty(current_handle, inode);
5142 		return;
5143 	}
5144 
5145 	handle = ext4_journal_start(inode, 2);
5146 	if (IS_ERR(handle))
5147 		goto out;
5148 	if (current_handle &&
5149 		current_handle->h_transaction != handle->h_transaction) {
5150 		/* This task has a transaction open against a different fs */
5151 		printk(KERN_EMERG "%s: transactions do not match!\n",
5152 		       __func__);
5153 	} else {
5154 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
5155 				current_handle);
5156 		ext4_mark_inode_dirty(handle, inode);
5157 	}
5158 	ext4_journal_stop(handle);
5159 out:
5160 	return;
5161 }
5162 
5163 #if 0
5164 /*
5165  * Bind an inode's backing buffer_head into this transaction, to prevent
5166  * it from being flushed to disk early.  Unlike
5167  * ext4_reserve_inode_write, this leaves behind no bh reference and
5168  * returns no iloc structure, so the caller needs to repeat the iloc
5169  * lookup to mark the inode dirty later.
5170  */
5171 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5172 {
5173 	struct ext4_iloc iloc;
5174 
5175 	int err = 0;
5176 	if (handle) {
5177 		err = ext4_get_inode_loc(inode, &iloc);
5178 		if (!err) {
5179 			BUFFER_TRACE(iloc.bh, "get_write_access");
5180 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5181 			if (!err)
5182 				err = ext4_handle_dirty_metadata(handle,
5183 								 inode,
5184 								 iloc.bh);
5185 			brelse(iloc.bh);
5186 		}
5187 	}
5188 	ext4_std_error(inode->i_sb, err);
5189 	return err;
5190 }
5191 #endif
5192 
5193 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5194 {
5195 	journal_t *journal;
5196 	handle_t *handle;
5197 	int err;
5198 
5199 	/*
5200 	 * We have to be very careful here: changing a data block's
5201 	 * journaling status dynamically is dangerous.  If we write a
5202 	 * data block to the journal, change the status and then delete
5203 	 * that block, we risk forgetting to revoke the old log record
5204 	 * from the journal and so a subsequent replay can corrupt data.
5205 	 * So, first we make sure that the journal is empty and that
5206 	 * nobody is changing anything.
5207 	 */
5208 
5209 	journal = EXT4_JOURNAL(inode);
5210 	if (!journal)
5211 		return 0;
5212 	if (is_journal_aborted(journal))
5213 		return -EROFS;
5214 
5215 	jbd2_journal_lock_updates(journal);
5216 	jbd2_journal_flush(journal);
5217 
5218 	/*
5219 	 * OK, there are no updates running now, and all cached data is
5220 	 * synced to disk.  We are now in a completely consistent state
5221 	 * which doesn't have anything in the journal, and we know that
5222 	 * no filesystem updates are running, so it is safe to modify
5223 	 * the inode's in-core data-journaling state flag now.
5224 	 */
5225 
5226 	if (val)
5227 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5228 	else
5229 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5230 	ext4_set_aops(inode);
5231 
5232 	jbd2_journal_unlock_updates(journal);
5233 
5234 	/* Finally we can mark the inode as dirty. */
5235 
5236 	handle = ext4_journal_start(inode, 1);
5237 	if (IS_ERR(handle))
5238 		return PTR_ERR(handle);
5239 
5240 	err = ext4_mark_inode_dirty(handle, inode);
5241 	ext4_handle_sync(handle);
5242 	ext4_journal_stop(handle);
5243 	ext4_std_error(inode->i_sb, err);
5244 
5245 	return err;
5246 }
5247 
5248 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5249 {
5250 	return !buffer_mapped(bh);
5251 }
5252 
5253 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5254 {
5255 	struct page *page = vmf->page;
5256 	loff_t size;
5257 	unsigned long len;
5258 	int ret = -EINVAL;
5259 	void *fsdata;
5260 	struct file *file = vma->vm_file;
5261 	struct inode *inode = file->f_path.dentry->d_inode;
5262 	struct address_space *mapping = inode->i_mapping;
5263 
5264 	/*
5265 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5266 	 * get i_mutex because we are already holding mmap_sem.
5267 	 */
5268 	down_read(&inode->i_alloc_sem);
5269 	size = i_size_read(inode);
5270 	if (page->mapping != mapping || size <= page_offset(page)
5271 	    || !PageUptodate(page)) {
5272 		/* page got truncated from under us? */
5273 		goto out_unlock;
5274 	}
5275 	ret = 0;
5276 	if (PageMappedToDisk(page))
5277 		goto out_unlock;
5278 
5279 	if (page->index == size >> PAGE_CACHE_SHIFT)
5280 		len = size & ~PAGE_CACHE_MASK;
5281 	else
5282 		len = PAGE_CACHE_SIZE;
5283 
5284 	if (page_has_buffers(page)) {
5285 		/* return if we have all the buffers mapped */
5286 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5287 				       ext4_bh_unmapped))
5288 			goto out_unlock;
5289 	}
5290 	/*
5291 	 * OK, we need to fill the hole... Do write_begin write_end
5292 	 * to do block allocation/reservation.We are not holding
5293 	 * inode.i__mutex here. That allow * parallel write_begin,
5294 	 * write_end call. lock_page prevent this from happening
5295 	 * on the same page though
5296 	 */
5297 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5298 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5299 	if (ret < 0)
5300 		goto out_unlock;
5301 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5302 			len, len, page, fsdata);
5303 	if (ret < 0)
5304 		goto out_unlock;
5305 	ret = 0;
5306 out_unlock:
5307 	if (ret)
5308 		ret = VM_FAULT_SIGBUS;
5309 	up_read(&inode->i_alloc_sem);
5310 	return ret;
5311 }
5312