xref: /linux/fs/ext4/inode.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 				   struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 		struct inode *inode, struct page *page, loff_t from,
143 		loff_t length, int flags);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		(inode->i_sb->s_blocksize >> 9) : 0;
152 
153 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155 
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 				 int nblocks)
163 {
164 	int ret;
165 
166 	/*
167 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 	 * moment, get_block can be called only for blocks inside i_size since
169 	 * page cache has been already dropped and writes are blocked by
170 	 * i_mutex. So we can safely drop the i_data_sem here.
171 	 */
172 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	up_write(&EXT4_I(inode)->i_data_sem);
175 	ret = ext4_journal_restart(handle, nblocks);
176 	down_write(&EXT4_I(inode)->i_data_sem);
177 	ext4_discard_preallocations(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 	handle_t *handle;
188 	int err;
189 
190 	trace_ext4_evict_inode(inode);
191 
192 	ext4_ioend_wait(inode);
193 
194 	if (inode->i_nlink) {
195 		/*
196 		 * When journalling data dirty buffers are tracked only in the
197 		 * journal. So although mm thinks everything is clean and
198 		 * ready for reaping the inode might still have some pages to
199 		 * write in the running transaction or waiting to be
200 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 		 * (via truncate_inode_pages()) to discard these buffers can
202 		 * cause data loss. Also even if we did not discard these
203 		 * buffers, we would have no way to find them after the inode
204 		 * is reaped and thus user could see stale data if he tries to
205 		 * read them before the transaction is checkpointed. So be
206 		 * careful and force everything to disk here... We use
207 		 * ei->i_datasync_tid to store the newest transaction
208 		 * containing inode's data.
209 		 *
210 		 * Note that directories do not have this problem because they
211 		 * don't use page cache.
212 		 */
213 		if (ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_log_start_commit(journal, commit_tid);
219 			jbd2_log_wait_commit(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages(&inode->i_data, 0);
223 		goto no_delete;
224 	}
225 
226 	if (!is_bad_inode(inode))
227 		dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages(&inode->i_data, 0);
232 
233 	if (is_bad_inode(inode))
234 		goto no_delete;
235 
236 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237 	if (IS_ERR(handle)) {
238 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 		/*
240 		 * If we're going to skip the normal cleanup, we still need to
241 		 * make sure that the in-core orphan linked list is properly
242 		 * cleaned up.
243 		 */
244 		ext4_orphan_del(NULL, inode);
245 		goto no_delete;
246 	}
247 
248 	if (IS_SYNC(inode))
249 		ext4_handle_sync(handle);
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks)
258 		ext4_truncate(inode);
259 
260 	/*
261 	 * ext4_ext_truncate() doesn't reserve any slop when it
262 	 * restarts journal transactions; therefore there may not be
263 	 * enough credits left in the handle to remove the inode from
264 	 * the orphan list and set the dtime field.
265 	 */
266 	if (!ext4_handle_has_enough_credits(handle, 3)) {
267 		err = ext4_journal_extend(handle, 3);
268 		if (err > 0)
269 			err = ext4_journal_restart(handle, 3);
270 		if (err != 0) {
271 			ext4_warning(inode->i_sb,
272 				     "couldn't extend journal (err %d)", err);
273 		stop_handle:
274 			ext4_journal_stop(handle);
275 			ext4_orphan_del(NULL, inode);
276 			goto no_delete;
277 		}
278 	}
279 
280 	/*
281 	 * Kill off the orphan record which ext4_truncate created.
282 	 * AKPM: I think this can be inside the above `if'.
283 	 * Note that ext4_orphan_del() has to be able to cope with the
284 	 * deletion of a non-existent orphan - this is because we don't
285 	 * know if ext4_truncate() actually created an orphan record.
286 	 * (Well, we could do this if we need to, but heck - it works)
287 	 */
288 	ext4_orphan_del(handle, inode);
289 	EXT4_I(inode)->i_dtime	= get_seconds();
290 
291 	/*
292 	 * One subtle ordering requirement: if anything has gone wrong
293 	 * (transaction abort, IO errors, whatever), then we can still
294 	 * do these next steps (the fs will already have been marked as
295 	 * having errors), but we can't free the inode if the mark_dirty
296 	 * fails.
297 	 */
298 	if (ext4_mark_inode_dirty(handle, inode))
299 		/* If that failed, just do the required in-core inode clear. */
300 		ext4_clear_inode(inode);
301 	else
302 		ext4_free_inode(handle, inode);
303 	ext4_journal_stop(handle);
304 	return;
305 no_delete:
306 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
307 }
308 
309 #ifdef CONFIG_QUOTA
310 qsize_t *ext4_get_reserved_space(struct inode *inode)
311 {
312 	return &EXT4_I(inode)->i_reserved_quota;
313 }
314 #endif
315 
316 /*
317  * Calculate the number of metadata blocks need to reserve
318  * to allocate a block located at @lblock
319  */
320 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321 {
322 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323 		return ext4_ext_calc_metadata_amount(inode, lblock);
324 
325 	return ext4_ind_calc_metadata_amount(inode, lblock);
326 }
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
350 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
351 			 "with only %d reserved metadata blocks\n", __func__,
352 			 inode->i_ino, ei->i_allocated_meta_blocks,
353 			 ei->i_reserved_meta_blocks);
354 		WARN_ON(1);
355 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
356 	}
357 
358 	/* Update per-inode reservations */
359 	ei->i_reserved_data_blocks -= used;
360 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
361 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
362 			   used + ei->i_allocated_meta_blocks);
363 	ei->i_allocated_meta_blocks = 0;
364 
365 	if (ei->i_reserved_data_blocks == 0) {
366 		/*
367 		 * We can release all of the reserved metadata blocks
368 		 * only when we have written all of the delayed
369 		 * allocation blocks.
370 		 */
371 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 				   ei->i_reserved_meta_blocks);
373 		ei->i_reserved_meta_blocks = 0;
374 		ei->i_da_metadata_calc_len = 0;
375 	}
376 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
377 
378 	/* Update quota subsystem for data blocks */
379 	if (quota_claim)
380 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 	else {
382 		/*
383 		 * We did fallocate with an offset that is already delayed
384 		 * allocated. So on delayed allocated writeback we should
385 		 * not re-claim the quota for fallocated blocks.
386 		 */
387 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 	}
389 
390 	/*
391 	 * If we have done all the pending block allocations and if
392 	 * there aren't any writers on the inode, we can discard the
393 	 * inode's preallocations.
394 	 */
395 	if ((ei->i_reserved_data_blocks == 0) &&
396 	    (atomic_read(&inode->i_writecount) == 0))
397 		ext4_discard_preallocations(inode);
398 }
399 
400 static int __check_block_validity(struct inode *inode, const char *func,
401 				unsigned int line,
402 				struct ext4_map_blocks *map)
403 {
404 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
405 				   map->m_len)) {
406 		ext4_error_inode(inode, func, line, map->m_pblk,
407 				 "lblock %lu mapped to illegal pblock "
408 				 "(length %d)", (unsigned long) map->m_lblk,
409 				 map->m_len);
410 		return -EIO;
411 	}
412 	return 0;
413 }
414 
415 #define check_block_validity(inode, map)	\
416 	__check_block_validity((inode), __func__, __LINE__, (map))
417 
418 /*
419  * Return the number of contiguous dirty pages in a given inode
420  * starting at page frame idx.
421  */
422 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
423 				    unsigned int max_pages)
424 {
425 	struct address_space *mapping = inode->i_mapping;
426 	pgoff_t	index;
427 	struct pagevec pvec;
428 	pgoff_t num = 0;
429 	int i, nr_pages, done = 0;
430 
431 	if (max_pages == 0)
432 		return 0;
433 	pagevec_init(&pvec, 0);
434 	while (!done) {
435 		index = idx;
436 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 					      PAGECACHE_TAG_DIRTY,
438 					      (pgoff_t)PAGEVEC_SIZE);
439 		if (nr_pages == 0)
440 			break;
441 		for (i = 0; i < nr_pages; i++) {
442 			struct page *page = pvec.pages[i];
443 			struct buffer_head *bh, *head;
444 
445 			lock_page(page);
446 			if (unlikely(page->mapping != mapping) ||
447 			    !PageDirty(page) ||
448 			    PageWriteback(page) ||
449 			    page->index != idx) {
450 				done = 1;
451 				unlock_page(page);
452 				break;
453 			}
454 			if (page_has_buffers(page)) {
455 				bh = head = page_buffers(page);
456 				do {
457 					if (!buffer_delay(bh) &&
458 					    !buffer_unwritten(bh))
459 						done = 1;
460 					bh = bh->b_this_page;
461 				} while (!done && (bh != head));
462 			}
463 			unlock_page(page);
464 			if (done)
465 				break;
466 			idx++;
467 			num++;
468 			if (num >= max_pages) {
469 				done = 1;
470 				break;
471 			}
472 		}
473 		pagevec_release(&pvec);
474 	}
475 	return num;
476 }
477 
478 /*
479  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
480  */
481 static void set_buffers_da_mapped(struct inode *inode,
482 				   struct ext4_map_blocks *map)
483 {
484 	struct address_space *mapping = inode->i_mapping;
485 	struct pagevec pvec;
486 	int i, nr_pages;
487 	pgoff_t index, end;
488 
489 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
490 	end = (map->m_lblk + map->m_len - 1) >>
491 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
492 
493 	pagevec_init(&pvec, 0);
494 	while (index <= end) {
495 		nr_pages = pagevec_lookup(&pvec, mapping, index,
496 					  min(end - index + 1,
497 					      (pgoff_t)PAGEVEC_SIZE));
498 		if (nr_pages == 0)
499 			break;
500 		for (i = 0; i < nr_pages; i++) {
501 			struct page *page = pvec.pages[i];
502 			struct buffer_head *bh, *head;
503 
504 			if (unlikely(page->mapping != mapping) ||
505 			    !PageDirty(page))
506 				break;
507 
508 			if (page_has_buffers(page)) {
509 				bh = head = page_buffers(page);
510 				do {
511 					set_buffer_da_mapped(bh);
512 					bh = bh->b_this_page;
513 				} while (bh != head);
514 			}
515 			index++;
516 		}
517 		pagevec_release(&pvec);
518 	}
519 }
520 
521 /*
522  * The ext4_map_blocks() function tries to look up the requested blocks,
523  * and returns if the blocks are already mapped.
524  *
525  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
526  * and store the allocated blocks in the result buffer head and mark it
527  * mapped.
528  *
529  * If file type is extents based, it will call ext4_ext_map_blocks(),
530  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
531  * based files
532  *
533  * On success, it returns the number of blocks being mapped or allocate.
534  * if create==0 and the blocks are pre-allocated and uninitialized block,
535  * the result buffer head is unmapped. If the create ==1, it will make sure
536  * the buffer head is mapped.
537  *
538  * It returns 0 if plain look up failed (blocks have not been allocated), in
539  * that case, buffer head is unmapped
540  *
541  * It returns the error in case of allocation failure.
542  */
543 int ext4_map_blocks(handle_t *handle, struct inode *inode,
544 		    struct ext4_map_blocks *map, int flags)
545 {
546 	int retval;
547 
548 	map->m_flags = 0;
549 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
550 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
551 		  (unsigned long) map->m_lblk);
552 	/*
553 	 * Try to see if we can get the block without requesting a new
554 	 * file system block.
555 	 */
556 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
557 		down_read((&EXT4_I(inode)->i_data_sem));
558 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 					     EXT4_GET_BLOCKS_KEEP_SIZE);
561 	} else {
562 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 					     EXT4_GET_BLOCKS_KEEP_SIZE);
564 	}
565 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
566 		up_read((&EXT4_I(inode)->i_data_sem));
567 
568 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
569 		int ret = check_block_validity(inode, map);
570 		if (ret != 0)
571 			return ret;
572 	}
573 
574 	/* If it is only a block(s) look up */
575 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
576 		return retval;
577 
578 	/*
579 	 * Returns if the blocks have already allocated
580 	 *
581 	 * Note that if blocks have been preallocated
582 	 * ext4_ext_get_block() returns the create = 0
583 	 * with buffer head unmapped.
584 	 */
585 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
586 		return retval;
587 
588 	/*
589 	 * When we call get_blocks without the create flag, the
590 	 * BH_Unwritten flag could have gotten set if the blocks
591 	 * requested were part of a uninitialized extent.  We need to
592 	 * clear this flag now that we are committed to convert all or
593 	 * part of the uninitialized extent to be an initialized
594 	 * extent.  This is because we need to avoid the combination
595 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
596 	 * set on the buffer_head.
597 	 */
598 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
599 
600 	/*
601 	 * New blocks allocate and/or writing to uninitialized extent
602 	 * will possibly result in updating i_data, so we take
603 	 * the write lock of i_data_sem, and call get_blocks()
604 	 * with create == 1 flag.
605 	 */
606 	down_write((&EXT4_I(inode)->i_data_sem));
607 
608 	/*
609 	 * if the caller is from delayed allocation writeout path
610 	 * we have already reserved fs blocks for allocation
611 	 * let the underlying get_block() function know to
612 	 * avoid double accounting
613 	 */
614 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
615 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
616 	/*
617 	 * We need to check for EXT4 here because migrate
618 	 * could have changed the inode type in between
619 	 */
620 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
622 	} else {
623 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
624 
625 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 			/*
627 			 * We allocated new blocks which will result in
628 			 * i_data's format changing.  Force the migrate
629 			 * to fail by clearing migrate flags
630 			 */
631 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632 		}
633 
634 		/*
635 		 * Update reserved blocks/metadata blocks after successful
636 		 * block allocation which had been deferred till now. We don't
637 		 * support fallocate for non extent files. So we can update
638 		 * reserve space here.
639 		 */
640 		if ((retval > 0) &&
641 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
642 			ext4_da_update_reserve_space(inode, retval, 1);
643 	}
644 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
645 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
646 
647 		/* If we have successfully mapped the delayed allocated blocks,
648 		 * set the BH_Da_Mapped bit on them. Its important to do this
649 		 * under the protection of i_data_sem.
650 		 */
651 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
652 			set_buffers_da_mapped(inode, map);
653 	}
654 
655 	up_write((&EXT4_I(inode)->i_data_sem));
656 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
657 		int ret = check_block_validity(inode, map);
658 		if (ret != 0)
659 			return ret;
660 	}
661 	return retval;
662 }
663 
664 /* Maximum number of blocks we map for direct IO at once. */
665 #define DIO_MAX_BLOCKS 4096
666 
667 static int _ext4_get_block(struct inode *inode, sector_t iblock,
668 			   struct buffer_head *bh, int flags)
669 {
670 	handle_t *handle = ext4_journal_current_handle();
671 	struct ext4_map_blocks map;
672 	int ret = 0, started = 0;
673 	int dio_credits;
674 
675 	map.m_lblk = iblock;
676 	map.m_len = bh->b_size >> inode->i_blkbits;
677 
678 	if (flags && !handle) {
679 		/* Direct IO write... */
680 		if (map.m_len > DIO_MAX_BLOCKS)
681 			map.m_len = DIO_MAX_BLOCKS;
682 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
683 		handle = ext4_journal_start(inode, dio_credits);
684 		if (IS_ERR(handle)) {
685 			ret = PTR_ERR(handle);
686 			return ret;
687 		}
688 		started = 1;
689 	}
690 
691 	ret = ext4_map_blocks(handle, inode, &map, flags);
692 	if (ret > 0) {
693 		map_bh(bh, inode->i_sb, map.m_pblk);
694 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
695 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
696 		ret = 0;
697 	}
698 	if (started)
699 		ext4_journal_stop(handle);
700 	return ret;
701 }
702 
703 int ext4_get_block(struct inode *inode, sector_t iblock,
704 		   struct buffer_head *bh, int create)
705 {
706 	return _ext4_get_block(inode, iblock, bh,
707 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
708 }
709 
710 /*
711  * `handle' can be NULL if create is zero
712  */
713 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
714 				ext4_lblk_t block, int create, int *errp)
715 {
716 	struct ext4_map_blocks map;
717 	struct buffer_head *bh;
718 	int fatal = 0, err;
719 
720 	J_ASSERT(handle != NULL || create == 0);
721 
722 	map.m_lblk = block;
723 	map.m_len = 1;
724 	err = ext4_map_blocks(handle, inode, &map,
725 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
726 
727 	if (err < 0)
728 		*errp = err;
729 	if (err <= 0)
730 		return NULL;
731 	*errp = 0;
732 
733 	bh = sb_getblk(inode->i_sb, map.m_pblk);
734 	if (!bh) {
735 		*errp = -EIO;
736 		return NULL;
737 	}
738 	if (map.m_flags & EXT4_MAP_NEW) {
739 		J_ASSERT(create != 0);
740 		J_ASSERT(handle != NULL);
741 
742 		/*
743 		 * Now that we do not always journal data, we should
744 		 * keep in mind whether this should always journal the
745 		 * new buffer as metadata.  For now, regular file
746 		 * writes use ext4_get_block instead, so it's not a
747 		 * problem.
748 		 */
749 		lock_buffer(bh);
750 		BUFFER_TRACE(bh, "call get_create_access");
751 		fatal = ext4_journal_get_create_access(handle, bh);
752 		if (!fatal && !buffer_uptodate(bh)) {
753 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
754 			set_buffer_uptodate(bh);
755 		}
756 		unlock_buffer(bh);
757 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
758 		err = ext4_handle_dirty_metadata(handle, inode, bh);
759 		if (!fatal)
760 			fatal = err;
761 	} else {
762 		BUFFER_TRACE(bh, "not a new buffer");
763 	}
764 	if (fatal) {
765 		*errp = fatal;
766 		brelse(bh);
767 		bh = NULL;
768 	}
769 	return bh;
770 }
771 
772 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
773 			       ext4_lblk_t block, int create, int *err)
774 {
775 	struct buffer_head *bh;
776 
777 	bh = ext4_getblk(handle, inode, block, create, err);
778 	if (!bh)
779 		return bh;
780 	if (buffer_uptodate(bh))
781 		return bh;
782 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
783 	wait_on_buffer(bh);
784 	if (buffer_uptodate(bh))
785 		return bh;
786 	put_bh(bh);
787 	*err = -EIO;
788 	return NULL;
789 }
790 
791 static int walk_page_buffers(handle_t *handle,
792 			     struct buffer_head *head,
793 			     unsigned from,
794 			     unsigned to,
795 			     int *partial,
796 			     int (*fn)(handle_t *handle,
797 				       struct buffer_head *bh))
798 {
799 	struct buffer_head *bh;
800 	unsigned block_start, block_end;
801 	unsigned blocksize = head->b_size;
802 	int err, ret = 0;
803 	struct buffer_head *next;
804 
805 	for (bh = head, block_start = 0;
806 	     ret == 0 && (bh != head || !block_start);
807 	     block_start = block_end, bh = next) {
808 		next = bh->b_this_page;
809 		block_end = block_start + blocksize;
810 		if (block_end <= from || block_start >= to) {
811 			if (partial && !buffer_uptodate(bh))
812 				*partial = 1;
813 			continue;
814 		}
815 		err = (*fn)(handle, bh);
816 		if (!ret)
817 			ret = err;
818 	}
819 	return ret;
820 }
821 
822 /*
823  * To preserve ordering, it is essential that the hole instantiation and
824  * the data write be encapsulated in a single transaction.  We cannot
825  * close off a transaction and start a new one between the ext4_get_block()
826  * and the commit_write().  So doing the jbd2_journal_start at the start of
827  * prepare_write() is the right place.
828  *
829  * Also, this function can nest inside ext4_writepage() ->
830  * block_write_full_page(). In that case, we *know* that ext4_writepage()
831  * has generated enough buffer credits to do the whole page.  So we won't
832  * block on the journal in that case, which is good, because the caller may
833  * be PF_MEMALLOC.
834  *
835  * By accident, ext4 can be reentered when a transaction is open via
836  * quota file writes.  If we were to commit the transaction while thus
837  * reentered, there can be a deadlock - we would be holding a quota
838  * lock, and the commit would never complete if another thread had a
839  * transaction open and was blocking on the quota lock - a ranking
840  * violation.
841  *
842  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
843  * will _not_ run commit under these circumstances because handle->h_ref
844  * is elevated.  We'll still have enough credits for the tiny quotafile
845  * write.
846  */
847 static int do_journal_get_write_access(handle_t *handle,
848 				       struct buffer_head *bh)
849 {
850 	int dirty = buffer_dirty(bh);
851 	int ret;
852 
853 	if (!buffer_mapped(bh) || buffer_freed(bh))
854 		return 0;
855 	/*
856 	 * __block_write_begin() could have dirtied some buffers. Clean
857 	 * the dirty bit as jbd2_journal_get_write_access() could complain
858 	 * otherwise about fs integrity issues. Setting of the dirty bit
859 	 * by __block_write_begin() isn't a real problem here as we clear
860 	 * the bit before releasing a page lock and thus writeback cannot
861 	 * ever write the buffer.
862 	 */
863 	if (dirty)
864 		clear_buffer_dirty(bh);
865 	ret = ext4_journal_get_write_access(handle, bh);
866 	if (!ret && dirty)
867 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
868 	return ret;
869 }
870 
871 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
872 		   struct buffer_head *bh_result, int create);
873 static int ext4_write_begin(struct file *file, struct address_space *mapping,
874 			    loff_t pos, unsigned len, unsigned flags,
875 			    struct page **pagep, void **fsdata)
876 {
877 	struct inode *inode = mapping->host;
878 	int ret, needed_blocks;
879 	handle_t *handle;
880 	int retries = 0;
881 	struct page *page;
882 	pgoff_t index;
883 	unsigned from, to;
884 
885 	trace_ext4_write_begin(inode, pos, len, flags);
886 	/*
887 	 * Reserve one block more for addition to orphan list in case
888 	 * we allocate blocks but write fails for some reason
889 	 */
890 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
891 	index = pos >> PAGE_CACHE_SHIFT;
892 	from = pos & (PAGE_CACHE_SIZE - 1);
893 	to = from + len;
894 
895 retry:
896 	handle = ext4_journal_start(inode, needed_blocks);
897 	if (IS_ERR(handle)) {
898 		ret = PTR_ERR(handle);
899 		goto out;
900 	}
901 
902 	/* We cannot recurse into the filesystem as the transaction is already
903 	 * started */
904 	flags |= AOP_FLAG_NOFS;
905 
906 	page = grab_cache_page_write_begin(mapping, index, flags);
907 	if (!page) {
908 		ext4_journal_stop(handle);
909 		ret = -ENOMEM;
910 		goto out;
911 	}
912 	*pagep = page;
913 
914 	if (ext4_should_dioread_nolock(inode))
915 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
916 	else
917 		ret = __block_write_begin(page, pos, len, ext4_get_block);
918 
919 	if (!ret && ext4_should_journal_data(inode)) {
920 		ret = walk_page_buffers(handle, page_buffers(page),
921 				from, to, NULL, do_journal_get_write_access);
922 	}
923 
924 	if (ret) {
925 		unlock_page(page);
926 		page_cache_release(page);
927 		/*
928 		 * __block_write_begin may have instantiated a few blocks
929 		 * outside i_size.  Trim these off again. Don't need
930 		 * i_size_read because we hold i_mutex.
931 		 *
932 		 * Add inode to orphan list in case we crash before
933 		 * truncate finishes
934 		 */
935 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
936 			ext4_orphan_add(handle, inode);
937 
938 		ext4_journal_stop(handle);
939 		if (pos + len > inode->i_size) {
940 			ext4_truncate_failed_write(inode);
941 			/*
942 			 * If truncate failed early the inode might
943 			 * still be on the orphan list; we need to
944 			 * make sure the inode is removed from the
945 			 * orphan list in that case.
946 			 */
947 			if (inode->i_nlink)
948 				ext4_orphan_del(NULL, inode);
949 		}
950 	}
951 
952 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
953 		goto retry;
954 out:
955 	return ret;
956 }
957 
958 /* For write_end() in data=journal mode */
959 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
960 {
961 	if (!buffer_mapped(bh) || buffer_freed(bh))
962 		return 0;
963 	set_buffer_uptodate(bh);
964 	return ext4_handle_dirty_metadata(handle, NULL, bh);
965 }
966 
967 static int ext4_generic_write_end(struct file *file,
968 				  struct address_space *mapping,
969 				  loff_t pos, unsigned len, unsigned copied,
970 				  struct page *page, void *fsdata)
971 {
972 	int i_size_changed = 0;
973 	struct inode *inode = mapping->host;
974 	handle_t *handle = ext4_journal_current_handle();
975 
976 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
977 
978 	/*
979 	 * No need to use i_size_read() here, the i_size
980 	 * cannot change under us because we hold i_mutex.
981 	 *
982 	 * But it's important to update i_size while still holding page lock:
983 	 * page writeout could otherwise come in and zero beyond i_size.
984 	 */
985 	if (pos + copied > inode->i_size) {
986 		i_size_write(inode, pos + copied);
987 		i_size_changed = 1;
988 	}
989 
990 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
991 		/* We need to mark inode dirty even if
992 		 * new_i_size is less that inode->i_size
993 		 * bu greater than i_disksize.(hint delalloc)
994 		 */
995 		ext4_update_i_disksize(inode, (pos + copied));
996 		i_size_changed = 1;
997 	}
998 	unlock_page(page);
999 	page_cache_release(page);
1000 
1001 	/*
1002 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 	 * makes the holding time of page lock longer. Second, it forces lock
1004 	 * ordering of page lock and transaction start for journaling
1005 	 * filesystems.
1006 	 */
1007 	if (i_size_changed)
1008 		ext4_mark_inode_dirty(handle, inode);
1009 
1010 	return copied;
1011 }
1012 
1013 /*
1014  * We need to pick up the new inode size which generic_commit_write gave us
1015  * `file' can be NULL - eg, when called from page_symlink().
1016  *
1017  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018  * buffers are managed internally.
1019  */
1020 static int ext4_ordered_write_end(struct file *file,
1021 				  struct address_space *mapping,
1022 				  loff_t pos, unsigned len, unsigned copied,
1023 				  struct page *page, void *fsdata)
1024 {
1025 	handle_t *handle = ext4_journal_current_handle();
1026 	struct inode *inode = mapping->host;
1027 	int ret = 0, ret2;
1028 
1029 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1030 	ret = ext4_jbd2_file_inode(handle, inode);
1031 
1032 	if (ret == 0) {
1033 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1034 							page, fsdata);
1035 		copied = ret2;
1036 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1037 			/* if we have allocated more blocks and copied
1038 			 * less. We will have blocks allocated outside
1039 			 * inode->i_size. So truncate them
1040 			 */
1041 			ext4_orphan_add(handle, inode);
1042 		if (ret2 < 0)
1043 			ret = ret2;
1044 	} else {
1045 		unlock_page(page);
1046 		page_cache_release(page);
1047 	}
1048 
1049 	ret2 = ext4_journal_stop(handle);
1050 	if (!ret)
1051 		ret = ret2;
1052 
1053 	if (pos + len > inode->i_size) {
1054 		ext4_truncate_failed_write(inode);
1055 		/*
1056 		 * If truncate failed early the inode might still be
1057 		 * on the orphan list; we need to make sure the inode
1058 		 * is removed from the orphan list in that case.
1059 		 */
1060 		if (inode->i_nlink)
1061 			ext4_orphan_del(NULL, inode);
1062 	}
1063 
1064 
1065 	return ret ? ret : copied;
1066 }
1067 
1068 static int ext4_writeback_write_end(struct file *file,
1069 				    struct address_space *mapping,
1070 				    loff_t pos, unsigned len, unsigned copied,
1071 				    struct page *page, void *fsdata)
1072 {
1073 	handle_t *handle = ext4_journal_current_handle();
1074 	struct inode *inode = mapping->host;
1075 	int ret = 0, ret2;
1076 
1077 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1078 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1079 							page, fsdata);
1080 	copied = ret2;
1081 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1082 		/* if we have allocated more blocks and copied
1083 		 * less. We will have blocks allocated outside
1084 		 * inode->i_size. So truncate them
1085 		 */
1086 		ext4_orphan_add(handle, inode);
1087 
1088 	if (ret2 < 0)
1089 		ret = ret2;
1090 
1091 	ret2 = ext4_journal_stop(handle);
1092 	if (!ret)
1093 		ret = ret2;
1094 
1095 	if (pos + len > inode->i_size) {
1096 		ext4_truncate_failed_write(inode);
1097 		/*
1098 		 * If truncate failed early the inode might still be
1099 		 * on the orphan list; we need to make sure the inode
1100 		 * is removed from the orphan list in that case.
1101 		 */
1102 		if (inode->i_nlink)
1103 			ext4_orphan_del(NULL, inode);
1104 	}
1105 
1106 	return ret ? ret : copied;
1107 }
1108 
1109 static int ext4_journalled_write_end(struct file *file,
1110 				     struct address_space *mapping,
1111 				     loff_t pos, unsigned len, unsigned copied,
1112 				     struct page *page, void *fsdata)
1113 {
1114 	handle_t *handle = ext4_journal_current_handle();
1115 	struct inode *inode = mapping->host;
1116 	int ret = 0, ret2;
1117 	int partial = 0;
1118 	unsigned from, to;
1119 	loff_t new_i_size;
1120 
1121 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1122 	from = pos & (PAGE_CACHE_SIZE - 1);
1123 	to = from + len;
1124 
1125 	BUG_ON(!ext4_handle_valid(handle));
1126 
1127 	if (copied < len) {
1128 		if (!PageUptodate(page))
1129 			copied = 0;
1130 		page_zero_new_buffers(page, from+copied, to);
1131 	}
1132 
1133 	ret = walk_page_buffers(handle, page_buffers(page), from,
1134 				to, &partial, write_end_fn);
1135 	if (!partial)
1136 		SetPageUptodate(page);
1137 	new_i_size = pos + copied;
1138 	if (new_i_size > inode->i_size)
1139 		i_size_write(inode, pos+copied);
1140 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1141 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1142 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1143 		ext4_update_i_disksize(inode, new_i_size);
1144 		ret2 = ext4_mark_inode_dirty(handle, inode);
1145 		if (!ret)
1146 			ret = ret2;
1147 	}
1148 
1149 	unlock_page(page);
1150 	page_cache_release(page);
1151 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1152 		/* if we have allocated more blocks and copied
1153 		 * less. We will have blocks allocated outside
1154 		 * inode->i_size. So truncate them
1155 		 */
1156 		ext4_orphan_add(handle, inode);
1157 
1158 	ret2 = ext4_journal_stop(handle);
1159 	if (!ret)
1160 		ret = ret2;
1161 	if (pos + len > inode->i_size) {
1162 		ext4_truncate_failed_write(inode);
1163 		/*
1164 		 * If truncate failed early the inode might still be
1165 		 * on the orphan list; we need to make sure the inode
1166 		 * is removed from the orphan list in that case.
1167 		 */
1168 		if (inode->i_nlink)
1169 			ext4_orphan_del(NULL, inode);
1170 	}
1171 
1172 	return ret ? ret : copied;
1173 }
1174 
1175 /*
1176  * Reserve a single cluster located at lblock
1177  */
1178 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1179 {
1180 	int retries = 0;
1181 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1182 	struct ext4_inode_info *ei = EXT4_I(inode);
1183 	unsigned int md_needed;
1184 	int ret;
1185 	ext4_lblk_t save_last_lblock;
1186 	int save_len;
1187 
1188 	/*
1189 	 * We will charge metadata quota at writeout time; this saves
1190 	 * us from metadata over-estimation, though we may go over by
1191 	 * a small amount in the end.  Here we just reserve for data.
1192 	 */
1193 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1194 	if (ret)
1195 		return ret;
1196 
1197 	/*
1198 	 * recalculate the amount of metadata blocks to reserve
1199 	 * in order to allocate nrblocks
1200 	 * worse case is one extent per block
1201 	 */
1202 repeat:
1203 	spin_lock(&ei->i_block_reservation_lock);
1204 	/*
1205 	 * ext4_calc_metadata_amount() has side effects, which we have
1206 	 * to be prepared undo if we fail to claim space.
1207 	 */
1208 	save_len = ei->i_da_metadata_calc_len;
1209 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1210 	md_needed = EXT4_NUM_B2C(sbi,
1211 				 ext4_calc_metadata_amount(inode, lblock));
1212 	trace_ext4_da_reserve_space(inode, md_needed);
1213 
1214 	/*
1215 	 * We do still charge estimated metadata to the sb though;
1216 	 * we cannot afford to run out of free blocks.
1217 	 */
1218 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1219 		ei->i_da_metadata_calc_len = save_len;
1220 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1221 		spin_unlock(&ei->i_block_reservation_lock);
1222 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1223 			yield();
1224 			goto repeat;
1225 		}
1226 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1227 		return -ENOSPC;
1228 	}
1229 	ei->i_reserved_data_blocks++;
1230 	ei->i_reserved_meta_blocks += md_needed;
1231 	spin_unlock(&ei->i_block_reservation_lock);
1232 
1233 	return 0;       /* success */
1234 }
1235 
1236 static void ext4_da_release_space(struct inode *inode, int to_free)
1237 {
1238 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1239 	struct ext4_inode_info *ei = EXT4_I(inode);
1240 
1241 	if (!to_free)
1242 		return;		/* Nothing to release, exit */
1243 
1244 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1245 
1246 	trace_ext4_da_release_space(inode, to_free);
1247 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1248 		/*
1249 		 * if there aren't enough reserved blocks, then the
1250 		 * counter is messed up somewhere.  Since this
1251 		 * function is called from invalidate page, it's
1252 		 * harmless to return without any action.
1253 		 */
1254 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1255 			 "ino %lu, to_free %d with only %d reserved "
1256 			 "data blocks", inode->i_ino, to_free,
1257 			 ei->i_reserved_data_blocks);
1258 		WARN_ON(1);
1259 		to_free = ei->i_reserved_data_blocks;
1260 	}
1261 	ei->i_reserved_data_blocks -= to_free;
1262 
1263 	if (ei->i_reserved_data_blocks == 0) {
1264 		/*
1265 		 * We can release all of the reserved metadata blocks
1266 		 * only when we have written all of the delayed
1267 		 * allocation blocks.
1268 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1269 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1270 		 */
1271 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1272 				   ei->i_reserved_meta_blocks);
1273 		ei->i_reserved_meta_blocks = 0;
1274 		ei->i_da_metadata_calc_len = 0;
1275 	}
1276 
1277 	/* update fs dirty data blocks counter */
1278 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1279 
1280 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1281 
1282 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1283 }
1284 
1285 static void ext4_da_page_release_reservation(struct page *page,
1286 					     unsigned long offset)
1287 {
1288 	int to_release = 0;
1289 	struct buffer_head *head, *bh;
1290 	unsigned int curr_off = 0;
1291 	struct inode *inode = page->mapping->host;
1292 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1293 	int num_clusters;
1294 
1295 	head = page_buffers(page);
1296 	bh = head;
1297 	do {
1298 		unsigned int next_off = curr_off + bh->b_size;
1299 
1300 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1301 			to_release++;
1302 			clear_buffer_delay(bh);
1303 			clear_buffer_da_mapped(bh);
1304 		}
1305 		curr_off = next_off;
1306 	} while ((bh = bh->b_this_page) != head);
1307 
1308 	/* If we have released all the blocks belonging to a cluster, then we
1309 	 * need to release the reserved space for that cluster. */
1310 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1311 	while (num_clusters > 0) {
1312 		ext4_fsblk_t lblk;
1313 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1314 			((num_clusters - 1) << sbi->s_cluster_bits);
1315 		if (sbi->s_cluster_ratio == 1 ||
1316 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1317 			ext4_da_release_space(inode, 1);
1318 
1319 		num_clusters--;
1320 	}
1321 }
1322 
1323 /*
1324  * Delayed allocation stuff
1325  */
1326 
1327 /*
1328  * mpage_da_submit_io - walks through extent of pages and try to write
1329  * them with writepage() call back
1330  *
1331  * @mpd->inode: inode
1332  * @mpd->first_page: first page of the extent
1333  * @mpd->next_page: page after the last page of the extent
1334  *
1335  * By the time mpage_da_submit_io() is called we expect all blocks
1336  * to be allocated. this may be wrong if allocation failed.
1337  *
1338  * As pages are already locked by write_cache_pages(), we can't use it
1339  */
1340 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1341 			      struct ext4_map_blocks *map)
1342 {
1343 	struct pagevec pvec;
1344 	unsigned long index, end;
1345 	int ret = 0, err, nr_pages, i;
1346 	struct inode *inode = mpd->inode;
1347 	struct address_space *mapping = inode->i_mapping;
1348 	loff_t size = i_size_read(inode);
1349 	unsigned int len, block_start;
1350 	struct buffer_head *bh, *page_bufs = NULL;
1351 	int journal_data = ext4_should_journal_data(inode);
1352 	sector_t pblock = 0, cur_logical = 0;
1353 	struct ext4_io_submit io_submit;
1354 
1355 	BUG_ON(mpd->next_page <= mpd->first_page);
1356 	memset(&io_submit, 0, sizeof(io_submit));
1357 	/*
1358 	 * We need to start from the first_page to the next_page - 1
1359 	 * to make sure we also write the mapped dirty buffer_heads.
1360 	 * If we look at mpd->b_blocknr we would only be looking
1361 	 * at the currently mapped buffer_heads.
1362 	 */
1363 	index = mpd->first_page;
1364 	end = mpd->next_page - 1;
1365 
1366 	pagevec_init(&pvec, 0);
1367 	while (index <= end) {
1368 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1369 		if (nr_pages == 0)
1370 			break;
1371 		for (i = 0; i < nr_pages; i++) {
1372 			int commit_write = 0, skip_page = 0;
1373 			struct page *page = pvec.pages[i];
1374 
1375 			index = page->index;
1376 			if (index > end)
1377 				break;
1378 
1379 			if (index == size >> PAGE_CACHE_SHIFT)
1380 				len = size & ~PAGE_CACHE_MASK;
1381 			else
1382 				len = PAGE_CACHE_SIZE;
1383 			if (map) {
1384 				cur_logical = index << (PAGE_CACHE_SHIFT -
1385 							inode->i_blkbits);
1386 				pblock = map->m_pblk + (cur_logical -
1387 							map->m_lblk);
1388 			}
1389 			index++;
1390 
1391 			BUG_ON(!PageLocked(page));
1392 			BUG_ON(PageWriteback(page));
1393 
1394 			/*
1395 			 * If the page does not have buffers (for
1396 			 * whatever reason), try to create them using
1397 			 * __block_write_begin.  If this fails,
1398 			 * skip the page and move on.
1399 			 */
1400 			if (!page_has_buffers(page)) {
1401 				if (__block_write_begin(page, 0, len,
1402 						noalloc_get_block_write)) {
1403 				skip_page:
1404 					unlock_page(page);
1405 					continue;
1406 				}
1407 				commit_write = 1;
1408 			}
1409 
1410 			bh = page_bufs = page_buffers(page);
1411 			block_start = 0;
1412 			do {
1413 				if (!bh)
1414 					goto skip_page;
1415 				if (map && (cur_logical >= map->m_lblk) &&
1416 				    (cur_logical <= (map->m_lblk +
1417 						     (map->m_len - 1)))) {
1418 					if (buffer_delay(bh)) {
1419 						clear_buffer_delay(bh);
1420 						bh->b_blocknr = pblock;
1421 					}
1422 					if (buffer_da_mapped(bh))
1423 						clear_buffer_da_mapped(bh);
1424 					if (buffer_unwritten(bh) ||
1425 					    buffer_mapped(bh))
1426 						BUG_ON(bh->b_blocknr != pblock);
1427 					if (map->m_flags & EXT4_MAP_UNINIT)
1428 						set_buffer_uninit(bh);
1429 					clear_buffer_unwritten(bh);
1430 				}
1431 
1432 				/*
1433 				 * skip page if block allocation undone and
1434 				 * block is dirty
1435 				 */
1436 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1437 					skip_page = 1;
1438 				bh = bh->b_this_page;
1439 				block_start += bh->b_size;
1440 				cur_logical++;
1441 				pblock++;
1442 			} while (bh != page_bufs);
1443 
1444 			if (skip_page)
1445 				goto skip_page;
1446 
1447 			if (commit_write)
1448 				/* mark the buffer_heads as dirty & uptodate */
1449 				block_commit_write(page, 0, len);
1450 
1451 			clear_page_dirty_for_io(page);
1452 			/*
1453 			 * Delalloc doesn't support data journalling,
1454 			 * but eventually maybe we'll lift this
1455 			 * restriction.
1456 			 */
1457 			if (unlikely(journal_data && PageChecked(page)))
1458 				err = __ext4_journalled_writepage(page, len);
1459 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1460 				err = ext4_bio_write_page(&io_submit, page,
1461 							  len, mpd->wbc);
1462 			else if (buffer_uninit(page_bufs)) {
1463 				ext4_set_bh_endio(page_bufs, inode);
1464 				err = block_write_full_page_endio(page,
1465 					noalloc_get_block_write,
1466 					mpd->wbc, ext4_end_io_buffer_write);
1467 			} else
1468 				err = block_write_full_page(page,
1469 					noalloc_get_block_write, mpd->wbc);
1470 
1471 			if (!err)
1472 				mpd->pages_written++;
1473 			/*
1474 			 * In error case, we have to continue because
1475 			 * remaining pages are still locked
1476 			 */
1477 			if (ret == 0)
1478 				ret = err;
1479 		}
1480 		pagevec_release(&pvec);
1481 	}
1482 	ext4_io_submit(&io_submit);
1483 	return ret;
1484 }
1485 
1486 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1487 {
1488 	int nr_pages, i;
1489 	pgoff_t index, end;
1490 	struct pagevec pvec;
1491 	struct inode *inode = mpd->inode;
1492 	struct address_space *mapping = inode->i_mapping;
1493 
1494 	index = mpd->first_page;
1495 	end   = mpd->next_page - 1;
1496 	while (index <= end) {
1497 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1498 		if (nr_pages == 0)
1499 			break;
1500 		for (i = 0; i < nr_pages; i++) {
1501 			struct page *page = pvec.pages[i];
1502 			if (page->index > end)
1503 				break;
1504 			BUG_ON(!PageLocked(page));
1505 			BUG_ON(PageWriteback(page));
1506 			block_invalidatepage(page, 0);
1507 			ClearPageUptodate(page);
1508 			unlock_page(page);
1509 		}
1510 		index = pvec.pages[nr_pages - 1]->index + 1;
1511 		pagevec_release(&pvec);
1512 	}
1513 	return;
1514 }
1515 
1516 static void ext4_print_free_blocks(struct inode *inode)
1517 {
1518 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519 	struct super_block *sb = inode->i_sb;
1520 
1521 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1522 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1523 			ext4_count_free_clusters(inode->i_sb)));
1524 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1525 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1526 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1527 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1528 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1529 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1530 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1531 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1532 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1533 		 EXT4_I(inode)->i_reserved_data_blocks);
1534 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1535 	       EXT4_I(inode)->i_reserved_meta_blocks);
1536 	return;
1537 }
1538 
1539 /*
1540  * mpage_da_map_and_submit - go through given space, map them
1541  *       if necessary, and then submit them for I/O
1542  *
1543  * @mpd - bh describing space
1544  *
1545  * The function skips space we know is already mapped to disk blocks.
1546  *
1547  */
1548 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1549 {
1550 	int err, blks, get_blocks_flags;
1551 	struct ext4_map_blocks map, *mapp = NULL;
1552 	sector_t next = mpd->b_blocknr;
1553 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1554 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1555 	handle_t *handle = NULL;
1556 
1557 	/*
1558 	 * If the blocks are mapped already, or we couldn't accumulate
1559 	 * any blocks, then proceed immediately to the submission stage.
1560 	 */
1561 	if ((mpd->b_size == 0) ||
1562 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1563 	     !(mpd->b_state & (1 << BH_Delay)) &&
1564 	     !(mpd->b_state & (1 << BH_Unwritten))))
1565 		goto submit_io;
1566 
1567 	handle = ext4_journal_current_handle();
1568 	BUG_ON(!handle);
1569 
1570 	/*
1571 	 * Call ext4_map_blocks() to allocate any delayed allocation
1572 	 * blocks, or to convert an uninitialized extent to be
1573 	 * initialized (in the case where we have written into
1574 	 * one or more preallocated blocks).
1575 	 *
1576 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1577 	 * indicate that we are on the delayed allocation path.  This
1578 	 * affects functions in many different parts of the allocation
1579 	 * call path.  This flag exists primarily because we don't
1580 	 * want to change *many* call functions, so ext4_map_blocks()
1581 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1582 	 * inode's allocation semaphore is taken.
1583 	 *
1584 	 * If the blocks in questions were delalloc blocks, set
1585 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1586 	 * variables are updated after the blocks have been allocated.
1587 	 */
1588 	map.m_lblk = next;
1589 	map.m_len = max_blocks;
1590 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1591 	if (ext4_should_dioread_nolock(mpd->inode))
1592 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1593 	if (mpd->b_state & (1 << BH_Delay))
1594 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1595 
1596 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1597 	if (blks < 0) {
1598 		struct super_block *sb = mpd->inode->i_sb;
1599 
1600 		err = blks;
1601 		/*
1602 		 * If get block returns EAGAIN or ENOSPC and there
1603 		 * appears to be free blocks we will just let
1604 		 * mpage_da_submit_io() unlock all of the pages.
1605 		 */
1606 		if (err == -EAGAIN)
1607 			goto submit_io;
1608 
1609 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1610 			mpd->retval = err;
1611 			goto submit_io;
1612 		}
1613 
1614 		/*
1615 		 * get block failure will cause us to loop in
1616 		 * writepages, because a_ops->writepage won't be able
1617 		 * to make progress. The page will be redirtied by
1618 		 * writepage and writepages will again try to write
1619 		 * the same.
1620 		 */
1621 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1622 			ext4_msg(sb, KERN_CRIT,
1623 				 "delayed block allocation failed for inode %lu "
1624 				 "at logical offset %llu with max blocks %zd "
1625 				 "with error %d", mpd->inode->i_ino,
1626 				 (unsigned long long) next,
1627 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1628 			ext4_msg(sb, KERN_CRIT,
1629 				"This should not happen!! Data will be lost\n");
1630 			if (err == -ENOSPC)
1631 				ext4_print_free_blocks(mpd->inode);
1632 		}
1633 		/* invalidate all the pages */
1634 		ext4_da_block_invalidatepages(mpd);
1635 
1636 		/* Mark this page range as having been completed */
1637 		mpd->io_done = 1;
1638 		return;
1639 	}
1640 	BUG_ON(blks == 0);
1641 
1642 	mapp = &map;
1643 	if (map.m_flags & EXT4_MAP_NEW) {
1644 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1645 		int i;
1646 
1647 		for (i = 0; i < map.m_len; i++)
1648 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1649 
1650 		if (ext4_should_order_data(mpd->inode)) {
1651 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1652 			if (err) {
1653 				/* Only if the journal is aborted */
1654 				mpd->retval = err;
1655 				goto submit_io;
1656 			}
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * Update on-disk size along with block allocation.
1662 	 */
1663 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1664 	if (disksize > i_size_read(mpd->inode))
1665 		disksize = i_size_read(mpd->inode);
1666 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1667 		ext4_update_i_disksize(mpd->inode, disksize);
1668 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1669 		if (err)
1670 			ext4_error(mpd->inode->i_sb,
1671 				   "Failed to mark inode %lu dirty",
1672 				   mpd->inode->i_ino);
1673 	}
1674 
1675 submit_io:
1676 	mpage_da_submit_io(mpd, mapp);
1677 	mpd->io_done = 1;
1678 }
1679 
1680 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1681 		(1 << BH_Delay) | (1 << BH_Unwritten))
1682 
1683 /*
1684  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1685  *
1686  * @mpd->lbh - extent of blocks
1687  * @logical - logical number of the block in the file
1688  * @bh - bh of the block (used to access block's state)
1689  *
1690  * the function is used to collect contig. blocks in same state
1691  */
1692 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1693 				   sector_t logical, size_t b_size,
1694 				   unsigned long b_state)
1695 {
1696 	sector_t next;
1697 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1698 
1699 	/*
1700 	 * XXX Don't go larger than mballoc is willing to allocate
1701 	 * This is a stopgap solution.  We eventually need to fold
1702 	 * mpage_da_submit_io() into this function and then call
1703 	 * ext4_map_blocks() multiple times in a loop
1704 	 */
1705 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1706 		goto flush_it;
1707 
1708 	/* check if thereserved journal credits might overflow */
1709 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1710 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1711 			/*
1712 			 * With non-extent format we are limited by the journal
1713 			 * credit available.  Total credit needed to insert
1714 			 * nrblocks contiguous blocks is dependent on the
1715 			 * nrblocks.  So limit nrblocks.
1716 			 */
1717 			goto flush_it;
1718 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1719 				EXT4_MAX_TRANS_DATA) {
1720 			/*
1721 			 * Adding the new buffer_head would make it cross the
1722 			 * allowed limit for which we have journal credit
1723 			 * reserved. So limit the new bh->b_size
1724 			 */
1725 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1726 						mpd->inode->i_blkbits;
1727 			/* we will do mpage_da_submit_io in the next loop */
1728 		}
1729 	}
1730 	/*
1731 	 * First block in the extent
1732 	 */
1733 	if (mpd->b_size == 0) {
1734 		mpd->b_blocknr = logical;
1735 		mpd->b_size = b_size;
1736 		mpd->b_state = b_state & BH_FLAGS;
1737 		return;
1738 	}
1739 
1740 	next = mpd->b_blocknr + nrblocks;
1741 	/*
1742 	 * Can we merge the block to our big extent?
1743 	 */
1744 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1745 		mpd->b_size += b_size;
1746 		return;
1747 	}
1748 
1749 flush_it:
1750 	/*
1751 	 * We couldn't merge the block to our extent, so we
1752 	 * need to flush current  extent and start new one
1753 	 */
1754 	mpage_da_map_and_submit(mpd);
1755 	return;
1756 }
1757 
1758 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1759 {
1760 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1761 }
1762 
1763 /*
1764  * This function is grabs code from the very beginning of
1765  * ext4_map_blocks, but assumes that the caller is from delayed write
1766  * time. This function looks up the requested blocks and sets the
1767  * buffer delay bit under the protection of i_data_sem.
1768  */
1769 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1770 			      struct ext4_map_blocks *map,
1771 			      struct buffer_head *bh)
1772 {
1773 	int retval;
1774 	sector_t invalid_block = ~((sector_t) 0xffff);
1775 
1776 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1777 		invalid_block = ~0;
1778 
1779 	map->m_flags = 0;
1780 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1781 		  "logical block %lu\n", inode->i_ino, map->m_len,
1782 		  (unsigned long) map->m_lblk);
1783 	/*
1784 	 * Try to see if we can get the block without requesting a new
1785 	 * file system block.
1786 	 */
1787 	down_read((&EXT4_I(inode)->i_data_sem));
1788 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1789 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1790 	else
1791 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1792 
1793 	if (retval == 0) {
1794 		/*
1795 		 * XXX: __block_prepare_write() unmaps passed block,
1796 		 * is it OK?
1797 		 */
1798 		/* If the block was allocated from previously allocated cluster,
1799 		 * then we dont need to reserve it again. */
1800 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1801 			retval = ext4_da_reserve_space(inode, iblock);
1802 			if (retval)
1803 				/* not enough space to reserve */
1804 				goto out_unlock;
1805 		}
1806 
1807 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1808 		 * and it should not appear on the bh->b_state.
1809 		 */
1810 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1811 
1812 		map_bh(bh, inode->i_sb, invalid_block);
1813 		set_buffer_new(bh);
1814 		set_buffer_delay(bh);
1815 	}
1816 
1817 out_unlock:
1818 	up_read((&EXT4_I(inode)->i_data_sem));
1819 
1820 	return retval;
1821 }
1822 
1823 /*
1824  * This is a special get_blocks_t callback which is used by
1825  * ext4_da_write_begin().  It will either return mapped block or
1826  * reserve space for a single block.
1827  *
1828  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1829  * We also have b_blocknr = -1 and b_bdev initialized properly
1830  *
1831  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1832  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1833  * initialized properly.
1834  */
1835 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1836 				  struct buffer_head *bh, int create)
1837 {
1838 	struct ext4_map_blocks map;
1839 	int ret = 0;
1840 
1841 	BUG_ON(create == 0);
1842 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1843 
1844 	map.m_lblk = iblock;
1845 	map.m_len = 1;
1846 
1847 	/*
1848 	 * first, we need to know whether the block is allocated already
1849 	 * preallocated blocks are unmapped but should treated
1850 	 * the same as allocated blocks.
1851 	 */
1852 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1853 	if (ret <= 0)
1854 		return ret;
1855 
1856 	map_bh(bh, inode->i_sb, map.m_pblk);
1857 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1858 
1859 	if (buffer_unwritten(bh)) {
1860 		/* A delayed write to unwritten bh should be marked
1861 		 * new and mapped.  Mapped ensures that we don't do
1862 		 * get_block multiple times when we write to the same
1863 		 * offset and new ensures that we do proper zero out
1864 		 * for partial write.
1865 		 */
1866 		set_buffer_new(bh);
1867 		set_buffer_mapped(bh);
1868 	}
1869 	return 0;
1870 }
1871 
1872 /*
1873  * This function is used as a standard get_block_t calback function
1874  * when there is no desire to allocate any blocks.  It is used as a
1875  * callback function for block_write_begin() and block_write_full_page().
1876  * These functions should only try to map a single block at a time.
1877  *
1878  * Since this function doesn't do block allocations even if the caller
1879  * requests it by passing in create=1, it is critically important that
1880  * any caller checks to make sure that any buffer heads are returned
1881  * by this function are either all already mapped or marked for
1882  * delayed allocation before calling  block_write_full_page().  Otherwise,
1883  * b_blocknr could be left unitialized, and the page write functions will
1884  * be taken by surprise.
1885  */
1886 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1887 				   struct buffer_head *bh_result, int create)
1888 {
1889 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1890 	return _ext4_get_block(inode, iblock, bh_result, 0);
1891 }
1892 
1893 static int bget_one(handle_t *handle, struct buffer_head *bh)
1894 {
1895 	get_bh(bh);
1896 	return 0;
1897 }
1898 
1899 static int bput_one(handle_t *handle, struct buffer_head *bh)
1900 {
1901 	put_bh(bh);
1902 	return 0;
1903 }
1904 
1905 static int __ext4_journalled_writepage(struct page *page,
1906 				       unsigned int len)
1907 {
1908 	struct address_space *mapping = page->mapping;
1909 	struct inode *inode = mapping->host;
1910 	struct buffer_head *page_bufs;
1911 	handle_t *handle = NULL;
1912 	int ret = 0;
1913 	int err;
1914 
1915 	ClearPageChecked(page);
1916 	page_bufs = page_buffers(page);
1917 	BUG_ON(!page_bufs);
1918 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1919 	/* As soon as we unlock the page, it can go away, but we have
1920 	 * references to buffers so we are safe */
1921 	unlock_page(page);
1922 
1923 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1924 	if (IS_ERR(handle)) {
1925 		ret = PTR_ERR(handle);
1926 		goto out;
1927 	}
1928 
1929 	BUG_ON(!ext4_handle_valid(handle));
1930 
1931 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1932 				do_journal_get_write_access);
1933 
1934 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1935 				write_end_fn);
1936 	if (ret == 0)
1937 		ret = err;
1938 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939 	err = ext4_journal_stop(handle);
1940 	if (!ret)
1941 		ret = err;
1942 
1943 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1944 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1945 out:
1946 	return ret;
1947 }
1948 
1949 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1950 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1951 
1952 /*
1953  * Note that we don't need to start a transaction unless we're journaling data
1954  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1955  * need to file the inode to the transaction's list in ordered mode because if
1956  * we are writing back data added by write(), the inode is already there and if
1957  * we are writing back data modified via mmap(), no one guarantees in which
1958  * transaction the data will hit the disk. In case we are journaling data, we
1959  * cannot start transaction directly because transaction start ranks above page
1960  * lock so we have to do some magic.
1961  *
1962  * This function can get called via...
1963  *   - ext4_da_writepages after taking page lock (have journal handle)
1964  *   - journal_submit_inode_data_buffers (no journal handle)
1965  *   - shrink_page_list via pdflush (no journal handle)
1966  *   - grab_page_cache when doing write_begin (have journal handle)
1967  *
1968  * We don't do any block allocation in this function. If we have page with
1969  * multiple blocks we need to write those buffer_heads that are mapped. This
1970  * is important for mmaped based write. So if we do with blocksize 1K
1971  * truncate(f, 1024);
1972  * a = mmap(f, 0, 4096);
1973  * a[0] = 'a';
1974  * truncate(f, 4096);
1975  * we have in the page first buffer_head mapped via page_mkwrite call back
1976  * but other buffer_heads would be unmapped but dirty (dirty done via the
1977  * do_wp_page). So writepage should write the first block. If we modify
1978  * the mmap area beyond 1024 we will again get a page_fault and the
1979  * page_mkwrite callback will do the block allocation and mark the
1980  * buffer_heads mapped.
1981  *
1982  * We redirty the page if we have any buffer_heads that is either delay or
1983  * unwritten in the page.
1984  *
1985  * We can get recursively called as show below.
1986  *
1987  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1988  *		ext4_writepage()
1989  *
1990  * But since we don't do any block allocation we should not deadlock.
1991  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1992  */
1993 static int ext4_writepage(struct page *page,
1994 			  struct writeback_control *wbc)
1995 {
1996 	int ret = 0, commit_write = 0;
1997 	loff_t size;
1998 	unsigned int len;
1999 	struct buffer_head *page_bufs = NULL;
2000 	struct inode *inode = page->mapping->host;
2001 
2002 	trace_ext4_writepage(page);
2003 	size = i_size_read(inode);
2004 	if (page->index == size >> PAGE_CACHE_SHIFT)
2005 		len = size & ~PAGE_CACHE_MASK;
2006 	else
2007 		len = PAGE_CACHE_SIZE;
2008 
2009 	/*
2010 	 * If the page does not have buffers (for whatever reason),
2011 	 * try to create them using __block_write_begin.  If this
2012 	 * fails, redirty the page and move on.
2013 	 */
2014 	if (!page_has_buffers(page)) {
2015 		if (__block_write_begin(page, 0, len,
2016 					noalloc_get_block_write)) {
2017 		redirty_page:
2018 			redirty_page_for_writepage(wbc, page);
2019 			unlock_page(page);
2020 			return 0;
2021 		}
2022 		commit_write = 1;
2023 	}
2024 	page_bufs = page_buffers(page);
2025 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2026 			      ext4_bh_delay_or_unwritten)) {
2027 		/*
2028 		 * We don't want to do block allocation, so redirty
2029 		 * the page and return.  We may reach here when we do
2030 		 * a journal commit via journal_submit_inode_data_buffers.
2031 		 * We can also reach here via shrink_page_list but it
2032 		 * should never be for direct reclaim so warn if that
2033 		 * happens
2034 		 */
2035 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2036 								PF_MEMALLOC);
2037 		goto redirty_page;
2038 	}
2039 	if (commit_write)
2040 		/* now mark the buffer_heads as dirty and uptodate */
2041 		block_commit_write(page, 0, len);
2042 
2043 	if (PageChecked(page) && ext4_should_journal_data(inode))
2044 		/*
2045 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2046 		 * doesn't seem much point in redirtying the page here.
2047 		 */
2048 		return __ext4_journalled_writepage(page, len);
2049 
2050 	if (buffer_uninit(page_bufs)) {
2051 		ext4_set_bh_endio(page_bufs, inode);
2052 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2053 					    wbc, ext4_end_io_buffer_write);
2054 	} else
2055 		ret = block_write_full_page(page, noalloc_get_block_write,
2056 					    wbc);
2057 
2058 	return ret;
2059 }
2060 
2061 /*
2062  * This is called via ext4_da_writepages() to
2063  * calculate the total number of credits to reserve to fit
2064  * a single extent allocation into a single transaction,
2065  * ext4_da_writpeages() will loop calling this before
2066  * the block allocation.
2067  */
2068 
2069 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2070 {
2071 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2072 
2073 	/*
2074 	 * With non-extent format the journal credit needed to
2075 	 * insert nrblocks contiguous block is dependent on
2076 	 * number of contiguous block. So we will limit
2077 	 * number of contiguous block to a sane value
2078 	 */
2079 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2080 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2081 		max_blocks = EXT4_MAX_TRANS_DATA;
2082 
2083 	return ext4_chunk_trans_blocks(inode, max_blocks);
2084 }
2085 
2086 /*
2087  * write_cache_pages_da - walk the list of dirty pages of the given
2088  * address space and accumulate pages that need writing, and call
2089  * mpage_da_map_and_submit to map a single contiguous memory region
2090  * and then write them.
2091  */
2092 static int write_cache_pages_da(struct address_space *mapping,
2093 				struct writeback_control *wbc,
2094 				struct mpage_da_data *mpd,
2095 				pgoff_t *done_index)
2096 {
2097 	struct buffer_head	*bh, *head;
2098 	struct inode		*inode = mapping->host;
2099 	struct pagevec		pvec;
2100 	unsigned int		nr_pages;
2101 	sector_t		logical;
2102 	pgoff_t			index, end;
2103 	long			nr_to_write = wbc->nr_to_write;
2104 	int			i, tag, ret = 0;
2105 
2106 	memset(mpd, 0, sizeof(struct mpage_da_data));
2107 	mpd->wbc = wbc;
2108 	mpd->inode = inode;
2109 	pagevec_init(&pvec, 0);
2110 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2111 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2112 
2113 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2114 		tag = PAGECACHE_TAG_TOWRITE;
2115 	else
2116 		tag = PAGECACHE_TAG_DIRTY;
2117 
2118 	*done_index = index;
2119 	while (index <= end) {
2120 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2121 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2122 		if (nr_pages == 0)
2123 			return 0;
2124 
2125 		for (i = 0; i < nr_pages; i++) {
2126 			struct page *page = pvec.pages[i];
2127 
2128 			/*
2129 			 * At this point, the page may be truncated or
2130 			 * invalidated (changing page->mapping to NULL), or
2131 			 * even swizzled back from swapper_space to tmpfs file
2132 			 * mapping. However, page->index will not change
2133 			 * because we have a reference on the page.
2134 			 */
2135 			if (page->index > end)
2136 				goto out;
2137 
2138 			*done_index = page->index + 1;
2139 
2140 			/*
2141 			 * If we can't merge this page, and we have
2142 			 * accumulated an contiguous region, write it
2143 			 */
2144 			if ((mpd->next_page != page->index) &&
2145 			    (mpd->next_page != mpd->first_page)) {
2146 				mpage_da_map_and_submit(mpd);
2147 				goto ret_extent_tail;
2148 			}
2149 
2150 			lock_page(page);
2151 
2152 			/*
2153 			 * If the page is no longer dirty, or its
2154 			 * mapping no longer corresponds to inode we
2155 			 * are writing (which means it has been
2156 			 * truncated or invalidated), or the page is
2157 			 * already under writeback and we are not
2158 			 * doing a data integrity writeback, skip the page
2159 			 */
2160 			if (!PageDirty(page) ||
2161 			    (PageWriteback(page) &&
2162 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2163 			    unlikely(page->mapping != mapping)) {
2164 				unlock_page(page);
2165 				continue;
2166 			}
2167 
2168 			wait_on_page_writeback(page);
2169 			BUG_ON(PageWriteback(page));
2170 
2171 			if (mpd->next_page != page->index)
2172 				mpd->first_page = page->index;
2173 			mpd->next_page = page->index + 1;
2174 			logical = (sector_t) page->index <<
2175 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2176 
2177 			if (!page_has_buffers(page)) {
2178 				mpage_add_bh_to_extent(mpd, logical,
2179 						       PAGE_CACHE_SIZE,
2180 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2181 				if (mpd->io_done)
2182 					goto ret_extent_tail;
2183 			} else {
2184 				/*
2185 				 * Page with regular buffer heads,
2186 				 * just add all dirty ones
2187 				 */
2188 				head = page_buffers(page);
2189 				bh = head;
2190 				do {
2191 					BUG_ON(buffer_locked(bh));
2192 					/*
2193 					 * We need to try to allocate
2194 					 * unmapped blocks in the same page.
2195 					 * Otherwise we won't make progress
2196 					 * with the page in ext4_writepage
2197 					 */
2198 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2199 						mpage_add_bh_to_extent(mpd, logical,
2200 								       bh->b_size,
2201 								       bh->b_state);
2202 						if (mpd->io_done)
2203 							goto ret_extent_tail;
2204 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2205 						/*
2206 						 * mapped dirty buffer. We need
2207 						 * to update the b_state
2208 						 * because we look at b_state
2209 						 * in mpage_da_map_blocks.  We
2210 						 * don't update b_size because
2211 						 * if we find an unmapped
2212 						 * buffer_head later we need to
2213 						 * use the b_state flag of that
2214 						 * buffer_head.
2215 						 */
2216 						if (mpd->b_size == 0)
2217 							mpd->b_state = bh->b_state & BH_FLAGS;
2218 					}
2219 					logical++;
2220 				} while ((bh = bh->b_this_page) != head);
2221 			}
2222 
2223 			if (nr_to_write > 0) {
2224 				nr_to_write--;
2225 				if (nr_to_write == 0 &&
2226 				    wbc->sync_mode == WB_SYNC_NONE)
2227 					/*
2228 					 * We stop writing back only if we are
2229 					 * not doing integrity sync. In case of
2230 					 * integrity sync we have to keep going
2231 					 * because someone may be concurrently
2232 					 * dirtying pages, and we might have
2233 					 * synced a lot of newly appeared dirty
2234 					 * pages, but have not synced all of the
2235 					 * old dirty pages.
2236 					 */
2237 					goto out;
2238 			}
2239 		}
2240 		pagevec_release(&pvec);
2241 		cond_resched();
2242 	}
2243 	return 0;
2244 ret_extent_tail:
2245 	ret = MPAGE_DA_EXTENT_TAIL;
2246 out:
2247 	pagevec_release(&pvec);
2248 	cond_resched();
2249 	return ret;
2250 }
2251 
2252 
2253 static int ext4_da_writepages(struct address_space *mapping,
2254 			      struct writeback_control *wbc)
2255 {
2256 	pgoff_t	index;
2257 	int range_whole = 0;
2258 	handle_t *handle = NULL;
2259 	struct mpage_da_data mpd;
2260 	struct inode *inode = mapping->host;
2261 	int pages_written = 0;
2262 	unsigned int max_pages;
2263 	int range_cyclic, cycled = 1, io_done = 0;
2264 	int needed_blocks, ret = 0;
2265 	long desired_nr_to_write, nr_to_writebump = 0;
2266 	loff_t range_start = wbc->range_start;
2267 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2268 	pgoff_t done_index = 0;
2269 	pgoff_t end;
2270 	struct blk_plug plug;
2271 
2272 	trace_ext4_da_writepages(inode, wbc);
2273 
2274 	/*
2275 	 * No pages to write? This is mainly a kludge to avoid starting
2276 	 * a transaction for special inodes like journal inode on last iput()
2277 	 * because that could violate lock ordering on umount
2278 	 */
2279 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2280 		return 0;
2281 
2282 	/*
2283 	 * If the filesystem has aborted, it is read-only, so return
2284 	 * right away instead of dumping stack traces later on that
2285 	 * will obscure the real source of the problem.  We test
2286 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2287 	 * the latter could be true if the filesystem is mounted
2288 	 * read-only, and in that case, ext4_da_writepages should
2289 	 * *never* be called, so if that ever happens, we would want
2290 	 * the stack trace.
2291 	 */
2292 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2293 		return -EROFS;
2294 
2295 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2296 		range_whole = 1;
2297 
2298 	range_cyclic = wbc->range_cyclic;
2299 	if (wbc->range_cyclic) {
2300 		index = mapping->writeback_index;
2301 		if (index)
2302 			cycled = 0;
2303 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2304 		wbc->range_end  = LLONG_MAX;
2305 		wbc->range_cyclic = 0;
2306 		end = -1;
2307 	} else {
2308 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2309 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2310 	}
2311 
2312 	/*
2313 	 * This works around two forms of stupidity.  The first is in
2314 	 * the writeback code, which caps the maximum number of pages
2315 	 * written to be 1024 pages.  This is wrong on multiple
2316 	 * levels; different architectues have a different page size,
2317 	 * which changes the maximum amount of data which gets
2318 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2319 	 * forces this value to be 16 megabytes by multiplying
2320 	 * nr_to_write parameter by four, and then relies on its
2321 	 * allocator to allocate larger extents to make them
2322 	 * contiguous.  Unfortunately this brings us to the second
2323 	 * stupidity, which is that ext4's mballoc code only allocates
2324 	 * at most 2048 blocks.  So we force contiguous writes up to
2325 	 * the number of dirty blocks in the inode, or
2326 	 * sbi->max_writeback_mb_bump whichever is smaller.
2327 	 */
2328 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2329 	if (!range_cyclic && range_whole) {
2330 		if (wbc->nr_to_write == LONG_MAX)
2331 			desired_nr_to_write = wbc->nr_to_write;
2332 		else
2333 			desired_nr_to_write = wbc->nr_to_write * 8;
2334 	} else
2335 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2336 							   max_pages);
2337 	if (desired_nr_to_write > max_pages)
2338 		desired_nr_to_write = max_pages;
2339 
2340 	if (wbc->nr_to_write < desired_nr_to_write) {
2341 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2342 		wbc->nr_to_write = desired_nr_to_write;
2343 	}
2344 
2345 retry:
2346 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2347 		tag_pages_for_writeback(mapping, index, end);
2348 
2349 	blk_start_plug(&plug);
2350 	while (!ret && wbc->nr_to_write > 0) {
2351 
2352 		/*
2353 		 * we  insert one extent at a time. So we need
2354 		 * credit needed for single extent allocation.
2355 		 * journalled mode is currently not supported
2356 		 * by delalloc
2357 		 */
2358 		BUG_ON(ext4_should_journal_data(inode));
2359 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2360 
2361 		/* start a new transaction*/
2362 		handle = ext4_journal_start(inode, needed_blocks);
2363 		if (IS_ERR(handle)) {
2364 			ret = PTR_ERR(handle);
2365 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2366 			       "%ld pages, ino %lu; err %d", __func__,
2367 				wbc->nr_to_write, inode->i_ino, ret);
2368 			blk_finish_plug(&plug);
2369 			goto out_writepages;
2370 		}
2371 
2372 		/*
2373 		 * Now call write_cache_pages_da() to find the next
2374 		 * contiguous region of logical blocks that need
2375 		 * blocks to be allocated by ext4 and submit them.
2376 		 */
2377 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2378 		/*
2379 		 * If we have a contiguous extent of pages and we
2380 		 * haven't done the I/O yet, map the blocks and submit
2381 		 * them for I/O.
2382 		 */
2383 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2384 			mpage_da_map_and_submit(&mpd);
2385 			ret = MPAGE_DA_EXTENT_TAIL;
2386 		}
2387 		trace_ext4_da_write_pages(inode, &mpd);
2388 		wbc->nr_to_write -= mpd.pages_written;
2389 
2390 		ext4_journal_stop(handle);
2391 
2392 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2393 			/* commit the transaction which would
2394 			 * free blocks released in the transaction
2395 			 * and try again
2396 			 */
2397 			jbd2_journal_force_commit_nested(sbi->s_journal);
2398 			ret = 0;
2399 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2400 			/*
2401 			 * Got one extent now try with rest of the pages.
2402 			 * If mpd.retval is set -EIO, journal is aborted.
2403 			 * So we don't need to write any more.
2404 			 */
2405 			pages_written += mpd.pages_written;
2406 			ret = mpd.retval;
2407 			io_done = 1;
2408 		} else if (wbc->nr_to_write)
2409 			/*
2410 			 * There is no more writeout needed
2411 			 * or we requested for a noblocking writeout
2412 			 * and we found the device congested
2413 			 */
2414 			break;
2415 	}
2416 	blk_finish_plug(&plug);
2417 	if (!io_done && !cycled) {
2418 		cycled = 1;
2419 		index = 0;
2420 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2421 		wbc->range_end  = mapping->writeback_index - 1;
2422 		goto retry;
2423 	}
2424 
2425 	/* Update index */
2426 	wbc->range_cyclic = range_cyclic;
2427 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2428 		/*
2429 		 * set the writeback_index so that range_cyclic
2430 		 * mode will write it back later
2431 		 */
2432 		mapping->writeback_index = done_index;
2433 
2434 out_writepages:
2435 	wbc->nr_to_write -= nr_to_writebump;
2436 	wbc->range_start = range_start;
2437 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2438 	return ret;
2439 }
2440 
2441 #define FALL_BACK_TO_NONDELALLOC 1
2442 static int ext4_nonda_switch(struct super_block *sb)
2443 {
2444 	s64 free_blocks, dirty_blocks;
2445 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2446 
2447 	/*
2448 	 * switch to non delalloc mode if we are running low
2449 	 * on free block. The free block accounting via percpu
2450 	 * counters can get slightly wrong with percpu_counter_batch getting
2451 	 * accumulated on each CPU without updating global counters
2452 	 * Delalloc need an accurate free block accounting. So switch
2453 	 * to non delalloc when we are near to error range.
2454 	 */
2455 	free_blocks  = EXT4_C2B(sbi,
2456 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2457 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2458 	if (2 * free_blocks < 3 * dirty_blocks ||
2459 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2460 		/*
2461 		 * free block count is less than 150% of dirty blocks
2462 		 * or free blocks is less than watermark
2463 		 */
2464 		return 1;
2465 	}
2466 	/*
2467 	 * Even if we don't switch but are nearing capacity,
2468 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2469 	 */
2470 	if (free_blocks < 2 * dirty_blocks)
2471 		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2472 
2473 	return 0;
2474 }
2475 
2476 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2477 			       loff_t pos, unsigned len, unsigned flags,
2478 			       struct page **pagep, void **fsdata)
2479 {
2480 	int ret, retries = 0;
2481 	struct page *page;
2482 	pgoff_t index;
2483 	struct inode *inode = mapping->host;
2484 	handle_t *handle;
2485 
2486 	index = pos >> PAGE_CACHE_SHIFT;
2487 
2488 	if (ext4_nonda_switch(inode->i_sb)) {
2489 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2490 		return ext4_write_begin(file, mapping, pos,
2491 					len, flags, pagep, fsdata);
2492 	}
2493 	*fsdata = (void *)0;
2494 	trace_ext4_da_write_begin(inode, pos, len, flags);
2495 retry:
2496 	/*
2497 	 * With delayed allocation, we don't log the i_disksize update
2498 	 * if there is delayed block allocation. But we still need
2499 	 * to journalling the i_disksize update if writes to the end
2500 	 * of file which has an already mapped buffer.
2501 	 */
2502 	handle = ext4_journal_start(inode, 1);
2503 	if (IS_ERR(handle)) {
2504 		ret = PTR_ERR(handle);
2505 		goto out;
2506 	}
2507 	/* We cannot recurse into the filesystem as the transaction is already
2508 	 * started */
2509 	flags |= AOP_FLAG_NOFS;
2510 
2511 	page = grab_cache_page_write_begin(mapping, index, flags);
2512 	if (!page) {
2513 		ext4_journal_stop(handle);
2514 		ret = -ENOMEM;
2515 		goto out;
2516 	}
2517 	*pagep = page;
2518 
2519 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2520 	if (ret < 0) {
2521 		unlock_page(page);
2522 		ext4_journal_stop(handle);
2523 		page_cache_release(page);
2524 		/*
2525 		 * block_write_begin may have instantiated a few blocks
2526 		 * outside i_size.  Trim these off again. Don't need
2527 		 * i_size_read because we hold i_mutex.
2528 		 */
2529 		if (pos + len > inode->i_size)
2530 			ext4_truncate_failed_write(inode);
2531 	}
2532 
2533 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2534 		goto retry;
2535 out:
2536 	return ret;
2537 }
2538 
2539 /*
2540  * Check if we should update i_disksize
2541  * when write to the end of file but not require block allocation
2542  */
2543 static int ext4_da_should_update_i_disksize(struct page *page,
2544 					    unsigned long offset)
2545 {
2546 	struct buffer_head *bh;
2547 	struct inode *inode = page->mapping->host;
2548 	unsigned int idx;
2549 	int i;
2550 
2551 	bh = page_buffers(page);
2552 	idx = offset >> inode->i_blkbits;
2553 
2554 	for (i = 0; i < idx; i++)
2555 		bh = bh->b_this_page;
2556 
2557 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2558 		return 0;
2559 	return 1;
2560 }
2561 
2562 static int ext4_da_write_end(struct file *file,
2563 			     struct address_space *mapping,
2564 			     loff_t pos, unsigned len, unsigned copied,
2565 			     struct page *page, void *fsdata)
2566 {
2567 	struct inode *inode = mapping->host;
2568 	int ret = 0, ret2;
2569 	handle_t *handle = ext4_journal_current_handle();
2570 	loff_t new_i_size;
2571 	unsigned long start, end;
2572 	int write_mode = (int)(unsigned long)fsdata;
2573 
2574 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2575 		switch (ext4_inode_journal_mode(inode)) {
2576 		case EXT4_INODE_ORDERED_DATA_MODE:
2577 			return ext4_ordered_write_end(file, mapping, pos,
2578 					len, copied, page, fsdata);
2579 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2580 			return ext4_writeback_write_end(file, mapping, pos,
2581 					len, copied, page, fsdata);
2582 		default:
2583 			BUG();
2584 		}
2585 	}
2586 
2587 	trace_ext4_da_write_end(inode, pos, len, copied);
2588 	start = pos & (PAGE_CACHE_SIZE - 1);
2589 	end = start + copied - 1;
2590 
2591 	/*
2592 	 * generic_write_end() will run mark_inode_dirty() if i_size
2593 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2594 	 * into that.
2595 	 */
2596 
2597 	new_i_size = pos + copied;
2598 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2599 		if (ext4_da_should_update_i_disksize(page, end)) {
2600 			down_write(&EXT4_I(inode)->i_data_sem);
2601 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2602 				/*
2603 				 * Updating i_disksize when extending file
2604 				 * without needing block allocation
2605 				 */
2606 				if (ext4_should_order_data(inode))
2607 					ret = ext4_jbd2_file_inode(handle,
2608 								   inode);
2609 
2610 				EXT4_I(inode)->i_disksize = new_i_size;
2611 			}
2612 			up_write(&EXT4_I(inode)->i_data_sem);
2613 			/* We need to mark inode dirty even if
2614 			 * new_i_size is less that inode->i_size
2615 			 * bu greater than i_disksize.(hint delalloc)
2616 			 */
2617 			ext4_mark_inode_dirty(handle, inode);
2618 		}
2619 	}
2620 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2621 							page, fsdata);
2622 	copied = ret2;
2623 	if (ret2 < 0)
2624 		ret = ret2;
2625 	ret2 = ext4_journal_stop(handle);
2626 	if (!ret)
2627 		ret = ret2;
2628 
2629 	return ret ? ret : copied;
2630 }
2631 
2632 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2633 {
2634 	/*
2635 	 * Drop reserved blocks
2636 	 */
2637 	BUG_ON(!PageLocked(page));
2638 	if (!page_has_buffers(page))
2639 		goto out;
2640 
2641 	ext4_da_page_release_reservation(page, offset);
2642 
2643 out:
2644 	ext4_invalidatepage(page, offset);
2645 
2646 	return;
2647 }
2648 
2649 /*
2650  * Force all delayed allocation blocks to be allocated for a given inode.
2651  */
2652 int ext4_alloc_da_blocks(struct inode *inode)
2653 {
2654 	trace_ext4_alloc_da_blocks(inode);
2655 
2656 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2657 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2658 		return 0;
2659 
2660 	/*
2661 	 * We do something simple for now.  The filemap_flush() will
2662 	 * also start triggering a write of the data blocks, which is
2663 	 * not strictly speaking necessary (and for users of
2664 	 * laptop_mode, not even desirable).  However, to do otherwise
2665 	 * would require replicating code paths in:
2666 	 *
2667 	 * ext4_da_writepages() ->
2668 	 *    write_cache_pages() ---> (via passed in callback function)
2669 	 *        __mpage_da_writepage() -->
2670 	 *           mpage_add_bh_to_extent()
2671 	 *           mpage_da_map_blocks()
2672 	 *
2673 	 * The problem is that write_cache_pages(), located in
2674 	 * mm/page-writeback.c, marks pages clean in preparation for
2675 	 * doing I/O, which is not desirable if we're not planning on
2676 	 * doing I/O at all.
2677 	 *
2678 	 * We could call write_cache_pages(), and then redirty all of
2679 	 * the pages by calling redirty_page_for_writepage() but that
2680 	 * would be ugly in the extreme.  So instead we would need to
2681 	 * replicate parts of the code in the above functions,
2682 	 * simplifying them because we wouldn't actually intend to
2683 	 * write out the pages, but rather only collect contiguous
2684 	 * logical block extents, call the multi-block allocator, and
2685 	 * then update the buffer heads with the block allocations.
2686 	 *
2687 	 * For now, though, we'll cheat by calling filemap_flush(),
2688 	 * which will map the blocks, and start the I/O, but not
2689 	 * actually wait for the I/O to complete.
2690 	 */
2691 	return filemap_flush(inode->i_mapping);
2692 }
2693 
2694 /*
2695  * bmap() is special.  It gets used by applications such as lilo and by
2696  * the swapper to find the on-disk block of a specific piece of data.
2697  *
2698  * Naturally, this is dangerous if the block concerned is still in the
2699  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2700  * filesystem and enables swap, then they may get a nasty shock when the
2701  * data getting swapped to that swapfile suddenly gets overwritten by
2702  * the original zero's written out previously to the journal and
2703  * awaiting writeback in the kernel's buffer cache.
2704  *
2705  * So, if we see any bmap calls here on a modified, data-journaled file,
2706  * take extra steps to flush any blocks which might be in the cache.
2707  */
2708 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2709 {
2710 	struct inode *inode = mapping->host;
2711 	journal_t *journal;
2712 	int err;
2713 
2714 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2715 			test_opt(inode->i_sb, DELALLOC)) {
2716 		/*
2717 		 * With delalloc we want to sync the file
2718 		 * so that we can make sure we allocate
2719 		 * blocks for file
2720 		 */
2721 		filemap_write_and_wait(mapping);
2722 	}
2723 
2724 	if (EXT4_JOURNAL(inode) &&
2725 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2726 		/*
2727 		 * This is a REALLY heavyweight approach, but the use of
2728 		 * bmap on dirty files is expected to be extremely rare:
2729 		 * only if we run lilo or swapon on a freshly made file
2730 		 * do we expect this to happen.
2731 		 *
2732 		 * (bmap requires CAP_SYS_RAWIO so this does not
2733 		 * represent an unprivileged user DOS attack --- we'd be
2734 		 * in trouble if mortal users could trigger this path at
2735 		 * will.)
2736 		 *
2737 		 * NB. EXT4_STATE_JDATA is not set on files other than
2738 		 * regular files.  If somebody wants to bmap a directory
2739 		 * or symlink and gets confused because the buffer
2740 		 * hasn't yet been flushed to disk, they deserve
2741 		 * everything they get.
2742 		 */
2743 
2744 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2745 		journal = EXT4_JOURNAL(inode);
2746 		jbd2_journal_lock_updates(journal);
2747 		err = jbd2_journal_flush(journal);
2748 		jbd2_journal_unlock_updates(journal);
2749 
2750 		if (err)
2751 			return 0;
2752 	}
2753 
2754 	return generic_block_bmap(mapping, block, ext4_get_block);
2755 }
2756 
2757 static int ext4_readpage(struct file *file, struct page *page)
2758 {
2759 	trace_ext4_readpage(page);
2760 	return mpage_readpage(page, ext4_get_block);
2761 }
2762 
2763 static int
2764 ext4_readpages(struct file *file, struct address_space *mapping,
2765 		struct list_head *pages, unsigned nr_pages)
2766 {
2767 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2768 }
2769 
2770 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2771 {
2772 	struct buffer_head *head, *bh;
2773 	unsigned int curr_off = 0;
2774 
2775 	if (!page_has_buffers(page))
2776 		return;
2777 	head = bh = page_buffers(page);
2778 	do {
2779 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2780 					&& bh->b_private) {
2781 			ext4_free_io_end(bh->b_private);
2782 			bh->b_private = NULL;
2783 			bh->b_end_io = NULL;
2784 		}
2785 		curr_off = curr_off + bh->b_size;
2786 		bh = bh->b_this_page;
2787 	} while (bh != head);
2788 }
2789 
2790 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2791 {
2792 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2793 
2794 	trace_ext4_invalidatepage(page, offset);
2795 
2796 	/*
2797 	 * free any io_end structure allocated for buffers to be discarded
2798 	 */
2799 	if (ext4_should_dioread_nolock(page->mapping->host))
2800 		ext4_invalidatepage_free_endio(page, offset);
2801 	/*
2802 	 * If it's a full truncate we just forget about the pending dirtying
2803 	 */
2804 	if (offset == 0)
2805 		ClearPageChecked(page);
2806 
2807 	if (journal)
2808 		jbd2_journal_invalidatepage(journal, page, offset);
2809 	else
2810 		block_invalidatepage(page, offset);
2811 }
2812 
2813 static int ext4_releasepage(struct page *page, gfp_t wait)
2814 {
2815 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2816 
2817 	trace_ext4_releasepage(page);
2818 
2819 	WARN_ON(PageChecked(page));
2820 	if (!page_has_buffers(page))
2821 		return 0;
2822 	if (journal)
2823 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2824 	else
2825 		return try_to_free_buffers(page);
2826 }
2827 
2828 /*
2829  * ext4_get_block used when preparing for a DIO write or buffer write.
2830  * We allocate an uinitialized extent if blocks haven't been allocated.
2831  * The extent will be converted to initialized after the IO is complete.
2832  */
2833 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2834 		   struct buffer_head *bh_result, int create)
2835 {
2836 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2837 		   inode->i_ino, create);
2838 	return _ext4_get_block(inode, iblock, bh_result,
2839 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2840 }
2841 
2842 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2843 		   struct buffer_head *bh_result, int flags)
2844 {
2845 	handle_t *handle = ext4_journal_current_handle();
2846 	struct ext4_map_blocks map;
2847 	int ret = 0;
2848 
2849 	ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2850 		   inode->i_ino, flags);
2851 
2852 	flags = EXT4_GET_BLOCKS_NO_LOCK;
2853 
2854 	map.m_lblk = iblock;
2855 	map.m_len = bh_result->b_size >> inode->i_blkbits;
2856 
2857 	ret = ext4_map_blocks(handle, inode, &map, flags);
2858 	if (ret > 0) {
2859 		map_bh(bh_result, inode->i_sb, map.m_pblk);
2860 		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2861 					map.m_flags;
2862 		bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2863 		ret = 0;
2864 	}
2865 	return ret;
2866 }
2867 
2868 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2869 			    ssize_t size, void *private, int ret,
2870 			    bool is_async)
2871 {
2872 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2873         ext4_io_end_t *io_end = iocb->private;
2874 	struct workqueue_struct *wq;
2875 	unsigned long flags;
2876 	struct ext4_inode_info *ei;
2877 
2878 	/* if not async direct IO or dio with 0 bytes write, just return */
2879 	if (!io_end || !size)
2880 		goto out;
2881 
2882 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2883 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2884  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2885 		  size);
2886 
2887 	iocb->private = NULL;
2888 
2889 	/* if not aio dio with unwritten extents, just free io and return */
2890 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2891 		ext4_free_io_end(io_end);
2892 out:
2893 		if (is_async)
2894 			aio_complete(iocb, ret, 0);
2895 		inode_dio_done(inode);
2896 		return;
2897 	}
2898 
2899 	io_end->offset = offset;
2900 	io_end->size = size;
2901 	if (is_async) {
2902 		io_end->iocb = iocb;
2903 		io_end->result = ret;
2904 	}
2905 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2906 
2907 	/* Add the io_end to per-inode completed aio dio list*/
2908 	ei = EXT4_I(io_end->inode);
2909 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2910 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2911 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2912 
2913 	/* queue the work to convert unwritten extents to written */
2914 	queue_work(wq, &io_end->work);
2915 }
2916 
2917 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2918 {
2919 	ext4_io_end_t *io_end = bh->b_private;
2920 	struct workqueue_struct *wq;
2921 	struct inode *inode;
2922 	unsigned long flags;
2923 
2924 	if (!test_clear_buffer_uninit(bh) || !io_end)
2925 		goto out;
2926 
2927 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2928 		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2929 			 "sb umounted, discard end_io request for inode %lu",
2930 			 io_end->inode->i_ino);
2931 		ext4_free_io_end(io_end);
2932 		goto out;
2933 	}
2934 
2935 	/*
2936 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2937 	 * but being more careful is always safe for the future change.
2938 	 */
2939 	inode = io_end->inode;
2940 	ext4_set_io_unwritten_flag(inode, io_end);
2941 
2942 	/* Add the io_end to per-inode completed io list*/
2943 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2944 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2945 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2946 
2947 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2948 	/* queue the work to convert unwritten extents to written */
2949 	queue_work(wq, &io_end->work);
2950 out:
2951 	bh->b_private = NULL;
2952 	bh->b_end_io = NULL;
2953 	clear_buffer_uninit(bh);
2954 	end_buffer_async_write(bh, uptodate);
2955 }
2956 
2957 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2958 {
2959 	ext4_io_end_t *io_end;
2960 	struct page *page = bh->b_page;
2961 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2962 	size_t size = bh->b_size;
2963 
2964 retry:
2965 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2966 	if (!io_end) {
2967 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2968 		schedule();
2969 		goto retry;
2970 	}
2971 	io_end->offset = offset;
2972 	io_end->size = size;
2973 	/*
2974 	 * We need to hold a reference to the page to make sure it
2975 	 * doesn't get evicted before ext4_end_io_work() has a chance
2976 	 * to convert the extent from written to unwritten.
2977 	 */
2978 	io_end->page = page;
2979 	get_page(io_end->page);
2980 
2981 	bh->b_private = io_end;
2982 	bh->b_end_io = ext4_end_io_buffer_write;
2983 	return 0;
2984 }
2985 
2986 /*
2987  * For ext4 extent files, ext4 will do direct-io write to holes,
2988  * preallocated extents, and those write extend the file, no need to
2989  * fall back to buffered IO.
2990  *
2991  * For holes, we fallocate those blocks, mark them as uninitialized
2992  * If those blocks were preallocated, we mark sure they are splited, but
2993  * still keep the range to write as uninitialized.
2994  *
2995  * The unwrritten extents will be converted to written when DIO is completed.
2996  * For async direct IO, since the IO may still pending when return, we
2997  * set up an end_io call back function, which will do the conversion
2998  * when async direct IO completed.
2999  *
3000  * If the O_DIRECT write will extend the file then add this inode to the
3001  * orphan list.  So recovery will truncate it back to the original size
3002  * if the machine crashes during the write.
3003  *
3004  */
3005 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3006 			      const struct iovec *iov, loff_t offset,
3007 			      unsigned long nr_segs)
3008 {
3009 	struct file *file = iocb->ki_filp;
3010 	struct inode *inode = file->f_mapping->host;
3011 	ssize_t ret;
3012 	size_t count = iov_length(iov, nr_segs);
3013 
3014 	loff_t final_size = offset + count;
3015 	if (rw == WRITE && final_size <= inode->i_size) {
3016 		int overwrite = 0;
3017 
3018 		BUG_ON(iocb->private == NULL);
3019 
3020 		/* If we do a overwrite dio, i_mutex locking can be released */
3021 		overwrite = *((int *)iocb->private);
3022 
3023 		if (overwrite) {
3024 			down_read(&EXT4_I(inode)->i_data_sem);
3025 			mutex_unlock(&inode->i_mutex);
3026 		}
3027 
3028 		/*
3029  		 * We could direct write to holes and fallocate.
3030 		 *
3031  		 * Allocated blocks to fill the hole are marked as uninitialized
3032  		 * to prevent parallel buffered read to expose the stale data
3033  		 * before DIO complete the data IO.
3034 		 *
3035  		 * As to previously fallocated extents, ext4 get_block
3036  		 * will just simply mark the buffer mapped but still
3037  		 * keep the extents uninitialized.
3038  		 *
3039 		 * for non AIO case, we will convert those unwritten extents
3040 		 * to written after return back from blockdev_direct_IO.
3041 		 *
3042 		 * for async DIO, the conversion needs to be defered when
3043 		 * the IO is completed. The ext4 end_io callback function
3044 		 * will be called to take care of the conversion work.
3045 		 * Here for async case, we allocate an io_end structure to
3046 		 * hook to the iocb.
3047  		 */
3048 		iocb->private = NULL;
3049 		EXT4_I(inode)->cur_aio_dio = NULL;
3050 		if (!is_sync_kiocb(iocb)) {
3051 			ext4_io_end_t *io_end =
3052 				ext4_init_io_end(inode, GFP_NOFS);
3053 			if (!io_end) {
3054 				ret = -ENOMEM;
3055 				goto retake_lock;
3056 			}
3057 			io_end->flag |= EXT4_IO_END_DIRECT;
3058 			iocb->private = io_end;
3059 			/*
3060 			 * we save the io structure for current async
3061 			 * direct IO, so that later ext4_map_blocks()
3062 			 * could flag the io structure whether there
3063 			 * is a unwritten extents needs to be converted
3064 			 * when IO is completed.
3065 			 */
3066 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3067 		}
3068 
3069 		if (overwrite)
3070 			ret = __blockdev_direct_IO(rw, iocb, inode,
3071 						 inode->i_sb->s_bdev, iov,
3072 						 offset, nr_segs,
3073 						 ext4_get_block_write_nolock,
3074 						 ext4_end_io_dio,
3075 						 NULL,
3076 						 0);
3077 		else
3078 			ret = __blockdev_direct_IO(rw, iocb, inode,
3079 						 inode->i_sb->s_bdev, iov,
3080 						 offset, nr_segs,
3081 						 ext4_get_block_write,
3082 						 ext4_end_io_dio,
3083 						 NULL,
3084 						 DIO_LOCKING);
3085 		if (iocb->private)
3086 			EXT4_I(inode)->cur_aio_dio = NULL;
3087 		/*
3088 		 * The io_end structure takes a reference to the inode,
3089 		 * that structure needs to be destroyed and the
3090 		 * reference to the inode need to be dropped, when IO is
3091 		 * complete, even with 0 byte write, or failed.
3092 		 *
3093 		 * In the successful AIO DIO case, the io_end structure will be
3094 		 * desctroyed and the reference to the inode will be dropped
3095 		 * after the end_io call back function is called.
3096 		 *
3097 		 * In the case there is 0 byte write, or error case, since
3098 		 * VFS direct IO won't invoke the end_io call back function,
3099 		 * we need to free the end_io structure here.
3100 		 */
3101 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3102 			ext4_free_io_end(iocb->private);
3103 			iocb->private = NULL;
3104 		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3105 						EXT4_STATE_DIO_UNWRITTEN)) {
3106 			int err;
3107 			/*
3108 			 * for non AIO case, since the IO is already
3109 			 * completed, we could do the conversion right here
3110 			 */
3111 			err = ext4_convert_unwritten_extents(inode,
3112 							     offset, ret);
3113 			if (err < 0)
3114 				ret = err;
3115 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3116 		}
3117 
3118 	retake_lock:
3119 		/* take i_mutex locking again if we do a ovewrite dio */
3120 		if (overwrite) {
3121 			up_read(&EXT4_I(inode)->i_data_sem);
3122 			mutex_lock(&inode->i_mutex);
3123 		}
3124 
3125 		return ret;
3126 	}
3127 
3128 	/* for write the the end of file case, we fall back to old way */
3129 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3130 }
3131 
3132 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3133 			      const struct iovec *iov, loff_t offset,
3134 			      unsigned long nr_segs)
3135 {
3136 	struct file *file = iocb->ki_filp;
3137 	struct inode *inode = file->f_mapping->host;
3138 	ssize_t ret;
3139 
3140 	/*
3141 	 * If we are doing data journalling we don't support O_DIRECT
3142 	 */
3143 	if (ext4_should_journal_data(inode))
3144 		return 0;
3145 
3146 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3147 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3148 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3149 	else
3150 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3151 	trace_ext4_direct_IO_exit(inode, offset,
3152 				iov_length(iov, nr_segs), rw, ret);
3153 	return ret;
3154 }
3155 
3156 /*
3157  * Pages can be marked dirty completely asynchronously from ext4's journalling
3158  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3159  * much here because ->set_page_dirty is called under VFS locks.  The page is
3160  * not necessarily locked.
3161  *
3162  * We cannot just dirty the page and leave attached buffers clean, because the
3163  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3164  * or jbddirty because all the journalling code will explode.
3165  *
3166  * So what we do is to mark the page "pending dirty" and next time writepage
3167  * is called, propagate that into the buffers appropriately.
3168  */
3169 static int ext4_journalled_set_page_dirty(struct page *page)
3170 {
3171 	SetPageChecked(page);
3172 	return __set_page_dirty_nobuffers(page);
3173 }
3174 
3175 static const struct address_space_operations ext4_ordered_aops = {
3176 	.readpage		= ext4_readpage,
3177 	.readpages		= ext4_readpages,
3178 	.writepage		= ext4_writepage,
3179 	.write_begin		= ext4_write_begin,
3180 	.write_end		= ext4_ordered_write_end,
3181 	.bmap			= ext4_bmap,
3182 	.invalidatepage		= ext4_invalidatepage,
3183 	.releasepage		= ext4_releasepage,
3184 	.direct_IO		= ext4_direct_IO,
3185 	.migratepage		= buffer_migrate_page,
3186 	.is_partially_uptodate  = block_is_partially_uptodate,
3187 	.error_remove_page	= generic_error_remove_page,
3188 };
3189 
3190 static const struct address_space_operations ext4_writeback_aops = {
3191 	.readpage		= ext4_readpage,
3192 	.readpages		= ext4_readpages,
3193 	.writepage		= ext4_writepage,
3194 	.write_begin		= ext4_write_begin,
3195 	.write_end		= ext4_writeback_write_end,
3196 	.bmap			= ext4_bmap,
3197 	.invalidatepage		= ext4_invalidatepage,
3198 	.releasepage		= ext4_releasepage,
3199 	.direct_IO		= ext4_direct_IO,
3200 	.migratepage		= buffer_migrate_page,
3201 	.is_partially_uptodate  = block_is_partially_uptodate,
3202 	.error_remove_page	= generic_error_remove_page,
3203 };
3204 
3205 static const struct address_space_operations ext4_journalled_aops = {
3206 	.readpage		= ext4_readpage,
3207 	.readpages		= ext4_readpages,
3208 	.writepage		= ext4_writepage,
3209 	.write_begin		= ext4_write_begin,
3210 	.write_end		= ext4_journalled_write_end,
3211 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3212 	.bmap			= ext4_bmap,
3213 	.invalidatepage		= ext4_invalidatepage,
3214 	.releasepage		= ext4_releasepage,
3215 	.direct_IO		= ext4_direct_IO,
3216 	.is_partially_uptodate  = block_is_partially_uptodate,
3217 	.error_remove_page	= generic_error_remove_page,
3218 };
3219 
3220 static const struct address_space_operations ext4_da_aops = {
3221 	.readpage		= ext4_readpage,
3222 	.readpages		= ext4_readpages,
3223 	.writepage		= ext4_writepage,
3224 	.writepages		= ext4_da_writepages,
3225 	.write_begin		= ext4_da_write_begin,
3226 	.write_end		= ext4_da_write_end,
3227 	.bmap			= ext4_bmap,
3228 	.invalidatepage		= ext4_da_invalidatepage,
3229 	.releasepage		= ext4_releasepage,
3230 	.direct_IO		= ext4_direct_IO,
3231 	.migratepage		= buffer_migrate_page,
3232 	.is_partially_uptodate  = block_is_partially_uptodate,
3233 	.error_remove_page	= generic_error_remove_page,
3234 };
3235 
3236 void ext4_set_aops(struct inode *inode)
3237 {
3238 	switch (ext4_inode_journal_mode(inode)) {
3239 	case EXT4_INODE_ORDERED_DATA_MODE:
3240 		if (test_opt(inode->i_sb, DELALLOC))
3241 			inode->i_mapping->a_ops = &ext4_da_aops;
3242 		else
3243 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3244 		break;
3245 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3246 		if (test_opt(inode->i_sb, DELALLOC))
3247 			inode->i_mapping->a_ops = &ext4_da_aops;
3248 		else
3249 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3250 		break;
3251 	case EXT4_INODE_JOURNAL_DATA_MODE:
3252 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3253 		break;
3254 	default:
3255 		BUG();
3256 	}
3257 }
3258 
3259 
3260 /*
3261  * ext4_discard_partial_page_buffers()
3262  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3263  * This function finds and locks the page containing the offset
3264  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3265  * Calling functions that already have the page locked should call
3266  * ext4_discard_partial_page_buffers_no_lock directly.
3267  */
3268 int ext4_discard_partial_page_buffers(handle_t *handle,
3269 		struct address_space *mapping, loff_t from,
3270 		loff_t length, int flags)
3271 {
3272 	struct inode *inode = mapping->host;
3273 	struct page *page;
3274 	int err = 0;
3275 
3276 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3277 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3278 	if (!page)
3279 		return -ENOMEM;
3280 
3281 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3282 		from, length, flags);
3283 
3284 	unlock_page(page);
3285 	page_cache_release(page);
3286 	return err;
3287 }
3288 
3289 /*
3290  * ext4_discard_partial_page_buffers_no_lock()
3291  * Zeros a page range of length 'length' starting from offset 'from'.
3292  * Buffer heads that correspond to the block aligned regions of the
3293  * zeroed range will be unmapped.  Unblock aligned regions
3294  * will have the corresponding buffer head mapped if needed so that
3295  * that region of the page can be updated with the partial zero out.
3296  *
3297  * This function assumes that the page has already been  locked.  The
3298  * The range to be discarded must be contained with in the given page.
3299  * If the specified range exceeds the end of the page it will be shortened
3300  * to the end of the page that corresponds to 'from'.  This function is
3301  * appropriate for updating a page and it buffer heads to be unmapped and
3302  * zeroed for blocks that have been either released, or are going to be
3303  * released.
3304  *
3305  * handle: The journal handle
3306  * inode:  The files inode
3307  * page:   A locked page that contains the offset "from"
3308  * from:   The starting byte offset (from the begining of the file)
3309  *         to begin discarding
3310  * len:    The length of bytes to discard
3311  * flags:  Optional flags that may be used:
3312  *
3313  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3314  *         Only zero the regions of the page whose buffer heads
3315  *         have already been unmapped.  This flag is appropriate
3316  *         for updateing the contents of a page whose blocks may
3317  *         have already been released, and we only want to zero
3318  *         out the regions that correspond to those released blocks.
3319  *
3320  * Returns zero on sucess or negative on failure.
3321  */
3322 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3323 		struct inode *inode, struct page *page, loff_t from,
3324 		loff_t length, int flags)
3325 {
3326 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3327 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3328 	unsigned int blocksize, max, pos;
3329 	ext4_lblk_t iblock;
3330 	struct buffer_head *bh;
3331 	int err = 0;
3332 
3333 	blocksize = inode->i_sb->s_blocksize;
3334 	max = PAGE_CACHE_SIZE - offset;
3335 
3336 	if (index != page->index)
3337 		return -EINVAL;
3338 
3339 	/*
3340 	 * correct length if it does not fall between
3341 	 * 'from' and the end of the page
3342 	 */
3343 	if (length > max || length < 0)
3344 		length = max;
3345 
3346 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3347 
3348 	if (!page_has_buffers(page))
3349 		create_empty_buffers(page, blocksize, 0);
3350 
3351 	/* Find the buffer that contains "offset" */
3352 	bh = page_buffers(page);
3353 	pos = blocksize;
3354 	while (offset >= pos) {
3355 		bh = bh->b_this_page;
3356 		iblock++;
3357 		pos += blocksize;
3358 	}
3359 
3360 	pos = offset;
3361 	while (pos < offset + length) {
3362 		unsigned int end_of_block, range_to_discard;
3363 
3364 		err = 0;
3365 
3366 		/* The length of space left to zero and unmap */
3367 		range_to_discard = offset + length - pos;
3368 
3369 		/* The length of space until the end of the block */
3370 		end_of_block = blocksize - (pos & (blocksize-1));
3371 
3372 		/*
3373 		 * Do not unmap or zero past end of block
3374 		 * for this buffer head
3375 		 */
3376 		if (range_to_discard > end_of_block)
3377 			range_to_discard = end_of_block;
3378 
3379 
3380 		/*
3381 		 * Skip this buffer head if we are only zeroing unampped
3382 		 * regions of the page
3383 		 */
3384 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3385 			buffer_mapped(bh))
3386 				goto next;
3387 
3388 		/* If the range is block aligned, unmap */
3389 		if (range_to_discard == blocksize) {
3390 			clear_buffer_dirty(bh);
3391 			bh->b_bdev = NULL;
3392 			clear_buffer_mapped(bh);
3393 			clear_buffer_req(bh);
3394 			clear_buffer_new(bh);
3395 			clear_buffer_delay(bh);
3396 			clear_buffer_unwritten(bh);
3397 			clear_buffer_uptodate(bh);
3398 			zero_user(page, pos, range_to_discard);
3399 			BUFFER_TRACE(bh, "Buffer discarded");
3400 			goto next;
3401 		}
3402 
3403 		/*
3404 		 * If this block is not completely contained in the range
3405 		 * to be discarded, then it is not going to be released. Because
3406 		 * we need to keep this block, we need to make sure this part
3407 		 * of the page is uptodate before we modify it by writeing
3408 		 * partial zeros on it.
3409 		 */
3410 		if (!buffer_mapped(bh)) {
3411 			/*
3412 			 * Buffer head must be mapped before we can read
3413 			 * from the block
3414 			 */
3415 			BUFFER_TRACE(bh, "unmapped");
3416 			ext4_get_block(inode, iblock, bh, 0);
3417 			/* unmapped? It's a hole - nothing to do */
3418 			if (!buffer_mapped(bh)) {
3419 				BUFFER_TRACE(bh, "still unmapped");
3420 				goto next;
3421 			}
3422 		}
3423 
3424 		/* Ok, it's mapped. Make sure it's up-to-date */
3425 		if (PageUptodate(page))
3426 			set_buffer_uptodate(bh);
3427 
3428 		if (!buffer_uptodate(bh)) {
3429 			err = -EIO;
3430 			ll_rw_block(READ, 1, &bh);
3431 			wait_on_buffer(bh);
3432 			/* Uhhuh. Read error. Complain and punt.*/
3433 			if (!buffer_uptodate(bh))
3434 				goto next;
3435 		}
3436 
3437 		if (ext4_should_journal_data(inode)) {
3438 			BUFFER_TRACE(bh, "get write access");
3439 			err = ext4_journal_get_write_access(handle, bh);
3440 			if (err)
3441 				goto next;
3442 		}
3443 
3444 		zero_user(page, pos, range_to_discard);
3445 
3446 		err = 0;
3447 		if (ext4_should_journal_data(inode)) {
3448 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3449 		} else
3450 			mark_buffer_dirty(bh);
3451 
3452 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3453 next:
3454 		bh = bh->b_this_page;
3455 		iblock++;
3456 		pos += range_to_discard;
3457 	}
3458 
3459 	return err;
3460 }
3461 
3462 int ext4_can_truncate(struct inode *inode)
3463 {
3464 	if (S_ISREG(inode->i_mode))
3465 		return 1;
3466 	if (S_ISDIR(inode->i_mode))
3467 		return 1;
3468 	if (S_ISLNK(inode->i_mode))
3469 		return !ext4_inode_is_fast_symlink(inode);
3470 	return 0;
3471 }
3472 
3473 /*
3474  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3475  * associated with the given offset and length
3476  *
3477  * @inode:  File inode
3478  * @offset: The offset where the hole will begin
3479  * @len:    The length of the hole
3480  *
3481  * Returns: 0 on sucess or negative on failure
3482  */
3483 
3484 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3485 {
3486 	struct inode *inode = file->f_path.dentry->d_inode;
3487 	if (!S_ISREG(inode->i_mode))
3488 		return -EOPNOTSUPP;
3489 
3490 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3491 		/* TODO: Add support for non extent hole punching */
3492 		return -EOPNOTSUPP;
3493 	}
3494 
3495 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3496 		/* TODO: Add support for bigalloc file systems */
3497 		return -EOPNOTSUPP;
3498 	}
3499 
3500 	return ext4_ext_punch_hole(file, offset, length);
3501 }
3502 
3503 /*
3504  * ext4_truncate()
3505  *
3506  * We block out ext4_get_block() block instantiations across the entire
3507  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3508  * simultaneously on behalf of the same inode.
3509  *
3510  * As we work through the truncate and commit bits of it to the journal there
3511  * is one core, guiding principle: the file's tree must always be consistent on
3512  * disk.  We must be able to restart the truncate after a crash.
3513  *
3514  * The file's tree may be transiently inconsistent in memory (although it
3515  * probably isn't), but whenever we close off and commit a journal transaction,
3516  * the contents of (the filesystem + the journal) must be consistent and
3517  * restartable.  It's pretty simple, really: bottom up, right to left (although
3518  * left-to-right works OK too).
3519  *
3520  * Note that at recovery time, journal replay occurs *before* the restart of
3521  * truncate against the orphan inode list.
3522  *
3523  * The committed inode has the new, desired i_size (which is the same as
3524  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3525  * that this inode's truncate did not complete and it will again call
3526  * ext4_truncate() to have another go.  So there will be instantiated blocks
3527  * to the right of the truncation point in a crashed ext4 filesystem.  But
3528  * that's fine - as long as they are linked from the inode, the post-crash
3529  * ext4_truncate() run will find them and release them.
3530  */
3531 void ext4_truncate(struct inode *inode)
3532 {
3533 	trace_ext4_truncate_enter(inode);
3534 
3535 	if (!ext4_can_truncate(inode))
3536 		return;
3537 
3538 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3539 
3540 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3541 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3542 
3543 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3544 		ext4_ext_truncate(inode);
3545 	else
3546 		ext4_ind_truncate(inode);
3547 
3548 	trace_ext4_truncate_exit(inode);
3549 }
3550 
3551 /*
3552  * ext4_get_inode_loc returns with an extra refcount against the inode's
3553  * underlying buffer_head on success. If 'in_mem' is true, we have all
3554  * data in memory that is needed to recreate the on-disk version of this
3555  * inode.
3556  */
3557 static int __ext4_get_inode_loc(struct inode *inode,
3558 				struct ext4_iloc *iloc, int in_mem)
3559 {
3560 	struct ext4_group_desc	*gdp;
3561 	struct buffer_head	*bh;
3562 	struct super_block	*sb = inode->i_sb;
3563 	ext4_fsblk_t		block;
3564 	int			inodes_per_block, inode_offset;
3565 
3566 	iloc->bh = NULL;
3567 	if (!ext4_valid_inum(sb, inode->i_ino))
3568 		return -EIO;
3569 
3570 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3571 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3572 	if (!gdp)
3573 		return -EIO;
3574 
3575 	/*
3576 	 * Figure out the offset within the block group inode table
3577 	 */
3578 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3579 	inode_offset = ((inode->i_ino - 1) %
3580 			EXT4_INODES_PER_GROUP(sb));
3581 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3582 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3583 
3584 	bh = sb_getblk(sb, block);
3585 	if (!bh) {
3586 		EXT4_ERROR_INODE_BLOCK(inode, block,
3587 				       "unable to read itable block");
3588 		return -EIO;
3589 	}
3590 	if (!buffer_uptodate(bh)) {
3591 		lock_buffer(bh);
3592 
3593 		/*
3594 		 * If the buffer has the write error flag, we have failed
3595 		 * to write out another inode in the same block.  In this
3596 		 * case, we don't have to read the block because we may
3597 		 * read the old inode data successfully.
3598 		 */
3599 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3600 			set_buffer_uptodate(bh);
3601 
3602 		if (buffer_uptodate(bh)) {
3603 			/* someone brought it uptodate while we waited */
3604 			unlock_buffer(bh);
3605 			goto has_buffer;
3606 		}
3607 
3608 		/*
3609 		 * If we have all information of the inode in memory and this
3610 		 * is the only valid inode in the block, we need not read the
3611 		 * block.
3612 		 */
3613 		if (in_mem) {
3614 			struct buffer_head *bitmap_bh;
3615 			int i, start;
3616 
3617 			start = inode_offset & ~(inodes_per_block - 1);
3618 
3619 			/* Is the inode bitmap in cache? */
3620 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3621 			if (!bitmap_bh)
3622 				goto make_io;
3623 
3624 			/*
3625 			 * If the inode bitmap isn't in cache then the
3626 			 * optimisation may end up performing two reads instead
3627 			 * of one, so skip it.
3628 			 */
3629 			if (!buffer_uptodate(bitmap_bh)) {
3630 				brelse(bitmap_bh);
3631 				goto make_io;
3632 			}
3633 			for (i = start; i < start + inodes_per_block; i++) {
3634 				if (i == inode_offset)
3635 					continue;
3636 				if (ext4_test_bit(i, bitmap_bh->b_data))
3637 					break;
3638 			}
3639 			brelse(bitmap_bh);
3640 			if (i == start + inodes_per_block) {
3641 				/* all other inodes are free, so skip I/O */
3642 				memset(bh->b_data, 0, bh->b_size);
3643 				set_buffer_uptodate(bh);
3644 				unlock_buffer(bh);
3645 				goto has_buffer;
3646 			}
3647 		}
3648 
3649 make_io:
3650 		/*
3651 		 * If we need to do any I/O, try to pre-readahead extra
3652 		 * blocks from the inode table.
3653 		 */
3654 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3655 			ext4_fsblk_t b, end, table;
3656 			unsigned num;
3657 
3658 			table = ext4_inode_table(sb, gdp);
3659 			/* s_inode_readahead_blks is always a power of 2 */
3660 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3661 			if (table > b)
3662 				b = table;
3663 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3664 			num = EXT4_INODES_PER_GROUP(sb);
3665 			if (ext4_has_group_desc_csum(sb))
3666 				num -= ext4_itable_unused_count(sb, gdp);
3667 			table += num / inodes_per_block;
3668 			if (end > table)
3669 				end = table;
3670 			while (b <= end)
3671 				sb_breadahead(sb, b++);
3672 		}
3673 
3674 		/*
3675 		 * There are other valid inodes in the buffer, this inode
3676 		 * has in-inode xattrs, or we don't have this inode in memory.
3677 		 * Read the block from disk.
3678 		 */
3679 		trace_ext4_load_inode(inode);
3680 		get_bh(bh);
3681 		bh->b_end_io = end_buffer_read_sync;
3682 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3683 		wait_on_buffer(bh);
3684 		if (!buffer_uptodate(bh)) {
3685 			EXT4_ERROR_INODE_BLOCK(inode, block,
3686 					       "unable to read itable block");
3687 			brelse(bh);
3688 			return -EIO;
3689 		}
3690 	}
3691 has_buffer:
3692 	iloc->bh = bh;
3693 	return 0;
3694 }
3695 
3696 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3697 {
3698 	/* We have all inode data except xattrs in memory here. */
3699 	return __ext4_get_inode_loc(inode, iloc,
3700 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3701 }
3702 
3703 void ext4_set_inode_flags(struct inode *inode)
3704 {
3705 	unsigned int flags = EXT4_I(inode)->i_flags;
3706 
3707 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3708 	if (flags & EXT4_SYNC_FL)
3709 		inode->i_flags |= S_SYNC;
3710 	if (flags & EXT4_APPEND_FL)
3711 		inode->i_flags |= S_APPEND;
3712 	if (flags & EXT4_IMMUTABLE_FL)
3713 		inode->i_flags |= S_IMMUTABLE;
3714 	if (flags & EXT4_NOATIME_FL)
3715 		inode->i_flags |= S_NOATIME;
3716 	if (flags & EXT4_DIRSYNC_FL)
3717 		inode->i_flags |= S_DIRSYNC;
3718 }
3719 
3720 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3721 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3722 {
3723 	unsigned int vfs_fl;
3724 	unsigned long old_fl, new_fl;
3725 
3726 	do {
3727 		vfs_fl = ei->vfs_inode.i_flags;
3728 		old_fl = ei->i_flags;
3729 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3730 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3731 				EXT4_DIRSYNC_FL);
3732 		if (vfs_fl & S_SYNC)
3733 			new_fl |= EXT4_SYNC_FL;
3734 		if (vfs_fl & S_APPEND)
3735 			new_fl |= EXT4_APPEND_FL;
3736 		if (vfs_fl & S_IMMUTABLE)
3737 			new_fl |= EXT4_IMMUTABLE_FL;
3738 		if (vfs_fl & S_NOATIME)
3739 			new_fl |= EXT4_NOATIME_FL;
3740 		if (vfs_fl & S_DIRSYNC)
3741 			new_fl |= EXT4_DIRSYNC_FL;
3742 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3743 }
3744 
3745 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3746 				  struct ext4_inode_info *ei)
3747 {
3748 	blkcnt_t i_blocks ;
3749 	struct inode *inode = &(ei->vfs_inode);
3750 	struct super_block *sb = inode->i_sb;
3751 
3752 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3753 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3754 		/* we are using combined 48 bit field */
3755 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3756 					le32_to_cpu(raw_inode->i_blocks_lo);
3757 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3758 			/* i_blocks represent file system block size */
3759 			return i_blocks  << (inode->i_blkbits - 9);
3760 		} else {
3761 			return i_blocks;
3762 		}
3763 	} else {
3764 		return le32_to_cpu(raw_inode->i_blocks_lo);
3765 	}
3766 }
3767 
3768 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3769 {
3770 	struct ext4_iloc iloc;
3771 	struct ext4_inode *raw_inode;
3772 	struct ext4_inode_info *ei;
3773 	struct inode *inode;
3774 	journal_t *journal = EXT4_SB(sb)->s_journal;
3775 	long ret;
3776 	int block;
3777 	uid_t i_uid;
3778 	gid_t i_gid;
3779 
3780 	inode = iget_locked(sb, ino);
3781 	if (!inode)
3782 		return ERR_PTR(-ENOMEM);
3783 	if (!(inode->i_state & I_NEW))
3784 		return inode;
3785 
3786 	ei = EXT4_I(inode);
3787 	iloc.bh = NULL;
3788 
3789 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3790 	if (ret < 0)
3791 		goto bad_inode;
3792 	raw_inode = ext4_raw_inode(&iloc);
3793 
3794 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3795 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3796 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3797 		    EXT4_INODE_SIZE(inode->i_sb)) {
3798 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3799 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3800 				EXT4_INODE_SIZE(inode->i_sb));
3801 			ret = -EIO;
3802 			goto bad_inode;
3803 		}
3804 	} else
3805 		ei->i_extra_isize = 0;
3806 
3807 	/* Precompute checksum seed for inode metadata */
3808 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3809 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3810 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3811 		__u32 csum;
3812 		__le32 inum = cpu_to_le32(inode->i_ino);
3813 		__le32 gen = raw_inode->i_generation;
3814 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3815 				   sizeof(inum));
3816 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3817 					      sizeof(gen));
3818 	}
3819 
3820 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3821 		EXT4_ERROR_INODE(inode, "checksum invalid");
3822 		ret = -EIO;
3823 		goto bad_inode;
3824 	}
3825 
3826 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3827 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3828 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3829 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3830 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3831 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3832 	}
3833 	i_uid_write(inode, i_uid);
3834 	i_gid_write(inode, i_gid);
3835 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3836 
3837 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3838 	ei->i_dir_start_lookup = 0;
3839 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3840 	/* We now have enough fields to check if the inode was active or not.
3841 	 * This is needed because nfsd might try to access dead inodes
3842 	 * the test is that same one that e2fsck uses
3843 	 * NeilBrown 1999oct15
3844 	 */
3845 	if (inode->i_nlink == 0) {
3846 		if (inode->i_mode == 0 ||
3847 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3848 			/* this inode is deleted */
3849 			ret = -ESTALE;
3850 			goto bad_inode;
3851 		}
3852 		/* The only unlinked inodes we let through here have
3853 		 * valid i_mode and are being read by the orphan
3854 		 * recovery code: that's fine, we're about to complete
3855 		 * the process of deleting those. */
3856 	}
3857 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3858 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3859 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3860 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3861 		ei->i_file_acl |=
3862 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3863 	inode->i_size = ext4_isize(raw_inode);
3864 	ei->i_disksize = inode->i_size;
3865 #ifdef CONFIG_QUOTA
3866 	ei->i_reserved_quota = 0;
3867 #endif
3868 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3869 	ei->i_block_group = iloc.block_group;
3870 	ei->i_last_alloc_group = ~0;
3871 	/*
3872 	 * NOTE! The in-memory inode i_data array is in little-endian order
3873 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3874 	 */
3875 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3876 		ei->i_data[block] = raw_inode->i_block[block];
3877 	INIT_LIST_HEAD(&ei->i_orphan);
3878 
3879 	/*
3880 	 * Set transaction id's of transactions that have to be committed
3881 	 * to finish f[data]sync. We set them to currently running transaction
3882 	 * as we cannot be sure that the inode or some of its metadata isn't
3883 	 * part of the transaction - the inode could have been reclaimed and
3884 	 * now it is reread from disk.
3885 	 */
3886 	if (journal) {
3887 		transaction_t *transaction;
3888 		tid_t tid;
3889 
3890 		read_lock(&journal->j_state_lock);
3891 		if (journal->j_running_transaction)
3892 			transaction = journal->j_running_transaction;
3893 		else
3894 			transaction = journal->j_committing_transaction;
3895 		if (transaction)
3896 			tid = transaction->t_tid;
3897 		else
3898 			tid = journal->j_commit_sequence;
3899 		read_unlock(&journal->j_state_lock);
3900 		ei->i_sync_tid = tid;
3901 		ei->i_datasync_tid = tid;
3902 	}
3903 
3904 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3905 		if (ei->i_extra_isize == 0) {
3906 			/* The extra space is currently unused. Use it. */
3907 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3908 					    EXT4_GOOD_OLD_INODE_SIZE;
3909 		} else {
3910 			__le32 *magic = (void *)raw_inode +
3911 					EXT4_GOOD_OLD_INODE_SIZE +
3912 					ei->i_extra_isize;
3913 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3914 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3915 		}
3916 	}
3917 
3918 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3919 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3920 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3921 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3922 
3923 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3924 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3925 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3926 			inode->i_version |=
3927 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3928 	}
3929 
3930 	ret = 0;
3931 	if (ei->i_file_acl &&
3932 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3933 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3934 				 ei->i_file_acl);
3935 		ret = -EIO;
3936 		goto bad_inode;
3937 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3938 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3939 		    (S_ISLNK(inode->i_mode) &&
3940 		     !ext4_inode_is_fast_symlink(inode)))
3941 			/* Validate extent which is part of inode */
3942 			ret = ext4_ext_check_inode(inode);
3943 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3944 		   (S_ISLNK(inode->i_mode) &&
3945 		    !ext4_inode_is_fast_symlink(inode))) {
3946 		/* Validate block references which are part of inode */
3947 		ret = ext4_ind_check_inode(inode);
3948 	}
3949 	if (ret)
3950 		goto bad_inode;
3951 
3952 	if (S_ISREG(inode->i_mode)) {
3953 		inode->i_op = &ext4_file_inode_operations;
3954 		inode->i_fop = &ext4_file_operations;
3955 		ext4_set_aops(inode);
3956 	} else if (S_ISDIR(inode->i_mode)) {
3957 		inode->i_op = &ext4_dir_inode_operations;
3958 		inode->i_fop = &ext4_dir_operations;
3959 	} else if (S_ISLNK(inode->i_mode)) {
3960 		if (ext4_inode_is_fast_symlink(inode)) {
3961 			inode->i_op = &ext4_fast_symlink_inode_operations;
3962 			nd_terminate_link(ei->i_data, inode->i_size,
3963 				sizeof(ei->i_data) - 1);
3964 		} else {
3965 			inode->i_op = &ext4_symlink_inode_operations;
3966 			ext4_set_aops(inode);
3967 		}
3968 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3969 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3970 		inode->i_op = &ext4_special_inode_operations;
3971 		if (raw_inode->i_block[0])
3972 			init_special_inode(inode, inode->i_mode,
3973 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3974 		else
3975 			init_special_inode(inode, inode->i_mode,
3976 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3977 	} else {
3978 		ret = -EIO;
3979 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3980 		goto bad_inode;
3981 	}
3982 	brelse(iloc.bh);
3983 	ext4_set_inode_flags(inode);
3984 	unlock_new_inode(inode);
3985 	return inode;
3986 
3987 bad_inode:
3988 	brelse(iloc.bh);
3989 	iget_failed(inode);
3990 	return ERR_PTR(ret);
3991 }
3992 
3993 static int ext4_inode_blocks_set(handle_t *handle,
3994 				struct ext4_inode *raw_inode,
3995 				struct ext4_inode_info *ei)
3996 {
3997 	struct inode *inode = &(ei->vfs_inode);
3998 	u64 i_blocks = inode->i_blocks;
3999 	struct super_block *sb = inode->i_sb;
4000 
4001 	if (i_blocks <= ~0U) {
4002 		/*
4003 		 * i_blocks can be represnted in a 32 bit variable
4004 		 * as multiple of 512 bytes
4005 		 */
4006 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4007 		raw_inode->i_blocks_high = 0;
4008 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4009 		return 0;
4010 	}
4011 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4012 		return -EFBIG;
4013 
4014 	if (i_blocks <= 0xffffffffffffULL) {
4015 		/*
4016 		 * i_blocks can be represented in a 48 bit variable
4017 		 * as multiple of 512 bytes
4018 		 */
4019 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4020 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4021 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4022 	} else {
4023 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4024 		/* i_block is stored in file system block size */
4025 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4026 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4027 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4028 	}
4029 	return 0;
4030 }
4031 
4032 /*
4033  * Post the struct inode info into an on-disk inode location in the
4034  * buffer-cache.  This gobbles the caller's reference to the
4035  * buffer_head in the inode location struct.
4036  *
4037  * The caller must have write access to iloc->bh.
4038  */
4039 static int ext4_do_update_inode(handle_t *handle,
4040 				struct inode *inode,
4041 				struct ext4_iloc *iloc)
4042 {
4043 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4044 	struct ext4_inode_info *ei = EXT4_I(inode);
4045 	struct buffer_head *bh = iloc->bh;
4046 	int err = 0, rc, block;
4047 	uid_t i_uid;
4048 	gid_t i_gid;
4049 
4050 	/* For fields not not tracking in the in-memory inode,
4051 	 * initialise them to zero for new inodes. */
4052 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4053 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4054 
4055 	ext4_get_inode_flags(ei);
4056 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4057 	i_uid = i_uid_read(inode);
4058 	i_gid = i_gid_read(inode);
4059 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4060 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4061 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4062 /*
4063  * Fix up interoperability with old kernels. Otherwise, old inodes get
4064  * re-used with the upper 16 bits of the uid/gid intact
4065  */
4066 		if (!ei->i_dtime) {
4067 			raw_inode->i_uid_high =
4068 				cpu_to_le16(high_16_bits(i_uid));
4069 			raw_inode->i_gid_high =
4070 				cpu_to_le16(high_16_bits(i_gid));
4071 		} else {
4072 			raw_inode->i_uid_high = 0;
4073 			raw_inode->i_gid_high = 0;
4074 		}
4075 	} else {
4076 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4077 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4078 		raw_inode->i_uid_high = 0;
4079 		raw_inode->i_gid_high = 0;
4080 	}
4081 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4082 
4083 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4084 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4085 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4086 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4087 
4088 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4089 		goto out_brelse;
4090 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4091 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4092 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4093 	    cpu_to_le32(EXT4_OS_HURD))
4094 		raw_inode->i_file_acl_high =
4095 			cpu_to_le16(ei->i_file_acl >> 32);
4096 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4097 	ext4_isize_set(raw_inode, ei->i_disksize);
4098 	if (ei->i_disksize > 0x7fffffffULL) {
4099 		struct super_block *sb = inode->i_sb;
4100 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4101 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4102 				EXT4_SB(sb)->s_es->s_rev_level ==
4103 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4104 			/* If this is the first large file
4105 			 * created, add a flag to the superblock.
4106 			 */
4107 			err = ext4_journal_get_write_access(handle,
4108 					EXT4_SB(sb)->s_sbh);
4109 			if (err)
4110 				goto out_brelse;
4111 			ext4_update_dynamic_rev(sb);
4112 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4113 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4114 			ext4_handle_sync(handle);
4115 			err = ext4_handle_dirty_super(handle, sb);
4116 		}
4117 	}
4118 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4119 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4120 		if (old_valid_dev(inode->i_rdev)) {
4121 			raw_inode->i_block[0] =
4122 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4123 			raw_inode->i_block[1] = 0;
4124 		} else {
4125 			raw_inode->i_block[0] = 0;
4126 			raw_inode->i_block[1] =
4127 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4128 			raw_inode->i_block[2] = 0;
4129 		}
4130 	} else
4131 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4132 			raw_inode->i_block[block] = ei->i_data[block];
4133 
4134 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4135 	if (ei->i_extra_isize) {
4136 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4137 			raw_inode->i_version_hi =
4138 			cpu_to_le32(inode->i_version >> 32);
4139 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4140 	}
4141 
4142 	ext4_inode_csum_set(inode, raw_inode, ei);
4143 
4144 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4145 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4146 	if (!err)
4147 		err = rc;
4148 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4149 
4150 	ext4_update_inode_fsync_trans(handle, inode, 0);
4151 out_brelse:
4152 	brelse(bh);
4153 	ext4_std_error(inode->i_sb, err);
4154 	return err;
4155 }
4156 
4157 /*
4158  * ext4_write_inode()
4159  *
4160  * We are called from a few places:
4161  *
4162  * - Within generic_file_write() for O_SYNC files.
4163  *   Here, there will be no transaction running. We wait for any running
4164  *   trasnaction to commit.
4165  *
4166  * - Within sys_sync(), kupdate and such.
4167  *   We wait on commit, if tol to.
4168  *
4169  * - Within prune_icache() (PF_MEMALLOC == true)
4170  *   Here we simply return.  We can't afford to block kswapd on the
4171  *   journal commit.
4172  *
4173  * In all cases it is actually safe for us to return without doing anything,
4174  * because the inode has been copied into a raw inode buffer in
4175  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4176  * knfsd.
4177  *
4178  * Note that we are absolutely dependent upon all inode dirtiers doing the
4179  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4180  * which we are interested.
4181  *
4182  * It would be a bug for them to not do this.  The code:
4183  *
4184  *	mark_inode_dirty(inode)
4185  *	stuff();
4186  *	inode->i_size = expr;
4187  *
4188  * is in error because a kswapd-driven write_inode() could occur while
4189  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4190  * will no longer be on the superblock's dirty inode list.
4191  */
4192 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4193 {
4194 	int err;
4195 
4196 	if (current->flags & PF_MEMALLOC)
4197 		return 0;
4198 
4199 	if (EXT4_SB(inode->i_sb)->s_journal) {
4200 		if (ext4_journal_current_handle()) {
4201 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4202 			dump_stack();
4203 			return -EIO;
4204 		}
4205 
4206 		if (wbc->sync_mode != WB_SYNC_ALL)
4207 			return 0;
4208 
4209 		err = ext4_force_commit(inode->i_sb);
4210 	} else {
4211 		struct ext4_iloc iloc;
4212 
4213 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4214 		if (err)
4215 			return err;
4216 		if (wbc->sync_mode == WB_SYNC_ALL)
4217 			sync_dirty_buffer(iloc.bh);
4218 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4219 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4220 					 "IO error syncing inode");
4221 			err = -EIO;
4222 		}
4223 		brelse(iloc.bh);
4224 	}
4225 	return err;
4226 }
4227 
4228 /*
4229  * ext4_setattr()
4230  *
4231  * Called from notify_change.
4232  *
4233  * We want to trap VFS attempts to truncate the file as soon as
4234  * possible.  In particular, we want to make sure that when the VFS
4235  * shrinks i_size, we put the inode on the orphan list and modify
4236  * i_disksize immediately, so that during the subsequent flushing of
4237  * dirty pages and freeing of disk blocks, we can guarantee that any
4238  * commit will leave the blocks being flushed in an unused state on
4239  * disk.  (On recovery, the inode will get truncated and the blocks will
4240  * be freed, so we have a strong guarantee that no future commit will
4241  * leave these blocks visible to the user.)
4242  *
4243  * Another thing we have to assure is that if we are in ordered mode
4244  * and inode is still attached to the committing transaction, we must
4245  * we start writeout of all the dirty pages which are being truncated.
4246  * This way we are sure that all the data written in the previous
4247  * transaction are already on disk (truncate waits for pages under
4248  * writeback).
4249  *
4250  * Called with inode->i_mutex down.
4251  */
4252 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4253 {
4254 	struct inode *inode = dentry->d_inode;
4255 	int error, rc = 0;
4256 	int orphan = 0;
4257 	const unsigned int ia_valid = attr->ia_valid;
4258 
4259 	error = inode_change_ok(inode, attr);
4260 	if (error)
4261 		return error;
4262 
4263 	if (is_quota_modification(inode, attr))
4264 		dquot_initialize(inode);
4265 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4266 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4267 		handle_t *handle;
4268 
4269 		/* (user+group)*(old+new) structure, inode write (sb,
4270 		 * inode block, ? - but truncate inode update has it) */
4271 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4272 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4273 		if (IS_ERR(handle)) {
4274 			error = PTR_ERR(handle);
4275 			goto err_out;
4276 		}
4277 		error = dquot_transfer(inode, attr);
4278 		if (error) {
4279 			ext4_journal_stop(handle);
4280 			return error;
4281 		}
4282 		/* Update corresponding info in inode so that everything is in
4283 		 * one transaction */
4284 		if (attr->ia_valid & ATTR_UID)
4285 			inode->i_uid = attr->ia_uid;
4286 		if (attr->ia_valid & ATTR_GID)
4287 			inode->i_gid = attr->ia_gid;
4288 		error = ext4_mark_inode_dirty(handle, inode);
4289 		ext4_journal_stop(handle);
4290 	}
4291 
4292 	if (attr->ia_valid & ATTR_SIZE) {
4293 		inode_dio_wait(inode);
4294 
4295 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4296 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4297 
4298 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4299 				return -EFBIG;
4300 		}
4301 	}
4302 
4303 	if (S_ISREG(inode->i_mode) &&
4304 	    attr->ia_valid & ATTR_SIZE &&
4305 	    (attr->ia_size < inode->i_size)) {
4306 		handle_t *handle;
4307 
4308 		handle = ext4_journal_start(inode, 3);
4309 		if (IS_ERR(handle)) {
4310 			error = PTR_ERR(handle);
4311 			goto err_out;
4312 		}
4313 		if (ext4_handle_valid(handle)) {
4314 			error = ext4_orphan_add(handle, inode);
4315 			orphan = 1;
4316 		}
4317 		EXT4_I(inode)->i_disksize = attr->ia_size;
4318 		rc = ext4_mark_inode_dirty(handle, inode);
4319 		if (!error)
4320 			error = rc;
4321 		ext4_journal_stop(handle);
4322 
4323 		if (ext4_should_order_data(inode)) {
4324 			error = ext4_begin_ordered_truncate(inode,
4325 							    attr->ia_size);
4326 			if (error) {
4327 				/* Do as much error cleanup as possible */
4328 				handle = ext4_journal_start(inode, 3);
4329 				if (IS_ERR(handle)) {
4330 					ext4_orphan_del(NULL, inode);
4331 					goto err_out;
4332 				}
4333 				ext4_orphan_del(handle, inode);
4334 				orphan = 0;
4335 				ext4_journal_stop(handle);
4336 				goto err_out;
4337 			}
4338 		}
4339 	}
4340 
4341 	if (attr->ia_valid & ATTR_SIZE) {
4342 		if (attr->ia_size != i_size_read(inode))
4343 			truncate_setsize(inode, attr->ia_size);
4344 		ext4_truncate(inode);
4345 	}
4346 
4347 	if (!rc) {
4348 		setattr_copy(inode, attr);
4349 		mark_inode_dirty(inode);
4350 	}
4351 
4352 	/*
4353 	 * If the call to ext4_truncate failed to get a transaction handle at
4354 	 * all, we need to clean up the in-core orphan list manually.
4355 	 */
4356 	if (orphan && inode->i_nlink)
4357 		ext4_orphan_del(NULL, inode);
4358 
4359 	if (!rc && (ia_valid & ATTR_MODE))
4360 		rc = ext4_acl_chmod(inode);
4361 
4362 err_out:
4363 	ext4_std_error(inode->i_sb, error);
4364 	if (!error)
4365 		error = rc;
4366 	return error;
4367 }
4368 
4369 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4370 		 struct kstat *stat)
4371 {
4372 	struct inode *inode;
4373 	unsigned long delalloc_blocks;
4374 
4375 	inode = dentry->d_inode;
4376 	generic_fillattr(inode, stat);
4377 
4378 	/*
4379 	 * We can't update i_blocks if the block allocation is delayed
4380 	 * otherwise in the case of system crash before the real block
4381 	 * allocation is done, we will have i_blocks inconsistent with
4382 	 * on-disk file blocks.
4383 	 * We always keep i_blocks updated together with real
4384 	 * allocation. But to not confuse with user, stat
4385 	 * will return the blocks that include the delayed allocation
4386 	 * blocks for this file.
4387 	 */
4388 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4389 				EXT4_I(inode)->i_reserved_data_blocks);
4390 
4391 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4392 	return 0;
4393 }
4394 
4395 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4396 {
4397 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4398 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4399 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4400 }
4401 
4402 /*
4403  * Account for index blocks, block groups bitmaps and block group
4404  * descriptor blocks if modify datablocks and index blocks
4405  * worse case, the indexs blocks spread over different block groups
4406  *
4407  * If datablocks are discontiguous, they are possible to spread over
4408  * different block groups too. If they are contiuguous, with flexbg,
4409  * they could still across block group boundary.
4410  *
4411  * Also account for superblock, inode, quota and xattr blocks
4412  */
4413 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4414 {
4415 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4416 	int gdpblocks;
4417 	int idxblocks;
4418 	int ret = 0;
4419 
4420 	/*
4421 	 * How many index blocks need to touch to modify nrblocks?
4422 	 * The "Chunk" flag indicating whether the nrblocks is
4423 	 * physically contiguous on disk
4424 	 *
4425 	 * For Direct IO and fallocate, they calls get_block to allocate
4426 	 * one single extent at a time, so they could set the "Chunk" flag
4427 	 */
4428 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4429 
4430 	ret = idxblocks;
4431 
4432 	/*
4433 	 * Now let's see how many group bitmaps and group descriptors need
4434 	 * to account
4435 	 */
4436 	groups = idxblocks;
4437 	if (chunk)
4438 		groups += 1;
4439 	else
4440 		groups += nrblocks;
4441 
4442 	gdpblocks = groups;
4443 	if (groups > ngroups)
4444 		groups = ngroups;
4445 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4446 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4447 
4448 	/* bitmaps and block group descriptor blocks */
4449 	ret += groups + gdpblocks;
4450 
4451 	/* Blocks for super block, inode, quota and xattr blocks */
4452 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4453 
4454 	return ret;
4455 }
4456 
4457 /*
4458  * Calculate the total number of credits to reserve to fit
4459  * the modification of a single pages into a single transaction,
4460  * which may include multiple chunks of block allocations.
4461  *
4462  * This could be called via ext4_write_begin()
4463  *
4464  * We need to consider the worse case, when
4465  * one new block per extent.
4466  */
4467 int ext4_writepage_trans_blocks(struct inode *inode)
4468 {
4469 	int bpp = ext4_journal_blocks_per_page(inode);
4470 	int ret;
4471 
4472 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4473 
4474 	/* Account for data blocks for journalled mode */
4475 	if (ext4_should_journal_data(inode))
4476 		ret += bpp;
4477 	return ret;
4478 }
4479 
4480 /*
4481  * Calculate the journal credits for a chunk of data modification.
4482  *
4483  * This is called from DIO, fallocate or whoever calling
4484  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4485  *
4486  * journal buffers for data blocks are not included here, as DIO
4487  * and fallocate do no need to journal data buffers.
4488  */
4489 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4490 {
4491 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4492 }
4493 
4494 /*
4495  * The caller must have previously called ext4_reserve_inode_write().
4496  * Give this, we know that the caller already has write access to iloc->bh.
4497  */
4498 int ext4_mark_iloc_dirty(handle_t *handle,
4499 			 struct inode *inode, struct ext4_iloc *iloc)
4500 {
4501 	int err = 0;
4502 
4503 	if (IS_I_VERSION(inode))
4504 		inode_inc_iversion(inode);
4505 
4506 	/* the do_update_inode consumes one bh->b_count */
4507 	get_bh(iloc->bh);
4508 
4509 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4510 	err = ext4_do_update_inode(handle, inode, iloc);
4511 	put_bh(iloc->bh);
4512 	return err;
4513 }
4514 
4515 /*
4516  * On success, We end up with an outstanding reference count against
4517  * iloc->bh.  This _must_ be cleaned up later.
4518  */
4519 
4520 int
4521 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4522 			 struct ext4_iloc *iloc)
4523 {
4524 	int err;
4525 
4526 	err = ext4_get_inode_loc(inode, iloc);
4527 	if (!err) {
4528 		BUFFER_TRACE(iloc->bh, "get_write_access");
4529 		err = ext4_journal_get_write_access(handle, iloc->bh);
4530 		if (err) {
4531 			brelse(iloc->bh);
4532 			iloc->bh = NULL;
4533 		}
4534 	}
4535 	ext4_std_error(inode->i_sb, err);
4536 	return err;
4537 }
4538 
4539 /*
4540  * Expand an inode by new_extra_isize bytes.
4541  * Returns 0 on success or negative error number on failure.
4542  */
4543 static int ext4_expand_extra_isize(struct inode *inode,
4544 				   unsigned int new_extra_isize,
4545 				   struct ext4_iloc iloc,
4546 				   handle_t *handle)
4547 {
4548 	struct ext4_inode *raw_inode;
4549 	struct ext4_xattr_ibody_header *header;
4550 
4551 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4552 		return 0;
4553 
4554 	raw_inode = ext4_raw_inode(&iloc);
4555 
4556 	header = IHDR(inode, raw_inode);
4557 
4558 	/* No extended attributes present */
4559 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4560 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4561 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4562 			new_extra_isize);
4563 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4564 		return 0;
4565 	}
4566 
4567 	/* try to expand with EAs present */
4568 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4569 					  raw_inode, handle);
4570 }
4571 
4572 /*
4573  * What we do here is to mark the in-core inode as clean with respect to inode
4574  * dirtiness (it may still be data-dirty).
4575  * This means that the in-core inode may be reaped by prune_icache
4576  * without having to perform any I/O.  This is a very good thing,
4577  * because *any* task may call prune_icache - even ones which
4578  * have a transaction open against a different journal.
4579  *
4580  * Is this cheating?  Not really.  Sure, we haven't written the
4581  * inode out, but prune_icache isn't a user-visible syncing function.
4582  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4583  * we start and wait on commits.
4584  *
4585  * Is this efficient/effective?  Well, we're being nice to the system
4586  * by cleaning up our inodes proactively so they can be reaped
4587  * without I/O.  But we are potentially leaving up to five seconds'
4588  * worth of inodes floating about which prune_icache wants us to
4589  * write out.  One way to fix that would be to get prune_icache()
4590  * to do a write_super() to free up some memory.  It has the desired
4591  * effect.
4592  */
4593 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4594 {
4595 	struct ext4_iloc iloc;
4596 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4597 	static unsigned int mnt_count;
4598 	int err, ret;
4599 
4600 	might_sleep();
4601 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4602 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4603 	if (ext4_handle_valid(handle) &&
4604 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4605 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4606 		/*
4607 		 * We need extra buffer credits since we may write into EA block
4608 		 * with this same handle. If journal_extend fails, then it will
4609 		 * only result in a minor loss of functionality for that inode.
4610 		 * If this is felt to be critical, then e2fsck should be run to
4611 		 * force a large enough s_min_extra_isize.
4612 		 */
4613 		if ((jbd2_journal_extend(handle,
4614 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4615 			ret = ext4_expand_extra_isize(inode,
4616 						      sbi->s_want_extra_isize,
4617 						      iloc, handle);
4618 			if (ret) {
4619 				ext4_set_inode_state(inode,
4620 						     EXT4_STATE_NO_EXPAND);
4621 				if (mnt_count !=
4622 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4623 					ext4_warning(inode->i_sb,
4624 					"Unable to expand inode %lu. Delete"
4625 					" some EAs or run e2fsck.",
4626 					inode->i_ino);
4627 					mnt_count =
4628 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4629 				}
4630 			}
4631 		}
4632 	}
4633 	if (!err)
4634 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4635 	return err;
4636 }
4637 
4638 /*
4639  * ext4_dirty_inode() is called from __mark_inode_dirty()
4640  *
4641  * We're really interested in the case where a file is being extended.
4642  * i_size has been changed by generic_commit_write() and we thus need
4643  * to include the updated inode in the current transaction.
4644  *
4645  * Also, dquot_alloc_block() will always dirty the inode when blocks
4646  * are allocated to the file.
4647  *
4648  * If the inode is marked synchronous, we don't honour that here - doing
4649  * so would cause a commit on atime updates, which we don't bother doing.
4650  * We handle synchronous inodes at the highest possible level.
4651  */
4652 void ext4_dirty_inode(struct inode *inode, int flags)
4653 {
4654 	handle_t *handle;
4655 
4656 	handle = ext4_journal_start(inode, 2);
4657 	if (IS_ERR(handle))
4658 		goto out;
4659 
4660 	ext4_mark_inode_dirty(handle, inode);
4661 
4662 	ext4_journal_stop(handle);
4663 out:
4664 	return;
4665 }
4666 
4667 #if 0
4668 /*
4669  * Bind an inode's backing buffer_head into this transaction, to prevent
4670  * it from being flushed to disk early.  Unlike
4671  * ext4_reserve_inode_write, this leaves behind no bh reference and
4672  * returns no iloc structure, so the caller needs to repeat the iloc
4673  * lookup to mark the inode dirty later.
4674  */
4675 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4676 {
4677 	struct ext4_iloc iloc;
4678 
4679 	int err = 0;
4680 	if (handle) {
4681 		err = ext4_get_inode_loc(inode, &iloc);
4682 		if (!err) {
4683 			BUFFER_TRACE(iloc.bh, "get_write_access");
4684 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4685 			if (!err)
4686 				err = ext4_handle_dirty_metadata(handle,
4687 								 NULL,
4688 								 iloc.bh);
4689 			brelse(iloc.bh);
4690 		}
4691 	}
4692 	ext4_std_error(inode->i_sb, err);
4693 	return err;
4694 }
4695 #endif
4696 
4697 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4698 {
4699 	journal_t *journal;
4700 	handle_t *handle;
4701 	int err;
4702 
4703 	/*
4704 	 * We have to be very careful here: changing a data block's
4705 	 * journaling status dynamically is dangerous.  If we write a
4706 	 * data block to the journal, change the status and then delete
4707 	 * that block, we risk forgetting to revoke the old log record
4708 	 * from the journal and so a subsequent replay can corrupt data.
4709 	 * So, first we make sure that the journal is empty and that
4710 	 * nobody is changing anything.
4711 	 */
4712 
4713 	journal = EXT4_JOURNAL(inode);
4714 	if (!journal)
4715 		return 0;
4716 	if (is_journal_aborted(journal))
4717 		return -EROFS;
4718 	/* We have to allocate physical blocks for delalloc blocks
4719 	 * before flushing journal. otherwise delalloc blocks can not
4720 	 * be allocated any more. even more truncate on delalloc blocks
4721 	 * could trigger BUG by flushing delalloc blocks in journal.
4722 	 * There is no delalloc block in non-journal data mode.
4723 	 */
4724 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4725 		err = ext4_alloc_da_blocks(inode);
4726 		if (err < 0)
4727 			return err;
4728 	}
4729 
4730 	jbd2_journal_lock_updates(journal);
4731 
4732 	/*
4733 	 * OK, there are no updates running now, and all cached data is
4734 	 * synced to disk.  We are now in a completely consistent state
4735 	 * which doesn't have anything in the journal, and we know that
4736 	 * no filesystem updates are running, so it is safe to modify
4737 	 * the inode's in-core data-journaling state flag now.
4738 	 */
4739 
4740 	if (val)
4741 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4742 	else {
4743 		jbd2_journal_flush(journal);
4744 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4745 	}
4746 	ext4_set_aops(inode);
4747 
4748 	jbd2_journal_unlock_updates(journal);
4749 
4750 	/* Finally we can mark the inode as dirty. */
4751 
4752 	handle = ext4_journal_start(inode, 1);
4753 	if (IS_ERR(handle))
4754 		return PTR_ERR(handle);
4755 
4756 	err = ext4_mark_inode_dirty(handle, inode);
4757 	ext4_handle_sync(handle);
4758 	ext4_journal_stop(handle);
4759 	ext4_std_error(inode->i_sb, err);
4760 
4761 	return err;
4762 }
4763 
4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4765 {
4766 	return !buffer_mapped(bh);
4767 }
4768 
4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4770 {
4771 	struct page *page = vmf->page;
4772 	loff_t size;
4773 	unsigned long len;
4774 	int ret;
4775 	struct file *file = vma->vm_file;
4776 	struct inode *inode = file->f_path.dentry->d_inode;
4777 	struct address_space *mapping = inode->i_mapping;
4778 	handle_t *handle;
4779 	get_block_t *get_block;
4780 	int retries = 0;
4781 
4782 	/*
4783 	 * This check is racy but catches the common case. We rely on
4784 	 * __block_page_mkwrite() to do a reliable check.
4785 	 */
4786 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4787 	/* Delalloc case is easy... */
4788 	if (test_opt(inode->i_sb, DELALLOC) &&
4789 	    !ext4_should_journal_data(inode) &&
4790 	    !ext4_nonda_switch(inode->i_sb)) {
4791 		do {
4792 			ret = __block_page_mkwrite(vma, vmf,
4793 						   ext4_da_get_block_prep);
4794 		} while (ret == -ENOSPC &&
4795 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4796 		goto out_ret;
4797 	}
4798 
4799 	lock_page(page);
4800 	size = i_size_read(inode);
4801 	/* Page got truncated from under us? */
4802 	if (page->mapping != mapping || page_offset(page) > size) {
4803 		unlock_page(page);
4804 		ret = VM_FAULT_NOPAGE;
4805 		goto out;
4806 	}
4807 
4808 	if (page->index == size >> PAGE_CACHE_SHIFT)
4809 		len = size & ~PAGE_CACHE_MASK;
4810 	else
4811 		len = PAGE_CACHE_SIZE;
4812 	/*
4813 	 * Return if we have all the buffers mapped. This avoids the need to do
4814 	 * journal_start/journal_stop which can block and take a long time
4815 	 */
4816 	if (page_has_buffers(page)) {
4817 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4818 					ext4_bh_unmapped)) {
4819 			/* Wait so that we don't change page under IO */
4820 			wait_on_page_writeback(page);
4821 			ret = VM_FAULT_LOCKED;
4822 			goto out;
4823 		}
4824 	}
4825 	unlock_page(page);
4826 	/* OK, we need to fill the hole... */
4827 	if (ext4_should_dioread_nolock(inode))
4828 		get_block = ext4_get_block_write;
4829 	else
4830 		get_block = ext4_get_block;
4831 retry_alloc:
4832 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4833 	if (IS_ERR(handle)) {
4834 		ret = VM_FAULT_SIGBUS;
4835 		goto out;
4836 	}
4837 	ret = __block_page_mkwrite(vma, vmf, get_block);
4838 	if (!ret && ext4_should_journal_data(inode)) {
4839 		if (walk_page_buffers(handle, page_buffers(page), 0,
4840 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4841 			unlock_page(page);
4842 			ret = VM_FAULT_SIGBUS;
4843 			ext4_journal_stop(handle);
4844 			goto out;
4845 		}
4846 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4847 	}
4848 	ext4_journal_stop(handle);
4849 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4850 		goto retry_alloc;
4851 out_ret:
4852 	ret = block_page_mkwrite_return(ret);
4853 out:
4854 	return ret;
4855 }
4856