1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = raw->i_checksum_lo; 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = raw->i_checksum_hi; 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = csum_lo; 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = csum_hi; 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh_result, int create); 137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 142 struct inode *inode, struct page *page, loff_t from, 143 loff_t length, int flags); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 static int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 (inode->i_sb->s_blocksize >> 9) : 0; 152 153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 190 trace_ext4_evict_inode(inode); 191 192 ext4_ioend_wait(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (ext4_should_journal_data(inode) && 214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_log_start_commit(journal, commit_tid); 219 jbd2_log_wait_commit(journal, commit_tid); 220 filemap_write_and_wait(&inode->i_data); 221 } 222 truncate_inode_pages(&inode->i_data, 0); 223 goto no_delete; 224 } 225 226 if (!is_bad_inode(inode)) 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages(&inode->i_data, 0); 232 233 if (is_bad_inode(inode)) 234 goto no_delete; 235 236 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 237 if (IS_ERR(handle)) { 238 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 239 /* 240 * If we're going to skip the normal cleanup, we still need to 241 * make sure that the in-core orphan linked list is properly 242 * cleaned up. 243 */ 244 ext4_orphan_del(NULL, inode); 245 goto no_delete; 246 } 247 248 if (IS_SYNC(inode)) 249 ext4_handle_sync(handle); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) 258 ext4_truncate(inode); 259 260 /* 261 * ext4_ext_truncate() doesn't reserve any slop when it 262 * restarts journal transactions; therefore there may not be 263 * enough credits left in the handle to remove the inode from 264 * the orphan list and set the dtime field. 265 */ 266 if (!ext4_handle_has_enough_credits(handle, 3)) { 267 err = ext4_journal_extend(handle, 3); 268 if (err > 0) 269 err = ext4_journal_restart(handle, 3); 270 if (err != 0) { 271 ext4_warning(inode->i_sb, 272 "couldn't extend journal (err %d)", err); 273 stop_handle: 274 ext4_journal_stop(handle); 275 ext4_orphan_del(NULL, inode); 276 goto no_delete; 277 } 278 } 279 280 /* 281 * Kill off the orphan record which ext4_truncate created. 282 * AKPM: I think this can be inside the above `if'. 283 * Note that ext4_orphan_del() has to be able to cope with the 284 * deletion of a non-existent orphan - this is because we don't 285 * know if ext4_truncate() actually created an orphan record. 286 * (Well, we could do this if we need to, but heck - it works) 287 */ 288 ext4_orphan_del(handle, inode); 289 EXT4_I(inode)->i_dtime = get_seconds(); 290 291 /* 292 * One subtle ordering requirement: if anything has gone wrong 293 * (transaction abort, IO errors, whatever), then we can still 294 * do these next steps (the fs will already have been marked as 295 * having errors), but we can't free the inode if the mark_dirty 296 * fails. 297 */ 298 if (ext4_mark_inode_dirty(handle, inode)) 299 /* If that failed, just do the required in-core inode clear. */ 300 ext4_clear_inode(inode); 301 else 302 ext4_free_inode(handle, inode); 303 ext4_journal_stop(handle); 304 return; 305 no_delete: 306 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 307 } 308 309 #ifdef CONFIG_QUOTA 310 qsize_t *ext4_get_reserved_space(struct inode *inode) 311 { 312 return &EXT4_I(inode)->i_reserved_quota; 313 } 314 #endif 315 316 /* 317 * Calculate the number of metadata blocks need to reserve 318 * to allocate a block located at @lblock 319 */ 320 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 321 { 322 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 323 return ext4_ext_calc_metadata_amount(inode, lblock); 324 325 return ext4_ind_calc_metadata_amount(inode, lblock); 326 } 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 350 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d " 351 "with only %d reserved metadata blocks\n", __func__, 352 inode->i_ino, ei->i_allocated_meta_blocks, 353 ei->i_reserved_meta_blocks); 354 WARN_ON(1); 355 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 356 } 357 358 /* Update per-inode reservations */ 359 ei->i_reserved_data_blocks -= used; 360 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 362 used + ei->i_allocated_meta_blocks); 363 ei->i_allocated_meta_blocks = 0; 364 365 if (ei->i_reserved_data_blocks == 0) { 366 /* 367 * We can release all of the reserved metadata blocks 368 * only when we have written all of the delayed 369 * allocation blocks. 370 */ 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 372 ei->i_reserved_meta_blocks); 373 ei->i_reserved_meta_blocks = 0; 374 ei->i_da_metadata_calc_len = 0; 375 } 376 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 377 378 /* Update quota subsystem for data blocks */ 379 if (quota_claim) 380 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 381 else { 382 /* 383 * We did fallocate with an offset that is already delayed 384 * allocated. So on delayed allocated writeback we should 385 * not re-claim the quota for fallocated blocks. 386 */ 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 388 } 389 390 /* 391 * If we have done all the pending block allocations and if 392 * there aren't any writers on the inode, we can discard the 393 * inode's preallocations. 394 */ 395 if ((ei->i_reserved_data_blocks == 0) && 396 (atomic_read(&inode->i_writecount) == 0)) 397 ext4_discard_preallocations(inode); 398 } 399 400 static int __check_block_validity(struct inode *inode, const char *func, 401 unsigned int line, 402 struct ext4_map_blocks *map) 403 { 404 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 405 map->m_len)) { 406 ext4_error_inode(inode, func, line, map->m_pblk, 407 "lblock %lu mapped to illegal pblock " 408 "(length %d)", (unsigned long) map->m_lblk, 409 map->m_len); 410 return -EIO; 411 } 412 return 0; 413 } 414 415 #define check_block_validity(inode, map) \ 416 __check_block_validity((inode), __func__, __LINE__, (map)) 417 418 /* 419 * Return the number of contiguous dirty pages in a given inode 420 * starting at page frame idx. 421 */ 422 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 423 unsigned int max_pages) 424 { 425 struct address_space *mapping = inode->i_mapping; 426 pgoff_t index; 427 struct pagevec pvec; 428 pgoff_t num = 0; 429 int i, nr_pages, done = 0; 430 431 if (max_pages == 0) 432 return 0; 433 pagevec_init(&pvec, 0); 434 while (!done) { 435 index = idx; 436 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 437 PAGECACHE_TAG_DIRTY, 438 (pgoff_t)PAGEVEC_SIZE); 439 if (nr_pages == 0) 440 break; 441 for (i = 0; i < nr_pages; i++) { 442 struct page *page = pvec.pages[i]; 443 struct buffer_head *bh, *head; 444 445 lock_page(page); 446 if (unlikely(page->mapping != mapping) || 447 !PageDirty(page) || 448 PageWriteback(page) || 449 page->index != idx) { 450 done = 1; 451 unlock_page(page); 452 break; 453 } 454 if (page_has_buffers(page)) { 455 bh = head = page_buffers(page); 456 do { 457 if (!buffer_delay(bh) && 458 !buffer_unwritten(bh)) 459 done = 1; 460 bh = bh->b_this_page; 461 } while (!done && (bh != head)); 462 } 463 unlock_page(page); 464 if (done) 465 break; 466 idx++; 467 num++; 468 if (num >= max_pages) { 469 done = 1; 470 break; 471 } 472 } 473 pagevec_release(&pvec); 474 } 475 return num; 476 } 477 478 /* 479 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 480 */ 481 static void set_buffers_da_mapped(struct inode *inode, 482 struct ext4_map_blocks *map) 483 { 484 struct address_space *mapping = inode->i_mapping; 485 struct pagevec pvec; 486 int i, nr_pages; 487 pgoff_t index, end; 488 489 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 490 end = (map->m_lblk + map->m_len - 1) >> 491 (PAGE_CACHE_SHIFT - inode->i_blkbits); 492 493 pagevec_init(&pvec, 0); 494 while (index <= end) { 495 nr_pages = pagevec_lookup(&pvec, mapping, index, 496 min(end - index + 1, 497 (pgoff_t)PAGEVEC_SIZE)); 498 if (nr_pages == 0) 499 break; 500 for (i = 0; i < nr_pages; i++) { 501 struct page *page = pvec.pages[i]; 502 struct buffer_head *bh, *head; 503 504 if (unlikely(page->mapping != mapping) || 505 !PageDirty(page)) 506 break; 507 508 if (page_has_buffers(page)) { 509 bh = head = page_buffers(page); 510 do { 511 set_buffer_da_mapped(bh); 512 bh = bh->b_this_page; 513 } while (bh != head); 514 } 515 index++; 516 } 517 pagevec_release(&pvec); 518 } 519 } 520 521 /* 522 * The ext4_map_blocks() function tries to look up the requested blocks, 523 * and returns if the blocks are already mapped. 524 * 525 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 526 * and store the allocated blocks in the result buffer head and mark it 527 * mapped. 528 * 529 * If file type is extents based, it will call ext4_ext_map_blocks(), 530 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 531 * based files 532 * 533 * On success, it returns the number of blocks being mapped or allocate. 534 * if create==0 and the blocks are pre-allocated and uninitialized block, 535 * the result buffer head is unmapped. If the create ==1, it will make sure 536 * the buffer head is mapped. 537 * 538 * It returns 0 if plain look up failed (blocks have not been allocated), in 539 * that case, buffer head is unmapped 540 * 541 * It returns the error in case of allocation failure. 542 */ 543 int ext4_map_blocks(handle_t *handle, struct inode *inode, 544 struct ext4_map_blocks *map, int flags) 545 { 546 int retval; 547 548 map->m_flags = 0; 549 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 550 "logical block %lu\n", inode->i_ino, flags, map->m_len, 551 (unsigned long) map->m_lblk); 552 /* 553 * Try to see if we can get the block without requesting a new 554 * file system block. 555 */ 556 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 557 down_read((&EXT4_I(inode)->i_data_sem)); 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 559 retval = ext4_ext_map_blocks(handle, inode, map, flags & 560 EXT4_GET_BLOCKS_KEEP_SIZE); 561 } else { 562 retval = ext4_ind_map_blocks(handle, inode, map, flags & 563 EXT4_GET_BLOCKS_KEEP_SIZE); 564 } 565 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 566 up_read((&EXT4_I(inode)->i_data_sem)); 567 568 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 569 int ret = check_block_validity(inode, map); 570 if (ret != 0) 571 return ret; 572 } 573 574 /* If it is only a block(s) look up */ 575 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 576 return retval; 577 578 /* 579 * Returns if the blocks have already allocated 580 * 581 * Note that if blocks have been preallocated 582 * ext4_ext_get_block() returns the create = 0 583 * with buffer head unmapped. 584 */ 585 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 586 return retval; 587 588 /* 589 * When we call get_blocks without the create flag, the 590 * BH_Unwritten flag could have gotten set if the blocks 591 * requested were part of a uninitialized extent. We need to 592 * clear this flag now that we are committed to convert all or 593 * part of the uninitialized extent to be an initialized 594 * extent. This is because we need to avoid the combination 595 * of BH_Unwritten and BH_Mapped flags being simultaneously 596 * set on the buffer_head. 597 */ 598 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 599 600 /* 601 * New blocks allocate and/or writing to uninitialized extent 602 * will possibly result in updating i_data, so we take 603 * the write lock of i_data_sem, and call get_blocks() 604 * with create == 1 flag. 605 */ 606 down_write((&EXT4_I(inode)->i_data_sem)); 607 608 /* 609 * if the caller is from delayed allocation writeout path 610 * we have already reserved fs blocks for allocation 611 * let the underlying get_block() function know to 612 * avoid double accounting 613 */ 614 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 615 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 616 /* 617 * We need to check for EXT4 here because migrate 618 * could have changed the inode type in between 619 */ 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 621 retval = ext4_ext_map_blocks(handle, inode, map, flags); 622 } else { 623 retval = ext4_ind_map_blocks(handle, inode, map, flags); 624 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 626 /* 627 * We allocated new blocks which will result in 628 * i_data's format changing. Force the migrate 629 * to fail by clearing migrate flags 630 */ 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 632 } 633 634 /* 635 * Update reserved blocks/metadata blocks after successful 636 * block allocation which had been deferred till now. We don't 637 * support fallocate for non extent files. So we can update 638 * reserve space here. 639 */ 640 if ((retval > 0) && 641 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 642 ext4_da_update_reserve_space(inode, retval, 1); 643 } 644 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 645 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 646 647 /* If we have successfully mapped the delayed allocated blocks, 648 * set the BH_Da_Mapped bit on them. Its important to do this 649 * under the protection of i_data_sem. 650 */ 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 652 set_buffers_da_mapped(inode, map); 653 } 654 655 up_write((&EXT4_I(inode)->i_data_sem)); 656 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 657 int ret = check_block_validity(inode, map); 658 if (ret != 0) 659 return ret; 660 } 661 return retval; 662 } 663 664 /* Maximum number of blocks we map for direct IO at once. */ 665 #define DIO_MAX_BLOCKS 4096 666 667 static int _ext4_get_block(struct inode *inode, sector_t iblock, 668 struct buffer_head *bh, int flags) 669 { 670 handle_t *handle = ext4_journal_current_handle(); 671 struct ext4_map_blocks map; 672 int ret = 0, started = 0; 673 int dio_credits; 674 675 map.m_lblk = iblock; 676 map.m_len = bh->b_size >> inode->i_blkbits; 677 678 if (flags && !handle) { 679 /* Direct IO write... */ 680 if (map.m_len > DIO_MAX_BLOCKS) 681 map.m_len = DIO_MAX_BLOCKS; 682 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 683 handle = ext4_journal_start(inode, dio_credits); 684 if (IS_ERR(handle)) { 685 ret = PTR_ERR(handle); 686 return ret; 687 } 688 started = 1; 689 } 690 691 ret = ext4_map_blocks(handle, inode, &map, flags); 692 if (ret > 0) { 693 map_bh(bh, inode->i_sb, map.m_pblk); 694 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 695 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 696 ret = 0; 697 } 698 if (started) 699 ext4_journal_stop(handle); 700 return ret; 701 } 702 703 int ext4_get_block(struct inode *inode, sector_t iblock, 704 struct buffer_head *bh, int create) 705 { 706 return _ext4_get_block(inode, iblock, bh, 707 create ? EXT4_GET_BLOCKS_CREATE : 0); 708 } 709 710 /* 711 * `handle' can be NULL if create is zero 712 */ 713 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 714 ext4_lblk_t block, int create, int *errp) 715 { 716 struct ext4_map_blocks map; 717 struct buffer_head *bh; 718 int fatal = 0, err; 719 720 J_ASSERT(handle != NULL || create == 0); 721 722 map.m_lblk = block; 723 map.m_len = 1; 724 err = ext4_map_blocks(handle, inode, &map, 725 create ? EXT4_GET_BLOCKS_CREATE : 0); 726 727 if (err < 0) 728 *errp = err; 729 if (err <= 0) 730 return NULL; 731 *errp = 0; 732 733 bh = sb_getblk(inode->i_sb, map.m_pblk); 734 if (!bh) { 735 *errp = -EIO; 736 return NULL; 737 } 738 if (map.m_flags & EXT4_MAP_NEW) { 739 J_ASSERT(create != 0); 740 J_ASSERT(handle != NULL); 741 742 /* 743 * Now that we do not always journal data, we should 744 * keep in mind whether this should always journal the 745 * new buffer as metadata. For now, regular file 746 * writes use ext4_get_block instead, so it's not a 747 * problem. 748 */ 749 lock_buffer(bh); 750 BUFFER_TRACE(bh, "call get_create_access"); 751 fatal = ext4_journal_get_create_access(handle, bh); 752 if (!fatal && !buffer_uptodate(bh)) { 753 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 754 set_buffer_uptodate(bh); 755 } 756 unlock_buffer(bh); 757 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 758 err = ext4_handle_dirty_metadata(handle, inode, bh); 759 if (!fatal) 760 fatal = err; 761 } else { 762 BUFFER_TRACE(bh, "not a new buffer"); 763 } 764 if (fatal) { 765 *errp = fatal; 766 brelse(bh); 767 bh = NULL; 768 } 769 return bh; 770 } 771 772 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 773 ext4_lblk_t block, int create, int *err) 774 { 775 struct buffer_head *bh; 776 777 bh = ext4_getblk(handle, inode, block, create, err); 778 if (!bh) 779 return bh; 780 if (buffer_uptodate(bh)) 781 return bh; 782 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 783 wait_on_buffer(bh); 784 if (buffer_uptodate(bh)) 785 return bh; 786 put_bh(bh); 787 *err = -EIO; 788 return NULL; 789 } 790 791 static int walk_page_buffers(handle_t *handle, 792 struct buffer_head *head, 793 unsigned from, 794 unsigned to, 795 int *partial, 796 int (*fn)(handle_t *handle, 797 struct buffer_head *bh)) 798 { 799 struct buffer_head *bh; 800 unsigned block_start, block_end; 801 unsigned blocksize = head->b_size; 802 int err, ret = 0; 803 struct buffer_head *next; 804 805 for (bh = head, block_start = 0; 806 ret == 0 && (bh != head || !block_start); 807 block_start = block_end, bh = next) { 808 next = bh->b_this_page; 809 block_end = block_start + blocksize; 810 if (block_end <= from || block_start >= to) { 811 if (partial && !buffer_uptodate(bh)) 812 *partial = 1; 813 continue; 814 } 815 err = (*fn)(handle, bh); 816 if (!ret) 817 ret = err; 818 } 819 return ret; 820 } 821 822 /* 823 * To preserve ordering, it is essential that the hole instantiation and 824 * the data write be encapsulated in a single transaction. We cannot 825 * close off a transaction and start a new one between the ext4_get_block() 826 * and the commit_write(). So doing the jbd2_journal_start at the start of 827 * prepare_write() is the right place. 828 * 829 * Also, this function can nest inside ext4_writepage() -> 830 * block_write_full_page(). In that case, we *know* that ext4_writepage() 831 * has generated enough buffer credits to do the whole page. So we won't 832 * block on the journal in that case, which is good, because the caller may 833 * be PF_MEMALLOC. 834 * 835 * By accident, ext4 can be reentered when a transaction is open via 836 * quota file writes. If we were to commit the transaction while thus 837 * reentered, there can be a deadlock - we would be holding a quota 838 * lock, and the commit would never complete if another thread had a 839 * transaction open and was blocking on the quota lock - a ranking 840 * violation. 841 * 842 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 843 * will _not_ run commit under these circumstances because handle->h_ref 844 * is elevated. We'll still have enough credits for the tiny quotafile 845 * write. 846 */ 847 static int do_journal_get_write_access(handle_t *handle, 848 struct buffer_head *bh) 849 { 850 int dirty = buffer_dirty(bh); 851 int ret; 852 853 if (!buffer_mapped(bh) || buffer_freed(bh)) 854 return 0; 855 /* 856 * __block_write_begin() could have dirtied some buffers. Clean 857 * the dirty bit as jbd2_journal_get_write_access() could complain 858 * otherwise about fs integrity issues. Setting of the dirty bit 859 * by __block_write_begin() isn't a real problem here as we clear 860 * the bit before releasing a page lock and thus writeback cannot 861 * ever write the buffer. 862 */ 863 if (dirty) 864 clear_buffer_dirty(bh); 865 ret = ext4_journal_get_write_access(handle, bh); 866 if (!ret && dirty) 867 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 868 return ret; 869 } 870 871 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 872 struct buffer_head *bh_result, int create); 873 static int ext4_write_begin(struct file *file, struct address_space *mapping, 874 loff_t pos, unsigned len, unsigned flags, 875 struct page **pagep, void **fsdata) 876 { 877 struct inode *inode = mapping->host; 878 int ret, needed_blocks; 879 handle_t *handle; 880 int retries = 0; 881 struct page *page; 882 pgoff_t index; 883 unsigned from, to; 884 885 trace_ext4_write_begin(inode, pos, len, flags); 886 /* 887 * Reserve one block more for addition to orphan list in case 888 * we allocate blocks but write fails for some reason 889 */ 890 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 891 index = pos >> PAGE_CACHE_SHIFT; 892 from = pos & (PAGE_CACHE_SIZE - 1); 893 to = from + len; 894 895 retry: 896 handle = ext4_journal_start(inode, needed_blocks); 897 if (IS_ERR(handle)) { 898 ret = PTR_ERR(handle); 899 goto out; 900 } 901 902 /* We cannot recurse into the filesystem as the transaction is already 903 * started */ 904 flags |= AOP_FLAG_NOFS; 905 906 page = grab_cache_page_write_begin(mapping, index, flags); 907 if (!page) { 908 ext4_journal_stop(handle); 909 ret = -ENOMEM; 910 goto out; 911 } 912 *pagep = page; 913 914 if (ext4_should_dioread_nolock(inode)) 915 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 916 else 917 ret = __block_write_begin(page, pos, len, ext4_get_block); 918 919 if (!ret && ext4_should_journal_data(inode)) { 920 ret = walk_page_buffers(handle, page_buffers(page), 921 from, to, NULL, do_journal_get_write_access); 922 } 923 924 if (ret) { 925 unlock_page(page); 926 page_cache_release(page); 927 /* 928 * __block_write_begin may have instantiated a few blocks 929 * outside i_size. Trim these off again. Don't need 930 * i_size_read because we hold i_mutex. 931 * 932 * Add inode to orphan list in case we crash before 933 * truncate finishes 934 */ 935 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 936 ext4_orphan_add(handle, inode); 937 938 ext4_journal_stop(handle); 939 if (pos + len > inode->i_size) { 940 ext4_truncate_failed_write(inode); 941 /* 942 * If truncate failed early the inode might 943 * still be on the orphan list; we need to 944 * make sure the inode is removed from the 945 * orphan list in that case. 946 */ 947 if (inode->i_nlink) 948 ext4_orphan_del(NULL, inode); 949 } 950 } 951 952 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 953 goto retry; 954 out: 955 return ret; 956 } 957 958 /* For write_end() in data=journal mode */ 959 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 960 { 961 if (!buffer_mapped(bh) || buffer_freed(bh)) 962 return 0; 963 set_buffer_uptodate(bh); 964 return ext4_handle_dirty_metadata(handle, NULL, bh); 965 } 966 967 static int ext4_generic_write_end(struct file *file, 968 struct address_space *mapping, 969 loff_t pos, unsigned len, unsigned copied, 970 struct page *page, void *fsdata) 971 { 972 int i_size_changed = 0; 973 struct inode *inode = mapping->host; 974 handle_t *handle = ext4_journal_current_handle(); 975 976 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 977 978 /* 979 * No need to use i_size_read() here, the i_size 980 * cannot change under us because we hold i_mutex. 981 * 982 * But it's important to update i_size while still holding page lock: 983 * page writeout could otherwise come in and zero beyond i_size. 984 */ 985 if (pos + copied > inode->i_size) { 986 i_size_write(inode, pos + copied); 987 i_size_changed = 1; 988 } 989 990 if (pos + copied > EXT4_I(inode)->i_disksize) { 991 /* We need to mark inode dirty even if 992 * new_i_size is less that inode->i_size 993 * bu greater than i_disksize.(hint delalloc) 994 */ 995 ext4_update_i_disksize(inode, (pos + copied)); 996 i_size_changed = 1; 997 } 998 unlock_page(page); 999 page_cache_release(page); 1000 1001 /* 1002 * Don't mark the inode dirty under page lock. First, it unnecessarily 1003 * makes the holding time of page lock longer. Second, it forces lock 1004 * ordering of page lock and transaction start for journaling 1005 * filesystems. 1006 */ 1007 if (i_size_changed) 1008 ext4_mark_inode_dirty(handle, inode); 1009 1010 return copied; 1011 } 1012 1013 /* 1014 * We need to pick up the new inode size which generic_commit_write gave us 1015 * `file' can be NULL - eg, when called from page_symlink(). 1016 * 1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1018 * buffers are managed internally. 1019 */ 1020 static int ext4_ordered_write_end(struct file *file, 1021 struct address_space *mapping, 1022 loff_t pos, unsigned len, unsigned copied, 1023 struct page *page, void *fsdata) 1024 { 1025 handle_t *handle = ext4_journal_current_handle(); 1026 struct inode *inode = mapping->host; 1027 int ret = 0, ret2; 1028 1029 trace_ext4_ordered_write_end(inode, pos, len, copied); 1030 ret = ext4_jbd2_file_inode(handle, inode); 1031 1032 if (ret == 0) { 1033 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1034 page, fsdata); 1035 copied = ret2; 1036 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1037 /* if we have allocated more blocks and copied 1038 * less. We will have blocks allocated outside 1039 * inode->i_size. So truncate them 1040 */ 1041 ext4_orphan_add(handle, inode); 1042 if (ret2 < 0) 1043 ret = ret2; 1044 } else { 1045 unlock_page(page); 1046 page_cache_release(page); 1047 } 1048 1049 ret2 = ext4_journal_stop(handle); 1050 if (!ret) 1051 ret = ret2; 1052 1053 if (pos + len > inode->i_size) { 1054 ext4_truncate_failed_write(inode); 1055 /* 1056 * If truncate failed early the inode might still be 1057 * on the orphan list; we need to make sure the inode 1058 * is removed from the orphan list in that case. 1059 */ 1060 if (inode->i_nlink) 1061 ext4_orphan_del(NULL, inode); 1062 } 1063 1064 1065 return ret ? ret : copied; 1066 } 1067 1068 static int ext4_writeback_write_end(struct file *file, 1069 struct address_space *mapping, 1070 loff_t pos, unsigned len, unsigned copied, 1071 struct page *page, void *fsdata) 1072 { 1073 handle_t *handle = ext4_journal_current_handle(); 1074 struct inode *inode = mapping->host; 1075 int ret = 0, ret2; 1076 1077 trace_ext4_writeback_write_end(inode, pos, len, copied); 1078 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1079 page, fsdata); 1080 copied = ret2; 1081 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1082 /* if we have allocated more blocks and copied 1083 * less. We will have blocks allocated outside 1084 * inode->i_size. So truncate them 1085 */ 1086 ext4_orphan_add(handle, inode); 1087 1088 if (ret2 < 0) 1089 ret = ret2; 1090 1091 ret2 = ext4_journal_stop(handle); 1092 if (!ret) 1093 ret = ret2; 1094 1095 if (pos + len > inode->i_size) { 1096 ext4_truncate_failed_write(inode); 1097 /* 1098 * If truncate failed early the inode might still be 1099 * on the orphan list; we need to make sure the inode 1100 * is removed from the orphan list in that case. 1101 */ 1102 if (inode->i_nlink) 1103 ext4_orphan_del(NULL, inode); 1104 } 1105 1106 return ret ? ret : copied; 1107 } 1108 1109 static int ext4_journalled_write_end(struct file *file, 1110 struct address_space *mapping, 1111 loff_t pos, unsigned len, unsigned copied, 1112 struct page *page, void *fsdata) 1113 { 1114 handle_t *handle = ext4_journal_current_handle(); 1115 struct inode *inode = mapping->host; 1116 int ret = 0, ret2; 1117 int partial = 0; 1118 unsigned from, to; 1119 loff_t new_i_size; 1120 1121 trace_ext4_journalled_write_end(inode, pos, len, copied); 1122 from = pos & (PAGE_CACHE_SIZE - 1); 1123 to = from + len; 1124 1125 BUG_ON(!ext4_handle_valid(handle)); 1126 1127 if (copied < len) { 1128 if (!PageUptodate(page)) 1129 copied = 0; 1130 page_zero_new_buffers(page, from+copied, to); 1131 } 1132 1133 ret = walk_page_buffers(handle, page_buffers(page), from, 1134 to, &partial, write_end_fn); 1135 if (!partial) 1136 SetPageUptodate(page); 1137 new_i_size = pos + copied; 1138 if (new_i_size > inode->i_size) 1139 i_size_write(inode, pos+copied); 1140 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1141 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1142 if (new_i_size > EXT4_I(inode)->i_disksize) { 1143 ext4_update_i_disksize(inode, new_i_size); 1144 ret2 = ext4_mark_inode_dirty(handle, inode); 1145 if (!ret) 1146 ret = ret2; 1147 } 1148 1149 unlock_page(page); 1150 page_cache_release(page); 1151 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1152 /* if we have allocated more blocks and copied 1153 * less. We will have blocks allocated outside 1154 * inode->i_size. So truncate them 1155 */ 1156 ext4_orphan_add(handle, inode); 1157 1158 ret2 = ext4_journal_stop(handle); 1159 if (!ret) 1160 ret = ret2; 1161 if (pos + len > inode->i_size) { 1162 ext4_truncate_failed_write(inode); 1163 /* 1164 * If truncate failed early the inode might still be 1165 * on the orphan list; we need to make sure the inode 1166 * is removed from the orphan list in that case. 1167 */ 1168 if (inode->i_nlink) 1169 ext4_orphan_del(NULL, inode); 1170 } 1171 1172 return ret ? ret : copied; 1173 } 1174 1175 /* 1176 * Reserve a single cluster located at lblock 1177 */ 1178 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1179 { 1180 int retries = 0; 1181 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1182 struct ext4_inode_info *ei = EXT4_I(inode); 1183 unsigned int md_needed; 1184 int ret; 1185 ext4_lblk_t save_last_lblock; 1186 int save_len; 1187 1188 /* 1189 * We will charge metadata quota at writeout time; this saves 1190 * us from metadata over-estimation, though we may go over by 1191 * a small amount in the end. Here we just reserve for data. 1192 */ 1193 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1194 if (ret) 1195 return ret; 1196 1197 /* 1198 * recalculate the amount of metadata blocks to reserve 1199 * in order to allocate nrblocks 1200 * worse case is one extent per block 1201 */ 1202 repeat: 1203 spin_lock(&ei->i_block_reservation_lock); 1204 /* 1205 * ext4_calc_metadata_amount() has side effects, which we have 1206 * to be prepared undo if we fail to claim space. 1207 */ 1208 save_len = ei->i_da_metadata_calc_len; 1209 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1210 md_needed = EXT4_NUM_B2C(sbi, 1211 ext4_calc_metadata_amount(inode, lblock)); 1212 trace_ext4_da_reserve_space(inode, md_needed); 1213 1214 /* 1215 * We do still charge estimated metadata to the sb though; 1216 * we cannot afford to run out of free blocks. 1217 */ 1218 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1219 ei->i_da_metadata_calc_len = save_len; 1220 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1221 spin_unlock(&ei->i_block_reservation_lock); 1222 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1223 yield(); 1224 goto repeat; 1225 } 1226 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1227 return -ENOSPC; 1228 } 1229 ei->i_reserved_data_blocks++; 1230 ei->i_reserved_meta_blocks += md_needed; 1231 spin_unlock(&ei->i_block_reservation_lock); 1232 1233 return 0; /* success */ 1234 } 1235 1236 static void ext4_da_release_space(struct inode *inode, int to_free) 1237 { 1238 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1239 struct ext4_inode_info *ei = EXT4_I(inode); 1240 1241 if (!to_free) 1242 return; /* Nothing to release, exit */ 1243 1244 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1245 1246 trace_ext4_da_release_space(inode, to_free); 1247 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1248 /* 1249 * if there aren't enough reserved blocks, then the 1250 * counter is messed up somewhere. Since this 1251 * function is called from invalidate page, it's 1252 * harmless to return without any action. 1253 */ 1254 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1255 "ino %lu, to_free %d with only %d reserved " 1256 "data blocks", inode->i_ino, to_free, 1257 ei->i_reserved_data_blocks); 1258 WARN_ON(1); 1259 to_free = ei->i_reserved_data_blocks; 1260 } 1261 ei->i_reserved_data_blocks -= to_free; 1262 1263 if (ei->i_reserved_data_blocks == 0) { 1264 /* 1265 * We can release all of the reserved metadata blocks 1266 * only when we have written all of the delayed 1267 * allocation blocks. 1268 * Note that in case of bigalloc, i_reserved_meta_blocks, 1269 * i_reserved_data_blocks, etc. refer to number of clusters. 1270 */ 1271 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1272 ei->i_reserved_meta_blocks); 1273 ei->i_reserved_meta_blocks = 0; 1274 ei->i_da_metadata_calc_len = 0; 1275 } 1276 1277 /* update fs dirty data blocks counter */ 1278 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1279 1280 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1281 1282 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1283 } 1284 1285 static void ext4_da_page_release_reservation(struct page *page, 1286 unsigned long offset) 1287 { 1288 int to_release = 0; 1289 struct buffer_head *head, *bh; 1290 unsigned int curr_off = 0; 1291 struct inode *inode = page->mapping->host; 1292 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1293 int num_clusters; 1294 1295 head = page_buffers(page); 1296 bh = head; 1297 do { 1298 unsigned int next_off = curr_off + bh->b_size; 1299 1300 if ((offset <= curr_off) && (buffer_delay(bh))) { 1301 to_release++; 1302 clear_buffer_delay(bh); 1303 clear_buffer_da_mapped(bh); 1304 } 1305 curr_off = next_off; 1306 } while ((bh = bh->b_this_page) != head); 1307 1308 /* If we have released all the blocks belonging to a cluster, then we 1309 * need to release the reserved space for that cluster. */ 1310 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1311 while (num_clusters > 0) { 1312 ext4_fsblk_t lblk; 1313 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1314 ((num_clusters - 1) << sbi->s_cluster_bits); 1315 if (sbi->s_cluster_ratio == 1 || 1316 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1317 ext4_da_release_space(inode, 1); 1318 1319 num_clusters--; 1320 } 1321 } 1322 1323 /* 1324 * Delayed allocation stuff 1325 */ 1326 1327 /* 1328 * mpage_da_submit_io - walks through extent of pages and try to write 1329 * them with writepage() call back 1330 * 1331 * @mpd->inode: inode 1332 * @mpd->first_page: first page of the extent 1333 * @mpd->next_page: page after the last page of the extent 1334 * 1335 * By the time mpage_da_submit_io() is called we expect all blocks 1336 * to be allocated. this may be wrong if allocation failed. 1337 * 1338 * As pages are already locked by write_cache_pages(), we can't use it 1339 */ 1340 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1341 struct ext4_map_blocks *map) 1342 { 1343 struct pagevec pvec; 1344 unsigned long index, end; 1345 int ret = 0, err, nr_pages, i; 1346 struct inode *inode = mpd->inode; 1347 struct address_space *mapping = inode->i_mapping; 1348 loff_t size = i_size_read(inode); 1349 unsigned int len, block_start; 1350 struct buffer_head *bh, *page_bufs = NULL; 1351 int journal_data = ext4_should_journal_data(inode); 1352 sector_t pblock = 0, cur_logical = 0; 1353 struct ext4_io_submit io_submit; 1354 1355 BUG_ON(mpd->next_page <= mpd->first_page); 1356 memset(&io_submit, 0, sizeof(io_submit)); 1357 /* 1358 * We need to start from the first_page to the next_page - 1 1359 * to make sure we also write the mapped dirty buffer_heads. 1360 * If we look at mpd->b_blocknr we would only be looking 1361 * at the currently mapped buffer_heads. 1362 */ 1363 index = mpd->first_page; 1364 end = mpd->next_page - 1; 1365 1366 pagevec_init(&pvec, 0); 1367 while (index <= end) { 1368 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1369 if (nr_pages == 0) 1370 break; 1371 for (i = 0; i < nr_pages; i++) { 1372 int commit_write = 0, skip_page = 0; 1373 struct page *page = pvec.pages[i]; 1374 1375 index = page->index; 1376 if (index > end) 1377 break; 1378 1379 if (index == size >> PAGE_CACHE_SHIFT) 1380 len = size & ~PAGE_CACHE_MASK; 1381 else 1382 len = PAGE_CACHE_SIZE; 1383 if (map) { 1384 cur_logical = index << (PAGE_CACHE_SHIFT - 1385 inode->i_blkbits); 1386 pblock = map->m_pblk + (cur_logical - 1387 map->m_lblk); 1388 } 1389 index++; 1390 1391 BUG_ON(!PageLocked(page)); 1392 BUG_ON(PageWriteback(page)); 1393 1394 /* 1395 * If the page does not have buffers (for 1396 * whatever reason), try to create them using 1397 * __block_write_begin. If this fails, 1398 * skip the page and move on. 1399 */ 1400 if (!page_has_buffers(page)) { 1401 if (__block_write_begin(page, 0, len, 1402 noalloc_get_block_write)) { 1403 skip_page: 1404 unlock_page(page); 1405 continue; 1406 } 1407 commit_write = 1; 1408 } 1409 1410 bh = page_bufs = page_buffers(page); 1411 block_start = 0; 1412 do { 1413 if (!bh) 1414 goto skip_page; 1415 if (map && (cur_logical >= map->m_lblk) && 1416 (cur_logical <= (map->m_lblk + 1417 (map->m_len - 1)))) { 1418 if (buffer_delay(bh)) { 1419 clear_buffer_delay(bh); 1420 bh->b_blocknr = pblock; 1421 } 1422 if (buffer_da_mapped(bh)) 1423 clear_buffer_da_mapped(bh); 1424 if (buffer_unwritten(bh) || 1425 buffer_mapped(bh)) 1426 BUG_ON(bh->b_blocknr != pblock); 1427 if (map->m_flags & EXT4_MAP_UNINIT) 1428 set_buffer_uninit(bh); 1429 clear_buffer_unwritten(bh); 1430 } 1431 1432 /* 1433 * skip page if block allocation undone and 1434 * block is dirty 1435 */ 1436 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1437 skip_page = 1; 1438 bh = bh->b_this_page; 1439 block_start += bh->b_size; 1440 cur_logical++; 1441 pblock++; 1442 } while (bh != page_bufs); 1443 1444 if (skip_page) 1445 goto skip_page; 1446 1447 if (commit_write) 1448 /* mark the buffer_heads as dirty & uptodate */ 1449 block_commit_write(page, 0, len); 1450 1451 clear_page_dirty_for_io(page); 1452 /* 1453 * Delalloc doesn't support data journalling, 1454 * but eventually maybe we'll lift this 1455 * restriction. 1456 */ 1457 if (unlikely(journal_data && PageChecked(page))) 1458 err = __ext4_journalled_writepage(page, len); 1459 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1460 err = ext4_bio_write_page(&io_submit, page, 1461 len, mpd->wbc); 1462 else if (buffer_uninit(page_bufs)) { 1463 ext4_set_bh_endio(page_bufs, inode); 1464 err = block_write_full_page_endio(page, 1465 noalloc_get_block_write, 1466 mpd->wbc, ext4_end_io_buffer_write); 1467 } else 1468 err = block_write_full_page(page, 1469 noalloc_get_block_write, mpd->wbc); 1470 1471 if (!err) 1472 mpd->pages_written++; 1473 /* 1474 * In error case, we have to continue because 1475 * remaining pages are still locked 1476 */ 1477 if (ret == 0) 1478 ret = err; 1479 } 1480 pagevec_release(&pvec); 1481 } 1482 ext4_io_submit(&io_submit); 1483 return ret; 1484 } 1485 1486 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1487 { 1488 int nr_pages, i; 1489 pgoff_t index, end; 1490 struct pagevec pvec; 1491 struct inode *inode = mpd->inode; 1492 struct address_space *mapping = inode->i_mapping; 1493 1494 index = mpd->first_page; 1495 end = mpd->next_page - 1; 1496 while (index <= end) { 1497 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1498 if (nr_pages == 0) 1499 break; 1500 for (i = 0; i < nr_pages; i++) { 1501 struct page *page = pvec.pages[i]; 1502 if (page->index > end) 1503 break; 1504 BUG_ON(!PageLocked(page)); 1505 BUG_ON(PageWriteback(page)); 1506 block_invalidatepage(page, 0); 1507 ClearPageUptodate(page); 1508 unlock_page(page); 1509 } 1510 index = pvec.pages[nr_pages - 1]->index + 1; 1511 pagevec_release(&pvec); 1512 } 1513 return; 1514 } 1515 1516 static void ext4_print_free_blocks(struct inode *inode) 1517 { 1518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1519 struct super_block *sb = inode->i_sb; 1520 1521 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1522 EXT4_C2B(EXT4_SB(inode->i_sb), 1523 ext4_count_free_clusters(inode->i_sb))); 1524 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1525 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1526 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1527 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1528 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1529 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1530 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1531 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1532 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1533 EXT4_I(inode)->i_reserved_data_blocks); 1534 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1535 EXT4_I(inode)->i_reserved_meta_blocks); 1536 return; 1537 } 1538 1539 /* 1540 * mpage_da_map_and_submit - go through given space, map them 1541 * if necessary, and then submit them for I/O 1542 * 1543 * @mpd - bh describing space 1544 * 1545 * The function skips space we know is already mapped to disk blocks. 1546 * 1547 */ 1548 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1549 { 1550 int err, blks, get_blocks_flags; 1551 struct ext4_map_blocks map, *mapp = NULL; 1552 sector_t next = mpd->b_blocknr; 1553 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1554 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1555 handle_t *handle = NULL; 1556 1557 /* 1558 * If the blocks are mapped already, or we couldn't accumulate 1559 * any blocks, then proceed immediately to the submission stage. 1560 */ 1561 if ((mpd->b_size == 0) || 1562 ((mpd->b_state & (1 << BH_Mapped)) && 1563 !(mpd->b_state & (1 << BH_Delay)) && 1564 !(mpd->b_state & (1 << BH_Unwritten)))) 1565 goto submit_io; 1566 1567 handle = ext4_journal_current_handle(); 1568 BUG_ON(!handle); 1569 1570 /* 1571 * Call ext4_map_blocks() to allocate any delayed allocation 1572 * blocks, or to convert an uninitialized extent to be 1573 * initialized (in the case where we have written into 1574 * one or more preallocated blocks). 1575 * 1576 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1577 * indicate that we are on the delayed allocation path. This 1578 * affects functions in many different parts of the allocation 1579 * call path. This flag exists primarily because we don't 1580 * want to change *many* call functions, so ext4_map_blocks() 1581 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1582 * inode's allocation semaphore is taken. 1583 * 1584 * If the blocks in questions were delalloc blocks, set 1585 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1586 * variables are updated after the blocks have been allocated. 1587 */ 1588 map.m_lblk = next; 1589 map.m_len = max_blocks; 1590 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1591 if (ext4_should_dioread_nolock(mpd->inode)) 1592 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1593 if (mpd->b_state & (1 << BH_Delay)) 1594 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1595 1596 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1597 if (blks < 0) { 1598 struct super_block *sb = mpd->inode->i_sb; 1599 1600 err = blks; 1601 /* 1602 * If get block returns EAGAIN or ENOSPC and there 1603 * appears to be free blocks we will just let 1604 * mpage_da_submit_io() unlock all of the pages. 1605 */ 1606 if (err == -EAGAIN) 1607 goto submit_io; 1608 1609 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1610 mpd->retval = err; 1611 goto submit_io; 1612 } 1613 1614 /* 1615 * get block failure will cause us to loop in 1616 * writepages, because a_ops->writepage won't be able 1617 * to make progress. The page will be redirtied by 1618 * writepage and writepages will again try to write 1619 * the same. 1620 */ 1621 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1622 ext4_msg(sb, KERN_CRIT, 1623 "delayed block allocation failed for inode %lu " 1624 "at logical offset %llu with max blocks %zd " 1625 "with error %d", mpd->inode->i_ino, 1626 (unsigned long long) next, 1627 mpd->b_size >> mpd->inode->i_blkbits, err); 1628 ext4_msg(sb, KERN_CRIT, 1629 "This should not happen!! Data will be lost\n"); 1630 if (err == -ENOSPC) 1631 ext4_print_free_blocks(mpd->inode); 1632 } 1633 /* invalidate all the pages */ 1634 ext4_da_block_invalidatepages(mpd); 1635 1636 /* Mark this page range as having been completed */ 1637 mpd->io_done = 1; 1638 return; 1639 } 1640 BUG_ON(blks == 0); 1641 1642 mapp = ↦ 1643 if (map.m_flags & EXT4_MAP_NEW) { 1644 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1645 int i; 1646 1647 for (i = 0; i < map.m_len; i++) 1648 unmap_underlying_metadata(bdev, map.m_pblk + i); 1649 1650 if (ext4_should_order_data(mpd->inode)) { 1651 err = ext4_jbd2_file_inode(handle, mpd->inode); 1652 if (err) { 1653 /* Only if the journal is aborted */ 1654 mpd->retval = err; 1655 goto submit_io; 1656 } 1657 } 1658 } 1659 1660 /* 1661 * Update on-disk size along with block allocation. 1662 */ 1663 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1664 if (disksize > i_size_read(mpd->inode)) 1665 disksize = i_size_read(mpd->inode); 1666 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1667 ext4_update_i_disksize(mpd->inode, disksize); 1668 err = ext4_mark_inode_dirty(handle, mpd->inode); 1669 if (err) 1670 ext4_error(mpd->inode->i_sb, 1671 "Failed to mark inode %lu dirty", 1672 mpd->inode->i_ino); 1673 } 1674 1675 submit_io: 1676 mpage_da_submit_io(mpd, mapp); 1677 mpd->io_done = 1; 1678 } 1679 1680 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1681 (1 << BH_Delay) | (1 << BH_Unwritten)) 1682 1683 /* 1684 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1685 * 1686 * @mpd->lbh - extent of blocks 1687 * @logical - logical number of the block in the file 1688 * @bh - bh of the block (used to access block's state) 1689 * 1690 * the function is used to collect contig. blocks in same state 1691 */ 1692 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1693 sector_t logical, size_t b_size, 1694 unsigned long b_state) 1695 { 1696 sector_t next; 1697 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1698 1699 /* 1700 * XXX Don't go larger than mballoc is willing to allocate 1701 * This is a stopgap solution. We eventually need to fold 1702 * mpage_da_submit_io() into this function and then call 1703 * ext4_map_blocks() multiple times in a loop 1704 */ 1705 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1706 goto flush_it; 1707 1708 /* check if thereserved journal credits might overflow */ 1709 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1710 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1711 /* 1712 * With non-extent format we are limited by the journal 1713 * credit available. Total credit needed to insert 1714 * nrblocks contiguous blocks is dependent on the 1715 * nrblocks. So limit nrblocks. 1716 */ 1717 goto flush_it; 1718 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1719 EXT4_MAX_TRANS_DATA) { 1720 /* 1721 * Adding the new buffer_head would make it cross the 1722 * allowed limit for which we have journal credit 1723 * reserved. So limit the new bh->b_size 1724 */ 1725 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1726 mpd->inode->i_blkbits; 1727 /* we will do mpage_da_submit_io in the next loop */ 1728 } 1729 } 1730 /* 1731 * First block in the extent 1732 */ 1733 if (mpd->b_size == 0) { 1734 mpd->b_blocknr = logical; 1735 mpd->b_size = b_size; 1736 mpd->b_state = b_state & BH_FLAGS; 1737 return; 1738 } 1739 1740 next = mpd->b_blocknr + nrblocks; 1741 /* 1742 * Can we merge the block to our big extent? 1743 */ 1744 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1745 mpd->b_size += b_size; 1746 return; 1747 } 1748 1749 flush_it: 1750 /* 1751 * We couldn't merge the block to our extent, so we 1752 * need to flush current extent and start new one 1753 */ 1754 mpage_da_map_and_submit(mpd); 1755 return; 1756 } 1757 1758 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1759 { 1760 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1761 } 1762 1763 /* 1764 * This function is grabs code from the very beginning of 1765 * ext4_map_blocks, but assumes that the caller is from delayed write 1766 * time. This function looks up the requested blocks and sets the 1767 * buffer delay bit under the protection of i_data_sem. 1768 */ 1769 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1770 struct ext4_map_blocks *map, 1771 struct buffer_head *bh) 1772 { 1773 int retval; 1774 sector_t invalid_block = ~((sector_t) 0xffff); 1775 1776 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1777 invalid_block = ~0; 1778 1779 map->m_flags = 0; 1780 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1781 "logical block %lu\n", inode->i_ino, map->m_len, 1782 (unsigned long) map->m_lblk); 1783 /* 1784 * Try to see if we can get the block without requesting a new 1785 * file system block. 1786 */ 1787 down_read((&EXT4_I(inode)->i_data_sem)); 1788 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1789 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1790 else 1791 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1792 1793 if (retval == 0) { 1794 /* 1795 * XXX: __block_prepare_write() unmaps passed block, 1796 * is it OK? 1797 */ 1798 /* If the block was allocated from previously allocated cluster, 1799 * then we dont need to reserve it again. */ 1800 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1801 retval = ext4_da_reserve_space(inode, iblock); 1802 if (retval) 1803 /* not enough space to reserve */ 1804 goto out_unlock; 1805 } 1806 1807 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1808 * and it should not appear on the bh->b_state. 1809 */ 1810 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1811 1812 map_bh(bh, inode->i_sb, invalid_block); 1813 set_buffer_new(bh); 1814 set_buffer_delay(bh); 1815 } 1816 1817 out_unlock: 1818 up_read((&EXT4_I(inode)->i_data_sem)); 1819 1820 return retval; 1821 } 1822 1823 /* 1824 * This is a special get_blocks_t callback which is used by 1825 * ext4_da_write_begin(). It will either return mapped block or 1826 * reserve space for a single block. 1827 * 1828 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1829 * We also have b_blocknr = -1 and b_bdev initialized properly 1830 * 1831 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1832 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1833 * initialized properly. 1834 */ 1835 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1836 struct buffer_head *bh, int create) 1837 { 1838 struct ext4_map_blocks map; 1839 int ret = 0; 1840 1841 BUG_ON(create == 0); 1842 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1843 1844 map.m_lblk = iblock; 1845 map.m_len = 1; 1846 1847 /* 1848 * first, we need to know whether the block is allocated already 1849 * preallocated blocks are unmapped but should treated 1850 * the same as allocated blocks. 1851 */ 1852 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1853 if (ret <= 0) 1854 return ret; 1855 1856 map_bh(bh, inode->i_sb, map.m_pblk); 1857 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1858 1859 if (buffer_unwritten(bh)) { 1860 /* A delayed write to unwritten bh should be marked 1861 * new and mapped. Mapped ensures that we don't do 1862 * get_block multiple times when we write to the same 1863 * offset and new ensures that we do proper zero out 1864 * for partial write. 1865 */ 1866 set_buffer_new(bh); 1867 set_buffer_mapped(bh); 1868 } 1869 return 0; 1870 } 1871 1872 /* 1873 * This function is used as a standard get_block_t calback function 1874 * when there is no desire to allocate any blocks. It is used as a 1875 * callback function for block_write_begin() and block_write_full_page(). 1876 * These functions should only try to map a single block at a time. 1877 * 1878 * Since this function doesn't do block allocations even if the caller 1879 * requests it by passing in create=1, it is critically important that 1880 * any caller checks to make sure that any buffer heads are returned 1881 * by this function are either all already mapped or marked for 1882 * delayed allocation before calling block_write_full_page(). Otherwise, 1883 * b_blocknr could be left unitialized, and the page write functions will 1884 * be taken by surprise. 1885 */ 1886 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1887 struct buffer_head *bh_result, int create) 1888 { 1889 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1890 return _ext4_get_block(inode, iblock, bh_result, 0); 1891 } 1892 1893 static int bget_one(handle_t *handle, struct buffer_head *bh) 1894 { 1895 get_bh(bh); 1896 return 0; 1897 } 1898 1899 static int bput_one(handle_t *handle, struct buffer_head *bh) 1900 { 1901 put_bh(bh); 1902 return 0; 1903 } 1904 1905 static int __ext4_journalled_writepage(struct page *page, 1906 unsigned int len) 1907 { 1908 struct address_space *mapping = page->mapping; 1909 struct inode *inode = mapping->host; 1910 struct buffer_head *page_bufs; 1911 handle_t *handle = NULL; 1912 int ret = 0; 1913 int err; 1914 1915 ClearPageChecked(page); 1916 page_bufs = page_buffers(page); 1917 BUG_ON(!page_bufs); 1918 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1919 /* As soon as we unlock the page, it can go away, but we have 1920 * references to buffers so we are safe */ 1921 unlock_page(page); 1922 1923 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1924 if (IS_ERR(handle)) { 1925 ret = PTR_ERR(handle); 1926 goto out; 1927 } 1928 1929 BUG_ON(!ext4_handle_valid(handle)); 1930 1931 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1932 do_journal_get_write_access); 1933 1934 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1935 write_end_fn); 1936 if (ret == 0) 1937 ret = err; 1938 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1939 err = ext4_journal_stop(handle); 1940 if (!ret) 1941 ret = err; 1942 1943 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1944 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1945 out: 1946 return ret; 1947 } 1948 1949 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1950 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1951 1952 /* 1953 * Note that we don't need to start a transaction unless we're journaling data 1954 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1955 * need to file the inode to the transaction's list in ordered mode because if 1956 * we are writing back data added by write(), the inode is already there and if 1957 * we are writing back data modified via mmap(), no one guarantees in which 1958 * transaction the data will hit the disk. In case we are journaling data, we 1959 * cannot start transaction directly because transaction start ranks above page 1960 * lock so we have to do some magic. 1961 * 1962 * This function can get called via... 1963 * - ext4_da_writepages after taking page lock (have journal handle) 1964 * - journal_submit_inode_data_buffers (no journal handle) 1965 * - shrink_page_list via pdflush (no journal handle) 1966 * - grab_page_cache when doing write_begin (have journal handle) 1967 * 1968 * We don't do any block allocation in this function. If we have page with 1969 * multiple blocks we need to write those buffer_heads that are mapped. This 1970 * is important for mmaped based write. So if we do with blocksize 1K 1971 * truncate(f, 1024); 1972 * a = mmap(f, 0, 4096); 1973 * a[0] = 'a'; 1974 * truncate(f, 4096); 1975 * we have in the page first buffer_head mapped via page_mkwrite call back 1976 * but other buffer_heads would be unmapped but dirty (dirty done via the 1977 * do_wp_page). So writepage should write the first block. If we modify 1978 * the mmap area beyond 1024 we will again get a page_fault and the 1979 * page_mkwrite callback will do the block allocation and mark the 1980 * buffer_heads mapped. 1981 * 1982 * We redirty the page if we have any buffer_heads that is either delay or 1983 * unwritten in the page. 1984 * 1985 * We can get recursively called as show below. 1986 * 1987 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1988 * ext4_writepage() 1989 * 1990 * But since we don't do any block allocation we should not deadlock. 1991 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1992 */ 1993 static int ext4_writepage(struct page *page, 1994 struct writeback_control *wbc) 1995 { 1996 int ret = 0, commit_write = 0; 1997 loff_t size; 1998 unsigned int len; 1999 struct buffer_head *page_bufs = NULL; 2000 struct inode *inode = page->mapping->host; 2001 2002 trace_ext4_writepage(page); 2003 size = i_size_read(inode); 2004 if (page->index == size >> PAGE_CACHE_SHIFT) 2005 len = size & ~PAGE_CACHE_MASK; 2006 else 2007 len = PAGE_CACHE_SIZE; 2008 2009 /* 2010 * If the page does not have buffers (for whatever reason), 2011 * try to create them using __block_write_begin. If this 2012 * fails, redirty the page and move on. 2013 */ 2014 if (!page_has_buffers(page)) { 2015 if (__block_write_begin(page, 0, len, 2016 noalloc_get_block_write)) { 2017 redirty_page: 2018 redirty_page_for_writepage(wbc, page); 2019 unlock_page(page); 2020 return 0; 2021 } 2022 commit_write = 1; 2023 } 2024 page_bufs = page_buffers(page); 2025 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2026 ext4_bh_delay_or_unwritten)) { 2027 /* 2028 * We don't want to do block allocation, so redirty 2029 * the page and return. We may reach here when we do 2030 * a journal commit via journal_submit_inode_data_buffers. 2031 * We can also reach here via shrink_page_list but it 2032 * should never be for direct reclaim so warn if that 2033 * happens 2034 */ 2035 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 2036 PF_MEMALLOC); 2037 goto redirty_page; 2038 } 2039 if (commit_write) 2040 /* now mark the buffer_heads as dirty and uptodate */ 2041 block_commit_write(page, 0, len); 2042 2043 if (PageChecked(page) && ext4_should_journal_data(inode)) 2044 /* 2045 * It's mmapped pagecache. Add buffers and journal it. There 2046 * doesn't seem much point in redirtying the page here. 2047 */ 2048 return __ext4_journalled_writepage(page, len); 2049 2050 if (buffer_uninit(page_bufs)) { 2051 ext4_set_bh_endio(page_bufs, inode); 2052 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2053 wbc, ext4_end_io_buffer_write); 2054 } else 2055 ret = block_write_full_page(page, noalloc_get_block_write, 2056 wbc); 2057 2058 return ret; 2059 } 2060 2061 /* 2062 * This is called via ext4_da_writepages() to 2063 * calculate the total number of credits to reserve to fit 2064 * a single extent allocation into a single transaction, 2065 * ext4_da_writpeages() will loop calling this before 2066 * the block allocation. 2067 */ 2068 2069 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2070 { 2071 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2072 2073 /* 2074 * With non-extent format the journal credit needed to 2075 * insert nrblocks contiguous block is dependent on 2076 * number of contiguous block. So we will limit 2077 * number of contiguous block to a sane value 2078 */ 2079 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2080 (max_blocks > EXT4_MAX_TRANS_DATA)) 2081 max_blocks = EXT4_MAX_TRANS_DATA; 2082 2083 return ext4_chunk_trans_blocks(inode, max_blocks); 2084 } 2085 2086 /* 2087 * write_cache_pages_da - walk the list of dirty pages of the given 2088 * address space and accumulate pages that need writing, and call 2089 * mpage_da_map_and_submit to map a single contiguous memory region 2090 * and then write them. 2091 */ 2092 static int write_cache_pages_da(struct address_space *mapping, 2093 struct writeback_control *wbc, 2094 struct mpage_da_data *mpd, 2095 pgoff_t *done_index) 2096 { 2097 struct buffer_head *bh, *head; 2098 struct inode *inode = mapping->host; 2099 struct pagevec pvec; 2100 unsigned int nr_pages; 2101 sector_t logical; 2102 pgoff_t index, end; 2103 long nr_to_write = wbc->nr_to_write; 2104 int i, tag, ret = 0; 2105 2106 memset(mpd, 0, sizeof(struct mpage_da_data)); 2107 mpd->wbc = wbc; 2108 mpd->inode = inode; 2109 pagevec_init(&pvec, 0); 2110 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2111 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2112 2113 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2114 tag = PAGECACHE_TAG_TOWRITE; 2115 else 2116 tag = PAGECACHE_TAG_DIRTY; 2117 2118 *done_index = index; 2119 while (index <= end) { 2120 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2121 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2122 if (nr_pages == 0) 2123 return 0; 2124 2125 for (i = 0; i < nr_pages; i++) { 2126 struct page *page = pvec.pages[i]; 2127 2128 /* 2129 * At this point, the page may be truncated or 2130 * invalidated (changing page->mapping to NULL), or 2131 * even swizzled back from swapper_space to tmpfs file 2132 * mapping. However, page->index will not change 2133 * because we have a reference on the page. 2134 */ 2135 if (page->index > end) 2136 goto out; 2137 2138 *done_index = page->index + 1; 2139 2140 /* 2141 * If we can't merge this page, and we have 2142 * accumulated an contiguous region, write it 2143 */ 2144 if ((mpd->next_page != page->index) && 2145 (mpd->next_page != mpd->first_page)) { 2146 mpage_da_map_and_submit(mpd); 2147 goto ret_extent_tail; 2148 } 2149 2150 lock_page(page); 2151 2152 /* 2153 * If the page is no longer dirty, or its 2154 * mapping no longer corresponds to inode we 2155 * are writing (which means it has been 2156 * truncated or invalidated), or the page is 2157 * already under writeback and we are not 2158 * doing a data integrity writeback, skip the page 2159 */ 2160 if (!PageDirty(page) || 2161 (PageWriteback(page) && 2162 (wbc->sync_mode == WB_SYNC_NONE)) || 2163 unlikely(page->mapping != mapping)) { 2164 unlock_page(page); 2165 continue; 2166 } 2167 2168 wait_on_page_writeback(page); 2169 BUG_ON(PageWriteback(page)); 2170 2171 if (mpd->next_page != page->index) 2172 mpd->first_page = page->index; 2173 mpd->next_page = page->index + 1; 2174 logical = (sector_t) page->index << 2175 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2176 2177 if (!page_has_buffers(page)) { 2178 mpage_add_bh_to_extent(mpd, logical, 2179 PAGE_CACHE_SIZE, 2180 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2181 if (mpd->io_done) 2182 goto ret_extent_tail; 2183 } else { 2184 /* 2185 * Page with regular buffer heads, 2186 * just add all dirty ones 2187 */ 2188 head = page_buffers(page); 2189 bh = head; 2190 do { 2191 BUG_ON(buffer_locked(bh)); 2192 /* 2193 * We need to try to allocate 2194 * unmapped blocks in the same page. 2195 * Otherwise we won't make progress 2196 * with the page in ext4_writepage 2197 */ 2198 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2199 mpage_add_bh_to_extent(mpd, logical, 2200 bh->b_size, 2201 bh->b_state); 2202 if (mpd->io_done) 2203 goto ret_extent_tail; 2204 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2205 /* 2206 * mapped dirty buffer. We need 2207 * to update the b_state 2208 * because we look at b_state 2209 * in mpage_da_map_blocks. We 2210 * don't update b_size because 2211 * if we find an unmapped 2212 * buffer_head later we need to 2213 * use the b_state flag of that 2214 * buffer_head. 2215 */ 2216 if (mpd->b_size == 0) 2217 mpd->b_state = bh->b_state & BH_FLAGS; 2218 } 2219 logical++; 2220 } while ((bh = bh->b_this_page) != head); 2221 } 2222 2223 if (nr_to_write > 0) { 2224 nr_to_write--; 2225 if (nr_to_write == 0 && 2226 wbc->sync_mode == WB_SYNC_NONE) 2227 /* 2228 * We stop writing back only if we are 2229 * not doing integrity sync. In case of 2230 * integrity sync we have to keep going 2231 * because someone may be concurrently 2232 * dirtying pages, and we might have 2233 * synced a lot of newly appeared dirty 2234 * pages, but have not synced all of the 2235 * old dirty pages. 2236 */ 2237 goto out; 2238 } 2239 } 2240 pagevec_release(&pvec); 2241 cond_resched(); 2242 } 2243 return 0; 2244 ret_extent_tail: 2245 ret = MPAGE_DA_EXTENT_TAIL; 2246 out: 2247 pagevec_release(&pvec); 2248 cond_resched(); 2249 return ret; 2250 } 2251 2252 2253 static int ext4_da_writepages(struct address_space *mapping, 2254 struct writeback_control *wbc) 2255 { 2256 pgoff_t index; 2257 int range_whole = 0; 2258 handle_t *handle = NULL; 2259 struct mpage_da_data mpd; 2260 struct inode *inode = mapping->host; 2261 int pages_written = 0; 2262 unsigned int max_pages; 2263 int range_cyclic, cycled = 1, io_done = 0; 2264 int needed_blocks, ret = 0; 2265 long desired_nr_to_write, nr_to_writebump = 0; 2266 loff_t range_start = wbc->range_start; 2267 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2268 pgoff_t done_index = 0; 2269 pgoff_t end; 2270 struct blk_plug plug; 2271 2272 trace_ext4_da_writepages(inode, wbc); 2273 2274 /* 2275 * No pages to write? This is mainly a kludge to avoid starting 2276 * a transaction for special inodes like journal inode on last iput() 2277 * because that could violate lock ordering on umount 2278 */ 2279 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2280 return 0; 2281 2282 /* 2283 * If the filesystem has aborted, it is read-only, so return 2284 * right away instead of dumping stack traces later on that 2285 * will obscure the real source of the problem. We test 2286 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2287 * the latter could be true if the filesystem is mounted 2288 * read-only, and in that case, ext4_da_writepages should 2289 * *never* be called, so if that ever happens, we would want 2290 * the stack trace. 2291 */ 2292 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2293 return -EROFS; 2294 2295 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2296 range_whole = 1; 2297 2298 range_cyclic = wbc->range_cyclic; 2299 if (wbc->range_cyclic) { 2300 index = mapping->writeback_index; 2301 if (index) 2302 cycled = 0; 2303 wbc->range_start = index << PAGE_CACHE_SHIFT; 2304 wbc->range_end = LLONG_MAX; 2305 wbc->range_cyclic = 0; 2306 end = -1; 2307 } else { 2308 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2309 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2310 } 2311 2312 /* 2313 * This works around two forms of stupidity. The first is in 2314 * the writeback code, which caps the maximum number of pages 2315 * written to be 1024 pages. This is wrong on multiple 2316 * levels; different architectues have a different page size, 2317 * which changes the maximum amount of data which gets 2318 * written. Secondly, 4 megabytes is way too small. XFS 2319 * forces this value to be 16 megabytes by multiplying 2320 * nr_to_write parameter by four, and then relies on its 2321 * allocator to allocate larger extents to make them 2322 * contiguous. Unfortunately this brings us to the second 2323 * stupidity, which is that ext4's mballoc code only allocates 2324 * at most 2048 blocks. So we force contiguous writes up to 2325 * the number of dirty blocks in the inode, or 2326 * sbi->max_writeback_mb_bump whichever is smaller. 2327 */ 2328 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2329 if (!range_cyclic && range_whole) { 2330 if (wbc->nr_to_write == LONG_MAX) 2331 desired_nr_to_write = wbc->nr_to_write; 2332 else 2333 desired_nr_to_write = wbc->nr_to_write * 8; 2334 } else 2335 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2336 max_pages); 2337 if (desired_nr_to_write > max_pages) 2338 desired_nr_to_write = max_pages; 2339 2340 if (wbc->nr_to_write < desired_nr_to_write) { 2341 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2342 wbc->nr_to_write = desired_nr_to_write; 2343 } 2344 2345 retry: 2346 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2347 tag_pages_for_writeback(mapping, index, end); 2348 2349 blk_start_plug(&plug); 2350 while (!ret && wbc->nr_to_write > 0) { 2351 2352 /* 2353 * we insert one extent at a time. So we need 2354 * credit needed for single extent allocation. 2355 * journalled mode is currently not supported 2356 * by delalloc 2357 */ 2358 BUG_ON(ext4_should_journal_data(inode)); 2359 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2360 2361 /* start a new transaction*/ 2362 handle = ext4_journal_start(inode, needed_blocks); 2363 if (IS_ERR(handle)) { 2364 ret = PTR_ERR(handle); 2365 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2366 "%ld pages, ino %lu; err %d", __func__, 2367 wbc->nr_to_write, inode->i_ino, ret); 2368 blk_finish_plug(&plug); 2369 goto out_writepages; 2370 } 2371 2372 /* 2373 * Now call write_cache_pages_da() to find the next 2374 * contiguous region of logical blocks that need 2375 * blocks to be allocated by ext4 and submit them. 2376 */ 2377 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2378 /* 2379 * If we have a contiguous extent of pages and we 2380 * haven't done the I/O yet, map the blocks and submit 2381 * them for I/O. 2382 */ 2383 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2384 mpage_da_map_and_submit(&mpd); 2385 ret = MPAGE_DA_EXTENT_TAIL; 2386 } 2387 trace_ext4_da_write_pages(inode, &mpd); 2388 wbc->nr_to_write -= mpd.pages_written; 2389 2390 ext4_journal_stop(handle); 2391 2392 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2393 /* commit the transaction which would 2394 * free blocks released in the transaction 2395 * and try again 2396 */ 2397 jbd2_journal_force_commit_nested(sbi->s_journal); 2398 ret = 0; 2399 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2400 /* 2401 * Got one extent now try with rest of the pages. 2402 * If mpd.retval is set -EIO, journal is aborted. 2403 * So we don't need to write any more. 2404 */ 2405 pages_written += mpd.pages_written; 2406 ret = mpd.retval; 2407 io_done = 1; 2408 } else if (wbc->nr_to_write) 2409 /* 2410 * There is no more writeout needed 2411 * or we requested for a noblocking writeout 2412 * and we found the device congested 2413 */ 2414 break; 2415 } 2416 blk_finish_plug(&plug); 2417 if (!io_done && !cycled) { 2418 cycled = 1; 2419 index = 0; 2420 wbc->range_start = index << PAGE_CACHE_SHIFT; 2421 wbc->range_end = mapping->writeback_index - 1; 2422 goto retry; 2423 } 2424 2425 /* Update index */ 2426 wbc->range_cyclic = range_cyclic; 2427 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2428 /* 2429 * set the writeback_index so that range_cyclic 2430 * mode will write it back later 2431 */ 2432 mapping->writeback_index = done_index; 2433 2434 out_writepages: 2435 wbc->nr_to_write -= nr_to_writebump; 2436 wbc->range_start = range_start; 2437 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2438 return ret; 2439 } 2440 2441 #define FALL_BACK_TO_NONDELALLOC 1 2442 static int ext4_nonda_switch(struct super_block *sb) 2443 { 2444 s64 free_blocks, dirty_blocks; 2445 struct ext4_sb_info *sbi = EXT4_SB(sb); 2446 2447 /* 2448 * switch to non delalloc mode if we are running low 2449 * on free block. The free block accounting via percpu 2450 * counters can get slightly wrong with percpu_counter_batch getting 2451 * accumulated on each CPU without updating global counters 2452 * Delalloc need an accurate free block accounting. So switch 2453 * to non delalloc when we are near to error range. 2454 */ 2455 free_blocks = EXT4_C2B(sbi, 2456 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2457 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2458 if (2 * free_blocks < 3 * dirty_blocks || 2459 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2460 /* 2461 * free block count is less than 150% of dirty blocks 2462 * or free blocks is less than watermark 2463 */ 2464 return 1; 2465 } 2466 /* 2467 * Even if we don't switch but are nearing capacity, 2468 * start pushing delalloc when 1/2 of free blocks are dirty. 2469 */ 2470 if (free_blocks < 2 * dirty_blocks) 2471 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2472 2473 return 0; 2474 } 2475 2476 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2477 loff_t pos, unsigned len, unsigned flags, 2478 struct page **pagep, void **fsdata) 2479 { 2480 int ret, retries = 0; 2481 struct page *page; 2482 pgoff_t index; 2483 struct inode *inode = mapping->host; 2484 handle_t *handle; 2485 2486 index = pos >> PAGE_CACHE_SHIFT; 2487 2488 if (ext4_nonda_switch(inode->i_sb)) { 2489 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2490 return ext4_write_begin(file, mapping, pos, 2491 len, flags, pagep, fsdata); 2492 } 2493 *fsdata = (void *)0; 2494 trace_ext4_da_write_begin(inode, pos, len, flags); 2495 retry: 2496 /* 2497 * With delayed allocation, we don't log the i_disksize update 2498 * if there is delayed block allocation. But we still need 2499 * to journalling the i_disksize update if writes to the end 2500 * of file which has an already mapped buffer. 2501 */ 2502 handle = ext4_journal_start(inode, 1); 2503 if (IS_ERR(handle)) { 2504 ret = PTR_ERR(handle); 2505 goto out; 2506 } 2507 /* We cannot recurse into the filesystem as the transaction is already 2508 * started */ 2509 flags |= AOP_FLAG_NOFS; 2510 2511 page = grab_cache_page_write_begin(mapping, index, flags); 2512 if (!page) { 2513 ext4_journal_stop(handle); 2514 ret = -ENOMEM; 2515 goto out; 2516 } 2517 *pagep = page; 2518 2519 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2520 if (ret < 0) { 2521 unlock_page(page); 2522 ext4_journal_stop(handle); 2523 page_cache_release(page); 2524 /* 2525 * block_write_begin may have instantiated a few blocks 2526 * outside i_size. Trim these off again. Don't need 2527 * i_size_read because we hold i_mutex. 2528 */ 2529 if (pos + len > inode->i_size) 2530 ext4_truncate_failed_write(inode); 2531 } 2532 2533 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2534 goto retry; 2535 out: 2536 return ret; 2537 } 2538 2539 /* 2540 * Check if we should update i_disksize 2541 * when write to the end of file but not require block allocation 2542 */ 2543 static int ext4_da_should_update_i_disksize(struct page *page, 2544 unsigned long offset) 2545 { 2546 struct buffer_head *bh; 2547 struct inode *inode = page->mapping->host; 2548 unsigned int idx; 2549 int i; 2550 2551 bh = page_buffers(page); 2552 idx = offset >> inode->i_blkbits; 2553 2554 for (i = 0; i < idx; i++) 2555 bh = bh->b_this_page; 2556 2557 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2558 return 0; 2559 return 1; 2560 } 2561 2562 static int ext4_da_write_end(struct file *file, 2563 struct address_space *mapping, 2564 loff_t pos, unsigned len, unsigned copied, 2565 struct page *page, void *fsdata) 2566 { 2567 struct inode *inode = mapping->host; 2568 int ret = 0, ret2; 2569 handle_t *handle = ext4_journal_current_handle(); 2570 loff_t new_i_size; 2571 unsigned long start, end; 2572 int write_mode = (int)(unsigned long)fsdata; 2573 2574 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2575 switch (ext4_inode_journal_mode(inode)) { 2576 case EXT4_INODE_ORDERED_DATA_MODE: 2577 return ext4_ordered_write_end(file, mapping, pos, 2578 len, copied, page, fsdata); 2579 case EXT4_INODE_WRITEBACK_DATA_MODE: 2580 return ext4_writeback_write_end(file, mapping, pos, 2581 len, copied, page, fsdata); 2582 default: 2583 BUG(); 2584 } 2585 } 2586 2587 trace_ext4_da_write_end(inode, pos, len, copied); 2588 start = pos & (PAGE_CACHE_SIZE - 1); 2589 end = start + copied - 1; 2590 2591 /* 2592 * generic_write_end() will run mark_inode_dirty() if i_size 2593 * changes. So let's piggyback the i_disksize mark_inode_dirty 2594 * into that. 2595 */ 2596 2597 new_i_size = pos + copied; 2598 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2599 if (ext4_da_should_update_i_disksize(page, end)) { 2600 down_write(&EXT4_I(inode)->i_data_sem); 2601 if (new_i_size > EXT4_I(inode)->i_disksize) { 2602 /* 2603 * Updating i_disksize when extending file 2604 * without needing block allocation 2605 */ 2606 if (ext4_should_order_data(inode)) 2607 ret = ext4_jbd2_file_inode(handle, 2608 inode); 2609 2610 EXT4_I(inode)->i_disksize = new_i_size; 2611 } 2612 up_write(&EXT4_I(inode)->i_data_sem); 2613 /* We need to mark inode dirty even if 2614 * new_i_size is less that inode->i_size 2615 * bu greater than i_disksize.(hint delalloc) 2616 */ 2617 ext4_mark_inode_dirty(handle, inode); 2618 } 2619 } 2620 ret2 = generic_write_end(file, mapping, pos, len, copied, 2621 page, fsdata); 2622 copied = ret2; 2623 if (ret2 < 0) 2624 ret = ret2; 2625 ret2 = ext4_journal_stop(handle); 2626 if (!ret) 2627 ret = ret2; 2628 2629 return ret ? ret : copied; 2630 } 2631 2632 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2633 { 2634 /* 2635 * Drop reserved blocks 2636 */ 2637 BUG_ON(!PageLocked(page)); 2638 if (!page_has_buffers(page)) 2639 goto out; 2640 2641 ext4_da_page_release_reservation(page, offset); 2642 2643 out: 2644 ext4_invalidatepage(page, offset); 2645 2646 return; 2647 } 2648 2649 /* 2650 * Force all delayed allocation blocks to be allocated for a given inode. 2651 */ 2652 int ext4_alloc_da_blocks(struct inode *inode) 2653 { 2654 trace_ext4_alloc_da_blocks(inode); 2655 2656 if (!EXT4_I(inode)->i_reserved_data_blocks && 2657 !EXT4_I(inode)->i_reserved_meta_blocks) 2658 return 0; 2659 2660 /* 2661 * We do something simple for now. The filemap_flush() will 2662 * also start triggering a write of the data blocks, which is 2663 * not strictly speaking necessary (and for users of 2664 * laptop_mode, not even desirable). However, to do otherwise 2665 * would require replicating code paths in: 2666 * 2667 * ext4_da_writepages() -> 2668 * write_cache_pages() ---> (via passed in callback function) 2669 * __mpage_da_writepage() --> 2670 * mpage_add_bh_to_extent() 2671 * mpage_da_map_blocks() 2672 * 2673 * The problem is that write_cache_pages(), located in 2674 * mm/page-writeback.c, marks pages clean in preparation for 2675 * doing I/O, which is not desirable if we're not planning on 2676 * doing I/O at all. 2677 * 2678 * We could call write_cache_pages(), and then redirty all of 2679 * the pages by calling redirty_page_for_writepage() but that 2680 * would be ugly in the extreme. So instead we would need to 2681 * replicate parts of the code in the above functions, 2682 * simplifying them because we wouldn't actually intend to 2683 * write out the pages, but rather only collect contiguous 2684 * logical block extents, call the multi-block allocator, and 2685 * then update the buffer heads with the block allocations. 2686 * 2687 * For now, though, we'll cheat by calling filemap_flush(), 2688 * which will map the blocks, and start the I/O, but not 2689 * actually wait for the I/O to complete. 2690 */ 2691 return filemap_flush(inode->i_mapping); 2692 } 2693 2694 /* 2695 * bmap() is special. It gets used by applications such as lilo and by 2696 * the swapper to find the on-disk block of a specific piece of data. 2697 * 2698 * Naturally, this is dangerous if the block concerned is still in the 2699 * journal. If somebody makes a swapfile on an ext4 data-journaling 2700 * filesystem and enables swap, then they may get a nasty shock when the 2701 * data getting swapped to that swapfile suddenly gets overwritten by 2702 * the original zero's written out previously to the journal and 2703 * awaiting writeback in the kernel's buffer cache. 2704 * 2705 * So, if we see any bmap calls here on a modified, data-journaled file, 2706 * take extra steps to flush any blocks which might be in the cache. 2707 */ 2708 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2709 { 2710 struct inode *inode = mapping->host; 2711 journal_t *journal; 2712 int err; 2713 2714 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2715 test_opt(inode->i_sb, DELALLOC)) { 2716 /* 2717 * With delalloc we want to sync the file 2718 * so that we can make sure we allocate 2719 * blocks for file 2720 */ 2721 filemap_write_and_wait(mapping); 2722 } 2723 2724 if (EXT4_JOURNAL(inode) && 2725 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2726 /* 2727 * This is a REALLY heavyweight approach, but the use of 2728 * bmap on dirty files is expected to be extremely rare: 2729 * only if we run lilo or swapon on a freshly made file 2730 * do we expect this to happen. 2731 * 2732 * (bmap requires CAP_SYS_RAWIO so this does not 2733 * represent an unprivileged user DOS attack --- we'd be 2734 * in trouble if mortal users could trigger this path at 2735 * will.) 2736 * 2737 * NB. EXT4_STATE_JDATA is not set on files other than 2738 * regular files. If somebody wants to bmap a directory 2739 * or symlink and gets confused because the buffer 2740 * hasn't yet been flushed to disk, they deserve 2741 * everything they get. 2742 */ 2743 2744 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2745 journal = EXT4_JOURNAL(inode); 2746 jbd2_journal_lock_updates(journal); 2747 err = jbd2_journal_flush(journal); 2748 jbd2_journal_unlock_updates(journal); 2749 2750 if (err) 2751 return 0; 2752 } 2753 2754 return generic_block_bmap(mapping, block, ext4_get_block); 2755 } 2756 2757 static int ext4_readpage(struct file *file, struct page *page) 2758 { 2759 trace_ext4_readpage(page); 2760 return mpage_readpage(page, ext4_get_block); 2761 } 2762 2763 static int 2764 ext4_readpages(struct file *file, struct address_space *mapping, 2765 struct list_head *pages, unsigned nr_pages) 2766 { 2767 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2768 } 2769 2770 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2771 { 2772 struct buffer_head *head, *bh; 2773 unsigned int curr_off = 0; 2774 2775 if (!page_has_buffers(page)) 2776 return; 2777 head = bh = page_buffers(page); 2778 do { 2779 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2780 && bh->b_private) { 2781 ext4_free_io_end(bh->b_private); 2782 bh->b_private = NULL; 2783 bh->b_end_io = NULL; 2784 } 2785 curr_off = curr_off + bh->b_size; 2786 bh = bh->b_this_page; 2787 } while (bh != head); 2788 } 2789 2790 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2791 { 2792 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2793 2794 trace_ext4_invalidatepage(page, offset); 2795 2796 /* 2797 * free any io_end structure allocated for buffers to be discarded 2798 */ 2799 if (ext4_should_dioread_nolock(page->mapping->host)) 2800 ext4_invalidatepage_free_endio(page, offset); 2801 /* 2802 * If it's a full truncate we just forget about the pending dirtying 2803 */ 2804 if (offset == 0) 2805 ClearPageChecked(page); 2806 2807 if (journal) 2808 jbd2_journal_invalidatepage(journal, page, offset); 2809 else 2810 block_invalidatepage(page, offset); 2811 } 2812 2813 static int ext4_releasepage(struct page *page, gfp_t wait) 2814 { 2815 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2816 2817 trace_ext4_releasepage(page); 2818 2819 WARN_ON(PageChecked(page)); 2820 if (!page_has_buffers(page)) 2821 return 0; 2822 if (journal) 2823 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2824 else 2825 return try_to_free_buffers(page); 2826 } 2827 2828 /* 2829 * ext4_get_block used when preparing for a DIO write or buffer write. 2830 * We allocate an uinitialized extent if blocks haven't been allocated. 2831 * The extent will be converted to initialized after the IO is complete. 2832 */ 2833 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2834 struct buffer_head *bh_result, int create) 2835 { 2836 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2837 inode->i_ino, create); 2838 return _ext4_get_block(inode, iblock, bh_result, 2839 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2840 } 2841 2842 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2843 struct buffer_head *bh_result, int flags) 2844 { 2845 handle_t *handle = ext4_journal_current_handle(); 2846 struct ext4_map_blocks map; 2847 int ret = 0; 2848 2849 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n", 2850 inode->i_ino, flags); 2851 2852 flags = EXT4_GET_BLOCKS_NO_LOCK; 2853 2854 map.m_lblk = iblock; 2855 map.m_len = bh_result->b_size >> inode->i_blkbits; 2856 2857 ret = ext4_map_blocks(handle, inode, &map, flags); 2858 if (ret > 0) { 2859 map_bh(bh_result, inode->i_sb, map.m_pblk); 2860 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) | 2861 map.m_flags; 2862 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len; 2863 ret = 0; 2864 } 2865 return ret; 2866 } 2867 2868 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2869 ssize_t size, void *private, int ret, 2870 bool is_async) 2871 { 2872 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2873 ext4_io_end_t *io_end = iocb->private; 2874 struct workqueue_struct *wq; 2875 unsigned long flags; 2876 struct ext4_inode_info *ei; 2877 2878 /* if not async direct IO or dio with 0 bytes write, just return */ 2879 if (!io_end || !size) 2880 goto out; 2881 2882 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2883 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2884 iocb->private, io_end->inode->i_ino, iocb, offset, 2885 size); 2886 2887 iocb->private = NULL; 2888 2889 /* if not aio dio with unwritten extents, just free io and return */ 2890 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2891 ext4_free_io_end(io_end); 2892 out: 2893 if (is_async) 2894 aio_complete(iocb, ret, 0); 2895 inode_dio_done(inode); 2896 return; 2897 } 2898 2899 io_end->offset = offset; 2900 io_end->size = size; 2901 if (is_async) { 2902 io_end->iocb = iocb; 2903 io_end->result = ret; 2904 } 2905 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2906 2907 /* Add the io_end to per-inode completed aio dio list*/ 2908 ei = EXT4_I(io_end->inode); 2909 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2910 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2911 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2912 2913 /* queue the work to convert unwritten extents to written */ 2914 queue_work(wq, &io_end->work); 2915 } 2916 2917 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2918 { 2919 ext4_io_end_t *io_end = bh->b_private; 2920 struct workqueue_struct *wq; 2921 struct inode *inode; 2922 unsigned long flags; 2923 2924 if (!test_clear_buffer_uninit(bh) || !io_end) 2925 goto out; 2926 2927 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2928 ext4_msg(io_end->inode->i_sb, KERN_INFO, 2929 "sb umounted, discard end_io request for inode %lu", 2930 io_end->inode->i_ino); 2931 ext4_free_io_end(io_end); 2932 goto out; 2933 } 2934 2935 /* 2936 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2937 * but being more careful is always safe for the future change. 2938 */ 2939 inode = io_end->inode; 2940 ext4_set_io_unwritten_flag(inode, io_end); 2941 2942 /* Add the io_end to per-inode completed io list*/ 2943 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2944 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2945 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2946 2947 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2948 /* queue the work to convert unwritten extents to written */ 2949 queue_work(wq, &io_end->work); 2950 out: 2951 bh->b_private = NULL; 2952 bh->b_end_io = NULL; 2953 clear_buffer_uninit(bh); 2954 end_buffer_async_write(bh, uptodate); 2955 } 2956 2957 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2958 { 2959 ext4_io_end_t *io_end; 2960 struct page *page = bh->b_page; 2961 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2962 size_t size = bh->b_size; 2963 2964 retry: 2965 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2966 if (!io_end) { 2967 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2968 schedule(); 2969 goto retry; 2970 } 2971 io_end->offset = offset; 2972 io_end->size = size; 2973 /* 2974 * We need to hold a reference to the page to make sure it 2975 * doesn't get evicted before ext4_end_io_work() has a chance 2976 * to convert the extent from written to unwritten. 2977 */ 2978 io_end->page = page; 2979 get_page(io_end->page); 2980 2981 bh->b_private = io_end; 2982 bh->b_end_io = ext4_end_io_buffer_write; 2983 return 0; 2984 } 2985 2986 /* 2987 * For ext4 extent files, ext4 will do direct-io write to holes, 2988 * preallocated extents, and those write extend the file, no need to 2989 * fall back to buffered IO. 2990 * 2991 * For holes, we fallocate those blocks, mark them as uninitialized 2992 * If those blocks were preallocated, we mark sure they are splited, but 2993 * still keep the range to write as uninitialized. 2994 * 2995 * The unwrritten extents will be converted to written when DIO is completed. 2996 * For async direct IO, since the IO may still pending when return, we 2997 * set up an end_io call back function, which will do the conversion 2998 * when async direct IO completed. 2999 * 3000 * If the O_DIRECT write will extend the file then add this inode to the 3001 * orphan list. So recovery will truncate it back to the original size 3002 * if the machine crashes during the write. 3003 * 3004 */ 3005 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3006 const struct iovec *iov, loff_t offset, 3007 unsigned long nr_segs) 3008 { 3009 struct file *file = iocb->ki_filp; 3010 struct inode *inode = file->f_mapping->host; 3011 ssize_t ret; 3012 size_t count = iov_length(iov, nr_segs); 3013 3014 loff_t final_size = offset + count; 3015 if (rw == WRITE && final_size <= inode->i_size) { 3016 int overwrite = 0; 3017 3018 BUG_ON(iocb->private == NULL); 3019 3020 /* If we do a overwrite dio, i_mutex locking can be released */ 3021 overwrite = *((int *)iocb->private); 3022 3023 if (overwrite) { 3024 down_read(&EXT4_I(inode)->i_data_sem); 3025 mutex_unlock(&inode->i_mutex); 3026 } 3027 3028 /* 3029 * We could direct write to holes and fallocate. 3030 * 3031 * Allocated blocks to fill the hole are marked as uninitialized 3032 * to prevent parallel buffered read to expose the stale data 3033 * before DIO complete the data IO. 3034 * 3035 * As to previously fallocated extents, ext4 get_block 3036 * will just simply mark the buffer mapped but still 3037 * keep the extents uninitialized. 3038 * 3039 * for non AIO case, we will convert those unwritten extents 3040 * to written after return back from blockdev_direct_IO. 3041 * 3042 * for async DIO, the conversion needs to be defered when 3043 * the IO is completed. The ext4 end_io callback function 3044 * will be called to take care of the conversion work. 3045 * Here for async case, we allocate an io_end structure to 3046 * hook to the iocb. 3047 */ 3048 iocb->private = NULL; 3049 EXT4_I(inode)->cur_aio_dio = NULL; 3050 if (!is_sync_kiocb(iocb)) { 3051 ext4_io_end_t *io_end = 3052 ext4_init_io_end(inode, GFP_NOFS); 3053 if (!io_end) { 3054 ret = -ENOMEM; 3055 goto retake_lock; 3056 } 3057 io_end->flag |= EXT4_IO_END_DIRECT; 3058 iocb->private = io_end; 3059 /* 3060 * we save the io structure for current async 3061 * direct IO, so that later ext4_map_blocks() 3062 * could flag the io structure whether there 3063 * is a unwritten extents needs to be converted 3064 * when IO is completed. 3065 */ 3066 EXT4_I(inode)->cur_aio_dio = iocb->private; 3067 } 3068 3069 if (overwrite) 3070 ret = __blockdev_direct_IO(rw, iocb, inode, 3071 inode->i_sb->s_bdev, iov, 3072 offset, nr_segs, 3073 ext4_get_block_write_nolock, 3074 ext4_end_io_dio, 3075 NULL, 3076 0); 3077 else 3078 ret = __blockdev_direct_IO(rw, iocb, inode, 3079 inode->i_sb->s_bdev, iov, 3080 offset, nr_segs, 3081 ext4_get_block_write, 3082 ext4_end_io_dio, 3083 NULL, 3084 DIO_LOCKING); 3085 if (iocb->private) 3086 EXT4_I(inode)->cur_aio_dio = NULL; 3087 /* 3088 * The io_end structure takes a reference to the inode, 3089 * that structure needs to be destroyed and the 3090 * reference to the inode need to be dropped, when IO is 3091 * complete, even with 0 byte write, or failed. 3092 * 3093 * In the successful AIO DIO case, the io_end structure will be 3094 * desctroyed and the reference to the inode will be dropped 3095 * after the end_io call back function is called. 3096 * 3097 * In the case there is 0 byte write, or error case, since 3098 * VFS direct IO won't invoke the end_io call back function, 3099 * we need to free the end_io structure here. 3100 */ 3101 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3102 ext4_free_io_end(iocb->private); 3103 iocb->private = NULL; 3104 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3105 EXT4_STATE_DIO_UNWRITTEN)) { 3106 int err; 3107 /* 3108 * for non AIO case, since the IO is already 3109 * completed, we could do the conversion right here 3110 */ 3111 err = ext4_convert_unwritten_extents(inode, 3112 offset, ret); 3113 if (err < 0) 3114 ret = err; 3115 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3116 } 3117 3118 retake_lock: 3119 /* take i_mutex locking again if we do a ovewrite dio */ 3120 if (overwrite) { 3121 up_read(&EXT4_I(inode)->i_data_sem); 3122 mutex_lock(&inode->i_mutex); 3123 } 3124 3125 return ret; 3126 } 3127 3128 /* for write the the end of file case, we fall back to old way */ 3129 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3130 } 3131 3132 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3133 const struct iovec *iov, loff_t offset, 3134 unsigned long nr_segs) 3135 { 3136 struct file *file = iocb->ki_filp; 3137 struct inode *inode = file->f_mapping->host; 3138 ssize_t ret; 3139 3140 /* 3141 * If we are doing data journalling we don't support O_DIRECT 3142 */ 3143 if (ext4_should_journal_data(inode)) 3144 return 0; 3145 3146 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3147 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3148 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3149 else 3150 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3151 trace_ext4_direct_IO_exit(inode, offset, 3152 iov_length(iov, nr_segs), rw, ret); 3153 return ret; 3154 } 3155 3156 /* 3157 * Pages can be marked dirty completely asynchronously from ext4's journalling 3158 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3159 * much here because ->set_page_dirty is called under VFS locks. The page is 3160 * not necessarily locked. 3161 * 3162 * We cannot just dirty the page and leave attached buffers clean, because the 3163 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3164 * or jbddirty because all the journalling code will explode. 3165 * 3166 * So what we do is to mark the page "pending dirty" and next time writepage 3167 * is called, propagate that into the buffers appropriately. 3168 */ 3169 static int ext4_journalled_set_page_dirty(struct page *page) 3170 { 3171 SetPageChecked(page); 3172 return __set_page_dirty_nobuffers(page); 3173 } 3174 3175 static const struct address_space_operations ext4_ordered_aops = { 3176 .readpage = ext4_readpage, 3177 .readpages = ext4_readpages, 3178 .writepage = ext4_writepage, 3179 .write_begin = ext4_write_begin, 3180 .write_end = ext4_ordered_write_end, 3181 .bmap = ext4_bmap, 3182 .invalidatepage = ext4_invalidatepage, 3183 .releasepage = ext4_releasepage, 3184 .direct_IO = ext4_direct_IO, 3185 .migratepage = buffer_migrate_page, 3186 .is_partially_uptodate = block_is_partially_uptodate, 3187 .error_remove_page = generic_error_remove_page, 3188 }; 3189 3190 static const struct address_space_operations ext4_writeback_aops = { 3191 .readpage = ext4_readpage, 3192 .readpages = ext4_readpages, 3193 .writepage = ext4_writepage, 3194 .write_begin = ext4_write_begin, 3195 .write_end = ext4_writeback_write_end, 3196 .bmap = ext4_bmap, 3197 .invalidatepage = ext4_invalidatepage, 3198 .releasepage = ext4_releasepage, 3199 .direct_IO = ext4_direct_IO, 3200 .migratepage = buffer_migrate_page, 3201 .is_partially_uptodate = block_is_partially_uptodate, 3202 .error_remove_page = generic_error_remove_page, 3203 }; 3204 3205 static const struct address_space_operations ext4_journalled_aops = { 3206 .readpage = ext4_readpage, 3207 .readpages = ext4_readpages, 3208 .writepage = ext4_writepage, 3209 .write_begin = ext4_write_begin, 3210 .write_end = ext4_journalled_write_end, 3211 .set_page_dirty = ext4_journalled_set_page_dirty, 3212 .bmap = ext4_bmap, 3213 .invalidatepage = ext4_invalidatepage, 3214 .releasepage = ext4_releasepage, 3215 .direct_IO = ext4_direct_IO, 3216 .is_partially_uptodate = block_is_partially_uptodate, 3217 .error_remove_page = generic_error_remove_page, 3218 }; 3219 3220 static const struct address_space_operations ext4_da_aops = { 3221 .readpage = ext4_readpage, 3222 .readpages = ext4_readpages, 3223 .writepage = ext4_writepage, 3224 .writepages = ext4_da_writepages, 3225 .write_begin = ext4_da_write_begin, 3226 .write_end = ext4_da_write_end, 3227 .bmap = ext4_bmap, 3228 .invalidatepage = ext4_da_invalidatepage, 3229 .releasepage = ext4_releasepage, 3230 .direct_IO = ext4_direct_IO, 3231 .migratepage = buffer_migrate_page, 3232 .is_partially_uptodate = block_is_partially_uptodate, 3233 .error_remove_page = generic_error_remove_page, 3234 }; 3235 3236 void ext4_set_aops(struct inode *inode) 3237 { 3238 switch (ext4_inode_journal_mode(inode)) { 3239 case EXT4_INODE_ORDERED_DATA_MODE: 3240 if (test_opt(inode->i_sb, DELALLOC)) 3241 inode->i_mapping->a_ops = &ext4_da_aops; 3242 else 3243 inode->i_mapping->a_ops = &ext4_ordered_aops; 3244 break; 3245 case EXT4_INODE_WRITEBACK_DATA_MODE: 3246 if (test_opt(inode->i_sb, DELALLOC)) 3247 inode->i_mapping->a_ops = &ext4_da_aops; 3248 else 3249 inode->i_mapping->a_ops = &ext4_writeback_aops; 3250 break; 3251 case EXT4_INODE_JOURNAL_DATA_MODE: 3252 inode->i_mapping->a_ops = &ext4_journalled_aops; 3253 break; 3254 default: 3255 BUG(); 3256 } 3257 } 3258 3259 3260 /* 3261 * ext4_discard_partial_page_buffers() 3262 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3263 * This function finds and locks the page containing the offset 3264 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3265 * Calling functions that already have the page locked should call 3266 * ext4_discard_partial_page_buffers_no_lock directly. 3267 */ 3268 int ext4_discard_partial_page_buffers(handle_t *handle, 3269 struct address_space *mapping, loff_t from, 3270 loff_t length, int flags) 3271 { 3272 struct inode *inode = mapping->host; 3273 struct page *page; 3274 int err = 0; 3275 3276 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3277 mapping_gfp_mask(mapping) & ~__GFP_FS); 3278 if (!page) 3279 return -ENOMEM; 3280 3281 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3282 from, length, flags); 3283 3284 unlock_page(page); 3285 page_cache_release(page); 3286 return err; 3287 } 3288 3289 /* 3290 * ext4_discard_partial_page_buffers_no_lock() 3291 * Zeros a page range of length 'length' starting from offset 'from'. 3292 * Buffer heads that correspond to the block aligned regions of the 3293 * zeroed range will be unmapped. Unblock aligned regions 3294 * will have the corresponding buffer head mapped if needed so that 3295 * that region of the page can be updated with the partial zero out. 3296 * 3297 * This function assumes that the page has already been locked. The 3298 * The range to be discarded must be contained with in the given page. 3299 * If the specified range exceeds the end of the page it will be shortened 3300 * to the end of the page that corresponds to 'from'. This function is 3301 * appropriate for updating a page and it buffer heads to be unmapped and 3302 * zeroed for blocks that have been either released, or are going to be 3303 * released. 3304 * 3305 * handle: The journal handle 3306 * inode: The files inode 3307 * page: A locked page that contains the offset "from" 3308 * from: The starting byte offset (from the begining of the file) 3309 * to begin discarding 3310 * len: The length of bytes to discard 3311 * flags: Optional flags that may be used: 3312 * 3313 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3314 * Only zero the regions of the page whose buffer heads 3315 * have already been unmapped. This flag is appropriate 3316 * for updateing the contents of a page whose blocks may 3317 * have already been released, and we only want to zero 3318 * out the regions that correspond to those released blocks. 3319 * 3320 * Returns zero on sucess or negative on failure. 3321 */ 3322 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3323 struct inode *inode, struct page *page, loff_t from, 3324 loff_t length, int flags) 3325 { 3326 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3327 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3328 unsigned int blocksize, max, pos; 3329 ext4_lblk_t iblock; 3330 struct buffer_head *bh; 3331 int err = 0; 3332 3333 blocksize = inode->i_sb->s_blocksize; 3334 max = PAGE_CACHE_SIZE - offset; 3335 3336 if (index != page->index) 3337 return -EINVAL; 3338 3339 /* 3340 * correct length if it does not fall between 3341 * 'from' and the end of the page 3342 */ 3343 if (length > max || length < 0) 3344 length = max; 3345 3346 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3347 3348 if (!page_has_buffers(page)) 3349 create_empty_buffers(page, blocksize, 0); 3350 3351 /* Find the buffer that contains "offset" */ 3352 bh = page_buffers(page); 3353 pos = blocksize; 3354 while (offset >= pos) { 3355 bh = bh->b_this_page; 3356 iblock++; 3357 pos += blocksize; 3358 } 3359 3360 pos = offset; 3361 while (pos < offset + length) { 3362 unsigned int end_of_block, range_to_discard; 3363 3364 err = 0; 3365 3366 /* The length of space left to zero and unmap */ 3367 range_to_discard = offset + length - pos; 3368 3369 /* The length of space until the end of the block */ 3370 end_of_block = blocksize - (pos & (blocksize-1)); 3371 3372 /* 3373 * Do not unmap or zero past end of block 3374 * for this buffer head 3375 */ 3376 if (range_to_discard > end_of_block) 3377 range_to_discard = end_of_block; 3378 3379 3380 /* 3381 * Skip this buffer head if we are only zeroing unampped 3382 * regions of the page 3383 */ 3384 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3385 buffer_mapped(bh)) 3386 goto next; 3387 3388 /* If the range is block aligned, unmap */ 3389 if (range_to_discard == blocksize) { 3390 clear_buffer_dirty(bh); 3391 bh->b_bdev = NULL; 3392 clear_buffer_mapped(bh); 3393 clear_buffer_req(bh); 3394 clear_buffer_new(bh); 3395 clear_buffer_delay(bh); 3396 clear_buffer_unwritten(bh); 3397 clear_buffer_uptodate(bh); 3398 zero_user(page, pos, range_to_discard); 3399 BUFFER_TRACE(bh, "Buffer discarded"); 3400 goto next; 3401 } 3402 3403 /* 3404 * If this block is not completely contained in the range 3405 * to be discarded, then it is not going to be released. Because 3406 * we need to keep this block, we need to make sure this part 3407 * of the page is uptodate before we modify it by writeing 3408 * partial zeros on it. 3409 */ 3410 if (!buffer_mapped(bh)) { 3411 /* 3412 * Buffer head must be mapped before we can read 3413 * from the block 3414 */ 3415 BUFFER_TRACE(bh, "unmapped"); 3416 ext4_get_block(inode, iblock, bh, 0); 3417 /* unmapped? It's a hole - nothing to do */ 3418 if (!buffer_mapped(bh)) { 3419 BUFFER_TRACE(bh, "still unmapped"); 3420 goto next; 3421 } 3422 } 3423 3424 /* Ok, it's mapped. Make sure it's up-to-date */ 3425 if (PageUptodate(page)) 3426 set_buffer_uptodate(bh); 3427 3428 if (!buffer_uptodate(bh)) { 3429 err = -EIO; 3430 ll_rw_block(READ, 1, &bh); 3431 wait_on_buffer(bh); 3432 /* Uhhuh. Read error. Complain and punt.*/ 3433 if (!buffer_uptodate(bh)) 3434 goto next; 3435 } 3436 3437 if (ext4_should_journal_data(inode)) { 3438 BUFFER_TRACE(bh, "get write access"); 3439 err = ext4_journal_get_write_access(handle, bh); 3440 if (err) 3441 goto next; 3442 } 3443 3444 zero_user(page, pos, range_to_discard); 3445 3446 err = 0; 3447 if (ext4_should_journal_data(inode)) { 3448 err = ext4_handle_dirty_metadata(handle, inode, bh); 3449 } else 3450 mark_buffer_dirty(bh); 3451 3452 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3453 next: 3454 bh = bh->b_this_page; 3455 iblock++; 3456 pos += range_to_discard; 3457 } 3458 3459 return err; 3460 } 3461 3462 int ext4_can_truncate(struct inode *inode) 3463 { 3464 if (S_ISREG(inode->i_mode)) 3465 return 1; 3466 if (S_ISDIR(inode->i_mode)) 3467 return 1; 3468 if (S_ISLNK(inode->i_mode)) 3469 return !ext4_inode_is_fast_symlink(inode); 3470 return 0; 3471 } 3472 3473 /* 3474 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3475 * associated with the given offset and length 3476 * 3477 * @inode: File inode 3478 * @offset: The offset where the hole will begin 3479 * @len: The length of the hole 3480 * 3481 * Returns: 0 on sucess or negative on failure 3482 */ 3483 3484 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3485 { 3486 struct inode *inode = file->f_path.dentry->d_inode; 3487 if (!S_ISREG(inode->i_mode)) 3488 return -EOPNOTSUPP; 3489 3490 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3491 /* TODO: Add support for non extent hole punching */ 3492 return -EOPNOTSUPP; 3493 } 3494 3495 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3496 /* TODO: Add support for bigalloc file systems */ 3497 return -EOPNOTSUPP; 3498 } 3499 3500 return ext4_ext_punch_hole(file, offset, length); 3501 } 3502 3503 /* 3504 * ext4_truncate() 3505 * 3506 * We block out ext4_get_block() block instantiations across the entire 3507 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3508 * simultaneously on behalf of the same inode. 3509 * 3510 * As we work through the truncate and commit bits of it to the journal there 3511 * is one core, guiding principle: the file's tree must always be consistent on 3512 * disk. We must be able to restart the truncate after a crash. 3513 * 3514 * The file's tree may be transiently inconsistent in memory (although it 3515 * probably isn't), but whenever we close off and commit a journal transaction, 3516 * the contents of (the filesystem + the journal) must be consistent and 3517 * restartable. It's pretty simple, really: bottom up, right to left (although 3518 * left-to-right works OK too). 3519 * 3520 * Note that at recovery time, journal replay occurs *before* the restart of 3521 * truncate against the orphan inode list. 3522 * 3523 * The committed inode has the new, desired i_size (which is the same as 3524 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3525 * that this inode's truncate did not complete and it will again call 3526 * ext4_truncate() to have another go. So there will be instantiated blocks 3527 * to the right of the truncation point in a crashed ext4 filesystem. But 3528 * that's fine - as long as they are linked from the inode, the post-crash 3529 * ext4_truncate() run will find them and release them. 3530 */ 3531 void ext4_truncate(struct inode *inode) 3532 { 3533 trace_ext4_truncate_enter(inode); 3534 3535 if (!ext4_can_truncate(inode)) 3536 return; 3537 3538 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3539 3540 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3541 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3542 3543 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3544 ext4_ext_truncate(inode); 3545 else 3546 ext4_ind_truncate(inode); 3547 3548 trace_ext4_truncate_exit(inode); 3549 } 3550 3551 /* 3552 * ext4_get_inode_loc returns with an extra refcount against the inode's 3553 * underlying buffer_head on success. If 'in_mem' is true, we have all 3554 * data in memory that is needed to recreate the on-disk version of this 3555 * inode. 3556 */ 3557 static int __ext4_get_inode_loc(struct inode *inode, 3558 struct ext4_iloc *iloc, int in_mem) 3559 { 3560 struct ext4_group_desc *gdp; 3561 struct buffer_head *bh; 3562 struct super_block *sb = inode->i_sb; 3563 ext4_fsblk_t block; 3564 int inodes_per_block, inode_offset; 3565 3566 iloc->bh = NULL; 3567 if (!ext4_valid_inum(sb, inode->i_ino)) 3568 return -EIO; 3569 3570 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3571 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3572 if (!gdp) 3573 return -EIO; 3574 3575 /* 3576 * Figure out the offset within the block group inode table 3577 */ 3578 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3579 inode_offset = ((inode->i_ino - 1) % 3580 EXT4_INODES_PER_GROUP(sb)); 3581 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3582 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3583 3584 bh = sb_getblk(sb, block); 3585 if (!bh) { 3586 EXT4_ERROR_INODE_BLOCK(inode, block, 3587 "unable to read itable block"); 3588 return -EIO; 3589 } 3590 if (!buffer_uptodate(bh)) { 3591 lock_buffer(bh); 3592 3593 /* 3594 * If the buffer has the write error flag, we have failed 3595 * to write out another inode in the same block. In this 3596 * case, we don't have to read the block because we may 3597 * read the old inode data successfully. 3598 */ 3599 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3600 set_buffer_uptodate(bh); 3601 3602 if (buffer_uptodate(bh)) { 3603 /* someone brought it uptodate while we waited */ 3604 unlock_buffer(bh); 3605 goto has_buffer; 3606 } 3607 3608 /* 3609 * If we have all information of the inode in memory and this 3610 * is the only valid inode in the block, we need not read the 3611 * block. 3612 */ 3613 if (in_mem) { 3614 struct buffer_head *bitmap_bh; 3615 int i, start; 3616 3617 start = inode_offset & ~(inodes_per_block - 1); 3618 3619 /* Is the inode bitmap in cache? */ 3620 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3621 if (!bitmap_bh) 3622 goto make_io; 3623 3624 /* 3625 * If the inode bitmap isn't in cache then the 3626 * optimisation may end up performing two reads instead 3627 * of one, so skip it. 3628 */ 3629 if (!buffer_uptodate(bitmap_bh)) { 3630 brelse(bitmap_bh); 3631 goto make_io; 3632 } 3633 for (i = start; i < start + inodes_per_block; i++) { 3634 if (i == inode_offset) 3635 continue; 3636 if (ext4_test_bit(i, bitmap_bh->b_data)) 3637 break; 3638 } 3639 brelse(bitmap_bh); 3640 if (i == start + inodes_per_block) { 3641 /* all other inodes are free, so skip I/O */ 3642 memset(bh->b_data, 0, bh->b_size); 3643 set_buffer_uptodate(bh); 3644 unlock_buffer(bh); 3645 goto has_buffer; 3646 } 3647 } 3648 3649 make_io: 3650 /* 3651 * If we need to do any I/O, try to pre-readahead extra 3652 * blocks from the inode table. 3653 */ 3654 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3655 ext4_fsblk_t b, end, table; 3656 unsigned num; 3657 3658 table = ext4_inode_table(sb, gdp); 3659 /* s_inode_readahead_blks is always a power of 2 */ 3660 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3661 if (table > b) 3662 b = table; 3663 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3664 num = EXT4_INODES_PER_GROUP(sb); 3665 if (ext4_has_group_desc_csum(sb)) 3666 num -= ext4_itable_unused_count(sb, gdp); 3667 table += num / inodes_per_block; 3668 if (end > table) 3669 end = table; 3670 while (b <= end) 3671 sb_breadahead(sb, b++); 3672 } 3673 3674 /* 3675 * There are other valid inodes in the buffer, this inode 3676 * has in-inode xattrs, or we don't have this inode in memory. 3677 * Read the block from disk. 3678 */ 3679 trace_ext4_load_inode(inode); 3680 get_bh(bh); 3681 bh->b_end_io = end_buffer_read_sync; 3682 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3683 wait_on_buffer(bh); 3684 if (!buffer_uptodate(bh)) { 3685 EXT4_ERROR_INODE_BLOCK(inode, block, 3686 "unable to read itable block"); 3687 brelse(bh); 3688 return -EIO; 3689 } 3690 } 3691 has_buffer: 3692 iloc->bh = bh; 3693 return 0; 3694 } 3695 3696 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3697 { 3698 /* We have all inode data except xattrs in memory here. */ 3699 return __ext4_get_inode_loc(inode, iloc, 3700 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3701 } 3702 3703 void ext4_set_inode_flags(struct inode *inode) 3704 { 3705 unsigned int flags = EXT4_I(inode)->i_flags; 3706 3707 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3708 if (flags & EXT4_SYNC_FL) 3709 inode->i_flags |= S_SYNC; 3710 if (flags & EXT4_APPEND_FL) 3711 inode->i_flags |= S_APPEND; 3712 if (flags & EXT4_IMMUTABLE_FL) 3713 inode->i_flags |= S_IMMUTABLE; 3714 if (flags & EXT4_NOATIME_FL) 3715 inode->i_flags |= S_NOATIME; 3716 if (flags & EXT4_DIRSYNC_FL) 3717 inode->i_flags |= S_DIRSYNC; 3718 } 3719 3720 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3721 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3722 { 3723 unsigned int vfs_fl; 3724 unsigned long old_fl, new_fl; 3725 3726 do { 3727 vfs_fl = ei->vfs_inode.i_flags; 3728 old_fl = ei->i_flags; 3729 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3730 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3731 EXT4_DIRSYNC_FL); 3732 if (vfs_fl & S_SYNC) 3733 new_fl |= EXT4_SYNC_FL; 3734 if (vfs_fl & S_APPEND) 3735 new_fl |= EXT4_APPEND_FL; 3736 if (vfs_fl & S_IMMUTABLE) 3737 new_fl |= EXT4_IMMUTABLE_FL; 3738 if (vfs_fl & S_NOATIME) 3739 new_fl |= EXT4_NOATIME_FL; 3740 if (vfs_fl & S_DIRSYNC) 3741 new_fl |= EXT4_DIRSYNC_FL; 3742 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3743 } 3744 3745 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3746 struct ext4_inode_info *ei) 3747 { 3748 blkcnt_t i_blocks ; 3749 struct inode *inode = &(ei->vfs_inode); 3750 struct super_block *sb = inode->i_sb; 3751 3752 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3753 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3754 /* we are using combined 48 bit field */ 3755 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3756 le32_to_cpu(raw_inode->i_blocks_lo); 3757 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3758 /* i_blocks represent file system block size */ 3759 return i_blocks << (inode->i_blkbits - 9); 3760 } else { 3761 return i_blocks; 3762 } 3763 } else { 3764 return le32_to_cpu(raw_inode->i_blocks_lo); 3765 } 3766 } 3767 3768 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3769 { 3770 struct ext4_iloc iloc; 3771 struct ext4_inode *raw_inode; 3772 struct ext4_inode_info *ei; 3773 struct inode *inode; 3774 journal_t *journal = EXT4_SB(sb)->s_journal; 3775 long ret; 3776 int block; 3777 uid_t i_uid; 3778 gid_t i_gid; 3779 3780 inode = iget_locked(sb, ino); 3781 if (!inode) 3782 return ERR_PTR(-ENOMEM); 3783 if (!(inode->i_state & I_NEW)) 3784 return inode; 3785 3786 ei = EXT4_I(inode); 3787 iloc.bh = NULL; 3788 3789 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3790 if (ret < 0) 3791 goto bad_inode; 3792 raw_inode = ext4_raw_inode(&iloc); 3793 3794 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3795 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3796 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3797 EXT4_INODE_SIZE(inode->i_sb)) { 3798 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3799 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3800 EXT4_INODE_SIZE(inode->i_sb)); 3801 ret = -EIO; 3802 goto bad_inode; 3803 } 3804 } else 3805 ei->i_extra_isize = 0; 3806 3807 /* Precompute checksum seed for inode metadata */ 3808 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3809 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3811 __u32 csum; 3812 __le32 inum = cpu_to_le32(inode->i_ino); 3813 __le32 gen = raw_inode->i_generation; 3814 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3815 sizeof(inum)); 3816 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3817 sizeof(gen)); 3818 } 3819 3820 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3821 EXT4_ERROR_INODE(inode, "checksum invalid"); 3822 ret = -EIO; 3823 goto bad_inode; 3824 } 3825 3826 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3827 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3828 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3829 if (!(test_opt(inode->i_sb, NO_UID32))) { 3830 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3831 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3832 } 3833 i_uid_write(inode, i_uid); 3834 i_gid_write(inode, i_gid); 3835 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3836 3837 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3838 ei->i_dir_start_lookup = 0; 3839 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3840 /* We now have enough fields to check if the inode was active or not. 3841 * This is needed because nfsd might try to access dead inodes 3842 * the test is that same one that e2fsck uses 3843 * NeilBrown 1999oct15 3844 */ 3845 if (inode->i_nlink == 0) { 3846 if (inode->i_mode == 0 || 3847 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3848 /* this inode is deleted */ 3849 ret = -ESTALE; 3850 goto bad_inode; 3851 } 3852 /* The only unlinked inodes we let through here have 3853 * valid i_mode and are being read by the orphan 3854 * recovery code: that's fine, we're about to complete 3855 * the process of deleting those. */ 3856 } 3857 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3858 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3859 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3860 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3861 ei->i_file_acl |= 3862 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3863 inode->i_size = ext4_isize(raw_inode); 3864 ei->i_disksize = inode->i_size; 3865 #ifdef CONFIG_QUOTA 3866 ei->i_reserved_quota = 0; 3867 #endif 3868 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3869 ei->i_block_group = iloc.block_group; 3870 ei->i_last_alloc_group = ~0; 3871 /* 3872 * NOTE! The in-memory inode i_data array is in little-endian order 3873 * even on big-endian machines: we do NOT byteswap the block numbers! 3874 */ 3875 for (block = 0; block < EXT4_N_BLOCKS; block++) 3876 ei->i_data[block] = raw_inode->i_block[block]; 3877 INIT_LIST_HEAD(&ei->i_orphan); 3878 3879 /* 3880 * Set transaction id's of transactions that have to be committed 3881 * to finish f[data]sync. We set them to currently running transaction 3882 * as we cannot be sure that the inode or some of its metadata isn't 3883 * part of the transaction - the inode could have been reclaimed and 3884 * now it is reread from disk. 3885 */ 3886 if (journal) { 3887 transaction_t *transaction; 3888 tid_t tid; 3889 3890 read_lock(&journal->j_state_lock); 3891 if (journal->j_running_transaction) 3892 transaction = journal->j_running_transaction; 3893 else 3894 transaction = journal->j_committing_transaction; 3895 if (transaction) 3896 tid = transaction->t_tid; 3897 else 3898 tid = journal->j_commit_sequence; 3899 read_unlock(&journal->j_state_lock); 3900 ei->i_sync_tid = tid; 3901 ei->i_datasync_tid = tid; 3902 } 3903 3904 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3905 if (ei->i_extra_isize == 0) { 3906 /* The extra space is currently unused. Use it. */ 3907 ei->i_extra_isize = sizeof(struct ext4_inode) - 3908 EXT4_GOOD_OLD_INODE_SIZE; 3909 } else { 3910 __le32 *magic = (void *)raw_inode + 3911 EXT4_GOOD_OLD_INODE_SIZE + 3912 ei->i_extra_isize; 3913 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3914 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3915 } 3916 } 3917 3918 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3919 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3920 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3921 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3922 3923 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3924 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3925 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3926 inode->i_version |= 3927 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3928 } 3929 3930 ret = 0; 3931 if (ei->i_file_acl && 3932 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3933 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3934 ei->i_file_acl); 3935 ret = -EIO; 3936 goto bad_inode; 3937 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3938 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3939 (S_ISLNK(inode->i_mode) && 3940 !ext4_inode_is_fast_symlink(inode))) 3941 /* Validate extent which is part of inode */ 3942 ret = ext4_ext_check_inode(inode); 3943 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3944 (S_ISLNK(inode->i_mode) && 3945 !ext4_inode_is_fast_symlink(inode))) { 3946 /* Validate block references which are part of inode */ 3947 ret = ext4_ind_check_inode(inode); 3948 } 3949 if (ret) 3950 goto bad_inode; 3951 3952 if (S_ISREG(inode->i_mode)) { 3953 inode->i_op = &ext4_file_inode_operations; 3954 inode->i_fop = &ext4_file_operations; 3955 ext4_set_aops(inode); 3956 } else if (S_ISDIR(inode->i_mode)) { 3957 inode->i_op = &ext4_dir_inode_operations; 3958 inode->i_fop = &ext4_dir_operations; 3959 } else if (S_ISLNK(inode->i_mode)) { 3960 if (ext4_inode_is_fast_symlink(inode)) { 3961 inode->i_op = &ext4_fast_symlink_inode_operations; 3962 nd_terminate_link(ei->i_data, inode->i_size, 3963 sizeof(ei->i_data) - 1); 3964 } else { 3965 inode->i_op = &ext4_symlink_inode_operations; 3966 ext4_set_aops(inode); 3967 } 3968 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3969 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3970 inode->i_op = &ext4_special_inode_operations; 3971 if (raw_inode->i_block[0]) 3972 init_special_inode(inode, inode->i_mode, 3973 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3974 else 3975 init_special_inode(inode, inode->i_mode, 3976 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3977 } else { 3978 ret = -EIO; 3979 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3980 goto bad_inode; 3981 } 3982 brelse(iloc.bh); 3983 ext4_set_inode_flags(inode); 3984 unlock_new_inode(inode); 3985 return inode; 3986 3987 bad_inode: 3988 brelse(iloc.bh); 3989 iget_failed(inode); 3990 return ERR_PTR(ret); 3991 } 3992 3993 static int ext4_inode_blocks_set(handle_t *handle, 3994 struct ext4_inode *raw_inode, 3995 struct ext4_inode_info *ei) 3996 { 3997 struct inode *inode = &(ei->vfs_inode); 3998 u64 i_blocks = inode->i_blocks; 3999 struct super_block *sb = inode->i_sb; 4000 4001 if (i_blocks <= ~0U) { 4002 /* 4003 * i_blocks can be represnted in a 32 bit variable 4004 * as multiple of 512 bytes 4005 */ 4006 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4007 raw_inode->i_blocks_high = 0; 4008 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4009 return 0; 4010 } 4011 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4012 return -EFBIG; 4013 4014 if (i_blocks <= 0xffffffffffffULL) { 4015 /* 4016 * i_blocks can be represented in a 48 bit variable 4017 * as multiple of 512 bytes 4018 */ 4019 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4020 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4021 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4022 } else { 4023 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4024 /* i_block is stored in file system block size */ 4025 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4026 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4027 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4028 } 4029 return 0; 4030 } 4031 4032 /* 4033 * Post the struct inode info into an on-disk inode location in the 4034 * buffer-cache. This gobbles the caller's reference to the 4035 * buffer_head in the inode location struct. 4036 * 4037 * The caller must have write access to iloc->bh. 4038 */ 4039 static int ext4_do_update_inode(handle_t *handle, 4040 struct inode *inode, 4041 struct ext4_iloc *iloc) 4042 { 4043 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4044 struct ext4_inode_info *ei = EXT4_I(inode); 4045 struct buffer_head *bh = iloc->bh; 4046 int err = 0, rc, block; 4047 uid_t i_uid; 4048 gid_t i_gid; 4049 4050 /* For fields not not tracking in the in-memory inode, 4051 * initialise them to zero for new inodes. */ 4052 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4053 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4054 4055 ext4_get_inode_flags(ei); 4056 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4057 i_uid = i_uid_read(inode); 4058 i_gid = i_gid_read(inode); 4059 if (!(test_opt(inode->i_sb, NO_UID32))) { 4060 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4061 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4062 /* 4063 * Fix up interoperability with old kernels. Otherwise, old inodes get 4064 * re-used with the upper 16 bits of the uid/gid intact 4065 */ 4066 if (!ei->i_dtime) { 4067 raw_inode->i_uid_high = 4068 cpu_to_le16(high_16_bits(i_uid)); 4069 raw_inode->i_gid_high = 4070 cpu_to_le16(high_16_bits(i_gid)); 4071 } else { 4072 raw_inode->i_uid_high = 0; 4073 raw_inode->i_gid_high = 0; 4074 } 4075 } else { 4076 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4077 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4078 raw_inode->i_uid_high = 0; 4079 raw_inode->i_gid_high = 0; 4080 } 4081 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4082 4083 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4084 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4085 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4086 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4087 4088 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4089 goto out_brelse; 4090 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4091 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4092 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4093 cpu_to_le32(EXT4_OS_HURD)) 4094 raw_inode->i_file_acl_high = 4095 cpu_to_le16(ei->i_file_acl >> 32); 4096 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4097 ext4_isize_set(raw_inode, ei->i_disksize); 4098 if (ei->i_disksize > 0x7fffffffULL) { 4099 struct super_block *sb = inode->i_sb; 4100 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4101 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4102 EXT4_SB(sb)->s_es->s_rev_level == 4103 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4104 /* If this is the first large file 4105 * created, add a flag to the superblock. 4106 */ 4107 err = ext4_journal_get_write_access(handle, 4108 EXT4_SB(sb)->s_sbh); 4109 if (err) 4110 goto out_brelse; 4111 ext4_update_dynamic_rev(sb); 4112 EXT4_SET_RO_COMPAT_FEATURE(sb, 4113 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4114 ext4_handle_sync(handle); 4115 err = ext4_handle_dirty_super(handle, sb); 4116 } 4117 } 4118 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4119 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4120 if (old_valid_dev(inode->i_rdev)) { 4121 raw_inode->i_block[0] = 4122 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4123 raw_inode->i_block[1] = 0; 4124 } else { 4125 raw_inode->i_block[0] = 0; 4126 raw_inode->i_block[1] = 4127 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4128 raw_inode->i_block[2] = 0; 4129 } 4130 } else 4131 for (block = 0; block < EXT4_N_BLOCKS; block++) 4132 raw_inode->i_block[block] = ei->i_data[block]; 4133 4134 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4135 if (ei->i_extra_isize) { 4136 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4137 raw_inode->i_version_hi = 4138 cpu_to_le32(inode->i_version >> 32); 4139 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4140 } 4141 4142 ext4_inode_csum_set(inode, raw_inode, ei); 4143 4144 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4145 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4146 if (!err) 4147 err = rc; 4148 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4149 4150 ext4_update_inode_fsync_trans(handle, inode, 0); 4151 out_brelse: 4152 brelse(bh); 4153 ext4_std_error(inode->i_sb, err); 4154 return err; 4155 } 4156 4157 /* 4158 * ext4_write_inode() 4159 * 4160 * We are called from a few places: 4161 * 4162 * - Within generic_file_write() for O_SYNC files. 4163 * Here, there will be no transaction running. We wait for any running 4164 * trasnaction to commit. 4165 * 4166 * - Within sys_sync(), kupdate and such. 4167 * We wait on commit, if tol to. 4168 * 4169 * - Within prune_icache() (PF_MEMALLOC == true) 4170 * Here we simply return. We can't afford to block kswapd on the 4171 * journal commit. 4172 * 4173 * In all cases it is actually safe for us to return without doing anything, 4174 * because the inode has been copied into a raw inode buffer in 4175 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4176 * knfsd. 4177 * 4178 * Note that we are absolutely dependent upon all inode dirtiers doing the 4179 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4180 * which we are interested. 4181 * 4182 * It would be a bug for them to not do this. The code: 4183 * 4184 * mark_inode_dirty(inode) 4185 * stuff(); 4186 * inode->i_size = expr; 4187 * 4188 * is in error because a kswapd-driven write_inode() could occur while 4189 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4190 * will no longer be on the superblock's dirty inode list. 4191 */ 4192 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4193 { 4194 int err; 4195 4196 if (current->flags & PF_MEMALLOC) 4197 return 0; 4198 4199 if (EXT4_SB(inode->i_sb)->s_journal) { 4200 if (ext4_journal_current_handle()) { 4201 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4202 dump_stack(); 4203 return -EIO; 4204 } 4205 4206 if (wbc->sync_mode != WB_SYNC_ALL) 4207 return 0; 4208 4209 err = ext4_force_commit(inode->i_sb); 4210 } else { 4211 struct ext4_iloc iloc; 4212 4213 err = __ext4_get_inode_loc(inode, &iloc, 0); 4214 if (err) 4215 return err; 4216 if (wbc->sync_mode == WB_SYNC_ALL) 4217 sync_dirty_buffer(iloc.bh); 4218 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4219 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4220 "IO error syncing inode"); 4221 err = -EIO; 4222 } 4223 brelse(iloc.bh); 4224 } 4225 return err; 4226 } 4227 4228 /* 4229 * ext4_setattr() 4230 * 4231 * Called from notify_change. 4232 * 4233 * We want to trap VFS attempts to truncate the file as soon as 4234 * possible. In particular, we want to make sure that when the VFS 4235 * shrinks i_size, we put the inode on the orphan list and modify 4236 * i_disksize immediately, so that during the subsequent flushing of 4237 * dirty pages and freeing of disk blocks, we can guarantee that any 4238 * commit will leave the blocks being flushed in an unused state on 4239 * disk. (On recovery, the inode will get truncated and the blocks will 4240 * be freed, so we have a strong guarantee that no future commit will 4241 * leave these blocks visible to the user.) 4242 * 4243 * Another thing we have to assure is that if we are in ordered mode 4244 * and inode is still attached to the committing transaction, we must 4245 * we start writeout of all the dirty pages which are being truncated. 4246 * This way we are sure that all the data written in the previous 4247 * transaction are already on disk (truncate waits for pages under 4248 * writeback). 4249 * 4250 * Called with inode->i_mutex down. 4251 */ 4252 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4253 { 4254 struct inode *inode = dentry->d_inode; 4255 int error, rc = 0; 4256 int orphan = 0; 4257 const unsigned int ia_valid = attr->ia_valid; 4258 4259 error = inode_change_ok(inode, attr); 4260 if (error) 4261 return error; 4262 4263 if (is_quota_modification(inode, attr)) 4264 dquot_initialize(inode); 4265 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4266 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4267 handle_t *handle; 4268 4269 /* (user+group)*(old+new) structure, inode write (sb, 4270 * inode block, ? - but truncate inode update has it) */ 4271 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4272 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4273 if (IS_ERR(handle)) { 4274 error = PTR_ERR(handle); 4275 goto err_out; 4276 } 4277 error = dquot_transfer(inode, attr); 4278 if (error) { 4279 ext4_journal_stop(handle); 4280 return error; 4281 } 4282 /* Update corresponding info in inode so that everything is in 4283 * one transaction */ 4284 if (attr->ia_valid & ATTR_UID) 4285 inode->i_uid = attr->ia_uid; 4286 if (attr->ia_valid & ATTR_GID) 4287 inode->i_gid = attr->ia_gid; 4288 error = ext4_mark_inode_dirty(handle, inode); 4289 ext4_journal_stop(handle); 4290 } 4291 4292 if (attr->ia_valid & ATTR_SIZE) { 4293 inode_dio_wait(inode); 4294 4295 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4296 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4297 4298 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4299 return -EFBIG; 4300 } 4301 } 4302 4303 if (S_ISREG(inode->i_mode) && 4304 attr->ia_valid & ATTR_SIZE && 4305 (attr->ia_size < inode->i_size)) { 4306 handle_t *handle; 4307 4308 handle = ext4_journal_start(inode, 3); 4309 if (IS_ERR(handle)) { 4310 error = PTR_ERR(handle); 4311 goto err_out; 4312 } 4313 if (ext4_handle_valid(handle)) { 4314 error = ext4_orphan_add(handle, inode); 4315 orphan = 1; 4316 } 4317 EXT4_I(inode)->i_disksize = attr->ia_size; 4318 rc = ext4_mark_inode_dirty(handle, inode); 4319 if (!error) 4320 error = rc; 4321 ext4_journal_stop(handle); 4322 4323 if (ext4_should_order_data(inode)) { 4324 error = ext4_begin_ordered_truncate(inode, 4325 attr->ia_size); 4326 if (error) { 4327 /* Do as much error cleanup as possible */ 4328 handle = ext4_journal_start(inode, 3); 4329 if (IS_ERR(handle)) { 4330 ext4_orphan_del(NULL, inode); 4331 goto err_out; 4332 } 4333 ext4_orphan_del(handle, inode); 4334 orphan = 0; 4335 ext4_journal_stop(handle); 4336 goto err_out; 4337 } 4338 } 4339 } 4340 4341 if (attr->ia_valid & ATTR_SIZE) { 4342 if (attr->ia_size != i_size_read(inode)) 4343 truncate_setsize(inode, attr->ia_size); 4344 ext4_truncate(inode); 4345 } 4346 4347 if (!rc) { 4348 setattr_copy(inode, attr); 4349 mark_inode_dirty(inode); 4350 } 4351 4352 /* 4353 * If the call to ext4_truncate failed to get a transaction handle at 4354 * all, we need to clean up the in-core orphan list manually. 4355 */ 4356 if (orphan && inode->i_nlink) 4357 ext4_orphan_del(NULL, inode); 4358 4359 if (!rc && (ia_valid & ATTR_MODE)) 4360 rc = ext4_acl_chmod(inode); 4361 4362 err_out: 4363 ext4_std_error(inode->i_sb, error); 4364 if (!error) 4365 error = rc; 4366 return error; 4367 } 4368 4369 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4370 struct kstat *stat) 4371 { 4372 struct inode *inode; 4373 unsigned long delalloc_blocks; 4374 4375 inode = dentry->d_inode; 4376 generic_fillattr(inode, stat); 4377 4378 /* 4379 * We can't update i_blocks if the block allocation is delayed 4380 * otherwise in the case of system crash before the real block 4381 * allocation is done, we will have i_blocks inconsistent with 4382 * on-disk file blocks. 4383 * We always keep i_blocks updated together with real 4384 * allocation. But to not confuse with user, stat 4385 * will return the blocks that include the delayed allocation 4386 * blocks for this file. 4387 */ 4388 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4389 EXT4_I(inode)->i_reserved_data_blocks); 4390 4391 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4392 return 0; 4393 } 4394 4395 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4396 { 4397 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4398 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4399 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4400 } 4401 4402 /* 4403 * Account for index blocks, block groups bitmaps and block group 4404 * descriptor blocks if modify datablocks and index blocks 4405 * worse case, the indexs blocks spread over different block groups 4406 * 4407 * If datablocks are discontiguous, they are possible to spread over 4408 * different block groups too. If they are contiuguous, with flexbg, 4409 * they could still across block group boundary. 4410 * 4411 * Also account for superblock, inode, quota and xattr blocks 4412 */ 4413 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4414 { 4415 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4416 int gdpblocks; 4417 int idxblocks; 4418 int ret = 0; 4419 4420 /* 4421 * How many index blocks need to touch to modify nrblocks? 4422 * The "Chunk" flag indicating whether the nrblocks is 4423 * physically contiguous on disk 4424 * 4425 * For Direct IO and fallocate, they calls get_block to allocate 4426 * one single extent at a time, so they could set the "Chunk" flag 4427 */ 4428 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4429 4430 ret = idxblocks; 4431 4432 /* 4433 * Now let's see how many group bitmaps and group descriptors need 4434 * to account 4435 */ 4436 groups = idxblocks; 4437 if (chunk) 4438 groups += 1; 4439 else 4440 groups += nrblocks; 4441 4442 gdpblocks = groups; 4443 if (groups > ngroups) 4444 groups = ngroups; 4445 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4446 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4447 4448 /* bitmaps and block group descriptor blocks */ 4449 ret += groups + gdpblocks; 4450 4451 /* Blocks for super block, inode, quota and xattr blocks */ 4452 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4453 4454 return ret; 4455 } 4456 4457 /* 4458 * Calculate the total number of credits to reserve to fit 4459 * the modification of a single pages into a single transaction, 4460 * which may include multiple chunks of block allocations. 4461 * 4462 * This could be called via ext4_write_begin() 4463 * 4464 * We need to consider the worse case, when 4465 * one new block per extent. 4466 */ 4467 int ext4_writepage_trans_blocks(struct inode *inode) 4468 { 4469 int bpp = ext4_journal_blocks_per_page(inode); 4470 int ret; 4471 4472 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4473 4474 /* Account for data blocks for journalled mode */ 4475 if (ext4_should_journal_data(inode)) 4476 ret += bpp; 4477 return ret; 4478 } 4479 4480 /* 4481 * Calculate the journal credits for a chunk of data modification. 4482 * 4483 * This is called from DIO, fallocate or whoever calling 4484 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4485 * 4486 * journal buffers for data blocks are not included here, as DIO 4487 * and fallocate do no need to journal data buffers. 4488 */ 4489 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4490 { 4491 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4492 } 4493 4494 /* 4495 * The caller must have previously called ext4_reserve_inode_write(). 4496 * Give this, we know that the caller already has write access to iloc->bh. 4497 */ 4498 int ext4_mark_iloc_dirty(handle_t *handle, 4499 struct inode *inode, struct ext4_iloc *iloc) 4500 { 4501 int err = 0; 4502 4503 if (IS_I_VERSION(inode)) 4504 inode_inc_iversion(inode); 4505 4506 /* the do_update_inode consumes one bh->b_count */ 4507 get_bh(iloc->bh); 4508 4509 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4510 err = ext4_do_update_inode(handle, inode, iloc); 4511 put_bh(iloc->bh); 4512 return err; 4513 } 4514 4515 /* 4516 * On success, We end up with an outstanding reference count against 4517 * iloc->bh. This _must_ be cleaned up later. 4518 */ 4519 4520 int 4521 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4522 struct ext4_iloc *iloc) 4523 { 4524 int err; 4525 4526 err = ext4_get_inode_loc(inode, iloc); 4527 if (!err) { 4528 BUFFER_TRACE(iloc->bh, "get_write_access"); 4529 err = ext4_journal_get_write_access(handle, iloc->bh); 4530 if (err) { 4531 brelse(iloc->bh); 4532 iloc->bh = NULL; 4533 } 4534 } 4535 ext4_std_error(inode->i_sb, err); 4536 return err; 4537 } 4538 4539 /* 4540 * Expand an inode by new_extra_isize bytes. 4541 * Returns 0 on success or negative error number on failure. 4542 */ 4543 static int ext4_expand_extra_isize(struct inode *inode, 4544 unsigned int new_extra_isize, 4545 struct ext4_iloc iloc, 4546 handle_t *handle) 4547 { 4548 struct ext4_inode *raw_inode; 4549 struct ext4_xattr_ibody_header *header; 4550 4551 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4552 return 0; 4553 4554 raw_inode = ext4_raw_inode(&iloc); 4555 4556 header = IHDR(inode, raw_inode); 4557 4558 /* No extended attributes present */ 4559 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4560 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4561 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4562 new_extra_isize); 4563 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4564 return 0; 4565 } 4566 4567 /* try to expand with EAs present */ 4568 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4569 raw_inode, handle); 4570 } 4571 4572 /* 4573 * What we do here is to mark the in-core inode as clean with respect to inode 4574 * dirtiness (it may still be data-dirty). 4575 * This means that the in-core inode may be reaped by prune_icache 4576 * without having to perform any I/O. This is a very good thing, 4577 * because *any* task may call prune_icache - even ones which 4578 * have a transaction open against a different journal. 4579 * 4580 * Is this cheating? Not really. Sure, we haven't written the 4581 * inode out, but prune_icache isn't a user-visible syncing function. 4582 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4583 * we start and wait on commits. 4584 * 4585 * Is this efficient/effective? Well, we're being nice to the system 4586 * by cleaning up our inodes proactively so they can be reaped 4587 * without I/O. But we are potentially leaving up to five seconds' 4588 * worth of inodes floating about which prune_icache wants us to 4589 * write out. One way to fix that would be to get prune_icache() 4590 * to do a write_super() to free up some memory. It has the desired 4591 * effect. 4592 */ 4593 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4594 { 4595 struct ext4_iloc iloc; 4596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4597 static unsigned int mnt_count; 4598 int err, ret; 4599 4600 might_sleep(); 4601 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4602 err = ext4_reserve_inode_write(handle, inode, &iloc); 4603 if (ext4_handle_valid(handle) && 4604 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4605 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4606 /* 4607 * We need extra buffer credits since we may write into EA block 4608 * with this same handle. If journal_extend fails, then it will 4609 * only result in a minor loss of functionality for that inode. 4610 * If this is felt to be critical, then e2fsck should be run to 4611 * force a large enough s_min_extra_isize. 4612 */ 4613 if ((jbd2_journal_extend(handle, 4614 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4615 ret = ext4_expand_extra_isize(inode, 4616 sbi->s_want_extra_isize, 4617 iloc, handle); 4618 if (ret) { 4619 ext4_set_inode_state(inode, 4620 EXT4_STATE_NO_EXPAND); 4621 if (mnt_count != 4622 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4623 ext4_warning(inode->i_sb, 4624 "Unable to expand inode %lu. Delete" 4625 " some EAs or run e2fsck.", 4626 inode->i_ino); 4627 mnt_count = 4628 le16_to_cpu(sbi->s_es->s_mnt_count); 4629 } 4630 } 4631 } 4632 } 4633 if (!err) 4634 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4635 return err; 4636 } 4637 4638 /* 4639 * ext4_dirty_inode() is called from __mark_inode_dirty() 4640 * 4641 * We're really interested in the case where a file is being extended. 4642 * i_size has been changed by generic_commit_write() and we thus need 4643 * to include the updated inode in the current transaction. 4644 * 4645 * Also, dquot_alloc_block() will always dirty the inode when blocks 4646 * are allocated to the file. 4647 * 4648 * If the inode is marked synchronous, we don't honour that here - doing 4649 * so would cause a commit on atime updates, which we don't bother doing. 4650 * We handle synchronous inodes at the highest possible level. 4651 */ 4652 void ext4_dirty_inode(struct inode *inode, int flags) 4653 { 4654 handle_t *handle; 4655 4656 handle = ext4_journal_start(inode, 2); 4657 if (IS_ERR(handle)) 4658 goto out; 4659 4660 ext4_mark_inode_dirty(handle, inode); 4661 4662 ext4_journal_stop(handle); 4663 out: 4664 return; 4665 } 4666 4667 #if 0 4668 /* 4669 * Bind an inode's backing buffer_head into this transaction, to prevent 4670 * it from being flushed to disk early. Unlike 4671 * ext4_reserve_inode_write, this leaves behind no bh reference and 4672 * returns no iloc structure, so the caller needs to repeat the iloc 4673 * lookup to mark the inode dirty later. 4674 */ 4675 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4676 { 4677 struct ext4_iloc iloc; 4678 4679 int err = 0; 4680 if (handle) { 4681 err = ext4_get_inode_loc(inode, &iloc); 4682 if (!err) { 4683 BUFFER_TRACE(iloc.bh, "get_write_access"); 4684 err = jbd2_journal_get_write_access(handle, iloc.bh); 4685 if (!err) 4686 err = ext4_handle_dirty_metadata(handle, 4687 NULL, 4688 iloc.bh); 4689 brelse(iloc.bh); 4690 } 4691 } 4692 ext4_std_error(inode->i_sb, err); 4693 return err; 4694 } 4695 #endif 4696 4697 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4698 { 4699 journal_t *journal; 4700 handle_t *handle; 4701 int err; 4702 4703 /* 4704 * We have to be very careful here: changing a data block's 4705 * journaling status dynamically is dangerous. If we write a 4706 * data block to the journal, change the status and then delete 4707 * that block, we risk forgetting to revoke the old log record 4708 * from the journal and so a subsequent replay can corrupt data. 4709 * So, first we make sure that the journal is empty and that 4710 * nobody is changing anything. 4711 */ 4712 4713 journal = EXT4_JOURNAL(inode); 4714 if (!journal) 4715 return 0; 4716 if (is_journal_aborted(journal)) 4717 return -EROFS; 4718 /* We have to allocate physical blocks for delalloc blocks 4719 * before flushing journal. otherwise delalloc blocks can not 4720 * be allocated any more. even more truncate on delalloc blocks 4721 * could trigger BUG by flushing delalloc blocks in journal. 4722 * There is no delalloc block in non-journal data mode. 4723 */ 4724 if (val && test_opt(inode->i_sb, DELALLOC)) { 4725 err = ext4_alloc_da_blocks(inode); 4726 if (err < 0) 4727 return err; 4728 } 4729 4730 jbd2_journal_lock_updates(journal); 4731 4732 /* 4733 * OK, there are no updates running now, and all cached data is 4734 * synced to disk. We are now in a completely consistent state 4735 * which doesn't have anything in the journal, and we know that 4736 * no filesystem updates are running, so it is safe to modify 4737 * the inode's in-core data-journaling state flag now. 4738 */ 4739 4740 if (val) 4741 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4742 else { 4743 jbd2_journal_flush(journal); 4744 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4745 } 4746 ext4_set_aops(inode); 4747 4748 jbd2_journal_unlock_updates(journal); 4749 4750 /* Finally we can mark the inode as dirty. */ 4751 4752 handle = ext4_journal_start(inode, 1); 4753 if (IS_ERR(handle)) 4754 return PTR_ERR(handle); 4755 4756 err = ext4_mark_inode_dirty(handle, inode); 4757 ext4_handle_sync(handle); 4758 ext4_journal_stop(handle); 4759 ext4_std_error(inode->i_sb, err); 4760 4761 return err; 4762 } 4763 4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4765 { 4766 return !buffer_mapped(bh); 4767 } 4768 4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4770 { 4771 struct page *page = vmf->page; 4772 loff_t size; 4773 unsigned long len; 4774 int ret; 4775 struct file *file = vma->vm_file; 4776 struct inode *inode = file->f_path.dentry->d_inode; 4777 struct address_space *mapping = inode->i_mapping; 4778 handle_t *handle; 4779 get_block_t *get_block; 4780 int retries = 0; 4781 4782 /* 4783 * This check is racy but catches the common case. We rely on 4784 * __block_page_mkwrite() to do a reliable check. 4785 */ 4786 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4787 /* Delalloc case is easy... */ 4788 if (test_opt(inode->i_sb, DELALLOC) && 4789 !ext4_should_journal_data(inode) && 4790 !ext4_nonda_switch(inode->i_sb)) { 4791 do { 4792 ret = __block_page_mkwrite(vma, vmf, 4793 ext4_da_get_block_prep); 4794 } while (ret == -ENOSPC && 4795 ext4_should_retry_alloc(inode->i_sb, &retries)); 4796 goto out_ret; 4797 } 4798 4799 lock_page(page); 4800 size = i_size_read(inode); 4801 /* Page got truncated from under us? */ 4802 if (page->mapping != mapping || page_offset(page) > size) { 4803 unlock_page(page); 4804 ret = VM_FAULT_NOPAGE; 4805 goto out; 4806 } 4807 4808 if (page->index == size >> PAGE_CACHE_SHIFT) 4809 len = size & ~PAGE_CACHE_MASK; 4810 else 4811 len = PAGE_CACHE_SIZE; 4812 /* 4813 * Return if we have all the buffers mapped. This avoids the need to do 4814 * journal_start/journal_stop which can block and take a long time 4815 */ 4816 if (page_has_buffers(page)) { 4817 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4818 ext4_bh_unmapped)) { 4819 /* Wait so that we don't change page under IO */ 4820 wait_on_page_writeback(page); 4821 ret = VM_FAULT_LOCKED; 4822 goto out; 4823 } 4824 } 4825 unlock_page(page); 4826 /* OK, we need to fill the hole... */ 4827 if (ext4_should_dioread_nolock(inode)) 4828 get_block = ext4_get_block_write; 4829 else 4830 get_block = ext4_get_block; 4831 retry_alloc: 4832 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4833 if (IS_ERR(handle)) { 4834 ret = VM_FAULT_SIGBUS; 4835 goto out; 4836 } 4837 ret = __block_page_mkwrite(vma, vmf, get_block); 4838 if (!ret && ext4_should_journal_data(inode)) { 4839 if (walk_page_buffers(handle, page_buffers(page), 0, 4840 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4841 unlock_page(page); 4842 ret = VM_FAULT_SIGBUS; 4843 ext4_journal_stop(handle); 4844 goto out; 4845 } 4846 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4847 } 4848 ext4_journal_stop(handle); 4849 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4850 goto retry_alloc; 4851 out_ret: 4852 ret = block_page_mkwrite_return(ret); 4853 out: 4854 return ret; 4855 } 4856