xref: /linux/fs/ext4/inode.c (revision d6296cb65320be16dbf20f2fd584ddc25f3437cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 		ext4_evict_ea_inode(inode);
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * For inodes with journalled data, transaction commit could have
225 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 	 * extents converting worker could merge extents and also have dirtied
227 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 	 * we still need to remove the inode from the writeback lists.
229 	 */
230 	if (!list_empty_careful(&inode->i_io_list))
231 		inode_io_list_del(inode);
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it. When we are in a running transaction though,
236 	 * we are already protected against freezing and we cannot grab further
237 	 * protection due to lock ordering constraints.
238 	 */
239 	if (!ext4_journal_current_handle()) {
240 		sb_start_intwrite(inode->i_sb);
241 		freeze_protected = true;
242 	}
243 
244 	if (!IS_NOQUOTA(inode))
245 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246 
247 	/*
248 	 * Block bitmap, group descriptor, and inode are accounted in both
249 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 	 */
251 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 	if (IS_ERR(handle)) {
254 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 		/*
256 		 * If we're going to skip the normal cleanup, we still need to
257 		 * make sure that the in-core orphan linked list is properly
258 		 * cleaned up.
259 		 */
260 		ext4_orphan_del(NULL, inode);
261 		if (freeze_protected)
262 			sb_end_intwrite(inode->i_sb);
263 		goto no_delete;
264 	}
265 
266 	if (IS_SYNC(inode))
267 		ext4_handle_sync(handle);
268 
269 	/*
270 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 	 * special handling of symlinks here because i_size is used to
272 	 * determine whether ext4_inode_info->i_data contains symlink data or
273 	 * block mappings. Setting i_size to 0 will remove its fast symlink
274 	 * status. Erase i_data so that it becomes a valid empty block map.
275 	 */
276 	if (ext4_inode_is_fast_symlink(inode))
277 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 	inode->i_size = 0;
279 	err = ext4_mark_inode_dirty(handle, inode);
280 	if (err) {
281 		ext4_warning(inode->i_sb,
282 			     "couldn't mark inode dirty (err %d)", err);
283 		goto stop_handle;
284 	}
285 	if (inode->i_blocks) {
286 		err = ext4_truncate(inode);
287 		if (err) {
288 			ext4_error_err(inode->i_sb, -err,
289 				       "couldn't truncate inode %lu (err %d)",
290 				       inode->i_ino, err);
291 			goto stop_handle;
292 		}
293 	}
294 
295 	/* Remove xattr references. */
296 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 				      extra_credits);
298 	if (err) {
299 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301 		ext4_journal_stop(handle);
302 		ext4_orphan_del(NULL, inode);
303 		if (freeze_protected)
304 			sb_end_intwrite(inode->i_sb);
305 		ext4_xattr_inode_array_free(ea_inode_array);
306 		goto no_delete;
307 	}
308 
309 	/*
310 	 * Kill off the orphan record which ext4_truncate created.
311 	 * AKPM: I think this can be inside the above `if'.
312 	 * Note that ext4_orphan_del() has to be able to cope with the
313 	 * deletion of a non-existent orphan - this is because we don't
314 	 * know if ext4_truncate() actually created an orphan record.
315 	 * (Well, we could do this if we need to, but heck - it works)
316 	 */
317 	ext4_orphan_del(handle, inode);
318 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
319 
320 	/*
321 	 * One subtle ordering requirement: if anything has gone wrong
322 	 * (transaction abort, IO errors, whatever), then we can still
323 	 * do these next steps (the fs will already have been marked as
324 	 * having errors), but we can't free the inode if the mark_dirty
325 	 * fails.
326 	 */
327 	if (ext4_mark_inode_dirty(handle, inode))
328 		/* If that failed, just do the required in-core inode clear. */
329 		ext4_clear_inode(inode);
330 	else
331 		ext4_free_inode(handle, inode);
332 	ext4_journal_stop(handle);
333 	if (freeze_protected)
334 		sb_end_intwrite(inode->i_sb);
335 	ext4_xattr_inode_array_free(ea_inode_array);
336 	return;
337 no_delete:
338 	/*
339 	 * Check out some where else accidentally dirty the evicting inode,
340 	 * which may probably cause inode use-after-free issues later.
341 	 */
342 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343 
344 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
347 }
348 
349 #ifdef CONFIG_QUOTA
350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352 	return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355 
356 /*
357  * Called with i_data_sem down, which is important since we can call
358  * ext4_discard_preallocations() from here.
359  */
360 void ext4_da_update_reserve_space(struct inode *inode,
361 					int used, int quota_claim)
362 {
363 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 	struct ext4_inode_info *ei = EXT4_I(inode);
365 
366 	spin_lock(&ei->i_block_reservation_lock);
367 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 	if (unlikely(used > ei->i_reserved_data_blocks)) {
369 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 			 "with only %d reserved data blocks",
371 			 __func__, inode->i_ino, used,
372 			 ei->i_reserved_data_blocks);
373 		WARN_ON(1);
374 		used = ei->i_reserved_data_blocks;
375 	}
376 
377 	/* Update per-inode reservations */
378 	ei->i_reserved_data_blocks -= used;
379 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380 
381 	spin_unlock(&ei->i_block_reservation_lock);
382 
383 	/* Update quota subsystem for data blocks */
384 	if (quota_claim)
385 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
386 	else {
387 		/*
388 		 * We did fallocate with an offset that is already delayed
389 		 * allocated. So on delayed allocated writeback we should
390 		 * not re-claim the quota for fallocated blocks.
391 		 */
392 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393 	}
394 
395 	/*
396 	 * If we have done all the pending block allocations and if
397 	 * there aren't any writers on the inode, we can discard the
398 	 * inode's preallocations.
399 	 */
400 	if ((ei->i_reserved_data_blocks == 0) &&
401 	    !inode_is_open_for_write(inode))
402 		ext4_discard_preallocations(inode, 0);
403 }
404 
405 static int __check_block_validity(struct inode *inode, const char *func,
406 				unsigned int line,
407 				struct ext4_map_blocks *map)
408 {
409 	if (ext4_has_feature_journal(inode->i_sb) &&
410 	    (inode->i_ino ==
411 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 		return 0;
413 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock %llu "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_pblk, map->m_len);
418 		return -EFSCORRUPTED;
419 	}
420 	return 0;
421 }
422 
423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 		       ext4_lblk_t len)
425 {
426 	int ret;
427 
428 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
430 
431 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 	if (ret > 0)
433 		ret = 0;
434 
435 	return ret;
436 }
437 
438 #define check_block_validity(inode, map)	\
439 	__check_block_validity((inode), __func__, __LINE__, (map))
440 
441 #ifdef ES_AGGRESSIVE_TEST
442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443 				       struct inode *inode,
444 				       struct ext4_map_blocks *es_map,
445 				       struct ext4_map_blocks *map,
446 				       int flags)
447 {
448 	int retval;
449 
450 	map->m_flags = 0;
451 	/*
452 	 * There is a race window that the result is not the same.
453 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
454 	 * is that we lookup a block mapping in extent status tree with
455 	 * out taking i_data_sem.  So at the time the unwritten extent
456 	 * could be converted.
457 	 */
458 	down_read(&EXT4_I(inode)->i_data_sem);
459 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
461 	} else {
462 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
463 	}
464 	up_read((&EXT4_I(inode)->i_data_sem));
465 
466 	/*
467 	 * We don't check m_len because extent will be collpased in status
468 	 * tree.  So the m_len might not equal.
469 	 */
470 	if (es_map->m_lblk != map->m_lblk ||
471 	    es_map->m_flags != map->m_flags ||
472 	    es_map->m_pblk != map->m_pblk) {
473 		printk("ES cache assertion failed for inode: %lu "
474 		       "es_cached ex [%d/%d/%llu/%x] != "
475 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
477 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 		       map->m_len, map->m_pblk, map->m_flags,
479 		       retval, flags);
480 	}
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483 
484 /*
485  * The ext4_map_blocks() function tries to look up the requested blocks,
486  * and returns if the blocks are already mapped.
487  *
488  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489  * and store the allocated blocks in the result buffer head and mark it
490  * mapped.
491  *
492  * If file type is extents based, it will call ext4_ext_map_blocks(),
493  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494  * based files
495  *
496  * On success, it returns the number of blocks being mapped or allocated.  if
497  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, @map is returned as unmapped but we still do fill map->m_len to
502  * indicate the length of a hole starting at map->m_lblk.
503  *
504  * It returns the error in case of allocation failure.
505  */
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 		    struct ext4_map_blocks *map, int flags)
508 {
509 	struct extent_status es;
510 	int retval;
511 	int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513 	struct ext4_map_blocks orig_map;
514 
515 	memcpy(&orig_map, map, sizeof(*map));
516 #endif
517 
518 	map->m_flags = 0;
519 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 		  flags, map->m_len, (unsigned long) map->m_lblk);
521 
522 	/*
523 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 	 */
525 	if (unlikely(map->m_len > INT_MAX))
526 		map->m_len = INT_MAX;
527 
528 	/* We can handle the block number less than EXT_MAX_BLOCKS */
529 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 		return -EFSCORRUPTED;
531 
532 	/* Lookup extent status tree firstly */
533 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 			map->m_pblk = ext4_es_pblock(&es) +
537 					map->m_lblk - es.es_lblk;
538 			map->m_flags |= ext4_es_is_written(&es) ?
539 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 			retval = es.es_len - (map->m_lblk - es.es_lblk);
541 			if (retval > map->m_len)
542 				retval = map->m_len;
543 			map->m_len = retval;
544 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 			map->m_pblk = 0;
546 			retval = es.es_len - (map->m_lblk - es.es_lblk);
547 			if (retval > map->m_len)
548 				retval = map->m_len;
549 			map->m_len = retval;
550 			retval = 0;
551 		} else {
552 			BUG();
553 		}
554 
555 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 			return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558 		ext4_map_blocks_es_recheck(handle, inode, map,
559 					   &orig_map, flags);
560 #endif
561 		goto found;
562 	}
563 	/*
564 	 * In the query cache no-wait mode, nothing we can do more if we
565 	 * cannot find extent in the cache.
566 	 */
567 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 		return 0;
569 
570 	/*
571 	 * Try to see if we can get the block without requesting a new
572 	 * file system block.
573 	 */
574 	down_read(&EXT4_I(inode)->i_data_sem);
575 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
577 	} else {
578 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
579 	}
580 	if (retval > 0) {
581 		unsigned int status;
582 
583 		if (unlikely(retval != map->m_len)) {
584 			ext4_warning(inode->i_sb,
585 				     "ES len assertion failed for inode "
586 				     "%lu: retval %d != map->m_len %d",
587 				     inode->i_ino, retval, map->m_len);
588 			WARN_ON(1);
589 		}
590 
591 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 		    !(status & EXTENT_STATUS_WRITTEN) &&
595 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 				       map->m_lblk + map->m_len - 1))
597 			status |= EXTENT_STATUS_DELAYED;
598 		ret = ext4_es_insert_extent(inode, map->m_lblk,
599 					    map->m_len, map->m_pblk, status);
600 		if (ret < 0)
601 			retval = ret;
602 	}
603 	up_read((&EXT4_I(inode)->i_data_sem));
604 
605 found:
606 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 		ret = check_block_validity(inode, map);
608 		if (ret != 0)
609 			return ret;
610 	}
611 
612 	/* If it is only a block(s) look up */
613 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614 		return retval;
615 
616 	/*
617 	 * Returns if the blocks have already allocated
618 	 *
619 	 * Note that if blocks have been preallocated
620 	 * ext4_ext_get_block() returns the create = 0
621 	 * with buffer head unmapped.
622 	 */
623 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624 		/*
625 		 * If we need to convert extent to unwritten
626 		 * we continue and do the actual work in
627 		 * ext4_ext_map_blocks()
628 		 */
629 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 			return retval;
631 
632 	/*
633 	 * Here we clear m_flags because after allocating an new extent,
634 	 * it will be set again.
635 	 */
636 	map->m_flags &= ~EXT4_MAP_FLAGS;
637 
638 	/*
639 	 * New blocks allocate and/or writing to unwritten extent
640 	 * will possibly result in updating i_data, so we take
641 	 * the write lock of i_data_sem, and call get_block()
642 	 * with create == 1 flag.
643 	 */
644 	down_write(&EXT4_I(inode)->i_data_sem);
645 
646 	/*
647 	 * We need to check for EXT4 here because migrate
648 	 * could have changed the inode type in between
649 	 */
650 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
652 	} else {
653 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
654 
655 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656 			/*
657 			 * We allocated new blocks which will result in
658 			 * i_data's format changing.  Force the migrate
659 			 * to fail by clearing migrate flags
660 			 */
661 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662 		}
663 
664 		/*
665 		 * Update reserved blocks/metadata blocks after successful
666 		 * block allocation which had been deferred till now. We don't
667 		 * support fallocate for non extent files. So we can update
668 		 * reserve space here.
669 		 */
670 		if ((retval > 0) &&
671 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672 			ext4_da_update_reserve_space(inode, retval, 1);
673 	}
674 
675 	if (retval > 0) {
676 		unsigned int status;
677 
678 		if (unlikely(retval != map->m_len)) {
679 			ext4_warning(inode->i_sb,
680 				     "ES len assertion failed for inode "
681 				     "%lu: retval %d != map->m_len %d",
682 				     inode->i_ino, retval, map->m_len);
683 			WARN_ON(1);
684 		}
685 
686 		/*
687 		 * We have to zeroout blocks before inserting them into extent
688 		 * status tree. Otherwise someone could look them up there and
689 		 * use them before they are really zeroed. We also have to
690 		 * unmap metadata before zeroing as otherwise writeback can
691 		 * overwrite zeros with stale data from block device.
692 		 */
693 		if (flags & EXT4_GET_BLOCKS_ZERO &&
694 		    map->m_flags & EXT4_MAP_MAPPED &&
695 		    map->m_flags & EXT4_MAP_NEW) {
696 			ret = ext4_issue_zeroout(inode, map->m_lblk,
697 						 map->m_pblk, map->m_len);
698 			if (ret) {
699 				retval = ret;
700 				goto out_sem;
701 			}
702 		}
703 
704 		/*
705 		 * If the extent has been zeroed out, we don't need to update
706 		 * extent status tree.
707 		 */
708 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710 			if (ext4_es_is_written(&es))
711 				goto out_sem;
712 		}
713 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 		    !(status & EXTENT_STATUS_WRITTEN) &&
717 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718 				       map->m_lblk + map->m_len - 1))
719 			status |= EXTENT_STATUS_DELAYED;
720 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 					    map->m_pblk, status);
722 		if (ret < 0) {
723 			retval = ret;
724 			goto out_sem;
725 		}
726 	}
727 
728 out_sem:
729 	up_write((&EXT4_I(inode)->i_data_sem));
730 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 		ret = check_block_validity(inode, map);
732 		if (ret != 0)
733 			return ret;
734 
735 		/*
736 		 * Inodes with freshly allocated blocks where contents will be
737 		 * visible after transaction commit must be on transaction's
738 		 * ordered data list.
739 		 */
740 		if (map->m_flags & EXT4_MAP_NEW &&
741 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 		    !ext4_is_quota_file(inode) &&
744 		    ext4_should_order_data(inode)) {
745 			loff_t start_byte =
746 				(loff_t)map->m_lblk << inode->i_blkbits;
747 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748 
749 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 				ret = ext4_jbd2_inode_add_wait(handle, inode,
751 						start_byte, length);
752 			else
753 				ret = ext4_jbd2_inode_add_write(handle, inode,
754 						start_byte, length);
755 			if (ret)
756 				return ret;
757 		}
758 	}
759 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760 				map->m_flags & EXT4_MAP_MAPPED))
761 		ext4_fc_track_range(handle, inode, map->m_lblk,
762 					map->m_lblk + map->m_len - 1);
763 	if (retval < 0)
764 		ext_debug(inode, "failed with err %d\n", retval);
765 	return retval;
766 }
767 
768 /*
769  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770  * we have to be careful as someone else may be manipulating b_state as well.
771  */
772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773 {
774 	unsigned long old_state;
775 	unsigned long new_state;
776 
777 	flags &= EXT4_MAP_FLAGS;
778 
779 	/* Dummy buffer_head? Set non-atomically. */
780 	if (!bh->b_page) {
781 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782 		return;
783 	}
784 	/*
785 	 * Someone else may be modifying b_state. Be careful! This is ugly but
786 	 * once we get rid of using bh as a container for mapping information
787 	 * to pass to / from get_block functions, this can go away.
788 	 */
789 	do {
790 		old_state = READ_ONCE(bh->b_state);
791 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792 	} while (unlikely(
793 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
794 }
795 
796 static int _ext4_get_block(struct inode *inode, sector_t iblock,
797 			   struct buffer_head *bh, int flags)
798 {
799 	struct ext4_map_blocks map;
800 	int ret = 0;
801 
802 	if (ext4_has_inline_data(inode))
803 		return -ERANGE;
804 
805 	map.m_lblk = iblock;
806 	map.m_len = bh->b_size >> inode->i_blkbits;
807 
808 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
809 			      flags);
810 	if (ret > 0) {
811 		map_bh(bh, inode->i_sb, map.m_pblk);
812 		ext4_update_bh_state(bh, map.m_flags);
813 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
814 		ret = 0;
815 	} else if (ret == 0) {
816 		/* hole case, need to fill in bh->b_size */
817 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
818 	}
819 	return ret;
820 }
821 
822 int ext4_get_block(struct inode *inode, sector_t iblock,
823 		   struct buffer_head *bh, int create)
824 {
825 	return _ext4_get_block(inode, iblock, bh,
826 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
827 }
828 
829 /*
830  * Get block function used when preparing for buffered write if we require
831  * creating an unwritten extent if blocks haven't been allocated.  The extent
832  * will be converted to written after the IO is complete.
833  */
834 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
835 			     struct buffer_head *bh_result, int create)
836 {
837 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
838 		   inode->i_ino, create);
839 	return _ext4_get_block(inode, iblock, bh_result,
840 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
841 }
842 
843 /* Maximum number of blocks we map for direct IO at once. */
844 #define DIO_MAX_BLOCKS 4096
845 
846 /*
847  * `handle' can be NULL if create is zero
848  */
849 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
850 				ext4_lblk_t block, int map_flags)
851 {
852 	struct ext4_map_blocks map;
853 	struct buffer_head *bh;
854 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
855 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
856 	int err;
857 
858 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859 		    || handle != NULL || create == 0);
860 	ASSERT(create == 0 || !nowait);
861 
862 	map.m_lblk = block;
863 	map.m_len = 1;
864 	err = ext4_map_blocks(handle, inode, &map, map_flags);
865 
866 	if (err == 0)
867 		return create ? ERR_PTR(-ENOSPC) : NULL;
868 	if (err < 0)
869 		return ERR_PTR(err);
870 
871 	if (nowait)
872 		return sb_find_get_block(inode->i_sb, map.m_pblk);
873 
874 	bh = sb_getblk(inode->i_sb, map.m_pblk);
875 	if (unlikely(!bh))
876 		return ERR_PTR(-ENOMEM);
877 	if (map.m_flags & EXT4_MAP_NEW) {
878 		ASSERT(create != 0);
879 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
880 			    || (handle != NULL));
881 
882 		/*
883 		 * Now that we do not always journal data, we should
884 		 * keep in mind whether this should always journal the
885 		 * new buffer as metadata.  For now, regular file
886 		 * writes use ext4_get_block instead, so it's not a
887 		 * problem.
888 		 */
889 		lock_buffer(bh);
890 		BUFFER_TRACE(bh, "call get_create_access");
891 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
892 						     EXT4_JTR_NONE);
893 		if (unlikely(err)) {
894 			unlock_buffer(bh);
895 			goto errout;
896 		}
897 		if (!buffer_uptodate(bh)) {
898 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
899 			set_buffer_uptodate(bh);
900 		}
901 		unlock_buffer(bh);
902 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
903 		err = ext4_handle_dirty_metadata(handle, inode, bh);
904 		if (unlikely(err))
905 			goto errout;
906 	} else
907 		BUFFER_TRACE(bh, "not a new buffer");
908 	return bh;
909 errout:
910 	brelse(bh);
911 	return ERR_PTR(err);
912 }
913 
914 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
915 			       ext4_lblk_t block, int map_flags)
916 {
917 	struct buffer_head *bh;
918 	int ret;
919 
920 	bh = ext4_getblk(handle, inode, block, map_flags);
921 	if (IS_ERR(bh))
922 		return bh;
923 	if (!bh || ext4_buffer_uptodate(bh))
924 		return bh;
925 
926 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
927 	if (ret) {
928 		put_bh(bh);
929 		return ERR_PTR(ret);
930 	}
931 	return bh;
932 }
933 
934 /* Read a contiguous batch of blocks. */
935 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
936 		     bool wait, struct buffer_head **bhs)
937 {
938 	int i, err;
939 
940 	for (i = 0; i < bh_count; i++) {
941 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
942 		if (IS_ERR(bhs[i])) {
943 			err = PTR_ERR(bhs[i]);
944 			bh_count = i;
945 			goto out_brelse;
946 		}
947 	}
948 
949 	for (i = 0; i < bh_count; i++)
950 		/* Note that NULL bhs[i] is valid because of holes. */
951 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
952 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
953 
954 	if (!wait)
955 		return 0;
956 
957 	for (i = 0; i < bh_count; i++)
958 		if (bhs[i])
959 			wait_on_buffer(bhs[i]);
960 
961 	for (i = 0; i < bh_count; i++) {
962 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
963 			err = -EIO;
964 			goto out_brelse;
965 		}
966 	}
967 	return 0;
968 
969 out_brelse:
970 	for (i = 0; i < bh_count; i++) {
971 		brelse(bhs[i]);
972 		bhs[i] = NULL;
973 	}
974 	return err;
975 }
976 
977 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
978 			   struct buffer_head *head,
979 			   unsigned from,
980 			   unsigned to,
981 			   int *partial,
982 			   int (*fn)(handle_t *handle, struct inode *inode,
983 				     struct buffer_head *bh))
984 {
985 	struct buffer_head *bh;
986 	unsigned block_start, block_end;
987 	unsigned blocksize = head->b_size;
988 	int err, ret = 0;
989 	struct buffer_head *next;
990 
991 	for (bh = head, block_start = 0;
992 	     ret == 0 && (bh != head || !block_start);
993 	     block_start = block_end, bh = next) {
994 		next = bh->b_this_page;
995 		block_end = block_start + blocksize;
996 		if (block_end <= from || block_start >= to) {
997 			if (partial && !buffer_uptodate(bh))
998 				*partial = 1;
999 			continue;
1000 		}
1001 		err = (*fn)(handle, inode, bh);
1002 		if (!ret)
1003 			ret = err;
1004 	}
1005 	return ret;
1006 }
1007 
1008 /*
1009  * To preserve ordering, it is essential that the hole instantiation and
1010  * the data write be encapsulated in a single transaction.  We cannot
1011  * close off a transaction and start a new one between the ext4_get_block()
1012  * and the commit_write().  So doing the jbd2_journal_start at the start of
1013  * prepare_write() is the right place.
1014  *
1015  * Also, this function can nest inside ext4_writepage().  In that case, we
1016  * *know* that ext4_writepage() has generated enough buffer credits to do the
1017  * whole page.  So we won't block on the journal in that case, which is good,
1018  * because the caller may be PF_MEMALLOC.
1019  *
1020  * By accident, ext4 can be reentered when a transaction is open via
1021  * quota file writes.  If we were to commit the transaction while thus
1022  * reentered, there can be a deadlock - we would be holding a quota
1023  * lock, and the commit would never complete if another thread had a
1024  * transaction open and was blocking on the quota lock - a ranking
1025  * violation.
1026  *
1027  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1028  * will _not_ run commit under these circumstances because handle->h_ref
1029  * is elevated.  We'll still have enough credits for the tiny quotafile
1030  * write.
1031  */
1032 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1033 				struct buffer_head *bh)
1034 {
1035 	int dirty = buffer_dirty(bh);
1036 	int ret;
1037 
1038 	if (!buffer_mapped(bh) || buffer_freed(bh))
1039 		return 0;
1040 	/*
1041 	 * __block_write_begin() could have dirtied some buffers. Clean
1042 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1043 	 * otherwise about fs integrity issues. Setting of the dirty bit
1044 	 * by __block_write_begin() isn't a real problem here as we clear
1045 	 * the bit before releasing a page lock and thus writeback cannot
1046 	 * ever write the buffer.
1047 	 */
1048 	if (dirty)
1049 		clear_buffer_dirty(bh);
1050 	BUFFER_TRACE(bh, "get write access");
1051 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052 					    EXT4_JTR_NONE);
1053 	if (!ret && dirty)
1054 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055 	return ret;
1056 }
1057 
1058 #ifdef CONFIG_FS_ENCRYPTION
1059 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060 				  get_block_t *get_block)
1061 {
1062 	unsigned from = pos & (PAGE_SIZE - 1);
1063 	unsigned to = from + len;
1064 	struct inode *inode = page->mapping->host;
1065 	unsigned block_start, block_end;
1066 	sector_t block;
1067 	int err = 0;
1068 	unsigned blocksize = inode->i_sb->s_blocksize;
1069 	unsigned bbits;
1070 	struct buffer_head *bh, *head, *wait[2];
1071 	int nr_wait = 0;
1072 	int i;
1073 
1074 	BUG_ON(!PageLocked(page));
1075 	BUG_ON(from > PAGE_SIZE);
1076 	BUG_ON(to > PAGE_SIZE);
1077 	BUG_ON(from > to);
1078 
1079 	if (!page_has_buffers(page))
1080 		create_empty_buffers(page, blocksize, 0);
1081 	head = page_buffers(page);
1082 	bbits = ilog2(blocksize);
1083 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1084 
1085 	for (bh = head, block_start = 0; bh != head || !block_start;
1086 	    block++, block_start = block_end, bh = bh->b_this_page) {
1087 		block_end = block_start + blocksize;
1088 		if (block_end <= from || block_start >= to) {
1089 			if (PageUptodate(page)) {
1090 				set_buffer_uptodate(bh);
1091 			}
1092 			continue;
1093 		}
1094 		if (buffer_new(bh))
1095 			clear_buffer_new(bh);
1096 		if (!buffer_mapped(bh)) {
1097 			WARN_ON(bh->b_size != blocksize);
1098 			err = get_block(inode, block, bh, 1);
1099 			if (err)
1100 				break;
1101 			if (buffer_new(bh)) {
1102 				if (PageUptodate(page)) {
1103 					clear_buffer_new(bh);
1104 					set_buffer_uptodate(bh);
1105 					mark_buffer_dirty(bh);
1106 					continue;
1107 				}
1108 				if (block_end > to || block_start < from)
1109 					zero_user_segments(page, to, block_end,
1110 							   block_start, from);
1111 				continue;
1112 			}
1113 		}
1114 		if (PageUptodate(page)) {
1115 			set_buffer_uptodate(bh);
1116 			continue;
1117 		}
1118 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119 		    !buffer_unwritten(bh) &&
1120 		    (block_start < from || block_end > to)) {
1121 			ext4_read_bh_lock(bh, 0, false);
1122 			wait[nr_wait++] = bh;
1123 		}
1124 	}
1125 	/*
1126 	 * If we issued read requests, let them complete.
1127 	 */
1128 	for (i = 0; i < nr_wait; i++) {
1129 		wait_on_buffer(wait[i]);
1130 		if (!buffer_uptodate(wait[i]))
1131 			err = -EIO;
1132 	}
1133 	if (unlikely(err)) {
1134 		page_zero_new_buffers(page, from, to);
1135 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1136 		for (i = 0; i < nr_wait; i++) {
1137 			int err2;
1138 
1139 			err2 = fscrypt_decrypt_pagecache_blocks(page_folio(page),
1140 								blocksize,
1141 								bh_offset(wait[i]));
1142 			if (err2) {
1143 				clear_buffer_uptodate(wait[i]);
1144 				err = err2;
1145 			}
1146 		}
1147 	}
1148 
1149 	return err;
1150 }
1151 #endif
1152 
1153 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1154 			    loff_t pos, unsigned len,
1155 			    struct page **pagep, void **fsdata)
1156 {
1157 	struct inode *inode = mapping->host;
1158 	int ret, needed_blocks;
1159 	handle_t *handle;
1160 	int retries = 0;
1161 	struct page *page;
1162 	pgoff_t index;
1163 	unsigned from, to;
1164 
1165 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1166 		return -EIO;
1167 
1168 	trace_ext4_write_begin(inode, pos, len);
1169 	/*
1170 	 * Reserve one block more for addition to orphan list in case
1171 	 * we allocate blocks but write fails for some reason
1172 	 */
1173 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1174 	index = pos >> PAGE_SHIFT;
1175 	from = pos & (PAGE_SIZE - 1);
1176 	to = from + len;
1177 
1178 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1179 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1180 						    pagep);
1181 		if (ret < 0)
1182 			return ret;
1183 		if (ret == 1)
1184 			return 0;
1185 	}
1186 
1187 	/*
1188 	 * grab_cache_page_write_begin() can take a long time if the
1189 	 * system is thrashing due to memory pressure, or if the page
1190 	 * is being written back.  So grab it first before we start
1191 	 * the transaction handle.  This also allows us to allocate
1192 	 * the page (if needed) without using GFP_NOFS.
1193 	 */
1194 retry_grab:
1195 	page = grab_cache_page_write_begin(mapping, index);
1196 	if (!page)
1197 		return -ENOMEM;
1198 	/*
1199 	 * The same as page allocation, we prealloc buffer heads before
1200 	 * starting the handle.
1201 	 */
1202 	if (!page_has_buffers(page))
1203 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1204 
1205 	unlock_page(page);
1206 
1207 retry_journal:
1208 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1209 	if (IS_ERR(handle)) {
1210 		put_page(page);
1211 		return PTR_ERR(handle);
1212 	}
1213 
1214 	lock_page(page);
1215 	if (page->mapping != mapping) {
1216 		/* The page got truncated from under us */
1217 		unlock_page(page);
1218 		put_page(page);
1219 		ext4_journal_stop(handle);
1220 		goto retry_grab;
1221 	}
1222 	/* In case writeback began while the page was unlocked */
1223 	wait_for_stable_page(page);
1224 
1225 #ifdef CONFIG_FS_ENCRYPTION
1226 	if (ext4_should_dioread_nolock(inode))
1227 		ret = ext4_block_write_begin(page, pos, len,
1228 					     ext4_get_block_unwritten);
1229 	else
1230 		ret = ext4_block_write_begin(page, pos, len,
1231 					     ext4_get_block);
1232 #else
1233 	if (ext4_should_dioread_nolock(inode))
1234 		ret = __block_write_begin(page, pos, len,
1235 					  ext4_get_block_unwritten);
1236 	else
1237 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1238 #endif
1239 	if (!ret && ext4_should_journal_data(inode)) {
1240 		ret = ext4_walk_page_buffers(handle, inode,
1241 					     page_buffers(page), from, to, NULL,
1242 					     do_journal_get_write_access);
1243 	}
1244 
1245 	if (ret) {
1246 		bool extended = (pos + len > inode->i_size) &&
1247 				!ext4_verity_in_progress(inode);
1248 
1249 		unlock_page(page);
1250 		/*
1251 		 * __block_write_begin may have instantiated a few blocks
1252 		 * outside i_size.  Trim these off again. Don't need
1253 		 * i_size_read because we hold i_rwsem.
1254 		 *
1255 		 * Add inode to orphan list in case we crash before
1256 		 * truncate finishes
1257 		 */
1258 		if (extended && ext4_can_truncate(inode))
1259 			ext4_orphan_add(handle, inode);
1260 
1261 		ext4_journal_stop(handle);
1262 		if (extended) {
1263 			ext4_truncate_failed_write(inode);
1264 			/*
1265 			 * If truncate failed early the inode might
1266 			 * still be on the orphan list; we need to
1267 			 * make sure the inode is removed from the
1268 			 * orphan list in that case.
1269 			 */
1270 			if (inode->i_nlink)
1271 				ext4_orphan_del(NULL, inode);
1272 		}
1273 
1274 		if (ret == -ENOSPC &&
1275 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1276 			goto retry_journal;
1277 		put_page(page);
1278 		return ret;
1279 	}
1280 	*pagep = page;
1281 	return ret;
1282 }
1283 
1284 /* For write_end() in data=journal mode */
1285 static int write_end_fn(handle_t *handle, struct inode *inode,
1286 			struct buffer_head *bh)
1287 {
1288 	int ret;
1289 	if (!buffer_mapped(bh) || buffer_freed(bh))
1290 		return 0;
1291 	set_buffer_uptodate(bh);
1292 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1293 	clear_buffer_meta(bh);
1294 	clear_buffer_prio(bh);
1295 	return ret;
1296 }
1297 
1298 /*
1299  * We need to pick up the new inode size which generic_commit_write gave us
1300  * `file' can be NULL - eg, when called from page_symlink().
1301  *
1302  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1303  * buffers are managed internally.
1304  */
1305 static int ext4_write_end(struct file *file,
1306 			  struct address_space *mapping,
1307 			  loff_t pos, unsigned len, unsigned copied,
1308 			  struct page *page, void *fsdata)
1309 {
1310 	handle_t *handle = ext4_journal_current_handle();
1311 	struct inode *inode = mapping->host;
1312 	loff_t old_size = inode->i_size;
1313 	int ret = 0, ret2;
1314 	int i_size_changed = 0;
1315 	bool verity = ext4_verity_in_progress(inode);
1316 
1317 	trace_ext4_write_end(inode, pos, len, copied);
1318 
1319 	if (ext4_has_inline_data(inode) &&
1320 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1321 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1322 
1323 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1324 	/*
1325 	 * it's important to update i_size while still holding page lock:
1326 	 * page writeout could otherwise come in and zero beyond i_size.
1327 	 *
1328 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1329 	 * blocks are being written past EOF, so skip the i_size update.
1330 	 */
1331 	if (!verity)
1332 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1333 	unlock_page(page);
1334 	put_page(page);
1335 
1336 	if (old_size < pos && !verity)
1337 		pagecache_isize_extended(inode, old_size, pos);
1338 	/*
1339 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1340 	 * makes the holding time of page lock longer. Second, it forces lock
1341 	 * ordering of page lock and transaction start for journaling
1342 	 * filesystems.
1343 	 */
1344 	if (i_size_changed)
1345 		ret = ext4_mark_inode_dirty(handle, inode);
1346 
1347 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1348 		/* if we have allocated more blocks and copied
1349 		 * less. We will have blocks allocated outside
1350 		 * inode->i_size. So truncate them
1351 		 */
1352 		ext4_orphan_add(handle, inode);
1353 
1354 	ret2 = ext4_journal_stop(handle);
1355 	if (!ret)
1356 		ret = ret2;
1357 
1358 	if (pos + len > inode->i_size && !verity) {
1359 		ext4_truncate_failed_write(inode);
1360 		/*
1361 		 * If truncate failed early the inode might still be
1362 		 * on the orphan list; we need to make sure the inode
1363 		 * is removed from the orphan list in that case.
1364 		 */
1365 		if (inode->i_nlink)
1366 			ext4_orphan_del(NULL, inode);
1367 	}
1368 
1369 	return ret ? ret : copied;
1370 }
1371 
1372 /*
1373  * This is a private version of page_zero_new_buffers() which doesn't
1374  * set the buffer to be dirty, since in data=journalled mode we need
1375  * to call ext4_handle_dirty_metadata() instead.
1376  */
1377 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1378 					    struct inode *inode,
1379 					    struct page *page,
1380 					    unsigned from, unsigned to)
1381 {
1382 	unsigned int block_start = 0, block_end;
1383 	struct buffer_head *head, *bh;
1384 
1385 	bh = head = page_buffers(page);
1386 	do {
1387 		block_end = block_start + bh->b_size;
1388 		if (buffer_new(bh)) {
1389 			if (block_end > from && block_start < to) {
1390 				if (!PageUptodate(page)) {
1391 					unsigned start, size;
1392 
1393 					start = max(from, block_start);
1394 					size = min(to, block_end) - start;
1395 
1396 					zero_user(page, start, size);
1397 					write_end_fn(handle, inode, bh);
1398 				}
1399 				clear_buffer_new(bh);
1400 			}
1401 		}
1402 		block_start = block_end;
1403 		bh = bh->b_this_page;
1404 	} while (bh != head);
1405 }
1406 
1407 static int ext4_journalled_write_end(struct file *file,
1408 				     struct address_space *mapping,
1409 				     loff_t pos, unsigned len, unsigned copied,
1410 				     struct page *page, void *fsdata)
1411 {
1412 	handle_t *handle = ext4_journal_current_handle();
1413 	struct inode *inode = mapping->host;
1414 	loff_t old_size = inode->i_size;
1415 	int ret = 0, ret2;
1416 	int partial = 0;
1417 	unsigned from, to;
1418 	int size_changed = 0;
1419 	bool verity = ext4_verity_in_progress(inode);
1420 
1421 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1422 	from = pos & (PAGE_SIZE - 1);
1423 	to = from + len;
1424 
1425 	BUG_ON(!ext4_handle_valid(handle));
1426 
1427 	if (ext4_has_inline_data(inode))
1428 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1429 
1430 	if (unlikely(copied < len) && !PageUptodate(page)) {
1431 		copied = 0;
1432 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1433 	} else {
1434 		if (unlikely(copied < len))
1435 			ext4_journalled_zero_new_buffers(handle, inode, page,
1436 							 from + copied, to);
1437 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1438 					     from, from + copied, &partial,
1439 					     write_end_fn);
1440 		if (!partial)
1441 			SetPageUptodate(page);
1442 	}
1443 	if (!verity)
1444 		size_changed = ext4_update_inode_size(inode, pos + copied);
1445 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1446 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1447 	unlock_page(page);
1448 	put_page(page);
1449 
1450 	if (old_size < pos && !verity)
1451 		pagecache_isize_extended(inode, old_size, pos);
1452 
1453 	if (size_changed) {
1454 		ret2 = ext4_mark_inode_dirty(handle, inode);
1455 		if (!ret)
1456 			ret = ret2;
1457 	}
1458 
1459 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1460 		/* if we have allocated more blocks and copied
1461 		 * less. We will have blocks allocated outside
1462 		 * inode->i_size. So truncate them
1463 		 */
1464 		ext4_orphan_add(handle, inode);
1465 
1466 	ret2 = ext4_journal_stop(handle);
1467 	if (!ret)
1468 		ret = ret2;
1469 	if (pos + len > inode->i_size && !verity) {
1470 		ext4_truncate_failed_write(inode);
1471 		/*
1472 		 * If truncate failed early the inode might still be
1473 		 * on the orphan list; we need to make sure the inode
1474 		 * is removed from the orphan list in that case.
1475 		 */
1476 		if (inode->i_nlink)
1477 			ext4_orphan_del(NULL, inode);
1478 	}
1479 
1480 	return ret ? ret : copied;
1481 }
1482 
1483 /*
1484  * Reserve space for a single cluster
1485  */
1486 static int ext4_da_reserve_space(struct inode *inode)
1487 {
1488 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1489 	struct ext4_inode_info *ei = EXT4_I(inode);
1490 	int ret;
1491 
1492 	/*
1493 	 * We will charge metadata quota at writeout time; this saves
1494 	 * us from metadata over-estimation, though we may go over by
1495 	 * a small amount in the end.  Here we just reserve for data.
1496 	 */
1497 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1498 	if (ret)
1499 		return ret;
1500 
1501 	spin_lock(&ei->i_block_reservation_lock);
1502 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1503 		spin_unlock(&ei->i_block_reservation_lock);
1504 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1505 		return -ENOSPC;
1506 	}
1507 	ei->i_reserved_data_blocks++;
1508 	trace_ext4_da_reserve_space(inode);
1509 	spin_unlock(&ei->i_block_reservation_lock);
1510 
1511 	return 0;       /* success */
1512 }
1513 
1514 void ext4_da_release_space(struct inode *inode, int to_free)
1515 {
1516 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1517 	struct ext4_inode_info *ei = EXT4_I(inode);
1518 
1519 	if (!to_free)
1520 		return;		/* Nothing to release, exit */
1521 
1522 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1523 
1524 	trace_ext4_da_release_space(inode, to_free);
1525 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1526 		/*
1527 		 * if there aren't enough reserved blocks, then the
1528 		 * counter is messed up somewhere.  Since this
1529 		 * function is called from invalidate page, it's
1530 		 * harmless to return without any action.
1531 		 */
1532 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1533 			 "ino %lu, to_free %d with only %d reserved "
1534 			 "data blocks", inode->i_ino, to_free,
1535 			 ei->i_reserved_data_blocks);
1536 		WARN_ON(1);
1537 		to_free = ei->i_reserved_data_blocks;
1538 	}
1539 	ei->i_reserved_data_blocks -= to_free;
1540 
1541 	/* update fs dirty data blocks counter */
1542 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1543 
1544 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 
1546 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1547 }
1548 
1549 /*
1550  * Delayed allocation stuff
1551  */
1552 
1553 struct mpage_da_data {
1554 	/* These are input fields for ext4_do_writepages() */
1555 	struct inode *inode;
1556 	struct writeback_control *wbc;
1557 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1558 
1559 	/* These are internal state of ext4_do_writepages() */
1560 	pgoff_t first_page;	/* The first page to write */
1561 	pgoff_t next_page;	/* Current page to examine */
1562 	pgoff_t last_page;	/* Last page to examine */
1563 	/*
1564 	 * Extent to map - this can be after first_page because that can be
1565 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1566 	 * is delalloc or unwritten.
1567 	 */
1568 	struct ext4_map_blocks map;
1569 	struct ext4_io_submit io_submit;	/* IO submission data */
1570 	unsigned int do_map:1;
1571 	unsigned int scanned_until_end:1;
1572 };
1573 
1574 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1575 				       bool invalidate)
1576 {
1577 	unsigned nr, i;
1578 	pgoff_t index, end;
1579 	struct folio_batch fbatch;
1580 	struct inode *inode = mpd->inode;
1581 	struct address_space *mapping = inode->i_mapping;
1582 
1583 	/* This is necessary when next_page == 0. */
1584 	if (mpd->first_page >= mpd->next_page)
1585 		return;
1586 
1587 	mpd->scanned_until_end = 0;
1588 	index = mpd->first_page;
1589 	end   = mpd->next_page - 1;
1590 	if (invalidate) {
1591 		ext4_lblk_t start, last;
1592 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1593 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1594 
1595 		/*
1596 		 * avoid racing with extent status tree scans made by
1597 		 * ext4_insert_delayed_block()
1598 		 */
1599 		down_write(&EXT4_I(inode)->i_data_sem);
1600 		ext4_es_remove_extent(inode, start, last - start + 1);
1601 		up_write(&EXT4_I(inode)->i_data_sem);
1602 	}
1603 
1604 	folio_batch_init(&fbatch);
1605 	while (index <= end) {
1606 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1607 		if (nr == 0)
1608 			break;
1609 		for (i = 0; i < nr; i++) {
1610 			struct folio *folio = fbatch.folios[i];
1611 
1612 			if (folio->index < mpd->first_page)
1613 				continue;
1614 			if (folio->index + folio_nr_pages(folio) - 1 > end)
1615 				continue;
1616 			BUG_ON(!folio_test_locked(folio));
1617 			BUG_ON(folio_test_writeback(folio));
1618 			if (invalidate) {
1619 				if (folio_mapped(folio))
1620 					folio_clear_dirty_for_io(folio);
1621 				block_invalidate_folio(folio, 0,
1622 						folio_size(folio));
1623 				folio_clear_uptodate(folio);
1624 			}
1625 			folio_unlock(folio);
1626 		}
1627 		folio_batch_release(&fbatch);
1628 	}
1629 }
1630 
1631 static void ext4_print_free_blocks(struct inode *inode)
1632 {
1633 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1634 	struct super_block *sb = inode->i_sb;
1635 	struct ext4_inode_info *ei = EXT4_I(inode);
1636 
1637 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1638 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1639 			ext4_count_free_clusters(sb)));
1640 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1641 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1642 	       (long long) EXT4_C2B(EXT4_SB(sb),
1643 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1644 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1645 	       (long long) EXT4_C2B(EXT4_SB(sb),
1646 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1647 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1648 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1649 		 ei->i_reserved_data_blocks);
1650 	return;
1651 }
1652 
1653 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1654 				      struct buffer_head *bh)
1655 {
1656 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1657 }
1658 
1659 /*
1660  * ext4_insert_delayed_block - adds a delayed block to the extents status
1661  *                             tree, incrementing the reserved cluster/block
1662  *                             count or making a pending reservation
1663  *                             where needed
1664  *
1665  * @inode - file containing the newly added block
1666  * @lblk - logical block to be added
1667  *
1668  * Returns 0 on success, negative error code on failure.
1669  */
1670 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1671 {
1672 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1673 	int ret;
1674 	bool allocated = false;
1675 	bool reserved = false;
1676 
1677 	/*
1678 	 * If the cluster containing lblk is shared with a delayed,
1679 	 * written, or unwritten extent in a bigalloc file system, it's
1680 	 * already been accounted for and does not need to be reserved.
1681 	 * A pending reservation must be made for the cluster if it's
1682 	 * shared with a written or unwritten extent and doesn't already
1683 	 * have one.  Written and unwritten extents can be purged from the
1684 	 * extents status tree if the system is under memory pressure, so
1685 	 * it's necessary to examine the extent tree if a search of the
1686 	 * extents status tree doesn't get a match.
1687 	 */
1688 	if (sbi->s_cluster_ratio == 1) {
1689 		ret = ext4_da_reserve_space(inode);
1690 		if (ret != 0)   /* ENOSPC */
1691 			goto errout;
1692 		reserved = true;
1693 	} else {   /* bigalloc */
1694 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1695 			if (!ext4_es_scan_clu(inode,
1696 					      &ext4_es_is_mapped, lblk)) {
1697 				ret = ext4_clu_mapped(inode,
1698 						      EXT4_B2C(sbi, lblk));
1699 				if (ret < 0)
1700 					goto errout;
1701 				if (ret == 0) {
1702 					ret = ext4_da_reserve_space(inode);
1703 					if (ret != 0)   /* ENOSPC */
1704 						goto errout;
1705 					reserved = true;
1706 				} else {
1707 					allocated = true;
1708 				}
1709 			} else {
1710 				allocated = true;
1711 			}
1712 		}
1713 	}
1714 
1715 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1716 	if (ret && reserved)
1717 		ext4_da_release_space(inode, 1);
1718 
1719 errout:
1720 	return ret;
1721 }
1722 
1723 /*
1724  * This function is grabs code from the very beginning of
1725  * ext4_map_blocks, but assumes that the caller is from delayed write
1726  * time. This function looks up the requested blocks and sets the
1727  * buffer delay bit under the protection of i_data_sem.
1728  */
1729 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1730 			      struct ext4_map_blocks *map,
1731 			      struct buffer_head *bh)
1732 {
1733 	struct extent_status es;
1734 	int retval;
1735 	sector_t invalid_block = ~((sector_t) 0xffff);
1736 #ifdef ES_AGGRESSIVE_TEST
1737 	struct ext4_map_blocks orig_map;
1738 
1739 	memcpy(&orig_map, map, sizeof(*map));
1740 #endif
1741 
1742 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1743 		invalid_block = ~0;
1744 
1745 	map->m_flags = 0;
1746 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1747 		  (unsigned long) map->m_lblk);
1748 
1749 	/* Lookup extent status tree firstly */
1750 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1751 		if (ext4_es_is_hole(&es)) {
1752 			retval = 0;
1753 			down_read(&EXT4_I(inode)->i_data_sem);
1754 			goto add_delayed;
1755 		}
1756 
1757 		/*
1758 		 * Delayed extent could be allocated by fallocate.
1759 		 * So we need to check it.
1760 		 */
1761 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762 			map_bh(bh, inode->i_sb, invalid_block);
1763 			set_buffer_new(bh);
1764 			set_buffer_delay(bh);
1765 			return 0;
1766 		}
1767 
1768 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769 		retval = es.es_len - (iblock - es.es_lblk);
1770 		if (retval > map->m_len)
1771 			retval = map->m_len;
1772 		map->m_len = retval;
1773 		if (ext4_es_is_written(&es))
1774 			map->m_flags |= EXT4_MAP_MAPPED;
1775 		else if (ext4_es_is_unwritten(&es))
1776 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1777 		else
1778 			BUG();
1779 
1780 #ifdef ES_AGGRESSIVE_TEST
1781 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782 #endif
1783 		return retval;
1784 	}
1785 
1786 	/*
1787 	 * Try to see if we can get the block without requesting a new
1788 	 * file system block.
1789 	 */
1790 	down_read(&EXT4_I(inode)->i_data_sem);
1791 	if (ext4_has_inline_data(inode))
1792 		retval = 0;
1793 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795 	else
1796 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797 
1798 add_delayed:
1799 	if (retval == 0) {
1800 		int ret;
1801 
1802 		/*
1803 		 * XXX: __block_prepare_write() unmaps passed block,
1804 		 * is it OK?
1805 		 */
1806 
1807 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1808 		if (ret != 0) {
1809 			retval = ret;
1810 			goto out_unlock;
1811 		}
1812 
1813 		map_bh(bh, inode->i_sb, invalid_block);
1814 		set_buffer_new(bh);
1815 		set_buffer_delay(bh);
1816 	} else if (retval > 0) {
1817 		int ret;
1818 		unsigned int status;
1819 
1820 		if (unlikely(retval != map->m_len)) {
1821 			ext4_warning(inode->i_sb,
1822 				     "ES len assertion failed for inode "
1823 				     "%lu: retval %d != map->m_len %d",
1824 				     inode->i_ino, retval, map->m_len);
1825 			WARN_ON(1);
1826 		}
1827 
1828 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1829 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1830 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1831 					    map->m_pblk, status);
1832 		if (ret != 0)
1833 			retval = ret;
1834 	}
1835 
1836 out_unlock:
1837 	up_read((&EXT4_I(inode)->i_data_sem));
1838 
1839 	return retval;
1840 }
1841 
1842 /*
1843  * This is a special get_block_t callback which is used by
1844  * ext4_da_write_begin().  It will either return mapped block or
1845  * reserve space for a single block.
1846  *
1847  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1848  * We also have b_blocknr = -1 and b_bdev initialized properly
1849  *
1850  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1851  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1852  * initialized properly.
1853  */
1854 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1855 			   struct buffer_head *bh, int create)
1856 {
1857 	struct ext4_map_blocks map;
1858 	int ret = 0;
1859 
1860 	BUG_ON(create == 0);
1861 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1862 
1863 	map.m_lblk = iblock;
1864 	map.m_len = 1;
1865 
1866 	/*
1867 	 * first, we need to know whether the block is allocated already
1868 	 * preallocated blocks are unmapped but should treated
1869 	 * the same as allocated blocks.
1870 	 */
1871 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1872 	if (ret <= 0)
1873 		return ret;
1874 
1875 	map_bh(bh, inode->i_sb, map.m_pblk);
1876 	ext4_update_bh_state(bh, map.m_flags);
1877 
1878 	if (buffer_unwritten(bh)) {
1879 		/* A delayed write to unwritten bh should be marked
1880 		 * new and mapped.  Mapped ensures that we don't do
1881 		 * get_block multiple times when we write to the same
1882 		 * offset and new ensures that we do proper zero out
1883 		 * for partial write.
1884 		 */
1885 		set_buffer_new(bh);
1886 		set_buffer_mapped(bh);
1887 	}
1888 	return 0;
1889 }
1890 
1891 static int __ext4_journalled_writepage(struct page *page,
1892 				       unsigned int len)
1893 {
1894 	struct address_space *mapping = page->mapping;
1895 	struct inode *inode = mapping->host;
1896 	handle_t *handle = NULL;
1897 	int ret = 0, err = 0;
1898 	int inline_data = ext4_has_inline_data(inode);
1899 	struct buffer_head *inode_bh = NULL;
1900 	loff_t size;
1901 
1902 	ClearPageChecked(page);
1903 
1904 	if (inline_data) {
1905 		BUG_ON(page->index != 0);
1906 		BUG_ON(len > ext4_get_max_inline_size(inode));
1907 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1908 		if (inode_bh == NULL)
1909 			goto out;
1910 	}
1911 	/*
1912 	 * We need to release the page lock before we start the
1913 	 * journal, so grab a reference so the page won't disappear
1914 	 * out from under us.
1915 	 */
1916 	get_page(page);
1917 	unlock_page(page);
1918 
1919 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1920 				    ext4_writepage_trans_blocks(inode));
1921 	if (IS_ERR(handle)) {
1922 		ret = PTR_ERR(handle);
1923 		put_page(page);
1924 		goto out_no_pagelock;
1925 	}
1926 	BUG_ON(!ext4_handle_valid(handle));
1927 
1928 	lock_page(page);
1929 	put_page(page);
1930 	size = i_size_read(inode);
1931 	if (page->mapping != mapping || page_offset(page) > size) {
1932 		/* The page got truncated from under us */
1933 		ext4_journal_stop(handle);
1934 		ret = 0;
1935 		goto out;
1936 	}
1937 
1938 	if (inline_data) {
1939 		ret = ext4_mark_inode_dirty(handle, inode);
1940 	} else {
1941 		struct buffer_head *page_bufs = page_buffers(page);
1942 
1943 		if (page->index == size >> PAGE_SHIFT)
1944 			len = size & ~PAGE_MASK;
1945 		else
1946 			len = PAGE_SIZE;
1947 
1948 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1949 					     NULL, do_journal_get_write_access);
1950 
1951 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1952 					     NULL, write_end_fn);
1953 	}
1954 	if (ret == 0)
1955 		ret = err;
1956 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1957 	if (ret == 0)
1958 		ret = err;
1959 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1960 	err = ext4_journal_stop(handle);
1961 	if (!ret)
1962 		ret = err;
1963 
1964 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1965 out:
1966 	unlock_page(page);
1967 out_no_pagelock:
1968 	brelse(inode_bh);
1969 	return ret;
1970 }
1971 
1972 /*
1973  * Note that we don't need to start a transaction unless we're journaling data
1974  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1975  * need to file the inode to the transaction's list in ordered mode because if
1976  * we are writing back data added by write(), the inode is already there and if
1977  * we are writing back data modified via mmap(), no one guarantees in which
1978  * transaction the data will hit the disk. In case we are journaling data, we
1979  * cannot start transaction directly because transaction start ranks above page
1980  * lock so we have to do some magic.
1981  *
1982  * This function can get called via...
1983  *   - ext4_writepages after taking page lock (have journal handle)
1984  *   - journal_submit_inode_data_buffers (no journal handle)
1985  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1986  *   - grab_page_cache when doing write_begin (have journal handle)
1987  *
1988  * We don't do any block allocation in this function. If we have page with
1989  * multiple blocks we need to write those buffer_heads that are mapped. This
1990  * is important for mmaped based write. So if we do with blocksize 1K
1991  * truncate(f, 1024);
1992  * a = mmap(f, 0, 4096);
1993  * a[0] = 'a';
1994  * truncate(f, 4096);
1995  * we have in the page first buffer_head mapped via page_mkwrite call back
1996  * but other buffer_heads would be unmapped but dirty (dirty done via the
1997  * do_wp_page). So writepage should write the first block. If we modify
1998  * the mmap area beyond 1024 we will again get a page_fault and the
1999  * page_mkwrite callback will do the block allocation and mark the
2000  * buffer_heads mapped.
2001  *
2002  * We redirty the page if we have any buffer_heads that is either delay or
2003  * unwritten in the page.
2004  *
2005  * We can get recursively called as show below.
2006  *
2007  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2008  *		ext4_writepage()
2009  *
2010  * But since we don't do any block allocation we should not deadlock.
2011  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2012  */
2013 static int ext4_writepage(struct page *page,
2014 			  struct writeback_control *wbc)
2015 {
2016 	struct folio *folio = page_folio(page);
2017 	int ret = 0;
2018 	loff_t size;
2019 	unsigned int len;
2020 	struct buffer_head *page_bufs = NULL;
2021 	struct inode *inode = page->mapping->host;
2022 	struct ext4_io_submit io_submit;
2023 
2024 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2025 		folio_invalidate(folio, 0, folio_size(folio));
2026 		folio_unlock(folio);
2027 		return -EIO;
2028 	}
2029 
2030 	trace_ext4_writepage(page);
2031 	size = i_size_read(inode);
2032 	if (page->index == size >> PAGE_SHIFT &&
2033 	    !ext4_verity_in_progress(inode))
2034 		len = size & ~PAGE_MASK;
2035 	else
2036 		len = PAGE_SIZE;
2037 
2038 	/* Should never happen but for bugs in other kernel subsystems */
2039 	if (!page_has_buffers(page)) {
2040 		ext4_warning_inode(inode,
2041 		   "page %lu does not have buffers attached", page->index);
2042 		ClearPageDirty(page);
2043 		unlock_page(page);
2044 		return 0;
2045 	}
2046 
2047 	page_bufs = page_buffers(page);
2048 	/*
2049 	 * We cannot do block allocation or other extent handling in this
2050 	 * function. If there are buffers needing that, we have to redirty
2051 	 * the page. But we may reach here when we do a journal commit via
2052 	 * journal_submit_inode_data_buffers() and in that case we must write
2053 	 * allocated buffers to achieve data=ordered mode guarantees.
2054 	 *
2055 	 * Also, if there is only one buffer per page (the fs block
2056 	 * size == the page size), if one buffer needs block
2057 	 * allocation or needs to modify the extent tree to clear the
2058 	 * unwritten flag, we know that the page can't be written at
2059 	 * all, so we might as well refuse the write immediately.
2060 	 * Unfortunately if the block size != page size, we can't as
2061 	 * easily detect this case using ext4_walk_page_buffers(), but
2062 	 * for the extremely common case, this is an optimization that
2063 	 * skips a useless round trip through ext4_bio_write_page().
2064 	 */
2065 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2066 				   ext4_bh_delay_or_unwritten)) {
2067 		redirty_page_for_writepage(wbc, page);
2068 		if ((current->flags & PF_MEMALLOC) ||
2069 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2070 			/*
2071 			 * For memory cleaning there's no point in writing only
2072 			 * some buffers. So just bail out. Warn if we came here
2073 			 * from direct reclaim.
2074 			 */
2075 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2076 							== PF_MEMALLOC);
2077 			unlock_page(page);
2078 			return 0;
2079 		}
2080 	}
2081 
2082 	if (PageChecked(page) && ext4_should_journal_data(inode))
2083 		/*
2084 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2085 		 * doesn't seem much point in redirtying the page here.
2086 		 */
2087 		return __ext4_journalled_writepage(page, len);
2088 
2089 	ext4_io_submit_init(&io_submit, wbc);
2090 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2091 	if (!io_submit.io_end) {
2092 		redirty_page_for_writepage(wbc, page);
2093 		unlock_page(page);
2094 		return -ENOMEM;
2095 	}
2096 	ret = ext4_bio_write_page(&io_submit, page, len);
2097 	ext4_io_submit(&io_submit);
2098 	/* Drop io_end reference we got from init */
2099 	ext4_put_io_end_defer(io_submit.io_end);
2100 	return ret;
2101 }
2102 
2103 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2104 {
2105 	int len;
2106 	loff_t size;
2107 	int err;
2108 
2109 	BUG_ON(page->index != mpd->first_page);
2110 	clear_page_dirty_for_io(page);
2111 	/*
2112 	 * We have to be very careful here!  Nothing protects writeback path
2113 	 * against i_size changes and the page can be writeably mapped into
2114 	 * page tables. So an application can be growing i_size and writing
2115 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2116 	 * write-protects our page in page tables and the page cannot get
2117 	 * written to again until we release page lock. So only after
2118 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2119 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2120 	 * on the barrier provided by TestClearPageDirty in
2121 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2122 	 * after page tables are updated.
2123 	 */
2124 	size = i_size_read(mpd->inode);
2125 	if (page->index == size >> PAGE_SHIFT &&
2126 	    !ext4_verity_in_progress(mpd->inode))
2127 		len = size & ~PAGE_MASK;
2128 	else
2129 		len = PAGE_SIZE;
2130 	err = ext4_bio_write_page(&mpd->io_submit, page, len);
2131 	if (!err)
2132 		mpd->wbc->nr_to_write--;
2133 	mpd->first_page++;
2134 
2135 	return err;
2136 }
2137 
2138 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2139 
2140 /*
2141  * mballoc gives us at most this number of blocks...
2142  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2143  * The rest of mballoc seems to handle chunks up to full group size.
2144  */
2145 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2146 
2147 /*
2148  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2149  *
2150  * @mpd - extent of blocks
2151  * @lblk - logical number of the block in the file
2152  * @bh - buffer head we want to add to the extent
2153  *
2154  * The function is used to collect contig. blocks in the same state. If the
2155  * buffer doesn't require mapping for writeback and we haven't started the
2156  * extent of buffers to map yet, the function returns 'true' immediately - the
2157  * caller can write the buffer right away. Otherwise the function returns true
2158  * if the block has been added to the extent, false if the block couldn't be
2159  * added.
2160  */
2161 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2162 				   struct buffer_head *bh)
2163 {
2164 	struct ext4_map_blocks *map = &mpd->map;
2165 
2166 	/* Buffer that doesn't need mapping for writeback? */
2167 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2168 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2169 		/* So far no extent to map => we write the buffer right away */
2170 		if (map->m_len == 0)
2171 			return true;
2172 		return false;
2173 	}
2174 
2175 	/* First block in the extent? */
2176 	if (map->m_len == 0) {
2177 		/* We cannot map unless handle is started... */
2178 		if (!mpd->do_map)
2179 			return false;
2180 		map->m_lblk = lblk;
2181 		map->m_len = 1;
2182 		map->m_flags = bh->b_state & BH_FLAGS;
2183 		return true;
2184 	}
2185 
2186 	/* Don't go larger than mballoc is willing to allocate */
2187 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2188 		return false;
2189 
2190 	/* Can we merge the block to our big extent? */
2191 	if (lblk == map->m_lblk + map->m_len &&
2192 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2193 		map->m_len++;
2194 		return true;
2195 	}
2196 	return false;
2197 }
2198 
2199 /*
2200  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2201  *
2202  * @mpd - extent of blocks for mapping
2203  * @head - the first buffer in the page
2204  * @bh - buffer we should start processing from
2205  * @lblk - logical number of the block in the file corresponding to @bh
2206  *
2207  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2208  * the page for IO if all buffers in this page were mapped and there's no
2209  * accumulated extent of buffers to map or add buffers in the page to the
2210  * extent of buffers to map. The function returns 1 if the caller can continue
2211  * by processing the next page, 0 if it should stop adding buffers to the
2212  * extent to map because we cannot extend it anymore. It can also return value
2213  * < 0 in case of error during IO submission.
2214  */
2215 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2216 				   struct buffer_head *head,
2217 				   struct buffer_head *bh,
2218 				   ext4_lblk_t lblk)
2219 {
2220 	struct inode *inode = mpd->inode;
2221 	int err;
2222 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2223 							>> inode->i_blkbits;
2224 
2225 	if (ext4_verity_in_progress(inode))
2226 		blocks = EXT_MAX_BLOCKS;
2227 
2228 	do {
2229 		BUG_ON(buffer_locked(bh));
2230 
2231 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2232 			/* Found extent to map? */
2233 			if (mpd->map.m_len)
2234 				return 0;
2235 			/* Buffer needs mapping and handle is not started? */
2236 			if (!mpd->do_map)
2237 				return 0;
2238 			/* Everything mapped so far and we hit EOF */
2239 			break;
2240 		}
2241 	} while (lblk++, (bh = bh->b_this_page) != head);
2242 	/* So far everything mapped? Submit the page for IO. */
2243 	if (mpd->map.m_len == 0) {
2244 		err = mpage_submit_page(mpd, head->b_page);
2245 		if (err < 0)
2246 			return err;
2247 	}
2248 	if (lblk >= blocks) {
2249 		mpd->scanned_until_end = 1;
2250 		return 0;
2251 	}
2252 	return 1;
2253 }
2254 
2255 /*
2256  * mpage_process_page - update page buffers corresponding to changed extent and
2257  *		       may submit fully mapped page for IO
2258  *
2259  * @mpd		- description of extent to map, on return next extent to map
2260  * @m_lblk	- logical block mapping.
2261  * @m_pblk	- corresponding physical mapping.
2262  * @map_bh	- determines on return whether this page requires any further
2263  *		  mapping or not.
2264  * Scan given page buffers corresponding to changed extent and update buffer
2265  * state according to new extent state.
2266  * We map delalloc buffers to their physical location, clear unwritten bits.
2267  * If the given page is not fully mapped, we update @map to the next extent in
2268  * the given page that needs mapping & return @map_bh as true.
2269  */
2270 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2271 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2272 			      bool *map_bh)
2273 {
2274 	struct buffer_head *head, *bh;
2275 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2276 	ext4_lblk_t lblk = *m_lblk;
2277 	ext4_fsblk_t pblock = *m_pblk;
2278 	int err = 0;
2279 	int blkbits = mpd->inode->i_blkbits;
2280 	ssize_t io_end_size = 0;
2281 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2282 
2283 	bh = head = page_buffers(page);
2284 	do {
2285 		if (lblk < mpd->map.m_lblk)
2286 			continue;
2287 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2288 			/*
2289 			 * Buffer after end of mapped extent.
2290 			 * Find next buffer in the page to map.
2291 			 */
2292 			mpd->map.m_len = 0;
2293 			mpd->map.m_flags = 0;
2294 			io_end_vec->size += io_end_size;
2295 
2296 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2297 			if (err > 0)
2298 				err = 0;
2299 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2300 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2301 				if (IS_ERR(io_end_vec)) {
2302 					err = PTR_ERR(io_end_vec);
2303 					goto out;
2304 				}
2305 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2306 			}
2307 			*map_bh = true;
2308 			goto out;
2309 		}
2310 		if (buffer_delay(bh)) {
2311 			clear_buffer_delay(bh);
2312 			bh->b_blocknr = pblock++;
2313 		}
2314 		clear_buffer_unwritten(bh);
2315 		io_end_size += (1 << blkbits);
2316 	} while (lblk++, (bh = bh->b_this_page) != head);
2317 
2318 	io_end_vec->size += io_end_size;
2319 	*map_bh = false;
2320 out:
2321 	*m_lblk = lblk;
2322 	*m_pblk = pblock;
2323 	return err;
2324 }
2325 
2326 /*
2327  * mpage_map_buffers - update buffers corresponding to changed extent and
2328  *		       submit fully mapped pages for IO
2329  *
2330  * @mpd - description of extent to map, on return next extent to map
2331  *
2332  * Scan buffers corresponding to changed extent (we expect corresponding pages
2333  * to be already locked) and update buffer state according to new extent state.
2334  * We map delalloc buffers to their physical location, clear unwritten bits,
2335  * and mark buffers as uninit when we perform writes to unwritten extents
2336  * and do extent conversion after IO is finished. If the last page is not fully
2337  * mapped, we update @map to the next extent in the last page that needs
2338  * mapping. Otherwise we submit the page for IO.
2339  */
2340 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2341 {
2342 	struct folio_batch fbatch;
2343 	unsigned nr, i;
2344 	struct inode *inode = mpd->inode;
2345 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2346 	pgoff_t start, end;
2347 	ext4_lblk_t lblk;
2348 	ext4_fsblk_t pblock;
2349 	int err;
2350 	bool map_bh = false;
2351 
2352 	start = mpd->map.m_lblk >> bpp_bits;
2353 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2354 	lblk = start << bpp_bits;
2355 	pblock = mpd->map.m_pblk;
2356 
2357 	folio_batch_init(&fbatch);
2358 	while (start <= end) {
2359 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2360 		if (nr == 0)
2361 			break;
2362 		for (i = 0; i < nr; i++) {
2363 			struct page *page = &fbatch.folios[i]->page;
2364 
2365 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2366 						 &map_bh);
2367 			/*
2368 			 * If map_bh is true, means page may require further bh
2369 			 * mapping, or maybe the page was submitted for IO.
2370 			 * So we return to call further extent mapping.
2371 			 */
2372 			if (err < 0 || map_bh)
2373 				goto out;
2374 			/* Page fully mapped - let IO run! */
2375 			err = mpage_submit_page(mpd, page);
2376 			if (err < 0)
2377 				goto out;
2378 		}
2379 		folio_batch_release(&fbatch);
2380 	}
2381 	/* Extent fully mapped and matches with page boundary. We are done. */
2382 	mpd->map.m_len = 0;
2383 	mpd->map.m_flags = 0;
2384 	return 0;
2385 out:
2386 	folio_batch_release(&fbatch);
2387 	return err;
2388 }
2389 
2390 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2391 {
2392 	struct inode *inode = mpd->inode;
2393 	struct ext4_map_blocks *map = &mpd->map;
2394 	int get_blocks_flags;
2395 	int err, dioread_nolock;
2396 
2397 	trace_ext4_da_write_pages_extent(inode, map);
2398 	/*
2399 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2400 	 * to convert an unwritten extent to be initialized (in the case
2401 	 * where we have written into one or more preallocated blocks).  It is
2402 	 * possible that we're going to need more metadata blocks than
2403 	 * previously reserved. However we must not fail because we're in
2404 	 * writeback and there is nothing we can do about it so it might result
2405 	 * in data loss.  So use reserved blocks to allocate metadata if
2406 	 * possible.
2407 	 *
2408 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2409 	 * the blocks in question are delalloc blocks.  This indicates
2410 	 * that the blocks and quotas has already been checked when
2411 	 * the data was copied into the page cache.
2412 	 */
2413 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2414 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2415 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2416 	dioread_nolock = ext4_should_dioread_nolock(inode);
2417 	if (dioread_nolock)
2418 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2419 	if (map->m_flags & BIT(BH_Delay))
2420 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2421 
2422 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2423 	if (err < 0)
2424 		return err;
2425 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2426 		if (!mpd->io_submit.io_end->handle &&
2427 		    ext4_handle_valid(handle)) {
2428 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2429 			handle->h_rsv_handle = NULL;
2430 		}
2431 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2432 	}
2433 
2434 	BUG_ON(map->m_len == 0);
2435 	return 0;
2436 }
2437 
2438 /*
2439  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2440  *				 mpd->len and submit pages underlying it for IO
2441  *
2442  * @handle - handle for journal operations
2443  * @mpd - extent to map
2444  * @give_up_on_write - we set this to true iff there is a fatal error and there
2445  *                     is no hope of writing the data. The caller should discard
2446  *                     dirty pages to avoid infinite loops.
2447  *
2448  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2449  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2450  * them to initialized or split the described range from larger unwritten
2451  * extent. Note that we need not map all the described range since allocation
2452  * can return less blocks or the range is covered by more unwritten extents. We
2453  * cannot map more because we are limited by reserved transaction credits. On
2454  * the other hand we always make sure that the last touched page is fully
2455  * mapped so that it can be written out (and thus forward progress is
2456  * guaranteed). After mapping we submit all mapped pages for IO.
2457  */
2458 static int mpage_map_and_submit_extent(handle_t *handle,
2459 				       struct mpage_da_data *mpd,
2460 				       bool *give_up_on_write)
2461 {
2462 	struct inode *inode = mpd->inode;
2463 	struct ext4_map_blocks *map = &mpd->map;
2464 	int err;
2465 	loff_t disksize;
2466 	int progress = 0;
2467 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2468 	struct ext4_io_end_vec *io_end_vec;
2469 
2470 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2471 	if (IS_ERR(io_end_vec))
2472 		return PTR_ERR(io_end_vec);
2473 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2474 	do {
2475 		err = mpage_map_one_extent(handle, mpd);
2476 		if (err < 0) {
2477 			struct super_block *sb = inode->i_sb;
2478 
2479 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2480 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2481 				goto invalidate_dirty_pages;
2482 			/*
2483 			 * Let the uper layers retry transient errors.
2484 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2485 			 * is non-zero, a commit should free up blocks.
2486 			 */
2487 			if ((err == -ENOMEM) ||
2488 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2489 				if (progress)
2490 					goto update_disksize;
2491 				return err;
2492 			}
2493 			ext4_msg(sb, KERN_CRIT,
2494 				 "Delayed block allocation failed for "
2495 				 "inode %lu at logical offset %llu with"
2496 				 " max blocks %u with error %d",
2497 				 inode->i_ino,
2498 				 (unsigned long long)map->m_lblk,
2499 				 (unsigned)map->m_len, -err);
2500 			ext4_msg(sb, KERN_CRIT,
2501 				 "This should not happen!! Data will "
2502 				 "be lost\n");
2503 			if (err == -ENOSPC)
2504 				ext4_print_free_blocks(inode);
2505 		invalidate_dirty_pages:
2506 			*give_up_on_write = true;
2507 			return err;
2508 		}
2509 		progress = 1;
2510 		/*
2511 		 * Update buffer state, submit mapped pages, and get us new
2512 		 * extent to map
2513 		 */
2514 		err = mpage_map_and_submit_buffers(mpd);
2515 		if (err < 0)
2516 			goto update_disksize;
2517 	} while (map->m_len);
2518 
2519 update_disksize:
2520 	/*
2521 	 * Update on-disk size after IO is submitted.  Races with
2522 	 * truncate are avoided by checking i_size under i_data_sem.
2523 	 */
2524 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2525 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2526 		int err2;
2527 		loff_t i_size;
2528 
2529 		down_write(&EXT4_I(inode)->i_data_sem);
2530 		i_size = i_size_read(inode);
2531 		if (disksize > i_size)
2532 			disksize = i_size;
2533 		if (disksize > EXT4_I(inode)->i_disksize)
2534 			EXT4_I(inode)->i_disksize = disksize;
2535 		up_write(&EXT4_I(inode)->i_data_sem);
2536 		err2 = ext4_mark_inode_dirty(handle, inode);
2537 		if (err2) {
2538 			ext4_error_err(inode->i_sb, -err2,
2539 				       "Failed to mark inode %lu dirty",
2540 				       inode->i_ino);
2541 		}
2542 		if (!err)
2543 			err = err2;
2544 	}
2545 	return err;
2546 }
2547 
2548 /*
2549  * Calculate the total number of credits to reserve for one writepages
2550  * iteration. This is called from ext4_writepages(). We map an extent of
2551  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2552  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2553  * bpp - 1 blocks in bpp different extents.
2554  */
2555 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2556 {
2557 	int bpp = ext4_journal_blocks_per_page(inode);
2558 
2559 	return ext4_meta_trans_blocks(inode,
2560 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2561 }
2562 
2563 /* Return true if the page needs to be written as part of transaction commit */
2564 static bool ext4_page_nomap_can_writeout(struct page *page)
2565 {
2566 	struct buffer_head *bh, *head;
2567 
2568 	bh = head = page_buffers(page);
2569 	do {
2570 		if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh))
2571 			return true;
2572 	} while ((bh = bh->b_this_page) != head);
2573 	return false;
2574 }
2575 
2576 /*
2577  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2578  * 				 needing mapping, submit mapped pages
2579  *
2580  * @mpd - where to look for pages
2581  *
2582  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2583  * IO immediately. If we cannot map blocks, we submit just already mapped
2584  * buffers in the page for IO and keep page dirty. When we can map blocks and
2585  * we find a page which isn't mapped we start accumulating extent of buffers
2586  * underlying these pages that needs mapping (formed by either delayed or
2587  * unwritten buffers). We also lock the pages containing these buffers. The
2588  * extent found is returned in @mpd structure (starting at mpd->lblk with
2589  * length mpd->len blocks).
2590  *
2591  * Note that this function can attach bios to one io_end structure which are
2592  * neither logically nor physically contiguous. Although it may seem as an
2593  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2594  * case as we need to track IO to all buffers underlying a page in one io_end.
2595  */
2596 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2597 {
2598 	struct address_space *mapping = mpd->inode->i_mapping;
2599 	struct pagevec pvec;
2600 	unsigned int nr_pages;
2601 	long left = mpd->wbc->nr_to_write;
2602 	pgoff_t index = mpd->first_page;
2603 	pgoff_t end = mpd->last_page;
2604 	xa_mark_t tag;
2605 	int i, err = 0;
2606 	int blkbits = mpd->inode->i_blkbits;
2607 	ext4_lblk_t lblk;
2608 	struct buffer_head *head;
2609 
2610 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2611 		tag = PAGECACHE_TAG_TOWRITE;
2612 	else
2613 		tag = PAGECACHE_TAG_DIRTY;
2614 
2615 	pagevec_init(&pvec);
2616 	mpd->map.m_len = 0;
2617 	mpd->next_page = index;
2618 	while (index <= end) {
2619 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2620 				tag);
2621 		if (nr_pages == 0)
2622 			break;
2623 
2624 		for (i = 0; i < nr_pages; i++) {
2625 			struct page *page = pvec.pages[i];
2626 
2627 			/*
2628 			 * Accumulated enough dirty pages? This doesn't apply
2629 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2630 			 * keep going because someone may be concurrently
2631 			 * dirtying pages, and we might have synced a lot of
2632 			 * newly appeared dirty pages, but have not synced all
2633 			 * of the old dirty pages.
2634 			 */
2635 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2636 				goto out;
2637 
2638 			/* If we can't merge this page, we are done. */
2639 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2640 				goto out;
2641 
2642 			lock_page(page);
2643 			/*
2644 			 * If the page is no longer dirty, or its mapping no
2645 			 * longer corresponds to inode we are writing (which
2646 			 * means it has been truncated or invalidated), or the
2647 			 * page is already under writeback and we are not doing
2648 			 * a data integrity writeback, skip the page
2649 			 */
2650 			if (!PageDirty(page) ||
2651 			    (PageWriteback(page) &&
2652 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2653 			    unlikely(page->mapping != mapping)) {
2654 				unlock_page(page);
2655 				continue;
2656 			}
2657 
2658 			wait_on_page_writeback(page);
2659 			BUG_ON(PageWriteback(page));
2660 
2661 			/*
2662 			 * Should never happen but for buggy code in
2663 			 * other subsystems that call
2664 			 * set_page_dirty() without properly warning
2665 			 * the file system first.  See [1] for more
2666 			 * information.
2667 			 *
2668 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2669 			 */
2670 			if (!page_has_buffers(page)) {
2671 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2672 				ClearPageDirty(page);
2673 				unlock_page(page);
2674 				continue;
2675 			}
2676 
2677 			if (mpd->map.m_len == 0)
2678 				mpd->first_page = page->index;
2679 			mpd->next_page = page->index + 1;
2680 			/*
2681 			 * Writeout for transaction commit where we cannot
2682 			 * modify metadata is simple. Just submit the page.
2683 			 */
2684 			if (!mpd->can_map) {
2685 				if (ext4_page_nomap_can_writeout(page)) {
2686 					err = mpage_submit_page(mpd, page);
2687 					if (err < 0)
2688 						goto out;
2689 				} else {
2690 					unlock_page(page);
2691 					mpd->first_page++;
2692 				}
2693 			} else {
2694 				/* Add all dirty buffers to mpd */
2695 				lblk = ((ext4_lblk_t)page->index) <<
2696 					(PAGE_SHIFT - blkbits);
2697 				head = page_buffers(page);
2698 				err = mpage_process_page_bufs(mpd, head, head,
2699 							      lblk);
2700 				if (err <= 0)
2701 					goto out;
2702 				err = 0;
2703 			}
2704 			left--;
2705 		}
2706 		pagevec_release(&pvec);
2707 		cond_resched();
2708 	}
2709 	mpd->scanned_until_end = 1;
2710 	return 0;
2711 out:
2712 	pagevec_release(&pvec);
2713 	return err;
2714 }
2715 
2716 static int ext4_writepage_cb(struct page *page, struct writeback_control *wbc,
2717 			     void *data)
2718 {
2719 	return ext4_writepage(page, wbc);
2720 }
2721 
2722 static int ext4_do_writepages(struct mpage_da_data *mpd)
2723 {
2724 	struct writeback_control *wbc = mpd->wbc;
2725 	pgoff_t	writeback_index = 0;
2726 	long nr_to_write = wbc->nr_to_write;
2727 	int range_whole = 0;
2728 	int cycled = 1;
2729 	handle_t *handle = NULL;
2730 	struct inode *inode = mpd->inode;
2731 	struct address_space *mapping = inode->i_mapping;
2732 	int needed_blocks, rsv_blocks = 0, ret = 0;
2733 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2734 	struct blk_plug plug;
2735 	bool give_up_on_write = false;
2736 
2737 	trace_ext4_writepages(inode, wbc);
2738 
2739 	/*
2740 	 * No pages to write? This is mainly a kludge to avoid starting
2741 	 * a transaction for special inodes like journal inode on last iput()
2742 	 * because that could violate lock ordering on umount
2743 	 */
2744 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2745 		goto out_writepages;
2746 
2747 	if (ext4_should_journal_data(inode)) {
2748 		blk_start_plug(&plug);
2749 		ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL);
2750 		blk_finish_plug(&plug);
2751 		goto out_writepages;
2752 	}
2753 
2754 	/*
2755 	 * If the filesystem has aborted, it is read-only, so return
2756 	 * right away instead of dumping stack traces later on that
2757 	 * will obscure the real source of the problem.  We test
2758 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2759 	 * the latter could be true if the filesystem is mounted
2760 	 * read-only, and in that case, ext4_writepages should
2761 	 * *never* be called, so if that ever happens, we would want
2762 	 * the stack trace.
2763 	 */
2764 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2765 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2766 		ret = -EROFS;
2767 		goto out_writepages;
2768 	}
2769 
2770 	/*
2771 	 * If we have inline data and arrive here, it means that
2772 	 * we will soon create the block for the 1st page, so
2773 	 * we'd better clear the inline data here.
2774 	 */
2775 	if (ext4_has_inline_data(inode)) {
2776 		/* Just inode will be modified... */
2777 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2778 		if (IS_ERR(handle)) {
2779 			ret = PTR_ERR(handle);
2780 			goto out_writepages;
2781 		}
2782 		BUG_ON(ext4_test_inode_state(inode,
2783 				EXT4_STATE_MAY_INLINE_DATA));
2784 		ext4_destroy_inline_data(handle, inode);
2785 		ext4_journal_stop(handle);
2786 	}
2787 
2788 	if (ext4_should_dioread_nolock(inode)) {
2789 		/*
2790 		 * We may need to convert up to one extent per block in
2791 		 * the page and we may dirty the inode.
2792 		 */
2793 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2794 						PAGE_SIZE >> inode->i_blkbits);
2795 	}
2796 
2797 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2798 		range_whole = 1;
2799 
2800 	if (wbc->range_cyclic) {
2801 		writeback_index = mapping->writeback_index;
2802 		if (writeback_index)
2803 			cycled = 0;
2804 		mpd->first_page = writeback_index;
2805 		mpd->last_page = -1;
2806 	} else {
2807 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2808 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2809 	}
2810 
2811 	ext4_io_submit_init(&mpd->io_submit, wbc);
2812 retry:
2813 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2814 		tag_pages_for_writeback(mapping, mpd->first_page,
2815 					mpd->last_page);
2816 	blk_start_plug(&plug);
2817 
2818 	/*
2819 	 * First writeback pages that don't need mapping - we can avoid
2820 	 * starting a transaction unnecessarily and also avoid being blocked
2821 	 * in the block layer on device congestion while having transaction
2822 	 * started.
2823 	 */
2824 	mpd->do_map = 0;
2825 	mpd->scanned_until_end = 0;
2826 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2827 	if (!mpd->io_submit.io_end) {
2828 		ret = -ENOMEM;
2829 		goto unplug;
2830 	}
2831 	ret = mpage_prepare_extent_to_map(mpd);
2832 	/* Unlock pages we didn't use */
2833 	mpage_release_unused_pages(mpd, false);
2834 	/* Submit prepared bio */
2835 	ext4_io_submit(&mpd->io_submit);
2836 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2837 	mpd->io_submit.io_end = NULL;
2838 	if (ret < 0)
2839 		goto unplug;
2840 
2841 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2842 		/* For each extent of pages we use new io_end */
2843 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2844 		if (!mpd->io_submit.io_end) {
2845 			ret = -ENOMEM;
2846 			break;
2847 		}
2848 
2849 		WARN_ON_ONCE(!mpd->can_map);
2850 		/*
2851 		 * We have two constraints: We find one extent to map and we
2852 		 * must always write out whole page (makes a difference when
2853 		 * blocksize < pagesize) so that we don't block on IO when we
2854 		 * try to write out the rest of the page. Journalled mode is
2855 		 * not supported by delalloc.
2856 		 */
2857 		BUG_ON(ext4_should_journal_data(inode));
2858 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2859 
2860 		/* start a new transaction */
2861 		handle = ext4_journal_start_with_reserve(inode,
2862 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2863 		if (IS_ERR(handle)) {
2864 			ret = PTR_ERR(handle);
2865 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2866 			       "%ld pages, ino %lu; err %d", __func__,
2867 				wbc->nr_to_write, inode->i_ino, ret);
2868 			/* Release allocated io_end */
2869 			ext4_put_io_end(mpd->io_submit.io_end);
2870 			mpd->io_submit.io_end = NULL;
2871 			break;
2872 		}
2873 		mpd->do_map = 1;
2874 
2875 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2876 		ret = mpage_prepare_extent_to_map(mpd);
2877 		if (!ret && mpd->map.m_len)
2878 			ret = mpage_map_and_submit_extent(handle, mpd,
2879 					&give_up_on_write);
2880 		/*
2881 		 * Caution: If the handle is synchronous,
2882 		 * ext4_journal_stop() can wait for transaction commit
2883 		 * to finish which may depend on writeback of pages to
2884 		 * complete or on page lock to be released.  In that
2885 		 * case, we have to wait until after we have
2886 		 * submitted all the IO, released page locks we hold,
2887 		 * and dropped io_end reference (for extent conversion
2888 		 * to be able to complete) before stopping the handle.
2889 		 */
2890 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2891 			ext4_journal_stop(handle);
2892 			handle = NULL;
2893 			mpd->do_map = 0;
2894 		}
2895 		/* Unlock pages we didn't use */
2896 		mpage_release_unused_pages(mpd, give_up_on_write);
2897 		/* Submit prepared bio */
2898 		ext4_io_submit(&mpd->io_submit);
2899 
2900 		/*
2901 		 * Drop our io_end reference we got from init. We have
2902 		 * to be careful and use deferred io_end finishing if
2903 		 * we are still holding the transaction as we can
2904 		 * release the last reference to io_end which may end
2905 		 * up doing unwritten extent conversion.
2906 		 */
2907 		if (handle) {
2908 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2909 			ext4_journal_stop(handle);
2910 		} else
2911 			ext4_put_io_end(mpd->io_submit.io_end);
2912 		mpd->io_submit.io_end = NULL;
2913 
2914 		if (ret == -ENOSPC && sbi->s_journal) {
2915 			/*
2916 			 * Commit the transaction which would
2917 			 * free blocks released in the transaction
2918 			 * and try again
2919 			 */
2920 			jbd2_journal_force_commit_nested(sbi->s_journal);
2921 			ret = 0;
2922 			continue;
2923 		}
2924 		/* Fatal error - ENOMEM, EIO... */
2925 		if (ret)
2926 			break;
2927 	}
2928 unplug:
2929 	blk_finish_plug(&plug);
2930 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2931 		cycled = 1;
2932 		mpd->last_page = writeback_index - 1;
2933 		mpd->first_page = 0;
2934 		goto retry;
2935 	}
2936 
2937 	/* Update index */
2938 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2939 		/*
2940 		 * Set the writeback_index so that range_cyclic
2941 		 * mode will write it back later
2942 		 */
2943 		mapping->writeback_index = mpd->first_page;
2944 
2945 out_writepages:
2946 	trace_ext4_writepages_result(inode, wbc, ret,
2947 				     nr_to_write - wbc->nr_to_write);
2948 	return ret;
2949 }
2950 
2951 static int ext4_writepages(struct address_space *mapping,
2952 			   struct writeback_control *wbc)
2953 {
2954 	struct super_block *sb = mapping->host->i_sb;
2955 	struct mpage_da_data mpd = {
2956 		.inode = mapping->host,
2957 		.wbc = wbc,
2958 		.can_map = 1,
2959 	};
2960 	int ret;
2961 
2962 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2963 		return -EIO;
2964 
2965 	percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem);
2966 	ret = ext4_do_writepages(&mpd);
2967 	percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem);
2968 
2969 	return ret;
2970 }
2971 
2972 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2973 {
2974 	struct writeback_control wbc = {
2975 		.sync_mode = WB_SYNC_ALL,
2976 		.nr_to_write = LONG_MAX,
2977 		.range_start = jinode->i_dirty_start,
2978 		.range_end = jinode->i_dirty_end,
2979 	};
2980 	struct mpage_da_data mpd = {
2981 		.inode = jinode->i_vfs_inode,
2982 		.wbc = &wbc,
2983 		.can_map = 0,
2984 	};
2985 	return ext4_do_writepages(&mpd);
2986 }
2987 
2988 static int ext4_dax_writepages(struct address_space *mapping,
2989 			       struct writeback_control *wbc)
2990 {
2991 	int ret;
2992 	long nr_to_write = wbc->nr_to_write;
2993 	struct inode *inode = mapping->host;
2994 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2995 
2996 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2997 		return -EIO;
2998 
2999 	percpu_down_read(&sbi->s_writepages_rwsem);
3000 	trace_ext4_writepages(inode, wbc);
3001 
3002 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
3003 	trace_ext4_writepages_result(inode, wbc, ret,
3004 				     nr_to_write - wbc->nr_to_write);
3005 	percpu_up_read(&sbi->s_writepages_rwsem);
3006 	return ret;
3007 }
3008 
3009 static int ext4_nonda_switch(struct super_block *sb)
3010 {
3011 	s64 free_clusters, dirty_clusters;
3012 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3013 
3014 	/*
3015 	 * switch to non delalloc mode if we are running low
3016 	 * on free block. The free block accounting via percpu
3017 	 * counters can get slightly wrong with percpu_counter_batch getting
3018 	 * accumulated on each CPU without updating global counters
3019 	 * Delalloc need an accurate free block accounting. So switch
3020 	 * to non delalloc when we are near to error range.
3021 	 */
3022 	free_clusters =
3023 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3024 	dirty_clusters =
3025 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3026 	/*
3027 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3028 	 */
3029 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3030 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3031 
3032 	if (2 * free_clusters < 3 * dirty_clusters ||
3033 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3034 		/*
3035 		 * free block count is less than 150% of dirty blocks
3036 		 * or free blocks is less than watermark
3037 		 */
3038 		return 1;
3039 	}
3040 	return 0;
3041 }
3042 
3043 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3044 			       loff_t pos, unsigned len,
3045 			       struct page **pagep, void **fsdata)
3046 {
3047 	int ret, retries = 0;
3048 	struct page *page;
3049 	pgoff_t index;
3050 	struct inode *inode = mapping->host;
3051 
3052 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3053 		return -EIO;
3054 
3055 	index = pos >> PAGE_SHIFT;
3056 
3057 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3058 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3059 		return ext4_write_begin(file, mapping, pos,
3060 					len, pagep, fsdata);
3061 	}
3062 	*fsdata = (void *)0;
3063 	trace_ext4_da_write_begin(inode, pos, len);
3064 
3065 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3066 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
3067 						      pagep, fsdata);
3068 		if (ret < 0)
3069 			return ret;
3070 		if (ret == 1)
3071 			return 0;
3072 	}
3073 
3074 retry:
3075 	page = grab_cache_page_write_begin(mapping, index);
3076 	if (!page)
3077 		return -ENOMEM;
3078 
3079 	/* In case writeback began while the page was unlocked */
3080 	wait_for_stable_page(page);
3081 
3082 #ifdef CONFIG_FS_ENCRYPTION
3083 	ret = ext4_block_write_begin(page, pos, len,
3084 				     ext4_da_get_block_prep);
3085 #else
3086 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3087 #endif
3088 	if (ret < 0) {
3089 		unlock_page(page);
3090 		put_page(page);
3091 		/*
3092 		 * block_write_begin may have instantiated a few blocks
3093 		 * outside i_size.  Trim these off again. Don't need
3094 		 * i_size_read because we hold inode lock.
3095 		 */
3096 		if (pos + len > inode->i_size)
3097 			ext4_truncate_failed_write(inode);
3098 
3099 		if (ret == -ENOSPC &&
3100 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3101 			goto retry;
3102 		return ret;
3103 	}
3104 
3105 	*pagep = page;
3106 	return ret;
3107 }
3108 
3109 /*
3110  * Check if we should update i_disksize
3111  * when write to the end of file but not require block allocation
3112  */
3113 static int ext4_da_should_update_i_disksize(struct page *page,
3114 					    unsigned long offset)
3115 {
3116 	struct buffer_head *bh;
3117 	struct inode *inode = page->mapping->host;
3118 	unsigned int idx;
3119 	int i;
3120 
3121 	bh = page_buffers(page);
3122 	idx = offset >> inode->i_blkbits;
3123 
3124 	for (i = 0; i < idx; i++)
3125 		bh = bh->b_this_page;
3126 
3127 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3128 		return 0;
3129 	return 1;
3130 }
3131 
3132 static int ext4_da_write_end(struct file *file,
3133 			     struct address_space *mapping,
3134 			     loff_t pos, unsigned len, unsigned copied,
3135 			     struct page *page, void *fsdata)
3136 {
3137 	struct inode *inode = mapping->host;
3138 	loff_t new_i_size;
3139 	unsigned long start, end;
3140 	int write_mode = (int)(unsigned long)fsdata;
3141 
3142 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3143 		return ext4_write_end(file, mapping, pos,
3144 				      len, copied, page, fsdata);
3145 
3146 	trace_ext4_da_write_end(inode, pos, len, copied);
3147 
3148 	if (write_mode != CONVERT_INLINE_DATA &&
3149 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3150 	    ext4_has_inline_data(inode))
3151 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3152 
3153 	start = pos & (PAGE_SIZE - 1);
3154 	end = start + copied - 1;
3155 
3156 	/*
3157 	 * Since we are holding inode lock, we are sure i_disksize <=
3158 	 * i_size. We also know that if i_disksize < i_size, there are
3159 	 * delalloc writes pending in the range upto i_size. If the end of
3160 	 * the current write is <= i_size, there's no need to touch
3161 	 * i_disksize since writeback will push i_disksize upto i_size
3162 	 * eventually. If the end of the current write is > i_size and
3163 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3164 	 * check), we need to update i_disksize here as neither
3165 	 * ext4_writepage() nor certain ext4_writepages() paths not
3166 	 * allocating blocks update i_disksize.
3167 	 *
3168 	 * Note that we defer inode dirtying to generic_write_end() /
3169 	 * ext4_da_write_inline_data_end().
3170 	 */
3171 	new_i_size = pos + copied;
3172 	if (copied && new_i_size > inode->i_size &&
3173 	    ext4_da_should_update_i_disksize(page, end))
3174 		ext4_update_i_disksize(inode, new_i_size);
3175 
3176 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3177 }
3178 
3179 /*
3180  * Force all delayed allocation blocks to be allocated for a given inode.
3181  */
3182 int ext4_alloc_da_blocks(struct inode *inode)
3183 {
3184 	trace_ext4_alloc_da_blocks(inode);
3185 
3186 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3187 		return 0;
3188 
3189 	/*
3190 	 * We do something simple for now.  The filemap_flush() will
3191 	 * also start triggering a write of the data blocks, which is
3192 	 * not strictly speaking necessary (and for users of
3193 	 * laptop_mode, not even desirable).  However, to do otherwise
3194 	 * would require replicating code paths in:
3195 	 *
3196 	 * ext4_writepages() ->
3197 	 *    write_cache_pages() ---> (via passed in callback function)
3198 	 *        __mpage_da_writepage() -->
3199 	 *           mpage_add_bh_to_extent()
3200 	 *           mpage_da_map_blocks()
3201 	 *
3202 	 * The problem is that write_cache_pages(), located in
3203 	 * mm/page-writeback.c, marks pages clean in preparation for
3204 	 * doing I/O, which is not desirable if we're not planning on
3205 	 * doing I/O at all.
3206 	 *
3207 	 * We could call write_cache_pages(), and then redirty all of
3208 	 * the pages by calling redirty_page_for_writepage() but that
3209 	 * would be ugly in the extreme.  So instead we would need to
3210 	 * replicate parts of the code in the above functions,
3211 	 * simplifying them because we wouldn't actually intend to
3212 	 * write out the pages, but rather only collect contiguous
3213 	 * logical block extents, call the multi-block allocator, and
3214 	 * then update the buffer heads with the block allocations.
3215 	 *
3216 	 * For now, though, we'll cheat by calling filemap_flush(),
3217 	 * which will map the blocks, and start the I/O, but not
3218 	 * actually wait for the I/O to complete.
3219 	 */
3220 	return filemap_flush(inode->i_mapping);
3221 }
3222 
3223 /*
3224  * bmap() is special.  It gets used by applications such as lilo and by
3225  * the swapper to find the on-disk block of a specific piece of data.
3226  *
3227  * Naturally, this is dangerous if the block concerned is still in the
3228  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3229  * filesystem and enables swap, then they may get a nasty shock when the
3230  * data getting swapped to that swapfile suddenly gets overwritten by
3231  * the original zero's written out previously to the journal and
3232  * awaiting writeback in the kernel's buffer cache.
3233  *
3234  * So, if we see any bmap calls here on a modified, data-journaled file,
3235  * take extra steps to flush any blocks which might be in the cache.
3236  */
3237 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3238 {
3239 	struct inode *inode = mapping->host;
3240 	journal_t *journal;
3241 	sector_t ret = 0;
3242 	int err;
3243 
3244 	inode_lock_shared(inode);
3245 	/*
3246 	 * We can get here for an inline file via the FIBMAP ioctl
3247 	 */
3248 	if (ext4_has_inline_data(inode))
3249 		goto out;
3250 
3251 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3252 			test_opt(inode->i_sb, DELALLOC)) {
3253 		/*
3254 		 * With delalloc we want to sync the file
3255 		 * so that we can make sure we allocate
3256 		 * blocks for file
3257 		 */
3258 		filemap_write_and_wait(mapping);
3259 	}
3260 
3261 	if (EXT4_JOURNAL(inode) &&
3262 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3263 		/*
3264 		 * This is a REALLY heavyweight approach, but the use of
3265 		 * bmap on dirty files is expected to be extremely rare:
3266 		 * only if we run lilo or swapon on a freshly made file
3267 		 * do we expect this to happen.
3268 		 *
3269 		 * (bmap requires CAP_SYS_RAWIO so this does not
3270 		 * represent an unprivileged user DOS attack --- we'd be
3271 		 * in trouble if mortal users could trigger this path at
3272 		 * will.)
3273 		 *
3274 		 * NB. EXT4_STATE_JDATA is not set on files other than
3275 		 * regular files.  If somebody wants to bmap a directory
3276 		 * or symlink and gets confused because the buffer
3277 		 * hasn't yet been flushed to disk, they deserve
3278 		 * everything they get.
3279 		 */
3280 
3281 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3282 		journal = EXT4_JOURNAL(inode);
3283 		jbd2_journal_lock_updates(journal);
3284 		err = jbd2_journal_flush(journal, 0);
3285 		jbd2_journal_unlock_updates(journal);
3286 
3287 		if (err)
3288 			goto out;
3289 	}
3290 
3291 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3292 
3293 out:
3294 	inode_unlock_shared(inode);
3295 	return ret;
3296 }
3297 
3298 static int ext4_read_folio(struct file *file, struct folio *folio)
3299 {
3300 	struct page *page = &folio->page;
3301 	int ret = -EAGAIN;
3302 	struct inode *inode = page->mapping->host;
3303 
3304 	trace_ext4_readpage(page);
3305 
3306 	if (ext4_has_inline_data(inode))
3307 		ret = ext4_readpage_inline(inode, page);
3308 
3309 	if (ret == -EAGAIN)
3310 		return ext4_mpage_readpages(inode, NULL, page);
3311 
3312 	return ret;
3313 }
3314 
3315 static void ext4_readahead(struct readahead_control *rac)
3316 {
3317 	struct inode *inode = rac->mapping->host;
3318 
3319 	/* If the file has inline data, no need to do readahead. */
3320 	if (ext4_has_inline_data(inode))
3321 		return;
3322 
3323 	ext4_mpage_readpages(inode, rac, NULL);
3324 }
3325 
3326 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3327 				size_t length)
3328 {
3329 	trace_ext4_invalidate_folio(folio, offset, length);
3330 
3331 	/* No journalling happens on data buffers when this function is used */
3332 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3333 
3334 	block_invalidate_folio(folio, offset, length);
3335 }
3336 
3337 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3338 					    size_t offset, size_t length)
3339 {
3340 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3341 
3342 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3343 
3344 	/*
3345 	 * If it's a full truncate we just forget about the pending dirtying
3346 	 */
3347 	if (offset == 0 && length == folio_size(folio))
3348 		folio_clear_checked(folio);
3349 
3350 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3351 }
3352 
3353 /* Wrapper for aops... */
3354 static void ext4_journalled_invalidate_folio(struct folio *folio,
3355 					   size_t offset,
3356 					   size_t length)
3357 {
3358 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3359 }
3360 
3361 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3362 {
3363 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3364 
3365 	trace_ext4_releasepage(&folio->page);
3366 
3367 	/* Page has dirty journalled data -> cannot release */
3368 	if (folio_test_checked(folio))
3369 		return false;
3370 	if (journal)
3371 		return jbd2_journal_try_to_free_buffers(journal, folio);
3372 	else
3373 		return try_to_free_buffers(folio);
3374 }
3375 
3376 static bool ext4_inode_datasync_dirty(struct inode *inode)
3377 {
3378 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3379 
3380 	if (journal) {
3381 		if (jbd2_transaction_committed(journal,
3382 			EXT4_I(inode)->i_datasync_tid))
3383 			return false;
3384 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3385 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3386 		return true;
3387 	}
3388 
3389 	/* Any metadata buffers to write? */
3390 	if (!list_empty(&inode->i_mapping->private_list))
3391 		return true;
3392 	return inode->i_state & I_DIRTY_DATASYNC;
3393 }
3394 
3395 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3396 			   struct ext4_map_blocks *map, loff_t offset,
3397 			   loff_t length, unsigned int flags)
3398 {
3399 	u8 blkbits = inode->i_blkbits;
3400 
3401 	/*
3402 	 * Writes that span EOF might trigger an I/O size update on completion,
3403 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3404 	 * there is no other metadata changes being made or are pending.
3405 	 */
3406 	iomap->flags = 0;
3407 	if (ext4_inode_datasync_dirty(inode) ||
3408 	    offset + length > i_size_read(inode))
3409 		iomap->flags |= IOMAP_F_DIRTY;
3410 
3411 	if (map->m_flags & EXT4_MAP_NEW)
3412 		iomap->flags |= IOMAP_F_NEW;
3413 
3414 	if (flags & IOMAP_DAX)
3415 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3416 	else
3417 		iomap->bdev = inode->i_sb->s_bdev;
3418 	iomap->offset = (u64) map->m_lblk << blkbits;
3419 	iomap->length = (u64) map->m_len << blkbits;
3420 
3421 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3422 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3423 		iomap->flags |= IOMAP_F_MERGED;
3424 
3425 	/*
3426 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3427 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3428 	 * set. In order for any allocated unwritten extents to be converted
3429 	 * into written extents correctly within the ->end_io() handler, we
3430 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3431 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3432 	 * been set first.
3433 	 */
3434 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3435 		iomap->type = IOMAP_UNWRITTEN;
3436 		iomap->addr = (u64) map->m_pblk << blkbits;
3437 		if (flags & IOMAP_DAX)
3438 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3439 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3440 		iomap->type = IOMAP_MAPPED;
3441 		iomap->addr = (u64) map->m_pblk << blkbits;
3442 		if (flags & IOMAP_DAX)
3443 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3444 	} else {
3445 		iomap->type = IOMAP_HOLE;
3446 		iomap->addr = IOMAP_NULL_ADDR;
3447 	}
3448 }
3449 
3450 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3451 			    unsigned int flags)
3452 {
3453 	handle_t *handle;
3454 	u8 blkbits = inode->i_blkbits;
3455 	int ret, dio_credits, m_flags = 0, retries = 0;
3456 
3457 	/*
3458 	 * Trim the mapping request to the maximum value that we can map at
3459 	 * once for direct I/O.
3460 	 */
3461 	if (map->m_len > DIO_MAX_BLOCKS)
3462 		map->m_len = DIO_MAX_BLOCKS;
3463 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3464 
3465 retry:
3466 	/*
3467 	 * Either we allocate blocks and then don't get an unwritten extent, so
3468 	 * in that case we have reserved enough credits. Or, the blocks are
3469 	 * already allocated and unwritten. In that case, the extent conversion
3470 	 * fits into the credits as well.
3471 	 */
3472 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3473 	if (IS_ERR(handle))
3474 		return PTR_ERR(handle);
3475 
3476 	/*
3477 	 * DAX and direct I/O are the only two operations that are currently
3478 	 * supported with IOMAP_WRITE.
3479 	 */
3480 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3481 	if (flags & IOMAP_DAX)
3482 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3483 	/*
3484 	 * We use i_size instead of i_disksize here because delalloc writeback
3485 	 * can complete at any point during the I/O and subsequently push the
3486 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3487 	 * happening and thus expose allocated blocks to direct I/O reads.
3488 	 */
3489 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3490 		m_flags = EXT4_GET_BLOCKS_CREATE;
3491 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3492 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3493 
3494 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3495 
3496 	/*
3497 	 * We cannot fill holes in indirect tree based inodes as that could
3498 	 * expose stale data in the case of a crash. Use the magic error code
3499 	 * to fallback to buffered I/O.
3500 	 */
3501 	if (!m_flags && !ret)
3502 		ret = -ENOTBLK;
3503 
3504 	ext4_journal_stop(handle);
3505 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3506 		goto retry;
3507 
3508 	return ret;
3509 }
3510 
3511 
3512 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3513 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3514 {
3515 	int ret;
3516 	struct ext4_map_blocks map;
3517 	u8 blkbits = inode->i_blkbits;
3518 
3519 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3520 		return -EINVAL;
3521 
3522 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3523 		return -ERANGE;
3524 
3525 	/*
3526 	 * Calculate the first and last logical blocks respectively.
3527 	 */
3528 	map.m_lblk = offset >> blkbits;
3529 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531 
3532 	if (flags & IOMAP_WRITE) {
3533 		/*
3534 		 * We check here if the blocks are already allocated, then we
3535 		 * don't need to start a journal txn and we can directly return
3536 		 * the mapping information. This could boost performance
3537 		 * especially in multi-threaded overwrite requests.
3538 		 */
3539 		if (offset + length <= i_size_read(inode)) {
3540 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3541 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3542 				goto out;
3543 		}
3544 		ret = ext4_iomap_alloc(inode, &map, flags);
3545 	} else {
3546 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3547 	}
3548 
3549 	if (ret < 0)
3550 		return ret;
3551 out:
3552 	/*
3553 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3554 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3555 	 * limiting the length of the mapping returned.
3556 	 */
3557 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3558 
3559 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3560 
3561 	return 0;
3562 }
3563 
3564 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3565 		loff_t length, unsigned flags, struct iomap *iomap,
3566 		struct iomap *srcmap)
3567 {
3568 	int ret;
3569 
3570 	/*
3571 	 * Even for writes we don't need to allocate blocks, so just pretend
3572 	 * we are reading to save overhead of starting a transaction.
3573 	 */
3574 	flags &= ~IOMAP_WRITE;
3575 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3576 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3577 	return ret;
3578 }
3579 
3580 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3581 			  ssize_t written, unsigned flags, struct iomap *iomap)
3582 {
3583 	/*
3584 	 * Check to see whether an error occurred while writing out the data to
3585 	 * the allocated blocks. If so, return the magic error code so that we
3586 	 * fallback to buffered I/O and attempt to complete the remainder of
3587 	 * the I/O. Any blocks that may have been allocated in preparation for
3588 	 * the direct I/O will be reused during buffered I/O.
3589 	 */
3590 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3591 		return -ENOTBLK;
3592 
3593 	return 0;
3594 }
3595 
3596 const struct iomap_ops ext4_iomap_ops = {
3597 	.iomap_begin		= ext4_iomap_begin,
3598 	.iomap_end		= ext4_iomap_end,
3599 };
3600 
3601 const struct iomap_ops ext4_iomap_overwrite_ops = {
3602 	.iomap_begin		= ext4_iomap_overwrite_begin,
3603 	.iomap_end		= ext4_iomap_end,
3604 };
3605 
3606 static bool ext4_iomap_is_delalloc(struct inode *inode,
3607 				   struct ext4_map_blocks *map)
3608 {
3609 	struct extent_status es;
3610 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3611 
3612 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3613 				  map->m_lblk, end, &es);
3614 
3615 	if (!es.es_len || es.es_lblk > end)
3616 		return false;
3617 
3618 	if (es.es_lblk > map->m_lblk) {
3619 		map->m_len = es.es_lblk - map->m_lblk;
3620 		return false;
3621 	}
3622 
3623 	offset = map->m_lblk - es.es_lblk;
3624 	map->m_len = es.es_len - offset;
3625 
3626 	return true;
3627 }
3628 
3629 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3630 				   loff_t length, unsigned int flags,
3631 				   struct iomap *iomap, struct iomap *srcmap)
3632 {
3633 	int ret;
3634 	bool delalloc = false;
3635 	struct ext4_map_blocks map;
3636 	u8 blkbits = inode->i_blkbits;
3637 
3638 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3639 		return -EINVAL;
3640 
3641 	if (ext4_has_inline_data(inode)) {
3642 		ret = ext4_inline_data_iomap(inode, iomap);
3643 		if (ret != -EAGAIN) {
3644 			if (ret == 0 && offset >= iomap->length)
3645 				ret = -ENOENT;
3646 			return ret;
3647 		}
3648 	}
3649 
3650 	/*
3651 	 * Calculate the first and last logical block respectively.
3652 	 */
3653 	map.m_lblk = offset >> blkbits;
3654 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3655 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3656 
3657 	/*
3658 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3659 	 * So handle it here itself instead of querying ext4_map_blocks().
3660 	 * Since ext4_map_blocks() will warn about it and will return
3661 	 * -EIO error.
3662 	 */
3663 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3664 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3665 
3666 		if (offset >= sbi->s_bitmap_maxbytes) {
3667 			map.m_flags = 0;
3668 			goto set_iomap;
3669 		}
3670 	}
3671 
3672 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3673 	if (ret < 0)
3674 		return ret;
3675 	if (ret == 0)
3676 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3677 
3678 set_iomap:
3679 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3680 	if (delalloc && iomap->type == IOMAP_HOLE)
3681 		iomap->type = IOMAP_DELALLOC;
3682 
3683 	return 0;
3684 }
3685 
3686 const struct iomap_ops ext4_iomap_report_ops = {
3687 	.iomap_begin = ext4_iomap_begin_report,
3688 };
3689 
3690 /*
3691  * Whenever the folio is being dirtied, corresponding buffers should already
3692  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3693  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3694  * lists here because ->dirty_folio is called under VFS locks and the folio
3695  * is not necessarily locked.
3696  *
3697  * We cannot just dirty the folio and leave attached buffers clean, because the
3698  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3699  * or jbddirty because all the journalling code will explode.
3700  *
3701  * So what we do is to mark the folio "pending dirty" and next time writepage
3702  * is called, propagate that into the buffers appropriately.
3703  */
3704 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3705 		struct folio *folio)
3706 {
3707 	WARN_ON_ONCE(!folio_buffers(folio));
3708 	folio_set_checked(folio);
3709 	return filemap_dirty_folio(mapping, folio);
3710 }
3711 
3712 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3713 {
3714 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3715 	WARN_ON_ONCE(!folio_buffers(folio));
3716 	return block_dirty_folio(mapping, folio);
3717 }
3718 
3719 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3720 				    struct file *file, sector_t *span)
3721 {
3722 	return iomap_swapfile_activate(sis, file, span,
3723 				       &ext4_iomap_report_ops);
3724 }
3725 
3726 static const struct address_space_operations ext4_aops = {
3727 	.read_folio		= ext4_read_folio,
3728 	.readahead		= ext4_readahead,
3729 	.writepages		= ext4_writepages,
3730 	.write_begin		= ext4_write_begin,
3731 	.write_end		= ext4_write_end,
3732 	.dirty_folio		= ext4_dirty_folio,
3733 	.bmap			= ext4_bmap,
3734 	.invalidate_folio	= ext4_invalidate_folio,
3735 	.release_folio		= ext4_release_folio,
3736 	.direct_IO		= noop_direct_IO,
3737 	.migrate_folio		= buffer_migrate_folio,
3738 	.is_partially_uptodate  = block_is_partially_uptodate,
3739 	.error_remove_page	= generic_error_remove_page,
3740 	.swap_activate		= ext4_iomap_swap_activate,
3741 };
3742 
3743 static const struct address_space_operations ext4_journalled_aops = {
3744 	.read_folio		= ext4_read_folio,
3745 	.readahead		= ext4_readahead,
3746 	.writepages		= ext4_writepages,
3747 	.write_begin		= ext4_write_begin,
3748 	.write_end		= ext4_journalled_write_end,
3749 	.dirty_folio		= ext4_journalled_dirty_folio,
3750 	.bmap			= ext4_bmap,
3751 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3752 	.release_folio		= ext4_release_folio,
3753 	.direct_IO		= noop_direct_IO,
3754 	.migrate_folio		= buffer_migrate_folio_norefs,
3755 	.is_partially_uptodate  = block_is_partially_uptodate,
3756 	.error_remove_page	= generic_error_remove_page,
3757 	.swap_activate		= ext4_iomap_swap_activate,
3758 };
3759 
3760 static const struct address_space_operations ext4_da_aops = {
3761 	.read_folio		= ext4_read_folio,
3762 	.readahead		= ext4_readahead,
3763 	.writepages		= ext4_writepages,
3764 	.write_begin		= ext4_da_write_begin,
3765 	.write_end		= ext4_da_write_end,
3766 	.dirty_folio		= ext4_dirty_folio,
3767 	.bmap			= ext4_bmap,
3768 	.invalidate_folio	= ext4_invalidate_folio,
3769 	.release_folio		= ext4_release_folio,
3770 	.direct_IO		= noop_direct_IO,
3771 	.migrate_folio		= buffer_migrate_folio,
3772 	.is_partially_uptodate  = block_is_partially_uptodate,
3773 	.error_remove_page	= generic_error_remove_page,
3774 	.swap_activate		= ext4_iomap_swap_activate,
3775 };
3776 
3777 static const struct address_space_operations ext4_dax_aops = {
3778 	.writepages		= ext4_dax_writepages,
3779 	.direct_IO		= noop_direct_IO,
3780 	.dirty_folio		= noop_dirty_folio,
3781 	.bmap			= ext4_bmap,
3782 	.swap_activate		= ext4_iomap_swap_activate,
3783 };
3784 
3785 void ext4_set_aops(struct inode *inode)
3786 {
3787 	switch (ext4_inode_journal_mode(inode)) {
3788 	case EXT4_INODE_ORDERED_DATA_MODE:
3789 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3790 		break;
3791 	case EXT4_INODE_JOURNAL_DATA_MODE:
3792 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3793 		return;
3794 	default:
3795 		BUG();
3796 	}
3797 	if (IS_DAX(inode))
3798 		inode->i_mapping->a_ops = &ext4_dax_aops;
3799 	else if (test_opt(inode->i_sb, DELALLOC))
3800 		inode->i_mapping->a_ops = &ext4_da_aops;
3801 	else
3802 		inode->i_mapping->a_ops = &ext4_aops;
3803 }
3804 
3805 static int __ext4_block_zero_page_range(handle_t *handle,
3806 		struct address_space *mapping, loff_t from, loff_t length)
3807 {
3808 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3809 	unsigned offset = from & (PAGE_SIZE-1);
3810 	unsigned blocksize, pos;
3811 	ext4_lblk_t iblock;
3812 	struct inode *inode = mapping->host;
3813 	struct buffer_head *bh;
3814 	struct page *page;
3815 	int err = 0;
3816 
3817 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3818 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3819 	if (!page)
3820 		return -ENOMEM;
3821 
3822 	blocksize = inode->i_sb->s_blocksize;
3823 
3824 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3825 
3826 	if (!page_has_buffers(page))
3827 		create_empty_buffers(page, blocksize, 0);
3828 
3829 	/* Find the buffer that contains "offset" */
3830 	bh = page_buffers(page);
3831 	pos = blocksize;
3832 	while (offset >= pos) {
3833 		bh = bh->b_this_page;
3834 		iblock++;
3835 		pos += blocksize;
3836 	}
3837 	if (buffer_freed(bh)) {
3838 		BUFFER_TRACE(bh, "freed: skip");
3839 		goto unlock;
3840 	}
3841 	if (!buffer_mapped(bh)) {
3842 		BUFFER_TRACE(bh, "unmapped");
3843 		ext4_get_block(inode, iblock, bh, 0);
3844 		/* unmapped? It's a hole - nothing to do */
3845 		if (!buffer_mapped(bh)) {
3846 			BUFFER_TRACE(bh, "still unmapped");
3847 			goto unlock;
3848 		}
3849 	}
3850 
3851 	/* Ok, it's mapped. Make sure it's up-to-date */
3852 	if (PageUptodate(page))
3853 		set_buffer_uptodate(bh);
3854 
3855 	if (!buffer_uptodate(bh)) {
3856 		err = ext4_read_bh_lock(bh, 0, true);
3857 		if (err)
3858 			goto unlock;
3859 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3860 			/* We expect the key to be set. */
3861 			BUG_ON(!fscrypt_has_encryption_key(inode));
3862 			err = fscrypt_decrypt_pagecache_blocks(page_folio(page),
3863 							       blocksize,
3864 							       bh_offset(bh));
3865 			if (err) {
3866 				clear_buffer_uptodate(bh);
3867 				goto unlock;
3868 			}
3869 		}
3870 	}
3871 	if (ext4_should_journal_data(inode)) {
3872 		BUFFER_TRACE(bh, "get write access");
3873 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3874 						    EXT4_JTR_NONE);
3875 		if (err)
3876 			goto unlock;
3877 	}
3878 	zero_user(page, offset, length);
3879 	BUFFER_TRACE(bh, "zeroed end of block");
3880 
3881 	if (ext4_should_journal_data(inode)) {
3882 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3883 	} else {
3884 		err = 0;
3885 		mark_buffer_dirty(bh);
3886 		if (ext4_should_order_data(inode))
3887 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3888 					length);
3889 	}
3890 
3891 unlock:
3892 	unlock_page(page);
3893 	put_page(page);
3894 	return err;
3895 }
3896 
3897 /*
3898  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3899  * starting from file offset 'from'.  The range to be zero'd must
3900  * be contained with in one block.  If the specified range exceeds
3901  * the end of the block it will be shortened to end of the block
3902  * that corresponds to 'from'
3903  */
3904 static int ext4_block_zero_page_range(handle_t *handle,
3905 		struct address_space *mapping, loff_t from, loff_t length)
3906 {
3907 	struct inode *inode = mapping->host;
3908 	unsigned offset = from & (PAGE_SIZE-1);
3909 	unsigned blocksize = inode->i_sb->s_blocksize;
3910 	unsigned max = blocksize - (offset & (blocksize - 1));
3911 
3912 	/*
3913 	 * correct length if it does not fall between
3914 	 * 'from' and the end of the block
3915 	 */
3916 	if (length > max || length < 0)
3917 		length = max;
3918 
3919 	if (IS_DAX(inode)) {
3920 		return dax_zero_range(inode, from, length, NULL,
3921 				      &ext4_iomap_ops);
3922 	}
3923 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3924 }
3925 
3926 /*
3927  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3928  * up to the end of the block which corresponds to `from'.
3929  * This required during truncate. We need to physically zero the tail end
3930  * of that block so it doesn't yield old data if the file is later grown.
3931  */
3932 static int ext4_block_truncate_page(handle_t *handle,
3933 		struct address_space *mapping, loff_t from)
3934 {
3935 	unsigned offset = from & (PAGE_SIZE-1);
3936 	unsigned length;
3937 	unsigned blocksize;
3938 	struct inode *inode = mapping->host;
3939 
3940 	/* If we are processing an encrypted inode during orphan list handling */
3941 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3942 		return 0;
3943 
3944 	blocksize = inode->i_sb->s_blocksize;
3945 	length = blocksize - (offset & (blocksize - 1));
3946 
3947 	return ext4_block_zero_page_range(handle, mapping, from, length);
3948 }
3949 
3950 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3951 			     loff_t lstart, loff_t length)
3952 {
3953 	struct super_block *sb = inode->i_sb;
3954 	struct address_space *mapping = inode->i_mapping;
3955 	unsigned partial_start, partial_end;
3956 	ext4_fsblk_t start, end;
3957 	loff_t byte_end = (lstart + length - 1);
3958 	int err = 0;
3959 
3960 	partial_start = lstart & (sb->s_blocksize - 1);
3961 	partial_end = byte_end & (sb->s_blocksize - 1);
3962 
3963 	start = lstart >> sb->s_blocksize_bits;
3964 	end = byte_end >> sb->s_blocksize_bits;
3965 
3966 	/* Handle partial zero within the single block */
3967 	if (start == end &&
3968 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3969 		err = ext4_block_zero_page_range(handle, mapping,
3970 						 lstart, length);
3971 		return err;
3972 	}
3973 	/* Handle partial zero out on the start of the range */
3974 	if (partial_start) {
3975 		err = ext4_block_zero_page_range(handle, mapping,
3976 						 lstart, sb->s_blocksize);
3977 		if (err)
3978 			return err;
3979 	}
3980 	/* Handle partial zero out on the end of the range */
3981 	if (partial_end != sb->s_blocksize - 1)
3982 		err = ext4_block_zero_page_range(handle, mapping,
3983 						 byte_end - partial_end,
3984 						 partial_end + 1);
3985 	return err;
3986 }
3987 
3988 int ext4_can_truncate(struct inode *inode)
3989 {
3990 	if (S_ISREG(inode->i_mode))
3991 		return 1;
3992 	if (S_ISDIR(inode->i_mode))
3993 		return 1;
3994 	if (S_ISLNK(inode->i_mode))
3995 		return !ext4_inode_is_fast_symlink(inode);
3996 	return 0;
3997 }
3998 
3999 /*
4000  * We have to make sure i_disksize gets properly updated before we truncate
4001  * page cache due to hole punching or zero range. Otherwise i_disksize update
4002  * can get lost as it may have been postponed to submission of writeback but
4003  * that will never happen after we truncate page cache.
4004  */
4005 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4006 				      loff_t len)
4007 {
4008 	handle_t *handle;
4009 	int ret;
4010 
4011 	loff_t size = i_size_read(inode);
4012 
4013 	WARN_ON(!inode_is_locked(inode));
4014 	if (offset > size || offset + len < size)
4015 		return 0;
4016 
4017 	if (EXT4_I(inode)->i_disksize >= size)
4018 		return 0;
4019 
4020 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4021 	if (IS_ERR(handle))
4022 		return PTR_ERR(handle);
4023 	ext4_update_i_disksize(inode, size);
4024 	ret = ext4_mark_inode_dirty(handle, inode);
4025 	ext4_journal_stop(handle);
4026 
4027 	return ret;
4028 }
4029 
4030 static void ext4_wait_dax_page(struct inode *inode)
4031 {
4032 	filemap_invalidate_unlock(inode->i_mapping);
4033 	schedule();
4034 	filemap_invalidate_lock(inode->i_mapping);
4035 }
4036 
4037 int ext4_break_layouts(struct inode *inode)
4038 {
4039 	struct page *page;
4040 	int error;
4041 
4042 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4043 		return -EINVAL;
4044 
4045 	do {
4046 		page = dax_layout_busy_page(inode->i_mapping);
4047 		if (!page)
4048 			return 0;
4049 
4050 		error = ___wait_var_event(&page->_refcount,
4051 				atomic_read(&page->_refcount) == 1,
4052 				TASK_INTERRUPTIBLE, 0, 0,
4053 				ext4_wait_dax_page(inode));
4054 	} while (error == 0);
4055 
4056 	return error;
4057 }
4058 
4059 /*
4060  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4061  * associated with the given offset and length
4062  *
4063  * @inode:  File inode
4064  * @offset: The offset where the hole will begin
4065  * @len:    The length of the hole
4066  *
4067  * Returns: 0 on success or negative on failure
4068  */
4069 
4070 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4071 {
4072 	struct inode *inode = file_inode(file);
4073 	struct super_block *sb = inode->i_sb;
4074 	ext4_lblk_t first_block, stop_block;
4075 	struct address_space *mapping = inode->i_mapping;
4076 	loff_t first_block_offset, last_block_offset, max_length;
4077 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4078 	handle_t *handle;
4079 	unsigned int credits;
4080 	int ret = 0, ret2 = 0;
4081 
4082 	trace_ext4_punch_hole(inode, offset, length, 0);
4083 
4084 	/*
4085 	 * Write out all dirty pages to avoid race conditions
4086 	 * Then release them.
4087 	 */
4088 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4089 		ret = filemap_write_and_wait_range(mapping, offset,
4090 						   offset + length - 1);
4091 		if (ret)
4092 			return ret;
4093 	}
4094 
4095 	inode_lock(inode);
4096 
4097 	/* No need to punch hole beyond i_size */
4098 	if (offset >= inode->i_size)
4099 		goto out_mutex;
4100 
4101 	/*
4102 	 * If the hole extends beyond i_size, set the hole
4103 	 * to end after the page that contains i_size
4104 	 */
4105 	if (offset + length > inode->i_size) {
4106 		length = inode->i_size +
4107 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4108 		   offset;
4109 	}
4110 
4111 	/*
4112 	 * For punch hole the length + offset needs to be within one block
4113 	 * before last range. Adjust the length if it goes beyond that limit.
4114 	 */
4115 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4116 	if (offset + length > max_length)
4117 		length = max_length - offset;
4118 
4119 	if (offset & (sb->s_blocksize - 1) ||
4120 	    (offset + length) & (sb->s_blocksize - 1)) {
4121 		/*
4122 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4123 		 * partial block
4124 		 */
4125 		ret = ext4_inode_attach_jinode(inode);
4126 		if (ret < 0)
4127 			goto out_mutex;
4128 
4129 	}
4130 
4131 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4132 	inode_dio_wait(inode);
4133 
4134 	ret = file_modified(file);
4135 	if (ret)
4136 		goto out_mutex;
4137 
4138 	/*
4139 	 * Prevent page faults from reinstantiating pages we have released from
4140 	 * page cache.
4141 	 */
4142 	filemap_invalidate_lock(mapping);
4143 
4144 	ret = ext4_break_layouts(inode);
4145 	if (ret)
4146 		goto out_dio;
4147 
4148 	first_block_offset = round_up(offset, sb->s_blocksize);
4149 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4150 
4151 	/* Now release the pages and zero block aligned part of pages*/
4152 	if (last_block_offset > first_block_offset) {
4153 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4154 		if (ret)
4155 			goto out_dio;
4156 		truncate_pagecache_range(inode, first_block_offset,
4157 					 last_block_offset);
4158 	}
4159 
4160 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4161 		credits = ext4_writepage_trans_blocks(inode);
4162 	else
4163 		credits = ext4_blocks_for_truncate(inode);
4164 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4165 	if (IS_ERR(handle)) {
4166 		ret = PTR_ERR(handle);
4167 		ext4_std_error(sb, ret);
4168 		goto out_dio;
4169 	}
4170 
4171 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4172 				       length);
4173 	if (ret)
4174 		goto out_stop;
4175 
4176 	first_block = (offset + sb->s_blocksize - 1) >>
4177 		EXT4_BLOCK_SIZE_BITS(sb);
4178 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4179 
4180 	/* If there are blocks to remove, do it */
4181 	if (stop_block > first_block) {
4182 
4183 		down_write(&EXT4_I(inode)->i_data_sem);
4184 		ext4_discard_preallocations(inode, 0);
4185 
4186 		ret = ext4_es_remove_extent(inode, first_block,
4187 					    stop_block - first_block);
4188 		if (ret) {
4189 			up_write(&EXT4_I(inode)->i_data_sem);
4190 			goto out_stop;
4191 		}
4192 
4193 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4194 			ret = ext4_ext_remove_space(inode, first_block,
4195 						    stop_block - 1);
4196 		else
4197 			ret = ext4_ind_remove_space(handle, inode, first_block,
4198 						    stop_block);
4199 
4200 		up_write(&EXT4_I(inode)->i_data_sem);
4201 	}
4202 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4203 	if (IS_SYNC(inode))
4204 		ext4_handle_sync(handle);
4205 
4206 	inode->i_mtime = inode->i_ctime = current_time(inode);
4207 	ret2 = ext4_mark_inode_dirty(handle, inode);
4208 	if (unlikely(ret2))
4209 		ret = ret2;
4210 	if (ret >= 0)
4211 		ext4_update_inode_fsync_trans(handle, inode, 1);
4212 out_stop:
4213 	ext4_journal_stop(handle);
4214 out_dio:
4215 	filemap_invalidate_unlock(mapping);
4216 out_mutex:
4217 	inode_unlock(inode);
4218 	return ret;
4219 }
4220 
4221 int ext4_inode_attach_jinode(struct inode *inode)
4222 {
4223 	struct ext4_inode_info *ei = EXT4_I(inode);
4224 	struct jbd2_inode *jinode;
4225 
4226 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4227 		return 0;
4228 
4229 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4230 	spin_lock(&inode->i_lock);
4231 	if (!ei->jinode) {
4232 		if (!jinode) {
4233 			spin_unlock(&inode->i_lock);
4234 			return -ENOMEM;
4235 		}
4236 		ei->jinode = jinode;
4237 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4238 		jinode = NULL;
4239 	}
4240 	spin_unlock(&inode->i_lock);
4241 	if (unlikely(jinode != NULL))
4242 		jbd2_free_inode(jinode);
4243 	return 0;
4244 }
4245 
4246 /*
4247  * ext4_truncate()
4248  *
4249  * We block out ext4_get_block() block instantiations across the entire
4250  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4251  * simultaneously on behalf of the same inode.
4252  *
4253  * As we work through the truncate and commit bits of it to the journal there
4254  * is one core, guiding principle: the file's tree must always be consistent on
4255  * disk.  We must be able to restart the truncate after a crash.
4256  *
4257  * The file's tree may be transiently inconsistent in memory (although it
4258  * probably isn't), but whenever we close off and commit a journal transaction,
4259  * the contents of (the filesystem + the journal) must be consistent and
4260  * restartable.  It's pretty simple, really: bottom up, right to left (although
4261  * left-to-right works OK too).
4262  *
4263  * Note that at recovery time, journal replay occurs *before* the restart of
4264  * truncate against the orphan inode list.
4265  *
4266  * The committed inode has the new, desired i_size (which is the same as
4267  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4268  * that this inode's truncate did not complete and it will again call
4269  * ext4_truncate() to have another go.  So there will be instantiated blocks
4270  * to the right of the truncation point in a crashed ext4 filesystem.  But
4271  * that's fine - as long as they are linked from the inode, the post-crash
4272  * ext4_truncate() run will find them and release them.
4273  */
4274 int ext4_truncate(struct inode *inode)
4275 {
4276 	struct ext4_inode_info *ei = EXT4_I(inode);
4277 	unsigned int credits;
4278 	int err = 0, err2;
4279 	handle_t *handle;
4280 	struct address_space *mapping = inode->i_mapping;
4281 
4282 	/*
4283 	 * There is a possibility that we're either freeing the inode
4284 	 * or it's a completely new inode. In those cases we might not
4285 	 * have i_rwsem locked because it's not necessary.
4286 	 */
4287 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4288 		WARN_ON(!inode_is_locked(inode));
4289 	trace_ext4_truncate_enter(inode);
4290 
4291 	if (!ext4_can_truncate(inode))
4292 		goto out_trace;
4293 
4294 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4295 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4296 
4297 	if (ext4_has_inline_data(inode)) {
4298 		int has_inline = 1;
4299 
4300 		err = ext4_inline_data_truncate(inode, &has_inline);
4301 		if (err || has_inline)
4302 			goto out_trace;
4303 	}
4304 
4305 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4306 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4307 		err = ext4_inode_attach_jinode(inode);
4308 		if (err)
4309 			goto out_trace;
4310 	}
4311 
4312 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4313 		credits = ext4_writepage_trans_blocks(inode);
4314 	else
4315 		credits = ext4_blocks_for_truncate(inode);
4316 
4317 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4318 	if (IS_ERR(handle)) {
4319 		err = PTR_ERR(handle);
4320 		goto out_trace;
4321 	}
4322 
4323 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4324 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4325 
4326 	/*
4327 	 * We add the inode to the orphan list, so that if this
4328 	 * truncate spans multiple transactions, and we crash, we will
4329 	 * resume the truncate when the filesystem recovers.  It also
4330 	 * marks the inode dirty, to catch the new size.
4331 	 *
4332 	 * Implication: the file must always be in a sane, consistent
4333 	 * truncatable state while each transaction commits.
4334 	 */
4335 	err = ext4_orphan_add(handle, inode);
4336 	if (err)
4337 		goto out_stop;
4338 
4339 	down_write(&EXT4_I(inode)->i_data_sem);
4340 
4341 	ext4_discard_preallocations(inode, 0);
4342 
4343 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4344 		err = ext4_ext_truncate(handle, inode);
4345 	else
4346 		ext4_ind_truncate(handle, inode);
4347 
4348 	up_write(&ei->i_data_sem);
4349 	if (err)
4350 		goto out_stop;
4351 
4352 	if (IS_SYNC(inode))
4353 		ext4_handle_sync(handle);
4354 
4355 out_stop:
4356 	/*
4357 	 * If this was a simple ftruncate() and the file will remain alive,
4358 	 * then we need to clear up the orphan record which we created above.
4359 	 * However, if this was a real unlink then we were called by
4360 	 * ext4_evict_inode(), and we allow that function to clean up the
4361 	 * orphan info for us.
4362 	 */
4363 	if (inode->i_nlink)
4364 		ext4_orphan_del(handle, inode);
4365 
4366 	inode->i_mtime = inode->i_ctime = current_time(inode);
4367 	err2 = ext4_mark_inode_dirty(handle, inode);
4368 	if (unlikely(err2 && !err))
4369 		err = err2;
4370 	ext4_journal_stop(handle);
4371 
4372 out_trace:
4373 	trace_ext4_truncate_exit(inode);
4374 	return err;
4375 }
4376 
4377 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4378 {
4379 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4380 		return inode_peek_iversion_raw(inode);
4381 	else
4382 		return inode_peek_iversion(inode);
4383 }
4384 
4385 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4386 				 struct ext4_inode_info *ei)
4387 {
4388 	struct inode *inode = &(ei->vfs_inode);
4389 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4390 	struct super_block *sb = inode->i_sb;
4391 
4392 	if (i_blocks <= ~0U) {
4393 		/*
4394 		 * i_blocks can be represented in a 32 bit variable
4395 		 * as multiple of 512 bytes
4396 		 */
4397 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4398 		raw_inode->i_blocks_high = 0;
4399 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4400 		return 0;
4401 	}
4402 
4403 	/*
4404 	 * This should never happen since sb->s_maxbytes should not have
4405 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4406 	 * feature in ext4_fill_super().
4407 	 */
4408 	if (!ext4_has_feature_huge_file(sb))
4409 		return -EFSCORRUPTED;
4410 
4411 	if (i_blocks <= 0xffffffffffffULL) {
4412 		/*
4413 		 * i_blocks can be represented in a 48 bit variable
4414 		 * as multiple of 512 bytes
4415 		 */
4416 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4417 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4418 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419 	} else {
4420 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4421 		/* i_block is stored in file system block size */
4422 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4423 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4424 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4425 	}
4426 	return 0;
4427 }
4428 
4429 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4430 {
4431 	struct ext4_inode_info *ei = EXT4_I(inode);
4432 	uid_t i_uid;
4433 	gid_t i_gid;
4434 	projid_t i_projid;
4435 	int block;
4436 	int err;
4437 
4438 	err = ext4_inode_blocks_set(raw_inode, ei);
4439 
4440 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4441 	i_uid = i_uid_read(inode);
4442 	i_gid = i_gid_read(inode);
4443 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4444 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4445 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4446 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4447 		/*
4448 		 * Fix up interoperability with old kernels. Otherwise,
4449 		 * old inodes get re-used with the upper 16 bits of the
4450 		 * uid/gid intact.
4451 		 */
4452 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4453 			raw_inode->i_uid_high = 0;
4454 			raw_inode->i_gid_high = 0;
4455 		} else {
4456 			raw_inode->i_uid_high =
4457 				cpu_to_le16(high_16_bits(i_uid));
4458 			raw_inode->i_gid_high =
4459 				cpu_to_le16(high_16_bits(i_gid));
4460 		}
4461 	} else {
4462 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4463 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4464 		raw_inode->i_uid_high = 0;
4465 		raw_inode->i_gid_high = 0;
4466 	}
4467 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4468 
4469 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4470 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4471 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4472 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4473 
4474 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4475 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4476 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4477 		raw_inode->i_file_acl_high =
4478 			cpu_to_le16(ei->i_file_acl >> 32);
4479 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4480 	ext4_isize_set(raw_inode, ei->i_disksize);
4481 
4482 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4483 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4484 		if (old_valid_dev(inode->i_rdev)) {
4485 			raw_inode->i_block[0] =
4486 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4487 			raw_inode->i_block[1] = 0;
4488 		} else {
4489 			raw_inode->i_block[0] = 0;
4490 			raw_inode->i_block[1] =
4491 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4492 			raw_inode->i_block[2] = 0;
4493 		}
4494 	} else if (!ext4_has_inline_data(inode)) {
4495 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4496 			raw_inode->i_block[block] = ei->i_data[block];
4497 	}
4498 
4499 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4500 		u64 ivers = ext4_inode_peek_iversion(inode);
4501 
4502 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4503 		if (ei->i_extra_isize) {
4504 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4505 				raw_inode->i_version_hi =
4506 					cpu_to_le32(ivers >> 32);
4507 			raw_inode->i_extra_isize =
4508 				cpu_to_le16(ei->i_extra_isize);
4509 		}
4510 	}
4511 
4512 	if (i_projid != EXT4_DEF_PROJID &&
4513 	    !ext4_has_feature_project(inode->i_sb))
4514 		err = err ?: -EFSCORRUPTED;
4515 
4516 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4517 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4518 		raw_inode->i_projid = cpu_to_le32(i_projid);
4519 
4520 	ext4_inode_csum_set(inode, raw_inode, ei);
4521 	return err;
4522 }
4523 
4524 /*
4525  * ext4_get_inode_loc returns with an extra refcount against the inode's
4526  * underlying buffer_head on success. If we pass 'inode' and it does not
4527  * have in-inode xattr, we have all inode data in memory that is needed
4528  * to recreate the on-disk version of this inode.
4529  */
4530 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4531 				struct inode *inode, struct ext4_iloc *iloc,
4532 				ext4_fsblk_t *ret_block)
4533 {
4534 	struct ext4_group_desc	*gdp;
4535 	struct buffer_head	*bh;
4536 	ext4_fsblk_t		block;
4537 	struct blk_plug		plug;
4538 	int			inodes_per_block, inode_offset;
4539 
4540 	iloc->bh = NULL;
4541 	if (ino < EXT4_ROOT_INO ||
4542 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4543 		return -EFSCORRUPTED;
4544 
4545 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4546 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4547 	if (!gdp)
4548 		return -EIO;
4549 
4550 	/*
4551 	 * Figure out the offset within the block group inode table
4552 	 */
4553 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4554 	inode_offset = ((ino - 1) %
4555 			EXT4_INODES_PER_GROUP(sb));
4556 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4557 
4558 	block = ext4_inode_table(sb, gdp);
4559 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4560 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4561 		ext4_error(sb, "Invalid inode table block %llu in "
4562 			   "block_group %u", block, iloc->block_group);
4563 		return -EFSCORRUPTED;
4564 	}
4565 	block += (inode_offset / inodes_per_block);
4566 
4567 	bh = sb_getblk(sb, block);
4568 	if (unlikely(!bh))
4569 		return -ENOMEM;
4570 	if (ext4_buffer_uptodate(bh))
4571 		goto has_buffer;
4572 
4573 	lock_buffer(bh);
4574 	if (ext4_buffer_uptodate(bh)) {
4575 		/* Someone brought it uptodate while we waited */
4576 		unlock_buffer(bh);
4577 		goto has_buffer;
4578 	}
4579 
4580 	/*
4581 	 * If we have all information of the inode in memory and this
4582 	 * is the only valid inode in the block, we need not read the
4583 	 * block.
4584 	 */
4585 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4586 		struct buffer_head *bitmap_bh;
4587 		int i, start;
4588 
4589 		start = inode_offset & ~(inodes_per_block - 1);
4590 
4591 		/* Is the inode bitmap in cache? */
4592 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4593 		if (unlikely(!bitmap_bh))
4594 			goto make_io;
4595 
4596 		/*
4597 		 * If the inode bitmap isn't in cache then the
4598 		 * optimisation may end up performing two reads instead
4599 		 * of one, so skip it.
4600 		 */
4601 		if (!buffer_uptodate(bitmap_bh)) {
4602 			brelse(bitmap_bh);
4603 			goto make_io;
4604 		}
4605 		for (i = start; i < start + inodes_per_block; i++) {
4606 			if (i == inode_offset)
4607 				continue;
4608 			if (ext4_test_bit(i, bitmap_bh->b_data))
4609 				break;
4610 		}
4611 		brelse(bitmap_bh);
4612 		if (i == start + inodes_per_block) {
4613 			struct ext4_inode *raw_inode =
4614 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4615 
4616 			/* all other inodes are free, so skip I/O */
4617 			memset(bh->b_data, 0, bh->b_size);
4618 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4619 				ext4_fill_raw_inode(inode, raw_inode);
4620 			set_buffer_uptodate(bh);
4621 			unlock_buffer(bh);
4622 			goto has_buffer;
4623 		}
4624 	}
4625 
4626 make_io:
4627 	/*
4628 	 * If we need to do any I/O, try to pre-readahead extra
4629 	 * blocks from the inode table.
4630 	 */
4631 	blk_start_plug(&plug);
4632 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4633 		ext4_fsblk_t b, end, table;
4634 		unsigned num;
4635 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4636 
4637 		table = ext4_inode_table(sb, gdp);
4638 		/* s_inode_readahead_blks is always a power of 2 */
4639 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4640 		if (table > b)
4641 			b = table;
4642 		end = b + ra_blks;
4643 		num = EXT4_INODES_PER_GROUP(sb);
4644 		if (ext4_has_group_desc_csum(sb))
4645 			num -= ext4_itable_unused_count(sb, gdp);
4646 		table += num / inodes_per_block;
4647 		if (end > table)
4648 			end = table;
4649 		while (b <= end)
4650 			ext4_sb_breadahead_unmovable(sb, b++);
4651 	}
4652 
4653 	/*
4654 	 * There are other valid inodes in the buffer, this inode
4655 	 * has in-inode xattrs, or we don't have this inode in memory.
4656 	 * Read the block from disk.
4657 	 */
4658 	trace_ext4_load_inode(sb, ino);
4659 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4660 	blk_finish_plug(&plug);
4661 	wait_on_buffer(bh);
4662 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4663 	if (!buffer_uptodate(bh)) {
4664 		if (ret_block)
4665 			*ret_block = block;
4666 		brelse(bh);
4667 		return -EIO;
4668 	}
4669 has_buffer:
4670 	iloc->bh = bh;
4671 	return 0;
4672 }
4673 
4674 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4675 					struct ext4_iloc *iloc)
4676 {
4677 	ext4_fsblk_t err_blk = 0;
4678 	int ret;
4679 
4680 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4681 					&err_blk);
4682 
4683 	if (ret == -EIO)
4684 		ext4_error_inode_block(inode, err_blk, EIO,
4685 					"unable to read itable block");
4686 
4687 	return ret;
4688 }
4689 
4690 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4691 {
4692 	ext4_fsblk_t err_blk = 0;
4693 	int ret;
4694 
4695 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4696 					&err_blk);
4697 
4698 	if (ret == -EIO)
4699 		ext4_error_inode_block(inode, err_blk, EIO,
4700 					"unable to read itable block");
4701 
4702 	return ret;
4703 }
4704 
4705 
4706 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4707 			  struct ext4_iloc *iloc)
4708 {
4709 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4710 }
4711 
4712 static bool ext4_should_enable_dax(struct inode *inode)
4713 {
4714 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4715 
4716 	if (test_opt2(inode->i_sb, DAX_NEVER))
4717 		return false;
4718 	if (!S_ISREG(inode->i_mode))
4719 		return false;
4720 	if (ext4_should_journal_data(inode))
4721 		return false;
4722 	if (ext4_has_inline_data(inode))
4723 		return false;
4724 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4725 		return false;
4726 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4727 		return false;
4728 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4729 		return false;
4730 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4731 		return true;
4732 
4733 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4734 }
4735 
4736 void ext4_set_inode_flags(struct inode *inode, bool init)
4737 {
4738 	unsigned int flags = EXT4_I(inode)->i_flags;
4739 	unsigned int new_fl = 0;
4740 
4741 	WARN_ON_ONCE(IS_DAX(inode) && init);
4742 
4743 	if (flags & EXT4_SYNC_FL)
4744 		new_fl |= S_SYNC;
4745 	if (flags & EXT4_APPEND_FL)
4746 		new_fl |= S_APPEND;
4747 	if (flags & EXT4_IMMUTABLE_FL)
4748 		new_fl |= S_IMMUTABLE;
4749 	if (flags & EXT4_NOATIME_FL)
4750 		new_fl |= S_NOATIME;
4751 	if (flags & EXT4_DIRSYNC_FL)
4752 		new_fl |= S_DIRSYNC;
4753 
4754 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4755 	 * here if already set. */
4756 	new_fl |= (inode->i_flags & S_DAX);
4757 	if (init && ext4_should_enable_dax(inode))
4758 		new_fl |= S_DAX;
4759 
4760 	if (flags & EXT4_ENCRYPT_FL)
4761 		new_fl |= S_ENCRYPTED;
4762 	if (flags & EXT4_CASEFOLD_FL)
4763 		new_fl |= S_CASEFOLD;
4764 	if (flags & EXT4_VERITY_FL)
4765 		new_fl |= S_VERITY;
4766 	inode_set_flags(inode, new_fl,
4767 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4768 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4769 }
4770 
4771 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4772 				  struct ext4_inode_info *ei)
4773 {
4774 	blkcnt_t i_blocks ;
4775 	struct inode *inode = &(ei->vfs_inode);
4776 	struct super_block *sb = inode->i_sb;
4777 
4778 	if (ext4_has_feature_huge_file(sb)) {
4779 		/* we are using combined 48 bit field */
4780 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4781 					le32_to_cpu(raw_inode->i_blocks_lo);
4782 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4783 			/* i_blocks represent file system block size */
4784 			return i_blocks  << (inode->i_blkbits - 9);
4785 		} else {
4786 			return i_blocks;
4787 		}
4788 	} else {
4789 		return le32_to_cpu(raw_inode->i_blocks_lo);
4790 	}
4791 }
4792 
4793 static inline int ext4_iget_extra_inode(struct inode *inode,
4794 					 struct ext4_inode *raw_inode,
4795 					 struct ext4_inode_info *ei)
4796 {
4797 	__le32 *magic = (void *)raw_inode +
4798 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4799 
4800 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4801 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4802 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4803 		return ext4_find_inline_data_nolock(inode);
4804 	} else
4805 		EXT4_I(inode)->i_inline_off = 0;
4806 	return 0;
4807 }
4808 
4809 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4810 {
4811 	if (!ext4_has_feature_project(inode->i_sb))
4812 		return -EOPNOTSUPP;
4813 	*projid = EXT4_I(inode)->i_projid;
4814 	return 0;
4815 }
4816 
4817 /*
4818  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4819  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4820  * set.
4821  */
4822 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4823 {
4824 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4825 		inode_set_iversion_raw(inode, val);
4826 	else
4827 		inode_set_iversion_queried(inode, val);
4828 }
4829 
4830 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4831 			  ext4_iget_flags flags, const char *function,
4832 			  unsigned int line)
4833 {
4834 	struct ext4_iloc iloc;
4835 	struct ext4_inode *raw_inode;
4836 	struct ext4_inode_info *ei;
4837 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4838 	struct inode *inode;
4839 	journal_t *journal = EXT4_SB(sb)->s_journal;
4840 	long ret;
4841 	loff_t size;
4842 	int block;
4843 	uid_t i_uid;
4844 	gid_t i_gid;
4845 	projid_t i_projid;
4846 
4847 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4848 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4849 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4850 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4851 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4852 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4853 	    (ino < EXT4_ROOT_INO) ||
4854 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4855 		if (flags & EXT4_IGET_HANDLE)
4856 			return ERR_PTR(-ESTALE);
4857 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4858 			     "inode #%lu: comm %s: iget: illegal inode #",
4859 			     ino, current->comm);
4860 		return ERR_PTR(-EFSCORRUPTED);
4861 	}
4862 
4863 	inode = iget_locked(sb, ino);
4864 	if (!inode)
4865 		return ERR_PTR(-ENOMEM);
4866 	if (!(inode->i_state & I_NEW))
4867 		return inode;
4868 
4869 	ei = EXT4_I(inode);
4870 	iloc.bh = NULL;
4871 
4872 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4873 	if (ret < 0)
4874 		goto bad_inode;
4875 	raw_inode = ext4_raw_inode(&iloc);
4876 
4877 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4878 		ext4_error_inode(inode, function, line, 0,
4879 				 "iget: root inode unallocated");
4880 		ret = -EFSCORRUPTED;
4881 		goto bad_inode;
4882 	}
4883 
4884 	if ((flags & EXT4_IGET_HANDLE) &&
4885 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4886 		ret = -ESTALE;
4887 		goto bad_inode;
4888 	}
4889 
4890 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4891 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4892 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4893 			EXT4_INODE_SIZE(inode->i_sb) ||
4894 		    (ei->i_extra_isize & 3)) {
4895 			ext4_error_inode(inode, function, line, 0,
4896 					 "iget: bad extra_isize %u "
4897 					 "(inode size %u)",
4898 					 ei->i_extra_isize,
4899 					 EXT4_INODE_SIZE(inode->i_sb));
4900 			ret = -EFSCORRUPTED;
4901 			goto bad_inode;
4902 		}
4903 	} else
4904 		ei->i_extra_isize = 0;
4905 
4906 	/* Precompute checksum seed for inode metadata */
4907 	if (ext4_has_metadata_csum(sb)) {
4908 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4909 		__u32 csum;
4910 		__le32 inum = cpu_to_le32(inode->i_ino);
4911 		__le32 gen = raw_inode->i_generation;
4912 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4913 				   sizeof(inum));
4914 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4915 					      sizeof(gen));
4916 	}
4917 
4918 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4919 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4920 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4921 		ext4_error_inode_err(inode, function, line, 0,
4922 				EFSBADCRC, "iget: checksum invalid");
4923 		ret = -EFSBADCRC;
4924 		goto bad_inode;
4925 	}
4926 
4927 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4928 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4929 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4930 	if (ext4_has_feature_project(sb) &&
4931 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4932 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4933 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4934 	else
4935 		i_projid = EXT4_DEF_PROJID;
4936 
4937 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4938 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4939 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4940 	}
4941 	i_uid_write(inode, i_uid);
4942 	i_gid_write(inode, i_gid);
4943 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4944 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4945 
4946 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4947 	ei->i_inline_off = 0;
4948 	ei->i_dir_start_lookup = 0;
4949 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4950 	/* We now have enough fields to check if the inode was active or not.
4951 	 * This is needed because nfsd might try to access dead inodes
4952 	 * the test is that same one that e2fsck uses
4953 	 * NeilBrown 1999oct15
4954 	 */
4955 	if (inode->i_nlink == 0) {
4956 		if ((inode->i_mode == 0 ||
4957 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4958 		    ino != EXT4_BOOT_LOADER_INO) {
4959 			/* this inode is deleted */
4960 			ret = -ESTALE;
4961 			goto bad_inode;
4962 		}
4963 		/* The only unlinked inodes we let through here have
4964 		 * valid i_mode and are being read by the orphan
4965 		 * recovery code: that's fine, we're about to complete
4966 		 * the process of deleting those.
4967 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4968 		 * not initialized on a new filesystem. */
4969 	}
4970 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4971 	ext4_set_inode_flags(inode, true);
4972 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4973 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4974 	if (ext4_has_feature_64bit(sb))
4975 		ei->i_file_acl |=
4976 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4977 	inode->i_size = ext4_isize(sb, raw_inode);
4978 	if ((size = i_size_read(inode)) < 0) {
4979 		ext4_error_inode(inode, function, line, 0,
4980 				 "iget: bad i_size value: %lld", size);
4981 		ret = -EFSCORRUPTED;
4982 		goto bad_inode;
4983 	}
4984 	/*
4985 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4986 	 * we'd normally treat htree data as empty space. But with metadata
4987 	 * checksumming that corrupts checksums so forbid that.
4988 	 */
4989 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4990 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4991 		ext4_error_inode(inode, function, line, 0,
4992 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4993 		ret = -EFSCORRUPTED;
4994 		goto bad_inode;
4995 	}
4996 	ei->i_disksize = inode->i_size;
4997 #ifdef CONFIG_QUOTA
4998 	ei->i_reserved_quota = 0;
4999 #endif
5000 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5001 	ei->i_block_group = iloc.block_group;
5002 	ei->i_last_alloc_group = ~0;
5003 	/*
5004 	 * NOTE! The in-memory inode i_data array is in little-endian order
5005 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5006 	 */
5007 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5008 		ei->i_data[block] = raw_inode->i_block[block];
5009 	INIT_LIST_HEAD(&ei->i_orphan);
5010 	ext4_fc_init_inode(&ei->vfs_inode);
5011 
5012 	/*
5013 	 * Set transaction id's of transactions that have to be committed
5014 	 * to finish f[data]sync. We set them to currently running transaction
5015 	 * as we cannot be sure that the inode or some of its metadata isn't
5016 	 * part of the transaction - the inode could have been reclaimed and
5017 	 * now it is reread from disk.
5018 	 */
5019 	if (journal) {
5020 		transaction_t *transaction;
5021 		tid_t tid;
5022 
5023 		read_lock(&journal->j_state_lock);
5024 		if (journal->j_running_transaction)
5025 			transaction = journal->j_running_transaction;
5026 		else
5027 			transaction = journal->j_committing_transaction;
5028 		if (transaction)
5029 			tid = transaction->t_tid;
5030 		else
5031 			tid = journal->j_commit_sequence;
5032 		read_unlock(&journal->j_state_lock);
5033 		ei->i_sync_tid = tid;
5034 		ei->i_datasync_tid = tid;
5035 	}
5036 
5037 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5038 		if (ei->i_extra_isize == 0) {
5039 			/* The extra space is currently unused. Use it. */
5040 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5041 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5042 					    EXT4_GOOD_OLD_INODE_SIZE;
5043 		} else {
5044 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5045 			if (ret)
5046 				goto bad_inode;
5047 		}
5048 	}
5049 
5050 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5051 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5052 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5053 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5054 
5055 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5056 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5057 
5058 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5059 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5060 				ivers |=
5061 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5062 		}
5063 		ext4_inode_set_iversion_queried(inode, ivers);
5064 	}
5065 
5066 	ret = 0;
5067 	if (ei->i_file_acl &&
5068 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5069 		ext4_error_inode(inode, function, line, 0,
5070 				 "iget: bad extended attribute block %llu",
5071 				 ei->i_file_acl);
5072 		ret = -EFSCORRUPTED;
5073 		goto bad_inode;
5074 	} else if (!ext4_has_inline_data(inode)) {
5075 		/* validate the block references in the inode */
5076 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5077 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5078 			(S_ISLNK(inode->i_mode) &&
5079 			!ext4_inode_is_fast_symlink(inode)))) {
5080 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5081 				ret = ext4_ext_check_inode(inode);
5082 			else
5083 				ret = ext4_ind_check_inode(inode);
5084 		}
5085 	}
5086 	if (ret)
5087 		goto bad_inode;
5088 
5089 	if (S_ISREG(inode->i_mode)) {
5090 		inode->i_op = &ext4_file_inode_operations;
5091 		inode->i_fop = &ext4_file_operations;
5092 		ext4_set_aops(inode);
5093 	} else if (S_ISDIR(inode->i_mode)) {
5094 		inode->i_op = &ext4_dir_inode_operations;
5095 		inode->i_fop = &ext4_dir_operations;
5096 	} else if (S_ISLNK(inode->i_mode)) {
5097 		/* VFS does not allow setting these so must be corruption */
5098 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5099 			ext4_error_inode(inode, function, line, 0,
5100 					 "iget: immutable or append flags "
5101 					 "not allowed on symlinks");
5102 			ret = -EFSCORRUPTED;
5103 			goto bad_inode;
5104 		}
5105 		if (IS_ENCRYPTED(inode)) {
5106 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5107 		} else if (ext4_inode_is_fast_symlink(inode)) {
5108 			inode->i_link = (char *)ei->i_data;
5109 			inode->i_op = &ext4_fast_symlink_inode_operations;
5110 			nd_terminate_link(ei->i_data, inode->i_size,
5111 				sizeof(ei->i_data) - 1);
5112 		} else {
5113 			inode->i_op = &ext4_symlink_inode_operations;
5114 		}
5115 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5116 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5117 		inode->i_op = &ext4_special_inode_operations;
5118 		if (raw_inode->i_block[0])
5119 			init_special_inode(inode, inode->i_mode,
5120 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5121 		else
5122 			init_special_inode(inode, inode->i_mode,
5123 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5124 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5125 		make_bad_inode(inode);
5126 	} else {
5127 		ret = -EFSCORRUPTED;
5128 		ext4_error_inode(inode, function, line, 0,
5129 				 "iget: bogus i_mode (%o)", inode->i_mode);
5130 		goto bad_inode;
5131 	}
5132 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5133 		ext4_error_inode(inode, function, line, 0,
5134 				 "casefold flag without casefold feature");
5135 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5136 		ext4_error_inode(inode, function, line, 0,
5137 				 "bad inode without EXT4_IGET_BAD flag");
5138 		ret = -EUCLEAN;
5139 		goto bad_inode;
5140 	}
5141 
5142 	brelse(iloc.bh);
5143 	unlock_new_inode(inode);
5144 	return inode;
5145 
5146 bad_inode:
5147 	brelse(iloc.bh);
5148 	iget_failed(inode);
5149 	return ERR_PTR(ret);
5150 }
5151 
5152 static void __ext4_update_other_inode_time(struct super_block *sb,
5153 					   unsigned long orig_ino,
5154 					   unsigned long ino,
5155 					   struct ext4_inode *raw_inode)
5156 {
5157 	struct inode *inode;
5158 
5159 	inode = find_inode_by_ino_rcu(sb, ino);
5160 	if (!inode)
5161 		return;
5162 
5163 	if (!inode_is_dirtytime_only(inode))
5164 		return;
5165 
5166 	spin_lock(&inode->i_lock);
5167 	if (inode_is_dirtytime_only(inode)) {
5168 		struct ext4_inode_info	*ei = EXT4_I(inode);
5169 
5170 		inode->i_state &= ~I_DIRTY_TIME;
5171 		spin_unlock(&inode->i_lock);
5172 
5173 		spin_lock(&ei->i_raw_lock);
5174 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5175 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5176 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5177 		ext4_inode_csum_set(inode, raw_inode, ei);
5178 		spin_unlock(&ei->i_raw_lock);
5179 		trace_ext4_other_inode_update_time(inode, orig_ino);
5180 		return;
5181 	}
5182 	spin_unlock(&inode->i_lock);
5183 }
5184 
5185 /*
5186  * Opportunistically update the other time fields for other inodes in
5187  * the same inode table block.
5188  */
5189 static void ext4_update_other_inodes_time(struct super_block *sb,
5190 					  unsigned long orig_ino, char *buf)
5191 {
5192 	unsigned long ino;
5193 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5194 	int inode_size = EXT4_INODE_SIZE(sb);
5195 
5196 	/*
5197 	 * Calculate the first inode in the inode table block.  Inode
5198 	 * numbers are one-based.  That is, the first inode in a block
5199 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5200 	 */
5201 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5202 	rcu_read_lock();
5203 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5204 		if (ino == orig_ino)
5205 			continue;
5206 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5207 					       (struct ext4_inode *)buf);
5208 	}
5209 	rcu_read_unlock();
5210 }
5211 
5212 /*
5213  * Post the struct inode info into an on-disk inode location in the
5214  * buffer-cache.  This gobbles the caller's reference to the
5215  * buffer_head in the inode location struct.
5216  *
5217  * The caller must have write access to iloc->bh.
5218  */
5219 static int ext4_do_update_inode(handle_t *handle,
5220 				struct inode *inode,
5221 				struct ext4_iloc *iloc)
5222 {
5223 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5224 	struct ext4_inode_info *ei = EXT4_I(inode);
5225 	struct buffer_head *bh = iloc->bh;
5226 	struct super_block *sb = inode->i_sb;
5227 	int err;
5228 	int need_datasync = 0, set_large_file = 0;
5229 
5230 	spin_lock(&ei->i_raw_lock);
5231 
5232 	/*
5233 	 * For fields not tracked in the in-memory inode, initialise them
5234 	 * to zero for new inodes.
5235 	 */
5236 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5237 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5238 
5239 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5240 		need_datasync = 1;
5241 	if (ei->i_disksize > 0x7fffffffULL) {
5242 		if (!ext4_has_feature_large_file(sb) ||
5243 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5244 			set_large_file = 1;
5245 	}
5246 
5247 	err = ext4_fill_raw_inode(inode, raw_inode);
5248 	spin_unlock(&ei->i_raw_lock);
5249 	if (err) {
5250 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5251 		goto out_brelse;
5252 	}
5253 
5254 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5255 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5256 					      bh->b_data);
5257 
5258 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5259 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5260 	if (err)
5261 		goto out_error;
5262 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5263 	if (set_large_file) {
5264 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5265 		err = ext4_journal_get_write_access(handle, sb,
5266 						    EXT4_SB(sb)->s_sbh,
5267 						    EXT4_JTR_NONE);
5268 		if (err)
5269 			goto out_error;
5270 		lock_buffer(EXT4_SB(sb)->s_sbh);
5271 		ext4_set_feature_large_file(sb);
5272 		ext4_superblock_csum_set(sb);
5273 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5274 		ext4_handle_sync(handle);
5275 		err = ext4_handle_dirty_metadata(handle, NULL,
5276 						 EXT4_SB(sb)->s_sbh);
5277 	}
5278 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5279 out_error:
5280 	ext4_std_error(inode->i_sb, err);
5281 out_brelse:
5282 	brelse(bh);
5283 	return err;
5284 }
5285 
5286 /*
5287  * ext4_write_inode()
5288  *
5289  * We are called from a few places:
5290  *
5291  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5292  *   Here, there will be no transaction running. We wait for any running
5293  *   transaction to commit.
5294  *
5295  * - Within flush work (sys_sync(), kupdate and such).
5296  *   We wait on commit, if told to.
5297  *
5298  * - Within iput_final() -> write_inode_now()
5299  *   We wait on commit, if told to.
5300  *
5301  * In all cases it is actually safe for us to return without doing anything,
5302  * because the inode has been copied into a raw inode buffer in
5303  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5304  * writeback.
5305  *
5306  * Note that we are absolutely dependent upon all inode dirtiers doing the
5307  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5308  * which we are interested.
5309  *
5310  * It would be a bug for them to not do this.  The code:
5311  *
5312  *	mark_inode_dirty(inode)
5313  *	stuff();
5314  *	inode->i_size = expr;
5315  *
5316  * is in error because write_inode() could occur while `stuff()' is running,
5317  * and the new i_size will be lost.  Plus the inode will no longer be on the
5318  * superblock's dirty inode list.
5319  */
5320 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5321 {
5322 	int err;
5323 
5324 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5325 	    sb_rdonly(inode->i_sb))
5326 		return 0;
5327 
5328 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5329 		return -EIO;
5330 
5331 	if (EXT4_SB(inode->i_sb)->s_journal) {
5332 		if (ext4_journal_current_handle()) {
5333 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5334 			dump_stack();
5335 			return -EIO;
5336 		}
5337 
5338 		/*
5339 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5340 		 * ext4_sync_fs() will force the commit after everything is
5341 		 * written.
5342 		 */
5343 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5344 			return 0;
5345 
5346 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5347 						EXT4_I(inode)->i_sync_tid);
5348 	} else {
5349 		struct ext4_iloc iloc;
5350 
5351 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5352 		if (err)
5353 			return err;
5354 		/*
5355 		 * sync(2) will flush the whole buffer cache. No need to do
5356 		 * it here separately for each inode.
5357 		 */
5358 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5359 			sync_dirty_buffer(iloc.bh);
5360 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5361 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5362 					       "IO error syncing inode");
5363 			err = -EIO;
5364 		}
5365 		brelse(iloc.bh);
5366 	}
5367 	return err;
5368 }
5369 
5370 /*
5371  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5372  * buffers that are attached to a folio straddling i_size and are undergoing
5373  * commit. In that case we have to wait for commit to finish and try again.
5374  */
5375 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5376 {
5377 	unsigned offset;
5378 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5379 	tid_t commit_tid = 0;
5380 	int ret;
5381 
5382 	offset = inode->i_size & (PAGE_SIZE - 1);
5383 	/*
5384 	 * If the folio is fully truncated, we don't need to wait for any commit
5385 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5386 	 * strip all buffers from the folio but keep the folio dirty which can then
5387 	 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5388 	 * buffers). Also we don't need to wait for any commit if all buffers in
5389 	 * the folio remain valid. This is most beneficial for the common case of
5390 	 * blocksize == PAGESIZE.
5391 	 */
5392 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5393 		return;
5394 	while (1) {
5395 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5396 				      inode->i_size >> PAGE_SHIFT);
5397 		if (!folio)
5398 			return;
5399 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5400 						folio_size(folio) - offset);
5401 		folio_unlock(folio);
5402 		folio_put(folio);
5403 		if (ret != -EBUSY)
5404 			return;
5405 		commit_tid = 0;
5406 		read_lock(&journal->j_state_lock);
5407 		if (journal->j_committing_transaction)
5408 			commit_tid = journal->j_committing_transaction->t_tid;
5409 		read_unlock(&journal->j_state_lock);
5410 		if (commit_tid)
5411 			jbd2_log_wait_commit(journal, commit_tid);
5412 	}
5413 }
5414 
5415 /*
5416  * ext4_setattr()
5417  *
5418  * Called from notify_change.
5419  *
5420  * We want to trap VFS attempts to truncate the file as soon as
5421  * possible.  In particular, we want to make sure that when the VFS
5422  * shrinks i_size, we put the inode on the orphan list and modify
5423  * i_disksize immediately, so that during the subsequent flushing of
5424  * dirty pages and freeing of disk blocks, we can guarantee that any
5425  * commit will leave the blocks being flushed in an unused state on
5426  * disk.  (On recovery, the inode will get truncated and the blocks will
5427  * be freed, so we have a strong guarantee that no future commit will
5428  * leave these blocks visible to the user.)
5429  *
5430  * Another thing we have to assure is that if we are in ordered mode
5431  * and inode is still attached to the committing transaction, we must
5432  * we start writeout of all the dirty pages which are being truncated.
5433  * This way we are sure that all the data written in the previous
5434  * transaction are already on disk (truncate waits for pages under
5435  * writeback).
5436  *
5437  * Called with inode->i_rwsem down.
5438  */
5439 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5440 		 struct iattr *attr)
5441 {
5442 	struct inode *inode = d_inode(dentry);
5443 	int error, rc = 0;
5444 	int orphan = 0;
5445 	const unsigned int ia_valid = attr->ia_valid;
5446 	bool inc_ivers = true;
5447 
5448 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5449 		return -EIO;
5450 
5451 	if (unlikely(IS_IMMUTABLE(inode)))
5452 		return -EPERM;
5453 
5454 	if (unlikely(IS_APPEND(inode) &&
5455 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5456 				  ATTR_GID | ATTR_TIMES_SET))))
5457 		return -EPERM;
5458 
5459 	error = setattr_prepare(idmap, dentry, attr);
5460 	if (error)
5461 		return error;
5462 
5463 	error = fscrypt_prepare_setattr(dentry, attr);
5464 	if (error)
5465 		return error;
5466 
5467 	error = fsverity_prepare_setattr(dentry, attr);
5468 	if (error)
5469 		return error;
5470 
5471 	if (is_quota_modification(idmap, inode, attr)) {
5472 		error = dquot_initialize(inode);
5473 		if (error)
5474 			return error;
5475 	}
5476 
5477 	if (i_uid_needs_update(idmap, attr, inode) ||
5478 	    i_gid_needs_update(idmap, attr, inode)) {
5479 		handle_t *handle;
5480 
5481 		/* (user+group)*(old+new) structure, inode write (sb,
5482 		 * inode block, ? - but truncate inode update has it) */
5483 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5484 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5485 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5486 		if (IS_ERR(handle)) {
5487 			error = PTR_ERR(handle);
5488 			goto err_out;
5489 		}
5490 
5491 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5492 		 * counts xattr inode references.
5493 		 */
5494 		down_read(&EXT4_I(inode)->xattr_sem);
5495 		error = dquot_transfer(idmap, inode, attr);
5496 		up_read(&EXT4_I(inode)->xattr_sem);
5497 
5498 		if (error) {
5499 			ext4_journal_stop(handle);
5500 			return error;
5501 		}
5502 		/* Update corresponding info in inode so that everything is in
5503 		 * one transaction */
5504 		i_uid_update(idmap, attr, inode);
5505 		i_gid_update(idmap, attr, inode);
5506 		error = ext4_mark_inode_dirty(handle, inode);
5507 		ext4_journal_stop(handle);
5508 		if (unlikely(error)) {
5509 			return error;
5510 		}
5511 	}
5512 
5513 	if (attr->ia_valid & ATTR_SIZE) {
5514 		handle_t *handle;
5515 		loff_t oldsize = inode->i_size;
5516 		loff_t old_disksize;
5517 		int shrink = (attr->ia_size < inode->i_size);
5518 
5519 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5520 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5521 
5522 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5523 				return -EFBIG;
5524 			}
5525 		}
5526 		if (!S_ISREG(inode->i_mode)) {
5527 			return -EINVAL;
5528 		}
5529 
5530 		if (attr->ia_size == inode->i_size)
5531 			inc_ivers = false;
5532 
5533 		if (shrink) {
5534 			if (ext4_should_order_data(inode)) {
5535 				error = ext4_begin_ordered_truncate(inode,
5536 							    attr->ia_size);
5537 				if (error)
5538 					goto err_out;
5539 			}
5540 			/*
5541 			 * Blocks are going to be removed from the inode. Wait
5542 			 * for dio in flight.
5543 			 */
5544 			inode_dio_wait(inode);
5545 		}
5546 
5547 		filemap_invalidate_lock(inode->i_mapping);
5548 
5549 		rc = ext4_break_layouts(inode);
5550 		if (rc) {
5551 			filemap_invalidate_unlock(inode->i_mapping);
5552 			goto err_out;
5553 		}
5554 
5555 		if (attr->ia_size != inode->i_size) {
5556 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5557 			if (IS_ERR(handle)) {
5558 				error = PTR_ERR(handle);
5559 				goto out_mmap_sem;
5560 			}
5561 			if (ext4_handle_valid(handle) && shrink) {
5562 				error = ext4_orphan_add(handle, inode);
5563 				orphan = 1;
5564 			}
5565 			/*
5566 			 * Update c/mtime on truncate up, ext4_truncate() will
5567 			 * update c/mtime in shrink case below
5568 			 */
5569 			if (!shrink) {
5570 				inode->i_mtime = current_time(inode);
5571 				inode->i_ctime = inode->i_mtime;
5572 			}
5573 
5574 			if (shrink)
5575 				ext4_fc_track_range(handle, inode,
5576 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5577 					inode->i_sb->s_blocksize_bits,
5578 					EXT_MAX_BLOCKS - 1);
5579 			else
5580 				ext4_fc_track_range(
5581 					handle, inode,
5582 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5583 					inode->i_sb->s_blocksize_bits,
5584 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5585 					inode->i_sb->s_blocksize_bits);
5586 
5587 			down_write(&EXT4_I(inode)->i_data_sem);
5588 			old_disksize = EXT4_I(inode)->i_disksize;
5589 			EXT4_I(inode)->i_disksize = attr->ia_size;
5590 			rc = ext4_mark_inode_dirty(handle, inode);
5591 			if (!error)
5592 				error = rc;
5593 			/*
5594 			 * We have to update i_size under i_data_sem together
5595 			 * with i_disksize to avoid races with writeback code
5596 			 * running ext4_wb_update_i_disksize().
5597 			 */
5598 			if (!error)
5599 				i_size_write(inode, attr->ia_size);
5600 			else
5601 				EXT4_I(inode)->i_disksize = old_disksize;
5602 			up_write(&EXT4_I(inode)->i_data_sem);
5603 			ext4_journal_stop(handle);
5604 			if (error)
5605 				goto out_mmap_sem;
5606 			if (!shrink) {
5607 				pagecache_isize_extended(inode, oldsize,
5608 							 inode->i_size);
5609 			} else if (ext4_should_journal_data(inode)) {
5610 				ext4_wait_for_tail_page_commit(inode);
5611 			}
5612 		}
5613 
5614 		/*
5615 		 * Truncate pagecache after we've waited for commit
5616 		 * in data=journal mode to make pages freeable.
5617 		 */
5618 		truncate_pagecache(inode, inode->i_size);
5619 		/*
5620 		 * Call ext4_truncate() even if i_size didn't change to
5621 		 * truncate possible preallocated blocks.
5622 		 */
5623 		if (attr->ia_size <= oldsize) {
5624 			rc = ext4_truncate(inode);
5625 			if (rc)
5626 				error = rc;
5627 		}
5628 out_mmap_sem:
5629 		filemap_invalidate_unlock(inode->i_mapping);
5630 	}
5631 
5632 	if (!error) {
5633 		if (inc_ivers)
5634 			inode_inc_iversion(inode);
5635 		setattr_copy(idmap, inode, attr);
5636 		mark_inode_dirty(inode);
5637 	}
5638 
5639 	/*
5640 	 * If the call to ext4_truncate failed to get a transaction handle at
5641 	 * all, we need to clean up the in-core orphan list manually.
5642 	 */
5643 	if (orphan && inode->i_nlink)
5644 		ext4_orphan_del(NULL, inode);
5645 
5646 	if (!error && (ia_valid & ATTR_MODE))
5647 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5648 
5649 err_out:
5650 	if  (error)
5651 		ext4_std_error(inode->i_sb, error);
5652 	if (!error)
5653 		error = rc;
5654 	return error;
5655 }
5656 
5657 u32 ext4_dio_alignment(struct inode *inode)
5658 {
5659 	if (fsverity_active(inode))
5660 		return 0;
5661 	if (ext4_should_journal_data(inode))
5662 		return 0;
5663 	if (ext4_has_inline_data(inode))
5664 		return 0;
5665 	if (IS_ENCRYPTED(inode)) {
5666 		if (!fscrypt_dio_supported(inode))
5667 			return 0;
5668 		return i_blocksize(inode);
5669 	}
5670 	return 1; /* use the iomap defaults */
5671 }
5672 
5673 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5674 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5675 {
5676 	struct inode *inode = d_inode(path->dentry);
5677 	struct ext4_inode *raw_inode;
5678 	struct ext4_inode_info *ei = EXT4_I(inode);
5679 	unsigned int flags;
5680 
5681 	if ((request_mask & STATX_BTIME) &&
5682 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5683 		stat->result_mask |= STATX_BTIME;
5684 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5685 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5686 	}
5687 
5688 	/*
5689 	 * Return the DIO alignment restrictions if requested.  We only return
5690 	 * this information when requested, since on encrypted files it might
5691 	 * take a fair bit of work to get if the file wasn't opened recently.
5692 	 */
5693 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5694 		u32 dio_align = ext4_dio_alignment(inode);
5695 
5696 		stat->result_mask |= STATX_DIOALIGN;
5697 		if (dio_align == 1) {
5698 			struct block_device *bdev = inode->i_sb->s_bdev;
5699 
5700 			/* iomap defaults */
5701 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5702 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5703 		} else {
5704 			stat->dio_mem_align = dio_align;
5705 			stat->dio_offset_align = dio_align;
5706 		}
5707 	}
5708 
5709 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5710 	if (flags & EXT4_APPEND_FL)
5711 		stat->attributes |= STATX_ATTR_APPEND;
5712 	if (flags & EXT4_COMPR_FL)
5713 		stat->attributes |= STATX_ATTR_COMPRESSED;
5714 	if (flags & EXT4_ENCRYPT_FL)
5715 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5716 	if (flags & EXT4_IMMUTABLE_FL)
5717 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5718 	if (flags & EXT4_NODUMP_FL)
5719 		stat->attributes |= STATX_ATTR_NODUMP;
5720 	if (flags & EXT4_VERITY_FL)
5721 		stat->attributes |= STATX_ATTR_VERITY;
5722 
5723 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5724 				  STATX_ATTR_COMPRESSED |
5725 				  STATX_ATTR_ENCRYPTED |
5726 				  STATX_ATTR_IMMUTABLE |
5727 				  STATX_ATTR_NODUMP |
5728 				  STATX_ATTR_VERITY);
5729 
5730 	generic_fillattr(idmap, inode, stat);
5731 	return 0;
5732 }
5733 
5734 int ext4_file_getattr(struct mnt_idmap *idmap,
5735 		      const struct path *path, struct kstat *stat,
5736 		      u32 request_mask, unsigned int query_flags)
5737 {
5738 	struct inode *inode = d_inode(path->dentry);
5739 	u64 delalloc_blocks;
5740 
5741 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5742 
5743 	/*
5744 	 * If there is inline data in the inode, the inode will normally not
5745 	 * have data blocks allocated (it may have an external xattr block).
5746 	 * Report at least one sector for such files, so tools like tar, rsync,
5747 	 * others don't incorrectly think the file is completely sparse.
5748 	 */
5749 	if (unlikely(ext4_has_inline_data(inode)))
5750 		stat->blocks += (stat->size + 511) >> 9;
5751 
5752 	/*
5753 	 * We can't update i_blocks if the block allocation is delayed
5754 	 * otherwise in the case of system crash before the real block
5755 	 * allocation is done, we will have i_blocks inconsistent with
5756 	 * on-disk file blocks.
5757 	 * We always keep i_blocks updated together with real
5758 	 * allocation. But to not confuse with user, stat
5759 	 * will return the blocks that include the delayed allocation
5760 	 * blocks for this file.
5761 	 */
5762 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5763 				   EXT4_I(inode)->i_reserved_data_blocks);
5764 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5765 	return 0;
5766 }
5767 
5768 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5769 				   int pextents)
5770 {
5771 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5772 		return ext4_ind_trans_blocks(inode, lblocks);
5773 	return ext4_ext_index_trans_blocks(inode, pextents);
5774 }
5775 
5776 /*
5777  * Account for index blocks, block groups bitmaps and block group
5778  * descriptor blocks if modify datablocks and index blocks
5779  * worse case, the indexs blocks spread over different block groups
5780  *
5781  * If datablocks are discontiguous, they are possible to spread over
5782  * different block groups too. If they are contiguous, with flexbg,
5783  * they could still across block group boundary.
5784  *
5785  * Also account for superblock, inode, quota and xattr blocks
5786  */
5787 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5788 				  int pextents)
5789 {
5790 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5791 	int gdpblocks;
5792 	int idxblocks;
5793 	int ret = 0;
5794 
5795 	/*
5796 	 * How many index blocks need to touch to map @lblocks logical blocks
5797 	 * to @pextents physical extents?
5798 	 */
5799 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5800 
5801 	ret = idxblocks;
5802 
5803 	/*
5804 	 * Now let's see how many group bitmaps and group descriptors need
5805 	 * to account
5806 	 */
5807 	groups = idxblocks + pextents;
5808 	gdpblocks = groups;
5809 	if (groups > ngroups)
5810 		groups = ngroups;
5811 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5812 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5813 
5814 	/* bitmaps and block group descriptor blocks */
5815 	ret += groups + gdpblocks;
5816 
5817 	/* Blocks for super block, inode, quota and xattr blocks */
5818 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5819 
5820 	return ret;
5821 }
5822 
5823 /*
5824  * Calculate the total number of credits to reserve to fit
5825  * the modification of a single pages into a single transaction,
5826  * which may include multiple chunks of block allocations.
5827  *
5828  * This could be called via ext4_write_begin()
5829  *
5830  * We need to consider the worse case, when
5831  * one new block per extent.
5832  */
5833 int ext4_writepage_trans_blocks(struct inode *inode)
5834 {
5835 	int bpp = ext4_journal_blocks_per_page(inode);
5836 	int ret;
5837 
5838 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5839 
5840 	/* Account for data blocks for journalled mode */
5841 	if (ext4_should_journal_data(inode))
5842 		ret += bpp;
5843 	return ret;
5844 }
5845 
5846 /*
5847  * Calculate the journal credits for a chunk of data modification.
5848  *
5849  * This is called from DIO, fallocate or whoever calling
5850  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5851  *
5852  * journal buffers for data blocks are not included here, as DIO
5853  * and fallocate do no need to journal data buffers.
5854  */
5855 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5856 {
5857 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5858 }
5859 
5860 /*
5861  * The caller must have previously called ext4_reserve_inode_write().
5862  * Give this, we know that the caller already has write access to iloc->bh.
5863  */
5864 int ext4_mark_iloc_dirty(handle_t *handle,
5865 			 struct inode *inode, struct ext4_iloc *iloc)
5866 {
5867 	int err = 0;
5868 
5869 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5870 		put_bh(iloc->bh);
5871 		return -EIO;
5872 	}
5873 	ext4_fc_track_inode(handle, inode);
5874 
5875 	/* the do_update_inode consumes one bh->b_count */
5876 	get_bh(iloc->bh);
5877 
5878 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5879 	err = ext4_do_update_inode(handle, inode, iloc);
5880 	put_bh(iloc->bh);
5881 	return err;
5882 }
5883 
5884 /*
5885  * On success, We end up with an outstanding reference count against
5886  * iloc->bh.  This _must_ be cleaned up later.
5887  */
5888 
5889 int
5890 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5891 			 struct ext4_iloc *iloc)
5892 {
5893 	int err;
5894 
5895 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5896 		return -EIO;
5897 
5898 	err = ext4_get_inode_loc(inode, iloc);
5899 	if (!err) {
5900 		BUFFER_TRACE(iloc->bh, "get_write_access");
5901 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5902 						    iloc->bh, EXT4_JTR_NONE);
5903 		if (err) {
5904 			brelse(iloc->bh);
5905 			iloc->bh = NULL;
5906 		}
5907 	}
5908 	ext4_std_error(inode->i_sb, err);
5909 	return err;
5910 }
5911 
5912 static int __ext4_expand_extra_isize(struct inode *inode,
5913 				     unsigned int new_extra_isize,
5914 				     struct ext4_iloc *iloc,
5915 				     handle_t *handle, int *no_expand)
5916 {
5917 	struct ext4_inode *raw_inode;
5918 	struct ext4_xattr_ibody_header *header;
5919 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5920 	struct ext4_inode_info *ei = EXT4_I(inode);
5921 	int error;
5922 
5923 	/* this was checked at iget time, but double check for good measure */
5924 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5925 	    (ei->i_extra_isize & 3)) {
5926 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5927 				 ei->i_extra_isize,
5928 				 EXT4_INODE_SIZE(inode->i_sb));
5929 		return -EFSCORRUPTED;
5930 	}
5931 	if ((new_extra_isize < ei->i_extra_isize) ||
5932 	    (new_extra_isize < 4) ||
5933 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5934 		return -EINVAL;	/* Should never happen */
5935 
5936 	raw_inode = ext4_raw_inode(iloc);
5937 
5938 	header = IHDR(inode, raw_inode);
5939 
5940 	/* No extended attributes present */
5941 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5942 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5943 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5944 		       EXT4_I(inode)->i_extra_isize, 0,
5945 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5946 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5947 		return 0;
5948 	}
5949 
5950 	/*
5951 	 * We may need to allocate external xattr block so we need quotas
5952 	 * initialized. Here we can be called with various locks held so we
5953 	 * cannot affort to initialize quotas ourselves. So just bail.
5954 	 */
5955 	if (dquot_initialize_needed(inode))
5956 		return -EAGAIN;
5957 
5958 	/* try to expand with EAs present */
5959 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5960 					   raw_inode, handle);
5961 	if (error) {
5962 		/*
5963 		 * Inode size expansion failed; don't try again
5964 		 */
5965 		*no_expand = 1;
5966 	}
5967 
5968 	return error;
5969 }
5970 
5971 /*
5972  * Expand an inode by new_extra_isize bytes.
5973  * Returns 0 on success or negative error number on failure.
5974  */
5975 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5976 					  unsigned int new_extra_isize,
5977 					  struct ext4_iloc iloc,
5978 					  handle_t *handle)
5979 {
5980 	int no_expand;
5981 	int error;
5982 
5983 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5984 		return -EOVERFLOW;
5985 
5986 	/*
5987 	 * In nojournal mode, we can immediately attempt to expand
5988 	 * the inode.  When journaled, we first need to obtain extra
5989 	 * buffer credits since we may write into the EA block
5990 	 * with this same handle. If journal_extend fails, then it will
5991 	 * only result in a minor loss of functionality for that inode.
5992 	 * If this is felt to be critical, then e2fsck should be run to
5993 	 * force a large enough s_min_extra_isize.
5994 	 */
5995 	if (ext4_journal_extend(handle,
5996 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5997 		return -ENOSPC;
5998 
5999 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6000 		return -EBUSY;
6001 
6002 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6003 					  handle, &no_expand);
6004 	ext4_write_unlock_xattr(inode, &no_expand);
6005 
6006 	return error;
6007 }
6008 
6009 int ext4_expand_extra_isize(struct inode *inode,
6010 			    unsigned int new_extra_isize,
6011 			    struct ext4_iloc *iloc)
6012 {
6013 	handle_t *handle;
6014 	int no_expand;
6015 	int error, rc;
6016 
6017 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6018 		brelse(iloc->bh);
6019 		return -EOVERFLOW;
6020 	}
6021 
6022 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6023 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6024 	if (IS_ERR(handle)) {
6025 		error = PTR_ERR(handle);
6026 		brelse(iloc->bh);
6027 		return error;
6028 	}
6029 
6030 	ext4_write_lock_xattr(inode, &no_expand);
6031 
6032 	BUFFER_TRACE(iloc->bh, "get_write_access");
6033 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6034 					      EXT4_JTR_NONE);
6035 	if (error) {
6036 		brelse(iloc->bh);
6037 		goto out_unlock;
6038 	}
6039 
6040 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6041 					  handle, &no_expand);
6042 
6043 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6044 	if (!error)
6045 		error = rc;
6046 
6047 out_unlock:
6048 	ext4_write_unlock_xattr(inode, &no_expand);
6049 	ext4_journal_stop(handle);
6050 	return error;
6051 }
6052 
6053 /*
6054  * What we do here is to mark the in-core inode as clean with respect to inode
6055  * dirtiness (it may still be data-dirty).
6056  * This means that the in-core inode may be reaped by prune_icache
6057  * without having to perform any I/O.  This is a very good thing,
6058  * because *any* task may call prune_icache - even ones which
6059  * have a transaction open against a different journal.
6060  *
6061  * Is this cheating?  Not really.  Sure, we haven't written the
6062  * inode out, but prune_icache isn't a user-visible syncing function.
6063  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6064  * we start and wait on commits.
6065  */
6066 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6067 				const char *func, unsigned int line)
6068 {
6069 	struct ext4_iloc iloc;
6070 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6071 	int err;
6072 
6073 	might_sleep();
6074 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6075 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6076 	if (err)
6077 		goto out;
6078 
6079 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6080 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6081 					       iloc, handle);
6082 
6083 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6084 out:
6085 	if (unlikely(err))
6086 		ext4_error_inode_err(inode, func, line, 0, err,
6087 					"mark_inode_dirty error");
6088 	return err;
6089 }
6090 
6091 /*
6092  * ext4_dirty_inode() is called from __mark_inode_dirty()
6093  *
6094  * We're really interested in the case where a file is being extended.
6095  * i_size has been changed by generic_commit_write() and we thus need
6096  * to include the updated inode in the current transaction.
6097  *
6098  * Also, dquot_alloc_block() will always dirty the inode when blocks
6099  * are allocated to the file.
6100  *
6101  * If the inode is marked synchronous, we don't honour that here - doing
6102  * so would cause a commit on atime updates, which we don't bother doing.
6103  * We handle synchronous inodes at the highest possible level.
6104  */
6105 void ext4_dirty_inode(struct inode *inode, int flags)
6106 {
6107 	handle_t *handle;
6108 
6109 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6110 	if (IS_ERR(handle))
6111 		return;
6112 	ext4_mark_inode_dirty(handle, inode);
6113 	ext4_journal_stop(handle);
6114 }
6115 
6116 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6117 {
6118 	journal_t *journal;
6119 	handle_t *handle;
6120 	int err;
6121 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6122 
6123 	/*
6124 	 * We have to be very careful here: changing a data block's
6125 	 * journaling status dynamically is dangerous.  If we write a
6126 	 * data block to the journal, change the status and then delete
6127 	 * that block, we risk forgetting to revoke the old log record
6128 	 * from the journal and so a subsequent replay can corrupt data.
6129 	 * So, first we make sure that the journal is empty and that
6130 	 * nobody is changing anything.
6131 	 */
6132 
6133 	journal = EXT4_JOURNAL(inode);
6134 	if (!journal)
6135 		return 0;
6136 	if (is_journal_aborted(journal))
6137 		return -EROFS;
6138 
6139 	/* Wait for all existing dio workers */
6140 	inode_dio_wait(inode);
6141 
6142 	/*
6143 	 * Before flushing the journal and switching inode's aops, we have
6144 	 * to flush all dirty data the inode has. There can be outstanding
6145 	 * delayed allocations, there can be unwritten extents created by
6146 	 * fallocate or buffered writes in dioread_nolock mode covered by
6147 	 * dirty data which can be converted only after flushing the dirty
6148 	 * data (and journalled aops don't know how to handle these cases).
6149 	 */
6150 	if (val) {
6151 		filemap_invalidate_lock(inode->i_mapping);
6152 		err = filemap_write_and_wait(inode->i_mapping);
6153 		if (err < 0) {
6154 			filemap_invalidate_unlock(inode->i_mapping);
6155 			return err;
6156 		}
6157 	}
6158 
6159 	percpu_down_write(&sbi->s_writepages_rwsem);
6160 	jbd2_journal_lock_updates(journal);
6161 
6162 	/*
6163 	 * OK, there are no updates running now, and all cached data is
6164 	 * synced to disk.  We are now in a completely consistent state
6165 	 * which doesn't have anything in the journal, and we know that
6166 	 * no filesystem updates are running, so it is safe to modify
6167 	 * the inode's in-core data-journaling state flag now.
6168 	 */
6169 
6170 	if (val)
6171 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6172 	else {
6173 		err = jbd2_journal_flush(journal, 0);
6174 		if (err < 0) {
6175 			jbd2_journal_unlock_updates(journal);
6176 			percpu_up_write(&sbi->s_writepages_rwsem);
6177 			return err;
6178 		}
6179 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6180 	}
6181 	ext4_set_aops(inode);
6182 
6183 	jbd2_journal_unlock_updates(journal);
6184 	percpu_up_write(&sbi->s_writepages_rwsem);
6185 
6186 	if (val)
6187 		filemap_invalidate_unlock(inode->i_mapping);
6188 
6189 	/* Finally we can mark the inode as dirty. */
6190 
6191 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6192 	if (IS_ERR(handle))
6193 		return PTR_ERR(handle);
6194 
6195 	ext4_fc_mark_ineligible(inode->i_sb,
6196 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6197 	err = ext4_mark_inode_dirty(handle, inode);
6198 	ext4_handle_sync(handle);
6199 	ext4_journal_stop(handle);
6200 	ext4_std_error(inode->i_sb, err);
6201 
6202 	return err;
6203 }
6204 
6205 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6206 			    struct buffer_head *bh)
6207 {
6208 	return !buffer_mapped(bh);
6209 }
6210 
6211 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6212 {
6213 	struct vm_area_struct *vma = vmf->vma;
6214 	struct page *page = vmf->page;
6215 	loff_t size;
6216 	unsigned long len;
6217 	int err;
6218 	vm_fault_t ret;
6219 	struct file *file = vma->vm_file;
6220 	struct inode *inode = file_inode(file);
6221 	struct address_space *mapping = inode->i_mapping;
6222 	handle_t *handle;
6223 	get_block_t *get_block;
6224 	int retries = 0;
6225 
6226 	if (unlikely(IS_IMMUTABLE(inode)))
6227 		return VM_FAULT_SIGBUS;
6228 
6229 	sb_start_pagefault(inode->i_sb);
6230 	file_update_time(vma->vm_file);
6231 
6232 	filemap_invalidate_lock_shared(mapping);
6233 
6234 	err = ext4_convert_inline_data(inode);
6235 	if (err)
6236 		goto out_ret;
6237 
6238 	/*
6239 	 * On data journalling we skip straight to the transaction handle:
6240 	 * there's no delalloc; page truncated will be checked later; the
6241 	 * early return w/ all buffers mapped (calculates size/len) can't
6242 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6243 	 */
6244 	if (ext4_should_journal_data(inode))
6245 		goto retry_alloc;
6246 
6247 	/* Delalloc case is easy... */
6248 	if (test_opt(inode->i_sb, DELALLOC) &&
6249 	    !ext4_nonda_switch(inode->i_sb)) {
6250 		do {
6251 			err = block_page_mkwrite(vma, vmf,
6252 						   ext4_da_get_block_prep);
6253 		} while (err == -ENOSPC &&
6254 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6255 		goto out_ret;
6256 	}
6257 
6258 	lock_page(page);
6259 	size = i_size_read(inode);
6260 	/* Page got truncated from under us? */
6261 	if (page->mapping != mapping || page_offset(page) > size) {
6262 		unlock_page(page);
6263 		ret = VM_FAULT_NOPAGE;
6264 		goto out;
6265 	}
6266 
6267 	if (page->index == size >> PAGE_SHIFT)
6268 		len = size & ~PAGE_MASK;
6269 	else
6270 		len = PAGE_SIZE;
6271 	/*
6272 	 * Return if we have all the buffers mapped. This avoids the need to do
6273 	 * journal_start/journal_stop which can block and take a long time
6274 	 *
6275 	 * This cannot be done for data journalling, as we have to add the
6276 	 * inode to the transaction's list to writeprotect pages on commit.
6277 	 */
6278 	if (page_has_buffers(page)) {
6279 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6280 					    0, len, NULL,
6281 					    ext4_bh_unmapped)) {
6282 			/* Wait so that we don't change page under IO */
6283 			wait_for_stable_page(page);
6284 			ret = VM_FAULT_LOCKED;
6285 			goto out;
6286 		}
6287 	}
6288 	unlock_page(page);
6289 	/* OK, we need to fill the hole... */
6290 	if (ext4_should_dioread_nolock(inode))
6291 		get_block = ext4_get_block_unwritten;
6292 	else
6293 		get_block = ext4_get_block;
6294 retry_alloc:
6295 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6296 				    ext4_writepage_trans_blocks(inode));
6297 	if (IS_ERR(handle)) {
6298 		ret = VM_FAULT_SIGBUS;
6299 		goto out;
6300 	}
6301 	/*
6302 	 * Data journalling can't use block_page_mkwrite() because it
6303 	 * will set_buffer_dirty() before do_journal_get_write_access()
6304 	 * thus might hit warning messages for dirty metadata buffers.
6305 	 */
6306 	if (!ext4_should_journal_data(inode)) {
6307 		err = block_page_mkwrite(vma, vmf, get_block);
6308 	} else {
6309 		lock_page(page);
6310 		size = i_size_read(inode);
6311 		/* Page got truncated from under us? */
6312 		if (page->mapping != mapping || page_offset(page) > size) {
6313 			ret = VM_FAULT_NOPAGE;
6314 			goto out_error;
6315 		}
6316 
6317 		if (page->index == size >> PAGE_SHIFT)
6318 			len = size & ~PAGE_MASK;
6319 		else
6320 			len = PAGE_SIZE;
6321 
6322 		err = __block_write_begin(page, 0, len, ext4_get_block);
6323 		if (!err) {
6324 			ret = VM_FAULT_SIGBUS;
6325 			if (ext4_walk_page_buffers(handle, inode,
6326 					page_buffers(page), 0, len, NULL,
6327 					do_journal_get_write_access))
6328 				goto out_error;
6329 			if (ext4_walk_page_buffers(handle, inode,
6330 					page_buffers(page), 0, len, NULL,
6331 					write_end_fn))
6332 				goto out_error;
6333 			if (ext4_jbd2_inode_add_write(handle, inode,
6334 						      page_offset(page), len))
6335 				goto out_error;
6336 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6337 		} else {
6338 			unlock_page(page);
6339 		}
6340 	}
6341 	ext4_journal_stop(handle);
6342 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6343 		goto retry_alloc;
6344 out_ret:
6345 	ret = block_page_mkwrite_return(err);
6346 out:
6347 	filemap_invalidate_unlock_shared(mapping);
6348 	sb_end_pagefault(inode->i_sb);
6349 	return ret;
6350 out_error:
6351 	unlock_page(page);
6352 	ext4_journal_stop(handle);
6353 	goto out;
6354 }
6355