1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 #include <linux/slab.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "ext4_extents.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static inline int ext4_begin_ordered_truncate(struct inode *inode, 54 loff_t new_size) 55 { 56 return jbd2_journal_begin_ordered_truncate( 57 EXT4_SB(inode->i_sb)->s_journal, 58 &EXT4_I(inode)->jinode, 59 new_size); 60 } 61 62 static void ext4_invalidatepage(struct page *page, unsigned long offset); 63 64 /* 65 * Test whether an inode is a fast symlink. 66 */ 67 static int ext4_inode_is_fast_symlink(struct inode *inode) 68 { 69 int ea_blocks = EXT4_I(inode)->i_file_acl ? 70 (inode->i_sb->s_blocksize >> 9) : 0; 71 72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 73 } 74 75 /* 76 * Work out how many blocks we need to proceed with the next chunk of a 77 * truncate transaction. 78 */ 79 static unsigned long blocks_for_truncate(struct inode *inode) 80 { 81 ext4_lblk_t needed; 82 83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 84 85 /* Give ourselves just enough room to cope with inodes in which 86 * i_blocks is corrupt: we've seen disk corruptions in the past 87 * which resulted in random data in an inode which looked enough 88 * like a regular file for ext4 to try to delete it. Things 89 * will go a bit crazy if that happens, but at least we should 90 * try not to panic the whole kernel. */ 91 if (needed < 2) 92 needed = 2; 93 94 /* But we need to bound the transaction so we don't overflow the 95 * journal. */ 96 if (needed > EXT4_MAX_TRANS_DATA) 97 needed = EXT4_MAX_TRANS_DATA; 98 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 100 } 101 102 /* 103 * Truncate transactions can be complex and absolutely huge. So we need to 104 * be able to restart the transaction at a conventient checkpoint to make 105 * sure we don't overflow the journal. 106 * 107 * start_transaction gets us a new handle for a truncate transaction, 108 * and extend_transaction tries to extend the existing one a bit. If 109 * extend fails, we need to propagate the failure up and restart the 110 * transaction in the top-level truncate loop. --sct 111 */ 112 static handle_t *start_transaction(struct inode *inode) 113 { 114 handle_t *result; 115 116 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 117 if (!IS_ERR(result)) 118 return result; 119 120 ext4_std_error(inode->i_sb, PTR_ERR(result)); 121 return result; 122 } 123 124 /* 125 * Try to extend this transaction for the purposes of truncation. 126 * 127 * Returns 0 if we managed to create more room. If we can't create more 128 * room, and the transaction must be restarted we return 1. 129 */ 130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 131 { 132 if (!ext4_handle_valid(handle)) 133 return 0; 134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 135 return 0; 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 137 return 0; 138 return 1; 139 } 140 141 /* 142 * Restart the transaction associated with *handle. This does a commit, 143 * so before we call here everything must be consistently dirtied against 144 * this transaction. 145 */ 146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 147 int nblocks) 148 { 149 int ret; 150 151 /* 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 153 * moment, get_block can be called only for blocks inside i_size since 154 * page cache has been already dropped and writes are blocked by 155 * i_mutex. So we can safely drop the i_data_sem here. 156 */ 157 BUG_ON(EXT4_JOURNAL(inode) == NULL); 158 jbd_debug(2, "restarting handle %p\n", handle); 159 up_write(&EXT4_I(inode)->i_data_sem); 160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 161 down_write(&EXT4_I(inode)->i_data_sem); 162 ext4_discard_preallocations(inode); 163 164 return ret; 165 } 166 167 /* 168 * Called at the last iput() if i_nlink is zero. 169 */ 170 void ext4_evict_inode(struct inode *inode) 171 { 172 handle_t *handle; 173 int err; 174 175 if (inode->i_nlink) { 176 truncate_inode_pages(&inode->i_data, 0); 177 goto no_delete; 178 } 179 180 if (!is_bad_inode(inode)) 181 dquot_initialize(inode); 182 183 if (ext4_should_order_data(inode)) 184 ext4_begin_ordered_truncate(inode, 0); 185 truncate_inode_pages(&inode->i_data, 0); 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 190 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 191 if (IS_ERR(handle)) { 192 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 193 /* 194 * If we're going to skip the normal cleanup, we still need to 195 * make sure that the in-core orphan linked list is properly 196 * cleaned up. 197 */ 198 ext4_orphan_del(NULL, inode); 199 goto no_delete; 200 } 201 202 if (IS_SYNC(inode)) 203 ext4_handle_sync(handle); 204 inode->i_size = 0; 205 err = ext4_mark_inode_dirty(handle, inode); 206 if (err) { 207 ext4_warning(inode->i_sb, 208 "couldn't mark inode dirty (err %d)", err); 209 goto stop_handle; 210 } 211 if (inode->i_blocks) 212 ext4_truncate(inode); 213 214 /* 215 * ext4_ext_truncate() doesn't reserve any slop when it 216 * restarts journal transactions; therefore there may not be 217 * enough credits left in the handle to remove the inode from 218 * the orphan list and set the dtime field. 219 */ 220 if (!ext4_handle_has_enough_credits(handle, 3)) { 221 err = ext4_journal_extend(handle, 3); 222 if (err > 0) 223 err = ext4_journal_restart(handle, 3); 224 if (err != 0) { 225 ext4_warning(inode->i_sb, 226 "couldn't extend journal (err %d)", err); 227 stop_handle: 228 ext4_journal_stop(handle); 229 ext4_orphan_del(NULL, inode); 230 goto no_delete; 231 } 232 } 233 234 /* 235 * Kill off the orphan record which ext4_truncate created. 236 * AKPM: I think this can be inside the above `if'. 237 * Note that ext4_orphan_del() has to be able to cope with the 238 * deletion of a non-existent orphan - this is because we don't 239 * know if ext4_truncate() actually created an orphan record. 240 * (Well, we could do this if we need to, but heck - it works) 241 */ 242 ext4_orphan_del(handle, inode); 243 EXT4_I(inode)->i_dtime = get_seconds(); 244 245 /* 246 * One subtle ordering requirement: if anything has gone wrong 247 * (transaction abort, IO errors, whatever), then we can still 248 * do these next steps (the fs will already have been marked as 249 * having errors), but we can't free the inode if the mark_dirty 250 * fails. 251 */ 252 if (ext4_mark_inode_dirty(handle, inode)) 253 /* If that failed, just do the required in-core inode clear. */ 254 ext4_clear_inode(inode); 255 else 256 ext4_free_inode(handle, inode); 257 ext4_journal_stop(handle); 258 return; 259 no_delete: 260 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 261 } 262 263 typedef struct { 264 __le32 *p; 265 __le32 key; 266 struct buffer_head *bh; 267 } Indirect; 268 269 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 270 { 271 p->key = *(p->p = v); 272 p->bh = bh; 273 } 274 275 /** 276 * ext4_block_to_path - parse the block number into array of offsets 277 * @inode: inode in question (we are only interested in its superblock) 278 * @i_block: block number to be parsed 279 * @offsets: array to store the offsets in 280 * @boundary: set this non-zero if the referred-to block is likely to be 281 * followed (on disk) by an indirect block. 282 * 283 * To store the locations of file's data ext4 uses a data structure common 284 * for UNIX filesystems - tree of pointers anchored in the inode, with 285 * data blocks at leaves and indirect blocks in intermediate nodes. 286 * This function translates the block number into path in that tree - 287 * return value is the path length and @offsets[n] is the offset of 288 * pointer to (n+1)th node in the nth one. If @block is out of range 289 * (negative or too large) warning is printed and zero returned. 290 * 291 * Note: function doesn't find node addresses, so no IO is needed. All 292 * we need to know is the capacity of indirect blocks (taken from the 293 * inode->i_sb). 294 */ 295 296 /* 297 * Portability note: the last comparison (check that we fit into triple 298 * indirect block) is spelled differently, because otherwise on an 299 * architecture with 32-bit longs and 8Kb pages we might get into trouble 300 * if our filesystem had 8Kb blocks. We might use long long, but that would 301 * kill us on x86. Oh, well, at least the sign propagation does not matter - 302 * i_block would have to be negative in the very beginning, so we would not 303 * get there at all. 304 */ 305 306 static int ext4_block_to_path(struct inode *inode, 307 ext4_lblk_t i_block, 308 ext4_lblk_t offsets[4], int *boundary) 309 { 310 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 311 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 312 const long direct_blocks = EXT4_NDIR_BLOCKS, 313 indirect_blocks = ptrs, 314 double_blocks = (1 << (ptrs_bits * 2)); 315 int n = 0; 316 int final = 0; 317 318 if (i_block < direct_blocks) { 319 offsets[n++] = i_block; 320 final = direct_blocks; 321 } else if ((i_block -= direct_blocks) < indirect_blocks) { 322 offsets[n++] = EXT4_IND_BLOCK; 323 offsets[n++] = i_block; 324 final = ptrs; 325 } else if ((i_block -= indirect_blocks) < double_blocks) { 326 offsets[n++] = EXT4_DIND_BLOCK; 327 offsets[n++] = i_block >> ptrs_bits; 328 offsets[n++] = i_block & (ptrs - 1); 329 final = ptrs; 330 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 331 offsets[n++] = EXT4_TIND_BLOCK; 332 offsets[n++] = i_block >> (ptrs_bits * 2); 333 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 334 offsets[n++] = i_block & (ptrs - 1); 335 final = ptrs; 336 } else { 337 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 338 i_block + direct_blocks + 339 indirect_blocks + double_blocks, inode->i_ino); 340 } 341 if (boundary) 342 *boundary = final - 1 - (i_block & (ptrs - 1)); 343 return n; 344 } 345 346 static int __ext4_check_blockref(const char *function, unsigned int line, 347 struct inode *inode, 348 __le32 *p, unsigned int max) 349 { 350 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 351 __le32 *bref = p; 352 unsigned int blk; 353 354 while (bref < p+max) { 355 blk = le32_to_cpu(*bref++); 356 if (blk && 357 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 358 blk, 1))) { 359 es->s_last_error_block = cpu_to_le64(blk); 360 ext4_error_inode(inode, function, line, blk, 361 "invalid block"); 362 return -EIO; 363 } 364 } 365 return 0; 366 } 367 368 369 #define ext4_check_indirect_blockref(inode, bh) \ 370 __ext4_check_blockref(__func__, __LINE__, inode, \ 371 (__le32 *)(bh)->b_data, \ 372 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 373 374 #define ext4_check_inode_blockref(inode) \ 375 __ext4_check_blockref(__func__, __LINE__, inode, \ 376 EXT4_I(inode)->i_data, \ 377 EXT4_NDIR_BLOCKS) 378 379 /** 380 * ext4_get_branch - read the chain of indirect blocks leading to data 381 * @inode: inode in question 382 * @depth: depth of the chain (1 - direct pointer, etc.) 383 * @offsets: offsets of pointers in inode/indirect blocks 384 * @chain: place to store the result 385 * @err: here we store the error value 386 * 387 * Function fills the array of triples <key, p, bh> and returns %NULL 388 * if everything went OK or the pointer to the last filled triple 389 * (incomplete one) otherwise. Upon the return chain[i].key contains 390 * the number of (i+1)-th block in the chain (as it is stored in memory, 391 * i.e. little-endian 32-bit), chain[i].p contains the address of that 392 * number (it points into struct inode for i==0 and into the bh->b_data 393 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 394 * block for i>0 and NULL for i==0. In other words, it holds the block 395 * numbers of the chain, addresses they were taken from (and where we can 396 * verify that chain did not change) and buffer_heads hosting these 397 * numbers. 398 * 399 * Function stops when it stumbles upon zero pointer (absent block) 400 * (pointer to last triple returned, *@err == 0) 401 * or when it gets an IO error reading an indirect block 402 * (ditto, *@err == -EIO) 403 * or when it reads all @depth-1 indirect blocks successfully and finds 404 * the whole chain, all way to the data (returns %NULL, *err == 0). 405 * 406 * Need to be called with 407 * down_read(&EXT4_I(inode)->i_data_sem) 408 */ 409 static Indirect *ext4_get_branch(struct inode *inode, int depth, 410 ext4_lblk_t *offsets, 411 Indirect chain[4], int *err) 412 { 413 struct super_block *sb = inode->i_sb; 414 Indirect *p = chain; 415 struct buffer_head *bh; 416 417 *err = 0; 418 /* i_data is not going away, no lock needed */ 419 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 420 if (!p->key) 421 goto no_block; 422 while (--depth) { 423 bh = sb_getblk(sb, le32_to_cpu(p->key)); 424 if (unlikely(!bh)) 425 goto failure; 426 427 if (!bh_uptodate_or_lock(bh)) { 428 if (bh_submit_read(bh) < 0) { 429 put_bh(bh); 430 goto failure; 431 } 432 /* validate block references */ 433 if (ext4_check_indirect_blockref(inode, bh)) { 434 put_bh(bh); 435 goto failure; 436 } 437 } 438 439 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 440 /* Reader: end */ 441 if (!p->key) 442 goto no_block; 443 } 444 return NULL; 445 446 failure: 447 *err = -EIO; 448 no_block: 449 return p; 450 } 451 452 /** 453 * ext4_find_near - find a place for allocation with sufficient locality 454 * @inode: owner 455 * @ind: descriptor of indirect block. 456 * 457 * This function returns the preferred place for block allocation. 458 * It is used when heuristic for sequential allocation fails. 459 * Rules are: 460 * + if there is a block to the left of our position - allocate near it. 461 * + if pointer will live in indirect block - allocate near that block. 462 * + if pointer will live in inode - allocate in the same 463 * cylinder group. 464 * 465 * In the latter case we colour the starting block by the callers PID to 466 * prevent it from clashing with concurrent allocations for a different inode 467 * in the same block group. The PID is used here so that functionally related 468 * files will be close-by on-disk. 469 * 470 * Caller must make sure that @ind is valid and will stay that way. 471 */ 472 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 473 { 474 struct ext4_inode_info *ei = EXT4_I(inode); 475 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 476 __le32 *p; 477 ext4_fsblk_t bg_start; 478 ext4_fsblk_t last_block; 479 ext4_grpblk_t colour; 480 ext4_group_t block_group; 481 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 482 483 /* Try to find previous block */ 484 for (p = ind->p - 1; p >= start; p--) { 485 if (*p) 486 return le32_to_cpu(*p); 487 } 488 489 /* No such thing, so let's try location of indirect block */ 490 if (ind->bh) 491 return ind->bh->b_blocknr; 492 493 /* 494 * It is going to be referred to from the inode itself? OK, just put it 495 * into the same cylinder group then. 496 */ 497 block_group = ei->i_block_group; 498 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 499 block_group &= ~(flex_size-1); 500 if (S_ISREG(inode->i_mode)) 501 block_group++; 502 } 503 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 504 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 505 506 /* 507 * If we are doing delayed allocation, we don't need take 508 * colour into account. 509 */ 510 if (test_opt(inode->i_sb, DELALLOC)) 511 return bg_start; 512 513 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 514 colour = (current->pid % 16) * 515 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 516 else 517 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 518 return bg_start + colour; 519 } 520 521 /** 522 * ext4_find_goal - find a preferred place for allocation. 523 * @inode: owner 524 * @block: block we want 525 * @partial: pointer to the last triple within a chain 526 * 527 * Normally this function find the preferred place for block allocation, 528 * returns it. 529 * Because this is only used for non-extent files, we limit the block nr 530 * to 32 bits. 531 */ 532 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 533 Indirect *partial) 534 { 535 ext4_fsblk_t goal; 536 537 /* 538 * XXX need to get goal block from mballoc's data structures 539 */ 540 541 goal = ext4_find_near(inode, partial); 542 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 543 return goal; 544 } 545 546 /** 547 * ext4_blks_to_allocate: Look up the block map and count the number 548 * of direct blocks need to be allocated for the given branch. 549 * 550 * @branch: chain of indirect blocks 551 * @k: number of blocks need for indirect blocks 552 * @blks: number of data blocks to be mapped. 553 * @blocks_to_boundary: the offset in the indirect block 554 * 555 * return the total number of blocks to be allocate, including the 556 * direct and indirect blocks. 557 */ 558 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 559 int blocks_to_boundary) 560 { 561 unsigned int count = 0; 562 563 /* 564 * Simple case, [t,d]Indirect block(s) has not allocated yet 565 * then it's clear blocks on that path have not allocated 566 */ 567 if (k > 0) { 568 /* right now we don't handle cross boundary allocation */ 569 if (blks < blocks_to_boundary + 1) 570 count += blks; 571 else 572 count += blocks_to_boundary + 1; 573 return count; 574 } 575 576 count++; 577 while (count < blks && count <= blocks_to_boundary && 578 le32_to_cpu(*(branch[0].p + count)) == 0) { 579 count++; 580 } 581 return count; 582 } 583 584 /** 585 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 586 * @indirect_blks: the number of blocks need to allocate for indirect 587 * blocks 588 * 589 * @new_blocks: on return it will store the new block numbers for 590 * the indirect blocks(if needed) and the first direct block, 591 * @blks: on return it will store the total number of allocated 592 * direct blocks 593 */ 594 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 595 ext4_lblk_t iblock, ext4_fsblk_t goal, 596 int indirect_blks, int blks, 597 ext4_fsblk_t new_blocks[4], int *err) 598 { 599 struct ext4_allocation_request ar; 600 int target, i; 601 unsigned long count = 0, blk_allocated = 0; 602 int index = 0; 603 ext4_fsblk_t current_block = 0; 604 int ret = 0; 605 606 /* 607 * Here we try to allocate the requested multiple blocks at once, 608 * on a best-effort basis. 609 * To build a branch, we should allocate blocks for 610 * the indirect blocks(if not allocated yet), and at least 611 * the first direct block of this branch. That's the 612 * minimum number of blocks need to allocate(required) 613 */ 614 /* first we try to allocate the indirect blocks */ 615 target = indirect_blks; 616 while (target > 0) { 617 count = target; 618 /* allocating blocks for indirect blocks and direct blocks */ 619 current_block = ext4_new_meta_blocks(handle, inode, 620 goal, &count, err); 621 if (*err) 622 goto failed_out; 623 624 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 625 EXT4_ERROR_INODE(inode, 626 "current_block %llu + count %lu > %d!", 627 current_block, count, 628 EXT4_MAX_BLOCK_FILE_PHYS); 629 *err = -EIO; 630 goto failed_out; 631 } 632 633 target -= count; 634 /* allocate blocks for indirect blocks */ 635 while (index < indirect_blks && count) { 636 new_blocks[index++] = current_block++; 637 count--; 638 } 639 if (count > 0) { 640 /* 641 * save the new block number 642 * for the first direct block 643 */ 644 new_blocks[index] = current_block; 645 printk(KERN_INFO "%s returned more blocks than " 646 "requested\n", __func__); 647 WARN_ON(1); 648 break; 649 } 650 } 651 652 target = blks - count ; 653 blk_allocated = count; 654 if (!target) 655 goto allocated; 656 /* Now allocate data blocks */ 657 memset(&ar, 0, sizeof(ar)); 658 ar.inode = inode; 659 ar.goal = goal; 660 ar.len = target; 661 ar.logical = iblock; 662 if (S_ISREG(inode->i_mode)) 663 /* enable in-core preallocation only for regular files */ 664 ar.flags = EXT4_MB_HINT_DATA; 665 666 current_block = ext4_mb_new_blocks(handle, &ar, err); 667 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 668 EXT4_ERROR_INODE(inode, 669 "current_block %llu + ar.len %d > %d!", 670 current_block, ar.len, 671 EXT4_MAX_BLOCK_FILE_PHYS); 672 *err = -EIO; 673 goto failed_out; 674 } 675 676 if (*err && (target == blks)) { 677 /* 678 * if the allocation failed and we didn't allocate 679 * any blocks before 680 */ 681 goto failed_out; 682 } 683 if (!*err) { 684 if (target == blks) { 685 /* 686 * save the new block number 687 * for the first direct block 688 */ 689 new_blocks[index] = current_block; 690 } 691 blk_allocated += ar.len; 692 } 693 allocated: 694 /* total number of blocks allocated for direct blocks */ 695 ret = blk_allocated; 696 *err = 0; 697 return ret; 698 failed_out: 699 for (i = 0; i < index; i++) 700 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 701 return ret; 702 } 703 704 /** 705 * ext4_alloc_branch - allocate and set up a chain of blocks. 706 * @inode: owner 707 * @indirect_blks: number of allocated indirect blocks 708 * @blks: number of allocated direct blocks 709 * @offsets: offsets (in the blocks) to store the pointers to next. 710 * @branch: place to store the chain in. 711 * 712 * This function allocates blocks, zeroes out all but the last one, 713 * links them into chain and (if we are synchronous) writes them to disk. 714 * In other words, it prepares a branch that can be spliced onto the 715 * inode. It stores the information about that chain in the branch[], in 716 * the same format as ext4_get_branch() would do. We are calling it after 717 * we had read the existing part of chain and partial points to the last 718 * triple of that (one with zero ->key). Upon the exit we have the same 719 * picture as after the successful ext4_get_block(), except that in one 720 * place chain is disconnected - *branch->p is still zero (we did not 721 * set the last link), but branch->key contains the number that should 722 * be placed into *branch->p to fill that gap. 723 * 724 * If allocation fails we free all blocks we've allocated (and forget 725 * their buffer_heads) and return the error value the from failed 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 727 * as described above and return 0. 728 */ 729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 730 ext4_lblk_t iblock, int indirect_blks, 731 int *blks, ext4_fsblk_t goal, 732 ext4_lblk_t *offsets, Indirect *branch) 733 { 734 int blocksize = inode->i_sb->s_blocksize; 735 int i, n = 0; 736 int err = 0; 737 struct buffer_head *bh; 738 int num; 739 ext4_fsblk_t new_blocks[4]; 740 ext4_fsblk_t current_block; 741 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 743 *blks, new_blocks, &err); 744 if (err) 745 return err; 746 747 branch[0].key = cpu_to_le32(new_blocks[0]); 748 /* 749 * metadata blocks and data blocks are allocated. 750 */ 751 for (n = 1; n <= indirect_blks; n++) { 752 /* 753 * Get buffer_head for parent block, zero it out 754 * and set the pointer to new one, then send 755 * parent to disk. 756 */ 757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 758 branch[n].bh = bh; 759 lock_buffer(bh); 760 BUFFER_TRACE(bh, "call get_create_access"); 761 err = ext4_journal_get_create_access(handle, bh); 762 if (err) { 763 /* Don't brelse(bh) here; it's done in 764 * ext4_journal_forget() below */ 765 unlock_buffer(bh); 766 goto failed; 767 } 768 769 memset(bh->b_data, 0, blocksize); 770 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 771 branch[n].key = cpu_to_le32(new_blocks[n]); 772 *branch[n].p = branch[n].key; 773 if (n == indirect_blks) { 774 current_block = new_blocks[n]; 775 /* 776 * End of chain, update the last new metablock of 777 * the chain to point to the new allocated 778 * data blocks numbers 779 */ 780 for (i = 1; i < num; i++) 781 *(branch[n].p + i) = cpu_to_le32(++current_block); 782 } 783 BUFFER_TRACE(bh, "marking uptodate"); 784 set_buffer_uptodate(bh); 785 unlock_buffer(bh); 786 787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 788 err = ext4_handle_dirty_metadata(handle, inode, bh); 789 if (err) 790 goto failed; 791 } 792 *blks = num; 793 return err; 794 failed: 795 /* Allocation failed, free what we already allocated */ 796 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 797 for (i = 1; i <= n ; i++) { 798 /* 799 * branch[i].bh is newly allocated, so there is no 800 * need to revoke the block, which is why we don't 801 * need to set EXT4_FREE_BLOCKS_METADATA. 802 */ 803 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 804 EXT4_FREE_BLOCKS_FORGET); 805 } 806 for (i = n+1; i < indirect_blks; i++) 807 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 808 809 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 810 811 return err; 812 } 813 814 /** 815 * ext4_splice_branch - splice the allocated branch onto inode. 816 * @inode: owner 817 * @block: (logical) number of block we are adding 818 * @chain: chain of indirect blocks (with a missing link - see 819 * ext4_alloc_branch) 820 * @where: location of missing link 821 * @num: number of indirect blocks we are adding 822 * @blks: number of direct blocks we are adding 823 * 824 * This function fills the missing link and does all housekeeping needed in 825 * inode (->i_blocks, etc.). In case of success we end up with the full 826 * chain to new block and return 0. 827 */ 828 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 829 ext4_lblk_t block, Indirect *where, int num, 830 int blks) 831 { 832 int i; 833 int err = 0; 834 ext4_fsblk_t current_block; 835 836 /* 837 * If we're splicing into a [td]indirect block (as opposed to the 838 * inode) then we need to get write access to the [td]indirect block 839 * before the splice. 840 */ 841 if (where->bh) { 842 BUFFER_TRACE(where->bh, "get_write_access"); 843 err = ext4_journal_get_write_access(handle, where->bh); 844 if (err) 845 goto err_out; 846 } 847 /* That's it */ 848 849 *where->p = where->key; 850 851 /* 852 * Update the host buffer_head or inode to point to more just allocated 853 * direct blocks blocks 854 */ 855 if (num == 0 && blks > 1) { 856 current_block = le32_to_cpu(where->key) + 1; 857 for (i = 1; i < blks; i++) 858 *(where->p + i) = cpu_to_le32(current_block++); 859 } 860 861 /* We are done with atomic stuff, now do the rest of housekeeping */ 862 /* had we spliced it onto indirect block? */ 863 if (where->bh) { 864 /* 865 * If we spliced it onto an indirect block, we haven't 866 * altered the inode. Note however that if it is being spliced 867 * onto an indirect block at the very end of the file (the 868 * file is growing) then we *will* alter the inode to reflect 869 * the new i_size. But that is not done here - it is done in 870 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 871 */ 872 jbd_debug(5, "splicing indirect only\n"); 873 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 874 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 875 if (err) 876 goto err_out; 877 } else { 878 /* 879 * OK, we spliced it into the inode itself on a direct block. 880 */ 881 ext4_mark_inode_dirty(handle, inode); 882 jbd_debug(5, "splicing direct\n"); 883 } 884 return err; 885 886 err_out: 887 for (i = 1; i <= num; i++) { 888 /* 889 * branch[i].bh is newly allocated, so there is no 890 * need to revoke the block, which is why we don't 891 * need to set EXT4_FREE_BLOCKS_METADATA. 892 */ 893 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 894 EXT4_FREE_BLOCKS_FORGET); 895 } 896 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 897 blks, 0); 898 899 return err; 900 } 901 902 /* 903 * The ext4_ind_map_blocks() function handles non-extents inodes 904 * (i.e., using the traditional indirect/double-indirect i_blocks 905 * scheme) for ext4_map_blocks(). 906 * 907 * Allocation strategy is simple: if we have to allocate something, we will 908 * have to go the whole way to leaf. So let's do it before attaching anything 909 * to tree, set linkage between the newborn blocks, write them if sync is 910 * required, recheck the path, free and repeat if check fails, otherwise 911 * set the last missing link (that will protect us from any truncate-generated 912 * removals - all blocks on the path are immune now) and possibly force the 913 * write on the parent block. 914 * That has a nice additional property: no special recovery from the failed 915 * allocations is needed - we simply release blocks and do not touch anything 916 * reachable from inode. 917 * 918 * `handle' can be NULL if create == 0. 919 * 920 * return > 0, # of blocks mapped or allocated. 921 * return = 0, if plain lookup failed. 922 * return < 0, error case. 923 * 924 * The ext4_ind_get_blocks() function should be called with 925 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 926 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 927 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 928 * blocks. 929 */ 930 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 931 struct ext4_map_blocks *map, 932 int flags) 933 { 934 int err = -EIO; 935 ext4_lblk_t offsets[4]; 936 Indirect chain[4]; 937 Indirect *partial; 938 ext4_fsblk_t goal; 939 int indirect_blks; 940 int blocks_to_boundary = 0; 941 int depth; 942 int count = 0; 943 ext4_fsblk_t first_block = 0; 944 945 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 946 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 947 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 948 &blocks_to_boundary); 949 950 if (depth == 0) 951 goto out; 952 953 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 954 955 /* Simplest case - block found, no allocation needed */ 956 if (!partial) { 957 first_block = le32_to_cpu(chain[depth - 1].key); 958 count++; 959 /*map more blocks*/ 960 while (count < map->m_len && count <= blocks_to_boundary) { 961 ext4_fsblk_t blk; 962 963 blk = le32_to_cpu(*(chain[depth-1].p + count)); 964 965 if (blk == first_block + count) 966 count++; 967 else 968 break; 969 } 970 goto got_it; 971 } 972 973 /* Next simple case - plain lookup or failed read of indirect block */ 974 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 975 goto cleanup; 976 977 /* 978 * Okay, we need to do block allocation. 979 */ 980 goal = ext4_find_goal(inode, map->m_lblk, partial); 981 982 /* the number of blocks need to allocate for [d,t]indirect blocks */ 983 indirect_blks = (chain + depth) - partial - 1; 984 985 /* 986 * Next look up the indirect map to count the totoal number of 987 * direct blocks to allocate for this branch. 988 */ 989 count = ext4_blks_to_allocate(partial, indirect_blks, 990 map->m_len, blocks_to_boundary); 991 /* 992 * Block out ext4_truncate while we alter the tree 993 */ 994 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 995 &count, goal, 996 offsets + (partial - chain), partial); 997 998 /* 999 * The ext4_splice_branch call will free and forget any buffers 1000 * on the new chain if there is a failure, but that risks using 1001 * up transaction credits, especially for bitmaps where the 1002 * credits cannot be returned. Can we handle this somehow? We 1003 * may need to return -EAGAIN upwards in the worst case. --sct 1004 */ 1005 if (!err) 1006 err = ext4_splice_branch(handle, inode, map->m_lblk, 1007 partial, indirect_blks, count); 1008 if (err) 1009 goto cleanup; 1010 1011 map->m_flags |= EXT4_MAP_NEW; 1012 1013 ext4_update_inode_fsync_trans(handle, inode, 1); 1014 got_it: 1015 map->m_flags |= EXT4_MAP_MAPPED; 1016 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1017 map->m_len = count; 1018 if (count > blocks_to_boundary) 1019 map->m_flags |= EXT4_MAP_BOUNDARY; 1020 err = count; 1021 /* Clean up and exit */ 1022 partial = chain + depth - 1; /* the whole chain */ 1023 cleanup: 1024 while (partial > chain) { 1025 BUFFER_TRACE(partial->bh, "call brelse"); 1026 brelse(partial->bh); 1027 partial--; 1028 } 1029 out: 1030 return err; 1031 } 1032 1033 #ifdef CONFIG_QUOTA 1034 qsize_t *ext4_get_reserved_space(struct inode *inode) 1035 { 1036 return &EXT4_I(inode)->i_reserved_quota; 1037 } 1038 #endif 1039 1040 /* 1041 * Calculate the number of metadata blocks need to reserve 1042 * to allocate a new block at @lblocks for non extent file based file 1043 */ 1044 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1045 sector_t lblock) 1046 { 1047 struct ext4_inode_info *ei = EXT4_I(inode); 1048 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1049 int blk_bits; 1050 1051 if (lblock < EXT4_NDIR_BLOCKS) 1052 return 0; 1053 1054 lblock -= EXT4_NDIR_BLOCKS; 1055 1056 if (ei->i_da_metadata_calc_len && 1057 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1058 ei->i_da_metadata_calc_len++; 1059 return 0; 1060 } 1061 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1062 ei->i_da_metadata_calc_len = 1; 1063 blk_bits = order_base_2(lblock); 1064 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1065 } 1066 1067 /* 1068 * Calculate the number of metadata blocks need to reserve 1069 * to allocate a block located at @lblock 1070 */ 1071 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock) 1072 { 1073 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1074 return ext4_ext_calc_metadata_amount(inode, lblock); 1075 1076 return ext4_indirect_calc_metadata_amount(inode, lblock); 1077 } 1078 1079 /* 1080 * Called with i_data_sem down, which is important since we can call 1081 * ext4_discard_preallocations() from here. 1082 */ 1083 void ext4_da_update_reserve_space(struct inode *inode, 1084 int used, int quota_claim) 1085 { 1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1087 struct ext4_inode_info *ei = EXT4_I(inode); 1088 1089 spin_lock(&ei->i_block_reservation_lock); 1090 trace_ext4_da_update_reserve_space(inode, used); 1091 if (unlikely(used > ei->i_reserved_data_blocks)) { 1092 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1093 "with only %d reserved data blocks\n", 1094 __func__, inode->i_ino, used, 1095 ei->i_reserved_data_blocks); 1096 WARN_ON(1); 1097 used = ei->i_reserved_data_blocks; 1098 } 1099 1100 /* Update per-inode reservations */ 1101 ei->i_reserved_data_blocks -= used; 1102 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1104 used + ei->i_allocated_meta_blocks); 1105 ei->i_allocated_meta_blocks = 0; 1106 1107 if (ei->i_reserved_data_blocks == 0) { 1108 /* 1109 * We can release all of the reserved metadata blocks 1110 * only when we have written all of the delayed 1111 * allocation blocks. 1112 */ 1113 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1114 ei->i_reserved_meta_blocks); 1115 ei->i_reserved_meta_blocks = 0; 1116 ei->i_da_metadata_calc_len = 0; 1117 } 1118 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1119 1120 /* Update quota subsystem for data blocks */ 1121 if (quota_claim) 1122 dquot_claim_block(inode, used); 1123 else { 1124 /* 1125 * We did fallocate with an offset that is already delayed 1126 * allocated. So on delayed allocated writeback we should 1127 * not re-claim the quota for fallocated blocks. 1128 */ 1129 dquot_release_reservation_block(inode, used); 1130 } 1131 1132 /* 1133 * If we have done all the pending block allocations and if 1134 * there aren't any writers on the inode, we can discard the 1135 * inode's preallocations. 1136 */ 1137 if ((ei->i_reserved_data_blocks == 0) && 1138 (atomic_read(&inode->i_writecount) == 0)) 1139 ext4_discard_preallocations(inode); 1140 } 1141 1142 static int __check_block_validity(struct inode *inode, const char *func, 1143 unsigned int line, 1144 struct ext4_map_blocks *map) 1145 { 1146 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 1147 map->m_len)) { 1148 ext4_error_inode(inode, func, line, map->m_pblk, 1149 "lblock %lu mapped to illegal pblock " 1150 "(length %d)", (unsigned long) map->m_lblk, 1151 map->m_len); 1152 return -EIO; 1153 } 1154 return 0; 1155 } 1156 1157 #define check_block_validity(inode, map) \ 1158 __check_block_validity((inode), __func__, __LINE__, (map)) 1159 1160 /* 1161 * Return the number of contiguous dirty pages in a given inode 1162 * starting at page frame idx. 1163 */ 1164 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1165 unsigned int max_pages) 1166 { 1167 struct address_space *mapping = inode->i_mapping; 1168 pgoff_t index; 1169 struct pagevec pvec; 1170 pgoff_t num = 0; 1171 int i, nr_pages, done = 0; 1172 1173 if (max_pages == 0) 1174 return 0; 1175 pagevec_init(&pvec, 0); 1176 while (!done) { 1177 index = idx; 1178 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1179 PAGECACHE_TAG_DIRTY, 1180 (pgoff_t)PAGEVEC_SIZE); 1181 if (nr_pages == 0) 1182 break; 1183 for (i = 0; i < nr_pages; i++) { 1184 struct page *page = pvec.pages[i]; 1185 struct buffer_head *bh, *head; 1186 1187 lock_page(page); 1188 if (unlikely(page->mapping != mapping) || 1189 !PageDirty(page) || 1190 PageWriteback(page) || 1191 page->index != idx) { 1192 done = 1; 1193 unlock_page(page); 1194 break; 1195 } 1196 if (page_has_buffers(page)) { 1197 bh = head = page_buffers(page); 1198 do { 1199 if (!buffer_delay(bh) && 1200 !buffer_unwritten(bh)) 1201 done = 1; 1202 bh = bh->b_this_page; 1203 } while (!done && (bh != head)); 1204 } 1205 unlock_page(page); 1206 if (done) 1207 break; 1208 idx++; 1209 num++; 1210 if (num >= max_pages) 1211 break; 1212 } 1213 pagevec_release(&pvec); 1214 } 1215 return num; 1216 } 1217 1218 /* 1219 * The ext4_map_blocks() function tries to look up the requested blocks, 1220 * and returns if the blocks are already mapped. 1221 * 1222 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1223 * and store the allocated blocks in the result buffer head and mark it 1224 * mapped. 1225 * 1226 * If file type is extents based, it will call ext4_ext_map_blocks(), 1227 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 1228 * based files 1229 * 1230 * On success, it returns the number of blocks being mapped or allocate. 1231 * if create==0 and the blocks are pre-allocated and uninitialized block, 1232 * the result buffer head is unmapped. If the create ==1, it will make sure 1233 * the buffer head is mapped. 1234 * 1235 * It returns 0 if plain look up failed (blocks have not been allocated), in 1236 * that casem, buffer head is unmapped 1237 * 1238 * It returns the error in case of allocation failure. 1239 */ 1240 int ext4_map_blocks(handle_t *handle, struct inode *inode, 1241 struct ext4_map_blocks *map, int flags) 1242 { 1243 int retval; 1244 1245 map->m_flags = 0; 1246 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 1247 "logical block %lu\n", inode->i_ino, flags, map->m_len, 1248 (unsigned long) map->m_lblk); 1249 /* 1250 * Try to see if we can get the block without requesting a new 1251 * file system block. 1252 */ 1253 down_read((&EXT4_I(inode)->i_data_sem)); 1254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1255 retval = ext4_ext_map_blocks(handle, inode, map, 0); 1256 } else { 1257 retval = ext4_ind_map_blocks(handle, inode, map, 0); 1258 } 1259 up_read((&EXT4_I(inode)->i_data_sem)); 1260 1261 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1262 int ret = check_block_validity(inode, map); 1263 if (ret != 0) 1264 return ret; 1265 } 1266 1267 /* If it is only a block(s) look up */ 1268 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1269 return retval; 1270 1271 /* 1272 * Returns if the blocks have already allocated 1273 * 1274 * Note that if blocks have been preallocated 1275 * ext4_ext_get_block() returns th create = 0 1276 * with buffer head unmapped. 1277 */ 1278 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 1279 return retval; 1280 1281 /* 1282 * When we call get_blocks without the create flag, the 1283 * BH_Unwritten flag could have gotten set if the blocks 1284 * requested were part of a uninitialized extent. We need to 1285 * clear this flag now that we are committed to convert all or 1286 * part of the uninitialized extent to be an initialized 1287 * extent. This is because we need to avoid the combination 1288 * of BH_Unwritten and BH_Mapped flags being simultaneously 1289 * set on the buffer_head. 1290 */ 1291 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 1292 1293 /* 1294 * New blocks allocate and/or writing to uninitialized extent 1295 * will possibly result in updating i_data, so we take 1296 * the write lock of i_data_sem, and call get_blocks() 1297 * with create == 1 flag. 1298 */ 1299 down_write((&EXT4_I(inode)->i_data_sem)); 1300 1301 /* 1302 * if the caller is from delayed allocation writeout path 1303 * we have already reserved fs blocks for allocation 1304 * let the underlying get_block() function know to 1305 * avoid double accounting 1306 */ 1307 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1308 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1309 /* 1310 * We need to check for EXT4 here because migrate 1311 * could have changed the inode type in between 1312 */ 1313 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1314 retval = ext4_ext_map_blocks(handle, inode, map, flags); 1315 } else { 1316 retval = ext4_ind_map_blocks(handle, inode, map, flags); 1317 1318 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 1319 /* 1320 * We allocated new blocks which will result in 1321 * i_data's format changing. Force the migrate 1322 * to fail by clearing migrate flags 1323 */ 1324 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1325 } 1326 1327 /* 1328 * Update reserved blocks/metadata blocks after successful 1329 * block allocation which had been deferred till now. We don't 1330 * support fallocate for non extent files. So we can update 1331 * reserve space here. 1332 */ 1333 if ((retval > 0) && 1334 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1335 ext4_da_update_reserve_space(inode, retval, 1); 1336 } 1337 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1338 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1339 1340 up_write((&EXT4_I(inode)->i_data_sem)); 1341 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1342 int ret = check_block_validity(inode, map); 1343 if (ret != 0) 1344 return ret; 1345 } 1346 return retval; 1347 } 1348 1349 /* Maximum number of blocks we map for direct IO at once. */ 1350 #define DIO_MAX_BLOCKS 4096 1351 1352 static int _ext4_get_block(struct inode *inode, sector_t iblock, 1353 struct buffer_head *bh, int flags) 1354 { 1355 handle_t *handle = ext4_journal_current_handle(); 1356 struct ext4_map_blocks map; 1357 int ret = 0, started = 0; 1358 int dio_credits; 1359 1360 map.m_lblk = iblock; 1361 map.m_len = bh->b_size >> inode->i_blkbits; 1362 1363 if (flags && !handle) { 1364 /* Direct IO write... */ 1365 if (map.m_len > DIO_MAX_BLOCKS) 1366 map.m_len = DIO_MAX_BLOCKS; 1367 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 1368 handle = ext4_journal_start(inode, dio_credits); 1369 if (IS_ERR(handle)) { 1370 ret = PTR_ERR(handle); 1371 return ret; 1372 } 1373 started = 1; 1374 } 1375 1376 ret = ext4_map_blocks(handle, inode, &map, flags); 1377 if (ret > 0) { 1378 map_bh(bh, inode->i_sb, map.m_pblk); 1379 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1380 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 1381 ret = 0; 1382 } 1383 if (started) 1384 ext4_journal_stop(handle); 1385 return ret; 1386 } 1387 1388 int ext4_get_block(struct inode *inode, sector_t iblock, 1389 struct buffer_head *bh, int create) 1390 { 1391 return _ext4_get_block(inode, iblock, bh, 1392 create ? EXT4_GET_BLOCKS_CREATE : 0); 1393 } 1394 1395 /* 1396 * `handle' can be NULL if create is zero 1397 */ 1398 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1399 ext4_lblk_t block, int create, int *errp) 1400 { 1401 struct ext4_map_blocks map; 1402 struct buffer_head *bh; 1403 int fatal = 0, err; 1404 1405 J_ASSERT(handle != NULL || create == 0); 1406 1407 map.m_lblk = block; 1408 map.m_len = 1; 1409 err = ext4_map_blocks(handle, inode, &map, 1410 create ? EXT4_GET_BLOCKS_CREATE : 0); 1411 1412 if (err < 0) 1413 *errp = err; 1414 if (err <= 0) 1415 return NULL; 1416 *errp = 0; 1417 1418 bh = sb_getblk(inode->i_sb, map.m_pblk); 1419 if (!bh) { 1420 *errp = -EIO; 1421 return NULL; 1422 } 1423 if (map.m_flags & EXT4_MAP_NEW) { 1424 J_ASSERT(create != 0); 1425 J_ASSERT(handle != NULL); 1426 1427 /* 1428 * Now that we do not always journal data, we should 1429 * keep in mind whether this should always journal the 1430 * new buffer as metadata. For now, regular file 1431 * writes use ext4_get_block instead, so it's not a 1432 * problem. 1433 */ 1434 lock_buffer(bh); 1435 BUFFER_TRACE(bh, "call get_create_access"); 1436 fatal = ext4_journal_get_create_access(handle, bh); 1437 if (!fatal && !buffer_uptodate(bh)) { 1438 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1439 set_buffer_uptodate(bh); 1440 } 1441 unlock_buffer(bh); 1442 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1443 err = ext4_handle_dirty_metadata(handle, inode, bh); 1444 if (!fatal) 1445 fatal = err; 1446 } else { 1447 BUFFER_TRACE(bh, "not a new buffer"); 1448 } 1449 if (fatal) { 1450 *errp = fatal; 1451 brelse(bh); 1452 bh = NULL; 1453 } 1454 return bh; 1455 } 1456 1457 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1458 ext4_lblk_t block, int create, int *err) 1459 { 1460 struct buffer_head *bh; 1461 1462 bh = ext4_getblk(handle, inode, block, create, err); 1463 if (!bh) 1464 return bh; 1465 if (buffer_uptodate(bh)) 1466 return bh; 1467 ll_rw_block(READ_META, 1, &bh); 1468 wait_on_buffer(bh); 1469 if (buffer_uptodate(bh)) 1470 return bh; 1471 put_bh(bh); 1472 *err = -EIO; 1473 return NULL; 1474 } 1475 1476 static int walk_page_buffers(handle_t *handle, 1477 struct buffer_head *head, 1478 unsigned from, 1479 unsigned to, 1480 int *partial, 1481 int (*fn)(handle_t *handle, 1482 struct buffer_head *bh)) 1483 { 1484 struct buffer_head *bh; 1485 unsigned block_start, block_end; 1486 unsigned blocksize = head->b_size; 1487 int err, ret = 0; 1488 struct buffer_head *next; 1489 1490 for (bh = head, block_start = 0; 1491 ret == 0 && (bh != head || !block_start); 1492 block_start = block_end, bh = next) { 1493 next = bh->b_this_page; 1494 block_end = block_start + blocksize; 1495 if (block_end <= from || block_start >= to) { 1496 if (partial && !buffer_uptodate(bh)) 1497 *partial = 1; 1498 continue; 1499 } 1500 err = (*fn)(handle, bh); 1501 if (!ret) 1502 ret = err; 1503 } 1504 return ret; 1505 } 1506 1507 /* 1508 * To preserve ordering, it is essential that the hole instantiation and 1509 * the data write be encapsulated in a single transaction. We cannot 1510 * close off a transaction and start a new one between the ext4_get_block() 1511 * and the commit_write(). So doing the jbd2_journal_start at the start of 1512 * prepare_write() is the right place. 1513 * 1514 * Also, this function can nest inside ext4_writepage() -> 1515 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1516 * has generated enough buffer credits to do the whole page. So we won't 1517 * block on the journal in that case, which is good, because the caller may 1518 * be PF_MEMALLOC. 1519 * 1520 * By accident, ext4 can be reentered when a transaction is open via 1521 * quota file writes. If we were to commit the transaction while thus 1522 * reentered, there can be a deadlock - we would be holding a quota 1523 * lock, and the commit would never complete if another thread had a 1524 * transaction open and was blocking on the quota lock - a ranking 1525 * violation. 1526 * 1527 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1528 * will _not_ run commit under these circumstances because handle->h_ref 1529 * is elevated. We'll still have enough credits for the tiny quotafile 1530 * write. 1531 */ 1532 static int do_journal_get_write_access(handle_t *handle, 1533 struct buffer_head *bh) 1534 { 1535 int dirty = buffer_dirty(bh); 1536 int ret; 1537 1538 if (!buffer_mapped(bh) || buffer_freed(bh)) 1539 return 0; 1540 /* 1541 * __block_prepare_write() could have dirtied some buffers. Clean 1542 * the dirty bit as jbd2_journal_get_write_access() could complain 1543 * otherwise about fs integrity issues. Setting of the dirty bit 1544 * by __block_prepare_write() isn't a real problem here as we clear 1545 * the bit before releasing a page lock and thus writeback cannot 1546 * ever write the buffer. 1547 */ 1548 if (dirty) 1549 clear_buffer_dirty(bh); 1550 ret = ext4_journal_get_write_access(handle, bh); 1551 if (!ret && dirty) 1552 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1553 return ret; 1554 } 1555 1556 /* 1557 * Truncate blocks that were not used by write. We have to truncate the 1558 * pagecache as well so that corresponding buffers get properly unmapped. 1559 */ 1560 static void ext4_truncate_failed_write(struct inode *inode) 1561 { 1562 truncate_inode_pages(inode->i_mapping, inode->i_size); 1563 ext4_truncate(inode); 1564 } 1565 1566 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1567 struct buffer_head *bh_result, int create); 1568 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1569 loff_t pos, unsigned len, unsigned flags, 1570 struct page **pagep, void **fsdata) 1571 { 1572 struct inode *inode = mapping->host; 1573 int ret, needed_blocks; 1574 handle_t *handle; 1575 int retries = 0; 1576 struct page *page; 1577 pgoff_t index; 1578 unsigned from, to; 1579 1580 trace_ext4_write_begin(inode, pos, len, flags); 1581 /* 1582 * Reserve one block more for addition to orphan list in case 1583 * we allocate blocks but write fails for some reason 1584 */ 1585 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1586 index = pos >> PAGE_CACHE_SHIFT; 1587 from = pos & (PAGE_CACHE_SIZE - 1); 1588 to = from + len; 1589 1590 retry: 1591 handle = ext4_journal_start(inode, needed_blocks); 1592 if (IS_ERR(handle)) { 1593 ret = PTR_ERR(handle); 1594 goto out; 1595 } 1596 1597 /* We cannot recurse into the filesystem as the transaction is already 1598 * started */ 1599 flags |= AOP_FLAG_NOFS; 1600 1601 page = grab_cache_page_write_begin(mapping, index, flags); 1602 if (!page) { 1603 ext4_journal_stop(handle); 1604 ret = -ENOMEM; 1605 goto out; 1606 } 1607 *pagep = page; 1608 1609 if (ext4_should_dioread_nolock(inode)) 1610 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1611 else 1612 ret = __block_write_begin(page, pos, len, ext4_get_block); 1613 1614 if (!ret && ext4_should_journal_data(inode)) { 1615 ret = walk_page_buffers(handle, page_buffers(page), 1616 from, to, NULL, do_journal_get_write_access); 1617 } 1618 1619 if (ret) { 1620 unlock_page(page); 1621 page_cache_release(page); 1622 /* 1623 * __block_write_begin may have instantiated a few blocks 1624 * outside i_size. Trim these off again. Don't need 1625 * i_size_read because we hold i_mutex. 1626 * 1627 * Add inode to orphan list in case we crash before 1628 * truncate finishes 1629 */ 1630 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1631 ext4_orphan_add(handle, inode); 1632 1633 ext4_journal_stop(handle); 1634 if (pos + len > inode->i_size) { 1635 ext4_truncate_failed_write(inode); 1636 /* 1637 * If truncate failed early the inode might 1638 * still be on the orphan list; we need to 1639 * make sure the inode is removed from the 1640 * orphan list in that case. 1641 */ 1642 if (inode->i_nlink) 1643 ext4_orphan_del(NULL, inode); 1644 } 1645 } 1646 1647 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1648 goto retry; 1649 out: 1650 return ret; 1651 } 1652 1653 /* For write_end() in data=journal mode */ 1654 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1655 { 1656 if (!buffer_mapped(bh) || buffer_freed(bh)) 1657 return 0; 1658 set_buffer_uptodate(bh); 1659 return ext4_handle_dirty_metadata(handle, NULL, bh); 1660 } 1661 1662 static int ext4_generic_write_end(struct file *file, 1663 struct address_space *mapping, 1664 loff_t pos, unsigned len, unsigned copied, 1665 struct page *page, void *fsdata) 1666 { 1667 int i_size_changed = 0; 1668 struct inode *inode = mapping->host; 1669 handle_t *handle = ext4_journal_current_handle(); 1670 1671 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1672 1673 /* 1674 * No need to use i_size_read() here, the i_size 1675 * cannot change under us because we hold i_mutex. 1676 * 1677 * But it's important to update i_size while still holding page lock: 1678 * page writeout could otherwise come in and zero beyond i_size. 1679 */ 1680 if (pos + copied > inode->i_size) { 1681 i_size_write(inode, pos + copied); 1682 i_size_changed = 1; 1683 } 1684 1685 if (pos + copied > EXT4_I(inode)->i_disksize) { 1686 /* We need to mark inode dirty even if 1687 * new_i_size is less that inode->i_size 1688 * bu greater than i_disksize.(hint delalloc) 1689 */ 1690 ext4_update_i_disksize(inode, (pos + copied)); 1691 i_size_changed = 1; 1692 } 1693 unlock_page(page); 1694 page_cache_release(page); 1695 1696 /* 1697 * Don't mark the inode dirty under page lock. First, it unnecessarily 1698 * makes the holding time of page lock longer. Second, it forces lock 1699 * ordering of page lock and transaction start for journaling 1700 * filesystems. 1701 */ 1702 if (i_size_changed) 1703 ext4_mark_inode_dirty(handle, inode); 1704 1705 return copied; 1706 } 1707 1708 /* 1709 * We need to pick up the new inode size which generic_commit_write gave us 1710 * `file' can be NULL - eg, when called from page_symlink(). 1711 * 1712 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1713 * buffers are managed internally. 1714 */ 1715 static int ext4_ordered_write_end(struct file *file, 1716 struct address_space *mapping, 1717 loff_t pos, unsigned len, unsigned copied, 1718 struct page *page, void *fsdata) 1719 { 1720 handle_t *handle = ext4_journal_current_handle(); 1721 struct inode *inode = mapping->host; 1722 int ret = 0, ret2; 1723 1724 trace_ext4_ordered_write_end(inode, pos, len, copied); 1725 ret = ext4_jbd2_file_inode(handle, inode); 1726 1727 if (ret == 0) { 1728 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1729 page, fsdata); 1730 copied = ret2; 1731 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1732 /* if we have allocated more blocks and copied 1733 * less. We will have blocks allocated outside 1734 * inode->i_size. So truncate them 1735 */ 1736 ext4_orphan_add(handle, inode); 1737 if (ret2 < 0) 1738 ret = ret2; 1739 } 1740 ret2 = ext4_journal_stop(handle); 1741 if (!ret) 1742 ret = ret2; 1743 1744 if (pos + len > inode->i_size) { 1745 ext4_truncate_failed_write(inode); 1746 /* 1747 * If truncate failed early the inode might still be 1748 * on the orphan list; we need to make sure the inode 1749 * is removed from the orphan list in that case. 1750 */ 1751 if (inode->i_nlink) 1752 ext4_orphan_del(NULL, inode); 1753 } 1754 1755 1756 return ret ? ret : copied; 1757 } 1758 1759 static int ext4_writeback_write_end(struct file *file, 1760 struct address_space *mapping, 1761 loff_t pos, unsigned len, unsigned copied, 1762 struct page *page, void *fsdata) 1763 { 1764 handle_t *handle = ext4_journal_current_handle(); 1765 struct inode *inode = mapping->host; 1766 int ret = 0, ret2; 1767 1768 trace_ext4_writeback_write_end(inode, pos, len, copied); 1769 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1770 page, fsdata); 1771 copied = ret2; 1772 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1773 /* if we have allocated more blocks and copied 1774 * less. We will have blocks allocated outside 1775 * inode->i_size. So truncate them 1776 */ 1777 ext4_orphan_add(handle, inode); 1778 1779 if (ret2 < 0) 1780 ret = ret2; 1781 1782 ret2 = ext4_journal_stop(handle); 1783 if (!ret) 1784 ret = ret2; 1785 1786 if (pos + len > inode->i_size) { 1787 ext4_truncate_failed_write(inode); 1788 /* 1789 * If truncate failed early the inode might still be 1790 * on the orphan list; we need to make sure the inode 1791 * is removed from the orphan list in that case. 1792 */ 1793 if (inode->i_nlink) 1794 ext4_orphan_del(NULL, inode); 1795 } 1796 1797 return ret ? ret : copied; 1798 } 1799 1800 static int ext4_journalled_write_end(struct file *file, 1801 struct address_space *mapping, 1802 loff_t pos, unsigned len, unsigned copied, 1803 struct page *page, void *fsdata) 1804 { 1805 handle_t *handle = ext4_journal_current_handle(); 1806 struct inode *inode = mapping->host; 1807 int ret = 0, ret2; 1808 int partial = 0; 1809 unsigned from, to; 1810 loff_t new_i_size; 1811 1812 trace_ext4_journalled_write_end(inode, pos, len, copied); 1813 from = pos & (PAGE_CACHE_SIZE - 1); 1814 to = from + len; 1815 1816 if (copied < len) { 1817 if (!PageUptodate(page)) 1818 copied = 0; 1819 page_zero_new_buffers(page, from+copied, to); 1820 } 1821 1822 ret = walk_page_buffers(handle, page_buffers(page), from, 1823 to, &partial, write_end_fn); 1824 if (!partial) 1825 SetPageUptodate(page); 1826 new_i_size = pos + copied; 1827 if (new_i_size > inode->i_size) 1828 i_size_write(inode, pos+copied); 1829 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1830 if (new_i_size > EXT4_I(inode)->i_disksize) { 1831 ext4_update_i_disksize(inode, new_i_size); 1832 ret2 = ext4_mark_inode_dirty(handle, inode); 1833 if (!ret) 1834 ret = ret2; 1835 } 1836 1837 unlock_page(page); 1838 page_cache_release(page); 1839 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1840 /* if we have allocated more blocks and copied 1841 * less. We will have blocks allocated outside 1842 * inode->i_size. So truncate them 1843 */ 1844 ext4_orphan_add(handle, inode); 1845 1846 ret2 = ext4_journal_stop(handle); 1847 if (!ret) 1848 ret = ret2; 1849 if (pos + len > inode->i_size) { 1850 ext4_truncate_failed_write(inode); 1851 /* 1852 * If truncate failed early the inode might still be 1853 * on the orphan list; we need to make sure the inode 1854 * is removed from the orphan list in that case. 1855 */ 1856 if (inode->i_nlink) 1857 ext4_orphan_del(NULL, inode); 1858 } 1859 1860 return ret ? ret : copied; 1861 } 1862 1863 /* 1864 * Reserve a single block located at lblock 1865 */ 1866 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock) 1867 { 1868 int retries = 0; 1869 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1870 struct ext4_inode_info *ei = EXT4_I(inode); 1871 unsigned long md_needed; 1872 int ret; 1873 1874 /* 1875 * recalculate the amount of metadata blocks to reserve 1876 * in order to allocate nrblocks 1877 * worse case is one extent per block 1878 */ 1879 repeat: 1880 spin_lock(&ei->i_block_reservation_lock); 1881 md_needed = ext4_calc_metadata_amount(inode, lblock); 1882 trace_ext4_da_reserve_space(inode, md_needed); 1883 spin_unlock(&ei->i_block_reservation_lock); 1884 1885 /* 1886 * We will charge metadata quota at writeout time; this saves 1887 * us from metadata over-estimation, though we may go over by 1888 * a small amount in the end. Here we just reserve for data. 1889 */ 1890 ret = dquot_reserve_block(inode, 1); 1891 if (ret) 1892 return ret; 1893 /* 1894 * We do still charge estimated metadata to the sb though; 1895 * we cannot afford to run out of free blocks. 1896 */ 1897 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1898 dquot_release_reservation_block(inode, 1); 1899 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1900 yield(); 1901 goto repeat; 1902 } 1903 return -ENOSPC; 1904 } 1905 spin_lock(&ei->i_block_reservation_lock); 1906 ei->i_reserved_data_blocks++; 1907 ei->i_reserved_meta_blocks += md_needed; 1908 spin_unlock(&ei->i_block_reservation_lock); 1909 1910 return 0; /* success */ 1911 } 1912 1913 static void ext4_da_release_space(struct inode *inode, int to_free) 1914 { 1915 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1916 struct ext4_inode_info *ei = EXT4_I(inode); 1917 1918 if (!to_free) 1919 return; /* Nothing to release, exit */ 1920 1921 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1922 1923 trace_ext4_da_release_space(inode, to_free); 1924 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1925 /* 1926 * if there aren't enough reserved blocks, then the 1927 * counter is messed up somewhere. Since this 1928 * function is called from invalidate page, it's 1929 * harmless to return without any action. 1930 */ 1931 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1932 "ino %lu, to_free %d with only %d reserved " 1933 "data blocks\n", inode->i_ino, to_free, 1934 ei->i_reserved_data_blocks); 1935 WARN_ON(1); 1936 to_free = ei->i_reserved_data_blocks; 1937 } 1938 ei->i_reserved_data_blocks -= to_free; 1939 1940 if (ei->i_reserved_data_blocks == 0) { 1941 /* 1942 * We can release all of the reserved metadata blocks 1943 * only when we have written all of the delayed 1944 * allocation blocks. 1945 */ 1946 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1947 ei->i_reserved_meta_blocks); 1948 ei->i_reserved_meta_blocks = 0; 1949 ei->i_da_metadata_calc_len = 0; 1950 } 1951 1952 /* update fs dirty data blocks counter */ 1953 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1954 1955 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1956 1957 dquot_release_reservation_block(inode, to_free); 1958 } 1959 1960 static void ext4_da_page_release_reservation(struct page *page, 1961 unsigned long offset) 1962 { 1963 int to_release = 0; 1964 struct buffer_head *head, *bh; 1965 unsigned int curr_off = 0; 1966 1967 head = page_buffers(page); 1968 bh = head; 1969 do { 1970 unsigned int next_off = curr_off + bh->b_size; 1971 1972 if ((offset <= curr_off) && (buffer_delay(bh))) { 1973 to_release++; 1974 clear_buffer_delay(bh); 1975 } 1976 curr_off = next_off; 1977 } while ((bh = bh->b_this_page) != head); 1978 ext4_da_release_space(page->mapping->host, to_release); 1979 } 1980 1981 /* 1982 * Delayed allocation stuff 1983 */ 1984 1985 /* 1986 * mpage_da_submit_io - walks through extent of pages and try to write 1987 * them with writepage() call back 1988 * 1989 * @mpd->inode: inode 1990 * @mpd->first_page: first page of the extent 1991 * @mpd->next_page: page after the last page of the extent 1992 * 1993 * By the time mpage_da_submit_io() is called we expect all blocks 1994 * to be allocated. this may be wrong if allocation failed. 1995 * 1996 * As pages are already locked by write_cache_pages(), we can't use it 1997 */ 1998 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1999 { 2000 long pages_skipped; 2001 struct pagevec pvec; 2002 unsigned long index, end; 2003 int ret = 0, err, nr_pages, i; 2004 struct inode *inode = mpd->inode; 2005 struct address_space *mapping = inode->i_mapping; 2006 2007 BUG_ON(mpd->next_page <= mpd->first_page); 2008 /* 2009 * We need to start from the first_page to the next_page - 1 2010 * to make sure we also write the mapped dirty buffer_heads. 2011 * If we look at mpd->b_blocknr we would only be looking 2012 * at the currently mapped buffer_heads. 2013 */ 2014 index = mpd->first_page; 2015 end = mpd->next_page - 1; 2016 2017 pagevec_init(&pvec, 0); 2018 while (index <= end) { 2019 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2020 if (nr_pages == 0) 2021 break; 2022 for (i = 0; i < nr_pages; i++) { 2023 struct page *page = pvec.pages[i]; 2024 2025 index = page->index; 2026 if (index > end) 2027 break; 2028 index++; 2029 2030 BUG_ON(!PageLocked(page)); 2031 BUG_ON(PageWriteback(page)); 2032 2033 pages_skipped = mpd->wbc->pages_skipped; 2034 err = mapping->a_ops->writepage(page, mpd->wbc); 2035 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 2036 /* 2037 * have successfully written the page 2038 * without skipping the same 2039 */ 2040 mpd->pages_written++; 2041 /* 2042 * In error case, we have to continue because 2043 * remaining pages are still locked 2044 * XXX: unlock and re-dirty them? 2045 */ 2046 if (ret == 0) 2047 ret = err; 2048 } 2049 pagevec_release(&pvec); 2050 } 2051 return ret; 2052 } 2053 2054 /* 2055 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 2056 * 2057 * the function goes through all passed space and put actual disk 2058 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 2059 */ 2060 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, 2061 struct ext4_map_blocks *map) 2062 { 2063 struct inode *inode = mpd->inode; 2064 struct address_space *mapping = inode->i_mapping; 2065 int blocks = map->m_len; 2066 sector_t pblock = map->m_pblk, cur_logical; 2067 struct buffer_head *head, *bh; 2068 pgoff_t index, end; 2069 struct pagevec pvec; 2070 int nr_pages, i; 2071 2072 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2073 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2074 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2075 2076 pagevec_init(&pvec, 0); 2077 2078 while (index <= end) { 2079 /* XXX: optimize tail */ 2080 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2081 if (nr_pages == 0) 2082 break; 2083 for (i = 0; i < nr_pages; i++) { 2084 struct page *page = pvec.pages[i]; 2085 2086 index = page->index; 2087 if (index > end) 2088 break; 2089 index++; 2090 2091 BUG_ON(!PageLocked(page)); 2092 BUG_ON(PageWriteback(page)); 2093 BUG_ON(!page_has_buffers(page)); 2094 2095 bh = page_buffers(page); 2096 head = bh; 2097 2098 /* skip blocks out of the range */ 2099 do { 2100 if (cur_logical >= map->m_lblk) 2101 break; 2102 cur_logical++; 2103 } while ((bh = bh->b_this_page) != head); 2104 2105 do { 2106 if (cur_logical >= map->m_lblk + blocks) 2107 break; 2108 2109 if (buffer_delay(bh) || buffer_unwritten(bh)) { 2110 2111 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2112 2113 if (buffer_delay(bh)) { 2114 clear_buffer_delay(bh); 2115 bh->b_blocknr = pblock; 2116 } else { 2117 /* 2118 * unwritten already should have 2119 * blocknr assigned. Verify that 2120 */ 2121 clear_buffer_unwritten(bh); 2122 BUG_ON(bh->b_blocknr != pblock); 2123 } 2124 2125 } else if (buffer_mapped(bh)) 2126 BUG_ON(bh->b_blocknr != pblock); 2127 2128 if (map->m_flags & EXT4_MAP_UNINIT) 2129 set_buffer_uninit(bh); 2130 cur_logical++; 2131 pblock++; 2132 } while ((bh = bh->b_this_page) != head); 2133 } 2134 pagevec_release(&pvec); 2135 } 2136 } 2137 2138 2139 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2140 sector_t logical, long blk_cnt) 2141 { 2142 int nr_pages, i; 2143 pgoff_t index, end; 2144 struct pagevec pvec; 2145 struct inode *inode = mpd->inode; 2146 struct address_space *mapping = inode->i_mapping; 2147 2148 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2149 end = (logical + blk_cnt - 1) >> 2150 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2151 while (index <= end) { 2152 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2153 if (nr_pages == 0) 2154 break; 2155 for (i = 0; i < nr_pages; i++) { 2156 struct page *page = pvec.pages[i]; 2157 if (page->index > end) 2158 break; 2159 BUG_ON(!PageLocked(page)); 2160 BUG_ON(PageWriteback(page)); 2161 block_invalidatepage(page, 0); 2162 ClearPageUptodate(page); 2163 unlock_page(page); 2164 } 2165 index = pvec.pages[nr_pages - 1]->index + 1; 2166 pagevec_release(&pvec); 2167 } 2168 return; 2169 } 2170 2171 static void ext4_print_free_blocks(struct inode *inode) 2172 { 2173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2174 printk(KERN_CRIT "Total free blocks count %lld\n", 2175 ext4_count_free_blocks(inode->i_sb)); 2176 printk(KERN_CRIT "Free/Dirty block details\n"); 2177 printk(KERN_CRIT "free_blocks=%lld\n", 2178 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2179 printk(KERN_CRIT "dirty_blocks=%lld\n", 2180 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2181 printk(KERN_CRIT "Block reservation details\n"); 2182 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2183 EXT4_I(inode)->i_reserved_data_blocks); 2184 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2185 EXT4_I(inode)->i_reserved_meta_blocks); 2186 return; 2187 } 2188 2189 /* 2190 * mpage_da_map_blocks - go through given space 2191 * 2192 * @mpd - bh describing space 2193 * 2194 * The function skips space we know is already mapped to disk blocks. 2195 * 2196 */ 2197 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2198 { 2199 int err, blks, get_blocks_flags; 2200 struct ext4_map_blocks map; 2201 sector_t next = mpd->b_blocknr; 2202 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2203 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2204 handle_t *handle = NULL; 2205 2206 /* 2207 * We consider only non-mapped and non-allocated blocks 2208 */ 2209 if ((mpd->b_state & (1 << BH_Mapped)) && 2210 !(mpd->b_state & (1 << BH_Delay)) && 2211 !(mpd->b_state & (1 << BH_Unwritten))) 2212 return 0; 2213 2214 /* 2215 * If we didn't accumulate anything to write simply return 2216 */ 2217 if (!mpd->b_size) 2218 return 0; 2219 2220 handle = ext4_journal_current_handle(); 2221 BUG_ON(!handle); 2222 2223 /* 2224 * Call ext4_map_blocks() to allocate any delayed allocation 2225 * blocks, or to convert an uninitialized extent to be 2226 * initialized (in the case where we have written into 2227 * one or more preallocated blocks). 2228 * 2229 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2230 * indicate that we are on the delayed allocation path. This 2231 * affects functions in many different parts of the allocation 2232 * call path. This flag exists primarily because we don't 2233 * want to change *many* call functions, so ext4_map_blocks() 2234 * will set the magic i_delalloc_reserved_flag once the 2235 * inode's allocation semaphore is taken. 2236 * 2237 * If the blocks in questions were delalloc blocks, set 2238 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2239 * variables are updated after the blocks have been allocated. 2240 */ 2241 map.m_lblk = next; 2242 map.m_len = max_blocks; 2243 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2244 if (ext4_should_dioread_nolock(mpd->inode)) 2245 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2246 if (mpd->b_state & (1 << BH_Delay)) 2247 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2248 2249 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 2250 if (blks < 0) { 2251 struct super_block *sb = mpd->inode->i_sb; 2252 2253 err = blks; 2254 /* 2255 * If get block returns with error we simply 2256 * return. Later writepage will redirty the page and 2257 * writepages will find the dirty page again 2258 */ 2259 if (err == -EAGAIN) 2260 return 0; 2261 2262 if (err == -ENOSPC && 2263 ext4_count_free_blocks(sb)) { 2264 mpd->retval = err; 2265 return 0; 2266 } 2267 2268 /* 2269 * get block failure will cause us to loop in 2270 * writepages, because a_ops->writepage won't be able 2271 * to make progress. The page will be redirtied by 2272 * writepage and writepages will again try to write 2273 * the same. 2274 */ 2275 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2276 ext4_msg(sb, KERN_CRIT, 2277 "delayed block allocation failed for inode %lu " 2278 "at logical offset %llu with max blocks %zd " 2279 "with error %d", mpd->inode->i_ino, 2280 (unsigned long long) next, 2281 mpd->b_size >> mpd->inode->i_blkbits, err); 2282 ext4_msg(sb, KERN_CRIT, 2283 "This should not happen!! Data will be lost\n"); 2284 if (err == -ENOSPC) 2285 ext4_print_free_blocks(mpd->inode); 2286 } 2287 /* invalidate all the pages */ 2288 ext4_da_block_invalidatepages(mpd, next, 2289 mpd->b_size >> mpd->inode->i_blkbits); 2290 return err; 2291 } 2292 BUG_ON(blks == 0); 2293 2294 if (map.m_flags & EXT4_MAP_NEW) { 2295 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 2296 int i; 2297 2298 for (i = 0; i < map.m_len; i++) 2299 unmap_underlying_metadata(bdev, map.m_pblk + i); 2300 } 2301 2302 /* 2303 * If blocks are delayed marked, we need to 2304 * put actual blocknr and drop delayed bit 2305 */ 2306 if ((mpd->b_state & (1 << BH_Delay)) || 2307 (mpd->b_state & (1 << BH_Unwritten))) 2308 mpage_put_bnr_to_bhs(mpd, &map); 2309 2310 if (ext4_should_order_data(mpd->inode)) { 2311 err = ext4_jbd2_file_inode(handle, mpd->inode); 2312 if (err) 2313 return err; 2314 } 2315 2316 /* 2317 * Update on-disk size along with block allocation. 2318 */ 2319 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2320 if (disksize > i_size_read(mpd->inode)) 2321 disksize = i_size_read(mpd->inode); 2322 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2323 ext4_update_i_disksize(mpd->inode, disksize); 2324 return ext4_mark_inode_dirty(handle, mpd->inode); 2325 } 2326 2327 return 0; 2328 } 2329 2330 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2331 (1 << BH_Delay) | (1 << BH_Unwritten)) 2332 2333 /* 2334 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2335 * 2336 * @mpd->lbh - extent of blocks 2337 * @logical - logical number of the block in the file 2338 * @bh - bh of the block (used to access block's state) 2339 * 2340 * the function is used to collect contig. blocks in same state 2341 */ 2342 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2343 sector_t logical, size_t b_size, 2344 unsigned long b_state) 2345 { 2346 sector_t next; 2347 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2348 2349 /* 2350 * XXX Don't go larger than mballoc is willing to allocate 2351 * This is a stopgap solution. We eventually need to fold 2352 * mpage_da_submit_io() into this function and then call 2353 * ext4_map_blocks() multiple times in a loop 2354 */ 2355 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 2356 goto flush_it; 2357 2358 /* check if thereserved journal credits might overflow */ 2359 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 2360 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2361 /* 2362 * With non-extent format we are limited by the journal 2363 * credit available. Total credit needed to insert 2364 * nrblocks contiguous blocks is dependent on the 2365 * nrblocks. So limit nrblocks. 2366 */ 2367 goto flush_it; 2368 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2369 EXT4_MAX_TRANS_DATA) { 2370 /* 2371 * Adding the new buffer_head would make it cross the 2372 * allowed limit for which we have journal credit 2373 * reserved. So limit the new bh->b_size 2374 */ 2375 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2376 mpd->inode->i_blkbits; 2377 /* we will do mpage_da_submit_io in the next loop */ 2378 } 2379 } 2380 /* 2381 * First block in the extent 2382 */ 2383 if (mpd->b_size == 0) { 2384 mpd->b_blocknr = logical; 2385 mpd->b_size = b_size; 2386 mpd->b_state = b_state & BH_FLAGS; 2387 return; 2388 } 2389 2390 next = mpd->b_blocknr + nrblocks; 2391 /* 2392 * Can we merge the block to our big extent? 2393 */ 2394 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2395 mpd->b_size += b_size; 2396 return; 2397 } 2398 2399 flush_it: 2400 /* 2401 * We couldn't merge the block to our extent, so we 2402 * need to flush current extent and start new one 2403 */ 2404 if (mpage_da_map_blocks(mpd) == 0) 2405 mpage_da_submit_io(mpd); 2406 mpd->io_done = 1; 2407 return; 2408 } 2409 2410 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2411 { 2412 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2413 } 2414 2415 /* 2416 * __mpage_da_writepage - finds extent of pages and blocks 2417 * 2418 * @page: page to consider 2419 * @wbc: not used, we just follow rules 2420 * @data: context 2421 * 2422 * The function finds extents of pages and scan them for all blocks. 2423 */ 2424 static int __mpage_da_writepage(struct page *page, 2425 struct writeback_control *wbc, void *data) 2426 { 2427 struct mpage_da_data *mpd = data; 2428 struct inode *inode = mpd->inode; 2429 struct buffer_head *bh, *head; 2430 sector_t logical; 2431 2432 /* 2433 * Can we merge this page to current extent? 2434 */ 2435 if (mpd->next_page != page->index) { 2436 /* 2437 * Nope, we can't. So, we map non-allocated blocks 2438 * and start IO on them using writepage() 2439 */ 2440 if (mpd->next_page != mpd->first_page) { 2441 if (mpage_da_map_blocks(mpd) == 0) 2442 mpage_da_submit_io(mpd); 2443 /* 2444 * skip rest of the page in the page_vec 2445 */ 2446 mpd->io_done = 1; 2447 redirty_page_for_writepage(wbc, page); 2448 unlock_page(page); 2449 return MPAGE_DA_EXTENT_TAIL; 2450 } 2451 2452 /* 2453 * Start next extent of pages ... 2454 */ 2455 mpd->first_page = page->index; 2456 2457 /* 2458 * ... and blocks 2459 */ 2460 mpd->b_size = 0; 2461 mpd->b_state = 0; 2462 mpd->b_blocknr = 0; 2463 } 2464 2465 mpd->next_page = page->index + 1; 2466 logical = (sector_t) page->index << 2467 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2468 2469 if (!page_has_buffers(page)) { 2470 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2471 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2472 if (mpd->io_done) 2473 return MPAGE_DA_EXTENT_TAIL; 2474 } else { 2475 /* 2476 * Page with regular buffer heads, just add all dirty ones 2477 */ 2478 head = page_buffers(page); 2479 bh = head; 2480 do { 2481 BUG_ON(buffer_locked(bh)); 2482 /* 2483 * We need to try to allocate 2484 * unmapped blocks in the same page. 2485 * Otherwise we won't make progress 2486 * with the page in ext4_writepage 2487 */ 2488 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2489 mpage_add_bh_to_extent(mpd, logical, 2490 bh->b_size, 2491 bh->b_state); 2492 if (mpd->io_done) 2493 return MPAGE_DA_EXTENT_TAIL; 2494 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2495 /* 2496 * mapped dirty buffer. We need to update 2497 * the b_state because we look at 2498 * b_state in mpage_da_map_blocks. We don't 2499 * update b_size because if we find an 2500 * unmapped buffer_head later we need to 2501 * use the b_state flag of that buffer_head. 2502 */ 2503 if (mpd->b_size == 0) 2504 mpd->b_state = bh->b_state & BH_FLAGS; 2505 } 2506 logical++; 2507 } while ((bh = bh->b_this_page) != head); 2508 } 2509 2510 return 0; 2511 } 2512 2513 /* 2514 * This is a special get_blocks_t callback which is used by 2515 * ext4_da_write_begin(). It will either return mapped block or 2516 * reserve space for a single block. 2517 * 2518 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2519 * We also have b_blocknr = -1 and b_bdev initialized properly 2520 * 2521 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2522 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2523 * initialized properly. 2524 */ 2525 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2526 struct buffer_head *bh, int create) 2527 { 2528 struct ext4_map_blocks map; 2529 int ret = 0; 2530 sector_t invalid_block = ~((sector_t) 0xffff); 2531 2532 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2533 invalid_block = ~0; 2534 2535 BUG_ON(create == 0); 2536 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2537 2538 map.m_lblk = iblock; 2539 map.m_len = 1; 2540 2541 /* 2542 * first, we need to know whether the block is allocated already 2543 * preallocated blocks are unmapped but should treated 2544 * the same as allocated blocks. 2545 */ 2546 ret = ext4_map_blocks(NULL, inode, &map, 0); 2547 if (ret < 0) 2548 return ret; 2549 if (ret == 0) { 2550 if (buffer_delay(bh)) 2551 return 0; /* Not sure this could or should happen */ 2552 /* 2553 * XXX: __block_prepare_write() unmaps passed block, 2554 * is it OK? 2555 */ 2556 ret = ext4_da_reserve_space(inode, iblock); 2557 if (ret) 2558 /* not enough space to reserve */ 2559 return ret; 2560 2561 map_bh(bh, inode->i_sb, invalid_block); 2562 set_buffer_new(bh); 2563 set_buffer_delay(bh); 2564 return 0; 2565 } 2566 2567 map_bh(bh, inode->i_sb, map.m_pblk); 2568 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2569 2570 if (buffer_unwritten(bh)) { 2571 /* A delayed write to unwritten bh should be marked 2572 * new and mapped. Mapped ensures that we don't do 2573 * get_block multiple times when we write to the same 2574 * offset and new ensures that we do proper zero out 2575 * for partial write. 2576 */ 2577 set_buffer_new(bh); 2578 set_buffer_mapped(bh); 2579 } 2580 return 0; 2581 } 2582 2583 /* 2584 * This function is used as a standard get_block_t calback function 2585 * when there is no desire to allocate any blocks. It is used as a 2586 * callback function for block_prepare_write() and block_write_full_page(). 2587 * These functions should only try to map a single block at a time. 2588 * 2589 * Since this function doesn't do block allocations even if the caller 2590 * requests it by passing in create=1, it is critically important that 2591 * any caller checks to make sure that any buffer heads are returned 2592 * by this function are either all already mapped or marked for 2593 * delayed allocation before calling block_write_full_page(). Otherwise, 2594 * b_blocknr could be left unitialized, and the page write functions will 2595 * be taken by surprise. 2596 */ 2597 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2598 struct buffer_head *bh_result, int create) 2599 { 2600 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2601 return _ext4_get_block(inode, iblock, bh_result, 0); 2602 } 2603 2604 static int bget_one(handle_t *handle, struct buffer_head *bh) 2605 { 2606 get_bh(bh); 2607 return 0; 2608 } 2609 2610 static int bput_one(handle_t *handle, struct buffer_head *bh) 2611 { 2612 put_bh(bh); 2613 return 0; 2614 } 2615 2616 static int __ext4_journalled_writepage(struct page *page, 2617 unsigned int len) 2618 { 2619 struct address_space *mapping = page->mapping; 2620 struct inode *inode = mapping->host; 2621 struct buffer_head *page_bufs; 2622 handle_t *handle = NULL; 2623 int ret = 0; 2624 int err; 2625 2626 page_bufs = page_buffers(page); 2627 BUG_ON(!page_bufs); 2628 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2629 /* As soon as we unlock the page, it can go away, but we have 2630 * references to buffers so we are safe */ 2631 unlock_page(page); 2632 2633 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2634 if (IS_ERR(handle)) { 2635 ret = PTR_ERR(handle); 2636 goto out; 2637 } 2638 2639 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2640 do_journal_get_write_access); 2641 2642 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2643 write_end_fn); 2644 if (ret == 0) 2645 ret = err; 2646 err = ext4_journal_stop(handle); 2647 if (!ret) 2648 ret = err; 2649 2650 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2651 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2652 out: 2653 return ret; 2654 } 2655 2656 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2657 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2658 2659 /* 2660 * Note that we don't need to start a transaction unless we're journaling data 2661 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2662 * need to file the inode to the transaction's list in ordered mode because if 2663 * we are writing back data added by write(), the inode is already there and if 2664 * we are writing back data modified via mmap(), noone guarantees in which 2665 * transaction the data will hit the disk. In case we are journaling data, we 2666 * cannot start transaction directly because transaction start ranks above page 2667 * lock so we have to do some magic. 2668 * 2669 * This function can get called via... 2670 * - ext4_da_writepages after taking page lock (have journal handle) 2671 * - journal_submit_inode_data_buffers (no journal handle) 2672 * - shrink_page_list via pdflush (no journal handle) 2673 * - grab_page_cache when doing write_begin (have journal handle) 2674 * 2675 * We don't do any block allocation in this function. If we have page with 2676 * multiple blocks we need to write those buffer_heads that are mapped. This 2677 * is important for mmaped based write. So if we do with blocksize 1K 2678 * truncate(f, 1024); 2679 * a = mmap(f, 0, 4096); 2680 * a[0] = 'a'; 2681 * truncate(f, 4096); 2682 * we have in the page first buffer_head mapped via page_mkwrite call back 2683 * but other bufer_heads would be unmapped but dirty(dirty done via the 2684 * do_wp_page). So writepage should write the first block. If we modify 2685 * the mmap area beyond 1024 we will again get a page_fault and the 2686 * page_mkwrite callback will do the block allocation and mark the 2687 * buffer_heads mapped. 2688 * 2689 * We redirty the page if we have any buffer_heads that is either delay or 2690 * unwritten in the page. 2691 * 2692 * We can get recursively called as show below. 2693 * 2694 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2695 * ext4_writepage() 2696 * 2697 * But since we don't do any block allocation we should not deadlock. 2698 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2699 */ 2700 static int ext4_writepage(struct page *page, 2701 struct writeback_control *wbc) 2702 { 2703 int ret = 0; 2704 loff_t size; 2705 unsigned int len; 2706 struct buffer_head *page_bufs = NULL; 2707 struct inode *inode = page->mapping->host; 2708 2709 trace_ext4_writepage(inode, page); 2710 size = i_size_read(inode); 2711 if (page->index == size >> PAGE_CACHE_SHIFT) 2712 len = size & ~PAGE_CACHE_MASK; 2713 else 2714 len = PAGE_CACHE_SIZE; 2715 2716 if (page_has_buffers(page)) { 2717 page_bufs = page_buffers(page); 2718 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2719 ext4_bh_delay_or_unwritten)) { 2720 /* 2721 * We don't want to do block allocation 2722 * So redirty the page and return 2723 * We may reach here when we do a journal commit 2724 * via journal_submit_inode_data_buffers. 2725 * If we don't have mapping block we just ignore 2726 * them. We can also reach here via shrink_page_list 2727 */ 2728 redirty_page_for_writepage(wbc, page); 2729 unlock_page(page); 2730 return 0; 2731 } 2732 } else { 2733 /* 2734 * The test for page_has_buffers() is subtle: 2735 * We know the page is dirty but it lost buffers. That means 2736 * that at some moment in time after write_begin()/write_end() 2737 * has been called all buffers have been clean and thus they 2738 * must have been written at least once. So they are all 2739 * mapped and we can happily proceed with mapping them 2740 * and writing the page. 2741 * 2742 * Try to initialize the buffer_heads and check whether 2743 * all are mapped and non delay. We don't want to 2744 * do block allocation here. 2745 */ 2746 ret = block_prepare_write(page, 0, len, 2747 noalloc_get_block_write); 2748 if (!ret) { 2749 page_bufs = page_buffers(page); 2750 /* check whether all are mapped and non delay */ 2751 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2752 ext4_bh_delay_or_unwritten)) { 2753 redirty_page_for_writepage(wbc, page); 2754 unlock_page(page); 2755 return 0; 2756 } 2757 } else { 2758 /* 2759 * We can't do block allocation here 2760 * so just redity the page and unlock 2761 * and return 2762 */ 2763 redirty_page_for_writepage(wbc, page); 2764 unlock_page(page); 2765 return 0; 2766 } 2767 /* now mark the buffer_heads as dirty and uptodate */ 2768 block_commit_write(page, 0, len); 2769 } 2770 2771 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2772 /* 2773 * It's mmapped pagecache. Add buffers and journal it. There 2774 * doesn't seem much point in redirtying the page here. 2775 */ 2776 ClearPageChecked(page); 2777 return __ext4_journalled_writepage(page, len); 2778 } 2779 2780 if (page_bufs && buffer_uninit(page_bufs)) { 2781 ext4_set_bh_endio(page_bufs, inode); 2782 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2783 wbc, ext4_end_io_buffer_write); 2784 } else 2785 ret = block_write_full_page(page, noalloc_get_block_write, 2786 wbc); 2787 2788 return ret; 2789 } 2790 2791 /* 2792 * This is called via ext4_da_writepages() to 2793 * calulate the total number of credits to reserve to fit 2794 * a single extent allocation into a single transaction, 2795 * ext4_da_writpeages() will loop calling this before 2796 * the block allocation. 2797 */ 2798 2799 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2800 { 2801 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2802 2803 /* 2804 * With non-extent format the journal credit needed to 2805 * insert nrblocks contiguous block is dependent on 2806 * number of contiguous block. So we will limit 2807 * number of contiguous block to a sane value 2808 */ 2809 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2810 (max_blocks > EXT4_MAX_TRANS_DATA)) 2811 max_blocks = EXT4_MAX_TRANS_DATA; 2812 2813 return ext4_chunk_trans_blocks(inode, max_blocks); 2814 } 2815 2816 /* 2817 * write_cache_pages_da - walk the list of dirty pages of the given 2818 * address space and call the callback function (which usually writes 2819 * the pages). 2820 * 2821 * This is a forked version of write_cache_pages(). Differences: 2822 * Range cyclic is ignored. 2823 * no_nrwrite_index_update is always presumed true 2824 */ 2825 static int write_cache_pages_da(struct address_space *mapping, 2826 struct writeback_control *wbc, 2827 struct mpage_da_data *mpd) 2828 { 2829 int ret = 0; 2830 int done = 0; 2831 struct pagevec pvec; 2832 int nr_pages; 2833 pgoff_t index; 2834 pgoff_t end; /* Inclusive */ 2835 long nr_to_write = wbc->nr_to_write; 2836 2837 pagevec_init(&pvec, 0); 2838 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2839 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2840 2841 while (!done && (index <= end)) { 2842 int i; 2843 2844 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2845 PAGECACHE_TAG_DIRTY, 2846 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2847 if (nr_pages == 0) 2848 break; 2849 2850 for (i = 0; i < nr_pages; i++) { 2851 struct page *page = pvec.pages[i]; 2852 2853 /* 2854 * At this point, the page may be truncated or 2855 * invalidated (changing page->mapping to NULL), or 2856 * even swizzled back from swapper_space to tmpfs file 2857 * mapping. However, page->index will not change 2858 * because we have a reference on the page. 2859 */ 2860 if (page->index > end) { 2861 done = 1; 2862 break; 2863 } 2864 2865 lock_page(page); 2866 2867 /* 2868 * Page truncated or invalidated. We can freely skip it 2869 * then, even for data integrity operations: the page 2870 * has disappeared concurrently, so there could be no 2871 * real expectation of this data interity operation 2872 * even if there is now a new, dirty page at the same 2873 * pagecache address. 2874 */ 2875 if (unlikely(page->mapping != mapping)) { 2876 continue_unlock: 2877 unlock_page(page); 2878 continue; 2879 } 2880 2881 if (!PageDirty(page)) { 2882 /* someone wrote it for us */ 2883 goto continue_unlock; 2884 } 2885 2886 if (PageWriteback(page)) { 2887 if (wbc->sync_mode != WB_SYNC_NONE) 2888 wait_on_page_writeback(page); 2889 else 2890 goto continue_unlock; 2891 } 2892 2893 BUG_ON(PageWriteback(page)); 2894 if (!clear_page_dirty_for_io(page)) 2895 goto continue_unlock; 2896 2897 ret = __mpage_da_writepage(page, wbc, mpd); 2898 if (unlikely(ret)) { 2899 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2900 unlock_page(page); 2901 ret = 0; 2902 } else { 2903 done = 1; 2904 break; 2905 } 2906 } 2907 2908 if (nr_to_write > 0) { 2909 nr_to_write--; 2910 if (nr_to_write == 0 && 2911 wbc->sync_mode == WB_SYNC_NONE) { 2912 /* 2913 * We stop writing back only if we are 2914 * not doing integrity sync. In case of 2915 * integrity sync we have to keep going 2916 * because someone may be concurrently 2917 * dirtying pages, and we might have 2918 * synced a lot of newly appeared dirty 2919 * pages, but have not synced all of the 2920 * old dirty pages. 2921 */ 2922 done = 1; 2923 break; 2924 } 2925 } 2926 } 2927 pagevec_release(&pvec); 2928 cond_resched(); 2929 } 2930 return ret; 2931 } 2932 2933 2934 static int ext4_da_writepages(struct address_space *mapping, 2935 struct writeback_control *wbc) 2936 { 2937 pgoff_t index; 2938 int range_whole = 0; 2939 handle_t *handle = NULL; 2940 struct mpage_da_data mpd; 2941 struct inode *inode = mapping->host; 2942 int pages_written = 0; 2943 long pages_skipped; 2944 unsigned int max_pages; 2945 int range_cyclic, cycled = 1, io_done = 0; 2946 int needed_blocks, ret = 0; 2947 long desired_nr_to_write, nr_to_writebump = 0; 2948 loff_t range_start = wbc->range_start; 2949 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2950 2951 trace_ext4_da_writepages(inode, wbc); 2952 2953 /* 2954 * No pages to write? This is mainly a kludge to avoid starting 2955 * a transaction for special inodes like journal inode on last iput() 2956 * because that could violate lock ordering on umount 2957 */ 2958 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2959 return 0; 2960 2961 /* 2962 * If the filesystem has aborted, it is read-only, so return 2963 * right away instead of dumping stack traces later on that 2964 * will obscure the real source of the problem. We test 2965 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2966 * the latter could be true if the filesystem is mounted 2967 * read-only, and in that case, ext4_da_writepages should 2968 * *never* be called, so if that ever happens, we would want 2969 * the stack trace. 2970 */ 2971 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2972 return -EROFS; 2973 2974 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2975 range_whole = 1; 2976 2977 range_cyclic = wbc->range_cyclic; 2978 if (wbc->range_cyclic) { 2979 index = mapping->writeback_index; 2980 if (index) 2981 cycled = 0; 2982 wbc->range_start = index << PAGE_CACHE_SHIFT; 2983 wbc->range_end = LLONG_MAX; 2984 wbc->range_cyclic = 0; 2985 } else 2986 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2987 2988 /* 2989 * This works around two forms of stupidity. The first is in 2990 * the writeback code, which caps the maximum number of pages 2991 * written to be 1024 pages. This is wrong on multiple 2992 * levels; different architectues have a different page size, 2993 * which changes the maximum amount of data which gets 2994 * written. Secondly, 4 megabytes is way too small. XFS 2995 * forces this value to be 16 megabytes by multiplying 2996 * nr_to_write parameter by four, and then relies on its 2997 * allocator to allocate larger extents to make them 2998 * contiguous. Unfortunately this brings us to the second 2999 * stupidity, which is that ext4's mballoc code only allocates 3000 * at most 2048 blocks. So we force contiguous writes up to 3001 * the number of dirty blocks in the inode, or 3002 * sbi->max_writeback_mb_bump whichever is smaller. 3003 */ 3004 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 3005 if (!range_cyclic && range_whole) 3006 desired_nr_to_write = wbc->nr_to_write * 8; 3007 else 3008 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 3009 max_pages); 3010 if (desired_nr_to_write > max_pages) 3011 desired_nr_to_write = max_pages; 3012 3013 if (wbc->nr_to_write < desired_nr_to_write) { 3014 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 3015 wbc->nr_to_write = desired_nr_to_write; 3016 } 3017 3018 mpd.wbc = wbc; 3019 mpd.inode = mapping->host; 3020 3021 pages_skipped = wbc->pages_skipped; 3022 3023 retry: 3024 while (!ret && wbc->nr_to_write > 0) { 3025 3026 /* 3027 * we insert one extent at a time. So we need 3028 * credit needed for single extent allocation. 3029 * journalled mode is currently not supported 3030 * by delalloc 3031 */ 3032 BUG_ON(ext4_should_journal_data(inode)); 3033 needed_blocks = ext4_da_writepages_trans_blocks(inode); 3034 3035 /* start a new transaction*/ 3036 handle = ext4_journal_start(inode, needed_blocks); 3037 if (IS_ERR(handle)) { 3038 ret = PTR_ERR(handle); 3039 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 3040 "%ld pages, ino %lu; err %d", __func__, 3041 wbc->nr_to_write, inode->i_ino, ret); 3042 goto out_writepages; 3043 } 3044 3045 /* 3046 * Now call __mpage_da_writepage to find the next 3047 * contiguous region of logical blocks that need 3048 * blocks to be allocated by ext4. We don't actually 3049 * submit the blocks for I/O here, even though 3050 * write_cache_pages thinks it will, and will set the 3051 * pages as clean for write before calling 3052 * __mpage_da_writepage(). 3053 */ 3054 mpd.b_size = 0; 3055 mpd.b_state = 0; 3056 mpd.b_blocknr = 0; 3057 mpd.first_page = 0; 3058 mpd.next_page = 0; 3059 mpd.io_done = 0; 3060 mpd.pages_written = 0; 3061 mpd.retval = 0; 3062 ret = write_cache_pages_da(mapping, wbc, &mpd); 3063 /* 3064 * If we have a contiguous extent of pages and we 3065 * haven't done the I/O yet, map the blocks and submit 3066 * them for I/O. 3067 */ 3068 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 3069 if (mpage_da_map_blocks(&mpd) == 0) 3070 mpage_da_submit_io(&mpd); 3071 mpd.io_done = 1; 3072 ret = MPAGE_DA_EXTENT_TAIL; 3073 } 3074 trace_ext4_da_write_pages(inode, &mpd); 3075 wbc->nr_to_write -= mpd.pages_written; 3076 3077 ext4_journal_stop(handle); 3078 3079 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 3080 /* commit the transaction which would 3081 * free blocks released in the transaction 3082 * and try again 3083 */ 3084 jbd2_journal_force_commit_nested(sbi->s_journal); 3085 wbc->pages_skipped = pages_skipped; 3086 ret = 0; 3087 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 3088 /* 3089 * got one extent now try with 3090 * rest of the pages 3091 */ 3092 pages_written += mpd.pages_written; 3093 wbc->pages_skipped = pages_skipped; 3094 ret = 0; 3095 io_done = 1; 3096 } else if (wbc->nr_to_write) 3097 /* 3098 * There is no more writeout needed 3099 * or we requested for a noblocking writeout 3100 * and we found the device congested 3101 */ 3102 break; 3103 } 3104 if (!io_done && !cycled) { 3105 cycled = 1; 3106 index = 0; 3107 wbc->range_start = index << PAGE_CACHE_SHIFT; 3108 wbc->range_end = mapping->writeback_index - 1; 3109 goto retry; 3110 } 3111 if (pages_skipped != wbc->pages_skipped) 3112 ext4_msg(inode->i_sb, KERN_CRIT, 3113 "This should not happen leaving %s " 3114 "with nr_to_write = %ld ret = %d", 3115 __func__, wbc->nr_to_write, ret); 3116 3117 /* Update index */ 3118 index += pages_written; 3119 wbc->range_cyclic = range_cyclic; 3120 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3121 /* 3122 * set the writeback_index so that range_cyclic 3123 * mode will write it back later 3124 */ 3125 mapping->writeback_index = index; 3126 3127 out_writepages: 3128 wbc->nr_to_write -= nr_to_writebump; 3129 wbc->range_start = range_start; 3130 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3131 return ret; 3132 } 3133 3134 #define FALL_BACK_TO_NONDELALLOC 1 3135 static int ext4_nonda_switch(struct super_block *sb) 3136 { 3137 s64 free_blocks, dirty_blocks; 3138 struct ext4_sb_info *sbi = EXT4_SB(sb); 3139 3140 /* 3141 * switch to non delalloc mode if we are running low 3142 * on free block. The free block accounting via percpu 3143 * counters can get slightly wrong with percpu_counter_batch getting 3144 * accumulated on each CPU without updating global counters 3145 * Delalloc need an accurate free block accounting. So switch 3146 * to non delalloc when we are near to error range. 3147 */ 3148 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3149 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3150 if (2 * free_blocks < 3 * dirty_blocks || 3151 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3152 /* 3153 * free block count is less than 150% of dirty blocks 3154 * or free blocks is less than watermark 3155 */ 3156 return 1; 3157 } 3158 /* 3159 * Even if we don't switch but are nearing capacity, 3160 * start pushing delalloc when 1/2 of free blocks are dirty. 3161 */ 3162 if (free_blocks < 2 * dirty_blocks) 3163 writeback_inodes_sb_if_idle(sb); 3164 3165 return 0; 3166 } 3167 3168 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3169 loff_t pos, unsigned len, unsigned flags, 3170 struct page **pagep, void **fsdata) 3171 { 3172 int ret, retries = 0; 3173 struct page *page; 3174 pgoff_t index; 3175 struct inode *inode = mapping->host; 3176 handle_t *handle; 3177 3178 index = pos >> PAGE_CACHE_SHIFT; 3179 3180 if (ext4_nonda_switch(inode->i_sb)) { 3181 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3182 return ext4_write_begin(file, mapping, pos, 3183 len, flags, pagep, fsdata); 3184 } 3185 *fsdata = (void *)0; 3186 trace_ext4_da_write_begin(inode, pos, len, flags); 3187 retry: 3188 /* 3189 * With delayed allocation, we don't log the i_disksize update 3190 * if there is delayed block allocation. But we still need 3191 * to journalling the i_disksize update if writes to the end 3192 * of file which has an already mapped buffer. 3193 */ 3194 handle = ext4_journal_start(inode, 1); 3195 if (IS_ERR(handle)) { 3196 ret = PTR_ERR(handle); 3197 goto out; 3198 } 3199 /* We cannot recurse into the filesystem as the transaction is already 3200 * started */ 3201 flags |= AOP_FLAG_NOFS; 3202 3203 page = grab_cache_page_write_begin(mapping, index, flags); 3204 if (!page) { 3205 ext4_journal_stop(handle); 3206 ret = -ENOMEM; 3207 goto out; 3208 } 3209 *pagep = page; 3210 3211 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3212 if (ret < 0) { 3213 unlock_page(page); 3214 ext4_journal_stop(handle); 3215 page_cache_release(page); 3216 /* 3217 * block_write_begin may have instantiated a few blocks 3218 * outside i_size. Trim these off again. Don't need 3219 * i_size_read because we hold i_mutex. 3220 */ 3221 if (pos + len > inode->i_size) 3222 ext4_truncate_failed_write(inode); 3223 } 3224 3225 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3226 goto retry; 3227 out: 3228 return ret; 3229 } 3230 3231 /* 3232 * Check if we should update i_disksize 3233 * when write to the end of file but not require block allocation 3234 */ 3235 static int ext4_da_should_update_i_disksize(struct page *page, 3236 unsigned long offset) 3237 { 3238 struct buffer_head *bh; 3239 struct inode *inode = page->mapping->host; 3240 unsigned int idx; 3241 int i; 3242 3243 bh = page_buffers(page); 3244 idx = offset >> inode->i_blkbits; 3245 3246 for (i = 0; i < idx; i++) 3247 bh = bh->b_this_page; 3248 3249 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3250 return 0; 3251 return 1; 3252 } 3253 3254 static int ext4_da_write_end(struct file *file, 3255 struct address_space *mapping, 3256 loff_t pos, unsigned len, unsigned copied, 3257 struct page *page, void *fsdata) 3258 { 3259 struct inode *inode = mapping->host; 3260 int ret = 0, ret2; 3261 handle_t *handle = ext4_journal_current_handle(); 3262 loff_t new_i_size; 3263 unsigned long start, end; 3264 int write_mode = (int)(unsigned long)fsdata; 3265 3266 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3267 if (ext4_should_order_data(inode)) { 3268 return ext4_ordered_write_end(file, mapping, pos, 3269 len, copied, page, fsdata); 3270 } else if (ext4_should_writeback_data(inode)) { 3271 return ext4_writeback_write_end(file, mapping, pos, 3272 len, copied, page, fsdata); 3273 } else { 3274 BUG(); 3275 } 3276 } 3277 3278 trace_ext4_da_write_end(inode, pos, len, copied); 3279 start = pos & (PAGE_CACHE_SIZE - 1); 3280 end = start + copied - 1; 3281 3282 /* 3283 * generic_write_end() will run mark_inode_dirty() if i_size 3284 * changes. So let's piggyback the i_disksize mark_inode_dirty 3285 * into that. 3286 */ 3287 3288 new_i_size = pos + copied; 3289 if (new_i_size > EXT4_I(inode)->i_disksize) { 3290 if (ext4_da_should_update_i_disksize(page, end)) { 3291 down_write(&EXT4_I(inode)->i_data_sem); 3292 if (new_i_size > EXT4_I(inode)->i_disksize) { 3293 /* 3294 * Updating i_disksize when extending file 3295 * without needing block allocation 3296 */ 3297 if (ext4_should_order_data(inode)) 3298 ret = ext4_jbd2_file_inode(handle, 3299 inode); 3300 3301 EXT4_I(inode)->i_disksize = new_i_size; 3302 } 3303 up_write(&EXT4_I(inode)->i_data_sem); 3304 /* We need to mark inode dirty even if 3305 * new_i_size is less that inode->i_size 3306 * bu greater than i_disksize.(hint delalloc) 3307 */ 3308 ext4_mark_inode_dirty(handle, inode); 3309 } 3310 } 3311 ret2 = generic_write_end(file, mapping, pos, len, copied, 3312 page, fsdata); 3313 copied = ret2; 3314 if (ret2 < 0) 3315 ret = ret2; 3316 ret2 = ext4_journal_stop(handle); 3317 if (!ret) 3318 ret = ret2; 3319 3320 return ret ? ret : copied; 3321 } 3322 3323 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3324 { 3325 /* 3326 * Drop reserved blocks 3327 */ 3328 BUG_ON(!PageLocked(page)); 3329 if (!page_has_buffers(page)) 3330 goto out; 3331 3332 ext4_da_page_release_reservation(page, offset); 3333 3334 out: 3335 ext4_invalidatepage(page, offset); 3336 3337 return; 3338 } 3339 3340 /* 3341 * Force all delayed allocation blocks to be allocated for a given inode. 3342 */ 3343 int ext4_alloc_da_blocks(struct inode *inode) 3344 { 3345 trace_ext4_alloc_da_blocks(inode); 3346 3347 if (!EXT4_I(inode)->i_reserved_data_blocks && 3348 !EXT4_I(inode)->i_reserved_meta_blocks) 3349 return 0; 3350 3351 /* 3352 * We do something simple for now. The filemap_flush() will 3353 * also start triggering a write of the data blocks, which is 3354 * not strictly speaking necessary (and for users of 3355 * laptop_mode, not even desirable). However, to do otherwise 3356 * would require replicating code paths in: 3357 * 3358 * ext4_da_writepages() -> 3359 * write_cache_pages() ---> (via passed in callback function) 3360 * __mpage_da_writepage() --> 3361 * mpage_add_bh_to_extent() 3362 * mpage_da_map_blocks() 3363 * 3364 * The problem is that write_cache_pages(), located in 3365 * mm/page-writeback.c, marks pages clean in preparation for 3366 * doing I/O, which is not desirable if we're not planning on 3367 * doing I/O at all. 3368 * 3369 * We could call write_cache_pages(), and then redirty all of 3370 * the pages by calling redirty_page_for_writeback() but that 3371 * would be ugly in the extreme. So instead we would need to 3372 * replicate parts of the code in the above functions, 3373 * simplifying them becuase we wouldn't actually intend to 3374 * write out the pages, but rather only collect contiguous 3375 * logical block extents, call the multi-block allocator, and 3376 * then update the buffer heads with the block allocations. 3377 * 3378 * For now, though, we'll cheat by calling filemap_flush(), 3379 * which will map the blocks, and start the I/O, but not 3380 * actually wait for the I/O to complete. 3381 */ 3382 return filemap_flush(inode->i_mapping); 3383 } 3384 3385 /* 3386 * bmap() is special. It gets used by applications such as lilo and by 3387 * the swapper to find the on-disk block of a specific piece of data. 3388 * 3389 * Naturally, this is dangerous if the block concerned is still in the 3390 * journal. If somebody makes a swapfile on an ext4 data-journaling 3391 * filesystem and enables swap, then they may get a nasty shock when the 3392 * data getting swapped to that swapfile suddenly gets overwritten by 3393 * the original zero's written out previously to the journal and 3394 * awaiting writeback in the kernel's buffer cache. 3395 * 3396 * So, if we see any bmap calls here on a modified, data-journaled file, 3397 * take extra steps to flush any blocks which might be in the cache. 3398 */ 3399 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3400 { 3401 struct inode *inode = mapping->host; 3402 journal_t *journal; 3403 int err; 3404 3405 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3406 test_opt(inode->i_sb, DELALLOC)) { 3407 /* 3408 * With delalloc we want to sync the file 3409 * so that we can make sure we allocate 3410 * blocks for file 3411 */ 3412 filemap_write_and_wait(mapping); 3413 } 3414 3415 if (EXT4_JOURNAL(inode) && 3416 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3417 /* 3418 * This is a REALLY heavyweight approach, but the use of 3419 * bmap on dirty files is expected to be extremely rare: 3420 * only if we run lilo or swapon on a freshly made file 3421 * do we expect this to happen. 3422 * 3423 * (bmap requires CAP_SYS_RAWIO so this does not 3424 * represent an unprivileged user DOS attack --- we'd be 3425 * in trouble if mortal users could trigger this path at 3426 * will.) 3427 * 3428 * NB. EXT4_STATE_JDATA is not set on files other than 3429 * regular files. If somebody wants to bmap a directory 3430 * or symlink and gets confused because the buffer 3431 * hasn't yet been flushed to disk, they deserve 3432 * everything they get. 3433 */ 3434 3435 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3436 journal = EXT4_JOURNAL(inode); 3437 jbd2_journal_lock_updates(journal); 3438 err = jbd2_journal_flush(journal); 3439 jbd2_journal_unlock_updates(journal); 3440 3441 if (err) 3442 return 0; 3443 } 3444 3445 return generic_block_bmap(mapping, block, ext4_get_block); 3446 } 3447 3448 static int ext4_readpage(struct file *file, struct page *page) 3449 { 3450 return mpage_readpage(page, ext4_get_block); 3451 } 3452 3453 static int 3454 ext4_readpages(struct file *file, struct address_space *mapping, 3455 struct list_head *pages, unsigned nr_pages) 3456 { 3457 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3458 } 3459 3460 static void ext4_free_io_end(ext4_io_end_t *io) 3461 { 3462 BUG_ON(!io); 3463 if (io->page) 3464 put_page(io->page); 3465 iput(io->inode); 3466 kfree(io); 3467 } 3468 3469 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3470 { 3471 struct buffer_head *head, *bh; 3472 unsigned int curr_off = 0; 3473 3474 if (!page_has_buffers(page)) 3475 return; 3476 head = bh = page_buffers(page); 3477 do { 3478 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3479 && bh->b_private) { 3480 ext4_free_io_end(bh->b_private); 3481 bh->b_private = NULL; 3482 bh->b_end_io = NULL; 3483 } 3484 curr_off = curr_off + bh->b_size; 3485 bh = bh->b_this_page; 3486 } while (bh != head); 3487 } 3488 3489 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3490 { 3491 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3492 3493 /* 3494 * free any io_end structure allocated for buffers to be discarded 3495 */ 3496 if (ext4_should_dioread_nolock(page->mapping->host)) 3497 ext4_invalidatepage_free_endio(page, offset); 3498 /* 3499 * If it's a full truncate we just forget about the pending dirtying 3500 */ 3501 if (offset == 0) 3502 ClearPageChecked(page); 3503 3504 if (journal) 3505 jbd2_journal_invalidatepage(journal, page, offset); 3506 else 3507 block_invalidatepage(page, offset); 3508 } 3509 3510 static int ext4_releasepage(struct page *page, gfp_t wait) 3511 { 3512 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3513 3514 WARN_ON(PageChecked(page)); 3515 if (!page_has_buffers(page)) 3516 return 0; 3517 if (journal) 3518 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3519 else 3520 return try_to_free_buffers(page); 3521 } 3522 3523 /* 3524 * O_DIRECT for ext3 (or indirect map) based files 3525 * 3526 * If the O_DIRECT write will extend the file then add this inode to the 3527 * orphan list. So recovery will truncate it back to the original size 3528 * if the machine crashes during the write. 3529 * 3530 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3531 * crashes then stale disk data _may_ be exposed inside the file. But current 3532 * VFS code falls back into buffered path in that case so we are safe. 3533 */ 3534 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3535 const struct iovec *iov, loff_t offset, 3536 unsigned long nr_segs) 3537 { 3538 struct file *file = iocb->ki_filp; 3539 struct inode *inode = file->f_mapping->host; 3540 struct ext4_inode_info *ei = EXT4_I(inode); 3541 handle_t *handle; 3542 ssize_t ret; 3543 int orphan = 0; 3544 size_t count = iov_length(iov, nr_segs); 3545 int retries = 0; 3546 3547 if (rw == WRITE) { 3548 loff_t final_size = offset + count; 3549 3550 if (final_size > inode->i_size) { 3551 /* Credits for sb + inode write */ 3552 handle = ext4_journal_start(inode, 2); 3553 if (IS_ERR(handle)) { 3554 ret = PTR_ERR(handle); 3555 goto out; 3556 } 3557 ret = ext4_orphan_add(handle, inode); 3558 if (ret) { 3559 ext4_journal_stop(handle); 3560 goto out; 3561 } 3562 orphan = 1; 3563 ei->i_disksize = inode->i_size; 3564 ext4_journal_stop(handle); 3565 } 3566 } 3567 3568 retry: 3569 if (rw == READ && ext4_should_dioread_nolock(inode)) 3570 ret = __blockdev_direct_IO(rw, iocb, inode, 3571 inode->i_sb->s_bdev, iov, 3572 offset, nr_segs, 3573 ext4_get_block, NULL, NULL, 0); 3574 else { 3575 ret = blockdev_direct_IO(rw, iocb, inode, 3576 inode->i_sb->s_bdev, iov, 3577 offset, nr_segs, 3578 ext4_get_block, NULL); 3579 3580 if (unlikely((rw & WRITE) && ret < 0)) { 3581 loff_t isize = i_size_read(inode); 3582 loff_t end = offset + iov_length(iov, nr_segs); 3583 3584 if (end > isize) 3585 vmtruncate(inode, isize); 3586 } 3587 } 3588 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3589 goto retry; 3590 3591 if (orphan) { 3592 int err; 3593 3594 /* Credits for sb + inode write */ 3595 handle = ext4_journal_start(inode, 2); 3596 if (IS_ERR(handle)) { 3597 /* This is really bad luck. We've written the data 3598 * but cannot extend i_size. Bail out and pretend 3599 * the write failed... */ 3600 ret = PTR_ERR(handle); 3601 if (inode->i_nlink) 3602 ext4_orphan_del(NULL, inode); 3603 3604 goto out; 3605 } 3606 if (inode->i_nlink) 3607 ext4_orphan_del(handle, inode); 3608 if (ret > 0) { 3609 loff_t end = offset + ret; 3610 if (end > inode->i_size) { 3611 ei->i_disksize = end; 3612 i_size_write(inode, end); 3613 /* 3614 * We're going to return a positive `ret' 3615 * here due to non-zero-length I/O, so there's 3616 * no way of reporting error returns from 3617 * ext4_mark_inode_dirty() to userspace. So 3618 * ignore it. 3619 */ 3620 ext4_mark_inode_dirty(handle, inode); 3621 } 3622 } 3623 err = ext4_journal_stop(handle); 3624 if (ret == 0) 3625 ret = err; 3626 } 3627 out: 3628 return ret; 3629 } 3630 3631 /* 3632 * ext4_get_block used when preparing for a DIO write or buffer write. 3633 * We allocate an uinitialized extent if blocks haven't been allocated. 3634 * The extent will be converted to initialized after the IO is complete. 3635 */ 3636 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3637 struct buffer_head *bh_result, int create) 3638 { 3639 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3640 inode->i_ino, create); 3641 return _ext4_get_block(inode, iblock, bh_result, 3642 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3643 } 3644 3645 static void dump_completed_IO(struct inode * inode) 3646 { 3647 #ifdef EXT4_DEBUG 3648 struct list_head *cur, *before, *after; 3649 ext4_io_end_t *io, *io0, *io1; 3650 unsigned long flags; 3651 3652 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){ 3653 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino); 3654 return; 3655 } 3656 3657 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino); 3658 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3659 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){ 3660 cur = &io->list; 3661 before = cur->prev; 3662 io0 = container_of(before, ext4_io_end_t, list); 3663 after = cur->next; 3664 io1 = container_of(after, ext4_io_end_t, list); 3665 3666 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3667 io, inode->i_ino, io0, io1); 3668 } 3669 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3670 #endif 3671 } 3672 3673 /* 3674 * check a range of space and convert unwritten extents to written. 3675 */ 3676 static int ext4_end_io_nolock(ext4_io_end_t *io) 3677 { 3678 struct inode *inode = io->inode; 3679 loff_t offset = io->offset; 3680 ssize_t size = io->size; 3681 int ret = 0; 3682 3683 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 3684 "list->prev 0x%p\n", 3685 io, inode->i_ino, io->list.next, io->list.prev); 3686 3687 if (list_empty(&io->list)) 3688 return ret; 3689 3690 if (io->flag != EXT4_IO_UNWRITTEN) 3691 return ret; 3692 3693 ret = ext4_convert_unwritten_extents(inode, offset, size); 3694 if (ret < 0) { 3695 printk(KERN_EMERG "%s: failed to convert unwritten" 3696 "extents to written extents, error is %d" 3697 " io is still on inode %lu aio dio list\n", 3698 __func__, ret, inode->i_ino); 3699 return ret; 3700 } 3701 3702 if (io->iocb) 3703 aio_complete(io->iocb, io->result, 0); 3704 /* clear the DIO AIO unwritten flag */ 3705 io->flag = 0; 3706 return ret; 3707 } 3708 3709 /* 3710 * work on completed aio dio IO, to convert unwritten extents to extents 3711 */ 3712 static void ext4_end_io_work(struct work_struct *work) 3713 { 3714 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3715 struct inode *inode = io->inode; 3716 struct ext4_inode_info *ei = EXT4_I(inode); 3717 unsigned long flags; 3718 int ret; 3719 3720 mutex_lock(&inode->i_mutex); 3721 ret = ext4_end_io_nolock(io); 3722 if (ret < 0) { 3723 mutex_unlock(&inode->i_mutex); 3724 return; 3725 } 3726 3727 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3728 if (!list_empty(&io->list)) 3729 list_del_init(&io->list); 3730 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3731 mutex_unlock(&inode->i_mutex); 3732 ext4_free_io_end(io); 3733 } 3734 3735 /* 3736 * This function is called from ext4_sync_file(). 3737 * 3738 * When IO is completed, the work to convert unwritten extents to 3739 * written is queued on workqueue but may not get immediately 3740 * scheduled. When fsync is called, we need to ensure the 3741 * conversion is complete before fsync returns. 3742 * The inode keeps track of a list of pending/completed IO that 3743 * might needs to do the conversion. This function walks through 3744 * the list and convert the related unwritten extents for completed IO 3745 * to written. 3746 * The function return the number of pending IOs on success. 3747 */ 3748 int flush_completed_IO(struct inode *inode) 3749 { 3750 ext4_io_end_t *io; 3751 struct ext4_inode_info *ei = EXT4_I(inode); 3752 unsigned long flags; 3753 int ret = 0; 3754 int ret2 = 0; 3755 3756 if (list_empty(&ei->i_completed_io_list)) 3757 return ret; 3758 3759 dump_completed_IO(inode); 3760 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3761 while (!list_empty(&ei->i_completed_io_list)){ 3762 io = list_entry(ei->i_completed_io_list.next, 3763 ext4_io_end_t, list); 3764 /* 3765 * Calling ext4_end_io_nolock() to convert completed 3766 * IO to written. 3767 * 3768 * When ext4_sync_file() is called, run_queue() may already 3769 * about to flush the work corresponding to this io structure. 3770 * It will be upset if it founds the io structure related 3771 * to the work-to-be schedule is freed. 3772 * 3773 * Thus we need to keep the io structure still valid here after 3774 * convertion finished. The io structure has a flag to 3775 * avoid double converting from both fsync and background work 3776 * queue work. 3777 */ 3778 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3779 ret = ext4_end_io_nolock(io); 3780 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3781 if (ret < 0) 3782 ret2 = ret; 3783 else 3784 list_del_init(&io->list); 3785 } 3786 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3787 return (ret2 < 0) ? ret2 : 0; 3788 } 3789 3790 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags) 3791 { 3792 ext4_io_end_t *io = NULL; 3793 3794 io = kmalloc(sizeof(*io), flags); 3795 3796 if (io) { 3797 igrab(inode); 3798 io->inode = inode; 3799 io->flag = 0; 3800 io->offset = 0; 3801 io->size = 0; 3802 io->page = NULL; 3803 io->iocb = NULL; 3804 io->result = 0; 3805 INIT_WORK(&io->work, ext4_end_io_work); 3806 INIT_LIST_HEAD(&io->list); 3807 } 3808 3809 return io; 3810 } 3811 3812 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3813 ssize_t size, void *private, int ret, 3814 bool is_async) 3815 { 3816 ext4_io_end_t *io_end = iocb->private; 3817 struct workqueue_struct *wq; 3818 unsigned long flags; 3819 struct ext4_inode_info *ei; 3820 3821 /* if not async direct IO or dio with 0 bytes write, just return */ 3822 if (!io_end || !size) 3823 goto out; 3824 3825 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3826 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3827 iocb->private, io_end->inode->i_ino, iocb, offset, 3828 size); 3829 3830 /* if not aio dio with unwritten extents, just free io and return */ 3831 if (io_end->flag != EXT4_IO_UNWRITTEN){ 3832 ext4_free_io_end(io_end); 3833 iocb->private = NULL; 3834 out: 3835 if (is_async) 3836 aio_complete(iocb, ret, 0); 3837 return; 3838 } 3839 3840 io_end->offset = offset; 3841 io_end->size = size; 3842 if (is_async) { 3843 io_end->iocb = iocb; 3844 io_end->result = ret; 3845 } 3846 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3847 3848 /* queue the work to convert unwritten extents to written */ 3849 queue_work(wq, &io_end->work); 3850 3851 /* Add the io_end to per-inode completed aio dio list*/ 3852 ei = EXT4_I(io_end->inode); 3853 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3854 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3855 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3856 iocb->private = NULL; 3857 } 3858 3859 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3860 { 3861 ext4_io_end_t *io_end = bh->b_private; 3862 struct workqueue_struct *wq; 3863 struct inode *inode; 3864 unsigned long flags; 3865 3866 if (!test_clear_buffer_uninit(bh) || !io_end) 3867 goto out; 3868 3869 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3870 printk("sb umounted, discard end_io request for inode %lu\n", 3871 io_end->inode->i_ino); 3872 ext4_free_io_end(io_end); 3873 goto out; 3874 } 3875 3876 io_end->flag = EXT4_IO_UNWRITTEN; 3877 inode = io_end->inode; 3878 3879 /* Add the io_end to per-inode completed io list*/ 3880 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3881 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3882 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3883 3884 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3885 /* queue the work to convert unwritten extents to written */ 3886 queue_work(wq, &io_end->work); 3887 out: 3888 bh->b_private = NULL; 3889 bh->b_end_io = NULL; 3890 clear_buffer_uninit(bh); 3891 end_buffer_async_write(bh, uptodate); 3892 } 3893 3894 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3895 { 3896 ext4_io_end_t *io_end; 3897 struct page *page = bh->b_page; 3898 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3899 size_t size = bh->b_size; 3900 3901 retry: 3902 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3903 if (!io_end) { 3904 if (printk_ratelimit()) 3905 printk(KERN_WARNING "%s: allocation fail\n", __func__); 3906 schedule(); 3907 goto retry; 3908 } 3909 io_end->offset = offset; 3910 io_end->size = size; 3911 /* 3912 * We need to hold a reference to the page to make sure it 3913 * doesn't get evicted before ext4_end_io_work() has a chance 3914 * to convert the extent from written to unwritten. 3915 */ 3916 io_end->page = page; 3917 get_page(io_end->page); 3918 3919 bh->b_private = io_end; 3920 bh->b_end_io = ext4_end_io_buffer_write; 3921 return 0; 3922 } 3923 3924 /* 3925 * For ext4 extent files, ext4 will do direct-io write to holes, 3926 * preallocated extents, and those write extend the file, no need to 3927 * fall back to buffered IO. 3928 * 3929 * For holes, we fallocate those blocks, mark them as unintialized 3930 * If those blocks were preallocated, we mark sure they are splited, but 3931 * still keep the range to write as unintialized. 3932 * 3933 * The unwrritten extents will be converted to written when DIO is completed. 3934 * For async direct IO, since the IO may still pending when return, we 3935 * set up an end_io call back function, which will do the convertion 3936 * when async direct IO completed. 3937 * 3938 * If the O_DIRECT write will extend the file then add this inode to the 3939 * orphan list. So recovery will truncate it back to the original size 3940 * if the machine crashes during the write. 3941 * 3942 */ 3943 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3944 const struct iovec *iov, loff_t offset, 3945 unsigned long nr_segs) 3946 { 3947 struct file *file = iocb->ki_filp; 3948 struct inode *inode = file->f_mapping->host; 3949 ssize_t ret; 3950 size_t count = iov_length(iov, nr_segs); 3951 3952 loff_t final_size = offset + count; 3953 if (rw == WRITE && final_size <= inode->i_size) { 3954 /* 3955 * We could direct write to holes and fallocate. 3956 * 3957 * Allocated blocks to fill the hole are marked as uninitialized 3958 * to prevent paralel buffered read to expose the stale data 3959 * before DIO complete the data IO. 3960 * 3961 * As to previously fallocated extents, ext4 get_block 3962 * will just simply mark the buffer mapped but still 3963 * keep the extents uninitialized. 3964 * 3965 * for non AIO case, we will convert those unwritten extents 3966 * to written after return back from blockdev_direct_IO. 3967 * 3968 * for async DIO, the conversion needs to be defered when 3969 * the IO is completed. The ext4 end_io callback function 3970 * will be called to take care of the conversion work. 3971 * Here for async case, we allocate an io_end structure to 3972 * hook to the iocb. 3973 */ 3974 iocb->private = NULL; 3975 EXT4_I(inode)->cur_aio_dio = NULL; 3976 if (!is_sync_kiocb(iocb)) { 3977 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3978 if (!iocb->private) 3979 return -ENOMEM; 3980 /* 3981 * we save the io structure for current async 3982 * direct IO, so that later ext4_map_blocks() 3983 * could flag the io structure whether there 3984 * is a unwritten extents needs to be converted 3985 * when IO is completed. 3986 */ 3987 EXT4_I(inode)->cur_aio_dio = iocb->private; 3988 } 3989 3990 ret = blockdev_direct_IO(rw, iocb, inode, 3991 inode->i_sb->s_bdev, iov, 3992 offset, nr_segs, 3993 ext4_get_block_write, 3994 ext4_end_io_dio); 3995 if (iocb->private) 3996 EXT4_I(inode)->cur_aio_dio = NULL; 3997 /* 3998 * The io_end structure takes a reference to the inode, 3999 * that structure needs to be destroyed and the 4000 * reference to the inode need to be dropped, when IO is 4001 * complete, even with 0 byte write, or failed. 4002 * 4003 * In the successful AIO DIO case, the io_end structure will be 4004 * desctroyed and the reference to the inode will be dropped 4005 * after the end_io call back function is called. 4006 * 4007 * In the case there is 0 byte write, or error case, since 4008 * VFS direct IO won't invoke the end_io call back function, 4009 * we need to free the end_io structure here. 4010 */ 4011 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 4012 ext4_free_io_end(iocb->private); 4013 iocb->private = NULL; 4014 } else if (ret > 0 && ext4_test_inode_state(inode, 4015 EXT4_STATE_DIO_UNWRITTEN)) { 4016 int err; 4017 /* 4018 * for non AIO case, since the IO is already 4019 * completed, we could do the convertion right here 4020 */ 4021 err = ext4_convert_unwritten_extents(inode, 4022 offset, ret); 4023 if (err < 0) 4024 ret = err; 4025 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4026 } 4027 return ret; 4028 } 4029 4030 /* for write the the end of file case, we fall back to old way */ 4031 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 4032 } 4033 4034 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 4035 const struct iovec *iov, loff_t offset, 4036 unsigned long nr_segs) 4037 { 4038 struct file *file = iocb->ki_filp; 4039 struct inode *inode = file->f_mapping->host; 4040 4041 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4042 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 4043 4044 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 4045 } 4046 4047 /* 4048 * Pages can be marked dirty completely asynchronously from ext4's journalling 4049 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 4050 * much here because ->set_page_dirty is called under VFS locks. The page is 4051 * not necessarily locked. 4052 * 4053 * We cannot just dirty the page and leave attached buffers clean, because the 4054 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 4055 * or jbddirty because all the journalling code will explode. 4056 * 4057 * So what we do is to mark the page "pending dirty" and next time writepage 4058 * is called, propagate that into the buffers appropriately. 4059 */ 4060 static int ext4_journalled_set_page_dirty(struct page *page) 4061 { 4062 SetPageChecked(page); 4063 return __set_page_dirty_nobuffers(page); 4064 } 4065 4066 static const struct address_space_operations ext4_ordered_aops = { 4067 .readpage = ext4_readpage, 4068 .readpages = ext4_readpages, 4069 .writepage = ext4_writepage, 4070 .sync_page = block_sync_page, 4071 .write_begin = ext4_write_begin, 4072 .write_end = ext4_ordered_write_end, 4073 .bmap = ext4_bmap, 4074 .invalidatepage = ext4_invalidatepage, 4075 .releasepage = ext4_releasepage, 4076 .direct_IO = ext4_direct_IO, 4077 .migratepage = buffer_migrate_page, 4078 .is_partially_uptodate = block_is_partially_uptodate, 4079 .error_remove_page = generic_error_remove_page, 4080 }; 4081 4082 static const struct address_space_operations ext4_writeback_aops = { 4083 .readpage = ext4_readpage, 4084 .readpages = ext4_readpages, 4085 .writepage = ext4_writepage, 4086 .sync_page = block_sync_page, 4087 .write_begin = ext4_write_begin, 4088 .write_end = ext4_writeback_write_end, 4089 .bmap = ext4_bmap, 4090 .invalidatepage = ext4_invalidatepage, 4091 .releasepage = ext4_releasepage, 4092 .direct_IO = ext4_direct_IO, 4093 .migratepage = buffer_migrate_page, 4094 .is_partially_uptodate = block_is_partially_uptodate, 4095 .error_remove_page = generic_error_remove_page, 4096 }; 4097 4098 static const struct address_space_operations ext4_journalled_aops = { 4099 .readpage = ext4_readpage, 4100 .readpages = ext4_readpages, 4101 .writepage = ext4_writepage, 4102 .sync_page = block_sync_page, 4103 .write_begin = ext4_write_begin, 4104 .write_end = ext4_journalled_write_end, 4105 .set_page_dirty = ext4_journalled_set_page_dirty, 4106 .bmap = ext4_bmap, 4107 .invalidatepage = ext4_invalidatepage, 4108 .releasepage = ext4_releasepage, 4109 .is_partially_uptodate = block_is_partially_uptodate, 4110 .error_remove_page = generic_error_remove_page, 4111 }; 4112 4113 static const struct address_space_operations ext4_da_aops = { 4114 .readpage = ext4_readpage, 4115 .readpages = ext4_readpages, 4116 .writepage = ext4_writepage, 4117 .writepages = ext4_da_writepages, 4118 .sync_page = block_sync_page, 4119 .write_begin = ext4_da_write_begin, 4120 .write_end = ext4_da_write_end, 4121 .bmap = ext4_bmap, 4122 .invalidatepage = ext4_da_invalidatepage, 4123 .releasepage = ext4_releasepage, 4124 .direct_IO = ext4_direct_IO, 4125 .migratepage = buffer_migrate_page, 4126 .is_partially_uptodate = block_is_partially_uptodate, 4127 .error_remove_page = generic_error_remove_page, 4128 }; 4129 4130 void ext4_set_aops(struct inode *inode) 4131 { 4132 if (ext4_should_order_data(inode) && 4133 test_opt(inode->i_sb, DELALLOC)) 4134 inode->i_mapping->a_ops = &ext4_da_aops; 4135 else if (ext4_should_order_data(inode)) 4136 inode->i_mapping->a_ops = &ext4_ordered_aops; 4137 else if (ext4_should_writeback_data(inode) && 4138 test_opt(inode->i_sb, DELALLOC)) 4139 inode->i_mapping->a_ops = &ext4_da_aops; 4140 else if (ext4_should_writeback_data(inode)) 4141 inode->i_mapping->a_ops = &ext4_writeback_aops; 4142 else 4143 inode->i_mapping->a_ops = &ext4_journalled_aops; 4144 } 4145 4146 /* 4147 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4148 * up to the end of the block which corresponds to `from'. 4149 * This required during truncate. We need to physically zero the tail end 4150 * of that block so it doesn't yield old data if the file is later grown. 4151 */ 4152 int ext4_block_truncate_page(handle_t *handle, 4153 struct address_space *mapping, loff_t from) 4154 { 4155 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 4156 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4157 unsigned blocksize, length, pos; 4158 ext4_lblk_t iblock; 4159 struct inode *inode = mapping->host; 4160 struct buffer_head *bh; 4161 struct page *page; 4162 int err = 0; 4163 4164 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 4165 mapping_gfp_mask(mapping) & ~__GFP_FS); 4166 if (!page) 4167 return -EINVAL; 4168 4169 blocksize = inode->i_sb->s_blocksize; 4170 length = blocksize - (offset & (blocksize - 1)); 4171 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 4172 4173 if (!page_has_buffers(page)) 4174 create_empty_buffers(page, blocksize, 0); 4175 4176 /* Find the buffer that contains "offset" */ 4177 bh = page_buffers(page); 4178 pos = blocksize; 4179 while (offset >= pos) { 4180 bh = bh->b_this_page; 4181 iblock++; 4182 pos += blocksize; 4183 } 4184 4185 err = 0; 4186 if (buffer_freed(bh)) { 4187 BUFFER_TRACE(bh, "freed: skip"); 4188 goto unlock; 4189 } 4190 4191 if (!buffer_mapped(bh)) { 4192 BUFFER_TRACE(bh, "unmapped"); 4193 ext4_get_block(inode, iblock, bh, 0); 4194 /* unmapped? It's a hole - nothing to do */ 4195 if (!buffer_mapped(bh)) { 4196 BUFFER_TRACE(bh, "still unmapped"); 4197 goto unlock; 4198 } 4199 } 4200 4201 /* Ok, it's mapped. Make sure it's up-to-date */ 4202 if (PageUptodate(page)) 4203 set_buffer_uptodate(bh); 4204 4205 if (!buffer_uptodate(bh)) { 4206 err = -EIO; 4207 ll_rw_block(READ, 1, &bh); 4208 wait_on_buffer(bh); 4209 /* Uhhuh. Read error. Complain and punt. */ 4210 if (!buffer_uptodate(bh)) 4211 goto unlock; 4212 } 4213 4214 if (ext4_should_journal_data(inode)) { 4215 BUFFER_TRACE(bh, "get write access"); 4216 err = ext4_journal_get_write_access(handle, bh); 4217 if (err) 4218 goto unlock; 4219 } 4220 4221 zero_user(page, offset, length); 4222 4223 BUFFER_TRACE(bh, "zeroed end of block"); 4224 4225 err = 0; 4226 if (ext4_should_journal_data(inode)) { 4227 err = ext4_handle_dirty_metadata(handle, inode, bh); 4228 } else { 4229 if (ext4_should_order_data(inode)) 4230 err = ext4_jbd2_file_inode(handle, inode); 4231 mark_buffer_dirty(bh); 4232 } 4233 4234 unlock: 4235 unlock_page(page); 4236 page_cache_release(page); 4237 return err; 4238 } 4239 4240 /* 4241 * Probably it should be a library function... search for first non-zero word 4242 * or memcmp with zero_page, whatever is better for particular architecture. 4243 * Linus? 4244 */ 4245 static inline int all_zeroes(__le32 *p, __le32 *q) 4246 { 4247 while (p < q) 4248 if (*p++) 4249 return 0; 4250 return 1; 4251 } 4252 4253 /** 4254 * ext4_find_shared - find the indirect blocks for partial truncation. 4255 * @inode: inode in question 4256 * @depth: depth of the affected branch 4257 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4258 * @chain: place to store the pointers to partial indirect blocks 4259 * @top: place to the (detached) top of branch 4260 * 4261 * This is a helper function used by ext4_truncate(). 4262 * 4263 * When we do truncate() we may have to clean the ends of several 4264 * indirect blocks but leave the blocks themselves alive. Block is 4265 * partially truncated if some data below the new i_size is refered 4266 * from it (and it is on the path to the first completely truncated 4267 * data block, indeed). We have to free the top of that path along 4268 * with everything to the right of the path. Since no allocation 4269 * past the truncation point is possible until ext4_truncate() 4270 * finishes, we may safely do the latter, but top of branch may 4271 * require special attention - pageout below the truncation point 4272 * might try to populate it. 4273 * 4274 * We atomically detach the top of branch from the tree, store the 4275 * block number of its root in *@top, pointers to buffer_heads of 4276 * partially truncated blocks - in @chain[].bh and pointers to 4277 * their last elements that should not be removed - in 4278 * @chain[].p. Return value is the pointer to last filled element 4279 * of @chain. 4280 * 4281 * The work left to caller to do the actual freeing of subtrees: 4282 * a) free the subtree starting from *@top 4283 * b) free the subtrees whose roots are stored in 4284 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4285 * c) free the subtrees growing from the inode past the @chain[0]. 4286 * (no partially truncated stuff there). */ 4287 4288 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4289 ext4_lblk_t offsets[4], Indirect chain[4], 4290 __le32 *top) 4291 { 4292 Indirect *partial, *p; 4293 int k, err; 4294 4295 *top = 0; 4296 /* Make k index the deepest non-null offset + 1 */ 4297 for (k = depth; k > 1 && !offsets[k-1]; k--) 4298 ; 4299 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4300 /* Writer: pointers */ 4301 if (!partial) 4302 partial = chain + k-1; 4303 /* 4304 * If the branch acquired continuation since we've looked at it - 4305 * fine, it should all survive and (new) top doesn't belong to us. 4306 */ 4307 if (!partial->key && *partial->p) 4308 /* Writer: end */ 4309 goto no_top; 4310 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4311 ; 4312 /* 4313 * OK, we've found the last block that must survive. The rest of our 4314 * branch should be detached before unlocking. However, if that rest 4315 * of branch is all ours and does not grow immediately from the inode 4316 * it's easier to cheat and just decrement partial->p. 4317 */ 4318 if (p == chain + k - 1 && p > chain) { 4319 p->p--; 4320 } else { 4321 *top = *p->p; 4322 /* Nope, don't do this in ext4. Must leave the tree intact */ 4323 #if 0 4324 *p->p = 0; 4325 #endif 4326 } 4327 /* Writer: end */ 4328 4329 while (partial > p) { 4330 brelse(partial->bh); 4331 partial--; 4332 } 4333 no_top: 4334 return partial; 4335 } 4336 4337 /* 4338 * Zero a number of block pointers in either an inode or an indirect block. 4339 * If we restart the transaction we must again get write access to the 4340 * indirect block for further modification. 4341 * 4342 * We release `count' blocks on disk, but (last - first) may be greater 4343 * than `count' because there can be holes in there. 4344 */ 4345 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4346 struct buffer_head *bh, 4347 ext4_fsblk_t block_to_free, 4348 unsigned long count, __le32 *first, 4349 __le32 *last) 4350 { 4351 __le32 *p; 4352 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4353 4354 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4355 flags |= EXT4_FREE_BLOCKS_METADATA; 4356 4357 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4358 count)) { 4359 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 4360 "blocks %llu len %lu", 4361 (unsigned long long) block_to_free, count); 4362 return 1; 4363 } 4364 4365 if (try_to_extend_transaction(handle, inode)) { 4366 if (bh) { 4367 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4368 ext4_handle_dirty_metadata(handle, inode, bh); 4369 } 4370 ext4_mark_inode_dirty(handle, inode); 4371 ext4_truncate_restart_trans(handle, inode, 4372 blocks_for_truncate(inode)); 4373 if (bh) { 4374 BUFFER_TRACE(bh, "retaking write access"); 4375 ext4_journal_get_write_access(handle, bh); 4376 } 4377 } 4378 4379 for (p = first; p < last; p++) 4380 *p = 0; 4381 4382 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4383 return 0; 4384 } 4385 4386 /** 4387 * ext4_free_data - free a list of data blocks 4388 * @handle: handle for this transaction 4389 * @inode: inode we are dealing with 4390 * @this_bh: indirect buffer_head which contains *@first and *@last 4391 * @first: array of block numbers 4392 * @last: points immediately past the end of array 4393 * 4394 * We are freeing all blocks refered from that array (numbers are stored as 4395 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4396 * 4397 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4398 * blocks are contiguous then releasing them at one time will only affect one 4399 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4400 * actually use a lot of journal space. 4401 * 4402 * @this_bh will be %NULL if @first and @last point into the inode's direct 4403 * block pointers. 4404 */ 4405 static void ext4_free_data(handle_t *handle, struct inode *inode, 4406 struct buffer_head *this_bh, 4407 __le32 *first, __le32 *last) 4408 { 4409 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4410 unsigned long count = 0; /* Number of blocks in the run */ 4411 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4412 corresponding to 4413 block_to_free */ 4414 ext4_fsblk_t nr; /* Current block # */ 4415 __le32 *p; /* Pointer into inode/ind 4416 for current block */ 4417 int err; 4418 4419 if (this_bh) { /* For indirect block */ 4420 BUFFER_TRACE(this_bh, "get_write_access"); 4421 err = ext4_journal_get_write_access(handle, this_bh); 4422 /* Important: if we can't update the indirect pointers 4423 * to the blocks, we can't free them. */ 4424 if (err) 4425 return; 4426 } 4427 4428 for (p = first; p < last; p++) { 4429 nr = le32_to_cpu(*p); 4430 if (nr) { 4431 /* accumulate blocks to free if they're contiguous */ 4432 if (count == 0) { 4433 block_to_free = nr; 4434 block_to_free_p = p; 4435 count = 1; 4436 } else if (nr == block_to_free + count) { 4437 count++; 4438 } else { 4439 if (ext4_clear_blocks(handle, inode, this_bh, 4440 block_to_free, count, 4441 block_to_free_p, p)) 4442 break; 4443 block_to_free = nr; 4444 block_to_free_p = p; 4445 count = 1; 4446 } 4447 } 4448 } 4449 4450 if (count > 0) 4451 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4452 count, block_to_free_p, p); 4453 4454 if (this_bh) { 4455 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4456 4457 /* 4458 * The buffer head should have an attached journal head at this 4459 * point. However, if the data is corrupted and an indirect 4460 * block pointed to itself, it would have been detached when 4461 * the block was cleared. Check for this instead of OOPSing. 4462 */ 4463 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4464 ext4_handle_dirty_metadata(handle, inode, this_bh); 4465 else 4466 EXT4_ERROR_INODE(inode, 4467 "circular indirect block detected at " 4468 "block %llu", 4469 (unsigned long long) this_bh->b_blocknr); 4470 } 4471 } 4472 4473 /** 4474 * ext4_free_branches - free an array of branches 4475 * @handle: JBD handle for this transaction 4476 * @inode: inode we are dealing with 4477 * @parent_bh: the buffer_head which contains *@first and *@last 4478 * @first: array of block numbers 4479 * @last: pointer immediately past the end of array 4480 * @depth: depth of the branches to free 4481 * 4482 * We are freeing all blocks refered from these branches (numbers are 4483 * stored as little-endian 32-bit) and updating @inode->i_blocks 4484 * appropriately. 4485 */ 4486 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4487 struct buffer_head *parent_bh, 4488 __le32 *first, __le32 *last, int depth) 4489 { 4490 ext4_fsblk_t nr; 4491 __le32 *p; 4492 4493 if (ext4_handle_is_aborted(handle)) 4494 return; 4495 4496 if (depth--) { 4497 struct buffer_head *bh; 4498 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4499 p = last; 4500 while (--p >= first) { 4501 nr = le32_to_cpu(*p); 4502 if (!nr) 4503 continue; /* A hole */ 4504 4505 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4506 nr, 1)) { 4507 EXT4_ERROR_INODE(inode, 4508 "invalid indirect mapped " 4509 "block %lu (level %d)", 4510 (unsigned long) nr, depth); 4511 break; 4512 } 4513 4514 /* Go read the buffer for the next level down */ 4515 bh = sb_bread(inode->i_sb, nr); 4516 4517 /* 4518 * A read failure? Report error and clear slot 4519 * (should be rare). 4520 */ 4521 if (!bh) { 4522 EXT4_ERROR_INODE_BLOCK(inode, nr, 4523 "Read failure"); 4524 continue; 4525 } 4526 4527 /* This zaps the entire block. Bottom up. */ 4528 BUFFER_TRACE(bh, "free child branches"); 4529 ext4_free_branches(handle, inode, bh, 4530 (__le32 *) bh->b_data, 4531 (__le32 *) bh->b_data + addr_per_block, 4532 depth); 4533 4534 /* 4535 * Everything below this this pointer has been 4536 * released. Now let this top-of-subtree go. 4537 * 4538 * We want the freeing of this indirect block to be 4539 * atomic in the journal with the updating of the 4540 * bitmap block which owns it. So make some room in 4541 * the journal. 4542 * 4543 * We zero the parent pointer *after* freeing its 4544 * pointee in the bitmaps, so if extend_transaction() 4545 * for some reason fails to put the bitmap changes and 4546 * the release into the same transaction, recovery 4547 * will merely complain about releasing a free block, 4548 * rather than leaking blocks. 4549 */ 4550 if (ext4_handle_is_aborted(handle)) 4551 return; 4552 if (try_to_extend_transaction(handle, inode)) { 4553 ext4_mark_inode_dirty(handle, inode); 4554 ext4_truncate_restart_trans(handle, inode, 4555 blocks_for_truncate(inode)); 4556 } 4557 4558 /* 4559 * The forget flag here is critical because if 4560 * we are journaling (and not doing data 4561 * journaling), we have to make sure a revoke 4562 * record is written to prevent the journal 4563 * replay from overwriting the (former) 4564 * indirect block if it gets reallocated as a 4565 * data block. This must happen in the same 4566 * transaction where the data blocks are 4567 * actually freed. 4568 */ 4569 ext4_free_blocks(handle, inode, 0, nr, 1, 4570 EXT4_FREE_BLOCKS_METADATA| 4571 EXT4_FREE_BLOCKS_FORGET); 4572 4573 if (parent_bh) { 4574 /* 4575 * The block which we have just freed is 4576 * pointed to by an indirect block: journal it 4577 */ 4578 BUFFER_TRACE(parent_bh, "get_write_access"); 4579 if (!ext4_journal_get_write_access(handle, 4580 parent_bh)){ 4581 *p = 0; 4582 BUFFER_TRACE(parent_bh, 4583 "call ext4_handle_dirty_metadata"); 4584 ext4_handle_dirty_metadata(handle, 4585 inode, 4586 parent_bh); 4587 } 4588 } 4589 } 4590 } else { 4591 /* We have reached the bottom of the tree. */ 4592 BUFFER_TRACE(parent_bh, "free data blocks"); 4593 ext4_free_data(handle, inode, parent_bh, first, last); 4594 } 4595 } 4596 4597 int ext4_can_truncate(struct inode *inode) 4598 { 4599 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4600 return 0; 4601 if (S_ISREG(inode->i_mode)) 4602 return 1; 4603 if (S_ISDIR(inode->i_mode)) 4604 return 1; 4605 if (S_ISLNK(inode->i_mode)) 4606 return !ext4_inode_is_fast_symlink(inode); 4607 return 0; 4608 } 4609 4610 /* 4611 * ext4_truncate() 4612 * 4613 * We block out ext4_get_block() block instantiations across the entire 4614 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4615 * simultaneously on behalf of the same inode. 4616 * 4617 * As we work through the truncate and commmit bits of it to the journal there 4618 * is one core, guiding principle: the file's tree must always be consistent on 4619 * disk. We must be able to restart the truncate after a crash. 4620 * 4621 * The file's tree may be transiently inconsistent in memory (although it 4622 * probably isn't), but whenever we close off and commit a journal transaction, 4623 * the contents of (the filesystem + the journal) must be consistent and 4624 * restartable. It's pretty simple, really: bottom up, right to left (although 4625 * left-to-right works OK too). 4626 * 4627 * Note that at recovery time, journal replay occurs *before* the restart of 4628 * truncate against the orphan inode list. 4629 * 4630 * The committed inode has the new, desired i_size (which is the same as 4631 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4632 * that this inode's truncate did not complete and it will again call 4633 * ext4_truncate() to have another go. So there will be instantiated blocks 4634 * to the right of the truncation point in a crashed ext4 filesystem. But 4635 * that's fine - as long as they are linked from the inode, the post-crash 4636 * ext4_truncate() run will find them and release them. 4637 */ 4638 void ext4_truncate(struct inode *inode) 4639 { 4640 handle_t *handle; 4641 struct ext4_inode_info *ei = EXT4_I(inode); 4642 __le32 *i_data = ei->i_data; 4643 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4644 struct address_space *mapping = inode->i_mapping; 4645 ext4_lblk_t offsets[4]; 4646 Indirect chain[4]; 4647 Indirect *partial; 4648 __le32 nr = 0; 4649 int n; 4650 ext4_lblk_t last_block; 4651 unsigned blocksize = inode->i_sb->s_blocksize; 4652 4653 if (!ext4_can_truncate(inode)) 4654 return; 4655 4656 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4657 4658 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4659 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4660 4661 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4662 ext4_ext_truncate(inode); 4663 return; 4664 } 4665 4666 handle = start_transaction(inode); 4667 if (IS_ERR(handle)) 4668 return; /* AKPM: return what? */ 4669 4670 last_block = (inode->i_size + blocksize-1) 4671 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4672 4673 if (inode->i_size & (blocksize - 1)) 4674 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4675 goto out_stop; 4676 4677 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4678 if (n == 0) 4679 goto out_stop; /* error */ 4680 4681 /* 4682 * OK. This truncate is going to happen. We add the inode to the 4683 * orphan list, so that if this truncate spans multiple transactions, 4684 * and we crash, we will resume the truncate when the filesystem 4685 * recovers. It also marks the inode dirty, to catch the new size. 4686 * 4687 * Implication: the file must always be in a sane, consistent 4688 * truncatable state while each transaction commits. 4689 */ 4690 if (ext4_orphan_add(handle, inode)) 4691 goto out_stop; 4692 4693 /* 4694 * From here we block out all ext4_get_block() callers who want to 4695 * modify the block allocation tree. 4696 */ 4697 down_write(&ei->i_data_sem); 4698 4699 ext4_discard_preallocations(inode); 4700 4701 /* 4702 * The orphan list entry will now protect us from any crash which 4703 * occurs before the truncate completes, so it is now safe to propagate 4704 * the new, shorter inode size (held for now in i_size) into the 4705 * on-disk inode. We do this via i_disksize, which is the value which 4706 * ext4 *really* writes onto the disk inode. 4707 */ 4708 ei->i_disksize = inode->i_size; 4709 4710 if (n == 1) { /* direct blocks */ 4711 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4712 i_data + EXT4_NDIR_BLOCKS); 4713 goto do_indirects; 4714 } 4715 4716 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4717 /* Kill the top of shared branch (not detached) */ 4718 if (nr) { 4719 if (partial == chain) { 4720 /* Shared branch grows from the inode */ 4721 ext4_free_branches(handle, inode, NULL, 4722 &nr, &nr+1, (chain+n-1) - partial); 4723 *partial->p = 0; 4724 /* 4725 * We mark the inode dirty prior to restart, 4726 * and prior to stop. No need for it here. 4727 */ 4728 } else { 4729 /* Shared branch grows from an indirect block */ 4730 BUFFER_TRACE(partial->bh, "get_write_access"); 4731 ext4_free_branches(handle, inode, partial->bh, 4732 partial->p, 4733 partial->p+1, (chain+n-1) - partial); 4734 } 4735 } 4736 /* Clear the ends of indirect blocks on the shared branch */ 4737 while (partial > chain) { 4738 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4739 (__le32*)partial->bh->b_data+addr_per_block, 4740 (chain+n-1) - partial); 4741 BUFFER_TRACE(partial->bh, "call brelse"); 4742 brelse(partial->bh); 4743 partial--; 4744 } 4745 do_indirects: 4746 /* Kill the remaining (whole) subtrees */ 4747 switch (offsets[0]) { 4748 default: 4749 nr = i_data[EXT4_IND_BLOCK]; 4750 if (nr) { 4751 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4752 i_data[EXT4_IND_BLOCK] = 0; 4753 } 4754 case EXT4_IND_BLOCK: 4755 nr = i_data[EXT4_DIND_BLOCK]; 4756 if (nr) { 4757 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4758 i_data[EXT4_DIND_BLOCK] = 0; 4759 } 4760 case EXT4_DIND_BLOCK: 4761 nr = i_data[EXT4_TIND_BLOCK]; 4762 if (nr) { 4763 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4764 i_data[EXT4_TIND_BLOCK] = 0; 4765 } 4766 case EXT4_TIND_BLOCK: 4767 ; 4768 } 4769 4770 up_write(&ei->i_data_sem); 4771 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4772 ext4_mark_inode_dirty(handle, inode); 4773 4774 /* 4775 * In a multi-transaction truncate, we only make the final transaction 4776 * synchronous 4777 */ 4778 if (IS_SYNC(inode)) 4779 ext4_handle_sync(handle); 4780 out_stop: 4781 /* 4782 * If this was a simple ftruncate(), and the file will remain alive 4783 * then we need to clear up the orphan record which we created above. 4784 * However, if this was a real unlink then we were called by 4785 * ext4_delete_inode(), and we allow that function to clean up the 4786 * orphan info for us. 4787 */ 4788 if (inode->i_nlink) 4789 ext4_orphan_del(handle, inode); 4790 4791 ext4_journal_stop(handle); 4792 } 4793 4794 /* 4795 * ext4_get_inode_loc returns with an extra refcount against the inode's 4796 * underlying buffer_head on success. If 'in_mem' is true, we have all 4797 * data in memory that is needed to recreate the on-disk version of this 4798 * inode. 4799 */ 4800 static int __ext4_get_inode_loc(struct inode *inode, 4801 struct ext4_iloc *iloc, int in_mem) 4802 { 4803 struct ext4_group_desc *gdp; 4804 struct buffer_head *bh; 4805 struct super_block *sb = inode->i_sb; 4806 ext4_fsblk_t block; 4807 int inodes_per_block, inode_offset; 4808 4809 iloc->bh = NULL; 4810 if (!ext4_valid_inum(sb, inode->i_ino)) 4811 return -EIO; 4812 4813 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4814 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4815 if (!gdp) 4816 return -EIO; 4817 4818 /* 4819 * Figure out the offset within the block group inode table 4820 */ 4821 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4822 inode_offset = ((inode->i_ino - 1) % 4823 EXT4_INODES_PER_GROUP(sb)); 4824 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4825 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4826 4827 bh = sb_getblk(sb, block); 4828 if (!bh) { 4829 EXT4_ERROR_INODE_BLOCK(inode, block, 4830 "unable to read itable block"); 4831 return -EIO; 4832 } 4833 if (!buffer_uptodate(bh)) { 4834 lock_buffer(bh); 4835 4836 /* 4837 * If the buffer has the write error flag, we have failed 4838 * to write out another inode in the same block. In this 4839 * case, we don't have to read the block because we may 4840 * read the old inode data successfully. 4841 */ 4842 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4843 set_buffer_uptodate(bh); 4844 4845 if (buffer_uptodate(bh)) { 4846 /* someone brought it uptodate while we waited */ 4847 unlock_buffer(bh); 4848 goto has_buffer; 4849 } 4850 4851 /* 4852 * If we have all information of the inode in memory and this 4853 * is the only valid inode in the block, we need not read the 4854 * block. 4855 */ 4856 if (in_mem) { 4857 struct buffer_head *bitmap_bh; 4858 int i, start; 4859 4860 start = inode_offset & ~(inodes_per_block - 1); 4861 4862 /* Is the inode bitmap in cache? */ 4863 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4864 if (!bitmap_bh) 4865 goto make_io; 4866 4867 /* 4868 * If the inode bitmap isn't in cache then the 4869 * optimisation may end up performing two reads instead 4870 * of one, so skip it. 4871 */ 4872 if (!buffer_uptodate(bitmap_bh)) { 4873 brelse(bitmap_bh); 4874 goto make_io; 4875 } 4876 for (i = start; i < start + inodes_per_block; i++) { 4877 if (i == inode_offset) 4878 continue; 4879 if (ext4_test_bit(i, bitmap_bh->b_data)) 4880 break; 4881 } 4882 brelse(bitmap_bh); 4883 if (i == start + inodes_per_block) { 4884 /* all other inodes are free, so skip I/O */ 4885 memset(bh->b_data, 0, bh->b_size); 4886 set_buffer_uptodate(bh); 4887 unlock_buffer(bh); 4888 goto has_buffer; 4889 } 4890 } 4891 4892 make_io: 4893 /* 4894 * If we need to do any I/O, try to pre-readahead extra 4895 * blocks from the inode table. 4896 */ 4897 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4898 ext4_fsblk_t b, end, table; 4899 unsigned num; 4900 4901 table = ext4_inode_table(sb, gdp); 4902 /* s_inode_readahead_blks is always a power of 2 */ 4903 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4904 if (table > b) 4905 b = table; 4906 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4907 num = EXT4_INODES_PER_GROUP(sb); 4908 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4909 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4910 num -= ext4_itable_unused_count(sb, gdp); 4911 table += num / inodes_per_block; 4912 if (end > table) 4913 end = table; 4914 while (b <= end) 4915 sb_breadahead(sb, b++); 4916 } 4917 4918 /* 4919 * There are other valid inodes in the buffer, this inode 4920 * has in-inode xattrs, or we don't have this inode in memory. 4921 * Read the block from disk. 4922 */ 4923 get_bh(bh); 4924 bh->b_end_io = end_buffer_read_sync; 4925 submit_bh(READ_META, bh); 4926 wait_on_buffer(bh); 4927 if (!buffer_uptodate(bh)) { 4928 EXT4_ERROR_INODE_BLOCK(inode, block, 4929 "unable to read itable block"); 4930 brelse(bh); 4931 return -EIO; 4932 } 4933 } 4934 has_buffer: 4935 iloc->bh = bh; 4936 return 0; 4937 } 4938 4939 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4940 { 4941 /* We have all inode data except xattrs in memory here. */ 4942 return __ext4_get_inode_loc(inode, iloc, 4943 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4944 } 4945 4946 void ext4_set_inode_flags(struct inode *inode) 4947 { 4948 unsigned int flags = EXT4_I(inode)->i_flags; 4949 4950 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4951 if (flags & EXT4_SYNC_FL) 4952 inode->i_flags |= S_SYNC; 4953 if (flags & EXT4_APPEND_FL) 4954 inode->i_flags |= S_APPEND; 4955 if (flags & EXT4_IMMUTABLE_FL) 4956 inode->i_flags |= S_IMMUTABLE; 4957 if (flags & EXT4_NOATIME_FL) 4958 inode->i_flags |= S_NOATIME; 4959 if (flags & EXT4_DIRSYNC_FL) 4960 inode->i_flags |= S_DIRSYNC; 4961 } 4962 4963 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4964 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4965 { 4966 unsigned int vfs_fl; 4967 unsigned long old_fl, new_fl; 4968 4969 do { 4970 vfs_fl = ei->vfs_inode.i_flags; 4971 old_fl = ei->i_flags; 4972 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4973 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4974 EXT4_DIRSYNC_FL); 4975 if (vfs_fl & S_SYNC) 4976 new_fl |= EXT4_SYNC_FL; 4977 if (vfs_fl & S_APPEND) 4978 new_fl |= EXT4_APPEND_FL; 4979 if (vfs_fl & S_IMMUTABLE) 4980 new_fl |= EXT4_IMMUTABLE_FL; 4981 if (vfs_fl & S_NOATIME) 4982 new_fl |= EXT4_NOATIME_FL; 4983 if (vfs_fl & S_DIRSYNC) 4984 new_fl |= EXT4_DIRSYNC_FL; 4985 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4986 } 4987 4988 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4989 struct ext4_inode_info *ei) 4990 { 4991 blkcnt_t i_blocks ; 4992 struct inode *inode = &(ei->vfs_inode); 4993 struct super_block *sb = inode->i_sb; 4994 4995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4996 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4997 /* we are using combined 48 bit field */ 4998 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4999 le32_to_cpu(raw_inode->i_blocks_lo); 5000 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 5001 /* i_blocks represent file system block size */ 5002 return i_blocks << (inode->i_blkbits - 9); 5003 } else { 5004 return i_blocks; 5005 } 5006 } else { 5007 return le32_to_cpu(raw_inode->i_blocks_lo); 5008 } 5009 } 5010 5011 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 5012 { 5013 struct ext4_iloc iloc; 5014 struct ext4_inode *raw_inode; 5015 struct ext4_inode_info *ei; 5016 struct inode *inode; 5017 journal_t *journal = EXT4_SB(sb)->s_journal; 5018 long ret; 5019 int block; 5020 5021 inode = iget_locked(sb, ino); 5022 if (!inode) 5023 return ERR_PTR(-ENOMEM); 5024 if (!(inode->i_state & I_NEW)) 5025 return inode; 5026 5027 ei = EXT4_I(inode); 5028 iloc.bh = 0; 5029 5030 ret = __ext4_get_inode_loc(inode, &iloc, 0); 5031 if (ret < 0) 5032 goto bad_inode; 5033 raw_inode = ext4_raw_inode(&iloc); 5034 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5035 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5036 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5037 if (!(test_opt(inode->i_sb, NO_UID32))) { 5038 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5039 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5040 } 5041 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 5042 5043 ei->i_state_flags = 0; 5044 ei->i_dir_start_lookup = 0; 5045 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5046 /* We now have enough fields to check if the inode was active or not. 5047 * This is needed because nfsd might try to access dead inodes 5048 * the test is that same one that e2fsck uses 5049 * NeilBrown 1999oct15 5050 */ 5051 if (inode->i_nlink == 0) { 5052 if (inode->i_mode == 0 || 5053 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 5054 /* this inode is deleted */ 5055 ret = -ESTALE; 5056 goto bad_inode; 5057 } 5058 /* The only unlinked inodes we let through here have 5059 * valid i_mode and are being read by the orphan 5060 * recovery code: that's fine, we're about to complete 5061 * the process of deleting those. */ 5062 } 5063 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5064 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5065 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5066 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 5067 ei->i_file_acl |= 5068 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5069 inode->i_size = ext4_isize(raw_inode); 5070 ei->i_disksize = inode->i_size; 5071 #ifdef CONFIG_QUOTA 5072 ei->i_reserved_quota = 0; 5073 #endif 5074 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5075 ei->i_block_group = iloc.block_group; 5076 ei->i_last_alloc_group = ~0; 5077 /* 5078 * NOTE! The in-memory inode i_data array is in little-endian order 5079 * even on big-endian machines: we do NOT byteswap the block numbers! 5080 */ 5081 for (block = 0; block < EXT4_N_BLOCKS; block++) 5082 ei->i_data[block] = raw_inode->i_block[block]; 5083 INIT_LIST_HEAD(&ei->i_orphan); 5084 5085 /* 5086 * Set transaction id's of transactions that have to be committed 5087 * to finish f[data]sync. We set them to currently running transaction 5088 * as we cannot be sure that the inode or some of its metadata isn't 5089 * part of the transaction - the inode could have been reclaimed and 5090 * now it is reread from disk. 5091 */ 5092 if (journal) { 5093 transaction_t *transaction; 5094 tid_t tid; 5095 5096 read_lock(&journal->j_state_lock); 5097 if (journal->j_running_transaction) 5098 transaction = journal->j_running_transaction; 5099 else 5100 transaction = journal->j_committing_transaction; 5101 if (transaction) 5102 tid = transaction->t_tid; 5103 else 5104 tid = journal->j_commit_sequence; 5105 read_unlock(&journal->j_state_lock); 5106 ei->i_sync_tid = tid; 5107 ei->i_datasync_tid = tid; 5108 } 5109 5110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5111 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5112 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5113 EXT4_INODE_SIZE(inode->i_sb)) { 5114 ret = -EIO; 5115 goto bad_inode; 5116 } 5117 if (ei->i_extra_isize == 0) { 5118 /* The extra space is currently unused. Use it. */ 5119 ei->i_extra_isize = sizeof(struct ext4_inode) - 5120 EXT4_GOOD_OLD_INODE_SIZE; 5121 } else { 5122 __le32 *magic = (void *)raw_inode + 5123 EXT4_GOOD_OLD_INODE_SIZE + 5124 ei->i_extra_isize; 5125 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 5126 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5127 } 5128 } else 5129 ei->i_extra_isize = 0; 5130 5131 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5132 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5133 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5134 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5135 5136 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 5137 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5138 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5139 inode->i_version |= 5140 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5141 } 5142 5143 ret = 0; 5144 if (ei->i_file_acl && 5145 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5146 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 5147 ei->i_file_acl); 5148 ret = -EIO; 5149 goto bad_inode; 5150 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5151 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5152 (S_ISLNK(inode->i_mode) && 5153 !ext4_inode_is_fast_symlink(inode))) 5154 /* Validate extent which is part of inode */ 5155 ret = ext4_ext_check_inode(inode); 5156 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5157 (S_ISLNK(inode->i_mode) && 5158 !ext4_inode_is_fast_symlink(inode))) { 5159 /* Validate block references which are part of inode */ 5160 ret = ext4_check_inode_blockref(inode); 5161 } 5162 if (ret) 5163 goto bad_inode; 5164 5165 if (S_ISREG(inode->i_mode)) { 5166 inode->i_op = &ext4_file_inode_operations; 5167 inode->i_fop = &ext4_file_operations; 5168 ext4_set_aops(inode); 5169 } else if (S_ISDIR(inode->i_mode)) { 5170 inode->i_op = &ext4_dir_inode_operations; 5171 inode->i_fop = &ext4_dir_operations; 5172 } else if (S_ISLNK(inode->i_mode)) { 5173 if (ext4_inode_is_fast_symlink(inode)) { 5174 inode->i_op = &ext4_fast_symlink_inode_operations; 5175 nd_terminate_link(ei->i_data, inode->i_size, 5176 sizeof(ei->i_data) - 1); 5177 } else { 5178 inode->i_op = &ext4_symlink_inode_operations; 5179 ext4_set_aops(inode); 5180 } 5181 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5182 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5183 inode->i_op = &ext4_special_inode_operations; 5184 if (raw_inode->i_block[0]) 5185 init_special_inode(inode, inode->i_mode, 5186 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5187 else 5188 init_special_inode(inode, inode->i_mode, 5189 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5190 } else { 5191 ret = -EIO; 5192 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 5193 goto bad_inode; 5194 } 5195 brelse(iloc.bh); 5196 ext4_set_inode_flags(inode); 5197 unlock_new_inode(inode); 5198 return inode; 5199 5200 bad_inode: 5201 brelse(iloc.bh); 5202 iget_failed(inode); 5203 return ERR_PTR(ret); 5204 } 5205 5206 static int ext4_inode_blocks_set(handle_t *handle, 5207 struct ext4_inode *raw_inode, 5208 struct ext4_inode_info *ei) 5209 { 5210 struct inode *inode = &(ei->vfs_inode); 5211 u64 i_blocks = inode->i_blocks; 5212 struct super_block *sb = inode->i_sb; 5213 5214 if (i_blocks <= ~0U) { 5215 /* 5216 * i_blocks can be represnted in a 32 bit variable 5217 * as multiple of 512 bytes 5218 */ 5219 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5220 raw_inode->i_blocks_high = 0; 5221 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5222 return 0; 5223 } 5224 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5225 return -EFBIG; 5226 5227 if (i_blocks <= 0xffffffffffffULL) { 5228 /* 5229 * i_blocks can be represented in a 48 bit variable 5230 * as multiple of 512 bytes 5231 */ 5232 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5233 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5234 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5235 } else { 5236 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5237 /* i_block is stored in file system block size */ 5238 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5239 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5240 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5241 } 5242 return 0; 5243 } 5244 5245 /* 5246 * Post the struct inode info into an on-disk inode location in the 5247 * buffer-cache. This gobbles the caller's reference to the 5248 * buffer_head in the inode location struct. 5249 * 5250 * The caller must have write access to iloc->bh. 5251 */ 5252 static int ext4_do_update_inode(handle_t *handle, 5253 struct inode *inode, 5254 struct ext4_iloc *iloc) 5255 { 5256 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5257 struct ext4_inode_info *ei = EXT4_I(inode); 5258 struct buffer_head *bh = iloc->bh; 5259 int err = 0, rc, block; 5260 5261 /* For fields not not tracking in the in-memory inode, 5262 * initialise them to zero for new inodes. */ 5263 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5264 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5265 5266 ext4_get_inode_flags(ei); 5267 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5268 if (!(test_opt(inode->i_sb, NO_UID32))) { 5269 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5270 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5271 /* 5272 * Fix up interoperability with old kernels. Otherwise, old inodes get 5273 * re-used with the upper 16 bits of the uid/gid intact 5274 */ 5275 if (!ei->i_dtime) { 5276 raw_inode->i_uid_high = 5277 cpu_to_le16(high_16_bits(inode->i_uid)); 5278 raw_inode->i_gid_high = 5279 cpu_to_le16(high_16_bits(inode->i_gid)); 5280 } else { 5281 raw_inode->i_uid_high = 0; 5282 raw_inode->i_gid_high = 0; 5283 } 5284 } else { 5285 raw_inode->i_uid_low = 5286 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5287 raw_inode->i_gid_low = 5288 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5289 raw_inode->i_uid_high = 0; 5290 raw_inode->i_gid_high = 0; 5291 } 5292 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5293 5294 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5295 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5296 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5297 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5298 5299 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5300 goto out_brelse; 5301 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5302 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5303 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5304 cpu_to_le32(EXT4_OS_HURD)) 5305 raw_inode->i_file_acl_high = 5306 cpu_to_le16(ei->i_file_acl >> 32); 5307 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5308 ext4_isize_set(raw_inode, ei->i_disksize); 5309 if (ei->i_disksize > 0x7fffffffULL) { 5310 struct super_block *sb = inode->i_sb; 5311 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5312 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5313 EXT4_SB(sb)->s_es->s_rev_level == 5314 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5315 /* If this is the first large file 5316 * created, add a flag to the superblock. 5317 */ 5318 err = ext4_journal_get_write_access(handle, 5319 EXT4_SB(sb)->s_sbh); 5320 if (err) 5321 goto out_brelse; 5322 ext4_update_dynamic_rev(sb); 5323 EXT4_SET_RO_COMPAT_FEATURE(sb, 5324 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5325 sb->s_dirt = 1; 5326 ext4_handle_sync(handle); 5327 err = ext4_handle_dirty_metadata(handle, NULL, 5328 EXT4_SB(sb)->s_sbh); 5329 } 5330 } 5331 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5332 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5333 if (old_valid_dev(inode->i_rdev)) { 5334 raw_inode->i_block[0] = 5335 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5336 raw_inode->i_block[1] = 0; 5337 } else { 5338 raw_inode->i_block[0] = 0; 5339 raw_inode->i_block[1] = 5340 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5341 raw_inode->i_block[2] = 0; 5342 } 5343 } else 5344 for (block = 0; block < EXT4_N_BLOCKS; block++) 5345 raw_inode->i_block[block] = ei->i_data[block]; 5346 5347 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5348 if (ei->i_extra_isize) { 5349 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5350 raw_inode->i_version_hi = 5351 cpu_to_le32(inode->i_version >> 32); 5352 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5353 } 5354 5355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5356 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5357 if (!err) 5358 err = rc; 5359 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5360 5361 ext4_update_inode_fsync_trans(handle, inode, 0); 5362 out_brelse: 5363 brelse(bh); 5364 ext4_std_error(inode->i_sb, err); 5365 return err; 5366 } 5367 5368 /* 5369 * ext4_write_inode() 5370 * 5371 * We are called from a few places: 5372 * 5373 * - Within generic_file_write() for O_SYNC files. 5374 * Here, there will be no transaction running. We wait for any running 5375 * trasnaction to commit. 5376 * 5377 * - Within sys_sync(), kupdate and such. 5378 * We wait on commit, if tol to. 5379 * 5380 * - Within prune_icache() (PF_MEMALLOC == true) 5381 * Here we simply return. We can't afford to block kswapd on the 5382 * journal commit. 5383 * 5384 * In all cases it is actually safe for us to return without doing anything, 5385 * because the inode has been copied into a raw inode buffer in 5386 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5387 * knfsd. 5388 * 5389 * Note that we are absolutely dependent upon all inode dirtiers doing the 5390 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5391 * which we are interested. 5392 * 5393 * It would be a bug for them to not do this. The code: 5394 * 5395 * mark_inode_dirty(inode) 5396 * stuff(); 5397 * inode->i_size = expr; 5398 * 5399 * is in error because a kswapd-driven write_inode() could occur while 5400 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5401 * will no longer be on the superblock's dirty inode list. 5402 */ 5403 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5404 { 5405 int err; 5406 5407 if (current->flags & PF_MEMALLOC) 5408 return 0; 5409 5410 if (EXT4_SB(inode->i_sb)->s_journal) { 5411 if (ext4_journal_current_handle()) { 5412 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5413 dump_stack(); 5414 return -EIO; 5415 } 5416 5417 if (wbc->sync_mode != WB_SYNC_ALL) 5418 return 0; 5419 5420 err = ext4_force_commit(inode->i_sb); 5421 } else { 5422 struct ext4_iloc iloc; 5423 5424 err = __ext4_get_inode_loc(inode, &iloc, 0); 5425 if (err) 5426 return err; 5427 if (wbc->sync_mode == WB_SYNC_ALL) 5428 sync_dirty_buffer(iloc.bh); 5429 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5430 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5431 "IO error syncing inode"); 5432 err = -EIO; 5433 } 5434 brelse(iloc.bh); 5435 } 5436 return err; 5437 } 5438 5439 /* 5440 * ext4_setattr() 5441 * 5442 * Called from notify_change. 5443 * 5444 * We want to trap VFS attempts to truncate the file as soon as 5445 * possible. In particular, we want to make sure that when the VFS 5446 * shrinks i_size, we put the inode on the orphan list and modify 5447 * i_disksize immediately, so that during the subsequent flushing of 5448 * dirty pages and freeing of disk blocks, we can guarantee that any 5449 * commit will leave the blocks being flushed in an unused state on 5450 * disk. (On recovery, the inode will get truncated and the blocks will 5451 * be freed, so we have a strong guarantee that no future commit will 5452 * leave these blocks visible to the user.) 5453 * 5454 * Another thing we have to assure is that if we are in ordered mode 5455 * and inode is still attached to the committing transaction, we must 5456 * we start writeout of all the dirty pages which are being truncated. 5457 * This way we are sure that all the data written in the previous 5458 * transaction are already on disk (truncate waits for pages under 5459 * writeback). 5460 * 5461 * Called with inode->i_mutex down. 5462 */ 5463 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5464 { 5465 struct inode *inode = dentry->d_inode; 5466 int error, rc = 0; 5467 const unsigned int ia_valid = attr->ia_valid; 5468 5469 error = inode_change_ok(inode, attr); 5470 if (error) 5471 return error; 5472 5473 if (is_quota_modification(inode, attr)) 5474 dquot_initialize(inode); 5475 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5476 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5477 handle_t *handle; 5478 5479 /* (user+group)*(old+new) structure, inode write (sb, 5480 * inode block, ? - but truncate inode update has it) */ 5481 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5482 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5483 if (IS_ERR(handle)) { 5484 error = PTR_ERR(handle); 5485 goto err_out; 5486 } 5487 error = dquot_transfer(inode, attr); 5488 if (error) { 5489 ext4_journal_stop(handle); 5490 return error; 5491 } 5492 /* Update corresponding info in inode so that everything is in 5493 * one transaction */ 5494 if (attr->ia_valid & ATTR_UID) 5495 inode->i_uid = attr->ia_uid; 5496 if (attr->ia_valid & ATTR_GID) 5497 inode->i_gid = attr->ia_gid; 5498 error = ext4_mark_inode_dirty(handle, inode); 5499 ext4_journal_stop(handle); 5500 } 5501 5502 if (attr->ia_valid & ATTR_SIZE) { 5503 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5504 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5505 5506 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5507 return -EFBIG; 5508 } 5509 } 5510 5511 if (S_ISREG(inode->i_mode) && 5512 attr->ia_valid & ATTR_SIZE && 5513 (attr->ia_size < inode->i_size || 5514 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) { 5515 handle_t *handle; 5516 5517 handle = ext4_journal_start(inode, 3); 5518 if (IS_ERR(handle)) { 5519 error = PTR_ERR(handle); 5520 goto err_out; 5521 } 5522 5523 error = ext4_orphan_add(handle, inode); 5524 EXT4_I(inode)->i_disksize = attr->ia_size; 5525 rc = ext4_mark_inode_dirty(handle, inode); 5526 if (!error) 5527 error = rc; 5528 ext4_journal_stop(handle); 5529 5530 if (ext4_should_order_data(inode)) { 5531 error = ext4_begin_ordered_truncate(inode, 5532 attr->ia_size); 5533 if (error) { 5534 /* Do as much error cleanup as possible */ 5535 handle = ext4_journal_start(inode, 3); 5536 if (IS_ERR(handle)) { 5537 ext4_orphan_del(NULL, inode); 5538 goto err_out; 5539 } 5540 ext4_orphan_del(handle, inode); 5541 ext4_journal_stop(handle); 5542 goto err_out; 5543 } 5544 } 5545 /* ext4_truncate will clear the flag */ 5546 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) 5547 ext4_truncate(inode); 5548 } 5549 5550 if ((attr->ia_valid & ATTR_SIZE) && 5551 attr->ia_size != i_size_read(inode)) 5552 rc = vmtruncate(inode, attr->ia_size); 5553 5554 if (!rc) { 5555 setattr_copy(inode, attr); 5556 mark_inode_dirty(inode); 5557 } 5558 5559 /* 5560 * If the call to ext4_truncate failed to get a transaction handle at 5561 * all, we need to clean up the in-core orphan list manually. 5562 */ 5563 if (inode->i_nlink) 5564 ext4_orphan_del(NULL, inode); 5565 5566 if (!rc && (ia_valid & ATTR_MODE)) 5567 rc = ext4_acl_chmod(inode); 5568 5569 err_out: 5570 ext4_std_error(inode->i_sb, error); 5571 if (!error) 5572 error = rc; 5573 return error; 5574 } 5575 5576 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5577 struct kstat *stat) 5578 { 5579 struct inode *inode; 5580 unsigned long delalloc_blocks; 5581 5582 inode = dentry->d_inode; 5583 generic_fillattr(inode, stat); 5584 5585 /* 5586 * We can't update i_blocks if the block allocation is delayed 5587 * otherwise in the case of system crash before the real block 5588 * allocation is done, we will have i_blocks inconsistent with 5589 * on-disk file blocks. 5590 * We always keep i_blocks updated together with real 5591 * allocation. But to not confuse with user, stat 5592 * will return the blocks that include the delayed allocation 5593 * blocks for this file. 5594 */ 5595 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5596 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5597 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5598 5599 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5600 return 0; 5601 } 5602 5603 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5604 int chunk) 5605 { 5606 int indirects; 5607 5608 /* if nrblocks are contiguous */ 5609 if (chunk) { 5610 /* 5611 * With N contiguous data blocks, it need at most 5612 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5613 * 2 dindirect blocks 5614 * 1 tindirect block 5615 */ 5616 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5617 return indirects + 3; 5618 } 5619 /* 5620 * if nrblocks are not contiguous, worse case, each block touch 5621 * a indirect block, and each indirect block touch a double indirect 5622 * block, plus a triple indirect block 5623 */ 5624 indirects = nrblocks * 2 + 1; 5625 return indirects; 5626 } 5627 5628 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5629 { 5630 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5631 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5632 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5633 } 5634 5635 /* 5636 * Account for index blocks, block groups bitmaps and block group 5637 * descriptor blocks if modify datablocks and index blocks 5638 * worse case, the indexs blocks spread over different block groups 5639 * 5640 * If datablocks are discontiguous, they are possible to spread over 5641 * different block groups too. If they are contiuguous, with flexbg, 5642 * they could still across block group boundary. 5643 * 5644 * Also account for superblock, inode, quota and xattr blocks 5645 */ 5646 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5647 { 5648 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5649 int gdpblocks; 5650 int idxblocks; 5651 int ret = 0; 5652 5653 /* 5654 * How many index blocks need to touch to modify nrblocks? 5655 * The "Chunk" flag indicating whether the nrblocks is 5656 * physically contiguous on disk 5657 * 5658 * For Direct IO and fallocate, they calls get_block to allocate 5659 * one single extent at a time, so they could set the "Chunk" flag 5660 */ 5661 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5662 5663 ret = idxblocks; 5664 5665 /* 5666 * Now let's see how many group bitmaps and group descriptors need 5667 * to account 5668 */ 5669 groups = idxblocks; 5670 if (chunk) 5671 groups += 1; 5672 else 5673 groups += nrblocks; 5674 5675 gdpblocks = groups; 5676 if (groups > ngroups) 5677 groups = ngroups; 5678 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5679 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5680 5681 /* bitmaps and block group descriptor blocks */ 5682 ret += groups + gdpblocks; 5683 5684 /* Blocks for super block, inode, quota and xattr blocks */ 5685 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5686 5687 return ret; 5688 } 5689 5690 /* 5691 * Calulate the total number of credits to reserve to fit 5692 * the modification of a single pages into a single transaction, 5693 * which may include multiple chunks of block allocations. 5694 * 5695 * This could be called via ext4_write_begin() 5696 * 5697 * We need to consider the worse case, when 5698 * one new block per extent. 5699 */ 5700 int ext4_writepage_trans_blocks(struct inode *inode) 5701 { 5702 int bpp = ext4_journal_blocks_per_page(inode); 5703 int ret; 5704 5705 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5706 5707 /* Account for data blocks for journalled mode */ 5708 if (ext4_should_journal_data(inode)) 5709 ret += bpp; 5710 return ret; 5711 } 5712 5713 /* 5714 * Calculate the journal credits for a chunk of data modification. 5715 * 5716 * This is called from DIO, fallocate or whoever calling 5717 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5718 * 5719 * journal buffers for data blocks are not included here, as DIO 5720 * and fallocate do no need to journal data buffers. 5721 */ 5722 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5723 { 5724 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5725 } 5726 5727 /* 5728 * The caller must have previously called ext4_reserve_inode_write(). 5729 * Give this, we know that the caller already has write access to iloc->bh. 5730 */ 5731 int ext4_mark_iloc_dirty(handle_t *handle, 5732 struct inode *inode, struct ext4_iloc *iloc) 5733 { 5734 int err = 0; 5735 5736 if (test_opt(inode->i_sb, I_VERSION)) 5737 inode_inc_iversion(inode); 5738 5739 /* the do_update_inode consumes one bh->b_count */ 5740 get_bh(iloc->bh); 5741 5742 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5743 err = ext4_do_update_inode(handle, inode, iloc); 5744 put_bh(iloc->bh); 5745 return err; 5746 } 5747 5748 /* 5749 * On success, We end up with an outstanding reference count against 5750 * iloc->bh. This _must_ be cleaned up later. 5751 */ 5752 5753 int 5754 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5755 struct ext4_iloc *iloc) 5756 { 5757 int err; 5758 5759 err = ext4_get_inode_loc(inode, iloc); 5760 if (!err) { 5761 BUFFER_TRACE(iloc->bh, "get_write_access"); 5762 err = ext4_journal_get_write_access(handle, iloc->bh); 5763 if (err) { 5764 brelse(iloc->bh); 5765 iloc->bh = NULL; 5766 } 5767 } 5768 ext4_std_error(inode->i_sb, err); 5769 return err; 5770 } 5771 5772 /* 5773 * Expand an inode by new_extra_isize bytes. 5774 * Returns 0 on success or negative error number on failure. 5775 */ 5776 static int ext4_expand_extra_isize(struct inode *inode, 5777 unsigned int new_extra_isize, 5778 struct ext4_iloc iloc, 5779 handle_t *handle) 5780 { 5781 struct ext4_inode *raw_inode; 5782 struct ext4_xattr_ibody_header *header; 5783 5784 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5785 return 0; 5786 5787 raw_inode = ext4_raw_inode(&iloc); 5788 5789 header = IHDR(inode, raw_inode); 5790 5791 /* No extended attributes present */ 5792 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5793 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5794 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5795 new_extra_isize); 5796 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5797 return 0; 5798 } 5799 5800 /* try to expand with EAs present */ 5801 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5802 raw_inode, handle); 5803 } 5804 5805 /* 5806 * What we do here is to mark the in-core inode as clean with respect to inode 5807 * dirtiness (it may still be data-dirty). 5808 * This means that the in-core inode may be reaped by prune_icache 5809 * without having to perform any I/O. This is a very good thing, 5810 * because *any* task may call prune_icache - even ones which 5811 * have a transaction open against a different journal. 5812 * 5813 * Is this cheating? Not really. Sure, we haven't written the 5814 * inode out, but prune_icache isn't a user-visible syncing function. 5815 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5816 * we start and wait on commits. 5817 * 5818 * Is this efficient/effective? Well, we're being nice to the system 5819 * by cleaning up our inodes proactively so they can be reaped 5820 * without I/O. But we are potentially leaving up to five seconds' 5821 * worth of inodes floating about which prune_icache wants us to 5822 * write out. One way to fix that would be to get prune_icache() 5823 * to do a write_super() to free up some memory. It has the desired 5824 * effect. 5825 */ 5826 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5827 { 5828 struct ext4_iloc iloc; 5829 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5830 static unsigned int mnt_count; 5831 int err, ret; 5832 5833 might_sleep(); 5834 err = ext4_reserve_inode_write(handle, inode, &iloc); 5835 if (ext4_handle_valid(handle) && 5836 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5837 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5838 /* 5839 * We need extra buffer credits since we may write into EA block 5840 * with this same handle. If journal_extend fails, then it will 5841 * only result in a minor loss of functionality for that inode. 5842 * If this is felt to be critical, then e2fsck should be run to 5843 * force a large enough s_min_extra_isize. 5844 */ 5845 if ((jbd2_journal_extend(handle, 5846 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5847 ret = ext4_expand_extra_isize(inode, 5848 sbi->s_want_extra_isize, 5849 iloc, handle); 5850 if (ret) { 5851 ext4_set_inode_state(inode, 5852 EXT4_STATE_NO_EXPAND); 5853 if (mnt_count != 5854 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5855 ext4_warning(inode->i_sb, 5856 "Unable to expand inode %lu. Delete" 5857 " some EAs or run e2fsck.", 5858 inode->i_ino); 5859 mnt_count = 5860 le16_to_cpu(sbi->s_es->s_mnt_count); 5861 } 5862 } 5863 } 5864 } 5865 if (!err) 5866 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5867 return err; 5868 } 5869 5870 /* 5871 * ext4_dirty_inode() is called from __mark_inode_dirty() 5872 * 5873 * We're really interested in the case where a file is being extended. 5874 * i_size has been changed by generic_commit_write() and we thus need 5875 * to include the updated inode in the current transaction. 5876 * 5877 * Also, dquot_alloc_block() will always dirty the inode when blocks 5878 * are allocated to the file. 5879 * 5880 * If the inode is marked synchronous, we don't honour that here - doing 5881 * so would cause a commit on atime updates, which we don't bother doing. 5882 * We handle synchronous inodes at the highest possible level. 5883 */ 5884 void ext4_dirty_inode(struct inode *inode) 5885 { 5886 handle_t *handle; 5887 5888 handle = ext4_journal_start(inode, 2); 5889 if (IS_ERR(handle)) 5890 goto out; 5891 5892 ext4_mark_inode_dirty(handle, inode); 5893 5894 ext4_journal_stop(handle); 5895 out: 5896 return; 5897 } 5898 5899 #if 0 5900 /* 5901 * Bind an inode's backing buffer_head into this transaction, to prevent 5902 * it from being flushed to disk early. Unlike 5903 * ext4_reserve_inode_write, this leaves behind no bh reference and 5904 * returns no iloc structure, so the caller needs to repeat the iloc 5905 * lookup to mark the inode dirty later. 5906 */ 5907 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5908 { 5909 struct ext4_iloc iloc; 5910 5911 int err = 0; 5912 if (handle) { 5913 err = ext4_get_inode_loc(inode, &iloc); 5914 if (!err) { 5915 BUFFER_TRACE(iloc.bh, "get_write_access"); 5916 err = jbd2_journal_get_write_access(handle, iloc.bh); 5917 if (!err) 5918 err = ext4_handle_dirty_metadata(handle, 5919 NULL, 5920 iloc.bh); 5921 brelse(iloc.bh); 5922 } 5923 } 5924 ext4_std_error(inode->i_sb, err); 5925 return err; 5926 } 5927 #endif 5928 5929 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5930 { 5931 journal_t *journal; 5932 handle_t *handle; 5933 int err; 5934 5935 /* 5936 * We have to be very careful here: changing a data block's 5937 * journaling status dynamically is dangerous. If we write a 5938 * data block to the journal, change the status and then delete 5939 * that block, we risk forgetting to revoke the old log record 5940 * from the journal and so a subsequent replay can corrupt data. 5941 * So, first we make sure that the journal is empty and that 5942 * nobody is changing anything. 5943 */ 5944 5945 journal = EXT4_JOURNAL(inode); 5946 if (!journal) 5947 return 0; 5948 if (is_journal_aborted(journal)) 5949 return -EROFS; 5950 5951 jbd2_journal_lock_updates(journal); 5952 jbd2_journal_flush(journal); 5953 5954 /* 5955 * OK, there are no updates running now, and all cached data is 5956 * synced to disk. We are now in a completely consistent state 5957 * which doesn't have anything in the journal, and we know that 5958 * no filesystem updates are running, so it is safe to modify 5959 * the inode's in-core data-journaling state flag now. 5960 */ 5961 5962 if (val) 5963 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5964 else 5965 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5966 ext4_set_aops(inode); 5967 5968 jbd2_journal_unlock_updates(journal); 5969 5970 /* Finally we can mark the inode as dirty. */ 5971 5972 handle = ext4_journal_start(inode, 1); 5973 if (IS_ERR(handle)) 5974 return PTR_ERR(handle); 5975 5976 err = ext4_mark_inode_dirty(handle, inode); 5977 ext4_handle_sync(handle); 5978 ext4_journal_stop(handle); 5979 ext4_std_error(inode->i_sb, err); 5980 5981 return err; 5982 } 5983 5984 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5985 { 5986 return !buffer_mapped(bh); 5987 } 5988 5989 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5990 { 5991 struct page *page = vmf->page; 5992 loff_t size; 5993 unsigned long len; 5994 int ret = -EINVAL; 5995 void *fsdata; 5996 struct file *file = vma->vm_file; 5997 struct inode *inode = file->f_path.dentry->d_inode; 5998 struct address_space *mapping = inode->i_mapping; 5999 6000 /* 6001 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 6002 * get i_mutex because we are already holding mmap_sem. 6003 */ 6004 down_read(&inode->i_alloc_sem); 6005 size = i_size_read(inode); 6006 if (page->mapping != mapping || size <= page_offset(page) 6007 || !PageUptodate(page)) { 6008 /* page got truncated from under us? */ 6009 goto out_unlock; 6010 } 6011 ret = 0; 6012 if (PageMappedToDisk(page)) 6013 goto out_unlock; 6014 6015 if (page->index == size >> PAGE_CACHE_SHIFT) 6016 len = size & ~PAGE_CACHE_MASK; 6017 else 6018 len = PAGE_CACHE_SIZE; 6019 6020 lock_page(page); 6021 /* 6022 * return if we have all the buffers mapped. This avoid 6023 * the need to call write_begin/write_end which does a 6024 * journal_start/journal_stop which can block and take 6025 * long time 6026 */ 6027 if (page_has_buffers(page)) { 6028 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 6029 ext4_bh_unmapped)) { 6030 unlock_page(page); 6031 goto out_unlock; 6032 } 6033 } 6034 unlock_page(page); 6035 /* 6036 * OK, we need to fill the hole... Do write_begin write_end 6037 * to do block allocation/reservation.We are not holding 6038 * inode.i__mutex here. That allow * parallel write_begin, 6039 * write_end call. lock_page prevent this from happening 6040 * on the same page though 6041 */ 6042 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 6043 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 6044 if (ret < 0) 6045 goto out_unlock; 6046 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 6047 len, len, page, fsdata); 6048 if (ret < 0) 6049 goto out_unlock; 6050 ret = 0; 6051 out_unlock: 6052 if (ret) 6053 ret = VM_FAULT_SIGBUS; 6054 up_read(&inode->i_alloc_sem); 6055 return ret; 6056 } 6057