xref: /linux/fs/ext4/inode.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 					      loff_t new_size)
55 {
56 	return jbd2_journal_begin_ordered_truncate(
57 					EXT4_SB(inode->i_sb)->s_journal,
58 					&EXT4_I(inode)->jinode,
59 					new_size);
60 }
61 
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 
64 /*
65  * Test whether an inode is a fast symlink.
66  */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 		(inode->i_sb->s_blocksize >> 9) : 0;
71 
72 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74 
75 /*
76  * Work out how many blocks we need to proceed with the next chunk of a
77  * truncate transaction.
78  */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81 	ext4_lblk_t needed;
82 
83 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84 
85 	/* Give ourselves just enough room to cope with inodes in which
86 	 * i_blocks is corrupt: we've seen disk corruptions in the past
87 	 * which resulted in random data in an inode which looked enough
88 	 * like a regular file for ext4 to try to delete it.  Things
89 	 * will go a bit crazy if that happens, but at least we should
90 	 * try not to panic the whole kernel. */
91 	if (needed < 2)
92 		needed = 2;
93 
94 	/* But we need to bound the transaction so we don't overflow the
95 	 * journal. */
96 	if (needed > EXT4_MAX_TRANS_DATA)
97 		needed = EXT4_MAX_TRANS_DATA;
98 
99 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101 
102 /*
103  * Truncate transactions can be complex and absolutely huge.  So we need to
104  * be able to restart the transaction at a conventient checkpoint to make
105  * sure we don't overflow the journal.
106  *
107  * start_transaction gets us a new handle for a truncate transaction,
108  * and extend_transaction tries to extend the existing one a bit.  If
109  * extend fails, we need to propagate the failure up and restart the
110  * transaction in the top-level truncate loop. --sct
111  */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114 	handle_t *result;
115 
116 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 	if (!IS_ERR(result))
118 		return result;
119 
120 	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 	return result;
122 }
123 
124 /*
125  * Try to extend this transaction for the purposes of truncation.
126  *
127  * Returns 0 if we managed to create more room.  If we can't create more
128  * room, and the transaction must be restarted we return 1.
129  */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132 	if (!ext4_handle_valid(handle))
133 		return 0;
134 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 		return 0;
136 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 		return 0;
138 	return 1;
139 }
140 
141 /*
142  * Restart the transaction associated with *handle.  This does a commit,
143  * so before we call here everything must be consistently dirtied against
144  * this transaction.
145  */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 				 int nblocks)
148 {
149 	int ret;
150 
151 	/*
152 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153 	 * moment, get_block can be called only for blocks inside i_size since
154 	 * page cache has been already dropped and writes are blocked by
155 	 * i_mutex. So we can safely drop the i_data_sem here.
156 	 */
157 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 	jbd_debug(2, "restarting handle %p\n", handle);
159 	up_write(&EXT4_I(inode)->i_data_sem);
160 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 	down_write(&EXT4_I(inode)->i_data_sem);
162 	ext4_discard_preallocations(inode);
163 
164 	return ret;
165 }
166 
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_evict_inode(struct inode *inode)
171 {
172 	handle_t *handle;
173 	int err;
174 
175 	if (inode->i_nlink) {
176 		truncate_inode_pages(&inode->i_data, 0);
177 		goto no_delete;
178 	}
179 
180 	if (!is_bad_inode(inode))
181 		dquot_initialize(inode);
182 
183 	if (ext4_should_order_data(inode))
184 		ext4_begin_ordered_truncate(inode, 0);
185 	truncate_inode_pages(&inode->i_data, 0);
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 
190 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
191 	if (IS_ERR(handle)) {
192 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
193 		/*
194 		 * If we're going to skip the normal cleanup, we still need to
195 		 * make sure that the in-core orphan linked list is properly
196 		 * cleaned up.
197 		 */
198 		ext4_orphan_del(NULL, inode);
199 		goto no_delete;
200 	}
201 
202 	if (IS_SYNC(inode))
203 		ext4_handle_sync(handle);
204 	inode->i_size = 0;
205 	err = ext4_mark_inode_dirty(handle, inode);
206 	if (err) {
207 		ext4_warning(inode->i_sb,
208 			     "couldn't mark inode dirty (err %d)", err);
209 		goto stop_handle;
210 	}
211 	if (inode->i_blocks)
212 		ext4_truncate(inode);
213 
214 	/*
215 	 * ext4_ext_truncate() doesn't reserve any slop when it
216 	 * restarts journal transactions; therefore there may not be
217 	 * enough credits left in the handle to remove the inode from
218 	 * the orphan list and set the dtime field.
219 	 */
220 	if (!ext4_handle_has_enough_credits(handle, 3)) {
221 		err = ext4_journal_extend(handle, 3);
222 		if (err > 0)
223 			err = ext4_journal_restart(handle, 3);
224 		if (err != 0) {
225 			ext4_warning(inode->i_sb,
226 				     "couldn't extend journal (err %d)", err);
227 		stop_handle:
228 			ext4_journal_stop(handle);
229 			ext4_orphan_del(NULL, inode);
230 			goto no_delete;
231 		}
232 	}
233 
234 	/*
235 	 * Kill off the orphan record which ext4_truncate created.
236 	 * AKPM: I think this can be inside the above `if'.
237 	 * Note that ext4_orphan_del() has to be able to cope with the
238 	 * deletion of a non-existent orphan - this is because we don't
239 	 * know if ext4_truncate() actually created an orphan record.
240 	 * (Well, we could do this if we need to, but heck - it works)
241 	 */
242 	ext4_orphan_del(handle, inode);
243 	EXT4_I(inode)->i_dtime	= get_seconds();
244 
245 	/*
246 	 * One subtle ordering requirement: if anything has gone wrong
247 	 * (transaction abort, IO errors, whatever), then we can still
248 	 * do these next steps (the fs will already have been marked as
249 	 * having errors), but we can't free the inode if the mark_dirty
250 	 * fails.
251 	 */
252 	if (ext4_mark_inode_dirty(handle, inode))
253 		/* If that failed, just do the required in-core inode clear. */
254 		ext4_clear_inode(inode);
255 	else
256 		ext4_free_inode(handle, inode);
257 	ext4_journal_stop(handle);
258 	return;
259 no_delete:
260 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
261 }
262 
263 typedef struct {
264 	__le32	*p;
265 	__le32	key;
266 	struct buffer_head *bh;
267 } Indirect;
268 
269 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
270 {
271 	p->key = *(p->p = v);
272 	p->bh = bh;
273 }
274 
275 /**
276  *	ext4_block_to_path - parse the block number into array of offsets
277  *	@inode: inode in question (we are only interested in its superblock)
278  *	@i_block: block number to be parsed
279  *	@offsets: array to store the offsets in
280  *	@boundary: set this non-zero if the referred-to block is likely to be
281  *	       followed (on disk) by an indirect block.
282  *
283  *	To store the locations of file's data ext4 uses a data structure common
284  *	for UNIX filesystems - tree of pointers anchored in the inode, with
285  *	data blocks at leaves and indirect blocks in intermediate nodes.
286  *	This function translates the block number into path in that tree -
287  *	return value is the path length and @offsets[n] is the offset of
288  *	pointer to (n+1)th node in the nth one. If @block is out of range
289  *	(negative or too large) warning is printed and zero returned.
290  *
291  *	Note: function doesn't find node addresses, so no IO is needed. All
292  *	we need to know is the capacity of indirect blocks (taken from the
293  *	inode->i_sb).
294  */
295 
296 /*
297  * Portability note: the last comparison (check that we fit into triple
298  * indirect block) is spelled differently, because otherwise on an
299  * architecture with 32-bit longs and 8Kb pages we might get into trouble
300  * if our filesystem had 8Kb blocks. We might use long long, but that would
301  * kill us on x86. Oh, well, at least the sign propagation does not matter -
302  * i_block would have to be negative in the very beginning, so we would not
303  * get there at all.
304  */
305 
306 static int ext4_block_to_path(struct inode *inode,
307 			      ext4_lblk_t i_block,
308 			      ext4_lblk_t offsets[4], int *boundary)
309 {
310 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
311 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
312 	const long direct_blocks = EXT4_NDIR_BLOCKS,
313 		indirect_blocks = ptrs,
314 		double_blocks = (1 << (ptrs_bits * 2));
315 	int n = 0;
316 	int final = 0;
317 
318 	if (i_block < direct_blocks) {
319 		offsets[n++] = i_block;
320 		final = direct_blocks;
321 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
322 		offsets[n++] = EXT4_IND_BLOCK;
323 		offsets[n++] = i_block;
324 		final = ptrs;
325 	} else if ((i_block -= indirect_blocks) < double_blocks) {
326 		offsets[n++] = EXT4_DIND_BLOCK;
327 		offsets[n++] = i_block >> ptrs_bits;
328 		offsets[n++] = i_block & (ptrs - 1);
329 		final = ptrs;
330 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
331 		offsets[n++] = EXT4_TIND_BLOCK;
332 		offsets[n++] = i_block >> (ptrs_bits * 2);
333 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
334 		offsets[n++] = i_block & (ptrs - 1);
335 		final = ptrs;
336 	} else {
337 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
338 			     i_block + direct_blocks +
339 			     indirect_blocks + double_blocks, inode->i_ino);
340 	}
341 	if (boundary)
342 		*boundary = final - 1 - (i_block & (ptrs - 1));
343 	return n;
344 }
345 
346 static int __ext4_check_blockref(const char *function, unsigned int line,
347 				 struct inode *inode,
348 				 __le32 *p, unsigned int max)
349 {
350 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
351 	__le32 *bref = p;
352 	unsigned int blk;
353 
354 	while (bref < p+max) {
355 		blk = le32_to_cpu(*bref++);
356 		if (blk &&
357 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
358 						    blk, 1))) {
359 			es->s_last_error_block = cpu_to_le64(blk);
360 			ext4_error_inode(inode, function, line, blk,
361 					 "invalid block");
362 			return -EIO;
363 		}
364 	}
365 	return 0;
366 }
367 
368 
369 #define ext4_check_indirect_blockref(inode, bh)                         \
370 	__ext4_check_blockref(__func__, __LINE__, inode,		\
371 			      (__le32 *)(bh)->b_data,			\
372 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
373 
374 #define ext4_check_inode_blockref(inode)                                \
375 	__ext4_check_blockref(__func__, __LINE__, inode,		\
376 			      EXT4_I(inode)->i_data,			\
377 			      EXT4_NDIR_BLOCKS)
378 
379 /**
380  *	ext4_get_branch - read the chain of indirect blocks leading to data
381  *	@inode: inode in question
382  *	@depth: depth of the chain (1 - direct pointer, etc.)
383  *	@offsets: offsets of pointers in inode/indirect blocks
384  *	@chain: place to store the result
385  *	@err: here we store the error value
386  *
387  *	Function fills the array of triples <key, p, bh> and returns %NULL
388  *	if everything went OK or the pointer to the last filled triple
389  *	(incomplete one) otherwise. Upon the return chain[i].key contains
390  *	the number of (i+1)-th block in the chain (as it is stored in memory,
391  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
392  *	number (it points into struct inode for i==0 and into the bh->b_data
393  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
394  *	block for i>0 and NULL for i==0. In other words, it holds the block
395  *	numbers of the chain, addresses they were taken from (and where we can
396  *	verify that chain did not change) and buffer_heads hosting these
397  *	numbers.
398  *
399  *	Function stops when it stumbles upon zero pointer (absent block)
400  *		(pointer to last triple returned, *@err == 0)
401  *	or when it gets an IO error reading an indirect block
402  *		(ditto, *@err == -EIO)
403  *	or when it reads all @depth-1 indirect blocks successfully and finds
404  *	the whole chain, all way to the data (returns %NULL, *err == 0).
405  *
406  *      Need to be called with
407  *      down_read(&EXT4_I(inode)->i_data_sem)
408  */
409 static Indirect *ext4_get_branch(struct inode *inode, int depth,
410 				 ext4_lblk_t  *offsets,
411 				 Indirect chain[4], int *err)
412 {
413 	struct super_block *sb = inode->i_sb;
414 	Indirect *p = chain;
415 	struct buffer_head *bh;
416 
417 	*err = 0;
418 	/* i_data is not going away, no lock needed */
419 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
420 	if (!p->key)
421 		goto no_block;
422 	while (--depth) {
423 		bh = sb_getblk(sb, le32_to_cpu(p->key));
424 		if (unlikely(!bh))
425 			goto failure;
426 
427 		if (!bh_uptodate_or_lock(bh)) {
428 			if (bh_submit_read(bh) < 0) {
429 				put_bh(bh);
430 				goto failure;
431 			}
432 			/* validate block references */
433 			if (ext4_check_indirect_blockref(inode, bh)) {
434 				put_bh(bh);
435 				goto failure;
436 			}
437 		}
438 
439 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
440 		/* Reader: end */
441 		if (!p->key)
442 			goto no_block;
443 	}
444 	return NULL;
445 
446 failure:
447 	*err = -EIO;
448 no_block:
449 	return p;
450 }
451 
452 /**
453  *	ext4_find_near - find a place for allocation with sufficient locality
454  *	@inode: owner
455  *	@ind: descriptor of indirect block.
456  *
457  *	This function returns the preferred place for block allocation.
458  *	It is used when heuristic for sequential allocation fails.
459  *	Rules are:
460  *	  + if there is a block to the left of our position - allocate near it.
461  *	  + if pointer will live in indirect block - allocate near that block.
462  *	  + if pointer will live in inode - allocate in the same
463  *	    cylinder group.
464  *
465  * In the latter case we colour the starting block by the callers PID to
466  * prevent it from clashing with concurrent allocations for a different inode
467  * in the same block group.   The PID is used here so that functionally related
468  * files will be close-by on-disk.
469  *
470  *	Caller must make sure that @ind is valid and will stay that way.
471  */
472 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
473 {
474 	struct ext4_inode_info *ei = EXT4_I(inode);
475 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
476 	__le32 *p;
477 	ext4_fsblk_t bg_start;
478 	ext4_fsblk_t last_block;
479 	ext4_grpblk_t colour;
480 	ext4_group_t block_group;
481 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
482 
483 	/* Try to find previous block */
484 	for (p = ind->p - 1; p >= start; p--) {
485 		if (*p)
486 			return le32_to_cpu(*p);
487 	}
488 
489 	/* No such thing, so let's try location of indirect block */
490 	if (ind->bh)
491 		return ind->bh->b_blocknr;
492 
493 	/*
494 	 * It is going to be referred to from the inode itself? OK, just put it
495 	 * into the same cylinder group then.
496 	 */
497 	block_group = ei->i_block_group;
498 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
499 		block_group &= ~(flex_size-1);
500 		if (S_ISREG(inode->i_mode))
501 			block_group++;
502 	}
503 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
504 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
505 
506 	/*
507 	 * If we are doing delayed allocation, we don't need take
508 	 * colour into account.
509 	 */
510 	if (test_opt(inode->i_sb, DELALLOC))
511 		return bg_start;
512 
513 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
514 		colour = (current->pid % 16) *
515 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
516 	else
517 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
518 	return bg_start + colour;
519 }
520 
521 /**
522  *	ext4_find_goal - find a preferred place for allocation.
523  *	@inode: owner
524  *	@block:  block we want
525  *	@partial: pointer to the last triple within a chain
526  *
527  *	Normally this function find the preferred place for block allocation,
528  *	returns it.
529  *	Because this is only used for non-extent files, we limit the block nr
530  *	to 32 bits.
531  */
532 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
533 				   Indirect *partial)
534 {
535 	ext4_fsblk_t goal;
536 
537 	/*
538 	 * XXX need to get goal block from mballoc's data structures
539 	 */
540 
541 	goal = ext4_find_near(inode, partial);
542 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
543 	return goal;
544 }
545 
546 /**
547  *	ext4_blks_to_allocate: Look up the block map and count the number
548  *	of direct blocks need to be allocated for the given branch.
549  *
550  *	@branch: chain of indirect blocks
551  *	@k: number of blocks need for indirect blocks
552  *	@blks: number of data blocks to be mapped.
553  *	@blocks_to_boundary:  the offset in the indirect block
554  *
555  *	return the total number of blocks to be allocate, including the
556  *	direct and indirect blocks.
557  */
558 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
559 				 int blocks_to_boundary)
560 {
561 	unsigned int count = 0;
562 
563 	/*
564 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
565 	 * then it's clear blocks on that path have not allocated
566 	 */
567 	if (k > 0) {
568 		/* right now we don't handle cross boundary allocation */
569 		if (blks < blocks_to_boundary + 1)
570 			count += blks;
571 		else
572 			count += blocks_to_boundary + 1;
573 		return count;
574 	}
575 
576 	count++;
577 	while (count < blks && count <= blocks_to_boundary &&
578 		le32_to_cpu(*(branch[0].p + count)) == 0) {
579 		count++;
580 	}
581 	return count;
582 }
583 
584 /**
585  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
586  *	@indirect_blks: the number of blocks need to allocate for indirect
587  *			blocks
588  *
589  *	@new_blocks: on return it will store the new block numbers for
590  *	the indirect blocks(if needed) and the first direct block,
591  *	@blks:	on return it will store the total number of allocated
592  *		direct blocks
593  */
594 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
595 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
596 			     int indirect_blks, int blks,
597 			     ext4_fsblk_t new_blocks[4], int *err)
598 {
599 	struct ext4_allocation_request ar;
600 	int target, i;
601 	unsigned long count = 0, blk_allocated = 0;
602 	int index = 0;
603 	ext4_fsblk_t current_block = 0;
604 	int ret = 0;
605 
606 	/*
607 	 * Here we try to allocate the requested multiple blocks at once,
608 	 * on a best-effort basis.
609 	 * To build a branch, we should allocate blocks for
610 	 * the indirect blocks(if not allocated yet), and at least
611 	 * the first direct block of this branch.  That's the
612 	 * minimum number of blocks need to allocate(required)
613 	 */
614 	/* first we try to allocate the indirect blocks */
615 	target = indirect_blks;
616 	while (target > 0) {
617 		count = target;
618 		/* allocating blocks for indirect blocks and direct blocks */
619 		current_block = ext4_new_meta_blocks(handle, inode,
620 							goal, &count, err);
621 		if (*err)
622 			goto failed_out;
623 
624 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
625 			EXT4_ERROR_INODE(inode,
626 					 "current_block %llu + count %lu > %d!",
627 					 current_block, count,
628 					 EXT4_MAX_BLOCK_FILE_PHYS);
629 			*err = -EIO;
630 			goto failed_out;
631 		}
632 
633 		target -= count;
634 		/* allocate blocks for indirect blocks */
635 		while (index < indirect_blks && count) {
636 			new_blocks[index++] = current_block++;
637 			count--;
638 		}
639 		if (count > 0) {
640 			/*
641 			 * save the new block number
642 			 * for the first direct block
643 			 */
644 			new_blocks[index] = current_block;
645 			printk(KERN_INFO "%s returned more blocks than "
646 						"requested\n", __func__);
647 			WARN_ON(1);
648 			break;
649 		}
650 	}
651 
652 	target = blks - count ;
653 	blk_allocated = count;
654 	if (!target)
655 		goto allocated;
656 	/* Now allocate data blocks */
657 	memset(&ar, 0, sizeof(ar));
658 	ar.inode = inode;
659 	ar.goal = goal;
660 	ar.len = target;
661 	ar.logical = iblock;
662 	if (S_ISREG(inode->i_mode))
663 		/* enable in-core preallocation only for regular files */
664 		ar.flags = EXT4_MB_HINT_DATA;
665 
666 	current_block = ext4_mb_new_blocks(handle, &ar, err);
667 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
668 		EXT4_ERROR_INODE(inode,
669 				 "current_block %llu + ar.len %d > %d!",
670 				 current_block, ar.len,
671 				 EXT4_MAX_BLOCK_FILE_PHYS);
672 		*err = -EIO;
673 		goto failed_out;
674 	}
675 
676 	if (*err && (target == blks)) {
677 		/*
678 		 * if the allocation failed and we didn't allocate
679 		 * any blocks before
680 		 */
681 		goto failed_out;
682 	}
683 	if (!*err) {
684 		if (target == blks) {
685 			/*
686 			 * save the new block number
687 			 * for the first direct block
688 			 */
689 			new_blocks[index] = current_block;
690 		}
691 		blk_allocated += ar.len;
692 	}
693 allocated:
694 	/* total number of blocks allocated for direct blocks */
695 	ret = blk_allocated;
696 	*err = 0;
697 	return ret;
698 failed_out:
699 	for (i = 0; i < index; i++)
700 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
701 	return ret;
702 }
703 
704 /**
705  *	ext4_alloc_branch - allocate and set up a chain of blocks.
706  *	@inode: owner
707  *	@indirect_blks: number of allocated indirect blocks
708  *	@blks: number of allocated direct blocks
709  *	@offsets: offsets (in the blocks) to store the pointers to next.
710  *	@branch: place to store the chain in.
711  *
712  *	This function allocates blocks, zeroes out all but the last one,
713  *	links them into chain and (if we are synchronous) writes them to disk.
714  *	In other words, it prepares a branch that can be spliced onto the
715  *	inode. It stores the information about that chain in the branch[], in
716  *	the same format as ext4_get_branch() would do. We are calling it after
717  *	we had read the existing part of chain and partial points to the last
718  *	triple of that (one with zero ->key). Upon the exit we have the same
719  *	picture as after the successful ext4_get_block(), except that in one
720  *	place chain is disconnected - *branch->p is still zero (we did not
721  *	set the last link), but branch->key contains the number that should
722  *	be placed into *branch->p to fill that gap.
723  *
724  *	If allocation fails we free all blocks we've allocated (and forget
725  *	their buffer_heads) and return the error value the from failed
726  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *	as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 			     ext4_lblk_t iblock, int indirect_blks,
731 			     int *blks, ext4_fsblk_t goal,
732 			     ext4_lblk_t *offsets, Indirect *branch)
733 {
734 	int blocksize = inode->i_sb->s_blocksize;
735 	int i, n = 0;
736 	int err = 0;
737 	struct buffer_head *bh;
738 	int num;
739 	ext4_fsblk_t new_blocks[4];
740 	ext4_fsblk_t current_block;
741 
742 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 				*blks, new_blocks, &err);
744 	if (err)
745 		return err;
746 
747 	branch[0].key = cpu_to_le32(new_blocks[0]);
748 	/*
749 	 * metadata blocks and data blocks are allocated.
750 	 */
751 	for (n = 1; n <= indirect_blks;  n++) {
752 		/*
753 		 * Get buffer_head for parent block, zero it out
754 		 * and set the pointer to new one, then send
755 		 * parent to disk.
756 		 */
757 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 		branch[n].bh = bh;
759 		lock_buffer(bh);
760 		BUFFER_TRACE(bh, "call get_create_access");
761 		err = ext4_journal_get_create_access(handle, bh);
762 		if (err) {
763 			/* Don't brelse(bh) here; it's done in
764 			 * ext4_journal_forget() below */
765 			unlock_buffer(bh);
766 			goto failed;
767 		}
768 
769 		memset(bh->b_data, 0, blocksize);
770 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 		branch[n].key = cpu_to_le32(new_blocks[n]);
772 		*branch[n].p = branch[n].key;
773 		if (n == indirect_blks) {
774 			current_block = new_blocks[n];
775 			/*
776 			 * End of chain, update the last new metablock of
777 			 * the chain to point to the new allocated
778 			 * data blocks numbers
779 			 */
780 			for (i = 1; i < num; i++)
781 				*(branch[n].p + i) = cpu_to_le32(++current_block);
782 		}
783 		BUFFER_TRACE(bh, "marking uptodate");
784 		set_buffer_uptodate(bh);
785 		unlock_buffer(bh);
786 
787 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 		err = ext4_handle_dirty_metadata(handle, inode, bh);
789 		if (err)
790 			goto failed;
791 	}
792 	*blks = num;
793 	return err;
794 failed:
795 	/* Allocation failed, free what we already allocated */
796 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
797 	for (i = 1; i <= n ; i++) {
798 		/*
799 		 * branch[i].bh is newly allocated, so there is no
800 		 * need to revoke the block, which is why we don't
801 		 * need to set EXT4_FREE_BLOCKS_METADATA.
802 		 */
803 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
804 				 EXT4_FREE_BLOCKS_FORGET);
805 	}
806 	for (i = n+1; i < indirect_blks; i++)
807 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
808 
809 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
810 
811 	return err;
812 }
813 
814 /**
815  * ext4_splice_branch - splice the allocated branch onto inode.
816  * @inode: owner
817  * @block: (logical) number of block we are adding
818  * @chain: chain of indirect blocks (with a missing link - see
819  *	ext4_alloc_branch)
820  * @where: location of missing link
821  * @num:   number of indirect blocks we are adding
822  * @blks:  number of direct blocks we are adding
823  *
824  * This function fills the missing link and does all housekeeping needed in
825  * inode (->i_blocks, etc.). In case of success we end up with the full
826  * chain to new block and return 0.
827  */
828 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
829 			      ext4_lblk_t block, Indirect *where, int num,
830 			      int blks)
831 {
832 	int i;
833 	int err = 0;
834 	ext4_fsblk_t current_block;
835 
836 	/*
837 	 * If we're splicing into a [td]indirect block (as opposed to the
838 	 * inode) then we need to get write access to the [td]indirect block
839 	 * before the splice.
840 	 */
841 	if (where->bh) {
842 		BUFFER_TRACE(where->bh, "get_write_access");
843 		err = ext4_journal_get_write_access(handle, where->bh);
844 		if (err)
845 			goto err_out;
846 	}
847 	/* That's it */
848 
849 	*where->p = where->key;
850 
851 	/*
852 	 * Update the host buffer_head or inode to point to more just allocated
853 	 * direct blocks blocks
854 	 */
855 	if (num == 0 && blks > 1) {
856 		current_block = le32_to_cpu(where->key) + 1;
857 		for (i = 1; i < blks; i++)
858 			*(where->p + i) = cpu_to_le32(current_block++);
859 	}
860 
861 	/* We are done with atomic stuff, now do the rest of housekeeping */
862 	/* had we spliced it onto indirect block? */
863 	if (where->bh) {
864 		/*
865 		 * If we spliced it onto an indirect block, we haven't
866 		 * altered the inode.  Note however that if it is being spliced
867 		 * onto an indirect block at the very end of the file (the
868 		 * file is growing) then we *will* alter the inode to reflect
869 		 * the new i_size.  But that is not done here - it is done in
870 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
871 		 */
872 		jbd_debug(5, "splicing indirect only\n");
873 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
874 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
875 		if (err)
876 			goto err_out;
877 	} else {
878 		/*
879 		 * OK, we spliced it into the inode itself on a direct block.
880 		 */
881 		ext4_mark_inode_dirty(handle, inode);
882 		jbd_debug(5, "splicing direct\n");
883 	}
884 	return err;
885 
886 err_out:
887 	for (i = 1; i <= num; i++) {
888 		/*
889 		 * branch[i].bh is newly allocated, so there is no
890 		 * need to revoke the block, which is why we don't
891 		 * need to set EXT4_FREE_BLOCKS_METADATA.
892 		 */
893 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
894 				 EXT4_FREE_BLOCKS_FORGET);
895 	}
896 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
897 			 blks, 0);
898 
899 	return err;
900 }
901 
902 /*
903  * The ext4_ind_map_blocks() function handles non-extents inodes
904  * (i.e., using the traditional indirect/double-indirect i_blocks
905  * scheme) for ext4_map_blocks().
906  *
907  * Allocation strategy is simple: if we have to allocate something, we will
908  * have to go the whole way to leaf. So let's do it before attaching anything
909  * to tree, set linkage between the newborn blocks, write them if sync is
910  * required, recheck the path, free and repeat if check fails, otherwise
911  * set the last missing link (that will protect us from any truncate-generated
912  * removals - all blocks on the path are immune now) and possibly force the
913  * write on the parent block.
914  * That has a nice additional property: no special recovery from the failed
915  * allocations is needed - we simply release blocks and do not touch anything
916  * reachable from inode.
917  *
918  * `handle' can be NULL if create == 0.
919  *
920  * return > 0, # of blocks mapped or allocated.
921  * return = 0, if plain lookup failed.
922  * return < 0, error case.
923  *
924  * The ext4_ind_get_blocks() function should be called with
925  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
926  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
927  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
928  * blocks.
929  */
930 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
931 			       struct ext4_map_blocks *map,
932 			       int flags)
933 {
934 	int err = -EIO;
935 	ext4_lblk_t offsets[4];
936 	Indirect chain[4];
937 	Indirect *partial;
938 	ext4_fsblk_t goal;
939 	int indirect_blks;
940 	int blocks_to_boundary = 0;
941 	int depth;
942 	int count = 0;
943 	ext4_fsblk_t first_block = 0;
944 
945 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
946 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
947 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
948 				   &blocks_to_boundary);
949 
950 	if (depth == 0)
951 		goto out;
952 
953 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
954 
955 	/* Simplest case - block found, no allocation needed */
956 	if (!partial) {
957 		first_block = le32_to_cpu(chain[depth - 1].key);
958 		count++;
959 		/*map more blocks*/
960 		while (count < map->m_len && count <= blocks_to_boundary) {
961 			ext4_fsblk_t blk;
962 
963 			blk = le32_to_cpu(*(chain[depth-1].p + count));
964 
965 			if (blk == first_block + count)
966 				count++;
967 			else
968 				break;
969 		}
970 		goto got_it;
971 	}
972 
973 	/* Next simple case - plain lookup or failed read of indirect block */
974 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
975 		goto cleanup;
976 
977 	/*
978 	 * Okay, we need to do block allocation.
979 	*/
980 	goal = ext4_find_goal(inode, map->m_lblk, partial);
981 
982 	/* the number of blocks need to allocate for [d,t]indirect blocks */
983 	indirect_blks = (chain + depth) - partial - 1;
984 
985 	/*
986 	 * Next look up the indirect map to count the totoal number of
987 	 * direct blocks to allocate for this branch.
988 	 */
989 	count = ext4_blks_to_allocate(partial, indirect_blks,
990 				      map->m_len, blocks_to_boundary);
991 	/*
992 	 * Block out ext4_truncate while we alter the tree
993 	 */
994 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
995 				&count, goal,
996 				offsets + (partial - chain), partial);
997 
998 	/*
999 	 * The ext4_splice_branch call will free and forget any buffers
1000 	 * on the new chain if there is a failure, but that risks using
1001 	 * up transaction credits, especially for bitmaps where the
1002 	 * credits cannot be returned.  Can we handle this somehow?  We
1003 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1004 	 */
1005 	if (!err)
1006 		err = ext4_splice_branch(handle, inode, map->m_lblk,
1007 					 partial, indirect_blks, count);
1008 	if (err)
1009 		goto cleanup;
1010 
1011 	map->m_flags |= EXT4_MAP_NEW;
1012 
1013 	ext4_update_inode_fsync_trans(handle, inode, 1);
1014 got_it:
1015 	map->m_flags |= EXT4_MAP_MAPPED;
1016 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1017 	map->m_len = count;
1018 	if (count > blocks_to_boundary)
1019 		map->m_flags |= EXT4_MAP_BOUNDARY;
1020 	err = count;
1021 	/* Clean up and exit */
1022 	partial = chain + depth - 1;	/* the whole chain */
1023 cleanup:
1024 	while (partial > chain) {
1025 		BUFFER_TRACE(partial->bh, "call brelse");
1026 		brelse(partial->bh);
1027 		partial--;
1028 	}
1029 out:
1030 	return err;
1031 }
1032 
1033 #ifdef CONFIG_QUOTA
1034 qsize_t *ext4_get_reserved_space(struct inode *inode)
1035 {
1036 	return &EXT4_I(inode)->i_reserved_quota;
1037 }
1038 #endif
1039 
1040 /*
1041  * Calculate the number of metadata blocks need to reserve
1042  * to allocate a new block at @lblocks for non extent file based file
1043  */
1044 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1045 					      sector_t lblock)
1046 {
1047 	struct ext4_inode_info *ei = EXT4_I(inode);
1048 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1049 	int blk_bits;
1050 
1051 	if (lblock < EXT4_NDIR_BLOCKS)
1052 		return 0;
1053 
1054 	lblock -= EXT4_NDIR_BLOCKS;
1055 
1056 	if (ei->i_da_metadata_calc_len &&
1057 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1058 		ei->i_da_metadata_calc_len++;
1059 		return 0;
1060 	}
1061 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1062 	ei->i_da_metadata_calc_len = 1;
1063 	blk_bits = order_base_2(lblock);
1064 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1065 }
1066 
1067 /*
1068  * Calculate the number of metadata blocks need to reserve
1069  * to allocate a block located at @lblock
1070  */
1071 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1072 {
1073 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1074 		return ext4_ext_calc_metadata_amount(inode, lblock);
1075 
1076 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1077 }
1078 
1079 /*
1080  * Called with i_data_sem down, which is important since we can call
1081  * ext4_discard_preallocations() from here.
1082  */
1083 void ext4_da_update_reserve_space(struct inode *inode,
1084 					int used, int quota_claim)
1085 {
1086 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 	struct ext4_inode_info *ei = EXT4_I(inode);
1088 
1089 	spin_lock(&ei->i_block_reservation_lock);
1090 	trace_ext4_da_update_reserve_space(inode, used);
1091 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1092 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1093 			 "with only %d reserved data blocks\n",
1094 			 __func__, inode->i_ino, used,
1095 			 ei->i_reserved_data_blocks);
1096 		WARN_ON(1);
1097 		used = ei->i_reserved_data_blocks;
1098 	}
1099 
1100 	/* Update per-inode reservations */
1101 	ei->i_reserved_data_blocks -= used;
1102 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1103 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104 			   used + ei->i_allocated_meta_blocks);
1105 	ei->i_allocated_meta_blocks = 0;
1106 
1107 	if (ei->i_reserved_data_blocks == 0) {
1108 		/*
1109 		 * We can release all of the reserved metadata blocks
1110 		 * only when we have written all of the delayed
1111 		 * allocation blocks.
1112 		 */
1113 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1114 				   ei->i_reserved_meta_blocks);
1115 		ei->i_reserved_meta_blocks = 0;
1116 		ei->i_da_metadata_calc_len = 0;
1117 	}
1118 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1119 
1120 	/* Update quota subsystem for data blocks */
1121 	if (quota_claim)
1122 		dquot_claim_block(inode, used);
1123 	else {
1124 		/*
1125 		 * We did fallocate with an offset that is already delayed
1126 		 * allocated. So on delayed allocated writeback we should
1127 		 * not re-claim the quota for fallocated blocks.
1128 		 */
1129 		dquot_release_reservation_block(inode, used);
1130 	}
1131 
1132 	/*
1133 	 * If we have done all the pending block allocations and if
1134 	 * there aren't any writers on the inode, we can discard the
1135 	 * inode's preallocations.
1136 	 */
1137 	if ((ei->i_reserved_data_blocks == 0) &&
1138 	    (atomic_read(&inode->i_writecount) == 0))
1139 		ext4_discard_preallocations(inode);
1140 }
1141 
1142 static int __check_block_validity(struct inode *inode, const char *func,
1143 				unsigned int line,
1144 				struct ext4_map_blocks *map)
1145 {
1146 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1147 				   map->m_len)) {
1148 		ext4_error_inode(inode, func, line, map->m_pblk,
1149 				 "lblock %lu mapped to illegal pblock "
1150 				 "(length %d)", (unsigned long) map->m_lblk,
1151 				 map->m_len);
1152 		return -EIO;
1153 	}
1154 	return 0;
1155 }
1156 
1157 #define check_block_validity(inode, map)	\
1158 	__check_block_validity((inode), __func__, __LINE__, (map))
1159 
1160 /*
1161  * Return the number of contiguous dirty pages in a given inode
1162  * starting at page frame idx.
1163  */
1164 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1165 				    unsigned int max_pages)
1166 {
1167 	struct address_space *mapping = inode->i_mapping;
1168 	pgoff_t	index;
1169 	struct pagevec pvec;
1170 	pgoff_t num = 0;
1171 	int i, nr_pages, done = 0;
1172 
1173 	if (max_pages == 0)
1174 		return 0;
1175 	pagevec_init(&pvec, 0);
1176 	while (!done) {
1177 		index = idx;
1178 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1179 					      PAGECACHE_TAG_DIRTY,
1180 					      (pgoff_t)PAGEVEC_SIZE);
1181 		if (nr_pages == 0)
1182 			break;
1183 		for (i = 0; i < nr_pages; i++) {
1184 			struct page *page = pvec.pages[i];
1185 			struct buffer_head *bh, *head;
1186 
1187 			lock_page(page);
1188 			if (unlikely(page->mapping != mapping) ||
1189 			    !PageDirty(page) ||
1190 			    PageWriteback(page) ||
1191 			    page->index != idx) {
1192 				done = 1;
1193 				unlock_page(page);
1194 				break;
1195 			}
1196 			if (page_has_buffers(page)) {
1197 				bh = head = page_buffers(page);
1198 				do {
1199 					if (!buffer_delay(bh) &&
1200 					    !buffer_unwritten(bh))
1201 						done = 1;
1202 					bh = bh->b_this_page;
1203 				} while (!done && (bh != head));
1204 			}
1205 			unlock_page(page);
1206 			if (done)
1207 				break;
1208 			idx++;
1209 			num++;
1210 			if (num >= max_pages)
1211 				break;
1212 		}
1213 		pagevec_release(&pvec);
1214 	}
1215 	return num;
1216 }
1217 
1218 /*
1219  * The ext4_map_blocks() function tries to look up the requested blocks,
1220  * and returns if the blocks are already mapped.
1221  *
1222  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1223  * and store the allocated blocks in the result buffer head and mark it
1224  * mapped.
1225  *
1226  * If file type is extents based, it will call ext4_ext_map_blocks(),
1227  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1228  * based files
1229  *
1230  * On success, it returns the number of blocks being mapped or allocate.
1231  * if create==0 and the blocks are pre-allocated and uninitialized block,
1232  * the result buffer head is unmapped. If the create ==1, it will make sure
1233  * the buffer head is mapped.
1234  *
1235  * It returns 0 if plain look up failed (blocks have not been allocated), in
1236  * that casem, buffer head is unmapped
1237  *
1238  * It returns the error in case of allocation failure.
1239  */
1240 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1241 		    struct ext4_map_blocks *map, int flags)
1242 {
1243 	int retval;
1244 
1245 	map->m_flags = 0;
1246 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1247 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1248 		  (unsigned long) map->m_lblk);
1249 	/*
1250 	 * Try to see if we can get the block without requesting a new
1251 	 * file system block.
1252 	 */
1253 	down_read((&EXT4_I(inode)->i_data_sem));
1254 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1255 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1256 	} else {
1257 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1258 	}
1259 	up_read((&EXT4_I(inode)->i_data_sem));
1260 
1261 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1262 		int ret = check_block_validity(inode, map);
1263 		if (ret != 0)
1264 			return ret;
1265 	}
1266 
1267 	/* If it is only a block(s) look up */
1268 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1269 		return retval;
1270 
1271 	/*
1272 	 * Returns if the blocks have already allocated
1273 	 *
1274 	 * Note that if blocks have been preallocated
1275 	 * ext4_ext_get_block() returns th create = 0
1276 	 * with buffer head unmapped.
1277 	 */
1278 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1279 		return retval;
1280 
1281 	/*
1282 	 * When we call get_blocks without the create flag, the
1283 	 * BH_Unwritten flag could have gotten set if the blocks
1284 	 * requested were part of a uninitialized extent.  We need to
1285 	 * clear this flag now that we are committed to convert all or
1286 	 * part of the uninitialized extent to be an initialized
1287 	 * extent.  This is because we need to avoid the combination
1288 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1289 	 * set on the buffer_head.
1290 	 */
1291 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1292 
1293 	/*
1294 	 * New blocks allocate and/or writing to uninitialized extent
1295 	 * will possibly result in updating i_data, so we take
1296 	 * the write lock of i_data_sem, and call get_blocks()
1297 	 * with create == 1 flag.
1298 	 */
1299 	down_write((&EXT4_I(inode)->i_data_sem));
1300 
1301 	/*
1302 	 * if the caller is from delayed allocation writeout path
1303 	 * we have already reserved fs blocks for allocation
1304 	 * let the underlying get_block() function know to
1305 	 * avoid double accounting
1306 	 */
1307 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1308 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1309 	/*
1310 	 * We need to check for EXT4 here because migrate
1311 	 * could have changed the inode type in between
1312 	 */
1313 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1314 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1315 	} else {
1316 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1317 
1318 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1319 			/*
1320 			 * We allocated new blocks which will result in
1321 			 * i_data's format changing.  Force the migrate
1322 			 * to fail by clearing migrate flags
1323 			 */
1324 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1325 		}
1326 
1327 		/*
1328 		 * Update reserved blocks/metadata blocks after successful
1329 		 * block allocation which had been deferred till now. We don't
1330 		 * support fallocate for non extent files. So we can update
1331 		 * reserve space here.
1332 		 */
1333 		if ((retval > 0) &&
1334 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1335 			ext4_da_update_reserve_space(inode, retval, 1);
1336 	}
1337 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1338 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1339 
1340 	up_write((&EXT4_I(inode)->i_data_sem));
1341 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1342 		int ret = check_block_validity(inode, map);
1343 		if (ret != 0)
1344 			return ret;
1345 	}
1346 	return retval;
1347 }
1348 
1349 /* Maximum number of blocks we map for direct IO at once. */
1350 #define DIO_MAX_BLOCKS 4096
1351 
1352 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1353 			   struct buffer_head *bh, int flags)
1354 {
1355 	handle_t *handle = ext4_journal_current_handle();
1356 	struct ext4_map_blocks map;
1357 	int ret = 0, started = 0;
1358 	int dio_credits;
1359 
1360 	map.m_lblk = iblock;
1361 	map.m_len = bh->b_size >> inode->i_blkbits;
1362 
1363 	if (flags && !handle) {
1364 		/* Direct IO write... */
1365 		if (map.m_len > DIO_MAX_BLOCKS)
1366 			map.m_len = DIO_MAX_BLOCKS;
1367 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1368 		handle = ext4_journal_start(inode, dio_credits);
1369 		if (IS_ERR(handle)) {
1370 			ret = PTR_ERR(handle);
1371 			return ret;
1372 		}
1373 		started = 1;
1374 	}
1375 
1376 	ret = ext4_map_blocks(handle, inode, &map, flags);
1377 	if (ret > 0) {
1378 		map_bh(bh, inode->i_sb, map.m_pblk);
1379 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1380 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1381 		ret = 0;
1382 	}
1383 	if (started)
1384 		ext4_journal_stop(handle);
1385 	return ret;
1386 }
1387 
1388 int ext4_get_block(struct inode *inode, sector_t iblock,
1389 		   struct buffer_head *bh, int create)
1390 {
1391 	return _ext4_get_block(inode, iblock, bh,
1392 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1393 }
1394 
1395 /*
1396  * `handle' can be NULL if create is zero
1397  */
1398 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1399 				ext4_lblk_t block, int create, int *errp)
1400 {
1401 	struct ext4_map_blocks map;
1402 	struct buffer_head *bh;
1403 	int fatal = 0, err;
1404 
1405 	J_ASSERT(handle != NULL || create == 0);
1406 
1407 	map.m_lblk = block;
1408 	map.m_len = 1;
1409 	err = ext4_map_blocks(handle, inode, &map,
1410 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1411 
1412 	if (err < 0)
1413 		*errp = err;
1414 	if (err <= 0)
1415 		return NULL;
1416 	*errp = 0;
1417 
1418 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1419 	if (!bh) {
1420 		*errp = -EIO;
1421 		return NULL;
1422 	}
1423 	if (map.m_flags & EXT4_MAP_NEW) {
1424 		J_ASSERT(create != 0);
1425 		J_ASSERT(handle != NULL);
1426 
1427 		/*
1428 		 * Now that we do not always journal data, we should
1429 		 * keep in mind whether this should always journal the
1430 		 * new buffer as metadata.  For now, regular file
1431 		 * writes use ext4_get_block instead, so it's not a
1432 		 * problem.
1433 		 */
1434 		lock_buffer(bh);
1435 		BUFFER_TRACE(bh, "call get_create_access");
1436 		fatal = ext4_journal_get_create_access(handle, bh);
1437 		if (!fatal && !buffer_uptodate(bh)) {
1438 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1439 			set_buffer_uptodate(bh);
1440 		}
1441 		unlock_buffer(bh);
1442 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1443 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1444 		if (!fatal)
1445 			fatal = err;
1446 	} else {
1447 		BUFFER_TRACE(bh, "not a new buffer");
1448 	}
1449 	if (fatal) {
1450 		*errp = fatal;
1451 		brelse(bh);
1452 		bh = NULL;
1453 	}
1454 	return bh;
1455 }
1456 
1457 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1458 			       ext4_lblk_t block, int create, int *err)
1459 {
1460 	struct buffer_head *bh;
1461 
1462 	bh = ext4_getblk(handle, inode, block, create, err);
1463 	if (!bh)
1464 		return bh;
1465 	if (buffer_uptodate(bh))
1466 		return bh;
1467 	ll_rw_block(READ_META, 1, &bh);
1468 	wait_on_buffer(bh);
1469 	if (buffer_uptodate(bh))
1470 		return bh;
1471 	put_bh(bh);
1472 	*err = -EIO;
1473 	return NULL;
1474 }
1475 
1476 static int walk_page_buffers(handle_t *handle,
1477 			     struct buffer_head *head,
1478 			     unsigned from,
1479 			     unsigned to,
1480 			     int *partial,
1481 			     int (*fn)(handle_t *handle,
1482 				       struct buffer_head *bh))
1483 {
1484 	struct buffer_head *bh;
1485 	unsigned block_start, block_end;
1486 	unsigned blocksize = head->b_size;
1487 	int err, ret = 0;
1488 	struct buffer_head *next;
1489 
1490 	for (bh = head, block_start = 0;
1491 	     ret == 0 && (bh != head || !block_start);
1492 	     block_start = block_end, bh = next) {
1493 		next = bh->b_this_page;
1494 		block_end = block_start + blocksize;
1495 		if (block_end <= from || block_start >= to) {
1496 			if (partial && !buffer_uptodate(bh))
1497 				*partial = 1;
1498 			continue;
1499 		}
1500 		err = (*fn)(handle, bh);
1501 		if (!ret)
1502 			ret = err;
1503 	}
1504 	return ret;
1505 }
1506 
1507 /*
1508  * To preserve ordering, it is essential that the hole instantiation and
1509  * the data write be encapsulated in a single transaction.  We cannot
1510  * close off a transaction and start a new one between the ext4_get_block()
1511  * and the commit_write().  So doing the jbd2_journal_start at the start of
1512  * prepare_write() is the right place.
1513  *
1514  * Also, this function can nest inside ext4_writepage() ->
1515  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1516  * has generated enough buffer credits to do the whole page.  So we won't
1517  * block on the journal in that case, which is good, because the caller may
1518  * be PF_MEMALLOC.
1519  *
1520  * By accident, ext4 can be reentered when a transaction is open via
1521  * quota file writes.  If we were to commit the transaction while thus
1522  * reentered, there can be a deadlock - we would be holding a quota
1523  * lock, and the commit would never complete if another thread had a
1524  * transaction open and was blocking on the quota lock - a ranking
1525  * violation.
1526  *
1527  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1528  * will _not_ run commit under these circumstances because handle->h_ref
1529  * is elevated.  We'll still have enough credits for the tiny quotafile
1530  * write.
1531  */
1532 static int do_journal_get_write_access(handle_t *handle,
1533 				       struct buffer_head *bh)
1534 {
1535 	int dirty = buffer_dirty(bh);
1536 	int ret;
1537 
1538 	if (!buffer_mapped(bh) || buffer_freed(bh))
1539 		return 0;
1540 	/*
1541 	 * __block_prepare_write() could have dirtied some buffers. Clean
1542 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1543 	 * otherwise about fs integrity issues. Setting of the dirty bit
1544 	 * by __block_prepare_write() isn't a real problem here as we clear
1545 	 * the bit before releasing a page lock and thus writeback cannot
1546 	 * ever write the buffer.
1547 	 */
1548 	if (dirty)
1549 		clear_buffer_dirty(bh);
1550 	ret = ext4_journal_get_write_access(handle, bh);
1551 	if (!ret && dirty)
1552 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1553 	return ret;
1554 }
1555 
1556 /*
1557  * Truncate blocks that were not used by write. We have to truncate the
1558  * pagecache as well so that corresponding buffers get properly unmapped.
1559  */
1560 static void ext4_truncate_failed_write(struct inode *inode)
1561 {
1562 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1563 	ext4_truncate(inode);
1564 }
1565 
1566 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1567 		   struct buffer_head *bh_result, int create);
1568 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1569 			    loff_t pos, unsigned len, unsigned flags,
1570 			    struct page **pagep, void **fsdata)
1571 {
1572 	struct inode *inode = mapping->host;
1573 	int ret, needed_blocks;
1574 	handle_t *handle;
1575 	int retries = 0;
1576 	struct page *page;
1577 	pgoff_t index;
1578 	unsigned from, to;
1579 
1580 	trace_ext4_write_begin(inode, pos, len, flags);
1581 	/*
1582 	 * Reserve one block more for addition to orphan list in case
1583 	 * we allocate blocks but write fails for some reason
1584 	 */
1585 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1586 	index = pos >> PAGE_CACHE_SHIFT;
1587 	from = pos & (PAGE_CACHE_SIZE - 1);
1588 	to = from + len;
1589 
1590 retry:
1591 	handle = ext4_journal_start(inode, needed_blocks);
1592 	if (IS_ERR(handle)) {
1593 		ret = PTR_ERR(handle);
1594 		goto out;
1595 	}
1596 
1597 	/* We cannot recurse into the filesystem as the transaction is already
1598 	 * started */
1599 	flags |= AOP_FLAG_NOFS;
1600 
1601 	page = grab_cache_page_write_begin(mapping, index, flags);
1602 	if (!page) {
1603 		ext4_journal_stop(handle);
1604 		ret = -ENOMEM;
1605 		goto out;
1606 	}
1607 	*pagep = page;
1608 
1609 	if (ext4_should_dioread_nolock(inode))
1610 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1611 	else
1612 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1613 
1614 	if (!ret && ext4_should_journal_data(inode)) {
1615 		ret = walk_page_buffers(handle, page_buffers(page),
1616 				from, to, NULL, do_journal_get_write_access);
1617 	}
1618 
1619 	if (ret) {
1620 		unlock_page(page);
1621 		page_cache_release(page);
1622 		/*
1623 		 * __block_write_begin may have instantiated a few blocks
1624 		 * outside i_size.  Trim these off again. Don't need
1625 		 * i_size_read because we hold i_mutex.
1626 		 *
1627 		 * Add inode to orphan list in case we crash before
1628 		 * truncate finishes
1629 		 */
1630 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1631 			ext4_orphan_add(handle, inode);
1632 
1633 		ext4_journal_stop(handle);
1634 		if (pos + len > inode->i_size) {
1635 			ext4_truncate_failed_write(inode);
1636 			/*
1637 			 * If truncate failed early the inode might
1638 			 * still be on the orphan list; we need to
1639 			 * make sure the inode is removed from the
1640 			 * orphan list in that case.
1641 			 */
1642 			if (inode->i_nlink)
1643 				ext4_orphan_del(NULL, inode);
1644 		}
1645 	}
1646 
1647 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1648 		goto retry;
1649 out:
1650 	return ret;
1651 }
1652 
1653 /* For write_end() in data=journal mode */
1654 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1655 {
1656 	if (!buffer_mapped(bh) || buffer_freed(bh))
1657 		return 0;
1658 	set_buffer_uptodate(bh);
1659 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1660 }
1661 
1662 static int ext4_generic_write_end(struct file *file,
1663 				  struct address_space *mapping,
1664 				  loff_t pos, unsigned len, unsigned copied,
1665 				  struct page *page, void *fsdata)
1666 {
1667 	int i_size_changed = 0;
1668 	struct inode *inode = mapping->host;
1669 	handle_t *handle = ext4_journal_current_handle();
1670 
1671 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1672 
1673 	/*
1674 	 * No need to use i_size_read() here, the i_size
1675 	 * cannot change under us because we hold i_mutex.
1676 	 *
1677 	 * But it's important to update i_size while still holding page lock:
1678 	 * page writeout could otherwise come in and zero beyond i_size.
1679 	 */
1680 	if (pos + copied > inode->i_size) {
1681 		i_size_write(inode, pos + copied);
1682 		i_size_changed = 1;
1683 	}
1684 
1685 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1686 		/* We need to mark inode dirty even if
1687 		 * new_i_size is less that inode->i_size
1688 		 * bu greater than i_disksize.(hint delalloc)
1689 		 */
1690 		ext4_update_i_disksize(inode, (pos + copied));
1691 		i_size_changed = 1;
1692 	}
1693 	unlock_page(page);
1694 	page_cache_release(page);
1695 
1696 	/*
1697 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1698 	 * makes the holding time of page lock longer. Second, it forces lock
1699 	 * ordering of page lock and transaction start for journaling
1700 	 * filesystems.
1701 	 */
1702 	if (i_size_changed)
1703 		ext4_mark_inode_dirty(handle, inode);
1704 
1705 	return copied;
1706 }
1707 
1708 /*
1709  * We need to pick up the new inode size which generic_commit_write gave us
1710  * `file' can be NULL - eg, when called from page_symlink().
1711  *
1712  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1713  * buffers are managed internally.
1714  */
1715 static int ext4_ordered_write_end(struct file *file,
1716 				  struct address_space *mapping,
1717 				  loff_t pos, unsigned len, unsigned copied,
1718 				  struct page *page, void *fsdata)
1719 {
1720 	handle_t *handle = ext4_journal_current_handle();
1721 	struct inode *inode = mapping->host;
1722 	int ret = 0, ret2;
1723 
1724 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1725 	ret = ext4_jbd2_file_inode(handle, inode);
1726 
1727 	if (ret == 0) {
1728 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1729 							page, fsdata);
1730 		copied = ret2;
1731 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1732 			/* if we have allocated more blocks and copied
1733 			 * less. We will have blocks allocated outside
1734 			 * inode->i_size. So truncate them
1735 			 */
1736 			ext4_orphan_add(handle, inode);
1737 		if (ret2 < 0)
1738 			ret = ret2;
1739 	}
1740 	ret2 = ext4_journal_stop(handle);
1741 	if (!ret)
1742 		ret = ret2;
1743 
1744 	if (pos + len > inode->i_size) {
1745 		ext4_truncate_failed_write(inode);
1746 		/*
1747 		 * If truncate failed early the inode might still be
1748 		 * on the orphan list; we need to make sure the inode
1749 		 * is removed from the orphan list in that case.
1750 		 */
1751 		if (inode->i_nlink)
1752 			ext4_orphan_del(NULL, inode);
1753 	}
1754 
1755 
1756 	return ret ? ret : copied;
1757 }
1758 
1759 static int ext4_writeback_write_end(struct file *file,
1760 				    struct address_space *mapping,
1761 				    loff_t pos, unsigned len, unsigned copied,
1762 				    struct page *page, void *fsdata)
1763 {
1764 	handle_t *handle = ext4_journal_current_handle();
1765 	struct inode *inode = mapping->host;
1766 	int ret = 0, ret2;
1767 
1768 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1769 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1770 							page, fsdata);
1771 	copied = ret2;
1772 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1773 		/* if we have allocated more blocks and copied
1774 		 * less. We will have blocks allocated outside
1775 		 * inode->i_size. So truncate them
1776 		 */
1777 		ext4_orphan_add(handle, inode);
1778 
1779 	if (ret2 < 0)
1780 		ret = ret2;
1781 
1782 	ret2 = ext4_journal_stop(handle);
1783 	if (!ret)
1784 		ret = ret2;
1785 
1786 	if (pos + len > inode->i_size) {
1787 		ext4_truncate_failed_write(inode);
1788 		/*
1789 		 * If truncate failed early the inode might still be
1790 		 * on the orphan list; we need to make sure the inode
1791 		 * is removed from the orphan list in that case.
1792 		 */
1793 		if (inode->i_nlink)
1794 			ext4_orphan_del(NULL, inode);
1795 	}
1796 
1797 	return ret ? ret : copied;
1798 }
1799 
1800 static int ext4_journalled_write_end(struct file *file,
1801 				     struct address_space *mapping,
1802 				     loff_t pos, unsigned len, unsigned copied,
1803 				     struct page *page, void *fsdata)
1804 {
1805 	handle_t *handle = ext4_journal_current_handle();
1806 	struct inode *inode = mapping->host;
1807 	int ret = 0, ret2;
1808 	int partial = 0;
1809 	unsigned from, to;
1810 	loff_t new_i_size;
1811 
1812 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1813 	from = pos & (PAGE_CACHE_SIZE - 1);
1814 	to = from + len;
1815 
1816 	if (copied < len) {
1817 		if (!PageUptodate(page))
1818 			copied = 0;
1819 		page_zero_new_buffers(page, from+copied, to);
1820 	}
1821 
1822 	ret = walk_page_buffers(handle, page_buffers(page), from,
1823 				to, &partial, write_end_fn);
1824 	if (!partial)
1825 		SetPageUptodate(page);
1826 	new_i_size = pos + copied;
1827 	if (new_i_size > inode->i_size)
1828 		i_size_write(inode, pos+copied);
1829 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1830 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1831 		ext4_update_i_disksize(inode, new_i_size);
1832 		ret2 = ext4_mark_inode_dirty(handle, inode);
1833 		if (!ret)
1834 			ret = ret2;
1835 	}
1836 
1837 	unlock_page(page);
1838 	page_cache_release(page);
1839 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1840 		/* if we have allocated more blocks and copied
1841 		 * less. We will have blocks allocated outside
1842 		 * inode->i_size. So truncate them
1843 		 */
1844 		ext4_orphan_add(handle, inode);
1845 
1846 	ret2 = ext4_journal_stop(handle);
1847 	if (!ret)
1848 		ret = ret2;
1849 	if (pos + len > inode->i_size) {
1850 		ext4_truncate_failed_write(inode);
1851 		/*
1852 		 * If truncate failed early the inode might still be
1853 		 * on the orphan list; we need to make sure the inode
1854 		 * is removed from the orphan list in that case.
1855 		 */
1856 		if (inode->i_nlink)
1857 			ext4_orphan_del(NULL, inode);
1858 	}
1859 
1860 	return ret ? ret : copied;
1861 }
1862 
1863 /*
1864  * Reserve a single block located at lblock
1865  */
1866 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1867 {
1868 	int retries = 0;
1869 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1870 	struct ext4_inode_info *ei = EXT4_I(inode);
1871 	unsigned long md_needed;
1872 	int ret;
1873 
1874 	/*
1875 	 * recalculate the amount of metadata blocks to reserve
1876 	 * in order to allocate nrblocks
1877 	 * worse case is one extent per block
1878 	 */
1879 repeat:
1880 	spin_lock(&ei->i_block_reservation_lock);
1881 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1882 	trace_ext4_da_reserve_space(inode, md_needed);
1883 	spin_unlock(&ei->i_block_reservation_lock);
1884 
1885 	/*
1886 	 * We will charge metadata quota at writeout time; this saves
1887 	 * us from metadata over-estimation, though we may go over by
1888 	 * a small amount in the end.  Here we just reserve for data.
1889 	 */
1890 	ret = dquot_reserve_block(inode, 1);
1891 	if (ret)
1892 		return ret;
1893 	/*
1894 	 * We do still charge estimated metadata to the sb though;
1895 	 * we cannot afford to run out of free blocks.
1896 	 */
1897 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1898 		dquot_release_reservation_block(inode, 1);
1899 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1900 			yield();
1901 			goto repeat;
1902 		}
1903 		return -ENOSPC;
1904 	}
1905 	spin_lock(&ei->i_block_reservation_lock);
1906 	ei->i_reserved_data_blocks++;
1907 	ei->i_reserved_meta_blocks += md_needed;
1908 	spin_unlock(&ei->i_block_reservation_lock);
1909 
1910 	return 0;       /* success */
1911 }
1912 
1913 static void ext4_da_release_space(struct inode *inode, int to_free)
1914 {
1915 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1916 	struct ext4_inode_info *ei = EXT4_I(inode);
1917 
1918 	if (!to_free)
1919 		return;		/* Nothing to release, exit */
1920 
1921 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1922 
1923 	trace_ext4_da_release_space(inode, to_free);
1924 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1925 		/*
1926 		 * if there aren't enough reserved blocks, then the
1927 		 * counter is messed up somewhere.  Since this
1928 		 * function is called from invalidate page, it's
1929 		 * harmless to return without any action.
1930 		 */
1931 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1932 			 "ino %lu, to_free %d with only %d reserved "
1933 			 "data blocks\n", inode->i_ino, to_free,
1934 			 ei->i_reserved_data_blocks);
1935 		WARN_ON(1);
1936 		to_free = ei->i_reserved_data_blocks;
1937 	}
1938 	ei->i_reserved_data_blocks -= to_free;
1939 
1940 	if (ei->i_reserved_data_blocks == 0) {
1941 		/*
1942 		 * We can release all of the reserved metadata blocks
1943 		 * only when we have written all of the delayed
1944 		 * allocation blocks.
1945 		 */
1946 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1947 				   ei->i_reserved_meta_blocks);
1948 		ei->i_reserved_meta_blocks = 0;
1949 		ei->i_da_metadata_calc_len = 0;
1950 	}
1951 
1952 	/* update fs dirty data blocks counter */
1953 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1954 
1955 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1956 
1957 	dquot_release_reservation_block(inode, to_free);
1958 }
1959 
1960 static void ext4_da_page_release_reservation(struct page *page,
1961 					     unsigned long offset)
1962 {
1963 	int to_release = 0;
1964 	struct buffer_head *head, *bh;
1965 	unsigned int curr_off = 0;
1966 
1967 	head = page_buffers(page);
1968 	bh = head;
1969 	do {
1970 		unsigned int next_off = curr_off + bh->b_size;
1971 
1972 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1973 			to_release++;
1974 			clear_buffer_delay(bh);
1975 		}
1976 		curr_off = next_off;
1977 	} while ((bh = bh->b_this_page) != head);
1978 	ext4_da_release_space(page->mapping->host, to_release);
1979 }
1980 
1981 /*
1982  * Delayed allocation stuff
1983  */
1984 
1985 /*
1986  * mpage_da_submit_io - walks through extent of pages and try to write
1987  * them with writepage() call back
1988  *
1989  * @mpd->inode: inode
1990  * @mpd->first_page: first page of the extent
1991  * @mpd->next_page: page after the last page of the extent
1992  *
1993  * By the time mpage_da_submit_io() is called we expect all blocks
1994  * to be allocated. this may be wrong if allocation failed.
1995  *
1996  * As pages are already locked by write_cache_pages(), we can't use it
1997  */
1998 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1999 {
2000 	long pages_skipped;
2001 	struct pagevec pvec;
2002 	unsigned long index, end;
2003 	int ret = 0, err, nr_pages, i;
2004 	struct inode *inode = mpd->inode;
2005 	struct address_space *mapping = inode->i_mapping;
2006 
2007 	BUG_ON(mpd->next_page <= mpd->first_page);
2008 	/*
2009 	 * We need to start from the first_page to the next_page - 1
2010 	 * to make sure we also write the mapped dirty buffer_heads.
2011 	 * If we look at mpd->b_blocknr we would only be looking
2012 	 * at the currently mapped buffer_heads.
2013 	 */
2014 	index = mpd->first_page;
2015 	end = mpd->next_page - 1;
2016 
2017 	pagevec_init(&pvec, 0);
2018 	while (index <= end) {
2019 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2020 		if (nr_pages == 0)
2021 			break;
2022 		for (i = 0; i < nr_pages; i++) {
2023 			struct page *page = pvec.pages[i];
2024 
2025 			index = page->index;
2026 			if (index > end)
2027 				break;
2028 			index++;
2029 
2030 			BUG_ON(!PageLocked(page));
2031 			BUG_ON(PageWriteback(page));
2032 
2033 			pages_skipped = mpd->wbc->pages_skipped;
2034 			err = mapping->a_ops->writepage(page, mpd->wbc);
2035 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2036 				/*
2037 				 * have successfully written the page
2038 				 * without skipping the same
2039 				 */
2040 				mpd->pages_written++;
2041 			/*
2042 			 * In error case, we have to continue because
2043 			 * remaining pages are still locked
2044 			 * XXX: unlock and re-dirty them?
2045 			 */
2046 			if (ret == 0)
2047 				ret = err;
2048 		}
2049 		pagevec_release(&pvec);
2050 	}
2051 	return ret;
2052 }
2053 
2054 /*
2055  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2056  *
2057  * the function goes through all passed space and put actual disk
2058  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2059  */
2060 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2061 				 struct ext4_map_blocks *map)
2062 {
2063 	struct inode *inode = mpd->inode;
2064 	struct address_space *mapping = inode->i_mapping;
2065 	int blocks = map->m_len;
2066 	sector_t pblock = map->m_pblk, cur_logical;
2067 	struct buffer_head *head, *bh;
2068 	pgoff_t index, end;
2069 	struct pagevec pvec;
2070 	int nr_pages, i;
2071 
2072 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2073 	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2074 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2075 
2076 	pagevec_init(&pvec, 0);
2077 
2078 	while (index <= end) {
2079 		/* XXX: optimize tail */
2080 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2081 		if (nr_pages == 0)
2082 			break;
2083 		for (i = 0; i < nr_pages; i++) {
2084 			struct page *page = pvec.pages[i];
2085 
2086 			index = page->index;
2087 			if (index > end)
2088 				break;
2089 			index++;
2090 
2091 			BUG_ON(!PageLocked(page));
2092 			BUG_ON(PageWriteback(page));
2093 			BUG_ON(!page_has_buffers(page));
2094 
2095 			bh = page_buffers(page);
2096 			head = bh;
2097 
2098 			/* skip blocks out of the range */
2099 			do {
2100 				if (cur_logical >= map->m_lblk)
2101 					break;
2102 				cur_logical++;
2103 			} while ((bh = bh->b_this_page) != head);
2104 
2105 			do {
2106 				if (cur_logical >= map->m_lblk + blocks)
2107 					break;
2108 
2109 				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2110 
2111 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2112 
2113 					if (buffer_delay(bh)) {
2114 						clear_buffer_delay(bh);
2115 						bh->b_blocknr = pblock;
2116 					} else {
2117 						/*
2118 						 * unwritten already should have
2119 						 * blocknr assigned. Verify that
2120 						 */
2121 						clear_buffer_unwritten(bh);
2122 						BUG_ON(bh->b_blocknr != pblock);
2123 					}
2124 
2125 				} else if (buffer_mapped(bh))
2126 					BUG_ON(bh->b_blocknr != pblock);
2127 
2128 				if (map->m_flags & EXT4_MAP_UNINIT)
2129 					set_buffer_uninit(bh);
2130 				cur_logical++;
2131 				pblock++;
2132 			} while ((bh = bh->b_this_page) != head);
2133 		}
2134 		pagevec_release(&pvec);
2135 	}
2136 }
2137 
2138 
2139 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2140 					sector_t logical, long blk_cnt)
2141 {
2142 	int nr_pages, i;
2143 	pgoff_t index, end;
2144 	struct pagevec pvec;
2145 	struct inode *inode = mpd->inode;
2146 	struct address_space *mapping = inode->i_mapping;
2147 
2148 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2149 	end   = (logical + blk_cnt - 1) >>
2150 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2151 	while (index <= end) {
2152 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2153 		if (nr_pages == 0)
2154 			break;
2155 		for (i = 0; i < nr_pages; i++) {
2156 			struct page *page = pvec.pages[i];
2157 			if (page->index > end)
2158 				break;
2159 			BUG_ON(!PageLocked(page));
2160 			BUG_ON(PageWriteback(page));
2161 			block_invalidatepage(page, 0);
2162 			ClearPageUptodate(page);
2163 			unlock_page(page);
2164 		}
2165 		index = pvec.pages[nr_pages - 1]->index + 1;
2166 		pagevec_release(&pvec);
2167 	}
2168 	return;
2169 }
2170 
2171 static void ext4_print_free_blocks(struct inode *inode)
2172 {
2173 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2174 	printk(KERN_CRIT "Total free blocks count %lld\n",
2175 	       ext4_count_free_blocks(inode->i_sb));
2176 	printk(KERN_CRIT "Free/Dirty block details\n");
2177 	printk(KERN_CRIT "free_blocks=%lld\n",
2178 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2179 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2180 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2181 	printk(KERN_CRIT "Block reservation details\n");
2182 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2183 	       EXT4_I(inode)->i_reserved_data_blocks);
2184 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2185 	       EXT4_I(inode)->i_reserved_meta_blocks);
2186 	return;
2187 }
2188 
2189 /*
2190  * mpage_da_map_blocks - go through given space
2191  *
2192  * @mpd - bh describing space
2193  *
2194  * The function skips space we know is already mapped to disk blocks.
2195  *
2196  */
2197 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2198 {
2199 	int err, blks, get_blocks_flags;
2200 	struct ext4_map_blocks map;
2201 	sector_t next = mpd->b_blocknr;
2202 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2203 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2204 	handle_t *handle = NULL;
2205 
2206 	/*
2207 	 * We consider only non-mapped and non-allocated blocks
2208 	 */
2209 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2210 		!(mpd->b_state & (1 << BH_Delay)) &&
2211 		!(mpd->b_state & (1 << BH_Unwritten)))
2212 		return 0;
2213 
2214 	/*
2215 	 * If we didn't accumulate anything to write simply return
2216 	 */
2217 	if (!mpd->b_size)
2218 		return 0;
2219 
2220 	handle = ext4_journal_current_handle();
2221 	BUG_ON(!handle);
2222 
2223 	/*
2224 	 * Call ext4_map_blocks() to allocate any delayed allocation
2225 	 * blocks, or to convert an uninitialized extent to be
2226 	 * initialized (in the case where we have written into
2227 	 * one or more preallocated blocks).
2228 	 *
2229 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2230 	 * indicate that we are on the delayed allocation path.  This
2231 	 * affects functions in many different parts of the allocation
2232 	 * call path.  This flag exists primarily because we don't
2233 	 * want to change *many* call functions, so ext4_map_blocks()
2234 	 * will set the magic i_delalloc_reserved_flag once the
2235 	 * inode's allocation semaphore is taken.
2236 	 *
2237 	 * If the blocks in questions were delalloc blocks, set
2238 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2239 	 * variables are updated after the blocks have been allocated.
2240 	 */
2241 	map.m_lblk = next;
2242 	map.m_len = max_blocks;
2243 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2244 	if (ext4_should_dioread_nolock(mpd->inode))
2245 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2246 	if (mpd->b_state & (1 << BH_Delay))
2247 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2248 
2249 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2250 	if (blks < 0) {
2251 		struct super_block *sb = mpd->inode->i_sb;
2252 
2253 		err = blks;
2254 		/*
2255 		 * If get block returns with error we simply
2256 		 * return. Later writepage will redirty the page and
2257 		 * writepages will find the dirty page again
2258 		 */
2259 		if (err == -EAGAIN)
2260 			return 0;
2261 
2262 		if (err == -ENOSPC &&
2263 		    ext4_count_free_blocks(sb)) {
2264 			mpd->retval = err;
2265 			return 0;
2266 		}
2267 
2268 		/*
2269 		 * get block failure will cause us to loop in
2270 		 * writepages, because a_ops->writepage won't be able
2271 		 * to make progress. The page will be redirtied by
2272 		 * writepage and writepages will again try to write
2273 		 * the same.
2274 		 */
2275 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2276 			ext4_msg(sb, KERN_CRIT,
2277 				 "delayed block allocation failed for inode %lu "
2278 				 "at logical offset %llu with max blocks %zd "
2279 				 "with error %d", mpd->inode->i_ino,
2280 				 (unsigned long long) next,
2281 				 mpd->b_size >> mpd->inode->i_blkbits, err);
2282 			ext4_msg(sb, KERN_CRIT,
2283 				"This should not happen!! Data will be lost\n");
2284 			if (err == -ENOSPC)
2285 				ext4_print_free_blocks(mpd->inode);
2286 		}
2287 		/* invalidate all the pages */
2288 		ext4_da_block_invalidatepages(mpd, next,
2289 				mpd->b_size >> mpd->inode->i_blkbits);
2290 		return err;
2291 	}
2292 	BUG_ON(blks == 0);
2293 
2294 	if (map.m_flags & EXT4_MAP_NEW) {
2295 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2296 		int i;
2297 
2298 		for (i = 0; i < map.m_len; i++)
2299 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2300 	}
2301 
2302 	/*
2303 	 * If blocks are delayed marked, we need to
2304 	 * put actual blocknr and drop delayed bit
2305 	 */
2306 	if ((mpd->b_state & (1 << BH_Delay)) ||
2307 	    (mpd->b_state & (1 << BH_Unwritten)))
2308 		mpage_put_bnr_to_bhs(mpd, &map);
2309 
2310 	if (ext4_should_order_data(mpd->inode)) {
2311 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2312 		if (err)
2313 			return err;
2314 	}
2315 
2316 	/*
2317 	 * Update on-disk size along with block allocation.
2318 	 */
2319 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2320 	if (disksize > i_size_read(mpd->inode))
2321 		disksize = i_size_read(mpd->inode);
2322 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2323 		ext4_update_i_disksize(mpd->inode, disksize);
2324 		return ext4_mark_inode_dirty(handle, mpd->inode);
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2331 		(1 << BH_Delay) | (1 << BH_Unwritten))
2332 
2333 /*
2334  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2335  *
2336  * @mpd->lbh - extent of blocks
2337  * @logical - logical number of the block in the file
2338  * @bh - bh of the block (used to access block's state)
2339  *
2340  * the function is used to collect contig. blocks in same state
2341  */
2342 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2343 				   sector_t logical, size_t b_size,
2344 				   unsigned long b_state)
2345 {
2346 	sector_t next;
2347 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2348 
2349 	/*
2350 	 * XXX Don't go larger than mballoc is willing to allocate
2351 	 * This is a stopgap solution.  We eventually need to fold
2352 	 * mpage_da_submit_io() into this function and then call
2353 	 * ext4_map_blocks() multiple times in a loop
2354 	 */
2355 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2356 		goto flush_it;
2357 
2358 	/* check if thereserved journal credits might overflow */
2359 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2360 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2361 			/*
2362 			 * With non-extent format we are limited by the journal
2363 			 * credit available.  Total credit needed to insert
2364 			 * nrblocks contiguous blocks is dependent on the
2365 			 * nrblocks.  So limit nrblocks.
2366 			 */
2367 			goto flush_it;
2368 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2369 				EXT4_MAX_TRANS_DATA) {
2370 			/*
2371 			 * Adding the new buffer_head would make it cross the
2372 			 * allowed limit for which we have journal credit
2373 			 * reserved. So limit the new bh->b_size
2374 			 */
2375 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2376 						mpd->inode->i_blkbits;
2377 			/* we will do mpage_da_submit_io in the next loop */
2378 		}
2379 	}
2380 	/*
2381 	 * First block in the extent
2382 	 */
2383 	if (mpd->b_size == 0) {
2384 		mpd->b_blocknr = logical;
2385 		mpd->b_size = b_size;
2386 		mpd->b_state = b_state & BH_FLAGS;
2387 		return;
2388 	}
2389 
2390 	next = mpd->b_blocknr + nrblocks;
2391 	/*
2392 	 * Can we merge the block to our big extent?
2393 	 */
2394 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2395 		mpd->b_size += b_size;
2396 		return;
2397 	}
2398 
2399 flush_it:
2400 	/*
2401 	 * We couldn't merge the block to our extent, so we
2402 	 * need to flush current  extent and start new one
2403 	 */
2404 	if (mpage_da_map_blocks(mpd) == 0)
2405 		mpage_da_submit_io(mpd);
2406 	mpd->io_done = 1;
2407 	return;
2408 }
2409 
2410 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2411 {
2412 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2413 }
2414 
2415 /*
2416  * __mpage_da_writepage - finds extent of pages and blocks
2417  *
2418  * @page: page to consider
2419  * @wbc: not used, we just follow rules
2420  * @data: context
2421  *
2422  * The function finds extents of pages and scan them for all blocks.
2423  */
2424 static int __mpage_da_writepage(struct page *page,
2425 				struct writeback_control *wbc, void *data)
2426 {
2427 	struct mpage_da_data *mpd = data;
2428 	struct inode *inode = mpd->inode;
2429 	struct buffer_head *bh, *head;
2430 	sector_t logical;
2431 
2432 	/*
2433 	 * Can we merge this page to current extent?
2434 	 */
2435 	if (mpd->next_page != page->index) {
2436 		/*
2437 		 * Nope, we can't. So, we map non-allocated blocks
2438 		 * and start IO on them using writepage()
2439 		 */
2440 		if (mpd->next_page != mpd->first_page) {
2441 			if (mpage_da_map_blocks(mpd) == 0)
2442 				mpage_da_submit_io(mpd);
2443 			/*
2444 			 * skip rest of the page in the page_vec
2445 			 */
2446 			mpd->io_done = 1;
2447 			redirty_page_for_writepage(wbc, page);
2448 			unlock_page(page);
2449 			return MPAGE_DA_EXTENT_TAIL;
2450 		}
2451 
2452 		/*
2453 		 * Start next extent of pages ...
2454 		 */
2455 		mpd->first_page = page->index;
2456 
2457 		/*
2458 		 * ... and blocks
2459 		 */
2460 		mpd->b_size = 0;
2461 		mpd->b_state = 0;
2462 		mpd->b_blocknr = 0;
2463 	}
2464 
2465 	mpd->next_page = page->index + 1;
2466 	logical = (sector_t) page->index <<
2467 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2468 
2469 	if (!page_has_buffers(page)) {
2470 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2471 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2472 		if (mpd->io_done)
2473 			return MPAGE_DA_EXTENT_TAIL;
2474 	} else {
2475 		/*
2476 		 * Page with regular buffer heads, just add all dirty ones
2477 		 */
2478 		head = page_buffers(page);
2479 		bh = head;
2480 		do {
2481 			BUG_ON(buffer_locked(bh));
2482 			/*
2483 			 * We need to try to allocate
2484 			 * unmapped blocks in the same page.
2485 			 * Otherwise we won't make progress
2486 			 * with the page in ext4_writepage
2487 			 */
2488 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2489 				mpage_add_bh_to_extent(mpd, logical,
2490 						       bh->b_size,
2491 						       bh->b_state);
2492 				if (mpd->io_done)
2493 					return MPAGE_DA_EXTENT_TAIL;
2494 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2495 				/*
2496 				 * mapped dirty buffer. We need to update
2497 				 * the b_state because we look at
2498 				 * b_state in mpage_da_map_blocks. We don't
2499 				 * update b_size because if we find an
2500 				 * unmapped buffer_head later we need to
2501 				 * use the b_state flag of that buffer_head.
2502 				 */
2503 				if (mpd->b_size == 0)
2504 					mpd->b_state = bh->b_state & BH_FLAGS;
2505 			}
2506 			logical++;
2507 		} while ((bh = bh->b_this_page) != head);
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 /*
2514  * This is a special get_blocks_t callback which is used by
2515  * ext4_da_write_begin().  It will either return mapped block or
2516  * reserve space for a single block.
2517  *
2518  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2519  * We also have b_blocknr = -1 and b_bdev initialized properly
2520  *
2521  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2522  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2523  * initialized properly.
2524  */
2525 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2526 				  struct buffer_head *bh, int create)
2527 {
2528 	struct ext4_map_blocks map;
2529 	int ret = 0;
2530 	sector_t invalid_block = ~((sector_t) 0xffff);
2531 
2532 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2533 		invalid_block = ~0;
2534 
2535 	BUG_ON(create == 0);
2536 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2537 
2538 	map.m_lblk = iblock;
2539 	map.m_len = 1;
2540 
2541 	/*
2542 	 * first, we need to know whether the block is allocated already
2543 	 * preallocated blocks are unmapped but should treated
2544 	 * the same as allocated blocks.
2545 	 */
2546 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2547 	if (ret < 0)
2548 		return ret;
2549 	if (ret == 0) {
2550 		if (buffer_delay(bh))
2551 			return 0; /* Not sure this could or should happen */
2552 		/*
2553 		 * XXX: __block_prepare_write() unmaps passed block,
2554 		 * is it OK?
2555 		 */
2556 		ret = ext4_da_reserve_space(inode, iblock);
2557 		if (ret)
2558 			/* not enough space to reserve */
2559 			return ret;
2560 
2561 		map_bh(bh, inode->i_sb, invalid_block);
2562 		set_buffer_new(bh);
2563 		set_buffer_delay(bh);
2564 		return 0;
2565 	}
2566 
2567 	map_bh(bh, inode->i_sb, map.m_pblk);
2568 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2569 
2570 	if (buffer_unwritten(bh)) {
2571 		/* A delayed write to unwritten bh should be marked
2572 		 * new and mapped.  Mapped ensures that we don't do
2573 		 * get_block multiple times when we write to the same
2574 		 * offset and new ensures that we do proper zero out
2575 		 * for partial write.
2576 		 */
2577 		set_buffer_new(bh);
2578 		set_buffer_mapped(bh);
2579 	}
2580 	return 0;
2581 }
2582 
2583 /*
2584  * This function is used as a standard get_block_t calback function
2585  * when there is no desire to allocate any blocks.  It is used as a
2586  * callback function for block_prepare_write() and block_write_full_page().
2587  * These functions should only try to map a single block at a time.
2588  *
2589  * Since this function doesn't do block allocations even if the caller
2590  * requests it by passing in create=1, it is critically important that
2591  * any caller checks to make sure that any buffer heads are returned
2592  * by this function are either all already mapped or marked for
2593  * delayed allocation before calling  block_write_full_page().  Otherwise,
2594  * b_blocknr could be left unitialized, and the page write functions will
2595  * be taken by surprise.
2596  */
2597 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2598 				   struct buffer_head *bh_result, int create)
2599 {
2600 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2601 	return _ext4_get_block(inode, iblock, bh_result, 0);
2602 }
2603 
2604 static int bget_one(handle_t *handle, struct buffer_head *bh)
2605 {
2606 	get_bh(bh);
2607 	return 0;
2608 }
2609 
2610 static int bput_one(handle_t *handle, struct buffer_head *bh)
2611 {
2612 	put_bh(bh);
2613 	return 0;
2614 }
2615 
2616 static int __ext4_journalled_writepage(struct page *page,
2617 				       unsigned int len)
2618 {
2619 	struct address_space *mapping = page->mapping;
2620 	struct inode *inode = mapping->host;
2621 	struct buffer_head *page_bufs;
2622 	handle_t *handle = NULL;
2623 	int ret = 0;
2624 	int err;
2625 
2626 	page_bufs = page_buffers(page);
2627 	BUG_ON(!page_bufs);
2628 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2629 	/* As soon as we unlock the page, it can go away, but we have
2630 	 * references to buffers so we are safe */
2631 	unlock_page(page);
2632 
2633 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2634 	if (IS_ERR(handle)) {
2635 		ret = PTR_ERR(handle);
2636 		goto out;
2637 	}
2638 
2639 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2640 				do_journal_get_write_access);
2641 
2642 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2643 				write_end_fn);
2644 	if (ret == 0)
2645 		ret = err;
2646 	err = ext4_journal_stop(handle);
2647 	if (!ret)
2648 		ret = err;
2649 
2650 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2651 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2652 out:
2653 	return ret;
2654 }
2655 
2656 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2657 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2658 
2659 /*
2660  * Note that we don't need to start a transaction unless we're journaling data
2661  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2662  * need to file the inode to the transaction's list in ordered mode because if
2663  * we are writing back data added by write(), the inode is already there and if
2664  * we are writing back data modified via mmap(), noone guarantees in which
2665  * transaction the data will hit the disk. In case we are journaling data, we
2666  * cannot start transaction directly because transaction start ranks above page
2667  * lock so we have to do some magic.
2668  *
2669  * This function can get called via...
2670  *   - ext4_da_writepages after taking page lock (have journal handle)
2671  *   - journal_submit_inode_data_buffers (no journal handle)
2672  *   - shrink_page_list via pdflush (no journal handle)
2673  *   - grab_page_cache when doing write_begin (have journal handle)
2674  *
2675  * We don't do any block allocation in this function. If we have page with
2676  * multiple blocks we need to write those buffer_heads that are mapped. This
2677  * is important for mmaped based write. So if we do with blocksize 1K
2678  * truncate(f, 1024);
2679  * a = mmap(f, 0, 4096);
2680  * a[0] = 'a';
2681  * truncate(f, 4096);
2682  * we have in the page first buffer_head mapped via page_mkwrite call back
2683  * but other bufer_heads would be unmapped but dirty(dirty done via the
2684  * do_wp_page). So writepage should write the first block. If we modify
2685  * the mmap area beyond 1024 we will again get a page_fault and the
2686  * page_mkwrite callback will do the block allocation and mark the
2687  * buffer_heads mapped.
2688  *
2689  * We redirty the page if we have any buffer_heads that is either delay or
2690  * unwritten in the page.
2691  *
2692  * We can get recursively called as show below.
2693  *
2694  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2695  *		ext4_writepage()
2696  *
2697  * But since we don't do any block allocation we should not deadlock.
2698  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2699  */
2700 static int ext4_writepage(struct page *page,
2701 			  struct writeback_control *wbc)
2702 {
2703 	int ret = 0;
2704 	loff_t size;
2705 	unsigned int len;
2706 	struct buffer_head *page_bufs = NULL;
2707 	struct inode *inode = page->mapping->host;
2708 
2709 	trace_ext4_writepage(inode, page);
2710 	size = i_size_read(inode);
2711 	if (page->index == size >> PAGE_CACHE_SHIFT)
2712 		len = size & ~PAGE_CACHE_MASK;
2713 	else
2714 		len = PAGE_CACHE_SIZE;
2715 
2716 	if (page_has_buffers(page)) {
2717 		page_bufs = page_buffers(page);
2718 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2719 					ext4_bh_delay_or_unwritten)) {
2720 			/*
2721 			 * We don't want to do  block allocation
2722 			 * So redirty the page and return
2723 			 * We may reach here when we do a journal commit
2724 			 * via journal_submit_inode_data_buffers.
2725 			 * If we don't have mapping block we just ignore
2726 			 * them. We can also reach here via shrink_page_list
2727 			 */
2728 			redirty_page_for_writepage(wbc, page);
2729 			unlock_page(page);
2730 			return 0;
2731 		}
2732 	} else {
2733 		/*
2734 		 * The test for page_has_buffers() is subtle:
2735 		 * We know the page is dirty but it lost buffers. That means
2736 		 * that at some moment in time after write_begin()/write_end()
2737 		 * has been called all buffers have been clean and thus they
2738 		 * must have been written at least once. So they are all
2739 		 * mapped and we can happily proceed with mapping them
2740 		 * and writing the page.
2741 		 *
2742 		 * Try to initialize the buffer_heads and check whether
2743 		 * all are mapped and non delay. We don't want to
2744 		 * do block allocation here.
2745 		 */
2746 		ret = block_prepare_write(page, 0, len,
2747 					  noalloc_get_block_write);
2748 		if (!ret) {
2749 			page_bufs = page_buffers(page);
2750 			/* check whether all are mapped and non delay */
2751 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2752 						ext4_bh_delay_or_unwritten)) {
2753 				redirty_page_for_writepage(wbc, page);
2754 				unlock_page(page);
2755 				return 0;
2756 			}
2757 		} else {
2758 			/*
2759 			 * We can't do block allocation here
2760 			 * so just redity the page and unlock
2761 			 * and return
2762 			 */
2763 			redirty_page_for_writepage(wbc, page);
2764 			unlock_page(page);
2765 			return 0;
2766 		}
2767 		/* now mark the buffer_heads as dirty and uptodate */
2768 		block_commit_write(page, 0, len);
2769 	}
2770 
2771 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2772 		/*
2773 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2774 		 * doesn't seem much point in redirtying the page here.
2775 		 */
2776 		ClearPageChecked(page);
2777 		return __ext4_journalled_writepage(page, len);
2778 	}
2779 
2780 	if (page_bufs && buffer_uninit(page_bufs)) {
2781 		ext4_set_bh_endio(page_bufs, inode);
2782 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2783 					    wbc, ext4_end_io_buffer_write);
2784 	} else
2785 		ret = block_write_full_page(page, noalloc_get_block_write,
2786 					    wbc);
2787 
2788 	return ret;
2789 }
2790 
2791 /*
2792  * This is called via ext4_da_writepages() to
2793  * calulate the total number of credits to reserve to fit
2794  * a single extent allocation into a single transaction,
2795  * ext4_da_writpeages() will loop calling this before
2796  * the block allocation.
2797  */
2798 
2799 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2800 {
2801 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2802 
2803 	/*
2804 	 * With non-extent format the journal credit needed to
2805 	 * insert nrblocks contiguous block is dependent on
2806 	 * number of contiguous block. So we will limit
2807 	 * number of contiguous block to a sane value
2808 	 */
2809 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2810 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2811 		max_blocks = EXT4_MAX_TRANS_DATA;
2812 
2813 	return ext4_chunk_trans_blocks(inode, max_blocks);
2814 }
2815 
2816 /*
2817  * write_cache_pages_da - walk the list of dirty pages of the given
2818  * address space and call the callback function (which usually writes
2819  * the pages).
2820  *
2821  * This is a forked version of write_cache_pages().  Differences:
2822  *	Range cyclic is ignored.
2823  *	no_nrwrite_index_update is always presumed true
2824  */
2825 static int write_cache_pages_da(struct address_space *mapping,
2826 				struct writeback_control *wbc,
2827 				struct mpage_da_data *mpd)
2828 {
2829 	int ret = 0;
2830 	int done = 0;
2831 	struct pagevec pvec;
2832 	int nr_pages;
2833 	pgoff_t index;
2834 	pgoff_t end;		/* Inclusive */
2835 	long nr_to_write = wbc->nr_to_write;
2836 
2837 	pagevec_init(&pvec, 0);
2838 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2839 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2840 
2841 	while (!done && (index <= end)) {
2842 		int i;
2843 
2844 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2845 			      PAGECACHE_TAG_DIRTY,
2846 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2847 		if (nr_pages == 0)
2848 			break;
2849 
2850 		for (i = 0; i < nr_pages; i++) {
2851 			struct page *page = pvec.pages[i];
2852 
2853 			/*
2854 			 * At this point, the page may be truncated or
2855 			 * invalidated (changing page->mapping to NULL), or
2856 			 * even swizzled back from swapper_space to tmpfs file
2857 			 * mapping. However, page->index will not change
2858 			 * because we have a reference on the page.
2859 			 */
2860 			if (page->index > end) {
2861 				done = 1;
2862 				break;
2863 			}
2864 
2865 			lock_page(page);
2866 
2867 			/*
2868 			 * Page truncated or invalidated. We can freely skip it
2869 			 * then, even for data integrity operations: the page
2870 			 * has disappeared concurrently, so there could be no
2871 			 * real expectation of this data interity operation
2872 			 * even if there is now a new, dirty page at the same
2873 			 * pagecache address.
2874 			 */
2875 			if (unlikely(page->mapping != mapping)) {
2876 continue_unlock:
2877 				unlock_page(page);
2878 				continue;
2879 			}
2880 
2881 			if (!PageDirty(page)) {
2882 				/* someone wrote it for us */
2883 				goto continue_unlock;
2884 			}
2885 
2886 			if (PageWriteback(page)) {
2887 				if (wbc->sync_mode != WB_SYNC_NONE)
2888 					wait_on_page_writeback(page);
2889 				else
2890 					goto continue_unlock;
2891 			}
2892 
2893 			BUG_ON(PageWriteback(page));
2894 			if (!clear_page_dirty_for_io(page))
2895 				goto continue_unlock;
2896 
2897 			ret = __mpage_da_writepage(page, wbc, mpd);
2898 			if (unlikely(ret)) {
2899 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2900 					unlock_page(page);
2901 					ret = 0;
2902 				} else {
2903 					done = 1;
2904 					break;
2905 				}
2906 			}
2907 
2908 			if (nr_to_write > 0) {
2909 				nr_to_write--;
2910 				if (nr_to_write == 0 &&
2911 				    wbc->sync_mode == WB_SYNC_NONE) {
2912 					/*
2913 					 * We stop writing back only if we are
2914 					 * not doing integrity sync. In case of
2915 					 * integrity sync we have to keep going
2916 					 * because someone may be concurrently
2917 					 * dirtying pages, and we might have
2918 					 * synced a lot of newly appeared dirty
2919 					 * pages, but have not synced all of the
2920 					 * old dirty pages.
2921 					 */
2922 					done = 1;
2923 					break;
2924 				}
2925 			}
2926 		}
2927 		pagevec_release(&pvec);
2928 		cond_resched();
2929 	}
2930 	return ret;
2931 }
2932 
2933 
2934 static int ext4_da_writepages(struct address_space *mapping,
2935 			      struct writeback_control *wbc)
2936 {
2937 	pgoff_t	index;
2938 	int range_whole = 0;
2939 	handle_t *handle = NULL;
2940 	struct mpage_da_data mpd;
2941 	struct inode *inode = mapping->host;
2942 	int pages_written = 0;
2943 	long pages_skipped;
2944 	unsigned int max_pages;
2945 	int range_cyclic, cycled = 1, io_done = 0;
2946 	int needed_blocks, ret = 0;
2947 	long desired_nr_to_write, nr_to_writebump = 0;
2948 	loff_t range_start = wbc->range_start;
2949 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2950 
2951 	trace_ext4_da_writepages(inode, wbc);
2952 
2953 	/*
2954 	 * No pages to write? This is mainly a kludge to avoid starting
2955 	 * a transaction for special inodes like journal inode on last iput()
2956 	 * because that could violate lock ordering on umount
2957 	 */
2958 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2959 		return 0;
2960 
2961 	/*
2962 	 * If the filesystem has aborted, it is read-only, so return
2963 	 * right away instead of dumping stack traces later on that
2964 	 * will obscure the real source of the problem.  We test
2965 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2966 	 * the latter could be true if the filesystem is mounted
2967 	 * read-only, and in that case, ext4_da_writepages should
2968 	 * *never* be called, so if that ever happens, we would want
2969 	 * the stack trace.
2970 	 */
2971 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2972 		return -EROFS;
2973 
2974 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2975 		range_whole = 1;
2976 
2977 	range_cyclic = wbc->range_cyclic;
2978 	if (wbc->range_cyclic) {
2979 		index = mapping->writeback_index;
2980 		if (index)
2981 			cycled = 0;
2982 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2983 		wbc->range_end  = LLONG_MAX;
2984 		wbc->range_cyclic = 0;
2985 	} else
2986 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2987 
2988 	/*
2989 	 * This works around two forms of stupidity.  The first is in
2990 	 * the writeback code, which caps the maximum number of pages
2991 	 * written to be 1024 pages.  This is wrong on multiple
2992 	 * levels; different architectues have a different page size,
2993 	 * which changes the maximum amount of data which gets
2994 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2995 	 * forces this value to be 16 megabytes by multiplying
2996 	 * nr_to_write parameter by four, and then relies on its
2997 	 * allocator to allocate larger extents to make them
2998 	 * contiguous.  Unfortunately this brings us to the second
2999 	 * stupidity, which is that ext4's mballoc code only allocates
3000 	 * at most 2048 blocks.  So we force contiguous writes up to
3001 	 * the number of dirty blocks in the inode, or
3002 	 * sbi->max_writeback_mb_bump whichever is smaller.
3003 	 */
3004 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3005 	if (!range_cyclic && range_whole)
3006 		desired_nr_to_write = wbc->nr_to_write * 8;
3007 	else
3008 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3009 							   max_pages);
3010 	if (desired_nr_to_write > max_pages)
3011 		desired_nr_to_write = max_pages;
3012 
3013 	if (wbc->nr_to_write < desired_nr_to_write) {
3014 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3015 		wbc->nr_to_write = desired_nr_to_write;
3016 	}
3017 
3018 	mpd.wbc = wbc;
3019 	mpd.inode = mapping->host;
3020 
3021 	pages_skipped = wbc->pages_skipped;
3022 
3023 retry:
3024 	while (!ret && wbc->nr_to_write > 0) {
3025 
3026 		/*
3027 		 * we  insert one extent at a time. So we need
3028 		 * credit needed for single extent allocation.
3029 		 * journalled mode is currently not supported
3030 		 * by delalloc
3031 		 */
3032 		BUG_ON(ext4_should_journal_data(inode));
3033 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3034 
3035 		/* start a new transaction*/
3036 		handle = ext4_journal_start(inode, needed_blocks);
3037 		if (IS_ERR(handle)) {
3038 			ret = PTR_ERR(handle);
3039 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3040 			       "%ld pages, ino %lu; err %d", __func__,
3041 				wbc->nr_to_write, inode->i_ino, ret);
3042 			goto out_writepages;
3043 		}
3044 
3045 		/*
3046 		 * Now call __mpage_da_writepage to find the next
3047 		 * contiguous region of logical blocks that need
3048 		 * blocks to be allocated by ext4.  We don't actually
3049 		 * submit the blocks for I/O here, even though
3050 		 * write_cache_pages thinks it will, and will set the
3051 		 * pages as clean for write before calling
3052 		 * __mpage_da_writepage().
3053 		 */
3054 		mpd.b_size = 0;
3055 		mpd.b_state = 0;
3056 		mpd.b_blocknr = 0;
3057 		mpd.first_page = 0;
3058 		mpd.next_page = 0;
3059 		mpd.io_done = 0;
3060 		mpd.pages_written = 0;
3061 		mpd.retval = 0;
3062 		ret = write_cache_pages_da(mapping, wbc, &mpd);
3063 		/*
3064 		 * If we have a contiguous extent of pages and we
3065 		 * haven't done the I/O yet, map the blocks and submit
3066 		 * them for I/O.
3067 		 */
3068 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3069 			if (mpage_da_map_blocks(&mpd) == 0)
3070 				mpage_da_submit_io(&mpd);
3071 			mpd.io_done = 1;
3072 			ret = MPAGE_DA_EXTENT_TAIL;
3073 		}
3074 		trace_ext4_da_write_pages(inode, &mpd);
3075 		wbc->nr_to_write -= mpd.pages_written;
3076 
3077 		ext4_journal_stop(handle);
3078 
3079 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3080 			/* commit the transaction which would
3081 			 * free blocks released in the transaction
3082 			 * and try again
3083 			 */
3084 			jbd2_journal_force_commit_nested(sbi->s_journal);
3085 			wbc->pages_skipped = pages_skipped;
3086 			ret = 0;
3087 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3088 			/*
3089 			 * got one extent now try with
3090 			 * rest of the pages
3091 			 */
3092 			pages_written += mpd.pages_written;
3093 			wbc->pages_skipped = pages_skipped;
3094 			ret = 0;
3095 			io_done = 1;
3096 		} else if (wbc->nr_to_write)
3097 			/*
3098 			 * There is no more writeout needed
3099 			 * or we requested for a noblocking writeout
3100 			 * and we found the device congested
3101 			 */
3102 			break;
3103 	}
3104 	if (!io_done && !cycled) {
3105 		cycled = 1;
3106 		index = 0;
3107 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3108 		wbc->range_end  = mapping->writeback_index - 1;
3109 		goto retry;
3110 	}
3111 	if (pages_skipped != wbc->pages_skipped)
3112 		ext4_msg(inode->i_sb, KERN_CRIT,
3113 			 "This should not happen leaving %s "
3114 			 "with nr_to_write = %ld ret = %d",
3115 			 __func__, wbc->nr_to_write, ret);
3116 
3117 	/* Update index */
3118 	index += pages_written;
3119 	wbc->range_cyclic = range_cyclic;
3120 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3121 		/*
3122 		 * set the writeback_index so that range_cyclic
3123 		 * mode will write it back later
3124 		 */
3125 		mapping->writeback_index = index;
3126 
3127 out_writepages:
3128 	wbc->nr_to_write -= nr_to_writebump;
3129 	wbc->range_start = range_start;
3130 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3131 	return ret;
3132 }
3133 
3134 #define FALL_BACK_TO_NONDELALLOC 1
3135 static int ext4_nonda_switch(struct super_block *sb)
3136 {
3137 	s64 free_blocks, dirty_blocks;
3138 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3139 
3140 	/*
3141 	 * switch to non delalloc mode if we are running low
3142 	 * on free block. The free block accounting via percpu
3143 	 * counters can get slightly wrong with percpu_counter_batch getting
3144 	 * accumulated on each CPU without updating global counters
3145 	 * Delalloc need an accurate free block accounting. So switch
3146 	 * to non delalloc when we are near to error range.
3147 	 */
3148 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3149 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3150 	if (2 * free_blocks < 3 * dirty_blocks ||
3151 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3152 		/*
3153 		 * free block count is less than 150% of dirty blocks
3154 		 * or free blocks is less than watermark
3155 		 */
3156 		return 1;
3157 	}
3158 	/*
3159 	 * Even if we don't switch but are nearing capacity,
3160 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3161 	 */
3162 	if (free_blocks < 2 * dirty_blocks)
3163 		writeback_inodes_sb_if_idle(sb);
3164 
3165 	return 0;
3166 }
3167 
3168 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3169 			       loff_t pos, unsigned len, unsigned flags,
3170 			       struct page **pagep, void **fsdata)
3171 {
3172 	int ret, retries = 0;
3173 	struct page *page;
3174 	pgoff_t index;
3175 	struct inode *inode = mapping->host;
3176 	handle_t *handle;
3177 
3178 	index = pos >> PAGE_CACHE_SHIFT;
3179 
3180 	if (ext4_nonda_switch(inode->i_sb)) {
3181 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3182 		return ext4_write_begin(file, mapping, pos,
3183 					len, flags, pagep, fsdata);
3184 	}
3185 	*fsdata = (void *)0;
3186 	trace_ext4_da_write_begin(inode, pos, len, flags);
3187 retry:
3188 	/*
3189 	 * With delayed allocation, we don't log the i_disksize update
3190 	 * if there is delayed block allocation. But we still need
3191 	 * to journalling the i_disksize update if writes to the end
3192 	 * of file which has an already mapped buffer.
3193 	 */
3194 	handle = ext4_journal_start(inode, 1);
3195 	if (IS_ERR(handle)) {
3196 		ret = PTR_ERR(handle);
3197 		goto out;
3198 	}
3199 	/* We cannot recurse into the filesystem as the transaction is already
3200 	 * started */
3201 	flags |= AOP_FLAG_NOFS;
3202 
3203 	page = grab_cache_page_write_begin(mapping, index, flags);
3204 	if (!page) {
3205 		ext4_journal_stop(handle);
3206 		ret = -ENOMEM;
3207 		goto out;
3208 	}
3209 	*pagep = page;
3210 
3211 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3212 	if (ret < 0) {
3213 		unlock_page(page);
3214 		ext4_journal_stop(handle);
3215 		page_cache_release(page);
3216 		/*
3217 		 * block_write_begin may have instantiated a few blocks
3218 		 * outside i_size.  Trim these off again. Don't need
3219 		 * i_size_read because we hold i_mutex.
3220 		 */
3221 		if (pos + len > inode->i_size)
3222 			ext4_truncate_failed_write(inode);
3223 	}
3224 
3225 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3226 		goto retry;
3227 out:
3228 	return ret;
3229 }
3230 
3231 /*
3232  * Check if we should update i_disksize
3233  * when write to the end of file but not require block allocation
3234  */
3235 static int ext4_da_should_update_i_disksize(struct page *page,
3236 					    unsigned long offset)
3237 {
3238 	struct buffer_head *bh;
3239 	struct inode *inode = page->mapping->host;
3240 	unsigned int idx;
3241 	int i;
3242 
3243 	bh = page_buffers(page);
3244 	idx = offset >> inode->i_blkbits;
3245 
3246 	for (i = 0; i < idx; i++)
3247 		bh = bh->b_this_page;
3248 
3249 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3250 		return 0;
3251 	return 1;
3252 }
3253 
3254 static int ext4_da_write_end(struct file *file,
3255 			     struct address_space *mapping,
3256 			     loff_t pos, unsigned len, unsigned copied,
3257 			     struct page *page, void *fsdata)
3258 {
3259 	struct inode *inode = mapping->host;
3260 	int ret = 0, ret2;
3261 	handle_t *handle = ext4_journal_current_handle();
3262 	loff_t new_i_size;
3263 	unsigned long start, end;
3264 	int write_mode = (int)(unsigned long)fsdata;
3265 
3266 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3267 		if (ext4_should_order_data(inode)) {
3268 			return ext4_ordered_write_end(file, mapping, pos,
3269 					len, copied, page, fsdata);
3270 		} else if (ext4_should_writeback_data(inode)) {
3271 			return ext4_writeback_write_end(file, mapping, pos,
3272 					len, copied, page, fsdata);
3273 		} else {
3274 			BUG();
3275 		}
3276 	}
3277 
3278 	trace_ext4_da_write_end(inode, pos, len, copied);
3279 	start = pos & (PAGE_CACHE_SIZE - 1);
3280 	end = start + copied - 1;
3281 
3282 	/*
3283 	 * generic_write_end() will run mark_inode_dirty() if i_size
3284 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3285 	 * into that.
3286 	 */
3287 
3288 	new_i_size = pos + copied;
3289 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3290 		if (ext4_da_should_update_i_disksize(page, end)) {
3291 			down_write(&EXT4_I(inode)->i_data_sem);
3292 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3293 				/*
3294 				 * Updating i_disksize when extending file
3295 				 * without needing block allocation
3296 				 */
3297 				if (ext4_should_order_data(inode))
3298 					ret = ext4_jbd2_file_inode(handle,
3299 								   inode);
3300 
3301 				EXT4_I(inode)->i_disksize = new_i_size;
3302 			}
3303 			up_write(&EXT4_I(inode)->i_data_sem);
3304 			/* We need to mark inode dirty even if
3305 			 * new_i_size is less that inode->i_size
3306 			 * bu greater than i_disksize.(hint delalloc)
3307 			 */
3308 			ext4_mark_inode_dirty(handle, inode);
3309 		}
3310 	}
3311 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3312 							page, fsdata);
3313 	copied = ret2;
3314 	if (ret2 < 0)
3315 		ret = ret2;
3316 	ret2 = ext4_journal_stop(handle);
3317 	if (!ret)
3318 		ret = ret2;
3319 
3320 	return ret ? ret : copied;
3321 }
3322 
3323 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3324 {
3325 	/*
3326 	 * Drop reserved blocks
3327 	 */
3328 	BUG_ON(!PageLocked(page));
3329 	if (!page_has_buffers(page))
3330 		goto out;
3331 
3332 	ext4_da_page_release_reservation(page, offset);
3333 
3334 out:
3335 	ext4_invalidatepage(page, offset);
3336 
3337 	return;
3338 }
3339 
3340 /*
3341  * Force all delayed allocation blocks to be allocated for a given inode.
3342  */
3343 int ext4_alloc_da_blocks(struct inode *inode)
3344 {
3345 	trace_ext4_alloc_da_blocks(inode);
3346 
3347 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3348 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3349 		return 0;
3350 
3351 	/*
3352 	 * We do something simple for now.  The filemap_flush() will
3353 	 * also start triggering a write of the data blocks, which is
3354 	 * not strictly speaking necessary (and for users of
3355 	 * laptop_mode, not even desirable).  However, to do otherwise
3356 	 * would require replicating code paths in:
3357 	 *
3358 	 * ext4_da_writepages() ->
3359 	 *    write_cache_pages() ---> (via passed in callback function)
3360 	 *        __mpage_da_writepage() -->
3361 	 *           mpage_add_bh_to_extent()
3362 	 *           mpage_da_map_blocks()
3363 	 *
3364 	 * The problem is that write_cache_pages(), located in
3365 	 * mm/page-writeback.c, marks pages clean in preparation for
3366 	 * doing I/O, which is not desirable if we're not planning on
3367 	 * doing I/O at all.
3368 	 *
3369 	 * We could call write_cache_pages(), and then redirty all of
3370 	 * the pages by calling redirty_page_for_writeback() but that
3371 	 * would be ugly in the extreme.  So instead we would need to
3372 	 * replicate parts of the code in the above functions,
3373 	 * simplifying them becuase we wouldn't actually intend to
3374 	 * write out the pages, but rather only collect contiguous
3375 	 * logical block extents, call the multi-block allocator, and
3376 	 * then update the buffer heads with the block allocations.
3377 	 *
3378 	 * For now, though, we'll cheat by calling filemap_flush(),
3379 	 * which will map the blocks, and start the I/O, but not
3380 	 * actually wait for the I/O to complete.
3381 	 */
3382 	return filemap_flush(inode->i_mapping);
3383 }
3384 
3385 /*
3386  * bmap() is special.  It gets used by applications such as lilo and by
3387  * the swapper to find the on-disk block of a specific piece of data.
3388  *
3389  * Naturally, this is dangerous if the block concerned is still in the
3390  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3391  * filesystem and enables swap, then they may get a nasty shock when the
3392  * data getting swapped to that swapfile suddenly gets overwritten by
3393  * the original zero's written out previously to the journal and
3394  * awaiting writeback in the kernel's buffer cache.
3395  *
3396  * So, if we see any bmap calls here on a modified, data-journaled file,
3397  * take extra steps to flush any blocks which might be in the cache.
3398  */
3399 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3400 {
3401 	struct inode *inode = mapping->host;
3402 	journal_t *journal;
3403 	int err;
3404 
3405 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3406 			test_opt(inode->i_sb, DELALLOC)) {
3407 		/*
3408 		 * With delalloc we want to sync the file
3409 		 * so that we can make sure we allocate
3410 		 * blocks for file
3411 		 */
3412 		filemap_write_and_wait(mapping);
3413 	}
3414 
3415 	if (EXT4_JOURNAL(inode) &&
3416 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3417 		/*
3418 		 * This is a REALLY heavyweight approach, but the use of
3419 		 * bmap on dirty files is expected to be extremely rare:
3420 		 * only if we run lilo or swapon on a freshly made file
3421 		 * do we expect this to happen.
3422 		 *
3423 		 * (bmap requires CAP_SYS_RAWIO so this does not
3424 		 * represent an unprivileged user DOS attack --- we'd be
3425 		 * in trouble if mortal users could trigger this path at
3426 		 * will.)
3427 		 *
3428 		 * NB. EXT4_STATE_JDATA is not set on files other than
3429 		 * regular files.  If somebody wants to bmap a directory
3430 		 * or symlink and gets confused because the buffer
3431 		 * hasn't yet been flushed to disk, they deserve
3432 		 * everything they get.
3433 		 */
3434 
3435 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3436 		journal = EXT4_JOURNAL(inode);
3437 		jbd2_journal_lock_updates(journal);
3438 		err = jbd2_journal_flush(journal);
3439 		jbd2_journal_unlock_updates(journal);
3440 
3441 		if (err)
3442 			return 0;
3443 	}
3444 
3445 	return generic_block_bmap(mapping, block, ext4_get_block);
3446 }
3447 
3448 static int ext4_readpage(struct file *file, struct page *page)
3449 {
3450 	return mpage_readpage(page, ext4_get_block);
3451 }
3452 
3453 static int
3454 ext4_readpages(struct file *file, struct address_space *mapping,
3455 		struct list_head *pages, unsigned nr_pages)
3456 {
3457 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3458 }
3459 
3460 static void ext4_free_io_end(ext4_io_end_t *io)
3461 {
3462 	BUG_ON(!io);
3463 	if (io->page)
3464 		put_page(io->page);
3465 	iput(io->inode);
3466 	kfree(io);
3467 }
3468 
3469 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3470 {
3471 	struct buffer_head *head, *bh;
3472 	unsigned int curr_off = 0;
3473 
3474 	if (!page_has_buffers(page))
3475 		return;
3476 	head = bh = page_buffers(page);
3477 	do {
3478 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3479 					&& bh->b_private) {
3480 			ext4_free_io_end(bh->b_private);
3481 			bh->b_private = NULL;
3482 			bh->b_end_io = NULL;
3483 		}
3484 		curr_off = curr_off + bh->b_size;
3485 		bh = bh->b_this_page;
3486 	} while (bh != head);
3487 }
3488 
3489 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3490 {
3491 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3492 
3493 	/*
3494 	 * free any io_end structure allocated for buffers to be discarded
3495 	 */
3496 	if (ext4_should_dioread_nolock(page->mapping->host))
3497 		ext4_invalidatepage_free_endio(page, offset);
3498 	/*
3499 	 * If it's a full truncate we just forget about the pending dirtying
3500 	 */
3501 	if (offset == 0)
3502 		ClearPageChecked(page);
3503 
3504 	if (journal)
3505 		jbd2_journal_invalidatepage(journal, page, offset);
3506 	else
3507 		block_invalidatepage(page, offset);
3508 }
3509 
3510 static int ext4_releasepage(struct page *page, gfp_t wait)
3511 {
3512 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3513 
3514 	WARN_ON(PageChecked(page));
3515 	if (!page_has_buffers(page))
3516 		return 0;
3517 	if (journal)
3518 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3519 	else
3520 		return try_to_free_buffers(page);
3521 }
3522 
3523 /*
3524  * O_DIRECT for ext3 (or indirect map) based files
3525  *
3526  * If the O_DIRECT write will extend the file then add this inode to the
3527  * orphan list.  So recovery will truncate it back to the original size
3528  * if the machine crashes during the write.
3529  *
3530  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3531  * crashes then stale disk data _may_ be exposed inside the file. But current
3532  * VFS code falls back into buffered path in that case so we are safe.
3533  */
3534 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3535 			      const struct iovec *iov, loff_t offset,
3536 			      unsigned long nr_segs)
3537 {
3538 	struct file *file = iocb->ki_filp;
3539 	struct inode *inode = file->f_mapping->host;
3540 	struct ext4_inode_info *ei = EXT4_I(inode);
3541 	handle_t *handle;
3542 	ssize_t ret;
3543 	int orphan = 0;
3544 	size_t count = iov_length(iov, nr_segs);
3545 	int retries = 0;
3546 
3547 	if (rw == WRITE) {
3548 		loff_t final_size = offset + count;
3549 
3550 		if (final_size > inode->i_size) {
3551 			/* Credits for sb + inode write */
3552 			handle = ext4_journal_start(inode, 2);
3553 			if (IS_ERR(handle)) {
3554 				ret = PTR_ERR(handle);
3555 				goto out;
3556 			}
3557 			ret = ext4_orphan_add(handle, inode);
3558 			if (ret) {
3559 				ext4_journal_stop(handle);
3560 				goto out;
3561 			}
3562 			orphan = 1;
3563 			ei->i_disksize = inode->i_size;
3564 			ext4_journal_stop(handle);
3565 		}
3566 	}
3567 
3568 retry:
3569 	if (rw == READ && ext4_should_dioread_nolock(inode))
3570 		ret = __blockdev_direct_IO(rw, iocb, inode,
3571 				 inode->i_sb->s_bdev, iov,
3572 				 offset, nr_segs,
3573 				 ext4_get_block, NULL, NULL, 0);
3574 	else {
3575 		ret = blockdev_direct_IO(rw, iocb, inode,
3576 				 inode->i_sb->s_bdev, iov,
3577 				 offset, nr_segs,
3578 				 ext4_get_block, NULL);
3579 
3580 		if (unlikely((rw & WRITE) && ret < 0)) {
3581 			loff_t isize = i_size_read(inode);
3582 			loff_t end = offset + iov_length(iov, nr_segs);
3583 
3584 			if (end > isize)
3585 				vmtruncate(inode, isize);
3586 		}
3587 	}
3588 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3589 		goto retry;
3590 
3591 	if (orphan) {
3592 		int err;
3593 
3594 		/* Credits for sb + inode write */
3595 		handle = ext4_journal_start(inode, 2);
3596 		if (IS_ERR(handle)) {
3597 			/* This is really bad luck. We've written the data
3598 			 * but cannot extend i_size. Bail out and pretend
3599 			 * the write failed... */
3600 			ret = PTR_ERR(handle);
3601 			if (inode->i_nlink)
3602 				ext4_orphan_del(NULL, inode);
3603 
3604 			goto out;
3605 		}
3606 		if (inode->i_nlink)
3607 			ext4_orphan_del(handle, inode);
3608 		if (ret > 0) {
3609 			loff_t end = offset + ret;
3610 			if (end > inode->i_size) {
3611 				ei->i_disksize = end;
3612 				i_size_write(inode, end);
3613 				/*
3614 				 * We're going to return a positive `ret'
3615 				 * here due to non-zero-length I/O, so there's
3616 				 * no way of reporting error returns from
3617 				 * ext4_mark_inode_dirty() to userspace.  So
3618 				 * ignore it.
3619 				 */
3620 				ext4_mark_inode_dirty(handle, inode);
3621 			}
3622 		}
3623 		err = ext4_journal_stop(handle);
3624 		if (ret == 0)
3625 			ret = err;
3626 	}
3627 out:
3628 	return ret;
3629 }
3630 
3631 /*
3632  * ext4_get_block used when preparing for a DIO write or buffer write.
3633  * We allocate an uinitialized extent if blocks haven't been allocated.
3634  * The extent will be converted to initialized after the IO is complete.
3635  */
3636 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3637 		   struct buffer_head *bh_result, int create)
3638 {
3639 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3640 		   inode->i_ino, create);
3641 	return _ext4_get_block(inode, iblock, bh_result,
3642 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3643 }
3644 
3645 static void dump_completed_IO(struct inode * inode)
3646 {
3647 #ifdef	EXT4_DEBUG
3648 	struct list_head *cur, *before, *after;
3649 	ext4_io_end_t *io, *io0, *io1;
3650 	unsigned long flags;
3651 
3652 	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3653 		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3654 		return;
3655 	}
3656 
3657 	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3658 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3659 	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3660 		cur = &io->list;
3661 		before = cur->prev;
3662 		io0 = container_of(before, ext4_io_end_t, list);
3663 		after = cur->next;
3664 		io1 = container_of(after, ext4_io_end_t, list);
3665 
3666 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3667 			    io, inode->i_ino, io0, io1);
3668 	}
3669 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3670 #endif
3671 }
3672 
3673 /*
3674  * check a range of space and convert unwritten extents to written.
3675  */
3676 static int ext4_end_io_nolock(ext4_io_end_t *io)
3677 {
3678 	struct inode *inode = io->inode;
3679 	loff_t offset = io->offset;
3680 	ssize_t size = io->size;
3681 	int ret = 0;
3682 
3683 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3684 		   "list->prev 0x%p\n",
3685 	           io, inode->i_ino, io->list.next, io->list.prev);
3686 
3687 	if (list_empty(&io->list))
3688 		return ret;
3689 
3690 	if (io->flag != EXT4_IO_UNWRITTEN)
3691 		return ret;
3692 
3693 	ret = ext4_convert_unwritten_extents(inode, offset, size);
3694 	if (ret < 0) {
3695 		printk(KERN_EMERG "%s: failed to convert unwritten"
3696 			"extents to written extents, error is %d"
3697 			" io is still on inode %lu aio dio list\n",
3698                        __func__, ret, inode->i_ino);
3699 		return ret;
3700 	}
3701 
3702 	if (io->iocb)
3703 		aio_complete(io->iocb, io->result, 0);
3704 	/* clear the DIO AIO unwritten flag */
3705 	io->flag = 0;
3706 	return ret;
3707 }
3708 
3709 /*
3710  * work on completed aio dio IO, to convert unwritten extents to extents
3711  */
3712 static void ext4_end_io_work(struct work_struct *work)
3713 {
3714 	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
3715 	struct inode		*inode = io->inode;
3716 	struct ext4_inode_info	*ei = EXT4_I(inode);
3717 	unsigned long		flags;
3718 	int			ret;
3719 
3720 	mutex_lock(&inode->i_mutex);
3721 	ret = ext4_end_io_nolock(io);
3722 	if (ret < 0) {
3723 		mutex_unlock(&inode->i_mutex);
3724 		return;
3725 	}
3726 
3727 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3728 	if (!list_empty(&io->list))
3729 		list_del_init(&io->list);
3730 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3731 	mutex_unlock(&inode->i_mutex);
3732 	ext4_free_io_end(io);
3733 }
3734 
3735 /*
3736  * This function is called from ext4_sync_file().
3737  *
3738  * When IO is completed, the work to convert unwritten extents to
3739  * written is queued on workqueue but may not get immediately
3740  * scheduled. When fsync is called, we need to ensure the
3741  * conversion is complete before fsync returns.
3742  * The inode keeps track of a list of pending/completed IO that
3743  * might needs to do the conversion. This function walks through
3744  * the list and convert the related unwritten extents for completed IO
3745  * to written.
3746  * The function return the number of pending IOs on success.
3747  */
3748 int flush_completed_IO(struct inode *inode)
3749 {
3750 	ext4_io_end_t *io;
3751 	struct ext4_inode_info *ei = EXT4_I(inode);
3752 	unsigned long flags;
3753 	int ret = 0;
3754 	int ret2 = 0;
3755 
3756 	if (list_empty(&ei->i_completed_io_list))
3757 		return ret;
3758 
3759 	dump_completed_IO(inode);
3760 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3761 	while (!list_empty(&ei->i_completed_io_list)){
3762 		io = list_entry(ei->i_completed_io_list.next,
3763 				ext4_io_end_t, list);
3764 		/*
3765 		 * Calling ext4_end_io_nolock() to convert completed
3766 		 * IO to written.
3767 		 *
3768 		 * When ext4_sync_file() is called, run_queue() may already
3769 		 * about to flush the work corresponding to this io structure.
3770 		 * It will be upset if it founds the io structure related
3771 		 * to the work-to-be schedule is freed.
3772 		 *
3773 		 * Thus we need to keep the io structure still valid here after
3774 		 * convertion finished. The io structure has a flag to
3775 		 * avoid double converting from both fsync and background work
3776 		 * queue work.
3777 		 */
3778 		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3779 		ret = ext4_end_io_nolock(io);
3780 		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3781 		if (ret < 0)
3782 			ret2 = ret;
3783 		else
3784 			list_del_init(&io->list);
3785 	}
3786 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3787 	return (ret2 < 0) ? ret2 : 0;
3788 }
3789 
3790 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3791 {
3792 	ext4_io_end_t *io = NULL;
3793 
3794 	io = kmalloc(sizeof(*io), flags);
3795 
3796 	if (io) {
3797 		igrab(inode);
3798 		io->inode = inode;
3799 		io->flag = 0;
3800 		io->offset = 0;
3801 		io->size = 0;
3802 		io->page = NULL;
3803 		io->iocb = NULL;
3804 		io->result = 0;
3805 		INIT_WORK(&io->work, ext4_end_io_work);
3806 		INIT_LIST_HEAD(&io->list);
3807 	}
3808 
3809 	return io;
3810 }
3811 
3812 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3813 			    ssize_t size, void *private, int ret,
3814 			    bool is_async)
3815 {
3816         ext4_io_end_t *io_end = iocb->private;
3817 	struct workqueue_struct *wq;
3818 	unsigned long flags;
3819 	struct ext4_inode_info *ei;
3820 
3821 	/* if not async direct IO or dio with 0 bytes write, just return */
3822 	if (!io_end || !size)
3823 		goto out;
3824 
3825 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3826 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3827  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3828 		  size);
3829 
3830 	/* if not aio dio with unwritten extents, just free io and return */
3831 	if (io_end->flag != EXT4_IO_UNWRITTEN){
3832 		ext4_free_io_end(io_end);
3833 		iocb->private = NULL;
3834 out:
3835 		if (is_async)
3836 			aio_complete(iocb, ret, 0);
3837 		return;
3838 	}
3839 
3840 	io_end->offset = offset;
3841 	io_end->size = size;
3842 	if (is_async) {
3843 		io_end->iocb = iocb;
3844 		io_end->result = ret;
3845 	}
3846 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3847 
3848 	/* queue the work to convert unwritten extents to written */
3849 	queue_work(wq, &io_end->work);
3850 
3851 	/* Add the io_end to per-inode completed aio dio list*/
3852 	ei = EXT4_I(io_end->inode);
3853 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3854 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3855 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3856 	iocb->private = NULL;
3857 }
3858 
3859 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3860 {
3861 	ext4_io_end_t *io_end = bh->b_private;
3862 	struct workqueue_struct *wq;
3863 	struct inode *inode;
3864 	unsigned long flags;
3865 
3866 	if (!test_clear_buffer_uninit(bh) || !io_end)
3867 		goto out;
3868 
3869 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3870 		printk("sb umounted, discard end_io request for inode %lu\n",
3871 			io_end->inode->i_ino);
3872 		ext4_free_io_end(io_end);
3873 		goto out;
3874 	}
3875 
3876 	io_end->flag = EXT4_IO_UNWRITTEN;
3877 	inode = io_end->inode;
3878 
3879 	/* Add the io_end to per-inode completed io list*/
3880 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3881 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3882 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3883 
3884 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3885 	/* queue the work to convert unwritten extents to written */
3886 	queue_work(wq, &io_end->work);
3887 out:
3888 	bh->b_private = NULL;
3889 	bh->b_end_io = NULL;
3890 	clear_buffer_uninit(bh);
3891 	end_buffer_async_write(bh, uptodate);
3892 }
3893 
3894 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3895 {
3896 	ext4_io_end_t *io_end;
3897 	struct page *page = bh->b_page;
3898 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3899 	size_t size = bh->b_size;
3900 
3901 retry:
3902 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3903 	if (!io_end) {
3904 		if (printk_ratelimit())
3905 			printk(KERN_WARNING "%s: allocation fail\n", __func__);
3906 		schedule();
3907 		goto retry;
3908 	}
3909 	io_end->offset = offset;
3910 	io_end->size = size;
3911 	/*
3912 	 * We need to hold a reference to the page to make sure it
3913 	 * doesn't get evicted before ext4_end_io_work() has a chance
3914 	 * to convert the extent from written to unwritten.
3915 	 */
3916 	io_end->page = page;
3917 	get_page(io_end->page);
3918 
3919 	bh->b_private = io_end;
3920 	bh->b_end_io = ext4_end_io_buffer_write;
3921 	return 0;
3922 }
3923 
3924 /*
3925  * For ext4 extent files, ext4 will do direct-io write to holes,
3926  * preallocated extents, and those write extend the file, no need to
3927  * fall back to buffered IO.
3928  *
3929  * For holes, we fallocate those blocks, mark them as unintialized
3930  * If those blocks were preallocated, we mark sure they are splited, but
3931  * still keep the range to write as unintialized.
3932  *
3933  * The unwrritten extents will be converted to written when DIO is completed.
3934  * For async direct IO, since the IO may still pending when return, we
3935  * set up an end_io call back function, which will do the convertion
3936  * when async direct IO completed.
3937  *
3938  * If the O_DIRECT write will extend the file then add this inode to the
3939  * orphan list.  So recovery will truncate it back to the original size
3940  * if the machine crashes during the write.
3941  *
3942  */
3943 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3944 			      const struct iovec *iov, loff_t offset,
3945 			      unsigned long nr_segs)
3946 {
3947 	struct file *file = iocb->ki_filp;
3948 	struct inode *inode = file->f_mapping->host;
3949 	ssize_t ret;
3950 	size_t count = iov_length(iov, nr_segs);
3951 
3952 	loff_t final_size = offset + count;
3953 	if (rw == WRITE && final_size <= inode->i_size) {
3954 		/*
3955  		 * We could direct write to holes and fallocate.
3956 		 *
3957  		 * Allocated blocks to fill the hole are marked as uninitialized
3958  		 * to prevent paralel buffered read to expose the stale data
3959  		 * before DIO complete the data IO.
3960 		 *
3961  		 * As to previously fallocated extents, ext4 get_block
3962  		 * will just simply mark the buffer mapped but still
3963  		 * keep the extents uninitialized.
3964  		 *
3965 		 * for non AIO case, we will convert those unwritten extents
3966 		 * to written after return back from blockdev_direct_IO.
3967 		 *
3968 		 * for async DIO, the conversion needs to be defered when
3969 		 * the IO is completed. The ext4 end_io callback function
3970 		 * will be called to take care of the conversion work.
3971 		 * Here for async case, we allocate an io_end structure to
3972 		 * hook to the iocb.
3973  		 */
3974 		iocb->private = NULL;
3975 		EXT4_I(inode)->cur_aio_dio = NULL;
3976 		if (!is_sync_kiocb(iocb)) {
3977 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3978 			if (!iocb->private)
3979 				return -ENOMEM;
3980 			/*
3981 			 * we save the io structure for current async
3982 			 * direct IO, so that later ext4_map_blocks()
3983 			 * could flag the io structure whether there
3984 			 * is a unwritten extents needs to be converted
3985 			 * when IO is completed.
3986 			 */
3987 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3988 		}
3989 
3990 		ret = blockdev_direct_IO(rw, iocb, inode,
3991 					 inode->i_sb->s_bdev, iov,
3992 					 offset, nr_segs,
3993 					 ext4_get_block_write,
3994 					 ext4_end_io_dio);
3995 		if (iocb->private)
3996 			EXT4_I(inode)->cur_aio_dio = NULL;
3997 		/*
3998 		 * The io_end structure takes a reference to the inode,
3999 		 * that structure needs to be destroyed and the
4000 		 * reference to the inode need to be dropped, when IO is
4001 		 * complete, even with 0 byte write, or failed.
4002 		 *
4003 		 * In the successful AIO DIO case, the io_end structure will be
4004 		 * desctroyed and the reference to the inode will be dropped
4005 		 * after the end_io call back function is called.
4006 		 *
4007 		 * In the case there is 0 byte write, or error case, since
4008 		 * VFS direct IO won't invoke the end_io call back function,
4009 		 * we need to free the end_io structure here.
4010 		 */
4011 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4012 			ext4_free_io_end(iocb->private);
4013 			iocb->private = NULL;
4014 		} else if (ret > 0 && ext4_test_inode_state(inode,
4015 						EXT4_STATE_DIO_UNWRITTEN)) {
4016 			int err;
4017 			/*
4018 			 * for non AIO case, since the IO is already
4019 			 * completed, we could do the convertion right here
4020 			 */
4021 			err = ext4_convert_unwritten_extents(inode,
4022 							     offset, ret);
4023 			if (err < 0)
4024 				ret = err;
4025 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4026 		}
4027 		return ret;
4028 	}
4029 
4030 	/* for write the the end of file case, we fall back to old way */
4031 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4032 }
4033 
4034 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4035 			      const struct iovec *iov, loff_t offset,
4036 			      unsigned long nr_segs)
4037 {
4038 	struct file *file = iocb->ki_filp;
4039 	struct inode *inode = file->f_mapping->host;
4040 
4041 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4042 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4043 
4044 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4045 }
4046 
4047 /*
4048  * Pages can be marked dirty completely asynchronously from ext4's journalling
4049  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4050  * much here because ->set_page_dirty is called under VFS locks.  The page is
4051  * not necessarily locked.
4052  *
4053  * We cannot just dirty the page and leave attached buffers clean, because the
4054  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4055  * or jbddirty because all the journalling code will explode.
4056  *
4057  * So what we do is to mark the page "pending dirty" and next time writepage
4058  * is called, propagate that into the buffers appropriately.
4059  */
4060 static int ext4_journalled_set_page_dirty(struct page *page)
4061 {
4062 	SetPageChecked(page);
4063 	return __set_page_dirty_nobuffers(page);
4064 }
4065 
4066 static const struct address_space_operations ext4_ordered_aops = {
4067 	.readpage		= ext4_readpage,
4068 	.readpages		= ext4_readpages,
4069 	.writepage		= ext4_writepage,
4070 	.sync_page		= block_sync_page,
4071 	.write_begin		= ext4_write_begin,
4072 	.write_end		= ext4_ordered_write_end,
4073 	.bmap			= ext4_bmap,
4074 	.invalidatepage		= ext4_invalidatepage,
4075 	.releasepage		= ext4_releasepage,
4076 	.direct_IO		= ext4_direct_IO,
4077 	.migratepage		= buffer_migrate_page,
4078 	.is_partially_uptodate  = block_is_partially_uptodate,
4079 	.error_remove_page	= generic_error_remove_page,
4080 };
4081 
4082 static const struct address_space_operations ext4_writeback_aops = {
4083 	.readpage		= ext4_readpage,
4084 	.readpages		= ext4_readpages,
4085 	.writepage		= ext4_writepage,
4086 	.sync_page		= block_sync_page,
4087 	.write_begin		= ext4_write_begin,
4088 	.write_end		= ext4_writeback_write_end,
4089 	.bmap			= ext4_bmap,
4090 	.invalidatepage		= ext4_invalidatepage,
4091 	.releasepage		= ext4_releasepage,
4092 	.direct_IO		= ext4_direct_IO,
4093 	.migratepage		= buffer_migrate_page,
4094 	.is_partially_uptodate  = block_is_partially_uptodate,
4095 	.error_remove_page	= generic_error_remove_page,
4096 };
4097 
4098 static const struct address_space_operations ext4_journalled_aops = {
4099 	.readpage		= ext4_readpage,
4100 	.readpages		= ext4_readpages,
4101 	.writepage		= ext4_writepage,
4102 	.sync_page		= block_sync_page,
4103 	.write_begin		= ext4_write_begin,
4104 	.write_end		= ext4_journalled_write_end,
4105 	.set_page_dirty		= ext4_journalled_set_page_dirty,
4106 	.bmap			= ext4_bmap,
4107 	.invalidatepage		= ext4_invalidatepage,
4108 	.releasepage		= ext4_releasepage,
4109 	.is_partially_uptodate  = block_is_partially_uptodate,
4110 	.error_remove_page	= generic_error_remove_page,
4111 };
4112 
4113 static const struct address_space_operations ext4_da_aops = {
4114 	.readpage		= ext4_readpage,
4115 	.readpages		= ext4_readpages,
4116 	.writepage		= ext4_writepage,
4117 	.writepages		= ext4_da_writepages,
4118 	.sync_page		= block_sync_page,
4119 	.write_begin		= ext4_da_write_begin,
4120 	.write_end		= ext4_da_write_end,
4121 	.bmap			= ext4_bmap,
4122 	.invalidatepage		= ext4_da_invalidatepage,
4123 	.releasepage		= ext4_releasepage,
4124 	.direct_IO		= ext4_direct_IO,
4125 	.migratepage		= buffer_migrate_page,
4126 	.is_partially_uptodate  = block_is_partially_uptodate,
4127 	.error_remove_page	= generic_error_remove_page,
4128 };
4129 
4130 void ext4_set_aops(struct inode *inode)
4131 {
4132 	if (ext4_should_order_data(inode) &&
4133 		test_opt(inode->i_sb, DELALLOC))
4134 		inode->i_mapping->a_ops = &ext4_da_aops;
4135 	else if (ext4_should_order_data(inode))
4136 		inode->i_mapping->a_ops = &ext4_ordered_aops;
4137 	else if (ext4_should_writeback_data(inode) &&
4138 		 test_opt(inode->i_sb, DELALLOC))
4139 		inode->i_mapping->a_ops = &ext4_da_aops;
4140 	else if (ext4_should_writeback_data(inode))
4141 		inode->i_mapping->a_ops = &ext4_writeback_aops;
4142 	else
4143 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4144 }
4145 
4146 /*
4147  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4148  * up to the end of the block which corresponds to `from'.
4149  * This required during truncate. We need to physically zero the tail end
4150  * of that block so it doesn't yield old data if the file is later grown.
4151  */
4152 int ext4_block_truncate_page(handle_t *handle,
4153 		struct address_space *mapping, loff_t from)
4154 {
4155 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4156 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4157 	unsigned blocksize, length, pos;
4158 	ext4_lblk_t iblock;
4159 	struct inode *inode = mapping->host;
4160 	struct buffer_head *bh;
4161 	struct page *page;
4162 	int err = 0;
4163 
4164 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4165 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4166 	if (!page)
4167 		return -EINVAL;
4168 
4169 	blocksize = inode->i_sb->s_blocksize;
4170 	length = blocksize - (offset & (blocksize - 1));
4171 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4172 
4173 	if (!page_has_buffers(page))
4174 		create_empty_buffers(page, blocksize, 0);
4175 
4176 	/* Find the buffer that contains "offset" */
4177 	bh = page_buffers(page);
4178 	pos = blocksize;
4179 	while (offset >= pos) {
4180 		bh = bh->b_this_page;
4181 		iblock++;
4182 		pos += blocksize;
4183 	}
4184 
4185 	err = 0;
4186 	if (buffer_freed(bh)) {
4187 		BUFFER_TRACE(bh, "freed: skip");
4188 		goto unlock;
4189 	}
4190 
4191 	if (!buffer_mapped(bh)) {
4192 		BUFFER_TRACE(bh, "unmapped");
4193 		ext4_get_block(inode, iblock, bh, 0);
4194 		/* unmapped? It's a hole - nothing to do */
4195 		if (!buffer_mapped(bh)) {
4196 			BUFFER_TRACE(bh, "still unmapped");
4197 			goto unlock;
4198 		}
4199 	}
4200 
4201 	/* Ok, it's mapped. Make sure it's up-to-date */
4202 	if (PageUptodate(page))
4203 		set_buffer_uptodate(bh);
4204 
4205 	if (!buffer_uptodate(bh)) {
4206 		err = -EIO;
4207 		ll_rw_block(READ, 1, &bh);
4208 		wait_on_buffer(bh);
4209 		/* Uhhuh. Read error. Complain and punt. */
4210 		if (!buffer_uptodate(bh))
4211 			goto unlock;
4212 	}
4213 
4214 	if (ext4_should_journal_data(inode)) {
4215 		BUFFER_TRACE(bh, "get write access");
4216 		err = ext4_journal_get_write_access(handle, bh);
4217 		if (err)
4218 			goto unlock;
4219 	}
4220 
4221 	zero_user(page, offset, length);
4222 
4223 	BUFFER_TRACE(bh, "zeroed end of block");
4224 
4225 	err = 0;
4226 	if (ext4_should_journal_data(inode)) {
4227 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4228 	} else {
4229 		if (ext4_should_order_data(inode))
4230 			err = ext4_jbd2_file_inode(handle, inode);
4231 		mark_buffer_dirty(bh);
4232 	}
4233 
4234 unlock:
4235 	unlock_page(page);
4236 	page_cache_release(page);
4237 	return err;
4238 }
4239 
4240 /*
4241  * Probably it should be a library function... search for first non-zero word
4242  * or memcmp with zero_page, whatever is better for particular architecture.
4243  * Linus?
4244  */
4245 static inline int all_zeroes(__le32 *p, __le32 *q)
4246 {
4247 	while (p < q)
4248 		if (*p++)
4249 			return 0;
4250 	return 1;
4251 }
4252 
4253 /**
4254  *	ext4_find_shared - find the indirect blocks for partial truncation.
4255  *	@inode:	  inode in question
4256  *	@depth:	  depth of the affected branch
4257  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4258  *	@chain:	  place to store the pointers to partial indirect blocks
4259  *	@top:	  place to the (detached) top of branch
4260  *
4261  *	This is a helper function used by ext4_truncate().
4262  *
4263  *	When we do truncate() we may have to clean the ends of several
4264  *	indirect blocks but leave the blocks themselves alive. Block is
4265  *	partially truncated if some data below the new i_size is refered
4266  *	from it (and it is on the path to the first completely truncated
4267  *	data block, indeed).  We have to free the top of that path along
4268  *	with everything to the right of the path. Since no allocation
4269  *	past the truncation point is possible until ext4_truncate()
4270  *	finishes, we may safely do the latter, but top of branch may
4271  *	require special attention - pageout below the truncation point
4272  *	might try to populate it.
4273  *
4274  *	We atomically detach the top of branch from the tree, store the
4275  *	block number of its root in *@top, pointers to buffer_heads of
4276  *	partially truncated blocks - in @chain[].bh and pointers to
4277  *	their last elements that should not be removed - in
4278  *	@chain[].p. Return value is the pointer to last filled element
4279  *	of @chain.
4280  *
4281  *	The work left to caller to do the actual freeing of subtrees:
4282  *		a) free the subtree starting from *@top
4283  *		b) free the subtrees whose roots are stored in
4284  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4285  *		c) free the subtrees growing from the inode past the @chain[0].
4286  *			(no partially truncated stuff there).  */
4287 
4288 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4289 				  ext4_lblk_t offsets[4], Indirect chain[4],
4290 				  __le32 *top)
4291 {
4292 	Indirect *partial, *p;
4293 	int k, err;
4294 
4295 	*top = 0;
4296 	/* Make k index the deepest non-null offset + 1 */
4297 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4298 		;
4299 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4300 	/* Writer: pointers */
4301 	if (!partial)
4302 		partial = chain + k-1;
4303 	/*
4304 	 * If the branch acquired continuation since we've looked at it -
4305 	 * fine, it should all survive and (new) top doesn't belong to us.
4306 	 */
4307 	if (!partial->key && *partial->p)
4308 		/* Writer: end */
4309 		goto no_top;
4310 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4311 		;
4312 	/*
4313 	 * OK, we've found the last block that must survive. The rest of our
4314 	 * branch should be detached before unlocking. However, if that rest
4315 	 * of branch is all ours and does not grow immediately from the inode
4316 	 * it's easier to cheat and just decrement partial->p.
4317 	 */
4318 	if (p == chain + k - 1 && p > chain) {
4319 		p->p--;
4320 	} else {
4321 		*top = *p->p;
4322 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4323 #if 0
4324 		*p->p = 0;
4325 #endif
4326 	}
4327 	/* Writer: end */
4328 
4329 	while (partial > p) {
4330 		brelse(partial->bh);
4331 		partial--;
4332 	}
4333 no_top:
4334 	return partial;
4335 }
4336 
4337 /*
4338  * Zero a number of block pointers in either an inode or an indirect block.
4339  * If we restart the transaction we must again get write access to the
4340  * indirect block for further modification.
4341  *
4342  * We release `count' blocks on disk, but (last - first) may be greater
4343  * than `count' because there can be holes in there.
4344  */
4345 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4346 			     struct buffer_head *bh,
4347 			     ext4_fsblk_t block_to_free,
4348 			     unsigned long count, __le32 *first,
4349 			     __le32 *last)
4350 {
4351 	__le32 *p;
4352 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4353 
4354 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4355 		flags |= EXT4_FREE_BLOCKS_METADATA;
4356 
4357 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4358 				   count)) {
4359 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4360 				 "blocks %llu len %lu",
4361 				 (unsigned long long) block_to_free, count);
4362 		return 1;
4363 	}
4364 
4365 	if (try_to_extend_transaction(handle, inode)) {
4366 		if (bh) {
4367 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4368 			ext4_handle_dirty_metadata(handle, inode, bh);
4369 		}
4370 		ext4_mark_inode_dirty(handle, inode);
4371 		ext4_truncate_restart_trans(handle, inode,
4372 					    blocks_for_truncate(inode));
4373 		if (bh) {
4374 			BUFFER_TRACE(bh, "retaking write access");
4375 			ext4_journal_get_write_access(handle, bh);
4376 		}
4377 	}
4378 
4379 	for (p = first; p < last; p++)
4380 		*p = 0;
4381 
4382 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4383 	return 0;
4384 }
4385 
4386 /**
4387  * ext4_free_data - free a list of data blocks
4388  * @handle:	handle for this transaction
4389  * @inode:	inode we are dealing with
4390  * @this_bh:	indirect buffer_head which contains *@first and *@last
4391  * @first:	array of block numbers
4392  * @last:	points immediately past the end of array
4393  *
4394  * We are freeing all blocks refered from that array (numbers are stored as
4395  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4396  *
4397  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4398  * blocks are contiguous then releasing them at one time will only affect one
4399  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4400  * actually use a lot of journal space.
4401  *
4402  * @this_bh will be %NULL if @first and @last point into the inode's direct
4403  * block pointers.
4404  */
4405 static void ext4_free_data(handle_t *handle, struct inode *inode,
4406 			   struct buffer_head *this_bh,
4407 			   __le32 *first, __le32 *last)
4408 {
4409 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4410 	unsigned long count = 0;	    /* Number of blocks in the run */
4411 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4412 					       corresponding to
4413 					       block_to_free */
4414 	ext4_fsblk_t nr;		    /* Current block # */
4415 	__le32 *p;			    /* Pointer into inode/ind
4416 					       for current block */
4417 	int err;
4418 
4419 	if (this_bh) {				/* For indirect block */
4420 		BUFFER_TRACE(this_bh, "get_write_access");
4421 		err = ext4_journal_get_write_access(handle, this_bh);
4422 		/* Important: if we can't update the indirect pointers
4423 		 * to the blocks, we can't free them. */
4424 		if (err)
4425 			return;
4426 	}
4427 
4428 	for (p = first; p < last; p++) {
4429 		nr = le32_to_cpu(*p);
4430 		if (nr) {
4431 			/* accumulate blocks to free if they're contiguous */
4432 			if (count == 0) {
4433 				block_to_free = nr;
4434 				block_to_free_p = p;
4435 				count = 1;
4436 			} else if (nr == block_to_free + count) {
4437 				count++;
4438 			} else {
4439 				if (ext4_clear_blocks(handle, inode, this_bh,
4440 						      block_to_free, count,
4441 						      block_to_free_p, p))
4442 					break;
4443 				block_to_free = nr;
4444 				block_to_free_p = p;
4445 				count = 1;
4446 			}
4447 		}
4448 	}
4449 
4450 	if (count > 0)
4451 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4452 				  count, block_to_free_p, p);
4453 
4454 	if (this_bh) {
4455 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4456 
4457 		/*
4458 		 * The buffer head should have an attached journal head at this
4459 		 * point. However, if the data is corrupted and an indirect
4460 		 * block pointed to itself, it would have been detached when
4461 		 * the block was cleared. Check for this instead of OOPSing.
4462 		 */
4463 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4464 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4465 		else
4466 			EXT4_ERROR_INODE(inode,
4467 					 "circular indirect block detected at "
4468 					 "block %llu",
4469 				(unsigned long long) this_bh->b_blocknr);
4470 	}
4471 }
4472 
4473 /**
4474  *	ext4_free_branches - free an array of branches
4475  *	@handle: JBD handle for this transaction
4476  *	@inode:	inode we are dealing with
4477  *	@parent_bh: the buffer_head which contains *@first and *@last
4478  *	@first:	array of block numbers
4479  *	@last:	pointer immediately past the end of array
4480  *	@depth:	depth of the branches to free
4481  *
4482  *	We are freeing all blocks refered from these branches (numbers are
4483  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4484  *	appropriately.
4485  */
4486 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4487 			       struct buffer_head *parent_bh,
4488 			       __le32 *first, __le32 *last, int depth)
4489 {
4490 	ext4_fsblk_t nr;
4491 	__le32 *p;
4492 
4493 	if (ext4_handle_is_aborted(handle))
4494 		return;
4495 
4496 	if (depth--) {
4497 		struct buffer_head *bh;
4498 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4499 		p = last;
4500 		while (--p >= first) {
4501 			nr = le32_to_cpu(*p);
4502 			if (!nr)
4503 				continue;		/* A hole */
4504 
4505 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4506 						   nr, 1)) {
4507 				EXT4_ERROR_INODE(inode,
4508 						 "invalid indirect mapped "
4509 						 "block %lu (level %d)",
4510 						 (unsigned long) nr, depth);
4511 				break;
4512 			}
4513 
4514 			/* Go read the buffer for the next level down */
4515 			bh = sb_bread(inode->i_sb, nr);
4516 
4517 			/*
4518 			 * A read failure? Report error and clear slot
4519 			 * (should be rare).
4520 			 */
4521 			if (!bh) {
4522 				EXT4_ERROR_INODE_BLOCK(inode, nr,
4523 						       "Read failure");
4524 				continue;
4525 			}
4526 
4527 			/* This zaps the entire block.  Bottom up. */
4528 			BUFFER_TRACE(bh, "free child branches");
4529 			ext4_free_branches(handle, inode, bh,
4530 					(__le32 *) bh->b_data,
4531 					(__le32 *) bh->b_data + addr_per_block,
4532 					depth);
4533 
4534 			/*
4535 			 * Everything below this this pointer has been
4536 			 * released.  Now let this top-of-subtree go.
4537 			 *
4538 			 * We want the freeing of this indirect block to be
4539 			 * atomic in the journal with the updating of the
4540 			 * bitmap block which owns it.  So make some room in
4541 			 * the journal.
4542 			 *
4543 			 * We zero the parent pointer *after* freeing its
4544 			 * pointee in the bitmaps, so if extend_transaction()
4545 			 * for some reason fails to put the bitmap changes and
4546 			 * the release into the same transaction, recovery
4547 			 * will merely complain about releasing a free block,
4548 			 * rather than leaking blocks.
4549 			 */
4550 			if (ext4_handle_is_aborted(handle))
4551 				return;
4552 			if (try_to_extend_transaction(handle, inode)) {
4553 				ext4_mark_inode_dirty(handle, inode);
4554 				ext4_truncate_restart_trans(handle, inode,
4555 					    blocks_for_truncate(inode));
4556 			}
4557 
4558 			/*
4559 			 * The forget flag here is critical because if
4560 			 * we are journaling (and not doing data
4561 			 * journaling), we have to make sure a revoke
4562 			 * record is written to prevent the journal
4563 			 * replay from overwriting the (former)
4564 			 * indirect block if it gets reallocated as a
4565 			 * data block.  This must happen in the same
4566 			 * transaction where the data blocks are
4567 			 * actually freed.
4568 			 */
4569 			ext4_free_blocks(handle, inode, 0, nr, 1,
4570 					 EXT4_FREE_BLOCKS_METADATA|
4571 					 EXT4_FREE_BLOCKS_FORGET);
4572 
4573 			if (parent_bh) {
4574 				/*
4575 				 * The block which we have just freed is
4576 				 * pointed to by an indirect block: journal it
4577 				 */
4578 				BUFFER_TRACE(parent_bh, "get_write_access");
4579 				if (!ext4_journal_get_write_access(handle,
4580 								   parent_bh)){
4581 					*p = 0;
4582 					BUFFER_TRACE(parent_bh,
4583 					"call ext4_handle_dirty_metadata");
4584 					ext4_handle_dirty_metadata(handle,
4585 								   inode,
4586 								   parent_bh);
4587 				}
4588 			}
4589 		}
4590 	} else {
4591 		/* We have reached the bottom of the tree. */
4592 		BUFFER_TRACE(parent_bh, "free data blocks");
4593 		ext4_free_data(handle, inode, parent_bh, first, last);
4594 	}
4595 }
4596 
4597 int ext4_can_truncate(struct inode *inode)
4598 {
4599 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4600 		return 0;
4601 	if (S_ISREG(inode->i_mode))
4602 		return 1;
4603 	if (S_ISDIR(inode->i_mode))
4604 		return 1;
4605 	if (S_ISLNK(inode->i_mode))
4606 		return !ext4_inode_is_fast_symlink(inode);
4607 	return 0;
4608 }
4609 
4610 /*
4611  * ext4_truncate()
4612  *
4613  * We block out ext4_get_block() block instantiations across the entire
4614  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4615  * simultaneously on behalf of the same inode.
4616  *
4617  * As we work through the truncate and commmit bits of it to the journal there
4618  * is one core, guiding principle: the file's tree must always be consistent on
4619  * disk.  We must be able to restart the truncate after a crash.
4620  *
4621  * The file's tree may be transiently inconsistent in memory (although it
4622  * probably isn't), but whenever we close off and commit a journal transaction,
4623  * the contents of (the filesystem + the journal) must be consistent and
4624  * restartable.  It's pretty simple, really: bottom up, right to left (although
4625  * left-to-right works OK too).
4626  *
4627  * Note that at recovery time, journal replay occurs *before* the restart of
4628  * truncate against the orphan inode list.
4629  *
4630  * The committed inode has the new, desired i_size (which is the same as
4631  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4632  * that this inode's truncate did not complete and it will again call
4633  * ext4_truncate() to have another go.  So there will be instantiated blocks
4634  * to the right of the truncation point in a crashed ext4 filesystem.  But
4635  * that's fine - as long as they are linked from the inode, the post-crash
4636  * ext4_truncate() run will find them and release them.
4637  */
4638 void ext4_truncate(struct inode *inode)
4639 {
4640 	handle_t *handle;
4641 	struct ext4_inode_info *ei = EXT4_I(inode);
4642 	__le32 *i_data = ei->i_data;
4643 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4644 	struct address_space *mapping = inode->i_mapping;
4645 	ext4_lblk_t offsets[4];
4646 	Indirect chain[4];
4647 	Indirect *partial;
4648 	__le32 nr = 0;
4649 	int n;
4650 	ext4_lblk_t last_block;
4651 	unsigned blocksize = inode->i_sb->s_blocksize;
4652 
4653 	if (!ext4_can_truncate(inode))
4654 		return;
4655 
4656 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4657 
4658 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4659 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4660 
4661 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4662 		ext4_ext_truncate(inode);
4663 		return;
4664 	}
4665 
4666 	handle = start_transaction(inode);
4667 	if (IS_ERR(handle))
4668 		return;		/* AKPM: return what? */
4669 
4670 	last_block = (inode->i_size + blocksize-1)
4671 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4672 
4673 	if (inode->i_size & (blocksize - 1))
4674 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4675 			goto out_stop;
4676 
4677 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4678 	if (n == 0)
4679 		goto out_stop;	/* error */
4680 
4681 	/*
4682 	 * OK.  This truncate is going to happen.  We add the inode to the
4683 	 * orphan list, so that if this truncate spans multiple transactions,
4684 	 * and we crash, we will resume the truncate when the filesystem
4685 	 * recovers.  It also marks the inode dirty, to catch the new size.
4686 	 *
4687 	 * Implication: the file must always be in a sane, consistent
4688 	 * truncatable state while each transaction commits.
4689 	 */
4690 	if (ext4_orphan_add(handle, inode))
4691 		goto out_stop;
4692 
4693 	/*
4694 	 * From here we block out all ext4_get_block() callers who want to
4695 	 * modify the block allocation tree.
4696 	 */
4697 	down_write(&ei->i_data_sem);
4698 
4699 	ext4_discard_preallocations(inode);
4700 
4701 	/*
4702 	 * The orphan list entry will now protect us from any crash which
4703 	 * occurs before the truncate completes, so it is now safe to propagate
4704 	 * the new, shorter inode size (held for now in i_size) into the
4705 	 * on-disk inode. We do this via i_disksize, which is the value which
4706 	 * ext4 *really* writes onto the disk inode.
4707 	 */
4708 	ei->i_disksize = inode->i_size;
4709 
4710 	if (n == 1) {		/* direct blocks */
4711 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4712 			       i_data + EXT4_NDIR_BLOCKS);
4713 		goto do_indirects;
4714 	}
4715 
4716 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4717 	/* Kill the top of shared branch (not detached) */
4718 	if (nr) {
4719 		if (partial == chain) {
4720 			/* Shared branch grows from the inode */
4721 			ext4_free_branches(handle, inode, NULL,
4722 					   &nr, &nr+1, (chain+n-1) - partial);
4723 			*partial->p = 0;
4724 			/*
4725 			 * We mark the inode dirty prior to restart,
4726 			 * and prior to stop.  No need for it here.
4727 			 */
4728 		} else {
4729 			/* Shared branch grows from an indirect block */
4730 			BUFFER_TRACE(partial->bh, "get_write_access");
4731 			ext4_free_branches(handle, inode, partial->bh,
4732 					partial->p,
4733 					partial->p+1, (chain+n-1) - partial);
4734 		}
4735 	}
4736 	/* Clear the ends of indirect blocks on the shared branch */
4737 	while (partial > chain) {
4738 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4739 				   (__le32*)partial->bh->b_data+addr_per_block,
4740 				   (chain+n-1) - partial);
4741 		BUFFER_TRACE(partial->bh, "call brelse");
4742 		brelse(partial->bh);
4743 		partial--;
4744 	}
4745 do_indirects:
4746 	/* Kill the remaining (whole) subtrees */
4747 	switch (offsets[0]) {
4748 	default:
4749 		nr = i_data[EXT4_IND_BLOCK];
4750 		if (nr) {
4751 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4752 			i_data[EXT4_IND_BLOCK] = 0;
4753 		}
4754 	case EXT4_IND_BLOCK:
4755 		nr = i_data[EXT4_DIND_BLOCK];
4756 		if (nr) {
4757 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4758 			i_data[EXT4_DIND_BLOCK] = 0;
4759 		}
4760 	case EXT4_DIND_BLOCK:
4761 		nr = i_data[EXT4_TIND_BLOCK];
4762 		if (nr) {
4763 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4764 			i_data[EXT4_TIND_BLOCK] = 0;
4765 		}
4766 	case EXT4_TIND_BLOCK:
4767 		;
4768 	}
4769 
4770 	up_write(&ei->i_data_sem);
4771 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4772 	ext4_mark_inode_dirty(handle, inode);
4773 
4774 	/*
4775 	 * In a multi-transaction truncate, we only make the final transaction
4776 	 * synchronous
4777 	 */
4778 	if (IS_SYNC(inode))
4779 		ext4_handle_sync(handle);
4780 out_stop:
4781 	/*
4782 	 * If this was a simple ftruncate(), and the file will remain alive
4783 	 * then we need to clear up the orphan record which we created above.
4784 	 * However, if this was a real unlink then we were called by
4785 	 * ext4_delete_inode(), and we allow that function to clean up the
4786 	 * orphan info for us.
4787 	 */
4788 	if (inode->i_nlink)
4789 		ext4_orphan_del(handle, inode);
4790 
4791 	ext4_journal_stop(handle);
4792 }
4793 
4794 /*
4795  * ext4_get_inode_loc returns with an extra refcount against the inode's
4796  * underlying buffer_head on success. If 'in_mem' is true, we have all
4797  * data in memory that is needed to recreate the on-disk version of this
4798  * inode.
4799  */
4800 static int __ext4_get_inode_loc(struct inode *inode,
4801 				struct ext4_iloc *iloc, int in_mem)
4802 {
4803 	struct ext4_group_desc	*gdp;
4804 	struct buffer_head	*bh;
4805 	struct super_block	*sb = inode->i_sb;
4806 	ext4_fsblk_t		block;
4807 	int			inodes_per_block, inode_offset;
4808 
4809 	iloc->bh = NULL;
4810 	if (!ext4_valid_inum(sb, inode->i_ino))
4811 		return -EIO;
4812 
4813 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4814 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4815 	if (!gdp)
4816 		return -EIO;
4817 
4818 	/*
4819 	 * Figure out the offset within the block group inode table
4820 	 */
4821 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4822 	inode_offset = ((inode->i_ino - 1) %
4823 			EXT4_INODES_PER_GROUP(sb));
4824 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4825 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4826 
4827 	bh = sb_getblk(sb, block);
4828 	if (!bh) {
4829 		EXT4_ERROR_INODE_BLOCK(inode, block,
4830 				       "unable to read itable block");
4831 		return -EIO;
4832 	}
4833 	if (!buffer_uptodate(bh)) {
4834 		lock_buffer(bh);
4835 
4836 		/*
4837 		 * If the buffer has the write error flag, we have failed
4838 		 * to write out another inode in the same block.  In this
4839 		 * case, we don't have to read the block because we may
4840 		 * read the old inode data successfully.
4841 		 */
4842 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4843 			set_buffer_uptodate(bh);
4844 
4845 		if (buffer_uptodate(bh)) {
4846 			/* someone brought it uptodate while we waited */
4847 			unlock_buffer(bh);
4848 			goto has_buffer;
4849 		}
4850 
4851 		/*
4852 		 * If we have all information of the inode in memory and this
4853 		 * is the only valid inode in the block, we need not read the
4854 		 * block.
4855 		 */
4856 		if (in_mem) {
4857 			struct buffer_head *bitmap_bh;
4858 			int i, start;
4859 
4860 			start = inode_offset & ~(inodes_per_block - 1);
4861 
4862 			/* Is the inode bitmap in cache? */
4863 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4864 			if (!bitmap_bh)
4865 				goto make_io;
4866 
4867 			/*
4868 			 * If the inode bitmap isn't in cache then the
4869 			 * optimisation may end up performing two reads instead
4870 			 * of one, so skip it.
4871 			 */
4872 			if (!buffer_uptodate(bitmap_bh)) {
4873 				brelse(bitmap_bh);
4874 				goto make_io;
4875 			}
4876 			for (i = start; i < start + inodes_per_block; i++) {
4877 				if (i == inode_offset)
4878 					continue;
4879 				if (ext4_test_bit(i, bitmap_bh->b_data))
4880 					break;
4881 			}
4882 			brelse(bitmap_bh);
4883 			if (i == start + inodes_per_block) {
4884 				/* all other inodes are free, so skip I/O */
4885 				memset(bh->b_data, 0, bh->b_size);
4886 				set_buffer_uptodate(bh);
4887 				unlock_buffer(bh);
4888 				goto has_buffer;
4889 			}
4890 		}
4891 
4892 make_io:
4893 		/*
4894 		 * If we need to do any I/O, try to pre-readahead extra
4895 		 * blocks from the inode table.
4896 		 */
4897 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4898 			ext4_fsblk_t b, end, table;
4899 			unsigned num;
4900 
4901 			table = ext4_inode_table(sb, gdp);
4902 			/* s_inode_readahead_blks is always a power of 2 */
4903 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4904 			if (table > b)
4905 				b = table;
4906 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4907 			num = EXT4_INODES_PER_GROUP(sb);
4908 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4909 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4910 				num -= ext4_itable_unused_count(sb, gdp);
4911 			table += num / inodes_per_block;
4912 			if (end > table)
4913 				end = table;
4914 			while (b <= end)
4915 				sb_breadahead(sb, b++);
4916 		}
4917 
4918 		/*
4919 		 * There are other valid inodes in the buffer, this inode
4920 		 * has in-inode xattrs, or we don't have this inode in memory.
4921 		 * Read the block from disk.
4922 		 */
4923 		get_bh(bh);
4924 		bh->b_end_io = end_buffer_read_sync;
4925 		submit_bh(READ_META, bh);
4926 		wait_on_buffer(bh);
4927 		if (!buffer_uptodate(bh)) {
4928 			EXT4_ERROR_INODE_BLOCK(inode, block,
4929 					       "unable to read itable block");
4930 			brelse(bh);
4931 			return -EIO;
4932 		}
4933 	}
4934 has_buffer:
4935 	iloc->bh = bh;
4936 	return 0;
4937 }
4938 
4939 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4940 {
4941 	/* We have all inode data except xattrs in memory here. */
4942 	return __ext4_get_inode_loc(inode, iloc,
4943 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4944 }
4945 
4946 void ext4_set_inode_flags(struct inode *inode)
4947 {
4948 	unsigned int flags = EXT4_I(inode)->i_flags;
4949 
4950 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4951 	if (flags & EXT4_SYNC_FL)
4952 		inode->i_flags |= S_SYNC;
4953 	if (flags & EXT4_APPEND_FL)
4954 		inode->i_flags |= S_APPEND;
4955 	if (flags & EXT4_IMMUTABLE_FL)
4956 		inode->i_flags |= S_IMMUTABLE;
4957 	if (flags & EXT4_NOATIME_FL)
4958 		inode->i_flags |= S_NOATIME;
4959 	if (flags & EXT4_DIRSYNC_FL)
4960 		inode->i_flags |= S_DIRSYNC;
4961 }
4962 
4963 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4964 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4965 {
4966 	unsigned int vfs_fl;
4967 	unsigned long old_fl, new_fl;
4968 
4969 	do {
4970 		vfs_fl = ei->vfs_inode.i_flags;
4971 		old_fl = ei->i_flags;
4972 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4973 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4974 				EXT4_DIRSYNC_FL);
4975 		if (vfs_fl & S_SYNC)
4976 			new_fl |= EXT4_SYNC_FL;
4977 		if (vfs_fl & S_APPEND)
4978 			new_fl |= EXT4_APPEND_FL;
4979 		if (vfs_fl & S_IMMUTABLE)
4980 			new_fl |= EXT4_IMMUTABLE_FL;
4981 		if (vfs_fl & S_NOATIME)
4982 			new_fl |= EXT4_NOATIME_FL;
4983 		if (vfs_fl & S_DIRSYNC)
4984 			new_fl |= EXT4_DIRSYNC_FL;
4985 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4986 }
4987 
4988 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4989 				  struct ext4_inode_info *ei)
4990 {
4991 	blkcnt_t i_blocks ;
4992 	struct inode *inode = &(ei->vfs_inode);
4993 	struct super_block *sb = inode->i_sb;
4994 
4995 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4996 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4997 		/* we are using combined 48 bit field */
4998 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4999 					le32_to_cpu(raw_inode->i_blocks_lo);
5000 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5001 			/* i_blocks represent file system block size */
5002 			return i_blocks  << (inode->i_blkbits - 9);
5003 		} else {
5004 			return i_blocks;
5005 		}
5006 	} else {
5007 		return le32_to_cpu(raw_inode->i_blocks_lo);
5008 	}
5009 }
5010 
5011 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5012 {
5013 	struct ext4_iloc iloc;
5014 	struct ext4_inode *raw_inode;
5015 	struct ext4_inode_info *ei;
5016 	struct inode *inode;
5017 	journal_t *journal = EXT4_SB(sb)->s_journal;
5018 	long ret;
5019 	int block;
5020 
5021 	inode = iget_locked(sb, ino);
5022 	if (!inode)
5023 		return ERR_PTR(-ENOMEM);
5024 	if (!(inode->i_state & I_NEW))
5025 		return inode;
5026 
5027 	ei = EXT4_I(inode);
5028 	iloc.bh = 0;
5029 
5030 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
5031 	if (ret < 0)
5032 		goto bad_inode;
5033 	raw_inode = ext4_raw_inode(&iloc);
5034 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5035 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5036 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5037 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5038 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5039 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5040 	}
5041 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5042 
5043 	ei->i_state_flags = 0;
5044 	ei->i_dir_start_lookup = 0;
5045 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5046 	/* We now have enough fields to check if the inode was active or not.
5047 	 * This is needed because nfsd might try to access dead inodes
5048 	 * the test is that same one that e2fsck uses
5049 	 * NeilBrown 1999oct15
5050 	 */
5051 	if (inode->i_nlink == 0) {
5052 		if (inode->i_mode == 0 ||
5053 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5054 			/* this inode is deleted */
5055 			ret = -ESTALE;
5056 			goto bad_inode;
5057 		}
5058 		/* The only unlinked inodes we let through here have
5059 		 * valid i_mode and are being read by the orphan
5060 		 * recovery code: that's fine, we're about to complete
5061 		 * the process of deleting those. */
5062 	}
5063 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5064 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5065 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5066 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5067 		ei->i_file_acl |=
5068 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5069 	inode->i_size = ext4_isize(raw_inode);
5070 	ei->i_disksize = inode->i_size;
5071 #ifdef CONFIG_QUOTA
5072 	ei->i_reserved_quota = 0;
5073 #endif
5074 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5075 	ei->i_block_group = iloc.block_group;
5076 	ei->i_last_alloc_group = ~0;
5077 	/*
5078 	 * NOTE! The in-memory inode i_data array is in little-endian order
5079 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5080 	 */
5081 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5082 		ei->i_data[block] = raw_inode->i_block[block];
5083 	INIT_LIST_HEAD(&ei->i_orphan);
5084 
5085 	/*
5086 	 * Set transaction id's of transactions that have to be committed
5087 	 * to finish f[data]sync. We set them to currently running transaction
5088 	 * as we cannot be sure that the inode or some of its metadata isn't
5089 	 * part of the transaction - the inode could have been reclaimed and
5090 	 * now it is reread from disk.
5091 	 */
5092 	if (journal) {
5093 		transaction_t *transaction;
5094 		tid_t tid;
5095 
5096 		read_lock(&journal->j_state_lock);
5097 		if (journal->j_running_transaction)
5098 			transaction = journal->j_running_transaction;
5099 		else
5100 			transaction = journal->j_committing_transaction;
5101 		if (transaction)
5102 			tid = transaction->t_tid;
5103 		else
5104 			tid = journal->j_commit_sequence;
5105 		read_unlock(&journal->j_state_lock);
5106 		ei->i_sync_tid = tid;
5107 		ei->i_datasync_tid = tid;
5108 	}
5109 
5110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5111 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5112 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5113 		    EXT4_INODE_SIZE(inode->i_sb)) {
5114 			ret = -EIO;
5115 			goto bad_inode;
5116 		}
5117 		if (ei->i_extra_isize == 0) {
5118 			/* The extra space is currently unused. Use it. */
5119 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5120 					    EXT4_GOOD_OLD_INODE_SIZE;
5121 		} else {
5122 			__le32 *magic = (void *)raw_inode +
5123 					EXT4_GOOD_OLD_INODE_SIZE +
5124 					ei->i_extra_isize;
5125 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5126 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5127 		}
5128 	} else
5129 		ei->i_extra_isize = 0;
5130 
5131 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5132 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5133 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5134 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5135 
5136 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5137 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5138 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5139 			inode->i_version |=
5140 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5141 	}
5142 
5143 	ret = 0;
5144 	if (ei->i_file_acl &&
5145 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5146 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5147 				 ei->i_file_acl);
5148 		ret = -EIO;
5149 		goto bad_inode;
5150 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5151 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5152 		    (S_ISLNK(inode->i_mode) &&
5153 		     !ext4_inode_is_fast_symlink(inode)))
5154 			/* Validate extent which is part of inode */
5155 			ret = ext4_ext_check_inode(inode);
5156 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5157 		   (S_ISLNK(inode->i_mode) &&
5158 		    !ext4_inode_is_fast_symlink(inode))) {
5159 		/* Validate block references which are part of inode */
5160 		ret = ext4_check_inode_blockref(inode);
5161 	}
5162 	if (ret)
5163 		goto bad_inode;
5164 
5165 	if (S_ISREG(inode->i_mode)) {
5166 		inode->i_op = &ext4_file_inode_operations;
5167 		inode->i_fop = &ext4_file_operations;
5168 		ext4_set_aops(inode);
5169 	} else if (S_ISDIR(inode->i_mode)) {
5170 		inode->i_op = &ext4_dir_inode_operations;
5171 		inode->i_fop = &ext4_dir_operations;
5172 	} else if (S_ISLNK(inode->i_mode)) {
5173 		if (ext4_inode_is_fast_symlink(inode)) {
5174 			inode->i_op = &ext4_fast_symlink_inode_operations;
5175 			nd_terminate_link(ei->i_data, inode->i_size,
5176 				sizeof(ei->i_data) - 1);
5177 		} else {
5178 			inode->i_op = &ext4_symlink_inode_operations;
5179 			ext4_set_aops(inode);
5180 		}
5181 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5182 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5183 		inode->i_op = &ext4_special_inode_operations;
5184 		if (raw_inode->i_block[0])
5185 			init_special_inode(inode, inode->i_mode,
5186 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5187 		else
5188 			init_special_inode(inode, inode->i_mode,
5189 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5190 	} else {
5191 		ret = -EIO;
5192 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5193 		goto bad_inode;
5194 	}
5195 	brelse(iloc.bh);
5196 	ext4_set_inode_flags(inode);
5197 	unlock_new_inode(inode);
5198 	return inode;
5199 
5200 bad_inode:
5201 	brelse(iloc.bh);
5202 	iget_failed(inode);
5203 	return ERR_PTR(ret);
5204 }
5205 
5206 static int ext4_inode_blocks_set(handle_t *handle,
5207 				struct ext4_inode *raw_inode,
5208 				struct ext4_inode_info *ei)
5209 {
5210 	struct inode *inode = &(ei->vfs_inode);
5211 	u64 i_blocks = inode->i_blocks;
5212 	struct super_block *sb = inode->i_sb;
5213 
5214 	if (i_blocks <= ~0U) {
5215 		/*
5216 		 * i_blocks can be represnted in a 32 bit variable
5217 		 * as multiple of 512 bytes
5218 		 */
5219 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5220 		raw_inode->i_blocks_high = 0;
5221 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5222 		return 0;
5223 	}
5224 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5225 		return -EFBIG;
5226 
5227 	if (i_blocks <= 0xffffffffffffULL) {
5228 		/*
5229 		 * i_blocks can be represented in a 48 bit variable
5230 		 * as multiple of 512 bytes
5231 		 */
5232 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5233 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5234 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5235 	} else {
5236 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5237 		/* i_block is stored in file system block size */
5238 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5239 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5240 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5241 	}
5242 	return 0;
5243 }
5244 
5245 /*
5246  * Post the struct inode info into an on-disk inode location in the
5247  * buffer-cache.  This gobbles the caller's reference to the
5248  * buffer_head in the inode location struct.
5249  *
5250  * The caller must have write access to iloc->bh.
5251  */
5252 static int ext4_do_update_inode(handle_t *handle,
5253 				struct inode *inode,
5254 				struct ext4_iloc *iloc)
5255 {
5256 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5257 	struct ext4_inode_info *ei = EXT4_I(inode);
5258 	struct buffer_head *bh = iloc->bh;
5259 	int err = 0, rc, block;
5260 
5261 	/* For fields not not tracking in the in-memory inode,
5262 	 * initialise them to zero for new inodes. */
5263 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5264 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5265 
5266 	ext4_get_inode_flags(ei);
5267 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5268 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5269 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5270 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5271 /*
5272  * Fix up interoperability with old kernels. Otherwise, old inodes get
5273  * re-used with the upper 16 bits of the uid/gid intact
5274  */
5275 		if (!ei->i_dtime) {
5276 			raw_inode->i_uid_high =
5277 				cpu_to_le16(high_16_bits(inode->i_uid));
5278 			raw_inode->i_gid_high =
5279 				cpu_to_le16(high_16_bits(inode->i_gid));
5280 		} else {
5281 			raw_inode->i_uid_high = 0;
5282 			raw_inode->i_gid_high = 0;
5283 		}
5284 	} else {
5285 		raw_inode->i_uid_low =
5286 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5287 		raw_inode->i_gid_low =
5288 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5289 		raw_inode->i_uid_high = 0;
5290 		raw_inode->i_gid_high = 0;
5291 	}
5292 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5293 
5294 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5295 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5296 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5297 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5298 
5299 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5300 		goto out_brelse;
5301 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5302 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5303 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5304 	    cpu_to_le32(EXT4_OS_HURD))
5305 		raw_inode->i_file_acl_high =
5306 			cpu_to_le16(ei->i_file_acl >> 32);
5307 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5308 	ext4_isize_set(raw_inode, ei->i_disksize);
5309 	if (ei->i_disksize > 0x7fffffffULL) {
5310 		struct super_block *sb = inode->i_sb;
5311 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5312 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5313 				EXT4_SB(sb)->s_es->s_rev_level ==
5314 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5315 			/* If this is the first large file
5316 			 * created, add a flag to the superblock.
5317 			 */
5318 			err = ext4_journal_get_write_access(handle,
5319 					EXT4_SB(sb)->s_sbh);
5320 			if (err)
5321 				goto out_brelse;
5322 			ext4_update_dynamic_rev(sb);
5323 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5324 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5325 			sb->s_dirt = 1;
5326 			ext4_handle_sync(handle);
5327 			err = ext4_handle_dirty_metadata(handle, NULL,
5328 					EXT4_SB(sb)->s_sbh);
5329 		}
5330 	}
5331 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5332 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5333 		if (old_valid_dev(inode->i_rdev)) {
5334 			raw_inode->i_block[0] =
5335 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5336 			raw_inode->i_block[1] = 0;
5337 		} else {
5338 			raw_inode->i_block[0] = 0;
5339 			raw_inode->i_block[1] =
5340 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5341 			raw_inode->i_block[2] = 0;
5342 		}
5343 	} else
5344 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5345 			raw_inode->i_block[block] = ei->i_data[block];
5346 
5347 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5348 	if (ei->i_extra_isize) {
5349 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5350 			raw_inode->i_version_hi =
5351 			cpu_to_le32(inode->i_version >> 32);
5352 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5353 	}
5354 
5355 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5356 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5357 	if (!err)
5358 		err = rc;
5359 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5360 
5361 	ext4_update_inode_fsync_trans(handle, inode, 0);
5362 out_brelse:
5363 	brelse(bh);
5364 	ext4_std_error(inode->i_sb, err);
5365 	return err;
5366 }
5367 
5368 /*
5369  * ext4_write_inode()
5370  *
5371  * We are called from a few places:
5372  *
5373  * - Within generic_file_write() for O_SYNC files.
5374  *   Here, there will be no transaction running. We wait for any running
5375  *   trasnaction to commit.
5376  *
5377  * - Within sys_sync(), kupdate and such.
5378  *   We wait on commit, if tol to.
5379  *
5380  * - Within prune_icache() (PF_MEMALLOC == true)
5381  *   Here we simply return.  We can't afford to block kswapd on the
5382  *   journal commit.
5383  *
5384  * In all cases it is actually safe for us to return without doing anything,
5385  * because the inode has been copied into a raw inode buffer in
5386  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5387  * knfsd.
5388  *
5389  * Note that we are absolutely dependent upon all inode dirtiers doing the
5390  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5391  * which we are interested.
5392  *
5393  * It would be a bug for them to not do this.  The code:
5394  *
5395  *	mark_inode_dirty(inode)
5396  *	stuff();
5397  *	inode->i_size = expr;
5398  *
5399  * is in error because a kswapd-driven write_inode() could occur while
5400  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5401  * will no longer be on the superblock's dirty inode list.
5402  */
5403 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5404 {
5405 	int err;
5406 
5407 	if (current->flags & PF_MEMALLOC)
5408 		return 0;
5409 
5410 	if (EXT4_SB(inode->i_sb)->s_journal) {
5411 		if (ext4_journal_current_handle()) {
5412 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5413 			dump_stack();
5414 			return -EIO;
5415 		}
5416 
5417 		if (wbc->sync_mode != WB_SYNC_ALL)
5418 			return 0;
5419 
5420 		err = ext4_force_commit(inode->i_sb);
5421 	} else {
5422 		struct ext4_iloc iloc;
5423 
5424 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5425 		if (err)
5426 			return err;
5427 		if (wbc->sync_mode == WB_SYNC_ALL)
5428 			sync_dirty_buffer(iloc.bh);
5429 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5430 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5431 					 "IO error syncing inode");
5432 			err = -EIO;
5433 		}
5434 		brelse(iloc.bh);
5435 	}
5436 	return err;
5437 }
5438 
5439 /*
5440  * ext4_setattr()
5441  *
5442  * Called from notify_change.
5443  *
5444  * We want to trap VFS attempts to truncate the file as soon as
5445  * possible.  In particular, we want to make sure that when the VFS
5446  * shrinks i_size, we put the inode on the orphan list and modify
5447  * i_disksize immediately, so that during the subsequent flushing of
5448  * dirty pages and freeing of disk blocks, we can guarantee that any
5449  * commit will leave the blocks being flushed in an unused state on
5450  * disk.  (On recovery, the inode will get truncated and the blocks will
5451  * be freed, so we have a strong guarantee that no future commit will
5452  * leave these blocks visible to the user.)
5453  *
5454  * Another thing we have to assure is that if we are in ordered mode
5455  * and inode is still attached to the committing transaction, we must
5456  * we start writeout of all the dirty pages which are being truncated.
5457  * This way we are sure that all the data written in the previous
5458  * transaction are already on disk (truncate waits for pages under
5459  * writeback).
5460  *
5461  * Called with inode->i_mutex down.
5462  */
5463 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5464 {
5465 	struct inode *inode = dentry->d_inode;
5466 	int error, rc = 0;
5467 	const unsigned int ia_valid = attr->ia_valid;
5468 
5469 	error = inode_change_ok(inode, attr);
5470 	if (error)
5471 		return error;
5472 
5473 	if (is_quota_modification(inode, attr))
5474 		dquot_initialize(inode);
5475 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5476 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5477 		handle_t *handle;
5478 
5479 		/* (user+group)*(old+new) structure, inode write (sb,
5480 		 * inode block, ? - but truncate inode update has it) */
5481 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5482 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5483 		if (IS_ERR(handle)) {
5484 			error = PTR_ERR(handle);
5485 			goto err_out;
5486 		}
5487 		error = dquot_transfer(inode, attr);
5488 		if (error) {
5489 			ext4_journal_stop(handle);
5490 			return error;
5491 		}
5492 		/* Update corresponding info in inode so that everything is in
5493 		 * one transaction */
5494 		if (attr->ia_valid & ATTR_UID)
5495 			inode->i_uid = attr->ia_uid;
5496 		if (attr->ia_valid & ATTR_GID)
5497 			inode->i_gid = attr->ia_gid;
5498 		error = ext4_mark_inode_dirty(handle, inode);
5499 		ext4_journal_stop(handle);
5500 	}
5501 
5502 	if (attr->ia_valid & ATTR_SIZE) {
5503 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5504 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5505 
5506 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5507 				return -EFBIG;
5508 		}
5509 	}
5510 
5511 	if (S_ISREG(inode->i_mode) &&
5512 	    attr->ia_valid & ATTR_SIZE &&
5513 	    (attr->ia_size < inode->i_size ||
5514 	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5515 		handle_t *handle;
5516 
5517 		handle = ext4_journal_start(inode, 3);
5518 		if (IS_ERR(handle)) {
5519 			error = PTR_ERR(handle);
5520 			goto err_out;
5521 		}
5522 
5523 		error = ext4_orphan_add(handle, inode);
5524 		EXT4_I(inode)->i_disksize = attr->ia_size;
5525 		rc = ext4_mark_inode_dirty(handle, inode);
5526 		if (!error)
5527 			error = rc;
5528 		ext4_journal_stop(handle);
5529 
5530 		if (ext4_should_order_data(inode)) {
5531 			error = ext4_begin_ordered_truncate(inode,
5532 							    attr->ia_size);
5533 			if (error) {
5534 				/* Do as much error cleanup as possible */
5535 				handle = ext4_journal_start(inode, 3);
5536 				if (IS_ERR(handle)) {
5537 					ext4_orphan_del(NULL, inode);
5538 					goto err_out;
5539 				}
5540 				ext4_orphan_del(handle, inode);
5541 				ext4_journal_stop(handle);
5542 				goto err_out;
5543 			}
5544 		}
5545 		/* ext4_truncate will clear the flag */
5546 		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5547 			ext4_truncate(inode);
5548 	}
5549 
5550 	if ((attr->ia_valid & ATTR_SIZE) &&
5551 	    attr->ia_size != i_size_read(inode))
5552 		rc = vmtruncate(inode, attr->ia_size);
5553 
5554 	if (!rc) {
5555 		setattr_copy(inode, attr);
5556 		mark_inode_dirty(inode);
5557 	}
5558 
5559 	/*
5560 	 * If the call to ext4_truncate failed to get a transaction handle at
5561 	 * all, we need to clean up the in-core orphan list manually.
5562 	 */
5563 	if (inode->i_nlink)
5564 		ext4_orphan_del(NULL, inode);
5565 
5566 	if (!rc && (ia_valid & ATTR_MODE))
5567 		rc = ext4_acl_chmod(inode);
5568 
5569 err_out:
5570 	ext4_std_error(inode->i_sb, error);
5571 	if (!error)
5572 		error = rc;
5573 	return error;
5574 }
5575 
5576 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5577 		 struct kstat *stat)
5578 {
5579 	struct inode *inode;
5580 	unsigned long delalloc_blocks;
5581 
5582 	inode = dentry->d_inode;
5583 	generic_fillattr(inode, stat);
5584 
5585 	/*
5586 	 * We can't update i_blocks if the block allocation is delayed
5587 	 * otherwise in the case of system crash before the real block
5588 	 * allocation is done, we will have i_blocks inconsistent with
5589 	 * on-disk file blocks.
5590 	 * We always keep i_blocks updated together with real
5591 	 * allocation. But to not confuse with user, stat
5592 	 * will return the blocks that include the delayed allocation
5593 	 * blocks for this file.
5594 	 */
5595 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5596 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5597 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5598 
5599 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5600 	return 0;
5601 }
5602 
5603 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5604 				      int chunk)
5605 {
5606 	int indirects;
5607 
5608 	/* if nrblocks are contiguous */
5609 	if (chunk) {
5610 		/*
5611 		 * With N contiguous data blocks, it need at most
5612 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5613 		 * 2 dindirect blocks
5614 		 * 1 tindirect block
5615 		 */
5616 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5617 		return indirects + 3;
5618 	}
5619 	/*
5620 	 * if nrblocks are not contiguous, worse case, each block touch
5621 	 * a indirect block, and each indirect block touch a double indirect
5622 	 * block, plus a triple indirect block
5623 	 */
5624 	indirects = nrblocks * 2 + 1;
5625 	return indirects;
5626 }
5627 
5628 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5629 {
5630 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5631 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5632 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5633 }
5634 
5635 /*
5636  * Account for index blocks, block groups bitmaps and block group
5637  * descriptor blocks if modify datablocks and index blocks
5638  * worse case, the indexs blocks spread over different block groups
5639  *
5640  * If datablocks are discontiguous, they are possible to spread over
5641  * different block groups too. If they are contiuguous, with flexbg,
5642  * they could still across block group boundary.
5643  *
5644  * Also account for superblock, inode, quota and xattr blocks
5645  */
5646 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5647 {
5648 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5649 	int gdpblocks;
5650 	int idxblocks;
5651 	int ret = 0;
5652 
5653 	/*
5654 	 * How many index blocks need to touch to modify nrblocks?
5655 	 * The "Chunk" flag indicating whether the nrblocks is
5656 	 * physically contiguous on disk
5657 	 *
5658 	 * For Direct IO and fallocate, they calls get_block to allocate
5659 	 * one single extent at a time, so they could set the "Chunk" flag
5660 	 */
5661 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5662 
5663 	ret = idxblocks;
5664 
5665 	/*
5666 	 * Now let's see how many group bitmaps and group descriptors need
5667 	 * to account
5668 	 */
5669 	groups = idxblocks;
5670 	if (chunk)
5671 		groups += 1;
5672 	else
5673 		groups += nrblocks;
5674 
5675 	gdpblocks = groups;
5676 	if (groups > ngroups)
5677 		groups = ngroups;
5678 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5679 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5680 
5681 	/* bitmaps and block group descriptor blocks */
5682 	ret += groups + gdpblocks;
5683 
5684 	/* Blocks for super block, inode, quota and xattr blocks */
5685 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5686 
5687 	return ret;
5688 }
5689 
5690 /*
5691  * Calulate the total number of credits to reserve to fit
5692  * the modification of a single pages into a single transaction,
5693  * which may include multiple chunks of block allocations.
5694  *
5695  * This could be called via ext4_write_begin()
5696  *
5697  * We need to consider the worse case, when
5698  * one new block per extent.
5699  */
5700 int ext4_writepage_trans_blocks(struct inode *inode)
5701 {
5702 	int bpp = ext4_journal_blocks_per_page(inode);
5703 	int ret;
5704 
5705 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5706 
5707 	/* Account for data blocks for journalled mode */
5708 	if (ext4_should_journal_data(inode))
5709 		ret += bpp;
5710 	return ret;
5711 }
5712 
5713 /*
5714  * Calculate the journal credits for a chunk of data modification.
5715  *
5716  * This is called from DIO, fallocate or whoever calling
5717  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5718  *
5719  * journal buffers for data blocks are not included here, as DIO
5720  * and fallocate do no need to journal data buffers.
5721  */
5722 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5723 {
5724 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5725 }
5726 
5727 /*
5728  * The caller must have previously called ext4_reserve_inode_write().
5729  * Give this, we know that the caller already has write access to iloc->bh.
5730  */
5731 int ext4_mark_iloc_dirty(handle_t *handle,
5732 			 struct inode *inode, struct ext4_iloc *iloc)
5733 {
5734 	int err = 0;
5735 
5736 	if (test_opt(inode->i_sb, I_VERSION))
5737 		inode_inc_iversion(inode);
5738 
5739 	/* the do_update_inode consumes one bh->b_count */
5740 	get_bh(iloc->bh);
5741 
5742 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5743 	err = ext4_do_update_inode(handle, inode, iloc);
5744 	put_bh(iloc->bh);
5745 	return err;
5746 }
5747 
5748 /*
5749  * On success, We end up with an outstanding reference count against
5750  * iloc->bh.  This _must_ be cleaned up later.
5751  */
5752 
5753 int
5754 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5755 			 struct ext4_iloc *iloc)
5756 {
5757 	int err;
5758 
5759 	err = ext4_get_inode_loc(inode, iloc);
5760 	if (!err) {
5761 		BUFFER_TRACE(iloc->bh, "get_write_access");
5762 		err = ext4_journal_get_write_access(handle, iloc->bh);
5763 		if (err) {
5764 			brelse(iloc->bh);
5765 			iloc->bh = NULL;
5766 		}
5767 	}
5768 	ext4_std_error(inode->i_sb, err);
5769 	return err;
5770 }
5771 
5772 /*
5773  * Expand an inode by new_extra_isize bytes.
5774  * Returns 0 on success or negative error number on failure.
5775  */
5776 static int ext4_expand_extra_isize(struct inode *inode,
5777 				   unsigned int new_extra_isize,
5778 				   struct ext4_iloc iloc,
5779 				   handle_t *handle)
5780 {
5781 	struct ext4_inode *raw_inode;
5782 	struct ext4_xattr_ibody_header *header;
5783 
5784 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5785 		return 0;
5786 
5787 	raw_inode = ext4_raw_inode(&iloc);
5788 
5789 	header = IHDR(inode, raw_inode);
5790 
5791 	/* No extended attributes present */
5792 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5793 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5794 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5795 			new_extra_isize);
5796 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5797 		return 0;
5798 	}
5799 
5800 	/* try to expand with EAs present */
5801 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5802 					  raw_inode, handle);
5803 }
5804 
5805 /*
5806  * What we do here is to mark the in-core inode as clean with respect to inode
5807  * dirtiness (it may still be data-dirty).
5808  * This means that the in-core inode may be reaped by prune_icache
5809  * without having to perform any I/O.  This is a very good thing,
5810  * because *any* task may call prune_icache - even ones which
5811  * have a transaction open against a different journal.
5812  *
5813  * Is this cheating?  Not really.  Sure, we haven't written the
5814  * inode out, but prune_icache isn't a user-visible syncing function.
5815  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5816  * we start and wait on commits.
5817  *
5818  * Is this efficient/effective?  Well, we're being nice to the system
5819  * by cleaning up our inodes proactively so they can be reaped
5820  * without I/O.  But we are potentially leaving up to five seconds'
5821  * worth of inodes floating about which prune_icache wants us to
5822  * write out.  One way to fix that would be to get prune_icache()
5823  * to do a write_super() to free up some memory.  It has the desired
5824  * effect.
5825  */
5826 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5827 {
5828 	struct ext4_iloc iloc;
5829 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5830 	static unsigned int mnt_count;
5831 	int err, ret;
5832 
5833 	might_sleep();
5834 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5835 	if (ext4_handle_valid(handle) &&
5836 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5837 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5838 		/*
5839 		 * We need extra buffer credits since we may write into EA block
5840 		 * with this same handle. If journal_extend fails, then it will
5841 		 * only result in a minor loss of functionality for that inode.
5842 		 * If this is felt to be critical, then e2fsck should be run to
5843 		 * force a large enough s_min_extra_isize.
5844 		 */
5845 		if ((jbd2_journal_extend(handle,
5846 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5847 			ret = ext4_expand_extra_isize(inode,
5848 						      sbi->s_want_extra_isize,
5849 						      iloc, handle);
5850 			if (ret) {
5851 				ext4_set_inode_state(inode,
5852 						     EXT4_STATE_NO_EXPAND);
5853 				if (mnt_count !=
5854 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5855 					ext4_warning(inode->i_sb,
5856 					"Unable to expand inode %lu. Delete"
5857 					" some EAs or run e2fsck.",
5858 					inode->i_ino);
5859 					mnt_count =
5860 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5861 				}
5862 			}
5863 		}
5864 	}
5865 	if (!err)
5866 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5867 	return err;
5868 }
5869 
5870 /*
5871  * ext4_dirty_inode() is called from __mark_inode_dirty()
5872  *
5873  * We're really interested in the case where a file is being extended.
5874  * i_size has been changed by generic_commit_write() and we thus need
5875  * to include the updated inode in the current transaction.
5876  *
5877  * Also, dquot_alloc_block() will always dirty the inode when blocks
5878  * are allocated to the file.
5879  *
5880  * If the inode is marked synchronous, we don't honour that here - doing
5881  * so would cause a commit on atime updates, which we don't bother doing.
5882  * We handle synchronous inodes at the highest possible level.
5883  */
5884 void ext4_dirty_inode(struct inode *inode)
5885 {
5886 	handle_t *handle;
5887 
5888 	handle = ext4_journal_start(inode, 2);
5889 	if (IS_ERR(handle))
5890 		goto out;
5891 
5892 	ext4_mark_inode_dirty(handle, inode);
5893 
5894 	ext4_journal_stop(handle);
5895 out:
5896 	return;
5897 }
5898 
5899 #if 0
5900 /*
5901  * Bind an inode's backing buffer_head into this transaction, to prevent
5902  * it from being flushed to disk early.  Unlike
5903  * ext4_reserve_inode_write, this leaves behind no bh reference and
5904  * returns no iloc structure, so the caller needs to repeat the iloc
5905  * lookup to mark the inode dirty later.
5906  */
5907 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5908 {
5909 	struct ext4_iloc iloc;
5910 
5911 	int err = 0;
5912 	if (handle) {
5913 		err = ext4_get_inode_loc(inode, &iloc);
5914 		if (!err) {
5915 			BUFFER_TRACE(iloc.bh, "get_write_access");
5916 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5917 			if (!err)
5918 				err = ext4_handle_dirty_metadata(handle,
5919 								 NULL,
5920 								 iloc.bh);
5921 			brelse(iloc.bh);
5922 		}
5923 	}
5924 	ext4_std_error(inode->i_sb, err);
5925 	return err;
5926 }
5927 #endif
5928 
5929 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5930 {
5931 	journal_t *journal;
5932 	handle_t *handle;
5933 	int err;
5934 
5935 	/*
5936 	 * We have to be very careful here: changing a data block's
5937 	 * journaling status dynamically is dangerous.  If we write a
5938 	 * data block to the journal, change the status and then delete
5939 	 * that block, we risk forgetting to revoke the old log record
5940 	 * from the journal and so a subsequent replay can corrupt data.
5941 	 * So, first we make sure that the journal is empty and that
5942 	 * nobody is changing anything.
5943 	 */
5944 
5945 	journal = EXT4_JOURNAL(inode);
5946 	if (!journal)
5947 		return 0;
5948 	if (is_journal_aborted(journal))
5949 		return -EROFS;
5950 
5951 	jbd2_journal_lock_updates(journal);
5952 	jbd2_journal_flush(journal);
5953 
5954 	/*
5955 	 * OK, there are no updates running now, and all cached data is
5956 	 * synced to disk.  We are now in a completely consistent state
5957 	 * which doesn't have anything in the journal, and we know that
5958 	 * no filesystem updates are running, so it is safe to modify
5959 	 * the inode's in-core data-journaling state flag now.
5960 	 */
5961 
5962 	if (val)
5963 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5964 	else
5965 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5966 	ext4_set_aops(inode);
5967 
5968 	jbd2_journal_unlock_updates(journal);
5969 
5970 	/* Finally we can mark the inode as dirty. */
5971 
5972 	handle = ext4_journal_start(inode, 1);
5973 	if (IS_ERR(handle))
5974 		return PTR_ERR(handle);
5975 
5976 	err = ext4_mark_inode_dirty(handle, inode);
5977 	ext4_handle_sync(handle);
5978 	ext4_journal_stop(handle);
5979 	ext4_std_error(inode->i_sb, err);
5980 
5981 	return err;
5982 }
5983 
5984 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5985 {
5986 	return !buffer_mapped(bh);
5987 }
5988 
5989 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5990 {
5991 	struct page *page = vmf->page;
5992 	loff_t size;
5993 	unsigned long len;
5994 	int ret = -EINVAL;
5995 	void *fsdata;
5996 	struct file *file = vma->vm_file;
5997 	struct inode *inode = file->f_path.dentry->d_inode;
5998 	struct address_space *mapping = inode->i_mapping;
5999 
6000 	/*
6001 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6002 	 * get i_mutex because we are already holding mmap_sem.
6003 	 */
6004 	down_read(&inode->i_alloc_sem);
6005 	size = i_size_read(inode);
6006 	if (page->mapping != mapping || size <= page_offset(page)
6007 	    || !PageUptodate(page)) {
6008 		/* page got truncated from under us? */
6009 		goto out_unlock;
6010 	}
6011 	ret = 0;
6012 	if (PageMappedToDisk(page))
6013 		goto out_unlock;
6014 
6015 	if (page->index == size >> PAGE_CACHE_SHIFT)
6016 		len = size & ~PAGE_CACHE_MASK;
6017 	else
6018 		len = PAGE_CACHE_SIZE;
6019 
6020 	lock_page(page);
6021 	/*
6022 	 * return if we have all the buffers mapped. This avoid
6023 	 * the need to call write_begin/write_end which does a
6024 	 * journal_start/journal_stop which can block and take
6025 	 * long time
6026 	 */
6027 	if (page_has_buffers(page)) {
6028 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6029 					ext4_bh_unmapped)) {
6030 			unlock_page(page);
6031 			goto out_unlock;
6032 		}
6033 	}
6034 	unlock_page(page);
6035 	/*
6036 	 * OK, we need to fill the hole... Do write_begin write_end
6037 	 * to do block allocation/reservation.We are not holding
6038 	 * inode.i__mutex here. That allow * parallel write_begin,
6039 	 * write_end call. lock_page prevent this from happening
6040 	 * on the same page though
6041 	 */
6042 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6043 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6044 	if (ret < 0)
6045 		goto out_unlock;
6046 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6047 			len, len, page, fsdata);
6048 	if (ret < 0)
6049 		goto out_unlock;
6050 	ret = 0;
6051 out_unlock:
6052 	if (ret)
6053 		ret = VM_FAULT_SIGBUS;
6054 	up_read(&inode->i_alloc_sem);
6055 	return ret;
6056 }
6057