xref: /linux/fs/ext4/inode.c (revision d0b464d67001d202e59f7e60a30074c4d74021aa)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 				   struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 		struct inode *inode, struct page *page, loff_t from,
143 		loff_t length, int flags);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		(inode->i_sb->s_blocksize >> 9) : 0;
152 
153 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155 
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 				 int nblocks)
163 {
164 	int ret;
165 
166 	/*
167 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 	 * moment, get_block can be called only for blocks inside i_size since
169 	 * page cache has been already dropped and writes are blocked by
170 	 * i_mutex. So we can safely drop the i_data_sem here.
171 	 */
172 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	up_write(&EXT4_I(inode)->i_data_sem);
175 	ret = ext4_journal_restart(handle, nblocks);
176 	down_write(&EXT4_I(inode)->i_data_sem);
177 	ext4_discard_preallocations(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 	handle_t *handle;
188 	int err;
189 
190 	trace_ext4_evict_inode(inode);
191 
192 	ext4_ioend_wait(inode);
193 
194 	if (inode->i_nlink) {
195 		/*
196 		 * When journalling data dirty buffers are tracked only in the
197 		 * journal. So although mm thinks everything is clean and
198 		 * ready for reaping the inode might still have some pages to
199 		 * write in the running transaction or waiting to be
200 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 		 * (via truncate_inode_pages()) to discard these buffers can
202 		 * cause data loss. Also even if we did not discard these
203 		 * buffers, we would have no way to find them after the inode
204 		 * is reaped and thus user could see stale data if he tries to
205 		 * read them before the transaction is checkpointed. So be
206 		 * careful and force everything to disk here... We use
207 		 * ei->i_datasync_tid to store the newest transaction
208 		 * containing inode's data.
209 		 *
210 		 * Note that directories do not have this problem because they
211 		 * don't use page cache.
212 		 */
213 		if (ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_log_start_commit(journal, commit_tid);
219 			jbd2_log_wait_commit(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages(&inode->i_data, 0);
223 		goto no_delete;
224 	}
225 
226 	if (!is_bad_inode(inode))
227 		dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages(&inode->i_data, 0);
232 
233 	if (is_bad_inode(inode))
234 		goto no_delete;
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242 	if (IS_ERR(handle)) {
243 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext4_orphan_del(NULL, inode);
250 		sb_end_intwrite(inode->i_sb);
251 		goto no_delete;
252 	}
253 
254 	if (IS_SYNC(inode))
255 		ext4_handle_sync(handle);
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks)
264 		ext4_truncate(inode);
265 
266 	/*
267 	 * ext4_ext_truncate() doesn't reserve any slop when it
268 	 * restarts journal transactions; therefore there may not be
269 	 * enough credits left in the handle to remove the inode from
270 	 * the orphan list and set the dtime field.
271 	 */
272 	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 		err = ext4_journal_extend(handle, 3);
274 		if (err > 0)
275 			err = ext4_journal_restart(handle, 3);
276 		if (err != 0) {
277 			ext4_warning(inode->i_sb,
278 				     "couldn't extend journal (err %d)", err);
279 		stop_handle:
280 			ext4_journal_stop(handle);
281 			ext4_orphan_del(NULL, inode);
282 			sb_end_intwrite(inode->i_sb);
283 			goto no_delete;
284 		}
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= get_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	sb_end_intwrite(inode->i_sb);
312 	return;
313 no_delete:
314 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 }
316 
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 	return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323 
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 		return ext4_ext_calc_metadata_amount(inode, lblock);
332 
333 	return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335 
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 					int used, int quota_claim)
342 {
343 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 	struct ext4_inode_info *ei = EXT4_I(inode);
345 
346 	spin_lock(&ei->i_block_reservation_lock);
347 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 	if (unlikely(used > ei->i_reserved_data_blocks)) {
349 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350 			 "with only %d reserved data blocks",
351 			 __func__, inode->i_ino, used,
352 			 ei->i_reserved_data_blocks);
353 		WARN_ON(1);
354 		used = ei->i_reserved_data_blocks;
355 	}
356 
357 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 			 "with only %d reserved metadata blocks\n", __func__,
360 			 inode->i_ino, ei->i_allocated_meta_blocks,
361 			 ei->i_reserved_meta_blocks);
362 		WARN_ON(1);
363 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 	}
365 
366 	/* Update per-inode reservations */
367 	ei->i_reserved_data_blocks -= used;
368 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 			   used + ei->i_allocated_meta_blocks);
371 	ei->i_allocated_meta_blocks = 0;
372 
373 	if (ei->i_reserved_data_blocks == 0) {
374 		/*
375 		 * We can release all of the reserved metadata blocks
376 		 * only when we have written all of the delayed
377 		 * allocation blocks.
378 		 */
379 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 				   ei->i_reserved_meta_blocks);
381 		ei->i_reserved_meta_blocks = 0;
382 		ei->i_da_metadata_calc_len = 0;
383 	}
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    (atomic_read(&inode->i_writecount) == 0))
405 		ext4_discard_preallocations(inode);
406 }
407 
408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 				   map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_len);
418 		return -EIO;
419 	}
420 	return 0;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 				    unsigned int max_pages)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	pgoff_t	index;
435 	struct pagevec pvec;
436 	pgoff_t num = 0;
437 	int i, nr_pages, done = 0;
438 
439 	if (max_pages == 0)
440 		return 0;
441 	pagevec_init(&pvec, 0);
442 	while (!done) {
443 		index = idx;
444 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 					      PAGECACHE_TAG_DIRTY,
446 					      (pgoff_t)PAGEVEC_SIZE);
447 		if (nr_pages == 0)
448 			break;
449 		for (i = 0; i < nr_pages; i++) {
450 			struct page *page = pvec.pages[i];
451 			struct buffer_head *bh, *head;
452 
453 			lock_page(page);
454 			if (unlikely(page->mapping != mapping) ||
455 			    !PageDirty(page) ||
456 			    PageWriteback(page) ||
457 			    page->index != idx) {
458 				done = 1;
459 				unlock_page(page);
460 				break;
461 			}
462 			if (page_has_buffers(page)) {
463 				bh = head = page_buffers(page);
464 				do {
465 					if (!buffer_delay(bh) &&
466 					    !buffer_unwritten(bh))
467 						done = 1;
468 					bh = bh->b_this_page;
469 				} while (!done && (bh != head));
470 			}
471 			unlock_page(page);
472 			if (done)
473 				break;
474 			idx++;
475 			num++;
476 			if (num >= max_pages) {
477 				done = 1;
478 				break;
479 			}
480 		}
481 		pagevec_release(&pvec);
482 	}
483 	return num;
484 }
485 
486 /*
487  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488  */
489 static void set_buffers_da_mapped(struct inode *inode,
490 				   struct ext4_map_blocks *map)
491 {
492 	struct address_space *mapping = inode->i_mapping;
493 	struct pagevec pvec;
494 	int i, nr_pages;
495 	pgoff_t index, end;
496 
497 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498 	end = (map->m_lblk + map->m_len - 1) >>
499 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
500 
501 	pagevec_init(&pvec, 0);
502 	while (index <= end) {
503 		nr_pages = pagevec_lookup(&pvec, mapping, index,
504 					  min(end - index + 1,
505 					      (pgoff_t)PAGEVEC_SIZE));
506 		if (nr_pages == 0)
507 			break;
508 		for (i = 0; i < nr_pages; i++) {
509 			struct page *page = pvec.pages[i];
510 			struct buffer_head *bh, *head;
511 
512 			if (unlikely(page->mapping != mapping) ||
513 			    !PageDirty(page))
514 				break;
515 
516 			if (page_has_buffers(page)) {
517 				bh = head = page_buffers(page);
518 				do {
519 					set_buffer_da_mapped(bh);
520 					bh = bh->b_this_page;
521 				} while (bh != head);
522 			}
523 			index++;
524 		}
525 		pagevec_release(&pvec);
526 	}
527 }
528 
529 /*
530  * The ext4_map_blocks() function tries to look up the requested blocks,
531  * and returns if the blocks are already mapped.
532  *
533  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534  * and store the allocated blocks in the result buffer head and mark it
535  * mapped.
536  *
537  * If file type is extents based, it will call ext4_ext_map_blocks(),
538  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539  * based files
540  *
541  * On success, it returns the number of blocks being mapped or allocate.
542  * if create==0 and the blocks are pre-allocated and uninitialized block,
543  * the result buffer head is unmapped. If the create ==1, it will make sure
544  * the buffer head is mapped.
545  *
546  * It returns 0 if plain look up failed (blocks have not been allocated), in
547  * that case, buffer head is unmapped
548  *
549  * It returns the error in case of allocation failure.
550  */
551 int ext4_map_blocks(handle_t *handle, struct inode *inode,
552 		    struct ext4_map_blocks *map, int flags)
553 {
554 	int retval;
555 
556 	map->m_flags = 0;
557 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
559 		  (unsigned long) map->m_lblk);
560 	/*
561 	 * Try to see if we can get the block without requesting a new
562 	 * file system block.
563 	 */
564 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565 		down_read((&EXT4_I(inode)->i_data_sem));
566 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
568 					     EXT4_GET_BLOCKS_KEEP_SIZE);
569 	} else {
570 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
571 					     EXT4_GET_BLOCKS_KEEP_SIZE);
572 	}
573 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574 		up_read((&EXT4_I(inode)->i_data_sem));
575 
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		int ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 
582 	/* If it is only a block(s) look up */
583 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 		return retval;
585 
586 	/*
587 	 * Returns if the blocks have already allocated
588 	 *
589 	 * Note that if blocks have been preallocated
590 	 * ext4_ext_get_block() returns the create = 0
591 	 * with buffer head unmapped.
592 	 */
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 		return retval;
595 
596 	/*
597 	 * When we call get_blocks without the create flag, the
598 	 * BH_Unwritten flag could have gotten set if the blocks
599 	 * requested were part of a uninitialized extent.  We need to
600 	 * clear this flag now that we are committed to convert all or
601 	 * part of the uninitialized extent to be an initialized
602 	 * extent.  This is because we need to avoid the combination
603 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
604 	 * set on the buffer_head.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607 
608 	/*
609 	 * New blocks allocate and/or writing to uninitialized extent
610 	 * will possibly result in updating i_data, so we take
611 	 * the write lock of i_data_sem, and call get_blocks()
612 	 * with create == 1 flag.
613 	 */
614 	down_write((&EXT4_I(inode)->i_data_sem));
615 
616 	/*
617 	 * if the caller is from delayed allocation writeout path
618 	 * we have already reserved fs blocks for allocation
619 	 * let the underlying get_block() function know to
620 	 * avoid double accounting
621 	 */
622 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 	/*
625 	 * We need to check for EXT4 here because migrate
626 	 * could have changed the inode type in between
627 	 */
628 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
630 	} else {
631 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
632 
633 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 			/*
635 			 * We allocated new blocks which will result in
636 			 * i_data's format changing.  Force the migrate
637 			 * to fail by clearing migrate flags
638 			 */
639 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640 		}
641 
642 		/*
643 		 * Update reserved blocks/metadata blocks after successful
644 		 * block allocation which had been deferred till now. We don't
645 		 * support fallocate for non extent files. So we can update
646 		 * reserve space here.
647 		 */
648 		if ((retval > 0) &&
649 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 			ext4_da_update_reserve_space(inode, retval, 1);
651 	}
652 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654 
655 		/* If we have successfully mapped the delayed allocated blocks,
656 		 * set the BH_Da_Mapped bit on them. Its important to do this
657 		 * under the protection of i_data_sem.
658 		 */
659 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 			set_buffers_da_mapped(inode, map);
661 	}
662 
663 	up_write((&EXT4_I(inode)->i_data_sem));
664 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665 		int ret = check_block_validity(inode, map);
666 		if (ret != 0)
667 			return ret;
668 	}
669 	return retval;
670 }
671 
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674 
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 			   struct buffer_head *bh, int flags)
677 {
678 	handle_t *handle = ext4_journal_current_handle();
679 	struct ext4_map_blocks map;
680 	int ret = 0, started = 0;
681 	int dio_credits;
682 
683 	map.m_lblk = iblock;
684 	map.m_len = bh->b_size >> inode->i_blkbits;
685 
686 	if (flags && !handle) {
687 		/* Direct IO write... */
688 		if (map.m_len > DIO_MAX_BLOCKS)
689 			map.m_len = DIO_MAX_BLOCKS;
690 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691 		handle = ext4_journal_start(inode, dio_credits);
692 		if (IS_ERR(handle)) {
693 			ret = PTR_ERR(handle);
694 			return ret;
695 		}
696 		started = 1;
697 	}
698 
699 	ret = ext4_map_blocks(handle, inode, &map, flags);
700 	if (ret > 0) {
701 		map_bh(bh, inode->i_sb, map.m_pblk);
702 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
704 		ret = 0;
705 	}
706 	if (started)
707 		ext4_journal_stop(handle);
708 	return ret;
709 }
710 
711 int ext4_get_block(struct inode *inode, sector_t iblock,
712 		   struct buffer_head *bh, int create)
713 {
714 	return _ext4_get_block(inode, iblock, bh,
715 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
716 }
717 
718 /*
719  * `handle' can be NULL if create is zero
720  */
721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
722 				ext4_lblk_t block, int create, int *errp)
723 {
724 	struct ext4_map_blocks map;
725 	struct buffer_head *bh;
726 	int fatal = 0, err;
727 
728 	J_ASSERT(handle != NULL || create == 0);
729 
730 	map.m_lblk = block;
731 	map.m_len = 1;
732 	err = ext4_map_blocks(handle, inode, &map,
733 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
734 
735 	if (err < 0)
736 		*errp = err;
737 	if (err <= 0)
738 		return NULL;
739 	*errp = 0;
740 
741 	bh = sb_getblk(inode->i_sb, map.m_pblk);
742 	if (!bh) {
743 		*errp = -EIO;
744 		return NULL;
745 	}
746 	if (map.m_flags & EXT4_MAP_NEW) {
747 		J_ASSERT(create != 0);
748 		J_ASSERT(handle != NULL);
749 
750 		/*
751 		 * Now that we do not always journal data, we should
752 		 * keep in mind whether this should always journal the
753 		 * new buffer as metadata.  For now, regular file
754 		 * writes use ext4_get_block instead, so it's not a
755 		 * problem.
756 		 */
757 		lock_buffer(bh);
758 		BUFFER_TRACE(bh, "call get_create_access");
759 		fatal = ext4_journal_get_create_access(handle, bh);
760 		if (!fatal && !buffer_uptodate(bh)) {
761 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
762 			set_buffer_uptodate(bh);
763 		}
764 		unlock_buffer(bh);
765 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
766 		err = ext4_handle_dirty_metadata(handle, inode, bh);
767 		if (!fatal)
768 			fatal = err;
769 	} else {
770 		BUFFER_TRACE(bh, "not a new buffer");
771 	}
772 	if (fatal) {
773 		*errp = fatal;
774 		brelse(bh);
775 		bh = NULL;
776 	}
777 	return bh;
778 }
779 
780 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
781 			       ext4_lblk_t block, int create, int *err)
782 {
783 	struct buffer_head *bh;
784 
785 	bh = ext4_getblk(handle, inode, block, create, err);
786 	if (!bh)
787 		return bh;
788 	if (buffer_uptodate(bh))
789 		return bh;
790 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
791 	wait_on_buffer(bh);
792 	if (buffer_uptodate(bh))
793 		return bh;
794 	put_bh(bh);
795 	*err = -EIO;
796 	return NULL;
797 }
798 
799 static int walk_page_buffers(handle_t *handle,
800 			     struct buffer_head *head,
801 			     unsigned from,
802 			     unsigned to,
803 			     int *partial,
804 			     int (*fn)(handle_t *handle,
805 				       struct buffer_head *bh))
806 {
807 	struct buffer_head *bh;
808 	unsigned block_start, block_end;
809 	unsigned blocksize = head->b_size;
810 	int err, ret = 0;
811 	struct buffer_head *next;
812 
813 	for (bh = head, block_start = 0;
814 	     ret == 0 && (bh != head || !block_start);
815 	     block_start = block_end, bh = next) {
816 		next = bh->b_this_page;
817 		block_end = block_start + blocksize;
818 		if (block_end <= from || block_start >= to) {
819 			if (partial && !buffer_uptodate(bh))
820 				*partial = 1;
821 			continue;
822 		}
823 		err = (*fn)(handle, bh);
824 		if (!ret)
825 			ret = err;
826 	}
827 	return ret;
828 }
829 
830 /*
831  * To preserve ordering, it is essential that the hole instantiation and
832  * the data write be encapsulated in a single transaction.  We cannot
833  * close off a transaction and start a new one between the ext4_get_block()
834  * and the commit_write().  So doing the jbd2_journal_start at the start of
835  * prepare_write() is the right place.
836  *
837  * Also, this function can nest inside ext4_writepage() ->
838  * block_write_full_page(). In that case, we *know* that ext4_writepage()
839  * has generated enough buffer credits to do the whole page.  So we won't
840  * block on the journal in that case, which is good, because the caller may
841  * be PF_MEMALLOC.
842  *
843  * By accident, ext4 can be reentered when a transaction is open via
844  * quota file writes.  If we were to commit the transaction while thus
845  * reentered, there can be a deadlock - we would be holding a quota
846  * lock, and the commit would never complete if another thread had a
847  * transaction open and was blocking on the quota lock - a ranking
848  * violation.
849  *
850  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
851  * will _not_ run commit under these circumstances because handle->h_ref
852  * is elevated.  We'll still have enough credits for the tiny quotafile
853  * write.
854  */
855 static int do_journal_get_write_access(handle_t *handle,
856 				       struct buffer_head *bh)
857 {
858 	int dirty = buffer_dirty(bh);
859 	int ret;
860 
861 	if (!buffer_mapped(bh) || buffer_freed(bh))
862 		return 0;
863 	/*
864 	 * __block_write_begin() could have dirtied some buffers. Clean
865 	 * the dirty bit as jbd2_journal_get_write_access() could complain
866 	 * otherwise about fs integrity issues. Setting of the dirty bit
867 	 * by __block_write_begin() isn't a real problem here as we clear
868 	 * the bit before releasing a page lock and thus writeback cannot
869 	 * ever write the buffer.
870 	 */
871 	if (dirty)
872 		clear_buffer_dirty(bh);
873 	ret = ext4_journal_get_write_access(handle, bh);
874 	if (!ret && dirty)
875 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
876 	return ret;
877 }
878 
879 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
880 		   struct buffer_head *bh_result, int create);
881 static int ext4_write_begin(struct file *file, struct address_space *mapping,
882 			    loff_t pos, unsigned len, unsigned flags,
883 			    struct page **pagep, void **fsdata)
884 {
885 	struct inode *inode = mapping->host;
886 	int ret, needed_blocks;
887 	handle_t *handle;
888 	int retries = 0;
889 	struct page *page;
890 	pgoff_t index;
891 	unsigned from, to;
892 
893 	trace_ext4_write_begin(inode, pos, len, flags);
894 	/*
895 	 * Reserve one block more for addition to orphan list in case
896 	 * we allocate blocks but write fails for some reason
897 	 */
898 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
899 	index = pos >> PAGE_CACHE_SHIFT;
900 	from = pos & (PAGE_CACHE_SIZE - 1);
901 	to = from + len;
902 
903 retry:
904 	handle = ext4_journal_start(inode, needed_blocks);
905 	if (IS_ERR(handle)) {
906 		ret = PTR_ERR(handle);
907 		goto out;
908 	}
909 
910 	/* We cannot recurse into the filesystem as the transaction is already
911 	 * started */
912 	flags |= AOP_FLAG_NOFS;
913 
914 	page = grab_cache_page_write_begin(mapping, index, flags);
915 	if (!page) {
916 		ext4_journal_stop(handle);
917 		ret = -ENOMEM;
918 		goto out;
919 	}
920 	*pagep = page;
921 
922 	if (ext4_should_dioread_nolock(inode))
923 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
924 	else
925 		ret = __block_write_begin(page, pos, len, ext4_get_block);
926 
927 	if (!ret && ext4_should_journal_data(inode)) {
928 		ret = walk_page_buffers(handle, page_buffers(page),
929 				from, to, NULL, do_journal_get_write_access);
930 	}
931 
932 	if (ret) {
933 		unlock_page(page);
934 		page_cache_release(page);
935 		/*
936 		 * __block_write_begin may have instantiated a few blocks
937 		 * outside i_size.  Trim these off again. Don't need
938 		 * i_size_read because we hold i_mutex.
939 		 *
940 		 * Add inode to orphan list in case we crash before
941 		 * truncate finishes
942 		 */
943 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
944 			ext4_orphan_add(handle, inode);
945 
946 		ext4_journal_stop(handle);
947 		if (pos + len > inode->i_size) {
948 			ext4_truncate_failed_write(inode);
949 			/*
950 			 * If truncate failed early the inode might
951 			 * still be on the orphan list; we need to
952 			 * make sure the inode is removed from the
953 			 * orphan list in that case.
954 			 */
955 			if (inode->i_nlink)
956 				ext4_orphan_del(NULL, inode);
957 		}
958 	}
959 
960 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
961 		goto retry;
962 out:
963 	return ret;
964 }
965 
966 /* For write_end() in data=journal mode */
967 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
968 {
969 	if (!buffer_mapped(bh) || buffer_freed(bh))
970 		return 0;
971 	set_buffer_uptodate(bh);
972 	return ext4_handle_dirty_metadata(handle, NULL, bh);
973 }
974 
975 static int ext4_generic_write_end(struct file *file,
976 				  struct address_space *mapping,
977 				  loff_t pos, unsigned len, unsigned copied,
978 				  struct page *page, void *fsdata)
979 {
980 	int i_size_changed = 0;
981 	struct inode *inode = mapping->host;
982 	handle_t *handle = ext4_journal_current_handle();
983 
984 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
985 
986 	/*
987 	 * No need to use i_size_read() here, the i_size
988 	 * cannot change under us because we hold i_mutex.
989 	 *
990 	 * But it's important to update i_size while still holding page lock:
991 	 * page writeout could otherwise come in and zero beyond i_size.
992 	 */
993 	if (pos + copied > inode->i_size) {
994 		i_size_write(inode, pos + copied);
995 		i_size_changed = 1;
996 	}
997 
998 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
999 		/* We need to mark inode dirty even if
1000 		 * new_i_size is less that inode->i_size
1001 		 * bu greater than i_disksize.(hint delalloc)
1002 		 */
1003 		ext4_update_i_disksize(inode, (pos + copied));
1004 		i_size_changed = 1;
1005 	}
1006 	unlock_page(page);
1007 	page_cache_release(page);
1008 
1009 	/*
1010 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1011 	 * makes the holding time of page lock longer. Second, it forces lock
1012 	 * ordering of page lock and transaction start for journaling
1013 	 * filesystems.
1014 	 */
1015 	if (i_size_changed)
1016 		ext4_mark_inode_dirty(handle, inode);
1017 
1018 	return copied;
1019 }
1020 
1021 /*
1022  * We need to pick up the new inode size which generic_commit_write gave us
1023  * `file' can be NULL - eg, when called from page_symlink().
1024  *
1025  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1026  * buffers are managed internally.
1027  */
1028 static int ext4_ordered_write_end(struct file *file,
1029 				  struct address_space *mapping,
1030 				  loff_t pos, unsigned len, unsigned copied,
1031 				  struct page *page, void *fsdata)
1032 {
1033 	handle_t *handle = ext4_journal_current_handle();
1034 	struct inode *inode = mapping->host;
1035 	int ret = 0, ret2;
1036 
1037 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1038 	ret = ext4_jbd2_file_inode(handle, inode);
1039 
1040 	if (ret == 0) {
1041 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1042 							page, fsdata);
1043 		copied = ret2;
1044 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1045 			/* if we have allocated more blocks and copied
1046 			 * less. We will have blocks allocated outside
1047 			 * inode->i_size. So truncate them
1048 			 */
1049 			ext4_orphan_add(handle, inode);
1050 		if (ret2 < 0)
1051 			ret = ret2;
1052 	} else {
1053 		unlock_page(page);
1054 		page_cache_release(page);
1055 	}
1056 
1057 	ret2 = ext4_journal_stop(handle);
1058 	if (!ret)
1059 		ret = ret2;
1060 
1061 	if (pos + len > inode->i_size) {
1062 		ext4_truncate_failed_write(inode);
1063 		/*
1064 		 * If truncate failed early the inode might still be
1065 		 * on the orphan list; we need to make sure the inode
1066 		 * is removed from the orphan list in that case.
1067 		 */
1068 		if (inode->i_nlink)
1069 			ext4_orphan_del(NULL, inode);
1070 	}
1071 
1072 
1073 	return ret ? ret : copied;
1074 }
1075 
1076 static int ext4_writeback_write_end(struct file *file,
1077 				    struct address_space *mapping,
1078 				    loff_t pos, unsigned len, unsigned copied,
1079 				    struct page *page, void *fsdata)
1080 {
1081 	handle_t *handle = ext4_journal_current_handle();
1082 	struct inode *inode = mapping->host;
1083 	int ret = 0, ret2;
1084 
1085 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1086 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1087 							page, fsdata);
1088 	copied = ret2;
1089 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1090 		/* if we have allocated more blocks and copied
1091 		 * less. We will have blocks allocated outside
1092 		 * inode->i_size. So truncate them
1093 		 */
1094 		ext4_orphan_add(handle, inode);
1095 
1096 	if (ret2 < 0)
1097 		ret = ret2;
1098 
1099 	ret2 = ext4_journal_stop(handle);
1100 	if (!ret)
1101 		ret = ret2;
1102 
1103 	if (pos + len > inode->i_size) {
1104 		ext4_truncate_failed_write(inode);
1105 		/*
1106 		 * If truncate failed early the inode might still be
1107 		 * on the orphan list; we need to make sure the inode
1108 		 * is removed from the orphan list in that case.
1109 		 */
1110 		if (inode->i_nlink)
1111 			ext4_orphan_del(NULL, inode);
1112 	}
1113 
1114 	return ret ? ret : copied;
1115 }
1116 
1117 static int ext4_journalled_write_end(struct file *file,
1118 				     struct address_space *mapping,
1119 				     loff_t pos, unsigned len, unsigned copied,
1120 				     struct page *page, void *fsdata)
1121 {
1122 	handle_t *handle = ext4_journal_current_handle();
1123 	struct inode *inode = mapping->host;
1124 	int ret = 0, ret2;
1125 	int partial = 0;
1126 	unsigned from, to;
1127 	loff_t new_i_size;
1128 
1129 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1130 	from = pos & (PAGE_CACHE_SIZE - 1);
1131 	to = from + len;
1132 
1133 	BUG_ON(!ext4_handle_valid(handle));
1134 
1135 	if (copied < len) {
1136 		if (!PageUptodate(page))
1137 			copied = 0;
1138 		page_zero_new_buffers(page, from+copied, to);
1139 	}
1140 
1141 	ret = walk_page_buffers(handle, page_buffers(page), from,
1142 				to, &partial, write_end_fn);
1143 	if (!partial)
1144 		SetPageUptodate(page);
1145 	new_i_size = pos + copied;
1146 	if (new_i_size > inode->i_size)
1147 		i_size_write(inode, pos+copied);
1148 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1149 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1150 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1151 		ext4_update_i_disksize(inode, new_i_size);
1152 		ret2 = ext4_mark_inode_dirty(handle, inode);
1153 		if (!ret)
1154 			ret = ret2;
1155 	}
1156 
1157 	unlock_page(page);
1158 	page_cache_release(page);
1159 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160 		/* if we have allocated more blocks and copied
1161 		 * less. We will have blocks allocated outside
1162 		 * inode->i_size. So truncate them
1163 		 */
1164 		ext4_orphan_add(handle, inode);
1165 
1166 	ret2 = ext4_journal_stop(handle);
1167 	if (!ret)
1168 		ret = ret2;
1169 	if (pos + len > inode->i_size) {
1170 		ext4_truncate_failed_write(inode);
1171 		/*
1172 		 * If truncate failed early the inode might still be
1173 		 * on the orphan list; we need to make sure the inode
1174 		 * is removed from the orphan list in that case.
1175 		 */
1176 		if (inode->i_nlink)
1177 			ext4_orphan_del(NULL, inode);
1178 	}
1179 
1180 	return ret ? ret : copied;
1181 }
1182 
1183 /*
1184  * Reserve a single cluster located at lblock
1185  */
1186 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1187 {
1188 	int retries = 0;
1189 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1190 	struct ext4_inode_info *ei = EXT4_I(inode);
1191 	unsigned int md_needed;
1192 	int ret;
1193 	ext4_lblk_t save_last_lblock;
1194 	int save_len;
1195 
1196 	/*
1197 	 * We will charge metadata quota at writeout time; this saves
1198 	 * us from metadata over-estimation, though we may go over by
1199 	 * a small amount in the end.  Here we just reserve for data.
1200 	 */
1201 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1202 	if (ret)
1203 		return ret;
1204 
1205 	/*
1206 	 * recalculate the amount of metadata blocks to reserve
1207 	 * in order to allocate nrblocks
1208 	 * worse case is one extent per block
1209 	 */
1210 repeat:
1211 	spin_lock(&ei->i_block_reservation_lock);
1212 	/*
1213 	 * ext4_calc_metadata_amount() has side effects, which we have
1214 	 * to be prepared undo if we fail to claim space.
1215 	 */
1216 	save_len = ei->i_da_metadata_calc_len;
1217 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1218 	md_needed = EXT4_NUM_B2C(sbi,
1219 				 ext4_calc_metadata_amount(inode, lblock));
1220 	trace_ext4_da_reserve_space(inode, md_needed);
1221 
1222 	/*
1223 	 * We do still charge estimated metadata to the sb though;
1224 	 * we cannot afford to run out of free blocks.
1225 	 */
1226 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1227 		ei->i_da_metadata_calc_len = save_len;
1228 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1229 		spin_unlock(&ei->i_block_reservation_lock);
1230 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1231 			yield();
1232 			goto repeat;
1233 		}
1234 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1235 		return -ENOSPC;
1236 	}
1237 	ei->i_reserved_data_blocks++;
1238 	ei->i_reserved_meta_blocks += md_needed;
1239 	spin_unlock(&ei->i_block_reservation_lock);
1240 
1241 	return 0;       /* success */
1242 }
1243 
1244 static void ext4_da_release_space(struct inode *inode, int to_free)
1245 {
1246 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1247 	struct ext4_inode_info *ei = EXT4_I(inode);
1248 
1249 	if (!to_free)
1250 		return;		/* Nothing to release, exit */
1251 
1252 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1253 
1254 	trace_ext4_da_release_space(inode, to_free);
1255 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1256 		/*
1257 		 * if there aren't enough reserved blocks, then the
1258 		 * counter is messed up somewhere.  Since this
1259 		 * function is called from invalidate page, it's
1260 		 * harmless to return without any action.
1261 		 */
1262 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1263 			 "ino %lu, to_free %d with only %d reserved "
1264 			 "data blocks", inode->i_ino, to_free,
1265 			 ei->i_reserved_data_blocks);
1266 		WARN_ON(1);
1267 		to_free = ei->i_reserved_data_blocks;
1268 	}
1269 	ei->i_reserved_data_blocks -= to_free;
1270 
1271 	if (ei->i_reserved_data_blocks == 0) {
1272 		/*
1273 		 * We can release all of the reserved metadata blocks
1274 		 * only when we have written all of the delayed
1275 		 * allocation blocks.
1276 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1277 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1278 		 */
1279 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1280 				   ei->i_reserved_meta_blocks);
1281 		ei->i_reserved_meta_blocks = 0;
1282 		ei->i_da_metadata_calc_len = 0;
1283 	}
1284 
1285 	/* update fs dirty data blocks counter */
1286 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1287 
1288 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1289 
1290 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1291 }
1292 
1293 static void ext4_da_page_release_reservation(struct page *page,
1294 					     unsigned long offset)
1295 {
1296 	int to_release = 0;
1297 	struct buffer_head *head, *bh;
1298 	unsigned int curr_off = 0;
1299 	struct inode *inode = page->mapping->host;
1300 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1301 	int num_clusters;
1302 
1303 	head = page_buffers(page);
1304 	bh = head;
1305 	do {
1306 		unsigned int next_off = curr_off + bh->b_size;
1307 
1308 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1309 			to_release++;
1310 			clear_buffer_delay(bh);
1311 			clear_buffer_da_mapped(bh);
1312 		}
1313 		curr_off = next_off;
1314 	} while ((bh = bh->b_this_page) != head);
1315 
1316 	/* If we have released all the blocks belonging to a cluster, then we
1317 	 * need to release the reserved space for that cluster. */
1318 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1319 	while (num_clusters > 0) {
1320 		ext4_fsblk_t lblk;
1321 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1322 			((num_clusters - 1) << sbi->s_cluster_bits);
1323 		if (sbi->s_cluster_ratio == 1 ||
1324 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1325 			ext4_da_release_space(inode, 1);
1326 
1327 		num_clusters--;
1328 	}
1329 }
1330 
1331 /*
1332  * Delayed allocation stuff
1333  */
1334 
1335 /*
1336  * mpage_da_submit_io - walks through extent of pages and try to write
1337  * them with writepage() call back
1338  *
1339  * @mpd->inode: inode
1340  * @mpd->first_page: first page of the extent
1341  * @mpd->next_page: page after the last page of the extent
1342  *
1343  * By the time mpage_da_submit_io() is called we expect all blocks
1344  * to be allocated. this may be wrong if allocation failed.
1345  *
1346  * As pages are already locked by write_cache_pages(), we can't use it
1347  */
1348 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1349 			      struct ext4_map_blocks *map)
1350 {
1351 	struct pagevec pvec;
1352 	unsigned long index, end;
1353 	int ret = 0, err, nr_pages, i;
1354 	struct inode *inode = mpd->inode;
1355 	struct address_space *mapping = inode->i_mapping;
1356 	loff_t size = i_size_read(inode);
1357 	unsigned int len, block_start;
1358 	struct buffer_head *bh, *page_bufs = NULL;
1359 	int journal_data = ext4_should_journal_data(inode);
1360 	sector_t pblock = 0, cur_logical = 0;
1361 	struct ext4_io_submit io_submit;
1362 
1363 	BUG_ON(mpd->next_page <= mpd->first_page);
1364 	memset(&io_submit, 0, sizeof(io_submit));
1365 	/*
1366 	 * We need to start from the first_page to the next_page - 1
1367 	 * to make sure we also write the mapped dirty buffer_heads.
1368 	 * If we look at mpd->b_blocknr we would only be looking
1369 	 * at the currently mapped buffer_heads.
1370 	 */
1371 	index = mpd->first_page;
1372 	end = mpd->next_page - 1;
1373 
1374 	pagevec_init(&pvec, 0);
1375 	while (index <= end) {
1376 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1377 		if (nr_pages == 0)
1378 			break;
1379 		for (i = 0; i < nr_pages; i++) {
1380 			int commit_write = 0, skip_page = 0;
1381 			struct page *page = pvec.pages[i];
1382 
1383 			index = page->index;
1384 			if (index > end)
1385 				break;
1386 
1387 			if (index == size >> PAGE_CACHE_SHIFT)
1388 				len = size & ~PAGE_CACHE_MASK;
1389 			else
1390 				len = PAGE_CACHE_SIZE;
1391 			if (map) {
1392 				cur_logical = index << (PAGE_CACHE_SHIFT -
1393 							inode->i_blkbits);
1394 				pblock = map->m_pblk + (cur_logical -
1395 							map->m_lblk);
1396 			}
1397 			index++;
1398 
1399 			BUG_ON(!PageLocked(page));
1400 			BUG_ON(PageWriteback(page));
1401 
1402 			/*
1403 			 * If the page does not have buffers (for
1404 			 * whatever reason), try to create them using
1405 			 * __block_write_begin.  If this fails,
1406 			 * skip the page and move on.
1407 			 */
1408 			if (!page_has_buffers(page)) {
1409 				if (__block_write_begin(page, 0, len,
1410 						noalloc_get_block_write)) {
1411 				skip_page:
1412 					unlock_page(page);
1413 					continue;
1414 				}
1415 				commit_write = 1;
1416 			}
1417 
1418 			bh = page_bufs = page_buffers(page);
1419 			block_start = 0;
1420 			do {
1421 				if (!bh)
1422 					goto skip_page;
1423 				if (map && (cur_logical >= map->m_lblk) &&
1424 				    (cur_logical <= (map->m_lblk +
1425 						     (map->m_len - 1)))) {
1426 					if (buffer_delay(bh)) {
1427 						clear_buffer_delay(bh);
1428 						bh->b_blocknr = pblock;
1429 					}
1430 					if (buffer_da_mapped(bh))
1431 						clear_buffer_da_mapped(bh);
1432 					if (buffer_unwritten(bh) ||
1433 					    buffer_mapped(bh))
1434 						BUG_ON(bh->b_blocknr != pblock);
1435 					if (map->m_flags & EXT4_MAP_UNINIT)
1436 						set_buffer_uninit(bh);
1437 					clear_buffer_unwritten(bh);
1438 				}
1439 
1440 				/*
1441 				 * skip page if block allocation undone and
1442 				 * block is dirty
1443 				 */
1444 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1445 					skip_page = 1;
1446 				bh = bh->b_this_page;
1447 				block_start += bh->b_size;
1448 				cur_logical++;
1449 				pblock++;
1450 			} while (bh != page_bufs);
1451 
1452 			if (skip_page)
1453 				goto skip_page;
1454 
1455 			if (commit_write)
1456 				/* mark the buffer_heads as dirty & uptodate */
1457 				block_commit_write(page, 0, len);
1458 
1459 			clear_page_dirty_for_io(page);
1460 			/*
1461 			 * Delalloc doesn't support data journalling,
1462 			 * but eventually maybe we'll lift this
1463 			 * restriction.
1464 			 */
1465 			if (unlikely(journal_data && PageChecked(page)))
1466 				err = __ext4_journalled_writepage(page, len);
1467 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1468 				err = ext4_bio_write_page(&io_submit, page,
1469 							  len, mpd->wbc);
1470 			else if (buffer_uninit(page_bufs)) {
1471 				ext4_set_bh_endio(page_bufs, inode);
1472 				err = block_write_full_page_endio(page,
1473 					noalloc_get_block_write,
1474 					mpd->wbc, ext4_end_io_buffer_write);
1475 			} else
1476 				err = block_write_full_page(page,
1477 					noalloc_get_block_write, mpd->wbc);
1478 
1479 			if (!err)
1480 				mpd->pages_written++;
1481 			/*
1482 			 * In error case, we have to continue because
1483 			 * remaining pages are still locked
1484 			 */
1485 			if (ret == 0)
1486 				ret = err;
1487 		}
1488 		pagevec_release(&pvec);
1489 	}
1490 	ext4_io_submit(&io_submit);
1491 	return ret;
1492 }
1493 
1494 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1495 {
1496 	int nr_pages, i;
1497 	pgoff_t index, end;
1498 	struct pagevec pvec;
1499 	struct inode *inode = mpd->inode;
1500 	struct address_space *mapping = inode->i_mapping;
1501 
1502 	index = mpd->first_page;
1503 	end   = mpd->next_page - 1;
1504 	while (index <= end) {
1505 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1506 		if (nr_pages == 0)
1507 			break;
1508 		for (i = 0; i < nr_pages; i++) {
1509 			struct page *page = pvec.pages[i];
1510 			if (page->index > end)
1511 				break;
1512 			BUG_ON(!PageLocked(page));
1513 			BUG_ON(PageWriteback(page));
1514 			block_invalidatepage(page, 0);
1515 			ClearPageUptodate(page);
1516 			unlock_page(page);
1517 		}
1518 		index = pvec.pages[nr_pages - 1]->index + 1;
1519 		pagevec_release(&pvec);
1520 	}
1521 	return;
1522 }
1523 
1524 static void ext4_print_free_blocks(struct inode *inode)
1525 {
1526 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 	struct super_block *sb = inode->i_sb;
1528 
1529 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1530 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1531 			ext4_count_free_clusters(inode->i_sb)));
1532 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1533 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1534 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1535 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1536 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1537 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1538 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1539 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1540 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1541 		 EXT4_I(inode)->i_reserved_data_blocks);
1542 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1543 	       EXT4_I(inode)->i_reserved_meta_blocks);
1544 	return;
1545 }
1546 
1547 /*
1548  * mpage_da_map_and_submit - go through given space, map them
1549  *       if necessary, and then submit them for I/O
1550  *
1551  * @mpd - bh describing space
1552  *
1553  * The function skips space we know is already mapped to disk blocks.
1554  *
1555  */
1556 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1557 {
1558 	int err, blks, get_blocks_flags;
1559 	struct ext4_map_blocks map, *mapp = NULL;
1560 	sector_t next = mpd->b_blocknr;
1561 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1562 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1563 	handle_t *handle = NULL;
1564 
1565 	/*
1566 	 * If the blocks are mapped already, or we couldn't accumulate
1567 	 * any blocks, then proceed immediately to the submission stage.
1568 	 */
1569 	if ((mpd->b_size == 0) ||
1570 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1571 	     !(mpd->b_state & (1 << BH_Delay)) &&
1572 	     !(mpd->b_state & (1 << BH_Unwritten))))
1573 		goto submit_io;
1574 
1575 	handle = ext4_journal_current_handle();
1576 	BUG_ON(!handle);
1577 
1578 	/*
1579 	 * Call ext4_map_blocks() to allocate any delayed allocation
1580 	 * blocks, or to convert an uninitialized extent to be
1581 	 * initialized (in the case where we have written into
1582 	 * one or more preallocated blocks).
1583 	 *
1584 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1585 	 * indicate that we are on the delayed allocation path.  This
1586 	 * affects functions in many different parts of the allocation
1587 	 * call path.  This flag exists primarily because we don't
1588 	 * want to change *many* call functions, so ext4_map_blocks()
1589 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1590 	 * inode's allocation semaphore is taken.
1591 	 *
1592 	 * If the blocks in questions were delalloc blocks, set
1593 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1594 	 * variables are updated after the blocks have been allocated.
1595 	 */
1596 	map.m_lblk = next;
1597 	map.m_len = max_blocks;
1598 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1599 	if (ext4_should_dioread_nolock(mpd->inode))
1600 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1601 	if (mpd->b_state & (1 << BH_Delay))
1602 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1603 
1604 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1605 	if (blks < 0) {
1606 		struct super_block *sb = mpd->inode->i_sb;
1607 
1608 		err = blks;
1609 		/*
1610 		 * If get block returns EAGAIN or ENOSPC and there
1611 		 * appears to be free blocks we will just let
1612 		 * mpage_da_submit_io() unlock all of the pages.
1613 		 */
1614 		if (err == -EAGAIN)
1615 			goto submit_io;
1616 
1617 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1618 			mpd->retval = err;
1619 			goto submit_io;
1620 		}
1621 
1622 		/*
1623 		 * get block failure will cause us to loop in
1624 		 * writepages, because a_ops->writepage won't be able
1625 		 * to make progress. The page will be redirtied by
1626 		 * writepage and writepages will again try to write
1627 		 * the same.
1628 		 */
1629 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1630 			ext4_msg(sb, KERN_CRIT,
1631 				 "delayed block allocation failed for inode %lu "
1632 				 "at logical offset %llu with max blocks %zd "
1633 				 "with error %d", mpd->inode->i_ino,
1634 				 (unsigned long long) next,
1635 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1636 			ext4_msg(sb, KERN_CRIT,
1637 				"This should not happen!! Data will be lost\n");
1638 			if (err == -ENOSPC)
1639 				ext4_print_free_blocks(mpd->inode);
1640 		}
1641 		/* invalidate all the pages */
1642 		ext4_da_block_invalidatepages(mpd);
1643 
1644 		/* Mark this page range as having been completed */
1645 		mpd->io_done = 1;
1646 		return;
1647 	}
1648 	BUG_ON(blks == 0);
1649 
1650 	mapp = &map;
1651 	if (map.m_flags & EXT4_MAP_NEW) {
1652 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1653 		int i;
1654 
1655 		for (i = 0; i < map.m_len; i++)
1656 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1657 
1658 		if (ext4_should_order_data(mpd->inode)) {
1659 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1660 			if (err) {
1661 				/* Only if the journal is aborted */
1662 				mpd->retval = err;
1663 				goto submit_io;
1664 			}
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * Update on-disk size along with block allocation.
1670 	 */
1671 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1672 	if (disksize > i_size_read(mpd->inode))
1673 		disksize = i_size_read(mpd->inode);
1674 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1675 		ext4_update_i_disksize(mpd->inode, disksize);
1676 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1677 		if (err)
1678 			ext4_error(mpd->inode->i_sb,
1679 				   "Failed to mark inode %lu dirty",
1680 				   mpd->inode->i_ino);
1681 	}
1682 
1683 submit_io:
1684 	mpage_da_submit_io(mpd, mapp);
1685 	mpd->io_done = 1;
1686 }
1687 
1688 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1689 		(1 << BH_Delay) | (1 << BH_Unwritten))
1690 
1691 /*
1692  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1693  *
1694  * @mpd->lbh - extent of blocks
1695  * @logical - logical number of the block in the file
1696  * @bh - bh of the block (used to access block's state)
1697  *
1698  * the function is used to collect contig. blocks in same state
1699  */
1700 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1701 				   sector_t logical, size_t b_size,
1702 				   unsigned long b_state)
1703 {
1704 	sector_t next;
1705 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1706 
1707 	/*
1708 	 * XXX Don't go larger than mballoc is willing to allocate
1709 	 * This is a stopgap solution.  We eventually need to fold
1710 	 * mpage_da_submit_io() into this function and then call
1711 	 * ext4_map_blocks() multiple times in a loop
1712 	 */
1713 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1714 		goto flush_it;
1715 
1716 	/* check if thereserved journal credits might overflow */
1717 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1718 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1719 			/*
1720 			 * With non-extent format we are limited by the journal
1721 			 * credit available.  Total credit needed to insert
1722 			 * nrblocks contiguous blocks is dependent on the
1723 			 * nrblocks.  So limit nrblocks.
1724 			 */
1725 			goto flush_it;
1726 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1727 				EXT4_MAX_TRANS_DATA) {
1728 			/*
1729 			 * Adding the new buffer_head would make it cross the
1730 			 * allowed limit for which we have journal credit
1731 			 * reserved. So limit the new bh->b_size
1732 			 */
1733 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1734 						mpd->inode->i_blkbits;
1735 			/* we will do mpage_da_submit_io in the next loop */
1736 		}
1737 	}
1738 	/*
1739 	 * First block in the extent
1740 	 */
1741 	if (mpd->b_size == 0) {
1742 		mpd->b_blocknr = logical;
1743 		mpd->b_size = b_size;
1744 		mpd->b_state = b_state & BH_FLAGS;
1745 		return;
1746 	}
1747 
1748 	next = mpd->b_blocknr + nrblocks;
1749 	/*
1750 	 * Can we merge the block to our big extent?
1751 	 */
1752 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1753 		mpd->b_size += b_size;
1754 		return;
1755 	}
1756 
1757 flush_it:
1758 	/*
1759 	 * We couldn't merge the block to our extent, so we
1760 	 * need to flush current  extent and start new one
1761 	 */
1762 	mpage_da_map_and_submit(mpd);
1763 	return;
1764 }
1765 
1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767 {
1768 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 }
1770 
1771 /*
1772  * This function is grabs code from the very beginning of
1773  * ext4_map_blocks, but assumes that the caller is from delayed write
1774  * time. This function looks up the requested blocks and sets the
1775  * buffer delay bit under the protection of i_data_sem.
1776  */
1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778 			      struct ext4_map_blocks *map,
1779 			      struct buffer_head *bh)
1780 {
1781 	int retval;
1782 	sector_t invalid_block = ~((sector_t) 0xffff);
1783 
1784 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1785 		invalid_block = ~0;
1786 
1787 	map->m_flags = 0;
1788 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1789 		  "logical block %lu\n", inode->i_ino, map->m_len,
1790 		  (unsigned long) map->m_lblk);
1791 	/*
1792 	 * Try to see if we can get the block without requesting a new
1793 	 * file system block.
1794 	 */
1795 	down_read((&EXT4_I(inode)->i_data_sem));
1796 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1797 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1798 	else
1799 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1800 
1801 	if (retval == 0) {
1802 		/*
1803 		 * XXX: __block_prepare_write() unmaps passed block,
1804 		 * is it OK?
1805 		 */
1806 		/* If the block was allocated from previously allocated cluster,
1807 		 * then we dont need to reserve it again. */
1808 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1809 			retval = ext4_da_reserve_space(inode, iblock);
1810 			if (retval)
1811 				/* not enough space to reserve */
1812 				goto out_unlock;
1813 		}
1814 
1815 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1816 		 * and it should not appear on the bh->b_state.
1817 		 */
1818 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1819 
1820 		map_bh(bh, inode->i_sb, invalid_block);
1821 		set_buffer_new(bh);
1822 		set_buffer_delay(bh);
1823 	}
1824 
1825 out_unlock:
1826 	up_read((&EXT4_I(inode)->i_data_sem));
1827 
1828 	return retval;
1829 }
1830 
1831 /*
1832  * This is a special get_blocks_t callback which is used by
1833  * ext4_da_write_begin().  It will either return mapped block or
1834  * reserve space for a single block.
1835  *
1836  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1837  * We also have b_blocknr = -1 and b_bdev initialized properly
1838  *
1839  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1840  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1841  * initialized properly.
1842  */
1843 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1844 				  struct buffer_head *bh, int create)
1845 {
1846 	struct ext4_map_blocks map;
1847 	int ret = 0;
1848 
1849 	BUG_ON(create == 0);
1850 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1851 
1852 	map.m_lblk = iblock;
1853 	map.m_len = 1;
1854 
1855 	/*
1856 	 * first, we need to know whether the block is allocated already
1857 	 * preallocated blocks are unmapped but should treated
1858 	 * the same as allocated blocks.
1859 	 */
1860 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1861 	if (ret <= 0)
1862 		return ret;
1863 
1864 	map_bh(bh, inode->i_sb, map.m_pblk);
1865 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1866 
1867 	if (buffer_unwritten(bh)) {
1868 		/* A delayed write to unwritten bh should be marked
1869 		 * new and mapped.  Mapped ensures that we don't do
1870 		 * get_block multiple times when we write to the same
1871 		 * offset and new ensures that we do proper zero out
1872 		 * for partial write.
1873 		 */
1874 		set_buffer_new(bh);
1875 		set_buffer_mapped(bh);
1876 	}
1877 	return 0;
1878 }
1879 
1880 /*
1881  * This function is used as a standard get_block_t calback function
1882  * when there is no desire to allocate any blocks.  It is used as a
1883  * callback function for block_write_begin() and block_write_full_page().
1884  * These functions should only try to map a single block at a time.
1885  *
1886  * Since this function doesn't do block allocations even if the caller
1887  * requests it by passing in create=1, it is critically important that
1888  * any caller checks to make sure that any buffer heads are returned
1889  * by this function are either all already mapped or marked for
1890  * delayed allocation before calling  block_write_full_page().  Otherwise,
1891  * b_blocknr could be left unitialized, and the page write functions will
1892  * be taken by surprise.
1893  */
1894 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1895 				   struct buffer_head *bh_result, int create)
1896 {
1897 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1898 	return _ext4_get_block(inode, iblock, bh_result, 0);
1899 }
1900 
1901 static int bget_one(handle_t *handle, struct buffer_head *bh)
1902 {
1903 	get_bh(bh);
1904 	return 0;
1905 }
1906 
1907 static int bput_one(handle_t *handle, struct buffer_head *bh)
1908 {
1909 	put_bh(bh);
1910 	return 0;
1911 }
1912 
1913 static int __ext4_journalled_writepage(struct page *page,
1914 				       unsigned int len)
1915 {
1916 	struct address_space *mapping = page->mapping;
1917 	struct inode *inode = mapping->host;
1918 	struct buffer_head *page_bufs;
1919 	handle_t *handle = NULL;
1920 	int ret = 0;
1921 	int err;
1922 
1923 	ClearPageChecked(page);
1924 	page_bufs = page_buffers(page);
1925 	BUG_ON(!page_bufs);
1926 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1927 	/* As soon as we unlock the page, it can go away, but we have
1928 	 * references to buffers so we are safe */
1929 	unlock_page(page);
1930 
1931 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1932 	if (IS_ERR(handle)) {
1933 		ret = PTR_ERR(handle);
1934 		goto out;
1935 	}
1936 
1937 	BUG_ON(!ext4_handle_valid(handle));
1938 
1939 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1940 				do_journal_get_write_access);
1941 
1942 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1943 				write_end_fn);
1944 	if (ret == 0)
1945 		ret = err;
1946 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1947 	err = ext4_journal_stop(handle);
1948 	if (!ret)
1949 		ret = err;
1950 
1951 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1952 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1953 out:
1954 	return ret;
1955 }
1956 
1957 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1958 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1959 
1960 /*
1961  * Note that we don't need to start a transaction unless we're journaling data
1962  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1963  * need to file the inode to the transaction's list in ordered mode because if
1964  * we are writing back data added by write(), the inode is already there and if
1965  * we are writing back data modified via mmap(), no one guarantees in which
1966  * transaction the data will hit the disk. In case we are journaling data, we
1967  * cannot start transaction directly because transaction start ranks above page
1968  * lock so we have to do some magic.
1969  *
1970  * This function can get called via...
1971  *   - ext4_da_writepages after taking page lock (have journal handle)
1972  *   - journal_submit_inode_data_buffers (no journal handle)
1973  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1974  *   - grab_page_cache when doing write_begin (have journal handle)
1975  *
1976  * We don't do any block allocation in this function. If we have page with
1977  * multiple blocks we need to write those buffer_heads that are mapped. This
1978  * is important for mmaped based write. So if we do with blocksize 1K
1979  * truncate(f, 1024);
1980  * a = mmap(f, 0, 4096);
1981  * a[0] = 'a';
1982  * truncate(f, 4096);
1983  * we have in the page first buffer_head mapped via page_mkwrite call back
1984  * but other buffer_heads would be unmapped but dirty (dirty done via the
1985  * do_wp_page). So writepage should write the first block. If we modify
1986  * the mmap area beyond 1024 we will again get a page_fault and the
1987  * page_mkwrite callback will do the block allocation and mark the
1988  * buffer_heads mapped.
1989  *
1990  * We redirty the page if we have any buffer_heads that is either delay or
1991  * unwritten in the page.
1992  *
1993  * We can get recursively called as show below.
1994  *
1995  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1996  *		ext4_writepage()
1997  *
1998  * But since we don't do any block allocation we should not deadlock.
1999  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2000  */
2001 static int ext4_writepage(struct page *page,
2002 			  struct writeback_control *wbc)
2003 {
2004 	int ret = 0, commit_write = 0;
2005 	loff_t size;
2006 	unsigned int len;
2007 	struct buffer_head *page_bufs = NULL;
2008 	struct inode *inode = page->mapping->host;
2009 
2010 	trace_ext4_writepage(page);
2011 	size = i_size_read(inode);
2012 	if (page->index == size >> PAGE_CACHE_SHIFT)
2013 		len = size & ~PAGE_CACHE_MASK;
2014 	else
2015 		len = PAGE_CACHE_SIZE;
2016 
2017 	/*
2018 	 * If the page does not have buffers (for whatever reason),
2019 	 * try to create them using __block_write_begin.  If this
2020 	 * fails, redirty the page and move on.
2021 	 */
2022 	if (!page_has_buffers(page)) {
2023 		if (__block_write_begin(page, 0, len,
2024 					noalloc_get_block_write)) {
2025 		redirty_page:
2026 			redirty_page_for_writepage(wbc, page);
2027 			unlock_page(page);
2028 			return 0;
2029 		}
2030 		commit_write = 1;
2031 	}
2032 	page_bufs = page_buffers(page);
2033 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2034 			      ext4_bh_delay_or_unwritten)) {
2035 		/*
2036 		 * We don't want to do block allocation, so redirty
2037 		 * the page and return.  We may reach here when we do
2038 		 * a journal commit via journal_submit_inode_data_buffers.
2039 		 * We can also reach here via shrink_page_list but it
2040 		 * should never be for direct reclaim so warn if that
2041 		 * happens
2042 		 */
2043 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2044 								PF_MEMALLOC);
2045 		goto redirty_page;
2046 	}
2047 	if (commit_write)
2048 		/* now mark the buffer_heads as dirty and uptodate */
2049 		block_commit_write(page, 0, len);
2050 
2051 	if (PageChecked(page) && ext4_should_journal_data(inode))
2052 		/*
2053 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2054 		 * doesn't seem much point in redirtying the page here.
2055 		 */
2056 		return __ext4_journalled_writepage(page, len);
2057 
2058 	if (buffer_uninit(page_bufs)) {
2059 		ext4_set_bh_endio(page_bufs, inode);
2060 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2061 					    wbc, ext4_end_io_buffer_write);
2062 	} else
2063 		ret = block_write_full_page(page, noalloc_get_block_write,
2064 					    wbc);
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * This is called via ext4_da_writepages() to
2071  * calculate the total number of credits to reserve to fit
2072  * a single extent allocation into a single transaction,
2073  * ext4_da_writpeages() will loop calling this before
2074  * the block allocation.
2075  */
2076 
2077 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2078 {
2079 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2080 
2081 	/*
2082 	 * With non-extent format the journal credit needed to
2083 	 * insert nrblocks contiguous block is dependent on
2084 	 * number of contiguous block. So we will limit
2085 	 * number of contiguous block to a sane value
2086 	 */
2087 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2088 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2089 		max_blocks = EXT4_MAX_TRANS_DATA;
2090 
2091 	return ext4_chunk_trans_blocks(inode, max_blocks);
2092 }
2093 
2094 /*
2095  * write_cache_pages_da - walk the list of dirty pages of the given
2096  * address space and accumulate pages that need writing, and call
2097  * mpage_da_map_and_submit to map a single contiguous memory region
2098  * and then write them.
2099  */
2100 static int write_cache_pages_da(struct address_space *mapping,
2101 				struct writeback_control *wbc,
2102 				struct mpage_da_data *mpd,
2103 				pgoff_t *done_index)
2104 {
2105 	struct buffer_head	*bh, *head;
2106 	struct inode		*inode = mapping->host;
2107 	struct pagevec		pvec;
2108 	unsigned int		nr_pages;
2109 	sector_t		logical;
2110 	pgoff_t			index, end;
2111 	long			nr_to_write = wbc->nr_to_write;
2112 	int			i, tag, ret = 0;
2113 
2114 	memset(mpd, 0, sizeof(struct mpage_da_data));
2115 	mpd->wbc = wbc;
2116 	mpd->inode = inode;
2117 	pagevec_init(&pvec, 0);
2118 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2119 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2120 
2121 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2122 		tag = PAGECACHE_TAG_TOWRITE;
2123 	else
2124 		tag = PAGECACHE_TAG_DIRTY;
2125 
2126 	*done_index = index;
2127 	while (index <= end) {
2128 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2129 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2130 		if (nr_pages == 0)
2131 			return 0;
2132 
2133 		for (i = 0; i < nr_pages; i++) {
2134 			struct page *page = pvec.pages[i];
2135 
2136 			/*
2137 			 * At this point, the page may be truncated or
2138 			 * invalidated (changing page->mapping to NULL), or
2139 			 * even swizzled back from swapper_space to tmpfs file
2140 			 * mapping. However, page->index will not change
2141 			 * because we have a reference on the page.
2142 			 */
2143 			if (page->index > end)
2144 				goto out;
2145 
2146 			*done_index = page->index + 1;
2147 
2148 			/*
2149 			 * If we can't merge this page, and we have
2150 			 * accumulated an contiguous region, write it
2151 			 */
2152 			if ((mpd->next_page != page->index) &&
2153 			    (mpd->next_page != mpd->first_page)) {
2154 				mpage_da_map_and_submit(mpd);
2155 				goto ret_extent_tail;
2156 			}
2157 
2158 			lock_page(page);
2159 
2160 			/*
2161 			 * If the page is no longer dirty, or its
2162 			 * mapping no longer corresponds to inode we
2163 			 * are writing (which means it has been
2164 			 * truncated or invalidated), or the page is
2165 			 * already under writeback and we are not
2166 			 * doing a data integrity writeback, skip the page
2167 			 */
2168 			if (!PageDirty(page) ||
2169 			    (PageWriteback(page) &&
2170 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2171 			    unlikely(page->mapping != mapping)) {
2172 				unlock_page(page);
2173 				continue;
2174 			}
2175 
2176 			wait_on_page_writeback(page);
2177 			BUG_ON(PageWriteback(page));
2178 
2179 			if (mpd->next_page != page->index)
2180 				mpd->first_page = page->index;
2181 			mpd->next_page = page->index + 1;
2182 			logical = (sector_t) page->index <<
2183 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2184 
2185 			if (!page_has_buffers(page)) {
2186 				mpage_add_bh_to_extent(mpd, logical,
2187 						       PAGE_CACHE_SIZE,
2188 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2189 				if (mpd->io_done)
2190 					goto ret_extent_tail;
2191 			} else {
2192 				/*
2193 				 * Page with regular buffer heads,
2194 				 * just add all dirty ones
2195 				 */
2196 				head = page_buffers(page);
2197 				bh = head;
2198 				do {
2199 					BUG_ON(buffer_locked(bh));
2200 					/*
2201 					 * We need to try to allocate
2202 					 * unmapped blocks in the same page.
2203 					 * Otherwise we won't make progress
2204 					 * with the page in ext4_writepage
2205 					 */
2206 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2207 						mpage_add_bh_to_extent(mpd, logical,
2208 								       bh->b_size,
2209 								       bh->b_state);
2210 						if (mpd->io_done)
2211 							goto ret_extent_tail;
2212 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2213 						/*
2214 						 * mapped dirty buffer. We need
2215 						 * to update the b_state
2216 						 * because we look at b_state
2217 						 * in mpage_da_map_blocks.  We
2218 						 * don't update b_size because
2219 						 * if we find an unmapped
2220 						 * buffer_head later we need to
2221 						 * use the b_state flag of that
2222 						 * buffer_head.
2223 						 */
2224 						if (mpd->b_size == 0)
2225 							mpd->b_state = bh->b_state & BH_FLAGS;
2226 					}
2227 					logical++;
2228 				} while ((bh = bh->b_this_page) != head);
2229 			}
2230 
2231 			if (nr_to_write > 0) {
2232 				nr_to_write--;
2233 				if (nr_to_write == 0 &&
2234 				    wbc->sync_mode == WB_SYNC_NONE)
2235 					/*
2236 					 * We stop writing back only if we are
2237 					 * not doing integrity sync. In case of
2238 					 * integrity sync we have to keep going
2239 					 * because someone may be concurrently
2240 					 * dirtying pages, and we might have
2241 					 * synced a lot of newly appeared dirty
2242 					 * pages, but have not synced all of the
2243 					 * old dirty pages.
2244 					 */
2245 					goto out;
2246 			}
2247 		}
2248 		pagevec_release(&pvec);
2249 		cond_resched();
2250 	}
2251 	return 0;
2252 ret_extent_tail:
2253 	ret = MPAGE_DA_EXTENT_TAIL;
2254 out:
2255 	pagevec_release(&pvec);
2256 	cond_resched();
2257 	return ret;
2258 }
2259 
2260 
2261 static int ext4_da_writepages(struct address_space *mapping,
2262 			      struct writeback_control *wbc)
2263 {
2264 	pgoff_t	index;
2265 	int range_whole = 0;
2266 	handle_t *handle = NULL;
2267 	struct mpage_da_data mpd;
2268 	struct inode *inode = mapping->host;
2269 	int pages_written = 0;
2270 	unsigned int max_pages;
2271 	int range_cyclic, cycled = 1, io_done = 0;
2272 	int needed_blocks, ret = 0;
2273 	long desired_nr_to_write, nr_to_writebump = 0;
2274 	loff_t range_start = wbc->range_start;
2275 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2276 	pgoff_t done_index = 0;
2277 	pgoff_t end;
2278 	struct blk_plug plug;
2279 
2280 	trace_ext4_da_writepages(inode, wbc);
2281 
2282 	/*
2283 	 * No pages to write? This is mainly a kludge to avoid starting
2284 	 * a transaction for special inodes like journal inode on last iput()
2285 	 * because that could violate lock ordering on umount
2286 	 */
2287 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2288 		return 0;
2289 
2290 	/*
2291 	 * If the filesystem has aborted, it is read-only, so return
2292 	 * right away instead of dumping stack traces later on that
2293 	 * will obscure the real source of the problem.  We test
2294 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2295 	 * the latter could be true if the filesystem is mounted
2296 	 * read-only, and in that case, ext4_da_writepages should
2297 	 * *never* be called, so if that ever happens, we would want
2298 	 * the stack trace.
2299 	 */
2300 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2301 		return -EROFS;
2302 
2303 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2304 		range_whole = 1;
2305 
2306 	range_cyclic = wbc->range_cyclic;
2307 	if (wbc->range_cyclic) {
2308 		index = mapping->writeback_index;
2309 		if (index)
2310 			cycled = 0;
2311 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2312 		wbc->range_end  = LLONG_MAX;
2313 		wbc->range_cyclic = 0;
2314 		end = -1;
2315 	} else {
2316 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2317 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2318 	}
2319 
2320 	/*
2321 	 * This works around two forms of stupidity.  The first is in
2322 	 * the writeback code, which caps the maximum number of pages
2323 	 * written to be 1024 pages.  This is wrong on multiple
2324 	 * levels; different architectues have a different page size,
2325 	 * which changes the maximum amount of data which gets
2326 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2327 	 * forces this value to be 16 megabytes by multiplying
2328 	 * nr_to_write parameter by four, and then relies on its
2329 	 * allocator to allocate larger extents to make them
2330 	 * contiguous.  Unfortunately this brings us to the second
2331 	 * stupidity, which is that ext4's mballoc code only allocates
2332 	 * at most 2048 blocks.  So we force contiguous writes up to
2333 	 * the number of dirty blocks in the inode, or
2334 	 * sbi->max_writeback_mb_bump whichever is smaller.
2335 	 */
2336 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2337 	if (!range_cyclic && range_whole) {
2338 		if (wbc->nr_to_write == LONG_MAX)
2339 			desired_nr_to_write = wbc->nr_to_write;
2340 		else
2341 			desired_nr_to_write = wbc->nr_to_write * 8;
2342 	} else
2343 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2344 							   max_pages);
2345 	if (desired_nr_to_write > max_pages)
2346 		desired_nr_to_write = max_pages;
2347 
2348 	if (wbc->nr_to_write < desired_nr_to_write) {
2349 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2350 		wbc->nr_to_write = desired_nr_to_write;
2351 	}
2352 
2353 retry:
2354 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2355 		tag_pages_for_writeback(mapping, index, end);
2356 
2357 	blk_start_plug(&plug);
2358 	while (!ret && wbc->nr_to_write > 0) {
2359 
2360 		/*
2361 		 * we  insert one extent at a time. So we need
2362 		 * credit needed for single extent allocation.
2363 		 * journalled mode is currently not supported
2364 		 * by delalloc
2365 		 */
2366 		BUG_ON(ext4_should_journal_data(inode));
2367 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2368 
2369 		/* start a new transaction*/
2370 		handle = ext4_journal_start(inode, needed_blocks);
2371 		if (IS_ERR(handle)) {
2372 			ret = PTR_ERR(handle);
2373 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2374 			       "%ld pages, ino %lu; err %d", __func__,
2375 				wbc->nr_to_write, inode->i_ino, ret);
2376 			blk_finish_plug(&plug);
2377 			goto out_writepages;
2378 		}
2379 
2380 		/*
2381 		 * Now call write_cache_pages_da() to find the next
2382 		 * contiguous region of logical blocks that need
2383 		 * blocks to be allocated by ext4 and submit them.
2384 		 */
2385 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2386 		/*
2387 		 * If we have a contiguous extent of pages and we
2388 		 * haven't done the I/O yet, map the blocks and submit
2389 		 * them for I/O.
2390 		 */
2391 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2392 			mpage_da_map_and_submit(&mpd);
2393 			ret = MPAGE_DA_EXTENT_TAIL;
2394 		}
2395 		trace_ext4_da_write_pages(inode, &mpd);
2396 		wbc->nr_to_write -= mpd.pages_written;
2397 
2398 		ext4_journal_stop(handle);
2399 
2400 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2401 			/* commit the transaction which would
2402 			 * free blocks released in the transaction
2403 			 * and try again
2404 			 */
2405 			jbd2_journal_force_commit_nested(sbi->s_journal);
2406 			ret = 0;
2407 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2408 			/*
2409 			 * Got one extent now try with rest of the pages.
2410 			 * If mpd.retval is set -EIO, journal is aborted.
2411 			 * So we don't need to write any more.
2412 			 */
2413 			pages_written += mpd.pages_written;
2414 			ret = mpd.retval;
2415 			io_done = 1;
2416 		} else if (wbc->nr_to_write)
2417 			/*
2418 			 * There is no more writeout needed
2419 			 * or we requested for a noblocking writeout
2420 			 * and we found the device congested
2421 			 */
2422 			break;
2423 	}
2424 	blk_finish_plug(&plug);
2425 	if (!io_done && !cycled) {
2426 		cycled = 1;
2427 		index = 0;
2428 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2429 		wbc->range_end  = mapping->writeback_index - 1;
2430 		goto retry;
2431 	}
2432 
2433 	/* Update index */
2434 	wbc->range_cyclic = range_cyclic;
2435 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2436 		/*
2437 		 * set the writeback_index so that range_cyclic
2438 		 * mode will write it back later
2439 		 */
2440 		mapping->writeback_index = done_index;
2441 
2442 out_writepages:
2443 	wbc->nr_to_write -= nr_to_writebump;
2444 	wbc->range_start = range_start;
2445 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2446 	return ret;
2447 }
2448 
2449 #define FALL_BACK_TO_NONDELALLOC 1
2450 static int ext4_nonda_switch(struct super_block *sb)
2451 {
2452 	s64 free_blocks, dirty_blocks;
2453 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2454 
2455 	/*
2456 	 * switch to non delalloc mode if we are running low
2457 	 * on free block. The free block accounting via percpu
2458 	 * counters can get slightly wrong with percpu_counter_batch getting
2459 	 * accumulated on each CPU without updating global counters
2460 	 * Delalloc need an accurate free block accounting. So switch
2461 	 * to non delalloc when we are near to error range.
2462 	 */
2463 	free_blocks  = EXT4_C2B(sbi,
2464 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2465 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2466 	if (2 * free_blocks < 3 * dirty_blocks ||
2467 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2468 		/*
2469 		 * free block count is less than 150% of dirty blocks
2470 		 * or free blocks is less than watermark
2471 		 */
2472 		return 1;
2473 	}
2474 	/*
2475 	 * Even if we don't switch but are nearing capacity,
2476 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2477 	 */
2478 	if (free_blocks < 2 * dirty_blocks)
2479 		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2480 
2481 	return 0;
2482 }
2483 
2484 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2485 			       loff_t pos, unsigned len, unsigned flags,
2486 			       struct page **pagep, void **fsdata)
2487 {
2488 	int ret, retries = 0;
2489 	struct page *page;
2490 	pgoff_t index;
2491 	struct inode *inode = mapping->host;
2492 	handle_t *handle;
2493 
2494 	index = pos >> PAGE_CACHE_SHIFT;
2495 
2496 	if (ext4_nonda_switch(inode->i_sb)) {
2497 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2498 		return ext4_write_begin(file, mapping, pos,
2499 					len, flags, pagep, fsdata);
2500 	}
2501 	*fsdata = (void *)0;
2502 	trace_ext4_da_write_begin(inode, pos, len, flags);
2503 retry:
2504 	/*
2505 	 * With delayed allocation, we don't log the i_disksize update
2506 	 * if there is delayed block allocation. But we still need
2507 	 * to journalling the i_disksize update if writes to the end
2508 	 * of file which has an already mapped buffer.
2509 	 */
2510 	handle = ext4_journal_start(inode, 1);
2511 	if (IS_ERR(handle)) {
2512 		ret = PTR_ERR(handle);
2513 		goto out;
2514 	}
2515 	/* We cannot recurse into the filesystem as the transaction is already
2516 	 * started */
2517 	flags |= AOP_FLAG_NOFS;
2518 
2519 	page = grab_cache_page_write_begin(mapping, index, flags);
2520 	if (!page) {
2521 		ext4_journal_stop(handle);
2522 		ret = -ENOMEM;
2523 		goto out;
2524 	}
2525 	*pagep = page;
2526 
2527 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2528 	if (ret < 0) {
2529 		unlock_page(page);
2530 		ext4_journal_stop(handle);
2531 		page_cache_release(page);
2532 		/*
2533 		 * block_write_begin may have instantiated a few blocks
2534 		 * outside i_size.  Trim these off again. Don't need
2535 		 * i_size_read because we hold i_mutex.
2536 		 */
2537 		if (pos + len > inode->i_size)
2538 			ext4_truncate_failed_write(inode);
2539 	}
2540 
2541 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2542 		goto retry;
2543 out:
2544 	return ret;
2545 }
2546 
2547 /*
2548  * Check if we should update i_disksize
2549  * when write to the end of file but not require block allocation
2550  */
2551 static int ext4_da_should_update_i_disksize(struct page *page,
2552 					    unsigned long offset)
2553 {
2554 	struct buffer_head *bh;
2555 	struct inode *inode = page->mapping->host;
2556 	unsigned int idx;
2557 	int i;
2558 
2559 	bh = page_buffers(page);
2560 	idx = offset >> inode->i_blkbits;
2561 
2562 	for (i = 0; i < idx; i++)
2563 		bh = bh->b_this_page;
2564 
2565 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2566 		return 0;
2567 	return 1;
2568 }
2569 
2570 static int ext4_da_write_end(struct file *file,
2571 			     struct address_space *mapping,
2572 			     loff_t pos, unsigned len, unsigned copied,
2573 			     struct page *page, void *fsdata)
2574 {
2575 	struct inode *inode = mapping->host;
2576 	int ret = 0, ret2;
2577 	handle_t *handle = ext4_journal_current_handle();
2578 	loff_t new_i_size;
2579 	unsigned long start, end;
2580 	int write_mode = (int)(unsigned long)fsdata;
2581 
2582 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2583 		switch (ext4_inode_journal_mode(inode)) {
2584 		case EXT4_INODE_ORDERED_DATA_MODE:
2585 			return ext4_ordered_write_end(file, mapping, pos,
2586 					len, copied, page, fsdata);
2587 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2588 			return ext4_writeback_write_end(file, mapping, pos,
2589 					len, copied, page, fsdata);
2590 		default:
2591 			BUG();
2592 		}
2593 	}
2594 
2595 	trace_ext4_da_write_end(inode, pos, len, copied);
2596 	start = pos & (PAGE_CACHE_SIZE - 1);
2597 	end = start + copied - 1;
2598 
2599 	/*
2600 	 * generic_write_end() will run mark_inode_dirty() if i_size
2601 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2602 	 * into that.
2603 	 */
2604 
2605 	new_i_size = pos + copied;
2606 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2607 		if (ext4_da_should_update_i_disksize(page, end)) {
2608 			down_write(&EXT4_I(inode)->i_data_sem);
2609 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2610 				/*
2611 				 * Updating i_disksize when extending file
2612 				 * without needing block allocation
2613 				 */
2614 				if (ext4_should_order_data(inode))
2615 					ret = ext4_jbd2_file_inode(handle,
2616 								   inode);
2617 
2618 				EXT4_I(inode)->i_disksize = new_i_size;
2619 			}
2620 			up_write(&EXT4_I(inode)->i_data_sem);
2621 			/* We need to mark inode dirty even if
2622 			 * new_i_size is less that inode->i_size
2623 			 * bu greater than i_disksize.(hint delalloc)
2624 			 */
2625 			ext4_mark_inode_dirty(handle, inode);
2626 		}
2627 	}
2628 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2629 							page, fsdata);
2630 	copied = ret2;
2631 	if (ret2 < 0)
2632 		ret = ret2;
2633 	ret2 = ext4_journal_stop(handle);
2634 	if (!ret)
2635 		ret = ret2;
2636 
2637 	return ret ? ret : copied;
2638 }
2639 
2640 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2641 {
2642 	/*
2643 	 * Drop reserved blocks
2644 	 */
2645 	BUG_ON(!PageLocked(page));
2646 	if (!page_has_buffers(page))
2647 		goto out;
2648 
2649 	ext4_da_page_release_reservation(page, offset);
2650 
2651 out:
2652 	ext4_invalidatepage(page, offset);
2653 
2654 	return;
2655 }
2656 
2657 /*
2658  * Force all delayed allocation blocks to be allocated for a given inode.
2659  */
2660 int ext4_alloc_da_blocks(struct inode *inode)
2661 {
2662 	trace_ext4_alloc_da_blocks(inode);
2663 
2664 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2665 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2666 		return 0;
2667 
2668 	/*
2669 	 * We do something simple for now.  The filemap_flush() will
2670 	 * also start triggering a write of the data blocks, which is
2671 	 * not strictly speaking necessary (and for users of
2672 	 * laptop_mode, not even desirable).  However, to do otherwise
2673 	 * would require replicating code paths in:
2674 	 *
2675 	 * ext4_da_writepages() ->
2676 	 *    write_cache_pages() ---> (via passed in callback function)
2677 	 *        __mpage_da_writepage() -->
2678 	 *           mpage_add_bh_to_extent()
2679 	 *           mpage_da_map_blocks()
2680 	 *
2681 	 * The problem is that write_cache_pages(), located in
2682 	 * mm/page-writeback.c, marks pages clean in preparation for
2683 	 * doing I/O, which is not desirable if we're not planning on
2684 	 * doing I/O at all.
2685 	 *
2686 	 * We could call write_cache_pages(), and then redirty all of
2687 	 * the pages by calling redirty_page_for_writepage() but that
2688 	 * would be ugly in the extreme.  So instead we would need to
2689 	 * replicate parts of the code in the above functions,
2690 	 * simplifying them because we wouldn't actually intend to
2691 	 * write out the pages, but rather only collect contiguous
2692 	 * logical block extents, call the multi-block allocator, and
2693 	 * then update the buffer heads with the block allocations.
2694 	 *
2695 	 * For now, though, we'll cheat by calling filemap_flush(),
2696 	 * which will map the blocks, and start the I/O, but not
2697 	 * actually wait for the I/O to complete.
2698 	 */
2699 	return filemap_flush(inode->i_mapping);
2700 }
2701 
2702 /*
2703  * bmap() is special.  It gets used by applications such as lilo and by
2704  * the swapper to find the on-disk block of a specific piece of data.
2705  *
2706  * Naturally, this is dangerous if the block concerned is still in the
2707  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2708  * filesystem and enables swap, then they may get a nasty shock when the
2709  * data getting swapped to that swapfile suddenly gets overwritten by
2710  * the original zero's written out previously to the journal and
2711  * awaiting writeback in the kernel's buffer cache.
2712  *
2713  * So, if we see any bmap calls here on a modified, data-journaled file,
2714  * take extra steps to flush any blocks which might be in the cache.
2715  */
2716 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2717 {
2718 	struct inode *inode = mapping->host;
2719 	journal_t *journal;
2720 	int err;
2721 
2722 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2723 			test_opt(inode->i_sb, DELALLOC)) {
2724 		/*
2725 		 * With delalloc we want to sync the file
2726 		 * so that we can make sure we allocate
2727 		 * blocks for file
2728 		 */
2729 		filemap_write_and_wait(mapping);
2730 	}
2731 
2732 	if (EXT4_JOURNAL(inode) &&
2733 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2734 		/*
2735 		 * This is a REALLY heavyweight approach, but the use of
2736 		 * bmap on dirty files is expected to be extremely rare:
2737 		 * only if we run lilo or swapon on a freshly made file
2738 		 * do we expect this to happen.
2739 		 *
2740 		 * (bmap requires CAP_SYS_RAWIO so this does not
2741 		 * represent an unprivileged user DOS attack --- we'd be
2742 		 * in trouble if mortal users could trigger this path at
2743 		 * will.)
2744 		 *
2745 		 * NB. EXT4_STATE_JDATA is not set on files other than
2746 		 * regular files.  If somebody wants to bmap a directory
2747 		 * or symlink and gets confused because the buffer
2748 		 * hasn't yet been flushed to disk, they deserve
2749 		 * everything they get.
2750 		 */
2751 
2752 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2753 		journal = EXT4_JOURNAL(inode);
2754 		jbd2_journal_lock_updates(journal);
2755 		err = jbd2_journal_flush(journal);
2756 		jbd2_journal_unlock_updates(journal);
2757 
2758 		if (err)
2759 			return 0;
2760 	}
2761 
2762 	return generic_block_bmap(mapping, block, ext4_get_block);
2763 }
2764 
2765 static int ext4_readpage(struct file *file, struct page *page)
2766 {
2767 	trace_ext4_readpage(page);
2768 	return mpage_readpage(page, ext4_get_block);
2769 }
2770 
2771 static int
2772 ext4_readpages(struct file *file, struct address_space *mapping,
2773 		struct list_head *pages, unsigned nr_pages)
2774 {
2775 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2776 }
2777 
2778 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2779 {
2780 	struct buffer_head *head, *bh;
2781 	unsigned int curr_off = 0;
2782 
2783 	if (!page_has_buffers(page))
2784 		return;
2785 	head = bh = page_buffers(page);
2786 	do {
2787 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2788 					&& bh->b_private) {
2789 			ext4_free_io_end(bh->b_private);
2790 			bh->b_private = NULL;
2791 			bh->b_end_io = NULL;
2792 		}
2793 		curr_off = curr_off + bh->b_size;
2794 		bh = bh->b_this_page;
2795 	} while (bh != head);
2796 }
2797 
2798 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2799 {
2800 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2801 
2802 	trace_ext4_invalidatepage(page, offset);
2803 
2804 	/*
2805 	 * free any io_end structure allocated for buffers to be discarded
2806 	 */
2807 	if (ext4_should_dioread_nolock(page->mapping->host))
2808 		ext4_invalidatepage_free_endio(page, offset);
2809 	/*
2810 	 * If it's a full truncate we just forget about the pending dirtying
2811 	 */
2812 	if (offset == 0)
2813 		ClearPageChecked(page);
2814 
2815 	if (journal)
2816 		jbd2_journal_invalidatepage(journal, page, offset);
2817 	else
2818 		block_invalidatepage(page, offset);
2819 }
2820 
2821 static int ext4_releasepage(struct page *page, gfp_t wait)
2822 {
2823 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2824 
2825 	trace_ext4_releasepage(page);
2826 
2827 	WARN_ON(PageChecked(page));
2828 	if (!page_has_buffers(page))
2829 		return 0;
2830 	if (journal)
2831 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2832 	else
2833 		return try_to_free_buffers(page);
2834 }
2835 
2836 /*
2837  * ext4_get_block used when preparing for a DIO write or buffer write.
2838  * We allocate an uinitialized extent if blocks haven't been allocated.
2839  * The extent will be converted to initialized after the IO is complete.
2840  */
2841 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2842 		   struct buffer_head *bh_result, int create)
2843 {
2844 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2845 		   inode->i_ino, create);
2846 	return _ext4_get_block(inode, iblock, bh_result,
2847 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2848 }
2849 
2850 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2851 		   struct buffer_head *bh_result, int flags)
2852 {
2853 	handle_t *handle = ext4_journal_current_handle();
2854 	struct ext4_map_blocks map;
2855 	int ret = 0;
2856 
2857 	ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2858 		   inode->i_ino, flags);
2859 
2860 	flags = EXT4_GET_BLOCKS_NO_LOCK;
2861 
2862 	map.m_lblk = iblock;
2863 	map.m_len = bh_result->b_size >> inode->i_blkbits;
2864 
2865 	ret = ext4_map_blocks(handle, inode, &map, flags);
2866 	if (ret > 0) {
2867 		map_bh(bh_result, inode->i_sb, map.m_pblk);
2868 		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2869 					map.m_flags;
2870 		bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2871 		ret = 0;
2872 	}
2873 	return ret;
2874 }
2875 
2876 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2877 			    ssize_t size, void *private, int ret,
2878 			    bool is_async)
2879 {
2880 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2881         ext4_io_end_t *io_end = iocb->private;
2882 	struct workqueue_struct *wq;
2883 	unsigned long flags;
2884 	struct ext4_inode_info *ei;
2885 
2886 	/* if not async direct IO or dio with 0 bytes write, just return */
2887 	if (!io_end || !size)
2888 		goto out;
2889 
2890 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2891 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2892  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2893 		  size);
2894 
2895 	iocb->private = NULL;
2896 
2897 	/* if not aio dio with unwritten extents, just free io and return */
2898 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2899 		ext4_free_io_end(io_end);
2900 out:
2901 		if (is_async)
2902 			aio_complete(iocb, ret, 0);
2903 		inode_dio_done(inode);
2904 		return;
2905 	}
2906 
2907 	io_end->offset = offset;
2908 	io_end->size = size;
2909 	if (is_async) {
2910 		io_end->iocb = iocb;
2911 		io_end->result = ret;
2912 	}
2913 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2914 
2915 	/* Add the io_end to per-inode completed aio dio list*/
2916 	ei = EXT4_I(io_end->inode);
2917 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2918 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2919 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2920 
2921 	/* queue the work to convert unwritten extents to written */
2922 	queue_work(wq, &io_end->work);
2923 }
2924 
2925 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2926 {
2927 	ext4_io_end_t *io_end = bh->b_private;
2928 	struct workqueue_struct *wq;
2929 	struct inode *inode;
2930 	unsigned long flags;
2931 
2932 	if (!test_clear_buffer_uninit(bh) || !io_end)
2933 		goto out;
2934 
2935 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2936 		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2937 			 "sb umounted, discard end_io request for inode %lu",
2938 			 io_end->inode->i_ino);
2939 		ext4_free_io_end(io_end);
2940 		goto out;
2941 	}
2942 
2943 	/*
2944 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2945 	 * but being more careful is always safe for the future change.
2946 	 */
2947 	inode = io_end->inode;
2948 	ext4_set_io_unwritten_flag(inode, io_end);
2949 
2950 	/* Add the io_end to per-inode completed io list*/
2951 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2952 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2953 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2954 
2955 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2956 	/* queue the work to convert unwritten extents to written */
2957 	queue_work(wq, &io_end->work);
2958 out:
2959 	bh->b_private = NULL;
2960 	bh->b_end_io = NULL;
2961 	clear_buffer_uninit(bh);
2962 	end_buffer_async_write(bh, uptodate);
2963 }
2964 
2965 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2966 {
2967 	ext4_io_end_t *io_end;
2968 	struct page *page = bh->b_page;
2969 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2970 	size_t size = bh->b_size;
2971 
2972 retry:
2973 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2974 	if (!io_end) {
2975 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2976 		schedule();
2977 		goto retry;
2978 	}
2979 	io_end->offset = offset;
2980 	io_end->size = size;
2981 	/*
2982 	 * We need to hold a reference to the page to make sure it
2983 	 * doesn't get evicted before ext4_end_io_work() has a chance
2984 	 * to convert the extent from written to unwritten.
2985 	 */
2986 	io_end->page = page;
2987 	get_page(io_end->page);
2988 
2989 	bh->b_private = io_end;
2990 	bh->b_end_io = ext4_end_io_buffer_write;
2991 	return 0;
2992 }
2993 
2994 /*
2995  * For ext4 extent files, ext4 will do direct-io write to holes,
2996  * preallocated extents, and those write extend the file, no need to
2997  * fall back to buffered IO.
2998  *
2999  * For holes, we fallocate those blocks, mark them as uninitialized
3000  * If those blocks were preallocated, we mark sure they are splited, but
3001  * still keep the range to write as uninitialized.
3002  *
3003  * The unwrritten extents will be converted to written when DIO is completed.
3004  * For async direct IO, since the IO may still pending when return, we
3005  * set up an end_io call back function, which will do the conversion
3006  * when async direct IO completed.
3007  *
3008  * If the O_DIRECT write will extend the file then add this inode to the
3009  * orphan list.  So recovery will truncate it back to the original size
3010  * if the machine crashes during the write.
3011  *
3012  */
3013 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3014 			      const struct iovec *iov, loff_t offset,
3015 			      unsigned long nr_segs)
3016 {
3017 	struct file *file = iocb->ki_filp;
3018 	struct inode *inode = file->f_mapping->host;
3019 	ssize_t ret;
3020 	size_t count = iov_length(iov, nr_segs);
3021 
3022 	loff_t final_size = offset + count;
3023 	if (rw == WRITE && final_size <= inode->i_size) {
3024 		int overwrite = 0;
3025 
3026 		BUG_ON(iocb->private == NULL);
3027 
3028 		/* If we do a overwrite dio, i_mutex locking can be released */
3029 		overwrite = *((int *)iocb->private);
3030 
3031 		if (overwrite) {
3032 			down_read(&EXT4_I(inode)->i_data_sem);
3033 			mutex_unlock(&inode->i_mutex);
3034 		}
3035 
3036 		/*
3037  		 * We could direct write to holes and fallocate.
3038 		 *
3039  		 * Allocated blocks to fill the hole are marked as uninitialized
3040  		 * to prevent parallel buffered read to expose the stale data
3041  		 * before DIO complete the data IO.
3042 		 *
3043  		 * As to previously fallocated extents, ext4 get_block
3044  		 * will just simply mark the buffer mapped but still
3045  		 * keep the extents uninitialized.
3046  		 *
3047 		 * for non AIO case, we will convert those unwritten extents
3048 		 * to written after return back from blockdev_direct_IO.
3049 		 *
3050 		 * for async DIO, the conversion needs to be defered when
3051 		 * the IO is completed. The ext4 end_io callback function
3052 		 * will be called to take care of the conversion work.
3053 		 * Here for async case, we allocate an io_end structure to
3054 		 * hook to the iocb.
3055  		 */
3056 		iocb->private = NULL;
3057 		EXT4_I(inode)->cur_aio_dio = NULL;
3058 		if (!is_sync_kiocb(iocb)) {
3059 			ext4_io_end_t *io_end =
3060 				ext4_init_io_end(inode, GFP_NOFS);
3061 			if (!io_end) {
3062 				ret = -ENOMEM;
3063 				goto retake_lock;
3064 			}
3065 			io_end->flag |= EXT4_IO_END_DIRECT;
3066 			iocb->private = io_end;
3067 			/*
3068 			 * we save the io structure for current async
3069 			 * direct IO, so that later ext4_map_blocks()
3070 			 * could flag the io structure whether there
3071 			 * is a unwritten extents needs to be converted
3072 			 * when IO is completed.
3073 			 */
3074 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3075 		}
3076 
3077 		if (overwrite)
3078 			ret = __blockdev_direct_IO(rw, iocb, inode,
3079 						 inode->i_sb->s_bdev, iov,
3080 						 offset, nr_segs,
3081 						 ext4_get_block_write_nolock,
3082 						 ext4_end_io_dio,
3083 						 NULL,
3084 						 0);
3085 		else
3086 			ret = __blockdev_direct_IO(rw, iocb, inode,
3087 						 inode->i_sb->s_bdev, iov,
3088 						 offset, nr_segs,
3089 						 ext4_get_block_write,
3090 						 ext4_end_io_dio,
3091 						 NULL,
3092 						 DIO_LOCKING);
3093 		if (iocb->private)
3094 			EXT4_I(inode)->cur_aio_dio = NULL;
3095 		/*
3096 		 * The io_end structure takes a reference to the inode,
3097 		 * that structure needs to be destroyed and the
3098 		 * reference to the inode need to be dropped, when IO is
3099 		 * complete, even with 0 byte write, or failed.
3100 		 *
3101 		 * In the successful AIO DIO case, the io_end structure will be
3102 		 * desctroyed and the reference to the inode will be dropped
3103 		 * after the end_io call back function is called.
3104 		 *
3105 		 * In the case there is 0 byte write, or error case, since
3106 		 * VFS direct IO won't invoke the end_io call back function,
3107 		 * we need to free the end_io structure here.
3108 		 */
3109 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3110 			ext4_free_io_end(iocb->private);
3111 			iocb->private = NULL;
3112 		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3113 						EXT4_STATE_DIO_UNWRITTEN)) {
3114 			int err;
3115 			/*
3116 			 * for non AIO case, since the IO is already
3117 			 * completed, we could do the conversion right here
3118 			 */
3119 			err = ext4_convert_unwritten_extents(inode,
3120 							     offset, ret);
3121 			if (err < 0)
3122 				ret = err;
3123 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3124 		}
3125 
3126 	retake_lock:
3127 		/* take i_mutex locking again if we do a ovewrite dio */
3128 		if (overwrite) {
3129 			up_read(&EXT4_I(inode)->i_data_sem);
3130 			mutex_lock(&inode->i_mutex);
3131 		}
3132 
3133 		return ret;
3134 	}
3135 
3136 	/* for write the the end of file case, we fall back to old way */
3137 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3138 }
3139 
3140 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3141 			      const struct iovec *iov, loff_t offset,
3142 			      unsigned long nr_segs)
3143 {
3144 	struct file *file = iocb->ki_filp;
3145 	struct inode *inode = file->f_mapping->host;
3146 	ssize_t ret;
3147 
3148 	/*
3149 	 * If we are doing data journalling we don't support O_DIRECT
3150 	 */
3151 	if (ext4_should_journal_data(inode))
3152 		return 0;
3153 
3154 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3155 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3156 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3157 	else
3158 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3159 	trace_ext4_direct_IO_exit(inode, offset,
3160 				iov_length(iov, nr_segs), rw, ret);
3161 	return ret;
3162 }
3163 
3164 /*
3165  * Pages can be marked dirty completely asynchronously from ext4's journalling
3166  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3167  * much here because ->set_page_dirty is called under VFS locks.  The page is
3168  * not necessarily locked.
3169  *
3170  * We cannot just dirty the page and leave attached buffers clean, because the
3171  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3172  * or jbddirty because all the journalling code will explode.
3173  *
3174  * So what we do is to mark the page "pending dirty" and next time writepage
3175  * is called, propagate that into the buffers appropriately.
3176  */
3177 static int ext4_journalled_set_page_dirty(struct page *page)
3178 {
3179 	SetPageChecked(page);
3180 	return __set_page_dirty_nobuffers(page);
3181 }
3182 
3183 static const struct address_space_operations ext4_ordered_aops = {
3184 	.readpage		= ext4_readpage,
3185 	.readpages		= ext4_readpages,
3186 	.writepage		= ext4_writepage,
3187 	.write_begin		= ext4_write_begin,
3188 	.write_end		= ext4_ordered_write_end,
3189 	.bmap			= ext4_bmap,
3190 	.invalidatepage		= ext4_invalidatepage,
3191 	.releasepage		= ext4_releasepage,
3192 	.direct_IO		= ext4_direct_IO,
3193 	.migratepage		= buffer_migrate_page,
3194 	.is_partially_uptodate  = block_is_partially_uptodate,
3195 	.error_remove_page	= generic_error_remove_page,
3196 };
3197 
3198 static const struct address_space_operations ext4_writeback_aops = {
3199 	.readpage		= ext4_readpage,
3200 	.readpages		= ext4_readpages,
3201 	.writepage		= ext4_writepage,
3202 	.write_begin		= ext4_write_begin,
3203 	.write_end		= ext4_writeback_write_end,
3204 	.bmap			= ext4_bmap,
3205 	.invalidatepage		= ext4_invalidatepage,
3206 	.releasepage		= ext4_releasepage,
3207 	.direct_IO		= ext4_direct_IO,
3208 	.migratepage		= buffer_migrate_page,
3209 	.is_partially_uptodate  = block_is_partially_uptodate,
3210 	.error_remove_page	= generic_error_remove_page,
3211 };
3212 
3213 static const struct address_space_operations ext4_journalled_aops = {
3214 	.readpage		= ext4_readpage,
3215 	.readpages		= ext4_readpages,
3216 	.writepage		= ext4_writepage,
3217 	.write_begin		= ext4_write_begin,
3218 	.write_end		= ext4_journalled_write_end,
3219 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3220 	.bmap			= ext4_bmap,
3221 	.invalidatepage		= ext4_invalidatepage,
3222 	.releasepage		= ext4_releasepage,
3223 	.direct_IO		= ext4_direct_IO,
3224 	.is_partially_uptodate  = block_is_partially_uptodate,
3225 	.error_remove_page	= generic_error_remove_page,
3226 };
3227 
3228 static const struct address_space_operations ext4_da_aops = {
3229 	.readpage		= ext4_readpage,
3230 	.readpages		= ext4_readpages,
3231 	.writepage		= ext4_writepage,
3232 	.writepages		= ext4_da_writepages,
3233 	.write_begin		= ext4_da_write_begin,
3234 	.write_end		= ext4_da_write_end,
3235 	.bmap			= ext4_bmap,
3236 	.invalidatepage		= ext4_da_invalidatepage,
3237 	.releasepage		= ext4_releasepage,
3238 	.direct_IO		= ext4_direct_IO,
3239 	.migratepage		= buffer_migrate_page,
3240 	.is_partially_uptodate  = block_is_partially_uptodate,
3241 	.error_remove_page	= generic_error_remove_page,
3242 };
3243 
3244 void ext4_set_aops(struct inode *inode)
3245 {
3246 	switch (ext4_inode_journal_mode(inode)) {
3247 	case EXT4_INODE_ORDERED_DATA_MODE:
3248 		if (test_opt(inode->i_sb, DELALLOC))
3249 			inode->i_mapping->a_ops = &ext4_da_aops;
3250 		else
3251 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3252 		break;
3253 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3254 		if (test_opt(inode->i_sb, DELALLOC))
3255 			inode->i_mapping->a_ops = &ext4_da_aops;
3256 		else
3257 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3258 		break;
3259 	case EXT4_INODE_JOURNAL_DATA_MODE:
3260 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3261 		break;
3262 	default:
3263 		BUG();
3264 	}
3265 }
3266 
3267 
3268 /*
3269  * ext4_discard_partial_page_buffers()
3270  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3271  * This function finds and locks the page containing the offset
3272  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3273  * Calling functions that already have the page locked should call
3274  * ext4_discard_partial_page_buffers_no_lock directly.
3275  */
3276 int ext4_discard_partial_page_buffers(handle_t *handle,
3277 		struct address_space *mapping, loff_t from,
3278 		loff_t length, int flags)
3279 {
3280 	struct inode *inode = mapping->host;
3281 	struct page *page;
3282 	int err = 0;
3283 
3284 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3285 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3286 	if (!page)
3287 		return -ENOMEM;
3288 
3289 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3290 		from, length, flags);
3291 
3292 	unlock_page(page);
3293 	page_cache_release(page);
3294 	return err;
3295 }
3296 
3297 /*
3298  * ext4_discard_partial_page_buffers_no_lock()
3299  * Zeros a page range of length 'length' starting from offset 'from'.
3300  * Buffer heads that correspond to the block aligned regions of the
3301  * zeroed range will be unmapped.  Unblock aligned regions
3302  * will have the corresponding buffer head mapped if needed so that
3303  * that region of the page can be updated with the partial zero out.
3304  *
3305  * This function assumes that the page has already been  locked.  The
3306  * The range to be discarded must be contained with in the given page.
3307  * If the specified range exceeds the end of the page it will be shortened
3308  * to the end of the page that corresponds to 'from'.  This function is
3309  * appropriate for updating a page and it buffer heads to be unmapped and
3310  * zeroed for blocks that have been either released, or are going to be
3311  * released.
3312  *
3313  * handle: The journal handle
3314  * inode:  The files inode
3315  * page:   A locked page that contains the offset "from"
3316  * from:   The starting byte offset (from the begining of the file)
3317  *         to begin discarding
3318  * len:    The length of bytes to discard
3319  * flags:  Optional flags that may be used:
3320  *
3321  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3322  *         Only zero the regions of the page whose buffer heads
3323  *         have already been unmapped.  This flag is appropriate
3324  *         for updateing the contents of a page whose blocks may
3325  *         have already been released, and we only want to zero
3326  *         out the regions that correspond to those released blocks.
3327  *
3328  * Returns zero on sucess or negative on failure.
3329  */
3330 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3331 		struct inode *inode, struct page *page, loff_t from,
3332 		loff_t length, int flags)
3333 {
3334 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3335 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3336 	unsigned int blocksize, max, pos;
3337 	ext4_lblk_t iblock;
3338 	struct buffer_head *bh;
3339 	int err = 0;
3340 
3341 	blocksize = inode->i_sb->s_blocksize;
3342 	max = PAGE_CACHE_SIZE - offset;
3343 
3344 	if (index != page->index)
3345 		return -EINVAL;
3346 
3347 	/*
3348 	 * correct length if it does not fall between
3349 	 * 'from' and the end of the page
3350 	 */
3351 	if (length > max || length < 0)
3352 		length = max;
3353 
3354 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3355 
3356 	if (!page_has_buffers(page))
3357 		create_empty_buffers(page, blocksize, 0);
3358 
3359 	/* Find the buffer that contains "offset" */
3360 	bh = page_buffers(page);
3361 	pos = blocksize;
3362 	while (offset >= pos) {
3363 		bh = bh->b_this_page;
3364 		iblock++;
3365 		pos += blocksize;
3366 	}
3367 
3368 	pos = offset;
3369 	while (pos < offset + length) {
3370 		unsigned int end_of_block, range_to_discard;
3371 
3372 		err = 0;
3373 
3374 		/* The length of space left to zero and unmap */
3375 		range_to_discard = offset + length - pos;
3376 
3377 		/* The length of space until the end of the block */
3378 		end_of_block = blocksize - (pos & (blocksize-1));
3379 
3380 		/*
3381 		 * Do not unmap or zero past end of block
3382 		 * for this buffer head
3383 		 */
3384 		if (range_to_discard > end_of_block)
3385 			range_to_discard = end_of_block;
3386 
3387 
3388 		/*
3389 		 * Skip this buffer head if we are only zeroing unampped
3390 		 * regions of the page
3391 		 */
3392 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3393 			buffer_mapped(bh))
3394 				goto next;
3395 
3396 		/* If the range is block aligned, unmap */
3397 		if (range_to_discard == blocksize) {
3398 			clear_buffer_dirty(bh);
3399 			bh->b_bdev = NULL;
3400 			clear_buffer_mapped(bh);
3401 			clear_buffer_req(bh);
3402 			clear_buffer_new(bh);
3403 			clear_buffer_delay(bh);
3404 			clear_buffer_unwritten(bh);
3405 			clear_buffer_uptodate(bh);
3406 			zero_user(page, pos, range_to_discard);
3407 			BUFFER_TRACE(bh, "Buffer discarded");
3408 			goto next;
3409 		}
3410 
3411 		/*
3412 		 * If this block is not completely contained in the range
3413 		 * to be discarded, then it is not going to be released. Because
3414 		 * we need to keep this block, we need to make sure this part
3415 		 * of the page is uptodate before we modify it by writeing
3416 		 * partial zeros on it.
3417 		 */
3418 		if (!buffer_mapped(bh)) {
3419 			/*
3420 			 * Buffer head must be mapped before we can read
3421 			 * from the block
3422 			 */
3423 			BUFFER_TRACE(bh, "unmapped");
3424 			ext4_get_block(inode, iblock, bh, 0);
3425 			/* unmapped? It's a hole - nothing to do */
3426 			if (!buffer_mapped(bh)) {
3427 				BUFFER_TRACE(bh, "still unmapped");
3428 				goto next;
3429 			}
3430 		}
3431 
3432 		/* Ok, it's mapped. Make sure it's up-to-date */
3433 		if (PageUptodate(page))
3434 			set_buffer_uptodate(bh);
3435 
3436 		if (!buffer_uptodate(bh)) {
3437 			err = -EIO;
3438 			ll_rw_block(READ, 1, &bh);
3439 			wait_on_buffer(bh);
3440 			/* Uhhuh. Read error. Complain and punt.*/
3441 			if (!buffer_uptodate(bh))
3442 				goto next;
3443 		}
3444 
3445 		if (ext4_should_journal_data(inode)) {
3446 			BUFFER_TRACE(bh, "get write access");
3447 			err = ext4_journal_get_write_access(handle, bh);
3448 			if (err)
3449 				goto next;
3450 		}
3451 
3452 		zero_user(page, pos, range_to_discard);
3453 
3454 		err = 0;
3455 		if (ext4_should_journal_data(inode)) {
3456 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3457 		} else
3458 			mark_buffer_dirty(bh);
3459 
3460 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3461 next:
3462 		bh = bh->b_this_page;
3463 		iblock++;
3464 		pos += range_to_discard;
3465 	}
3466 
3467 	return err;
3468 }
3469 
3470 int ext4_can_truncate(struct inode *inode)
3471 {
3472 	if (S_ISREG(inode->i_mode))
3473 		return 1;
3474 	if (S_ISDIR(inode->i_mode))
3475 		return 1;
3476 	if (S_ISLNK(inode->i_mode))
3477 		return !ext4_inode_is_fast_symlink(inode);
3478 	return 0;
3479 }
3480 
3481 /*
3482  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3483  * associated with the given offset and length
3484  *
3485  * @inode:  File inode
3486  * @offset: The offset where the hole will begin
3487  * @len:    The length of the hole
3488  *
3489  * Returns: 0 on sucess or negative on failure
3490  */
3491 
3492 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3493 {
3494 	struct inode *inode = file->f_path.dentry->d_inode;
3495 	if (!S_ISREG(inode->i_mode))
3496 		return -EOPNOTSUPP;
3497 
3498 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3499 		/* TODO: Add support for non extent hole punching */
3500 		return -EOPNOTSUPP;
3501 	}
3502 
3503 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3504 		/* TODO: Add support for bigalloc file systems */
3505 		return -EOPNOTSUPP;
3506 	}
3507 
3508 	return ext4_ext_punch_hole(file, offset, length);
3509 }
3510 
3511 /*
3512  * ext4_truncate()
3513  *
3514  * We block out ext4_get_block() block instantiations across the entire
3515  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3516  * simultaneously on behalf of the same inode.
3517  *
3518  * As we work through the truncate and commit bits of it to the journal there
3519  * is one core, guiding principle: the file's tree must always be consistent on
3520  * disk.  We must be able to restart the truncate after a crash.
3521  *
3522  * The file's tree may be transiently inconsistent in memory (although it
3523  * probably isn't), but whenever we close off and commit a journal transaction,
3524  * the contents of (the filesystem + the journal) must be consistent and
3525  * restartable.  It's pretty simple, really: bottom up, right to left (although
3526  * left-to-right works OK too).
3527  *
3528  * Note that at recovery time, journal replay occurs *before* the restart of
3529  * truncate against the orphan inode list.
3530  *
3531  * The committed inode has the new, desired i_size (which is the same as
3532  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3533  * that this inode's truncate did not complete and it will again call
3534  * ext4_truncate() to have another go.  So there will be instantiated blocks
3535  * to the right of the truncation point in a crashed ext4 filesystem.  But
3536  * that's fine - as long as they are linked from the inode, the post-crash
3537  * ext4_truncate() run will find them and release them.
3538  */
3539 void ext4_truncate(struct inode *inode)
3540 {
3541 	trace_ext4_truncate_enter(inode);
3542 
3543 	if (!ext4_can_truncate(inode))
3544 		return;
3545 
3546 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3547 
3548 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3549 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3550 
3551 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3552 		ext4_ext_truncate(inode);
3553 	else
3554 		ext4_ind_truncate(inode);
3555 
3556 	trace_ext4_truncate_exit(inode);
3557 }
3558 
3559 /*
3560  * ext4_get_inode_loc returns with an extra refcount against the inode's
3561  * underlying buffer_head on success. If 'in_mem' is true, we have all
3562  * data in memory that is needed to recreate the on-disk version of this
3563  * inode.
3564  */
3565 static int __ext4_get_inode_loc(struct inode *inode,
3566 				struct ext4_iloc *iloc, int in_mem)
3567 {
3568 	struct ext4_group_desc	*gdp;
3569 	struct buffer_head	*bh;
3570 	struct super_block	*sb = inode->i_sb;
3571 	ext4_fsblk_t		block;
3572 	int			inodes_per_block, inode_offset;
3573 
3574 	iloc->bh = NULL;
3575 	if (!ext4_valid_inum(sb, inode->i_ino))
3576 		return -EIO;
3577 
3578 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3579 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3580 	if (!gdp)
3581 		return -EIO;
3582 
3583 	/*
3584 	 * Figure out the offset within the block group inode table
3585 	 */
3586 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3587 	inode_offset = ((inode->i_ino - 1) %
3588 			EXT4_INODES_PER_GROUP(sb));
3589 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3590 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3591 
3592 	bh = sb_getblk(sb, block);
3593 	if (!bh) {
3594 		EXT4_ERROR_INODE_BLOCK(inode, block,
3595 				       "unable to read itable block");
3596 		return -EIO;
3597 	}
3598 	if (!buffer_uptodate(bh)) {
3599 		lock_buffer(bh);
3600 
3601 		/*
3602 		 * If the buffer has the write error flag, we have failed
3603 		 * to write out another inode in the same block.  In this
3604 		 * case, we don't have to read the block because we may
3605 		 * read the old inode data successfully.
3606 		 */
3607 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3608 			set_buffer_uptodate(bh);
3609 
3610 		if (buffer_uptodate(bh)) {
3611 			/* someone brought it uptodate while we waited */
3612 			unlock_buffer(bh);
3613 			goto has_buffer;
3614 		}
3615 
3616 		/*
3617 		 * If we have all information of the inode in memory and this
3618 		 * is the only valid inode in the block, we need not read the
3619 		 * block.
3620 		 */
3621 		if (in_mem) {
3622 			struct buffer_head *bitmap_bh;
3623 			int i, start;
3624 
3625 			start = inode_offset & ~(inodes_per_block - 1);
3626 
3627 			/* Is the inode bitmap in cache? */
3628 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3629 			if (!bitmap_bh)
3630 				goto make_io;
3631 
3632 			/*
3633 			 * If the inode bitmap isn't in cache then the
3634 			 * optimisation may end up performing two reads instead
3635 			 * of one, so skip it.
3636 			 */
3637 			if (!buffer_uptodate(bitmap_bh)) {
3638 				brelse(bitmap_bh);
3639 				goto make_io;
3640 			}
3641 			for (i = start; i < start + inodes_per_block; i++) {
3642 				if (i == inode_offset)
3643 					continue;
3644 				if (ext4_test_bit(i, bitmap_bh->b_data))
3645 					break;
3646 			}
3647 			brelse(bitmap_bh);
3648 			if (i == start + inodes_per_block) {
3649 				/* all other inodes are free, so skip I/O */
3650 				memset(bh->b_data, 0, bh->b_size);
3651 				set_buffer_uptodate(bh);
3652 				unlock_buffer(bh);
3653 				goto has_buffer;
3654 			}
3655 		}
3656 
3657 make_io:
3658 		/*
3659 		 * If we need to do any I/O, try to pre-readahead extra
3660 		 * blocks from the inode table.
3661 		 */
3662 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3663 			ext4_fsblk_t b, end, table;
3664 			unsigned num;
3665 
3666 			table = ext4_inode_table(sb, gdp);
3667 			/* s_inode_readahead_blks is always a power of 2 */
3668 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3669 			if (table > b)
3670 				b = table;
3671 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3672 			num = EXT4_INODES_PER_GROUP(sb);
3673 			if (ext4_has_group_desc_csum(sb))
3674 				num -= ext4_itable_unused_count(sb, gdp);
3675 			table += num / inodes_per_block;
3676 			if (end > table)
3677 				end = table;
3678 			while (b <= end)
3679 				sb_breadahead(sb, b++);
3680 		}
3681 
3682 		/*
3683 		 * There are other valid inodes in the buffer, this inode
3684 		 * has in-inode xattrs, or we don't have this inode in memory.
3685 		 * Read the block from disk.
3686 		 */
3687 		trace_ext4_load_inode(inode);
3688 		get_bh(bh);
3689 		bh->b_end_io = end_buffer_read_sync;
3690 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3691 		wait_on_buffer(bh);
3692 		if (!buffer_uptodate(bh)) {
3693 			EXT4_ERROR_INODE_BLOCK(inode, block,
3694 					       "unable to read itable block");
3695 			brelse(bh);
3696 			return -EIO;
3697 		}
3698 	}
3699 has_buffer:
3700 	iloc->bh = bh;
3701 	return 0;
3702 }
3703 
3704 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3705 {
3706 	/* We have all inode data except xattrs in memory here. */
3707 	return __ext4_get_inode_loc(inode, iloc,
3708 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3709 }
3710 
3711 void ext4_set_inode_flags(struct inode *inode)
3712 {
3713 	unsigned int flags = EXT4_I(inode)->i_flags;
3714 
3715 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3716 	if (flags & EXT4_SYNC_FL)
3717 		inode->i_flags |= S_SYNC;
3718 	if (flags & EXT4_APPEND_FL)
3719 		inode->i_flags |= S_APPEND;
3720 	if (flags & EXT4_IMMUTABLE_FL)
3721 		inode->i_flags |= S_IMMUTABLE;
3722 	if (flags & EXT4_NOATIME_FL)
3723 		inode->i_flags |= S_NOATIME;
3724 	if (flags & EXT4_DIRSYNC_FL)
3725 		inode->i_flags |= S_DIRSYNC;
3726 }
3727 
3728 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3729 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3730 {
3731 	unsigned int vfs_fl;
3732 	unsigned long old_fl, new_fl;
3733 
3734 	do {
3735 		vfs_fl = ei->vfs_inode.i_flags;
3736 		old_fl = ei->i_flags;
3737 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3738 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3739 				EXT4_DIRSYNC_FL);
3740 		if (vfs_fl & S_SYNC)
3741 			new_fl |= EXT4_SYNC_FL;
3742 		if (vfs_fl & S_APPEND)
3743 			new_fl |= EXT4_APPEND_FL;
3744 		if (vfs_fl & S_IMMUTABLE)
3745 			new_fl |= EXT4_IMMUTABLE_FL;
3746 		if (vfs_fl & S_NOATIME)
3747 			new_fl |= EXT4_NOATIME_FL;
3748 		if (vfs_fl & S_DIRSYNC)
3749 			new_fl |= EXT4_DIRSYNC_FL;
3750 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3751 }
3752 
3753 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3754 				  struct ext4_inode_info *ei)
3755 {
3756 	blkcnt_t i_blocks ;
3757 	struct inode *inode = &(ei->vfs_inode);
3758 	struct super_block *sb = inode->i_sb;
3759 
3760 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3761 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3762 		/* we are using combined 48 bit field */
3763 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3764 					le32_to_cpu(raw_inode->i_blocks_lo);
3765 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3766 			/* i_blocks represent file system block size */
3767 			return i_blocks  << (inode->i_blkbits - 9);
3768 		} else {
3769 			return i_blocks;
3770 		}
3771 	} else {
3772 		return le32_to_cpu(raw_inode->i_blocks_lo);
3773 	}
3774 }
3775 
3776 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3777 {
3778 	struct ext4_iloc iloc;
3779 	struct ext4_inode *raw_inode;
3780 	struct ext4_inode_info *ei;
3781 	struct inode *inode;
3782 	journal_t *journal = EXT4_SB(sb)->s_journal;
3783 	long ret;
3784 	int block;
3785 	uid_t i_uid;
3786 	gid_t i_gid;
3787 
3788 	inode = iget_locked(sb, ino);
3789 	if (!inode)
3790 		return ERR_PTR(-ENOMEM);
3791 	if (!(inode->i_state & I_NEW))
3792 		return inode;
3793 
3794 	ei = EXT4_I(inode);
3795 	iloc.bh = NULL;
3796 
3797 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3798 	if (ret < 0)
3799 		goto bad_inode;
3800 	raw_inode = ext4_raw_inode(&iloc);
3801 
3802 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3803 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3804 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3805 		    EXT4_INODE_SIZE(inode->i_sb)) {
3806 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3807 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3808 				EXT4_INODE_SIZE(inode->i_sb));
3809 			ret = -EIO;
3810 			goto bad_inode;
3811 		}
3812 	} else
3813 		ei->i_extra_isize = 0;
3814 
3815 	/* Precompute checksum seed for inode metadata */
3816 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3817 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3818 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3819 		__u32 csum;
3820 		__le32 inum = cpu_to_le32(inode->i_ino);
3821 		__le32 gen = raw_inode->i_generation;
3822 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3823 				   sizeof(inum));
3824 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3825 					      sizeof(gen));
3826 	}
3827 
3828 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3829 		EXT4_ERROR_INODE(inode, "checksum invalid");
3830 		ret = -EIO;
3831 		goto bad_inode;
3832 	}
3833 
3834 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3835 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3836 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3837 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3838 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3839 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3840 	}
3841 	i_uid_write(inode, i_uid);
3842 	i_gid_write(inode, i_gid);
3843 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3844 
3845 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3846 	ei->i_dir_start_lookup = 0;
3847 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3848 	/* We now have enough fields to check if the inode was active or not.
3849 	 * This is needed because nfsd might try to access dead inodes
3850 	 * the test is that same one that e2fsck uses
3851 	 * NeilBrown 1999oct15
3852 	 */
3853 	if (inode->i_nlink == 0) {
3854 		if (inode->i_mode == 0 ||
3855 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3856 			/* this inode is deleted */
3857 			ret = -ESTALE;
3858 			goto bad_inode;
3859 		}
3860 		/* The only unlinked inodes we let through here have
3861 		 * valid i_mode and are being read by the orphan
3862 		 * recovery code: that's fine, we're about to complete
3863 		 * the process of deleting those. */
3864 	}
3865 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3866 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3867 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3868 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3869 		ei->i_file_acl |=
3870 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3871 	inode->i_size = ext4_isize(raw_inode);
3872 	ei->i_disksize = inode->i_size;
3873 #ifdef CONFIG_QUOTA
3874 	ei->i_reserved_quota = 0;
3875 #endif
3876 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3877 	ei->i_block_group = iloc.block_group;
3878 	ei->i_last_alloc_group = ~0;
3879 	/*
3880 	 * NOTE! The in-memory inode i_data array is in little-endian order
3881 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3882 	 */
3883 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3884 		ei->i_data[block] = raw_inode->i_block[block];
3885 	INIT_LIST_HEAD(&ei->i_orphan);
3886 
3887 	/*
3888 	 * Set transaction id's of transactions that have to be committed
3889 	 * to finish f[data]sync. We set them to currently running transaction
3890 	 * as we cannot be sure that the inode or some of its metadata isn't
3891 	 * part of the transaction - the inode could have been reclaimed and
3892 	 * now it is reread from disk.
3893 	 */
3894 	if (journal) {
3895 		transaction_t *transaction;
3896 		tid_t tid;
3897 
3898 		read_lock(&journal->j_state_lock);
3899 		if (journal->j_running_transaction)
3900 			transaction = journal->j_running_transaction;
3901 		else
3902 			transaction = journal->j_committing_transaction;
3903 		if (transaction)
3904 			tid = transaction->t_tid;
3905 		else
3906 			tid = journal->j_commit_sequence;
3907 		read_unlock(&journal->j_state_lock);
3908 		ei->i_sync_tid = tid;
3909 		ei->i_datasync_tid = tid;
3910 	}
3911 
3912 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3913 		if (ei->i_extra_isize == 0) {
3914 			/* The extra space is currently unused. Use it. */
3915 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3916 					    EXT4_GOOD_OLD_INODE_SIZE;
3917 		} else {
3918 			__le32 *magic = (void *)raw_inode +
3919 					EXT4_GOOD_OLD_INODE_SIZE +
3920 					ei->i_extra_isize;
3921 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3922 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3923 		}
3924 	}
3925 
3926 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3927 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3928 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3929 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3930 
3931 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3932 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3933 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3934 			inode->i_version |=
3935 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3936 	}
3937 
3938 	ret = 0;
3939 	if (ei->i_file_acl &&
3940 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3941 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3942 				 ei->i_file_acl);
3943 		ret = -EIO;
3944 		goto bad_inode;
3945 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3946 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3947 		    (S_ISLNK(inode->i_mode) &&
3948 		     !ext4_inode_is_fast_symlink(inode)))
3949 			/* Validate extent which is part of inode */
3950 			ret = ext4_ext_check_inode(inode);
3951 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3952 		   (S_ISLNK(inode->i_mode) &&
3953 		    !ext4_inode_is_fast_symlink(inode))) {
3954 		/* Validate block references which are part of inode */
3955 		ret = ext4_ind_check_inode(inode);
3956 	}
3957 	if (ret)
3958 		goto bad_inode;
3959 
3960 	if (S_ISREG(inode->i_mode)) {
3961 		inode->i_op = &ext4_file_inode_operations;
3962 		inode->i_fop = &ext4_file_operations;
3963 		ext4_set_aops(inode);
3964 	} else if (S_ISDIR(inode->i_mode)) {
3965 		inode->i_op = &ext4_dir_inode_operations;
3966 		inode->i_fop = &ext4_dir_operations;
3967 	} else if (S_ISLNK(inode->i_mode)) {
3968 		if (ext4_inode_is_fast_symlink(inode)) {
3969 			inode->i_op = &ext4_fast_symlink_inode_operations;
3970 			nd_terminate_link(ei->i_data, inode->i_size,
3971 				sizeof(ei->i_data) - 1);
3972 		} else {
3973 			inode->i_op = &ext4_symlink_inode_operations;
3974 			ext4_set_aops(inode);
3975 		}
3976 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3977 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3978 		inode->i_op = &ext4_special_inode_operations;
3979 		if (raw_inode->i_block[0])
3980 			init_special_inode(inode, inode->i_mode,
3981 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3982 		else
3983 			init_special_inode(inode, inode->i_mode,
3984 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3985 	} else {
3986 		ret = -EIO;
3987 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3988 		goto bad_inode;
3989 	}
3990 	brelse(iloc.bh);
3991 	ext4_set_inode_flags(inode);
3992 	unlock_new_inode(inode);
3993 	return inode;
3994 
3995 bad_inode:
3996 	brelse(iloc.bh);
3997 	iget_failed(inode);
3998 	return ERR_PTR(ret);
3999 }
4000 
4001 static int ext4_inode_blocks_set(handle_t *handle,
4002 				struct ext4_inode *raw_inode,
4003 				struct ext4_inode_info *ei)
4004 {
4005 	struct inode *inode = &(ei->vfs_inode);
4006 	u64 i_blocks = inode->i_blocks;
4007 	struct super_block *sb = inode->i_sb;
4008 
4009 	if (i_blocks <= ~0U) {
4010 		/*
4011 		 * i_blocks can be represnted in a 32 bit variable
4012 		 * as multiple of 512 bytes
4013 		 */
4014 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4015 		raw_inode->i_blocks_high = 0;
4016 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4017 		return 0;
4018 	}
4019 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4020 		return -EFBIG;
4021 
4022 	if (i_blocks <= 0xffffffffffffULL) {
4023 		/*
4024 		 * i_blocks can be represented in a 48 bit variable
4025 		 * as multiple of 512 bytes
4026 		 */
4027 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4028 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4029 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4030 	} else {
4031 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4032 		/* i_block is stored in file system block size */
4033 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4034 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4035 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4036 	}
4037 	return 0;
4038 }
4039 
4040 /*
4041  * Post the struct inode info into an on-disk inode location in the
4042  * buffer-cache.  This gobbles the caller's reference to the
4043  * buffer_head in the inode location struct.
4044  *
4045  * The caller must have write access to iloc->bh.
4046  */
4047 static int ext4_do_update_inode(handle_t *handle,
4048 				struct inode *inode,
4049 				struct ext4_iloc *iloc)
4050 {
4051 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4052 	struct ext4_inode_info *ei = EXT4_I(inode);
4053 	struct buffer_head *bh = iloc->bh;
4054 	int err = 0, rc, block;
4055 	uid_t i_uid;
4056 	gid_t i_gid;
4057 
4058 	/* For fields not not tracking in the in-memory inode,
4059 	 * initialise them to zero for new inodes. */
4060 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4061 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4062 
4063 	ext4_get_inode_flags(ei);
4064 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4065 	i_uid = i_uid_read(inode);
4066 	i_gid = i_gid_read(inode);
4067 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4068 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4069 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4070 /*
4071  * Fix up interoperability with old kernels. Otherwise, old inodes get
4072  * re-used with the upper 16 bits of the uid/gid intact
4073  */
4074 		if (!ei->i_dtime) {
4075 			raw_inode->i_uid_high =
4076 				cpu_to_le16(high_16_bits(i_uid));
4077 			raw_inode->i_gid_high =
4078 				cpu_to_le16(high_16_bits(i_gid));
4079 		} else {
4080 			raw_inode->i_uid_high = 0;
4081 			raw_inode->i_gid_high = 0;
4082 		}
4083 	} else {
4084 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4085 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4086 		raw_inode->i_uid_high = 0;
4087 		raw_inode->i_gid_high = 0;
4088 	}
4089 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4090 
4091 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4092 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4093 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4094 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4095 
4096 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4097 		goto out_brelse;
4098 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4099 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4100 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4101 	    cpu_to_le32(EXT4_OS_HURD))
4102 		raw_inode->i_file_acl_high =
4103 			cpu_to_le16(ei->i_file_acl >> 32);
4104 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4105 	ext4_isize_set(raw_inode, ei->i_disksize);
4106 	if (ei->i_disksize > 0x7fffffffULL) {
4107 		struct super_block *sb = inode->i_sb;
4108 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4109 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4110 				EXT4_SB(sb)->s_es->s_rev_level ==
4111 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4112 			/* If this is the first large file
4113 			 * created, add a flag to the superblock.
4114 			 */
4115 			err = ext4_journal_get_write_access(handle,
4116 					EXT4_SB(sb)->s_sbh);
4117 			if (err)
4118 				goto out_brelse;
4119 			ext4_update_dynamic_rev(sb);
4120 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4121 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4122 			ext4_handle_sync(handle);
4123 			err = ext4_handle_dirty_super(handle, sb);
4124 		}
4125 	}
4126 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4127 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4128 		if (old_valid_dev(inode->i_rdev)) {
4129 			raw_inode->i_block[0] =
4130 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4131 			raw_inode->i_block[1] = 0;
4132 		} else {
4133 			raw_inode->i_block[0] = 0;
4134 			raw_inode->i_block[1] =
4135 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4136 			raw_inode->i_block[2] = 0;
4137 		}
4138 	} else
4139 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4140 			raw_inode->i_block[block] = ei->i_data[block];
4141 
4142 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4143 	if (ei->i_extra_isize) {
4144 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4145 			raw_inode->i_version_hi =
4146 			cpu_to_le32(inode->i_version >> 32);
4147 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4148 	}
4149 
4150 	ext4_inode_csum_set(inode, raw_inode, ei);
4151 
4152 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4153 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4154 	if (!err)
4155 		err = rc;
4156 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4157 
4158 	ext4_update_inode_fsync_trans(handle, inode, 0);
4159 out_brelse:
4160 	brelse(bh);
4161 	ext4_std_error(inode->i_sb, err);
4162 	return err;
4163 }
4164 
4165 /*
4166  * ext4_write_inode()
4167  *
4168  * We are called from a few places:
4169  *
4170  * - Within generic_file_write() for O_SYNC files.
4171  *   Here, there will be no transaction running. We wait for any running
4172  *   trasnaction to commit.
4173  *
4174  * - Within sys_sync(), kupdate and such.
4175  *   We wait on commit, if tol to.
4176  *
4177  * - Within prune_icache() (PF_MEMALLOC == true)
4178  *   Here we simply return.  We can't afford to block kswapd on the
4179  *   journal commit.
4180  *
4181  * In all cases it is actually safe for us to return without doing anything,
4182  * because the inode has been copied into a raw inode buffer in
4183  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4184  * knfsd.
4185  *
4186  * Note that we are absolutely dependent upon all inode dirtiers doing the
4187  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4188  * which we are interested.
4189  *
4190  * It would be a bug for them to not do this.  The code:
4191  *
4192  *	mark_inode_dirty(inode)
4193  *	stuff();
4194  *	inode->i_size = expr;
4195  *
4196  * is in error because a kswapd-driven write_inode() could occur while
4197  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4198  * will no longer be on the superblock's dirty inode list.
4199  */
4200 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4201 {
4202 	int err;
4203 
4204 	if (current->flags & PF_MEMALLOC)
4205 		return 0;
4206 
4207 	if (EXT4_SB(inode->i_sb)->s_journal) {
4208 		if (ext4_journal_current_handle()) {
4209 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4210 			dump_stack();
4211 			return -EIO;
4212 		}
4213 
4214 		if (wbc->sync_mode != WB_SYNC_ALL)
4215 			return 0;
4216 
4217 		err = ext4_force_commit(inode->i_sb);
4218 	} else {
4219 		struct ext4_iloc iloc;
4220 
4221 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4222 		if (err)
4223 			return err;
4224 		if (wbc->sync_mode == WB_SYNC_ALL)
4225 			sync_dirty_buffer(iloc.bh);
4226 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4227 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4228 					 "IO error syncing inode");
4229 			err = -EIO;
4230 		}
4231 		brelse(iloc.bh);
4232 	}
4233 	return err;
4234 }
4235 
4236 /*
4237  * ext4_setattr()
4238  *
4239  * Called from notify_change.
4240  *
4241  * We want to trap VFS attempts to truncate the file as soon as
4242  * possible.  In particular, we want to make sure that when the VFS
4243  * shrinks i_size, we put the inode on the orphan list and modify
4244  * i_disksize immediately, so that during the subsequent flushing of
4245  * dirty pages and freeing of disk blocks, we can guarantee that any
4246  * commit will leave the blocks being flushed in an unused state on
4247  * disk.  (On recovery, the inode will get truncated and the blocks will
4248  * be freed, so we have a strong guarantee that no future commit will
4249  * leave these blocks visible to the user.)
4250  *
4251  * Another thing we have to assure is that if we are in ordered mode
4252  * and inode is still attached to the committing transaction, we must
4253  * we start writeout of all the dirty pages which are being truncated.
4254  * This way we are sure that all the data written in the previous
4255  * transaction are already on disk (truncate waits for pages under
4256  * writeback).
4257  *
4258  * Called with inode->i_mutex down.
4259  */
4260 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4261 {
4262 	struct inode *inode = dentry->d_inode;
4263 	int error, rc = 0;
4264 	int orphan = 0;
4265 	const unsigned int ia_valid = attr->ia_valid;
4266 
4267 	error = inode_change_ok(inode, attr);
4268 	if (error)
4269 		return error;
4270 
4271 	if (is_quota_modification(inode, attr))
4272 		dquot_initialize(inode);
4273 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4274 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4275 		handle_t *handle;
4276 
4277 		/* (user+group)*(old+new) structure, inode write (sb,
4278 		 * inode block, ? - but truncate inode update has it) */
4279 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4280 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4281 		if (IS_ERR(handle)) {
4282 			error = PTR_ERR(handle);
4283 			goto err_out;
4284 		}
4285 		error = dquot_transfer(inode, attr);
4286 		if (error) {
4287 			ext4_journal_stop(handle);
4288 			return error;
4289 		}
4290 		/* Update corresponding info in inode so that everything is in
4291 		 * one transaction */
4292 		if (attr->ia_valid & ATTR_UID)
4293 			inode->i_uid = attr->ia_uid;
4294 		if (attr->ia_valid & ATTR_GID)
4295 			inode->i_gid = attr->ia_gid;
4296 		error = ext4_mark_inode_dirty(handle, inode);
4297 		ext4_journal_stop(handle);
4298 	}
4299 
4300 	if (attr->ia_valid & ATTR_SIZE) {
4301 		inode_dio_wait(inode);
4302 
4303 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4304 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4305 
4306 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4307 				return -EFBIG;
4308 		}
4309 	}
4310 
4311 	if (S_ISREG(inode->i_mode) &&
4312 	    attr->ia_valid & ATTR_SIZE &&
4313 	    (attr->ia_size < inode->i_size)) {
4314 		handle_t *handle;
4315 
4316 		handle = ext4_journal_start(inode, 3);
4317 		if (IS_ERR(handle)) {
4318 			error = PTR_ERR(handle);
4319 			goto err_out;
4320 		}
4321 		if (ext4_handle_valid(handle)) {
4322 			error = ext4_orphan_add(handle, inode);
4323 			orphan = 1;
4324 		}
4325 		EXT4_I(inode)->i_disksize = attr->ia_size;
4326 		rc = ext4_mark_inode_dirty(handle, inode);
4327 		if (!error)
4328 			error = rc;
4329 		ext4_journal_stop(handle);
4330 
4331 		if (ext4_should_order_data(inode)) {
4332 			error = ext4_begin_ordered_truncate(inode,
4333 							    attr->ia_size);
4334 			if (error) {
4335 				/* Do as much error cleanup as possible */
4336 				handle = ext4_journal_start(inode, 3);
4337 				if (IS_ERR(handle)) {
4338 					ext4_orphan_del(NULL, inode);
4339 					goto err_out;
4340 				}
4341 				ext4_orphan_del(handle, inode);
4342 				orphan = 0;
4343 				ext4_journal_stop(handle);
4344 				goto err_out;
4345 			}
4346 		}
4347 	}
4348 
4349 	if (attr->ia_valid & ATTR_SIZE) {
4350 		if (attr->ia_size != i_size_read(inode))
4351 			truncate_setsize(inode, attr->ia_size);
4352 		ext4_truncate(inode);
4353 	}
4354 
4355 	if (!rc) {
4356 		setattr_copy(inode, attr);
4357 		mark_inode_dirty(inode);
4358 	}
4359 
4360 	/*
4361 	 * If the call to ext4_truncate failed to get a transaction handle at
4362 	 * all, we need to clean up the in-core orphan list manually.
4363 	 */
4364 	if (orphan && inode->i_nlink)
4365 		ext4_orphan_del(NULL, inode);
4366 
4367 	if (!rc && (ia_valid & ATTR_MODE))
4368 		rc = ext4_acl_chmod(inode);
4369 
4370 err_out:
4371 	ext4_std_error(inode->i_sb, error);
4372 	if (!error)
4373 		error = rc;
4374 	return error;
4375 }
4376 
4377 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4378 		 struct kstat *stat)
4379 {
4380 	struct inode *inode;
4381 	unsigned long delalloc_blocks;
4382 
4383 	inode = dentry->d_inode;
4384 	generic_fillattr(inode, stat);
4385 
4386 	/*
4387 	 * We can't update i_blocks if the block allocation is delayed
4388 	 * otherwise in the case of system crash before the real block
4389 	 * allocation is done, we will have i_blocks inconsistent with
4390 	 * on-disk file blocks.
4391 	 * We always keep i_blocks updated together with real
4392 	 * allocation. But to not confuse with user, stat
4393 	 * will return the blocks that include the delayed allocation
4394 	 * blocks for this file.
4395 	 */
4396 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4397 				EXT4_I(inode)->i_reserved_data_blocks);
4398 
4399 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4400 	return 0;
4401 }
4402 
4403 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4404 {
4405 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4406 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4407 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4408 }
4409 
4410 /*
4411  * Account for index blocks, block groups bitmaps and block group
4412  * descriptor blocks if modify datablocks and index blocks
4413  * worse case, the indexs blocks spread over different block groups
4414  *
4415  * If datablocks are discontiguous, they are possible to spread over
4416  * different block groups too. If they are contiuguous, with flexbg,
4417  * they could still across block group boundary.
4418  *
4419  * Also account for superblock, inode, quota and xattr blocks
4420  */
4421 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4422 {
4423 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4424 	int gdpblocks;
4425 	int idxblocks;
4426 	int ret = 0;
4427 
4428 	/*
4429 	 * How many index blocks need to touch to modify nrblocks?
4430 	 * The "Chunk" flag indicating whether the nrblocks is
4431 	 * physically contiguous on disk
4432 	 *
4433 	 * For Direct IO and fallocate, they calls get_block to allocate
4434 	 * one single extent at a time, so they could set the "Chunk" flag
4435 	 */
4436 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4437 
4438 	ret = idxblocks;
4439 
4440 	/*
4441 	 * Now let's see how many group bitmaps and group descriptors need
4442 	 * to account
4443 	 */
4444 	groups = idxblocks;
4445 	if (chunk)
4446 		groups += 1;
4447 	else
4448 		groups += nrblocks;
4449 
4450 	gdpblocks = groups;
4451 	if (groups > ngroups)
4452 		groups = ngroups;
4453 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4454 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4455 
4456 	/* bitmaps and block group descriptor blocks */
4457 	ret += groups + gdpblocks;
4458 
4459 	/* Blocks for super block, inode, quota and xattr blocks */
4460 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4461 
4462 	return ret;
4463 }
4464 
4465 /*
4466  * Calculate the total number of credits to reserve to fit
4467  * the modification of a single pages into a single transaction,
4468  * which may include multiple chunks of block allocations.
4469  *
4470  * This could be called via ext4_write_begin()
4471  *
4472  * We need to consider the worse case, when
4473  * one new block per extent.
4474  */
4475 int ext4_writepage_trans_blocks(struct inode *inode)
4476 {
4477 	int bpp = ext4_journal_blocks_per_page(inode);
4478 	int ret;
4479 
4480 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4481 
4482 	/* Account for data blocks for journalled mode */
4483 	if (ext4_should_journal_data(inode))
4484 		ret += bpp;
4485 	return ret;
4486 }
4487 
4488 /*
4489  * Calculate the journal credits for a chunk of data modification.
4490  *
4491  * This is called from DIO, fallocate or whoever calling
4492  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4493  *
4494  * journal buffers for data blocks are not included here, as DIO
4495  * and fallocate do no need to journal data buffers.
4496  */
4497 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4498 {
4499 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4500 }
4501 
4502 /*
4503  * The caller must have previously called ext4_reserve_inode_write().
4504  * Give this, we know that the caller already has write access to iloc->bh.
4505  */
4506 int ext4_mark_iloc_dirty(handle_t *handle,
4507 			 struct inode *inode, struct ext4_iloc *iloc)
4508 {
4509 	int err = 0;
4510 
4511 	if (IS_I_VERSION(inode))
4512 		inode_inc_iversion(inode);
4513 
4514 	/* the do_update_inode consumes one bh->b_count */
4515 	get_bh(iloc->bh);
4516 
4517 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4518 	err = ext4_do_update_inode(handle, inode, iloc);
4519 	put_bh(iloc->bh);
4520 	return err;
4521 }
4522 
4523 /*
4524  * On success, We end up with an outstanding reference count against
4525  * iloc->bh.  This _must_ be cleaned up later.
4526  */
4527 
4528 int
4529 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4530 			 struct ext4_iloc *iloc)
4531 {
4532 	int err;
4533 
4534 	err = ext4_get_inode_loc(inode, iloc);
4535 	if (!err) {
4536 		BUFFER_TRACE(iloc->bh, "get_write_access");
4537 		err = ext4_journal_get_write_access(handle, iloc->bh);
4538 		if (err) {
4539 			brelse(iloc->bh);
4540 			iloc->bh = NULL;
4541 		}
4542 	}
4543 	ext4_std_error(inode->i_sb, err);
4544 	return err;
4545 }
4546 
4547 /*
4548  * Expand an inode by new_extra_isize bytes.
4549  * Returns 0 on success or negative error number on failure.
4550  */
4551 static int ext4_expand_extra_isize(struct inode *inode,
4552 				   unsigned int new_extra_isize,
4553 				   struct ext4_iloc iloc,
4554 				   handle_t *handle)
4555 {
4556 	struct ext4_inode *raw_inode;
4557 	struct ext4_xattr_ibody_header *header;
4558 
4559 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4560 		return 0;
4561 
4562 	raw_inode = ext4_raw_inode(&iloc);
4563 
4564 	header = IHDR(inode, raw_inode);
4565 
4566 	/* No extended attributes present */
4567 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4568 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4569 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4570 			new_extra_isize);
4571 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4572 		return 0;
4573 	}
4574 
4575 	/* try to expand with EAs present */
4576 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4577 					  raw_inode, handle);
4578 }
4579 
4580 /*
4581  * What we do here is to mark the in-core inode as clean with respect to inode
4582  * dirtiness (it may still be data-dirty).
4583  * This means that the in-core inode may be reaped by prune_icache
4584  * without having to perform any I/O.  This is a very good thing,
4585  * because *any* task may call prune_icache - even ones which
4586  * have a transaction open against a different journal.
4587  *
4588  * Is this cheating?  Not really.  Sure, we haven't written the
4589  * inode out, but prune_icache isn't a user-visible syncing function.
4590  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4591  * we start and wait on commits.
4592  */
4593 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4594 {
4595 	struct ext4_iloc iloc;
4596 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4597 	static unsigned int mnt_count;
4598 	int err, ret;
4599 
4600 	might_sleep();
4601 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4602 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4603 	if (ext4_handle_valid(handle) &&
4604 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4605 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4606 		/*
4607 		 * We need extra buffer credits since we may write into EA block
4608 		 * with this same handle. If journal_extend fails, then it will
4609 		 * only result in a minor loss of functionality for that inode.
4610 		 * If this is felt to be critical, then e2fsck should be run to
4611 		 * force a large enough s_min_extra_isize.
4612 		 */
4613 		if ((jbd2_journal_extend(handle,
4614 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4615 			ret = ext4_expand_extra_isize(inode,
4616 						      sbi->s_want_extra_isize,
4617 						      iloc, handle);
4618 			if (ret) {
4619 				ext4_set_inode_state(inode,
4620 						     EXT4_STATE_NO_EXPAND);
4621 				if (mnt_count !=
4622 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4623 					ext4_warning(inode->i_sb,
4624 					"Unable to expand inode %lu. Delete"
4625 					" some EAs or run e2fsck.",
4626 					inode->i_ino);
4627 					mnt_count =
4628 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4629 				}
4630 			}
4631 		}
4632 	}
4633 	if (!err)
4634 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4635 	return err;
4636 }
4637 
4638 /*
4639  * ext4_dirty_inode() is called from __mark_inode_dirty()
4640  *
4641  * We're really interested in the case where a file is being extended.
4642  * i_size has been changed by generic_commit_write() and we thus need
4643  * to include the updated inode in the current transaction.
4644  *
4645  * Also, dquot_alloc_block() will always dirty the inode when blocks
4646  * are allocated to the file.
4647  *
4648  * If the inode is marked synchronous, we don't honour that here - doing
4649  * so would cause a commit on atime updates, which we don't bother doing.
4650  * We handle synchronous inodes at the highest possible level.
4651  */
4652 void ext4_dirty_inode(struct inode *inode, int flags)
4653 {
4654 	handle_t *handle;
4655 
4656 	handle = ext4_journal_start(inode, 2);
4657 	if (IS_ERR(handle))
4658 		goto out;
4659 
4660 	ext4_mark_inode_dirty(handle, inode);
4661 
4662 	ext4_journal_stop(handle);
4663 out:
4664 	return;
4665 }
4666 
4667 #if 0
4668 /*
4669  * Bind an inode's backing buffer_head into this transaction, to prevent
4670  * it from being flushed to disk early.  Unlike
4671  * ext4_reserve_inode_write, this leaves behind no bh reference and
4672  * returns no iloc structure, so the caller needs to repeat the iloc
4673  * lookup to mark the inode dirty later.
4674  */
4675 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4676 {
4677 	struct ext4_iloc iloc;
4678 
4679 	int err = 0;
4680 	if (handle) {
4681 		err = ext4_get_inode_loc(inode, &iloc);
4682 		if (!err) {
4683 			BUFFER_TRACE(iloc.bh, "get_write_access");
4684 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4685 			if (!err)
4686 				err = ext4_handle_dirty_metadata(handle,
4687 								 NULL,
4688 								 iloc.bh);
4689 			brelse(iloc.bh);
4690 		}
4691 	}
4692 	ext4_std_error(inode->i_sb, err);
4693 	return err;
4694 }
4695 #endif
4696 
4697 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4698 {
4699 	journal_t *journal;
4700 	handle_t *handle;
4701 	int err;
4702 
4703 	/*
4704 	 * We have to be very careful here: changing a data block's
4705 	 * journaling status dynamically is dangerous.  If we write a
4706 	 * data block to the journal, change the status and then delete
4707 	 * that block, we risk forgetting to revoke the old log record
4708 	 * from the journal and so a subsequent replay can corrupt data.
4709 	 * So, first we make sure that the journal is empty and that
4710 	 * nobody is changing anything.
4711 	 */
4712 
4713 	journal = EXT4_JOURNAL(inode);
4714 	if (!journal)
4715 		return 0;
4716 	if (is_journal_aborted(journal))
4717 		return -EROFS;
4718 	/* We have to allocate physical blocks for delalloc blocks
4719 	 * before flushing journal. otherwise delalloc blocks can not
4720 	 * be allocated any more. even more truncate on delalloc blocks
4721 	 * could trigger BUG by flushing delalloc blocks in journal.
4722 	 * There is no delalloc block in non-journal data mode.
4723 	 */
4724 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4725 		err = ext4_alloc_da_blocks(inode);
4726 		if (err < 0)
4727 			return err;
4728 	}
4729 
4730 	jbd2_journal_lock_updates(journal);
4731 
4732 	/*
4733 	 * OK, there are no updates running now, and all cached data is
4734 	 * synced to disk.  We are now in a completely consistent state
4735 	 * which doesn't have anything in the journal, and we know that
4736 	 * no filesystem updates are running, so it is safe to modify
4737 	 * the inode's in-core data-journaling state flag now.
4738 	 */
4739 
4740 	if (val)
4741 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4742 	else {
4743 		jbd2_journal_flush(journal);
4744 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4745 	}
4746 	ext4_set_aops(inode);
4747 
4748 	jbd2_journal_unlock_updates(journal);
4749 
4750 	/* Finally we can mark the inode as dirty. */
4751 
4752 	handle = ext4_journal_start(inode, 1);
4753 	if (IS_ERR(handle))
4754 		return PTR_ERR(handle);
4755 
4756 	err = ext4_mark_inode_dirty(handle, inode);
4757 	ext4_handle_sync(handle);
4758 	ext4_journal_stop(handle);
4759 	ext4_std_error(inode->i_sb, err);
4760 
4761 	return err;
4762 }
4763 
4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4765 {
4766 	return !buffer_mapped(bh);
4767 }
4768 
4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4770 {
4771 	struct page *page = vmf->page;
4772 	loff_t size;
4773 	unsigned long len;
4774 	int ret;
4775 	struct file *file = vma->vm_file;
4776 	struct inode *inode = file->f_path.dentry->d_inode;
4777 	struct address_space *mapping = inode->i_mapping;
4778 	handle_t *handle;
4779 	get_block_t *get_block;
4780 	int retries = 0;
4781 
4782 	sb_start_pagefault(inode->i_sb);
4783 	/* Delalloc case is easy... */
4784 	if (test_opt(inode->i_sb, DELALLOC) &&
4785 	    !ext4_should_journal_data(inode) &&
4786 	    !ext4_nonda_switch(inode->i_sb)) {
4787 		do {
4788 			ret = __block_page_mkwrite(vma, vmf,
4789 						   ext4_da_get_block_prep);
4790 		} while (ret == -ENOSPC &&
4791 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4792 		goto out_ret;
4793 	}
4794 
4795 	lock_page(page);
4796 	size = i_size_read(inode);
4797 	/* Page got truncated from under us? */
4798 	if (page->mapping != mapping || page_offset(page) > size) {
4799 		unlock_page(page);
4800 		ret = VM_FAULT_NOPAGE;
4801 		goto out;
4802 	}
4803 
4804 	if (page->index == size >> PAGE_CACHE_SHIFT)
4805 		len = size & ~PAGE_CACHE_MASK;
4806 	else
4807 		len = PAGE_CACHE_SIZE;
4808 	/*
4809 	 * Return if we have all the buffers mapped. This avoids the need to do
4810 	 * journal_start/journal_stop which can block and take a long time
4811 	 */
4812 	if (page_has_buffers(page)) {
4813 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4814 					ext4_bh_unmapped)) {
4815 			/* Wait so that we don't change page under IO */
4816 			wait_on_page_writeback(page);
4817 			ret = VM_FAULT_LOCKED;
4818 			goto out;
4819 		}
4820 	}
4821 	unlock_page(page);
4822 	/* OK, we need to fill the hole... */
4823 	if (ext4_should_dioread_nolock(inode))
4824 		get_block = ext4_get_block_write;
4825 	else
4826 		get_block = ext4_get_block;
4827 retry_alloc:
4828 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4829 	if (IS_ERR(handle)) {
4830 		ret = VM_FAULT_SIGBUS;
4831 		goto out;
4832 	}
4833 	ret = __block_page_mkwrite(vma, vmf, get_block);
4834 	if (!ret && ext4_should_journal_data(inode)) {
4835 		if (walk_page_buffers(handle, page_buffers(page), 0,
4836 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4837 			unlock_page(page);
4838 			ret = VM_FAULT_SIGBUS;
4839 			ext4_journal_stop(handle);
4840 			goto out;
4841 		}
4842 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4843 	}
4844 	ext4_journal_stop(handle);
4845 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4846 		goto retry_alloc;
4847 out_ret:
4848 	ret = block_page_mkwrite_return(ret);
4849 out:
4850 	sb_end_pagefault(inode->i_sb);
4851 	return ret;
4852 }
4853