1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = raw->i_checksum_lo; 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = raw->i_checksum_hi; 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = csum_lo; 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = csum_hi; 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh_result, int create); 137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 142 struct inode *inode, struct page *page, loff_t from, 143 loff_t length, int flags); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 static int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 (inode->i_sb->s_blocksize >> 9) : 0; 152 153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 190 trace_ext4_evict_inode(inode); 191 192 ext4_ioend_wait(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (ext4_should_journal_data(inode) && 214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_log_start_commit(journal, commit_tid); 219 jbd2_log_wait_commit(journal, commit_tid); 220 filemap_write_and_wait(&inode->i_data); 221 } 222 truncate_inode_pages(&inode->i_data, 0); 223 goto no_delete; 224 } 225 226 if (!is_bad_inode(inode)) 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages(&inode->i_data, 0); 232 233 if (is_bad_inode(inode)) 234 goto no_delete; 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Calculate the number of metadata blocks need to reserve 326 * to allocate a block located at @lblock 327 */ 328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 329 { 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 331 return ext4_ext_calc_metadata_amount(inode, lblock); 332 333 return ext4_ind_calc_metadata_amount(inode, lblock); 334 } 335 336 /* 337 * Called with i_data_sem down, which is important since we can call 338 * ext4_discard_preallocations() from here. 339 */ 340 void ext4_da_update_reserve_space(struct inode *inode, 341 int used, int quota_claim) 342 { 343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 344 struct ext4_inode_info *ei = EXT4_I(inode); 345 346 spin_lock(&ei->i_block_reservation_lock); 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 348 if (unlikely(used > ei->i_reserved_data_blocks)) { 349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 350 "with only %d reserved data blocks", 351 __func__, inode->i_ino, used, 352 ei->i_reserved_data_blocks); 353 WARN_ON(1); 354 used = ei->i_reserved_data_blocks; 355 } 356 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d " 359 "with only %d reserved metadata blocks\n", __func__, 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks); 362 WARN_ON(1); 363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 364 } 365 366 /* Update per-inode reservations */ 367 ei->i_reserved_data_blocks -= used; 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 370 used + ei->i_allocated_meta_blocks); 371 ei->i_allocated_meta_blocks = 0; 372 373 if (ei->i_reserved_data_blocks == 0) { 374 /* 375 * We can release all of the reserved metadata blocks 376 * only when we have written all of the delayed 377 * allocation blocks. 378 */ 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 380 ei->i_reserved_meta_blocks); 381 ei->i_reserved_meta_blocks = 0; 382 ei->i_da_metadata_calc_len = 0; 383 } 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 385 386 /* Update quota subsystem for data blocks */ 387 if (quota_claim) 388 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 389 else { 390 /* 391 * We did fallocate with an offset that is already delayed 392 * allocated. So on delayed allocated writeback we should 393 * not re-claim the quota for fallocated blocks. 394 */ 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 396 } 397 398 /* 399 * If we have done all the pending block allocations and if 400 * there aren't any writers on the inode, we can discard the 401 * inode's preallocations. 402 */ 403 if ((ei->i_reserved_data_blocks == 0) && 404 (atomic_read(&inode->i_writecount) == 0)) 405 ext4_discard_preallocations(inode); 406 } 407 408 static int __check_block_validity(struct inode *inode, const char *func, 409 unsigned int line, 410 struct ext4_map_blocks *map) 411 { 412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 413 map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_len); 418 return -EIO; 419 } 420 return 0; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 /* 427 * Return the number of contiguous dirty pages in a given inode 428 * starting at page frame idx. 429 */ 430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 431 unsigned int max_pages) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 pgoff_t index; 435 struct pagevec pvec; 436 pgoff_t num = 0; 437 int i, nr_pages, done = 0; 438 439 if (max_pages == 0) 440 return 0; 441 pagevec_init(&pvec, 0); 442 while (!done) { 443 index = idx; 444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 445 PAGECACHE_TAG_DIRTY, 446 (pgoff_t)PAGEVEC_SIZE); 447 if (nr_pages == 0) 448 break; 449 for (i = 0; i < nr_pages; i++) { 450 struct page *page = pvec.pages[i]; 451 struct buffer_head *bh, *head; 452 453 lock_page(page); 454 if (unlikely(page->mapping != mapping) || 455 !PageDirty(page) || 456 PageWriteback(page) || 457 page->index != idx) { 458 done = 1; 459 unlock_page(page); 460 break; 461 } 462 if (page_has_buffers(page)) { 463 bh = head = page_buffers(page); 464 do { 465 if (!buffer_delay(bh) && 466 !buffer_unwritten(bh)) 467 done = 1; 468 bh = bh->b_this_page; 469 } while (!done && (bh != head)); 470 } 471 unlock_page(page); 472 if (done) 473 break; 474 idx++; 475 num++; 476 if (num >= max_pages) { 477 done = 1; 478 break; 479 } 480 } 481 pagevec_release(&pvec); 482 } 483 return num; 484 } 485 486 /* 487 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 488 */ 489 static void set_buffers_da_mapped(struct inode *inode, 490 struct ext4_map_blocks *map) 491 { 492 struct address_space *mapping = inode->i_mapping; 493 struct pagevec pvec; 494 int i, nr_pages; 495 pgoff_t index, end; 496 497 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 498 end = (map->m_lblk + map->m_len - 1) >> 499 (PAGE_CACHE_SHIFT - inode->i_blkbits); 500 501 pagevec_init(&pvec, 0); 502 while (index <= end) { 503 nr_pages = pagevec_lookup(&pvec, mapping, index, 504 min(end - index + 1, 505 (pgoff_t)PAGEVEC_SIZE)); 506 if (nr_pages == 0) 507 break; 508 for (i = 0; i < nr_pages; i++) { 509 struct page *page = pvec.pages[i]; 510 struct buffer_head *bh, *head; 511 512 if (unlikely(page->mapping != mapping) || 513 !PageDirty(page)) 514 break; 515 516 if (page_has_buffers(page)) { 517 bh = head = page_buffers(page); 518 do { 519 set_buffer_da_mapped(bh); 520 bh = bh->b_this_page; 521 } while (bh != head); 522 } 523 index++; 524 } 525 pagevec_release(&pvec); 526 } 527 } 528 529 /* 530 * The ext4_map_blocks() function tries to look up the requested blocks, 531 * and returns if the blocks are already mapped. 532 * 533 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 534 * and store the allocated blocks in the result buffer head and mark it 535 * mapped. 536 * 537 * If file type is extents based, it will call ext4_ext_map_blocks(), 538 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 539 * based files 540 * 541 * On success, it returns the number of blocks being mapped or allocate. 542 * if create==0 and the blocks are pre-allocated and uninitialized block, 543 * the result buffer head is unmapped. If the create ==1, it will make sure 544 * the buffer head is mapped. 545 * 546 * It returns 0 if plain look up failed (blocks have not been allocated), in 547 * that case, buffer head is unmapped 548 * 549 * It returns the error in case of allocation failure. 550 */ 551 int ext4_map_blocks(handle_t *handle, struct inode *inode, 552 struct ext4_map_blocks *map, int flags) 553 { 554 int retval; 555 556 map->m_flags = 0; 557 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 558 "logical block %lu\n", inode->i_ino, flags, map->m_len, 559 (unsigned long) map->m_lblk); 560 /* 561 * Try to see if we can get the block without requesting a new 562 * file system block. 563 */ 564 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 565 down_read((&EXT4_I(inode)->i_data_sem)); 566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 567 retval = ext4_ext_map_blocks(handle, inode, map, flags & 568 EXT4_GET_BLOCKS_KEEP_SIZE); 569 } else { 570 retval = ext4_ind_map_blocks(handle, inode, map, flags & 571 EXT4_GET_BLOCKS_KEEP_SIZE); 572 } 573 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 574 up_read((&EXT4_I(inode)->i_data_sem)); 575 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 int ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 return retval; 595 596 /* 597 * When we call get_blocks without the create flag, the 598 * BH_Unwritten flag could have gotten set if the blocks 599 * requested were part of a uninitialized extent. We need to 600 * clear this flag now that we are committed to convert all or 601 * part of the uninitialized extent to be an initialized 602 * extent. This is because we need to avoid the combination 603 * of BH_Unwritten and BH_Mapped flags being simultaneously 604 * set on the buffer_head. 605 */ 606 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 607 608 /* 609 * New blocks allocate and/or writing to uninitialized extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_blocks() 612 * with create == 1 flag. 613 */ 614 down_write((&EXT4_I(inode)->i_data_sem)); 615 616 /* 617 * if the caller is from delayed allocation writeout path 618 * we have already reserved fs blocks for allocation 619 * let the underlying get_block() function know to 620 * avoid double accounting 621 */ 622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 624 /* 625 * We need to check for EXT4 here because migrate 626 * could have changed the inode type in between 627 */ 628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 629 retval = ext4_ext_map_blocks(handle, inode, map, flags); 630 } else { 631 retval = ext4_ind_map_blocks(handle, inode, map, flags); 632 633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 634 /* 635 * We allocated new blocks which will result in 636 * i_data's format changing. Force the migrate 637 * to fail by clearing migrate flags 638 */ 639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 640 } 641 642 /* 643 * Update reserved blocks/metadata blocks after successful 644 * block allocation which had been deferred till now. We don't 645 * support fallocate for non extent files. So we can update 646 * reserve space here. 647 */ 648 if ((retval > 0) && 649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 650 ext4_da_update_reserve_space(inode, retval, 1); 651 } 652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 654 655 /* If we have successfully mapped the delayed allocated blocks, 656 * set the BH_Da_Mapped bit on them. Its important to do this 657 * under the protection of i_data_sem. 658 */ 659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 660 set_buffers_da_mapped(inode, map); 661 } 662 663 up_write((&EXT4_I(inode)->i_data_sem)); 664 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 665 int ret = check_block_validity(inode, map); 666 if (ret != 0) 667 return ret; 668 } 669 return retval; 670 } 671 672 /* Maximum number of blocks we map for direct IO at once. */ 673 #define DIO_MAX_BLOCKS 4096 674 675 static int _ext4_get_block(struct inode *inode, sector_t iblock, 676 struct buffer_head *bh, int flags) 677 { 678 handle_t *handle = ext4_journal_current_handle(); 679 struct ext4_map_blocks map; 680 int ret = 0, started = 0; 681 int dio_credits; 682 683 map.m_lblk = iblock; 684 map.m_len = bh->b_size >> inode->i_blkbits; 685 686 if (flags && !handle) { 687 /* Direct IO write... */ 688 if (map.m_len > DIO_MAX_BLOCKS) 689 map.m_len = DIO_MAX_BLOCKS; 690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 691 handle = ext4_journal_start(inode, dio_credits); 692 if (IS_ERR(handle)) { 693 ret = PTR_ERR(handle); 694 return ret; 695 } 696 started = 1; 697 } 698 699 ret = ext4_map_blocks(handle, inode, &map, flags); 700 if (ret > 0) { 701 map_bh(bh, inode->i_sb, map.m_pblk); 702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 703 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 704 ret = 0; 705 } 706 if (started) 707 ext4_journal_stop(handle); 708 return ret; 709 } 710 711 int ext4_get_block(struct inode *inode, sector_t iblock, 712 struct buffer_head *bh, int create) 713 { 714 return _ext4_get_block(inode, iblock, bh, 715 create ? EXT4_GET_BLOCKS_CREATE : 0); 716 } 717 718 /* 719 * `handle' can be NULL if create is zero 720 */ 721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 722 ext4_lblk_t block, int create, int *errp) 723 { 724 struct ext4_map_blocks map; 725 struct buffer_head *bh; 726 int fatal = 0, err; 727 728 J_ASSERT(handle != NULL || create == 0); 729 730 map.m_lblk = block; 731 map.m_len = 1; 732 err = ext4_map_blocks(handle, inode, &map, 733 create ? EXT4_GET_BLOCKS_CREATE : 0); 734 735 if (err < 0) 736 *errp = err; 737 if (err <= 0) 738 return NULL; 739 *errp = 0; 740 741 bh = sb_getblk(inode->i_sb, map.m_pblk); 742 if (!bh) { 743 *errp = -EIO; 744 return NULL; 745 } 746 if (map.m_flags & EXT4_MAP_NEW) { 747 J_ASSERT(create != 0); 748 J_ASSERT(handle != NULL); 749 750 /* 751 * Now that we do not always journal data, we should 752 * keep in mind whether this should always journal the 753 * new buffer as metadata. For now, regular file 754 * writes use ext4_get_block instead, so it's not a 755 * problem. 756 */ 757 lock_buffer(bh); 758 BUFFER_TRACE(bh, "call get_create_access"); 759 fatal = ext4_journal_get_create_access(handle, bh); 760 if (!fatal && !buffer_uptodate(bh)) { 761 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 762 set_buffer_uptodate(bh); 763 } 764 unlock_buffer(bh); 765 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 766 err = ext4_handle_dirty_metadata(handle, inode, bh); 767 if (!fatal) 768 fatal = err; 769 } else { 770 BUFFER_TRACE(bh, "not a new buffer"); 771 } 772 if (fatal) { 773 *errp = fatal; 774 brelse(bh); 775 bh = NULL; 776 } 777 return bh; 778 } 779 780 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 781 ext4_lblk_t block, int create, int *err) 782 { 783 struct buffer_head *bh; 784 785 bh = ext4_getblk(handle, inode, block, create, err); 786 if (!bh) 787 return bh; 788 if (buffer_uptodate(bh)) 789 return bh; 790 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 791 wait_on_buffer(bh); 792 if (buffer_uptodate(bh)) 793 return bh; 794 put_bh(bh); 795 *err = -EIO; 796 return NULL; 797 } 798 799 static int walk_page_buffers(handle_t *handle, 800 struct buffer_head *head, 801 unsigned from, 802 unsigned to, 803 int *partial, 804 int (*fn)(handle_t *handle, 805 struct buffer_head *bh)) 806 { 807 struct buffer_head *bh; 808 unsigned block_start, block_end; 809 unsigned blocksize = head->b_size; 810 int err, ret = 0; 811 struct buffer_head *next; 812 813 for (bh = head, block_start = 0; 814 ret == 0 && (bh != head || !block_start); 815 block_start = block_end, bh = next) { 816 next = bh->b_this_page; 817 block_end = block_start + blocksize; 818 if (block_end <= from || block_start >= to) { 819 if (partial && !buffer_uptodate(bh)) 820 *partial = 1; 821 continue; 822 } 823 err = (*fn)(handle, bh); 824 if (!ret) 825 ret = err; 826 } 827 return ret; 828 } 829 830 /* 831 * To preserve ordering, it is essential that the hole instantiation and 832 * the data write be encapsulated in a single transaction. We cannot 833 * close off a transaction and start a new one between the ext4_get_block() 834 * and the commit_write(). So doing the jbd2_journal_start at the start of 835 * prepare_write() is the right place. 836 * 837 * Also, this function can nest inside ext4_writepage() -> 838 * block_write_full_page(). In that case, we *know* that ext4_writepage() 839 * has generated enough buffer credits to do the whole page. So we won't 840 * block on the journal in that case, which is good, because the caller may 841 * be PF_MEMALLOC. 842 * 843 * By accident, ext4 can be reentered when a transaction is open via 844 * quota file writes. If we were to commit the transaction while thus 845 * reentered, there can be a deadlock - we would be holding a quota 846 * lock, and the commit would never complete if another thread had a 847 * transaction open and was blocking on the quota lock - a ranking 848 * violation. 849 * 850 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 851 * will _not_ run commit under these circumstances because handle->h_ref 852 * is elevated. We'll still have enough credits for the tiny quotafile 853 * write. 854 */ 855 static int do_journal_get_write_access(handle_t *handle, 856 struct buffer_head *bh) 857 { 858 int dirty = buffer_dirty(bh); 859 int ret; 860 861 if (!buffer_mapped(bh) || buffer_freed(bh)) 862 return 0; 863 /* 864 * __block_write_begin() could have dirtied some buffers. Clean 865 * the dirty bit as jbd2_journal_get_write_access() could complain 866 * otherwise about fs integrity issues. Setting of the dirty bit 867 * by __block_write_begin() isn't a real problem here as we clear 868 * the bit before releasing a page lock and thus writeback cannot 869 * ever write the buffer. 870 */ 871 if (dirty) 872 clear_buffer_dirty(bh); 873 ret = ext4_journal_get_write_access(handle, bh); 874 if (!ret && dirty) 875 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 876 return ret; 877 } 878 879 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 880 struct buffer_head *bh_result, int create); 881 static int ext4_write_begin(struct file *file, struct address_space *mapping, 882 loff_t pos, unsigned len, unsigned flags, 883 struct page **pagep, void **fsdata) 884 { 885 struct inode *inode = mapping->host; 886 int ret, needed_blocks; 887 handle_t *handle; 888 int retries = 0; 889 struct page *page; 890 pgoff_t index; 891 unsigned from, to; 892 893 trace_ext4_write_begin(inode, pos, len, flags); 894 /* 895 * Reserve one block more for addition to orphan list in case 896 * we allocate blocks but write fails for some reason 897 */ 898 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 899 index = pos >> PAGE_CACHE_SHIFT; 900 from = pos & (PAGE_CACHE_SIZE - 1); 901 to = from + len; 902 903 retry: 904 handle = ext4_journal_start(inode, needed_blocks); 905 if (IS_ERR(handle)) { 906 ret = PTR_ERR(handle); 907 goto out; 908 } 909 910 /* We cannot recurse into the filesystem as the transaction is already 911 * started */ 912 flags |= AOP_FLAG_NOFS; 913 914 page = grab_cache_page_write_begin(mapping, index, flags); 915 if (!page) { 916 ext4_journal_stop(handle); 917 ret = -ENOMEM; 918 goto out; 919 } 920 *pagep = page; 921 922 if (ext4_should_dioread_nolock(inode)) 923 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 924 else 925 ret = __block_write_begin(page, pos, len, ext4_get_block); 926 927 if (!ret && ext4_should_journal_data(inode)) { 928 ret = walk_page_buffers(handle, page_buffers(page), 929 from, to, NULL, do_journal_get_write_access); 930 } 931 932 if (ret) { 933 unlock_page(page); 934 page_cache_release(page); 935 /* 936 * __block_write_begin may have instantiated a few blocks 937 * outside i_size. Trim these off again. Don't need 938 * i_size_read because we hold i_mutex. 939 * 940 * Add inode to orphan list in case we crash before 941 * truncate finishes 942 */ 943 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 944 ext4_orphan_add(handle, inode); 945 946 ext4_journal_stop(handle); 947 if (pos + len > inode->i_size) { 948 ext4_truncate_failed_write(inode); 949 /* 950 * If truncate failed early the inode might 951 * still be on the orphan list; we need to 952 * make sure the inode is removed from the 953 * orphan list in that case. 954 */ 955 if (inode->i_nlink) 956 ext4_orphan_del(NULL, inode); 957 } 958 } 959 960 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 961 goto retry; 962 out: 963 return ret; 964 } 965 966 /* For write_end() in data=journal mode */ 967 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 968 { 969 if (!buffer_mapped(bh) || buffer_freed(bh)) 970 return 0; 971 set_buffer_uptodate(bh); 972 return ext4_handle_dirty_metadata(handle, NULL, bh); 973 } 974 975 static int ext4_generic_write_end(struct file *file, 976 struct address_space *mapping, 977 loff_t pos, unsigned len, unsigned copied, 978 struct page *page, void *fsdata) 979 { 980 int i_size_changed = 0; 981 struct inode *inode = mapping->host; 982 handle_t *handle = ext4_journal_current_handle(); 983 984 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 985 986 /* 987 * No need to use i_size_read() here, the i_size 988 * cannot change under us because we hold i_mutex. 989 * 990 * But it's important to update i_size while still holding page lock: 991 * page writeout could otherwise come in and zero beyond i_size. 992 */ 993 if (pos + copied > inode->i_size) { 994 i_size_write(inode, pos + copied); 995 i_size_changed = 1; 996 } 997 998 if (pos + copied > EXT4_I(inode)->i_disksize) { 999 /* We need to mark inode dirty even if 1000 * new_i_size is less that inode->i_size 1001 * bu greater than i_disksize.(hint delalloc) 1002 */ 1003 ext4_update_i_disksize(inode, (pos + copied)); 1004 i_size_changed = 1; 1005 } 1006 unlock_page(page); 1007 page_cache_release(page); 1008 1009 /* 1010 * Don't mark the inode dirty under page lock. First, it unnecessarily 1011 * makes the holding time of page lock longer. Second, it forces lock 1012 * ordering of page lock and transaction start for journaling 1013 * filesystems. 1014 */ 1015 if (i_size_changed) 1016 ext4_mark_inode_dirty(handle, inode); 1017 1018 return copied; 1019 } 1020 1021 /* 1022 * We need to pick up the new inode size which generic_commit_write gave us 1023 * `file' can be NULL - eg, when called from page_symlink(). 1024 * 1025 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1026 * buffers are managed internally. 1027 */ 1028 static int ext4_ordered_write_end(struct file *file, 1029 struct address_space *mapping, 1030 loff_t pos, unsigned len, unsigned copied, 1031 struct page *page, void *fsdata) 1032 { 1033 handle_t *handle = ext4_journal_current_handle(); 1034 struct inode *inode = mapping->host; 1035 int ret = 0, ret2; 1036 1037 trace_ext4_ordered_write_end(inode, pos, len, copied); 1038 ret = ext4_jbd2_file_inode(handle, inode); 1039 1040 if (ret == 0) { 1041 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1042 page, fsdata); 1043 copied = ret2; 1044 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1045 /* if we have allocated more blocks and copied 1046 * less. We will have blocks allocated outside 1047 * inode->i_size. So truncate them 1048 */ 1049 ext4_orphan_add(handle, inode); 1050 if (ret2 < 0) 1051 ret = ret2; 1052 } else { 1053 unlock_page(page); 1054 page_cache_release(page); 1055 } 1056 1057 ret2 = ext4_journal_stop(handle); 1058 if (!ret) 1059 ret = ret2; 1060 1061 if (pos + len > inode->i_size) { 1062 ext4_truncate_failed_write(inode); 1063 /* 1064 * If truncate failed early the inode might still be 1065 * on the orphan list; we need to make sure the inode 1066 * is removed from the orphan list in that case. 1067 */ 1068 if (inode->i_nlink) 1069 ext4_orphan_del(NULL, inode); 1070 } 1071 1072 1073 return ret ? ret : copied; 1074 } 1075 1076 static int ext4_writeback_write_end(struct file *file, 1077 struct address_space *mapping, 1078 loff_t pos, unsigned len, unsigned copied, 1079 struct page *page, void *fsdata) 1080 { 1081 handle_t *handle = ext4_journal_current_handle(); 1082 struct inode *inode = mapping->host; 1083 int ret = 0, ret2; 1084 1085 trace_ext4_writeback_write_end(inode, pos, len, copied); 1086 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1087 page, fsdata); 1088 copied = ret2; 1089 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1090 /* if we have allocated more blocks and copied 1091 * less. We will have blocks allocated outside 1092 * inode->i_size. So truncate them 1093 */ 1094 ext4_orphan_add(handle, inode); 1095 1096 if (ret2 < 0) 1097 ret = ret2; 1098 1099 ret2 = ext4_journal_stop(handle); 1100 if (!ret) 1101 ret = ret2; 1102 1103 if (pos + len > inode->i_size) { 1104 ext4_truncate_failed_write(inode); 1105 /* 1106 * If truncate failed early the inode might still be 1107 * on the orphan list; we need to make sure the inode 1108 * is removed from the orphan list in that case. 1109 */ 1110 if (inode->i_nlink) 1111 ext4_orphan_del(NULL, inode); 1112 } 1113 1114 return ret ? ret : copied; 1115 } 1116 1117 static int ext4_journalled_write_end(struct file *file, 1118 struct address_space *mapping, 1119 loff_t pos, unsigned len, unsigned copied, 1120 struct page *page, void *fsdata) 1121 { 1122 handle_t *handle = ext4_journal_current_handle(); 1123 struct inode *inode = mapping->host; 1124 int ret = 0, ret2; 1125 int partial = 0; 1126 unsigned from, to; 1127 loff_t new_i_size; 1128 1129 trace_ext4_journalled_write_end(inode, pos, len, copied); 1130 from = pos & (PAGE_CACHE_SIZE - 1); 1131 to = from + len; 1132 1133 BUG_ON(!ext4_handle_valid(handle)); 1134 1135 if (copied < len) { 1136 if (!PageUptodate(page)) 1137 copied = 0; 1138 page_zero_new_buffers(page, from+copied, to); 1139 } 1140 1141 ret = walk_page_buffers(handle, page_buffers(page), from, 1142 to, &partial, write_end_fn); 1143 if (!partial) 1144 SetPageUptodate(page); 1145 new_i_size = pos + copied; 1146 if (new_i_size > inode->i_size) 1147 i_size_write(inode, pos+copied); 1148 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1149 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1150 if (new_i_size > EXT4_I(inode)->i_disksize) { 1151 ext4_update_i_disksize(inode, new_i_size); 1152 ret2 = ext4_mark_inode_dirty(handle, inode); 1153 if (!ret) 1154 ret = ret2; 1155 } 1156 1157 unlock_page(page); 1158 page_cache_release(page); 1159 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1160 /* if we have allocated more blocks and copied 1161 * less. We will have blocks allocated outside 1162 * inode->i_size. So truncate them 1163 */ 1164 ext4_orphan_add(handle, inode); 1165 1166 ret2 = ext4_journal_stop(handle); 1167 if (!ret) 1168 ret = ret2; 1169 if (pos + len > inode->i_size) { 1170 ext4_truncate_failed_write(inode); 1171 /* 1172 * If truncate failed early the inode might still be 1173 * on the orphan list; we need to make sure the inode 1174 * is removed from the orphan list in that case. 1175 */ 1176 if (inode->i_nlink) 1177 ext4_orphan_del(NULL, inode); 1178 } 1179 1180 return ret ? ret : copied; 1181 } 1182 1183 /* 1184 * Reserve a single cluster located at lblock 1185 */ 1186 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1187 { 1188 int retries = 0; 1189 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1190 struct ext4_inode_info *ei = EXT4_I(inode); 1191 unsigned int md_needed; 1192 int ret; 1193 ext4_lblk_t save_last_lblock; 1194 int save_len; 1195 1196 /* 1197 * We will charge metadata quota at writeout time; this saves 1198 * us from metadata over-estimation, though we may go over by 1199 * a small amount in the end. Here we just reserve for data. 1200 */ 1201 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1202 if (ret) 1203 return ret; 1204 1205 /* 1206 * recalculate the amount of metadata blocks to reserve 1207 * in order to allocate nrblocks 1208 * worse case is one extent per block 1209 */ 1210 repeat: 1211 spin_lock(&ei->i_block_reservation_lock); 1212 /* 1213 * ext4_calc_metadata_amount() has side effects, which we have 1214 * to be prepared undo if we fail to claim space. 1215 */ 1216 save_len = ei->i_da_metadata_calc_len; 1217 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1218 md_needed = EXT4_NUM_B2C(sbi, 1219 ext4_calc_metadata_amount(inode, lblock)); 1220 trace_ext4_da_reserve_space(inode, md_needed); 1221 1222 /* 1223 * We do still charge estimated metadata to the sb though; 1224 * we cannot afford to run out of free blocks. 1225 */ 1226 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1227 ei->i_da_metadata_calc_len = save_len; 1228 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1229 spin_unlock(&ei->i_block_reservation_lock); 1230 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1231 yield(); 1232 goto repeat; 1233 } 1234 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1235 return -ENOSPC; 1236 } 1237 ei->i_reserved_data_blocks++; 1238 ei->i_reserved_meta_blocks += md_needed; 1239 spin_unlock(&ei->i_block_reservation_lock); 1240 1241 return 0; /* success */ 1242 } 1243 1244 static void ext4_da_release_space(struct inode *inode, int to_free) 1245 { 1246 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1247 struct ext4_inode_info *ei = EXT4_I(inode); 1248 1249 if (!to_free) 1250 return; /* Nothing to release, exit */ 1251 1252 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1253 1254 trace_ext4_da_release_space(inode, to_free); 1255 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1256 /* 1257 * if there aren't enough reserved blocks, then the 1258 * counter is messed up somewhere. Since this 1259 * function is called from invalidate page, it's 1260 * harmless to return without any action. 1261 */ 1262 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1263 "ino %lu, to_free %d with only %d reserved " 1264 "data blocks", inode->i_ino, to_free, 1265 ei->i_reserved_data_blocks); 1266 WARN_ON(1); 1267 to_free = ei->i_reserved_data_blocks; 1268 } 1269 ei->i_reserved_data_blocks -= to_free; 1270 1271 if (ei->i_reserved_data_blocks == 0) { 1272 /* 1273 * We can release all of the reserved metadata blocks 1274 * only when we have written all of the delayed 1275 * allocation blocks. 1276 * Note that in case of bigalloc, i_reserved_meta_blocks, 1277 * i_reserved_data_blocks, etc. refer to number of clusters. 1278 */ 1279 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1280 ei->i_reserved_meta_blocks); 1281 ei->i_reserved_meta_blocks = 0; 1282 ei->i_da_metadata_calc_len = 0; 1283 } 1284 1285 /* update fs dirty data blocks counter */ 1286 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1287 1288 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1289 1290 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1291 } 1292 1293 static void ext4_da_page_release_reservation(struct page *page, 1294 unsigned long offset) 1295 { 1296 int to_release = 0; 1297 struct buffer_head *head, *bh; 1298 unsigned int curr_off = 0; 1299 struct inode *inode = page->mapping->host; 1300 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1301 int num_clusters; 1302 1303 head = page_buffers(page); 1304 bh = head; 1305 do { 1306 unsigned int next_off = curr_off + bh->b_size; 1307 1308 if ((offset <= curr_off) && (buffer_delay(bh))) { 1309 to_release++; 1310 clear_buffer_delay(bh); 1311 clear_buffer_da_mapped(bh); 1312 } 1313 curr_off = next_off; 1314 } while ((bh = bh->b_this_page) != head); 1315 1316 /* If we have released all the blocks belonging to a cluster, then we 1317 * need to release the reserved space for that cluster. */ 1318 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1319 while (num_clusters > 0) { 1320 ext4_fsblk_t lblk; 1321 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1322 ((num_clusters - 1) << sbi->s_cluster_bits); 1323 if (sbi->s_cluster_ratio == 1 || 1324 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1325 ext4_da_release_space(inode, 1); 1326 1327 num_clusters--; 1328 } 1329 } 1330 1331 /* 1332 * Delayed allocation stuff 1333 */ 1334 1335 /* 1336 * mpage_da_submit_io - walks through extent of pages and try to write 1337 * them with writepage() call back 1338 * 1339 * @mpd->inode: inode 1340 * @mpd->first_page: first page of the extent 1341 * @mpd->next_page: page after the last page of the extent 1342 * 1343 * By the time mpage_da_submit_io() is called we expect all blocks 1344 * to be allocated. this may be wrong if allocation failed. 1345 * 1346 * As pages are already locked by write_cache_pages(), we can't use it 1347 */ 1348 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1349 struct ext4_map_blocks *map) 1350 { 1351 struct pagevec pvec; 1352 unsigned long index, end; 1353 int ret = 0, err, nr_pages, i; 1354 struct inode *inode = mpd->inode; 1355 struct address_space *mapping = inode->i_mapping; 1356 loff_t size = i_size_read(inode); 1357 unsigned int len, block_start; 1358 struct buffer_head *bh, *page_bufs = NULL; 1359 int journal_data = ext4_should_journal_data(inode); 1360 sector_t pblock = 0, cur_logical = 0; 1361 struct ext4_io_submit io_submit; 1362 1363 BUG_ON(mpd->next_page <= mpd->first_page); 1364 memset(&io_submit, 0, sizeof(io_submit)); 1365 /* 1366 * We need to start from the first_page to the next_page - 1 1367 * to make sure we also write the mapped dirty buffer_heads. 1368 * If we look at mpd->b_blocknr we would only be looking 1369 * at the currently mapped buffer_heads. 1370 */ 1371 index = mpd->first_page; 1372 end = mpd->next_page - 1; 1373 1374 pagevec_init(&pvec, 0); 1375 while (index <= end) { 1376 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1377 if (nr_pages == 0) 1378 break; 1379 for (i = 0; i < nr_pages; i++) { 1380 int commit_write = 0, skip_page = 0; 1381 struct page *page = pvec.pages[i]; 1382 1383 index = page->index; 1384 if (index > end) 1385 break; 1386 1387 if (index == size >> PAGE_CACHE_SHIFT) 1388 len = size & ~PAGE_CACHE_MASK; 1389 else 1390 len = PAGE_CACHE_SIZE; 1391 if (map) { 1392 cur_logical = index << (PAGE_CACHE_SHIFT - 1393 inode->i_blkbits); 1394 pblock = map->m_pblk + (cur_logical - 1395 map->m_lblk); 1396 } 1397 index++; 1398 1399 BUG_ON(!PageLocked(page)); 1400 BUG_ON(PageWriteback(page)); 1401 1402 /* 1403 * If the page does not have buffers (for 1404 * whatever reason), try to create them using 1405 * __block_write_begin. If this fails, 1406 * skip the page and move on. 1407 */ 1408 if (!page_has_buffers(page)) { 1409 if (__block_write_begin(page, 0, len, 1410 noalloc_get_block_write)) { 1411 skip_page: 1412 unlock_page(page); 1413 continue; 1414 } 1415 commit_write = 1; 1416 } 1417 1418 bh = page_bufs = page_buffers(page); 1419 block_start = 0; 1420 do { 1421 if (!bh) 1422 goto skip_page; 1423 if (map && (cur_logical >= map->m_lblk) && 1424 (cur_logical <= (map->m_lblk + 1425 (map->m_len - 1)))) { 1426 if (buffer_delay(bh)) { 1427 clear_buffer_delay(bh); 1428 bh->b_blocknr = pblock; 1429 } 1430 if (buffer_da_mapped(bh)) 1431 clear_buffer_da_mapped(bh); 1432 if (buffer_unwritten(bh) || 1433 buffer_mapped(bh)) 1434 BUG_ON(bh->b_blocknr != pblock); 1435 if (map->m_flags & EXT4_MAP_UNINIT) 1436 set_buffer_uninit(bh); 1437 clear_buffer_unwritten(bh); 1438 } 1439 1440 /* 1441 * skip page if block allocation undone and 1442 * block is dirty 1443 */ 1444 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1445 skip_page = 1; 1446 bh = bh->b_this_page; 1447 block_start += bh->b_size; 1448 cur_logical++; 1449 pblock++; 1450 } while (bh != page_bufs); 1451 1452 if (skip_page) 1453 goto skip_page; 1454 1455 if (commit_write) 1456 /* mark the buffer_heads as dirty & uptodate */ 1457 block_commit_write(page, 0, len); 1458 1459 clear_page_dirty_for_io(page); 1460 /* 1461 * Delalloc doesn't support data journalling, 1462 * but eventually maybe we'll lift this 1463 * restriction. 1464 */ 1465 if (unlikely(journal_data && PageChecked(page))) 1466 err = __ext4_journalled_writepage(page, len); 1467 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1468 err = ext4_bio_write_page(&io_submit, page, 1469 len, mpd->wbc); 1470 else if (buffer_uninit(page_bufs)) { 1471 ext4_set_bh_endio(page_bufs, inode); 1472 err = block_write_full_page_endio(page, 1473 noalloc_get_block_write, 1474 mpd->wbc, ext4_end_io_buffer_write); 1475 } else 1476 err = block_write_full_page(page, 1477 noalloc_get_block_write, mpd->wbc); 1478 1479 if (!err) 1480 mpd->pages_written++; 1481 /* 1482 * In error case, we have to continue because 1483 * remaining pages are still locked 1484 */ 1485 if (ret == 0) 1486 ret = err; 1487 } 1488 pagevec_release(&pvec); 1489 } 1490 ext4_io_submit(&io_submit); 1491 return ret; 1492 } 1493 1494 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1495 { 1496 int nr_pages, i; 1497 pgoff_t index, end; 1498 struct pagevec pvec; 1499 struct inode *inode = mpd->inode; 1500 struct address_space *mapping = inode->i_mapping; 1501 1502 index = mpd->first_page; 1503 end = mpd->next_page - 1; 1504 while (index <= end) { 1505 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1506 if (nr_pages == 0) 1507 break; 1508 for (i = 0; i < nr_pages; i++) { 1509 struct page *page = pvec.pages[i]; 1510 if (page->index > end) 1511 break; 1512 BUG_ON(!PageLocked(page)); 1513 BUG_ON(PageWriteback(page)); 1514 block_invalidatepage(page, 0); 1515 ClearPageUptodate(page); 1516 unlock_page(page); 1517 } 1518 index = pvec.pages[nr_pages - 1]->index + 1; 1519 pagevec_release(&pvec); 1520 } 1521 return; 1522 } 1523 1524 static void ext4_print_free_blocks(struct inode *inode) 1525 { 1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1527 struct super_block *sb = inode->i_sb; 1528 1529 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1530 EXT4_C2B(EXT4_SB(inode->i_sb), 1531 ext4_count_free_clusters(inode->i_sb))); 1532 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1533 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1534 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1535 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1536 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1537 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1538 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1539 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1540 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1541 EXT4_I(inode)->i_reserved_data_blocks); 1542 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1543 EXT4_I(inode)->i_reserved_meta_blocks); 1544 return; 1545 } 1546 1547 /* 1548 * mpage_da_map_and_submit - go through given space, map them 1549 * if necessary, and then submit them for I/O 1550 * 1551 * @mpd - bh describing space 1552 * 1553 * The function skips space we know is already mapped to disk blocks. 1554 * 1555 */ 1556 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1557 { 1558 int err, blks, get_blocks_flags; 1559 struct ext4_map_blocks map, *mapp = NULL; 1560 sector_t next = mpd->b_blocknr; 1561 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1562 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1563 handle_t *handle = NULL; 1564 1565 /* 1566 * If the blocks are mapped already, or we couldn't accumulate 1567 * any blocks, then proceed immediately to the submission stage. 1568 */ 1569 if ((mpd->b_size == 0) || 1570 ((mpd->b_state & (1 << BH_Mapped)) && 1571 !(mpd->b_state & (1 << BH_Delay)) && 1572 !(mpd->b_state & (1 << BH_Unwritten)))) 1573 goto submit_io; 1574 1575 handle = ext4_journal_current_handle(); 1576 BUG_ON(!handle); 1577 1578 /* 1579 * Call ext4_map_blocks() to allocate any delayed allocation 1580 * blocks, or to convert an uninitialized extent to be 1581 * initialized (in the case where we have written into 1582 * one or more preallocated blocks). 1583 * 1584 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1585 * indicate that we are on the delayed allocation path. This 1586 * affects functions in many different parts of the allocation 1587 * call path. This flag exists primarily because we don't 1588 * want to change *many* call functions, so ext4_map_blocks() 1589 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1590 * inode's allocation semaphore is taken. 1591 * 1592 * If the blocks in questions were delalloc blocks, set 1593 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1594 * variables are updated after the blocks have been allocated. 1595 */ 1596 map.m_lblk = next; 1597 map.m_len = max_blocks; 1598 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1599 if (ext4_should_dioread_nolock(mpd->inode)) 1600 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1601 if (mpd->b_state & (1 << BH_Delay)) 1602 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1603 1604 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1605 if (blks < 0) { 1606 struct super_block *sb = mpd->inode->i_sb; 1607 1608 err = blks; 1609 /* 1610 * If get block returns EAGAIN or ENOSPC and there 1611 * appears to be free blocks we will just let 1612 * mpage_da_submit_io() unlock all of the pages. 1613 */ 1614 if (err == -EAGAIN) 1615 goto submit_io; 1616 1617 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1618 mpd->retval = err; 1619 goto submit_io; 1620 } 1621 1622 /* 1623 * get block failure will cause us to loop in 1624 * writepages, because a_ops->writepage won't be able 1625 * to make progress. The page will be redirtied by 1626 * writepage and writepages will again try to write 1627 * the same. 1628 */ 1629 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1630 ext4_msg(sb, KERN_CRIT, 1631 "delayed block allocation failed for inode %lu " 1632 "at logical offset %llu with max blocks %zd " 1633 "with error %d", mpd->inode->i_ino, 1634 (unsigned long long) next, 1635 mpd->b_size >> mpd->inode->i_blkbits, err); 1636 ext4_msg(sb, KERN_CRIT, 1637 "This should not happen!! Data will be lost\n"); 1638 if (err == -ENOSPC) 1639 ext4_print_free_blocks(mpd->inode); 1640 } 1641 /* invalidate all the pages */ 1642 ext4_da_block_invalidatepages(mpd); 1643 1644 /* Mark this page range as having been completed */ 1645 mpd->io_done = 1; 1646 return; 1647 } 1648 BUG_ON(blks == 0); 1649 1650 mapp = ↦ 1651 if (map.m_flags & EXT4_MAP_NEW) { 1652 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1653 int i; 1654 1655 for (i = 0; i < map.m_len; i++) 1656 unmap_underlying_metadata(bdev, map.m_pblk + i); 1657 1658 if (ext4_should_order_data(mpd->inode)) { 1659 err = ext4_jbd2_file_inode(handle, mpd->inode); 1660 if (err) { 1661 /* Only if the journal is aborted */ 1662 mpd->retval = err; 1663 goto submit_io; 1664 } 1665 } 1666 } 1667 1668 /* 1669 * Update on-disk size along with block allocation. 1670 */ 1671 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1672 if (disksize > i_size_read(mpd->inode)) 1673 disksize = i_size_read(mpd->inode); 1674 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1675 ext4_update_i_disksize(mpd->inode, disksize); 1676 err = ext4_mark_inode_dirty(handle, mpd->inode); 1677 if (err) 1678 ext4_error(mpd->inode->i_sb, 1679 "Failed to mark inode %lu dirty", 1680 mpd->inode->i_ino); 1681 } 1682 1683 submit_io: 1684 mpage_da_submit_io(mpd, mapp); 1685 mpd->io_done = 1; 1686 } 1687 1688 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1689 (1 << BH_Delay) | (1 << BH_Unwritten)) 1690 1691 /* 1692 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1693 * 1694 * @mpd->lbh - extent of blocks 1695 * @logical - logical number of the block in the file 1696 * @bh - bh of the block (used to access block's state) 1697 * 1698 * the function is used to collect contig. blocks in same state 1699 */ 1700 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1701 sector_t logical, size_t b_size, 1702 unsigned long b_state) 1703 { 1704 sector_t next; 1705 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1706 1707 /* 1708 * XXX Don't go larger than mballoc is willing to allocate 1709 * This is a stopgap solution. We eventually need to fold 1710 * mpage_da_submit_io() into this function and then call 1711 * ext4_map_blocks() multiple times in a loop 1712 */ 1713 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1714 goto flush_it; 1715 1716 /* check if thereserved journal credits might overflow */ 1717 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1718 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1719 /* 1720 * With non-extent format we are limited by the journal 1721 * credit available. Total credit needed to insert 1722 * nrblocks contiguous blocks is dependent on the 1723 * nrblocks. So limit nrblocks. 1724 */ 1725 goto flush_it; 1726 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1727 EXT4_MAX_TRANS_DATA) { 1728 /* 1729 * Adding the new buffer_head would make it cross the 1730 * allowed limit for which we have journal credit 1731 * reserved. So limit the new bh->b_size 1732 */ 1733 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1734 mpd->inode->i_blkbits; 1735 /* we will do mpage_da_submit_io in the next loop */ 1736 } 1737 } 1738 /* 1739 * First block in the extent 1740 */ 1741 if (mpd->b_size == 0) { 1742 mpd->b_blocknr = logical; 1743 mpd->b_size = b_size; 1744 mpd->b_state = b_state & BH_FLAGS; 1745 return; 1746 } 1747 1748 next = mpd->b_blocknr + nrblocks; 1749 /* 1750 * Can we merge the block to our big extent? 1751 */ 1752 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1753 mpd->b_size += b_size; 1754 return; 1755 } 1756 1757 flush_it: 1758 /* 1759 * We couldn't merge the block to our extent, so we 1760 * need to flush current extent and start new one 1761 */ 1762 mpage_da_map_and_submit(mpd); 1763 return; 1764 } 1765 1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1767 { 1768 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1769 } 1770 1771 /* 1772 * This function is grabs code from the very beginning of 1773 * ext4_map_blocks, but assumes that the caller is from delayed write 1774 * time. This function looks up the requested blocks and sets the 1775 * buffer delay bit under the protection of i_data_sem. 1776 */ 1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1778 struct ext4_map_blocks *map, 1779 struct buffer_head *bh) 1780 { 1781 int retval; 1782 sector_t invalid_block = ~((sector_t) 0xffff); 1783 1784 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1785 invalid_block = ~0; 1786 1787 map->m_flags = 0; 1788 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1789 "logical block %lu\n", inode->i_ino, map->m_len, 1790 (unsigned long) map->m_lblk); 1791 /* 1792 * Try to see if we can get the block without requesting a new 1793 * file system block. 1794 */ 1795 down_read((&EXT4_I(inode)->i_data_sem)); 1796 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1797 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1798 else 1799 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1800 1801 if (retval == 0) { 1802 /* 1803 * XXX: __block_prepare_write() unmaps passed block, 1804 * is it OK? 1805 */ 1806 /* If the block was allocated from previously allocated cluster, 1807 * then we dont need to reserve it again. */ 1808 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1809 retval = ext4_da_reserve_space(inode, iblock); 1810 if (retval) 1811 /* not enough space to reserve */ 1812 goto out_unlock; 1813 } 1814 1815 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1816 * and it should not appear on the bh->b_state. 1817 */ 1818 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1819 1820 map_bh(bh, inode->i_sb, invalid_block); 1821 set_buffer_new(bh); 1822 set_buffer_delay(bh); 1823 } 1824 1825 out_unlock: 1826 up_read((&EXT4_I(inode)->i_data_sem)); 1827 1828 return retval; 1829 } 1830 1831 /* 1832 * This is a special get_blocks_t callback which is used by 1833 * ext4_da_write_begin(). It will either return mapped block or 1834 * reserve space for a single block. 1835 * 1836 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1837 * We also have b_blocknr = -1 and b_bdev initialized properly 1838 * 1839 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1840 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1841 * initialized properly. 1842 */ 1843 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1844 struct buffer_head *bh, int create) 1845 { 1846 struct ext4_map_blocks map; 1847 int ret = 0; 1848 1849 BUG_ON(create == 0); 1850 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1851 1852 map.m_lblk = iblock; 1853 map.m_len = 1; 1854 1855 /* 1856 * first, we need to know whether the block is allocated already 1857 * preallocated blocks are unmapped but should treated 1858 * the same as allocated blocks. 1859 */ 1860 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1861 if (ret <= 0) 1862 return ret; 1863 1864 map_bh(bh, inode->i_sb, map.m_pblk); 1865 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1866 1867 if (buffer_unwritten(bh)) { 1868 /* A delayed write to unwritten bh should be marked 1869 * new and mapped. Mapped ensures that we don't do 1870 * get_block multiple times when we write to the same 1871 * offset and new ensures that we do proper zero out 1872 * for partial write. 1873 */ 1874 set_buffer_new(bh); 1875 set_buffer_mapped(bh); 1876 } 1877 return 0; 1878 } 1879 1880 /* 1881 * This function is used as a standard get_block_t calback function 1882 * when there is no desire to allocate any blocks. It is used as a 1883 * callback function for block_write_begin() and block_write_full_page(). 1884 * These functions should only try to map a single block at a time. 1885 * 1886 * Since this function doesn't do block allocations even if the caller 1887 * requests it by passing in create=1, it is critically important that 1888 * any caller checks to make sure that any buffer heads are returned 1889 * by this function are either all already mapped or marked for 1890 * delayed allocation before calling block_write_full_page(). Otherwise, 1891 * b_blocknr could be left unitialized, and the page write functions will 1892 * be taken by surprise. 1893 */ 1894 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1895 struct buffer_head *bh_result, int create) 1896 { 1897 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1898 return _ext4_get_block(inode, iblock, bh_result, 0); 1899 } 1900 1901 static int bget_one(handle_t *handle, struct buffer_head *bh) 1902 { 1903 get_bh(bh); 1904 return 0; 1905 } 1906 1907 static int bput_one(handle_t *handle, struct buffer_head *bh) 1908 { 1909 put_bh(bh); 1910 return 0; 1911 } 1912 1913 static int __ext4_journalled_writepage(struct page *page, 1914 unsigned int len) 1915 { 1916 struct address_space *mapping = page->mapping; 1917 struct inode *inode = mapping->host; 1918 struct buffer_head *page_bufs; 1919 handle_t *handle = NULL; 1920 int ret = 0; 1921 int err; 1922 1923 ClearPageChecked(page); 1924 page_bufs = page_buffers(page); 1925 BUG_ON(!page_bufs); 1926 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1927 /* As soon as we unlock the page, it can go away, but we have 1928 * references to buffers so we are safe */ 1929 unlock_page(page); 1930 1931 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1932 if (IS_ERR(handle)) { 1933 ret = PTR_ERR(handle); 1934 goto out; 1935 } 1936 1937 BUG_ON(!ext4_handle_valid(handle)); 1938 1939 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1940 do_journal_get_write_access); 1941 1942 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1943 write_end_fn); 1944 if (ret == 0) 1945 ret = err; 1946 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1947 err = ext4_journal_stop(handle); 1948 if (!ret) 1949 ret = err; 1950 1951 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1952 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1953 out: 1954 return ret; 1955 } 1956 1957 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1958 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1959 1960 /* 1961 * Note that we don't need to start a transaction unless we're journaling data 1962 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1963 * need to file the inode to the transaction's list in ordered mode because if 1964 * we are writing back data added by write(), the inode is already there and if 1965 * we are writing back data modified via mmap(), no one guarantees in which 1966 * transaction the data will hit the disk. In case we are journaling data, we 1967 * cannot start transaction directly because transaction start ranks above page 1968 * lock so we have to do some magic. 1969 * 1970 * This function can get called via... 1971 * - ext4_da_writepages after taking page lock (have journal handle) 1972 * - journal_submit_inode_data_buffers (no journal handle) 1973 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1974 * - grab_page_cache when doing write_begin (have journal handle) 1975 * 1976 * We don't do any block allocation in this function. If we have page with 1977 * multiple blocks we need to write those buffer_heads that are mapped. This 1978 * is important for mmaped based write. So if we do with blocksize 1K 1979 * truncate(f, 1024); 1980 * a = mmap(f, 0, 4096); 1981 * a[0] = 'a'; 1982 * truncate(f, 4096); 1983 * we have in the page first buffer_head mapped via page_mkwrite call back 1984 * but other buffer_heads would be unmapped but dirty (dirty done via the 1985 * do_wp_page). So writepage should write the first block. If we modify 1986 * the mmap area beyond 1024 we will again get a page_fault and the 1987 * page_mkwrite callback will do the block allocation and mark the 1988 * buffer_heads mapped. 1989 * 1990 * We redirty the page if we have any buffer_heads that is either delay or 1991 * unwritten in the page. 1992 * 1993 * We can get recursively called as show below. 1994 * 1995 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1996 * ext4_writepage() 1997 * 1998 * But since we don't do any block allocation we should not deadlock. 1999 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2000 */ 2001 static int ext4_writepage(struct page *page, 2002 struct writeback_control *wbc) 2003 { 2004 int ret = 0, commit_write = 0; 2005 loff_t size; 2006 unsigned int len; 2007 struct buffer_head *page_bufs = NULL; 2008 struct inode *inode = page->mapping->host; 2009 2010 trace_ext4_writepage(page); 2011 size = i_size_read(inode); 2012 if (page->index == size >> PAGE_CACHE_SHIFT) 2013 len = size & ~PAGE_CACHE_MASK; 2014 else 2015 len = PAGE_CACHE_SIZE; 2016 2017 /* 2018 * If the page does not have buffers (for whatever reason), 2019 * try to create them using __block_write_begin. If this 2020 * fails, redirty the page and move on. 2021 */ 2022 if (!page_has_buffers(page)) { 2023 if (__block_write_begin(page, 0, len, 2024 noalloc_get_block_write)) { 2025 redirty_page: 2026 redirty_page_for_writepage(wbc, page); 2027 unlock_page(page); 2028 return 0; 2029 } 2030 commit_write = 1; 2031 } 2032 page_bufs = page_buffers(page); 2033 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2034 ext4_bh_delay_or_unwritten)) { 2035 /* 2036 * We don't want to do block allocation, so redirty 2037 * the page and return. We may reach here when we do 2038 * a journal commit via journal_submit_inode_data_buffers. 2039 * We can also reach here via shrink_page_list but it 2040 * should never be for direct reclaim so warn if that 2041 * happens 2042 */ 2043 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 2044 PF_MEMALLOC); 2045 goto redirty_page; 2046 } 2047 if (commit_write) 2048 /* now mark the buffer_heads as dirty and uptodate */ 2049 block_commit_write(page, 0, len); 2050 2051 if (PageChecked(page) && ext4_should_journal_data(inode)) 2052 /* 2053 * It's mmapped pagecache. Add buffers and journal it. There 2054 * doesn't seem much point in redirtying the page here. 2055 */ 2056 return __ext4_journalled_writepage(page, len); 2057 2058 if (buffer_uninit(page_bufs)) { 2059 ext4_set_bh_endio(page_bufs, inode); 2060 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2061 wbc, ext4_end_io_buffer_write); 2062 } else 2063 ret = block_write_full_page(page, noalloc_get_block_write, 2064 wbc); 2065 2066 return ret; 2067 } 2068 2069 /* 2070 * This is called via ext4_da_writepages() to 2071 * calculate the total number of credits to reserve to fit 2072 * a single extent allocation into a single transaction, 2073 * ext4_da_writpeages() will loop calling this before 2074 * the block allocation. 2075 */ 2076 2077 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2078 { 2079 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2080 2081 /* 2082 * With non-extent format the journal credit needed to 2083 * insert nrblocks contiguous block is dependent on 2084 * number of contiguous block. So we will limit 2085 * number of contiguous block to a sane value 2086 */ 2087 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2088 (max_blocks > EXT4_MAX_TRANS_DATA)) 2089 max_blocks = EXT4_MAX_TRANS_DATA; 2090 2091 return ext4_chunk_trans_blocks(inode, max_blocks); 2092 } 2093 2094 /* 2095 * write_cache_pages_da - walk the list of dirty pages of the given 2096 * address space and accumulate pages that need writing, and call 2097 * mpage_da_map_and_submit to map a single contiguous memory region 2098 * and then write them. 2099 */ 2100 static int write_cache_pages_da(struct address_space *mapping, 2101 struct writeback_control *wbc, 2102 struct mpage_da_data *mpd, 2103 pgoff_t *done_index) 2104 { 2105 struct buffer_head *bh, *head; 2106 struct inode *inode = mapping->host; 2107 struct pagevec pvec; 2108 unsigned int nr_pages; 2109 sector_t logical; 2110 pgoff_t index, end; 2111 long nr_to_write = wbc->nr_to_write; 2112 int i, tag, ret = 0; 2113 2114 memset(mpd, 0, sizeof(struct mpage_da_data)); 2115 mpd->wbc = wbc; 2116 mpd->inode = inode; 2117 pagevec_init(&pvec, 0); 2118 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2119 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2120 2121 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2122 tag = PAGECACHE_TAG_TOWRITE; 2123 else 2124 tag = PAGECACHE_TAG_DIRTY; 2125 2126 *done_index = index; 2127 while (index <= end) { 2128 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2129 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2130 if (nr_pages == 0) 2131 return 0; 2132 2133 for (i = 0; i < nr_pages; i++) { 2134 struct page *page = pvec.pages[i]; 2135 2136 /* 2137 * At this point, the page may be truncated or 2138 * invalidated (changing page->mapping to NULL), or 2139 * even swizzled back from swapper_space to tmpfs file 2140 * mapping. However, page->index will not change 2141 * because we have a reference on the page. 2142 */ 2143 if (page->index > end) 2144 goto out; 2145 2146 *done_index = page->index + 1; 2147 2148 /* 2149 * If we can't merge this page, and we have 2150 * accumulated an contiguous region, write it 2151 */ 2152 if ((mpd->next_page != page->index) && 2153 (mpd->next_page != mpd->first_page)) { 2154 mpage_da_map_and_submit(mpd); 2155 goto ret_extent_tail; 2156 } 2157 2158 lock_page(page); 2159 2160 /* 2161 * If the page is no longer dirty, or its 2162 * mapping no longer corresponds to inode we 2163 * are writing (which means it has been 2164 * truncated or invalidated), or the page is 2165 * already under writeback and we are not 2166 * doing a data integrity writeback, skip the page 2167 */ 2168 if (!PageDirty(page) || 2169 (PageWriteback(page) && 2170 (wbc->sync_mode == WB_SYNC_NONE)) || 2171 unlikely(page->mapping != mapping)) { 2172 unlock_page(page); 2173 continue; 2174 } 2175 2176 wait_on_page_writeback(page); 2177 BUG_ON(PageWriteback(page)); 2178 2179 if (mpd->next_page != page->index) 2180 mpd->first_page = page->index; 2181 mpd->next_page = page->index + 1; 2182 logical = (sector_t) page->index << 2183 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2184 2185 if (!page_has_buffers(page)) { 2186 mpage_add_bh_to_extent(mpd, logical, 2187 PAGE_CACHE_SIZE, 2188 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2189 if (mpd->io_done) 2190 goto ret_extent_tail; 2191 } else { 2192 /* 2193 * Page with regular buffer heads, 2194 * just add all dirty ones 2195 */ 2196 head = page_buffers(page); 2197 bh = head; 2198 do { 2199 BUG_ON(buffer_locked(bh)); 2200 /* 2201 * We need to try to allocate 2202 * unmapped blocks in the same page. 2203 * Otherwise we won't make progress 2204 * with the page in ext4_writepage 2205 */ 2206 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2207 mpage_add_bh_to_extent(mpd, logical, 2208 bh->b_size, 2209 bh->b_state); 2210 if (mpd->io_done) 2211 goto ret_extent_tail; 2212 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2213 /* 2214 * mapped dirty buffer. We need 2215 * to update the b_state 2216 * because we look at b_state 2217 * in mpage_da_map_blocks. We 2218 * don't update b_size because 2219 * if we find an unmapped 2220 * buffer_head later we need to 2221 * use the b_state flag of that 2222 * buffer_head. 2223 */ 2224 if (mpd->b_size == 0) 2225 mpd->b_state = bh->b_state & BH_FLAGS; 2226 } 2227 logical++; 2228 } while ((bh = bh->b_this_page) != head); 2229 } 2230 2231 if (nr_to_write > 0) { 2232 nr_to_write--; 2233 if (nr_to_write == 0 && 2234 wbc->sync_mode == WB_SYNC_NONE) 2235 /* 2236 * We stop writing back only if we are 2237 * not doing integrity sync. In case of 2238 * integrity sync we have to keep going 2239 * because someone may be concurrently 2240 * dirtying pages, and we might have 2241 * synced a lot of newly appeared dirty 2242 * pages, but have not synced all of the 2243 * old dirty pages. 2244 */ 2245 goto out; 2246 } 2247 } 2248 pagevec_release(&pvec); 2249 cond_resched(); 2250 } 2251 return 0; 2252 ret_extent_tail: 2253 ret = MPAGE_DA_EXTENT_TAIL; 2254 out: 2255 pagevec_release(&pvec); 2256 cond_resched(); 2257 return ret; 2258 } 2259 2260 2261 static int ext4_da_writepages(struct address_space *mapping, 2262 struct writeback_control *wbc) 2263 { 2264 pgoff_t index; 2265 int range_whole = 0; 2266 handle_t *handle = NULL; 2267 struct mpage_da_data mpd; 2268 struct inode *inode = mapping->host; 2269 int pages_written = 0; 2270 unsigned int max_pages; 2271 int range_cyclic, cycled = 1, io_done = 0; 2272 int needed_blocks, ret = 0; 2273 long desired_nr_to_write, nr_to_writebump = 0; 2274 loff_t range_start = wbc->range_start; 2275 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2276 pgoff_t done_index = 0; 2277 pgoff_t end; 2278 struct blk_plug plug; 2279 2280 trace_ext4_da_writepages(inode, wbc); 2281 2282 /* 2283 * No pages to write? This is mainly a kludge to avoid starting 2284 * a transaction for special inodes like journal inode on last iput() 2285 * because that could violate lock ordering on umount 2286 */ 2287 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2288 return 0; 2289 2290 /* 2291 * If the filesystem has aborted, it is read-only, so return 2292 * right away instead of dumping stack traces later on that 2293 * will obscure the real source of the problem. We test 2294 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2295 * the latter could be true if the filesystem is mounted 2296 * read-only, and in that case, ext4_da_writepages should 2297 * *never* be called, so if that ever happens, we would want 2298 * the stack trace. 2299 */ 2300 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2301 return -EROFS; 2302 2303 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2304 range_whole = 1; 2305 2306 range_cyclic = wbc->range_cyclic; 2307 if (wbc->range_cyclic) { 2308 index = mapping->writeback_index; 2309 if (index) 2310 cycled = 0; 2311 wbc->range_start = index << PAGE_CACHE_SHIFT; 2312 wbc->range_end = LLONG_MAX; 2313 wbc->range_cyclic = 0; 2314 end = -1; 2315 } else { 2316 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2317 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2318 } 2319 2320 /* 2321 * This works around two forms of stupidity. The first is in 2322 * the writeback code, which caps the maximum number of pages 2323 * written to be 1024 pages. This is wrong on multiple 2324 * levels; different architectues have a different page size, 2325 * which changes the maximum amount of data which gets 2326 * written. Secondly, 4 megabytes is way too small. XFS 2327 * forces this value to be 16 megabytes by multiplying 2328 * nr_to_write parameter by four, and then relies on its 2329 * allocator to allocate larger extents to make them 2330 * contiguous. Unfortunately this brings us to the second 2331 * stupidity, which is that ext4's mballoc code only allocates 2332 * at most 2048 blocks. So we force contiguous writes up to 2333 * the number of dirty blocks in the inode, or 2334 * sbi->max_writeback_mb_bump whichever is smaller. 2335 */ 2336 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2337 if (!range_cyclic && range_whole) { 2338 if (wbc->nr_to_write == LONG_MAX) 2339 desired_nr_to_write = wbc->nr_to_write; 2340 else 2341 desired_nr_to_write = wbc->nr_to_write * 8; 2342 } else 2343 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2344 max_pages); 2345 if (desired_nr_to_write > max_pages) 2346 desired_nr_to_write = max_pages; 2347 2348 if (wbc->nr_to_write < desired_nr_to_write) { 2349 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2350 wbc->nr_to_write = desired_nr_to_write; 2351 } 2352 2353 retry: 2354 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2355 tag_pages_for_writeback(mapping, index, end); 2356 2357 blk_start_plug(&plug); 2358 while (!ret && wbc->nr_to_write > 0) { 2359 2360 /* 2361 * we insert one extent at a time. So we need 2362 * credit needed for single extent allocation. 2363 * journalled mode is currently not supported 2364 * by delalloc 2365 */ 2366 BUG_ON(ext4_should_journal_data(inode)); 2367 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2368 2369 /* start a new transaction*/ 2370 handle = ext4_journal_start(inode, needed_blocks); 2371 if (IS_ERR(handle)) { 2372 ret = PTR_ERR(handle); 2373 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2374 "%ld pages, ino %lu; err %d", __func__, 2375 wbc->nr_to_write, inode->i_ino, ret); 2376 blk_finish_plug(&plug); 2377 goto out_writepages; 2378 } 2379 2380 /* 2381 * Now call write_cache_pages_da() to find the next 2382 * contiguous region of logical blocks that need 2383 * blocks to be allocated by ext4 and submit them. 2384 */ 2385 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2386 /* 2387 * If we have a contiguous extent of pages and we 2388 * haven't done the I/O yet, map the blocks and submit 2389 * them for I/O. 2390 */ 2391 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2392 mpage_da_map_and_submit(&mpd); 2393 ret = MPAGE_DA_EXTENT_TAIL; 2394 } 2395 trace_ext4_da_write_pages(inode, &mpd); 2396 wbc->nr_to_write -= mpd.pages_written; 2397 2398 ext4_journal_stop(handle); 2399 2400 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2401 /* commit the transaction which would 2402 * free blocks released in the transaction 2403 * and try again 2404 */ 2405 jbd2_journal_force_commit_nested(sbi->s_journal); 2406 ret = 0; 2407 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2408 /* 2409 * Got one extent now try with rest of the pages. 2410 * If mpd.retval is set -EIO, journal is aborted. 2411 * So we don't need to write any more. 2412 */ 2413 pages_written += mpd.pages_written; 2414 ret = mpd.retval; 2415 io_done = 1; 2416 } else if (wbc->nr_to_write) 2417 /* 2418 * There is no more writeout needed 2419 * or we requested for a noblocking writeout 2420 * and we found the device congested 2421 */ 2422 break; 2423 } 2424 blk_finish_plug(&plug); 2425 if (!io_done && !cycled) { 2426 cycled = 1; 2427 index = 0; 2428 wbc->range_start = index << PAGE_CACHE_SHIFT; 2429 wbc->range_end = mapping->writeback_index - 1; 2430 goto retry; 2431 } 2432 2433 /* Update index */ 2434 wbc->range_cyclic = range_cyclic; 2435 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2436 /* 2437 * set the writeback_index so that range_cyclic 2438 * mode will write it back later 2439 */ 2440 mapping->writeback_index = done_index; 2441 2442 out_writepages: 2443 wbc->nr_to_write -= nr_to_writebump; 2444 wbc->range_start = range_start; 2445 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2446 return ret; 2447 } 2448 2449 #define FALL_BACK_TO_NONDELALLOC 1 2450 static int ext4_nonda_switch(struct super_block *sb) 2451 { 2452 s64 free_blocks, dirty_blocks; 2453 struct ext4_sb_info *sbi = EXT4_SB(sb); 2454 2455 /* 2456 * switch to non delalloc mode if we are running low 2457 * on free block. The free block accounting via percpu 2458 * counters can get slightly wrong with percpu_counter_batch getting 2459 * accumulated on each CPU without updating global counters 2460 * Delalloc need an accurate free block accounting. So switch 2461 * to non delalloc when we are near to error range. 2462 */ 2463 free_blocks = EXT4_C2B(sbi, 2464 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2465 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2466 if (2 * free_blocks < 3 * dirty_blocks || 2467 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2468 /* 2469 * free block count is less than 150% of dirty blocks 2470 * or free blocks is less than watermark 2471 */ 2472 return 1; 2473 } 2474 /* 2475 * Even if we don't switch but are nearing capacity, 2476 * start pushing delalloc when 1/2 of free blocks are dirty. 2477 */ 2478 if (free_blocks < 2 * dirty_blocks) 2479 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2480 2481 return 0; 2482 } 2483 2484 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2485 loff_t pos, unsigned len, unsigned flags, 2486 struct page **pagep, void **fsdata) 2487 { 2488 int ret, retries = 0; 2489 struct page *page; 2490 pgoff_t index; 2491 struct inode *inode = mapping->host; 2492 handle_t *handle; 2493 2494 index = pos >> PAGE_CACHE_SHIFT; 2495 2496 if (ext4_nonda_switch(inode->i_sb)) { 2497 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2498 return ext4_write_begin(file, mapping, pos, 2499 len, flags, pagep, fsdata); 2500 } 2501 *fsdata = (void *)0; 2502 trace_ext4_da_write_begin(inode, pos, len, flags); 2503 retry: 2504 /* 2505 * With delayed allocation, we don't log the i_disksize update 2506 * if there is delayed block allocation. But we still need 2507 * to journalling the i_disksize update if writes to the end 2508 * of file which has an already mapped buffer. 2509 */ 2510 handle = ext4_journal_start(inode, 1); 2511 if (IS_ERR(handle)) { 2512 ret = PTR_ERR(handle); 2513 goto out; 2514 } 2515 /* We cannot recurse into the filesystem as the transaction is already 2516 * started */ 2517 flags |= AOP_FLAG_NOFS; 2518 2519 page = grab_cache_page_write_begin(mapping, index, flags); 2520 if (!page) { 2521 ext4_journal_stop(handle); 2522 ret = -ENOMEM; 2523 goto out; 2524 } 2525 *pagep = page; 2526 2527 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2528 if (ret < 0) { 2529 unlock_page(page); 2530 ext4_journal_stop(handle); 2531 page_cache_release(page); 2532 /* 2533 * block_write_begin may have instantiated a few blocks 2534 * outside i_size. Trim these off again. Don't need 2535 * i_size_read because we hold i_mutex. 2536 */ 2537 if (pos + len > inode->i_size) 2538 ext4_truncate_failed_write(inode); 2539 } 2540 2541 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2542 goto retry; 2543 out: 2544 return ret; 2545 } 2546 2547 /* 2548 * Check if we should update i_disksize 2549 * when write to the end of file but not require block allocation 2550 */ 2551 static int ext4_da_should_update_i_disksize(struct page *page, 2552 unsigned long offset) 2553 { 2554 struct buffer_head *bh; 2555 struct inode *inode = page->mapping->host; 2556 unsigned int idx; 2557 int i; 2558 2559 bh = page_buffers(page); 2560 idx = offset >> inode->i_blkbits; 2561 2562 for (i = 0; i < idx; i++) 2563 bh = bh->b_this_page; 2564 2565 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2566 return 0; 2567 return 1; 2568 } 2569 2570 static int ext4_da_write_end(struct file *file, 2571 struct address_space *mapping, 2572 loff_t pos, unsigned len, unsigned copied, 2573 struct page *page, void *fsdata) 2574 { 2575 struct inode *inode = mapping->host; 2576 int ret = 0, ret2; 2577 handle_t *handle = ext4_journal_current_handle(); 2578 loff_t new_i_size; 2579 unsigned long start, end; 2580 int write_mode = (int)(unsigned long)fsdata; 2581 2582 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2583 switch (ext4_inode_journal_mode(inode)) { 2584 case EXT4_INODE_ORDERED_DATA_MODE: 2585 return ext4_ordered_write_end(file, mapping, pos, 2586 len, copied, page, fsdata); 2587 case EXT4_INODE_WRITEBACK_DATA_MODE: 2588 return ext4_writeback_write_end(file, mapping, pos, 2589 len, copied, page, fsdata); 2590 default: 2591 BUG(); 2592 } 2593 } 2594 2595 trace_ext4_da_write_end(inode, pos, len, copied); 2596 start = pos & (PAGE_CACHE_SIZE - 1); 2597 end = start + copied - 1; 2598 2599 /* 2600 * generic_write_end() will run mark_inode_dirty() if i_size 2601 * changes. So let's piggyback the i_disksize mark_inode_dirty 2602 * into that. 2603 */ 2604 2605 new_i_size = pos + copied; 2606 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2607 if (ext4_da_should_update_i_disksize(page, end)) { 2608 down_write(&EXT4_I(inode)->i_data_sem); 2609 if (new_i_size > EXT4_I(inode)->i_disksize) { 2610 /* 2611 * Updating i_disksize when extending file 2612 * without needing block allocation 2613 */ 2614 if (ext4_should_order_data(inode)) 2615 ret = ext4_jbd2_file_inode(handle, 2616 inode); 2617 2618 EXT4_I(inode)->i_disksize = new_i_size; 2619 } 2620 up_write(&EXT4_I(inode)->i_data_sem); 2621 /* We need to mark inode dirty even if 2622 * new_i_size is less that inode->i_size 2623 * bu greater than i_disksize.(hint delalloc) 2624 */ 2625 ext4_mark_inode_dirty(handle, inode); 2626 } 2627 } 2628 ret2 = generic_write_end(file, mapping, pos, len, copied, 2629 page, fsdata); 2630 copied = ret2; 2631 if (ret2 < 0) 2632 ret = ret2; 2633 ret2 = ext4_journal_stop(handle); 2634 if (!ret) 2635 ret = ret2; 2636 2637 return ret ? ret : copied; 2638 } 2639 2640 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2641 { 2642 /* 2643 * Drop reserved blocks 2644 */ 2645 BUG_ON(!PageLocked(page)); 2646 if (!page_has_buffers(page)) 2647 goto out; 2648 2649 ext4_da_page_release_reservation(page, offset); 2650 2651 out: 2652 ext4_invalidatepage(page, offset); 2653 2654 return; 2655 } 2656 2657 /* 2658 * Force all delayed allocation blocks to be allocated for a given inode. 2659 */ 2660 int ext4_alloc_da_blocks(struct inode *inode) 2661 { 2662 trace_ext4_alloc_da_blocks(inode); 2663 2664 if (!EXT4_I(inode)->i_reserved_data_blocks && 2665 !EXT4_I(inode)->i_reserved_meta_blocks) 2666 return 0; 2667 2668 /* 2669 * We do something simple for now. The filemap_flush() will 2670 * also start triggering a write of the data blocks, which is 2671 * not strictly speaking necessary (and for users of 2672 * laptop_mode, not even desirable). However, to do otherwise 2673 * would require replicating code paths in: 2674 * 2675 * ext4_da_writepages() -> 2676 * write_cache_pages() ---> (via passed in callback function) 2677 * __mpage_da_writepage() --> 2678 * mpage_add_bh_to_extent() 2679 * mpage_da_map_blocks() 2680 * 2681 * The problem is that write_cache_pages(), located in 2682 * mm/page-writeback.c, marks pages clean in preparation for 2683 * doing I/O, which is not desirable if we're not planning on 2684 * doing I/O at all. 2685 * 2686 * We could call write_cache_pages(), and then redirty all of 2687 * the pages by calling redirty_page_for_writepage() but that 2688 * would be ugly in the extreme. So instead we would need to 2689 * replicate parts of the code in the above functions, 2690 * simplifying them because we wouldn't actually intend to 2691 * write out the pages, but rather only collect contiguous 2692 * logical block extents, call the multi-block allocator, and 2693 * then update the buffer heads with the block allocations. 2694 * 2695 * For now, though, we'll cheat by calling filemap_flush(), 2696 * which will map the blocks, and start the I/O, but not 2697 * actually wait for the I/O to complete. 2698 */ 2699 return filemap_flush(inode->i_mapping); 2700 } 2701 2702 /* 2703 * bmap() is special. It gets used by applications such as lilo and by 2704 * the swapper to find the on-disk block of a specific piece of data. 2705 * 2706 * Naturally, this is dangerous if the block concerned is still in the 2707 * journal. If somebody makes a swapfile on an ext4 data-journaling 2708 * filesystem and enables swap, then they may get a nasty shock when the 2709 * data getting swapped to that swapfile suddenly gets overwritten by 2710 * the original zero's written out previously to the journal and 2711 * awaiting writeback in the kernel's buffer cache. 2712 * 2713 * So, if we see any bmap calls here on a modified, data-journaled file, 2714 * take extra steps to flush any blocks which might be in the cache. 2715 */ 2716 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2717 { 2718 struct inode *inode = mapping->host; 2719 journal_t *journal; 2720 int err; 2721 2722 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2723 test_opt(inode->i_sb, DELALLOC)) { 2724 /* 2725 * With delalloc we want to sync the file 2726 * so that we can make sure we allocate 2727 * blocks for file 2728 */ 2729 filemap_write_and_wait(mapping); 2730 } 2731 2732 if (EXT4_JOURNAL(inode) && 2733 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2734 /* 2735 * This is a REALLY heavyweight approach, but the use of 2736 * bmap on dirty files is expected to be extremely rare: 2737 * only if we run lilo or swapon on a freshly made file 2738 * do we expect this to happen. 2739 * 2740 * (bmap requires CAP_SYS_RAWIO so this does not 2741 * represent an unprivileged user DOS attack --- we'd be 2742 * in trouble if mortal users could trigger this path at 2743 * will.) 2744 * 2745 * NB. EXT4_STATE_JDATA is not set on files other than 2746 * regular files. If somebody wants to bmap a directory 2747 * or symlink and gets confused because the buffer 2748 * hasn't yet been flushed to disk, they deserve 2749 * everything they get. 2750 */ 2751 2752 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2753 journal = EXT4_JOURNAL(inode); 2754 jbd2_journal_lock_updates(journal); 2755 err = jbd2_journal_flush(journal); 2756 jbd2_journal_unlock_updates(journal); 2757 2758 if (err) 2759 return 0; 2760 } 2761 2762 return generic_block_bmap(mapping, block, ext4_get_block); 2763 } 2764 2765 static int ext4_readpage(struct file *file, struct page *page) 2766 { 2767 trace_ext4_readpage(page); 2768 return mpage_readpage(page, ext4_get_block); 2769 } 2770 2771 static int 2772 ext4_readpages(struct file *file, struct address_space *mapping, 2773 struct list_head *pages, unsigned nr_pages) 2774 { 2775 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2776 } 2777 2778 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2779 { 2780 struct buffer_head *head, *bh; 2781 unsigned int curr_off = 0; 2782 2783 if (!page_has_buffers(page)) 2784 return; 2785 head = bh = page_buffers(page); 2786 do { 2787 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2788 && bh->b_private) { 2789 ext4_free_io_end(bh->b_private); 2790 bh->b_private = NULL; 2791 bh->b_end_io = NULL; 2792 } 2793 curr_off = curr_off + bh->b_size; 2794 bh = bh->b_this_page; 2795 } while (bh != head); 2796 } 2797 2798 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2799 { 2800 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2801 2802 trace_ext4_invalidatepage(page, offset); 2803 2804 /* 2805 * free any io_end structure allocated for buffers to be discarded 2806 */ 2807 if (ext4_should_dioread_nolock(page->mapping->host)) 2808 ext4_invalidatepage_free_endio(page, offset); 2809 /* 2810 * If it's a full truncate we just forget about the pending dirtying 2811 */ 2812 if (offset == 0) 2813 ClearPageChecked(page); 2814 2815 if (journal) 2816 jbd2_journal_invalidatepage(journal, page, offset); 2817 else 2818 block_invalidatepage(page, offset); 2819 } 2820 2821 static int ext4_releasepage(struct page *page, gfp_t wait) 2822 { 2823 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2824 2825 trace_ext4_releasepage(page); 2826 2827 WARN_ON(PageChecked(page)); 2828 if (!page_has_buffers(page)) 2829 return 0; 2830 if (journal) 2831 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2832 else 2833 return try_to_free_buffers(page); 2834 } 2835 2836 /* 2837 * ext4_get_block used when preparing for a DIO write or buffer write. 2838 * We allocate an uinitialized extent if blocks haven't been allocated. 2839 * The extent will be converted to initialized after the IO is complete. 2840 */ 2841 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2842 struct buffer_head *bh_result, int create) 2843 { 2844 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2845 inode->i_ino, create); 2846 return _ext4_get_block(inode, iblock, bh_result, 2847 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2848 } 2849 2850 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2851 struct buffer_head *bh_result, int flags) 2852 { 2853 handle_t *handle = ext4_journal_current_handle(); 2854 struct ext4_map_blocks map; 2855 int ret = 0; 2856 2857 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n", 2858 inode->i_ino, flags); 2859 2860 flags = EXT4_GET_BLOCKS_NO_LOCK; 2861 2862 map.m_lblk = iblock; 2863 map.m_len = bh_result->b_size >> inode->i_blkbits; 2864 2865 ret = ext4_map_blocks(handle, inode, &map, flags); 2866 if (ret > 0) { 2867 map_bh(bh_result, inode->i_sb, map.m_pblk); 2868 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) | 2869 map.m_flags; 2870 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len; 2871 ret = 0; 2872 } 2873 return ret; 2874 } 2875 2876 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2877 ssize_t size, void *private, int ret, 2878 bool is_async) 2879 { 2880 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2881 ext4_io_end_t *io_end = iocb->private; 2882 struct workqueue_struct *wq; 2883 unsigned long flags; 2884 struct ext4_inode_info *ei; 2885 2886 /* if not async direct IO or dio with 0 bytes write, just return */ 2887 if (!io_end || !size) 2888 goto out; 2889 2890 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2891 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2892 iocb->private, io_end->inode->i_ino, iocb, offset, 2893 size); 2894 2895 iocb->private = NULL; 2896 2897 /* if not aio dio with unwritten extents, just free io and return */ 2898 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2899 ext4_free_io_end(io_end); 2900 out: 2901 if (is_async) 2902 aio_complete(iocb, ret, 0); 2903 inode_dio_done(inode); 2904 return; 2905 } 2906 2907 io_end->offset = offset; 2908 io_end->size = size; 2909 if (is_async) { 2910 io_end->iocb = iocb; 2911 io_end->result = ret; 2912 } 2913 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2914 2915 /* Add the io_end to per-inode completed aio dio list*/ 2916 ei = EXT4_I(io_end->inode); 2917 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2918 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2919 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2920 2921 /* queue the work to convert unwritten extents to written */ 2922 queue_work(wq, &io_end->work); 2923 } 2924 2925 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2926 { 2927 ext4_io_end_t *io_end = bh->b_private; 2928 struct workqueue_struct *wq; 2929 struct inode *inode; 2930 unsigned long flags; 2931 2932 if (!test_clear_buffer_uninit(bh) || !io_end) 2933 goto out; 2934 2935 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2936 ext4_msg(io_end->inode->i_sb, KERN_INFO, 2937 "sb umounted, discard end_io request for inode %lu", 2938 io_end->inode->i_ino); 2939 ext4_free_io_end(io_end); 2940 goto out; 2941 } 2942 2943 /* 2944 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2945 * but being more careful is always safe for the future change. 2946 */ 2947 inode = io_end->inode; 2948 ext4_set_io_unwritten_flag(inode, io_end); 2949 2950 /* Add the io_end to per-inode completed io list*/ 2951 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2952 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2953 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2954 2955 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2956 /* queue the work to convert unwritten extents to written */ 2957 queue_work(wq, &io_end->work); 2958 out: 2959 bh->b_private = NULL; 2960 bh->b_end_io = NULL; 2961 clear_buffer_uninit(bh); 2962 end_buffer_async_write(bh, uptodate); 2963 } 2964 2965 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2966 { 2967 ext4_io_end_t *io_end; 2968 struct page *page = bh->b_page; 2969 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2970 size_t size = bh->b_size; 2971 2972 retry: 2973 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2974 if (!io_end) { 2975 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2976 schedule(); 2977 goto retry; 2978 } 2979 io_end->offset = offset; 2980 io_end->size = size; 2981 /* 2982 * We need to hold a reference to the page to make sure it 2983 * doesn't get evicted before ext4_end_io_work() has a chance 2984 * to convert the extent from written to unwritten. 2985 */ 2986 io_end->page = page; 2987 get_page(io_end->page); 2988 2989 bh->b_private = io_end; 2990 bh->b_end_io = ext4_end_io_buffer_write; 2991 return 0; 2992 } 2993 2994 /* 2995 * For ext4 extent files, ext4 will do direct-io write to holes, 2996 * preallocated extents, and those write extend the file, no need to 2997 * fall back to buffered IO. 2998 * 2999 * For holes, we fallocate those blocks, mark them as uninitialized 3000 * If those blocks were preallocated, we mark sure they are splited, but 3001 * still keep the range to write as uninitialized. 3002 * 3003 * The unwrritten extents will be converted to written when DIO is completed. 3004 * For async direct IO, since the IO may still pending when return, we 3005 * set up an end_io call back function, which will do the conversion 3006 * when async direct IO completed. 3007 * 3008 * If the O_DIRECT write will extend the file then add this inode to the 3009 * orphan list. So recovery will truncate it back to the original size 3010 * if the machine crashes during the write. 3011 * 3012 */ 3013 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3014 const struct iovec *iov, loff_t offset, 3015 unsigned long nr_segs) 3016 { 3017 struct file *file = iocb->ki_filp; 3018 struct inode *inode = file->f_mapping->host; 3019 ssize_t ret; 3020 size_t count = iov_length(iov, nr_segs); 3021 3022 loff_t final_size = offset + count; 3023 if (rw == WRITE && final_size <= inode->i_size) { 3024 int overwrite = 0; 3025 3026 BUG_ON(iocb->private == NULL); 3027 3028 /* If we do a overwrite dio, i_mutex locking can be released */ 3029 overwrite = *((int *)iocb->private); 3030 3031 if (overwrite) { 3032 down_read(&EXT4_I(inode)->i_data_sem); 3033 mutex_unlock(&inode->i_mutex); 3034 } 3035 3036 /* 3037 * We could direct write to holes and fallocate. 3038 * 3039 * Allocated blocks to fill the hole are marked as uninitialized 3040 * to prevent parallel buffered read to expose the stale data 3041 * before DIO complete the data IO. 3042 * 3043 * As to previously fallocated extents, ext4 get_block 3044 * will just simply mark the buffer mapped but still 3045 * keep the extents uninitialized. 3046 * 3047 * for non AIO case, we will convert those unwritten extents 3048 * to written after return back from blockdev_direct_IO. 3049 * 3050 * for async DIO, the conversion needs to be defered when 3051 * the IO is completed. The ext4 end_io callback function 3052 * will be called to take care of the conversion work. 3053 * Here for async case, we allocate an io_end structure to 3054 * hook to the iocb. 3055 */ 3056 iocb->private = NULL; 3057 EXT4_I(inode)->cur_aio_dio = NULL; 3058 if (!is_sync_kiocb(iocb)) { 3059 ext4_io_end_t *io_end = 3060 ext4_init_io_end(inode, GFP_NOFS); 3061 if (!io_end) { 3062 ret = -ENOMEM; 3063 goto retake_lock; 3064 } 3065 io_end->flag |= EXT4_IO_END_DIRECT; 3066 iocb->private = io_end; 3067 /* 3068 * we save the io structure for current async 3069 * direct IO, so that later ext4_map_blocks() 3070 * could flag the io structure whether there 3071 * is a unwritten extents needs to be converted 3072 * when IO is completed. 3073 */ 3074 EXT4_I(inode)->cur_aio_dio = iocb->private; 3075 } 3076 3077 if (overwrite) 3078 ret = __blockdev_direct_IO(rw, iocb, inode, 3079 inode->i_sb->s_bdev, iov, 3080 offset, nr_segs, 3081 ext4_get_block_write_nolock, 3082 ext4_end_io_dio, 3083 NULL, 3084 0); 3085 else 3086 ret = __blockdev_direct_IO(rw, iocb, inode, 3087 inode->i_sb->s_bdev, iov, 3088 offset, nr_segs, 3089 ext4_get_block_write, 3090 ext4_end_io_dio, 3091 NULL, 3092 DIO_LOCKING); 3093 if (iocb->private) 3094 EXT4_I(inode)->cur_aio_dio = NULL; 3095 /* 3096 * The io_end structure takes a reference to the inode, 3097 * that structure needs to be destroyed and the 3098 * reference to the inode need to be dropped, when IO is 3099 * complete, even with 0 byte write, or failed. 3100 * 3101 * In the successful AIO DIO case, the io_end structure will be 3102 * desctroyed and the reference to the inode will be dropped 3103 * after the end_io call back function is called. 3104 * 3105 * In the case there is 0 byte write, or error case, since 3106 * VFS direct IO won't invoke the end_io call back function, 3107 * we need to free the end_io structure here. 3108 */ 3109 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3110 ext4_free_io_end(iocb->private); 3111 iocb->private = NULL; 3112 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3113 EXT4_STATE_DIO_UNWRITTEN)) { 3114 int err; 3115 /* 3116 * for non AIO case, since the IO is already 3117 * completed, we could do the conversion right here 3118 */ 3119 err = ext4_convert_unwritten_extents(inode, 3120 offset, ret); 3121 if (err < 0) 3122 ret = err; 3123 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3124 } 3125 3126 retake_lock: 3127 /* take i_mutex locking again if we do a ovewrite dio */ 3128 if (overwrite) { 3129 up_read(&EXT4_I(inode)->i_data_sem); 3130 mutex_lock(&inode->i_mutex); 3131 } 3132 3133 return ret; 3134 } 3135 3136 /* for write the the end of file case, we fall back to old way */ 3137 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3138 } 3139 3140 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3141 const struct iovec *iov, loff_t offset, 3142 unsigned long nr_segs) 3143 { 3144 struct file *file = iocb->ki_filp; 3145 struct inode *inode = file->f_mapping->host; 3146 ssize_t ret; 3147 3148 /* 3149 * If we are doing data journalling we don't support O_DIRECT 3150 */ 3151 if (ext4_should_journal_data(inode)) 3152 return 0; 3153 3154 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3155 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3156 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3157 else 3158 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3159 trace_ext4_direct_IO_exit(inode, offset, 3160 iov_length(iov, nr_segs), rw, ret); 3161 return ret; 3162 } 3163 3164 /* 3165 * Pages can be marked dirty completely asynchronously from ext4's journalling 3166 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3167 * much here because ->set_page_dirty is called under VFS locks. The page is 3168 * not necessarily locked. 3169 * 3170 * We cannot just dirty the page and leave attached buffers clean, because the 3171 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3172 * or jbddirty because all the journalling code will explode. 3173 * 3174 * So what we do is to mark the page "pending dirty" and next time writepage 3175 * is called, propagate that into the buffers appropriately. 3176 */ 3177 static int ext4_journalled_set_page_dirty(struct page *page) 3178 { 3179 SetPageChecked(page); 3180 return __set_page_dirty_nobuffers(page); 3181 } 3182 3183 static const struct address_space_operations ext4_ordered_aops = { 3184 .readpage = ext4_readpage, 3185 .readpages = ext4_readpages, 3186 .writepage = ext4_writepage, 3187 .write_begin = ext4_write_begin, 3188 .write_end = ext4_ordered_write_end, 3189 .bmap = ext4_bmap, 3190 .invalidatepage = ext4_invalidatepage, 3191 .releasepage = ext4_releasepage, 3192 .direct_IO = ext4_direct_IO, 3193 .migratepage = buffer_migrate_page, 3194 .is_partially_uptodate = block_is_partially_uptodate, 3195 .error_remove_page = generic_error_remove_page, 3196 }; 3197 3198 static const struct address_space_operations ext4_writeback_aops = { 3199 .readpage = ext4_readpage, 3200 .readpages = ext4_readpages, 3201 .writepage = ext4_writepage, 3202 .write_begin = ext4_write_begin, 3203 .write_end = ext4_writeback_write_end, 3204 .bmap = ext4_bmap, 3205 .invalidatepage = ext4_invalidatepage, 3206 .releasepage = ext4_releasepage, 3207 .direct_IO = ext4_direct_IO, 3208 .migratepage = buffer_migrate_page, 3209 .is_partially_uptodate = block_is_partially_uptodate, 3210 .error_remove_page = generic_error_remove_page, 3211 }; 3212 3213 static const struct address_space_operations ext4_journalled_aops = { 3214 .readpage = ext4_readpage, 3215 .readpages = ext4_readpages, 3216 .writepage = ext4_writepage, 3217 .write_begin = ext4_write_begin, 3218 .write_end = ext4_journalled_write_end, 3219 .set_page_dirty = ext4_journalled_set_page_dirty, 3220 .bmap = ext4_bmap, 3221 .invalidatepage = ext4_invalidatepage, 3222 .releasepage = ext4_releasepage, 3223 .direct_IO = ext4_direct_IO, 3224 .is_partially_uptodate = block_is_partially_uptodate, 3225 .error_remove_page = generic_error_remove_page, 3226 }; 3227 3228 static const struct address_space_operations ext4_da_aops = { 3229 .readpage = ext4_readpage, 3230 .readpages = ext4_readpages, 3231 .writepage = ext4_writepage, 3232 .writepages = ext4_da_writepages, 3233 .write_begin = ext4_da_write_begin, 3234 .write_end = ext4_da_write_end, 3235 .bmap = ext4_bmap, 3236 .invalidatepage = ext4_da_invalidatepage, 3237 .releasepage = ext4_releasepage, 3238 .direct_IO = ext4_direct_IO, 3239 .migratepage = buffer_migrate_page, 3240 .is_partially_uptodate = block_is_partially_uptodate, 3241 .error_remove_page = generic_error_remove_page, 3242 }; 3243 3244 void ext4_set_aops(struct inode *inode) 3245 { 3246 switch (ext4_inode_journal_mode(inode)) { 3247 case EXT4_INODE_ORDERED_DATA_MODE: 3248 if (test_opt(inode->i_sb, DELALLOC)) 3249 inode->i_mapping->a_ops = &ext4_da_aops; 3250 else 3251 inode->i_mapping->a_ops = &ext4_ordered_aops; 3252 break; 3253 case EXT4_INODE_WRITEBACK_DATA_MODE: 3254 if (test_opt(inode->i_sb, DELALLOC)) 3255 inode->i_mapping->a_ops = &ext4_da_aops; 3256 else 3257 inode->i_mapping->a_ops = &ext4_writeback_aops; 3258 break; 3259 case EXT4_INODE_JOURNAL_DATA_MODE: 3260 inode->i_mapping->a_ops = &ext4_journalled_aops; 3261 break; 3262 default: 3263 BUG(); 3264 } 3265 } 3266 3267 3268 /* 3269 * ext4_discard_partial_page_buffers() 3270 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3271 * This function finds and locks the page containing the offset 3272 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3273 * Calling functions that already have the page locked should call 3274 * ext4_discard_partial_page_buffers_no_lock directly. 3275 */ 3276 int ext4_discard_partial_page_buffers(handle_t *handle, 3277 struct address_space *mapping, loff_t from, 3278 loff_t length, int flags) 3279 { 3280 struct inode *inode = mapping->host; 3281 struct page *page; 3282 int err = 0; 3283 3284 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3285 mapping_gfp_mask(mapping) & ~__GFP_FS); 3286 if (!page) 3287 return -ENOMEM; 3288 3289 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3290 from, length, flags); 3291 3292 unlock_page(page); 3293 page_cache_release(page); 3294 return err; 3295 } 3296 3297 /* 3298 * ext4_discard_partial_page_buffers_no_lock() 3299 * Zeros a page range of length 'length' starting from offset 'from'. 3300 * Buffer heads that correspond to the block aligned regions of the 3301 * zeroed range will be unmapped. Unblock aligned regions 3302 * will have the corresponding buffer head mapped if needed so that 3303 * that region of the page can be updated with the partial zero out. 3304 * 3305 * This function assumes that the page has already been locked. The 3306 * The range to be discarded must be contained with in the given page. 3307 * If the specified range exceeds the end of the page it will be shortened 3308 * to the end of the page that corresponds to 'from'. This function is 3309 * appropriate for updating a page and it buffer heads to be unmapped and 3310 * zeroed for blocks that have been either released, or are going to be 3311 * released. 3312 * 3313 * handle: The journal handle 3314 * inode: The files inode 3315 * page: A locked page that contains the offset "from" 3316 * from: The starting byte offset (from the begining of the file) 3317 * to begin discarding 3318 * len: The length of bytes to discard 3319 * flags: Optional flags that may be used: 3320 * 3321 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3322 * Only zero the regions of the page whose buffer heads 3323 * have already been unmapped. This flag is appropriate 3324 * for updateing the contents of a page whose blocks may 3325 * have already been released, and we only want to zero 3326 * out the regions that correspond to those released blocks. 3327 * 3328 * Returns zero on sucess or negative on failure. 3329 */ 3330 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3331 struct inode *inode, struct page *page, loff_t from, 3332 loff_t length, int flags) 3333 { 3334 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3335 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3336 unsigned int blocksize, max, pos; 3337 ext4_lblk_t iblock; 3338 struct buffer_head *bh; 3339 int err = 0; 3340 3341 blocksize = inode->i_sb->s_blocksize; 3342 max = PAGE_CACHE_SIZE - offset; 3343 3344 if (index != page->index) 3345 return -EINVAL; 3346 3347 /* 3348 * correct length if it does not fall between 3349 * 'from' and the end of the page 3350 */ 3351 if (length > max || length < 0) 3352 length = max; 3353 3354 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3355 3356 if (!page_has_buffers(page)) 3357 create_empty_buffers(page, blocksize, 0); 3358 3359 /* Find the buffer that contains "offset" */ 3360 bh = page_buffers(page); 3361 pos = blocksize; 3362 while (offset >= pos) { 3363 bh = bh->b_this_page; 3364 iblock++; 3365 pos += blocksize; 3366 } 3367 3368 pos = offset; 3369 while (pos < offset + length) { 3370 unsigned int end_of_block, range_to_discard; 3371 3372 err = 0; 3373 3374 /* The length of space left to zero and unmap */ 3375 range_to_discard = offset + length - pos; 3376 3377 /* The length of space until the end of the block */ 3378 end_of_block = blocksize - (pos & (blocksize-1)); 3379 3380 /* 3381 * Do not unmap or zero past end of block 3382 * for this buffer head 3383 */ 3384 if (range_to_discard > end_of_block) 3385 range_to_discard = end_of_block; 3386 3387 3388 /* 3389 * Skip this buffer head if we are only zeroing unampped 3390 * regions of the page 3391 */ 3392 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3393 buffer_mapped(bh)) 3394 goto next; 3395 3396 /* If the range is block aligned, unmap */ 3397 if (range_to_discard == blocksize) { 3398 clear_buffer_dirty(bh); 3399 bh->b_bdev = NULL; 3400 clear_buffer_mapped(bh); 3401 clear_buffer_req(bh); 3402 clear_buffer_new(bh); 3403 clear_buffer_delay(bh); 3404 clear_buffer_unwritten(bh); 3405 clear_buffer_uptodate(bh); 3406 zero_user(page, pos, range_to_discard); 3407 BUFFER_TRACE(bh, "Buffer discarded"); 3408 goto next; 3409 } 3410 3411 /* 3412 * If this block is not completely contained in the range 3413 * to be discarded, then it is not going to be released. Because 3414 * we need to keep this block, we need to make sure this part 3415 * of the page is uptodate before we modify it by writeing 3416 * partial zeros on it. 3417 */ 3418 if (!buffer_mapped(bh)) { 3419 /* 3420 * Buffer head must be mapped before we can read 3421 * from the block 3422 */ 3423 BUFFER_TRACE(bh, "unmapped"); 3424 ext4_get_block(inode, iblock, bh, 0); 3425 /* unmapped? It's a hole - nothing to do */ 3426 if (!buffer_mapped(bh)) { 3427 BUFFER_TRACE(bh, "still unmapped"); 3428 goto next; 3429 } 3430 } 3431 3432 /* Ok, it's mapped. Make sure it's up-to-date */ 3433 if (PageUptodate(page)) 3434 set_buffer_uptodate(bh); 3435 3436 if (!buffer_uptodate(bh)) { 3437 err = -EIO; 3438 ll_rw_block(READ, 1, &bh); 3439 wait_on_buffer(bh); 3440 /* Uhhuh. Read error. Complain and punt.*/ 3441 if (!buffer_uptodate(bh)) 3442 goto next; 3443 } 3444 3445 if (ext4_should_journal_data(inode)) { 3446 BUFFER_TRACE(bh, "get write access"); 3447 err = ext4_journal_get_write_access(handle, bh); 3448 if (err) 3449 goto next; 3450 } 3451 3452 zero_user(page, pos, range_to_discard); 3453 3454 err = 0; 3455 if (ext4_should_journal_data(inode)) { 3456 err = ext4_handle_dirty_metadata(handle, inode, bh); 3457 } else 3458 mark_buffer_dirty(bh); 3459 3460 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3461 next: 3462 bh = bh->b_this_page; 3463 iblock++; 3464 pos += range_to_discard; 3465 } 3466 3467 return err; 3468 } 3469 3470 int ext4_can_truncate(struct inode *inode) 3471 { 3472 if (S_ISREG(inode->i_mode)) 3473 return 1; 3474 if (S_ISDIR(inode->i_mode)) 3475 return 1; 3476 if (S_ISLNK(inode->i_mode)) 3477 return !ext4_inode_is_fast_symlink(inode); 3478 return 0; 3479 } 3480 3481 /* 3482 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3483 * associated with the given offset and length 3484 * 3485 * @inode: File inode 3486 * @offset: The offset where the hole will begin 3487 * @len: The length of the hole 3488 * 3489 * Returns: 0 on sucess or negative on failure 3490 */ 3491 3492 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3493 { 3494 struct inode *inode = file->f_path.dentry->d_inode; 3495 if (!S_ISREG(inode->i_mode)) 3496 return -EOPNOTSUPP; 3497 3498 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3499 /* TODO: Add support for non extent hole punching */ 3500 return -EOPNOTSUPP; 3501 } 3502 3503 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3504 /* TODO: Add support for bigalloc file systems */ 3505 return -EOPNOTSUPP; 3506 } 3507 3508 return ext4_ext_punch_hole(file, offset, length); 3509 } 3510 3511 /* 3512 * ext4_truncate() 3513 * 3514 * We block out ext4_get_block() block instantiations across the entire 3515 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3516 * simultaneously on behalf of the same inode. 3517 * 3518 * As we work through the truncate and commit bits of it to the journal there 3519 * is one core, guiding principle: the file's tree must always be consistent on 3520 * disk. We must be able to restart the truncate after a crash. 3521 * 3522 * The file's tree may be transiently inconsistent in memory (although it 3523 * probably isn't), but whenever we close off and commit a journal transaction, 3524 * the contents of (the filesystem + the journal) must be consistent and 3525 * restartable. It's pretty simple, really: bottom up, right to left (although 3526 * left-to-right works OK too). 3527 * 3528 * Note that at recovery time, journal replay occurs *before* the restart of 3529 * truncate against the orphan inode list. 3530 * 3531 * The committed inode has the new, desired i_size (which is the same as 3532 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3533 * that this inode's truncate did not complete and it will again call 3534 * ext4_truncate() to have another go. So there will be instantiated blocks 3535 * to the right of the truncation point in a crashed ext4 filesystem. But 3536 * that's fine - as long as they are linked from the inode, the post-crash 3537 * ext4_truncate() run will find them and release them. 3538 */ 3539 void ext4_truncate(struct inode *inode) 3540 { 3541 trace_ext4_truncate_enter(inode); 3542 3543 if (!ext4_can_truncate(inode)) 3544 return; 3545 3546 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3547 3548 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3549 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3550 3551 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3552 ext4_ext_truncate(inode); 3553 else 3554 ext4_ind_truncate(inode); 3555 3556 trace_ext4_truncate_exit(inode); 3557 } 3558 3559 /* 3560 * ext4_get_inode_loc returns with an extra refcount against the inode's 3561 * underlying buffer_head on success. If 'in_mem' is true, we have all 3562 * data in memory that is needed to recreate the on-disk version of this 3563 * inode. 3564 */ 3565 static int __ext4_get_inode_loc(struct inode *inode, 3566 struct ext4_iloc *iloc, int in_mem) 3567 { 3568 struct ext4_group_desc *gdp; 3569 struct buffer_head *bh; 3570 struct super_block *sb = inode->i_sb; 3571 ext4_fsblk_t block; 3572 int inodes_per_block, inode_offset; 3573 3574 iloc->bh = NULL; 3575 if (!ext4_valid_inum(sb, inode->i_ino)) 3576 return -EIO; 3577 3578 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3579 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3580 if (!gdp) 3581 return -EIO; 3582 3583 /* 3584 * Figure out the offset within the block group inode table 3585 */ 3586 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3587 inode_offset = ((inode->i_ino - 1) % 3588 EXT4_INODES_PER_GROUP(sb)); 3589 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3590 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3591 3592 bh = sb_getblk(sb, block); 3593 if (!bh) { 3594 EXT4_ERROR_INODE_BLOCK(inode, block, 3595 "unable to read itable block"); 3596 return -EIO; 3597 } 3598 if (!buffer_uptodate(bh)) { 3599 lock_buffer(bh); 3600 3601 /* 3602 * If the buffer has the write error flag, we have failed 3603 * to write out another inode in the same block. In this 3604 * case, we don't have to read the block because we may 3605 * read the old inode data successfully. 3606 */ 3607 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3608 set_buffer_uptodate(bh); 3609 3610 if (buffer_uptodate(bh)) { 3611 /* someone brought it uptodate while we waited */ 3612 unlock_buffer(bh); 3613 goto has_buffer; 3614 } 3615 3616 /* 3617 * If we have all information of the inode in memory and this 3618 * is the only valid inode in the block, we need not read the 3619 * block. 3620 */ 3621 if (in_mem) { 3622 struct buffer_head *bitmap_bh; 3623 int i, start; 3624 3625 start = inode_offset & ~(inodes_per_block - 1); 3626 3627 /* Is the inode bitmap in cache? */ 3628 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3629 if (!bitmap_bh) 3630 goto make_io; 3631 3632 /* 3633 * If the inode bitmap isn't in cache then the 3634 * optimisation may end up performing two reads instead 3635 * of one, so skip it. 3636 */ 3637 if (!buffer_uptodate(bitmap_bh)) { 3638 brelse(bitmap_bh); 3639 goto make_io; 3640 } 3641 for (i = start; i < start + inodes_per_block; i++) { 3642 if (i == inode_offset) 3643 continue; 3644 if (ext4_test_bit(i, bitmap_bh->b_data)) 3645 break; 3646 } 3647 brelse(bitmap_bh); 3648 if (i == start + inodes_per_block) { 3649 /* all other inodes are free, so skip I/O */ 3650 memset(bh->b_data, 0, bh->b_size); 3651 set_buffer_uptodate(bh); 3652 unlock_buffer(bh); 3653 goto has_buffer; 3654 } 3655 } 3656 3657 make_io: 3658 /* 3659 * If we need to do any I/O, try to pre-readahead extra 3660 * blocks from the inode table. 3661 */ 3662 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3663 ext4_fsblk_t b, end, table; 3664 unsigned num; 3665 3666 table = ext4_inode_table(sb, gdp); 3667 /* s_inode_readahead_blks is always a power of 2 */ 3668 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3669 if (table > b) 3670 b = table; 3671 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3672 num = EXT4_INODES_PER_GROUP(sb); 3673 if (ext4_has_group_desc_csum(sb)) 3674 num -= ext4_itable_unused_count(sb, gdp); 3675 table += num / inodes_per_block; 3676 if (end > table) 3677 end = table; 3678 while (b <= end) 3679 sb_breadahead(sb, b++); 3680 } 3681 3682 /* 3683 * There are other valid inodes in the buffer, this inode 3684 * has in-inode xattrs, or we don't have this inode in memory. 3685 * Read the block from disk. 3686 */ 3687 trace_ext4_load_inode(inode); 3688 get_bh(bh); 3689 bh->b_end_io = end_buffer_read_sync; 3690 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3691 wait_on_buffer(bh); 3692 if (!buffer_uptodate(bh)) { 3693 EXT4_ERROR_INODE_BLOCK(inode, block, 3694 "unable to read itable block"); 3695 brelse(bh); 3696 return -EIO; 3697 } 3698 } 3699 has_buffer: 3700 iloc->bh = bh; 3701 return 0; 3702 } 3703 3704 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3705 { 3706 /* We have all inode data except xattrs in memory here. */ 3707 return __ext4_get_inode_loc(inode, iloc, 3708 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3709 } 3710 3711 void ext4_set_inode_flags(struct inode *inode) 3712 { 3713 unsigned int flags = EXT4_I(inode)->i_flags; 3714 3715 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3716 if (flags & EXT4_SYNC_FL) 3717 inode->i_flags |= S_SYNC; 3718 if (flags & EXT4_APPEND_FL) 3719 inode->i_flags |= S_APPEND; 3720 if (flags & EXT4_IMMUTABLE_FL) 3721 inode->i_flags |= S_IMMUTABLE; 3722 if (flags & EXT4_NOATIME_FL) 3723 inode->i_flags |= S_NOATIME; 3724 if (flags & EXT4_DIRSYNC_FL) 3725 inode->i_flags |= S_DIRSYNC; 3726 } 3727 3728 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3729 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3730 { 3731 unsigned int vfs_fl; 3732 unsigned long old_fl, new_fl; 3733 3734 do { 3735 vfs_fl = ei->vfs_inode.i_flags; 3736 old_fl = ei->i_flags; 3737 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3738 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3739 EXT4_DIRSYNC_FL); 3740 if (vfs_fl & S_SYNC) 3741 new_fl |= EXT4_SYNC_FL; 3742 if (vfs_fl & S_APPEND) 3743 new_fl |= EXT4_APPEND_FL; 3744 if (vfs_fl & S_IMMUTABLE) 3745 new_fl |= EXT4_IMMUTABLE_FL; 3746 if (vfs_fl & S_NOATIME) 3747 new_fl |= EXT4_NOATIME_FL; 3748 if (vfs_fl & S_DIRSYNC) 3749 new_fl |= EXT4_DIRSYNC_FL; 3750 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3751 } 3752 3753 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3754 struct ext4_inode_info *ei) 3755 { 3756 blkcnt_t i_blocks ; 3757 struct inode *inode = &(ei->vfs_inode); 3758 struct super_block *sb = inode->i_sb; 3759 3760 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3761 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3762 /* we are using combined 48 bit field */ 3763 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3764 le32_to_cpu(raw_inode->i_blocks_lo); 3765 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3766 /* i_blocks represent file system block size */ 3767 return i_blocks << (inode->i_blkbits - 9); 3768 } else { 3769 return i_blocks; 3770 } 3771 } else { 3772 return le32_to_cpu(raw_inode->i_blocks_lo); 3773 } 3774 } 3775 3776 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3777 { 3778 struct ext4_iloc iloc; 3779 struct ext4_inode *raw_inode; 3780 struct ext4_inode_info *ei; 3781 struct inode *inode; 3782 journal_t *journal = EXT4_SB(sb)->s_journal; 3783 long ret; 3784 int block; 3785 uid_t i_uid; 3786 gid_t i_gid; 3787 3788 inode = iget_locked(sb, ino); 3789 if (!inode) 3790 return ERR_PTR(-ENOMEM); 3791 if (!(inode->i_state & I_NEW)) 3792 return inode; 3793 3794 ei = EXT4_I(inode); 3795 iloc.bh = NULL; 3796 3797 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3798 if (ret < 0) 3799 goto bad_inode; 3800 raw_inode = ext4_raw_inode(&iloc); 3801 3802 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3803 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3804 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3805 EXT4_INODE_SIZE(inode->i_sb)) { 3806 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3807 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3808 EXT4_INODE_SIZE(inode->i_sb)); 3809 ret = -EIO; 3810 goto bad_inode; 3811 } 3812 } else 3813 ei->i_extra_isize = 0; 3814 3815 /* Precompute checksum seed for inode metadata */ 3816 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3817 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3818 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3819 __u32 csum; 3820 __le32 inum = cpu_to_le32(inode->i_ino); 3821 __le32 gen = raw_inode->i_generation; 3822 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3823 sizeof(inum)); 3824 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3825 sizeof(gen)); 3826 } 3827 3828 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3829 EXT4_ERROR_INODE(inode, "checksum invalid"); 3830 ret = -EIO; 3831 goto bad_inode; 3832 } 3833 3834 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3835 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3836 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3837 if (!(test_opt(inode->i_sb, NO_UID32))) { 3838 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3839 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3840 } 3841 i_uid_write(inode, i_uid); 3842 i_gid_write(inode, i_gid); 3843 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3844 3845 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3846 ei->i_dir_start_lookup = 0; 3847 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3848 /* We now have enough fields to check if the inode was active or not. 3849 * This is needed because nfsd might try to access dead inodes 3850 * the test is that same one that e2fsck uses 3851 * NeilBrown 1999oct15 3852 */ 3853 if (inode->i_nlink == 0) { 3854 if (inode->i_mode == 0 || 3855 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3856 /* this inode is deleted */ 3857 ret = -ESTALE; 3858 goto bad_inode; 3859 } 3860 /* The only unlinked inodes we let through here have 3861 * valid i_mode and are being read by the orphan 3862 * recovery code: that's fine, we're about to complete 3863 * the process of deleting those. */ 3864 } 3865 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3866 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3867 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3868 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3869 ei->i_file_acl |= 3870 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3871 inode->i_size = ext4_isize(raw_inode); 3872 ei->i_disksize = inode->i_size; 3873 #ifdef CONFIG_QUOTA 3874 ei->i_reserved_quota = 0; 3875 #endif 3876 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3877 ei->i_block_group = iloc.block_group; 3878 ei->i_last_alloc_group = ~0; 3879 /* 3880 * NOTE! The in-memory inode i_data array is in little-endian order 3881 * even on big-endian machines: we do NOT byteswap the block numbers! 3882 */ 3883 for (block = 0; block < EXT4_N_BLOCKS; block++) 3884 ei->i_data[block] = raw_inode->i_block[block]; 3885 INIT_LIST_HEAD(&ei->i_orphan); 3886 3887 /* 3888 * Set transaction id's of transactions that have to be committed 3889 * to finish f[data]sync. We set them to currently running transaction 3890 * as we cannot be sure that the inode or some of its metadata isn't 3891 * part of the transaction - the inode could have been reclaimed and 3892 * now it is reread from disk. 3893 */ 3894 if (journal) { 3895 transaction_t *transaction; 3896 tid_t tid; 3897 3898 read_lock(&journal->j_state_lock); 3899 if (journal->j_running_transaction) 3900 transaction = journal->j_running_transaction; 3901 else 3902 transaction = journal->j_committing_transaction; 3903 if (transaction) 3904 tid = transaction->t_tid; 3905 else 3906 tid = journal->j_commit_sequence; 3907 read_unlock(&journal->j_state_lock); 3908 ei->i_sync_tid = tid; 3909 ei->i_datasync_tid = tid; 3910 } 3911 3912 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3913 if (ei->i_extra_isize == 0) { 3914 /* The extra space is currently unused. Use it. */ 3915 ei->i_extra_isize = sizeof(struct ext4_inode) - 3916 EXT4_GOOD_OLD_INODE_SIZE; 3917 } else { 3918 __le32 *magic = (void *)raw_inode + 3919 EXT4_GOOD_OLD_INODE_SIZE + 3920 ei->i_extra_isize; 3921 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3922 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3923 } 3924 } 3925 3926 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3927 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3928 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3929 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3930 3931 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3932 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3933 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3934 inode->i_version |= 3935 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3936 } 3937 3938 ret = 0; 3939 if (ei->i_file_acl && 3940 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3941 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3942 ei->i_file_acl); 3943 ret = -EIO; 3944 goto bad_inode; 3945 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3946 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3947 (S_ISLNK(inode->i_mode) && 3948 !ext4_inode_is_fast_symlink(inode))) 3949 /* Validate extent which is part of inode */ 3950 ret = ext4_ext_check_inode(inode); 3951 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3952 (S_ISLNK(inode->i_mode) && 3953 !ext4_inode_is_fast_symlink(inode))) { 3954 /* Validate block references which are part of inode */ 3955 ret = ext4_ind_check_inode(inode); 3956 } 3957 if (ret) 3958 goto bad_inode; 3959 3960 if (S_ISREG(inode->i_mode)) { 3961 inode->i_op = &ext4_file_inode_operations; 3962 inode->i_fop = &ext4_file_operations; 3963 ext4_set_aops(inode); 3964 } else if (S_ISDIR(inode->i_mode)) { 3965 inode->i_op = &ext4_dir_inode_operations; 3966 inode->i_fop = &ext4_dir_operations; 3967 } else if (S_ISLNK(inode->i_mode)) { 3968 if (ext4_inode_is_fast_symlink(inode)) { 3969 inode->i_op = &ext4_fast_symlink_inode_operations; 3970 nd_terminate_link(ei->i_data, inode->i_size, 3971 sizeof(ei->i_data) - 1); 3972 } else { 3973 inode->i_op = &ext4_symlink_inode_operations; 3974 ext4_set_aops(inode); 3975 } 3976 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3977 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3978 inode->i_op = &ext4_special_inode_operations; 3979 if (raw_inode->i_block[0]) 3980 init_special_inode(inode, inode->i_mode, 3981 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3982 else 3983 init_special_inode(inode, inode->i_mode, 3984 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3985 } else { 3986 ret = -EIO; 3987 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3988 goto bad_inode; 3989 } 3990 brelse(iloc.bh); 3991 ext4_set_inode_flags(inode); 3992 unlock_new_inode(inode); 3993 return inode; 3994 3995 bad_inode: 3996 brelse(iloc.bh); 3997 iget_failed(inode); 3998 return ERR_PTR(ret); 3999 } 4000 4001 static int ext4_inode_blocks_set(handle_t *handle, 4002 struct ext4_inode *raw_inode, 4003 struct ext4_inode_info *ei) 4004 { 4005 struct inode *inode = &(ei->vfs_inode); 4006 u64 i_blocks = inode->i_blocks; 4007 struct super_block *sb = inode->i_sb; 4008 4009 if (i_blocks <= ~0U) { 4010 /* 4011 * i_blocks can be represnted in a 32 bit variable 4012 * as multiple of 512 bytes 4013 */ 4014 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4015 raw_inode->i_blocks_high = 0; 4016 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4017 return 0; 4018 } 4019 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4020 return -EFBIG; 4021 4022 if (i_blocks <= 0xffffffffffffULL) { 4023 /* 4024 * i_blocks can be represented in a 48 bit variable 4025 * as multiple of 512 bytes 4026 */ 4027 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4028 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4029 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4030 } else { 4031 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4032 /* i_block is stored in file system block size */ 4033 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4034 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4035 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4036 } 4037 return 0; 4038 } 4039 4040 /* 4041 * Post the struct inode info into an on-disk inode location in the 4042 * buffer-cache. This gobbles the caller's reference to the 4043 * buffer_head in the inode location struct. 4044 * 4045 * The caller must have write access to iloc->bh. 4046 */ 4047 static int ext4_do_update_inode(handle_t *handle, 4048 struct inode *inode, 4049 struct ext4_iloc *iloc) 4050 { 4051 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4052 struct ext4_inode_info *ei = EXT4_I(inode); 4053 struct buffer_head *bh = iloc->bh; 4054 int err = 0, rc, block; 4055 uid_t i_uid; 4056 gid_t i_gid; 4057 4058 /* For fields not not tracking in the in-memory inode, 4059 * initialise them to zero for new inodes. */ 4060 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4061 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4062 4063 ext4_get_inode_flags(ei); 4064 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4065 i_uid = i_uid_read(inode); 4066 i_gid = i_gid_read(inode); 4067 if (!(test_opt(inode->i_sb, NO_UID32))) { 4068 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4069 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4070 /* 4071 * Fix up interoperability with old kernels. Otherwise, old inodes get 4072 * re-used with the upper 16 bits of the uid/gid intact 4073 */ 4074 if (!ei->i_dtime) { 4075 raw_inode->i_uid_high = 4076 cpu_to_le16(high_16_bits(i_uid)); 4077 raw_inode->i_gid_high = 4078 cpu_to_le16(high_16_bits(i_gid)); 4079 } else { 4080 raw_inode->i_uid_high = 0; 4081 raw_inode->i_gid_high = 0; 4082 } 4083 } else { 4084 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4085 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4086 raw_inode->i_uid_high = 0; 4087 raw_inode->i_gid_high = 0; 4088 } 4089 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4090 4091 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4092 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4093 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4094 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4095 4096 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4097 goto out_brelse; 4098 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4099 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4100 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4101 cpu_to_le32(EXT4_OS_HURD)) 4102 raw_inode->i_file_acl_high = 4103 cpu_to_le16(ei->i_file_acl >> 32); 4104 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4105 ext4_isize_set(raw_inode, ei->i_disksize); 4106 if (ei->i_disksize > 0x7fffffffULL) { 4107 struct super_block *sb = inode->i_sb; 4108 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4109 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4110 EXT4_SB(sb)->s_es->s_rev_level == 4111 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4112 /* If this is the first large file 4113 * created, add a flag to the superblock. 4114 */ 4115 err = ext4_journal_get_write_access(handle, 4116 EXT4_SB(sb)->s_sbh); 4117 if (err) 4118 goto out_brelse; 4119 ext4_update_dynamic_rev(sb); 4120 EXT4_SET_RO_COMPAT_FEATURE(sb, 4121 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4122 ext4_handle_sync(handle); 4123 err = ext4_handle_dirty_super(handle, sb); 4124 } 4125 } 4126 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4127 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4128 if (old_valid_dev(inode->i_rdev)) { 4129 raw_inode->i_block[0] = 4130 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4131 raw_inode->i_block[1] = 0; 4132 } else { 4133 raw_inode->i_block[0] = 0; 4134 raw_inode->i_block[1] = 4135 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4136 raw_inode->i_block[2] = 0; 4137 } 4138 } else 4139 for (block = 0; block < EXT4_N_BLOCKS; block++) 4140 raw_inode->i_block[block] = ei->i_data[block]; 4141 4142 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4143 if (ei->i_extra_isize) { 4144 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4145 raw_inode->i_version_hi = 4146 cpu_to_le32(inode->i_version >> 32); 4147 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4148 } 4149 4150 ext4_inode_csum_set(inode, raw_inode, ei); 4151 4152 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4153 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4154 if (!err) 4155 err = rc; 4156 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4157 4158 ext4_update_inode_fsync_trans(handle, inode, 0); 4159 out_brelse: 4160 brelse(bh); 4161 ext4_std_error(inode->i_sb, err); 4162 return err; 4163 } 4164 4165 /* 4166 * ext4_write_inode() 4167 * 4168 * We are called from a few places: 4169 * 4170 * - Within generic_file_write() for O_SYNC files. 4171 * Here, there will be no transaction running. We wait for any running 4172 * trasnaction to commit. 4173 * 4174 * - Within sys_sync(), kupdate and such. 4175 * We wait on commit, if tol to. 4176 * 4177 * - Within prune_icache() (PF_MEMALLOC == true) 4178 * Here we simply return. We can't afford to block kswapd on the 4179 * journal commit. 4180 * 4181 * In all cases it is actually safe for us to return without doing anything, 4182 * because the inode has been copied into a raw inode buffer in 4183 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4184 * knfsd. 4185 * 4186 * Note that we are absolutely dependent upon all inode dirtiers doing the 4187 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4188 * which we are interested. 4189 * 4190 * It would be a bug for them to not do this. The code: 4191 * 4192 * mark_inode_dirty(inode) 4193 * stuff(); 4194 * inode->i_size = expr; 4195 * 4196 * is in error because a kswapd-driven write_inode() could occur while 4197 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4198 * will no longer be on the superblock's dirty inode list. 4199 */ 4200 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4201 { 4202 int err; 4203 4204 if (current->flags & PF_MEMALLOC) 4205 return 0; 4206 4207 if (EXT4_SB(inode->i_sb)->s_journal) { 4208 if (ext4_journal_current_handle()) { 4209 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4210 dump_stack(); 4211 return -EIO; 4212 } 4213 4214 if (wbc->sync_mode != WB_SYNC_ALL) 4215 return 0; 4216 4217 err = ext4_force_commit(inode->i_sb); 4218 } else { 4219 struct ext4_iloc iloc; 4220 4221 err = __ext4_get_inode_loc(inode, &iloc, 0); 4222 if (err) 4223 return err; 4224 if (wbc->sync_mode == WB_SYNC_ALL) 4225 sync_dirty_buffer(iloc.bh); 4226 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4227 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4228 "IO error syncing inode"); 4229 err = -EIO; 4230 } 4231 brelse(iloc.bh); 4232 } 4233 return err; 4234 } 4235 4236 /* 4237 * ext4_setattr() 4238 * 4239 * Called from notify_change. 4240 * 4241 * We want to trap VFS attempts to truncate the file as soon as 4242 * possible. In particular, we want to make sure that when the VFS 4243 * shrinks i_size, we put the inode on the orphan list and modify 4244 * i_disksize immediately, so that during the subsequent flushing of 4245 * dirty pages and freeing of disk blocks, we can guarantee that any 4246 * commit will leave the blocks being flushed in an unused state on 4247 * disk. (On recovery, the inode will get truncated and the blocks will 4248 * be freed, so we have a strong guarantee that no future commit will 4249 * leave these blocks visible to the user.) 4250 * 4251 * Another thing we have to assure is that if we are in ordered mode 4252 * and inode is still attached to the committing transaction, we must 4253 * we start writeout of all the dirty pages which are being truncated. 4254 * This way we are sure that all the data written in the previous 4255 * transaction are already on disk (truncate waits for pages under 4256 * writeback). 4257 * 4258 * Called with inode->i_mutex down. 4259 */ 4260 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4261 { 4262 struct inode *inode = dentry->d_inode; 4263 int error, rc = 0; 4264 int orphan = 0; 4265 const unsigned int ia_valid = attr->ia_valid; 4266 4267 error = inode_change_ok(inode, attr); 4268 if (error) 4269 return error; 4270 4271 if (is_quota_modification(inode, attr)) 4272 dquot_initialize(inode); 4273 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4274 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4275 handle_t *handle; 4276 4277 /* (user+group)*(old+new) structure, inode write (sb, 4278 * inode block, ? - but truncate inode update has it) */ 4279 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4280 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4281 if (IS_ERR(handle)) { 4282 error = PTR_ERR(handle); 4283 goto err_out; 4284 } 4285 error = dquot_transfer(inode, attr); 4286 if (error) { 4287 ext4_journal_stop(handle); 4288 return error; 4289 } 4290 /* Update corresponding info in inode so that everything is in 4291 * one transaction */ 4292 if (attr->ia_valid & ATTR_UID) 4293 inode->i_uid = attr->ia_uid; 4294 if (attr->ia_valid & ATTR_GID) 4295 inode->i_gid = attr->ia_gid; 4296 error = ext4_mark_inode_dirty(handle, inode); 4297 ext4_journal_stop(handle); 4298 } 4299 4300 if (attr->ia_valid & ATTR_SIZE) { 4301 inode_dio_wait(inode); 4302 4303 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4305 4306 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4307 return -EFBIG; 4308 } 4309 } 4310 4311 if (S_ISREG(inode->i_mode) && 4312 attr->ia_valid & ATTR_SIZE && 4313 (attr->ia_size < inode->i_size)) { 4314 handle_t *handle; 4315 4316 handle = ext4_journal_start(inode, 3); 4317 if (IS_ERR(handle)) { 4318 error = PTR_ERR(handle); 4319 goto err_out; 4320 } 4321 if (ext4_handle_valid(handle)) { 4322 error = ext4_orphan_add(handle, inode); 4323 orphan = 1; 4324 } 4325 EXT4_I(inode)->i_disksize = attr->ia_size; 4326 rc = ext4_mark_inode_dirty(handle, inode); 4327 if (!error) 4328 error = rc; 4329 ext4_journal_stop(handle); 4330 4331 if (ext4_should_order_data(inode)) { 4332 error = ext4_begin_ordered_truncate(inode, 4333 attr->ia_size); 4334 if (error) { 4335 /* Do as much error cleanup as possible */ 4336 handle = ext4_journal_start(inode, 3); 4337 if (IS_ERR(handle)) { 4338 ext4_orphan_del(NULL, inode); 4339 goto err_out; 4340 } 4341 ext4_orphan_del(handle, inode); 4342 orphan = 0; 4343 ext4_journal_stop(handle); 4344 goto err_out; 4345 } 4346 } 4347 } 4348 4349 if (attr->ia_valid & ATTR_SIZE) { 4350 if (attr->ia_size != i_size_read(inode)) 4351 truncate_setsize(inode, attr->ia_size); 4352 ext4_truncate(inode); 4353 } 4354 4355 if (!rc) { 4356 setattr_copy(inode, attr); 4357 mark_inode_dirty(inode); 4358 } 4359 4360 /* 4361 * If the call to ext4_truncate failed to get a transaction handle at 4362 * all, we need to clean up the in-core orphan list manually. 4363 */ 4364 if (orphan && inode->i_nlink) 4365 ext4_orphan_del(NULL, inode); 4366 4367 if (!rc && (ia_valid & ATTR_MODE)) 4368 rc = ext4_acl_chmod(inode); 4369 4370 err_out: 4371 ext4_std_error(inode->i_sb, error); 4372 if (!error) 4373 error = rc; 4374 return error; 4375 } 4376 4377 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4378 struct kstat *stat) 4379 { 4380 struct inode *inode; 4381 unsigned long delalloc_blocks; 4382 4383 inode = dentry->d_inode; 4384 generic_fillattr(inode, stat); 4385 4386 /* 4387 * We can't update i_blocks if the block allocation is delayed 4388 * otherwise in the case of system crash before the real block 4389 * allocation is done, we will have i_blocks inconsistent with 4390 * on-disk file blocks. 4391 * We always keep i_blocks updated together with real 4392 * allocation. But to not confuse with user, stat 4393 * will return the blocks that include the delayed allocation 4394 * blocks for this file. 4395 */ 4396 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4397 EXT4_I(inode)->i_reserved_data_blocks); 4398 4399 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4400 return 0; 4401 } 4402 4403 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4404 { 4405 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4406 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4407 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4408 } 4409 4410 /* 4411 * Account for index blocks, block groups bitmaps and block group 4412 * descriptor blocks if modify datablocks and index blocks 4413 * worse case, the indexs blocks spread over different block groups 4414 * 4415 * If datablocks are discontiguous, they are possible to spread over 4416 * different block groups too. If they are contiuguous, with flexbg, 4417 * they could still across block group boundary. 4418 * 4419 * Also account for superblock, inode, quota and xattr blocks 4420 */ 4421 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4422 { 4423 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4424 int gdpblocks; 4425 int idxblocks; 4426 int ret = 0; 4427 4428 /* 4429 * How many index blocks need to touch to modify nrblocks? 4430 * The "Chunk" flag indicating whether the nrblocks is 4431 * physically contiguous on disk 4432 * 4433 * For Direct IO and fallocate, they calls get_block to allocate 4434 * one single extent at a time, so they could set the "Chunk" flag 4435 */ 4436 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4437 4438 ret = idxblocks; 4439 4440 /* 4441 * Now let's see how many group bitmaps and group descriptors need 4442 * to account 4443 */ 4444 groups = idxblocks; 4445 if (chunk) 4446 groups += 1; 4447 else 4448 groups += nrblocks; 4449 4450 gdpblocks = groups; 4451 if (groups > ngroups) 4452 groups = ngroups; 4453 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4454 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4455 4456 /* bitmaps and block group descriptor blocks */ 4457 ret += groups + gdpblocks; 4458 4459 /* Blocks for super block, inode, quota and xattr blocks */ 4460 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4461 4462 return ret; 4463 } 4464 4465 /* 4466 * Calculate the total number of credits to reserve to fit 4467 * the modification of a single pages into a single transaction, 4468 * which may include multiple chunks of block allocations. 4469 * 4470 * This could be called via ext4_write_begin() 4471 * 4472 * We need to consider the worse case, when 4473 * one new block per extent. 4474 */ 4475 int ext4_writepage_trans_blocks(struct inode *inode) 4476 { 4477 int bpp = ext4_journal_blocks_per_page(inode); 4478 int ret; 4479 4480 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4481 4482 /* Account for data blocks for journalled mode */ 4483 if (ext4_should_journal_data(inode)) 4484 ret += bpp; 4485 return ret; 4486 } 4487 4488 /* 4489 * Calculate the journal credits for a chunk of data modification. 4490 * 4491 * This is called from DIO, fallocate or whoever calling 4492 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4493 * 4494 * journal buffers for data blocks are not included here, as DIO 4495 * and fallocate do no need to journal data buffers. 4496 */ 4497 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4498 { 4499 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4500 } 4501 4502 /* 4503 * The caller must have previously called ext4_reserve_inode_write(). 4504 * Give this, we know that the caller already has write access to iloc->bh. 4505 */ 4506 int ext4_mark_iloc_dirty(handle_t *handle, 4507 struct inode *inode, struct ext4_iloc *iloc) 4508 { 4509 int err = 0; 4510 4511 if (IS_I_VERSION(inode)) 4512 inode_inc_iversion(inode); 4513 4514 /* the do_update_inode consumes one bh->b_count */ 4515 get_bh(iloc->bh); 4516 4517 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4518 err = ext4_do_update_inode(handle, inode, iloc); 4519 put_bh(iloc->bh); 4520 return err; 4521 } 4522 4523 /* 4524 * On success, We end up with an outstanding reference count against 4525 * iloc->bh. This _must_ be cleaned up later. 4526 */ 4527 4528 int 4529 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4530 struct ext4_iloc *iloc) 4531 { 4532 int err; 4533 4534 err = ext4_get_inode_loc(inode, iloc); 4535 if (!err) { 4536 BUFFER_TRACE(iloc->bh, "get_write_access"); 4537 err = ext4_journal_get_write_access(handle, iloc->bh); 4538 if (err) { 4539 brelse(iloc->bh); 4540 iloc->bh = NULL; 4541 } 4542 } 4543 ext4_std_error(inode->i_sb, err); 4544 return err; 4545 } 4546 4547 /* 4548 * Expand an inode by new_extra_isize bytes. 4549 * Returns 0 on success or negative error number on failure. 4550 */ 4551 static int ext4_expand_extra_isize(struct inode *inode, 4552 unsigned int new_extra_isize, 4553 struct ext4_iloc iloc, 4554 handle_t *handle) 4555 { 4556 struct ext4_inode *raw_inode; 4557 struct ext4_xattr_ibody_header *header; 4558 4559 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4560 return 0; 4561 4562 raw_inode = ext4_raw_inode(&iloc); 4563 4564 header = IHDR(inode, raw_inode); 4565 4566 /* No extended attributes present */ 4567 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4568 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4569 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4570 new_extra_isize); 4571 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4572 return 0; 4573 } 4574 4575 /* try to expand with EAs present */ 4576 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4577 raw_inode, handle); 4578 } 4579 4580 /* 4581 * What we do here is to mark the in-core inode as clean with respect to inode 4582 * dirtiness (it may still be data-dirty). 4583 * This means that the in-core inode may be reaped by prune_icache 4584 * without having to perform any I/O. This is a very good thing, 4585 * because *any* task may call prune_icache - even ones which 4586 * have a transaction open against a different journal. 4587 * 4588 * Is this cheating? Not really. Sure, we haven't written the 4589 * inode out, but prune_icache isn't a user-visible syncing function. 4590 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4591 * we start and wait on commits. 4592 */ 4593 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4594 { 4595 struct ext4_iloc iloc; 4596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4597 static unsigned int mnt_count; 4598 int err, ret; 4599 4600 might_sleep(); 4601 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4602 err = ext4_reserve_inode_write(handle, inode, &iloc); 4603 if (ext4_handle_valid(handle) && 4604 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4605 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4606 /* 4607 * We need extra buffer credits since we may write into EA block 4608 * with this same handle. If journal_extend fails, then it will 4609 * only result in a minor loss of functionality for that inode. 4610 * If this is felt to be critical, then e2fsck should be run to 4611 * force a large enough s_min_extra_isize. 4612 */ 4613 if ((jbd2_journal_extend(handle, 4614 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4615 ret = ext4_expand_extra_isize(inode, 4616 sbi->s_want_extra_isize, 4617 iloc, handle); 4618 if (ret) { 4619 ext4_set_inode_state(inode, 4620 EXT4_STATE_NO_EXPAND); 4621 if (mnt_count != 4622 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4623 ext4_warning(inode->i_sb, 4624 "Unable to expand inode %lu. Delete" 4625 " some EAs or run e2fsck.", 4626 inode->i_ino); 4627 mnt_count = 4628 le16_to_cpu(sbi->s_es->s_mnt_count); 4629 } 4630 } 4631 } 4632 } 4633 if (!err) 4634 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4635 return err; 4636 } 4637 4638 /* 4639 * ext4_dirty_inode() is called from __mark_inode_dirty() 4640 * 4641 * We're really interested in the case where a file is being extended. 4642 * i_size has been changed by generic_commit_write() and we thus need 4643 * to include the updated inode in the current transaction. 4644 * 4645 * Also, dquot_alloc_block() will always dirty the inode when blocks 4646 * are allocated to the file. 4647 * 4648 * If the inode is marked synchronous, we don't honour that here - doing 4649 * so would cause a commit on atime updates, which we don't bother doing. 4650 * We handle synchronous inodes at the highest possible level. 4651 */ 4652 void ext4_dirty_inode(struct inode *inode, int flags) 4653 { 4654 handle_t *handle; 4655 4656 handle = ext4_journal_start(inode, 2); 4657 if (IS_ERR(handle)) 4658 goto out; 4659 4660 ext4_mark_inode_dirty(handle, inode); 4661 4662 ext4_journal_stop(handle); 4663 out: 4664 return; 4665 } 4666 4667 #if 0 4668 /* 4669 * Bind an inode's backing buffer_head into this transaction, to prevent 4670 * it from being flushed to disk early. Unlike 4671 * ext4_reserve_inode_write, this leaves behind no bh reference and 4672 * returns no iloc structure, so the caller needs to repeat the iloc 4673 * lookup to mark the inode dirty later. 4674 */ 4675 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4676 { 4677 struct ext4_iloc iloc; 4678 4679 int err = 0; 4680 if (handle) { 4681 err = ext4_get_inode_loc(inode, &iloc); 4682 if (!err) { 4683 BUFFER_TRACE(iloc.bh, "get_write_access"); 4684 err = jbd2_journal_get_write_access(handle, iloc.bh); 4685 if (!err) 4686 err = ext4_handle_dirty_metadata(handle, 4687 NULL, 4688 iloc.bh); 4689 brelse(iloc.bh); 4690 } 4691 } 4692 ext4_std_error(inode->i_sb, err); 4693 return err; 4694 } 4695 #endif 4696 4697 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4698 { 4699 journal_t *journal; 4700 handle_t *handle; 4701 int err; 4702 4703 /* 4704 * We have to be very careful here: changing a data block's 4705 * journaling status dynamically is dangerous. If we write a 4706 * data block to the journal, change the status and then delete 4707 * that block, we risk forgetting to revoke the old log record 4708 * from the journal and so a subsequent replay can corrupt data. 4709 * So, first we make sure that the journal is empty and that 4710 * nobody is changing anything. 4711 */ 4712 4713 journal = EXT4_JOURNAL(inode); 4714 if (!journal) 4715 return 0; 4716 if (is_journal_aborted(journal)) 4717 return -EROFS; 4718 /* We have to allocate physical blocks for delalloc blocks 4719 * before flushing journal. otherwise delalloc blocks can not 4720 * be allocated any more. even more truncate on delalloc blocks 4721 * could trigger BUG by flushing delalloc blocks in journal. 4722 * There is no delalloc block in non-journal data mode. 4723 */ 4724 if (val && test_opt(inode->i_sb, DELALLOC)) { 4725 err = ext4_alloc_da_blocks(inode); 4726 if (err < 0) 4727 return err; 4728 } 4729 4730 jbd2_journal_lock_updates(journal); 4731 4732 /* 4733 * OK, there are no updates running now, and all cached data is 4734 * synced to disk. We are now in a completely consistent state 4735 * which doesn't have anything in the journal, and we know that 4736 * no filesystem updates are running, so it is safe to modify 4737 * the inode's in-core data-journaling state flag now. 4738 */ 4739 4740 if (val) 4741 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4742 else { 4743 jbd2_journal_flush(journal); 4744 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4745 } 4746 ext4_set_aops(inode); 4747 4748 jbd2_journal_unlock_updates(journal); 4749 4750 /* Finally we can mark the inode as dirty. */ 4751 4752 handle = ext4_journal_start(inode, 1); 4753 if (IS_ERR(handle)) 4754 return PTR_ERR(handle); 4755 4756 err = ext4_mark_inode_dirty(handle, inode); 4757 ext4_handle_sync(handle); 4758 ext4_journal_stop(handle); 4759 ext4_std_error(inode->i_sb, err); 4760 4761 return err; 4762 } 4763 4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4765 { 4766 return !buffer_mapped(bh); 4767 } 4768 4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4770 { 4771 struct page *page = vmf->page; 4772 loff_t size; 4773 unsigned long len; 4774 int ret; 4775 struct file *file = vma->vm_file; 4776 struct inode *inode = file->f_path.dentry->d_inode; 4777 struct address_space *mapping = inode->i_mapping; 4778 handle_t *handle; 4779 get_block_t *get_block; 4780 int retries = 0; 4781 4782 sb_start_pagefault(inode->i_sb); 4783 /* Delalloc case is easy... */ 4784 if (test_opt(inode->i_sb, DELALLOC) && 4785 !ext4_should_journal_data(inode) && 4786 !ext4_nonda_switch(inode->i_sb)) { 4787 do { 4788 ret = __block_page_mkwrite(vma, vmf, 4789 ext4_da_get_block_prep); 4790 } while (ret == -ENOSPC && 4791 ext4_should_retry_alloc(inode->i_sb, &retries)); 4792 goto out_ret; 4793 } 4794 4795 lock_page(page); 4796 size = i_size_read(inode); 4797 /* Page got truncated from under us? */ 4798 if (page->mapping != mapping || page_offset(page) > size) { 4799 unlock_page(page); 4800 ret = VM_FAULT_NOPAGE; 4801 goto out; 4802 } 4803 4804 if (page->index == size >> PAGE_CACHE_SHIFT) 4805 len = size & ~PAGE_CACHE_MASK; 4806 else 4807 len = PAGE_CACHE_SIZE; 4808 /* 4809 * Return if we have all the buffers mapped. This avoids the need to do 4810 * journal_start/journal_stop which can block and take a long time 4811 */ 4812 if (page_has_buffers(page)) { 4813 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4814 ext4_bh_unmapped)) { 4815 /* Wait so that we don't change page under IO */ 4816 wait_on_page_writeback(page); 4817 ret = VM_FAULT_LOCKED; 4818 goto out; 4819 } 4820 } 4821 unlock_page(page); 4822 /* OK, we need to fill the hole... */ 4823 if (ext4_should_dioread_nolock(inode)) 4824 get_block = ext4_get_block_write; 4825 else 4826 get_block = ext4_get_block; 4827 retry_alloc: 4828 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4829 if (IS_ERR(handle)) { 4830 ret = VM_FAULT_SIGBUS; 4831 goto out; 4832 } 4833 ret = __block_page_mkwrite(vma, vmf, get_block); 4834 if (!ret && ext4_should_journal_data(inode)) { 4835 if (walk_page_buffers(handle, page_buffers(page), 0, 4836 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4837 unlock_page(page); 4838 ret = VM_FAULT_SIGBUS; 4839 ext4_journal_stop(handle); 4840 goto out; 4841 } 4842 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4843 } 4844 ext4_journal_stop(handle); 4845 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4846 goto retry_alloc; 4847 out_ret: 4848 ret = block_page_mkwrite_return(ret); 4849 out: 4850 sb_end_pagefault(inode->i_sb); 4851 return ret; 4852 } 4853