1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/buffer_head.h> 28 #include <linux/writeback.h> 29 #include <linux/pagevec.h> 30 #include <linux/mpage.h> 31 #include <linux/namei.h> 32 #include <linux/uio.h> 33 #include <linux/bio.h> 34 #include <linux/workqueue.h> 35 #include <linux/kernel.h> 36 #include <linux/printk.h> 37 #include <linux/slab.h> 38 #include <linux/bitops.h> 39 40 #include "ext4_jbd2.h" 41 #include "xattr.h" 42 #include "acl.h" 43 #include "truncate.h" 44 45 #include <trace/events/ext4.h> 46 47 #define MPAGE_DA_EXTENT_TAIL 0x01 48 49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 50 struct ext4_inode_info *ei) 51 { 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u16 csum_lo; 54 __u16 csum_hi = 0; 55 __u32 csum; 56 57 csum_lo = le16_to_cpu(raw->i_checksum_lo); 58 raw->i_checksum_lo = 0; 59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 61 csum_hi = le16_to_cpu(raw->i_checksum_hi); 62 raw->i_checksum_hi = 0; 63 } 64 65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 66 EXT4_INODE_SIZE(inode->i_sb)); 67 68 raw->i_checksum_lo = cpu_to_le16(csum_lo); 69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 71 raw->i_checksum_hi = cpu_to_le16(csum_hi); 72 73 return csum; 74 } 75 76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 77 struct ext4_inode_info *ei) 78 { 79 __u32 provided, calculated; 80 81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 82 cpu_to_le32(EXT4_OS_LINUX) || 83 !ext4_has_metadata_csum(inode->i_sb)) 84 return 1; 85 86 provided = le16_to_cpu(raw->i_checksum_lo); 87 calculated = ext4_inode_csum(inode, raw, ei); 88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 91 else 92 calculated &= 0xFFFF; 93 94 return provided == calculated; 95 } 96 97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 98 struct ext4_inode_info *ei) 99 { 100 __u32 csum; 101 102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 103 cpu_to_le32(EXT4_OS_LINUX) || 104 !ext4_has_metadata_csum(inode->i_sb)) 105 return; 106 107 csum = ext4_inode_csum(inode, raw, ei); 108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 111 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 112 } 113 114 static inline int ext4_begin_ordered_truncate(struct inode *inode, 115 loff_t new_size) 116 { 117 trace_ext4_begin_ordered_truncate(inode, new_size); 118 /* 119 * If jinode is zero, then we never opened the file for 120 * writing, so there's no need to call 121 * jbd2_journal_begin_ordered_truncate() since there's no 122 * outstanding writes we need to flush. 123 */ 124 if (!EXT4_I(inode)->jinode) 125 return 0; 126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 127 EXT4_I(inode)->jinode, 128 new_size); 129 } 130 131 static void ext4_invalidatepage(struct page *page, unsigned int offset, 132 unsigned int length); 133 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 136 int pextents); 137 138 /* 139 * Test whether an inode is a fast symlink. 140 */ 141 int ext4_inode_is_fast_symlink(struct inode *inode) 142 { 143 int ea_blocks = EXT4_I(inode)->i_file_acl ? 144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 145 146 if (ext4_has_inline_data(inode)) 147 return 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150 } 151 152 /* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159 { 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_evict_inode(struct inode *inode) 182 { 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_complete_transaction(journal, commit_tid); 214 filemap_write_and_wait(&inode->i_data); 215 } 216 truncate_inode_pages_final(&inode->i_data); 217 218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 232 /* 233 * Protect us against freezing - iput() caller didn't have to have any 234 * protection against it 235 */ 236 sb_start_intwrite(inode->i_sb); 237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 238 ext4_blocks_for_truncate(inode)+3); 239 if (IS_ERR(handle)) { 240 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 241 /* 242 * If we're going to skip the normal cleanup, we still need to 243 * make sure that the in-core orphan linked list is properly 244 * cleaned up. 245 */ 246 ext4_orphan_del(NULL, inode); 247 sb_end_intwrite(inode->i_sb); 248 goto no_delete; 249 } 250 251 if (IS_SYNC(inode)) 252 ext4_handle_sync(handle); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) 261 ext4_truncate(inode); 262 263 /* 264 * ext4_ext_truncate() doesn't reserve any slop when it 265 * restarts journal transactions; therefore there may not be 266 * enough credits left in the handle to remove the inode from 267 * the orphan list and set the dtime field. 268 */ 269 if (!ext4_handle_has_enough_credits(handle, 3)) { 270 err = ext4_journal_extend(handle, 3); 271 if (err > 0) 272 err = ext4_journal_restart(handle, 3); 273 if (err != 0) { 274 ext4_warning(inode->i_sb, 275 "couldn't extend journal (err %d)", err); 276 stop_handle: 277 ext4_journal_stop(handle); 278 ext4_orphan_del(NULL, inode); 279 sb_end_intwrite(inode->i_sb); 280 goto no_delete; 281 } 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = get_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 sb_end_intwrite(inode->i_sb); 309 return; 310 no_delete: 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 312 } 313 314 #ifdef CONFIG_QUOTA 315 qsize_t *ext4_get_reserved_space(struct inode *inode) 316 { 317 return &EXT4_I(inode)->i_reserved_quota; 318 } 319 #endif 320 321 /* 322 * Called with i_data_sem down, which is important since we can call 323 * ext4_discard_preallocations() from here. 324 */ 325 void ext4_da_update_reserve_space(struct inode *inode, 326 int used, int quota_claim) 327 { 328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 329 struct ext4_inode_info *ei = EXT4_I(inode); 330 331 spin_lock(&ei->i_block_reservation_lock); 332 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 333 if (unlikely(used > ei->i_reserved_data_blocks)) { 334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 335 "with only %d reserved data blocks", 336 __func__, inode->i_ino, used, 337 ei->i_reserved_data_blocks); 338 WARN_ON(1); 339 used = ei->i_reserved_data_blocks; 340 } 341 342 /* Update per-inode reservations */ 343 ei->i_reserved_data_blocks -= used; 344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 345 346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 347 348 /* Update quota subsystem for data blocks */ 349 if (quota_claim) 350 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 351 else { 352 /* 353 * We did fallocate with an offset that is already delayed 354 * allocated. So on delayed allocated writeback we should 355 * not re-claim the quota for fallocated blocks. 356 */ 357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 358 } 359 360 /* 361 * If we have done all the pending block allocations and if 362 * there aren't any writers on the inode, we can discard the 363 * inode's preallocations. 364 */ 365 if ((ei->i_reserved_data_blocks == 0) && 366 (atomic_read(&inode->i_writecount) == 0)) 367 ext4_discard_preallocations(inode); 368 } 369 370 static int __check_block_validity(struct inode *inode, const char *func, 371 unsigned int line, 372 struct ext4_map_blocks *map) 373 { 374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 375 map->m_len)) { 376 ext4_error_inode(inode, func, line, map->m_pblk, 377 "lblock %lu mapped to illegal pblock " 378 "(length %d)", (unsigned long) map->m_lblk, 379 map->m_len); 380 return -EIO; 381 } 382 return 0; 383 } 384 385 #define check_block_validity(inode, map) \ 386 __check_block_validity((inode), __func__, __LINE__, (map)) 387 388 #ifdef ES_AGGRESSIVE_TEST 389 static void ext4_map_blocks_es_recheck(handle_t *handle, 390 struct inode *inode, 391 struct ext4_map_blocks *es_map, 392 struct ext4_map_blocks *map, 393 int flags) 394 { 395 int retval; 396 397 map->m_flags = 0; 398 /* 399 * There is a race window that the result is not the same. 400 * e.g. xfstests #223 when dioread_nolock enables. The reason 401 * is that we lookup a block mapping in extent status tree with 402 * out taking i_data_sem. So at the time the unwritten extent 403 * could be converted. 404 */ 405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 406 down_read(&EXT4_I(inode)->i_data_sem); 407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 408 retval = ext4_ext_map_blocks(handle, inode, map, flags & 409 EXT4_GET_BLOCKS_KEEP_SIZE); 410 } else { 411 retval = ext4_ind_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } 414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 415 up_read((&EXT4_I(inode)->i_data_sem)); 416 417 /* 418 * We don't check m_len because extent will be collpased in status 419 * tree. So the m_len might not equal. 420 */ 421 if (es_map->m_lblk != map->m_lblk || 422 es_map->m_flags != map->m_flags || 423 es_map->m_pblk != map->m_pblk) { 424 printk("ES cache assertion failed for inode: %lu " 425 "es_cached ex [%d/%d/%llu/%x] != " 426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 427 inode->i_ino, es_map->m_lblk, es_map->m_len, 428 es_map->m_pblk, es_map->m_flags, map->m_lblk, 429 map->m_len, map->m_pblk, map->m_flags, 430 retval, flags); 431 } 432 } 433 #endif /* ES_AGGRESSIVE_TEST */ 434 435 /* 436 * The ext4_map_blocks() function tries to look up the requested blocks, 437 * and returns if the blocks are already mapped. 438 * 439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 440 * and store the allocated blocks in the result buffer head and mark it 441 * mapped. 442 * 443 * If file type is extents based, it will call ext4_ext_map_blocks(), 444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 445 * based files 446 * 447 * On success, it returns the number of blocks being mapped or allocated. 448 * if create==0 and the blocks are pre-allocated and unwritten block, 449 * the result buffer head is unmapped. If the create ==1, it will make sure 450 * the buffer head is mapped. 451 * 452 * It returns 0 if plain look up failed (blocks have not been allocated), in 453 * that case, buffer head is unmapped 454 * 455 * It returns the error in case of allocation failure. 456 */ 457 int ext4_map_blocks(handle_t *handle, struct inode *inode, 458 struct ext4_map_blocks *map, int flags) 459 { 460 struct extent_status es; 461 int retval; 462 int ret = 0; 463 #ifdef ES_AGGRESSIVE_TEST 464 struct ext4_map_blocks orig_map; 465 466 memcpy(&orig_map, map, sizeof(*map)); 467 #endif 468 469 map->m_flags = 0; 470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 471 "logical block %lu\n", inode->i_ino, flags, map->m_len, 472 (unsigned long) map->m_lblk); 473 474 /* 475 * ext4_map_blocks returns an int, and m_len is an unsigned int 476 */ 477 if (unlikely(map->m_len > INT_MAX)) 478 map->m_len = INT_MAX; 479 480 /* We can handle the block number less than EXT_MAX_BLOCKS */ 481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 482 return -EIO; 483 484 /* Lookup extent status tree firstly */ 485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 487 map->m_pblk = ext4_es_pblock(&es) + 488 map->m_lblk - es.es_lblk; 489 map->m_flags |= ext4_es_is_written(&es) ? 490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 491 retval = es.es_len - (map->m_lblk - es.es_lblk); 492 if (retval > map->m_len) 493 retval = map->m_len; 494 map->m_len = retval; 495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 496 retval = 0; 497 } else { 498 BUG_ON(1); 499 } 500 #ifdef ES_AGGRESSIVE_TEST 501 ext4_map_blocks_es_recheck(handle, inode, map, 502 &orig_map, flags); 503 #endif 504 goto found; 505 } 506 507 /* 508 * Try to see if we can get the block without requesting a new 509 * file system block. 510 */ 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 512 down_read(&EXT4_I(inode)->i_data_sem); 513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 514 retval = ext4_ext_map_blocks(handle, inode, map, flags & 515 EXT4_GET_BLOCKS_KEEP_SIZE); 516 } else { 517 retval = ext4_ind_map_blocks(handle, inode, map, flags & 518 EXT4_GET_BLOCKS_KEEP_SIZE); 519 } 520 if (retval > 0) { 521 unsigned int status; 522 523 if (unlikely(retval != map->m_len)) { 524 ext4_warning(inode->i_sb, 525 "ES len assertion failed for inode " 526 "%lu: retval %d != map->m_len %d", 527 inode->i_ino, retval, map->m_len); 528 WARN_ON(1); 529 } 530 531 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 534 !(status & EXTENT_STATUS_WRITTEN) && 535 ext4_find_delalloc_range(inode, map->m_lblk, 536 map->m_lblk + map->m_len - 1)) 537 status |= EXTENT_STATUS_DELAYED; 538 ret = ext4_es_insert_extent(inode, map->m_lblk, 539 map->m_len, map->m_pblk, status); 540 if (ret < 0) 541 retval = ret; 542 } 543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 544 up_read((&EXT4_I(inode)->i_data_sem)); 545 546 found: 547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 548 ret = check_block_validity(inode, map); 549 if (ret != 0) 550 return ret; 551 } 552 553 /* If it is only a block(s) look up */ 554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 555 return retval; 556 557 /* 558 * Returns if the blocks have already allocated 559 * 560 * Note that if blocks have been preallocated 561 * ext4_ext_get_block() returns the create = 0 562 * with buffer head unmapped. 563 */ 564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 565 /* 566 * If we need to convert extent to unwritten 567 * we continue and do the actual work in 568 * ext4_ext_map_blocks() 569 */ 570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 571 return retval; 572 573 /* 574 * Here we clear m_flags because after allocating an new extent, 575 * it will be set again. 576 */ 577 map->m_flags &= ~EXT4_MAP_FLAGS; 578 579 /* 580 * New blocks allocate and/or writing to unwritten extent 581 * will possibly result in updating i_data, so we take 582 * the write lock of i_data_sem, and call get_block() 583 * with create == 1 flag. 584 */ 585 down_write(&EXT4_I(inode)->i_data_sem); 586 587 /* 588 * We need to check for EXT4 here because migrate 589 * could have changed the inode type in between 590 */ 591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 592 retval = ext4_ext_map_blocks(handle, inode, map, flags); 593 } else { 594 retval = ext4_ind_map_blocks(handle, inode, map, flags); 595 596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 597 /* 598 * We allocated new blocks which will result in 599 * i_data's format changing. Force the migrate 600 * to fail by clearing migrate flags 601 */ 602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 603 } 604 605 /* 606 * Update reserved blocks/metadata blocks after successful 607 * block allocation which had been deferred till now. We don't 608 * support fallocate for non extent files. So we can update 609 * reserve space here. 610 */ 611 if ((retval > 0) && 612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 613 ext4_da_update_reserve_space(inode, retval, 1); 614 } 615 616 if (retval > 0) { 617 unsigned int status; 618 619 if (unlikely(retval != map->m_len)) { 620 ext4_warning(inode->i_sb, 621 "ES len assertion failed for inode " 622 "%lu: retval %d != map->m_len %d", 623 inode->i_ino, retval, map->m_len); 624 WARN_ON(1); 625 } 626 627 /* 628 * If the extent has been zeroed out, we don't need to update 629 * extent status tree. 630 */ 631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 633 if (ext4_es_is_written(&es)) 634 goto has_zeroout; 635 } 636 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 639 !(status & EXTENT_STATUS_WRITTEN) && 640 ext4_find_delalloc_range(inode, map->m_lblk, 641 map->m_lblk + map->m_len - 1)) 642 status |= EXTENT_STATUS_DELAYED; 643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 644 map->m_pblk, status); 645 if (ret < 0) 646 retval = ret; 647 } 648 649 has_zeroout: 650 up_write((&EXT4_I(inode)->i_data_sem)); 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 652 ret = check_block_validity(inode, map); 653 if (ret != 0) 654 return ret; 655 } 656 return retval; 657 } 658 659 /* Maximum number of blocks we map for direct IO at once. */ 660 #define DIO_MAX_BLOCKS 4096 661 662 static int _ext4_get_block(struct inode *inode, sector_t iblock, 663 struct buffer_head *bh, int flags) 664 { 665 handle_t *handle = ext4_journal_current_handle(); 666 struct ext4_map_blocks map; 667 int ret = 0, started = 0; 668 int dio_credits; 669 670 if (ext4_has_inline_data(inode)) 671 return -ERANGE; 672 673 map.m_lblk = iblock; 674 map.m_len = bh->b_size >> inode->i_blkbits; 675 676 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 677 /* Direct IO write... */ 678 if (map.m_len > DIO_MAX_BLOCKS) 679 map.m_len = DIO_MAX_BLOCKS; 680 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 681 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 682 dio_credits); 683 if (IS_ERR(handle)) { 684 ret = PTR_ERR(handle); 685 return ret; 686 } 687 started = 1; 688 } 689 690 ret = ext4_map_blocks(handle, inode, &map, flags); 691 if (ret > 0) { 692 ext4_io_end_t *io_end = ext4_inode_aio(inode); 693 694 map_bh(bh, inode->i_sb, map.m_pblk); 695 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 696 if (IS_DAX(inode) && buffer_unwritten(bh)) { 697 /* 698 * dgc: I suspect unwritten conversion on ext4+DAX is 699 * fundamentally broken here when there are concurrent 700 * read/write in progress on this inode. 701 */ 702 WARN_ON_ONCE(io_end); 703 bh->b_assoc_map = inode->i_mapping; 704 bh->b_private = (void *)(unsigned long)iblock; 705 } 706 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 707 set_buffer_defer_completion(bh); 708 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 709 ret = 0; 710 } 711 if (started) 712 ext4_journal_stop(handle); 713 return ret; 714 } 715 716 int ext4_get_block(struct inode *inode, sector_t iblock, 717 struct buffer_head *bh, int create) 718 { 719 return _ext4_get_block(inode, iblock, bh, 720 create ? EXT4_GET_BLOCKS_CREATE : 0); 721 } 722 723 /* 724 * `handle' can be NULL if create is zero 725 */ 726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 727 ext4_lblk_t block, int map_flags) 728 { 729 struct ext4_map_blocks map; 730 struct buffer_head *bh; 731 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 732 int err; 733 734 J_ASSERT(handle != NULL || create == 0); 735 736 map.m_lblk = block; 737 map.m_len = 1; 738 err = ext4_map_blocks(handle, inode, &map, map_flags); 739 740 if (err == 0) 741 return create ? ERR_PTR(-ENOSPC) : NULL; 742 if (err < 0) 743 return ERR_PTR(err); 744 745 bh = sb_getblk(inode->i_sb, map.m_pblk); 746 if (unlikely(!bh)) 747 return ERR_PTR(-ENOMEM); 748 if (map.m_flags & EXT4_MAP_NEW) { 749 J_ASSERT(create != 0); 750 J_ASSERT(handle != NULL); 751 752 /* 753 * Now that we do not always journal data, we should 754 * keep in mind whether this should always journal the 755 * new buffer as metadata. For now, regular file 756 * writes use ext4_get_block instead, so it's not a 757 * problem. 758 */ 759 lock_buffer(bh); 760 BUFFER_TRACE(bh, "call get_create_access"); 761 err = ext4_journal_get_create_access(handle, bh); 762 if (unlikely(err)) { 763 unlock_buffer(bh); 764 goto errout; 765 } 766 if (!buffer_uptodate(bh)) { 767 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 768 set_buffer_uptodate(bh); 769 } 770 unlock_buffer(bh); 771 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 772 err = ext4_handle_dirty_metadata(handle, inode, bh); 773 if (unlikely(err)) 774 goto errout; 775 } else 776 BUFFER_TRACE(bh, "not a new buffer"); 777 return bh; 778 errout: 779 brelse(bh); 780 return ERR_PTR(err); 781 } 782 783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 784 ext4_lblk_t block, int map_flags) 785 { 786 struct buffer_head *bh; 787 788 bh = ext4_getblk(handle, inode, block, map_flags); 789 if (IS_ERR(bh)) 790 return bh; 791 if (!bh || buffer_uptodate(bh)) 792 return bh; 793 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 794 wait_on_buffer(bh); 795 if (buffer_uptodate(bh)) 796 return bh; 797 put_bh(bh); 798 return ERR_PTR(-EIO); 799 } 800 801 int ext4_walk_page_buffers(handle_t *handle, 802 struct buffer_head *head, 803 unsigned from, 804 unsigned to, 805 int *partial, 806 int (*fn)(handle_t *handle, 807 struct buffer_head *bh)) 808 { 809 struct buffer_head *bh; 810 unsigned block_start, block_end; 811 unsigned blocksize = head->b_size; 812 int err, ret = 0; 813 struct buffer_head *next; 814 815 for (bh = head, block_start = 0; 816 ret == 0 && (bh != head || !block_start); 817 block_start = block_end, bh = next) { 818 next = bh->b_this_page; 819 block_end = block_start + blocksize; 820 if (block_end <= from || block_start >= to) { 821 if (partial && !buffer_uptodate(bh)) 822 *partial = 1; 823 continue; 824 } 825 err = (*fn)(handle, bh); 826 if (!ret) 827 ret = err; 828 } 829 return ret; 830 } 831 832 /* 833 * To preserve ordering, it is essential that the hole instantiation and 834 * the data write be encapsulated in a single transaction. We cannot 835 * close off a transaction and start a new one between the ext4_get_block() 836 * and the commit_write(). So doing the jbd2_journal_start at the start of 837 * prepare_write() is the right place. 838 * 839 * Also, this function can nest inside ext4_writepage(). In that case, we 840 * *know* that ext4_writepage() has generated enough buffer credits to do the 841 * whole page. So we won't block on the journal in that case, which is good, 842 * because the caller may be PF_MEMALLOC. 843 * 844 * By accident, ext4 can be reentered when a transaction is open via 845 * quota file writes. If we were to commit the transaction while thus 846 * reentered, there can be a deadlock - we would be holding a quota 847 * lock, and the commit would never complete if another thread had a 848 * transaction open and was blocking on the quota lock - a ranking 849 * violation. 850 * 851 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 852 * will _not_ run commit under these circumstances because handle->h_ref 853 * is elevated. We'll still have enough credits for the tiny quotafile 854 * write. 855 */ 856 int do_journal_get_write_access(handle_t *handle, 857 struct buffer_head *bh) 858 { 859 int dirty = buffer_dirty(bh); 860 int ret; 861 862 if (!buffer_mapped(bh) || buffer_freed(bh)) 863 return 0; 864 /* 865 * __block_write_begin() could have dirtied some buffers. Clean 866 * the dirty bit as jbd2_journal_get_write_access() could complain 867 * otherwise about fs integrity issues. Setting of the dirty bit 868 * by __block_write_begin() isn't a real problem here as we clear 869 * the bit before releasing a page lock and thus writeback cannot 870 * ever write the buffer. 871 */ 872 if (dirty) 873 clear_buffer_dirty(bh); 874 BUFFER_TRACE(bh, "get write access"); 875 ret = ext4_journal_get_write_access(handle, bh); 876 if (!ret && dirty) 877 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 878 return ret; 879 } 880 881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 882 struct buffer_head *bh_result, int create); 883 884 #ifdef CONFIG_EXT4_FS_ENCRYPTION 885 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 886 get_block_t *get_block) 887 { 888 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 889 unsigned to = from + len; 890 struct inode *inode = page->mapping->host; 891 unsigned block_start, block_end; 892 sector_t block; 893 int err = 0; 894 unsigned blocksize = inode->i_sb->s_blocksize; 895 unsigned bbits; 896 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 897 bool decrypt = false; 898 899 BUG_ON(!PageLocked(page)); 900 BUG_ON(from > PAGE_CACHE_SIZE); 901 BUG_ON(to > PAGE_CACHE_SIZE); 902 BUG_ON(from > to); 903 904 if (!page_has_buffers(page)) 905 create_empty_buffers(page, blocksize, 0); 906 head = page_buffers(page); 907 bbits = ilog2(blocksize); 908 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 909 910 for (bh = head, block_start = 0; bh != head || !block_start; 911 block++, block_start = block_end, bh = bh->b_this_page) { 912 block_end = block_start + blocksize; 913 if (block_end <= from || block_start >= to) { 914 if (PageUptodate(page)) { 915 if (!buffer_uptodate(bh)) 916 set_buffer_uptodate(bh); 917 } 918 continue; 919 } 920 if (buffer_new(bh)) 921 clear_buffer_new(bh); 922 if (!buffer_mapped(bh)) { 923 WARN_ON(bh->b_size != blocksize); 924 err = get_block(inode, block, bh, 1); 925 if (err) 926 break; 927 if (buffer_new(bh)) { 928 unmap_underlying_metadata(bh->b_bdev, 929 bh->b_blocknr); 930 if (PageUptodate(page)) { 931 clear_buffer_new(bh); 932 set_buffer_uptodate(bh); 933 mark_buffer_dirty(bh); 934 continue; 935 } 936 if (block_end > to || block_start < from) 937 zero_user_segments(page, to, block_end, 938 block_start, from); 939 continue; 940 } 941 } 942 if (PageUptodate(page)) { 943 if (!buffer_uptodate(bh)) 944 set_buffer_uptodate(bh); 945 continue; 946 } 947 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 948 !buffer_unwritten(bh) && 949 (block_start < from || block_end > to)) { 950 ll_rw_block(READ, 1, &bh); 951 *wait_bh++ = bh; 952 decrypt = ext4_encrypted_inode(inode) && 953 S_ISREG(inode->i_mode); 954 } 955 } 956 /* 957 * If we issued read requests, let them complete. 958 */ 959 while (wait_bh > wait) { 960 wait_on_buffer(*--wait_bh); 961 if (!buffer_uptodate(*wait_bh)) 962 err = -EIO; 963 } 964 if (unlikely(err)) 965 page_zero_new_buffers(page, from, to); 966 else if (decrypt) 967 err = ext4_decrypt_one(inode, page); 968 return err; 969 } 970 #endif 971 972 static int ext4_write_begin(struct file *file, struct address_space *mapping, 973 loff_t pos, unsigned len, unsigned flags, 974 struct page **pagep, void **fsdata) 975 { 976 struct inode *inode = mapping->host; 977 int ret, needed_blocks; 978 handle_t *handle; 979 int retries = 0; 980 struct page *page; 981 pgoff_t index; 982 unsigned from, to; 983 984 trace_ext4_write_begin(inode, pos, len, flags); 985 /* 986 * Reserve one block more for addition to orphan list in case 987 * we allocate blocks but write fails for some reason 988 */ 989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 990 index = pos >> PAGE_CACHE_SHIFT; 991 from = pos & (PAGE_CACHE_SIZE - 1); 992 to = from + len; 993 994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 996 flags, pagep); 997 if (ret < 0) 998 return ret; 999 if (ret == 1) 1000 return 0; 1001 } 1002 1003 /* 1004 * grab_cache_page_write_begin() can take a long time if the 1005 * system is thrashing due to memory pressure, or if the page 1006 * is being written back. So grab it first before we start 1007 * the transaction handle. This also allows us to allocate 1008 * the page (if needed) without using GFP_NOFS. 1009 */ 1010 retry_grab: 1011 page = grab_cache_page_write_begin(mapping, index, flags); 1012 if (!page) 1013 return -ENOMEM; 1014 unlock_page(page); 1015 1016 retry_journal: 1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1018 if (IS_ERR(handle)) { 1019 page_cache_release(page); 1020 return PTR_ERR(handle); 1021 } 1022 1023 lock_page(page); 1024 if (page->mapping != mapping) { 1025 /* The page got truncated from under us */ 1026 unlock_page(page); 1027 page_cache_release(page); 1028 ext4_journal_stop(handle); 1029 goto retry_grab; 1030 } 1031 /* In case writeback began while the page was unlocked */ 1032 wait_for_stable_page(page); 1033 1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1035 if (ext4_should_dioread_nolock(inode)) 1036 ret = ext4_block_write_begin(page, pos, len, 1037 ext4_get_block_write); 1038 else 1039 ret = ext4_block_write_begin(page, pos, len, 1040 ext4_get_block); 1041 #else 1042 if (ext4_should_dioread_nolock(inode)) 1043 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1044 else 1045 ret = __block_write_begin(page, pos, len, ext4_get_block); 1046 #endif 1047 if (!ret && ext4_should_journal_data(inode)) { 1048 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1049 from, to, NULL, 1050 do_journal_get_write_access); 1051 } 1052 1053 if (ret) { 1054 unlock_page(page); 1055 /* 1056 * __block_write_begin may have instantiated a few blocks 1057 * outside i_size. Trim these off again. Don't need 1058 * i_size_read because we hold i_mutex. 1059 * 1060 * Add inode to orphan list in case we crash before 1061 * truncate finishes 1062 */ 1063 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1064 ext4_orphan_add(handle, inode); 1065 1066 ext4_journal_stop(handle); 1067 if (pos + len > inode->i_size) { 1068 ext4_truncate_failed_write(inode); 1069 /* 1070 * If truncate failed early the inode might 1071 * still be on the orphan list; we need to 1072 * make sure the inode is removed from the 1073 * orphan list in that case. 1074 */ 1075 if (inode->i_nlink) 1076 ext4_orphan_del(NULL, inode); 1077 } 1078 1079 if (ret == -ENOSPC && 1080 ext4_should_retry_alloc(inode->i_sb, &retries)) 1081 goto retry_journal; 1082 page_cache_release(page); 1083 return ret; 1084 } 1085 *pagep = page; 1086 return ret; 1087 } 1088 1089 /* For write_end() in data=journal mode */ 1090 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1091 { 1092 int ret; 1093 if (!buffer_mapped(bh) || buffer_freed(bh)) 1094 return 0; 1095 set_buffer_uptodate(bh); 1096 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1097 clear_buffer_meta(bh); 1098 clear_buffer_prio(bh); 1099 return ret; 1100 } 1101 1102 /* 1103 * We need to pick up the new inode size which generic_commit_write gave us 1104 * `file' can be NULL - eg, when called from page_symlink(). 1105 * 1106 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1107 * buffers are managed internally. 1108 */ 1109 static int ext4_write_end(struct file *file, 1110 struct address_space *mapping, 1111 loff_t pos, unsigned len, unsigned copied, 1112 struct page *page, void *fsdata) 1113 { 1114 handle_t *handle = ext4_journal_current_handle(); 1115 struct inode *inode = mapping->host; 1116 loff_t old_size = inode->i_size; 1117 int ret = 0, ret2; 1118 int i_size_changed = 0; 1119 1120 trace_ext4_write_end(inode, pos, len, copied); 1121 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1122 ret = ext4_jbd2_file_inode(handle, inode); 1123 if (ret) { 1124 unlock_page(page); 1125 page_cache_release(page); 1126 goto errout; 1127 } 1128 } 1129 1130 if (ext4_has_inline_data(inode)) { 1131 ret = ext4_write_inline_data_end(inode, pos, len, 1132 copied, page); 1133 if (ret < 0) 1134 goto errout; 1135 copied = ret; 1136 } else 1137 copied = block_write_end(file, mapping, pos, 1138 len, copied, page, fsdata); 1139 /* 1140 * it's important to update i_size while still holding page lock: 1141 * page writeout could otherwise come in and zero beyond i_size. 1142 */ 1143 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1144 unlock_page(page); 1145 page_cache_release(page); 1146 1147 if (old_size < pos) 1148 pagecache_isize_extended(inode, old_size, pos); 1149 /* 1150 * Don't mark the inode dirty under page lock. First, it unnecessarily 1151 * makes the holding time of page lock longer. Second, it forces lock 1152 * ordering of page lock and transaction start for journaling 1153 * filesystems. 1154 */ 1155 if (i_size_changed) 1156 ext4_mark_inode_dirty(handle, inode); 1157 1158 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1159 /* if we have allocated more blocks and copied 1160 * less. We will have blocks allocated outside 1161 * inode->i_size. So truncate them 1162 */ 1163 ext4_orphan_add(handle, inode); 1164 errout: 1165 ret2 = ext4_journal_stop(handle); 1166 if (!ret) 1167 ret = ret2; 1168 1169 if (pos + len > inode->i_size) { 1170 ext4_truncate_failed_write(inode); 1171 /* 1172 * If truncate failed early the inode might still be 1173 * on the orphan list; we need to make sure the inode 1174 * is removed from the orphan list in that case. 1175 */ 1176 if (inode->i_nlink) 1177 ext4_orphan_del(NULL, inode); 1178 } 1179 1180 return ret ? ret : copied; 1181 } 1182 1183 static int ext4_journalled_write_end(struct file *file, 1184 struct address_space *mapping, 1185 loff_t pos, unsigned len, unsigned copied, 1186 struct page *page, void *fsdata) 1187 { 1188 handle_t *handle = ext4_journal_current_handle(); 1189 struct inode *inode = mapping->host; 1190 loff_t old_size = inode->i_size; 1191 int ret = 0, ret2; 1192 int partial = 0; 1193 unsigned from, to; 1194 int size_changed = 0; 1195 1196 trace_ext4_journalled_write_end(inode, pos, len, copied); 1197 from = pos & (PAGE_CACHE_SIZE - 1); 1198 to = from + len; 1199 1200 BUG_ON(!ext4_handle_valid(handle)); 1201 1202 if (ext4_has_inline_data(inode)) 1203 copied = ext4_write_inline_data_end(inode, pos, len, 1204 copied, page); 1205 else { 1206 if (copied < len) { 1207 if (!PageUptodate(page)) 1208 copied = 0; 1209 page_zero_new_buffers(page, from+copied, to); 1210 } 1211 1212 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1213 to, &partial, write_end_fn); 1214 if (!partial) 1215 SetPageUptodate(page); 1216 } 1217 size_changed = ext4_update_inode_size(inode, pos + copied); 1218 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1219 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1220 unlock_page(page); 1221 page_cache_release(page); 1222 1223 if (old_size < pos) 1224 pagecache_isize_extended(inode, old_size, pos); 1225 1226 if (size_changed) { 1227 ret2 = ext4_mark_inode_dirty(handle, inode); 1228 if (!ret) 1229 ret = ret2; 1230 } 1231 1232 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1233 /* if we have allocated more blocks and copied 1234 * less. We will have blocks allocated outside 1235 * inode->i_size. So truncate them 1236 */ 1237 ext4_orphan_add(handle, inode); 1238 1239 ret2 = ext4_journal_stop(handle); 1240 if (!ret) 1241 ret = ret2; 1242 if (pos + len > inode->i_size) { 1243 ext4_truncate_failed_write(inode); 1244 /* 1245 * If truncate failed early the inode might still be 1246 * on the orphan list; we need to make sure the inode 1247 * is removed from the orphan list in that case. 1248 */ 1249 if (inode->i_nlink) 1250 ext4_orphan_del(NULL, inode); 1251 } 1252 1253 return ret ? ret : copied; 1254 } 1255 1256 /* 1257 * Reserve space for a single cluster 1258 */ 1259 static int ext4_da_reserve_space(struct inode *inode) 1260 { 1261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1262 struct ext4_inode_info *ei = EXT4_I(inode); 1263 int ret; 1264 1265 /* 1266 * We will charge metadata quota at writeout time; this saves 1267 * us from metadata over-estimation, though we may go over by 1268 * a small amount in the end. Here we just reserve for data. 1269 */ 1270 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1271 if (ret) 1272 return ret; 1273 1274 spin_lock(&ei->i_block_reservation_lock); 1275 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1276 spin_unlock(&ei->i_block_reservation_lock); 1277 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1278 return -ENOSPC; 1279 } 1280 ei->i_reserved_data_blocks++; 1281 trace_ext4_da_reserve_space(inode); 1282 spin_unlock(&ei->i_block_reservation_lock); 1283 1284 return 0; /* success */ 1285 } 1286 1287 static void ext4_da_release_space(struct inode *inode, int to_free) 1288 { 1289 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1290 struct ext4_inode_info *ei = EXT4_I(inode); 1291 1292 if (!to_free) 1293 return; /* Nothing to release, exit */ 1294 1295 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1296 1297 trace_ext4_da_release_space(inode, to_free); 1298 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1299 /* 1300 * if there aren't enough reserved blocks, then the 1301 * counter is messed up somewhere. Since this 1302 * function is called from invalidate page, it's 1303 * harmless to return without any action. 1304 */ 1305 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1306 "ino %lu, to_free %d with only %d reserved " 1307 "data blocks", inode->i_ino, to_free, 1308 ei->i_reserved_data_blocks); 1309 WARN_ON(1); 1310 to_free = ei->i_reserved_data_blocks; 1311 } 1312 ei->i_reserved_data_blocks -= to_free; 1313 1314 /* update fs dirty data blocks counter */ 1315 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1316 1317 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1318 1319 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1320 } 1321 1322 static void ext4_da_page_release_reservation(struct page *page, 1323 unsigned int offset, 1324 unsigned int length) 1325 { 1326 int to_release = 0, contiguous_blks = 0; 1327 struct buffer_head *head, *bh; 1328 unsigned int curr_off = 0; 1329 struct inode *inode = page->mapping->host; 1330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1331 unsigned int stop = offset + length; 1332 int num_clusters; 1333 ext4_fsblk_t lblk; 1334 1335 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1336 1337 head = page_buffers(page); 1338 bh = head; 1339 do { 1340 unsigned int next_off = curr_off + bh->b_size; 1341 1342 if (next_off > stop) 1343 break; 1344 1345 if ((offset <= curr_off) && (buffer_delay(bh))) { 1346 to_release++; 1347 contiguous_blks++; 1348 clear_buffer_delay(bh); 1349 } else if (contiguous_blks) { 1350 lblk = page->index << 1351 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1352 lblk += (curr_off >> inode->i_blkbits) - 1353 contiguous_blks; 1354 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1355 contiguous_blks = 0; 1356 } 1357 curr_off = next_off; 1358 } while ((bh = bh->b_this_page) != head); 1359 1360 if (contiguous_blks) { 1361 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1362 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1363 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1364 } 1365 1366 /* If we have released all the blocks belonging to a cluster, then we 1367 * need to release the reserved space for that cluster. */ 1368 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1369 while (num_clusters > 0) { 1370 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1371 ((num_clusters - 1) << sbi->s_cluster_bits); 1372 if (sbi->s_cluster_ratio == 1 || 1373 !ext4_find_delalloc_cluster(inode, lblk)) 1374 ext4_da_release_space(inode, 1); 1375 1376 num_clusters--; 1377 } 1378 } 1379 1380 /* 1381 * Delayed allocation stuff 1382 */ 1383 1384 struct mpage_da_data { 1385 struct inode *inode; 1386 struct writeback_control *wbc; 1387 1388 pgoff_t first_page; /* The first page to write */ 1389 pgoff_t next_page; /* Current page to examine */ 1390 pgoff_t last_page; /* Last page to examine */ 1391 /* 1392 * Extent to map - this can be after first_page because that can be 1393 * fully mapped. We somewhat abuse m_flags to store whether the extent 1394 * is delalloc or unwritten. 1395 */ 1396 struct ext4_map_blocks map; 1397 struct ext4_io_submit io_submit; /* IO submission data */ 1398 }; 1399 1400 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1401 bool invalidate) 1402 { 1403 int nr_pages, i; 1404 pgoff_t index, end; 1405 struct pagevec pvec; 1406 struct inode *inode = mpd->inode; 1407 struct address_space *mapping = inode->i_mapping; 1408 1409 /* This is necessary when next_page == 0. */ 1410 if (mpd->first_page >= mpd->next_page) 1411 return; 1412 1413 index = mpd->first_page; 1414 end = mpd->next_page - 1; 1415 if (invalidate) { 1416 ext4_lblk_t start, last; 1417 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1418 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1419 ext4_es_remove_extent(inode, start, last - start + 1); 1420 } 1421 1422 pagevec_init(&pvec, 0); 1423 while (index <= end) { 1424 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1425 if (nr_pages == 0) 1426 break; 1427 for (i = 0; i < nr_pages; i++) { 1428 struct page *page = pvec.pages[i]; 1429 if (page->index > end) 1430 break; 1431 BUG_ON(!PageLocked(page)); 1432 BUG_ON(PageWriteback(page)); 1433 if (invalidate) { 1434 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1435 ClearPageUptodate(page); 1436 } 1437 unlock_page(page); 1438 } 1439 index = pvec.pages[nr_pages - 1]->index + 1; 1440 pagevec_release(&pvec); 1441 } 1442 } 1443 1444 static void ext4_print_free_blocks(struct inode *inode) 1445 { 1446 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1447 struct super_block *sb = inode->i_sb; 1448 struct ext4_inode_info *ei = EXT4_I(inode); 1449 1450 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1451 EXT4_C2B(EXT4_SB(inode->i_sb), 1452 ext4_count_free_clusters(sb))); 1453 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1454 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1455 (long long) EXT4_C2B(EXT4_SB(sb), 1456 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1457 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1458 (long long) EXT4_C2B(EXT4_SB(sb), 1459 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1460 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1461 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1462 ei->i_reserved_data_blocks); 1463 return; 1464 } 1465 1466 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1467 { 1468 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1469 } 1470 1471 /* 1472 * This function is grabs code from the very beginning of 1473 * ext4_map_blocks, but assumes that the caller is from delayed write 1474 * time. This function looks up the requested blocks and sets the 1475 * buffer delay bit under the protection of i_data_sem. 1476 */ 1477 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1478 struct ext4_map_blocks *map, 1479 struct buffer_head *bh) 1480 { 1481 struct extent_status es; 1482 int retval; 1483 sector_t invalid_block = ~((sector_t) 0xffff); 1484 #ifdef ES_AGGRESSIVE_TEST 1485 struct ext4_map_blocks orig_map; 1486 1487 memcpy(&orig_map, map, sizeof(*map)); 1488 #endif 1489 1490 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1491 invalid_block = ~0; 1492 1493 map->m_flags = 0; 1494 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1495 "logical block %lu\n", inode->i_ino, map->m_len, 1496 (unsigned long) map->m_lblk); 1497 1498 /* Lookup extent status tree firstly */ 1499 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1500 if (ext4_es_is_hole(&es)) { 1501 retval = 0; 1502 down_read(&EXT4_I(inode)->i_data_sem); 1503 goto add_delayed; 1504 } 1505 1506 /* 1507 * Delayed extent could be allocated by fallocate. 1508 * So we need to check it. 1509 */ 1510 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1511 map_bh(bh, inode->i_sb, invalid_block); 1512 set_buffer_new(bh); 1513 set_buffer_delay(bh); 1514 return 0; 1515 } 1516 1517 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1518 retval = es.es_len - (iblock - es.es_lblk); 1519 if (retval > map->m_len) 1520 retval = map->m_len; 1521 map->m_len = retval; 1522 if (ext4_es_is_written(&es)) 1523 map->m_flags |= EXT4_MAP_MAPPED; 1524 else if (ext4_es_is_unwritten(&es)) 1525 map->m_flags |= EXT4_MAP_UNWRITTEN; 1526 else 1527 BUG_ON(1); 1528 1529 #ifdef ES_AGGRESSIVE_TEST 1530 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1531 #endif 1532 return retval; 1533 } 1534 1535 /* 1536 * Try to see if we can get the block without requesting a new 1537 * file system block. 1538 */ 1539 down_read(&EXT4_I(inode)->i_data_sem); 1540 if (ext4_has_inline_data(inode)) 1541 retval = 0; 1542 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1543 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1544 else 1545 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1546 1547 add_delayed: 1548 if (retval == 0) { 1549 int ret; 1550 /* 1551 * XXX: __block_prepare_write() unmaps passed block, 1552 * is it OK? 1553 */ 1554 /* 1555 * If the block was allocated from previously allocated cluster, 1556 * then we don't need to reserve it again. However we still need 1557 * to reserve metadata for every block we're going to write. 1558 */ 1559 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1560 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1561 ret = ext4_da_reserve_space(inode); 1562 if (ret) { 1563 /* not enough space to reserve */ 1564 retval = ret; 1565 goto out_unlock; 1566 } 1567 } 1568 1569 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1570 ~0, EXTENT_STATUS_DELAYED); 1571 if (ret) { 1572 retval = ret; 1573 goto out_unlock; 1574 } 1575 1576 map_bh(bh, inode->i_sb, invalid_block); 1577 set_buffer_new(bh); 1578 set_buffer_delay(bh); 1579 } else if (retval > 0) { 1580 int ret; 1581 unsigned int status; 1582 1583 if (unlikely(retval != map->m_len)) { 1584 ext4_warning(inode->i_sb, 1585 "ES len assertion failed for inode " 1586 "%lu: retval %d != map->m_len %d", 1587 inode->i_ino, retval, map->m_len); 1588 WARN_ON(1); 1589 } 1590 1591 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1593 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1594 map->m_pblk, status); 1595 if (ret != 0) 1596 retval = ret; 1597 } 1598 1599 out_unlock: 1600 up_read((&EXT4_I(inode)->i_data_sem)); 1601 1602 return retval; 1603 } 1604 1605 /* 1606 * This is a special get_block_t callback which is used by 1607 * ext4_da_write_begin(). It will either return mapped block or 1608 * reserve space for a single block. 1609 * 1610 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1611 * We also have b_blocknr = -1 and b_bdev initialized properly 1612 * 1613 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1614 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1615 * initialized properly. 1616 */ 1617 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1618 struct buffer_head *bh, int create) 1619 { 1620 struct ext4_map_blocks map; 1621 int ret = 0; 1622 1623 BUG_ON(create == 0); 1624 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1625 1626 map.m_lblk = iblock; 1627 map.m_len = 1; 1628 1629 /* 1630 * first, we need to know whether the block is allocated already 1631 * preallocated blocks are unmapped but should treated 1632 * the same as allocated blocks. 1633 */ 1634 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1635 if (ret <= 0) 1636 return ret; 1637 1638 map_bh(bh, inode->i_sb, map.m_pblk); 1639 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1640 1641 if (buffer_unwritten(bh)) { 1642 /* A delayed write to unwritten bh should be marked 1643 * new and mapped. Mapped ensures that we don't do 1644 * get_block multiple times when we write to the same 1645 * offset and new ensures that we do proper zero out 1646 * for partial write. 1647 */ 1648 set_buffer_new(bh); 1649 set_buffer_mapped(bh); 1650 } 1651 return 0; 1652 } 1653 1654 static int bget_one(handle_t *handle, struct buffer_head *bh) 1655 { 1656 get_bh(bh); 1657 return 0; 1658 } 1659 1660 static int bput_one(handle_t *handle, struct buffer_head *bh) 1661 { 1662 put_bh(bh); 1663 return 0; 1664 } 1665 1666 static int __ext4_journalled_writepage(struct page *page, 1667 unsigned int len) 1668 { 1669 struct address_space *mapping = page->mapping; 1670 struct inode *inode = mapping->host; 1671 struct buffer_head *page_bufs = NULL; 1672 handle_t *handle = NULL; 1673 int ret = 0, err = 0; 1674 int inline_data = ext4_has_inline_data(inode); 1675 struct buffer_head *inode_bh = NULL; 1676 1677 ClearPageChecked(page); 1678 1679 if (inline_data) { 1680 BUG_ON(page->index != 0); 1681 BUG_ON(len > ext4_get_max_inline_size(inode)); 1682 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1683 if (inode_bh == NULL) 1684 goto out; 1685 } else { 1686 page_bufs = page_buffers(page); 1687 if (!page_bufs) { 1688 BUG(); 1689 goto out; 1690 } 1691 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1692 NULL, bget_one); 1693 } 1694 /* 1695 * We need to release the page lock before we start the 1696 * journal, so grab a reference so the page won't disappear 1697 * out from under us. 1698 */ 1699 get_page(page); 1700 unlock_page(page); 1701 1702 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1703 ext4_writepage_trans_blocks(inode)); 1704 if (IS_ERR(handle)) { 1705 ret = PTR_ERR(handle); 1706 put_page(page); 1707 goto out_no_pagelock; 1708 } 1709 BUG_ON(!ext4_handle_valid(handle)); 1710 1711 lock_page(page); 1712 put_page(page); 1713 if (page->mapping != mapping) { 1714 /* The page got truncated from under us */ 1715 ext4_journal_stop(handle); 1716 ret = 0; 1717 goto out; 1718 } 1719 1720 if (inline_data) { 1721 BUFFER_TRACE(inode_bh, "get write access"); 1722 ret = ext4_journal_get_write_access(handle, inode_bh); 1723 1724 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1725 1726 } else { 1727 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1728 do_journal_get_write_access); 1729 1730 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1731 write_end_fn); 1732 } 1733 if (ret == 0) 1734 ret = err; 1735 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1736 err = ext4_journal_stop(handle); 1737 if (!ret) 1738 ret = err; 1739 1740 if (!ext4_has_inline_data(inode)) 1741 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1742 NULL, bput_one); 1743 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1744 out: 1745 unlock_page(page); 1746 out_no_pagelock: 1747 brelse(inode_bh); 1748 return ret; 1749 } 1750 1751 /* 1752 * Note that we don't need to start a transaction unless we're journaling data 1753 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1754 * need to file the inode to the transaction's list in ordered mode because if 1755 * we are writing back data added by write(), the inode is already there and if 1756 * we are writing back data modified via mmap(), no one guarantees in which 1757 * transaction the data will hit the disk. In case we are journaling data, we 1758 * cannot start transaction directly because transaction start ranks above page 1759 * lock so we have to do some magic. 1760 * 1761 * This function can get called via... 1762 * - ext4_writepages after taking page lock (have journal handle) 1763 * - journal_submit_inode_data_buffers (no journal handle) 1764 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1765 * - grab_page_cache when doing write_begin (have journal handle) 1766 * 1767 * We don't do any block allocation in this function. If we have page with 1768 * multiple blocks we need to write those buffer_heads that are mapped. This 1769 * is important for mmaped based write. So if we do with blocksize 1K 1770 * truncate(f, 1024); 1771 * a = mmap(f, 0, 4096); 1772 * a[0] = 'a'; 1773 * truncate(f, 4096); 1774 * we have in the page first buffer_head mapped via page_mkwrite call back 1775 * but other buffer_heads would be unmapped but dirty (dirty done via the 1776 * do_wp_page). So writepage should write the first block. If we modify 1777 * the mmap area beyond 1024 we will again get a page_fault and the 1778 * page_mkwrite callback will do the block allocation and mark the 1779 * buffer_heads mapped. 1780 * 1781 * We redirty the page if we have any buffer_heads that is either delay or 1782 * unwritten in the page. 1783 * 1784 * We can get recursively called as show below. 1785 * 1786 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1787 * ext4_writepage() 1788 * 1789 * But since we don't do any block allocation we should not deadlock. 1790 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1791 */ 1792 static int ext4_writepage(struct page *page, 1793 struct writeback_control *wbc) 1794 { 1795 int ret = 0; 1796 loff_t size; 1797 unsigned int len; 1798 struct buffer_head *page_bufs = NULL; 1799 struct inode *inode = page->mapping->host; 1800 struct ext4_io_submit io_submit; 1801 bool keep_towrite = false; 1802 1803 trace_ext4_writepage(page); 1804 size = i_size_read(inode); 1805 if (page->index == size >> PAGE_CACHE_SHIFT) 1806 len = size & ~PAGE_CACHE_MASK; 1807 else 1808 len = PAGE_CACHE_SIZE; 1809 1810 page_bufs = page_buffers(page); 1811 /* 1812 * We cannot do block allocation or other extent handling in this 1813 * function. If there are buffers needing that, we have to redirty 1814 * the page. But we may reach here when we do a journal commit via 1815 * journal_submit_inode_data_buffers() and in that case we must write 1816 * allocated buffers to achieve data=ordered mode guarantees. 1817 */ 1818 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1819 ext4_bh_delay_or_unwritten)) { 1820 redirty_page_for_writepage(wbc, page); 1821 if (current->flags & PF_MEMALLOC) { 1822 /* 1823 * For memory cleaning there's no point in writing only 1824 * some buffers. So just bail out. Warn if we came here 1825 * from direct reclaim. 1826 */ 1827 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1828 == PF_MEMALLOC); 1829 unlock_page(page); 1830 return 0; 1831 } 1832 keep_towrite = true; 1833 } 1834 1835 if (PageChecked(page) && ext4_should_journal_data(inode)) 1836 /* 1837 * It's mmapped pagecache. Add buffers and journal it. There 1838 * doesn't seem much point in redirtying the page here. 1839 */ 1840 return __ext4_journalled_writepage(page, len); 1841 1842 ext4_io_submit_init(&io_submit, wbc); 1843 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1844 if (!io_submit.io_end) { 1845 redirty_page_for_writepage(wbc, page); 1846 unlock_page(page); 1847 return -ENOMEM; 1848 } 1849 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1850 ext4_io_submit(&io_submit); 1851 /* Drop io_end reference we got from init */ 1852 ext4_put_io_end_defer(io_submit.io_end); 1853 return ret; 1854 } 1855 1856 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1857 { 1858 int len; 1859 loff_t size = i_size_read(mpd->inode); 1860 int err; 1861 1862 BUG_ON(page->index != mpd->first_page); 1863 if (page->index == size >> PAGE_CACHE_SHIFT) 1864 len = size & ~PAGE_CACHE_MASK; 1865 else 1866 len = PAGE_CACHE_SIZE; 1867 clear_page_dirty_for_io(page); 1868 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1869 if (!err) 1870 mpd->wbc->nr_to_write--; 1871 mpd->first_page++; 1872 1873 return err; 1874 } 1875 1876 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1877 1878 /* 1879 * mballoc gives us at most this number of blocks... 1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1881 * The rest of mballoc seems to handle chunks up to full group size. 1882 */ 1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1884 1885 /* 1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1887 * 1888 * @mpd - extent of blocks 1889 * @lblk - logical number of the block in the file 1890 * @bh - buffer head we want to add to the extent 1891 * 1892 * The function is used to collect contig. blocks in the same state. If the 1893 * buffer doesn't require mapping for writeback and we haven't started the 1894 * extent of buffers to map yet, the function returns 'true' immediately - the 1895 * caller can write the buffer right away. Otherwise the function returns true 1896 * if the block has been added to the extent, false if the block couldn't be 1897 * added. 1898 */ 1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1900 struct buffer_head *bh) 1901 { 1902 struct ext4_map_blocks *map = &mpd->map; 1903 1904 /* Buffer that doesn't need mapping for writeback? */ 1905 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1906 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1907 /* So far no extent to map => we write the buffer right away */ 1908 if (map->m_len == 0) 1909 return true; 1910 return false; 1911 } 1912 1913 /* First block in the extent? */ 1914 if (map->m_len == 0) { 1915 map->m_lblk = lblk; 1916 map->m_len = 1; 1917 map->m_flags = bh->b_state & BH_FLAGS; 1918 return true; 1919 } 1920 1921 /* Don't go larger than mballoc is willing to allocate */ 1922 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1923 return false; 1924 1925 /* Can we merge the block to our big extent? */ 1926 if (lblk == map->m_lblk + map->m_len && 1927 (bh->b_state & BH_FLAGS) == map->m_flags) { 1928 map->m_len++; 1929 return true; 1930 } 1931 return false; 1932 } 1933 1934 /* 1935 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1936 * 1937 * @mpd - extent of blocks for mapping 1938 * @head - the first buffer in the page 1939 * @bh - buffer we should start processing from 1940 * @lblk - logical number of the block in the file corresponding to @bh 1941 * 1942 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1943 * the page for IO if all buffers in this page were mapped and there's no 1944 * accumulated extent of buffers to map or add buffers in the page to the 1945 * extent of buffers to map. The function returns 1 if the caller can continue 1946 * by processing the next page, 0 if it should stop adding buffers to the 1947 * extent to map because we cannot extend it anymore. It can also return value 1948 * < 0 in case of error during IO submission. 1949 */ 1950 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1951 struct buffer_head *head, 1952 struct buffer_head *bh, 1953 ext4_lblk_t lblk) 1954 { 1955 struct inode *inode = mpd->inode; 1956 int err; 1957 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1958 >> inode->i_blkbits; 1959 1960 do { 1961 BUG_ON(buffer_locked(bh)); 1962 1963 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1964 /* Found extent to map? */ 1965 if (mpd->map.m_len) 1966 return 0; 1967 /* Everything mapped so far and we hit EOF */ 1968 break; 1969 } 1970 } while (lblk++, (bh = bh->b_this_page) != head); 1971 /* So far everything mapped? Submit the page for IO. */ 1972 if (mpd->map.m_len == 0) { 1973 err = mpage_submit_page(mpd, head->b_page); 1974 if (err < 0) 1975 return err; 1976 } 1977 return lblk < blocks; 1978 } 1979 1980 /* 1981 * mpage_map_buffers - update buffers corresponding to changed extent and 1982 * submit fully mapped pages for IO 1983 * 1984 * @mpd - description of extent to map, on return next extent to map 1985 * 1986 * Scan buffers corresponding to changed extent (we expect corresponding pages 1987 * to be already locked) and update buffer state according to new extent state. 1988 * We map delalloc buffers to their physical location, clear unwritten bits, 1989 * and mark buffers as uninit when we perform writes to unwritten extents 1990 * and do extent conversion after IO is finished. If the last page is not fully 1991 * mapped, we update @map to the next extent in the last page that needs 1992 * mapping. Otherwise we submit the page for IO. 1993 */ 1994 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1995 { 1996 struct pagevec pvec; 1997 int nr_pages, i; 1998 struct inode *inode = mpd->inode; 1999 struct buffer_head *head, *bh; 2000 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2001 pgoff_t start, end; 2002 ext4_lblk_t lblk; 2003 sector_t pblock; 2004 int err; 2005 2006 start = mpd->map.m_lblk >> bpp_bits; 2007 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2008 lblk = start << bpp_bits; 2009 pblock = mpd->map.m_pblk; 2010 2011 pagevec_init(&pvec, 0); 2012 while (start <= end) { 2013 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2014 PAGEVEC_SIZE); 2015 if (nr_pages == 0) 2016 break; 2017 for (i = 0; i < nr_pages; i++) { 2018 struct page *page = pvec.pages[i]; 2019 2020 if (page->index > end) 2021 break; 2022 /* Up to 'end' pages must be contiguous */ 2023 BUG_ON(page->index != start); 2024 bh = head = page_buffers(page); 2025 do { 2026 if (lblk < mpd->map.m_lblk) 2027 continue; 2028 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2029 /* 2030 * Buffer after end of mapped extent. 2031 * Find next buffer in the page to map. 2032 */ 2033 mpd->map.m_len = 0; 2034 mpd->map.m_flags = 0; 2035 /* 2036 * FIXME: If dioread_nolock supports 2037 * blocksize < pagesize, we need to make 2038 * sure we add size mapped so far to 2039 * io_end->size as the following call 2040 * can submit the page for IO. 2041 */ 2042 err = mpage_process_page_bufs(mpd, head, 2043 bh, lblk); 2044 pagevec_release(&pvec); 2045 if (err > 0) 2046 err = 0; 2047 return err; 2048 } 2049 if (buffer_delay(bh)) { 2050 clear_buffer_delay(bh); 2051 bh->b_blocknr = pblock++; 2052 } 2053 clear_buffer_unwritten(bh); 2054 } while (lblk++, (bh = bh->b_this_page) != head); 2055 2056 /* 2057 * FIXME: This is going to break if dioread_nolock 2058 * supports blocksize < pagesize as we will try to 2059 * convert potentially unmapped parts of inode. 2060 */ 2061 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2062 /* Page fully mapped - let IO run! */ 2063 err = mpage_submit_page(mpd, page); 2064 if (err < 0) { 2065 pagevec_release(&pvec); 2066 return err; 2067 } 2068 start++; 2069 } 2070 pagevec_release(&pvec); 2071 } 2072 /* Extent fully mapped and matches with page boundary. We are done. */ 2073 mpd->map.m_len = 0; 2074 mpd->map.m_flags = 0; 2075 return 0; 2076 } 2077 2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2079 { 2080 struct inode *inode = mpd->inode; 2081 struct ext4_map_blocks *map = &mpd->map; 2082 int get_blocks_flags; 2083 int err, dioread_nolock; 2084 2085 trace_ext4_da_write_pages_extent(inode, map); 2086 /* 2087 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2088 * to convert an unwritten extent to be initialized (in the case 2089 * where we have written into one or more preallocated blocks). It is 2090 * possible that we're going to need more metadata blocks than 2091 * previously reserved. However we must not fail because we're in 2092 * writeback and there is nothing we can do about it so it might result 2093 * in data loss. So use reserved blocks to allocate metadata if 2094 * possible. 2095 * 2096 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2097 * the blocks in question are delalloc blocks. This indicates 2098 * that the blocks and quotas has already been checked when 2099 * the data was copied into the page cache. 2100 */ 2101 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2102 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2103 dioread_nolock = ext4_should_dioread_nolock(inode); 2104 if (dioread_nolock) 2105 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2106 if (map->m_flags & (1 << BH_Delay)) 2107 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2108 2109 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2110 if (err < 0) 2111 return err; 2112 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2113 if (!mpd->io_submit.io_end->handle && 2114 ext4_handle_valid(handle)) { 2115 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2116 handle->h_rsv_handle = NULL; 2117 } 2118 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2119 } 2120 2121 BUG_ON(map->m_len == 0); 2122 if (map->m_flags & EXT4_MAP_NEW) { 2123 struct block_device *bdev = inode->i_sb->s_bdev; 2124 int i; 2125 2126 for (i = 0; i < map->m_len; i++) 2127 unmap_underlying_metadata(bdev, map->m_pblk + i); 2128 } 2129 return 0; 2130 } 2131 2132 /* 2133 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2134 * mpd->len and submit pages underlying it for IO 2135 * 2136 * @handle - handle for journal operations 2137 * @mpd - extent to map 2138 * @give_up_on_write - we set this to true iff there is a fatal error and there 2139 * is no hope of writing the data. The caller should discard 2140 * dirty pages to avoid infinite loops. 2141 * 2142 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2143 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2144 * them to initialized or split the described range from larger unwritten 2145 * extent. Note that we need not map all the described range since allocation 2146 * can return less blocks or the range is covered by more unwritten extents. We 2147 * cannot map more because we are limited by reserved transaction credits. On 2148 * the other hand we always make sure that the last touched page is fully 2149 * mapped so that it can be written out (and thus forward progress is 2150 * guaranteed). After mapping we submit all mapped pages for IO. 2151 */ 2152 static int mpage_map_and_submit_extent(handle_t *handle, 2153 struct mpage_da_data *mpd, 2154 bool *give_up_on_write) 2155 { 2156 struct inode *inode = mpd->inode; 2157 struct ext4_map_blocks *map = &mpd->map; 2158 int err; 2159 loff_t disksize; 2160 int progress = 0; 2161 2162 mpd->io_submit.io_end->offset = 2163 ((loff_t)map->m_lblk) << inode->i_blkbits; 2164 do { 2165 err = mpage_map_one_extent(handle, mpd); 2166 if (err < 0) { 2167 struct super_block *sb = inode->i_sb; 2168 2169 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2170 goto invalidate_dirty_pages; 2171 /* 2172 * Let the uper layers retry transient errors. 2173 * In the case of ENOSPC, if ext4_count_free_blocks() 2174 * is non-zero, a commit should free up blocks. 2175 */ 2176 if ((err == -ENOMEM) || 2177 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2178 if (progress) 2179 goto update_disksize; 2180 return err; 2181 } 2182 ext4_msg(sb, KERN_CRIT, 2183 "Delayed block allocation failed for " 2184 "inode %lu at logical offset %llu with" 2185 " max blocks %u with error %d", 2186 inode->i_ino, 2187 (unsigned long long)map->m_lblk, 2188 (unsigned)map->m_len, -err); 2189 ext4_msg(sb, KERN_CRIT, 2190 "This should not happen!! Data will " 2191 "be lost\n"); 2192 if (err == -ENOSPC) 2193 ext4_print_free_blocks(inode); 2194 invalidate_dirty_pages: 2195 *give_up_on_write = true; 2196 return err; 2197 } 2198 progress = 1; 2199 /* 2200 * Update buffer state, submit mapped pages, and get us new 2201 * extent to map 2202 */ 2203 err = mpage_map_and_submit_buffers(mpd); 2204 if (err < 0) 2205 goto update_disksize; 2206 } while (map->m_len); 2207 2208 update_disksize: 2209 /* 2210 * Update on-disk size after IO is submitted. Races with 2211 * truncate are avoided by checking i_size under i_data_sem. 2212 */ 2213 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2214 if (disksize > EXT4_I(inode)->i_disksize) { 2215 int err2; 2216 loff_t i_size; 2217 2218 down_write(&EXT4_I(inode)->i_data_sem); 2219 i_size = i_size_read(inode); 2220 if (disksize > i_size) 2221 disksize = i_size; 2222 if (disksize > EXT4_I(inode)->i_disksize) 2223 EXT4_I(inode)->i_disksize = disksize; 2224 err2 = ext4_mark_inode_dirty(handle, inode); 2225 up_write(&EXT4_I(inode)->i_data_sem); 2226 if (err2) 2227 ext4_error(inode->i_sb, 2228 "Failed to mark inode %lu dirty", 2229 inode->i_ino); 2230 if (!err) 2231 err = err2; 2232 } 2233 return err; 2234 } 2235 2236 /* 2237 * Calculate the total number of credits to reserve for one writepages 2238 * iteration. This is called from ext4_writepages(). We map an extent of 2239 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2240 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2241 * bpp - 1 blocks in bpp different extents. 2242 */ 2243 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2244 { 2245 int bpp = ext4_journal_blocks_per_page(inode); 2246 2247 return ext4_meta_trans_blocks(inode, 2248 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2249 } 2250 2251 /* 2252 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2253 * and underlying extent to map 2254 * 2255 * @mpd - where to look for pages 2256 * 2257 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2258 * IO immediately. When we find a page which isn't mapped we start accumulating 2259 * extent of buffers underlying these pages that needs mapping (formed by 2260 * either delayed or unwritten buffers). We also lock the pages containing 2261 * these buffers. The extent found is returned in @mpd structure (starting at 2262 * mpd->lblk with length mpd->len blocks). 2263 * 2264 * Note that this function can attach bios to one io_end structure which are 2265 * neither logically nor physically contiguous. Although it may seem as an 2266 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2267 * case as we need to track IO to all buffers underlying a page in one io_end. 2268 */ 2269 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2270 { 2271 struct address_space *mapping = mpd->inode->i_mapping; 2272 struct pagevec pvec; 2273 unsigned int nr_pages; 2274 long left = mpd->wbc->nr_to_write; 2275 pgoff_t index = mpd->first_page; 2276 pgoff_t end = mpd->last_page; 2277 int tag; 2278 int i, err = 0; 2279 int blkbits = mpd->inode->i_blkbits; 2280 ext4_lblk_t lblk; 2281 struct buffer_head *head; 2282 2283 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2284 tag = PAGECACHE_TAG_TOWRITE; 2285 else 2286 tag = PAGECACHE_TAG_DIRTY; 2287 2288 pagevec_init(&pvec, 0); 2289 mpd->map.m_len = 0; 2290 mpd->next_page = index; 2291 while (index <= end) { 2292 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2293 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2294 if (nr_pages == 0) 2295 goto out; 2296 2297 for (i = 0; i < nr_pages; i++) { 2298 struct page *page = pvec.pages[i]; 2299 2300 /* 2301 * At this point, the page may be truncated or 2302 * invalidated (changing page->mapping to NULL), or 2303 * even swizzled back from swapper_space to tmpfs file 2304 * mapping. However, page->index will not change 2305 * because we have a reference on the page. 2306 */ 2307 if (page->index > end) 2308 goto out; 2309 2310 /* 2311 * Accumulated enough dirty pages? This doesn't apply 2312 * to WB_SYNC_ALL mode. For integrity sync we have to 2313 * keep going because someone may be concurrently 2314 * dirtying pages, and we might have synced a lot of 2315 * newly appeared dirty pages, but have not synced all 2316 * of the old dirty pages. 2317 */ 2318 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2319 goto out; 2320 2321 /* If we can't merge this page, we are done. */ 2322 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2323 goto out; 2324 2325 lock_page(page); 2326 /* 2327 * If the page is no longer dirty, or its mapping no 2328 * longer corresponds to inode we are writing (which 2329 * means it has been truncated or invalidated), or the 2330 * page is already under writeback and we are not doing 2331 * a data integrity writeback, skip the page 2332 */ 2333 if (!PageDirty(page) || 2334 (PageWriteback(page) && 2335 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2336 unlikely(page->mapping != mapping)) { 2337 unlock_page(page); 2338 continue; 2339 } 2340 2341 wait_on_page_writeback(page); 2342 BUG_ON(PageWriteback(page)); 2343 2344 if (mpd->map.m_len == 0) 2345 mpd->first_page = page->index; 2346 mpd->next_page = page->index + 1; 2347 /* Add all dirty buffers to mpd */ 2348 lblk = ((ext4_lblk_t)page->index) << 2349 (PAGE_CACHE_SHIFT - blkbits); 2350 head = page_buffers(page); 2351 err = mpage_process_page_bufs(mpd, head, head, lblk); 2352 if (err <= 0) 2353 goto out; 2354 err = 0; 2355 left--; 2356 } 2357 pagevec_release(&pvec); 2358 cond_resched(); 2359 } 2360 return 0; 2361 out: 2362 pagevec_release(&pvec); 2363 return err; 2364 } 2365 2366 static int __writepage(struct page *page, struct writeback_control *wbc, 2367 void *data) 2368 { 2369 struct address_space *mapping = data; 2370 int ret = ext4_writepage(page, wbc); 2371 mapping_set_error(mapping, ret); 2372 return ret; 2373 } 2374 2375 static int ext4_writepages(struct address_space *mapping, 2376 struct writeback_control *wbc) 2377 { 2378 pgoff_t writeback_index = 0; 2379 long nr_to_write = wbc->nr_to_write; 2380 int range_whole = 0; 2381 int cycled = 1; 2382 handle_t *handle = NULL; 2383 struct mpage_da_data mpd; 2384 struct inode *inode = mapping->host; 2385 int needed_blocks, rsv_blocks = 0, ret = 0; 2386 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2387 bool done; 2388 struct blk_plug plug; 2389 bool give_up_on_write = false; 2390 2391 trace_ext4_writepages(inode, wbc); 2392 2393 /* 2394 * No pages to write? This is mainly a kludge to avoid starting 2395 * a transaction for special inodes like journal inode on last iput() 2396 * because that could violate lock ordering on umount 2397 */ 2398 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2399 goto out_writepages; 2400 2401 if (ext4_should_journal_data(inode)) { 2402 struct blk_plug plug; 2403 2404 blk_start_plug(&plug); 2405 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2406 blk_finish_plug(&plug); 2407 goto out_writepages; 2408 } 2409 2410 /* 2411 * If the filesystem has aborted, it is read-only, so return 2412 * right away instead of dumping stack traces later on that 2413 * will obscure the real source of the problem. We test 2414 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2415 * the latter could be true if the filesystem is mounted 2416 * read-only, and in that case, ext4_writepages should 2417 * *never* be called, so if that ever happens, we would want 2418 * the stack trace. 2419 */ 2420 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2421 ret = -EROFS; 2422 goto out_writepages; 2423 } 2424 2425 if (ext4_should_dioread_nolock(inode)) { 2426 /* 2427 * We may need to convert up to one extent per block in 2428 * the page and we may dirty the inode. 2429 */ 2430 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2431 } 2432 2433 /* 2434 * If we have inline data and arrive here, it means that 2435 * we will soon create the block for the 1st page, so 2436 * we'd better clear the inline data here. 2437 */ 2438 if (ext4_has_inline_data(inode)) { 2439 /* Just inode will be modified... */ 2440 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2441 if (IS_ERR(handle)) { 2442 ret = PTR_ERR(handle); 2443 goto out_writepages; 2444 } 2445 BUG_ON(ext4_test_inode_state(inode, 2446 EXT4_STATE_MAY_INLINE_DATA)); 2447 ext4_destroy_inline_data(handle, inode); 2448 ext4_journal_stop(handle); 2449 } 2450 2451 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2452 range_whole = 1; 2453 2454 if (wbc->range_cyclic) { 2455 writeback_index = mapping->writeback_index; 2456 if (writeback_index) 2457 cycled = 0; 2458 mpd.first_page = writeback_index; 2459 mpd.last_page = -1; 2460 } else { 2461 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2462 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2463 } 2464 2465 mpd.inode = inode; 2466 mpd.wbc = wbc; 2467 ext4_io_submit_init(&mpd.io_submit, wbc); 2468 retry: 2469 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2470 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2471 done = false; 2472 blk_start_plug(&plug); 2473 while (!done && mpd.first_page <= mpd.last_page) { 2474 /* For each extent of pages we use new io_end */ 2475 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2476 if (!mpd.io_submit.io_end) { 2477 ret = -ENOMEM; 2478 break; 2479 } 2480 2481 /* 2482 * We have two constraints: We find one extent to map and we 2483 * must always write out whole page (makes a difference when 2484 * blocksize < pagesize) so that we don't block on IO when we 2485 * try to write out the rest of the page. Journalled mode is 2486 * not supported by delalloc. 2487 */ 2488 BUG_ON(ext4_should_journal_data(inode)); 2489 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2490 2491 /* start a new transaction */ 2492 handle = ext4_journal_start_with_reserve(inode, 2493 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2494 if (IS_ERR(handle)) { 2495 ret = PTR_ERR(handle); 2496 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2497 "%ld pages, ino %lu; err %d", __func__, 2498 wbc->nr_to_write, inode->i_ino, ret); 2499 /* Release allocated io_end */ 2500 ext4_put_io_end(mpd.io_submit.io_end); 2501 break; 2502 } 2503 2504 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2505 ret = mpage_prepare_extent_to_map(&mpd); 2506 if (!ret) { 2507 if (mpd.map.m_len) 2508 ret = mpage_map_and_submit_extent(handle, &mpd, 2509 &give_up_on_write); 2510 else { 2511 /* 2512 * We scanned the whole range (or exhausted 2513 * nr_to_write), submitted what was mapped and 2514 * didn't find anything needing mapping. We are 2515 * done. 2516 */ 2517 done = true; 2518 } 2519 } 2520 ext4_journal_stop(handle); 2521 /* Submit prepared bio */ 2522 ext4_io_submit(&mpd.io_submit); 2523 /* Unlock pages we didn't use */ 2524 mpage_release_unused_pages(&mpd, give_up_on_write); 2525 /* Drop our io_end reference we got from init */ 2526 ext4_put_io_end(mpd.io_submit.io_end); 2527 2528 if (ret == -ENOSPC && sbi->s_journal) { 2529 /* 2530 * Commit the transaction which would 2531 * free blocks released in the transaction 2532 * and try again 2533 */ 2534 jbd2_journal_force_commit_nested(sbi->s_journal); 2535 ret = 0; 2536 continue; 2537 } 2538 /* Fatal error - ENOMEM, EIO... */ 2539 if (ret) 2540 break; 2541 } 2542 blk_finish_plug(&plug); 2543 if (!ret && !cycled && wbc->nr_to_write > 0) { 2544 cycled = 1; 2545 mpd.last_page = writeback_index - 1; 2546 mpd.first_page = 0; 2547 goto retry; 2548 } 2549 2550 /* Update index */ 2551 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2552 /* 2553 * Set the writeback_index so that range_cyclic 2554 * mode will write it back later 2555 */ 2556 mapping->writeback_index = mpd.first_page; 2557 2558 out_writepages: 2559 trace_ext4_writepages_result(inode, wbc, ret, 2560 nr_to_write - wbc->nr_to_write); 2561 return ret; 2562 } 2563 2564 static int ext4_nonda_switch(struct super_block *sb) 2565 { 2566 s64 free_clusters, dirty_clusters; 2567 struct ext4_sb_info *sbi = EXT4_SB(sb); 2568 2569 /* 2570 * switch to non delalloc mode if we are running low 2571 * on free block. The free block accounting via percpu 2572 * counters can get slightly wrong with percpu_counter_batch getting 2573 * accumulated on each CPU without updating global counters 2574 * Delalloc need an accurate free block accounting. So switch 2575 * to non delalloc when we are near to error range. 2576 */ 2577 free_clusters = 2578 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2579 dirty_clusters = 2580 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2581 /* 2582 * Start pushing delalloc when 1/2 of free blocks are dirty. 2583 */ 2584 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2585 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2586 2587 if (2 * free_clusters < 3 * dirty_clusters || 2588 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2589 /* 2590 * free block count is less than 150% of dirty blocks 2591 * or free blocks is less than watermark 2592 */ 2593 return 1; 2594 } 2595 return 0; 2596 } 2597 2598 /* We always reserve for an inode update; the superblock could be there too */ 2599 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2600 { 2601 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2602 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2603 return 1; 2604 2605 if (pos + len <= 0x7fffffffULL) 2606 return 1; 2607 2608 /* We might need to update the superblock to set LARGE_FILE */ 2609 return 2; 2610 } 2611 2612 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2613 loff_t pos, unsigned len, unsigned flags, 2614 struct page **pagep, void **fsdata) 2615 { 2616 int ret, retries = 0; 2617 struct page *page; 2618 pgoff_t index; 2619 struct inode *inode = mapping->host; 2620 handle_t *handle; 2621 2622 index = pos >> PAGE_CACHE_SHIFT; 2623 2624 if (ext4_nonda_switch(inode->i_sb)) { 2625 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2626 return ext4_write_begin(file, mapping, pos, 2627 len, flags, pagep, fsdata); 2628 } 2629 *fsdata = (void *)0; 2630 trace_ext4_da_write_begin(inode, pos, len, flags); 2631 2632 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2633 ret = ext4_da_write_inline_data_begin(mapping, inode, 2634 pos, len, flags, 2635 pagep, fsdata); 2636 if (ret < 0) 2637 return ret; 2638 if (ret == 1) 2639 return 0; 2640 } 2641 2642 /* 2643 * grab_cache_page_write_begin() can take a long time if the 2644 * system is thrashing due to memory pressure, or if the page 2645 * is being written back. So grab it first before we start 2646 * the transaction handle. This also allows us to allocate 2647 * the page (if needed) without using GFP_NOFS. 2648 */ 2649 retry_grab: 2650 page = grab_cache_page_write_begin(mapping, index, flags); 2651 if (!page) 2652 return -ENOMEM; 2653 unlock_page(page); 2654 2655 /* 2656 * With delayed allocation, we don't log the i_disksize update 2657 * if there is delayed block allocation. But we still need 2658 * to journalling the i_disksize update if writes to the end 2659 * of file which has an already mapped buffer. 2660 */ 2661 retry_journal: 2662 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2663 ext4_da_write_credits(inode, pos, len)); 2664 if (IS_ERR(handle)) { 2665 page_cache_release(page); 2666 return PTR_ERR(handle); 2667 } 2668 2669 lock_page(page); 2670 if (page->mapping != mapping) { 2671 /* The page got truncated from under us */ 2672 unlock_page(page); 2673 page_cache_release(page); 2674 ext4_journal_stop(handle); 2675 goto retry_grab; 2676 } 2677 /* In case writeback began while the page was unlocked */ 2678 wait_for_stable_page(page); 2679 2680 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2681 ret = ext4_block_write_begin(page, pos, len, 2682 ext4_da_get_block_prep); 2683 #else 2684 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2685 #endif 2686 if (ret < 0) { 2687 unlock_page(page); 2688 ext4_journal_stop(handle); 2689 /* 2690 * block_write_begin may have instantiated a few blocks 2691 * outside i_size. Trim these off again. Don't need 2692 * i_size_read because we hold i_mutex. 2693 */ 2694 if (pos + len > inode->i_size) 2695 ext4_truncate_failed_write(inode); 2696 2697 if (ret == -ENOSPC && 2698 ext4_should_retry_alloc(inode->i_sb, &retries)) 2699 goto retry_journal; 2700 2701 page_cache_release(page); 2702 return ret; 2703 } 2704 2705 *pagep = page; 2706 return ret; 2707 } 2708 2709 /* 2710 * Check if we should update i_disksize 2711 * when write to the end of file but not require block allocation 2712 */ 2713 static int ext4_da_should_update_i_disksize(struct page *page, 2714 unsigned long offset) 2715 { 2716 struct buffer_head *bh; 2717 struct inode *inode = page->mapping->host; 2718 unsigned int idx; 2719 int i; 2720 2721 bh = page_buffers(page); 2722 idx = offset >> inode->i_blkbits; 2723 2724 for (i = 0; i < idx; i++) 2725 bh = bh->b_this_page; 2726 2727 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2728 return 0; 2729 return 1; 2730 } 2731 2732 static int ext4_da_write_end(struct file *file, 2733 struct address_space *mapping, 2734 loff_t pos, unsigned len, unsigned copied, 2735 struct page *page, void *fsdata) 2736 { 2737 struct inode *inode = mapping->host; 2738 int ret = 0, ret2; 2739 handle_t *handle = ext4_journal_current_handle(); 2740 loff_t new_i_size; 2741 unsigned long start, end; 2742 int write_mode = (int)(unsigned long)fsdata; 2743 2744 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2745 return ext4_write_end(file, mapping, pos, 2746 len, copied, page, fsdata); 2747 2748 trace_ext4_da_write_end(inode, pos, len, copied); 2749 start = pos & (PAGE_CACHE_SIZE - 1); 2750 end = start + copied - 1; 2751 2752 /* 2753 * generic_write_end() will run mark_inode_dirty() if i_size 2754 * changes. So let's piggyback the i_disksize mark_inode_dirty 2755 * into that. 2756 */ 2757 new_i_size = pos + copied; 2758 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2759 if (ext4_has_inline_data(inode) || 2760 ext4_da_should_update_i_disksize(page, end)) { 2761 ext4_update_i_disksize(inode, new_i_size); 2762 /* We need to mark inode dirty even if 2763 * new_i_size is less that inode->i_size 2764 * bu greater than i_disksize.(hint delalloc) 2765 */ 2766 ext4_mark_inode_dirty(handle, inode); 2767 } 2768 } 2769 2770 if (write_mode != CONVERT_INLINE_DATA && 2771 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2772 ext4_has_inline_data(inode)) 2773 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2774 page); 2775 else 2776 ret2 = generic_write_end(file, mapping, pos, len, copied, 2777 page, fsdata); 2778 2779 copied = ret2; 2780 if (ret2 < 0) 2781 ret = ret2; 2782 ret2 = ext4_journal_stop(handle); 2783 if (!ret) 2784 ret = ret2; 2785 2786 return ret ? ret : copied; 2787 } 2788 2789 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2790 unsigned int length) 2791 { 2792 /* 2793 * Drop reserved blocks 2794 */ 2795 BUG_ON(!PageLocked(page)); 2796 if (!page_has_buffers(page)) 2797 goto out; 2798 2799 ext4_da_page_release_reservation(page, offset, length); 2800 2801 out: 2802 ext4_invalidatepage(page, offset, length); 2803 2804 return; 2805 } 2806 2807 /* 2808 * Force all delayed allocation blocks to be allocated for a given inode. 2809 */ 2810 int ext4_alloc_da_blocks(struct inode *inode) 2811 { 2812 trace_ext4_alloc_da_blocks(inode); 2813 2814 if (!EXT4_I(inode)->i_reserved_data_blocks) 2815 return 0; 2816 2817 /* 2818 * We do something simple for now. The filemap_flush() will 2819 * also start triggering a write of the data blocks, which is 2820 * not strictly speaking necessary (and for users of 2821 * laptop_mode, not even desirable). However, to do otherwise 2822 * would require replicating code paths in: 2823 * 2824 * ext4_writepages() -> 2825 * write_cache_pages() ---> (via passed in callback function) 2826 * __mpage_da_writepage() --> 2827 * mpage_add_bh_to_extent() 2828 * mpage_da_map_blocks() 2829 * 2830 * The problem is that write_cache_pages(), located in 2831 * mm/page-writeback.c, marks pages clean in preparation for 2832 * doing I/O, which is not desirable if we're not planning on 2833 * doing I/O at all. 2834 * 2835 * We could call write_cache_pages(), and then redirty all of 2836 * the pages by calling redirty_page_for_writepage() but that 2837 * would be ugly in the extreme. So instead we would need to 2838 * replicate parts of the code in the above functions, 2839 * simplifying them because we wouldn't actually intend to 2840 * write out the pages, but rather only collect contiguous 2841 * logical block extents, call the multi-block allocator, and 2842 * then update the buffer heads with the block allocations. 2843 * 2844 * For now, though, we'll cheat by calling filemap_flush(), 2845 * which will map the blocks, and start the I/O, but not 2846 * actually wait for the I/O to complete. 2847 */ 2848 return filemap_flush(inode->i_mapping); 2849 } 2850 2851 /* 2852 * bmap() is special. It gets used by applications such as lilo and by 2853 * the swapper to find the on-disk block of a specific piece of data. 2854 * 2855 * Naturally, this is dangerous if the block concerned is still in the 2856 * journal. If somebody makes a swapfile on an ext4 data-journaling 2857 * filesystem and enables swap, then they may get a nasty shock when the 2858 * data getting swapped to that swapfile suddenly gets overwritten by 2859 * the original zero's written out previously to the journal and 2860 * awaiting writeback in the kernel's buffer cache. 2861 * 2862 * So, if we see any bmap calls here on a modified, data-journaled file, 2863 * take extra steps to flush any blocks which might be in the cache. 2864 */ 2865 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2866 { 2867 struct inode *inode = mapping->host; 2868 journal_t *journal; 2869 int err; 2870 2871 /* 2872 * We can get here for an inline file via the FIBMAP ioctl 2873 */ 2874 if (ext4_has_inline_data(inode)) 2875 return 0; 2876 2877 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2878 test_opt(inode->i_sb, DELALLOC)) { 2879 /* 2880 * With delalloc we want to sync the file 2881 * so that we can make sure we allocate 2882 * blocks for file 2883 */ 2884 filemap_write_and_wait(mapping); 2885 } 2886 2887 if (EXT4_JOURNAL(inode) && 2888 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2889 /* 2890 * This is a REALLY heavyweight approach, but the use of 2891 * bmap on dirty files is expected to be extremely rare: 2892 * only if we run lilo or swapon on a freshly made file 2893 * do we expect this to happen. 2894 * 2895 * (bmap requires CAP_SYS_RAWIO so this does not 2896 * represent an unprivileged user DOS attack --- we'd be 2897 * in trouble if mortal users could trigger this path at 2898 * will.) 2899 * 2900 * NB. EXT4_STATE_JDATA is not set on files other than 2901 * regular files. If somebody wants to bmap a directory 2902 * or symlink and gets confused because the buffer 2903 * hasn't yet been flushed to disk, they deserve 2904 * everything they get. 2905 */ 2906 2907 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2908 journal = EXT4_JOURNAL(inode); 2909 jbd2_journal_lock_updates(journal); 2910 err = jbd2_journal_flush(journal); 2911 jbd2_journal_unlock_updates(journal); 2912 2913 if (err) 2914 return 0; 2915 } 2916 2917 return generic_block_bmap(mapping, block, ext4_get_block); 2918 } 2919 2920 static int ext4_readpage(struct file *file, struct page *page) 2921 { 2922 int ret = -EAGAIN; 2923 struct inode *inode = page->mapping->host; 2924 2925 trace_ext4_readpage(page); 2926 2927 if (ext4_has_inline_data(inode)) 2928 ret = ext4_readpage_inline(inode, page); 2929 2930 if (ret == -EAGAIN) 2931 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2932 2933 return ret; 2934 } 2935 2936 static int 2937 ext4_readpages(struct file *file, struct address_space *mapping, 2938 struct list_head *pages, unsigned nr_pages) 2939 { 2940 struct inode *inode = mapping->host; 2941 2942 /* If the file has inline data, no need to do readpages. */ 2943 if (ext4_has_inline_data(inode)) 2944 return 0; 2945 2946 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2947 } 2948 2949 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2950 unsigned int length) 2951 { 2952 trace_ext4_invalidatepage(page, offset, length); 2953 2954 /* No journalling happens on data buffers when this function is used */ 2955 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2956 2957 block_invalidatepage(page, offset, length); 2958 } 2959 2960 static int __ext4_journalled_invalidatepage(struct page *page, 2961 unsigned int offset, 2962 unsigned int length) 2963 { 2964 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2965 2966 trace_ext4_journalled_invalidatepage(page, offset, length); 2967 2968 /* 2969 * If it's a full truncate we just forget about the pending dirtying 2970 */ 2971 if (offset == 0 && length == PAGE_CACHE_SIZE) 2972 ClearPageChecked(page); 2973 2974 return jbd2_journal_invalidatepage(journal, page, offset, length); 2975 } 2976 2977 /* Wrapper for aops... */ 2978 static void ext4_journalled_invalidatepage(struct page *page, 2979 unsigned int offset, 2980 unsigned int length) 2981 { 2982 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2983 } 2984 2985 static int ext4_releasepage(struct page *page, gfp_t wait) 2986 { 2987 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2988 2989 trace_ext4_releasepage(page); 2990 2991 /* Page has dirty journalled data -> cannot release */ 2992 if (PageChecked(page)) 2993 return 0; 2994 if (journal) 2995 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2996 else 2997 return try_to_free_buffers(page); 2998 } 2999 3000 /* 3001 * ext4_get_block used when preparing for a DIO write or buffer write. 3002 * We allocate an uinitialized extent if blocks haven't been allocated. 3003 * The extent will be converted to initialized after the IO is complete. 3004 */ 3005 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3006 struct buffer_head *bh_result, int create) 3007 { 3008 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3009 inode->i_ino, create); 3010 return _ext4_get_block(inode, iblock, bh_result, 3011 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3012 } 3013 3014 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3015 struct buffer_head *bh_result, int create) 3016 { 3017 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3018 inode->i_ino, create); 3019 return _ext4_get_block(inode, iblock, bh_result, 3020 EXT4_GET_BLOCKS_NO_LOCK); 3021 } 3022 3023 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3024 ssize_t size, void *private) 3025 { 3026 ext4_io_end_t *io_end = iocb->private; 3027 3028 /* if not async direct IO just return */ 3029 if (!io_end) 3030 return; 3031 3032 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3033 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3034 iocb->private, io_end->inode->i_ino, iocb, offset, 3035 size); 3036 3037 iocb->private = NULL; 3038 io_end->offset = offset; 3039 io_end->size = size; 3040 ext4_put_io_end(io_end); 3041 } 3042 3043 /* 3044 * For ext4 extent files, ext4 will do direct-io write to holes, 3045 * preallocated extents, and those write extend the file, no need to 3046 * fall back to buffered IO. 3047 * 3048 * For holes, we fallocate those blocks, mark them as unwritten 3049 * If those blocks were preallocated, we mark sure they are split, but 3050 * still keep the range to write as unwritten. 3051 * 3052 * The unwritten extents will be converted to written when DIO is completed. 3053 * For async direct IO, since the IO may still pending when return, we 3054 * set up an end_io call back function, which will do the conversion 3055 * when async direct IO completed. 3056 * 3057 * If the O_DIRECT write will extend the file then add this inode to the 3058 * orphan list. So recovery will truncate it back to the original size 3059 * if the machine crashes during the write. 3060 * 3061 */ 3062 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3063 loff_t offset) 3064 { 3065 struct file *file = iocb->ki_filp; 3066 struct inode *inode = file->f_mapping->host; 3067 ssize_t ret; 3068 size_t count = iov_iter_count(iter); 3069 int overwrite = 0; 3070 get_block_t *get_block_func = NULL; 3071 int dio_flags = 0; 3072 loff_t final_size = offset + count; 3073 ext4_io_end_t *io_end = NULL; 3074 3075 /* Use the old path for reads and writes beyond i_size. */ 3076 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3077 return ext4_ind_direct_IO(iocb, iter, offset); 3078 3079 BUG_ON(iocb->private == NULL); 3080 3081 /* 3082 * Make all waiters for direct IO properly wait also for extent 3083 * conversion. This also disallows race between truncate() and 3084 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3085 */ 3086 if (iov_iter_rw(iter) == WRITE) 3087 inode_dio_begin(inode); 3088 3089 /* If we do a overwrite dio, i_mutex locking can be released */ 3090 overwrite = *((int *)iocb->private); 3091 3092 if (overwrite) { 3093 down_read(&EXT4_I(inode)->i_data_sem); 3094 mutex_unlock(&inode->i_mutex); 3095 } 3096 3097 /* 3098 * We could direct write to holes and fallocate. 3099 * 3100 * Allocated blocks to fill the hole are marked as 3101 * unwritten to prevent parallel buffered read to expose 3102 * the stale data before DIO complete the data IO. 3103 * 3104 * As to previously fallocated extents, ext4 get_block will 3105 * just simply mark the buffer mapped but still keep the 3106 * extents unwritten. 3107 * 3108 * For non AIO case, we will convert those unwritten extents 3109 * to written after return back from blockdev_direct_IO. 3110 * 3111 * For async DIO, the conversion needs to be deferred when the 3112 * IO is completed. The ext4 end_io callback function will be 3113 * called to take care of the conversion work. Here for async 3114 * case, we allocate an io_end structure to hook to the iocb. 3115 */ 3116 iocb->private = NULL; 3117 ext4_inode_aio_set(inode, NULL); 3118 if (!is_sync_kiocb(iocb)) { 3119 io_end = ext4_init_io_end(inode, GFP_NOFS); 3120 if (!io_end) { 3121 ret = -ENOMEM; 3122 goto retake_lock; 3123 } 3124 /* 3125 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3126 */ 3127 iocb->private = ext4_get_io_end(io_end); 3128 /* 3129 * we save the io structure for current async direct 3130 * IO, so that later ext4_map_blocks() could flag the 3131 * io structure whether there is a unwritten extents 3132 * needs to be converted when IO is completed. 3133 */ 3134 ext4_inode_aio_set(inode, io_end); 3135 } 3136 3137 if (overwrite) { 3138 get_block_func = ext4_get_block_write_nolock; 3139 } else { 3140 get_block_func = ext4_get_block_write; 3141 dio_flags = DIO_LOCKING; 3142 } 3143 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3144 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3145 #endif 3146 if (IS_DAX(inode)) 3147 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3148 ext4_end_io_dio, dio_flags); 3149 else 3150 ret = __blockdev_direct_IO(iocb, inode, 3151 inode->i_sb->s_bdev, iter, offset, 3152 get_block_func, 3153 ext4_end_io_dio, NULL, dio_flags); 3154 3155 /* 3156 * Put our reference to io_end. This can free the io_end structure e.g. 3157 * in sync IO case or in case of error. It can even perform extent 3158 * conversion if all bios we submitted finished before we got here. 3159 * Note that in that case iocb->private can be already set to NULL 3160 * here. 3161 */ 3162 if (io_end) { 3163 ext4_inode_aio_set(inode, NULL); 3164 ext4_put_io_end(io_end); 3165 /* 3166 * When no IO was submitted ext4_end_io_dio() was not 3167 * called so we have to put iocb's reference. 3168 */ 3169 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3170 WARN_ON(iocb->private != io_end); 3171 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3172 ext4_put_io_end(io_end); 3173 iocb->private = NULL; 3174 } 3175 } 3176 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3177 EXT4_STATE_DIO_UNWRITTEN)) { 3178 int err; 3179 /* 3180 * for non AIO case, since the IO is already 3181 * completed, we could do the conversion right here 3182 */ 3183 err = ext4_convert_unwritten_extents(NULL, inode, 3184 offset, ret); 3185 if (err < 0) 3186 ret = err; 3187 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3188 } 3189 3190 retake_lock: 3191 if (iov_iter_rw(iter) == WRITE) 3192 inode_dio_end(inode); 3193 /* take i_mutex locking again if we do a ovewrite dio */ 3194 if (overwrite) { 3195 up_read(&EXT4_I(inode)->i_data_sem); 3196 mutex_lock(&inode->i_mutex); 3197 } 3198 3199 return ret; 3200 } 3201 3202 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3203 loff_t offset) 3204 { 3205 struct file *file = iocb->ki_filp; 3206 struct inode *inode = file->f_mapping->host; 3207 size_t count = iov_iter_count(iter); 3208 ssize_t ret; 3209 3210 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3211 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3212 return 0; 3213 #endif 3214 3215 /* 3216 * If we are doing data journalling we don't support O_DIRECT 3217 */ 3218 if (ext4_should_journal_data(inode)) 3219 return 0; 3220 3221 /* Let buffer I/O handle the inline data case. */ 3222 if (ext4_has_inline_data(inode)) 3223 return 0; 3224 3225 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3226 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3227 ret = ext4_ext_direct_IO(iocb, iter, offset); 3228 else 3229 ret = ext4_ind_direct_IO(iocb, iter, offset); 3230 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3231 return ret; 3232 } 3233 3234 /* 3235 * Pages can be marked dirty completely asynchronously from ext4's journalling 3236 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3237 * much here because ->set_page_dirty is called under VFS locks. The page is 3238 * not necessarily locked. 3239 * 3240 * We cannot just dirty the page and leave attached buffers clean, because the 3241 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3242 * or jbddirty because all the journalling code will explode. 3243 * 3244 * So what we do is to mark the page "pending dirty" and next time writepage 3245 * is called, propagate that into the buffers appropriately. 3246 */ 3247 static int ext4_journalled_set_page_dirty(struct page *page) 3248 { 3249 SetPageChecked(page); 3250 return __set_page_dirty_nobuffers(page); 3251 } 3252 3253 static const struct address_space_operations ext4_aops = { 3254 .readpage = ext4_readpage, 3255 .readpages = ext4_readpages, 3256 .writepage = ext4_writepage, 3257 .writepages = ext4_writepages, 3258 .write_begin = ext4_write_begin, 3259 .write_end = ext4_write_end, 3260 .bmap = ext4_bmap, 3261 .invalidatepage = ext4_invalidatepage, 3262 .releasepage = ext4_releasepage, 3263 .direct_IO = ext4_direct_IO, 3264 .migratepage = buffer_migrate_page, 3265 .is_partially_uptodate = block_is_partially_uptodate, 3266 .error_remove_page = generic_error_remove_page, 3267 }; 3268 3269 static const struct address_space_operations ext4_journalled_aops = { 3270 .readpage = ext4_readpage, 3271 .readpages = ext4_readpages, 3272 .writepage = ext4_writepage, 3273 .writepages = ext4_writepages, 3274 .write_begin = ext4_write_begin, 3275 .write_end = ext4_journalled_write_end, 3276 .set_page_dirty = ext4_journalled_set_page_dirty, 3277 .bmap = ext4_bmap, 3278 .invalidatepage = ext4_journalled_invalidatepage, 3279 .releasepage = ext4_releasepage, 3280 .direct_IO = ext4_direct_IO, 3281 .is_partially_uptodate = block_is_partially_uptodate, 3282 .error_remove_page = generic_error_remove_page, 3283 }; 3284 3285 static const struct address_space_operations ext4_da_aops = { 3286 .readpage = ext4_readpage, 3287 .readpages = ext4_readpages, 3288 .writepage = ext4_writepage, 3289 .writepages = ext4_writepages, 3290 .write_begin = ext4_da_write_begin, 3291 .write_end = ext4_da_write_end, 3292 .bmap = ext4_bmap, 3293 .invalidatepage = ext4_da_invalidatepage, 3294 .releasepage = ext4_releasepage, 3295 .direct_IO = ext4_direct_IO, 3296 .migratepage = buffer_migrate_page, 3297 .is_partially_uptodate = block_is_partially_uptodate, 3298 .error_remove_page = generic_error_remove_page, 3299 }; 3300 3301 void ext4_set_aops(struct inode *inode) 3302 { 3303 switch (ext4_inode_journal_mode(inode)) { 3304 case EXT4_INODE_ORDERED_DATA_MODE: 3305 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3306 break; 3307 case EXT4_INODE_WRITEBACK_DATA_MODE: 3308 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3309 break; 3310 case EXT4_INODE_JOURNAL_DATA_MODE: 3311 inode->i_mapping->a_ops = &ext4_journalled_aops; 3312 return; 3313 default: 3314 BUG(); 3315 } 3316 if (test_opt(inode->i_sb, DELALLOC)) 3317 inode->i_mapping->a_ops = &ext4_da_aops; 3318 else 3319 inode->i_mapping->a_ops = &ext4_aops; 3320 } 3321 3322 static int __ext4_block_zero_page_range(handle_t *handle, 3323 struct address_space *mapping, loff_t from, loff_t length) 3324 { 3325 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3326 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3327 unsigned blocksize, pos; 3328 ext4_lblk_t iblock; 3329 struct inode *inode = mapping->host; 3330 struct buffer_head *bh; 3331 struct page *page; 3332 int err = 0; 3333 3334 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3335 mapping_gfp_mask(mapping) & ~__GFP_FS); 3336 if (!page) 3337 return -ENOMEM; 3338 3339 blocksize = inode->i_sb->s_blocksize; 3340 3341 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3342 3343 if (!page_has_buffers(page)) 3344 create_empty_buffers(page, blocksize, 0); 3345 3346 /* Find the buffer that contains "offset" */ 3347 bh = page_buffers(page); 3348 pos = blocksize; 3349 while (offset >= pos) { 3350 bh = bh->b_this_page; 3351 iblock++; 3352 pos += blocksize; 3353 } 3354 if (buffer_freed(bh)) { 3355 BUFFER_TRACE(bh, "freed: skip"); 3356 goto unlock; 3357 } 3358 if (!buffer_mapped(bh)) { 3359 BUFFER_TRACE(bh, "unmapped"); 3360 ext4_get_block(inode, iblock, bh, 0); 3361 /* unmapped? It's a hole - nothing to do */ 3362 if (!buffer_mapped(bh)) { 3363 BUFFER_TRACE(bh, "still unmapped"); 3364 goto unlock; 3365 } 3366 } 3367 3368 /* Ok, it's mapped. Make sure it's up-to-date */ 3369 if (PageUptodate(page)) 3370 set_buffer_uptodate(bh); 3371 3372 if (!buffer_uptodate(bh)) { 3373 err = -EIO; 3374 ll_rw_block(READ, 1, &bh); 3375 wait_on_buffer(bh); 3376 /* Uhhuh. Read error. Complain and punt. */ 3377 if (!buffer_uptodate(bh)) 3378 goto unlock; 3379 if (S_ISREG(inode->i_mode) && 3380 ext4_encrypted_inode(inode)) { 3381 /* We expect the key to be set. */ 3382 BUG_ON(!ext4_has_encryption_key(inode)); 3383 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3384 WARN_ON_ONCE(ext4_decrypt_one(inode, page)); 3385 } 3386 } 3387 if (ext4_should_journal_data(inode)) { 3388 BUFFER_TRACE(bh, "get write access"); 3389 err = ext4_journal_get_write_access(handle, bh); 3390 if (err) 3391 goto unlock; 3392 } 3393 zero_user(page, offset, length); 3394 BUFFER_TRACE(bh, "zeroed end of block"); 3395 3396 if (ext4_should_journal_data(inode)) { 3397 err = ext4_handle_dirty_metadata(handle, inode, bh); 3398 } else { 3399 err = 0; 3400 mark_buffer_dirty(bh); 3401 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3402 err = ext4_jbd2_file_inode(handle, inode); 3403 } 3404 3405 unlock: 3406 unlock_page(page); 3407 page_cache_release(page); 3408 return err; 3409 } 3410 3411 /* 3412 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3413 * starting from file offset 'from'. The range to be zero'd must 3414 * be contained with in one block. If the specified range exceeds 3415 * the end of the block it will be shortened to end of the block 3416 * that cooresponds to 'from' 3417 */ 3418 static int ext4_block_zero_page_range(handle_t *handle, 3419 struct address_space *mapping, loff_t from, loff_t length) 3420 { 3421 struct inode *inode = mapping->host; 3422 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3423 unsigned blocksize = inode->i_sb->s_blocksize; 3424 unsigned max = blocksize - (offset & (blocksize - 1)); 3425 3426 /* 3427 * correct length if it does not fall between 3428 * 'from' and the end of the block 3429 */ 3430 if (length > max || length < 0) 3431 length = max; 3432 3433 if (IS_DAX(inode)) 3434 return dax_zero_page_range(inode, from, length, ext4_get_block); 3435 return __ext4_block_zero_page_range(handle, mapping, from, length); 3436 } 3437 3438 /* 3439 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3440 * up to the end of the block which corresponds to `from'. 3441 * This required during truncate. We need to physically zero the tail end 3442 * of that block so it doesn't yield old data if the file is later grown. 3443 */ 3444 static int ext4_block_truncate_page(handle_t *handle, 3445 struct address_space *mapping, loff_t from) 3446 { 3447 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3448 unsigned length; 3449 unsigned blocksize; 3450 struct inode *inode = mapping->host; 3451 3452 blocksize = inode->i_sb->s_blocksize; 3453 length = blocksize - (offset & (blocksize - 1)); 3454 3455 return ext4_block_zero_page_range(handle, mapping, from, length); 3456 } 3457 3458 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3459 loff_t lstart, loff_t length) 3460 { 3461 struct super_block *sb = inode->i_sb; 3462 struct address_space *mapping = inode->i_mapping; 3463 unsigned partial_start, partial_end; 3464 ext4_fsblk_t start, end; 3465 loff_t byte_end = (lstart + length - 1); 3466 int err = 0; 3467 3468 partial_start = lstart & (sb->s_blocksize - 1); 3469 partial_end = byte_end & (sb->s_blocksize - 1); 3470 3471 start = lstart >> sb->s_blocksize_bits; 3472 end = byte_end >> sb->s_blocksize_bits; 3473 3474 /* Handle partial zero within the single block */ 3475 if (start == end && 3476 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3477 err = ext4_block_zero_page_range(handle, mapping, 3478 lstart, length); 3479 return err; 3480 } 3481 /* Handle partial zero out on the start of the range */ 3482 if (partial_start) { 3483 err = ext4_block_zero_page_range(handle, mapping, 3484 lstart, sb->s_blocksize); 3485 if (err) 3486 return err; 3487 } 3488 /* Handle partial zero out on the end of the range */ 3489 if (partial_end != sb->s_blocksize - 1) 3490 err = ext4_block_zero_page_range(handle, mapping, 3491 byte_end - partial_end, 3492 partial_end + 1); 3493 return err; 3494 } 3495 3496 int ext4_can_truncate(struct inode *inode) 3497 { 3498 if (S_ISREG(inode->i_mode)) 3499 return 1; 3500 if (S_ISDIR(inode->i_mode)) 3501 return 1; 3502 if (S_ISLNK(inode->i_mode)) 3503 return !ext4_inode_is_fast_symlink(inode); 3504 return 0; 3505 } 3506 3507 /* 3508 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3509 * associated with the given offset and length 3510 * 3511 * @inode: File inode 3512 * @offset: The offset where the hole will begin 3513 * @len: The length of the hole 3514 * 3515 * Returns: 0 on success or negative on failure 3516 */ 3517 3518 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3519 { 3520 struct super_block *sb = inode->i_sb; 3521 ext4_lblk_t first_block, stop_block; 3522 struct address_space *mapping = inode->i_mapping; 3523 loff_t first_block_offset, last_block_offset; 3524 handle_t *handle; 3525 unsigned int credits; 3526 int ret = 0; 3527 3528 if (!S_ISREG(inode->i_mode)) 3529 return -EOPNOTSUPP; 3530 3531 trace_ext4_punch_hole(inode, offset, length, 0); 3532 3533 /* 3534 * Write out all dirty pages to avoid race conditions 3535 * Then release them. 3536 */ 3537 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3538 ret = filemap_write_and_wait_range(mapping, offset, 3539 offset + length - 1); 3540 if (ret) 3541 return ret; 3542 } 3543 3544 mutex_lock(&inode->i_mutex); 3545 3546 /* No need to punch hole beyond i_size */ 3547 if (offset >= inode->i_size) 3548 goto out_mutex; 3549 3550 /* 3551 * If the hole extends beyond i_size, set the hole 3552 * to end after the page that contains i_size 3553 */ 3554 if (offset + length > inode->i_size) { 3555 length = inode->i_size + 3556 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3557 offset; 3558 } 3559 3560 if (offset & (sb->s_blocksize - 1) || 3561 (offset + length) & (sb->s_blocksize - 1)) { 3562 /* 3563 * Attach jinode to inode for jbd2 if we do any zeroing of 3564 * partial block 3565 */ 3566 ret = ext4_inode_attach_jinode(inode); 3567 if (ret < 0) 3568 goto out_mutex; 3569 3570 } 3571 3572 first_block_offset = round_up(offset, sb->s_blocksize); 3573 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3574 3575 /* Now release the pages and zero block aligned part of pages*/ 3576 if (last_block_offset > first_block_offset) 3577 truncate_pagecache_range(inode, first_block_offset, 3578 last_block_offset); 3579 3580 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3581 ext4_inode_block_unlocked_dio(inode); 3582 inode_dio_wait(inode); 3583 3584 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3585 credits = ext4_writepage_trans_blocks(inode); 3586 else 3587 credits = ext4_blocks_for_truncate(inode); 3588 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3589 if (IS_ERR(handle)) { 3590 ret = PTR_ERR(handle); 3591 ext4_std_error(sb, ret); 3592 goto out_dio; 3593 } 3594 3595 ret = ext4_zero_partial_blocks(handle, inode, offset, 3596 length); 3597 if (ret) 3598 goto out_stop; 3599 3600 first_block = (offset + sb->s_blocksize - 1) >> 3601 EXT4_BLOCK_SIZE_BITS(sb); 3602 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3603 3604 /* If there are no blocks to remove, return now */ 3605 if (first_block >= stop_block) 3606 goto out_stop; 3607 3608 down_write(&EXT4_I(inode)->i_data_sem); 3609 ext4_discard_preallocations(inode); 3610 3611 ret = ext4_es_remove_extent(inode, first_block, 3612 stop_block - first_block); 3613 if (ret) { 3614 up_write(&EXT4_I(inode)->i_data_sem); 3615 goto out_stop; 3616 } 3617 3618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3619 ret = ext4_ext_remove_space(inode, first_block, 3620 stop_block - 1); 3621 else 3622 ret = ext4_ind_remove_space(handle, inode, first_block, 3623 stop_block); 3624 3625 up_write(&EXT4_I(inode)->i_data_sem); 3626 if (IS_SYNC(inode)) 3627 ext4_handle_sync(handle); 3628 3629 /* Now release the pages again to reduce race window */ 3630 if (last_block_offset > first_block_offset) 3631 truncate_pagecache_range(inode, first_block_offset, 3632 last_block_offset); 3633 3634 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3635 ext4_mark_inode_dirty(handle, inode); 3636 out_stop: 3637 ext4_journal_stop(handle); 3638 out_dio: 3639 ext4_inode_resume_unlocked_dio(inode); 3640 out_mutex: 3641 mutex_unlock(&inode->i_mutex); 3642 return ret; 3643 } 3644 3645 int ext4_inode_attach_jinode(struct inode *inode) 3646 { 3647 struct ext4_inode_info *ei = EXT4_I(inode); 3648 struct jbd2_inode *jinode; 3649 3650 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3651 return 0; 3652 3653 jinode = jbd2_alloc_inode(GFP_KERNEL); 3654 spin_lock(&inode->i_lock); 3655 if (!ei->jinode) { 3656 if (!jinode) { 3657 spin_unlock(&inode->i_lock); 3658 return -ENOMEM; 3659 } 3660 ei->jinode = jinode; 3661 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3662 jinode = NULL; 3663 } 3664 spin_unlock(&inode->i_lock); 3665 if (unlikely(jinode != NULL)) 3666 jbd2_free_inode(jinode); 3667 return 0; 3668 } 3669 3670 /* 3671 * ext4_truncate() 3672 * 3673 * We block out ext4_get_block() block instantiations across the entire 3674 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3675 * simultaneously on behalf of the same inode. 3676 * 3677 * As we work through the truncate and commit bits of it to the journal there 3678 * is one core, guiding principle: the file's tree must always be consistent on 3679 * disk. We must be able to restart the truncate after a crash. 3680 * 3681 * The file's tree may be transiently inconsistent in memory (although it 3682 * probably isn't), but whenever we close off and commit a journal transaction, 3683 * the contents of (the filesystem + the journal) must be consistent and 3684 * restartable. It's pretty simple, really: bottom up, right to left (although 3685 * left-to-right works OK too). 3686 * 3687 * Note that at recovery time, journal replay occurs *before* the restart of 3688 * truncate against the orphan inode list. 3689 * 3690 * The committed inode has the new, desired i_size (which is the same as 3691 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3692 * that this inode's truncate did not complete and it will again call 3693 * ext4_truncate() to have another go. So there will be instantiated blocks 3694 * to the right of the truncation point in a crashed ext4 filesystem. But 3695 * that's fine - as long as they are linked from the inode, the post-crash 3696 * ext4_truncate() run will find them and release them. 3697 */ 3698 void ext4_truncate(struct inode *inode) 3699 { 3700 struct ext4_inode_info *ei = EXT4_I(inode); 3701 unsigned int credits; 3702 handle_t *handle; 3703 struct address_space *mapping = inode->i_mapping; 3704 3705 /* 3706 * There is a possibility that we're either freeing the inode 3707 * or it's a completely new inode. In those cases we might not 3708 * have i_mutex locked because it's not necessary. 3709 */ 3710 if (!(inode->i_state & (I_NEW|I_FREEING))) 3711 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3712 trace_ext4_truncate_enter(inode); 3713 3714 if (!ext4_can_truncate(inode)) 3715 return; 3716 3717 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3718 3719 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3720 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3721 3722 if (ext4_has_inline_data(inode)) { 3723 int has_inline = 1; 3724 3725 ext4_inline_data_truncate(inode, &has_inline); 3726 if (has_inline) 3727 return; 3728 } 3729 3730 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3731 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3732 if (ext4_inode_attach_jinode(inode) < 0) 3733 return; 3734 } 3735 3736 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3737 credits = ext4_writepage_trans_blocks(inode); 3738 else 3739 credits = ext4_blocks_for_truncate(inode); 3740 3741 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3742 if (IS_ERR(handle)) { 3743 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3744 return; 3745 } 3746 3747 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3748 ext4_block_truncate_page(handle, mapping, inode->i_size); 3749 3750 /* 3751 * We add the inode to the orphan list, so that if this 3752 * truncate spans multiple transactions, and we crash, we will 3753 * resume the truncate when the filesystem recovers. It also 3754 * marks the inode dirty, to catch the new size. 3755 * 3756 * Implication: the file must always be in a sane, consistent 3757 * truncatable state while each transaction commits. 3758 */ 3759 if (ext4_orphan_add(handle, inode)) 3760 goto out_stop; 3761 3762 down_write(&EXT4_I(inode)->i_data_sem); 3763 3764 ext4_discard_preallocations(inode); 3765 3766 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3767 ext4_ext_truncate(handle, inode); 3768 else 3769 ext4_ind_truncate(handle, inode); 3770 3771 up_write(&ei->i_data_sem); 3772 3773 if (IS_SYNC(inode)) 3774 ext4_handle_sync(handle); 3775 3776 out_stop: 3777 /* 3778 * If this was a simple ftruncate() and the file will remain alive, 3779 * then we need to clear up the orphan record which we created above. 3780 * However, if this was a real unlink then we were called by 3781 * ext4_evict_inode(), and we allow that function to clean up the 3782 * orphan info for us. 3783 */ 3784 if (inode->i_nlink) 3785 ext4_orphan_del(handle, inode); 3786 3787 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3788 ext4_mark_inode_dirty(handle, inode); 3789 ext4_journal_stop(handle); 3790 3791 trace_ext4_truncate_exit(inode); 3792 } 3793 3794 /* 3795 * ext4_get_inode_loc returns with an extra refcount against the inode's 3796 * underlying buffer_head on success. If 'in_mem' is true, we have all 3797 * data in memory that is needed to recreate the on-disk version of this 3798 * inode. 3799 */ 3800 static int __ext4_get_inode_loc(struct inode *inode, 3801 struct ext4_iloc *iloc, int in_mem) 3802 { 3803 struct ext4_group_desc *gdp; 3804 struct buffer_head *bh; 3805 struct super_block *sb = inode->i_sb; 3806 ext4_fsblk_t block; 3807 int inodes_per_block, inode_offset; 3808 3809 iloc->bh = NULL; 3810 if (!ext4_valid_inum(sb, inode->i_ino)) 3811 return -EIO; 3812 3813 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3814 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3815 if (!gdp) 3816 return -EIO; 3817 3818 /* 3819 * Figure out the offset within the block group inode table 3820 */ 3821 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3822 inode_offset = ((inode->i_ino - 1) % 3823 EXT4_INODES_PER_GROUP(sb)); 3824 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3825 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3826 3827 bh = sb_getblk(sb, block); 3828 if (unlikely(!bh)) 3829 return -ENOMEM; 3830 if (!buffer_uptodate(bh)) { 3831 lock_buffer(bh); 3832 3833 /* 3834 * If the buffer has the write error flag, we have failed 3835 * to write out another inode in the same block. In this 3836 * case, we don't have to read the block because we may 3837 * read the old inode data successfully. 3838 */ 3839 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3840 set_buffer_uptodate(bh); 3841 3842 if (buffer_uptodate(bh)) { 3843 /* someone brought it uptodate while we waited */ 3844 unlock_buffer(bh); 3845 goto has_buffer; 3846 } 3847 3848 /* 3849 * If we have all information of the inode in memory and this 3850 * is the only valid inode in the block, we need not read the 3851 * block. 3852 */ 3853 if (in_mem) { 3854 struct buffer_head *bitmap_bh; 3855 int i, start; 3856 3857 start = inode_offset & ~(inodes_per_block - 1); 3858 3859 /* Is the inode bitmap in cache? */ 3860 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3861 if (unlikely(!bitmap_bh)) 3862 goto make_io; 3863 3864 /* 3865 * If the inode bitmap isn't in cache then the 3866 * optimisation may end up performing two reads instead 3867 * of one, so skip it. 3868 */ 3869 if (!buffer_uptodate(bitmap_bh)) { 3870 brelse(bitmap_bh); 3871 goto make_io; 3872 } 3873 for (i = start; i < start + inodes_per_block; i++) { 3874 if (i == inode_offset) 3875 continue; 3876 if (ext4_test_bit(i, bitmap_bh->b_data)) 3877 break; 3878 } 3879 brelse(bitmap_bh); 3880 if (i == start + inodes_per_block) { 3881 /* all other inodes are free, so skip I/O */ 3882 memset(bh->b_data, 0, bh->b_size); 3883 set_buffer_uptodate(bh); 3884 unlock_buffer(bh); 3885 goto has_buffer; 3886 } 3887 } 3888 3889 make_io: 3890 /* 3891 * If we need to do any I/O, try to pre-readahead extra 3892 * blocks from the inode table. 3893 */ 3894 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3895 ext4_fsblk_t b, end, table; 3896 unsigned num; 3897 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3898 3899 table = ext4_inode_table(sb, gdp); 3900 /* s_inode_readahead_blks is always a power of 2 */ 3901 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3902 if (table > b) 3903 b = table; 3904 end = b + ra_blks; 3905 num = EXT4_INODES_PER_GROUP(sb); 3906 if (ext4_has_group_desc_csum(sb)) 3907 num -= ext4_itable_unused_count(sb, gdp); 3908 table += num / inodes_per_block; 3909 if (end > table) 3910 end = table; 3911 while (b <= end) 3912 sb_breadahead(sb, b++); 3913 } 3914 3915 /* 3916 * There are other valid inodes in the buffer, this inode 3917 * has in-inode xattrs, or we don't have this inode in memory. 3918 * Read the block from disk. 3919 */ 3920 trace_ext4_load_inode(inode); 3921 get_bh(bh); 3922 bh->b_end_io = end_buffer_read_sync; 3923 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3924 wait_on_buffer(bh); 3925 if (!buffer_uptodate(bh)) { 3926 EXT4_ERROR_INODE_BLOCK(inode, block, 3927 "unable to read itable block"); 3928 brelse(bh); 3929 return -EIO; 3930 } 3931 } 3932 has_buffer: 3933 iloc->bh = bh; 3934 return 0; 3935 } 3936 3937 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3938 { 3939 /* We have all inode data except xattrs in memory here. */ 3940 return __ext4_get_inode_loc(inode, iloc, 3941 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3942 } 3943 3944 void ext4_set_inode_flags(struct inode *inode) 3945 { 3946 unsigned int flags = EXT4_I(inode)->i_flags; 3947 unsigned int new_fl = 0; 3948 3949 if (flags & EXT4_SYNC_FL) 3950 new_fl |= S_SYNC; 3951 if (flags & EXT4_APPEND_FL) 3952 new_fl |= S_APPEND; 3953 if (flags & EXT4_IMMUTABLE_FL) 3954 new_fl |= S_IMMUTABLE; 3955 if (flags & EXT4_NOATIME_FL) 3956 new_fl |= S_NOATIME; 3957 if (flags & EXT4_DIRSYNC_FL) 3958 new_fl |= S_DIRSYNC; 3959 if (test_opt(inode->i_sb, DAX)) 3960 new_fl |= S_DAX; 3961 inode_set_flags(inode, new_fl, 3962 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 3963 } 3964 3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3966 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3967 { 3968 unsigned int vfs_fl; 3969 unsigned long old_fl, new_fl; 3970 3971 do { 3972 vfs_fl = ei->vfs_inode.i_flags; 3973 old_fl = ei->i_flags; 3974 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3975 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3976 EXT4_DIRSYNC_FL); 3977 if (vfs_fl & S_SYNC) 3978 new_fl |= EXT4_SYNC_FL; 3979 if (vfs_fl & S_APPEND) 3980 new_fl |= EXT4_APPEND_FL; 3981 if (vfs_fl & S_IMMUTABLE) 3982 new_fl |= EXT4_IMMUTABLE_FL; 3983 if (vfs_fl & S_NOATIME) 3984 new_fl |= EXT4_NOATIME_FL; 3985 if (vfs_fl & S_DIRSYNC) 3986 new_fl |= EXT4_DIRSYNC_FL; 3987 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3988 } 3989 3990 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3991 struct ext4_inode_info *ei) 3992 { 3993 blkcnt_t i_blocks ; 3994 struct inode *inode = &(ei->vfs_inode); 3995 struct super_block *sb = inode->i_sb; 3996 3997 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3998 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3999 /* we are using combined 48 bit field */ 4000 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4001 le32_to_cpu(raw_inode->i_blocks_lo); 4002 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4003 /* i_blocks represent file system block size */ 4004 return i_blocks << (inode->i_blkbits - 9); 4005 } else { 4006 return i_blocks; 4007 } 4008 } else { 4009 return le32_to_cpu(raw_inode->i_blocks_lo); 4010 } 4011 } 4012 4013 static inline void ext4_iget_extra_inode(struct inode *inode, 4014 struct ext4_inode *raw_inode, 4015 struct ext4_inode_info *ei) 4016 { 4017 __le32 *magic = (void *)raw_inode + 4018 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4019 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4020 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4021 ext4_find_inline_data_nolock(inode); 4022 } else 4023 EXT4_I(inode)->i_inline_off = 0; 4024 } 4025 4026 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4027 { 4028 struct ext4_iloc iloc; 4029 struct ext4_inode *raw_inode; 4030 struct ext4_inode_info *ei; 4031 struct inode *inode; 4032 journal_t *journal = EXT4_SB(sb)->s_journal; 4033 long ret; 4034 int block; 4035 uid_t i_uid; 4036 gid_t i_gid; 4037 4038 inode = iget_locked(sb, ino); 4039 if (!inode) 4040 return ERR_PTR(-ENOMEM); 4041 if (!(inode->i_state & I_NEW)) 4042 return inode; 4043 4044 ei = EXT4_I(inode); 4045 iloc.bh = NULL; 4046 4047 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4048 if (ret < 0) 4049 goto bad_inode; 4050 raw_inode = ext4_raw_inode(&iloc); 4051 4052 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4053 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4054 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4055 EXT4_INODE_SIZE(inode->i_sb)) { 4056 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4057 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4058 EXT4_INODE_SIZE(inode->i_sb)); 4059 ret = -EIO; 4060 goto bad_inode; 4061 } 4062 } else 4063 ei->i_extra_isize = 0; 4064 4065 /* Precompute checksum seed for inode metadata */ 4066 if (ext4_has_metadata_csum(sb)) { 4067 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4068 __u32 csum; 4069 __le32 inum = cpu_to_le32(inode->i_ino); 4070 __le32 gen = raw_inode->i_generation; 4071 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4072 sizeof(inum)); 4073 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4074 sizeof(gen)); 4075 } 4076 4077 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4078 EXT4_ERROR_INODE(inode, "checksum invalid"); 4079 ret = -EIO; 4080 goto bad_inode; 4081 } 4082 4083 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4084 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4085 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4086 if (!(test_opt(inode->i_sb, NO_UID32))) { 4087 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4088 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4089 } 4090 i_uid_write(inode, i_uid); 4091 i_gid_write(inode, i_gid); 4092 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4093 4094 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4095 ei->i_inline_off = 0; 4096 ei->i_dir_start_lookup = 0; 4097 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4098 /* We now have enough fields to check if the inode was active or not. 4099 * This is needed because nfsd might try to access dead inodes 4100 * the test is that same one that e2fsck uses 4101 * NeilBrown 1999oct15 4102 */ 4103 if (inode->i_nlink == 0) { 4104 if ((inode->i_mode == 0 || 4105 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4106 ino != EXT4_BOOT_LOADER_INO) { 4107 /* this inode is deleted */ 4108 ret = -ESTALE; 4109 goto bad_inode; 4110 } 4111 /* The only unlinked inodes we let through here have 4112 * valid i_mode and are being read by the orphan 4113 * recovery code: that's fine, we're about to complete 4114 * the process of deleting those. 4115 * OR it is the EXT4_BOOT_LOADER_INO which is 4116 * not initialized on a new filesystem. */ 4117 } 4118 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4119 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4120 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4121 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4122 ei->i_file_acl |= 4123 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4124 inode->i_size = ext4_isize(raw_inode); 4125 ei->i_disksize = inode->i_size; 4126 #ifdef CONFIG_QUOTA 4127 ei->i_reserved_quota = 0; 4128 #endif 4129 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4130 ei->i_block_group = iloc.block_group; 4131 ei->i_last_alloc_group = ~0; 4132 /* 4133 * NOTE! The in-memory inode i_data array is in little-endian order 4134 * even on big-endian machines: we do NOT byteswap the block numbers! 4135 */ 4136 for (block = 0; block < EXT4_N_BLOCKS; block++) 4137 ei->i_data[block] = raw_inode->i_block[block]; 4138 INIT_LIST_HEAD(&ei->i_orphan); 4139 4140 /* 4141 * Set transaction id's of transactions that have to be committed 4142 * to finish f[data]sync. We set them to currently running transaction 4143 * as we cannot be sure that the inode or some of its metadata isn't 4144 * part of the transaction - the inode could have been reclaimed and 4145 * now it is reread from disk. 4146 */ 4147 if (journal) { 4148 transaction_t *transaction; 4149 tid_t tid; 4150 4151 read_lock(&journal->j_state_lock); 4152 if (journal->j_running_transaction) 4153 transaction = journal->j_running_transaction; 4154 else 4155 transaction = journal->j_committing_transaction; 4156 if (transaction) 4157 tid = transaction->t_tid; 4158 else 4159 tid = journal->j_commit_sequence; 4160 read_unlock(&journal->j_state_lock); 4161 ei->i_sync_tid = tid; 4162 ei->i_datasync_tid = tid; 4163 } 4164 4165 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4166 if (ei->i_extra_isize == 0) { 4167 /* The extra space is currently unused. Use it. */ 4168 ei->i_extra_isize = sizeof(struct ext4_inode) - 4169 EXT4_GOOD_OLD_INODE_SIZE; 4170 } else { 4171 ext4_iget_extra_inode(inode, raw_inode, ei); 4172 } 4173 } 4174 4175 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4176 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4177 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4178 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4179 4180 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4181 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4182 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4183 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4184 inode->i_version |= 4185 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4186 } 4187 } 4188 4189 ret = 0; 4190 if (ei->i_file_acl && 4191 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4192 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4193 ei->i_file_acl); 4194 ret = -EIO; 4195 goto bad_inode; 4196 } else if (!ext4_has_inline_data(inode)) { 4197 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4198 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4199 (S_ISLNK(inode->i_mode) && 4200 !ext4_inode_is_fast_symlink(inode)))) 4201 /* Validate extent which is part of inode */ 4202 ret = ext4_ext_check_inode(inode); 4203 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4204 (S_ISLNK(inode->i_mode) && 4205 !ext4_inode_is_fast_symlink(inode))) { 4206 /* Validate block references which are part of inode */ 4207 ret = ext4_ind_check_inode(inode); 4208 } 4209 } 4210 if (ret) 4211 goto bad_inode; 4212 4213 if (S_ISREG(inode->i_mode)) { 4214 inode->i_op = &ext4_file_inode_operations; 4215 inode->i_fop = &ext4_file_operations; 4216 ext4_set_aops(inode); 4217 } else if (S_ISDIR(inode->i_mode)) { 4218 inode->i_op = &ext4_dir_inode_operations; 4219 inode->i_fop = &ext4_dir_operations; 4220 } else if (S_ISLNK(inode->i_mode)) { 4221 if (ext4_encrypted_inode(inode)) { 4222 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4223 ext4_set_aops(inode); 4224 } else if (ext4_inode_is_fast_symlink(inode)) { 4225 inode->i_link = (char *)ei->i_data; 4226 inode->i_op = &ext4_fast_symlink_inode_operations; 4227 nd_terminate_link(ei->i_data, inode->i_size, 4228 sizeof(ei->i_data) - 1); 4229 } else { 4230 inode->i_op = &ext4_symlink_inode_operations; 4231 ext4_set_aops(inode); 4232 } 4233 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4234 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4235 inode->i_op = &ext4_special_inode_operations; 4236 if (raw_inode->i_block[0]) 4237 init_special_inode(inode, inode->i_mode, 4238 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4239 else 4240 init_special_inode(inode, inode->i_mode, 4241 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4242 } else if (ino == EXT4_BOOT_LOADER_INO) { 4243 make_bad_inode(inode); 4244 } else { 4245 ret = -EIO; 4246 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4247 goto bad_inode; 4248 } 4249 brelse(iloc.bh); 4250 ext4_set_inode_flags(inode); 4251 unlock_new_inode(inode); 4252 return inode; 4253 4254 bad_inode: 4255 brelse(iloc.bh); 4256 iget_failed(inode); 4257 return ERR_PTR(ret); 4258 } 4259 4260 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4261 { 4262 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4263 return ERR_PTR(-EIO); 4264 return ext4_iget(sb, ino); 4265 } 4266 4267 static int ext4_inode_blocks_set(handle_t *handle, 4268 struct ext4_inode *raw_inode, 4269 struct ext4_inode_info *ei) 4270 { 4271 struct inode *inode = &(ei->vfs_inode); 4272 u64 i_blocks = inode->i_blocks; 4273 struct super_block *sb = inode->i_sb; 4274 4275 if (i_blocks <= ~0U) { 4276 /* 4277 * i_blocks can be represented in a 32 bit variable 4278 * as multiple of 512 bytes 4279 */ 4280 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4281 raw_inode->i_blocks_high = 0; 4282 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4283 return 0; 4284 } 4285 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4286 return -EFBIG; 4287 4288 if (i_blocks <= 0xffffffffffffULL) { 4289 /* 4290 * i_blocks can be represented in a 48 bit variable 4291 * as multiple of 512 bytes 4292 */ 4293 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4294 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4295 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4296 } else { 4297 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4298 /* i_block is stored in file system block size */ 4299 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4300 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4301 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4302 } 4303 return 0; 4304 } 4305 4306 struct other_inode { 4307 unsigned long orig_ino; 4308 struct ext4_inode *raw_inode; 4309 }; 4310 4311 static int other_inode_match(struct inode * inode, unsigned long ino, 4312 void *data) 4313 { 4314 struct other_inode *oi = (struct other_inode *) data; 4315 4316 if ((inode->i_ino != ino) || 4317 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4318 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4319 ((inode->i_state & I_DIRTY_TIME) == 0)) 4320 return 0; 4321 spin_lock(&inode->i_lock); 4322 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4323 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4324 (inode->i_state & I_DIRTY_TIME)) { 4325 struct ext4_inode_info *ei = EXT4_I(inode); 4326 4327 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4328 spin_unlock(&inode->i_lock); 4329 4330 spin_lock(&ei->i_raw_lock); 4331 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4332 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4333 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4334 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4335 spin_unlock(&ei->i_raw_lock); 4336 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4337 return -1; 4338 } 4339 spin_unlock(&inode->i_lock); 4340 return -1; 4341 } 4342 4343 /* 4344 * Opportunistically update the other time fields for other inodes in 4345 * the same inode table block. 4346 */ 4347 static void ext4_update_other_inodes_time(struct super_block *sb, 4348 unsigned long orig_ino, char *buf) 4349 { 4350 struct other_inode oi; 4351 unsigned long ino; 4352 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4353 int inode_size = EXT4_INODE_SIZE(sb); 4354 4355 oi.orig_ino = orig_ino; 4356 /* 4357 * Calculate the first inode in the inode table block. Inode 4358 * numbers are one-based. That is, the first inode in a block 4359 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4360 */ 4361 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4362 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4363 if (ino == orig_ino) 4364 continue; 4365 oi.raw_inode = (struct ext4_inode *) buf; 4366 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4367 } 4368 } 4369 4370 /* 4371 * Post the struct inode info into an on-disk inode location in the 4372 * buffer-cache. This gobbles the caller's reference to the 4373 * buffer_head in the inode location struct. 4374 * 4375 * The caller must have write access to iloc->bh. 4376 */ 4377 static int ext4_do_update_inode(handle_t *handle, 4378 struct inode *inode, 4379 struct ext4_iloc *iloc) 4380 { 4381 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4382 struct ext4_inode_info *ei = EXT4_I(inode); 4383 struct buffer_head *bh = iloc->bh; 4384 struct super_block *sb = inode->i_sb; 4385 int err = 0, rc, block; 4386 int need_datasync = 0, set_large_file = 0; 4387 uid_t i_uid; 4388 gid_t i_gid; 4389 4390 spin_lock(&ei->i_raw_lock); 4391 4392 /* For fields not tracked in the in-memory inode, 4393 * initialise them to zero for new inodes. */ 4394 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4395 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4396 4397 ext4_get_inode_flags(ei); 4398 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4399 i_uid = i_uid_read(inode); 4400 i_gid = i_gid_read(inode); 4401 if (!(test_opt(inode->i_sb, NO_UID32))) { 4402 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4403 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4404 /* 4405 * Fix up interoperability with old kernels. Otherwise, old inodes get 4406 * re-used with the upper 16 bits of the uid/gid intact 4407 */ 4408 if (!ei->i_dtime) { 4409 raw_inode->i_uid_high = 4410 cpu_to_le16(high_16_bits(i_uid)); 4411 raw_inode->i_gid_high = 4412 cpu_to_le16(high_16_bits(i_gid)); 4413 } else { 4414 raw_inode->i_uid_high = 0; 4415 raw_inode->i_gid_high = 0; 4416 } 4417 } else { 4418 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4419 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4420 raw_inode->i_uid_high = 0; 4421 raw_inode->i_gid_high = 0; 4422 } 4423 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4424 4425 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4426 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4427 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4428 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4429 4430 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4431 if (err) { 4432 spin_unlock(&ei->i_raw_lock); 4433 goto out_brelse; 4434 } 4435 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4436 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4437 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4438 raw_inode->i_file_acl_high = 4439 cpu_to_le16(ei->i_file_acl >> 32); 4440 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4441 if (ei->i_disksize != ext4_isize(raw_inode)) { 4442 ext4_isize_set(raw_inode, ei->i_disksize); 4443 need_datasync = 1; 4444 } 4445 if (ei->i_disksize > 0x7fffffffULL) { 4446 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4447 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4448 EXT4_SB(sb)->s_es->s_rev_level == 4449 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4450 set_large_file = 1; 4451 } 4452 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4453 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4454 if (old_valid_dev(inode->i_rdev)) { 4455 raw_inode->i_block[0] = 4456 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4457 raw_inode->i_block[1] = 0; 4458 } else { 4459 raw_inode->i_block[0] = 0; 4460 raw_inode->i_block[1] = 4461 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4462 raw_inode->i_block[2] = 0; 4463 } 4464 } else if (!ext4_has_inline_data(inode)) { 4465 for (block = 0; block < EXT4_N_BLOCKS; block++) 4466 raw_inode->i_block[block] = ei->i_data[block]; 4467 } 4468 4469 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4470 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4471 if (ei->i_extra_isize) { 4472 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4473 raw_inode->i_version_hi = 4474 cpu_to_le32(inode->i_version >> 32); 4475 raw_inode->i_extra_isize = 4476 cpu_to_le16(ei->i_extra_isize); 4477 } 4478 } 4479 ext4_inode_csum_set(inode, raw_inode, ei); 4480 spin_unlock(&ei->i_raw_lock); 4481 if (inode->i_sb->s_flags & MS_LAZYTIME) 4482 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4483 bh->b_data); 4484 4485 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4486 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4487 if (!err) 4488 err = rc; 4489 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4490 if (set_large_file) { 4491 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4492 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4493 if (err) 4494 goto out_brelse; 4495 ext4_update_dynamic_rev(sb); 4496 EXT4_SET_RO_COMPAT_FEATURE(sb, 4497 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4498 ext4_handle_sync(handle); 4499 err = ext4_handle_dirty_super(handle, sb); 4500 } 4501 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4502 out_brelse: 4503 brelse(bh); 4504 ext4_std_error(inode->i_sb, err); 4505 return err; 4506 } 4507 4508 /* 4509 * ext4_write_inode() 4510 * 4511 * We are called from a few places: 4512 * 4513 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4514 * Here, there will be no transaction running. We wait for any running 4515 * transaction to commit. 4516 * 4517 * - Within flush work (sys_sync(), kupdate and such). 4518 * We wait on commit, if told to. 4519 * 4520 * - Within iput_final() -> write_inode_now() 4521 * We wait on commit, if told to. 4522 * 4523 * In all cases it is actually safe for us to return without doing anything, 4524 * because the inode has been copied into a raw inode buffer in 4525 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4526 * writeback. 4527 * 4528 * Note that we are absolutely dependent upon all inode dirtiers doing the 4529 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4530 * which we are interested. 4531 * 4532 * It would be a bug for them to not do this. The code: 4533 * 4534 * mark_inode_dirty(inode) 4535 * stuff(); 4536 * inode->i_size = expr; 4537 * 4538 * is in error because write_inode() could occur while `stuff()' is running, 4539 * and the new i_size will be lost. Plus the inode will no longer be on the 4540 * superblock's dirty inode list. 4541 */ 4542 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4543 { 4544 int err; 4545 4546 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4547 return 0; 4548 4549 if (EXT4_SB(inode->i_sb)->s_journal) { 4550 if (ext4_journal_current_handle()) { 4551 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4552 dump_stack(); 4553 return -EIO; 4554 } 4555 4556 /* 4557 * No need to force transaction in WB_SYNC_NONE mode. Also 4558 * ext4_sync_fs() will force the commit after everything is 4559 * written. 4560 */ 4561 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4562 return 0; 4563 4564 err = ext4_force_commit(inode->i_sb); 4565 } else { 4566 struct ext4_iloc iloc; 4567 4568 err = __ext4_get_inode_loc(inode, &iloc, 0); 4569 if (err) 4570 return err; 4571 /* 4572 * sync(2) will flush the whole buffer cache. No need to do 4573 * it here separately for each inode. 4574 */ 4575 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4576 sync_dirty_buffer(iloc.bh); 4577 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4578 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4579 "IO error syncing inode"); 4580 err = -EIO; 4581 } 4582 brelse(iloc.bh); 4583 } 4584 return err; 4585 } 4586 4587 /* 4588 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4589 * buffers that are attached to a page stradding i_size and are undergoing 4590 * commit. In that case we have to wait for commit to finish and try again. 4591 */ 4592 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4593 { 4594 struct page *page; 4595 unsigned offset; 4596 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4597 tid_t commit_tid = 0; 4598 int ret; 4599 4600 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4601 /* 4602 * All buffers in the last page remain valid? Then there's nothing to 4603 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4604 * blocksize case 4605 */ 4606 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4607 return; 4608 while (1) { 4609 page = find_lock_page(inode->i_mapping, 4610 inode->i_size >> PAGE_CACHE_SHIFT); 4611 if (!page) 4612 return; 4613 ret = __ext4_journalled_invalidatepage(page, offset, 4614 PAGE_CACHE_SIZE - offset); 4615 unlock_page(page); 4616 page_cache_release(page); 4617 if (ret != -EBUSY) 4618 return; 4619 commit_tid = 0; 4620 read_lock(&journal->j_state_lock); 4621 if (journal->j_committing_transaction) 4622 commit_tid = journal->j_committing_transaction->t_tid; 4623 read_unlock(&journal->j_state_lock); 4624 if (commit_tid) 4625 jbd2_log_wait_commit(journal, commit_tid); 4626 } 4627 } 4628 4629 /* 4630 * ext4_setattr() 4631 * 4632 * Called from notify_change. 4633 * 4634 * We want to trap VFS attempts to truncate the file as soon as 4635 * possible. In particular, we want to make sure that when the VFS 4636 * shrinks i_size, we put the inode on the orphan list and modify 4637 * i_disksize immediately, so that during the subsequent flushing of 4638 * dirty pages and freeing of disk blocks, we can guarantee that any 4639 * commit will leave the blocks being flushed in an unused state on 4640 * disk. (On recovery, the inode will get truncated and the blocks will 4641 * be freed, so we have a strong guarantee that no future commit will 4642 * leave these blocks visible to the user.) 4643 * 4644 * Another thing we have to assure is that if we are in ordered mode 4645 * and inode is still attached to the committing transaction, we must 4646 * we start writeout of all the dirty pages which are being truncated. 4647 * This way we are sure that all the data written in the previous 4648 * transaction are already on disk (truncate waits for pages under 4649 * writeback). 4650 * 4651 * Called with inode->i_mutex down. 4652 */ 4653 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4654 { 4655 struct inode *inode = d_inode(dentry); 4656 int error, rc = 0; 4657 int orphan = 0; 4658 const unsigned int ia_valid = attr->ia_valid; 4659 4660 error = inode_change_ok(inode, attr); 4661 if (error) 4662 return error; 4663 4664 if (is_quota_modification(inode, attr)) 4665 dquot_initialize(inode); 4666 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4667 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4668 handle_t *handle; 4669 4670 /* (user+group)*(old+new) structure, inode write (sb, 4671 * inode block, ? - but truncate inode update has it) */ 4672 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4673 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4674 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4675 if (IS_ERR(handle)) { 4676 error = PTR_ERR(handle); 4677 goto err_out; 4678 } 4679 error = dquot_transfer(inode, attr); 4680 if (error) { 4681 ext4_journal_stop(handle); 4682 return error; 4683 } 4684 /* Update corresponding info in inode so that everything is in 4685 * one transaction */ 4686 if (attr->ia_valid & ATTR_UID) 4687 inode->i_uid = attr->ia_uid; 4688 if (attr->ia_valid & ATTR_GID) 4689 inode->i_gid = attr->ia_gid; 4690 error = ext4_mark_inode_dirty(handle, inode); 4691 ext4_journal_stop(handle); 4692 } 4693 4694 if (attr->ia_valid & ATTR_SIZE) { 4695 handle_t *handle; 4696 loff_t oldsize = inode->i_size; 4697 int shrink = (attr->ia_size <= inode->i_size); 4698 4699 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4700 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4701 4702 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4703 return -EFBIG; 4704 } 4705 if (!S_ISREG(inode->i_mode)) 4706 return -EINVAL; 4707 4708 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4709 inode_inc_iversion(inode); 4710 4711 if (ext4_should_order_data(inode) && 4712 (attr->ia_size < inode->i_size)) { 4713 error = ext4_begin_ordered_truncate(inode, 4714 attr->ia_size); 4715 if (error) 4716 goto err_out; 4717 } 4718 if (attr->ia_size != inode->i_size) { 4719 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4720 if (IS_ERR(handle)) { 4721 error = PTR_ERR(handle); 4722 goto err_out; 4723 } 4724 if (ext4_handle_valid(handle) && shrink) { 4725 error = ext4_orphan_add(handle, inode); 4726 orphan = 1; 4727 } 4728 down_write(&EXT4_I(inode)->i_data_sem); 4729 EXT4_I(inode)->i_disksize = attr->ia_size; 4730 rc = ext4_mark_inode_dirty(handle, inode); 4731 if (!error) 4732 error = rc; 4733 /* 4734 * We have to update i_size under i_data_sem together 4735 * with i_disksize to avoid races with writeback code 4736 * running ext4_wb_update_i_disksize(). 4737 */ 4738 if (!error) 4739 i_size_write(inode, attr->ia_size); 4740 up_write(&EXT4_I(inode)->i_data_sem); 4741 ext4_journal_stop(handle); 4742 if (error) { 4743 if (orphan) 4744 ext4_orphan_del(NULL, inode); 4745 goto err_out; 4746 } 4747 } 4748 if (!shrink) 4749 pagecache_isize_extended(inode, oldsize, inode->i_size); 4750 4751 /* 4752 * Blocks are going to be removed from the inode. Wait 4753 * for dio in flight. Temporarily disable 4754 * dioread_nolock to prevent livelock. 4755 */ 4756 if (orphan) { 4757 if (!ext4_should_journal_data(inode)) { 4758 ext4_inode_block_unlocked_dio(inode); 4759 inode_dio_wait(inode); 4760 ext4_inode_resume_unlocked_dio(inode); 4761 } else 4762 ext4_wait_for_tail_page_commit(inode); 4763 } 4764 /* 4765 * Truncate pagecache after we've waited for commit 4766 * in data=journal mode to make pages freeable. 4767 */ 4768 truncate_pagecache(inode, inode->i_size); 4769 if (shrink) 4770 ext4_truncate(inode); 4771 } 4772 4773 if (!rc) { 4774 setattr_copy(inode, attr); 4775 mark_inode_dirty(inode); 4776 } 4777 4778 /* 4779 * If the call to ext4_truncate failed to get a transaction handle at 4780 * all, we need to clean up the in-core orphan list manually. 4781 */ 4782 if (orphan && inode->i_nlink) 4783 ext4_orphan_del(NULL, inode); 4784 4785 if (!rc && (ia_valid & ATTR_MODE)) 4786 rc = posix_acl_chmod(inode, inode->i_mode); 4787 4788 err_out: 4789 ext4_std_error(inode->i_sb, error); 4790 if (!error) 4791 error = rc; 4792 return error; 4793 } 4794 4795 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4796 struct kstat *stat) 4797 { 4798 struct inode *inode; 4799 unsigned long long delalloc_blocks; 4800 4801 inode = d_inode(dentry); 4802 generic_fillattr(inode, stat); 4803 4804 /* 4805 * If there is inline data in the inode, the inode will normally not 4806 * have data blocks allocated (it may have an external xattr block). 4807 * Report at least one sector for such files, so tools like tar, rsync, 4808 * others doen't incorrectly think the file is completely sparse. 4809 */ 4810 if (unlikely(ext4_has_inline_data(inode))) 4811 stat->blocks += (stat->size + 511) >> 9; 4812 4813 /* 4814 * We can't update i_blocks if the block allocation is delayed 4815 * otherwise in the case of system crash before the real block 4816 * allocation is done, we will have i_blocks inconsistent with 4817 * on-disk file blocks. 4818 * We always keep i_blocks updated together with real 4819 * allocation. But to not confuse with user, stat 4820 * will return the blocks that include the delayed allocation 4821 * blocks for this file. 4822 */ 4823 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4824 EXT4_I(inode)->i_reserved_data_blocks); 4825 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4826 return 0; 4827 } 4828 4829 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4830 int pextents) 4831 { 4832 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4833 return ext4_ind_trans_blocks(inode, lblocks); 4834 return ext4_ext_index_trans_blocks(inode, pextents); 4835 } 4836 4837 /* 4838 * Account for index blocks, block groups bitmaps and block group 4839 * descriptor blocks if modify datablocks and index blocks 4840 * worse case, the indexs blocks spread over different block groups 4841 * 4842 * If datablocks are discontiguous, they are possible to spread over 4843 * different block groups too. If they are contiguous, with flexbg, 4844 * they could still across block group boundary. 4845 * 4846 * Also account for superblock, inode, quota and xattr blocks 4847 */ 4848 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4849 int pextents) 4850 { 4851 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4852 int gdpblocks; 4853 int idxblocks; 4854 int ret = 0; 4855 4856 /* 4857 * How many index blocks need to touch to map @lblocks logical blocks 4858 * to @pextents physical extents? 4859 */ 4860 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4861 4862 ret = idxblocks; 4863 4864 /* 4865 * Now let's see how many group bitmaps and group descriptors need 4866 * to account 4867 */ 4868 groups = idxblocks + pextents; 4869 gdpblocks = groups; 4870 if (groups > ngroups) 4871 groups = ngroups; 4872 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4873 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4874 4875 /* bitmaps and block group descriptor blocks */ 4876 ret += groups + gdpblocks; 4877 4878 /* Blocks for super block, inode, quota and xattr blocks */ 4879 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4880 4881 return ret; 4882 } 4883 4884 /* 4885 * Calculate the total number of credits to reserve to fit 4886 * the modification of a single pages into a single transaction, 4887 * which may include multiple chunks of block allocations. 4888 * 4889 * This could be called via ext4_write_begin() 4890 * 4891 * We need to consider the worse case, when 4892 * one new block per extent. 4893 */ 4894 int ext4_writepage_trans_blocks(struct inode *inode) 4895 { 4896 int bpp = ext4_journal_blocks_per_page(inode); 4897 int ret; 4898 4899 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4900 4901 /* Account for data blocks for journalled mode */ 4902 if (ext4_should_journal_data(inode)) 4903 ret += bpp; 4904 return ret; 4905 } 4906 4907 /* 4908 * Calculate the journal credits for a chunk of data modification. 4909 * 4910 * This is called from DIO, fallocate or whoever calling 4911 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4912 * 4913 * journal buffers for data blocks are not included here, as DIO 4914 * and fallocate do no need to journal data buffers. 4915 */ 4916 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4917 { 4918 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4919 } 4920 4921 /* 4922 * The caller must have previously called ext4_reserve_inode_write(). 4923 * Give this, we know that the caller already has write access to iloc->bh. 4924 */ 4925 int ext4_mark_iloc_dirty(handle_t *handle, 4926 struct inode *inode, struct ext4_iloc *iloc) 4927 { 4928 int err = 0; 4929 4930 if (IS_I_VERSION(inode)) 4931 inode_inc_iversion(inode); 4932 4933 /* the do_update_inode consumes one bh->b_count */ 4934 get_bh(iloc->bh); 4935 4936 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4937 err = ext4_do_update_inode(handle, inode, iloc); 4938 put_bh(iloc->bh); 4939 return err; 4940 } 4941 4942 /* 4943 * On success, We end up with an outstanding reference count against 4944 * iloc->bh. This _must_ be cleaned up later. 4945 */ 4946 4947 int 4948 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4949 struct ext4_iloc *iloc) 4950 { 4951 int err; 4952 4953 err = ext4_get_inode_loc(inode, iloc); 4954 if (!err) { 4955 BUFFER_TRACE(iloc->bh, "get_write_access"); 4956 err = ext4_journal_get_write_access(handle, iloc->bh); 4957 if (err) { 4958 brelse(iloc->bh); 4959 iloc->bh = NULL; 4960 } 4961 } 4962 ext4_std_error(inode->i_sb, err); 4963 return err; 4964 } 4965 4966 /* 4967 * Expand an inode by new_extra_isize bytes. 4968 * Returns 0 on success or negative error number on failure. 4969 */ 4970 static int ext4_expand_extra_isize(struct inode *inode, 4971 unsigned int new_extra_isize, 4972 struct ext4_iloc iloc, 4973 handle_t *handle) 4974 { 4975 struct ext4_inode *raw_inode; 4976 struct ext4_xattr_ibody_header *header; 4977 4978 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4979 return 0; 4980 4981 raw_inode = ext4_raw_inode(&iloc); 4982 4983 header = IHDR(inode, raw_inode); 4984 4985 /* No extended attributes present */ 4986 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4987 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4988 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4989 new_extra_isize); 4990 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4991 return 0; 4992 } 4993 4994 /* try to expand with EAs present */ 4995 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4996 raw_inode, handle); 4997 } 4998 4999 /* 5000 * What we do here is to mark the in-core inode as clean with respect to inode 5001 * dirtiness (it may still be data-dirty). 5002 * This means that the in-core inode may be reaped by prune_icache 5003 * without having to perform any I/O. This is a very good thing, 5004 * because *any* task may call prune_icache - even ones which 5005 * have a transaction open against a different journal. 5006 * 5007 * Is this cheating? Not really. Sure, we haven't written the 5008 * inode out, but prune_icache isn't a user-visible syncing function. 5009 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5010 * we start and wait on commits. 5011 */ 5012 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5013 { 5014 struct ext4_iloc iloc; 5015 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5016 static unsigned int mnt_count; 5017 int err, ret; 5018 5019 might_sleep(); 5020 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5021 err = ext4_reserve_inode_write(handle, inode, &iloc); 5022 if (ext4_handle_valid(handle) && 5023 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5024 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5025 /* 5026 * We need extra buffer credits since we may write into EA block 5027 * with this same handle. If journal_extend fails, then it will 5028 * only result in a minor loss of functionality for that inode. 5029 * If this is felt to be critical, then e2fsck should be run to 5030 * force a large enough s_min_extra_isize. 5031 */ 5032 if ((jbd2_journal_extend(handle, 5033 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5034 ret = ext4_expand_extra_isize(inode, 5035 sbi->s_want_extra_isize, 5036 iloc, handle); 5037 if (ret) { 5038 ext4_set_inode_state(inode, 5039 EXT4_STATE_NO_EXPAND); 5040 if (mnt_count != 5041 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5042 ext4_warning(inode->i_sb, 5043 "Unable to expand inode %lu. Delete" 5044 " some EAs or run e2fsck.", 5045 inode->i_ino); 5046 mnt_count = 5047 le16_to_cpu(sbi->s_es->s_mnt_count); 5048 } 5049 } 5050 } 5051 } 5052 if (!err) 5053 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5054 return err; 5055 } 5056 5057 /* 5058 * ext4_dirty_inode() is called from __mark_inode_dirty() 5059 * 5060 * We're really interested in the case where a file is being extended. 5061 * i_size has been changed by generic_commit_write() and we thus need 5062 * to include the updated inode in the current transaction. 5063 * 5064 * Also, dquot_alloc_block() will always dirty the inode when blocks 5065 * are allocated to the file. 5066 * 5067 * If the inode is marked synchronous, we don't honour that here - doing 5068 * so would cause a commit on atime updates, which we don't bother doing. 5069 * We handle synchronous inodes at the highest possible level. 5070 * 5071 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5072 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5073 * to copy into the on-disk inode structure are the timestamp files. 5074 */ 5075 void ext4_dirty_inode(struct inode *inode, int flags) 5076 { 5077 handle_t *handle; 5078 5079 if (flags == I_DIRTY_TIME) 5080 return; 5081 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5082 if (IS_ERR(handle)) 5083 goto out; 5084 5085 ext4_mark_inode_dirty(handle, inode); 5086 5087 ext4_journal_stop(handle); 5088 out: 5089 return; 5090 } 5091 5092 #if 0 5093 /* 5094 * Bind an inode's backing buffer_head into this transaction, to prevent 5095 * it from being flushed to disk early. Unlike 5096 * ext4_reserve_inode_write, this leaves behind no bh reference and 5097 * returns no iloc structure, so the caller needs to repeat the iloc 5098 * lookup to mark the inode dirty later. 5099 */ 5100 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5101 { 5102 struct ext4_iloc iloc; 5103 5104 int err = 0; 5105 if (handle) { 5106 err = ext4_get_inode_loc(inode, &iloc); 5107 if (!err) { 5108 BUFFER_TRACE(iloc.bh, "get_write_access"); 5109 err = jbd2_journal_get_write_access(handle, iloc.bh); 5110 if (!err) 5111 err = ext4_handle_dirty_metadata(handle, 5112 NULL, 5113 iloc.bh); 5114 brelse(iloc.bh); 5115 } 5116 } 5117 ext4_std_error(inode->i_sb, err); 5118 return err; 5119 } 5120 #endif 5121 5122 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5123 { 5124 journal_t *journal; 5125 handle_t *handle; 5126 int err; 5127 5128 /* 5129 * We have to be very careful here: changing a data block's 5130 * journaling status dynamically is dangerous. If we write a 5131 * data block to the journal, change the status and then delete 5132 * that block, we risk forgetting to revoke the old log record 5133 * from the journal and so a subsequent replay can corrupt data. 5134 * So, first we make sure that the journal is empty and that 5135 * nobody is changing anything. 5136 */ 5137 5138 journal = EXT4_JOURNAL(inode); 5139 if (!journal) 5140 return 0; 5141 if (is_journal_aborted(journal)) 5142 return -EROFS; 5143 /* We have to allocate physical blocks for delalloc blocks 5144 * before flushing journal. otherwise delalloc blocks can not 5145 * be allocated any more. even more truncate on delalloc blocks 5146 * could trigger BUG by flushing delalloc blocks in journal. 5147 * There is no delalloc block in non-journal data mode. 5148 */ 5149 if (val && test_opt(inode->i_sb, DELALLOC)) { 5150 err = ext4_alloc_da_blocks(inode); 5151 if (err < 0) 5152 return err; 5153 } 5154 5155 /* Wait for all existing dio workers */ 5156 ext4_inode_block_unlocked_dio(inode); 5157 inode_dio_wait(inode); 5158 5159 jbd2_journal_lock_updates(journal); 5160 5161 /* 5162 * OK, there are no updates running now, and all cached data is 5163 * synced to disk. We are now in a completely consistent state 5164 * which doesn't have anything in the journal, and we know that 5165 * no filesystem updates are running, so it is safe to modify 5166 * the inode's in-core data-journaling state flag now. 5167 */ 5168 5169 if (val) 5170 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5171 else { 5172 err = jbd2_journal_flush(journal); 5173 if (err < 0) { 5174 jbd2_journal_unlock_updates(journal); 5175 ext4_inode_resume_unlocked_dio(inode); 5176 return err; 5177 } 5178 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5179 } 5180 ext4_set_aops(inode); 5181 5182 jbd2_journal_unlock_updates(journal); 5183 ext4_inode_resume_unlocked_dio(inode); 5184 5185 /* Finally we can mark the inode as dirty. */ 5186 5187 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5188 if (IS_ERR(handle)) 5189 return PTR_ERR(handle); 5190 5191 err = ext4_mark_inode_dirty(handle, inode); 5192 ext4_handle_sync(handle); 5193 ext4_journal_stop(handle); 5194 ext4_std_error(inode->i_sb, err); 5195 5196 return err; 5197 } 5198 5199 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5200 { 5201 return !buffer_mapped(bh); 5202 } 5203 5204 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5205 { 5206 struct page *page = vmf->page; 5207 loff_t size; 5208 unsigned long len; 5209 int ret; 5210 struct file *file = vma->vm_file; 5211 struct inode *inode = file_inode(file); 5212 struct address_space *mapping = inode->i_mapping; 5213 handle_t *handle; 5214 get_block_t *get_block; 5215 int retries = 0; 5216 5217 sb_start_pagefault(inode->i_sb); 5218 file_update_time(vma->vm_file); 5219 /* Delalloc case is easy... */ 5220 if (test_opt(inode->i_sb, DELALLOC) && 5221 !ext4_should_journal_data(inode) && 5222 !ext4_nonda_switch(inode->i_sb)) { 5223 do { 5224 ret = __block_page_mkwrite(vma, vmf, 5225 ext4_da_get_block_prep); 5226 } while (ret == -ENOSPC && 5227 ext4_should_retry_alloc(inode->i_sb, &retries)); 5228 goto out_ret; 5229 } 5230 5231 lock_page(page); 5232 size = i_size_read(inode); 5233 /* Page got truncated from under us? */ 5234 if (page->mapping != mapping || page_offset(page) > size) { 5235 unlock_page(page); 5236 ret = VM_FAULT_NOPAGE; 5237 goto out; 5238 } 5239 5240 if (page->index == size >> PAGE_CACHE_SHIFT) 5241 len = size & ~PAGE_CACHE_MASK; 5242 else 5243 len = PAGE_CACHE_SIZE; 5244 /* 5245 * Return if we have all the buffers mapped. This avoids the need to do 5246 * journal_start/journal_stop which can block and take a long time 5247 */ 5248 if (page_has_buffers(page)) { 5249 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5250 0, len, NULL, 5251 ext4_bh_unmapped)) { 5252 /* Wait so that we don't change page under IO */ 5253 wait_for_stable_page(page); 5254 ret = VM_FAULT_LOCKED; 5255 goto out; 5256 } 5257 } 5258 unlock_page(page); 5259 /* OK, we need to fill the hole... */ 5260 if (ext4_should_dioread_nolock(inode)) 5261 get_block = ext4_get_block_write; 5262 else 5263 get_block = ext4_get_block; 5264 retry_alloc: 5265 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5266 ext4_writepage_trans_blocks(inode)); 5267 if (IS_ERR(handle)) { 5268 ret = VM_FAULT_SIGBUS; 5269 goto out; 5270 } 5271 ret = __block_page_mkwrite(vma, vmf, get_block); 5272 if (!ret && ext4_should_journal_data(inode)) { 5273 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5274 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5275 unlock_page(page); 5276 ret = VM_FAULT_SIGBUS; 5277 ext4_journal_stop(handle); 5278 goto out; 5279 } 5280 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5281 } 5282 ext4_journal_stop(handle); 5283 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5284 goto retry_alloc; 5285 out_ret: 5286 ret = block_page_mkwrite_return(ret); 5287 out: 5288 sb_end_pagefault(inode->i_sb); 5289 return ret; 5290 } 5291