1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = raw->i_checksum_lo; 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = raw->i_checksum_hi; 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = csum_lo; 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = csum_hi; 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh_result, int create); 137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 142 struct inode *inode, struct page *page, loff_t from, 143 loff_t length, int flags); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 static int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 (inode->i_sb->s_blocksize >> 9) : 0; 152 153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 190 trace_ext4_evict_inode(inode); 191 192 ext4_ioend_wait(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (ext4_should_journal_data(inode) && 214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_log_start_commit(journal, commit_tid); 219 jbd2_log_wait_commit(journal, commit_tid); 220 filemap_write_and_wait(&inode->i_data); 221 } 222 truncate_inode_pages(&inode->i_data, 0); 223 goto no_delete; 224 } 225 226 if (!is_bad_inode(inode)) 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages(&inode->i_data, 0); 232 233 if (is_bad_inode(inode)) 234 goto no_delete; 235 236 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 237 if (IS_ERR(handle)) { 238 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 239 /* 240 * If we're going to skip the normal cleanup, we still need to 241 * make sure that the in-core orphan linked list is properly 242 * cleaned up. 243 */ 244 ext4_orphan_del(NULL, inode); 245 goto no_delete; 246 } 247 248 if (IS_SYNC(inode)) 249 ext4_handle_sync(handle); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) 258 ext4_truncate(inode); 259 260 /* 261 * ext4_ext_truncate() doesn't reserve any slop when it 262 * restarts journal transactions; therefore there may not be 263 * enough credits left in the handle to remove the inode from 264 * the orphan list and set the dtime field. 265 */ 266 if (!ext4_handle_has_enough_credits(handle, 3)) { 267 err = ext4_journal_extend(handle, 3); 268 if (err > 0) 269 err = ext4_journal_restart(handle, 3); 270 if (err != 0) { 271 ext4_warning(inode->i_sb, 272 "couldn't extend journal (err %d)", err); 273 stop_handle: 274 ext4_journal_stop(handle); 275 ext4_orphan_del(NULL, inode); 276 goto no_delete; 277 } 278 } 279 280 /* 281 * Kill off the orphan record which ext4_truncate created. 282 * AKPM: I think this can be inside the above `if'. 283 * Note that ext4_orphan_del() has to be able to cope with the 284 * deletion of a non-existent orphan - this is because we don't 285 * know if ext4_truncate() actually created an orphan record. 286 * (Well, we could do this if we need to, but heck - it works) 287 */ 288 ext4_orphan_del(handle, inode); 289 EXT4_I(inode)->i_dtime = get_seconds(); 290 291 /* 292 * One subtle ordering requirement: if anything has gone wrong 293 * (transaction abort, IO errors, whatever), then we can still 294 * do these next steps (the fs will already have been marked as 295 * having errors), but we can't free the inode if the mark_dirty 296 * fails. 297 */ 298 if (ext4_mark_inode_dirty(handle, inode)) 299 /* If that failed, just do the required in-core inode clear. */ 300 ext4_clear_inode(inode); 301 else 302 ext4_free_inode(handle, inode); 303 ext4_journal_stop(handle); 304 return; 305 no_delete: 306 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 307 } 308 309 #ifdef CONFIG_QUOTA 310 qsize_t *ext4_get_reserved_space(struct inode *inode) 311 { 312 return &EXT4_I(inode)->i_reserved_quota; 313 } 314 #endif 315 316 /* 317 * Calculate the number of metadata blocks need to reserve 318 * to allocate a block located at @lblock 319 */ 320 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 321 { 322 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 323 return ext4_ext_calc_metadata_amount(inode, lblock); 324 325 return ext4_ind_calc_metadata_amount(inode, lblock); 326 } 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 352 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 353 used + ei->i_allocated_meta_blocks); 354 ei->i_allocated_meta_blocks = 0; 355 356 if (ei->i_reserved_data_blocks == 0) { 357 /* 358 * We can release all of the reserved metadata blocks 359 * only when we have written all of the delayed 360 * allocation blocks. 361 */ 362 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 363 ei->i_reserved_meta_blocks); 364 ei->i_reserved_meta_blocks = 0; 365 ei->i_da_metadata_calc_len = 0; 366 } 367 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 368 369 /* Update quota subsystem for data blocks */ 370 if (quota_claim) 371 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 372 else { 373 /* 374 * We did fallocate with an offset that is already delayed 375 * allocated. So on delayed allocated writeback we should 376 * not re-claim the quota for fallocated blocks. 377 */ 378 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 379 } 380 381 /* 382 * If we have done all the pending block allocations and if 383 * there aren't any writers on the inode, we can discard the 384 * inode's preallocations. 385 */ 386 if ((ei->i_reserved_data_blocks == 0) && 387 (atomic_read(&inode->i_writecount) == 0)) 388 ext4_discard_preallocations(inode); 389 } 390 391 static int __check_block_validity(struct inode *inode, const char *func, 392 unsigned int line, 393 struct ext4_map_blocks *map) 394 { 395 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 396 map->m_len)) { 397 ext4_error_inode(inode, func, line, map->m_pblk, 398 "lblock %lu mapped to illegal pblock " 399 "(length %d)", (unsigned long) map->m_lblk, 400 map->m_len); 401 return -EIO; 402 } 403 return 0; 404 } 405 406 #define check_block_validity(inode, map) \ 407 __check_block_validity((inode), __func__, __LINE__, (map)) 408 409 /* 410 * Return the number of contiguous dirty pages in a given inode 411 * starting at page frame idx. 412 */ 413 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 414 unsigned int max_pages) 415 { 416 struct address_space *mapping = inode->i_mapping; 417 pgoff_t index; 418 struct pagevec pvec; 419 pgoff_t num = 0; 420 int i, nr_pages, done = 0; 421 422 if (max_pages == 0) 423 return 0; 424 pagevec_init(&pvec, 0); 425 while (!done) { 426 index = idx; 427 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 428 PAGECACHE_TAG_DIRTY, 429 (pgoff_t)PAGEVEC_SIZE); 430 if (nr_pages == 0) 431 break; 432 for (i = 0; i < nr_pages; i++) { 433 struct page *page = pvec.pages[i]; 434 struct buffer_head *bh, *head; 435 436 lock_page(page); 437 if (unlikely(page->mapping != mapping) || 438 !PageDirty(page) || 439 PageWriteback(page) || 440 page->index != idx) { 441 done = 1; 442 unlock_page(page); 443 break; 444 } 445 if (page_has_buffers(page)) { 446 bh = head = page_buffers(page); 447 do { 448 if (!buffer_delay(bh) && 449 !buffer_unwritten(bh)) 450 done = 1; 451 bh = bh->b_this_page; 452 } while (!done && (bh != head)); 453 } 454 unlock_page(page); 455 if (done) 456 break; 457 idx++; 458 num++; 459 if (num >= max_pages) { 460 done = 1; 461 break; 462 } 463 } 464 pagevec_release(&pvec); 465 } 466 return num; 467 } 468 469 /* 470 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 471 */ 472 static void set_buffers_da_mapped(struct inode *inode, 473 struct ext4_map_blocks *map) 474 { 475 struct address_space *mapping = inode->i_mapping; 476 struct pagevec pvec; 477 int i, nr_pages; 478 pgoff_t index, end; 479 480 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 481 end = (map->m_lblk + map->m_len - 1) >> 482 (PAGE_CACHE_SHIFT - inode->i_blkbits); 483 484 pagevec_init(&pvec, 0); 485 while (index <= end) { 486 nr_pages = pagevec_lookup(&pvec, mapping, index, 487 min(end - index + 1, 488 (pgoff_t)PAGEVEC_SIZE)); 489 if (nr_pages == 0) 490 break; 491 for (i = 0; i < nr_pages; i++) { 492 struct page *page = pvec.pages[i]; 493 struct buffer_head *bh, *head; 494 495 if (unlikely(page->mapping != mapping) || 496 !PageDirty(page)) 497 break; 498 499 if (page_has_buffers(page)) { 500 bh = head = page_buffers(page); 501 do { 502 set_buffer_da_mapped(bh); 503 bh = bh->b_this_page; 504 } while (bh != head); 505 } 506 index++; 507 } 508 pagevec_release(&pvec); 509 } 510 } 511 512 /* 513 * The ext4_map_blocks() function tries to look up the requested blocks, 514 * and returns if the blocks are already mapped. 515 * 516 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 517 * and store the allocated blocks in the result buffer head and mark it 518 * mapped. 519 * 520 * If file type is extents based, it will call ext4_ext_map_blocks(), 521 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 522 * based files 523 * 524 * On success, it returns the number of blocks being mapped or allocate. 525 * if create==0 and the blocks are pre-allocated and uninitialized block, 526 * the result buffer head is unmapped. If the create ==1, it will make sure 527 * the buffer head is mapped. 528 * 529 * It returns 0 if plain look up failed (blocks have not been allocated), in 530 * that case, buffer head is unmapped 531 * 532 * It returns the error in case of allocation failure. 533 */ 534 int ext4_map_blocks(handle_t *handle, struct inode *inode, 535 struct ext4_map_blocks *map, int flags) 536 { 537 int retval; 538 539 map->m_flags = 0; 540 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 541 "logical block %lu\n", inode->i_ino, flags, map->m_len, 542 (unsigned long) map->m_lblk); 543 /* 544 * Try to see if we can get the block without requesting a new 545 * file system block. 546 */ 547 down_read((&EXT4_I(inode)->i_data_sem)); 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 549 retval = ext4_ext_map_blocks(handle, inode, map, flags & 550 EXT4_GET_BLOCKS_KEEP_SIZE); 551 } else { 552 retval = ext4_ind_map_blocks(handle, inode, map, flags & 553 EXT4_GET_BLOCKS_KEEP_SIZE); 554 } 555 up_read((&EXT4_I(inode)->i_data_sem)); 556 557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 558 int ret = check_block_validity(inode, map); 559 if (ret != 0) 560 return ret; 561 } 562 563 /* If it is only a block(s) look up */ 564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 565 return retval; 566 567 /* 568 * Returns if the blocks have already allocated 569 * 570 * Note that if blocks have been preallocated 571 * ext4_ext_get_block() returns the create = 0 572 * with buffer head unmapped. 573 */ 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 575 return retval; 576 577 /* 578 * When we call get_blocks without the create flag, the 579 * BH_Unwritten flag could have gotten set if the blocks 580 * requested were part of a uninitialized extent. We need to 581 * clear this flag now that we are committed to convert all or 582 * part of the uninitialized extent to be an initialized 583 * extent. This is because we need to avoid the combination 584 * of BH_Unwritten and BH_Mapped flags being simultaneously 585 * set on the buffer_head. 586 */ 587 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 588 589 /* 590 * New blocks allocate and/or writing to uninitialized extent 591 * will possibly result in updating i_data, so we take 592 * the write lock of i_data_sem, and call get_blocks() 593 * with create == 1 flag. 594 */ 595 down_write((&EXT4_I(inode)->i_data_sem)); 596 597 /* 598 * if the caller is from delayed allocation writeout path 599 * we have already reserved fs blocks for allocation 600 * let the underlying get_block() function know to 601 * avoid double accounting 602 */ 603 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 604 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 605 /* 606 * We need to check for EXT4 here because migrate 607 * could have changed the inode type in between 608 */ 609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 610 retval = ext4_ext_map_blocks(handle, inode, map, flags); 611 } else { 612 retval = ext4_ind_map_blocks(handle, inode, map, flags); 613 614 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 615 /* 616 * We allocated new blocks which will result in 617 * i_data's format changing. Force the migrate 618 * to fail by clearing migrate flags 619 */ 620 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 621 } 622 623 /* 624 * Update reserved blocks/metadata blocks after successful 625 * block allocation which had been deferred till now. We don't 626 * support fallocate for non extent files. So we can update 627 * reserve space here. 628 */ 629 if ((retval > 0) && 630 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 631 ext4_da_update_reserve_space(inode, retval, 1); 632 } 633 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 634 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 635 636 /* If we have successfully mapped the delayed allocated blocks, 637 * set the BH_Da_Mapped bit on them. Its important to do this 638 * under the protection of i_data_sem. 639 */ 640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 641 set_buffers_da_mapped(inode, map); 642 } 643 644 up_write((&EXT4_I(inode)->i_data_sem)); 645 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 646 int ret = check_block_validity(inode, map); 647 if (ret != 0) 648 return ret; 649 } 650 return retval; 651 } 652 653 /* Maximum number of blocks we map for direct IO at once. */ 654 #define DIO_MAX_BLOCKS 4096 655 656 static int _ext4_get_block(struct inode *inode, sector_t iblock, 657 struct buffer_head *bh, int flags) 658 { 659 handle_t *handle = ext4_journal_current_handle(); 660 struct ext4_map_blocks map; 661 int ret = 0, started = 0; 662 int dio_credits; 663 664 map.m_lblk = iblock; 665 map.m_len = bh->b_size >> inode->i_blkbits; 666 667 if (flags && !handle) { 668 /* Direct IO write... */ 669 if (map.m_len > DIO_MAX_BLOCKS) 670 map.m_len = DIO_MAX_BLOCKS; 671 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 672 handle = ext4_journal_start(inode, dio_credits); 673 if (IS_ERR(handle)) { 674 ret = PTR_ERR(handle); 675 return ret; 676 } 677 started = 1; 678 } 679 680 ret = ext4_map_blocks(handle, inode, &map, flags); 681 if (ret > 0) { 682 map_bh(bh, inode->i_sb, map.m_pblk); 683 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 684 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 685 ret = 0; 686 } 687 if (started) 688 ext4_journal_stop(handle); 689 return ret; 690 } 691 692 int ext4_get_block(struct inode *inode, sector_t iblock, 693 struct buffer_head *bh, int create) 694 { 695 return _ext4_get_block(inode, iblock, bh, 696 create ? EXT4_GET_BLOCKS_CREATE : 0); 697 } 698 699 /* 700 * `handle' can be NULL if create is zero 701 */ 702 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 703 ext4_lblk_t block, int create, int *errp) 704 { 705 struct ext4_map_blocks map; 706 struct buffer_head *bh; 707 int fatal = 0, err; 708 709 J_ASSERT(handle != NULL || create == 0); 710 711 map.m_lblk = block; 712 map.m_len = 1; 713 err = ext4_map_blocks(handle, inode, &map, 714 create ? EXT4_GET_BLOCKS_CREATE : 0); 715 716 if (err < 0) 717 *errp = err; 718 if (err <= 0) 719 return NULL; 720 *errp = 0; 721 722 bh = sb_getblk(inode->i_sb, map.m_pblk); 723 if (!bh) { 724 *errp = -EIO; 725 return NULL; 726 } 727 if (map.m_flags & EXT4_MAP_NEW) { 728 J_ASSERT(create != 0); 729 J_ASSERT(handle != NULL); 730 731 /* 732 * Now that we do not always journal data, we should 733 * keep in mind whether this should always journal the 734 * new buffer as metadata. For now, regular file 735 * writes use ext4_get_block instead, so it's not a 736 * problem. 737 */ 738 lock_buffer(bh); 739 BUFFER_TRACE(bh, "call get_create_access"); 740 fatal = ext4_journal_get_create_access(handle, bh); 741 if (!fatal && !buffer_uptodate(bh)) { 742 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 743 set_buffer_uptodate(bh); 744 } 745 unlock_buffer(bh); 746 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 747 err = ext4_handle_dirty_metadata(handle, inode, bh); 748 if (!fatal) 749 fatal = err; 750 } else { 751 BUFFER_TRACE(bh, "not a new buffer"); 752 } 753 if (fatal) { 754 *errp = fatal; 755 brelse(bh); 756 bh = NULL; 757 } 758 return bh; 759 } 760 761 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 762 ext4_lblk_t block, int create, int *err) 763 { 764 struct buffer_head *bh; 765 766 bh = ext4_getblk(handle, inode, block, create, err); 767 if (!bh) 768 return bh; 769 if (buffer_uptodate(bh)) 770 return bh; 771 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 772 wait_on_buffer(bh); 773 if (buffer_uptodate(bh)) 774 return bh; 775 put_bh(bh); 776 *err = -EIO; 777 return NULL; 778 } 779 780 static int walk_page_buffers(handle_t *handle, 781 struct buffer_head *head, 782 unsigned from, 783 unsigned to, 784 int *partial, 785 int (*fn)(handle_t *handle, 786 struct buffer_head *bh)) 787 { 788 struct buffer_head *bh; 789 unsigned block_start, block_end; 790 unsigned blocksize = head->b_size; 791 int err, ret = 0; 792 struct buffer_head *next; 793 794 for (bh = head, block_start = 0; 795 ret == 0 && (bh != head || !block_start); 796 block_start = block_end, bh = next) { 797 next = bh->b_this_page; 798 block_end = block_start + blocksize; 799 if (block_end <= from || block_start >= to) { 800 if (partial && !buffer_uptodate(bh)) 801 *partial = 1; 802 continue; 803 } 804 err = (*fn)(handle, bh); 805 if (!ret) 806 ret = err; 807 } 808 return ret; 809 } 810 811 /* 812 * To preserve ordering, it is essential that the hole instantiation and 813 * the data write be encapsulated in a single transaction. We cannot 814 * close off a transaction and start a new one between the ext4_get_block() 815 * and the commit_write(). So doing the jbd2_journal_start at the start of 816 * prepare_write() is the right place. 817 * 818 * Also, this function can nest inside ext4_writepage() -> 819 * block_write_full_page(). In that case, we *know* that ext4_writepage() 820 * has generated enough buffer credits to do the whole page. So we won't 821 * block on the journal in that case, which is good, because the caller may 822 * be PF_MEMALLOC. 823 * 824 * By accident, ext4 can be reentered when a transaction is open via 825 * quota file writes. If we were to commit the transaction while thus 826 * reentered, there can be a deadlock - we would be holding a quota 827 * lock, and the commit would never complete if another thread had a 828 * transaction open and was blocking on the quota lock - a ranking 829 * violation. 830 * 831 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 832 * will _not_ run commit under these circumstances because handle->h_ref 833 * is elevated. We'll still have enough credits for the tiny quotafile 834 * write. 835 */ 836 static int do_journal_get_write_access(handle_t *handle, 837 struct buffer_head *bh) 838 { 839 int dirty = buffer_dirty(bh); 840 int ret; 841 842 if (!buffer_mapped(bh) || buffer_freed(bh)) 843 return 0; 844 /* 845 * __block_write_begin() could have dirtied some buffers. Clean 846 * the dirty bit as jbd2_journal_get_write_access() could complain 847 * otherwise about fs integrity issues. Setting of the dirty bit 848 * by __block_write_begin() isn't a real problem here as we clear 849 * the bit before releasing a page lock and thus writeback cannot 850 * ever write the buffer. 851 */ 852 if (dirty) 853 clear_buffer_dirty(bh); 854 ret = ext4_journal_get_write_access(handle, bh); 855 if (!ret && dirty) 856 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 857 return ret; 858 } 859 860 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 861 struct buffer_head *bh_result, int create); 862 static int ext4_write_begin(struct file *file, struct address_space *mapping, 863 loff_t pos, unsigned len, unsigned flags, 864 struct page **pagep, void **fsdata) 865 { 866 struct inode *inode = mapping->host; 867 int ret, needed_blocks; 868 handle_t *handle; 869 int retries = 0; 870 struct page *page; 871 pgoff_t index; 872 unsigned from, to; 873 874 trace_ext4_write_begin(inode, pos, len, flags); 875 /* 876 * Reserve one block more for addition to orphan list in case 877 * we allocate blocks but write fails for some reason 878 */ 879 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 880 index = pos >> PAGE_CACHE_SHIFT; 881 from = pos & (PAGE_CACHE_SIZE - 1); 882 to = from + len; 883 884 retry: 885 handle = ext4_journal_start(inode, needed_blocks); 886 if (IS_ERR(handle)) { 887 ret = PTR_ERR(handle); 888 goto out; 889 } 890 891 /* We cannot recurse into the filesystem as the transaction is already 892 * started */ 893 flags |= AOP_FLAG_NOFS; 894 895 page = grab_cache_page_write_begin(mapping, index, flags); 896 if (!page) { 897 ext4_journal_stop(handle); 898 ret = -ENOMEM; 899 goto out; 900 } 901 *pagep = page; 902 903 if (ext4_should_dioread_nolock(inode)) 904 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 905 else 906 ret = __block_write_begin(page, pos, len, ext4_get_block); 907 908 if (!ret && ext4_should_journal_data(inode)) { 909 ret = walk_page_buffers(handle, page_buffers(page), 910 from, to, NULL, do_journal_get_write_access); 911 } 912 913 if (ret) { 914 unlock_page(page); 915 page_cache_release(page); 916 /* 917 * __block_write_begin may have instantiated a few blocks 918 * outside i_size. Trim these off again. Don't need 919 * i_size_read because we hold i_mutex. 920 * 921 * Add inode to orphan list in case we crash before 922 * truncate finishes 923 */ 924 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 925 ext4_orphan_add(handle, inode); 926 927 ext4_journal_stop(handle); 928 if (pos + len > inode->i_size) { 929 ext4_truncate_failed_write(inode); 930 /* 931 * If truncate failed early the inode might 932 * still be on the orphan list; we need to 933 * make sure the inode is removed from the 934 * orphan list in that case. 935 */ 936 if (inode->i_nlink) 937 ext4_orphan_del(NULL, inode); 938 } 939 } 940 941 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 942 goto retry; 943 out: 944 return ret; 945 } 946 947 /* For write_end() in data=journal mode */ 948 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 949 { 950 if (!buffer_mapped(bh) || buffer_freed(bh)) 951 return 0; 952 set_buffer_uptodate(bh); 953 return ext4_handle_dirty_metadata(handle, NULL, bh); 954 } 955 956 static int ext4_generic_write_end(struct file *file, 957 struct address_space *mapping, 958 loff_t pos, unsigned len, unsigned copied, 959 struct page *page, void *fsdata) 960 { 961 int i_size_changed = 0; 962 struct inode *inode = mapping->host; 963 handle_t *handle = ext4_journal_current_handle(); 964 965 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 966 967 /* 968 * No need to use i_size_read() here, the i_size 969 * cannot change under us because we hold i_mutex. 970 * 971 * But it's important to update i_size while still holding page lock: 972 * page writeout could otherwise come in and zero beyond i_size. 973 */ 974 if (pos + copied > inode->i_size) { 975 i_size_write(inode, pos + copied); 976 i_size_changed = 1; 977 } 978 979 if (pos + copied > EXT4_I(inode)->i_disksize) { 980 /* We need to mark inode dirty even if 981 * new_i_size is less that inode->i_size 982 * bu greater than i_disksize.(hint delalloc) 983 */ 984 ext4_update_i_disksize(inode, (pos + copied)); 985 i_size_changed = 1; 986 } 987 unlock_page(page); 988 page_cache_release(page); 989 990 /* 991 * Don't mark the inode dirty under page lock. First, it unnecessarily 992 * makes the holding time of page lock longer. Second, it forces lock 993 * ordering of page lock and transaction start for journaling 994 * filesystems. 995 */ 996 if (i_size_changed) 997 ext4_mark_inode_dirty(handle, inode); 998 999 return copied; 1000 } 1001 1002 /* 1003 * We need to pick up the new inode size which generic_commit_write gave us 1004 * `file' can be NULL - eg, when called from page_symlink(). 1005 * 1006 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1007 * buffers are managed internally. 1008 */ 1009 static int ext4_ordered_write_end(struct file *file, 1010 struct address_space *mapping, 1011 loff_t pos, unsigned len, unsigned copied, 1012 struct page *page, void *fsdata) 1013 { 1014 handle_t *handle = ext4_journal_current_handle(); 1015 struct inode *inode = mapping->host; 1016 int ret = 0, ret2; 1017 1018 trace_ext4_ordered_write_end(inode, pos, len, copied); 1019 ret = ext4_jbd2_file_inode(handle, inode); 1020 1021 if (ret == 0) { 1022 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1023 page, fsdata); 1024 copied = ret2; 1025 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1026 /* if we have allocated more blocks and copied 1027 * less. We will have blocks allocated outside 1028 * inode->i_size. So truncate them 1029 */ 1030 ext4_orphan_add(handle, inode); 1031 if (ret2 < 0) 1032 ret = ret2; 1033 } else { 1034 unlock_page(page); 1035 page_cache_release(page); 1036 } 1037 1038 ret2 = ext4_journal_stop(handle); 1039 if (!ret) 1040 ret = ret2; 1041 1042 if (pos + len > inode->i_size) { 1043 ext4_truncate_failed_write(inode); 1044 /* 1045 * If truncate failed early the inode might still be 1046 * on the orphan list; we need to make sure the inode 1047 * is removed from the orphan list in that case. 1048 */ 1049 if (inode->i_nlink) 1050 ext4_orphan_del(NULL, inode); 1051 } 1052 1053 1054 return ret ? ret : copied; 1055 } 1056 1057 static int ext4_writeback_write_end(struct file *file, 1058 struct address_space *mapping, 1059 loff_t pos, unsigned len, unsigned copied, 1060 struct page *page, void *fsdata) 1061 { 1062 handle_t *handle = ext4_journal_current_handle(); 1063 struct inode *inode = mapping->host; 1064 int ret = 0, ret2; 1065 1066 trace_ext4_writeback_write_end(inode, pos, len, copied); 1067 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1068 page, fsdata); 1069 copied = ret2; 1070 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1071 /* if we have allocated more blocks and copied 1072 * less. We will have blocks allocated outside 1073 * inode->i_size. So truncate them 1074 */ 1075 ext4_orphan_add(handle, inode); 1076 1077 if (ret2 < 0) 1078 ret = ret2; 1079 1080 ret2 = ext4_journal_stop(handle); 1081 if (!ret) 1082 ret = ret2; 1083 1084 if (pos + len > inode->i_size) { 1085 ext4_truncate_failed_write(inode); 1086 /* 1087 * If truncate failed early the inode might still be 1088 * on the orphan list; we need to make sure the inode 1089 * is removed from the orphan list in that case. 1090 */ 1091 if (inode->i_nlink) 1092 ext4_orphan_del(NULL, inode); 1093 } 1094 1095 return ret ? ret : copied; 1096 } 1097 1098 static int ext4_journalled_write_end(struct file *file, 1099 struct address_space *mapping, 1100 loff_t pos, unsigned len, unsigned copied, 1101 struct page *page, void *fsdata) 1102 { 1103 handle_t *handle = ext4_journal_current_handle(); 1104 struct inode *inode = mapping->host; 1105 int ret = 0, ret2; 1106 int partial = 0; 1107 unsigned from, to; 1108 loff_t new_i_size; 1109 1110 trace_ext4_journalled_write_end(inode, pos, len, copied); 1111 from = pos & (PAGE_CACHE_SIZE - 1); 1112 to = from + len; 1113 1114 BUG_ON(!ext4_handle_valid(handle)); 1115 1116 if (copied < len) { 1117 if (!PageUptodate(page)) 1118 copied = 0; 1119 page_zero_new_buffers(page, from+copied, to); 1120 } 1121 1122 ret = walk_page_buffers(handle, page_buffers(page), from, 1123 to, &partial, write_end_fn); 1124 if (!partial) 1125 SetPageUptodate(page); 1126 new_i_size = pos + copied; 1127 if (new_i_size > inode->i_size) 1128 i_size_write(inode, pos+copied); 1129 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1130 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1131 if (new_i_size > EXT4_I(inode)->i_disksize) { 1132 ext4_update_i_disksize(inode, new_i_size); 1133 ret2 = ext4_mark_inode_dirty(handle, inode); 1134 if (!ret) 1135 ret = ret2; 1136 } 1137 1138 unlock_page(page); 1139 page_cache_release(page); 1140 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1141 /* if we have allocated more blocks and copied 1142 * less. We will have blocks allocated outside 1143 * inode->i_size. So truncate them 1144 */ 1145 ext4_orphan_add(handle, inode); 1146 1147 ret2 = ext4_journal_stop(handle); 1148 if (!ret) 1149 ret = ret2; 1150 if (pos + len > inode->i_size) { 1151 ext4_truncate_failed_write(inode); 1152 /* 1153 * If truncate failed early the inode might still be 1154 * on the orphan list; we need to make sure the inode 1155 * is removed from the orphan list in that case. 1156 */ 1157 if (inode->i_nlink) 1158 ext4_orphan_del(NULL, inode); 1159 } 1160 1161 return ret ? ret : copied; 1162 } 1163 1164 /* 1165 * Reserve a single cluster located at lblock 1166 */ 1167 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1168 { 1169 int retries = 0; 1170 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1171 struct ext4_inode_info *ei = EXT4_I(inode); 1172 unsigned int md_needed; 1173 int ret; 1174 1175 /* 1176 * recalculate the amount of metadata blocks to reserve 1177 * in order to allocate nrblocks 1178 * worse case is one extent per block 1179 */ 1180 repeat: 1181 spin_lock(&ei->i_block_reservation_lock); 1182 md_needed = EXT4_NUM_B2C(sbi, 1183 ext4_calc_metadata_amount(inode, lblock)); 1184 trace_ext4_da_reserve_space(inode, md_needed); 1185 spin_unlock(&ei->i_block_reservation_lock); 1186 1187 /* 1188 * We will charge metadata quota at writeout time; this saves 1189 * us from metadata over-estimation, though we may go over by 1190 * a small amount in the end. Here we just reserve for data. 1191 */ 1192 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1193 if (ret) 1194 return ret; 1195 /* 1196 * We do still charge estimated metadata to the sb though; 1197 * we cannot afford to run out of free blocks. 1198 */ 1199 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1200 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1201 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1202 yield(); 1203 goto repeat; 1204 } 1205 return -ENOSPC; 1206 } 1207 spin_lock(&ei->i_block_reservation_lock); 1208 ei->i_reserved_data_blocks++; 1209 ei->i_reserved_meta_blocks += md_needed; 1210 spin_unlock(&ei->i_block_reservation_lock); 1211 1212 return 0; /* success */ 1213 } 1214 1215 static void ext4_da_release_space(struct inode *inode, int to_free) 1216 { 1217 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1218 struct ext4_inode_info *ei = EXT4_I(inode); 1219 1220 if (!to_free) 1221 return; /* Nothing to release, exit */ 1222 1223 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1224 1225 trace_ext4_da_release_space(inode, to_free); 1226 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1227 /* 1228 * if there aren't enough reserved blocks, then the 1229 * counter is messed up somewhere. Since this 1230 * function is called from invalidate page, it's 1231 * harmless to return without any action. 1232 */ 1233 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1234 "ino %lu, to_free %d with only %d reserved " 1235 "data blocks", inode->i_ino, to_free, 1236 ei->i_reserved_data_blocks); 1237 WARN_ON(1); 1238 to_free = ei->i_reserved_data_blocks; 1239 } 1240 ei->i_reserved_data_blocks -= to_free; 1241 1242 if (ei->i_reserved_data_blocks == 0) { 1243 /* 1244 * We can release all of the reserved metadata blocks 1245 * only when we have written all of the delayed 1246 * allocation blocks. 1247 * Note that in case of bigalloc, i_reserved_meta_blocks, 1248 * i_reserved_data_blocks, etc. refer to number of clusters. 1249 */ 1250 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1251 ei->i_reserved_meta_blocks); 1252 ei->i_reserved_meta_blocks = 0; 1253 ei->i_da_metadata_calc_len = 0; 1254 } 1255 1256 /* update fs dirty data blocks counter */ 1257 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1258 1259 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1260 1261 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1262 } 1263 1264 static void ext4_da_page_release_reservation(struct page *page, 1265 unsigned long offset) 1266 { 1267 int to_release = 0; 1268 struct buffer_head *head, *bh; 1269 unsigned int curr_off = 0; 1270 struct inode *inode = page->mapping->host; 1271 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1272 int num_clusters; 1273 1274 head = page_buffers(page); 1275 bh = head; 1276 do { 1277 unsigned int next_off = curr_off + bh->b_size; 1278 1279 if ((offset <= curr_off) && (buffer_delay(bh))) { 1280 to_release++; 1281 clear_buffer_delay(bh); 1282 clear_buffer_da_mapped(bh); 1283 } 1284 curr_off = next_off; 1285 } while ((bh = bh->b_this_page) != head); 1286 1287 /* If we have released all the blocks belonging to a cluster, then we 1288 * need to release the reserved space for that cluster. */ 1289 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1290 while (num_clusters > 0) { 1291 ext4_fsblk_t lblk; 1292 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1293 ((num_clusters - 1) << sbi->s_cluster_bits); 1294 if (sbi->s_cluster_ratio == 1 || 1295 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1296 ext4_da_release_space(inode, 1); 1297 1298 num_clusters--; 1299 } 1300 } 1301 1302 /* 1303 * Delayed allocation stuff 1304 */ 1305 1306 /* 1307 * mpage_da_submit_io - walks through extent of pages and try to write 1308 * them with writepage() call back 1309 * 1310 * @mpd->inode: inode 1311 * @mpd->first_page: first page of the extent 1312 * @mpd->next_page: page after the last page of the extent 1313 * 1314 * By the time mpage_da_submit_io() is called we expect all blocks 1315 * to be allocated. this may be wrong if allocation failed. 1316 * 1317 * As pages are already locked by write_cache_pages(), we can't use it 1318 */ 1319 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1320 struct ext4_map_blocks *map) 1321 { 1322 struct pagevec pvec; 1323 unsigned long index, end; 1324 int ret = 0, err, nr_pages, i; 1325 struct inode *inode = mpd->inode; 1326 struct address_space *mapping = inode->i_mapping; 1327 loff_t size = i_size_read(inode); 1328 unsigned int len, block_start; 1329 struct buffer_head *bh, *page_bufs = NULL; 1330 int journal_data = ext4_should_journal_data(inode); 1331 sector_t pblock = 0, cur_logical = 0; 1332 struct ext4_io_submit io_submit; 1333 1334 BUG_ON(mpd->next_page <= mpd->first_page); 1335 memset(&io_submit, 0, sizeof(io_submit)); 1336 /* 1337 * We need to start from the first_page to the next_page - 1 1338 * to make sure we also write the mapped dirty buffer_heads. 1339 * If we look at mpd->b_blocknr we would only be looking 1340 * at the currently mapped buffer_heads. 1341 */ 1342 index = mpd->first_page; 1343 end = mpd->next_page - 1; 1344 1345 pagevec_init(&pvec, 0); 1346 while (index <= end) { 1347 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1348 if (nr_pages == 0) 1349 break; 1350 for (i = 0; i < nr_pages; i++) { 1351 int commit_write = 0, skip_page = 0; 1352 struct page *page = pvec.pages[i]; 1353 1354 index = page->index; 1355 if (index > end) 1356 break; 1357 1358 if (index == size >> PAGE_CACHE_SHIFT) 1359 len = size & ~PAGE_CACHE_MASK; 1360 else 1361 len = PAGE_CACHE_SIZE; 1362 if (map) { 1363 cur_logical = index << (PAGE_CACHE_SHIFT - 1364 inode->i_blkbits); 1365 pblock = map->m_pblk + (cur_logical - 1366 map->m_lblk); 1367 } 1368 index++; 1369 1370 BUG_ON(!PageLocked(page)); 1371 BUG_ON(PageWriteback(page)); 1372 1373 /* 1374 * If the page does not have buffers (for 1375 * whatever reason), try to create them using 1376 * __block_write_begin. If this fails, 1377 * skip the page and move on. 1378 */ 1379 if (!page_has_buffers(page)) { 1380 if (__block_write_begin(page, 0, len, 1381 noalloc_get_block_write)) { 1382 skip_page: 1383 unlock_page(page); 1384 continue; 1385 } 1386 commit_write = 1; 1387 } 1388 1389 bh = page_bufs = page_buffers(page); 1390 block_start = 0; 1391 do { 1392 if (!bh) 1393 goto skip_page; 1394 if (map && (cur_logical >= map->m_lblk) && 1395 (cur_logical <= (map->m_lblk + 1396 (map->m_len - 1)))) { 1397 if (buffer_delay(bh)) { 1398 clear_buffer_delay(bh); 1399 bh->b_blocknr = pblock; 1400 } 1401 if (buffer_da_mapped(bh)) 1402 clear_buffer_da_mapped(bh); 1403 if (buffer_unwritten(bh) || 1404 buffer_mapped(bh)) 1405 BUG_ON(bh->b_blocknr != pblock); 1406 if (map->m_flags & EXT4_MAP_UNINIT) 1407 set_buffer_uninit(bh); 1408 clear_buffer_unwritten(bh); 1409 } 1410 1411 /* 1412 * skip page if block allocation undone and 1413 * block is dirty 1414 */ 1415 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1416 skip_page = 1; 1417 bh = bh->b_this_page; 1418 block_start += bh->b_size; 1419 cur_logical++; 1420 pblock++; 1421 } while (bh != page_bufs); 1422 1423 if (skip_page) 1424 goto skip_page; 1425 1426 if (commit_write) 1427 /* mark the buffer_heads as dirty & uptodate */ 1428 block_commit_write(page, 0, len); 1429 1430 clear_page_dirty_for_io(page); 1431 /* 1432 * Delalloc doesn't support data journalling, 1433 * but eventually maybe we'll lift this 1434 * restriction. 1435 */ 1436 if (unlikely(journal_data && PageChecked(page))) 1437 err = __ext4_journalled_writepage(page, len); 1438 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1439 err = ext4_bio_write_page(&io_submit, page, 1440 len, mpd->wbc); 1441 else if (buffer_uninit(page_bufs)) { 1442 ext4_set_bh_endio(page_bufs, inode); 1443 err = block_write_full_page_endio(page, 1444 noalloc_get_block_write, 1445 mpd->wbc, ext4_end_io_buffer_write); 1446 } else 1447 err = block_write_full_page(page, 1448 noalloc_get_block_write, mpd->wbc); 1449 1450 if (!err) 1451 mpd->pages_written++; 1452 /* 1453 * In error case, we have to continue because 1454 * remaining pages are still locked 1455 */ 1456 if (ret == 0) 1457 ret = err; 1458 } 1459 pagevec_release(&pvec); 1460 } 1461 ext4_io_submit(&io_submit); 1462 return ret; 1463 } 1464 1465 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1466 { 1467 int nr_pages, i; 1468 pgoff_t index, end; 1469 struct pagevec pvec; 1470 struct inode *inode = mpd->inode; 1471 struct address_space *mapping = inode->i_mapping; 1472 1473 index = mpd->first_page; 1474 end = mpd->next_page - 1; 1475 while (index <= end) { 1476 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1477 if (nr_pages == 0) 1478 break; 1479 for (i = 0; i < nr_pages; i++) { 1480 struct page *page = pvec.pages[i]; 1481 if (page->index > end) 1482 break; 1483 BUG_ON(!PageLocked(page)); 1484 BUG_ON(PageWriteback(page)); 1485 block_invalidatepage(page, 0); 1486 ClearPageUptodate(page); 1487 unlock_page(page); 1488 } 1489 index = pvec.pages[nr_pages - 1]->index + 1; 1490 pagevec_release(&pvec); 1491 } 1492 return; 1493 } 1494 1495 static void ext4_print_free_blocks(struct inode *inode) 1496 { 1497 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1498 struct super_block *sb = inode->i_sb; 1499 1500 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1501 EXT4_C2B(EXT4_SB(inode->i_sb), 1502 ext4_count_free_clusters(inode->i_sb))); 1503 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1504 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1505 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1506 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1507 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1508 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1509 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1510 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1511 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1512 EXT4_I(inode)->i_reserved_data_blocks); 1513 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1514 EXT4_I(inode)->i_reserved_meta_blocks); 1515 return; 1516 } 1517 1518 /* 1519 * mpage_da_map_and_submit - go through given space, map them 1520 * if necessary, and then submit them for I/O 1521 * 1522 * @mpd - bh describing space 1523 * 1524 * The function skips space we know is already mapped to disk blocks. 1525 * 1526 */ 1527 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1528 { 1529 int err, blks, get_blocks_flags; 1530 struct ext4_map_blocks map, *mapp = NULL; 1531 sector_t next = mpd->b_blocknr; 1532 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1533 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1534 handle_t *handle = NULL; 1535 1536 /* 1537 * If the blocks are mapped already, or we couldn't accumulate 1538 * any blocks, then proceed immediately to the submission stage. 1539 */ 1540 if ((mpd->b_size == 0) || 1541 ((mpd->b_state & (1 << BH_Mapped)) && 1542 !(mpd->b_state & (1 << BH_Delay)) && 1543 !(mpd->b_state & (1 << BH_Unwritten)))) 1544 goto submit_io; 1545 1546 handle = ext4_journal_current_handle(); 1547 BUG_ON(!handle); 1548 1549 /* 1550 * Call ext4_map_blocks() to allocate any delayed allocation 1551 * blocks, or to convert an uninitialized extent to be 1552 * initialized (in the case where we have written into 1553 * one or more preallocated blocks). 1554 * 1555 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1556 * indicate that we are on the delayed allocation path. This 1557 * affects functions in many different parts of the allocation 1558 * call path. This flag exists primarily because we don't 1559 * want to change *many* call functions, so ext4_map_blocks() 1560 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1561 * inode's allocation semaphore is taken. 1562 * 1563 * If the blocks in questions were delalloc blocks, set 1564 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1565 * variables are updated after the blocks have been allocated. 1566 */ 1567 map.m_lblk = next; 1568 map.m_len = max_blocks; 1569 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1570 if (ext4_should_dioread_nolock(mpd->inode)) 1571 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1572 if (mpd->b_state & (1 << BH_Delay)) 1573 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1574 1575 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1576 if (blks < 0) { 1577 struct super_block *sb = mpd->inode->i_sb; 1578 1579 err = blks; 1580 /* 1581 * If get block returns EAGAIN or ENOSPC and there 1582 * appears to be free blocks we will just let 1583 * mpage_da_submit_io() unlock all of the pages. 1584 */ 1585 if (err == -EAGAIN) 1586 goto submit_io; 1587 1588 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1589 mpd->retval = err; 1590 goto submit_io; 1591 } 1592 1593 /* 1594 * get block failure will cause us to loop in 1595 * writepages, because a_ops->writepage won't be able 1596 * to make progress. The page will be redirtied by 1597 * writepage and writepages will again try to write 1598 * the same. 1599 */ 1600 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1601 ext4_msg(sb, KERN_CRIT, 1602 "delayed block allocation failed for inode %lu " 1603 "at logical offset %llu with max blocks %zd " 1604 "with error %d", mpd->inode->i_ino, 1605 (unsigned long long) next, 1606 mpd->b_size >> mpd->inode->i_blkbits, err); 1607 ext4_msg(sb, KERN_CRIT, 1608 "This should not happen!! Data will be lost\n"); 1609 if (err == -ENOSPC) 1610 ext4_print_free_blocks(mpd->inode); 1611 } 1612 /* invalidate all the pages */ 1613 ext4_da_block_invalidatepages(mpd); 1614 1615 /* Mark this page range as having been completed */ 1616 mpd->io_done = 1; 1617 return; 1618 } 1619 BUG_ON(blks == 0); 1620 1621 mapp = ↦ 1622 if (map.m_flags & EXT4_MAP_NEW) { 1623 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1624 int i; 1625 1626 for (i = 0; i < map.m_len; i++) 1627 unmap_underlying_metadata(bdev, map.m_pblk + i); 1628 1629 if (ext4_should_order_data(mpd->inode)) { 1630 err = ext4_jbd2_file_inode(handle, mpd->inode); 1631 if (err) { 1632 /* Only if the journal is aborted */ 1633 mpd->retval = err; 1634 goto submit_io; 1635 } 1636 } 1637 } 1638 1639 /* 1640 * Update on-disk size along with block allocation. 1641 */ 1642 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1643 if (disksize > i_size_read(mpd->inode)) 1644 disksize = i_size_read(mpd->inode); 1645 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1646 ext4_update_i_disksize(mpd->inode, disksize); 1647 err = ext4_mark_inode_dirty(handle, mpd->inode); 1648 if (err) 1649 ext4_error(mpd->inode->i_sb, 1650 "Failed to mark inode %lu dirty", 1651 mpd->inode->i_ino); 1652 } 1653 1654 submit_io: 1655 mpage_da_submit_io(mpd, mapp); 1656 mpd->io_done = 1; 1657 } 1658 1659 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1660 (1 << BH_Delay) | (1 << BH_Unwritten)) 1661 1662 /* 1663 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1664 * 1665 * @mpd->lbh - extent of blocks 1666 * @logical - logical number of the block in the file 1667 * @bh - bh of the block (used to access block's state) 1668 * 1669 * the function is used to collect contig. blocks in same state 1670 */ 1671 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1672 sector_t logical, size_t b_size, 1673 unsigned long b_state) 1674 { 1675 sector_t next; 1676 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1677 1678 /* 1679 * XXX Don't go larger than mballoc is willing to allocate 1680 * This is a stopgap solution. We eventually need to fold 1681 * mpage_da_submit_io() into this function and then call 1682 * ext4_map_blocks() multiple times in a loop 1683 */ 1684 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1685 goto flush_it; 1686 1687 /* check if thereserved journal credits might overflow */ 1688 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1689 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1690 /* 1691 * With non-extent format we are limited by the journal 1692 * credit available. Total credit needed to insert 1693 * nrblocks contiguous blocks is dependent on the 1694 * nrblocks. So limit nrblocks. 1695 */ 1696 goto flush_it; 1697 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1698 EXT4_MAX_TRANS_DATA) { 1699 /* 1700 * Adding the new buffer_head would make it cross the 1701 * allowed limit for which we have journal credit 1702 * reserved. So limit the new bh->b_size 1703 */ 1704 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1705 mpd->inode->i_blkbits; 1706 /* we will do mpage_da_submit_io in the next loop */ 1707 } 1708 } 1709 /* 1710 * First block in the extent 1711 */ 1712 if (mpd->b_size == 0) { 1713 mpd->b_blocknr = logical; 1714 mpd->b_size = b_size; 1715 mpd->b_state = b_state & BH_FLAGS; 1716 return; 1717 } 1718 1719 next = mpd->b_blocknr + nrblocks; 1720 /* 1721 * Can we merge the block to our big extent? 1722 */ 1723 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1724 mpd->b_size += b_size; 1725 return; 1726 } 1727 1728 flush_it: 1729 /* 1730 * We couldn't merge the block to our extent, so we 1731 * need to flush current extent and start new one 1732 */ 1733 mpage_da_map_and_submit(mpd); 1734 return; 1735 } 1736 1737 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1738 { 1739 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1740 } 1741 1742 /* 1743 * This function is grabs code from the very beginning of 1744 * ext4_map_blocks, but assumes that the caller is from delayed write 1745 * time. This function looks up the requested blocks and sets the 1746 * buffer delay bit under the protection of i_data_sem. 1747 */ 1748 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1749 struct ext4_map_blocks *map, 1750 struct buffer_head *bh) 1751 { 1752 int retval; 1753 sector_t invalid_block = ~((sector_t) 0xffff); 1754 1755 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1756 invalid_block = ~0; 1757 1758 map->m_flags = 0; 1759 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1760 "logical block %lu\n", inode->i_ino, map->m_len, 1761 (unsigned long) map->m_lblk); 1762 /* 1763 * Try to see if we can get the block without requesting a new 1764 * file system block. 1765 */ 1766 down_read((&EXT4_I(inode)->i_data_sem)); 1767 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1768 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1769 else 1770 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1771 1772 if (retval == 0) { 1773 /* 1774 * XXX: __block_prepare_write() unmaps passed block, 1775 * is it OK? 1776 */ 1777 /* If the block was allocated from previously allocated cluster, 1778 * then we dont need to reserve it again. */ 1779 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1780 retval = ext4_da_reserve_space(inode, iblock); 1781 if (retval) 1782 /* not enough space to reserve */ 1783 goto out_unlock; 1784 } 1785 1786 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1787 * and it should not appear on the bh->b_state. 1788 */ 1789 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1790 1791 map_bh(bh, inode->i_sb, invalid_block); 1792 set_buffer_new(bh); 1793 set_buffer_delay(bh); 1794 } 1795 1796 out_unlock: 1797 up_read((&EXT4_I(inode)->i_data_sem)); 1798 1799 return retval; 1800 } 1801 1802 /* 1803 * This is a special get_blocks_t callback which is used by 1804 * ext4_da_write_begin(). It will either return mapped block or 1805 * reserve space for a single block. 1806 * 1807 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1808 * We also have b_blocknr = -1 and b_bdev initialized properly 1809 * 1810 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1811 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1812 * initialized properly. 1813 */ 1814 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1815 struct buffer_head *bh, int create) 1816 { 1817 struct ext4_map_blocks map; 1818 int ret = 0; 1819 1820 BUG_ON(create == 0); 1821 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1822 1823 map.m_lblk = iblock; 1824 map.m_len = 1; 1825 1826 /* 1827 * first, we need to know whether the block is allocated already 1828 * preallocated blocks are unmapped but should treated 1829 * the same as allocated blocks. 1830 */ 1831 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1832 if (ret <= 0) 1833 return ret; 1834 1835 map_bh(bh, inode->i_sb, map.m_pblk); 1836 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1837 1838 if (buffer_unwritten(bh)) { 1839 /* A delayed write to unwritten bh should be marked 1840 * new and mapped. Mapped ensures that we don't do 1841 * get_block multiple times when we write to the same 1842 * offset and new ensures that we do proper zero out 1843 * for partial write. 1844 */ 1845 set_buffer_new(bh); 1846 set_buffer_mapped(bh); 1847 } 1848 return 0; 1849 } 1850 1851 /* 1852 * This function is used as a standard get_block_t calback function 1853 * when there is no desire to allocate any blocks. It is used as a 1854 * callback function for block_write_begin() and block_write_full_page(). 1855 * These functions should only try to map a single block at a time. 1856 * 1857 * Since this function doesn't do block allocations even if the caller 1858 * requests it by passing in create=1, it is critically important that 1859 * any caller checks to make sure that any buffer heads are returned 1860 * by this function are either all already mapped or marked for 1861 * delayed allocation before calling block_write_full_page(). Otherwise, 1862 * b_blocknr could be left unitialized, and the page write functions will 1863 * be taken by surprise. 1864 */ 1865 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1866 struct buffer_head *bh_result, int create) 1867 { 1868 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1869 return _ext4_get_block(inode, iblock, bh_result, 0); 1870 } 1871 1872 static int bget_one(handle_t *handle, struct buffer_head *bh) 1873 { 1874 get_bh(bh); 1875 return 0; 1876 } 1877 1878 static int bput_one(handle_t *handle, struct buffer_head *bh) 1879 { 1880 put_bh(bh); 1881 return 0; 1882 } 1883 1884 static int __ext4_journalled_writepage(struct page *page, 1885 unsigned int len) 1886 { 1887 struct address_space *mapping = page->mapping; 1888 struct inode *inode = mapping->host; 1889 struct buffer_head *page_bufs; 1890 handle_t *handle = NULL; 1891 int ret = 0; 1892 int err; 1893 1894 ClearPageChecked(page); 1895 page_bufs = page_buffers(page); 1896 BUG_ON(!page_bufs); 1897 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1898 /* As soon as we unlock the page, it can go away, but we have 1899 * references to buffers so we are safe */ 1900 unlock_page(page); 1901 1902 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1903 if (IS_ERR(handle)) { 1904 ret = PTR_ERR(handle); 1905 goto out; 1906 } 1907 1908 BUG_ON(!ext4_handle_valid(handle)); 1909 1910 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1911 do_journal_get_write_access); 1912 1913 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1914 write_end_fn); 1915 if (ret == 0) 1916 ret = err; 1917 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1918 err = ext4_journal_stop(handle); 1919 if (!ret) 1920 ret = err; 1921 1922 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1923 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1924 out: 1925 return ret; 1926 } 1927 1928 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1929 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1930 1931 /* 1932 * Note that we don't need to start a transaction unless we're journaling data 1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1934 * need to file the inode to the transaction's list in ordered mode because if 1935 * we are writing back data added by write(), the inode is already there and if 1936 * we are writing back data modified via mmap(), no one guarantees in which 1937 * transaction the data will hit the disk. In case we are journaling data, we 1938 * cannot start transaction directly because transaction start ranks above page 1939 * lock so we have to do some magic. 1940 * 1941 * This function can get called via... 1942 * - ext4_da_writepages after taking page lock (have journal handle) 1943 * - journal_submit_inode_data_buffers (no journal handle) 1944 * - shrink_page_list via pdflush (no journal handle) 1945 * - grab_page_cache when doing write_begin (have journal handle) 1946 * 1947 * We don't do any block allocation in this function. If we have page with 1948 * multiple blocks we need to write those buffer_heads that are mapped. This 1949 * is important for mmaped based write. So if we do with blocksize 1K 1950 * truncate(f, 1024); 1951 * a = mmap(f, 0, 4096); 1952 * a[0] = 'a'; 1953 * truncate(f, 4096); 1954 * we have in the page first buffer_head mapped via page_mkwrite call back 1955 * but other buffer_heads would be unmapped but dirty (dirty done via the 1956 * do_wp_page). So writepage should write the first block. If we modify 1957 * the mmap area beyond 1024 we will again get a page_fault and the 1958 * page_mkwrite callback will do the block allocation and mark the 1959 * buffer_heads mapped. 1960 * 1961 * We redirty the page if we have any buffer_heads that is either delay or 1962 * unwritten in the page. 1963 * 1964 * We can get recursively called as show below. 1965 * 1966 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1967 * ext4_writepage() 1968 * 1969 * But since we don't do any block allocation we should not deadlock. 1970 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1971 */ 1972 static int ext4_writepage(struct page *page, 1973 struct writeback_control *wbc) 1974 { 1975 int ret = 0, commit_write = 0; 1976 loff_t size; 1977 unsigned int len; 1978 struct buffer_head *page_bufs = NULL; 1979 struct inode *inode = page->mapping->host; 1980 1981 trace_ext4_writepage(page); 1982 size = i_size_read(inode); 1983 if (page->index == size >> PAGE_CACHE_SHIFT) 1984 len = size & ~PAGE_CACHE_MASK; 1985 else 1986 len = PAGE_CACHE_SIZE; 1987 1988 /* 1989 * If the page does not have buffers (for whatever reason), 1990 * try to create them using __block_write_begin. If this 1991 * fails, redirty the page and move on. 1992 */ 1993 if (!page_has_buffers(page)) { 1994 if (__block_write_begin(page, 0, len, 1995 noalloc_get_block_write)) { 1996 redirty_page: 1997 redirty_page_for_writepage(wbc, page); 1998 unlock_page(page); 1999 return 0; 2000 } 2001 commit_write = 1; 2002 } 2003 page_bufs = page_buffers(page); 2004 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2005 ext4_bh_delay_or_unwritten)) { 2006 /* 2007 * We don't want to do block allocation, so redirty 2008 * the page and return. We may reach here when we do 2009 * a journal commit via journal_submit_inode_data_buffers. 2010 * We can also reach here via shrink_page_list but it 2011 * should never be for direct reclaim so warn if that 2012 * happens 2013 */ 2014 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 2015 PF_MEMALLOC); 2016 goto redirty_page; 2017 } 2018 if (commit_write) 2019 /* now mark the buffer_heads as dirty and uptodate */ 2020 block_commit_write(page, 0, len); 2021 2022 if (PageChecked(page) && ext4_should_journal_data(inode)) 2023 /* 2024 * It's mmapped pagecache. Add buffers and journal it. There 2025 * doesn't seem much point in redirtying the page here. 2026 */ 2027 return __ext4_journalled_writepage(page, len); 2028 2029 if (buffer_uninit(page_bufs)) { 2030 ext4_set_bh_endio(page_bufs, inode); 2031 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2032 wbc, ext4_end_io_buffer_write); 2033 } else 2034 ret = block_write_full_page(page, noalloc_get_block_write, 2035 wbc); 2036 2037 return ret; 2038 } 2039 2040 /* 2041 * This is called via ext4_da_writepages() to 2042 * calculate the total number of credits to reserve to fit 2043 * a single extent allocation into a single transaction, 2044 * ext4_da_writpeages() will loop calling this before 2045 * the block allocation. 2046 */ 2047 2048 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2049 { 2050 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2051 2052 /* 2053 * With non-extent format the journal credit needed to 2054 * insert nrblocks contiguous block is dependent on 2055 * number of contiguous block. So we will limit 2056 * number of contiguous block to a sane value 2057 */ 2058 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2059 (max_blocks > EXT4_MAX_TRANS_DATA)) 2060 max_blocks = EXT4_MAX_TRANS_DATA; 2061 2062 return ext4_chunk_trans_blocks(inode, max_blocks); 2063 } 2064 2065 /* 2066 * write_cache_pages_da - walk the list of dirty pages of the given 2067 * address space and accumulate pages that need writing, and call 2068 * mpage_da_map_and_submit to map a single contiguous memory region 2069 * and then write them. 2070 */ 2071 static int write_cache_pages_da(struct address_space *mapping, 2072 struct writeback_control *wbc, 2073 struct mpage_da_data *mpd, 2074 pgoff_t *done_index) 2075 { 2076 struct buffer_head *bh, *head; 2077 struct inode *inode = mapping->host; 2078 struct pagevec pvec; 2079 unsigned int nr_pages; 2080 sector_t logical; 2081 pgoff_t index, end; 2082 long nr_to_write = wbc->nr_to_write; 2083 int i, tag, ret = 0; 2084 2085 memset(mpd, 0, sizeof(struct mpage_da_data)); 2086 mpd->wbc = wbc; 2087 mpd->inode = inode; 2088 pagevec_init(&pvec, 0); 2089 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2090 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2091 2092 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2093 tag = PAGECACHE_TAG_TOWRITE; 2094 else 2095 tag = PAGECACHE_TAG_DIRTY; 2096 2097 *done_index = index; 2098 while (index <= end) { 2099 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2100 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2101 if (nr_pages == 0) 2102 return 0; 2103 2104 for (i = 0; i < nr_pages; i++) { 2105 struct page *page = pvec.pages[i]; 2106 2107 /* 2108 * At this point, the page may be truncated or 2109 * invalidated (changing page->mapping to NULL), or 2110 * even swizzled back from swapper_space to tmpfs file 2111 * mapping. However, page->index will not change 2112 * because we have a reference on the page. 2113 */ 2114 if (page->index > end) 2115 goto out; 2116 2117 *done_index = page->index + 1; 2118 2119 /* 2120 * If we can't merge this page, and we have 2121 * accumulated an contiguous region, write it 2122 */ 2123 if ((mpd->next_page != page->index) && 2124 (mpd->next_page != mpd->first_page)) { 2125 mpage_da_map_and_submit(mpd); 2126 goto ret_extent_tail; 2127 } 2128 2129 lock_page(page); 2130 2131 /* 2132 * If the page is no longer dirty, or its 2133 * mapping no longer corresponds to inode we 2134 * are writing (which means it has been 2135 * truncated or invalidated), or the page is 2136 * already under writeback and we are not 2137 * doing a data integrity writeback, skip the page 2138 */ 2139 if (!PageDirty(page) || 2140 (PageWriteback(page) && 2141 (wbc->sync_mode == WB_SYNC_NONE)) || 2142 unlikely(page->mapping != mapping)) { 2143 unlock_page(page); 2144 continue; 2145 } 2146 2147 wait_on_page_writeback(page); 2148 BUG_ON(PageWriteback(page)); 2149 2150 if (mpd->next_page != page->index) 2151 mpd->first_page = page->index; 2152 mpd->next_page = page->index + 1; 2153 logical = (sector_t) page->index << 2154 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2155 2156 if (!page_has_buffers(page)) { 2157 mpage_add_bh_to_extent(mpd, logical, 2158 PAGE_CACHE_SIZE, 2159 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2160 if (mpd->io_done) 2161 goto ret_extent_tail; 2162 } else { 2163 /* 2164 * Page with regular buffer heads, 2165 * just add all dirty ones 2166 */ 2167 head = page_buffers(page); 2168 bh = head; 2169 do { 2170 BUG_ON(buffer_locked(bh)); 2171 /* 2172 * We need to try to allocate 2173 * unmapped blocks in the same page. 2174 * Otherwise we won't make progress 2175 * with the page in ext4_writepage 2176 */ 2177 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2178 mpage_add_bh_to_extent(mpd, logical, 2179 bh->b_size, 2180 bh->b_state); 2181 if (mpd->io_done) 2182 goto ret_extent_tail; 2183 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2184 /* 2185 * mapped dirty buffer. We need 2186 * to update the b_state 2187 * because we look at b_state 2188 * in mpage_da_map_blocks. We 2189 * don't update b_size because 2190 * if we find an unmapped 2191 * buffer_head later we need to 2192 * use the b_state flag of that 2193 * buffer_head. 2194 */ 2195 if (mpd->b_size == 0) 2196 mpd->b_state = bh->b_state & BH_FLAGS; 2197 } 2198 logical++; 2199 } while ((bh = bh->b_this_page) != head); 2200 } 2201 2202 if (nr_to_write > 0) { 2203 nr_to_write--; 2204 if (nr_to_write == 0 && 2205 wbc->sync_mode == WB_SYNC_NONE) 2206 /* 2207 * We stop writing back only if we are 2208 * not doing integrity sync. In case of 2209 * integrity sync we have to keep going 2210 * because someone may be concurrently 2211 * dirtying pages, and we might have 2212 * synced a lot of newly appeared dirty 2213 * pages, but have not synced all of the 2214 * old dirty pages. 2215 */ 2216 goto out; 2217 } 2218 } 2219 pagevec_release(&pvec); 2220 cond_resched(); 2221 } 2222 return 0; 2223 ret_extent_tail: 2224 ret = MPAGE_DA_EXTENT_TAIL; 2225 out: 2226 pagevec_release(&pvec); 2227 cond_resched(); 2228 return ret; 2229 } 2230 2231 2232 static int ext4_da_writepages(struct address_space *mapping, 2233 struct writeback_control *wbc) 2234 { 2235 pgoff_t index; 2236 int range_whole = 0; 2237 handle_t *handle = NULL; 2238 struct mpage_da_data mpd; 2239 struct inode *inode = mapping->host; 2240 int pages_written = 0; 2241 unsigned int max_pages; 2242 int range_cyclic, cycled = 1, io_done = 0; 2243 int needed_blocks, ret = 0; 2244 long desired_nr_to_write, nr_to_writebump = 0; 2245 loff_t range_start = wbc->range_start; 2246 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2247 pgoff_t done_index = 0; 2248 pgoff_t end; 2249 struct blk_plug plug; 2250 2251 trace_ext4_da_writepages(inode, wbc); 2252 2253 /* 2254 * No pages to write? This is mainly a kludge to avoid starting 2255 * a transaction for special inodes like journal inode on last iput() 2256 * because that could violate lock ordering on umount 2257 */ 2258 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2259 return 0; 2260 2261 /* 2262 * If the filesystem has aborted, it is read-only, so return 2263 * right away instead of dumping stack traces later on that 2264 * will obscure the real source of the problem. We test 2265 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2266 * the latter could be true if the filesystem is mounted 2267 * read-only, and in that case, ext4_da_writepages should 2268 * *never* be called, so if that ever happens, we would want 2269 * the stack trace. 2270 */ 2271 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2272 return -EROFS; 2273 2274 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2275 range_whole = 1; 2276 2277 range_cyclic = wbc->range_cyclic; 2278 if (wbc->range_cyclic) { 2279 index = mapping->writeback_index; 2280 if (index) 2281 cycled = 0; 2282 wbc->range_start = index << PAGE_CACHE_SHIFT; 2283 wbc->range_end = LLONG_MAX; 2284 wbc->range_cyclic = 0; 2285 end = -1; 2286 } else { 2287 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2288 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2289 } 2290 2291 /* 2292 * This works around two forms of stupidity. The first is in 2293 * the writeback code, which caps the maximum number of pages 2294 * written to be 1024 pages. This is wrong on multiple 2295 * levels; different architectues have a different page size, 2296 * which changes the maximum amount of data which gets 2297 * written. Secondly, 4 megabytes is way too small. XFS 2298 * forces this value to be 16 megabytes by multiplying 2299 * nr_to_write parameter by four, and then relies on its 2300 * allocator to allocate larger extents to make them 2301 * contiguous. Unfortunately this brings us to the second 2302 * stupidity, which is that ext4's mballoc code only allocates 2303 * at most 2048 blocks. So we force contiguous writes up to 2304 * the number of dirty blocks in the inode, or 2305 * sbi->max_writeback_mb_bump whichever is smaller. 2306 */ 2307 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2308 if (!range_cyclic && range_whole) { 2309 if (wbc->nr_to_write == LONG_MAX) 2310 desired_nr_to_write = wbc->nr_to_write; 2311 else 2312 desired_nr_to_write = wbc->nr_to_write * 8; 2313 } else 2314 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2315 max_pages); 2316 if (desired_nr_to_write > max_pages) 2317 desired_nr_to_write = max_pages; 2318 2319 if (wbc->nr_to_write < desired_nr_to_write) { 2320 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2321 wbc->nr_to_write = desired_nr_to_write; 2322 } 2323 2324 retry: 2325 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2326 tag_pages_for_writeback(mapping, index, end); 2327 2328 blk_start_plug(&plug); 2329 while (!ret && wbc->nr_to_write > 0) { 2330 2331 /* 2332 * we insert one extent at a time. So we need 2333 * credit needed for single extent allocation. 2334 * journalled mode is currently not supported 2335 * by delalloc 2336 */ 2337 BUG_ON(ext4_should_journal_data(inode)); 2338 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2339 2340 /* start a new transaction*/ 2341 handle = ext4_journal_start(inode, needed_blocks); 2342 if (IS_ERR(handle)) { 2343 ret = PTR_ERR(handle); 2344 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2345 "%ld pages, ino %lu; err %d", __func__, 2346 wbc->nr_to_write, inode->i_ino, ret); 2347 blk_finish_plug(&plug); 2348 goto out_writepages; 2349 } 2350 2351 /* 2352 * Now call write_cache_pages_da() to find the next 2353 * contiguous region of logical blocks that need 2354 * blocks to be allocated by ext4 and submit them. 2355 */ 2356 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2357 /* 2358 * If we have a contiguous extent of pages and we 2359 * haven't done the I/O yet, map the blocks and submit 2360 * them for I/O. 2361 */ 2362 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2363 mpage_da_map_and_submit(&mpd); 2364 ret = MPAGE_DA_EXTENT_TAIL; 2365 } 2366 trace_ext4_da_write_pages(inode, &mpd); 2367 wbc->nr_to_write -= mpd.pages_written; 2368 2369 ext4_journal_stop(handle); 2370 2371 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2372 /* commit the transaction which would 2373 * free blocks released in the transaction 2374 * and try again 2375 */ 2376 jbd2_journal_force_commit_nested(sbi->s_journal); 2377 ret = 0; 2378 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2379 /* 2380 * Got one extent now try with rest of the pages. 2381 * If mpd.retval is set -EIO, journal is aborted. 2382 * So we don't need to write any more. 2383 */ 2384 pages_written += mpd.pages_written; 2385 ret = mpd.retval; 2386 io_done = 1; 2387 } else if (wbc->nr_to_write) 2388 /* 2389 * There is no more writeout needed 2390 * or we requested for a noblocking writeout 2391 * and we found the device congested 2392 */ 2393 break; 2394 } 2395 blk_finish_plug(&plug); 2396 if (!io_done && !cycled) { 2397 cycled = 1; 2398 index = 0; 2399 wbc->range_start = index << PAGE_CACHE_SHIFT; 2400 wbc->range_end = mapping->writeback_index - 1; 2401 goto retry; 2402 } 2403 2404 /* Update index */ 2405 wbc->range_cyclic = range_cyclic; 2406 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2407 /* 2408 * set the writeback_index so that range_cyclic 2409 * mode will write it back later 2410 */ 2411 mapping->writeback_index = done_index; 2412 2413 out_writepages: 2414 wbc->nr_to_write -= nr_to_writebump; 2415 wbc->range_start = range_start; 2416 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2417 return ret; 2418 } 2419 2420 #define FALL_BACK_TO_NONDELALLOC 1 2421 static int ext4_nonda_switch(struct super_block *sb) 2422 { 2423 s64 free_blocks, dirty_blocks; 2424 struct ext4_sb_info *sbi = EXT4_SB(sb); 2425 2426 /* 2427 * switch to non delalloc mode if we are running low 2428 * on free block. The free block accounting via percpu 2429 * counters can get slightly wrong with percpu_counter_batch getting 2430 * accumulated on each CPU without updating global counters 2431 * Delalloc need an accurate free block accounting. So switch 2432 * to non delalloc when we are near to error range. 2433 */ 2434 free_blocks = EXT4_C2B(sbi, 2435 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2436 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2437 if (2 * free_blocks < 3 * dirty_blocks || 2438 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2439 /* 2440 * free block count is less than 150% of dirty blocks 2441 * or free blocks is less than watermark 2442 */ 2443 return 1; 2444 } 2445 /* 2446 * Even if we don't switch but are nearing capacity, 2447 * start pushing delalloc when 1/2 of free blocks are dirty. 2448 */ 2449 if (free_blocks < 2 * dirty_blocks) 2450 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2451 2452 return 0; 2453 } 2454 2455 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2456 loff_t pos, unsigned len, unsigned flags, 2457 struct page **pagep, void **fsdata) 2458 { 2459 int ret, retries = 0; 2460 struct page *page; 2461 pgoff_t index; 2462 struct inode *inode = mapping->host; 2463 handle_t *handle; 2464 2465 index = pos >> PAGE_CACHE_SHIFT; 2466 2467 if (ext4_nonda_switch(inode->i_sb)) { 2468 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2469 return ext4_write_begin(file, mapping, pos, 2470 len, flags, pagep, fsdata); 2471 } 2472 *fsdata = (void *)0; 2473 trace_ext4_da_write_begin(inode, pos, len, flags); 2474 retry: 2475 /* 2476 * With delayed allocation, we don't log the i_disksize update 2477 * if there is delayed block allocation. But we still need 2478 * to journalling the i_disksize update if writes to the end 2479 * of file which has an already mapped buffer. 2480 */ 2481 handle = ext4_journal_start(inode, 1); 2482 if (IS_ERR(handle)) { 2483 ret = PTR_ERR(handle); 2484 goto out; 2485 } 2486 /* We cannot recurse into the filesystem as the transaction is already 2487 * started */ 2488 flags |= AOP_FLAG_NOFS; 2489 2490 page = grab_cache_page_write_begin(mapping, index, flags); 2491 if (!page) { 2492 ext4_journal_stop(handle); 2493 ret = -ENOMEM; 2494 goto out; 2495 } 2496 *pagep = page; 2497 2498 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2499 if (ret < 0) { 2500 unlock_page(page); 2501 ext4_journal_stop(handle); 2502 page_cache_release(page); 2503 /* 2504 * block_write_begin may have instantiated a few blocks 2505 * outside i_size. Trim these off again. Don't need 2506 * i_size_read because we hold i_mutex. 2507 */ 2508 if (pos + len > inode->i_size) 2509 ext4_truncate_failed_write(inode); 2510 } 2511 2512 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2513 goto retry; 2514 out: 2515 return ret; 2516 } 2517 2518 /* 2519 * Check if we should update i_disksize 2520 * when write to the end of file but not require block allocation 2521 */ 2522 static int ext4_da_should_update_i_disksize(struct page *page, 2523 unsigned long offset) 2524 { 2525 struct buffer_head *bh; 2526 struct inode *inode = page->mapping->host; 2527 unsigned int idx; 2528 int i; 2529 2530 bh = page_buffers(page); 2531 idx = offset >> inode->i_blkbits; 2532 2533 for (i = 0; i < idx; i++) 2534 bh = bh->b_this_page; 2535 2536 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2537 return 0; 2538 return 1; 2539 } 2540 2541 static int ext4_da_write_end(struct file *file, 2542 struct address_space *mapping, 2543 loff_t pos, unsigned len, unsigned copied, 2544 struct page *page, void *fsdata) 2545 { 2546 struct inode *inode = mapping->host; 2547 int ret = 0, ret2; 2548 handle_t *handle = ext4_journal_current_handle(); 2549 loff_t new_i_size; 2550 unsigned long start, end; 2551 int write_mode = (int)(unsigned long)fsdata; 2552 2553 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2554 switch (ext4_inode_journal_mode(inode)) { 2555 case EXT4_INODE_ORDERED_DATA_MODE: 2556 return ext4_ordered_write_end(file, mapping, pos, 2557 len, copied, page, fsdata); 2558 case EXT4_INODE_WRITEBACK_DATA_MODE: 2559 return ext4_writeback_write_end(file, mapping, pos, 2560 len, copied, page, fsdata); 2561 default: 2562 BUG(); 2563 } 2564 } 2565 2566 trace_ext4_da_write_end(inode, pos, len, copied); 2567 start = pos & (PAGE_CACHE_SIZE - 1); 2568 end = start + copied - 1; 2569 2570 /* 2571 * generic_write_end() will run mark_inode_dirty() if i_size 2572 * changes. So let's piggyback the i_disksize mark_inode_dirty 2573 * into that. 2574 */ 2575 2576 new_i_size = pos + copied; 2577 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2578 if (ext4_da_should_update_i_disksize(page, end)) { 2579 down_write(&EXT4_I(inode)->i_data_sem); 2580 if (new_i_size > EXT4_I(inode)->i_disksize) { 2581 /* 2582 * Updating i_disksize when extending file 2583 * without needing block allocation 2584 */ 2585 if (ext4_should_order_data(inode)) 2586 ret = ext4_jbd2_file_inode(handle, 2587 inode); 2588 2589 EXT4_I(inode)->i_disksize = new_i_size; 2590 } 2591 up_write(&EXT4_I(inode)->i_data_sem); 2592 /* We need to mark inode dirty even if 2593 * new_i_size is less that inode->i_size 2594 * bu greater than i_disksize.(hint delalloc) 2595 */ 2596 ext4_mark_inode_dirty(handle, inode); 2597 } 2598 } 2599 ret2 = generic_write_end(file, mapping, pos, len, copied, 2600 page, fsdata); 2601 copied = ret2; 2602 if (ret2 < 0) 2603 ret = ret2; 2604 ret2 = ext4_journal_stop(handle); 2605 if (!ret) 2606 ret = ret2; 2607 2608 return ret ? ret : copied; 2609 } 2610 2611 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2612 { 2613 /* 2614 * Drop reserved blocks 2615 */ 2616 BUG_ON(!PageLocked(page)); 2617 if (!page_has_buffers(page)) 2618 goto out; 2619 2620 ext4_da_page_release_reservation(page, offset); 2621 2622 out: 2623 ext4_invalidatepage(page, offset); 2624 2625 return; 2626 } 2627 2628 /* 2629 * Force all delayed allocation blocks to be allocated for a given inode. 2630 */ 2631 int ext4_alloc_da_blocks(struct inode *inode) 2632 { 2633 trace_ext4_alloc_da_blocks(inode); 2634 2635 if (!EXT4_I(inode)->i_reserved_data_blocks && 2636 !EXT4_I(inode)->i_reserved_meta_blocks) 2637 return 0; 2638 2639 /* 2640 * We do something simple for now. The filemap_flush() will 2641 * also start triggering a write of the data blocks, which is 2642 * not strictly speaking necessary (and for users of 2643 * laptop_mode, not even desirable). However, to do otherwise 2644 * would require replicating code paths in: 2645 * 2646 * ext4_da_writepages() -> 2647 * write_cache_pages() ---> (via passed in callback function) 2648 * __mpage_da_writepage() --> 2649 * mpage_add_bh_to_extent() 2650 * mpage_da_map_blocks() 2651 * 2652 * The problem is that write_cache_pages(), located in 2653 * mm/page-writeback.c, marks pages clean in preparation for 2654 * doing I/O, which is not desirable if we're not planning on 2655 * doing I/O at all. 2656 * 2657 * We could call write_cache_pages(), and then redirty all of 2658 * the pages by calling redirty_page_for_writepage() but that 2659 * would be ugly in the extreme. So instead we would need to 2660 * replicate parts of the code in the above functions, 2661 * simplifying them because we wouldn't actually intend to 2662 * write out the pages, but rather only collect contiguous 2663 * logical block extents, call the multi-block allocator, and 2664 * then update the buffer heads with the block allocations. 2665 * 2666 * For now, though, we'll cheat by calling filemap_flush(), 2667 * which will map the blocks, and start the I/O, but not 2668 * actually wait for the I/O to complete. 2669 */ 2670 return filemap_flush(inode->i_mapping); 2671 } 2672 2673 /* 2674 * bmap() is special. It gets used by applications such as lilo and by 2675 * the swapper to find the on-disk block of a specific piece of data. 2676 * 2677 * Naturally, this is dangerous if the block concerned is still in the 2678 * journal. If somebody makes a swapfile on an ext4 data-journaling 2679 * filesystem and enables swap, then they may get a nasty shock when the 2680 * data getting swapped to that swapfile suddenly gets overwritten by 2681 * the original zero's written out previously to the journal and 2682 * awaiting writeback in the kernel's buffer cache. 2683 * 2684 * So, if we see any bmap calls here on a modified, data-journaled file, 2685 * take extra steps to flush any blocks which might be in the cache. 2686 */ 2687 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2688 { 2689 struct inode *inode = mapping->host; 2690 journal_t *journal; 2691 int err; 2692 2693 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2694 test_opt(inode->i_sb, DELALLOC)) { 2695 /* 2696 * With delalloc we want to sync the file 2697 * so that we can make sure we allocate 2698 * blocks for file 2699 */ 2700 filemap_write_and_wait(mapping); 2701 } 2702 2703 if (EXT4_JOURNAL(inode) && 2704 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2705 /* 2706 * This is a REALLY heavyweight approach, but the use of 2707 * bmap on dirty files is expected to be extremely rare: 2708 * only if we run lilo or swapon on a freshly made file 2709 * do we expect this to happen. 2710 * 2711 * (bmap requires CAP_SYS_RAWIO so this does not 2712 * represent an unprivileged user DOS attack --- we'd be 2713 * in trouble if mortal users could trigger this path at 2714 * will.) 2715 * 2716 * NB. EXT4_STATE_JDATA is not set on files other than 2717 * regular files. If somebody wants to bmap a directory 2718 * or symlink and gets confused because the buffer 2719 * hasn't yet been flushed to disk, they deserve 2720 * everything they get. 2721 */ 2722 2723 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2724 journal = EXT4_JOURNAL(inode); 2725 jbd2_journal_lock_updates(journal); 2726 err = jbd2_journal_flush(journal); 2727 jbd2_journal_unlock_updates(journal); 2728 2729 if (err) 2730 return 0; 2731 } 2732 2733 return generic_block_bmap(mapping, block, ext4_get_block); 2734 } 2735 2736 static int ext4_readpage(struct file *file, struct page *page) 2737 { 2738 trace_ext4_readpage(page); 2739 return mpage_readpage(page, ext4_get_block); 2740 } 2741 2742 static int 2743 ext4_readpages(struct file *file, struct address_space *mapping, 2744 struct list_head *pages, unsigned nr_pages) 2745 { 2746 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2747 } 2748 2749 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2750 { 2751 struct buffer_head *head, *bh; 2752 unsigned int curr_off = 0; 2753 2754 if (!page_has_buffers(page)) 2755 return; 2756 head = bh = page_buffers(page); 2757 do { 2758 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2759 && bh->b_private) { 2760 ext4_free_io_end(bh->b_private); 2761 bh->b_private = NULL; 2762 bh->b_end_io = NULL; 2763 } 2764 curr_off = curr_off + bh->b_size; 2765 bh = bh->b_this_page; 2766 } while (bh != head); 2767 } 2768 2769 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2770 { 2771 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2772 2773 trace_ext4_invalidatepage(page, offset); 2774 2775 /* 2776 * free any io_end structure allocated for buffers to be discarded 2777 */ 2778 if (ext4_should_dioread_nolock(page->mapping->host)) 2779 ext4_invalidatepage_free_endio(page, offset); 2780 /* 2781 * If it's a full truncate we just forget about the pending dirtying 2782 */ 2783 if (offset == 0) 2784 ClearPageChecked(page); 2785 2786 if (journal) 2787 jbd2_journal_invalidatepage(journal, page, offset); 2788 else 2789 block_invalidatepage(page, offset); 2790 } 2791 2792 static int ext4_releasepage(struct page *page, gfp_t wait) 2793 { 2794 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2795 2796 trace_ext4_releasepage(page); 2797 2798 WARN_ON(PageChecked(page)); 2799 if (!page_has_buffers(page)) 2800 return 0; 2801 if (journal) 2802 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2803 else 2804 return try_to_free_buffers(page); 2805 } 2806 2807 /* 2808 * ext4_get_block used when preparing for a DIO write or buffer write. 2809 * We allocate an uinitialized extent if blocks haven't been allocated. 2810 * The extent will be converted to initialized after the IO is complete. 2811 */ 2812 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2813 struct buffer_head *bh_result, int create) 2814 { 2815 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2816 inode->i_ino, create); 2817 return _ext4_get_block(inode, iblock, bh_result, 2818 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2819 } 2820 2821 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2822 ssize_t size, void *private, int ret, 2823 bool is_async) 2824 { 2825 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2826 ext4_io_end_t *io_end = iocb->private; 2827 struct workqueue_struct *wq; 2828 unsigned long flags; 2829 struct ext4_inode_info *ei; 2830 2831 /* if not async direct IO or dio with 0 bytes write, just return */ 2832 if (!io_end || !size) 2833 goto out; 2834 2835 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2836 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2837 iocb->private, io_end->inode->i_ino, iocb, offset, 2838 size); 2839 2840 iocb->private = NULL; 2841 2842 /* if not aio dio with unwritten extents, just free io and return */ 2843 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2844 ext4_free_io_end(io_end); 2845 out: 2846 if (is_async) 2847 aio_complete(iocb, ret, 0); 2848 inode_dio_done(inode); 2849 return; 2850 } 2851 2852 io_end->offset = offset; 2853 io_end->size = size; 2854 if (is_async) { 2855 io_end->iocb = iocb; 2856 io_end->result = ret; 2857 } 2858 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2859 2860 /* Add the io_end to per-inode completed aio dio list*/ 2861 ei = EXT4_I(io_end->inode); 2862 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2863 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2864 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2865 2866 /* queue the work to convert unwritten extents to written */ 2867 queue_work(wq, &io_end->work); 2868 } 2869 2870 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2871 { 2872 ext4_io_end_t *io_end = bh->b_private; 2873 struct workqueue_struct *wq; 2874 struct inode *inode; 2875 unsigned long flags; 2876 2877 if (!test_clear_buffer_uninit(bh) || !io_end) 2878 goto out; 2879 2880 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2881 ext4_msg(io_end->inode->i_sb, KERN_INFO, 2882 "sb umounted, discard end_io request for inode %lu", 2883 io_end->inode->i_ino); 2884 ext4_free_io_end(io_end); 2885 goto out; 2886 } 2887 2888 /* 2889 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2890 * but being more careful is always safe for the future change. 2891 */ 2892 inode = io_end->inode; 2893 ext4_set_io_unwritten_flag(inode, io_end); 2894 2895 /* Add the io_end to per-inode completed io list*/ 2896 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2897 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2898 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2899 2900 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2901 /* queue the work to convert unwritten extents to written */ 2902 queue_work(wq, &io_end->work); 2903 out: 2904 bh->b_private = NULL; 2905 bh->b_end_io = NULL; 2906 clear_buffer_uninit(bh); 2907 end_buffer_async_write(bh, uptodate); 2908 } 2909 2910 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2911 { 2912 ext4_io_end_t *io_end; 2913 struct page *page = bh->b_page; 2914 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2915 size_t size = bh->b_size; 2916 2917 retry: 2918 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2919 if (!io_end) { 2920 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2921 schedule(); 2922 goto retry; 2923 } 2924 io_end->offset = offset; 2925 io_end->size = size; 2926 /* 2927 * We need to hold a reference to the page to make sure it 2928 * doesn't get evicted before ext4_end_io_work() has a chance 2929 * to convert the extent from written to unwritten. 2930 */ 2931 io_end->page = page; 2932 get_page(io_end->page); 2933 2934 bh->b_private = io_end; 2935 bh->b_end_io = ext4_end_io_buffer_write; 2936 return 0; 2937 } 2938 2939 /* 2940 * For ext4 extent files, ext4 will do direct-io write to holes, 2941 * preallocated extents, and those write extend the file, no need to 2942 * fall back to buffered IO. 2943 * 2944 * For holes, we fallocate those blocks, mark them as uninitialized 2945 * If those blocks were preallocated, we mark sure they are splited, but 2946 * still keep the range to write as uninitialized. 2947 * 2948 * The unwrritten extents will be converted to written when DIO is completed. 2949 * For async direct IO, since the IO may still pending when return, we 2950 * set up an end_io call back function, which will do the conversion 2951 * when async direct IO completed. 2952 * 2953 * If the O_DIRECT write will extend the file then add this inode to the 2954 * orphan list. So recovery will truncate it back to the original size 2955 * if the machine crashes during the write. 2956 * 2957 */ 2958 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2959 const struct iovec *iov, loff_t offset, 2960 unsigned long nr_segs) 2961 { 2962 struct file *file = iocb->ki_filp; 2963 struct inode *inode = file->f_mapping->host; 2964 ssize_t ret; 2965 size_t count = iov_length(iov, nr_segs); 2966 2967 loff_t final_size = offset + count; 2968 if (rw == WRITE && final_size <= inode->i_size) { 2969 /* 2970 * We could direct write to holes and fallocate. 2971 * 2972 * Allocated blocks to fill the hole are marked as uninitialized 2973 * to prevent parallel buffered read to expose the stale data 2974 * before DIO complete the data IO. 2975 * 2976 * As to previously fallocated extents, ext4 get_block 2977 * will just simply mark the buffer mapped but still 2978 * keep the extents uninitialized. 2979 * 2980 * for non AIO case, we will convert those unwritten extents 2981 * to written after return back from blockdev_direct_IO. 2982 * 2983 * for async DIO, the conversion needs to be defered when 2984 * the IO is completed. The ext4 end_io callback function 2985 * will be called to take care of the conversion work. 2986 * Here for async case, we allocate an io_end structure to 2987 * hook to the iocb. 2988 */ 2989 iocb->private = NULL; 2990 EXT4_I(inode)->cur_aio_dio = NULL; 2991 if (!is_sync_kiocb(iocb)) { 2992 ext4_io_end_t *io_end = 2993 ext4_init_io_end(inode, GFP_NOFS); 2994 if (!io_end) 2995 return -ENOMEM; 2996 io_end->flag |= EXT4_IO_END_DIRECT; 2997 iocb->private = io_end; 2998 /* 2999 * we save the io structure for current async 3000 * direct IO, so that later ext4_map_blocks() 3001 * could flag the io structure whether there 3002 * is a unwritten extents needs to be converted 3003 * when IO is completed. 3004 */ 3005 EXT4_I(inode)->cur_aio_dio = iocb->private; 3006 } 3007 3008 ret = __blockdev_direct_IO(rw, iocb, inode, 3009 inode->i_sb->s_bdev, iov, 3010 offset, nr_segs, 3011 ext4_get_block_write, 3012 ext4_end_io_dio, 3013 NULL, 3014 DIO_LOCKING); 3015 if (iocb->private) 3016 EXT4_I(inode)->cur_aio_dio = NULL; 3017 /* 3018 * The io_end structure takes a reference to the inode, 3019 * that structure needs to be destroyed and the 3020 * reference to the inode need to be dropped, when IO is 3021 * complete, even with 0 byte write, or failed. 3022 * 3023 * In the successful AIO DIO case, the io_end structure will be 3024 * desctroyed and the reference to the inode will be dropped 3025 * after the end_io call back function is called. 3026 * 3027 * In the case there is 0 byte write, or error case, since 3028 * VFS direct IO won't invoke the end_io call back function, 3029 * we need to free the end_io structure here. 3030 */ 3031 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3032 ext4_free_io_end(iocb->private); 3033 iocb->private = NULL; 3034 } else if (ret > 0 && ext4_test_inode_state(inode, 3035 EXT4_STATE_DIO_UNWRITTEN)) { 3036 int err; 3037 /* 3038 * for non AIO case, since the IO is already 3039 * completed, we could do the conversion right here 3040 */ 3041 err = ext4_convert_unwritten_extents(inode, 3042 offset, ret); 3043 if (err < 0) 3044 ret = err; 3045 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3046 } 3047 return ret; 3048 } 3049 3050 /* for write the the end of file case, we fall back to old way */ 3051 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3052 } 3053 3054 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3055 const struct iovec *iov, loff_t offset, 3056 unsigned long nr_segs) 3057 { 3058 struct file *file = iocb->ki_filp; 3059 struct inode *inode = file->f_mapping->host; 3060 ssize_t ret; 3061 3062 /* 3063 * If we are doing data journalling we don't support O_DIRECT 3064 */ 3065 if (ext4_should_journal_data(inode)) 3066 return 0; 3067 3068 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3069 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3070 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3071 else 3072 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3073 trace_ext4_direct_IO_exit(inode, offset, 3074 iov_length(iov, nr_segs), rw, ret); 3075 return ret; 3076 } 3077 3078 /* 3079 * Pages can be marked dirty completely asynchronously from ext4's journalling 3080 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3081 * much here because ->set_page_dirty is called under VFS locks. The page is 3082 * not necessarily locked. 3083 * 3084 * We cannot just dirty the page and leave attached buffers clean, because the 3085 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3086 * or jbddirty because all the journalling code will explode. 3087 * 3088 * So what we do is to mark the page "pending dirty" and next time writepage 3089 * is called, propagate that into the buffers appropriately. 3090 */ 3091 static int ext4_journalled_set_page_dirty(struct page *page) 3092 { 3093 SetPageChecked(page); 3094 return __set_page_dirty_nobuffers(page); 3095 } 3096 3097 static const struct address_space_operations ext4_ordered_aops = { 3098 .readpage = ext4_readpage, 3099 .readpages = ext4_readpages, 3100 .writepage = ext4_writepage, 3101 .write_begin = ext4_write_begin, 3102 .write_end = ext4_ordered_write_end, 3103 .bmap = ext4_bmap, 3104 .invalidatepage = ext4_invalidatepage, 3105 .releasepage = ext4_releasepage, 3106 .direct_IO = ext4_direct_IO, 3107 .migratepage = buffer_migrate_page, 3108 .is_partially_uptodate = block_is_partially_uptodate, 3109 .error_remove_page = generic_error_remove_page, 3110 }; 3111 3112 static const struct address_space_operations ext4_writeback_aops = { 3113 .readpage = ext4_readpage, 3114 .readpages = ext4_readpages, 3115 .writepage = ext4_writepage, 3116 .write_begin = ext4_write_begin, 3117 .write_end = ext4_writeback_write_end, 3118 .bmap = ext4_bmap, 3119 .invalidatepage = ext4_invalidatepage, 3120 .releasepage = ext4_releasepage, 3121 .direct_IO = ext4_direct_IO, 3122 .migratepage = buffer_migrate_page, 3123 .is_partially_uptodate = block_is_partially_uptodate, 3124 .error_remove_page = generic_error_remove_page, 3125 }; 3126 3127 static const struct address_space_operations ext4_journalled_aops = { 3128 .readpage = ext4_readpage, 3129 .readpages = ext4_readpages, 3130 .writepage = ext4_writepage, 3131 .write_begin = ext4_write_begin, 3132 .write_end = ext4_journalled_write_end, 3133 .set_page_dirty = ext4_journalled_set_page_dirty, 3134 .bmap = ext4_bmap, 3135 .invalidatepage = ext4_invalidatepage, 3136 .releasepage = ext4_releasepage, 3137 .direct_IO = ext4_direct_IO, 3138 .is_partially_uptodate = block_is_partially_uptodate, 3139 .error_remove_page = generic_error_remove_page, 3140 }; 3141 3142 static const struct address_space_operations ext4_da_aops = { 3143 .readpage = ext4_readpage, 3144 .readpages = ext4_readpages, 3145 .writepage = ext4_writepage, 3146 .writepages = ext4_da_writepages, 3147 .write_begin = ext4_da_write_begin, 3148 .write_end = ext4_da_write_end, 3149 .bmap = ext4_bmap, 3150 .invalidatepage = ext4_da_invalidatepage, 3151 .releasepage = ext4_releasepage, 3152 .direct_IO = ext4_direct_IO, 3153 .migratepage = buffer_migrate_page, 3154 .is_partially_uptodate = block_is_partially_uptodate, 3155 .error_remove_page = generic_error_remove_page, 3156 }; 3157 3158 void ext4_set_aops(struct inode *inode) 3159 { 3160 switch (ext4_inode_journal_mode(inode)) { 3161 case EXT4_INODE_ORDERED_DATA_MODE: 3162 if (test_opt(inode->i_sb, DELALLOC)) 3163 inode->i_mapping->a_ops = &ext4_da_aops; 3164 else 3165 inode->i_mapping->a_ops = &ext4_ordered_aops; 3166 break; 3167 case EXT4_INODE_WRITEBACK_DATA_MODE: 3168 if (test_opt(inode->i_sb, DELALLOC)) 3169 inode->i_mapping->a_ops = &ext4_da_aops; 3170 else 3171 inode->i_mapping->a_ops = &ext4_writeback_aops; 3172 break; 3173 case EXT4_INODE_JOURNAL_DATA_MODE: 3174 inode->i_mapping->a_ops = &ext4_journalled_aops; 3175 break; 3176 default: 3177 BUG(); 3178 } 3179 } 3180 3181 3182 /* 3183 * ext4_discard_partial_page_buffers() 3184 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3185 * This function finds and locks the page containing the offset 3186 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3187 * Calling functions that already have the page locked should call 3188 * ext4_discard_partial_page_buffers_no_lock directly. 3189 */ 3190 int ext4_discard_partial_page_buffers(handle_t *handle, 3191 struct address_space *mapping, loff_t from, 3192 loff_t length, int flags) 3193 { 3194 struct inode *inode = mapping->host; 3195 struct page *page; 3196 int err = 0; 3197 3198 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3199 mapping_gfp_mask(mapping) & ~__GFP_FS); 3200 if (!page) 3201 return -ENOMEM; 3202 3203 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3204 from, length, flags); 3205 3206 unlock_page(page); 3207 page_cache_release(page); 3208 return err; 3209 } 3210 3211 /* 3212 * ext4_discard_partial_page_buffers_no_lock() 3213 * Zeros a page range of length 'length' starting from offset 'from'. 3214 * Buffer heads that correspond to the block aligned regions of the 3215 * zeroed range will be unmapped. Unblock aligned regions 3216 * will have the corresponding buffer head mapped if needed so that 3217 * that region of the page can be updated with the partial zero out. 3218 * 3219 * This function assumes that the page has already been locked. The 3220 * The range to be discarded must be contained with in the given page. 3221 * If the specified range exceeds the end of the page it will be shortened 3222 * to the end of the page that corresponds to 'from'. This function is 3223 * appropriate for updating a page and it buffer heads to be unmapped and 3224 * zeroed for blocks that have been either released, or are going to be 3225 * released. 3226 * 3227 * handle: The journal handle 3228 * inode: The files inode 3229 * page: A locked page that contains the offset "from" 3230 * from: The starting byte offset (from the begining of the file) 3231 * to begin discarding 3232 * len: The length of bytes to discard 3233 * flags: Optional flags that may be used: 3234 * 3235 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3236 * Only zero the regions of the page whose buffer heads 3237 * have already been unmapped. This flag is appropriate 3238 * for updateing the contents of a page whose blocks may 3239 * have already been released, and we only want to zero 3240 * out the regions that correspond to those released blocks. 3241 * 3242 * Returns zero on sucess or negative on failure. 3243 */ 3244 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3245 struct inode *inode, struct page *page, loff_t from, 3246 loff_t length, int flags) 3247 { 3248 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3249 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3250 unsigned int blocksize, max, pos; 3251 ext4_lblk_t iblock; 3252 struct buffer_head *bh; 3253 int err = 0; 3254 3255 blocksize = inode->i_sb->s_blocksize; 3256 max = PAGE_CACHE_SIZE - offset; 3257 3258 if (index != page->index) 3259 return -EINVAL; 3260 3261 /* 3262 * correct length if it does not fall between 3263 * 'from' and the end of the page 3264 */ 3265 if (length > max || length < 0) 3266 length = max; 3267 3268 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3269 3270 if (!page_has_buffers(page)) 3271 create_empty_buffers(page, blocksize, 0); 3272 3273 /* Find the buffer that contains "offset" */ 3274 bh = page_buffers(page); 3275 pos = blocksize; 3276 while (offset >= pos) { 3277 bh = bh->b_this_page; 3278 iblock++; 3279 pos += blocksize; 3280 } 3281 3282 pos = offset; 3283 while (pos < offset + length) { 3284 unsigned int end_of_block, range_to_discard; 3285 3286 err = 0; 3287 3288 /* The length of space left to zero and unmap */ 3289 range_to_discard = offset + length - pos; 3290 3291 /* The length of space until the end of the block */ 3292 end_of_block = blocksize - (pos & (blocksize-1)); 3293 3294 /* 3295 * Do not unmap or zero past end of block 3296 * for this buffer head 3297 */ 3298 if (range_to_discard > end_of_block) 3299 range_to_discard = end_of_block; 3300 3301 3302 /* 3303 * Skip this buffer head if we are only zeroing unampped 3304 * regions of the page 3305 */ 3306 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3307 buffer_mapped(bh)) 3308 goto next; 3309 3310 /* If the range is block aligned, unmap */ 3311 if (range_to_discard == blocksize) { 3312 clear_buffer_dirty(bh); 3313 bh->b_bdev = NULL; 3314 clear_buffer_mapped(bh); 3315 clear_buffer_req(bh); 3316 clear_buffer_new(bh); 3317 clear_buffer_delay(bh); 3318 clear_buffer_unwritten(bh); 3319 clear_buffer_uptodate(bh); 3320 zero_user(page, pos, range_to_discard); 3321 BUFFER_TRACE(bh, "Buffer discarded"); 3322 goto next; 3323 } 3324 3325 /* 3326 * If this block is not completely contained in the range 3327 * to be discarded, then it is not going to be released. Because 3328 * we need to keep this block, we need to make sure this part 3329 * of the page is uptodate before we modify it by writeing 3330 * partial zeros on it. 3331 */ 3332 if (!buffer_mapped(bh)) { 3333 /* 3334 * Buffer head must be mapped before we can read 3335 * from the block 3336 */ 3337 BUFFER_TRACE(bh, "unmapped"); 3338 ext4_get_block(inode, iblock, bh, 0); 3339 /* unmapped? It's a hole - nothing to do */ 3340 if (!buffer_mapped(bh)) { 3341 BUFFER_TRACE(bh, "still unmapped"); 3342 goto next; 3343 } 3344 } 3345 3346 /* Ok, it's mapped. Make sure it's up-to-date */ 3347 if (PageUptodate(page)) 3348 set_buffer_uptodate(bh); 3349 3350 if (!buffer_uptodate(bh)) { 3351 err = -EIO; 3352 ll_rw_block(READ, 1, &bh); 3353 wait_on_buffer(bh); 3354 /* Uhhuh. Read error. Complain and punt.*/ 3355 if (!buffer_uptodate(bh)) 3356 goto next; 3357 } 3358 3359 if (ext4_should_journal_data(inode)) { 3360 BUFFER_TRACE(bh, "get write access"); 3361 err = ext4_journal_get_write_access(handle, bh); 3362 if (err) 3363 goto next; 3364 } 3365 3366 zero_user(page, pos, range_to_discard); 3367 3368 err = 0; 3369 if (ext4_should_journal_data(inode)) { 3370 err = ext4_handle_dirty_metadata(handle, inode, bh); 3371 } else 3372 mark_buffer_dirty(bh); 3373 3374 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3375 next: 3376 bh = bh->b_this_page; 3377 iblock++; 3378 pos += range_to_discard; 3379 } 3380 3381 return err; 3382 } 3383 3384 int ext4_can_truncate(struct inode *inode) 3385 { 3386 if (S_ISREG(inode->i_mode)) 3387 return 1; 3388 if (S_ISDIR(inode->i_mode)) 3389 return 1; 3390 if (S_ISLNK(inode->i_mode)) 3391 return !ext4_inode_is_fast_symlink(inode); 3392 return 0; 3393 } 3394 3395 /* 3396 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3397 * associated with the given offset and length 3398 * 3399 * @inode: File inode 3400 * @offset: The offset where the hole will begin 3401 * @len: The length of the hole 3402 * 3403 * Returns: 0 on sucess or negative on failure 3404 */ 3405 3406 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3407 { 3408 struct inode *inode = file->f_path.dentry->d_inode; 3409 if (!S_ISREG(inode->i_mode)) 3410 return -EOPNOTSUPP; 3411 3412 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3413 /* TODO: Add support for non extent hole punching */ 3414 return -EOPNOTSUPP; 3415 } 3416 3417 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3418 /* TODO: Add support for bigalloc file systems */ 3419 return -EOPNOTSUPP; 3420 } 3421 3422 return ext4_ext_punch_hole(file, offset, length); 3423 } 3424 3425 /* 3426 * ext4_truncate() 3427 * 3428 * We block out ext4_get_block() block instantiations across the entire 3429 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3430 * simultaneously on behalf of the same inode. 3431 * 3432 * As we work through the truncate and commit bits of it to the journal there 3433 * is one core, guiding principle: the file's tree must always be consistent on 3434 * disk. We must be able to restart the truncate after a crash. 3435 * 3436 * The file's tree may be transiently inconsistent in memory (although it 3437 * probably isn't), but whenever we close off and commit a journal transaction, 3438 * the contents of (the filesystem + the journal) must be consistent and 3439 * restartable. It's pretty simple, really: bottom up, right to left (although 3440 * left-to-right works OK too). 3441 * 3442 * Note that at recovery time, journal replay occurs *before* the restart of 3443 * truncate against the orphan inode list. 3444 * 3445 * The committed inode has the new, desired i_size (which is the same as 3446 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3447 * that this inode's truncate did not complete and it will again call 3448 * ext4_truncate() to have another go. So there will be instantiated blocks 3449 * to the right of the truncation point in a crashed ext4 filesystem. But 3450 * that's fine - as long as they are linked from the inode, the post-crash 3451 * ext4_truncate() run will find them and release them. 3452 */ 3453 void ext4_truncate(struct inode *inode) 3454 { 3455 trace_ext4_truncate_enter(inode); 3456 3457 if (!ext4_can_truncate(inode)) 3458 return; 3459 3460 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3461 3462 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3463 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3464 3465 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3466 ext4_ext_truncate(inode); 3467 else 3468 ext4_ind_truncate(inode); 3469 3470 trace_ext4_truncate_exit(inode); 3471 } 3472 3473 /* 3474 * ext4_get_inode_loc returns with an extra refcount against the inode's 3475 * underlying buffer_head on success. If 'in_mem' is true, we have all 3476 * data in memory that is needed to recreate the on-disk version of this 3477 * inode. 3478 */ 3479 static int __ext4_get_inode_loc(struct inode *inode, 3480 struct ext4_iloc *iloc, int in_mem) 3481 { 3482 struct ext4_group_desc *gdp; 3483 struct buffer_head *bh; 3484 struct super_block *sb = inode->i_sb; 3485 ext4_fsblk_t block; 3486 int inodes_per_block, inode_offset; 3487 3488 iloc->bh = NULL; 3489 if (!ext4_valid_inum(sb, inode->i_ino)) 3490 return -EIO; 3491 3492 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3493 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3494 if (!gdp) 3495 return -EIO; 3496 3497 /* 3498 * Figure out the offset within the block group inode table 3499 */ 3500 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3501 inode_offset = ((inode->i_ino - 1) % 3502 EXT4_INODES_PER_GROUP(sb)); 3503 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3504 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3505 3506 bh = sb_getblk(sb, block); 3507 if (!bh) { 3508 EXT4_ERROR_INODE_BLOCK(inode, block, 3509 "unable to read itable block"); 3510 return -EIO; 3511 } 3512 if (!buffer_uptodate(bh)) { 3513 lock_buffer(bh); 3514 3515 /* 3516 * If the buffer has the write error flag, we have failed 3517 * to write out another inode in the same block. In this 3518 * case, we don't have to read the block because we may 3519 * read the old inode data successfully. 3520 */ 3521 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3522 set_buffer_uptodate(bh); 3523 3524 if (buffer_uptodate(bh)) { 3525 /* someone brought it uptodate while we waited */ 3526 unlock_buffer(bh); 3527 goto has_buffer; 3528 } 3529 3530 /* 3531 * If we have all information of the inode in memory and this 3532 * is the only valid inode in the block, we need not read the 3533 * block. 3534 */ 3535 if (in_mem) { 3536 struct buffer_head *bitmap_bh; 3537 int i, start; 3538 3539 start = inode_offset & ~(inodes_per_block - 1); 3540 3541 /* Is the inode bitmap in cache? */ 3542 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3543 if (!bitmap_bh) 3544 goto make_io; 3545 3546 /* 3547 * If the inode bitmap isn't in cache then the 3548 * optimisation may end up performing two reads instead 3549 * of one, so skip it. 3550 */ 3551 if (!buffer_uptodate(bitmap_bh)) { 3552 brelse(bitmap_bh); 3553 goto make_io; 3554 } 3555 for (i = start; i < start + inodes_per_block; i++) { 3556 if (i == inode_offset) 3557 continue; 3558 if (ext4_test_bit(i, bitmap_bh->b_data)) 3559 break; 3560 } 3561 brelse(bitmap_bh); 3562 if (i == start + inodes_per_block) { 3563 /* all other inodes are free, so skip I/O */ 3564 memset(bh->b_data, 0, bh->b_size); 3565 set_buffer_uptodate(bh); 3566 unlock_buffer(bh); 3567 goto has_buffer; 3568 } 3569 } 3570 3571 make_io: 3572 /* 3573 * If we need to do any I/O, try to pre-readahead extra 3574 * blocks from the inode table. 3575 */ 3576 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3577 ext4_fsblk_t b, end, table; 3578 unsigned num; 3579 3580 table = ext4_inode_table(sb, gdp); 3581 /* s_inode_readahead_blks is always a power of 2 */ 3582 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3583 if (table > b) 3584 b = table; 3585 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3586 num = EXT4_INODES_PER_GROUP(sb); 3587 if (ext4_has_group_desc_csum(sb)) 3588 num -= ext4_itable_unused_count(sb, gdp); 3589 table += num / inodes_per_block; 3590 if (end > table) 3591 end = table; 3592 while (b <= end) 3593 sb_breadahead(sb, b++); 3594 } 3595 3596 /* 3597 * There are other valid inodes in the buffer, this inode 3598 * has in-inode xattrs, or we don't have this inode in memory. 3599 * Read the block from disk. 3600 */ 3601 trace_ext4_load_inode(inode); 3602 get_bh(bh); 3603 bh->b_end_io = end_buffer_read_sync; 3604 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3605 wait_on_buffer(bh); 3606 if (!buffer_uptodate(bh)) { 3607 EXT4_ERROR_INODE_BLOCK(inode, block, 3608 "unable to read itable block"); 3609 brelse(bh); 3610 return -EIO; 3611 } 3612 } 3613 has_buffer: 3614 iloc->bh = bh; 3615 return 0; 3616 } 3617 3618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3619 { 3620 /* We have all inode data except xattrs in memory here. */ 3621 return __ext4_get_inode_loc(inode, iloc, 3622 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3623 } 3624 3625 void ext4_set_inode_flags(struct inode *inode) 3626 { 3627 unsigned int flags = EXT4_I(inode)->i_flags; 3628 3629 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3630 if (flags & EXT4_SYNC_FL) 3631 inode->i_flags |= S_SYNC; 3632 if (flags & EXT4_APPEND_FL) 3633 inode->i_flags |= S_APPEND; 3634 if (flags & EXT4_IMMUTABLE_FL) 3635 inode->i_flags |= S_IMMUTABLE; 3636 if (flags & EXT4_NOATIME_FL) 3637 inode->i_flags |= S_NOATIME; 3638 if (flags & EXT4_DIRSYNC_FL) 3639 inode->i_flags |= S_DIRSYNC; 3640 } 3641 3642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3643 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3644 { 3645 unsigned int vfs_fl; 3646 unsigned long old_fl, new_fl; 3647 3648 do { 3649 vfs_fl = ei->vfs_inode.i_flags; 3650 old_fl = ei->i_flags; 3651 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3652 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3653 EXT4_DIRSYNC_FL); 3654 if (vfs_fl & S_SYNC) 3655 new_fl |= EXT4_SYNC_FL; 3656 if (vfs_fl & S_APPEND) 3657 new_fl |= EXT4_APPEND_FL; 3658 if (vfs_fl & S_IMMUTABLE) 3659 new_fl |= EXT4_IMMUTABLE_FL; 3660 if (vfs_fl & S_NOATIME) 3661 new_fl |= EXT4_NOATIME_FL; 3662 if (vfs_fl & S_DIRSYNC) 3663 new_fl |= EXT4_DIRSYNC_FL; 3664 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3665 } 3666 3667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3668 struct ext4_inode_info *ei) 3669 { 3670 blkcnt_t i_blocks ; 3671 struct inode *inode = &(ei->vfs_inode); 3672 struct super_block *sb = inode->i_sb; 3673 3674 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3675 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3676 /* we are using combined 48 bit field */ 3677 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3678 le32_to_cpu(raw_inode->i_blocks_lo); 3679 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3680 /* i_blocks represent file system block size */ 3681 return i_blocks << (inode->i_blkbits - 9); 3682 } else { 3683 return i_blocks; 3684 } 3685 } else { 3686 return le32_to_cpu(raw_inode->i_blocks_lo); 3687 } 3688 } 3689 3690 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3691 { 3692 struct ext4_iloc iloc; 3693 struct ext4_inode *raw_inode; 3694 struct ext4_inode_info *ei; 3695 struct inode *inode; 3696 journal_t *journal = EXT4_SB(sb)->s_journal; 3697 long ret; 3698 int block; 3699 uid_t i_uid; 3700 gid_t i_gid; 3701 3702 inode = iget_locked(sb, ino); 3703 if (!inode) 3704 return ERR_PTR(-ENOMEM); 3705 if (!(inode->i_state & I_NEW)) 3706 return inode; 3707 3708 ei = EXT4_I(inode); 3709 iloc.bh = NULL; 3710 3711 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3712 if (ret < 0) 3713 goto bad_inode; 3714 raw_inode = ext4_raw_inode(&iloc); 3715 3716 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3717 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3718 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3719 EXT4_INODE_SIZE(inode->i_sb)) { 3720 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3721 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3722 EXT4_INODE_SIZE(inode->i_sb)); 3723 ret = -EIO; 3724 goto bad_inode; 3725 } 3726 } else 3727 ei->i_extra_isize = 0; 3728 3729 /* Precompute checksum seed for inode metadata */ 3730 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3731 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3732 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3733 __u32 csum; 3734 __le32 inum = cpu_to_le32(inode->i_ino); 3735 __le32 gen = raw_inode->i_generation; 3736 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3737 sizeof(inum)); 3738 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3739 sizeof(gen)); 3740 } 3741 3742 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3743 EXT4_ERROR_INODE(inode, "checksum invalid"); 3744 ret = -EIO; 3745 goto bad_inode; 3746 } 3747 3748 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3749 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3750 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3751 if (!(test_opt(inode->i_sb, NO_UID32))) { 3752 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3753 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3754 } 3755 i_uid_write(inode, i_uid); 3756 i_gid_write(inode, i_gid); 3757 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3758 3759 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3760 ei->i_dir_start_lookup = 0; 3761 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3762 /* We now have enough fields to check if the inode was active or not. 3763 * This is needed because nfsd might try to access dead inodes 3764 * the test is that same one that e2fsck uses 3765 * NeilBrown 1999oct15 3766 */ 3767 if (inode->i_nlink == 0) { 3768 if (inode->i_mode == 0 || 3769 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3770 /* this inode is deleted */ 3771 ret = -ESTALE; 3772 goto bad_inode; 3773 } 3774 /* The only unlinked inodes we let through here have 3775 * valid i_mode and are being read by the orphan 3776 * recovery code: that's fine, we're about to complete 3777 * the process of deleting those. */ 3778 } 3779 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3780 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3781 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3782 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3783 ei->i_file_acl |= 3784 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3785 inode->i_size = ext4_isize(raw_inode); 3786 ei->i_disksize = inode->i_size; 3787 #ifdef CONFIG_QUOTA 3788 ei->i_reserved_quota = 0; 3789 #endif 3790 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3791 ei->i_block_group = iloc.block_group; 3792 ei->i_last_alloc_group = ~0; 3793 /* 3794 * NOTE! The in-memory inode i_data array is in little-endian order 3795 * even on big-endian machines: we do NOT byteswap the block numbers! 3796 */ 3797 for (block = 0; block < EXT4_N_BLOCKS; block++) 3798 ei->i_data[block] = raw_inode->i_block[block]; 3799 INIT_LIST_HEAD(&ei->i_orphan); 3800 3801 /* 3802 * Set transaction id's of transactions that have to be committed 3803 * to finish f[data]sync. We set them to currently running transaction 3804 * as we cannot be sure that the inode or some of its metadata isn't 3805 * part of the transaction - the inode could have been reclaimed and 3806 * now it is reread from disk. 3807 */ 3808 if (journal) { 3809 transaction_t *transaction; 3810 tid_t tid; 3811 3812 read_lock(&journal->j_state_lock); 3813 if (journal->j_running_transaction) 3814 transaction = journal->j_running_transaction; 3815 else 3816 transaction = journal->j_committing_transaction; 3817 if (transaction) 3818 tid = transaction->t_tid; 3819 else 3820 tid = journal->j_commit_sequence; 3821 read_unlock(&journal->j_state_lock); 3822 ei->i_sync_tid = tid; 3823 ei->i_datasync_tid = tid; 3824 } 3825 3826 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3827 if (ei->i_extra_isize == 0) { 3828 /* The extra space is currently unused. Use it. */ 3829 ei->i_extra_isize = sizeof(struct ext4_inode) - 3830 EXT4_GOOD_OLD_INODE_SIZE; 3831 } else { 3832 __le32 *magic = (void *)raw_inode + 3833 EXT4_GOOD_OLD_INODE_SIZE + 3834 ei->i_extra_isize; 3835 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3836 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3837 } 3838 } 3839 3840 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3841 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3842 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3843 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3844 3845 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3846 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3847 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3848 inode->i_version |= 3849 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3850 } 3851 3852 ret = 0; 3853 if (ei->i_file_acl && 3854 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3855 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3856 ei->i_file_acl); 3857 ret = -EIO; 3858 goto bad_inode; 3859 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3860 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3861 (S_ISLNK(inode->i_mode) && 3862 !ext4_inode_is_fast_symlink(inode))) 3863 /* Validate extent which is part of inode */ 3864 ret = ext4_ext_check_inode(inode); 3865 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3866 (S_ISLNK(inode->i_mode) && 3867 !ext4_inode_is_fast_symlink(inode))) { 3868 /* Validate block references which are part of inode */ 3869 ret = ext4_ind_check_inode(inode); 3870 } 3871 if (ret) 3872 goto bad_inode; 3873 3874 if (S_ISREG(inode->i_mode)) { 3875 inode->i_op = &ext4_file_inode_operations; 3876 inode->i_fop = &ext4_file_operations; 3877 ext4_set_aops(inode); 3878 } else if (S_ISDIR(inode->i_mode)) { 3879 inode->i_op = &ext4_dir_inode_operations; 3880 inode->i_fop = &ext4_dir_operations; 3881 } else if (S_ISLNK(inode->i_mode)) { 3882 if (ext4_inode_is_fast_symlink(inode)) { 3883 inode->i_op = &ext4_fast_symlink_inode_operations; 3884 nd_terminate_link(ei->i_data, inode->i_size, 3885 sizeof(ei->i_data) - 1); 3886 } else { 3887 inode->i_op = &ext4_symlink_inode_operations; 3888 ext4_set_aops(inode); 3889 } 3890 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3891 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3892 inode->i_op = &ext4_special_inode_operations; 3893 if (raw_inode->i_block[0]) 3894 init_special_inode(inode, inode->i_mode, 3895 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3896 else 3897 init_special_inode(inode, inode->i_mode, 3898 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3899 } else { 3900 ret = -EIO; 3901 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3902 goto bad_inode; 3903 } 3904 brelse(iloc.bh); 3905 ext4_set_inode_flags(inode); 3906 unlock_new_inode(inode); 3907 return inode; 3908 3909 bad_inode: 3910 brelse(iloc.bh); 3911 iget_failed(inode); 3912 return ERR_PTR(ret); 3913 } 3914 3915 static int ext4_inode_blocks_set(handle_t *handle, 3916 struct ext4_inode *raw_inode, 3917 struct ext4_inode_info *ei) 3918 { 3919 struct inode *inode = &(ei->vfs_inode); 3920 u64 i_blocks = inode->i_blocks; 3921 struct super_block *sb = inode->i_sb; 3922 3923 if (i_blocks <= ~0U) { 3924 /* 3925 * i_blocks can be represnted in a 32 bit variable 3926 * as multiple of 512 bytes 3927 */ 3928 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3929 raw_inode->i_blocks_high = 0; 3930 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3931 return 0; 3932 } 3933 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3934 return -EFBIG; 3935 3936 if (i_blocks <= 0xffffffffffffULL) { 3937 /* 3938 * i_blocks can be represented in a 48 bit variable 3939 * as multiple of 512 bytes 3940 */ 3941 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3942 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3943 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3944 } else { 3945 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3946 /* i_block is stored in file system block size */ 3947 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3948 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3949 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3950 } 3951 return 0; 3952 } 3953 3954 /* 3955 * Post the struct inode info into an on-disk inode location in the 3956 * buffer-cache. This gobbles the caller's reference to the 3957 * buffer_head in the inode location struct. 3958 * 3959 * The caller must have write access to iloc->bh. 3960 */ 3961 static int ext4_do_update_inode(handle_t *handle, 3962 struct inode *inode, 3963 struct ext4_iloc *iloc) 3964 { 3965 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3966 struct ext4_inode_info *ei = EXT4_I(inode); 3967 struct buffer_head *bh = iloc->bh; 3968 int err = 0, rc, block; 3969 uid_t i_uid; 3970 gid_t i_gid; 3971 3972 /* For fields not not tracking in the in-memory inode, 3973 * initialise them to zero for new inodes. */ 3974 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 3975 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3976 3977 ext4_get_inode_flags(ei); 3978 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3979 i_uid = i_uid_read(inode); 3980 i_gid = i_gid_read(inode); 3981 if (!(test_opt(inode->i_sb, NO_UID32))) { 3982 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 3983 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 3984 /* 3985 * Fix up interoperability with old kernels. Otherwise, old inodes get 3986 * re-used with the upper 16 bits of the uid/gid intact 3987 */ 3988 if (!ei->i_dtime) { 3989 raw_inode->i_uid_high = 3990 cpu_to_le16(high_16_bits(i_uid)); 3991 raw_inode->i_gid_high = 3992 cpu_to_le16(high_16_bits(i_gid)); 3993 } else { 3994 raw_inode->i_uid_high = 0; 3995 raw_inode->i_gid_high = 0; 3996 } 3997 } else { 3998 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 3999 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4000 raw_inode->i_uid_high = 0; 4001 raw_inode->i_gid_high = 0; 4002 } 4003 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4004 4005 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4006 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4007 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4008 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4009 4010 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4011 goto out_brelse; 4012 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4013 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4014 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4015 cpu_to_le32(EXT4_OS_HURD)) 4016 raw_inode->i_file_acl_high = 4017 cpu_to_le16(ei->i_file_acl >> 32); 4018 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4019 ext4_isize_set(raw_inode, ei->i_disksize); 4020 if (ei->i_disksize > 0x7fffffffULL) { 4021 struct super_block *sb = inode->i_sb; 4022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4023 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4024 EXT4_SB(sb)->s_es->s_rev_level == 4025 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4026 /* If this is the first large file 4027 * created, add a flag to the superblock. 4028 */ 4029 err = ext4_journal_get_write_access(handle, 4030 EXT4_SB(sb)->s_sbh); 4031 if (err) 4032 goto out_brelse; 4033 ext4_update_dynamic_rev(sb); 4034 EXT4_SET_RO_COMPAT_FEATURE(sb, 4035 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4036 ext4_handle_sync(handle); 4037 err = ext4_handle_dirty_super_now(handle, sb); 4038 } 4039 } 4040 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4041 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4042 if (old_valid_dev(inode->i_rdev)) { 4043 raw_inode->i_block[0] = 4044 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4045 raw_inode->i_block[1] = 0; 4046 } else { 4047 raw_inode->i_block[0] = 0; 4048 raw_inode->i_block[1] = 4049 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4050 raw_inode->i_block[2] = 0; 4051 } 4052 } else 4053 for (block = 0; block < EXT4_N_BLOCKS; block++) 4054 raw_inode->i_block[block] = ei->i_data[block]; 4055 4056 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4057 if (ei->i_extra_isize) { 4058 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4059 raw_inode->i_version_hi = 4060 cpu_to_le32(inode->i_version >> 32); 4061 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4062 } 4063 4064 ext4_inode_csum_set(inode, raw_inode, ei); 4065 4066 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4067 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4068 if (!err) 4069 err = rc; 4070 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4071 4072 ext4_update_inode_fsync_trans(handle, inode, 0); 4073 out_brelse: 4074 brelse(bh); 4075 ext4_std_error(inode->i_sb, err); 4076 return err; 4077 } 4078 4079 /* 4080 * ext4_write_inode() 4081 * 4082 * We are called from a few places: 4083 * 4084 * - Within generic_file_write() for O_SYNC files. 4085 * Here, there will be no transaction running. We wait for any running 4086 * trasnaction to commit. 4087 * 4088 * - Within sys_sync(), kupdate and such. 4089 * We wait on commit, if tol to. 4090 * 4091 * - Within prune_icache() (PF_MEMALLOC == true) 4092 * Here we simply return. We can't afford to block kswapd on the 4093 * journal commit. 4094 * 4095 * In all cases it is actually safe for us to return without doing anything, 4096 * because the inode has been copied into a raw inode buffer in 4097 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4098 * knfsd. 4099 * 4100 * Note that we are absolutely dependent upon all inode dirtiers doing the 4101 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4102 * which we are interested. 4103 * 4104 * It would be a bug for them to not do this. The code: 4105 * 4106 * mark_inode_dirty(inode) 4107 * stuff(); 4108 * inode->i_size = expr; 4109 * 4110 * is in error because a kswapd-driven write_inode() could occur while 4111 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4112 * will no longer be on the superblock's dirty inode list. 4113 */ 4114 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4115 { 4116 int err; 4117 4118 if (current->flags & PF_MEMALLOC) 4119 return 0; 4120 4121 if (EXT4_SB(inode->i_sb)->s_journal) { 4122 if (ext4_journal_current_handle()) { 4123 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4124 dump_stack(); 4125 return -EIO; 4126 } 4127 4128 if (wbc->sync_mode != WB_SYNC_ALL) 4129 return 0; 4130 4131 err = ext4_force_commit(inode->i_sb); 4132 } else { 4133 struct ext4_iloc iloc; 4134 4135 err = __ext4_get_inode_loc(inode, &iloc, 0); 4136 if (err) 4137 return err; 4138 if (wbc->sync_mode == WB_SYNC_ALL) 4139 sync_dirty_buffer(iloc.bh); 4140 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4141 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4142 "IO error syncing inode"); 4143 err = -EIO; 4144 } 4145 brelse(iloc.bh); 4146 } 4147 return err; 4148 } 4149 4150 /* 4151 * ext4_setattr() 4152 * 4153 * Called from notify_change. 4154 * 4155 * We want to trap VFS attempts to truncate the file as soon as 4156 * possible. In particular, we want to make sure that when the VFS 4157 * shrinks i_size, we put the inode on the orphan list and modify 4158 * i_disksize immediately, so that during the subsequent flushing of 4159 * dirty pages and freeing of disk blocks, we can guarantee that any 4160 * commit will leave the blocks being flushed in an unused state on 4161 * disk. (On recovery, the inode will get truncated and the blocks will 4162 * be freed, so we have a strong guarantee that no future commit will 4163 * leave these blocks visible to the user.) 4164 * 4165 * Another thing we have to assure is that if we are in ordered mode 4166 * and inode is still attached to the committing transaction, we must 4167 * we start writeout of all the dirty pages which are being truncated. 4168 * This way we are sure that all the data written in the previous 4169 * transaction are already on disk (truncate waits for pages under 4170 * writeback). 4171 * 4172 * Called with inode->i_mutex down. 4173 */ 4174 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4175 { 4176 struct inode *inode = dentry->d_inode; 4177 int error, rc = 0; 4178 int orphan = 0; 4179 const unsigned int ia_valid = attr->ia_valid; 4180 4181 error = inode_change_ok(inode, attr); 4182 if (error) 4183 return error; 4184 4185 if (is_quota_modification(inode, attr)) 4186 dquot_initialize(inode); 4187 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4188 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4189 handle_t *handle; 4190 4191 /* (user+group)*(old+new) structure, inode write (sb, 4192 * inode block, ? - but truncate inode update has it) */ 4193 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4194 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4195 if (IS_ERR(handle)) { 4196 error = PTR_ERR(handle); 4197 goto err_out; 4198 } 4199 error = dquot_transfer(inode, attr); 4200 if (error) { 4201 ext4_journal_stop(handle); 4202 return error; 4203 } 4204 /* Update corresponding info in inode so that everything is in 4205 * one transaction */ 4206 if (attr->ia_valid & ATTR_UID) 4207 inode->i_uid = attr->ia_uid; 4208 if (attr->ia_valid & ATTR_GID) 4209 inode->i_gid = attr->ia_gid; 4210 error = ext4_mark_inode_dirty(handle, inode); 4211 ext4_journal_stop(handle); 4212 } 4213 4214 if (attr->ia_valid & ATTR_SIZE) { 4215 inode_dio_wait(inode); 4216 4217 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4218 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4219 4220 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4221 return -EFBIG; 4222 } 4223 } 4224 4225 if (S_ISREG(inode->i_mode) && 4226 attr->ia_valid & ATTR_SIZE && 4227 (attr->ia_size < inode->i_size)) { 4228 handle_t *handle; 4229 4230 handle = ext4_journal_start(inode, 3); 4231 if (IS_ERR(handle)) { 4232 error = PTR_ERR(handle); 4233 goto err_out; 4234 } 4235 if (ext4_handle_valid(handle)) { 4236 error = ext4_orphan_add(handle, inode); 4237 orphan = 1; 4238 } 4239 EXT4_I(inode)->i_disksize = attr->ia_size; 4240 rc = ext4_mark_inode_dirty(handle, inode); 4241 if (!error) 4242 error = rc; 4243 ext4_journal_stop(handle); 4244 4245 if (ext4_should_order_data(inode)) { 4246 error = ext4_begin_ordered_truncate(inode, 4247 attr->ia_size); 4248 if (error) { 4249 /* Do as much error cleanup as possible */ 4250 handle = ext4_journal_start(inode, 3); 4251 if (IS_ERR(handle)) { 4252 ext4_orphan_del(NULL, inode); 4253 goto err_out; 4254 } 4255 ext4_orphan_del(handle, inode); 4256 orphan = 0; 4257 ext4_journal_stop(handle); 4258 goto err_out; 4259 } 4260 } 4261 } 4262 4263 if (attr->ia_valid & ATTR_SIZE) { 4264 if (attr->ia_size != i_size_read(inode)) 4265 truncate_setsize(inode, attr->ia_size); 4266 ext4_truncate(inode); 4267 } 4268 4269 if (!rc) { 4270 setattr_copy(inode, attr); 4271 mark_inode_dirty(inode); 4272 } 4273 4274 /* 4275 * If the call to ext4_truncate failed to get a transaction handle at 4276 * all, we need to clean up the in-core orphan list manually. 4277 */ 4278 if (orphan && inode->i_nlink) 4279 ext4_orphan_del(NULL, inode); 4280 4281 if (!rc && (ia_valid & ATTR_MODE)) 4282 rc = ext4_acl_chmod(inode); 4283 4284 err_out: 4285 ext4_std_error(inode->i_sb, error); 4286 if (!error) 4287 error = rc; 4288 return error; 4289 } 4290 4291 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4292 struct kstat *stat) 4293 { 4294 struct inode *inode; 4295 unsigned long delalloc_blocks; 4296 4297 inode = dentry->d_inode; 4298 generic_fillattr(inode, stat); 4299 4300 /* 4301 * We can't update i_blocks if the block allocation is delayed 4302 * otherwise in the case of system crash before the real block 4303 * allocation is done, we will have i_blocks inconsistent with 4304 * on-disk file blocks. 4305 * We always keep i_blocks updated together with real 4306 * allocation. But to not confuse with user, stat 4307 * will return the blocks that include the delayed allocation 4308 * blocks for this file. 4309 */ 4310 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4311 EXT4_I(inode)->i_reserved_data_blocks); 4312 4313 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4314 return 0; 4315 } 4316 4317 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4318 { 4319 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4320 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4321 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4322 } 4323 4324 /* 4325 * Account for index blocks, block groups bitmaps and block group 4326 * descriptor blocks if modify datablocks and index blocks 4327 * worse case, the indexs blocks spread over different block groups 4328 * 4329 * If datablocks are discontiguous, they are possible to spread over 4330 * different block groups too. If they are contiuguous, with flexbg, 4331 * they could still across block group boundary. 4332 * 4333 * Also account for superblock, inode, quota and xattr blocks 4334 */ 4335 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4336 { 4337 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4338 int gdpblocks; 4339 int idxblocks; 4340 int ret = 0; 4341 4342 /* 4343 * How many index blocks need to touch to modify nrblocks? 4344 * The "Chunk" flag indicating whether the nrblocks is 4345 * physically contiguous on disk 4346 * 4347 * For Direct IO and fallocate, they calls get_block to allocate 4348 * one single extent at a time, so they could set the "Chunk" flag 4349 */ 4350 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4351 4352 ret = idxblocks; 4353 4354 /* 4355 * Now let's see how many group bitmaps and group descriptors need 4356 * to account 4357 */ 4358 groups = idxblocks; 4359 if (chunk) 4360 groups += 1; 4361 else 4362 groups += nrblocks; 4363 4364 gdpblocks = groups; 4365 if (groups > ngroups) 4366 groups = ngroups; 4367 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4368 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4369 4370 /* bitmaps and block group descriptor blocks */ 4371 ret += groups + gdpblocks; 4372 4373 /* Blocks for super block, inode, quota and xattr blocks */ 4374 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4375 4376 return ret; 4377 } 4378 4379 /* 4380 * Calculate the total number of credits to reserve to fit 4381 * the modification of a single pages into a single transaction, 4382 * which may include multiple chunks of block allocations. 4383 * 4384 * This could be called via ext4_write_begin() 4385 * 4386 * We need to consider the worse case, when 4387 * one new block per extent. 4388 */ 4389 int ext4_writepage_trans_blocks(struct inode *inode) 4390 { 4391 int bpp = ext4_journal_blocks_per_page(inode); 4392 int ret; 4393 4394 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4395 4396 /* Account for data blocks for journalled mode */ 4397 if (ext4_should_journal_data(inode)) 4398 ret += bpp; 4399 return ret; 4400 } 4401 4402 /* 4403 * Calculate the journal credits for a chunk of data modification. 4404 * 4405 * This is called from DIO, fallocate or whoever calling 4406 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4407 * 4408 * journal buffers for data blocks are not included here, as DIO 4409 * and fallocate do no need to journal data buffers. 4410 */ 4411 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4412 { 4413 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4414 } 4415 4416 /* 4417 * The caller must have previously called ext4_reserve_inode_write(). 4418 * Give this, we know that the caller already has write access to iloc->bh. 4419 */ 4420 int ext4_mark_iloc_dirty(handle_t *handle, 4421 struct inode *inode, struct ext4_iloc *iloc) 4422 { 4423 int err = 0; 4424 4425 if (IS_I_VERSION(inode)) 4426 inode_inc_iversion(inode); 4427 4428 /* the do_update_inode consumes one bh->b_count */ 4429 get_bh(iloc->bh); 4430 4431 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4432 err = ext4_do_update_inode(handle, inode, iloc); 4433 put_bh(iloc->bh); 4434 return err; 4435 } 4436 4437 /* 4438 * On success, We end up with an outstanding reference count against 4439 * iloc->bh. This _must_ be cleaned up later. 4440 */ 4441 4442 int 4443 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4444 struct ext4_iloc *iloc) 4445 { 4446 int err; 4447 4448 err = ext4_get_inode_loc(inode, iloc); 4449 if (!err) { 4450 BUFFER_TRACE(iloc->bh, "get_write_access"); 4451 err = ext4_journal_get_write_access(handle, iloc->bh); 4452 if (err) { 4453 brelse(iloc->bh); 4454 iloc->bh = NULL; 4455 } 4456 } 4457 ext4_std_error(inode->i_sb, err); 4458 return err; 4459 } 4460 4461 /* 4462 * Expand an inode by new_extra_isize bytes. 4463 * Returns 0 on success or negative error number on failure. 4464 */ 4465 static int ext4_expand_extra_isize(struct inode *inode, 4466 unsigned int new_extra_isize, 4467 struct ext4_iloc iloc, 4468 handle_t *handle) 4469 { 4470 struct ext4_inode *raw_inode; 4471 struct ext4_xattr_ibody_header *header; 4472 4473 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4474 return 0; 4475 4476 raw_inode = ext4_raw_inode(&iloc); 4477 4478 header = IHDR(inode, raw_inode); 4479 4480 /* No extended attributes present */ 4481 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4482 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4483 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4484 new_extra_isize); 4485 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4486 return 0; 4487 } 4488 4489 /* try to expand with EAs present */ 4490 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4491 raw_inode, handle); 4492 } 4493 4494 /* 4495 * What we do here is to mark the in-core inode as clean with respect to inode 4496 * dirtiness (it may still be data-dirty). 4497 * This means that the in-core inode may be reaped by prune_icache 4498 * without having to perform any I/O. This is a very good thing, 4499 * because *any* task may call prune_icache - even ones which 4500 * have a transaction open against a different journal. 4501 * 4502 * Is this cheating? Not really. Sure, we haven't written the 4503 * inode out, but prune_icache isn't a user-visible syncing function. 4504 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4505 * we start and wait on commits. 4506 * 4507 * Is this efficient/effective? Well, we're being nice to the system 4508 * by cleaning up our inodes proactively so they can be reaped 4509 * without I/O. But we are potentially leaving up to five seconds' 4510 * worth of inodes floating about which prune_icache wants us to 4511 * write out. One way to fix that would be to get prune_icache() 4512 * to do a write_super() to free up some memory. It has the desired 4513 * effect. 4514 */ 4515 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4516 { 4517 struct ext4_iloc iloc; 4518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4519 static unsigned int mnt_count; 4520 int err, ret; 4521 4522 might_sleep(); 4523 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4524 err = ext4_reserve_inode_write(handle, inode, &iloc); 4525 if (ext4_handle_valid(handle) && 4526 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4527 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4528 /* 4529 * We need extra buffer credits since we may write into EA block 4530 * with this same handle. If journal_extend fails, then it will 4531 * only result in a minor loss of functionality for that inode. 4532 * If this is felt to be critical, then e2fsck should be run to 4533 * force a large enough s_min_extra_isize. 4534 */ 4535 if ((jbd2_journal_extend(handle, 4536 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4537 ret = ext4_expand_extra_isize(inode, 4538 sbi->s_want_extra_isize, 4539 iloc, handle); 4540 if (ret) { 4541 ext4_set_inode_state(inode, 4542 EXT4_STATE_NO_EXPAND); 4543 if (mnt_count != 4544 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4545 ext4_warning(inode->i_sb, 4546 "Unable to expand inode %lu. Delete" 4547 " some EAs or run e2fsck.", 4548 inode->i_ino); 4549 mnt_count = 4550 le16_to_cpu(sbi->s_es->s_mnt_count); 4551 } 4552 } 4553 } 4554 } 4555 if (!err) 4556 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4557 return err; 4558 } 4559 4560 /* 4561 * ext4_dirty_inode() is called from __mark_inode_dirty() 4562 * 4563 * We're really interested in the case where a file is being extended. 4564 * i_size has been changed by generic_commit_write() and we thus need 4565 * to include the updated inode in the current transaction. 4566 * 4567 * Also, dquot_alloc_block() will always dirty the inode when blocks 4568 * are allocated to the file. 4569 * 4570 * If the inode is marked synchronous, we don't honour that here - doing 4571 * so would cause a commit on atime updates, which we don't bother doing. 4572 * We handle synchronous inodes at the highest possible level. 4573 */ 4574 void ext4_dirty_inode(struct inode *inode, int flags) 4575 { 4576 handle_t *handle; 4577 4578 handle = ext4_journal_start(inode, 2); 4579 if (IS_ERR(handle)) 4580 goto out; 4581 4582 ext4_mark_inode_dirty(handle, inode); 4583 4584 ext4_journal_stop(handle); 4585 out: 4586 return; 4587 } 4588 4589 #if 0 4590 /* 4591 * Bind an inode's backing buffer_head into this transaction, to prevent 4592 * it from being flushed to disk early. Unlike 4593 * ext4_reserve_inode_write, this leaves behind no bh reference and 4594 * returns no iloc structure, so the caller needs to repeat the iloc 4595 * lookup to mark the inode dirty later. 4596 */ 4597 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4598 { 4599 struct ext4_iloc iloc; 4600 4601 int err = 0; 4602 if (handle) { 4603 err = ext4_get_inode_loc(inode, &iloc); 4604 if (!err) { 4605 BUFFER_TRACE(iloc.bh, "get_write_access"); 4606 err = jbd2_journal_get_write_access(handle, iloc.bh); 4607 if (!err) 4608 err = ext4_handle_dirty_metadata(handle, 4609 NULL, 4610 iloc.bh); 4611 brelse(iloc.bh); 4612 } 4613 } 4614 ext4_std_error(inode->i_sb, err); 4615 return err; 4616 } 4617 #endif 4618 4619 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4620 { 4621 journal_t *journal; 4622 handle_t *handle; 4623 int err; 4624 4625 /* 4626 * We have to be very careful here: changing a data block's 4627 * journaling status dynamically is dangerous. If we write a 4628 * data block to the journal, change the status and then delete 4629 * that block, we risk forgetting to revoke the old log record 4630 * from the journal and so a subsequent replay can corrupt data. 4631 * So, first we make sure that the journal is empty and that 4632 * nobody is changing anything. 4633 */ 4634 4635 journal = EXT4_JOURNAL(inode); 4636 if (!journal) 4637 return 0; 4638 if (is_journal_aborted(journal)) 4639 return -EROFS; 4640 /* We have to allocate physical blocks for delalloc blocks 4641 * before flushing journal. otherwise delalloc blocks can not 4642 * be allocated any more. even more truncate on delalloc blocks 4643 * could trigger BUG by flushing delalloc blocks in journal. 4644 * There is no delalloc block in non-journal data mode. 4645 */ 4646 if (val && test_opt(inode->i_sb, DELALLOC)) { 4647 err = ext4_alloc_da_blocks(inode); 4648 if (err < 0) 4649 return err; 4650 } 4651 4652 jbd2_journal_lock_updates(journal); 4653 4654 /* 4655 * OK, there are no updates running now, and all cached data is 4656 * synced to disk. We are now in a completely consistent state 4657 * which doesn't have anything in the journal, and we know that 4658 * no filesystem updates are running, so it is safe to modify 4659 * the inode's in-core data-journaling state flag now. 4660 */ 4661 4662 if (val) 4663 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4664 else { 4665 jbd2_journal_flush(journal); 4666 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4667 } 4668 ext4_set_aops(inode); 4669 4670 jbd2_journal_unlock_updates(journal); 4671 4672 /* Finally we can mark the inode as dirty. */ 4673 4674 handle = ext4_journal_start(inode, 1); 4675 if (IS_ERR(handle)) 4676 return PTR_ERR(handle); 4677 4678 err = ext4_mark_inode_dirty(handle, inode); 4679 ext4_handle_sync(handle); 4680 ext4_journal_stop(handle); 4681 ext4_std_error(inode->i_sb, err); 4682 4683 return err; 4684 } 4685 4686 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4687 { 4688 return !buffer_mapped(bh); 4689 } 4690 4691 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4692 { 4693 struct page *page = vmf->page; 4694 loff_t size; 4695 unsigned long len; 4696 int ret; 4697 struct file *file = vma->vm_file; 4698 struct inode *inode = file->f_path.dentry->d_inode; 4699 struct address_space *mapping = inode->i_mapping; 4700 handle_t *handle; 4701 get_block_t *get_block; 4702 int retries = 0; 4703 4704 /* 4705 * This check is racy but catches the common case. We rely on 4706 * __block_page_mkwrite() to do a reliable check. 4707 */ 4708 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4709 /* Delalloc case is easy... */ 4710 if (test_opt(inode->i_sb, DELALLOC) && 4711 !ext4_should_journal_data(inode) && 4712 !ext4_nonda_switch(inode->i_sb)) { 4713 do { 4714 ret = __block_page_mkwrite(vma, vmf, 4715 ext4_da_get_block_prep); 4716 } while (ret == -ENOSPC && 4717 ext4_should_retry_alloc(inode->i_sb, &retries)); 4718 goto out_ret; 4719 } 4720 4721 lock_page(page); 4722 size = i_size_read(inode); 4723 /* Page got truncated from under us? */ 4724 if (page->mapping != mapping || page_offset(page) > size) { 4725 unlock_page(page); 4726 ret = VM_FAULT_NOPAGE; 4727 goto out; 4728 } 4729 4730 if (page->index == size >> PAGE_CACHE_SHIFT) 4731 len = size & ~PAGE_CACHE_MASK; 4732 else 4733 len = PAGE_CACHE_SIZE; 4734 /* 4735 * Return if we have all the buffers mapped. This avoids the need to do 4736 * journal_start/journal_stop which can block and take a long time 4737 */ 4738 if (page_has_buffers(page)) { 4739 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4740 ext4_bh_unmapped)) { 4741 /* Wait so that we don't change page under IO */ 4742 wait_on_page_writeback(page); 4743 ret = VM_FAULT_LOCKED; 4744 goto out; 4745 } 4746 } 4747 unlock_page(page); 4748 /* OK, we need to fill the hole... */ 4749 if (ext4_should_dioread_nolock(inode)) 4750 get_block = ext4_get_block_write; 4751 else 4752 get_block = ext4_get_block; 4753 retry_alloc: 4754 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4755 if (IS_ERR(handle)) { 4756 ret = VM_FAULT_SIGBUS; 4757 goto out; 4758 } 4759 ret = __block_page_mkwrite(vma, vmf, get_block); 4760 if (!ret && ext4_should_journal_data(inode)) { 4761 if (walk_page_buffers(handle, page_buffers(page), 0, 4762 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4763 unlock_page(page); 4764 ret = VM_FAULT_SIGBUS; 4765 ext4_journal_stop(handle); 4766 goto out; 4767 } 4768 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4769 } 4770 ext4_journal_stop(handle); 4771 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4772 goto retry_alloc; 4773 out_ret: 4774 ret = block_page_mkwrite_return(ret); 4775 out: 4776 return ret; 4777 } 4778