xref: /linux/fs/ext4/inode.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 				   struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 		struct inode *inode, struct page *page, loff_t from,
143 		loff_t length, int flags);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		(inode->i_sb->s_blocksize >> 9) : 0;
152 
153 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155 
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 				 int nblocks)
163 {
164 	int ret;
165 
166 	/*
167 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 	 * moment, get_block can be called only for blocks inside i_size since
169 	 * page cache has been already dropped and writes are blocked by
170 	 * i_mutex. So we can safely drop the i_data_sem here.
171 	 */
172 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	up_write(&EXT4_I(inode)->i_data_sem);
175 	ret = ext4_journal_restart(handle, nblocks);
176 	down_write(&EXT4_I(inode)->i_data_sem);
177 	ext4_discard_preallocations(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 	handle_t *handle;
188 	int err;
189 
190 	trace_ext4_evict_inode(inode);
191 
192 	ext4_ioend_wait(inode);
193 
194 	if (inode->i_nlink) {
195 		/*
196 		 * When journalling data dirty buffers are tracked only in the
197 		 * journal. So although mm thinks everything is clean and
198 		 * ready for reaping the inode might still have some pages to
199 		 * write in the running transaction or waiting to be
200 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 		 * (via truncate_inode_pages()) to discard these buffers can
202 		 * cause data loss. Also even if we did not discard these
203 		 * buffers, we would have no way to find them after the inode
204 		 * is reaped and thus user could see stale data if he tries to
205 		 * read them before the transaction is checkpointed. So be
206 		 * careful and force everything to disk here... We use
207 		 * ei->i_datasync_tid to store the newest transaction
208 		 * containing inode's data.
209 		 *
210 		 * Note that directories do not have this problem because they
211 		 * don't use page cache.
212 		 */
213 		if (ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_log_start_commit(journal, commit_tid);
219 			jbd2_log_wait_commit(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages(&inode->i_data, 0);
223 		goto no_delete;
224 	}
225 
226 	if (!is_bad_inode(inode))
227 		dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages(&inode->i_data, 0);
232 
233 	if (is_bad_inode(inode))
234 		goto no_delete;
235 
236 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237 	if (IS_ERR(handle)) {
238 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 		/*
240 		 * If we're going to skip the normal cleanup, we still need to
241 		 * make sure that the in-core orphan linked list is properly
242 		 * cleaned up.
243 		 */
244 		ext4_orphan_del(NULL, inode);
245 		goto no_delete;
246 	}
247 
248 	if (IS_SYNC(inode))
249 		ext4_handle_sync(handle);
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks)
258 		ext4_truncate(inode);
259 
260 	/*
261 	 * ext4_ext_truncate() doesn't reserve any slop when it
262 	 * restarts journal transactions; therefore there may not be
263 	 * enough credits left in the handle to remove the inode from
264 	 * the orphan list and set the dtime field.
265 	 */
266 	if (!ext4_handle_has_enough_credits(handle, 3)) {
267 		err = ext4_journal_extend(handle, 3);
268 		if (err > 0)
269 			err = ext4_journal_restart(handle, 3);
270 		if (err != 0) {
271 			ext4_warning(inode->i_sb,
272 				     "couldn't extend journal (err %d)", err);
273 		stop_handle:
274 			ext4_journal_stop(handle);
275 			ext4_orphan_del(NULL, inode);
276 			goto no_delete;
277 		}
278 	}
279 
280 	/*
281 	 * Kill off the orphan record which ext4_truncate created.
282 	 * AKPM: I think this can be inside the above `if'.
283 	 * Note that ext4_orphan_del() has to be able to cope with the
284 	 * deletion of a non-existent orphan - this is because we don't
285 	 * know if ext4_truncate() actually created an orphan record.
286 	 * (Well, we could do this if we need to, but heck - it works)
287 	 */
288 	ext4_orphan_del(handle, inode);
289 	EXT4_I(inode)->i_dtime	= get_seconds();
290 
291 	/*
292 	 * One subtle ordering requirement: if anything has gone wrong
293 	 * (transaction abort, IO errors, whatever), then we can still
294 	 * do these next steps (the fs will already have been marked as
295 	 * having errors), but we can't free the inode if the mark_dirty
296 	 * fails.
297 	 */
298 	if (ext4_mark_inode_dirty(handle, inode))
299 		/* If that failed, just do the required in-core inode clear. */
300 		ext4_clear_inode(inode);
301 	else
302 		ext4_free_inode(handle, inode);
303 	ext4_journal_stop(handle);
304 	return;
305 no_delete:
306 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
307 }
308 
309 #ifdef CONFIG_QUOTA
310 qsize_t *ext4_get_reserved_space(struct inode *inode)
311 {
312 	return &EXT4_I(inode)->i_reserved_quota;
313 }
314 #endif
315 
316 /*
317  * Calculate the number of metadata blocks need to reserve
318  * to allocate a block located at @lblock
319  */
320 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321 {
322 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323 		return ext4_ext_calc_metadata_amount(inode, lblock);
324 
325 	return ext4_ind_calc_metadata_amount(inode, lblock);
326 }
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	/* Update per-inode reservations */
350 	ei->i_reserved_data_blocks -= used;
351 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
352 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
353 			   used + ei->i_allocated_meta_blocks);
354 	ei->i_allocated_meta_blocks = 0;
355 
356 	if (ei->i_reserved_data_blocks == 0) {
357 		/*
358 		 * We can release all of the reserved metadata blocks
359 		 * only when we have written all of the delayed
360 		 * allocation blocks.
361 		 */
362 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
363 				   ei->i_reserved_meta_blocks);
364 		ei->i_reserved_meta_blocks = 0;
365 		ei->i_da_metadata_calc_len = 0;
366 	}
367 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
368 
369 	/* Update quota subsystem for data blocks */
370 	if (quota_claim)
371 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
372 	else {
373 		/*
374 		 * We did fallocate with an offset that is already delayed
375 		 * allocated. So on delayed allocated writeback we should
376 		 * not re-claim the quota for fallocated blocks.
377 		 */
378 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
379 	}
380 
381 	/*
382 	 * If we have done all the pending block allocations and if
383 	 * there aren't any writers on the inode, we can discard the
384 	 * inode's preallocations.
385 	 */
386 	if ((ei->i_reserved_data_blocks == 0) &&
387 	    (atomic_read(&inode->i_writecount) == 0))
388 		ext4_discard_preallocations(inode);
389 }
390 
391 static int __check_block_validity(struct inode *inode, const char *func,
392 				unsigned int line,
393 				struct ext4_map_blocks *map)
394 {
395 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
396 				   map->m_len)) {
397 		ext4_error_inode(inode, func, line, map->m_pblk,
398 				 "lblock %lu mapped to illegal pblock "
399 				 "(length %d)", (unsigned long) map->m_lblk,
400 				 map->m_len);
401 		return -EIO;
402 	}
403 	return 0;
404 }
405 
406 #define check_block_validity(inode, map)	\
407 	__check_block_validity((inode), __func__, __LINE__, (map))
408 
409 /*
410  * Return the number of contiguous dirty pages in a given inode
411  * starting at page frame idx.
412  */
413 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
414 				    unsigned int max_pages)
415 {
416 	struct address_space *mapping = inode->i_mapping;
417 	pgoff_t	index;
418 	struct pagevec pvec;
419 	pgoff_t num = 0;
420 	int i, nr_pages, done = 0;
421 
422 	if (max_pages == 0)
423 		return 0;
424 	pagevec_init(&pvec, 0);
425 	while (!done) {
426 		index = idx;
427 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 					      PAGECACHE_TAG_DIRTY,
429 					      (pgoff_t)PAGEVEC_SIZE);
430 		if (nr_pages == 0)
431 			break;
432 		for (i = 0; i < nr_pages; i++) {
433 			struct page *page = pvec.pages[i];
434 			struct buffer_head *bh, *head;
435 
436 			lock_page(page);
437 			if (unlikely(page->mapping != mapping) ||
438 			    !PageDirty(page) ||
439 			    PageWriteback(page) ||
440 			    page->index != idx) {
441 				done = 1;
442 				unlock_page(page);
443 				break;
444 			}
445 			if (page_has_buffers(page)) {
446 				bh = head = page_buffers(page);
447 				do {
448 					if (!buffer_delay(bh) &&
449 					    !buffer_unwritten(bh))
450 						done = 1;
451 					bh = bh->b_this_page;
452 				} while (!done && (bh != head));
453 			}
454 			unlock_page(page);
455 			if (done)
456 				break;
457 			idx++;
458 			num++;
459 			if (num >= max_pages) {
460 				done = 1;
461 				break;
462 			}
463 		}
464 		pagevec_release(&pvec);
465 	}
466 	return num;
467 }
468 
469 /*
470  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
471  */
472 static void set_buffers_da_mapped(struct inode *inode,
473 				   struct ext4_map_blocks *map)
474 {
475 	struct address_space *mapping = inode->i_mapping;
476 	struct pagevec pvec;
477 	int i, nr_pages;
478 	pgoff_t index, end;
479 
480 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
481 	end = (map->m_lblk + map->m_len - 1) >>
482 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
483 
484 	pagevec_init(&pvec, 0);
485 	while (index <= end) {
486 		nr_pages = pagevec_lookup(&pvec, mapping, index,
487 					  min(end - index + 1,
488 					      (pgoff_t)PAGEVEC_SIZE));
489 		if (nr_pages == 0)
490 			break;
491 		for (i = 0; i < nr_pages; i++) {
492 			struct page *page = pvec.pages[i];
493 			struct buffer_head *bh, *head;
494 
495 			if (unlikely(page->mapping != mapping) ||
496 			    !PageDirty(page))
497 				break;
498 
499 			if (page_has_buffers(page)) {
500 				bh = head = page_buffers(page);
501 				do {
502 					set_buffer_da_mapped(bh);
503 					bh = bh->b_this_page;
504 				} while (bh != head);
505 			}
506 			index++;
507 		}
508 		pagevec_release(&pvec);
509 	}
510 }
511 
512 /*
513  * The ext4_map_blocks() function tries to look up the requested blocks,
514  * and returns if the blocks are already mapped.
515  *
516  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
517  * and store the allocated blocks in the result buffer head and mark it
518  * mapped.
519  *
520  * If file type is extents based, it will call ext4_ext_map_blocks(),
521  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
522  * based files
523  *
524  * On success, it returns the number of blocks being mapped or allocate.
525  * if create==0 and the blocks are pre-allocated and uninitialized block,
526  * the result buffer head is unmapped. If the create ==1, it will make sure
527  * the buffer head is mapped.
528  *
529  * It returns 0 if plain look up failed (blocks have not been allocated), in
530  * that case, buffer head is unmapped
531  *
532  * It returns the error in case of allocation failure.
533  */
534 int ext4_map_blocks(handle_t *handle, struct inode *inode,
535 		    struct ext4_map_blocks *map, int flags)
536 {
537 	int retval;
538 
539 	map->m_flags = 0;
540 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
541 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
542 		  (unsigned long) map->m_lblk);
543 	/*
544 	 * Try to see if we can get the block without requesting a new
545 	 * file system block.
546 	 */
547 	down_read((&EXT4_I(inode)->i_data_sem));
548 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 					     EXT4_GET_BLOCKS_KEEP_SIZE);
551 	} else {
552 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 					     EXT4_GET_BLOCKS_KEEP_SIZE);
554 	}
555 	up_read((&EXT4_I(inode)->i_data_sem));
556 
557 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
558 		int ret = check_block_validity(inode, map);
559 		if (ret != 0)
560 			return ret;
561 	}
562 
563 	/* If it is only a block(s) look up */
564 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
565 		return retval;
566 
567 	/*
568 	 * Returns if the blocks have already allocated
569 	 *
570 	 * Note that if blocks have been preallocated
571 	 * ext4_ext_get_block() returns the create = 0
572 	 * with buffer head unmapped.
573 	 */
574 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
575 		return retval;
576 
577 	/*
578 	 * When we call get_blocks without the create flag, the
579 	 * BH_Unwritten flag could have gotten set if the blocks
580 	 * requested were part of a uninitialized extent.  We need to
581 	 * clear this flag now that we are committed to convert all or
582 	 * part of the uninitialized extent to be an initialized
583 	 * extent.  This is because we need to avoid the combination
584 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
585 	 * set on the buffer_head.
586 	 */
587 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
588 
589 	/*
590 	 * New blocks allocate and/or writing to uninitialized extent
591 	 * will possibly result in updating i_data, so we take
592 	 * the write lock of i_data_sem, and call get_blocks()
593 	 * with create == 1 flag.
594 	 */
595 	down_write((&EXT4_I(inode)->i_data_sem));
596 
597 	/*
598 	 * if the caller is from delayed allocation writeout path
599 	 * we have already reserved fs blocks for allocation
600 	 * let the underlying get_block() function know to
601 	 * avoid double accounting
602 	 */
603 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
604 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
605 	/*
606 	 * We need to check for EXT4 here because migrate
607 	 * could have changed the inode type in between
608 	 */
609 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
610 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
611 	} else {
612 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
613 
614 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
615 			/*
616 			 * We allocated new blocks which will result in
617 			 * i_data's format changing.  Force the migrate
618 			 * to fail by clearing migrate flags
619 			 */
620 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
621 		}
622 
623 		/*
624 		 * Update reserved blocks/metadata blocks after successful
625 		 * block allocation which had been deferred till now. We don't
626 		 * support fallocate for non extent files. So we can update
627 		 * reserve space here.
628 		 */
629 		if ((retval > 0) &&
630 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
631 			ext4_da_update_reserve_space(inode, retval, 1);
632 	}
633 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
634 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
635 
636 		/* If we have successfully mapped the delayed allocated blocks,
637 		 * set the BH_Da_Mapped bit on them. Its important to do this
638 		 * under the protection of i_data_sem.
639 		 */
640 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
641 			set_buffers_da_mapped(inode, map);
642 	}
643 
644 	up_write((&EXT4_I(inode)->i_data_sem));
645 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
646 		int ret = check_block_validity(inode, map);
647 		if (ret != 0)
648 			return ret;
649 	}
650 	return retval;
651 }
652 
653 /* Maximum number of blocks we map for direct IO at once. */
654 #define DIO_MAX_BLOCKS 4096
655 
656 static int _ext4_get_block(struct inode *inode, sector_t iblock,
657 			   struct buffer_head *bh, int flags)
658 {
659 	handle_t *handle = ext4_journal_current_handle();
660 	struct ext4_map_blocks map;
661 	int ret = 0, started = 0;
662 	int dio_credits;
663 
664 	map.m_lblk = iblock;
665 	map.m_len = bh->b_size >> inode->i_blkbits;
666 
667 	if (flags && !handle) {
668 		/* Direct IO write... */
669 		if (map.m_len > DIO_MAX_BLOCKS)
670 			map.m_len = DIO_MAX_BLOCKS;
671 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
672 		handle = ext4_journal_start(inode, dio_credits);
673 		if (IS_ERR(handle)) {
674 			ret = PTR_ERR(handle);
675 			return ret;
676 		}
677 		started = 1;
678 	}
679 
680 	ret = ext4_map_blocks(handle, inode, &map, flags);
681 	if (ret > 0) {
682 		map_bh(bh, inode->i_sb, map.m_pblk);
683 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
684 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
685 		ret = 0;
686 	}
687 	if (started)
688 		ext4_journal_stop(handle);
689 	return ret;
690 }
691 
692 int ext4_get_block(struct inode *inode, sector_t iblock,
693 		   struct buffer_head *bh, int create)
694 {
695 	return _ext4_get_block(inode, iblock, bh,
696 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
697 }
698 
699 /*
700  * `handle' can be NULL if create is zero
701  */
702 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
703 				ext4_lblk_t block, int create, int *errp)
704 {
705 	struct ext4_map_blocks map;
706 	struct buffer_head *bh;
707 	int fatal = 0, err;
708 
709 	J_ASSERT(handle != NULL || create == 0);
710 
711 	map.m_lblk = block;
712 	map.m_len = 1;
713 	err = ext4_map_blocks(handle, inode, &map,
714 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
715 
716 	if (err < 0)
717 		*errp = err;
718 	if (err <= 0)
719 		return NULL;
720 	*errp = 0;
721 
722 	bh = sb_getblk(inode->i_sb, map.m_pblk);
723 	if (!bh) {
724 		*errp = -EIO;
725 		return NULL;
726 	}
727 	if (map.m_flags & EXT4_MAP_NEW) {
728 		J_ASSERT(create != 0);
729 		J_ASSERT(handle != NULL);
730 
731 		/*
732 		 * Now that we do not always journal data, we should
733 		 * keep in mind whether this should always journal the
734 		 * new buffer as metadata.  For now, regular file
735 		 * writes use ext4_get_block instead, so it's not a
736 		 * problem.
737 		 */
738 		lock_buffer(bh);
739 		BUFFER_TRACE(bh, "call get_create_access");
740 		fatal = ext4_journal_get_create_access(handle, bh);
741 		if (!fatal && !buffer_uptodate(bh)) {
742 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
743 			set_buffer_uptodate(bh);
744 		}
745 		unlock_buffer(bh);
746 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
747 		err = ext4_handle_dirty_metadata(handle, inode, bh);
748 		if (!fatal)
749 			fatal = err;
750 	} else {
751 		BUFFER_TRACE(bh, "not a new buffer");
752 	}
753 	if (fatal) {
754 		*errp = fatal;
755 		brelse(bh);
756 		bh = NULL;
757 	}
758 	return bh;
759 }
760 
761 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
762 			       ext4_lblk_t block, int create, int *err)
763 {
764 	struct buffer_head *bh;
765 
766 	bh = ext4_getblk(handle, inode, block, create, err);
767 	if (!bh)
768 		return bh;
769 	if (buffer_uptodate(bh))
770 		return bh;
771 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
772 	wait_on_buffer(bh);
773 	if (buffer_uptodate(bh))
774 		return bh;
775 	put_bh(bh);
776 	*err = -EIO;
777 	return NULL;
778 }
779 
780 static int walk_page_buffers(handle_t *handle,
781 			     struct buffer_head *head,
782 			     unsigned from,
783 			     unsigned to,
784 			     int *partial,
785 			     int (*fn)(handle_t *handle,
786 				       struct buffer_head *bh))
787 {
788 	struct buffer_head *bh;
789 	unsigned block_start, block_end;
790 	unsigned blocksize = head->b_size;
791 	int err, ret = 0;
792 	struct buffer_head *next;
793 
794 	for (bh = head, block_start = 0;
795 	     ret == 0 && (bh != head || !block_start);
796 	     block_start = block_end, bh = next) {
797 		next = bh->b_this_page;
798 		block_end = block_start + blocksize;
799 		if (block_end <= from || block_start >= to) {
800 			if (partial && !buffer_uptodate(bh))
801 				*partial = 1;
802 			continue;
803 		}
804 		err = (*fn)(handle, bh);
805 		if (!ret)
806 			ret = err;
807 	}
808 	return ret;
809 }
810 
811 /*
812  * To preserve ordering, it is essential that the hole instantiation and
813  * the data write be encapsulated in a single transaction.  We cannot
814  * close off a transaction and start a new one between the ext4_get_block()
815  * and the commit_write().  So doing the jbd2_journal_start at the start of
816  * prepare_write() is the right place.
817  *
818  * Also, this function can nest inside ext4_writepage() ->
819  * block_write_full_page(). In that case, we *know* that ext4_writepage()
820  * has generated enough buffer credits to do the whole page.  So we won't
821  * block on the journal in that case, which is good, because the caller may
822  * be PF_MEMALLOC.
823  *
824  * By accident, ext4 can be reentered when a transaction is open via
825  * quota file writes.  If we were to commit the transaction while thus
826  * reentered, there can be a deadlock - we would be holding a quota
827  * lock, and the commit would never complete if another thread had a
828  * transaction open and was blocking on the quota lock - a ranking
829  * violation.
830  *
831  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
832  * will _not_ run commit under these circumstances because handle->h_ref
833  * is elevated.  We'll still have enough credits for the tiny quotafile
834  * write.
835  */
836 static int do_journal_get_write_access(handle_t *handle,
837 				       struct buffer_head *bh)
838 {
839 	int dirty = buffer_dirty(bh);
840 	int ret;
841 
842 	if (!buffer_mapped(bh) || buffer_freed(bh))
843 		return 0;
844 	/*
845 	 * __block_write_begin() could have dirtied some buffers. Clean
846 	 * the dirty bit as jbd2_journal_get_write_access() could complain
847 	 * otherwise about fs integrity issues. Setting of the dirty bit
848 	 * by __block_write_begin() isn't a real problem here as we clear
849 	 * the bit before releasing a page lock and thus writeback cannot
850 	 * ever write the buffer.
851 	 */
852 	if (dirty)
853 		clear_buffer_dirty(bh);
854 	ret = ext4_journal_get_write_access(handle, bh);
855 	if (!ret && dirty)
856 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
857 	return ret;
858 }
859 
860 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
861 		   struct buffer_head *bh_result, int create);
862 static int ext4_write_begin(struct file *file, struct address_space *mapping,
863 			    loff_t pos, unsigned len, unsigned flags,
864 			    struct page **pagep, void **fsdata)
865 {
866 	struct inode *inode = mapping->host;
867 	int ret, needed_blocks;
868 	handle_t *handle;
869 	int retries = 0;
870 	struct page *page;
871 	pgoff_t index;
872 	unsigned from, to;
873 
874 	trace_ext4_write_begin(inode, pos, len, flags);
875 	/*
876 	 * Reserve one block more for addition to orphan list in case
877 	 * we allocate blocks but write fails for some reason
878 	 */
879 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
880 	index = pos >> PAGE_CACHE_SHIFT;
881 	from = pos & (PAGE_CACHE_SIZE - 1);
882 	to = from + len;
883 
884 retry:
885 	handle = ext4_journal_start(inode, needed_blocks);
886 	if (IS_ERR(handle)) {
887 		ret = PTR_ERR(handle);
888 		goto out;
889 	}
890 
891 	/* We cannot recurse into the filesystem as the transaction is already
892 	 * started */
893 	flags |= AOP_FLAG_NOFS;
894 
895 	page = grab_cache_page_write_begin(mapping, index, flags);
896 	if (!page) {
897 		ext4_journal_stop(handle);
898 		ret = -ENOMEM;
899 		goto out;
900 	}
901 	*pagep = page;
902 
903 	if (ext4_should_dioread_nolock(inode))
904 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
905 	else
906 		ret = __block_write_begin(page, pos, len, ext4_get_block);
907 
908 	if (!ret && ext4_should_journal_data(inode)) {
909 		ret = walk_page_buffers(handle, page_buffers(page),
910 				from, to, NULL, do_journal_get_write_access);
911 	}
912 
913 	if (ret) {
914 		unlock_page(page);
915 		page_cache_release(page);
916 		/*
917 		 * __block_write_begin may have instantiated a few blocks
918 		 * outside i_size.  Trim these off again. Don't need
919 		 * i_size_read because we hold i_mutex.
920 		 *
921 		 * Add inode to orphan list in case we crash before
922 		 * truncate finishes
923 		 */
924 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
925 			ext4_orphan_add(handle, inode);
926 
927 		ext4_journal_stop(handle);
928 		if (pos + len > inode->i_size) {
929 			ext4_truncate_failed_write(inode);
930 			/*
931 			 * If truncate failed early the inode might
932 			 * still be on the orphan list; we need to
933 			 * make sure the inode is removed from the
934 			 * orphan list in that case.
935 			 */
936 			if (inode->i_nlink)
937 				ext4_orphan_del(NULL, inode);
938 		}
939 	}
940 
941 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
942 		goto retry;
943 out:
944 	return ret;
945 }
946 
947 /* For write_end() in data=journal mode */
948 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
949 {
950 	if (!buffer_mapped(bh) || buffer_freed(bh))
951 		return 0;
952 	set_buffer_uptodate(bh);
953 	return ext4_handle_dirty_metadata(handle, NULL, bh);
954 }
955 
956 static int ext4_generic_write_end(struct file *file,
957 				  struct address_space *mapping,
958 				  loff_t pos, unsigned len, unsigned copied,
959 				  struct page *page, void *fsdata)
960 {
961 	int i_size_changed = 0;
962 	struct inode *inode = mapping->host;
963 	handle_t *handle = ext4_journal_current_handle();
964 
965 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
966 
967 	/*
968 	 * No need to use i_size_read() here, the i_size
969 	 * cannot change under us because we hold i_mutex.
970 	 *
971 	 * But it's important to update i_size while still holding page lock:
972 	 * page writeout could otherwise come in and zero beyond i_size.
973 	 */
974 	if (pos + copied > inode->i_size) {
975 		i_size_write(inode, pos + copied);
976 		i_size_changed = 1;
977 	}
978 
979 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
980 		/* We need to mark inode dirty even if
981 		 * new_i_size is less that inode->i_size
982 		 * bu greater than i_disksize.(hint delalloc)
983 		 */
984 		ext4_update_i_disksize(inode, (pos + copied));
985 		i_size_changed = 1;
986 	}
987 	unlock_page(page);
988 	page_cache_release(page);
989 
990 	/*
991 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
992 	 * makes the holding time of page lock longer. Second, it forces lock
993 	 * ordering of page lock and transaction start for journaling
994 	 * filesystems.
995 	 */
996 	if (i_size_changed)
997 		ext4_mark_inode_dirty(handle, inode);
998 
999 	return copied;
1000 }
1001 
1002 /*
1003  * We need to pick up the new inode size which generic_commit_write gave us
1004  * `file' can be NULL - eg, when called from page_symlink().
1005  *
1006  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1007  * buffers are managed internally.
1008  */
1009 static int ext4_ordered_write_end(struct file *file,
1010 				  struct address_space *mapping,
1011 				  loff_t pos, unsigned len, unsigned copied,
1012 				  struct page *page, void *fsdata)
1013 {
1014 	handle_t *handle = ext4_journal_current_handle();
1015 	struct inode *inode = mapping->host;
1016 	int ret = 0, ret2;
1017 
1018 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1019 	ret = ext4_jbd2_file_inode(handle, inode);
1020 
1021 	if (ret == 0) {
1022 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1023 							page, fsdata);
1024 		copied = ret2;
1025 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1026 			/* if we have allocated more blocks and copied
1027 			 * less. We will have blocks allocated outside
1028 			 * inode->i_size. So truncate them
1029 			 */
1030 			ext4_orphan_add(handle, inode);
1031 		if (ret2 < 0)
1032 			ret = ret2;
1033 	} else {
1034 		unlock_page(page);
1035 		page_cache_release(page);
1036 	}
1037 
1038 	ret2 = ext4_journal_stop(handle);
1039 	if (!ret)
1040 		ret = ret2;
1041 
1042 	if (pos + len > inode->i_size) {
1043 		ext4_truncate_failed_write(inode);
1044 		/*
1045 		 * If truncate failed early the inode might still be
1046 		 * on the orphan list; we need to make sure the inode
1047 		 * is removed from the orphan list in that case.
1048 		 */
1049 		if (inode->i_nlink)
1050 			ext4_orphan_del(NULL, inode);
1051 	}
1052 
1053 
1054 	return ret ? ret : copied;
1055 }
1056 
1057 static int ext4_writeback_write_end(struct file *file,
1058 				    struct address_space *mapping,
1059 				    loff_t pos, unsigned len, unsigned copied,
1060 				    struct page *page, void *fsdata)
1061 {
1062 	handle_t *handle = ext4_journal_current_handle();
1063 	struct inode *inode = mapping->host;
1064 	int ret = 0, ret2;
1065 
1066 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1067 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1068 							page, fsdata);
1069 	copied = ret2;
1070 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071 		/* if we have allocated more blocks and copied
1072 		 * less. We will have blocks allocated outside
1073 		 * inode->i_size. So truncate them
1074 		 */
1075 		ext4_orphan_add(handle, inode);
1076 
1077 	if (ret2 < 0)
1078 		ret = ret2;
1079 
1080 	ret2 = ext4_journal_stop(handle);
1081 	if (!ret)
1082 		ret = ret2;
1083 
1084 	if (pos + len > inode->i_size) {
1085 		ext4_truncate_failed_write(inode);
1086 		/*
1087 		 * If truncate failed early the inode might still be
1088 		 * on the orphan list; we need to make sure the inode
1089 		 * is removed from the orphan list in that case.
1090 		 */
1091 		if (inode->i_nlink)
1092 			ext4_orphan_del(NULL, inode);
1093 	}
1094 
1095 	return ret ? ret : copied;
1096 }
1097 
1098 static int ext4_journalled_write_end(struct file *file,
1099 				     struct address_space *mapping,
1100 				     loff_t pos, unsigned len, unsigned copied,
1101 				     struct page *page, void *fsdata)
1102 {
1103 	handle_t *handle = ext4_journal_current_handle();
1104 	struct inode *inode = mapping->host;
1105 	int ret = 0, ret2;
1106 	int partial = 0;
1107 	unsigned from, to;
1108 	loff_t new_i_size;
1109 
1110 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1111 	from = pos & (PAGE_CACHE_SIZE - 1);
1112 	to = from + len;
1113 
1114 	BUG_ON(!ext4_handle_valid(handle));
1115 
1116 	if (copied < len) {
1117 		if (!PageUptodate(page))
1118 			copied = 0;
1119 		page_zero_new_buffers(page, from+copied, to);
1120 	}
1121 
1122 	ret = walk_page_buffers(handle, page_buffers(page), from,
1123 				to, &partial, write_end_fn);
1124 	if (!partial)
1125 		SetPageUptodate(page);
1126 	new_i_size = pos + copied;
1127 	if (new_i_size > inode->i_size)
1128 		i_size_write(inode, pos+copied);
1129 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1130 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1132 		ext4_update_i_disksize(inode, new_i_size);
1133 		ret2 = ext4_mark_inode_dirty(handle, inode);
1134 		if (!ret)
1135 			ret = ret2;
1136 	}
1137 
1138 	unlock_page(page);
1139 	page_cache_release(page);
1140 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1141 		/* if we have allocated more blocks and copied
1142 		 * less. We will have blocks allocated outside
1143 		 * inode->i_size. So truncate them
1144 		 */
1145 		ext4_orphan_add(handle, inode);
1146 
1147 	ret2 = ext4_journal_stop(handle);
1148 	if (!ret)
1149 		ret = ret2;
1150 	if (pos + len > inode->i_size) {
1151 		ext4_truncate_failed_write(inode);
1152 		/*
1153 		 * If truncate failed early the inode might still be
1154 		 * on the orphan list; we need to make sure the inode
1155 		 * is removed from the orphan list in that case.
1156 		 */
1157 		if (inode->i_nlink)
1158 			ext4_orphan_del(NULL, inode);
1159 	}
1160 
1161 	return ret ? ret : copied;
1162 }
1163 
1164 /*
1165  * Reserve a single cluster located at lblock
1166  */
1167 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1168 {
1169 	int retries = 0;
1170 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1171 	struct ext4_inode_info *ei = EXT4_I(inode);
1172 	unsigned int md_needed;
1173 	int ret;
1174 
1175 	/*
1176 	 * recalculate the amount of metadata blocks to reserve
1177 	 * in order to allocate nrblocks
1178 	 * worse case is one extent per block
1179 	 */
1180 repeat:
1181 	spin_lock(&ei->i_block_reservation_lock);
1182 	md_needed = EXT4_NUM_B2C(sbi,
1183 				 ext4_calc_metadata_amount(inode, lblock));
1184 	trace_ext4_da_reserve_space(inode, md_needed);
1185 	spin_unlock(&ei->i_block_reservation_lock);
1186 
1187 	/*
1188 	 * We will charge metadata quota at writeout time; this saves
1189 	 * us from metadata over-estimation, though we may go over by
1190 	 * a small amount in the end.  Here we just reserve for data.
1191 	 */
1192 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1193 	if (ret)
1194 		return ret;
1195 	/*
1196 	 * We do still charge estimated metadata to the sb though;
1197 	 * we cannot afford to run out of free blocks.
1198 	 */
1199 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1200 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1201 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1202 			yield();
1203 			goto repeat;
1204 		}
1205 		return -ENOSPC;
1206 	}
1207 	spin_lock(&ei->i_block_reservation_lock);
1208 	ei->i_reserved_data_blocks++;
1209 	ei->i_reserved_meta_blocks += md_needed;
1210 	spin_unlock(&ei->i_block_reservation_lock);
1211 
1212 	return 0;       /* success */
1213 }
1214 
1215 static void ext4_da_release_space(struct inode *inode, int to_free)
1216 {
1217 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1218 	struct ext4_inode_info *ei = EXT4_I(inode);
1219 
1220 	if (!to_free)
1221 		return;		/* Nothing to release, exit */
1222 
1223 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1224 
1225 	trace_ext4_da_release_space(inode, to_free);
1226 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1227 		/*
1228 		 * if there aren't enough reserved blocks, then the
1229 		 * counter is messed up somewhere.  Since this
1230 		 * function is called from invalidate page, it's
1231 		 * harmless to return without any action.
1232 		 */
1233 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1234 			 "ino %lu, to_free %d with only %d reserved "
1235 			 "data blocks", inode->i_ino, to_free,
1236 			 ei->i_reserved_data_blocks);
1237 		WARN_ON(1);
1238 		to_free = ei->i_reserved_data_blocks;
1239 	}
1240 	ei->i_reserved_data_blocks -= to_free;
1241 
1242 	if (ei->i_reserved_data_blocks == 0) {
1243 		/*
1244 		 * We can release all of the reserved metadata blocks
1245 		 * only when we have written all of the delayed
1246 		 * allocation blocks.
1247 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1248 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1249 		 */
1250 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1251 				   ei->i_reserved_meta_blocks);
1252 		ei->i_reserved_meta_blocks = 0;
1253 		ei->i_da_metadata_calc_len = 0;
1254 	}
1255 
1256 	/* update fs dirty data blocks counter */
1257 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1258 
1259 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1260 
1261 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1262 }
1263 
1264 static void ext4_da_page_release_reservation(struct page *page,
1265 					     unsigned long offset)
1266 {
1267 	int to_release = 0;
1268 	struct buffer_head *head, *bh;
1269 	unsigned int curr_off = 0;
1270 	struct inode *inode = page->mapping->host;
1271 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1272 	int num_clusters;
1273 
1274 	head = page_buffers(page);
1275 	bh = head;
1276 	do {
1277 		unsigned int next_off = curr_off + bh->b_size;
1278 
1279 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1280 			to_release++;
1281 			clear_buffer_delay(bh);
1282 			clear_buffer_da_mapped(bh);
1283 		}
1284 		curr_off = next_off;
1285 	} while ((bh = bh->b_this_page) != head);
1286 
1287 	/* If we have released all the blocks belonging to a cluster, then we
1288 	 * need to release the reserved space for that cluster. */
1289 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1290 	while (num_clusters > 0) {
1291 		ext4_fsblk_t lblk;
1292 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1293 			((num_clusters - 1) << sbi->s_cluster_bits);
1294 		if (sbi->s_cluster_ratio == 1 ||
1295 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1296 			ext4_da_release_space(inode, 1);
1297 
1298 		num_clusters--;
1299 	}
1300 }
1301 
1302 /*
1303  * Delayed allocation stuff
1304  */
1305 
1306 /*
1307  * mpage_da_submit_io - walks through extent of pages and try to write
1308  * them with writepage() call back
1309  *
1310  * @mpd->inode: inode
1311  * @mpd->first_page: first page of the extent
1312  * @mpd->next_page: page after the last page of the extent
1313  *
1314  * By the time mpage_da_submit_io() is called we expect all blocks
1315  * to be allocated. this may be wrong if allocation failed.
1316  *
1317  * As pages are already locked by write_cache_pages(), we can't use it
1318  */
1319 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1320 			      struct ext4_map_blocks *map)
1321 {
1322 	struct pagevec pvec;
1323 	unsigned long index, end;
1324 	int ret = 0, err, nr_pages, i;
1325 	struct inode *inode = mpd->inode;
1326 	struct address_space *mapping = inode->i_mapping;
1327 	loff_t size = i_size_read(inode);
1328 	unsigned int len, block_start;
1329 	struct buffer_head *bh, *page_bufs = NULL;
1330 	int journal_data = ext4_should_journal_data(inode);
1331 	sector_t pblock = 0, cur_logical = 0;
1332 	struct ext4_io_submit io_submit;
1333 
1334 	BUG_ON(mpd->next_page <= mpd->first_page);
1335 	memset(&io_submit, 0, sizeof(io_submit));
1336 	/*
1337 	 * We need to start from the first_page to the next_page - 1
1338 	 * to make sure we also write the mapped dirty buffer_heads.
1339 	 * If we look at mpd->b_blocknr we would only be looking
1340 	 * at the currently mapped buffer_heads.
1341 	 */
1342 	index = mpd->first_page;
1343 	end = mpd->next_page - 1;
1344 
1345 	pagevec_init(&pvec, 0);
1346 	while (index <= end) {
1347 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1348 		if (nr_pages == 0)
1349 			break;
1350 		for (i = 0; i < nr_pages; i++) {
1351 			int commit_write = 0, skip_page = 0;
1352 			struct page *page = pvec.pages[i];
1353 
1354 			index = page->index;
1355 			if (index > end)
1356 				break;
1357 
1358 			if (index == size >> PAGE_CACHE_SHIFT)
1359 				len = size & ~PAGE_CACHE_MASK;
1360 			else
1361 				len = PAGE_CACHE_SIZE;
1362 			if (map) {
1363 				cur_logical = index << (PAGE_CACHE_SHIFT -
1364 							inode->i_blkbits);
1365 				pblock = map->m_pblk + (cur_logical -
1366 							map->m_lblk);
1367 			}
1368 			index++;
1369 
1370 			BUG_ON(!PageLocked(page));
1371 			BUG_ON(PageWriteback(page));
1372 
1373 			/*
1374 			 * If the page does not have buffers (for
1375 			 * whatever reason), try to create them using
1376 			 * __block_write_begin.  If this fails,
1377 			 * skip the page and move on.
1378 			 */
1379 			if (!page_has_buffers(page)) {
1380 				if (__block_write_begin(page, 0, len,
1381 						noalloc_get_block_write)) {
1382 				skip_page:
1383 					unlock_page(page);
1384 					continue;
1385 				}
1386 				commit_write = 1;
1387 			}
1388 
1389 			bh = page_bufs = page_buffers(page);
1390 			block_start = 0;
1391 			do {
1392 				if (!bh)
1393 					goto skip_page;
1394 				if (map && (cur_logical >= map->m_lblk) &&
1395 				    (cur_logical <= (map->m_lblk +
1396 						     (map->m_len - 1)))) {
1397 					if (buffer_delay(bh)) {
1398 						clear_buffer_delay(bh);
1399 						bh->b_blocknr = pblock;
1400 					}
1401 					if (buffer_da_mapped(bh))
1402 						clear_buffer_da_mapped(bh);
1403 					if (buffer_unwritten(bh) ||
1404 					    buffer_mapped(bh))
1405 						BUG_ON(bh->b_blocknr != pblock);
1406 					if (map->m_flags & EXT4_MAP_UNINIT)
1407 						set_buffer_uninit(bh);
1408 					clear_buffer_unwritten(bh);
1409 				}
1410 
1411 				/*
1412 				 * skip page if block allocation undone and
1413 				 * block is dirty
1414 				 */
1415 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1416 					skip_page = 1;
1417 				bh = bh->b_this_page;
1418 				block_start += bh->b_size;
1419 				cur_logical++;
1420 				pblock++;
1421 			} while (bh != page_bufs);
1422 
1423 			if (skip_page)
1424 				goto skip_page;
1425 
1426 			if (commit_write)
1427 				/* mark the buffer_heads as dirty & uptodate */
1428 				block_commit_write(page, 0, len);
1429 
1430 			clear_page_dirty_for_io(page);
1431 			/*
1432 			 * Delalloc doesn't support data journalling,
1433 			 * but eventually maybe we'll lift this
1434 			 * restriction.
1435 			 */
1436 			if (unlikely(journal_data && PageChecked(page)))
1437 				err = __ext4_journalled_writepage(page, len);
1438 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1439 				err = ext4_bio_write_page(&io_submit, page,
1440 							  len, mpd->wbc);
1441 			else if (buffer_uninit(page_bufs)) {
1442 				ext4_set_bh_endio(page_bufs, inode);
1443 				err = block_write_full_page_endio(page,
1444 					noalloc_get_block_write,
1445 					mpd->wbc, ext4_end_io_buffer_write);
1446 			} else
1447 				err = block_write_full_page(page,
1448 					noalloc_get_block_write, mpd->wbc);
1449 
1450 			if (!err)
1451 				mpd->pages_written++;
1452 			/*
1453 			 * In error case, we have to continue because
1454 			 * remaining pages are still locked
1455 			 */
1456 			if (ret == 0)
1457 				ret = err;
1458 		}
1459 		pagevec_release(&pvec);
1460 	}
1461 	ext4_io_submit(&io_submit);
1462 	return ret;
1463 }
1464 
1465 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1466 {
1467 	int nr_pages, i;
1468 	pgoff_t index, end;
1469 	struct pagevec pvec;
1470 	struct inode *inode = mpd->inode;
1471 	struct address_space *mapping = inode->i_mapping;
1472 
1473 	index = mpd->first_page;
1474 	end   = mpd->next_page - 1;
1475 	while (index <= end) {
1476 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1477 		if (nr_pages == 0)
1478 			break;
1479 		for (i = 0; i < nr_pages; i++) {
1480 			struct page *page = pvec.pages[i];
1481 			if (page->index > end)
1482 				break;
1483 			BUG_ON(!PageLocked(page));
1484 			BUG_ON(PageWriteback(page));
1485 			block_invalidatepage(page, 0);
1486 			ClearPageUptodate(page);
1487 			unlock_page(page);
1488 		}
1489 		index = pvec.pages[nr_pages - 1]->index + 1;
1490 		pagevec_release(&pvec);
1491 	}
1492 	return;
1493 }
1494 
1495 static void ext4_print_free_blocks(struct inode *inode)
1496 {
1497 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1498 	struct super_block *sb = inode->i_sb;
1499 
1500 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1501 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1502 			ext4_count_free_clusters(inode->i_sb)));
1503 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1504 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1505 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1506 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1507 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1508 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1509 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1510 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1511 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1512 		 EXT4_I(inode)->i_reserved_data_blocks);
1513 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1514 	       EXT4_I(inode)->i_reserved_meta_blocks);
1515 	return;
1516 }
1517 
1518 /*
1519  * mpage_da_map_and_submit - go through given space, map them
1520  *       if necessary, and then submit them for I/O
1521  *
1522  * @mpd - bh describing space
1523  *
1524  * The function skips space we know is already mapped to disk blocks.
1525  *
1526  */
1527 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1528 {
1529 	int err, blks, get_blocks_flags;
1530 	struct ext4_map_blocks map, *mapp = NULL;
1531 	sector_t next = mpd->b_blocknr;
1532 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1533 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1534 	handle_t *handle = NULL;
1535 
1536 	/*
1537 	 * If the blocks are mapped already, or we couldn't accumulate
1538 	 * any blocks, then proceed immediately to the submission stage.
1539 	 */
1540 	if ((mpd->b_size == 0) ||
1541 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1542 	     !(mpd->b_state & (1 << BH_Delay)) &&
1543 	     !(mpd->b_state & (1 << BH_Unwritten))))
1544 		goto submit_io;
1545 
1546 	handle = ext4_journal_current_handle();
1547 	BUG_ON(!handle);
1548 
1549 	/*
1550 	 * Call ext4_map_blocks() to allocate any delayed allocation
1551 	 * blocks, or to convert an uninitialized extent to be
1552 	 * initialized (in the case where we have written into
1553 	 * one or more preallocated blocks).
1554 	 *
1555 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1556 	 * indicate that we are on the delayed allocation path.  This
1557 	 * affects functions in many different parts of the allocation
1558 	 * call path.  This flag exists primarily because we don't
1559 	 * want to change *many* call functions, so ext4_map_blocks()
1560 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1561 	 * inode's allocation semaphore is taken.
1562 	 *
1563 	 * If the blocks in questions were delalloc blocks, set
1564 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1565 	 * variables are updated after the blocks have been allocated.
1566 	 */
1567 	map.m_lblk = next;
1568 	map.m_len = max_blocks;
1569 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1570 	if (ext4_should_dioread_nolock(mpd->inode))
1571 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1572 	if (mpd->b_state & (1 << BH_Delay))
1573 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1574 
1575 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1576 	if (blks < 0) {
1577 		struct super_block *sb = mpd->inode->i_sb;
1578 
1579 		err = blks;
1580 		/*
1581 		 * If get block returns EAGAIN or ENOSPC and there
1582 		 * appears to be free blocks we will just let
1583 		 * mpage_da_submit_io() unlock all of the pages.
1584 		 */
1585 		if (err == -EAGAIN)
1586 			goto submit_io;
1587 
1588 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1589 			mpd->retval = err;
1590 			goto submit_io;
1591 		}
1592 
1593 		/*
1594 		 * get block failure will cause us to loop in
1595 		 * writepages, because a_ops->writepage won't be able
1596 		 * to make progress. The page will be redirtied by
1597 		 * writepage and writepages will again try to write
1598 		 * the same.
1599 		 */
1600 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1601 			ext4_msg(sb, KERN_CRIT,
1602 				 "delayed block allocation failed for inode %lu "
1603 				 "at logical offset %llu with max blocks %zd "
1604 				 "with error %d", mpd->inode->i_ino,
1605 				 (unsigned long long) next,
1606 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1607 			ext4_msg(sb, KERN_CRIT,
1608 				"This should not happen!! Data will be lost\n");
1609 			if (err == -ENOSPC)
1610 				ext4_print_free_blocks(mpd->inode);
1611 		}
1612 		/* invalidate all the pages */
1613 		ext4_da_block_invalidatepages(mpd);
1614 
1615 		/* Mark this page range as having been completed */
1616 		mpd->io_done = 1;
1617 		return;
1618 	}
1619 	BUG_ON(blks == 0);
1620 
1621 	mapp = &map;
1622 	if (map.m_flags & EXT4_MAP_NEW) {
1623 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1624 		int i;
1625 
1626 		for (i = 0; i < map.m_len; i++)
1627 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1628 
1629 		if (ext4_should_order_data(mpd->inode)) {
1630 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1631 			if (err) {
1632 				/* Only if the journal is aborted */
1633 				mpd->retval = err;
1634 				goto submit_io;
1635 			}
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * Update on-disk size along with block allocation.
1641 	 */
1642 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1643 	if (disksize > i_size_read(mpd->inode))
1644 		disksize = i_size_read(mpd->inode);
1645 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1646 		ext4_update_i_disksize(mpd->inode, disksize);
1647 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1648 		if (err)
1649 			ext4_error(mpd->inode->i_sb,
1650 				   "Failed to mark inode %lu dirty",
1651 				   mpd->inode->i_ino);
1652 	}
1653 
1654 submit_io:
1655 	mpage_da_submit_io(mpd, mapp);
1656 	mpd->io_done = 1;
1657 }
1658 
1659 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1660 		(1 << BH_Delay) | (1 << BH_Unwritten))
1661 
1662 /*
1663  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1664  *
1665  * @mpd->lbh - extent of blocks
1666  * @logical - logical number of the block in the file
1667  * @bh - bh of the block (used to access block's state)
1668  *
1669  * the function is used to collect contig. blocks in same state
1670  */
1671 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1672 				   sector_t logical, size_t b_size,
1673 				   unsigned long b_state)
1674 {
1675 	sector_t next;
1676 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1677 
1678 	/*
1679 	 * XXX Don't go larger than mballoc is willing to allocate
1680 	 * This is a stopgap solution.  We eventually need to fold
1681 	 * mpage_da_submit_io() into this function and then call
1682 	 * ext4_map_blocks() multiple times in a loop
1683 	 */
1684 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1685 		goto flush_it;
1686 
1687 	/* check if thereserved journal credits might overflow */
1688 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1689 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1690 			/*
1691 			 * With non-extent format we are limited by the journal
1692 			 * credit available.  Total credit needed to insert
1693 			 * nrblocks contiguous blocks is dependent on the
1694 			 * nrblocks.  So limit nrblocks.
1695 			 */
1696 			goto flush_it;
1697 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1698 				EXT4_MAX_TRANS_DATA) {
1699 			/*
1700 			 * Adding the new buffer_head would make it cross the
1701 			 * allowed limit for which we have journal credit
1702 			 * reserved. So limit the new bh->b_size
1703 			 */
1704 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1705 						mpd->inode->i_blkbits;
1706 			/* we will do mpage_da_submit_io in the next loop */
1707 		}
1708 	}
1709 	/*
1710 	 * First block in the extent
1711 	 */
1712 	if (mpd->b_size == 0) {
1713 		mpd->b_blocknr = logical;
1714 		mpd->b_size = b_size;
1715 		mpd->b_state = b_state & BH_FLAGS;
1716 		return;
1717 	}
1718 
1719 	next = mpd->b_blocknr + nrblocks;
1720 	/*
1721 	 * Can we merge the block to our big extent?
1722 	 */
1723 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1724 		mpd->b_size += b_size;
1725 		return;
1726 	}
1727 
1728 flush_it:
1729 	/*
1730 	 * We couldn't merge the block to our extent, so we
1731 	 * need to flush current  extent and start new one
1732 	 */
1733 	mpage_da_map_and_submit(mpd);
1734 	return;
1735 }
1736 
1737 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1738 {
1739 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1740 }
1741 
1742 /*
1743  * This function is grabs code from the very beginning of
1744  * ext4_map_blocks, but assumes that the caller is from delayed write
1745  * time. This function looks up the requested blocks and sets the
1746  * buffer delay bit under the protection of i_data_sem.
1747  */
1748 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1749 			      struct ext4_map_blocks *map,
1750 			      struct buffer_head *bh)
1751 {
1752 	int retval;
1753 	sector_t invalid_block = ~((sector_t) 0xffff);
1754 
1755 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1756 		invalid_block = ~0;
1757 
1758 	map->m_flags = 0;
1759 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1760 		  "logical block %lu\n", inode->i_ino, map->m_len,
1761 		  (unsigned long) map->m_lblk);
1762 	/*
1763 	 * Try to see if we can get the block without requesting a new
1764 	 * file system block.
1765 	 */
1766 	down_read((&EXT4_I(inode)->i_data_sem));
1767 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1768 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1769 	else
1770 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1771 
1772 	if (retval == 0) {
1773 		/*
1774 		 * XXX: __block_prepare_write() unmaps passed block,
1775 		 * is it OK?
1776 		 */
1777 		/* If the block was allocated from previously allocated cluster,
1778 		 * then we dont need to reserve it again. */
1779 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1780 			retval = ext4_da_reserve_space(inode, iblock);
1781 			if (retval)
1782 				/* not enough space to reserve */
1783 				goto out_unlock;
1784 		}
1785 
1786 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1787 		 * and it should not appear on the bh->b_state.
1788 		 */
1789 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1790 
1791 		map_bh(bh, inode->i_sb, invalid_block);
1792 		set_buffer_new(bh);
1793 		set_buffer_delay(bh);
1794 	}
1795 
1796 out_unlock:
1797 	up_read((&EXT4_I(inode)->i_data_sem));
1798 
1799 	return retval;
1800 }
1801 
1802 /*
1803  * This is a special get_blocks_t callback which is used by
1804  * ext4_da_write_begin().  It will either return mapped block or
1805  * reserve space for a single block.
1806  *
1807  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1808  * We also have b_blocknr = -1 and b_bdev initialized properly
1809  *
1810  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1811  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1812  * initialized properly.
1813  */
1814 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1815 				  struct buffer_head *bh, int create)
1816 {
1817 	struct ext4_map_blocks map;
1818 	int ret = 0;
1819 
1820 	BUG_ON(create == 0);
1821 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1822 
1823 	map.m_lblk = iblock;
1824 	map.m_len = 1;
1825 
1826 	/*
1827 	 * first, we need to know whether the block is allocated already
1828 	 * preallocated blocks are unmapped but should treated
1829 	 * the same as allocated blocks.
1830 	 */
1831 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1832 	if (ret <= 0)
1833 		return ret;
1834 
1835 	map_bh(bh, inode->i_sb, map.m_pblk);
1836 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1837 
1838 	if (buffer_unwritten(bh)) {
1839 		/* A delayed write to unwritten bh should be marked
1840 		 * new and mapped.  Mapped ensures that we don't do
1841 		 * get_block multiple times when we write to the same
1842 		 * offset and new ensures that we do proper zero out
1843 		 * for partial write.
1844 		 */
1845 		set_buffer_new(bh);
1846 		set_buffer_mapped(bh);
1847 	}
1848 	return 0;
1849 }
1850 
1851 /*
1852  * This function is used as a standard get_block_t calback function
1853  * when there is no desire to allocate any blocks.  It is used as a
1854  * callback function for block_write_begin() and block_write_full_page().
1855  * These functions should only try to map a single block at a time.
1856  *
1857  * Since this function doesn't do block allocations even if the caller
1858  * requests it by passing in create=1, it is critically important that
1859  * any caller checks to make sure that any buffer heads are returned
1860  * by this function are either all already mapped or marked for
1861  * delayed allocation before calling  block_write_full_page().  Otherwise,
1862  * b_blocknr could be left unitialized, and the page write functions will
1863  * be taken by surprise.
1864  */
1865 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1866 				   struct buffer_head *bh_result, int create)
1867 {
1868 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1869 	return _ext4_get_block(inode, iblock, bh_result, 0);
1870 }
1871 
1872 static int bget_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874 	get_bh(bh);
1875 	return 0;
1876 }
1877 
1878 static int bput_one(handle_t *handle, struct buffer_head *bh)
1879 {
1880 	put_bh(bh);
1881 	return 0;
1882 }
1883 
1884 static int __ext4_journalled_writepage(struct page *page,
1885 				       unsigned int len)
1886 {
1887 	struct address_space *mapping = page->mapping;
1888 	struct inode *inode = mapping->host;
1889 	struct buffer_head *page_bufs;
1890 	handle_t *handle = NULL;
1891 	int ret = 0;
1892 	int err;
1893 
1894 	ClearPageChecked(page);
1895 	page_bufs = page_buffers(page);
1896 	BUG_ON(!page_bufs);
1897 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1898 	/* As soon as we unlock the page, it can go away, but we have
1899 	 * references to buffers so we are safe */
1900 	unlock_page(page);
1901 
1902 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1903 	if (IS_ERR(handle)) {
1904 		ret = PTR_ERR(handle);
1905 		goto out;
1906 	}
1907 
1908 	BUG_ON(!ext4_handle_valid(handle));
1909 
1910 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911 				do_journal_get_write_access);
1912 
1913 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914 				write_end_fn);
1915 	if (ret == 0)
1916 		ret = err;
1917 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918 	err = ext4_journal_stop(handle);
1919 	if (!ret)
1920 		ret = err;
1921 
1922 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1923 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924 out:
1925 	return ret;
1926 }
1927 
1928 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1929 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1930 
1931 /*
1932  * Note that we don't need to start a transaction unless we're journaling data
1933  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934  * need to file the inode to the transaction's list in ordered mode because if
1935  * we are writing back data added by write(), the inode is already there and if
1936  * we are writing back data modified via mmap(), no one guarantees in which
1937  * transaction the data will hit the disk. In case we are journaling data, we
1938  * cannot start transaction directly because transaction start ranks above page
1939  * lock so we have to do some magic.
1940  *
1941  * This function can get called via...
1942  *   - ext4_da_writepages after taking page lock (have journal handle)
1943  *   - journal_submit_inode_data_buffers (no journal handle)
1944  *   - shrink_page_list via pdflush (no journal handle)
1945  *   - grab_page_cache when doing write_begin (have journal handle)
1946  *
1947  * We don't do any block allocation in this function. If we have page with
1948  * multiple blocks we need to write those buffer_heads that are mapped. This
1949  * is important for mmaped based write. So if we do with blocksize 1K
1950  * truncate(f, 1024);
1951  * a = mmap(f, 0, 4096);
1952  * a[0] = 'a';
1953  * truncate(f, 4096);
1954  * we have in the page first buffer_head mapped via page_mkwrite call back
1955  * but other buffer_heads would be unmapped but dirty (dirty done via the
1956  * do_wp_page). So writepage should write the first block. If we modify
1957  * the mmap area beyond 1024 we will again get a page_fault and the
1958  * page_mkwrite callback will do the block allocation and mark the
1959  * buffer_heads mapped.
1960  *
1961  * We redirty the page if we have any buffer_heads that is either delay or
1962  * unwritten in the page.
1963  *
1964  * We can get recursively called as show below.
1965  *
1966  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967  *		ext4_writepage()
1968  *
1969  * But since we don't do any block allocation we should not deadlock.
1970  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971  */
1972 static int ext4_writepage(struct page *page,
1973 			  struct writeback_control *wbc)
1974 {
1975 	int ret = 0, commit_write = 0;
1976 	loff_t size;
1977 	unsigned int len;
1978 	struct buffer_head *page_bufs = NULL;
1979 	struct inode *inode = page->mapping->host;
1980 
1981 	trace_ext4_writepage(page);
1982 	size = i_size_read(inode);
1983 	if (page->index == size >> PAGE_CACHE_SHIFT)
1984 		len = size & ~PAGE_CACHE_MASK;
1985 	else
1986 		len = PAGE_CACHE_SIZE;
1987 
1988 	/*
1989 	 * If the page does not have buffers (for whatever reason),
1990 	 * try to create them using __block_write_begin.  If this
1991 	 * fails, redirty the page and move on.
1992 	 */
1993 	if (!page_has_buffers(page)) {
1994 		if (__block_write_begin(page, 0, len,
1995 					noalloc_get_block_write)) {
1996 		redirty_page:
1997 			redirty_page_for_writepage(wbc, page);
1998 			unlock_page(page);
1999 			return 0;
2000 		}
2001 		commit_write = 1;
2002 	}
2003 	page_bufs = page_buffers(page);
2004 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2005 			      ext4_bh_delay_or_unwritten)) {
2006 		/*
2007 		 * We don't want to do block allocation, so redirty
2008 		 * the page and return.  We may reach here when we do
2009 		 * a journal commit via journal_submit_inode_data_buffers.
2010 		 * We can also reach here via shrink_page_list but it
2011 		 * should never be for direct reclaim so warn if that
2012 		 * happens
2013 		 */
2014 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2015 								PF_MEMALLOC);
2016 		goto redirty_page;
2017 	}
2018 	if (commit_write)
2019 		/* now mark the buffer_heads as dirty and uptodate */
2020 		block_commit_write(page, 0, len);
2021 
2022 	if (PageChecked(page) && ext4_should_journal_data(inode))
2023 		/*
2024 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2025 		 * doesn't seem much point in redirtying the page here.
2026 		 */
2027 		return __ext4_journalled_writepage(page, len);
2028 
2029 	if (buffer_uninit(page_bufs)) {
2030 		ext4_set_bh_endio(page_bufs, inode);
2031 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2032 					    wbc, ext4_end_io_buffer_write);
2033 	} else
2034 		ret = block_write_full_page(page, noalloc_get_block_write,
2035 					    wbc);
2036 
2037 	return ret;
2038 }
2039 
2040 /*
2041  * This is called via ext4_da_writepages() to
2042  * calculate the total number of credits to reserve to fit
2043  * a single extent allocation into a single transaction,
2044  * ext4_da_writpeages() will loop calling this before
2045  * the block allocation.
2046  */
2047 
2048 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2049 {
2050 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2051 
2052 	/*
2053 	 * With non-extent format the journal credit needed to
2054 	 * insert nrblocks contiguous block is dependent on
2055 	 * number of contiguous block. So we will limit
2056 	 * number of contiguous block to a sane value
2057 	 */
2058 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2059 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2060 		max_blocks = EXT4_MAX_TRANS_DATA;
2061 
2062 	return ext4_chunk_trans_blocks(inode, max_blocks);
2063 }
2064 
2065 /*
2066  * write_cache_pages_da - walk the list of dirty pages of the given
2067  * address space and accumulate pages that need writing, and call
2068  * mpage_da_map_and_submit to map a single contiguous memory region
2069  * and then write them.
2070  */
2071 static int write_cache_pages_da(struct address_space *mapping,
2072 				struct writeback_control *wbc,
2073 				struct mpage_da_data *mpd,
2074 				pgoff_t *done_index)
2075 {
2076 	struct buffer_head	*bh, *head;
2077 	struct inode		*inode = mapping->host;
2078 	struct pagevec		pvec;
2079 	unsigned int		nr_pages;
2080 	sector_t		logical;
2081 	pgoff_t			index, end;
2082 	long			nr_to_write = wbc->nr_to_write;
2083 	int			i, tag, ret = 0;
2084 
2085 	memset(mpd, 0, sizeof(struct mpage_da_data));
2086 	mpd->wbc = wbc;
2087 	mpd->inode = inode;
2088 	pagevec_init(&pvec, 0);
2089 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2090 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2091 
2092 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2093 		tag = PAGECACHE_TAG_TOWRITE;
2094 	else
2095 		tag = PAGECACHE_TAG_DIRTY;
2096 
2097 	*done_index = index;
2098 	while (index <= end) {
2099 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2100 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2101 		if (nr_pages == 0)
2102 			return 0;
2103 
2104 		for (i = 0; i < nr_pages; i++) {
2105 			struct page *page = pvec.pages[i];
2106 
2107 			/*
2108 			 * At this point, the page may be truncated or
2109 			 * invalidated (changing page->mapping to NULL), or
2110 			 * even swizzled back from swapper_space to tmpfs file
2111 			 * mapping. However, page->index will not change
2112 			 * because we have a reference on the page.
2113 			 */
2114 			if (page->index > end)
2115 				goto out;
2116 
2117 			*done_index = page->index + 1;
2118 
2119 			/*
2120 			 * If we can't merge this page, and we have
2121 			 * accumulated an contiguous region, write it
2122 			 */
2123 			if ((mpd->next_page != page->index) &&
2124 			    (mpd->next_page != mpd->first_page)) {
2125 				mpage_da_map_and_submit(mpd);
2126 				goto ret_extent_tail;
2127 			}
2128 
2129 			lock_page(page);
2130 
2131 			/*
2132 			 * If the page is no longer dirty, or its
2133 			 * mapping no longer corresponds to inode we
2134 			 * are writing (which means it has been
2135 			 * truncated or invalidated), or the page is
2136 			 * already under writeback and we are not
2137 			 * doing a data integrity writeback, skip the page
2138 			 */
2139 			if (!PageDirty(page) ||
2140 			    (PageWriteback(page) &&
2141 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2142 			    unlikely(page->mapping != mapping)) {
2143 				unlock_page(page);
2144 				continue;
2145 			}
2146 
2147 			wait_on_page_writeback(page);
2148 			BUG_ON(PageWriteback(page));
2149 
2150 			if (mpd->next_page != page->index)
2151 				mpd->first_page = page->index;
2152 			mpd->next_page = page->index + 1;
2153 			logical = (sector_t) page->index <<
2154 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2155 
2156 			if (!page_has_buffers(page)) {
2157 				mpage_add_bh_to_extent(mpd, logical,
2158 						       PAGE_CACHE_SIZE,
2159 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2160 				if (mpd->io_done)
2161 					goto ret_extent_tail;
2162 			} else {
2163 				/*
2164 				 * Page with regular buffer heads,
2165 				 * just add all dirty ones
2166 				 */
2167 				head = page_buffers(page);
2168 				bh = head;
2169 				do {
2170 					BUG_ON(buffer_locked(bh));
2171 					/*
2172 					 * We need to try to allocate
2173 					 * unmapped blocks in the same page.
2174 					 * Otherwise we won't make progress
2175 					 * with the page in ext4_writepage
2176 					 */
2177 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2178 						mpage_add_bh_to_extent(mpd, logical,
2179 								       bh->b_size,
2180 								       bh->b_state);
2181 						if (mpd->io_done)
2182 							goto ret_extent_tail;
2183 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2184 						/*
2185 						 * mapped dirty buffer. We need
2186 						 * to update the b_state
2187 						 * because we look at b_state
2188 						 * in mpage_da_map_blocks.  We
2189 						 * don't update b_size because
2190 						 * if we find an unmapped
2191 						 * buffer_head later we need to
2192 						 * use the b_state flag of that
2193 						 * buffer_head.
2194 						 */
2195 						if (mpd->b_size == 0)
2196 							mpd->b_state = bh->b_state & BH_FLAGS;
2197 					}
2198 					logical++;
2199 				} while ((bh = bh->b_this_page) != head);
2200 			}
2201 
2202 			if (nr_to_write > 0) {
2203 				nr_to_write--;
2204 				if (nr_to_write == 0 &&
2205 				    wbc->sync_mode == WB_SYNC_NONE)
2206 					/*
2207 					 * We stop writing back only if we are
2208 					 * not doing integrity sync. In case of
2209 					 * integrity sync we have to keep going
2210 					 * because someone may be concurrently
2211 					 * dirtying pages, and we might have
2212 					 * synced a lot of newly appeared dirty
2213 					 * pages, but have not synced all of the
2214 					 * old dirty pages.
2215 					 */
2216 					goto out;
2217 			}
2218 		}
2219 		pagevec_release(&pvec);
2220 		cond_resched();
2221 	}
2222 	return 0;
2223 ret_extent_tail:
2224 	ret = MPAGE_DA_EXTENT_TAIL;
2225 out:
2226 	pagevec_release(&pvec);
2227 	cond_resched();
2228 	return ret;
2229 }
2230 
2231 
2232 static int ext4_da_writepages(struct address_space *mapping,
2233 			      struct writeback_control *wbc)
2234 {
2235 	pgoff_t	index;
2236 	int range_whole = 0;
2237 	handle_t *handle = NULL;
2238 	struct mpage_da_data mpd;
2239 	struct inode *inode = mapping->host;
2240 	int pages_written = 0;
2241 	unsigned int max_pages;
2242 	int range_cyclic, cycled = 1, io_done = 0;
2243 	int needed_blocks, ret = 0;
2244 	long desired_nr_to_write, nr_to_writebump = 0;
2245 	loff_t range_start = wbc->range_start;
2246 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2247 	pgoff_t done_index = 0;
2248 	pgoff_t end;
2249 	struct blk_plug plug;
2250 
2251 	trace_ext4_da_writepages(inode, wbc);
2252 
2253 	/*
2254 	 * No pages to write? This is mainly a kludge to avoid starting
2255 	 * a transaction for special inodes like journal inode on last iput()
2256 	 * because that could violate lock ordering on umount
2257 	 */
2258 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2259 		return 0;
2260 
2261 	/*
2262 	 * If the filesystem has aborted, it is read-only, so return
2263 	 * right away instead of dumping stack traces later on that
2264 	 * will obscure the real source of the problem.  We test
2265 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2266 	 * the latter could be true if the filesystem is mounted
2267 	 * read-only, and in that case, ext4_da_writepages should
2268 	 * *never* be called, so if that ever happens, we would want
2269 	 * the stack trace.
2270 	 */
2271 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2272 		return -EROFS;
2273 
2274 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2275 		range_whole = 1;
2276 
2277 	range_cyclic = wbc->range_cyclic;
2278 	if (wbc->range_cyclic) {
2279 		index = mapping->writeback_index;
2280 		if (index)
2281 			cycled = 0;
2282 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2283 		wbc->range_end  = LLONG_MAX;
2284 		wbc->range_cyclic = 0;
2285 		end = -1;
2286 	} else {
2287 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2288 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2289 	}
2290 
2291 	/*
2292 	 * This works around two forms of stupidity.  The first is in
2293 	 * the writeback code, which caps the maximum number of pages
2294 	 * written to be 1024 pages.  This is wrong on multiple
2295 	 * levels; different architectues have a different page size,
2296 	 * which changes the maximum amount of data which gets
2297 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2298 	 * forces this value to be 16 megabytes by multiplying
2299 	 * nr_to_write parameter by four, and then relies on its
2300 	 * allocator to allocate larger extents to make them
2301 	 * contiguous.  Unfortunately this brings us to the second
2302 	 * stupidity, which is that ext4's mballoc code only allocates
2303 	 * at most 2048 blocks.  So we force contiguous writes up to
2304 	 * the number of dirty blocks in the inode, or
2305 	 * sbi->max_writeback_mb_bump whichever is smaller.
2306 	 */
2307 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2308 	if (!range_cyclic && range_whole) {
2309 		if (wbc->nr_to_write == LONG_MAX)
2310 			desired_nr_to_write = wbc->nr_to_write;
2311 		else
2312 			desired_nr_to_write = wbc->nr_to_write * 8;
2313 	} else
2314 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2315 							   max_pages);
2316 	if (desired_nr_to_write > max_pages)
2317 		desired_nr_to_write = max_pages;
2318 
2319 	if (wbc->nr_to_write < desired_nr_to_write) {
2320 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2321 		wbc->nr_to_write = desired_nr_to_write;
2322 	}
2323 
2324 retry:
2325 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2326 		tag_pages_for_writeback(mapping, index, end);
2327 
2328 	blk_start_plug(&plug);
2329 	while (!ret && wbc->nr_to_write > 0) {
2330 
2331 		/*
2332 		 * we  insert one extent at a time. So we need
2333 		 * credit needed for single extent allocation.
2334 		 * journalled mode is currently not supported
2335 		 * by delalloc
2336 		 */
2337 		BUG_ON(ext4_should_journal_data(inode));
2338 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2339 
2340 		/* start a new transaction*/
2341 		handle = ext4_journal_start(inode, needed_blocks);
2342 		if (IS_ERR(handle)) {
2343 			ret = PTR_ERR(handle);
2344 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2345 			       "%ld pages, ino %lu; err %d", __func__,
2346 				wbc->nr_to_write, inode->i_ino, ret);
2347 			blk_finish_plug(&plug);
2348 			goto out_writepages;
2349 		}
2350 
2351 		/*
2352 		 * Now call write_cache_pages_da() to find the next
2353 		 * contiguous region of logical blocks that need
2354 		 * blocks to be allocated by ext4 and submit them.
2355 		 */
2356 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2357 		/*
2358 		 * If we have a contiguous extent of pages and we
2359 		 * haven't done the I/O yet, map the blocks and submit
2360 		 * them for I/O.
2361 		 */
2362 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2363 			mpage_da_map_and_submit(&mpd);
2364 			ret = MPAGE_DA_EXTENT_TAIL;
2365 		}
2366 		trace_ext4_da_write_pages(inode, &mpd);
2367 		wbc->nr_to_write -= mpd.pages_written;
2368 
2369 		ext4_journal_stop(handle);
2370 
2371 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2372 			/* commit the transaction which would
2373 			 * free blocks released in the transaction
2374 			 * and try again
2375 			 */
2376 			jbd2_journal_force_commit_nested(sbi->s_journal);
2377 			ret = 0;
2378 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2379 			/*
2380 			 * Got one extent now try with rest of the pages.
2381 			 * If mpd.retval is set -EIO, journal is aborted.
2382 			 * So we don't need to write any more.
2383 			 */
2384 			pages_written += mpd.pages_written;
2385 			ret = mpd.retval;
2386 			io_done = 1;
2387 		} else if (wbc->nr_to_write)
2388 			/*
2389 			 * There is no more writeout needed
2390 			 * or we requested for a noblocking writeout
2391 			 * and we found the device congested
2392 			 */
2393 			break;
2394 	}
2395 	blk_finish_plug(&plug);
2396 	if (!io_done && !cycled) {
2397 		cycled = 1;
2398 		index = 0;
2399 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2400 		wbc->range_end  = mapping->writeback_index - 1;
2401 		goto retry;
2402 	}
2403 
2404 	/* Update index */
2405 	wbc->range_cyclic = range_cyclic;
2406 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2407 		/*
2408 		 * set the writeback_index so that range_cyclic
2409 		 * mode will write it back later
2410 		 */
2411 		mapping->writeback_index = done_index;
2412 
2413 out_writepages:
2414 	wbc->nr_to_write -= nr_to_writebump;
2415 	wbc->range_start = range_start;
2416 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2417 	return ret;
2418 }
2419 
2420 #define FALL_BACK_TO_NONDELALLOC 1
2421 static int ext4_nonda_switch(struct super_block *sb)
2422 {
2423 	s64 free_blocks, dirty_blocks;
2424 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2425 
2426 	/*
2427 	 * switch to non delalloc mode if we are running low
2428 	 * on free block. The free block accounting via percpu
2429 	 * counters can get slightly wrong with percpu_counter_batch getting
2430 	 * accumulated on each CPU without updating global counters
2431 	 * Delalloc need an accurate free block accounting. So switch
2432 	 * to non delalloc when we are near to error range.
2433 	 */
2434 	free_blocks  = EXT4_C2B(sbi,
2435 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2436 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2437 	if (2 * free_blocks < 3 * dirty_blocks ||
2438 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2439 		/*
2440 		 * free block count is less than 150% of dirty blocks
2441 		 * or free blocks is less than watermark
2442 		 */
2443 		return 1;
2444 	}
2445 	/*
2446 	 * Even if we don't switch but are nearing capacity,
2447 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2448 	 */
2449 	if (free_blocks < 2 * dirty_blocks)
2450 		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2451 
2452 	return 0;
2453 }
2454 
2455 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2456 			       loff_t pos, unsigned len, unsigned flags,
2457 			       struct page **pagep, void **fsdata)
2458 {
2459 	int ret, retries = 0;
2460 	struct page *page;
2461 	pgoff_t index;
2462 	struct inode *inode = mapping->host;
2463 	handle_t *handle;
2464 
2465 	index = pos >> PAGE_CACHE_SHIFT;
2466 
2467 	if (ext4_nonda_switch(inode->i_sb)) {
2468 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2469 		return ext4_write_begin(file, mapping, pos,
2470 					len, flags, pagep, fsdata);
2471 	}
2472 	*fsdata = (void *)0;
2473 	trace_ext4_da_write_begin(inode, pos, len, flags);
2474 retry:
2475 	/*
2476 	 * With delayed allocation, we don't log the i_disksize update
2477 	 * if there is delayed block allocation. But we still need
2478 	 * to journalling the i_disksize update if writes to the end
2479 	 * of file which has an already mapped buffer.
2480 	 */
2481 	handle = ext4_journal_start(inode, 1);
2482 	if (IS_ERR(handle)) {
2483 		ret = PTR_ERR(handle);
2484 		goto out;
2485 	}
2486 	/* We cannot recurse into the filesystem as the transaction is already
2487 	 * started */
2488 	flags |= AOP_FLAG_NOFS;
2489 
2490 	page = grab_cache_page_write_begin(mapping, index, flags);
2491 	if (!page) {
2492 		ext4_journal_stop(handle);
2493 		ret = -ENOMEM;
2494 		goto out;
2495 	}
2496 	*pagep = page;
2497 
2498 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2499 	if (ret < 0) {
2500 		unlock_page(page);
2501 		ext4_journal_stop(handle);
2502 		page_cache_release(page);
2503 		/*
2504 		 * block_write_begin may have instantiated a few blocks
2505 		 * outside i_size.  Trim these off again. Don't need
2506 		 * i_size_read because we hold i_mutex.
2507 		 */
2508 		if (pos + len > inode->i_size)
2509 			ext4_truncate_failed_write(inode);
2510 	}
2511 
2512 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2513 		goto retry;
2514 out:
2515 	return ret;
2516 }
2517 
2518 /*
2519  * Check if we should update i_disksize
2520  * when write to the end of file but not require block allocation
2521  */
2522 static int ext4_da_should_update_i_disksize(struct page *page,
2523 					    unsigned long offset)
2524 {
2525 	struct buffer_head *bh;
2526 	struct inode *inode = page->mapping->host;
2527 	unsigned int idx;
2528 	int i;
2529 
2530 	bh = page_buffers(page);
2531 	idx = offset >> inode->i_blkbits;
2532 
2533 	for (i = 0; i < idx; i++)
2534 		bh = bh->b_this_page;
2535 
2536 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2537 		return 0;
2538 	return 1;
2539 }
2540 
2541 static int ext4_da_write_end(struct file *file,
2542 			     struct address_space *mapping,
2543 			     loff_t pos, unsigned len, unsigned copied,
2544 			     struct page *page, void *fsdata)
2545 {
2546 	struct inode *inode = mapping->host;
2547 	int ret = 0, ret2;
2548 	handle_t *handle = ext4_journal_current_handle();
2549 	loff_t new_i_size;
2550 	unsigned long start, end;
2551 	int write_mode = (int)(unsigned long)fsdata;
2552 
2553 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2554 		switch (ext4_inode_journal_mode(inode)) {
2555 		case EXT4_INODE_ORDERED_DATA_MODE:
2556 			return ext4_ordered_write_end(file, mapping, pos,
2557 					len, copied, page, fsdata);
2558 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2559 			return ext4_writeback_write_end(file, mapping, pos,
2560 					len, copied, page, fsdata);
2561 		default:
2562 			BUG();
2563 		}
2564 	}
2565 
2566 	trace_ext4_da_write_end(inode, pos, len, copied);
2567 	start = pos & (PAGE_CACHE_SIZE - 1);
2568 	end = start + copied - 1;
2569 
2570 	/*
2571 	 * generic_write_end() will run mark_inode_dirty() if i_size
2572 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2573 	 * into that.
2574 	 */
2575 
2576 	new_i_size = pos + copied;
2577 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2578 		if (ext4_da_should_update_i_disksize(page, end)) {
2579 			down_write(&EXT4_I(inode)->i_data_sem);
2580 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2581 				/*
2582 				 * Updating i_disksize when extending file
2583 				 * without needing block allocation
2584 				 */
2585 				if (ext4_should_order_data(inode))
2586 					ret = ext4_jbd2_file_inode(handle,
2587 								   inode);
2588 
2589 				EXT4_I(inode)->i_disksize = new_i_size;
2590 			}
2591 			up_write(&EXT4_I(inode)->i_data_sem);
2592 			/* We need to mark inode dirty even if
2593 			 * new_i_size is less that inode->i_size
2594 			 * bu greater than i_disksize.(hint delalloc)
2595 			 */
2596 			ext4_mark_inode_dirty(handle, inode);
2597 		}
2598 	}
2599 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2600 							page, fsdata);
2601 	copied = ret2;
2602 	if (ret2 < 0)
2603 		ret = ret2;
2604 	ret2 = ext4_journal_stop(handle);
2605 	if (!ret)
2606 		ret = ret2;
2607 
2608 	return ret ? ret : copied;
2609 }
2610 
2611 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2612 {
2613 	/*
2614 	 * Drop reserved blocks
2615 	 */
2616 	BUG_ON(!PageLocked(page));
2617 	if (!page_has_buffers(page))
2618 		goto out;
2619 
2620 	ext4_da_page_release_reservation(page, offset);
2621 
2622 out:
2623 	ext4_invalidatepage(page, offset);
2624 
2625 	return;
2626 }
2627 
2628 /*
2629  * Force all delayed allocation blocks to be allocated for a given inode.
2630  */
2631 int ext4_alloc_da_blocks(struct inode *inode)
2632 {
2633 	trace_ext4_alloc_da_blocks(inode);
2634 
2635 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2636 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2637 		return 0;
2638 
2639 	/*
2640 	 * We do something simple for now.  The filemap_flush() will
2641 	 * also start triggering a write of the data blocks, which is
2642 	 * not strictly speaking necessary (and for users of
2643 	 * laptop_mode, not even desirable).  However, to do otherwise
2644 	 * would require replicating code paths in:
2645 	 *
2646 	 * ext4_da_writepages() ->
2647 	 *    write_cache_pages() ---> (via passed in callback function)
2648 	 *        __mpage_da_writepage() -->
2649 	 *           mpage_add_bh_to_extent()
2650 	 *           mpage_da_map_blocks()
2651 	 *
2652 	 * The problem is that write_cache_pages(), located in
2653 	 * mm/page-writeback.c, marks pages clean in preparation for
2654 	 * doing I/O, which is not desirable if we're not planning on
2655 	 * doing I/O at all.
2656 	 *
2657 	 * We could call write_cache_pages(), and then redirty all of
2658 	 * the pages by calling redirty_page_for_writepage() but that
2659 	 * would be ugly in the extreme.  So instead we would need to
2660 	 * replicate parts of the code in the above functions,
2661 	 * simplifying them because we wouldn't actually intend to
2662 	 * write out the pages, but rather only collect contiguous
2663 	 * logical block extents, call the multi-block allocator, and
2664 	 * then update the buffer heads with the block allocations.
2665 	 *
2666 	 * For now, though, we'll cheat by calling filemap_flush(),
2667 	 * which will map the blocks, and start the I/O, but not
2668 	 * actually wait for the I/O to complete.
2669 	 */
2670 	return filemap_flush(inode->i_mapping);
2671 }
2672 
2673 /*
2674  * bmap() is special.  It gets used by applications such as lilo and by
2675  * the swapper to find the on-disk block of a specific piece of data.
2676  *
2677  * Naturally, this is dangerous if the block concerned is still in the
2678  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2679  * filesystem and enables swap, then they may get a nasty shock when the
2680  * data getting swapped to that swapfile suddenly gets overwritten by
2681  * the original zero's written out previously to the journal and
2682  * awaiting writeback in the kernel's buffer cache.
2683  *
2684  * So, if we see any bmap calls here on a modified, data-journaled file,
2685  * take extra steps to flush any blocks which might be in the cache.
2686  */
2687 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2688 {
2689 	struct inode *inode = mapping->host;
2690 	journal_t *journal;
2691 	int err;
2692 
2693 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2694 			test_opt(inode->i_sb, DELALLOC)) {
2695 		/*
2696 		 * With delalloc we want to sync the file
2697 		 * so that we can make sure we allocate
2698 		 * blocks for file
2699 		 */
2700 		filemap_write_and_wait(mapping);
2701 	}
2702 
2703 	if (EXT4_JOURNAL(inode) &&
2704 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2705 		/*
2706 		 * This is a REALLY heavyweight approach, but the use of
2707 		 * bmap on dirty files is expected to be extremely rare:
2708 		 * only if we run lilo or swapon on a freshly made file
2709 		 * do we expect this to happen.
2710 		 *
2711 		 * (bmap requires CAP_SYS_RAWIO so this does not
2712 		 * represent an unprivileged user DOS attack --- we'd be
2713 		 * in trouble if mortal users could trigger this path at
2714 		 * will.)
2715 		 *
2716 		 * NB. EXT4_STATE_JDATA is not set on files other than
2717 		 * regular files.  If somebody wants to bmap a directory
2718 		 * or symlink and gets confused because the buffer
2719 		 * hasn't yet been flushed to disk, they deserve
2720 		 * everything they get.
2721 		 */
2722 
2723 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2724 		journal = EXT4_JOURNAL(inode);
2725 		jbd2_journal_lock_updates(journal);
2726 		err = jbd2_journal_flush(journal);
2727 		jbd2_journal_unlock_updates(journal);
2728 
2729 		if (err)
2730 			return 0;
2731 	}
2732 
2733 	return generic_block_bmap(mapping, block, ext4_get_block);
2734 }
2735 
2736 static int ext4_readpage(struct file *file, struct page *page)
2737 {
2738 	trace_ext4_readpage(page);
2739 	return mpage_readpage(page, ext4_get_block);
2740 }
2741 
2742 static int
2743 ext4_readpages(struct file *file, struct address_space *mapping,
2744 		struct list_head *pages, unsigned nr_pages)
2745 {
2746 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2747 }
2748 
2749 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2750 {
2751 	struct buffer_head *head, *bh;
2752 	unsigned int curr_off = 0;
2753 
2754 	if (!page_has_buffers(page))
2755 		return;
2756 	head = bh = page_buffers(page);
2757 	do {
2758 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2759 					&& bh->b_private) {
2760 			ext4_free_io_end(bh->b_private);
2761 			bh->b_private = NULL;
2762 			bh->b_end_io = NULL;
2763 		}
2764 		curr_off = curr_off + bh->b_size;
2765 		bh = bh->b_this_page;
2766 	} while (bh != head);
2767 }
2768 
2769 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2770 {
2771 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2772 
2773 	trace_ext4_invalidatepage(page, offset);
2774 
2775 	/*
2776 	 * free any io_end structure allocated for buffers to be discarded
2777 	 */
2778 	if (ext4_should_dioread_nolock(page->mapping->host))
2779 		ext4_invalidatepage_free_endio(page, offset);
2780 	/*
2781 	 * If it's a full truncate we just forget about the pending dirtying
2782 	 */
2783 	if (offset == 0)
2784 		ClearPageChecked(page);
2785 
2786 	if (journal)
2787 		jbd2_journal_invalidatepage(journal, page, offset);
2788 	else
2789 		block_invalidatepage(page, offset);
2790 }
2791 
2792 static int ext4_releasepage(struct page *page, gfp_t wait)
2793 {
2794 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2795 
2796 	trace_ext4_releasepage(page);
2797 
2798 	WARN_ON(PageChecked(page));
2799 	if (!page_has_buffers(page))
2800 		return 0;
2801 	if (journal)
2802 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2803 	else
2804 		return try_to_free_buffers(page);
2805 }
2806 
2807 /*
2808  * ext4_get_block used when preparing for a DIO write or buffer write.
2809  * We allocate an uinitialized extent if blocks haven't been allocated.
2810  * The extent will be converted to initialized after the IO is complete.
2811  */
2812 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2813 		   struct buffer_head *bh_result, int create)
2814 {
2815 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2816 		   inode->i_ino, create);
2817 	return _ext4_get_block(inode, iblock, bh_result,
2818 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2819 }
2820 
2821 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2822 			    ssize_t size, void *private, int ret,
2823 			    bool is_async)
2824 {
2825 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2826         ext4_io_end_t *io_end = iocb->private;
2827 	struct workqueue_struct *wq;
2828 	unsigned long flags;
2829 	struct ext4_inode_info *ei;
2830 
2831 	/* if not async direct IO or dio with 0 bytes write, just return */
2832 	if (!io_end || !size)
2833 		goto out;
2834 
2835 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2836 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2837  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2838 		  size);
2839 
2840 	iocb->private = NULL;
2841 
2842 	/* if not aio dio with unwritten extents, just free io and return */
2843 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2844 		ext4_free_io_end(io_end);
2845 out:
2846 		if (is_async)
2847 			aio_complete(iocb, ret, 0);
2848 		inode_dio_done(inode);
2849 		return;
2850 	}
2851 
2852 	io_end->offset = offset;
2853 	io_end->size = size;
2854 	if (is_async) {
2855 		io_end->iocb = iocb;
2856 		io_end->result = ret;
2857 	}
2858 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2859 
2860 	/* Add the io_end to per-inode completed aio dio list*/
2861 	ei = EXT4_I(io_end->inode);
2862 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2863 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2864 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2865 
2866 	/* queue the work to convert unwritten extents to written */
2867 	queue_work(wq, &io_end->work);
2868 }
2869 
2870 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2871 {
2872 	ext4_io_end_t *io_end = bh->b_private;
2873 	struct workqueue_struct *wq;
2874 	struct inode *inode;
2875 	unsigned long flags;
2876 
2877 	if (!test_clear_buffer_uninit(bh) || !io_end)
2878 		goto out;
2879 
2880 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2881 		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2882 			 "sb umounted, discard end_io request for inode %lu",
2883 			 io_end->inode->i_ino);
2884 		ext4_free_io_end(io_end);
2885 		goto out;
2886 	}
2887 
2888 	/*
2889 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2890 	 * but being more careful is always safe for the future change.
2891 	 */
2892 	inode = io_end->inode;
2893 	ext4_set_io_unwritten_flag(inode, io_end);
2894 
2895 	/* Add the io_end to per-inode completed io list*/
2896 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2897 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2898 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2899 
2900 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2901 	/* queue the work to convert unwritten extents to written */
2902 	queue_work(wq, &io_end->work);
2903 out:
2904 	bh->b_private = NULL;
2905 	bh->b_end_io = NULL;
2906 	clear_buffer_uninit(bh);
2907 	end_buffer_async_write(bh, uptodate);
2908 }
2909 
2910 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2911 {
2912 	ext4_io_end_t *io_end;
2913 	struct page *page = bh->b_page;
2914 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2915 	size_t size = bh->b_size;
2916 
2917 retry:
2918 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2919 	if (!io_end) {
2920 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2921 		schedule();
2922 		goto retry;
2923 	}
2924 	io_end->offset = offset;
2925 	io_end->size = size;
2926 	/*
2927 	 * We need to hold a reference to the page to make sure it
2928 	 * doesn't get evicted before ext4_end_io_work() has a chance
2929 	 * to convert the extent from written to unwritten.
2930 	 */
2931 	io_end->page = page;
2932 	get_page(io_end->page);
2933 
2934 	bh->b_private = io_end;
2935 	bh->b_end_io = ext4_end_io_buffer_write;
2936 	return 0;
2937 }
2938 
2939 /*
2940  * For ext4 extent files, ext4 will do direct-io write to holes,
2941  * preallocated extents, and those write extend the file, no need to
2942  * fall back to buffered IO.
2943  *
2944  * For holes, we fallocate those blocks, mark them as uninitialized
2945  * If those blocks were preallocated, we mark sure they are splited, but
2946  * still keep the range to write as uninitialized.
2947  *
2948  * The unwrritten extents will be converted to written when DIO is completed.
2949  * For async direct IO, since the IO may still pending when return, we
2950  * set up an end_io call back function, which will do the conversion
2951  * when async direct IO completed.
2952  *
2953  * If the O_DIRECT write will extend the file then add this inode to the
2954  * orphan list.  So recovery will truncate it back to the original size
2955  * if the machine crashes during the write.
2956  *
2957  */
2958 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2959 			      const struct iovec *iov, loff_t offset,
2960 			      unsigned long nr_segs)
2961 {
2962 	struct file *file = iocb->ki_filp;
2963 	struct inode *inode = file->f_mapping->host;
2964 	ssize_t ret;
2965 	size_t count = iov_length(iov, nr_segs);
2966 
2967 	loff_t final_size = offset + count;
2968 	if (rw == WRITE && final_size <= inode->i_size) {
2969 		/*
2970  		 * We could direct write to holes and fallocate.
2971 		 *
2972  		 * Allocated blocks to fill the hole are marked as uninitialized
2973  		 * to prevent parallel buffered read to expose the stale data
2974  		 * before DIO complete the data IO.
2975 		 *
2976  		 * As to previously fallocated extents, ext4 get_block
2977  		 * will just simply mark the buffer mapped but still
2978  		 * keep the extents uninitialized.
2979  		 *
2980 		 * for non AIO case, we will convert those unwritten extents
2981 		 * to written after return back from blockdev_direct_IO.
2982 		 *
2983 		 * for async DIO, the conversion needs to be defered when
2984 		 * the IO is completed. The ext4 end_io callback function
2985 		 * will be called to take care of the conversion work.
2986 		 * Here for async case, we allocate an io_end structure to
2987 		 * hook to the iocb.
2988  		 */
2989 		iocb->private = NULL;
2990 		EXT4_I(inode)->cur_aio_dio = NULL;
2991 		if (!is_sync_kiocb(iocb)) {
2992 			ext4_io_end_t *io_end =
2993 				ext4_init_io_end(inode, GFP_NOFS);
2994 			if (!io_end)
2995 				return -ENOMEM;
2996 			io_end->flag |= EXT4_IO_END_DIRECT;
2997 			iocb->private = io_end;
2998 			/*
2999 			 * we save the io structure for current async
3000 			 * direct IO, so that later ext4_map_blocks()
3001 			 * could flag the io structure whether there
3002 			 * is a unwritten extents needs to be converted
3003 			 * when IO is completed.
3004 			 */
3005 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3006 		}
3007 
3008 		ret = __blockdev_direct_IO(rw, iocb, inode,
3009 					 inode->i_sb->s_bdev, iov,
3010 					 offset, nr_segs,
3011 					 ext4_get_block_write,
3012 					 ext4_end_io_dio,
3013 					 NULL,
3014 					 DIO_LOCKING);
3015 		if (iocb->private)
3016 			EXT4_I(inode)->cur_aio_dio = NULL;
3017 		/*
3018 		 * The io_end structure takes a reference to the inode,
3019 		 * that structure needs to be destroyed and the
3020 		 * reference to the inode need to be dropped, when IO is
3021 		 * complete, even with 0 byte write, or failed.
3022 		 *
3023 		 * In the successful AIO DIO case, the io_end structure will be
3024 		 * desctroyed and the reference to the inode will be dropped
3025 		 * after the end_io call back function is called.
3026 		 *
3027 		 * In the case there is 0 byte write, or error case, since
3028 		 * VFS direct IO won't invoke the end_io call back function,
3029 		 * we need to free the end_io structure here.
3030 		 */
3031 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3032 			ext4_free_io_end(iocb->private);
3033 			iocb->private = NULL;
3034 		} else if (ret > 0 && ext4_test_inode_state(inode,
3035 						EXT4_STATE_DIO_UNWRITTEN)) {
3036 			int err;
3037 			/*
3038 			 * for non AIO case, since the IO is already
3039 			 * completed, we could do the conversion right here
3040 			 */
3041 			err = ext4_convert_unwritten_extents(inode,
3042 							     offset, ret);
3043 			if (err < 0)
3044 				ret = err;
3045 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3046 		}
3047 		return ret;
3048 	}
3049 
3050 	/* for write the the end of file case, we fall back to old way */
3051 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3052 }
3053 
3054 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3055 			      const struct iovec *iov, loff_t offset,
3056 			      unsigned long nr_segs)
3057 {
3058 	struct file *file = iocb->ki_filp;
3059 	struct inode *inode = file->f_mapping->host;
3060 	ssize_t ret;
3061 
3062 	/*
3063 	 * If we are doing data journalling we don't support O_DIRECT
3064 	 */
3065 	if (ext4_should_journal_data(inode))
3066 		return 0;
3067 
3068 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3069 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3070 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3071 	else
3072 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3073 	trace_ext4_direct_IO_exit(inode, offset,
3074 				iov_length(iov, nr_segs), rw, ret);
3075 	return ret;
3076 }
3077 
3078 /*
3079  * Pages can be marked dirty completely asynchronously from ext4's journalling
3080  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3081  * much here because ->set_page_dirty is called under VFS locks.  The page is
3082  * not necessarily locked.
3083  *
3084  * We cannot just dirty the page and leave attached buffers clean, because the
3085  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3086  * or jbddirty because all the journalling code will explode.
3087  *
3088  * So what we do is to mark the page "pending dirty" and next time writepage
3089  * is called, propagate that into the buffers appropriately.
3090  */
3091 static int ext4_journalled_set_page_dirty(struct page *page)
3092 {
3093 	SetPageChecked(page);
3094 	return __set_page_dirty_nobuffers(page);
3095 }
3096 
3097 static const struct address_space_operations ext4_ordered_aops = {
3098 	.readpage		= ext4_readpage,
3099 	.readpages		= ext4_readpages,
3100 	.writepage		= ext4_writepage,
3101 	.write_begin		= ext4_write_begin,
3102 	.write_end		= ext4_ordered_write_end,
3103 	.bmap			= ext4_bmap,
3104 	.invalidatepage		= ext4_invalidatepage,
3105 	.releasepage		= ext4_releasepage,
3106 	.direct_IO		= ext4_direct_IO,
3107 	.migratepage		= buffer_migrate_page,
3108 	.is_partially_uptodate  = block_is_partially_uptodate,
3109 	.error_remove_page	= generic_error_remove_page,
3110 };
3111 
3112 static const struct address_space_operations ext4_writeback_aops = {
3113 	.readpage		= ext4_readpage,
3114 	.readpages		= ext4_readpages,
3115 	.writepage		= ext4_writepage,
3116 	.write_begin		= ext4_write_begin,
3117 	.write_end		= ext4_writeback_write_end,
3118 	.bmap			= ext4_bmap,
3119 	.invalidatepage		= ext4_invalidatepage,
3120 	.releasepage		= ext4_releasepage,
3121 	.direct_IO		= ext4_direct_IO,
3122 	.migratepage		= buffer_migrate_page,
3123 	.is_partially_uptodate  = block_is_partially_uptodate,
3124 	.error_remove_page	= generic_error_remove_page,
3125 };
3126 
3127 static const struct address_space_operations ext4_journalled_aops = {
3128 	.readpage		= ext4_readpage,
3129 	.readpages		= ext4_readpages,
3130 	.writepage		= ext4_writepage,
3131 	.write_begin		= ext4_write_begin,
3132 	.write_end		= ext4_journalled_write_end,
3133 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3134 	.bmap			= ext4_bmap,
3135 	.invalidatepage		= ext4_invalidatepage,
3136 	.releasepage		= ext4_releasepage,
3137 	.direct_IO		= ext4_direct_IO,
3138 	.is_partially_uptodate  = block_is_partially_uptodate,
3139 	.error_remove_page	= generic_error_remove_page,
3140 };
3141 
3142 static const struct address_space_operations ext4_da_aops = {
3143 	.readpage		= ext4_readpage,
3144 	.readpages		= ext4_readpages,
3145 	.writepage		= ext4_writepage,
3146 	.writepages		= ext4_da_writepages,
3147 	.write_begin		= ext4_da_write_begin,
3148 	.write_end		= ext4_da_write_end,
3149 	.bmap			= ext4_bmap,
3150 	.invalidatepage		= ext4_da_invalidatepage,
3151 	.releasepage		= ext4_releasepage,
3152 	.direct_IO		= ext4_direct_IO,
3153 	.migratepage		= buffer_migrate_page,
3154 	.is_partially_uptodate  = block_is_partially_uptodate,
3155 	.error_remove_page	= generic_error_remove_page,
3156 };
3157 
3158 void ext4_set_aops(struct inode *inode)
3159 {
3160 	switch (ext4_inode_journal_mode(inode)) {
3161 	case EXT4_INODE_ORDERED_DATA_MODE:
3162 		if (test_opt(inode->i_sb, DELALLOC))
3163 			inode->i_mapping->a_ops = &ext4_da_aops;
3164 		else
3165 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3166 		break;
3167 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3168 		if (test_opt(inode->i_sb, DELALLOC))
3169 			inode->i_mapping->a_ops = &ext4_da_aops;
3170 		else
3171 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3172 		break;
3173 	case EXT4_INODE_JOURNAL_DATA_MODE:
3174 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3175 		break;
3176 	default:
3177 		BUG();
3178 	}
3179 }
3180 
3181 
3182 /*
3183  * ext4_discard_partial_page_buffers()
3184  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3185  * This function finds and locks the page containing the offset
3186  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3187  * Calling functions that already have the page locked should call
3188  * ext4_discard_partial_page_buffers_no_lock directly.
3189  */
3190 int ext4_discard_partial_page_buffers(handle_t *handle,
3191 		struct address_space *mapping, loff_t from,
3192 		loff_t length, int flags)
3193 {
3194 	struct inode *inode = mapping->host;
3195 	struct page *page;
3196 	int err = 0;
3197 
3198 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3199 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3200 	if (!page)
3201 		return -ENOMEM;
3202 
3203 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3204 		from, length, flags);
3205 
3206 	unlock_page(page);
3207 	page_cache_release(page);
3208 	return err;
3209 }
3210 
3211 /*
3212  * ext4_discard_partial_page_buffers_no_lock()
3213  * Zeros a page range of length 'length' starting from offset 'from'.
3214  * Buffer heads that correspond to the block aligned regions of the
3215  * zeroed range will be unmapped.  Unblock aligned regions
3216  * will have the corresponding buffer head mapped if needed so that
3217  * that region of the page can be updated with the partial zero out.
3218  *
3219  * This function assumes that the page has already been  locked.  The
3220  * The range to be discarded must be contained with in the given page.
3221  * If the specified range exceeds the end of the page it will be shortened
3222  * to the end of the page that corresponds to 'from'.  This function is
3223  * appropriate for updating a page and it buffer heads to be unmapped and
3224  * zeroed for blocks that have been either released, or are going to be
3225  * released.
3226  *
3227  * handle: The journal handle
3228  * inode:  The files inode
3229  * page:   A locked page that contains the offset "from"
3230  * from:   The starting byte offset (from the begining of the file)
3231  *         to begin discarding
3232  * len:    The length of bytes to discard
3233  * flags:  Optional flags that may be used:
3234  *
3235  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3236  *         Only zero the regions of the page whose buffer heads
3237  *         have already been unmapped.  This flag is appropriate
3238  *         for updateing the contents of a page whose blocks may
3239  *         have already been released, and we only want to zero
3240  *         out the regions that correspond to those released blocks.
3241  *
3242  * Returns zero on sucess or negative on failure.
3243  */
3244 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3245 		struct inode *inode, struct page *page, loff_t from,
3246 		loff_t length, int flags)
3247 {
3248 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3249 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3250 	unsigned int blocksize, max, pos;
3251 	ext4_lblk_t iblock;
3252 	struct buffer_head *bh;
3253 	int err = 0;
3254 
3255 	blocksize = inode->i_sb->s_blocksize;
3256 	max = PAGE_CACHE_SIZE - offset;
3257 
3258 	if (index != page->index)
3259 		return -EINVAL;
3260 
3261 	/*
3262 	 * correct length if it does not fall between
3263 	 * 'from' and the end of the page
3264 	 */
3265 	if (length > max || length < 0)
3266 		length = max;
3267 
3268 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3269 
3270 	if (!page_has_buffers(page))
3271 		create_empty_buffers(page, blocksize, 0);
3272 
3273 	/* Find the buffer that contains "offset" */
3274 	bh = page_buffers(page);
3275 	pos = blocksize;
3276 	while (offset >= pos) {
3277 		bh = bh->b_this_page;
3278 		iblock++;
3279 		pos += blocksize;
3280 	}
3281 
3282 	pos = offset;
3283 	while (pos < offset + length) {
3284 		unsigned int end_of_block, range_to_discard;
3285 
3286 		err = 0;
3287 
3288 		/* The length of space left to zero and unmap */
3289 		range_to_discard = offset + length - pos;
3290 
3291 		/* The length of space until the end of the block */
3292 		end_of_block = blocksize - (pos & (blocksize-1));
3293 
3294 		/*
3295 		 * Do not unmap or zero past end of block
3296 		 * for this buffer head
3297 		 */
3298 		if (range_to_discard > end_of_block)
3299 			range_to_discard = end_of_block;
3300 
3301 
3302 		/*
3303 		 * Skip this buffer head if we are only zeroing unampped
3304 		 * regions of the page
3305 		 */
3306 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3307 			buffer_mapped(bh))
3308 				goto next;
3309 
3310 		/* If the range is block aligned, unmap */
3311 		if (range_to_discard == blocksize) {
3312 			clear_buffer_dirty(bh);
3313 			bh->b_bdev = NULL;
3314 			clear_buffer_mapped(bh);
3315 			clear_buffer_req(bh);
3316 			clear_buffer_new(bh);
3317 			clear_buffer_delay(bh);
3318 			clear_buffer_unwritten(bh);
3319 			clear_buffer_uptodate(bh);
3320 			zero_user(page, pos, range_to_discard);
3321 			BUFFER_TRACE(bh, "Buffer discarded");
3322 			goto next;
3323 		}
3324 
3325 		/*
3326 		 * If this block is not completely contained in the range
3327 		 * to be discarded, then it is not going to be released. Because
3328 		 * we need to keep this block, we need to make sure this part
3329 		 * of the page is uptodate before we modify it by writeing
3330 		 * partial zeros on it.
3331 		 */
3332 		if (!buffer_mapped(bh)) {
3333 			/*
3334 			 * Buffer head must be mapped before we can read
3335 			 * from the block
3336 			 */
3337 			BUFFER_TRACE(bh, "unmapped");
3338 			ext4_get_block(inode, iblock, bh, 0);
3339 			/* unmapped? It's a hole - nothing to do */
3340 			if (!buffer_mapped(bh)) {
3341 				BUFFER_TRACE(bh, "still unmapped");
3342 				goto next;
3343 			}
3344 		}
3345 
3346 		/* Ok, it's mapped. Make sure it's up-to-date */
3347 		if (PageUptodate(page))
3348 			set_buffer_uptodate(bh);
3349 
3350 		if (!buffer_uptodate(bh)) {
3351 			err = -EIO;
3352 			ll_rw_block(READ, 1, &bh);
3353 			wait_on_buffer(bh);
3354 			/* Uhhuh. Read error. Complain and punt.*/
3355 			if (!buffer_uptodate(bh))
3356 				goto next;
3357 		}
3358 
3359 		if (ext4_should_journal_data(inode)) {
3360 			BUFFER_TRACE(bh, "get write access");
3361 			err = ext4_journal_get_write_access(handle, bh);
3362 			if (err)
3363 				goto next;
3364 		}
3365 
3366 		zero_user(page, pos, range_to_discard);
3367 
3368 		err = 0;
3369 		if (ext4_should_journal_data(inode)) {
3370 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3371 		} else
3372 			mark_buffer_dirty(bh);
3373 
3374 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3375 next:
3376 		bh = bh->b_this_page;
3377 		iblock++;
3378 		pos += range_to_discard;
3379 	}
3380 
3381 	return err;
3382 }
3383 
3384 int ext4_can_truncate(struct inode *inode)
3385 {
3386 	if (S_ISREG(inode->i_mode))
3387 		return 1;
3388 	if (S_ISDIR(inode->i_mode))
3389 		return 1;
3390 	if (S_ISLNK(inode->i_mode))
3391 		return !ext4_inode_is_fast_symlink(inode);
3392 	return 0;
3393 }
3394 
3395 /*
3396  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3397  * associated with the given offset and length
3398  *
3399  * @inode:  File inode
3400  * @offset: The offset where the hole will begin
3401  * @len:    The length of the hole
3402  *
3403  * Returns: 0 on sucess or negative on failure
3404  */
3405 
3406 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3407 {
3408 	struct inode *inode = file->f_path.dentry->d_inode;
3409 	if (!S_ISREG(inode->i_mode))
3410 		return -EOPNOTSUPP;
3411 
3412 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3413 		/* TODO: Add support for non extent hole punching */
3414 		return -EOPNOTSUPP;
3415 	}
3416 
3417 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3418 		/* TODO: Add support for bigalloc file systems */
3419 		return -EOPNOTSUPP;
3420 	}
3421 
3422 	return ext4_ext_punch_hole(file, offset, length);
3423 }
3424 
3425 /*
3426  * ext4_truncate()
3427  *
3428  * We block out ext4_get_block() block instantiations across the entire
3429  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3430  * simultaneously on behalf of the same inode.
3431  *
3432  * As we work through the truncate and commit bits of it to the journal there
3433  * is one core, guiding principle: the file's tree must always be consistent on
3434  * disk.  We must be able to restart the truncate after a crash.
3435  *
3436  * The file's tree may be transiently inconsistent in memory (although it
3437  * probably isn't), but whenever we close off and commit a journal transaction,
3438  * the contents of (the filesystem + the journal) must be consistent and
3439  * restartable.  It's pretty simple, really: bottom up, right to left (although
3440  * left-to-right works OK too).
3441  *
3442  * Note that at recovery time, journal replay occurs *before* the restart of
3443  * truncate against the orphan inode list.
3444  *
3445  * The committed inode has the new, desired i_size (which is the same as
3446  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3447  * that this inode's truncate did not complete and it will again call
3448  * ext4_truncate() to have another go.  So there will be instantiated blocks
3449  * to the right of the truncation point in a crashed ext4 filesystem.  But
3450  * that's fine - as long as they are linked from the inode, the post-crash
3451  * ext4_truncate() run will find them and release them.
3452  */
3453 void ext4_truncate(struct inode *inode)
3454 {
3455 	trace_ext4_truncate_enter(inode);
3456 
3457 	if (!ext4_can_truncate(inode))
3458 		return;
3459 
3460 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3461 
3462 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3463 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3464 
3465 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3466 		ext4_ext_truncate(inode);
3467 	else
3468 		ext4_ind_truncate(inode);
3469 
3470 	trace_ext4_truncate_exit(inode);
3471 }
3472 
3473 /*
3474  * ext4_get_inode_loc returns with an extra refcount against the inode's
3475  * underlying buffer_head on success. If 'in_mem' is true, we have all
3476  * data in memory that is needed to recreate the on-disk version of this
3477  * inode.
3478  */
3479 static int __ext4_get_inode_loc(struct inode *inode,
3480 				struct ext4_iloc *iloc, int in_mem)
3481 {
3482 	struct ext4_group_desc	*gdp;
3483 	struct buffer_head	*bh;
3484 	struct super_block	*sb = inode->i_sb;
3485 	ext4_fsblk_t		block;
3486 	int			inodes_per_block, inode_offset;
3487 
3488 	iloc->bh = NULL;
3489 	if (!ext4_valid_inum(sb, inode->i_ino))
3490 		return -EIO;
3491 
3492 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3493 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3494 	if (!gdp)
3495 		return -EIO;
3496 
3497 	/*
3498 	 * Figure out the offset within the block group inode table
3499 	 */
3500 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3501 	inode_offset = ((inode->i_ino - 1) %
3502 			EXT4_INODES_PER_GROUP(sb));
3503 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3504 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3505 
3506 	bh = sb_getblk(sb, block);
3507 	if (!bh) {
3508 		EXT4_ERROR_INODE_BLOCK(inode, block,
3509 				       "unable to read itable block");
3510 		return -EIO;
3511 	}
3512 	if (!buffer_uptodate(bh)) {
3513 		lock_buffer(bh);
3514 
3515 		/*
3516 		 * If the buffer has the write error flag, we have failed
3517 		 * to write out another inode in the same block.  In this
3518 		 * case, we don't have to read the block because we may
3519 		 * read the old inode data successfully.
3520 		 */
3521 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3522 			set_buffer_uptodate(bh);
3523 
3524 		if (buffer_uptodate(bh)) {
3525 			/* someone brought it uptodate while we waited */
3526 			unlock_buffer(bh);
3527 			goto has_buffer;
3528 		}
3529 
3530 		/*
3531 		 * If we have all information of the inode in memory and this
3532 		 * is the only valid inode in the block, we need not read the
3533 		 * block.
3534 		 */
3535 		if (in_mem) {
3536 			struct buffer_head *bitmap_bh;
3537 			int i, start;
3538 
3539 			start = inode_offset & ~(inodes_per_block - 1);
3540 
3541 			/* Is the inode bitmap in cache? */
3542 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3543 			if (!bitmap_bh)
3544 				goto make_io;
3545 
3546 			/*
3547 			 * If the inode bitmap isn't in cache then the
3548 			 * optimisation may end up performing two reads instead
3549 			 * of one, so skip it.
3550 			 */
3551 			if (!buffer_uptodate(bitmap_bh)) {
3552 				brelse(bitmap_bh);
3553 				goto make_io;
3554 			}
3555 			for (i = start; i < start + inodes_per_block; i++) {
3556 				if (i == inode_offset)
3557 					continue;
3558 				if (ext4_test_bit(i, bitmap_bh->b_data))
3559 					break;
3560 			}
3561 			brelse(bitmap_bh);
3562 			if (i == start + inodes_per_block) {
3563 				/* all other inodes are free, so skip I/O */
3564 				memset(bh->b_data, 0, bh->b_size);
3565 				set_buffer_uptodate(bh);
3566 				unlock_buffer(bh);
3567 				goto has_buffer;
3568 			}
3569 		}
3570 
3571 make_io:
3572 		/*
3573 		 * If we need to do any I/O, try to pre-readahead extra
3574 		 * blocks from the inode table.
3575 		 */
3576 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3577 			ext4_fsblk_t b, end, table;
3578 			unsigned num;
3579 
3580 			table = ext4_inode_table(sb, gdp);
3581 			/* s_inode_readahead_blks is always a power of 2 */
3582 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3583 			if (table > b)
3584 				b = table;
3585 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3586 			num = EXT4_INODES_PER_GROUP(sb);
3587 			if (ext4_has_group_desc_csum(sb))
3588 				num -= ext4_itable_unused_count(sb, gdp);
3589 			table += num / inodes_per_block;
3590 			if (end > table)
3591 				end = table;
3592 			while (b <= end)
3593 				sb_breadahead(sb, b++);
3594 		}
3595 
3596 		/*
3597 		 * There are other valid inodes in the buffer, this inode
3598 		 * has in-inode xattrs, or we don't have this inode in memory.
3599 		 * Read the block from disk.
3600 		 */
3601 		trace_ext4_load_inode(inode);
3602 		get_bh(bh);
3603 		bh->b_end_io = end_buffer_read_sync;
3604 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3605 		wait_on_buffer(bh);
3606 		if (!buffer_uptodate(bh)) {
3607 			EXT4_ERROR_INODE_BLOCK(inode, block,
3608 					       "unable to read itable block");
3609 			brelse(bh);
3610 			return -EIO;
3611 		}
3612 	}
3613 has_buffer:
3614 	iloc->bh = bh;
3615 	return 0;
3616 }
3617 
3618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3619 {
3620 	/* We have all inode data except xattrs in memory here. */
3621 	return __ext4_get_inode_loc(inode, iloc,
3622 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3623 }
3624 
3625 void ext4_set_inode_flags(struct inode *inode)
3626 {
3627 	unsigned int flags = EXT4_I(inode)->i_flags;
3628 
3629 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3630 	if (flags & EXT4_SYNC_FL)
3631 		inode->i_flags |= S_SYNC;
3632 	if (flags & EXT4_APPEND_FL)
3633 		inode->i_flags |= S_APPEND;
3634 	if (flags & EXT4_IMMUTABLE_FL)
3635 		inode->i_flags |= S_IMMUTABLE;
3636 	if (flags & EXT4_NOATIME_FL)
3637 		inode->i_flags |= S_NOATIME;
3638 	if (flags & EXT4_DIRSYNC_FL)
3639 		inode->i_flags |= S_DIRSYNC;
3640 }
3641 
3642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3643 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3644 {
3645 	unsigned int vfs_fl;
3646 	unsigned long old_fl, new_fl;
3647 
3648 	do {
3649 		vfs_fl = ei->vfs_inode.i_flags;
3650 		old_fl = ei->i_flags;
3651 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3652 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3653 				EXT4_DIRSYNC_FL);
3654 		if (vfs_fl & S_SYNC)
3655 			new_fl |= EXT4_SYNC_FL;
3656 		if (vfs_fl & S_APPEND)
3657 			new_fl |= EXT4_APPEND_FL;
3658 		if (vfs_fl & S_IMMUTABLE)
3659 			new_fl |= EXT4_IMMUTABLE_FL;
3660 		if (vfs_fl & S_NOATIME)
3661 			new_fl |= EXT4_NOATIME_FL;
3662 		if (vfs_fl & S_DIRSYNC)
3663 			new_fl |= EXT4_DIRSYNC_FL;
3664 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3665 }
3666 
3667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3668 				  struct ext4_inode_info *ei)
3669 {
3670 	blkcnt_t i_blocks ;
3671 	struct inode *inode = &(ei->vfs_inode);
3672 	struct super_block *sb = inode->i_sb;
3673 
3674 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3675 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3676 		/* we are using combined 48 bit field */
3677 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3678 					le32_to_cpu(raw_inode->i_blocks_lo);
3679 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3680 			/* i_blocks represent file system block size */
3681 			return i_blocks  << (inode->i_blkbits - 9);
3682 		} else {
3683 			return i_blocks;
3684 		}
3685 	} else {
3686 		return le32_to_cpu(raw_inode->i_blocks_lo);
3687 	}
3688 }
3689 
3690 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3691 {
3692 	struct ext4_iloc iloc;
3693 	struct ext4_inode *raw_inode;
3694 	struct ext4_inode_info *ei;
3695 	struct inode *inode;
3696 	journal_t *journal = EXT4_SB(sb)->s_journal;
3697 	long ret;
3698 	int block;
3699 	uid_t i_uid;
3700 	gid_t i_gid;
3701 
3702 	inode = iget_locked(sb, ino);
3703 	if (!inode)
3704 		return ERR_PTR(-ENOMEM);
3705 	if (!(inode->i_state & I_NEW))
3706 		return inode;
3707 
3708 	ei = EXT4_I(inode);
3709 	iloc.bh = NULL;
3710 
3711 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3712 	if (ret < 0)
3713 		goto bad_inode;
3714 	raw_inode = ext4_raw_inode(&iloc);
3715 
3716 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3717 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3718 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3719 		    EXT4_INODE_SIZE(inode->i_sb)) {
3720 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3721 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3722 				EXT4_INODE_SIZE(inode->i_sb));
3723 			ret = -EIO;
3724 			goto bad_inode;
3725 		}
3726 	} else
3727 		ei->i_extra_isize = 0;
3728 
3729 	/* Precompute checksum seed for inode metadata */
3730 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3731 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3732 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3733 		__u32 csum;
3734 		__le32 inum = cpu_to_le32(inode->i_ino);
3735 		__le32 gen = raw_inode->i_generation;
3736 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3737 				   sizeof(inum));
3738 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3739 					      sizeof(gen));
3740 	}
3741 
3742 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3743 		EXT4_ERROR_INODE(inode, "checksum invalid");
3744 		ret = -EIO;
3745 		goto bad_inode;
3746 	}
3747 
3748 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3749 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3750 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3751 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3752 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3753 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3754 	}
3755 	i_uid_write(inode, i_uid);
3756 	i_gid_write(inode, i_gid);
3757 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3758 
3759 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3760 	ei->i_dir_start_lookup = 0;
3761 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3762 	/* We now have enough fields to check if the inode was active or not.
3763 	 * This is needed because nfsd might try to access dead inodes
3764 	 * the test is that same one that e2fsck uses
3765 	 * NeilBrown 1999oct15
3766 	 */
3767 	if (inode->i_nlink == 0) {
3768 		if (inode->i_mode == 0 ||
3769 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3770 			/* this inode is deleted */
3771 			ret = -ESTALE;
3772 			goto bad_inode;
3773 		}
3774 		/* The only unlinked inodes we let through here have
3775 		 * valid i_mode and are being read by the orphan
3776 		 * recovery code: that's fine, we're about to complete
3777 		 * the process of deleting those. */
3778 	}
3779 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3780 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3781 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3782 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3783 		ei->i_file_acl |=
3784 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3785 	inode->i_size = ext4_isize(raw_inode);
3786 	ei->i_disksize = inode->i_size;
3787 #ifdef CONFIG_QUOTA
3788 	ei->i_reserved_quota = 0;
3789 #endif
3790 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3791 	ei->i_block_group = iloc.block_group;
3792 	ei->i_last_alloc_group = ~0;
3793 	/*
3794 	 * NOTE! The in-memory inode i_data array is in little-endian order
3795 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3796 	 */
3797 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3798 		ei->i_data[block] = raw_inode->i_block[block];
3799 	INIT_LIST_HEAD(&ei->i_orphan);
3800 
3801 	/*
3802 	 * Set transaction id's of transactions that have to be committed
3803 	 * to finish f[data]sync. We set them to currently running transaction
3804 	 * as we cannot be sure that the inode or some of its metadata isn't
3805 	 * part of the transaction - the inode could have been reclaimed and
3806 	 * now it is reread from disk.
3807 	 */
3808 	if (journal) {
3809 		transaction_t *transaction;
3810 		tid_t tid;
3811 
3812 		read_lock(&journal->j_state_lock);
3813 		if (journal->j_running_transaction)
3814 			transaction = journal->j_running_transaction;
3815 		else
3816 			transaction = journal->j_committing_transaction;
3817 		if (transaction)
3818 			tid = transaction->t_tid;
3819 		else
3820 			tid = journal->j_commit_sequence;
3821 		read_unlock(&journal->j_state_lock);
3822 		ei->i_sync_tid = tid;
3823 		ei->i_datasync_tid = tid;
3824 	}
3825 
3826 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3827 		if (ei->i_extra_isize == 0) {
3828 			/* The extra space is currently unused. Use it. */
3829 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3830 					    EXT4_GOOD_OLD_INODE_SIZE;
3831 		} else {
3832 			__le32 *magic = (void *)raw_inode +
3833 					EXT4_GOOD_OLD_INODE_SIZE +
3834 					ei->i_extra_isize;
3835 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3836 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3837 		}
3838 	}
3839 
3840 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3841 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3842 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3843 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3844 
3845 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3846 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3847 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3848 			inode->i_version |=
3849 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3850 	}
3851 
3852 	ret = 0;
3853 	if (ei->i_file_acl &&
3854 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3855 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3856 				 ei->i_file_acl);
3857 		ret = -EIO;
3858 		goto bad_inode;
3859 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3860 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3861 		    (S_ISLNK(inode->i_mode) &&
3862 		     !ext4_inode_is_fast_symlink(inode)))
3863 			/* Validate extent which is part of inode */
3864 			ret = ext4_ext_check_inode(inode);
3865 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3866 		   (S_ISLNK(inode->i_mode) &&
3867 		    !ext4_inode_is_fast_symlink(inode))) {
3868 		/* Validate block references which are part of inode */
3869 		ret = ext4_ind_check_inode(inode);
3870 	}
3871 	if (ret)
3872 		goto bad_inode;
3873 
3874 	if (S_ISREG(inode->i_mode)) {
3875 		inode->i_op = &ext4_file_inode_operations;
3876 		inode->i_fop = &ext4_file_operations;
3877 		ext4_set_aops(inode);
3878 	} else if (S_ISDIR(inode->i_mode)) {
3879 		inode->i_op = &ext4_dir_inode_operations;
3880 		inode->i_fop = &ext4_dir_operations;
3881 	} else if (S_ISLNK(inode->i_mode)) {
3882 		if (ext4_inode_is_fast_symlink(inode)) {
3883 			inode->i_op = &ext4_fast_symlink_inode_operations;
3884 			nd_terminate_link(ei->i_data, inode->i_size,
3885 				sizeof(ei->i_data) - 1);
3886 		} else {
3887 			inode->i_op = &ext4_symlink_inode_operations;
3888 			ext4_set_aops(inode);
3889 		}
3890 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3891 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3892 		inode->i_op = &ext4_special_inode_operations;
3893 		if (raw_inode->i_block[0])
3894 			init_special_inode(inode, inode->i_mode,
3895 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3896 		else
3897 			init_special_inode(inode, inode->i_mode,
3898 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3899 	} else {
3900 		ret = -EIO;
3901 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3902 		goto bad_inode;
3903 	}
3904 	brelse(iloc.bh);
3905 	ext4_set_inode_flags(inode);
3906 	unlock_new_inode(inode);
3907 	return inode;
3908 
3909 bad_inode:
3910 	brelse(iloc.bh);
3911 	iget_failed(inode);
3912 	return ERR_PTR(ret);
3913 }
3914 
3915 static int ext4_inode_blocks_set(handle_t *handle,
3916 				struct ext4_inode *raw_inode,
3917 				struct ext4_inode_info *ei)
3918 {
3919 	struct inode *inode = &(ei->vfs_inode);
3920 	u64 i_blocks = inode->i_blocks;
3921 	struct super_block *sb = inode->i_sb;
3922 
3923 	if (i_blocks <= ~0U) {
3924 		/*
3925 		 * i_blocks can be represnted in a 32 bit variable
3926 		 * as multiple of 512 bytes
3927 		 */
3928 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3929 		raw_inode->i_blocks_high = 0;
3930 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3931 		return 0;
3932 	}
3933 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3934 		return -EFBIG;
3935 
3936 	if (i_blocks <= 0xffffffffffffULL) {
3937 		/*
3938 		 * i_blocks can be represented in a 48 bit variable
3939 		 * as multiple of 512 bytes
3940 		 */
3941 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3942 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3943 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3944 	} else {
3945 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3946 		/* i_block is stored in file system block size */
3947 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3948 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3949 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3950 	}
3951 	return 0;
3952 }
3953 
3954 /*
3955  * Post the struct inode info into an on-disk inode location in the
3956  * buffer-cache.  This gobbles the caller's reference to the
3957  * buffer_head in the inode location struct.
3958  *
3959  * The caller must have write access to iloc->bh.
3960  */
3961 static int ext4_do_update_inode(handle_t *handle,
3962 				struct inode *inode,
3963 				struct ext4_iloc *iloc)
3964 {
3965 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3966 	struct ext4_inode_info *ei = EXT4_I(inode);
3967 	struct buffer_head *bh = iloc->bh;
3968 	int err = 0, rc, block;
3969 	uid_t i_uid;
3970 	gid_t i_gid;
3971 
3972 	/* For fields not not tracking in the in-memory inode,
3973 	 * initialise them to zero for new inodes. */
3974 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3975 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3976 
3977 	ext4_get_inode_flags(ei);
3978 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3979 	i_uid = i_uid_read(inode);
3980 	i_gid = i_gid_read(inode);
3981 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3982 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3983 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3984 /*
3985  * Fix up interoperability with old kernels. Otherwise, old inodes get
3986  * re-used with the upper 16 bits of the uid/gid intact
3987  */
3988 		if (!ei->i_dtime) {
3989 			raw_inode->i_uid_high =
3990 				cpu_to_le16(high_16_bits(i_uid));
3991 			raw_inode->i_gid_high =
3992 				cpu_to_le16(high_16_bits(i_gid));
3993 		} else {
3994 			raw_inode->i_uid_high = 0;
3995 			raw_inode->i_gid_high = 0;
3996 		}
3997 	} else {
3998 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
3999 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4000 		raw_inode->i_uid_high = 0;
4001 		raw_inode->i_gid_high = 0;
4002 	}
4003 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4004 
4005 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4006 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4007 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4008 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4009 
4010 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4011 		goto out_brelse;
4012 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4013 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4014 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4015 	    cpu_to_le32(EXT4_OS_HURD))
4016 		raw_inode->i_file_acl_high =
4017 			cpu_to_le16(ei->i_file_acl >> 32);
4018 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4019 	ext4_isize_set(raw_inode, ei->i_disksize);
4020 	if (ei->i_disksize > 0x7fffffffULL) {
4021 		struct super_block *sb = inode->i_sb;
4022 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4023 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4024 				EXT4_SB(sb)->s_es->s_rev_level ==
4025 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4026 			/* If this is the first large file
4027 			 * created, add a flag to the superblock.
4028 			 */
4029 			err = ext4_journal_get_write_access(handle,
4030 					EXT4_SB(sb)->s_sbh);
4031 			if (err)
4032 				goto out_brelse;
4033 			ext4_update_dynamic_rev(sb);
4034 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4035 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4036 			ext4_handle_sync(handle);
4037 			err = ext4_handle_dirty_super_now(handle, sb);
4038 		}
4039 	}
4040 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4041 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4042 		if (old_valid_dev(inode->i_rdev)) {
4043 			raw_inode->i_block[0] =
4044 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4045 			raw_inode->i_block[1] = 0;
4046 		} else {
4047 			raw_inode->i_block[0] = 0;
4048 			raw_inode->i_block[1] =
4049 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4050 			raw_inode->i_block[2] = 0;
4051 		}
4052 	} else
4053 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4054 			raw_inode->i_block[block] = ei->i_data[block];
4055 
4056 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4057 	if (ei->i_extra_isize) {
4058 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4059 			raw_inode->i_version_hi =
4060 			cpu_to_le32(inode->i_version >> 32);
4061 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4062 	}
4063 
4064 	ext4_inode_csum_set(inode, raw_inode, ei);
4065 
4066 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4067 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4068 	if (!err)
4069 		err = rc;
4070 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4071 
4072 	ext4_update_inode_fsync_trans(handle, inode, 0);
4073 out_brelse:
4074 	brelse(bh);
4075 	ext4_std_error(inode->i_sb, err);
4076 	return err;
4077 }
4078 
4079 /*
4080  * ext4_write_inode()
4081  *
4082  * We are called from a few places:
4083  *
4084  * - Within generic_file_write() for O_SYNC files.
4085  *   Here, there will be no transaction running. We wait for any running
4086  *   trasnaction to commit.
4087  *
4088  * - Within sys_sync(), kupdate and such.
4089  *   We wait on commit, if tol to.
4090  *
4091  * - Within prune_icache() (PF_MEMALLOC == true)
4092  *   Here we simply return.  We can't afford to block kswapd on the
4093  *   journal commit.
4094  *
4095  * In all cases it is actually safe for us to return without doing anything,
4096  * because the inode has been copied into a raw inode buffer in
4097  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4098  * knfsd.
4099  *
4100  * Note that we are absolutely dependent upon all inode dirtiers doing the
4101  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4102  * which we are interested.
4103  *
4104  * It would be a bug for them to not do this.  The code:
4105  *
4106  *	mark_inode_dirty(inode)
4107  *	stuff();
4108  *	inode->i_size = expr;
4109  *
4110  * is in error because a kswapd-driven write_inode() could occur while
4111  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4112  * will no longer be on the superblock's dirty inode list.
4113  */
4114 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4115 {
4116 	int err;
4117 
4118 	if (current->flags & PF_MEMALLOC)
4119 		return 0;
4120 
4121 	if (EXT4_SB(inode->i_sb)->s_journal) {
4122 		if (ext4_journal_current_handle()) {
4123 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4124 			dump_stack();
4125 			return -EIO;
4126 		}
4127 
4128 		if (wbc->sync_mode != WB_SYNC_ALL)
4129 			return 0;
4130 
4131 		err = ext4_force_commit(inode->i_sb);
4132 	} else {
4133 		struct ext4_iloc iloc;
4134 
4135 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4136 		if (err)
4137 			return err;
4138 		if (wbc->sync_mode == WB_SYNC_ALL)
4139 			sync_dirty_buffer(iloc.bh);
4140 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4141 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4142 					 "IO error syncing inode");
4143 			err = -EIO;
4144 		}
4145 		brelse(iloc.bh);
4146 	}
4147 	return err;
4148 }
4149 
4150 /*
4151  * ext4_setattr()
4152  *
4153  * Called from notify_change.
4154  *
4155  * We want to trap VFS attempts to truncate the file as soon as
4156  * possible.  In particular, we want to make sure that when the VFS
4157  * shrinks i_size, we put the inode on the orphan list and modify
4158  * i_disksize immediately, so that during the subsequent flushing of
4159  * dirty pages and freeing of disk blocks, we can guarantee that any
4160  * commit will leave the blocks being flushed in an unused state on
4161  * disk.  (On recovery, the inode will get truncated and the blocks will
4162  * be freed, so we have a strong guarantee that no future commit will
4163  * leave these blocks visible to the user.)
4164  *
4165  * Another thing we have to assure is that if we are in ordered mode
4166  * and inode is still attached to the committing transaction, we must
4167  * we start writeout of all the dirty pages which are being truncated.
4168  * This way we are sure that all the data written in the previous
4169  * transaction are already on disk (truncate waits for pages under
4170  * writeback).
4171  *
4172  * Called with inode->i_mutex down.
4173  */
4174 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4175 {
4176 	struct inode *inode = dentry->d_inode;
4177 	int error, rc = 0;
4178 	int orphan = 0;
4179 	const unsigned int ia_valid = attr->ia_valid;
4180 
4181 	error = inode_change_ok(inode, attr);
4182 	if (error)
4183 		return error;
4184 
4185 	if (is_quota_modification(inode, attr))
4186 		dquot_initialize(inode);
4187 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4188 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4189 		handle_t *handle;
4190 
4191 		/* (user+group)*(old+new) structure, inode write (sb,
4192 		 * inode block, ? - but truncate inode update has it) */
4193 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4194 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4195 		if (IS_ERR(handle)) {
4196 			error = PTR_ERR(handle);
4197 			goto err_out;
4198 		}
4199 		error = dquot_transfer(inode, attr);
4200 		if (error) {
4201 			ext4_journal_stop(handle);
4202 			return error;
4203 		}
4204 		/* Update corresponding info in inode so that everything is in
4205 		 * one transaction */
4206 		if (attr->ia_valid & ATTR_UID)
4207 			inode->i_uid = attr->ia_uid;
4208 		if (attr->ia_valid & ATTR_GID)
4209 			inode->i_gid = attr->ia_gid;
4210 		error = ext4_mark_inode_dirty(handle, inode);
4211 		ext4_journal_stop(handle);
4212 	}
4213 
4214 	if (attr->ia_valid & ATTR_SIZE) {
4215 		inode_dio_wait(inode);
4216 
4217 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4218 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4219 
4220 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4221 				return -EFBIG;
4222 		}
4223 	}
4224 
4225 	if (S_ISREG(inode->i_mode) &&
4226 	    attr->ia_valid & ATTR_SIZE &&
4227 	    (attr->ia_size < inode->i_size)) {
4228 		handle_t *handle;
4229 
4230 		handle = ext4_journal_start(inode, 3);
4231 		if (IS_ERR(handle)) {
4232 			error = PTR_ERR(handle);
4233 			goto err_out;
4234 		}
4235 		if (ext4_handle_valid(handle)) {
4236 			error = ext4_orphan_add(handle, inode);
4237 			orphan = 1;
4238 		}
4239 		EXT4_I(inode)->i_disksize = attr->ia_size;
4240 		rc = ext4_mark_inode_dirty(handle, inode);
4241 		if (!error)
4242 			error = rc;
4243 		ext4_journal_stop(handle);
4244 
4245 		if (ext4_should_order_data(inode)) {
4246 			error = ext4_begin_ordered_truncate(inode,
4247 							    attr->ia_size);
4248 			if (error) {
4249 				/* Do as much error cleanup as possible */
4250 				handle = ext4_journal_start(inode, 3);
4251 				if (IS_ERR(handle)) {
4252 					ext4_orphan_del(NULL, inode);
4253 					goto err_out;
4254 				}
4255 				ext4_orphan_del(handle, inode);
4256 				orphan = 0;
4257 				ext4_journal_stop(handle);
4258 				goto err_out;
4259 			}
4260 		}
4261 	}
4262 
4263 	if (attr->ia_valid & ATTR_SIZE) {
4264 		if (attr->ia_size != i_size_read(inode))
4265 			truncate_setsize(inode, attr->ia_size);
4266 		ext4_truncate(inode);
4267 	}
4268 
4269 	if (!rc) {
4270 		setattr_copy(inode, attr);
4271 		mark_inode_dirty(inode);
4272 	}
4273 
4274 	/*
4275 	 * If the call to ext4_truncate failed to get a transaction handle at
4276 	 * all, we need to clean up the in-core orphan list manually.
4277 	 */
4278 	if (orphan && inode->i_nlink)
4279 		ext4_orphan_del(NULL, inode);
4280 
4281 	if (!rc && (ia_valid & ATTR_MODE))
4282 		rc = ext4_acl_chmod(inode);
4283 
4284 err_out:
4285 	ext4_std_error(inode->i_sb, error);
4286 	if (!error)
4287 		error = rc;
4288 	return error;
4289 }
4290 
4291 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4292 		 struct kstat *stat)
4293 {
4294 	struct inode *inode;
4295 	unsigned long delalloc_blocks;
4296 
4297 	inode = dentry->d_inode;
4298 	generic_fillattr(inode, stat);
4299 
4300 	/*
4301 	 * We can't update i_blocks if the block allocation is delayed
4302 	 * otherwise in the case of system crash before the real block
4303 	 * allocation is done, we will have i_blocks inconsistent with
4304 	 * on-disk file blocks.
4305 	 * We always keep i_blocks updated together with real
4306 	 * allocation. But to not confuse with user, stat
4307 	 * will return the blocks that include the delayed allocation
4308 	 * blocks for this file.
4309 	 */
4310 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4311 				EXT4_I(inode)->i_reserved_data_blocks);
4312 
4313 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4314 	return 0;
4315 }
4316 
4317 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4318 {
4319 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4320 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4321 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4322 }
4323 
4324 /*
4325  * Account for index blocks, block groups bitmaps and block group
4326  * descriptor blocks if modify datablocks and index blocks
4327  * worse case, the indexs blocks spread over different block groups
4328  *
4329  * If datablocks are discontiguous, they are possible to spread over
4330  * different block groups too. If they are contiuguous, with flexbg,
4331  * they could still across block group boundary.
4332  *
4333  * Also account for superblock, inode, quota and xattr blocks
4334  */
4335 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4336 {
4337 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4338 	int gdpblocks;
4339 	int idxblocks;
4340 	int ret = 0;
4341 
4342 	/*
4343 	 * How many index blocks need to touch to modify nrblocks?
4344 	 * The "Chunk" flag indicating whether the nrblocks is
4345 	 * physically contiguous on disk
4346 	 *
4347 	 * For Direct IO and fallocate, they calls get_block to allocate
4348 	 * one single extent at a time, so they could set the "Chunk" flag
4349 	 */
4350 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4351 
4352 	ret = idxblocks;
4353 
4354 	/*
4355 	 * Now let's see how many group bitmaps and group descriptors need
4356 	 * to account
4357 	 */
4358 	groups = idxblocks;
4359 	if (chunk)
4360 		groups += 1;
4361 	else
4362 		groups += nrblocks;
4363 
4364 	gdpblocks = groups;
4365 	if (groups > ngroups)
4366 		groups = ngroups;
4367 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4368 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4369 
4370 	/* bitmaps and block group descriptor blocks */
4371 	ret += groups + gdpblocks;
4372 
4373 	/* Blocks for super block, inode, quota and xattr blocks */
4374 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4375 
4376 	return ret;
4377 }
4378 
4379 /*
4380  * Calculate the total number of credits to reserve to fit
4381  * the modification of a single pages into a single transaction,
4382  * which may include multiple chunks of block allocations.
4383  *
4384  * This could be called via ext4_write_begin()
4385  *
4386  * We need to consider the worse case, when
4387  * one new block per extent.
4388  */
4389 int ext4_writepage_trans_blocks(struct inode *inode)
4390 {
4391 	int bpp = ext4_journal_blocks_per_page(inode);
4392 	int ret;
4393 
4394 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4395 
4396 	/* Account for data blocks for journalled mode */
4397 	if (ext4_should_journal_data(inode))
4398 		ret += bpp;
4399 	return ret;
4400 }
4401 
4402 /*
4403  * Calculate the journal credits for a chunk of data modification.
4404  *
4405  * This is called from DIO, fallocate or whoever calling
4406  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4407  *
4408  * journal buffers for data blocks are not included here, as DIO
4409  * and fallocate do no need to journal data buffers.
4410  */
4411 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4412 {
4413 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4414 }
4415 
4416 /*
4417  * The caller must have previously called ext4_reserve_inode_write().
4418  * Give this, we know that the caller already has write access to iloc->bh.
4419  */
4420 int ext4_mark_iloc_dirty(handle_t *handle,
4421 			 struct inode *inode, struct ext4_iloc *iloc)
4422 {
4423 	int err = 0;
4424 
4425 	if (IS_I_VERSION(inode))
4426 		inode_inc_iversion(inode);
4427 
4428 	/* the do_update_inode consumes one bh->b_count */
4429 	get_bh(iloc->bh);
4430 
4431 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4432 	err = ext4_do_update_inode(handle, inode, iloc);
4433 	put_bh(iloc->bh);
4434 	return err;
4435 }
4436 
4437 /*
4438  * On success, We end up with an outstanding reference count against
4439  * iloc->bh.  This _must_ be cleaned up later.
4440  */
4441 
4442 int
4443 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4444 			 struct ext4_iloc *iloc)
4445 {
4446 	int err;
4447 
4448 	err = ext4_get_inode_loc(inode, iloc);
4449 	if (!err) {
4450 		BUFFER_TRACE(iloc->bh, "get_write_access");
4451 		err = ext4_journal_get_write_access(handle, iloc->bh);
4452 		if (err) {
4453 			brelse(iloc->bh);
4454 			iloc->bh = NULL;
4455 		}
4456 	}
4457 	ext4_std_error(inode->i_sb, err);
4458 	return err;
4459 }
4460 
4461 /*
4462  * Expand an inode by new_extra_isize bytes.
4463  * Returns 0 on success or negative error number on failure.
4464  */
4465 static int ext4_expand_extra_isize(struct inode *inode,
4466 				   unsigned int new_extra_isize,
4467 				   struct ext4_iloc iloc,
4468 				   handle_t *handle)
4469 {
4470 	struct ext4_inode *raw_inode;
4471 	struct ext4_xattr_ibody_header *header;
4472 
4473 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4474 		return 0;
4475 
4476 	raw_inode = ext4_raw_inode(&iloc);
4477 
4478 	header = IHDR(inode, raw_inode);
4479 
4480 	/* No extended attributes present */
4481 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4482 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4483 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4484 			new_extra_isize);
4485 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4486 		return 0;
4487 	}
4488 
4489 	/* try to expand with EAs present */
4490 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4491 					  raw_inode, handle);
4492 }
4493 
4494 /*
4495  * What we do here is to mark the in-core inode as clean with respect to inode
4496  * dirtiness (it may still be data-dirty).
4497  * This means that the in-core inode may be reaped by prune_icache
4498  * without having to perform any I/O.  This is a very good thing,
4499  * because *any* task may call prune_icache - even ones which
4500  * have a transaction open against a different journal.
4501  *
4502  * Is this cheating?  Not really.  Sure, we haven't written the
4503  * inode out, but prune_icache isn't a user-visible syncing function.
4504  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4505  * we start and wait on commits.
4506  *
4507  * Is this efficient/effective?  Well, we're being nice to the system
4508  * by cleaning up our inodes proactively so they can be reaped
4509  * without I/O.  But we are potentially leaving up to five seconds'
4510  * worth of inodes floating about which prune_icache wants us to
4511  * write out.  One way to fix that would be to get prune_icache()
4512  * to do a write_super() to free up some memory.  It has the desired
4513  * effect.
4514  */
4515 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4516 {
4517 	struct ext4_iloc iloc;
4518 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4519 	static unsigned int mnt_count;
4520 	int err, ret;
4521 
4522 	might_sleep();
4523 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4524 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4525 	if (ext4_handle_valid(handle) &&
4526 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4527 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4528 		/*
4529 		 * We need extra buffer credits since we may write into EA block
4530 		 * with this same handle. If journal_extend fails, then it will
4531 		 * only result in a minor loss of functionality for that inode.
4532 		 * If this is felt to be critical, then e2fsck should be run to
4533 		 * force a large enough s_min_extra_isize.
4534 		 */
4535 		if ((jbd2_journal_extend(handle,
4536 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4537 			ret = ext4_expand_extra_isize(inode,
4538 						      sbi->s_want_extra_isize,
4539 						      iloc, handle);
4540 			if (ret) {
4541 				ext4_set_inode_state(inode,
4542 						     EXT4_STATE_NO_EXPAND);
4543 				if (mnt_count !=
4544 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4545 					ext4_warning(inode->i_sb,
4546 					"Unable to expand inode %lu. Delete"
4547 					" some EAs or run e2fsck.",
4548 					inode->i_ino);
4549 					mnt_count =
4550 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4551 				}
4552 			}
4553 		}
4554 	}
4555 	if (!err)
4556 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4557 	return err;
4558 }
4559 
4560 /*
4561  * ext4_dirty_inode() is called from __mark_inode_dirty()
4562  *
4563  * We're really interested in the case where a file is being extended.
4564  * i_size has been changed by generic_commit_write() and we thus need
4565  * to include the updated inode in the current transaction.
4566  *
4567  * Also, dquot_alloc_block() will always dirty the inode when blocks
4568  * are allocated to the file.
4569  *
4570  * If the inode is marked synchronous, we don't honour that here - doing
4571  * so would cause a commit on atime updates, which we don't bother doing.
4572  * We handle synchronous inodes at the highest possible level.
4573  */
4574 void ext4_dirty_inode(struct inode *inode, int flags)
4575 {
4576 	handle_t *handle;
4577 
4578 	handle = ext4_journal_start(inode, 2);
4579 	if (IS_ERR(handle))
4580 		goto out;
4581 
4582 	ext4_mark_inode_dirty(handle, inode);
4583 
4584 	ext4_journal_stop(handle);
4585 out:
4586 	return;
4587 }
4588 
4589 #if 0
4590 /*
4591  * Bind an inode's backing buffer_head into this transaction, to prevent
4592  * it from being flushed to disk early.  Unlike
4593  * ext4_reserve_inode_write, this leaves behind no bh reference and
4594  * returns no iloc structure, so the caller needs to repeat the iloc
4595  * lookup to mark the inode dirty later.
4596  */
4597 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4598 {
4599 	struct ext4_iloc iloc;
4600 
4601 	int err = 0;
4602 	if (handle) {
4603 		err = ext4_get_inode_loc(inode, &iloc);
4604 		if (!err) {
4605 			BUFFER_TRACE(iloc.bh, "get_write_access");
4606 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4607 			if (!err)
4608 				err = ext4_handle_dirty_metadata(handle,
4609 								 NULL,
4610 								 iloc.bh);
4611 			brelse(iloc.bh);
4612 		}
4613 	}
4614 	ext4_std_error(inode->i_sb, err);
4615 	return err;
4616 }
4617 #endif
4618 
4619 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4620 {
4621 	journal_t *journal;
4622 	handle_t *handle;
4623 	int err;
4624 
4625 	/*
4626 	 * We have to be very careful here: changing a data block's
4627 	 * journaling status dynamically is dangerous.  If we write a
4628 	 * data block to the journal, change the status and then delete
4629 	 * that block, we risk forgetting to revoke the old log record
4630 	 * from the journal and so a subsequent replay can corrupt data.
4631 	 * So, first we make sure that the journal is empty and that
4632 	 * nobody is changing anything.
4633 	 */
4634 
4635 	journal = EXT4_JOURNAL(inode);
4636 	if (!journal)
4637 		return 0;
4638 	if (is_journal_aborted(journal))
4639 		return -EROFS;
4640 	/* We have to allocate physical blocks for delalloc blocks
4641 	 * before flushing journal. otherwise delalloc blocks can not
4642 	 * be allocated any more. even more truncate on delalloc blocks
4643 	 * could trigger BUG by flushing delalloc blocks in journal.
4644 	 * There is no delalloc block in non-journal data mode.
4645 	 */
4646 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4647 		err = ext4_alloc_da_blocks(inode);
4648 		if (err < 0)
4649 			return err;
4650 	}
4651 
4652 	jbd2_journal_lock_updates(journal);
4653 
4654 	/*
4655 	 * OK, there are no updates running now, and all cached data is
4656 	 * synced to disk.  We are now in a completely consistent state
4657 	 * which doesn't have anything in the journal, and we know that
4658 	 * no filesystem updates are running, so it is safe to modify
4659 	 * the inode's in-core data-journaling state flag now.
4660 	 */
4661 
4662 	if (val)
4663 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4664 	else {
4665 		jbd2_journal_flush(journal);
4666 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4667 	}
4668 	ext4_set_aops(inode);
4669 
4670 	jbd2_journal_unlock_updates(journal);
4671 
4672 	/* Finally we can mark the inode as dirty. */
4673 
4674 	handle = ext4_journal_start(inode, 1);
4675 	if (IS_ERR(handle))
4676 		return PTR_ERR(handle);
4677 
4678 	err = ext4_mark_inode_dirty(handle, inode);
4679 	ext4_handle_sync(handle);
4680 	ext4_journal_stop(handle);
4681 	ext4_std_error(inode->i_sb, err);
4682 
4683 	return err;
4684 }
4685 
4686 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4687 {
4688 	return !buffer_mapped(bh);
4689 }
4690 
4691 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4692 {
4693 	struct page *page = vmf->page;
4694 	loff_t size;
4695 	unsigned long len;
4696 	int ret;
4697 	struct file *file = vma->vm_file;
4698 	struct inode *inode = file->f_path.dentry->d_inode;
4699 	struct address_space *mapping = inode->i_mapping;
4700 	handle_t *handle;
4701 	get_block_t *get_block;
4702 	int retries = 0;
4703 
4704 	/*
4705 	 * This check is racy but catches the common case. We rely on
4706 	 * __block_page_mkwrite() to do a reliable check.
4707 	 */
4708 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4709 	/* Delalloc case is easy... */
4710 	if (test_opt(inode->i_sb, DELALLOC) &&
4711 	    !ext4_should_journal_data(inode) &&
4712 	    !ext4_nonda_switch(inode->i_sb)) {
4713 		do {
4714 			ret = __block_page_mkwrite(vma, vmf,
4715 						   ext4_da_get_block_prep);
4716 		} while (ret == -ENOSPC &&
4717 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4718 		goto out_ret;
4719 	}
4720 
4721 	lock_page(page);
4722 	size = i_size_read(inode);
4723 	/* Page got truncated from under us? */
4724 	if (page->mapping != mapping || page_offset(page) > size) {
4725 		unlock_page(page);
4726 		ret = VM_FAULT_NOPAGE;
4727 		goto out;
4728 	}
4729 
4730 	if (page->index == size >> PAGE_CACHE_SHIFT)
4731 		len = size & ~PAGE_CACHE_MASK;
4732 	else
4733 		len = PAGE_CACHE_SIZE;
4734 	/*
4735 	 * Return if we have all the buffers mapped. This avoids the need to do
4736 	 * journal_start/journal_stop which can block and take a long time
4737 	 */
4738 	if (page_has_buffers(page)) {
4739 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4740 					ext4_bh_unmapped)) {
4741 			/* Wait so that we don't change page under IO */
4742 			wait_on_page_writeback(page);
4743 			ret = VM_FAULT_LOCKED;
4744 			goto out;
4745 		}
4746 	}
4747 	unlock_page(page);
4748 	/* OK, we need to fill the hole... */
4749 	if (ext4_should_dioread_nolock(inode))
4750 		get_block = ext4_get_block_write;
4751 	else
4752 		get_block = ext4_get_block;
4753 retry_alloc:
4754 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4755 	if (IS_ERR(handle)) {
4756 		ret = VM_FAULT_SIGBUS;
4757 		goto out;
4758 	}
4759 	ret = __block_page_mkwrite(vma, vmf, get_block);
4760 	if (!ret && ext4_should_journal_data(inode)) {
4761 		if (walk_page_buffers(handle, page_buffers(page), 0,
4762 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4763 			unlock_page(page);
4764 			ret = VM_FAULT_SIGBUS;
4765 			ext4_journal_stop(handle);
4766 			goto out;
4767 		}
4768 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4769 	}
4770 	ext4_journal_stop(handle);
4771 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4772 		goto retry_alloc;
4773 out_ret:
4774 	ret = block_page_mkwrite_return(ret);
4775 out:
4776 	return ret;
4777 }
4778