1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (is_bad_inode(inode)) 224 goto no_delete; 225 dquot_initialize(inode); 226 227 if (ext4_should_order_data(inode)) 228 ext4_begin_ordered_truncate(inode, 0); 229 truncate_inode_pages_final(&inode->i_data); 230 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Called with i_data_sem down, which is important since we can call 324 * ext4_discard_preallocations() from here. 325 */ 326 void ext4_da_update_reserve_space(struct inode *inode, 327 int used, int quota_claim) 328 { 329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 330 struct ext4_inode_info *ei = EXT4_I(inode); 331 332 spin_lock(&ei->i_block_reservation_lock); 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 334 if (unlikely(used > ei->i_reserved_data_blocks)) { 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 336 "with only %d reserved data blocks", 337 __func__, inode->i_ino, used, 338 ei->i_reserved_data_blocks); 339 WARN_ON(1); 340 used = ei->i_reserved_data_blocks; 341 } 342 343 /* Update per-inode reservations */ 344 ei->i_reserved_data_blocks -= used; 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 346 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 348 349 /* Update quota subsystem for data blocks */ 350 if (quota_claim) 351 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 352 else { 353 /* 354 * We did fallocate with an offset that is already delayed 355 * allocated. So on delayed allocated writeback we should 356 * not re-claim the quota for fallocated blocks. 357 */ 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 359 } 360 361 /* 362 * If we have done all the pending block allocations and if 363 * there aren't any writers on the inode, we can discard the 364 * inode's preallocations. 365 */ 366 if ((ei->i_reserved_data_blocks == 0) && 367 (atomic_read(&inode->i_writecount) == 0)) 368 ext4_discard_preallocations(inode); 369 } 370 371 static int __check_block_validity(struct inode *inode, const char *func, 372 unsigned int line, 373 struct ext4_map_blocks *map) 374 { 375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 376 map->m_len)) { 377 ext4_error_inode(inode, func, line, map->m_pblk, 378 "lblock %lu mapped to illegal pblock " 379 "(length %d)", (unsigned long) map->m_lblk, 380 map->m_len); 381 return -EIO; 382 } 383 return 0; 384 } 385 386 #define check_block_validity(inode, map) \ 387 __check_block_validity((inode), __func__, __LINE__, (map)) 388 389 #ifdef ES_AGGRESSIVE_TEST 390 static void ext4_map_blocks_es_recheck(handle_t *handle, 391 struct inode *inode, 392 struct ext4_map_blocks *es_map, 393 struct ext4_map_blocks *map, 394 int flags) 395 { 396 int retval; 397 398 map->m_flags = 0; 399 /* 400 * There is a race window that the result is not the same. 401 * e.g. xfstests #223 when dioread_nolock enables. The reason 402 * is that we lookup a block mapping in extent status tree with 403 * out taking i_data_sem. So at the time the unwritten extent 404 * could be converted. 405 */ 406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 407 down_read(&EXT4_I(inode)->i_data_sem); 408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 409 retval = ext4_ext_map_blocks(handle, inode, map, flags & 410 EXT4_GET_BLOCKS_KEEP_SIZE); 411 } else { 412 retval = ext4_ind_map_blocks(handle, inode, map, flags & 413 EXT4_GET_BLOCKS_KEEP_SIZE); 414 } 415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 416 up_read((&EXT4_I(inode)->i_data_sem)); 417 418 /* 419 * We don't check m_len because extent will be collpased in status 420 * tree. So the m_len might not equal. 421 */ 422 if (es_map->m_lblk != map->m_lblk || 423 es_map->m_flags != map->m_flags || 424 es_map->m_pblk != map->m_pblk) { 425 printk("ES cache assertion failed for inode: %lu " 426 "es_cached ex [%d/%d/%llu/%x] != " 427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 428 inode->i_ino, es_map->m_lblk, es_map->m_len, 429 es_map->m_pblk, es_map->m_flags, map->m_lblk, 430 map->m_len, map->m_pblk, map->m_flags, 431 retval, flags); 432 } 433 } 434 #endif /* ES_AGGRESSIVE_TEST */ 435 436 /* 437 * The ext4_map_blocks() function tries to look up the requested blocks, 438 * and returns if the blocks are already mapped. 439 * 440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 441 * and store the allocated blocks in the result buffer head and mark it 442 * mapped. 443 * 444 * If file type is extents based, it will call ext4_ext_map_blocks(), 445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 446 * based files 447 * 448 * On success, it returns the number of blocks being mapped or allocated. 449 * if create==0 and the blocks are pre-allocated and unwritten block, 450 * the result buffer head is unmapped. If the create ==1, it will make sure 451 * the buffer head is mapped. 452 * 453 * It returns 0 if plain look up failed (blocks have not been allocated), in 454 * that case, buffer head is unmapped 455 * 456 * It returns the error in case of allocation failure. 457 */ 458 int ext4_map_blocks(handle_t *handle, struct inode *inode, 459 struct ext4_map_blocks *map, int flags) 460 { 461 struct extent_status es; 462 int retval; 463 int ret = 0; 464 #ifdef ES_AGGRESSIVE_TEST 465 struct ext4_map_blocks orig_map; 466 467 memcpy(&orig_map, map, sizeof(*map)); 468 #endif 469 470 map->m_flags = 0; 471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 472 "logical block %lu\n", inode->i_ino, flags, map->m_len, 473 (unsigned long) map->m_lblk); 474 475 /* 476 * ext4_map_blocks returns an int, and m_len is an unsigned int 477 */ 478 if (unlikely(map->m_len > INT_MAX)) 479 map->m_len = INT_MAX; 480 481 /* We can handle the block number less than EXT_MAX_BLOCKS */ 482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 483 return -EIO; 484 485 /* Lookup extent status tree firstly */ 486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 488 map->m_pblk = ext4_es_pblock(&es) + 489 map->m_lblk - es.es_lblk; 490 map->m_flags |= ext4_es_is_written(&es) ? 491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 492 retval = es.es_len - (map->m_lblk - es.es_lblk); 493 if (retval > map->m_len) 494 retval = map->m_len; 495 map->m_len = retval; 496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 497 retval = 0; 498 } else { 499 BUG_ON(1); 500 } 501 #ifdef ES_AGGRESSIVE_TEST 502 ext4_map_blocks_es_recheck(handle, inode, map, 503 &orig_map, flags); 504 #endif 505 goto found; 506 } 507 508 /* 509 * Try to see if we can get the block without requesting a new 510 * file system block. 511 */ 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 513 down_read(&EXT4_I(inode)->i_data_sem); 514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 515 retval = ext4_ext_map_blocks(handle, inode, map, flags & 516 EXT4_GET_BLOCKS_KEEP_SIZE); 517 } else { 518 retval = ext4_ind_map_blocks(handle, inode, map, flags & 519 EXT4_GET_BLOCKS_KEEP_SIZE); 520 } 521 if (retval > 0) { 522 unsigned int status; 523 524 if (unlikely(retval != map->m_len)) { 525 ext4_warning(inode->i_sb, 526 "ES len assertion failed for inode " 527 "%lu: retval %d != map->m_len %d", 528 inode->i_ino, retval, map->m_len); 529 WARN_ON(1); 530 } 531 532 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 535 !(status & EXTENT_STATUS_WRITTEN) && 536 ext4_find_delalloc_range(inode, map->m_lblk, 537 map->m_lblk + map->m_len - 1)) 538 status |= EXTENT_STATUS_DELAYED; 539 ret = ext4_es_insert_extent(inode, map->m_lblk, 540 map->m_len, map->m_pblk, status); 541 if (ret < 0) 542 retval = ret; 543 } 544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 545 up_read((&EXT4_I(inode)->i_data_sem)); 546 547 found: 548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 549 ret = check_block_validity(inode, map); 550 if (ret != 0) 551 return ret; 552 } 553 554 /* If it is only a block(s) look up */ 555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 556 return retval; 557 558 /* 559 * Returns if the blocks have already allocated 560 * 561 * Note that if blocks have been preallocated 562 * ext4_ext_get_block() returns the create = 0 563 * with buffer head unmapped. 564 */ 565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 566 /* 567 * If we need to convert extent to unwritten 568 * we continue and do the actual work in 569 * ext4_ext_map_blocks() 570 */ 571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 572 return retval; 573 574 /* 575 * Here we clear m_flags because after allocating an new extent, 576 * it will be set again. 577 */ 578 map->m_flags &= ~EXT4_MAP_FLAGS; 579 580 /* 581 * New blocks allocate and/or writing to unwritten extent 582 * will possibly result in updating i_data, so we take 583 * the write lock of i_data_sem, and call get_block() 584 * with create == 1 flag. 585 */ 586 down_write(&EXT4_I(inode)->i_data_sem); 587 588 /* 589 * We need to check for EXT4 here because migrate 590 * could have changed the inode type in between 591 */ 592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 593 retval = ext4_ext_map_blocks(handle, inode, map, flags); 594 } else { 595 retval = ext4_ind_map_blocks(handle, inode, map, flags); 596 597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 598 /* 599 * We allocated new blocks which will result in 600 * i_data's format changing. Force the migrate 601 * to fail by clearing migrate flags 602 */ 603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 604 } 605 606 /* 607 * Update reserved blocks/metadata blocks after successful 608 * block allocation which had been deferred till now. We don't 609 * support fallocate for non extent files. So we can update 610 * reserve space here. 611 */ 612 if ((retval > 0) && 613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 614 ext4_da_update_reserve_space(inode, retval, 1); 615 } 616 617 if (retval > 0) { 618 unsigned int status; 619 620 if (unlikely(retval != map->m_len)) { 621 ext4_warning(inode->i_sb, 622 "ES len assertion failed for inode " 623 "%lu: retval %d != map->m_len %d", 624 inode->i_ino, retval, map->m_len); 625 WARN_ON(1); 626 } 627 628 /* 629 * If the extent has been zeroed out, we don't need to update 630 * extent status tree. 631 */ 632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 634 if (ext4_es_is_written(&es)) 635 goto has_zeroout; 636 } 637 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 640 !(status & EXTENT_STATUS_WRITTEN) && 641 ext4_find_delalloc_range(inode, map->m_lblk, 642 map->m_lblk + map->m_len - 1)) 643 status |= EXTENT_STATUS_DELAYED; 644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 645 map->m_pblk, status); 646 if (ret < 0) 647 retval = ret; 648 } 649 650 has_zeroout: 651 up_write((&EXT4_I(inode)->i_data_sem)); 652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 653 ret = check_block_validity(inode, map); 654 if (ret != 0) 655 return ret; 656 } 657 return retval; 658 } 659 660 /* Maximum number of blocks we map for direct IO at once. */ 661 #define DIO_MAX_BLOCKS 4096 662 663 static int _ext4_get_block(struct inode *inode, sector_t iblock, 664 struct buffer_head *bh, int flags) 665 { 666 handle_t *handle = ext4_journal_current_handle(); 667 struct ext4_map_blocks map; 668 int ret = 0, started = 0; 669 int dio_credits; 670 671 if (ext4_has_inline_data(inode)) 672 return -ERANGE; 673 674 map.m_lblk = iblock; 675 map.m_len = bh->b_size >> inode->i_blkbits; 676 677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 678 /* Direct IO write... */ 679 if (map.m_len > DIO_MAX_BLOCKS) 680 map.m_len = DIO_MAX_BLOCKS; 681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 683 dio_credits); 684 if (IS_ERR(handle)) { 685 ret = PTR_ERR(handle); 686 return ret; 687 } 688 started = 1; 689 } 690 691 ret = ext4_map_blocks(handle, inode, &map, flags); 692 if (ret > 0) { 693 ext4_io_end_t *io_end = ext4_inode_aio(inode); 694 695 map_bh(bh, inode->i_sb, map.m_pblk); 696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 697 if (IS_DAX(inode) && buffer_unwritten(bh)) { 698 /* 699 * dgc: I suspect unwritten conversion on ext4+DAX is 700 * fundamentally broken here when there are concurrent 701 * read/write in progress on this inode. 702 */ 703 WARN_ON_ONCE(io_end); 704 bh->b_assoc_map = inode->i_mapping; 705 bh->b_private = (void *)(unsigned long)iblock; 706 } 707 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 708 set_buffer_defer_completion(bh); 709 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 710 ret = 0; 711 } 712 if (started) 713 ext4_journal_stop(handle); 714 return ret; 715 } 716 717 int ext4_get_block(struct inode *inode, sector_t iblock, 718 struct buffer_head *bh, int create) 719 { 720 return _ext4_get_block(inode, iblock, bh, 721 create ? EXT4_GET_BLOCKS_CREATE : 0); 722 } 723 724 /* 725 * `handle' can be NULL if create is zero 726 */ 727 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 728 ext4_lblk_t block, int map_flags) 729 { 730 struct ext4_map_blocks map; 731 struct buffer_head *bh; 732 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 733 int err; 734 735 J_ASSERT(handle != NULL || create == 0); 736 737 map.m_lblk = block; 738 map.m_len = 1; 739 err = ext4_map_blocks(handle, inode, &map, map_flags); 740 741 if (err == 0) 742 return create ? ERR_PTR(-ENOSPC) : NULL; 743 if (err < 0) 744 return ERR_PTR(err); 745 746 bh = sb_getblk(inode->i_sb, map.m_pblk); 747 if (unlikely(!bh)) 748 return ERR_PTR(-ENOMEM); 749 if (map.m_flags & EXT4_MAP_NEW) { 750 J_ASSERT(create != 0); 751 J_ASSERT(handle != NULL); 752 753 /* 754 * Now that we do not always journal data, we should 755 * keep in mind whether this should always journal the 756 * new buffer as metadata. For now, regular file 757 * writes use ext4_get_block instead, so it's not a 758 * problem. 759 */ 760 lock_buffer(bh); 761 BUFFER_TRACE(bh, "call get_create_access"); 762 err = ext4_journal_get_create_access(handle, bh); 763 if (unlikely(err)) { 764 unlock_buffer(bh); 765 goto errout; 766 } 767 if (!buffer_uptodate(bh)) { 768 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 769 set_buffer_uptodate(bh); 770 } 771 unlock_buffer(bh); 772 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 773 err = ext4_handle_dirty_metadata(handle, inode, bh); 774 if (unlikely(err)) 775 goto errout; 776 } else 777 BUFFER_TRACE(bh, "not a new buffer"); 778 return bh; 779 errout: 780 brelse(bh); 781 return ERR_PTR(err); 782 } 783 784 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 785 ext4_lblk_t block, int map_flags) 786 { 787 struct buffer_head *bh; 788 789 bh = ext4_getblk(handle, inode, block, map_flags); 790 if (IS_ERR(bh)) 791 return bh; 792 if (!bh || buffer_uptodate(bh)) 793 return bh; 794 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 795 wait_on_buffer(bh); 796 if (buffer_uptodate(bh)) 797 return bh; 798 put_bh(bh); 799 return ERR_PTR(-EIO); 800 } 801 802 int ext4_walk_page_buffers(handle_t *handle, 803 struct buffer_head *head, 804 unsigned from, 805 unsigned to, 806 int *partial, 807 int (*fn)(handle_t *handle, 808 struct buffer_head *bh)) 809 { 810 struct buffer_head *bh; 811 unsigned block_start, block_end; 812 unsigned blocksize = head->b_size; 813 int err, ret = 0; 814 struct buffer_head *next; 815 816 for (bh = head, block_start = 0; 817 ret == 0 && (bh != head || !block_start); 818 block_start = block_end, bh = next) { 819 next = bh->b_this_page; 820 block_end = block_start + blocksize; 821 if (block_end <= from || block_start >= to) { 822 if (partial && !buffer_uptodate(bh)) 823 *partial = 1; 824 continue; 825 } 826 err = (*fn)(handle, bh); 827 if (!ret) 828 ret = err; 829 } 830 return ret; 831 } 832 833 /* 834 * To preserve ordering, it is essential that the hole instantiation and 835 * the data write be encapsulated in a single transaction. We cannot 836 * close off a transaction and start a new one between the ext4_get_block() 837 * and the commit_write(). So doing the jbd2_journal_start at the start of 838 * prepare_write() is the right place. 839 * 840 * Also, this function can nest inside ext4_writepage(). In that case, we 841 * *know* that ext4_writepage() has generated enough buffer credits to do the 842 * whole page. So we won't block on the journal in that case, which is good, 843 * because the caller may be PF_MEMALLOC. 844 * 845 * By accident, ext4 can be reentered when a transaction is open via 846 * quota file writes. If we were to commit the transaction while thus 847 * reentered, there can be a deadlock - we would be holding a quota 848 * lock, and the commit would never complete if another thread had a 849 * transaction open and was blocking on the quota lock - a ranking 850 * violation. 851 * 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 853 * will _not_ run commit under these circumstances because handle->h_ref 854 * is elevated. We'll still have enough credits for the tiny quotafile 855 * write. 856 */ 857 int do_journal_get_write_access(handle_t *handle, 858 struct buffer_head *bh) 859 { 860 int dirty = buffer_dirty(bh); 861 int ret; 862 863 if (!buffer_mapped(bh) || buffer_freed(bh)) 864 return 0; 865 /* 866 * __block_write_begin() could have dirtied some buffers. Clean 867 * the dirty bit as jbd2_journal_get_write_access() could complain 868 * otherwise about fs integrity issues. Setting of the dirty bit 869 * by __block_write_begin() isn't a real problem here as we clear 870 * the bit before releasing a page lock and thus writeback cannot 871 * ever write the buffer. 872 */ 873 if (dirty) 874 clear_buffer_dirty(bh); 875 BUFFER_TRACE(bh, "get write access"); 876 ret = ext4_journal_get_write_access(handle, bh); 877 if (!ret && dirty) 878 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 879 return ret; 880 } 881 882 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 883 struct buffer_head *bh_result, int create); 884 885 #ifdef CONFIG_EXT4_FS_ENCRYPTION 886 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 887 get_block_t *get_block) 888 { 889 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 890 unsigned to = from + len; 891 struct inode *inode = page->mapping->host; 892 unsigned block_start, block_end; 893 sector_t block; 894 int err = 0; 895 unsigned blocksize = inode->i_sb->s_blocksize; 896 unsigned bbits; 897 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 898 bool decrypt = false; 899 900 BUG_ON(!PageLocked(page)); 901 BUG_ON(from > PAGE_CACHE_SIZE); 902 BUG_ON(to > PAGE_CACHE_SIZE); 903 BUG_ON(from > to); 904 905 if (!page_has_buffers(page)) 906 create_empty_buffers(page, blocksize, 0); 907 head = page_buffers(page); 908 bbits = ilog2(blocksize); 909 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 910 911 for (bh = head, block_start = 0; bh != head || !block_start; 912 block++, block_start = block_end, bh = bh->b_this_page) { 913 block_end = block_start + blocksize; 914 if (block_end <= from || block_start >= to) { 915 if (PageUptodate(page)) { 916 if (!buffer_uptodate(bh)) 917 set_buffer_uptodate(bh); 918 } 919 continue; 920 } 921 if (buffer_new(bh)) 922 clear_buffer_new(bh); 923 if (!buffer_mapped(bh)) { 924 WARN_ON(bh->b_size != blocksize); 925 err = get_block(inode, block, bh, 1); 926 if (err) 927 break; 928 if (buffer_new(bh)) { 929 unmap_underlying_metadata(bh->b_bdev, 930 bh->b_blocknr); 931 if (PageUptodate(page)) { 932 clear_buffer_new(bh); 933 set_buffer_uptodate(bh); 934 mark_buffer_dirty(bh); 935 continue; 936 } 937 if (block_end > to || block_start < from) 938 zero_user_segments(page, to, block_end, 939 block_start, from); 940 continue; 941 } 942 } 943 if (PageUptodate(page)) { 944 if (!buffer_uptodate(bh)) 945 set_buffer_uptodate(bh); 946 continue; 947 } 948 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 949 !buffer_unwritten(bh) && 950 (block_start < from || block_end > to)) { 951 ll_rw_block(READ, 1, &bh); 952 *wait_bh++ = bh; 953 decrypt = ext4_encrypted_inode(inode) && 954 S_ISREG(inode->i_mode); 955 } 956 } 957 /* 958 * If we issued read requests, let them complete. 959 */ 960 while (wait_bh > wait) { 961 wait_on_buffer(*--wait_bh); 962 if (!buffer_uptodate(*wait_bh)) 963 err = -EIO; 964 } 965 if (unlikely(err)) 966 page_zero_new_buffers(page, from, to); 967 else if (decrypt) 968 err = ext4_decrypt_one(inode, page); 969 return err; 970 } 971 #endif 972 973 static int ext4_write_begin(struct file *file, struct address_space *mapping, 974 loff_t pos, unsigned len, unsigned flags, 975 struct page **pagep, void **fsdata) 976 { 977 struct inode *inode = mapping->host; 978 int ret, needed_blocks; 979 handle_t *handle; 980 int retries = 0; 981 struct page *page; 982 pgoff_t index; 983 unsigned from, to; 984 985 trace_ext4_write_begin(inode, pos, len, flags); 986 /* 987 * Reserve one block more for addition to orphan list in case 988 * we allocate blocks but write fails for some reason 989 */ 990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 991 index = pos >> PAGE_CACHE_SHIFT; 992 from = pos & (PAGE_CACHE_SIZE - 1); 993 to = from + len; 994 995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 997 flags, pagep); 998 if (ret < 0) 999 return ret; 1000 if (ret == 1) 1001 return 0; 1002 } 1003 1004 /* 1005 * grab_cache_page_write_begin() can take a long time if the 1006 * system is thrashing due to memory pressure, or if the page 1007 * is being written back. So grab it first before we start 1008 * the transaction handle. This also allows us to allocate 1009 * the page (if needed) without using GFP_NOFS. 1010 */ 1011 retry_grab: 1012 page = grab_cache_page_write_begin(mapping, index, flags); 1013 if (!page) 1014 return -ENOMEM; 1015 unlock_page(page); 1016 1017 retry_journal: 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1019 if (IS_ERR(handle)) { 1020 page_cache_release(page); 1021 return PTR_ERR(handle); 1022 } 1023 1024 lock_page(page); 1025 if (page->mapping != mapping) { 1026 /* The page got truncated from under us */ 1027 unlock_page(page); 1028 page_cache_release(page); 1029 ext4_journal_stop(handle); 1030 goto retry_grab; 1031 } 1032 /* In case writeback began while the page was unlocked */ 1033 wait_for_stable_page(page); 1034 1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1036 if (ext4_should_dioread_nolock(inode)) 1037 ret = ext4_block_write_begin(page, pos, len, 1038 ext4_get_block_write); 1039 else 1040 ret = ext4_block_write_begin(page, pos, len, 1041 ext4_get_block); 1042 #else 1043 if (ext4_should_dioread_nolock(inode)) 1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1045 else 1046 ret = __block_write_begin(page, pos, len, ext4_get_block); 1047 #endif 1048 if (!ret && ext4_should_journal_data(inode)) { 1049 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1050 from, to, NULL, 1051 do_journal_get_write_access); 1052 } 1053 1054 if (ret) { 1055 unlock_page(page); 1056 /* 1057 * __block_write_begin may have instantiated a few blocks 1058 * outside i_size. Trim these off again. Don't need 1059 * i_size_read because we hold i_mutex. 1060 * 1061 * Add inode to orphan list in case we crash before 1062 * truncate finishes 1063 */ 1064 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1065 ext4_orphan_add(handle, inode); 1066 1067 ext4_journal_stop(handle); 1068 if (pos + len > inode->i_size) { 1069 ext4_truncate_failed_write(inode); 1070 /* 1071 * If truncate failed early the inode might 1072 * still be on the orphan list; we need to 1073 * make sure the inode is removed from the 1074 * orphan list in that case. 1075 */ 1076 if (inode->i_nlink) 1077 ext4_orphan_del(NULL, inode); 1078 } 1079 1080 if (ret == -ENOSPC && 1081 ext4_should_retry_alloc(inode->i_sb, &retries)) 1082 goto retry_journal; 1083 page_cache_release(page); 1084 return ret; 1085 } 1086 *pagep = page; 1087 return ret; 1088 } 1089 1090 /* For write_end() in data=journal mode */ 1091 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1092 { 1093 int ret; 1094 if (!buffer_mapped(bh) || buffer_freed(bh)) 1095 return 0; 1096 set_buffer_uptodate(bh); 1097 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1098 clear_buffer_meta(bh); 1099 clear_buffer_prio(bh); 1100 return ret; 1101 } 1102 1103 /* 1104 * We need to pick up the new inode size which generic_commit_write gave us 1105 * `file' can be NULL - eg, when called from page_symlink(). 1106 * 1107 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1108 * buffers are managed internally. 1109 */ 1110 static int ext4_write_end(struct file *file, 1111 struct address_space *mapping, 1112 loff_t pos, unsigned len, unsigned copied, 1113 struct page *page, void *fsdata) 1114 { 1115 handle_t *handle = ext4_journal_current_handle(); 1116 struct inode *inode = mapping->host; 1117 loff_t old_size = inode->i_size; 1118 int ret = 0, ret2; 1119 int i_size_changed = 0; 1120 1121 trace_ext4_write_end(inode, pos, len, copied); 1122 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1123 ret = ext4_jbd2_file_inode(handle, inode); 1124 if (ret) { 1125 unlock_page(page); 1126 page_cache_release(page); 1127 goto errout; 1128 } 1129 } 1130 1131 if (ext4_has_inline_data(inode)) { 1132 ret = ext4_write_inline_data_end(inode, pos, len, 1133 copied, page); 1134 if (ret < 0) 1135 goto errout; 1136 copied = ret; 1137 } else 1138 copied = block_write_end(file, mapping, pos, 1139 len, copied, page, fsdata); 1140 /* 1141 * it's important to update i_size while still holding page lock: 1142 * page writeout could otherwise come in and zero beyond i_size. 1143 */ 1144 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1145 unlock_page(page); 1146 page_cache_release(page); 1147 1148 if (old_size < pos) 1149 pagecache_isize_extended(inode, old_size, pos); 1150 /* 1151 * Don't mark the inode dirty under page lock. First, it unnecessarily 1152 * makes the holding time of page lock longer. Second, it forces lock 1153 * ordering of page lock and transaction start for journaling 1154 * filesystems. 1155 */ 1156 if (i_size_changed) 1157 ext4_mark_inode_dirty(handle, inode); 1158 1159 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1160 /* if we have allocated more blocks and copied 1161 * less. We will have blocks allocated outside 1162 * inode->i_size. So truncate them 1163 */ 1164 ext4_orphan_add(handle, inode); 1165 errout: 1166 ret2 = ext4_journal_stop(handle); 1167 if (!ret) 1168 ret = ret2; 1169 1170 if (pos + len > inode->i_size) { 1171 ext4_truncate_failed_write(inode); 1172 /* 1173 * If truncate failed early the inode might still be 1174 * on the orphan list; we need to make sure the inode 1175 * is removed from the orphan list in that case. 1176 */ 1177 if (inode->i_nlink) 1178 ext4_orphan_del(NULL, inode); 1179 } 1180 1181 return ret ? ret : copied; 1182 } 1183 1184 static int ext4_journalled_write_end(struct file *file, 1185 struct address_space *mapping, 1186 loff_t pos, unsigned len, unsigned copied, 1187 struct page *page, void *fsdata) 1188 { 1189 handle_t *handle = ext4_journal_current_handle(); 1190 struct inode *inode = mapping->host; 1191 loff_t old_size = inode->i_size; 1192 int ret = 0, ret2; 1193 int partial = 0; 1194 unsigned from, to; 1195 int size_changed = 0; 1196 1197 trace_ext4_journalled_write_end(inode, pos, len, copied); 1198 from = pos & (PAGE_CACHE_SIZE - 1); 1199 to = from + len; 1200 1201 BUG_ON(!ext4_handle_valid(handle)); 1202 1203 if (ext4_has_inline_data(inode)) 1204 copied = ext4_write_inline_data_end(inode, pos, len, 1205 copied, page); 1206 else { 1207 if (copied < len) { 1208 if (!PageUptodate(page)) 1209 copied = 0; 1210 page_zero_new_buffers(page, from+copied, to); 1211 } 1212 1213 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1214 to, &partial, write_end_fn); 1215 if (!partial) 1216 SetPageUptodate(page); 1217 } 1218 size_changed = ext4_update_inode_size(inode, pos + copied); 1219 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1220 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1221 unlock_page(page); 1222 page_cache_release(page); 1223 1224 if (old_size < pos) 1225 pagecache_isize_extended(inode, old_size, pos); 1226 1227 if (size_changed) { 1228 ret2 = ext4_mark_inode_dirty(handle, inode); 1229 if (!ret) 1230 ret = ret2; 1231 } 1232 1233 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1234 /* if we have allocated more blocks and copied 1235 * less. We will have blocks allocated outside 1236 * inode->i_size. So truncate them 1237 */ 1238 ext4_orphan_add(handle, inode); 1239 1240 ret2 = ext4_journal_stop(handle); 1241 if (!ret) 1242 ret = ret2; 1243 if (pos + len > inode->i_size) { 1244 ext4_truncate_failed_write(inode); 1245 /* 1246 * If truncate failed early the inode might still be 1247 * on the orphan list; we need to make sure the inode 1248 * is removed from the orphan list in that case. 1249 */ 1250 if (inode->i_nlink) 1251 ext4_orphan_del(NULL, inode); 1252 } 1253 1254 return ret ? ret : copied; 1255 } 1256 1257 /* 1258 * Reserve space for a single cluster 1259 */ 1260 static int ext4_da_reserve_space(struct inode *inode) 1261 { 1262 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1263 struct ext4_inode_info *ei = EXT4_I(inode); 1264 int ret; 1265 1266 /* 1267 * We will charge metadata quota at writeout time; this saves 1268 * us from metadata over-estimation, though we may go over by 1269 * a small amount in the end. Here we just reserve for data. 1270 */ 1271 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1272 if (ret) 1273 return ret; 1274 1275 spin_lock(&ei->i_block_reservation_lock); 1276 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1277 spin_unlock(&ei->i_block_reservation_lock); 1278 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1279 return -ENOSPC; 1280 } 1281 ei->i_reserved_data_blocks++; 1282 trace_ext4_da_reserve_space(inode); 1283 spin_unlock(&ei->i_block_reservation_lock); 1284 1285 return 0; /* success */ 1286 } 1287 1288 static void ext4_da_release_space(struct inode *inode, int to_free) 1289 { 1290 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1291 struct ext4_inode_info *ei = EXT4_I(inode); 1292 1293 if (!to_free) 1294 return; /* Nothing to release, exit */ 1295 1296 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1297 1298 trace_ext4_da_release_space(inode, to_free); 1299 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1300 /* 1301 * if there aren't enough reserved blocks, then the 1302 * counter is messed up somewhere. Since this 1303 * function is called from invalidate page, it's 1304 * harmless to return without any action. 1305 */ 1306 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1307 "ino %lu, to_free %d with only %d reserved " 1308 "data blocks", inode->i_ino, to_free, 1309 ei->i_reserved_data_blocks); 1310 WARN_ON(1); 1311 to_free = ei->i_reserved_data_blocks; 1312 } 1313 ei->i_reserved_data_blocks -= to_free; 1314 1315 /* update fs dirty data blocks counter */ 1316 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1317 1318 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1319 1320 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1321 } 1322 1323 static void ext4_da_page_release_reservation(struct page *page, 1324 unsigned int offset, 1325 unsigned int length) 1326 { 1327 int to_release = 0, contiguous_blks = 0; 1328 struct buffer_head *head, *bh; 1329 unsigned int curr_off = 0; 1330 struct inode *inode = page->mapping->host; 1331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1332 unsigned int stop = offset + length; 1333 int num_clusters; 1334 ext4_fsblk_t lblk; 1335 1336 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1337 1338 head = page_buffers(page); 1339 bh = head; 1340 do { 1341 unsigned int next_off = curr_off + bh->b_size; 1342 1343 if (next_off > stop) 1344 break; 1345 1346 if ((offset <= curr_off) && (buffer_delay(bh))) { 1347 to_release++; 1348 contiguous_blks++; 1349 clear_buffer_delay(bh); 1350 } else if (contiguous_blks) { 1351 lblk = page->index << 1352 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1353 lblk += (curr_off >> inode->i_blkbits) - 1354 contiguous_blks; 1355 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1356 contiguous_blks = 0; 1357 } 1358 curr_off = next_off; 1359 } while ((bh = bh->b_this_page) != head); 1360 1361 if (contiguous_blks) { 1362 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1363 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1364 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1365 } 1366 1367 /* If we have released all the blocks belonging to a cluster, then we 1368 * need to release the reserved space for that cluster. */ 1369 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1370 while (num_clusters > 0) { 1371 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1372 ((num_clusters - 1) << sbi->s_cluster_bits); 1373 if (sbi->s_cluster_ratio == 1 || 1374 !ext4_find_delalloc_cluster(inode, lblk)) 1375 ext4_da_release_space(inode, 1); 1376 1377 num_clusters--; 1378 } 1379 } 1380 1381 /* 1382 * Delayed allocation stuff 1383 */ 1384 1385 struct mpage_da_data { 1386 struct inode *inode; 1387 struct writeback_control *wbc; 1388 1389 pgoff_t first_page; /* The first page to write */ 1390 pgoff_t next_page; /* Current page to examine */ 1391 pgoff_t last_page; /* Last page to examine */ 1392 /* 1393 * Extent to map - this can be after first_page because that can be 1394 * fully mapped. We somewhat abuse m_flags to store whether the extent 1395 * is delalloc or unwritten. 1396 */ 1397 struct ext4_map_blocks map; 1398 struct ext4_io_submit io_submit; /* IO submission data */ 1399 }; 1400 1401 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1402 bool invalidate) 1403 { 1404 int nr_pages, i; 1405 pgoff_t index, end; 1406 struct pagevec pvec; 1407 struct inode *inode = mpd->inode; 1408 struct address_space *mapping = inode->i_mapping; 1409 1410 /* This is necessary when next_page == 0. */ 1411 if (mpd->first_page >= mpd->next_page) 1412 return; 1413 1414 index = mpd->first_page; 1415 end = mpd->next_page - 1; 1416 if (invalidate) { 1417 ext4_lblk_t start, last; 1418 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1419 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1420 ext4_es_remove_extent(inode, start, last - start + 1); 1421 } 1422 1423 pagevec_init(&pvec, 0); 1424 while (index <= end) { 1425 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1426 if (nr_pages == 0) 1427 break; 1428 for (i = 0; i < nr_pages; i++) { 1429 struct page *page = pvec.pages[i]; 1430 if (page->index > end) 1431 break; 1432 BUG_ON(!PageLocked(page)); 1433 BUG_ON(PageWriteback(page)); 1434 if (invalidate) { 1435 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1436 ClearPageUptodate(page); 1437 } 1438 unlock_page(page); 1439 } 1440 index = pvec.pages[nr_pages - 1]->index + 1; 1441 pagevec_release(&pvec); 1442 } 1443 } 1444 1445 static void ext4_print_free_blocks(struct inode *inode) 1446 { 1447 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1448 struct super_block *sb = inode->i_sb; 1449 struct ext4_inode_info *ei = EXT4_I(inode); 1450 1451 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1452 EXT4_C2B(EXT4_SB(inode->i_sb), 1453 ext4_count_free_clusters(sb))); 1454 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1455 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1456 (long long) EXT4_C2B(EXT4_SB(sb), 1457 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1458 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1459 (long long) EXT4_C2B(EXT4_SB(sb), 1460 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1461 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1462 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1463 ei->i_reserved_data_blocks); 1464 return; 1465 } 1466 1467 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1468 { 1469 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1470 } 1471 1472 /* 1473 * This function is grabs code from the very beginning of 1474 * ext4_map_blocks, but assumes that the caller is from delayed write 1475 * time. This function looks up the requested blocks and sets the 1476 * buffer delay bit under the protection of i_data_sem. 1477 */ 1478 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1479 struct ext4_map_blocks *map, 1480 struct buffer_head *bh) 1481 { 1482 struct extent_status es; 1483 int retval; 1484 sector_t invalid_block = ~((sector_t) 0xffff); 1485 #ifdef ES_AGGRESSIVE_TEST 1486 struct ext4_map_blocks orig_map; 1487 1488 memcpy(&orig_map, map, sizeof(*map)); 1489 #endif 1490 1491 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1492 invalid_block = ~0; 1493 1494 map->m_flags = 0; 1495 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1496 "logical block %lu\n", inode->i_ino, map->m_len, 1497 (unsigned long) map->m_lblk); 1498 1499 /* Lookup extent status tree firstly */ 1500 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1501 if (ext4_es_is_hole(&es)) { 1502 retval = 0; 1503 down_read(&EXT4_I(inode)->i_data_sem); 1504 goto add_delayed; 1505 } 1506 1507 /* 1508 * Delayed extent could be allocated by fallocate. 1509 * So we need to check it. 1510 */ 1511 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1512 map_bh(bh, inode->i_sb, invalid_block); 1513 set_buffer_new(bh); 1514 set_buffer_delay(bh); 1515 return 0; 1516 } 1517 1518 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1519 retval = es.es_len - (iblock - es.es_lblk); 1520 if (retval > map->m_len) 1521 retval = map->m_len; 1522 map->m_len = retval; 1523 if (ext4_es_is_written(&es)) 1524 map->m_flags |= EXT4_MAP_MAPPED; 1525 else if (ext4_es_is_unwritten(&es)) 1526 map->m_flags |= EXT4_MAP_UNWRITTEN; 1527 else 1528 BUG_ON(1); 1529 1530 #ifdef ES_AGGRESSIVE_TEST 1531 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1532 #endif 1533 return retval; 1534 } 1535 1536 /* 1537 * Try to see if we can get the block without requesting a new 1538 * file system block. 1539 */ 1540 down_read(&EXT4_I(inode)->i_data_sem); 1541 if (ext4_has_inline_data(inode)) 1542 retval = 0; 1543 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1544 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1545 else 1546 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1547 1548 add_delayed: 1549 if (retval == 0) { 1550 int ret; 1551 /* 1552 * XXX: __block_prepare_write() unmaps passed block, 1553 * is it OK? 1554 */ 1555 /* 1556 * If the block was allocated from previously allocated cluster, 1557 * then we don't need to reserve it again. However we still need 1558 * to reserve metadata for every block we're going to write. 1559 */ 1560 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1561 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1562 ret = ext4_da_reserve_space(inode); 1563 if (ret) { 1564 /* not enough space to reserve */ 1565 retval = ret; 1566 goto out_unlock; 1567 } 1568 } 1569 1570 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1571 ~0, EXTENT_STATUS_DELAYED); 1572 if (ret) { 1573 retval = ret; 1574 goto out_unlock; 1575 } 1576 1577 map_bh(bh, inode->i_sb, invalid_block); 1578 set_buffer_new(bh); 1579 set_buffer_delay(bh); 1580 } else if (retval > 0) { 1581 int ret; 1582 unsigned int status; 1583 1584 if (unlikely(retval != map->m_len)) { 1585 ext4_warning(inode->i_sb, 1586 "ES len assertion failed for inode " 1587 "%lu: retval %d != map->m_len %d", 1588 inode->i_ino, retval, map->m_len); 1589 WARN_ON(1); 1590 } 1591 1592 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1593 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1594 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1595 map->m_pblk, status); 1596 if (ret != 0) 1597 retval = ret; 1598 } 1599 1600 out_unlock: 1601 up_read((&EXT4_I(inode)->i_data_sem)); 1602 1603 return retval; 1604 } 1605 1606 /* 1607 * This is a special get_block_t callback which is used by 1608 * ext4_da_write_begin(). It will either return mapped block or 1609 * reserve space for a single block. 1610 * 1611 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1612 * We also have b_blocknr = -1 and b_bdev initialized properly 1613 * 1614 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1615 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1616 * initialized properly. 1617 */ 1618 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1619 struct buffer_head *bh, int create) 1620 { 1621 struct ext4_map_blocks map; 1622 int ret = 0; 1623 1624 BUG_ON(create == 0); 1625 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1626 1627 map.m_lblk = iblock; 1628 map.m_len = 1; 1629 1630 /* 1631 * first, we need to know whether the block is allocated already 1632 * preallocated blocks are unmapped but should treated 1633 * the same as allocated blocks. 1634 */ 1635 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1636 if (ret <= 0) 1637 return ret; 1638 1639 map_bh(bh, inode->i_sb, map.m_pblk); 1640 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1641 1642 if (buffer_unwritten(bh)) { 1643 /* A delayed write to unwritten bh should be marked 1644 * new and mapped. Mapped ensures that we don't do 1645 * get_block multiple times when we write to the same 1646 * offset and new ensures that we do proper zero out 1647 * for partial write. 1648 */ 1649 set_buffer_new(bh); 1650 set_buffer_mapped(bh); 1651 } 1652 return 0; 1653 } 1654 1655 static int bget_one(handle_t *handle, struct buffer_head *bh) 1656 { 1657 get_bh(bh); 1658 return 0; 1659 } 1660 1661 static int bput_one(handle_t *handle, struct buffer_head *bh) 1662 { 1663 put_bh(bh); 1664 return 0; 1665 } 1666 1667 static int __ext4_journalled_writepage(struct page *page, 1668 unsigned int len) 1669 { 1670 struct address_space *mapping = page->mapping; 1671 struct inode *inode = mapping->host; 1672 struct buffer_head *page_bufs = NULL; 1673 handle_t *handle = NULL; 1674 int ret = 0, err = 0; 1675 int inline_data = ext4_has_inline_data(inode); 1676 struct buffer_head *inode_bh = NULL; 1677 1678 ClearPageChecked(page); 1679 1680 if (inline_data) { 1681 BUG_ON(page->index != 0); 1682 BUG_ON(len > ext4_get_max_inline_size(inode)); 1683 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1684 if (inode_bh == NULL) 1685 goto out; 1686 } else { 1687 page_bufs = page_buffers(page); 1688 if (!page_bufs) { 1689 BUG(); 1690 goto out; 1691 } 1692 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1693 NULL, bget_one); 1694 } 1695 /* 1696 * We need to release the page lock before we start the 1697 * journal, so grab a reference so the page won't disappear 1698 * out from under us. 1699 */ 1700 get_page(page); 1701 unlock_page(page); 1702 1703 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1704 ext4_writepage_trans_blocks(inode)); 1705 if (IS_ERR(handle)) { 1706 ret = PTR_ERR(handle); 1707 put_page(page); 1708 goto out_no_pagelock; 1709 } 1710 BUG_ON(!ext4_handle_valid(handle)); 1711 1712 lock_page(page); 1713 put_page(page); 1714 if (page->mapping != mapping) { 1715 /* The page got truncated from under us */ 1716 ext4_journal_stop(handle); 1717 ret = 0; 1718 goto out; 1719 } 1720 1721 if (inline_data) { 1722 BUFFER_TRACE(inode_bh, "get write access"); 1723 ret = ext4_journal_get_write_access(handle, inode_bh); 1724 1725 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1726 1727 } else { 1728 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1729 do_journal_get_write_access); 1730 1731 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1732 write_end_fn); 1733 } 1734 if (ret == 0) 1735 ret = err; 1736 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1737 err = ext4_journal_stop(handle); 1738 if (!ret) 1739 ret = err; 1740 1741 if (!ext4_has_inline_data(inode)) 1742 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1743 NULL, bput_one); 1744 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1745 out: 1746 unlock_page(page); 1747 out_no_pagelock: 1748 brelse(inode_bh); 1749 return ret; 1750 } 1751 1752 /* 1753 * Note that we don't need to start a transaction unless we're journaling data 1754 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1755 * need to file the inode to the transaction's list in ordered mode because if 1756 * we are writing back data added by write(), the inode is already there and if 1757 * we are writing back data modified via mmap(), no one guarantees in which 1758 * transaction the data will hit the disk. In case we are journaling data, we 1759 * cannot start transaction directly because transaction start ranks above page 1760 * lock so we have to do some magic. 1761 * 1762 * This function can get called via... 1763 * - ext4_writepages after taking page lock (have journal handle) 1764 * - journal_submit_inode_data_buffers (no journal handle) 1765 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1766 * - grab_page_cache when doing write_begin (have journal handle) 1767 * 1768 * We don't do any block allocation in this function. If we have page with 1769 * multiple blocks we need to write those buffer_heads that are mapped. This 1770 * is important for mmaped based write. So if we do with blocksize 1K 1771 * truncate(f, 1024); 1772 * a = mmap(f, 0, 4096); 1773 * a[0] = 'a'; 1774 * truncate(f, 4096); 1775 * we have in the page first buffer_head mapped via page_mkwrite call back 1776 * but other buffer_heads would be unmapped but dirty (dirty done via the 1777 * do_wp_page). So writepage should write the first block. If we modify 1778 * the mmap area beyond 1024 we will again get a page_fault and the 1779 * page_mkwrite callback will do the block allocation and mark the 1780 * buffer_heads mapped. 1781 * 1782 * We redirty the page if we have any buffer_heads that is either delay or 1783 * unwritten in the page. 1784 * 1785 * We can get recursively called as show below. 1786 * 1787 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1788 * ext4_writepage() 1789 * 1790 * But since we don't do any block allocation we should not deadlock. 1791 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1792 */ 1793 static int ext4_writepage(struct page *page, 1794 struct writeback_control *wbc) 1795 { 1796 int ret = 0; 1797 loff_t size; 1798 unsigned int len; 1799 struct buffer_head *page_bufs = NULL; 1800 struct inode *inode = page->mapping->host; 1801 struct ext4_io_submit io_submit; 1802 bool keep_towrite = false; 1803 1804 trace_ext4_writepage(page); 1805 size = i_size_read(inode); 1806 if (page->index == size >> PAGE_CACHE_SHIFT) 1807 len = size & ~PAGE_CACHE_MASK; 1808 else 1809 len = PAGE_CACHE_SIZE; 1810 1811 page_bufs = page_buffers(page); 1812 /* 1813 * We cannot do block allocation or other extent handling in this 1814 * function. If there are buffers needing that, we have to redirty 1815 * the page. But we may reach here when we do a journal commit via 1816 * journal_submit_inode_data_buffers() and in that case we must write 1817 * allocated buffers to achieve data=ordered mode guarantees. 1818 */ 1819 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1820 ext4_bh_delay_or_unwritten)) { 1821 redirty_page_for_writepage(wbc, page); 1822 if (current->flags & PF_MEMALLOC) { 1823 /* 1824 * For memory cleaning there's no point in writing only 1825 * some buffers. So just bail out. Warn if we came here 1826 * from direct reclaim. 1827 */ 1828 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1829 == PF_MEMALLOC); 1830 unlock_page(page); 1831 return 0; 1832 } 1833 keep_towrite = true; 1834 } 1835 1836 if (PageChecked(page) && ext4_should_journal_data(inode)) 1837 /* 1838 * It's mmapped pagecache. Add buffers and journal it. There 1839 * doesn't seem much point in redirtying the page here. 1840 */ 1841 return __ext4_journalled_writepage(page, len); 1842 1843 ext4_io_submit_init(&io_submit, wbc); 1844 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1845 if (!io_submit.io_end) { 1846 redirty_page_for_writepage(wbc, page); 1847 unlock_page(page); 1848 return -ENOMEM; 1849 } 1850 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1851 ext4_io_submit(&io_submit); 1852 /* Drop io_end reference we got from init */ 1853 ext4_put_io_end_defer(io_submit.io_end); 1854 return ret; 1855 } 1856 1857 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1858 { 1859 int len; 1860 loff_t size = i_size_read(mpd->inode); 1861 int err; 1862 1863 BUG_ON(page->index != mpd->first_page); 1864 if (page->index == size >> PAGE_CACHE_SHIFT) 1865 len = size & ~PAGE_CACHE_MASK; 1866 else 1867 len = PAGE_CACHE_SIZE; 1868 clear_page_dirty_for_io(page); 1869 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1870 if (!err) 1871 mpd->wbc->nr_to_write--; 1872 mpd->first_page++; 1873 1874 return err; 1875 } 1876 1877 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1878 1879 /* 1880 * mballoc gives us at most this number of blocks... 1881 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1882 * The rest of mballoc seems to handle chunks up to full group size. 1883 */ 1884 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1885 1886 /* 1887 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1888 * 1889 * @mpd - extent of blocks 1890 * @lblk - logical number of the block in the file 1891 * @bh - buffer head we want to add to the extent 1892 * 1893 * The function is used to collect contig. blocks in the same state. If the 1894 * buffer doesn't require mapping for writeback and we haven't started the 1895 * extent of buffers to map yet, the function returns 'true' immediately - the 1896 * caller can write the buffer right away. Otherwise the function returns true 1897 * if the block has been added to the extent, false if the block couldn't be 1898 * added. 1899 */ 1900 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1901 struct buffer_head *bh) 1902 { 1903 struct ext4_map_blocks *map = &mpd->map; 1904 1905 /* Buffer that doesn't need mapping for writeback? */ 1906 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1907 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1908 /* So far no extent to map => we write the buffer right away */ 1909 if (map->m_len == 0) 1910 return true; 1911 return false; 1912 } 1913 1914 /* First block in the extent? */ 1915 if (map->m_len == 0) { 1916 map->m_lblk = lblk; 1917 map->m_len = 1; 1918 map->m_flags = bh->b_state & BH_FLAGS; 1919 return true; 1920 } 1921 1922 /* Don't go larger than mballoc is willing to allocate */ 1923 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1924 return false; 1925 1926 /* Can we merge the block to our big extent? */ 1927 if (lblk == map->m_lblk + map->m_len && 1928 (bh->b_state & BH_FLAGS) == map->m_flags) { 1929 map->m_len++; 1930 return true; 1931 } 1932 return false; 1933 } 1934 1935 /* 1936 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1937 * 1938 * @mpd - extent of blocks for mapping 1939 * @head - the first buffer in the page 1940 * @bh - buffer we should start processing from 1941 * @lblk - logical number of the block in the file corresponding to @bh 1942 * 1943 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1944 * the page for IO if all buffers in this page were mapped and there's no 1945 * accumulated extent of buffers to map or add buffers in the page to the 1946 * extent of buffers to map. The function returns 1 if the caller can continue 1947 * by processing the next page, 0 if it should stop adding buffers to the 1948 * extent to map because we cannot extend it anymore. It can also return value 1949 * < 0 in case of error during IO submission. 1950 */ 1951 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1952 struct buffer_head *head, 1953 struct buffer_head *bh, 1954 ext4_lblk_t lblk) 1955 { 1956 struct inode *inode = mpd->inode; 1957 int err; 1958 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1959 >> inode->i_blkbits; 1960 1961 do { 1962 BUG_ON(buffer_locked(bh)); 1963 1964 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1965 /* Found extent to map? */ 1966 if (mpd->map.m_len) 1967 return 0; 1968 /* Everything mapped so far and we hit EOF */ 1969 break; 1970 } 1971 } while (lblk++, (bh = bh->b_this_page) != head); 1972 /* So far everything mapped? Submit the page for IO. */ 1973 if (mpd->map.m_len == 0) { 1974 err = mpage_submit_page(mpd, head->b_page); 1975 if (err < 0) 1976 return err; 1977 } 1978 return lblk < blocks; 1979 } 1980 1981 /* 1982 * mpage_map_buffers - update buffers corresponding to changed extent and 1983 * submit fully mapped pages for IO 1984 * 1985 * @mpd - description of extent to map, on return next extent to map 1986 * 1987 * Scan buffers corresponding to changed extent (we expect corresponding pages 1988 * to be already locked) and update buffer state according to new extent state. 1989 * We map delalloc buffers to their physical location, clear unwritten bits, 1990 * and mark buffers as uninit when we perform writes to unwritten extents 1991 * and do extent conversion after IO is finished. If the last page is not fully 1992 * mapped, we update @map to the next extent in the last page that needs 1993 * mapping. Otherwise we submit the page for IO. 1994 */ 1995 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1996 { 1997 struct pagevec pvec; 1998 int nr_pages, i; 1999 struct inode *inode = mpd->inode; 2000 struct buffer_head *head, *bh; 2001 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2002 pgoff_t start, end; 2003 ext4_lblk_t lblk; 2004 sector_t pblock; 2005 int err; 2006 2007 start = mpd->map.m_lblk >> bpp_bits; 2008 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2009 lblk = start << bpp_bits; 2010 pblock = mpd->map.m_pblk; 2011 2012 pagevec_init(&pvec, 0); 2013 while (start <= end) { 2014 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2015 PAGEVEC_SIZE); 2016 if (nr_pages == 0) 2017 break; 2018 for (i = 0; i < nr_pages; i++) { 2019 struct page *page = pvec.pages[i]; 2020 2021 if (page->index > end) 2022 break; 2023 /* Up to 'end' pages must be contiguous */ 2024 BUG_ON(page->index != start); 2025 bh = head = page_buffers(page); 2026 do { 2027 if (lblk < mpd->map.m_lblk) 2028 continue; 2029 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2030 /* 2031 * Buffer after end of mapped extent. 2032 * Find next buffer in the page to map. 2033 */ 2034 mpd->map.m_len = 0; 2035 mpd->map.m_flags = 0; 2036 /* 2037 * FIXME: If dioread_nolock supports 2038 * blocksize < pagesize, we need to make 2039 * sure we add size mapped so far to 2040 * io_end->size as the following call 2041 * can submit the page for IO. 2042 */ 2043 err = mpage_process_page_bufs(mpd, head, 2044 bh, lblk); 2045 pagevec_release(&pvec); 2046 if (err > 0) 2047 err = 0; 2048 return err; 2049 } 2050 if (buffer_delay(bh)) { 2051 clear_buffer_delay(bh); 2052 bh->b_blocknr = pblock++; 2053 } 2054 clear_buffer_unwritten(bh); 2055 } while (lblk++, (bh = bh->b_this_page) != head); 2056 2057 /* 2058 * FIXME: This is going to break if dioread_nolock 2059 * supports blocksize < pagesize as we will try to 2060 * convert potentially unmapped parts of inode. 2061 */ 2062 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2063 /* Page fully mapped - let IO run! */ 2064 err = mpage_submit_page(mpd, page); 2065 if (err < 0) { 2066 pagevec_release(&pvec); 2067 return err; 2068 } 2069 start++; 2070 } 2071 pagevec_release(&pvec); 2072 } 2073 /* Extent fully mapped and matches with page boundary. We are done. */ 2074 mpd->map.m_len = 0; 2075 mpd->map.m_flags = 0; 2076 return 0; 2077 } 2078 2079 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2080 { 2081 struct inode *inode = mpd->inode; 2082 struct ext4_map_blocks *map = &mpd->map; 2083 int get_blocks_flags; 2084 int err, dioread_nolock; 2085 2086 trace_ext4_da_write_pages_extent(inode, map); 2087 /* 2088 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2089 * to convert an unwritten extent to be initialized (in the case 2090 * where we have written into one or more preallocated blocks). It is 2091 * possible that we're going to need more metadata blocks than 2092 * previously reserved. However we must not fail because we're in 2093 * writeback and there is nothing we can do about it so it might result 2094 * in data loss. So use reserved blocks to allocate metadata if 2095 * possible. 2096 * 2097 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2098 * the blocks in question are delalloc blocks. This indicates 2099 * that the blocks and quotas has already been checked when 2100 * the data was copied into the page cache. 2101 */ 2102 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2103 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2104 dioread_nolock = ext4_should_dioread_nolock(inode); 2105 if (dioread_nolock) 2106 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2107 if (map->m_flags & (1 << BH_Delay)) 2108 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2109 2110 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2111 if (err < 0) 2112 return err; 2113 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2114 if (!mpd->io_submit.io_end->handle && 2115 ext4_handle_valid(handle)) { 2116 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2117 handle->h_rsv_handle = NULL; 2118 } 2119 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2120 } 2121 2122 BUG_ON(map->m_len == 0); 2123 if (map->m_flags & EXT4_MAP_NEW) { 2124 struct block_device *bdev = inode->i_sb->s_bdev; 2125 int i; 2126 2127 for (i = 0; i < map->m_len; i++) 2128 unmap_underlying_metadata(bdev, map->m_pblk + i); 2129 } 2130 return 0; 2131 } 2132 2133 /* 2134 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2135 * mpd->len and submit pages underlying it for IO 2136 * 2137 * @handle - handle for journal operations 2138 * @mpd - extent to map 2139 * @give_up_on_write - we set this to true iff there is a fatal error and there 2140 * is no hope of writing the data. The caller should discard 2141 * dirty pages to avoid infinite loops. 2142 * 2143 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2144 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2145 * them to initialized or split the described range from larger unwritten 2146 * extent. Note that we need not map all the described range since allocation 2147 * can return less blocks or the range is covered by more unwritten extents. We 2148 * cannot map more because we are limited by reserved transaction credits. On 2149 * the other hand we always make sure that the last touched page is fully 2150 * mapped so that it can be written out (and thus forward progress is 2151 * guaranteed). After mapping we submit all mapped pages for IO. 2152 */ 2153 static int mpage_map_and_submit_extent(handle_t *handle, 2154 struct mpage_da_data *mpd, 2155 bool *give_up_on_write) 2156 { 2157 struct inode *inode = mpd->inode; 2158 struct ext4_map_blocks *map = &mpd->map; 2159 int err; 2160 loff_t disksize; 2161 int progress = 0; 2162 2163 mpd->io_submit.io_end->offset = 2164 ((loff_t)map->m_lblk) << inode->i_blkbits; 2165 do { 2166 err = mpage_map_one_extent(handle, mpd); 2167 if (err < 0) { 2168 struct super_block *sb = inode->i_sb; 2169 2170 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2171 goto invalidate_dirty_pages; 2172 /* 2173 * Let the uper layers retry transient errors. 2174 * In the case of ENOSPC, if ext4_count_free_blocks() 2175 * is non-zero, a commit should free up blocks. 2176 */ 2177 if ((err == -ENOMEM) || 2178 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2179 if (progress) 2180 goto update_disksize; 2181 return err; 2182 } 2183 ext4_msg(sb, KERN_CRIT, 2184 "Delayed block allocation failed for " 2185 "inode %lu at logical offset %llu with" 2186 " max blocks %u with error %d", 2187 inode->i_ino, 2188 (unsigned long long)map->m_lblk, 2189 (unsigned)map->m_len, -err); 2190 ext4_msg(sb, KERN_CRIT, 2191 "This should not happen!! Data will " 2192 "be lost\n"); 2193 if (err == -ENOSPC) 2194 ext4_print_free_blocks(inode); 2195 invalidate_dirty_pages: 2196 *give_up_on_write = true; 2197 return err; 2198 } 2199 progress = 1; 2200 /* 2201 * Update buffer state, submit mapped pages, and get us new 2202 * extent to map 2203 */ 2204 err = mpage_map_and_submit_buffers(mpd); 2205 if (err < 0) 2206 goto update_disksize; 2207 } while (map->m_len); 2208 2209 update_disksize: 2210 /* 2211 * Update on-disk size after IO is submitted. Races with 2212 * truncate are avoided by checking i_size under i_data_sem. 2213 */ 2214 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2215 if (disksize > EXT4_I(inode)->i_disksize) { 2216 int err2; 2217 loff_t i_size; 2218 2219 down_write(&EXT4_I(inode)->i_data_sem); 2220 i_size = i_size_read(inode); 2221 if (disksize > i_size) 2222 disksize = i_size; 2223 if (disksize > EXT4_I(inode)->i_disksize) 2224 EXT4_I(inode)->i_disksize = disksize; 2225 err2 = ext4_mark_inode_dirty(handle, inode); 2226 up_write(&EXT4_I(inode)->i_data_sem); 2227 if (err2) 2228 ext4_error(inode->i_sb, 2229 "Failed to mark inode %lu dirty", 2230 inode->i_ino); 2231 if (!err) 2232 err = err2; 2233 } 2234 return err; 2235 } 2236 2237 /* 2238 * Calculate the total number of credits to reserve for one writepages 2239 * iteration. This is called from ext4_writepages(). We map an extent of 2240 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2241 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2242 * bpp - 1 blocks in bpp different extents. 2243 */ 2244 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2245 { 2246 int bpp = ext4_journal_blocks_per_page(inode); 2247 2248 return ext4_meta_trans_blocks(inode, 2249 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2250 } 2251 2252 /* 2253 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2254 * and underlying extent to map 2255 * 2256 * @mpd - where to look for pages 2257 * 2258 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2259 * IO immediately. When we find a page which isn't mapped we start accumulating 2260 * extent of buffers underlying these pages that needs mapping (formed by 2261 * either delayed or unwritten buffers). We also lock the pages containing 2262 * these buffers. The extent found is returned in @mpd structure (starting at 2263 * mpd->lblk with length mpd->len blocks). 2264 * 2265 * Note that this function can attach bios to one io_end structure which are 2266 * neither logically nor physically contiguous. Although it may seem as an 2267 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2268 * case as we need to track IO to all buffers underlying a page in one io_end. 2269 */ 2270 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2271 { 2272 struct address_space *mapping = mpd->inode->i_mapping; 2273 struct pagevec pvec; 2274 unsigned int nr_pages; 2275 long left = mpd->wbc->nr_to_write; 2276 pgoff_t index = mpd->first_page; 2277 pgoff_t end = mpd->last_page; 2278 int tag; 2279 int i, err = 0; 2280 int blkbits = mpd->inode->i_blkbits; 2281 ext4_lblk_t lblk; 2282 struct buffer_head *head; 2283 2284 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2285 tag = PAGECACHE_TAG_TOWRITE; 2286 else 2287 tag = PAGECACHE_TAG_DIRTY; 2288 2289 pagevec_init(&pvec, 0); 2290 mpd->map.m_len = 0; 2291 mpd->next_page = index; 2292 while (index <= end) { 2293 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2294 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2295 if (nr_pages == 0) 2296 goto out; 2297 2298 for (i = 0; i < nr_pages; i++) { 2299 struct page *page = pvec.pages[i]; 2300 2301 /* 2302 * At this point, the page may be truncated or 2303 * invalidated (changing page->mapping to NULL), or 2304 * even swizzled back from swapper_space to tmpfs file 2305 * mapping. However, page->index will not change 2306 * because we have a reference on the page. 2307 */ 2308 if (page->index > end) 2309 goto out; 2310 2311 /* 2312 * Accumulated enough dirty pages? This doesn't apply 2313 * to WB_SYNC_ALL mode. For integrity sync we have to 2314 * keep going because someone may be concurrently 2315 * dirtying pages, and we might have synced a lot of 2316 * newly appeared dirty pages, but have not synced all 2317 * of the old dirty pages. 2318 */ 2319 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2320 goto out; 2321 2322 /* If we can't merge this page, we are done. */ 2323 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2324 goto out; 2325 2326 lock_page(page); 2327 /* 2328 * If the page is no longer dirty, or its mapping no 2329 * longer corresponds to inode we are writing (which 2330 * means it has been truncated or invalidated), or the 2331 * page is already under writeback and we are not doing 2332 * a data integrity writeback, skip the page 2333 */ 2334 if (!PageDirty(page) || 2335 (PageWriteback(page) && 2336 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2337 unlikely(page->mapping != mapping)) { 2338 unlock_page(page); 2339 continue; 2340 } 2341 2342 wait_on_page_writeback(page); 2343 BUG_ON(PageWriteback(page)); 2344 2345 if (mpd->map.m_len == 0) 2346 mpd->first_page = page->index; 2347 mpd->next_page = page->index + 1; 2348 /* Add all dirty buffers to mpd */ 2349 lblk = ((ext4_lblk_t)page->index) << 2350 (PAGE_CACHE_SHIFT - blkbits); 2351 head = page_buffers(page); 2352 err = mpage_process_page_bufs(mpd, head, head, lblk); 2353 if (err <= 0) 2354 goto out; 2355 err = 0; 2356 left--; 2357 } 2358 pagevec_release(&pvec); 2359 cond_resched(); 2360 } 2361 return 0; 2362 out: 2363 pagevec_release(&pvec); 2364 return err; 2365 } 2366 2367 static int __writepage(struct page *page, struct writeback_control *wbc, 2368 void *data) 2369 { 2370 struct address_space *mapping = data; 2371 int ret = ext4_writepage(page, wbc); 2372 mapping_set_error(mapping, ret); 2373 return ret; 2374 } 2375 2376 static int ext4_writepages(struct address_space *mapping, 2377 struct writeback_control *wbc) 2378 { 2379 pgoff_t writeback_index = 0; 2380 long nr_to_write = wbc->nr_to_write; 2381 int range_whole = 0; 2382 int cycled = 1; 2383 handle_t *handle = NULL; 2384 struct mpage_da_data mpd; 2385 struct inode *inode = mapping->host; 2386 int needed_blocks, rsv_blocks = 0, ret = 0; 2387 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2388 bool done; 2389 struct blk_plug plug; 2390 bool give_up_on_write = false; 2391 2392 trace_ext4_writepages(inode, wbc); 2393 2394 /* 2395 * No pages to write? This is mainly a kludge to avoid starting 2396 * a transaction for special inodes like journal inode on last iput() 2397 * because that could violate lock ordering on umount 2398 */ 2399 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2400 goto out_writepages; 2401 2402 if (ext4_should_journal_data(inode)) { 2403 struct blk_plug plug; 2404 2405 blk_start_plug(&plug); 2406 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2407 blk_finish_plug(&plug); 2408 goto out_writepages; 2409 } 2410 2411 /* 2412 * If the filesystem has aborted, it is read-only, so return 2413 * right away instead of dumping stack traces later on that 2414 * will obscure the real source of the problem. We test 2415 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2416 * the latter could be true if the filesystem is mounted 2417 * read-only, and in that case, ext4_writepages should 2418 * *never* be called, so if that ever happens, we would want 2419 * the stack trace. 2420 */ 2421 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2422 ret = -EROFS; 2423 goto out_writepages; 2424 } 2425 2426 if (ext4_should_dioread_nolock(inode)) { 2427 /* 2428 * We may need to convert up to one extent per block in 2429 * the page and we may dirty the inode. 2430 */ 2431 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2432 } 2433 2434 /* 2435 * If we have inline data and arrive here, it means that 2436 * we will soon create the block for the 1st page, so 2437 * we'd better clear the inline data here. 2438 */ 2439 if (ext4_has_inline_data(inode)) { 2440 /* Just inode will be modified... */ 2441 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2442 if (IS_ERR(handle)) { 2443 ret = PTR_ERR(handle); 2444 goto out_writepages; 2445 } 2446 BUG_ON(ext4_test_inode_state(inode, 2447 EXT4_STATE_MAY_INLINE_DATA)); 2448 ext4_destroy_inline_data(handle, inode); 2449 ext4_journal_stop(handle); 2450 } 2451 2452 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2453 range_whole = 1; 2454 2455 if (wbc->range_cyclic) { 2456 writeback_index = mapping->writeback_index; 2457 if (writeback_index) 2458 cycled = 0; 2459 mpd.first_page = writeback_index; 2460 mpd.last_page = -1; 2461 } else { 2462 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2463 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2464 } 2465 2466 mpd.inode = inode; 2467 mpd.wbc = wbc; 2468 ext4_io_submit_init(&mpd.io_submit, wbc); 2469 retry: 2470 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2471 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2472 done = false; 2473 blk_start_plug(&plug); 2474 while (!done && mpd.first_page <= mpd.last_page) { 2475 /* For each extent of pages we use new io_end */ 2476 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2477 if (!mpd.io_submit.io_end) { 2478 ret = -ENOMEM; 2479 break; 2480 } 2481 2482 /* 2483 * We have two constraints: We find one extent to map and we 2484 * must always write out whole page (makes a difference when 2485 * blocksize < pagesize) so that we don't block on IO when we 2486 * try to write out the rest of the page. Journalled mode is 2487 * not supported by delalloc. 2488 */ 2489 BUG_ON(ext4_should_journal_data(inode)); 2490 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2491 2492 /* start a new transaction */ 2493 handle = ext4_journal_start_with_reserve(inode, 2494 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2495 if (IS_ERR(handle)) { 2496 ret = PTR_ERR(handle); 2497 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2498 "%ld pages, ino %lu; err %d", __func__, 2499 wbc->nr_to_write, inode->i_ino, ret); 2500 /* Release allocated io_end */ 2501 ext4_put_io_end(mpd.io_submit.io_end); 2502 break; 2503 } 2504 2505 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2506 ret = mpage_prepare_extent_to_map(&mpd); 2507 if (!ret) { 2508 if (mpd.map.m_len) 2509 ret = mpage_map_and_submit_extent(handle, &mpd, 2510 &give_up_on_write); 2511 else { 2512 /* 2513 * We scanned the whole range (or exhausted 2514 * nr_to_write), submitted what was mapped and 2515 * didn't find anything needing mapping. We are 2516 * done. 2517 */ 2518 done = true; 2519 } 2520 } 2521 ext4_journal_stop(handle); 2522 /* Submit prepared bio */ 2523 ext4_io_submit(&mpd.io_submit); 2524 /* Unlock pages we didn't use */ 2525 mpage_release_unused_pages(&mpd, give_up_on_write); 2526 /* Drop our io_end reference we got from init */ 2527 ext4_put_io_end(mpd.io_submit.io_end); 2528 2529 if (ret == -ENOSPC && sbi->s_journal) { 2530 /* 2531 * Commit the transaction which would 2532 * free blocks released in the transaction 2533 * and try again 2534 */ 2535 jbd2_journal_force_commit_nested(sbi->s_journal); 2536 ret = 0; 2537 continue; 2538 } 2539 /* Fatal error - ENOMEM, EIO... */ 2540 if (ret) 2541 break; 2542 } 2543 blk_finish_plug(&plug); 2544 if (!ret && !cycled && wbc->nr_to_write > 0) { 2545 cycled = 1; 2546 mpd.last_page = writeback_index - 1; 2547 mpd.first_page = 0; 2548 goto retry; 2549 } 2550 2551 /* Update index */ 2552 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2553 /* 2554 * Set the writeback_index so that range_cyclic 2555 * mode will write it back later 2556 */ 2557 mapping->writeback_index = mpd.first_page; 2558 2559 out_writepages: 2560 trace_ext4_writepages_result(inode, wbc, ret, 2561 nr_to_write - wbc->nr_to_write); 2562 return ret; 2563 } 2564 2565 static int ext4_nonda_switch(struct super_block *sb) 2566 { 2567 s64 free_clusters, dirty_clusters; 2568 struct ext4_sb_info *sbi = EXT4_SB(sb); 2569 2570 /* 2571 * switch to non delalloc mode if we are running low 2572 * on free block. The free block accounting via percpu 2573 * counters can get slightly wrong with percpu_counter_batch getting 2574 * accumulated on each CPU without updating global counters 2575 * Delalloc need an accurate free block accounting. So switch 2576 * to non delalloc when we are near to error range. 2577 */ 2578 free_clusters = 2579 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2580 dirty_clusters = 2581 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2582 /* 2583 * Start pushing delalloc when 1/2 of free blocks are dirty. 2584 */ 2585 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2586 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2587 2588 if (2 * free_clusters < 3 * dirty_clusters || 2589 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2590 /* 2591 * free block count is less than 150% of dirty blocks 2592 * or free blocks is less than watermark 2593 */ 2594 return 1; 2595 } 2596 return 0; 2597 } 2598 2599 /* We always reserve for an inode update; the superblock could be there too */ 2600 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2601 { 2602 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2603 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2604 return 1; 2605 2606 if (pos + len <= 0x7fffffffULL) 2607 return 1; 2608 2609 /* We might need to update the superblock to set LARGE_FILE */ 2610 return 2; 2611 } 2612 2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2614 loff_t pos, unsigned len, unsigned flags, 2615 struct page **pagep, void **fsdata) 2616 { 2617 int ret, retries = 0; 2618 struct page *page; 2619 pgoff_t index; 2620 struct inode *inode = mapping->host; 2621 handle_t *handle; 2622 2623 index = pos >> PAGE_CACHE_SHIFT; 2624 2625 if (ext4_nonda_switch(inode->i_sb)) { 2626 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2627 return ext4_write_begin(file, mapping, pos, 2628 len, flags, pagep, fsdata); 2629 } 2630 *fsdata = (void *)0; 2631 trace_ext4_da_write_begin(inode, pos, len, flags); 2632 2633 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2634 ret = ext4_da_write_inline_data_begin(mapping, inode, 2635 pos, len, flags, 2636 pagep, fsdata); 2637 if (ret < 0) 2638 return ret; 2639 if (ret == 1) 2640 return 0; 2641 } 2642 2643 /* 2644 * grab_cache_page_write_begin() can take a long time if the 2645 * system is thrashing due to memory pressure, or if the page 2646 * is being written back. So grab it first before we start 2647 * the transaction handle. This also allows us to allocate 2648 * the page (if needed) without using GFP_NOFS. 2649 */ 2650 retry_grab: 2651 page = grab_cache_page_write_begin(mapping, index, flags); 2652 if (!page) 2653 return -ENOMEM; 2654 unlock_page(page); 2655 2656 /* 2657 * With delayed allocation, we don't log the i_disksize update 2658 * if there is delayed block allocation. But we still need 2659 * to journalling the i_disksize update if writes to the end 2660 * of file which has an already mapped buffer. 2661 */ 2662 retry_journal: 2663 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2664 ext4_da_write_credits(inode, pos, len)); 2665 if (IS_ERR(handle)) { 2666 page_cache_release(page); 2667 return PTR_ERR(handle); 2668 } 2669 2670 lock_page(page); 2671 if (page->mapping != mapping) { 2672 /* The page got truncated from under us */ 2673 unlock_page(page); 2674 page_cache_release(page); 2675 ext4_journal_stop(handle); 2676 goto retry_grab; 2677 } 2678 /* In case writeback began while the page was unlocked */ 2679 wait_for_stable_page(page); 2680 2681 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2682 ret = ext4_block_write_begin(page, pos, len, 2683 ext4_da_get_block_prep); 2684 #else 2685 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2686 #endif 2687 if (ret < 0) { 2688 unlock_page(page); 2689 ext4_journal_stop(handle); 2690 /* 2691 * block_write_begin may have instantiated a few blocks 2692 * outside i_size. Trim these off again. Don't need 2693 * i_size_read because we hold i_mutex. 2694 */ 2695 if (pos + len > inode->i_size) 2696 ext4_truncate_failed_write(inode); 2697 2698 if (ret == -ENOSPC && 2699 ext4_should_retry_alloc(inode->i_sb, &retries)) 2700 goto retry_journal; 2701 2702 page_cache_release(page); 2703 return ret; 2704 } 2705 2706 *pagep = page; 2707 return ret; 2708 } 2709 2710 /* 2711 * Check if we should update i_disksize 2712 * when write to the end of file but not require block allocation 2713 */ 2714 static int ext4_da_should_update_i_disksize(struct page *page, 2715 unsigned long offset) 2716 { 2717 struct buffer_head *bh; 2718 struct inode *inode = page->mapping->host; 2719 unsigned int idx; 2720 int i; 2721 2722 bh = page_buffers(page); 2723 idx = offset >> inode->i_blkbits; 2724 2725 for (i = 0; i < idx; i++) 2726 bh = bh->b_this_page; 2727 2728 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2729 return 0; 2730 return 1; 2731 } 2732 2733 static int ext4_da_write_end(struct file *file, 2734 struct address_space *mapping, 2735 loff_t pos, unsigned len, unsigned copied, 2736 struct page *page, void *fsdata) 2737 { 2738 struct inode *inode = mapping->host; 2739 int ret = 0, ret2; 2740 handle_t *handle = ext4_journal_current_handle(); 2741 loff_t new_i_size; 2742 unsigned long start, end; 2743 int write_mode = (int)(unsigned long)fsdata; 2744 2745 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2746 return ext4_write_end(file, mapping, pos, 2747 len, copied, page, fsdata); 2748 2749 trace_ext4_da_write_end(inode, pos, len, copied); 2750 start = pos & (PAGE_CACHE_SIZE - 1); 2751 end = start + copied - 1; 2752 2753 /* 2754 * generic_write_end() will run mark_inode_dirty() if i_size 2755 * changes. So let's piggyback the i_disksize mark_inode_dirty 2756 * into that. 2757 */ 2758 new_i_size = pos + copied; 2759 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2760 if (ext4_has_inline_data(inode) || 2761 ext4_da_should_update_i_disksize(page, end)) { 2762 ext4_update_i_disksize(inode, new_i_size); 2763 /* We need to mark inode dirty even if 2764 * new_i_size is less that inode->i_size 2765 * bu greater than i_disksize.(hint delalloc) 2766 */ 2767 ext4_mark_inode_dirty(handle, inode); 2768 } 2769 } 2770 2771 if (write_mode != CONVERT_INLINE_DATA && 2772 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2773 ext4_has_inline_data(inode)) 2774 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2775 page); 2776 else 2777 ret2 = generic_write_end(file, mapping, pos, len, copied, 2778 page, fsdata); 2779 2780 copied = ret2; 2781 if (ret2 < 0) 2782 ret = ret2; 2783 ret2 = ext4_journal_stop(handle); 2784 if (!ret) 2785 ret = ret2; 2786 2787 return ret ? ret : copied; 2788 } 2789 2790 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2791 unsigned int length) 2792 { 2793 /* 2794 * Drop reserved blocks 2795 */ 2796 BUG_ON(!PageLocked(page)); 2797 if (!page_has_buffers(page)) 2798 goto out; 2799 2800 ext4_da_page_release_reservation(page, offset, length); 2801 2802 out: 2803 ext4_invalidatepage(page, offset, length); 2804 2805 return; 2806 } 2807 2808 /* 2809 * Force all delayed allocation blocks to be allocated for a given inode. 2810 */ 2811 int ext4_alloc_da_blocks(struct inode *inode) 2812 { 2813 trace_ext4_alloc_da_blocks(inode); 2814 2815 if (!EXT4_I(inode)->i_reserved_data_blocks) 2816 return 0; 2817 2818 /* 2819 * We do something simple for now. The filemap_flush() will 2820 * also start triggering a write of the data blocks, which is 2821 * not strictly speaking necessary (and for users of 2822 * laptop_mode, not even desirable). However, to do otherwise 2823 * would require replicating code paths in: 2824 * 2825 * ext4_writepages() -> 2826 * write_cache_pages() ---> (via passed in callback function) 2827 * __mpage_da_writepage() --> 2828 * mpage_add_bh_to_extent() 2829 * mpage_da_map_blocks() 2830 * 2831 * The problem is that write_cache_pages(), located in 2832 * mm/page-writeback.c, marks pages clean in preparation for 2833 * doing I/O, which is not desirable if we're not planning on 2834 * doing I/O at all. 2835 * 2836 * We could call write_cache_pages(), and then redirty all of 2837 * the pages by calling redirty_page_for_writepage() but that 2838 * would be ugly in the extreme. So instead we would need to 2839 * replicate parts of the code in the above functions, 2840 * simplifying them because we wouldn't actually intend to 2841 * write out the pages, but rather only collect contiguous 2842 * logical block extents, call the multi-block allocator, and 2843 * then update the buffer heads with the block allocations. 2844 * 2845 * For now, though, we'll cheat by calling filemap_flush(), 2846 * which will map the blocks, and start the I/O, but not 2847 * actually wait for the I/O to complete. 2848 */ 2849 return filemap_flush(inode->i_mapping); 2850 } 2851 2852 /* 2853 * bmap() is special. It gets used by applications such as lilo and by 2854 * the swapper to find the on-disk block of a specific piece of data. 2855 * 2856 * Naturally, this is dangerous if the block concerned is still in the 2857 * journal. If somebody makes a swapfile on an ext4 data-journaling 2858 * filesystem and enables swap, then they may get a nasty shock when the 2859 * data getting swapped to that swapfile suddenly gets overwritten by 2860 * the original zero's written out previously to the journal and 2861 * awaiting writeback in the kernel's buffer cache. 2862 * 2863 * So, if we see any bmap calls here on a modified, data-journaled file, 2864 * take extra steps to flush any blocks which might be in the cache. 2865 */ 2866 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2867 { 2868 struct inode *inode = mapping->host; 2869 journal_t *journal; 2870 int err; 2871 2872 /* 2873 * We can get here for an inline file via the FIBMAP ioctl 2874 */ 2875 if (ext4_has_inline_data(inode)) 2876 return 0; 2877 2878 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2879 test_opt(inode->i_sb, DELALLOC)) { 2880 /* 2881 * With delalloc we want to sync the file 2882 * so that we can make sure we allocate 2883 * blocks for file 2884 */ 2885 filemap_write_and_wait(mapping); 2886 } 2887 2888 if (EXT4_JOURNAL(inode) && 2889 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2890 /* 2891 * This is a REALLY heavyweight approach, but the use of 2892 * bmap on dirty files is expected to be extremely rare: 2893 * only if we run lilo or swapon on a freshly made file 2894 * do we expect this to happen. 2895 * 2896 * (bmap requires CAP_SYS_RAWIO so this does not 2897 * represent an unprivileged user DOS attack --- we'd be 2898 * in trouble if mortal users could trigger this path at 2899 * will.) 2900 * 2901 * NB. EXT4_STATE_JDATA is not set on files other than 2902 * regular files. If somebody wants to bmap a directory 2903 * or symlink and gets confused because the buffer 2904 * hasn't yet been flushed to disk, they deserve 2905 * everything they get. 2906 */ 2907 2908 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2909 journal = EXT4_JOURNAL(inode); 2910 jbd2_journal_lock_updates(journal); 2911 err = jbd2_journal_flush(journal); 2912 jbd2_journal_unlock_updates(journal); 2913 2914 if (err) 2915 return 0; 2916 } 2917 2918 return generic_block_bmap(mapping, block, ext4_get_block); 2919 } 2920 2921 static int ext4_readpage(struct file *file, struct page *page) 2922 { 2923 int ret = -EAGAIN; 2924 struct inode *inode = page->mapping->host; 2925 2926 trace_ext4_readpage(page); 2927 2928 if (ext4_has_inline_data(inode)) 2929 ret = ext4_readpage_inline(inode, page); 2930 2931 if (ret == -EAGAIN) 2932 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2933 2934 return ret; 2935 } 2936 2937 static int 2938 ext4_readpages(struct file *file, struct address_space *mapping, 2939 struct list_head *pages, unsigned nr_pages) 2940 { 2941 struct inode *inode = mapping->host; 2942 2943 /* If the file has inline data, no need to do readpages. */ 2944 if (ext4_has_inline_data(inode)) 2945 return 0; 2946 2947 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2948 } 2949 2950 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2951 unsigned int length) 2952 { 2953 trace_ext4_invalidatepage(page, offset, length); 2954 2955 /* No journalling happens on data buffers when this function is used */ 2956 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2957 2958 block_invalidatepage(page, offset, length); 2959 } 2960 2961 static int __ext4_journalled_invalidatepage(struct page *page, 2962 unsigned int offset, 2963 unsigned int length) 2964 { 2965 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2966 2967 trace_ext4_journalled_invalidatepage(page, offset, length); 2968 2969 /* 2970 * If it's a full truncate we just forget about the pending dirtying 2971 */ 2972 if (offset == 0 && length == PAGE_CACHE_SIZE) 2973 ClearPageChecked(page); 2974 2975 return jbd2_journal_invalidatepage(journal, page, offset, length); 2976 } 2977 2978 /* Wrapper for aops... */ 2979 static void ext4_journalled_invalidatepage(struct page *page, 2980 unsigned int offset, 2981 unsigned int length) 2982 { 2983 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2984 } 2985 2986 static int ext4_releasepage(struct page *page, gfp_t wait) 2987 { 2988 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2989 2990 trace_ext4_releasepage(page); 2991 2992 /* Page has dirty journalled data -> cannot release */ 2993 if (PageChecked(page)) 2994 return 0; 2995 if (journal) 2996 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2997 else 2998 return try_to_free_buffers(page); 2999 } 3000 3001 /* 3002 * ext4_get_block used when preparing for a DIO write or buffer write. 3003 * We allocate an uinitialized extent if blocks haven't been allocated. 3004 * The extent will be converted to initialized after the IO is complete. 3005 */ 3006 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3007 struct buffer_head *bh_result, int create) 3008 { 3009 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3010 inode->i_ino, create); 3011 return _ext4_get_block(inode, iblock, bh_result, 3012 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3013 } 3014 3015 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3016 struct buffer_head *bh_result, int create) 3017 { 3018 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3019 inode->i_ino, create); 3020 return _ext4_get_block(inode, iblock, bh_result, 3021 EXT4_GET_BLOCKS_NO_LOCK); 3022 } 3023 3024 int ext4_get_block_dax(struct inode *inode, sector_t iblock, 3025 struct buffer_head *bh_result, int create) 3026 { 3027 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT; 3028 if (create) 3029 flags |= EXT4_GET_BLOCKS_CREATE; 3030 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n", 3031 inode->i_ino, create); 3032 return _ext4_get_block(inode, iblock, bh_result, flags); 3033 } 3034 3035 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3036 ssize_t size, void *private) 3037 { 3038 ext4_io_end_t *io_end = iocb->private; 3039 3040 /* if not async direct IO just return */ 3041 if (!io_end) 3042 return; 3043 3044 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3045 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3046 iocb->private, io_end->inode->i_ino, iocb, offset, 3047 size); 3048 3049 iocb->private = NULL; 3050 io_end->offset = offset; 3051 io_end->size = size; 3052 ext4_put_io_end(io_end); 3053 } 3054 3055 /* 3056 * For ext4 extent files, ext4 will do direct-io write to holes, 3057 * preallocated extents, and those write extend the file, no need to 3058 * fall back to buffered IO. 3059 * 3060 * For holes, we fallocate those blocks, mark them as unwritten 3061 * If those blocks were preallocated, we mark sure they are split, but 3062 * still keep the range to write as unwritten. 3063 * 3064 * The unwritten extents will be converted to written when DIO is completed. 3065 * For async direct IO, since the IO may still pending when return, we 3066 * set up an end_io call back function, which will do the conversion 3067 * when async direct IO completed. 3068 * 3069 * If the O_DIRECT write will extend the file then add this inode to the 3070 * orphan list. So recovery will truncate it back to the original size 3071 * if the machine crashes during the write. 3072 * 3073 */ 3074 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3075 loff_t offset) 3076 { 3077 struct file *file = iocb->ki_filp; 3078 struct inode *inode = file->f_mapping->host; 3079 ssize_t ret; 3080 size_t count = iov_iter_count(iter); 3081 int overwrite = 0; 3082 get_block_t *get_block_func = NULL; 3083 int dio_flags = 0; 3084 loff_t final_size = offset + count; 3085 ext4_io_end_t *io_end = NULL; 3086 3087 /* Use the old path for reads and writes beyond i_size. */ 3088 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3089 return ext4_ind_direct_IO(iocb, iter, offset); 3090 3091 BUG_ON(iocb->private == NULL); 3092 3093 /* 3094 * Make all waiters for direct IO properly wait also for extent 3095 * conversion. This also disallows race between truncate() and 3096 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3097 */ 3098 if (iov_iter_rw(iter) == WRITE) 3099 inode_dio_begin(inode); 3100 3101 /* If we do a overwrite dio, i_mutex locking can be released */ 3102 overwrite = *((int *)iocb->private); 3103 3104 if (overwrite) { 3105 down_read(&EXT4_I(inode)->i_data_sem); 3106 mutex_unlock(&inode->i_mutex); 3107 } 3108 3109 /* 3110 * We could direct write to holes and fallocate. 3111 * 3112 * Allocated blocks to fill the hole are marked as 3113 * unwritten to prevent parallel buffered read to expose 3114 * the stale data before DIO complete the data IO. 3115 * 3116 * As to previously fallocated extents, ext4 get_block will 3117 * just simply mark the buffer mapped but still keep the 3118 * extents unwritten. 3119 * 3120 * For non AIO case, we will convert those unwritten extents 3121 * to written after return back from blockdev_direct_IO. 3122 * 3123 * For async DIO, the conversion needs to be deferred when the 3124 * IO is completed. The ext4 end_io callback function will be 3125 * called to take care of the conversion work. Here for async 3126 * case, we allocate an io_end structure to hook to the iocb. 3127 */ 3128 iocb->private = NULL; 3129 ext4_inode_aio_set(inode, NULL); 3130 if (!is_sync_kiocb(iocb)) { 3131 io_end = ext4_init_io_end(inode, GFP_NOFS); 3132 if (!io_end) { 3133 ret = -ENOMEM; 3134 goto retake_lock; 3135 } 3136 /* 3137 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3138 */ 3139 iocb->private = ext4_get_io_end(io_end); 3140 /* 3141 * we save the io structure for current async direct 3142 * IO, so that later ext4_map_blocks() could flag the 3143 * io structure whether there is a unwritten extents 3144 * needs to be converted when IO is completed. 3145 */ 3146 ext4_inode_aio_set(inode, io_end); 3147 } 3148 3149 if (overwrite) { 3150 get_block_func = ext4_get_block_write_nolock; 3151 } else { 3152 get_block_func = ext4_get_block_write; 3153 dio_flags = DIO_LOCKING; 3154 } 3155 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3156 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3157 #endif 3158 if (IS_DAX(inode)) 3159 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3160 ext4_end_io_dio, dio_flags); 3161 else 3162 ret = __blockdev_direct_IO(iocb, inode, 3163 inode->i_sb->s_bdev, iter, offset, 3164 get_block_func, 3165 ext4_end_io_dio, NULL, dio_flags); 3166 3167 /* 3168 * Put our reference to io_end. This can free the io_end structure e.g. 3169 * in sync IO case or in case of error. It can even perform extent 3170 * conversion if all bios we submitted finished before we got here. 3171 * Note that in that case iocb->private can be already set to NULL 3172 * here. 3173 */ 3174 if (io_end) { 3175 ext4_inode_aio_set(inode, NULL); 3176 ext4_put_io_end(io_end); 3177 /* 3178 * When no IO was submitted ext4_end_io_dio() was not 3179 * called so we have to put iocb's reference. 3180 */ 3181 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3182 WARN_ON(iocb->private != io_end); 3183 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3184 ext4_put_io_end(io_end); 3185 iocb->private = NULL; 3186 } 3187 } 3188 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3189 EXT4_STATE_DIO_UNWRITTEN)) { 3190 int err; 3191 /* 3192 * for non AIO case, since the IO is already 3193 * completed, we could do the conversion right here 3194 */ 3195 err = ext4_convert_unwritten_extents(NULL, inode, 3196 offset, ret); 3197 if (err < 0) 3198 ret = err; 3199 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3200 } 3201 3202 retake_lock: 3203 if (iov_iter_rw(iter) == WRITE) 3204 inode_dio_end(inode); 3205 /* take i_mutex locking again if we do a ovewrite dio */ 3206 if (overwrite) { 3207 up_read(&EXT4_I(inode)->i_data_sem); 3208 mutex_lock(&inode->i_mutex); 3209 } 3210 3211 return ret; 3212 } 3213 3214 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3215 loff_t offset) 3216 { 3217 struct file *file = iocb->ki_filp; 3218 struct inode *inode = file->f_mapping->host; 3219 size_t count = iov_iter_count(iter); 3220 ssize_t ret; 3221 3222 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3223 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3224 return 0; 3225 #endif 3226 3227 /* 3228 * If we are doing data journalling we don't support O_DIRECT 3229 */ 3230 if (ext4_should_journal_data(inode)) 3231 return 0; 3232 3233 /* Let buffer I/O handle the inline data case. */ 3234 if (ext4_has_inline_data(inode)) 3235 return 0; 3236 3237 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3238 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3239 ret = ext4_ext_direct_IO(iocb, iter, offset); 3240 else 3241 ret = ext4_ind_direct_IO(iocb, iter, offset); 3242 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3243 return ret; 3244 } 3245 3246 /* 3247 * Pages can be marked dirty completely asynchronously from ext4's journalling 3248 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3249 * much here because ->set_page_dirty is called under VFS locks. The page is 3250 * not necessarily locked. 3251 * 3252 * We cannot just dirty the page and leave attached buffers clean, because the 3253 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3254 * or jbddirty because all the journalling code will explode. 3255 * 3256 * So what we do is to mark the page "pending dirty" and next time writepage 3257 * is called, propagate that into the buffers appropriately. 3258 */ 3259 static int ext4_journalled_set_page_dirty(struct page *page) 3260 { 3261 SetPageChecked(page); 3262 return __set_page_dirty_nobuffers(page); 3263 } 3264 3265 static const struct address_space_operations ext4_aops = { 3266 .readpage = ext4_readpage, 3267 .readpages = ext4_readpages, 3268 .writepage = ext4_writepage, 3269 .writepages = ext4_writepages, 3270 .write_begin = ext4_write_begin, 3271 .write_end = ext4_write_end, 3272 .bmap = ext4_bmap, 3273 .invalidatepage = ext4_invalidatepage, 3274 .releasepage = ext4_releasepage, 3275 .direct_IO = ext4_direct_IO, 3276 .migratepage = buffer_migrate_page, 3277 .is_partially_uptodate = block_is_partially_uptodate, 3278 .error_remove_page = generic_error_remove_page, 3279 }; 3280 3281 static const struct address_space_operations ext4_journalled_aops = { 3282 .readpage = ext4_readpage, 3283 .readpages = ext4_readpages, 3284 .writepage = ext4_writepage, 3285 .writepages = ext4_writepages, 3286 .write_begin = ext4_write_begin, 3287 .write_end = ext4_journalled_write_end, 3288 .set_page_dirty = ext4_journalled_set_page_dirty, 3289 .bmap = ext4_bmap, 3290 .invalidatepage = ext4_journalled_invalidatepage, 3291 .releasepage = ext4_releasepage, 3292 .direct_IO = ext4_direct_IO, 3293 .is_partially_uptodate = block_is_partially_uptodate, 3294 .error_remove_page = generic_error_remove_page, 3295 }; 3296 3297 static const struct address_space_operations ext4_da_aops = { 3298 .readpage = ext4_readpage, 3299 .readpages = ext4_readpages, 3300 .writepage = ext4_writepage, 3301 .writepages = ext4_writepages, 3302 .write_begin = ext4_da_write_begin, 3303 .write_end = ext4_da_write_end, 3304 .bmap = ext4_bmap, 3305 .invalidatepage = ext4_da_invalidatepage, 3306 .releasepage = ext4_releasepage, 3307 .direct_IO = ext4_direct_IO, 3308 .migratepage = buffer_migrate_page, 3309 .is_partially_uptodate = block_is_partially_uptodate, 3310 .error_remove_page = generic_error_remove_page, 3311 }; 3312 3313 void ext4_set_aops(struct inode *inode) 3314 { 3315 switch (ext4_inode_journal_mode(inode)) { 3316 case EXT4_INODE_ORDERED_DATA_MODE: 3317 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3318 break; 3319 case EXT4_INODE_WRITEBACK_DATA_MODE: 3320 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3321 break; 3322 case EXT4_INODE_JOURNAL_DATA_MODE: 3323 inode->i_mapping->a_ops = &ext4_journalled_aops; 3324 return; 3325 default: 3326 BUG(); 3327 } 3328 if (test_opt(inode->i_sb, DELALLOC)) 3329 inode->i_mapping->a_ops = &ext4_da_aops; 3330 else 3331 inode->i_mapping->a_ops = &ext4_aops; 3332 } 3333 3334 static int __ext4_block_zero_page_range(handle_t *handle, 3335 struct address_space *mapping, loff_t from, loff_t length) 3336 { 3337 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3338 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3339 unsigned blocksize, pos; 3340 ext4_lblk_t iblock; 3341 struct inode *inode = mapping->host; 3342 struct buffer_head *bh; 3343 struct page *page; 3344 int err = 0; 3345 3346 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3347 mapping_gfp_mask(mapping) & ~__GFP_FS); 3348 if (!page) 3349 return -ENOMEM; 3350 3351 blocksize = inode->i_sb->s_blocksize; 3352 3353 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3354 3355 if (!page_has_buffers(page)) 3356 create_empty_buffers(page, blocksize, 0); 3357 3358 /* Find the buffer that contains "offset" */ 3359 bh = page_buffers(page); 3360 pos = blocksize; 3361 while (offset >= pos) { 3362 bh = bh->b_this_page; 3363 iblock++; 3364 pos += blocksize; 3365 } 3366 if (buffer_freed(bh)) { 3367 BUFFER_TRACE(bh, "freed: skip"); 3368 goto unlock; 3369 } 3370 if (!buffer_mapped(bh)) { 3371 BUFFER_TRACE(bh, "unmapped"); 3372 ext4_get_block(inode, iblock, bh, 0); 3373 /* unmapped? It's a hole - nothing to do */ 3374 if (!buffer_mapped(bh)) { 3375 BUFFER_TRACE(bh, "still unmapped"); 3376 goto unlock; 3377 } 3378 } 3379 3380 /* Ok, it's mapped. Make sure it's up-to-date */ 3381 if (PageUptodate(page)) 3382 set_buffer_uptodate(bh); 3383 3384 if (!buffer_uptodate(bh)) { 3385 err = -EIO; 3386 ll_rw_block(READ, 1, &bh); 3387 wait_on_buffer(bh); 3388 /* Uhhuh. Read error. Complain and punt. */ 3389 if (!buffer_uptodate(bh)) 3390 goto unlock; 3391 if (S_ISREG(inode->i_mode) && 3392 ext4_encrypted_inode(inode)) { 3393 /* We expect the key to be set. */ 3394 BUG_ON(!ext4_has_encryption_key(inode)); 3395 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3396 WARN_ON_ONCE(ext4_decrypt_one(inode, page)); 3397 } 3398 } 3399 if (ext4_should_journal_data(inode)) { 3400 BUFFER_TRACE(bh, "get write access"); 3401 err = ext4_journal_get_write_access(handle, bh); 3402 if (err) 3403 goto unlock; 3404 } 3405 zero_user(page, offset, length); 3406 BUFFER_TRACE(bh, "zeroed end of block"); 3407 3408 if (ext4_should_journal_data(inode)) { 3409 err = ext4_handle_dirty_metadata(handle, inode, bh); 3410 } else { 3411 err = 0; 3412 mark_buffer_dirty(bh); 3413 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3414 err = ext4_jbd2_file_inode(handle, inode); 3415 } 3416 3417 unlock: 3418 unlock_page(page); 3419 page_cache_release(page); 3420 return err; 3421 } 3422 3423 /* 3424 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3425 * starting from file offset 'from'. The range to be zero'd must 3426 * be contained with in one block. If the specified range exceeds 3427 * the end of the block it will be shortened to end of the block 3428 * that cooresponds to 'from' 3429 */ 3430 static int ext4_block_zero_page_range(handle_t *handle, 3431 struct address_space *mapping, loff_t from, loff_t length) 3432 { 3433 struct inode *inode = mapping->host; 3434 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3435 unsigned blocksize = inode->i_sb->s_blocksize; 3436 unsigned max = blocksize - (offset & (blocksize - 1)); 3437 3438 /* 3439 * correct length if it does not fall between 3440 * 'from' and the end of the block 3441 */ 3442 if (length > max || length < 0) 3443 length = max; 3444 3445 if (IS_DAX(inode)) 3446 return dax_zero_page_range(inode, from, length, ext4_get_block); 3447 return __ext4_block_zero_page_range(handle, mapping, from, length); 3448 } 3449 3450 /* 3451 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3452 * up to the end of the block which corresponds to `from'. 3453 * This required during truncate. We need to physically zero the tail end 3454 * of that block so it doesn't yield old data if the file is later grown. 3455 */ 3456 static int ext4_block_truncate_page(handle_t *handle, 3457 struct address_space *mapping, loff_t from) 3458 { 3459 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3460 unsigned length; 3461 unsigned blocksize; 3462 struct inode *inode = mapping->host; 3463 3464 blocksize = inode->i_sb->s_blocksize; 3465 length = blocksize - (offset & (blocksize - 1)); 3466 3467 return ext4_block_zero_page_range(handle, mapping, from, length); 3468 } 3469 3470 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3471 loff_t lstart, loff_t length) 3472 { 3473 struct super_block *sb = inode->i_sb; 3474 struct address_space *mapping = inode->i_mapping; 3475 unsigned partial_start, partial_end; 3476 ext4_fsblk_t start, end; 3477 loff_t byte_end = (lstart + length - 1); 3478 int err = 0; 3479 3480 partial_start = lstart & (sb->s_blocksize - 1); 3481 partial_end = byte_end & (sb->s_blocksize - 1); 3482 3483 start = lstart >> sb->s_blocksize_bits; 3484 end = byte_end >> sb->s_blocksize_bits; 3485 3486 /* Handle partial zero within the single block */ 3487 if (start == end && 3488 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3489 err = ext4_block_zero_page_range(handle, mapping, 3490 lstart, length); 3491 return err; 3492 } 3493 /* Handle partial zero out on the start of the range */ 3494 if (partial_start) { 3495 err = ext4_block_zero_page_range(handle, mapping, 3496 lstart, sb->s_blocksize); 3497 if (err) 3498 return err; 3499 } 3500 /* Handle partial zero out on the end of the range */ 3501 if (partial_end != sb->s_blocksize - 1) 3502 err = ext4_block_zero_page_range(handle, mapping, 3503 byte_end - partial_end, 3504 partial_end + 1); 3505 return err; 3506 } 3507 3508 int ext4_can_truncate(struct inode *inode) 3509 { 3510 if (S_ISREG(inode->i_mode)) 3511 return 1; 3512 if (S_ISDIR(inode->i_mode)) 3513 return 1; 3514 if (S_ISLNK(inode->i_mode)) 3515 return !ext4_inode_is_fast_symlink(inode); 3516 return 0; 3517 } 3518 3519 /* 3520 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3521 * associated with the given offset and length 3522 * 3523 * @inode: File inode 3524 * @offset: The offset where the hole will begin 3525 * @len: The length of the hole 3526 * 3527 * Returns: 0 on success or negative on failure 3528 */ 3529 3530 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3531 { 3532 struct super_block *sb = inode->i_sb; 3533 ext4_lblk_t first_block, stop_block; 3534 struct address_space *mapping = inode->i_mapping; 3535 loff_t first_block_offset, last_block_offset; 3536 handle_t *handle; 3537 unsigned int credits; 3538 int ret = 0; 3539 3540 if (!S_ISREG(inode->i_mode)) 3541 return -EOPNOTSUPP; 3542 3543 trace_ext4_punch_hole(inode, offset, length, 0); 3544 3545 /* 3546 * Write out all dirty pages to avoid race conditions 3547 * Then release them. 3548 */ 3549 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3550 ret = filemap_write_and_wait_range(mapping, offset, 3551 offset + length - 1); 3552 if (ret) 3553 return ret; 3554 } 3555 3556 mutex_lock(&inode->i_mutex); 3557 3558 /* No need to punch hole beyond i_size */ 3559 if (offset >= inode->i_size) 3560 goto out_mutex; 3561 3562 /* 3563 * If the hole extends beyond i_size, set the hole 3564 * to end after the page that contains i_size 3565 */ 3566 if (offset + length > inode->i_size) { 3567 length = inode->i_size + 3568 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3569 offset; 3570 } 3571 3572 if (offset & (sb->s_blocksize - 1) || 3573 (offset + length) & (sb->s_blocksize - 1)) { 3574 /* 3575 * Attach jinode to inode for jbd2 if we do any zeroing of 3576 * partial block 3577 */ 3578 ret = ext4_inode_attach_jinode(inode); 3579 if (ret < 0) 3580 goto out_mutex; 3581 3582 } 3583 3584 first_block_offset = round_up(offset, sb->s_blocksize); 3585 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3586 3587 /* Now release the pages and zero block aligned part of pages*/ 3588 if (last_block_offset > first_block_offset) 3589 truncate_pagecache_range(inode, first_block_offset, 3590 last_block_offset); 3591 3592 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3593 ext4_inode_block_unlocked_dio(inode); 3594 inode_dio_wait(inode); 3595 3596 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3597 credits = ext4_writepage_trans_blocks(inode); 3598 else 3599 credits = ext4_blocks_for_truncate(inode); 3600 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3601 if (IS_ERR(handle)) { 3602 ret = PTR_ERR(handle); 3603 ext4_std_error(sb, ret); 3604 goto out_dio; 3605 } 3606 3607 ret = ext4_zero_partial_blocks(handle, inode, offset, 3608 length); 3609 if (ret) 3610 goto out_stop; 3611 3612 first_block = (offset + sb->s_blocksize - 1) >> 3613 EXT4_BLOCK_SIZE_BITS(sb); 3614 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3615 3616 /* If there are no blocks to remove, return now */ 3617 if (first_block >= stop_block) 3618 goto out_stop; 3619 3620 down_write(&EXT4_I(inode)->i_data_sem); 3621 ext4_discard_preallocations(inode); 3622 3623 ret = ext4_es_remove_extent(inode, first_block, 3624 stop_block - first_block); 3625 if (ret) { 3626 up_write(&EXT4_I(inode)->i_data_sem); 3627 goto out_stop; 3628 } 3629 3630 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3631 ret = ext4_ext_remove_space(inode, first_block, 3632 stop_block - 1); 3633 else 3634 ret = ext4_ind_remove_space(handle, inode, first_block, 3635 stop_block); 3636 3637 up_write(&EXT4_I(inode)->i_data_sem); 3638 if (IS_SYNC(inode)) 3639 ext4_handle_sync(handle); 3640 3641 /* Now release the pages again to reduce race window */ 3642 if (last_block_offset > first_block_offset) 3643 truncate_pagecache_range(inode, first_block_offset, 3644 last_block_offset); 3645 3646 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3647 ext4_mark_inode_dirty(handle, inode); 3648 out_stop: 3649 ext4_journal_stop(handle); 3650 out_dio: 3651 ext4_inode_resume_unlocked_dio(inode); 3652 out_mutex: 3653 mutex_unlock(&inode->i_mutex); 3654 return ret; 3655 } 3656 3657 int ext4_inode_attach_jinode(struct inode *inode) 3658 { 3659 struct ext4_inode_info *ei = EXT4_I(inode); 3660 struct jbd2_inode *jinode; 3661 3662 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3663 return 0; 3664 3665 jinode = jbd2_alloc_inode(GFP_KERNEL); 3666 spin_lock(&inode->i_lock); 3667 if (!ei->jinode) { 3668 if (!jinode) { 3669 spin_unlock(&inode->i_lock); 3670 return -ENOMEM; 3671 } 3672 ei->jinode = jinode; 3673 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3674 jinode = NULL; 3675 } 3676 spin_unlock(&inode->i_lock); 3677 if (unlikely(jinode != NULL)) 3678 jbd2_free_inode(jinode); 3679 return 0; 3680 } 3681 3682 /* 3683 * ext4_truncate() 3684 * 3685 * We block out ext4_get_block() block instantiations across the entire 3686 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3687 * simultaneously on behalf of the same inode. 3688 * 3689 * As we work through the truncate and commit bits of it to the journal there 3690 * is one core, guiding principle: the file's tree must always be consistent on 3691 * disk. We must be able to restart the truncate after a crash. 3692 * 3693 * The file's tree may be transiently inconsistent in memory (although it 3694 * probably isn't), but whenever we close off and commit a journal transaction, 3695 * the contents of (the filesystem + the journal) must be consistent and 3696 * restartable. It's pretty simple, really: bottom up, right to left (although 3697 * left-to-right works OK too). 3698 * 3699 * Note that at recovery time, journal replay occurs *before* the restart of 3700 * truncate against the orphan inode list. 3701 * 3702 * The committed inode has the new, desired i_size (which is the same as 3703 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3704 * that this inode's truncate did not complete and it will again call 3705 * ext4_truncate() to have another go. So there will be instantiated blocks 3706 * to the right of the truncation point in a crashed ext4 filesystem. But 3707 * that's fine - as long as they are linked from the inode, the post-crash 3708 * ext4_truncate() run will find them and release them. 3709 */ 3710 void ext4_truncate(struct inode *inode) 3711 { 3712 struct ext4_inode_info *ei = EXT4_I(inode); 3713 unsigned int credits; 3714 handle_t *handle; 3715 struct address_space *mapping = inode->i_mapping; 3716 3717 /* 3718 * There is a possibility that we're either freeing the inode 3719 * or it's a completely new inode. In those cases we might not 3720 * have i_mutex locked because it's not necessary. 3721 */ 3722 if (!(inode->i_state & (I_NEW|I_FREEING))) 3723 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3724 trace_ext4_truncate_enter(inode); 3725 3726 if (!ext4_can_truncate(inode)) 3727 return; 3728 3729 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3730 3731 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3732 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3733 3734 if (ext4_has_inline_data(inode)) { 3735 int has_inline = 1; 3736 3737 ext4_inline_data_truncate(inode, &has_inline); 3738 if (has_inline) 3739 return; 3740 } 3741 3742 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3743 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3744 if (ext4_inode_attach_jinode(inode) < 0) 3745 return; 3746 } 3747 3748 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3749 credits = ext4_writepage_trans_blocks(inode); 3750 else 3751 credits = ext4_blocks_for_truncate(inode); 3752 3753 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3754 if (IS_ERR(handle)) { 3755 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3756 return; 3757 } 3758 3759 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3760 ext4_block_truncate_page(handle, mapping, inode->i_size); 3761 3762 /* 3763 * We add the inode to the orphan list, so that if this 3764 * truncate spans multiple transactions, and we crash, we will 3765 * resume the truncate when the filesystem recovers. It also 3766 * marks the inode dirty, to catch the new size. 3767 * 3768 * Implication: the file must always be in a sane, consistent 3769 * truncatable state while each transaction commits. 3770 */ 3771 if (ext4_orphan_add(handle, inode)) 3772 goto out_stop; 3773 3774 down_write(&EXT4_I(inode)->i_data_sem); 3775 3776 ext4_discard_preallocations(inode); 3777 3778 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3779 ext4_ext_truncate(handle, inode); 3780 else 3781 ext4_ind_truncate(handle, inode); 3782 3783 up_write(&ei->i_data_sem); 3784 3785 if (IS_SYNC(inode)) 3786 ext4_handle_sync(handle); 3787 3788 out_stop: 3789 /* 3790 * If this was a simple ftruncate() and the file will remain alive, 3791 * then we need to clear up the orphan record which we created above. 3792 * However, if this was a real unlink then we were called by 3793 * ext4_evict_inode(), and we allow that function to clean up the 3794 * orphan info for us. 3795 */ 3796 if (inode->i_nlink) 3797 ext4_orphan_del(handle, inode); 3798 3799 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3800 ext4_mark_inode_dirty(handle, inode); 3801 ext4_journal_stop(handle); 3802 3803 trace_ext4_truncate_exit(inode); 3804 } 3805 3806 /* 3807 * ext4_get_inode_loc returns with an extra refcount against the inode's 3808 * underlying buffer_head on success. If 'in_mem' is true, we have all 3809 * data in memory that is needed to recreate the on-disk version of this 3810 * inode. 3811 */ 3812 static int __ext4_get_inode_loc(struct inode *inode, 3813 struct ext4_iloc *iloc, int in_mem) 3814 { 3815 struct ext4_group_desc *gdp; 3816 struct buffer_head *bh; 3817 struct super_block *sb = inode->i_sb; 3818 ext4_fsblk_t block; 3819 int inodes_per_block, inode_offset; 3820 3821 iloc->bh = NULL; 3822 if (!ext4_valid_inum(sb, inode->i_ino)) 3823 return -EIO; 3824 3825 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3826 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3827 if (!gdp) 3828 return -EIO; 3829 3830 /* 3831 * Figure out the offset within the block group inode table 3832 */ 3833 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3834 inode_offset = ((inode->i_ino - 1) % 3835 EXT4_INODES_PER_GROUP(sb)); 3836 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3837 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3838 3839 bh = sb_getblk(sb, block); 3840 if (unlikely(!bh)) 3841 return -ENOMEM; 3842 if (!buffer_uptodate(bh)) { 3843 lock_buffer(bh); 3844 3845 /* 3846 * If the buffer has the write error flag, we have failed 3847 * to write out another inode in the same block. In this 3848 * case, we don't have to read the block because we may 3849 * read the old inode data successfully. 3850 */ 3851 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3852 set_buffer_uptodate(bh); 3853 3854 if (buffer_uptodate(bh)) { 3855 /* someone brought it uptodate while we waited */ 3856 unlock_buffer(bh); 3857 goto has_buffer; 3858 } 3859 3860 /* 3861 * If we have all information of the inode in memory and this 3862 * is the only valid inode in the block, we need not read the 3863 * block. 3864 */ 3865 if (in_mem) { 3866 struct buffer_head *bitmap_bh; 3867 int i, start; 3868 3869 start = inode_offset & ~(inodes_per_block - 1); 3870 3871 /* Is the inode bitmap in cache? */ 3872 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3873 if (unlikely(!bitmap_bh)) 3874 goto make_io; 3875 3876 /* 3877 * If the inode bitmap isn't in cache then the 3878 * optimisation may end up performing two reads instead 3879 * of one, so skip it. 3880 */ 3881 if (!buffer_uptodate(bitmap_bh)) { 3882 brelse(bitmap_bh); 3883 goto make_io; 3884 } 3885 for (i = start; i < start + inodes_per_block; i++) { 3886 if (i == inode_offset) 3887 continue; 3888 if (ext4_test_bit(i, bitmap_bh->b_data)) 3889 break; 3890 } 3891 brelse(bitmap_bh); 3892 if (i == start + inodes_per_block) { 3893 /* all other inodes are free, so skip I/O */ 3894 memset(bh->b_data, 0, bh->b_size); 3895 set_buffer_uptodate(bh); 3896 unlock_buffer(bh); 3897 goto has_buffer; 3898 } 3899 } 3900 3901 make_io: 3902 /* 3903 * If we need to do any I/O, try to pre-readahead extra 3904 * blocks from the inode table. 3905 */ 3906 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3907 ext4_fsblk_t b, end, table; 3908 unsigned num; 3909 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3910 3911 table = ext4_inode_table(sb, gdp); 3912 /* s_inode_readahead_blks is always a power of 2 */ 3913 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3914 if (table > b) 3915 b = table; 3916 end = b + ra_blks; 3917 num = EXT4_INODES_PER_GROUP(sb); 3918 if (ext4_has_group_desc_csum(sb)) 3919 num -= ext4_itable_unused_count(sb, gdp); 3920 table += num / inodes_per_block; 3921 if (end > table) 3922 end = table; 3923 while (b <= end) 3924 sb_breadahead(sb, b++); 3925 } 3926 3927 /* 3928 * There are other valid inodes in the buffer, this inode 3929 * has in-inode xattrs, or we don't have this inode in memory. 3930 * Read the block from disk. 3931 */ 3932 trace_ext4_load_inode(inode); 3933 get_bh(bh); 3934 bh->b_end_io = end_buffer_read_sync; 3935 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3936 wait_on_buffer(bh); 3937 if (!buffer_uptodate(bh)) { 3938 EXT4_ERROR_INODE_BLOCK(inode, block, 3939 "unable to read itable block"); 3940 brelse(bh); 3941 return -EIO; 3942 } 3943 } 3944 has_buffer: 3945 iloc->bh = bh; 3946 return 0; 3947 } 3948 3949 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3950 { 3951 /* We have all inode data except xattrs in memory here. */ 3952 return __ext4_get_inode_loc(inode, iloc, 3953 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3954 } 3955 3956 void ext4_set_inode_flags(struct inode *inode) 3957 { 3958 unsigned int flags = EXT4_I(inode)->i_flags; 3959 unsigned int new_fl = 0; 3960 3961 if (flags & EXT4_SYNC_FL) 3962 new_fl |= S_SYNC; 3963 if (flags & EXT4_APPEND_FL) 3964 new_fl |= S_APPEND; 3965 if (flags & EXT4_IMMUTABLE_FL) 3966 new_fl |= S_IMMUTABLE; 3967 if (flags & EXT4_NOATIME_FL) 3968 new_fl |= S_NOATIME; 3969 if (flags & EXT4_DIRSYNC_FL) 3970 new_fl |= S_DIRSYNC; 3971 if (test_opt(inode->i_sb, DAX)) 3972 new_fl |= S_DAX; 3973 inode_set_flags(inode, new_fl, 3974 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 3975 } 3976 3977 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3978 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3979 { 3980 unsigned int vfs_fl; 3981 unsigned long old_fl, new_fl; 3982 3983 do { 3984 vfs_fl = ei->vfs_inode.i_flags; 3985 old_fl = ei->i_flags; 3986 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3987 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3988 EXT4_DIRSYNC_FL); 3989 if (vfs_fl & S_SYNC) 3990 new_fl |= EXT4_SYNC_FL; 3991 if (vfs_fl & S_APPEND) 3992 new_fl |= EXT4_APPEND_FL; 3993 if (vfs_fl & S_IMMUTABLE) 3994 new_fl |= EXT4_IMMUTABLE_FL; 3995 if (vfs_fl & S_NOATIME) 3996 new_fl |= EXT4_NOATIME_FL; 3997 if (vfs_fl & S_DIRSYNC) 3998 new_fl |= EXT4_DIRSYNC_FL; 3999 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4000 } 4001 4002 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4003 struct ext4_inode_info *ei) 4004 { 4005 blkcnt_t i_blocks ; 4006 struct inode *inode = &(ei->vfs_inode); 4007 struct super_block *sb = inode->i_sb; 4008 4009 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4010 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4011 /* we are using combined 48 bit field */ 4012 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4013 le32_to_cpu(raw_inode->i_blocks_lo); 4014 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4015 /* i_blocks represent file system block size */ 4016 return i_blocks << (inode->i_blkbits - 9); 4017 } else { 4018 return i_blocks; 4019 } 4020 } else { 4021 return le32_to_cpu(raw_inode->i_blocks_lo); 4022 } 4023 } 4024 4025 static inline void ext4_iget_extra_inode(struct inode *inode, 4026 struct ext4_inode *raw_inode, 4027 struct ext4_inode_info *ei) 4028 { 4029 __le32 *magic = (void *)raw_inode + 4030 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4031 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4032 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4033 ext4_find_inline_data_nolock(inode); 4034 } else 4035 EXT4_I(inode)->i_inline_off = 0; 4036 } 4037 4038 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4039 { 4040 struct ext4_iloc iloc; 4041 struct ext4_inode *raw_inode; 4042 struct ext4_inode_info *ei; 4043 struct inode *inode; 4044 journal_t *journal = EXT4_SB(sb)->s_journal; 4045 long ret; 4046 int block; 4047 uid_t i_uid; 4048 gid_t i_gid; 4049 4050 inode = iget_locked(sb, ino); 4051 if (!inode) 4052 return ERR_PTR(-ENOMEM); 4053 if (!(inode->i_state & I_NEW)) 4054 return inode; 4055 4056 ei = EXT4_I(inode); 4057 iloc.bh = NULL; 4058 4059 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4060 if (ret < 0) 4061 goto bad_inode; 4062 raw_inode = ext4_raw_inode(&iloc); 4063 4064 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4065 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4066 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4067 EXT4_INODE_SIZE(inode->i_sb)) { 4068 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4069 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4070 EXT4_INODE_SIZE(inode->i_sb)); 4071 ret = -EIO; 4072 goto bad_inode; 4073 } 4074 } else 4075 ei->i_extra_isize = 0; 4076 4077 /* Precompute checksum seed for inode metadata */ 4078 if (ext4_has_metadata_csum(sb)) { 4079 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4080 __u32 csum; 4081 __le32 inum = cpu_to_le32(inode->i_ino); 4082 __le32 gen = raw_inode->i_generation; 4083 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4084 sizeof(inum)); 4085 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4086 sizeof(gen)); 4087 } 4088 4089 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4090 EXT4_ERROR_INODE(inode, "checksum invalid"); 4091 ret = -EIO; 4092 goto bad_inode; 4093 } 4094 4095 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4096 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4097 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4098 if (!(test_opt(inode->i_sb, NO_UID32))) { 4099 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4100 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4101 } 4102 i_uid_write(inode, i_uid); 4103 i_gid_write(inode, i_gid); 4104 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4105 4106 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4107 ei->i_inline_off = 0; 4108 ei->i_dir_start_lookup = 0; 4109 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4110 /* We now have enough fields to check if the inode was active or not. 4111 * This is needed because nfsd might try to access dead inodes 4112 * the test is that same one that e2fsck uses 4113 * NeilBrown 1999oct15 4114 */ 4115 if (inode->i_nlink == 0) { 4116 if ((inode->i_mode == 0 || 4117 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4118 ino != EXT4_BOOT_LOADER_INO) { 4119 /* this inode is deleted */ 4120 ret = -ESTALE; 4121 goto bad_inode; 4122 } 4123 /* The only unlinked inodes we let through here have 4124 * valid i_mode and are being read by the orphan 4125 * recovery code: that's fine, we're about to complete 4126 * the process of deleting those. 4127 * OR it is the EXT4_BOOT_LOADER_INO which is 4128 * not initialized on a new filesystem. */ 4129 } 4130 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4131 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4132 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4133 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4134 ei->i_file_acl |= 4135 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4136 inode->i_size = ext4_isize(raw_inode); 4137 ei->i_disksize = inode->i_size; 4138 #ifdef CONFIG_QUOTA 4139 ei->i_reserved_quota = 0; 4140 #endif 4141 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4142 ei->i_block_group = iloc.block_group; 4143 ei->i_last_alloc_group = ~0; 4144 /* 4145 * NOTE! The in-memory inode i_data array is in little-endian order 4146 * even on big-endian machines: we do NOT byteswap the block numbers! 4147 */ 4148 for (block = 0; block < EXT4_N_BLOCKS; block++) 4149 ei->i_data[block] = raw_inode->i_block[block]; 4150 INIT_LIST_HEAD(&ei->i_orphan); 4151 4152 /* 4153 * Set transaction id's of transactions that have to be committed 4154 * to finish f[data]sync. We set them to currently running transaction 4155 * as we cannot be sure that the inode or some of its metadata isn't 4156 * part of the transaction - the inode could have been reclaimed and 4157 * now it is reread from disk. 4158 */ 4159 if (journal) { 4160 transaction_t *transaction; 4161 tid_t tid; 4162 4163 read_lock(&journal->j_state_lock); 4164 if (journal->j_running_transaction) 4165 transaction = journal->j_running_transaction; 4166 else 4167 transaction = journal->j_committing_transaction; 4168 if (transaction) 4169 tid = transaction->t_tid; 4170 else 4171 tid = journal->j_commit_sequence; 4172 read_unlock(&journal->j_state_lock); 4173 ei->i_sync_tid = tid; 4174 ei->i_datasync_tid = tid; 4175 } 4176 4177 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4178 if (ei->i_extra_isize == 0) { 4179 /* The extra space is currently unused. Use it. */ 4180 ei->i_extra_isize = sizeof(struct ext4_inode) - 4181 EXT4_GOOD_OLD_INODE_SIZE; 4182 } else { 4183 ext4_iget_extra_inode(inode, raw_inode, ei); 4184 } 4185 } 4186 4187 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4188 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4189 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4190 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4191 4192 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4193 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4194 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4195 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4196 inode->i_version |= 4197 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4198 } 4199 } 4200 4201 ret = 0; 4202 if (ei->i_file_acl && 4203 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4204 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4205 ei->i_file_acl); 4206 ret = -EIO; 4207 goto bad_inode; 4208 } else if (!ext4_has_inline_data(inode)) { 4209 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4210 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4211 (S_ISLNK(inode->i_mode) && 4212 !ext4_inode_is_fast_symlink(inode)))) 4213 /* Validate extent which is part of inode */ 4214 ret = ext4_ext_check_inode(inode); 4215 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4216 (S_ISLNK(inode->i_mode) && 4217 !ext4_inode_is_fast_symlink(inode))) { 4218 /* Validate block references which are part of inode */ 4219 ret = ext4_ind_check_inode(inode); 4220 } 4221 } 4222 if (ret) 4223 goto bad_inode; 4224 4225 if (S_ISREG(inode->i_mode)) { 4226 inode->i_op = &ext4_file_inode_operations; 4227 inode->i_fop = &ext4_file_operations; 4228 ext4_set_aops(inode); 4229 } else if (S_ISDIR(inode->i_mode)) { 4230 inode->i_op = &ext4_dir_inode_operations; 4231 inode->i_fop = &ext4_dir_operations; 4232 } else if (S_ISLNK(inode->i_mode)) { 4233 if (ext4_encrypted_inode(inode)) { 4234 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4235 ext4_set_aops(inode); 4236 } else if (ext4_inode_is_fast_symlink(inode)) { 4237 inode->i_link = (char *)ei->i_data; 4238 inode->i_op = &ext4_fast_symlink_inode_operations; 4239 nd_terminate_link(ei->i_data, inode->i_size, 4240 sizeof(ei->i_data) - 1); 4241 } else { 4242 inode->i_op = &ext4_symlink_inode_operations; 4243 ext4_set_aops(inode); 4244 } 4245 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4246 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4247 inode->i_op = &ext4_special_inode_operations; 4248 if (raw_inode->i_block[0]) 4249 init_special_inode(inode, inode->i_mode, 4250 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4251 else 4252 init_special_inode(inode, inode->i_mode, 4253 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4254 } else if (ino == EXT4_BOOT_LOADER_INO) { 4255 make_bad_inode(inode); 4256 } else { 4257 ret = -EIO; 4258 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4259 goto bad_inode; 4260 } 4261 brelse(iloc.bh); 4262 ext4_set_inode_flags(inode); 4263 unlock_new_inode(inode); 4264 return inode; 4265 4266 bad_inode: 4267 brelse(iloc.bh); 4268 iget_failed(inode); 4269 return ERR_PTR(ret); 4270 } 4271 4272 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4273 { 4274 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4275 return ERR_PTR(-EIO); 4276 return ext4_iget(sb, ino); 4277 } 4278 4279 static int ext4_inode_blocks_set(handle_t *handle, 4280 struct ext4_inode *raw_inode, 4281 struct ext4_inode_info *ei) 4282 { 4283 struct inode *inode = &(ei->vfs_inode); 4284 u64 i_blocks = inode->i_blocks; 4285 struct super_block *sb = inode->i_sb; 4286 4287 if (i_blocks <= ~0U) { 4288 /* 4289 * i_blocks can be represented in a 32 bit variable 4290 * as multiple of 512 bytes 4291 */ 4292 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4293 raw_inode->i_blocks_high = 0; 4294 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4295 return 0; 4296 } 4297 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4298 return -EFBIG; 4299 4300 if (i_blocks <= 0xffffffffffffULL) { 4301 /* 4302 * i_blocks can be represented in a 48 bit variable 4303 * as multiple of 512 bytes 4304 */ 4305 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4306 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4307 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4308 } else { 4309 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4310 /* i_block is stored in file system block size */ 4311 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4312 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4313 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4314 } 4315 return 0; 4316 } 4317 4318 struct other_inode { 4319 unsigned long orig_ino; 4320 struct ext4_inode *raw_inode; 4321 }; 4322 4323 static int other_inode_match(struct inode * inode, unsigned long ino, 4324 void *data) 4325 { 4326 struct other_inode *oi = (struct other_inode *) data; 4327 4328 if ((inode->i_ino != ino) || 4329 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4330 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4331 ((inode->i_state & I_DIRTY_TIME) == 0)) 4332 return 0; 4333 spin_lock(&inode->i_lock); 4334 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4335 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4336 (inode->i_state & I_DIRTY_TIME)) { 4337 struct ext4_inode_info *ei = EXT4_I(inode); 4338 4339 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4340 spin_unlock(&inode->i_lock); 4341 4342 spin_lock(&ei->i_raw_lock); 4343 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4344 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4345 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4346 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4347 spin_unlock(&ei->i_raw_lock); 4348 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4349 return -1; 4350 } 4351 spin_unlock(&inode->i_lock); 4352 return -1; 4353 } 4354 4355 /* 4356 * Opportunistically update the other time fields for other inodes in 4357 * the same inode table block. 4358 */ 4359 static void ext4_update_other_inodes_time(struct super_block *sb, 4360 unsigned long orig_ino, char *buf) 4361 { 4362 struct other_inode oi; 4363 unsigned long ino; 4364 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4365 int inode_size = EXT4_INODE_SIZE(sb); 4366 4367 oi.orig_ino = orig_ino; 4368 /* 4369 * Calculate the first inode in the inode table block. Inode 4370 * numbers are one-based. That is, the first inode in a block 4371 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4372 */ 4373 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4374 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4375 if (ino == orig_ino) 4376 continue; 4377 oi.raw_inode = (struct ext4_inode *) buf; 4378 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4379 } 4380 } 4381 4382 /* 4383 * Post the struct inode info into an on-disk inode location in the 4384 * buffer-cache. This gobbles the caller's reference to the 4385 * buffer_head in the inode location struct. 4386 * 4387 * The caller must have write access to iloc->bh. 4388 */ 4389 static int ext4_do_update_inode(handle_t *handle, 4390 struct inode *inode, 4391 struct ext4_iloc *iloc) 4392 { 4393 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4394 struct ext4_inode_info *ei = EXT4_I(inode); 4395 struct buffer_head *bh = iloc->bh; 4396 struct super_block *sb = inode->i_sb; 4397 int err = 0, rc, block; 4398 int need_datasync = 0, set_large_file = 0; 4399 uid_t i_uid; 4400 gid_t i_gid; 4401 4402 spin_lock(&ei->i_raw_lock); 4403 4404 /* For fields not tracked in the in-memory inode, 4405 * initialise them to zero for new inodes. */ 4406 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4407 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4408 4409 ext4_get_inode_flags(ei); 4410 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4411 i_uid = i_uid_read(inode); 4412 i_gid = i_gid_read(inode); 4413 if (!(test_opt(inode->i_sb, NO_UID32))) { 4414 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4415 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4416 /* 4417 * Fix up interoperability with old kernels. Otherwise, old inodes get 4418 * re-used with the upper 16 bits of the uid/gid intact 4419 */ 4420 if (!ei->i_dtime) { 4421 raw_inode->i_uid_high = 4422 cpu_to_le16(high_16_bits(i_uid)); 4423 raw_inode->i_gid_high = 4424 cpu_to_le16(high_16_bits(i_gid)); 4425 } else { 4426 raw_inode->i_uid_high = 0; 4427 raw_inode->i_gid_high = 0; 4428 } 4429 } else { 4430 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4431 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4432 raw_inode->i_uid_high = 0; 4433 raw_inode->i_gid_high = 0; 4434 } 4435 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4436 4437 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4438 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4439 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4440 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4441 4442 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4443 if (err) { 4444 spin_unlock(&ei->i_raw_lock); 4445 goto out_brelse; 4446 } 4447 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4448 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4449 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4450 raw_inode->i_file_acl_high = 4451 cpu_to_le16(ei->i_file_acl >> 32); 4452 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4453 if (ei->i_disksize != ext4_isize(raw_inode)) { 4454 ext4_isize_set(raw_inode, ei->i_disksize); 4455 need_datasync = 1; 4456 } 4457 if (ei->i_disksize > 0x7fffffffULL) { 4458 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4459 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4460 EXT4_SB(sb)->s_es->s_rev_level == 4461 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4462 set_large_file = 1; 4463 } 4464 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4465 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4466 if (old_valid_dev(inode->i_rdev)) { 4467 raw_inode->i_block[0] = 4468 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4469 raw_inode->i_block[1] = 0; 4470 } else { 4471 raw_inode->i_block[0] = 0; 4472 raw_inode->i_block[1] = 4473 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4474 raw_inode->i_block[2] = 0; 4475 } 4476 } else if (!ext4_has_inline_data(inode)) { 4477 for (block = 0; block < EXT4_N_BLOCKS; block++) 4478 raw_inode->i_block[block] = ei->i_data[block]; 4479 } 4480 4481 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4482 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4483 if (ei->i_extra_isize) { 4484 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4485 raw_inode->i_version_hi = 4486 cpu_to_le32(inode->i_version >> 32); 4487 raw_inode->i_extra_isize = 4488 cpu_to_le16(ei->i_extra_isize); 4489 } 4490 } 4491 ext4_inode_csum_set(inode, raw_inode, ei); 4492 spin_unlock(&ei->i_raw_lock); 4493 if (inode->i_sb->s_flags & MS_LAZYTIME) 4494 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4495 bh->b_data); 4496 4497 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4498 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4499 if (!err) 4500 err = rc; 4501 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4502 if (set_large_file) { 4503 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4504 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4505 if (err) 4506 goto out_brelse; 4507 ext4_update_dynamic_rev(sb); 4508 EXT4_SET_RO_COMPAT_FEATURE(sb, 4509 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4510 ext4_handle_sync(handle); 4511 err = ext4_handle_dirty_super(handle, sb); 4512 } 4513 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4514 out_brelse: 4515 brelse(bh); 4516 ext4_std_error(inode->i_sb, err); 4517 return err; 4518 } 4519 4520 /* 4521 * ext4_write_inode() 4522 * 4523 * We are called from a few places: 4524 * 4525 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4526 * Here, there will be no transaction running. We wait for any running 4527 * transaction to commit. 4528 * 4529 * - Within flush work (sys_sync(), kupdate and such). 4530 * We wait on commit, if told to. 4531 * 4532 * - Within iput_final() -> write_inode_now() 4533 * We wait on commit, if told to. 4534 * 4535 * In all cases it is actually safe for us to return without doing anything, 4536 * because the inode has been copied into a raw inode buffer in 4537 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4538 * writeback. 4539 * 4540 * Note that we are absolutely dependent upon all inode dirtiers doing the 4541 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4542 * which we are interested. 4543 * 4544 * It would be a bug for them to not do this. The code: 4545 * 4546 * mark_inode_dirty(inode) 4547 * stuff(); 4548 * inode->i_size = expr; 4549 * 4550 * is in error because write_inode() could occur while `stuff()' is running, 4551 * and the new i_size will be lost. Plus the inode will no longer be on the 4552 * superblock's dirty inode list. 4553 */ 4554 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4555 { 4556 int err; 4557 4558 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4559 return 0; 4560 4561 if (EXT4_SB(inode->i_sb)->s_journal) { 4562 if (ext4_journal_current_handle()) { 4563 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4564 dump_stack(); 4565 return -EIO; 4566 } 4567 4568 /* 4569 * No need to force transaction in WB_SYNC_NONE mode. Also 4570 * ext4_sync_fs() will force the commit after everything is 4571 * written. 4572 */ 4573 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4574 return 0; 4575 4576 err = ext4_force_commit(inode->i_sb); 4577 } else { 4578 struct ext4_iloc iloc; 4579 4580 err = __ext4_get_inode_loc(inode, &iloc, 0); 4581 if (err) 4582 return err; 4583 /* 4584 * sync(2) will flush the whole buffer cache. No need to do 4585 * it here separately for each inode. 4586 */ 4587 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4588 sync_dirty_buffer(iloc.bh); 4589 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4590 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4591 "IO error syncing inode"); 4592 err = -EIO; 4593 } 4594 brelse(iloc.bh); 4595 } 4596 return err; 4597 } 4598 4599 /* 4600 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4601 * buffers that are attached to a page stradding i_size and are undergoing 4602 * commit. In that case we have to wait for commit to finish and try again. 4603 */ 4604 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4605 { 4606 struct page *page; 4607 unsigned offset; 4608 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4609 tid_t commit_tid = 0; 4610 int ret; 4611 4612 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4613 /* 4614 * All buffers in the last page remain valid? Then there's nothing to 4615 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4616 * blocksize case 4617 */ 4618 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4619 return; 4620 while (1) { 4621 page = find_lock_page(inode->i_mapping, 4622 inode->i_size >> PAGE_CACHE_SHIFT); 4623 if (!page) 4624 return; 4625 ret = __ext4_journalled_invalidatepage(page, offset, 4626 PAGE_CACHE_SIZE - offset); 4627 unlock_page(page); 4628 page_cache_release(page); 4629 if (ret != -EBUSY) 4630 return; 4631 commit_tid = 0; 4632 read_lock(&journal->j_state_lock); 4633 if (journal->j_committing_transaction) 4634 commit_tid = journal->j_committing_transaction->t_tid; 4635 read_unlock(&journal->j_state_lock); 4636 if (commit_tid) 4637 jbd2_log_wait_commit(journal, commit_tid); 4638 } 4639 } 4640 4641 /* 4642 * ext4_setattr() 4643 * 4644 * Called from notify_change. 4645 * 4646 * We want to trap VFS attempts to truncate the file as soon as 4647 * possible. In particular, we want to make sure that when the VFS 4648 * shrinks i_size, we put the inode on the orphan list and modify 4649 * i_disksize immediately, so that during the subsequent flushing of 4650 * dirty pages and freeing of disk blocks, we can guarantee that any 4651 * commit will leave the blocks being flushed in an unused state on 4652 * disk. (On recovery, the inode will get truncated and the blocks will 4653 * be freed, so we have a strong guarantee that no future commit will 4654 * leave these blocks visible to the user.) 4655 * 4656 * Another thing we have to assure is that if we are in ordered mode 4657 * and inode is still attached to the committing transaction, we must 4658 * we start writeout of all the dirty pages which are being truncated. 4659 * This way we are sure that all the data written in the previous 4660 * transaction are already on disk (truncate waits for pages under 4661 * writeback). 4662 * 4663 * Called with inode->i_mutex down. 4664 */ 4665 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4666 { 4667 struct inode *inode = d_inode(dentry); 4668 int error, rc = 0; 4669 int orphan = 0; 4670 const unsigned int ia_valid = attr->ia_valid; 4671 4672 error = inode_change_ok(inode, attr); 4673 if (error) 4674 return error; 4675 4676 if (is_quota_modification(inode, attr)) { 4677 error = dquot_initialize(inode); 4678 if (error) 4679 return error; 4680 } 4681 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4682 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4683 handle_t *handle; 4684 4685 /* (user+group)*(old+new) structure, inode write (sb, 4686 * inode block, ? - but truncate inode update has it) */ 4687 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4688 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4689 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4690 if (IS_ERR(handle)) { 4691 error = PTR_ERR(handle); 4692 goto err_out; 4693 } 4694 error = dquot_transfer(inode, attr); 4695 if (error) { 4696 ext4_journal_stop(handle); 4697 return error; 4698 } 4699 /* Update corresponding info in inode so that everything is in 4700 * one transaction */ 4701 if (attr->ia_valid & ATTR_UID) 4702 inode->i_uid = attr->ia_uid; 4703 if (attr->ia_valid & ATTR_GID) 4704 inode->i_gid = attr->ia_gid; 4705 error = ext4_mark_inode_dirty(handle, inode); 4706 ext4_journal_stop(handle); 4707 } 4708 4709 if (attr->ia_valid & ATTR_SIZE) { 4710 handle_t *handle; 4711 loff_t oldsize = inode->i_size; 4712 int shrink = (attr->ia_size <= inode->i_size); 4713 4714 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4715 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4716 4717 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4718 return -EFBIG; 4719 } 4720 if (!S_ISREG(inode->i_mode)) 4721 return -EINVAL; 4722 4723 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4724 inode_inc_iversion(inode); 4725 4726 if (ext4_should_order_data(inode) && 4727 (attr->ia_size < inode->i_size)) { 4728 error = ext4_begin_ordered_truncate(inode, 4729 attr->ia_size); 4730 if (error) 4731 goto err_out; 4732 } 4733 if (attr->ia_size != inode->i_size) { 4734 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4735 if (IS_ERR(handle)) { 4736 error = PTR_ERR(handle); 4737 goto err_out; 4738 } 4739 if (ext4_handle_valid(handle) && shrink) { 4740 error = ext4_orphan_add(handle, inode); 4741 orphan = 1; 4742 } 4743 /* 4744 * Update c/mtime on truncate up, ext4_truncate() will 4745 * update c/mtime in shrink case below 4746 */ 4747 if (!shrink) { 4748 inode->i_mtime = ext4_current_time(inode); 4749 inode->i_ctime = inode->i_mtime; 4750 } 4751 down_write(&EXT4_I(inode)->i_data_sem); 4752 EXT4_I(inode)->i_disksize = attr->ia_size; 4753 rc = ext4_mark_inode_dirty(handle, inode); 4754 if (!error) 4755 error = rc; 4756 /* 4757 * We have to update i_size under i_data_sem together 4758 * with i_disksize to avoid races with writeback code 4759 * running ext4_wb_update_i_disksize(). 4760 */ 4761 if (!error) 4762 i_size_write(inode, attr->ia_size); 4763 up_write(&EXT4_I(inode)->i_data_sem); 4764 ext4_journal_stop(handle); 4765 if (error) { 4766 if (orphan) 4767 ext4_orphan_del(NULL, inode); 4768 goto err_out; 4769 } 4770 } 4771 if (!shrink) 4772 pagecache_isize_extended(inode, oldsize, inode->i_size); 4773 4774 /* 4775 * Blocks are going to be removed from the inode. Wait 4776 * for dio in flight. Temporarily disable 4777 * dioread_nolock to prevent livelock. 4778 */ 4779 if (orphan) { 4780 if (!ext4_should_journal_data(inode)) { 4781 ext4_inode_block_unlocked_dio(inode); 4782 inode_dio_wait(inode); 4783 ext4_inode_resume_unlocked_dio(inode); 4784 } else 4785 ext4_wait_for_tail_page_commit(inode); 4786 } 4787 /* 4788 * Truncate pagecache after we've waited for commit 4789 * in data=journal mode to make pages freeable. 4790 */ 4791 truncate_pagecache(inode, inode->i_size); 4792 if (shrink) 4793 ext4_truncate(inode); 4794 } 4795 4796 if (!rc) { 4797 setattr_copy(inode, attr); 4798 mark_inode_dirty(inode); 4799 } 4800 4801 /* 4802 * If the call to ext4_truncate failed to get a transaction handle at 4803 * all, we need to clean up the in-core orphan list manually. 4804 */ 4805 if (orphan && inode->i_nlink) 4806 ext4_orphan_del(NULL, inode); 4807 4808 if (!rc && (ia_valid & ATTR_MODE)) 4809 rc = posix_acl_chmod(inode, inode->i_mode); 4810 4811 err_out: 4812 ext4_std_error(inode->i_sb, error); 4813 if (!error) 4814 error = rc; 4815 return error; 4816 } 4817 4818 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4819 struct kstat *stat) 4820 { 4821 struct inode *inode; 4822 unsigned long long delalloc_blocks; 4823 4824 inode = d_inode(dentry); 4825 generic_fillattr(inode, stat); 4826 4827 /* 4828 * If there is inline data in the inode, the inode will normally not 4829 * have data blocks allocated (it may have an external xattr block). 4830 * Report at least one sector for such files, so tools like tar, rsync, 4831 * others doen't incorrectly think the file is completely sparse. 4832 */ 4833 if (unlikely(ext4_has_inline_data(inode))) 4834 stat->blocks += (stat->size + 511) >> 9; 4835 4836 /* 4837 * We can't update i_blocks if the block allocation is delayed 4838 * otherwise in the case of system crash before the real block 4839 * allocation is done, we will have i_blocks inconsistent with 4840 * on-disk file blocks. 4841 * We always keep i_blocks updated together with real 4842 * allocation. But to not confuse with user, stat 4843 * will return the blocks that include the delayed allocation 4844 * blocks for this file. 4845 */ 4846 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4847 EXT4_I(inode)->i_reserved_data_blocks); 4848 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4849 return 0; 4850 } 4851 4852 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4853 int pextents) 4854 { 4855 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4856 return ext4_ind_trans_blocks(inode, lblocks); 4857 return ext4_ext_index_trans_blocks(inode, pextents); 4858 } 4859 4860 /* 4861 * Account for index blocks, block groups bitmaps and block group 4862 * descriptor blocks if modify datablocks and index blocks 4863 * worse case, the indexs blocks spread over different block groups 4864 * 4865 * If datablocks are discontiguous, they are possible to spread over 4866 * different block groups too. If they are contiguous, with flexbg, 4867 * they could still across block group boundary. 4868 * 4869 * Also account for superblock, inode, quota and xattr blocks 4870 */ 4871 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4872 int pextents) 4873 { 4874 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4875 int gdpblocks; 4876 int idxblocks; 4877 int ret = 0; 4878 4879 /* 4880 * How many index blocks need to touch to map @lblocks logical blocks 4881 * to @pextents physical extents? 4882 */ 4883 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4884 4885 ret = idxblocks; 4886 4887 /* 4888 * Now let's see how many group bitmaps and group descriptors need 4889 * to account 4890 */ 4891 groups = idxblocks + pextents; 4892 gdpblocks = groups; 4893 if (groups > ngroups) 4894 groups = ngroups; 4895 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4896 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4897 4898 /* bitmaps and block group descriptor blocks */ 4899 ret += groups + gdpblocks; 4900 4901 /* Blocks for super block, inode, quota and xattr blocks */ 4902 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4903 4904 return ret; 4905 } 4906 4907 /* 4908 * Calculate the total number of credits to reserve to fit 4909 * the modification of a single pages into a single transaction, 4910 * which may include multiple chunks of block allocations. 4911 * 4912 * This could be called via ext4_write_begin() 4913 * 4914 * We need to consider the worse case, when 4915 * one new block per extent. 4916 */ 4917 int ext4_writepage_trans_blocks(struct inode *inode) 4918 { 4919 int bpp = ext4_journal_blocks_per_page(inode); 4920 int ret; 4921 4922 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4923 4924 /* Account for data blocks for journalled mode */ 4925 if (ext4_should_journal_data(inode)) 4926 ret += bpp; 4927 return ret; 4928 } 4929 4930 /* 4931 * Calculate the journal credits for a chunk of data modification. 4932 * 4933 * This is called from DIO, fallocate or whoever calling 4934 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4935 * 4936 * journal buffers for data blocks are not included here, as DIO 4937 * and fallocate do no need to journal data buffers. 4938 */ 4939 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4940 { 4941 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4942 } 4943 4944 /* 4945 * The caller must have previously called ext4_reserve_inode_write(). 4946 * Give this, we know that the caller already has write access to iloc->bh. 4947 */ 4948 int ext4_mark_iloc_dirty(handle_t *handle, 4949 struct inode *inode, struct ext4_iloc *iloc) 4950 { 4951 int err = 0; 4952 4953 if (IS_I_VERSION(inode)) 4954 inode_inc_iversion(inode); 4955 4956 /* the do_update_inode consumes one bh->b_count */ 4957 get_bh(iloc->bh); 4958 4959 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4960 err = ext4_do_update_inode(handle, inode, iloc); 4961 put_bh(iloc->bh); 4962 return err; 4963 } 4964 4965 /* 4966 * On success, We end up with an outstanding reference count against 4967 * iloc->bh. This _must_ be cleaned up later. 4968 */ 4969 4970 int 4971 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4972 struct ext4_iloc *iloc) 4973 { 4974 int err; 4975 4976 err = ext4_get_inode_loc(inode, iloc); 4977 if (!err) { 4978 BUFFER_TRACE(iloc->bh, "get_write_access"); 4979 err = ext4_journal_get_write_access(handle, iloc->bh); 4980 if (err) { 4981 brelse(iloc->bh); 4982 iloc->bh = NULL; 4983 } 4984 } 4985 ext4_std_error(inode->i_sb, err); 4986 return err; 4987 } 4988 4989 /* 4990 * Expand an inode by new_extra_isize bytes. 4991 * Returns 0 on success or negative error number on failure. 4992 */ 4993 static int ext4_expand_extra_isize(struct inode *inode, 4994 unsigned int new_extra_isize, 4995 struct ext4_iloc iloc, 4996 handle_t *handle) 4997 { 4998 struct ext4_inode *raw_inode; 4999 struct ext4_xattr_ibody_header *header; 5000 5001 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5002 return 0; 5003 5004 raw_inode = ext4_raw_inode(&iloc); 5005 5006 header = IHDR(inode, raw_inode); 5007 5008 /* No extended attributes present */ 5009 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5010 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5011 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5012 new_extra_isize); 5013 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5014 return 0; 5015 } 5016 5017 /* try to expand with EAs present */ 5018 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5019 raw_inode, handle); 5020 } 5021 5022 /* 5023 * What we do here is to mark the in-core inode as clean with respect to inode 5024 * dirtiness (it may still be data-dirty). 5025 * This means that the in-core inode may be reaped by prune_icache 5026 * without having to perform any I/O. This is a very good thing, 5027 * because *any* task may call prune_icache - even ones which 5028 * have a transaction open against a different journal. 5029 * 5030 * Is this cheating? Not really. Sure, we haven't written the 5031 * inode out, but prune_icache isn't a user-visible syncing function. 5032 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5033 * we start and wait on commits. 5034 */ 5035 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5036 { 5037 struct ext4_iloc iloc; 5038 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5039 static unsigned int mnt_count; 5040 int err, ret; 5041 5042 might_sleep(); 5043 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5044 err = ext4_reserve_inode_write(handle, inode, &iloc); 5045 if (ext4_handle_valid(handle) && 5046 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5047 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5048 /* 5049 * We need extra buffer credits since we may write into EA block 5050 * with this same handle. If journal_extend fails, then it will 5051 * only result in a minor loss of functionality for that inode. 5052 * If this is felt to be critical, then e2fsck should be run to 5053 * force a large enough s_min_extra_isize. 5054 */ 5055 if ((jbd2_journal_extend(handle, 5056 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5057 ret = ext4_expand_extra_isize(inode, 5058 sbi->s_want_extra_isize, 5059 iloc, handle); 5060 if (ret) { 5061 ext4_set_inode_state(inode, 5062 EXT4_STATE_NO_EXPAND); 5063 if (mnt_count != 5064 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5065 ext4_warning(inode->i_sb, 5066 "Unable to expand inode %lu. Delete" 5067 " some EAs or run e2fsck.", 5068 inode->i_ino); 5069 mnt_count = 5070 le16_to_cpu(sbi->s_es->s_mnt_count); 5071 } 5072 } 5073 } 5074 } 5075 if (!err) 5076 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5077 return err; 5078 } 5079 5080 /* 5081 * ext4_dirty_inode() is called from __mark_inode_dirty() 5082 * 5083 * We're really interested in the case where a file is being extended. 5084 * i_size has been changed by generic_commit_write() and we thus need 5085 * to include the updated inode in the current transaction. 5086 * 5087 * Also, dquot_alloc_block() will always dirty the inode when blocks 5088 * are allocated to the file. 5089 * 5090 * If the inode is marked synchronous, we don't honour that here - doing 5091 * so would cause a commit on atime updates, which we don't bother doing. 5092 * We handle synchronous inodes at the highest possible level. 5093 * 5094 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5095 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5096 * to copy into the on-disk inode structure are the timestamp files. 5097 */ 5098 void ext4_dirty_inode(struct inode *inode, int flags) 5099 { 5100 handle_t *handle; 5101 5102 if (flags == I_DIRTY_TIME) 5103 return; 5104 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5105 if (IS_ERR(handle)) 5106 goto out; 5107 5108 ext4_mark_inode_dirty(handle, inode); 5109 5110 ext4_journal_stop(handle); 5111 out: 5112 return; 5113 } 5114 5115 #if 0 5116 /* 5117 * Bind an inode's backing buffer_head into this transaction, to prevent 5118 * it from being flushed to disk early. Unlike 5119 * ext4_reserve_inode_write, this leaves behind no bh reference and 5120 * returns no iloc structure, so the caller needs to repeat the iloc 5121 * lookup to mark the inode dirty later. 5122 */ 5123 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5124 { 5125 struct ext4_iloc iloc; 5126 5127 int err = 0; 5128 if (handle) { 5129 err = ext4_get_inode_loc(inode, &iloc); 5130 if (!err) { 5131 BUFFER_TRACE(iloc.bh, "get_write_access"); 5132 err = jbd2_journal_get_write_access(handle, iloc.bh); 5133 if (!err) 5134 err = ext4_handle_dirty_metadata(handle, 5135 NULL, 5136 iloc.bh); 5137 brelse(iloc.bh); 5138 } 5139 } 5140 ext4_std_error(inode->i_sb, err); 5141 return err; 5142 } 5143 #endif 5144 5145 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5146 { 5147 journal_t *journal; 5148 handle_t *handle; 5149 int err; 5150 5151 /* 5152 * We have to be very careful here: changing a data block's 5153 * journaling status dynamically is dangerous. If we write a 5154 * data block to the journal, change the status and then delete 5155 * that block, we risk forgetting to revoke the old log record 5156 * from the journal and so a subsequent replay can corrupt data. 5157 * So, first we make sure that the journal is empty and that 5158 * nobody is changing anything. 5159 */ 5160 5161 journal = EXT4_JOURNAL(inode); 5162 if (!journal) 5163 return 0; 5164 if (is_journal_aborted(journal)) 5165 return -EROFS; 5166 /* We have to allocate physical blocks for delalloc blocks 5167 * before flushing journal. otherwise delalloc blocks can not 5168 * be allocated any more. even more truncate on delalloc blocks 5169 * could trigger BUG by flushing delalloc blocks in journal. 5170 * There is no delalloc block in non-journal data mode. 5171 */ 5172 if (val && test_opt(inode->i_sb, DELALLOC)) { 5173 err = ext4_alloc_da_blocks(inode); 5174 if (err < 0) 5175 return err; 5176 } 5177 5178 /* Wait for all existing dio workers */ 5179 ext4_inode_block_unlocked_dio(inode); 5180 inode_dio_wait(inode); 5181 5182 jbd2_journal_lock_updates(journal); 5183 5184 /* 5185 * OK, there are no updates running now, and all cached data is 5186 * synced to disk. We are now in a completely consistent state 5187 * which doesn't have anything in the journal, and we know that 5188 * no filesystem updates are running, so it is safe to modify 5189 * the inode's in-core data-journaling state flag now. 5190 */ 5191 5192 if (val) 5193 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5194 else { 5195 err = jbd2_journal_flush(journal); 5196 if (err < 0) { 5197 jbd2_journal_unlock_updates(journal); 5198 ext4_inode_resume_unlocked_dio(inode); 5199 return err; 5200 } 5201 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5202 } 5203 ext4_set_aops(inode); 5204 5205 jbd2_journal_unlock_updates(journal); 5206 ext4_inode_resume_unlocked_dio(inode); 5207 5208 /* Finally we can mark the inode as dirty. */ 5209 5210 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5211 if (IS_ERR(handle)) 5212 return PTR_ERR(handle); 5213 5214 err = ext4_mark_inode_dirty(handle, inode); 5215 ext4_handle_sync(handle); 5216 ext4_journal_stop(handle); 5217 ext4_std_error(inode->i_sb, err); 5218 5219 return err; 5220 } 5221 5222 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5223 { 5224 return !buffer_mapped(bh); 5225 } 5226 5227 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5228 { 5229 struct page *page = vmf->page; 5230 loff_t size; 5231 unsigned long len; 5232 int ret; 5233 struct file *file = vma->vm_file; 5234 struct inode *inode = file_inode(file); 5235 struct address_space *mapping = inode->i_mapping; 5236 handle_t *handle; 5237 get_block_t *get_block; 5238 int retries = 0; 5239 5240 sb_start_pagefault(inode->i_sb); 5241 file_update_time(vma->vm_file); 5242 /* Delalloc case is easy... */ 5243 if (test_opt(inode->i_sb, DELALLOC) && 5244 !ext4_should_journal_data(inode) && 5245 !ext4_nonda_switch(inode->i_sb)) { 5246 do { 5247 ret = __block_page_mkwrite(vma, vmf, 5248 ext4_da_get_block_prep); 5249 } while (ret == -ENOSPC && 5250 ext4_should_retry_alloc(inode->i_sb, &retries)); 5251 goto out_ret; 5252 } 5253 5254 lock_page(page); 5255 size = i_size_read(inode); 5256 /* Page got truncated from under us? */ 5257 if (page->mapping != mapping || page_offset(page) > size) { 5258 unlock_page(page); 5259 ret = VM_FAULT_NOPAGE; 5260 goto out; 5261 } 5262 5263 if (page->index == size >> PAGE_CACHE_SHIFT) 5264 len = size & ~PAGE_CACHE_MASK; 5265 else 5266 len = PAGE_CACHE_SIZE; 5267 /* 5268 * Return if we have all the buffers mapped. This avoids the need to do 5269 * journal_start/journal_stop which can block and take a long time 5270 */ 5271 if (page_has_buffers(page)) { 5272 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5273 0, len, NULL, 5274 ext4_bh_unmapped)) { 5275 /* Wait so that we don't change page under IO */ 5276 wait_for_stable_page(page); 5277 ret = VM_FAULT_LOCKED; 5278 goto out; 5279 } 5280 } 5281 unlock_page(page); 5282 /* OK, we need to fill the hole... */ 5283 if (ext4_should_dioread_nolock(inode)) 5284 get_block = ext4_get_block_write; 5285 else 5286 get_block = ext4_get_block; 5287 retry_alloc: 5288 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5289 ext4_writepage_trans_blocks(inode)); 5290 if (IS_ERR(handle)) { 5291 ret = VM_FAULT_SIGBUS; 5292 goto out; 5293 } 5294 ret = __block_page_mkwrite(vma, vmf, get_block); 5295 if (!ret && ext4_should_journal_data(inode)) { 5296 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5297 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5298 unlock_page(page); 5299 ret = VM_FAULT_SIGBUS; 5300 ext4_journal_stop(handle); 5301 goto out; 5302 } 5303 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5304 } 5305 ext4_journal_stop(handle); 5306 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5307 goto retry_alloc; 5308 out_ret: 5309 ret = block_page_mkwrite_return(ret); 5310 out: 5311 sb_end_pagefault(inode->i_sb); 5312 return ret; 5313 } 5314