1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 #include <linux/slab.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "ext4_extents.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static inline int ext4_begin_ordered_truncate(struct inode *inode, 54 loff_t new_size) 55 { 56 return jbd2_journal_begin_ordered_truncate( 57 EXT4_SB(inode->i_sb)->s_journal, 58 &EXT4_I(inode)->jinode, 59 new_size); 60 } 61 62 static void ext4_invalidatepage(struct page *page, unsigned long offset); 63 64 /* 65 * Test whether an inode is a fast symlink. 66 */ 67 static int ext4_inode_is_fast_symlink(struct inode *inode) 68 { 69 int ea_blocks = EXT4_I(inode)->i_file_acl ? 70 (inode->i_sb->s_blocksize >> 9) : 0; 71 72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 73 } 74 75 /* 76 * Work out how many blocks we need to proceed with the next chunk of a 77 * truncate transaction. 78 */ 79 static unsigned long blocks_for_truncate(struct inode *inode) 80 { 81 ext4_lblk_t needed; 82 83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 84 85 /* Give ourselves just enough room to cope with inodes in which 86 * i_blocks is corrupt: we've seen disk corruptions in the past 87 * which resulted in random data in an inode which looked enough 88 * like a regular file for ext4 to try to delete it. Things 89 * will go a bit crazy if that happens, but at least we should 90 * try not to panic the whole kernel. */ 91 if (needed < 2) 92 needed = 2; 93 94 /* But we need to bound the transaction so we don't overflow the 95 * journal. */ 96 if (needed > EXT4_MAX_TRANS_DATA) 97 needed = EXT4_MAX_TRANS_DATA; 98 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 100 } 101 102 /* 103 * Truncate transactions can be complex and absolutely huge. So we need to 104 * be able to restart the transaction at a conventient checkpoint to make 105 * sure we don't overflow the journal. 106 * 107 * start_transaction gets us a new handle for a truncate transaction, 108 * and extend_transaction tries to extend the existing one a bit. If 109 * extend fails, we need to propagate the failure up and restart the 110 * transaction in the top-level truncate loop. --sct 111 */ 112 static handle_t *start_transaction(struct inode *inode) 113 { 114 handle_t *result; 115 116 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 117 if (!IS_ERR(result)) 118 return result; 119 120 ext4_std_error(inode->i_sb, PTR_ERR(result)); 121 return result; 122 } 123 124 /* 125 * Try to extend this transaction for the purposes of truncation. 126 * 127 * Returns 0 if we managed to create more room. If we can't create more 128 * room, and the transaction must be restarted we return 1. 129 */ 130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 131 { 132 if (!ext4_handle_valid(handle)) 133 return 0; 134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 135 return 0; 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 137 return 0; 138 return 1; 139 } 140 141 /* 142 * Restart the transaction associated with *handle. This does a commit, 143 * so before we call here everything must be consistently dirtied against 144 * this transaction. 145 */ 146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 147 int nblocks) 148 { 149 int ret; 150 151 /* 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 153 * moment, get_block can be called only for blocks inside i_size since 154 * page cache has been already dropped and writes are blocked by 155 * i_mutex. So we can safely drop the i_data_sem here. 156 */ 157 BUG_ON(EXT4_JOURNAL(inode) == NULL); 158 jbd_debug(2, "restarting handle %p\n", handle); 159 up_write(&EXT4_I(inode)->i_data_sem); 160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 161 down_write(&EXT4_I(inode)->i_data_sem); 162 ext4_discard_preallocations(inode); 163 164 return ret; 165 } 166 167 /* 168 * Called at the last iput() if i_nlink is zero. 169 */ 170 void ext4_evict_inode(struct inode *inode) 171 { 172 handle_t *handle; 173 int err; 174 175 if (inode->i_nlink) { 176 truncate_inode_pages(&inode->i_data, 0); 177 goto no_delete; 178 } 179 180 if (!is_bad_inode(inode)) 181 dquot_initialize(inode); 182 183 if (ext4_should_order_data(inode)) 184 ext4_begin_ordered_truncate(inode, 0); 185 truncate_inode_pages(&inode->i_data, 0); 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 190 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 191 if (IS_ERR(handle)) { 192 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 193 /* 194 * If we're going to skip the normal cleanup, we still need to 195 * make sure that the in-core orphan linked list is properly 196 * cleaned up. 197 */ 198 ext4_orphan_del(NULL, inode); 199 goto no_delete; 200 } 201 202 if (IS_SYNC(inode)) 203 ext4_handle_sync(handle); 204 inode->i_size = 0; 205 err = ext4_mark_inode_dirty(handle, inode); 206 if (err) { 207 ext4_warning(inode->i_sb, 208 "couldn't mark inode dirty (err %d)", err); 209 goto stop_handle; 210 } 211 if (inode->i_blocks) 212 ext4_truncate(inode); 213 214 /* 215 * ext4_ext_truncate() doesn't reserve any slop when it 216 * restarts journal transactions; therefore there may not be 217 * enough credits left in the handle to remove the inode from 218 * the orphan list and set the dtime field. 219 */ 220 if (!ext4_handle_has_enough_credits(handle, 3)) { 221 err = ext4_journal_extend(handle, 3); 222 if (err > 0) 223 err = ext4_journal_restart(handle, 3); 224 if (err != 0) { 225 ext4_warning(inode->i_sb, 226 "couldn't extend journal (err %d)", err); 227 stop_handle: 228 ext4_journal_stop(handle); 229 ext4_orphan_del(NULL, inode); 230 goto no_delete; 231 } 232 } 233 234 /* 235 * Kill off the orphan record which ext4_truncate created. 236 * AKPM: I think this can be inside the above `if'. 237 * Note that ext4_orphan_del() has to be able to cope with the 238 * deletion of a non-existent orphan - this is because we don't 239 * know if ext4_truncate() actually created an orphan record. 240 * (Well, we could do this if we need to, but heck - it works) 241 */ 242 ext4_orphan_del(handle, inode); 243 EXT4_I(inode)->i_dtime = get_seconds(); 244 245 /* 246 * One subtle ordering requirement: if anything has gone wrong 247 * (transaction abort, IO errors, whatever), then we can still 248 * do these next steps (the fs will already have been marked as 249 * having errors), but we can't free the inode if the mark_dirty 250 * fails. 251 */ 252 if (ext4_mark_inode_dirty(handle, inode)) 253 /* If that failed, just do the required in-core inode clear. */ 254 ext4_clear_inode(inode); 255 else 256 ext4_free_inode(handle, inode); 257 ext4_journal_stop(handle); 258 return; 259 no_delete: 260 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 261 } 262 263 typedef struct { 264 __le32 *p; 265 __le32 key; 266 struct buffer_head *bh; 267 } Indirect; 268 269 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 270 { 271 p->key = *(p->p = v); 272 p->bh = bh; 273 } 274 275 /** 276 * ext4_block_to_path - parse the block number into array of offsets 277 * @inode: inode in question (we are only interested in its superblock) 278 * @i_block: block number to be parsed 279 * @offsets: array to store the offsets in 280 * @boundary: set this non-zero if the referred-to block is likely to be 281 * followed (on disk) by an indirect block. 282 * 283 * To store the locations of file's data ext4 uses a data structure common 284 * for UNIX filesystems - tree of pointers anchored in the inode, with 285 * data blocks at leaves and indirect blocks in intermediate nodes. 286 * This function translates the block number into path in that tree - 287 * return value is the path length and @offsets[n] is the offset of 288 * pointer to (n+1)th node in the nth one. If @block is out of range 289 * (negative or too large) warning is printed and zero returned. 290 * 291 * Note: function doesn't find node addresses, so no IO is needed. All 292 * we need to know is the capacity of indirect blocks (taken from the 293 * inode->i_sb). 294 */ 295 296 /* 297 * Portability note: the last comparison (check that we fit into triple 298 * indirect block) is spelled differently, because otherwise on an 299 * architecture with 32-bit longs and 8Kb pages we might get into trouble 300 * if our filesystem had 8Kb blocks. We might use long long, but that would 301 * kill us on x86. Oh, well, at least the sign propagation does not matter - 302 * i_block would have to be negative in the very beginning, so we would not 303 * get there at all. 304 */ 305 306 static int ext4_block_to_path(struct inode *inode, 307 ext4_lblk_t i_block, 308 ext4_lblk_t offsets[4], int *boundary) 309 { 310 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 311 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 312 const long direct_blocks = EXT4_NDIR_BLOCKS, 313 indirect_blocks = ptrs, 314 double_blocks = (1 << (ptrs_bits * 2)); 315 int n = 0; 316 int final = 0; 317 318 if (i_block < direct_blocks) { 319 offsets[n++] = i_block; 320 final = direct_blocks; 321 } else if ((i_block -= direct_blocks) < indirect_blocks) { 322 offsets[n++] = EXT4_IND_BLOCK; 323 offsets[n++] = i_block; 324 final = ptrs; 325 } else if ((i_block -= indirect_blocks) < double_blocks) { 326 offsets[n++] = EXT4_DIND_BLOCK; 327 offsets[n++] = i_block >> ptrs_bits; 328 offsets[n++] = i_block & (ptrs - 1); 329 final = ptrs; 330 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 331 offsets[n++] = EXT4_TIND_BLOCK; 332 offsets[n++] = i_block >> (ptrs_bits * 2); 333 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 334 offsets[n++] = i_block & (ptrs - 1); 335 final = ptrs; 336 } else { 337 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 338 i_block + direct_blocks + 339 indirect_blocks + double_blocks, inode->i_ino); 340 } 341 if (boundary) 342 *boundary = final - 1 - (i_block & (ptrs - 1)); 343 return n; 344 } 345 346 static int __ext4_check_blockref(const char *function, unsigned int line, 347 struct inode *inode, 348 __le32 *p, unsigned int max) 349 { 350 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 351 __le32 *bref = p; 352 unsigned int blk; 353 354 while (bref < p+max) { 355 blk = le32_to_cpu(*bref++); 356 if (blk && 357 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 358 blk, 1))) { 359 es->s_last_error_block = cpu_to_le64(blk); 360 ext4_error_inode(inode, function, line, blk, 361 "invalid block"); 362 return -EIO; 363 } 364 } 365 return 0; 366 } 367 368 369 #define ext4_check_indirect_blockref(inode, bh) \ 370 __ext4_check_blockref(__func__, __LINE__, inode, \ 371 (__le32 *)(bh)->b_data, \ 372 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 373 374 #define ext4_check_inode_blockref(inode) \ 375 __ext4_check_blockref(__func__, __LINE__, inode, \ 376 EXT4_I(inode)->i_data, \ 377 EXT4_NDIR_BLOCKS) 378 379 /** 380 * ext4_get_branch - read the chain of indirect blocks leading to data 381 * @inode: inode in question 382 * @depth: depth of the chain (1 - direct pointer, etc.) 383 * @offsets: offsets of pointers in inode/indirect blocks 384 * @chain: place to store the result 385 * @err: here we store the error value 386 * 387 * Function fills the array of triples <key, p, bh> and returns %NULL 388 * if everything went OK or the pointer to the last filled triple 389 * (incomplete one) otherwise. Upon the return chain[i].key contains 390 * the number of (i+1)-th block in the chain (as it is stored in memory, 391 * i.e. little-endian 32-bit), chain[i].p contains the address of that 392 * number (it points into struct inode for i==0 and into the bh->b_data 393 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 394 * block for i>0 and NULL for i==0. In other words, it holds the block 395 * numbers of the chain, addresses they were taken from (and where we can 396 * verify that chain did not change) and buffer_heads hosting these 397 * numbers. 398 * 399 * Function stops when it stumbles upon zero pointer (absent block) 400 * (pointer to last triple returned, *@err == 0) 401 * or when it gets an IO error reading an indirect block 402 * (ditto, *@err == -EIO) 403 * or when it reads all @depth-1 indirect blocks successfully and finds 404 * the whole chain, all way to the data (returns %NULL, *err == 0). 405 * 406 * Need to be called with 407 * down_read(&EXT4_I(inode)->i_data_sem) 408 */ 409 static Indirect *ext4_get_branch(struct inode *inode, int depth, 410 ext4_lblk_t *offsets, 411 Indirect chain[4], int *err) 412 { 413 struct super_block *sb = inode->i_sb; 414 Indirect *p = chain; 415 struct buffer_head *bh; 416 417 *err = 0; 418 /* i_data is not going away, no lock needed */ 419 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 420 if (!p->key) 421 goto no_block; 422 while (--depth) { 423 bh = sb_getblk(sb, le32_to_cpu(p->key)); 424 if (unlikely(!bh)) 425 goto failure; 426 427 if (!bh_uptodate_or_lock(bh)) { 428 if (bh_submit_read(bh) < 0) { 429 put_bh(bh); 430 goto failure; 431 } 432 /* validate block references */ 433 if (ext4_check_indirect_blockref(inode, bh)) { 434 put_bh(bh); 435 goto failure; 436 } 437 } 438 439 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 440 /* Reader: end */ 441 if (!p->key) 442 goto no_block; 443 } 444 return NULL; 445 446 failure: 447 *err = -EIO; 448 no_block: 449 return p; 450 } 451 452 /** 453 * ext4_find_near - find a place for allocation with sufficient locality 454 * @inode: owner 455 * @ind: descriptor of indirect block. 456 * 457 * This function returns the preferred place for block allocation. 458 * It is used when heuristic for sequential allocation fails. 459 * Rules are: 460 * + if there is a block to the left of our position - allocate near it. 461 * + if pointer will live in indirect block - allocate near that block. 462 * + if pointer will live in inode - allocate in the same 463 * cylinder group. 464 * 465 * In the latter case we colour the starting block by the callers PID to 466 * prevent it from clashing with concurrent allocations for a different inode 467 * in the same block group. The PID is used here so that functionally related 468 * files will be close-by on-disk. 469 * 470 * Caller must make sure that @ind is valid and will stay that way. 471 */ 472 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 473 { 474 struct ext4_inode_info *ei = EXT4_I(inode); 475 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 476 __le32 *p; 477 ext4_fsblk_t bg_start; 478 ext4_fsblk_t last_block; 479 ext4_grpblk_t colour; 480 ext4_group_t block_group; 481 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 482 483 /* Try to find previous block */ 484 for (p = ind->p - 1; p >= start; p--) { 485 if (*p) 486 return le32_to_cpu(*p); 487 } 488 489 /* No such thing, so let's try location of indirect block */ 490 if (ind->bh) 491 return ind->bh->b_blocknr; 492 493 /* 494 * It is going to be referred to from the inode itself? OK, just put it 495 * into the same cylinder group then. 496 */ 497 block_group = ei->i_block_group; 498 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 499 block_group &= ~(flex_size-1); 500 if (S_ISREG(inode->i_mode)) 501 block_group++; 502 } 503 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 504 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 505 506 /* 507 * If we are doing delayed allocation, we don't need take 508 * colour into account. 509 */ 510 if (test_opt(inode->i_sb, DELALLOC)) 511 return bg_start; 512 513 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 514 colour = (current->pid % 16) * 515 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 516 else 517 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 518 return bg_start + colour; 519 } 520 521 /** 522 * ext4_find_goal - find a preferred place for allocation. 523 * @inode: owner 524 * @block: block we want 525 * @partial: pointer to the last triple within a chain 526 * 527 * Normally this function find the preferred place for block allocation, 528 * returns it. 529 * Because this is only used for non-extent files, we limit the block nr 530 * to 32 bits. 531 */ 532 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 533 Indirect *partial) 534 { 535 ext4_fsblk_t goal; 536 537 /* 538 * XXX need to get goal block from mballoc's data structures 539 */ 540 541 goal = ext4_find_near(inode, partial); 542 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 543 return goal; 544 } 545 546 /** 547 * ext4_blks_to_allocate: Look up the block map and count the number 548 * of direct blocks need to be allocated for the given branch. 549 * 550 * @branch: chain of indirect blocks 551 * @k: number of blocks need for indirect blocks 552 * @blks: number of data blocks to be mapped. 553 * @blocks_to_boundary: the offset in the indirect block 554 * 555 * return the total number of blocks to be allocate, including the 556 * direct and indirect blocks. 557 */ 558 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 559 int blocks_to_boundary) 560 { 561 unsigned int count = 0; 562 563 /* 564 * Simple case, [t,d]Indirect block(s) has not allocated yet 565 * then it's clear blocks on that path have not allocated 566 */ 567 if (k > 0) { 568 /* right now we don't handle cross boundary allocation */ 569 if (blks < blocks_to_boundary + 1) 570 count += blks; 571 else 572 count += blocks_to_boundary + 1; 573 return count; 574 } 575 576 count++; 577 while (count < blks && count <= blocks_to_boundary && 578 le32_to_cpu(*(branch[0].p + count)) == 0) { 579 count++; 580 } 581 return count; 582 } 583 584 /** 585 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 586 * @indirect_blks: the number of blocks need to allocate for indirect 587 * blocks 588 * 589 * @new_blocks: on return it will store the new block numbers for 590 * the indirect blocks(if needed) and the first direct block, 591 * @blks: on return it will store the total number of allocated 592 * direct blocks 593 */ 594 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 595 ext4_lblk_t iblock, ext4_fsblk_t goal, 596 int indirect_blks, int blks, 597 ext4_fsblk_t new_blocks[4], int *err) 598 { 599 struct ext4_allocation_request ar; 600 int target, i; 601 unsigned long count = 0, blk_allocated = 0; 602 int index = 0; 603 ext4_fsblk_t current_block = 0; 604 int ret = 0; 605 606 /* 607 * Here we try to allocate the requested multiple blocks at once, 608 * on a best-effort basis. 609 * To build a branch, we should allocate blocks for 610 * the indirect blocks(if not allocated yet), and at least 611 * the first direct block of this branch. That's the 612 * minimum number of blocks need to allocate(required) 613 */ 614 /* first we try to allocate the indirect blocks */ 615 target = indirect_blks; 616 while (target > 0) { 617 count = target; 618 /* allocating blocks for indirect blocks and direct blocks */ 619 current_block = ext4_new_meta_blocks(handle, inode, 620 goal, &count, err); 621 if (*err) 622 goto failed_out; 623 624 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 625 EXT4_ERROR_INODE(inode, 626 "current_block %llu + count %lu > %d!", 627 current_block, count, 628 EXT4_MAX_BLOCK_FILE_PHYS); 629 *err = -EIO; 630 goto failed_out; 631 } 632 633 target -= count; 634 /* allocate blocks for indirect blocks */ 635 while (index < indirect_blks && count) { 636 new_blocks[index++] = current_block++; 637 count--; 638 } 639 if (count > 0) { 640 /* 641 * save the new block number 642 * for the first direct block 643 */ 644 new_blocks[index] = current_block; 645 printk(KERN_INFO "%s returned more blocks than " 646 "requested\n", __func__); 647 WARN_ON(1); 648 break; 649 } 650 } 651 652 target = blks - count ; 653 blk_allocated = count; 654 if (!target) 655 goto allocated; 656 /* Now allocate data blocks */ 657 memset(&ar, 0, sizeof(ar)); 658 ar.inode = inode; 659 ar.goal = goal; 660 ar.len = target; 661 ar.logical = iblock; 662 if (S_ISREG(inode->i_mode)) 663 /* enable in-core preallocation only for regular files */ 664 ar.flags = EXT4_MB_HINT_DATA; 665 666 current_block = ext4_mb_new_blocks(handle, &ar, err); 667 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 668 EXT4_ERROR_INODE(inode, 669 "current_block %llu + ar.len %d > %d!", 670 current_block, ar.len, 671 EXT4_MAX_BLOCK_FILE_PHYS); 672 *err = -EIO; 673 goto failed_out; 674 } 675 676 if (*err && (target == blks)) { 677 /* 678 * if the allocation failed and we didn't allocate 679 * any blocks before 680 */ 681 goto failed_out; 682 } 683 if (!*err) { 684 if (target == blks) { 685 /* 686 * save the new block number 687 * for the first direct block 688 */ 689 new_blocks[index] = current_block; 690 } 691 blk_allocated += ar.len; 692 } 693 allocated: 694 /* total number of blocks allocated for direct blocks */ 695 ret = blk_allocated; 696 *err = 0; 697 return ret; 698 failed_out: 699 for (i = 0; i < index; i++) 700 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 701 return ret; 702 } 703 704 /** 705 * ext4_alloc_branch - allocate and set up a chain of blocks. 706 * @inode: owner 707 * @indirect_blks: number of allocated indirect blocks 708 * @blks: number of allocated direct blocks 709 * @offsets: offsets (in the blocks) to store the pointers to next. 710 * @branch: place to store the chain in. 711 * 712 * This function allocates blocks, zeroes out all but the last one, 713 * links them into chain and (if we are synchronous) writes them to disk. 714 * In other words, it prepares a branch that can be spliced onto the 715 * inode. It stores the information about that chain in the branch[], in 716 * the same format as ext4_get_branch() would do. We are calling it after 717 * we had read the existing part of chain and partial points to the last 718 * triple of that (one with zero ->key). Upon the exit we have the same 719 * picture as after the successful ext4_get_block(), except that in one 720 * place chain is disconnected - *branch->p is still zero (we did not 721 * set the last link), but branch->key contains the number that should 722 * be placed into *branch->p to fill that gap. 723 * 724 * If allocation fails we free all blocks we've allocated (and forget 725 * their buffer_heads) and return the error value the from failed 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 727 * as described above and return 0. 728 */ 729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 730 ext4_lblk_t iblock, int indirect_blks, 731 int *blks, ext4_fsblk_t goal, 732 ext4_lblk_t *offsets, Indirect *branch) 733 { 734 int blocksize = inode->i_sb->s_blocksize; 735 int i, n = 0; 736 int err = 0; 737 struct buffer_head *bh; 738 int num; 739 ext4_fsblk_t new_blocks[4]; 740 ext4_fsblk_t current_block; 741 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 743 *blks, new_blocks, &err); 744 if (err) 745 return err; 746 747 branch[0].key = cpu_to_le32(new_blocks[0]); 748 /* 749 * metadata blocks and data blocks are allocated. 750 */ 751 for (n = 1; n <= indirect_blks; n++) { 752 /* 753 * Get buffer_head for parent block, zero it out 754 * and set the pointer to new one, then send 755 * parent to disk. 756 */ 757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 758 branch[n].bh = bh; 759 lock_buffer(bh); 760 BUFFER_TRACE(bh, "call get_create_access"); 761 err = ext4_journal_get_create_access(handle, bh); 762 if (err) { 763 /* Don't brelse(bh) here; it's done in 764 * ext4_journal_forget() below */ 765 unlock_buffer(bh); 766 goto failed; 767 } 768 769 memset(bh->b_data, 0, blocksize); 770 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 771 branch[n].key = cpu_to_le32(new_blocks[n]); 772 *branch[n].p = branch[n].key; 773 if (n == indirect_blks) { 774 current_block = new_blocks[n]; 775 /* 776 * End of chain, update the last new metablock of 777 * the chain to point to the new allocated 778 * data blocks numbers 779 */ 780 for (i = 1; i < num; i++) 781 *(branch[n].p + i) = cpu_to_le32(++current_block); 782 } 783 BUFFER_TRACE(bh, "marking uptodate"); 784 set_buffer_uptodate(bh); 785 unlock_buffer(bh); 786 787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 788 err = ext4_handle_dirty_metadata(handle, inode, bh); 789 if (err) 790 goto failed; 791 } 792 *blks = num; 793 return err; 794 failed: 795 /* Allocation failed, free what we already allocated */ 796 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 797 for (i = 1; i <= n ; i++) { 798 /* 799 * branch[i].bh is newly allocated, so there is no 800 * need to revoke the block, which is why we don't 801 * need to set EXT4_FREE_BLOCKS_METADATA. 802 */ 803 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 804 EXT4_FREE_BLOCKS_FORGET); 805 } 806 for (i = n+1; i < indirect_blks; i++) 807 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 808 809 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 810 811 return err; 812 } 813 814 /** 815 * ext4_splice_branch - splice the allocated branch onto inode. 816 * @inode: owner 817 * @block: (logical) number of block we are adding 818 * @chain: chain of indirect blocks (with a missing link - see 819 * ext4_alloc_branch) 820 * @where: location of missing link 821 * @num: number of indirect blocks we are adding 822 * @blks: number of direct blocks we are adding 823 * 824 * This function fills the missing link and does all housekeeping needed in 825 * inode (->i_blocks, etc.). In case of success we end up with the full 826 * chain to new block and return 0. 827 */ 828 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 829 ext4_lblk_t block, Indirect *where, int num, 830 int blks) 831 { 832 int i; 833 int err = 0; 834 ext4_fsblk_t current_block; 835 836 /* 837 * If we're splicing into a [td]indirect block (as opposed to the 838 * inode) then we need to get write access to the [td]indirect block 839 * before the splice. 840 */ 841 if (where->bh) { 842 BUFFER_TRACE(where->bh, "get_write_access"); 843 err = ext4_journal_get_write_access(handle, where->bh); 844 if (err) 845 goto err_out; 846 } 847 /* That's it */ 848 849 *where->p = where->key; 850 851 /* 852 * Update the host buffer_head or inode to point to more just allocated 853 * direct blocks blocks 854 */ 855 if (num == 0 && blks > 1) { 856 current_block = le32_to_cpu(where->key) + 1; 857 for (i = 1; i < blks; i++) 858 *(where->p + i) = cpu_to_le32(current_block++); 859 } 860 861 /* We are done with atomic stuff, now do the rest of housekeeping */ 862 /* had we spliced it onto indirect block? */ 863 if (where->bh) { 864 /* 865 * If we spliced it onto an indirect block, we haven't 866 * altered the inode. Note however that if it is being spliced 867 * onto an indirect block at the very end of the file (the 868 * file is growing) then we *will* alter the inode to reflect 869 * the new i_size. But that is not done here - it is done in 870 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 871 */ 872 jbd_debug(5, "splicing indirect only\n"); 873 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 874 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 875 if (err) 876 goto err_out; 877 } else { 878 /* 879 * OK, we spliced it into the inode itself on a direct block. 880 */ 881 ext4_mark_inode_dirty(handle, inode); 882 jbd_debug(5, "splicing direct\n"); 883 } 884 return err; 885 886 err_out: 887 for (i = 1; i <= num; i++) { 888 /* 889 * branch[i].bh is newly allocated, so there is no 890 * need to revoke the block, which is why we don't 891 * need to set EXT4_FREE_BLOCKS_METADATA. 892 */ 893 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 894 EXT4_FREE_BLOCKS_FORGET); 895 } 896 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 897 blks, 0); 898 899 return err; 900 } 901 902 /* 903 * The ext4_ind_map_blocks() function handles non-extents inodes 904 * (i.e., using the traditional indirect/double-indirect i_blocks 905 * scheme) for ext4_map_blocks(). 906 * 907 * Allocation strategy is simple: if we have to allocate something, we will 908 * have to go the whole way to leaf. So let's do it before attaching anything 909 * to tree, set linkage between the newborn blocks, write them if sync is 910 * required, recheck the path, free and repeat if check fails, otherwise 911 * set the last missing link (that will protect us from any truncate-generated 912 * removals - all blocks on the path are immune now) and possibly force the 913 * write on the parent block. 914 * That has a nice additional property: no special recovery from the failed 915 * allocations is needed - we simply release blocks and do not touch anything 916 * reachable from inode. 917 * 918 * `handle' can be NULL if create == 0. 919 * 920 * return > 0, # of blocks mapped or allocated. 921 * return = 0, if plain lookup failed. 922 * return < 0, error case. 923 * 924 * The ext4_ind_get_blocks() function should be called with 925 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 926 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 927 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 928 * blocks. 929 */ 930 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 931 struct ext4_map_blocks *map, 932 int flags) 933 { 934 int err = -EIO; 935 ext4_lblk_t offsets[4]; 936 Indirect chain[4]; 937 Indirect *partial; 938 ext4_fsblk_t goal; 939 int indirect_blks; 940 int blocks_to_boundary = 0; 941 int depth; 942 int count = 0; 943 ext4_fsblk_t first_block = 0; 944 945 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 946 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 947 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 948 &blocks_to_boundary); 949 950 if (depth == 0) 951 goto out; 952 953 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 954 955 /* Simplest case - block found, no allocation needed */ 956 if (!partial) { 957 first_block = le32_to_cpu(chain[depth - 1].key); 958 count++; 959 /*map more blocks*/ 960 while (count < map->m_len && count <= blocks_to_boundary) { 961 ext4_fsblk_t blk; 962 963 blk = le32_to_cpu(*(chain[depth-1].p + count)); 964 965 if (blk == first_block + count) 966 count++; 967 else 968 break; 969 } 970 goto got_it; 971 } 972 973 /* Next simple case - plain lookup or failed read of indirect block */ 974 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 975 goto cleanup; 976 977 /* 978 * Okay, we need to do block allocation. 979 */ 980 goal = ext4_find_goal(inode, map->m_lblk, partial); 981 982 /* the number of blocks need to allocate for [d,t]indirect blocks */ 983 indirect_blks = (chain + depth) - partial - 1; 984 985 /* 986 * Next look up the indirect map to count the totoal number of 987 * direct blocks to allocate for this branch. 988 */ 989 count = ext4_blks_to_allocate(partial, indirect_blks, 990 map->m_len, blocks_to_boundary); 991 /* 992 * Block out ext4_truncate while we alter the tree 993 */ 994 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 995 &count, goal, 996 offsets + (partial - chain), partial); 997 998 /* 999 * The ext4_splice_branch call will free and forget any buffers 1000 * on the new chain if there is a failure, but that risks using 1001 * up transaction credits, especially for bitmaps where the 1002 * credits cannot be returned. Can we handle this somehow? We 1003 * may need to return -EAGAIN upwards in the worst case. --sct 1004 */ 1005 if (!err) 1006 err = ext4_splice_branch(handle, inode, map->m_lblk, 1007 partial, indirect_blks, count); 1008 if (err) 1009 goto cleanup; 1010 1011 map->m_flags |= EXT4_MAP_NEW; 1012 1013 ext4_update_inode_fsync_trans(handle, inode, 1); 1014 got_it: 1015 map->m_flags |= EXT4_MAP_MAPPED; 1016 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1017 map->m_len = count; 1018 if (count > blocks_to_boundary) 1019 map->m_flags |= EXT4_MAP_BOUNDARY; 1020 err = count; 1021 /* Clean up and exit */ 1022 partial = chain + depth - 1; /* the whole chain */ 1023 cleanup: 1024 while (partial > chain) { 1025 BUFFER_TRACE(partial->bh, "call brelse"); 1026 brelse(partial->bh); 1027 partial--; 1028 } 1029 out: 1030 return err; 1031 } 1032 1033 #ifdef CONFIG_QUOTA 1034 qsize_t *ext4_get_reserved_space(struct inode *inode) 1035 { 1036 return &EXT4_I(inode)->i_reserved_quota; 1037 } 1038 #endif 1039 1040 /* 1041 * Calculate the number of metadata blocks need to reserve 1042 * to allocate a new block at @lblocks for non extent file based file 1043 */ 1044 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1045 sector_t lblock) 1046 { 1047 struct ext4_inode_info *ei = EXT4_I(inode); 1048 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1049 int blk_bits; 1050 1051 if (lblock < EXT4_NDIR_BLOCKS) 1052 return 0; 1053 1054 lblock -= EXT4_NDIR_BLOCKS; 1055 1056 if (ei->i_da_metadata_calc_len && 1057 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1058 ei->i_da_metadata_calc_len++; 1059 return 0; 1060 } 1061 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1062 ei->i_da_metadata_calc_len = 1; 1063 blk_bits = order_base_2(lblock); 1064 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1065 } 1066 1067 /* 1068 * Calculate the number of metadata blocks need to reserve 1069 * to allocate a block located at @lblock 1070 */ 1071 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock) 1072 { 1073 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1074 return ext4_ext_calc_metadata_amount(inode, lblock); 1075 1076 return ext4_indirect_calc_metadata_amount(inode, lblock); 1077 } 1078 1079 /* 1080 * Called with i_data_sem down, which is important since we can call 1081 * ext4_discard_preallocations() from here. 1082 */ 1083 void ext4_da_update_reserve_space(struct inode *inode, 1084 int used, int quota_claim) 1085 { 1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1087 struct ext4_inode_info *ei = EXT4_I(inode); 1088 1089 spin_lock(&ei->i_block_reservation_lock); 1090 trace_ext4_da_update_reserve_space(inode, used); 1091 if (unlikely(used > ei->i_reserved_data_blocks)) { 1092 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1093 "with only %d reserved data blocks\n", 1094 __func__, inode->i_ino, used, 1095 ei->i_reserved_data_blocks); 1096 WARN_ON(1); 1097 used = ei->i_reserved_data_blocks; 1098 } 1099 1100 /* Update per-inode reservations */ 1101 ei->i_reserved_data_blocks -= used; 1102 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1104 used + ei->i_allocated_meta_blocks); 1105 ei->i_allocated_meta_blocks = 0; 1106 1107 if (ei->i_reserved_data_blocks == 0) { 1108 /* 1109 * We can release all of the reserved metadata blocks 1110 * only when we have written all of the delayed 1111 * allocation blocks. 1112 */ 1113 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1114 ei->i_reserved_meta_blocks); 1115 ei->i_reserved_meta_blocks = 0; 1116 ei->i_da_metadata_calc_len = 0; 1117 } 1118 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1119 1120 /* Update quota subsystem for data blocks */ 1121 if (quota_claim) 1122 dquot_claim_block(inode, used); 1123 else { 1124 /* 1125 * We did fallocate with an offset that is already delayed 1126 * allocated. So on delayed allocated writeback we should 1127 * not re-claim the quota for fallocated blocks. 1128 */ 1129 dquot_release_reservation_block(inode, used); 1130 } 1131 1132 /* 1133 * If we have done all the pending block allocations and if 1134 * there aren't any writers on the inode, we can discard the 1135 * inode's preallocations. 1136 */ 1137 if ((ei->i_reserved_data_blocks == 0) && 1138 (atomic_read(&inode->i_writecount) == 0)) 1139 ext4_discard_preallocations(inode); 1140 } 1141 1142 static int __check_block_validity(struct inode *inode, const char *func, 1143 unsigned int line, 1144 struct ext4_map_blocks *map) 1145 { 1146 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 1147 map->m_len)) { 1148 ext4_error_inode(inode, func, line, map->m_pblk, 1149 "lblock %lu mapped to illegal pblock " 1150 "(length %d)", (unsigned long) map->m_lblk, 1151 map->m_len); 1152 return -EIO; 1153 } 1154 return 0; 1155 } 1156 1157 #define check_block_validity(inode, map) \ 1158 __check_block_validity((inode), __func__, __LINE__, (map)) 1159 1160 /* 1161 * Return the number of contiguous dirty pages in a given inode 1162 * starting at page frame idx. 1163 */ 1164 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1165 unsigned int max_pages) 1166 { 1167 struct address_space *mapping = inode->i_mapping; 1168 pgoff_t index; 1169 struct pagevec pvec; 1170 pgoff_t num = 0; 1171 int i, nr_pages, done = 0; 1172 1173 if (max_pages == 0) 1174 return 0; 1175 pagevec_init(&pvec, 0); 1176 while (!done) { 1177 index = idx; 1178 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1179 PAGECACHE_TAG_DIRTY, 1180 (pgoff_t)PAGEVEC_SIZE); 1181 if (nr_pages == 0) 1182 break; 1183 for (i = 0; i < nr_pages; i++) { 1184 struct page *page = pvec.pages[i]; 1185 struct buffer_head *bh, *head; 1186 1187 lock_page(page); 1188 if (unlikely(page->mapping != mapping) || 1189 !PageDirty(page) || 1190 PageWriteback(page) || 1191 page->index != idx) { 1192 done = 1; 1193 unlock_page(page); 1194 break; 1195 } 1196 if (page_has_buffers(page)) { 1197 bh = head = page_buffers(page); 1198 do { 1199 if (!buffer_delay(bh) && 1200 !buffer_unwritten(bh)) 1201 done = 1; 1202 bh = bh->b_this_page; 1203 } while (!done && (bh != head)); 1204 } 1205 unlock_page(page); 1206 if (done) 1207 break; 1208 idx++; 1209 num++; 1210 if (num >= max_pages) 1211 break; 1212 } 1213 pagevec_release(&pvec); 1214 } 1215 return num; 1216 } 1217 1218 /* 1219 * The ext4_map_blocks() function tries to look up the requested blocks, 1220 * and returns if the blocks are already mapped. 1221 * 1222 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1223 * and store the allocated blocks in the result buffer head and mark it 1224 * mapped. 1225 * 1226 * If file type is extents based, it will call ext4_ext_map_blocks(), 1227 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 1228 * based files 1229 * 1230 * On success, it returns the number of blocks being mapped or allocate. 1231 * if create==0 and the blocks are pre-allocated and uninitialized block, 1232 * the result buffer head is unmapped. If the create ==1, it will make sure 1233 * the buffer head is mapped. 1234 * 1235 * It returns 0 if plain look up failed (blocks have not been allocated), in 1236 * that casem, buffer head is unmapped 1237 * 1238 * It returns the error in case of allocation failure. 1239 */ 1240 int ext4_map_blocks(handle_t *handle, struct inode *inode, 1241 struct ext4_map_blocks *map, int flags) 1242 { 1243 int retval; 1244 1245 map->m_flags = 0; 1246 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 1247 "logical block %lu\n", inode->i_ino, flags, map->m_len, 1248 (unsigned long) map->m_lblk); 1249 /* 1250 * Try to see if we can get the block without requesting a new 1251 * file system block. 1252 */ 1253 down_read((&EXT4_I(inode)->i_data_sem)); 1254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1255 retval = ext4_ext_map_blocks(handle, inode, map, 0); 1256 } else { 1257 retval = ext4_ind_map_blocks(handle, inode, map, 0); 1258 } 1259 up_read((&EXT4_I(inode)->i_data_sem)); 1260 1261 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1262 int ret = check_block_validity(inode, map); 1263 if (ret != 0) 1264 return ret; 1265 } 1266 1267 /* If it is only a block(s) look up */ 1268 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1269 return retval; 1270 1271 /* 1272 * Returns if the blocks have already allocated 1273 * 1274 * Note that if blocks have been preallocated 1275 * ext4_ext_get_block() returns th create = 0 1276 * with buffer head unmapped. 1277 */ 1278 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 1279 return retval; 1280 1281 /* 1282 * When we call get_blocks without the create flag, the 1283 * BH_Unwritten flag could have gotten set if the blocks 1284 * requested were part of a uninitialized extent. We need to 1285 * clear this flag now that we are committed to convert all or 1286 * part of the uninitialized extent to be an initialized 1287 * extent. This is because we need to avoid the combination 1288 * of BH_Unwritten and BH_Mapped flags being simultaneously 1289 * set on the buffer_head. 1290 */ 1291 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 1292 1293 /* 1294 * New blocks allocate and/or writing to uninitialized extent 1295 * will possibly result in updating i_data, so we take 1296 * the write lock of i_data_sem, and call get_blocks() 1297 * with create == 1 flag. 1298 */ 1299 down_write((&EXT4_I(inode)->i_data_sem)); 1300 1301 /* 1302 * if the caller is from delayed allocation writeout path 1303 * we have already reserved fs blocks for allocation 1304 * let the underlying get_block() function know to 1305 * avoid double accounting 1306 */ 1307 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1308 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1309 /* 1310 * We need to check for EXT4 here because migrate 1311 * could have changed the inode type in between 1312 */ 1313 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1314 retval = ext4_ext_map_blocks(handle, inode, map, flags); 1315 } else { 1316 retval = ext4_ind_map_blocks(handle, inode, map, flags); 1317 1318 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 1319 /* 1320 * We allocated new blocks which will result in 1321 * i_data's format changing. Force the migrate 1322 * to fail by clearing migrate flags 1323 */ 1324 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1325 } 1326 1327 /* 1328 * Update reserved blocks/metadata blocks after successful 1329 * block allocation which had been deferred till now. We don't 1330 * support fallocate for non extent files. So we can update 1331 * reserve space here. 1332 */ 1333 if ((retval > 0) && 1334 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1335 ext4_da_update_reserve_space(inode, retval, 1); 1336 } 1337 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1338 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1339 1340 up_write((&EXT4_I(inode)->i_data_sem)); 1341 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1342 int ret = check_block_validity(inode, map); 1343 if (ret != 0) 1344 return ret; 1345 } 1346 return retval; 1347 } 1348 1349 /* Maximum number of blocks we map for direct IO at once. */ 1350 #define DIO_MAX_BLOCKS 4096 1351 1352 static int _ext4_get_block(struct inode *inode, sector_t iblock, 1353 struct buffer_head *bh, int flags) 1354 { 1355 handle_t *handle = ext4_journal_current_handle(); 1356 struct ext4_map_blocks map; 1357 int ret = 0, started = 0; 1358 int dio_credits; 1359 1360 map.m_lblk = iblock; 1361 map.m_len = bh->b_size >> inode->i_blkbits; 1362 1363 if (flags && !handle) { 1364 /* Direct IO write... */ 1365 if (map.m_len > DIO_MAX_BLOCKS) 1366 map.m_len = DIO_MAX_BLOCKS; 1367 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 1368 handle = ext4_journal_start(inode, dio_credits); 1369 if (IS_ERR(handle)) { 1370 ret = PTR_ERR(handle); 1371 return ret; 1372 } 1373 started = 1; 1374 } 1375 1376 ret = ext4_map_blocks(handle, inode, &map, flags); 1377 if (ret > 0) { 1378 map_bh(bh, inode->i_sb, map.m_pblk); 1379 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1380 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 1381 ret = 0; 1382 } 1383 if (started) 1384 ext4_journal_stop(handle); 1385 return ret; 1386 } 1387 1388 int ext4_get_block(struct inode *inode, sector_t iblock, 1389 struct buffer_head *bh, int create) 1390 { 1391 return _ext4_get_block(inode, iblock, bh, 1392 create ? EXT4_GET_BLOCKS_CREATE : 0); 1393 } 1394 1395 /* 1396 * `handle' can be NULL if create is zero 1397 */ 1398 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1399 ext4_lblk_t block, int create, int *errp) 1400 { 1401 struct ext4_map_blocks map; 1402 struct buffer_head *bh; 1403 int fatal = 0, err; 1404 1405 J_ASSERT(handle != NULL || create == 0); 1406 1407 map.m_lblk = block; 1408 map.m_len = 1; 1409 err = ext4_map_blocks(handle, inode, &map, 1410 create ? EXT4_GET_BLOCKS_CREATE : 0); 1411 1412 if (err < 0) 1413 *errp = err; 1414 if (err <= 0) 1415 return NULL; 1416 *errp = 0; 1417 1418 bh = sb_getblk(inode->i_sb, map.m_pblk); 1419 if (!bh) { 1420 *errp = -EIO; 1421 return NULL; 1422 } 1423 if (map.m_flags & EXT4_MAP_NEW) { 1424 J_ASSERT(create != 0); 1425 J_ASSERT(handle != NULL); 1426 1427 /* 1428 * Now that we do not always journal data, we should 1429 * keep in mind whether this should always journal the 1430 * new buffer as metadata. For now, regular file 1431 * writes use ext4_get_block instead, so it's not a 1432 * problem. 1433 */ 1434 lock_buffer(bh); 1435 BUFFER_TRACE(bh, "call get_create_access"); 1436 fatal = ext4_journal_get_create_access(handle, bh); 1437 if (!fatal && !buffer_uptodate(bh)) { 1438 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1439 set_buffer_uptodate(bh); 1440 } 1441 unlock_buffer(bh); 1442 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1443 err = ext4_handle_dirty_metadata(handle, inode, bh); 1444 if (!fatal) 1445 fatal = err; 1446 } else { 1447 BUFFER_TRACE(bh, "not a new buffer"); 1448 } 1449 if (fatal) { 1450 *errp = fatal; 1451 brelse(bh); 1452 bh = NULL; 1453 } 1454 return bh; 1455 } 1456 1457 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1458 ext4_lblk_t block, int create, int *err) 1459 { 1460 struct buffer_head *bh; 1461 1462 bh = ext4_getblk(handle, inode, block, create, err); 1463 if (!bh) 1464 return bh; 1465 if (buffer_uptodate(bh)) 1466 return bh; 1467 ll_rw_block(READ_META, 1, &bh); 1468 wait_on_buffer(bh); 1469 if (buffer_uptodate(bh)) 1470 return bh; 1471 put_bh(bh); 1472 *err = -EIO; 1473 return NULL; 1474 } 1475 1476 static int walk_page_buffers(handle_t *handle, 1477 struct buffer_head *head, 1478 unsigned from, 1479 unsigned to, 1480 int *partial, 1481 int (*fn)(handle_t *handle, 1482 struct buffer_head *bh)) 1483 { 1484 struct buffer_head *bh; 1485 unsigned block_start, block_end; 1486 unsigned blocksize = head->b_size; 1487 int err, ret = 0; 1488 struct buffer_head *next; 1489 1490 for (bh = head, block_start = 0; 1491 ret == 0 && (bh != head || !block_start); 1492 block_start = block_end, bh = next) { 1493 next = bh->b_this_page; 1494 block_end = block_start + blocksize; 1495 if (block_end <= from || block_start >= to) { 1496 if (partial && !buffer_uptodate(bh)) 1497 *partial = 1; 1498 continue; 1499 } 1500 err = (*fn)(handle, bh); 1501 if (!ret) 1502 ret = err; 1503 } 1504 return ret; 1505 } 1506 1507 /* 1508 * To preserve ordering, it is essential that the hole instantiation and 1509 * the data write be encapsulated in a single transaction. We cannot 1510 * close off a transaction and start a new one between the ext4_get_block() 1511 * and the commit_write(). So doing the jbd2_journal_start at the start of 1512 * prepare_write() is the right place. 1513 * 1514 * Also, this function can nest inside ext4_writepage() -> 1515 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1516 * has generated enough buffer credits to do the whole page. So we won't 1517 * block on the journal in that case, which is good, because the caller may 1518 * be PF_MEMALLOC. 1519 * 1520 * By accident, ext4 can be reentered when a transaction is open via 1521 * quota file writes. If we were to commit the transaction while thus 1522 * reentered, there can be a deadlock - we would be holding a quota 1523 * lock, and the commit would never complete if another thread had a 1524 * transaction open and was blocking on the quota lock - a ranking 1525 * violation. 1526 * 1527 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1528 * will _not_ run commit under these circumstances because handle->h_ref 1529 * is elevated. We'll still have enough credits for the tiny quotafile 1530 * write. 1531 */ 1532 static int do_journal_get_write_access(handle_t *handle, 1533 struct buffer_head *bh) 1534 { 1535 int dirty = buffer_dirty(bh); 1536 int ret; 1537 1538 if (!buffer_mapped(bh) || buffer_freed(bh)) 1539 return 0; 1540 /* 1541 * __block_write_begin() could have dirtied some buffers. Clean 1542 * the dirty bit as jbd2_journal_get_write_access() could complain 1543 * otherwise about fs integrity issues. Setting of the dirty bit 1544 * by __block_write_begin() isn't a real problem here as we clear 1545 * the bit before releasing a page lock and thus writeback cannot 1546 * ever write the buffer. 1547 */ 1548 if (dirty) 1549 clear_buffer_dirty(bh); 1550 ret = ext4_journal_get_write_access(handle, bh); 1551 if (!ret && dirty) 1552 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1553 return ret; 1554 } 1555 1556 /* 1557 * Truncate blocks that were not used by write. We have to truncate the 1558 * pagecache as well so that corresponding buffers get properly unmapped. 1559 */ 1560 static void ext4_truncate_failed_write(struct inode *inode) 1561 { 1562 truncate_inode_pages(inode->i_mapping, inode->i_size); 1563 ext4_truncate(inode); 1564 } 1565 1566 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1567 struct buffer_head *bh_result, int create); 1568 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1569 loff_t pos, unsigned len, unsigned flags, 1570 struct page **pagep, void **fsdata) 1571 { 1572 struct inode *inode = mapping->host; 1573 int ret, needed_blocks; 1574 handle_t *handle; 1575 int retries = 0; 1576 struct page *page; 1577 pgoff_t index; 1578 unsigned from, to; 1579 1580 trace_ext4_write_begin(inode, pos, len, flags); 1581 /* 1582 * Reserve one block more for addition to orphan list in case 1583 * we allocate blocks but write fails for some reason 1584 */ 1585 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1586 index = pos >> PAGE_CACHE_SHIFT; 1587 from = pos & (PAGE_CACHE_SIZE - 1); 1588 to = from + len; 1589 1590 retry: 1591 handle = ext4_journal_start(inode, needed_blocks); 1592 if (IS_ERR(handle)) { 1593 ret = PTR_ERR(handle); 1594 goto out; 1595 } 1596 1597 /* We cannot recurse into the filesystem as the transaction is already 1598 * started */ 1599 flags |= AOP_FLAG_NOFS; 1600 1601 page = grab_cache_page_write_begin(mapping, index, flags); 1602 if (!page) { 1603 ext4_journal_stop(handle); 1604 ret = -ENOMEM; 1605 goto out; 1606 } 1607 *pagep = page; 1608 1609 if (ext4_should_dioread_nolock(inode)) 1610 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1611 else 1612 ret = __block_write_begin(page, pos, len, ext4_get_block); 1613 1614 if (!ret && ext4_should_journal_data(inode)) { 1615 ret = walk_page_buffers(handle, page_buffers(page), 1616 from, to, NULL, do_journal_get_write_access); 1617 } 1618 1619 if (ret) { 1620 unlock_page(page); 1621 page_cache_release(page); 1622 /* 1623 * __block_write_begin may have instantiated a few blocks 1624 * outside i_size. Trim these off again. Don't need 1625 * i_size_read because we hold i_mutex. 1626 * 1627 * Add inode to orphan list in case we crash before 1628 * truncate finishes 1629 */ 1630 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1631 ext4_orphan_add(handle, inode); 1632 1633 ext4_journal_stop(handle); 1634 if (pos + len > inode->i_size) { 1635 ext4_truncate_failed_write(inode); 1636 /* 1637 * If truncate failed early the inode might 1638 * still be on the orphan list; we need to 1639 * make sure the inode is removed from the 1640 * orphan list in that case. 1641 */ 1642 if (inode->i_nlink) 1643 ext4_orphan_del(NULL, inode); 1644 } 1645 } 1646 1647 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1648 goto retry; 1649 out: 1650 return ret; 1651 } 1652 1653 /* For write_end() in data=journal mode */ 1654 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1655 { 1656 if (!buffer_mapped(bh) || buffer_freed(bh)) 1657 return 0; 1658 set_buffer_uptodate(bh); 1659 return ext4_handle_dirty_metadata(handle, NULL, bh); 1660 } 1661 1662 static int ext4_generic_write_end(struct file *file, 1663 struct address_space *mapping, 1664 loff_t pos, unsigned len, unsigned copied, 1665 struct page *page, void *fsdata) 1666 { 1667 int i_size_changed = 0; 1668 struct inode *inode = mapping->host; 1669 handle_t *handle = ext4_journal_current_handle(); 1670 1671 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1672 1673 /* 1674 * No need to use i_size_read() here, the i_size 1675 * cannot change under us because we hold i_mutex. 1676 * 1677 * But it's important to update i_size while still holding page lock: 1678 * page writeout could otherwise come in and zero beyond i_size. 1679 */ 1680 if (pos + copied > inode->i_size) { 1681 i_size_write(inode, pos + copied); 1682 i_size_changed = 1; 1683 } 1684 1685 if (pos + copied > EXT4_I(inode)->i_disksize) { 1686 /* We need to mark inode dirty even if 1687 * new_i_size is less that inode->i_size 1688 * bu greater than i_disksize.(hint delalloc) 1689 */ 1690 ext4_update_i_disksize(inode, (pos + copied)); 1691 i_size_changed = 1; 1692 } 1693 unlock_page(page); 1694 page_cache_release(page); 1695 1696 /* 1697 * Don't mark the inode dirty under page lock. First, it unnecessarily 1698 * makes the holding time of page lock longer. Second, it forces lock 1699 * ordering of page lock and transaction start for journaling 1700 * filesystems. 1701 */ 1702 if (i_size_changed) 1703 ext4_mark_inode_dirty(handle, inode); 1704 1705 return copied; 1706 } 1707 1708 /* 1709 * We need to pick up the new inode size which generic_commit_write gave us 1710 * `file' can be NULL - eg, when called from page_symlink(). 1711 * 1712 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1713 * buffers are managed internally. 1714 */ 1715 static int ext4_ordered_write_end(struct file *file, 1716 struct address_space *mapping, 1717 loff_t pos, unsigned len, unsigned copied, 1718 struct page *page, void *fsdata) 1719 { 1720 handle_t *handle = ext4_journal_current_handle(); 1721 struct inode *inode = mapping->host; 1722 int ret = 0, ret2; 1723 1724 trace_ext4_ordered_write_end(inode, pos, len, copied); 1725 ret = ext4_jbd2_file_inode(handle, inode); 1726 1727 if (ret == 0) { 1728 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1729 page, fsdata); 1730 copied = ret2; 1731 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1732 /* if we have allocated more blocks and copied 1733 * less. We will have blocks allocated outside 1734 * inode->i_size. So truncate them 1735 */ 1736 ext4_orphan_add(handle, inode); 1737 if (ret2 < 0) 1738 ret = ret2; 1739 } 1740 ret2 = ext4_journal_stop(handle); 1741 if (!ret) 1742 ret = ret2; 1743 1744 if (pos + len > inode->i_size) { 1745 ext4_truncate_failed_write(inode); 1746 /* 1747 * If truncate failed early the inode might still be 1748 * on the orphan list; we need to make sure the inode 1749 * is removed from the orphan list in that case. 1750 */ 1751 if (inode->i_nlink) 1752 ext4_orphan_del(NULL, inode); 1753 } 1754 1755 1756 return ret ? ret : copied; 1757 } 1758 1759 static int ext4_writeback_write_end(struct file *file, 1760 struct address_space *mapping, 1761 loff_t pos, unsigned len, unsigned copied, 1762 struct page *page, void *fsdata) 1763 { 1764 handle_t *handle = ext4_journal_current_handle(); 1765 struct inode *inode = mapping->host; 1766 int ret = 0, ret2; 1767 1768 trace_ext4_writeback_write_end(inode, pos, len, copied); 1769 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1770 page, fsdata); 1771 copied = ret2; 1772 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1773 /* if we have allocated more blocks and copied 1774 * less. We will have blocks allocated outside 1775 * inode->i_size. So truncate them 1776 */ 1777 ext4_orphan_add(handle, inode); 1778 1779 if (ret2 < 0) 1780 ret = ret2; 1781 1782 ret2 = ext4_journal_stop(handle); 1783 if (!ret) 1784 ret = ret2; 1785 1786 if (pos + len > inode->i_size) { 1787 ext4_truncate_failed_write(inode); 1788 /* 1789 * If truncate failed early the inode might still be 1790 * on the orphan list; we need to make sure the inode 1791 * is removed from the orphan list in that case. 1792 */ 1793 if (inode->i_nlink) 1794 ext4_orphan_del(NULL, inode); 1795 } 1796 1797 return ret ? ret : copied; 1798 } 1799 1800 static int ext4_journalled_write_end(struct file *file, 1801 struct address_space *mapping, 1802 loff_t pos, unsigned len, unsigned copied, 1803 struct page *page, void *fsdata) 1804 { 1805 handle_t *handle = ext4_journal_current_handle(); 1806 struct inode *inode = mapping->host; 1807 int ret = 0, ret2; 1808 int partial = 0; 1809 unsigned from, to; 1810 loff_t new_i_size; 1811 1812 trace_ext4_journalled_write_end(inode, pos, len, copied); 1813 from = pos & (PAGE_CACHE_SIZE - 1); 1814 to = from + len; 1815 1816 if (copied < len) { 1817 if (!PageUptodate(page)) 1818 copied = 0; 1819 page_zero_new_buffers(page, from+copied, to); 1820 } 1821 1822 ret = walk_page_buffers(handle, page_buffers(page), from, 1823 to, &partial, write_end_fn); 1824 if (!partial) 1825 SetPageUptodate(page); 1826 new_i_size = pos + copied; 1827 if (new_i_size > inode->i_size) 1828 i_size_write(inode, pos+copied); 1829 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1830 if (new_i_size > EXT4_I(inode)->i_disksize) { 1831 ext4_update_i_disksize(inode, new_i_size); 1832 ret2 = ext4_mark_inode_dirty(handle, inode); 1833 if (!ret) 1834 ret = ret2; 1835 } 1836 1837 unlock_page(page); 1838 page_cache_release(page); 1839 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1840 /* if we have allocated more blocks and copied 1841 * less. We will have blocks allocated outside 1842 * inode->i_size. So truncate them 1843 */ 1844 ext4_orphan_add(handle, inode); 1845 1846 ret2 = ext4_journal_stop(handle); 1847 if (!ret) 1848 ret = ret2; 1849 if (pos + len > inode->i_size) { 1850 ext4_truncate_failed_write(inode); 1851 /* 1852 * If truncate failed early the inode might still be 1853 * on the orphan list; we need to make sure the inode 1854 * is removed from the orphan list in that case. 1855 */ 1856 if (inode->i_nlink) 1857 ext4_orphan_del(NULL, inode); 1858 } 1859 1860 return ret ? ret : copied; 1861 } 1862 1863 /* 1864 * Reserve a single block located at lblock 1865 */ 1866 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock) 1867 { 1868 int retries = 0; 1869 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1870 struct ext4_inode_info *ei = EXT4_I(inode); 1871 unsigned long md_needed; 1872 int ret; 1873 1874 /* 1875 * recalculate the amount of metadata blocks to reserve 1876 * in order to allocate nrblocks 1877 * worse case is one extent per block 1878 */ 1879 repeat: 1880 spin_lock(&ei->i_block_reservation_lock); 1881 md_needed = ext4_calc_metadata_amount(inode, lblock); 1882 trace_ext4_da_reserve_space(inode, md_needed); 1883 spin_unlock(&ei->i_block_reservation_lock); 1884 1885 /* 1886 * We will charge metadata quota at writeout time; this saves 1887 * us from metadata over-estimation, though we may go over by 1888 * a small amount in the end. Here we just reserve for data. 1889 */ 1890 ret = dquot_reserve_block(inode, 1); 1891 if (ret) 1892 return ret; 1893 /* 1894 * We do still charge estimated metadata to the sb though; 1895 * we cannot afford to run out of free blocks. 1896 */ 1897 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1898 dquot_release_reservation_block(inode, 1); 1899 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1900 yield(); 1901 goto repeat; 1902 } 1903 return -ENOSPC; 1904 } 1905 spin_lock(&ei->i_block_reservation_lock); 1906 ei->i_reserved_data_blocks++; 1907 ei->i_reserved_meta_blocks += md_needed; 1908 spin_unlock(&ei->i_block_reservation_lock); 1909 1910 return 0; /* success */ 1911 } 1912 1913 static void ext4_da_release_space(struct inode *inode, int to_free) 1914 { 1915 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1916 struct ext4_inode_info *ei = EXT4_I(inode); 1917 1918 if (!to_free) 1919 return; /* Nothing to release, exit */ 1920 1921 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1922 1923 trace_ext4_da_release_space(inode, to_free); 1924 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1925 /* 1926 * if there aren't enough reserved blocks, then the 1927 * counter is messed up somewhere. Since this 1928 * function is called from invalidate page, it's 1929 * harmless to return without any action. 1930 */ 1931 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1932 "ino %lu, to_free %d with only %d reserved " 1933 "data blocks\n", inode->i_ino, to_free, 1934 ei->i_reserved_data_blocks); 1935 WARN_ON(1); 1936 to_free = ei->i_reserved_data_blocks; 1937 } 1938 ei->i_reserved_data_blocks -= to_free; 1939 1940 if (ei->i_reserved_data_blocks == 0) { 1941 /* 1942 * We can release all of the reserved metadata blocks 1943 * only when we have written all of the delayed 1944 * allocation blocks. 1945 */ 1946 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1947 ei->i_reserved_meta_blocks); 1948 ei->i_reserved_meta_blocks = 0; 1949 ei->i_da_metadata_calc_len = 0; 1950 } 1951 1952 /* update fs dirty data blocks counter */ 1953 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1954 1955 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1956 1957 dquot_release_reservation_block(inode, to_free); 1958 } 1959 1960 static void ext4_da_page_release_reservation(struct page *page, 1961 unsigned long offset) 1962 { 1963 int to_release = 0; 1964 struct buffer_head *head, *bh; 1965 unsigned int curr_off = 0; 1966 1967 head = page_buffers(page); 1968 bh = head; 1969 do { 1970 unsigned int next_off = curr_off + bh->b_size; 1971 1972 if ((offset <= curr_off) && (buffer_delay(bh))) { 1973 to_release++; 1974 clear_buffer_delay(bh); 1975 } 1976 curr_off = next_off; 1977 } while ((bh = bh->b_this_page) != head); 1978 ext4_da_release_space(page->mapping->host, to_release); 1979 } 1980 1981 /* 1982 * Delayed allocation stuff 1983 */ 1984 1985 /* 1986 * mpage_da_submit_io - walks through extent of pages and try to write 1987 * them with writepage() call back 1988 * 1989 * @mpd->inode: inode 1990 * @mpd->first_page: first page of the extent 1991 * @mpd->next_page: page after the last page of the extent 1992 * 1993 * By the time mpage_da_submit_io() is called we expect all blocks 1994 * to be allocated. this may be wrong if allocation failed. 1995 * 1996 * As pages are already locked by write_cache_pages(), we can't use it 1997 */ 1998 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1999 { 2000 long pages_skipped; 2001 struct pagevec pvec; 2002 unsigned long index, end; 2003 int ret = 0, err, nr_pages, i; 2004 struct inode *inode = mpd->inode; 2005 struct address_space *mapping = inode->i_mapping; 2006 2007 BUG_ON(mpd->next_page <= mpd->first_page); 2008 /* 2009 * We need to start from the first_page to the next_page - 1 2010 * to make sure we also write the mapped dirty buffer_heads. 2011 * If we look at mpd->b_blocknr we would only be looking 2012 * at the currently mapped buffer_heads. 2013 */ 2014 index = mpd->first_page; 2015 end = mpd->next_page - 1; 2016 2017 pagevec_init(&pvec, 0); 2018 while (index <= end) { 2019 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2020 if (nr_pages == 0) 2021 break; 2022 for (i = 0; i < nr_pages; i++) { 2023 struct page *page = pvec.pages[i]; 2024 2025 index = page->index; 2026 if (index > end) 2027 break; 2028 index++; 2029 2030 BUG_ON(!PageLocked(page)); 2031 BUG_ON(PageWriteback(page)); 2032 2033 pages_skipped = mpd->wbc->pages_skipped; 2034 err = mapping->a_ops->writepage(page, mpd->wbc); 2035 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 2036 /* 2037 * have successfully written the page 2038 * without skipping the same 2039 */ 2040 mpd->pages_written++; 2041 /* 2042 * In error case, we have to continue because 2043 * remaining pages are still locked 2044 * XXX: unlock and re-dirty them? 2045 */ 2046 if (ret == 0) 2047 ret = err; 2048 } 2049 pagevec_release(&pvec); 2050 } 2051 return ret; 2052 } 2053 2054 /* 2055 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 2056 * 2057 * the function goes through all passed space and put actual disk 2058 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 2059 */ 2060 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, 2061 struct ext4_map_blocks *map) 2062 { 2063 struct inode *inode = mpd->inode; 2064 struct address_space *mapping = inode->i_mapping; 2065 int blocks = map->m_len; 2066 sector_t pblock = map->m_pblk, cur_logical; 2067 struct buffer_head *head, *bh; 2068 pgoff_t index, end; 2069 struct pagevec pvec; 2070 int nr_pages, i; 2071 2072 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2073 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2074 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2075 2076 pagevec_init(&pvec, 0); 2077 2078 while (index <= end) { 2079 /* XXX: optimize tail */ 2080 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2081 if (nr_pages == 0) 2082 break; 2083 for (i = 0; i < nr_pages; i++) { 2084 struct page *page = pvec.pages[i]; 2085 2086 index = page->index; 2087 if (index > end) 2088 break; 2089 index++; 2090 2091 BUG_ON(!PageLocked(page)); 2092 BUG_ON(PageWriteback(page)); 2093 BUG_ON(!page_has_buffers(page)); 2094 2095 bh = page_buffers(page); 2096 head = bh; 2097 2098 /* skip blocks out of the range */ 2099 do { 2100 if (cur_logical >= map->m_lblk) 2101 break; 2102 cur_logical++; 2103 } while ((bh = bh->b_this_page) != head); 2104 2105 do { 2106 if (cur_logical >= map->m_lblk + blocks) 2107 break; 2108 2109 if (buffer_delay(bh) || buffer_unwritten(bh)) { 2110 2111 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2112 2113 if (buffer_delay(bh)) { 2114 clear_buffer_delay(bh); 2115 bh->b_blocknr = pblock; 2116 } else { 2117 /* 2118 * unwritten already should have 2119 * blocknr assigned. Verify that 2120 */ 2121 clear_buffer_unwritten(bh); 2122 BUG_ON(bh->b_blocknr != pblock); 2123 } 2124 2125 } else if (buffer_mapped(bh)) 2126 BUG_ON(bh->b_blocknr != pblock); 2127 2128 if (map->m_flags & EXT4_MAP_UNINIT) 2129 set_buffer_uninit(bh); 2130 cur_logical++; 2131 pblock++; 2132 } while ((bh = bh->b_this_page) != head); 2133 } 2134 pagevec_release(&pvec); 2135 } 2136 } 2137 2138 2139 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2140 sector_t logical, long blk_cnt) 2141 { 2142 int nr_pages, i; 2143 pgoff_t index, end; 2144 struct pagevec pvec; 2145 struct inode *inode = mpd->inode; 2146 struct address_space *mapping = inode->i_mapping; 2147 2148 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2149 end = (logical + blk_cnt - 1) >> 2150 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2151 while (index <= end) { 2152 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2153 if (nr_pages == 0) 2154 break; 2155 for (i = 0; i < nr_pages; i++) { 2156 struct page *page = pvec.pages[i]; 2157 if (page->index > end) 2158 break; 2159 BUG_ON(!PageLocked(page)); 2160 BUG_ON(PageWriteback(page)); 2161 block_invalidatepage(page, 0); 2162 ClearPageUptodate(page); 2163 unlock_page(page); 2164 } 2165 index = pvec.pages[nr_pages - 1]->index + 1; 2166 pagevec_release(&pvec); 2167 } 2168 return; 2169 } 2170 2171 static void ext4_print_free_blocks(struct inode *inode) 2172 { 2173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2174 printk(KERN_CRIT "Total free blocks count %lld\n", 2175 ext4_count_free_blocks(inode->i_sb)); 2176 printk(KERN_CRIT "Free/Dirty block details\n"); 2177 printk(KERN_CRIT "free_blocks=%lld\n", 2178 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2179 printk(KERN_CRIT "dirty_blocks=%lld\n", 2180 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2181 printk(KERN_CRIT "Block reservation details\n"); 2182 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2183 EXT4_I(inode)->i_reserved_data_blocks); 2184 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2185 EXT4_I(inode)->i_reserved_meta_blocks); 2186 return; 2187 } 2188 2189 /* 2190 * mpage_da_map_blocks - go through given space 2191 * 2192 * @mpd - bh describing space 2193 * 2194 * The function skips space we know is already mapped to disk blocks. 2195 * 2196 */ 2197 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2198 { 2199 int err, blks, get_blocks_flags; 2200 struct ext4_map_blocks map; 2201 sector_t next = mpd->b_blocknr; 2202 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2203 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2204 handle_t *handle = NULL; 2205 2206 /* 2207 * We consider only non-mapped and non-allocated blocks 2208 */ 2209 if ((mpd->b_state & (1 << BH_Mapped)) && 2210 !(mpd->b_state & (1 << BH_Delay)) && 2211 !(mpd->b_state & (1 << BH_Unwritten))) 2212 return 0; 2213 2214 /* 2215 * If we didn't accumulate anything to write simply return 2216 */ 2217 if (!mpd->b_size) 2218 return 0; 2219 2220 handle = ext4_journal_current_handle(); 2221 BUG_ON(!handle); 2222 2223 /* 2224 * Call ext4_map_blocks() to allocate any delayed allocation 2225 * blocks, or to convert an uninitialized extent to be 2226 * initialized (in the case where we have written into 2227 * one or more preallocated blocks). 2228 * 2229 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2230 * indicate that we are on the delayed allocation path. This 2231 * affects functions in many different parts of the allocation 2232 * call path. This flag exists primarily because we don't 2233 * want to change *many* call functions, so ext4_map_blocks() 2234 * will set the magic i_delalloc_reserved_flag once the 2235 * inode's allocation semaphore is taken. 2236 * 2237 * If the blocks in questions were delalloc blocks, set 2238 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2239 * variables are updated after the blocks have been allocated. 2240 */ 2241 map.m_lblk = next; 2242 map.m_len = max_blocks; 2243 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2244 if (ext4_should_dioread_nolock(mpd->inode)) 2245 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2246 if (mpd->b_state & (1 << BH_Delay)) 2247 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2248 2249 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 2250 if (blks < 0) { 2251 struct super_block *sb = mpd->inode->i_sb; 2252 2253 err = blks; 2254 /* 2255 * If get block returns with error we simply 2256 * return. Later writepage will redirty the page and 2257 * writepages will find the dirty page again 2258 */ 2259 if (err == -EAGAIN) 2260 return 0; 2261 2262 if (err == -ENOSPC && 2263 ext4_count_free_blocks(sb)) { 2264 mpd->retval = err; 2265 return 0; 2266 } 2267 2268 /* 2269 * get block failure will cause us to loop in 2270 * writepages, because a_ops->writepage won't be able 2271 * to make progress. The page will be redirtied by 2272 * writepage and writepages will again try to write 2273 * the same. 2274 */ 2275 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2276 ext4_msg(sb, KERN_CRIT, 2277 "delayed block allocation failed for inode %lu " 2278 "at logical offset %llu with max blocks %zd " 2279 "with error %d", mpd->inode->i_ino, 2280 (unsigned long long) next, 2281 mpd->b_size >> mpd->inode->i_blkbits, err); 2282 ext4_msg(sb, KERN_CRIT, 2283 "This should not happen!! Data will be lost\n"); 2284 if (err == -ENOSPC) 2285 ext4_print_free_blocks(mpd->inode); 2286 } 2287 /* invalidate all the pages */ 2288 ext4_da_block_invalidatepages(mpd, next, 2289 mpd->b_size >> mpd->inode->i_blkbits); 2290 return err; 2291 } 2292 BUG_ON(blks == 0); 2293 2294 if (map.m_flags & EXT4_MAP_NEW) { 2295 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 2296 int i; 2297 2298 for (i = 0; i < map.m_len; i++) 2299 unmap_underlying_metadata(bdev, map.m_pblk + i); 2300 } 2301 2302 /* 2303 * If blocks are delayed marked, we need to 2304 * put actual blocknr and drop delayed bit 2305 */ 2306 if ((mpd->b_state & (1 << BH_Delay)) || 2307 (mpd->b_state & (1 << BH_Unwritten))) 2308 mpage_put_bnr_to_bhs(mpd, &map); 2309 2310 if (ext4_should_order_data(mpd->inode)) { 2311 err = ext4_jbd2_file_inode(handle, mpd->inode); 2312 if (err) 2313 return err; 2314 } 2315 2316 /* 2317 * Update on-disk size along with block allocation. 2318 */ 2319 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2320 if (disksize > i_size_read(mpd->inode)) 2321 disksize = i_size_read(mpd->inode); 2322 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2323 ext4_update_i_disksize(mpd->inode, disksize); 2324 return ext4_mark_inode_dirty(handle, mpd->inode); 2325 } 2326 2327 return 0; 2328 } 2329 2330 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2331 (1 << BH_Delay) | (1 << BH_Unwritten)) 2332 2333 /* 2334 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2335 * 2336 * @mpd->lbh - extent of blocks 2337 * @logical - logical number of the block in the file 2338 * @bh - bh of the block (used to access block's state) 2339 * 2340 * the function is used to collect contig. blocks in same state 2341 */ 2342 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2343 sector_t logical, size_t b_size, 2344 unsigned long b_state) 2345 { 2346 sector_t next; 2347 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2348 2349 /* 2350 * XXX Don't go larger than mballoc is willing to allocate 2351 * This is a stopgap solution. We eventually need to fold 2352 * mpage_da_submit_io() into this function and then call 2353 * ext4_map_blocks() multiple times in a loop 2354 */ 2355 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 2356 goto flush_it; 2357 2358 /* check if thereserved journal credits might overflow */ 2359 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 2360 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2361 /* 2362 * With non-extent format we are limited by the journal 2363 * credit available. Total credit needed to insert 2364 * nrblocks contiguous blocks is dependent on the 2365 * nrblocks. So limit nrblocks. 2366 */ 2367 goto flush_it; 2368 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2369 EXT4_MAX_TRANS_DATA) { 2370 /* 2371 * Adding the new buffer_head would make it cross the 2372 * allowed limit for which we have journal credit 2373 * reserved. So limit the new bh->b_size 2374 */ 2375 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2376 mpd->inode->i_blkbits; 2377 /* we will do mpage_da_submit_io in the next loop */ 2378 } 2379 } 2380 /* 2381 * First block in the extent 2382 */ 2383 if (mpd->b_size == 0) { 2384 mpd->b_blocknr = logical; 2385 mpd->b_size = b_size; 2386 mpd->b_state = b_state & BH_FLAGS; 2387 return; 2388 } 2389 2390 next = mpd->b_blocknr + nrblocks; 2391 /* 2392 * Can we merge the block to our big extent? 2393 */ 2394 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2395 mpd->b_size += b_size; 2396 return; 2397 } 2398 2399 flush_it: 2400 /* 2401 * We couldn't merge the block to our extent, so we 2402 * need to flush current extent and start new one 2403 */ 2404 if (mpage_da_map_blocks(mpd) == 0) 2405 mpage_da_submit_io(mpd); 2406 mpd->io_done = 1; 2407 return; 2408 } 2409 2410 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2411 { 2412 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2413 } 2414 2415 /* 2416 * __mpage_da_writepage - finds extent of pages and blocks 2417 * 2418 * @page: page to consider 2419 * @wbc: not used, we just follow rules 2420 * @data: context 2421 * 2422 * The function finds extents of pages and scan them for all blocks. 2423 */ 2424 static int __mpage_da_writepage(struct page *page, 2425 struct writeback_control *wbc, void *data) 2426 { 2427 struct mpage_da_data *mpd = data; 2428 struct inode *inode = mpd->inode; 2429 struct buffer_head *bh, *head; 2430 sector_t logical; 2431 2432 /* 2433 * Can we merge this page to current extent? 2434 */ 2435 if (mpd->next_page != page->index) { 2436 /* 2437 * Nope, we can't. So, we map non-allocated blocks 2438 * and start IO on them using writepage() 2439 */ 2440 if (mpd->next_page != mpd->first_page) { 2441 if (mpage_da_map_blocks(mpd) == 0) 2442 mpage_da_submit_io(mpd); 2443 /* 2444 * skip rest of the page in the page_vec 2445 */ 2446 mpd->io_done = 1; 2447 redirty_page_for_writepage(wbc, page); 2448 unlock_page(page); 2449 return MPAGE_DA_EXTENT_TAIL; 2450 } 2451 2452 /* 2453 * Start next extent of pages ... 2454 */ 2455 mpd->first_page = page->index; 2456 2457 /* 2458 * ... and blocks 2459 */ 2460 mpd->b_size = 0; 2461 mpd->b_state = 0; 2462 mpd->b_blocknr = 0; 2463 } 2464 2465 mpd->next_page = page->index + 1; 2466 logical = (sector_t) page->index << 2467 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2468 2469 if (!page_has_buffers(page)) { 2470 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2471 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2472 if (mpd->io_done) 2473 return MPAGE_DA_EXTENT_TAIL; 2474 } else { 2475 /* 2476 * Page with regular buffer heads, just add all dirty ones 2477 */ 2478 head = page_buffers(page); 2479 bh = head; 2480 do { 2481 BUG_ON(buffer_locked(bh)); 2482 /* 2483 * We need to try to allocate 2484 * unmapped blocks in the same page. 2485 * Otherwise we won't make progress 2486 * with the page in ext4_writepage 2487 */ 2488 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2489 mpage_add_bh_to_extent(mpd, logical, 2490 bh->b_size, 2491 bh->b_state); 2492 if (mpd->io_done) 2493 return MPAGE_DA_EXTENT_TAIL; 2494 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2495 /* 2496 * mapped dirty buffer. We need to update 2497 * the b_state because we look at 2498 * b_state in mpage_da_map_blocks. We don't 2499 * update b_size because if we find an 2500 * unmapped buffer_head later we need to 2501 * use the b_state flag of that buffer_head. 2502 */ 2503 if (mpd->b_size == 0) 2504 mpd->b_state = bh->b_state & BH_FLAGS; 2505 } 2506 logical++; 2507 } while ((bh = bh->b_this_page) != head); 2508 } 2509 2510 return 0; 2511 } 2512 2513 /* 2514 * This is a special get_blocks_t callback which is used by 2515 * ext4_da_write_begin(). It will either return mapped block or 2516 * reserve space for a single block. 2517 * 2518 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2519 * We also have b_blocknr = -1 and b_bdev initialized properly 2520 * 2521 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2522 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2523 * initialized properly. 2524 */ 2525 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2526 struct buffer_head *bh, int create) 2527 { 2528 struct ext4_map_blocks map; 2529 int ret = 0; 2530 sector_t invalid_block = ~((sector_t) 0xffff); 2531 2532 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2533 invalid_block = ~0; 2534 2535 BUG_ON(create == 0); 2536 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2537 2538 map.m_lblk = iblock; 2539 map.m_len = 1; 2540 2541 /* 2542 * first, we need to know whether the block is allocated already 2543 * preallocated blocks are unmapped but should treated 2544 * the same as allocated blocks. 2545 */ 2546 ret = ext4_map_blocks(NULL, inode, &map, 0); 2547 if (ret < 0) 2548 return ret; 2549 if (ret == 0) { 2550 if (buffer_delay(bh)) 2551 return 0; /* Not sure this could or should happen */ 2552 /* 2553 * XXX: __block_write_begin() unmaps passed block, is it OK? 2554 */ 2555 ret = ext4_da_reserve_space(inode, iblock); 2556 if (ret) 2557 /* not enough space to reserve */ 2558 return ret; 2559 2560 map_bh(bh, inode->i_sb, invalid_block); 2561 set_buffer_new(bh); 2562 set_buffer_delay(bh); 2563 return 0; 2564 } 2565 2566 map_bh(bh, inode->i_sb, map.m_pblk); 2567 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2568 2569 if (buffer_unwritten(bh)) { 2570 /* A delayed write to unwritten bh should be marked 2571 * new and mapped. Mapped ensures that we don't do 2572 * get_block multiple times when we write to the same 2573 * offset and new ensures that we do proper zero out 2574 * for partial write. 2575 */ 2576 set_buffer_new(bh); 2577 set_buffer_mapped(bh); 2578 } 2579 return 0; 2580 } 2581 2582 /* 2583 * This function is used as a standard get_block_t calback function 2584 * when there is no desire to allocate any blocks. It is used as a 2585 * callback function for block_write_begin() and block_write_full_page(). 2586 * These functions should only try to map a single block at a time. 2587 * 2588 * Since this function doesn't do block allocations even if the caller 2589 * requests it by passing in create=1, it is critically important that 2590 * any caller checks to make sure that any buffer heads are returned 2591 * by this function are either all already mapped or marked for 2592 * delayed allocation before calling block_write_full_page(). Otherwise, 2593 * b_blocknr could be left unitialized, and the page write functions will 2594 * be taken by surprise. 2595 */ 2596 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2597 struct buffer_head *bh_result, int create) 2598 { 2599 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2600 return _ext4_get_block(inode, iblock, bh_result, 0); 2601 } 2602 2603 static int bget_one(handle_t *handle, struct buffer_head *bh) 2604 { 2605 get_bh(bh); 2606 return 0; 2607 } 2608 2609 static int bput_one(handle_t *handle, struct buffer_head *bh) 2610 { 2611 put_bh(bh); 2612 return 0; 2613 } 2614 2615 static int __ext4_journalled_writepage(struct page *page, 2616 unsigned int len) 2617 { 2618 struct address_space *mapping = page->mapping; 2619 struct inode *inode = mapping->host; 2620 struct buffer_head *page_bufs; 2621 handle_t *handle = NULL; 2622 int ret = 0; 2623 int err; 2624 2625 page_bufs = page_buffers(page); 2626 BUG_ON(!page_bufs); 2627 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2628 /* As soon as we unlock the page, it can go away, but we have 2629 * references to buffers so we are safe */ 2630 unlock_page(page); 2631 2632 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2633 if (IS_ERR(handle)) { 2634 ret = PTR_ERR(handle); 2635 goto out; 2636 } 2637 2638 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2639 do_journal_get_write_access); 2640 2641 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2642 write_end_fn); 2643 if (ret == 0) 2644 ret = err; 2645 err = ext4_journal_stop(handle); 2646 if (!ret) 2647 ret = err; 2648 2649 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2650 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2651 out: 2652 return ret; 2653 } 2654 2655 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2656 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2657 2658 /* 2659 * Note that we don't need to start a transaction unless we're journaling data 2660 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2661 * need to file the inode to the transaction's list in ordered mode because if 2662 * we are writing back data added by write(), the inode is already there and if 2663 * we are writing back data modified via mmap(), noone guarantees in which 2664 * transaction the data will hit the disk. In case we are journaling data, we 2665 * cannot start transaction directly because transaction start ranks above page 2666 * lock so we have to do some magic. 2667 * 2668 * This function can get called via... 2669 * - ext4_da_writepages after taking page lock (have journal handle) 2670 * - journal_submit_inode_data_buffers (no journal handle) 2671 * - shrink_page_list via pdflush (no journal handle) 2672 * - grab_page_cache when doing write_begin (have journal handle) 2673 * 2674 * We don't do any block allocation in this function. If we have page with 2675 * multiple blocks we need to write those buffer_heads that are mapped. This 2676 * is important for mmaped based write. So if we do with blocksize 1K 2677 * truncate(f, 1024); 2678 * a = mmap(f, 0, 4096); 2679 * a[0] = 'a'; 2680 * truncate(f, 4096); 2681 * we have in the page first buffer_head mapped via page_mkwrite call back 2682 * but other bufer_heads would be unmapped but dirty(dirty done via the 2683 * do_wp_page). So writepage should write the first block. If we modify 2684 * the mmap area beyond 1024 we will again get a page_fault and the 2685 * page_mkwrite callback will do the block allocation and mark the 2686 * buffer_heads mapped. 2687 * 2688 * We redirty the page if we have any buffer_heads that is either delay or 2689 * unwritten in the page. 2690 * 2691 * We can get recursively called as show below. 2692 * 2693 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2694 * ext4_writepage() 2695 * 2696 * But since we don't do any block allocation we should not deadlock. 2697 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2698 */ 2699 static int ext4_writepage(struct page *page, 2700 struct writeback_control *wbc) 2701 { 2702 int ret = 0; 2703 loff_t size; 2704 unsigned int len; 2705 struct buffer_head *page_bufs = NULL; 2706 struct inode *inode = page->mapping->host; 2707 2708 trace_ext4_writepage(inode, page); 2709 size = i_size_read(inode); 2710 if (page->index == size >> PAGE_CACHE_SHIFT) 2711 len = size & ~PAGE_CACHE_MASK; 2712 else 2713 len = PAGE_CACHE_SIZE; 2714 2715 if (page_has_buffers(page)) { 2716 page_bufs = page_buffers(page); 2717 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2718 ext4_bh_delay_or_unwritten)) { 2719 /* 2720 * We don't want to do block allocation 2721 * So redirty the page and return 2722 * We may reach here when we do a journal commit 2723 * via journal_submit_inode_data_buffers. 2724 * If we don't have mapping block we just ignore 2725 * them. We can also reach here via shrink_page_list 2726 */ 2727 redirty_page_for_writepage(wbc, page); 2728 unlock_page(page); 2729 return 0; 2730 } 2731 } else { 2732 /* 2733 * The test for page_has_buffers() is subtle: 2734 * We know the page is dirty but it lost buffers. That means 2735 * that at some moment in time after write_begin()/write_end() 2736 * has been called all buffers have been clean and thus they 2737 * must have been written at least once. So they are all 2738 * mapped and we can happily proceed with mapping them 2739 * and writing the page. 2740 * 2741 * Try to initialize the buffer_heads and check whether 2742 * all are mapped and non delay. We don't want to 2743 * do block allocation here. 2744 */ 2745 ret = __block_write_begin(page, 0, len, 2746 noalloc_get_block_write); 2747 if (!ret) { 2748 page_bufs = page_buffers(page); 2749 /* check whether all are mapped and non delay */ 2750 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2751 ext4_bh_delay_or_unwritten)) { 2752 redirty_page_for_writepage(wbc, page); 2753 unlock_page(page); 2754 return 0; 2755 } 2756 } else { 2757 /* 2758 * We can't do block allocation here 2759 * so just redity the page and unlock 2760 * and return 2761 */ 2762 redirty_page_for_writepage(wbc, page); 2763 unlock_page(page); 2764 return 0; 2765 } 2766 /* now mark the buffer_heads as dirty and uptodate */ 2767 block_commit_write(page, 0, len); 2768 } 2769 2770 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2771 /* 2772 * It's mmapped pagecache. Add buffers and journal it. There 2773 * doesn't seem much point in redirtying the page here. 2774 */ 2775 ClearPageChecked(page); 2776 return __ext4_journalled_writepage(page, len); 2777 } 2778 2779 if (page_bufs && buffer_uninit(page_bufs)) { 2780 ext4_set_bh_endio(page_bufs, inode); 2781 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2782 wbc, ext4_end_io_buffer_write); 2783 } else 2784 ret = block_write_full_page(page, noalloc_get_block_write, 2785 wbc); 2786 2787 return ret; 2788 } 2789 2790 /* 2791 * This is called via ext4_da_writepages() to 2792 * calulate the total number of credits to reserve to fit 2793 * a single extent allocation into a single transaction, 2794 * ext4_da_writpeages() will loop calling this before 2795 * the block allocation. 2796 */ 2797 2798 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2799 { 2800 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2801 2802 /* 2803 * With non-extent format the journal credit needed to 2804 * insert nrblocks contiguous block is dependent on 2805 * number of contiguous block. So we will limit 2806 * number of contiguous block to a sane value 2807 */ 2808 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2809 (max_blocks > EXT4_MAX_TRANS_DATA)) 2810 max_blocks = EXT4_MAX_TRANS_DATA; 2811 2812 return ext4_chunk_trans_blocks(inode, max_blocks); 2813 } 2814 2815 /* 2816 * write_cache_pages_da - walk the list of dirty pages of the given 2817 * address space and call the callback function (which usually writes 2818 * the pages). 2819 * 2820 * This is a forked version of write_cache_pages(). Differences: 2821 * Range cyclic is ignored. 2822 * no_nrwrite_index_update is always presumed true 2823 */ 2824 static int write_cache_pages_da(struct address_space *mapping, 2825 struct writeback_control *wbc, 2826 struct mpage_da_data *mpd) 2827 { 2828 int ret = 0; 2829 int done = 0; 2830 struct pagevec pvec; 2831 int nr_pages; 2832 pgoff_t index; 2833 pgoff_t end; /* Inclusive */ 2834 long nr_to_write = wbc->nr_to_write; 2835 2836 pagevec_init(&pvec, 0); 2837 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2838 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2839 2840 while (!done && (index <= end)) { 2841 int i; 2842 2843 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2844 PAGECACHE_TAG_DIRTY, 2845 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2846 if (nr_pages == 0) 2847 break; 2848 2849 for (i = 0; i < nr_pages; i++) { 2850 struct page *page = pvec.pages[i]; 2851 2852 /* 2853 * At this point, the page may be truncated or 2854 * invalidated (changing page->mapping to NULL), or 2855 * even swizzled back from swapper_space to tmpfs file 2856 * mapping. However, page->index will not change 2857 * because we have a reference on the page. 2858 */ 2859 if (page->index > end) { 2860 done = 1; 2861 break; 2862 } 2863 2864 lock_page(page); 2865 2866 /* 2867 * Page truncated or invalidated. We can freely skip it 2868 * then, even for data integrity operations: the page 2869 * has disappeared concurrently, so there could be no 2870 * real expectation of this data interity operation 2871 * even if there is now a new, dirty page at the same 2872 * pagecache address. 2873 */ 2874 if (unlikely(page->mapping != mapping)) { 2875 continue_unlock: 2876 unlock_page(page); 2877 continue; 2878 } 2879 2880 if (!PageDirty(page)) { 2881 /* someone wrote it for us */ 2882 goto continue_unlock; 2883 } 2884 2885 if (PageWriteback(page)) { 2886 if (wbc->sync_mode != WB_SYNC_NONE) 2887 wait_on_page_writeback(page); 2888 else 2889 goto continue_unlock; 2890 } 2891 2892 BUG_ON(PageWriteback(page)); 2893 if (!clear_page_dirty_for_io(page)) 2894 goto continue_unlock; 2895 2896 ret = __mpage_da_writepage(page, wbc, mpd); 2897 if (unlikely(ret)) { 2898 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2899 unlock_page(page); 2900 ret = 0; 2901 } else { 2902 done = 1; 2903 break; 2904 } 2905 } 2906 2907 if (nr_to_write > 0) { 2908 nr_to_write--; 2909 if (nr_to_write == 0 && 2910 wbc->sync_mode == WB_SYNC_NONE) { 2911 /* 2912 * We stop writing back only if we are 2913 * not doing integrity sync. In case of 2914 * integrity sync we have to keep going 2915 * because someone may be concurrently 2916 * dirtying pages, and we might have 2917 * synced a lot of newly appeared dirty 2918 * pages, but have not synced all of the 2919 * old dirty pages. 2920 */ 2921 done = 1; 2922 break; 2923 } 2924 } 2925 } 2926 pagevec_release(&pvec); 2927 cond_resched(); 2928 } 2929 return ret; 2930 } 2931 2932 2933 static int ext4_da_writepages(struct address_space *mapping, 2934 struct writeback_control *wbc) 2935 { 2936 pgoff_t index; 2937 int range_whole = 0; 2938 handle_t *handle = NULL; 2939 struct mpage_da_data mpd; 2940 struct inode *inode = mapping->host; 2941 int pages_written = 0; 2942 long pages_skipped; 2943 unsigned int max_pages; 2944 int range_cyclic, cycled = 1, io_done = 0; 2945 int needed_blocks, ret = 0; 2946 long desired_nr_to_write, nr_to_writebump = 0; 2947 loff_t range_start = wbc->range_start; 2948 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2949 2950 trace_ext4_da_writepages(inode, wbc); 2951 2952 /* 2953 * No pages to write? This is mainly a kludge to avoid starting 2954 * a transaction for special inodes like journal inode on last iput() 2955 * because that could violate lock ordering on umount 2956 */ 2957 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2958 return 0; 2959 2960 /* 2961 * If the filesystem has aborted, it is read-only, so return 2962 * right away instead of dumping stack traces later on that 2963 * will obscure the real source of the problem. We test 2964 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2965 * the latter could be true if the filesystem is mounted 2966 * read-only, and in that case, ext4_da_writepages should 2967 * *never* be called, so if that ever happens, we would want 2968 * the stack trace. 2969 */ 2970 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2971 return -EROFS; 2972 2973 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2974 range_whole = 1; 2975 2976 range_cyclic = wbc->range_cyclic; 2977 if (wbc->range_cyclic) { 2978 index = mapping->writeback_index; 2979 if (index) 2980 cycled = 0; 2981 wbc->range_start = index << PAGE_CACHE_SHIFT; 2982 wbc->range_end = LLONG_MAX; 2983 wbc->range_cyclic = 0; 2984 } else 2985 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2986 2987 /* 2988 * This works around two forms of stupidity. The first is in 2989 * the writeback code, which caps the maximum number of pages 2990 * written to be 1024 pages. This is wrong on multiple 2991 * levels; different architectues have a different page size, 2992 * which changes the maximum amount of data which gets 2993 * written. Secondly, 4 megabytes is way too small. XFS 2994 * forces this value to be 16 megabytes by multiplying 2995 * nr_to_write parameter by four, and then relies on its 2996 * allocator to allocate larger extents to make them 2997 * contiguous. Unfortunately this brings us to the second 2998 * stupidity, which is that ext4's mballoc code only allocates 2999 * at most 2048 blocks. So we force contiguous writes up to 3000 * the number of dirty blocks in the inode, or 3001 * sbi->max_writeback_mb_bump whichever is smaller. 3002 */ 3003 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 3004 if (!range_cyclic && range_whole) 3005 desired_nr_to_write = wbc->nr_to_write * 8; 3006 else 3007 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 3008 max_pages); 3009 if (desired_nr_to_write > max_pages) 3010 desired_nr_to_write = max_pages; 3011 3012 if (wbc->nr_to_write < desired_nr_to_write) { 3013 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 3014 wbc->nr_to_write = desired_nr_to_write; 3015 } 3016 3017 mpd.wbc = wbc; 3018 mpd.inode = mapping->host; 3019 3020 pages_skipped = wbc->pages_skipped; 3021 3022 retry: 3023 while (!ret && wbc->nr_to_write > 0) { 3024 3025 /* 3026 * we insert one extent at a time. So we need 3027 * credit needed for single extent allocation. 3028 * journalled mode is currently not supported 3029 * by delalloc 3030 */ 3031 BUG_ON(ext4_should_journal_data(inode)); 3032 needed_blocks = ext4_da_writepages_trans_blocks(inode); 3033 3034 /* start a new transaction*/ 3035 handle = ext4_journal_start(inode, needed_blocks); 3036 if (IS_ERR(handle)) { 3037 ret = PTR_ERR(handle); 3038 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 3039 "%ld pages, ino %lu; err %d", __func__, 3040 wbc->nr_to_write, inode->i_ino, ret); 3041 goto out_writepages; 3042 } 3043 3044 /* 3045 * Now call __mpage_da_writepage to find the next 3046 * contiguous region of logical blocks that need 3047 * blocks to be allocated by ext4. We don't actually 3048 * submit the blocks for I/O here, even though 3049 * write_cache_pages thinks it will, and will set the 3050 * pages as clean for write before calling 3051 * __mpage_da_writepage(). 3052 */ 3053 mpd.b_size = 0; 3054 mpd.b_state = 0; 3055 mpd.b_blocknr = 0; 3056 mpd.first_page = 0; 3057 mpd.next_page = 0; 3058 mpd.io_done = 0; 3059 mpd.pages_written = 0; 3060 mpd.retval = 0; 3061 ret = write_cache_pages_da(mapping, wbc, &mpd); 3062 /* 3063 * If we have a contiguous extent of pages and we 3064 * haven't done the I/O yet, map the blocks and submit 3065 * them for I/O. 3066 */ 3067 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 3068 if (mpage_da_map_blocks(&mpd) == 0) 3069 mpage_da_submit_io(&mpd); 3070 mpd.io_done = 1; 3071 ret = MPAGE_DA_EXTENT_TAIL; 3072 } 3073 trace_ext4_da_write_pages(inode, &mpd); 3074 wbc->nr_to_write -= mpd.pages_written; 3075 3076 ext4_journal_stop(handle); 3077 3078 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 3079 /* commit the transaction which would 3080 * free blocks released in the transaction 3081 * and try again 3082 */ 3083 jbd2_journal_force_commit_nested(sbi->s_journal); 3084 wbc->pages_skipped = pages_skipped; 3085 ret = 0; 3086 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 3087 /* 3088 * got one extent now try with 3089 * rest of the pages 3090 */ 3091 pages_written += mpd.pages_written; 3092 wbc->pages_skipped = pages_skipped; 3093 ret = 0; 3094 io_done = 1; 3095 } else if (wbc->nr_to_write) 3096 /* 3097 * There is no more writeout needed 3098 * or we requested for a noblocking writeout 3099 * and we found the device congested 3100 */ 3101 break; 3102 } 3103 if (!io_done && !cycled) { 3104 cycled = 1; 3105 index = 0; 3106 wbc->range_start = index << PAGE_CACHE_SHIFT; 3107 wbc->range_end = mapping->writeback_index - 1; 3108 goto retry; 3109 } 3110 if (pages_skipped != wbc->pages_skipped) 3111 ext4_msg(inode->i_sb, KERN_CRIT, 3112 "This should not happen leaving %s " 3113 "with nr_to_write = %ld ret = %d", 3114 __func__, wbc->nr_to_write, ret); 3115 3116 /* Update index */ 3117 index += pages_written; 3118 wbc->range_cyclic = range_cyclic; 3119 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3120 /* 3121 * set the writeback_index so that range_cyclic 3122 * mode will write it back later 3123 */ 3124 mapping->writeback_index = index; 3125 3126 out_writepages: 3127 wbc->nr_to_write -= nr_to_writebump; 3128 wbc->range_start = range_start; 3129 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3130 return ret; 3131 } 3132 3133 #define FALL_BACK_TO_NONDELALLOC 1 3134 static int ext4_nonda_switch(struct super_block *sb) 3135 { 3136 s64 free_blocks, dirty_blocks; 3137 struct ext4_sb_info *sbi = EXT4_SB(sb); 3138 3139 /* 3140 * switch to non delalloc mode if we are running low 3141 * on free block. The free block accounting via percpu 3142 * counters can get slightly wrong with percpu_counter_batch getting 3143 * accumulated on each CPU without updating global counters 3144 * Delalloc need an accurate free block accounting. So switch 3145 * to non delalloc when we are near to error range. 3146 */ 3147 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3148 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3149 if (2 * free_blocks < 3 * dirty_blocks || 3150 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3151 /* 3152 * free block count is less than 150% of dirty blocks 3153 * or free blocks is less than watermark 3154 */ 3155 return 1; 3156 } 3157 /* 3158 * Even if we don't switch but are nearing capacity, 3159 * start pushing delalloc when 1/2 of free blocks are dirty. 3160 */ 3161 if (free_blocks < 2 * dirty_blocks) 3162 writeback_inodes_sb_if_idle(sb); 3163 3164 return 0; 3165 } 3166 3167 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3168 loff_t pos, unsigned len, unsigned flags, 3169 struct page **pagep, void **fsdata) 3170 { 3171 int ret, retries = 0; 3172 struct page *page; 3173 pgoff_t index; 3174 struct inode *inode = mapping->host; 3175 handle_t *handle; 3176 3177 index = pos >> PAGE_CACHE_SHIFT; 3178 3179 if (ext4_nonda_switch(inode->i_sb)) { 3180 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3181 return ext4_write_begin(file, mapping, pos, 3182 len, flags, pagep, fsdata); 3183 } 3184 *fsdata = (void *)0; 3185 trace_ext4_da_write_begin(inode, pos, len, flags); 3186 retry: 3187 /* 3188 * With delayed allocation, we don't log the i_disksize update 3189 * if there is delayed block allocation. But we still need 3190 * to journalling the i_disksize update if writes to the end 3191 * of file which has an already mapped buffer. 3192 */ 3193 handle = ext4_journal_start(inode, 1); 3194 if (IS_ERR(handle)) { 3195 ret = PTR_ERR(handle); 3196 goto out; 3197 } 3198 /* We cannot recurse into the filesystem as the transaction is already 3199 * started */ 3200 flags |= AOP_FLAG_NOFS; 3201 3202 page = grab_cache_page_write_begin(mapping, index, flags); 3203 if (!page) { 3204 ext4_journal_stop(handle); 3205 ret = -ENOMEM; 3206 goto out; 3207 } 3208 *pagep = page; 3209 3210 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3211 if (ret < 0) { 3212 unlock_page(page); 3213 ext4_journal_stop(handle); 3214 page_cache_release(page); 3215 /* 3216 * block_write_begin may have instantiated a few blocks 3217 * outside i_size. Trim these off again. Don't need 3218 * i_size_read because we hold i_mutex. 3219 */ 3220 if (pos + len > inode->i_size) 3221 ext4_truncate_failed_write(inode); 3222 } 3223 3224 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3225 goto retry; 3226 out: 3227 return ret; 3228 } 3229 3230 /* 3231 * Check if we should update i_disksize 3232 * when write to the end of file but not require block allocation 3233 */ 3234 static int ext4_da_should_update_i_disksize(struct page *page, 3235 unsigned long offset) 3236 { 3237 struct buffer_head *bh; 3238 struct inode *inode = page->mapping->host; 3239 unsigned int idx; 3240 int i; 3241 3242 bh = page_buffers(page); 3243 idx = offset >> inode->i_blkbits; 3244 3245 for (i = 0; i < idx; i++) 3246 bh = bh->b_this_page; 3247 3248 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3249 return 0; 3250 return 1; 3251 } 3252 3253 static int ext4_da_write_end(struct file *file, 3254 struct address_space *mapping, 3255 loff_t pos, unsigned len, unsigned copied, 3256 struct page *page, void *fsdata) 3257 { 3258 struct inode *inode = mapping->host; 3259 int ret = 0, ret2; 3260 handle_t *handle = ext4_journal_current_handle(); 3261 loff_t new_i_size; 3262 unsigned long start, end; 3263 int write_mode = (int)(unsigned long)fsdata; 3264 3265 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3266 if (ext4_should_order_data(inode)) { 3267 return ext4_ordered_write_end(file, mapping, pos, 3268 len, copied, page, fsdata); 3269 } else if (ext4_should_writeback_data(inode)) { 3270 return ext4_writeback_write_end(file, mapping, pos, 3271 len, copied, page, fsdata); 3272 } else { 3273 BUG(); 3274 } 3275 } 3276 3277 trace_ext4_da_write_end(inode, pos, len, copied); 3278 start = pos & (PAGE_CACHE_SIZE - 1); 3279 end = start + copied - 1; 3280 3281 /* 3282 * generic_write_end() will run mark_inode_dirty() if i_size 3283 * changes. So let's piggyback the i_disksize mark_inode_dirty 3284 * into that. 3285 */ 3286 3287 new_i_size = pos + copied; 3288 if (new_i_size > EXT4_I(inode)->i_disksize) { 3289 if (ext4_da_should_update_i_disksize(page, end)) { 3290 down_write(&EXT4_I(inode)->i_data_sem); 3291 if (new_i_size > EXT4_I(inode)->i_disksize) { 3292 /* 3293 * Updating i_disksize when extending file 3294 * without needing block allocation 3295 */ 3296 if (ext4_should_order_data(inode)) 3297 ret = ext4_jbd2_file_inode(handle, 3298 inode); 3299 3300 EXT4_I(inode)->i_disksize = new_i_size; 3301 } 3302 up_write(&EXT4_I(inode)->i_data_sem); 3303 /* We need to mark inode dirty even if 3304 * new_i_size is less that inode->i_size 3305 * bu greater than i_disksize.(hint delalloc) 3306 */ 3307 ext4_mark_inode_dirty(handle, inode); 3308 } 3309 } 3310 ret2 = generic_write_end(file, mapping, pos, len, copied, 3311 page, fsdata); 3312 copied = ret2; 3313 if (ret2 < 0) 3314 ret = ret2; 3315 ret2 = ext4_journal_stop(handle); 3316 if (!ret) 3317 ret = ret2; 3318 3319 return ret ? ret : copied; 3320 } 3321 3322 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3323 { 3324 /* 3325 * Drop reserved blocks 3326 */ 3327 BUG_ON(!PageLocked(page)); 3328 if (!page_has_buffers(page)) 3329 goto out; 3330 3331 ext4_da_page_release_reservation(page, offset); 3332 3333 out: 3334 ext4_invalidatepage(page, offset); 3335 3336 return; 3337 } 3338 3339 /* 3340 * Force all delayed allocation blocks to be allocated for a given inode. 3341 */ 3342 int ext4_alloc_da_blocks(struct inode *inode) 3343 { 3344 trace_ext4_alloc_da_blocks(inode); 3345 3346 if (!EXT4_I(inode)->i_reserved_data_blocks && 3347 !EXT4_I(inode)->i_reserved_meta_blocks) 3348 return 0; 3349 3350 /* 3351 * We do something simple for now. The filemap_flush() will 3352 * also start triggering a write of the data blocks, which is 3353 * not strictly speaking necessary (and for users of 3354 * laptop_mode, not even desirable). However, to do otherwise 3355 * would require replicating code paths in: 3356 * 3357 * ext4_da_writepages() -> 3358 * write_cache_pages() ---> (via passed in callback function) 3359 * __mpage_da_writepage() --> 3360 * mpage_add_bh_to_extent() 3361 * mpage_da_map_blocks() 3362 * 3363 * The problem is that write_cache_pages(), located in 3364 * mm/page-writeback.c, marks pages clean in preparation for 3365 * doing I/O, which is not desirable if we're not planning on 3366 * doing I/O at all. 3367 * 3368 * We could call write_cache_pages(), and then redirty all of 3369 * the pages by calling redirty_page_for_writeback() but that 3370 * would be ugly in the extreme. So instead we would need to 3371 * replicate parts of the code in the above functions, 3372 * simplifying them becuase we wouldn't actually intend to 3373 * write out the pages, but rather only collect contiguous 3374 * logical block extents, call the multi-block allocator, and 3375 * then update the buffer heads with the block allocations. 3376 * 3377 * For now, though, we'll cheat by calling filemap_flush(), 3378 * which will map the blocks, and start the I/O, but not 3379 * actually wait for the I/O to complete. 3380 */ 3381 return filemap_flush(inode->i_mapping); 3382 } 3383 3384 /* 3385 * bmap() is special. It gets used by applications such as lilo and by 3386 * the swapper to find the on-disk block of a specific piece of data. 3387 * 3388 * Naturally, this is dangerous if the block concerned is still in the 3389 * journal. If somebody makes a swapfile on an ext4 data-journaling 3390 * filesystem and enables swap, then they may get a nasty shock when the 3391 * data getting swapped to that swapfile suddenly gets overwritten by 3392 * the original zero's written out previously to the journal and 3393 * awaiting writeback in the kernel's buffer cache. 3394 * 3395 * So, if we see any bmap calls here on a modified, data-journaled file, 3396 * take extra steps to flush any blocks which might be in the cache. 3397 */ 3398 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3399 { 3400 struct inode *inode = mapping->host; 3401 journal_t *journal; 3402 int err; 3403 3404 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3405 test_opt(inode->i_sb, DELALLOC)) { 3406 /* 3407 * With delalloc we want to sync the file 3408 * so that we can make sure we allocate 3409 * blocks for file 3410 */ 3411 filemap_write_and_wait(mapping); 3412 } 3413 3414 if (EXT4_JOURNAL(inode) && 3415 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3416 /* 3417 * This is a REALLY heavyweight approach, but the use of 3418 * bmap on dirty files is expected to be extremely rare: 3419 * only if we run lilo or swapon on a freshly made file 3420 * do we expect this to happen. 3421 * 3422 * (bmap requires CAP_SYS_RAWIO so this does not 3423 * represent an unprivileged user DOS attack --- we'd be 3424 * in trouble if mortal users could trigger this path at 3425 * will.) 3426 * 3427 * NB. EXT4_STATE_JDATA is not set on files other than 3428 * regular files. If somebody wants to bmap a directory 3429 * or symlink and gets confused because the buffer 3430 * hasn't yet been flushed to disk, they deserve 3431 * everything they get. 3432 */ 3433 3434 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3435 journal = EXT4_JOURNAL(inode); 3436 jbd2_journal_lock_updates(journal); 3437 err = jbd2_journal_flush(journal); 3438 jbd2_journal_unlock_updates(journal); 3439 3440 if (err) 3441 return 0; 3442 } 3443 3444 return generic_block_bmap(mapping, block, ext4_get_block); 3445 } 3446 3447 static int ext4_readpage(struct file *file, struct page *page) 3448 { 3449 return mpage_readpage(page, ext4_get_block); 3450 } 3451 3452 static int 3453 ext4_readpages(struct file *file, struct address_space *mapping, 3454 struct list_head *pages, unsigned nr_pages) 3455 { 3456 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3457 } 3458 3459 static void ext4_free_io_end(ext4_io_end_t *io) 3460 { 3461 BUG_ON(!io); 3462 if (io->page) 3463 put_page(io->page); 3464 iput(io->inode); 3465 kfree(io); 3466 } 3467 3468 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3469 { 3470 struct buffer_head *head, *bh; 3471 unsigned int curr_off = 0; 3472 3473 if (!page_has_buffers(page)) 3474 return; 3475 head = bh = page_buffers(page); 3476 do { 3477 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3478 && bh->b_private) { 3479 ext4_free_io_end(bh->b_private); 3480 bh->b_private = NULL; 3481 bh->b_end_io = NULL; 3482 } 3483 curr_off = curr_off + bh->b_size; 3484 bh = bh->b_this_page; 3485 } while (bh != head); 3486 } 3487 3488 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3489 { 3490 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3491 3492 /* 3493 * free any io_end structure allocated for buffers to be discarded 3494 */ 3495 if (ext4_should_dioread_nolock(page->mapping->host)) 3496 ext4_invalidatepage_free_endio(page, offset); 3497 /* 3498 * If it's a full truncate we just forget about the pending dirtying 3499 */ 3500 if (offset == 0) 3501 ClearPageChecked(page); 3502 3503 if (journal) 3504 jbd2_journal_invalidatepage(journal, page, offset); 3505 else 3506 block_invalidatepage(page, offset); 3507 } 3508 3509 static int ext4_releasepage(struct page *page, gfp_t wait) 3510 { 3511 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3512 3513 WARN_ON(PageChecked(page)); 3514 if (!page_has_buffers(page)) 3515 return 0; 3516 if (journal) 3517 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3518 else 3519 return try_to_free_buffers(page); 3520 } 3521 3522 /* 3523 * O_DIRECT for ext3 (or indirect map) based files 3524 * 3525 * If the O_DIRECT write will extend the file then add this inode to the 3526 * orphan list. So recovery will truncate it back to the original size 3527 * if the machine crashes during the write. 3528 * 3529 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3530 * crashes then stale disk data _may_ be exposed inside the file. But current 3531 * VFS code falls back into buffered path in that case so we are safe. 3532 */ 3533 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3534 const struct iovec *iov, loff_t offset, 3535 unsigned long nr_segs) 3536 { 3537 struct file *file = iocb->ki_filp; 3538 struct inode *inode = file->f_mapping->host; 3539 struct ext4_inode_info *ei = EXT4_I(inode); 3540 handle_t *handle; 3541 ssize_t ret; 3542 int orphan = 0; 3543 size_t count = iov_length(iov, nr_segs); 3544 int retries = 0; 3545 3546 if (rw == WRITE) { 3547 loff_t final_size = offset + count; 3548 3549 if (final_size > inode->i_size) { 3550 /* Credits for sb + inode write */ 3551 handle = ext4_journal_start(inode, 2); 3552 if (IS_ERR(handle)) { 3553 ret = PTR_ERR(handle); 3554 goto out; 3555 } 3556 ret = ext4_orphan_add(handle, inode); 3557 if (ret) { 3558 ext4_journal_stop(handle); 3559 goto out; 3560 } 3561 orphan = 1; 3562 ei->i_disksize = inode->i_size; 3563 ext4_journal_stop(handle); 3564 } 3565 } 3566 3567 retry: 3568 if (rw == READ && ext4_should_dioread_nolock(inode)) 3569 ret = __blockdev_direct_IO(rw, iocb, inode, 3570 inode->i_sb->s_bdev, iov, 3571 offset, nr_segs, 3572 ext4_get_block, NULL, NULL, 0); 3573 else { 3574 ret = blockdev_direct_IO(rw, iocb, inode, 3575 inode->i_sb->s_bdev, iov, 3576 offset, nr_segs, 3577 ext4_get_block, NULL); 3578 3579 if (unlikely((rw & WRITE) && ret < 0)) { 3580 loff_t isize = i_size_read(inode); 3581 loff_t end = offset + iov_length(iov, nr_segs); 3582 3583 if (end > isize) 3584 vmtruncate(inode, isize); 3585 } 3586 } 3587 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3588 goto retry; 3589 3590 if (orphan) { 3591 int err; 3592 3593 /* Credits for sb + inode write */ 3594 handle = ext4_journal_start(inode, 2); 3595 if (IS_ERR(handle)) { 3596 /* This is really bad luck. We've written the data 3597 * but cannot extend i_size. Bail out and pretend 3598 * the write failed... */ 3599 ret = PTR_ERR(handle); 3600 if (inode->i_nlink) 3601 ext4_orphan_del(NULL, inode); 3602 3603 goto out; 3604 } 3605 if (inode->i_nlink) 3606 ext4_orphan_del(handle, inode); 3607 if (ret > 0) { 3608 loff_t end = offset + ret; 3609 if (end > inode->i_size) { 3610 ei->i_disksize = end; 3611 i_size_write(inode, end); 3612 /* 3613 * We're going to return a positive `ret' 3614 * here due to non-zero-length I/O, so there's 3615 * no way of reporting error returns from 3616 * ext4_mark_inode_dirty() to userspace. So 3617 * ignore it. 3618 */ 3619 ext4_mark_inode_dirty(handle, inode); 3620 } 3621 } 3622 err = ext4_journal_stop(handle); 3623 if (ret == 0) 3624 ret = err; 3625 } 3626 out: 3627 return ret; 3628 } 3629 3630 /* 3631 * ext4_get_block used when preparing for a DIO write or buffer write. 3632 * We allocate an uinitialized extent if blocks haven't been allocated. 3633 * The extent will be converted to initialized after the IO is complete. 3634 */ 3635 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3636 struct buffer_head *bh_result, int create) 3637 { 3638 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3639 inode->i_ino, create); 3640 return _ext4_get_block(inode, iblock, bh_result, 3641 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3642 } 3643 3644 static void dump_completed_IO(struct inode * inode) 3645 { 3646 #ifdef EXT4_DEBUG 3647 struct list_head *cur, *before, *after; 3648 ext4_io_end_t *io, *io0, *io1; 3649 unsigned long flags; 3650 3651 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){ 3652 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino); 3653 return; 3654 } 3655 3656 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino); 3657 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3658 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){ 3659 cur = &io->list; 3660 before = cur->prev; 3661 io0 = container_of(before, ext4_io_end_t, list); 3662 after = cur->next; 3663 io1 = container_of(after, ext4_io_end_t, list); 3664 3665 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3666 io, inode->i_ino, io0, io1); 3667 } 3668 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3669 #endif 3670 } 3671 3672 /* 3673 * check a range of space and convert unwritten extents to written. 3674 */ 3675 static int ext4_end_io_nolock(ext4_io_end_t *io) 3676 { 3677 struct inode *inode = io->inode; 3678 loff_t offset = io->offset; 3679 ssize_t size = io->size; 3680 int ret = 0; 3681 3682 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 3683 "list->prev 0x%p\n", 3684 io, inode->i_ino, io->list.next, io->list.prev); 3685 3686 if (list_empty(&io->list)) 3687 return ret; 3688 3689 if (io->flag != EXT4_IO_UNWRITTEN) 3690 return ret; 3691 3692 ret = ext4_convert_unwritten_extents(inode, offset, size); 3693 if (ret < 0) { 3694 printk(KERN_EMERG "%s: failed to convert unwritten" 3695 "extents to written extents, error is %d" 3696 " io is still on inode %lu aio dio list\n", 3697 __func__, ret, inode->i_ino); 3698 return ret; 3699 } 3700 3701 if (io->iocb) 3702 aio_complete(io->iocb, io->result, 0); 3703 /* clear the DIO AIO unwritten flag */ 3704 io->flag = 0; 3705 return ret; 3706 } 3707 3708 /* 3709 * work on completed aio dio IO, to convert unwritten extents to extents 3710 */ 3711 static void ext4_end_io_work(struct work_struct *work) 3712 { 3713 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3714 struct inode *inode = io->inode; 3715 struct ext4_inode_info *ei = EXT4_I(inode); 3716 unsigned long flags; 3717 int ret; 3718 3719 mutex_lock(&inode->i_mutex); 3720 ret = ext4_end_io_nolock(io); 3721 if (ret < 0) { 3722 mutex_unlock(&inode->i_mutex); 3723 return; 3724 } 3725 3726 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3727 if (!list_empty(&io->list)) 3728 list_del_init(&io->list); 3729 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3730 mutex_unlock(&inode->i_mutex); 3731 ext4_free_io_end(io); 3732 } 3733 3734 /* 3735 * This function is called from ext4_sync_file(). 3736 * 3737 * When IO is completed, the work to convert unwritten extents to 3738 * written is queued on workqueue but may not get immediately 3739 * scheduled. When fsync is called, we need to ensure the 3740 * conversion is complete before fsync returns. 3741 * The inode keeps track of a list of pending/completed IO that 3742 * might needs to do the conversion. This function walks through 3743 * the list and convert the related unwritten extents for completed IO 3744 * to written. 3745 * The function return the number of pending IOs on success. 3746 */ 3747 int flush_completed_IO(struct inode *inode) 3748 { 3749 ext4_io_end_t *io; 3750 struct ext4_inode_info *ei = EXT4_I(inode); 3751 unsigned long flags; 3752 int ret = 0; 3753 int ret2 = 0; 3754 3755 if (list_empty(&ei->i_completed_io_list)) 3756 return ret; 3757 3758 dump_completed_IO(inode); 3759 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3760 while (!list_empty(&ei->i_completed_io_list)){ 3761 io = list_entry(ei->i_completed_io_list.next, 3762 ext4_io_end_t, list); 3763 /* 3764 * Calling ext4_end_io_nolock() to convert completed 3765 * IO to written. 3766 * 3767 * When ext4_sync_file() is called, run_queue() may already 3768 * about to flush the work corresponding to this io structure. 3769 * It will be upset if it founds the io structure related 3770 * to the work-to-be schedule is freed. 3771 * 3772 * Thus we need to keep the io structure still valid here after 3773 * convertion finished. The io structure has a flag to 3774 * avoid double converting from both fsync and background work 3775 * queue work. 3776 */ 3777 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3778 ret = ext4_end_io_nolock(io); 3779 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3780 if (ret < 0) 3781 ret2 = ret; 3782 else 3783 list_del_init(&io->list); 3784 } 3785 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3786 return (ret2 < 0) ? ret2 : 0; 3787 } 3788 3789 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags) 3790 { 3791 ext4_io_end_t *io = NULL; 3792 3793 io = kmalloc(sizeof(*io), flags); 3794 3795 if (io) { 3796 igrab(inode); 3797 io->inode = inode; 3798 io->flag = 0; 3799 io->offset = 0; 3800 io->size = 0; 3801 io->page = NULL; 3802 io->iocb = NULL; 3803 io->result = 0; 3804 INIT_WORK(&io->work, ext4_end_io_work); 3805 INIT_LIST_HEAD(&io->list); 3806 } 3807 3808 return io; 3809 } 3810 3811 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3812 ssize_t size, void *private, int ret, 3813 bool is_async) 3814 { 3815 ext4_io_end_t *io_end = iocb->private; 3816 struct workqueue_struct *wq; 3817 unsigned long flags; 3818 struct ext4_inode_info *ei; 3819 3820 /* if not async direct IO or dio with 0 bytes write, just return */ 3821 if (!io_end || !size) 3822 goto out; 3823 3824 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3825 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3826 iocb->private, io_end->inode->i_ino, iocb, offset, 3827 size); 3828 3829 /* if not aio dio with unwritten extents, just free io and return */ 3830 if (io_end->flag != EXT4_IO_UNWRITTEN){ 3831 ext4_free_io_end(io_end); 3832 iocb->private = NULL; 3833 out: 3834 if (is_async) 3835 aio_complete(iocb, ret, 0); 3836 return; 3837 } 3838 3839 io_end->offset = offset; 3840 io_end->size = size; 3841 if (is_async) { 3842 io_end->iocb = iocb; 3843 io_end->result = ret; 3844 } 3845 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3846 3847 /* queue the work to convert unwritten extents to written */ 3848 queue_work(wq, &io_end->work); 3849 3850 /* Add the io_end to per-inode completed aio dio list*/ 3851 ei = EXT4_I(io_end->inode); 3852 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3853 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3854 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3855 iocb->private = NULL; 3856 } 3857 3858 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3859 { 3860 ext4_io_end_t *io_end = bh->b_private; 3861 struct workqueue_struct *wq; 3862 struct inode *inode; 3863 unsigned long flags; 3864 3865 if (!test_clear_buffer_uninit(bh) || !io_end) 3866 goto out; 3867 3868 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3869 printk("sb umounted, discard end_io request for inode %lu\n", 3870 io_end->inode->i_ino); 3871 ext4_free_io_end(io_end); 3872 goto out; 3873 } 3874 3875 io_end->flag = EXT4_IO_UNWRITTEN; 3876 inode = io_end->inode; 3877 3878 /* Add the io_end to per-inode completed io list*/ 3879 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3880 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3881 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3882 3883 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3884 /* queue the work to convert unwritten extents to written */ 3885 queue_work(wq, &io_end->work); 3886 out: 3887 bh->b_private = NULL; 3888 bh->b_end_io = NULL; 3889 clear_buffer_uninit(bh); 3890 end_buffer_async_write(bh, uptodate); 3891 } 3892 3893 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3894 { 3895 ext4_io_end_t *io_end; 3896 struct page *page = bh->b_page; 3897 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3898 size_t size = bh->b_size; 3899 3900 retry: 3901 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3902 if (!io_end) { 3903 if (printk_ratelimit()) 3904 printk(KERN_WARNING "%s: allocation fail\n", __func__); 3905 schedule(); 3906 goto retry; 3907 } 3908 io_end->offset = offset; 3909 io_end->size = size; 3910 /* 3911 * We need to hold a reference to the page to make sure it 3912 * doesn't get evicted before ext4_end_io_work() has a chance 3913 * to convert the extent from written to unwritten. 3914 */ 3915 io_end->page = page; 3916 get_page(io_end->page); 3917 3918 bh->b_private = io_end; 3919 bh->b_end_io = ext4_end_io_buffer_write; 3920 return 0; 3921 } 3922 3923 /* 3924 * For ext4 extent files, ext4 will do direct-io write to holes, 3925 * preallocated extents, and those write extend the file, no need to 3926 * fall back to buffered IO. 3927 * 3928 * For holes, we fallocate those blocks, mark them as unintialized 3929 * If those blocks were preallocated, we mark sure they are splited, but 3930 * still keep the range to write as unintialized. 3931 * 3932 * The unwrritten extents will be converted to written when DIO is completed. 3933 * For async direct IO, since the IO may still pending when return, we 3934 * set up an end_io call back function, which will do the convertion 3935 * when async direct IO completed. 3936 * 3937 * If the O_DIRECT write will extend the file then add this inode to the 3938 * orphan list. So recovery will truncate it back to the original size 3939 * if the machine crashes during the write. 3940 * 3941 */ 3942 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3943 const struct iovec *iov, loff_t offset, 3944 unsigned long nr_segs) 3945 { 3946 struct file *file = iocb->ki_filp; 3947 struct inode *inode = file->f_mapping->host; 3948 ssize_t ret; 3949 size_t count = iov_length(iov, nr_segs); 3950 3951 loff_t final_size = offset + count; 3952 if (rw == WRITE && final_size <= inode->i_size) { 3953 /* 3954 * We could direct write to holes and fallocate. 3955 * 3956 * Allocated blocks to fill the hole are marked as uninitialized 3957 * to prevent paralel buffered read to expose the stale data 3958 * before DIO complete the data IO. 3959 * 3960 * As to previously fallocated extents, ext4 get_block 3961 * will just simply mark the buffer mapped but still 3962 * keep the extents uninitialized. 3963 * 3964 * for non AIO case, we will convert those unwritten extents 3965 * to written after return back from blockdev_direct_IO. 3966 * 3967 * for async DIO, the conversion needs to be defered when 3968 * the IO is completed. The ext4 end_io callback function 3969 * will be called to take care of the conversion work. 3970 * Here for async case, we allocate an io_end structure to 3971 * hook to the iocb. 3972 */ 3973 iocb->private = NULL; 3974 EXT4_I(inode)->cur_aio_dio = NULL; 3975 if (!is_sync_kiocb(iocb)) { 3976 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3977 if (!iocb->private) 3978 return -ENOMEM; 3979 /* 3980 * we save the io structure for current async 3981 * direct IO, so that later ext4_map_blocks() 3982 * could flag the io structure whether there 3983 * is a unwritten extents needs to be converted 3984 * when IO is completed. 3985 */ 3986 EXT4_I(inode)->cur_aio_dio = iocb->private; 3987 } 3988 3989 ret = blockdev_direct_IO(rw, iocb, inode, 3990 inode->i_sb->s_bdev, iov, 3991 offset, nr_segs, 3992 ext4_get_block_write, 3993 ext4_end_io_dio); 3994 if (iocb->private) 3995 EXT4_I(inode)->cur_aio_dio = NULL; 3996 /* 3997 * The io_end structure takes a reference to the inode, 3998 * that structure needs to be destroyed and the 3999 * reference to the inode need to be dropped, when IO is 4000 * complete, even with 0 byte write, or failed. 4001 * 4002 * In the successful AIO DIO case, the io_end structure will be 4003 * desctroyed and the reference to the inode will be dropped 4004 * after the end_io call back function is called. 4005 * 4006 * In the case there is 0 byte write, or error case, since 4007 * VFS direct IO won't invoke the end_io call back function, 4008 * we need to free the end_io structure here. 4009 */ 4010 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 4011 ext4_free_io_end(iocb->private); 4012 iocb->private = NULL; 4013 } else if (ret > 0 && ext4_test_inode_state(inode, 4014 EXT4_STATE_DIO_UNWRITTEN)) { 4015 int err; 4016 /* 4017 * for non AIO case, since the IO is already 4018 * completed, we could do the convertion right here 4019 */ 4020 err = ext4_convert_unwritten_extents(inode, 4021 offset, ret); 4022 if (err < 0) 4023 ret = err; 4024 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4025 } 4026 return ret; 4027 } 4028 4029 /* for write the the end of file case, we fall back to old way */ 4030 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 4031 } 4032 4033 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 4034 const struct iovec *iov, loff_t offset, 4035 unsigned long nr_segs) 4036 { 4037 struct file *file = iocb->ki_filp; 4038 struct inode *inode = file->f_mapping->host; 4039 4040 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4041 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 4042 4043 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 4044 } 4045 4046 /* 4047 * Pages can be marked dirty completely asynchronously from ext4's journalling 4048 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 4049 * much here because ->set_page_dirty is called under VFS locks. The page is 4050 * not necessarily locked. 4051 * 4052 * We cannot just dirty the page and leave attached buffers clean, because the 4053 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 4054 * or jbddirty because all the journalling code will explode. 4055 * 4056 * So what we do is to mark the page "pending dirty" and next time writepage 4057 * is called, propagate that into the buffers appropriately. 4058 */ 4059 static int ext4_journalled_set_page_dirty(struct page *page) 4060 { 4061 SetPageChecked(page); 4062 return __set_page_dirty_nobuffers(page); 4063 } 4064 4065 static const struct address_space_operations ext4_ordered_aops = { 4066 .readpage = ext4_readpage, 4067 .readpages = ext4_readpages, 4068 .writepage = ext4_writepage, 4069 .sync_page = block_sync_page, 4070 .write_begin = ext4_write_begin, 4071 .write_end = ext4_ordered_write_end, 4072 .bmap = ext4_bmap, 4073 .invalidatepage = ext4_invalidatepage, 4074 .releasepage = ext4_releasepage, 4075 .direct_IO = ext4_direct_IO, 4076 .migratepage = buffer_migrate_page, 4077 .is_partially_uptodate = block_is_partially_uptodate, 4078 .error_remove_page = generic_error_remove_page, 4079 }; 4080 4081 static const struct address_space_operations ext4_writeback_aops = { 4082 .readpage = ext4_readpage, 4083 .readpages = ext4_readpages, 4084 .writepage = ext4_writepage, 4085 .sync_page = block_sync_page, 4086 .write_begin = ext4_write_begin, 4087 .write_end = ext4_writeback_write_end, 4088 .bmap = ext4_bmap, 4089 .invalidatepage = ext4_invalidatepage, 4090 .releasepage = ext4_releasepage, 4091 .direct_IO = ext4_direct_IO, 4092 .migratepage = buffer_migrate_page, 4093 .is_partially_uptodate = block_is_partially_uptodate, 4094 .error_remove_page = generic_error_remove_page, 4095 }; 4096 4097 static const struct address_space_operations ext4_journalled_aops = { 4098 .readpage = ext4_readpage, 4099 .readpages = ext4_readpages, 4100 .writepage = ext4_writepage, 4101 .sync_page = block_sync_page, 4102 .write_begin = ext4_write_begin, 4103 .write_end = ext4_journalled_write_end, 4104 .set_page_dirty = ext4_journalled_set_page_dirty, 4105 .bmap = ext4_bmap, 4106 .invalidatepage = ext4_invalidatepage, 4107 .releasepage = ext4_releasepage, 4108 .is_partially_uptodate = block_is_partially_uptodate, 4109 .error_remove_page = generic_error_remove_page, 4110 }; 4111 4112 static const struct address_space_operations ext4_da_aops = { 4113 .readpage = ext4_readpage, 4114 .readpages = ext4_readpages, 4115 .writepage = ext4_writepage, 4116 .writepages = ext4_da_writepages, 4117 .sync_page = block_sync_page, 4118 .write_begin = ext4_da_write_begin, 4119 .write_end = ext4_da_write_end, 4120 .bmap = ext4_bmap, 4121 .invalidatepage = ext4_da_invalidatepage, 4122 .releasepage = ext4_releasepage, 4123 .direct_IO = ext4_direct_IO, 4124 .migratepage = buffer_migrate_page, 4125 .is_partially_uptodate = block_is_partially_uptodate, 4126 .error_remove_page = generic_error_remove_page, 4127 }; 4128 4129 void ext4_set_aops(struct inode *inode) 4130 { 4131 if (ext4_should_order_data(inode) && 4132 test_opt(inode->i_sb, DELALLOC)) 4133 inode->i_mapping->a_ops = &ext4_da_aops; 4134 else if (ext4_should_order_data(inode)) 4135 inode->i_mapping->a_ops = &ext4_ordered_aops; 4136 else if (ext4_should_writeback_data(inode) && 4137 test_opt(inode->i_sb, DELALLOC)) 4138 inode->i_mapping->a_ops = &ext4_da_aops; 4139 else if (ext4_should_writeback_data(inode)) 4140 inode->i_mapping->a_ops = &ext4_writeback_aops; 4141 else 4142 inode->i_mapping->a_ops = &ext4_journalled_aops; 4143 } 4144 4145 /* 4146 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4147 * up to the end of the block which corresponds to `from'. 4148 * This required during truncate. We need to physically zero the tail end 4149 * of that block so it doesn't yield old data if the file is later grown. 4150 */ 4151 int ext4_block_truncate_page(handle_t *handle, 4152 struct address_space *mapping, loff_t from) 4153 { 4154 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 4155 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4156 unsigned blocksize, length, pos; 4157 ext4_lblk_t iblock; 4158 struct inode *inode = mapping->host; 4159 struct buffer_head *bh; 4160 struct page *page; 4161 int err = 0; 4162 4163 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 4164 mapping_gfp_mask(mapping) & ~__GFP_FS); 4165 if (!page) 4166 return -EINVAL; 4167 4168 blocksize = inode->i_sb->s_blocksize; 4169 length = blocksize - (offset & (blocksize - 1)); 4170 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 4171 4172 if (!page_has_buffers(page)) 4173 create_empty_buffers(page, blocksize, 0); 4174 4175 /* Find the buffer that contains "offset" */ 4176 bh = page_buffers(page); 4177 pos = blocksize; 4178 while (offset >= pos) { 4179 bh = bh->b_this_page; 4180 iblock++; 4181 pos += blocksize; 4182 } 4183 4184 err = 0; 4185 if (buffer_freed(bh)) { 4186 BUFFER_TRACE(bh, "freed: skip"); 4187 goto unlock; 4188 } 4189 4190 if (!buffer_mapped(bh)) { 4191 BUFFER_TRACE(bh, "unmapped"); 4192 ext4_get_block(inode, iblock, bh, 0); 4193 /* unmapped? It's a hole - nothing to do */ 4194 if (!buffer_mapped(bh)) { 4195 BUFFER_TRACE(bh, "still unmapped"); 4196 goto unlock; 4197 } 4198 } 4199 4200 /* Ok, it's mapped. Make sure it's up-to-date */ 4201 if (PageUptodate(page)) 4202 set_buffer_uptodate(bh); 4203 4204 if (!buffer_uptodate(bh)) { 4205 err = -EIO; 4206 ll_rw_block(READ, 1, &bh); 4207 wait_on_buffer(bh); 4208 /* Uhhuh. Read error. Complain and punt. */ 4209 if (!buffer_uptodate(bh)) 4210 goto unlock; 4211 } 4212 4213 if (ext4_should_journal_data(inode)) { 4214 BUFFER_TRACE(bh, "get write access"); 4215 err = ext4_journal_get_write_access(handle, bh); 4216 if (err) 4217 goto unlock; 4218 } 4219 4220 zero_user(page, offset, length); 4221 4222 BUFFER_TRACE(bh, "zeroed end of block"); 4223 4224 err = 0; 4225 if (ext4_should_journal_data(inode)) { 4226 err = ext4_handle_dirty_metadata(handle, inode, bh); 4227 } else { 4228 if (ext4_should_order_data(inode)) 4229 err = ext4_jbd2_file_inode(handle, inode); 4230 mark_buffer_dirty(bh); 4231 } 4232 4233 unlock: 4234 unlock_page(page); 4235 page_cache_release(page); 4236 return err; 4237 } 4238 4239 /* 4240 * Probably it should be a library function... search for first non-zero word 4241 * or memcmp with zero_page, whatever is better for particular architecture. 4242 * Linus? 4243 */ 4244 static inline int all_zeroes(__le32 *p, __le32 *q) 4245 { 4246 while (p < q) 4247 if (*p++) 4248 return 0; 4249 return 1; 4250 } 4251 4252 /** 4253 * ext4_find_shared - find the indirect blocks for partial truncation. 4254 * @inode: inode in question 4255 * @depth: depth of the affected branch 4256 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4257 * @chain: place to store the pointers to partial indirect blocks 4258 * @top: place to the (detached) top of branch 4259 * 4260 * This is a helper function used by ext4_truncate(). 4261 * 4262 * When we do truncate() we may have to clean the ends of several 4263 * indirect blocks but leave the blocks themselves alive. Block is 4264 * partially truncated if some data below the new i_size is refered 4265 * from it (and it is on the path to the first completely truncated 4266 * data block, indeed). We have to free the top of that path along 4267 * with everything to the right of the path. Since no allocation 4268 * past the truncation point is possible until ext4_truncate() 4269 * finishes, we may safely do the latter, but top of branch may 4270 * require special attention - pageout below the truncation point 4271 * might try to populate it. 4272 * 4273 * We atomically detach the top of branch from the tree, store the 4274 * block number of its root in *@top, pointers to buffer_heads of 4275 * partially truncated blocks - in @chain[].bh and pointers to 4276 * their last elements that should not be removed - in 4277 * @chain[].p. Return value is the pointer to last filled element 4278 * of @chain. 4279 * 4280 * The work left to caller to do the actual freeing of subtrees: 4281 * a) free the subtree starting from *@top 4282 * b) free the subtrees whose roots are stored in 4283 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4284 * c) free the subtrees growing from the inode past the @chain[0]. 4285 * (no partially truncated stuff there). */ 4286 4287 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4288 ext4_lblk_t offsets[4], Indirect chain[4], 4289 __le32 *top) 4290 { 4291 Indirect *partial, *p; 4292 int k, err; 4293 4294 *top = 0; 4295 /* Make k index the deepest non-null offset + 1 */ 4296 for (k = depth; k > 1 && !offsets[k-1]; k--) 4297 ; 4298 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4299 /* Writer: pointers */ 4300 if (!partial) 4301 partial = chain + k-1; 4302 /* 4303 * If the branch acquired continuation since we've looked at it - 4304 * fine, it should all survive and (new) top doesn't belong to us. 4305 */ 4306 if (!partial->key && *partial->p) 4307 /* Writer: end */ 4308 goto no_top; 4309 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4310 ; 4311 /* 4312 * OK, we've found the last block that must survive. The rest of our 4313 * branch should be detached before unlocking. However, if that rest 4314 * of branch is all ours and does not grow immediately from the inode 4315 * it's easier to cheat and just decrement partial->p. 4316 */ 4317 if (p == chain + k - 1 && p > chain) { 4318 p->p--; 4319 } else { 4320 *top = *p->p; 4321 /* Nope, don't do this in ext4. Must leave the tree intact */ 4322 #if 0 4323 *p->p = 0; 4324 #endif 4325 } 4326 /* Writer: end */ 4327 4328 while (partial > p) { 4329 brelse(partial->bh); 4330 partial--; 4331 } 4332 no_top: 4333 return partial; 4334 } 4335 4336 /* 4337 * Zero a number of block pointers in either an inode or an indirect block. 4338 * If we restart the transaction we must again get write access to the 4339 * indirect block for further modification. 4340 * 4341 * We release `count' blocks on disk, but (last - first) may be greater 4342 * than `count' because there can be holes in there. 4343 */ 4344 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4345 struct buffer_head *bh, 4346 ext4_fsblk_t block_to_free, 4347 unsigned long count, __le32 *first, 4348 __le32 *last) 4349 { 4350 __le32 *p; 4351 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4352 4353 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4354 flags |= EXT4_FREE_BLOCKS_METADATA; 4355 4356 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4357 count)) { 4358 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 4359 "blocks %llu len %lu", 4360 (unsigned long long) block_to_free, count); 4361 return 1; 4362 } 4363 4364 if (try_to_extend_transaction(handle, inode)) { 4365 if (bh) { 4366 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4367 ext4_handle_dirty_metadata(handle, inode, bh); 4368 } 4369 ext4_mark_inode_dirty(handle, inode); 4370 ext4_truncate_restart_trans(handle, inode, 4371 blocks_for_truncate(inode)); 4372 if (bh) { 4373 BUFFER_TRACE(bh, "retaking write access"); 4374 ext4_journal_get_write_access(handle, bh); 4375 } 4376 } 4377 4378 for (p = first; p < last; p++) 4379 *p = 0; 4380 4381 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4382 return 0; 4383 } 4384 4385 /** 4386 * ext4_free_data - free a list of data blocks 4387 * @handle: handle for this transaction 4388 * @inode: inode we are dealing with 4389 * @this_bh: indirect buffer_head which contains *@first and *@last 4390 * @first: array of block numbers 4391 * @last: points immediately past the end of array 4392 * 4393 * We are freeing all blocks refered from that array (numbers are stored as 4394 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4395 * 4396 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4397 * blocks are contiguous then releasing them at one time will only affect one 4398 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4399 * actually use a lot of journal space. 4400 * 4401 * @this_bh will be %NULL if @first and @last point into the inode's direct 4402 * block pointers. 4403 */ 4404 static void ext4_free_data(handle_t *handle, struct inode *inode, 4405 struct buffer_head *this_bh, 4406 __le32 *first, __le32 *last) 4407 { 4408 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4409 unsigned long count = 0; /* Number of blocks in the run */ 4410 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4411 corresponding to 4412 block_to_free */ 4413 ext4_fsblk_t nr; /* Current block # */ 4414 __le32 *p; /* Pointer into inode/ind 4415 for current block */ 4416 int err; 4417 4418 if (this_bh) { /* For indirect block */ 4419 BUFFER_TRACE(this_bh, "get_write_access"); 4420 err = ext4_journal_get_write_access(handle, this_bh); 4421 /* Important: if we can't update the indirect pointers 4422 * to the blocks, we can't free them. */ 4423 if (err) 4424 return; 4425 } 4426 4427 for (p = first; p < last; p++) { 4428 nr = le32_to_cpu(*p); 4429 if (nr) { 4430 /* accumulate blocks to free if they're contiguous */ 4431 if (count == 0) { 4432 block_to_free = nr; 4433 block_to_free_p = p; 4434 count = 1; 4435 } else if (nr == block_to_free + count) { 4436 count++; 4437 } else { 4438 if (ext4_clear_blocks(handle, inode, this_bh, 4439 block_to_free, count, 4440 block_to_free_p, p)) 4441 break; 4442 block_to_free = nr; 4443 block_to_free_p = p; 4444 count = 1; 4445 } 4446 } 4447 } 4448 4449 if (count > 0) 4450 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4451 count, block_to_free_p, p); 4452 4453 if (this_bh) { 4454 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4455 4456 /* 4457 * The buffer head should have an attached journal head at this 4458 * point. However, if the data is corrupted and an indirect 4459 * block pointed to itself, it would have been detached when 4460 * the block was cleared. Check for this instead of OOPSing. 4461 */ 4462 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4463 ext4_handle_dirty_metadata(handle, inode, this_bh); 4464 else 4465 EXT4_ERROR_INODE(inode, 4466 "circular indirect block detected at " 4467 "block %llu", 4468 (unsigned long long) this_bh->b_blocknr); 4469 } 4470 } 4471 4472 /** 4473 * ext4_free_branches - free an array of branches 4474 * @handle: JBD handle for this transaction 4475 * @inode: inode we are dealing with 4476 * @parent_bh: the buffer_head which contains *@first and *@last 4477 * @first: array of block numbers 4478 * @last: pointer immediately past the end of array 4479 * @depth: depth of the branches to free 4480 * 4481 * We are freeing all blocks refered from these branches (numbers are 4482 * stored as little-endian 32-bit) and updating @inode->i_blocks 4483 * appropriately. 4484 */ 4485 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4486 struct buffer_head *parent_bh, 4487 __le32 *first, __le32 *last, int depth) 4488 { 4489 ext4_fsblk_t nr; 4490 __le32 *p; 4491 4492 if (ext4_handle_is_aborted(handle)) 4493 return; 4494 4495 if (depth--) { 4496 struct buffer_head *bh; 4497 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4498 p = last; 4499 while (--p >= first) { 4500 nr = le32_to_cpu(*p); 4501 if (!nr) 4502 continue; /* A hole */ 4503 4504 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4505 nr, 1)) { 4506 EXT4_ERROR_INODE(inode, 4507 "invalid indirect mapped " 4508 "block %lu (level %d)", 4509 (unsigned long) nr, depth); 4510 break; 4511 } 4512 4513 /* Go read the buffer for the next level down */ 4514 bh = sb_bread(inode->i_sb, nr); 4515 4516 /* 4517 * A read failure? Report error and clear slot 4518 * (should be rare). 4519 */ 4520 if (!bh) { 4521 EXT4_ERROR_INODE_BLOCK(inode, nr, 4522 "Read failure"); 4523 continue; 4524 } 4525 4526 /* This zaps the entire block. Bottom up. */ 4527 BUFFER_TRACE(bh, "free child branches"); 4528 ext4_free_branches(handle, inode, bh, 4529 (__le32 *) bh->b_data, 4530 (__le32 *) bh->b_data + addr_per_block, 4531 depth); 4532 4533 /* 4534 * Everything below this this pointer has been 4535 * released. Now let this top-of-subtree go. 4536 * 4537 * We want the freeing of this indirect block to be 4538 * atomic in the journal with the updating of the 4539 * bitmap block which owns it. So make some room in 4540 * the journal. 4541 * 4542 * We zero the parent pointer *after* freeing its 4543 * pointee in the bitmaps, so if extend_transaction() 4544 * for some reason fails to put the bitmap changes and 4545 * the release into the same transaction, recovery 4546 * will merely complain about releasing a free block, 4547 * rather than leaking blocks. 4548 */ 4549 if (ext4_handle_is_aborted(handle)) 4550 return; 4551 if (try_to_extend_transaction(handle, inode)) { 4552 ext4_mark_inode_dirty(handle, inode); 4553 ext4_truncate_restart_trans(handle, inode, 4554 blocks_for_truncate(inode)); 4555 } 4556 4557 /* 4558 * The forget flag here is critical because if 4559 * we are journaling (and not doing data 4560 * journaling), we have to make sure a revoke 4561 * record is written to prevent the journal 4562 * replay from overwriting the (former) 4563 * indirect block if it gets reallocated as a 4564 * data block. This must happen in the same 4565 * transaction where the data blocks are 4566 * actually freed. 4567 */ 4568 ext4_free_blocks(handle, inode, 0, nr, 1, 4569 EXT4_FREE_BLOCKS_METADATA| 4570 EXT4_FREE_BLOCKS_FORGET); 4571 4572 if (parent_bh) { 4573 /* 4574 * The block which we have just freed is 4575 * pointed to by an indirect block: journal it 4576 */ 4577 BUFFER_TRACE(parent_bh, "get_write_access"); 4578 if (!ext4_journal_get_write_access(handle, 4579 parent_bh)){ 4580 *p = 0; 4581 BUFFER_TRACE(parent_bh, 4582 "call ext4_handle_dirty_metadata"); 4583 ext4_handle_dirty_metadata(handle, 4584 inode, 4585 parent_bh); 4586 } 4587 } 4588 } 4589 } else { 4590 /* We have reached the bottom of the tree. */ 4591 BUFFER_TRACE(parent_bh, "free data blocks"); 4592 ext4_free_data(handle, inode, parent_bh, first, last); 4593 } 4594 } 4595 4596 int ext4_can_truncate(struct inode *inode) 4597 { 4598 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4599 return 0; 4600 if (S_ISREG(inode->i_mode)) 4601 return 1; 4602 if (S_ISDIR(inode->i_mode)) 4603 return 1; 4604 if (S_ISLNK(inode->i_mode)) 4605 return !ext4_inode_is_fast_symlink(inode); 4606 return 0; 4607 } 4608 4609 /* 4610 * ext4_truncate() 4611 * 4612 * We block out ext4_get_block() block instantiations across the entire 4613 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4614 * simultaneously on behalf of the same inode. 4615 * 4616 * As we work through the truncate and commmit bits of it to the journal there 4617 * is one core, guiding principle: the file's tree must always be consistent on 4618 * disk. We must be able to restart the truncate after a crash. 4619 * 4620 * The file's tree may be transiently inconsistent in memory (although it 4621 * probably isn't), but whenever we close off and commit a journal transaction, 4622 * the contents of (the filesystem + the journal) must be consistent and 4623 * restartable. It's pretty simple, really: bottom up, right to left (although 4624 * left-to-right works OK too). 4625 * 4626 * Note that at recovery time, journal replay occurs *before* the restart of 4627 * truncate against the orphan inode list. 4628 * 4629 * The committed inode has the new, desired i_size (which is the same as 4630 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4631 * that this inode's truncate did not complete and it will again call 4632 * ext4_truncate() to have another go. So there will be instantiated blocks 4633 * to the right of the truncation point in a crashed ext4 filesystem. But 4634 * that's fine - as long as they are linked from the inode, the post-crash 4635 * ext4_truncate() run will find them and release them. 4636 */ 4637 void ext4_truncate(struct inode *inode) 4638 { 4639 handle_t *handle; 4640 struct ext4_inode_info *ei = EXT4_I(inode); 4641 __le32 *i_data = ei->i_data; 4642 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4643 struct address_space *mapping = inode->i_mapping; 4644 ext4_lblk_t offsets[4]; 4645 Indirect chain[4]; 4646 Indirect *partial; 4647 __le32 nr = 0; 4648 int n; 4649 ext4_lblk_t last_block; 4650 unsigned blocksize = inode->i_sb->s_blocksize; 4651 4652 if (!ext4_can_truncate(inode)) 4653 return; 4654 4655 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4656 4657 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4658 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4659 4660 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4661 ext4_ext_truncate(inode); 4662 return; 4663 } 4664 4665 handle = start_transaction(inode); 4666 if (IS_ERR(handle)) 4667 return; /* AKPM: return what? */ 4668 4669 last_block = (inode->i_size + blocksize-1) 4670 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4671 4672 if (inode->i_size & (blocksize - 1)) 4673 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4674 goto out_stop; 4675 4676 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4677 if (n == 0) 4678 goto out_stop; /* error */ 4679 4680 /* 4681 * OK. This truncate is going to happen. We add the inode to the 4682 * orphan list, so that if this truncate spans multiple transactions, 4683 * and we crash, we will resume the truncate when the filesystem 4684 * recovers. It also marks the inode dirty, to catch the new size. 4685 * 4686 * Implication: the file must always be in a sane, consistent 4687 * truncatable state while each transaction commits. 4688 */ 4689 if (ext4_orphan_add(handle, inode)) 4690 goto out_stop; 4691 4692 /* 4693 * From here we block out all ext4_get_block() callers who want to 4694 * modify the block allocation tree. 4695 */ 4696 down_write(&ei->i_data_sem); 4697 4698 ext4_discard_preallocations(inode); 4699 4700 /* 4701 * The orphan list entry will now protect us from any crash which 4702 * occurs before the truncate completes, so it is now safe to propagate 4703 * the new, shorter inode size (held for now in i_size) into the 4704 * on-disk inode. We do this via i_disksize, which is the value which 4705 * ext4 *really* writes onto the disk inode. 4706 */ 4707 ei->i_disksize = inode->i_size; 4708 4709 if (n == 1) { /* direct blocks */ 4710 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4711 i_data + EXT4_NDIR_BLOCKS); 4712 goto do_indirects; 4713 } 4714 4715 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4716 /* Kill the top of shared branch (not detached) */ 4717 if (nr) { 4718 if (partial == chain) { 4719 /* Shared branch grows from the inode */ 4720 ext4_free_branches(handle, inode, NULL, 4721 &nr, &nr+1, (chain+n-1) - partial); 4722 *partial->p = 0; 4723 /* 4724 * We mark the inode dirty prior to restart, 4725 * and prior to stop. No need for it here. 4726 */ 4727 } else { 4728 /* Shared branch grows from an indirect block */ 4729 BUFFER_TRACE(partial->bh, "get_write_access"); 4730 ext4_free_branches(handle, inode, partial->bh, 4731 partial->p, 4732 partial->p+1, (chain+n-1) - partial); 4733 } 4734 } 4735 /* Clear the ends of indirect blocks on the shared branch */ 4736 while (partial > chain) { 4737 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4738 (__le32*)partial->bh->b_data+addr_per_block, 4739 (chain+n-1) - partial); 4740 BUFFER_TRACE(partial->bh, "call brelse"); 4741 brelse(partial->bh); 4742 partial--; 4743 } 4744 do_indirects: 4745 /* Kill the remaining (whole) subtrees */ 4746 switch (offsets[0]) { 4747 default: 4748 nr = i_data[EXT4_IND_BLOCK]; 4749 if (nr) { 4750 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4751 i_data[EXT4_IND_BLOCK] = 0; 4752 } 4753 case EXT4_IND_BLOCK: 4754 nr = i_data[EXT4_DIND_BLOCK]; 4755 if (nr) { 4756 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4757 i_data[EXT4_DIND_BLOCK] = 0; 4758 } 4759 case EXT4_DIND_BLOCK: 4760 nr = i_data[EXT4_TIND_BLOCK]; 4761 if (nr) { 4762 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4763 i_data[EXT4_TIND_BLOCK] = 0; 4764 } 4765 case EXT4_TIND_BLOCK: 4766 ; 4767 } 4768 4769 up_write(&ei->i_data_sem); 4770 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4771 ext4_mark_inode_dirty(handle, inode); 4772 4773 /* 4774 * In a multi-transaction truncate, we only make the final transaction 4775 * synchronous 4776 */ 4777 if (IS_SYNC(inode)) 4778 ext4_handle_sync(handle); 4779 out_stop: 4780 /* 4781 * If this was a simple ftruncate(), and the file will remain alive 4782 * then we need to clear up the orphan record which we created above. 4783 * However, if this was a real unlink then we were called by 4784 * ext4_delete_inode(), and we allow that function to clean up the 4785 * orphan info for us. 4786 */ 4787 if (inode->i_nlink) 4788 ext4_orphan_del(handle, inode); 4789 4790 ext4_journal_stop(handle); 4791 } 4792 4793 /* 4794 * ext4_get_inode_loc returns with an extra refcount against the inode's 4795 * underlying buffer_head on success. If 'in_mem' is true, we have all 4796 * data in memory that is needed to recreate the on-disk version of this 4797 * inode. 4798 */ 4799 static int __ext4_get_inode_loc(struct inode *inode, 4800 struct ext4_iloc *iloc, int in_mem) 4801 { 4802 struct ext4_group_desc *gdp; 4803 struct buffer_head *bh; 4804 struct super_block *sb = inode->i_sb; 4805 ext4_fsblk_t block; 4806 int inodes_per_block, inode_offset; 4807 4808 iloc->bh = NULL; 4809 if (!ext4_valid_inum(sb, inode->i_ino)) 4810 return -EIO; 4811 4812 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4813 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4814 if (!gdp) 4815 return -EIO; 4816 4817 /* 4818 * Figure out the offset within the block group inode table 4819 */ 4820 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4821 inode_offset = ((inode->i_ino - 1) % 4822 EXT4_INODES_PER_GROUP(sb)); 4823 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4824 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4825 4826 bh = sb_getblk(sb, block); 4827 if (!bh) { 4828 EXT4_ERROR_INODE_BLOCK(inode, block, 4829 "unable to read itable block"); 4830 return -EIO; 4831 } 4832 if (!buffer_uptodate(bh)) { 4833 lock_buffer(bh); 4834 4835 /* 4836 * If the buffer has the write error flag, we have failed 4837 * to write out another inode in the same block. In this 4838 * case, we don't have to read the block because we may 4839 * read the old inode data successfully. 4840 */ 4841 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4842 set_buffer_uptodate(bh); 4843 4844 if (buffer_uptodate(bh)) { 4845 /* someone brought it uptodate while we waited */ 4846 unlock_buffer(bh); 4847 goto has_buffer; 4848 } 4849 4850 /* 4851 * If we have all information of the inode in memory and this 4852 * is the only valid inode in the block, we need not read the 4853 * block. 4854 */ 4855 if (in_mem) { 4856 struct buffer_head *bitmap_bh; 4857 int i, start; 4858 4859 start = inode_offset & ~(inodes_per_block - 1); 4860 4861 /* Is the inode bitmap in cache? */ 4862 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4863 if (!bitmap_bh) 4864 goto make_io; 4865 4866 /* 4867 * If the inode bitmap isn't in cache then the 4868 * optimisation may end up performing two reads instead 4869 * of one, so skip it. 4870 */ 4871 if (!buffer_uptodate(bitmap_bh)) { 4872 brelse(bitmap_bh); 4873 goto make_io; 4874 } 4875 for (i = start; i < start + inodes_per_block; i++) { 4876 if (i == inode_offset) 4877 continue; 4878 if (ext4_test_bit(i, bitmap_bh->b_data)) 4879 break; 4880 } 4881 brelse(bitmap_bh); 4882 if (i == start + inodes_per_block) { 4883 /* all other inodes are free, so skip I/O */ 4884 memset(bh->b_data, 0, bh->b_size); 4885 set_buffer_uptodate(bh); 4886 unlock_buffer(bh); 4887 goto has_buffer; 4888 } 4889 } 4890 4891 make_io: 4892 /* 4893 * If we need to do any I/O, try to pre-readahead extra 4894 * blocks from the inode table. 4895 */ 4896 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4897 ext4_fsblk_t b, end, table; 4898 unsigned num; 4899 4900 table = ext4_inode_table(sb, gdp); 4901 /* s_inode_readahead_blks is always a power of 2 */ 4902 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4903 if (table > b) 4904 b = table; 4905 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4906 num = EXT4_INODES_PER_GROUP(sb); 4907 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4908 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4909 num -= ext4_itable_unused_count(sb, gdp); 4910 table += num / inodes_per_block; 4911 if (end > table) 4912 end = table; 4913 while (b <= end) 4914 sb_breadahead(sb, b++); 4915 } 4916 4917 /* 4918 * There are other valid inodes in the buffer, this inode 4919 * has in-inode xattrs, or we don't have this inode in memory. 4920 * Read the block from disk. 4921 */ 4922 get_bh(bh); 4923 bh->b_end_io = end_buffer_read_sync; 4924 submit_bh(READ_META, bh); 4925 wait_on_buffer(bh); 4926 if (!buffer_uptodate(bh)) { 4927 EXT4_ERROR_INODE_BLOCK(inode, block, 4928 "unable to read itable block"); 4929 brelse(bh); 4930 return -EIO; 4931 } 4932 } 4933 has_buffer: 4934 iloc->bh = bh; 4935 return 0; 4936 } 4937 4938 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4939 { 4940 /* We have all inode data except xattrs in memory here. */ 4941 return __ext4_get_inode_loc(inode, iloc, 4942 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4943 } 4944 4945 void ext4_set_inode_flags(struct inode *inode) 4946 { 4947 unsigned int flags = EXT4_I(inode)->i_flags; 4948 4949 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4950 if (flags & EXT4_SYNC_FL) 4951 inode->i_flags |= S_SYNC; 4952 if (flags & EXT4_APPEND_FL) 4953 inode->i_flags |= S_APPEND; 4954 if (flags & EXT4_IMMUTABLE_FL) 4955 inode->i_flags |= S_IMMUTABLE; 4956 if (flags & EXT4_NOATIME_FL) 4957 inode->i_flags |= S_NOATIME; 4958 if (flags & EXT4_DIRSYNC_FL) 4959 inode->i_flags |= S_DIRSYNC; 4960 } 4961 4962 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4963 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4964 { 4965 unsigned int vfs_fl; 4966 unsigned long old_fl, new_fl; 4967 4968 do { 4969 vfs_fl = ei->vfs_inode.i_flags; 4970 old_fl = ei->i_flags; 4971 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4972 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4973 EXT4_DIRSYNC_FL); 4974 if (vfs_fl & S_SYNC) 4975 new_fl |= EXT4_SYNC_FL; 4976 if (vfs_fl & S_APPEND) 4977 new_fl |= EXT4_APPEND_FL; 4978 if (vfs_fl & S_IMMUTABLE) 4979 new_fl |= EXT4_IMMUTABLE_FL; 4980 if (vfs_fl & S_NOATIME) 4981 new_fl |= EXT4_NOATIME_FL; 4982 if (vfs_fl & S_DIRSYNC) 4983 new_fl |= EXT4_DIRSYNC_FL; 4984 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4985 } 4986 4987 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4988 struct ext4_inode_info *ei) 4989 { 4990 blkcnt_t i_blocks ; 4991 struct inode *inode = &(ei->vfs_inode); 4992 struct super_block *sb = inode->i_sb; 4993 4994 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4995 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4996 /* we are using combined 48 bit field */ 4997 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4998 le32_to_cpu(raw_inode->i_blocks_lo); 4999 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 5000 /* i_blocks represent file system block size */ 5001 return i_blocks << (inode->i_blkbits - 9); 5002 } else { 5003 return i_blocks; 5004 } 5005 } else { 5006 return le32_to_cpu(raw_inode->i_blocks_lo); 5007 } 5008 } 5009 5010 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 5011 { 5012 struct ext4_iloc iloc; 5013 struct ext4_inode *raw_inode; 5014 struct ext4_inode_info *ei; 5015 struct inode *inode; 5016 journal_t *journal = EXT4_SB(sb)->s_journal; 5017 long ret; 5018 int block; 5019 5020 inode = iget_locked(sb, ino); 5021 if (!inode) 5022 return ERR_PTR(-ENOMEM); 5023 if (!(inode->i_state & I_NEW)) 5024 return inode; 5025 5026 ei = EXT4_I(inode); 5027 iloc.bh = 0; 5028 5029 ret = __ext4_get_inode_loc(inode, &iloc, 0); 5030 if (ret < 0) 5031 goto bad_inode; 5032 raw_inode = ext4_raw_inode(&iloc); 5033 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5034 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5035 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5036 if (!(test_opt(inode->i_sb, NO_UID32))) { 5037 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5038 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5039 } 5040 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 5041 5042 ei->i_state_flags = 0; 5043 ei->i_dir_start_lookup = 0; 5044 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5045 /* We now have enough fields to check if the inode was active or not. 5046 * This is needed because nfsd might try to access dead inodes 5047 * the test is that same one that e2fsck uses 5048 * NeilBrown 1999oct15 5049 */ 5050 if (inode->i_nlink == 0) { 5051 if (inode->i_mode == 0 || 5052 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 5053 /* this inode is deleted */ 5054 ret = -ESTALE; 5055 goto bad_inode; 5056 } 5057 /* The only unlinked inodes we let through here have 5058 * valid i_mode and are being read by the orphan 5059 * recovery code: that's fine, we're about to complete 5060 * the process of deleting those. */ 5061 } 5062 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5063 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5064 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5065 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 5066 ei->i_file_acl |= 5067 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5068 inode->i_size = ext4_isize(raw_inode); 5069 ei->i_disksize = inode->i_size; 5070 #ifdef CONFIG_QUOTA 5071 ei->i_reserved_quota = 0; 5072 #endif 5073 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5074 ei->i_block_group = iloc.block_group; 5075 ei->i_last_alloc_group = ~0; 5076 /* 5077 * NOTE! The in-memory inode i_data array is in little-endian order 5078 * even on big-endian machines: we do NOT byteswap the block numbers! 5079 */ 5080 for (block = 0; block < EXT4_N_BLOCKS; block++) 5081 ei->i_data[block] = raw_inode->i_block[block]; 5082 INIT_LIST_HEAD(&ei->i_orphan); 5083 5084 /* 5085 * Set transaction id's of transactions that have to be committed 5086 * to finish f[data]sync. We set them to currently running transaction 5087 * as we cannot be sure that the inode or some of its metadata isn't 5088 * part of the transaction - the inode could have been reclaimed and 5089 * now it is reread from disk. 5090 */ 5091 if (journal) { 5092 transaction_t *transaction; 5093 tid_t tid; 5094 5095 read_lock(&journal->j_state_lock); 5096 if (journal->j_running_transaction) 5097 transaction = journal->j_running_transaction; 5098 else 5099 transaction = journal->j_committing_transaction; 5100 if (transaction) 5101 tid = transaction->t_tid; 5102 else 5103 tid = journal->j_commit_sequence; 5104 read_unlock(&journal->j_state_lock); 5105 ei->i_sync_tid = tid; 5106 ei->i_datasync_tid = tid; 5107 } 5108 5109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5110 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5111 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5112 EXT4_INODE_SIZE(inode->i_sb)) { 5113 ret = -EIO; 5114 goto bad_inode; 5115 } 5116 if (ei->i_extra_isize == 0) { 5117 /* The extra space is currently unused. Use it. */ 5118 ei->i_extra_isize = sizeof(struct ext4_inode) - 5119 EXT4_GOOD_OLD_INODE_SIZE; 5120 } else { 5121 __le32 *magic = (void *)raw_inode + 5122 EXT4_GOOD_OLD_INODE_SIZE + 5123 ei->i_extra_isize; 5124 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 5125 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5126 } 5127 } else 5128 ei->i_extra_isize = 0; 5129 5130 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5131 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5132 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5133 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5134 5135 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 5136 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5137 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5138 inode->i_version |= 5139 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5140 } 5141 5142 ret = 0; 5143 if (ei->i_file_acl && 5144 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5145 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 5146 ei->i_file_acl); 5147 ret = -EIO; 5148 goto bad_inode; 5149 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5150 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5151 (S_ISLNK(inode->i_mode) && 5152 !ext4_inode_is_fast_symlink(inode))) 5153 /* Validate extent which is part of inode */ 5154 ret = ext4_ext_check_inode(inode); 5155 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5156 (S_ISLNK(inode->i_mode) && 5157 !ext4_inode_is_fast_symlink(inode))) { 5158 /* Validate block references which are part of inode */ 5159 ret = ext4_check_inode_blockref(inode); 5160 } 5161 if (ret) 5162 goto bad_inode; 5163 5164 if (S_ISREG(inode->i_mode)) { 5165 inode->i_op = &ext4_file_inode_operations; 5166 inode->i_fop = &ext4_file_operations; 5167 ext4_set_aops(inode); 5168 } else if (S_ISDIR(inode->i_mode)) { 5169 inode->i_op = &ext4_dir_inode_operations; 5170 inode->i_fop = &ext4_dir_operations; 5171 } else if (S_ISLNK(inode->i_mode)) { 5172 if (ext4_inode_is_fast_symlink(inode)) { 5173 inode->i_op = &ext4_fast_symlink_inode_operations; 5174 nd_terminate_link(ei->i_data, inode->i_size, 5175 sizeof(ei->i_data) - 1); 5176 } else { 5177 inode->i_op = &ext4_symlink_inode_operations; 5178 ext4_set_aops(inode); 5179 } 5180 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5181 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5182 inode->i_op = &ext4_special_inode_operations; 5183 if (raw_inode->i_block[0]) 5184 init_special_inode(inode, inode->i_mode, 5185 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5186 else 5187 init_special_inode(inode, inode->i_mode, 5188 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5189 } else { 5190 ret = -EIO; 5191 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 5192 goto bad_inode; 5193 } 5194 brelse(iloc.bh); 5195 ext4_set_inode_flags(inode); 5196 unlock_new_inode(inode); 5197 return inode; 5198 5199 bad_inode: 5200 brelse(iloc.bh); 5201 iget_failed(inode); 5202 return ERR_PTR(ret); 5203 } 5204 5205 static int ext4_inode_blocks_set(handle_t *handle, 5206 struct ext4_inode *raw_inode, 5207 struct ext4_inode_info *ei) 5208 { 5209 struct inode *inode = &(ei->vfs_inode); 5210 u64 i_blocks = inode->i_blocks; 5211 struct super_block *sb = inode->i_sb; 5212 5213 if (i_blocks <= ~0U) { 5214 /* 5215 * i_blocks can be represnted in a 32 bit variable 5216 * as multiple of 512 bytes 5217 */ 5218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5219 raw_inode->i_blocks_high = 0; 5220 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5221 return 0; 5222 } 5223 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5224 return -EFBIG; 5225 5226 if (i_blocks <= 0xffffffffffffULL) { 5227 /* 5228 * i_blocks can be represented in a 48 bit variable 5229 * as multiple of 512 bytes 5230 */ 5231 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5232 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5233 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5234 } else { 5235 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5236 /* i_block is stored in file system block size */ 5237 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5238 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5239 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5240 } 5241 return 0; 5242 } 5243 5244 /* 5245 * Post the struct inode info into an on-disk inode location in the 5246 * buffer-cache. This gobbles the caller's reference to the 5247 * buffer_head in the inode location struct. 5248 * 5249 * The caller must have write access to iloc->bh. 5250 */ 5251 static int ext4_do_update_inode(handle_t *handle, 5252 struct inode *inode, 5253 struct ext4_iloc *iloc) 5254 { 5255 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5256 struct ext4_inode_info *ei = EXT4_I(inode); 5257 struct buffer_head *bh = iloc->bh; 5258 int err = 0, rc, block; 5259 5260 /* For fields not not tracking in the in-memory inode, 5261 * initialise them to zero for new inodes. */ 5262 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5263 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5264 5265 ext4_get_inode_flags(ei); 5266 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5267 if (!(test_opt(inode->i_sb, NO_UID32))) { 5268 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5269 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5270 /* 5271 * Fix up interoperability with old kernels. Otherwise, old inodes get 5272 * re-used with the upper 16 bits of the uid/gid intact 5273 */ 5274 if (!ei->i_dtime) { 5275 raw_inode->i_uid_high = 5276 cpu_to_le16(high_16_bits(inode->i_uid)); 5277 raw_inode->i_gid_high = 5278 cpu_to_le16(high_16_bits(inode->i_gid)); 5279 } else { 5280 raw_inode->i_uid_high = 0; 5281 raw_inode->i_gid_high = 0; 5282 } 5283 } else { 5284 raw_inode->i_uid_low = 5285 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5286 raw_inode->i_gid_low = 5287 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5288 raw_inode->i_uid_high = 0; 5289 raw_inode->i_gid_high = 0; 5290 } 5291 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5292 5293 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5294 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5295 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5296 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5297 5298 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5299 goto out_brelse; 5300 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5301 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5302 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5303 cpu_to_le32(EXT4_OS_HURD)) 5304 raw_inode->i_file_acl_high = 5305 cpu_to_le16(ei->i_file_acl >> 32); 5306 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5307 ext4_isize_set(raw_inode, ei->i_disksize); 5308 if (ei->i_disksize > 0x7fffffffULL) { 5309 struct super_block *sb = inode->i_sb; 5310 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5311 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5312 EXT4_SB(sb)->s_es->s_rev_level == 5313 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5314 /* If this is the first large file 5315 * created, add a flag to the superblock. 5316 */ 5317 err = ext4_journal_get_write_access(handle, 5318 EXT4_SB(sb)->s_sbh); 5319 if (err) 5320 goto out_brelse; 5321 ext4_update_dynamic_rev(sb); 5322 EXT4_SET_RO_COMPAT_FEATURE(sb, 5323 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5324 sb->s_dirt = 1; 5325 ext4_handle_sync(handle); 5326 err = ext4_handle_dirty_metadata(handle, NULL, 5327 EXT4_SB(sb)->s_sbh); 5328 } 5329 } 5330 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5332 if (old_valid_dev(inode->i_rdev)) { 5333 raw_inode->i_block[0] = 5334 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5335 raw_inode->i_block[1] = 0; 5336 } else { 5337 raw_inode->i_block[0] = 0; 5338 raw_inode->i_block[1] = 5339 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5340 raw_inode->i_block[2] = 0; 5341 } 5342 } else 5343 for (block = 0; block < EXT4_N_BLOCKS; block++) 5344 raw_inode->i_block[block] = ei->i_data[block]; 5345 5346 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5347 if (ei->i_extra_isize) { 5348 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5349 raw_inode->i_version_hi = 5350 cpu_to_le32(inode->i_version >> 32); 5351 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5352 } 5353 5354 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5355 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5356 if (!err) 5357 err = rc; 5358 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5359 5360 ext4_update_inode_fsync_trans(handle, inode, 0); 5361 out_brelse: 5362 brelse(bh); 5363 ext4_std_error(inode->i_sb, err); 5364 return err; 5365 } 5366 5367 /* 5368 * ext4_write_inode() 5369 * 5370 * We are called from a few places: 5371 * 5372 * - Within generic_file_write() for O_SYNC files. 5373 * Here, there will be no transaction running. We wait for any running 5374 * trasnaction to commit. 5375 * 5376 * - Within sys_sync(), kupdate and such. 5377 * We wait on commit, if tol to. 5378 * 5379 * - Within prune_icache() (PF_MEMALLOC == true) 5380 * Here we simply return. We can't afford to block kswapd on the 5381 * journal commit. 5382 * 5383 * In all cases it is actually safe for us to return without doing anything, 5384 * because the inode has been copied into a raw inode buffer in 5385 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5386 * knfsd. 5387 * 5388 * Note that we are absolutely dependent upon all inode dirtiers doing the 5389 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5390 * which we are interested. 5391 * 5392 * It would be a bug for them to not do this. The code: 5393 * 5394 * mark_inode_dirty(inode) 5395 * stuff(); 5396 * inode->i_size = expr; 5397 * 5398 * is in error because a kswapd-driven write_inode() could occur while 5399 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5400 * will no longer be on the superblock's dirty inode list. 5401 */ 5402 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5403 { 5404 int err; 5405 5406 if (current->flags & PF_MEMALLOC) 5407 return 0; 5408 5409 if (EXT4_SB(inode->i_sb)->s_journal) { 5410 if (ext4_journal_current_handle()) { 5411 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5412 dump_stack(); 5413 return -EIO; 5414 } 5415 5416 if (wbc->sync_mode != WB_SYNC_ALL) 5417 return 0; 5418 5419 err = ext4_force_commit(inode->i_sb); 5420 } else { 5421 struct ext4_iloc iloc; 5422 5423 err = __ext4_get_inode_loc(inode, &iloc, 0); 5424 if (err) 5425 return err; 5426 if (wbc->sync_mode == WB_SYNC_ALL) 5427 sync_dirty_buffer(iloc.bh); 5428 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5429 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5430 "IO error syncing inode"); 5431 err = -EIO; 5432 } 5433 brelse(iloc.bh); 5434 } 5435 return err; 5436 } 5437 5438 /* 5439 * ext4_setattr() 5440 * 5441 * Called from notify_change. 5442 * 5443 * We want to trap VFS attempts to truncate the file as soon as 5444 * possible. In particular, we want to make sure that when the VFS 5445 * shrinks i_size, we put the inode on the orphan list and modify 5446 * i_disksize immediately, so that during the subsequent flushing of 5447 * dirty pages and freeing of disk blocks, we can guarantee that any 5448 * commit will leave the blocks being flushed in an unused state on 5449 * disk. (On recovery, the inode will get truncated and the blocks will 5450 * be freed, so we have a strong guarantee that no future commit will 5451 * leave these blocks visible to the user.) 5452 * 5453 * Another thing we have to assure is that if we are in ordered mode 5454 * and inode is still attached to the committing transaction, we must 5455 * we start writeout of all the dirty pages which are being truncated. 5456 * This way we are sure that all the data written in the previous 5457 * transaction are already on disk (truncate waits for pages under 5458 * writeback). 5459 * 5460 * Called with inode->i_mutex down. 5461 */ 5462 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5463 { 5464 struct inode *inode = dentry->d_inode; 5465 int error, rc = 0; 5466 const unsigned int ia_valid = attr->ia_valid; 5467 5468 error = inode_change_ok(inode, attr); 5469 if (error) 5470 return error; 5471 5472 if (is_quota_modification(inode, attr)) 5473 dquot_initialize(inode); 5474 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5475 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5476 handle_t *handle; 5477 5478 /* (user+group)*(old+new) structure, inode write (sb, 5479 * inode block, ? - but truncate inode update has it) */ 5480 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5481 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5482 if (IS_ERR(handle)) { 5483 error = PTR_ERR(handle); 5484 goto err_out; 5485 } 5486 error = dquot_transfer(inode, attr); 5487 if (error) { 5488 ext4_journal_stop(handle); 5489 return error; 5490 } 5491 /* Update corresponding info in inode so that everything is in 5492 * one transaction */ 5493 if (attr->ia_valid & ATTR_UID) 5494 inode->i_uid = attr->ia_uid; 5495 if (attr->ia_valid & ATTR_GID) 5496 inode->i_gid = attr->ia_gid; 5497 error = ext4_mark_inode_dirty(handle, inode); 5498 ext4_journal_stop(handle); 5499 } 5500 5501 if (attr->ia_valid & ATTR_SIZE) { 5502 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5504 5505 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5506 return -EFBIG; 5507 } 5508 } 5509 5510 if (S_ISREG(inode->i_mode) && 5511 attr->ia_valid & ATTR_SIZE && 5512 (attr->ia_size < inode->i_size || 5513 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) { 5514 handle_t *handle; 5515 5516 handle = ext4_journal_start(inode, 3); 5517 if (IS_ERR(handle)) { 5518 error = PTR_ERR(handle); 5519 goto err_out; 5520 } 5521 5522 error = ext4_orphan_add(handle, inode); 5523 EXT4_I(inode)->i_disksize = attr->ia_size; 5524 rc = ext4_mark_inode_dirty(handle, inode); 5525 if (!error) 5526 error = rc; 5527 ext4_journal_stop(handle); 5528 5529 if (ext4_should_order_data(inode)) { 5530 error = ext4_begin_ordered_truncate(inode, 5531 attr->ia_size); 5532 if (error) { 5533 /* Do as much error cleanup as possible */ 5534 handle = ext4_journal_start(inode, 3); 5535 if (IS_ERR(handle)) { 5536 ext4_orphan_del(NULL, inode); 5537 goto err_out; 5538 } 5539 ext4_orphan_del(handle, inode); 5540 ext4_journal_stop(handle); 5541 goto err_out; 5542 } 5543 } 5544 /* ext4_truncate will clear the flag */ 5545 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) 5546 ext4_truncate(inode); 5547 } 5548 5549 if ((attr->ia_valid & ATTR_SIZE) && 5550 attr->ia_size != i_size_read(inode)) 5551 rc = vmtruncate(inode, attr->ia_size); 5552 5553 if (!rc) { 5554 setattr_copy(inode, attr); 5555 mark_inode_dirty(inode); 5556 } 5557 5558 /* 5559 * If the call to ext4_truncate failed to get a transaction handle at 5560 * all, we need to clean up the in-core orphan list manually. 5561 */ 5562 if (inode->i_nlink) 5563 ext4_orphan_del(NULL, inode); 5564 5565 if (!rc && (ia_valid & ATTR_MODE)) 5566 rc = ext4_acl_chmod(inode); 5567 5568 err_out: 5569 ext4_std_error(inode->i_sb, error); 5570 if (!error) 5571 error = rc; 5572 return error; 5573 } 5574 5575 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5576 struct kstat *stat) 5577 { 5578 struct inode *inode; 5579 unsigned long delalloc_blocks; 5580 5581 inode = dentry->d_inode; 5582 generic_fillattr(inode, stat); 5583 5584 /* 5585 * We can't update i_blocks if the block allocation is delayed 5586 * otherwise in the case of system crash before the real block 5587 * allocation is done, we will have i_blocks inconsistent with 5588 * on-disk file blocks. 5589 * We always keep i_blocks updated together with real 5590 * allocation. But to not confuse with user, stat 5591 * will return the blocks that include the delayed allocation 5592 * blocks for this file. 5593 */ 5594 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5595 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5596 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5597 5598 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5599 return 0; 5600 } 5601 5602 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5603 int chunk) 5604 { 5605 int indirects; 5606 5607 /* if nrblocks are contiguous */ 5608 if (chunk) { 5609 /* 5610 * With N contiguous data blocks, it need at most 5611 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5612 * 2 dindirect blocks 5613 * 1 tindirect block 5614 */ 5615 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5616 return indirects + 3; 5617 } 5618 /* 5619 * if nrblocks are not contiguous, worse case, each block touch 5620 * a indirect block, and each indirect block touch a double indirect 5621 * block, plus a triple indirect block 5622 */ 5623 indirects = nrblocks * 2 + 1; 5624 return indirects; 5625 } 5626 5627 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5628 { 5629 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5630 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5631 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5632 } 5633 5634 /* 5635 * Account for index blocks, block groups bitmaps and block group 5636 * descriptor blocks if modify datablocks and index blocks 5637 * worse case, the indexs blocks spread over different block groups 5638 * 5639 * If datablocks are discontiguous, they are possible to spread over 5640 * different block groups too. If they are contiuguous, with flexbg, 5641 * they could still across block group boundary. 5642 * 5643 * Also account for superblock, inode, quota and xattr blocks 5644 */ 5645 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5646 { 5647 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5648 int gdpblocks; 5649 int idxblocks; 5650 int ret = 0; 5651 5652 /* 5653 * How many index blocks need to touch to modify nrblocks? 5654 * The "Chunk" flag indicating whether the nrblocks is 5655 * physically contiguous on disk 5656 * 5657 * For Direct IO and fallocate, they calls get_block to allocate 5658 * one single extent at a time, so they could set the "Chunk" flag 5659 */ 5660 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5661 5662 ret = idxblocks; 5663 5664 /* 5665 * Now let's see how many group bitmaps and group descriptors need 5666 * to account 5667 */ 5668 groups = idxblocks; 5669 if (chunk) 5670 groups += 1; 5671 else 5672 groups += nrblocks; 5673 5674 gdpblocks = groups; 5675 if (groups > ngroups) 5676 groups = ngroups; 5677 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5678 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5679 5680 /* bitmaps and block group descriptor blocks */ 5681 ret += groups + gdpblocks; 5682 5683 /* Blocks for super block, inode, quota and xattr blocks */ 5684 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5685 5686 return ret; 5687 } 5688 5689 /* 5690 * Calulate the total number of credits to reserve to fit 5691 * the modification of a single pages into a single transaction, 5692 * which may include multiple chunks of block allocations. 5693 * 5694 * This could be called via ext4_write_begin() 5695 * 5696 * We need to consider the worse case, when 5697 * one new block per extent. 5698 */ 5699 int ext4_writepage_trans_blocks(struct inode *inode) 5700 { 5701 int bpp = ext4_journal_blocks_per_page(inode); 5702 int ret; 5703 5704 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5705 5706 /* Account for data blocks for journalled mode */ 5707 if (ext4_should_journal_data(inode)) 5708 ret += bpp; 5709 return ret; 5710 } 5711 5712 /* 5713 * Calculate the journal credits for a chunk of data modification. 5714 * 5715 * This is called from DIO, fallocate or whoever calling 5716 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5717 * 5718 * journal buffers for data blocks are not included here, as DIO 5719 * and fallocate do no need to journal data buffers. 5720 */ 5721 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5722 { 5723 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5724 } 5725 5726 /* 5727 * The caller must have previously called ext4_reserve_inode_write(). 5728 * Give this, we know that the caller already has write access to iloc->bh. 5729 */ 5730 int ext4_mark_iloc_dirty(handle_t *handle, 5731 struct inode *inode, struct ext4_iloc *iloc) 5732 { 5733 int err = 0; 5734 5735 if (test_opt(inode->i_sb, I_VERSION)) 5736 inode_inc_iversion(inode); 5737 5738 /* the do_update_inode consumes one bh->b_count */ 5739 get_bh(iloc->bh); 5740 5741 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5742 err = ext4_do_update_inode(handle, inode, iloc); 5743 put_bh(iloc->bh); 5744 return err; 5745 } 5746 5747 /* 5748 * On success, We end up with an outstanding reference count against 5749 * iloc->bh. This _must_ be cleaned up later. 5750 */ 5751 5752 int 5753 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5754 struct ext4_iloc *iloc) 5755 { 5756 int err; 5757 5758 err = ext4_get_inode_loc(inode, iloc); 5759 if (!err) { 5760 BUFFER_TRACE(iloc->bh, "get_write_access"); 5761 err = ext4_journal_get_write_access(handle, iloc->bh); 5762 if (err) { 5763 brelse(iloc->bh); 5764 iloc->bh = NULL; 5765 } 5766 } 5767 ext4_std_error(inode->i_sb, err); 5768 return err; 5769 } 5770 5771 /* 5772 * Expand an inode by new_extra_isize bytes. 5773 * Returns 0 on success or negative error number on failure. 5774 */ 5775 static int ext4_expand_extra_isize(struct inode *inode, 5776 unsigned int new_extra_isize, 5777 struct ext4_iloc iloc, 5778 handle_t *handle) 5779 { 5780 struct ext4_inode *raw_inode; 5781 struct ext4_xattr_ibody_header *header; 5782 5783 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5784 return 0; 5785 5786 raw_inode = ext4_raw_inode(&iloc); 5787 5788 header = IHDR(inode, raw_inode); 5789 5790 /* No extended attributes present */ 5791 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5792 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5793 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5794 new_extra_isize); 5795 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5796 return 0; 5797 } 5798 5799 /* try to expand with EAs present */ 5800 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5801 raw_inode, handle); 5802 } 5803 5804 /* 5805 * What we do here is to mark the in-core inode as clean with respect to inode 5806 * dirtiness (it may still be data-dirty). 5807 * This means that the in-core inode may be reaped by prune_icache 5808 * without having to perform any I/O. This is a very good thing, 5809 * because *any* task may call prune_icache - even ones which 5810 * have a transaction open against a different journal. 5811 * 5812 * Is this cheating? Not really. Sure, we haven't written the 5813 * inode out, but prune_icache isn't a user-visible syncing function. 5814 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5815 * we start and wait on commits. 5816 * 5817 * Is this efficient/effective? Well, we're being nice to the system 5818 * by cleaning up our inodes proactively so they can be reaped 5819 * without I/O. But we are potentially leaving up to five seconds' 5820 * worth of inodes floating about which prune_icache wants us to 5821 * write out. One way to fix that would be to get prune_icache() 5822 * to do a write_super() to free up some memory. It has the desired 5823 * effect. 5824 */ 5825 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5826 { 5827 struct ext4_iloc iloc; 5828 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5829 static unsigned int mnt_count; 5830 int err, ret; 5831 5832 might_sleep(); 5833 err = ext4_reserve_inode_write(handle, inode, &iloc); 5834 if (ext4_handle_valid(handle) && 5835 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5836 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5837 /* 5838 * We need extra buffer credits since we may write into EA block 5839 * with this same handle. If journal_extend fails, then it will 5840 * only result in a minor loss of functionality for that inode. 5841 * If this is felt to be critical, then e2fsck should be run to 5842 * force a large enough s_min_extra_isize. 5843 */ 5844 if ((jbd2_journal_extend(handle, 5845 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5846 ret = ext4_expand_extra_isize(inode, 5847 sbi->s_want_extra_isize, 5848 iloc, handle); 5849 if (ret) { 5850 ext4_set_inode_state(inode, 5851 EXT4_STATE_NO_EXPAND); 5852 if (mnt_count != 5853 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5854 ext4_warning(inode->i_sb, 5855 "Unable to expand inode %lu. Delete" 5856 " some EAs or run e2fsck.", 5857 inode->i_ino); 5858 mnt_count = 5859 le16_to_cpu(sbi->s_es->s_mnt_count); 5860 } 5861 } 5862 } 5863 } 5864 if (!err) 5865 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5866 return err; 5867 } 5868 5869 /* 5870 * ext4_dirty_inode() is called from __mark_inode_dirty() 5871 * 5872 * We're really interested in the case where a file is being extended. 5873 * i_size has been changed by generic_commit_write() and we thus need 5874 * to include the updated inode in the current transaction. 5875 * 5876 * Also, dquot_alloc_block() will always dirty the inode when blocks 5877 * are allocated to the file. 5878 * 5879 * If the inode is marked synchronous, we don't honour that here - doing 5880 * so would cause a commit on atime updates, which we don't bother doing. 5881 * We handle synchronous inodes at the highest possible level. 5882 */ 5883 void ext4_dirty_inode(struct inode *inode) 5884 { 5885 handle_t *handle; 5886 5887 handle = ext4_journal_start(inode, 2); 5888 if (IS_ERR(handle)) 5889 goto out; 5890 5891 ext4_mark_inode_dirty(handle, inode); 5892 5893 ext4_journal_stop(handle); 5894 out: 5895 return; 5896 } 5897 5898 #if 0 5899 /* 5900 * Bind an inode's backing buffer_head into this transaction, to prevent 5901 * it from being flushed to disk early. Unlike 5902 * ext4_reserve_inode_write, this leaves behind no bh reference and 5903 * returns no iloc structure, so the caller needs to repeat the iloc 5904 * lookup to mark the inode dirty later. 5905 */ 5906 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5907 { 5908 struct ext4_iloc iloc; 5909 5910 int err = 0; 5911 if (handle) { 5912 err = ext4_get_inode_loc(inode, &iloc); 5913 if (!err) { 5914 BUFFER_TRACE(iloc.bh, "get_write_access"); 5915 err = jbd2_journal_get_write_access(handle, iloc.bh); 5916 if (!err) 5917 err = ext4_handle_dirty_metadata(handle, 5918 NULL, 5919 iloc.bh); 5920 brelse(iloc.bh); 5921 } 5922 } 5923 ext4_std_error(inode->i_sb, err); 5924 return err; 5925 } 5926 #endif 5927 5928 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5929 { 5930 journal_t *journal; 5931 handle_t *handle; 5932 int err; 5933 5934 /* 5935 * We have to be very careful here: changing a data block's 5936 * journaling status dynamically is dangerous. If we write a 5937 * data block to the journal, change the status and then delete 5938 * that block, we risk forgetting to revoke the old log record 5939 * from the journal and so a subsequent replay can corrupt data. 5940 * So, first we make sure that the journal is empty and that 5941 * nobody is changing anything. 5942 */ 5943 5944 journal = EXT4_JOURNAL(inode); 5945 if (!journal) 5946 return 0; 5947 if (is_journal_aborted(journal)) 5948 return -EROFS; 5949 5950 jbd2_journal_lock_updates(journal); 5951 jbd2_journal_flush(journal); 5952 5953 /* 5954 * OK, there are no updates running now, and all cached data is 5955 * synced to disk. We are now in a completely consistent state 5956 * which doesn't have anything in the journal, and we know that 5957 * no filesystem updates are running, so it is safe to modify 5958 * the inode's in-core data-journaling state flag now. 5959 */ 5960 5961 if (val) 5962 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5963 else 5964 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5965 ext4_set_aops(inode); 5966 5967 jbd2_journal_unlock_updates(journal); 5968 5969 /* Finally we can mark the inode as dirty. */ 5970 5971 handle = ext4_journal_start(inode, 1); 5972 if (IS_ERR(handle)) 5973 return PTR_ERR(handle); 5974 5975 err = ext4_mark_inode_dirty(handle, inode); 5976 ext4_handle_sync(handle); 5977 ext4_journal_stop(handle); 5978 ext4_std_error(inode->i_sb, err); 5979 5980 return err; 5981 } 5982 5983 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5984 { 5985 return !buffer_mapped(bh); 5986 } 5987 5988 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5989 { 5990 struct page *page = vmf->page; 5991 loff_t size; 5992 unsigned long len; 5993 int ret = -EINVAL; 5994 void *fsdata; 5995 struct file *file = vma->vm_file; 5996 struct inode *inode = file->f_path.dentry->d_inode; 5997 struct address_space *mapping = inode->i_mapping; 5998 5999 /* 6000 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 6001 * get i_mutex because we are already holding mmap_sem. 6002 */ 6003 down_read(&inode->i_alloc_sem); 6004 size = i_size_read(inode); 6005 if (page->mapping != mapping || size <= page_offset(page) 6006 || !PageUptodate(page)) { 6007 /* page got truncated from under us? */ 6008 goto out_unlock; 6009 } 6010 ret = 0; 6011 if (PageMappedToDisk(page)) 6012 goto out_unlock; 6013 6014 if (page->index == size >> PAGE_CACHE_SHIFT) 6015 len = size & ~PAGE_CACHE_MASK; 6016 else 6017 len = PAGE_CACHE_SIZE; 6018 6019 lock_page(page); 6020 /* 6021 * return if we have all the buffers mapped. This avoid 6022 * the need to call write_begin/write_end which does a 6023 * journal_start/journal_stop which can block and take 6024 * long time 6025 */ 6026 if (page_has_buffers(page)) { 6027 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 6028 ext4_bh_unmapped)) { 6029 unlock_page(page); 6030 goto out_unlock; 6031 } 6032 } 6033 unlock_page(page); 6034 /* 6035 * OK, we need to fill the hole... Do write_begin write_end 6036 * to do block allocation/reservation.We are not holding 6037 * inode.i__mutex here. That allow * parallel write_begin, 6038 * write_end call. lock_page prevent this from happening 6039 * on the same page though 6040 */ 6041 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 6042 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 6043 if (ret < 0) 6044 goto out_unlock; 6045 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 6046 len, len, page, fsdata); 6047 if (ret < 0) 6048 goto out_unlock; 6049 ret = 0; 6050 out_unlock: 6051 if (ret) 6052 ret = VM_FAULT_SIGBUS; 6053 up_read(&inode->i_alloc_sem); 6054 return ret; 6055 } 6056