xref: /linux/fs/ext4/inode.c (revision c894ec016c9d0418dd832202225a8c64f450d71e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151 
152 		if (ext4_has_inline_data(inode))
153 			return 0;
154 
155 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 	}
157 	return S_ISLNK(inode->i_mode) && inode->i_size &&
158 	       (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160 
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166 	handle_t *handle;
167 	int err;
168 	/*
169 	 * Credits for final inode cleanup and freeing:
170 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 	 */
173 	int extra_credits = 6;
174 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 	bool freeze_protected = false;
176 
177 	trace_ext4_evict_inode(inode);
178 
179 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 		ext4_evict_ea_inode(inode);
181 	if (inode->i_nlink) {
182 		truncate_inode_pages_final(&inode->i_data);
183 
184 		goto no_delete;
185 	}
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 	dquot_initialize(inode);
190 
191 	if (ext4_should_order_data(inode))
192 		ext4_begin_ordered_truncate(inode, 0);
193 	truncate_inode_pages_final(&inode->i_data);
194 
195 	/*
196 	 * For inodes with journalled data, transaction commit could have
197 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 	 * extents converting worker could merge extents and also have dirtied
199 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 	 * we still need to remove the inode from the writeback lists.
201 	 */
202 	if (!list_empty_careful(&inode->i_io_list))
203 		inode_io_list_del(inode);
204 
205 	/*
206 	 * Protect us against freezing - iput() caller didn't have to have any
207 	 * protection against it. When we are in a running transaction though,
208 	 * we are already protected against freezing and we cannot grab further
209 	 * protection due to lock ordering constraints.
210 	 */
211 	if (!ext4_journal_current_handle()) {
212 		sb_start_intwrite(inode->i_sb);
213 		freeze_protected = true;
214 	}
215 
216 	if (!IS_NOQUOTA(inode))
217 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218 
219 	/*
220 	 * Block bitmap, group descriptor, and inode are accounted in both
221 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 	 */
223 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 	if (IS_ERR(handle)) {
226 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 		/*
228 		 * If we're going to skip the normal cleanup, we still need to
229 		 * make sure that the in-core orphan linked list is properly
230 		 * cleaned up.
231 		 */
232 		ext4_orphan_del(NULL, inode);
233 		if (freeze_protected)
234 			sb_end_intwrite(inode->i_sb);
235 		goto no_delete;
236 	}
237 
238 	if (IS_SYNC(inode))
239 		ext4_handle_sync(handle);
240 
241 	/*
242 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 	 * special handling of symlinks here because i_size is used to
244 	 * determine whether ext4_inode_info->i_data contains symlink data or
245 	 * block mappings. Setting i_size to 0 will remove its fast symlink
246 	 * status. Erase i_data so that it becomes a valid empty block map.
247 	 */
248 	if (ext4_inode_is_fast_symlink(inode))
249 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks) {
258 		err = ext4_truncate(inode);
259 		if (err) {
260 			ext4_error_err(inode->i_sb, -err,
261 				       "couldn't truncate inode %lu (err %d)",
262 				       inode->i_ino, err);
263 			goto stop_handle;
264 		}
265 	}
266 
267 	/* Remove xattr references. */
268 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269 				      extra_credits);
270 	if (err) {
271 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273 		ext4_journal_stop(handle);
274 		ext4_orphan_del(NULL, inode);
275 		if (freeze_protected)
276 			sb_end_intwrite(inode->i_sb);
277 		ext4_xattr_inode_array_free(ea_inode_array);
278 		goto no_delete;
279 	}
280 
281 	/*
282 	 * Kill off the orphan record which ext4_truncate created.
283 	 * AKPM: I think this can be inside the above `if'.
284 	 * Note that ext4_orphan_del() has to be able to cope with the
285 	 * deletion of a non-existent orphan - this is because we don't
286 	 * know if ext4_truncate() actually created an orphan record.
287 	 * (Well, we could do this if we need to, but heck - it works)
288 	 */
289 	ext4_orphan_del(handle, inode);
290 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291 
292 	/*
293 	 * One subtle ordering requirement: if anything has gone wrong
294 	 * (transaction abort, IO errors, whatever), then we can still
295 	 * do these next steps (the fs will already have been marked as
296 	 * having errors), but we can't free the inode if the mark_dirty
297 	 * fails.
298 	 */
299 	if (ext4_mark_inode_dirty(handle, inode))
300 		/* If that failed, just do the required in-core inode clear. */
301 		ext4_clear_inode(inode);
302 	else
303 		ext4_free_inode(handle, inode);
304 	ext4_journal_stop(handle);
305 	if (freeze_protected)
306 		sb_end_intwrite(inode->i_sb);
307 	ext4_xattr_inode_array_free(ea_inode_array);
308 	return;
309 no_delete:
310 	/*
311 	 * Check out some where else accidentally dirty the evicting inode,
312 	 * which may probably cause inode use-after-free issues later.
313 	 */
314 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315 
316 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319 }
320 
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 	return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	/* Update per-inode reservations */
350 	ei->i_reserved_data_blocks -= used;
351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 
353 	spin_unlock(&ei->i_block_reservation_lock);
354 
355 	/* Update quota subsystem for data blocks */
356 	if (quota_claim)
357 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 	else {
359 		/*
360 		 * We did fallocate with an offset that is already delayed
361 		 * allocated. So on delayed allocated writeback we should
362 		 * not re-claim the quota for fallocated blocks.
363 		 */
364 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 	}
366 
367 	/*
368 	 * If we have done all the pending block allocations and if
369 	 * there aren't any writers on the inode, we can discard the
370 	 * inode's preallocations.
371 	 */
372 	if ((ei->i_reserved_data_blocks == 0) &&
373 	    !inode_is_open_for_write(inode))
374 		ext4_discard_preallocations(inode, 0);
375 }
376 
377 static int __check_block_validity(struct inode *inode, const char *func,
378 				unsigned int line,
379 				struct ext4_map_blocks *map)
380 {
381 	if (ext4_has_feature_journal(inode->i_sb) &&
382 	    (inode->i_ino ==
383 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 		return 0;
385 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 		ext4_error_inode(inode, func, line, map->m_pblk,
387 				 "lblock %lu mapped to illegal pblock %llu "
388 				 "(length %d)", (unsigned long) map->m_lblk,
389 				 map->m_pblk, map->m_len);
390 		return -EFSCORRUPTED;
391 	}
392 	return 0;
393 }
394 
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 		       ext4_lblk_t len)
397 {
398 	int ret;
399 
400 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402 
403 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 	if (ret > 0)
405 		ret = 0;
406 
407 	return ret;
408 }
409 
410 #define check_block_validity(inode, map)	\
411 	__check_block_validity((inode), __func__, __LINE__, (map))
412 
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 				       struct inode *inode,
416 				       struct ext4_map_blocks *es_map,
417 				       struct ext4_map_blocks *map,
418 				       int flags)
419 {
420 	int retval;
421 
422 	map->m_flags = 0;
423 	/*
424 	 * There is a race window that the result is not the same.
425 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426 	 * is that we lookup a block mapping in extent status tree with
427 	 * out taking i_data_sem.  So at the time the unwritten extent
428 	 * could be converted.
429 	 */
430 	down_read(&EXT4_I(inode)->i_data_sem);
431 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 	} else {
434 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 	}
436 	up_read((&EXT4_I(inode)->i_data_sem));
437 
438 	/*
439 	 * We don't check m_len because extent will be collpased in status
440 	 * tree.  So the m_len might not equal.
441 	 */
442 	if (es_map->m_lblk != map->m_lblk ||
443 	    es_map->m_flags != map->m_flags ||
444 	    es_map->m_pblk != map->m_pblk) {
445 		printk("ES cache assertion failed for inode: %lu "
446 		       "es_cached ex [%d/%d/%llu/%x] != "
447 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 		       map->m_len, map->m_pblk, map->m_flags,
451 		       retval, flags);
452 	}
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455 
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.  if
469  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471  *
472  * It returns 0 if plain look up failed (blocks have not been allocated), in
473  * that case, @map is returned as unmapped but we still do fill map->m_len to
474  * indicate the length of a hole starting at map->m_lblk.
475  *
476  * It returns the error in case of allocation failure.
477  */
478 int ext4_map_blocks(handle_t *handle, struct inode *inode,
479 		    struct ext4_map_blocks *map, int flags)
480 {
481 	struct extent_status es;
482 	int retval;
483 	int ret = 0;
484 #ifdef ES_AGGRESSIVE_TEST
485 	struct ext4_map_blocks orig_map;
486 
487 	memcpy(&orig_map, map, sizeof(*map));
488 #endif
489 
490 	map->m_flags = 0;
491 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492 		  flags, map->m_len, (unsigned long) map->m_lblk);
493 
494 	/*
495 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
496 	 */
497 	if (unlikely(map->m_len > INT_MAX))
498 		map->m_len = INT_MAX;
499 
500 	/* We can handle the block number less than EXT_MAX_BLOCKS */
501 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502 		return -EFSCORRUPTED;
503 
504 	/* Lookup extent status tree firstly */
505 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508 			map->m_pblk = ext4_es_pblock(&es) +
509 					map->m_lblk - es.es_lblk;
510 			map->m_flags |= ext4_es_is_written(&es) ?
511 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512 			retval = es.es_len - (map->m_lblk - es.es_lblk);
513 			if (retval > map->m_len)
514 				retval = map->m_len;
515 			map->m_len = retval;
516 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
517 			map->m_pblk = 0;
518 			retval = es.es_len - (map->m_lblk - es.es_lblk);
519 			if (retval > map->m_len)
520 				retval = map->m_len;
521 			map->m_len = retval;
522 			retval = 0;
523 		} else {
524 			BUG();
525 		}
526 
527 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528 			return retval;
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 	/*
536 	 * In the query cache no-wait mode, nothing we can do more if we
537 	 * cannot find extent in the cache.
538 	 */
539 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540 		return 0;
541 
542 	/*
543 	 * Try to see if we can get the block without requesting a new
544 	 * file system block.
545 	 */
546 	down_read(&EXT4_I(inode)->i_data_sem);
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
549 	} else {
550 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
551 	}
552 	if (retval > 0) {
553 		unsigned int status;
554 
555 		if (unlikely(retval != map->m_len)) {
556 			ext4_warning(inode->i_sb,
557 				     "ES len assertion failed for inode "
558 				     "%lu: retval %d != map->m_len %d",
559 				     inode->i_ino, retval, map->m_len);
560 			WARN_ON(1);
561 		}
562 
563 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 		    !(status & EXTENT_STATUS_WRITTEN) &&
567 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568 				       map->m_lblk + map->m_len - 1))
569 			status |= EXTENT_STATUS_DELAYED;
570 		ret = ext4_es_insert_extent(inode, map->m_lblk,
571 					    map->m_len, map->m_pblk, status);
572 		if (ret < 0)
573 			retval = ret;
574 	}
575 	up_read((&EXT4_I(inode)->i_data_sem));
576 
577 found:
578 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579 		ret = check_block_validity(inode, map);
580 		if (ret != 0)
581 			return ret;
582 	}
583 
584 	/* If it is only a block(s) look up */
585 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
586 		return retval;
587 
588 	/*
589 	 * Returns if the blocks have already allocated
590 	 *
591 	 * Note that if blocks have been preallocated
592 	 * ext4_ext_get_block() returns the create = 0
593 	 * with buffer head unmapped.
594 	 */
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596 		/*
597 		 * If we need to convert extent to unwritten
598 		 * we continue and do the actual work in
599 		 * ext4_ext_map_blocks()
600 		 */
601 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602 			return retval;
603 
604 	/*
605 	 * Here we clear m_flags because after allocating an new extent,
606 	 * it will be set again.
607 	 */
608 	map->m_flags &= ~EXT4_MAP_FLAGS;
609 
610 	/*
611 	 * New blocks allocate and/or writing to unwritten extent
612 	 * will possibly result in updating i_data, so we take
613 	 * the write lock of i_data_sem, and call get_block()
614 	 * with create == 1 flag.
615 	 */
616 	down_write(&EXT4_I(inode)->i_data_sem);
617 
618 	/*
619 	 * We need to check for EXT4 here because migrate
620 	 * could have changed the inode type in between
621 	 */
622 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
624 	} else {
625 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
626 
627 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628 			/*
629 			 * We allocated new blocks which will result in
630 			 * i_data's format changing.  Force the migrate
631 			 * to fail by clearing migrate flags
632 			 */
633 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634 		}
635 
636 		/*
637 		 * Update reserved blocks/metadata blocks after successful
638 		 * block allocation which had been deferred till now. We don't
639 		 * support fallocate for non extent files. So we can update
640 		 * reserve space here.
641 		 */
642 		if ((retval > 0) &&
643 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
644 			ext4_da_update_reserve_space(inode, retval, 1);
645 	}
646 
647 	if (retval > 0) {
648 		unsigned int status;
649 
650 		if (unlikely(retval != map->m_len)) {
651 			ext4_warning(inode->i_sb,
652 				     "ES len assertion failed for inode "
653 				     "%lu: retval %d != map->m_len %d",
654 				     inode->i_ino, retval, map->m_len);
655 			WARN_ON(1);
656 		}
657 
658 		/*
659 		 * We have to zeroout blocks before inserting them into extent
660 		 * status tree. Otherwise someone could look them up there and
661 		 * use them before they are really zeroed. We also have to
662 		 * unmap metadata before zeroing as otherwise writeback can
663 		 * overwrite zeros with stale data from block device.
664 		 */
665 		if (flags & EXT4_GET_BLOCKS_ZERO &&
666 		    map->m_flags & EXT4_MAP_MAPPED &&
667 		    map->m_flags & EXT4_MAP_NEW) {
668 			ret = ext4_issue_zeroout(inode, map->m_lblk,
669 						 map->m_pblk, map->m_len);
670 			if (ret) {
671 				retval = ret;
672 				goto out_sem;
673 			}
674 		}
675 
676 		/*
677 		 * If the extent has been zeroed out, we don't need to update
678 		 * extent status tree.
679 		 */
680 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
681 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
682 			if (ext4_es_is_written(&es))
683 				goto out_sem;
684 		}
685 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
686 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
687 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
688 		    !(status & EXTENT_STATUS_WRITTEN) &&
689 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
690 				       map->m_lblk + map->m_len - 1))
691 			status |= EXTENT_STATUS_DELAYED;
692 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693 					    map->m_pblk, status);
694 		if (ret < 0) {
695 			retval = ret;
696 			goto out_sem;
697 		}
698 	}
699 
700 out_sem:
701 	up_write((&EXT4_I(inode)->i_data_sem));
702 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
703 		ret = check_block_validity(inode, map);
704 		if (ret != 0)
705 			return ret;
706 
707 		/*
708 		 * Inodes with freshly allocated blocks where contents will be
709 		 * visible after transaction commit must be on transaction's
710 		 * ordered data list.
711 		 */
712 		if (map->m_flags & EXT4_MAP_NEW &&
713 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
714 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
715 		    !ext4_is_quota_file(inode) &&
716 		    ext4_should_order_data(inode)) {
717 			loff_t start_byte =
718 				(loff_t)map->m_lblk << inode->i_blkbits;
719 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
720 
721 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 				ret = ext4_jbd2_inode_add_wait(handle, inode,
723 						start_byte, length);
724 			else
725 				ret = ext4_jbd2_inode_add_write(handle, inode,
726 						start_byte, length);
727 			if (ret)
728 				return ret;
729 		}
730 	}
731 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
732 				map->m_flags & EXT4_MAP_MAPPED))
733 		ext4_fc_track_range(handle, inode, map->m_lblk,
734 					map->m_lblk + map->m_len - 1);
735 	if (retval < 0)
736 		ext_debug(inode, "failed with err %d\n", retval);
737 	return retval;
738 }
739 
740 /*
741  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
742  * we have to be careful as someone else may be manipulating b_state as well.
743  */
744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
745 {
746 	unsigned long old_state;
747 	unsigned long new_state;
748 
749 	flags &= EXT4_MAP_FLAGS;
750 
751 	/* Dummy buffer_head? Set non-atomically. */
752 	if (!bh->b_page) {
753 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
754 		return;
755 	}
756 	/*
757 	 * Someone else may be modifying b_state. Be careful! This is ugly but
758 	 * once we get rid of using bh as a container for mapping information
759 	 * to pass to / from get_block functions, this can go away.
760 	 */
761 	old_state = READ_ONCE(bh->b_state);
762 	do {
763 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
764 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
765 }
766 
767 static int _ext4_get_block(struct inode *inode, sector_t iblock,
768 			   struct buffer_head *bh, int flags)
769 {
770 	struct ext4_map_blocks map;
771 	int ret = 0;
772 
773 	if (ext4_has_inline_data(inode))
774 		return -ERANGE;
775 
776 	map.m_lblk = iblock;
777 	map.m_len = bh->b_size >> inode->i_blkbits;
778 
779 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
780 			      flags);
781 	if (ret > 0) {
782 		map_bh(bh, inode->i_sb, map.m_pblk);
783 		ext4_update_bh_state(bh, map.m_flags);
784 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
785 		ret = 0;
786 	} else if (ret == 0) {
787 		/* hole case, need to fill in bh->b_size */
788 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 	}
790 	return ret;
791 }
792 
793 int ext4_get_block(struct inode *inode, sector_t iblock,
794 		   struct buffer_head *bh, int create)
795 {
796 	return _ext4_get_block(inode, iblock, bh,
797 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
798 }
799 
800 /*
801  * Get block function used when preparing for buffered write if we require
802  * creating an unwritten extent if blocks haven't been allocated.  The extent
803  * will be converted to written after the IO is complete.
804  */
805 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
806 			     struct buffer_head *bh_result, int create)
807 {
808 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
809 		   inode->i_ino, create);
810 	return _ext4_get_block(inode, iblock, bh_result,
811 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
812 }
813 
814 /* Maximum number of blocks we map for direct IO at once. */
815 #define DIO_MAX_BLOCKS 4096
816 
817 /*
818  * `handle' can be NULL if create is zero
819  */
820 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
821 				ext4_lblk_t block, int map_flags)
822 {
823 	struct ext4_map_blocks map;
824 	struct buffer_head *bh;
825 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
826 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
827 	int err;
828 
829 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
830 		    || handle != NULL || create == 0);
831 	ASSERT(create == 0 || !nowait);
832 
833 	map.m_lblk = block;
834 	map.m_len = 1;
835 	err = ext4_map_blocks(handle, inode, &map, map_flags);
836 
837 	if (err == 0)
838 		return create ? ERR_PTR(-ENOSPC) : NULL;
839 	if (err < 0)
840 		return ERR_PTR(err);
841 
842 	if (nowait)
843 		return sb_find_get_block(inode->i_sb, map.m_pblk);
844 
845 	bh = sb_getblk(inode->i_sb, map.m_pblk);
846 	if (unlikely(!bh))
847 		return ERR_PTR(-ENOMEM);
848 	if (map.m_flags & EXT4_MAP_NEW) {
849 		ASSERT(create != 0);
850 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
851 			    || (handle != NULL));
852 
853 		/*
854 		 * Now that we do not always journal data, we should
855 		 * keep in mind whether this should always journal the
856 		 * new buffer as metadata.  For now, regular file
857 		 * writes use ext4_get_block instead, so it's not a
858 		 * problem.
859 		 */
860 		lock_buffer(bh);
861 		BUFFER_TRACE(bh, "call get_create_access");
862 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
863 						     EXT4_JTR_NONE);
864 		if (unlikely(err)) {
865 			unlock_buffer(bh);
866 			goto errout;
867 		}
868 		if (!buffer_uptodate(bh)) {
869 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
870 			set_buffer_uptodate(bh);
871 		}
872 		unlock_buffer(bh);
873 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
874 		err = ext4_handle_dirty_metadata(handle, inode, bh);
875 		if (unlikely(err))
876 			goto errout;
877 	} else
878 		BUFFER_TRACE(bh, "not a new buffer");
879 	return bh;
880 errout:
881 	brelse(bh);
882 	return ERR_PTR(err);
883 }
884 
885 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
886 			       ext4_lblk_t block, int map_flags)
887 {
888 	struct buffer_head *bh;
889 	int ret;
890 
891 	bh = ext4_getblk(handle, inode, block, map_flags);
892 	if (IS_ERR(bh))
893 		return bh;
894 	if (!bh || ext4_buffer_uptodate(bh))
895 		return bh;
896 
897 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
898 	if (ret) {
899 		put_bh(bh);
900 		return ERR_PTR(ret);
901 	}
902 	return bh;
903 }
904 
905 /* Read a contiguous batch of blocks. */
906 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
907 		     bool wait, struct buffer_head **bhs)
908 {
909 	int i, err;
910 
911 	for (i = 0; i < bh_count; i++) {
912 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
913 		if (IS_ERR(bhs[i])) {
914 			err = PTR_ERR(bhs[i]);
915 			bh_count = i;
916 			goto out_brelse;
917 		}
918 	}
919 
920 	for (i = 0; i < bh_count; i++)
921 		/* Note that NULL bhs[i] is valid because of holes. */
922 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
923 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
924 
925 	if (!wait)
926 		return 0;
927 
928 	for (i = 0; i < bh_count; i++)
929 		if (bhs[i])
930 			wait_on_buffer(bhs[i]);
931 
932 	for (i = 0; i < bh_count; i++) {
933 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
934 			err = -EIO;
935 			goto out_brelse;
936 		}
937 	}
938 	return 0;
939 
940 out_brelse:
941 	for (i = 0; i < bh_count; i++) {
942 		brelse(bhs[i]);
943 		bhs[i] = NULL;
944 	}
945 	return err;
946 }
947 
948 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
949 			   struct buffer_head *head,
950 			   unsigned from,
951 			   unsigned to,
952 			   int *partial,
953 			   int (*fn)(handle_t *handle, struct inode *inode,
954 				     struct buffer_head *bh))
955 {
956 	struct buffer_head *bh;
957 	unsigned block_start, block_end;
958 	unsigned blocksize = head->b_size;
959 	int err, ret = 0;
960 	struct buffer_head *next;
961 
962 	for (bh = head, block_start = 0;
963 	     ret == 0 && (bh != head || !block_start);
964 	     block_start = block_end, bh = next) {
965 		next = bh->b_this_page;
966 		block_end = block_start + blocksize;
967 		if (block_end <= from || block_start >= to) {
968 			if (partial && !buffer_uptodate(bh))
969 				*partial = 1;
970 			continue;
971 		}
972 		err = (*fn)(handle, inode, bh);
973 		if (!ret)
974 			ret = err;
975 	}
976 	return ret;
977 }
978 
979 /*
980  * Helper for handling dirtying of journalled data. We also mark the folio as
981  * dirty so that writeback code knows about this page (and inode) contains
982  * dirty data. ext4_writepages() then commits appropriate transaction to
983  * make data stable.
984  */
985 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
986 {
987 	folio_mark_dirty(bh->b_folio);
988 	return ext4_handle_dirty_metadata(handle, NULL, bh);
989 }
990 
991 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
992 				struct buffer_head *bh)
993 {
994 	int dirty = buffer_dirty(bh);
995 	int ret;
996 
997 	if (!buffer_mapped(bh) || buffer_freed(bh))
998 		return 0;
999 	/*
1000 	 * __block_write_begin() could have dirtied some buffers. Clean
1001 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1002 	 * otherwise about fs integrity issues. Setting of the dirty bit
1003 	 * by __block_write_begin() isn't a real problem here as we clear
1004 	 * the bit before releasing a page lock and thus writeback cannot
1005 	 * ever write the buffer.
1006 	 */
1007 	if (dirty)
1008 		clear_buffer_dirty(bh);
1009 	BUFFER_TRACE(bh, "get write access");
1010 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1011 					    EXT4_JTR_NONE);
1012 	if (!ret && dirty)
1013 		ret = ext4_dirty_journalled_data(handle, bh);
1014 	return ret;
1015 }
1016 
1017 #ifdef CONFIG_FS_ENCRYPTION
1018 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1019 				  get_block_t *get_block)
1020 {
1021 	unsigned from = pos & (PAGE_SIZE - 1);
1022 	unsigned to = from + len;
1023 	struct inode *inode = folio->mapping->host;
1024 	unsigned block_start, block_end;
1025 	sector_t block;
1026 	int err = 0;
1027 	unsigned blocksize = inode->i_sb->s_blocksize;
1028 	unsigned bbits;
1029 	struct buffer_head *bh, *head, *wait[2];
1030 	int nr_wait = 0;
1031 	int i;
1032 
1033 	BUG_ON(!folio_test_locked(folio));
1034 	BUG_ON(from > PAGE_SIZE);
1035 	BUG_ON(to > PAGE_SIZE);
1036 	BUG_ON(from > to);
1037 
1038 	head = folio_buffers(folio);
1039 	if (!head) {
1040 		create_empty_buffers(&folio->page, blocksize, 0);
1041 		head = folio_buffers(folio);
1042 	}
1043 	bbits = ilog2(blocksize);
1044 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1045 
1046 	for (bh = head, block_start = 0; bh != head || !block_start;
1047 	    block++, block_start = block_end, bh = bh->b_this_page) {
1048 		block_end = block_start + blocksize;
1049 		if (block_end <= from || block_start >= to) {
1050 			if (folio_test_uptodate(folio)) {
1051 				set_buffer_uptodate(bh);
1052 			}
1053 			continue;
1054 		}
1055 		if (buffer_new(bh))
1056 			clear_buffer_new(bh);
1057 		if (!buffer_mapped(bh)) {
1058 			WARN_ON(bh->b_size != blocksize);
1059 			err = get_block(inode, block, bh, 1);
1060 			if (err)
1061 				break;
1062 			if (buffer_new(bh)) {
1063 				if (folio_test_uptodate(folio)) {
1064 					clear_buffer_new(bh);
1065 					set_buffer_uptodate(bh);
1066 					mark_buffer_dirty(bh);
1067 					continue;
1068 				}
1069 				if (block_end > to || block_start < from)
1070 					folio_zero_segments(folio, to,
1071 							    block_end,
1072 							    block_start, from);
1073 				continue;
1074 			}
1075 		}
1076 		if (folio_test_uptodate(folio)) {
1077 			set_buffer_uptodate(bh);
1078 			continue;
1079 		}
1080 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1081 		    !buffer_unwritten(bh) &&
1082 		    (block_start < from || block_end > to)) {
1083 			ext4_read_bh_lock(bh, 0, false);
1084 			wait[nr_wait++] = bh;
1085 		}
1086 	}
1087 	/*
1088 	 * If we issued read requests, let them complete.
1089 	 */
1090 	for (i = 0; i < nr_wait; i++) {
1091 		wait_on_buffer(wait[i]);
1092 		if (!buffer_uptodate(wait[i]))
1093 			err = -EIO;
1094 	}
1095 	if (unlikely(err)) {
1096 		page_zero_new_buffers(&folio->page, from, to);
1097 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1098 		for (i = 0; i < nr_wait; i++) {
1099 			int err2;
1100 
1101 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1102 						blocksize, bh_offset(wait[i]));
1103 			if (err2) {
1104 				clear_buffer_uptodate(wait[i]);
1105 				err = err2;
1106 			}
1107 		}
1108 	}
1109 
1110 	return err;
1111 }
1112 #endif
1113 
1114 /*
1115  * To preserve ordering, it is essential that the hole instantiation and
1116  * the data write be encapsulated in a single transaction.  We cannot
1117  * close off a transaction and start a new one between the ext4_get_block()
1118  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1119  * ext4_write_begin() is the right place.
1120  */
1121 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1122 			    loff_t pos, unsigned len,
1123 			    struct page **pagep, void **fsdata)
1124 {
1125 	struct inode *inode = mapping->host;
1126 	int ret, needed_blocks;
1127 	handle_t *handle;
1128 	int retries = 0;
1129 	struct folio *folio;
1130 	pgoff_t index;
1131 	unsigned from, to;
1132 
1133 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1134 		return -EIO;
1135 
1136 	trace_ext4_write_begin(inode, pos, len);
1137 	/*
1138 	 * Reserve one block more for addition to orphan list in case
1139 	 * we allocate blocks but write fails for some reason
1140 	 */
1141 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1142 	index = pos >> PAGE_SHIFT;
1143 	from = pos & (PAGE_SIZE - 1);
1144 	to = from + len;
1145 
1146 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1147 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1148 						    pagep);
1149 		if (ret < 0)
1150 			return ret;
1151 		if (ret == 1)
1152 			return 0;
1153 	}
1154 
1155 	/*
1156 	 * __filemap_get_folio() can take a long time if the
1157 	 * system is thrashing due to memory pressure, or if the folio
1158 	 * is being written back.  So grab it first before we start
1159 	 * the transaction handle.  This also allows us to allocate
1160 	 * the folio (if needed) without using GFP_NOFS.
1161 	 */
1162 retry_grab:
1163 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1164 					mapping_gfp_mask(mapping));
1165 	if (IS_ERR(folio))
1166 		return PTR_ERR(folio);
1167 	/*
1168 	 * The same as page allocation, we prealloc buffer heads before
1169 	 * starting the handle.
1170 	 */
1171 	if (!folio_buffers(folio))
1172 		create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1173 
1174 	folio_unlock(folio);
1175 
1176 retry_journal:
1177 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1178 	if (IS_ERR(handle)) {
1179 		folio_put(folio);
1180 		return PTR_ERR(handle);
1181 	}
1182 
1183 	folio_lock(folio);
1184 	if (folio->mapping != mapping) {
1185 		/* The folio got truncated from under us */
1186 		folio_unlock(folio);
1187 		folio_put(folio);
1188 		ext4_journal_stop(handle);
1189 		goto retry_grab;
1190 	}
1191 	/* In case writeback began while the folio was unlocked */
1192 	folio_wait_stable(folio);
1193 
1194 #ifdef CONFIG_FS_ENCRYPTION
1195 	if (ext4_should_dioread_nolock(inode))
1196 		ret = ext4_block_write_begin(folio, pos, len,
1197 					     ext4_get_block_unwritten);
1198 	else
1199 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1200 #else
1201 	if (ext4_should_dioread_nolock(inode))
1202 		ret = __block_write_begin(&folio->page, pos, len,
1203 					  ext4_get_block_unwritten);
1204 	else
1205 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1206 #endif
1207 	if (!ret && ext4_should_journal_data(inode)) {
1208 		ret = ext4_walk_page_buffers(handle, inode,
1209 					     folio_buffers(folio), from, to,
1210 					     NULL, do_journal_get_write_access);
1211 	}
1212 
1213 	if (ret) {
1214 		bool extended = (pos + len > inode->i_size) &&
1215 				!ext4_verity_in_progress(inode);
1216 
1217 		folio_unlock(folio);
1218 		/*
1219 		 * __block_write_begin may have instantiated a few blocks
1220 		 * outside i_size.  Trim these off again. Don't need
1221 		 * i_size_read because we hold i_rwsem.
1222 		 *
1223 		 * Add inode to orphan list in case we crash before
1224 		 * truncate finishes
1225 		 */
1226 		if (extended && ext4_can_truncate(inode))
1227 			ext4_orphan_add(handle, inode);
1228 
1229 		ext4_journal_stop(handle);
1230 		if (extended) {
1231 			ext4_truncate_failed_write(inode);
1232 			/*
1233 			 * If truncate failed early the inode might
1234 			 * still be on the orphan list; we need to
1235 			 * make sure the inode is removed from the
1236 			 * orphan list in that case.
1237 			 */
1238 			if (inode->i_nlink)
1239 				ext4_orphan_del(NULL, inode);
1240 		}
1241 
1242 		if (ret == -ENOSPC &&
1243 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1244 			goto retry_journal;
1245 		folio_put(folio);
1246 		return ret;
1247 	}
1248 	*pagep = &folio->page;
1249 	return ret;
1250 }
1251 
1252 /* For write_end() in data=journal mode */
1253 static int write_end_fn(handle_t *handle, struct inode *inode,
1254 			struct buffer_head *bh)
1255 {
1256 	int ret;
1257 	if (!buffer_mapped(bh) || buffer_freed(bh))
1258 		return 0;
1259 	set_buffer_uptodate(bh);
1260 	ret = ext4_dirty_journalled_data(handle, bh);
1261 	clear_buffer_meta(bh);
1262 	clear_buffer_prio(bh);
1263 	return ret;
1264 }
1265 
1266 /*
1267  * We need to pick up the new inode size which generic_commit_write gave us
1268  * `file' can be NULL - eg, when called from page_symlink().
1269  *
1270  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1271  * buffers are managed internally.
1272  */
1273 static int ext4_write_end(struct file *file,
1274 			  struct address_space *mapping,
1275 			  loff_t pos, unsigned len, unsigned copied,
1276 			  struct page *page, void *fsdata)
1277 {
1278 	struct folio *folio = page_folio(page);
1279 	handle_t *handle = ext4_journal_current_handle();
1280 	struct inode *inode = mapping->host;
1281 	loff_t old_size = inode->i_size;
1282 	int ret = 0, ret2;
1283 	int i_size_changed = 0;
1284 	bool verity = ext4_verity_in_progress(inode);
1285 
1286 	trace_ext4_write_end(inode, pos, len, copied);
1287 
1288 	if (ext4_has_inline_data(inode) &&
1289 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1290 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1291 
1292 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1293 	/*
1294 	 * it's important to update i_size while still holding folio lock:
1295 	 * page writeout could otherwise come in and zero beyond i_size.
1296 	 *
1297 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1298 	 * blocks are being written past EOF, so skip the i_size update.
1299 	 */
1300 	if (!verity)
1301 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1302 	folio_unlock(folio);
1303 	folio_put(folio);
1304 
1305 	if (old_size < pos && !verity)
1306 		pagecache_isize_extended(inode, old_size, pos);
1307 	/*
1308 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1309 	 * makes the holding time of folio lock longer. Second, it forces lock
1310 	 * ordering of folio lock and transaction start for journaling
1311 	 * filesystems.
1312 	 */
1313 	if (i_size_changed)
1314 		ret = ext4_mark_inode_dirty(handle, inode);
1315 
1316 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1317 		/* if we have allocated more blocks and copied
1318 		 * less. We will have blocks allocated outside
1319 		 * inode->i_size. So truncate them
1320 		 */
1321 		ext4_orphan_add(handle, inode);
1322 
1323 	ret2 = ext4_journal_stop(handle);
1324 	if (!ret)
1325 		ret = ret2;
1326 
1327 	if (pos + len > inode->i_size && !verity) {
1328 		ext4_truncate_failed_write(inode);
1329 		/*
1330 		 * If truncate failed early the inode might still be
1331 		 * on the orphan list; we need to make sure the inode
1332 		 * is removed from the orphan list in that case.
1333 		 */
1334 		if (inode->i_nlink)
1335 			ext4_orphan_del(NULL, inode);
1336 	}
1337 
1338 	return ret ? ret : copied;
1339 }
1340 
1341 /*
1342  * This is a private version of page_zero_new_buffers() which doesn't
1343  * set the buffer to be dirty, since in data=journalled mode we need
1344  * to call ext4_dirty_journalled_data() instead.
1345  */
1346 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1347 					    struct inode *inode,
1348 					    struct folio *folio,
1349 					    unsigned from, unsigned to)
1350 {
1351 	unsigned int block_start = 0, block_end;
1352 	struct buffer_head *head, *bh;
1353 
1354 	bh = head = folio_buffers(folio);
1355 	do {
1356 		block_end = block_start + bh->b_size;
1357 		if (buffer_new(bh)) {
1358 			if (block_end > from && block_start < to) {
1359 				if (!folio_test_uptodate(folio)) {
1360 					unsigned start, size;
1361 
1362 					start = max(from, block_start);
1363 					size = min(to, block_end) - start;
1364 
1365 					folio_zero_range(folio, start, size);
1366 					write_end_fn(handle, inode, bh);
1367 				}
1368 				clear_buffer_new(bh);
1369 			}
1370 		}
1371 		block_start = block_end;
1372 		bh = bh->b_this_page;
1373 	} while (bh != head);
1374 }
1375 
1376 static int ext4_journalled_write_end(struct file *file,
1377 				     struct address_space *mapping,
1378 				     loff_t pos, unsigned len, unsigned copied,
1379 				     struct page *page, void *fsdata)
1380 {
1381 	struct folio *folio = page_folio(page);
1382 	handle_t *handle = ext4_journal_current_handle();
1383 	struct inode *inode = mapping->host;
1384 	loff_t old_size = inode->i_size;
1385 	int ret = 0, ret2;
1386 	int partial = 0;
1387 	unsigned from, to;
1388 	int size_changed = 0;
1389 	bool verity = ext4_verity_in_progress(inode);
1390 
1391 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1392 	from = pos & (PAGE_SIZE - 1);
1393 	to = from + len;
1394 
1395 	BUG_ON(!ext4_handle_valid(handle));
1396 
1397 	if (ext4_has_inline_data(inode))
1398 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1399 
1400 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1401 		copied = 0;
1402 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1403 						 from, to);
1404 	} else {
1405 		if (unlikely(copied < len))
1406 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1407 							 from + copied, to);
1408 		ret = ext4_walk_page_buffers(handle, inode,
1409 					     folio_buffers(folio),
1410 					     from, from + copied, &partial,
1411 					     write_end_fn);
1412 		if (!partial)
1413 			folio_mark_uptodate(folio);
1414 	}
1415 	if (!verity)
1416 		size_changed = ext4_update_inode_size(inode, pos + copied);
1417 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418 	folio_unlock(folio);
1419 	folio_put(folio);
1420 
1421 	if (old_size < pos && !verity)
1422 		pagecache_isize_extended(inode, old_size, pos);
1423 
1424 	if (size_changed) {
1425 		ret2 = ext4_mark_inode_dirty(handle, inode);
1426 		if (!ret)
1427 			ret = ret2;
1428 	}
1429 
1430 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431 		/* if we have allocated more blocks and copied
1432 		 * less. We will have blocks allocated outside
1433 		 * inode->i_size. So truncate them
1434 		 */
1435 		ext4_orphan_add(handle, inode);
1436 
1437 	ret2 = ext4_journal_stop(handle);
1438 	if (!ret)
1439 		ret = ret2;
1440 	if (pos + len > inode->i_size && !verity) {
1441 		ext4_truncate_failed_write(inode);
1442 		/*
1443 		 * If truncate failed early the inode might still be
1444 		 * on the orphan list; we need to make sure the inode
1445 		 * is removed from the orphan list in that case.
1446 		 */
1447 		if (inode->i_nlink)
1448 			ext4_orphan_del(NULL, inode);
1449 	}
1450 
1451 	return ret ? ret : copied;
1452 }
1453 
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460 	struct ext4_inode_info *ei = EXT4_I(inode);
1461 	int ret;
1462 
1463 	/*
1464 	 * We will charge metadata quota at writeout time; this saves
1465 	 * us from metadata over-estimation, though we may go over by
1466 	 * a small amount in the end.  Here we just reserve for data.
1467 	 */
1468 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469 	if (ret)
1470 		return ret;
1471 
1472 	spin_lock(&ei->i_block_reservation_lock);
1473 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474 		spin_unlock(&ei->i_block_reservation_lock);
1475 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476 		return -ENOSPC;
1477 	}
1478 	ei->i_reserved_data_blocks++;
1479 	trace_ext4_da_reserve_space(inode);
1480 	spin_unlock(&ei->i_block_reservation_lock);
1481 
1482 	return 0;       /* success */
1483 }
1484 
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 	struct ext4_inode_info *ei = EXT4_I(inode);
1489 
1490 	if (!to_free)
1491 		return;		/* Nothing to release, exit */
1492 
1493 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494 
1495 	trace_ext4_da_release_space(inode, to_free);
1496 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497 		/*
1498 		 * if there aren't enough reserved blocks, then the
1499 		 * counter is messed up somewhere.  Since this
1500 		 * function is called from invalidate page, it's
1501 		 * harmless to return without any action.
1502 		 */
1503 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504 			 "ino %lu, to_free %d with only %d reserved "
1505 			 "data blocks", inode->i_ino, to_free,
1506 			 ei->i_reserved_data_blocks);
1507 		WARN_ON(1);
1508 		to_free = ei->i_reserved_data_blocks;
1509 	}
1510 	ei->i_reserved_data_blocks -= to_free;
1511 
1512 	/* update fs dirty data blocks counter */
1513 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514 
1515 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516 
1517 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519 
1520 /*
1521  * Delayed allocation stuff
1522  */
1523 
1524 struct mpage_da_data {
1525 	/* These are input fields for ext4_do_writepages() */
1526 	struct inode *inode;
1527 	struct writeback_control *wbc;
1528 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1529 
1530 	/* These are internal state of ext4_do_writepages() */
1531 	pgoff_t first_page;	/* The first page to write */
1532 	pgoff_t next_page;	/* Current page to examine */
1533 	pgoff_t last_page;	/* Last page to examine */
1534 	/*
1535 	 * Extent to map - this can be after first_page because that can be
1536 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1537 	 * is delalloc or unwritten.
1538 	 */
1539 	struct ext4_map_blocks map;
1540 	struct ext4_io_submit io_submit;	/* IO submission data */
1541 	unsigned int do_map:1;
1542 	unsigned int scanned_until_end:1;
1543 	unsigned int journalled_more_data:1;
1544 };
1545 
1546 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1547 				       bool invalidate)
1548 {
1549 	unsigned nr, i;
1550 	pgoff_t index, end;
1551 	struct folio_batch fbatch;
1552 	struct inode *inode = mpd->inode;
1553 	struct address_space *mapping = inode->i_mapping;
1554 
1555 	/* This is necessary when next_page == 0. */
1556 	if (mpd->first_page >= mpd->next_page)
1557 		return;
1558 
1559 	mpd->scanned_until_end = 0;
1560 	index = mpd->first_page;
1561 	end   = mpd->next_page - 1;
1562 	if (invalidate) {
1563 		ext4_lblk_t start, last;
1564 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1565 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1566 
1567 		/*
1568 		 * avoid racing with extent status tree scans made by
1569 		 * ext4_insert_delayed_block()
1570 		 */
1571 		down_write(&EXT4_I(inode)->i_data_sem);
1572 		ext4_es_remove_extent(inode, start, last - start + 1);
1573 		up_write(&EXT4_I(inode)->i_data_sem);
1574 	}
1575 
1576 	folio_batch_init(&fbatch);
1577 	while (index <= end) {
1578 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1579 		if (nr == 0)
1580 			break;
1581 		for (i = 0; i < nr; i++) {
1582 			struct folio *folio = fbatch.folios[i];
1583 
1584 			if (folio->index < mpd->first_page)
1585 				continue;
1586 			if (folio->index + folio_nr_pages(folio) - 1 > end)
1587 				continue;
1588 			BUG_ON(!folio_test_locked(folio));
1589 			BUG_ON(folio_test_writeback(folio));
1590 			if (invalidate) {
1591 				if (folio_mapped(folio))
1592 					folio_clear_dirty_for_io(folio);
1593 				block_invalidate_folio(folio, 0,
1594 						folio_size(folio));
1595 				folio_clear_uptodate(folio);
1596 			}
1597 			folio_unlock(folio);
1598 		}
1599 		folio_batch_release(&fbatch);
1600 	}
1601 }
1602 
1603 static void ext4_print_free_blocks(struct inode *inode)
1604 {
1605 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606 	struct super_block *sb = inode->i_sb;
1607 	struct ext4_inode_info *ei = EXT4_I(inode);
1608 
1609 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1611 			ext4_count_free_clusters(sb)));
1612 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614 	       (long long) EXT4_C2B(EXT4_SB(sb),
1615 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617 	       (long long) EXT4_C2B(EXT4_SB(sb),
1618 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621 		 ei->i_reserved_data_blocks);
1622 	return;
1623 }
1624 
1625 /*
1626  * ext4_insert_delayed_block - adds a delayed block to the extents status
1627  *                             tree, incrementing the reserved cluster/block
1628  *                             count or making a pending reservation
1629  *                             where needed
1630  *
1631  * @inode - file containing the newly added block
1632  * @lblk - logical block to be added
1633  *
1634  * Returns 0 on success, negative error code on failure.
1635  */
1636 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1637 {
1638 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1639 	int ret;
1640 	bool allocated = false;
1641 	bool reserved = false;
1642 
1643 	/*
1644 	 * If the cluster containing lblk is shared with a delayed,
1645 	 * written, or unwritten extent in a bigalloc file system, it's
1646 	 * already been accounted for and does not need to be reserved.
1647 	 * A pending reservation must be made for the cluster if it's
1648 	 * shared with a written or unwritten extent and doesn't already
1649 	 * have one.  Written and unwritten extents can be purged from the
1650 	 * extents status tree if the system is under memory pressure, so
1651 	 * it's necessary to examine the extent tree if a search of the
1652 	 * extents status tree doesn't get a match.
1653 	 */
1654 	if (sbi->s_cluster_ratio == 1) {
1655 		ret = ext4_da_reserve_space(inode);
1656 		if (ret != 0)   /* ENOSPC */
1657 			goto errout;
1658 		reserved = true;
1659 	} else {   /* bigalloc */
1660 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1661 			if (!ext4_es_scan_clu(inode,
1662 					      &ext4_es_is_mapped, lblk)) {
1663 				ret = ext4_clu_mapped(inode,
1664 						      EXT4_B2C(sbi, lblk));
1665 				if (ret < 0)
1666 					goto errout;
1667 				if (ret == 0) {
1668 					ret = ext4_da_reserve_space(inode);
1669 					if (ret != 0)   /* ENOSPC */
1670 						goto errout;
1671 					reserved = true;
1672 				} else {
1673 					allocated = true;
1674 				}
1675 			} else {
1676 				allocated = true;
1677 			}
1678 		}
1679 	}
1680 
1681 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1682 	if (ret && reserved)
1683 		ext4_da_release_space(inode, 1);
1684 
1685 errout:
1686 	return ret;
1687 }
1688 
1689 /*
1690  * This function is grabs code from the very beginning of
1691  * ext4_map_blocks, but assumes that the caller is from delayed write
1692  * time. This function looks up the requested blocks and sets the
1693  * buffer delay bit under the protection of i_data_sem.
1694  */
1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1696 			      struct ext4_map_blocks *map,
1697 			      struct buffer_head *bh)
1698 {
1699 	struct extent_status es;
1700 	int retval;
1701 	sector_t invalid_block = ~((sector_t) 0xffff);
1702 #ifdef ES_AGGRESSIVE_TEST
1703 	struct ext4_map_blocks orig_map;
1704 
1705 	memcpy(&orig_map, map, sizeof(*map));
1706 #endif
1707 
1708 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1709 		invalid_block = ~0;
1710 
1711 	map->m_flags = 0;
1712 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1713 		  (unsigned long) map->m_lblk);
1714 
1715 	/* Lookup extent status tree firstly */
1716 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1717 		if (ext4_es_is_hole(&es)) {
1718 			retval = 0;
1719 			down_read(&EXT4_I(inode)->i_data_sem);
1720 			goto add_delayed;
1721 		}
1722 
1723 		/*
1724 		 * Delayed extent could be allocated by fallocate.
1725 		 * So we need to check it.
1726 		 */
1727 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1728 			map_bh(bh, inode->i_sb, invalid_block);
1729 			set_buffer_new(bh);
1730 			set_buffer_delay(bh);
1731 			return 0;
1732 		}
1733 
1734 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1735 		retval = es.es_len - (iblock - es.es_lblk);
1736 		if (retval > map->m_len)
1737 			retval = map->m_len;
1738 		map->m_len = retval;
1739 		if (ext4_es_is_written(&es))
1740 			map->m_flags |= EXT4_MAP_MAPPED;
1741 		else if (ext4_es_is_unwritten(&es))
1742 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1743 		else
1744 			BUG();
1745 
1746 #ifdef ES_AGGRESSIVE_TEST
1747 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1748 #endif
1749 		return retval;
1750 	}
1751 
1752 	/*
1753 	 * Try to see if we can get the block without requesting a new
1754 	 * file system block.
1755 	 */
1756 	down_read(&EXT4_I(inode)->i_data_sem);
1757 	if (ext4_has_inline_data(inode))
1758 		retval = 0;
1759 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1760 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1761 	else
1762 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1763 
1764 add_delayed:
1765 	if (retval == 0) {
1766 		int ret;
1767 
1768 		/*
1769 		 * XXX: __block_prepare_write() unmaps passed block,
1770 		 * is it OK?
1771 		 */
1772 
1773 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1774 		if (ret != 0) {
1775 			retval = ret;
1776 			goto out_unlock;
1777 		}
1778 
1779 		map_bh(bh, inode->i_sb, invalid_block);
1780 		set_buffer_new(bh);
1781 		set_buffer_delay(bh);
1782 	} else if (retval > 0) {
1783 		int ret;
1784 		unsigned int status;
1785 
1786 		if (unlikely(retval != map->m_len)) {
1787 			ext4_warning(inode->i_sb,
1788 				     "ES len assertion failed for inode "
1789 				     "%lu: retval %d != map->m_len %d",
1790 				     inode->i_ino, retval, map->m_len);
1791 			WARN_ON(1);
1792 		}
1793 
1794 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797 					    map->m_pblk, status);
1798 		if (ret != 0)
1799 			retval = ret;
1800 	}
1801 
1802 out_unlock:
1803 	up_read((&EXT4_I(inode)->i_data_sem));
1804 
1805 	return retval;
1806 }
1807 
1808 /*
1809  * This is a special get_block_t callback which is used by
1810  * ext4_da_write_begin().  It will either return mapped block or
1811  * reserve space for a single block.
1812  *
1813  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814  * We also have b_blocknr = -1 and b_bdev initialized properly
1815  *
1816  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818  * initialized properly.
1819  */
1820 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821 			   struct buffer_head *bh, int create)
1822 {
1823 	struct ext4_map_blocks map;
1824 	int ret = 0;
1825 
1826 	BUG_ON(create == 0);
1827 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828 
1829 	map.m_lblk = iblock;
1830 	map.m_len = 1;
1831 
1832 	/*
1833 	 * first, we need to know whether the block is allocated already
1834 	 * preallocated blocks are unmapped but should treated
1835 	 * the same as allocated blocks.
1836 	 */
1837 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838 	if (ret <= 0)
1839 		return ret;
1840 
1841 	map_bh(bh, inode->i_sb, map.m_pblk);
1842 	ext4_update_bh_state(bh, map.m_flags);
1843 
1844 	if (buffer_unwritten(bh)) {
1845 		/* A delayed write to unwritten bh should be marked
1846 		 * new and mapped.  Mapped ensures that we don't do
1847 		 * get_block multiple times when we write to the same
1848 		 * offset and new ensures that we do proper zero out
1849 		 * for partial write.
1850 		 */
1851 		set_buffer_new(bh);
1852 		set_buffer_mapped(bh);
1853 	}
1854 	return 0;
1855 }
1856 
1857 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1858 {
1859 	mpd->first_page += folio_nr_pages(folio);
1860 	folio_unlock(folio);
1861 }
1862 
1863 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1864 {
1865 	size_t len;
1866 	loff_t size;
1867 	int err;
1868 
1869 	BUG_ON(folio->index != mpd->first_page);
1870 	folio_clear_dirty_for_io(folio);
1871 	/*
1872 	 * We have to be very careful here!  Nothing protects writeback path
1873 	 * against i_size changes and the page can be writeably mapped into
1874 	 * page tables. So an application can be growing i_size and writing
1875 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1876 	 * write-protects our page in page tables and the page cannot get
1877 	 * written to again until we release folio lock. So only after
1878 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1879 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1880 	 * on the barrier provided by folio_test_clear_dirty() in
1881 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1882 	 * after page tables are updated.
1883 	 */
1884 	size = i_size_read(mpd->inode);
1885 	len = folio_size(folio);
1886 	if (folio_pos(folio) + len > size &&
1887 	    !ext4_verity_in_progress(mpd->inode))
1888 		len = size & ~PAGE_MASK;
1889 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1890 	if (!err)
1891 		mpd->wbc->nr_to_write--;
1892 
1893 	return err;
1894 }
1895 
1896 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1897 
1898 /*
1899  * mballoc gives us at most this number of blocks...
1900  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1901  * The rest of mballoc seems to handle chunks up to full group size.
1902  */
1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1904 
1905 /*
1906  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1907  *
1908  * @mpd - extent of blocks
1909  * @lblk - logical number of the block in the file
1910  * @bh - buffer head we want to add to the extent
1911  *
1912  * The function is used to collect contig. blocks in the same state. If the
1913  * buffer doesn't require mapping for writeback and we haven't started the
1914  * extent of buffers to map yet, the function returns 'true' immediately - the
1915  * caller can write the buffer right away. Otherwise the function returns true
1916  * if the block has been added to the extent, false if the block couldn't be
1917  * added.
1918  */
1919 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1920 				   struct buffer_head *bh)
1921 {
1922 	struct ext4_map_blocks *map = &mpd->map;
1923 
1924 	/* Buffer that doesn't need mapping for writeback? */
1925 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1926 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1927 		/* So far no extent to map => we write the buffer right away */
1928 		if (map->m_len == 0)
1929 			return true;
1930 		return false;
1931 	}
1932 
1933 	/* First block in the extent? */
1934 	if (map->m_len == 0) {
1935 		/* We cannot map unless handle is started... */
1936 		if (!mpd->do_map)
1937 			return false;
1938 		map->m_lblk = lblk;
1939 		map->m_len = 1;
1940 		map->m_flags = bh->b_state & BH_FLAGS;
1941 		return true;
1942 	}
1943 
1944 	/* Don't go larger than mballoc is willing to allocate */
1945 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1946 		return false;
1947 
1948 	/* Can we merge the block to our big extent? */
1949 	if (lblk == map->m_lblk + map->m_len &&
1950 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1951 		map->m_len++;
1952 		return true;
1953 	}
1954 	return false;
1955 }
1956 
1957 /*
1958  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1959  *
1960  * @mpd - extent of blocks for mapping
1961  * @head - the first buffer in the page
1962  * @bh - buffer we should start processing from
1963  * @lblk - logical number of the block in the file corresponding to @bh
1964  *
1965  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1966  * the page for IO if all buffers in this page were mapped and there's no
1967  * accumulated extent of buffers to map or add buffers in the page to the
1968  * extent of buffers to map. The function returns 1 if the caller can continue
1969  * by processing the next page, 0 if it should stop adding buffers to the
1970  * extent to map because we cannot extend it anymore. It can also return value
1971  * < 0 in case of error during IO submission.
1972  */
1973 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1974 				   struct buffer_head *head,
1975 				   struct buffer_head *bh,
1976 				   ext4_lblk_t lblk)
1977 {
1978 	struct inode *inode = mpd->inode;
1979 	int err;
1980 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1981 							>> inode->i_blkbits;
1982 
1983 	if (ext4_verity_in_progress(inode))
1984 		blocks = EXT_MAX_BLOCKS;
1985 
1986 	do {
1987 		BUG_ON(buffer_locked(bh));
1988 
1989 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1990 			/* Found extent to map? */
1991 			if (mpd->map.m_len)
1992 				return 0;
1993 			/* Buffer needs mapping and handle is not started? */
1994 			if (!mpd->do_map)
1995 				return 0;
1996 			/* Everything mapped so far and we hit EOF */
1997 			break;
1998 		}
1999 	} while (lblk++, (bh = bh->b_this_page) != head);
2000 	/* So far everything mapped? Submit the page for IO. */
2001 	if (mpd->map.m_len == 0) {
2002 		err = mpage_submit_folio(mpd, head->b_folio);
2003 		if (err < 0)
2004 			return err;
2005 		mpage_folio_done(mpd, head->b_folio);
2006 	}
2007 	if (lblk >= blocks) {
2008 		mpd->scanned_until_end = 1;
2009 		return 0;
2010 	}
2011 	return 1;
2012 }
2013 
2014 /*
2015  * mpage_process_folio - update folio buffers corresponding to changed extent
2016  *			 and may submit fully mapped page for IO
2017  * @mpd: description of extent to map, on return next extent to map
2018  * @folio: Contains these buffers.
2019  * @m_lblk: logical block mapping.
2020  * @m_pblk: corresponding physical mapping.
2021  * @map_bh: determines on return whether this page requires any further
2022  *		  mapping or not.
2023  *
2024  * Scan given folio buffers corresponding to changed extent and update buffer
2025  * state according to new extent state.
2026  * We map delalloc buffers to their physical location, clear unwritten bits.
2027  * If the given folio is not fully mapped, we update @mpd to the next extent in
2028  * the given folio that needs mapping & return @map_bh as true.
2029  */
2030 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2031 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2032 			      bool *map_bh)
2033 {
2034 	struct buffer_head *head, *bh;
2035 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2036 	ext4_lblk_t lblk = *m_lblk;
2037 	ext4_fsblk_t pblock = *m_pblk;
2038 	int err = 0;
2039 	int blkbits = mpd->inode->i_blkbits;
2040 	ssize_t io_end_size = 0;
2041 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2042 
2043 	bh = head = folio_buffers(folio);
2044 	do {
2045 		if (lblk < mpd->map.m_lblk)
2046 			continue;
2047 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2048 			/*
2049 			 * Buffer after end of mapped extent.
2050 			 * Find next buffer in the folio to map.
2051 			 */
2052 			mpd->map.m_len = 0;
2053 			mpd->map.m_flags = 0;
2054 			io_end_vec->size += io_end_size;
2055 
2056 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2057 			if (err > 0)
2058 				err = 0;
2059 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2060 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2061 				if (IS_ERR(io_end_vec)) {
2062 					err = PTR_ERR(io_end_vec);
2063 					goto out;
2064 				}
2065 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2066 			}
2067 			*map_bh = true;
2068 			goto out;
2069 		}
2070 		if (buffer_delay(bh)) {
2071 			clear_buffer_delay(bh);
2072 			bh->b_blocknr = pblock++;
2073 		}
2074 		clear_buffer_unwritten(bh);
2075 		io_end_size += (1 << blkbits);
2076 	} while (lblk++, (bh = bh->b_this_page) != head);
2077 
2078 	io_end_vec->size += io_end_size;
2079 	*map_bh = false;
2080 out:
2081 	*m_lblk = lblk;
2082 	*m_pblk = pblock;
2083 	return err;
2084 }
2085 
2086 /*
2087  * mpage_map_buffers - update buffers corresponding to changed extent and
2088  *		       submit fully mapped pages for IO
2089  *
2090  * @mpd - description of extent to map, on return next extent to map
2091  *
2092  * Scan buffers corresponding to changed extent (we expect corresponding pages
2093  * to be already locked) and update buffer state according to new extent state.
2094  * We map delalloc buffers to their physical location, clear unwritten bits,
2095  * and mark buffers as uninit when we perform writes to unwritten extents
2096  * and do extent conversion after IO is finished. If the last page is not fully
2097  * mapped, we update @map to the next extent in the last page that needs
2098  * mapping. Otherwise we submit the page for IO.
2099  */
2100 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2101 {
2102 	struct folio_batch fbatch;
2103 	unsigned nr, i;
2104 	struct inode *inode = mpd->inode;
2105 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2106 	pgoff_t start, end;
2107 	ext4_lblk_t lblk;
2108 	ext4_fsblk_t pblock;
2109 	int err;
2110 	bool map_bh = false;
2111 
2112 	start = mpd->map.m_lblk >> bpp_bits;
2113 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2114 	lblk = start << bpp_bits;
2115 	pblock = mpd->map.m_pblk;
2116 
2117 	folio_batch_init(&fbatch);
2118 	while (start <= end) {
2119 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2120 		if (nr == 0)
2121 			break;
2122 		for (i = 0; i < nr; i++) {
2123 			struct folio *folio = fbatch.folios[i];
2124 
2125 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2126 						 &map_bh);
2127 			/*
2128 			 * If map_bh is true, means page may require further bh
2129 			 * mapping, or maybe the page was submitted for IO.
2130 			 * So we return to call further extent mapping.
2131 			 */
2132 			if (err < 0 || map_bh)
2133 				goto out;
2134 			/* Page fully mapped - let IO run! */
2135 			err = mpage_submit_folio(mpd, folio);
2136 			if (err < 0)
2137 				goto out;
2138 			mpage_folio_done(mpd, folio);
2139 		}
2140 		folio_batch_release(&fbatch);
2141 	}
2142 	/* Extent fully mapped and matches with page boundary. We are done. */
2143 	mpd->map.m_len = 0;
2144 	mpd->map.m_flags = 0;
2145 	return 0;
2146 out:
2147 	folio_batch_release(&fbatch);
2148 	return err;
2149 }
2150 
2151 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2152 {
2153 	struct inode *inode = mpd->inode;
2154 	struct ext4_map_blocks *map = &mpd->map;
2155 	int get_blocks_flags;
2156 	int err, dioread_nolock;
2157 
2158 	trace_ext4_da_write_pages_extent(inode, map);
2159 	/*
2160 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2161 	 * to convert an unwritten extent to be initialized (in the case
2162 	 * where we have written into one or more preallocated blocks).  It is
2163 	 * possible that we're going to need more metadata blocks than
2164 	 * previously reserved. However we must not fail because we're in
2165 	 * writeback and there is nothing we can do about it so it might result
2166 	 * in data loss.  So use reserved blocks to allocate metadata if
2167 	 * possible.
2168 	 *
2169 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2170 	 * the blocks in question are delalloc blocks.  This indicates
2171 	 * that the blocks and quotas has already been checked when
2172 	 * the data was copied into the page cache.
2173 	 */
2174 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2175 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2176 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2177 	dioread_nolock = ext4_should_dioread_nolock(inode);
2178 	if (dioread_nolock)
2179 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2180 	if (map->m_flags & BIT(BH_Delay))
2181 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2182 
2183 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2184 	if (err < 0)
2185 		return err;
2186 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2187 		if (!mpd->io_submit.io_end->handle &&
2188 		    ext4_handle_valid(handle)) {
2189 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2190 			handle->h_rsv_handle = NULL;
2191 		}
2192 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2193 	}
2194 
2195 	BUG_ON(map->m_len == 0);
2196 	return 0;
2197 }
2198 
2199 /*
2200  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2201  *				 mpd->len and submit pages underlying it for IO
2202  *
2203  * @handle - handle for journal operations
2204  * @mpd - extent to map
2205  * @give_up_on_write - we set this to true iff there is a fatal error and there
2206  *                     is no hope of writing the data. The caller should discard
2207  *                     dirty pages to avoid infinite loops.
2208  *
2209  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2210  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2211  * them to initialized or split the described range from larger unwritten
2212  * extent. Note that we need not map all the described range since allocation
2213  * can return less blocks or the range is covered by more unwritten extents. We
2214  * cannot map more because we are limited by reserved transaction credits. On
2215  * the other hand we always make sure that the last touched page is fully
2216  * mapped so that it can be written out (and thus forward progress is
2217  * guaranteed). After mapping we submit all mapped pages for IO.
2218  */
2219 static int mpage_map_and_submit_extent(handle_t *handle,
2220 				       struct mpage_da_data *mpd,
2221 				       bool *give_up_on_write)
2222 {
2223 	struct inode *inode = mpd->inode;
2224 	struct ext4_map_blocks *map = &mpd->map;
2225 	int err;
2226 	loff_t disksize;
2227 	int progress = 0;
2228 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2229 	struct ext4_io_end_vec *io_end_vec;
2230 
2231 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2232 	if (IS_ERR(io_end_vec))
2233 		return PTR_ERR(io_end_vec);
2234 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2235 	do {
2236 		err = mpage_map_one_extent(handle, mpd);
2237 		if (err < 0) {
2238 			struct super_block *sb = inode->i_sb;
2239 
2240 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2241 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2242 				goto invalidate_dirty_pages;
2243 			/*
2244 			 * Let the uper layers retry transient errors.
2245 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2246 			 * is non-zero, a commit should free up blocks.
2247 			 */
2248 			if ((err == -ENOMEM) ||
2249 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2250 				if (progress)
2251 					goto update_disksize;
2252 				return err;
2253 			}
2254 			ext4_msg(sb, KERN_CRIT,
2255 				 "Delayed block allocation failed for "
2256 				 "inode %lu at logical offset %llu with"
2257 				 " max blocks %u with error %d",
2258 				 inode->i_ino,
2259 				 (unsigned long long)map->m_lblk,
2260 				 (unsigned)map->m_len, -err);
2261 			ext4_msg(sb, KERN_CRIT,
2262 				 "This should not happen!! Data will "
2263 				 "be lost\n");
2264 			if (err == -ENOSPC)
2265 				ext4_print_free_blocks(inode);
2266 		invalidate_dirty_pages:
2267 			*give_up_on_write = true;
2268 			return err;
2269 		}
2270 		progress = 1;
2271 		/*
2272 		 * Update buffer state, submit mapped pages, and get us new
2273 		 * extent to map
2274 		 */
2275 		err = mpage_map_and_submit_buffers(mpd);
2276 		if (err < 0)
2277 			goto update_disksize;
2278 	} while (map->m_len);
2279 
2280 update_disksize:
2281 	/*
2282 	 * Update on-disk size after IO is submitted.  Races with
2283 	 * truncate are avoided by checking i_size under i_data_sem.
2284 	 */
2285 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2286 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2287 		int err2;
2288 		loff_t i_size;
2289 
2290 		down_write(&EXT4_I(inode)->i_data_sem);
2291 		i_size = i_size_read(inode);
2292 		if (disksize > i_size)
2293 			disksize = i_size;
2294 		if (disksize > EXT4_I(inode)->i_disksize)
2295 			EXT4_I(inode)->i_disksize = disksize;
2296 		up_write(&EXT4_I(inode)->i_data_sem);
2297 		err2 = ext4_mark_inode_dirty(handle, inode);
2298 		if (err2) {
2299 			ext4_error_err(inode->i_sb, -err2,
2300 				       "Failed to mark inode %lu dirty",
2301 				       inode->i_ino);
2302 		}
2303 		if (!err)
2304 			err = err2;
2305 	}
2306 	return err;
2307 }
2308 
2309 /*
2310  * Calculate the total number of credits to reserve for one writepages
2311  * iteration. This is called from ext4_writepages(). We map an extent of
2312  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2313  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2314  * bpp - 1 blocks in bpp different extents.
2315  */
2316 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2317 {
2318 	int bpp = ext4_journal_blocks_per_page(inode);
2319 
2320 	return ext4_meta_trans_blocks(inode,
2321 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2322 }
2323 
2324 static int ext4_journal_page_buffers(handle_t *handle, struct page *page,
2325 				     int len)
2326 {
2327 	struct buffer_head *page_bufs = page_buffers(page);
2328 	struct inode *inode = page->mapping->host;
2329 	int ret, err;
2330 
2331 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2332 				     NULL, do_journal_get_write_access);
2333 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2334 				     NULL, write_end_fn);
2335 	if (ret == 0)
2336 		ret = err;
2337 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
2338 	if (ret == 0)
2339 		ret = err;
2340 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2341 
2342 	return ret;
2343 }
2344 
2345 static int mpage_journal_page_buffers(handle_t *handle,
2346 				      struct mpage_da_data *mpd,
2347 				      struct page *page)
2348 {
2349 	struct inode *inode = mpd->inode;
2350 	loff_t size = i_size_read(inode);
2351 	int len;
2352 
2353 	ClearPageChecked(page);
2354 	mpd->wbc->nr_to_write--;
2355 
2356 	if (page->index == size >> PAGE_SHIFT &&
2357 	    !ext4_verity_in_progress(inode))
2358 		len = size & ~PAGE_MASK;
2359 	else
2360 		len = PAGE_SIZE;
2361 
2362 	return ext4_journal_page_buffers(handle, page, len);
2363 }
2364 
2365 /*
2366  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2367  * 				 needing mapping, submit mapped pages
2368  *
2369  * @mpd - where to look for pages
2370  *
2371  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2372  * IO immediately. If we cannot map blocks, we submit just already mapped
2373  * buffers in the page for IO and keep page dirty. When we can map blocks and
2374  * we find a page which isn't mapped we start accumulating extent of buffers
2375  * underlying these pages that needs mapping (formed by either delayed or
2376  * unwritten buffers). We also lock the pages containing these buffers. The
2377  * extent found is returned in @mpd structure (starting at mpd->lblk with
2378  * length mpd->len blocks).
2379  *
2380  * Note that this function can attach bios to one io_end structure which are
2381  * neither logically nor physically contiguous. Although it may seem as an
2382  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2383  * case as we need to track IO to all buffers underlying a page in one io_end.
2384  */
2385 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2386 {
2387 	struct address_space *mapping = mpd->inode->i_mapping;
2388 	struct folio_batch fbatch;
2389 	unsigned int nr_folios;
2390 	pgoff_t index = mpd->first_page;
2391 	pgoff_t end = mpd->last_page;
2392 	xa_mark_t tag;
2393 	int i, err = 0;
2394 	int blkbits = mpd->inode->i_blkbits;
2395 	ext4_lblk_t lblk;
2396 	struct buffer_head *head;
2397 	handle_t *handle = NULL;
2398 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2399 
2400 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2401 		tag = PAGECACHE_TAG_TOWRITE;
2402 	else
2403 		tag = PAGECACHE_TAG_DIRTY;
2404 
2405 	mpd->map.m_len = 0;
2406 	mpd->next_page = index;
2407 	if (ext4_should_journal_data(mpd->inode)) {
2408 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2409 					    bpp);
2410 		if (IS_ERR(handle))
2411 			return PTR_ERR(handle);
2412 	}
2413 	folio_batch_init(&fbatch);
2414 	while (index <= end) {
2415 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2416 				tag, &fbatch);
2417 		if (nr_folios == 0)
2418 			break;
2419 
2420 		for (i = 0; i < nr_folios; i++) {
2421 			struct folio *folio = fbatch.folios[i];
2422 
2423 			/*
2424 			 * Accumulated enough dirty pages? This doesn't apply
2425 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2426 			 * keep going because someone may be concurrently
2427 			 * dirtying pages, and we might have synced a lot of
2428 			 * newly appeared dirty pages, but have not synced all
2429 			 * of the old dirty pages.
2430 			 */
2431 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2432 			    mpd->wbc->nr_to_write <=
2433 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2434 				goto out;
2435 
2436 			/* If we can't merge this page, we are done. */
2437 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2438 				goto out;
2439 
2440 			if (handle) {
2441 				err = ext4_journal_ensure_credits(handle, bpp,
2442 								  0);
2443 				if (err < 0)
2444 					goto out;
2445 			}
2446 
2447 			folio_lock(folio);
2448 			/*
2449 			 * If the page is no longer dirty, or its mapping no
2450 			 * longer corresponds to inode we are writing (which
2451 			 * means it has been truncated or invalidated), or the
2452 			 * page is already under writeback and we are not doing
2453 			 * a data integrity writeback, skip the page
2454 			 */
2455 			if (!folio_test_dirty(folio) ||
2456 			    (folio_test_writeback(folio) &&
2457 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2458 			    unlikely(folio->mapping != mapping)) {
2459 				folio_unlock(folio);
2460 				continue;
2461 			}
2462 
2463 			folio_wait_writeback(folio);
2464 			BUG_ON(folio_test_writeback(folio));
2465 
2466 			/*
2467 			 * Should never happen but for buggy code in
2468 			 * other subsystems that call
2469 			 * set_page_dirty() without properly warning
2470 			 * the file system first.  See [1] for more
2471 			 * information.
2472 			 *
2473 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2474 			 */
2475 			if (!folio_buffers(folio)) {
2476 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2477 				folio_clear_dirty(folio);
2478 				folio_unlock(folio);
2479 				continue;
2480 			}
2481 
2482 			if (mpd->map.m_len == 0)
2483 				mpd->first_page = folio->index;
2484 			mpd->next_page = folio->index + folio_nr_pages(folio);
2485 			/*
2486 			 * Writeout when we cannot modify metadata is simple.
2487 			 * Just submit the page. For data=journal mode we
2488 			 * first handle writeout of the page for checkpoint and
2489 			 * only after that handle delayed page dirtying. This
2490 			 * makes sure current data is checkpointed to the final
2491 			 * location before possibly journalling it again which
2492 			 * is desirable when the page is frequently dirtied
2493 			 * through a pin.
2494 			 */
2495 			if (!mpd->can_map) {
2496 				err = mpage_submit_folio(mpd, folio);
2497 				if (err < 0)
2498 					goto out;
2499 				/* Pending dirtying of journalled data? */
2500 				if (folio_test_checked(folio)) {
2501 					err = mpage_journal_page_buffers(handle,
2502 						mpd, &folio->page);
2503 					if (err < 0)
2504 						goto out;
2505 					mpd->journalled_more_data = 1;
2506 				}
2507 				mpage_folio_done(mpd, folio);
2508 			} else {
2509 				/* Add all dirty buffers to mpd */
2510 				lblk = ((ext4_lblk_t)folio->index) <<
2511 					(PAGE_SHIFT - blkbits);
2512 				head = folio_buffers(folio);
2513 				err = mpage_process_page_bufs(mpd, head, head,
2514 						lblk);
2515 				if (err <= 0)
2516 					goto out;
2517 				err = 0;
2518 			}
2519 		}
2520 		folio_batch_release(&fbatch);
2521 		cond_resched();
2522 	}
2523 	mpd->scanned_until_end = 1;
2524 	if (handle)
2525 		ext4_journal_stop(handle);
2526 	return 0;
2527 out:
2528 	folio_batch_release(&fbatch);
2529 	if (handle)
2530 		ext4_journal_stop(handle);
2531 	return err;
2532 }
2533 
2534 static int ext4_do_writepages(struct mpage_da_data *mpd)
2535 {
2536 	struct writeback_control *wbc = mpd->wbc;
2537 	pgoff_t	writeback_index = 0;
2538 	long nr_to_write = wbc->nr_to_write;
2539 	int range_whole = 0;
2540 	int cycled = 1;
2541 	handle_t *handle = NULL;
2542 	struct inode *inode = mpd->inode;
2543 	struct address_space *mapping = inode->i_mapping;
2544 	int needed_blocks, rsv_blocks = 0, ret = 0;
2545 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2546 	struct blk_plug plug;
2547 	bool give_up_on_write = false;
2548 
2549 	trace_ext4_writepages(inode, wbc);
2550 
2551 	/*
2552 	 * No pages to write? This is mainly a kludge to avoid starting
2553 	 * a transaction for special inodes like journal inode on last iput()
2554 	 * because that could violate lock ordering on umount
2555 	 */
2556 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2557 		goto out_writepages;
2558 
2559 	/*
2560 	 * If the filesystem has aborted, it is read-only, so return
2561 	 * right away instead of dumping stack traces later on that
2562 	 * will obscure the real source of the problem.  We test
2563 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2564 	 * the latter could be true if the filesystem is mounted
2565 	 * read-only, and in that case, ext4_writepages should
2566 	 * *never* be called, so if that ever happens, we would want
2567 	 * the stack trace.
2568 	 */
2569 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2570 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2571 		ret = -EROFS;
2572 		goto out_writepages;
2573 	}
2574 
2575 	/*
2576 	 * If we have inline data and arrive here, it means that
2577 	 * we will soon create the block for the 1st page, so
2578 	 * we'd better clear the inline data here.
2579 	 */
2580 	if (ext4_has_inline_data(inode)) {
2581 		/* Just inode will be modified... */
2582 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2583 		if (IS_ERR(handle)) {
2584 			ret = PTR_ERR(handle);
2585 			goto out_writepages;
2586 		}
2587 		BUG_ON(ext4_test_inode_state(inode,
2588 				EXT4_STATE_MAY_INLINE_DATA));
2589 		ext4_destroy_inline_data(handle, inode);
2590 		ext4_journal_stop(handle);
2591 	}
2592 
2593 	/*
2594 	 * data=journal mode does not do delalloc so we just need to writeout /
2595 	 * journal already mapped buffers. On the other hand we need to commit
2596 	 * transaction to make data stable. We expect all the data to be
2597 	 * already in the journal (the only exception are DMA pinned pages
2598 	 * dirtied behind our back) so we commit transaction here and run the
2599 	 * writeback loop to checkpoint them. The checkpointing is not actually
2600 	 * necessary to make data persistent *but* quite a few places (extent
2601 	 * shifting operations, fsverity, ...) depend on being able to drop
2602 	 * pagecache pages after calling filemap_write_and_wait() and for that
2603 	 * checkpointing needs to happen.
2604 	 */
2605 	if (ext4_should_journal_data(inode)) {
2606 		mpd->can_map = 0;
2607 		if (wbc->sync_mode == WB_SYNC_ALL)
2608 			ext4_fc_commit(sbi->s_journal,
2609 				       EXT4_I(inode)->i_datasync_tid);
2610 	}
2611 	mpd->journalled_more_data = 0;
2612 
2613 	if (ext4_should_dioread_nolock(inode)) {
2614 		/*
2615 		 * We may need to convert up to one extent per block in
2616 		 * the page and we may dirty the inode.
2617 		 */
2618 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2619 						PAGE_SIZE >> inode->i_blkbits);
2620 	}
2621 
2622 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2623 		range_whole = 1;
2624 
2625 	if (wbc->range_cyclic) {
2626 		writeback_index = mapping->writeback_index;
2627 		if (writeback_index)
2628 			cycled = 0;
2629 		mpd->first_page = writeback_index;
2630 		mpd->last_page = -1;
2631 	} else {
2632 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2633 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2634 	}
2635 
2636 	ext4_io_submit_init(&mpd->io_submit, wbc);
2637 retry:
2638 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2639 		tag_pages_for_writeback(mapping, mpd->first_page,
2640 					mpd->last_page);
2641 	blk_start_plug(&plug);
2642 
2643 	/*
2644 	 * First writeback pages that don't need mapping - we can avoid
2645 	 * starting a transaction unnecessarily and also avoid being blocked
2646 	 * in the block layer on device congestion while having transaction
2647 	 * started.
2648 	 */
2649 	mpd->do_map = 0;
2650 	mpd->scanned_until_end = 0;
2651 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2652 	if (!mpd->io_submit.io_end) {
2653 		ret = -ENOMEM;
2654 		goto unplug;
2655 	}
2656 	ret = mpage_prepare_extent_to_map(mpd);
2657 	/* Unlock pages we didn't use */
2658 	mpage_release_unused_pages(mpd, false);
2659 	/* Submit prepared bio */
2660 	ext4_io_submit(&mpd->io_submit);
2661 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2662 	mpd->io_submit.io_end = NULL;
2663 	if (ret < 0)
2664 		goto unplug;
2665 
2666 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2667 		/* For each extent of pages we use new io_end */
2668 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2669 		if (!mpd->io_submit.io_end) {
2670 			ret = -ENOMEM;
2671 			break;
2672 		}
2673 
2674 		WARN_ON_ONCE(!mpd->can_map);
2675 		/*
2676 		 * We have two constraints: We find one extent to map and we
2677 		 * must always write out whole page (makes a difference when
2678 		 * blocksize < pagesize) so that we don't block on IO when we
2679 		 * try to write out the rest of the page. Journalled mode is
2680 		 * not supported by delalloc.
2681 		 */
2682 		BUG_ON(ext4_should_journal_data(inode));
2683 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2684 
2685 		/* start a new transaction */
2686 		handle = ext4_journal_start_with_reserve(inode,
2687 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2688 		if (IS_ERR(handle)) {
2689 			ret = PTR_ERR(handle);
2690 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2691 			       "%ld pages, ino %lu; err %d", __func__,
2692 				wbc->nr_to_write, inode->i_ino, ret);
2693 			/* Release allocated io_end */
2694 			ext4_put_io_end(mpd->io_submit.io_end);
2695 			mpd->io_submit.io_end = NULL;
2696 			break;
2697 		}
2698 		mpd->do_map = 1;
2699 
2700 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2701 		ret = mpage_prepare_extent_to_map(mpd);
2702 		if (!ret && mpd->map.m_len)
2703 			ret = mpage_map_and_submit_extent(handle, mpd,
2704 					&give_up_on_write);
2705 		/*
2706 		 * Caution: If the handle is synchronous,
2707 		 * ext4_journal_stop() can wait for transaction commit
2708 		 * to finish which may depend on writeback of pages to
2709 		 * complete or on page lock to be released.  In that
2710 		 * case, we have to wait until after we have
2711 		 * submitted all the IO, released page locks we hold,
2712 		 * and dropped io_end reference (for extent conversion
2713 		 * to be able to complete) before stopping the handle.
2714 		 */
2715 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2716 			ext4_journal_stop(handle);
2717 			handle = NULL;
2718 			mpd->do_map = 0;
2719 		}
2720 		/* Unlock pages we didn't use */
2721 		mpage_release_unused_pages(mpd, give_up_on_write);
2722 		/* Submit prepared bio */
2723 		ext4_io_submit(&mpd->io_submit);
2724 
2725 		/*
2726 		 * Drop our io_end reference we got from init. We have
2727 		 * to be careful and use deferred io_end finishing if
2728 		 * we are still holding the transaction as we can
2729 		 * release the last reference to io_end which may end
2730 		 * up doing unwritten extent conversion.
2731 		 */
2732 		if (handle) {
2733 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2734 			ext4_journal_stop(handle);
2735 		} else
2736 			ext4_put_io_end(mpd->io_submit.io_end);
2737 		mpd->io_submit.io_end = NULL;
2738 
2739 		if (ret == -ENOSPC && sbi->s_journal) {
2740 			/*
2741 			 * Commit the transaction which would
2742 			 * free blocks released in the transaction
2743 			 * and try again
2744 			 */
2745 			jbd2_journal_force_commit_nested(sbi->s_journal);
2746 			ret = 0;
2747 			continue;
2748 		}
2749 		/* Fatal error - ENOMEM, EIO... */
2750 		if (ret)
2751 			break;
2752 	}
2753 unplug:
2754 	blk_finish_plug(&plug);
2755 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2756 		cycled = 1;
2757 		mpd->last_page = writeback_index - 1;
2758 		mpd->first_page = 0;
2759 		goto retry;
2760 	}
2761 
2762 	/* Update index */
2763 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2764 		/*
2765 		 * Set the writeback_index so that range_cyclic
2766 		 * mode will write it back later
2767 		 */
2768 		mapping->writeback_index = mpd->first_page;
2769 
2770 out_writepages:
2771 	trace_ext4_writepages_result(inode, wbc, ret,
2772 				     nr_to_write - wbc->nr_to_write);
2773 	return ret;
2774 }
2775 
2776 static int ext4_writepages(struct address_space *mapping,
2777 			   struct writeback_control *wbc)
2778 {
2779 	struct super_block *sb = mapping->host->i_sb;
2780 	struct mpage_da_data mpd = {
2781 		.inode = mapping->host,
2782 		.wbc = wbc,
2783 		.can_map = 1,
2784 	};
2785 	int ret;
2786 	int alloc_ctx;
2787 
2788 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2789 		return -EIO;
2790 
2791 	alloc_ctx = ext4_writepages_down_read(sb);
2792 	ret = ext4_do_writepages(&mpd);
2793 	/*
2794 	 * For data=journal writeback we could have come across pages marked
2795 	 * for delayed dirtying (PageChecked) which were just added to the
2796 	 * running transaction. Try once more to get them to stable storage.
2797 	 */
2798 	if (!ret && mpd.journalled_more_data)
2799 		ret = ext4_do_writepages(&mpd);
2800 	ext4_writepages_up_read(sb, alloc_ctx);
2801 
2802 	return ret;
2803 }
2804 
2805 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2806 {
2807 	struct writeback_control wbc = {
2808 		.sync_mode = WB_SYNC_ALL,
2809 		.nr_to_write = LONG_MAX,
2810 		.range_start = jinode->i_dirty_start,
2811 		.range_end = jinode->i_dirty_end,
2812 	};
2813 	struct mpage_da_data mpd = {
2814 		.inode = jinode->i_vfs_inode,
2815 		.wbc = &wbc,
2816 		.can_map = 0,
2817 	};
2818 	return ext4_do_writepages(&mpd);
2819 }
2820 
2821 static int ext4_dax_writepages(struct address_space *mapping,
2822 			       struct writeback_control *wbc)
2823 {
2824 	int ret;
2825 	long nr_to_write = wbc->nr_to_write;
2826 	struct inode *inode = mapping->host;
2827 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2828 	int alloc_ctx;
2829 
2830 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2831 		return -EIO;
2832 
2833 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2834 	trace_ext4_writepages(inode, wbc);
2835 
2836 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2837 	trace_ext4_writepages_result(inode, wbc, ret,
2838 				     nr_to_write - wbc->nr_to_write);
2839 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2840 	return ret;
2841 }
2842 
2843 static int ext4_nonda_switch(struct super_block *sb)
2844 {
2845 	s64 free_clusters, dirty_clusters;
2846 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2847 
2848 	/*
2849 	 * switch to non delalloc mode if we are running low
2850 	 * on free block. The free block accounting via percpu
2851 	 * counters can get slightly wrong with percpu_counter_batch getting
2852 	 * accumulated on each CPU without updating global counters
2853 	 * Delalloc need an accurate free block accounting. So switch
2854 	 * to non delalloc when we are near to error range.
2855 	 */
2856 	free_clusters =
2857 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2858 	dirty_clusters =
2859 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2860 	/*
2861 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2862 	 */
2863 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2864 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2865 
2866 	if (2 * free_clusters < 3 * dirty_clusters ||
2867 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2868 		/*
2869 		 * free block count is less than 150% of dirty blocks
2870 		 * or free blocks is less than watermark
2871 		 */
2872 		return 1;
2873 	}
2874 	return 0;
2875 }
2876 
2877 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2878 			       loff_t pos, unsigned len,
2879 			       struct page **pagep, void **fsdata)
2880 {
2881 	int ret, retries = 0;
2882 	struct folio *folio;
2883 	pgoff_t index;
2884 	struct inode *inode = mapping->host;
2885 
2886 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2887 		return -EIO;
2888 
2889 	index = pos >> PAGE_SHIFT;
2890 
2891 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2892 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2893 		return ext4_write_begin(file, mapping, pos,
2894 					len, pagep, fsdata);
2895 	}
2896 	*fsdata = (void *)0;
2897 	trace_ext4_da_write_begin(inode, pos, len);
2898 
2899 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2900 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2901 						      pagep, fsdata);
2902 		if (ret < 0)
2903 			return ret;
2904 		if (ret == 1)
2905 			return 0;
2906 	}
2907 
2908 retry:
2909 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2910 			mapping_gfp_mask(mapping));
2911 	if (IS_ERR(folio))
2912 		return PTR_ERR(folio);
2913 
2914 	/* In case writeback began while the folio was unlocked */
2915 	folio_wait_stable(folio);
2916 
2917 #ifdef CONFIG_FS_ENCRYPTION
2918 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2919 #else
2920 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2921 #endif
2922 	if (ret < 0) {
2923 		folio_unlock(folio);
2924 		folio_put(folio);
2925 		/*
2926 		 * block_write_begin may have instantiated a few blocks
2927 		 * outside i_size.  Trim these off again. Don't need
2928 		 * i_size_read because we hold inode lock.
2929 		 */
2930 		if (pos + len > inode->i_size)
2931 			ext4_truncate_failed_write(inode);
2932 
2933 		if (ret == -ENOSPC &&
2934 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2935 			goto retry;
2936 		return ret;
2937 	}
2938 
2939 	*pagep = &folio->page;
2940 	return ret;
2941 }
2942 
2943 /*
2944  * Check if we should update i_disksize
2945  * when write to the end of file but not require block allocation
2946  */
2947 static int ext4_da_should_update_i_disksize(struct page *page,
2948 					    unsigned long offset)
2949 {
2950 	struct buffer_head *bh;
2951 	struct inode *inode = page->mapping->host;
2952 	unsigned int idx;
2953 	int i;
2954 
2955 	bh = page_buffers(page);
2956 	idx = offset >> inode->i_blkbits;
2957 
2958 	for (i = 0; i < idx; i++)
2959 		bh = bh->b_this_page;
2960 
2961 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2962 		return 0;
2963 	return 1;
2964 }
2965 
2966 static int ext4_da_write_end(struct file *file,
2967 			     struct address_space *mapping,
2968 			     loff_t pos, unsigned len, unsigned copied,
2969 			     struct page *page, void *fsdata)
2970 {
2971 	struct inode *inode = mapping->host;
2972 	loff_t new_i_size;
2973 	unsigned long start, end;
2974 	int write_mode = (int)(unsigned long)fsdata;
2975 
2976 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2977 		return ext4_write_end(file, mapping, pos,
2978 				      len, copied, page, fsdata);
2979 
2980 	trace_ext4_da_write_end(inode, pos, len, copied);
2981 
2982 	if (write_mode != CONVERT_INLINE_DATA &&
2983 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2984 	    ext4_has_inline_data(inode))
2985 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
2986 
2987 	if (unlikely(copied < len) && !PageUptodate(page))
2988 		copied = 0;
2989 
2990 	start = pos & (PAGE_SIZE - 1);
2991 	end = start + copied - 1;
2992 
2993 	/*
2994 	 * Since we are holding inode lock, we are sure i_disksize <=
2995 	 * i_size. We also know that if i_disksize < i_size, there are
2996 	 * delalloc writes pending in the range upto i_size. If the end of
2997 	 * the current write is <= i_size, there's no need to touch
2998 	 * i_disksize since writeback will push i_disksize upto i_size
2999 	 * eventually. If the end of the current write is > i_size and
3000 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3001 	 * check), we need to update i_disksize here as certain
3002 	 * ext4_writepages() paths not allocating blocks update i_disksize.
3003 	 *
3004 	 * Note that we defer inode dirtying to generic_write_end() /
3005 	 * ext4_da_write_inline_data_end().
3006 	 */
3007 	new_i_size = pos + copied;
3008 	if (copied && new_i_size > inode->i_size &&
3009 	    ext4_da_should_update_i_disksize(page, end))
3010 		ext4_update_i_disksize(inode, new_i_size);
3011 
3012 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3013 }
3014 
3015 /*
3016  * Force all delayed allocation blocks to be allocated for a given inode.
3017  */
3018 int ext4_alloc_da_blocks(struct inode *inode)
3019 {
3020 	trace_ext4_alloc_da_blocks(inode);
3021 
3022 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3023 		return 0;
3024 
3025 	/*
3026 	 * We do something simple for now.  The filemap_flush() will
3027 	 * also start triggering a write of the data blocks, which is
3028 	 * not strictly speaking necessary (and for users of
3029 	 * laptop_mode, not even desirable).  However, to do otherwise
3030 	 * would require replicating code paths in:
3031 	 *
3032 	 * ext4_writepages() ->
3033 	 *    write_cache_pages() ---> (via passed in callback function)
3034 	 *        __mpage_da_writepage() -->
3035 	 *           mpage_add_bh_to_extent()
3036 	 *           mpage_da_map_blocks()
3037 	 *
3038 	 * The problem is that write_cache_pages(), located in
3039 	 * mm/page-writeback.c, marks pages clean in preparation for
3040 	 * doing I/O, which is not desirable if we're not planning on
3041 	 * doing I/O at all.
3042 	 *
3043 	 * We could call write_cache_pages(), and then redirty all of
3044 	 * the pages by calling redirty_page_for_writepage() but that
3045 	 * would be ugly in the extreme.  So instead we would need to
3046 	 * replicate parts of the code in the above functions,
3047 	 * simplifying them because we wouldn't actually intend to
3048 	 * write out the pages, but rather only collect contiguous
3049 	 * logical block extents, call the multi-block allocator, and
3050 	 * then update the buffer heads with the block allocations.
3051 	 *
3052 	 * For now, though, we'll cheat by calling filemap_flush(),
3053 	 * which will map the blocks, and start the I/O, but not
3054 	 * actually wait for the I/O to complete.
3055 	 */
3056 	return filemap_flush(inode->i_mapping);
3057 }
3058 
3059 /*
3060  * bmap() is special.  It gets used by applications such as lilo and by
3061  * the swapper to find the on-disk block of a specific piece of data.
3062  *
3063  * Naturally, this is dangerous if the block concerned is still in the
3064  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3065  * filesystem and enables swap, then they may get a nasty shock when the
3066  * data getting swapped to that swapfile suddenly gets overwritten by
3067  * the original zero's written out previously to the journal and
3068  * awaiting writeback in the kernel's buffer cache.
3069  *
3070  * So, if we see any bmap calls here on a modified, data-journaled file,
3071  * take extra steps to flush any blocks which might be in the cache.
3072  */
3073 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3074 {
3075 	struct inode *inode = mapping->host;
3076 	sector_t ret = 0;
3077 
3078 	inode_lock_shared(inode);
3079 	/*
3080 	 * We can get here for an inline file via the FIBMAP ioctl
3081 	 */
3082 	if (ext4_has_inline_data(inode))
3083 		goto out;
3084 
3085 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3086 	    (test_opt(inode->i_sb, DELALLOC) ||
3087 	     ext4_should_journal_data(inode))) {
3088 		/*
3089 		 * With delalloc or journalled data we want to sync the file so
3090 		 * that we can make sure we allocate blocks for file and data
3091 		 * is in place for the user to see it
3092 		 */
3093 		filemap_write_and_wait(mapping);
3094 	}
3095 
3096 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3097 
3098 out:
3099 	inode_unlock_shared(inode);
3100 	return ret;
3101 }
3102 
3103 static int ext4_read_folio(struct file *file, struct folio *folio)
3104 {
3105 	int ret = -EAGAIN;
3106 	struct inode *inode = folio->mapping->host;
3107 
3108 	trace_ext4_readpage(&folio->page);
3109 
3110 	if (ext4_has_inline_data(inode))
3111 		ret = ext4_readpage_inline(inode, folio);
3112 
3113 	if (ret == -EAGAIN)
3114 		return ext4_mpage_readpages(inode, NULL, folio);
3115 
3116 	return ret;
3117 }
3118 
3119 static void ext4_readahead(struct readahead_control *rac)
3120 {
3121 	struct inode *inode = rac->mapping->host;
3122 
3123 	/* If the file has inline data, no need to do readahead. */
3124 	if (ext4_has_inline_data(inode))
3125 		return;
3126 
3127 	ext4_mpage_readpages(inode, rac, NULL);
3128 }
3129 
3130 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3131 				size_t length)
3132 {
3133 	trace_ext4_invalidate_folio(folio, offset, length);
3134 
3135 	/* No journalling happens on data buffers when this function is used */
3136 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3137 
3138 	block_invalidate_folio(folio, offset, length);
3139 }
3140 
3141 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3142 					    size_t offset, size_t length)
3143 {
3144 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3145 
3146 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3147 
3148 	/*
3149 	 * If it's a full truncate we just forget about the pending dirtying
3150 	 */
3151 	if (offset == 0 && length == folio_size(folio))
3152 		folio_clear_checked(folio);
3153 
3154 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3155 }
3156 
3157 /* Wrapper for aops... */
3158 static void ext4_journalled_invalidate_folio(struct folio *folio,
3159 					   size_t offset,
3160 					   size_t length)
3161 {
3162 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3163 }
3164 
3165 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3166 {
3167 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3168 
3169 	trace_ext4_releasepage(&folio->page);
3170 
3171 	/* Page has dirty journalled data -> cannot release */
3172 	if (folio_test_checked(folio))
3173 		return false;
3174 	if (journal)
3175 		return jbd2_journal_try_to_free_buffers(journal, folio);
3176 	else
3177 		return try_to_free_buffers(folio);
3178 }
3179 
3180 static bool ext4_inode_datasync_dirty(struct inode *inode)
3181 {
3182 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3183 
3184 	if (journal) {
3185 		if (jbd2_transaction_committed(journal,
3186 			EXT4_I(inode)->i_datasync_tid))
3187 			return false;
3188 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3189 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3190 		return true;
3191 	}
3192 
3193 	/* Any metadata buffers to write? */
3194 	if (!list_empty(&inode->i_mapping->private_list))
3195 		return true;
3196 	return inode->i_state & I_DIRTY_DATASYNC;
3197 }
3198 
3199 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3200 			   struct ext4_map_blocks *map, loff_t offset,
3201 			   loff_t length, unsigned int flags)
3202 {
3203 	u8 blkbits = inode->i_blkbits;
3204 
3205 	/*
3206 	 * Writes that span EOF might trigger an I/O size update on completion,
3207 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3208 	 * there is no other metadata changes being made or are pending.
3209 	 */
3210 	iomap->flags = 0;
3211 	if (ext4_inode_datasync_dirty(inode) ||
3212 	    offset + length > i_size_read(inode))
3213 		iomap->flags |= IOMAP_F_DIRTY;
3214 
3215 	if (map->m_flags & EXT4_MAP_NEW)
3216 		iomap->flags |= IOMAP_F_NEW;
3217 
3218 	if (flags & IOMAP_DAX)
3219 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3220 	else
3221 		iomap->bdev = inode->i_sb->s_bdev;
3222 	iomap->offset = (u64) map->m_lblk << blkbits;
3223 	iomap->length = (u64) map->m_len << blkbits;
3224 
3225 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3226 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3227 		iomap->flags |= IOMAP_F_MERGED;
3228 
3229 	/*
3230 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3231 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3232 	 * set. In order for any allocated unwritten extents to be converted
3233 	 * into written extents correctly within the ->end_io() handler, we
3234 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3235 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3236 	 * been set first.
3237 	 */
3238 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3239 		iomap->type = IOMAP_UNWRITTEN;
3240 		iomap->addr = (u64) map->m_pblk << blkbits;
3241 		if (flags & IOMAP_DAX)
3242 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3243 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3244 		iomap->type = IOMAP_MAPPED;
3245 		iomap->addr = (u64) map->m_pblk << blkbits;
3246 		if (flags & IOMAP_DAX)
3247 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3248 	} else {
3249 		iomap->type = IOMAP_HOLE;
3250 		iomap->addr = IOMAP_NULL_ADDR;
3251 	}
3252 }
3253 
3254 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3255 			    unsigned int flags)
3256 {
3257 	handle_t *handle;
3258 	u8 blkbits = inode->i_blkbits;
3259 	int ret, dio_credits, m_flags = 0, retries = 0;
3260 
3261 	/*
3262 	 * Trim the mapping request to the maximum value that we can map at
3263 	 * once for direct I/O.
3264 	 */
3265 	if (map->m_len > DIO_MAX_BLOCKS)
3266 		map->m_len = DIO_MAX_BLOCKS;
3267 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3268 
3269 retry:
3270 	/*
3271 	 * Either we allocate blocks and then don't get an unwritten extent, so
3272 	 * in that case we have reserved enough credits. Or, the blocks are
3273 	 * already allocated and unwritten. In that case, the extent conversion
3274 	 * fits into the credits as well.
3275 	 */
3276 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3277 	if (IS_ERR(handle))
3278 		return PTR_ERR(handle);
3279 
3280 	/*
3281 	 * DAX and direct I/O are the only two operations that are currently
3282 	 * supported with IOMAP_WRITE.
3283 	 */
3284 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3285 	if (flags & IOMAP_DAX)
3286 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3287 	/*
3288 	 * We use i_size instead of i_disksize here because delalloc writeback
3289 	 * can complete at any point during the I/O and subsequently push the
3290 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3291 	 * happening and thus expose allocated blocks to direct I/O reads.
3292 	 */
3293 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3294 		m_flags = EXT4_GET_BLOCKS_CREATE;
3295 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3296 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3297 
3298 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3299 
3300 	/*
3301 	 * We cannot fill holes in indirect tree based inodes as that could
3302 	 * expose stale data in the case of a crash. Use the magic error code
3303 	 * to fallback to buffered I/O.
3304 	 */
3305 	if (!m_flags && !ret)
3306 		ret = -ENOTBLK;
3307 
3308 	ext4_journal_stop(handle);
3309 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3310 		goto retry;
3311 
3312 	return ret;
3313 }
3314 
3315 
3316 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3317 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3318 {
3319 	int ret;
3320 	struct ext4_map_blocks map;
3321 	u8 blkbits = inode->i_blkbits;
3322 
3323 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3324 		return -EINVAL;
3325 
3326 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3327 		return -ERANGE;
3328 
3329 	/*
3330 	 * Calculate the first and last logical blocks respectively.
3331 	 */
3332 	map.m_lblk = offset >> blkbits;
3333 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3334 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3335 
3336 	if (flags & IOMAP_WRITE) {
3337 		/*
3338 		 * We check here if the blocks are already allocated, then we
3339 		 * don't need to start a journal txn and we can directly return
3340 		 * the mapping information. This could boost performance
3341 		 * especially in multi-threaded overwrite requests.
3342 		 */
3343 		if (offset + length <= i_size_read(inode)) {
3344 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3345 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3346 				goto out;
3347 		}
3348 		ret = ext4_iomap_alloc(inode, &map, flags);
3349 	} else {
3350 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3351 	}
3352 
3353 	if (ret < 0)
3354 		return ret;
3355 out:
3356 	/*
3357 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3358 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3359 	 * limiting the length of the mapping returned.
3360 	 */
3361 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3362 
3363 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3364 
3365 	return 0;
3366 }
3367 
3368 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3369 		loff_t length, unsigned flags, struct iomap *iomap,
3370 		struct iomap *srcmap)
3371 {
3372 	int ret;
3373 
3374 	/*
3375 	 * Even for writes we don't need to allocate blocks, so just pretend
3376 	 * we are reading to save overhead of starting a transaction.
3377 	 */
3378 	flags &= ~IOMAP_WRITE;
3379 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3380 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3381 	return ret;
3382 }
3383 
3384 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3385 			  ssize_t written, unsigned flags, struct iomap *iomap)
3386 {
3387 	/*
3388 	 * Check to see whether an error occurred while writing out the data to
3389 	 * the allocated blocks. If so, return the magic error code so that we
3390 	 * fallback to buffered I/O and attempt to complete the remainder of
3391 	 * the I/O. Any blocks that may have been allocated in preparation for
3392 	 * the direct I/O will be reused during buffered I/O.
3393 	 */
3394 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3395 		return -ENOTBLK;
3396 
3397 	return 0;
3398 }
3399 
3400 const struct iomap_ops ext4_iomap_ops = {
3401 	.iomap_begin		= ext4_iomap_begin,
3402 	.iomap_end		= ext4_iomap_end,
3403 };
3404 
3405 const struct iomap_ops ext4_iomap_overwrite_ops = {
3406 	.iomap_begin		= ext4_iomap_overwrite_begin,
3407 	.iomap_end		= ext4_iomap_end,
3408 };
3409 
3410 static bool ext4_iomap_is_delalloc(struct inode *inode,
3411 				   struct ext4_map_blocks *map)
3412 {
3413 	struct extent_status es;
3414 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3415 
3416 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3417 				  map->m_lblk, end, &es);
3418 
3419 	if (!es.es_len || es.es_lblk > end)
3420 		return false;
3421 
3422 	if (es.es_lblk > map->m_lblk) {
3423 		map->m_len = es.es_lblk - map->m_lblk;
3424 		return false;
3425 	}
3426 
3427 	offset = map->m_lblk - es.es_lblk;
3428 	map->m_len = es.es_len - offset;
3429 
3430 	return true;
3431 }
3432 
3433 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3434 				   loff_t length, unsigned int flags,
3435 				   struct iomap *iomap, struct iomap *srcmap)
3436 {
3437 	int ret;
3438 	bool delalloc = false;
3439 	struct ext4_map_blocks map;
3440 	u8 blkbits = inode->i_blkbits;
3441 
3442 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3443 		return -EINVAL;
3444 
3445 	if (ext4_has_inline_data(inode)) {
3446 		ret = ext4_inline_data_iomap(inode, iomap);
3447 		if (ret != -EAGAIN) {
3448 			if (ret == 0 && offset >= iomap->length)
3449 				ret = -ENOENT;
3450 			return ret;
3451 		}
3452 	}
3453 
3454 	/*
3455 	 * Calculate the first and last logical block respectively.
3456 	 */
3457 	map.m_lblk = offset >> blkbits;
3458 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3459 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3460 
3461 	/*
3462 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3463 	 * So handle it here itself instead of querying ext4_map_blocks().
3464 	 * Since ext4_map_blocks() will warn about it and will return
3465 	 * -EIO error.
3466 	 */
3467 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3468 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3469 
3470 		if (offset >= sbi->s_bitmap_maxbytes) {
3471 			map.m_flags = 0;
3472 			goto set_iomap;
3473 		}
3474 	}
3475 
3476 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3477 	if (ret < 0)
3478 		return ret;
3479 	if (ret == 0)
3480 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3481 
3482 set_iomap:
3483 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3484 	if (delalloc && iomap->type == IOMAP_HOLE)
3485 		iomap->type = IOMAP_DELALLOC;
3486 
3487 	return 0;
3488 }
3489 
3490 const struct iomap_ops ext4_iomap_report_ops = {
3491 	.iomap_begin = ext4_iomap_begin_report,
3492 };
3493 
3494 /*
3495  * For data=journal mode, folio should be marked dirty only when it was
3496  * writeably mapped. When that happens, it was already attached to the
3497  * transaction and marked as jbddirty (we take care of this in
3498  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3499  * so we should have nothing to do here, except for the case when someone
3500  * had the page pinned and dirtied the page through this pin (e.g. by doing
3501  * direct IO to it). In that case we'd need to attach buffers here to the
3502  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3503  * folio and leave attached buffers clean, because the buffers' dirty state is
3504  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3505  * the journalling code will explode.  So what we do is to mark the folio
3506  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3507  * to the transaction appropriately.
3508  */
3509 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3510 		struct folio *folio)
3511 {
3512 	WARN_ON_ONCE(!folio_buffers(folio));
3513 	if (folio_maybe_dma_pinned(folio))
3514 		folio_set_checked(folio);
3515 	return filemap_dirty_folio(mapping, folio);
3516 }
3517 
3518 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3519 {
3520 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3521 	WARN_ON_ONCE(!folio_buffers(folio));
3522 	return block_dirty_folio(mapping, folio);
3523 }
3524 
3525 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3526 				    struct file *file, sector_t *span)
3527 {
3528 	return iomap_swapfile_activate(sis, file, span,
3529 				       &ext4_iomap_report_ops);
3530 }
3531 
3532 static const struct address_space_operations ext4_aops = {
3533 	.read_folio		= ext4_read_folio,
3534 	.readahead		= ext4_readahead,
3535 	.writepages		= ext4_writepages,
3536 	.write_begin		= ext4_write_begin,
3537 	.write_end		= ext4_write_end,
3538 	.dirty_folio		= ext4_dirty_folio,
3539 	.bmap			= ext4_bmap,
3540 	.invalidate_folio	= ext4_invalidate_folio,
3541 	.release_folio		= ext4_release_folio,
3542 	.direct_IO		= noop_direct_IO,
3543 	.migrate_folio		= buffer_migrate_folio,
3544 	.is_partially_uptodate  = block_is_partially_uptodate,
3545 	.error_remove_page	= generic_error_remove_page,
3546 	.swap_activate		= ext4_iomap_swap_activate,
3547 };
3548 
3549 static const struct address_space_operations ext4_journalled_aops = {
3550 	.read_folio		= ext4_read_folio,
3551 	.readahead		= ext4_readahead,
3552 	.writepages		= ext4_writepages,
3553 	.write_begin		= ext4_write_begin,
3554 	.write_end		= ext4_journalled_write_end,
3555 	.dirty_folio		= ext4_journalled_dirty_folio,
3556 	.bmap			= ext4_bmap,
3557 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3558 	.release_folio		= ext4_release_folio,
3559 	.direct_IO		= noop_direct_IO,
3560 	.migrate_folio		= buffer_migrate_folio_norefs,
3561 	.is_partially_uptodate  = block_is_partially_uptodate,
3562 	.error_remove_page	= generic_error_remove_page,
3563 	.swap_activate		= ext4_iomap_swap_activate,
3564 };
3565 
3566 static const struct address_space_operations ext4_da_aops = {
3567 	.read_folio		= ext4_read_folio,
3568 	.readahead		= ext4_readahead,
3569 	.writepages		= ext4_writepages,
3570 	.write_begin		= ext4_da_write_begin,
3571 	.write_end		= ext4_da_write_end,
3572 	.dirty_folio		= ext4_dirty_folio,
3573 	.bmap			= ext4_bmap,
3574 	.invalidate_folio	= ext4_invalidate_folio,
3575 	.release_folio		= ext4_release_folio,
3576 	.direct_IO		= noop_direct_IO,
3577 	.migrate_folio		= buffer_migrate_folio,
3578 	.is_partially_uptodate  = block_is_partially_uptodate,
3579 	.error_remove_page	= generic_error_remove_page,
3580 	.swap_activate		= ext4_iomap_swap_activate,
3581 };
3582 
3583 static const struct address_space_operations ext4_dax_aops = {
3584 	.writepages		= ext4_dax_writepages,
3585 	.direct_IO		= noop_direct_IO,
3586 	.dirty_folio		= noop_dirty_folio,
3587 	.bmap			= ext4_bmap,
3588 	.swap_activate		= ext4_iomap_swap_activate,
3589 };
3590 
3591 void ext4_set_aops(struct inode *inode)
3592 {
3593 	switch (ext4_inode_journal_mode(inode)) {
3594 	case EXT4_INODE_ORDERED_DATA_MODE:
3595 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3596 		break;
3597 	case EXT4_INODE_JOURNAL_DATA_MODE:
3598 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3599 		return;
3600 	default:
3601 		BUG();
3602 	}
3603 	if (IS_DAX(inode))
3604 		inode->i_mapping->a_ops = &ext4_dax_aops;
3605 	else if (test_opt(inode->i_sb, DELALLOC))
3606 		inode->i_mapping->a_ops = &ext4_da_aops;
3607 	else
3608 		inode->i_mapping->a_ops = &ext4_aops;
3609 }
3610 
3611 static int __ext4_block_zero_page_range(handle_t *handle,
3612 		struct address_space *mapping, loff_t from, loff_t length)
3613 {
3614 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3615 	unsigned offset = from & (PAGE_SIZE-1);
3616 	unsigned blocksize, pos;
3617 	ext4_lblk_t iblock;
3618 	struct inode *inode = mapping->host;
3619 	struct buffer_head *bh;
3620 	struct folio *folio;
3621 	int err = 0;
3622 
3623 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3624 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3625 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3626 	if (IS_ERR(folio))
3627 		return PTR_ERR(folio);
3628 
3629 	blocksize = inode->i_sb->s_blocksize;
3630 
3631 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3632 
3633 	bh = folio_buffers(folio);
3634 	if (!bh) {
3635 		create_empty_buffers(&folio->page, blocksize, 0);
3636 		bh = folio_buffers(folio);
3637 	}
3638 
3639 	/* Find the buffer that contains "offset" */
3640 	pos = blocksize;
3641 	while (offset >= pos) {
3642 		bh = bh->b_this_page;
3643 		iblock++;
3644 		pos += blocksize;
3645 	}
3646 	if (buffer_freed(bh)) {
3647 		BUFFER_TRACE(bh, "freed: skip");
3648 		goto unlock;
3649 	}
3650 	if (!buffer_mapped(bh)) {
3651 		BUFFER_TRACE(bh, "unmapped");
3652 		ext4_get_block(inode, iblock, bh, 0);
3653 		/* unmapped? It's a hole - nothing to do */
3654 		if (!buffer_mapped(bh)) {
3655 			BUFFER_TRACE(bh, "still unmapped");
3656 			goto unlock;
3657 		}
3658 	}
3659 
3660 	/* Ok, it's mapped. Make sure it's up-to-date */
3661 	if (folio_test_uptodate(folio))
3662 		set_buffer_uptodate(bh);
3663 
3664 	if (!buffer_uptodate(bh)) {
3665 		err = ext4_read_bh_lock(bh, 0, true);
3666 		if (err)
3667 			goto unlock;
3668 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3669 			/* We expect the key to be set. */
3670 			BUG_ON(!fscrypt_has_encryption_key(inode));
3671 			err = fscrypt_decrypt_pagecache_blocks(folio,
3672 							       blocksize,
3673 							       bh_offset(bh));
3674 			if (err) {
3675 				clear_buffer_uptodate(bh);
3676 				goto unlock;
3677 			}
3678 		}
3679 	}
3680 	if (ext4_should_journal_data(inode)) {
3681 		BUFFER_TRACE(bh, "get write access");
3682 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3683 						    EXT4_JTR_NONE);
3684 		if (err)
3685 			goto unlock;
3686 	}
3687 	folio_zero_range(folio, offset, length);
3688 	BUFFER_TRACE(bh, "zeroed end of block");
3689 
3690 	if (ext4_should_journal_data(inode)) {
3691 		err = ext4_dirty_journalled_data(handle, bh);
3692 	} else {
3693 		err = 0;
3694 		mark_buffer_dirty(bh);
3695 		if (ext4_should_order_data(inode))
3696 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3697 					length);
3698 	}
3699 
3700 unlock:
3701 	folio_unlock(folio);
3702 	folio_put(folio);
3703 	return err;
3704 }
3705 
3706 /*
3707  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3708  * starting from file offset 'from'.  The range to be zero'd must
3709  * be contained with in one block.  If the specified range exceeds
3710  * the end of the block it will be shortened to end of the block
3711  * that corresponds to 'from'
3712  */
3713 static int ext4_block_zero_page_range(handle_t *handle,
3714 		struct address_space *mapping, loff_t from, loff_t length)
3715 {
3716 	struct inode *inode = mapping->host;
3717 	unsigned offset = from & (PAGE_SIZE-1);
3718 	unsigned blocksize = inode->i_sb->s_blocksize;
3719 	unsigned max = blocksize - (offset & (blocksize - 1));
3720 
3721 	/*
3722 	 * correct length if it does not fall between
3723 	 * 'from' and the end of the block
3724 	 */
3725 	if (length > max || length < 0)
3726 		length = max;
3727 
3728 	if (IS_DAX(inode)) {
3729 		return dax_zero_range(inode, from, length, NULL,
3730 				      &ext4_iomap_ops);
3731 	}
3732 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3733 }
3734 
3735 /*
3736  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3737  * up to the end of the block which corresponds to `from'.
3738  * This required during truncate. We need to physically zero the tail end
3739  * of that block so it doesn't yield old data if the file is later grown.
3740  */
3741 static int ext4_block_truncate_page(handle_t *handle,
3742 		struct address_space *mapping, loff_t from)
3743 {
3744 	unsigned offset = from & (PAGE_SIZE-1);
3745 	unsigned length;
3746 	unsigned blocksize;
3747 	struct inode *inode = mapping->host;
3748 
3749 	/* If we are processing an encrypted inode during orphan list handling */
3750 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3751 		return 0;
3752 
3753 	blocksize = inode->i_sb->s_blocksize;
3754 	length = blocksize - (offset & (blocksize - 1));
3755 
3756 	return ext4_block_zero_page_range(handle, mapping, from, length);
3757 }
3758 
3759 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3760 			     loff_t lstart, loff_t length)
3761 {
3762 	struct super_block *sb = inode->i_sb;
3763 	struct address_space *mapping = inode->i_mapping;
3764 	unsigned partial_start, partial_end;
3765 	ext4_fsblk_t start, end;
3766 	loff_t byte_end = (lstart + length - 1);
3767 	int err = 0;
3768 
3769 	partial_start = lstart & (sb->s_blocksize - 1);
3770 	partial_end = byte_end & (sb->s_blocksize - 1);
3771 
3772 	start = lstart >> sb->s_blocksize_bits;
3773 	end = byte_end >> sb->s_blocksize_bits;
3774 
3775 	/* Handle partial zero within the single block */
3776 	if (start == end &&
3777 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3778 		err = ext4_block_zero_page_range(handle, mapping,
3779 						 lstart, length);
3780 		return err;
3781 	}
3782 	/* Handle partial zero out on the start of the range */
3783 	if (partial_start) {
3784 		err = ext4_block_zero_page_range(handle, mapping,
3785 						 lstart, sb->s_blocksize);
3786 		if (err)
3787 			return err;
3788 	}
3789 	/* Handle partial zero out on the end of the range */
3790 	if (partial_end != sb->s_blocksize - 1)
3791 		err = ext4_block_zero_page_range(handle, mapping,
3792 						 byte_end - partial_end,
3793 						 partial_end + 1);
3794 	return err;
3795 }
3796 
3797 int ext4_can_truncate(struct inode *inode)
3798 {
3799 	if (S_ISREG(inode->i_mode))
3800 		return 1;
3801 	if (S_ISDIR(inode->i_mode))
3802 		return 1;
3803 	if (S_ISLNK(inode->i_mode))
3804 		return !ext4_inode_is_fast_symlink(inode);
3805 	return 0;
3806 }
3807 
3808 /*
3809  * We have to make sure i_disksize gets properly updated before we truncate
3810  * page cache due to hole punching or zero range. Otherwise i_disksize update
3811  * can get lost as it may have been postponed to submission of writeback but
3812  * that will never happen after we truncate page cache.
3813  */
3814 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3815 				      loff_t len)
3816 {
3817 	handle_t *handle;
3818 	int ret;
3819 
3820 	loff_t size = i_size_read(inode);
3821 
3822 	WARN_ON(!inode_is_locked(inode));
3823 	if (offset > size || offset + len < size)
3824 		return 0;
3825 
3826 	if (EXT4_I(inode)->i_disksize >= size)
3827 		return 0;
3828 
3829 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3830 	if (IS_ERR(handle))
3831 		return PTR_ERR(handle);
3832 	ext4_update_i_disksize(inode, size);
3833 	ret = ext4_mark_inode_dirty(handle, inode);
3834 	ext4_journal_stop(handle);
3835 
3836 	return ret;
3837 }
3838 
3839 static void ext4_wait_dax_page(struct inode *inode)
3840 {
3841 	filemap_invalidate_unlock(inode->i_mapping);
3842 	schedule();
3843 	filemap_invalidate_lock(inode->i_mapping);
3844 }
3845 
3846 int ext4_break_layouts(struct inode *inode)
3847 {
3848 	struct page *page;
3849 	int error;
3850 
3851 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3852 		return -EINVAL;
3853 
3854 	do {
3855 		page = dax_layout_busy_page(inode->i_mapping);
3856 		if (!page)
3857 			return 0;
3858 
3859 		error = ___wait_var_event(&page->_refcount,
3860 				atomic_read(&page->_refcount) == 1,
3861 				TASK_INTERRUPTIBLE, 0, 0,
3862 				ext4_wait_dax_page(inode));
3863 	} while (error == 0);
3864 
3865 	return error;
3866 }
3867 
3868 /*
3869  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3870  * associated with the given offset and length
3871  *
3872  * @inode:  File inode
3873  * @offset: The offset where the hole will begin
3874  * @len:    The length of the hole
3875  *
3876  * Returns: 0 on success or negative on failure
3877  */
3878 
3879 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3880 {
3881 	struct inode *inode = file_inode(file);
3882 	struct super_block *sb = inode->i_sb;
3883 	ext4_lblk_t first_block, stop_block;
3884 	struct address_space *mapping = inode->i_mapping;
3885 	loff_t first_block_offset, last_block_offset, max_length;
3886 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3887 	handle_t *handle;
3888 	unsigned int credits;
3889 	int ret = 0, ret2 = 0;
3890 
3891 	trace_ext4_punch_hole(inode, offset, length, 0);
3892 
3893 	/*
3894 	 * Write out all dirty pages to avoid race conditions
3895 	 * Then release them.
3896 	 */
3897 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3898 		ret = filemap_write_and_wait_range(mapping, offset,
3899 						   offset + length - 1);
3900 		if (ret)
3901 			return ret;
3902 	}
3903 
3904 	inode_lock(inode);
3905 
3906 	/* No need to punch hole beyond i_size */
3907 	if (offset >= inode->i_size)
3908 		goto out_mutex;
3909 
3910 	/*
3911 	 * If the hole extends beyond i_size, set the hole
3912 	 * to end after the page that contains i_size
3913 	 */
3914 	if (offset + length > inode->i_size) {
3915 		length = inode->i_size +
3916 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3917 		   offset;
3918 	}
3919 
3920 	/*
3921 	 * For punch hole the length + offset needs to be within one block
3922 	 * before last range. Adjust the length if it goes beyond that limit.
3923 	 */
3924 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3925 	if (offset + length > max_length)
3926 		length = max_length - offset;
3927 
3928 	if (offset & (sb->s_blocksize - 1) ||
3929 	    (offset + length) & (sb->s_blocksize - 1)) {
3930 		/*
3931 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3932 		 * partial block
3933 		 */
3934 		ret = ext4_inode_attach_jinode(inode);
3935 		if (ret < 0)
3936 			goto out_mutex;
3937 
3938 	}
3939 
3940 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3941 	inode_dio_wait(inode);
3942 
3943 	ret = file_modified(file);
3944 	if (ret)
3945 		goto out_mutex;
3946 
3947 	/*
3948 	 * Prevent page faults from reinstantiating pages we have released from
3949 	 * page cache.
3950 	 */
3951 	filemap_invalidate_lock(mapping);
3952 
3953 	ret = ext4_break_layouts(inode);
3954 	if (ret)
3955 		goto out_dio;
3956 
3957 	first_block_offset = round_up(offset, sb->s_blocksize);
3958 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3959 
3960 	/* Now release the pages and zero block aligned part of pages*/
3961 	if (last_block_offset > first_block_offset) {
3962 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3963 		if (ret)
3964 			goto out_dio;
3965 		truncate_pagecache_range(inode, first_block_offset,
3966 					 last_block_offset);
3967 	}
3968 
3969 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3970 		credits = ext4_writepage_trans_blocks(inode);
3971 	else
3972 		credits = ext4_blocks_for_truncate(inode);
3973 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3974 	if (IS_ERR(handle)) {
3975 		ret = PTR_ERR(handle);
3976 		ext4_std_error(sb, ret);
3977 		goto out_dio;
3978 	}
3979 
3980 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3981 				       length);
3982 	if (ret)
3983 		goto out_stop;
3984 
3985 	first_block = (offset + sb->s_blocksize - 1) >>
3986 		EXT4_BLOCK_SIZE_BITS(sb);
3987 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3988 
3989 	/* If there are blocks to remove, do it */
3990 	if (stop_block > first_block) {
3991 
3992 		down_write(&EXT4_I(inode)->i_data_sem);
3993 		ext4_discard_preallocations(inode, 0);
3994 
3995 		ret = ext4_es_remove_extent(inode, first_block,
3996 					    stop_block - first_block);
3997 		if (ret) {
3998 			up_write(&EXT4_I(inode)->i_data_sem);
3999 			goto out_stop;
4000 		}
4001 
4002 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003 			ret = ext4_ext_remove_space(inode, first_block,
4004 						    stop_block - 1);
4005 		else
4006 			ret = ext4_ind_remove_space(handle, inode, first_block,
4007 						    stop_block);
4008 
4009 		up_write(&EXT4_I(inode)->i_data_sem);
4010 	}
4011 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4012 	if (IS_SYNC(inode))
4013 		ext4_handle_sync(handle);
4014 
4015 	inode->i_mtime = inode->i_ctime = current_time(inode);
4016 	ret2 = ext4_mark_inode_dirty(handle, inode);
4017 	if (unlikely(ret2))
4018 		ret = ret2;
4019 	if (ret >= 0)
4020 		ext4_update_inode_fsync_trans(handle, inode, 1);
4021 out_stop:
4022 	ext4_journal_stop(handle);
4023 out_dio:
4024 	filemap_invalidate_unlock(mapping);
4025 out_mutex:
4026 	inode_unlock(inode);
4027 	return ret;
4028 }
4029 
4030 int ext4_inode_attach_jinode(struct inode *inode)
4031 {
4032 	struct ext4_inode_info *ei = EXT4_I(inode);
4033 	struct jbd2_inode *jinode;
4034 
4035 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4036 		return 0;
4037 
4038 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4039 	spin_lock(&inode->i_lock);
4040 	if (!ei->jinode) {
4041 		if (!jinode) {
4042 			spin_unlock(&inode->i_lock);
4043 			return -ENOMEM;
4044 		}
4045 		ei->jinode = jinode;
4046 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4047 		jinode = NULL;
4048 	}
4049 	spin_unlock(&inode->i_lock);
4050 	if (unlikely(jinode != NULL))
4051 		jbd2_free_inode(jinode);
4052 	return 0;
4053 }
4054 
4055 /*
4056  * ext4_truncate()
4057  *
4058  * We block out ext4_get_block() block instantiations across the entire
4059  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4060  * simultaneously on behalf of the same inode.
4061  *
4062  * As we work through the truncate and commit bits of it to the journal there
4063  * is one core, guiding principle: the file's tree must always be consistent on
4064  * disk.  We must be able to restart the truncate after a crash.
4065  *
4066  * The file's tree may be transiently inconsistent in memory (although it
4067  * probably isn't), but whenever we close off and commit a journal transaction,
4068  * the contents of (the filesystem + the journal) must be consistent and
4069  * restartable.  It's pretty simple, really: bottom up, right to left (although
4070  * left-to-right works OK too).
4071  *
4072  * Note that at recovery time, journal replay occurs *before* the restart of
4073  * truncate against the orphan inode list.
4074  *
4075  * The committed inode has the new, desired i_size (which is the same as
4076  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4077  * that this inode's truncate did not complete and it will again call
4078  * ext4_truncate() to have another go.  So there will be instantiated blocks
4079  * to the right of the truncation point in a crashed ext4 filesystem.  But
4080  * that's fine - as long as they are linked from the inode, the post-crash
4081  * ext4_truncate() run will find them and release them.
4082  */
4083 int ext4_truncate(struct inode *inode)
4084 {
4085 	struct ext4_inode_info *ei = EXT4_I(inode);
4086 	unsigned int credits;
4087 	int err = 0, err2;
4088 	handle_t *handle;
4089 	struct address_space *mapping = inode->i_mapping;
4090 
4091 	/*
4092 	 * There is a possibility that we're either freeing the inode
4093 	 * or it's a completely new inode. In those cases we might not
4094 	 * have i_rwsem locked because it's not necessary.
4095 	 */
4096 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4097 		WARN_ON(!inode_is_locked(inode));
4098 	trace_ext4_truncate_enter(inode);
4099 
4100 	if (!ext4_can_truncate(inode))
4101 		goto out_trace;
4102 
4103 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4104 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4105 
4106 	if (ext4_has_inline_data(inode)) {
4107 		int has_inline = 1;
4108 
4109 		err = ext4_inline_data_truncate(inode, &has_inline);
4110 		if (err || has_inline)
4111 			goto out_trace;
4112 	}
4113 
4114 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4115 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4116 		err = ext4_inode_attach_jinode(inode);
4117 		if (err)
4118 			goto out_trace;
4119 	}
4120 
4121 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 		credits = ext4_writepage_trans_blocks(inode);
4123 	else
4124 		credits = ext4_blocks_for_truncate(inode);
4125 
4126 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4127 	if (IS_ERR(handle)) {
4128 		err = PTR_ERR(handle);
4129 		goto out_trace;
4130 	}
4131 
4132 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4133 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4134 
4135 	/*
4136 	 * We add the inode to the orphan list, so that if this
4137 	 * truncate spans multiple transactions, and we crash, we will
4138 	 * resume the truncate when the filesystem recovers.  It also
4139 	 * marks the inode dirty, to catch the new size.
4140 	 *
4141 	 * Implication: the file must always be in a sane, consistent
4142 	 * truncatable state while each transaction commits.
4143 	 */
4144 	err = ext4_orphan_add(handle, inode);
4145 	if (err)
4146 		goto out_stop;
4147 
4148 	down_write(&EXT4_I(inode)->i_data_sem);
4149 
4150 	ext4_discard_preallocations(inode, 0);
4151 
4152 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4153 		err = ext4_ext_truncate(handle, inode);
4154 	else
4155 		ext4_ind_truncate(handle, inode);
4156 
4157 	up_write(&ei->i_data_sem);
4158 	if (err)
4159 		goto out_stop;
4160 
4161 	if (IS_SYNC(inode))
4162 		ext4_handle_sync(handle);
4163 
4164 out_stop:
4165 	/*
4166 	 * If this was a simple ftruncate() and the file will remain alive,
4167 	 * then we need to clear up the orphan record which we created above.
4168 	 * However, if this was a real unlink then we were called by
4169 	 * ext4_evict_inode(), and we allow that function to clean up the
4170 	 * orphan info for us.
4171 	 */
4172 	if (inode->i_nlink)
4173 		ext4_orphan_del(handle, inode);
4174 
4175 	inode->i_mtime = inode->i_ctime = current_time(inode);
4176 	err2 = ext4_mark_inode_dirty(handle, inode);
4177 	if (unlikely(err2 && !err))
4178 		err = err2;
4179 	ext4_journal_stop(handle);
4180 
4181 out_trace:
4182 	trace_ext4_truncate_exit(inode);
4183 	return err;
4184 }
4185 
4186 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4187 {
4188 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4189 		return inode_peek_iversion_raw(inode);
4190 	else
4191 		return inode_peek_iversion(inode);
4192 }
4193 
4194 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4195 				 struct ext4_inode_info *ei)
4196 {
4197 	struct inode *inode = &(ei->vfs_inode);
4198 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4199 	struct super_block *sb = inode->i_sb;
4200 
4201 	if (i_blocks <= ~0U) {
4202 		/*
4203 		 * i_blocks can be represented in a 32 bit variable
4204 		 * as multiple of 512 bytes
4205 		 */
4206 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4207 		raw_inode->i_blocks_high = 0;
4208 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4209 		return 0;
4210 	}
4211 
4212 	/*
4213 	 * This should never happen since sb->s_maxbytes should not have
4214 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4215 	 * feature in ext4_fill_super().
4216 	 */
4217 	if (!ext4_has_feature_huge_file(sb))
4218 		return -EFSCORRUPTED;
4219 
4220 	if (i_blocks <= 0xffffffffffffULL) {
4221 		/*
4222 		 * i_blocks can be represented in a 48 bit variable
4223 		 * as multiple of 512 bytes
4224 		 */
4225 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4226 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4227 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4228 	} else {
4229 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4230 		/* i_block is stored in file system block size */
4231 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4232 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4233 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4234 	}
4235 	return 0;
4236 }
4237 
4238 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4239 {
4240 	struct ext4_inode_info *ei = EXT4_I(inode);
4241 	uid_t i_uid;
4242 	gid_t i_gid;
4243 	projid_t i_projid;
4244 	int block;
4245 	int err;
4246 
4247 	err = ext4_inode_blocks_set(raw_inode, ei);
4248 
4249 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4250 	i_uid = i_uid_read(inode);
4251 	i_gid = i_gid_read(inode);
4252 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4253 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4254 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4255 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4256 		/*
4257 		 * Fix up interoperability with old kernels. Otherwise,
4258 		 * old inodes get re-used with the upper 16 bits of the
4259 		 * uid/gid intact.
4260 		 */
4261 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4262 			raw_inode->i_uid_high = 0;
4263 			raw_inode->i_gid_high = 0;
4264 		} else {
4265 			raw_inode->i_uid_high =
4266 				cpu_to_le16(high_16_bits(i_uid));
4267 			raw_inode->i_gid_high =
4268 				cpu_to_le16(high_16_bits(i_gid));
4269 		}
4270 	} else {
4271 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4272 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4273 		raw_inode->i_uid_high = 0;
4274 		raw_inode->i_gid_high = 0;
4275 	}
4276 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4277 
4278 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4279 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4280 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4281 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4282 
4283 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4284 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4285 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4286 		raw_inode->i_file_acl_high =
4287 			cpu_to_le16(ei->i_file_acl >> 32);
4288 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4289 	ext4_isize_set(raw_inode, ei->i_disksize);
4290 
4291 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4292 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4293 		if (old_valid_dev(inode->i_rdev)) {
4294 			raw_inode->i_block[0] =
4295 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4296 			raw_inode->i_block[1] = 0;
4297 		} else {
4298 			raw_inode->i_block[0] = 0;
4299 			raw_inode->i_block[1] =
4300 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4301 			raw_inode->i_block[2] = 0;
4302 		}
4303 	} else if (!ext4_has_inline_data(inode)) {
4304 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4305 			raw_inode->i_block[block] = ei->i_data[block];
4306 	}
4307 
4308 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4309 		u64 ivers = ext4_inode_peek_iversion(inode);
4310 
4311 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4312 		if (ei->i_extra_isize) {
4313 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4314 				raw_inode->i_version_hi =
4315 					cpu_to_le32(ivers >> 32);
4316 			raw_inode->i_extra_isize =
4317 				cpu_to_le16(ei->i_extra_isize);
4318 		}
4319 	}
4320 
4321 	if (i_projid != EXT4_DEF_PROJID &&
4322 	    !ext4_has_feature_project(inode->i_sb))
4323 		err = err ?: -EFSCORRUPTED;
4324 
4325 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4326 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4327 		raw_inode->i_projid = cpu_to_le32(i_projid);
4328 
4329 	ext4_inode_csum_set(inode, raw_inode, ei);
4330 	return err;
4331 }
4332 
4333 /*
4334  * ext4_get_inode_loc returns with an extra refcount against the inode's
4335  * underlying buffer_head on success. If we pass 'inode' and it does not
4336  * have in-inode xattr, we have all inode data in memory that is needed
4337  * to recreate the on-disk version of this inode.
4338  */
4339 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4340 				struct inode *inode, struct ext4_iloc *iloc,
4341 				ext4_fsblk_t *ret_block)
4342 {
4343 	struct ext4_group_desc	*gdp;
4344 	struct buffer_head	*bh;
4345 	ext4_fsblk_t		block;
4346 	struct blk_plug		plug;
4347 	int			inodes_per_block, inode_offset;
4348 
4349 	iloc->bh = NULL;
4350 	if (ino < EXT4_ROOT_INO ||
4351 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4352 		return -EFSCORRUPTED;
4353 
4354 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4355 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4356 	if (!gdp)
4357 		return -EIO;
4358 
4359 	/*
4360 	 * Figure out the offset within the block group inode table
4361 	 */
4362 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4363 	inode_offset = ((ino - 1) %
4364 			EXT4_INODES_PER_GROUP(sb));
4365 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4366 
4367 	block = ext4_inode_table(sb, gdp);
4368 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4369 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4370 		ext4_error(sb, "Invalid inode table block %llu in "
4371 			   "block_group %u", block, iloc->block_group);
4372 		return -EFSCORRUPTED;
4373 	}
4374 	block += (inode_offset / inodes_per_block);
4375 
4376 	bh = sb_getblk(sb, block);
4377 	if (unlikely(!bh))
4378 		return -ENOMEM;
4379 	if (ext4_buffer_uptodate(bh))
4380 		goto has_buffer;
4381 
4382 	lock_buffer(bh);
4383 	if (ext4_buffer_uptodate(bh)) {
4384 		/* Someone brought it uptodate while we waited */
4385 		unlock_buffer(bh);
4386 		goto has_buffer;
4387 	}
4388 
4389 	/*
4390 	 * If we have all information of the inode in memory and this
4391 	 * is the only valid inode in the block, we need not read the
4392 	 * block.
4393 	 */
4394 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4395 		struct buffer_head *bitmap_bh;
4396 		int i, start;
4397 
4398 		start = inode_offset & ~(inodes_per_block - 1);
4399 
4400 		/* Is the inode bitmap in cache? */
4401 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4402 		if (unlikely(!bitmap_bh))
4403 			goto make_io;
4404 
4405 		/*
4406 		 * If the inode bitmap isn't in cache then the
4407 		 * optimisation may end up performing two reads instead
4408 		 * of one, so skip it.
4409 		 */
4410 		if (!buffer_uptodate(bitmap_bh)) {
4411 			brelse(bitmap_bh);
4412 			goto make_io;
4413 		}
4414 		for (i = start; i < start + inodes_per_block; i++) {
4415 			if (i == inode_offset)
4416 				continue;
4417 			if (ext4_test_bit(i, bitmap_bh->b_data))
4418 				break;
4419 		}
4420 		brelse(bitmap_bh);
4421 		if (i == start + inodes_per_block) {
4422 			struct ext4_inode *raw_inode =
4423 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4424 
4425 			/* all other inodes are free, so skip I/O */
4426 			memset(bh->b_data, 0, bh->b_size);
4427 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4428 				ext4_fill_raw_inode(inode, raw_inode);
4429 			set_buffer_uptodate(bh);
4430 			unlock_buffer(bh);
4431 			goto has_buffer;
4432 		}
4433 	}
4434 
4435 make_io:
4436 	/*
4437 	 * If we need to do any I/O, try to pre-readahead extra
4438 	 * blocks from the inode table.
4439 	 */
4440 	blk_start_plug(&plug);
4441 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4442 		ext4_fsblk_t b, end, table;
4443 		unsigned num;
4444 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4445 
4446 		table = ext4_inode_table(sb, gdp);
4447 		/* s_inode_readahead_blks is always a power of 2 */
4448 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4449 		if (table > b)
4450 			b = table;
4451 		end = b + ra_blks;
4452 		num = EXT4_INODES_PER_GROUP(sb);
4453 		if (ext4_has_group_desc_csum(sb))
4454 			num -= ext4_itable_unused_count(sb, gdp);
4455 		table += num / inodes_per_block;
4456 		if (end > table)
4457 			end = table;
4458 		while (b <= end)
4459 			ext4_sb_breadahead_unmovable(sb, b++);
4460 	}
4461 
4462 	/*
4463 	 * There are other valid inodes in the buffer, this inode
4464 	 * has in-inode xattrs, or we don't have this inode in memory.
4465 	 * Read the block from disk.
4466 	 */
4467 	trace_ext4_load_inode(sb, ino);
4468 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4469 	blk_finish_plug(&plug);
4470 	wait_on_buffer(bh);
4471 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4472 	if (!buffer_uptodate(bh)) {
4473 		if (ret_block)
4474 			*ret_block = block;
4475 		brelse(bh);
4476 		return -EIO;
4477 	}
4478 has_buffer:
4479 	iloc->bh = bh;
4480 	return 0;
4481 }
4482 
4483 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4484 					struct ext4_iloc *iloc)
4485 {
4486 	ext4_fsblk_t err_blk = 0;
4487 	int ret;
4488 
4489 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4490 					&err_blk);
4491 
4492 	if (ret == -EIO)
4493 		ext4_error_inode_block(inode, err_blk, EIO,
4494 					"unable to read itable block");
4495 
4496 	return ret;
4497 }
4498 
4499 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4500 {
4501 	ext4_fsblk_t err_blk = 0;
4502 	int ret;
4503 
4504 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4505 					&err_blk);
4506 
4507 	if (ret == -EIO)
4508 		ext4_error_inode_block(inode, err_blk, EIO,
4509 					"unable to read itable block");
4510 
4511 	return ret;
4512 }
4513 
4514 
4515 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4516 			  struct ext4_iloc *iloc)
4517 {
4518 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4519 }
4520 
4521 static bool ext4_should_enable_dax(struct inode *inode)
4522 {
4523 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4524 
4525 	if (test_opt2(inode->i_sb, DAX_NEVER))
4526 		return false;
4527 	if (!S_ISREG(inode->i_mode))
4528 		return false;
4529 	if (ext4_should_journal_data(inode))
4530 		return false;
4531 	if (ext4_has_inline_data(inode))
4532 		return false;
4533 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4534 		return false;
4535 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4536 		return false;
4537 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4538 		return false;
4539 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4540 		return true;
4541 
4542 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4543 }
4544 
4545 void ext4_set_inode_flags(struct inode *inode, bool init)
4546 {
4547 	unsigned int flags = EXT4_I(inode)->i_flags;
4548 	unsigned int new_fl = 0;
4549 
4550 	WARN_ON_ONCE(IS_DAX(inode) && init);
4551 
4552 	if (flags & EXT4_SYNC_FL)
4553 		new_fl |= S_SYNC;
4554 	if (flags & EXT4_APPEND_FL)
4555 		new_fl |= S_APPEND;
4556 	if (flags & EXT4_IMMUTABLE_FL)
4557 		new_fl |= S_IMMUTABLE;
4558 	if (flags & EXT4_NOATIME_FL)
4559 		new_fl |= S_NOATIME;
4560 	if (flags & EXT4_DIRSYNC_FL)
4561 		new_fl |= S_DIRSYNC;
4562 
4563 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4564 	 * here if already set. */
4565 	new_fl |= (inode->i_flags & S_DAX);
4566 	if (init && ext4_should_enable_dax(inode))
4567 		new_fl |= S_DAX;
4568 
4569 	if (flags & EXT4_ENCRYPT_FL)
4570 		new_fl |= S_ENCRYPTED;
4571 	if (flags & EXT4_CASEFOLD_FL)
4572 		new_fl |= S_CASEFOLD;
4573 	if (flags & EXT4_VERITY_FL)
4574 		new_fl |= S_VERITY;
4575 	inode_set_flags(inode, new_fl,
4576 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4577 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4578 }
4579 
4580 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4581 				  struct ext4_inode_info *ei)
4582 {
4583 	blkcnt_t i_blocks ;
4584 	struct inode *inode = &(ei->vfs_inode);
4585 	struct super_block *sb = inode->i_sb;
4586 
4587 	if (ext4_has_feature_huge_file(sb)) {
4588 		/* we are using combined 48 bit field */
4589 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4590 					le32_to_cpu(raw_inode->i_blocks_lo);
4591 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4592 			/* i_blocks represent file system block size */
4593 			return i_blocks  << (inode->i_blkbits - 9);
4594 		} else {
4595 			return i_blocks;
4596 		}
4597 	} else {
4598 		return le32_to_cpu(raw_inode->i_blocks_lo);
4599 	}
4600 }
4601 
4602 static inline int ext4_iget_extra_inode(struct inode *inode,
4603 					 struct ext4_inode *raw_inode,
4604 					 struct ext4_inode_info *ei)
4605 {
4606 	__le32 *magic = (void *)raw_inode +
4607 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4608 
4609 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4610 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4611 		int err;
4612 
4613 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4614 		err = ext4_find_inline_data_nolock(inode);
4615 		if (!err && ext4_has_inline_data(inode))
4616 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4617 		return err;
4618 	} else
4619 		EXT4_I(inode)->i_inline_off = 0;
4620 	return 0;
4621 }
4622 
4623 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4624 {
4625 	if (!ext4_has_feature_project(inode->i_sb))
4626 		return -EOPNOTSUPP;
4627 	*projid = EXT4_I(inode)->i_projid;
4628 	return 0;
4629 }
4630 
4631 /*
4632  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4633  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4634  * set.
4635  */
4636 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4637 {
4638 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4639 		inode_set_iversion_raw(inode, val);
4640 	else
4641 		inode_set_iversion_queried(inode, val);
4642 }
4643 
4644 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4645 			  ext4_iget_flags flags, const char *function,
4646 			  unsigned int line)
4647 {
4648 	struct ext4_iloc iloc;
4649 	struct ext4_inode *raw_inode;
4650 	struct ext4_inode_info *ei;
4651 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4652 	struct inode *inode;
4653 	journal_t *journal = EXT4_SB(sb)->s_journal;
4654 	long ret;
4655 	loff_t size;
4656 	int block;
4657 	uid_t i_uid;
4658 	gid_t i_gid;
4659 	projid_t i_projid;
4660 
4661 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4662 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4663 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4664 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4665 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4666 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4667 	    (ino < EXT4_ROOT_INO) ||
4668 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4669 		if (flags & EXT4_IGET_HANDLE)
4670 			return ERR_PTR(-ESTALE);
4671 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4672 			     "inode #%lu: comm %s: iget: illegal inode #",
4673 			     ino, current->comm);
4674 		return ERR_PTR(-EFSCORRUPTED);
4675 	}
4676 
4677 	inode = iget_locked(sb, ino);
4678 	if (!inode)
4679 		return ERR_PTR(-ENOMEM);
4680 	if (!(inode->i_state & I_NEW))
4681 		return inode;
4682 
4683 	ei = EXT4_I(inode);
4684 	iloc.bh = NULL;
4685 
4686 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4687 	if (ret < 0)
4688 		goto bad_inode;
4689 	raw_inode = ext4_raw_inode(&iloc);
4690 
4691 	if ((flags & EXT4_IGET_HANDLE) &&
4692 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4693 		ret = -ESTALE;
4694 		goto bad_inode;
4695 	}
4696 
4697 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4698 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4699 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4700 			EXT4_INODE_SIZE(inode->i_sb) ||
4701 		    (ei->i_extra_isize & 3)) {
4702 			ext4_error_inode(inode, function, line, 0,
4703 					 "iget: bad extra_isize %u "
4704 					 "(inode size %u)",
4705 					 ei->i_extra_isize,
4706 					 EXT4_INODE_SIZE(inode->i_sb));
4707 			ret = -EFSCORRUPTED;
4708 			goto bad_inode;
4709 		}
4710 	} else
4711 		ei->i_extra_isize = 0;
4712 
4713 	/* Precompute checksum seed for inode metadata */
4714 	if (ext4_has_metadata_csum(sb)) {
4715 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4716 		__u32 csum;
4717 		__le32 inum = cpu_to_le32(inode->i_ino);
4718 		__le32 gen = raw_inode->i_generation;
4719 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4720 				   sizeof(inum));
4721 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4722 					      sizeof(gen));
4723 	}
4724 
4725 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4726 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4727 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4728 		ext4_error_inode_err(inode, function, line, 0,
4729 				EFSBADCRC, "iget: checksum invalid");
4730 		ret = -EFSBADCRC;
4731 		goto bad_inode;
4732 	}
4733 
4734 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4735 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4736 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4737 	if (ext4_has_feature_project(sb) &&
4738 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4739 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4740 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4741 	else
4742 		i_projid = EXT4_DEF_PROJID;
4743 
4744 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4745 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4746 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4747 	}
4748 	i_uid_write(inode, i_uid);
4749 	i_gid_write(inode, i_gid);
4750 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4751 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4752 
4753 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4754 	ei->i_inline_off = 0;
4755 	ei->i_dir_start_lookup = 0;
4756 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4757 	/* We now have enough fields to check if the inode was active or not.
4758 	 * This is needed because nfsd might try to access dead inodes
4759 	 * the test is that same one that e2fsck uses
4760 	 * NeilBrown 1999oct15
4761 	 */
4762 	if (inode->i_nlink == 0) {
4763 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4764 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4765 		    ino != EXT4_BOOT_LOADER_INO) {
4766 			/* this inode is deleted or unallocated */
4767 			if (flags & EXT4_IGET_SPECIAL) {
4768 				ext4_error_inode(inode, function, line, 0,
4769 						 "iget: special inode unallocated");
4770 				ret = -EFSCORRUPTED;
4771 			} else
4772 				ret = -ESTALE;
4773 			goto bad_inode;
4774 		}
4775 		/* The only unlinked inodes we let through here have
4776 		 * valid i_mode and are being read by the orphan
4777 		 * recovery code: that's fine, we're about to complete
4778 		 * the process of deleting those.
4779 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4780 		 * not initialized on a new filesystem. */
4781 	}
4782 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4783 	ext4_set_inode_flags(inode, true);
4784 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4785 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4786 	if (ext4_has_feature_64bit(sb))
4787 		ei->i_file_acl |=
4788 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4789 	inode->i_size = ext4_isize(sb, raw_inode);
4790 	if ((size = i_size_read(inode)) < 0) {
4791 		ext4_error_inode(inode, function, line, 0,
4792 				 "iget: bad i_size value: %lld", size);
4793 		ret = -EFSCORRUPTED;
4794 		goto bad_inode;
4795 	}
4796 	/*
4797 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4798 	 * we'd normally treat htree data as empty space. But with metadata
4799 	 * checksumming that corrupts checksums so forbid that.
4800 	 */
4801 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4802 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4803 		ext4_error_inode(inode, function, line, 0,
4804 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4805 		ret = -EFSCORRUPTED;
4806 		goto bad_inode;
4807 	}
4808 	ei->i_disksize = inode->i_size;
4809 #ifdef CONFIG_QUOTA
4810 	ei->i_reserved_quota = 0;
4811 #endif
4812 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4813 	ei->i_block_group = iloc.block_group;
4814 	ei->i_last_alloc_group = ~0;
4815 	/*
4816 	 * NOTE! The in-memory inode i_data array is in little-endian order
4817 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4818 	 */
4819 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4820 		ei->i_data[block] = raw_inode->i_block[block];
4821 	INIT_LIST_HEAD(&ei->i_orphan);
4822 	ext4_fc_init_inode(&ei->vfs_inode);
4823 
4824 	/*
4825 	 * Set transaction id's of transactions that have to be committed
4826 	 * to finish f[data]sync. We set them to currently running transaction
4827 	 * as we cannot be sure that the inode or some of its metadata isn't
4828 	 * part of the transaction - the inode could have been reclaimed and
4829 	 * now it is reread from disk.
4830 	 */
4831 	if (journal) {
4832 		transaction_t *transaction;
4833 		tid_t tid;
4834 
4835 		read_lock(&journal->j_state_lock);
4836 		if (journal->j_running_transaction)
4837 			transaction = journal->j_running_transaction;
4838 		else
4839 			transaction = journal->j_committing_transaction;
4840 		if (transaction)
4841 			tid = transaction->t_tid;
4842 		else
4843 			tid = journal->j_commit_sequence;
4844 		read_unlock(&journal->j_state_lock);
4845 		ei->i_sync_tid = tid;
4846 		ei->i_datasync_tid = tid;
4847 	}
4848 
4849 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4850 		if (ei->i_extra_isize == 0) {
4851 			/* The extra space is currently unused. Use it. */
4852 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4853 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4854 					    EXT4_GOOD_OLD_INODE_SIZE;
4855 		} else {
4856 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4857 			if (ret)
4858 				goto bad_inode;
4859 		}
4860 	}
4861 
4862 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4863 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4864 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4865 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4866 
4867 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4868 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4869 
4870 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4871 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4872 				ivers |=
4873 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4874 		}
4875 		ext4_inode_set_iversion_queried(inode, ivers);
4876 	}
4877 
4878 	ret = 0;
4879 	if (ei->i_file_acl &&
4880 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4881 		ext4_error_inode(inode, function, line, 0,
4882 				 "iget: bad extended attribute block %llu",
4883 				 ei->i_file_acl);
4884 		ret = -EFSCORRUPTED;
4885 		goto bad_inode;
4886 	} else if (!ext4_has_inline_data(inode)) {
4887 		/* validate the block references in the inode */
4888 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4889 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4890 			(S_ISLNK(inode->i_mode) &&
4891 			!ext4_inode_is_fast_symlink(inode)))) {
4892 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4893 				ret = ext4_ext_check_inode(inode);
4894 			else
4895 				ret = ext4_ind_check_inode(inode);
4896 		}
4897 	}
4898 	if (ret)
4899 		goto bad_inode;
4900 
4901 	if (S_ISREG(inode->i_mode)) {
4902 		inode->i_op = &ext4_file_inode_operations;
4903 		inode->i_fop = &ext4_file_operations;
4904 		ext4_set_aops(inode);
4905 	} else if (S_ISDIR(inode->i_mode)) {
4906 		inode->i_op = &ext4_dir_inode_operations;
4907 		inode->i_fop = &ext4_dir_operations;
4908 	} else if (S_ISLNK(inode->i_mode)) {
4909 		/* VFS does not allow setting these so must be corruption */
4910 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4911 			ext4_error_inode(inode, function, line, 0,
4912 					 "iget: immutable or append flags "
4913 					 "not allowed on symlinks");
4914 			ret = -EFSCORRUPTED;
4915 			goto bad_inode;
4916 		}
4917 		if (IS_ENCRYPTED(inode)) {
4918 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4919 		} else if (ext4_inode_is_fast_symlink(inode)) {
4920 			inode->i_link = (char *)ei->i_data;
4921 			inode->i_op = &ext4_fast_symlink_inode_operations;
4922 			nd_terminate_link(ei->i_data, inode->i_size,
4923 				sizeof(ei->i_data) - 1);
4924 		} else {
4925 			inode->i_op = &ext4_symlink_inode_operations;
4926 		}
4927 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4928 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4929 		inode->i_op = &ext4_special_inode_operations;
4930 		if (raw_inode->i_block[0])
4931 			init_special_inode(inode, inode->i_mode,
4932 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4933 		else
4934 			init_special_inode(inode, inode->i_mode,
4935 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4936 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4937 		make_bad_inode(inode);
4938 	} else {
4939 		ret = -EFSCORRUPTED;
4940 		ext4_error_inode(inode, function, line, 0,
4941 				 "iget: bogus i_mode (%o)", inode->i_mode);
4942 		goto bad_inode;
4943 	}
4944 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4945 		ext4_error_inode(inode, function, line, 0,
4946 				 "casefold flag without casefold feature");
4947 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
4948 		ext4_error_inode(inode, function, line, 0,
4949 				 "bad inode without EXT4_IGET_BAD flag");
4950 		ret = -EUCLEAN;
4951 		goto bad_inode;
4952 	}
4953 
4954 	brelse(iloc.bh);
4955 	unlock_new_inode(inode);
4956 	return inode;
4957 
4958 bad_inode:
4959 	brelse(iloc.bh);
4960 	iget_failed(inode);
4961 	return ERR_PTR(ret);
4962 }
4963 
4964 static void __ext4_update_other_inode_time(struct super_block *sb,
4965 					   unsigned long orig_ino,
4966 					   unsigned long ino,
4967 					   struct ext4_inode *raw_inode)
4968 {
4969 	struct inode *inode;
4970 
4971 	inode = find_inode_by_ino_rcu(sb, ino);
4972 	if (!inode)
4973 		return;
4974 
4975 	if (!inode_is_dirtytime_only(inode))
4976 		return;
4977 
4978 	spin_lock(&inode->i_lock);
4979 	if (inode_is_dirtytime_only(inode)) {
4980 		struct ext4_inode_info	*ei = EXT4_I(inode);
4981 
4982 		inode->i_state &= ~I_DIRTY_TIME;
4983 		spin_unlock(&inode->i_lock);
4984 
4985 		spin_lock(&ei->i_raw_lock);
4986 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4987 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4988 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4989 		ext4_inode_csum_set(inode, raw_inode, ei);
4990 		spin_unlock(&ei->i_raw_lock);
4991 		trace_ext4_other_inode_update_time(inode, orig_ino);
4992 		return;
4993 	}
4994 	spin_unlock(&inode->i_lock);
4995 }
4996 
4997 /*
4998  * Opportunistically update the other time fields for other inodes in
4999  * the same inode table block.
5000  */
5001 static void ext4_update_other_inodes_time(struct super_block *sb,
5002 					  unsigned long orig_ino, char *buf)
5003 {
5004 	unsigned long ino;
5005 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5006 	int inode_size = EXT4_INODE_SIZE(sb);
5007 
5008 	/*
5009 	 * Calculate the first inode in the inode table block.  Inode
5010 	 * numbers are one-based.  That is, the first inode in a block
5011 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5012 	 */
5013 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5014 	rcu_read_lock();
5015 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5016 		if (ino == orig_ino)
5017 			continue;
5018 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5019 					       (struct ext4_inode *)buf);
5020 	}
5021 	rcu_read_unlock();
5022 }
5023 
5024 /*
5025  * Post the struct inode info into an on-disk inode location in the
5026  * buffer-cache.  This gobbles the caller's reference to the
5027  * buffer_head in the inode location struct.
5028  *
5029  * The caller must have write access to iloc->bh.
5030  */
5031 static int ext4_do_update_inode(handle_t *handle,
5032 				struct inode *inode,
5033 				struct ext4_iloc *iloc)
5034 {
5035 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5036 	struct ext4_inode_info *ei = EXT4_I(inode);
5037 	struct buffer_head *bh = iloc->bh;
5038 	struct super_block *sb = inode->i_sb;
5039 	int err;
5040 	int need_datasync = 0, set_large_file = 0;
5041 
5042 	spin_lock(&ei->i_raw_lock);
5043 
5044 	/*
5045 	 * For fields not tracked in the in-memory inode, initialise them
5046 	 * to zero for new inodes.
5047 	 */
5048 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5049 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5050 
5051 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5052 		need_datasync = 1;
5053 	if (ei->i_disksize > 0x7fffffffULL) {
5054 		if (!ext4_has_feature_large_file(sb) ||
5055 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5056 			set_large_file = 1;
5057 	}
5058 
5059 	err = ext4_fill_raw_inode(inode, raw_inode);
5060 	spin_unlock(&ei->i_raw_lock);
5061 	if (err) {
5062 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5063 		goto out_brelse;
5064 	}
5065 
5066 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5067 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5068 					      bh->b_data);
5069 
5070 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5071 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5072 	if (err)
5073 		goto out_error;
5074 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5075 	if (set_large_file) {
5076 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5077 		err = ext4_journal_get_write_access(handle, sb,
5078 						    EXT4_SB(sb)->s_sbh,
5079 						    EXT4_JTR_NONE);
5080 		if (err)
5081 			goto out_error;
5082 		lock_buffer(EXT4_SB(sb)->s_sbh);
5083 		ext4_set_feature_large_file(sb);
5084 		ext4_superblock_csum_set(sb);
5085 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5086 		ext4_handle_sync(handle);
5087 		err = ext4_handle_dirty_metadata(handle, NULL,
5088 						 EXT4_SB(sb)->s_sbh);
5089 	}
5090 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5091 out_error:
5092 	ext4_std_error(inode->i_sb, err);
5093 out_brelse:
5094 	brelse(bh);
5095 	return err;
5096 }
5097 
5098 /*
5099  * ext4_write_inode()
5100  *
5101  * We are called from a few places:
5102  *
5103  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5104  *   Here, there will be no transaction running. We wait for any running
5105  *   transaction to commit.
5106  *
5107  * - Within flush work (sys_sync(), kupdate and such).
5108  *   We wait on commit, if told to.
5109  *
5110  * - Within iput_final() -> write_inode_now()
5111  *   We wait on commit, if told to.
5112  *
5113  * In all cases it is actually safe for us to return without doing anything,
5114  * because the inode has been copied into a raw inode buffer in
5115  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5116  * writeback.
5117  *
5118  * Note that we are absolutely dependent upon all inode dirtiers doing the
5119  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5120  * which we are interested.
5121  *
5122  * It would be a bug for them to not do this.  The code:
5123  *
5124  *	mark_inode_dirty(inode)
5125  *	stuff();
5126  *	inode->i_size = expr;
5127  *
5128  * is in error because write_inode() could occur while `stuff()' is running,
5129  * and the new i_size will be lost.  Plus the inode will no longer be on the
5130  * superblock's dirty inode list.
5131  */
5132 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5133 {
5134 	int err;
5135 
5136 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5137 	    sb_rdonly(inode->i_sb))
5138 		return 0;
5139 
5140 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5141 		return -EIO;
5142 
5143 	if (EXT4_SB(inode->i_sb)->s_journal) {
5144 		if (ext4_journal_current_handle()) {
5145 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5146 			dump_stack();
5147 			return -EIO;
5148 		}
5149 
5150 		/*
5151 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5152 		 * ext4_sync_fs() will force the commit after everything is
5153 		 * written.
5154 		 */
5155 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5156 			return 0;
5157 
5158 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5159 						EXT4_I(inode)->i_sync_tid);
5160 	} else {
5161 		struct ext4_iloc iloc;
5162 
5163 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5164 		if (err)
5165 			return err;
5166 		/*
5167 		 * sync(2) will flush the whole buffer cache. No need to do
5168 		 * it here separately for each inode.
5169 		 */
5170 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5171 			sync_dirty_buffer(iloc.bh);
5172 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5173 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5174 					       "IO error syncing inode");
5175 			err = -EIO;
5176 		}
5177 		brelse(iloc.bh);
5178 	}
5179 	return err;
5180 }
5181 
5182 /*
5183  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5184  * buffers that are attached to a folio straddling i_size and are undergoing
5185  * commit. In that case we have to wait for commit to finish and try again.
5186  */
5187 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5188 {
5189 	unsigned offset;
5190 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5191 	tid_t commit_tid = 0;
5192 	int ret;
5193 
5194 	offset = inode->i_size & (PAGE_SIZE - 1);
5195 	/*
5196 	 * If the folio is fully truncated, we don't need to wait for any commit
5197 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5198 	 * strip all buffers from the folio but keep the folio dirty which can then
5199 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5200 	 * buffers). Also we don't need to wait for any commit if all buffers in
5201 	 * the folio remain valid. This is most beneficial for the common case of
5202 	 * blocksize == PAGESIZE.
5203 	 */
5204 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5205 		return;
5206 	while (1) {
5207 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5208 				      inode->i_size >> PAGE_SHIFT);
5209 		if (IS_ERR(folio))
5210 			return;
5211 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5212 						folio_size(folio) - offset);
5213 		folio_unlock(folio);
5214 		folio_put(folio);
5215 		if (ret != -EBUSY)
5216 			return;
5217 		commit_tid = 0;
5218 		read_lock(&journal->j_state_lock);
5219 		if (journal->j_committing_transaction)
5220 			commit_tid = journal->j_committing_transaction->t_tid;
5221 		read_unlock(&journal->j_state_lock);
5222 		if (commit_tid)
5223 			jbd2_log_wait_commit(journal, commit_tid);
5224 	}
5225 }
5226 
5227 /*
5228  * ext4_setattr()
5229  *
5230  * Called from notify_change.
5231  *
5232  * We want to trap VFS attempts to truncate the file as soon as
5233  * possible.  In particular, we want to make sure that when the VFS
5234  * shrinks i_size, we put the inode on the orphan list and modify
5235  * i_disksize immediately, so that during the subsequent flushing of
5236  * dirty pages and freeing of disk blocks, we can guarantee that any
5237  * commit will leave the blocks being flushed in an unused state on
5238  * disk.  (On recovery, the inode will get truncated and the blocks will
5239  * be freed, so we have a strong guarantee that no future commit will
5240  * leave these blocks visible to the user.)
5241  *
5242  * Another thing we have to assure is that if we are in ordered mode
5243  * and inode is still attached to the committing transaction, we must
5244  * we start writeout of all the dirty pages which are being truncated.
5245  * This way we are sure that all the data written in the previous
5246  * transaction are already on disk (truncate waits for pages under
5247  * writeback).
5248  *
5249  * Called with inode->i_rwsem down.
5250  */
5251 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5252 		 struct iattr *attr)
5253 {
5254 	struct inode *inode = d_inode(dentry);
5255 	int error, rc = 0;
5256 	int orphan = 0;
5257 	const unsigned int ia_valid = attr->ia_valid;
5258 	bool inc_ivers = true;
5259 
5260 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5261 		return -EIO;
5262 
5263 	if (unlikely(IS_IMMUTABLE(inode)))
5264 		return -EPERM;
5265 
5266 	if (unlikely(IS_APPEND(inode) &&
5267 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5268 				  ATTR_GID | ATTR_TIMES_SET))))
5269 		return -EPERM;
5270 
5271 	error = setattr_prepare(idmap, dentry, attr);
5272 	if (error)
5273 		return error;
5274 
5275 	error = fscrypt_prepare_setattr(dentry, attr);
5276 	if (error)
5277 		return error;
5278 
5279 	error = fsverity_prepare_setattr(dentry, attr);
5280 	if (error)
5281 		return error;
5282 
5283 	if (is_quota_modification(idmap, inode, attr)) {
5284 		error = dquot_initialize(inode);
5285 		if (error)
5286 			return error;
5287 	}
5288 
5289 	if (i_uid_needs_update(idmap, attr, inode) ||
5290 	    i_gid_needs_update(idmap, attr, inode)) {
5291 		handle_t *handle;
5292 
5293 		/* (user+group)*(old+new) structure, inode write (sb,
5294 		 * inode block, ? - but truncate inode update has it) */
5295 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5296 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5297 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5298 		if (IS_ERR(handle)) {
5299 			error = PTR_ERR(handle);
5300 			goto err_out;
5301 		}
5302 
5303 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5304 		 * counts xattr inode references.
5305 		 */
5306 		down_read(&EXT4_I(inode)->xattr_sem);
5307 		error = dquot_transfer(idmap, inode, attr);
5308 		up_read(&EXT4_I(inode)->xattr_sem);
5309 
5310 		if (error) {
5311 			ext4_journal_stop(handle);
5312 			return error;
5313 		}
5314 		/* Update corresponding info in inode so that everything is in
5315 		 * one transaction */
5316 		i_uid_update(idmap, attr, inode);
5317 		i_gid_update(idmap, attr, inode);
5318 		error = ext4_mark_inode_dirty(handle, inode);
5319 		ext4_journal_stop(handle);
5320 		if (unlikely(error)) {
5321 			return error;
5322 		}
5323 	}
5324 
5325 	if (attr->ia_valid & ATTR_SIZE) {
5326 		handle_t *handle;
5327 		loff_t oldsize = inode->i_size;
5328 		loff_t old_disksize;
5329 		int shrink = (attr->ia_size < inode->i_size);
5330 
5331 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5332 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5333 
5334 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5335 				return -EFBIG;
5336 			}
5337 		}
5338 		if (!S_ISREG(inode->i_mode)) {
5339 			return -EINVAL;
5340 		}
5341 
5342 		if (attr->ia_size == inode->i_size)
5343 			inc_ivers = false;
5344 
5345 		if (shrink) {
5346 			if (ext4_should_order_data(inode)) {
5347 				error = ext4_begin_ordered_truncate(inode,
5348 							    attr->ia_size);
5349 				if (error)
5350 					goto err_out;
5351 			}
5352 			/*
5353 			 * Blocks are going to be removed from the inode. Wait
5354 			 * for dio in flight.
5355 			 */
5356 			inode_dio_wait(inode);
5357 		}
5358 
5359 		filemap_invalidate_lock(inode->i_mapping);
5360 
5361 		rc = ext4_break_layouts(inode);
5362 		if (rc) {
5363 			filemap_invalidate_unlock(inode->i_mapping);
5364 			goto err_out;
5365 		}
5366 
5367 		if (attr->ia_size != inode->i_size) {
5368 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5369 			if (IS_ERR(handle)) {
5370 				error = PTR_ERR(handle);
5371 				goto out_mmap_sem;
5372 			}
5373 			if (ext4_handle_valid(handle) && shrink) {
5374 				error = ext4_orphan_add(handle, inode);
5375 				orphan = 1;
5376 			}
5377 			/*
5378 			 * Update c/mtime on truncate up, ext4_truncate() will
5379 			 * update c/mtime in shrink case below
5380 			 */
5381 			if (!shrink) {
5382 				inode->i_mtime = current_time(inode);
5383 				inode->i_ctime = inode->i_mtime;
5384 			}
5385 
5386 			if (shrink)
5387 				ext4_fc_track_range(handle, inode,
5388 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5389 					inode->i_sb->s_blocksize_bits,
5390 					EXT_MAX_BLOCKS - 1);
5391 			else
5392 				ext4_fc_track_range(
5393 					handle, inode,
5394 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5395 					inode->i_sb->s_blocksize_bits,
5396 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5397 					inode->i_sb->s_blocksize_bits);
5398 
5399 			down_write(&EXT4_I(inode)->i_data_sem);
5400 			old_disksize = EXT4_I(inode)->i_disksize;
5401 			EXT4_I(inode)->i_disksize = attr->ia_size;
5402 			rc = ext4_mark_inode_dirty(handle, inode);
5403 			if (!error)
5404 				error = rc;
5405 			/*
5406 			 * We have to update i_size under i_data_sem together
5407 			 * with i_disksize to avoid races with writeback code
5408 			 * running ext4_wb_update_i_disksize().
5409 			 */
5410 			if (!error)
5411 				i_size_write(inode, attr->ia_size);
5412 			else
5413 				EXT4_I(inode)->i_disksize = old_disksize;
5414 			up_write(&EXT4_I(inode)->i_data_sem);
5415 			ext4_journal_stop(handle);
5416 			if (error)
5417 				goto out_mmap_sem;
5418 			if (!shrink) {
5419 				pagecache_isize_extended(inode, oldsize,
5420 							 inode->i_size);
5421 			} else if (ext4_should_journal_data(inode)) {
5422 				ext4_wait_for_tail_page_commit(inode);
5423 			}
5424 		}
5425 
5426 		/*
5427 		 * Truncate pagecache after we've waited for commit
5428 		 * in data=journal mode to make pages freeable.
5429 		 */
5430 		truncate_pagecache(inode, inode->i_size);
5431 		/*
5432 		 * Call ext4_truncate() even if i_size didn't change to
5433 		 * truncate possible preallocated blocks.
5434 		 */
5435 		if (attr->ia_size <= oldsize) {
5436 			rc = ext4_truncate(inode);
5437 			if (rc)
5438 				error = rc;
5439 		}
5440 out_mmap_sem:
5441 		filemap_invalidate_unlock(inode->i_mapping);
5442 	}
5443 
5444 	if (!error) {
5445 		if (inc_ivers)
5446 			inode_inc_iversion(inode);
5447 		setattr_copy(idmap, inode, attr);
5448 		mark_inode_dirty(inode);
5449 	}
5450 
5451 	/*
5452 	 * If the call to ext4_truncate failed to get a transaction handle at
5453 	 * all, we need to clean up the in-core orphan list manually.
5454 	 */
5455 	if (orphan && inode->i_nlink)
5456 		ext4_orphan_del(NULL, inode);
5457 
5458 	if (!error && (ia_valid & ATTR_MODE))
5459 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5460 
5461 err_out:
5462 	if  (error)
5463 		ext4_std_error(inode->i_sb, error);
5464 	if (!error)
5465 		error = rc;
5466 	return error;
5467 }
5468 
5469 u32 ext4_dio_alignment(struct inode *inode)
5470 {
5471 	if (fsverity_active(inode))
5472 		return 0;
5473 	if (ext4_should_journal_data(inode))
5474 		return 0;
5475 	if (ext4_has_inline_data(inode))
5476 		return 0;
5477 	if (IS_ENCRYPTED(inode)) {
5478 		if (!fscrypt_dio_supported(inode))
5479 			return 0;
5480 		return i_blocksize(inode);
5481 	}
5482 	return 1; /* use the iomap defaults */
5483 }
5484 
5485 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5486 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5487 {
5488 	struct inode *inode = d_inode(path->dentry);
5489 	struct ext4_inode *raw_inode;
5490 	struct ext4_inode_info *ei = EXT4_I(inode);
5491 	unsigned int flags;
5492 
5493 	if ((request_mask & STATX_BTIME) &&
5494 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5495 		stat->result_mask |= STATX_BTIME;
5496 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5497 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5498 	}
5499 
5500 	/*
5501 	 * Return the DIO alignment restrictions if requested.  We only return
5502 	 * this information when requested, since on encrypted files it might
5503 	 * take a fair bit of work to get if the file wasn't opened recently.
5504 	 */
5505 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5506 		u32 dio_align = ext4_dio_alignment(inode);
5507 
5508 		stat->result_mask |= STATX_DIOALIGN;
5509 		if (dio_align == 1) {
5510 			struct block_device *bdev = inode->i_sb->s_bdev;
5511 
5512 			/* iomap defaults */
5513 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5514 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5515 		} else {
5516 			stat->dio_mem_align = dio_align;
5517 			stat->dio_offset_align = dio_align;
5518 		}
5519 	}
5520 
5521 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5522 	if (flags & EXT4_APPEND_FL)
5523 		stat->attributes |= STATX_ATTR_APPEND;
5524 	if (flags & EXT4_COMPR_FL)
5525 		stat->attributes |= STATX_ATTR_COMPRESSED;
5526 	if (flags & EXT4_ENCRYPT_FL)
5527 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5528 	if (flags & EXT4_IMMUTABLE_FL)
5529 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5530 	if (flags & EXT4_NODUMP_FL)
5531 		stat->attributes |= STATX_ATTR_NODUMP;
5532 	if (flags & EXT4_VERITY_FL)
5533 		stat->attributes |= STATX_ATTR_VERITY;
5534 
5535 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5536 				  STATX_ATTR_COMPRESSED |
5537 				  STATX_ATTR_ENCRYPTED |
5538 				  STATX_ATTR_IMMUTABLE |
5539 				  STATX_ATTR_NODUMP |
5540 				  STATX_ATTR_VERITY);
5541 
5542 	generic_fillattr(idmap, inode, stat);
5543 	return 0;
5544 }
5545 
5546 int ext4_file_getattr(struct mnt_idmap *idmap,
5547 		      const struct path *path, struct kstat *stat,
5548 		      u32 request_mask, unsigned int query_flags)
5549 {
5550 	struct inode *inode = d_inode(path->dentry);
5551 	u64 delalloc_blocks;
5552 
5553 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5554 
5555 	/*
5556 	 * If there is inline data in the inode, the inode will normally not
5557 	 * have data blocks allocated (it may have an external xattr block).
5558 	 * Report at least one sector for such files, so tools like tar, rsync,
5559 	 * others don't incorrectly think the file is completely sparse.
5560 	 */
5561 	if (unlikely(ext4_has_inline_data(inode)))
5562 		stat->blocks += (stat->size + 511) >> 9;
5563 
5564 	/*
5565 	 * We can't update i_blocks if the block allocation is delayed
5566 	 * otherwise in the case of system crash before the real block
5567 	 * allocation is done, we will have i_blocks inconsistent with
5568 	 * on-disk file blocks.
5569 	 * We always keep i_blocks updated together with real
5570 	 * allocation. But to not confuse with user, stat
5571 	 * will return the blocks that include the delayed allocation
5572 	 * blocks for this file.
5573 	 */
5574 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5575 				   EXT4_I(inode)->i_reserved_data_blocks);
5576 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5577 	return 0;
5578 }
5579 
5580 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5581 				   int pextents)
5582 {
5583 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5584 		return ext4_ind_trans_blocks(inode, lblocks);
5585 	return ext4_ext_index_trans_blocks(inode, pextents);
5586 }
5587 
5588 /*
5589  * Account for index blocks, block groups bitmaps and block group
5590  * descriptor blocks if modify datablocks and index blocks
5591  * worse case, the indexs blocks spread over different block groups
5592  *
5593  * If datablocks are discontiguous, they are possible to spread over
5594  * different block groups too. If they are contiguous, with flexbg,
5595  * they could still across block group boundary.
5596  *
5597  * Also account for superblock, inode, quota and xattr blocks
5598  */
5599 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5600 				  int pextents)
5601 {
5602 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5603 	int gdpblocks;
5604 	int idxblocks;
5605 	int ret;
5606 
5607 	/*
5608 	 * How many index blocks need to touch to map @lblocks logical blocks
5609 	 * to @pextents physical extents?
5610 	 */
5611 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5612 
5613 	ret = idxblocks;
5614 
5615 	/*
5616 	 * Now let's see how many group bitmaps and group descriptors need
5617 	 * to account
5618 	 */
5619 	groups = idxblocks + pextents;
5620 	gdpblocks = groups;
5621 	if (groups > ngroups)
5622 		groups = ngroups;
5623 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5624 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5625 
5626 	/* bitmaps and block group descriptor blocks */
5627 	ret += groups + gdpblocks;
5628 
5629 	/* Blocks for super block, inode, quota and xattr blocks */
5630 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5631 
5632 	return ret;
5633 }
5634 
5635 /*
5636  * Calculate the total number of credits to reserve to fit
5637  * the modification of a single pages into a single transaction,
5638  * which may include multiple chunks of block allocations.
5639  *
5640  * This could be called via ext4_write_begin()
5641  *
5642  * We need to consider the worse case, when
5643  * one new block per extent.
5644  */
5645 int ext4_writepage_trans_blocks(struct inode *inode)
5646 {
5647 	int bpp = ext4_journal_blocks_per_page(inode);
5648 	int ret;
5649 
5650 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5651 
5652 	/* Account for data blocks for journalled mode */
5653 	if (ext4_should_journal_data(inode))
5654 		ret += bpp;
5655 	return ret;
5656 }
5657 
5658 /*
5659  * Calculate the journal credits for a chunk of data modification.
5660  *
5661  * This is called from DIO, fallocate or whoever calling
5662  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5663  *
5664  * journal buffers for data blocks are not included here, as DIO
5665  * and fallocate do no need to journal data buffers.
5666  */
5667 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5668 {
5669 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5670 }
5671 
5672 /*
5673  * The caller must have previously called ext4_reserve_inode_write().
5674  * Give this, we know that the caller already has write access to iloc->bh.
5675  */
5676 int ext4_mark_iloc_dirty(handle_t *handle,
5677 			 struct inode *inode, struct ext4_iloc *iloc)
5678 {
5679 	int err = 0;
5680 
5681 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5682 		put_bh(iloc->bh);
5683 		return -EIO;
5684 	}
5685 	ext4_fc_track_inode(handle, inode);
5686 
5687 	/* the do_update_inode consumes one bh->b_count */
5688 	get_bh(iloc->bh);
5689 
5690 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5691 	err = ext4_do_update_inode(handle, inode, iloc);
5692 	put_bh(iloc->bh);
5693 	return err;
5694 }
5695 
5696 /*
5697  * On success, We end up with an outstanding reference count against
5698  * iloc->bh.  This _must_ be cleaned up later.
5699  */
5700 
5701 int
5702 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5703 			 struct ext4_iloc *iloc)
5704 {
5705 	int err;
5706 
5707 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5708 		return -EIO;
5709 
5710 	err = ext4_get_inode_loc(inode, iloc);
5711 	if (!err) {
5712 		BUFFER_TRACE(iloc->bh, "get_write_access");
5713 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5714 						    iloc->bh, EXT4_JTR_NONE);
5715 		if (err) {
5716 			brelse(iloc->bh);
5717 			iloc->bh = NULL;
5718 		}
5719 	}
5720 	ext4_std_error(inode->i_sb, err);
5721 	return err;
5722 }
5723 
5724 static int __ext4_expand_extra_isize(struct inode *inode,
5725 				     unsigned int new_extra_isize,
5726 				     struct ext4_iloc *iloc,
5727 				     handle_t *handle, int *no_expand)
5728 {
5729 	struct ext4_inode *raw_inode;
5730 	struct ext4_xattr_ibody_header *header;
5731 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5732 	struct ext4_inode_info *ei = EXT4_I(inode);
5733 	int error;
5734 
5735 	/* this was checked at iget time, but double check for good measure */
5736 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5737 	    (ei->i_extra_isize & 3)) {
5738 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5739 				 ei->i_extra_isize,
5740 				 EXT4_INODE_SIZE(inode->i_sb));
5741 		return -EFSCORRUPTED;
5742 	}
5743 	if ((new_extra_isize < ei->i_extra_isize) ||
5744 	    (new_extra_isize < 4) ||
5745 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5746 		return -EINVAL;	/* Should never happen */
5747 
5748 	raw_inode = ext4_raw_inode(iloc);
5749 
5750 	header = IHDR(inode, raw_inode);
5751 
5752 	/* No extended attributes present */
5753 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5754 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5755 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5756 		       EXT4_I(inode)->i_extra_isize, 0,
5757 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5758 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5759 		return 0;
5760 	}
5761 
5762 	/*
5763 	 * We may need to allocate external xattr block so we need quotas
5764 	 * initialized. Here we can be called with various locks held so we
5765 	 * cannot affort to initialize quotas ourselves. So just bail.
5766 	 */
5767 	if (dquot_initialize_needed(inode))
5768 		return -EAGAIN;
5769 
5770 	/* try to expand with EAs present */
5771 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5772 					   raw_inode, handle);
5773 	if (error) {
5774 		/*
5775 		 * Inode size expansion failed; don't try again
5776 		 */
5777 		*no_expand = 1;
5778 	}
5779 
5780 	return error;
5781 }
5782 
5783 /*
5784  * Expand an inode by new_extra_isize bytes.
5785  * Returns 0 on success or negative error number on failure.
5786  */
5787 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5788 					  unsigned int new_extra_isize,
5789 					  struct ext4_iloc iloc,
5790 					  handle_t *handle)
5791 {
5792 	int no_expand;
5793 	int error;
5794 
5795 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5796 		return -EOVERFLOW;
5797 
5798 	/*
5799 	 * In nojournal mode, we can immediately attempt to expand
5800 	 * the inode.  When journaled, we first need to obtain extra
5801 	 * buffer credits since we may write into the EA block
5802 	 * with this same handle. If journal_extend fails, then it will
5803 	 * only result in a minor loss of functionality for that inode.
5804 	 * If this is felt to be critical, then e2fsck should be run to
5805 	 * force a large enough s_min_extra_isize.
5806 	 */
5807 	if (ext4_journal_extend(handle,
5808 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5809 		return -ENOSPC;
5810 
5811 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5812 		return -EBUSY;
5813 
5814 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5815 					  handle, &no_expand);
5816 	ext4_write_unlock_xattr(inode, &no_expand);
5817 
5818 	return error;
5819 }
5820 
5821 int ext4_expand_extra_isize(struct inode *inode,
5822 			    unsigned int new_extra_isize,
5823 			    struct ext4_iloc *iloc)
5824 {
5825 	handle_t *handle;
5826 	int no_expand;
5827 	int error, rc;
5828 
5829 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5830 		brelse(iloc->bh);
5831 		return -EOVERFLOW;
5832 	}
5833 
5834 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5835 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5836 	if (IS_ERR(handle)) {
5837 		error = PTR_ERR(handle);
5838 		brelse(iloc->bh);
5839 		return error;
5840 	}
5841 
5842 	ext4_write_lock_xattr(inode, &no_expand);
5843 
5844 	BUFFER_TRACE(iloc->bh, "get_write_access");
5845 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5846 					      EXT4_JTR_NONE);
5847 	if (error) {
5848 		brelse(iloc->bh);
5849 		goto out_unlock;
5850 	}
5851 
5852 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5853 					  handle, &no_expand);
5854 
5855 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5856 	if (!error)
5857 		error = rc;
5858 
5859 out_unlock:
5860 	ext4_write_unlock_xattr(inode, &no_expand);
5861 	ext4_journal_stop(handle);
5862 	return error;
5863 }
5864 
5865 /*
5866  * What we do here is to mark the in-core inode as clean with respect to inode
5867  * dirtiness (it may still be data-dirty).
5868  * This means that the in-core inode may be reaped by prune_icache
5869  * without having to perform any I/O.  This is a very good thing,
5870  * because *any* task may call prune_icache - even ones which
5871  * have a transaction open against a different journal.
5872  *
5873  * Is this cheating?  Not really.  Sure, we haven't written the
5874  * inode out, but prune_icache isn't a user-visible syncing function.
5875  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5876  * we start and wait on commits.
5877  */
5878 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5879 				const char *func, unsigned int line)
5880 {
5881 	struct ext4_iloc iloc;
5882 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5883 	int err;
5884 
5885 	might_sleep();
5886 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5887 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5888 	if (err)
5889 		goto out;
5890 
5891 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5892 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5893 					       iloc, handle);
5894 
5895 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5896 out:
5897 	if (unlikely(err))
5898 		ext4_error_inode_err(inode, func, line, 0, err,
5899 					"mark_inode_dirty error");
5900 	return err;
5901 }
5902 
5903 /*
5904  * ext4_dirty_inode() is called from __mark_inode_dirty()
5905  *
5906  * We're really interested in the case where a file is being extended.
5907  * i_size has been changed by generic_commit_write() and we thus need
5908  * to include the updated inode in the current transaction.
5909  *
5910  * Also, dquot_alloc_block() will always dirty the inode when blocks
5911  * are allocated to the file.
5912  *
5913  * If the inode is marked synchronous, we don't honour that here - doing
5914  * so would cause a commit on atime updates, which we don't bother doing.
5915  * We handle synchronous inodes at the highest possible level.
5916  */
5917 void ext4_dirty_inode(struct inode *inode, int flags)
5918 {
5919 	handle_t *handle;
5920 
5921 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5922 	if (IS_ERR(handle))
5923 		return;
5924 	ext4_mark_inode_dirty(handle, inode);
5925 	ext4_journal_stop(handle);
5926 }
5927 
5928 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5929 {
5930 	journal_t *journal;
5931 	handle_t *handle;
5932 	int err;
5933 	int alloc_ctx;
5934 
5935 	/*
5936 	 * We have to be very careful here: changing a data block's
5937 	 * journaling status dynamically is dangerous.  If we write a
5938 	 * data block to the journal, change the status and then delete
5939 	 * that block, we risk forgetting to revoke the old log record
5940 	 * from the journal and so a subsequent replay can corrupt data.
5941 	 * So, first we make sure that the journal is empty and that
5942 	 * nobody is changing anything.
5943 	 */
5944 
5945 	journal = EXT4_JOURNAL(inode);
5946 	if (!journal)
5947 		return 0;
5948 	if (is_journal_aborted(journal))
5949 		return -EROFS;
5950 
5951 	/* Wait for all existing dio workers */
5952 	inode_dio_wait(inode);
5953 
5954 	/*
5955 	 * Before flushing the journal and switching inode's aops, we have
5956 	 * to flush all dirty data the inode has. There can be outstanding
5957 	 * delayed allocations, there can be unwritten extents created by
5958 	 * fallocate or buffered writes in dioread_nolock mode covered by
5959 	 * dirty data which can be converted only after flushing the dirty
5960 	 * data (and journalled aops don't know how to handle these cases).
5961 	 */
5962 	if (val) {
5963 		filemap_invalidate_lock(inode->i_mapping);
5964 		err = filemap_write_and_wait(inode->i_mapping);
5965 		if (err < 0) {
5966 			filemap_invalidate_unlock(inode->i_mapping);
5967 			return err;
5968 		}
5969 	}
5970 
5971 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
5972 	jbd2_journal_lock_updates(journal);
5973 
5974 	/*
5975 	 * OK, there are no updates running now, and all cached data is
5976 	 * synced to disk.  We are now in a completely consistent state
5977 	 * which doesn't have anything in the journal, and we know that
5978 	 * no filesystem updates are running, so it is safe to modify
5979 	 * the inode's in-core data-journaling state flag now.
5980 	 */
5981 
5982 	if (val)
5983 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5984 	else {
5985 		err = jbd2_journal_flush(journal, 0);
5986 		if (err < 0) {
5987 			jbd2_journal_unlock_updates(journal);
5988 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
5989 			return err;
5990 		}
5991 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5992 	}
5993 	ext4_set_aops(inode);
5994 
5995 	jbd2_journal_unlock_updates(journal);
5996 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
5997 
5998 	if (val)
5999 		filemap_invalidate_unlock(inode->i_mapping);
6000 
6001 	/* Finally we can mark the inode as dirty. */
6002 
6003 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6004 	if (IS_ERR(handle))
6005 		return PTR_ERR(handle);
6006 
6007 	ext4_fc_mark_ineligible(inode->i_sb,
6008 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6009 	err = ext4_mark_inode_dirty(handle, inode);
6010 	ext4_handle_sync(handle);
6011 	ext4_journal_stop(handle);
6012 	ext4_std_error(inode->i_sb, err);
6013 
6014 	return err;
6015 }
6016 
6017 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6018 			    struct buffer_head *bh)
6019 {
6020 	return !buffer_mapped(bh);
6021 }
6022 
6023 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6024 {
6025 	struct vm_area_struct *vma = vmf->vma;
6026 	struct folio *folio = page_folio(vmf->page);
6027 	loff_t size;
6028 	unsigned long len;
6029 	int err;
6030 	vm_fault_t ret;
6031 	struct file *file = vma->vm_file;
6032 	struct inode *inode = file_inode(file);
6033 	struct address_space *mapping = inode->i_mapping;
6034 	handle_t *handle;
6035 	get_block_t *get_block;
6036 	int retries = 0;
6037 
6038 	if (unlikely(IS_IMMUTABLE(inode)))
6039 		return VM_FAULT_SIGBUS;
6040 
6041 	sb_start_pagefault(inode->i_sb);
6042 	file_update_time(vma->vm_file);
6043 
6044 	filemap_invalidate_lock_shared(mapping);
6045 
6046 	err = ext4_convert_inline_data(inode);
6047 	if (err)
6048 		goto out_ret;
6049 
6050 	/*
6051 	 * On data journalling we skip straight to the transaction handle:
6052 	 * there's no delalloc; page truncated will be checked later; the
6053 	 * early return w/ all buffers mapped (calculates size/len) can't
6054 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6055 	 */
6056 	if (ext4_should_journal_data(inode))
6057 		goto retry_alloc;
6058 
6059 	/* Delalloc case is easy... */
6060 	if (test_opt(inode->i_sb, DELALLOC) &&
6061 	    !ext4_nonda_switch(inode->i_sb)) {
6062 		do {
6063 			err = block_page_mkwrite(vma, vmf,
6064 						   ext4_da_get_block_prep);
6065 		} while (err == -ENOSPC &&
6066 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6067 		goto out_ret;
6068 	}
6069 
6070 	folio_lock(folio);
6071 	size = i_size_read(inode);
6072 	/* Page got truncated from under us? */
6073 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6074 		folio_unlock(folio);
6075 		ret = VM_FAULT_NOPAGE;
6076 		goto out;
6077 	}
6078 
6079 	len = folio_size(folio);
6080 	if (folio_pos(folio) + len > size)
6081 		len = size - folio_pos(folio);
6082 	/*
6083 	 * Return if we have all the buffers mapped. This avoids the need to do
6084 	 * journal_start/journal_stop which can block and take a long time
6085 	 *
6086 	 * This cannot be done for data journalling, as we have to add the
6087 	 * inode to the transaction's list to writeprotect pages on commit.
6088 	 */
6089 	if (folio_buffers(folio)) {
6090 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6091 					    0, len, NULL,
6092 					    ext4_bh_unmapped)) {
6093 			/* Wait so that we don't change page under IO */
6094 			folio_wait_stable(folio);
6095 			ret = VM_FAULT_LOCKED;
6096 			goto out;
6097 		}
6098 	}
6099 	folio_unlock(folio);
6100 	/* OK, we need to fill the hole... */
6101 	if (ext4_should_dioread_nolock(inode))
6102 		get_block = ext4_get_block_unwritten;
6103 	else
6104 		get_block = ext4_get_block;
6105 retry_alloc:
6106 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6107 				    ext4_writepage_trans_blocks(inode));
6108 	if (IS_ERR(handle)) {
6109 		ret = VM_FAULT_SIGBUS;
6110 		goto out;
6111 	}
6112 	/*
6113 	 * Data journalling can't use block_page_mkwrite() because it
6114 	 * will set_buffer_dirty() before do_journal_get_write_access()
6115 	 * thus might hit warning messages for dirty metadata buffers.
6116 	 */
6117 	if (!ext4_should_journal_data(inode)) {
6118 		err = block_page_mkwrite(vma, vmf, get_block);
6119 	} else {
6120 		folio_lock(folio);
6121 		size = i_size_read(inode);
6122 		/* Page got truncated from under us? */
6123 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6124 			ret = VM_FAULT_NOPAGE;
6125 			goto out_error;
6126 		}
6127 
6128 		len = folio_size(folio);
6129 		if (folio_pos(folio) + len > size)
6130 			len = size - folio_pos(folio);
6131 
6132 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6133 		if (!err) {
6134 			ret = VM_FAULT_SIGBUS;
6135 			if (ext4_journal_page_buffers(handle, &folio->page, len))
6136 				goto out_error;
6137 		} else {
6138 			folio_unlock(folio);
6139 		}
6140 	}
6141 	ext4_journal_stop(handle);
6142 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6143 		goto retry_alloc;
6144 out_ret:
6145 	ret = block_page_mkwrite_return(err);
6146 out:
6147 	filemap_invalidate_unlock_shared(mapping);
6148 	sb_end_pagefault(inode->i_sb);
6149 	return ret;
6150 out_error:
6151 	folio_unlock(folio);
6152 	ext4_journal_stop(handle);
6153 	goto out;
6154 }
6155